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Preface

Spatial statistics is concerned with data collected at various spatial locations or
sites, typically in a Euclidean space ℝd

, d ≥ 1. The important cases in practice are
d = 1,2, 3, corresponding to the data on the line, in the plane, or in 3-space, respec-
tively. A common property of spatial data is “spatial continuity,” which means that
measurements at nearby locations will tend to be more similar than measurements
at distant locations. Spatial continuity can be modeled statistically using a covari-
ance function of a stochastic process for which observations at nearby sites are
more highly correlated than at distant sites. A stochastic process in space is also
known as a random field.

One distinctive feature of spatial statistics, and related areas such as time series,
is that there is typically just one realization of the stochastic process to analyze.
Other branches of statistics often involve the analysis of independent replications
of data.

The purpose of this book is to develop the statistical tools to analyze spatial data.
The main emphasis in the book is on Gaussian processes. Here is a brief summary
of the contents. A list of Notation and Terminology is given at the start for ease
of reference. An introduction to the overall objectives of spatial analysis, together
with some exploratory methods, is given in Chapter 1. Next is the specification of
possible covariance functions (Chapter 2 for the stationary case and Chapter 3 for
the intrinsic case). It is helpful to distinguish discretely indexed, or lattice, pro-
cesses from continuously indexed processes. In particular, for lattice processes,
it is possible to specify a covariance function through an autoregressive model
(the SAR and CAR models of Chapter 4), with specialized estimation procedures
(Chapter 6). Model fitting through maximum likelihood and related ideas for con-
tinuously indexed processes is covered in Chapter 5. An important use of spatial
models is kriging, i.e. the prediction of the process at a collection of new sites,
given the values of the process at a collection of training sites (Chapter 7), and
in particular the links to machine learning are explained. Some additional topics,
for which there was not space for in the book, are summarized in Chapter 8. The
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xx Preface

technical mathematical tools have been collected in Appendix A for ease of refer-
ence. Appendix B contains a short historical review of the spatial linear model.

The development of statistical methodology for spatial data arose somewhat sep-
arately in several academic disciplines over the past century.
(a) Agricultural field trials. An area of land is divided into long, thin plots, and

different crop is grown on each plot. Spatial correlation in the soil fertility can
cause spatial correlation in the crop yields (Webster and Oliver, 2001).

(b) Geostatistics. In mining applications, the concentration of a mineral of interest
will often show spatial continuity in a body of ore. Two giants in the field of
spatial analysis came out of this field. Krige (1951) set out the methodology
for spatial prediction (now known as kriging) and Matheron (1963) devel-
oped a comprehensive theory for stationary and intrinsic random fields; see
Appendix B.

(c) Social and medical science. Spatial continuity is an important property when
describing characteristics that vary across a region of space. One application is
in geography and environmetrics and key names include Cliff and Ord (1981),
Anselin (1988), Upton and Fingleton (1985, 1989), Wilson (2000), Lawson
and Denison (2002), Kanevski and Maignan (2004), and Schabenberger and
Gotway (2005). Another application is in public health and epidemiology,
see, e.g., Diggle and Giorgi (2019).

(d) Splines. A very different approach to spatial continuity has been pursued in the
field of nonparametric statistics. Spatial continuity of an underlying smooth
function is ensured by imposing a roughness penalty when fitting the function
to data by least squares. It turns out that fitted spline is identical to the kriging
predictor under suitable assumptions on the underlying covariance function.
Key names here include Wahba (1990) and Watson (1984). A modern treat-
ment is given in Berlinet and Thomas-Agnan (2004).

(e) Mainstream statistics. From at least the 1950s, mainstream statisticians have
been closely involved in the development of suitable spatial models and suit-
able fitting procedures. Highlights include the work by Whittle (1954), Matérn
(1960, 1986), Besag (1974), Cressie (1993), and Diggle and Ribeiro (2007).

(f) Probability theory and fractals. For the most part, statisticians interested in
asymptotics have focused on “outfill” asymptotics – the data sites cover an
increasing domain as the sample size increases. The other extreme is “infill
asymptotics” in which the interest is on the local smoothness of realizations
from the spatial process. This infill topic has long been of interest to proba-
bilists (e.g. Adler, 1981). The smoothness properties of spatial processes under-
lie much of the theory of fractals (Mandelbrot, 1982).

(g) Machine learning. Gaussian processes and splines have become a fundamental
tool in machine learning. Key texts include Rasmussen and Williams (2006)
and Hastie et al. (2009).
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(h) Morphometrics. Starting with Bookstein (1989), a pair of thin-plate splines
have been used for the construction of deformations of two-dimensional
images. The thin-plate spline is just a special case of kriging.

(i) Image analysis. Stationary random fields form a fundamental model for ran-
domness in images, though typically the interest is in more substantive struc-
tures. Some books include Grenander and Miller (2007), Sonka et al. (2013),
and Dryden and Mardia (2016). The two edited volumes Mardia and Kanji
(1993) and Mardia (1994) are still relevant for the underlying statistical theory
in image analysis; in particular, Mardia and Kanji (1993) contains a reproduc-
tion of some seminal papers in the area.

The book is designed to be used in teaching. The statistical models and methods
are carefully explained, and there is an extensive set of exercises. At the same time
the book is a research monograph, pulling together and unifying a wide variety of
different ideas.

A key strength of the book is a careful description of the foundations of the sub-
ject for stationary and related random fields. Our view is that a clear understanding
of the basics of the subject is needed before the methods can be used in more com-
plicated situations. Subtleties are sometimes skimmed over in more applied texts
(e.g. how to interpret the “covariance function” for an intrinsic process, especially
of higher order, or a generalized process, and how to specify their spectral repre-
sentations). The unity of the subject, ranging from continuously indexed to lattice
processes, has been emphasized. The important special case of self-similar intrin-
sic covariance functions is carefully explained. There are now a wide variety of
estimation methods, mainly variants and approximations to maximum likelihood,
and these are explored in detail.

There is a careful treatment of kriging, especially for intrinsic covariance func-
tions where the importance of drift terms is emphasized. The link to splines is
explained in detail. Examples based on real data, especially from geostatistics, are
used to illustrate the key ideas.

The book aims at a balance between theory and illustrative applications, while
remaining accessible to a wide audience. Although there is now a wide variety
of books available on the subject of spatial analysis, none of them has quite the
same perspective. There have been many books published on spatial analysis, and
here we just highlight a few. Ripley (1981) was one of the first monographs in the
mainstream Statistics literature. Some key books that complement the material in
this book, especially for applications, include Cressie (1993), Diggle and Ribeiro
(2007), Diggle and Giorgi (2019), Gelfand et al. (2010), Chilés and Delfiner (2012),
Banerjee et al. (2015), van Lieshout (2019), and Rasmussen and Williams (2006).
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What background does a reader need? The book assumes a knowledge of the
ideas covered by intermediate courses in mathematical statistics and linear alge-
bra. In addition, some familiarity with multivariate statistics will be helpful. Oth-
erwise, the book is largely self-contained. In particular, no prior knowledge of
stochastic processes is assumed. All the necessary matrix algebra is included in
Appendix A. Some knowledge of time series is not necessary, but will help to set
some of the ideas into context.

There is now a wide selection of software packages to carry out spatial analysis,
especially in R, and it is not the purpose in this book to compare them. We have
largely used the package geoR (Ribeiro Jr and Diggle, 2001) and the program of
Pardo-Igúzquiza et al. (2008), with additional routines written where necessary.
The data sets are available from a public repository at https://github.com/jtkent1/
spatial-analysis-datasets.

Several themes receive little or no coverage in the book. These include point pro-
cesses, discretely valued processes (e.g. binary processes), and spatial–temporal
processes. There is little emphasis on a full Bayesian analysis when the covari-
ance parameters needed to be estimated. The main focus is on methods related to
maximum likelihood.

The book has had a long gestation period. When we started writing the book
the 1980s, the literature was much sparser. As the writing of the book progressed,
the subject has evolved at an increasing rate, and more sections and chapters have
been added. As a result the coverage of the subject feels more complete. At last,
this first edition is finished (though the subject continues to advance).

A series of workshops at Leeds University (the Leeds Annual Statistics Research
[LASR] workshops), starting from 1979, helped to develop the cross-disciplinary
fertilization of ideas between Statistics and other disciplines. Some leading
researchers who presented their work at these meetings include Julian Besag,
Fred Bookstein, David Cox, Xavier Guyon, John Haslett, Chris Jennison, Hans
Künsch, Alain Marechal, Richard Martin, Brian Ripley, and Tata Subba-Rao.

We are extremely grateful to Wiley for their patience and help during the writ-
ing of the book, especially Helen Ramsey, Sharon Clutton, Rob Calver, Richard
Davies, Kathryn Sharples, Liz Wingett, Kelvin Matthews, Alison Oliver, Vikto-
ria Hartl-Vida, Ashley Alliano, Kimberly Monroe-Hill, and Paul Sayer. Secretarial
help at Leeds during the initial development was given by Margaret Richardson,
Christine Rutherford, and Catherine Dobson.

We have had helpful discussions with many participants at the LASR work-
shops and with colleagues and students about the material in the book. These
include Robert Adler, Francisco Alonso, Jose Angulo, Robert Aykroyd, Andrew
Baczkowski, Noel Cressie, Sourish Das, Pierre Delfiner, Peter Diggle, Peter
Dowd, Ian Dryden, Alan Gelfand, Christine Gill, Chris Glasbey, Arnaldo Goitía,
Colin Goodall, Peter Green, Ulf Grenander, Luigi Ippoliti, Anil Jain, Giovanna

https://github.com/jtkent1/spatial-analysis-datasets
https://github.com/jtkent1/spatial-analysis-datasets
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Jona Lasinio, André Journel, Freddie Kalaitzis, David Kendall, Danie Krige,
Neil Lawrence, Toby Lewis, John Little, Roger Marshall, Georges Matheron,
Lutz Mattner, Charles Meyer, Michael Miller, Mohsen Mohammadzadeh,
Debashis Mondal, Richard Morris, Ali Mosammam, Nitis Mukhopadhyay, Keith
Ord, E Pardo-Igúzquiza, Anna Persson, Sophia Rabe, Ed Redfern, Allen Royale,
Sujit Sahu, Paul Sampson, Bernard Silverman, Nozer Singpurwalla, Paul Switzer,
Charles Taylor, D. Vere-Jones, Alan Watkins, Geof Watson, Chris Wikle, Alan
Wilson, and Jim Zidek.

John is grateful to his wife Sue for her support in the writing of this book, espe-
cially with the challenges of the Covid pandemic. Kanti would like to thank the
Leverhulme Trust for an Emeritus Fellowship and Anna Grundy of the Trust for
simplifying the administration process. Finally, he would like to express his sincere
gratitude to his wife and his family for continuous love, support and compassion
during his research writings such as this monograph.

We would be pleased to hear about any typographical or other errors in the text.

30 June 2021 John T. Kent
Kanti V. Mardia
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List of Notation and Terminology

Here is a list of some of the key notations and terminology used in the book.
● ℝ and ℤ denote the real numbers and integers.
● For a dimension d ≥ 1, a site is a location t ∈ ℝd or t ∈ ℤd. The elements or

components of a site t are written using square brackets

t = (t[1], . . . , t[d]).

Note t is not in bold face.
● A random field is synonymous with a stochastic process. A random field on ℝd

is written as X(t) = X(t[1], . . . , t[d]), t ∈ ℝd, using function notation. A random
field on the latticeℤd is written as Xt = X(t[1], . . . ,t[d]), t ∈ ℤd, using subscript nota-
tion. A random field is often assumed to be a Gaussian process (GP).

● The mean function and covariance function are written as E{X(t)} = 𝜇(t) and
covariance function cov{X(s),X(t)} = 𝜎(s, t). In the stationary case, 𝜇(t) = 𝜇 is
constant and 𝜎(s, t) = 𝜎(h) depends only on the lag h = s − t. In the lattice case,
use subscripts, e.g. 𝜇t, 𝜎s,t.

● A stationary covariance function 𝜎(h) = 𝜎
2
𝜌(h) can be written as a product of a

marginal variance 𝜎2 and an autocorrelation function 𝜌(h).
● An intrinsic random field extends the idea of a stationary random field.

Write XI(t) for an intrinsic random field of order k ≥ 0 (IRF-k) with intrinsic
covariance function 𝜎I(h). For an intrinsic random field of order 0 (IRF-0),
the semivariogram is given by 𝛾(h) = 𝜎I(0) − 𝜎I(h). A registered version of an
intrinsic random field is denoted XR(t).

● For a stationary model, a scheme is a parameterized family of covariance func-
tions. For an intrinsic model, a scheme is a parameterized family of intrinsic
covariance functions (or equivalently for an IRF-0 model, a parameterized
family of semivariograms).

● A nugget effect refers to observations from a random field subject to measure-
ment error, with variance typically denoted 𝜏2.
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● The vector of covariance parameters for a stationary or intrinsic model, possibly
including a nugget effect, is denoted 𝜽 and can be partitioned as 𝜽 = (𝜎2

,𝜽c) in
terms of an overall scale parameter and the remaining parameters.

● Spaces of polynomials in ℝd (Section 3.4):
– k: Space of homogeneous polynomials of degree k ≥ 0, with dimension

denoted pH(k) = dim(k)
– k: Space of all polynomials of degree ≤ k in ℝd, with dimension denoted

pF(k) = dim(k).
● IRFd(𝛼, k) denotes the isotropic self-similar intrinsic random field of index 𝛼 > 0

and with drift space k (Section 3.10). The intrinsic covariance function is
denoted 𝜎

𝛼
(h) and spectral density is denoted f

𝛼
(𝜔).

● Most of the book is concerned with ordinary random fields. There are also gener-
alized random fields indexed by functions rather than sites and written as XG(⋅)
with covariance functional 𝜎G(⋅, ⋅).

● The surface area of the unit sphere in ℝd is denoted 𝜋d = 2𝜋d∕2∕Γ(d∕2).
● D denotes a domain of sites in ℝd or ℤd. The notation encompasses several

possibilities, including the following:
– An open subset D ⊂ ℝd, e.g. D = ℝd

– A finite collection of sites D = {t1, . . . , tn} in ℝd or ℤd

– The infinite lattice D = ℤd

– A finite rectangular lattice in ℤd,

D = {t ∈ ℤd ∶ 1 ≤ t[𝓁] ≤ n[𝓁], 𝓁 = 1, . . . , d}

with dimension vector N = (n[1], . . . ,n[d]) and of size |D| = |N| =
n[1] × · · · × n[d]. In the lattice case, sites in D can be denoted using letters
such as t = (t[1], . . . , t[d]) to emphasize the link to the continuous case,
or using letters such as j = ( j[1], . . . , j[d]) to emphasize the fact that the
components are integers.

For a finite domain, the notation |D| stands for the number of sites in D.
● Frequencies in the Fourier domain are denoted 𝜔 = (𝜔[1], . . . , 𝜔[d]).
● Vectors indexing data are treated as column vectors and are written as

x = [x1, . . . , xn]T in bold lowercase letters, with the components indicated by
subscripts. The transpose of x is denoted xT . This subscript convention is typical
in multivariate analysis. Note the difference from the convention for sites t and
frequencies 𝜔.

● Random vectors, e.g., x = [x1, . . . , xn]T or X = [X1, . . . ,Xn]T are written in bold
letters, with the components indicated by subscripts. In particular, upper case
is used when the distinction between a random quantity and its possible values
needs emphasis.

● Matrices are written using nonbold uppercase letters, e.g. A and Γ, with the ele-
ments of A written as aij or as (A)ij. The two notations are synonymous. The
columns of A are written using bracketed subscripts, a(j). For a square matrix,
the determinant is denoted by either det (A) or |A|; the notation |A| should not
be confused with |D|, the size of a domain D described above.
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● If s and t are sites, then sTt =
∑d

𝓁=1 s[𝓁]t[𝓁] is the inner product and |t|2 = tTt is
the squared Euclidean norm.

● Modulo notation mod (for numbers) and Mod (for vectors) (Section A.1)
● Check and convolution notation. If𝜑(u) is a function of u ∈ ℝd, let 𝜑̌(u) = 𝜑(−u).

Then

(𝜑 ∗ 𝜓)(h) =
∫
𝜑(u)𝜓(h − u) du, (𝜑 ∗ 𝜑̌)(h) =

∫
𝜑(u)𝜑(u − h) du,

and the latter is symmetric in h.
● The Kronecker delta and Dirac delta functions are denoted 𝛿h, h ∈ ℤd and
𝛿(h), h ∈ ℝd, respectively.

●  . A finite symmetric neighborhood of the origin in ℤ2. The augmented
neighborhood 0 =  ∪ {0} includes the origin. Half of the neighborhood 

is denoted  † (Section 4.4).
● . A half-space in ℤd, especially the lexicographic half-space  (Section 4.8).

Related ideas are the weak past  and quadrant past  (Section 4.8), and the
partial past (Section 5.9).

● Kriging is essentially prediction for random fields. It comes in various forms
including simple kriging, ordinary kriging, universal kriging, and Bayesian krig-
ing. In each case, there is a kriging predictor at every site, which depends on the
data through a kriging vector. Combining the kriging predictor for all sites yields
a kriging surface. The kriging variance describes the accuracy of the predictor
at each site. Tables 7.1 and 7.2 set out the notation for kriging and Table 7.3
provides a comparison with some related notation used in machine learning.

● The transfer covariance matrix and transfer drift matrix are used to construct the
kriging predictor (Section 7.6).

● Bordered covariance matrix. This is an (n + 1) × (n + 1) matrix, Section 7.6.4,
also used to construct the kriging predictor.

● Autoregression (AR) and related spatial models come in various forms in
Chapter 4 including:
– MA: Moving average (Section 4.3)
– SAR: Simultaneous autoregression (Section 4.5)
– CAR: Conditional autoregression (Section 4.6)
– ICAR: Intrinsic CAR (Section 4.6.3)
– QICAR: Quasi-intrinsic CAR (Section 4.6.3)
– UAR: Unilateral autoregression (Section 4.8.2)
– QAR: Quadrant unilateral autoregression (Section 4.8.3)

● Types of matrix
– Tensor product matrices (Section A.3.9)
– Toeplitz, circulant, folded circulant matrices (Sections A.3.8 and A.10).
– All n × n circulant matrices in d = 1 dimension have the same eigen-

vectors. These can be represented in complex coordinates by the unitary
matrix G(DFT,com)

n or in real coordinates by the orthogonal matrix G(DFT,rea)
n

(Section A.7.2).
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● Abbreviations and terminology for estimation and testing:
– MLE: maximum likelihood estimation
– AIC: Akaike information criterion
– REML: restricted maximum likelihood
– MINQUE: minimum quadratic unbiased estimation
– GLS: generalized least squares
– OLS: ordinary least squares
– PMSE: prediction mean squared error for a kriging predictor
– profile likelihood
– likelihood ratio test
– Vecchia approximation to the likelihood
– moment estimation
– Fisher information
– composite likelihood

● Other abbreviations:
– i.i.d.: independent and identically distributed
– RF: random field
– IRF: intrinsic random field
– GP: Gaussian process = Gaussian random field
– MRF: Markov random field
– GMRF: Gaussian Markov random field
– SLM: spatial linear model
– FT: Fourier transform
– IFT: inverse Fourier transform
– DFT: discrete Fourier transform
– DCT: discrete cosine transform
– SPDE: stochastic partial differential equation
– RKHS: reproducing kernel Hilbert space
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Introduction

1.1 Spatial Analysis

Spatial analysis involves the analysis of data collected in a spatial region. A key
aspect of such data is that observations at nearby sites tend to be highly correlated
with one another. Any adequate statistical analysis should take these correlations
into account.

The region in which the data lie is a subset of d-dimensional space, ℝd, for some
d ≥ 1. The important cases in practice are d = 1,2, 3, corresponding to the data on
the line, in the plane, or in 3-space, respectively.

The one-dimensional case, d = 1, is already well known from the analysis of
time series. Therefore, it will come as no surprise that many of the techniques
introduced in this book represent generalizations of standard methodology from
time-series analysis. However, just as multivariate analysis contains techniques
with no counterpart in univariate statistical analysis, spatial analysis includes
techniques with no counterpart in time-series analysis.

Spatial data arise in many applications. In mining we may have measurements
of ore grade at a set of boreholes. If all the observations along each borehole
are averaged together, we obtain data in d = 2 dimensions, whereas if we retain
the depth information at which each observation in the borehole is made, we
obtain three-dimensional data. In agriculture, experiments are usually performed
on experimental plots, which are regularly spaced in a field. For environmental
monitoring, data are collected at an array of monitoring sites, possibly irregularly
located. There may also be a temporal component to this monitoring application
as data are collected through time.

Digital images can also be viewed as spatial data sets. Examples include Landsat
satellite images of areas of the earth’s surface, medical images of the interior of the
human body, and fingerprint images.

Spatial Analysis, First Edition. John T. Kent and Kanti V. Mardia.
© 2022 John Wiley & Sons Ltd. Published 2022 by John Wiley & Sons Ltd.
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1.2 Presentation of the Data

The points in ℝd at which the data are collected are known as sites. A data set
consists of a collection of sites ti and real-valued observations or values x(ti) ∈
ℝd
, i = 1, . . . ,n. Note that each ti = (ti[1], . . . , ti[d]) represents a vector in ℝd.

If the sites ti are located arbitrarily inℝd, the data are known as irregularly spaced
data. However, if the components of the sites ti are restricted to have integer val-
ues, ti ∈ ℤd and the sites cover a rectangular region inℤd, then the data are known
as regular lattice or regularly spaced data. (There is also the case of irregular lattice
data for which the data do not fill a rectangular region.) For convenience, we shall
often write lattice data using subscripts xt rather than with parentheses x(t) to
emphasize the link with sequences of data in d = 1 dimension. For example, in
d = 2 dimensions xt stands for x(t[1],t[2]), though we shall usually avoid the need to
expand the suffix t in full.

There are two ways to represent spatial data.
Regularly spaced data can be represented as a two-way table of numbers. The

other representation, which can be used both for regularly spaced and irregularly
spaced data, is a list of spatial sites and data values.

Example 1.1 Illustrative data
Table 1.1 gives a simple illustrative regularly spaced data set inℤ2. In Panel (a), the
data are presented as a two-way array of numbers. Panel (b) shows a matrix coordi-
nate system in which the origin is at the upper left of the table, with t[1] increasing
down the rows of the table and t[2] increasing across the rows. Although the matrix
coordinate system is conventional for multivariate analysis, we do not use matrix
coordinates in this book. Instead, we use graphical coordinates, as in Panel (c), for
which the t[1]-axis increases horizontally to the right, and the t[2]-axis increases
vertically upward. Finally, in Panel (d) the data are presented as a list of spatial
sites and data values. ◽

A digital image can be regarded as a spatial data set on a large regular grid;
typically, d = 2 and n = 256 × 256 or 512 × 512. In this context, the sites are known
as pixels (picture elements).

Example 1.2 Fingerprint data
Figure 1.1 shows the gray level image of a fingerprint of R A Fisher. The sites t of
the data lie on a rectangular grid 3003 pixels wide by 3339 pixels high. The values
of xt have been scaled to lie between 0 and 1. The marked rectangular section is
investigated in more detail in Example 1.8. ◽
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Table 1.1 Illustrative data xt , t = (t[1], t[2]), on a 3 × 4 regular grid, represented in
various ways, n = 12.

(a) Table of values on a 3 × 4 grid

6 7 3 10
13 2 4 3
22 9 2 5

(b) Matrix coordinates (not generally used in this book)
t[2]

1 2 3 4

1 6 7 3 10
t[1] 2 13 2 4 3

3 22 9 2 5

(c) Graphical coordinates (used for all spatial data sets in this book). The asterisks
are explained in Example 1.7

3 ∗6 ∗7 ∗3 10
t[2] 2 ∗13 ∗2 ∗4 3

1 ∗22 ∗9 ∗2 5

1 2 3 4
t[1]

(d) List of graphical coordinates and values

t[1] t[2] xt t[1] t[2] xt

1 1 22 3 2 4
2 1 9 4 2 3
3 1 2 1 3 6
4 1 5 2 3 7
1 2 13 3 3 3
2 2 2 4 3 10

Example 1.3 Elevation data
The topographic elevation data of Davis (1973) are given in Table 1.2 and consist of
n = 52 irregularly spaced observations. The data contain geographic coordinates
and elevations of control points for a surveying problem. The elevation is measured
in feet above the sea level. The coordinates are expressed in 50-feet units measured
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Figure 1.1 Fingerprint of R A Fisher, taken from Mardia’s personal collection. A blowup
of the marked rectangular section is given in Figure 1.9.

from an arbitrary origin located in the southwest corner; t1 is the East–West coor-
dinate and t2 is the North–South coordinate. Figure 1.2 gives two plots of the data.
The raw plot in Panel (a) shows the elevation values printed at each site. The bub-
ble plot in Panel (b) shows a circle plotted at each site, where the size of the circle
encodes graphically the elevation information; larger elevations are indicated by
bigger circles. Patterns in the data are often easier to pick out using the bubble plot.
Note that the elevations are high near the edges of the region with a basin in the
middle. There are extra features associated with the data such as river locations,
but we will limit ourselves here to just the elevation information for illustrative
purposes.

One of the objectives for this sort of data is to predict the elevation through-
out the region and to represent the result graphically. Using a statistical method
called kriging (see Chapter 7 for details), the elevation was predicted or smoothed
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Table 1.2 Elevation data: elevation x(t) in feet above the
sea level, where t = (t[1], t[2]), n = 52.

E-W N-S Elevation E-W N-S Elevation
t[1] t[2] x(t) t[1] t[2] x(t)

0.3 6.1 870 5.2 3.2 805
1.4 6.2 793 6.3 3.4 840
2.4 6.1 755 0.3 2.4 890
3.6 6.2 690 2.0 2.7 820
5.7 6.2 800 3.8 2.3 873
1.6 5.2 800 6.3 2.2 875
2.9 5.1 730 0.6 1.7 873
3.4 5.3 728 1.5 1.8 865
3.4 5.7 710 2.1 1.8 841
4.8 5.6 780 2.1 1.1 862
5.3 5.0 804 3.1 1.1 908
6.2 5.2 855 4.5 1.8 855
0.2 4.3 830 5.5 1.7 850
0.9 4.2 813 5.7 1.0 882
2.3 4.8 762 6.2 1.0 910
2.5 4.5 765 0.4 0.5 940
3.0 4.5 740 1.4 0.6 915
3.5 4.5 765 1.4 0.1 890
4.1 4.6 760 2.1 0.7 880
4.9 4.2 790 2.3 0.3 870
6.3 4.3 820 3.1 0.0 880
0.9 3.2 855 4.1 0.8 960
1.7 3.8 812 5.4 0.4 890
2.4 3.8 773 6.0 0.1 860
3.7 3.5 812 5.7 3.0 830
4.5 3.2 827 3.6 6.0 705

Coordinates are expressed in 50-feet units measured from an
arbitrary origin located in the southwest corner, with t[1] being
the East–West coordinate and t[2] being the South–North
coordinate.
Source: Davis (1973).
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Figure 1.2 Elevation data: (a) raw plot giving the elevation at each site and (b) bubble
plot where larger elevations are indicated by bigger circles.

on a fine grid of points throughout the region. The result for this data set can be
summarized visually in different ways including:

● A contour map (Figure 1.3a)
● A perspective plot (Figure 1.3b), viewed from the top of the region
● A digital image using gray level (or color) to indicate ore grade, where white

denotes the lower values and black denotes higher values (Figure 1.3c)

These images all show that the data have a valley in the top middle of the the
image and a peak in the bottom middle.

In addition, the contour plot in Figure 1.3d shows the standard error of the pre-
dictor. Notice that the predictor is perfect with zero standard error at the data sites,
and it has a larger standard error in places where the data sites are sparse. See
Example 7.2 for more details. ◽

Example 1.4 Bauxite data
Figure 1.4a shows the bauxite ore grade in percentages at n = 33 irregularly spaced
sites in ℝ2 (constructed from Marechal and Serra, 1970). Figure 1.4b shows the
same information in a “bubble” plot for which larger data values are represented
by larger circles. The data are also listed in Table 1.3.

Each representation makes clear the presence of hills on the left side and the
bottom of the region and a valley in the middle. ◽
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Figure 1.3 Panels (a), (b), and (c) show interpolated plots for the elevation data, as a
contour map, a perspective plot (viewed from the top of the region), and an image plot,
respectively. Panel (d) shows a contour map of the corresponding standard errors.

Example 1.5 Landsat data
Band 2 (Landsat 7) is used to distinguish soil from vegetation and deciduous from
coniferous vegetation. This data set contains values on a 200 × 200 grid of sites
from a Landsat image of a rural field in western Canada. More details are available
from Mardia and Pardo-Iguzquiza (2006). An image view of the data is shown in
Figure 1.5. The distance between adjacent sites is 30 m. Except for a large-scale
ridge running vertically through the middle of the image and some thin straight
white lines representing farms, the small-scale structure of the data appears to be
random alternating patches of light and dark. ◽
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Figure 1.4 Bauxite data: (a) raw plot giving the ore grade at each site and (b) bubble
plot where larger ore grades are indicated by bigger circles.

Table 1.3 Bauxite data: percentage ore grade for bauxite at n = 33 locations.

t[1] t[2] x(t) t[1] t[2] x(t) t[1] t[2] x(t)

0.07 5.14 18.35 2.43 1.86 3.55 4.43 1.69 7.15
0.14 2.36 21.80 2.43 2.93 8.55 4.64 7.07 22.10
0.39 4.57 47.70 2.50 0.50 31.70 4.79 5.19 3.30
1.00 6.93 15.00 2.71 5.29 5.95 5.14 4.50 3.05
1.19 1.31 9.90 3.21 4.07 1.60 5.21 6.29 5.80
1.19 2.36 16.30 3.36 0.14 36.00 5.64 1.86 4.30
1.24 3.29 22.00 3.57 2.00 5.80 6.64 3.36 5.30
1.36 4.69 11.10 3.93 5.36 6.70 6.00 5.50 9.90
1.79 5.71 7.60 3.93 6.43 5.10 6.29 7.79 7.55
2.14 3.64 13.35 4.14 2.86 1.90 6.57 6.43 9.00
2.36 6.64 9.70 4.36 3.86 4.45 6.86 4.57 6.75

Source: Based on Marechal and Serra (1970).
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Figure 1.5 Landsat data (200 × 200 pixels): image plot.

Example 1.6 Synthetic Landsat data
This is a simulated set of data designed to mimic the small-scale behavior of the
Landsat data. However, the parameters of the underlying model are known in
this case, so that it can be used to investigate different estimation procedures. The
underlying model is described in Chapter 5. The data set is plotted as a 200 × 200
image in Figure 1.6. Notice the presence of multiple dark and light areas in the
image extending over regions with a diameter of about 20 pixels. ◽

1.3 Objectives

There can be many possible objectives in a spatial analysis depending on the
applications. It is convenient to set out these objectives in terms of increasing
complexity. Our basic assumption is usually that some aspect of the data can be
usefully modeled as a stationary random field described by its first two moments.
The terms “random field” and “stochastic process” are synonymous; both refer to
collections of random variables indexed by a collection of sites. However, the term
“stochastic process” is often used when the sites lie in one dimension (especially
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Figure 1.6 Synthetic Landsat data: image plot.

where the process is evolving through time), and the term “random field” when
the sites lie in higher dimensions.

(a) Spatial correlation. A key aspect in most applications is that observations at
nearby sites will tend to be correlated. Hence, in a data set that can be regarded
as a stationary random field, one of the first objectives is to describe and quan-
tify the extent of this spatial correlation.

(b) Prediction. Using a sample of observations one might want to predict the
value of the random field at a new site. Using the spatial correlation structure
will improve the accuracy of the predictor. A typical example arises in mining
where measurements are made available at a set of boreholes, and one wants
to predict the ore content at a new borehole or in a block of rock. In time-series
analysis, “prediction” usually means predicting the future given the past.
However, in spatial analysis, even for the one-dimensional case, there is
generally no concept of “past” or “future.” Instead, prediction involves either
interpolation within or extrapolation beyond the set of data sites.

(c) The spatial linear model. A more realistic model than a stationary random
field might include trend terms (such as linear or quadratic drift) or treat-
ment effects (such as in a designed agricultural experiment). If the spatial
correlation structure is known, then estimation of these parameters in the
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spatial linear model is straightforward. If the spatial correlation structure also
needs to be estimated, the problem is more challenging (Chapter 5). The sim-
pler model of trend terms plus independent errors is known as “trend surface
modeling.”

(d) Smoothing. Extending the motivation behind the spatial linear model, we
might imagine our data consist of “signal” plus “noise.” One objective is then
to estimate the signal by smoothing away the noise.

1.4 The Covariance Function and Semivariogram

1.4.1 General Properties

As the first step in the spatial data analysis, we often calculate the mean value and
the covariance function. For this procedure to be useful, we imagine that the data
came from a stationary random field.

Let {X(t) ∶ t ∈ ℝd} denote a d-dimensional real-valued stationary random field
(see Chapter 2) with mean value

E{X(t)} = 𝜇 (not depending on t)

and covariance function

E{[X(t) − 𝜇] [X(t + h) − 𝜇]} = 𝜎(h) (not depending on t),

where h = (h[1], . . . , h[d]) ∈ ℝd and |h| = (h[1]2 + · · · + h[d]2)1∕2. The lag h des-
cribes the separation between two sites t and t + h. Usually, we shall only consider
models for which 𝜎(h) → 0 as |h| → ∞ so that distant observations are nearly
uncorrelated. The value of 𝜎(0) = var{X(t)} represents the marginal variance of
the process and does not depend on t.

The second-order behavior of the process can also be described using the semi-
variogram, which is defined by

𝛾(h) = 1
2

E{X(t + h) − X(t)}2 = 1
2

var{X(t + h) − X(t)}

= 𝜎(0) − 𝜎(h), (1.1)

the variance of an increment of lag h ∈ ℝd. Note that both 𝜎(h) and 𝛾(h) are even
functions of h,

𝜎(h) = 𝜎(−h), 𝛾(h) = 𝛾(−h).

The semivariogram and the covariance function are essentially equivalent ways
to describe the second-order behavior of a stationary random field. In particular,
provided 𝛾(h) has a finite limiting value as |h| → ∞, the covariance function can
be recovered from the semivariogram by

𝜎(0) = lim
|h|→∞

𝛾(h), 𝜎(h) = 𝜎(0) − 𝛾(h).
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The covariance function is well known from its use in time-series analysis. How-
ever, the semivariogram is valid in more settings in which 𝛾(h) → ∞. Since both
constructions are popular, we shall work with both of them through the book.

An important simplification occurs when the covariance function and semivari-
ogram depend only on the radial component r = |h|. In this case, the random field
is said to be isotropic and the notation

𝜎
#(r) = 𝜎(h), 𝛾

#(r) = 𝛾(h)

is used to distinguish between a function with a scalar argument and a function
with a vector argument. A more complete theoretical discussion of the covariance
function and semivariogram is given in Chapters 2 and 3, respectively, and statisti-
cal methods of analysis are covered in Chapter 5. In this section, we limit ourselves
to some simple initial observations.

Consider the sketch of an isotropic semivariogram given in Figure 1.7. The cir-
cles represent sample values of the semivariogram and the solid curve represents
an underlying model fitted to the data. Several typical features of a semivariogram
should be noted in the plot.

(a) Monotonicity. A semivariogram tends to be a monotone increasing function of
the lag |h|.

(b) Nugget effect. The fitted semivariogram can be extrapolated toward lag |h| = 0,
where it intersects the vertical axis at a nonzero value (0.2 in Figure 1.7). This
nonzero value is known as a “nugget effect.” That is, however close two obser-
vations are in space, there is still be some residual variability between them.
A nugget effect can be explained in terms of either small-scale variation in
the data or measurement error. The term nugget effect comes from mining,
where the presence of small nuggets of mineral gives rise to very short-range
autocorrelation effects. The topic is discussed in more detail in Chapter 5.
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Figure 1.7 Typical semivariogram, showing the range, nugget variance, and sill.
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(c) Sill. The fitted semivariogram can be extrapolated toward lag |h| = ∞. In
Figure 1.7, the semivariogram increases to a finite sill with a value of 0.7.
More generally, for stationary processes the sill is always finite. However, in
the wider setting of intrinsic processes, the sill may be infinite; see Chapter 3.

(d) Range. In Figure 1.7, the sill is attained by the semivariogram when |h| = 6.
This value of the lag is known as the “range.” Observations at sites separated
by a distance greater than the range are uncorrelated. In many examples, the
range is not finite; the semivariogram approaches the sill only asymptotically
as |h| → ∞. But even in this situation, it is helpful to define an “approximate
range” such that when the lag has reached this value, the semivariogram has
nearly reached the sill. See Section 5.2 for further discussion.

1.4.2 Regularly Spaced Data

Next, we describe how to calculate the sample covariance function and the sample
semivariogram from a set of data. Start with the case of regular lattice data {xt ∶
t ∈ D} in d dimensions, where

D = {t ∈ ℤd ∶ 1 ≤ t[𝓁] ≤ n[𝓁] for 𝓁 = 1, . . . , d}

denotes a rectangular region in ℤd with n[1] × · · · × n[d] = |D| sites. Let

Dh = {t ∈ ℤd ∶ t ∈ D and t + h ∈ D} (1.2)

denote those sites t for which t and t + h lie in D. Provided |h[𝓁]| ≤ n[𝓁] for
𝓁 = 1, . . . , d, the set Dh contains |Dh| = (n[1] − |h[1]|) × · · · × (n[d] − |h[d]|)
sites.

The sample mean is defined by

x = 1
|D|

∑
t∈D

xt.

The sample covariance function and sample semivariogram are defined by

sh = 1
|Dh|

∑
t∈Dh

[xt+h − x][xt − x] gh = 1
2

1
|Dh|

∑
t∈Dh

[xt+h − xt]2
.

In each case, the sum is divided by the number of terms.
Note that the identity (1.1) does not hold in the sample case; in general

gh ≠ s0 − sh. (1.3)

However, in practice the difference between gh and s0 − sh is usually negligible,
provided |Dh| is not too small.

If h[𝓁] is close to n[𝓁] for all 𝓁 = 1, . . . , d, then the number of terms in the sum-
mations for sh and gh becomes small. Thus, sh and gh become susceptible to large
sampling fluctuations for such values of h.
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Example 1.7 Consider the illustrative data of Table 1.1 where n = 12. To give a
stronger feeling for the intuition behind the formulas of this section, we illustrate
some of the calculations by hand.

The mean and variance are given by

x = (22 + 9 + · · · + 3 + 10)∕12 = 7.17,

s(0,0) = [(22 − 7.17)2 + · · · + (10 − 7.17)2]∕12 = 30.81.

For lag h = (1,0) the subset of data D(1,0) in (1.2) has been marked with asterisks
(*) in Table 1.1c; there are 9 such values. Thus, the calculations for the sample
covariance function and sample semivariogram take the form

s(1,0) = {(9 − 7.17)(22 − 7.17) + · · · + (10 − 7.17)(3 − 7.17)} ∕9 = 1.94,

g(1,0) =
{
(9 − 22)2 + (2 − 13)2 + (7 − 6)2 + (2 − 9)2 + (4 − 2)2

+ (3 − 7)2 + (5 − 2)2 + (3 − 4)2 + (10 − 3)2} ∕(2 × 9) = 23.28.

Note that
23.28 = g(1,0) ≠ s(0,0) − s(1,0) = 28.87,

in accordance with (1.3). ◽

1.4.3 Irregularly Spaced Data

For irregularly spaced data at distinct sites ti ∶ i = 1, . . . ,n, it will be rare for two
pairs of sites to have the same lag. Therefore, it is necessary to pool pairs of sites
having approximately the same lag for the computation of the sample covariance
function and semivariogram.

It is useful to distinguish between the isotropic and anisotropic cases. Start with
the anisotropic case. Let 𝛿 > 0 be a “smoothness parameter.” For a lag h ∈ ℝd, let
M(h) define a set of site pairs lying in a window (depending on 𝛿) of h. All the
choices of window have the property that each site pair is included at most once;
that is, if ti − tj ∈ M(h), then tj − ti ∉ M(h). Then smoothed versions of the sample
covariance function and sample semivariogram can be defined by

s(h) = 1
|M(h)|

∑
(i,j)∈M(h)

{x(ti) − x}{x(tj) − x}, (1.4)

g(h) = 1
2|M(h)|

∑
(i,j)∈M(h)

{x(ti) − x(tj)}2
. (1.5)

There are several choices for the window of h:

1. Circular. For |h| ≥ 𝛿, set

M(h) = {(i, j) ∶ i < j and |ti − tj − h| < 𝛿} (1.6)

denote a circular disk about h.
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2. Square. For h such that |h[𝓁]| ≥ 𝛿 for at least one 𝓁 = 1, . . . , d, let

M(h) = {(i, j) ∶ i < j and |ti[𝓁] − tj[𝓁] − h[𝓁]| ≤ 𝛿, 𝓁 = 1, . . . , d} (1.7)

denote a square centered at h. Isaaks and Srivastava (1989) suggest letting h
vary over a grid of vectors with components given by half-integers times 𝛿,
i.e. h[𝓁] = ( 1

2
+ k[𝓁])𝛿, where the k[𝓁] are integers. Thus, the space of site

differences becomes partitioned into nonoverlapping square blocks (unless
any site differences lie exactly on the boundary between two blocks).

3. Sector. In d = 2 dimensions, it is natural to use switch to polar coordinates. In
addition to the radial smoothness parameter 𝛿 > 0, let 0 < 𝛼0 < 𝜋 denote an
angular smoothness parameter, e.g. 𝛼0 = 𝜋∕8 (22.5∘). Set

M(h) = {(i, j) ∶ i < j, | |h| − |ti − tj| | ≤ 𝛿 and
hT(ti − tj)∕(|h| |ti − tj|)

1
2 ≥ cos 𝛼0,

(1.8)

where the notation | ⋅ | is used both for the absolute value of a real number
and for the Euclidean norm of a vector in ℝd. Then M(h) is an angular sector
with radial width 𝛿 and angular semiwidth 𝛼0. This is the window choice used
in the computer package geoR (Ribeiro Jr and Diggle, 2001). It is common
to fix 𝜃 = 0∘, 45∘, 90∘, 135∘ to be one of the four principal directions and to
plot the sample covariance function or the sample semivariogram vs. r for
r = 𝛿, 3𝛿, 5𝛿, . . . .

Note that x does not depend on the choice of window or on 𝛿. If M(h) is ever
empty, the corresponding value of s(h) or g(h) is undefined. The validity of these
window definitions requires that h and 𝛿 be chosen so that the origin does not lie
in M(h). This condition is also important in practice since the semivariogram will
usually be nondifferentiable (and sometimes appear to be discontinuous) at the
origin.

For isotropic data, it is natural to use an annulus for the set indexing site pairs.
Thus, for r = |h| > 0, set

N(r) = {(i, j) ∶ i < j and r − 𝛿 < |ti − tj| ≤ r + 𝛿}, (1.9)

and define the smoothed sample covariance function and the sample semivari-
ogram by

s♯(r) = 1
|N(r)|

∑
(i,j)∈N(r)

{x(ti) − x}{x(tj) − x}, (1.10)

g♯(r) = 1
|N(r)|

∑
(i,j)∈N(r)

{x(ti) − x(tj)}2
. (1.11)

These functions can be plotted e.g. at the values r = 𝛿, 3𝛿, 5𝛿, . . . , so that the
annuli defining the N(h) partition the space of site differences into nonoverlapping
regions. Note that each site difference ti − tj is listed just once in N(h).

Some examples of these smoothing procedures are given in Section 1.5.
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1.5 Behavior of the Sample Semivariogram

In Section 1.4.2, we described how to calculate the sample semivariogram gh for
a regular two-dimensional data set on an n[1] × n[2] grid, for h = (h[1], h[2])
satisfying |h[1]| < n[1], |h[2]| < n[2]. To understand this large array of numbers,
it is helpful to use polar coordinates, h = (r sin 𝜃, r cos 𝜃). Writing gh as g(r, 𝜃)
when convenient, plot g(r, 𝜃) vs. r for several choices of 𝜃 (typically the four main
directions 𝜃 = 0∘, 45∘, 90∘, 135∘).

Throughout this chapter, we have used and adapted the computer packagegeoR
(Ribeiro Jr and Diggle, 2001) to plot the data and semivariograms. In particular,
we have used the same convention as geoR to measure the angles. Recall that
in graphical coordinates the h[1]-axis increases horizontally to the right, and the
h[2]-axis increases vertically upward. Here, 𝜃 represents the direction of a line,
measured clockwise from the vertical axis; see Figure 1.8. Further, since gh = g−h
for all h, the plots corresponding to 𝜃 and 𝜃 + 180∘ are identical. The following
values of h are involved for each choice of 𝜃:

𝜃 = 0∘ ∶ h = (0,0), (0,1), (0,2), etc.

𝜃 = 45∘ ∶ h = (0,0), (1,1), (2,2), etc.

𝜃 = 90∘ ∶ h = (0,0), (1,0), (2,0), etc.

𝜃 = 135∘ ∶ h = (0,0), (−1,1), (−2,2), etc.

Note that for 𝜃 = 0∘ and 90∘, gh is computed for r = 0,1, 2, . . . whereas for
𝜃 = 45∘ and 135∘, gh is computed for r = 0,

√
2, 2

√
2, . . . .

If the data are believed to be isotropic, then values with the same |h| can be
combined together. For example, define

g♯1 = 1
2
(g(1,0) + g(0,1)), g♯2 = 1

2
(g(2,0) + g(0,2)),

g♯√
2
= 1

2
(g(1,1) + g(1,−1)), g♯

2
√

2
= 1

2
(g(2,2) + g(2,−2)), etc.

Angle convention
0°

45°

90°

135°

h[1]

h[2]

Figure 1.8 Angle convention for polar coordinates. Angles are measured clockwise from
vertical.
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In general, combining the data from the 0∘, 45∘, 90∘ and 135∘ axes suffices to pro-
vide a sufficient summary of the covariance structure of the data.

In the examples that follow, the exact semivariogram has been used for regu-
lar data, and the smoothed semivariogram based on angular sectors has been used
for irregular data. In both cases, the directional semivariograms for different direc-
tions can be combined together to give the omnidirectional semivariogram.

Example 1.8 Fingerprint section – semivariograms
A rectangular section, 218 pixels wide by 356 pixels high, was highlighted in the
fingerprint in Figure 1.1 for Example 1.2. An image plot of this section is given in
Figure 1.9a. This image contains several ridges and valleys parallel to the vertical
axis. The semivariograms in the four principal directions are given in Figure 1.9b.
The oscillations in the semivariograms in the directions 45∘, 90∘, and 135∘ are
due to the oscillations in the data between the ridges and valleys. In particular,
for the horizontal direction, 𝜃 = 90∘, there is a cycle of length about 50 pixels,
which corresponds to the width between successive ridges. The semivariogram is
much lower in the vertical direction, 0∘, since it is limited to the variability along
a single ridge or valley. An idealized version of a section of a fingerprint with this
oscillation behavior is studied in Exercise 1.5. ◽

Example 1.9 Elevation data – semivariograms
The elevation data was presented in Example 1.3. Semivariograms in the four prin-
cipal directions are given in Figure 1.10a. They clearly indicate some anisotropy;
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Figure 1.9 Fingerprint section data (218 pixels wide by 356 pixels high): (a) image plot
and (b) directional semivariograms.
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Figure 1.10 Elevation data: (a) directional semivariograms and (b) omnidirectional
semivariogram.

the semivariogram in the 90∘ direction increases more slowly, whereas the semi-
variogram in the 0∘ direction increases more quickly. In Chapter 5, we introduce
drift terms to describe the large-scale features in the data. Note there is no sugges-
tion of a nugget effect in Figure 1.10b. ◽

Example 1.10 Bauxite data – semivariograms
Consider the irregularly spaced bauxite data of Example 1.4. Since the data set
is rather small, it is not meaningful to fit anything more complicated than an
isotropic semivariogram using (1.11). For information, the directional semivari-
ograms are plotted in Figure 1.11a, but they are very noisy. The omnidirectional
semivariogram is plotted in Figure 1.11b using (1.9). Note that the omnidirectional
semivariogram increases approximately linearly for small lags. It has a range of
about r = 5 and a possible small nugget effect with a value of about 20. ◽

Example 1.11 Landsat data and synthetic Landsat data – semivariograms
The Landsat data set was presented in Example 1.5 and the semivariograms are
given here in Figure 1.12a. The data appear to be approximately isotropic, with
a nugget effect of about 5 and a range of about 20. The synthetic Landsat data
set of Example 1.6 was simulated to have a similar semivariogram, as shown in
Figure 1.12b. Although the vertical units are different, the other characteristics
are very similar. ◽
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Figure 1.11 Bauxite data: (a) directional semivariograms and (b) omnidirectional
semivariogram.
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Figure 1.12 Directional semivariograms for (a) the Landsat data and (b) the synthetic
Landsat data.
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Example 1.12 Gravimetric data
Table 1.4 gives a set of gravimetric data (Fraser, 1957) consisting of local gravity
measurements over a regular 10 × 10 grid in Quebec, Canada. Small-scale distur-
bances in gravity are caused by many factors, including the presence of certain
types of ore-bearing rock (good deposits increase the local gravitation). Hence,
areas with unusually large gravimetric readings are worth further investigation
using more specific, but much more expensive, methods such as borehole drilling.
The values of the sample semivariogram in the four principal directions are
listed in Table 1.5. A bubble plot and a plot of the semivariograms are given in
Figure 1.13.

Note that for 𝜃 = 135∘, gh ∝ |h|2, approximately. This feature strongly suggests
the presence of a linear trend in the data along this direction. (See Section 5.2.2 for
a more general discussion.) This behavior also carries over into the 𝜃 = 0∘ and 90∘
directions.

Table 1.4 Gravimetric data: local gravity measurements in Quebec, Canada.

