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Preface

The famous twentieth century mathematician Paul Erdős spoke of “The
Book,” a tome existing in heaven where God collects the most elegant
mathematical theorems. The theme of beauty in mathematics is expounded
at some length in the prominent Oxford mathematician G. H. Hardy's
autobiography of 1940, “A Mathematician's Apology.” Hardy contended
that only beautiful mathematics has a right to exist and, moreover, the
mathematics that falls into this category is almost exclusively of the “pure”
variety, existing for its own sake and devoid of any real-world
applications.1 Hardy characterizes what he considers the best mathematical
proofs as something akin to great music and poetry, exhibiting a seemingly
paradoxical combination of inevitability and surprise. He cites as examples
Euclid's proof of the infinitude of the prime numbers and the Pythaoreans'
proof of the irrationality of √2.

Hardy notwithstanding, mathematics is valued today both for its esoteric
qualities and as a tool that has played a fundamental role in creating the
modern world. Viewed in this way, the discipline appears as one of the most
magnificent creations of the human mind. But mathematics also has a
human dimension. The men and women who created this vast body of work
were just that, men and women. They had wives, husbands, children, or in
some cases, they didn't. They were gamblers, philanderers, judges, clerics,
soldiers, poets, writers, and rakes. They suffered, they triumphed, they
starved, they courted the favor of nobles, they lorded it over each other at



times, some were even killed. It is the purpose of this book is to present
mathematics in both its humanistic and scientific aspects, although being
mathematicians rather than historians, our focus is largely on the latter.

So, welcome to our tour! There are indeed beautiful vistas. If the terrain
gets a little rocky in places, don't worry, just stay close and let us be your
guide. The landscape is divided into subject areas. The first two chapters are
on Geometry and Number Theory. Chapter 3, on Medieval and Renaissance
Mathematics, is transitionary in nature, bridging the gap between “old
mathematics” and the invention of the subject's greatest tool, calculus.
Chapter 4 concerns Algebra, told through the history of polynomial
equations. Chapter 5 provides an introduction to Calculus proper, with
discussions of the main ideas and theorems. Chapter 6 is an account of
Complex Variables, the calculus of functions defined using complex
numbers. Chapter 7 addresses Graph Theory, a subject that originated with
Euler's solution to the bridges of Königsberg problem, and which has grown
into a major branch of mathematics, with numerous applications in areas
ranging from economics to computer networks. Chapter 8 is concerned with
Probability and traces the development of the subject from its ancient roots
in gambling to its role as the foundation of mathematical statistics. Finally,
Chapter 9 deals with the subject of the infinite, mathematical logic, and
elements of computer science, from the theory of countability originated by
Cantor, through Gödel's revolutionary work on undecidable propositions, to
Turing's work on computing machines and computable numbers.
____________________

  1In fairness, it should be noted that as a lifelong pacifist, Hardy's jaundiced view of the applied
side of the subject was no doubt partly due to abhorrence at the use to which mathematics was put in
the service of war. It is unfortunate that Hardy never learned of the work of Alan Turing and others at
Bletchley Park during World War II who, by applying mathematical techniques to codebreaking,
probably shortened the war by 2 years and thereby saved millions of lives.



The background required to read this book is relatively modest; high
school algebra and trigonometry should suffice for most of it. We believe
the book will serve a variety of purposes: as a text in a Topics in
Mathematics course, as a supplementary text in History of Mathematics, as
an introduction for graduating high school students to the type of
mathematics they are likely to encounter in college, or simply as a book of
interest to those who know some mathematics and would like to learn more.
In any event, we can only hope that the book will prove as much fun to read
as it was to write. Please let us know your thoughts on this matter, if you are
so inclined.

Denis Bell (dbell@unf.edu)
Chris Bernhardt (chris@chrisbernhardt.info)
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Introduction: A Roadmap

The book is organized along the lines of topics in mathematics. For this
reason, the presentation is somewhat ahistorical, although the arrangement
of material within each chapter is chronological (as far as proved possible
while maintaining a coherent narrative structure).

The first two chapters deal with the most ancient of mathematical
disciplines, geometry and number theory. The greatest achievement of the
Greeks, Euclid and his mathematical descendants, was perhaps to establish
what became the paradigm for mathematical thought over the centuries: that
mathematical truths need to be proved by logical arguments founded upon a
set of basic premises. Euclid's style of mathematics is laid out in that great
foundational work The Elements in the form of a set of axioms (the
premises), theorems (the truths), and proofs (the logical arguments). On the
basis that one could do no better than emulate the master, we chose to
follow Euclid's style in Chapters 1 and 2. Here the reader will find a series
of mathematical constructions, theorems, and proofs. While the proofs are
certainly of interest in their own right and would repay careful reading, they
could be skipped over in a casual reading of the book.

The basic objects treated in Chapters 1 and 2, namely shapes and
numbers, occur naturally in the world, so to speak, and therefore required
no formulation. In order to extend Euclid's mode of thought to more
abstract areas of mathematics such as algebra, it was necessary first to
devise a language with which to express the ideas, then an efficient



notational system to facilitate their development. This came about in the
Renaissance period with the introduction of symbolic algebra (equations
with definite but unspecified coefficients, an unknown quantity to be solved
for, etc.). This, together with the invention of analytic geometry
(representing curves by equations), allowed algebra to flourish as an
independent discipline and paved the way for the invention of calculus in
the seventeenth century. These developments, and many other important
contributions of this era, are presented in Chapter 3.

Chapter 4 is devoted to algebra, told primarily through the history of
polynomial equations, starting with quadratic equations, through cubic and
higher degree equations, and culminating in the more abstract developments
of the nineteenth and early twentieth centuries. Along the way, we survey
complex numbers and discuss the Fundamental Theorem of Algebra and
Gauss' construction of the 17-sided polygon.

Chapter 5 presents the elements of Calculus, starting with a brief survey
of the history of the subject and its founders, Newton and Leibniz.
Subsequent sections expound upon on the two branches of the subject,
Differentiation and Integration and their melding in the Fundamental
Theorem of Calculus. One of the most spectacular achievements of
mathematics in the seventeenth and eighteenth centuries was the
representation of functions such as sine, cosine, exponential, and logarithm,
as infinite series, i.e., polynomials with an infinite number of terms. A
discussion of infinite series, as developed by Taylor, Maclaurin, Lagrange,
and others, is presented in the final section of Chapter 5.

By this point in the book we abandon the somewhat spartan approach
assumed in the early chapters in favor of a more informal style, generally
presenting theorems without proofs. This is so as to allow readers to
become acquainted with the elegance of the mathematics without getting



bogged down in technical details. Needless to say, this mode of presentation
is no substitute for a rigorous study of the topics. Suggestions for further
reading in this direction are provided at the end of every chapter.

Chapter 6 is an introduction to the subject of Complex Variables, the
calculus of functions of complex (as opposed to real) numbers. While
incorporating much of the theory in real variable calculus, the subject has a
flavor all its own and offers up a wealth of new and important results,
including some that throw new light on real-valued functions. An example
is a powerful new method to evaluate integrals and infinite sums.

Chapter 7 introduces the reader to the subject of Graph Theory. We first
discuss the origins of the subject in the bridges of Königsberg problem. The
next sections introduce the main object of study, planar graphs, discuss their
properties, and introduce a number known as the Euler characteristic which
captures an essential feature of the graphs. The chapter concludes with an
application of graph theory in three dimensions and a theorem of Gauss and
Bonnet which establishes a remarkable connection between the Euler
characteristic of a surface and the geometry of the surface.

The final two chapters of the book reflect the mathematical interests of
the two authors. The subject of Chapter 8 is Probability. The chapter opens
with a discussion of the history of the subject in games of chance, then
moves on to describe various methods to calculate probabilities and applies
these in some classic situations, demonstrating, for example, that you are
unlikely to get rich by playing the slots in Vegas. We point to the role of
probability as the foundation for mathematical statistics, discuss laws of
large numbers, and indicate how probabilistic methods can be used to prove
a rather surprising fact about numbers.

Chapter 9 deals with the mathematical theory of the infinite and related
matters in the theory of computation. Some highlights of this chapter are an



argument of Cantor showing how to distinguish different types of infinities,
Gödel's incompleteness theorem that any consistent mathematical system
necessarily contains propositions which can neither be proved nor
disproved, and Turing's work which became the theoretical basis for
computer science and indeed for the device that I am using right now! The
book concludes with the discussion of a notorious unsolved problem in the
theory of computation, “P versus NP.”

Now for the promised roadmap. We expect that a large portion of this
book will be accessible to readers with a solid grounding in high school
geometry and algebra. We suggest in this regard:

Chapter 1
Chapter 2 (except Section 2.12)
Chapter 3 (except Section 3.6)
Chapter 4 (Sections 4.1–4.6)
Chapter 5 (except Section 5.6)
Chapter 7 (except Section 7.7)
Chapter 8 (Sections 8.1–8.3)
Chapter 9
The other sections are a little more technically demanding and need more

background, in particular a first course in calculus, would be useful.
Relevant material is provided in Chapter 5.

Readers are invited to “cherry-pick” from the book. For example, those
with a geometric or visual bent might enjoy Chapters 1 and 7;
numerologists and algebraists, Chapters 2 and 4; for the analytically
minded, Chapters 5 and 6; Chapter 8, for readers who plan to join the
professional poker circuit; Chapter 9, for those interested in modern
developments …



With the exception of Chapters 5 and 6, which obviously are interlinked,
the chapters are largely independent. There are exercises sprinkled
throughout to aid in understanding, with solutions provided to the starred
exercises. Also, as remarked above, suggestions for further reading. Happy
touring!
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C H A P T E R  1

Geometry

DOI: 10.1201/9781003470915-1

The presentation in Chapters 1 and 2 is very much in the style of Euclid's
Elements, as indicated in the Forward. Our intention here is to convey to the
reader a sense of the style of mathematics of this era, which proved to be so
influential in shaping the future development of the subject.

Chapter 1 begins with a discussion of probably the best known result in
all of mathematics, the Pythagorean theorem. We present two simple proofs
of the theorem, an algebraic proof and a geometric proof.

The Elements is based on five initial assumptions, called axioms. The
most challenging of the axioms is the so-called Parallel Postulate, which
asserts that a unique straight line can be drawn through any given point
parallel to a given line. Two equivalent versions of the postulate are
presented along with some of its consequences, including the proof that the
angles in a triangle add up to two right angles (180∘).

Euclid's axioms provide for the construction, using straightedge and
compass, of the familiar geometric figures: circles, triangles, and rectangles.
This topic is discussed in Section 1.3, along with other “Euclidean

https://doi.org/10.1201/9781003470915-1


constructions,” and the algebra underlying them. We describe the
construction by straightedge and compass of the golden ratio and the
regular pentagon. The subject of Euclidean constructions is briefly taken up
again in Chapter 4, with Gauss' construction of the regular heptadecagon
(17-sided polygon).

Starting in the eighteenth century, a succession of mathematicians sought
to prove the Parallel Postulate from Euclid's other axioms. They were led to
consider how geometry would look if the Parallel Postulate were dropped
from the set of axioms. This resulted in the creation by Riemann, Bolyai,
and Lobachevsky, of so-called non-Euclidean geometries, a subject which
was later to find application in Einstein's General Theory of Relativity. We
discuss these developments.

Section 1.4 is concerned with the contributions of Archimedes, widely
considered to be the greatest mathematician of the ancient world. Included
are some of Archimedes' achievements in the realm of engineering, his
method of approximating π by inscribed and circumscribed polygons, and
his determination of areas and volumes by a process very similar to what
we now know as calculus. The chapter concludes with a classification of the
so-called Platonic solids.

1.1  THE PYTHAGOREAN THEOREM

There are few theorems that the average person on the street knows, but
most know the Pythagorean theorem. Of all the results in mathematics, It is
probably the most well-known and the most proved. There are literally
hundreds of proofs of this theorem (even Napoleon came up with one!). In
this section, we give a couple of them and then discuss some reasons why
this theorem is so important.



The theorem concerns right triangles. In figure 1.1, we depict our triangle
with the lengths of the sides denoted by a, b, and c.

FIGURE 1.1  A right triangle

Theorem 1.1.  (Pythagorean) Given a right triangle, the area of the square
on the hypotenuse equals the sum of the areas of the squares on the other
two sides.

Figure 1.2 shows the triangle with the squares in gray.



FIGURE 1.2  A right triangle with squares on the edges

The history of this theorem dates well before the life of Pythagoras, who
lived around 500 BCE. A clay tablet dating to 1800 BCE, known as
Plimpton 322, contains a list of Pythagorean triples—numbers a, b, and c
such that

Chinese and Indian mathematicians independently discovered various
special cases of the theorem, perhaps through floor tilings.

We will give two proofs.

Algebraic Proof

a2 + b2 = c2.



Proof. We want to show that a2 + b2 = c2. As a first step, we construct a
square with sides of length a + b.

Inside this square we draw four of our right triangles as shown in figure
1.3.

FIGURE 1.3  A square containing four copies of the right triangle

The area of each of the triangles is 1/2(ab).
The area of the interior white square is c2.
The area of the large square is (a + b)2. This is equal to the sum of the

areas of the white square and the four triangles. Writing this as an equation:

Expanding gives:

(a + b)2 = c2 + 4 × 1/2(ab).

a2 + 2ab + b2 = c2 + 2ab.



Subtracting 2ab from both sides gives the result we want to prove:

□

This proof is both simple and elegant, but would seem quite mysterious
to Euclid and Pythagoras. They did not have algebra. Fortunately, we can
make a small change to our argument that avoids algebra and shows the
three squares.

Geometric Proof

Proof. We start once more with our square with sides of length a + b and
the four triangles depicted in figure 1.3.

We can think of the four gray triangles as tiles lying on a white square
with sides of length a + b. Now move the two triangles on the right side
over to the triangles on the left so they form rectangles. Figure 1.4 shows
the square with the new positions of the triangular tiles.

FIGURE 1.4  The large square with triangles moved to form rectangles

a2 + b2 = c2.



□

Finally, we observe that since the total gray area in both figures is the
same, the total area in white must also be the same in both figures. The
white area in figure 1.3 is the area of the square on the hypotenuse. The
white area in figure 1.4 is the sum of the areas of the squares on the other
two sides.

FIGURE 1.5  Plimpton 322

Distance between Points

The Pythagorean theorem tells us about areas of squares on the sides of
right triangles, but the result gives a formula for the distance between two
points in rectangular coordinates.

Fermat and Descartes independently invented analytic geometry in the
first half of the seventeenth century, studying curves using rectangular
coordinates. Coordinates in terms of longitude and latitude had been used
much earlier, but in analytic geometry, we consider equations involving the
coordinates. Once we have algebraic equations, we can use algebra to
manipulate them.

Given two points, one with coordinates (x0, y0) and the other with
(x1, y1). The distance between them is

√(x1 − x0)2 + (y1 − y0)2.



This follows immediately from the Pythagorean theorem, as illustrated in
figure 1.6.

FIGURE 1.6  Distance between two points

Exercise 1.1.⋆  We must be careful to make sure that our diagrams don't
mislead. In figure 1.6, the picture shows the case when x0 < x1 and
y0 < y1. Show that the distance formula is still correct when x0 ≥ x1 or
y0 ≥ y1.

Exercise 1.2.  A circle of radius r centered at a point with coordinates
(h, k) is defined to be the set of points whose distance to (h, k) is r. Deduce
that the equation of the circle is

(x − h)2 + (y − k)2 = r2.



Exercise 1.3.  Consider the half-line through the origin that makes an angle
θ with the positive x-axis. This line intersects the unit circle. The
coordinates of this point are (cos(θ), sin(θ)). (This is illustrated in figure
1.7.) Prove the identity,

FIGURE 1.7  Unit circle with point (cos(θ), sin(θ)) shown

In mathematics we often use Δ to denote the change in a quantity, so if x
changes from x0 to x1, we write Δx = (x1 − x0). Our formula for distance

in the plane becomes:

cos2(θ) + sin2(θ) = 1.

s = √(Δx)2 + (Δy)2.



We can use the Pythagorean theorem repeatedly to find the distance
formula in higher dimensions. In three dimensions, it is

We illustrate the proof in figure 1.8. First, the hypotenuse of the triangle
with horizontal shading is calculated to be √(Δx)2 + (Δy)2. This is one
side of the triangle with vertical shading, the other having length |Δz|. The
hypotenuse of this second triangle gives the distance between the two
points.

FIGURE 1.8  The distance between two points in three dimensions

s = √(Δx)2 + (Δy)2 + (Δz)2.



FIGURE 1.9  Rendition of Euclid by Jusepe de Ribera, c. 1630–1635

1.2  EUCLID AND THE PARALLEL POSTULATE

Euclid is, of course, known as the author of the Elements, that great edifice
of Greek mathematics, and the founder of the axiomatic method. Euclid
lived around 300 BCE, in the time between Plato and Archimedes. Though
little is known about his life, we believe that Euclid studied at the Platonic
Academy, later taught at the Musaeum, and spent much of his later career in
Alexandria.

The Elements is built upon a foundation of five postulates, mathematical
truths considered being so self-evident that they could be assumed at the
outset. The first four postulates are as follows:

1. A straight line can be drawn from any point to any other point.



2. A finite straight line can be produced continuously in a line.

3. A circle may be described with any center and distance.

4. All right angles are equal to one another.

The first three postulates allow the use of straightedge and compass in
Euclidean constructions. The fifth of Euclid's postulates is the so-
called Parallel Postulate:

5. If a straight line falling on two straight lines makes the interior angles
on the same side less than two straight right angles, then the two
straight lines, if produced indefinitely meet on that side on which the
angles are less than two right angles. (see figure 1.10).

FIGURE 1.10  Euclid's Parallel Postulate

Euclid's statement of the parallel postulate can be replaced with Playfair's
postulate: Given any straight line l and a point p lying outside of l, there is
a unique straight line passing through p and parallel to l (see figure 1.11).

FIGURE 1.11  Playfair's postulate



The Parallel Postulate is the most remarkable of Euclid's postulates; for
more than 2 millennia, it was thought that it could be proved from the other
postulates in Euclidean geometry (and theorems derived from these), and
thus did not require the status of a separate postulate. The thinking on this
changed radically in the early 1800s with the creation of non-Euclidean
geometries, i.e., internally consistent geometric systems, which negate the
parallel postulate.

Giovanni Saccheri's work in 1733 started the change. Saccheri wanted to
derive the parallel postulate from the other four postulates. Playfair's
version of the fifth postulate states that given a line l and a point P not on l,
there is a unique line through P parallel to l. Saccheri's approach was to
negate this statement and try to derive a contradiction. There are two ways
of negating Playfair's axiom, to stipulate:

1. There is no line through P that is parallel to l.

2. There is more than one line through P parallel to l.

Saccheri showed if the first case were true, then lines could not be
continuously extended, contradicting Euclid's second postulate. Thus, he
had ruled out the first case and he now sought to show that the second case
also led to a contradiction. He was unable to do this. Gauss, Bolyai, and
Lobachevsky further developed the second case and realized it gave a
consistent new geometry that came to be known as hyperbolic geometry.

G. B. Riemann re-examined the first case of Saccheri's work. In doing so,
he constructed a different type of non-Euclidean geometry, where the two-
dimensional plane is replaced by the surface of a sphere. The analogue of
line segments in this context are parts of great circles, i.e., circles formed by
the intersection of the sphere with a plane passing through the center of the
sphere. Portions of great circles are called geodesics. (In general, a geodesic



on a surface is the curve of shortest length between its endpoints.) A
triangle is a closed region of the sphere bounded by three geodesics, a
quadrilateral by four, etc. There are no parallel lines in this theory because
any two great circles intersect. Hence the first case of the negation of
Playfair's postulate holds. Since the analogue of straight lines in this theory,
i.e., great circles, are indeed finite in extent, Saccheri's contradiction ceases
to apply, and the theory can be shown to be consistent with Euclid's first
four postulates. Riemann's spherical geometry, in a slightly generalized
guise, goes under the name of elliptic geometry.

Spherical geometry is an example of a geometry of constant curvature
(the curvature at every point is equal to 1/R2, where R is the radius of the
sphere. C. F. Gauss developed a comprehensive geometry of surfaces and
Riemann extended Gauss's work to higher-dimensions. Riemannian
geometry became a cornerstone of mathematics in the twentieth century and
found its most spectacular application in Einstein's theory of general
relativity.

We now prove the well-known fact in Euclidean Geometry that the angle
sum of a triangle is 180∘. The proof requires a preliminary result, which we
state and prove first for the sake of completeness.

Theorem 1.2.  (Corresponding Angle Theorem) Suppose the lines labeled l
and m in figure 1.12 are parallel. Then ∠b = ∠c = ∠e.

FIGURE 1.12  Supplementary and interior angles



□

Proof: We first prove the assertion b = e. We do this via an argument
known as proof by contradiction (reductio ad absurdum), which goes as
follows: assume that the theorem is false. Then seek to derive from this a
contradiction, either to the premise of the theorem or to something else that
has previously been proven. This contradiction proves that theorem must, in
fact, be true.

Suppose, then, that b ≠ e. Since b + d = 180∘, this implies
d + e ≠ 180∘. It follows from the Parallel Postulate that the lines l and m in
figure 1.12 intersect, contrary to our assumption that they are parallel. This
contradiction proves that b = e. To complete the proof, we observe that
both a + b = 180∘ and a + c = 180∘, so b = c.

□

Theorem 1.3.  (Angle sum in a triangle) The sum of the three angles in any
triangle is 180∘.

Proof. Given a triangle with vertices A, B, and C and angles a, b, and c,
extend the line AC. Then draw a line through C parallel to AB. This is
shown in figure 1.13. Notice that e and a are corresponding angles, as are b
and d, so Theorem 1.2 tells us d = b and e = a Thus
a + b + c = c + d + e = 180∘.



FIGURE 1.13  Proof of the angle sum theorem

□

Note that in the theorem's proof, we repeatedly use the Parallel Postulate.
The Angle Sum Theorem is not true in non-Euclidean geometries. Behold
the triangle ABC shown in figure 1.14, where the angle sum is 270∘!

FIGURE 1.14  A triangle with angle sum 270∘



1.3  EUCLIDEAN CONSTRUCTIONS

Euclid and his contemporaries' conception of number was intimately tied to
their geometry; outside of the integers and rationals (fractions), numbers
existed for them only in so far as they arose (as lengths) in geometric
constructions using straightedge and compass, as allowed by Euclid's first
three postulates. We call such numbers constructible and in this section
describe a series of rules and constructions for their generation.

Theorem 1.4.  Suppose that a and b are constructible numbers. Then
a + b, a − b, ab, and a/b are all constructible. Furthermore, √a is
constructible.

Proof. The constructibility of a + b and a − b are clear. The others come
from similar triangles, as we now explain. We start with an observation, the
validity of which is evident from figure 1.15: we can construct a right angle
at any given point on a straight line. This allows us to construct a right
triangle having legs of prescribed length.

FIGURE 1.15  Construction of a perpendicular



Figure 1.16 illustrates the construction of ab. By similar triangles, we
have

hence x = ab.
The construction of a/b follows similar lines (no pun intended).

□

FIGURE 1.16  Construction of ab

The construction of √a is illustrated in figure 1.17. Draw a circle with
radius a + 1 and make the perpendicular at D as shown. Then the vertex
angle at C is 90∘.

1

b
=

a

x
,



FIGURE 1.17  Construction of a square root

Exercise 1.4.⋆  Prove this using the angle sum of the two triangles formed
by drawing the radius from the center of the semi-circle to C.

Hence, △ACD,△ABC, and △BCD are similar. Identifying
corresponding sides in △ACD and △BDC, we have

thus x = √a.
It follows from Theorem 1.4 that any number formed from the integers

by performing successively any (finite) number of applications of the
arithmetic operations and square roots is constructible. For example, the
following number is constructible.

Geometric Solution to Quadratic Equations

x

a
=

1

x
,

√5 +
√

20 +
√√10 − √7

2

⎷



Euclid devised a construction for finding the solutions to the quadratic
equation1

(1.1)

Construct a line segment AB of length a, and the perpendicular PC with
length b at the midpoint P (as indicated in figure 1.18). Draw a circle with
center C and radius a/2. Let D be the intersection of this circle with AB (we
are assuming here that a > 2b ≥ 0).

FIGURE 1.18  Geometric solution of the quadratic equation

Then the two roots of equation 1.1 are |AD| and |DB|.

Exercise 1.5.⋆  Prove this algebraically.

____________________

  1Euclid, of course, did not state this problem using algebra. He stated it in terms of the areas of
two squares and a rectangle.

Further Classical Constructions: Golden Ratio

x2 + b2 = ax.



The golden ratio arises from the classical problem: divide a segment of unit
length into two parts so that the ratio of the whole to the larger part is
equal to the ratio of the larger part to the smaller. Denote the lengths of the
two parts by a and b with a the larger part, and the ratio by ϕ. Then

This ratio is called the golden ratio.
One way to visualize this is with a rectangle with sides a + b and a.

Figure 1.19 depicts it. Removing a square of side a from one end of the
rectangle, results in a smaller rectangle with sides a and b (this is the gray
rectangle in the figure). Since,

the large rectangle and the smaller rectangle have sides in the same ratio.

FIGURE 1.19  Golden rectangle

We call rectangles whose sides are in this ratio golden. Golden rectangles
have the interesting property that when you delete a square containing the
shorter edge, you end up with another golden rectangle. Many people

ϕ =
a + b

a
=

a

b
.

a + b

a
=

a

b
,



consider golden rectangles to be the rectangles with the most aesthetically
pleasing shape. A book published in 1509, Divina proportione, written by
Luca Pacioli2 and illustrated by Leonardo da Vinci became very influential
in this regard and many works of the great Renaissance artists and designs
of classical buildings such as the Parthenon have since been analyzed
showing proportions in the golden ratio. The golden ratio is also closely
related to a famous sequence of integers known as the Fibonacci sequence,
which we will discuss later in Chapter 4.

We know ϕ satisfies

Writing this as the quadratic equation ϕ2 = 1 + ϕ and solving gives

According to the previous discussion, ϕ is constructible.
We now show how to construct a golden rectangle using straightedge and

compass. Figure 1.20 illustrates it.

1. Draw a square. Label the vertices A, B, C, and D as in the figure.

2. Find the midpoint of edge AB and label it E.

3. Draw a circle centered at E that passes through C.

4. Extend line AB until it meets the circle at F.

5. Draw rectangle with sides AF and AD.

ϕ = 1 +
1

ϕ
.

ϕ =
1 + √5

2
.



FIGURE 1.20  Construction of golden rectangle

To see why this works, it is easiest if we think of the initial square as
having sides of length 2. Then the radius of the circle is the hypotenuse of
the triangle EBC and so equals

This gives the length of AF as 1 + √5 and AD as length 2.
____________________

  2Pacioli translated an earlier manuscript by Piero della Francesca on the geometry of polyhedra
and included this translation as part of his book. He did not credit della Francesca. This is one of the
earliest known cases of plagiarism!

Further Classical Constructions: Regular Polygons

A regular polygon is a polygon that has edges of the same length and all
interior angles equal. The regular polygon with three edges is the equilateral
triangle. A construction of this, given in The Elements, is obtained by
choosing r = |AB| in figure 1.15.

√(12 + 22) = √5.



The regular polygon with four edges is the square. This is straightforward
to construct using our construction for perpendiculars. See figure 1.15 once
more.

Once you have a regular polygon with n sides, it is easy to construct one
with 2n sides. This is done by drawing a circumscribing circle passing
through all the vertices, then finding the intersections of the perpendicular
bisectors of the edges with the circle. These intersections along with the
vertices of the original polygon form the vertices of the new polygon.

Exercise 1.6.  Construct the regular hexagon from the equilateral triangle.

Exercise 1.7.  Construct the regular octagon from the square.

The Pythagoreans also knew a construction of the regular pentagon. This
construction is more complicated than our previous ones. Figure 1.23 shows
a pentagon divided into isosceles triangles with vertex angle of 72∘. We
show how to construct this angle.

Figure 1.21 illustrates the construction (here, as before, ϕ denotes the
golden ratio) and is based on similar triangles. A triangle ABC is
constructed with sides of |AB| = |BC| = ϕ and |AC| = 1. Then
∠BAC = ∠ACB. From the defining property of the golden ratio, we have

ϕ

1
=

1

ϕ − 1
.



FIGURE 1.21  Construction of a 72∘ angle

It follows that triangles ABC and ACD are similar (having a common angle
and sides on either side of the angle in the same ratio). From this we deduce
that |AD| = 1, which implies ∠BAD = β and ∠ADC = α; also
∠DAC = β (since △ABC and △ACD have the same angles). Finally,
α = ∠ADC = 2β, as the external angle to △BAD. (The implied
information is shown in red in figure 1.22.) Thus, from the angle sum in
△ABC, we have

which yields β = 36∘ and α = 72∘.

β + 2β + α = 5β = 180∘,



FIGURE 1.22  Additional information

Figure 1.23 depicts the regular pentagon, formed by joining five equally
spaced points on the circle, along with the so-called star pentagon or
pentagram. The Pythagorean school adopted the pentagram as its logo.

FIGURE 1.23  The regular pentagon and the pentagram

Exercise 1.8.  Consider a pentagram with edges of length one along with
three diagonals, as shown in figure 1.24. By considering parallel lines,
show the length of line AD is equal to 1.



FIGURE 1.24  Pentagon with diagonals

Exercise 1.9.⋆  Continuing from the previous exercise, show using similar
triangles that the diagonal length x satisfies x/1 = 1/(x − 1).
(Hint. It might be helpful to look at figure 1.22.)

Exercise 1.10.  Deduce from the previous exercise that the diagonal length
of the pentagon is the golden ratio ϕ.

The next regular polygon is the heptagon. The Greeks could not construct
this using straightedge and compass. It is not possible, but a proof of this
would take several centuries. We will return to this later in the book when
we look at some remarkable work by Carl Friedrich Gauss.

1.4  THE WORK OF ARCHIMEDES



FIGURE 1.25  Engraving of Archimedes: Credit: Fjordstone.com

Archimedes was born in the ancient city of Syracuse and lived between c.
287 and c. 212 BCE. He is regarded as the greatest mathematician of
antiquity and one of the greatest mathematicians of all time. We don't know
much about Archimedes' life except how it ended; legend has it he was
killed by a soldier during the Roman invasion of Sicily while drawing
circles in the sand. Archimedes had previously designed machines to defend
the city, including cranes with huge pincer-like attachments that could
(supposedly) pluck ships out of the sea, and massive stone throwers. The
invaders must have thought they were under attack from a horde of
mechanical demons!

Archimedes was the first to apply mathematical principles to physical
phenomena such as the workings of levers and hydrodynamics (behold the
famous “Eureka” story). Besides war machines, he invented mechanical

http://fjordstone.com/


devices for peaceful purposes, such as the screw pump and the compound
pulley. Despite his innovations in engineering and in applications,
Archimedes was most proud of his work in pure mathematics. The great
Roman orator and statesman Cicero describes visiting Archimedes' tomb
and seeing a sphere surmounted by a cylinder which Archimedes had
requested to be placed there to represent his mathematical discoveries.

Trisection of an Angle

Given an arbitrary angle, it is not possible to construct an angle of one-third
the size using a straightedge and compass. It is easy to trisect certain
specific angles such as a right-angle, but there is no general method that
works for all angles. (Pierre Wantzel was the first person to give a proof of
this, in 1837.)

For straightedge and compass constructions, we are not allowed to add
any marks to the straightedge. It is to be used only for drawing lines
between two points and for extending lines. Archimedes showed, however,
that if you are allowed to mark your straightedge, trisecting angles becomes
possible.

Figure 1.26 shows the construction. The left picture shows the angle α
that we want to trisect. We draw it at the center of a circle. We then mark
our straightedge with two marks so that the distance between them equal
the radius of the circle.



FIGURE 1.26  Trisection of angle

The figure on the right shows the next steps. We extend the straight line
containing the diameter of the circle. Then we slide and rotate our
straightedge so that it still passes through the point A and so that the
distance BC between the circle and the intersection with the extended line
equals the radius of the circle. We do this by positioning our straightedge so
the one mark is on the circle and the other is on the extended line. This line
is shown as ABC in the diagram. The angle this line makes with the
extended line, denoted β in the figure is the trisection of α.

To see why the construction works, observe that the triangles OBC and
OAB are both isosceles, so have base angles equal. The base angles of OAB
are denoted by γ, but notice that γ is an exterior angle of triangle OBC, so
γ = 2β. Since the sum of angles in a triangle equals 180∘, we have
δ = 180 − 4β. The sum of the angles on the diameter at O sums to 180∘

since it is a straight line. This gives

which simplifies to

α + (180 − 4β) + β = 180,



Estimation of π

In his treatise The Measurement of a Circle, Archimedes gave an estimate
for the numerical value of π much more accurate than those of his
predecessors. Archimedes' technique was to calculate the areas of a series of
regular polygons inscribed within, and circumscribing, the circle.
Archimedes used polygons with 6, 12, 24, and 96 sides. The inscribed
hexagon (case n = 6) is easily constructed. Mark off, starting from any
point on the unit circle, chords of radius 1 until the six vertices A, B, C, D,
E, and F are obtained, as shown in figure 1.27. These form the vertices of
the inscribed hexagon. The vertices G, H, I, J, K, and L of the circumscribed
hexagon are found as the intersection of the tangent lines to the circle at A,
B, C, D, E, and F. Regular 12, 24-gons, etc. are obtained by successive
bisection.

FIGURE 1.27  Inscribed and circumscribed hexagons

α = 3β.



Let pn and Pn denote the perimeters of the inscribed and circumscribed

polygons of n sides. An argument involving the Pythagorean theorem shows
that these satisfy the relations

(1.2)

In the case n = 6, the figures are regular hexagons, comprised of six
equilateral triangles. Clearly, then p6 = 6.

Exercise 1.11.  Show P6 = 4√3.

Substituting these values into (1.2) results in

Further substituting in (1.2) gives P24 and p24. Combining these values with

the then-known estimate

Archimedes found the following bounds for π:

P2n =
2pnPn

pn + Pn

, p2n = √pnP2n.

P12 =
48√3

6 + 4√3
, p12 = 12√

√3

3 + 2√3
.

265

153
< √3 <

1351

780
.

3
10

71
< π < 3

1

7
.



Area of the Parabola

The work of Archimedes in this regard is noteworthy because of the use it
makes of a powerful method known as exhaustion. The method originates
with Eudoxus of Cnidos (408–355 BCE, also credited with creating the
theory of proportion in Euclid's Elements), but came to fruition with the
work of Archimedes. Archimedes' argument anticipated the theory of
integral calculus.

The underlying idea is to calculate the area of a region (in this case the
parabola) by filling, or “exhausting,” the region with triangles. Consider the
parabolic segment ABC shown in figure 1.28, where C denotes the point on
the curve where the tangent line is parallel to the chord AB.3 Denote the
area of △ABC by α. Now inscribe triangles ADC and BCE inside the side
segments according to the same recipe. Archimedes proves that each of
these two smaller triangles has area ( 1

8 )α, thus the total area of the
triangles is ( 1

4 )α. Next, construct further triangles with vertices on the
parabola and bases on the new chords AD, DC, CE, and EB; these have total
area ( 1

42 )α. Continuing this process produces a pattern of triangles whose
areas are in geometric progression (each 1/4 the size of its predecessors).
These triangles eventually (after infinitely many steps) exhaust the area of
the original parabolic segment.



FIGURE 1.28  Area of a parabola

The combined area of the triangles αn at the nth stage of the process is

____________________

  3Informally, a “tangent line,” is a line on a curve that “just touches” the curve at the point of
intersection, see figure 1.28 at point C. Tangent lines play an important role in calculus and we define
them more precisely in Chapter 5.

The formula for a geometric sum yields

Nowadays, in the language of calculus, we would compute the area A of the
parabolic segment as the limit,

αn = α(
1

4
+

1

42
+

1

43
+ ⋯ +

1

4n
).

αn =
4

3
α[1 − (

1

4
)n+1].

lim
n→∞

αn =
4

3
α.



But the concept of limit did not exist at that time. Archimedes instead
argues by reductio ad absurdum. Suppose, on the contrary, that A strictly
less than 4

3 α and write A = 4
3 α − ϵ, where ϵ > 0. Then we can choose n

large enough to make αn > A. By some simple algebra, this is equivalent
to choosing n such that

It is clearly possible to do this since ϵ is a fixed positive number and n can
be chosen arbitrarily large.4 This gives a contradiction, since the totality of
triangles is contained inside the parabolic segment. The assumption that
A > 4

3 α was shown to lead to a similar contradiction, thereby proving that
A = 4

3 α.
In identifying A as 4

3 α and proving it by this argument, Archimedes
came startlingly close to the modern formulation of limit, which did not
appear in mathematics until the work of Cauchy in the 1820s. (We use the
symbol ϵ in the argument because it is used today in this context.)
____________________

  4This may not have been so clear to the ancients. It relies on the property: given any two positive
numbers x and y, there is an integer n such that nx > y. This property was introduced in another of
Archimedes' works, On the Sphere and the Cylinder and is now known as the Archimedean Axiom,
although these days it is regarded as a proposition rather than an axiom.

Conic Sections and the Archimedean Spiral

Prior to the introduction of analytic geometry in the seventeenth century,
the study of curves focused almost exclusively on those arising from conic
sections, i.e., formed by the intersection of a cone with a plane. These are
the circle, the ellipse, the parabola and the hyperbola, depicted in figure

(
1

4
)n+1 <

3

4
ϵ.



1.29. The subject of conic sections gained considerable importance in
astronomy when it was observed that the paths of heavenly bodies follow
these curves, and played a key role in the work of Kepler and Newton.

FIGURE 1.29  The conic sections

The most significant advance in the study of conics is due to Apollonius
(died 100 BCE), whose eight volumes, aptly titled Conic Sections,
summarized, and greatly expanded existing work on the subject. In
particular, Apollonius proved that a plane cutting a cone would necessarily
give rise to a curve of one of the aforementioned types. Apollonius' work
was translated into Arabic and had a far-reaching effect on mathematicians
of the mid-east.

In this context, we should mention the remarkable discovery by the poet-
mathematician Omar Khayyam (1048–1123), of a geometric solution to the
cubic equation. Khayyam's solution to a cubic equation, written in the form



(1.3)

is depicted in figure 1.30.

FIGURE 1.30  Omar Khayyam's geometric solution to the cubic equation

Khayyam first constructs the line segment AB, then the parabola with
vertex A, axis AB and parameter b.5 In the language of analytic geometry,
which, of course, did not exist at the time, the equation of the parabola
would be by = x2, taking point A as the origin. A line segment AC of length
c is then constructed perpendicular to AB, and a semicircle is drawn of
radius c/2 centered at its midpoint. Let E denote the intersection point of
the parabola and the semicircle. Then the solution to the cubic equation
(1.2) is given by the distance |DE| from the line AC to E.

Exercise 1.12.⋆  Prove this algebraically.

Exercise 1.13.⋆  Prove that equation (1.2) has no more than one (positive)
real root.

x3 + b2x = b2c



In his treatise On Spirals Archimedes introduced into mathematics a
curve of a new type, now known as the Archimedean spiral. The idea is
dynamic. In his own words:

If a straight line [half-ray] one extremity of which remains fixed be made
to revolve at a uniform rate in the plane until it returns to the position from
which it started, and if, at the same time as the straight line is revolving, a
point moves at a uniform rate along the straight line, starting from the fixed
extremity, the point will describe a spiral in the plane.

The curve is most easily expressed in polar coordinates as r = aθ, where
a denotes the rate that the spiral is increasing in radius (see figure 1.31).
Among Archimedes' most spectacular achievements is the calculation of the
area of the first loop of the spiral (0 ≤ θ ≤ 180∘). Archimedes proved,
again using the method of exhaustion, that the area is 4

3 π
3a2.

FIGURE 1.31  Archimedean spiral

____________________

  5A parabola could be constructed in those days as the locus of points equidistant from a fixed point
(the focus) and a fixed line (the directrix).

1.5  PLATONIC SOLIDS



A Platonic solid is a convex regular polyhedron in three-dimensional space,
where the faces are congruent regular polygons, and where the same
number of faces meet at each vertex6 The most familiar Platonic solid is the
cube, or hexahedron. Only four Platonic solids exist besides the cube; they
are the tetrahedron (with 4 faces), the octahedron (8 faces), the
dodecahedron (12 faces), and the icosahedron (20 faces).

The ancient Greeks studied these solids extensively. Some sources credit
Pythagoras as their discoverer, although there is some evidence that he may
have been unaware of the existence of the octahedron and the icosahedron,
and Theaetetus may have discovered them.

FIGURE 1.32  The tetrahedron



FIGURE 1.33  The hexahedron

FIGURE 1.34  The Octahedron

FIGURE 1.35  The Dodecahedron

FIGURE 1.36  The icosahedron



The Platonic solids feature frequently in the works of Plato (hence the
name), who associated them to the four classical elements, associating earth
with the cube, air with the octahedron, fire with the tetrahedron, and water
with the icosahedron. Perhaps for the sake of inclusivity, Plato remarked
that “… God used the dodecahedron for arranging the constellations on the
whole heaven.” Platonic solids occur in nature, e.g., in the early twentieth
century, the biologist Ernst Haeckel discovered a species of radiolaria (a
type of protozoa) whose skeletons are shaped like the icosahedron (figure
1.37).

FIGURE 1.37  Circogonia icosahedra, a species of radiolaria

Astronomical references to Platonic solids persisted beyond ancient
Greek times. In the sixteenth century, Kepler attempted to relate the
positions of the five extraterrestrial planets (the only planets known at that
time) to the Platonic solids. In his treatise Mysterium Cosmographicum,
published in 1596, Kepler constructed a model of the Solar System (figure
1.38) where the five Platonic solids were set inside one another and
separated by a series of inscribed and circumscribed spheres. Kepler



proposed that the distances between the six then-known planets could be
understood in terms of the Platonic solids. Kepler eventually abandoned this
idea, but out of this work came Kepler's three laws of planetary motion,
which greatly influenced Newton's thinking in Principia Mathematica. The
Platonic solids can be characterized by the pair of integers {p, q} giving
(respectively) the number of edges of each face, and the number of faces
that meet at each vertex. This is known as the Schläfli symbol of the figure.
So, for example, the tetrahedron has Schläfli symbol {3, 3}.

FIGURE 1.38  Kepler's Platonic solid model of the solar system

____________________

  6A polyhedron is a solid figure with polygonal faces. Convex means that the figure “bulges out” at
every point. This is technically described by saying that the straight line joining any two points in the
figure is entirely contained within the figure.

The Elements contains a proof that the only existing Platonic solids are
the aforementioned ones. The proof, probably originating with Theaetetus,
is based on the following observations:



Each vertex V of a Platonic solid must have at least three faces meeting at
it. Let m denote the number of faces meeting at V and suppose these faces
are regular n-gons with internal angles θ between the sides. It must hold
that mθ < 360∘. We can see this by unfolding the faces meeting at V of the
figure onto the plane containing any one of the faces. The faces then form
non-overlapping figures in the plane (see figure 1.39 for an example). This
implies the stated inequality.

FIGURE 1.39  Unfolding of the dodecahedron at a vertex

The following table shows the values of θ corresponding to different
values of n:

Number of edges versus interior vertex angle
The above considerations strongly limit the feasible range of values of m

and n in a Platonic solid. In particular, n ≥ 6 is not possible, since then the

n θ

3 60∘

4 90∘

5 108∘

≥ 6 ≥ 120∘



combined angle sum at the vertex would exceed 360∘. In the case n = 3,
the possible values of m are 3, 4, and 5. These result in tetrahedron, the
octahedron, and the icosahedron, respectively. For the case n = 4, the only
possible choice of m is 3, in which case the figure is a cube. For n = 5,
again the only possible value for m is 3 and in this case, the figure is the
dodecahedron. And these are the only possible Platonic solids!
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C H A P T E R  2

Number Theory

DOI: 10.1201/9781003470915-2

As in the previous chapter, we begin with Euclid. The Elements contain, in
addition to geometry, some of the fundamental results concerning natural
numbers. Here we find proofs that there are an infinite number of prime
numbers and that every integer greater than two can be factored into a
product of primes.

For the Greeks, numbers were positive integers, but they compared
lengths of lines. Commensurate lengths correspond to what we now call
rational numbers and incommensurate lengths to irrational numbers. They
proved that the length of a diagonal of the unit square was incommensurate
to the length of the side, showing the square root of two is irrational. Their
method of comparing lengths of lines is done by an algorithm, and this is
where we start the chapter.

We then turn to looking at integer solutions to equations. One important
example, is to find Pythagorean triples—the lengths of sides of right
triangles. Euclid solves this particular example. Diophantus extended
Euclid's work, writing Arithmetica consisting of 13 books consisting of

https://doi.org/10.1201/9781003470915-2


methods of finding positive rational solutions to various algebraic
problems.

For a more general theory, it helps to work over the integers rather than
the natural numbers. We need to extend the definition of numbers to include
negative numbers and zero. This was done in both China and India. The
general solution to finding integer solutions to linear equations comes to us
from the work of Brahmagupta.

Our path now takes us from Asia to the Middle East. In ninth century
Baghdad, Al-Khwarizmi, much like Euclid, wrote encyclopedic books
describing the mathematics known at the time. Some of these books made
their way to Europe where they revolutionized mathematics—switching
from Roman numerals to the decimal notation makes arithmetic so much
simpler!

The study of mathematics in Europe was spurred by translations of Greek
and Arabic works. Not all of Diophantus' Arithmetica survives, but some
does and was translated into Latin. This was the book that inspired Fermat
and where he wrote his comments in the margins. We look at both his Little
theorem and Last theorem.

We conclude the chapter by looking at irrational numbers. We start with
the Pythagorean's and the proof the square root of two is irrational. Then
show that the Euclidean algorithm gives a way of describing numbers using
continued fractions. Irrational numbers are either algebraic or
transcendental. We finish with a sketch of Liouville's construction of a
transcendental number. The first time a transcendental number was shown
to exist.1

2.1  THE EUCLIDEAN ALGORITHM



In the Elements, Euclid gives a compendium of elementary mathematics
known at the time. It is divided into 13 books. The first books are devoted
to geometry, but Books VII, VIII, and IX concern numbers. To the Greeks
numbers meant positive integers, what we call natural numbers.

In Book VII, Euclid gives a procedure for finding the greatest common
divisor of two natural numbers. This algorithm predates Euclid, but because
of his clear exposition and the influence of the Elements on succeeding
generations of mathematicians, we now call it the Euclidean Algorithm.

This algorithm is efficient, and still widely used.

Euclidean Algorithm

Given natural numbers a and b, we let max(a, b) denote the maximum of
the two numbers and min(a, b) the minimum.

1. Calculate max(a, b) − min(a, b).

2. If max(a, b) − min(a, b) = 0, halt the process—the greatest
common divisor is a = b.

3. If max(a, b) − min(a, b) ≠ 0, go to the first step using the two
numbers: min(a, b) and max(a, b) − min(a, b).

____________________

  1A few years later Cantor would show that practically all real numbers are transcendental. We will
see this in the last chapter of the book.

Example 2.1.  We use the algorithm to find the greatest common divisor of
114 and 42.



Why Does the Algorithm Work?

If max(a, b) − min(a, b) ≠ 0, then max(a, b) − min(a, b) is a natural
number that is strictly less than max(a, b). This tells us that the larger of
the two numbers decreases at each step of the iteration. There are only a
finite number of natural numbers less than max(a, b), so the algorithm
must halt after a finite number of iterations.

If d is a divisor of both a and b, then it must also be a divisor of
max(a, b) − min(a, b). Conversely, any divisor of both min(a, b) and
max(a, b) − min(a, b) must also be a divisor of both a and b. This tells us
the greatest common divisor (gcd) of a and b is also the gcd of min(a, b)

and max(a, b) − min(a, b). At each stage of the iteration we have two
natural numbers, the gcd of each of these pairs are equal. The algorithm
halts when we have two equal positive integers. The gcd of two equal
positive integers is just the repeated number.

Euclidean Algorithm Using Division

The algorithm as we have presented it uses repeated subtraction. We can
speed it up by using division. We use the fact that if m and n are natural

(114, 42) =

(72, 42) = (114 − 42, 42)

(42, 30) = (42, 72 − 42)

(30, 12) = (30, 42 − 30)

(18, 12) = (30 − 12, 12)

(12, 6) = (12, 18 − 12)

(6, 6) = (12 − 6, 6)

= 6



numbers, then the remainder r after dividing m by n satisfies 0 ≤ r < n.

Theorem 2.1.  Euclidean Algorithm using division

1. Calculate max(a, b) − min(a, b).

2. If max(a, b) − min(a, b) = 0, halt the process—the greatest common
divisor is a = b.

3. If max(a, b) − min(a, b) ≠ 0, calculate the remainder r after
dividing max(a, b) by max(a, b) − min(a, b).

4. If r = 0, halt the process—the greatest common divisor is
max(a, b) − min(a, b).

5. If r ≠ 0, go to step 1 using the numbers max(a, b) − min(a, b) and r.

Example 2.2.  We repeat our calculation of the gcd of 114 and 42 using
division instead of repeated subtraction.

The Euclidean Algorithm and Number Theory

Euclid's lemma says that if a prime p divides a product ab, then it must
divide either a or b. This is an important result, and we will give a proof.
Euclid's proof is rather complicated, so we will take a detour and give a
simple, more modern proof. Our proof hinges on a result called Bézout's
lemma. Étienne Bézout was an eighteenth century French mathematician.

(114, 42) 114 = 2 × 42 + 30.

(42, 30) 42 = 30 + 12.

(30, 12) 30 = 2 × 12 + 6.

(12, 6) 12 = 2 × 6 + 0.



He proved his lemma holds for polynomials, not just for integers. The result
for integers follows easily from the Euclidean algorithm.

Theorem 2.2.  Let a and b be two natural numbers, then there are two
integers m and n (not necessarily positive) such that

Proof. This follows from the Euclidean Algorithm. At each stage, the
natural numbers can always be expressed as integer linear combinations of
a and b.

□

Example 2.3.  We return to the calculation in example 2.2 but this time
keeping track of the linear combinations.

The last line tells us that 6 = 3 × 114 − 8 × 42.

Exercise 2.1.⋆

Let a and b be two natural numbers. Let

ma + nb = gcd(a, b).

(114, 42) = (a, b).

(42, 30) = (b, a − 2b).

(30, 12) = (a − 2b, b − (a − 2b)) = (a − 2b, 3b − a).

(12, 6) = (3b − a, (a − 2b) − 2(3b − a)) = (3b − a, 3a − 8b).

S = {ax + by |x, y are integers}.



Prove that the smallest positive integer in S is gcd(a, b).

Two integers are called coprime if they don't have any primes in
common. Equivalently, two integers are coprime if their greatest common
divisor is 1.

Exercise 2.2.  Suppose that a and b are natural numbers with
gcd(a, b) = d. Use the previous exercise to show that a/d and b/d are two
coprime integers.

Exercise 2.3.  If a and b are nonzero integers, show
gcd(a, b) = gcd(|a|, |b|).

Using the previous exercise, Theorem 2.2 can be generalized slightly to
give the following theorem.

Theorem 2.3.  (Bézout's lemma) Let a and b be two nonzero integers, then
there exist two integers m and n such that

A prime number is an integer greater than 1 whose only divisors are 1
and itself. We can use Bézout's lemma to prove various facts about prime
numbers. One that we will use often is Euclid's lemma.

Theorem 2.4.  (Euclid's lemma)

If p is a prime and it divides the product ab, where a and b are natural
numbers, then p divides a or b.

Proof. Suppose that p divides ab but does not divide a. Since the only
divisors of p are 1 and p, the gcd of p and a must be 1. Bézout's lemma

ma + nb = gcd(a, b).



(theorem 2.2) tells us there must be integers m and n such that

Multiplying both sides by b gives:

We know p divides ab, and it clearly divides npb. Since it divides both
terms on the left side, it must divide the term on the right side b.

□

Exercise 2.4.⋆  Show that if p is a prime, and it divides the product abc,
where a, b and c are natural numbers, then p divides at least one of a, b, or
c.

Exercise 2.5.  Show that if p is a prime and it divides a product of natural
numbers, then it must divide at least one term in the product.

The Fundamental Theorem of Arithmetic

The Fundamental Theorem of Arithmetic says that every natural number
greater than one can be written as a product of primes and this product is
unique (up to the ordering of the factors). We split the proof of this into two
parts. Given a natural number, we first show how to write it as a product of
primes, then we show this product is unique.

Before we start our proof, we comment on the word product. In ordinary
English, to have a product of terms, you have at least two terms. However,

ma + np = 1.

mab + npb = b.



in mathematics, it simplifies things if we extend the definition and allow a
product to have just one term.

If we look at the first few natural numbers greater than 1, we have: 2, 3,
4 = 2 × 2, 5 and 6 = 2 × 3. The prime numbers are considered as products
of one term—namely themselves. The uniqueness up to ordering means
writing 6 = 2 × 3 and 6 = 3 × 2 does not give two distinct factorizations
—it's the same factorization written with different orderings.

Theorem 2.5.  (Existence of prime factorization)

We can write very natural number greater than 1 as a product of primes.

Proof. We give a proof by contradiction (reductio ad absurdum). We
assume that there are natural numbers that cannot be written as a product of
primes and deduce a contradiction. Since we cannot have contradictory
statements, our initial hypothesis must be false.

If there are natural numbers that don't have prime factorizations, there
must be a smallest one. We will call it n. Since n doesn't have a prime
factorization, it cannot be a prime. If n is not a prime, we can write n = ab,
where both a and b are natural numbers smaller than n. Since n is the
smallest number without a prime factorization, both a and b must have
prime factorizations. But this gives us a prime factorization for n—the
prime factorization for a concatenated with the prime factorization of b. So
n both has and does not have a prime factorization. This is a contradiction
telling us that n cannot exist.

We have shown that natural numbers greater than 1 without prime
factorizations don't exist or, equivalently, every natural number greater than
1 has a prime factorization.

□



Theorem 2.6.  Uniqueness. Every natural number greater than 1 can be
written as a product of primes. This product is unique, up to the order in
which the primes are written.
Proof. Again, we give a proof by contradiction. If there are natural numbers
with two (or more) prime factorizations, there must be a smallest one n. The
number n has two distinct prime factorizations, which we can write as

Now, the prime p1 divides the product on the left side, and so must divide

the product on the right side. By the result from exercise 2.5, we know that
p1 must divide one of the qs on the right side. This means we can cancel p1

from both sides, but this gives a number smaller than n with two different
prime factorizations. This contradicts the fact that n is the smallest natural
number with two distinct prime factorizations. Consequently, n cannot
exist. All natural numbers greater than 1 have a unique prime factorization.

□

We have split the proof of the Fundamental Theorem of Arithmetic into
two parts. The proof of existence appears in Book VII of the Elements.
Proposition 32 in Book VII says:

Any number either is prime or is measured by some prime number.

Uniqueness is given by Proposition 14 in Book IX:

If a number be the least that is measured by prime numbers, it will
not be measured by any other prime number except those originally
measuring it.

n = p1p2 ⋯ pk = q1q2 ⋯ ql.



The modern statement and proof of the theorem come from Gauss. He
extended the idea of integers to the complex numbers; looking at numbers
of the form a + bi, where a and b are integers and i is the square root of −1

. He showed that, what are now called the Gaussian integers, have the
unique factorization property. This is not easy. Questions involving
factoring become more complicated. For example, 5 is equal to
(1 + 2i)(1 − 2i), so it can be factored and is not a Gaussian prime. Gauss'
textbook on number theory Disquisitiones Arithmeticae (published in 1801)
emphasized the importance of the Fundamental Theorem.

Exercise 2.6.⋆  Later we will need the facts that if m and n are coprime,
then mn is coprime to both m2 − n2 and m2 + n2. Prove this.

As an application of the Fundamental Theorem of Arithmetic, we give a
proof of the following classical result (another proof will be given in
Section 2.12).

Theorem 2.7.  The number √2 is irrational, i.e., cannot be expressed as a
fraction a/b, where a and b are integers.
Proof. The proof is by contradiction. Suppose that

Squaring the equation gives

(2.1)

√2 =
a

b
.

a2 = 2b2.



□

Write a = 2mp
r1
1 p

r2
2 … p

rk
k

 and b = 2nq
s1
1 q

s2
2 … q

sl
l

 in terms of their prime
factorizations, where it assumed that none of the primes p1, p2, … , pk nor
q1, q2, … , ql are 2 (note, it is possible that m or n are 0). Substituting into
(2.1), we have

This contradicts the uniqueness part of the Fundamental Theorem of
Arithmetic, since the left-hand side has an even power of 2, and the left-
hand side an odd power.