13 25 14 13 16 2 −2 −49 −67 −73
39 26 14 18 12 7 −23 −57 −64 −87
13 10 5 20 9 −5 −35 −55 −74 −82

0 10 1 10 0 −26 −49 −75 −91 −94
−14 −6 0 −13 −25 −47 −50 −86 −97 −117
−15 −16 −15 −38 −55 −65 −88 −111 −120 −127
−26 −32 −53 −55 −80 −91 −130 −120 −138 −140
−40 −68 −96 −97 −94 −128 −135 −139 −165 −167
−62 −91 −119 −133 −133 −147 −154 −158 −171 −174
−89 −122 −144 −139 −155 −159 −181 −189 −199 −214

Source: Fraser (1957).

Table 1.5 Semivariograms in each direction for the gravimetric data.

|h| n(h) 𝜃 = 0∘ 𝜃 = 90∘ |h| n(h) 𝜃 = 45∘ 𝜃 = 135∘

1 90 304 435 1.4 81 183 1136
2 80 943 1506 2.8 64 460 4296
3 70 1923 3283 4.2 49 860 9554
4 60 3199 5619 5.7 36 1100 16 354
5 50 4742 8546 7.1 25 1224 24 024
6 40 6412 11 820 8.5 16 1138 31 189
7 30 8086 15 421 9.9 9 1077 37 486
8 20 10 302 18 929 11.3 4 550 46 925
9 10 12 158 22 419 12.7 1 256 51 529



�

� �

�

1.5 Behavior of the Sample Semivariogram 21

2 4 6 8 10

2
4

6
8

10
Gravimetric data

bubble plot

(a)

t[1]

t[2
]

0 2 4 6 8

0
40

00
80

00
Lag

S
em

iv
ar

io
gr

am

0°
45°
90°
135°

Gravimetric data
directional semivariograms

(b)

Figure 1.13 Gravimetric data: (a) bubble plot and (b) directional semivariograms.

The behavior of gh for 𝜃 = 45∘ is more typical of a stationary random field.
Though its behavior is difficult to see from the figure, g(r, 45∘) increases
with r = |h| up to approximately r = 5 and then is approximately constant,
g(r, 45∘) ≅ 0.055, for r ≥ 5. That is, in this direction, the semivariogram has an
approximate range r = 5 and an approximate sill 0.055. ◽

Example 1.13 Soil data
Table 1.6 gives the soil surface pH in CaCl2 at 121 sites on an 11 × 11 square grid
(Laslett et al., 1987). A bubble plot and a plot of the semivariogram in the four

Table 1.6 Soil data: surface pH in CaCl2 on an 11 × 11 grid.

4.80 4.38 4.33 4.31 4.49 4.38 4.44 4.46 4.54 4.50 4.24
4.42 4.29 4.19 4.28 4.58 4.89 4.74 4.68 4.54 4.86 4.33
4.30 4.30 4.87 4.70 4.68 5.04 5.03 4.86 4.43 4.14 4.32
4.26 4.64 4.54 4.54 4.64 4.76 4.42 4.61 4.30 4.54 4.30
4.20 4.42 4.50 4.80 4.90 4.76 4.53 4.23 4.26 4.58 4.12
4.19 4.40 4.32 4.48 4.59 4.67 4.50 4.80 4.28 4.50 4.44
4.34 4.54 4.52 4.73 4.32 4.90 4.34 4.36 4.23 4.31 4.30
4.54 4.20 4.44 4.60 4.84 4.46 4.39 4.36 4.27 4.03 4.37
4.56 4.64 4.64 4.64 4.69 4.36 4.36 4.62 4.30 4.34 4.47
4.44 4.83 4.80 4.84 4.50 4.30 4.29 4.49 4.21 4.16 4.64
4.53 4.39 4.74 4.70 4.36 4.51 4.34 4.44 4.30 4.30 4.15

Source: Data from Laslett et al. (1987).
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Figure 1.14 Soil data: (a) bubble plot and (b) directional semivariograms.

principal directions are given in Figure 1.14. The semivariogram displays some
anisotropy. It increases more slowly in the 45∘ and 90∘ directions and more quickly
in the 0∘ and 135∘ (= −45∘) directions.

Note that the plotted semivariograms, when extrapolated to lag r = 0, appear to
have a (common) nonzero intercept with a value of about 0.05. Since the sill is
about 0.12, the nugget effect is very pronounced on this data set. ◽

1.6 Some Special Features of Spatial Analysis

(a) Ordering. There is a lack of ordering in spatial analysis unlike in time series.
The ARIMA models in time series are built from a one-sided neighborhood
at each time t. In contrast, natural spatial models, e.g. the conditional autore-
gression (CAR) models of Chapter 4, involve symmetric finite neighborhoods
at each site. However, there are also some spatial models with an artificial
ordering of space, e.g. unilateral models; see Chapter 4.

(b) Edge effects. Certain problems can arise in analysis of spatial data because
some sites lie at the edge of the region rather than the interior. For spatial
models defined in terms of neighborhoods, sites at the boundary do not have a
full neighborhood. Other models use a torus approximation in which opposite
edges are wrapped onto one another. In each case, the presence of edges can
lead to artifacts in the statistical analysis if care is not taken; see Chapter 6. This
problem of edge effects increases dramatically with dimension. In a time series
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of length n, there are only two end points. In a two-dimensional n × n array of
data, there are 4n − 4 edge and corner sites. In general, in d dimensions, there
are O(nd−1) edge sites in an nd array of data. The reason that gh ≠ s0 − sh for
the sample semivariogram and the sample covariance function in Section 1.4
is due to these edge effects.

(c) Asymptotics. There are basically two types of limiting behavior for spatial data
as more data are collected: infill and outfill asymptotics. Infill asymptotics
imply collecting data at more finely spaced intervals on a region of fixed size,
whereas in outfill asymptotics, the region of data expands with the spacing
between the sites held fixed. In outfill asymptotics, widely spaced observa-
tions are usually modeled to be asymptotically independent, with most of the
dependence occurring between nearby observations. Thus, outfill asymptotics
represents a natural generalization of the classical situation of independent,
identically distributed observations. In contrast, in infill asymptotics much
heavier dependence is involved as the details of a smooth random function
are gradually filled in. Infill asymptotics are often not relevant in time series
because of a fixed sampling interval, e.g. in an economic series collected
monthly, say. However, infill asymptotics can be more relevant in a spatial
setting as increasing amounts of information are collected within a fixed area.
See Section 5.14.

(d) Anisotropy. Another aspect of spatial analysis not present in time series (or
one-dimensional spatial statistics) is lack of isotropy, i.e. a semivariogram may
look different in different directions. See, for example, the fingerprint data in
Example 1.8. The simplest model for anisotropy, called geometric anisotropy,
is described in Chapter 5.

(e) Role of increments. In time-series analysis, the use of successive differences
xt − xt−1 provides a powerful tool for the analysis of nonstationary data. How-
ever, in spatial analysis, there is no notion of successive/consecutive sites.
Thus, it is necessary to look at all differences of the data simultaneously. An
increment (of order 0) is defined as a linear combination of the data for which
the coefficients sum to zero. The successive differences defined above are
examples of increments in one dimension. Note that a constant term is filtered
out or annihilated by such an increment, (xt + c) − (xt−1 + c) = xt − xt−1. It is
also possible to define higher order increments for which polynomial terms
in t are annihilated. Increments play a key role in describing and working
with intrinsic random fields. See Chapter 3.

(f) Periodicity. Periodic models are an important tool to describe seasonal behav-
ior in time-series models. The analogue in two dimensions of a sine wave in
one dimension looks like a corrugated iron sheet used for roofing. Such a wave
is constant in the direction parallel to the wave front and oscillates in the direc-
tion normal to the wave front. In general, periodic models are less important
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Figure 1.15 Mercer–Hall wheat data: log–log plot of variance vs. block size.

in higher dimensions than in one dimension, but for a good example where
they are important, see Example 1.8 involving the fingerprint data.

(g) Self-similarity. A process is called self-similar if it looks essentially the same at
all scales of measurement. The concept of self-similarity is closely related to
the concept of fractals (Mandelbrot, 1982). Two aspects of self-similarity are
important for spatial processes. One aspect is the long-range correlation and
other is short-term regularity. These themes are discussed in Chapter 3; see
also Example 1.14 below.

(h) Aggregated data. In spatial data, observations sometimes involve pooling of
information over blocks of some size. Similar considerations arise in time
series where the measurements might be aggregated over a month or year.
Obviously, the covariance structure of the data will depend on the size of the
blocks. See Section 2.13 for more details about the effect of aggregation on the
covariance function.

Example 1.14 Mercer–Hall wheat data
Mercer and Hall (1911) analyzed the results of a uniformity trial of wheat yields,
measured on a 20 × 25 array of 500 plots (see Table 1.7). The plots were nearly
square, of dimensions 10.82feet × 8.50feet. Since the mean yield is expected to be
the same in each plot, all of the difference between plot yields can be modeled by
autocorrelation. The main objective of the analysis is to investigate this autocorre-
lation by looking at how the variability of the data changes under different levels
of aggregation. The plots are pooled together to form larger blocks of size b, say,
as described in Table 1.8 and the observed yield per unit area is recorded for each
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block. Note that the sample variance over the blocks of the observed yield per unit
area decreases as the block size b increases. A plot of log variance against log b in
Figure 1.15 is very nearly a straight line, with the slope estimated by least squares
to be −0.49. This result suggests a power law relationship,

block variance ∝ block area−0.5
.

A theoretical explanation of this result in terms of long-range correlation is given
in Section 2.13. ◽

Table 1.7 Mercer–Hall wheat yield (in lbs.) for 20 (rows) × 25 (columns) agricultural
plots (Mercer and Hall, 1911), where top–bottom corresponds to West–East, and
left–right corresponds to North–South.

(a) First 12 columns

3.63 4.15 4.06 5.13 3.04 4.48 4.75 4.04 4.14 4.00 4.37 4.02
4.07 4.21 4.15 4.64 4.03 3.74 4.56 4.27 4.03 4.50 3.97 4.19
4.51 4.29 4.40 4.69 3.77 4.46 4.76 3.76 3.30 3.67 3.94 4.07
3.90 4.64 4.05 4.04 3.49 3.91 4.52 4.52 3.05 4.59 4.01 3.34
3.63 4.27 4.92 4.64 3.76 4.10 4.40 4.17 3.67 5.07 3.83 3.63
3.16 3.55 4.08 4.73 3.61 3.66 4.39 3.84 4.26 4.36 3.79 4.09
3.18 3.50 4.23 4.39 3.28 3.56 4.94 4.06 4.32 4.86 3.96 3.74
3.42 3.35 4.07 4.66 3.72 3.84 4.44 3.40 4.07 4.93 3.93 3.04
3.97 3.61 4.67 4.49 3.75 4.11 4.64 2.99 4.37 5.02 3.56 3.59
3.40 3.71 4.27 4.42 4.13 4.20 4.66 3.61 3.99 4.44 3.86 3.99
3.39 3.64 3.84 4.51 4.01 4.21 4.77 3.95 4.17 4.39 4.17 4.17
4.43 3.70 3.82 4.45 3.59 4.37 4.45 4.08 3.72 4.56 4.10 3.07
4.52 3.79 4.41 4.57 3.94 4.47 4.42 3.92 3.86 4.77 4.99 3.91
4.46 4.09 4.39 4.31 4.29 4.47 4.37 3.44 3.82 4.63 4.36 3.79
3.46 4.42 4.29 4.08 3.96 3.96 3.89 4.11 3.73 4.03 4.09 3.82
5.13 3.89 4.26 4.32 3.78 3.54 4.27 4.12 4.13 4.47 3.41 3.55
4.23 3.87 4.23 4.58 3.19 3.49 3.91 4.41 4.21 4.61 4.27 4.06
4.38 4.12 4.39 3.92 4.84 3.94 4.38 4.24 3.96 4.29 4.52 4.19
3.85 4.28 4.69 5.16 4.46 4.41 4.68 4.37 4.15 4.91 4.68 5.13
3.61 4.22 4.42 5.09 3.66 4.22 4.06 3.97 3.89 4.46 4.44 4.52
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Table 1.7 (Continued)

(b) Last 13 columns

4.58 3.92 3.64 3.66 3.57 3.51 4.27 3.72 3.36 3.17 2.97 4.23 4.53
4.05 3.97 3.61 3.82 3.44 3.92 4.26 4.36 3.69 3.53 3.14 4.09 3.94
3.73 4.58 3.64 4.07 3.44 3.53 4.20 4.31 4.33 3.66 3.59 3.97 4.38
4.06 3.19 3.75 4.54 3.97 3.77 4.30 4.10 3.81 3.89 3.32 3.46 3.64
3.74 4.14 3.70 3.92 3.79 4.29 4.22 3.74 3.55 3.67 3.57 3.96 4.31
3.72 3.76 3.37 4.01 3.87 4.35 4.24 3.58 4.20 3.94 4.24 3.75 4.29
4.33 3.77 3.71 4.59 3.97 4.38 3.81 4.06 3.42 3.05 3.44 2.78 3.44
3.72 3.93 3.71 4.76 3.83 3.71 3.54 3.66 3.95 3.84 3.76 3.47 4.24
4.05 3.96 3.75 4.73 4.24 4.21 3.85 4.41 4.21 3.63 4.17 3.44 4.55
3.37 3.47 3.09 4.20 4.09 4.07 4.09 3.95 4.08 4.03 3.97 2.84 3.91
4.09 3.29 3.37 3.74 3.41 3.86 4.36 4.54 4.24 4.08 3.89 3.47 3.29
3.99 3.14 4.86 4.36 3.51 3.47 3.94 4.47 4.11 3.97 4.07 3.56 3.83
4.09 3.05 3.39 3.60 4.13 3.89 3.67 4.54 4.11 4.58 4.02 3.93 4.33
3.56 3.29 3.64 3.60 3.19 3.80 3.72 3.91 3.35 4.11 4.39 3.47 3.93
3.57 3.43 3.73 3.39 3.08 3.48 3.05 3.65 3.71 3.25 3.69 3.43 3.38
3.16 3.47 3.30 3.39 2.92 3.23 3.25 3.86 3.22 3.69 3.80 3.79 3.63
3.75 3.91 3.51 3.45 3.05 3.68 3.52 3.91 3.87 3.87 4.21 3.68 4.06
4.49 3.82 3.60 3.14 2.73 3.09 3.66 3.77 3.48 3.76 3.69 3.84 3.67
4.19 4.41 3.54 3.01 2.85 3.36 3.85 4.15 3.93 3.91 4.33 4.21 4.19
3.70 4.28 3.24 3.29 3.48 3.49 3.68 3.36 3.71 3.54 3.59 3.76 3.36

Table 1.8 Aggregated Mercer–Hall wheat data for plots
aggregated into blocks, giving the array layout for the
blocks, the block dimensions, the block size b (number of
plots in each block), the number of blocks n, and sample
variance s2.

Block layout Block dimensions b n s2

20 × 25 1 × 1 1 500 0.2100
10 × 25 2 × 1 2 250 0.1587

5 × 25 4 × 1 4 125 0.1236
10 × 5 2 × 5 10 50 0.0625

5 × 5 4 × 5 20 25 0.0523
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Exercises

1.1 Take the data used in Example 1.1. Using lags h = (1,1) and h = (1,−1), ver-
ify that |Dh| = 6 in both cases, and that

s(1,1) = −8.22, g(1,1) = 41.58,

s(1,−1) = 11.36, g(1,−1) = 3.50.

Also show that s(0,0) = 30.81. Hence confirm Eq. (1.3) for this data set;
namely g(1,1) ≠ s(0,0) − s(1,1) and g(1,−1) ≠ s(0,0) − s(1,−1). That is, that the
population identity (1.1) does not hold in the sample case for this data set.

1.2 Matheron (1962). For a set of data giving bauxite ore concentration at
n = 300 sites, the following semivariograms were calculated. (Note this is
different from Example 1.4.)

𝜃 = 0 𝜃 = 90∘h
(unit 50 m) n(h) g(h) n(h) g(h)

1 266 26.0 267 23.7
2 243 24.6 245 26.4
3 233 28.4 223 26.6
4 222 26.8 199 30.2
5 204 31.4 180 28.8
6 185 31.0 159 31.0
7 173 29.4 138 35.3
8 161 25.7 118 30.5
9 147 30.5 95 30.5

10 130 27.8 76 31.6

h 𝜃 = 45∘ 𝜃 = 135∘

(unit 50 m) n(h) g(h) n(h) g(h)

1.41 249 27.1 248 21.75
2.83 224 33.3 216 29.8
4.24 204 29.0 189 30.3
5.65 182 31.8 160 28.6
7.06 161 31.4 129 33.6
8.49 137 34.9 100 31.8
9.90 119 38.2 73 33.8
11.30 103 28.3 52 27.6

Draw the semivariograms and show that the data appear to be isotropic.
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1.3 The following data provided by R. Webster give the thickness of topsoil in
cm for a field, where points on a regular grid were inspected, 10 m apart in
each direction.

75.0 40.0 70.0
30.0 85.0 55.0 50.0 50.0 40.0

90.0 30.0 75.0 80.0 45.0 90.0 80.0 90.0
45.0 35.0 85.0 80.0 90.0 90.0 90.0 90.0 90.0
90.0 45.0 45.0 85.0 90.0 90.0 90.0 90.0 90.0 30.0
40.0 40.0 80.0 90.0 90.0 90.0 90.0 90.0 35.0 30.0
40.0 35.0 35.0 90.0 90.0 90.0 90.0 90.0 40.0 5.0
35.0 50.0 30.0 90.0 90.0 55.0 90.0 90.0 75.0 80.0
40.0 40.0 35.0 90.0 45.0 90.0 90.0 90.0 90.0 40.0
35.0 90.0 90.0 85.0 90.0 90.0 90.0 90.0 90.0 30.0

Plot the semivariograms for each of the four main directions. Show that there
is a substantial nugget effect and that the semivariogram increases more
quickly in the 90∘ direction than in the 0∘ direction.

1.4 Krige (1976). For the subsection 302 of the Hartbeesfontein Mine, the
directional semivariograms for gold ore concentrations in the four main
directions are as follows.

g(h) g(h)
h N/S E/W h NW/SE NE/SW

1 0.405 0.430
√

2 0.455 0.470

2 0.463 0.543 2
√

2 0.542 0.577

3 0.493 0.588 3
√

2 0.605 0.590

4 0.522 0.620 4
√

2 0.623 0.618

5 0.544 0.632 5
√

2 0.658 0.621

6 0.553 0.660 6
√

2 0.675 0.642

7 0.570 0.657 7
√

2 0.690 0.652

8 0.589 0.670 8
√

2 0.680 0.655

9 0.577 0.682 9
√

2 0.695 0.653

10 0.581 0.688 10
√

2 0.685 0.644

12 0.620 0.676 11
√

2 0.640 0.660
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g(h) g(h)
h N/S E/W h NW/SE NE/SW

14 0.618 0.692 12
√

2 0.650 0.660

16 0.637 0.674 13
√

2 0.635 0.652
18 0.640 0.660
20 0.622 0.660

Plot the semivariograms g(h) vs. log h in the four directions N/S, E/W,
NW/SE, and NE/SW. Show that the semivariograms in all four directions
can be extrapolated to lag 0 to give a common intercept or nugget effect
of about 0.3. Further show that the semivariogram in the N/S direction
increases to a sill or a maximal value of about 0.6 by about lag 10, and that
the semivariogram in the E/W direction increases to the same sill by about
lag 15, with the semivariogram in the other two directions lying in-between.

1.5 Consider an idealized section of a fingerprint given as an n[1] × n[2] table of
numbers for which the odd rows consist entirely of zeros, and the even rows
consist entirely of ones. Show that the semivariogram g(h) is identically 0 in
the horizontal direction 𝜃 = 0∘, whereas it oscillates between 0 and 1 in the
other three principal directions. What happens when the bands of zeros and
ones are each repeated three times, 3 ≪ min {n[1],n[2]}?

1.6 The Mercer–Hall wheat data are given in Table 1.7 as a 20 × 25 matrix. Sup-
pose b[1] and b[2] are two integers dividing 20 and 25, respectively. Parti-
tion the original matrix into b[1] × b[2] blocks and average the data values
over each block to get an aggregated matrix of size n[1]∕b[1] × n[2]∕b[2].
Table 1.8 gives five choices for the dimensions (b[1], b[2]) with the size given
by b = b[1]b[2].
(a) Show that the upper-left corner entries in each of the aggregated matri-

ces take the values 3.6300, 3.8500, 4.0275, 4.1110, 4.1445, respectively.
(b) Complete the calculation of the aggregated matrices, and show that the

variances (over the n[1]∕b[1] × n[2]∕b[2] data values in each aggregated
matrix) take the values in the final column of Table 1.8.
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2

Stationary Random Fields

2.1 Introduction

A random field or random process is a collection of random variables {X(t) ∶ t ∈ D}
where D ⊂ ℝd is a subset of d-dimensional space. This chapter lays the foundations
for the statistical analysis of random fields through the study of their first and
second moment properties, that is, the means and variances of the random field at
different sites together with the covariances cov{X(t),X(s)} = 𝜎(s, t), say, at pairs
of sites. A covariance function is essential in spatial analysis because it specifies
the extent to which the values of X(t) and X(s) are likely to be close to each other,
especially when s is near t.

General properties of covariance functions are given in Section 2.2. The impor-
tant special case of stationary covariance functions, for which 𝜎(s, t) = 𝜎(h), say,
depends only on t − s = h, say, is explored in Section 2.3. For these covariance func-
tions, a spectral representation is derived, which gives both a frequency-domain
interpretation and a useful mathematical tool for constructing valid covariance
functions. A further specialization to isotropic covariance functions is given in
Section 2.4 with some examples in Sections 2.5–2.7.

Starting with a given random field, it is possible to carry out various linear
operations to derive new random fields. One example is differentiation for
sufficiently smooth random fields, which is explored in Section 2.9. A converse
operation is regularization of random fields, which involves integration, and is
covered in Section 2.10.

Most of this chapter is focused on continuously indexed random fields, with
t ∈ ℝd. However, there are also important examples indexed by the integer lattice,
t ∈ ℤd. These random fields are described in Section 2.11.

Typically, the covariance function 𝜎(h) dies away to 0 as |h| → ∞. If 𝜎(h) dies
away quickly enough, averages from the random field behave in some sense like
the averages of uncorrelated random variables. However, if 𝜎(h) → 0 slowly, then
there is “long-range correlation” between distant observations from the random

Spatial Analysis, First Edition. John T. Kent and Kanti V. Mardia.
© 2022 John Wiley & Sons Ltd. Published 2022 by John Wiley & Sons Ltd.
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field, and the behavior of averages is qualitatively different. This situation is
analyzed in Section 2.13.

The last section, Section 2.14, is devoted to simulation of Gaussian random
fields. Simulation is useful for assessing the properties and behaviors of different
models. Simulations can either be carried out directly or by means of the spectral
representation of covariance functions. Spectral methods can be more efficient for
large data sets and give insight into a probabilistic interpretation of the spectral
representation. A variant of the spectral methods is the circulant method, which
gives efficient and exact simulation for regularly spaced sites on a rectangular
domain.

Gaussian random fields are the most important examples of random fields.
However, with the notable exceptions of the smoothness properties in Section
2.9 and the simulation methods in Section 2.14, this chapter is mainly concerned
with second moment properties and requires no assumption of Gaussianity.

2.2 Second Moment Properties

A random field {X(t) ∶ t ∈ ℝd} is a d-dimensional real-valued spatial stochastic
process, d ≥ 1. Each vector t = (t[1], . . . , t[d]) is called a site of the process. If the
random field has finite second moments, we can define the mean function

𝜇(t) = E{X(t)}, t ∈ ℝd
, (2.1)

and the covariance function

𝜎(s, t) = cov{X(s),X(t)} = E{[X(s) − 𝜇(s)][X(t) − 𝜇(t)]}, s, t ∈ ℝd
, (2.2)

which is symmetric in its arguments, 𝜎(s, t) = 𝜎(t, s).
An important simplification occurs when the distribution of the random field

is invariant under an arbitrary shift of the sites. In this case, the random field is
called strictly stationary. Thus, the random field is strictly stationary if and only if
for all n ≥ 1 and for all choices of sites tj ∈ ℝd

, 1 ≤ j ≤ n, and for all shift vectors
h ∈ ℝd, the n-dimensional distribution of {X(tj) ∶ 1 ≤ j ≤ n} is the same as that of
{X(tj + h) ∶ 1 ≤ j ≤ n}. Remember our convention that the components of tj are
written using square brackets, tj = (tj[1], . . . , tj[d]).

If a random field is strictly stationary, the first two moments can be simplified to

𝜇(t) = 𝜇, say, not depending on t, (2.3)

𝜎(t, t + h) = 𝜎(h), say, not depending on t. (2.4)

Note that 𝜎(h), now a function of a single argument h ∈ ℝd, is an even function

𝜎(h) = 𝜎(−h).
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A less restrictive condition on a random field than strict stationarity is the condi-
tion of weak or second-order stationarity, in which we merely require that the first
two moments be invariant under shifts, that is, (2.3) and (2.4) should hold. In this
book, we use the term “stationarity” as a synonym for weak stationarity.

Stationary random fields form the fundamental models in our analysis of spatial
data, and the purpose of this chapter is to explore their mathematical properties.
In Chapter 3, the concept of a stationary random field is extended to define an
intrinsic random field (that is, a random field with stationary increments) and a
generalized random field.

For a stationary random field with a covariance function 𝜎(h), it is always
assumed that

𝜎(h) is continuous for all h ∈ ℝd
, (2.5)

and usually assumed that

𝜎(h) → 0 as |h| → ∞, (2.6)

where |h| = (h[1]2 + · · · + h[d]2)1∕2 is the Euclidean norm of h. Thus, observations
at nearby sites will be highly correlated with one another and observations at dis-
tant sites will be nearly uncorrelated.

Sometimes when estimating 𝜎(h) from a data set, an apparent discontinuity
appears at h = 0. This behavior is known as a “nugget effect,” (Section 1.4.1) and
can be due to either measurement error or to small-scale variability in the data.
Hence when fitting covariance models to data, it is often necessary to augment a
continuous covariance function by adding a nugget effect (Chapter 5).

An important class of random fields is the class of Gaussian random fields. A ran-
dom field {X(t)} is Gaussian if for all n ≥ 1 and all choices of sites tj, 1 ≤ j ≤ n, the
distribution of (X(tj) ∶ 1 ≤ j ≤ n) is multivariate normal, with mean vector (𝜇(tj) ∶
1 ≤ j ≤ n) and covariance matrix (𝜎(ti, tj) ∶ 1 ≤ i, j ≤ n). The multivariate normal
distribution is completely specified in terms of its first two moments. Hence, the
distributional properties of a Gaussian random field are determined by its mean
and covariance functions. In particular, a stationary Gaussian random field will
also be strictly stationary.

If {X(t) ∶ t ∈ D} is a Gaussian process (GP) on a domain D ⊂ ℝd, write

X(⋅) ∼ GP(𝜇(⋅), 𝜎(⋅, ⋅),D) (2.7)

for a general covariance function, and write

X(⋅) ∼ GP(𝜇(⋅), 𝜎(⋅),D) (2.8)

for a stationary covariance function.
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2.3 Positive Definiteness and the Spectral
Representation

In this section, we examine conditions that a function 𝜎(s, t) must satisfy to repre-
sent the covariance function of some random field. For a stationary random field,
we are able to obtain an explicit characterization.

First, we recall the definition of positive definiteness for matrices and functions.

Definition 2.3.1 An n × n symmetric matrix B = (bij) is called positive semidefi-
nite if for all n × 1 column vectors a = (aj),

aTBa =
∑

aiajbij ≥ 0. (2.9)

If the inequality is strict for all vectors a ≠ 𝟎, the matrix is called positive definite.

Similarly, a symmetric function of two arguments 𝜎(s, t), s, t ∈ ℝd, is called
positive definite or positive semidefinite if for all n ≥ 1 and all choices of distinct
sites, tj, 1 ≤ j ≤ n, an n × n matrix B with entries bij = 𝜎(ti, tj) is positive definite
or positive semidefinite, respectively. For an even function of one argument 𝜎(h),
h ∈ ℝd, positive definiteness and positive semidefiniteness are defined similarly
with bij = 𝜎(ti − tj).

Positive definiteness is important in the study of random fields for the following
reason.

Theorem 2.3.1 If 𝜎(s, t) is the covariance function of a random field {X(t) ∶ t ∈
ℝd}, then 𝜎(s, t) is positive semidefinite. That is, for any n ≥ 1, any selection of sites
t1, . . . , tn and any vector a (n × 1) of coefficients, the following quadratic form is
nonnegative: ∑

aiaj 𝜎(ti, tj) ≥ 0. (2.10)

Proof: The proof follows immediately from the representation
∑

aiaj 𝜎(ti, tj) =
∑

aiaj cov{X(ti),X(tj)} = var
{∑

aiX(ti)
}
≥ 0,

since any variance must be nonnegative. ◽

This theorem also has an important converse.

Theorem 2.3.2 If 𝜎(s, t) is a symmetric positive semidefinite function, then it rep-
resents the covariance function of a random field.

Proof: For the purposes of this proof, it is simplest to construct a Gaussian
random field with the required covariance function and with mean 0. To carry
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out this construction, we call upon a theorem of Kolmogorov (see, for example,
Cramér and Leadbetter, 1967, pp. 33–37), which states that to construct a
stochastic process, it is sufficient to specify consistently its finite-dimensional
distributions. Here “consistently” means the following. Let 𝜋(t1, . . . , tn) denote
an n-dimensional probability distribution specified at sites (t1, . . . , tn), assumed
for simplicity to have a probability density f (x1, . . . , xn). Let tn+1 be another site.
Then 𝜋(t1, . . . , tn) must be the same as the marginal distribution of 𝜋(t1, . . . , tn+1)
at sites (t1, . . . , tn) after averaging over the values of this (n + 1)-dimensional
distribution at site tn+1, or in terms of probability densities, the equation

f (x1, . . . , xn) = ∫
f (x1, . . . , xn+1) dxn+1

must hold.
Consider sites tj, 1 ≤ j ≤ n + 1. Since 𝜎(s, t) is a positive semidefinite function,

the matrix B with elements bij = 𝜎(ti, tj), 1 ≤ i, j ≤ n + 1, is positive semidefinite.
Hence, there exists an (n + 1)-dimensional multivariate normal distribution
with mean 0 and covariance matrix B. Further, the marginal distribution of this
(n + 1)-dimensional distribution at sites t1, . . . , tn is n-dimensional normal with
mean 0 and covariance matrix {𝜎(ti, tj) ∶ 1 ≤ i, j ≤ n} (Section A.3.4). Hence,
Kolmogorov’s consistency condition is satisfied and the theorem is proved. ◽

For technical reasons, we limit our attention in this book to covariance func-
tions that are continuous. This assumption is made to ensure that random fields
are sufficiently smooth to be useful in applications. In particular, continuity is an
important assumption in the discussion of smoothness (Section 2.9), regulariza-
tion (Section 2.10), and simulation (Section 2.14). Some further explanation for
this assumption is given in Section 2.7.

Next, we restrict our attention to continuous covariance functions for stationary
random fields. The following theorem gives an important characterization. For h ∈
ℝd
, 𝜔 ∈ ℝd, let hT

𝜔 = h[1]𝜔[1] + · · · + h[d]𝜔[d] denote the usual inner product.

Theorem 2.3.3 (Bochner’s Theorem) Let 𝜎(h), h ∈ ℝd, be a continuous even
real-valued function. Then, 𝜎(h) is positive semidefinite if and only if it is the Fourier
transform of a symmetric positive finite measure F(d𝜔) on ℝd,

𝜎(h) =
∫

ei𝜔T hF(d𝜔). (2.11)

Further, if F(d𝜔) has a density, F(d𝜔) = f (𝜔)d𝜔, 𝜔 ∈ ℝd, then 𝜎(h) is positive def-
inite and 𝜎(h) → 0 as |h| → ∞. Here F(d𝜔) is called the spectral measure corre-
sponding to 𝜎(h), and when it has a density, f (𝜔) is called the spectral density.

Proof: Suppose F(d𝜔) is a nonnegative symmetric finite measure on ℝd (so
F(d𝜔) ≥ 0, F(d𝜔) = F(−d𝜔) and ∫ F(d𝜔) < ∞) and let 𝜎(h) be defined by (2.11).
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The finiteness of F(d𝜔) ensures that 𝜎(h) is continuous, and the symmetry ensures
that 𝜎(h) is real-valued. For any vector of coefficients a, note the identity

n∑
j,k=1

ajak𝜎(tj − tk) = ∫

n∑
j,k=1

ajakei𝜔T (tj−tk) F(d𝜔)

=
∫

|
n∑

j=1
ajei𝜔T tj |2F(d𝜔), (2.12)

which must be nonnegative if F(d𝜔) is nonnegative. Hence, 𝜎(h)must be a positive
semidefinite.

Further, the principle of analytic continuation ensures that the function∑n
j=1 ajei𝜔T tj cannot vanish for 𝜔 in any open set in ℝd, provided the points {tj} are

distinct and the coefficients {aj} are not identically 0. Hence, if F(d𝜔) possesses a
density, the integral in (2.12) must be strictly positive. Hence, in this case, 𝜎(h) is
a positive definite function.

The converse part of the theorem is more challenging and states that any
continuous even real-valued positive semidefinite function has a representation
(2.12). After standardization, this theorem becomes a statement about the class
of possible characteristic functions 𝜎(h)∕𝜎(0) for symmetric probability measures
F(d𝜔)∕𝜎(0). See, e.g., Feller (1966, p. 585). The last part of the theorem, stating
that 𝜎(0) → 0 as |h| → ∞ when the spectral measure has a density, follows
from the Riemann–Lebesgue lemma; see, e.g., Feller (1966, p. 486), for the
one-dimensional case. ◽

This theorem is important because it enables us to use our experience of char-
acteristic functions to give examples of covariance functions; see Sections 2.5–2.7.
If 𝜎(h) is integrable, then the spectral density f (𝜔) can be found by the Fourier
inversion formula

f (𝜔) = (2𝜋)−d
∫

e−i𝜔T h
𝜎(h)dh, 𝜔 ∈ ℝd

. (2.13)

For some covariance models, the parameters have a simpler interpretation in the
Fourier domain than in the spatial domain (especially, the autoregression lattice
models in Chapter 4), thus leading to elegant spectral methods of estimation.
See Section 6.5 for more details.

2.4 Isotropic Stationary Random Fields

An important class of stationary random fields possesses the property of isotropy.
That is, the finite-dimensional distributions are invariant under rotations, so that



�

� �

�

2.4 Isotropic Stationary Random Fields 37

the covariance function 𝜎(h) depends only on the radial component |h|. Thus, we
can write

𝜎(h) = 𝜎
#(r), say, (2.14)

where r = |h|. We use the # notation to emphasize that 𝜎 is a function of a
d-dimensional vector h, whereas 𝜎# depends only on the real number r ≥ 0.
We call 𝜎#(r) the radial covariance function corresponding to 𝜎.

Let H(d) denote the class of continuous radial covariance functions correspond-
ing to d-dimensional isotropic covariance functions. The purpose of this section
is to investigate how H(d) varies with d. A more detailed study can be found in
Kingman (1963).

Suppose {X(t) ∶ t ∈ ℝd} is an isotropic stationary random field on ℝd, and let
Q denote a hyperplane of some dimension d′, with d′

< d. Then, X(t) is still an
isotropic stationary random field when restricted to Q, with the same radial covari-
ance function. Hence, we have the following property:

H(d) ⊂ H(d′) whenever 1 ≤ d′
< d. (2.15)

Thus, the class of possible radial covariance functions decreases as the dimen-
sion d increases. It is of interest to ask what functions are left in H(d) as d → ∞.
Before answering this question, recall that a real-valued function 𝜑(𝑣), 𝑣 > 0, is
said to be completely monotone if it is infinitely differentiable and if its derivatives
𝜑
(m)(𝑣) alternate in sign,

(−1)m
𝜑
(m)(𝑣) ≥ 0 for all m ≥ 0, 0 < 𝑣 <∞. (2.16)

It can be shown that a function 𝜑(𝑣) is completely monotone if and only if it is
the Laplace transform of a positive measure 𝜇 on [0,∞)

𝜑(𝑣) =
∫[0,∞)

e−𝑣𝜌𝜇(d𝜌). (2.17)

Moreover, 𝜑(0+) <∞ if and only if 𝜇 is finite. The existence of the integral rep-
resentation (2.17) when (2.16) holds is known as Bernstein’s theorem; see, e.g.,
Feller (1966, pp. 415–416).

The next theorem is the main result of this section.

Theorem 2.4.1 (Schoenberg, 1938) A continuous function 𝜎#(r), r ≥ 0, lies in
H(d) for all d ≥ 1 if and only if 𝜎#(r1∕2) is a completely monotone function of r.

Proof: In the course of the proof, be careful to distinguish the differential d in d𝜔
from the dimension in ℝd. First, suppose 𝜎#(r1∕2) is completely monotone; hence
so is 𝜎#({2r}1∕2). By assumption, 𝜎#(0) < ∞. Thus, there is a finite measure G0(d𝜌)
on [0,∞) with

𝜎
#({2r}1∕2) =

∫[0,∞)
e−𝜌rG0(d𝜌),
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that is,
𝜎
#(r) =

∫[0,∞)
e−r2

𝜌∕2G0(d𝜌). (2.18)

Now for any d ≥ 1, the function exp(−|h|2𝜌∕2), h ∈ ℝd, is the characteristic func-
tion of a d-dimensional normal distribution with mean 0 and covariance matrix
𝜌I, where I denotes the d × d identity matrix (see, e.g., Mardia et al., 1979, p. 39).
Hence, the function exp(−r2

𝜌∕2), r ≥ 0, is a radial covariance function in every
dimension d. Since 𝜎#(r) is a mixture of such functions, it too lies in H(d) for all d.
Thus, the first half of the theorem is proved.

Before proving the converse, we need a key result about the uniform distribu-
tion on a high-dimensional sphere. Let 𝜂 = (𝜂[1], . . . , 𝜂[d])T denote a uniformly
distributed random (column) vector on the unit sphere inℝd

, d ≥ 2; thus 𝜂T
𝜂 = 1.

Let u ∈ ℝd be a fixed unit vector (so uTu = 1), and let S = 𝜂
Tu denote the projec-

tion of 𝜂 onto the u-axis. Then the probability density function (pdf) of S is given by

nd(s) =
{

cd(1 − s2)(d−3)∕2
, −1 < s < 1,

0, |s| ≥ 1,
(2.19)

where cd = Γ( 1
2

d)∕{𝜋1∕2Γ( 1
2

d − 1
2
)} and Γ(⋅) is the usual gamma function

(Exercise 2.2). This distribution is important for our purposes, because when
rescaled to S∗ = d1∕2S, with pdf

n∗
d(s

∗) =
{

d1∕2nd(d−1∕2s∗), −d1∕2
< s∗ < d1∕2

,

0, |s∗| ≥ d1∕2
,

it converges to a standard normal distribution as d → ∞, with pdf n(s∗) =
(2𝜋)−1∕2 exp(− 1

2
s∗2), −∞ < s∗ <∞. More specifically, it can be shown that as

d → ∞,

n∗
d(s

∗) → n(s∗) for each s∗ ∈ ℝ, and sup
s∗∈ℝ

{n∗
d(s

∗)∕n(s∗)} → 1 (2.20)

(see Exercise 2.3).
For the converse part of the theorem, we suppose 𝜎

#(r) ∈ Hd for all d. Fix
d ≥ 2 for the moment and consider the basic spectral representation (2.11),
writing F(d𝜔) as Fd(d𝜔) here for clarity. Switch to polar coordinates

h = ru, 𝜔 = 𝜌𝜂, (2.21)

where r, 𝜌 ≥ 0 are scalars, and u and 𝜂 are unit vectors in ℝd. Since the spec-
tral measure Fd(d𝜔) is isotropic, it can be expressed in the form Fd(d𝜔) =
Ωd(d𝜂)Gd(d𝜌) where Ωd(d𝜔) denotes the uniform distribution on the unit sphere
in ℝd and Gd(d𝜌) is some finite measure on 𝜌 ≥ 0. Let G∗

d(d𝜌
∗) denote the

corresponding rescaled measure for 𝜌∗ = d−1∕2
𝜌. Then (2.11) takes the form

𝜎
#(r) = 𝜎(h) =

∫
eihT

𝜔Fd(d𝜔) (2.22)

=
∫ ∫

eir𝜌(uT
𝜂) Ωd(d𝜂) Gd(d𝜌)
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=
∫ ∫

eir𝜌snd(s) ds Gd(d𝜌)

=
∫ ∫

eir𝜌∗s∗n∗
d(s

∗) ds∗ G∗
d(d𝜌

∗)

= Ad(r) + Bd(r), say,

where

Ad(r) = ∫ ∫
eir𝜌∗s∗n(s∗) ds∗ G∗

d(d𝜌
∗)

=
∫

e−
1
2

r2
𝜌
∗2

G∗
d(d𝜌

∗),

and
Bd(r) = ∫ ∫

eir𝜌∗s∗{nd(s∗) − n(s∗)} ds∗ G∗
d(d𝜌

∗).

By (2.20), n∗
d(s

∗) − n(s∗) converges to 0 for each s∗ and |n∗
d(s

∗) − n(s∗)|∕n(s∗) is
bounded uniformly over s∗ as d → ∞; hence by the dominated convergence
theorem, Bd(r) → 0 as d → ∞ for each r ≥ 0.

Note that Ad(r), as a function of 1
2

r2, is the Laplace transform of G∗
d(d𝜌

∗). Since
Bd(r) → 0 as d → ∞, Ad(r) → 𝜎

#(r). Hence, 𝜎#(r), as a function of 1
2

r2, must also
be the Laplace transform of a finite measure G∗(d𝜌∗), say, on [0,∞), with

𝜎
#(r) =

∫[0,∞)
e−

1
2

r2
𝜌

2
G∗(d𝜌∗), (2.23)

and G∗
d(d𝜌

∗) converges weakly to G∗(d𝜌∗) (Feller, 1966, p. 410). The representation
(2.23) completes the proof of the theorem. ◽

If the isotropic distribution Fd(d𝜔) has a density fd(𝜔), then this density can
depend only on the radial component 𝜌 = |𝜔|; that is, fd(𝜔) = f #d (𝜌), say. After
changing to polar coordinates, Gd(d𝜌) also has a density, given by a rescaled
version of f #d (𝜌),

gd(𝜌) = 𝜋d𝜌
d−1f #d (𝜌), (2.24)

where
𝜋d = 2𝜋d∕2∕Γ(d∕2) (2.25)

is the surface area of the unit sphere in ℝd (Exercise 2.1). Similarly, G∗
d(d𝜌

∗)
has a density g∗d(𝜌

∗) = d1∕2gd(d1∕2
𝜌
∗). In practice, it will usually be the case that

𝜎
#(r) → 0 as r → ∞ so that G∗(d𝜌∗) will have no mass at 0.
Next we look at explicit representations in H(d). If d ≥ 2, then from the third

line of (2.22), we can write

𝜎
#(r) =

∫[0,∞)

[
∫

1

−1
eir𝜌snd(s)ds

]
Gd(d𝜌),

so that
𝜎
#(r) = Γ(d∕2)

∫[0,∞)
(r𝜌∕2)−𝜆J

𝜆
(r𝜌) Gd(d𝜌), (2.26)
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where 𝜆 = 1
2

d − 1 (Abramowitz and Stegun, 1964, p. 360, equation 9.1.20).
Equation (2.26) also holds for d = 1 dimension. Here

J
𝜆
(x) = (x∕2)𝜆

∞∑
k=0

(−x2∕4)k∕{k! Γ(𝜆 + k + 1)}

is the usual Bessel function with limiting behavior

J
𝜆
(x) ∼ (x∕2)𝜆∕Γ(𝜆 + 1) as x → 0.

Note from (2.24) that when densities exist, Gd(d𝜌) = gd(𝜌) d𝜌 = 𝜋d𝜌
d−1f #d (𝜌) d𝜌,

so that (2.26) gives an integral representation of 𝜎#(r) in terms of f #d (𝜌). This rep-
resentation is closely related to the Hankel transform, a version of the Fourier
transform for isotropic functions. See Exercise 2.4 for more details.

For half-integer values of 𝜆, that is, for 𝜆 = 1
2

d − 1 for odd dimensions d, J
𝜆
(x)

can be expressed in elementary functions. In particular,

J−1∕2(x) =
√

2
𝜋x

cos x, J1∕2(x) =
√

2
𝜋x

sin x

(Erdélyi, 1954, p. 966). The following list summarizes the representation formula
(2.26) in low dimensions.

d = 1 ∶ 𝜎
#(r) =

∫[0,∞)
cos(r𝜌) G1(d𝜌), (2.27)

d = 2 ∶ 𝜎
#(r) =

∫[0,∞)
J0(r𝜌) G2(d𝜌), (2.28)

d = 3 ∶ 𝜎
#(r) =

∫[0,∞)
(r𝜌)−1 sin(r𝜌) G3(d𝜌). (2.29)

This representation formula can be summarized as follows:

Theorem 2.4.2 Fix d ≥ 1. There is a one-to-one correspondence between continu-
ous radial covariance functions 𝜎#(r) and finite measures Gd(d𝜌) on [0,∞) via the
representation (2.26).

Conversely, if 𝜎#(r), r ≥ 0, is a radial covariance function in ℝd and if rd−1
𝜎
#(r) is

integrable on (0,∞), then the spectral distribution has a density that can be recovered
from the inverse Fourier transform

fd(𝜔) =
1

(2𝜋)d ∫
e−ihT

𝜔
𝜎(h)dh

which reduces to

f #d (𝜌) = 21−d
𝜋
−d∕2

∫

∞

0
(r𝜌∕2)−𝜆J

𝜆
(r𝜌)rd−1

𝜎
#(r) dr,

where 𝜆 = 1
2

d − 1.
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This formula reduces to the following forms in dimensions d = 1,2, 3:

d = 1 ∶ f #1 (𝜌) =
1
𝜋 ∫

∞

0
cos(r𝜌) 𝜎#(r) dr, (2.30)

d = 2 ∶ f #2 (𝜌) =
1

2𝜋 ∫

∞

0
J0(r𝜌) r 𝜎#(r) dr, (2.31)

d = 3 ∶ f #3 (𝜌) =
1

2𝜋2𝜌 ∫

∞

0
sin(r𝜌) r 𝜎#(r) dr. (2.32)

2.5 Construction of Stationary Covariance Functions

A valid stationary covariance function is a continuous positive semidefinite even
function 𝜎(h), h ∈ ℝd, which is usually positive definite and usually satisfies
𝜎(h) → 0 as |h| → ∞. By using standard results about positive definite func-
tions, we can construct and manipulate such functions; see, e.g., Feller (1966,
Chapter XV).

(a) Addition, scaling, and multiplication. If 𝜎1(h) and 𝜎2(h) are positive definite
so are 𝛼1𝜎1(h) + 𝛼2𝜎2(h), 𝜎1(𝛽h) and 𝜎1(h)𝜎2(h), where 𝛼1 > 0, 𝛼2 > 0, 𝛽 > 0.
In particular, multiplication of covariance functions corresponds to convolu-
tion of the underlying spectral distributions.

(b) Limits. If {𝜎n(h)} is a sequence of positive definite functions and 𝜎n(h) → 𝜎(h)
for each h with 𝜎(h) finite and continuous for all h, then 𝜎(h) is positive
semidefinite.

(c) Convolution. Let the real-valued function 𝜑(t), t ∈ ℝd, be integrable
(∫ |𝜑(t)| dt < ∞) and square-integrable, (∫ |𝜑(t)|2 dt <∞) and set
𝜑̌(t) = 𝜑(−t), and let ∗ denote convolution. Then 𝜎(h) defined by

𝜎(h) = 𝜎(−h) = (𝜑 ∗ 𝜑̌)(−h) (2.33)

=
∫
𝜑(t) 𝜑̌(−h − t) dt

=
∫
𝜑(t) 𝜑(t + h) dt

is positive semidefinite. (The symbol 𝜑̌ is pronounced “phi-check.”) To verify
positive semidefiniteness, let 𝜑̃(𝜔) = ∫ eitT

𝜔
𝜑(t)dt denote the Fourier trans-

form of 𝜑. Since 𝜑(t) is square-integrable, then 𝜑̃(𝜔) is also square-integrable.
Also, the Fourier transform of 𝜑̌(t) is the complex conjugate 𝜑̃(𝜔). In the spec-
tral domain, 𝜎(h) can be expressed as

𝜎(h) =
∫

eihT
𝜔f (𝜔)d𝑤,
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where f (𝜔) = 𝜑̃(𝜔) ̃̌𝜑(𝜔) = |𝜑̃(𝜔)|2 defines an integrable spectral density. Note
that this representation shows that 𝜎(h) is continuous. This representation can
also be extended to the case where 𝜑(t) is square-integrable but not integrable
since ∫ |(𝜑̃(𝜔)|2 d𝜔 = (2𝜋)d ∫ |𝜑(t)|2 dt is still finite.

(d) Mixtures. As an extension of item (a) on addition and scaling, mixtures of
continuous covariance functions are also continuous covariance functions.
An important example is given by a scale mixture of normal characteristic
functions. An integral representation is given in (2.23). By Schoenberg’s
Theorem 2.4.1, a scale mixture of normal characteristic functions can be
characterized by the fact that 𝜎#(s1∕2) is a completely monotone function of
s ≥ 0.

Using these ideas, a collection of isotropic covariance functions 𝜎(h) is listed in
Table 2.1 in terms of the corresponding radial covariance function, 𝜎#(r). A param-
eterized family of covariance functions will be called a scheme, using terminol-
ogy adopted from the mining literature. In practice, each covariance function will
need to be augmented by a scale parameter c1 > 0 and a range parameter c2 > 0
to give c1𝜎(h∕c2). For simplicity, 𝜎#(r) in the table has been standardized so that
𝜎(0) = 1 in each case. It is easiest to justify the positive definiteness of 𝜎#(r) when

Table 2.1 Some radial covariance functions.

Scheme 𝜎
#(r) Parameters Dimensions

1. Constant 1 All d

2. Spherical

{
1 − 3

2
r + 1

2
r3
, 0 ≤ r ≤ 1

0, r > 1
r ≤ 1 d ≤ 3

3. Restricted-power

{
(1 − r)k

, 0 ≤ r ≤ 1
0, r > 1

k ≥ 2 d ≤ 3

4. Stable exp(−r𝛼) 0 < 𝛼 ≤ 2 All d
5. Gaussian exp(−r2) All d
6. Exponential e−r All d
7. Matérn 2

Γ(𝜈)
(r∕2)𝜈K

𝜈
(r) 𝜈 > 0 All d

8. t-Density (1 + r2)−𝛼 𝛼 > 0 All d
9. Shell (r∕2)−d∕2+1Γ( d

2
)Jd∕2−1(r) All d

10. Ball (r∕2)−d∕2Γ( d
2
+ 1)Jd∕2(r) All d

11. Annulus
(r∕2)−d∕2

bd−ad Γ( d
2
+ 1) ×

{bd∕2Jd∕2(br) − ad∕2Jd∕2(ar)}
0 ≤ a < b All d

12. Damped sine 1
r

sin r d ≤ 3

Further details are given in Section 2.7.
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Schoenberg’s Theorem 2.4.1 is applicable; i.e. when it can be shown that 𝜎#(r1∕2)
is completely monotone or equivalently that 𝜎#(r1∕2) is the Laplace transform of a
distribution on [0,∞).

The next two sections discuss these isotropic covariance functions in more
detail. The most important example, the Matérn scheme is covered first and then
the remaining examples.

2.6 Matérn Scheme

The Matérn scheme (Matérn, 1960, 1986) is the single most important scheme in
spatial statistics. The covariance function is given by

𝜎(h) = 2𝜎2

Γ(𝜈)
(𝜅|h|∕2)𝜈K

𝜈
(𝜅|h|), h ∈ ℝd

, (2.34)

where K
𝜈
(⋅) is a modified Bessel function of the second kind. Here, 𝜎2

> 0 is a
scale parameter, 1∕𝜅 > 0 is a range parameter and the index 𝜈 > 0 governs the
smoothness. As 1∕𝜅 increases, the covariance function decays more slowly in |h|,
and as 𝜈 increases the realizations of the random field get smoother.

The covariance function is scaled so that lim|h|→0𝜎(h) = 𝜎
2. In addition, 𝜎(h)

decays monotonically to 0 as |h| → ∞. Equation (2.34) defines a valid positive
definite covariance function, and hence defines the covariance function for a sta-
tionary random field, in all dimensions d ≥ 1. Table 2.1 gives (2.34) as a radial
covariance function 𝜎#(r) = 𝜎(|h|) with the range parameter 1∕𝜅 = 1 and the scale
parameter 𝜎2 = 1.

The positive definiteness of (2.34) can be confirmed in two ways. The first
approach is to derive the spectral density

f (𝜔) = 𝜎
2
Γ(𝜈 + d

2
)

Γ(𝜈)𝜋d∕2
𝜅

2𝜈

(|𝜅|2 + |𝜔|2)𝜈+ d
2

, (2.35)

and to note that the spectral density is everywhere positive. See Exercise 2.4 for
more details. When 𝜎2 = 1 and 𝜅 = 1, (2.35) is a multivariate t-density (e.g. Mardia
et al., 1979, p. 57). Note the formula for the spectral density depends on the dimen-
sion d. The second approach is to show that when 𝜎2 = 1 and 𝜅 = 1, the function
𝜎
#(s1∕2), s > 0, represents the Laplace transform of a valid probability distribution

on (0,∞), in this case, the reciprocal of a gamma random variable with index 𝜈.
See Exercise 2.9 for more details.

In spite of the presence of a Bessel function, the Matérn covariance function
offers an attractive balance between tractability and flexibility. Here are some key
properties.

(a) When 𝜈 is a half-integer value, the K Bessel functions can be written in terms
of elementary functions. The most notable example is the exponential scheme
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when 𝜈 = 1∕2. Further examples, taken from Abramowitz and Stegun (1964,
p. 444), are summarized in Table 2.2. A plot of Matérn covariance functions
for several different indices 𝜈, with the 𝜅 values chosen so that the covariance
functions all take the value 1∕2 at r = |h| = 1, have been plotted in Figure 2.1.
Notice that as 𝜈 increases, 𝜎#(r) becomes smoother at r = 0 and decays more
quickly for large r.

(b) The Matérn scheme arises as the covariance function for the solution of a
certain stochastic partial differential equation; see Chapter 4. This approach
was used by Whittle (1954, 1956) to motivate the covariance function in d = 2
dimensions with 𝜈 = 1.

(c) Several interesting limits arise by letting the parameters vary. As 𝜈 → ∞, with
𝜅 = 2

√
𝜈, the Matérn scheme converges to a Gaussian scheme

2
Γ(𝜈)

(𝜅|h|∕2)𝜈K
𝜈
(𝜅|h|) → exp(−|h|2∕2), h ∈ ℝd

. (2.36)

See Exercise 2.9.

Table 2.2 Special cases of the Matérn covariance function in
(2.34) for half-integer 𝜈 < ∞ with scale parameter 𝜎2 = 1.

Index 𝜈 𝜎
#(r)

𝜈 = p + 1∕2 exp(−r) Γ(p+1)
Γ(2p+1)

∑p
i=1

(p+i)!
i!(p−1)!

(2r)p−i

𝜈 = 1∕2 exp(−r)
𝜈 = 3∕2 exp(−r){1 + r}
𝜈 = 5∕2 exp(−r){1 + r + 1

3
r2}

𝜈 → ∞ exp(−r2)

For 𝜈 < ∞, the range parameter is fixed, 𝜅 = 1. For the limiting case
𝜈 → ∞, the range parameter 𝜅 = 2

√
𝜈 depends on 𝜈; see (2.36).
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Figure 2.1 Matérn covariance functions for varying index parameters. The range and
scale parameters have been chosen so that the covariance functions match at lags
r = |h| = 0 and r = 1.
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(d) Other limits leave the setting of stationary ordinary random fields for the
intrinsic and/or generalized random fields of Chapter 3. For example, as 𝜈 → 0
the Matérn scheme converges to the covariance function of a generalized
stationary random field (Section 3.8).

(e) For fixed 𝜈 > 0, let 𝜅 → 0. With appropriate scaling 𝜎2 = 1∕𝜅2𝜈 , the limiting
process is an intrinsic and self-similar (Section 3.10.)

(f) If both 𝜈 → 0 and 𝜅 → 0, the result is the de Wijsian scheme, which is both
intrinsic and generalized.

(g) The Matérn scheme arises as the continuous limit of certain conditional
autoregressive (CAR) models on the lattice. See Chapter 4.

A history of the Matérn scheme is given in Guttorp and Gneiting (2006).

2.7 Other Examples of Isotropic Stationary Covariance
Functions

This section gives some further details about the radial covariance functions in
Table 2.1, including spectral representations where available in concise form.

1. Constant scheme. This is a degenerate scheme, and arises from the spectral
measure F(d𝜔) with mass 1 at the origin and 0 elsewhere. The spectral mea-
sure can also be written in terms of the Dirac delta (generalized) function as
F(d𝜔) = 𝛿0(𝜔).

2. Spherical scheme (Matheron, 1965, pp. 56–57). This is obtained by convolution
in ℝ3 using

𝜑(h) = I
[
|h| < 1

2

]
,

where I[⋅] is the indicator function, so that𝜑(h) equals 1 inside a disk of radius
1 about the origin and 0 elsewhere. This scheme is popular because of its sim-
ple algebraic form and its finite range (𝜎#(r) = 0 for r > 1). See Exercise 2.6.

3. Restricted-power scheme (Mardia and Watkins, 1989). This is similar to the
spherical scheme but is a smoother function at r = 1 when k > 2. This
smoothness has implications for maximum likelihood estimation; Section
5.5.3 gives some further details. The validity of the restricted-power scheme
is most easily checked by showing the spectral density is positive; see
Exercise 2.7.

4. Stable scheme. Since 𝜎#(s1∕2) = exp(−s𝛼∕2) is the Laplace transform of the pos-
itive stable law of index 𝛼∕2, (Feller, 1966, p. 424), for all 0 < 𝛼 ≤ 2, it follows
that 𝜎#(r) = exp(−r𝛼) is a valid radial covariance function in all dimensions.
Further, 𝜎(h) = exp(−|h|𝛼) is the characteristic function of the symmetric sta-
ble law on ℝ of index 𝛼.

5. The “Gaussian” or squared-exponential scheme (which should not be confused
with a Gaussian process) is also a special case (𝛼 = 2) of the stable scheme.
However, in some sense 𝜎(h) is “too smooth” because it is an analytic function
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of h and hence is infinitely differentiable. In consequence, it turns out that
with probability 1, the realizations {X(t)} from any stationary random field fol-
lowing a Gaussian scheme can be taken to be infinitely differentiable analytic
functions. Hence, the values of X(t) are completely determined throughoutℝd

by the values on any open set. This property can lead to numerical instability
in the covariance matrix for data from this scheme. See Examples 2.1 and 2.4.

6. The exponential scheme is a special case of the stable scheme (𝛼 = 1). It arises
as the covariance function of the stationary Ornstein–Uhlenbeck Gaussian
process in d = 1 dimension; see, e.g., Cox and Miller (1965, p. 228). It is also a
special case of the Matérn scheme.

7. The Matérn scheme. For more details, see Section 2.6.
8. The t-density scheme. The name comes from the fact that, provided 𝜇 = 2𝛼 −

d > 0, 𝜎(h) is proportional to the density of an isotropic scaled t-distribution
in d dimensions with 𝜇 degrees of freedom (e.g. Mardia et al., 1979, p. 57). It is
easily checked that 𝜎#(s1∕2) is completely monotone for all 𝛼 > 0, so that this
scheme is, in fact, valid for all 𝛼 > 0. Its main interest lies in the tail behavior
𝜎
#(r) ∝ Cr−2𝛼 as r → ∞, the so-called “power law.” That is, it provides a model

for long-range dependence (Section 2.13). However, this scheme suffers the
same degeneracy as the Gaussian scheme since 𝜎(h) is an analytic function.
Exercise 2.4 gives the spectral density when 𝜇 > 0.

9. Shell scheme. This scheme arises when the radial spectral measure is propor-
tional to a point mass at 𝜌 = b; i.e. G(d𝜌) = (𝜋dbd−1)−1

𝛿b(𝜌), so that the spectral
measure F(d𝜔) is constant over the sphere of radius b centered at the origin
in ℝd. This sphere has surface area 𝜋dbd−1 so that F(d𝜔) has been standard-
ized to be a probability measure. Setting b = 1 yields the entry in Table 2.1. The
spectral representation is given in (2.26). Note that since the J Bessel functions
behave qualitatively like damped sine waves for large arguments, this scheme
and the schemes in items 10–12 oscillate between positive and negative values
as r → ∞.

10. Ball scheme. This scheme arises from the spectral density that is constant on
the interior of a ball of radius b about the origin in ℝd

f (𝜔) = {{(𝜋d∕d)bd}−1I[a < |𝜔| < b], 𝜔 ∈ ℝd
. (2.37)

The volume of the ball is (𝜋d∕d)bd, so that f is scaled to be a probability density.
Setting b = 1 yields the entry in Table 2.1.

11. Annulus scheme. This scheme gets its name from its spectral density, which is
constant on an annulus,

f (𝜔) = {(𝜋d∕d)(bd − ad)}−1)I[a < |𝜔| < b], 𝜔 ∈ ℝd
. (2.38)

The multiplying constant is the reciprocal of the volume of the annulus.
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12. Damped sine scheme. This scheme is a special case of the ball scheme in dimen-
sion d = 1, or of the shell scheme in dimension d = 3. See also Exercise 2.5.

One function not listed in this table is the indicator function

𝜎0(h) = I[h = 0] (2.39)

=
{

1, h = 0
0, h ≠ 0

since it is not continuous at h = 0. From the perspective of this book, (2.39) is not
viewed as a valid covariance function.

The function (2.39) is intended to model a situation where observations at dif-
ferent sites are independent. Note that this concept is not very useful for continu-
ously indexed spaces such as ℝd, where there are an uncountable number of sites.
However, there are two modifications of (2.39) that do make sense.

(a) Nugget effect. Given a set of observations {xi ∶ i = 1, . . . ,n} at sites {ti}n
1 , a

plot of a empirical covariance function or a semivariogram may suggest that a
covariance model of the form

𝜎(h) = A𝜎1(h) + B𝜎0(h)

might be appropriate. Here, 𝜎1(h) is a valid covariance function (and so con-
tinuous at h = 0), 𝜎0(h) is the indicator function (2.39), and A,B > 0. Such
a model is indicated when the sample variance of the differences between
pairs of observations with a given lag h does not appear to tend to 0 as h → 0.
This behavior is known as a nugget effect (Section 1.4.1) and can be modeled
using an observational error model; see Section 5.2.3. From a theoretical point
of view, the observational error model is legitimate because the independent
measurement errors exist only at the n sites where observations are made, not
everywhere in ℝd.

(b) White noise. A basic building block in elementary probability theory is the con-
cept of an infinite sequence of independent identically distributed Gaussian
random variables. The most useful analogue of this concept in the random pro-
cess setting is white noise. White noise is not an ordinary random process, but
is an example of a generalized random process. Its covariance function is the
generalized function 𝜎(h) = 𝛿0(h), where 𝛿0(h) denotes the Dirac delta func-
tion centered at the origin. Generalized processes in general, and white noise
in particular, are studied in Chapter 3.

Other choices of covariance functions and further details can be found in a vari-
ety of sources. These include Banerjee et al. (2015, Ch. 2), Diggle and Ribeiro
(2007, Ch. 3), Rasmussen and Williams (2006, Ch. 4), Sherman (2011, Ch. 3), and
Wendland (2005).
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Example 2.1 Numerical stability
The stable scheme 𝜎#(r) = exp{−(r∕c2)𝛼} suffers from a dramatic loss of numer-
ical stability as 𝛼 → 2. To illustrate, consider n = 100 equally spaced sites in
ℝ1 at the integers j = 1, . . . ,n. The numerical stability of the covariance matrix
A = (ajk), ajk = 𝜎(j − k), can be summarized in terms of the “condition number,”
given by the ratio of the largest to the smallest eigenvalue of A. For c2 = 4, the
condition number is given by 2.1 × 103 for 𝛼 = 1.9, a value that is a bit high but
does not cause numerical problems. On the other hand, the condition number
rises dramatically to 1.3 × 1016 for 𝛼 = 2, which can cause severe rounding errors.

In general terms, a high condition number reflects a high level of smoothness
of the underlying stochastic process and usually indicates an unrealistic model.
A more detailed explanation why 𝛼 = 2 is so much worse than 𝛼 = 1.9 will be given
in Example 2.4 in Section 2.11 in terms of the spectral density. ◽

2.8 Construction of Nonstationary Random Fields

Much of the emphasis of previous sections has been on stationary covariance func-
tions. In particular, Section 2.5 gave several methods of construction.

This section looks at two ways to construct a nonstationary covariance function
by modifying an existing covariance function. In each case, the starting point is
a random field {X(t)} (not necessarily stationary) with mean function 𝜇(t) and
covariance function 𝜎(s, t).

2.8.1 Random Drift

Let f1(t), . . . , fk(t) be a set of k linearly independent functions of the site t. Consider
a new random field

Y (t) = X(t) +
k∑

j=1
Uj fj(t),

where the coefficient vector U = [U1, . . . ,Uk]T is independent of X(t) and has
mean 𝝂 and covariance matrix A, say. Then, it is straightforward to show that Y (t)
has mean function 𝜇Y (t) = 𝜇(t) +

∑
𝜈j fj(t) and covariance function

𝜎Y (s, t) = 𝜎(s, t) + f (s)TA f (t), (2.40)

where f (t) =
[
f1(t) , . . . , fk(t)

]T . In general, the augmented covariance function
𝜎Y (s, t) will not be stationary even if the original covariance matrix 𝜎(s, t) is sta-
tionary. If A = I is the identity matrix, the augmented covariance function takes
the simpler form

𝜎Y (s, t) = 𝜎(s, t) +
k∑

j=1
fj(s)fj(t). (2.41)
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2.8.2 Conditioning

Let t∗1 , . . . , t
∗
n be a fixed collection of “conditioning” sites. Condition the random

field X(t) to take specific values x∗1 , . . . , x
∗
n at these sites. Under the additional

assumption that X(t) is Gaussian, the conditioned random field is also Gaussian.
Using standard results about the multivariate normal distribution (Section A.3.4),
it is straightforward to show that the conditional mean and variance are given by

𝜇c(t) = 𝜇(t) + 𝝈∗(t)T{Σ∗}−1(x∗ − 𝝁∗),

𝜎c(s, t) = 𝜎(s, t) − 𝝈∗(s)T{Σ∗}−1𝝈∗(t), (2.42)

where the following matrix notation is used:

Σ∗ = (𝜎∗ij), 𝜎
∗
ij = 𝜎(t∗i , t

∗
j ),

𝝈∗(t) = (𝜎∗i (t)), 𝜎
∗
i (t) = 𝜎(t, t∗i ),

x∗ = (x∗i ), 𝝁∗ = (𝜇(t∗i )).

Even if the original random field is stationary, the conditioned random field will
not be stationary.

Define the “conditioned” or “residual” random field by

Xc(t) = X(t) − 𝜇(t) − 𝝈∗(t)T{Σ∗}−1(X∗ − 𝝁∗), (2.43)

where the vector X∗ = (X(t∗i )) contains the values of the original random field at
the sites t∗i . Then, the residual random field is independent of X∗ with constant
mean 𝜇 = 0 and with covariance function 𝜎c(s, t) given in (2.42). This last result
provides a simple way to simulate a random field conditioned to vanish at the sites
t∗1 , . . . , t

∗
n. Just simulate an unconditioned random field, and then compute the

residual in (2.43).

2.9 Smoothness

A random field {X(t) ∶ t ∈ ℝd} is called continuous in probability at t0 if for all
𝜀 > 0

P(|X(t0 + h) − X(t0)| > 𝜀) → 0 as h → 0.

That is, sites t0 + h close to t0 give rise to observations that are close in probability
to X(t0). Similarly, the random field is called continuous in mean-square at t0 if

E(|X(t0 + h) − X(t0)|2) → 0 as h → 0.

By Chebyshev’s inequality

P(|X(t0 + h) − X(t0)| > 𝜀) ≤ E(|X(t0 + h) − X(t0)|2)∕𝜀2;

hence continuity in mean-square implies continuity in probability.
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Let {X(t)} have mean function 𝜇(t) and covariance function 𝜎(s, t). If 𝜇(t) and
𝜎(s, t) are continuous functions, then {X(t)} must necessarily be continuous in
mean-square everywhere since

E[X(t + h) − X(t)]2 = [𝜇(t + h) − 𝜇(t)]2 + 𝜎(t + h, t).

It should be noted that continuity in probability is a fairly weak regularity prop-
erty for a random field. In particular, it does not imply that the process has con-
tinuous realizations. A simple example in d = 1 dimension is given by the Poisson
process of parameter 𝜆 > 0. This process is constructed for t ≥ 0 by the conditions
(i) X(0) = 0, and (ii) for every 0 < s < t, X(t) − X(s) has a Poisson distribution of
parameter (t − s)𝜆, independent of X(s). It is easily checked that this process has a
mean function 𝜇(t) = 𝜆t and a covariance function

𝜎(s, t) = 𝜆min (s, t).

Clearly, 𝜇(t) and 𝜎(s, t) are continuous, so {X(t)} is continuous in mean-square,
and hence continuous in probability. However, {X(t)} is an integer-valued process.
Its realizations are step functions, and hence cannot be continuous.

A more stringent requirement on a process than continuity in probability is that
the realizations should be continuous functions with probability 1. For a Gaussian
process, a simple sufficient condition for continuous realizations in a region
E ⊂ ℝd is that 𝜇(t) is continuous and that

1
2
{𝜎(t + h, t + h) + 𝜎(t, t)} − 𝜎(t, t + h) ≤ c|h|𝛼 (2.44)

for all t, t + h ∈ E, for some constant c > 0 and for some 𝛼, 0 < 𝛼 ≤ 2; see, e.g.,
Adler (1981, p. 60), who even gives a slightly weaker sufficient condition. As 𝛼
increases, (2.44) gets more stringent and the realizations of the corresponding
Gaussian random field become smoother. For an isotropic stationary Gaussian
random field, (2.44) takes the simpler form

𝜎
#(0) − 𝜎#(r) < cr𝛼 as r → 0. (2.45)

If (2.45) for a Gaussian random field is strengthened slightly to

𝜎
#(0) − 𝜎#(r) ∼ cr𝛼 as r → 0, (2.46)

then it is possible to make more precise statements about the realizations. In par-
ticular, the graph of the random field,

{(t,X(t)) ∶ t ∈ ℝd} ⊂ ℝd+1
,

has fractal or Hausdorff dimension

D = d + 1 − 𝛼∕2.

This result follows from e.g. Adler (1981, p. 204, Th 8.4.1). Noninteger Hausdorff
dimension underlies the theory of fractals developed by Mandelbrot (1982).
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For non-Gaussian random fields, stronger conditions are needed to ensure con-
tinuity. In d = 1 dimension, a sufficient condition for continuous realizations is
that (2.44) should hold for some 𝛼 with 1 < 𝛼 ≤ 2. (For the discontinuous Poisson
process, we have 𝛼 = 1.)

However, the corresponding condition in dimensions d > 1 is more complicated.
For simplicity, we limit our attention to stationary processes with mean 0. Assume
that 𝜎(h), now a function of a single argument h ∈ ℝd, is d-times differentiable,
and let pd(h) denote the polynomial in h determined by the Taylor series expansion
of 𝜎(h) up to order d. Since 𝜎(h) is even in h, pd(h) is an even polynomial in h of
degree d if d is even, and degree d − 1 if d is odd. Then, a sufficient condition for
continuous realizations is that for some 𝛼 > d

|𝜎(h) − pd(h)| ≤ c|h|𝛼 (2.47)

as |h| → 0. In other words, except for even powers of h, 𝜎(h) → 0 sufficiently
quickly as |h| → 0. See Kent (1989), where a slightly weaker sufficient condition
is also given. In d = 1 dimension, (2.47) reduces to (2.44).

Next, we look briefly at differentiability in probability for a general random field
{X(t) ∶ t ∈ ℝd} with finite second moments. Suppose 𝜎(s, t) is twice continuously
differentiable in s and t. Then, we can define a vector field of partial derivatives
{(Y1(t), . . . ,Yd(t)} such that

1. For 1 ≤ j ≤ d and each t ∈ ℝd
, [X(t + 𝜀ej) − X(t)]∕𝜀 → Yj(t) in mean-square

as 𝜀→ 0, where ej is a d-dimensional vector with 1 in the jth place and zero
elsewhere.

2. The covariance function of {Yj(t)} is 𝜕2
𝜎(s, t)∕𝜕s[j]𝜕t[j]. Here, s[j] and t[j] are

the jth components of s and t.
3. The cross-covariance function is defined by cov{Yj(s),Yk(t)}, 1 ≤ j, k ≤ d, and

is given by
cov{Yj(s),Yk(t)} = 𝜕

2
𝜎(s, t)∕𝜕s[j]𝜕t[k].

4. For a stationary random field, we can express 𝜕2
𝜎(s, t)∕𝜕s[j]𝜕t[k] as

−𝜕2
𝜎(h)∕𝜕h[j]𝜕h[k]with h = t − s.

2.10 Regularization

In Section 2.9, we looked briefly at the differentiability of a random field.
In this section, we look at the reverse operation, that of integration or regular-
ization. Let V ⊂ ℝd denote a bounded open region with volume |V |. A simple
example of regularization is given by

XV (t) =
1
|V |∫V

X(t + s)ds, (2.48)
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so that XV (t) denotes the average value of the random field over the region
t + V = {t + s ∶ s ∈ V}. In particular, V might represent the interior of a rectangle
or sphere. The concept of regularization has two important applications to the
statistical analysis of random fields.

(a) Data collection. Often one cannot observe a random field at an individual site t,
but can observe only the average value of the process in a small region about t.
For example, in mining, the smallest practical measurement that can be made
is the average mineral content over a section of a borehole. In agricultural
experiments, the basic measurement is often the average yield over a plot.
Another example is given by a digital image where the observation at each
discrete site or pixel t ∈ ℤd might represent the average value of a continuous
random field over a square/cube of side 1, centered at t. In addition, there is
often some smearing between neighboring pixels. This smearing effect is also
covered by the methods of this section; see Example 2.3.

(b) Prediction. In mining, one wants to predict not a single value of the process at
a new site, but instead the total ore content in a block of rock.

We are now ready to give a general construction of the regularization of a ran-
dom field {X(t) ∶ t ∈ ℝd} with mean function 𝜇(t) and covariance function 𝜎(s, t).
Let 𝜑(t) be an integrable function of t

∫
|𝜑(t)|dt < ∞. (2.49)

Then the regularized random field {X
𝜑
(t) ∶ t ∈ ℝd} is defined by

X
𝜑
(t) =

∫
X(t + s)𝜑(s)ds = (X ∗ 𝜑̌)(t), say, (2.50)

where 𝜑̌(s) = 𝜑(−s). We also use the notation X(𝜑) = X
𝜑
(0) to denote the regular-

ization of X(t) with respect to 𝜑 at t = 0.
The mean and covariance functions of {X

𝜑
(t)} are easily seen to be

E{X
𝜑
(t)} =

∫
𝜇(t + s) 𝜑(s) ds = (𝜇 ∗ 𝜑̌)(t), (2.51)

cov{X
𝜑
(s),X

𝜑
(t)} =

∫ ∫
𝜎(s + u, t +𝑤) 𝜑(u) 𝜑(𝑤) du d𝑤 (2.52)

= 𝜎
𝜑
(s, t), say,

where u and𝑤 are integrated over ℝd. For a stationary random field, (2.51)–(2.52)
reduce to

E{X
𝜑
(t)} = 𝜇

∫
𝜑(s) ds, (2.53)

cov{X
𝜑
(t),X

𝜑
(t + h)} =

∫ ∫
𝜎(h + u −𝑤) 𝜑(u) 𝜑(𝑤) du d𝑤 (2.54)

= (𝜎 ∗ 𝜑 ∗ 𝜑̌)(h) = 𝜎
𝜑
(h), say,
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Note that {X
𝜑
(t)} can be regarded as a moving average process with weighting

function 𝜑.
Regularization of a stationary random field can also be looked at in the spectral

domain. Let 𝜑̃(𝜔) = ∫ eiuT
𝜔
𝜑(u) du denote the Fourier transform of 𝜑(u). If F(d𝜔)

is the spectral measure for {X(t)}, then

|𝜑̃(𝜔)|2F(d𝜔) = F
𝜑
(d𝜔), say, 𝜔 ∈ ℝd

, (2.55)

represents the spectral measure of {X
𝜑
(t)} since

∫
eihT

𝜔 F
𝜑
(d𝜔) =

∫
eihT

𝜔|𝜑̃(𝜔)|2 F(d𝜔)

=
∫ ∫ ∫

ei(h+u−𝑤)T
𝜔
𝜑(u)𝜑(𝑤) F(d𝜔) du d𝑤

=
∫ ∫

𝜎(h + u −𝑤) 𝜑(u) 𝜑(𝑤) du d𝑤.

The integrability of 𝜑(h) ensures that (2.53) is well defined and finite, and that
|𝜑̃(𝜔)| is bounded, so that F

𝜑
(d𝜔) is a finite measure whenever F(d𝜔) is. Equation

(2.55) is one form of the Parseval relation; see, e.g., Feller (1966, Chapter XIX) and
Section A.5.

Example 2.2 Regularization with an indicator function
For a bounded open region V ⊂ ℝd, let

𝜑(t) = |V |−1I[t ∈ V],

where I[⋅] is an indicator function. We wrote X
𝜑
(t) as XV (t) in (2.48). ◽

Example 2.3 Regularization with a Gaussian density
Consider a normal density 𝜑(t) = (2𝜋𝛼)−d∕2 exp{−|t|2∕(2𝛼)}, which is a bounded
integrable function with infinite support. This regularization is often used to
describe smearing or blurring in image analysis. The amount of blurring increases
with the variance parameter 𝛼. ◽

2.11 Lattice Random Fields

If {X(t) ∶ t ∈ ℤd} is a random field, defined now on ℤd rather than ℝd, then much
of the above theory remains applicable, but with some simplification. For clarity,
we shall often write X(t) as Xt in the lattice case, to distinguish it from the con-
tinuous case. In particular, suppose {Xt} is stationary, with covariance function
{𝜎h ∶ h ∈ ℤd}. Then, {𝜎h} has a spectral representation

𝜎h =
∫(−𝜋,𝜋]d

ei𝜔T hF(d𝜔) (2.56)

for some symmetric finite measure F(d𝜔) on (−𝜋, 𝜋]d.
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Let {Y (t) ∶ t ∈ ℝd} be a stationary random field onℝd and let Xt = Y (t), t ∈ ℤd,
denote its restriction to ℤd. If {Y (t)} has spectral measure G(d𝜔), 𝜔 ∈ ℝd

, then
{Xt} has spectral measure

F(d𝜔) =
∑

k∈ℤd

G(2𝜋k + d𝜔), 𝜔 ∈ (−𝜋, 𝜋]d
, (2.57)

where frequencies separated by a lag 2𝜋k, k ∈ ℤd
, are aliased together in the con-

struction of F(d𝜔). Conversely, given a stationary process onℤd, there are infinitely
many ways to interpolate it to give a stationary random field on ℝd.

Let {bj ∶ j ∈ N} be a set of coefficients at a finite collection of sites D ⊂ ℤd.
As in Eq. (2.12), the variance of this linear combination of process values can be
written as

var
{∑

bjXj

}
=
∫(−𝜋,𝜋]d

|||
∑

bj exp(i jT
𝜔)|||

2
F(d𝜔). (2.58)

If F(d𝜔) = f (𝜔)d(𝜔) has a density satisfying the bounds

0 < c∕(2𝜋)d
≤ f (𝜔) ≤ C∕(2𝜋)d

, (2.59)

then it is possible to bound the above variance. In particular,

var
{∑

bjXj

}
≤ {C∕(2𝜋)d}

∫

|||
∑

bj exp(i jT
𝜔)|||

2
d𝜔 (2.60)

= C
∑

j,k∈N
bjbk ∫

exp{i (j − k)T
𝜔} d𝜔∕(2𝜋)d

= C
∑

b2
j .

The summation in the middle line simplifies because j − k has integer coordinates,
so that each scaled integral equals 1 or 0 for j = k or j ≠ k, respectively. Similarly,
a lower bound can be obtained, var{

∑
bjXj} ≥ c

∑
b2

j .
These bounds can be used to study the condition number of a covariance matrix.

Consider a collection of sites on a rectangular array D = {j ∶ 1 ≤ j[𝓁] ≤ n[𝓁],
𝓁 = 1, . . . , d}. Set Σ to be the |D| × |D| covariance matrix of {Xj ∶ j ∈ D},
where |D| = ∏

n[𝓁]. Define the condition number of a matrix by 𝜅(Σ) =
𝜆max (Σ)∕𝜆min (Σ), the ratio between the largest and smallest eigenvalues. In view
of (2.60), we obtain the bound

𝜅(Σ) ≤ max {f (𝜔)}∕min {f (𝜔)}, (2.61)

where the max and min are taken over 𝜔 ∈ [−𝜋, 𝜋]d. The bound can be quite tight
when the n[𝓁] are large. The condition number is useful for assessing the stability
of various calculations on matrices. In particular, if the condition number is large,
rounding errors can cause numerical problems.
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Example 2.4 Numerical stability revisited
Consider again the stable scheme of Example 2.1 as 𝛼 → 2 with the range param-
eter c2 = 4. For 𝛼 = 2, the spectral density for 𝜔 ∈ ℝd has the explicit form

f (2)(𝜔) = (c2
2∕4𝜋)d∕2 exp{−c2

2|𝜔|2∕4}, (2.62)

which shows squared-exponential decay as |𝜔| → ∞. For 𝛼 < 2, it is only possible
to give an expression for the tail behavior of the spectral density

f (𝛼)(𝜔) ∼ Kd,𝛼c−𝛼2 |𝜔|−d−𝛼 as |𝜔| → ∞, (2.63)

a power-law decay rate, where Kd,𝛼 is a constant. When restricting the process
to the integer lattice with c2 = 4, these expressions remain substantially valid for
the corresponding spectral density on (−𝜋, 𝜋)d since the only prominent contri-
butions in (2.57) come from the term k = 0. It is this dramatic difference in the
decay rates that explains the strong difference in the condition numbers reported
in Example 2.1.

This example also provides an opportunity to assess the usefulness of the approx-
imation (2.61). The exact spectral density is available only for 𝛼 = 2 for which the
condition number from Example 2.1 is 1.3 × 1016. The upper bound from (2.61)
with c2 = 4 is exp(c2

2𝜋
2∕4) = exp(4𝜋2) = 1.4 × 1017, which has roughly the right

order of magnitude. ◽

If𝜑h is a summable function on ℤd (i.e.
∑|𝜑h| < ∞) with the Fourier transform

𝜑̃(𝜔) =
∑

h∈ℤd

𝜑heihT
𝜔
, 𝜔 ∈ (−𝜋, 𝜋]d

,

then X
𝜑,t =

∑
Xt+h 𝜑h, t ∈ ℤd, has spectral measure given by a version of (2.55)

restricted to the torus, namely,

F
𝜑
(d𝜔) = |𝜑̃(𝜔)|2F(d𝜔), 𝜔 ∈ (−𝜋, 𝜋]d

. (2.64)

This result is important in the construction of moving average and autoregression
processes; see Chapter 4.

It does not make sense to talk about continuity and differentiability for lattice
processes. Similarly, the concept of isotropy is not meaningful in its original form.
If R is a d × d orthogonal matrix, then the vector Rh does not necessarily have
integer-valued components when h does. However, we can talk of a restricted
sort of isotropy called permutation symmetry in which 𝜎h = 𝜎Rh for all d × d
permutation matrices, that is, for all orthogonal matrices R with entries that are
±1 or 0. For example, in d = 2 dimensions, a permutation-symmetric covariance
function takes the same values at (±h1,±h2), and (±h2,±h1), a list of up to eight
vector lags.
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A weaker concept is that of reflection symmetry for which the value of covariance
function 𝜎h depends only on the absolute values |h[1]|, . . . , |h[d]|. Thus, in d = 2
dimensions, a reflection-symmetric covariance function takes the same values at
(±h1,±h2), a list of up to four vector lags. Of course, all lattice covariance functions
always satisfy the basic symmetry property that 𝜎h = 𝜎−h.

2.12 Torus Models

So far we have considered models on ℝd or ℤd. However, for mathematical sim-
plicity, especially in the Fourier domain, it is also convenient to consider models
with periodic boundary conditions, i.e. on the torus. We consider separately the
continuous and the lattice settings.

Models on the torus are important because of their mathematical tractability in
the spectral domain. Further, although the use of periodic boundary conditions
is often unrealistic in practice, torus models can still provide useful and powerful
approximations.

2.12.1 Models on the Continuous Torus

Consider a rectangular region in ℝd

R = {t ∈ ℝd ∶ 0 ≤ t[𝓁] ≤ 2𝜋, 𝓁 = 1, . . . , d}, (2.65)

where we assume periodic boundary conditions; i.e. t[𝓁] = 0 is assumed to be the
same point as t[𝓁] = 2𝜋. This space is a circle in d = 1 dimension and a torus in
higher dimensions.

Two points s, t ∈ ℝd represent the same point on the torus R if their components
are the same, up to multiples of 2𝜋. Use the notation

s = t Mod 2𝜋 (2.66)

to mean
s[𝓁] = t[𝓁] mod 2𝜋, 𝓁 = 1, . . . , d, (2.67)

where the uppercase “M” in Mod indicates the comparison of two d-vectors.
In this setting, a stationary covariance function must be periodic, i.e.

𝜎(h) = 𝜎(h + 2𝜋k) for all k ∈ ℤd, where k is a multi-index, k = (k[1], . . . , k[d]).
That is, 𝜎(h) depends only on h Mod 2𝜋. In particular, in d = 1 dimension, 𝜎(h)
must satisfy 𝜎(h) = 𝜎(−h) = 𝜎(2𝜋 − h).

In the spectral representation (2.11), the spectral measure is concentrated on the
integers and the integral reduces to a summation

𝜎(h) =
∑

k∈ℤd

bk cos(hTk), (2.68)

where bk ≥ 0, bk = b−k,
∑

bk = 𝜎(0) < ∞.
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Table 2.3 Some examples of stationary covariance functions 𝜎(h) = b0 + 2
∑∞

k=1 bk cos kh
on the circle, together with the terms bk in their Fourier series.

Name 𝜎(h) bk

Cosine cos(h) 1
2

I[k = 1]
Wrapped normal (2𝜋𝑣)−1∕2 ∑∞

j=−∞ exp{−(h + 2𝜋j)2∕(2𝑣)} exp(− 1
2

k2
𝑣)∕(2𝜋)

von Mises {2𝜋I0(𝜅)}−1 exp(𝜅 cos h) Ik(𝜅)∕{2𝜋I0(𝜅)}
Wrapped Cauchy (1 − 𝜆2)∕(1 + 𝜆2 − 2𝜆 cos h) |𝜆|k∕(2𝜋)

Here, Ik(𝜅) denotes a modified Bessel function of the first kind and I[⋅] is an indicator function.
The covariance functions have been scaled to integrate to 1 over the circle. The parameters are
𝑣 > 0, 𝜅 > 0 and 0 < |𝜆| < 1, respectively.

The circular case d = 1 is of particular interest, e.g. to model periodic phenom-
ena in time. Some examples of positive definite covariance functions on the circle
using popular directional densities are given in Table 2.3 (see, e.g., Mardia and
Jupp, 2000). In this table, the covariance functions have been scaled to integrate
to 1 over the circle. They need to be rescaled to 𝜎(h)∕𝜎(0) to represent a random
field with a marginal variance equal to 1.

2.12.2 Models on the Lattice Torus

Consider a rectangular region in ℤd,

T = {t ∈ ℤd ∶ 0 ≤ t[𝓁] ≤ n[𝓁] − 1, 𝓁 = 1, . . . , d}, (2.69)

of size |N| = n[1] × · · · × n[d], where N = (n[1], . . . ,n[d]). If for each compo-
nent 𝓁, we regard t[𝓁] = n[𝓁] − 1 as adjacent to t[𝓁] = 0, then T can be regarded
as a d-dimensional lattice torus.

As in (2.66)–(2.67), it is useful to adapt modulo notation to compare two vectors
s, t ∈ ℤd. Let

s = t Mod N (2.70)

be shorthand for
s[𝓁] = t[𝓁]mod n[𝓁], 𝓁 = 1, . . . , d. (2.71)

A random field {Xt} on the lattice torus T is said to be stationary if cov{Xt,Xs} =
𝜎(s − t) say, depends only on (s − t)Mod T. A stationary random field on the lattice
torus can be viewed as a special case of a lattice model on ℤd, where the spec-
tral measure F(d𝜔) in (2.56) is concentrated on a discrete set of |T| frequencies
𝜔j ∈ ℝd, indexed by j = (j[1], . . . , j[d]) ∈ T, where 𝜔j has components

𝜔j[𝓁] = 2𝜋j[𝓁]∕n[𝓁], j = 0, . . . ,n[𝓁] − 1, 𝓁 = 1, . . . , d.

Alternatively, the process can be viewed as a discretized version of the continuous
torus process in Section 2.12.1 where the Fourier series in (2.68) is limited to a
finite number of nonzero coefficients.
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If {Xt} is regarded as a |N|-dimensional vector with |N| × |N| covariance
matrix A, say, then it can be shown that the |N| values of the spectral density f (𝜔j)
are precisely the eigenvalues of A. The matrix A is an example of a block circulant
matrix. See Section A.7 for a detailed analysis of the eigenvalues and eigenvectors
of such matrices.

Thus, through the lattice torus we see a link between the eigenstructure of sym-
metric matrix and the spectral representation (2.11).

2.13 Long-range Correlation

Let {X1,X2, . . . } be independent, identically distributed random variables with
mean 𝜇 and variance 𝜎2, and with successive sample means X̄n = n−1 ∑n

i=1 Xi.
Then var(X̄n) = 𝜎

2∕n decays at rate n−1 as n → ∞. If instead of indepen-
dence, we allow a “weak” dependence between the Xi, we typically find that
var(X̄n) ∼ A∕n as n → ∞ for some A > 𝜎

2. That is, var(X̄n) still decays at rate
n−1, but the proportionality constant A increases, reflecting the fact that interde-
pendence between the observations tends to increase the variance of the sample
mean. If we now go further and allow a “strong” dependence between the Xi,
we typically find that var(X̄n) ∼ B∕n𝛽 for some B > 0 where 0 < 𝛽 < 1. Thus,
var(X̄n) still tends to 0, but at a slower rate than before. This situation is known
as long-range correlation or long-range dependence. A detailed study of the
one-dimensional case is given in Beran (1994).

The purpose of this section is to explore these features in more detail in the
spatial setting. Let {X(t) ∶ t ∈ ℝd} be a stationary random field with covariance
function 𝜎(h). For any bounded open set V ⊂ ℝd with volume |V |, let

X̄(V) = |V |−1
∫V

X(t) dt (2.72)

denote the sample mean of the random field as t varies continuously through V .
Clearly,

var{X̄(V)} = |V |−2
∫V∫V

𝜎(s − t) ds dt. (2.73)

Definition 2.13.1 The covariance function 𝜎(h) is said to exhibit short-range cor-
relation if

∫
|𝜎(h)| dh < ∞, (2.74)

and to exhibit long-range correlation otherwise. Further, 𝜎(h) is said to exhibit a
power-law decay of order 𝛽 for large lags if

𝜎(h) ∼ a|h|−𝛽as |h| → ∞.

Suppose 𝜎(h) exhibits a power-law decay of order 𝛽. Then checking the finiteness
of (2.74) shows that there is short-range correlation when 𝛽 > d and long-range
correlation when 0 < 𝛽 ≤ d.



�

� �

�

2.13 Long-range Correlation 59

For scalar 𝜆 > 0 let 𝜆V = {𝜆𝑣 ∶ 𝑣 ∈ V} denote the dilation of V by a factor
𝜆 with volume |𝜆V | = 𝜆

d|V |. The behavior of var{X̄(𝜆V)} as 𝜆 → ∞ under
short-range and long-range correlation was studied by Whittle (1956), and is
summarized in the following theorem. Here the volume |𝜆V | plays the role of
the sample size n above. All of the covariance functions in Table 2.1 exhibit
short-range correlation except for the t-density scheme 𝜎(h) ∝ (1 + |h|2)−𝛼 ; this
scheme exhibits short-range correlation for 𝛼 > d∕2 and long-range correlation
for 𝛼 ≤ d∕2.

Theorem 2.13.1 Let {X(t) ∶ t ∈ ℝd} be a stationary random field with covariance
function 𝜎(h), and let V be a bounded open set.

(a) If 𝜎(h) displays short-range correlation, then as 𝜆 → ∞,

var{X̄(𝜆V)} ∼ A∕𝜆d
, A = |V |−1

∫ℝd
𝜎(h)dh, (2.75)

provided A > 0.
(b) If 𝜎(h) ∼ a|h|−𝛽 as |h| → ∞ for some 0 < 𝛽 < d as 𝜆 → ∞, then 𝜎(h) displays

long-range correlation. In particular,

var{X̄(𝜆V)} ∼ B∕𝜆𝛽, B = a |V |−2
∫V∫V

|s − t|−𝛽 ds dt. (2.76)

(c) If 𝜎(h) ∼ a|h|−d as |h| → ∞, then 𝜎(h) also displays a limiting version of
long-range correlation with 𝛽 = d. In this case, as 𝜆 → ∞,

var{X̄(𝜆V)} ∼
C log 𝜆
𝜆d

, C = a 𝜋d∕|V |. (2.77)

Proof:
(a) Let

𝜑(t, 𝜆) = 𝜆
d
∫V
𝜎(𝜆(s − t)) ds

=
∫
𝜆(V− t)

𝜎(h) dh,

after substituting h = 𝜆(s − t). If t lies in the interior of V , then the set 𝜆(V − t)
will eventually fill ℝd as 𝜆→ ∞, and so 𝜑(t, 𝜆) → |V |A. Also |𝜑(t, 𝜆)| ≤
∫ℝd |𝜎(h)| dh < ∞ for all t and 𝜆. Thus, since |𝜆V | = 𝜆

d|V |,

𝜆
dvar{X̄(𝜆V)} = 𝜆

d|𝜆V |−2
∫
𝜆V∫𝜆V

𝜎(s − t) ds dt

= 𝜆
d|V |−2

∫V∫V
𝜎(𝜆(s − t)) ds dt

= |V |−2
∫V
𝜑(t, 𝜆) dt → A

as 𝜆→ ∞ by the bounded convergence theorem.
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(b) First note that ∫V∫V |s − t|−𝛽 ds dt <∞ for any 0 < 𝛽 < d and any bounded
open set V . Also note that we can bound |𝜎(h)| ≤ K|h|−𝛽 for some constant K.
Hence

𝜆
𝛽var{X̄(𝜆V)} = 𝜆

𝛽 |V |−2
∫V∫V

𝜎(𝜆(s − t)) ds dt → B

as 𝜆→ ∞ by the dominated convergence theorem, since 𝜆
𝛽
𝜎(𝜆(s − t)) ≤

K|s − t|−𝛽 and for s ≠ t, 𝜆𝛽𝜎(𝜆(s − t)) → a|s − t|−𝛽 .
(c) This case is a limiting form of (b) with 𝛽 = d. The covariance function just

barely exhibits long-range correlation and var{X̄(V)} tends to 0 at a rate just
less than 𝜆−1. In this case, it can be shown that if we set

𝜓(t, 𝜆) = [log 𝜆]−1
∫
𝜆(V−t)

𝜎(h) dh,

then, provided t lies in the interior of V ,

𝜓(t, 𝜆) → a 𝜋d as 𝜆→ ∞,

and 𝜓(t, 𝜆) is bounded above by a suitable constant for all t and 𝜆 ≥ 2. Hence,
it follows that

𝜆
d

log 𝜆
var{X̄(𝜆V)} = 𝜆

d[log 𝜆]−1|V |−2
∫V∫V

𝜎(𝜆(s − t)) ds dt

= |V |−2
∫V
𝜓(t, 𝜆) dt

→ a 𝜋d∕|V | as 𝜆→ ∞. ◽

Example 2.5 Mercer–Hall uniformity trial
The analysis of the Mercer–Hall uniformity trial in Example 1.14 fits into the
framework of this section with dimension d = 2. In the notation of this section,
V represents a single plot, 𝜆V represents a block of plots, and X̄(𝜆V) represents
the observed yield per unit area in a block. Since the area of 𝜆V is proportional to
𝜆

2, the estimated slope 0.49 in that example corresponds to the power-law relation-
ship var{X̄(𝜆V)} ∝ 𝜆

−𝛽 with 𝛽 = 2 × 0.49 = 0.98. This result is compatible with a
power-law decay in an isotropic covariance function 𝜎#(r) ∝ r−𝛽 for large r. Since
0.98 < d = 2, this parameter indicates long-range correlation. ◽

Example 2.6 Long-range dependence in other uniformity trials
Whittle (1956, 1962) summarized the results of Smith (1938) on a collection of
uniformity trials; see also Whittle (1986, p. 435). It was found that the power-law
behavior is widespread. The fitted values of 𝛽 lay in the range [0.3, 1.6] with a
major peak in the frequencies at 𝛽 = 1 and smaller peaks at 𝛽 = 0.5 and 𝛽 = 1.5. All
these choices for 𝛽 are smaller than d = 2, again indicating long-range correlation.
Whittle also proposed a spatial–temporal model to generate a power-law behavior
with 𝛽 = 1. ◽
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2.14 Simulation

2.14.1 General Points

In this section, we consider the problem of simulating a Gaussian random
field {X(t)} with mean function 𝜇(t) and covariance function 𝜎(s, t). Given sites
t1, . . . , tn, the objective is to simulate a realization of X = (X(t1), . . . ,X(tn))T .

There are three main approaches:

(a) the direct approach
(b) the spectral approach
(c) the circulant approach

The spectral and circulant approaches are limited to stationary random fields.
Within the spectral approach, we describe three different methods. The spectral
methods have the advantage that the values of the sites t1, . . . , tn do not need to be
specified in advance, but have the disadvantage that only an approximation to the
distribution of the desired random vector is produced. A variant of the spectral
approach is the circulant approach, which does produce exact simulations. For
some further details and other methods of simulation, see, e.g., Christakos (1992)
and Chilés and Delfiner (2012). An extension to multivariate Gaussian random
fields is treated in Emery et al. (2016).

Once a Gaussian random field has been simulated, it is straightforward to mod-
ify it to produce a random field conditioned to vanish at a specified set of sites. See
Section 2.8.

2.14.2 The Direct Approach

Define an n × n matrix Σ = (𝜎ij) with entries 𝜎ij = 𝜎(ti, tj) and a vector
𝝁 = (𝜇1, . . . , 𝜇n)T . Then simulate from a multivariate normal distribution
Nn(𝝁,Σ) as follows. Let R be a “square root” of Σ satisfying RRT = Σ. One choice
for R is the symmetric square root of Σ. (Recall that if Σ has a spectral decompo-
sition Σ = ΓΛΓT , where Γ is an n × n orthogonal matrix whose columns contain
the eigenvectors and Λ = diag(𝜆i) is a diagonal matrix whose diagonal elements
are strictly positive eigenvalues, then R = ΓΛ1∕2ΓT , where Λ1∕2 = diag(𝜆1∕2

i ).)
Another choice for R is given by the Cholesky decomposition Σ = RRT where R
is lower triangular. From a numerical point of view, the Cholesky decomposition
is preferred to the singular value decomposition because it is somewhat quicker
and does not involve iteration (Golub and Van Loan, 1989). The Cholesky decom-
position has further speed advantages if either Σ is sparse or Σ−1 is sparse (Rue,
2001). The former can arise when the covariance function has a bounded range,
such as the spherical scheme and the restricted-power scheme (Section 2.7).
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The latter can arise for approximations to CAR and simultaneous autoregression
(SAR) models on a finite grid. CAR and SAR models are discussed in Chapter
4 and sparse approximations for the inverse covariance matrix are given in
Section A.11.