In a similar fashion, it can be proved that whenever √a is not an integer,
it is irrational.

Exercise 2.7.  Use this argument to prove that √3 is irrational.

2.2  INFINITUDE OF PRIMES

In Book IX of the Elements Euclid gives an elegant proof of a classic
theorem of number theory: There are an infinite number of primes. Euclid
states this in Proposition 20:

Prime numbers are more than any assigned multitude of prime
numbers.

Our proof of the theorem follows Euclid's argument.

Theorem 2.8.  (Infinitude of primes) There are an infinite number of
primes.

22mp2r1
1 p2r2

2 … p2rk
k

= 22n+1q2s1
1 qs2

2 … q2sl
l

.



Proof. We show that if we are given any finite collection of primes, we can
always find another prime that does not belong to the collection. Suppose
we are given primes p1, p2, … , pn. Define the number n by

Dividing n by any of the primes in our collection always gives a remainder
of 1, so n is not divisible by any of these primes.

If n is prime, we have found a prime that is not in our original collection.
If n is not prime, then it must have a prime factorization. Since all the
primes in the factorization of n divide n, none of them can belong to the
original collection.

□

2.3  PERFECT NUMBERS

A perfect number is one which is equal to the sum of its proper divisors
(i.e., all the divisors except the number itself). The definition appeared in
the Elements (V.22) The first two perfect numbers are

The early Greek mathematicians knew of two more perfect numbers, 496
and 8128, the last of which was noted by Nicomachus around 100 AD.

We define σ(x) to be the sum of all the divisors of x (including x itself),
so x is perfect if σ(x) = 2x.

n = p1p2 ⋯ pn + 1.

6 = 1 + 2 + 3,

28 = 1 + 2 + 4 + 7 + 14.



Exercise 2.8.⋆  If p and q are coprime, prove

Exercise 2.9.  Show σ(2k) = 2k+1 − 1 for any positive integer k.

Euclid proved that if N = 2p − 1 is prime, then the number 2p−1N  is
perfect. Prime numbers of this form are named Mersenne primes, after the
seventeenth century monk Marin Mersenne, who studied them in relation to
perfect numbers.

Exercise 2.10.⋆  Prove that if the number 2p − 1 is prime, then p is itself
prime.

In the eighteenth century, Euler proved that this formula yields all even
perfect numbers. This result, which we now prove, is known as the Euclid–
Euler theorem.

Theorem 2.9.  If N = 2p − 1 is prime, then the number P = 2p−1N  is
perfect. Furthermore, all even perfect numbers have this form.

Proof. First, assume that N = 2p − 1 is prime. Then the proper divisors of
P are

Using the formula for the sum of the geometric series, we see that the sum
of the proper divisors of P is

σ(pq) = σ(p)σ(q).

1, 2, 22, … , 2p−1,N , 2N , 22N , … , 2p−2N .



showing P is perfect.

Now, suppose that x is an even perfect number. Write x in the form

where k ≥ 1 and y is odd.

If x is perfect, then σ(x) = 2x and using and exercises 2.8 and 2.9, we
have

(2.2)

This implies that the odd number 2k+1 − 1 divides y, i.e.,

is a proper factor of y.

Let Q denote the sum of any other proper factors of y. Then

p−1

∑
j=1

2j + N

p−2

∑
j=1

2j

= (2p − 1) + N(2p−1 − 1)

= N + N(2p−1 − 1)

= 2p−1N = P ,

x = 2ky,

2k+1y = σ(2x) = σ(2k)σ(y) = (2k+1 − 1)σ(y).

y

2k+1 − 1



□

Together with 2.2, this implies Q = 0. Thus y is prime and

This proves that x has the claimed form.

The Euler–Euclid theorem thus characterizes all even perfect numbers.
They are in one-to-one correspondence with the Mersenne primes. The first
four primes, p = 2, 3, 5, and 7 yield N = 2p − 1 = 3, 7, 31, and 127.
These are all primes and give rise, by the Euler–Euclid recipe, to the perfect
numbers 6, 28, 496, and 8128. The next possible candidate for a Mersenne
prime 211 − 1 = 2047 is not actually prime, having the factorization
23 × 89.

The Mersenne numbers 2p − 1 turn out to be prime for only 43 of the
first two million primes p. It is not known if infinitely many Mersenne
primes, and hence infinitely many even perfect numbers, exist.

It is likewise unknown to this day whether or not any odd perfect
numbers exist.

2.4  DIOPHANTINE EQUATIONS

A Diophantine equation is an equation for which we are only interested in
integer solutions. An important early example involves Pythagorean triples:
What are the natural number solutions to x2 + y2 = z2?

σ(y) = y +
y

2k+1 − 1
+ Q

=
2k+1y

2k+1 − 1
+ Q.

y

2k+1 − 1
= 1.



These equations are named after Diophantus, a Greek mathematician
who lived after Euclid. Diophantus wrote Arithmetica, consisting of 13
books on methods for finding integer and rational solutions to equations.
Not all of the 13 books survived, but the portion that did was translated
from the Greek into Latin in 1570. Pierre de Fermat, who we will meet later
owned and studied from a copy. This is the book in which he wrote that he
had a solution to his “Last Theorem” but the margin was too small to
contain it.

Diophantus lived in Alexandria, but not much else is known about him.
His name appears in a problem written by a much later Greek author,
Metrodorus.

“Here lies Diophantus,” the wonder behold.
Through art algebraic, the stone tells how old:
“God gave him his boyhood one sixth of his life,
One twelfth more as youth while whiskers grew rife;
And yet one-seventh ere marriage begun;
In five years there came a bouncing new son.
Alas. the dear child of master and sage
Attained only half of his father's full age.
When chill fate took him — an event full of tears —
Heartbroken, his father lived just four more years.”

If we let x denote the length of Diophantus' life, we obtain the equation:

Solving gives x = 84.

x = x/6 + x/12 + x/7 + 5 + x/2 + 4.



2.5  PYTHAGOREAN TRIPLES

A Pythagorean triple consists of three natural numbers: a, b, and c such that

These triples correspond to right triangles whose sides have integer lengths.
As we commented in the previous chapter, the Pythagorean theorem
predates Pythagoras. A clay tablet (Plimpton 322) dating back to 1800 BC
contains a list of Pythagorean triples.

Two commonly known triples are (3, 4, 5) and (5, 12, 13). Once you
have a triple, you can form another triple by multiplying a, b, and c by a
common factor. For example, starting with the triple (3, 4, 5), we know
(6, 8, 10), (9, 12, 15) and so on, will also be Pythagorean triples. It is easily
checked that if two of a, b or c have a common factor, then the third number
must also have this factor.

Primitive Pythagorean triples are Pythagorean triples where
gcd(a, b) = gcd(a, c) = gcd(b, c) = 1. Every other Pythagorean triple can
be obtained by multiplying a primitive triple by a common factor. We would
like a way to find the primitive triples.

Both Euclid and Diophantus had methods for generating primitive
Pythagorean triples. We look at both.

Euclid's formula

Algebra using symbols for variables wasn't invented until long after
Euclid's life, so he didn't express the formula as we would nowadays. He
gave a construction using lengths of lines. If we assign letters to the lengths,
his construction gives what we now call Euclid's formula.

a2 + b2 = c2.



Theorem 2.10.  (Euclid's formula) Given any primitive Pythagorean triple
(a, b, c), where a is odd, we can find coprime natural numbers m and n, one
of which is even, such that a = m2 − n2, b = 2mn, and c = m2 + n2.

Conversely, given two coprime natural numbers, m and n, one of which is
even, if we define a, b, and c by a = m2 − n2, b = 2mn, and
c = m2 + n2, then (a, b, c) is a primitive Pythagorean triple.

Notice that if we have a Pythagorean triple, a2 + b2 = c2, with both a
and b even, then c must be even. So, if we have a primitive Pythagorean
triple, at least one of a and b must be odd. We can always relabel the
variables to make a odd.

Before we start the proof, we need one fact that we leave as an exercise.

Exercise 2.11.  Show that if m and n are two odd integers, then m2 − n2 is
divisible by 4.

Proof. Let (a, b, c) be a primitive Pythagorean triple with a odd. We have

Rearranging gives:

We can factor the left side of the equation to obtain:

a2 + b2 = c2.

c2 − a2 = b2.

(c − a)(c + a) = b2.



More rearranging gives:

(2.3)

Reduce the fraction on the left side to lowest terms. Let m be the
numerator and n the denominator of this reduced fraction. We have

(2.4)

with m and n coprime. From equation 2.3, we obtain

(2.5)

which gives

(2.6)

Rewriting equations 2.4 and 2.6, we obtain the system of two equations:

c + a

b
=

b

c − a
.

c + a

b
=

m

n
,

b

c − a
=

m

n
,

c − a

b
=

n

m
.



(2.7)

Adding the two equations and dividing by 2 gives:

(2.8)

Subtracting the second equation from the first and dividing by 2 gives:

(2.9)

Since (a, b, c) is a primitive Pythagorean triple, a and b are coprime.
Consequently, a/b is a reduced fraction.

We will now show (m2 − n2)/2mn is also a reduced fraction. Since m
and n are coprime we know by exercise 2.6 that m2 − n2 and mn are
coprime. The only possibility for (m2 − n2)/2mn to not be reduced is if
we can cancel 2 from both the numerator and denominator.

However, since m and n are coprime, the only way for the numerator to
be even is if both m and n are odd. But if they are both odd, exercise 2.11

c

b
+

a

b
=

m

n

c

b
−

a

b
=

n

m
.

c

b
=

m2 + n2

2mn
.

a

b
=

m2 − n2

2mn
.



□

tells us the numerator will still be even after dividing by 2. This says that in
reduced form the numerator is even, but we know that in reduced form it
equals a/b and a is odd, so this cannot happen. One of m and n must be
even and the fraction (m2 − n2)/2mn is in reduced form.

Since

(2.10)

and both fractions are in reduced form, we have a = m2 − n2 and
b = 2mn. Equation 2.8 shows that c = m2 + n2. This completes the proof
of the first part, we must now prove the converse.

Suppose m and n are two coprime natural numbers, one of which is even.
We define a, b, and c by a = m2 − n2, b = 2mn, and c = m2 + n2. We
obtain:

So (a, b, c) is a Pythagorean triple. Exercise 2.6 shows it is primitive.

Diophantus' Method

In the Arithmetica, Diophantus asks how the square of a rational number
can be expressed as the sum of two other rational numbers. In other words,
he is looking for rational solutions for a2 + b2 = c2. He shows how to
solve this in one case. In Fermat's copy of the book, it is the margin by this
problem where he wrote:

a

b
=

m2 − n2

2mn

a2 + b2 = (m2 − n2)2 + 4m2n2 = m4 + 2m2n2 + n4 = (m2 + n2)2 =



It is impossible to separate a cube into two cubes, or a fourth power
into two fourth powers, or in general, any power higher than the
second, into two like powers. I have discovered a truly marvelous
proof of this, which this margin is too narrow to contain.

Diophantus' solution gives us a way of constructing Pythagorean triples.
This method is sometimes called the “Diophantus chord” method.

Given a Pythagorean triple (a, b, c), we know that a2 + b2 = c2.
Dividing by c2 gives:

If we consider the circle with equation x2 + y2 = 1, the Pythagorean triple
gives us a point on this circle with rational coordinates. Conversely, given
two rational numbers m/n and r/n that satisfy

we can multiply both sides by the denominators to obtain
(ms)2 + (rn)2 = (ns)2, telling us (ms, rn,ns) is a Pythagorean triple.
The question of finding Pythagorean triples is equivalent to finding all
points on the circle x2 + y2 = 1 with rational coefficients.

Consider the unit circle with a ray drawn from the point with coordinates
(−1, 0) to some other point P on the circle. This is shown in figure 2.1.

(
a

c
)

2
+ (

b

c
)

2

= 1.

(
m

n
)

2
+ (

r

s
)

2
= 1,



FIGURE 2.1  Unit circle with secant line

Let μ denote the slope of the secant line. The line has equation
y = μ(x + 1). (We usually use m for slopes of lines, but in this chapter m is
usually used for an integer. We use the Greek letter μ to indicate that the
slope need not be rational.) The intersection of the line and the circle can be
found by plugging y = μ(x + 1) into the equation x2 + y2 = 1. this gives:

Expanding and rearranging gives the following quadratic equation in x:

x2 + [μ(x + 1)]2 = 1.

(μ2 + 1)x2 + 2μ2x + μ2 − 1 = 0.



(2.11)

We know that (x + 1) is a factor. Equation 2.11 factors:

which gives

as the x coordinate of P. Plugging this value back into the equation of the
line gives the y coordinate

It is straightforward to check that if μ is rational, then both the x and y
coordinates must be rational. It is also clear that if x and y are rational, then
the slope of the line connecting the point (−1, 0) to (x, y) must be rational.
This tells us the points on the unit circle with rational coefficients, except
for (−1, 0), have the form

where μ runs through the rational numbers.

(x + 1) ((μ2 + 1)x + (μ2 − 1)) = 0,

x =
1 − μ2

μ2 + 1

y =
2μ

μ2 + 1
.

(
1 − μ2

μ2 + 1
,

2μ

μ2 + 1
),



We are really interested in Pythagorean triples consisting of natural
numbers. These correspond to choosing the point P, shown in figure 2.1, in
the first quadrant. This means we want μ to satisfy 0 < μ < 1. Since μ is
rational, we can write it as n/m where both n and m are natural numbers.

Putting μ = n/m in the formula for the x coordinate gives:

Multiplying both the numerator and denominator by n2 yields

A similar calculation gives

These two expressions give us Euclid's formula.
Diophantus' chord method of finding points on the circle with rational

coefficients can be extended to rational solutions to other certain other
quadratic equations, for example, functions of the form x2 − ny2 = 1,
where n is a non-square integer.

Though finding rational solutions to certain quadratic equations can be
easy, finding integer solutions is much harder. Instead of quadratics, we
start by considering the simpler case of linear functions.

x =
1 − (n/m)2

(n/m)2 + 1
.

x =
m2 − n2

m2 + n2
.

y =
2mn

m2 + n2
.



□

2.6  LINEAR DIOPHANTINE EQUATIONS

The general solution for a linear Diophantine equation in two variables was
given by Brahmagupta in his Brāhmasphuṭasiddhānta (Correctly
established doctrine of Brahma), written in 628 CE. initially, it might seem
surprising that Greek mathematicians didn't prove this centuries before
Brahmagupta, but to give a complete solution you need to consider negative
numbers and zero as legitimate numbers. For the Greek mathematicians,
numbers were positive. Extending the natural numbers to include negative
numbers was first done in China and then in India. After this, Indian
mathematicians included zero as a number. Brahmagupta's
Brāhmasphuṭasiddhānta contains a number of results concerning integers.

Theorem 2.11.  Let a and b be nonzero integers with d = gcd(a, b). For
any integer c, the equation ax + by = c has a solution if and only if c is
divisible by d.

Proof. We know d divides both a and b, so it must divide ax + by for any
integers x and y. So, if ax + by = c has a solution in integers, d must divide
c.

Conversely, we must show if c is divisible by d, then there is a solution.
Let c = kd for some integer k. We know by Theorem 2.3, there is a solution
to ax + by = d. This means we can find integers m and n such that
am + bn = d. Clearly, a(km) + b(kn) = kd = c, so ax + by = c has a
solution: x = km, y = kn.

Given a Diophantine equation ax + by = c with c is divisible by
gcd(a, b), we know how to find one solution using the Euclidean algorithm.
There are infinitely many other solutions. The following theorem gives all
the solutions.



Theorem 2.12.  (Brahmagupta) Let a and b be nonzero integers with
d = gcd(a, b). Let x = m and y = n be a solution to the Diophantine
equation ax + by = c.
For any integer t, x = m + (b/d)t, y = n − (a/d)t is also a solution.
Conversely, every solution to ax + by = c can be written as
x = m + (b/d)t, y = n − (a/d)t for some integer t.

Proof. First, we show x = m + (b/d)t, y = n − (a/d)t is a solution.
Plugging these values into ax + by gives:

So, we have a solution.

For the converse, assume x = r, y = s is another solution. We have
am + bn = c and ar + bs = c. Subtracting the second equation form the
first gives:

(2.12)

Rearranging gives:

Dividing by the greatest common divisor:

Now the integer a/d divides the left side of the equation and so must
divide the right. We know by exercise 2.2 that gcd(a/d, b/d) = 1, so a/d

a(m + (b/d)t) + b(n − (a/d)t) = am + bn = c.

a(m − r) + b(n − s) = 0.

a(m − r) = −b(n − s).

(a/d)(m − r) = −(b/d)(n − s).



shares no prime factors with b/d, and must divide n − s. This means there
must be some integer t with

Rearranging, we obtain

To obtain the value for r we plug s = n − (a/d)t into equation (2.1) to
obtain

Dividing by a and solving for r gives:

□

We give an example of a typical type of problem that can be solved using
the previous theorem.

Example 2.4.  Domestic stamps cost 42 cents and international cost $1.14.
I go to the post office and buy several stamps. The total comes to $13.20.
How many of each type did I buy?

Let x denote the number of international stamps and y the number of
domestic stamps. Expressing the prices in cents gives the equation:

n − s = (a/d)t.

s = n − (a/d)t.

a(m − r) + b(a/d)t = 0.

r = m + (a/d)t.

114x + 42y = 1320.



In example 2.2, we used the Euclidean algorithm to show gcd(114, 42) = 6

. In example 2.3 we used the steps of the calculation to show
114 × 3 − 42 × 8 = 6.

This tells us that x = 3, y = −8 is a solution to 114x + 42y = 6.

Multiplying by 220 tells us x = 660, y = −1760 is a solution to
114x − 42y = 18.

Theorem 2.12 then says that every integer solution has the form:

where t can be any integer.
We are only interested in non-negative integer solutions, so we must have

This gives:

or

The question has two possible answers. When t = −94, we obtain x = 2

y = 26. When t = −93, x = 9, y = 7.

2.7  AL-KHWARIZMI

x = 660 + 7t, y = −1760 − 19t,

660 + 7t ≥ 0 and − 1760 − 19t ≥ 0.

−660/7 ≤ t ≤ −1760/19

−94 ≤ t ≤ −93.



Muhammad ibn Mūsā al-Khwarizmi was a Persian mathematician and
astronomer and the head of the “House of Wisdom” in Baghdad during the
early ninth century. “The House of Wisdom,” also known as the “Grand
Library of Baghdad” housed a collection of work from Greek, Persian and
Indian sources. Scholars studied mathematics, science and philosophy there.

FIGURE 2.2  Muhammad ibn Mūsā al-Khwarizmi

Al-Khwarizmi wrote two books that transformed mathematics in Europe.
The first, written around 830 CE, was Al-Kitāb al-Mukhtaṣar fī Ḥisāb al-
Jabr wa-Muqābalah (The Compendious Book on Calculation by
Completion and Balancing) was a popular book on methods of solving
quadratic equations designed for a wide audience. It was translated into
Latin by Robert of Chester in 1145 CE. His translation of the title is Liber



Algebrae et Almucabola. The Latinization of al-Jabr became algebrae
which in turn gives us the word algebra.

When we use the word algebra today, we usually mean symbolic algebra,
where symbols like x and y represent unknown quantities, but this is not the
meaning of the word when we describe early mathematics. Diophantus and
al-Khwarizmi are often described as inventing algebra because they were
giving methods for solving equations. These methods were described using
words, not symbols. Indian mathematics was often written in verse.
(Symbolic algebra began with François Viète in the sixteenth century.)

Al-Khwarizmi also wrote about the Indian decimal place system for
writing numbers. He explained how to do addition and subtraction using
this notation. His original writings on the decimal system no longer exist,
but there is Latin translation Algoritmi de numero Indorum from the twelfth
century. Calculations using the decimal place system are much simpler than
using Roman numerals and, not surprisingly, Europe adopted the new
system. The title of al-Khwarizmi's work clearly acknowledges the Indian
origin, but his name became the one associated with it in the west.
Algoritmi is the Latinization of al-Khwarizmi, the word algorist became
associated with people who performed calculations using the decimal
system. Over time, algorist became algorithm and the meaning changed to
its current one of being a set of rules to perform a computation.

Although Arab mathematicians2 had access to Indian mathematics, they
did not accept negative numbers and zero as being proper numbers. As with
the Greeks, numbers meant positive numbers. Consequently, al-
Khwarizmi's work only used positive numbers. In Europe, it would take
several centuries before negative numbers were fully accepted.

2.8  NUMBER THEORY IN EUROPE



Pierre de Fermat (1607–1665) studied law and then practiced it in the
Parlement of Toulouse, where he worked his whole life. In his spare time,
he began by looking at Greek mathematical works and from there, he began
to generate his own results. His work is known through notes he made and
correspondence with other mathematicians. He enjoyed generating new
ideas, but was not good at explication, and published very little. He
developed an algebraic approach to geometry which probably predates
Descartes', but was published after his death. His ideas on tangent lines and
finding areas under curves helped in the development of calculus. He also
worked in number theory.

FIGURE 2.3  Pierre de Fermat

Fermat stated many results concerning numbers. Unfortunately, he rarely
gave the proofs and number theory was not a focus of mathematicians at the



time. After his death, his son Samuel collected his correspondence and
published it along with the copy of Arithmetica with Fermat's marginal
notes. Leonhard Euler (1707–1783) took Fermat's results, provided proofs
where he could, and generalized the ideas. Euler's work made number
theory an important area of study once more.

We will look at some of Fermat's and Euler's work, but first introduce
modular arithmetic. Gauss introduced this to help simplify ideas concerning
remainders and provide an elegant way of thinking about number theoretic
problems.
____________________

  2Arab mathematicians refers to mathematicians who wrote in Arabic. This is similar to Greek
mathematicians referring to mathematicians who wrote in Greek.

2.9  MODULAR ARITHMETIC

Let n be a positive integer. Given integers a and b, we say a is congruent to
b modulo n if n divides b − a. If a is congruent to b modulo n, write

This is a succinct notation telling us that the remainder of a divided by n
is equal to the remainder of b divided by n.

As an example we will take n = 5. When we divide by 5 there are 5
possible outcomes: we get a remainder of 0, 1, 2, 3, or 4. This divides the
integers into five disjoint subsets:

a ≡ b mod (n).

{… , −10, −5, 0, 5, 10, …}



These subsets of the integers are called the equivalence classes modulo 5.
In general, there are n equivalence classes modulo n. Every integer

belongs to one and only one of these classes. We choose one number as a
representative for its class. Usually, we pick the representatives to be
0, 1, … ,n − 1.

Exercise 2.12.⋆  Prove that if a ≡ b mod (n) and c ≡ d mod (n), then
a + c ≡ b + d mod (n).

Exercise 2.13.  Prove that if a ≡ b mod (n) and c ≡ d mod (n), then
a − c ≡ b − d mod (n).

Exercise 2.14.  Prove that if a ≡ b mod (n) and c ≡ d mod (n), then
ac ≡ bd mod (n).

Exercises 2.12, 2.13, and 2.14 tells us we can add a number to both sides
of a modular equation, subtract a number from both sides, multiply both
sides by a number, and keep the congruence. Using these operations we can

{… , −9, −4, 1, 6, 11, …}

{… , −8, −3, 2, 7, 12, …}

{… , −7, −2, 3, 8, 13, …}

{… , −6, −1, 4, 9, 14, …}



solve some congruences in exactly the same way as we do for regular
equations.

Suppose we are given the congruence x + 2 ≡ 5 mod (7) and want to
solve for x. We can subtract 2 from both sides to obtain x ≡ 3 mod (7).
However, because we are working over the integers, we cannot, in general,
use division. For example, if we have

(2.13)

we cannot divide by 2 because 3/2 is not an integer. However, the
congruence 2.13 does have a solution, namely x ≡ 5 mod (7). To obtain
solutions to ax ≡ b mod (n) we can restate some of our previous
theorems using modular notation.

Solving ax ≡ b mod (n)

To solve ax ≡ b mod (n) we need to find the values of x that make
ax − b divisible by n. This is equivalent to solving

or equivalently

We know how to do this. We can restate Theorem 2.11 to give theorem.

2x ≡ 3 mod (7),

ax − b = ny,

ax − ny = b.



Theorem 2.13.  The congruence ax ≡ b mod (n) has a solution if and
only if the gcd(a,n) divides b.

We can restate Brahmagupta's theorem (Theorem 2.12) to give all
solutions.

Theorem 2.14.  If x = m is a solution to ax ≡ b mod (n), then all other
solutions are given by x = m + (n/d)t where t runs through the integers
and d denotes gcd(a,n).

We can restate the previous two results using equivalence classes:

Theorem 2.15.  Let d = gcd(a,n). The congruence

has a solution if and only if d divides b. Suppose d divides b and m is a
solution. Then the solutions form d congruence classes, with representatives

As an immediate consequence of the above theorem we have
ax ≡ 1 mod (n) has a solution if and only if gcd(a,n) = 1. We say that
a mod (n) has a multiplicative inverse mod(n) if we can find b such that
ab ≡ 1 mod (n).

Corollary 2.1.  An integer a has a multiplicative inverse modulo(n) if and
only if a and n are coprime. If a has a multiplicative inverse modulo(n), it is
unique modulo(n).

ax ≡ b mod (n)

m,m +
n

d
,m +

2n

d
, … ,m +

(d − 1)n

d
.



Having a multiplicative inverse can be useful when simplifying
expressions. For example, suppose we are given

Since 3 and 5 are coprime, we know 3 has a multiplicative inverse.
Multiplying both sides by this inverse gives

If instead, we were given

we cannot cancel the 3s, because 3 and 12 are not coprime, and so 3 does
not have a multiplicative inverse. To solve, we use Theorem 2.15 to obtain
the three solutions:

We will use Corollary 2.1 several times. It helps to have it expressed
slightly differently.

Corollary 2.2.  If a and n are coprime, and ax ≡ ay mod (n), then
x ≡ y mod (n).

3x ≡ 3 mod (5).

x ≡ 1 mod (5).

3x ≡ 3 mod (12),

x ≡ 1,x ≡ 5,x ≡ 9 mod (12).



Exercise 2.15.⋆  If a and n be coprime, show 0, a, 2a, … , (n − 1)a belong
to distinct congruence classes modulo n. This shows that multiplying by a
gives a permutation of the congruence classes.

Exercise 2.16.  If a and n be coprime, show a, 2a, … , (n − 1)a belong to
distinct non-zero congruence classes modulo n. This shows that multiplying
by a gives a permutation of the non-zero congruence classes.

2.10  FERMAT'S LITTLE THEOREM

In one of Fermat's letters, he states that if p is a prime and a is an integer not
divisible by p, then ap−1 − 1 is divisible by p. This result is now known as
his little theorem. If Fermat had a proof, it hasn't been found. The first
published proof was by Euler in 1736.

Theorem 2.16.  (Fermat's little theorem) If p is a prime and
a ≢ 0 mod (p), then ap−1 ≡ 1 mod (p).

Proof. We know a and p are coprime. Exercise 2.16 tells us that the non-
zero congruence classes are permuted by multiplying by a. We can write the
product of the non-zero congruence classes as either

or

Since these are equal

1 × 2 × 3 × ⋯ × (p − 1) mod (p)

a × 2a × 3a × ⋯ × (p − 1)a mod (p).



We can simplify:

Notice that 2, 3, … , p − 1 are all coprime to p. Corollary 2.2 tells us that
we can cancel these from both sides, giving

□

Euler wanted to generalize this theorem for cases when n is not a prime.
The proof we have just given hinges on the fact that 2, 3, … , p − 1 are all
coprime to p. If n is not a prime, then it is not true that 2, 3, … ,n − 1 are
all coprime to n.

Exercise 2.17.⋆  If n > 4 is composite, show
1 × 2 × 3 × ⋯ × (n − 1) ≡ 0 mod (n).

Instead of looking at all the congruence classes we can look at the
congruence classes containing integers that are coprime to n. For example,
if n = 12 representatives of these classes are 1, 5, 7, and 11. Euler denoted
the number of classes by ϕ(n) —this function is now called the Euler phi
function—so ϕ(12) = 4.

Exercise 2.18.  If p is a prime, show ϕ(p) = p − 1.

1 × 2 × 3 × ⋯ × (p − 1) ≡ a × 2a × 3a × ⋯ × (p − 1)a mod (p).

1 × 2 × 3 × ⋯ × (p − 1) ≡ 1 × 2 × 3 × ⋯ × (p − 1)ap−1 mod (p).

1 ≡ ap−1 mod (p).



Exercise 2.19.  Show that if a and b are both coprime to n, then ab is
coprime to n.

Exercise 2.20.  Let {a1, a2, … , aϕ(n)} be a set of representatives of the
congruence classes coprime to n. Let a be coprime to n. Show
{a × a1, a × a2, … , a × aϕ(n)} is also a set of representatives of the
classes coprime to n.

Euler generalized Fermat's Little Theorem to give the following:

Theorem 2.17.  (Euler's Theorem) If a is relatively prime to n, then

Proof. Let {a1, a2, … , aϕ(n)} be a set of representatives of the classes
coprime to n. Since a is coprime to n, Exercise 2.20 tells us

Simplifying:

Notice a1, a2, … , aϕ(n) are all coprime to n. Corollary 2.2 tells us that
we can cancel these from both sides, giving

□

aϕ(n) ≡ 1 mod (n).

a1 × a2 × ⋯ × aϕ(n) ≡ (a × a1) × (a × a2) × ⋯ × (a × aϕ(n)) mod

a1 × a2 × ⋯ × aϕ(n) ≡ a1 × a2 × ⋯ × aϕ(n) × aϕ(n) mod (n).

1 ≡ aϕ(n) mod (n).



2.11  FERMAT'S LAST THEOREM

One of the comments written in the margin of Fermat's Arithmetica became
known as Fermat's Last Theorem. Though Fermat claimed to have a proof,
it seems unlikely. It took over 350 years before Andrew Wiles finally gave a
proof. During this time, Fermat's Last Theorem was probably the most
famous unsolved mathematics problem.

Theorem 2.18.  The equation xn + yn = zn has no positive integer
solutions if n > 2.

Though there is no record of Fermat's ‘marvelous proof’, Fermat did
prove the special case: there are no positive integer solutions when n = 4.
First, he proved the following theorem.

Theorem 2.19.  There are no positive integer solutions to x4 + y4 = z2.
We will follow Fermat, using infinite descent. The idea is to show that if we
have a solution, we can find another solution with a smaller positive z
value. We can repeat the process with the new solution, obtaining another
solution with a smaller value of z. We can keep doing this—the infinite
descent. But there are only finitely many positive integer values smaller
than the original z, so infinite descent is impossible.

Proof. Suppose there is a solution a4 + b4 = c2 where a, b, and c are
positive integers, then (a2, b2, c) is a Pythagorean triple. Euclid's formula
(theorem 2.10) tells us there are coprime numbers m and n with

We can rearrange a2 = m2 − n2 to obtain a2 + n2 = m2, telling us that
(a,n,m) is a Pythagorean triple. Applying Euler's formula once more gives

a2 = m2 − n2, b2 = 2mn,  and c = m2 + n2.



coprime numbers m1 and n1 with

Plugging these expressions for m and n into b2 = 2mn gives

(2.14)

We know m1, n1, and (m2
1 + n2

1) are pairwise coprime, from which we

deduce that if a prime p divides b it will divide one and only one of m1, n1,

or (m2
1 + n2

1). Since the primes in b2 must have even powers, we deduce
each of m1, n1, and (m2

1 + n2
1) must be an integer squared. Let

We can substitute a1 and b1 into the formula for c2
1 to obtain

We started with the Pythagorean triple (a2, b2, c) and we ended with
Pythagorean triple (a2

1, b2
1, c1). Since

we know that c1 is smaller than c.

We can keep repeating the process, obtaining the Pythagorean triples
(a2

k
, b2

k
, ck) with 0 < ck < ck−1 for all natural numbers k. But this is

a = m2
1 − n2

1, n = 2m1n1,  and m = m2
1 + n2

1.

b2 = 4m1n1(m2
1 + n2

1).

a2
1 = m1, b2

1 = n1,  and c2
1 = m2

1 + n2
1.

a4
1 + b4

1 = c2
1.

c = m2 + n2 > m2 = (m2
1 + n2

1)2 = c4
1 ≥ c1,



□

□

impossible, there are only finitely many positive integers less than c. Our
initial assumption that there is a positive integer solution to x4 + y4 = z2 is
false.

This result gives a proof of Fermat's Last Theorem for n = 4.

Corollary 2.3.  There are no positive integer solutions to x4 + y4 = z4.
Proof. If a, b, c satisfies a4 + b4 = c4, then a, b, c2 would be a solution of
x4 + y4 = z2.

A similar argument gives:

Corollary 2.4.  There are no positive integer solutions to x4k + y4k = z4k,
for any positive integer k.

Similarly, if there are no positive integer solutions to

for some m, then there are no positive integer solutions to

for any positive integer k. This means we only need to prove the theorem
for cases where n is an odd prime.

As before, the fact that if (a, b, c) is a solution, then (ka, kb, kc) will also
be a solution for any integer K, means we need only look for solutions a, b,
and c that are pairwise coprime.

Euler proved there were no positive integer solutions for

xm + ym = zm

xkm + ykm = zkm



Sophie Germain

Sophie Germain (1776–1831) was a French mathematician who lived in
Paris. She became interested in mathematics from reading books in her
father's library. When she was 18, L'Ecole Polytechnique opened. This was
a school for mathematics, physics, and chemistry, designed to produce
engineers. Only men were allowed to attend the lectures. Germain
requested lecture notes under the assumed name of Antoine-August
LeBlanc and communicated with the professors by letter.

FIGURE 2.4  Sophie Germain

x3 + y3 = z3.



Joseph-Louis Lagrange (1736–1813) was one of the faculty. He quickly
realized that LeBlanc was a talented mathematician and wanted to meet.
Lagrange must have been surprised to find that LeBlanc was a pseudonym
and Germain a woman, but he continued to work with her. This pattern
would repeat. She first corresponded with Gauss under the name LeBlanc.
When Germain eventually revealed who she was, Gauss was amazed,
writing:

… how can I describe my astonishment and admiration on seeing
my esteemed correspondent M. LeBlanc metamorphosed into this
celebrated person … when a woman, because of her sex, our
customs and prejudices, encounters infinitely more obstacles than
men in familiarizing herself with [number theory's] knotty problems,
yet overcomes these fetters and penetrates that which is most
hidden, she doubtless has the most noble courage, extraordinary
talent and superior genius. … The scientific notes with which your
letters are so richly filled have given me a thousand pleasures. I
have studied them with attention …3

Germain worked on Fermat's Last Theorem. Instead of proving it for
various given values of the exponents, she wanted to find a more general
method. For a given p, if there is a solution (a, b, c) in positive integers to
xp + yp = zp, where a, b and c are pairwise coprime, there are two cases:
case 1, p does not divide any of a, b, or c; or case 2, p divides exactly one of
a, b, or c. She decided to concentrate on the first case.

Example 2.5.  We will show there are no solutions to x3 + y3 = z3 for
case 1. We are looking for solutions (a, b, c), where none of a, b, or c is



divisible by 3. If there were a solution, each of these numbers must belong
to one of the following congruence classes modulo 9:

____________________

  3Mackinnon, Nick (1990). “Sophie Germain, or, Was Gauss a feminist?”. The Mathematical
Gazette. 74 (470): 346-351.

Cubing these gives:

If we have a solution (a, b, c) and neither a nor b are divisible by 3, then a3

is either 1 or 8 modulo 9. Similarly, b3 is either 1 or 8, but then a3 + b3 is
not going to equal either 1 or 8 modulo 9.

Germain proved the following theorem.

Theorem 2.20.  If p and 2p + 1 are both odd primes, there are no solutions
to xp + yp = zp for case 1.

From a slightly more general version of this theorem, she proved there
were no solutions to xp + yp = zp for any odd prime less than 100 for the
first case.

If both p and 2p + 1 are primes, we call p a Sophie Germain prime. The
first few Sophie Germain primes are 2, 3, 5, 11, 23, and 29. It is conjectured
that there are infinitely many, but nobody has proved this. Germain did not
publish her theorem; it came to light after Adrien-Marie Legendre used it to

1, 2, 4, 5, 7, 8 mod (9).

13 ≡ 43 ≡ 73 ≡ 1 mod (9), 23 ≡ 53 ≡ 83 ≡ 8 mod (9).



prove Fermat's Last Theorem for n = 5 and credited her with the result in a
footnote.

Lamé and Kummer

The French mathematician, Gabriel Lamé (1795–1870), devised an
ingenious approach using complex roots of unity.4 We define

then ζnn = 1, and we can write xn + 1 as a linear product of factors:

Given an odd prime p, Lamé extended the integers to form the cyclotomic
integers, complex numbers of the form

where a0, a1, … , ap−1 are integers.
Given a solution ap + bp = cp, the left side now factors:

____________________

  4The reader might want to consult Section 4.6 for background here.

ζn = cos(
2π

n
) + i sin(

2π

n
)

xn + 1 = (x + 1)(x + ζn)(x + ζ 2
n) ⋯ (x + ζn−1

n ).

a0 + a1ζp + a2ζ
2
p + ⋯ + ap−1ζ

p−1
p ,

ap + bp = (a + b)(a + ζpb)(a + ζ 2
p b) ⋯ (a + ζ p−1

p b).



In 1847, Lamé presented to the Paris Academy what he thought was a
proof of Fermat's Last Theorem using cyclotomic integers. However, the
proof assumed that, like integers, the cyclotomic integers had unique
factorization. Joseph Liouville was in the audience and knew that Ernst
Kummer was working on questions of factorization for extensions of the
integers. For example, if we extend the integers by adding √−5 to form
numbers of the form

then we can factor 6 as 6 = 2 × 3 or as 6 = (1 + √−5)(1 − √−5).
Kummer knew that the cyclotomic integers did not always have a unique

factorization. The first few odd primes work, but 23 gives the first example
where unique factorization no longer holds.

This spurred Kummer's work on the problem. He defined the class
number associated with the cyclotomic integers. This number gives a
measure of how badly unique factorization fails. He defined regular primes
to be those that do not divide their class number, and gave a proof of
Fermat's Last Theorem for regular primes.

It is now known that there are infinitely many primes that are not regular,
but whether there are infinitely many regular primes is still unknown.

The Proof

We have seen that work on Fermat's Last Theorem involved complex
numbers and sophisticated algebraic properties. In the twentieth century,
topological and geometric ideas came into play.

If we graph xn + yn = 1 in the plane, we get a curve. If we allow x and
y to be complex numbers, then the graph is a surface. The genus of a

a + b√−5, a, b are integers,



surface counts the number of “holes” the surface has: a sphere has genus 0,
a torus has genus 1, a torus with an added handle has genus 2, and so on.
The genus of the surface given by xn + yn = 1 is

In particular, when n ≥ 4, the genus is greater than 2.
In 1922, Louis Mordell conjectured that if a polynomial p(x, y) has

rational coefficients, and the surface given by p(x, y) = 0 has genus greater
than 2, then it only has finitely many rational solutions. This conjecture, if
true, would tell us that xn + yn = 1 has only finitely many rational
solutions when n ≥ 4. This, in turn, would tell us that xn + yn = zn has
only finitely many pairwise coprime integer solutions.

In 1983, Gerd Faltings proved Mordell's conjecture.
in 1957, Yutaka Taniyama and Goro Shimura conjectured that if

polynomial of degree 3 with distinct roots (genus 1) has rational
coefficients, then it must be modular. Being modular means that it can be
constructed using special types of functions defined on the upper half of the
complex plane.

Suppose we have an odd prime p and positive integers a, b, c with
ap + bp = cp, then it has a Frey curve defined by

The curve is named after Gerhard Frey who first started studying it and
pointing out its unusual properties. Frey thought these curves were not

(n − 1)(n − 2)

2
.

y2 = x(x − ap)(y − bp).



modular. He along with Jean-Pierre Serre and Ken Ribet eventually proved
this was in fact the case.

Frey curves, if they exist, are polynomials of degree three with genus 1.
The Taniyama–Shimura conjecture says that Frey curves must be modular.
However, Frey, Serre, and Ribet showed that if Frey curves exist, they
cannot be modular. Consequently, if the Taniyama–Shimura conjecture
could be proved, Frey curves do not exist, and Fermat's Last Theorem
would be proved.

In 1993, Andrew Wiles outlined a proof of the Taniyama–Shimura
conjecture for the case of polynomials arising from Fermat's Last Theorem.
It was finally finished with some help from Richard Taylor in 1995. This
200 page paper finally proved Fermat's Last Theorem.

Work continued in proving Taniyama–Shimura conjecture for the
remaining cases. The work was finished in 1999. The Taniyama–Shimura
conjecture is now known as the modularity theorem.

2.12  IRRATIONAL NUMBERS

Babylonian clay tablets from around 1800 BC list the lengths of the sides of
right triangles. As we mentioned earlier, Plimpton 322 is a tablet with a list
of Pythagorean triples. A natural question to ask is about the length of the
hypotenuse of a triangle whose base and height were both equal to 1. The
hypotenuse has length √2, so we do not have a Pythagorean triple.
However, another clay tablet, YBC 729, from around 1800 to 1600 BC,
gives an approximation to this length in sexagesimal notation. It is accurate
to about six decimal places.

The Pythagoreans around 500 BC are credited with the discovery that
√2 is not a rational number. Their motto was said to be “all is number.”
Numbers, at this time meant natural numbers or ratios of natural numbers.



To have a proof that the length of the hypotenuse must have been a shock.
There are stories about the discoverer being drowned.

The fact that √2 is not a rational number is easily proved.

Proof. We start by supposing √2 is rational and derive a contradiction,
showing our initial supposition must be false.

If √2 is rational, then we can find integers m and n with m/n = √2.
Moreover, since any fraction can be written in lowest terms, we can choose
m and n to have no common factors.

If m/n = √2, then

(2.15)

so m2 is even. But if m2 is even, then so is m, which tells us we can find a
positive integer k with m = 2k. Replacing m by 2k in equation 2.15 gives:

Canceling 2 from both sides gives

This tells us that n2 is even from which we deduce that n must be even.
We now have our contradiction: m and n have no common factors, but

they both have a factor of 2.

m2 = 2n2,

4k2 = 2n2.

2k2 = n2.



□

Exercise 2.21.  Show that √p is irrational for every prime p.

We can generalize this.

Theorem 2.21.  If r is a root of the equation
xn + cn−1x

n−1 + cn−2x
n−2 + ⋯ + c0 = 0 where all the coefficients are

integers, then r is either an integer or it is irrational.

Proof. Suppose that a/b is a root, where a and b are coprime integers.

Multiplying by bn and rearranging gives:

The right side is divisible by b, so an must be divisible by b. Since a and b
are coprime, b is either 1 or −1, and a/b must be an integer.

□

If m is a positive integer, that is not a square, then there is no integer that
will satisfy x2 − m = 0. Theorem 2.21 tells us that √m must be irrational.

Exercise 2.22.  If m is an integer that is not an nth power of another
integer, show that n√m is irrational.

We began the chapter with a discussion of the Euclidean algorithm using
repeated subtraction. Euclid describes the process in terms of lengths of

(
a

b
)
n

+ cn−1(
a

b
)
n−1

+ cn−2(
a

b
)
n−2

+ ⋯ + c0 = 0.

an = −b (cn−1a
n−1 + cn−2ba

n−2 + ⋯ + c0b
n−1).



lines in which the shorter line is deleted from the longer line. The algorithm
appears in Book VII and Book X of the Elements. In Book VII, it is used to
find the greatest common divisor of two numbers. Given a number, you can
construct a line with that length. Book X is devoted to incommensurable
lengths. In this book, Euclid shows if the two lengths are incommensurable,
then the Euclidean algorithm does not halt. It is important to note that Book
VII is about numbers, but Book X is about geometry. Euclid did not extend
the idea of number to include irrational numbers, but rather took the
existence of incommensurate lengths as a geometrical fact that showed not
all lengths were numbers.

The Euclidean algorithm gives a way of expressing real numbers in terms
of continued fractions. To illustrate, we return to the Euclidean algorithm
on the pair (114, 42) we looked at in example 2.2.

We use this calculation to obtain the continued fraction expansion for
114/42. The first line tells us

We can rewrite this as:

114 = 2 × 42 + 30

42 = 30 + 12

30 = 2 × 12 + 6

12 = 2 × 6 + 0.

114

42
= 2 +

30

42
.



We use the second line of the calculation to obtain:

We can rewrite this as

The third line of the calculation gives:

Finally, from the last line we obtain:

114

42
=

2

1 + 42
30

.

114

42
= 2 +

1

1 + 12
30

.

114

42
= 2 +

1

1 +
1
30
12

.

114

42
= 2 +

1

1 +
1

2 + 6
12

.

114

42
= 2 +

1

1 +
1

2 +
1

2 + 0

.



A simple continued fraction has the form:

To save space we denote this as [a0; a1, a2, a3, …]. So,

To go from [2; 1, 2, 2] to a fraction, you start with the right two numbers
and then work to the left.

You obtain the original rational in reduced form.

a0 +
1

a1 +
1

a2 +
1

a3 +
1

a4 + ⋯

114

42
= [2; 1, 2, 2].

[2, 2] = 2 +
1

2
=

5

2

[1, 2, 2] = 1 +
2

5
=

7

5

[2; 1, 2, 2] = 2 +
5

7
=

19

7
.



Finite continued fractions correspond to rational numbers—the Euclidean
algorithm halts. Infinite continued fractions correspond to irrational
numbers.

As an example, we will find the simple continued fraction for √2 which
gives another proof that it is irrational.

Replacing the √2 in the denominator on the right by the expression for √2

gives

Repeating, we obtain

So, √2 = [1; 2, 2, 2, …]. Since, this is infinite, √2 is irrational.
Later in the book we will talk about the number e and why it is

important. Euler showed that e has continued fraction

√2 = 1 + (√2 − 1) = 1 +
1

1 + √2
.

√2 = 1 + (√2 − 1) = 1 +
1

1 + 1 + 1

1+√2

= 1 +
1

2 + 1

1+√2

.

√2 = 1 +
1

2 +
1

2 +
1

2 +
1

2 + ⋯



where you keep adding three terms: the first two are 1s, the third is two
more than the previous third term. This gives an infinite continued fraction
and is how Euler first proved that e is irrational in 1737.

The first proof that π is irrational also used continued fractions. However,
the continued fraction expansion for π is [3; 7, 15, 1, 292, …]. There is no
apparent pattern, so instead of using π Johann Heinrich Lambert turned to
the function tan(x). In 1761, he proved

He used this and tan(π/4) = 1 to show π is irrational.
Continued fractions have other nice properties, one is they give best

approximations. We say that a rational number p/q is a best approximation
to a real number r, if the distance between r and p/q is less than any other
rational number whose denominator is less than or equal to q.

Given a continued fraction [a0; a1, a2, …], we call the rational number
[a0; a1, a2, … , am], the mth convergent. The following theorem, which we
won't prove, states that the mth convergents are best approximations.

Theorem 2.22.  Given a real number r with continued fraction expansion
[a0; a1, a2, …], let pm/qm denote its mth convergent, then pm/qm is the

[2; 1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 8, …],

tan(x) =
x

1 −
x2

3 −
x2

5 −
x2

7 − ⋯

.



best rational approximation to r with denominator less than or equal to qm.

We look at π = 3.141592654 …. Its continued fraction expansion is
[3; 7, 15, 1, 292, …]. From this we obtain:

This means if we restrict to denominators of 7 or less, then 22/7 is the best
approximation to π. If we restrict to denominators of 106 or less, then
333/106 is the best approximation to π; and so on.

Algebraic numbers and transcendental numbers

We say r is an algebraic number if it is the root of a polynomial with integer
coefficients. Looking at linear polynomials of the form nx − m shows all
rational numbers are algebraic. Given any positive integers m and n, the
polynomial xn − m tells us that n√m is algebraic. The equation
ax2 + bx + c shows

m1 = [3; 7] =
22

7
= 3.142857143 …

m2 = [3; 7, 15] =
333

106
= 3.141509434 …

m3 = [3; 7, 15, 1] =
355

113
= 3.14159292 …

−b ± √b2 − 4ac

2a



is algebraic.
The degree of an algebraic number α is the degree of the smallest degree

polynomial for which α is a root. So, for example, √3 has degree 2.
Real numbers that are not algebraic are called transcendental. When

Lambert proved π was irrational, he conjectured it was transcendental, but
could not prove it. At that time, nobody had proved transcendental numbers
existed. There were no examples. Joseph Liouville constructed the first
known transcendental number in 1844.

Liouville considered approximations to irrational numbers by rational
numbers. He showed that if an irrational number was algebraic then rational
approximations would have to satisfy the following condition:

Theorem 2.23.  (Liouville) Let α be an algebraic irrational number with
degree d. Then we can find c > 0 such that

for any rational number p
q

.

Liouville had shown that there was a limit on how well an algebraic
rational number could be approximated by rationals. He then constructed an
irrational number in such a way that it can be approximated extremely
closely by rationals. He defined L, by

It has 1s in its decimal expansion at the k! places and 0s elsewhere. Recall

α −
p

q
≥

c

qd∣ ∣L =
∞

∑
k=1

1

10k!
.



The decimal expansion consists of 1s separated by ever larger strings of 0s.

Theorem 2.24.  (Liouville) L is a transcendental number.

Proof. Let

We will denote it by p
q

, where q = 10m!. Now,

If L were algebraic, by Theorem 2.23, we would have

for some fixed c > 0. However, for any c > 0, we can choose m large
enough that

1! = 1, 2! = 2 × 1 = 2, 3! = 3 × 2 × 1 = 6, 4! = 4 × 3 × 2 × 1 =

so L = 0.11000100000000000000000100 … .

Lm =
m

∑
k=1

1

10k!
.

L −
p

q
≤

1

10(m+1)!
=

1

qm+1
.∣ ∣L −

p

q
≥

c

qd∣ ∣1

qm+1
<

c

qd
,



telling us that L cannot be algebraic and so must be transcendental.

□

In showing L is transcendental, Liouville proved the existence of
transcendental numbers. He did this in 1844. In 1873, Charles Hermite
proved e is transcendental, and in 1882, Ferdinand von Lindeman gave the
first proof that π is transcendental. The most remarkable result from this
time is due to Georg Cantor who showed that transcendental numbers are
far from mathematical oddities but are ubiquitous. We will look at Cantor's
work in a later chapter.
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Medieval and Renaissance
Mathematics
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In this chapter, we describe some of the major developments in mathematics in the period
following the foundational contributions of the ancient world and prior to the introduction of
calculus.

This period saw important contributions from many parts of the world in the areas of
number theory, algebra, and geometry. Highlights include the work of Indian and Chinese
mathematicians in solving Diophantine equations (equations with integer coefficients and
solutions), contributions of Fibonacci, and the invention of logarithms.

Of crucial importance for the further development of mathematics was the introduction of a
positional number system and the invention of symbolic algebra (polynomials with definite but
unspecified coefficients, general formulas for the solutions, etc.). Also, Descartes' invention of
analytic geometry: the system of defining curves by equations, with reference to co-ordinates
in the (Cartesian) plane and methods for the calculations of areas under graphs and slopes of
tangent lines devised by Fermat, Cavalieri, Barrow, and Wallis, and their contemporaries. Their
work extended the method of Archimedes and paved the way for calculus. These developments
and more are discussed in this chapter.

3.1  MATHEMATICS OF THE MID-EAST

We have discussed some of the contributions of al-Khwarizmi and Omar Khayyam in earlier
chapters. The purpose of this section is to present the work of two other great Muslim
mathematicians, Abû Kâmil and Thâbit ibn Qurra.

https://doi.org/10.1201/9781003470915-3


Abû Kâmil (circa 850–930) was of Egyptian descent and worked in the period following al-
Khwārizmī. His book Kitâb fil-jabra w'al muqâbala (Book of Algebra) is a commentary on,
and a continuation of al-Khwarizmi's work. The book contains a total of 69 problems in
algebra. Kâmil elaborated on many of the problems that al-Khwārizmī had discussed and
added new methods of his own. One of the problems addressed by Kâmil in the Algebra is to
solve simultaneously the two equations

Kâmil converts the second equation into

then substitutes y = 10 − x to obtain the quadratic equation

Kâmil then introduces a new method to solve this equation: set x = 5 − z. (The point of this
substitution is to make the term in z disappear from the equation.) Under this substitution, the
equation becomes

Solving this equation gives z = 3. Hence x = 2 and y = 8.
Kâmil also developed a new method for combining square roots. A major advance in his

work is the formulation of equations with irrational coefficients. An example is a problem in
the Algebra in which he asks for a number, such that, if the square root of 3 is added to it and
the square root of 2 is added to it, and the two numbers are multiplied, then the result will be
20. Thus, a solution of the equation

x+ y = 10,
x

y
+

y

x
=

17
4

.

x2 + y2 =
17xy
4

,

25
4
x2 + 100 =

125
2

x.

50 + 2z2 =
17
4

(25 − z2).



Kâmil gives the correct solution to the equation,

Another distinguished Arabic scholar from this era was Thâbit ibn Qurra (circa 836–901).
Thâbit made contributions to both number theory and geometry. Thâbit's treatise, Book on the
Determination of Amicable Numbers, contains 10 propositions. A pair of amicable numbers are
two numbers, each of which is equal to the sum of the proper divisors of the other. One of
Thâbit's propositions is the following rule for constructing pairs of amicable numbers: if
p = 3 ⋅ 2n − 1, q = 3 ⋅ 2n−1 − 1, and r = 9 ⋅ 22n−1 − 1 are all prime, then M = 2npq and
N = 2nr form a pair of amicable numbers. An example is n = 2. In this case
p = 3 ⋅ 22 − 1 = 11, q = 3 ⋅ 2 − 1 = 5, and r = 9 ⋅ 23 − 71 are all prime, thus the pair
M = 22 ⋅ 11 ⋅ 5 = 220 and N = 22 ⋅ 71 = 284 are amicable. And, indeed, the proper divisors
of 220: 1, 2, 4, 5, 10, 11, 20, 22, 44, 55, 110 sum to 284, while the proper divisors of 284: 1, 2,
4, 71, 142 sum to 220.

Thâbit gave the following generalization of the Pythagorean theorem, from right-angled to
arbitrary triangles.

Theorem 3.1.  Suppose that in figure 3.1 the angles ∠BAC, ∠AC ′B′, ∠AB′C ′ are equal.
Then

FIGURE 3.1  Thâbit's theorem

(x+√3)(x+√2) = 20.

x = √ 85
4

− √6 +√ 3
2
−√ 3

4
−√ 1

2
.

AB2 +AC 2 = (BC)(BB′ + CC ′).



□

Proof. Denote ∠BAC = ∠AC ′B′ = ∠AB′C ′ = θ. It follows from the law of cosines that

From the similarity of △ABC and △AB′B, we have AB/AB′ = BC/AC, hence

as claimed.

In a work, entitled Book on the Measurement of the Conic Section Called Parabolic, Thâbit
proved that the area of a parabolic segment is two thirds the product of its base and its height.
He did this 8y inscribing triangles whose bases were proportional to the sum of the odd
integers and used the summation formula

(3.1)

Exercise 3.1.  Deduce the Pythagorean theorem as a corollary of Thâbit's theorem.

Yet another work of Thâbit's, The Proof of the Well-known Postulate of Euclid is particularly
interesting from a more modern perspective. Here Thâbit attempted to prove Euclid's fifth
postulate from the other four postulates. In doing so, he introduced, for the first time,
quadrilaterals in which the two base angles are right angles and the two vertical sides have
equal length. These are the rectangles now known as Saccheri rectangles after the work of the
eighteenth century Italian geometer Giovanni Saccheri (who attempted a similar task), which
later came to play a major role in the development of non-Euclidean geometry.

AB2 +AC 2 = BC 2 + 2(AB)(AC)(cos θ)

= BC 2 + (AB)(AC)(cos θ+ cos θ)

= BC 2 + (AB)(AC)(
DC ′

AC ′
+

DB′

AB′
)

= BC 2 + (AB)(AC)(
DC ′ +DB′

AB′ ).

AB2 +AC 2 = BC 2 + (BC)(DC ′ +DB′)

= (BC)(BC +DC ′ +DB′)

= BC(BC ′ + C ′D+DB′ +B′C +DC ′ +DB′)

= (BC)(BB′ + CC ′)

1 + 3 + 5 + 7 +⋯+ (2n− 1) = n2.