Once R has been calculated, simulate a vector U = (U1, . . . ,Un)T of independent
N(0,1) random variables and set X = 𝝁 + RU . Then X has a multivariate normal
distribution with mean 𝝁 and covariance matrix RRT = Σ, as required.

2.14.3 Spectral Methods

For the spectral methods that follow, suppose 𝜎(h) is a stationary covariance func-
tion with spectral representation 𝜎(h) = ∫ eihT

𝜔f (𝜔) d𝜔 where for simplicity we
assume the spectral density f is continuous. For the most part, we deal with con-
tinuously indexed processes for which the lag h ranges overℝd and the frequency𝜔
in the spectral integral also ranges over ℝd. Where relevant we discuss the simpli-
fications available for lattice processes, for which h ranges overℤd and the spectral
integral is over (−𝜋, 𝜋)d.

Before giving the methods of simulation, we describe how the spectral repre-
sentation can be used to motivate a harmonic representation of a random field in
terms of a superimposition of random cosine waves at different frequencies with
random phases, as follows. For simplicity, take 𝜇(t) ≡ 0.

Let H(d𝜔) = A(d𝜔) + iB(d𝜔) be a random complex Gaussian measure. Except
for the symmetry property

H(d𝜔) = H̄(−d𝜔), i.e. A(d𝜔) = A(−d𝜔), B(d𝜔) = −B(−d𝜔), (2.78)

the building blocks A(d𝜔) and B(d𝜔) of H(d𝜔) are assumed to be independent
satisfying the following properties:

(a) Independence of the real and imaginary parts.
(b) Independence at different frequencies 𝜔 ≠ ±𝜔′.
(c) H has no atom at the origin 𝜔 = 0.
(d) EH(d𝜔) = EA(d𝜔) + iEB(d𝜔) = 0, var(A(d𝜔)) = var(B(d𝜔)) = 1

2
f (𝜔)d𝜔,

E(A(d𝜔)B(d𝜔)) = 0.

In Property (d), the notation means that if D is a region inℝd
,with D ∩ (−D) = ∅,

then ∫DA(d𝜔) ∼ N(0, 1
2
∫D f (𝜔)d𝜔), with a similar interpretation for B(d𝜔). Define

a random field by

X(t) =
∫

eitT
𝜔H(d𝜔) =

∫
[cos(t𝜔) A(d𝜔) − sin(t𝜔) B(d𝜔)], (2.79)

where the integral is over 𝜔 ∈ ℝd. The symmetry property (2.78) guarantees that
the imaginary part of the integral vanishes so that X(t) is real-valued. The random
field {X(t)} has mean 0 and a covariance function

E{X(t)X(t + h)} = E
{
∫ ∫

[
cos(tT

𝜔)A(d𝜔) − sin(tT
𝜔)B(d𝜔)

]

[
cos((t + h)T

𝜔
′)A(d𝜔′) − sin((t + h)T

𝜔
′)B(d𝜔′)

]}
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= 2E
∫

{[
cos(tT

𝜔) cos((t + h)T
𝜔)A2(d𝜔)

+ sin(tT
𝜔) sin((t + h)T

𝜔)B2(d𝜔)
]}

=
∫

[
cos(tT

𝜔) cos((t + h)T
𝜔) + sin(tT

𝜔) sin((t + h)
]

f (𝜔) d𝜔

=
∫

cos(hT
𝜔) f (𝜔) d𝜔 = 𝜎(h),

as required. When simplifying the double integral, note that nonzero expectations
arise only when 𝜔 = 𝜔

′or 𝜔 = −𝜔′.
The random measures A(d𝜔) and B(d𝜔) are examples of random general-

ized random fields. Generalized random fields are discussed in more detail in
Chapter 3, and the theory there can be used to give a rigorous discussion of the
derivation given here.

The representation (2.79) motivates the following method of simulating a ran-
dom field with the correct covariance structure. Let U,V , and W be three inde-
pendent random quantities where

(a) U is a uniform random variable on [0,2𝜋);
(b) W is a symmetric random vector on ℝd with density g(𝜔), say, satisfying

g(𝜔) = g(−𝜔), g(𝜔) > 0 for all 𝜔;
(c) V is a random variable with EV 2 = 2.

Then, define a random field by

X(t) = {f (W)∕g(W)}1∕2 V cos(tTW + U). (2.80)

Thus, X(t) is a single random cosine wave with random phase U and random fre-
quency W , and with a random amplitude depending on the frequency. It is easy to
check that X(t) has mean 0 and covariance function

E{X(t) X(t + h)} = E
{

V 2[f (W)∕g(W)] cos(tTW + U) cos((t + h)TW + U)
}
.

To evaluate this quantity, write

cos((t + h)TW + U) = cos((t + h)TW) cos U − sin((t + h)TW) sin U,

and similarly for cos(tTW + U). Recall that E(cos2U) = E(sin2U) = 1
2
, E(cos U

sin U) = 0, and average first over U to get

E{X(t)X(t + h)} = 1
2

E
{

V 2 [f (W)∕g(W)
] [

cos(tTW) cos((t + h)TW)
+ sin(tTW) sin((t + h)TW)

]}

= 1
2

E
{

V 2 [f (W)∕g(W)
]

cos(hTW)
}

= 1
2 ∫

2
[
f (𝜔)∕g(𝜔)

]
cos(hT

𝜔) g(𝜔) d𝜔

=
∫

cos(hT
𝜔) f (𝜔) d𝜔 = 𝜎(h),

(2.81)
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which is the desired covariance function. However, this random field is not Gaus-
sian. In particular, if tTW = sTW , then X(t) = X(s); that is, X(t) is constant on
the hyperplanes perpendicular to W . To construct a Gaussian random field, it is
necessary to combine independent copies of objects such as (2.80) and to apply
the central limit theorem. Three variations of this methodology are described as
follows:

(a) Random frequencies, random amplitudes. Define Xi(t), i = 1, . . . ,n to be inde-
pendent copies of (2.80) and set

X (n)(t) =
n∑

i=1
Xi(t)∕

√
n. (2.82)

For each n, X (n)(t) has the desired covariance structure 𝜎(h), and as n → ∞,
X (n)(t) converges to a Gaussian process by a functional version of the cen-
tral limit theorem. To apply the functional central limit theorem, we need to
ensure
(i) the finite-dimensional distributions of the approximating random field

converge to those of the limit, which follows by the ordinary central limit
theorem in this example and

(ii) “tightness,” a property which can be ensured by adding a condition
such as

∫
[1 + |𝜔|𝛼] f (𝜔) d𝜔 <∞ (2.83)

for some 𝛼 > 0.
The results of e.g. Fernique (1978) and Araujo and Giné (1980, pp. 172–173)
can be used to verify tightness under (2.83) (and even under slightly weaker
conditions). The relation between (2.83) and the smoothness of 𝜎(h) as h → 0
is explored in Exercise 2.10. It should be noted that tightness is important only
for random fields on ℝd; it is irrelevant for random fields on ℤd.
In practice, all of the stationary covariance functions in common use on ℝd

satisfy (2.83). The functional version of the central limit theorem guarantees
that quantities such as the maximum of the simulated process over a bounded
region (which depends on the random field at an infinite number of sites) con-
verges in distribution to the corresponding quantity for the limiting process.

(b) Random frequencies, fixed amplitudes. The simplest version of the general
method in (a) is given by taking g(𝜔) = f (𝜔)∕𝜎(0), the spectral density scaled
to be a probability density, and letting V = 2 be constant in (2.80).

(c) Fixed frequencies, random amplitudes. This method involves two levels of
approximation. Pick a large number M such that most of the spectral density
lies in the domain (−M,M)d (for a lattice random field, just take M = 𝜋).
Next choose an integer N (with N∕M also large) and approximate the domain
(−M,M)d by a discrete lattice with (2N)d points of the form

𝜔j =
M
N

(
j[1] + 1

2
, . . . , j[d] + 1

2

)
,−N ≤ j[𝓁] < N, 𝓁 = 1, . . . , d,

with multi-index j = (j[1], . . . , j[d]).
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Let Vj be an exponential random variable with mean {2f (𝜔j)}1∕2 for each j,
and let {Uj} be a collection of independent uniform random variables on
[0,2𝜋), so that Vj cos Uj and Vj sin Uj are independent N(0, 1

2
f (𝜔j)) random

variables. Note that the Vj are not identically distributed here, but depend on
the frequency through 𝜔j. The choice of an exponential distribution ensures
that Vj cos Uj and Vj sin Uj are independent Gaussian random variables.
Then set

X (M,N)(t) =
(M

N

)d∕2∑
j

Vj cos(tT
𝜔j + Uj). (2.84)

This formula can be viewed as a discrete approximation to (2.79), and
{X (M,N)(t)} is a Gaussian random field with covariance function

𝜎
(M,N)(h) =

(M
N

)d∑
j

f (𝜔j) cos(hT
𝜔j). (2.85)

This Riemann sum converges to 𝜎(h) for each h, so the finite dimensional dis-
tributions of X (M,N)(t) have the correct limit. Further, under (2.83) the results
of Araujo and Giné (1980, p. 172) can be used to ensure tightness.

(d) Turning bands method (Matheron, 1973; Mantoglue and Wilson, 1982).
Methods (a) and (b) involve a random sample of frequencies 𝜔. Method (c)
can be viewed as a systematic sample of frequencies after approximating
ℝd by (−M,M)d and letting g(𝜔) correspond to a uniform distribution.
The turning bands method can be viewed an intermediate approach when
d ≥ 2.
Write the frequency𝜔 in polar coordinates,𝜔 = 𝜌u where 𝜌 > 0 and u = 𝜔∕|𝜔|
is a unit vector in ℝd. In the turning bands method, u is sampled system-
atically and 𝜌 is sampled randomly. Thus, let {ui ∶ i = 1, . . . ,n} be a fixed
collection of n unit vectors approximately equally spaced on the unit sphere
in ℝd. Equal spacing is easy to guarantee in d = 2 dimensions (the circle)
but, except for special values of n, can be done only approximately in higher
dimensions.
Suppose a method is already available to simulate one-dimensional sta-
tionary Gaussian processes with a given spectral density (e.g. based on (a),
(b), or (c) above). Let X1,i(⋅), i = 1, . . . ,n, be a simulated one-dimensional
Gaussian process with spectral densities, f1,i(𝜌) = 𝜋d𝜌

d−1f (𝜌ui). Note that
when f (𝜔) is isotropic, all the one-dimensional spectral densities will be
the same. Combining the one-dimensional simulations together yields the
representation

X (n)(t) = n−1∕2
n∑

i=1
X1,i(tTui), t ∈ ℝd

.

Hence, a Gaussian random field with a d-dimensional index t ∈ ℝd can be
approximated as a sum where each term depends on a Gaussian random field
with a one-dimensional index.



�

� �

�

66 2 Stationary Random Fields

2.14.4 Circulant Methods

Circulant methods are well suited to the exact simulation of lattice stationary
Gaussian random fields as given in Section 2.11. Let {𝜎h ∶ h ∈ ℤd} denote the
covariance function with spectral density f (𝜔), 𝜔 ∈ (−𝜋, 𝜋)d.

The method is easiest to describe in d = 1 dimension. Suppose we wish to
simulate the process on a domain D = {1,2, . . . ,n} for some n > 1. This distribu-
tion requires the covariances 𝜎h, h = 0,1, . . . ,n − 1 at lags between pairs of sites
i, j ∈ . The trick is to embed D in a larger region E = {1,2, . . . ,m} for some
m, where for simplicity of presentation we assume m > 2n − 1 is odd. Intro-
duce on E a circulant covariance function 𝛿h, 0 ≤ h ≤ m − 1, regarded a
periodic function so that 𝛿h = 𝛿h+pm for all integers p, h, say. We require 𝛿h = 𝜎h,

0 ≤ |h| ≤ n − 1. The simplest way to carry out this construction is to set
𝛿h = 𝜎h, 0 ≤ |h| < m∕2. Then periodicity determines the remaining values of 𝛿h;
in particular, 𝛿m−h = 𝛿h, 1 ≤ h < m∕2.

Let Δ denote the m × m circulant covariance matrix with (i, j)th entry 𝛿i−j.
Denote its eigenvalues by 𝜆k, k = 0, . . . ,m − 1. All symmetric circulant matrices
have the same eigenvectors, and a convenient orthonormal matrix is given
by G = G(DFT,rea)

m in Section A.7.1. Let F = diag(fj) denote the corresponding
eigenvalues. Then simulate a normal random vector Y ∼ Nm(0,F) with inde-
pendent components, and set X = GY . Then var(X) = GFGT = Δ, and the
subvector (x1, . . . , xn) is normally distributed with the required covariance
structure. The fast Fourier transform (FFT) can be used to carry out the sim-
ulation efficiently in only O(m log m) calculations and is most efficient if m
is highly composite. A number m is highly composite if it can be written as a
product of powers of a small number of prime factors; e.g. m = 2k

, m = 3k or
m = 2k1 3k2 .

The only snag with this method is thatΔ is not guaranteed to be positive semidef-
inite for all m; it may have some negative eigenvalues. However, Wood and Chan
(1994) have shown that under mild regularity conditions the positive definiteness
of Δ can be ensured for m large enough.

A similar construction can be carried out in d ≥ 2 dimensions, with
n = (n[1], . . . ,n[d]) and m = (m[1], . . . ,m[d]) being multi-indices. Again, the
presentation is simplest if we require m[l] ≥ 2n[l] − 1 with m[l] odd, l = 1, . . . , d.
The methodology here is a straightforward generalization of the one-dimensional
case described above. We simulate independent normal random variables in the
Fourier domain and then, using the FFT, transform back to the original state
space. Wood and Chan (1994) describe the process in detail. They describe how
to deal with the complications that can arise if one or more of the m[l] is even and
show that under mild regularity conditions the circulant covariance matrix will
be positive definite provided all the m[l] are large enough.
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Exercises

2.1 Using the following hints, show that for d ≥ 1, 𝜋d = 2𝜋d∕2∕Γ(d∕2) is the
surface area of the unit sphere in ℝd.
(a) (d = 1). Note 𝜋1 = 2 by direct observation.
(b) (d = 2). Using the fact that the length of a curve y = y(x) between x = a

and x = b is given by

∫

b

a
{1 + (dy∕dx)2}1∕2dx,

express the perimeter of the unit circle as

𝜋2 = 2𝜋 = 2
∫

1

−1
(1 − s2)−1∕2 ds.

(c) (d ≥ 3). Suppose by induction that 𝜋d−1 takes the required form.
Express 𝜋d as the volume of a surface of rotation about the x[d] axis in
ℝd to get

𝜋d =
∫

1

−1
{𝜋d−1(1 − s2)(d−2)∕2}(1 − s2)−1∕2 ds.

Use the integral for the beta function

∫

1

0
𝑣
𝛼−1(1 − 𝑣)𝛽−1d𝑣 = B(𝛼, 𝛽) = Γ(𝛼)Γ(𝛽)∕Γ(𝛼 + 𝛽)

for 𝛼, 𝛽 > 0, to simplify this expression.

2.2 The purpose of this exercise is to verify the density in (2.19). Without loss of
generality let u = (1,0, . . . , 0)T , so 𝜂Tu = 𝜂[1]. Using Exercise 2.1(c), show
that

P(𝜂[1] < s) =
𝜋d−1

𝜋d ∫

s

−1
(1 − 𝜂2)(d−3)∕2 d𝜂.

Differentiate with respect to s to get the required density. See also Mardia
and Jupp (2000, p. 167).

2.3 Verify the limiting behavior of Eq. (2.20). Hint: Use the elementary inequal-
ity log(1 − x) ≤ −x for 0 < x < 1, the elementary limit (1 + x∕𝛿)𝛿 → ex as
𝛿 → ∞, and Stirling’s formula

Γ(𝛿) ∼ e−𝛿𝛿𝛿−
1
2 (2𝜋)

1
2 .

2.4 Given a function g(𝜌), 𝜌 > 0, the Hankel transform of order 𝜆 > −1 is
defined by


𝜆
(g)(r) =

∫

∞

0
(𝜌r)1∕2J

𝜆
(𝜌r)g(𝜌) d𝜌
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(Erdélyi, 1954, p. 3). In the same way that the Fourier transform links a
spectral density on ℝd to a covariance function on ℝd, we shall see that the
Hankel transform links a radial spectral density on (0,∞) to a radial covari-
ance function on (0,∞). Indeed, 

𝜆
is directly analogous to (2𝜋)−d∕2 ,

where  denotes the Fourier transform in ℝd and 𝜆 = (d − 2)∕2.
(a) Let 𝜎(h) be an isotropic covariance function in ℝd with spectral den-

sity f (𝜔). Set 𝜎#(r) = 𝜎(h) for r = |h| and f #(𝜌) = f (𝜔) for 𝜌 = |𝜔|. Then,
𝜎(h) and f (𝜔) are linked by the Fourier transform

𝜎(𝜔) =
∫

exp(ihT
𝜔) f (𝜔) d𝜔 =

∫
cos(hT

𝜔) f (𝜔) d𝜔.

Set
𝜎̃
#(r) = r𝜆+

1
2 𝜎

#(r), f̃ #(𝜌) = 𝜌
𝜆+ 1

2 f #(𝜌).

Show that
𝜎̃
#(r) = (2𝜋)d∕2


𝜆
(f̃ #)(r),

where the notation means that 
𝜆
(f̃ #) is a function evaluated at

the argument r. That is, the Hankel transform takes a reweighted
radial spectral density to a reweighted radial covariance function.
See Eq. (2.26).

(b) Starting with the inverse Fourier transform

f (𝜔) = (2𝜋)−d
∫

exp(−ihT
𝜔)𝜎(𝜔) dh,

show that the Hankel transform is “self-reciprocal.” That is, subject to
suitable integrability conditions,

f̃ #(𝜌) = (2𝜋)−d∕2

𝜆
(𝜎̃#)(𝜌).

(c) Using Erdélyi (1954, p. 24, equation (120)), show that for 𝜆 > −1,
𝜈 > 0, the function

𝜑(𝜌) = 𝜌
𝜆+1∕2∕(1 + 𝜌2)𝜈+𝜆+1

has the Hankel transform

𝜓(r) = 
𝜆
(𝜑)(r) =

r𝜈+𝜆+
1
2 K

𝜈
(r)

2𝜈+𝜆Γ(𝜈 + 𝜆 + 1)
.

Use this result and Eq. (2.26) to deduce that in all dimensions d ≥ 1 the
Matérn function

𝜎
#(r) = 2

Γ(𝜈)
(r∕2)𝜈K

𝜈
(r)

is a valid radial covariance function in ℝd with radial spectral density

f #(𝜌) =
Γ(𝜈 + d

2
)

Γ(𝜈)𝜋d∕2
1

(1 + 𝜌2)𝜈+
d
2

.

Since f #(𝜌) is positive for all 𝜌 > 0, deduce that 𝜎#(r) is positive definite.
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(d) Using the fact that K
𝜈
(r) > 0 for all 𝜈 > 0 and r > 0, deduce that the

t-density scheme in Table 2.1 is positive definite when 𝛼 > d∕2. (The
construction can be extended to include all 𝛼 > 0.)

2.5 (Matérn, 1960, p. 16) Using Eq. (2.26) show that an isotropic radial covari-
ance function 𝜎#(r), r ≥ 0, in d dimensions is bounded below by

inf
r≥0

{𝜎#(r)}∕𝜎#(0) ≥ Γ(𝜆 + 1)inf
x>0

{(x∕2)−𝜆J
𝜆
(x)} = Ld, say,

where 𝜆 = 1
2
(d − 2). Show that the shell scheme, for which the radial spec-

tral measure F#(d𝜌) is a point mass (item 9 in Section 2.7), attains this lower
bound. The first few values of this lower bound are L1 = −1, L2 = −0.403,
L3 = −0.217, L4 = −0.132; and limd→∞Ld = 0. Thus, only limited amounts
of negative autocorrelation are allowed in isotropic random fields in ℝd, for
d > 1.

2.6 For t ∈ ℝd let 𝜑(t) = I[|t| < 1
2
] where I is an indicator function. Let 𝜎(h) =

(𝜑 ∗ 𝜑̌)(h) as in Eq. (2.33). Show that 𝜎#(r) = 𝜎(|h|) takes the following
form in dimensions d = 1,2, 3:

(d = 1) 𝜎(r) ∝ (1 − r)I[r ≤ 1],

(d = 2) 𝜎(r) ∝ {1 − (2∕𝜋)r(1 − r2)1∕2 − (2∕𝜋)sin−1r}I[r < 1],

(d = 3) 𝜎(r) ∝
{

1 − 3
2

r + 1
2

r3
}

I[r < 1].

The function for d = 3 is the “spherical scheme” of Table 2.1. The function
for d = 2 is the analogous construction in two dimensions and is some-
times known as the “circular scheme.” The function for d = 1 is sometimes
known as the “tent” scheme, since, when plotted as a function of h, with
r = |h|, it has a tent-like shape between h = −1 and h = 1 with a peak at
h = 0. Note that the tent scheme can also be viewed as a special case of the
restricted-power scheme in Table 2.1 with k = 1, but it is a valid covariance
function only in dimension d = 1. Chilés and Delfiner (2012, pp. 85–88)
discuss higher dimensional versions.
Hint: For d ≥ 2, 𝜎#(r) is given by the volume in the intersection of
two spheres of radius 1

2
and distance r apart. Since the volume of a

(d − 1)-dimensional sphere of radius r equals {𝜋
1
2
(d−1)∕Γ( 1

2
d + 1

2
)}rd−1 =

𝜋d−1rd−1∕(d − 1) (to verify this formula, differentiate with respect to
r at r = 1 to get the surface area 𝜋d−1 of the sphere), 𝜎#(r) can be
expressed as

𝜎
#(r) = {2𝜋d−1∕(d − 1)}

∫

1
2

1
2

r
(1
4
− u2)(d−1)∕2 du.
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2.7 (Mardia and Watkins, 1989). Let 𝜎k(h) = (1 − |h|)kI[|h| ≤ 1] denote the
restricted-power scheme of Table 2.1. The purpose of this exercise is to
show the positive definiteness of 𝜎k(h) for integer k ≥ 2 in d = 3 dimen-
sions. This will be achieved by showing that the spectral density, fk(𝜔), say,
of 𝜎k(h) is nonnegative for all 𝜔 ∈ ℝ3.
(a) Write f #k (𝜌) = fk(𝜔), 𝜌 = |𝜔|, for the radial spectral density. Using the

Fourier inversion formula, show that in d = 3 dimensions

f #k (𝜌) =
1

2𝜋2𝜌 ∫

1

0
r(1 − r)k sin(r𝜌)dr.

Note that the integrand is positive if 0 < 𝜌 < 𝜋; hence conclude that

f #k (𝜌) > 0 for 0 < 𝜌 ≤ 𝜋.

(b) Using integration by parts or otherwise, evaluate this integral for k = 2
and k = 3,

f #2 (𝜌) =
1

𝜋2𝜌5 {𝜌(2 + cos 𝜌) − 3 sin 𝜌}, 𝜌 > 0,

f #3 (𝜌) =
3

𝜋2𝜌6 {𝜌
2 − 4 + 𝜌 sin 𝜌 + 4 cos 𝜌}, 𝜌 > 0.

(c) If 𝜌 ≥ 𝜋 note that 𝜌(2 + cos 𝜌) − 3 sin 𝜌 ≥ 𝜌 − 3 > 0. Hence conclude
that f #2 (𝜌) > 0 for all 𝜌 > 0.

(d) Similarly, show that f #3 (𝜌) > 0 for all 𝜌 > 0.
(e) Use the fact that positive definiteness of functions is preserved under

multiplication to conclude that 𝜎k(h) is positive definite for all integers
k ≥ 2 in d = 3 dimensions.

(f) Why does 𝜎k(h) also define a positive definite function in d = 1 and
d = 2 dimensions?

2.8 (Separable covariance functions; see, e.g., Martin, 1979). A covariance
function 𝜎(h), h ∈ ℝ2, is called separable if it factorizes as

𝜎(h) = 𝜎1(h[1]) 𝜎2(h[2]).

Separable covariance functions are important because they build on our
ability to model and analyze stochastic processes in one dimension.
(a) If 𝜎1(h[1]) and 𝜎2(h[2]) are positive definite functions in one dimen-

sion, show that 𝜎(h) is positive definite in two dimensions.
(b) If 𝜎(h) has spectral density f (𝜔) show that 𝜎(h) is separable if and only

if f (𝜔) also factorizes

f (𝜔) = f1(𝜔[1]) f2(𝜔[2]).
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(c) Show that 𝜎(h) = e−𝛼h[1]−𝛽h[2] defines a valid covariance function for
𝛼 > 0, 𝛽 > 0. Show that 𝜎(h) is not isotropic.

(d) Extend the concept of separability to dimensions d > 2.

2.9 Start with a random variable Y following a gamma distribution with index
𝜈 > 0 and scale parameter 𝜆 > 0, with density 𝜆𝜈y𝜈−1 exp(−𝜆y)∕Γ(𝜈), y > 0.
Then the reciprocal U = 1∕Y has density g(u) = 𝜆

𝜈u−𝜈−1e−𝜆∕u∕Γ(𝜈), u > 0.
(a) Using, e.g. Gradshteyn and Ryzhik (1980, p. 340, equation (9)), show

that the Laplace transform of g(u) is given by

ĝ(s) =
∫

∞

0
g(u)e−su du = 2

Γ(𝜈)
(𝜆s)𝜈∕2K

𝜈
(2
√
𝜆s), s > 0.

(b) Hence, using Theorem 2.4.1 show that the function

𝜎(h) = c1
21−𝜈

Γ(𝜈)
(r∕c2)𝜈K

𝜈
(r∕c2), r = |h|, h ∈ ℝd

,

is positive definite in all dimensions d where c1 > 0 is a scale parameter
and c2 > 0 is a range parameter. An alternative proof of this result was
given in Exercise 2.4(c).

(c) For index 𝜈 = 1∕2, use the identity K1∕2(z) =
√
𝜋∕(2z)e−z (e.g.

Abramowitz and Stegun, 1964, p. 444, equation (10.2.17)) to show that
the Matérn scheme reduces to the exponential scheme in Table 2.2.

(d) Using the fact that the gamma distribution has mean 𝜈∕𝜆 and variance
𝜈∕𝜆2, show that the gamma distribution converges to a point mass at
y = 1 as 𝜈 → ∞ with 𝜆 = 𝜈. Hence, deduce that the Gaussian scheme
appears as a limiting case of the Matérn scheme.

2.10 Let 0 < 𝛼 < 2 and suppose that the spectral density satisfies the integrabil-
ity condition ∫ [1 + |𝜔|]𝛼f (𝜔) d𝜔 <∞, as in (2.83). Show that 𝜎(0) − 𝜎(h) =
O(|h|𝛼) as h → 0.
Hint: Write 𝜎(0) − 𝜎(h) = ∫ [1 − cos(hT

𝜔)] f (𝜔) d𝜔 in terms of the spectral
density, and use the following inequalities:
(a) 1 − cos(x) ≤ 1

2
x2 for all x ≥ 0, so that

1 − cos(x) ≤ min
(1

2
x2
, 2
)
≤ 2 min (x2

, 1).

(b) For 0 ≤ x ≤ 1, x2 ≤ x𝛼 , so that for all x ≥ 0,

min (x2
, 1) ≤ min (x𝛼, 1) ≤ x𝛼.
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There is also a converse to this result, which is harder to prove. If for some
0 < 𝛼 < 2, 𝜎(0) − 𝜎(h) = O(|h|𝛼) as h → 0, then ∫ |𝜔|𝛽 f (𝜔) d𝜔 < ∞ for all
0 < 𝛽 < 𝛼.

2.11 Let 𝜎(h) = 𝜎
#(r), r = |h|, be an isotropic covariance function in ℝ3, with

spectral density f (𝜔) = f #(𝜌), 𝜌 = |𝜔|. In addition to the usual integrability
condition ∫ f (𝜔) d𝜔 <∞, suppose also that ∫ |𝜔|2f (𝜔) d𝜔 <∞.
(a) Show that 𝜎(h) is twice continuously differentiable.
(b) Show that −𝜕2

𝜎(h)∕𝜕h[1]2 is positive definite with spectral density
𝜔[1]2f (𝜔).

(c) Hence, show that the negative Laplacian −△ 𝜎(h) = −
∑3

j=1 𝜕
2
𝜎(h)∕

𝜕h[j]2 is positive definite with isotropic radial spectral density 𝜌2f #(𝜌).
(d) Thus in d = 3 dimensions, deduce that the covariance function of the

one-dimensional process needed in the turning bands algorithm in
Section 2.14.3 is given by 𝜎1(r) = −d2

𝜎
#(r)∕dr2 − (2∕r)d𝜎#(r)∕dr.
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3

Intrinsic and Generalized Random Fields

3.1 Introduction

Chapter 2 looked at the properties of random fields {X(t) ∶ t ∈ D} as the site t
ranges through a domain D; typically D = ℝd. Provided the moments are finite,
there is a well-defined mean function 𝜇(t) = E{X(t)} and a well-defined covari-
ance function 𝜎(s, t) = cov{X(s),X(t)} for all s, t ∈ D. From this chapter’s perspec-
tive, it is helpful to refer to these random fields as ordinary in contrast to the
generalized random fields introduced later.

In addition, Chapter 2 emphasized the case of stationary random fields for which
𝜇(t) = 𝜇 is constant and 𝜎(s, t) = 𝜎(s − t) depends only on the lag s − t. Stationarity
is an important assumption to ensure the tractability of the covariance function;
it simplifies the interpretation and provides a framework for the estimation of any
unknown parameters.

However, the class of ordinary stationary random fields is not sufficiently gen-
eral for all of our applications. It is useful to extend this class in two ways: from sta-
tionary to intrinsic random fields and from ordinary to generalized random fields.

Intrinsic random fields are studied in Sections 3.2–3.4. An intrinsic random field
can also be described as a random field with stationary increments. For an intrinsic
random field, the focus is on certain increments of the random field. In the simplest
version (intrinsic order k = 0), a typical increment takes the form of a difference,
e.g., X(t + h) − X(t). In d = 1 dimension, Brownian motion is the most well-known
example, which is discussed in Section 3.2. A natural tool to study intrinsic ran-
dom fields of order k = 0 is the semivariogram, and its properties are studied in
Section 3.3. For all orders k ≥ 0, the class of intrinsic random fields is important
because it is larger than the class of stationary random fields but retains much of
the tractability.

The price to be paid for the intrinsic assumption is that it only provides a partial
specification of the covariance function. The mean and variance are not specified
for all linear combinations of the random field, but only for certain increments.

Spatial Analysis, First Edition. John T. Kent and Kanti V. Mardia.
© 2022 John Wiley & Sons Ltd. Published 2022 by John Wiley & Sons Ltd.
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Methods to complete the specification of the mean and covariance function for all
linear combinations are discussed in Sections 3.2 and 3.5.

On the other hand, in a generalized random field (Section 3.6), the realizations
are too rough to be ordinary functions. Instead, the realizations are generalized
functions in the sense of Schwartz (Gel’fand and Shilov, 1964, 1968; Gel’fand
and Vilenkin, 1964). The only way to investigate such random fields is through
regularizations X(𝜑) for suitably smooth test functions𝜑. The most widely known
generalized stationary random field is Gaussian white noise, which forms the
continuous analog of a sequence of independent identically distributed normal
random variables.

The spectral representation for the covariance function of a stationary random
field (Bochner’s Theorem 2.3.3) can be extended to cover random fields that are
intrinsic or generalized or both (Sections 3.7–3.8). In the spectral domain, intrinsic
random fields have the property that the spectral density is too large at low frequen-
cies to be integrable; conversely, generalized stationary random fields have the
property that the spectral density is too large at high frequencies to be integrable.
Regularization of the realizations of an intrinsic or generalized random field can
be understood most clearly in the spectral domain and is explored in Section 3.9.
The important concept of self-similarity for Gaussian random fields (Section 3.10)
can be given a satisfactory treatment only in the setting of generalized and intrinsic
random fields.

The main focus of this book is on random fields with finite second moments.
Further, the emphasis in both Chapter 2 and this chapter is on just the first
and second moments of the underlying random field rather than the full set of
finite-dimensional distributions. Moreover, the most important application of the
theory is to Gaussian random fields, which are fully determined by their first two
moments. The assumption of Gaussianity becomes important for the specification
of autoregressive models (Chapter 4) and for statistical inference (Chapters 5–7).
For a more detailed investigation of the properties of Gaussian random fields, see,
e.g., Adler (1981), Adler and Taylor (2007).

3.2 Intrinsic Random Fields of Order k = 0

This section and Section 3.3 focus on an intrinsic random field of order k = 0.
Higher order intrinsic random fields are discussed in Section 3.4.

The motivation behind an interest in intrinsic random fields comes from the
following observation. In some applications, it is found that the data appear to be
modeled by a random field {X(t) ∶ t ∈ ℝd} for which the semivariogram

𝛾(h) = 1
2
var{X(t + h) − X(t)}
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grows indefinitely with |h|. For such a process, the overall variability grows with
the size of the region being examined (e.g. Example 1.12). It is useful to extend the
notion of a stationary process to deal with this possibility.

Definition 3.2.1 Let {X(t) ∶ t ∈ ℝd} be a random field. If the first two incremen-
tal moments take the form

E{X(t + h) − X(t)} = 𝜈(h), say,
1
2
var{X(t + h) − X(t)} = 𝛾(h), say, t, h ∈ ℝd

,

where 𝜈(h) and 𝛾(h) are continuous functions of h, not depending on t, then {X(t)}
is said to be an intrinsic random field. The name random field with stationary incre-
ments is also used. In addition, 𝜈(h) is called the incremental mean function and
𝛾(h) is called the semivariogram, respectively. The function 2𝛾(h) is known as the
variogram.

The property of being intrinsic depends only on the second moment properties
of the increments. If, in addition, for all n ≥ 1 and all choices of sites t0, . . . , tn ∈
ℝd, the distribution of the n-dimensional vector of increments

{X(t1) − X(t0), . . . ,X(tn) − X(t0)}

depends only on the site differences t1 − t0, . . . , tn − t0, then {X(t)} is said to be
strongly intrinsic. In particular, a Gaussian process that is intrinsic is automatically
strongly intrinsic.

The two most important nonstationary intrinsic processes in d = 1 dimension
are Brownian motion (with drift) and the Poisson process. Brownian motion is a
Gaussian process {X(t) ∶ t ∈ ℝ1} defined by the following properties:

(a) X(0) = 0.
(b) For s < t, X(t) − X(s) is normally distributed with mean (t − s)𝜇 and variance

(t − s)𝜎2.
(c) For s < t ≤ u < 𝑣, X(t) − X(s) is independent of X(𝑣) − X(u).

From (b) we see that 𝜈(h) = 𝜇h and 𝛾(h) = 1
2
𝜎

2|h| for Brownian motion. Often
the intrinsic mean is assumed to vanish, 𝜇 = 0.

The Poisson process has a similar characterization with (b) replaced by the fol-
lowing condition:

(b′) For s < t, X(t) − X(s) has a Poisson distribution with parameter (t − s)𝜆.
Hence, 𝜈(h) = 𝜆h and 𝛾(h) = 1

2
𝜆|h| for the Poisson process.
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Since the Poisson distribution is concentrated on the nonnegative integers,
the realizations from a Poisson process will be nondecreasing step functions. By
convention, the realizations are usually taken to be right-continuous, though the
choice of convention makes no difference to the second moment properties.

Note that the semivariogram takes the same form for Brownian motion and the
Poisson process. Also both processes are strictly intrinsic, and from (c), both pro-
cesses have independent increments.

Clearly, a stationary random field on ℝd with mean 𝜇 and covariance function
𝜎(h) is also intrinsic with incremental mean 𝜈(h) = 0 and with semivariogram
𝛾(h) = 𝜎(0) − 𝜎(h). Conversely, if the semivariogram of an intrinsic process satis-
fies 𝛾(h) → c, say, as |h|→ ∞, then 𝜎(h) = c − 𝛾(h) defines a valid covariance func-
tion; see Exercise 3.1. In contrast, an intrinsic random field for which 𝛾(h) → ∞ as
|h|→ ∞ is not stationary.

To characterize the incremental mean function 𝜈(t) for an intrinsic random field
on ℝd, we note the identity

𝜈(t + h) = E{X(t + h) − X(t) + X(t) − X(0)}

= E{X(t + h) − X(t)} + E{X(t) − X(0)}

= 𝜈(h) + 𝜈(t), t, h ∈ ℝd
.

Since 𝜈(h) is assumed continuous and 𝜈(0) = 0, it follows that 𝜈(h) is a linear func-
tion of h

𝜈(h) = 𝛽
Th (3.1)

for some 𝛽 ∈ ℝd. Thus, a linear drift is allowed in an intrinsic random field, in
contrast to the constant mean of a stationary random field.

Next we look at further simple properties of intrinsic random fields. Start with
the identity

2{X(t) − X(s)}{X(𝑣) − X(u)} ={X(t) − X(u)}2 + {X(s) − X(𝑣)}2

− {X(s) − X(u)}2 − {X(t) − X(𝑣)}2 (3.2)

for all s, t,u, 𝑣 ∈ ℝd. After centering the increments to have mean 0 and taking
expectations, we can calculate the covariance between two increments

cov{X(t) − X(s), X(𝑣) − X(u)} = 𝛾(t − u) + 𝛾(s − 𝑣) − 𝛾(s − u) − 𝛾(t − 𝑣). (3.3)

The difference X(t1) − X(t2) can be viewed as an elementary increment or contrast.
A more general definition of an increment is as follows.

Definition 3.2.2 A linear combination
∑n

i=1 aiX(ti) or, alternatively, a list of coef-
ficients and sites {(ai, ti)}n

i=1 is called an increment (of order k = 0) if the coeffi-
cients satisfy

∑
ai = 0.
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From (3.3), it is straightforward to show that

var
{∑

aiX(ti)
}
= −

∑
aiaj𝛾(ti − tj) ≥ 0 (3.4)

for all increments; see Exercise 3.2. In Section 3.4, increments of higher order k > 0
will be introduced.

Let 𝜓(s) denote a continuous function of s ∈ ℝd, assumed for simplicity to have
compact support, and suppose it is an increment function, i.e. ∫ 𝜓(s) ds = 0. Recall
that a function 𝜑(t), t ∈ ℝd, has compact support if there is a constant C (depend-
ing on 𝜑) such that 𝜑(t) = 0 for all |t| ≥ C. A continuous version of (3.4) can be
formulated for all increment functions

var
{
∫

X(s)𝜓(s) ds
}

= −
∫
𝜓(s)𝜓(t)𝛾(s − t) ds dt. (3.5)

A function −𝛾(h) with the nonnegativity property (3.4) for all increments (or
equivalently (3.5) for all increment functions) is said to be conditionally positive
semidefinite of order k = 0; if (3.4) is strictly positive whenever the {ai} are not all
0, and the {ti}) are distinct sites, then −𝛾(h) is called conditionally positive definite.
The following theorem (Matheron, 1971, pp. 56–57) demonstrates the usefulness
of this concept.

Theorem 3.2.1 A continuous even function 𝛾(h), h ∈ ℝd
, with 𝛾(0) = 0 rep-

resents the semivariogram of an intrinsic random field if and only if −𝛾(h) is
conditionally positive semidefinite of order k = 0.

Proof: We saw above that if 𝛾(h) is the semivariogram of an intrinsic random field,
then −𝛾(h) is conditionally positive semidefinite. Conversely, suppose −𝛾(h) is
conditionally positive semidefinite, and let us try to construct a process for which
𝛾(h) is the semivariogram. Since the semivariogram only specifies the variance of
the increments of a random field, we are free to specify additionally the behavior
of the random field at a single given site; e.g., we can set X(t0) = 0 at a site t0, so
that var{X(t0)} = 0. Set

𝜎(s, t) = 𝛾(s − t0) + 𝛾(t − t0) − 𝛾(t − s) − 𝛾(t0 − t0). (3.6)

The last term is not needed since 𝛾(t0 − t0) = 𝛾(0) = 0, but has been included to
ensure consistency with similar results for intrinsic random fields of higher order.
Note that 𝜎(t0, t0) = 0. It is not difficult to check that 𝜎(s, t) is positive semidefinite
(Exercise 3.3), and hence from Theorem 2.3.2 it represents the covariance function
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of a (nonstationary) random field, {X(t)}, say. Further, after some simplification,
it can be checked that this random field has semivariogram

1
2
var{X(t + h) − X(t)} = 1

2
{𝜎(t + h, t + h) − 2𝜎(t, t + h) + 𝜎(t, t)}

= 𝛾(h),

as expected. ◽

Next we discuss the regularization of an intrinsic random field {X(t)} with semi-
variogram 𝛾(h), following the construction in Section 2.10. Let 𝜑(s) denote a test
function, which is bounded and has compact support. Define the regularized ver-
sion of X(t) by

X
𝜑
(t) =

∫
X(s) 𝜑(s − t) ds, t ∈ ℝd

. (3.7)

Then {X
𝜑
(t)} is also an intrinsic random field whose semivariogram is easily seen

to be
𝛾
𝜑
(h) = 1

2
var{X

𝜑
(h) − X

𝜑
(0)} = 1

2
var

{
∫

X(s) 𝜓h(s) ds
}
,

where 𝜓h(s) = 𝜑(s − h) − 𝜑(s) is an increment function. Hence, from Eq. (3.5),

𝛾
𝜑
(h) = −1

2 ∫ ∫
𝜓h(s) 𝜓h(t) 𝛾(s − t) ds dt

=
∫ ∫

𝜑(s) 𝜑(t − h) 𝛾(s − t) ds dt −
∫ ∫

𝜑(s) 𝜑(t) 𝛾(s − t) ds dt. (3.8)

Note that the second term here is constant as h varies; its presence ensures
𝛾
𝜑
(0) = 0.
Let {X(t)} be an intrinsic random field. Since the semivariogram just specifies

the variances of the increments of the process, we may replace {X(t)} by {X(t) +
U} for any single random variable U, without affecting 𝛾(h). There are three com-
mon ways to think about this indeterminacy.

(a) Registration. The intrinsic random field {X(t)} can be registered by specifying
its value at a specific site t0, e.g. X(t0) = x, say. The registered random field can
be written as X(t) = x + (X(t) − X(t0)), the sum of a fixed value and a random
increment. Registration removes the indeterminacy in the specification of the
first two moments of {X(t)}. The result is a nonstationary random field with
mean function 𝜇(t) = x + 𝜈(t − t0), where 𝜈(⋅) is given in (3.1) and with the
covariance function 𝜎(s, t) given in (3.6).

(b) Improper marginal distributions. If 𝛾(h) → c < ∞, 0 < c < ∞ as |h|→ ∞, and
𝜈(h) = 0 in (3.1), we may regard {X(t)} as a stationary random field. This inter-
pretation is still available in a limiting sense if 𝛾(h) → ∞ as |h| → ∞, by regard-
ing {X(t)} as an improper stationary random field with an improper marginal
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uniform distribution for X(t) ∈ ℝ at each site t ∈ ℝd. The improper marginal
uniform distribution can also be viewed as a limiting N(0, 𝜎2) distribution as
𝜎

2 → ∞. If a random field model is used as a prior distribution in a Bayesian
analysis, then this approach amounts to the use of an improper prior distribu-
tion. Section 7.12.3 discusses the example of Bayesian kriging.

(c) Restriction to increments. We may limit our interest in the intrinsic random
field {X(t)} to statements about increments of the random field,

∑
aiX(ti)

where
∑

ai = 0. Then the underlying indeterminacy is irrelevant. This point
of view is the most useful way to view intrinsic random fields and is the
approach we shall generally follow. See, e.g., Sections 7.4 and 7.5 on ordinary
and universal kriging (but note the adjective “ordinary” has a different
meaning in kriging than when describing a random field).

For later use, we mention an important property about 𝛾(h). In many formulas,
it is possible to replace 𝛾(h) by 𝛾(h) + c, for any real constant c, without affecting
the validity of the formula. Examples include Eqs. (3.4) and (3.5); see Exercise 3.4.
The reason is that such formulas involve increments, and the constant c disappears
after summing (or integrating) over the coefficients.

Definition 3.2.3 Given a semivariogram 𝛾(h), define the intrinsic covariance
function 𝜎I(h) by

𝜎I(h) = −𝛾(h) + c, (3.9)

where c is an arbitrary real constant.

Thus, 𝜎I(h) is an equivalence class of functions rather than a single function.
The variogram can be recovered from the intrinsic covariance function by 𝛾(h) =
𝜎I(0) − 𝜎I(h), and this formula does not depend on c.

One reason for introducing the intrinsic covariance function is to extend the
quadratic form result in Eq. (2.10), which holds for all sites t1, . . . , tn and all coef-
ficient vectors a. In the intrinsic case, it is necessary to restrict the choice of coef-
ficient vectors to increments.

Theorem 3.2.2 If 𝜎I(h) is the intrinsic covariance function of an intrinsic random
field {X(t) ∶ t ∈ ℝd} of order 0, then 𝜎I(h) is conditionally positive semidefinite of
order 0. That is, for any n ≥ 1, any selection of sites t1, . . . , tn and any increment
vector a (n × 1) of coefficients of order 0, i.e.

∑
ai = 0, the following quadratic form

is nonnegative:
n∑

i,j=1
aiaj𝜎I(ti − tj) ≥ 0. (3.10)
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Proof: This equation is just a restatement of Eq. (3.4), so the proof is obvious. In
particular, the quadratic form does not depend on the choice of c in (3.9). ◽

Another reason for introducing the intrinsic covariance function is that it can
be generalized naturally to higher order intrinsic random fields. In Section 3.4, the
concepts of increments, intrinsic random fields, and conditional positive definite-
ness of order k > 0 are defined and investigated.

Strictly speaking, the increments of this section should be referred to as
zeroth-order increments, i.e. linear combinations of order k = 0. When used
without qualification, these phrases will refer to the simplest case of order k = 0,
as we have done in this section.

3.3 Characterizations of Semivariograms

The class of conditionally positive semidefinite functions can be characterized by
the following theorem (Matheron, 1975, p. 95).

Theorem 3.3.1 Let g(h) be a real-valued continuous symmetric function of
h ∈ ℝd. Then the following conditions are equivalent.

(a) g(h) is conditionally positive semidefinite of order 0.
(b) exp{𝛼 g(h)} is positive semidefinite for all 𝛼 > 0.
(c) g(h) has a spectral representation

g(h) = g(0) +
∫ℝd∖{0}

{cos(hT
𝜔) − 1}F(d𝜔) + 1

2
hTAh, (3.11)

where {|𝜔|2∕(1 + |𝜔|2)}F(d𝜔) is a symmetric integrable measure on ℝd∖{0}, and A
is a d × d positive semidefinite matrix.

Proof: (b) ⇒ (a). If exp{𝛼 g(h)} is positive semidefinite for some 𝛼 > 0, then it is
also conditionally positive semidefinite, hence so is

[exp{𝛼 g(h)} − 1]∕𝛼,

using the definition in (3.4). As this statement remains true for all 𝛼 > 0, taking
the limit as 𝛼 → 0 shows that g(h) is conditionally positive semidefinite.
(a) ⇒ (b). Let g(h) be conditionally positive semidefinite. We saw above (see Eq.

(3.6) with 𝛾(h) = g(0) − g(h)) that 𝜎(s, t) defined by

𝜎(s, t) = g(0) + g(s − t) − g(s) − g(t)

is a positive semidefinite function of two variables. Hence 1 + 𝛼 𝜎(s, t) is pos-
itive semidefinite for 𝛼 > 0. Schur’s theorem tells us that a product of positive
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semidefinite (positive definite) functions is again positive semidefinite (positive
definite); see Section A.3.5. Hence the product,

{1 + 𝛼 𝜎(s, t)∕n}n
,

is positive semidefinite for any fixed 𝛼 > 0. Letting n → ∞ shows that
exp{𝛼 𝜎(s, t)} is positive semidefinite.

Next, for any function f (s) it is straightforward to show that f (s)f (t) is positive
semidefinite in s and t (Exercise 3.6). Letting f (s) = exp{𝛼 g(s) − 1

2
𝛼 g(0)} and

multiplying f (s)f (t) by exp{𝛼 𝜎(s, t)} shows that exp{𝛼 g(s − t)} is a positive
semidefinite function in s and t; that is, exp{𝛼 g(h)} is a positive semidefinite
function of h.
(b) ⇔ (c). The class of continuous functions 𝜅(h) such that 𝜅(0) = 1 and 𝜅(h)𝛼 is

positive semidefinite for all 𝛼 > 0 is precisely the class of characteristic functions of
symmetric infinitely divisible probability distributions onℝd, and such functions are
characterized by the Lévy–Khintchine integral representation for log 𝜅(h) (Feller,
1966, p. 559). In terms of g(h) − g(0) = log 𝜅(h), this representation is the same
as (3.11). ◽

In practice, we are usually only interested in semivariograms 𝛾(h) = g(0) − g(h)
for which A = 0 in (3.11). It can then be shown in this case that 𝛾(h)∕|h|2 → 0
as h → ∞; see Exercise 3.7. Also in practice F(d𝜔) usually has a density,
F(d𝜔) = f (𝜔) d𝜔, which ensures that 𝛾(h) is conditionally positive definite and
not just conditionally positive semidefinite. For an intrinsic process in dimensions
d = 1,2 that is not stationary, the spectral density usually has a nonintegrable sin-
gularity f (𝜔) = O(|𝜔|−2) as 𝜔 → 0. But since 1 − cos(hT

𝜔) = O((hT
𝜔)2) = O(|𝜔|2),

the integrand in (3.11) remains bounded as 𝜔 → 0.
If 𝛾(h) is isotropic depending only on r = |h|, h ∈ ℝd, write 𝛾(h) = 𝛾

#(r) and call
𝛾
#(r) a radial semivariogram. Just as in Section 2.4, we can ask which functions
𝛾
#(r) represent radial semivariogram functions in all dimensions d.

Theorem 3.3.2 A continuous function 𝛾
#(r) with 𝛾

#(0) = 0 represents a radial
semivariogram in all dimensions d if and only if 𝛾#(r) is nonnegative and the
derivative d𝛾#(r1∕2)∕dr is completely monotone in r for r > 0.

Proof: From Theorem 3.2.1, 𝛾#(r) is a radial semivariogram in all dimensions if
and only if exp{−𝛼 𝛾#(r)} is a radial covariance function in all dimensions for all
𝛼 > 0, which by Theorem 2.4.1 is true if and only if exp{−𝛼 𝛾#(r1∕2)} is a com-
pletely monotone function of r, for all 𝛼 > 0. This last property holds if and only
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if exp{−𝛾#(r1∕2)} is the Laplace transform of an infinitely divisible probability dis-
tribution on [0,∞). Such functions are characterized by the fact that 𝛾#(r1∕2) is
a nonnegative function of r with completely monotone derivative (Feller, 1966,
p. 425). ◽

Every radial covariance function in Table 2.1 determines a radial semivariogram
via 𝛾#(r) = 1 − 𝜎#(r). Further, by checking the conditions of the above theorem, we
can immediately read off two new families of radial semivariograms, each valid in
all dimensions:

𝛾
#(r) = cr2𝛼 (power scheme), (3.12)

valid for 0 < 𝛼 ≤ 1, c > 0, and

𝛾
#(r) = c log(1 + 𝛽r2) (shifted logarithmic scheme), (3.13)

valid for c > 0, 𝛽 > 0.
The semivariogram 𝛾

#(r) = c r (𝛼 = 1∕2 in (3.12)) is called the linear scheme. In
d = 1 dimension, it arises as the semivariogram of both Brownian motion and the
Poisson process; see Section 3.2. In dimensions d > 1, it represents the semivari-
ogram of Lévy Brownian motion (see, e.g., Adler, 1981, p. 244).

The semivariogram 𝛾
#(r) = c r2, which arises when 𝛼 = 1 in (3.12), or when

F(d𝜔) = 0 and A is proportional to the identity matrix in (3.11), is rather degener-
ate. It represents the semivariogram of a process with random linear drift

X(t) = tTU, t ∈ ℝd
, (3.14)

where U is a single random vector in ℝd with mean 0 and with variance E{UUT}
proportional to the d-dimensional identity matrix.

The power scheme (3.12), 0 < 𝛼 < 1, forms a subset of the self-similar random
fields. See Section 3.10 for a more extended discussion.

Figure 3.1 illustrates some typical behavior in isotropic semivariograms. The
power schemes 𝛾#(r) ∝ r1∕2 and 𝛾#(r) ∝ r are unbounded as r → ∞ and correspond
to intrinsic random fields. The exponential semivariogram 𝛾

#(r) = 1 − exp(−r) is
bounded as r → ∞ and corresponds a stationary random field. Of course, a sta-
tionary random field is a special case of an intrinsic random field.

Figure 3.2 shows an example of a nugget effect with limr→0𝛾
#(r) > 0. Note there

is a discontinuity in 𝛾#(r) at r = 0 since every radial semivariogram must satisfy
𝛾
#(0) = 0 by definition. The models in this chapter are all assumed to be contin-

uous for all lags. Hence, the presence of a nugget effect is not allowed within
the framework of this chapter and will not be discussed further here. However,
a nugget effect can be very important in practice. In Chapter 5, the presence of a
nugget effect in data is interpreted through the effects of measurement error.
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Figure 3.1 Examples of radial semivariograms: the power schemes 𝛾#(r) ∝ r2𝛼 for
𝛼 = 1∕4, 1∕2 and the exponential scheme 𝛾#(r) = 1 − exp(−r). All the semivariograms
have been scaled to take the same value for r = 2.

0 1 2 3 4 5

0.
0

0.
5

1.
0

1.
5

2.
0

r

R
ad

ia
l s

em
iv

ar
io

gr
am

Linear semivariogram with nugget effect

Figure 3.2 A linear semivariogram with a nugget effect: lim
r→0

𝛾
#(r) = 0.3 > 0.

3.4 Higher Order Intrinsic Random Fields

For k ≥ 0, let k denote the vector space of homogeneous polynomials, as a func-
tion of the site t ∈ ℝd. Similarly, let k denote the vector space of polynomials of
degree ≤ k, so that k = 0 ⊕ · · ·⊕k. In particular, 0 contains the constant
function, 1 contains the homogeneous linear functions of t, and 2 contains the
homogeneous quadratic functions of t.
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A homogeneous polynomial of degree k in ℝd can be written as a linear combi-
nation of monomials of the form

tm = t[1]m[1] · · · t[d]m[d]
, |m| = k, (3.15)

where tm is shorthand for the expansion in (3.15). Here m = (m[1], . . . ,m[d]) is a
multi-index and |m| = m[1] + · · · + m[d]. For later use, it is helpful to set pH(k) =
dim(k) and pF(k) = dim(k). It can be shown that

pH(k) = dim(k) =
(

k + d − 1
k

)
, pF(k) = dim(k) =

(
k + d

k

)
. (3.16)

See Exercise 3.9.

Definition 3.4.1 For any n, a collection of coefficients and sites {(ai, ti)}n
i=1,

where n ≥ 1, is said to be a kth-order increment if
n∑

i=1
aif (ti) = 0, for all f ∈ k.

Similarly, for a random field {X(t)}, the linear combination
∑

aiX(ti) is said to be
a kth-order increment of the random field.

If {(ai, ti)}n
i=1 is a kth-order increment, then so is the shifted increment

{(ai, ti + h)}n
i=1 for any lag h ∈ ℝd. To see why this result is true, consider any

monomial tm with |m| ≤ k. We need to show that the shifted increment vanishes,∑
ai(ti + h)m = 0. To verify this claim, expand out the product and note that each

term is an increment. For example, suppose d = 2, k = 3, and {(ai, ti)}n
i=1 is a

kth-order increment. Let m = (m[1],m[2]) = (2,1) with |m| = 3. Then
∑

ai(ti + h)(2,1) =
∑

ai(ti[1] + h[1])2(ti[2] + h[2])1

=
∑

ai

{
t(2,1)i + 2h[1]t(1,1)i + h[1]2t(0,1)i

+h[2]t(2,0)i + 2h[1]h[2]t(1,0)i + h[1]2h[2]t(0,0)i

}
,

a sum of six increments, each of which is based on a monomial in t of degree ≤ 3.
That is, each of monomials lies in 3 and so each of the increments vanishes.

Definition 3.4.2 A random field {X(t) ∶ t ∈ ℝd} is said to be an intrinsic ran-
dom field of order k if all the kth-order increments

∑
aiX(ti + h) have a mean and

variance that do not depend on h. The name random field with stationary incre-
ments of order k is also used.

The mean and variance of the increment can be written in the form

E
{∑

aiX(ti)
}
=
∑

ai𝜈I(ti) (3.17)
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and

var
{∑

aiX(ti)
}
=

n∑
i,j=1

aiaj𝜎I(ti − tj), (3.18)

where 𝜈I(h) is called the intrinsic mean function and 𝜎I(h) is called the intrinsic
covariance function. It can be shown that the intrinsic mean function can be writ-
ten as a homogeneous polynomial of degree k + 1

𝜈I(t) =
∑

|m|=k+1
𝛽mtm

plus an arbitrary polynomial in t of degree ≤ k. Both the intrinsic mean function
and the intrinsic variance function are best viewed an equivalence classes of func-
tions rather than just single functions. In particular, 𝜈I(t) and 𝜈I(t) + tm, where
|m| ≤ k, define the same mean (3.17) on increments.

Similarly, 𝜎I(h) is defined up to an even polynomial in h (even, without loss
of generality, since covariance functions are always even functions of the lag)
of degree ≤ 2k. That is, 𝜎I(h) and 𝜎I(h) + hm, where hm, where |m| is even, and
|m| ≤ 2k define the same variances on increments. To confirm that there is no
contribution to the variance of an increment from the function hm, expand out

(ti − tj)m = (ti[1] − tj[1])m[1] · · · (ti[d] − tj[d])m[d]

to get a representation
(ti − tj)m =

∑
m′

cm′ tm′

i tm−m′

j (3.19)

for suitable constants cm′ , where the sum is over multi-indices m′ such that 0 ≤

m′[𝓁] ≤ m[𝓁],𝓁 = 1, . . . , d. Hence for each m′, either |m′| ≤ k or |m − m′| ≤ k (or
both). Thus, if 𝜎I(h) is replaced by 𝜎I(h) + hm in (3.18), the contribution of hm to
the incremental variance (3.18) becomes

∑
m′

cm′

∑
i,j

aiajtm′

i tm−m′

j =
∑
m′

cm′

{∑
i

aitm′

i

}{∑
j

ajtm−m′

j

}
.

The bounds on |m′| and |m − m′| imply that for each m′ the sum over i and/or the
sum over j must vanish. Hence, the overall contribution of hm to the incremental
variance is 0.

A function 𝜎(h) for which (3.18) is nonnegative for all kth order increments is
said to be conditionally positive semidefinite of order k. This property is necessary
and sufficient for 𝜎(h) to be a valid intrinsic covariance function. If 𝜎(h) is positive
for nonzero kth order increments, it is said to be conditionally positive definite of
order k. A spectral representation of the intrinsic covariance function is given in
Section 3.8.
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3.5 Registration of Higher Order Intrinsic
Random Fields

Let 𝜈I(t) and 𝜎I(h) denote an intrinsic mean function and an intrinsic variance
function of order k, where k ≥ 0 is specified. These functions specify the means
and variances of the kth-order increments of an intrinsic random field XI(t), say.
The subscript I indicates that these functions are equivalence classes of functions.
In particular, the intrinsic mean function and the intrinsic variance function do
not fully specify the first two moments of the random field, since the means and
variances of nonincrements are not specified.

From this perspective, the intrinsic random field is an equivalence class of ran-
dom fields, where XI(t) is only determined up to a polynomial in t of degree k. This
was one of the approaches taken in Section 3.2 for k = 0.

Another way to think about the random field is to remove the indeterminacy by
fixing its values at p sites, where p = pF(k) denotes the dimension of k in (3.16).
This approach was also considered in the proof of Theorem 3.2.1 but the details
are a bit more involved when k > 0.

Given a basis f1(t), . . . , fp(t) of k, and given p distinct “registration” sites
t∗1 , . . . , t

∗
p , such that the matrix

F = (fij), fij = fi(t∗j )

is nonsingular, it is possible to define a fully specified random field XR(t) that van-
ishes at the registration sites and has the same incremental variances as XI(t).
Then, XR(t) can be regarded as a registered version of the intrinsic random field.

Here are the details. First define a new basis functions g1(t), . . . , gp(t) by

g(t) =
⎡
⎢
⎢⎣

g1(t)
⋮

gp(t)

⎤
⎥
⎥⎦
= F−1f (t) where f (t) =

⎡
⎢
⎢⎣

f1(t)
⋮

fp(t)

⎤
⎥
⎥⎦
.

Collect the new basis functions at the registration sites into a matrix

G =
[
g(t∗1) . . . g(t∗p)

]

and note that G = F−1F = I, i.e., gi(t∗j ) = 1 if i = j and = 0 otherwise.
Also define a vector function

b(s) = (bi(s)), bi(s) = 𝜎I(s − t∗i ), i = 1, . . . , p,

of intrinsic covariances between a site s and the registration sites, and let

K = (kij), kij = 𝜎I(t∗i − t∗j ), i, j = 1, . . . , p,

denote the intrinsic covariance matrix at the registration sites.
Define the registered process by

XR(t) = XI(t) −
p∑

i=1
gi(t)XI(t∗i ). (3.20)
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It can be checked that the registered random field vanishes at the registration
sites, XR(t∗j ) = 0, j = 1, . . . , p,. Further, for each t, XR(t) is an increment of the XI
process so that it has a well-defined variance. It follows that the registered random
field has a fully specified covariance function

𝜎R(s, t) = 𝜎I(s, t) − b(s)Tg(t) − b(t)Tg(s) + g(s)TKg(t) (3.21)

(Exercise 3.10).

3.6 Generalized Random Fields

If X(t) is an ordinary random field, t ∈ ℝd, then we saw in Section 2.10 how to
average X(t) with respect to a test function 𝜑 to construct the regularized process

X
𝜑
(t) =

∫
X(s)𝜑(s − t) ds =

∫
X(s)𝜑(t)(s) ds, (3.22)

where 𝜑(t)(s) = 𝜑(s − t) denotes a shifted version of the test function.
It is also useful to use the notation

X(𝜑) =
∫

X(s)𝜑(s) ds = X
𝜑
(0)

to give greater prominence to the test function. Then, X can be regarded either as
a site-indexed random field {X(t) ∶ t ∈ ℝd} or as a function-indexed random field
{X(𝜑)} with respect to some suitable collection of test functions 𝜑.

The class of function-indexed random fields is wider than the class of
site-indexed random fields. Such random fields are called generalized random
fields because their realizations are often generalized functions in the sense
of Schwarz, rather than ordinary functions. For a detailed discussion of such
generalized functions, see Gel’fand and Shilov (1964, 1968). The purpose of this
section is to give a brief description of the properties of generalized random fields.

First, we need a suitable class of test functions. A convenient class of functions
to introduce the subject is given by

 = {𝜑 ∶ 𝜑 is infinitely differentiable and has compact support}.

Less restrictive conditions on 𝜑 will be given later.
If m = (m[1], . . . ,m[d]) is a multi-index of nonnegative integers, denote the mth

partial derivative of 𝜑 by

Dm
𝜑(t) = 𝜕

m[1]+···+m[d]
𝜑(t)∕𝜕t[1]m[1] · · · 𝜕t[d]m[d]

.

Say that a sequence {𝜑n(t)} converges to 𝜑(t) in  as n → ∞ if for each m,
Dm

𝜑n(t) → Dm
𝜑(t) uniformly over t.

Definition 3.6.1 A generalized function fG is a collection of real numbers
{fG(𝜑) ∶ 𝜑 ∈ } with the following properties:
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(a) Linearity. For 𝛼1, 𝛼2 ∈ ℝ, 𝜑1, 𝜑2 ∈ ,

fG(𝛼1𝜑1 + 𝛼2𝜑2) = 𝛼1fG(𝜑1) + 𝛼2fG(𝜑2).

(b) Continuity. If the sequence {𝜑n(t)} converges to 𝜑(t) in , then

fG(𝜑n) → fG(𝜑). ◽

Strictly speaking, we should write a generalized function in the form {fG(𝜑) ∶
𝜑 ∈ }, not {fG(t) ∶ t ∈ ℝd}, because the values fG(t) may not even make sense.
However, we shall also use the latter notation when convenient to emphasize the
analogy with ordinary functions.

We shall often use the subscript “G” to distinguish generalized functions from
ordinary functions. Of course, any locally integrable ordinary function can also be
thought of as a generalized function, but there are many other examples as well. As
an exception to this notational rule, we shall write the Dirac delta function centered
at h ∈ ℝd as 𝛿h(t). This is the best-known generalized function, defined through
its effect on a test function by

𝛿h(𝜑) = 𝜑(h), (3.23)

especially for h = 0. Loosely speaking,𝜑(h) = ∫ 𝛿h(t) 𝜑(t) dt, where the delta func-
tion is visualized as a normal density centered at h with an infinitesimally small
variance.

An ordinary random field {X(t) ∶ t ∈ ℝd} can be regarded as a random ordi-
nary function. Similarly, we can define a generalized random field {XG(t) ∶ t ∈
ℝd} to be a random generalized function. In the study of ordinary random fields,
we limited our attention to random fields for which 𝜇(t) = E{X(t)} and 𝜎(s, t) =
cov{X(s),X(t)} are finite and continuous. Similarly, we shall limit our attention to
generalized random fields for which the mean functional

𝜇G(𝜑) = E{X(𝜑)} (3.24)

and the covariance functional

𝜎G(𝜑1, 𝜑2) = E{[XG(𝜑1) − 𝜇G(𝜑1)][XG(𝜑2) − 𝜇G(𝜑2)]} (3.25)

are finite and continuous on .
Note that a knowledge of the variance functional 𝜎G(𝜑,𝜑) for all 𝜑 ∈  deter-

mines the covariance functional 𝜎G(𝜑1, 𝜑2) for all 𝜑1, 𝜑2 ∈  from the identity

𝜎G(𝜑1 + 𝜑2, 𝜑1 + 𝜑2) = 𝜎G(𝜑1, 𝜑1) + 2𝜎G(𝜑1, 𝜑2) + 𝜎G(𝜑2, 𝜑2). (3.26)

A generalized random field is said to be stationary if

𝜇G(𝜑) = 𝜇(𝜑(h)),

𝜎G(𝜑1, 𝜑2) = 𝜎G(𝜑1(h), 𝜑2(h)), for all h ∈ ℝd
,
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where 𝜑(h)(t) = 𝜑(t − h) denotes the 𝜑 function shifted by h. It can be shown that
for a generalized stationary random field, the mean functional takes the form
𝜇G(𝜑) = 𝜇 ∫ 𝜑(t) dt for some scalar 𝜇 ∈ ℝ, and that the covariance functional
𝜎G(𝜑1, 𝜑2) depends only on the convolution

𝜑1 ∗ 𝜑̌2(h) = ∫
𝜑1(h + s) 𝜑2(s) ds, (3.27)

where
𝜑̌(s) = 𝜑(−s)

is the same as 𝜑, but with the sign of the argument reversed (Gel’fand and
Vilenkin, 1964, p. 167). In this case, we shall write 𝜎G(𝜑1, 𝜑2) as 𝜎G(𝜑1 ∗ 𝜑̌2), a
generalized function of a single argument.

A generalized random field is said to be strictly stationary if for every 𝜑 ∈ , the
random variables X(𝜑) and X(𝜑(h)) have the same distribution for all h ∈ ℝd.

Next, we turn our attention to some properties of 𝜎G(𝜑1, 𝜑2) for a generalized,
possibly nonstationary, random field.

(a) Bilinearity and symmetry. For all 𝜑,𝜑1, 𝜑2 ∈  and 𝛼1, 𝛼2 ∈ ℝ,

𝜎G(𝛼1𝜑1 + 𝛼2𝜑2, 𝜑) = 𝜎G(𝜑, 𝛼1𝜑1 + 𝛼2𝜑2)

= 𝛼1𝜎G(𝜑1, 𝜑) + 𝛼2𝜎G(𝜑2, 𝜑).

(b) Positive semidefiniteness. For all 𝜑 ∈ ,

𝜎G(𝜑,𝜑) = var{X(𝜑)} ≥ 0.

(c) Continuity. If 𝜑1,n → 𝜑1, and 𝜑2,n → 𝜑2 in , then

𝜎G(𝜑1,n, 𝜑2,n) → 𝜎G(𝜑1, 𝜑2).

The following theorem shows that these properties characterize the class of gen-
eralized covariance functions.

Theorem 3.6.1 Let 𝜎G(𝜑1, 𝜑2) be a symmetric bilinear continuous generalized
function of 𝜑1, 𝜑2 ∈ . Then, 𝜎G(𝜑1, 𝜑2) represents the covariance functional of a
generalized random field if and only if 𝜎G(𝜑1, 𝜑2) is positive semidefinite.

The proof of this theorem requires techniques far beyond the scope of this book;
see Gel’fand and Vilenkin (1964, p. 252).

In applications, two special forms of 𝜎G are important:

𝜎G(𝜑1, 𝜑2) = ∫
𝜑1(s)𝜑2(t)f (s, t) ds dt, (3.28)
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𝜎G(𝜑1, 𝜑2) = ∫
𝜑1(s)𝜑2(t)𝛿0(t − s) ds dt (white noise)

=
∫
𝜑1(t)𝜑2(t) dt = (𝜑1 ∗ 𝜑̌2)(0). (3.29)

In (3.28), f (s, t) is a locally integrable function, symmetric in s and t, but
often with a singularity on the diagonal, f (s, t) → ∞ as s − t → 0. Of course, f
is required to behave so that 𝜎G is positive semidefinite. If f (t, t + h) = f (h), say,
does not depend on t, then the generalized random field is stationary, and (3.28)
reduces to

𝜎G(𝜑1, 𝜑2) = ∫
𝜑1(s)𝜑2(s + h)f (h) ds dh

=
∫

(𝜑1 ∗ 𝜑̌2)(h) f (h) dh = 𝜎G(𝜑1 ∗ 𝜑̌2), say.

Formula (3.29), known as the covariance functional of white noise, arises for
two important strictly stationary generalized random fields: Gaussian white noise
and the Poisson point process. Gaussian white noise is defined by the property that
for 𝜑 ∈ , XG(𝜑) has a normal distribution with mean 0 and variance ∫ 𝜑2(t) dt.
Let 𝜑(t) = I[t ∈ D] denote the indicator function for a bounded open set D of vol-
ume |D|. The Poisson point process is defined by the property that XG(𝜑) has a
Poisson distribution with parameter |D|. Although 𝜑(t) = I[t ∈ D] does not lie in
, the random functional XG(𝜑) is still well defined; see Section 3.8. Realizations
from the Poisson point process can be viewed as a random collection of Dirac delta
functions.

Example 3.1 A nice example of generalized random field is given by the random
spectral measures A(d𝜔) and B(d𝜔) of Section 2.14. These are independent random
Gaussian measures, satisfying A(d𝜔) = A(−d𝜔) and B(d𝜔) = −B(−d𝜔). They have
mean 0 and generalized variance functions

var
{
∫
𝜒(𝜔) A(d𝜔)

}
=
∫

{(𝜒(𝜔) + 𝜒(−𝜔))∕2}2 f (𝜔) d𝜔

var
{
∫
𝛾(𝜔) B(d𝜔)

}
=
∫

{(𝛾(𝜔) − 𝛾(−𝜔))∕2}2 f (𝜔) d𝜔

in terms of the underlying spectral density f (𝜔), and suitable test functions, 𝜒 and
𝛾 . If the underlying random field X(t) is an ordinary stationary random field, then
f (𝜔) is integrable, and the only requirement for this variance to be well defined is
that the test functions 𝜒(𝜔) and 𝛾(𝜔) be bounded and measurable. In particular,
setting 𝜒(𝜔) = cos(tT

𝜔) and 𝛾(𝜔) = sin(tT
𝜔) yields the spectral representation in

Eq. (2.79). Further discussion of this representation for generalized and intrinsic
random fields is given in Section 3.8. ◽
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3.7 Generalized Intrinsic Random Fields of Intrinsic
Order k ≥ 0

It is possible for a random field to be both generalized and intrinsic. For integer
k ≥ −1, say that a test function 𝜓(t) is a kth-order increment function if

∫
|t|k𝜓(t) dt <∞ and

∫
tm
𝜓(t) dt = 0 for all |m| ≤ k. (3.30)

Here m = (m[1], . . . ,m[d]) is a multi-index with m[𝓁] ≥ 0, |m| = ∑
m[𝓁], and

tm = t[1]m[1] · · · t[d]m[d]. If k = −1, no constraint is imposed on 𝜓 ; if k = 0, there is
just a single constraint ∫ 𝜓(t) dt = 0.

Let
k = {𝜓 ∈  ∶ 𝜓 is a kth-order increment function},

with −1 = . Thus, k consists of the functions in  that are kth-order incre-
ments.

Definition 3.7.1 A generalized random field XIG(⋅) is said to be intrinsic of order
k if the mean and covariance functionals in (3.24)–(3.25) satisfy

𝜇IG(𝜓) = 𝜇IG(𝜓(h)), 𝜎IG(𝜓,𝜓) = 𝜎IG(𝜓(h), 𝜓(h)) (3.31)

for all kth-order increment functions 𝜓(t) ∈ k, where 𝜓(h)(t) = 𝜓(t − h).

That is, the mean and covariance functions are stationary when restricted to
kth-order increment functions. By convention, we regard a generalized stationary
random field as a generalized intrinsic random field of order k = −1. Just as for
ordinary intrinsic random fields, the mean functional 𝜇IG(t) can be regarded as an
equivalence class of polynomials in t of degree k + 1, where only the homogeneous
terms of degree k + 1 are identifiable. Similarly, 𝜎IG(𝜓,𝜓) can be regarded as a
generalized function of a single functional argument (𝜓 ∗ 𝜓̌)(h), where 𝜎IG(𝜓 ∗ 𝜓̌)
is determined only up to an even-order polynomial in h of degree 2k.

3.8 Spectral Theory for Intrinsic and Generalized
Processes

In Section 2.3, we showed that the covariance function of an ordinary stationary
random field can be represented as the Fourier transform of a positive, symmetric,
integrable measure F(d𝜔), 𝜔 ∈ ℝd,

𝜎(h) =
∫ℝd

eihT
𝜔F(d𝜔) =

∫
cos(hT

𝜔)F(d𝜔). (3.32)
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If 𝜑 ∈  has the Fourier transform

𝜑̃(𝜔) =
∫

eihT
𝜔
𝜑(h)dh,

then integrating out either 𝜔 or h, respectively, in the joint integral

∫
eihT

𝜔
𝜑(h) dh F(d𝜔),

yields the Parseval formula

∫
𝜎(h)𝜑(h)dh =

∫
𝜑̃(𝜔)F(d𝜔), (3.33)

where both integrals are over ℝd.
If 𝜑(h) is replaced by (𝜑 ∗ 𝜑̌)(h), with the Fourier transform |𝜑̃(𝜔)|2, then (3.33)

becomes

∫
𝜎(h)(𝜑 ∗ 𝜑̌)(h)dh =

∫
|𝜑̃(𝜔)|2F(d𝜔). (3.34)

Further, it can be shown that the validity of (3.34) for all test functions 𝜑 ∈ 

implies the validity of (3.32).
In the setting of generalized stationary random fields, a direct spectral represen-

tation such as (3.32) is no longer available. Instead, it is necessary to work with the
Parseval relation (3.34). Further, if attention is restricted to increment functions,
the spectral representation can be extended to generalized intrinsic random fields
as well. The order satisfies k ≥ −1, the case k = −1 being the stationary case. To
state the main theorem, some notation is defined first.

Given k ≥ 0 and a smooth function𝜑, it is convenient to define a vector of partial
derivatives ∇{k}

𝜑(t) by

∇{k}
𝜑(t) = {Dm

𝜑(t) ∶ |m| = k}, (3.35)

the set of the mixed partial derivatives of𝜑 at t of order k, written in some specified
order. This vector has length

pH(k) =
(

d + k − 1
k

)
,

which is the same as the dimension of k in (3.16). See, e.g., Feller (1968, p. 38) or
Exercise 3.9. In particular,∇{0}

𝜑(t) = 𝜑(t) is a scalar function, ∇{1}
𝜑(t) is the usual

gradient vector of dimension d, and ∇{2}
𝜑(t) has d(d + 1)∕2 distinct components

𝜕
2
𝜑(t)∕𝜕ti𝜕tj, 1 ≤ i ≤ j ≤ d.
The following result generalizes Bochner’s Theorem 2.3.3 for ordinary station-

ary random fields in Chapter 2. In this theorem, a superscript ∗ denotes the com-
plex conjugate transpose of a vector.

Theorem 3.8.1 (Gel’fand and Vilenkin, 1964, p. 188) Let 𝜎IG(𝜑 ∗ 𝜑̌) denote
the covariance functional of a generalized intrinsic random field, with order k ≥ −1.
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Then there is a unique positive, symmetric measure F(d𝜔) on ℝd∖{0} and a unique
positive semidefinite array of real numbers A = {a(m1,m2) ∶ |m1| = |m2| = k + 1}
such that

𝜎IG(𝜑 ∗ 𝜑̌) =
∫ℝd∖{0}

|𝜑̃(𝜔)|2 F(d𝜔) + [∇{k+1}
𝜑̃(0)]∗A[∇{k+1}

𝜑̃(0)] (3.36)

for all 𝜑 ∈ k, where for some smallest integer q ≥ 0, F satisfies the integrability
condition

∫

|𝜔|2k+2

(1 + |𝜔|2)k+q+1
F(d𝜔) < ∞. (3.37)

Conversely, given a nonnegative symmetric measure F on ℝd∖{0} satisfying (3.37)
for some k ≥ −1 and q ≥ 0, and given a positive semidefinite matrix A, then (3.36)
defines the covariance functional of a generalized intrinsic random field of order k
and regularity order q.

Remarks Theorem 3.8.1 unifies a number of special cases. Therefore, it is helpful
to look at various aspects of the representation (3.36) in more detail.

1. The integrability condition in (3.37) can be split into two parts, for small
and large 𝜔, respectively. Since 1 ≤ 1 + |𝜔|2 ≤ 2 for |𝜔| ≤ 1 and 1∕2 ≤ |𝜔|2∕
(1 + 𝜔|2) ≤ 1 for |𝜔| ≥ 1, this condition is equivalent to

∫|𝜔|≤1
|𝜔|2k+2F(d𝜔) < ∞ and

∫|𝜔|≥1
|𝜔|−2qF(d𝜔) < ∞. (3.38)

Thus if k ≥ 0, F is allowed to have a singularity near 0, and if q ≥ 1, F is allowed
to have a singularity near ∞.

2. Next we need some background facts on Fourier transforms. Recall  denotes
the set of infinitely differentiable functions onℝd of compact support. Another
useful class of functions is  , the set of infinity differentiable functions on ℝd

whose derivatives of all orders are rapidly vanishing at ∞; that is, 𝜑(u) ∈ 

means that
|𝜔|nDm

𝜑̃(𝜔) → 0 as |𝜔|→ ∞

for all integers n ≥ 0 and all orders m = (m[1], . . . ,m[d]) of derivatives.
A basic result from Fourier analysis states that the Fourier transform of  is
equal to  itself. In particular, if 𝜑 ∈ k ⊂  ⊂  , then 𝜑̃ ∈  , so that 𝜑̃ is
rapidly decreasing at ∞. Hence, if F satisfies (3.37), or equivalently (3.38), the
second part of the integral in (3.36) over |𝜔| ≥ 1 is finite, whatever the value
of q ≥ 0.

3. To ensure that the part of the integral over |𝜔| ≤ 1 converges if F satisfies
(3.37), note that 𝜑 ∈ k ensures that 𝜑̃(m)(0) = 0 for |m| ≤ k. Hence, a Tay-
lor series expansion yields 𝜑̃(m)(𝜔) = O(|𝜔|k) as𝜔→ 0, which ensures that the
integral in (3.36) over |𝜔| ≤ 1 converges.
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4. Now that the representation integral (3.36) has been established for all test
functions 𝜑 ∈ k, it is useful to relax the conditions on the test functions.
The key requirement is that the integral (3.36) should be finite. Here are some
examples that depend on the behavior of the spectral measure F.
● If F is integrable, then it is sufficient to assume merely that 𝜑 is integrable.

See Section 2.10 where this representation was used to regularize a station-
ary random field.

● If F(d𝜔) = f (𝜔)d𝜔 has a density and if the density is bounded f (𝜔) ≤ C, then
it is sufficient to assume 𝜑 is square-integrable. Since the Fourier transform
maps square-integrable functions to themselves, this condition ensures that
∫ |𝜑̃(𝜔)|2d𝜔 < ∞ and hence that the integral in (3.36) is finite. The simplest
example for the spectral density is white noise for which f (𝜔) = c > 0. A
simple example for a test function is an indicator function on a bounded set
such as the interior of a cube or sphere.

5. If q = 0 in (3.37), the resulting random field is ordinary rather than general-
ized. Further, for q ≥ 1, it can be shown that

𝜎G(h) = (1 − 𝛥)qS(h), (3.39)

where S(h) is an ordinary positive definite function and 𝛥 = Σ𝜕2∕𝜕h[𝓁]2 is the
Laplace operator (Gel’fand and Vilenkin, 1964, p. 165).

6. The most important choice for k is k = −1, corresponding to a stationary ran-
dom field, which is ordinary if q = 0 and generalized if q ≥ 0. Then, the second
part of (3.36) reduces to a simple term a|𝜑̃(0)|2, which can be absorbed within
the integral if desired. In particular, if q = 0 as well, the representation (3.36)
reduces to (3.34).

7. The case k = 0 corresponds to an intrinsic random field (of order 0). The sec-
ond part of (3.36) reduces to [∇𝜑̃(0)]∗A[∇𝜑̃(0)], where ∇ is the gradient
operator and A is a positive semidefinite d × d matrix. In this case, 𝜎IG(⋅)
is determined only up to an additive constant. If q = 0 as well, a natural
choice for this constant leads to the semivariogram of Section 3.2, and in
this case a direct spectral representation was given in Theorem 3.3.1(c). In
particular, the function g(h) in (3.11) can be identified with 𝜎IG(⋅) in (3.36),
which is an ordinary function in this case. Both functions are determined
only up to an additive constant by the spectral measure F(d𝜔) and the
matrix A. The function g(⋅) determines a semivariogram function by setting
𝛾(h) = g(0) − g(h); effectively, the arbitrary constant in g(⋅) is chosen to ensure
that the semivariogram vanishes at lag h = 0, i.e. 𝛾(0) = 0.

8. For k ≥ 0, 𝜎IG(t) is determined by (3.36) only up to an even polynomial in t of
order 2k.

9. It is interesting to contrast the roles of k and q in (3.37). As k increases, more
low frequencies are allowed to enter the spectral measure. The effect of this
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is to limit identifiable aspects of the random field to increment functions of
order k. On the other hand, as q increases more high-frequency components
are allowed, which means that more regularization is needed in order to make
observations on the random field.

10. For statistical applications, we are mainly interested in special cases of (3.36).
First, we shall generally take

A = 0. (3.40)

To the extent that A can be identified from a single realization of a random
field, it is usually more helpful to treat it as a mean (k = −1) or a homogeneous
polynomial trend of degree k + 1 (k ≥ 0) rather than as part of the covariance
function.

11. When q = 0, k ≥ 0, the covariance function 𝜎(t) can be given a direct spectral
representation by slightly modifying (3.36) to

𝜎(h) = ∫ℝd∖{0}

{
cos(hT

𝜔) −

[
k∑

j=1
(−1)j(hT

𝜔)2j∕(2j)!

]
I[|hT

𝜔| < c]

}
F(d𝜔)

+h{k+1}TAh{k+1}
.

(3.41)
Here c > 0 and its arbitrariness reflects the fact that 𝜎(h) is determined only up
to an even polynomial in h of degree 2k. Also, note that the quantity in curly
brackets is bounded by |𝜔|2k+2 as 𝜔→ 0 for each h, so that the integral is well
defined. Finally, h{k+1} denotes the vector of the (k + 1)th-order monomials
h[1]m[1] · · · h[d]m[d] for |m| = ∑

m[𝓁] = k + 1, arranged in the same order as
for ∇{k+1}

𝜑(t) in (3.35). When k = 0, there is no need to truncate the Taylor
series expansion of cos(hT

𝜔) and the representation (3.11) is obtained.

3.9 Regularization for Intrinsic and Generalized
Processes

Let X(t) denote a random field of intrinsic order k ≥ −1 and regularity order q ≥ 0.
Let 𝜑 be a “suitable” test function and define a regularized random field X

𝜑
(t) as

in Eq. (3.22). If X(t) has spectral density f (𝜔), then X
𝜑
(t) has spectral density

f
𝜑
(𝜔) = |𝜑̃(𝜔)|2f (𝜔).

Regularization is even more important for intrinsic and/or generalized random
fields than it is for ordinary stationary random fields because the individual values
of X(t) are well defined only if k = −1 and q = 0.

The character of the regularized random field depends on the values of k and q
and on the behavior of 𝜑. Let k

𝜑
and q

𝜑
denote the intrinsic and regularity orders

for the regularized random field. Here are some examples.



�

� �

�

96 3 Intrinsic and Generalized Random Fields

(a) A minimal requirement on𝜑 is that 𝜑̃ be a bounded continuous function. This
is guaranteed if 𝜑 ∈ L1; we can also extend the notion of a test function to a
signed finite measure. In this case, k

𝜑
≤ k and q

𝜑
≤ q. That is, regularization

does not increase the intrinsic or regularity orders.
(b) Stationary. Suppose𝜑 satisfies (a), and, in addition, has vanishing moments up

to order k. Then the resulting random field is stationary (k
𝜑
= −1), but possibly

still generalized.
(c) Ordinary. Suppose the test function 𝜑 (not a measure here) is smooth enough

to ensure that 𝜑̃(𝜔) decays to 0 quickly enough as |𝜔|→ ∞ that f
𝜑
(𝜔) is inte-

grable over |𝜔| ≥ 1. In this case, the regularized random field will be ordinary
(q
𝜑
= 0), but may still be intrinsic. A simple condition on𝜑, which is sufficient

for any value of q, is that 𝜑 ∈  .
However, it is also important to allow less restrictive conditions on 𝜑. Suppose
the spectral density is bounded, f (𝜔) ≤ c, for |𝜔| ≥ 1 and suppose𝜑 ∈ L1 ∩ L2.
Then ∫ℝd |𝜑̃|2 <∞, and so f

𝜑
is integrable over |𝜔| ≥ 1. Important examples of

such functions 𝜑 are indicator functions on open sets with compact closure in
ℝd.

(d) Stationary and ordinary. If 𝜑 satisfies (a), (b), and (c), then the regularized
process will be both stationary and ordinary.

3.10 Self-Similarity

A fundamental property that can be possessed by a random field {X(t) ∶ t ∈ ℝd}
is self-similarity. In a certain sense, the random field is invariant if the domain
ℝd is rescaled. Many of the core models in the theory of Gaussian random fields
possess the property of self-similarity. However, there is a complication because
a self-similar Gaussian random field cannot be both ordinary and stationary.
Instead, it must be either generalized or intrinsic (or both). The purpose of this
section is give a detailed description of self-similarity for Gaussian random fields.

Definition 3.10.1 Let {XIG(t)} be a generalized intrinsic random field of order
k ≥ −1. If for some real number 𝛼, the random field {a−𝛼XIG(at) ∶ t ∈ ℝd} has the
same covariance structure for all a > 0, then {XIG(t)} is said to be a self-similar
random field of index 𝛼.

This property says that with appropriate scaling, the covariance structure of the
random field is invariant under dilations of the sites. If {XIG(t)} has covariance
function 𝜎IG(h) corresponding to a spectral density f (𝜔), then {a−𝛼XIG(at)} has
covariance function a−2𝛼

𝜎IG(ah) corresponding to a spectral density a−d−2𝛼f (𝜔∕a).
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Hence, XIG(t) is self-similar of index 𝛼 if and only if 𝜎IG(h) = a−2𝛼
𝜎IG(ah) or

equivalently
f (𝜔) = a−d−2𝛼f (𝜔∕a), for all a > 0. (3.42)

It turns out that no ordinary stationary random field with finite second moments
can be self-similar. Any self-similar random field must be generalized and/or have
intrinsic order k ≥ 0. In order to characterize self-similar random fields more com-
pletely, we limit our attention to isotropic random fields so that 𝜎IG(h) = 𝜎

#
IG(r), say,

and f (𝜔) = f #(𝜌), say, depend only on |h| = r and |𝜔| = 𝜌, respectively.
Suppose that for some real 𝛼, the spectral density satisfies the isotropic version

of (3.42)
f #(𝜌) = a−d−2𝛼f #(𝜌∕a). (3.43)

Setting 𝜌 = 1 in (3.43) yields f #(1∕a) = ad+2𝛼f #(1); that is, after changing notation,
we have the following result.

Theorem 3.10.1 Let {XIG(t)} be an isotropic generalized intrinsic random field of
order k ≥ −1, and suppose it is self-similar of index 𝛼 ∈ ℝ. Then the spectral density
must be proportional to

f #
𝛼,d(𝜌) = (2𝜋)−d

𝜌
−d−2𝛼

. (3.44)

Thus, up to a multiplicative constant, the spectral density is uniquely deter-
mined by the index of self-similarity. After integration over the unit sphere
in ℝd, the differential d𝜔 becomes 𝜋d 𝜌

d−1d𝜌 in polar coordinates, where
𝜋d = 2𝜋d∕2∕Γ(d∕2) is the surface area of the unit sphere in ℝd (Section 2.4). Hence
(3.44) is integrable near 𝜌 = 0 only if 𝛼 < 0 and integrable near 𝜌 = ∞ only if
𝛼 > 0. Thus, in view of the spectral representation theorem of Section 3.8, {XIG(t)}
will be an ordinary intrinsic random field of order k = [𝛼] ≥ 0 if 𝛼 > 0 and will
be a generalized stationary random field if 𝛼 < 0. If 𝛼 = 0, the random field is
generalized and intrinsic of order k = 0.

Taking the “formal” Fourier transform (3.44) yields the following “formal”
radial covariance function

𝜎
#
𝛼
(r) “ = ” c

𝛼,dr2𝛼
, (3.45)

where 𝜎#IG(r) is written as 𝜎#
𝛼
(r) here to emphasize the dependence on 𝛼, and

c
𝛼,d = 2−2𝛼−d

𝜋
−d∕2Γ(−𝛼)∕Γ

(
𝛼 + 1

2
d
)
. (3.46)

The adjective “formal” is used because the interpretation of (3.45) needs care.
Here are the key points and special cases. The details are explored in Exercises 3.15
and 3.16. See Table 3.1 for some particular cases.
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Table 3.1 Self-similar random fields with spectral density f #(𝜌) = 𝜌
−d−2𝛼 : some

particular cases

Index 𝛼 Covariance functional Normalization Type of process

𝜎
#
𝛼
(r) constant c and name

0 < 𝛼 < 1 c r2𝛼 c = c
𝛼,d < 0 Ordinary intrinsic

fractional Brownian
motion

𝛼 = 0 c log r c = c′0,d Generalized intrinsic
= −21−dπ−d∕2∕Γ(d∕2) Logarithmic or de

Wijsian random field
− d

2
< 𝛼 < 0 c r2𝛼 c = c

𝛼,d > 0 Generalized stationary
fractional white noise

𝛼 = − d
2

c𝛿#0 (r) c = c∗0,d = 1 Generalized stationary
white noise

For 0 ≤ 𝛼 < 1, 𝜎#
𝛼
(r) is defined only up to a constant term. The constants c

𝛼,d, c′k,d, and c∗j,d are
given in (3.46), (3.48), and (3.49), respectively.

1. If for some integer k ≥ 0, k ≤ 𝛼 < k + 1, then 𝜎#
𝛼
(r) is intrinsic of order k and

is defined only up to an even polynomial in r of degree 2k.
2. If 𝛼 = k ≥ 0 is an integer, then it is still the case that 𝜎#

𝛼
(r) is intrinsic of order

k and is defined only up to an even polynomial in r of degree 2k. However,
c
𝛼,d = ∞ so that the formula for 𝜎#

𝛼
(r) must be replaced by the limiting value

𝜎
#
𝛼
(r) = lim

𝜀→0
2𝜀c

𝛼+𝜀,d

(
r2k+2𝜀 − r2k

2𝜀

)
= c′k,dr2k log r, (3.47)

where

c′k,d = 21−2k−d(−1)k−1
𝜋
−d∕2∕{Γ(k + d∕2)k!}. (3.48)

3. Note the normalizing constants alternate in sign on successive intervals
between the nonnegative integers. In particular, c

𝛼,d < 0 for 0 < 𝛼 < 1, c
𝛼,d > 0

for 1 < 𝛼 < 2, etc. Similarly, at the integers, c′0,d < 0, c′1,d > 0, etc.
4. For 𝛼 ≤ 0, 𝜎#

𝛼
(r) is a generalized covariance function, and it is useful to highlight

several possibilities.
(a) If −d∕2 < 𝛼 < 0, then the generalized covariance function 𝜎

#
𝛼
(r) can be

identified with the ordinary function c
𝛼,dr2𝛼 , which is integrable over the

unit ball in ℝd
, |h| ≤ 1, where |h| = r.
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(b) However, if 𝛼 ≤ −d∕2, then formula (3.45) for 𝜎#
𝛼
(r) is incomplete: 𝜎#

𝛼
(r) =

c
𝛼,dr2𝛼 for r > 0, but the support of the generalized covariance function also

includes the origin.
(c) In particular, if 𝛼 = −d∕2 − j for some integer j ≥ 0, then c

𝛼,d = 0 and 𝜎#
𝛼
(r)

reduces to the Dirac delta function and its derivatives

𝜎
#
𝛼
(r) = c∗j,d𝛿

(2j)
0 (h), where c∗j,d = (−1)j

. (3.49)

Here r = |h|, and 𝛿(2j)
0 (h) = (𝛥)j

𝛿0(h), the jth power of the Laplacian opera-
tor 𝛥 = 𝜕

2∕𝜕h[1]2 + · · · + 𝜕2∕𝜕h[d]2, applied to the Dirac delta function.
5. The self-similar covariance functions for different indices are related

by −𝛥𝜎#
𝛼
(r) = 𝜎

#
𝛼−1(r) since the spectral densities are related by f

𝛼,d(𝜔) =
|𝜔|2f

𝛼+1,d(𝜔).

A number of random fields in this list deserve special mention. The case 𝛼 = 1
2

is known as Lévy Brownian motion (Adler, 1981, p. 244), an ordinary intrinsic
random field with semivariogram 𝛾

#(r) ∝ r. This random field is best known in
d = 1 dimension where it is just called Brownian motion or the Wiener process
(Section 3.2), and it forms the foundation of much of stochastic analysis. The gen-
eralization to 0 < 𝛼 < 1 is known as fractional Brownian motion. The semivari-
ogram 𝛾

#(r) ∝ r2𝛼
, 0 < 𝛼 < 1 was mentioned earlier in (3.12).

The following notation will be useful in Chapter 7. For 𝛼 > 0, let

IRFd(𝛼, k) (3.50)

denote the self-similar Gaussian random field of index 𝛼 > 0 in d dimensions with
drift space given by the polynomials in t up to degree k. Since this random field is
intrinsic of order [𝛼], the integer part of 𝛼, it must be the case that k ≥ [𝛼] in order
for the random field to be well defined.

The case 𝛼 = 0 is interesting because the random field is both intrinsic and gen-
eralized. It has the property that the random field looks the same at all scales of
measurement. It was first proposed by de Wijs (1951) who noted the self-similarity
property in a mining application. In the mining literature, this generalized intrin-
sic covariance function is known as the de Wijsian scheme.

For 𝛼 < 0, the self-similar random fields become stationary and generalized.
The case 𝛼 = −d∕2 corresponds to white noise with constant spectral density and
with stationary generalized covariance function 𝜎−d∕2(h) = 𝛿0(h) given by the
Dirac delta function. For − d

2
< 𝛼 < 0, the self-similar generalized random fields

are known as fractional white noise.
Fractional white noise is interesting because it displays long-range dependence.

That is, 𝜎
𝛼
(h) ∝ h2𝛼 tends to 0 as |h| → ∞ so slowly that ∫|h|≥1𝜎𝛼(h) dh = ∞.

It represents an idealized self-similar version of the long-range dependence
for ordinary stationary processes studied in Section 2.13. (For the discussion
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here, it is the behavior of 𝜎
𝛼
(h) as |h|→ ∞, which is of interest, not the pole

in the generalized covariance function as |h|→ 0, which makes the random
field generalized rather than ordinary.) If we let X

𝛼
(t) be a realization from this

generalized stationary random field and set

X(𝜆V) = |𝜆V |−1
∫
𝜆V

X
𝛼
(t) dt,

where V is a bounded open set and 𝜆 > 0, then

var{X(𝜆V)} = B𝜆2𝛼
, B = |V |−2cd,𝛼∫V∫V

|s − t|2𝛼 ds dt, −d
2
< 𝛼 < 0.

This result is exact for fractional white noise. For a stationary random field exhibit-
ing long-range dependence, this result holds only asymptotically as 𝜆→ ∞; see
(2.76) in Chapter 2.

3.11 Simulation

This section is an extension of the simulation methods for stationary Gaussian
random fields discussed in Section 2.14.

3.11.1 General Points

Let X(t) be a zero-mean random field, either ordinary or generalized and either
stationary or intrinsic. A unified formula for the variance of the functional X(𝜑) =
∫ X(t)𝜑(t) dt is given by Theorem 3.8.1. Assuming that A = 0 and that the spectral
measure has a density F(d𝜔) = f (𝜔) d𝜔), this representation takes the form

var{X(𝜑)} =
∫

|𝜑̃(𝜔)|2f (𝜔)d𝜔. (3.51)

This representation is valid provided the integral on the right hand side is finite,
which is guaranteed under the following conditions on the test functions.

1. If X(t) is ordinary, so that f is integrable as |𝜔| → ∞, then 𝜑̃ just needs to be
bounded. In particular, 𝜑 can be an ordinary integrable function, or even a
generalized function such as a linear combination of Dirac delta functions.
Thus, if

𝜑(t) =
∑

aj𝛿tj
(t) (3.52)

with
𝜑̃(𝜔) =

∑
aj exp(itT

j 𝜔), (3.53)

then X(𝜑) =
∑

aiX(ti) recovers linear combinations of the values of the random
field.
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2. On the other hand, if X(t) is generalized, then 𝜑(𝜔) is restricted to being an
ordinary function.

3. If X(t) is intrinsic of order k, then 𝜑(t) must lie in k and satisfy (3.30). When
X(t) is ordinary and 𝜑(t) takes the form of (3.52), then (3.30) takes the form∑

ajtm
j = 0 for all m ≤ k. The stationary case corresponds to k = −1, with no

constraints on 𝜑.
4. For example, for an ordinary intrinsic random field with k = 0, a common

choice for 𝜑 is 𝜑(t) = 𝛿t0
− 𝛿0, so that the representation (3.51) specifies the

difference X(t0) − X(0) between the value of the random field at an arbitrary
site t = t0 and its value at t = 0.

With this unified framework, there are two natural simulation methods for a
Gaussian random field that is possibly generalized and/or possibly intrinsic of
intrinsic order k ≥ −1. These methods generalize Section 2.14. Let 𝜓1, . . . , 𝜓n be a
collection of test functions, assumed for simplicity to lie ink. We wish to simulate
X(𝜓1), . . . ,X(𝜓n).