3.2  FIBONACCI

Leonardo of Pisa, who went by the name of Fibonacci (a contraction of filius Bonaccio, “son
of Bonaccio”) is considered the greatest mathematician of the Middle Ages. Fibonacci was
born in Pisa about 1175 and educated in North Africa, where his father was in charge of a
customhouse. As a young man he traveled widely in the countries of the Mediterranean, where
he encountered the various arithmetical systems used in the commerce of the different
countries. Fibonacci would have soon recognized the enormous technical advantages of the
Hindu-Arabic decimal systems, with its positional notation and symbol for zero, over the
clumsy Roman system in use at that time in Italy. On his return to Pisa in 1202, Fibonacci
wrote his famous treatise Liber Abaci (Book of Counting) and it is largely through the second
edition of this work, which appeared in 1228, that the non-Muslim world became acquainted
with Arabic numerals.

FIGURE 3.2  Leonardo of Pisa—Fibonacci (courtesy of Columbia University, David Eugene
Smith Collection)

Fibonacci later compiled another notable work, the Liber Quadratorum (Book of Squares),
in which he studies diophantine equations of the second degree. Fibonacci had been presented
at the court of Emperor Frederick II and one of Frederick's retinue had assigned him a problem
as a test of his mathematical skill: to find a number, which, increasing or decreasing its square
by 5, would again result in a square. Fibonacci gave the correct answer, 4112 ,



Problems of this type would no doubt have stimulated Fibonacci's interest in the subject
matter of the Liber Quadratorum, published in 1225. In fact, an example of a problem treated
in Liber Quadratorum is the following, closely related problem: solve, in rational numbers, the
pair of equations

Fibonacci solves the problem by first finding three squares a2, b2, c2 with a common
difference d, i.e.,

then setting x = b2/d. This results in

For example, taking a2 = 1, b2 = 25, c2 = 49, results in the solution x = 25/24 to the
equations

(
41
12
)

2

+ 5 = (
49
12
)

2

, (
41
12
)

2

− 5 = (
31
12
)

2

.

x2 + x = u2,

x2 − x = v2.

a2 = b2 − d, c2 = b2 + d,

x2 + x =
b4

d2
+

b2

d
=

b2(b2 + d)

d2
=

b2c2

d2
= (

bc

d
)

2

,

x2 − x =
b4

d2
−

b2

d
=

b2(b2 − d)

d2
=

b2a2

d2
= (

ba

d
)

2

.

x2 + x = (
35
24
)

2

,

x2 − x = (
5
24
)

2

.



In a publication of 1224, entitled Flos (“flower”), Fibonacci studied 15 diophantine
equations, including the cubic equation

which he treats in the form

and shows, by a typically ingenious argument, that this equation has no rational solutions.
Fibonacci's argument is by contradiction and goes as follows. Suppose there is a rational

solution to the equation, and express it in the form x = a/b where gcd(a, b) = 1. (Since it is
clear the equation has no integer solutions, b ≠ 1). Then the expression

is an integer. Since a and b are co-prime, this implies that b3, and hence b divides
10b2 + 2ab+ a2, which in turn implies that b divides a2. Using prime factorization, it is easy
to see that this implies b divides a, contradicting gcd(a, b) = 1.

Fibonacci went further in investigating the nature of the irrational roots of the equation. By a

case by case ruling out of certain Euclidean irrationals, such as a+√b, √√a+√b,…
Fibonacci convinced himself, and stated, that the roots could not be constructed using only
straightedge and compass. While a full proof of results such as this would need to wait
hundreds of years until the development of field theory (as we will see in Chapter 4), the
observation is interesting as the first intimation that there exist numbers that transcend the
classical Euclidean geometric framework. Fibonacci went on to obtain the remarkably accurate
approximation to the root, x = 1.33688081075. . ., accurate to nine decimal places.

While Fibonacci never formally accepted the notion of negative numbers in mathematics, he
did make a step in this direction in Flos, interpreting them in financial terms as debits as
opposed to credits.

It is ironic that, despite Fibonacci's many and influential contributions to mathematics, his
name is known today largely for a sequence attributed to him in the nineteenth century by the

x3 + 2x2 + 10x = 20,

x+
x2

5
+

x3

10
= 2

a

b
+

a2

5b2
+

a3

10b3
=

a(10b2 + 2ab+ a2)
10b3



French mathematician Edouard Lucas. The sequence was mentioned only briefly in
Fibonacci's works, in connection with a trivial problem involving rabbit reproduction.

The Fibonacci Sequence

The following problem is stated in Liber Abaci: A man put one pair of rabbits in a certain
place entirely surrounded by a wall. How many pairs of rabbits can be produced by that pair
in a year, if the nature of these rabbits is such that every month, each pair bears a new pair
which from the second month on becomes productive?

The solution is as follows, assuming that the original pair of rabbits is an infant pair and that
none of the rabbits die. Nothing happens in the second month since the original pair of rabbits
is only one month old and cannot reproduce. In the third month, the original pair of rabbits
becomes mature and gives birth to a new pair. There are now two pairs of rabbits, a mature
pair and a young pair. Next month, there are three mature pairs and the two pairs that were
mature in the previous generation give birth to two new young pairs, etc. The number of rabbit
pairs in the first year is shown in the following table.

Month n Pairs Fn

1 1
2 1
3 2
4 3
5 5
6 8
7 13
8 21
9 34
10 55
11 89
12 144

It is clear that the number of new births in each nth month (>2) are the number of pairs
present in month n− 2 (all of which are mature by month n). Thus there is the following
recursive rule for the formation of the sequence Fn,

Fn = Fn−1 + Fn−2, n > 2.



□

(3.2)

The entire sequence can be generated from this relation, together with the “initial conditions”

(3.3)

Exercise 3.2.⋆  Show that the “generating function” for the Fibonacci sequence

The Fibonacci sequence {Fn} has some remarkable properties. We note and prove a few of
them.

Theorem 3.2.  Any two consecutive terms of the sequence are relatively prime.

Proof. Suppose there is an integer d that divides both Fn and Fn−1,n ≥ 3. Then d divides the

difference Fn − Fn−1 = Fn−2. Thus d divides both Fn−1 and Fn−2. Iterating this argument
(arguing by “infinite descent”, if you will), we see that d divides both F2 and F1. Hence d = 1.

In fact, computing the ratio of two consecutive terms Fn/Fn−1 of the Fibonacci sequence
for large n reveals an interesting pattern. For example,
F9/F8 = 34/21 = 1.61904. . . ,F12/F11 = 1.6179. . . ,F14/F13 = 377/233 = 1.618025, . . .

As n becomes larger and larger, these ratios seem to get closer and closer to the golden ratio
ϕ = (1 +√5)/2 = 1.618033. . .. In the language of limits, we would say

This is confirmed by the following observation: Dividing (3.2) through by Fn−1 gives

(3.4)

F1 = 1, F2 = 1.

F1 + F2x+ F3x
2 +⋯ =

1
1 − x− x2

.

lim
n→∞

Fn

Fn−1
= ϕ.

Fn

Fn−1
= 1 +

Fn−2

Fn−1
.



Now assuming that L =limn→∞ Fn/Fn−1 exists, we will have limn→∞ Fn−2/Fn−1 = 1/L.
So taking the limit as n tends to infinity in equation 3.4 gives

whence we see that L = ϕ. Thus the Fibonacci sequence can be used to produce rational
approximations to the golden ratio, to within any prescribed degree of accuracy.

Another property, which was proved by Lucas, is

Theorem 3.3.

For example, referring to the previous table, we have

The proof of Theorem 3.3 follows easily from the relations

Adding these equations, and noting the cancellations on the right-hand side (telescoping), we
get the result.

Theorem 3.4.

For example, taking n = 6 and n = 7, we have

L = 1 +
1
L
,

F1 + F2 +⋯+ Fn = Fn+2 − 1.

F1 + F2 +…F7 = 1 + 1 + 2 + 3 + 5 + 8 + 13 = 33 = F9 − 1.

F1 = F3 − F2

F2 = F4 − F3

F3 = F5 − F4

⋮

Fn−1 = Fn+1 − Fn

Fn = Fn+2 − Fn+1.

F 2
n = Fn−1Fn+1 + (−1)n, n ≥ 2.



□

Proof. We prove Theorem 3.4 as follows.

Thus

Note that the expression inside the bracket in the right-hand side of the last equation is simply
the left-hand side with n replaced by n− 1. Iterating this relation, we eventually obtain, after
n− 2 steps, the relation,

which is what we sought to prove.

Perhaps the most remarkable property of the Fibonacci sequence is the following closed-
form for the terms, which goes under the name of Binet's formula.

Theorem 3.5.

(3.5)

F 2
6 = 82 = 5 ⋅ 13 − 1 = F5F7 − 1,

F 2
7 = 132 = 8 ⋅ 21 + 1 = F6F8 + 1.

F 2
n − Fn−1Fn+1 = Fn(Fn−1 + Fn−2) − Fn−1Fn+1

= (Fn − Fn+1)Fn−1 + FnFn−2

= −F 2
n−1 + FnFn−2.

F 2
n − Fn−1Fn+1 = (−1)(F 2

n−1 − Fn−2Fn).

F 2
n − Fn−1Fn+1 = (−1)n−2(F 2

2 − F3F1)

= (−1)n−2(12 − 2 ⋅ 1)

= (−1)n−2(−1)

= (−1)n−1,

Fn =
1

√5
(

1 + √5
2

)n−1 −
1

√5
(

1 − √5
2

)n−1.



□

Proof. One way to prove Theorem 3.5 is to make use of the observations:

1. Solutions to the defining relation (3.2) can be obtained in the form Fn = rn.

2. The relation is linear, i.e., if the sequences xn and yn both satisfy (3.2), then so does the

sequence axn + byn, for any constants a and b.

Substituting Fn = rn into (3.2) and reducing leads to the following quadratic equation for r

Interestingly enough, this is precisely the equation we solved to find the golden ratio in Section
1.3. The solutions are

Thus every sequence of the form

satisfies (3.2). We now choose a and b to satisfy the initial conditions (3.3). This results in the
system of linear equations

Solving for a and b yields Binet's formula (3.5).

Exercise 3.3.⋆  Use (3.5) to show that

r2 = r+ 1.

r1, r2 =
1 ±√5

2
.

Fn = arn1 + brn2

a+ b = 1,

ar1 + br2 = 1.

lim
n→∞

Fn+1

Fn

=
1 +√5

2
.



Exercise 3.4.⋆  Use the foregoing method to obtain a closed form for the Lucas numbers Ln,

defined by

The Fibonacci Sequence in Nature

A fascinating aspect of the Fibonacci sequence is its seemingly ubiquitous appearance in
nature, in the structure of plants and in the shapes of certain creatures. For instance, many
flowers, fruits, and vegetables exhibit patters of interlocking spirals running in both a
clockwise and a counterclockwise direction. Examples are asparagus, pine cones, and
sunflowers (see figures 3.3, 3.4, and 3.5). The numbers of clockwise and counterclockwise
spirals almost invariably correspond to two consecutive numbers in the Fibonacci sequence.
For example, there are 3 clockwise and 5 counterclockwise spirals on a typical asparagus tip.
The pine cone generally has either 5 clockwise and 8 counterclockwise spirals, or 8 clockwise
and 13 counterclockwise spirals, while a sunflower will most likely exhibit a pattern of 34
clockwise and 55 counterclockwise spirals at its center (also 55 and 89, or 89 and 144,
depending on the size of the sunflower).

FIGURE 3.3  Asparagus tip

L1 = 2, L2 = 1,

Ln = Ln−1 + Ln−2, n > 2.



FIGURE 3.4  Pine cone

FIGURE 3.5  Sunflower

3.3  MATHEMATICS IN CHINA

The thirteenth century is regarded as the high point of traditional Chinese mathematics.
However, China has a rich tradition of mathematics dating back to ancient times.

The most influential work in early Chinese mathematics is the Nine Chapters of the
Mathematical Art. First assembled as a book at about the same time as Euclid's Elements, the
book serves roughly the same purpose, as a compendium of the mathematics known to the
Chinese at that time. The book survives today in the form of a commentary drawn up by Liu
Hui in A.D. 263, in which he summarizes and expands on the content of the Nine Chapters and
enriches it with new ideas of his own. The book became one of the earliest printed textbooks in
1084, when a printed version appeared using a wood block technique where each page was
separately carved from one wooden block. The printed version of the book achieved wide
circulation throughout China.

The Nine Chapters was never intended as a theoretical work in mathematics in the style of
the Greeks, but rather as a practical manual giving guidance on problems that the ruling
officials of the day were likely to encounter, in surveying, the construction of dikes and



waterways, matters of commerce, taxation, etc. The early parts of the Nine Chapters gives
rules (some incorrect) for computing the areas of familiar geometric shapes, rectangles,
triangles, trapezoids, sectors of circles, and volumes of spheres, cylinders, pyramids, and
circular cones. For example, the area of the circle is given as 3

4 d
2, where d is the diameter,

which would only be correct if the value of π were taken as 3. There is the correct formula for
the volume of a frustrum of a pyramid, also known to the Egyptians.

Problem 13 of Chapter 9 (“Right Angles”) solves the following problem, which shows that
the Chinese were in possession of the Pythagorean theorem. There is a bamboo of 10 ch'ih
high. It is broken and the upper end touches the ground 3 ch'ih away from the root. Find the
height of the break.

In his commentary, Liu Hui obtains approximations to π by first inscribing a regular
hexagon inside a circle, then successively doubling the number of sides, in the spirit of the
method used by Archimedes. In this fashion, he shows that the area of the regular 192-gon
inscribed in a circle of radius 10, is 314.1024. This determines a value for π of 3.141042. Two
hundred years later, the mathematician-astronomer Tsu Chung-chi (430–501), in collaboration
with his son, would use Liu Hui's method to estimate π as lying in the range

This level of accuracy was not reached in the West until the end of the sixteenth century.
The eighth of the Nine Chapters, titled “The Way of Calculating by Arrays” provides the

first systematic method for the solution of a set of simultaneous linear equations. An example
is the first problem in the chapter, which reads as follows. There are three grades of corn. After
threshing, three bundles of top grade, two bundles of medium grade, and one bundle of low
grade make 39 dou. Two bundles of top grade, three bundles of medium grade, and one bundle
of low grade will produce 34 dou. The yield of one bundle of top grade, two bundles of medium
grade, and three bundles of low grade is 26 dou. How many dou are contained in each bundle
of each grade?. The problem is equivalent to the system of linear equations

These equations were expressed, using rods on an a counting board, as the array

3.1415926 < π < 3.1415927.

3x+ 2y+ z = 39,
2x+ 3y+ z = 34,

x+ 2y+ 3z = 26.



By performing appropriate multiplications and subtractions, this array was converted into the
reduced form

The last array translates back into the equations

whence it is determined that z = 11/4, y = 17/4, and x = 37/4.
This approach prefigures the method of Gaussian elimination introduced in the nineteenth

century to solve systems of linear equations.

Exercise 3.5.⋆  Solve the system of equations.

Exercise 3.6.⋆  Show that the system of equations

1 2 3

2 3 2

3 1 1
26 34 39

0 0 3
0 5 2

36 1 1

99 24 39

36z = 99,

5y+ z = 24,
3x+ 2y+ z = 39,

x+ y+ z = 8,

2x+ 3y+ 4z = 27,

4x− 3y+ 5z = 15.

ax+ by = p,
cx+ dy = q.



has either a unique solution, infinitely many solutions, or no solutions and give a condition
which ensures that there is a unique solution.

Liu Hui also produced a treatise on surveying, titled Sea Island Mathematical Manual. This
contained nine problems, typical of which is the first. There is a sea island to be measured.
Two poles each 30 feet high are erected on the same level, 1000 paces apart [1 pace = 6 feet],
so that the rear pole is in a straight line with the island and the first pole. If a man walks 123
paces back from the first pole, the highest point of the island is just visible through the top of
the pole when he views it from ground level. Should he move 127 paces back from the rear
pole, the summit of the island is just visible through the top of the pole when seen from ground
level. It is required to find the height of the island and its distance from the nearer pole.

The problem is illustrated in figure 3.6. The dashed line FI is constructed to be parallel to
the line BE. The given distances are |AH| = |DG| = |EF | = 5 (paces),
|DJ| = 123, |EC| = 127. Thus |EI| = 123 and |IC| = 4.

FIGURE 3.6  Liu's surveying problem

We are required to find the height |AB| and the horizontal distance |AD|. Denote these by x
and y respectively. Observing that △BHG and △FEI are similar, as are △BGF  and △FIC

, we have

from which we deduce that x = 1,255 paces and y = 30,750 paces.
One of the leading Chinese mathematicians of the thirteenth century was Ch'in Chu-shao

(1202–261) who published a celebrated work Mathematical Treatise in Nine Sections in 1247
(the Chinese evidently had a penchant for the number nine in their titles.) The Nine Sections is
the oldest existing mathematical text to contain a round symbol for the number zero, and also

x− 5
5

=
y

123
=

1, 000
4

,



the first to contain polynomial equations with degree larger than 3. For example, one of the
problems discussed leads to the equation

for which Ch'in found the solution x = 9.
Another notable mathematician from this period is Li Ye (1192–1279). His book Old

Mathematics in Expanded Sections contains 64 problems involving quadratic equations arising
from geometric settings. An example is: There is a circular pond in the middle of a square
field, and the area outside the pond is 64 square pu. It is known only that the sums of the
perimeters of the square and the circle is 300 pu. Find the perimeters of the square and the
circle.

Assuming the ancient value of 3 for π, Li solves the problem, obtaining the diameter of the
pond as 20 pu.

Exercise 3.7.  Set up and solve a quadratic equation and thereby derive Li's solution to the
problem.

The last of the Chinese mathematicians that we discuss here is Chu Shih-chieh, who
published two major treatises Introduction to Mathematical Studies in 1299 and the Precious
Mirror of the Four Elements in 1303.

The Precious Mirror opens with a diagram showing the coefficients of the binomial
expansions of (1 + x)n for values of n up to 8, essentially Pascal's triangle. In this work Chu
treats polynomial equations of high degree, introducing a new method for approximating the
solutions now known in the West as Horner's method, after the mathematician William Horner
who rediscovered it in 1819. Chu uses as an example the quadratic equation

Chu finds by inspection that there is a root between 19 and 20. He then shifts the root by the
substitution y = x− 19. The equation in y,

x10 + 15x8 + 72x6 − 864x4 − 11, 664x2 − 34, 992 = 0,

x2 + 252x− 5292 = 0.

y2 + 290y− 143 = 0



thus has a root between 0 and 1. Chu simplifies the equation by approximating the y2 term by y
and solving the resulting linear equation to obtain y = 143/291. Thus he obtains as an
approximation to the original root, x = 19 + 143/291.

In the Precious Mirror, Chu also studies arrangements of balls in various geometric
configurations, triangle, pyramids, cones, etc. and in the process, both anticipates the modern
mathematical topic of “sphere packing,” and gives the summation formulas

3.4  IMPROVEMENTS IN NOTATION; NAPIER'S INVENTION OF
LOGARITHMS

The great advances made in mathematics after the 1600s would not have been possible without
an improvement in notation and mathematical language. Two of the major figures in these
developments were François Viète (1540–1603) and Simon Stevin (1548–1620).

Although quadratic, and sometimes higher degree polynomial equations, had been studied
since the time of the ancients, these had always been in the form of specific equations, treated
on a case by case basis. Viète took the decisive step of studying equations with unspecified
(arbitrary) coefficients. Thus it became possible for the first time to develop general rules and
procedures for a whole class of equations at one stroke. The enormous advantage of this type
of generality is obvious just in considering the formula

for the roots of the quadratic equation

1 + 2 + 3 +⋯+ n =
n(n+ 1)

2
,

1 + 3 + 6 + 10 +⋯+
n(n+ 1)

2
=

n(n+ 1)(n+ 2)
6

,

1 + 4 + 10 + 20 +⋯+
n(n+ 1)(n+ 2)

6
=

n(n+ 1)(n+ 2)(n+ 3)
24

,

12 + 22 + 32 ⋯+ n2 =
n(n+ 1)(2n+ 1)

6
.

x =
−b±√b2 − 4ac

2a

ax2 + bx+ c = 0,



in comparison for the cumbersome solutions of the Greeks and other ancient civilizations.
Viète did retain the habit of indicating the powers to which a quantity was raised, in

language, with terms such as quadratus, for power 2, cubus for power 3, etc. Mathematics was
later freed from this by Descartes, who introduced the modern notation an to denote powers.
Other advancements in notation also happened in this era; in 1514, the Dutch mathematician
Vander Hoecke first used the signs + and − in algebraic expressions (prior to this time these
symbols had been used strictly in business, to refer to surpluses and deficits).

In a work entitled The Whetstone of Witte (1557), the English mathematician Robert
Recorde introduced the symbol = for equality (but with longer lines), chosen on the grounds
that “Noe 2 thynges can be moare equalle” than two parallel lines. In 1631, Thomas Harriot
introduced the dot as a symbol for multiplication, while another English algebraist William
Oughtred introduced the cross sign × to denote the same operation. (Nowadays it is the usual
practice of mathematicians to omit a symbol for multiplication entirely when using the
operation in an expression.) In modern notation, the arcane looking statement that Diophantus
would have written1

is expressed as the equation

The Belgian mathematician Simon Stevin (1548–1620) is credited with the introduction of
decimal numbers into the number system to represent fractions. Prior to 1500, decimal and
sexagesimal (base 60) numbers were often used together in one number, with the integer part
of the number being represented by a base 10 number and the fractional part in sexagesimal
notation. Vestiges of this practice remain to this day in our division of hours into minutes and
seconds and the likewise division of angles.

The Scottish nobleman, mathematician and inventor John Napier (1550–1617) introduced
logarithms into arithmetic as a means to facilitate calculations with very large numbers. Napier
was an interesting character. Living in Scotland at a time of great religious upheaval, he was a
vocal defender of the protestant faith. In 1594 Napier published a pamphlet, A Plaine
Discovery on the Whole Revelation of Saint John in which he bitterly attacked the Catholic
church, proclaiming the Pope to be the anti-Christ. The “Discovery” in the title is the finding

K γ4?1Δγ6ιζ2M3

4x3 − 6x = 2x+ 3.



that the Creator proposed to end the world sometime between 1688 and 1700. The pamphlet
received wide circulation, as a result of which Napier became in his day much more famous as
a polemicist than he ever was as a mathematician.

Returning to the earthly realm, the term logarithm coined by Napier, derives from the Greek
logos meaning “reckoning.” In studying tables of powers, Napier realized that calculating the
product of two large numbers could be done much more easily via their logarithms. The
logarithm of a number x to a base b is defined as the exponent y such that by = x, and is
denoted logb x. (As examples, log5 25 = 2 since 52 = 25 and log10 0.1 = −1 since
10−1 = 0.1.) It follows from the properties of exponents that logarithms obey the addition rule

____________________

  1?: Here goes a symbol that I don't even recognize sufficiently to typeset!

Suppose, for example, it is required to calculate the product of the two numbers M = 15346

and N = 279435, and a table of logarithms to base 10 (common logarithms) is at hand. The
values log10 M = 4.185995 and log10 N = 5.446280 imply

The table then yields MN = 4288207595 as the answer. (The actual value is 4288209510, the
discrepancy being due to rounding error.)

The use of logarithms thus turns a rather tedious multiplication into a much easier addition.

Exercise 3.8.  Use logarithms to calculate 12342 × 5673.

Napier devoted the latter part of his career to calculating an extensive table of logarithms,
using 107 − 1 = 9999999 as the base. Logarithms to this base are called Naperian logarithms
in his honor. Napier compiled his table by means of an ingenious interpolation method that he
devised, whereby known logarithms of two numbers on either side of a number are used to
estimate the logarithm of the number. (This is Napier's reason for working with such a strange
base.) Napier also invented a mechanical device known as Napier's bones to facilitate
calculations with logarithms, a forerunner of the modern (now obsolete!) slide rule.

3.5  DESCARTES AND THE INVENTION OF ANALYTIC GEOMETRY

logbM + logbN = logbMN .

log10 MN = 4.1865995 + 5.446280 = 9.633275.



René Descartes (1596–1650) was born in the town of La Haye, about 200 miles southwest of
Paris. His father was a member of the lesser nobility and a provincial judge. In 1617, when
Descartes was 21 years of age, he enlisted in the French army as a gentleman volunteer,
serving first under Prince Maurice of Nassau in Holland and then under the Duke of
Brunswick, but there is no evidence of his ever having done any real soldiering. Instead, he
concentrated on philosophy and mathematics.

FIGURE 3.7  Portrait of Descartes by Frans Hals

The theory that laid the foundations of analytic geometry first appeared as the third of three
essays titled La Géométrie accompanying the Discours, a philosophical work published by
Descartes in 1637. La Géométrie itself consisted of three books. In this work Descartes
conceived the idea of representing points in a plane by two coordinates with respect to fixed
axes, and describing curves in the plane by means of an equation relating these coordinates.
The importance of this innovation for the future of mathematics cannot be overstated.
Geometry was finally freed from its Euclidean shackles! An infinitude of new curves could be
created at will and studied by means of algebra. Indeed, some commentators herald this work
of Descartes as the beginning of modern mathematics. Analytic geometry paved the way for
the invention of calculus and a host of other developments in mathematics and related
branches of science.

The problem that formed the central theme of La Géométrie was classical in nature, a
generalization of a problem that Pappus had formulated in his commentary on the conics of



Apollonius. The problem was as follows: given four lines in the plane, find the locus of a point
that moves so that the product of the distances from two of the lines is proportional to the
distance from a third line. Pappus had stated that the locus was one of the conic sections and
Descartes was able to prove this algebraically using his new methodology.

In Descartes' own words: I would simplify matters by considering one of the given lines and
one of those to be drawn as the principal lines to which I shall try to refer all others.

Descartes' coordinate system is illustrated in figure 3.8. In this figure C is considered to be
an arbitrary point whose locus is to be determined according to the rules of the problem.
Descartes chooses one of the lines specified in the problem (the line AD in the figure) as one of
his axes, then draws a line through C in a certain fixed direction and projects the line until it
meets AD at the point B. The location of the point C is represented by the lengths x and y of the
line segments |AB| and |BC|. Descartes sets up an equation in x and y and uses it to determine
locus of the point C.2

FIGURE 3.8  Descartes' coordinate system

In Book II of La Géométrie, titled On the Nature of Curved Lines, Descartes enlarged on
this approach and divided the curves produced by his new geometry into two types which he
called geometric and mechanical (later termed algebraic and transcendental by Leibniz). By
the former, he meant the curves defined by an algebraic equation in two variables. Curves such
as spirals, which are not of this type, were classified by Descartes as mechanical.

Descartes also gave a method for constructing tangent lines to curves described by an
algebraic equation f(x, y) = 0. Descartes was motivated to study this problem by his
researches in optics. He himself said of the tangent problem: I dare say that this is not only the
most useful and the most general problem in geometry that I know, but even that I have ever
desired to know. No essential progress had been made on this problem since Archimedes, who
calculated tangents to his spirals.

As an example of Descartes' method of tangents, consider the parabola y2 = 2x. Suppose
we wish to construct the tangent line to this curve at the point P = (8, 4). The problem is
clearly equivalent to constructing the normal line to the curve at P. Descartes does this by



calculating the circle centered on the x-axis, passing through P, that is tangential to the
parabola at P (see figure 3.9).

FIGURE 3.9  Descartes' method of tangents

The procedure is as follows. Denote the center of the circle as the point (x1, 0), so the
equation of the circle through P is (x− x1)2 + y2 = (8 − x1)2 + 16. In order for the circle
and the parabola to be tangent at P, the simultaneous equations
____________________

  2Descartes' presentation of these ideas was a little complicated by the facts that his axes were not assumed to be
perpendicular, as we do today.

determining the intersection of the two curves, must produce a single solution point.
Eliminating y between the equations yields

Write this equation in the form

(x− x1)2 + y2 = (8 − x1)2 + 16,

y2 = 2x

(x− x1)
2 + 2x = (8 − x1)

2 + 16.

x2 +Bx+ C = 0,



where B = −2x1 + 2, C = 16x1 − 80. The quadratic equation admits a single solution if
and only if B2 − 4C = 0. This is easily shown to yield x1 = 9. Hence, the normal line to the
parabola at the point (8, 2) is the radius of the circle centered at (9,0) connecting to the point
(8, 2). The tangent line can then be constructed as the line perpendicular to this line at the
point in question.

If, in retrospect, this all seems relatively straightforward, it should be noted that such an
argument could not even be conceived of without the analytic geometry previously introduced
by Descartes.

Book III of La Géométrie concerns purely algebraic problems. Here Descartes gives his
famous “rule of signs” which provides an upper bound on the number of positive real roots to a
polynomial equation in terms of the number of sign changes in the coefficients of the equation.
In this book, Descartes also gives a new solution to the quartic equation.

As usual, Descartes treats the equation in its reduced form

The left-hand side is expressed as the product of two quadratic terms

Comparing the coefficients in the two forms of the equations leads to the relations

If k = 0, then q = 0 and the original equation is a quadratic in z2, which can be solved. If
k ≠ 0,then the first two relations above give

Substituting these in the third relation yields

z4 + pz2 + qz+ r = 0.

(z2 + kz+m)(z2 − kz+ n) =

z4 + (m+ n− k2)z2 + k(n−m)z+mn.

p = m+ n− k2, q = k(n−m), r = mn.

2n = p+ k2 +
q

k
, 2m = p+ k2 −

q

k
.

k6 + 2pk4 + (p2 − 4r)k2 − q2 = 0.



This is a cubic equation in k2, which is then solved by Cardano's formula. Once k, and hence n
and m have been found, the roots z are obtained by solving the pair of quadratic equations

3.6  PRECURSORS TO CALCULUS: WALLIS AND BARROW

The Englishman John Wallis (1616–1703) was probably the most talented mathematician to
emerge in the period between Descartes and Newton. In 1648 Wallis was appointed Savilian
Professor of Geometry at Oxford University, a position he held until his death. Wallis'
mathematical reputation is largely based on a treatise, Arithmetica Infinitorum which he
published in 1655. In this book, following up on earlier work of the Italian mathematician
Cavalieri, (1598–1647), Wallis developed a method for computing the area beneath the curves
y = xk for k positive integers k. This work inspired both Newton and Leibniz in their later
creation of the integral calculus.

As an illustration of Wallis' method, consider the parabolic region y = x2, x ≤ a. Wallis
supposed the region to be comprised of n infinitesimally narrow rectangles, of width a/n (see
figure 3.10).

FIGURE 3.10  Computing the area beneath a curve

Wallis reasoned that the total area A of the region is the sum of the areas of the rectangles,

z2 + kz+m = 0,

z2 − kz+ n = 0.



Wallis had observed the pattern

from which he deduced

Since n is assumed to be infinite, the terms 1/2n and 1/6n2 are zero, hence A = a3/3.
Wallis performed an analogous calculation with the curve y = x3 and found that the

corresponding area is a4/4.

Exercise 3.9.  Use the summation formula

to establish this.

On the basis of these and further results, Wallis came to the conclusion that for every
positive power k, the area lying beneath the curve y = xk is

(
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1
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1
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5
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=
1
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7
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=
1
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1
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,

12 + 22 + 32 + 42
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3
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=
1
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1
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1
3
+

1
2n

+
1

6n2
).

13 + 23 + 33 +⋯+ n3 =
n2(n+ 1)2

4



As we have remarked, and will discuss in greater detail in Chapter 5, the work of Cavalieri and
then Wallis on this problem inspired the invention of integral calculus by Newton and Leibniz.

Barrow's work on computing tangents to curves played a similar role in the formulation of
that other major branch of the subject, differential calculus. Isaac Barrow (1630–1677) arrived
in Cambridge in 1663 as the first occupant of the Lucasian Chair of Mathematics, when
Newton was a student there. Like Wallis, Barrow was one of the foremost mathematicians of
his time. His influence on Newton was considerable and apparently inspired the younger man
to follow an academic career. Barrow's researches into curves led him to the very brink of
discovering the differential side of calculus.

During his tenure at Cambridge, Barrow presented a series of 13 lectures. These were
published in 1669 under the name Lectiones Geometricae and contained, among other things,
Barrow's method of tangents. (Fermat independently came up with similar ideas.) This method
was later taken up by Newton and is essentially the one we use today for calculating the
derivative. The method can be described as follows. Suppose the curve is defined by an
equation f(x, y) = 0 where f is a polynomial in x and y. Barrow observed that the tangent line
at a point P = (x, y) on the curve is determined if some other point on the line is found, say
the point T where the tangent line meets the horizontal axis (see figure 3.11).

FIGURE 3.11  Barrow's method of tangents

Barrow considers a point Q on the curve infinitesimally close to P, and constructs the right
triangle PQR which he calls the “differential triangle.” The closer the point Q is to P, the more

ak+1

k+ 1
.



similar are the triangles PRQ and PTM. Barrow argued that they can actually be assumed to be
similar. This implies the relation

(3.6)

Taking (x, y) as the coordinates of P, the coordinates of Q (lying below and to the right of P in
figure 3.11) are (x+ e, y− a). Since Q lies on the curve, we have

The left-hand side of the equation is expanded as a polynomial in a and e. In Barrow's own
words: reject all terms in which there is no a or e, for they destroy each other by the nature of
the curve3; also reject all terms in which a and e are above the first power, or are multiplied
together, for they are of no value with the rest, being infinitely small(er). This results in a linear
relation in a and e from which one can solve for a/e. By (3.6), this yields the slope of the
tangent line at P and hence the point T.

Let's try this for the curve

Let P = (x, y) be an arbitrary pint on the curve. Taking a nearby point Q = (x+ e,x− a)

on the curve, we have

Expanding the square terms and effecting the further multiplications, yields

MP

MT
=

RP

RQ
= −

a

e
.

f(x+ e, y− a) = 0.

f(x, y) = x2y+ y3 + 2x2 − 5 = 0.

0 = f(x+ e, y− a) = (x+ e)2(y− a) + (y− a)3 + 2(x+ e)2 − 5.

0 = (x2 + 2xe+ e2)(y− a) + y3 − 3y2a+ 3ya2 − a3 + 2(x2 + 2xe+ e2) − 5

= x2y− x2a+ 2xey− 2xea+ e2y− e2a+ y3 − 3y2a+ 3ya2 − a3

+ 2x2 + 4xe− 2e2 − 5.



Canceling out the combination of terms x2y+ y3 + 2x2 − 5 and ignoring terms in a and e of
higher degree than first, results in

from which we get

Hence the slope of the tangent line at (x, y) is

____________________

  3According to the relation f(x, y) = 0.

and the point T has x-coordinate

Those who have taken a first course in calculus may recognize what we have done in this
calculation as performing an implicit differentiation with respect to x in the relation
f(x, y) = 0.

Exercise 3.10.  Use Barrow's method to find the equation of the tangent line to the curve
described by the following relation, at the point (1, 2)

This was the state of (what came to be called) calculus in the mid to late 1600s. Methods
had been introduced to solve two fundamental problems in geometry, the calculation of areas
and tangent lines. However, the two types of problems were treated by Wallis and Barrow and

a(x2 + 3y2) − e(2xy+ 4x) = 0,

a

e
=

2xy+ 4x
x2 + 3y2

.

−
a

e
= −

2xy+ 4x
x2 + 3y2

x+ y ⋅
2xy+ 4x
x2 + 3y2

.

3x2y+ 2y2x = 14.



their contemporaries in isolation, and on a case-by-case basis. Some formulas, but no general
theory had been established from the calculations. The subject was soon to undergo a
transformation in the hands of two men of genius that would place it forever at the forefront of
mathematical thinking.

Suggestion for Further Reading

David M. Burton. The History of Mathematics: An Introduction. McGraw Hill, 7th edition,
2010.
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C H A P T E R  4

Algebra

DOI: 10.1201/9781003470915-4

The focus of this chapter is on polynomial equations, a driving theme in
algebra throughout the ages and the source of much deep and beautiful
mathematics.

The chapter starts with a review of complex numbers and moves on to
discuss the Fundamental Theorem of Algebra (FTA). This is the assertion
that a polynomial equation with real or complex coefficients has as many
complex roots as the degree of the equation. The next three sections of the
chapter discuss, in turn, quadratic, cubic, and quartic equations. We present
the standard methods to solve these equations and relate something of the
history of these methods. (The reader will find some of the history quite
colorful.) Section 4.6 gives an account of de Moivre's theorem, an
elementary but important result which expresses the nth roots of unity, i.e.,
the solutions to the equation zn = 1, in the form of sines and cosines.

After the solution to the quartic equation was discovered around the
middle of the sixteenth century, mathematicians naturally set their sights on
finding algebraic formulas to solve polynomial equations of degree 5 and

https://doi.org/10.1201/9781003470915-4


higher. However, no definitive progress in this direction was made for
another 300 years, when Ruffini and then Abel (more convincingly)
resolved the issue in the negative, proving that no such formulas can exist.
The theoretical basis for this research was laid by Lagrange, who in 1770
published an influential memoir on the subject of polynomial equations. We
discuss Lagrange's memoir in Section 4.7, together with a work of
Vandermonde on the same theme which, in addition to many of the results
of Lagrange, contains a revolutionary new approach to the cyclotomic
equation of degree 11. In Section 4.8, we describe Gauss's Euclidean
construction of the regular 17-sided polygon.

The crowning glory of the above lines of research is the theory pioneered
by Galois in the early 1800s, which provides the complete answer to the
question of the algebraic solvability of polynomial equations. The chapter
concludes with an introduction to Galois theory and its relation to the work
of Ruffini and Abel.

4.1  COMPLEX NUMBERS

It may seem strange to begin a chapter on Algebra with a discussion of
complex numbers, but they are clearly fundamental to the subject. Indeed,
the need for complex numbers arises from quadratic equations. Take, for
example,

Since the rules of arithmetic dictate that when either a positive or a negative
number is squared, the result is always non-negative, it follows that no

x2 + 4 = 0.



(real) number can satisfy this equation. The quadratic formula, which gives
for the equation x2 + px + q = 0 the solutions

shows that this problem will occur whenever the discriminant p2 − 4q of
the equation is negative.

Many of the ancient civilizations studied quadratic equations and
possessed a version of the quadratic formula, though expressed verbally and
usually in relation to specific problems. They must have come across
equations such as these. This was not seen as a problem in those days; such
equations were simply declared to have no solutions, or “impossible.”

The real impetus for the introduction of complex numbers into
mathematics came in the sixteenth century when algebraic solutions to
cubic equations were discovered by Tartaglia and del Ferro. It turns out that
complex numbers cannot be avoided in these solutions, even in cases when
all three roots are real.

The term “imaginary” for the square roots of negative numbers (which
does not exactly inspire confidence) was coined by Descartes in 1637 in the
statement, … sometimes only imaginary, that is one can imagine as many as
I said in each equation, but sometimes there exists no quantity that matches
that which we imagine. Even the great Gauss, who introduced the symbol
“i” for √−1 and the terms “argument” and “modulus” of complex
numbers, initially distrusted them and referred in 1797 to the “metaphysics
of the square root of −1.”

Complex numbers had, in fact, been used much before this time and had
been seen to produce meaningful results. Arithmetic rules for their

y =
−p ± √p2 − 4q

2



manipulation were formulated by Raphael Bombelli as early as 1572. Yet
the question persisted, do such numbers actually exist? The matter was put
to rest by the Danish mathematician Caspar Wessel who, in a memoir of
1799 devised the idea of representing complex numbers as points in a plane.
Wessel's memoir was published in the Proceedings of the Copenhagen
Academy, but went largely unnoticed in the mathematical world. Similar
ideas were formulated independently by Jean-Robert Argand who, in 1806,
used complex numbers to give what is considered to be the first rigorous
proof of the fundamental theorem of algebra. The theory of functions of a
complex variable was developed by Augustin-Louis Cauchy (1789–1857),
and Bernhard Riemann (1826–1866) in the mid-nineteenth century. All
these developments will be discussed in this chapter.

FIGURE 4.1  Augustin-Louis Cauchy



FIGURE 4.2  Bernhard Riemann

Complex numbers are today an essential part of mathematics and are
used in many scientific disciplines. Examples include electrical
engineering, fluid dynamics, signal analysis, and quantum physics. If you
are looking to impress people at parties with complex numbers, the best
way to describe them is as “the quotient ring of the polynomial ring in the
indeterminate i, by the ideal generated by the polynomial i2 + 1.”

The complex plane

Many people come across complex numbers in a high school math class.
The teacher will usually introduce the subject by saying something like:
“Since there is no number that satisfies x2 = −1, mathematicians have
invented one and they call this new number i. This leads to complex
numbers such as 3 + 4i and 2 − 5i. You can add these numbers, subtract
them, multiply and divide them, just as you do with regular numbers.” For
example, “foiling” the product gives



Since i2 = −1, this can be written as

All well and good, but is there any mathematical basis for these new
numbers? The issue was especially baffling to the mathematical world in
the late 1700s. What was needed was some sort of tangible construction to
justify the existence of imaginary and complex numbers. This is exactly
what Wessel and Argand provided by representing complex numbers as
points in a plane.

The complex plane is shown in figure 4.3. The horizontal axis (labeled
Re for real) in the figure is a (real) number line. The vertical axis (labeled
Im for imaginary) is also a number line, but is calibrated in terms of a unit i.
Points (x, y) in the plane are written x + yi (or x + iy), called complex
numbers, and often denoted by a single letter z.

(3 + 4i)(2 − 5i) = (3 × 2) + (3 × −5i) + (4i × 2) + (4i × −5i)

= 6 − 15i + 8i − 20i2 = 6 − 7i − 20i2.

6 − 7i + (−20 × −1) = 6 − 7i + 20 = 26 − 7i.



FIGURE 4.3  The complex plane

Addition and multiplication of complex numbers are formally defined by
the rules

Note, that in the case when the two numbers are real (i.e., b = d = 0),
we have a ⊕ b = a + b and a ⊗ b = ab. Also, i ⊗ i = −1. The real
numbers are hereby embedded in a larger arithmetical framework which is
given a visual reality, and an element i is produced whose square is −1.

Modulus and Argument

The length r of the line segment 0p is called the modulus of z and denoted
|z|. The angle θ between 0p and the positive real axis (measured in the
counterclockwise sense) is called the argument of z and denoted arg z. Thus

(a + bi) ⊕ (c + di) = (a + c) ± (b + d)i,

(a + bi) ⊗ (c + di) = (ac − bd) + (ad + bc)i.



Since x = r cos(θ) and y = r sin(θ), we can write

Addition ⊕, as defined above, has the geometric interpretation as the
“parallelogram law” shown in figure 4.4.

FIGURE 4.4  The parallelogram law for addition

The geometric meaning of the multiplication law ⊗ is indicated by the
properties

(4.1)

|z| = √x2 + y2,

arg(z) = arctan(
y

x
).

z = |z| (cos(arg(z)) + i (sin(arg(z))).

|z ⊗ w| = (|z|)(|w|),



□

(4.2)

Proof. Let z = (a + bi),w = (c + di). Then

proving (4.1).
By the addition formula for tangent,

This proves (4.2).

In particular, (4.1) and (4.2) imply i2 = i × i has modulus 12 = 1 and
argument π/2 + π/2 = π, i.e., i2 = −1.

(The symbols ⊕ and ⊗ have been used to emphasize the fact that, at this
point, these were introduced as formal operations, divorced from their usual
arithmetic meanings. These symbols will now be dropped and the
operations denoted by the familiar + and ×.)

4.2  THE FUNDAMENTAL THEOREM OF ALGEBRA

arg(z ⊗ w) = arg(z) + arg(w).

(|z|)(|w|) = √a2 + b2√c2 + d2 = √(ac − bd)2 + (ad + bc)2 = |z ⊗ w

tan(arg(z) + arg(w)) =
tan(arg(z)) + tan(arg(w))

1 − tan(arg(z)) tan(arg(w))

=
b/a + d/c

1 − (b/a)(d/c)
=

ad + bc

ac − bd
= tan (arg(z ⊗ w)).



The Fundamental Theorem of Algebra (FTA) asserts that polynomial
equations with (real or) complex coefficients, can be solved by complex
numbers. A precise statement of the theorem is as follows.

Theorem 4.1.  (FTA) The polynomial equation

(4.3)

where n ≥ 1, and a0, a1, … , an are complex numbers with an ≠ 0, has at
least one complex solution (root).

An equivalent (seemingly stronger) statement of the theorem is the
following.

Theorem 4.2.  Equation 4.3 has exactly n complex roots, up to multiplicity
(some may be repeated).

To see that Theorem 4.2 follows from Theorem 4.1, suppose that z1 is a

solution of equation (4.3) as provided for by the theorem. If n = 1, then
there is nothing more to prove. If n > 1, then dividing p through by z − z1

produces the factorization

where q is a polynomial of degree n − 1. Then, again by Theorem 4.1, q
has a root, z2. Continue this process until n roots have been obtained.

Here is yet another equivalent version of FTA.

p(z) = anz
n + an−1z

n−1 + ⋯ + a0 = 0,

p(z) = (z − z1)q(z),



Theorem 4.3.  Every polynomial equation with real coefficients can be
expressed as a product of linear and quadratic factors with real
coefficients.

Exercise 4.1.⋆  Derive Theorem 4.3 from Theorem 4.2.

FTA has a long history. In a book of 1629, Albert Girard stated that a
polynomial equation of degree n has n solutions, but did not say anything
about the nature of the solutions. The theorem (or one of its equivalent
versions) was not always believed. Indeed, no lesser an authority than
Leibniz stated in 1702 that the polynomial x4 + a4 could not be written as
the product of two quadratic factors. This was later disproved by Newton,
who obtained the factorization

A similar claim was made about a more complicated expression by
Nikolaus Bernoulli, and this was subsequently disproved by Euler.

Over time, it was realized that the theorem had to be true, in some form,
and several mathematicians attempted to prove it, including Euler (1749),
de Foncenex (1759), Lagrange (1772), and Laplace (1795). All these proofs
contained gaps or flaws. Gauss gave six different proofs of the theorem,
although all are regarded as incomplete by today's standards. The first
rigorous proof of FTA is credited to Argand, in 1806.

We sketch one of the many proofs of FTA. Denote the polynomial by

x4 + a4 = (x2 − √2ax + a2)(x2 + √2ax + a2).

p(z) = anz
n + an−1z

n−1 + ⋯ + a0,



(4.4)

where n ≥ 1 and an ≠ 0. We can assume a0 ≠ 0, otherwise z = 0 is a root
of (4.4) and there is nothing further to prove.

Consider the family of circles in the complex plane

(which, for conciseness, we write as σr), and think of these as paths

beginning and ending at the point z = r. We study the images of the paths
under the map p

Two such paths and their images are depicted in figure 4.5. The key points
in the argument are the following:

FIGURE 4.5  Small and large circles and their images under p

σr = {r(cos t + i sin t),  0 ≤ t ≤ 2π},

p(σr) = {p(z), z ∈ σr}.



1. Since the paths σr are closed loops, i.e., the beginning and end points

coincide, the same is true of p(σr).

2. For |z| small, p(z) behaves like p1(z) = a0 + a1z (since the
contribution of the higher-order terms is negligible). The path p1(σr)

is a circle centered at a0.

3. For large |z|, the highest-order term in the polynomial dominates, and
p(z) behaves like pn(z) = anz

n. The path pn(σr) is a circle centered
at 0, which wraps n-times around 0.

4. In view of points 2 and 3, for small r, the loop p(σr) (which stays
close to p1(σr)), together with its interior, avoid 0, while for large r,
p(σr) (which stays close to pn(σr)), wraps n-times around 0. (See the
red and blue loops on the right side of figure 4.5.)

Now suppose we let r steadily increase from small to large. Then the
loops on the right of figure 4.5 undergo a continuous progression from the
red loop, which does not wind around 0) to the blue loop, which winds
around 0. This implies that, at some point, the loops must pass over 0, i.e.,
there exist z such that p(z) = 0.

4.3  QUADRATIC EQUATIONS

If the Pythagorean theorem is the most well-known result in mathematics,
the quadratic formula probably comes in a close second. Most high school
students learn the quadratic formula as the statement: the equation

ax2 + bx + c = 0



has as its solutions

(4.5)

Quadratic equations appear in the works of most of the ancient
civilizations, Greek, Babylonian, Arabic, Indian, Chinese …, although, not
of course expressed in the above terms (there existing then no algebraic
language to express either the equation or the solution). For example, a
Babylonian tablet dated circa 2000 BCE contains the problem:

I have added the area and two-thirds of the side of my square and it is
0;35. What is the side of my square?

The solution is given in verbal form as follows:

You take 1. Two-thirds of 1 is 0;40. Half of this, 0;20, you multiply by
0;20 and you add to 0;35 and the result 0;41,40 has 0;50 as its square root.
The 0;20, which you have multiplied by itself, you subtract from 0;50, and
0;30 is the side of the square.

If this seems insanely cryptic, it is because the Babylonians used a
sexagesimal (base 60) system of numbers. Thus 0;20 represents the number
20/60 = 1/3, 0;35 represents 35/60 = 7/12, etc. In modern terms, the text
gives the solution to the equation

x =
−b ± √b2 − 4ac

2a
.

x2 +
2x

3
=

7

12
:



Clearly, a recipe is given here for solving the general quadratic equation

The Babylonians did not describe the methods by which they arrived at
their solution to quadratic equations, but, later, al-Khwarizmi did. His
method was the modern technique of “completing the square,” interpreted
literally. al-Khwarizmi solves the quadratic equation

via the geometric construction shown in figure 4.6. al-Khwarizmi adds the
gray square to the figure. This leads to the equation

x = √(
2/3

2
)2 +

7

12
−

2/3

3
=

1

2
.

x2 + px = q,

x = √ p2

4
+ q −

p

2
.

x2 + 10x = 39

(x + 5)2 = x2 + 10x + 25 = 39 + 25 = 64



FIGURE 4.6  Completing the square

from which one readily finds that x = 3.

Exercise 4.2.  Use the method of completing the square to derive the
quadratic formula (4.5).

Before we leave quadratic equations, we should mention a further
method for their solution, which is also relevant in solving higher degree
equations. This goes by the name of a Tschirnhaus transformation, named
for a German mathematician Ehrenfried Walther von Tschirnhaus (1651–
1708), who introduced it as part of a larger work on polynomial equations.
The idea is to make a substitution x = y + p in the equation

then choose p such that the second-highest power of x in the equation
vanishes. The substitution leads to the equation

ax2 + bx + c = 0

a(y + p)2 + b(y + p) + c = ay2 + (2ap + b)y + ap2 + bp + c = 0.



Choosing p = −b/2a in the equation reduces it to

from which (4.5) easily follows.

4.4  CUBIC EQUATIONS

As discussed previously, the solution to quadratic equations was known in
antiquity. It is remarkable, then, that it took humankind a further three and a
half thousand years to come up with an algebraic solution to the cubic
equation

(4.6)

Even more remarkable is that fact when the solution to the cubic was finally
discovered, it was found independently and at approximately the same time
by two mathematicians, both Italian, Scipione del Ferro (1465–1526) and
Niccolò Tartaglia (1500–1557). It was customary at that time for
mathematicians to engage in public contests for monetary prizes. The
winner would be rewarded by fame and fortune, and the loser with the
likely loss of their position and livelihood. Thus if somebody was in
possession of such a mathematical gem as the solution to cubic equations, it
was prudent to keep it under their hat, publish and perish! Tartaglia was
persuaded to reveal his solution of the cubic to Cardano, a leading figure in
the mathematical world, on the understanding that Cardano keep it a secret.

ay2 + c −
b2

4a
= 0

ax3 + bx2 + cx + d = 0.



Cardano then published the solution in his famous book on algebra, Ars
Magna, (The Great Art, 1545) resulting in much acrimony between the two
men.

Girolamo Cardano was born in 1501 in the town of Pavia, Italy, the
illegitimate child of Fazio, a jurist and a close friend of Leonardo Da Vinci.
Cardano had a difficult youth owing to the early departure of his mother
and a rough upbringing by an overbearing father, and he grew up to become
a combative, though intellectually gifted young man. Cardano graduated
with a degree in medicine from the university of Padua in 1525 and after
being denied admittance to the College of Physicians in Milan (the
sanctioning body for doctors in Italy at that time), on account of his
illegitimate birth, supported himself by gambling and the unlicensed
practice of medicine. In 1531, he married Lucia Banderini, and they had
three children, Giovanni Battista (1534), Chiara (1537), and Aldo Urbano
(1543). With the help of some noblemen friends, Cardano finally obtained
his medical license and a teaching position in Milan, where he practiced as
a doctor and at the same time pursued research into mathematics. He went
on to build considerable reputations in both fields.

In retrospect, Cardano's behavior in the matter of the cubic seems fairly
honorable. Firstly, Ars Magna was published six years after Cardano
learned of Tartaglia's solution, thus affording Tartaglia plenty of time to
publish the work himself. In the meantime, Cardano had learned of del
Ferro's solution and felt that it released him from his pledge to Tartaglia, on
the grounds that it was primarily del Ferro's work that he was publishing.
Furthermore, a solution to the quartic equation had since been discovered in
1540 by Cardano's student, Ludovico Ferrari. Cardano wanted to include
Ferrari's solution in the book, but was unable to so without also revealing
the work of Tartaglia or del Ferro, since the solution of the quartic relies



upon that of the cubic. Perhaps most importantly, Cardano credited both
Tartaglia and del Ferro as the discoverers of the solution and so helped
secure their place in mathematical history. (True, the formula for the
solution did come to be named after Cardano rather than its originators, but
that's a story for another day.)

FIGURE 4.7  Nicolo Tartaglia



FIGURE 4.8  Girolamo Cardano. Stipple engraving by R. Cooper

The algebraic solution to the cubic equation goes as follows. We start by
assuming the coefficient a = 1 in equation 4.6 (otherwise divide through by
it). The Tschirnhaus transformation x = y − b/3 reduces the equation to
the “depressed” form

(4.7)

where

y3 + py + q = 0,

p =
−b2

3
+ c, q =

−b3

27
+

b2

9
−

bc

3
+ d.



Substituting y = u + v into (4.7), we have

Expanding the cubic binomial and grouping terms yields

(4.8)

We separate this into the two equations

(4.9)

(4.10)

Solving equation 4.10 for v and substituting the result into (4.9) yields

(4.11)

or

(u + v)3 + p(u + v) + q = 0.

u3 + v3 + q + 3uv(u + v) = 0.

y3 + py + q = 0.

3uv + p = 0.

u3 −
p3

27u3
+ q = 0

27u6 + 27qu3 − p3 = 0.



(4.12)

Equation 4.12 is a quadratic equation in u3. Applying the quadratic
formula and reducing, we obtain

(4.13)

Thus u can be found, then v, then y, and finally x.

Exercise 4.3.  Use the Tartaglia-del Ferro method to solve the cubic
equation

The Tartaglio-del Ferro method results in the following general solution
to the cubic equation 4.7, known as Cardano's formula

(4.14)

Exercise 4.4.⋆  Use a Tschirnhaus substitution and then Cardano's formula
to find a solution to the cubic equation

u3 =
−9q ± √81q2 + 12p3

18
.

x3 + 13x − 9 = 0.

x =
3√−

q

2
+√ q2

4
+

p3

27
+

3√−
q

2
−√ q2

4
+

p3

27
.

x3 + 3x2 + 7x + 7 = 0.



Exercise 4.5.  Derive a proof of Cardano's formula by performing the
following steps:

Cardano's formula raises some puzzling issues. For example, consider the
equation

(4.15)

Since the function y = x3 + 3x − 36 is strictly increasing, this equation
has only one real solution and inspection shows that it is x = 3. However,
Cardano's formula yields

and it is by no means obvious that this equals 3.
An even stranger situation occurs when one applies Cardano's formula to

the equation

Set x = 3√a + b + 3√a − b and calculate x3.(i)

Express your answer in terms of x and thereby obtain a cubic
equation for x.

(ii)

Equate the coefficients of the linear term and the constant term to p
and q, respectively.

(iii)

Solve for a and b in terms of p and q.(iv)

x3 + 3x − 36 = 0.

x =
3√18 + √325 +

3√18 − √325



The formula yields

Why does Cardano's formula return an expression involving complex
numbers when the equation has the obvious real solution x = 4 ? This
example is discussed in Arts Magna. It must have seemed very baffling in
Cardano's day when not even negative numbers, let alone complex ones,
were trusted. Cardano was a savvy enough mathematician to realize that if
one assumed that such quantities had meaning and manipulated them as if
they were numbers, then it did lead to correct conclusions. Cardano
summed up this approach with the somewhat dismal sounding maxim,
progresses algebraic subtlety, the end of which is as refined as it is useless.

Cardano's formula proved to be the main driving force behind the
introduction of complex numbers into mathematics. This seems odd when
one considers that the quadratic formula, with its term √b2 − 4ac seems to
point directly to them. In fact, mathematicians of that era were quite willing
to declare that quadratic equations with negative discriminant b2 − 4ac,
have no solutions. However, when it was realized that, in certain cases
(such as the one above), Cardano's formula requires complex numbers to
obtain real roots of cubic equations, mathematicians felt the need to invent
them.

4.5  QUARTIC EQUATIONS

x3 − 15x − 4 = 0.

x =
3√2 + √−121 +

3√2 − √−121.



Ferrari's solution to the quartic equation

works by solving a derived cubic. Consider the depressed form of the
equation

(4.16)

(Once again, this can be effected by a Tschirnhaus transformation). First,
write equation 4.16 as

then complete the square on the left-hand side by adding py2 + p2 to each
side, This yields

Now add a term 2(y2 + p)z + z2 onto each side to make the left-hand side
of the form (y2 + p + z)2. This results in the equation

(4.17)

ax4 + bx3 + cx + d + e = 0

y4 + py2 + qy + r = 0.

y4 + py2 = −qy − r,

(y2 + p)2 = py2 + p2 − qy − r.

(y2 + p + z)2 = (p + 2z)y2 − qy + (p2 − r + 2pz + z2).



The trick is now to choose z so as to make the right-hand side in equation
4.17, a quadratic in y, also a perfect square. This requires the discriminant
of the quadratic to vanish, i.e.,

(4.18)

Thus we arrive at a cubic equation for z (called the resolvent cubic), which
can be solved by the methods of the previous section. Once this has been
done, square roots can be extracted in equation 4.17. This produces a pair of
quadratic equations in y that can then be solved.

We illustrate the procedure with an example from Ars Magna. Cardano
considered the equation (Chapter 39, Problem 9).

Following the initial steps above leads to equation 4.18 in the form

which after simplification, becomes

This equation has as a root z = 7. With this value of z, equation 4.17
becomes

4(p + 2z)(p − r + 2pz + z) = q2.

y4 − 10y2 + 4y + 8 = 0.

4(2z − 10)(92 − 20z + z2) = 16,

z3 − 25z2 + 192z = 462.



(4.19)

Taking the square root results in the quadratic equations

and

Solving these equations, we have the four roots

4.6  DE MOIVRE'S THEOREM

Abraham de Moivre (1667–1754) was a French mathematician who made
contributions in many areas of mathematics. He was born in Vitry-le-
François, but moved to England at a young age to avoid persecution of the
Huguenots in France. There he made the acquaintance of Newton, Halley,
Stirling, and other noted mathematicians, who influenced the course of his
scientific work. His contributions include the discovery of the closed form
expression for the Fibonacci numbers (Binet's formula), a multinomial
version of Newton's binomial theorem, introducing the central limit
theorem into probability (in which subject he wrote an influential book

(y2 − 3)2 = 4y2 − 4y + 1 = (2y − 1)2.

y2 − 3 = 2y − 1

y2 − 3 = 1 − 2y.

y = 1 + √3, 1 − √3, −1 + √5, −1 − √5.



titled, The Doctrine of Chances), and a preliminary form of Sterling's
formula. (We will discuss these developments in later chapters). de
Moivre's most well-known result is the following theorem, which dates to
1722.

Theorem 4.4.  (de Moivre) For any angle θ and positive integer n,

(4.20)

An expression E(θ) in θ with the property (E(θ))n = E(nθ). It
suggests, does it not, that E(θ) is some sort of exponential function,
E(θ) = Aθ. We will see later that this is indeed the case, with A = ei,
where e = 2.71828. . . is the exponential number and i = √−1. However,
this result will need to await some further developments. (What does it even
mean to raise a real number to an imaginary power?)

The proof of Theorem 4.4 that we are about to give makes use of a
method known as induction. The idea is as follows. Suppose one wishes to
prove that a certain assertion about the integers, call it P(n), holds for
every integer n = 1, 2, 3, . . .. One way to do this is as follows. First, check
that P(1) holds. Then, assuming P(n) holds, prove that P(n + 1) holds
(this is called the inductive step). Then we have the string of implications

thereby showing that P(n) holds for all positive integers n.

(cos θ + i sin θ)n = cosnθ + i sinnθ.

P(1) ⟹ P(2) ⟹ P(3) ⟹ … ,



FIGURE 4.9  Abraham de Moivre

As an example, we use induction to prove the statement

(4.21)

As is customary, we write the sum in (4.21) (and later sums) in the more
concise summation notation

First note that P(1) is clearly true.

P(n) : 1 + 2 + 3 + ⋯ + n =
n(n + 1)

2
.

n

∑
k=1

k = 1 + 2 + 3 + ⋯ + n.



Assuming P(n), we have

Thus P(n + 1) is established, and (1.2) follows for all n, by induction.

Exercise 4.6.  Prove by induction

We now prove de Moivre's theorem. Denote the assertion in the theorem
by P(n) and note that P(1) is obviously true. Now, assume P(n). Then

n+1

∑
k=1

k =
n

∑
k=1

k + (n + 1)

=
n(n + 1)

2
+ (n + 1)

=
n2 + 3n + 2

2
=

(n + 1)(n + 2)

2

=
(n + 1)([n + 1] + 1)

2
.

n

∑
k=1

k2 =
n(n + 1)(2n + 1)

6
.

(cos θ + i sin θ)n+1 = (cos θ + i sin θ)n(cos θ + i sin θ)



according to the trigonometric identities

Thus the inductive step is complete and with it, the proof of de Moivre's
theorem.

The Fundamental Theorem of Algebra states that every polynomial
equation has precisely as many complex roots as its degree. The following
immediate consequence of de Moivre's theorem provides an explicit
representation of these roots for the equation zn = 1.

Theorem 4.5.  The nth roots of the complex number z = a + bi are given
by

(4.22)

where z = r(cos θ + i sin θ) denotes the polar form of z (see figure 4.10).

= (cosnθ cos θ − sinnθ sin θ) + (sinnθ cos θ + cosnθ sin θ)i

= cos(n + 1)θ + i sin(n + 1)θ,

sin(A + B) = sinA cosB + cosA sinB,

cos(A + B) = cosA cosB − sinA sinB.

n√z = n√r(cos(
θ + 2kπ

n
) + i sin(

θ + 2kπ

n
)),  k = 1, 2, … ,n,



FIGURE 4.10  Polar coordinates of a complex number and the fifth roots
of 32 in the complex plane

Exercise 4.7.⋆  Use Theorem 4.5 to compute the four values of 4√1 + i.

4.7  LAGRANGE AND VANDERMONDE

After the work of Ferrari, the study of polynomial equations naturally
turned to those of degree five and higher, but little essential progress was
made in this area for at least 200 years. In 1770, Lagrange published a large
and highly influential treatise on polynomial equations, titled Réflexions sur
la résolution algēbrique des équations. Here Lagrange unified the
preceding methods of solution of the quadratic, cubic, and quartic equations
and devised a general approach for the solution of polynomial equations.
We see a shift in emphasis away from the clever transformations and
manipulations of Tschirnhaus, Tartaglia, del-Ferro, Ferrari, etc. toward
theory, which paved the way for the later advances of Ruffini, Lagrange,
Abel, and Galois and which is characteristic of much of modern
mathematics.



FIGURE 4.11  Joseph-Louis Lagrange

Lagrange's memoir starts with a review of the methods of his
predecessors, but does much more than that. His objective is to explain not
just how these methods work, but why. The previous methods all share a
common feature, namely to reduce the solution of the proposed equation to
an auxiliary equation of lower degree. Lagrange conceived the highly
original idea to reverse the flow of information and express the roots of the
auxiliary equations as functions of the roots of the proposed equations. This
approach sheds new light on the methods.

In pursuing this line of investigation, Lagrange singled out the following
combination of the roots x1,x2, … ,xn of the polynomial

t(ω) = x1 + ωx2 + ω2x3 + ⋯ + ωn−1xn,



(4.23)

where ω is an nth root of unity, not equal to 1, i.e., satisfies

These polynomials are now called Lagrange resolvents, although they
actually originated in works of Euler and Bézout.

Lagrange established the inversion formula

(4.24)

where the sum runs over all the nth roots of unity.
Lagrange devised a unified plan of attack on equations of degree two,

three and four. However, he found that when he applied the same method to
equations of degree five and higher, a mysterious and disconcerting pattern
appeared. Instead of resulting in an equation of lower degree, the argument
gave rise to one of higher degree. For example, when applied to the quintic
equation, Lagrange's method produces an equation of the sixth degree, then
one of the tenth degree, and the situation gets worse and worse. Thus the
theory that Lagrange had developed would not resolve the issue of
solvability of polynomials of degree five and higher.

Notwithstanding, Lagrange had made a major step forward in the
solvability of polynomial equations. In particular, he introduced roots of
unity into the problem, established the resolvents (4.23) as a key tool, and

ωn−1 + ωn−2 + …ωn−3 + ⋯ + 1 = 0.

xi =
1

n
(∑

ω

ω−(i−1)t(ω)),



carried out the type of intricate calculations with permutations that would
play a decisive role in the resolution of the problem.

In Lagrange's own words: It would be opportune to apply it (his theory)
to the equations of the fifth and higher degrees, whose solution is so far
unknown; but this application requires a too large amount of researches
and combinations, whose success is, for that matter, still very dubious, for
us to tackle this problem now; we hope, however to come back to it at
another time, and we will be content to have here set the foundations of a
theory which seems to us new and general.

The Work of Vandermonde

Almost simultaneously with the publication of Lagrange's memoir, another
treatise on polynomial equations appeared with a very similar name,
Mémoir sur la résolution des équations by the French mathematician
Alexandre Théophile Vandermonde.

Vandermonde was a mathematician of much lesser renown than
Lagrange. Ironically, his name is known today largely for a determinant that
does not even appear in his works. Nonetheless, Vandermonde made a
startling algebraic breakthrough which had eluded Lagrange (and everyone
else up to that time), namely the derivation of radical expressions for the
11th roots of unity.

Vandermonde's paper consisted of two parts. In the first part, he studied
general polynomial equations and obtained many of the results in
Lagrange's memoir. Vandermonde also worked with resolvents, which he
defined by

Vi = ρi1x1 + ρi2x2 + ⋯ + ρinxn,



where ρ1, ρ2, … , ρn are the nth roots of unity, including 1. (Note the
similarity with Lagrange's resolvents). Vandermonde derived the formula

(4.25)

where the particular root xi obtained depends on which nth roots are

extracted inside the second summation. Thus Vandermonde's approach
exploited, in a sense, the ambiguity inherent in extracting roots.

The second part of the paper is concerned with the study of cyclotomic
equations. Vandermonde makes a detailed study of the equation

(4.26)

de Moivre had previously observed that the substitution y = x + x−1

reduces (4.26) to the lower degree equation

but was unable to solve this equation. Vandermonde make use of the
slightly different substitution

xi =
1

n
(

n

∑
1=1

xi +
n−1

∑
i=1

n√V n
i ),

x10 + x9 + x8 + ⋯ + x + 1 = 0.

y5 + y4 − 4y3 − 3y2 + 3y + 1 = 0

z = −(x + x−1),



which yields the equation

(4.27)

The five roots of this equation can be expressed trigonometrically as

Exercise 4.8.  Use de Moivre's theorem to prove this.

In general, there is no formula to solve a fifth degree equation by
radicals. However, (4.27) is no common or garden quintic; its roots are
cosines of angles in arithmetic progression (all multiples of 2π/11).
Vandermonde notes that the trigonometric identity

implies algebraic relations among the roots. For example, taking
α = β = 2π

11  yields

while choosing α = 2π
11 ,β = 4π

11 , we have

z5 − z4 − 4z3 + 3z2 + 3z − 1 = 0.

a = −2 cos
2π

11
, b = 2 cos

4π

11
, c = −2 cos

6π

11
, d = −2 cos

8π

11
, e = −

2 cosα cosβ = cos(α + β) + cos(α − β)

a2 = −b + 2

ab = −a − c.



The full list of relations thus obtained is:

The relevance of these relations to Vandermonde is that they can be used to
reduce any polynomial in the roots a, b, c, d, e to a linear combination of
the roots.

As an example, consider the polynomial
P = 3a2c2 − 4bc2 + 5ae − 2e2, which we chose randomly. Using the
relations several times, we have

Vandermonde now makes a second, strikingly original, observation, which
forms the crux of his argument: there exists a cyclic1 permutation that
preserves the relations among the roots. The permutation (denote it σ) is

a2 = −b + 2, b2 = −d + 2, c2 = −e + 2, d2 = −c + 2, e2 = −a

ab = −a − c, bc = −a − e, cd = −a − d, de = −a − b,

ac = −b − d, bd = −b − e, ce = −b − c,

ad = −c − e, be = −c − d,

ae = −d − e.

P = 3(−b + 2)(−e + 2) − 4(−a − e)c + 5(−d − e) − 2(−a + 2)

= 3(be − 2b − 2e + 4) + 4ac + 4ec − 5d − 5e + 2a − 4

= 3(−c − d) − 6b − 6e + 12 + 4(−b − d) + 4(−b − c) − 5d − 5e +

= 2a − 14b − 7c − 12d − 11e − 4.

a ↦ b ↦ d ↦ c ↦ e ↦ a.



By this is meant the following: choose any one of the relations, say
cd = −a − d. Replace the terms by their associates under the permutation,
so a by σ(a) = b, c by σ(c) = e, and d by σ(d) = c. This gives
ec = −b − c, and this is again one of the relations!
____________________

  1Meaning, as the premutation is applied repeatedly, each of the roots gets taken to every other root
exactly once before returning to itself.

Vandermonde puts these observations to work as follows. Let ω ≠ 1

denote any one of the complex fifth roots of 1, e.g.,

(see Section 1.6 where this is derived.) Vandermonde defines his resolvents
Vi by

(The ordering of the powers of ω here is dictated by the permutation σ.) In
view of the preceding discussion, there are linear expressions of the form

(4.28)

with A, … ,F  explicitly computable (along the lines of the previous
example) integer combinations of ω and its powers2.

ω =
√5 − 1

4
+ (

3 − √5

8
)i

Vi(a, b, c, d, e) = a + ωib + ω3ic + ω2id + ω4ie, 1 = 1, … , 5.

Vi(a, b, c, d, e)5 = Aa + Bb + Cc + Dd + Ee + F ,



He now applies the permutation σ four times in (4.28). The point is that
the coefficients A, … ,F  (which depend only upon the relations between
the roots) do not change. The result is

(4.29)

(4.30)

(4.31)

(4.32)

We also have

since the sum of the roots is the negative of the coefficient of z4 in equation
4.27. Furthermore, it is easy to check that the left-hand sides in each of the
equations 4.28–4.32 is the same. This happens because various Vi's in the

above equations differ from each other only by multiplication by an integer

Vi(b, d, e, c, a)5 = Ab + Bd + Ce + Dc + Ea + F ,

Vi(d, c, a, e, b)5 = Ad + Bc + Ca + De + Eb + F ,

Vi(c, e, b, a, d)5 = Ac + Be + Cb + Da + Ed + F ,

Vi(e, a, d, b, c)5 = Ae + Ba + Cd + Db + Ec + F .

a + b + c + d + e = 1



power of ω, and ω5 = 1. (This was the rationale for ordering the powers of
ω in the definition of the original Vi as we did.)

Summing equations 4.28–4.32 yields

Vandermonde's concludes from (4.25), that

____________________

  2The coefficients A, … ,F  depend on i, but we have suppressed this in the notation.

The result is the formula

5Vi(a, b, c, d, e)5 = A + B + C + D + E + 5F .

a, b, c, d, e =
1

5
(1 +

4

∑
i=1

5√(A + B + C + D)/5 + F).

cos
2π

11
=

1

5
[

5√ 11

4
(89 + 25√5 − 5√−5 + 2√5 + 45√−5 − 2√5)

+
5√ 11

4
(89 + 25√5 + 5√−5 + 2√5 − 45√−5 − 2√5)

+
5√ 11

4
(89 − 25√5 − 5√−5 + 2√5 − 45√−5 − 2√5)

+
5√ 11

4
(89 − 25√5 + 5√−5 + 2√5 + 45√−5 − 2√5)



Exercise 4.9.⋆  Prove the claim that the expressions Vi defined in equations

4.28–4.32 differ only by multiplication by integer powers of ω.

Vandermonde claimed that this derivation is part of a general method
which applies to cyclotomic equations of arbitrary degree. A comprehensive
theory along these lines was later worked out by Gauss.

This is math magic of the highest order! Vandermonde had not only
anticipated Gauss' theory of cyclotomy, but also hit upon the insight that
would become the germ of Galois theory: in order to understand the
solvability, or otherwise, of a given polynomial equation, it is necessary to
analyze the group of permutations which preserve the relations between the
roots. We describe something of these developments in the next two
sections.

4.8  GAUSS AND THE HEPTADECAGON

Carl Friedrich Gauss (1777–1855), born in Brunswick, Germany, is
considered one of the greatest mathematicians, notable for his contributions
to number theory, differential geometry, astronomy, mathematical physics,
and much else. His name appears many times in this book.

The image of the “Prince of Mathematics” born of humble intellectual
stock, is the stuff of lore. His father, although educated, held a series of
menial jobs, while his mother was almost illiterate. Gauss' precocious
mathematical talent is likewise legendary; how, at the age of seven and in
response to a schoolmaster's assigned chore, he was able to immediately
give the sum of the numbers 1 to 100. The young Gauss had realized that if
one writes down the sum in the reverse order and adds the two equalities



then the result is

whence S = 5050.
Quickly recognizing his prodigious talent, Gauss' teachers brought him to

the attention of the Duke of Brunswick who financed his further education.
The Duke's stipend stopped after he was killed in battle, but by then Gauss
was a world famous mathematician.

Gauss married twice and had six children in all. A victim of a
domineering father, he became one himself. He forbade his sons from
becoming mathematicians on the grounds that since their contributions
would never measure up to his own, they would degrade the family name.
In 1806, Gauss was appointed as director of the astronomical observatory at
Göttingen, where he remained, proud and aloof, for the rest of his career.
He died in 1855.

The problem of constructing regular polygons dates back to antiquity. As
we have seen in Chapter 1, it was known in Euclid's time how to construct,
with straightedge and compass, the equilateral triangle and the regular
pentagon. No further progress in this direction was made until 1796, when
Gauss, at the age of 19, solved the problem for the regular heptadecagon
(17-sided polygon). This discovery, which is said to have been decisive to
Gauss' decision to pursue a career in mathematics, was published in his

S = 1 + 2 + 3 + ⋯ + 99 + 100,

S = 100 + 99 + 98 + ⋯ + 2 + 1,

2S = 101 + 101 + ⋯ + 101 = 101 × 100 = 10100,



monumental treatise on number theory, Disquisitiones Arithmaticae in
1801.

FIGURE 4.12  The heptadecagon

According to Theorem 1.4, constructibility of the heptadecagon follows
from the existence of an arithmetic expression of the quantity cos 2π

17

(equivalently sin 2π
17 ) in terms of the integers and (iterated) square roots.

Gauss obtained the expression

(4.33)

cos
2π

17
=

1

16
(−1 + √17 +√34 − 2√17

+
√

68 + 12√17 − 16√34 + 2√17 − 2(1 − √17)√34 − 2√



FIGURE 4.13  Portrait of Carl Friedrich Gauss by Christian Albrecht
Jensen, 1840

In order to see the gist of Gauss' derivation of formula (4.33) let us first
describe his method in a much simpler setting, namely for the angle 2π/5.

Denote

By de Moivre's theorem, r5 = cos 2π + i sin 2π = 1. Thus r satisfies the
equation

r = cos
2π

5
+ sin

2π

5
i.

0 = r5 − 1 = (r − 1)(r4 + r3 + r2 + r + 1).



Since r ≠ 1, this implies

(4.34)

The objective of Gauss' program is to solve equations of this type by
reducing them to a series of nested quadratic equations (only one is
necessary in this case).

Set x1 = r + r4 and x2 = r2 + r3, so that, by (4.34),

(4.35)

We have

Since r5 = 1, we may replace r6 by r and r7 by r2. Thus (4.34) implies

(4.36)

Solving for x2 in (4.35) and substituting into (4.36) yields the quadratic

equation

r4 + r3 + r2 + r + 1 = 0.

x1 + x2 = −1.

x1x2 = r3 + r4 + r6 + r7.

x1x2 = r3 + r4 + r + r2 = −1.

x2
1 + x1 − 1 = 0



from which we obtain

de Moivre's theorem implies

Hence

It is important to note that this argument will not work with different
choices of x1 and x2, e.g., x1 = r + r2,x2 = r3 + r4. Then, there is no

simple expression for x1x2.
We now turn to Gauss' derivation of (4.33). Let

Arguing as above, we have

x1 =
√5 − 1

2
.

x1 = (cos
2π

5
+ cos

8π

5
)+ (sin

2π

5
+ sin

8π

5
)i

= (cos
2π

5
+ cos(−

2π

5
))+ (sin

2π

5
+ sin − (

2π

5
))i

= 2 cos
2π

5
.

cos
2π

5
=

√5 − 1

4
.

r = cos
2π

17
+ sin

2π

17
i.



(4.37)

The brilliant idea at the heart of Gauss' argument is to arrange the powers of
r from 1 to 16 in the following list:

(4.38)

There is method in this madness; the powers of r in the ordering are the
integers 3k, k = 1, 2, …, modulo 17. (Gauss explores this issue in Chapter
VII of Disquisitiones and provides a general treatment of the problem.) The
list will be used to select terms for various expressions that will be
introduced shortly.

Gauss defines two quantities x1 and x2 which he calls periods of length

eight, by summing the alternate items in the list (4.38) starting with the
second, and then with the first term; thus

By (4.37)

r + r2 + r3 + … r16 = −1.

r3, r9, r10, r13, r5, r15, r11, r16, r14, r8, r7, r4, r12, r2, r6, r.

x1 = r9 + r13 + r15 + r16 + r8 + r4 + r2 + r,

x2 = r3 + r10 + r5 + r11 + r14 + r7 + r12 + r6.

x1 + x2 = −1.



(4.39)

Now comes the amazing part of the argument. Brute force calculation (if
nothing else) of the 64 terms in the product x1x2 shows that each of the
powers of r from 1 to 16 occurs exactly four times! Thus (4.37) implies

(4.40)

Solving (4.38) and (4.40) for x1 and x2 and noting that x1 > x2, yields

Gauss then uses the even and odd scheme to define periods of length 4:

x1x2 = −4.

x1 =
1 + √17

2
,

x2 =
1 − √17

2
.

y1 = r13 + r16 + r4 + r,

y2 = r9 + r15 + r8 + r2,

y3 = r10 + r11 + r7 + r6,



Then

with y1 > y2 and y3 > y4. Also,

Solving for y1, y2, y3, y4, we have

Now come the final steps. Reducing powers modulo 17, gives

y4 = r3 + r5 + r14 + r12.

y1 + y2 = x1,  y3 + y4 = x2

y1y2 = y3y4 = −1.

y1, y2 =
x1 ±√x2

1 + 4

2
,

y3, y4 =
x2 ±√x2

2 + 4

2
.

y1 = r−4 + r−1 + r + r4,

y4 = r−5 + r−3 + r3 + r5.



Define z1 = r−1 + r, z2 = r−4 + r4. Then

with z1 > z2. Solving for z1 gives

Similarly to before,

(4.41)

Substituting for y1 and y4 in (4.41), then x1 and x2, and simplifying, yields

(4.33).

Exercise 4.10.  Show that x1 > x2 in Gauss' proof of (4.33).

A literal ruler and compass construction of the heptadecagon based on
Gauss' formula (4.33) was devised by Richmond in 1893. An animation of
Richmond's construction can be found online at
https://www.youtube.com/watch?v=xGUWVPOks00.

z1 + z2 = y1

z1z2 = y4

z1 =
y1 +√y2

1 − 4y4

2
.

cos
2π

17
=

1

2
z1 =

y1 +√y2
1 − 4y4

4
.

https://www.youtube.com/watch?v=xGUWVPOks00


Which Other Regular Polygons Are Constructible?

Let Pm denote the regular polygon with m sides. In Section VII of

Disquisitiones, Gauss extended his work to prove that Pm is constructible if

m is a prime of the form 2k + 1, for k a positive integer. Prime numbers of
this form are named for Fermat, who studied them prior to Gauss.

Gauss claimed that these are the only primes for which Pm is

constructible and this claim was later proved by Wantzel in 1837.
Since an arbitrary angle can be bisected with straightedge and compass, it

follows that P2m,P4m,P8m, . . . are constructible whenever Pm is

constructible. Combining these results leads to the conclusion that a regular
polygon with N sides is constructible if and only if

where k is a positive integer and F1,F2, … ,Fn are distinct Fermat primes.
The only such primes known to date are 3, 5, 17, 257, and 65537.

Exercise 4.11.  Prove that if 2n + 1 is a Fermat prime, then n = 2k for a
positive integer k.

4.9  UNSOLVABILITY OF THE QUINTIC AND HIGHER
DEGREE EQUATIONS

Following the unsuccessful attempts by Euler, Tschirnhaus, Bézout,
Vandermonde, Lagrange and a host of others to solve the quintic equation
by radicals (i.e., expressions involving only the arithmetic operations and
extractions of roots), a feeling began to emerge that perhaps such a solution

N = 2kF1F2 …Fn,



did not exist. Gauss suggested as much in Disquisitiones, but did not
venture anything in the way of a proof.

In 1799, the Italian mathematician Paolo Ruffini published a book,
Teoria Generale delle Equazioni which purported to prove that the general
quintic equation cannot be solved by radicals. The proof was found to be
incomprehensible and was regarded with suspicion.3 Later Ruffini
published several simplified versions of his proof, but these too were not
generally accepted. In retrospect, it seems that Ruffini's work did, in fact,
contain a significant gap. Nonetheless, he had made significant inroads into
the problem. In 1824, the brilliant Norwegian mathematician Neils Henrik
Abel (1802–1829) published what is now regarded as the first definitive
proof of the insolvability of the quintic equation by radicals. The result is
known today as the Abel–Ruffini theorem.

FIGURE 4.14  Neils Henrik Abel



FIGURE 4.15  Évariste Galois

At this point, two classes of polynomial equations had been treated, with
totally opposite results. On the one hand, there was the Abel–Ruffini
theorem. Yet Gauss had proved that cyclotomic equations
____________________

  3A notable exception is Cauchy, who regarded Ruffini's work as correct and was very supportive
of it.

are solvable (in radicals).4 The question remained, precisely which
polynomial equations are solvable?

In 1832, a young Frenchman named Évariste Galois was killed in a duel.
Galois was born in a village near Paris in October of 1811. His father was at

xn + xn−1 + xn−2 + ⋯ + 1 = 0



one time the village mayor and his mother a homemaker with a love of
learning. Galois showed great mathematical ability from an early age, but
was denied admission to the prestigious École Polytechnique (supposedly)
for refusing to answer the examiner's questions. Galois was further
frustrated and embittered when a memoir outlining his extraordinary ideas
on algebraic equations was rejected by the French Academy as being
incomprehensible. In retrospect, the rejection seems perfectly reasonable;
Galois had not taken the trouble to sufficiently explain his work.

In July of 1829, Galois' father committed suicide following a political
scandal and thereafter Galois' behavior became more and more erratic. In
April of 1831, he was arrested for allegedly making threats against the king
and thrown in jail. The fatal duel, which took place on May 30, 1832 was
ostensibly over a woman, but may well have been trumped up by Galois'
political enemies as a way of removing him from the scene. Presumably
having a premonition of the outcome, Galois spent the night before the duel
setting down his mathematical thoughts in a letter to a friend. Galois was
shot in the stomach and died of his wounds the following day. He was
twenty years of age.
____________________

  4In fact, Gauss' proof of this result also had a gap, but this was filled in by later mathematicians.

A decade later, Joseph Liouville would address the French Academy of
Sciences with the words:

I hope to interest the Academy in announcing that among the papers of
Évariste Galois I have found a solution, as precise as it is profound, of this
beautiful problem: whether or not there exists a solution (to polynomial
equations) by radicals …

The mathematical ideas which Galois set down in the ten page letter
shortly before his death contain the essence of what is now known as Galois



theory. Here Galois formulated a theory of polynomial equations which
subsumes all the efforts of his predecessors and goes far beyond them. But
the importance of Galois theory far exceeds even this. The subject has
become an area of study in its own right and is a major tool in modern day
research.

While it is not possible to give here anything like a detailed account of
Galois theory, we will try to describe some of the underlying ideas. At the
heart of the matter lie two mathematical objects known as fields and groups,
so it is as well to start by discussing these.

An (algebraic) field is a set of numbers F which includes the rational
numbers and is closed under the arithmetic operations of addition,
subtraction, multiplication, and division, i.e., if x, y ∈ F , then
x + y,x − y,xy ∈ F  and if y ≠ 0, then x/y ∈ F .

Familiar examples of fields are the set of rational numbers Q, the set of
real numbers R, and the set of complex numbers C.

Another example is given in the following exercise.

Exercise 4.12.  Prove that the set G ≡ {p + r√3/ p, q ∈ Q} is a field.

The theory developed around fields is a powerful tool in its own right.
This is illustrated by the following two problems that date back to antiquity.
In 1837, Wantzel used field theory to prove the impossibility of both
constructions.

Trisecting the angle: Using only straight edge and compass, trisect an
arbitrary angle.

Doubling the cube: Using only straight edge and compass, construct a
cube whose volume is exactly twice that of a given cube.



Important notions in field theory are those of a field extension and its
degree. These are defined as follows.

Given a field F and elements α1,α2, … ,αm ∉ F , we define the
augmented field F [α1,α2, … ,αm] to be the smallest field containing F
and also α1,α2, … ,αm. For example, the field Q[√2, √3] is the set

Let F and G denote two fields with F ⊂ G. Suppose there exist elements
α1,α2, … ,αm ∈ G with the properties:

The only r1, r2, … , rm ∈ F  such that r1α1 + r2α2 + ⋯ + rmαm = 0

are r1 = r2 = … rm = 0. (We say the set {α1,α2, … ,αm} is linearly
independent over F).

Every element g ∈ G is expressible as g = r1α1 + r2α2 + ⋯ + rmαm,
for some r1, r2, … , rm ∈ F . (We say the set {α1,α2, … ,αm} spans G).

Then we say that G is a field extension of F of degree m.5 This is denoted

We illustrate these definitions with the field G in Exercise 4.12. The
spanning condition obviously holds for α1 = 1 and α2 = √3 by the
definition of G.

To prove linear independence, suppose there exist r1, r2 ∈ Q such that

{p + q√2 + s√3 + t√6/ p, q, r, s ∈ Q}.

[F : G] = m.

r1(1) + r2√3 = 0.



Suppose at least one of r1, r2 ≠ 0 (let it be r2, the argument obviously

works equally well if it is r1.) Then we have

a contradiction, since √3 is irrational. Thus r1 = r2 = 0 and so

Wantzel's solution in the negative to the angle trisection problem follows
the following lines. Let H denote an augmented field formed by adjoining
to Q[i] (the lattice of rational points in C), any finite set of points obtained
from ruler and compass constructions. Because these arise from the
intersections of lines and circles, and hence satisfy quadratic equations, it
can be shown that

(4.42)

where n denotes the number of adjoined points.
____________________

  5Those readers who have studied Linear Algebra might recognize these definitions as saying that
the set {α1,α2, … ,αm} forms a basis of G as a vector space over F, and the dimension of G is m.

Wantzel uses (4.42) to prove that it is impossible to trisect the angle π/3,
or 60∘. This is obviously equivalent to constructing the point (x, 0) where
x = cos(π/9). The trigonometric identity

√3 =
−r1

r2
,

[Q,G] = 2.

[Q,H] = 2n,



shows that x satisfies the cubic equation

(4.43)

Equation 4.43 has no rational roots, as can easily be checked by the rational
roots theorem, an elementary result in algebra. It follows that the equation
cannot be factored with rational coefficients. (It is said to be irreducible
over Q.) This can be shown to imply that the degree of any field extension
of Q containing x is divisible by 3. This contradicts (4.42), proving the
angle trisection is impossible.

A similar argument works to prove the impossibility of doubling the
cube.

We now turn to the definition of a group.
A group in mathematics is a set G, together with an operation ∘ defined

on G, satisfying the three properties:
Associativity: For any three elements a, b, c in G, we have

(a ∘ b) ∘ c = a ∘ (b ∘ c).
Existence of an identity element: There is e ∈ G such that

a ∘ e = e ∘ a = a for all a ∈ G.
Existence of inverse elements: for all a ∈ G, there exists b ∈ G such that

a ∘ b = b ∘ a = e.

The groups in this discussion consist of permutations of the roots of
polynomials. The Galois group of a polynomial

cos(3α) = 4 cos3(α) − 3 cos(α)

8x3 − 6x − 1 = 0.



can be broadly defined as the set of those permutations of the roots of p
which preserve the algebraic relations among the roots (if any such
relations happen to exist).

Recall that this is precisely the device used by Vandermonde to solve the
cyclotomic equation of degree 10, as described in Section 4.7, with the
permutation of roots σ :  a ↦ b ↦ d ↦ c ↦ e ↦ a playing a central role.
The Galois group in this instance is

(4.44)

A group of this type, all of whose elements consist of powers of a single
one of them, is called a cyclic group and is typical of the Galois group of a
cyclotomic equation. At the other extreme, in the case of the general quintic
equation (where it is assumed a priori that no algebraic relations exist
among the roots), the Galois group is the set of all 5! = 120 permutations of
the roots. This group is called the symmetric group on five letters and is
denoted S5.

In spite of this rather simple sounding definition of the Galois group, it
can be a tricky object to compute. When it comes to calculating the Galois
group of a cyclotomic equation, we are in the privileged position of
knowing at the outset the roots of the equation (albeit in trigonometric
form), courtesy of de Moivre's theorem. This will not, of course, generally
be the case. Without knowing the roots, how can it be ascertained whether
or not algebraic relations exist among them and, if so, which permutations

p(x) = anx
n + an−1x

n−1 + ⋯ + a0

G = {e = σ0,σ,σ2,σ3,σ4}.



preserve these relations?6 This would seem an insurmountable obstacle.
Remarkably, it turns out that enough information can often be extracted
from a given problem to make the Galois group a useful tool.

A solution in radicals to a polynomial equation is well expressed in the
language of field extensions. Consider, for example, the cubic equation

Cardano's formula yields the following expression for the roots

Consider how this expression is built from the coefficients of the equation.
The first step is to calculate the 239/27. (The introduction of a fraction does
nothing to enlarge the field Q of the coefficients.) The square root is
calculated. Then the two cube roots are extracted and summed to give the
root(s) x of the equation. This creates a chain, or tower of field extensions
leading from the field of rational numbers to the field containing the roots
of the equation,

Note that each time the root of a number is extracted to produce a quantity
not in an existing field, the field is extended.

x3 − x + 3 = 0.

x =
3√−

3

2
+√ 239

27
+

3√−
3

2
−√ 239

27
.

Q ⊂ Q[√
239

27
] ⊂ Q[√

239

27
,

3√−
3

2
+√ 239

27
,

3√−
3

2
−√ 239

27
].



The existence of a solution by radicals to any polynomial equation
likewise implies a tower of field extensions from the field of rationals to the
field K containing the roots:

(4.45)

Galois' fundamental theorem asserts that there exists a sequence of nested
subgroups

____________________

  6Galois himself points to this strange aspect of his work in the fateful letter.

(referred to as a composition series) of G which correspond precisely to the
intermediate fields Kj, but in reverse order (G0 corresponding to Km, G1 to

Km−1, etc.). Also, that the subgroups Gj are imbedded in each other in a

specific way (this property is called normality).7 When the Galois group of
an equation admits a composition series of this type, it turns out that the
equation is solvable by radicals. Otherwise, not. Furthermore, in the former
case, analysis of the composition series reveals the solution to the equation.

It can be shown that cyclic groups of all orders admit such composition
series, as do the symmetric groups S2,S3,S4. Thus the corresponding
equations are solvable. Conversely, one can be show that no such
composition series exist for Sn, when n ≥ 5. This provides an independent

proof of the Abel–Ruffini theorem, that the general equation of degree five
or more is unsolvable.

Q ⊂ K1 ⊂ K2 ⊂. . . ⊂ Km = K.

G0 = {e} ⊂ G1 ⊂ G2 … , ⊂ Gm = G



Abel and Ruffini had proved that there is no common formula with
radicals (such as Cardano's) for solving polynomial equations of any given
degree, when the degree exceeds four. The generality of this statement is
also, in a sense, its weakness. It could nonetheless be the case that the
equations all have solutions in radicals, but require a series of different
formulas for their solution. Further evidence of the power of Galois theory
is provided by the following theorem, which shows that this is not so.

Theorem 4.6.  Suppose p is a quintic polynomial with precisely two (non-
real) complex roots, irreducible over the rationals. Then the Galois group
of p is S5, hence p cannot be solved with radicals.

An example is the innocuous looking equation

Exercise 4.13.  Verify that the polynomial in this equation satisfies the
conditions of Theorem 4.6.

At the risk of belaboring the point, not only is there no general formula in
radicals for the solution of quintic equations, but the roots of this specific
equation cannot even be expressed in this form. No more definitive answer
to the question of the solvability of polynomial equations by radicals could
be imagined.

It is clear that Galois did not prove all of these results. For example, his
memoir to the French Academy contained but one theorem. It is the
beautiful (but seemingly useless if one is looking for an external condition
to determine whether or not a given equation is solvable by radicals)
criterion:

x5 − 6x + 3 = 0.



In order that a polynomial equation of prime degree be solvable by
radicals it is both necessary and sufficient that all of its roots be rational
functions of any two of them.
____________________

  7Groups that possess this structure are used nowadays outside of the context of polynomial
equations. Owing to their origin, they are termed solvable groups.

Nonetheless, the ideas were all there in his work. Perhaps the most
remarkable feature of Galois' work is that, in his day the concept of group
barely even existed. Galois had, so to speak, to invent the wheel in order to
invent the automobile. Galois, more than anyone, is responsible for
initiating the modern age of algebra, based on mathematical structures
rather than computations. This approach was to bear copious fruit in the
invention of the field of commutative algebra and the theories of ideals and
rings developed by Ernst Kummer (1810–1893), David Hilbert (1862–
1943), and Emmy Noether (1882–1935), in the nineteenth and twentieth
centuries.



FIGURE 4.16  Amalie Emmy Noether
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C H A P T E R  5

Calculus

DOI: 10.1201/9781003470915-5

This chapter opens with biographical sketches of Newton and Leibniz, commonly
regarded as the originators of calculus, then proceeds to a discussion of the subject
itself. In Section 5.2, readers are introduced to the notion of “limit,” the key idea on
which calculus is based. The next two sections discuss the operations of
differentiation, concerned with calculating the slopes of tangent lines and rates of
change, and integration, calculating areas under curves. In Section 5.4 we present
the Fundamental Theorem of Calculus. This theorem establishes an inverse
relationship between the processes of differentiation and integration and is the main
tool by which to calculate integrals. In Section 5.5, we discuss the representation of
the functions sine, cosine, exponential and logarithm, as power series (polynomials
with an infinite number of terms). These representations result in, among much
else, Euler's famous formula connecting the exponential function with sine and
cosine.

5.1  NEWTON AND LEIBNIZ

Issac Newton (1642–1726) was born in the English hamlet of Woolsthorpe in the
county of Lincolnshire. Newton's father, also named Isaac, had died three months
prior to his birth. Newton was born prematurely and was not expected to survive:

https://doi.org/10.1201/9781003470915-5


according to his mother, Hannah Ayscough, he could have “fit inside a quart mug”
at birth. When Newton was three years old his mother remarried and went to live
with her new husband, the Reverend Barnabas Smith, leaving her son to be raised
by his maternal grandmother.

In the year 1661, Newton was admitted as a student to Trinity College at the
University of Cambridge, where he came under the tutelage of Isaac Barrow, the
Lucasian Professor of Mathematics. Barrow fostered Newton's interest in
mathematics. By all outward indications, Newton was an unexceptional student,
privately he had embarked on a career of unheralded mathematical discovery.

FIGURE 5.1  Portrait of Issac Newton by Sir Godrey Kneller

In 1665, the university was temporarily closed as a precaution against the plague
and Newton returned home to Woolsthorpe. Over the next two years Newton
originated some of his great mathematical and scientific discoveries, a generalized
version of the binomial theorem valid for fractional exponents, the development of
calculus, his theory of light (later published as Optiks), and the law of universal



gravitation. (The story about the role of the falling apple in the discovery of the
latter is likely apocryphal.)

In April of 1666, Newton returned to Cambridge and was elected a Fellow of
Trinity College. In 1669, Barrow resigned his chair in favor of Newton. Newton
remained at Cambridge until 1696, when he moved to London to take up the post of
Warden of the Royal Mint. He was elected a Fellow of the Royal Society in 1672
and served as its president from 1703 to 1727. He was knighted by Queen Anne in
1705.

In 1687, Newton published his Philosophiae Naturalis Principia Mathematica
(Mathematical Principles of Natural Philosophy), commonly known as the
Principia. This book is widely regarded as the greatest single work in the history of
science. Herein, Newton formulated his three laws of motion and his law of
universal gravitation. The latter states: Any two material bodies attract each other
with a force varying directly with the products of their masses and inversely with
the squares of the distance between them. In symbols,

where F is the force of attraction between the bodies, M and m are their masses and
d the distance between them. The symbol G is a universal constant, the same for
any two bodies, anywhere in the universe. As a crowning achievement of this part
of the work, Newton proved that the inverse square law for the force impressed on a
heavenly body is equivalent to the body moving in a conic section (ellipse,
parabola, or hyperbola), with the force lying at one of the foci; behavior that had
been previously observed by Kepler and described in his empirical laws of
planetary motion.

The last of the three parts of the Principia has the grand, and entirely appropriate,
title De Systemate Mundi (“System of the World”). Here Newton applies his
mathematics to the solar system, describing the movements of planets, satellites,

F =
GMm

d2
,



comets, and even terrestrial phenomena such as the shape and the density of the
earth and the progression of the tides.

Using Newton's work, the astronomer Edmund Halley, who did much to bring
about the publication of the Principia, calculated the orbit of the Great Comet of
1682, now named in his honor. Halley determined the comet's periodic orbit and its
return every 75.5 years. This led to Halley correctly identifying the comet as the
same one that had attracted the attention of Kepler in 1607 and was observed by
Peter Apian in 1531. The correct prediction of the comet's return in 1759 was taken
as confirmation of Newton's astronomical theory.

Gottfried Wilhelm Leibniz (1646–1716) was born in the university town of
Leipzig in Germany. His father, a jurist and a professor of moral philosophy at the
university, died when Gottfried was 6 years old. Leibniz immersed himself in the
world of his father's books. A precocious child, he taught himself Latin when he
was 8 years old and entered Leipzig University at the age of 15, where his work
soon outstripped that of his contemporaries.

At Leipzig, Leibniz received a traditional education in religion and philosophy,
together with some rudimentary mathematics. Descartes Géométrie, which he tried
to study on his own, was too complicated for him at that time. Leibniz graduated in
1663, at the age of 17. He was given a teaching position in the Department of
Philosophy at Leipzig on the basis of a thesis which he later expanded into a work,
Ars Combinatoria, published in 1666. In this book, Leibniz undertook a study of
combinations and permutations. Leibniz also proposed the extremely original idea
of establishing a calculus of reasoning, as it were, which he called characteristica
universalis, in which all scientific ideas would be generated from an “alphabet of
human thoughts.” After further legal studies in Leipzig and having being denied a
doctoral degree in this subject on the spurious grounds that he was too young,
Leibniz took up a post in the service of the archbishop-elector of Mainz in 1667.
Here he was charged with reforming the legal statutes. Except for periods of travel
abroad, the rest of Leibniz's career was spent in residence at the courts of Mainz
and Hanover, where he remained until his death in 1716.



FIGURE 5.2  Portrait of Gottfried Wilhelm Leibniz by Bernhard Christoph
Francke

Leibniz spent the years from 1672 to 1676 in an extended visit to Paris where he
met the great Dutch scientist Christian Huygens. Recognizing the young man's
enormous aptitude for mathematics, Huygens undertook to tutor Leibniz in the
subject and it is in this period that Leibniz' mathematical genius blossomed.

In 1673, Leibniz crossed the channel to England on a diplomatic mission for the
elector of Mainz, where he made the acquaintance of his fellow countryman Henry
Oldenburg, the secretary of the Royal Society. Oldenburg introduced Leibniz to
many of the leading British scientists of the day including Pell, Collins, Boyle, and
Hooke. On the basis of his mathematical contributions and his invention of a
calculating machine, Leibniz was elected a member of the Society.

The Priority Dispute

The seeds of the controversy were sown by John Wallis. By 1693, Newton had
written out three separate accounts of his approach to calculus, but never showed
any inclination to publish. The first printed account of Newton's work appeared in



Wallis' Opera Mathematica (1693). Wallis warned his Cambridge colleague, “Your
notions of fluxions pass on the Continent with great applause, by the name of
Leibniz' differentials … I have endeavored to do you justice in that point.” The
“justice” that Wallis had done Newton was to state in the preface to Volume I of the
Opera that Newton's method had been sent to Oldenburg in 1676 to be
communicated to Leibniz, thereby suggesting that Leibniz had plagiarized Newton's
work.

The first serious salvo in the battle between the two protagonists was fired by
Nicolas Fatio de Duiller, a Swiss mathematician of no particular note. Fatio
emigrated to London in 1687 and managed to ingratiate himself into Newton's inner
circle. Fatio had felt slighted by something Leibniz had said (or rather, not said)
about him. In 1699, Fatio published a tract in which he amplified the charge that
Leibniz's ideas had been obtained from his (Fatio's) idol Newton. Nothing more
happened for almost five years, until Newton's Optiks appeared in 1704. In the
preface to this work Newton stated: In a letter written to Mr. Leibniz in the year
1676, and published by Dr. Wallis, I mentioned a method by which I found some
general theorems about squaring curvilinear figures … And some years ago I lent
out a manuscript containing such theorems …

Newton had evidently become convinced that Leibniz had gotten the key to his
calculus from perusing De Analysi, one of Newton's unpublished manuscripts. This
is almost certainly untrue; Leibniz had seen something of the manuscript on one of
his visits to London but only in a very abridged form, and in any case had come up
with his own ideas some months earlier. Leibniz countered with an anonymous
review in the Acta Eruditorm criticizing Newton's work and stating that his version
of calculus was his own invention, discovered independently of Newton.

The great dispute was now well under way. A charge of plagiarism against
Leibniz was made in 1708 by another of Newton's champions, the Scottish
mathematician John Keil, who stated:

All these laws follow from that very celebrated arithmetic of fluxions which,
without any doubt, Dr. Newton invented first, as can readily be proved by anyone
who reads the letters about it published by Wallis; yet the same arithmetic



afterwards, under a changed name and method of notation, was published by Dr.
Leibniz …

The article was published in the Philosophical Transactions of the Royal Society
in 1710. Leibniz, trustful fellow, demanded that a Commission be set up by the
Royal Society to investigate the matter.

It must be said that while Leibniz was hardly blameless in all that ensued,
Newton acted abominably. Newton was, at that time, the head of the Royal Society.
The report of the Commission, published under the title Commercium Epistolicum
and supposedly composed by “a panel of impartial judges,” was essentially written
by him alone. The verdict may be guessed. An equally slanted review of the
document, also the handiwork of Newton, although palmed off under the name of
Keil, subsequently appeared in the Philosophical Transactions in 1715.

Issac Newton was a man with issues. In his youth he had reportedly expressed a
wish to “burn my stepfather and mother Smith” in their bed.1 Newton had no close
friends, only sycophantic devotees. With anybody even remotely close to his
colossal genius, Newton's relations were icy, often hostile. In his tenure as Warden,
and later Master, of the Royal Mint, a position granted him as a sinecure, Newton
took full advantage of the opportunity to vent his wrath against the miserable bunch
of petty criminals and forgers he encountered, many of whom he sent to the
gallows. In later life, Newton would fondly recall having “broken Leibniz' heart.”
There may be some truth in this; Leibniz died alone, his funeral attended by a single
mourner.

The reality was not quite so stark. Leibniz had, in fact, many admirers among the
best mathematicians on the continent, and his work would be taken up and
continued by them. A prime example is the development of the calculus of
variations by Euler and Lagrange in the second half of the eighteenth century.

Leibniz never denied Newton's priority in the invention of calculus. Newton
contended that “second inventors have no claims.” History has rendered a different
verdict, crediting Newton and Leibniz equally as co-inventors of calculus.

Their Contributions to Calculus



As we have seen, some of the essential ideas of calculus had existed since ancient
times. A rudimentary form of integration was formulated by Eudoxus in his method
of exhaustion and used by Archimedes in calculating the area of a parabolic
segment. Later on Cavalieri, Torricelli, Fermat, Wallis, and Barrow carried out
calculations tantamount to integration and differentiation in their work on
quadrature (calculating areas under curves) and the construction of tangents. Thus
calculus was “in the air” by the time Newton and Leibniz arrived on the scene.
What these two men did was to forge these ideas into a coherent body of thought,
discover formulas and rules of manipulation, and, most importantly, elucidate the
fundamental inverse relationship between the operations of differentiation and
integration.

The primary motivation for the integral calculus was the problem of calculating
the area lying beneath the graph of a given function. Wallis had earlier constructed
a table for what we could now term the integrals

∫
a

0
(1 − x2)

n
dx,

for certain integer values of n. Whereas Wallis always considered the upper limit of
integration a as a fixed quantity, Newton had the insight to treat a as an independent
variable, thereby creating a functional form of Wallis' identities. These read as
follows
____________________

  1There has been much speculation about abandonment issues as the source of the rage which Newton carried
within him throughout his life.



Since the formulas for the differentiation of integer powers of x: d
dx
xn = nxn−1

was known from the work of Barrow, Newton realized immediately that these
formulas reveal, to take the third one as an example, that

From these, and other cases, Newton deduced the Fundamental Theorem of
Calculus

Newton used the fundamental theorem to derive his generalized binomial
theorem. This led him to conclude that the rule for differentiating integer powers
holds also in the fractional case, i.e.,

∫
x

0
(1 − t2)dt = x −

x3

3

∫
x

0
(1 − t2)2dt = x −

2x3

3
+

x5

5

∫
x

0
(1 − t2)3dt = x − x3 +

3x5

5
−

x7

7

∫
x

0
(1 − t2)4dt = x −

4x3

3
+

6x5

5
−

4x7

7
+

x9

9
.

d

dx
∫

x

0
(1 − t2)3dt =

d

dx
(x − x3 +

3x5

5
−

x7

7
)

= 1 − 3x2 + 3x4 − x6

= (1 − x2)3.

d

dx
∫

x

0
f(t)dt = f(x).

d

dx
x

m
n =

m

n
x

m−n
n .



Newton had no compact notation to denote integrals and derivatives, and referred
to them as fluents and fluxions, respectively. The very terms (meaning “flow” and
“change”) reveal Newton's mode of thinking, which was geometric and very much
rooted in the physical world.

By contrast, Leibniz's approach to calculus was algebraic, arithmetic even.
Leibniz conceived of the derivative of a function, which he expressed in the
notation dy/dx, as literally the quotient of the two infinitesimally small quantities
dy and dx. This harks back to Barrow's differential triangle alluded to in Chapter 3.
Leibniz called it the “characteristic triangle.” The term infinitesimal was understood
by Leibniz to mean a quantity which is smaller than any given positive number, and
yet non-zero. It should be noted that this concept does not make sense from the
viewpoint of standard arithmetic, which holds that if 0 ≤ ϵ < a for all a > 0, then
necessarily ϵ = 0. Interestingly, in the 1960s a theory of non-standard arithmetic
emerged in which ideas from mathematical logic are used to give meaning to this
idea, thereby placing the work of Leibniz and his followers on a wholly rigorous
basis.

In a similar vein, Leibniz' integral, which he expressed in the now universally
adopted notation

was conceived as a sum of rectangles with infinitesimal base length dx. (The origin
of the integral sign ∫  is as an elongated version of the letter S, standing for “sum.”)

In a nutshell, in Leibniz' system, differentiation is understood as a process of
differences and integration as a process of sums. Viewed from this perspective, the
fundamental theorem appears almost trivial. Since

∫ f(x)dx

d(∫ f(x)dx) = f(x)dx



as the last term in the sum, it ought to be correct to divide this by dx and conclude

Consider further the example of the chain rule, the rule for differentiating the
composition of two functions, y = f(g(x)). The rule asserts that the derivative
y′ = f ′(g(x)g′(x) (see Theorem 5.3). In Leibniz' differential notation, writing
z = g(x), this becomes the seemingly trivial arithmetic statement

It has been said that calculus, particularly as expressed by Leibniz, brings
problems that once would have required the power of an Archimedes, within the
range of the average college student (the type of student that attends classes on a
regular basis and turns in their homework!).

Newton and Leibniz both made use of infinitesimals in calculating derivatives.
An example is the following extract from Newton's treatise De Methodis
Fluxionem. Newton posed the problem: The relation between the fluents being
given, to find the relation between the fluxions, and conversely. He goes on to give
several examples, one of which we quote verbatim:

“Thus, let any equation x3 − ax2 + axy − y3 = 0 and substitute x + ẋo for x,
y + ẏo for y, there will arise

Now, by supposition, x3 − ax2 + axy − y3 = 0, which therefore being expunged
and the remaining terms divided by o, there will remain

d

dx
(∫ f(x)dx) =

d(∫ f(x)dx)

dx
= f(x).

dy

dx
=

dy

dz
⋅
dz

dx
.

x3 + 3x2ẋo + 3xẋoẋo + ẋ3o3 − ax2 − 2axẋo − aẋoẋo + axy + axẏo

+ ayẋo + aẋoẏo − y3 − 3y2ẏo − 3yẏoẏo − ẏ3o3 = 0



But whereas o is supposed to be infinitely little, that it may represent the moment of
quantities, the terms that are multiplied by it will be nothing in respect to the rest; I
therefore reject them and there remains

The method here is, in fact, identical to that of Barrow.
Early calculations such as this were met by skepticism. There is good reason for

this. Consider what we just did, divide by a quantity o, then set o to 0. This seems
reminiscent of a “paradox” I saw as a kid. The paradox claims to prove that 2 = 1

and goes like this: let a = b ≠ 0. Then

Factor out a − b in both sides of the equation. We have

Now cancel out a − b to get a + b = b. Since a = b, this says 2b = b and dividing
by b, we arrive at the absurd conclusion 2 = 1.

The problem is of course, in the step where we divide by a − b. Since it was
assumed a = b, we are dividing by 0, which is not valid. The “argument” attempts
to divert the reader's attention away from this small detail.

The most articulate criticism in the early days of calculus came from the
clergyman and philosopher bishop George Berkeley (1685–1753) who wrote in
1734:

3x2ẋ + 3xẋẋo + ẋ3oo − 2axẋ − aẋẋo + axẏ

+ ayẋ + aẋẏo − 3y2ẏ − 3yẏẏo − ẏ3oo = 0

3x2ẋ − 2axẋ + axẏ + ayẋ − 3y2ẏ = 0.’’

a2 = ab ⟹ a2 − b2 = ab − b2.

(a − b)(a + b) = (a − b)b.



And what are these fluxions? The velocities of evanescent increments. And what
are these evanescent increments? They are neither finite quantities, nor quantities
infinitely small, nor yet nothing. May we not call them ghosts of departed
quantities?

It may have been that Newton himself distrusted calculations with infinitesimals,
or perhaps it was a desire to avoid controversy that led him to rework the proofs of
the numerous mathematical propositions in the Principia, which he had originally
discovered by means of calculus, into a (much more complicated) form based on
Euclidean geometry. It is a tribute to the awesome power of Newton's mind that he
was able to accomplish such a feat. In any event, it would take until well into the
next century for mathematicians to establish a solid theoretical foundation for the
calculus of Newton and Leibniz.

5.2  LIMITS AND CONTINUITY

As noted above, the notion of infinitesimals on which calculus was originally
based, is problematic. In the eighteenth century, a theory of limits emerged, thanks
to the efforts of Cauchy and others, which placed the subject on a secure
mathematical footing.

The idea of limit is actually rather simple. We illustrate it with an example.
Consider the function

(5.1)

Note that the expression is defined for all values x with the exception of x = 3,
where it assumes the nonsensical value 0/0. We are interested in the behavior of y
for values of x in the immediate vicinity of 3. Some values are listed in the
following tables:

y =
2x2 − 5x − 3

x − 3
.



x y

2.5 6
2.9 6.8
2.99 6.98
2.999 6.998

x y

3.5 8
3.1 7.2
3.01 7.02
3.001 7.002

It will be observed that as x approaches ever closer to 3 from either side, the y-
values approach 7. This behavior is confirmed by the graph of function (5.1),
shown in figure 5.4. We say: the limit of y as x approaches 3 is 7, and write

(5.2)

FIGURE 5.3

lim
x→3

y = 7.