3.11.2 The Direct Method

The covariance matrix of these random variables can be determined from (3.51).
In particular, note that cov{X(𝜓1),X(𝜓2)} can be determined from the variance
formula var{X(𝜓1 + 𝜓2)} = var{X(𝜓1)} + 2 cov{X(𝜓1), X(𝜓2)} + var{X(𝜓2)}.
The simulation method in Section 2.14.2 can then be followed exactly.

3.11.3 Spectral Methods

In our unified framework, the spectral representation analogous to (2.79) takes the
form

X(𝜓) =
∫
𝜓̃(𝜔) H(d𝜔). (3.54)

The random frequencies, random amplitudes method is the only spectral method
that generalizes easily from Section 2.14.3 to the present context. It takes the fol-
lowing form here. Let U,V , and W be three independent random quantities where

(a) U is a uniform random variable on [0,2𝜋).
(b) W is a symmetric random vector on ℝd with probability density g(𝜔), say, sat-

isfying g(𝜔) = g(−𝜔), g(𝜔) > 0 for all 𝜔.
(c) V is a random variable with EV 2 = 2.

Then, define a random field by

X(t) = {f (W)∕g(W)}1∕2 V cos(tTW + U). (3.55)
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so that the functional X(𝜓) takes the form

X(𝜓) = {f (W)∕g(W)}1∕2 V
∫

cos(tTW + U) 𝜓(t) dt. (3.56)

Thus, X(t) is a single random cosine wave with random phase U and random fre-
quency W , and with a random amplitude depending on the frequency. It is easy to
check that X(𝜓) has mean 0 and variance

E{X(𝜓)2} = E
{

f (W)
g(W)

V 2
∫

cos(tTW + U) cos(sTW + U) 𝜓(t) 𝜓(s) ds dt
}

= E
{

f (W)
g(W) ∫

[cos tTW cos sTW + sin tTW sin sTW] 𝜓(t) 𝜓(s) ds dt
}

= E
{

f (W)
g(W)

([Re 𝜓̃(W)]2 + [Im 𝜓̃(W)]2)
}

=
∫

f (𝜔)
g(𝜔)

|𝜓̃(𝜔)|2g(𝜔) d𝜔

=
∫

|𝜓̃(𝜔)|2f (𝜔) d𝜔,

as required. The derivation is similar to Eq. (2.81). The second line is obtained
from the first by writing cos(tTW + U) = cos tTW cos U − sin tTW sin U and
cos(sTW + U) = cos sTW cos U − sin sTW sin U, and then averaging over V and
U. Note that E{cos2U} = E{sin2U} = 1∕2, E{cos U sin U} = 0, and E{V 2} = 2.
To simulate X(⋅) for a set of test functions 𝜓j(t), j = 1, . . . ,m, the same simulated
random variables should be used.

Thus, this random field has the right covariance structure, but it is not Gaussian.
In order to construct a Gaussian random field, it is necessary to add independent
copies Xi(𝜓j) of (3.56) together to get

X (n)(𝜓j) =
n∑

i=1
Xi(𝜓j)∕

√
n. (3.57)

For each n, the random vector {X (n)(𝜓j) ∶ j = 1, . . . ,m} has the desired covariance
structure, and as n → ∞, this random vector converges to a multivariate Gaussian
distribution.

3.12 Dispersion Variance

Let {X(t) ∶ t ∈ ℝd} be an ordinary stationary random field with mean 𝜇 and auto-
covariance function 𝜎(h). The marginal variance 𝜎(0) = E{[X(t) − 𝜇]2} measures
the expected variability of X(t) about the population mean 𝜇. However, in some
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applications it is of more interest to look at the variability about the sample mean
in a bounded open region V ⊂ ℝd,

X(V) = |V |−1
∫V

X(t) dt. (3.58)

Start with the sample variance of the random field as t varies through V

|V |−1
∫V

[X(t) − X(V)]2 dt, (3.59)

which is a continuous version of the sample variance in ordinary statistics. The
expected value of (3.59) is called the dispersion variance

𝜎(0|V) = |V |−1E
{
∫V

[X(t) − X(V)]2 dt
}
. (3.60)

The notation 0|V is meant to suggest a point distributed uniformly in V . The dis-
persion variance is related to the marginal variance by

𝜎(0|V) = 𝜎(0) − var{X(V)} (3.61)

(Exercise 3.17). Note that 𝜎(0|V) is invariant under translations of V ; that is,
𝜎(0|V) = 𝜎(0|(V + t)), where V + t = {𝑣 + t ∶ 𝑣 ∈ V}.

Next we extend the notion of dispersion variance to a pair of regions V1 ⊂ V2, by
defining

𝜎(V1|V2) = 𝜎(0|V2) − 𝜎(0|V1)

= var{X(V1)} − var{X(V2)}. (3.62)

The definition of 𝜎(V1|V2) is statistically meaningful only if 𝜎(V1|V2) ≥ 0. The sim-
plest setting in which to guarantee this nonnegativity is when V2 can be partitioned
into a union of copies of V1. For example, suppose V1 is a rectangular region and
V2 = 𝜆V1, where 𝜆 = n is an integer, so that we can write V2 =

⋃
(ti + V1), a union

of N = nd copies of V1 for a suitable sequence of sites ti ∈ ℝd
, i = 1, . . . ,N. In this

case, the dispersion variance can be given an explicit interpretation analogous to
the usual decomposition of sums of squares in the analysis of variance. Let

Z = X(V2), Yi = X(ti + V1), i = 1, . . . ,N.

Then, it can be shown that

|V2|−1
∫V2

[X(t) − Z]2 dt = N−1
N∑

i=1

{
|V1|−1

∫ti+V1

[X(t) − Yi]2dt + [Yi − Z]2
}
.

(3.63)
After taking expectations,

𝜎(0|V2) = 𝜎(0|V1) + N−1E
N∑

i=1
[Yi − Z]2

, (3.64)
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so that

𝜎(V1|V2) = N−1E
N∑

i=1
[Yi − Z]2

. (3.65)

If V1 is called a block and V2 is called a panel, note that 𝜎(V1|V2) can be regarded
as the expected between-block, within-panel variance.

To appreciate the importance of dispersion variance, consider a mining example.
Suppose a mine contains one panel of ore that is to be extracted at the rate of one
block per week over the course of one year. The mine operator is concerned that
the extracted ore should be as consistent as possible over this year. The dispersion
variance gives the appropriate measure of variability over this period.

Since (3.59) involves an increment of order 0 of the random field, the notion of
dispersion variance can be extended to intrinsic random fields of intrinsic order 0.
It can be shown (see Exercise 3.18) that the dispersion variance can be written in
terms of the semivariogram as

𝜎(0|V) = |V |−2
∫V∫V

𝛾(s − t) ds dt. (3.66)

Finally, it should be emphasized that the nonnegativity of 𝜎(V1|V2) cannot be
guaranteed for all covariance functions and all V1 ⊂ V2. A counterexample is given
in Exercise 3.19. Thus the application of dispersion variance requires some cau-
tion. Sufficient conditions for nonnegativity include either of the following:

● V2 is a union of copies of V1; see (3.65) and Exercise 3.20.
● X(t) forms a self-similar intrinsic random field, and V1 = 𝜆1V and V2 = 𝜆2V are

re-scaled versions of a common underlying set; see Exercise 3.18.

Exercises

3.1 Let 𝛾(h), h ∈ ℝd, be a valid semivariogram and suppose it tends to a finite
limit for large lags, 𝛾(h) → c as |h| → ∞. Show that

𝜎(h) = c − 𝛾(h)

defines a valid covariance function 𝜎(h) with marginal variance
𝜎(0) = c.
Hint: Let {XI(t)} denote an intrinsic process with semivariogram 𝛾(h) and
with vanishing incremental mean. Let D denote a fixed bounded open set in
ℝd (such as a disk) with volume |D|, and let 𝜆 > 0 be a dilation parameter.
Define a (nonstationary) process {Y (t)} by

Y (t) = XI(t) −
1

|𝜆D|∫𝜆D
XI(s)ds.
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Note that for each t, Y (t) is a continuous version of an increment in Defi-
nition 3.2.2; hence the {Y (t)} process is fully specified.
Using (3.3), the covariance function for the Y -process is given by

cov{Y (t),Y (𝑣)} = −𝛾(t − 𝑣) − 1
(|𝜆D|)2 ∫

𝜆D∫𝜆D
𝛾(s − u) du ds

+ 1
(|𝜆D|)∫𝜆D

𝛾(t − u) du + 1
(|𝜆D|)∫𝜆D

𝛾(s − 𝑣) d𝑣

= −𝛾(t − 𝑣) − 1
(|D|)2 ∫D∫D

𝛾(𝜆s′ − 𝜆u′) du′ ds′

+ 1
(|D|)∫D

𝛾(t − 𝜆u′) du′ + 1
(|D|)∫D

𝛾(s − 𝜆𝑣′) d𝑣′

→ −𝛾(t − 𝑣) − c + c + c = c − 𝛾(t − 𝑣)

as 𝜆→ ∞, using the dominated convergence theorem. Note the change of
variables u = 𝜆u′

, 𝑣 = 𝜆𝑣
′ and bear in mind the relationship |𝜆D| = 𝜆

d|D|.

3.2 Verify the formula

var

{ n∑
i=1

aiXI(ti)

}
= −

n∑
i,j=1

aiaj𝛾(ti − tj)

for an intrinsic random field {XI(t)} of order 0 with semivariogram 𝛾(h),
where a(n × 1) is an increment vector of order 0, i.e.

∑
ai = 0.

Hint: Write
∑

aiXI(ti) =
∑

ai[XI(ti) − XI(t0)] for any other site t0, and using
(3.3) show that

var
{∑

aiXI(ti)
}
= var

{∑
ai[XI(ti) − XI(t0)]

}

=
∑

i,j
aiaj cov{[XI(ti) − XI(t0)], [XI(tj) − XI(t0)]}

=
∑

aiaj{𝛾(ti − t0) + 𝛾(tj − t0) − 𝛾(0) − 𝛾(ti − tj)}

= −
∑

aiaj{𝛾(ti − tj)}.

3.3 If −𝛾(h) is a conditionally positive semidefinite function with 𝛾(0) = 0,
show that 𝜎(s, t) = 𝛾(s) + 𝛾(t) − 𝛾(t − s) is positive semidefinite. Further
show that 𝜎(s, t) represents the covariance function of an intrinsic random
field with semivariogram 𝛾(h).
Hint: Given sites t1, . . . , tn and an n × 1 coefficient vector b, it is necessary
to show

n∑
i,j=1

bibj𝜎(ti, tj) ≥ 0.
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Pick an additional site t0 = 0 and define a new (n + 1) × 1 vector b∗ with

entries b∗
0 = −

n∑
j=1

bj, b∗
j = bj for j = 1, . . . ,n. Then b∗ is an increment vec-

tor of order 0. Show that

0 ≤ −
n∑

i,j=0
b∗

i b∗
j 𝛾(ti − tj)

= −b∗2
0 𝛾(0) − 2b∗

0

n∑
j=1

bj𝛾(tj) −
n∑

i,j=1
bibj𝛾(ti − tj)

= 2

( n∑
i=1

bi

)( n∑
j=1

bj𝛾(tj)

)
−

n∑
i,j=1

bibj𝛾(ti − tj)

=
n∑

i,j=1
bibj𝜎(ti, tj), as required.

This argument is also valid if t0 is one of the sites t1, . . . , tn. For the last part,
if X(t) is a random field with covariance function 𝜎(s, t), confirm that

E[X(t + h) − X(t)]2 = 𝜎(t + h, t + h) + 𝜎(t, t) − 2𝜎(t + h, t)

= 2𝛾(t + h) + 2𝛾(t) − 2{𝛾(t + h) + 𝛾(t) − 𝛾(h)}

= 2𝛾(h), as required.

3.4 If a semivariogram 𝛾(h) is replaced by 𝛾c(h) = 𝛾(h) + c for any constant
c ∈ ℝ, show that formulae (3.4) and (3.5) remain valid.

3.5 Let {XI(t) ∶ t ∈ ℝd} be an intrinsic random field (of intrinsic order k = 0)
with semivariogram 𝛾(h). Given a fixed vector h0 ∈ ℝd, define a new ran-
dom field by

Y (t) = XI(t) − XI(t − h0).

Using (3.4) show that {Y (t)} is stationary and that its covariance function
takes the form

cov{Y (t),Y (s)} = 𝛾(t − s − h0) + 𝛾(s − t − h0) − 2𝛾(t − s).

3.6 If f (s) is an arbitrary finite real-valued function of s ∈ ℝd, show that 𝜎(s, t) =
f (s)f (t) is positive semidefinite.
Hint: For coefficients a1, . . . , an and sites t1, . . . , tn note the identity∑

aiajf (ti)f (tj) = {
∑

aif (ti)}2 ≥ 0.

3.7 If g(h) satisfies the integral representation (3.11) with A = 0, show that
g(h)∕|h|2 → 0 as |h| → ∞.
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Hint: By assumption

M1,c = ∫|𝜔|≤c
|𝜔|2F(d𝜔) <∞, M2,c = ∫|𝜔|>c

F(d𝜔) < ∞.

Using the elementary inequalities, 1 − cos x ≤ x2∕2, |1 − cos x| ≤ 2, con-
firm that

∫|𝜔|≤c
| cos(hT

𝜔) − 1| F(d𝜔) ≤ |h|2M1,c,

∫|𝜔|>c
| cos(hT

𝜔) − 1| F(d𝜔) ≤ 2M2,c.

Thus lim|h|→∞|g(h)|∕|h|2 ≤ M1,c. But by taking c arbitrarily small, M1,c can
be made arbitrarily small. Hence lim g(h)∕|h|2 = 0.

3.8 .(a) If 𝜎(s, t) is an ordinary continuous positive semidefinite function, show
that

𝜎G(𝜑,𝜑) = ∫
𝜑(s) 𝜑(t) 𝜎(s, t) ds dt

defines a positive semidefinite generalized bilinear functional.
(b) If {X(t)} is an ordinary random field with covariance function 𝜎(s, t),

show that it can also be viewed as a generalized random field XG(𝜑) =
∫ 𝜑(t) X(t) dt with covariance functional 𝜎G(𝜑,𝜑).

3.9 Show that k, the space of homogeneous polynomials of degree k in ℝd,
and k, the space of all polynomials of degree ≤ k in ℝd have dimensions

pH(k) = dim(k) =
(

k + d − 1
k

)
, pF(k) = dim(k) =

(
k + d

k

)
,

as stated in (3.16).
Hint: This exercise can be done using a simple counting argument (e.g.
Feller, 1968, p. 38). Write down a string of k + d − 1 characters, of which
d − 1 characters are “|” and k characters are “x.” Let the number of
“x” characters between successive “|” characters indicate the power of
successive components of t = (t[1], . . . , t[d]). For example, with d = 4 and
k = 5, one such string might be x|xx|xx|, corresponding to the monomial
t[1]1t[2]2t[3]2t[4]0. Count the number of different arrangements of strings
to get the dimension of k. For k, add an extra component t[d + 1] = 1
and note that a monomial of degree k in t[1], . . . , t[d + 1] corresponds to a
monomial of degree ≤ k in t[1], . . . , t[d].

3.10 The purpose of this exercise is to confirm that the registered intrinsic ran-
dom field XR(t) in (3.20) has the covariance function 𝜎R(s, t) in (3.21).
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(a) Fix a site t. Show that the collection of coefficients 1,−g1(t), . . . ,−gp(t)
at the sites t, t∗1 , . . . , t

∗
p forms a kth-order increment, i.e.

gi(t) −
p∑

j=1
gj(t)gi(t∗j ) = 0

for i = 1, . . . , p. Hence, deduce that for each t, XR(t) is an increment of
the XI(⋅) random field.

(b) Use (3.18) to show that the variance of XR(t) can be expressed in the
form (3.21) with s = t. Extend this result to show that the covariance
between XR(s) and XR(t) can be expressed in the form (3.21) for s ≠ t.

3.11 Let D be a bounded region in ℝd and let 𝜑(t) = I[t ∈ D] be an indicator
function on D. Show that the Fourier transform 𝜑̃(𝜔) of 𝜑 satisfies the fol-
lowing:
(a) 𝜑̃(𝜔) is bounded for all 𝜔.
(b) ∫ |𝜑̃(𝜔)|2d𝜔 <∞.
Hint: (a) |𝜑̃(𝜔)| = | ∫ exp(ihT

𝜔)𝜑(h) dh| ≤ ∫ |𝜑(t)| dt ≤ volume of D.
(b) Use the identity ∫ |𝜑(t)|2 dt = (2𝜋)−d ∫ |𝜑̃(𝜔)|2 d𝜔 and note that
∫ |𝜑(t)|2 dt = volume of D.

3.12 In one dimension, d = 1, consider a stationary Gaussian random field X(t)
with the exponential covariance function

𝜎(h) = exp(−|h|).
Consider the indicator test function

𝜑(u) = I[|u| ≤ 1∕2].

(a) Show that 𝜑(u) has the Fourier transform

𝜑̃(𝜔) =
{
(2∕𝜔) sin(𝜔∕2), 𝜔 ≠ 0,

1, 𝜔 = 0.

(b) Let 𝜓(u) = 𝜑 ∗ 𝜑̌(u) and show that

𝜓(u) =

⎧
⎪
⎪
⎨
⎪
⎪⎩

0, u ≤ −1,
1 + u, −1 ≤ u ≤ 0,
1 − u, 0 ≤ u ≤ 1,
0, u ≥ 1.

Confirm that 𝜓(u) is a compactly supported function with a tent-like
shape.
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(c) Define the regularized random field X
𝜑
(t) = ∫ X(t + u)𝜑(u) du and the

regularized covariance function

𝜎
𝜑
(h) =

∫
𝜎(h + u)𝜓(u) du. (3.67)

By splitting the integral into three pieces, (−1,−h), (−h, 0), (0,1) if
0 < h < 1 and two pieces (−1,0), (0,1) if h > 1, show that

𝜎
𝜑
(h) =

{
2 − 2|h| + e−1−|h| + e−1+|h| − 2e−|h|, 0 ≤ |h| ≤ 1,
e−1−|h| + e−1+|h| − 2e−|h|, |h| ≥ 1.

(d) Show that 𝜎(0) − 𝜎(h) ∼ |h| and 𝜎
𝜑
(0) − 𝜎

𝜑
(h) ∼ (1 − e−1)h2 as |h|→ 0.

Hence, deduce that 𝜎
𝜑
(h) is smoother at the origin than 𝜎(h).

3.13 Repeat Exercise 3.12 with the same test function 𝜑(h), but this time
using the linear intrinsic covariance function 𝜎I(h) = −|h|, where 𝜎I(h)
is defined up to an additive constant. As before, define the regularized
intrinsic covariance function 𝜎I,𝜑(h) by (3.67).
(a) Show that

𝜎I,𝜑(h) =
{ 1

3
|h|3 − h2 − 1

3
, 0 ≤ |h| ≤ 1,

−|h|, |h| ≥ 1.

(b) The semivariogram for the original and regularized random fields are
defined by 𝛾(h) = 𝜎I(0) − 𝜎I(h) and 𝛾

𝜑
(h) = 𝜎I,𝜑(0) − 𝜎I,𝜑(h), respec-

tively. Note they do not depend on the arbitrary additive constant in
the definition of 𝜎I(h). Show that 𝛾(h) ∼ |h| and 𝛾

𝜑
(h) ∼ h2 as |h|→ 0.

Hence, conclude that 𝛾
𝜑
(h) is smoother at the origin than 𝛾(h).

3.14 Repeat Exercise 3.12 with the same test function 𝜑(h), but this
time using the de Wijsian generalized intrinsic covariance function
𝜎GI(h) = − log h, h > 0, where 𝜎GI(h) is defined up to an additive constant.
As before, define the regularized intrinsic covariance function 𝜎I,𝜑(h) by
(3.67).
(a) Show that for h > 0,

𝜎I,𝜑(h) = h2 log h + 3
2
− 1

2
(1 + h)2 log(1 + h) − 1

2
(1 − h)2 log |1 − h|.

(b) Show that lim|h|→0𝜎I,𝜑(h) = 3∕2 is finite. Hence, deduce that
𝜎I,𝜑(h) defines an ordinary intrinsic random field with semi-
variogram 𝛾

𝜑
(h) = 𝜎I,𝜑(0) − 𝜎I,𝜑(h) = 3∕2 − 𝜎I,𝜑(h). Show that

𝛾
𝜑
(h) = h2 log h + O(h2) as h → 0. That is, 𝛾

𝜑
(h) defines an ordi-

nary intrinsic random field, whose semivariogram is nearly smooth
enough to be twice-differentiable at the origin.
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(c) Show that 𝛾
𝜑
(h) = log h + O(h−2) as h → ∞. That is, the difference

between 𝛾
𝜑
(h) and 𝛾(h) tends to 0 as h → ∞.

3.15 Consider the function

f
𝛼,d(𝜔) = |𝜔|−d−2𝛼

, 𝜔 ∈ ℝd
,

where 𝛼 ∈ ℝ is a real parameter. Then f
𝛼,d can be viewed as the spectral

density of an isotropic stochastic process on ℝd (ordinary intrinsic if 𝛼 > 0,
generalized stationary if 𝛼 < 0 and generalized intrinsic if 𝛼 = 0). In Section
3.10, it was noted that the corresponding process is self-similar for all values
of 𝛼. The purpose of this exercise is to confirm the representation (3.45) for
0 < 𝛼 < 1. That is, for 0 < 𝛼 < 1, the radial covariance function takes the
form

𝜎
#
𝛼,d(r) = cr2𝛼

up to an arbitrary additive constant, where the normalizing constant is
given by c = c

𝛼,d in Eq. (3.46).
(a) Start by considering the Matérn covariance function from Table 2.1

𝜎M,𝛼,d,a(h) = 𝜎
#
M,𝛼,d,a(r) =

(ar)𝛼

2𝛼−1Γ(𝛼)
K
𝛼
(ar), r = |h|,

which defines an ordinary stationary stochastic process on ℝd with
index 𝛼 > 0 and scale parameter a > 0. The spectral density is

fM,𝛼,d,a(𝜔) =
Γ
(

2𝛼+d
2

)
a2𝛼

𝜋d∕2Γ(𝛼)
[
a2 + |𝜔|2]−(2𝛼+d)∕2

(e.g. Kotz and Nadarajah, 2004, p. 39). This spectral density can also
be viewed the probability density function for a scaled version of the
multivariate t-distribution with 2𝛼 degrees of freedom. In particular,
since fM,a,𝛼,d is a probability density, its integral is 1.
Use the limiting behavior of the Bessel function K

𝛼
(z) ∼ 1

2
Γ(𝛼)(z∕2)−𝛼

as z → 0, z > 0, to confirm that 𝜎#M,𝛼,d,a(0) = 1.
(b) To make further progress, restrict attention to the case 0 < 𝛼 < 1. Then

the limiting behavior of the Bessel function can be given a more refined
expansion for z > 0,

K
𝛼
(z) = 1

2
{
Γ(𝛼)(z∕2)−𝛼 + Γ(−𝛼)(z∕2)𝛼 + O(z2−𝛼)

}
, z → 0.

[This formula can be verified from the representation of the K Bessel
function in terms of the I Bessel function (Gradshteyn and Ryzhik,
1980, p. 970, eqn 8.485), together with the series expansion of the I
Bessel function (Gradshteyn and Ryzhik, 1980, p. 961, eqn 8.445),
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and the reflection formula for the Gamma function (Gradshteyn and
Ryzhik, 1980, p. 937, eqn 8.334.3).]
Using this expansion, show that minus the semivariogram for the
Matérn process takes the form

∫
(cos(hT

𝜔) − 1)fM,a,𝛼,d(𝜔) d𝜔 = 𝜎
#
M,𝛼,d,a(r) − 1 = Γ(−𝛼)

Γ(𝛼)
(ar∕2)2𝛼

+ O((ar)2−2𝛼).

Lastly, multiply fM,𝛼,d,a by 𝜋d∕2Γ(𝛼)a−2𝛼∕Γ(𝛼 + d
2
) and let a → 0 for fixed

r ≥ 0 to conclude that

𝜎
#
𝛼,d(r) − 1 = 𝜋

d∕2Γ(−𝛼)
22𝛼Γ(𝛼 + d

2
)

r2𝛼
.

Since an intrinsic covariance function (of intrinsic order k = 0) is
defined only up to an additive constant, the required form for the
intrinsic covariance function has been proved.

3.16 The purpose of this exercise is to investigate the extent to which Exercise
3.15 can be extended to other values of 𝛼.
(a) If g(h) is a function of h ∈ ℝd, the Laplacian is defined by Δg(h) =∑d

𝓁=1 𝜕
2g(h)∕𝜕h[𝓁]2. If g(h) = g#(r), say, with |h| = r, is isotropic, show

that
Δg(h) = (g#)′′(r) + d − 1

r
(g#)′(r),

where the dash denotes differentiation with respect to r > 0.
(b) Use the Laplacian formula to deduce that if g(h) = |h|2𝛼 then Δg(h) =

2𝛼(2𝛼 + d − 2)r2𝛼−2
, r = |h| > 0.

(c) If 𝜎
#
𝛼+1,d(r) = c

𝛼+1,dr2𝛼+2, then show that Δ𝜎#
𝛼+1,d(r) = c

𝛼,dr2𝛼 =
𝜎
#
𝛼,d(r), r > 0. Further if 𝛼 > 0, show that this equation can be

extended to r = 0.
(d) Hence, deduce that, at least formally, the constant c in (3.45) must take

the form c = c
𝛼,d for all noninteger values of 𝛼. The adjective “formally”

means that some extra issues need to be considered for certain values
of 𝛼. These issues will be explored in the following parts of the exercise.

(e) If 𝛼 > 0, then 𝜎
𝛼,d(h) is an equivalence class of functions; it equals

c
𝛼,dr2𝛼 plus an arbitrary even polynomial in r of degree 2[𝛼], where
[𝛼] is the integer part of 𝛼. Show that with this equivalence class
interpretation,

Δ𝜎
𝛼+1,d(h) = 𝜎

𝛼,d(h), h ∈ ℝd

remains true.
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(f) If 𝛼 = k > 0 is an integer, then in addition to the equivalence class con-
siderations, there is the problem that c

𝛼,d = ∞. In this case, the formula
for the covariance function must be modified to

𝜎k,d(h) = c′k,d|h|2k log(|h|),
plus an arbitrary even polynomial in h of degree 2k, where the modified
normalizing constant c′k,d is given in (3.48). Use the limiting argument
in Section 3.10 as 𝜀 ↓ 0 with 𝛼 = k + 𝜀 to confirm that this modified
form for the covariance function is valid.

(g) If −d∕2 < 𝛼 ≤ 0, then 𝜎
𝛼,d(h) is a generalized covariance function,

which can be identified with the ordinary function 𝜎
𝛼,d(h) = c

𝛼,d|h|2𝛼 .
In particular, show that 𝜎

𝛼,d(h) is integrable in a neighborhood of
h = 0.

(h) However, if 𝛼 ≤ −d∕2, the behavior of the generalized covariance
function 𝜎

𝛼,d(h) is more complicated to describe. Suppose 𝛼 + k lies
in the interval (−d∕2,−d∕2 + 1] for some integer k ≥ 1. As before,
𝜎
𝛼,d(h) = c

𝛼,d|h|2𝛼 can be identified with an ordinary function for
h ≠ 0. However, in this case the generalized covariance function
also has some support at the origin. A full interpretation of 𝜎

𝛼,d(h) is
easiest to describe using of the Parseval relation. Suppose 𝜑(u) ∈  is
a smooth test function with compact support, with the Fourier trans-
form 𝜑̃(𝜔), and write 𝜓(h) = (𝜑 ∗ 𝜑̌)(h) with the Fourier transform
𝜓̃(𝜔) = |𝜑̃(𝜔)|2. Show that the covariance functional 𝜎

𝛼,d applied to 𝜓
takes the form

𝜎
𝛼,d(𝜓) = ∫

f
𝛼,d(𝜔)𝜓̃(𝜔) d𝜔

=
∫

{|𝜔|−2kf
𝛼,d(𝜔)}{|𝜔|2k

𝜓̃(𝜔)} d𝜔

=
∫

f
𝛼+k,d(𝜔){|𝜔|2k

𝜓̃(𝜔)} d𝜔

=
∫
𝜎
𝛼+k,d(h)Δk

𝜓(h) dh,

where Δk is the iterated Laplacian, and Eq. (A.37) has been used to
show that the Fourier transform of Δk

𝜓(h) is given by |𝜔|2k
𝜓̃(𝜔).

Note: If d = 1 and 𝛼 + k ∈ [0,1∕2) explain why it is necessary to
confirm additionally that Δk

𝜓(h), the (2k)th derivative of 𝜓(h), is an
increment of order 0, i.e. ∫ Δk

𝜓(h) dh = 0.
(i) White noise is an ordinary generalized process defined by a constant

spectral density

fWN (𝜔) =
( 1

2𝜋

)d
, 𝜔 ∈ ℝd
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with generalized covariance function given by the Dirac delta function,
𝜎WN (h) = 𝛿0(h). Up to the factor (2𝜋)−d it is the spectral density of
the self-similar process of index 𝛼 = −d∕2 in (3.44). Confirm that for
𝛼 = −d∕2, c

𝛼,d = 0, so that the generalized function 𝜎WN (h) has no
support outside the origin.

3.17 Let V be an open bounded region in ℝd. If {X(t)} is a stationary random
field with covariance function 𝜎(h), define the (continuous) sample mean
within V by

X(V) = |V |−1
∫V

X(t) dt.

Show that its variance is given by

var{X(V)} = |V |−2
∫V∫V

𝜎(s − t) ds dt.

By expanding the square for the sample continuous variance within V in the
formula for the dispersion variance

𝜎(0|V) = |V |−1E
{
∫

[X(t) − X(V)]2 dt
}
,

show that
𝜎(0|V) = 𝜎(0) − var{X(V)}.

3.18 .(a) Show that the dispersion variance 𝜎(0|V) as defined in Eq. (3.60) con-
tinues to make sense for an intrinsic random field with semivariogram
𝛾(h), and is given in this case by

𝜎(0|V) = |V |−2
∫ ∫

𝛾(s − t) ds dt.

To verify this formula, it is helpful to expand (3.60) as

𝜎(0|V) = |V |−3
∫V∫V∫V

E{[X(t) − X(s)][X(t) − X(u)]} ds du dt,

and to use (3.3) to simplify the result.
(b) If 𝛾(h) = |h|2𝛼 for some 0 < 𝛼 < 1 and 𝜆V denotes the dilation of V by

a factor 𝜆 > 0, show that

𝜎(0|𝜆V) = B𝜆2𝛼
, B = |V |−2

∫V∫V
|s − t|2𝛼 ds dt,

and
𝜎(𝜆1V |𝜆2V) = (𝜆2𝛼

2 − 𝜆2𝛼
1 )B > 0

for 0 < 𝜆1 < 𝜆2.
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Thus, 𝜎(0|𝜆V), the expected sample variance of the random field as the
site varies continuously over the region 𝜆V increases indefinitely with 𝜆.
This behavior can be contrasted with a stationary random field where it is
usually the case that 𝜎(0|𝜆V) → 𝜎(0) as 𝜆 → ∞; see Chapter 2, Theorem
2.13.1.

3.19 The purpose of this exercise is to construct a counterexample showing that
it is possible that 𝜎(V1|V2) < 0 even when V1 ⊂ V2. Let X(t) =

√
2 cos(t +

Φ) denote a random cosine wave in one dimension, t ∈ ℝ1, where Φ is
uniformly distributed on [0,2𝜋). This process is stationary with covariance
function 𝜎(h) = cos(h). Set V = [0, a] for some a > 0.
(a) Show that

var{X(V)} = 2(1 − cos a)∕a2
.

(b) In particular, note that X(V) = 0 and var{X(V)} = 0 when a is an inte-
ger multiple of 2𝜋.

(c) Since var{X(V)} is not monotone decreasing in a, it is possible for the
dispersion variance to be negative. For example, show that

𝜎([0, a) | [0, b)) < 0

for a = 2𝜋, b = 3𝜋.
(d) Equation (3.65) states that the dispersion variance is always nonnega-

tive when V2 = [0, b] is a union of n disjoint copies of V1 = [0, a], i.e. b =
na, a > 0,n ≥ 1. Using this result, deduce the trigonometric inequali-
ties

1 − cos na ≤ n2(1 − cos a)

for all real a > 0 and integer n ≥ 1.

3.20 The purpose of this exercise is to show that negativity of the dispersion vari-
ance 𝜎(V1|V2) in Exercise 3.19 cannot arise under the additional assump-
tion that V2 can be partitioned as a union of copies of V1. In this case, verify
the continuous analysis of variance identity in (3.63). If {X(t)} is a station-
ary or intrinsic random field, take expectations to get (3.64) and (3.65), and
hence confirm that the dispersion variance is nonnegative, 𝜎(V1|V2) ≥ 0.
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4

Autoregression and Related Models

4.1 Introduction

In Chapters 2 and 3, we looked at examples of possible covariance functions and
semivariograms for random fields. In general, these examples are merely functions
of convenient analytic form, without any probabilistic motivation. In this chapter,
we look at random fields that have a natural description in terms of a probabilistic
model, typically an autoregression. These models are largely restricted to random
fields indexed on the integer lattice ℤd.

The motivation for these models comes from discrete time series (e.g. Fuller,
1996) where there are three natural mechanisms for constructing a stationary
Gaussian process {Xt ∶ t ∈ ℤ}, starting from a Gaussian discrete white noise pro-
cess {𝜀t ∶ t ∈ ℤ}, that is, a collection of independent N(0, 𝜎2

𝜀
) random variables.

Here, t denotes (discrete) time.

(a) Moving Average of order S (MA(S)). Let

Xt =
S∑

s=0
bs𝜀t−s, t ∈ ℤ, (4.1)

where S ≥ 0 and b0, . . . , bS are coefficients with b0 > 0. For any set of coeffi-
cients, (4.1) defines a stationary process. If we define a polynomial

B(z) =
S∑

s=0
bszs

, z ∈ ℂ, (4.2)

then it is usual to assume a “stability condition”

B(z) ≠ 0 for |z| ≤ 1. (4.3)

This stability condition ensures that the coefficients bs are identifiable and that
{𝜀t} can be interpreted as the innovation process of {Xt}

𝜀t = Xt − E[Xt|Xs ∶ s < t]. (4.4)

Spatial Analysis, First Edition. John T. Kent and Kanti V. Mardia.
© 2022 John Wiley & Sons Ltd. Published 2022 by John Wiley & Sons Ltd.
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Without the stability condition, different sets of coefficients {bs} will generate
the same autocovariance function for {Xt}.
The innovation Eq. (4.4) is a key result for prediction. To better understand its
basic properties, let Yt = E[Xt|Xs ∶ s < t], so that Yt is a function of {Xs ∶ s < t}.
In particular,

E[Yt|Xs ∶ s < t] = Yt.

Hence, for any particular time r < t, we find

E[Xr𝜀t] = E[E{Xr(Xt − Yt)|Xs ∶ s < t}]

= E[XrE{Xt|Xs ∶ s < t} − XrYt]

= E[XrYt − XrYt] = 0.

The first line follows by the tower law since an overall expectation is being
written as the expected value of a conditional expectation (Exercise 4.1). The
second line follows since Xr and Yt are fixed given {Xs ∶ s < t}, and hence can
be factored out of the conditional expectation. Thus, 𝜀t is uncorrelated with Xr
for all r < t. Intuitively, 𝜀t represents that part of Xt which cannot be predicted
from its past values (such as Xr).

(b) Autoregression of order S (AR(S)). Suppose {Xt} satisfies
S∑

s=0
dsXt−s = 𝜀t, (4.5)

where S ≥ 0 and d0, . . . , dS are coefficients with d0 = 1. If we set D(z) =
∑

dszs,
then the condition

D(z) ≠ 0, for |z| ≤ 1 (4.6)

is known as an “invertibility” condition. It ensures that (4.5) defines a station-
ary process and that {𝜀t} can be regarded as the innovation process (4.4). In
this case, Eq. (4.4) can be rephrased as

E[Xt|{Xs ∶ s < t}] = −
S∑

s=1
(ds∕d0)Xt−s, (4.7)

so that Xt depends on its past values only through the most recent S values.
(c) Differencing. Let ∇ denote the first-order difference operator

∇Xt = Xt − Xt−1. (4.8)

A common strategy in time-series analysis is to suppose that the first-order
differences (4.8) (or possibly higher order differences) form a stationary
process.
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Techniques (a), (b), and (c) form the basis of the ARIMA approach to time-series
modeling (AR = autoregression, MA = moving average, and I = integrated, the
converse operation to differencing). Note that all three of these techniques use the
fact that time is ordered; we can distinguish the “past” from the “future.” However,
when we move to the spatial setting, t ∈ ℤd

, d ≥ 2, this distinction is no longer
very meaningful. Therefore, it is useful to recast these one-dimensional models
so they do not distinguish between past and future, in order to motivate similar
models in higher dimensions.

For the moving average and autoregression models (4.1) and (4.5), the change
is obvious; we allow the summations to include coefficients as and bs for s < 0 as
well as for s ≥ 0. The symmetry conditions as = a−s and bs = b−s are often imposed
to ensure identifiability of the parameters. After some background material in
Section 4.2, the moving average process is extended to d ≥ 2 dimensions in
Section 4.3. The symmetric two-sided version of the autoregression process is
known as a “simultaneous autoregression” (SAR) and is extended to higher dimen-
sions in Section 4.5. However, in the SAR model, the discrete white noise process
{𝜀t} in (4.5) no longer has the interpretation of an innovation process by (4.4).

The conditioning in (4.7) on {Xs ∶ s < t} for the autoregression process makes
explicit use of the past and does not generalize naturally to a spatial setting. We
need some notation to describe a related relationship that treats the past and future
symmetrically. Define a new sequence {cs} by c = d ∗ ď, where “∗” denotes con-
volution and ďh = d−h denotes the sequence reflected about the origin; that is,

cs =
S∑

h=0
dhdh−s.

Note that cs = c−s, c0 > 0, and cs = 0 for s > |S|. Then, the autoregression (4.5)
can also be characterized by the property

E[Xt|X∖t] = −
S∑

s = −S
s ≠ 0

(cs∕c0)Xt−s,

var[Xt|X∖t] = 𝜎
2
𝜀
∕c0.

(4.9)

Here, X∖t = {Xs ∶ s ∈ ℤ, s ≠ t} denotes the values of the process at all sites
except t. See Exercise 4.4 for a proof. In other words, the conditional distribution
is normal with the mean being a linear function of the S nearest neighbors and
with constant conditional variance.

Thus, the autoregression model (4.5) can be given either a “unilateral” condi-
tional representation (4.7) or a “bilateral” conditional representation (4.9). The
latter representation is known as a “conditional autoregression” (CAR) and gen-
eralizes immediately to a spatial setting; see Section 4.6.
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In time series, it is often convenient to transform a process by first differences to
produce a stationary process. In the spatial setting, the notion of “successive sites”
does not make much sense. Therefore, it is more natural to model the original
process directly using an intrinsic approach as in Chapter 3. The adaptation of
CAR models to include intrinsic behavior is also considered in Section 4.6.

It was mentioned earlier that the ordering of time has no completely natural
analogue in higher dimensions. However, it is possible to define an ordering on
ℤd
, d ≥ 2, (indeed, many possible orderings) in a slightly artificial manner. Fur-

ther, in terms of such an ordering, it is possible to create a theory of unilateral
moving averages and autoregressions, which closely parallels the one-dimensional
theory; see Section 4.8. Although these models are rather unnatural from a mod-
eling point of view, they can be computationally very convenient and have some
important theoretical properties. A tractable special case is given by the quadrant
autoregressions (QARs) for which the dependence extends just over a quadrant;
see Section 4.8.

So far, all the models considered in this chapter have been Gaussian. It is also
of interest to consider alternative models, especially for integer-valued data. The
general version of a CAR model is known as a Markov random field (MRF) and
is considered in Section 4.9. The general version of a QAR model is known as a
Markov mesh model and is considered in Section 4.10.

For the most part, we are concerned with lattice random fields {Xt ∶ t ∈ ℤd},
in this chapter. However, some of the constructions (such as moving averages
and SARs) extend easily to continuously indexed random fields {X(t) ∶ t ∈ ℝd}
(Sections 4.3–4.5). In addition, continuously indexed random fields can appear as
limits of discrete random fields on a finely spaced lattice (Section 4.7).

4.2 Background

Here is a convenient place to summarize some basic results about Fourier trans-
forms. See Section A.4 for more details. Start with the discrete case. That is, let
{bs ∶ s ∈ ℤd} denote a set of real coefficients with the Fourier transform

b̃(𝜔) =
∑

bs exp(2𝜋isT
𝜔), 𝜔 ∈ (−𝜋, 𝜋)d

,

so that b̃(𝜔) is expressed as a Fourier series in the coefficients {bs}. When the num-
ber of coefficients is infinite, it is necessary to impose some regularity conditions
in order for the Fourier transform to be a well-defined function. Here are two stan-
dard choices.

1. If the coefficients {bs} are summable,
∑|bs| <∞, then b̃(𝜔) is a bounded con-

tinuous function of 𝜔.
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2. If the coefficients {bs} are square-summable,
∑|bs|2 < ∞, then b̃(𝜔) is

square-integrable over (−𝜋, 𝜋)d (and vice versa).

Of course, if the coefficients are summable, they are automatically square-
summable.

Similar results hold in the continuous case. Let b(s), s ∈ ℝd be a real-valued
function with the Fourier transform

b̃(𝜔) =
∫

b(s) exp(2𝜋isT
𝜔) ds, 𝜔 ∈ ℝd

.

Again, it is necessary to impose some regularity conditions on b(s) to ensure the
Fourier transform exists.

1. If the function b(s) is integrable, ∫ |bs| <∞, then b̃(𝜔) is a bounded continuous
function of 𝜔.

2. If the function {b(s)} is square-integrable, ∫ |bs|2 <∞, then b̃(𝜔) is
square-integrable over ℝd (and vice versa).

In the continuous case, the integrability of b(s) neither implies, nor is implied by,
the square integrability of b(s).

A key tool used to understand the stationary Gaussian models of this chapter is
the Fourier transform. Start with a stationary process {Ut, t ∈ ℤd}, whose covari-
ance function 𝜎U;h has a spectral density fU (𝜔); i.e.

𝜎U;h =
∫(−𝜋,𝜋)d

exp{ihT
𝜔}fU (𝜔) d𝜔,

where fU (𝜔) is nonnegative and integrable over (−𝜋, 𝜋)d. Next, define another sta-
tionary process {Vt} by linearly filtering {Ut},

Vt =
∑

bsUt−s, t ∈ ℤd
, (4.10)

where s ranges through some finite or infinite set of indices inℤd. The {Vt} process
can be viewed as a filtered version of the {Ut} process. The covariance function of
{Vt} is given by

𝜎V ;h =
∑

s,t
bsbt𝜎U;h+s−t, (4.11)

with corresponding spectral density

fV (𝜔) = |b̃(𝜔)|2fU (𝜔), 𝜔 ∈ (−𝜋, 𝜋)d
. (4.12)

Here, b̃(𝜔) =
∑
{bs exp(isT

𝜔)} is the Fourier transform of the filter. This formula
was used earlier Eq. (2.64).

Next consider conditions on the coefficients {bs} to ensure that fV (𝜔) is
integrable. In particular, if fU (𝜔) is bounded, then a sufficient condition is that
the coefficients {bs} are square-summable. Then |b̃(𝜔)| is square-integrable over
𝜔 ∈ (−𝜋, 𝜋)d, i.e. |b̃(𝜔)|2 is integrable, and so fV (𝜔) is also integrable.
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A similar analysis holds in the continuous case. Let {U(t) ∶ t ∈ ℝd} denote a sta-
tionary (ordinary or generalized) random field, with (real or generalized) covari-
ance function 𝜎U (h), h ∈ ℝd, and spectral density fU (𝜔), 𝜔 ∈ ℝd. The covariance
function 𝜎U (h) satisfies

𝜎(h) =
∫

fU (𝜔) d𝜔,

at least in the sense of Section 3.6. Define a new (ordinary) stationary random field
V(t) by

V(t) =
∫

b(s)U(t + s) ds

in terms of a filtering function b(s), s ∈ ℝd, with spectral density

fV (𝜔) = |b̃(𝜔)|2 fU (𝜔).

In order for this construction to be well defined, it is necessary to ensure that
fV (𝜔) is an integrable function. Two special cases are of interest.

1. Suppose {Ut} is an ordinary stationary random field, so that f (𝜔) is integrable.
Then, it is sufficient to assume that {b(s)} is summable, ∫ |b(s)| <∞, so that
b̃(s) is bounded, and hence that fV (𝜔) is integrable.

2. Suppose that {U(t)} is generalized white noise, an example of a generalized
random field with covariance function 𝜎U (h) = 𝜎

2
𝛿0(h) in terms of the Dirac

delta function, and with constant spectral density fU (𝜔) = 𝜎
2∕(2𝜋)d. The spec-

tral density of V reduces to

fV (𝜔) = |b̃(𝜔)|2𝜎2∕(2𝜋)d
, 𝜔 ∈ ℝd

.

In this case, a necessary and sufficient condition to ensure the integrability of
fV (𝜔) is that b(s) be square-integrable, ∫ |b(s)|2 < ∞, which is equivalent to b̃(𝜔)
being square-integrable.

4.3 Moving Averages

The phrase “moving average” is a way to define a stationary random field in terms
of the regularization of white noise, discrete in the lattice case, and generalized in
the continuous case. It is convenient to describe the lattice case and the continu-
ously indexed cases separately.

4.3.1 Lattice Case

We first describe the lattice case. Start with a discrete white noise process, which is
a collection {𝜀t ∶ t ∈ ℤd}, say, of independent random variables with mean 0 and
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variance 𝜎2
𝜀
. The covariance function is given by 𝜎

𝜀;0 = 𝜎
2
𝜀
, 𝜎

𝜀;h = 0 for h ≠ 0, with
spectral density f

𝜀
(𝜔) = 𝜎

2
𝜀
∕(2𝜋)d

, 𝜔 ∈ (−𝜋, 𝜋)d.
Let {bs ∶ s ∈ ℤd} be a set of known coefficients satisfying

∑|bs|2 <∞. Define a
new random field {Yt} by the regularization

Yt =
∑

s
𝜀t+sbs, t ∈ ℤd

= (𝜀 ∗ b̌)t,

where b̌s = b−s. Note the change in sign convention from (4.1). Then, {Yt} is a
stationary random field with mean 0 and covariance function

𝜎Y ;h = 𝜎
2
𝜀

∑
s

bh bh+s = 𝜎
2
𝜀
(b ∗ b̌)h, h ∈ ℤd

,

and with spectral density

fY (𝜔) = |b̃(𝜔)|2𝜎2
𝜀
∕(2𝜋)d

, 𝜔 ∈ (−𝜋, 𝜋)d
,

where b̃(𝜔) =
∑

exp(ihT
𝜔)bh is the Fourier transform of {bh}.

4.3.2 Continuously Indexed Case

A similar construction can be carried out for continuously indexed random fields.
Let {𝜀(t) ∶ t ∈ ℝd} now denote “generalized white noise” – a generalized station-
ary random field with the covariance functional given in terms of the Dirac delta
function, 𝛿0(h), by

𝜎
𝜀
(h) = 𝜎

2
𝜀
𝛿0(h), h ∈ ℝd

,

and with constant spectral density

f
𝜀
(𝜔) = 𝜎

2
𝜀
∕(2𝜋)d

, 𝜔 ∈ ℝd
.

Let b(s), s ∈ ℝd, be a given square-integrable function and define {X(t) ∶ t ∈ ℝd}
by

X(t) =
∫
𝜀(t + s)b(s) ds

= 𝜀(bt), t ∈ ℝd
, say,

where
bt(s) = b(s − t) (4.13)

stands for the shifted version of the function b(s). Then {X(t)} is an ordinary sta-
tionary random field with covariance function

𝜎X (h) = 𝜎
2
𝜀 ∫

b(h + s) b(s) ds = 𝜎
2
𝜀
(b ∗ b̌)(h),
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where b̌(t) = b(−t), and with spectral density

fX (𝜔) = 𝜎
2
𝜀
|b̃(𝜔)|2∕(2𝜋)d

, 𝜔 ∈ ℝd
, (4.14)

where b̃(𝜔) = ∫ exp(ihT
𝜔)b(h) dh is the Fourier transform of b(h). Note that if b(h)

is square-integrable in h, then b̃(𝜔) is square-integrable in 𝜔, i.e. |b̃(𝜔)|2 is inte-
grable. Hence fX (𝜔) is integrable.

A common choice for b(s) is an indicator function on a disk

b(s) = I[|s| ≤ c].

In dimensions d = 1,2, 3, this leads to the covariance functions of Exercise 2.6.
Different functions b(s) satisfying ∫ |b(s)|2 ds < ∞ can give rise to the same spec-

tral density fX (𝜔) in (4.14). Hence, it is interesting to ask in what circumstances it
is possible to determine a unique function b(s) from the spectral density. For iden-
tifiability and regularity purposes in the continuous spatial setting, we restrict our
attention to real-valued functions b(h) satisfying

(i) b(h) = b(−h), h ∈ ℝd (symmetry),
(ii) ∫ |b(h)|e𝜅|h| dh <∞ for some 𝜅 > 0, and

(iii) ∫ b(h) dh > 0 (positive integral).

In the lattice setting, replace b(h), h ∈ ℝd, by bh, h ∈ ℤd, and replace the inte-
grals in (ii)–(iii) by sums.

Symmetry ensures that b̃(𝜔) is real-valued for 𝜔 real. This is very different from
the one-sided condition used in time series for identifiability, where, in particular,
b(h) is nonzero only for h < 0.

The integrability assumption (ii) implies that b̃(𝜔) can be extended to be
an analytic function of the complex vector 𝜔 ∈ ℂd for |Im(𝜔)| < 𝜅, where Im
stands for the imaginary part of a complex number. A positive integral (iii)
means that b̃(0) > 0. Hence, it follows that b̃(𝜔) is determined from |b̃(𝜔)|2
in an open set about 𝜔 = 0, and hence is determined for all 𝜔, |Im(𝜔)| < 𝜅,
by analytic continuation. Finally, b(h) can be found by the inverse Fourier
transform.

4.4 Finite Symmetric Neighborhoods of the Origin
in ℤd

A finite set of sites  ⊂ ℤd is called a neighborhood of the origin if it is symmetric,
so that s ∈  if and only if −s ∈  . By convention, the origin is not treated as an
element of  , and an augmented neighborhood can be defined by

0 =  ∪ {0}.
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Occasionally, it is helpful to take half of a neighborhood, which contains one of s
or −s for each s ∈  . Write a half-neighborhood as  † so that


† ∩ (− †) = ∅,  = 

† ∪ (− †). (4.15)

Of course, the choice of half-neighborhood is not unique.
A neighborhood of the origin can be shifted to form a neighborhood of any other

site t,  (t) =  + t. These neighborhoods of the origin play a fundamental role
in the construction of two spatial autoregression models – SARs and CARs.

One way to think about neighbors is through a graph structure. The vertices
of the graph are the sites, and two vertices are connected by an edge if they are
neighbors. In practice, a neighborhood of the origin will consist of sites close to
the origin.

The most important neighborhood inℤd is the first-order basic neighborhood, for
which a site t is a neighbor of the origin if all the components t[𝓁], 𝓁 = 1, . . . , d of
t vanish, except for one component which equals +1 or −1. In d = 2 dimensions,
this neighborhood takes the form


(basic,1) = 

(1) = {(−1,0), (0,−1), (1,0), (0,1)}. (4.16)

The superscript “(1)” indicates that it is also possible to define higher order neigh-
borhoods  (basic,k)

, k > 1. For example, a site t is a second-order neighbor of the
origin if there exists a site u such that u is a first-order neighbor of the origin and t is
a first-order neighbor of u. Figure 4.1a,c illustrates the first-order and second-order
basic neighborhoods of the origin in d = 2 dimensions.

Another neighborhood of the origin that is sometimes of interest can be called
the first-order full neighborhood. It includes the diagonal neighbors as well as
neighbors along the coordinate axes. In d = 2 dimensions, it is given by


(full,1) = 

(1) ∪ {(−1,−1), (−1,1), (1,−1), (1,1)}, (4.17)

and is plotted in Figure 4.1b.

First−order basic nbhd

(a)

O X

X

X

X

First−order full nbhd

(b)

O X

X

X

X

X

X

X

X

Second−order basic nbhd

(c)

O X

X

X

X

X

X

X

X

XX

X

X

Figure 4.1 Panels (a) and (b) illustrate the first-order basic and full neighborhoods of
the origin in the plane. Panel (c) illustrates the second-order basic neighborhood.
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4.5 Simultaneous Autoregressions (SARs)

4.5.1 Lattice Case

Let {Xt ∶ t ∈ ℤd} be a lattice stationary Gaussian random field with mean 0, and
suppose there are coefficients {ds ∶ s ∈ ℤd} such that d0 > 0,

∑
d2

s <∞, and
∑

dsXt+s = 𝜀t say, t ∈ ℤd
, (4.18)

where {𝜀t} is a discrete white noise random field with variance𝜎2
𝜀
. Such a represen-

tation is called an “autoregression” for {Xt} because Xt can be written as a linear
combination of other Xs values plus an error term. By the argument in Section 4.2,
the spectral density for {Xt} must take the form

fX (𝜔) = 𝜎
2
𝜀
∕{(2𝜋)d|d̃(𝜔)|2}, 𝜔 ∈ (−𝜋, 𝜋)d

, (4.19)

where
d̃(𝜔) =

∑
dh exp(ihT

𝜔). (4.20)

If {Xt} is to be a stationary random field, then (4.19) must be an integrable func-
tion. This imposes restrictions on the coefficients {ds}. A sufficient condition for
the integrability of (4.19) is that d̃(𝜔) is bounded away from 0, which is guaranteed
if

d0 > 0,
∑
s≠0

|ds| < d0. (4.21)

If (4.21) holds, then fX (𝜔) is a bounded function of 𝜔 ∈ (−𝜋, 𝜋)d, and hence is
integrable.

Model (4.18), as it stands, is not identifiable; that is, different sets of coefficients
can give rise to the same spectral density and hence the same covariances; see
Exercise 4.2. In one dimension, this indeterminacy is usually resolved by restrict-
ing attention to “unilateral autoregressions” (UARs), often with only a finite num-
ber of nonzero coefficients, for which ds = 0 for s < 0 and for which {𝜀t} can be
interpreted as the innovation process of {Xt}. This unilateral approach can be
generalized to higher dimensions, though in a somewhat artificial manner; see
Section 4.8.

For the rest of this section, we pursue an alternative approach based on a sym-
metry condition, which seems more natural in a spatial context.

Definition 4.5.1 Suppose the coefficients {ds ∶ s ∈ ℤd}, with d0 > 0, satisfy the
symmetry condition

ds = d−s, for all s (4.22)

and suppose fX (𝜔) in (4.19) is an integrable function over 𝜔 ∈ (−𝜋, 𝜋)d. Then the
stationary random field defined by (4.18) is said to be a simultaneous autoregres-
sion (SAR).
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Unless otherwise stated, attention in this book will be limited to finite SARs,
for which only a finite number of coefficients are nonzero. Let  ⊂ ℤd be finite
symmetric neighborhood of the origin, as in Section 4.4, with augmented neigh-
borhood 0 =  ∪ {0}. Then for a finite SAR defined with respect to  , it is
assumed that ds = 0, s ∉ 0.

The symmetry condition implies the function

d̃(𝜔) =
∑

s∈0

ds exp(isT
𝜔) = d0 +

∑

s∈

ds cos(𝜔Ts) (4.23)

is real-valued. In the presence of (4.21), d̃(𝜔) is positive for all 𝜔, and hence, can
be determined from (4.19). To parameterize the scale of the random field, we can
either (i) set d0 = 1 and include 𝜎2

𝜀
as a parameter or (ii) set 𝜎2

𝜀
= 1 and include

d0 > 0 as a parameter.
The classes of models generated by the finite UARs and the finite SARs are not

the same, though they do have a nonempty intersection. In general, the SAR mod-
els seem more appropriate than UARs for a spatial setting.

Example 4.1 (First-order basic SAR model).
For the first-order basic neighborhood =  (1) in Section 4.4, define coefficients
ds by

d0 = 1, ds = −𝛽, s ∈  . (4.24)

Provided |𝛽| < 1∕(2d), d̃(𝜔) > 0 for all 𝜔 in (4.23). The corresponding SAR model
is called the first-order basic SAR model with spectral density

fSAR-1(𝜔) =
𝜎

2
𝜀
∕(2𝜋)d

d̃(𝜔)2
=

𝜎
2
𝜀
∕(2𝜋)d

{1 − 2𝛽
∑d

𝓁=1 cos h[𝓁]}2
. (4.25)

◽

4.5.2 Continuously Indexed Random Fields

Autoregression modeling can also be extended to continuously indexed random
fields, provided we take limits in a suitable way. Let {X(t) ∶ t ∈ ℝd} be stationary
and define

Y (t) =
∑

ds X(t + s), (4.26)

where s ranges over some finite collection of sites s ∈ ℝd. In particular, the com-
ponents of s do not now need to be integer-valued. If {X(t)} has a spectral density
fX (𝜔), then {Y (t)} has spectral density

fY (𝜔) =
|||
∑

ds exp(i𝜔Ts)|||
2
fX (𝜔). (4.27)
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In particular, suppose Y (t) = [X(t + 𝜁e1) − X(t)]∕𝜁 where e1 = (1,0, . . . , 0)T is a
unit vector along the t[1]−axis, and 𝜁 > 0. Letting 𝜁 → 0 yields

Y (t) = 𝜕X(t)∕𝜕t[1], t ∈ ℝd
,

fY (𝜔) = 𝜔[1]2fX (𝜔).

Of course, {Y (t)} will exist only in a generalized function sense if fY (𝜔) is not inte-
grable.

This relationship can be extended to general linear differential operators of the
form

P =
∑

am(𝜕∕𝜕t)m
,

where each m = (m[1], . . . ,m[d]) in the (finite) sum is a multi-index and
(𝜕∕𝜕t)m = (𝜕∕𝜕t[1])m[1] · · · (𝜕∕𝜕t[d])m[d]. If Y (t) = (PX)(t) then

fY (𝜔) =
|||
∑

(i𝜔)mam
|||
2
fX (𝜔).

In particular, if P = 𝛥 =
∑
𝜕

2∕𝜕𝜔[𝓁]2 denotes the Laplacian operator, then

fY (𝜔) = |𝜔|4fX (𝜔).

Example 4.2 Two simple continuous SAR-type models can be constructed with
the Laplacian operator. If

𝛥
kX(t) = 𝜀(t),

for some k ≥ 1, where 𝜀(t) is generalized white noise with constant spectral density
f
𝜀
(𝜔) = 𝜎

2
𝜀
∕(2𝜋)d, then {X(t)} has spectral density

fX (𝜔) = |𝜔|−4k
𝜎

2
𝜀
∕(2𝜋)d

.

This spectral density is never integrable over all of ℝd, and hence never corre-
sponds to a stationary random field. However, it is integrable as |𝜔| → ∞ pro-
vided d − 1 − 4k < −1, that is, k > 1

4
d. In particular, for k = 1, this spectral density

defines an ordinary intrinsic random field in dimensions d = 1,2, 3 of intrinsic
orders 1,1, 0, respectively. Links to kriging are discussed in Section 7.14.

Another random field can be defined by

(𝜅2 − 𝛥)kX(t) = 𝜀(t), (4.28)

where 𝜅 > 0 is a scalar. In this case, the spectral density is given by

fX (𝜔) = (𝜅2 + |𝜔|2)−2k
𝜎

2
𝜀
∕(2𝜋)d

, (4.29)

which is stationary provided k > 1
4

d, and corresponds to the Matérn spectral den-
sity (Tables 2.1 and 2.2). ◽
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Discretized versions of this model (4.28) have been developed by Lindgren et al.
(2011). See Section 8.8.

Example 4.3 There are also extensions to spatial-temporal models. Let t ∈ ℝd

denote a spatial site and let u ∈ ℝ represent “time.” A temporal-spatial model in
ℝd+1 can be defined by

𝜕X(t,u)∕𝜕u = 𝛥X(t,u) − 𝜅2X(t,u) + 𝜀(t,u), (4.30)

where 𝛥 =
∑
𝜕

2∕𝜕t[𝓁]2 is the Laplacian and 𝜀(t,u) is generalized white noise on
ℝd+1. This process is called a diffusion-injection model (Whittle, 1962, 1986). The
𝜀(t,u) term represents random noise introduced into the system, the 𝛥X(t,u) term
represents a smoothing effect through space, and the −𝜅2X(t,u) term represents a
damping effect.

From the above discussion, we see that X(t,u) has spectral density

f (𝜔, 𝜆) = 𝜎
2
𝜀
|i𝜆 + 𝜅2 +

d∑
𝓁=1

𝜔[𝓁]2 |−2∕(2𝜋)d+1

= 𝜎
2
𝜀
[(𝜅2 + 𝜌2)2 + 𝜆2]−1∕(2𝜋)d+1

,

where𝜔 ∈ ℝd
, 𝜆 ∈ ℝ and we set 𝜌2 =

∑
𝜔[𝓁]2 = |𝜔|2. If {X(t,u)} forms a station-

ary random field in space and time, then integrating f (𝜔, 𝜆) with respect to 𝜆 gives
the spectral density in ℝd for a spatial cross section of the random field at a fixed
time

f (𝜔) = 1
2
𝜎

2
𝜀
(𝜅2 + 𝜌2)−1∕(2𝜋)d

,

which is again a Matérn spectral density. ◽

4.6 Conditional Autoregressions (CARs)

CARs are defined only for lattice-indexed random fields. We start with the con-
struction of stationary CARs on ℤd and then generalize the construction to intrin-
sic CARs and to CARs on the torus. Much of this material is based on a series
of papers by Besag (1972, 1974, 1975, 1981), Besag and Moran (1975), Besag and
Kooperberg (1995), and Besag and Mondal (2005). See also the discussion about
the Hammersley–Clifford Theorem below (Theorem 4.9.3).

It is also possible to extend CARs in ways that will not be studied in detail here.
For example, CARs can be constructed on irregularly spaced “sites” where the
sites might represent, e.g. geographic regions in the plane; see Section 8.8 for
an overview of related ideas. In addition, there is a theory of multivariate CARs
(Mardia, 1988); see Section 8.5 for some other methods to model multivariate
random fields.
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4.6.1 Stationary CARs

Let  denote a finite symmetric neighborhood of the origin in ℤd, and as in
Section 4.4, write 0 =  ∪ {0}. In this section, we consider models for a sta-
tionary Gaussian random field {Xt} of the form

E[Xt|X∖t] = 𝜇 +
∑

s∈

𝛽s(Xt+s − 𝜇),

var[Xt|X∖t] = 𝜎
2
𝜂
, (4.31)

where 𝛽s = −𝛽s and X∖t = {Xs ∶ s ≠ t} is shorthand for the random field at the rest
of the sites other than t.

Definition 4.6.1 A stationary random field Xt, t ∈ ℤd, whose conditional
moments satisfy (4.31) is said to be a conditional autoregression (CAR).

Unless otherwise stated, it is always assumed that the neighborhood has only
a finite number of elements. The following discussion gives conditions on the coef-
ficients {𝛽s} to ensure that the process is well defined.

The residual process is defined by

𝜂t = Xt − 𝜇 −
∑

s∈

𝛽s(Xt+s − 𝜇). (4.32)

Each 𝜂t has mean 0 and variance 𝜎2
𝜂
. However, as shown below, the residuals are

correlated. For simplicity, we set 𝜇 = 0 to simplify the theoretical development.
Next we derive some equations for the covariance function {𝜎h ∶ h ∈ ℤd} for a

stationary random field {Xt} with mean 0 obeying (4.31). First, from (4.31), we can
write

Xt =
∑

s∈

𝛽sXt+s + 𝜂t, (4.33)

where, for each t, the residual random variable 𝜂t has mean 0 and variance 𝜎2
𝜂
, and

𝜂t is independent of Xs for all s ≠ t. Here, independence is a key property, which fol-
lows from properties of conditional expectation. In particular, multiplying (4.33)
by 𝜂t and taking the expectation yields

E{Xt𝜂t} = 0 + E{𝜂2
t } = 𝜎

2
𝜂
. (4.34)

To get some expressions for the covariance function, multiply (4.33) by Xt+h,

h ≠ 0, and take the expectation to give

𝜎h =
∑

s∈

𝛽s𝜎h−s, h ≠ 0, (4.35)

since E{Xt+h𝜂t} = 0 for h ≠ 0. Similarly from (4.33) we find
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𝜎0 = EX2
t

= E

[∑

s∈

𝛽sXt+s + 𝜂t

] [∑

h∈

𝛽hXt+h + 𝜂t

]

=
∑

s,h∈

𝛽s𝛽h𝜎h−s + 𝜎2
𝜂
.

Since h ≠ 0 for h ∈  , we can simplify the sum over s ∈  using (4.35) to give

𝜎0 = 𝜎
2
𝜂
+

∑

h∈

𝛽h𝜎h = 𝜎
2
𝜂
+

∑

h∈

𝛽h𝜎−h. (4.36)

Symbolically (4.35) and (4.36) can be combined as

𝜎h = (𝛽 ∗ 𝜎)h + 𝜎2
𝜂
𝛿h (4.37)

in terms of the Kronecker delta, 𝛿0 = 1 and 𝛿h = 0 for h ≠ 0. Taking inverse
Fourier transforms in (4.37) yields a spectral equation

fX (𝜔) = 𝛽(𝜔)fX (𝜔) + 𝜎2
𝜂
∕(2𝜋)d

,

which we can solve to give

fX (𝜔) =
𝜎

2
𝜂
∕(2𝜋)d

1 − 𝛽(𝜔)
. (4.38)

Here,
𝛽(𝜔) =

∑

h∈

𝛽h exp(ihT
𝜔) =

∑

h∈

𝛽h cos(hT
𝜔) (4.39)

is real-valued since 𝛽h = 𝛽−h.
Further, the residual random field {𝜂t} has spectral density

f
𝜂
(𝜔) = [1 − 𝛽(𝜔)]2fX (𝜔)

= 𝜎
2
𝜂
[1 − 𝛽(𝜔)]∕(2𝜋)d

.

Thus, the residuals are correlated in a CAR model, in contrast to a SAR model,
where the residuals are uncorrelated.

A sufficient condition for the model (4.31) to specify a valid stationary random
field is that the spectral density (4.38) be bounded, which from (4.39) is true if

𝛽(𝜔) =
∑

h∈

𝛽h cos(𝜔Th) < 1, for all 𝜔 ∈ [−𝜋, 𝜋)d
, (4.40)

and which, in turn, is implied by the simpler condition
∑

h∈

|𝛽h| < 1. (4.41)

It is interesting to note that every stationary SAR model can be given a CAR
representation (Exercise 4.4). However, the converse is not true (Exercise 4.2).
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Example 4.4 (First-order basic CAR model).
For the first-order basic neighborhood =  (1) in Section 4.4, define coefficients
𝛽s by

𝛽s = 𝛽, s ∈  . (4.42)

Provided |𝛽| < 1∕(2d), 𝛽(𝜔) > 0 for all 𝜔 in (4.23). The corresponding CAR model
is called the first-order basic CAR model with spectral density

fCAR-1(𝜔) =
𝜎

2
𝜂
∕(2𝜋)d

1 − 𝛽(𝜔)
=

𝜎
2
𝜂
∕(2𝜋)d

1 − 2𝛽
∑d

𝓁=1 cos h[𝓁]
. (4.43)

Note the difference with the corresponding SAR model. Both involve the same
function in the denominator, but in (4.25) the denominator is squared. That is,

fSAR-1(𝜔) ∝ {fCAR-1(𝜔)}2
. (4.44)

This result will prove useful in the analysis of iterated models (Section 4.6.2) and
in discrete approximations to continuum models (Section 8.8). ◽

4.6.2 Iterated SARs and CARs

Start with coefficients {ds, s ∈ 0} as in (4.22) and Fourier transform d̃(𝜔) as in
(4.23). The convolution of the coefficients

d⊗2
h =

∑

s∈

dh−sds, h ∈ 
(2)

has nonzero entries for h in the second-order neighborhood  (2) defined in
Section 4.4, and has the Fourier transform {d̃(𝜔)}2.

Extending this idea to a k-fold convolution, k > 1, it is possible to define k-fold
SAR and CAR models with spectral densities

fSAR-k(𝜔) ∝ {d̃(𝜔)}−2k
, fCAR-k(𝜔) ∝ {d̃(𝜔)}−k

. (4.45)

In passing note that a SAR model of order k can be viewed as an example of a
CAR model of order 2k.

Example 4.5 Let denote the first-order basic neighborhood in Section 4.4 and
consider the coefficients {dh} defined in (4.24). In d = 2 dimensions, the coeffi-
cients {dh} can be represented graphically by

−𝛽
−𝛽 1 −𝛽

−𝛽
.
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Then, d⊗2 can be represented graphically by

𝛽
2

2𝛽2 −2𝛽 2𝛽2

𝛽
2 −2𝛽 1 + 4𝛽2 −2𝛽 𝛽

2

2𝛽2 −2𝛽 2𝛽2

𝛽
2

.

More generally, the coefficients d⊗k can be used to define a kth-order basic CAR
model with spectral density fCAR-k(𝜔) ∝ {d̃(𝜔)}−k. ◽

4.6.3 Intrinsic CARs

The CAR model (4.31) can also be used to construct intrinsic random fields (Kün-
sch, 1987). In the simplest case, suppose that the coefficients 𝛽s satisfy

𝛽s > 0,
∑

s∈

𝛽s = 1. (4.46)

Then

1 − 𝛽(𝜔) = 1 −
∑

s∈

𝛽s cos(hT
𝜔)

= 1
2
∑

𝛽h(hT
𝜔)2 + O(|𝜔|4) as 𝜔→ 0

= 𝜔
TA𝜔 + O(|𝜔|4), say,

where A = 1
2

∑
h∈

𝛽hhhT . Provided the d × d matrix A is positive definite, with small-

est eigenvalue 𝜆0 and largest eigenvalue 𝜆1, say, with 0 < 𝜆0 ≤ 𝜆1, the spectral
density can be bounded by

c0|𝜔|−2
≤ f (𝜔) ≤ c1|𝜔|−2 as 𝜔→ 0,

where c0 = 𝜎
2
𝜂
∕[(2𝜋)d

𝜆1] and c1 = 𝜎
2
𝜂
∕[(2𝜋)d

𝜆0]. Further, the singularity at 𝜔 = 0
is the only singularity of f (𝜔) for 𝜔 ∈ (−𝜋, 𝜋)d. The integral of f (𝜔) about 𝜔 = 0
behaves like ∫

1
0 𝜌

−2
𝜌

d−1d𝜌, which is infinite in dimensions d = 1,2 and finite for
d ≥ 3. Hence, f (𝜔) defines an intrinsic random field of order 0 in dimensions d =
1,2 and defines a stationary random field in dimensions d ≥ 3.

In particular, in dimensions d ≥ 3, the singularity at 𝜔 = 0 is integrable so that
the resulting random field is stationary, but with long-range correlation. Further,
in view of the identity

Xt − 𝜇 =
∑

s∈

𝛽s(Xt+s − 𝜇) + 𝜂t (4.47)

for all values of 𝜇 ∈ ℝ when (4.46) holds, we see that for d ≥ 3, the CAR repre-
sentation is compatible with any mean value of the random field. Therefore, the
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mean 𝜇 of the random field needs to be specified separately in this case. Thus, for
d ≥ 3, we shall describe this process as a “quasi-intrinsic CAR” or a QICAR (Kent
and Mardia, 1988).

The theoretical details behind CAR models are explored in detail in Georgii
(1988, Chapter 13). In particular, he notes that even in the simplest case with
1 − 𝛽(𝜔) bounded away from 0, the conditional normal distributions given by
(4.31) do not completely specify the means in the joint distribution; it is necessary
to impose a stationarity condition as well. See Exercise 4.6.

4.6.4 CARs on a Lattice Torus

CAR models can be developed quite easily on the lattice torus

T = {t ∈ ℤd ∶ 0 ≤ t[𝓁] ≤ m[𝓁] − 1, 𝓁 = 1, . . . , d} (4.48)

of size |M| = m[1] × · · · × m[d], where M = (m[1], . . . ,m[d]). Thus, T is a rect-
angular region with opposite sides treated as adjacent. The construction is most
straightforward when the neighborhood  is small enough that for all s, t ∈  ,

|s[𝓁] − t[𝓁]| < m[𝓁]∕2, 𝓁 = 1, . . . , d.

A CAR model can be constructed using (4.31) provided t + s is interpreted Mod M
(see Section 2.12.2). From (4.38), the spectral “density” reduces to

fX (𝜔j) =
𝜎

2
𝜂
∕(2𝜋)d

1 − 𝛽(𝜔j)
, (4.49)

where j = (j[1], . . . , j[d]) and the vector 𝜔j has components

𝜔j[𝓁] = 2𝜋j[𝓁]∕m[𝓁], j[𝓁] = 0, . . . ,m[𝓁] − 1, 𝓁 = 1, . . . , d.

Clearly, the values of (4.49) will be finite for all 𝜔j if the spectral density (4.38)
for the corresponding random field on ℤd is bounded. The corresponding ran-
dom field is a circulant version of a stationary random field for which the spectral
“density” is a finite set of numbers equal to (2𝜋)−d times the eigenvalues of the
covariance matrix.

The above construction also makes sense if 𝛽(0) = 1 and 𝛽(𝜔j) < 1 for all other
frequencies. In this case, (4.49) defines a first-order intrinsic CAR; the spectral
mass at frequency 0 is left undefined. However, it does not make sense to define
higher order intrinsic CARs on the lattice torus.

4.6.5 Finite Regions

Let {X(t) ∶ t ∈ ℝd} be a stationary CAR model (4.31) with mean 𝜇. Given a rectan-
gular finite region D ⊂ ℤd of size |M| = m[1] × · · · × m[d] (the same as T in (4.48)
but without the periodic boundary condition), there are several ways to construct
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a version of the CAR model on D. Except for the marginalization approach, these
methods specify a specific form for the precision matrix Ψ and then define the
covariance matrix by inversion, Σ = Ψ−1.

(i) Marginalization. Take the marginal distribution of {Xt ∶ t ∈ D}. This
approach specifies the covariance matrix Σ as a Toeplitz matrix based on
the covariance function 𝜎h (see Section A.10). However, in practice this
approach is computationally cumbersome because Σ will not be sparse and,
in general, the covariance function can only be calculated numerically using
the Fourier inversion formula.

(ii) Conditioning on values outside D. Starting with the stationary random field
{Xt ∶ t ∈ ℝd}, condition on Xt = 𝜇, t ∉ D, to give a (nonstationary) random
field in R. The inverse covariance matrix Ψ is Toeplitz and for large M it is
sparse (see Section A.11). This approach is statistically tractable, but is some-
what unrealistic because the random field is artificially constrained to be
close to 𝜇 near the boundary.

(iii) Conditioning on values on the boundary of D. Split D into two disjoint parts,
the “interior” int(D) and the “boundary” 𝜕(D), where 𝜕(D) consists of a band
of values near the edge of D large enough such that

⋃
t∈int(D)

(t + ) ⊂ D.

In this case, the conditional distribution of {Xt ∶ t ∈ int(D)} given {Xt ∶ t ∉
int(D)} depends just on the observed values in 𝜕(D). Hence, there is no need
to condition on unobserved values of the process.

(iv) Periodic boundary conditions. Regard D = ℤd
M as the lattice torus (Eq. (A.4))

and use the construction in Section 4.6.4 to produce a stationary random
field on the torus. The inverse covariance matrix Ψ is block circulant (Section
A.7.3). The block circulant property means that this approach is computation-
ally tractable, but the imposition of periodic boundary conditions is usually
unrealistic in practice.

(v) Reflection boundary conditions. Reflect the data about each of the edges to
get a region D(2) of size |2M| = 2d|M| = 2m[1] × · · · × 2m[d], and impose a
CAR model with circulant boundary conditions on the enlarged data set. The
precision matrix Ψ(2) is block circulant and so can be easily inverted to give
a block circulant covariance matrix Σ(2). Restricting Σ(2) to the original sites
in D is called the folded circulant approximation. Further details are given in
Section A.11.4.

(vi) Extensions. If the spectral density blows up at the origin, f (𝜔) ∼ c|𝜔|−2 as
𝜔→ 0, then the random field {X(t) ∶ t ∈ ℝd} will be either intrinsic of order
0 (in dimensions d = 1,2) or quasi-intrinsic (dimensions d ≥ 3). The above
constructions can be extended in a natural way to this setting. For example,
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in the marginalization approach (i), if the original random field is intrinsic of
order k ≥ 0, then the marginal random field on D is also intrinsic; hence it is
defined on D only up to an arbitrary polynomial in t of degree k.
For the conditioning approaches (ii) and (iii), the singularity at the origin does
not matter. These approaches give a nonsingular conditional distribution for
t ∈ D or t ∈ int(D), respectively. Note that for approach (ii), this conditional
distribution depends on 𝜇, even though in the intrinsic case the choice of 𝜇
is arbitrary. Hence, this approach is not very satisfactory in the intrinsic case.
For approaches (iv) and (v) based on block circulant matrices, the resulting
random fields can be viewed as determined up to a constant term.

Rue and Held (2005) discuss the numerical issues related to the inversion of
Ψ. In general, the inversion of an |M| × |M| matrix involves O(|M|3) numerical
calculations. However, if Ψ is sparse, then the time can be dramatically reduced.
Further, methods (iv) and (v) involve the inversion of a circulant matrix so that the
fast Fourier transform can be used to reduce the time to O(|M| log |M|).

4.7 Limits of CAR Models Under Fine Lattice Spacing

If the lattice spacing gets small in a CAR model, and the parameters are varied
appropriately, then the Matérn process arises in the limit. This section provides
details of the calculations.

First note what happens to a general stationary lattice random field Xt, t ∈ ℤd,
with spectral density f (𝜔), 𝜔 ∈ (−𝜋, 𝜋)d, if the lattice is rescaled by a factor 𝛿.
Define X (𝛿)(⋅) on the rescaled lattice 𝛿ℤd by

X (𝛿)(𝛿t) = Xt, t ∈ ℤd
.

Then X (𝛿)(⋅) has spectral density

f
𝛿
(𝜔) = 𝛿

df (𝛿𝜔), 𝜔 ∈ (−𝜋∕𝛿, 𝜋∕𝛿)d
.

As 𝛿 gets smaller, the random field is located on a more finely spaced lattice and
the domain of the spectral density gets larger.

To illustrate the limiting procedure, fix an integer k > d∕2 and consider the spec-
tral density of the k-fold iterated CAR model

f (𝜔) =
𝜏

2∕(2𝜋)d

{1 − 𝛽(𝜔)}k
, 𝜔 ∈ (−𝜋, 𝜋)d

,

where

1 − 𝛽(𝜔) = 1 − 2𝛽
d∑

𝓁=1
cos𝜔[𝓁], 0 < 𝛽 < 1∕(2d) (4.50)

is the spectral density for the basic first-order CAR model (Example 4.4).
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In order to get a nondegenerate limit, let 𝛽 and 𝜏2 vary with the lattice spacing
𝛿. In particular, for fixed values of 𝜅2

> 0 and 𝜏2
0 > 0, let

𝛽 = 𝛽(𝛿) = 1
2d

− 𝛿
2
𝜅

2

(2d)2 , 𝜏
2 = 𝜏

2(𝛿) = 𝛿
2k−d(2𝜋)d

𝜏
2
0∕(2d)k

. (4.51)

Then 0 < 𝛽 < 1∕(2d) for small enough 𝛿, and 𝛽 → 1∕(2d) as 𝛿 → 0, where 𝛽 =
1∕(2d) is the value of 𝛽 for the limiting Intrinsic CAR or QICAR model.

Since cos 𝜃 = 1 − 1
2
𝜃

2 + O(𝜃4) as 𝜃 → 0, it follows that for fixed𝜔 ∈ ℝd as 𝛿 → 0,

1 − 𝛽(𝛿𝜔) = 1 − 2d𝛽 + 1
2

2𝛽
∑

(𝛿𝜔[𝓁]2) + O(𝛿4) = 𝛿
2
𝜅

2

2d
+ 𝛿

2|𝜔|2
2d

+ O(𝛿4)

and so the rescaled spectral density becomes

f
𝛿
(𝜔) =

𝛿
d
𝜏

2∕(2𝜋)d

{1 − 𝛽(𝛿𝜔)}k
I[𝜔 ∈ (−𝜋∕𝛿, 𝜋∕𝛿)d]

=
𝛿

2k
𝜏

2
0∕(2d)k

{𝛿2𝜅2 + 𝛿2|𝜔|2 + O(𝛿4)}k∕(2d)k
I[𝜔 ∈ (−𝜋∕𝛿, 𝜋∕𝛿)d]

→
𝜏

2
0{

𝜅2 + |𝜔|2}k
, 𝜔 ∈ ℝd

,

the spectral density of the Matérn model of index 𝜂 = k − d∕2; see Section 2.6.
This argument remains valid if the integer power k > d∕2 is allowed to be

a real power 𝛾 > d∕2 in the iterated CAR model. Further, a similar result
holds if 𝛽 = 1∕(2d) so that 𝜅2 = 0. In this case, the CAR model is intrinsic (or
quasi-intrinsic if d ≥ 3) for all 𝛿 and the limiting process is a self-similar process
of index 𝜂; see Section 3.10.

4.8 Unilateral Autoregressions for Lattice Random
Fields

4.8.1 Half-spaces in ℤd

In time series, an important representation of a stationary process is given by a
UAR, in which the present value of the process is decomposed as a linear combi-
nation of “past” values of the process, plus an “innovation.” In higher dimensions,
there is no completely natural definition of “past,” but using a somewhat artifi-
cial construction, a complete generalization of the one-dimensional theory can be
obtained.

Definition 4.8.1 A subset  ⊂ ℤd is called a “half-space” if the following con-
ditions hold:
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Quadrant past

(a)
t[1]

t[2
]

X

X

X

X

X
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X

X

O

Lexicographic past

(b)
t[1]

t[2
]

X

X

X

X

X

X

X

X

X

X

X

X

O

Weak past

(c)
t[1]

t[2
]

X

X

X

X

X

X

X

X

X

X

X

X

O

X

X

X

X

Figure 4.2 Three notions of “past” of the origin in ℤ2: (a) quadrant past (−),
(b) lexicographic past (−), and (c) weak past (−). In each plot, ○ denotes the origin,
× denotes a site in the past, and • denotes a site in the future.

(a) for s ≠ 0, s ∈  if and only if − s ∉  (anti-symmetry)
(b) 0 ∉ 

(c) if s1, s2 ∈ , then s1 + s2 ∈  (closure under addition).

Thus, ∪ (−) ∪ {0} = ℤd and ∩ (−) = ∅. Write0 =  ∪ {0}. The “past”
of a site t can be defined as the collection of sites t − = {t − s ∈ ℤd ∶ s ∈ }. Of
course, the notion of “past” here depends on the choice of .

An important choice of  is the lexicographic half-space

 = {s ∈ ℤd ∶ s ≠ 0 and the first nonzero component s[𝓁] of s is positive}.
(4.52)

In d = 1 dimension,  reduces to positive integers. In d = 2 dimensions,

 = {s ∈ ℤ2 ∶ s[1] > 0, or s[1] = 0 and s[2] > 0}. (4.53)

See Figure 4.2(b) for an illustration of −. The half-space  gives rise to lexico-
graphic order on ℤd, which is the same as the order used for words in a dictionary.

4.8.2 Unilateral Models

Next, let {Xt} be a zero-mean Gaussian stationary random field on ℤd. Given a
choice of half-space , define the “innovation random field” {𝜀t} by

𝜀t = Xt − E{Xt|Xt−s ∶ s ∈ }.

It is easy to check that {𝜀t} is a zero-mean process, E(𝜀t) = 0, and has the following
properties:

(a) 𝜀t depends on {Xt−s ∶ s ∈ 0}.
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(b) E{𝜀s𝜀t} = 0 for s ≠ t, so that {𝜀t} is a white noise stationary random field.
(c) E{𝜀tXu} = 0 for t − u ∈ , so that the innovation 𝜀t at site t is independent of

the past of the random field {Xt}.
(d) E{𝜀tXt} = var{𝜀t}.

Indeed, properties (a)–(d) characterize the innovation random field. Intuitively,
𝜀t represents the “new” information in Xt not contained in the “past” {Xt−s ∶ s ∈
}.

Theorem 4.8.1 Let {Xt} be a Gaussian stationary random field on ℤd with spec-
tral density f (𝜔), 𝜔 ∈ (−𝜋, 𝜋)d. Given a half-space, set0 =  ∪ {0}, and let {𝜀t}
denote the innovation random field. Then, the following properties hold.

(a) The variance of 𝜀t, 𝜎
2
𝜀
, say, is given by

𝜎
2
𝜀
= (2𝜋)d exp

{
(2𝜋)−d

∫(−𝜋,𝜋)d
log f (𝜔) d𝜔

}
. (4.54)

(b) If 𝜎2
𝜀
> 0, then {Xt} has a unilateral infinite moving average representation

Xt =
∑

s∈0

bs 𝜀t−s, t ∈ ℤd
, (4.55)

where b0 = 1,
∑

b2
s < ∞.

(c) If ∫ f −1(𝜔) d𝜔 < ∞, then 𝜎2
𝜀
> 0 and there is also a unilateral autoregression

representation
𝜀t =

∑
s∈0

as Xt−s, t ∈ ℤd
, (4.56)

where a0 = 1,
∑

a2
s <∞.

Proof: A complete proof is beyond the scope of this book; see Helson and
Lowdenslager (1958) for more details. For our purposes, we make the simplifying
assumption that log f (𝜔) has an absolutely convergent Fourier expansion

log f (𝜔) =
∑

s∈ℤd

ds exp{isT
𝜔} (4.57)

with
∑|ds| < ∞. Note that ds = d−s since f (𝜔) = f (−𝜔). This simplifying assump-

tion implies log f (𝜔) is a bounded continuous function; hence so are f (𝜔) and
1∕f (𝜔). In particular, ∫ f −1

< ∞ and ∫ log f > −∞. Also note that by the Fourier
inversion formula,

d0 = (2𝜋)−d
∫(−𝜋,𝜋)d

log f (𝜔) d𝜔. (4.58)

Although it is often straightforward in principle to establish the existence of an
expansion (4.57), it may be very difficult in dimensions d ≥ 2 to explicitly calculate
the coefficients.
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Define functions with one-sided Fourier expansions by

g1(𝜔) =
∑
s∈

ds exp{isT
𝜔}, g2(𝜔) =

∑
s∈−

ds exp{isT
𝜔}, (4.59)

so that log f (𝜔) = d0 + g1(𝜔) + g2(𝜔) and g2(𝜔) = g1(𝜔) is the complex conjugate of
g1(𝜔). Setting f+(𝜔) = exp{g1(𝜔)}, f−(𝜔) = exp{−g1(𝜔)} = 1∕f+(𝜔), we see that

f (𝜔) = ed0 |f+(𝜔)|2 = ed0 |f−(𝜔)|−2
. (4.60)

Because
∑|ds| < ∞ and 0 ∉ , we can evaluate the power series expansion for

exp{±g1(𝜔)} to give one-sided Fourier expansions for f±(𝜔)

f+(𝜔) =
∑

s∈0

bs exp{isT
𝜔}, f−(𝜔) =

∑
s∈0

as exp{isT
𝜔}, say, (4.61)

where the coefficients satisfy a0 = b0 = 1,
∑|as| < ∞,

∑|bs| <∞.
Define a random field {Yt} by

Yt =
∑

s∈0

asXt−s,

with spectral density fY (𝜔) = f (𝜔)|f−(𝜔)|2 = ed0 , using (4.60). Hence, {Yt} is a
white noise process with variance (2𝜋)ded0 . Since f+(𝜔)f−(𝜔) ≡ 1, it follows that

Xt =
∑

s∈0

bs Yt−s.

Hence, the conclusion of the theorem follows for the white noise process {Yt}.
Our last task is to identify {Yt} with the innovation process {𝜀t}. This is straight-

forward. Due to the invertibility of the relationship between {Yt}and {Xt}, we have

𝜀t = Xt − E[Xt|Xt−s ∶ s ∈ ]

= Xt − E[Xt|Ys ∶ s ∈ ]

= Xt − E

[∑
s∈0

bs Yt−s|Ys′ ∶ s′ ∈ 

]

= Xt −
∑
s∈

bs Yt−s = Yt,

since for the white noise {Yt}, E[Yt|Yt−s ∶ s ∈ ] = 0. Thus, the theorem is
proved. ◽

From the UAR representation (4.56), we obtain

E[Xt|Xt−s ∶ s ∈ ] = −
∑
s∈

as Xt−s. (4.62)
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Indeed, (4.62) is often used as a starting point to define a stationary random field.
However, a specified set of square-integrable coefficients {as, s ∈ 0} will define
a valid UAR representation, provided

[∑
s∈0

as exp{i𝜔Ts}

]−1

= [f−(𝜔)]−1
, (4.63)

is square-integrable; see condition (c) in Theorem 4.8.1. A simple sufficient con-
dition to ensure (4.63) is ∑

s∈
|as| < a0 = 1. (4.64)

Of course, it should be remembered that the values of the coefficients {as} depend
on the particular half-space used.

4.8.3 Quadrant Autoregressions

The upper quadrant in ℤd, defined by

 = {t ∈ ℤd ∶ t ≠ 0 and t[𝓁] ≥ 0, 𝓁 = 1, . . . , d}, (4.65)

is a subset of; see Figure 4.2c. Set0 =  ∪ {0}. A UAR with respect to is called
quadrant autoregression (QAR) when the coefficients as in (4.62) vanish for s ∉ ;
that is

E[Xt|Xt−s, s ∈ ] = −
∑
s∈

as Xt−s. (4.66)

In this case, a less restrictive sufficient condition than (4.64) can be given on the
coefficients {as} to ensure a valid UAR representation. This condition generalizes
the stability condition usually used in time series.

Define a function of the complex variables z = (z[𝓁], 𝓁 = 1, . . . , d) by

A(z) =
∑
s∈0

aszs
, a0 = 1. (4.67)

If the power series for A(z) converges for {z ∶ |z[𝓁]| < 1 + 𝜅, 𝓁 = 1, . . . , d}, for
some 𝜅 > 0 and if A(z) ≠ 0 in this region, then the coefficients {as, s ∈ 0} define
a valid UAR representation. Here zs is shorthand for z[1]s[1] · · · z[d]s[d]. The condi-
tioning property (4.66) can be strengthened to

E[Xt|Xt−s ∶ s ∈ ] = −
∑
s∈

asXt−s, (4.68)

where
 = {s ∈ ℤd ∶ s[𝓁] ≥ 0 for some 𝓁 = 1, . . . , d, and s ≠ 0}

(see Exercise 4.8). Here (−) can be viewed as the “big past” of the origin, in con-
trast to the quadrant or “little” past (−) and the lexicographic past (−); see
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Figure 4.2 for an illustration in d = 2 dimensions. Thus, for a QAR, the regres-
sion of Xt on either the “big” past or the “lexicographic” past yields terms only in
the “quadrant” past.

The class of QAR models is attractive from a computational point of view, but
feels unnatural in practice because of the arbitrary notion of “past.” Further, this
class of models lacks symmetry; replacing t[𝓁] by −t[𝓁] for a proper subset of the
components 𝓁 = 1, . . . , d, changes the class of QAR models, even when an infinite
number of coefficients are allowed (Exercise 4.9).

Example 4.6 In practice, QAR models are most useful when the number of
terms in (4.68) is finite. Let  ⊂  denote a finite one-sided neighborhood of the
origin. Perhaps the simplest example in Z2 is the 3-site neighborhood

 = {(1,0), (0,1), (1,1)},

yielding the model

E[Xt|Xt−s, s ∈ ] = a Xt−(1,0) + b Xt−(0,1) + c Xt−(1,1).

If c = −ab, then the model reduces to a separable AR(1) × AR(1) model (Martin,
1979). See Exercise 4.10. ◽

4.9 Markov Random Fields (MRFs)

4.9.1 The Spatial Markov Property

The models of Sections 4.6–4.8 involve the conditional expectation of the Gaussian
stationary random field {Xt} at one site given its values at certain other sites. In
this section, we extend the principles behind the CAR models of Section 4.6 to
non-Gaussian distributions and to allow other discrete index spaces. Indeed, the
CAR model in Section 4.6.1 is an example of a Gaussian Markov random field
(GMRF).

In Section 4.6, it was simplest to work with random fields on the infinite lattice
ℤd in order to use spectral representations. In contrast, it is simplest here to replace
ℤd by a finite domain T. Recall that a random field {Xt ∶ t ∈ T} is just a collection
of random variables defined on T, where the elements of T are called sites. In many
examples, T will be a subset of ℤd, but this is not necessary.

Let denote the state space of each random variable Xt. In previous sections, we
used  = ℝ, the real line. Here,  will often be discrete. We shall use lowercase
letters, e.g. xt, to denote possible values of Xt. For discrete  , a formula such as
pt(xt) denotes the probability P(Xt = xt), whereas for continuous  , pt(xt) stands
for probability density. Also for convenience we shall suppose that  contains a
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state labeled “0”. This condition can always be achieved by relabeling the states if
necessary.

For each t ∈ T let  (t) ⊂ T denote a “neighborhood” of t (by convention
t ∉  (t)). The neighborhood structure is assumed to be balanced; that is, s is a
neighbor of t if and only if t is a neighbor of s (s ∈  (t) if and only if t ∈  (s) for
all s, t ∈ T).

Example 4.7 Let T denote a finite rectangular region in ℤd. Let  ⊂ ℤd be
any finite symmetric neighborhood of the origin; that is, (i) 0 ∉  and (ii)
t ∈  if and only if − t ∈  . Then set

 (t) = (t + ) ∩ T = {t + s ∶ s ∈  and t + s ∈ T}

to be the translate of  with obvious adjustments near the boundary of T. Com-
mon choices for  were given in Section 4.4. ◽

Some concise notation will be very useful in this section. Let XT denote the full
vector of values (Xt, t ∈ T). Recall T is assumed finite. More generally, for any
nonempty subset Λ ⊂ T, let XΛ denote the subvector of values (Xt, t ∈ Λ), with |Λ|
equal to the number of sites in Λ. Let pΛ(xΛ) denote the joint probability of XΛ.
Also, define xΛT by

xΛt = xt, t ∈ Λ; xΛt = 0, t ∉ Λ (4.69)

for Λ ⊂ T. Let 0T denote the vector, all of whose components are 0.
Throughout this section, we limit our attention to joint probability distributions

satisfying the “positivity” condition

pT(xT) > 0 for all xT ∈ 
T
. (4.70)

Definition 4.9.1 A random field {Xt ∶ t ∈ T} is said to be a MRF (with respect
to the neighborhood structure { (t)}) if the full conditional probabilities satisfy
spatial Markov property

pt(xt|x∖t) = pt(xt|xs ∶ s ∈  (t)), (4.71)

where x∖t = {xs ∶ s ≠ t}. That is the conditional probability at site t, given the val-
ues of the random field at all other sites, depends only on the neighboring sites in
 (t).

In the Gaussian setting, the spatial Markov property was used to define the CAR
models in Section 4.6.

The full conditional probabilities play a fundamental role here. The following
background result shows that the full conditional probabilities determine the joint
probabilities, whether or not the Markov assumption holds.
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Theorem 4.9.1 Brook Expansion (Brook, 1964). Let T be a finite index set of
sites, with size |T| = n, n ≥ 2, and let pT(xT) be a joint probability function (discrete
case) or probability density (continuous case) on a state space 𝜒T. Assume the posi-
tivity condition (4.70). Then the full conditional probabilities

pt(xt|x∖t), t ∈ T, (4.72)

determine the joint probabilities pT(xT).

Proof: Label the sites t = 1, . . . ,n say, in some arbitrary order. Given two vectors
xT and yT , let

At =
pt(xt|x1, . . . , xt−1, yt+1, . . . , yn)
pt(yt|x1, . . . , xt−1, yt+1, . . . , yn)

, t = 1, . . . ,n.

Thus, At is a ratio of two full conditional probabilities at site t given the rest of the
sites. These conditional probabilities are evaluated at xt and yt, respectively, and
the common conditioning values are based on the components of xT for sites with
index less than t and the components of yT for sites with index greater than t. The
positivity condition (4.70) is needed to ensure that the conditional probabilities
are nonzero.

For example, consider An = pn(xn|x1, . . . , xn−1)∕pn(yn|x1, . . . , xn−1). Write
pT(xT) = p(xT). The definition of conditional probability implies

p(xT) = pn(xn|x1, . . . , xn−1)pT∖{n}(x1, . . . , xn−1)

p(x1, . . . , xn−1, yn) = pn(yn|x1, . . . , xn−1)pT∖{n}(x1, . . . , xn−1)

and combining these equations yields

pT(xT) = An pT(x1, . . . , xn−1, yn).

Proceeding by induction it follows that

pT(xT) = An pT(x1, . . . , xn−1, yn)

= AnAn−1 pT(x1, . . . , xn−2, yn−1, yn)

= · · · =

( n∏
t=1

At

)
pT(yT). (4.73)

Hence, the ratios of joint probabilities pT(xT)∕pT(yT) depend only on the full
conditional probabilities. Thus, the joint probabilities are determined up to a mul-
tiplicative constant. Further, this constant is determined since the probabilities
must add or integrate to 1. ◽

In many applications, the probability function p(xT) is not specified directly.
Instead, the starting point is a function Q(xT), which determines p(xT) through
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the equation
pT(xT) = C−1 exp{Q(xT)}, (4.74)

where the normalization constant is given by

C =
∑

exp{Q(xT)} (4.75)

(or a multivariate integral if  is a continuous space), and the sum is over all
possible values of xT . In this approach, Q(⋅) is allowed to be an arbitrary real-valued
function such that (4.75) is finite.

For a given probability function p(xT), the function Q(⋅) is determined up to an
additive constant. In statistical mechanics, −Q(⋅) is known as the “potential func-
tion” (as a function of xT), so Q(⋅) can be called the “negative potential function.”
Further, C is known as the “partition function” (as a function of any parameters
present in the distribution of xT).

As it stands, there is too much flexibility in the choice of the function Q(xT) to
produce tractable statistical models. The specification of useful choices for Q(xT)
will occupy the rest of this section. The first step is to give a general “subset expan-
sion” for Q(xT). The second step is to introduce the concept of a neighborhood to
remove most of the terms in this expansion.

4.9.2 The Subset Expansion of the Negative Potential Function

In order to introduce constraints on the function Q(xT), the following “subset
expansion” is useful. Pick out an arbitrary element of the state space 𝜒 and label
it by the value 0.

Theorem 4.9.2 (Subset expansion). Any real-valued finite function Q(xT) can
be written uniquely in a subset expansion of the form

Q(xT) = const +
∑
Λ⊂T

GΛ(xΛ), (4.76)

where the summation is over all nonempty subsets Λ of T. Each function GΛ(⋅) is
allowed to depend only on xΛ and is required to satisfy

GΛ(xΛ) = 0 if xt = 0, for at least one t ∈ Λ. (4.77)

Proof: Define GΛ(⋅) by

GΛ(xΛ) =
∑
Γ⊂Λ

(−1)|Λ|−|Γ| [Q(xΓT) − Q(0T)], (4.78)

where the sum is over all nonempty subsets Γ of Λ, and the notation xΓT is defined
in (4.69). Clearly, the right-hand side of (4.78) depends just on xΛ. All that remains
is to verify (4.77), (4.76) and uniqueness, which we do in that order.