FIGURE 5.4

As it happens, limits can be determined algebraically, without reference to
specific points or graphs. Note that the numerator in (5.1) can be factored as
(2x + 1)(x − 3). Canceling the common terms (x − 3) in numerator and
denominator allows us to express the function more simply, as

(5.3)

where the caveat x ≠ 3 is necessary to remind us that y is undefined at x = 3.
Taking the limit in (5.3) as x → 3, yields the value 7.

At this point, the preceptive reader may “smell a rat.” We remarked above that
(5.3) does not define y for x = 3, yet we plugged x = 3 into (5.3) to calculate the
limit. Why is it valid to do this? Because the limit is not concerned with the value of
y at the point 3 itself, simply the behavior of y as x approaches 3, and for x ≠ 3, the
two expressions for y (the original and the reduced ones) agree.

Exercise 5.1.⋆  Compute the limit

y = 2x + 1, x ≠ 3,

lim
x→9

√x − 3

x − 9
.



(Hint: multiply the top and the bottom of the fraction by the conjugate of the
numerator, √x + 3).

A Formal Definition of Limit

While the intuitive notion of limits introduced above suffices to make sense of the
calculus of Newton and Leibniz, the rigorous development of the subject demands a
more explicit approach to the concept. This is the subject of the present section.

When we write

(5.4)

we are making the claim: the function values y = f(x) can be made arbitrarily
close to l by making x sufficiently close to a. The trick is to translate into
mathematical language the terms “arbitrarily close” and “sufficiently close” and we
do this with the following statement: suppose an interval J centered at l is
prescribed (of any width, no matter how small). Then a corresponding interval I
centered at a exists such that if x lies in I, then y lies in J. The intervals I and J are
illustrated in figure 5.4.

Denoting the widths of the intervals, as is customary, by the Greek letters ϵ and
δ, we are arrive at the classic definition of limit: (5.4) is said to hold if, given any
ϵ > 0, there exists δ > 0, such that2

(5.5)

We verify this criterion for the limit claimed in (5.2) Suppose ϵ > 0 is given.
Note that for x ≠ 3

lim
x→a

f(x) = l

0 < |x − a| < δ ⟹ |f(x) − l| < ϵ.

|y − 7| = |(2x + 1) − 7| = 2|x − 3|.



So choosing δ = ϵ/2, we have

as required.

Non-Existence of the Limit

If the graph of a function has a jump at a certain point (rather than a hole), then the
limit of the function will fail to exist at that point. Consider, for example, the
function whose graph is shown in Figure 5.5.

FIGURE 5.5  A graph with a jump discontinuity

As x approaches 4 from the left (meaning we are on the lower branch of the
graph) the values of y approach 9, whereas, as x approaches 4 from the right, y
approaches 12. We express this by saying the left and right limits at 4 exist, and
denote them by

____________________

  2The restriction 0 < |x − a| in 5.5 is significant. It allows for the limit to exist at x = a even when f(a) is
undefined.

0 < |x − 3| < δ ⟹ |y − 7| < ϵ

lim
x→4−

y = 9, lim
x→4+

y = 12.



Since the two one-sided limits differ, limx→4 y does not exist, as will now
demonstrate. The proof is a short contradiction argument.

Suppose that, on the contrary,

(5.6)

Apply the definition of limit with ϵ = 1. Then there exists δ > 0 such that

(5.7)

Choose any two points x1 ∈ (−δ, 4) and x2 ∈ (4, δ). By (5.7), both y(x1) and
y(x2) lie in the interval (l − 1, l + 1) and therefore differ by less than 2. But this is
impossible: since x1 and x2 fall on opposite sides of 4, the gap in y at these two

points must be at least 3.
A further definition is useful.

Definition. Suppose both f(a) and limx→a f(x) exist, and

Then we say f is continuous at a. If f is continuous at all points in its domain, then f
is said to be a continuous function.

Continuity has an obvious graphical meaning: it is equivalent to the graph of the
function being a continuous (i.e., unbroken) curve at the point in question.

Exercise 5.2.⋆  Determine the values of c so that the piecewise continuous function

lim
y→4

= l.

0 < |x − 4| < δ ⟹ |y − l| < 1,  i.e.,  l − 1 < y < l + 1.

lim
x→a

f(x) = f(a).



is continuous at x = 3.

Theorem 5.1.  Polynomial functions f(x) = ao + a1x + a2x
2 + ⋯ + anx

n are
continuous. Rational functions (functions of the form p(x)/q(x), where p and q are
polynomials), are continuous except at values of x where their denominators are
zero.

For example, the function

is continuous for all x except ±2.
We close this section by stating one of the most basic properties of continuous

functions, known as the Intermediate Value Theorem (IVT).

Theorem 5.2.  Suppose f is a continuous function defined on an interval [a, b] and
let d be a value lying between f(a) and f(b). Then there exists c ∈ [a, b] such that
f(c) = d.

IVT, which seems obvious graphically, is actually a consequence of a deep and
subtle assumption about the real number system known as completeness. As an
amusing application of IVT, we can prove that at any given time, there is at least
one place in the world where the temperature is exactly 0∘C. Draw any curve on
the globe starting from the North Pole (N) and ending on the Equator (E) and
consider the temperature T along this curve Then T varies continuously as we move
along this curve. Furthermore, T (N) < 0 and T (E) > 0. So, by IVT, there exists a
point p on the curve between N and E where T (p) = 0.

f(x) = {
x2 + 2c, if x < 3

3x + c2, if x ≥ 3

f(x) =
x2 + 1

x2 − 4



FIGURE 5.6  The Intermediate Value Theorem

5.3  THE DERIVATIVE

Consider the following example. Given the function y = x2, determine the slope of
the tangent line at the point x = 3. There is an obvious difficulty: to compute the
slope of a line, we need two points on the line and here we have only the single
point (3, 9) (call it P). We create a second point Q on the curve (3 + h, (3 + h)2),
as indicated in figure 5.7.

FIGURE 5.7

The slope of the secant line PQ is



We now take a limit as h approaches 0. The point Q approaches P and the secant
line PQ becomes the tangent line at P. Thus the slope of the tangent line is given by

More generally, this process can be used to calculate the slope of the tangent line
to an arbitrary curve y = f(x). The slope of the secant line is the expression (called
the difference quotient)

As before, the slope of the tangent line is found by taking the limit as h → 0.
This motivates the following definition. We say the function f is differentiable at

x if the limit

exists. The limit function is called the derivative of f and denoted by f ′(x) or
df/dx.

The derivative is one of the two primary operations in calculus. As we have seen,
it gives the slope of the tangent line to the graph of a function and thereby measures
the rate of change of the function. If the function represents the position of a
moving object then the derivative gives the velocity of the object.

Example

(3 + h)2 − 9

3 + h − 3
=

6h + 6h2

h
= 6 + h.

lim
h→0

6 + h = 6.

f(x + h) − f(x)

h
.

lim
h→0

f(x + h) − f(x)

h



A diver jumps from a platform that is 32 feet above the water with an initial velocity
of 32 feet per second. The height of the diver at time t is given by the function

After how many seconds will the diver hit the water? Find the diver's velocity at
impact. What is the maximum height of the diver?

We start by calculating and simplifying the difference quotient.

Hence the velocity v(t) of the diver at time t is

The diver hits the water when

i.e., after time t = 2 seconds (we disregard the negative solution as unfeasible). The
velocity on impact is v(2) = −48 ft/sec. Finally, the maximum height is attained
when v(t) = 0, i.e., t = 1/2, and s(1/2) = 36 ft.

s(t) = −16t2 + 16t + 32.

s(t + h) − s(t)

h

=
−16(t + h)2 + 16(t + h) + 32 − (−16t2 + 16t + 32)

h

=
−32ht − 16h2 + 16h

h

=
h(−32t − 16h + 16)

h

= −32t + 16h + 16.

v(t) =lim
h→0

−32t + 16h + 16 = −32t + 16 ft/sec.

−16t2 + 16t + 32 = 16(2 − t)(t + 1) = 0,



Differentiability Versus Continuity

The definition of derivative calls for the limit of the difference quotient as h → 0.
If the limit does not exist at a point a, then the function is said to be non-
differentiable at a. In general, differentiability at a point implies continuity there,
but not conversely. Consider, for example, the absolute value function y = |x|.

The difference quotient (DQ) at x = 0 is

Recall that absolute value is actually a piecewise function, defined by

Thus, for h < 0, DQ = −h/h = −1, while for h > 0, DQ = h/h = 1.
Consequently limh→0− − 1 = −1 and limh→0+ 1 = 1. Because the two one-sided
limits are different, the limit of the difference quotient as h → 0 (i.e., the derivative
of |x| at x = 0) does not exist. In short, the function |x| is continuous, but non-
differentiable at 0.

Note the sharp corner in the graph y = |x| (figure 5.8) at x = 0. For this reason,
it is not possible to draw a (unique) tangent line to the graph at x = 0. In general,
when a continuous function fails to be differentiable at a point, the graph will have
either a vertical tangent line or a corner (or a cusp) at the point.

|0 + h| − |0|

h
=

|h|

h
.

|x| = {
−x, if x < 0,

x, if x ≥ 0.



FIGURE 5.8  Graph of y = |x|

Differentiation Rules

Before getting to this let's work another example. The problem is to calculate the
derivative of the function y = √x, x > 0. We start with the difference quotient,
which we simplify by rationalizing the numerator as before, to obtain

Thus the derivative of √x is given by

(5.8)

√x + h − √x

h
=

√x + h − √x

h
×

√x + h + √x

(√x + h + √x)

=
(√x + h)2 − (√x)2

h(√x + h + √x)
=

h

h(√x + h + √x)

=
1

√x + h + √x
.

lim
h→0

1

√x + h + √x
=

1

2√x
.



Calculating the derivatives by the basic method for more complicated functions
would be an onerous task. Fortunately there are formulas which allow us to do this
much more easily. These go by the name of differentiation rules. The main ones are
as follows.

Theorem 5.3.

As an example of Theorem 5.3(i) we obtain a much easier derivation of (5.8)

Theorem 5.3 provides for the differentiation of rational functions. Consider, e.g.,

Using Theorem 5.3(iv), we obtain

(Power rule) For every rational power, the function xr has derivative rxr-1.(i)

(Addition rule) (f + g)′ = f ′ + g′.(ii)

(Product rule) (f ⋅ g)′ = f ′g + fg′.(iii)

(Quotient rule) ( f

g
)

′
= f ′g−fg′

g2 .(iv)

(Chain rule) (g ∘ f)′(x) = g′(f(x)f ′(x).(v)

d

dx
√x =

d

dx
x1/2 =

1

2
x−1/2 =

1

2√x
.

y =
3x2 − 1

x2 + 4
.



Exercise 5.3.⋆  Use the Quotient Rule (Theorem 5.3(iv)) to find the equation of the
tangent line to the graph

at x = 1.

The Chain Rule (Theorem 5.3(v)) has many important corollaries. One of them is
the following.

Theorem 5.4.  (Inverse Function Theorem) Suppose f and g are inverse functions, f
is differentiable at g(y) and f ′(g(y)) ≠ 0. Then g is differentiable at x and

(5.9)

Exercise 5.4.⋆  Use the Inverse Function Theorem (IFT) to calculate (f−1)′(21),
where

y′ =
(3x2 − 1)′(x2 + 4) − (3x2 − 1)(x2 + 4)′

(x2 + 4)2

=
6x(x2 + 4) − (3x2 − 1)2x

(x2 + 4)2

=
14x

(x2 + 4)2
.

y =
(1 − 2x + 3x2)(2 + x − x3)

1 + 4x + 3x2

g′(y) =
1

f ′(g(y))
.

f(x) = x3 + 4x + 5.



Exercise 5.5.  Use the Inverse Function Theorem to calculate (f−1)′(7), where

Do this in two ways, by solving for the inverse function, and by using IFT.

The following formulas give the derivatives of the basic trigonometric functions.

Theorem 5.5.

A Strange and Striking Result

Theorem 5.6.  Suppose f = F ′ for some differentiable function F. Then f has the
Intermediate Value Property (i.e., assumes every value between any two values that
it takes).

A discontinuous function need not have the Intermediate Value Property (IVP).
An obvious example is a function with a “jump discontinuity” (see figure 5.5 where
y never takes the value 10.) Theorem 5.6 is fascinating in light of the fact that the
derivative of a function need not be continuous! This behavior is illustrated by the
example

Then

f(x) =
3x + 5

4x − 5
.

(i) sin′(x) = cosx,

(ii) cos′(x) = − sinx,

(iii) tan′(x) = sec2 x.

F(x) = {
x2 sin 1/x, if x ≠ 0,

0, if x = 0.



The function f performs infinitely many oscillations as x → 0. Graph it with a
calculator or a computer to see. Thus f is wildly discontinuous at 0, yet has the IVP
(and in spades).

5.4  THE INTEGRAL

A rigorous basis for integration was established in the nineteenth century by several
mathematicians, most notably Darboux and Riemann. Later Lebesgue created a
more general integration theory.) As remarked earlier, the integral arises when
computing the area under a given curve. If the curve is prescribed using analytic
geometry, this is no big deal—at least if only an approximate answer is required;
then the integral can approximated by (a finite number of) rectangles. But the
determination of a precise value for the area requires the development of theory
involving limits.

Whereas the limits discussed previously were those where the independent
variable x approaches a finite point, the limits involved in integration are those at
infinity. These are construed as follows. To say that the sequence an has limit L as n

tends to infinity (denoted limx→∞ an = L), means that an approaches arbitrarily

close to L as the index n becomes large. As an example, consider

(Formulas of this type occur in calculating compound interest.) Then
a10 = 2.59374. . . , a100 = 2.70481. . . , a1000 = 2.71692. . . , a106 = 2.71828. . .

We observe that as n increases indefinitely, an gets ever closer to a finite quantity,

2.71828182845… This is the number e introduced in the next section. We say

f(x) = F ′(x) = {
2x sin 1/x − cos 1/x, if x ≠ 0,

limh→0 h sin 1/h = 0, if x = 0.

an = (1 +
1

n
)n



Upper and Lower Sums

Suppose it is required to compute the area A lying beneath the curve
y = f(x), a ≤ x ≤ b.

The Darboux approach to the problem is as follows. For an arbitrary integer n, let
Δx denote the quantity (b − a)/n. Define points
x0 = a, x1 = a + Δx, x2 = a + 2Δx, x3 = a + 3Δx, … ,xn = a + nΔx = b

. Thus x0,x1,x2, … ,xn are n + 1 equally spaced points starting at a and ending
at b. (This arrangement is called a regular partition of the interval [a, b].) On each
subinterval [xk−1,xk] draw a lower rectangle choosing for the height of the
rectangle, the minimum value mk of the function f on the interval [xk−1,xk], and an

upper rectangle choosing for the height, the maximum3 value of f on [xk−1,xk] (see
figure 5.10).

FIGURE 5.9  Region under a curve

lim
n→∞

(1 +
1

n
)n = e.



FIGURE 5.10  Upper and lower rectangles

Denote the sums of the areas of the upper and lower rectangles by Un and Ln

respectively (“upper” and “lower” sums). In “sigma” notation

____________________

  3In order to simplify the exposition, we are assuming f assumes maximum and minimum values on the
intervals, but there is a more general formulation.

Since the totality of the upper rectangles contains the region under the curve,
while the reverse is true for the lower rectangles, we have, for each n, the
inequalities

(5.10)

As n increases, the lower sums become larger and the upper sums smaller.
Suppose it happens that as n tends to infinity, Ln and Un approach a common limit

Ln =
n

∑
k=1

mkΔx,

Un =
n

∑
k=1

MkΔx.

Ln ≤ A ≤ Un.



(call it L). Then it follows by (5.10) that A = L. In this situation the sums provide
approximations to the area A and if we can compute the limit of the sums as n tends
to infinity, the precise value of A.

Definition. Suppose that, in the above notation

(5.11)

Then the function f(x), a ≤ x ≤ b is said to be integrable and we define the
(definite) integral

As remarked earlier, this notation and conception4 of the integral originated with
Leibniz. The integral sign ∫  is an elongated “S,” introduced by Leibniz to signify
sum.

We compute the example

Partition the interval [0,1] into points

Since the function is increasing, the maximum (resp. minimum) on each interval is
taken at the right (resp. left) hand endpoint. Thus the upper and lower sums are

lim
n→∞

Ln = lim
n→∞

Un = L.

∫
b

a

f(x)dx = L.

∫
1

0
x2dx.

x0 = 0, x1 =
1

n
, x2 =

2

n
, … ,xn−1 =

n − 1

n
, xn = 1.



____________________

  4By contrast Newton's fluxions signified the alternative interpretation of the integral as an antiderivative. The
two different notions of integral are reconciled by the Fundamental Theorem.

Using the summation formula

we obtain

Note that terms with n in the denominators have limit 0. Thus
limn→∞ Un =limn→∞ Ln = 1/3. We conclude that the function is integrable and

Exercise 5.6.  Show that the function

Un = [(
1

n
)2 + (

2

n
)2 + (

3

n
)2 + ⋯ + (

n

n
)2]

1

n
=

1

n3

n

∑
k=1

k2,

Ln = [(
0

n
)2 + (

1

n
)2 + (

2

n
)2 + ⋯ + (

n − 1

n
)2] =

1

n3

n−1

∑
k=1

k2.

n

∑
k=1

1

k2
=

n(n + 1)(2n + 1)

6

Un =
n(n + 1)(2n + 1)

6n3
=

1

3
+

1

2n
+

1

6n2
,

Ln =
(n − 1)n(2[n − 1] + 1)

6n3
=

1

3
−

1

2n
+

1

6n2
.

∫
1

0
x2 =

1

3
.

y = 2x + 1,  1 ≤ x ≤ 3



is integrable and compute

as a limit of either upper or lower sums. Verify this result using the formula for the
area of a Trapezoid.

An Example of a Non-Integrable Function

The standard example is the so called Dirichlet function. This is the function f
defined on the interval [0,1] by f(x) = 1 if x is a rational number and 0 if x is an
irrational number (see figure 5.11).

FIGURE 5.11  The Dirichlet function

It happens that every interval (a, b) contains both rational points and irrational
points (this property is referred to as density of both the rationals and irrationals).
Thus the maximum Mk of f on each of the intervals [(k − 1)/n, k/n], is 1 and the

minimum mk is 0. This implies every upper sum

while every lower sum

∫
3

1
2x + 1 dx

Un =
1

n

n

∑
k=1

1 = 1



Hence limn→∞ Un = 1 and limn→∞ Ln = 0 and so the function is non-integrable.
The non-integrability of the Dirichlet function is clearly related to its highly

irregular behavior, discontinuous on every interval. The following result puts this
example in context.

Theorem 5.7.  Suppose f is a continuous function defined on an interval [a, b],
then f is integrable. More generally, the same is true for every piecewise continuous
function.5

5.5  THE FUNDAMENTAL THEOREM OF CALCULUS

There are actually two such theorems, part I and part II. The first of these is as
follows.

The First Fundamental Theorem

Theorem 5.8.  FTC(I) Suppose f : [a, b] ↦ R is an integrable function and F is
an antiderivative of f (i.e., a function F defined on [a, b] such that F ′ = f ). Then

(5.12)

____________________

  5A function whose graph consists of a finite number of unbroken pieces.

FTC(I) is a most powerful tool for computing integrals. By way of illustration we
use it to evaluate the integral

Ln =
1

n

n

∑
k=1

0 = 0.

∫
b

a

f(x)dx = F(b) − F(a).



which we calculated earlier. First note that the function in question is integrable by
Theorem 5.7.

Antiderivatives for powers x are easily found by reversing the rule for
differentiation. Thus for p ≠ −1, we see that an antiderivative6 of xp is

In particular, F(x) = x3/3 is an antiderivative of x2. By FTC(I) we have

Exercise 5.7.  Use FTC(I) to calculate the area enclosed between the graph
y = 4 − x2 and the x-axis and show that your answer agrees with Archimedes'
area for a parabolic segment given in Section 1.4.

The Second Fundamental Theorem of Calculus

The second part of the fundamental theorem is as follows.

Theorem 5.9.  FTC(II). Suppose the function f : [a, b] ↦ R is continuous.
Consider the function

Then F is an antiderivative of f, i.e.,

∫
1

0
x2dx,

xp+1

p + 1
.

∫
1

0
x2dx = F(1) − F(0) =

13

3
−

03

3
=

1

3
.

F(x) = ∫
x

0
f(t)dt, a < x < b.



This theorem establishes integration and differentiation as inverse operations
(i.e., performing the first operation on a continuous function and then the other
takes you back to the function).

It should be noted that the assumption of continuity of f in the theorem is
essential. To see this consider the following example.

____________________

  6Antiderivatives are clearly not unique, e.g., x
3

3 + 1 is also an antiderivative of x2. However, it can be shown
that any two antiderivatives differ only by a constant. The constant is redundant in FTC(I) since it cancels out in
the subsequent subtraction.

For x in the range 0 ≤ x < 1/2, we have Ln = Un = 0 for all n, so

exists and equals 0. For 1/2 ≤ x ≤ 1,Ln = 0 and Un = 1/n (see figure 5.12, so
again the integral exists and equals 0. In short, S ≡ 0 (is zero everywhere on [0,1]).
In particular S ′(1/2) = 0 ≠ s(1/2).

d

dx
∫

x

0
f(t)dt = f(x).

s(t) = {
0, if 0 ≤ t ≤ 1, t ≠ 1/2,

1, if t = 1/2.

S(x) = ∫
x

0
s(t)dt



FIGURE 5.12  Single point function

Combining FTC(II) with the Chain Rule, we obtain the following result.

Theorem 5.10.  Suppose f is continuous and g is differentiable. Define

Then y is differentiable and

Proof. Simply apply the Chain Rule to the composition F ∘ g and use FTC(II),
where

□

Exercise 5.8.  Consider the function

y = ∫
g(x)

a

f(t)dt.

y′ = f(g(x))g′(x).

F(x) = ∫
x

a

f(t)dt.

y = ∫
sinx

cosx

√1 − t2dt = ∫
sinx

0

√1 − t2dt − ∫
cosx

0

√1 − t2dt.



Use Theorem 5.10 to show that y′ ≡ 1 and hence y has the form x + c. By
substituting x = 0 and then x = π/2, deduce that

i.e., the area of a circle of radius 1 is π.

The Natural Logarithm and Exponential Functions

Up to this point there has been little mention in the book of exponential or
logarithm functions. Our reason for leaving it to now is that these functions are
most naturally introduced using integration.

The natural logarithm of x (written logx) is defined by

Certain properties of log are immediately apparent from the definition:

∫
1

0

√1 − t2dt =
π

4
,

logx = ∫
x

1

1

t
dt, x > 0.

log 1 = 0.(i)

log is a strictly increasing function, i.e.,

(5.13)

(This is clear from the interpretation of the integral as area under the graph.)

(ii)

x2 > x1 ⟹ logx2 > logx1.

From FTC(II), the function logx is differentiable, with derivative(iii)

log′ x =
1

x
.



Wie can establish the characteristic log properties: for all x, y > 0 and rational
powers p:

(5.15)

To show the first of these (the second follows in similar fashion), fix y > 0 and
consider the function f(x) ≡ logxy. By Theorem 5.13 we have

It follows that there exists a constant c such that

Evaluating at x = 1 gives c = log y.
The strictly increasing behavior of logx noted above implies that there exists an

inverse function. We denote the inverse function (temporarily) by exp(x). This
function has derivative

(5.16)

A function that is immune to differentiation!

(5.14)

logx + log y = logxy,

p logx = logxp.

f ′(x) =
1

xy
⋅ (xy)′ =

y

xy
=

1

x
= log′(x).

logxy = logx + c.

exp′(x) = exp(x).



(5.17)

Exercise 5.9.⋆  Prove (5.16) using (5.14) and the Inverse Function Theorem.

Exercise 5.10.  Prove (5.17) using (5.15).

Denote exp(1) by e. From the first part of (5.17) we have
exp(2) = exp(1 + 1) = exp(1) ⋅ exp(1) = e2. Similarly, for any positive integer
n, exp(n) = en. Using the second part of (5.17) we have
[exp(n/m)]m = exp(n) = en. Thus

In words, exp(x) is a continuous extension of the function ex from the rational
numbers to all real numbers. For this reason, it is customary to write ex in place of
exp(x) and we will do so from now on.

So, what is this number e? From the designation e = exp(1) and logx and
exp(x) as inverse functions, we have log e = 1. That is, e the number such that

We can get a very rough estimate of e from figure 5.13. The figure shows that
log 2 < 1, while log 4 > 1. Thus 2 < e < 4. More rectangles give better estimates.
A calculator gives e = 2.71828182845. . ..

exp(x) exp(y) = exp(x + y),

exp(px) = [exp(x)]p.

exp(n/m) = en/m.

∫
e

1

1

t
dt = 1.



FIGURE 5.13  Crude estimation of e

5.6  TAYLOR SERIES

Functions such as

which can be computed from the arithmetic operations and root extractions in a
finite number of steps are said to be algebraic. Functions that cannot be expressed
in this way are termed transcendental. The class of transcendental functions
includes the trigonometric functions, logx and ex. Transcendental functions, by
definition, defy computation in a finite number of steps. The best that one can hope
for is to come up with an approximation. The most easily computed expressions are
polynomials.

The equation of the tangent line to the curve y = f(x) at x = c,

(5.18)

provides the best linear approximation to the curve in a neighborhood of c (see
figure 5.14).

f(x) =
3√ x3 − 8

3x2 + 7
,

y = f(c) + f ′(c)(x − c)



FIGURE 5.14  Approximation by the tangent line

To take an example, suppose it is required to find an approximation for sin 39∘.
Choose for c a point close to 39∘ at which we can compute the tangent line (i.e.,
where we know the sine and cosine). A good choice would be 45∘ (in radians π/4).
The tangent line to y = sinx at x = π/4 is

Substituting x = .68. . . (the radian measure of 39∘) gives y = .6325. . . The
calculator value for sin 39∘. is. 6287…

The reason why, of all straight lines passing through the point (c, f(c)), the
tangent line at c stays closest to the curve in a neighborhood of c is that its slope
f ′(c) agrees with that of the curve at x = c. However, we do not need to restrict
ourselves to a linear approximation. Suppose that, instead of the tangent line at c,
we approximate f by a quadratic, a cubic, or any degree-n polynomial Pn. Provided f

is n-times7 differentiable, we can choose Pn so that the polynomial, together with its

higher-order derivatives up to nth order, agree with those of f at c, i.e.,

(5.19)

y =
√2

2
+

√2

2
(x −

π

4
).

Pn(c) = f(c), ,P ′
n(c) = f ′(c), P ′′

n (c) = f ′′(c), … ,P
(n)
n (c) = f n(c).



____________________

  7The higher order derivatives of a function f, denoted ether by several primes or by the superscript are
obtained by successive differentiation. For example, for f(x) = x3, we have
f ′(x) = 3x2, f ′′(x) = 6x, f ′′′(x) = 6, f (k)(x) = 0 for k ≥ 4.

Theorem 5.11.  Suppose the function is n-times differentiable at c. Then there
exists a unique degree-n polynomial Pn satisfying (5.19). It is the polynomial8

(5.20)

Exercise 5.11.  Prove the polynomial (5.20) satisfies (5.19).

The polynomial (5.20) is known as the degree-n Taylor Polynomial of f centered
at c, named for the English mathematician Brook Taylor. In the special case c = 0,
it is referred to as the Maclaurin polynomial. The tangent line is the first-degree
case n = 1.

Maclaurin Polynomials for the Basic Transcendental Functions

We derive the Maclaurin polynomials for the exponential, sine, cosine, and natural
logarithm functions.

Since the function f(x) = ex has derivative ex, it follows that the same holds for
the derivatives of all orders. Hence f (k)(0) = e0 = 1 for all k ≥ 0, and we have

(5.21)

The derivatives of the sine function exhibit a cyclical pattern. For f(x) = sinx

Pn(x) =
n

∑
k=1

f (k)(c)

n!
(x − c)k.

Pn(x) = 1 + x +
x2

2!
+

x3

3!
+ ⋯ +

xn

n!
.



and this pattern repeats itself for the next 4 derivatives, and then the next 4, etc.
Since sin 0 = 0 and cos 0 = 1, we have for the sine function and odd n,

(5.22)

When n is even, since f (n)(0) = 0,Pn = Pn−1.
A similar argument applies to cosine. In this case, the Maclaurin series is, for n

even,

(5.23)

(For n odd, Pn = Pn−1.)
____________________

  8In (5.15) we are using the conventions f (0) = f and 0! = 1.

Since log 0 is undefined, we compute the Maclaurin polynomial for the function
f(x) = log(1 + x). The first few derivatives in this case are as follows:

f ′(x) = cosx

f ′′(x) = − sinx

f (3)(x) = − cosx

f (4)(x) = sinx

Pn(x) = x −
x3

3!
+

x5

5!
−

x7

7!
+ … (±)

xn

n!
.

Pn(x) = 1 −
x2

2!
+

x4

4!
−

x6

6!
+ ⋯ (±)

xn

n!
.



It is clear that the pattern emerging here is

(5.24)

Since f(0) = 1, we have in this case

(5.25)

Taylor's Theorem

Taylor polynomials provide a natural way to approximate transcendental functions.
But how accurate is the approximation? An answer to this question is provided by
the following result, known as Taylor's theorem (though this particular version of
the theorem is due to Lagrange).

f ′(x) =
1

1 + x

f ′′(x) = −
1

(1 + x)2

f (3)(x) =
2

(1 + x)3

f (4)(x) = −
6

(1 + x)4
= −

3!

(1 + x)4

f (5)(x) =
24

(1 + x)5
=

4!

(1 + x)5
.

f (k)(x) = (−1)k−1 (k − 1)!

(1 + x)k
.

log(1 + x) = x −
x2

2
+

2x3

3!
−

3!x3

4!
+ ⋯ (±)

(k − 1)!xk

k!

= x −
x2

2
+

x3

3
−

x4

4
+ ⋯ (±)

xk

k
.



Theorem 5.12.  Suppose f is k + 1 times differentiable on the interval (a,x) and
f (n+1) is continuous on [a, x]. Then

where Pn is the Taylor polynomial (5.20) and Rn(x) (called the remainder, or error

term) is given by

where ξ is a number between x and c.

As an example in the use of Taylor's theorem, suppose it is required to compute
an approximation to log 1.2 accurate to within 0.000001 (10−6). According to the
theorem applied to log(1 + x) with c = 0, and (5.24) the remainder term here has
the form

where 0 < ξ < 0.2. Since

it suffices to choose n such that the latter quantity is less than 10−6, inspection
shows that n = 10 will do, then compute the Maclaurin polynomial

f(x) = Pn(x) + Rk(x),

Rn(x) =
f (n+1)(ξ)

(n + 1)!
(x − c)n+1,

Rn =
(−1)n(0.2)n+1

(n + 1)(1 + ξ)n+1
,

|Rn| ≤
(0.2)n+1

n + 1
,



Exercise 5.12.  Use Taylor's theorem to compute an approximation for 3√8.2

accurate to within 0.000001.

In general, the error term Rn(x) gets smaller as n gets larger, thus Pn(x) gives a
better approximation to f (at least locally, close to x = c). What can we expect if we
let n → ∞ ? Well, for one thing, the Taylor polynomial gives rise to an infinite sum
of terms known as a Taylor series. To make sense of the notion of “infinite sum” we
must once again evoke the limit.

Suppose a0, a1, a2, … is sequence of numbers. We define the nth partial sums
of the sequence

If limn→∞ Sn = S exists then we say the series

is convergent, with sum S. Otherwise, the series is said to be divergent.
For example, there is the well-known formula for the sum of the geometric series

P10(0.2) = 1 − 0.2 +
(0.2)2

2
−

(0.2)3

3
+

(0.2)4

4
−

(0.2)5

5

+
(0.2)6

6
−

(0.2)7

7
+

(0.2)8

8
−

(0.2)9

9
+

(0.2)10

10
.

Sn =
n

∑
k=1

an.

∞

∑
k=1

an

n−1

∑
k=0

rk =
1 − rn

1 − r
, r ≠ 1.



It is straightforward to show that limn→∞ rn = 0, if −1 < r < 1. Hence, for r in
this range the (infinite) geometric series is convergent and

(5.26)

In general, if it can be shown that limn→∞ Rn(x) = 0, then it follows that

(5.27)

The infinite sum (5.27) is called a Taylor (Maclaurin if c = 0 ) series.

Maclaurin Series for the Basic Transcendental Functions

In this section, we show that the sine, cosine, and exponential functions can be
represented by Maclaurin series. We will make use of the following observation

(5.28)

In the case of sinx, we have

(5.29)

∞

∑
k=0

rk =
1

1 − r
.

f(x) =
∞

∑
k=1

f (k)(c)

n!
(x − c)k.

For all A >0, lim
n→∞

An

n!
= 0.

Rn(x) = (sin or cos)(ξn)
xn+1

(n + 1)!
.



Since the values of both the sine and cosine function lie between −1 and 1, there is
the obvious estimate

and it follows from (5.28), that limn→∞ Rn(x) = 0 in this case too. A similar
argument yields the same conclusion for cosx. Making use of (5.21)–(5.23), we
obtain the Maclaurin series

These Maclaurin series give rise to a remarkable identity of Euler. Substituting the
imaginary quantity iθ for x in the series for ex gives

(5.30)

Note that Euler's identity yields a 1 line proof of de Moivre's theorem (Section 4.6):

|Rn(x)| ≤
|x|n+1

(n + 1)!

ex =
∞

∑
k=0

xk

k!
= 1 + x +

x2

2!
+

x3

3!
+ ⋯

sinx =
∞

∑
k=0

(−1)k
x2k+1

(2k + 1)!
= x −

x3

3!
+

x5

5!
− ⋯

cosx =
∞

∑
k=0

(−1)k
x2k

(2k)!
= 1 −

x2

2!
+

x4

4!
− ⋯ .

eiθ = iθ −
θ2

2!
− i

θ3

3!
+

θ4

4!
+ i

θ5

5!
−

θ6

6!
− i

θ7

7!
+ ⋯

= 1 −
x2

2!
+

x4

4!
−

x6

6!
+ ⋯ + i(x −

x3

3!
+

x5

5!
−

x7

7!
…)

= cos θ + i sin θ.



Setting θ = π in (5.30) and recalling that cosπ = −1 and sinπ = 0 we obtain
Euler's formula

(5.31)

This equation is said to be the most beautiful formula in mathematics.

Exercise 5.13.⋆  Use the Maclaurin series

to prove that e is irrational. (Hint: Assume that e = p/q is rational. Multiply
through by q! and derive a contradiction. If you can complete this argument without
further assistance, then you may be a mathematician!)

Finally, we turn to the Maclaurin series for the function f(x) = log(1 + x). This
needs a little more work in the estimation of the remainder term, and in order to
show convergence to 0 we need to assume that x lies in a restricted range. From
(5.24), we obtain

Assume |x| < 1. Since |ξn| ≤ |x| (recall that c = 0 and ξn lies between 0 and c),

(cos θ + i sin θ)n = (eiθ)n = einθ = cosnθ + i sinnθ.

eπi + 1 = 0.

e = 1 +
1

2!
+

1

3!
+ ⋯

Rn(x) =
(−1)nxn+1

(1 + ξn)n+1(n + 1)
.



we obtain

(5.32)

The series is also valid for x = 1 since in this case, ξn > 0, so we have
|Rn(x)| ≤ 1/(n + 1) → 0 as n → ∞. We get the infinite series

(5.33)

There is an easier derivation of (5.32) (although this requires further justification)
by performing a term-by-term integration with the geometric series (5.26)

Suppose finally that a function f is infinitely differentiable at a point c, i.e., the
derivatives f (k)(c) exist for all k. Then one may define the Taylor series of f:

|Rn(x)| ≤
|x|n+1

(1 − |ξn|)n+1(n + 1)
≤

1

(1 − |x|)n+1(n + 1)
→ 0 as n → ∞.

log(1 + x) = x −
x2

2
+

x3

3
−

x4

4
+ ⋯ |x| < 1.

log 2 = 1 −
1

2
+

1

3
−

1

4
+ ⋯

log(1 + x) = ∫
1+x

1

1

t
dt = ∫

x

0

1

1 + t
dt = ∫

x

0

∞

∑
n=0

(−t)n dt

=
∞

∑
n=0

∫
x

0
(−t)n dt =

∞

∑
n=0

(−1)n

n + 1
.

∞

∑
k=1

f (k)(c)

n!
(x − c)k.



(5.34)

This series may converge only for x in a certain range, as we will see below in the
case of the function log(1 + x). This raises the question: at points x where the
Taylor series of a function f does converge, does it necessarily converge to f(x) ?
The answer to this question is no! The standard example is the function

(5.35)

This function is infinitely differentiable at 0, and f (k)(0) = 0, for all k. This is a
consequence of the very rapid decay of e−1/x2

 to 0, as x → 0.

Exercise 5.14.⋆  Show that f ′(0) = 0.

Hence the Maclaurin series for f(x) is 0. On the other hand, f(x) is non-zero
when x ≠ 0.

Suggestion for Further Reading

James R. Kirkwood. An Introduction to Analysis. Chapman and Hall/CRC, 3rd
edition, 2021.

OceanofPDF.com

f(x) = {
e−1/x2

, if x ≠ 0,

0, if x = 0.

https://oceanofpdf.com/
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Complex Variables

DOI: 10.1201/9781003470915-6

In this chapter, we introduce readers to the field of Complex Variables, the
calculus of functions defined using complex numbers. In Sections 6.2 and
6.3, the definitions and results concerning limits and derivatives developed
in Chapter 5, are extended to the complex realm. In Section 6.3, a version
of integration for complex functions, known as contour integration is
introduced, whereby the functions are integrated along curves in the
complex plane. Here again, the theory closely parallels real-variable
calculus.

The peculiar and striking character of the subject emerges with the
appearance of Cauchy's theorem, presented in Section 6.4. Cauchy's
theorem spawns a wealth of further results, many of which have no
counterparts in the realm of real variable calculus. Some of these results are
presented in Section 6.5. One of the consequences of Cauchy's theorem,
The Residue Theorem, is explored in Section 6.5.

The Residue Theorem has application in real analysis, making possible
the calculation of a variety of integrals and infinite summations that could

https://doi.org/10.1201/9781003470915-6


not otherwise be evaluated. Some examples are given.

6.1  COMPLEX FUNCTIONS

The arithmetic of complex numbers provides for the immediate
construction of polynomial and rational functions,

with complex coefficients a0, b0, etc.
The introduction of the sine, cosine, and exponential functions into the

subject of complex analysis is more problematic. Divorced from their real
foundation, these functions lose their classical meanings. There is no such
angle as 3 + 2i, so what is does it mean to talk about sin ( 3 + 2i)? Or for
that matter, to raise the number 2 + 7i to the “power” of 5i. Real
exponential functions occur in mathematical finance, in the context of
continuous compound interest. But what does it mean to receive an annual
rate of .02 + 0.5i % on your principal of 10, 000 + 25i dollars? Such
thoughts must have been in the minds of the mathematicians who first
sought to develop a theory of complex functions.

The standard approach is to define these functions by power series
(infinite-degree polynomials). To take an example, we saw in Chapter 5 that
the sine function can be represented by its Maclaurin series

P(z) = a0 + a1z + ⋯ + anz
n

R(z) =
a0 + a1z + ⋯ + anz

n

b0 + b1z + ⋯ + bmzm

sinx =
∞

∑
n=0

(−1)n

2n + 1!
x2n+1.



(6.1)

We will use this series to define sin z for complex z, simply replacing the
real argument x in the series by its complex counterpart z. It only makes
sense to do this if we know that the series converges for complex z. This
issue is addressed by the following theorem.

Theorem 6.1.  (Ratio Test) Consider the power series

(6.2)

Define a number R (called the “radius of convergence” of the series) by

Then (6.2) converges when |z − c| < R and diverges when |z − c| > R.

Applying Theorem 6.1 to the series (6.1), with c = 0 and
an = (−1)n/(2n + 1)!, yields 1

Hence R =limn→∞ (2n + 3)(2n + 2) = ∞ and we conclude that the
Maclaurin series (6.1) for sin z converges for all z ∈ C.

The same holds in the case of the Maclaurin series for cos z and ez.

∞

∑
n=0

an(z − c)n, z ∈ C.

R = lim
n→∞

an

an+1
.∣ ∣an

an+1
=

1

(2n + 1)!
÷

1

(2(n + 1) + 1)!
=

(2n + 3)!

(2n + 1)!
= (2n + 3)(2n +∣ ∣



Exercise 6.1.  Prove this.

____________________

  1To be precise, since this series has only odd terms, a2n = 0 and a2n+1 = (−1)n/(2n + 1)!.

Hence the Ratio Test implies convergence for |z2| < R, i.e., |z| < √R. Since in this case R = ∞ it
does not make a difference.

We thereby define the exponential, sine, and cosine functions for
complex values of z by their Maclaurin series

Exercise 6.2.⋆  Use this definition of ez together with the Binomial
Theorem, to prove the usual exponential rule

By contrast with the exponential and trigonometric functions, the
Maclaurin series for log(1 + z)

∞

∑
n=1

(−1)n+1

n
zn.

ez =
∞

∑
k=0

zk

k!

sin z =
∞

∑
k=0

(−1)k
z2k+1

(2k + 1)!

cos z =
∞

∑
k=0

(−1)k
z2k

(2k)!
.

ez+w = ez ⋅ ew.



(6.3)

has a finite radius of convergence given by

Theorem 6.1 thus shows that (6.3) converges for |z| < 1 and diverges for
|z| > 1.2

The limited range of convergence suggests that a Maclaurin series might
not give a general enough description of the complex logarithm function.
For example, the Maclaurin series for log(1 + z) leaves log 4 undefined,
since the value z = 3 lies outside the range of convergence of the series.

The polar representation suggests another route to defining log z. As
inverse function to the exponential ez, any reasonable choice of natural
logarithm ought to satisfy the characteristic log property

It would follow that

(6.4)

____________________

R = lim
n→∞

(n + 1)

n
= 1.

log(wz) = log(w) + log(z),

log(z) = log(|z|ei arg(z)) = log(|z|) + log(ei arg(z))

= log(|z|) + i arg(z).



  2In general, convergence behavior of the power series on the circle |z − c| = R itself is
undetermined by the Ratio Test, and can go either way. For example the series (6.3) happens to
converge for z = 1 and diverges for z = −1.

It is natural to define log z by (6.4). However, the argument of a complex
number is not a uniquely defined number (e.g.,
arg i = π/2, 5π/2, 9π/2, …). It is therefore necessary to designate a range
in which to choose arg z, say [0, 2π). However, this creates a further a
further problem: consider points z = eit lying on the unit circle {|z| = 1}.
As the parameter t increases and gets ever closer to 2π the points z
approach 1 (see figure 6.1). At the same time, arg z → 2π ≠ arg 1, since
the choice of argument defines arg 1 to have the value 0. So we have a
conundrum. If we don't fix a range for arg z then log z will have infinitely
many values. If we do fix a range, then log z will be a discontinuous
function. Both scenarios are bad in calculus.

FIGURE 6.1

The standard way to resolve the problem is to remove from the domain of
log the negative real axis (−∞, 0], thereby preventing paths in the domain
from winding around 0 (see figure 6.2).



FIGURE 6.2  The cut plane

This results in the standard description of the complex logarithm, as a
function defined on the set {C − (−∞, 0]} by

Note that in the case when z happens to be real-valued and positive, log(z)

by this definition, agrees with the usual real value log x.
Riemann came up with a different, and marvelously original, way to

solve the problem of the multi-valued nature of the logarithm. Envisage
making a cut in the complex plane along, say, the positive real axis. Take
the piece on the left side of the cut and raise it some. At the positive real
axis on the raised part, attach a second sheet of exactly the same type.
Repeat the process ad infinitum, to create an infinite spiral staircase. A
finite part of one is shown in figure 6.3. The resulting configuration (denote
it as R) is known as a Riemann surface. Argument, and by association
logarithm, are continuously and singly defined functions on R. The reason
is, when you have completed a counterclockwise revolution around 0 and
your argument has increased by 2π, you are at a different point on the
surface (one level up).

log(z) = log(|z|) + i arg(z), −π < arg(z) < π.



FIGURE 6.3  Riemann surface for the multivalued log function, courtesy
of Leonid 2

With this innovation, Riemann introduced a major new tool into complex
function theory.

6.2  COMPLEX DIFFERENTIATION

We start this section with some basic definitions. A set U ⊂ C is said to be
connected if any two points in U can be joined by a path lying entirely in U.
We say that U is open if, for every point z ∈ U , there is a disc centered at z
lying entirely in D.

Exercise 6.3.⋆  Prove that the disc D = {|z| < 1} is open.

If a set is both open and connected then it is said to be a domain.



By way of illustration, consider the discs D1 and D2 depicted in figure

6.4, where D2 includes the boundary circle and D1 does not. The set D1 is

open: take any point w in D1 as shown in the figure, then it is possible to

draw a small disc centered at w which lies completely inside D1. By

contrast, the disc D2 is not open: take a point w on the boundary of the disc.

By definition of D2, w is a point in the set, yet there is no disc centered at w

lying entirely within D2 (every disc centered at w is bound to go outside of

D2). Both D1 and D2 are connected sets, but the set D = D1 ∪ D2 is not

connected (clearly, it is not possible to connect a point in D1 and a point in

D2 by a path lying entirely in D). Because D1 is both open and connected it

is a domain.

FIGURE 6.4  discs with and without boundary

Suppose that f is a complex complex-valued function defined on a
domain D ⊂ C (in symbols f : D ↦ C). We say that f is (complex)
differentiable if the limit



(6.5)

exists, in which case the limit is said to be the derivative of f at the point z
and denoted f ′(z).

A couple of related terms. If f is differentiable on the whole of D, then f is
said to be analytic on D and if f is defined and analytic on the whole of the
complex plane C then it is said to be an entire function.

The Cauchy–Riemann equations

At first glance, the definition of differentiability for complex functions
seems the same as for real functions. However, there is a significant
difference here. In the real variable case, there are only two ways in which h
may approach 0, through values less than 0 and through values larger than
0. In the complex case there are an infinite number of routes for h to get to
0, and the existence of the derivative requires that the limit of the difference
quotient be the same in each case! In this sense, complex differentiability is
an infinitely more stringent criterion than in the real regime.

To get a feel for what this implies, suppose that f is differentiable at the
point z = x + yi with derivative f ′(z) = a + bi. Taking the limit as
h → 0 in (6.5) first through purely real values and then through purely
imaginary values (in the latter case denoting h by ki), we have

lim
h→0

f(z + h) − f(z)

h

lim
h→0

f(x + yi + h) − f(x + yi)

h
=lim

k→0

f(x + yi + ki) − f(x + yi)

ki

= −i lim
k→0

f(x + yi + ki) − f(x + yi)

k
= a + ib.



(6.6)

In considering questions of complex differentiability, it is often
convenient to express functions f in terms of real-valued functions, called
the real and imaginary parts of the function.

(6.7)

As an example, consider f(z) = (x + yi)2 = (x2 − y2) + 2xyi. Hence in
this case U(x, y) = x2 − y2 and V (x, y) = 2xy.

Writing (6.6) in terms of U and V and equating real and imaginary terms
on each side of the equations gives

The above limits are called partial derivatives.3 Thus we obtain the
partial differential equations

(6.8)

____________________

f(z) = f(x + yi) = U(x, y) + V (x, y)i.

lim
h→0

U(x + h, y) − U(x, y)

h
=lim

k→0

V (x, y + k) − V (x, y)

k
= a,

lim
h→0

V (x + h, y) − V (x, y)

h
= − lim

k→0

U(x, y + k) − U(x, y)

k
= b.

Ux = Vy,

Uy = −Vx.



  3For a function of two variables h(x, y), the partial derivative, denoted hx or ∂h
∂x  is found by

fixing y and differentiating with respect to x; similarly hy.

Equations 6.8 are called the Cauchy–Riemann equations. These equations
are fundamental to the study of complex functions.

We have shown that the Cauchy–Riemann equations are necessary
conditions for the differentiability of a complex function. The following
result asserts that the converse holds.

Theorem 6.2.  A function f defined on a domain in the complex plane is
differentiable if and only if f satisfies the Cauchy–Riemann equations.

Theorem 6.2 shows that differentiability is a rather special property of
complex functions. To convince yourself of this, think of any two functions
U and V of (x, y) and check whether they satisfy (6.8). Probably not, unless
you got lucky. Lets try, e.g., U(x, y) = x2y3 and V (x, y) = 2xy. Then
Ux = 2xy3,Uy = 3x2y2,Vx = 2y,Vy = 2x. The Cauchy–Riemann
equations yield

Exercise 6.4.  Show that these equations imply x = y = 0.

Hence the corresponding complex function f(z) = x2y3 + 2xyi is not
differentiable anywhere except (possibly) at the single point z = 0.

On the positive side, consider the function ez, which we can separate into
real and imaginary parts using Euler's identity,

2xy3 = 2x

3x2y2 = −2y.

ez = ex+iy = ex(cos y + i sin y).



to obtain U(x, y) = ex cos y, V (x, y) = ex sin y. Since

we conclude from Theorem 6.2 that ez is differentiable everywhere in C

(i.e., entire).
As an immediate corollary of Theorem 6.2, we can show that if f is a

purely real-valued analytic function, then f must be constant. (The same
conclusion holds if f is purely imaginary.) To see this simply note that since
f(z) = U(x, y) and V (x, y) = 0, equations 6.8 yield Ux = Uy = 0. Hence
U is constant.

Exercise 6.5.⋆  Prove that if an entire function f = U + V i maps the
complex plane into the circle

then f is constant.

Complex Differentiable Functions

All the properties of differentiation of real functions set out in Theorem 5.3,
product and quotient rules, chain rule, etc., hold in the complex case. In
particular, polynomial and rational functions are differentiable, with the
expected formulas for the derivatives. An example is

Ux = ex cos y = Vy,

Uy = −ex sin y = −Vx.

U 2 + V 2 = r2,



The following theorem yields a further rich supply of differentiable
functions in the form of infinite series.

Theorem 6.3.  Suppose the power series

(6.9)

has radius of convergence R. Then for |z − c| < R, the function f(z) is
differentiable and has derivative

(6.10)

Furthermore, the derived power series (6.10) has the same radius of
convergence R.

Theorem 6.3 can be iterated. Since the radius of the power series (6.9)
remains unchanged after differentiating, we may apply the theorem to f′ and
obtain a power series for f′′, etc. Continuing in this fashion, we conclude
that f possesses derivatives of all orders within the disc
D = {x ∈ C : |z − c| < r}. (We say that f is “infinitely differentiable” on
D.)

(
z2 − 9

z2 + 4
)′ =

2z(z2 + 4) − (z2 − 9)(2z)

(z2 + 4)2
=

−10z

(z2 + 4)2
.

f(z) =
∞

∑
n=0

an(z − c)n

f ′(z) =
∞

∑
n=1

nan(z − c)n−1.



Exercise 6.6.  Use Theorem 6.3 to prove that

6.3  COMPLEX INTEGRATION

Up to this point, the calculus of complex functions closely parallels its real-
valued counterpart. There is an entirely analogous theory of limits and
differentiation, the usual menagerie of differentiable functions: polynomial,
rational, trigonometric, etc., and familiar rules of computation. The unique
and remarkable features of the subject appear only when we introduce
complex integration. This is the subject of the present section.

Contour Integrals

We say that a curve γ in C is smooth if there exists a parameterization
γ = {γ(t), a ≤ t ≤ b} such that γ(t) is differentiable and γ ′(t)

continuous. Let f : U ↦ C be a continuous function and γ ⊂ U  be a
smooth such curve. Define the integral4

(6.11)

The second integral in (6.11) can be interpreted in terms of two real
integrals. Writing f = u + vi and γ = α + βi in real and imaginary parts,

(ez)′ = ez,

sin′(z) = cos z,

cos′(z) = − sin z.

∫
γ

f(z)dz = ∫
b

a

f(γ(t))γ ′(t)dt.



we define the integral as

(6.12)

Let γ be a continuous curve in C comprised of a finite number of smooth
pieces γ1, γ2, … , γn, as depicted in figure 6.5. Such a curve is called a
contour. (The contour is said to be closed if the beginning point of γ
coincides with the endpoint, i.e., the curve forms a closed loop, and simple
if γ does not intersect itself at any intermediate points).

FIGURE 6.5  A contour in the complex plane

Write

∫
b

a

(u + vi)(γ(t))(α + βi)′(t)dt =

∫
b

a

(u(γ(t))α′(t) − v(γ(t))β′(t))dt + i∫
b

a

(u(γ(t))β′(t) + v(γ(t))α′(t))

γ = γ1 ∪ γ2 ∪ ⋯ ∪ γn.



____________________

  4The parameterization of a curve is not unique. For definition (6.11) to make sense it is necessary
to prove that the integral is independent of the choice of parameterization. This is straightforward and
relies on the chain rule in (real-variable) calculus. We omit the details.

We define

Note that contours are oriented. From this point on, we will assume that
all closed contours are oriented in the counterclockwise direction. For any
contour γ, if we denote by −γ the contour with the reverse orientation, then
it is straightforward to show that

(6.13)

There is the following analogue of the First Fundamental Theorem of
Calculus for contour integration. It can be proved by appealing to the
corresponding result in real-valued calculus.

Theorem 6.4.  Suppose f is a continuous function on a domain D and there
exists a function F such that F ′ = f on D (in this context F is said to be a
primitive of f). Then for any contour γ ⊂ D with initial point p and
endpoint q,

∫
γ

f(z)dz =
n

∑
k=1

∫
γk

f(z)dz.

∫
−γ

f(z)dz = −∫
γ

f(z)dz.

∫
γ

f(z)dz = F(q) − F(p).



In particular, if γ is a closed contour (i.e., q = p ), then

As an example, let C denote a unit circle of radius r centered at 0.
Parameterizing C as {reit, 0 ≤ t ≤ 2π} and observing that (reit)′ = ireit,
we have

(6.14)

Exercise 6.7.  Show that

for n an integer greater than or equal to 2.

The salient feature of the functions 1/z and 1/zn,n ≥ 2 as regards
contour integration is the singularity that exists at z = 0. However, there is
an essential difference; the former function lacks a primitive in a
neighborhood of the path of integration. (The natural candidate for a
primitive of 1/z, the function log z, is discontinuous on the half-line
(−∞, 0]). This problem does not arise for the higher negative powers of z,
hence Theorem 6.4 applies to them.

∫
γ

f(z)dz = 0.

∫
C

1

z
dz = ∫

2π

0

1

reit
ireitdt = ∫

2π

0
idt = 2πi.

∫
C

1

zn
dz = 0



We conclude this section by stating another useful property of contour
integrals.

Theorem 6.5.

where l(γ) denotes the length of the contour γ.

6.4  CAUCHY'S THEOREM

The Cauchy–Goursat theorem, more commonly known simply as Cauchy's
theorem is named for two French mathematicians Augustin Louis Cauchy
and Édouard Jean-Baptiste Goursat. Cauchy's name is ubiquitous in
mathematics; Goursat's much less so. Cauchy's theorem is the central result
in the subject of Complex Variables; from this single result spring a host of
remarkable properties of analytic functions.

Definition. A region U in the complex plane is said to be simply connected
if the interior of every closed loop in U is entirely contained within U. In
essence, this definition says that the region contains no holes. For example,
the annulus (donut-shape) depicted in figure 6.6 is not simply connected.
The interior of the red loop contains the central disc, which is not part of the
set.

∫
γ

f(z)dz ≤max {|f(z)|, z ∈ γ} × l(γ),∣ ∣



FIGURE 6.6  Annulus with loop

Theorem 6.6.  (Cauchy's theorem) Suppose f is analytic on a simply
connected domain D. Then for any simple closed contour C in D

(6.15)

The theorem has many important consequences, the first of which is a
surprising “insensitivity” of contour integrals to the contour of integration,
implied by the next theorem.

Theorem 6.7.  Suppose C1 and C2 are two simple5 closed contours
contained in the domain of f, such that f is analytic on and in the region
between the curves. (If this is the case, we say that C1 and C2 are
homotopic.) Then

To see how useful this theorem is, take any closed contour C containing 0
in its interior. Then we can conclude by Theorem 6.7 and (6.14), that

∫
C

f(z)dz = 0.

∫
C1

f(z)dz = ∫
C2

f(z)dz.



(6.16)

A string of further consequences follow from Cauchy's theorem. In the
statements of these theorems we use the following standard notation for the
disc and circle of radius r centered at a

Theorem 6.8.  (Cauchy Integral Formula)

Suppose f is analytic on a domain D and Br(a) ⊂ D. Then

(6.17)

As a consequence of Theorem 6.7, Cr(a) can be replaced by any simple
closed contour in Br(a) which contains z in its interior.

Theorem 6.9.  (Cauchy Integral Formula for Derivatives) Under the
assumptions and in the notation of Theorem 6.8, f has derivatives of all
orders at a and for all n ≥ 1

∫
C

dz

z
= ∫

|z|=1

dz

z
= 2πi.

Br(a) = {z ∈ C/ |z − a| < r},

Cr(a) = {z ∈ C/ |z − a| = r}.

f(a) =
1

2πi
∫
Cr(a)

f(z)

z − a
dz.

f (n)(a) =
n!

2πi
∫
Cr(a)

f(z)

(z − a)n+1
dz.



(6.18)

We would be remiss not to point out the truly remarkable nature of this
theorem, particularly when viewed from the perspective of real-variable
calculus. We started off assuming that f is analytic, i.e., once complex
differentiable, and ended up with the conclusion that f is infinitely
differentiable, i.e., has derivatives of all orders! By contrast, consider the
function of the real variable x,

____________________

  5To say that that a closed curve C = {C(t),  a ≤ t ≤ b} is simple means that the curve has no
points of self-intersection except at the endpoints t = a and t = b. This would preclude, e.g., the
curve eint, 0 ≤ t ≤ 2π for n > 1, which describes n counterclockwise loops around 0.

Since the absolute value function is continuous, it follows from FTC(II) that
F is differentiable, with derivative F ′(x) = |x|. But as we have seen, |x| is
non-differentiable at 0. Thus F has a first derivative and no higher order
derivatives at 0!

Something even stronger than Theorem 6.9 is true.

Theorem 6.10.  Suppose f is analytic on the disc D ≡ |z − a| ≤ r. Then
inside D, f is expressible as its Taylor series centered at a, i.e.,

(6.19)

F(x) = ∫
x

−1
|t|dt.

f(z) =
∞

∑
n=1

f (k)(a)

n!
(x − a)n.



We note again the striking difference between Theorem 6.4 and the
behavior we saw in Chapter 5, this time in relation to example 5.35.

The case n = 1 of Theorem 6.9 has as a corollary the following result,
known as Liouville's theorem.

Theorem 6.11.  If f is both entire and bounded, then f is constant.6

Exercise 6.8.⋆  Prove this.

Again, we have here a statement that is patently false for real, as opposed
to complex, functions, as evidenced by the function sinx (differentiable
everywhere, bounded, and non-constant). The difference is that as a
complex function, sin z is not bounded.

Exercise 6.9.  Prove that sin z is unbounded on C using the identity

A couple of further interesting points about Liouville's theorem:

sin z =
eiz − e−iz

2i
.

It can be used it to give a proof by contradiction of the Fundamental
Theorem of Algebra (FTA): Every non-constant polynomial has a
complex root. The argument goes as follows. Suppose to the contrary
that P(z) is a non-constant polynomial with no root in C. Then the
function f(z) ≡ 1/P(z) is entire. The highest order term in the
polynomial dominates for large |z|, with the result that

(1)

|P(z)| → ∞ as |z| → ∞.



____________________

  6Recall that “entire” means defined and analytic on the whole of C. To say f is bounded means
there exists M such that |f(z)| ≤ M , for all z ∈ C (i.e., the range of f is contained in a finite disc).

Theorem 6.12.  If the range of an entire function misses out more than a
single value in C then the function is constant.

As an example, the function ez never takes the value 0. It follows by
Picard's theorem that ez takes on every other complex value.

6.5  THE RESIDUE THEOREM

Poles and Residues

As an example, consider the function

(6.20)

The function has singularities, that is values of z where it is undefined.
These occur where the denominator is 0, and this happens when z = 2 and
z = −1/2. These points are said to be poles of f.

Hence there exists R such that that |f(z)| ≤ 1 for |z| > R. As a
continuous function, f is bounded on the disc |z| ≤ R, and so bounded
on all of C. By Liouville's theorem, f is constant. Hence P is constant,
which contradicts our original premise. This contradiction proves FTA.

There is a much stronger version of Liouville's theorem which goes by
the name of Picard's theorem:

(2)

f(z) =
z2

(z − 2)2(2z + 1)3
.



Suppose we wish to evaluate the integral of f around a simple closed
contour γ lying inside the disc D ≡ {|z − 2| ≤ 1}. Write

where

and observe that the function g is analytic on the disc D ≡ {|z1| ≤ 1}.
(The only singularity of g occurs z = −1/2, which lies outside D. By
Theorem 6.10, within D, g has a Taylor series7 centered at 2,

Hence

where h is an analytic function on D.

f(z) =
1

(z − 2)2
g(z),

g(z) =
z2

(2z + 1)3

g(z) = a−2 + a−1(z − 2) + a0(z − 2)2 + a1(z − 2)3 + ⋯

f(z) =
a−2

(z − 2)2
+

a−1

z − 2
+ a0 + a31z − 2) + ⋯

=
a0

(z − 2)2
+

a1

z − 2
+ h(z),



____________________

  7The reason for the strange labeling of the coefficients will very shortly become clear.

The first integral on the right-hand side is 0 by Theorem 6.4 because the
integrand has a primitive, and the third is 0 by Cauchy's Theorem 6.6. The
second integral is 2πia−1 by a calculation similar to that of (6.16). Thus we
conclude

(6.21)

Definition. Suppose a function f has a series expansion

in a deleted disc {0 < |z − c| < r}, for some r > 0. Then we say f has a
pole of order n at c, and that the coefficient a−1 in the series is the residue
of f at c.

The series in the definition is called a Laurent series. The residue of f at c
is denoted Res(f, c).

∫
γ

f(z)dz = ∫
γ

a−2

(z − 2)2
dz + ∫

γ

a−1

z − 2
dz + ∫

γ

h(z)dz.

∫
γ

z2dz

(z − 2)2(2z + 1)3
= 2πia−1.

∞

∑
k=−n

ak(z − c)k



Definition. A function whose Laurent series expansion contains infinitely
many negative powers of z − z0 is said to have an essential singularity at
z0.

An example is the function

The behavior of a complex function in a neighborhood of an essential
singularity is extremely bizarre. It can be shown that the function takes on
every value (with the possible exception of a single value) infinitely many
times!

Exercise 6.10.⋆  Use Picard's theorem to show that this is the case for the
function e1/z.

Consider again the function (6.20). Suppose now that γ is a simple closed
contour contained inside the disc D = {|z + 1/2| ≤ 1}. Arguing as above,
we find

(6.22)

Suppose γ is a simple closed contour whose interior includes both poles
−1/2 and 2. By adding a line to γ as indicated in figure 6.7, we separate γ
into the (union of the) two contours γ1 (rpqr) and γ2 (sqps). (Note that, the

e1/z = 1 +
1

z
+

1

2!z2
+

1

3!z2
+ ⋯

∫
γ

z2dz

(z − 2)2(2z + 1)3
= 2πiRes(f, −1/2).



added line is traversed by γ1 and γ2 in opposite directions.) By (6.21) and

(6.22), we have

FIGURE 6.7  A contour passing around two poles

The Residue Theorem

The previous example motivates the following major result known as the
Residue Theorem.

Theorem 6.13.  Suppose f is analytic on a domain D, except at a finite
number of poles. Let γ denote a simple closed contour in D which avoids the
poles of f. Then

∫
γ

z2dz

(z − 2)2(2z + 1)3
= ∫

γ1

z2dz

(z − 2)2(2z + 1)3
+ ∫

γ2

z2dz

(z − 2)2(2z + 1

= 2πi(Res(f, −1/2) + Res(f, 2)).



(6.23)

where c1, c2, … , cn are the poles of f contained in the interior of γ.

The following theorem gives an efficient way to calculate residues.

Theorem 6.14.  Suppose f has a pole of order n at c. Then

Exercise 6.11.⋆  Use the Residue Theorem to compute the contour integral

The Residue Theorem is a powerful computational tool in calculus. As an
example we are going to use it to compute the integral

(6.24)

This integral arises in probability theory as the characteristic function of the
Cauchy distribution (yet another place where Cauchy's name comes up!).

∫
γ

f(z)dz = 2πi
n

∑
k=1

Res(f, ck),

Res(f, c) =
1

(n − 1)!
lim
z→c

[(z − c)nf(z)](n−1).

∫
|z=3|

zdz

(z − 1)(z − 2)2
.

∫
∞

−∞

eitx

x2 + 1
dx.



Define

Because the function eitz is entire, the only poles of f are the points where
z2 + 1 = 0, i.e., z = ±i. These are poles of order 1 (called simple poles).
By Theorem 6.14

(6.25)

For R > 1, let CR denote the closed contour consisting of the real interval

[−R,R], followed by the semi-circular arc CR in the upper complex plane,

with initial point (R, 0) and endpoint (−R, 0) (see figure 6.8).

FIGURE 6.8  Semicircular contour

By the Residue Theorem and (6.25)

f(z) =
eitz

z2 + 1
.

Res(f, i) =lim
z→i

(z − i)
eitz

z2 + 1
. =lim

z→i

eitz

z + i
=

e−t

2i
.



(6.26)

Note that on CR, z = x + yi has positive imaginary part y, so

By Theorem 6.5.

Taking R → ∞ in (6.26), we obtain

The Residue Theorem and the Basel Problem

The Residue Theorem can also be used to compute the sum of a wide
collection of infinite series. An example is

(6.27)

∫
γR

eitz

z2 + 1
dz = ∫

R

−R

eitx

x2 + 1
dx + ∫

CR

eitz

z2 + 1
dz = 2πi

e−t

2i
= πe−t.

|eitz| = eix−y = |eix|e−y = e−y ≤ 1.

∫
CR

eitz

z2 + 1
dz ≤  length (CR) ⋅

1

R2 − 1
=

πR

R2 − 1
→ 0 as r → ∞.∣ ∣ ∫

∞

−∞

eitx

x2 + 1
dx = πe−t.

∞

∑
k=1

1

k2
=

π2

6
.



The evaluation of this infinite sum was posed as a challenge to
mathematicians by Pietro Mengoli in 1650, later named the Basel Problem.
Its solution by Euler in 1734 was a major achievement and brought him
instant fame at the age of twenty eight. Nowadays there are many different
ways to compute (6.27). We are going to give a derivation based on the
Residue Theorem.

The idea is to integrate the function

over the square contour CN depicted in figure 6.9. The rationale for

choosing the function and the contour in this way is threefold:

Long Description for Figure 6.9

FIGURE 6.9  The contour CN

f(z) =
cot(πz)

z2
=

cos(πz)

z2 sin(πz)

f has poles at the points kπ, k = 1, 2, 3 ….(i)



The function f has a pole of order 3 at z = 0. According to Theorem 6.14

However, the third-order derivative is a little cumbersome and it is easier to
compute the residue using the Maclaurin series for sin z and cos z and the
geometric series:

To determine the residue at 0 (i.e., the coefficient of z−1 in the above
expression) it is only necessary to pick out the coefficient of z2 in the
product of the brackets, and this is

The contour CN avoids these poles.(ii)

CN becomes infinite in both directions as N → ∞. This (along with

the term z2 in the denominator of f) permits an estimate of the
integral which shows that it vanishes in the limit, and therefore does
not need to be explicitly evaluated.

(iii)

Res(f, 0) =lim
z→0

(z cot(πz))′′′.
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This results in

The other poles of f inside CN are simple poles and occur at

z = ±1, ±2, … , ±N . A similar calculation to the one above (or an
application of L'Hôpital's rule) results in

The Residue Theorem thus gives

(6.28)

We now show that the function

is bounded on the contour CN.

Firstly, note that on the bottom side of the rectangle,
z = tx − (N + 1/2)i, so

Res(f, 0) = −
π

3
.

Res(f, k) =lim
z→k

(z − k) ⋅
cot(πz)

z2
=

1

πk2
.

∫
CN

cot(πz)

z2
dz = 2πi(−

π

3
+

n

∑
k=−n,k≠0

1

πk2
) = 2πi(−

π

3
+

2

π

n

∑
k=1

1

k2

cot(πz) = i ⋅
eiπz + e−iπz

eiπz − eiπz



Using the inequalities |w + z| ≤ |w| + |z| and |z − w| ≥ |z| − |w|,
together with the fact that |eπxi| = 1, we have

(6.29)

Exercise 6.12.  Prove the second inequality in (6.29).

On the right side of the rectangle CN , z has the form (N + 1/2) + iy.
This implies

and

with the signs depending on whether N is even or odd. Hence, in this case

|cot(πz)| =
eπxie−π(N+1/2) + e−πxieπ(N+1/2)

eπxie−π(N+1/2) − e−πxieπ(N+1/2)
.∣ ∣|cot(πz)| ≤

eπ(N+1/2) + e−π(N+1/2)

eπ(N+1/2) − e−π(N+1/2)
=

1 + e−π(2N+1)

1 − e−π(2N+1)
< 3.∣ ∣ ∣ ∣eiπz = e−πyeπ(N+1/2)i = e−πy(cos(π(N + 1/2)) + i sin(π(N + 1/2))) =

e−iπz = ∓ie−πy

|cot(πz)| ≤
eπy − e−πy

eπy + e−πy
≤ 1.∣ ∣



Similar estimates hold on the two remaining sides of CN.

Theorem 6.5 now yields

Taking N → ∞ in (6.28) gives

Hence

(6.30)

Exercise 6.13.⋆  Use (6.30) to evaluate the sum

Suggestion for Further Reading

Theodore W. Gamelin. Complex Analysis. Springer, 2021.
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We start this chapter with the bridges of Königsberg problem. Euler's
description of the problem in terms of edges and vertices is the foundational
example in graph theory, showing how simple diagrams can contain all the
essential details of certain problems.

After looking at basic properties that apply to all graphs, we turn
attention to graphs that can be drawn in the plane (or on the sphere) without
edges crossing. These graphs can be characterized by the Euler
characteristic, a number calculated by counting the number of vertices,
edges and faces. We show that the regular polygons considered at the end of
the first chapter all have Euler characteristic of 2.

Next we consider graphs drawn on other surfaces. We see that the Euler
characteristic of the graph, if drawn in an appropriate way, gives a number
that characterizes the surface.

We then look at graph coloring and the four color problem. The proof of
the four color problem is the first major mathematical proof using a

https://doi.org/10.1201/9781003470915-7


computer, and so beyond the scope of this book. But we do give a proof of
the five color problem.

We briefly study Eulerian circuits and Hamiltonian cycles—ways of
traveling along the edges to every vertex. Here, we give Euler's solution to
the bridges of Königsberg problem. We see that two seemingly similar
problems are really quite different. This observation is important for
computer science and is discussed further in the last chapter.

As we mentioned, the Euler characteristic tells us about the surface on
which the graph is drawn. We conclude the chapter with a remarkable
theorem showing how the intrinsic geometry of a surface is linked to this
number.

7.1  HISTORY

Graph theory is generally considered to begin with Euler and the bridges of
Königsberg problem. The Pregel River ran through Königsberg (now
Kaliningrad, Russia). In the river were two islands. Seven bridges
connected the islands to one another and to the mainland. Figure 7.1 shows
a map of the city as it was in 1736. It depicts all of the smaller island, but
only a portion of the other island to its right. The smaller island has five
bridges: two connect it to the northern bank of the river; two to the southern
bank; the other bridge connects to the larger island. There are two other
bridges on the larger island connecting it to both banks of the river.



FIGURE 7.1  Map of Königsberg

The Königsberg bridge problem was to devise a walk that crossed each
bridge once and only once. There are four regions of land: the two islands,
the city north of the river, and the city south of the river. Euler realized he
could depict each of the regions as dots and the bridges as lines connecting
the dots as shown in figure 7.2.

FIGURE 7.2  Simplified map of Königsberg bridges



In 1736, Euler showed that there was no solution to the problem. We will
see his solution later.

Certain problems like this allow us to abstract the pertinent features to
form a model consisting of dots and lines connecting them. James Joseph
Sylvester coined the term “graph” for these networks. In 1891, Julius
Petersen wrote an article where instead of using them as a tool for solving
some other problem, he studied them as abstract objects in their own right.
Ever since this area of mathematics has been known as graph theory.
Instead of “dots” and “lines” the terms “vertices” and “edges” are used.

A graph consists of a finite set of vertices V together with a finite set of
edges E. Each edge connects two vertices. There is at most one edge
between any two vertices.

Example 7.1.  We will let V = {a, b, c, d}. The set E can be defined by the
vertices the edges connect. For our example, we let
E = {{a, b}, {a, c}, {b, c}}. The graph is depicted in figure 7.3.

FIGURE 7.3  Graph for example 7.1

Figure 7.2 has two edges going from the bottom vertex to the one on the
left. This is not allowed for a graph—there can be at most one edge between



any two vertices. If we allow more than one edge between two vertices we
call the structure a multigraph.

Multigraphs

Multigraphs are studied as a part of graph theory. We will look at them later
when we return to the Königsberg problem.

FIGURE 7.4  Leonhard Euler, portrait by Jacob Emanuel Handmann, 1753

Given a graph, we will let v denote the number of vertices and e the
number of edges. The degree of a vertex is the number of edges that attach
to it. So in figure 7.3 vertices a, b, and c have degree 2 and vertex d has
degree 0. It is straightforward to prove the following.

Theorem 7.1.  In any graph the sum of the degrees of the vertices equals
twice the number of edges.



Exercise 7.1.⋆  Prove Theorem 7.1.

We obtain the following corollary as an immediate consequence of
Theorem 7.1

Corollary 7.1.  In any graph there are an even number of vertices of odd
degree.

A standard example to illustrate these results is people shaking hands at a
party. The people attending the party correspond to the vertices and the
handshakes to edges. Theorem 7.1 tells us that the total number of
handshakes is even. Corollary 7.1 says there are an even number of people
who shake hands an odd number of times.

If a graph has v vertices and one vertex has edges connecting it to every
other vertex in the graph, it will have degree v − 1. If a vertex is isolated,
has no edges connected to it, it will have degree 0. The maximum degree a
vertex can have is v − 1, and the minimum is 0. This gives us v possibilities
for degrees of vertices, but notice that a graph cannot have both a vertex of
degree 0 and of degree v − 1. Since we have v vertices and we know it
cannot have one of each degree from 0 to v − 1, there must be two vertices
that have the same degree.

Theorem 7.2.  In any graph there will be two vertices that have the same
degree.

This tells us that two people at our party shook the same number of
hands.

We have shown that there must be at least two vertices with the same
degree, but it is possible that every vertex in a graph has the same degree. If
all the vertices have the same degree, the graph is called regular.



Sometimes the degree is attached, so r-regular is a regular graph in which
every vertex has degree r.

Exercise 7.2.⋆  Show that if a graph is 1-regular then it must have an even
number of vertices.

A graph is called complete if every pair of vertices is connected by an
edge. The complete graph with v vertices is denoted by Kv. K1 consists of a

single vertex; K2 has two vertices with an edge connecting them; K3 is a

triangle with three edges and three vertices; K4 is depicted in figure 7.5.

FIGURE 7.5  Complete graph with four vertices—K4

Exercise 7.3.  Draw K5. This graph is important later.

7.2  PLANAR GRAPHS

A graph is planar if it can be drawn in the plane (on a page) without any of
the edges crossing. If we can draw a graph in the plane and no edges cross,
then it is planar. However, if we have an example of a graph which has
edges crossing, it is not necessarily non-planar. For example, figure 7.6
shows a graph with four vertices and two edges. The graph is drawn with



two edges crossing, but this graph is planar because it is possible to draw it
without edges crossing. Figure 7.7 shows one way of redrawing the graph.

FIGURE 7.6  Graph with four vertices and two edges

FIGURE 7.7  Graph with four vertices and two edges redrawn

Exercise 7.4.⋆  Show K4 is planar.

K5 is nonplanar

We will show that K5 is nonplanar using a proof by contradiction. Let a, b,

c, d, and e denote the five vertices. We suppose someone has presented us
with a diagram of K5 with no edges crossing.



Since K5 is complete there are edges from a to b, from b to c, from c to d,

from d to e, and from e to a. These five edges form a loop. This loop
divides the plane into two regions: the finite one inside, and the infinite one
outside. Figure 7.8 shows the vertices with the loop.

FIGURE 7.8  Portion of K5 with loop

We have drawn five of the edges. There are another five edges that need
to be included: {a, c}, {a, d}, {b, d}, {b, e}, and {c, e}. Each of these
edges must lie entirely inside our loop or entirely outside. There are two
possibilities: either at least three of these edges lie inside, or at least three
edges lie outside.

Exercise 7.5.  Show that however you pick three edges from {a, c}, {a, d},
{b, d}, {b, e}, and {c, e} there will always be two that share a common
vertex.

First, we consider the case when three of the edges lie inside the loop.
The previous exercise shows that two of these edges share a common
vertex. We will assume this vertex is a but exactly the same argument
works for the other vertices. Figure 7.9 shows the graph with edges {a, c}

and {a, d} added. But now it is impossible to add the third edge and stay



inside the original loop. We conclude it is impossible to have three non-
crossing edges inside the loop.

FIGURE 7.9  Portion of K5 with more inside edges added

We now consider the case when at least three of the edges are outside the
loop. As before, we know that two of them must share a common vertex.
Again, we will assume it is a, but exactly the same argument works if you
choose any of the other vertices. Figure 7.10 shows the graph with edges
{a, c} and {a, d} added. But now it is impossible to add the third edge and
stay outside the original loop. We conclude it is impossible to have three
non-crossing edges outside the loop.

FIGURE 7.10  Portion of K5 with more inside edges added



We argued that if K5 was planar, then there has to be a drawing of the

graph in the plane with no edges crossing. This lead to the construction of a
loop and the observation that there must be at least three edges in the
interior or at least three edges outside the loop. We have shown neither of
these cases are possible. We conclude that no such drawing can exist. This
proves K5 is nonplanar.

Theorem 7.3.  K5 is nonplanar.

The three houses and three utilities problem

Suppose we have three utility companies and three houses. We want to
connect each of the three utilities to each of the three houses. We will
denote the utility companies by E (electricity), W (water), and G (gas), and
the houses by A, B, and C. Figure 7.11 shows a graph with the utilities,
houses and connections. The problem is whether this graph can be redrawn
without any of the edges crossing. Is this graph planar?

FIGURE 7.11  Three utilities and three houses

This graph is an example of a bipartite graph—a graph in which the
vertices can be divided into two disjoint sets V1 and V2 such that every edge



connects a vertex in V1 to V2. (There are no edges between vertices in V1,

and no edges between edges in V2.) For our utility graph the sets of vertices

are {E,W ,G} and {A,B,C}.
If every vertex in V1 connects to every vertex in V2, then we call it a

complete bipartite graph. The utility graph is a complete bipartite graph.
A complete bipartite graph is denoted by Kr,s, where r is the number of

vertices in V1 and s is the number of vertices in V2. Our utility graph is K3,3

.

Exercise 7.6.⋆

Show K2,3 is planar.

K3,3 is Nonplanar

We will show that K3,3 is nonplanar, and consequently there is no solution
to the utility problem in the plane with edges that don't cross. Our proof will
follow along the lines of the proof that K5 is nonplanar.

We first construct a loop containing all the vertices. We know that every
utility is connected to every house, so there must be the following edges:
{A,E}, {E,B}, {B, W}, {W, C}, {C,G}, and {G,A}. If K3,3 is planar there
is a graph in the plane with no edges that cross. Figure 7.12 depicts this
loop.



FIGURE 7.12  Portion of K3,3 with loop

We have drawn six of the edges. The missing three are: {A,W}, {B,G},
and {C,E}. There are two cases to consider: either at least two of these
edges lie inside the loop or at least two edges lie outside. We will show
neither is possible.

If we draw one of these edges inside the loop, it divides the interior of the
loop into two regions. Both the other two edges have one vertex on one side
of this new edge and the other vertex on the other side. It is impossible to
draw either of these edges inside the region without crossing the new edge.
We conclude there can be at most one of {A,W}, {B,G}, and {C,E} inside
the loop. (Figure 7.13 shows the loop with one interior edge.)

FIGURE 7.13  Portion of K3,3 with loop and one interior edge



If we draw one of the edges outside the loop, it divides the exterior of the
loop into two regions: one has finite area the other is infinite. It is
impossible to draw either of the other two edges outside the original loop
without crossing the new edge. We conclude there can be at most one of
{A,W}, {B,G}, and {C,E} outside the loop. (Figure 7.14 shows the loop
with one exterior edge.)

FIGURE 7.14  Portion of K3,3 with loop and one exterior edge

We argued that if K3,3 was planar, then there has to be a drawing of the
graph in the plane with no edges crossing. This lead to the construction of a
loop and the observation that there must be at least two edges in the interior
or at least two edges outside the loop. We have shown neither of these cases
are possible. We conclude that no such drawing can exist. This proves K3,3

is nonplanar.

Theorem 7.4.  K3,3 is nonplanar.

Kuratowski's Theorem

A graph H is a subdivision of a graph G if either H = G or H can be
obtained from G by inserting new vertices into the edges. If we add a vertex



to an edge, the original edge is ‘chopped’ to form two edges in the new
graph. All the new vertices have degree 2. Figure 7.15 shows a graph G on
the left and a subdivision H on the right. In this graph, the edge from a to c
has two new vertices added. The original edge in G becomes three edges in
H,

FIGURE 7.15  A graph G with a subdivision H

Adding vertices does not affect whether a graph is or is not planar. All
graphs that are subdivisions of K5 are nonplanar and all graphs that are

subdivisions of K3,3 are nonplanar. It might seem that subdivisions of K5

and K3,3 are very special types of nonplanar graphs, but it turns out that if a
graph is nonplanar then one of these graphs is contained within it.

A graph H is a subgraph of a graph G if either H = G or H can be
obtained from G by removing edges and vertices. Edges must end in
vertices, so when a vertex is removed all the edges that connect to that
vertex must also be removed. Figure 7.16 shows a graph G on the left and a
subgraph H on the right.



FIGURE 7.16  A graph G with a subgraph H

The Polish mathematician Kazimierz Kuratowski published the following
remarkable theorem in 1930. This result was also proved independently by
Orrin Frank and Paul Smith around the same time, but Kuratowski was first
to publish, and the theorem is now named after him.

Theorem 7.5.  A graph is planar if and only if it does not contain a
subdivision of K5 or K3,3 as a subgraph.

7.3  THE EULER CHARACTERISTIC

Table 7.1 lists the five Platonic solids. For each solid, the number of
vertices, edges and faces are listed.

TABLE 7.1 The five Platonic solids with numbers of
vertices, edges, and faces

Platonic
solid

Vertices Edges Faces v − e + f

Tetrahedron 4 6 4 2
Cube 8 12 6 2



Platonic
solid

Vertices Edges Faces v − e + f

Octahedron 6 12 8 2
Dodecahedron 20 30 12 2
Icosahedron 12 30 20 2

We will let v, e, and f stand for the number of vertices, edges, and faces.
Euler noticed that for each of the solids, the sum v − e + f always equals
2. This number is called the Euler characteristic

We can represent each of these solids as graphs in the plane by removing
one face and then stretching the remaining object until it is planar. Figure
7.17 shows three of these graphs. We leave the other two as an exercise for
the interested reader.

Long Description for Figure 7.17

FIGURE 7.17  Planar graphs of three Platonic solids

The enclosed regions are called faces. We also call the infinite region
around the graph a face, sometimes it is called the infinite face. It
corresponds to the face we removed from the solid before stretching it.



Counting the infinite face as a face means our relationship v − e + f = 2 is
preserved.

We will show that this equation holds for all connected planar graphs.
Connected means that given any two vertices in the graph there is a path
along edges that connects them.

Exercise 7.7.⋆  Show that for any m > 2 there is a disconnected planar
graph with v − e + f = m.

Trees

Every planar graph has the infinite face, so the number of faces must be at
least one. Connected planar graphs that only have one face—the infinite
face—are called trees. Figure 7.18 shows three trees that each have five
vertices.

FIGURE 7.18  Three trees with five vertices

The degrees of the vertices are either 1 or 2. The edges that have a vertex
of degree 1 are called leaves. Every tree with three or more vertices must
have at least two leaves. Figure 7.18 shows trees with 2,3 and 4 leaves.

Theorem 7.6.  Every tree with v vertices has v − 1 edges.

Proof. We will use a proof by induction on the number of vertices. The tree
with 1 vertex has no edges, and so the theorem is true in this case. The tree



with two vertices has one edge between them. Again, the tree is true for
v = 2.

Now suppose that we have proved the theorem for all trees with n or
fewer vertices. We will show it must hold for all trees with n + 1 vertices.

Suppose we have a tree with n + 1 vertices, then it has at least two
leaves. Pick one of them and remove this edge. Also remove the degree one
vertex that is attached to this edge. We now have a tree with n vertices, by
our inductive hypotheses we know this tree has n − 1 edges. To get our
original tree we must add back one edge and one vertex, giving n + 1

vertices and n edges.

□

Corollary 7.2.  For any tree, v − e + f = 2.

We know that trees only have the infinite face, so f = 1. We obtain

The Euler Characteristic for Planar Graphs

We now prove that the Euler characteristic of any connected planar graph is
2.

Theorem 7.7.  Given any connected planar graph with v vertices, e edges
and f faces, v − e + f = 2.

Proof. We know the result is true for trees, so we need only consider the
cases where the number of faces is 2 or greater. We will use induction on
the number of edges. Connected graphs with 0, 1 or two edges are trees. We
begin our induction with e = 3. There is one connected graph with e = 3

v − e + f = v − (v − 1) + 1 = 2.



and f = 2. This is a triangle with three vertices, three edges and two faces.
This example has v − e + f = 2.

Suppose that we have proved the formula for all connected planar graphs
with two or more faces that have n or fewer edges. Suppose that we are
given a connected planar graph with two or more faces having n + 1 edges.
We will show this graph must have Euler characteristic 2.

Given the graph, we know there are two or more faces. There must be a
finite face. The edges that form the boundary of this face have the finite
face on one side and another face on the other side (possibly the infinite
face). If we remove one of these edges the two faces that we separated by
the edge become connected. This results in a graph that has one fewer faces
and one fewer edge.

This new graph with the removed edge has n edges. If the new graph is a
tree, we know it has Euler characteristic 2. If the new graph is not a tree,
then by the inductive hypothesis it has Euler characteristic 2.

If we add the edge back to get the graph with n + 1 edges we increase e
and f by 1, but v is unchanged. This means the Euler characteristic is still 2.

□

Each edge in a planar graph has a face on either side. It is possible for an
edge to have the same face on both sides. Figure 7.19 shows a planar graph
with the edges labeled. Edges E5 and E3 have one face on both sides. All the

other edges have the finite face on one side and the infinite face on the
other. The boundary of a face consists of all the edges that have that face on
one or both sides. So, in the example, the boundary of the finite face
consists of the five edges E1, E2, E4, E6, and E5. The boundary of the

infinite face has five edges—all the edges except for E5.



FIGURE 7.19  Planar graph with edges labeled

Theorem 7.8.  Given a connected planar graph with e edges and v
vertices. If v ≥ 3, then e ≤ 3v − 6.

Proof. If v = 3, then the only connected graphs are a tree with two edges or
triangle with three edges, so the theorem is true in this case. We need to
prove the theorem for v > 3.

Draw the graph in the plane. Let F1,F2, … ,Ff  denote the faces. We
define ei to be the number of edges on face Fi. Every face has at least three

edges. So,

Edges are either on the boundary of two faces or on the boundary of one
face, so

Combining the two inequalities tells us

3f ≤
f

∑
i=1

ei.

f

∑
i=1

ei ≤ 2e.



We have a connected planar graph, so v − e + f = 2. Using
f = 2 + e − v, we obtain

Rearranging gives

□

We can use this theorem to obtain a result concerning the degrees of
vertices that we will need later.

Corollary 7.3.  In any connected planar graph there is a vertex with
degree 5 or less.

Proof. If the graph has less than 6 vertices, then it cannot have a vertex of
degree 6 or greater.

Suppose, for a contradiction, that we have a connected planar graph with
6 or more vertices and that every vertex has degree of 6 or greater. The sum
of the degrees will be greater than or equal to 6v. We know by Theorem 7.1
that the sum of the degrees is twice the number of edges. This tells us

3f ≤ 2e.

6e + 3e − 3v ≤ 2e.

e ≤ 3v − 6.

2e ≥ 6v,



or, equivalently,

but this contradicts

□

7.4  NONPLANAR GRAPHS

By definition, planar graphs can be drawn in the plane in such a way that no
edges cross. We can also talk about graphs that can be drawn on the surface
of a sphere without edge crossings. These sets of graphs are identical. The
fact that planar graphs can be drawn on the sphere without edge crossings is
not surprising. Draw the graph on the ground, and then zoom out until you
see it as a tiny graph on the surface of the earth. The fact that graphs on the
sphere without edge crossings are planar, is more surprising. But it is
always possible to use the method we used for converting Platonic solids to
planar graphs—delete a face and then stretch and flatten the remaining
surface until its part of a plane.

The genus of a closed surface counts the number of ‘holes’ it has. A
sphere has genus 0, a torus has genus 1, a torus with a handle attached has
genus 2, and so on. If we are given a graph that is not planar—every
drawing of it in the plane has edges that cross. However, it is possible to
draw it without edge crossings on a surface of higher genus. If a graph can
be drawn without edge crossings on a surface with genus g but not on a

e ≥ 3v,

e ≤ 3v − 6.



surface with lower genus, we say the graph has genus g. Planar graphs have
genus 0. We will look at some graphs with genus 1.

Graphs with Genus 1

We will be drawing graphs on the torus. To visualize these graphs it helps to
picture the torus as a rectangle with opposite sides identified. Figure 7.20
shows a torus along with two circles. The red circle goes around the hole
and the blue circle goes through the hole. Any circle drawn in the plane, or
on a sphere, has the property that they can be continuously deformed and
shrunk down to a point. The two circles on the torus do not have this
property. This is an important point, and we will return to it.

FIGURE 7.20  Torus

If we cut along the blue circle, and then straighten out the tube, we obtain
the cylinder shown in figure 7.21. The two blue circles at the end of the
tube need to be glued back the obtain the torus. The red line has its ends
identified. Remember that it is a circle on the torus.

FIGURE 7.21  Torus after cutting along blue circle



We can now cut along the red line and unroll the cylinder to form a
rectangle as shown in figure 7.22. The top and bottom edges are both red to
help us to remember they, like the blue edges, need to be glued together to
obtain the torus.

FIGURE 7.22  Torus after cutting along both circles

We will now try to draw the utilities graph K3,3 on the torus. We begin
by taking the partial graph depicted in figure 7.13 to obtain figure 7.23. We
colored the three regions by yellow, green and white, but we have to be
careful. A face is something that can be stretched or shrunk, but not cut, to
obtain a polygonal face. The yellow and green regions are faces, but the
white region is not. The white region corresponds to a torus with a hole cut
from it. It contains the red and blue circles that cannot be shrunk down to a
point.



FIGURE 7.23  Part of K3,3

We will now connect C to E by going through the hole of the torus. This
is shown in figure 7.24. There are three distinct connected regions. Notice
that the left of the white region is connected to the right when we glue the
two blue sides. However, once again, this white region is not a face. We
have chopped the red circle using an edge, but we still have the blue circle.

FIGURE 7.24  Adding another edge



Finally we add the last edge from B to G. Figure 7.25 shows the graph
and the three connected regions. The white region is connected—the top is
glued to the bottom and the left part to the right. However, we have edges
that chop through both the red and blue circles. The white region is now a
face.

FIGURE 7.25  The graph of K3,3

We have constructed a graph of K3,3 on the torus. We know K3,3 is
nonplanar, so it has genus 1. The graph has 6 vertices, 9 edges and 3 faces.
The Euler characteristic v − e + f is 6 − 9 + 3 = 0.

Whenever we draw a graph of a surface without edge crossings it will
always chop the surface into regions. If the graph has a genus that is less
than the surface, then at least one of the regions contains a ‘hole’ and,
consequently, is not a face. However, the graph and surface have the same
genus, the graph can be drawn on the surface in such a way that all the
regions will be faces.

Figure 7.26 shows K5 drawn on the torus without edge crossings. Like

K3,3, it is genus 1. It has 5 vertices, 10 edges and 5 faces, and Euler



characteristic 0.

Long Description for Figure 7.26

FIGURE 7.26  Graph of K5 without and with faces colored

Every planar graph has Euler characteristic 2. Every graph of genus 1 has
Euler characteristic 0. Theorem 7.7 generalizes the result for graphs of any
genus.

Theorem 7.9.  Any connected graph of genus g has Euler characteristic
2 − 2g.

From this theorem we can get a formula for the genus of a surface that
involves the number of vertices, edges and faces of a graph. In algebraic
topology this fact is used when shifting the focus to surfaces. Given a
surface, we can triangulate it, then calculate the genus from the
triangulation. This approach generalizes to higher dimensions, For a three-
dimensional object, we can chop it into tetrahedrons. In general, these
higher dimensional analogs of triangulations are called simplicial
complexes.



7.5  COLORING

England is divided into regions called counties. Maps of England showing
the counties usually have a coloring scheme in which neighboring counties
have different colors. Francis Guthrie wondered what was the minimum
number of colors needed. He looked at various maps and found examples of
where four colors were needed, but none that needed five or more colors.
He conjectured that any map could be colored with four colors. Guthrie's
brother was studying mathematics with Augustus De Morgan, and in 1852
showed him Francis Guthrie's work. De Morgan found the problem
interesting. This problem became known as the four color problem. Figure
7.27 shows an example of a map with four regions that needs four colors.

FIGURE 7.27  Four regions needing four colors

Given a map, we can draw a graph by shrinking the regions to vertices
and drawing an edge between vertices when the corresponding regions
share a border. Then color the vertices according to the color of the regions.



FIGURE 7.28  Graph corresponding to regions in figure 7.27

Chromatic Number

We say two vertices in a graph are adjacent if there is an edge that connects
them. A vertex coloring of a graph assigns colors to each of the vertices in
such a way no adjacent vertices have the same color. The chromatic number
is the smallest number of colors needed for a vertex coloring.

If a graph has at least one edge, then since the two vertices it connects to
have different colors, it must have chromatic number of at least 2.

Exercise 7.8.⋆  Show any tree with at least one edge has chromatic number
2.

Exercise 7.9.  Show any bipartite graph has chromatic number 2.

Exercise 7.10.⋆  Show that the complete graph on v vertices has chromatic
number v.

The four color problem can be restated as saying that every planar graph
has chromatic number of 4 or less. In 1879, Alfred Kempe published a
paper in which he claimed to have proved this. In 1890, Percy John
Heawood showed the purported proof was incorrect. Heawood, using the
ideas from Kempe, was able to prove the five color theorem.

The five color theorem



We will follow the work of Kempe and Heawood to prove the five color
theorem.

Theorem 7.10.  The chromatic number of any planar graph is 5 or less.

Proof. It is possible that the planar graph is disconnected. If it is, its
chromatic number will be the largest chromatic number of its connected
subgraphs, so we only need to prove the result for connected graphs.

We will use a proof by induction on the number of vertices. Clearly, the
chromatic number of any planar graph with 5 or fewer vertices cannot be
greater than 5. We will now show that if a planar graph with n vertices can
be colored with 5 or fewer colors, then so can any planar graph with n + 1

vertices.
Suppose we are given a planar graph G with n + 1 vertices. Corollary

7.3 tells us there must be a vertex V of degree five or less. Form the graph
G′ by removing V and any edges incident to it. Since G′ has n vertices it
can, by the inductive hypothesis, be colored with five or fewer colors.
Choose a coloring for G′ that uses at most five colors.

We will now add the vertex V and its edges back to obtain G. If the
degree of V is less than 5, then V will be adjacent to at most 4 vertices.
These vertices will have at most 4 colors, so there is at least one color left to
color V.

We now have to consider the case when the degree of V is 5. The vertex
V is adjacent to 5 vertices. If two or more of the adjacent vertices have the
same color, there will be a color left over for V.

We now need to see what to do in the case when the 5 adjacent vertices
are colored with all 5 colors. We will label the vertices in counterclockwise
order as V1, V2, V3, V4, and V5 and let the corresponding colors be black,

white, red, green, yellow. Figure 7.29 depicts the vertices and colors. (The



vertex V is shown as gray. This is not another color, but just meant to
indicate the absence of a color.)

FIGURE 7.29  Vertex V with adjacent vertices

The colors associated with vertices V1 and V3 are black and red,

respectively. We are now going to construct a connected subgraph
consisting of only black and red vertices. We begin at V1 and add any

adjacent vertices that are colored red or black along with their associated
edges. We keep on adding any black or red vertices adjacent to any vertices
we have already added. We also add the corresponding edges. This process
eventually results in a connected subgraph H1,3 of G containing V1 with all

vertices colored red or black. This subgraph is maximal in the sense that if
there is a red or black vertex that is not in H1,3 it is not adjacent to any of
the vertices in H1,3. We can then flip the coloring of the vertices in H and
obtain a new vertex coloring of G. After we flip the colors, V1 will be

colored red.
There are now two possibilities. If V3 is not in H1,3, it will remain

colored red, and this frees up black for V, and we have a coloring for G. If
V3 is in H, then its color is flipped to black, and V still has adjacent vertices

using all five colors. This second possibility seems problematic, but if it



occurs we can deduce there is a path from V1 to V3 that only has red and

black vertices.
If flipping the vertex coloring results in both the colors of V1 and V3

being flipped, we can perform the same trick using vertices V2 and V4. This

flips the color of V2 from white to green. If the color of V4 is still green, it

frees up white to color V.
At this stage there seems to be a problem. What happens if when we flip

the white-green colors V4 gets flipped to white? If V4 gets flipped, there will

be a path from V2 to V4 with only green and white vertices. We will show

this cannot occur.
Since our graph is planar, there cannot be a path from V1 to V3 and

another non-intersecting path from V2 to V4. If a first attempt at flipping the

vertex coloring results in both the colors of V1 and V3 being flipped, the

second attempt will change the color of V2 to green, but the color of V4 does

not get flipped. It remains green. We can then color V white to obtain a
coloring of G.

□

The four color theorem

The four color theorem was finally proved in 1976 by Kenneth Appel and
Wolfgang Haken. This proof was somewhat controversial. Appel and Haken
reduced the problem to checking whether 1476 graphs could colored using
four colors. They then used a computer program to find colorings of these
graphs. It took over 1,000 hours of computer time.

In 1996, Neil Robertson, Daniel Sanders, Paul Seymour, and Robin
Thomas simplified the proof. They reduced the number of graphs that



needed checking to 633. They also used a computer but with a more
efficient algorithm.

The theorem has been proved, but there is no known proof that does not
use a computer.

7.6  EULER CIRCUITS AND HAMILTONIAN CYCLES

There are various ways of traversing a graph. We always start at a vertex
then go along an edge connected to the vertex to the adjacent vertex, and
repeat the process, ending at another vertex. This gives a sequence of
vertices and edges. We use the term path if we are not allowed to repeat any
edge or any vertex. Sometimes we want to be less restrictive. If we are
allowed to repeat vertices, but not edges, we call the sequence a trail. A trail
that begins and ends at the same vertex is called a circuit. An Eulerian trail
is a trail in a graph that uses all the edges, and an Eulerian circuit is a
circuit that uses all the edges.

It is straightforward to tell whether or not a graph has an Eulerian trail or
circuit. We begin with circuits.

Theorem 7.11.  A connected graph has an Eulerian circuit if and only if
every vertex has an even degree.

Proof. There are two parts to the proof. We start by showing that if the
graph has an Eulerian circuit, then every vertex has even degree. After we
will show the converse: if every vertex has even degree, then we can find an
Eulerian circuit.

Suppose we are given a graph and an Eulerian circuit. We can start at any
vertex V and follow the trail. Since we have a circuit, the trail will also end
at V. The trail uses all the edges, so it must contain all the vertices.
Whenever the trail enters a vertex W along an edge, it must leave along



another edge, so W must have even degree. The only exception is V. We are
thinking of the trail ending at V, but the trail also begins at V, so it must also
have even degree.

For the converse, suppose we are given a connected graph and every
vertex has even degree. We pick a vertex V. We construct a trail by
choosing an edge we have not previously included. Eventually the process
will end. It cannot end at any other vertex but V, because they all the
vertices have even degree. So, we have a circuit, but it might not contain
every edge. We will denote this circuit by C1. If not every edge in the graph

is in the circuit, then, because our graph is connected, there must be an edge
not C1 that is incident to a vertex in our circuit. Choose one of these

vertices, W. Starting at W, construct a trail by using edges that are not in C1.

As before, the process will end at the starting vertex W.
We construct the circuit C2 by starting at V following along C1 until we

get to W. Then we go around the circuit we just found, returning to W. After
this we continue along C1 until we get back to V.

If C2 contains all the edges, we are done. If not, there will be an edge that

we have not used incident to a vertex in C2. We repeat the process of

finding a circuit consisting of edges we haven't previously used and
adjoining it.

We keep repeating the process until all the edges are used and we have an
Eulerian circuit.

□

An open trail is a trail where the beginning and ending vertices are
distinct.



Theorem 7.12.  A connected graph has an open Eulerian trail if and only
if it has exactly two odd vertices.

Exercise 7.11.  Prove Theorem 7.12 by adding an additional vertex
connected by two edges to the vertices of odd degree.

An Eulerian circuit is a trail through the graph which uses each edge
exactly once. We can also ask about visiting vertices exactly once. A
Hamiltonian path is a path through a graph that contains all of the vertices.
If the starting vertex is the same as the ending vertex, we have a
Hamiltonian cycle.

These are named after William Rowan Hamilton. Hamilton did important
work in both mathematics and physics. He also invented the icosian game
in 1857. This was a planar graph representing an icosahedron. The vertices
were labeled with the names of cities. The challenge was to travel along the
edges visiting each city once and only once, before ending at the starting
city. Hamilton was interested in symmetries of the icosahedron, but the
game was a commercial venture. Hamilton sold the rights for 25 pounds to
Jaques of London, who then marketed throughout Europe. It was an easy
puzzle to solve, and not a commercial success.

We know that if a connected graph has an Eulerian circuit if and only if
every vertex has even degree. To prove this, we used an algorithm for
finding the circuit. We might expect there is a simple criterion for telling
whether a connected graph has a Hamiltonian cycle, and a simple algorithm
for finding one. Neither of these are true. There is no known simple
criterion that tells us whether or not a graph has a Hamiltonian cycle. There
are algorithms for finding these cycles, using extensive searches through all
the possibilities, but they are not fast.



A related question is the traveling salesperson problem. In this, a graph is
given with the vertices representing cities. The edges between the vertices
represent roads. Each edge has a number giving the distance between the
cities. The problem is to find the shortest route that begins and starts at the
same city and visits every other city exactly once. This problem has many
practical applications and has been extensively studied. An important
outstanding question is whether there is an algorithm for solving the
Hamiltonian path problem, or traveling salesperson problem, in polynomial
time. We will come back to this in the last chapter.

Multigraphs

A multigraph is a graph except we allow the possibility of having more than
one edge between two vertices. The graph for the Königsberg bridge
problem, figure 7.2, is an example. We extend our definitions for trails from
graphs to multigraphs in the obvious way: An Eulerian trail is a trail
through the multigraph that uses each edge once; an Eulerian circuit is an
Eulerian trail that starts and ends at the same vertex.

The criteria for Eulerian circuits and open trails can be generalized from
graphs to multigraphs. We leave it to the reader to check this.

Theorem 7.13.  A connected multigraph has an Eulerian circuit if and only
if every vertex has an even degree.

Theorem 7.14.  A connected multigraph has an open Eulerian trail if and
only if it has exactly two odd vertices.

The graph for the Königsberg bridge problem has four vertices. All of
them have odd degree, so it does not have an Eulerian circuit or an open
Eulerian trail.



7.7  GAUSSIAN CURVATURE AND THE GAUSS–BONNET
THEOREM

The Gauss–Bonnet theorem properly belongs to the area of mathematics
known as Differential Geometry, where calculus is used to frame and solve
geometrical problems. The reason for including it in a chapter on Graph
Theory is that, as we will shortly see, the theorem also involves the Euler
characteristic introduced in Section 7.4.

We start by considering the following question: how curved is a (planar)
curve? What we are asking for here is a number to assign each point on the
curve which indicates the degree of curvature at that point.

A natural approach to the problem is as follows: proceed along the curve
at a steady rate and keep track of the angle θ between the tangent line to the
curve and the horizontal (see figures 7.30 and 7.31). If θ is changing fast
then we are at a place of high curvature (we need a hairpin bend sign!). But
there is a natural measure of the rate of change of a function: the derivative.
We thus define the curvature κ at point P on the curve to be

FIGURE 7.30  Tangent on a line

κ = |θ′(s)|,



FIGURE 7.31  Tangent on a circle

where absolute value is included to make curvature a non-negative quantity.
For example, in figure 7.30, θ = θ0 is constant, hence κ = 0. By

contrast, for the arc of the circle with radius R depicted in figure 7.31,

Hence κ = 1/R.
We now turn to the notion of the curvature of a surface. Gauss devised a

splendid way to measure this: At any point P on the surface, consider the
normal line L to the surface at P (the line perpendicular to the tangent
plane). Then consider a plane containing L and rotate the plane about L. As
the plane rotates through 180∘ it cuts the surface in a family of curves. Let
κ1 and κ2 denote the smallest and the largest of the curvatures, called the

principal curvatures (see figure 7.32). The Gaussian curvature κ of the
surface at P is defined by

θ =
π

2
−

θ

R
.

κ = ±κ1κ2



FIGURE 7.32  A saddle with principal curves indicated (author Eric Gaba)

with the convention that the sign is chosen according to whether the
principal curves lie on the (positive) same, or opposite (negative) sides, of
the tangent plane at P.

A couple of examples. Consider (a region of) the sphere of radius R.
Clearly, every normal plane cuts the sphere in a great circle, of radius R.
Thus κ1 = κ2 = 1/R, hence κ = 1/R2.

Now consider a piece of a cylinder of radius R. Then, at any point, the
curvature κ1 in the direction along the cylinder is zero, while κ2, the

curvature transverse to the cylinder is 1/R; thus κ = 0. The sphere and the
cylinder are examples of surfaces of constant curvature, but in general
Gaussian curvature will vary from point to point on a surface, consider, e.g.,
a squashed balloon.

The most fundamental property of Gaussian curvature is that it is
intrinsic to the surface. By this is meant the following: imagine wadding up
a flat sheet of paper ready to toss into the trash. The sheet prior to wadding,



and after, looks quite different. But this difference is, in one sense, illusory,
due to the fact that we are looking at a two-dimensional world through 3-
dimension eyes. A sheet of paper, although flexible, is non-elastic; while it
can be bent and twisted, it cannot be stretched or compressed. As a
consequence, the distance between any two points on the surface (as
measured by the length of the shortest path in the surface between the two
points) is unchanged in the wadding. To a hypothetical two-dimensional
resident of the surface, who has no knowledge of three-dimensional space,
the flat and the wadded ball of paper would appear identical! We say that
the two surfaces are isometric. Gaussian curvature is an isometric invariant:
two isometric surfaces have identical Gaussian curvatures at corresponding
points. Thus the wadded up paper has Gaussian curvature zero at every
point (the same as the flat plane). On the other hand, the fact that the sphere
and the plane have different Gaussian curvatures implies that they are not
isometric. This explains why it is impossible to make a flat map of the
world that does not distort distances.

The intrinsic nature of Gaussian curvature seems remarkable in light of
the definition given above, since the two principal curvatures are generally
non-intrinsic. Consider a piece of a cylinder and the region of the plane
formed by unrolling so that it is flat. The two surfaces are isometric, yet
have different principal curvatures (at least in the direction transverse to the
cylinder). The point is that the product of the curvatures–0–are in
agreement. Gauss proved the isometric invariance of his curvature. He must
have been (justly) proud of this work for, of all his mathematical
discoveries, he named it his Theorema Egregium (“remarkable theorem”).

The Gauss–Bonnet theorem relates the Gaussian curvature of a surface
and the Euler characteristic of the surface.



Theorem 7.15.  (Gauss–Bonnet) Let S denote a closed compact orientable
surface with Gaussian curvature κ and Euler characteristic χ.1 Then

(7.1)

The integral in (7.1) measures the “total curvature” on the surface.
Consider the case when S is a sphere with radius R. Since κ = 1/R2 is
constant, the integral is

where A is the surface area of the sphere. Having no holes, the sphere has
Euler characteristic χ = 2. The Gauss–Bonnet theorem thus yields

the well-known formula for the surface area of a sphere with radius R.
____________________

  1To say that a surface is closed and compact means that the surface is finite in extent and without
boundary, such as the sphere or the torus, as opposed to a bottle, which has a boundary at the rim.
“Orientable” is a technical condition needed to make sense of the area element dA in the formula. An
orientable surface is one with a continuously defined normal direction. It amounts to saying that the
surface has an inside and an outside. For example, the sphere and the torus are orientable surfaces,
while the Möbius strip is not. Recall that χ = 2(1 − g) where g is the genus of the surface, i.e., the
number of holes.

∫
S

κ dA = 2πχ.

1

R2
× A,

A = 4πR2



The Gauss–Bonnet theorem is one of the most amazing results in
mathematics. To get a feel for just how amazing, consider a spherical
balloon. It has total curvature 4π. Now suppose the balloon is twisted into
the shape of a balloon dog. The curvatures obviously change in the
transformation from balloon to dog, probably at every single point. But
somehow, it all evens out in the long run and the total amount of curvature
on the dog again ends up being 4π!

Is this plausible? We offer a few examples in this direction. Consider first
what happens when we blow air into a balloon. The curvature of the balloon
decreases at every point as the balloon inflates, at the same time the surface
of the balloon increases. These opposing tendencies counteract each other
and the total curvature on the balloon remains the same, i.e., 4π.

Consider a donut (torus), which has genus 1 and hence Euler
characteristic 0. Gauss–Bonnet tells us that the total curvature is zero. Why
does the sphere have positive curvature, while for the torus, the curvature is
zero? Because the torus, unlike the sphere, has both regions of positive and
negative curvature. The regions of negative curvature occur around the
hole, as illustrated in figure 7.33. The positive and negative curvatures
cancel each other out, and the total curvature is zero.



FIGURE 7.33  Negative and positive curvature on a torus (author Gregors)

Suppose we punch another hole in the torus, to create a surface with
genus 2 (figure 7.34). The presence of the extra hole creates more negative
curvature on the surface, and Gauss–Bonnet tells us that the total curvature
is now −4π. And so it goes …

FIGURE 7.34  A two-holed torus (from Wolfram MathWorld)

Suggestion for Further Reading

Nora Hartsfield, Gerhard Ringel Pearls in Graph Theory. Dover
Publications, 2013

Richard J. Trudeau Introduction to Graph Theory. 2nd Edition. Dover
Publications, 1994.
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The subject of Probability, with its origins in games of chance, is almost as
old as humanity itself. We begin this chapter with a historical introduction
to the subject.

Sections 8.2–8.4 deal with discrete probability, based on counting
arguments. The techniques are used to solve several problems of general
interest, e.g., calculating odds in poker, analyzing a two party gambling
game, and the so-called problem of points (how to divide the stakes when a
gambling game is interrupted before its conclusion). Also discussed is the
random walk in one and two-dimensions.

In the second half of the chapter, the reader is introduced to continuous
probability models. Topics covered include the normal distribution, the
strong law of large numbers and the central limit theorem. The role of
probabilistic methods in mathematical statistics is indicated by means of an
example. The chapter concludes with an application of probability to
number theory in the form of the normal number theorem.
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8.1  HISTORY

Almost every primitive culture engaged in some form of dice play. The
predecessor of the die was a tarsal bone (the astragalus) taken from the
hind foot of a hoofed animal. The astragalus can rest on only four sides, two
broad and two narrow, differing sufficiently in appearance to make them
distinguishable.

Dice games are thought to have evolved from divination rites. A question
was posed to a god by a priest; the dice were cast on the sacred ground, and
the god's answer deduced from the outcome. One of the games in ancient
Greece consisted of the simultaneous casting of four astragali and noting
which sides fell uppermost. The throw of highest value was generally
considered to be the one that showed the four different faces of the four
bones (the “throw of Venus”).

The six-sided die may have been obtained by grinding down the
astragalus until a cube was formed. The earliest known dice were
discovered in northern Iraq, and date from 3000 BCE. They were made
from fried pottery, and the faces marked with from one to six dots in the
fashion of today. Gambling with dice was a commonplace recreation in
ancient Rome. The Emperor Claudius was supposed to be so devoted to
dicing that he wrote a book on the subject, and used to play while riding his
chariot. (A precursor to our present day practice of texting while driving?)
Gambling was declared to be immoral by many civilizations and both the
Jews and the Christians had laws forbidding it.

The origin of card play is variously attributed to the Egyptians, the
Chinese, and the Indians. The first playing cards made in Europe were very
fancy hand-painted affairs, available only to the upper classes. With the
advent of printing, playing cards became widely available. Around 1500,



the French developed the present suits of spades, hearts, clubs, and
diamonds.

Cardano's Liber de Ludo Aleae, published in 1663, is generally
considered to be first work linking games of chance to mathematics. Herein,
Cardano gave the definition of the probability of an event as the number of
ways of achieving the event, divided by the totality of possible outcomes.
Cardano investigated the probabilities of casting astragali and one or
several dice, and he calculated the probabilities of the occurrence of certain
card combinations in the game of pimero (similar to poker). A passage in a
chapter entitled “On the Cast of One Die” reads

I am as able to throw 1, 3, or 5, as 2, 4, or 6. The wagers are therefore
laid in accordance with this equality if the die is honest and, if not, they are
made so much the larger or smaller in proportion with the departure from
true equality.

In 1494, Fra Luca Pacioli posed the following problem:
A team plays ball so that a total of 60 points is required to win the game

and the stakes are 22 ducats. By some incident, they cannot finish the game
and one side has 50 points, and the other 30. What share of the prize
belongs to each side?

Fra Luca's solution to this so called “problem of points” was that the
stakes should be divided in the proportion 5:3, the ratio of points already
scored. Cardano pointed out that this reasoning is incorrect since it fails to
take into account the number of points yet to be scored. He then proceeded
to give his own solution, also incorrect. Perhaps the most remarkable
feature of Cardano's solution was the acerbic manner in which it was
presented, “And there is an evident error in the determination of the game
problem as even a child should recognize, while he [Fra Luca] criticizes
others, and praises his own excellent opinion.” Tartaglia (Cardano's bitter



enemy, it will be recalled in the matter of publication of the solution to the
cubic equation) then weighed in with his own solution, also wrong. The
problem of points was proving to be a rather hard nut to crack. The correct
solution, that the stakes should be awarded in the ratio 7:1, was only
discovered by Blaise Pascal (1622–1663) in 1654. (It will be presented in
the next section.) Fermat also discovered the solution around the same time.
In the course of their ensuing correspondence, Pascal and Fermat laid the
foundations for a mathematical theory of probability.

James Bernoulli (1654–1705) made a major contribution to probability
theory in his Ars Conjectandi, published in 1713. In this work Bernoulli
proved a version of the Law of Large Numbers: suppose E is an event that
occurs with probability p. Then the proportion of such events that occur in a
sequence of independent trials approaches p as the number of trials
becomes arbitrarily large. This is crucial for the application of probability in
statistics. The relevance of the law is that it links the theoretical probability
p of the event with the proportion of times the event is likely to occur in
actual practice.

Another major figure in the history of probability theory is Pierre Simon
Laplace (1749–1827). Laplace wrote several influential books on the
subject, including his Thèorie Analytique des Probabilités, published in
1812. Herein, Laplace gave a formal definition of classical probability
along the lines suggested by Cardano and formulated the fundamental
principles of the subject. Further important contributions followed, by
Daniel Bernoulli, Poisson, Chebyshev, and Markov.



FIGURE 8.1  A. N. Kolmogorov, courtesy of Konrad Jacobs, Erlangen

Perhaps the most important probabilist of the twentieth century was the
Russian mathematician Andrey Nikolaevich Kolmogorov (1903–1987). In
his fundamental work Foundations of Probability, Kolmogorov developed a
series of axioms for the subject and set the stage for a myriad of
developments that were to follow. Among Kolmogorov's early contributions
to probability theory were new proofs of the two fundamental limit laws,
the Strong Law of Large Numbers and the Central Limit Theorem. Another
highly significant achievement of Kolmogorov was an equation establishing
a link between probability theory and Fourier's theory of heat.

Further impetus to the development of modern probability theory was the
desire to provide a mathematical foundation to the random movement of
particles observed by Robert Brown in 1827. This was the subject of one of
Albert Einstein's famous papers of 1905, credited with convincing the



scientific world of the existence of molecules. A rigorous model of
Brownian motion (the Wiener process) was constructed by Norbert Wiener
in 1923. Wiener's work was to have profound repercussions for
mathematics and science. A striking example is the theory of stochastic
integration based on the Wiener process, created in the 1940s by the
Japanese mathematician Kiyosi Itô.

8.2  DISCRETE PROBABILITY

The classical definition of probability originated by Cardano, is as follows.
Suppose there are N possible outcomes of a certain action, all equally likely
to occur, and a certain event E consists of n of these outcomes. Then the
probability of E, denoted by P(E) is given by

Suppose, for example, we toss a fair die. There are six equally likely
outcomes, 1,2,3,4,5,6. The event E, that the dice throw results in an even
number, contains three possible outcomes: 2, 4, 6. Hence

In general, outcomes in an experiment do not necessarily need to have
equal probabilities (e.g., a biased coin or a weighted die). In this case, the
probability of an event must be calculated by adding together the
probabilities of the separate outcomes that comprise the event.

P(E) =
n

N
.

P(E) =
3
6

=
1
2

.



Based on these notions, Laplace worked out the basic laws of probability.
These laws, and further theorems in probability, are most easily framed in
the language of sets. The S set of all possible outcomes of an experiment is
referred to as the sample space of the experiment. Events are subsets of S.
For two events A and B, the event that either A or B occurs (where the
scenario allows that both A and B occur) is the set the set A ∪ B, while the
event that both A and B occur is A ∩ B.

Laplace's laws of probability are the following.

1. Let A and B denote mutually exclusive events, i.e., A ∩ B = ϕ, the
empty set. Then

(8.1)

2. Suppose A and B are independent events, i.e., the occurrence of one
event has no bearing on the probability of the other event occurring.
Then

(8.2)

Exercise 8.1.  Use (8.1) to prove that for any two events A and B

(8.3)

P(A ∪ B) = P(A) + P(B).

P(A ∩ B) = P(A) ⋅ P(B).

P(A ∪ B) + P(A) + P(B) − P(A ∩ B).



Hint: decompose the set A ∪ B into disjoint sets.

To take an example, consider the experiment of tossing a fair die and a
fair coin simultaneously. The sample space S consists of 12 elements, all
equally likely. That is,

Let A be the event that the die results in an even number, B that the coin
comes up Heads, and C that the die results in either 1 or 5. Note that A and
C are mutually exclusive and A and B are independent. We have

Permutations and Combinations

The above calculations of probabilities relied upon an explicit listing of the
sample space and of the events in question. This is unfeasible when the
sample space is very large, and unnecessary if the outcomes have equal
probabilities. Then we do not need to know which particular outcomes
comprise a given event, just the number of outcomes. We introduce some
methods to determine this.

We begin with the following elementary observation, which goes by the
name of the multiplication principle. Consider an experiment consisting of

S =  {(1,H), (2,H), (3,H), (4,H), (5,H), (6,H), (1,T ), (2,T ),

 (3,T ), (4,T ), (5,T ), (6,T )}.

P(A ∪ C)

= P({(2,H), (4,H), (6,H), (2,T ), (4,T ), (6,T ), (1,H), (5,H), (1,T

= 10/12 = 3/6 + 2/6 = P(A) + P(C),
P(A ∩ B) = P({(2,H), (4,H), (6,H)}) = 3/12 = 3/6 ⋅ 1/2 = P(A)



k steps, in which there are n1 ways to perform step 1, n2 ways to perform

step 2, …, nk ways to perform step k. Then there are n1n2 …nk ways to

perform the entire experiment.
Suppose, e.g., that when dressing in the morning, you can choose

between 5 tops, 3 pairs of pants, and 2 pairs of shoes. This makes for
5 × 3 × 2 = 30 possible outfits in all.

A permutation is a selection of items where the order of selection
matters, i.e., selecting the same objects, but in a different order, constitutes
a different selection. As an example, suppose it is required to choose three
soccer players from a group of 7 players to serve as a defender, a midfield
player, and a forward. There are 7 options for the defender; this leaves 6
options for the midfield player, and after these have been chosen, 5 options
for the forward. According to the multiplication principle, there are
7 × 6 × 5 = 210 possible selections.

In similar fashion, the number of permutations of k objects chosen from a
group of n objects is

This quantity is denoted nPk.
By contrast, a combination is a selection of objects where the order of the

selection is not an issue. Consider, for example, the number of ways of
choosing 3 letters from the set {a, b, c, d, e}. There are 5 × 4 × 3 = 60

permutations of the letters. Let us arrange the permutations into groups,
where each group contains the same 3 letters. We get an array as follows.

n × (n − 1) × (n − 2) × ⋯ × (n − k + 1)

=
n(n − 1)(n − 2) … (n − k + 1) × (n − k)(n − k − 1) … 1

(n − k)(n − k − 1) … 1
=

(n



Note that each column corresponds to a single combination. In each column
there are 3! = 6 entries (the number of permutations of 3 letters). Thus there
are 60/6 = 10 columns, and hence combinations.

In general, there are

combinations of k objects chosen from n, The number of combinations is
denoted nCk, or more commonly, (n

k
).

We apply this formula to calculate some odds in the game of poker,
where 5 cards are dealt from a deck of 52 cards. There are ( 52

5 ) possible
poker hands. A “full house” is a hand consisting of three cards in one
denomination and two cards in another (for example 5, 5, 5, 8, 8). How
many full houses are there? Firstly, there are 13P2 = 13 × 12 ways to
choose the denominations. Once this has been decided, there are then ( 4

3 )

and ( 4
2 ) ways to choose the cards in these denominations, resulting in

13P2 ( 4
3 ) ( 4

2 ) possible full houses. Hence the probability of a full house is

abc abd … cde

acb adb … ced

bac bad … dce

bca bda … dec

cab dab … ecd

cba dba … edc.

nPk/k! =
n!

k!(n − k)!



Note that in choosing the denominations, order matters (3 Jacks and 2
Sevens is a different hand to 2 Jacks and 3 Sevens).

Let's calculate the probability of “two pairs” (two cards in one
denomination, two cards in a different denomination, and an odd card). The
number of possible choices of denominations for the pairs is ( 13

2 ). (This
time it's a combination because of the symmetry of the situation.) There are
then ( 4

2 ) and ( 4
2 ) ways to be dealt the cards in these denominations, and 44

choices for the odd card. We conclude that the probability of the hand is

Exercise 8.2.⋆  Find the probability of a straight in poker (5 consecutive
cards).

We can use the formula for combinations to prove the binomial theorem:
consider foiling the binomial

The resulting terms have the form akbn−k, k = 0, 1, … ,n. This particular
combination of powers of a and b arises when we multiply a in k of the

13P2 ( 4
3 ) ( 4

2 )

( 52
5 )

=
3744

2598960
= 00144.

44 ( 13
2 ) ( 4

2 ) ( 4
2 )

( 52
5 )

= .04225.

(a + b)n = (a + b)(a + b) … (a + b)

n



brackets by b in the remaining n − k brackets. There are (n
k

) ways to
choose the brackets, hence (n

k
) terms of this form. Thus

Bernoulli, Binomial, and Geometric Random Variables

We introduce some terminology. A random variable X is a quantity which
takes on a variety of numerical values, depending on chance. The set of
probabilities

with which X assumes its possible values, is called the (probability)
distribution of X.

For example, let X be the throw of a fair die. The possible outcomes are
1,2,3,4,5,6, and the distribution of X is

Suppose, however, that the die is weighted so that one is twice as likely to
throw an even number as to throw an odd number, and the even and odd
numbers are equally likely among themselves. The distribution of X is then

(a + b)n =
n

∑
k=0

(
n

k
)akbn−k.

P(X = j)

P(X = k) = 1/6, 1 ≤ k ≤ 6.



Random variables X and Y are said to be independent if the events
{X = i} and {Y = j} are independent for all i and j, i.e.,

A random variable which assumes only two possible values, is said to be
of Bernoulli type (It is usual to refer to the outcomes as “success” and
“failure.”) An example would be a coin flip, and to make it more interesting
let's assume it's a weighted coin with P(Head) =.75 and P(Tail) =.25.

Suppose we to flip the same coin 10 times. What is the probability of
throwing exactly 6 Heads? The answer is 0.0729. How is this number
arrived at? Consider the scenarios which result in 6 Heads and 4 Tails in 10
flips. A typical one is

Since the coin flips are independent, the probability of this particular string
is

P(X = k) =

2
9

, k = 2, 4, 6,

 
1
9

, k = 1, 3, 5.

P(X = i and Y = j) = P(x = i)P(Y = j).

HTTHHHTHTH.

.75 × .25 × .25 × ⋯ × .75 = (.75)6(.25)4.



How many such strings exist (with 6 Heads and 4 Tails)? The answer is
( 10

6 ), the number of ways of choosing 6 out of the 10 slots to position the
Heads. Therefore the probability of 6 Heads is

The successive coin flips here are referred to as Bernoulli trials.
The number of successes X in a sequence of n independent Bernoulli

trials where the probability of success each time is p and (failure q = 1 − p

) has distribution

X is said to have a binomial distribution with parameters n and p.

Exercise 8.3.  The binomial distribution has many practical applications.
For example, consider the number of patients X in a group of 20 patients
who experience cures in a series of drug treatments, where the probability
of success each time is 80%. Find P(X = 17).

Consider the sequence of the Bernoulli trials, and let X now denote the
number of trials required until the first success is obtained. For any
k = 1, 2, 3, …, there is a single scenario that results in X = k, and it is the
string

(
10
6
)(.75)6(.25)4 = 0.0729.

P(X = k) = (
n

k
)pkqn−k, k = 0, 1, … ,n.



Thus

Then X is said to be geometric with parameter p.
We will now address the “problem of points,” mentioned earlier, and give

the solution in a slightly more general setting. Suppose as before, player A
has accumulated 50 points and player B, 30 points when the game is
interrupted. We wish to determine the probability that A reaches 60 points
before B and so wins the game. Suppose that on each play, A has
probability p of winning the point and player B, probability q = 1 − p. We
break down event of A winning the game into the series of scenarios
whereby B wins k more points before the game ends, with
k = 1, 2, 3, … 29. This gives rise to a calculation similar to the calculation
of the binomial probabilities above. Note, however, that in this instance, the
final play is the tenth success for A. The strings that result in this particular
scenario are 9 successes and k failures for A in 9 + k plays, followed by a
final success for A. The probability of any string of this type is p10qk, and
there are ( 9+k

9 ) such strings. The probability that B wins k more points
before A wins the tenth point is therefore ( 9+k

9 )qkp10, and the probability
that A wins the game is

FF …F

k−1

S.

P(X = k) = qk−1p, k = 1, 2, 3, … .

29

∑
k=0

(
9 + k

9
)qkp10.



Exercise 8.4.⋆  Compute this in the classical case p = q = 1/2.

Mean and Variance of a Random Variable

Consider the weighted die where the probability of throwing an even
number is 2/9, and an odd number is 1/9. If we throw the die very many
times, we might expect that roughly 1/9 of the throws would result in a 1, a
3 and a 5, and 2/9 of the throws would result in a 2, a 4, and a 6. If this
actually occurred, then the average of the throws would be

Motivated by this example, we define, for a random variable X, the
expected value, (or the mean) of X by

It denotes the expected “long term average” of X.
The variance of a random variable X provides a measure of how spread

out the values are likely to be. The variance of X is defined by

where μ is the mean of X.
The mean and variance are denoted by E[X] and V ar(X), respectively.

(1 × 1/9) + (2 × 2/9) + (3 × 1/9) + (4 × 2/9) + (5 × 1/9) + (6 × 2/9

∑
k

kP(X = k),

∑
k

(k − μ)2 ⋅ P(X = k),



Finally, we define the standard deviation of a random variable to be the
square root of the variance.

The basic properties of mean and variance are given in the following
result.

Theorem 8.1.  For random variables X and Y and constant c

Some examples

1. Let X be Bernoulli, with P(X = 0) = q and P(X = 1) = p. Then

(8.4)

(8.5)

2. Let X be a geometric random variable with parameter p. Taking a small
mathematical liberty1 and using the sum of the geometric series, we
have

(i) E[cX] = cE[X]

(ii) E[X + Y ] = E[X] + E[Y ]

(iii) V ar(cX) = c2V ar(X)

(iv) If X and Y  are independent then V ar(X + Y ) = V ar(X) + V a

E[X] = 0 ⋅ p + 1 ⋅ q = p.

V ar(X) = (0 − p)2 ⋅ q + (1 − p)2 ⋅ p = p2q + q2p = pq(q + p) =



____________________

  1The liberty is in assuming we can interchange the order of the infinite sum and the derivative.
This turns out to be valid, but requires justification.

We can show, by a similar calculation

Exercise 8.5.⋆  Let X be a binomial random variable with parameters n and
p. Show that E[X] = np and V ar(X) = npq. (Hint: write

where X1,X2, … ,Xn are independent Bernoulli trials, and use (8.4),
(8.5) and Theorem 8.1(ii), (iv)).

In general, it is likely that a random variable will turn up a result within a
few standard deviations of its mean. The next result, known as Chebyshev's
inequality, quantifies this tendency.

E[X] = p
∞

∑
j=1

jq j−1 = p
∞

∑
j=1

d

dq
q j

= p
d

dq

∞

∑
j=1

q j = p
d

dq

q

1 − q

=
p

(1 − q)2
=

1
p

.

V ar(X) =
p

q2
.

X =
n

∑
i=0

Xi,



Theorem 8.2.  Let X be a random variable with mean μ and standard
deviation σ. Then for all k ≥ 1

(8.6)

As an example, suppose the scores on a national examination have mean
70% and standard deviation 5%. We want to use Chebyshev's inequality to
estimate the proportion of scores 90% or more. Consider the interval from
50 to 90, and note that the gap of 20 on either side of the mean represents 4
standard deviations. The inequality with k = 4 implies that the proportion
of scores lying in the interval [50,90] is at least 1 − 1/42 = 15/16. Hence
the proportion of scores in excess of 90 can be at most 1/16.

FIGURE 8.2

The following exercise is an example of a statistical test based on the
Chebyshev principal. (We will see a much more powerful version of this
procedure in Section 8.8.)

Exercise 8.6.⋆  It is claimed that a certain high school is performing below
par on the national exam mentioned above. The average of 100 students
from the school on the exam was calculated and found to be 65%.

First use Theorem 8.1 to show that, if the students' test scores are typical
of the national population, then the average

P(μ − kσ < X < μ + kσ) ≥ 1 − 1/k2.

X̄ =
X1 + X2 + ⋯ + X100

100



has mean 70 and standard deviation 0.5. (Consider the 100 test scores as
independent random variables with mean 70 and standard deviation 5.)
Then apply Theorem 8.2 to show that the claim is quite likely true.

8.3  THE GAMBLER'S RUIN

Consider a gambling game where with each play, the gambler either stands
to win a dollar, with probability of p, or lose a dollar, with probability
q = 1 − p. The gambler decides that they will quit the game if their
holdings either reaches a predetermined amount of $N (in which case they
are said to win), or if they go bust (in which case they lose). If the gambler
starts with a given stake, what is the probability that they will win the
game? We are going to determine this by a conditioning argument.

Conditioning is a powerful tool in probability theory. It is based on the
following idea. Let A and B denote two events. What is the probability that
A will occur if we know in advance that B has occurred? The probability is
referred to as a conditional probability (the probability of A given B) and is
denoted P(A/B). A little thought shows that

(8.7)

Note that this formula jives with the definition of independent events given
earlier. If A and B are independent events, intuitively one should have
P(A/B) = P(A). In view of (8.7) this implies

P(A/B) =
P(A ∩ B)
P(B)

.



i.e., P(A ∩ B) = P(A)P(B), as defined earlier.
As an example in the use of conditional probability, consider the

following problem. Suppose we draw two cards from a standard deck
without replacement. What is the probability that the first card drawn is a
King and the second card is a Queen? Call this event E. The easiest way to
calculate P(E) is as follows. The conditional probability of drawing a
Queen as the second card given that a King was drawn as the first card is
4/51 (since, after the first card is drawn there are now 51 cards left in the
deck and 4 of them are Queens). By (8.7), P(E) = P  (the second card is a
Queen/ the first card is a King) ×P  (the first card is a King) =
4/51 × 1/4 = 1/51.

We will need the following elementary result.

Theorem 8.3.  Suppose B1 and B2 are events such B1 ∩ B2 = ϕ,
B1 ∪ B2 = S (the whole sample space.) Then for any event A, we have

Proof.

□

P(A) =
P(A ∩ B)

P(B)
,

P(A) = P(A/B1)P(B1) + P(A/B2)P(B2).

P(A/B1)P(B1) + P(A/B2)P(B2) = P(A ∩ B1) + P(A ∩ B2)

= P((A ∩ B1) ∪ (A ∩ B2)) = P(A ∩ (B1 ∪ B2))

= P(A ∩ S) = P(A).



Returning to the gambler's ruin, let Pm denote the probability that a

gambler starting with stake m, will reach N before going bankrupt. The trick
is to condition on the first play of the game. If the gambler wins the first
play, they will then have a stake of m + 1 and the game proceeds as if
started from this position. That is, their probability of eventually winning is
Pm+1. An analogous situation holds if the gambler loses the first play. By
Theorem 8.3, we have

This is, provided 1 ≤ m ≤ N − 1. Clearly, P0 = 0 and PN = 1. This is an
example of a recurrence relation with boundary conditions. Since
p + q = 1, we may rewrite the above relation as

This equation is easily rearranged into the form

Applying this formula successively with m = 1, 2, 3, …, yields, for
m = 1, 2, …N

Pm = P(eventually reach N/first play is a win)P( first play is a wi

+ P(eventually reach N/first play is a loss)P( first play is a los
= Pm+1 ⋅ p + Pm−1 ⋅ q.

(p + q)Pm = pPm+1 + qPm−1.

Pm+1 − Pm =
q

p
(Pm − Pm−1).



Adding these equations and noting the cancellations on the left-hand side,
we have

That is,

(8.8)

In the case q/p = 1, i.e., p = q = .5, (8.8) implies

In the case q/p ≠ 1, summing the right-hand side of (8.8) by the geometric
formula yields

P2 − P1 =
q

p
(P1 − P0) =

q

p
P1

P3 − P2 =
q

p
(P2 − P1) = (

q

p
)2P1

P4 − P3 =
q

p
(P3 − P2) = (

q

p
)3P1

⋮

Pm − Pm−1 = (
q

p
)m−1P1.

Pm − P1 =
q

p
P1 + (

q

p
)2P1 + ⋯ + (

q

p
)m−1P1.

Pm = P1 +
q

p
P1 + (

q

p
)2P1 + ⋯ + (

q

p
)m−1P1.

Pm = mP1.



Finally, using the condition PN = 1, we may solve for P1 in each case to

obtain

(8.9)

Let's work an example. Suppose the win probability p on each play is
0.48. Our gambler starts, say with $50 and decides they will quit if they
bust or make it to $100 (the type of strategy most casual gamblers probably
employ, if they are sensible!). Formula (8.9) with p = .48 and N = 100

yields P50 = .018. Think about this. If you were to bet your entire $50
stake on a single double or nothing wager with these odds, your probability
of ending up with $100 would be 0.48. Playing the Gambler's ruin, your
chance of success is a little less than 1/50. This is why they call it the
gambler's ruin and not “the gambler's fast track to fortune.”

Exercise 8.7.⋆  Suppose you play the Gamblers Ruin starting with an initial
stake of $100 and seeking to double to $200. Calculate the probability of
success.

8.4  RANDOM WALKS

Pm = P1(
1 − (q/p)m

1 − (q/p)
).

Pm =

m

N
, if p = q = .5,

 
1 − (q/p)m

1 − (q/p)N
, otherwise.



Consider a variation of the Gambler's Ruin, where you have no impulse
control which causes you to quit the game if you have won a predesignated
amount and where the house will advance you any amount of credit. Your
holdings Xn after the nth play of the game then wanders among the set of

integers {… , −2, −1, 0, 1, 2, …} in a style known as a random walk.

FIGURE 8.3  A random walk on the integers

Suppose X0 = 0. Then we can write

(8.10)

where the Zk are independent Bernoulli random variables taking value 1

with probability p, and −1 with probability 1 − p (representing a gain or a
loss on the kth play).

Exercise 8.8.⋆  Determine P(X10 = 4) in the case when p = 0.4 and
q = 0.6.

We are interested in the following question: having started off in state 0,
is the random walk certain to return to 0 after some finite number of steps,
or is there a definite chance that Xn will wander off and never return there?

The answer, as we will shortly see, depends on the value of p.
We start by introducing a notation for the return probability to 0. Let

Xn =
n

∑
k=0

Zk,



If f = 1, then the random walk is said to be recurrent and if f < 1, then it
is said to be transient.

Note that if Xn returns to 0, then because of the independence of the

steps, the walk starts out afresh, so to speak. So, in the recurrent case, the
process is sure to return to state i again, and then again, infinitely many
times. In the transient case, the number N of returns to 0 will be finite. The
event {N = n} represents n successive returns to 0 followed by a non-
return, and these happen independently and with respective probabilities f
and 1 − f. Thus

i.e., N is a geometric random variable with parameter 1 − f.
Let Pn denote the probability of returning to 0 in n steps.

Theorem 8.4.  The random walk is transient if the sum

is convergent, and recurrent if the series is divergent.2

Note that return to state 0 in n steps is possible only if n is even, requiring
an equal number of steps to left and right. The probability of the walk
taking k steps to the left and k to the right in 2k steps is the binomial

f = P(Xn = 0 for some n ≥ 1/X0 = 0).

P(N = n) = f n(1 − f), n = 0, 1, 2, … ,

∞

∑
n=1

Pn



probability ( 2k
k

)pkqk. Hence the sum in Theorem 8.4, whose convergence
or divergence we need to determine, is

(8.11)

We make use of the following result, known as Stirling's formula to analyze
this series

____________________

  2See page 168 for the definitions of convergent and divergent series.

where, for two sequences an and bn, the condition an ∼ bn means

Also:

Theorem 8.5.

∞

∑
k=1

(
2k
k
)pkqk.

n! ∼ nn+1/2e−n√2π.

lim
n→∞

an

bn
= 1.

Suppose an ∼ bn. Then the series ∑n an and ∑n bn either both
converge or both diverge.

(i)

The series(ii)



By Stirling's formula, we have

(8.12)

There are two cases to consider. First, suppose p = q = 1/2 (the symmetric
case) in (8.11). Then by (8.12)

(8.13)

and by Theorem 8.5(ii) the series

is divergent. It follows from Theorem 8.5(i) and Theorem 8.4 that the
random walk is recurrent.

converges if p > 1 and diverges if ≤ 1.

∞

∑
n=1

1
np

(
2k
k
) =

2k!
(k!)2 ∼

(2k)2k+1/2e−2k√2π

(kk+1/2e−k√2π)2
=

4k

√πk
.

(
2k
k
)pkqk ∼

1

√πk

∞

∑
k=1

1

√πk
=

1

√π

∞

∑
k=1

1

√k



Suppose, on the other hand p ≠ 1/2. It is an easy exercise in calculus to
show that pq < 1/4.

Exercise 8.9.⋆  Prove the last statement.

By (8.12)

and because 4pq < 1,

is a convergent geometric series, It follows from Theorem 8.5(i) and
Theorem 8.4 that in this case the random walk is transient.

Random walks in higher dimensions

We consider a random walk in two-dimensions. Here, the walk takes place
on the lattice of integer pairs (i, j) and at each stage can move either left,
right up, or down (see figure 8.4).

(
2k
k
)pkqk ∼

(4pq)k

√πk
< (4pq)k

∞

∑
k=1

(4pq)k



FIGURE 8.4  A random walk on the integer lattice

In two-dimensions, the random walk has a tendency to be more transient
than in one-dimension (there are more routes to get lost), so it is safe to
assume it will be transient except possibly in the symmetric case where the
probability of moving in each of the four directions is 1/4. This case, which
we now analyze, is more delicate.

Assume we are in state  0 = (0, 0), and consider the probability Pn of

returning to this state in n moves. Again, it is possible only if n is even, so
let n = 2k. Suppose i of the moves are to the right and j moves are
upwards. To return to 0, there must also be i moves down and j moves left.
We therefore have 2i + 2j = 2k ⟹ i = k − j. We decompose the event
of starting at 0 and returning there in 2k moves into these scenarios, i.e., j
moves left and right and k − j moves up and down (with j = 0, 1, 2, … k).
The probability of this event is found from the multinomial distribution (a
generalized version of the binomial distribution). The result is

∞

∑
n=1

nPn =
∞

∑
k=1

k

∑
j=0

(2k)!
j!j!(k − j)!(k − j)!

(
1
4
)2k =

∞

∑
k=1

(
2k
k
)

2

(
1
4
)2k.



Another calculation with Stirling's formula shows that this sum is
asymptotic to

and if follows from the p = 1 case of Theorem 8.5(ii) that the symmetric
random walk in two dimensions is also recurrent.

But only just so! The series on which this conclusion is based, ∑∞
k=1 1/k

, known as the harmonic series, is on the borderline between convergence
and divergence, with the partial sums ∑n

k=1 1/k diverging to infinity, but
very, very slowly. The analogous calculation in three-dimensions (where the
possible choices of direction at each step are left, right, back, forth, up,
down, each with probability 1/8), turns up the series

and this series is convergent. So the symmetric random walk in three-
dimensions is transient.

In more colorful terms, a drunkard stumbling around on good old two-
dimensional mother earth is bound to return home eventually, but a drunken
helicopter pilot runs the risk of getting lost forever. (Of course, the pilot
might experience a worse problem than transience!)

8.5  CONTINUOUS PROBABILITY

Probability Density Functions

(
2k
k
)

2

(
1
4
)2k ∼

1
πk

∑
k

1

k3/2



The random variables discussed so far are of a discrete type, taking values
in the integers or a finite set. By contrast, a wide range of random
phenomena produce outcomes in a continuous spectrum. Modeling such
phenomena requires a different set of tools and these come from calculus.

We say that X is a continuous random variable if there exists a non-
negative integrable function f (the probability density function3 of f) such
that

Thus, the probability that X falls between a and b is being specified as the
area lying under the graph y = f(x) between x = a and x = b.

As an example, chose a point at random from the interval [a, b] and
denote it by X. Then X is a continuous random variable with pdf

(8.14)

____________________

  3Implicit in this definition is the property ∫ ∞
−∞ f(x) dx = 1.

The fact that f is constant on the interval [a, b] indicates the complete
randomness of the choice. (No one point is “more likely” to be chosen from
the interval than any other point.) This is called a Uniform distribution and
denoted by U(a, b).

P(a < X < b) = ∫
b

a

f(x)dx.

f(x) =

1
b − a

if a ≤ x ≤ b,

 0 otherwise.



The most important continuous probability distribution in statistical
applications is the normal, (or Gaussian) distribution. (Yet another
mathematical object named for Gauss!) The pdf for a normal distribution
has the form

(8.15)

where the parameters μ and σ denote the mean and standard deviation of the
distribution (to be defined below.) The case with μ = 0 and σ = 1 is said to
be a standard normal distribution.

The graph of a normal distribution has the characteristic bell-shape, with
which anybody who has taken an elementary statistics course is bound to be
familiar. Some examples are shown in the figure below. An important
feature of the curves is the extremely thin tails (the parts of the graph on the
left and right). This implies there is a very small probability that a random
variable with a normal distribution will fall into a range more than a few
standard deviations away from the mean.

f(x) =
1

√2πσ
e

−
(x − μ)2

2σ2 ,



Long Description for Figure 8.5

FIGURE 8.5  Normal curves with differing means and variances

The Mean and Variance of a Continuous Random Variable

Let X be a continuous random variable with pdf f. There is a natural
analogue of the notion of mean of X previously defined for discrete random
variables. It is the integral

The variance of X is defined by

∫
∞

−∞
xf(x)dx.

∫
∞

−∞
(x − μ)2f(x)dx.



where μ is the mean of X.
As an example, we calculate the mean of the normal distribution (8.15).

That is,

The change of variable

transforms the integral to

since the integral in the second term is 0, being the integral of an odd
function over a symmetric interval about 0. We have used the fact that the
standard normal density integrates to 1 to evaluate the first term.

Exercise 8.10.  Show, by a similar argument that the variance of the
distribution is σ2.

Exercise 8.11.  Show that the U(a, b) distribution has mean

1

√2πσ
∫

∞

−∞
xe

−
(x − μ)2

2σ2 dx.

t =
x − μ

σ

1

√2π
∫

∞

−∞
(σt + μ)e−t2/2 dt

= μ ⋅
1

√2π
∫

∞

−∞
e−t2/2 dt +

σ

√2π
∫

∞

−∞
te−t2/2 dt

= μ



(8.16)

and variance

(8.17)

8.6  PROBABILISTIC LIMIT LAWS

Limit laws are among the most important results in probability theory. To
get a feel for the topic, consider a sequence of repetitions of the experiment
of choosing a point at random from the interval [0,1]. The chosen numbers
X1,X2,X, … comprise a sequence of independent random variables with
a uniform distribution on the interval [0,1]. By (8.16) and (8.17), the mean
and variance of the individual Xi's are, respectively, 1/2 and 1/12.

Consider the distribution of the sample mean of the first n of these
random variables, i.e.,

By Theorem 8.1 4

a + b

2

(b − a)2

12
.

X̄n =
1
n

n

∑
k=1

Xk.



(8.18)

and

(8.19)

Thus we see, e.g., that X 12 has mean 1/2 and standard deviation 1/12.
Chebyshev's inequality yields the estimate

P(.25 < X 12 < .75) ≥ 8/9.

In particular, X 12 does not itself have a uniform distribution on [0, 1], or
the probability would be 0.5. Furthermore, as we let n become larger, by
(8.19), V ar(X̄n) grows smaller, so, again by Chebyshev, the probability
that X̄n lies in any interval (1/2 − ϵ, 1/2 + ϵ) centered at the mean, will
approach ever closer to 1. This tendency for sample means to “cluster”
around the theoretical mean of the distribution, is expressed by the
following result, known as the weak law of large numbers (WLLN).

Theorem 8.6.  Let Xn be sequence of random variables with mean μ and

finite variance. For all ϵ > 0

E[X̄n] =
1
n

n

∑
k=1

E[Xk] =
1
n

n

∑
k=1

μ =
1
2

V ar(X̄n) =
1
n2

n

∑
k=1

V ar[Xk] =
1
n2

n

∑
k=1

σ2 =
1

12n
.



Exercise 8.12.  Prove Theorem 8.6 using Chebyshev's inequality.

The next result is known as the central limit theorem (CLT).
____________________

  4The theorem was stated for discrete random variables but also holds in the continuous case, as
does Chebyshev's inequality.

Theorem 8.7.  Suppose Xn is a sequence of IID (independent, identically

distributed) random variables with mean μ and standard deviation σ.
Define5

Then for all a < b,

(8.20)

Note that the integral in (8.20) is the probability associated with the
standard normal distribution. We say Zn converges in distribution to

standard normal. Remarkably, this holds irrespective of the original
distribution of the observations. This is the reason the Gaussian distribution
is referred to as “normal”.

P(|X̄n − μ| > ϵ) → 0,  as n → ∞.

Zn =
X̄n − μ

σ/√n
.

P(a < Zn < b) →
1

√2π
∫

b

a

e−x2/2 dx, as n → ∞.



Owing to its universal nature, CLT is of fundamental importance in
statistical applications. Here is an example.

A soft drinks company asserts that the average contents of their 2 liter
bottles is, (naturally) 2 liters and has a standard deviation of 0.05 liters. A
consumer organization asserts that the company is providing short measure.
A sample of 100 bottles is examined and found to have an average of 1.982
liters. Slightly lower than the promised 2 liters, but might not such a small
discrepancy just be due to “sampling” error?

This question can be addressed by a sort of statistical “proof by
contradiction.” Assume the company's claim is true. Then the sample has
been drawn from a population with mean 2.0 and standard deviation 0.05.
Since the sample size of 100 is relatively large, CLT allows us to assume
that the sample mean X̄ follows a normal distribution. The asserted mean of
X̄ is 2.0 and its standard deviation is .05/√100 = 0.005. Consulting a
table of normal probabilities shows that the likelihood of X̄ returning the
observed value of 1.982 (a value more than 3 standard deviations lower
than the mean) is less than 1/1000. We conclude that the test provides
strong evidence to support the counter claim.

Both WLLN and CLT concern the long term behavior of the distribution
of the sample mean of a sequence of IID random variables. By contrast, the
strong law of large numbers (SLLN) which we now present, address the
convergence of the random variables themselves.

The strong law is founded on the notion of almost sure convergence. We
say that an event E happens “almost surely” (denoted a.s.) if E happens
with probability 1. For example, suppose I am asked to choose a number X
at random between 0 and 1. Then P(X = 0.5) = 0, as we saw earlier in the
discussion of the uniform distribution. Hence the event {X ≠ 0.5} happens
with probability 1 − 0 = 1, i.e., almost surely. In mathematical statements



concerning continuous probability, almost sure convergence is usually the
best one can do. (There is a standing joke that probabilists are never sure
about anything, they are only ever almost sure.)
____________________

  5Note that, in subtracting μ and dividing by σ/√n, we have “standardized” the Zn so that they

have mean 0 and variance 1.

The strong law is as follows.

Theorem 8.8.  Suppose that Xn is a sequence of IID random variables with

mean μ and finite variance. Then

As an application of the strong law, we offer the following probabilistic
method to estimate the number π. Suppose a very bad darts player throws a
million darts at a board … okay, if this scenario sounds a little implausible,
then use a random number generator to generate a million number pairs
(x, y) inside the square [−1, 1] × [−1, 1]. Calculate the proportion of hits,
i.e., those numbers which land inside the circle x2 + y2 ≤ 1. The
probability of a hit each time is π/4 (the ratio of the area of the circle to the
area of the square.) By SLLN, the proportion of hits will give a very
accurate approximation to π/4.

X1 + X2 + ⋯ + Xn

n
→ μ as n → ∞, a. s.



FIGURE 8.6

Exercise 8.13.⋆  Use SLLN to give another proof that the asymmetric
random walk (say with p > q ) is recurrent.

8.7  THE NORMAL NUMBER THEOREM

In 1909, the French Mathematician Émile Borel used probabilistic methods
to prove a remarkable theorem about real numbers, ushering in a new
approach to number theory. Probabilistic number theory was to become a
major area of research in the second half of the twentieth century with the
pioneering work of Paul Erdős and others. Borel's foundational contribution
is the subject of this section.

We begin by introducing the leading figures (pun intended) in the drama.
A number x ∈ [0, 1] is said to be normal in base d ≥ 2 if, in the
representation of the number in base b, each of the digits 0, 1, … d − 1

occurs with equal frequency 1/b. An example is the number which, when
expressed in base 5 is

This number is normal in base 5.

0.01234 = 0.012340123401234 . . .



x is said to be absolutely normal (or just normal) if x is normal in every
base b ≥ 2.

No rational number p/q has this property for the obvious reason that, in
base q,

so is very definitely non-normal in base q. It is hard to come up with even a
single example of a normal number.6 It is conjectured that natural irrationals
such as √2, e and π are normal, but this has not been proved.

The normal number theorem is as follows.

Theorem 8.9.  Almost all numbers in [0,1] are normal.

The term almost all in the statement of the theorem has the same
meaning as almost surely in the previous section; it means the event
happens everywhere except on a set of zero probability. In this setting, the
role of probability is played by the so-called Lebesgue measure. Lebesgue
measure (denoted by λ) can be thought of as a sort of generalized version of
length, so in particular

for any interval [a, b] ⊂ [0, 1].
If A1,A2, … is any (finite or countably infinite) collection of sets such

that λ(Aj) = 0, for all j, then7

p/q = 0.p0000 … ,

λ([a, b]) = b − a

λ(A1 ∪ A2∪. . . ) = 0.



(8.21)

We now outline Borel's proof of the normal number theorem. It is based
on the strong law of large numbers (SLLN). We first indicate how it can be
proved that almost all numbers in [0,1] are normal to base 2.
____________________

  6A method does, in fact, exist to construct normal numbers but these numbers are very sparse.
7This follows from the property: λ(⋃kAk) ≤ ∑k λ(Ak).

To this end we define a sequence of functions (random variables) Xn on

[0,1] by

where xn is the nth digit in the binary representation

of x.

Xn(x) =
1, if xn = 0,

 0, if xn = 1,

0.x1x2x2 …



FIGURE 8.7  Émile Borel Paul Erdős (author Kmhkmh)

For example, 0.75 has the binary representation 0.11000…, so

It is straightforward to show that X1,X2, … are all independent, and have
identical Bernoulli distributions with p = 1/2, hence mean 1/2. It follows
from SLLN that, outside of a set of Lebesgue measure zero

X1(0.75) = 1,

X2(0.75) = 1,

Xn(0.75) = 0,  for n ≥ 3.

XI(x) + …Xn(x)
n

→ 1/2, as n → ∞.



(8.22)

Since the sum XI(x) + …Xn(x) gives the number of 0's in the first n
places of the binary representation of x, (8.22) asserts that half of the digits
in x are 0's and half are 1's, i.e., x is normal to base 2. Let B2 denote the

subset of [0,1] on which (8.22) does not happen, so λ(B2) = 0. Employing
a double negative, we have shown that outside B2, all the numbers in [0,1]

are normal to base 2.

FIGURE 8.8  Paul Erdős (author Kmhkmh)

A similar argument serves to prove that the same result for base 3,
although we should point out that the argument here requires an additional
step. It is necessary to introduce two sets of Bernoulli random variables



which count the numbers of 0's and the number of 1's in the base-3
representation of x:

Repeating the previous argument with both the X's, and the Ys we find that
for x outside of a set B3 with λ(B3) = 0, x is normal to base 3.

Continuing in this manner, we obtain a sequence of sets Bd (d ≥ 2) such

that λ(Bd) = 0 and if x ∉ Bd, then x is normal to base d.
Define

By (8.21), λ(B) = 0. If x ∉ B then x ∉ Bd for all d, which implies x is
normal to base d for all (d ≥ 2), i.e., x is normal. The proof is complete.

Suggestions for Further Reading

Xn(x) =

1, if xn = 0,

 0, if xn = 1 or 2,

Yn(x) =

1, if xn = 1,

 0, if xn = 0 or 2.

B =
∞

⋃
b=1

Bb.
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C H A P T E R  9

Countability and
Computability

DOI: 10.1201/9781003470915-9

This chapter starts with some stunning results of Georg Cantor concerning
infinite sets. He defined cardinality, a measure of the size of a set. For finite
sets, the cardinality is just the number of elements in the set, but Cantor's
definition extends this notion of size to infinite sets. He proved that the
cardinality of the integers is equal to the cardinality of the rational numbers
but less than the cardinality of the real numbers. His major theorem shows
how given any set, we can find a set with greater cardinality—proving that
there are an infinite number of infinities!

After looking at Cantor's work done in the late nineteenth century, we
turn to the work of David Hilbert. At the turn of the twentieth century,
Hilbert listed twenty three unsolved problems he considered the most
important. Hilbert was the leading mathematician of his day, and many
mathematicians and logicians started work on trying to solve them. The
solutions to some were totally unexpected!

https://doi.org/10.1201/9781003470915-9


Hilbert wanted to put mathematics on a sound footing. He felt
mathematics should start with axioms and rules of inference. Any theorem
should be able to be proved by starting with axioms and applying the rules
of inference. Kurt Gödel's incompleteness theorems showed that Hilbert's
approach was doomed.

Another of Hilbert's problems concerned a question that Cantor could not
answer. This is called the continuum hypothesis: Is there a subset of the real
numbers with cardinality greater than the integers but less than the reals?
Again, the answer is surprising. Given our standard axioms for set theory,
the continuum hypothesis can be neither proved nor disproved.

Alan Turing tackled another problem of Hilbert's, though not one of the
twenty three. To begin, he needed to give a definition of algorithm. To do
this, he constructed what is now known as, a Turing machine. We look at
Turing's work and the connection to the theory of computation.

We then turn to one of the outstanding unsolved questions in computer
science: Does P equal NP? The chapter concludes with an application of
internet security, RSA encryption, that depends on a negative answer to this
question.

9.1  INFINITY

Aristotle distinguished between two types of infinity: potential infinity
describes a process that is ongoing and never completed; actual infinity is
used for an infinite number of things. Actual infinity is now generally
accepted—we talk of the set of natural numbers, for example—but this is a
fairly recent phenomenon. Gauss did not think that mathematics needed
actual infinities, writing in a letter:



I protest against the use of infinite magnitude as something
completed, which is never possible in mathematics. Infinity is
merely a way of speaking, the true meaning being a limit which
certain ratios approach indefinitely close, while others are permitted
to increase without restriction.

Potential infinities are clearly a part of mathematics. For example, we
write:

To formally prove a statement like this, you need to show for any ε > 0

there is a number N with the property

This is saying for any tolerance about 2, the finite sum will be within the
tolerance for large enough values of n.

Calculus involves limits as “n goes to infinity,” but all of these are
potential infinities. Most mathematicians up until the second half of the
nineteenth century agreed with Gauss: actual infinites are not part of
mathematics. Georg Cantor's work would change this.

One-to-One and Onto Functions

∞

∑
k=0

(
1
2
)

k

= 2.

2 − ε <
n

∑
k=0

(
1
2
)

k

< 2 + ε,  whenever n ≥ N .



Suppose we are given a function f that maps elements of a set X to elements
of a set Y. We say the function is one-to-one if it sends distinct elements of
X to distinct elements of Y. More formally,

Definition 9.1.  f is one-to-one if whenever x1 ≠ x2, then f(x1) ≠ f(x2).
Equivalently: f is one-to-one if whenever f(x1) = f(x2), then x1 = x2.

Definition 9.2.  A function f from X to Y is onto if given any element y of Y,
there is an x in X with f(x) = y.

A function that is both one-to-one and onto is called a bijection. A
bijection from a set X to a set Y pairs the elements of X and Y so that each
element of X has its unique partner in Y, and each element of Y has its
unique partner in X. We say that the elements of X can be put into a one-to-
one correspondence with elements of Y.

As an example, consider f : R → R defined by f(x) = 2x. This
function is both one-to-one and onto, so a bijection. However, the function
f : Z → Z defined by f(x) = 2x is one-to-one, but not onto—nothing is
sent to 3, for example—so it is not bijection.

Cardinality

Cantor wanted a way of saying two sets had the same size. Finite sets A and
B have the same size if they have the same number of elements. When we
count the number of elements in a set, we are giving a bijection from a
subset of the natural numbers to the set in question: A set A has n elements
if and only if there is a bijection between {1, 2, 3, … ,n} and A.

Cantor extended this idea to sets in general.

Definition 9.3.  Sets A and B have the same cardinality if there exists a
bijection between them. We will denote the cardinality of A by |A|.



Two finite sets have the same cardinality if they have the same number of
elements, so the cardinality of the set is just this number. However, Cantor
defined cardinality in order that he could also talk about the size of infinite
sets.

We let N denote the set of natural numbers and 2N the set of even natural
numbers. Let

If 2m = 2n, then m = n, showing f is one-to-one. It is also onto. Given
any even natural number 2k, the natural number k gets mapped to it.
Consequently, we have a bijection between N and 2N, which means they
have the same cardinality. Cantor used the Hebrew letter aleph to denote
cardinals with ℵ0 for the cardinality of the natural numbers.

f : N → 2N be defined by f(n) = 2n.

|N| = |2N| = ℵ0.



FIGURE 9.1  Georg Cantor

The even natural numbers have the form 2k for k = 1, 2, …. The odd
natural numbers have the form 2k + 1 for k = 0, 1, 2, …. We can define a
function from the natural numbers to the integers, denoted Z, by:

We have

It is straightforward to check that f is a bijection from the natural numbers
to the integers, telling us

f(2k) = k, f(2k + 1) = −k.

f(1) = 0, f(2) = 1, f(3) = −1, f(4) = 2, f(5) = −2, …



The property that a set X can be put into a one-to-one correspondence
with a proper subset of X seems strange when we first meet it because it is
not true for finite sets, and these are the ones we have experience with. A
proper subset of a finite set has fewer elements than the whole set. But any
infinite set X can be put into one to a one-to-one correspondence with a
proper subset of itself. We can take this as a defining property of infinite
sets: A set is infinite if and only if it can be put into a one-to-one
correspondence with a proper subset.1

____________________

  1This definition was first given by Dedekind in 1872.

Suppose we have a one-to-one function from a set X to a set Y. Then
there must be a one-to-one correspondence between X and some subset of Y
(possibly Y, itself). So we can say |X| ≥ |Y |. Now suppose there is also a
one-to-one function from Y to X, telling us |Y | ≥ |X|. Can we conclude
that |X| = |Y | ? Cantor certainly believed this to be true, but didn't give a
proof. This is not as obvious as it might first seem. To prove this, you need
to construct a bijection from the two one-to-one functions: one going from
X to Y and the other going from Y to X. Fortunately, this construction is
possible. This result is now named after Felix Bernstein and Ernst Schröder
who independently gave proofs.

Theorem 9.1.  (Schröder–Bernstein) Suppose f : X → Y  and g : Y → X

are both one-to-one functions, then there exists a bijection from X to Y.

This can be restated as the following useful property of inequalities:

|N| = |Z| = ℵ0.



Corollary 9.1.  Let X and Y denote two sets. If |X| ≤ |Y | and |Y | ≤ |X|,
then |X| = |Y |.

Cardinality of the Rational Numbers

We will use the Schröder–Bernstein theorem to determine the cardinality of
the rational numbers.

First, we note that any rational number, with the exception of 0, can be
written uniquely in the form p/q, where p and q are coprime and q ≥ 1.
The one exception, 0 will be written as 0/1. We assume our numbers are
written in this form.

Then we define a function from the rationals, denoted by Q, to the
natural numbers in the following way:

1. f(0) = 1.

2. If p ≥ 0, then f(p/q) = 2p3q.

3. If p < 0, then f(p/q) = 2p3q5.

There is a 5 in the prime factorization of f(p/q) if and only if p/q is
negative. The exponent of the powers of two in the prime factorization of
f(p/q) gives p. The exponent of the powers of three in the prime
factorization of f(p/q) gives q.

It is clear that distinct rational numbers get sent to distinct natural
numbers, so the function is one-to-one.

Since f : Q → N is one-to-one, we have |Q| ≤ |N|. We can define a
one-to-one function g : N → Q by g(n) = n, telling us the less surprising
result: |N| ≤ |Q|. Schröder–Bernstein then gives |Q| = |N|.

So far, we have shown



Cantor then showed that the real numbers do not have cardinality ℵ0.
They have a larger cardinality—a stunning result showing there is more
than one type of infinity.

Cantor's diagonal argument

He considered the real numbers in the unit interval 0 < x < 1, which we
will denote using interval notation as (0, 1). These can be written as
decimals with 0 before the decimal point. To prove the cardinality of (0, 1)

is not equal to the cardinality of N, you need to show it is impossible to
construct a bijection between (0, 1) and N. Cantor did this using a proof by
contradiction. He assumed there was a bijection and then derived a
contradiction.

If there is a bijection f from N to (0, 1), f(1) will be in (0, 1), we let
0.a11a12a13 … a1n … denote its decimal representation. Similarly, we
denote f(2) by 0.a21a22a23 … a2n …, and so on. We can list the natural
numbers in one column and the corresponding decimal in another column.

|2N| = |N| = |Z| = |Q| = ℵ0.

1 0.a11a12a13 … a1n …
2 0.a21a22a23 … a2n …

3 0.a31a32a33 … a2n …

⋮ ⋮

n 0.an1an2an3 … ann …

⋮ ⋮



We now construct a decimal number b = 0.b1b2b3b4 ⋯ in the following
way: choose b1 so that it does not equal a11, b2 not equal to a22, b3 not equal

to a33. In general, choose bn to not be equal to ann. Looking at the column

above, we are choosing the bs to not equal the diagonal elements of the as.
Moreover, we can do this in such a way that none of the digits bn are 0 or 9.

Before we continue, we should look at a technicality. Could b have two
different decimal representations? Some numbers do. For example, the
number 2 can be written as 2.000000 … and also as 1.9999999 ….
Decimals that end in an infinite string of 9s can be rewritten to have an
infinite string of 0s and vice versa. However, these are the only numbers
with two decimal expansions. We chose b to have none of its digits equal to
0 or 9. Its decimal expansion is unique.

It is clear that b belongs to (0, 1). We are assuming f : N → (0, 1) is a
bijection, so b must appear somewhere in the righthand column. But for any
n, b cannot be f(n) because their decimal representations differ in the nth
place. So b cannot be in the righthand column. We have a contradiction: b is
both in and not in the list. Consequently, our initial hypothesis is incorrect.
There are no bijections from N to (0, 1).

Since there doesn't exist a bijection, the two sets must have different
cardinalities.

The function g : N → (0, 1), where g(n) = 1/n is one-to-one, telling us

ℵ0 = |N| ≠ |(0, 1)|.

|N| ≤ |(0, 1)|.



We conclude

We have found a set with a larger cardinality. We have found a larger
infinity. This is denoted by c. We often call ℵ0 a countable infinity and call
c an uncountable infinity.

Bijections can be found between the interval (0, 1) and the set of real
numbers R, so these two sets have the same cardinality.

Exercise 9.1.  Show f : (0, 1) → R defined by f(x) = tan((x − 0.5)π))

is a bijection.

Exercise 9.2.⋆  Show g : R → (0, 1) defined by g(x) = 1/(1 + ex) is a
bijection.

Exercise 9.3.⋆  Using binary strings, show 2ℵ0 = |[0, 1)| = c.

To summarize, we have:

We have found two infinite cardinals c, the cardinality of the continuum,
and ℵ0, the cardinality of countably infinite sets. At this stage, it is natural
to ask if there are other infinities. Are there some infinite cardinals that lie
between ℵ0 and c ? Cantor believed the answer was no, but could not prove
it. As we will see later, there is not a simple Yes/No answer. The question of
whether there are cardinalities greater than c is easier to answer.

ℵ0 = |N| < |(0, 1)|.

|2N| = |N| = |Z| = |Q| = ℵ0 < c = |(0, 1)| = |R|.



Cantor's first attempt to construct a larger cardinal number was to go
from the one-dimensional interval (0, 1) to the two-dimensional unit
square. Clearly the cardinality of the unit square must be at least the
cardinality of the unit line. However, Cantor was able to construct a one-to-
one function from the unit square to the unit line, showing that the
cardinality of the unit square is equal to the cardinality of the unit interval.
Figure 9.2 shows the coordinates of a point in the square. Cantor took the
coordinates and interleaved them to give the function. The point with
coordinates (0.a1a2a3 … , 0.b1b2b3 …) gets sent to
0.a1b1a2b2a3b3 ….

FIGURE 9.2  Unit square with coordinates of a point

This argument extends to three and higher dimensions. The sets
R,R2,R3, … all have the same cardinality—c. Cantor wrote to Dedekind
about this surprising result saying, “I see it but I do not believe it!”

Cantor's Theorem



Cantor then looked at all possible subsets of a given set S. For example, the
set S = {1, 2, 3} has the eight subsets:

where ϕ denotes the empty set—the set with no elements. We also include
the set S as a subset of itself.

The set containing all the subsets of a set S is called the power set of S
and denoted by P(S). For our example with S = {1, 2, 3},

Exercise 9.4.⋆  In the example, |S| = 3 and |P(S)| = 23. Show for any
finite set S that |P(S)| = 2|S|.

Exercise 9.5.  Show |P(N)| = 2ℵ0 = c.

Cantor found an ingenious argument that shows there can be no bijection
between any set S and its power set P(S). He showed that any function
from S to P(S) cannot be onto.

Theorem 9.2.  (Cantor)

Given any set S and any function f : S → P(S), f is not onto.

Proof. Given a function f : S → P(S), there are two possibilities for each
s ∈ S, either s ∈ f(s) or s ∉ f(s). Let T denote the set of all elements s
that do not belong to f(s).

ϕ, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3},

P(S) = {ϕ, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}.

T = {s | s ∉ f(s)}.



□

Clearly, T is a subset of S and consequently an element of P(S). We
want to show that f is not onto. The heart of the proof is to show that no
element of S gets mapped to T. If there was an element t ∈ S with
f(t) = T , then there are two possibilities, either t ∈ T  or t ∉ T . We
examine both of these and show each leads to a contradiction.

The set T is defined to be the set of elements s such that s ∉ f(s). If
t ∈ f(t), then by the definition of T, t ∉ T , but t ∈ f(t) = T , which gives
a contradiction.

If t ∉ f(t), then by the definition of T, t ∈ T , but this contradicts
t ∉ f(t) = T .

Exercise 9.6.  Given any set S, show how to construct a one-to-one function
f : S → P(S).

Theorem 9.2 and exercise 9.5 give us one of Cantor's most stunning
results.

Theorem 9.3.  For any set S, |S| < |P(S)|.

Cantor's theorem tells us that P(R) has cardinality greater than the
cardinality of R. Giving us a cardinality greater than c. We can apply the
theorem repeatedly to give a countable infinite number of infinities:

Cantor published his work in 1891. The mathematical community was
polarized. Some hailed Cantor as a genius, while others thought the work
nonsensical and should not be considered a part of mathematics. One of the
leading critics was Leopold Kronecker who actively worked to stop

ℵ0 < c < |P(R)| < |P(P(R))| < |P((P(R)))| < ⋯



Cantor's work from being published. Kronecker was a powerful
mathematician and a professor at the prestigious University of Berlin.
Cantor had been a student at this university and always wanted an
appointment there. Kronecker's attacks were a crushing disappointment.

Despite the attacks, Cantor continued his work on infinity and sets. He
believed that there was no cardinal number strictly between ℵ0 and c, but
could not prove it. This problem became known as the continuum
hypothesis.

Cantor also considered the ordering of elements in sets. He defined a set
to be well-ordered if every subset has a least element. The natural numbers
N are well-ordered with the usual ordering. The set of integers Z and the
rational numbers Q are not well-ordered with their usual orderings but they
can be well-ordered. This follows from the fact that there is a bijection from
the natural numbers to these sets, so we can reorder them using the ordering
on the natural numbers. If

is a bijection, we can define the ordering on S by

For example, we had a bijection f from the natural numbers to the integers
with

f : N → S

s < s′ if and only if f−1(s) < f−1(s′).

f(1) = 0, f(2) = 1, f(3) = −1, f(4) = 2, f(5) = −2, … .



This gives the ordering

which is a well-ordering of the integers.
It is clear that every countable set can be well-ordered, but what about

uncountable sets, the reals, for example? Cantor believed that every set
could be well-ordered but could not prove it.

Cantor also realized there was a problem concerning how to define sets.
For example, if you let U denote the set of all possible sets, then it must be
the largest set. However, his theorem says that P(U) will have a greater
cardinality. Cantor believed that this showed there was not a set of all sets,
that sets could not be too big, but he never clearly spelled out what the
criteria for a set were.

The Cantor Set

We briefly consider an interesting set that is named after Cantor. The set
was first discovered by Henry J. S. Smith in 1874, but Cantor mentioned it
in 1883. Nowadays, it is referred to as the Cantor set.

We construct it from the unit interval [0,1] by an iterative process in
which the middle thirds of intervals are deleted. The first iteration deletes
(1/3, 2/3) leaving

The second iteration deletes the middle thirds of these two intervals leaving

0, 1, −1, 2, −2, … ,

[0,
1
3
] ∪ [

2
3

, 1].



In the third iteration we remove the middle thirds of these four closed
intervals, and so on.

The process can also be described by writing the numbers in the interval
using base 3 (ternary). Such a number has the form 0.a1a2a3 …, where the
digits ai can be 0, 1, or 2. The first stage of the process keeps all the

numbers for which a1 is either 0 or 2. The second iteration keeps all the

remaining numbers with a2 equal to 0 or 2. The kth iteration keeps all the

remaining numbers that with ak equal to either 0 or 2. After we have

finished the process, we are left with the Cantor set. These are the numbers
that can be written in base 3 without using the digit 1.

Exercise 9.7.  Show, in base 3, that 0.02222 ⋯ = 0.1000 ….

Exercise 9.8.  Show that if a number has two ternary expansions, then it
belongs to the Cantor set.

(This is the reason we described the process as “keeping all the numbers
with ak equal to either 0 or 2” and not saying “delete all numbers with ak

equal to 1.”)

Exercise 9.9.⋆  Show the cardinality of the Cantor set is c.

Now we consider the size or measure of the Cantor set. We consider the
lengths of the interval that have been removed. The first iteration removes
the middle third, which has length 1/3. The second iteration removes the
middle thirds of the two remaining intervals, so another 2/9 is removed.

[0,
1
9
] ∪ [

2
9

,
1
3
] ∪ [

2
3

,
7
9
] ∪ [

8
9

, 1].



The third iteration removes 4 intervals each of length 1/27. The sum of the
lengths of all the interval removed by the whole process is

This is a geometric series with first term 1/3 and ratio 2/3, so

This tells us that although the Cantor set is uncountable it has measure 0.
This means it contains no intervals.

The Cantor set also has the property for every point x in the set and any
distance ϵ, we can find another element of the Cantor set within distance ϵ
of x. This is sometimes expressed as saying that every point in the Cantor
set is a limit point. To see this let x have ternary expansion 0.a1a2a3 ….
Choose a value of n such that 1/3n < ϵ. We consider the first n digits of the
ternary expansion of x, 0.a1a2a3 … an. Now consider
0.a1a2a3 … an000 … and 0.a1a2a3 … an222 …. These both belong to
the Cantor set and are distance less than ϵ from x. At least one of these is
distinct from x.

9.2  FORMAL SYSTEMS

In 1900, the International Congress of Mathematicians invited David
Hilbert to give a talk on what he thought were the most important
mathematics problems for the new century. Hilbert was one of the world's

∞

∑
n=1

2n−1

3n
.

∞

∑
n=1

2n−1

3n
=

1/3

1 − 2/3
= 1.



leading mathematicians and a great supporter of Cantor. He thought that
Cantor's work on infinity and the results on non-Euclidean geometry were
some of the highlights of the nineteenth century. Hilbert listed twenty three
unsolved problems that he considered the most important. The first problem
concerned Cantor's work. He asked for a proof of the continuum hypothesis.
His second problem concerned putting arithmetic on a sound axiomatic
footing. There should be a list of axioms and rules of inference. Theorems
should be proved by starting from the axioms and using the rules of
inference at each stage.

Hilbert was worried about proofs using undefined terms or hidden
assumptions being used. He wanted everything to be clearly defined.

FIGURE 9.3  David Hilbert

Formal Systems

A formal system consists of the following four things:

1. A list of symbols that will be needed—called an alphabet.



2. A language that tells us how to combine the symbols to form strings of
symbols to form well-formed formulas, often called WFFs.

3. A set of axioms.

4. Rules of inference.

The axioms are all WFFs. The rules of inference tell us how to combine
WFFs to form new WFFs. The last WFF in a chain of inference is called a
Theorem, and the string of inferences is called a proof. In a formal system
we ask whether a WFF is provable: Is it a theorem? We don't ask if a WFF
is true or false.

There are certain properties that we would like our formal system to
have: consistency, completeness and soundness.

Consistency

Given a set of axioms, it should be impossible to prove some statement and
also the negation of the statement. A set of axioms for which it is impossible
to derive contradictions is called consistent. In system that is not consistent,
every statement is provable, so consistency is a basic requirement for any
formal system that is going to be useful.

To prove a system is consistent it is enough to show that some statement
is not provable.

Completeness

There are three possibilities for a statement:

It can be proved.

It can be disproved—there is a proof of the negation of the statement.

It can neither be proved nor disproved.



If a system has the property that every statement can be either proved or
disproved, then it is called complete. If there are statements that can neither
be proved nor disproved, then it is incomplete.

Soundness

We will be describing a formal system for part of arithmetic. Given a
statement about numbers, it is either true or false. We choose our initial
axioms of the formal system to be true statements about numbers. We
would like the rules of inference in the formal system to preserve truth, so
that when we interpret a theorem derived in the formal system it gives a
true statement about numbers.

We want the rules of inference to preserve truth. The theorems of the
formal system should be true statements for any model (or interpretation) of
the system. We define a formal system to be sound if the theorems are
universally valid—true for every model of the system.

It is important to realize that consistency does not imply soundness. It is
possible to construct a formal system in which the axioms are all true
statements when interpreted as being about numbers, but some of the
theorems that can be proved in the system give us false statements about
numbers.

Since our models are consistent, no statement can be both true and false,
our formal system must be consistent. So, soundness implies consistency,
but is a stronger property.

First-Order Logic

Zeroth-order logic is the logic described by truth tables. It uses the
connectives and, or and not. First-order logic includes zeroth-order logic
and also allows the use of quantifiers, there exists and for every. So, for



example, 2 < x < 3 belongs to zeroth order logic, but the statement: for
any two natural numbers n and m, there exists a unique greatest common
divisor, belongs to first-order.

Much, but not all, mathematics can be formalized using first-order logic.
Calculus and number theory can be formalized using it. Areas such as
category theory and topos theory require higher order logics.

One nice thing about first-order logic is that it is sound. Anything we can
prove using it will be universally valid.

The Hilbert Program

Initially, Hilbert's program for axiomatizing mathematics seemed
promising.

In 1908, Ernst Zermelo gave an axiomatized version of set theory. It
initially contained seven axioms. It was designed so that it was not possible
to construct sets like the “set of all sets.” It avoided the paradoxes. Zermelo
also showed that it could be proved that any set could be well-ordered if
you had a result now known as the axiom of choice.

The axiom of choice says that given any collection of sets, there is a way
of choosing one element from each set in the collection. For a finite
collection of sets, this is an obvious fact, but what if the number of sets in
the collection was uncountable? There was some debate about whether the
axiom of choice was needed and even if it was true for uncountably infinite
collections.

In 1922, Abraham Fraenkel modified some of the axioms and added a
new axiom on “replacement.” This new set of axioms allowed all of
Cantor's results, but still seemed to avoid contradictions. The Zermelo-
Fraenkel axioms are usually known by the initials ZF, and ZFC if you



include the axiom of choice. The ZFC axioms have stood the test of time
and are now regarded as the accepted basic axioms for set theory.

Alfred North Whitehead and Bertrand Russell published the start of an
enormous work to derive all of mathematics starting from logic. The first
three volumes were published in 1910, 1912, and 1913. These volumes
covered just set theory and numbers. There was to be a fourth volume on
geometry, but the authors, discouraged about how long the process was
taking and how much more mathematics needed to be covered, abandoned
the project.

In the 1920s there were two major approaches for putting mathematics on
a sound axiomatic footing. There was ZFC for set theory and Whitehead
and Russell's “Principia Mathematica” for building all of mathematics
starting from logic. Could it be proved that the sets of axioms underlying
these were both complete and consistent?

ZFC and arithmetic

ZFC is a formal system for set theory that uses first-order logic. The
arithmetic for natural numbers can be built within this framework. The
simplest approach is the one given by John von Neumann. He began by
defining 0 to be the empty set ϕ = {} and built the other numbers from
there in the following way:

0 = {}

1 = {0}

2 = {0, 1}
3 = {0, 1, 2}

⋮ ⋮ ⋮

n = {0, 1, 2, … ,n − 1}



We can then define m < n by m ∈ n.
We won't show how to construct addition and multiplication, but ZFC

with first-order logic has enough structure to enable both of these
operations to be defined.

Kurt Gödel

Kurt Gödel proved some of the most stunning results in the history of
mathematical logic. He would show that giving a complete and consistent
set of axioms for set theory or even for arithmetic was not possible.

FIGURE 9.4  Kurt Gödel

A formal system has rules for constructing WFFs and rules of inference.
We are interested in which statements can be proved from the axioms. We
don't talk of truth, but of provability. Russell, in an essay from 1901 and



later published as part of the book Mysticism and Logic and Other Essays
writes:

We start, in pure mathematics, from certain rules of inference, by
which we can infer that if one proposition is true, then so is some
other proposition. These rules of inference constitute the major part
of the principles of formal logic. We then take any hypothesis that
seems amusing, and deduce its consequences. If our hypothesis is
about anything, and not about one or more particular things, then
our deductions constitute mathematics. Thus mathematics may be
defined as the subject in which we never know what we are talking
about, nor whether what we are saying is true.

Earlier we said that if the underlying system of logic was first-order
logic, then the provable statements are universally valid (true in all
interpretations of the formal system). Gödel, in 1930, as part of his doctoral
dissertation proved the converse: that if a statement is universally valid,
then it is provable in the formal system. This result is called, somewhat
confusingly, Gödel's completeness theorem. The completeness theorem is
sometimes stated as showing the connection between syntactic provability
and semantic truth. Russell's quote is about syntactic provability, Gödel
shows that we can talk about truth and meaning, at least for first-order
logic.

In 1931, Gödel published his two incompleteness theorems. The first
incompleteness theorem states that no consistent system of axioms in which
a certain amount of arithmetic can be carried out is complete.2 There will
always be statements that cannot be proved or disproved. The second
incompleteness theorem says that it is not possible to prove the consistency
of the set of axioms from within the system.



Gödel's incompleteness theorems stunned the mathematical world. It
meant Hilbert's goal of finding complete axiomatic systems of mathematics
was not feasible.

In 1938, Gödel showed that both the axiom of choice and the continuum
hypothesis are consistent with the other axioms of ZF. This means that if ZF
is consistent, then it is not possible to disprove either the axiom of choice or
the continuum hypothesis. It still left open the question of whether you
could prove either of them from ZF. This question was answered in 1963 by
Paul Cohen. He showed that neither of them could be proved from ZF. This
meant that the continuum hypothesis and the axiom of choice are
independent of the axioms of ZF.

Most mathematicians accept and use the axiom of choice. It's widely
used in analysis, but it does have some strange consequences. It allows that
construction of non-measurable sets. These, as the name implies, cannot be
measured—they do not have a length, or volume. This might not initially
seem problematic, but the Banach–Tarski paradox3 gives a way of
decomposing a three-dimensional ball of radius 1 into five non-measurable
sets. These sets can then be reassembled to form two three-dimensional
balls of radius 1. The process of reassembly only involves translations and
rotations. The process has doubled the volume. This initially seems
impossible, but it is a logical consequence of ZFC. Our intuition is led
astray by thinking of the non-measurable sets as being three-dimensional
solid objects, but they are not. They are strange sets of points that cannot be
assigned a volume.
____________________

  2Gödel was not able to prove his first inconsistency theorem as it is usually stated. He needed to
use a condition (called ω-consistency) that is more restrictive than consistency. In 1936, J. Barkley
Rosser showed how the theorem could be proved using consistency).



3Despite the name, the Banach–Tarski paradox is not a paradox. It is called paradox because of the
surprising non-intuitive conclusion.

There is no general agreement about the continuum hypothesis. Cantor
believed it true; Cohen believed it false. Logicians and set-theorists are still
divided. Is it even sensible to talk about its truth? Unlike, the axiom of
choice, it is not needed or used for most mathematics.

Gödel's Completeness and Incompleteness Theorems

There is often confusion about these theorems, part of this is due to using
the word completeness with two different meanings. These theorems do not
contradict one another. An example should help to clarify the situation.

We know that Q, R, and C are all fields. Suppose we construct a formal
system using the axioms for a field and first-order logic. The proposition P:
There exists an x in the field such that x × x = 2 can be constructed in the
formal system. Can P be proved?

The statement asserts the existence of the square root of 2. This is true in
R and C, but not in Q. Since the statement is not true in every
interpretation, it is not universally valid. Gödel's completeness theorem tells
us P cannot be proved in the formal system. Similarly, we see the negation
of P is not universally valid and so cannot be proved.

The statement P cannot be either proved or disproved in the formal
system, so the system is incomplete. If we wish, we can add either P or
notP as a new axiom.

Exercise 9.10.⋆  Show that adding the axiom P results in a system that is
not complete.

Exercise 9.11.  Show that adding the axiom notP results in a system that is
not complete.



The idea behind Gödel's proof of the first incompleteness theorem is
often presented with the assumption that the system is sound. (We will talk
more about this later.) First, construct a statement GF within the formal

theory F that states GF is not provable in F. Once this self-referential

statement has been constructed, if there was a proof of it, you would have a
contradiction and F would be inconsistent. Consequently there cannot be a
proof of GF from within the system. So GF is true.

Can we prove notGF , the negation of GF? We have shown Gf is true, so

notGF  is false. Since the system is sound, we cannot prove a statement that
is false, and so you cannot prove notGF . The statement GF is independent

of the other axioms.
We know GF is true in the standard interpretation, but independent of the

other axioms in F. If we add GF as another axiom to the formal system, it

will preserve consistency, the usual interpretation of number will be an
interpretation of the new system, and GF will be trivially provable.

However, we now have a new formal system F′ and we form the statement
GF ′ . This statement will not be provable in F′, but will be a true statement
in our usual interpretation. Though we can keep adding extra axioms, we
will never obtain a complete system.

But things are more complicated.
Suppose we construct a formal system for arithmetic using first-order

logic. The sentence GF can be constructed within the system. We have just

said that Gf is true, but the consistency theorem tells us it is not valid. It is a

true statement with our usual numbers. Since GF is not valid, there must be

non-standard models of arithmetic in which GF is false. These non-standard

models are studied by mathematical logicians. However, most
mathematicians are quite content to work solely with the standard ones.



Soundness and Consistency

Our sketch of the idea behind the proof of the first incompleteness theorem
is semantic. We argued we cannot prove a statement that is false. We are
using the soundness property. If we replace the hypothesis of consistency
with soundness we have what is sometimes called the semantic version of
the first incompleteness theorem.

Theorem 9.4.  (Gödel's first incompleteness theorem—semantic version)
Any sound formal system in which a certain amount of arithmetic can be
carried out is incomplete.

The semantic version of Gödel's first incompleteness theorem stated is
weaker than assuming just consistency, but it is the version of most use to
mathematicians. It is also a version that can easily be proved once we
introduce the idea of computability and the halting problem. We will sketch
the proof later.

For most mathematicians, soundness is the useful property. We like to
talk of statements being true or false. Why does Gödel use consistency
rather than soundness in the hypotheses for his theorems?

Soundness is a semantic property. It enables us to assign meaning to
statements. However, it involves interpretations of the formal system. These
are not part of the formal system, but outside it. Soundness cannot be
defined within the system. Consistency is a syntactic property. It can be
defined within the formal system. Consistency is also a weaker property
than soundness, and most mathematicians want to prove the most general
theorem possible.

Theorem 9.5.  (Gödel's first incompleteness theorem) Any consistent
formal system in which a certain amount of arithmetic can be carried out is



incomplete.

Consistency and Truth

Consistency does not imply soundness. If we have a consistent system in
which our axioms are true statements we cannot assume the theorems are
true statements. However, there are certain theorems we can deduce that are
true.

We will consider the Goldbach conjecture. This dates back to 1742, when
Christian Goldbach conjectured that every even number greater than 2 is
equal to the sum of two prime numbers. This remains unsolved.

If the Goldbach conjecture is false, then there is an even number that
cannot be written as the sum of two primes. If this number exists, we can
find it by checking each even number. We can write a computer program
that takes n, finds all the primes less than n, and tests whether n can be
written as the sum of two of them. If the Goldbach conjecture is false, the
program will eventually find the smallest number that cannot be expressed
as the sum of two primes.

We are not arguing that this is feasible, or talking about how long the
process will take, but making the observation that if the Goldbach
conjecture is false, then we can prove this by using a finite process.

The hypotheses of Gödel's first incompleteness theorem are that the
system must be consistent and contain a certain amount of arithmetic. The
certain amount of arithmetic needed is exactly the amount needed to
perform the search required to perform the disproof of Goldbach's
conjecture if false.

Now suppose we have such a system and let GC be the statement in the
system that corresponds to Goldbach's conjecture. We know that if GC is
false, there will be a proof in the system. Now suppose that we can prove



GF, then we can deduce it must be true, because if it was false there would
be a proof, and so we could prove both GC and notGC but this is not
possible because the system is consistent.

Exercise 9.12.⋆  The Goldbach conjecture is unsolved. It is possible that it
can be neither proved nor disproved. Could there be a proof of this?

Gödel's proof uses these ideas. He constructs an arithmetical statement
GF that can be interpreted as GF is not provable in the formal system F. If

GF is false then it can proved false by a finite search within F. As before,

we can deduce that GF is true and there is no proof of GF. We know notGF

is false. Is it possible to have a proof of notGF? We showed this is not
possible if the system is sound, but we are only allowed to assume
consistency and consistency does not rule this out.

Gödel decided to use a condition that is stronger than consistency but
weaker than soundness—ω-consistency. We know that notGF is false, but
that if it was true, there would be a finite search proof. Gödel showed
statements like this cannot be proved assuming ω-consistency.

Rosser was able to weaken the hypothesis from ω-consistency to
consistency by constructing a more complicated sentence RF. This also has

the property, that if false, it can be proved false by a finite search within F.
The sentence is designed so that you can show notRF  is false and also not
provable using only consistency.

The Entscheidungsproblem

In 1928, Hilbert and Wilhelm Ackerman asked for an algorithm4 that, given
an axiomatic system, would take a statement as input and tell you whether
or not it was universally valid. This is known as Hilbert's



Entscheidungsproblem (decision problem). The decision problem can be
thought of as an algorithm where you input any statement in the theory and
the algorithm will tell you whether or not it can be proved from the axioms.

After Gödel proved his incompleteness theorems, it was clear that given
an axiomatic system, there were two classes of statements: those that could
be either proved or disproved from the axioms, and those that could neither
be proved or disproved. If Hilbert's decision algorithm existed, given a
statement, you could use the decision algorithm to tell which class of it
belonged to. If it was provable, or its negation was provable, you could start
work on proving it. If neither the statement or its negation were not
provable, you knew it was independent of the other axioms. You could then
decide whether or not to include it as a new axiom, but you would not waste
time in trying to find a proof. Hilbert's algorithm, if it existed, would be an
extremely useful tool.

Hilbert was asking for the construction of the algorithm. When he posed
the problem, he believed such an algorithm existed. After Gödel's
incompleteness theorems, other mathematicians were not so sure that it did.
Both Alan Turing and Alonzo Church set out to show it was not possible to
construct an algorithm for the decision problem. They worked
independently, unaware of the other's work. Church was first, giving a talk
at a meeting in 1935 and then publishing a paper in April 1936. Turing
rushed his proof to print in the latter part of 1936.

Turing's proof was accepted for publication because of its originality. The
ideas in his paper would later become the foundation for theoretical
computer science.

9.3  COMPUTATION



Algorithms have always been part of mathematics. There are step-by-step
methods for the calculation of greatest common divisors, of finding
derivatives, and so on. But there was no definition of algorithm. To prove
Hilbert wrong by showing no algorithm existed, both Turing and Church
needed to start by giving a definition of the term. Turing did this by
defining a theoretical machine that is now known as a Turing machine.
____________________

  4The word algorithm was not widely used at the time. Effective procedure was the term usually
used.

Turing Machines

Turing described what he felt was the simplest mechanism that can perform
any step-by-step calculation performed by humans. When we do a
calculation by hand, it is often done with paper and pencil. Turing argued
that the two-dimensionality of paper was not necessary, and that we could
work with a one-dimensional tape. To do calculations with a tape, we need
to be able to read and write on the tape.

He listed the basic components:

1. There is a finite alphabet consisting of all the possible symbols that
can be written on the tape.

2. There is an infinite one-dimensional tape divided into cells. Each cell
is either blank or can contain one letter from the alphabet.

3. Only a finite number of cells are not blank.

4. There is a tape head that at each step can move one cell to the left or to
the right.

5. The tape head can read the current cell and can overwrite the symbol
with another from the alphabet.



Before we proceed, we should explain the necessity of the infinite tape.
When we perform a calculation using paper and pencil, we start with a
blank page. If we fill the page with symbols, we start a new page. Turing
didn't want the complication of adding new bits of tape, so he decided to
have an infinite tape, but it can only have finitely many symbols written on
it. All the other cells are blank.

Figure 9.5 depicts the tape with the 1011 written on it. The b denotes
blank cell. The tape head is reading the leftmost 1.

FIGURE 9.5  Turing machine tape and tape head

The machine can be in a finite number of states. We indicate the state of
the machine by writing its name on the tape head. Figure 9.5 shows the
machine is in state S.

These machines are programmed by listing a set of rules that tell it
exactly what to do given the symbol it is reading and state the machine is
in. For example, in figure 9.5 the machine is in state S and reading a 1.
There will be a rule specifying what should be written over the 1, whether
the tape head should move one step to the left or right, and what is the new
state of the machine. We can write this down succinctly as a quintuple. For
example, we might have a rule that says: If the machine is in state S and
reading a 1, replace the 1 with a 0, move the head one step to the right and
enter state B. We can write this rule succinctly as the quintuple
(S, 1, 0,R,B), where we use L and R in the fourth entry to denote ‘left’
and ‘right,’ respectively.



We also need to know which state the machine starts in and where the
tape head is at the beginning. We will denote the starting state by S and
assume the tape head is at the leftmost symbol that is not blank. Figure 9.5
shows the machine at the start of a computation.

Finally, certain states are denoted as final states. Once a machine enters
one of these states it halts, ending the computation. An example, should
help clarify how these machines work.

Turing machines are not practical computing devices, they were designed
to be as simple as possible. Turing was breaking computation down into its
elemental components.

FIGURE 9.6  Alan Turing

Turing Machine to Add 1 to a Binary Number



We will construct a Turing machine that takes as input a binary number and
ends the computation with the number plus one on the tape. Referring back
to figure 9.5, we can think of 1011 as the starting binary number. When we
add 1 to this we do the following:

1. We look for the rightmost non-blank symbol. It is a 1.

2. We replace this 1 with a 0 and we look at the next symbol to the left.
(We are carrying a 1.)

3. We replace this 1 with a 0 and we look at the next symbol to the left.
(We are carrying a 1.)

4. We replace the 0 with a 1, and halt the computation with 1100 written
on the tape.

Initially we move the tape head to right in order to find the rightmost
symbol. Then there is the adding process. If the tape head is reading a 0, it
should replace it with a 1 and then halt; it has finished the computation. If
the tape head is reading a 1, it should replace it with a 0 and move one step
to the left. There is one final case to consider. If during the adding process,
the tape head reads a blank, it should replace it with a 1 and then halt.

We let S denote the starting state. It's the state that looks for the rightmost
symbol, and let A denote the adding state. Finally, will let H denote the state
that ends the computation.

In the starting state, there are three possibilities for what the tape head
could be reading, 0, 1, or b. We list the quintuples:

(S, 0, 0,R,S), (S, 1, 1,R,S), (S, b, b,L,A)



The first two leave the binary string as it is and keeps the tape head
moving the right. The third quintuple describes what happens when the tape
head has gone past the last non-blank symbol on the tape and is now
reading the first blank symbol to the right of the binary string. The tape
head should now start to move to the left and enter the adding state.

The quintuples for state A are:

The first and third of these quintuples tell the machine to halt, so there is
no direction the head should move. I chose L, but R is also okay. Figure 9.7
shows the machine adding 1 to the binary number 1011 after starting as
shown in figure 9.5.

(A, 0, 1,L,H), (A, 1, 0,L,A), (A, b, 1,L,H)



Long Description for Figure 9.7

FIGURE 9.7  Adding 1 to 1011

Exercise 9.13.  A string of parentheses is balanced if each opening
parenthesis is partnered with a closing parenthesis and the pairs are nested
properly. For example (()()) is balanced, while (()))( is not. Design a Turing



machine that takes inputs a string of parentheses and determines whether
or not it is balanced.

Church–Turing Thesis

Both Turing and Church needed to give a definition of algorithm. Turing
claimed that Turing machines could perform any algorithm. Church defined
algorithms in terms of a formal system of mathematical logic for functions,
called the lambda calculus. (Functional programming is based on it.)

After Church published his proof, Turing realized that he needed to
compare his definition to Church's. He showed that both definitions were
equivalent. Two different approaches that yielded equivalent definitions
helped to support the feeling that the definitions were correct. Since this
time, various definitions have been given, and there is universal agreement
that both Church and Turing have defined algorithms correctly.

The Universal Turing Machine

Turing machines are defined as lists of quintuples. The machine for adding
1 to a binary number is defined by:

If someone were to send us the quintuples along with the binary number
1011, we could perform the computation.

There is nothing special about this example. If we are sent any set of
quintuples describing a Turing machine and an input string, we can perform
the appropriate computation. If we want to, we can draw the tape and the

(S, 0, 0,R,S), (S, 1, 1,R,S), (S, b, b,L,A), (A, 0, 1,L,H), (A, 1, 0,L,A

(A, b, 1,L,H).



tape head, but this is not needed. There is an algorithm that tells us what to
do at each stage.

Once we are convinced that there is an algorithm that takes the
quintuples describing a Turing machine and an input and then runs the
machine on the input, we can apply the Church–Turing thesis. There must
be a Turing machine that takes quintuples describing Turing machines and
their inputs and emulates the Turing machine described quintuples on the
input. We are led to the striking observation that there must be a Turing
machine that can emulate any other Turing machine on any input. Such a
machine is called a Universal Turing Machine.

This approach using the Church–Turing thesis was not the approach
taken by Turing. He showed how to construct a Universal Turing Machine.
He listed the quintuples. However, giving a full description of a Universal
Turing Machine is complicated. We will content ourselves with the
knowledge that the Church–Turing thesis tells us that they exist.

The Universal Turing machine can be compared to a modern computer.
The inputted Turing machine corresponds to inputting a program and its
associated input to data, both the program and data are treated as strings of
symbols that are read into storage. This observation explains why Turing's
work forms the basis of theoretical computer science.

The Halting Problem

Our example of a Turing machine for adding 1 to a binary number halts in
every case, but not all Turing machines will halt on every input. For
example, the Turing machine that has only one state and moves the tape
head to the right,

(S, b, b,R,S),



never halts when started on a blank tape. More complicated Turing
machines will halt on some inputs and not halt on others.

Can we design a Turing machine, that takes as input any Turing machine
T along with its input I and tells us whether or not T halts on input I? This is
the halting problem.

Suppose that this is possible. We will call this machine M.

Turing pointed out that everything can be written in binary. The
description of a Turing machine can be written as a string of binary digits
and the input can be written as a string of digits. One of the key ideas
underlying the Universal Turing Machine was to treat both the program and
data as strings of binary digits. But this means that you can take a Turing
machine T and run it taking its input the binary string for T. (This is the
self-referential idea that Cantor used in Theorem 9.3 and Gödel used in his
first incompleteness theorem.)

We can slightly modify our machine M to give machine H:

M(T , I) outputs YES,  if machine T  halts on input I

M(T , I) outputs NO,  if machine T  does not halt on input I

H(T ) outputs YES,  if machine T  halts on input T

H(T ) outputs NO,  if machine T  does not halt on input T



We can slightly modify this machine so that instead of halting and
printing YES, it goes into a loop and never halts.

What happens if we run machine N on input N?

We obtain the nonsensical result that it does not halt if it halts and that it
halts if it does not halt.

We conclude that our initial assumption that the machine M telling us
whether or not a Turing machine T halts on I must be incorrect. There does
not exist an algorithm that will tell us whether Turing machines will halt on
their input. Of course, given a specific machine and a specific input, there
might well be a way of determining whether it halts. The halting problem
tells us there is no algorithm that works for all machines on all inputs.

The Halting Problem and Proving Gödel's First Incompleteness
Theorem

In the previous sections, we showed how to assign strings of 0s and 1s to
both Turing machines and their inputs. We can think of these as positive

N(T ) does not halt, if machine T  halts on input T

N(T ) halts and outputs NO,  if machine T  does not halt on input T

N(N) does not halt if machine N  halts on input N

N(N) halts if machine N  does not halt on input N



integers. (Perhaps inserting an additional 1 at the start of these strings and
then thinking of the string being a positive integer written in binary.) The
statement “Turing machine M halts on input I” becomes a statement about
two positive integers.

We restate the semantic version of Gödel's first incompleteness theorem
and sketch the proof.

Theorem.  (Gödel's first incompleteness theorem—semantic version) Any
sound formal system in which a certain amount of arithmetic can be carried
out is incomplete.

Proof. Suppose, for a contradiction, that the system is complete. Then the
question of whether M halts on I can either be proved or disproved. There is
a proof in either case.

A proof in a formal system starts with the axioms and ends after a finite
number of applications of the rules of inference. Any such proof can be
found by a systematic search. We can construct an algorithm to do this.

Now we have an algorithm that solves the halting problem, but we know
this is not possible. Our initial assumption that the system is complete must
be false.

□

9.4  P AND NP

Our theory of computation has considered questions of what is theoretically
possible to compute and what is impossible to compute. We have not
mentioned feasibility. For example, we said that if Goldbach's conjecture is
false we can prove this by running a program to search for



counterexamples. If the conjecture is false, the program will halt after a
finite amount of time. But a finite amount of time could be a very long time.

Time-complexity is a measurement of how long it takes for an algorithm
to finish its computation. Clearly, some computers are faster than others, so
a sensible measurement is the number of elementary operations that have to
be performed during the computation. Consider sorting a list of numbers
according to size. The number of operations will depend on the length of
the list. The time required will be a function of the size of the input. We
want a way to classify these functions.

Big O Notation

We want a way of describing how the length of time increases as the size of
the input increases. We say that a function f(n) has order g(n), written
f(n) = O(g(n)), if we can find a numbers M and N such that
f(n) ≤ Mg(n) whenever n ≥ N . For example, if the time function is
polynomial in n, the highest power of a polynomial dominates the others.
For f(n) = 3n2 + 2n + 1, we can write f(n) = O(3n2), or even more
succinctly f(n) = O(n2). If we use bubble sort for our list of n items, we
can show its time complexity is O(n2).

The Class P

We say that an algorithm takes polynomial time if it is bounded by a
polynomial. This can be stated as:

Addition, subtraction, multiplication, division and the Euclidean
algorithm are all polynomial time. If there is an algorithm for solving a

f(n) is polynomial time if there is a k such that f(n) = O(nk).



problem in polynomial time the problem is often called “easy.” These
algorithms usually work well in practice. We denote the class of problems
that can be solved in polynomial time by P.

We need to be a careful about the meaning of the ‘size’ of the input. If we
consider Turing machines, the size of the input is the number of cells that
are not blank at the start. If we take the symbols as either 0 or 1, then we
could think of the input as being a number written in binary, but note that
the size is not this binary number, but the number of digits that the binary
number has. When we say that addition, multiplication, division are
polynomial time, we are talking about how time increases when the number
of digits increases.

An example of a problem that is not known to belong to P is
factorization. The best algorithms are faster than 2n but slower than any
polynomial in n. Again, we need to be careful here; n is the number of digits
in the number we are factoring. We are not factoring n.

The Class NP

The initials NP stand for nondeterministic polynomial time5. These are
problems which you can verify in polynomial time. For example, we don't
know how to do factorization in polynomial time. However, if someone
tells you they have the answer, you can verify by multiplying the primes to
make sure you get the correct original number. Factorization belongs to
class NP.

Given a graph, finding a Hamiltonian cycle—the problem of finding a
path that visits each vertex exactly once—belongs to NP. If someone hands
you a solution, you can quickly verify it is correct. It can be verified in
polynomial time, but nobody has found a polynomial-time algorithm for
finding Hamiltonian cycles.



Many problems that belong to NP seem to be intractable.

Does P Equal NP?

If you have an algorithm that finds solutions in polynomial time, then you
can verify it in polynomial time. So, all problems that belong to P also
belong to NP. But what about the converse? Do all problems that belong to
NP also belong to P? Are P and NP two names for exactly the same
collection of problems?

Most people believe this is not the case. They believe there are problems
in NP that are not in P. Initially it seems that proving NP is not equal to P
should be easy. But it isn't. Nobody has found a proof that NP and P are not
equal. Nobody has found a proof that they are. It remains the most
important unsolved problem in computer science.

Proving that P equals NP would revolutionize our understanding of
algorithms. It would tell us there are polynomial-time algorithms for
solving problems that are currently considered intractable. Many of these
NP problems are of practical use, knowing there are polynomial-time
algorithms would have a major impact.

In 2000, the Clay Mathematics Institute, in the tradition of Hilbert's
problems, listed seven problems they considered most important unsolved
problems for the new millennium. These problems are called the
Millennium Problems. Each problem comes with a million dollar award for
the first correct solution. One of these is the question of whether P equals
NP.

Within NP, there are a collection of problems known as NP-complete. If
you can find a polynomial-time algorithm for solving any NP-complete
problem, you not only show that that problem belongs to P, but every
problem, in NP belongs to P. The Hamiltonian cycle problem is NP-



complete. If you could find a polynomial-time algorithm for solving it, you
would also prove that P equals NP.
____________________

  5The word nondeterministic comes from nondeterministic Turing machines. These machines are
allowed to enter multiple states at each step.

Public Key Encryption

Internet traffic is encrypted. When communicating online, it is important to
have the messages encrypted. The standard methods of encryption use
symmetric keys. Both the sender and the receiver use the same key.
Typically the key is a string of 128 or 256 binary digits. Given the key,
there is a convoluted way of encrypting messages. This involves using the
initial key to generate other keys, using bitwise addition to add the keys to
chunks of the message, and performing various substitutions and
permutations. Though there are several steps in the encryption process it is
fast. It is also fast to decrypt. If you have the key, the encryption process
can be reversed, quickly giving the original message. This method of
encryption is believed to be secure.

Symmetric key encryption needs both parties to have the same key. This
raises the question of key distribution. At the start of the communication,
how can one party send the key securely to the other party? One way of
doing this is to use RSA encryption.

RSA comes from the first initials of the last names of Ron Rivest, Adi
Shamir and Leonard Adleman, who described the algorithm in 1977. The
method involves three numbers e, d and n. The numbers e and n are public.
The number d is kept secret.

Suppose that I want to send you a key that we will use as symmetric key
for communication between us. This key is a binary string of 128 bits, but it
can be thought of as a number written in binary. We will denote it by K. To



encrypt the key, I find your public encryption key e and modulus n, then
calculate K e mod (n) and send it to you. You take the number you sent
and calculate (K e)d mod (n). The result is the original number K. We
now describe how the numbers are chosen, why it works and why it is
secure.

The process begins by your computer finding two large primes p and q
and then multiplying them to give the number n. The security of this
method comes from the fact that finding large primes and multiplying them
together are quick processes, but factorizing n without knowing the primes
is hard. We already commented that multiplication can be done in
polynomial time and there is no known polynomial-time algorithm for
factorization. It might seem surprising that finding large primes is easy, but
there are ways of randomly generating large numbers and using primality
tests that do not use factorization.

Your computer then finds Euler phi function ϕ(n) = (p − 1)(q − 1).
Next, it finds a number e that is coprime to (p − 1)(q − 1). It can use the
Euclidean algorithm to check this and in so doing find a number d such that

Another way of expressing this congruence is to say there is an integer k
such that

The primes chosen for RSA are much larger than our key K. This tells us
that K is coprime to n. Euler's theorem says that Kϕ(n) ≡ 1 mod (n),

ed ≡ 1 mod (p − 1)(q − 1).

ed = 1 + k(p − 1)(q − 1) = 1 + kϕ(n).



which tells us

This is the important identity.
To summarize, the numbers e and n are public. You keep d secret. To

encrypt K, I calculate K e mod (n) and send you this number. You then
raise this to the dth power modulo n and it gives you back K. We now both
have a key to use as a symmetric key.

RSA is widely used. However, there is a search for a replacement. The
security of RSA depends on the number n being hard to factor. In 1994,
Peter Shor found a quantum algorithm that can factor large numbers in
polynomial time on a quantum computer. If large enough quantum
computers could be built, RSA could be broken.

Shor's algorithm initiated an area known as post-quantum cryptography6

looking for algorithms that can resist attacks by quantum computers. The
National Institute of Science and Technology in the United States has
started a competition for a replacement for RSA that cannot be broken by
quantum attacks.

Suggestion for Further Reading

Chris Bernhardt. Turing's Vision: The Birth of Computer Science. MIT
Press, 2016.

Paul Halmos. Naive Set Theory. Dover Publications; Reprint Edition. 2017

Torkel Franzén. Gödel's Theorem. A. K. Peters. First Edition 2005

K ed ≡ K 1+kϕ(n) ≡ K mod (n).



____________________

  6This should not be confused with quantum cryptography—cryptography using quantum
computers. Quantum key exchange methods using quantum computers are highly secure.
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Solutions to Starred Exercises

1.1  This follows from the fact that (x1 − x0)2 = (x0 − x1)2 and
(y1 − y0)2 = (y0 − y1)2.

1.4  The diagram with the radius drawn is below. The center of the semicircle is
denoted by 0. The triangle OAC is isosceles, so the base angles, denoted by α are
equal. Similarly, the triangle OBC is isosceles with equal base angles (denoted by
β). The sum of the angles of the triangle ABC add to 2α + 2β. Since the sum of
the angles of a triangle is 180∘, we obtain α + β = 90∘.

1.5  The quadratic formula tells us the two roots of x2 − ax + b2 = 0 are
x = a/2 ± √a2/4 − b2. The Pythagorean theorem shows the length of PD is
√a2/4 − b2. We know |AP | = |PB| = a/2. So, |AD| = a/2 + √a2/4 − b2

and |DB| = a/2 − √a2/4 − b2.

1.9  Triangles ABC and DAC are both isosceles. They have equal base angles and so
are similar. By similarity, |BA|/|AC| = |AC|/|DC|.

1.12  The equation of the semicircle is

or

(x − c/2)2 + y2 = (c/2)2



Substituting y = x2/b and simplifying shows that the non-zero root x satisfies

1.13  Let x2 > x1 > 0. Then

That is to say, the expression x3 + b2x is strictly increasing in x and hence can
take on any given value at most once.

2.1  Let d denote the gcd of a and b. The Euclidean algorithm shows that d belongs to

Let c denote the smallest positive integer in S. Since d divides both a and b, it
must divide every number in S. In particular, d must divide c. We know that
c ≤ d and d divides c, so c must equal d.

2.4  If p divides (ab)c and does not divide c, then Euclid's Lemma tells us it must
divide ab. Applying the lemma once more tells us p must divide either a or b.

2.6  Let p be a prime dividing mn. Since m and n are coprime, p must divide either m
or n, but not both. We look at the case when p divides m. In this case p divides m2

but not n2, so it cannot divide m2 ± n2. A similar argument works when p
divides n but not m.

2.8  Let d1 = 1 < d2 < ⋯ < dm = p denote the positive divisors of p and
e1 = 1 < e2 < ⋯ < en = q the positive divisors of q. Since p and q are
coprime, any positive divisor of pq can be written as a positive divisor of p
multiplied by a positive divisor of q in exactly one way.

x2 − cx + y2 = 0.

x3 + b2x = b2c.

(x3
2 + b2x2) − (x3

1 + b2x1) = x3
2 − x3

1 + b2(x2 − x1)

= (x2 − x1)(x2
1 + x1x2 + x2

2) + b2(x2 − x1) > 0.

S = {ax + by |x, y are integers}.



2.10  If p is not prime, we can write is as p = ab, where a and b are positive integers
greater than 1. Using the fact that

on the expression 2p − 1 = (2a)b gives the factorization

showing that if p is not a prime then 2p − 1 is composite.

2.12  If a ≡ b mod (n), then b − a = kn for some integer k. If c ≡ d mod (n),
then c − d = ln for some integer l. Now (b + d) − (a + c) = (k + l)n, so n
divides (b + d) − (a + c) telling us a + c ≡ b + d mod (n).

2.15  If ja ≡ ka mod (n), then n divides (k − j)a. Since n and a are coprime, n
must divide k − j, so they belong to the same congruence class.

2.20  If n is composite, we can find integers r and s with 1 < r ≤ s < n and n = rs. If
r ≠ s, they will both appear in the product 1 × 2 × 3 × ⋯ × (n − 1), so
n = rs will be a divisor. If r = s, then n = r2. Since n > 4, r ≥ 3. This implies
r < 2r < n. Since both r and 2r appear in the product
1 × 2 × 3 × ⋯ × (n − 1), n must be a divisor.

4.1  Let p(z) = anz
n + an−1z

n−1 + … an be a polynomial with real coefficients. If
z is a complex root of p then

hence the complex roots of p occur in complex conjugate pairs. Denote the real
and complex roots z1, … , zn of p by r1, … , rs and α1 ± iβ1, … ,αt ± iβt.
Then

σ(pq) = ∑
i,j

diej = ∑
i

di∑
j

ee = σ(p)σ(q).

xb − 1 = (x − 1)(xb−1 + xb−2 + ⋯x + 1)

2p − 1 = (2a − 1) ((2a)b−1 + (2a)b−2 + ⋯ (2a) + 1)

0 = p(z) = anz̄
n + an−1z̄

n−1 + … a0



4.4  The Tschirnhaus substitution x = y − 1 yields

Applying Cardano's formula (4.14) with p = 4 and q = 2 gives (to 4 decimal
places) y = −0.4735. Thus x = −1.4735.

4.7  Denote z = 1 + i. Then |z| = √12 + 12 = √2 and arg(z) = arctan 1 = π/4.
Thus the four fourth roots of z are

4.9  We show one of the cases:

3.2  Denote S = F1 + F2x + F3x
2 + …. Using the defining property (3.2), we have

3.3  Denote

p(z) = an(z − z1) … (z − zn)

= an(z − r1) … (z − rs)(z − α1 − iβ1)(z − α1 + iβ1) …

(z − αt − iβt)(z − αt + iβt)

= an(z − r1) … (z − rs)[(z − α1)2 + β2
1] … [(z − αt)

2 + β2
t ].

y3 + 4y + 2 = 0.

8√2(cosπ/16 + i sinπ/16))
8√2(cos(π/16 + π/2) + i sin(π/16 + π/2)) =

8√2(cos 9π/16 + i sin 9π/16)
8√2(cosπ/16 + π) + i sin(π/16 + π)) = 8√2(cos 17π/16) + i sin 17π/16)
8√2(cosπ/16 + 3π/2) + i sin(π/16 + 3π/2)) =

8√2(cos 17π/16)

+i sin 25π/16).

Vi(d, c, a, e, b) = d + ωic + ω3ia + ω2ie + ω4ib

= ω3i(a + ωib + ω3ic + ω2id + ω4ie

= ω3iVi(a, b, c, d, e).

S − xS − x2S = F1 + F2x − xF1 = 1.



Then

Since |ϕ2/ϕ1| < 1, limn→∞ (ϕ2/ϕ1)n =limn→∞ (ϕ2/ϕ1)n−1 = 0, and the
result follows.

3.4

3.5  x = 1, y = 3, z = 4.

3.6  Multiplying the first equation by c, the second equation by a and subtracting
eliminates x from the equation and gives

(1)

If bc ≠ ad, then this yields y = (cp − aq)/(bc − ad) and substituting into either
of the original equations and solving for x, we obtain a unique solution (x, y) to
the system.
On the other hand, suppose bc = ad. If cp ≠ aq then equation (1) implies that
the system is inconsistent hence has no solutions. Suppose cp = aq. We assume
that in each of the equations at least one of the coefficients on the left-hand side
is non-zero, otherwise the equation either results in inconsistency or vanishes.
Assume without loss of generality that a ≠ 0. Then the first equation has
infinitely many solutions (x, y) where x = (p − by)/a. These solutions also
satisfy the second equation since

1 + √5

2
= ϕ1,  

1 − √5

2
= ϕ2.

Fn+1

Fn
= ϕ1[

1 − ( ϕ2

ϕ1
)n

1 − ( ϕ2

ϕ1
)n−1

].

Ln = (
1 + √5

2
)n−1 + (

1 − √5

2
)n−1.

(bc − ad)y = cp − aq.



5.1  Following the hint and using the algebraic identity (a + b)(a − b) = a2 − b2, we
have

5.2  In order that f to be continuous at x = 3, it is first necessary that the left and right
limits of f(x) as x approaches 3, agree (so that limx→3 f(x) exists). This implies

Thus c = 0 or 1. For these choices of c, limx→3 f(x) = f(3), hence f is
continuous at 3.

5.3  y − 1/2 = 7
8 (x − 1).

5.4  By inspection f(2) = 21, i.e., f−1(21) = 2. By IFT, we have

5.9  e′(x) = 1
log′(ex)

= ex.

5.13  Assume e = p/q, so

Following the hint, we have

cx + dy = c(
p − by

a
+ dy) =

cp − cby

a
+ cdy =

aq − ady

a
+ dy = q.

lim
x→9

√x − 3

x − 9
=lim

x→9

√x − 3

x − 9
×

√x + 3

√x + 3

=lim
x→9

x − 9

(x − 9)(√x + 3)
=

1

6
.

9 + 2c = 9 + c2.

(f−1)′(21) =
1

3x2 + 4
/x=2 = 1/16.

p

q
= 1 +

1

2!
+

1

3!
+ ⋯ +

1

q!
+

1

(q + 1)!
+ ⋯ .



It follows that the sum of the infinite series

is an integer. However

and since there is no integer between 0 and 1/q, this gives a contradiction.

5.14  The difference quotient at 0 for this function is 1
h
e−1/h2

. Substituting t = 1/h,
we have

6.2  Using the Binomial Theorem and interchanging the order of summation, we have

p(q − 1)! = q!(1 +
1

2!
+

1

3!
+ ⋯ +

1

q!
)+

1

(q + 1)
+

1

(q + 1)(q + 2)
+ ⋯

S =
1

(q + 1)
+

1

(q + 1)(q + 2)
+

1

(q + 1)(q + 2)(q + 3)
+ ⋯

S <
1

(q + 1)
+

1

(q + 1)2
+

1

(q + 1)3
+ ⋯ =

1/(q + 1)

1 − 1/(q + 1)
=

1

q

lim
h→0

(1/h)e−1/h2

= lim
t→∞

te−t2

≤ lim
t→∞

t

1 + t2
= 0.

ez+w =
∞

∑
k=0

(z + w)k

k!

=
∞

∑
k=0

k

∑
r=0

zrwk−r

r!(k − r)!

=
∞

∑
r=0

1

r!

∞

∑
k=r

zrwk−r

(k − r)!

=
∞

∑
r=0

zr

r!

∞

∑
k=0

wk

k!
= ez ⋅ ew.



6.3  Let z ∈ D, so |z| < 1. Choose r = (1 − |z|)/2 and let Dz denote the disc

Then by the triangle inequality, if w ∈ Dz then

Thus Dz ⊂ D.

6.5  Differentiating first in x and then in y, we obtain

Together with the Cauchy–Riemann equations

we have a homogeneous system of 4 linear equations in Ux,Uy,Vx,Vy. In matrix
form,

It follows from the fact that U and V cannot both vanish, that the coefficient
matrix has non-zero determinant and hence is invertible. Thus the system has the
unique solution Ux = Uy = Vx = Vy = 0, which implies that U and V are
constant.

6.8  Suppose f is entire and |f(z)| ≤ M,  for all z ∈ C. Then by (6.18) with n = 1

and Theorem 6.5, we have, for R > |z|,

Dz = {|w − z| < r}.

|w| ≤ |z| + |w − z| < |z| + r = (1 + |z|)/2 < 1.

UUx + V Vx = 0

UUy + V Vy = 0.

Ux − Vy = 0

Uy + Vx = 0

= .

U 0 V 0

0 U 0 V

1 0 0 −1

0 1 1 0

Ux

Uy

Vx

Vy

0

0

0

0



as R → ∞. Thus f ′(z) ≡ 0, which implies f is constant.

6.10  Let w0 ≠ 0. By Picard's theorem, there exists z0 such that ez0 = w0. Then

e1/z = w0 for

6.11

Thus

6.13  π2/8.

7.1  Each edge connects two vertices. So each edge contributes 2 to the sum of the
degrees of the vertices.

7.2  A graph is 1-regular if the degree of each vertex is 1. Each vertex is the endpoint
of exactly one edge. This means each vertex is connected to exactly one other
vertex, so the vertices can be paired. Each of the pairs corresponds to an edge, so
the number of vertices is twice the number of edges.

7.4  We have to draw the graph in the plane with no edge crossings. One way of doing
this is:

|f ′(z)| =
1

2πi
∫
CR(0)

f(ξ)

(ξ − z)2
dξ ≤

2πRM

2π(R − |z|)2
→ 0

z =
1

z0 + 2nπi
, n ∈ N.

Res(
z

(z − 1)(z − 2)2
, 1) =

z

(z − 2)2
/z=1 = 1

Res(
z

(z − 1)(z − 2)2
, 2) = [

z

z − 1
]′(2) = −1.

∫
|z=3|

zdz

(z − 1)(z − 2)2
= 0.



7.6  We have to draw the graph in the plane with no edge crossings. One way of doing
this is:

Long Description Unnumbered Figure 1

7.7  The vertex that has m vertices and no edges is an example.

7.8  For a connected tree there is a unique sequence of edges connecting any two
vertices. Choose a vertex and give it a color. Every other vertex is connected to
this colored vertex by either an even number of edges or an odd number. Use the
same color for the vertices connected by an even number of edges and a different
color for the vertices connected by an odd number of edges. This gives a coloring
because vertices of the same color are separated by an even number of edges.

7.10  In a complete graph, any two vertices are connected by an edge, so no two
vertices can have the same color. This means each vertex must have a distinct
color.



8.2  Firstly, there are 10 different combinations of ranks that can be straights,
depending on where the straight starts, ace - 10 (allowing ace to be both high and
low). Then there are 4 possible choices of the suit for each rank, giving a total of
10 ⋅ 45 hands that are straights. Thus the probability of a straight is

8.4  6/7.

8.5  Write

where X1, … ,Xn are independent Bernoulli random variables with parameter
p. Then, by Theorem 8.1,

8.6  By Theorem 8.1, X̄ has mean 70 and standard deviation 5/√100 = .5. The
sampled for X̄ of 65, thus lies 10 standard deviations below the mean. According
to Chebyshev's inequality, the likelihood of this happening is less than 1%. This
provides strong evidence that the claim is correct.

8.7  Approximately 1/3000.

8.8  Note that X10 = 4 if there are 7 steps to the right and 3 steps to the right in 10
moves. The probability of this event is

10 ⋅ 45

( 52
5 )

= .0039.

X =
n

∑
i=1

Xi

E[X] =
n

∑
i=1

E[Xi] = np,

V ar(X) =
n

∑
i=1

V ar(Xi) = npq.

(
10

7
)(0.4)7(0.6)3 = 04246.



8.9  Define

This function attains its maximum value when

i.e., p = 1/2. Since f ′(p) is positive in the region (0, 1/2) and negative in
(1/2, 1) it follows that for p ≠ 1/2, f(p) < f(1/2) = 1/4. (The result also
follows from the vertex formula for a parabola.)

8.13  Assuming without loss of generality that the random walk starts at position 0, the
position Xn at time n is given, following (8.10) by

The means μ of the Zk are p − q > 0. According to SLLN, Xn/n → μ as

n → ∞, with probability 1. This implies that, with probability 1, there exists a
time N such that for n > N ,Xn ≠ 0, i.e., Xn returns to 0 at most finitely many

times. This implies that the random walk is transient.

9.2  The derivative of g(x) is g′(x) = −ex/(1 + ex)2. This is always negative, so
g(x) is a decreasing function. It is straightforward to check

and

9.3  We will use binary expansions of real numbers, but as with decimals we have to
be careful about numbers having two expansions. For decimal expansions, any

f(p) = pq = p(1 − p), 0 ≤ p ≤ 1.

f ′(p) = 1 − 2p = 0,

Xn =
n

∑
k=0

Zk.

lim
x→−∞

g(x) = 1

lim
x→∞

g(x) = 0.



number with an infinite tail of 9s can be rewritten to have an infinite tail of 0s.
For binary expansions, any number with an infinite tail of 1s can be rewritten to
have an infinite tail of 0s.
The cardinality of the half-open interval [0, 1) is c. The set of infinite binary
strings has cardinality 2ℵ0 . We construct one-to-one functions from each of these
sets to the other and then use the Schröder–Bernstein theorem to conclude they
have the same cardinality.
We can define a map f from infinite binary strings to the interval [0, 1) by
defining

This function is not onto, but it is one-to-one.
We can define a one-to-one function from [0, 1) to binary strings by taking the
binary expansion of the number that doesn't end in a string of 1s. Again, this is
not onto, but is one-to-one.

9.4  A subset of S can be generated by going through the set of elements of S one by
one and deciding whether to include it or not. There are two choices for each
element. The set of all subsets can be generated by going through the 2|S|

choices.

9.9  Each point in the Cantor set can be written as an infinite string of 0s and 2s. We
can map this to infinite binary strings by changing the 2s to 1s. This gives a
bijection between the Cantor set and the set of infinite binary strings.

9.10  Both R and C satisfy the axioms for a field and also axiom P. The statement Q:
There exists an x in the field such that x × x = −1 is true in C but not in R, so
the new system is not complete.

9.12  No. If the Goldbach conjecture is false, then as shown in the text it can be proven
false. If we have a proof that it cannot be proven false, then it must be true.
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