�

� �

�

144 4 Autoregression and Related Models

To verify (4.77), let Λ be a subset of T, let t ∈ Λ be a site in Λ, and suppose xt = 0.
If we split Λ into those subsets containing or not containing t, we get

GΛ(xΛ) =
∑

Δ⊂Λ∖t
{(−1)|Λ|−|Δ| [Q(xΔT ) − Q(0T)] + (−1)|Λ|−|Δ∪{t}| [Q(xΔ∪{t}

T ) − Q(0T)]}.

(4.79)
Since xΔT = xΔ∪{t}

T if xt = 0, all the terms in this expression vanish, so GΛ(xΛ) = 0.
To verify (4.76) note that

∑
Λ⊂T

GΛ(xΛ) =
∑
Λ⊂T

∑
Γ⊂Λ

(−1)|Λ|−|Γ|
[
Q(xΓT) − Q(0T)

]

=
∑
Γ⊂T

[
Q(xΓT) − Q(0T)

]∑
Λ⊃Γ

(−1)|Λ|−|Γ|. (4.80)

For fixed Γ, let m = |T| − |Γ| ≥ 0. Then given a value of k, 0 ≤ k ≤ m, there are(
m
k

)
possible subsets Λ in this summation with k = |Λ| − |Γ|. Thus

∑
Λ⊃Γ

(−1)|Λ−Γ| =
m∑

k=0
(−1)k

(
m
k

)
= 0 if m > 0

= 1 if m = 0,

since this is the binomial expansion of (1 − 1)m. Hence, all the terms in (4.80) van-
ish except for Γ = T. Thus,

∑
Λ⊂T

GΛ(xΛ) = Q(xT) − Q(0T)

as required. This argument is a variant of the familiar inclusion–exclusion princi-
ple.

Finally, to prove uniqueness we use induction. If xT = x{t}
T is nonzero for at most

one site t, then the right-hand side of (4.76) reduces to a constant plus G{t}(xt), a
term based on a singleton subset, so that

G{t}(xt) = G{t}(xt) − G{t}(0) = Q(xT) − Q(0T),

a special case of (4.78). Similarly, for a doubleton subset {s, t}, if xT = x{s,t}
T , the

right-hand side of (4.76) reduces to terms involving the singleton subsets {s}, {t}
and the doubleton subset {s, t}. Hence, we can define G{s,t}(x{s,t}) in terms of
known quantities, which again reduces to a special case of (4.78). By successively
increasing the size of the subsets by one at each stage, we can eventually define
GΛ(xΛ) for all subsets Λ. ◽

If the state space  is finite, then a valid joint probability distribution pT(xT) is
specified whenever the GΛ(⋅) are arbitrary functions satisfying (4.77). However, if
 is infinite (or is a continuous space), then the GΛ must be restricted so that the
normalizing constant is finite, C <∞ in (4.75).
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4.9.3 Characterization of Markov Random Fields in Terms of Cliques

Given a neighborhood structure { (t)} on T, a nonempty subset Λ ⊂ T is known
as a “clique” if all the sites in Λ are neighbors of one another. By convention sin-
gleton sets, e.g. {t}, are also regarded as cliques. Cliques for the first-order basic
neighborhood and the first-order full neighborhood in d = 2 dimensions are illus-
trated in Figures 4.3 and 4.4. See Exercise 4.13 for verification.

Equations (4.74)–(4.76) can be rewritten in the form

log{pt(xt|x∖t)∕pt(0|x∖t)} =
∑

Λ⊂T∶t∈Λ
GΛ(xΛ). (4.81)

To verify (4.81), note that the ratio of conditional probabilities is the same as the
ratio of joint probabilities since the conditioning sets are the same. After expanding
the log ratio of joint probability functions using (4.76), many of the terms either
vanish or cancel to get (4.81). For more details, see Exercise 4.14.

Next, we show that only the subsets corresponding to cliques need to be consid-
ered for an MRF.

Theorem 4.9.3 (Hammersley–Clifford Theorem; see Besag (1974) and
Clifford (1990)). Consider a random field on a state space 𝜒T satisfying the
positivity constraint (4.70). Let Q(xT) denote the negative potential function in (4.74)
with subset expansion (4.76). Let { (t)} be a neighborhood structure on T. Then,
the random field is a MRF with respect to this neighborhood structure if and only if

GΛ(⋅) = 0 whenever Λ is not a clique. (4.82)

First−order basic nbhd

(a)

O X

X

X

X

Types of clique

(b)

X XX

X

Figure 4.3 (a) First-order basic neighborhood (nbhd) of the origin ○ in d = 2
dimensions. Neighbors of the origin are indicated by ×. (b) Two types of clique in addition
to singleton cliques: horizontal and vertical edges.
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First−order full nbhd

(a)

O X

X

X

X

X

X

X

X

Types of clique

(b)

X X

X

XX

X

X X

X

XX

X

X X

XXX X

X

X

Figure 4.4 (a) First-order full neighborhood (nbhd) of the origin ○ in d = 2 dimensions.
Neighbors of the origin are indicated by ×. (b) Seven types of clique in addition to
singleton cliques: horizontal and vertical edges, four shapes of triangle and a square.

Proof: To verify this theorem, suppose first that (4.82) holds. Let u denote a
site that is not a neighbor of t. Then, u ∉ Λ for any subset Λ appearing on the
right-hand side of (4.81) for which GΛ(xΛ) ≠ 0. Therefore, (4.81), and hence the
conditional probability of xt given x∖t, does not depend on xu. Hence, the random
field is a MRF.

Conversely, suppose that the distribution of xT forms a MRF, and consider sub-
sets Λ of T that are not cliques. We shall carry out induction on the size of Λ.

The smallest possible size is |Λ| = 2. Thus, Λ contains two sites t and u, say,
which are not neighbors. By the MRF property, the left-hand side of (4.81) cannot
depend on xu.

Let xT be a vector for which xT = x{t,u}
T , so that all but two of its elements are 0.

The right-hand side of (4.81) reduces to two possibly nonzero terms, G{t}(xt) +
G{t,u}(x{t,u}). However, since this expression cannot depend on xu, it follows after
setting xu = 0 that G{t,u}(⋅) ≡ 0. Thus, the only nonzero term involves the singleton
clique {t}.

Next, consider a nonclique set Λ of size |Λ| = m, m ≥ 3. Let t and u be two
sites in Λ that are not neighbors, and consider a vector xT for which xT = xΛT .
The right-hand side of (4.81) reduces to a sum of terms involving sets Γ for which
{t} ⊂ Γ ⊂ Λ. If |Γ| < m and Γ is not a clique, then GΓ(⋅) ≡ 0 by induction. Thus,
GΛ(⋅) is the only remaining term on the right-hand side of (4.81) depending on xu.
However, since the left-hand side of (4.81) does not depend on xu, neither does
the right-hand side, and so, after setting xu = 0, GΛ(⋅) ≡ 0. Thus, the proof is com-
pleted. ◽
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Useful subclasses of MRFs can be obtained by limiting the level of interaction
in (4.76) under the restrictions (4.82). The most extreme restriction prohibits any
interaction; that is,

GΛ(⋅) ≡ 0, for all |Λ| ≥ 2.

In this case, the values of Xt at different sites are independent.
A more interesting class of models allows pairwise interaction and is studied in

Section 4.9.4.

4.9.4 Auto-models

For statistical purposes, Besag (1974) proposed a parametric family of MRF mod-
els called “auto-models.” In time series, an “autoregression” involves the regres-
sion of a random variable at time t on its past values; in the spatial setting, an
“auto-model” involves the regression of a random variable at site t on its values at
all other sites. In the Gaussian case, auto-models are the same as CAR models, but
restricted to a finite set of sites T.

Auto-models are characterized by the properties that (i) the conditional distri-
bution of Xt|X∖t forms an exponential family, and (ii) only pairwise interactions
are involved, so that

GΛ(⋅) ≡ 0, for all |Λ| ≥ 3.

Here are some examples.

1. Auto-logistic model. This is a model for binary data,  = {0,1}. Let

Q(xT) =
∑
t∈T
𝛼t xt +

∑
t∈T

∑

s∈ (t)

𝛽st xs xt, (4.83)

where 𝛽st = 𝛽ts for all s, t ∈ T. Thus, the conditional probability pt =
P(Xt = 1|X∖t = x∖t) is modeled by

logit pt = log{pt∕(1 − pt)} = 𝛼t +
∑

s∈ (t)

𝛽st xs (4.84)

(Exercise 4.15). In practice, we will often assume 𝛼t does not depend on t, and,
when T ⊂ ℤd, that 𝛽st depends only on t − s.

2. Auto-binomial model. Let  = {0, . . . ,m} and set

Q(xT) =
∑

t

[
𝛼txt + log

(
m
xt

)]
+
∑

t

∑

s∈ (t)

𝛽st xs xt.

Thus, Xt given X∖t = x∖t follows a binomial distribution, B(m, pt), where pt is
again given by (4.84).
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3. Auto-normal model. Let  = ℝ and set

Q(xT) = − 1
2𝜎2

𝜂

{∑
t

x2
t − 2

∑
t

∑

s∈ (t)

𝛽stxsxt

}
. (4.85)

Use boldface to denote the random vector XT with a possible realization xT .
Then, XT follows a multivariate normal distribution. If T ⊂ ℤd is a rectangular
region and 𝛽st depends only on s − t, say, does not depend on t, then (4.85) is an
example of the CAR model on ℤd of Section 4.6, with xt conditioned to equal 0
for sites t outside T (and identifying 𝛽st here with 𝛽s−t in (4.31)). Equation (4.85)
can be written in matrix form as

Q(xT) = − 1
2𝜎2

𝜂

{
xT

TBxT
}
,

where B is a |T| × |T| matrix of with elements

btt = 1, bst = bts = −𝛽st, s ∈  (t).

Note that 𝜎2
𝜂
B−1 is the covariance matrix of XT and that the parameters 𝛽st must

be chosen so that B is strictly positive definite. Sufficient conditions for strict pos-
itive definiteness were discussed in Section 4.6. Mardia (1988) has given an exten-
sion to the multivariate case. An auto-normal model is also called a GMRF and
the multivariate version is termed the multivariate Gaussian Markov random field
(MGMRF); for a broader review, we refer to Rue and Held (2010).

Also, note that 𝜎−2
𝜂

B, the inverse covariance matrix of XT , also known as the pre-
cision matrix, is sparse: bst = 0 unless s = t or s and t are neighbors. This property
can be contrasted with a finite range covariance scheme for which the covariance
matrix itself will be sparse.

Lastly, we comment briefly on the construction of MRFs on an infinite domain,
e.g. T = ℤd. In this case, when the interaction parameters are sufficiently large it
sometimes happens that the conditional probabilities (4.71) do not provide enough
information to completely specify the joint distribution of the random field. A
famous example is the Ising model. This is an auto-logistic model on ℤd based
on a first-order neighborhood. In this case, for d ≥ 2, there is more than joint dis-
tribution for the random field on ℤd, which is compatible with the conditional
distributions. See, e.g., Georgii (1988, Section 6.2) for more details.

This situation is somewhat analogous to the attempt to construct an intrinsic
CAR or QICAR on all of ℤd as in Section 4.6 with coefficients as > 0 adding
to 1; see (4.47). When d = 1 or 2, there is a unique intrinsic Gaussian random
field with the required conditional probabilities. However, when d ≥ 3, there
exist many Gaussian stationary random fields with the required conditional
distributions (and with long-range dependence). The mean of the random field
is not determined by the conditional probabilities in this case and needs to be
specified separately.
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4.10 Markov Mesh Models

The QAR Gaussian models of Section 4.8 allow autoregressive dependence on
the “quadrant” past t − of a site t. In this section, we extend these models to
a non-Gaussian setting, but limit our attention to a finite domain T = {t ∈ ℤd ∶
1 ≤ t[𝓁] ≤ m[𝓁], 𝓁 = 1, . . . , d} of size |T| = m[1] · · ·m[d]. The resulting models
are known as Markov mesh models.

Given a site t ∈ T, let t = (t −) ∩ T denote the portion of the quadrant past
lying in T. Markov mesh models are built from a set of (discrete or continuous)
conditional probabilities densities

{pt(xt|xt
), t ∈ T}.

Note the notation differs from Section 4.9. Here, pt(⋅|⋅) denotes the conditional
density at site t given the quadrant past; there pt(⋅|⋅) denoted the conditional den-
sity at site t given the values of the random field at all other sites.

Example 4.8 Let d = 2, let  = {0,1}, and set

pt(xt = 1|x
t
) = ea∕(ea + 1),

where a depends on the three values of the process to the left of t, below t, and
diagonally to the lower left of t as follows:

a = 𝛼(xt−(1,0) + xt−(0,1) + xt−(1,1)), if t[1] > 1, t[2] > 1,

a = 𝛽xt−(1,0), if t[1] > 1, t[2] = 1,

a = 𝛽xt−(0,1), if t[1] = 1, t[2] > 1,

a = 𝛾, if t[1] = 1, t[2] = 1.

The last three lines give a modified definition of a when t lies on the left or lower
boundary of T. Thus, the model contains three parameters that may be taken as
equal or different. ◽

Once these conditional probabilities have been specified, they can be combined
together to define a joint probability on T by

p(xT) =
∏
t∈T

pt(xt|xt
) (4.86)

4.10.1 Validity

To confirm that (4.86) is a valid density, it is necessary to check that it sums to 1.
List the sites t in lexicographic order using the half-space  in (4.52), yielding a
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list {t1, t2, . . . , tn}, say, where n = |T|. Note that  ⊂ , so that we can define a
conditional probability with a larger conditioning set by setting

pt(xt|xt
) = pt(xt|xt

),

where t = (t −) ∩ T. Then, (4.86) represents the usual decomposition of a
joint probability of a vector x = (x1, . . . , xn) in terms of a product of conditional
probabilities,

p(x) =
n∏

j=1
p1(x1)p2(x2|x1)p3(x3|x1, x2) · · · pn(xn|x1, . . . , xn−1).

If each of the conditional probabilities sums to 1, so does the joint probability; just
sum sequentially over the possible values of xn, . . . , x1.

4.10.2 Marginalization

Markov mesh models have a convenient marginalization property. Let

T′ = {t ∈ ℤd ∶ 1 ≤ t[𝓁] ≤ m[𝓁]′, 𝓁 = 1, . . . , d}

with m[𝓁]′ ≤ m[𝓁],𝓁 = 1, . . . , d be a subregion of T with the same lower corner
as T. Then the marginal joint probability density of xT′ is given by (4.86) but with
the product taken over t ∈ T′ rather than t ∈ T. The proof is similar to that given
in the above paragraph. Just sum over the possible values of xt sequentially for the
sites t ∈ T∖T′ listed in reverse lexicographic order.

Note that the marginal density over T′ does not depend on the size of the origi-
nal domain T provided T′

⊂ T. Thus, the original domain can be extended to the
infinite quadrant {t ∈ ℤd ∶ t[𝓁] ≥ 1, 𝓁 = 1, . . . , d}.

4.10.3 Markov Random Fields

A Markov mesh model is a special case of a MRF on a finite region. Recall that
p(xt|x∖t) can be found by looking at the joint density (4.86), treating factors that
do not depend on xt as constant, and rescaling what remains to sum to 1 over xt.
Thus,

p(xt|x∖t) ∝ pt(xt|xt
)
∏

s∶ t∈s

ps(xs|xs
). (4.87)

In other words, the distribution of xt given x∖t depends on the sites {s ∶ s ∈
t or t ∈ s}.

Example 4.9 Consider the Gaussian Markov mesh model with

xt|xt
∼ N(axt−(1,0) + bxt−(0,1) + cxt−(1,1), 𝜎

2)
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for interior sites t. Then after combining the linear and quadratic terms involving
xt in the exponents of the four factors in (4.87), we find

xt|x∖t ∼ N
({

(a − bc)(xt+(1,0) + xt−(1,0)) + (b − ac)(xt+(0,1) + xt−(0,1))
+ c(xt+(1,1) + xt−(1,1)) − ab(xt+(1,−1) + xt+(−1,1))

}
∕𝛼, 𝜎2∕𝛼2)

,
(4.88)

where 𝛼2 = 1 + a2 + b2 + c2, so that this random field is a special case of a CAR
model with neighborhood  (max ,1) (See Exercise 4.16.). Another example based
on logistic regression is given in Exercise 4.17. ◽

4.10.4 Usefulness

Markov mesh models are particularly convenient because it is straightforward
to write down the joint density. They were originally developed by Abend et al.
(1965), as a tractable generalization of a one-dimensional Markov chain. How-
ever, in the Gaussian case, these models have been, to some extent, superseded by
CAR models and the approximate methods to deal with them on finite regions in
Section 4.6.5. In general, in dimensions d > 1, the set of Markov mesh models is
strictly smaller than the set of MRFs (Besag, 1972).

Exercises

4.1 (Tower rule for conditional expectations). Let (U,V1,V2, . . . ,Vn) denote
a collection of jointly distributed random variables. The notation
E[U|𝑣1, . . . , 𝑣n] denote the expected value of U conditional on (V1, . . . ,Vn)
taking the values (𝑣1, . . . , 𝑣n). The notation E[U|V1, . . . ,Vn] = W , say,
denotes this conditional expectation, treated as a random variable
depending on (V1, . . . ,Vn). Prove the following two important properties
of W .
(a) E[W |V1, . . . ,Vn] = W , since W is constant given (V1, . . . ,Vn).
(b) E{E[W |V1, . . . ,Vn]} = E[W] = E[U], that is, the expectation of a con-

ditional expectation is the same as the original expectation. This result
for expectation is sometimes known as the Tower law.

4.2 Consider the following two autoregressions in one dimension:
(i) 6Xt − 5Xt−1 + Xt−2 = 𝜀t,

(ii) 2Xt − 7Xt−1 + 3Xt−2 = 𝜀t,
where in each case {𝜀t} is a white noise process with mean 0, variance 1.
(a) Show that the spectral density for the two autoregressions is given by

the same function

f (𝜔) = (2𝜋)−1|(2 − ei𝜔)(3 − ei𝜔)|−2
, 𝜔 ∈ [−𝜋, 𝜋).
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(b) Show that one of these choices satisfies the stability condition (4.3) and
the other does not.

(c) Show that it is not possible to find a first-order SAR representation

aXt − b
[
Xt+1 + Xt−1

]
= 𝛿t

or a higher order finite SAR representation with the same spectral den-
sity, where {𝛿t} is another white noise process.

4.3 In d = 1 dimension, consider the SAR model
S∑

s=−S
dsXt−s = 𝜀t,

where d0 > 0, ds = d−s and {𝜀t} is a white noise process. Assume that
∑

dsei𝜔s
≠ 0 for all 𝜔 ∈ [−𝜋, 𝜋).

Show that it is possible to find a unilateral representation
2S∑

s=0
asXt−s = 𝜀

′
t ,

in terms of another white noise process {𝜀′t} for which the coefficients {as}
satisfy the stability conditions

2S∑
s=0

aszs
≠ 0, for all |z| ≤ 1,

where z is a complex number.

4.4 Consider a d-dimensional AR model for a stationary Gaussian random field
{Xt} given by ∑

s∈K
dsXt−s = 𝜀t, t ∈ ℤd

,

where {𝜀t} is white noise, and K ⊂ ℤd is a finite set. This framework
includes both SARs (Section 4.5) and UARs (Section 4.8). Define a new
sequence {as} with terms

as =
∑
h∈D

dh dh−s, s ∈ D(2)
,

where D(2) = {h − s ∶ h, s ∈ D}. Show that this random field can be rewrit-
ten as a CAR model (4.31) with coefficients

𝛽s = −as∕a0, s ∈ D(2)
.

Hence, conclude that every AR model can be written as a CAR model.
Hint: Work with the spectral density in both cases.
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4.5 In one dimension, consider a stationary CAR model (4.31),

E[Xt|X∖t] =
S∑

s = −S
s ≠ 0

𝛽s Xt−s, var[Xt|X∖t] = 𝜎
2
𝜂
,

where 1 − 𝛽(𝜔) = 1 − 2
∑S

s=1 𝛽s cos s𝜔 ≠ 0 for all 𝜔 ∈ [−𝜋, 𝜋]. Show that
this process can be given a unilateral representation

S∑
s=0

dsXt−s = 𝜀t,

where 𝜀t is a white noise process and the roots of
∑d

s=0 dszs
, z ∈ ℂ, lie out-

side the unit disk.
Hint: Factorize

P(z) = P(z−1) = 1 −
S∑

s = −S
s ≠ 0

𝛽s zs

=
S∏

i=1
(1 − 𝛼iz)(1 − 𝛼iz−1),

where the roots satisfy 0 ≤ |𝛼i| < 1, i = 1, . . . , S. Then define {ds} by∑
dszs =

∏
(1 − 𝛼iz).

4.6 Nonuniqueness of the mean for a CAR model. Let {Xt} be a stationary
AR(1) process in one dimension, with mean 𝜇, autoregression parameter
0 < 𝜆 < 1, and residual variance 𝜎2

𝜀
. Then {Xt} is also a CAR model satis-

fying the equations

E[(Xt − 𝜇)|X∖t] =
𝜆

1 + 𝜆2 {(Xt−1 − 𝜇) + (Xt+1 − 𝜇)},

var(Xt|X∖t} = 𝜎
2
𝜀
∕(1 + 𝜆2)

(see Exercise 4.4). Define a new process Yt = Xt + c𝜆t, with mean E(Yt) =
𝜇 + c𝜆t = 𝜈t, say, where c is a scalar constant.
Show that {Yt} satisfies the same CAR equations

E[(Yt − 𝜇)|Y∖t] =
𝜆

1 + 𝜆2 {(Yt−1 − 𝜇) + (Yt+1 − 𝜇)},

var(Yt|Y∖t} = 𝜎
2
𝜀
∕(1 + 𝜆2).

Hence, deduce that if {Yt} is not assumed to be stationary, then the CAR
equations do not determine the mean of {Yt}.
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4.7 Regarding ℤ2
⊂ ℝ2 as part of a complex plane ℂ, fix an angle 𝛼 and set

 =
{

t ∈ Z2 ∶ t ≠ 0, 𝛼 ≤ arg t < 𝛼 + 𝜋
}
,

where arg t is shorthand for arg(t[1] + it[2]). Note that arg t and 𝛼 are
angles; if they are treated as numbers in [0,2𝜋), then the above angular
inequality is equivalent to the numerical conditions 𝛼 ≤ arg t < 𝛼 + 𝜋 or
𝛼 ≤ 2𝜋 + arg t < 𝛼 + 𝜋. Show that  is a half-space.

4.8 Verify Eq. (4.68) to show that the three types of conditioning on the past
are equivalent for a Gaussian QAR model,

E[Xt|(Xt−s, s ∈ )] =
∑
s∈

asXt−s,

E[Xt|(Xt−s, s ∈ )] =
∑
s∈

asXt−s,

E[Xt|(Xt−s, s ∈ )] =
∑
s∈

asXt−s.

Hint: For simplicity work in d = 2 dimensions. The Gaussian zero-mean
QAR model (4.66) is a special case of a UAR with respect to the lexico-
graphic half-space  in (4.52). The spectral density is given by

f (𝜔) 𝜎
2

(2𝜋)d

||||||
1 −

∑
s∈

aseisT
𝜔

||||||

−2

,

and the innovation term, 𝜀t = Xt −
∑

s∈asXt−s, is uncorrelated with Xt−s
for all s ∈ .
Set


′ = {s ∈ ℤd ∶ s ≠ 0 and the last nonzero component s[𝓁] of s is positive}.

to be the lexicographic half-space of ℝ2 obtained by interchanging the roles
of t[1] and t[2] in the definition of in (4.52). Then f (𝜔) also defines a UAR
with respect to ′.
The innovation term is still 𝜀t, as defined above, and is thus also uncorre-
lated with Xt−s for all s ∈ ′. After writing Xt = 𝜀t +

∑
s∈asXt−s, the desired

result follows from the following properties: (i)  ⊂  ⊂  =  ∪ ′, (ii) 𝜀t
is uncorrelated (and hence independent under the Gaussian assumption)
with Xt−s, s ∈ , and (iii)

∑
s∈asXt−s is constant given (Xt−s, s ∈ ).

4.9 Consider random variables Xij, i, j ∈ ℤ, such that
(a) For each i, the random variables {Xij, j ∈ ℤ} follow an AR(1) process

with parameter 𝜆, so that

E{Xij|Xij′ ∶ j′ < j} = 𝜆Xi,j−1.
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(b) For different i the random variables are independent.

Arrange these processes on diagonal lines t[2] = t[1] + i for t ∈ ℤ2 to give
a random field

Yt = X(t[1]−t[2],t[2]).

Show that

E{Yt|Yt−s, s ∈ } = E{Yt|Yt−s, s ∈ } = 𝜆Y(t[1]−1,t[2]−1).

Hence, conclude that {Yt} is a quadrant regression.
Define a new random field {Y∗

t } by

Y∗
(t[1], t[2]) = Y(t[1],−t[2]).

Show that
E{Y∗

t |Y∗
t−s, s ∈ } = 𝜆Y∗

(t[1]−1, t[2]+1)

so that {Y∗
t } does not have a quadrant autoregression representation.

4.10 Consider the QAR model for a stationary Gaussian random field in
Example 4.6. If c = −ab, show that the spectral density takes the form

f (𝜔) = 𝜎
2|1 − aei𝜔[1] − bei𝜔[2] + abei(𝜔[1]+𝜔[2])|−2

= 𝜎
2|1 − aei𝜔[1]|−2|1 − bei𝜔[2]|−2

.

Hence, deduce that this model is separable in 𝜔[1] and 𝜔[2] (see
Exercise 2.8).

4.11 (Brook expansion (Brook, 1964)). Verify the expansion (4.73) and hence
confirm that the full conditional probability functions in (4.72) determine
the joint probability function pT(xT).

4.12 Verify the proof of Theorem 4.9.2 for the subset expansion of a negative
potential function.

4.13 The purpose of this exercise is to give some examples of cliques based on
Figures 4.3 and 4.4. Let T = ℤ2 and consider the neighborhood structures
generated by translates { (basic,1)

t = t + (basic,1)
, t ∈ ℤ2} of the first-order

basic neighborhood  (basic,1) and by translates of the first-order full neigh-
borhood  (full,2) defined in Section 4.4.
(a) For the first-order basic neighborhood structure, show that the cliques

are given by
(i) Singletons {t}, t ∈ ℤ2.

(ii) Horizontal and vertical two-point segments {t, t + (1,0)} and
{t, t + (0,1)}.
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(b) For the first-order full neighborhood structure, show that there are also
additional cliques given by
(i) Triangles of the form {t, t + (1,0), t + (0,1)}, {t, t + (1,0), t + (1,1)},

{t, t + (0,1), t + (1,1)}, and {t + (1,0), t + (0,1), t + (1,1)}.
(ii) Squares {t, t + (1,0), t + (0,1), t + (1,1)}.

4.14 The purpose of this exercise is to confirm that Eqs. (4.74)–(4.76) imply
(4.81). Let xT be a possible value of the random field and define yT by yt = 0
and y∖t = x∖t. Writing pt(xt|x∖t) = p(xt|x∖t), show that

p(xt|x∖t)
p(yt|y∖t)

=
p(xt|x∖t)pT∖{t}(x∖t)
p(yt|y∖t)pT∖{t}(y∖t)

=
p(xT)
p(yT)

= exp

[∑
Λ⊂T

{GΛ(xΛ) − GΛ(yΛ)}

]
.

If t ∉ Λ, note that xΛ = yΛ, so the corresponding term disappears from the
sum. If t ∈ Λ, show that GΛ(yΛ) = 0. Hence, confirm that the formula for
p(xt|x∖t)∕p(yt|y∖t) reduces to the right-hand side of (4.81).

4.15 For the auto-logistic model (4.83), show that

log
pt(1|x∖t)
pt(0|x∖t)

= 𝛼t +
∑

s∈ (t)

𝛽st xt,

and hence deduce (4.84).

4.16 Verify the conditional distribution for Xt|X∖t in Example 4.9.

4.17 The purpose of this exercise is to show how a {0,1}-valued Markov mesh
model can be recast as a Markov random field. For simplicity, restrict atten-
tion to the one-dimensional case and suppose that the joint distribution is
built from the one-sided conditional distributions for t > 0,

p(xt|xt−1) = exp(𝛼xt + 𝛽xtxt−1)∕{1 + exp(𝛼 + 𝛽xt−1)}.
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Note that p(0|xt−1) + p(1|xt−1) = 1 whether xt−1 equals 0 or 1. Show that the
two-sided conditional probabilities are given by

p(xt|x∖t) = p(xt|{xt−1, xt+1})

∝ exp{𝛼xt + 𝛽xt(xt−1 + xt+1)}∕{1 + exp(𝛼 + 𝛽xt)}

∝ exp{𝛾xt + 𝛽xt(xt−1 + xt+1)},

where 𝛾 = 𝛼 + log{(1 + e𝛼)∕(1 + e𝛼+𝛽)}. To verify the last line, note that xt
can only take the values 0 and 1, so that the conditional distribution is deter-
mined by the odds ratio p(1|x∖t)∕p(0|x∖t).
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5

Estimation of Spatial Structure

5.1 Introduction

In this chapter, we look at the problem of fitting a stationary or intrinsic Gaussian
model to a set of spatial data. In principle, given a model, it is straightforward to
write down the likelihood in terms of the underlying covariance function or semi-
variogram and to optimize it with respect to any unknown parameters. However,
in practice, there are several complications.

(a) Lack of intuition. Black box fitting.
(b) Computational issues for large data sets.
(c) For some models, especially autoregressions, the covariance function is not

known in an explicit form.

Hence, we also look at various alternatives and approximations to maximum
likelihood. The available estimation procedures depend on the nature of the spatial
model and the nature of the data.

Here are the main distinctions between the different types of processes and the
different types of data. More details are given in Section 5.3.

(a) Spacing of the process. Continuously indexed on ℝd vs. lattice-indexed on ℤd

(b) Specification of dependence. Directly specified covariance function (on ℝd

or ℤd) vs. directly specified spectral density (on ℝd or (−𝜋, 𝜋)d) vs. autoregres-
sive models (on ℤd)

(c) Regularity of the process. Stationary (described by a covariance function)
vs. intrinsic (described by a semivariogram)

(d) Spacing of the data. Irregularly spaced (arbitrary sites in ℝd) vs. regularly
spaced (on a rectangle in ℤd)

Here is an overview of the key topics covered in the chapter.

(a) Exploratory methods, including graphical analysis, for both regularly spaced
and irregularly spaced data (Section 5.4). Such methods help to develop our

Spatial Analysis, First Edition. John T. Kent and Kanti V. Mardia.
© 2022 John Wiley & Sons Ltd. Published 2022 by John Wiley & Sons Ltd.



�

� �

�

160 5 Estimation of Spatial Structure

intuition about the behavior of different models and provide informal assess-
ments of goodness of fit.

(b) Maximum likelihood methods and approximations (Sections 5.5–5.11).
Provided that the covariance function or semivariogram has an explicit form,
there is an explicit formula for the likelihood function. However, in general,
optimization must be done numerically and it becomes computationally
infeasible for large data sets. Hence, various approximations have been
explored.

(c) Asymptotics. An important issue for estimators is their asymptotic behavior
with the increasing sample size n. It is helpful to distinguish two cases,
“outfill” asymptotics (Section 5.11.2), also known as “increasing domain”
asymptotics, and “infill” asymptotics (Section 5.14), also known as “fixed-
domain” asymptotics. For outfill asymptotics, the spacing between the data
sites remains fixed, and as the sample size increases, the data lie in a larger
region. In contrast, for infill asymptotics, the data lie in a fixed region, and
as the sample size increases, the data sites fill out this region more densely.
Outfill asymptotics are the most relevant for practical data analysis.

Much of the material in this chapter, including the spatial linear model, is based
on a series of papers by Mardia (1980, 1990), Mardia and Gill (1982), Mardia and
Marshall (1984), and Mardia and Watkins (1989). In addition, there are estimation
methods that are only applicable to regularly spaced or lattice data such as moment
methods for unilateral autoregressions (UARs), moment methods for conditional
autoregressions (CARs), and spectral methods, which are covered in Chapter 6.

5.2 Patterns of Behavior

Before fitting stationary and intrinsic Gaussian models of spatial variability to data,
it is worth looking at the broad sorts of behavior that can occur. First, we examine
the types of behavior for a one-dimensional semivariogram and then look at how
one-dimensional semivariograms can fit together in higher dimensional cases.

5.2.1 One-dimensional Case

Let 𝛾(h) be a semivariogram in the one-dimensional case, h ∈ ℝ1. To begin
with, suppose that 𝛾(h) is nondecreasing in |h| ≥ 0 and set b = lim 𝛾(h) as
|h| → ∞, where 0 < b ≤ ∞. This limit b is called the sill of the semivariogram; see
Section 1.4.1.

(a) Finite range. If b <∞ and b is attained for a finite value |h| = c, say, (so that
𝛾(h) < b for |h| < c and 𝛾(h) = b for |h| ≥ c), then the semivariogram is said to
have a “finite range” c. Under this condition, sites more than c units apart are
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uncorrelated. Further, b − 𝛾(h) = 𝜎(h), say, defines a stationary covariance
function with marginal variance 𝜎(0) = b. Examples include the spherical
scheme and the restricted power scheme (see Table 2.1).

(b) Finite sill with infinite range. If b < ∞ but 𝛾(h) < b for all h ≥ 0, then the range
of the semivariogram is infinite. Such a semivariogram is still a model for a sta-
tionary random field, but values of the random field at distant sites now have a
low rather than zero correlation. For simplicity, suppose that 𝛾(h) is monotoni-
cally increasing in h. An important example is the Matérn covariance function.
In this case, it is sometimes convenient to use a modified concept of range.
For example, a “90% – range,” c0.9, say, is defined so that 𝛾(h) < 0.9b for a
|h| < c0.9 and 𝛾(h) ≥ 0.9b for |h| ≥ c0.9. The exponential covariance function,
𝛾(h) = 1 − exp(−|h|∕𝜑), is a special case of the Matérn covariance function
with index 𝜈 = 0.5. In this case, c0.9 = 2.3𝜑 since 2.3 = log(10) = − log(0.1).

(c) Intrinsic behavior. If b = ∞, then the semivariogram arises from an intrinsic
rather than a stationary random field. Typical behaviors of 𝛾(h) for large |h|
are 𝛾(h) ∝ log(h), or 𝛾(h) ∝ |h|𝛽 , 0 < 𝛽 < 2.

(d) Oscillatory behavior. In most applications, a monotone semivariogram 𝛾(h)
will be appropriate. However, occasionally, it is important to allow an
oscillatory semivariogram, e.g. 𝛾(h) = 1 − (sin h)∕h in dimension d = 1. Such
examples are rarer in spatial analysis than in time series. One notable example
where periodicity is important is the agricultural fertility data of Mercer and
Hall (1911) of Example 1.14 in which ridges and furrows appeared in the
pattern of fertility due to regularity in the plowing of the field. An analysis
of this data set is given in Examples 6.1 and 6.2. Another example is the
fingerprint data of Example 1.8 and Exercise 1.5.

5.2.2 Two-dimensional Case

If 𝛾(h), h ∈ ℝ2, is a semivariogram, write 𝛾(h) = 𝛾(r; 𝜃) in polar coordinates
where h = (h[1], h[2]) = (r cos 𝜃, r sin 𝜃). The semivariogram is most easily
studied by plotting 𝛾(r; 𝜃) vs. r for several values of 𝜃 (the four directions
𝜃 = 0∘, 45∘, 90∘, 135∘ measured counterclockwise from the h[1]-axis, as shown in
Figure 1.8, usually suffice). For fixed 𝜃, the behavior of 𝛾(r; 0) can be described
as in the one-dimensional case. When combining semivariograms from separate
directions, several possible patterns can be noted.

(a) Full symmetry. A semivariogram automatically satisfies the “antipodal” sym-
metry property 𝛾(h[1], h[2]) = 𝛾(−h[1],−h[2]) in which both axes are reflected.
If, in addition, the semivariogram satisfies 𝛾(h[1], h[2]) = 𝛾(h[1],−h[2]) in
which just one axis is reflected, then the semivariogram is said to be “fully
symmetric” (Cressie, 1993), or sometimes “reflection symmetric” (Martin,
1979).
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(b) Isotropy. If 𝛾(r; 𝜃) does not depend on 𝜃, a semivariogram is said to be
“isotropic.” This is the simplest type of behavior to study. An isotropic
semivariogram is always fully symmetric.

(c) Geometric anisotropy. The simplest form of nonisotropic behavior occurs when
a semivariogram can be written in the form

𝛾(r; 𝜃) = 𝛾0(c𝜃r) = 𝛾0

(√
hTAh

)

for some function 𝛾0(r), where

c
𝜃
=

[
cos 𝜃 sin 𝜃

]
A
[

cos 𝜃
sin 𝜃

]

and A is a positive definite 2 × 2 matrix. Then, c
𝜃

lies between the two eigen-
values of A and attains these extreme values when 𝜃 points in the direction of
the corresponding eigenvectors. Note that the semivariograms, as a function
of r for different fixed values of 𝜃, can be made to coincide by suitably dilating
the r-axis by a certain amount depending on 𝜃.

(d) Lattice isotropy. For semivariograms on the integer lattice, it is useful to
consider a restricted form of isotropy, called “lattice isotropy,” for which
𝛾(h[1], h[2]) = 𝛾(h[2], h[1]), h ∈ ℤ2, holds together with full symmetry; that
is, a semivariogram is invariant under 90∘ rotations. As a simple example,
given most easily in terms of a covariance function rather than a semivar-
iogram, consider the geometric scheme 𝜎(h) = exp{−(|h[1]| + |h[2]|)∕𝜑},
which possesses lattice symmetry (Martin, 1979). However, note that

𝜎(r; 0∘) = 𝜎(r; 90∘) = e−r∕𝜑
,

whereas
𝜎(r; 45∘) = 𝜎(r; 135∘) = e−r

√
2∕𝜑
,

so that 𝜎(h) is not isotropic. It decays away more quickly along the diagonals
than along the main axes. Further, the behavior in this example cannot be
captured by any semivariogram with geometric anisotropy.

(e) Linear drift. Let Y (t) = X(t) + bTt, t ∈ ℝ2
,where {X(t)} is stationary and bT =

|b|(cos 𝜃0, sin 𝜃0), represents a linear drift in the direction 𝜃0. Then, {Y (t)} has
a well-defined semivariogram

𝛾y(h) = 𝛾x(h) +
1
2
(bTh)2

.

Hence, 𝛾y(r; 𝜃0 + 90∘) = 𝛾x(h) is bounded as |h| → ∞ whereas 𝛾y(r; 𝜃0) =
𝛾x(h) +

1
2
|b|2r2 grows quadratically.

5.2.3 Nugget Effect

From this book’s perspective (see Section 2.2), a population covariance func-
tion 𝜎(h) defined for h ∈ ℝd is required to be a continuous function for all h.
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In particular, 𝜎(h) → 𝜎(0) as h → 0. Similarly, for intrinsic processes, a population
semivariogram 𝛾(h) defined for h ∈ ℝd is required to be a continuous function for
all h. In particular, 𝛾(h) → 𝛾(0) = 0 as h → 0.

However, when fitting covariance functions visually to data, it can appear that
𝜎(h) should have a discontinuity with 0 < lim 𝜎(h) < 𝜎(0) as h → 0. Similarly,
when fitting a semivariogram, it can appear that 𝛾(h) should have a discontinuity
with lim 𝛾(h) > 0. This behavior was described in Section 1.4.1 as a “nugget
effect.”

A nugget effect is most easily described mathematically using a latent process,
also known as an “errors-in-variables” model. Let {X(t) ∶ t ∈ ℝd} be an unob-
served stationary random field with a (continuous) covariance function 𝜎x(h).
Suppose we observe random variables

Yi = X(ti) + 𝜀i, i = 1, . . . ,n, (5.1)

at a collection of sites t1, . . . , tn,where E(𝜀i) = 0, var(𝜀i) = 𝜏
2, and the 𝜀i are inde-

pendent of each other and of the random field {X(t)}. The 𝜀i may represent, for
example, “measurement errors” or an influence similar to the nuggets of the min-
eral mentioned earlier. Then, the n × n covariance matrix A = (aij) of [Y1, . . . ,Yn]T

is given by
aij = 𝜎x(ti − tj) + 𝜏2

𝛿ij, 1 ≤ i, j ≤ n,

where 𝛿ij is the Kronecker delta.
The nugget effect concept is useful for lattice models even though, strictly speak-

ing, it does not make sense to talk about the continuity of 𝜎h, h ∈ ℤd, at h = 0.
For example, suppose {Xt} is a stationary Gaussian process on ℤd with spectral
density fx(𝜔), 𝜔 ∈ (−𝜋, 𝜋)d, and consider an observed random field

Yt = Xt + 𝜀t,

where 𝜀t is a white noise random field (i.e. a set of i.i.d random variables) with
mean 0 and with var(𝜀t) = 𝜏

2, independent of {Xt}. Then, {Yt} has spectral density

fy(𝜔) = fx(𝜔) + 𝜏2∕(2𝜋)d
, 𝜔 ∈ (−𝜋, 𝜋)d

.

When modeling a nugget effect at sites t1, . . . , tn, there is an important concep-
tual difference between ℤd and ℝd. In the lattice case ℤd, measurement errors can
be modeled as a sample from a white noise stationary random field {𝜀t ∶ t ∈ ℤd};
that is, there is an error term 𝜀t for each site in the integer lattice, where the {𝜀t}
have 0 mean, constant variance and are independent. However, in the continuous
case, the measurement errors {𝜀i, i = 1, . . . ,n} are well defined only at the sites ti.
The {𝜀i} cannot be regarded as a sample from a white noise random field on all of
ℝd; indeed, in the continuous case, a white noise random field makes sense only
in a “generalized” sense; see Section 3.6.

In the continuous case, it is possible to regard the measurement errors {𝜀i} as
a sample from an ordinary stationary random field with the covariance function
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𝜎
𝜀
(h) where 𝜎

𝜀
(0) = 𝜏

2 and the range 𝜑
𝜀
, say, of 𝜎

𝜀
(h) is smaller than any of the

intersite distances; indeed, this perspective is the origin of the term “nugget effect.”
However, this approach is not very fruitful for modeling purposes since in this
case the {𝜀i} are still independent and the data sites are too far apart to estimate
anything about 𝜎

𝜀
(h), other than 𝜏2, from the data.

5.3 Preliminaries

Before we can discuss estimation methods in detail, first it is necessary to describe
the different types and layout of the data and the different formulations of the
models that will be considered.

5.3.1 Domain of the Spatial Process

Recall that spatial processes in d dimensions are typically defined on either the
integer lattice ℤd or continuous space ℝd. Some of the estimation procedures can
be applied in either setting, and we write a spatial process as X(t), t ∈ ℝd

, when
we are discussing methods that can be applied to a continuously indexed case.
Other methods are restricted to models on the integer lattice with regularly spaced
data, and we use subscript notation Xt, t ∈ ℤd

, to describe a spatial process in this
setting.

5.3.2 Model Specification

Models in spatial analysis can be specified in two common ways.

(a) Direct specification. The most direct way to specify a model is through an
explicit formula for the covariance function 𝜎(h) for a stationary process, or
its semivariogram 𝛾(h) for an intrinsic process.

(b) Spectral specification. On the other hand, other models are more simply speci-
fied by an explicit representation for the spectral density f (𝜔). The spectral
specification is particularly useful for structural models on ℤd. The main
examples include unilateral autoregressions (UARs), simultaneous autore-
gressions (SARs), and conditional autoregressions (CARs) of Chapter 4.

To use a model in practice, at least one of these two formulations must be avail-
able in an explicit form.

Example 5.1 Exponential covariance function
The simplest example of a stationary covariance function for a continuously
indexed process is the (d = 1)-dimensional exponential covariance function, with
direct representation

𝜎(h) = 𝜎
2 exp(−|h|∕𝜑), h ∈ ℝ1

.
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in terms of the scale parameter 𝜎2
> 0 and the range parameter𝜑 > 0. It is a special

case of the Matérn covariance function with index 𝜈 = 1∕2 (Table 2.2). The spectral
density also has an explicit form (with suffix “cont” for continuous)

fcont(𝜔) =
1
𝜋

𝜎
2
𝜑

2

1 + 𝜑2𝜔2 , 𝜔 ∈ ℝd
.

If a continuously indexed stochastic process is restricted to integer indices, then
the resulting process is known as a lattice process, and the covariance function can
be written as

𝜎h = 𝜎
2
𝜆
|h|
, h ∈ ℤ,

where 𝜑 = −1∕ log 𝜆, i.e. 𝜆 = exp(−1∕𝜑), with 0 < 𝜆 < 1. The spectral density for
the lattice process takes the explicit form (with suffix “disc” for discrete)

fdisc(𝜔) =
∞∑

k=−∞
fcont(𝜔 + 2𝜋k) (5.2)

= 1
2𝜋

𝜎
2(1 − 𝜆2)

1 + 𝜆2 − 2𝜆 cos𝜔
, 𝜔 ∈ (−𝜋, 𝜋). (5.3)

Note that when attention is restricted to the lattice process, values of the con-
tinuous spectral density at frequencies separated by multiples of 2𝜋 cannot be
distinguished (the aliasing property) and are combined together to form the dis-
crete spectral density in (5.2). However, the fact that the sum has a simple closed
form in (5.3) is unexpected.

The lattice process can also be given two autoregression representations
(Sections 4.8 and 4.6) as a UAR and as a CAR. These representations are studied
in more detail in Chapter 6. ◽

5.3.3 Spacing of Data

The data consist of a collection of sites D in ℝd together with real-valued obser-
vations at these sites. As discussed in Section 1.2, it is useful to distinguish two
different settings:

(a) Regular data. In this case, D ⊂ ℤd represents a rectangular region of size
n = n1 × · · · × nd

D = {t ∈ ℤd ∶ 1 ≤ t[𝓁] ≤ n[𝓁],𝓁 = 1, . . . , d}. (5.4)

The values of the process are indicated using subscripts {Xt, t ∈ D} and can be
laid out in a d-way array.

(b) Irregular data. In this case, D ⊂ ℝd is a general collection of sites

D = {ti, i = 1, . . . ,n}. (5.5)

The values of the process are indicated using parentheses {X(ti), i = 1, . . . ,n}.
The data can be laid out as an n × (d + 1) matrix, with one column repre-
senting the values of the process and the remaining d columns giving the
coordinates of the data sites.
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There are several reasons for the dual notation. First, the notation helps to
remind the reader which setting is being used. Also, in the irregular case, the
bracket notation avoids the need for double subscripts. In the regular case, the
index notation facilitates the consideration of specific lags.

5.4 Exploratory and Graphical Methods

Given a set of spatial data, a useful first step is to plot the sample covariance
function or the sample semivariogram. The semivariogram is more useful than
the sample covariance function because it can pick out intrinsic as well as
stationary behavior in the data. For a stationary random field, the semivariogram
levels off for large lags. However, for an intrinsic random field of order 0 (IRF-0),
the semivariogram can increase indefinitely for large lags. Mathematically, these
two possibilities are very distinct. However, in practice, it can be hard to tell them
apart on the basis of limited data. An analogous question in time-series anal-
ysis involves distinguishing between a stationary autogression moving average
(ARMA) model and an autogression integrated moving average (ARIMA) model.
In time series, one way to tackle the problem is to take successive differences of
time series until stationarity is achieved. However, in dimensions d ≥ 2, there is
no simple analogue of “differencing.”

Throughout this chapter, several data sets from Section 1.2 have been used to
illustrate various estimation methods. In this section, we recall the preliminary
graphical analysis of the bauxite data and the elevation data.

Example 5.2 Bauxite data
The bauxite data set gives the bauxite ore grade in percentages at n = 33 irreg-
ularly spaced sites in the plane (constructed from Marechal and Serra, 1970).
See Example 1.4 for more details. Figure 5.1 shows the bubble plot and the
semivariograms; the same plots are given in Figures 1.4 and 1.11. As noted there,
the bubble plot shows an approximate basin shape with the smallest value in the
middle of the plot and larger values near the edges.

The semivariograms in the four principal directions do not suggest any
anisotropy. A possible jump in the overall semivariogram at h = 0 suggests the
need for a nugget term. At larger lags, the semivariograms are so noisy that it is
hard to pick out any pattern. Later in the chapter (Examples 5.5 and 5.8), several
models will be fitted to the data, including isotropic stationary models and models
with quadratic drift. ◽

Example 5.3 Elevation data
The topographic elevation data set of Davis (1973) gives the heights in a surveying
problem at n = 52 irregularly spaced sites in the plane. See Example 1.3 for more
details. Figure 5.2 shows the bubble plot and the semivariograms from Figures 1.2
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Figure 5.1 Bauxite data: Bubble plot and directional semivariograms.

and 1.10. As noted there, the bubble plot shows a valley in the top middle of the
plot and a peak in the bottom middle. The semivariograms in the four principal
directions indicate some possible mild anisotropy; the semivariogram in the 90∘
direction increases slowly, whereas the semivariogram in the 0∘ direction increases
fast. However, an assumption of isotropy does not seem unreasonable. There is no
suggestion of a nugget effect. Later in the chapter (Example 5.6), several isotropic
stationary models will be fitted to the data. ◽

Graphical methods can also be used to estimate the parameters of a semivar-
iogram model. One method involves matching the sample semivariogram to a
population semivariogram. One of the simplest matching methods is weighted
least squares (WLS). That is, choose the population parameters 𝜃 to minimize

f (𝜃) =
∑

h
𝑤h(g(h) − 𝛾(h; 𝜃))2

,

where h ranges through the set of lags at which the semivariogram is calculated,
and the𝑤h are preassigned weights designed to give more weight to lags for which
g(h) is more accurate.

This method of estimation is reviewed in Cressie (1993). As noted by Zimmer-
man and Stein (2010), although the WLS procedure is very popular among practi-
tioners due to its relative simplicity, the fact that it is not based on an underlying
probabilistic model for the underlying spatial process means that it is suboptimal
and does not rest on as firm a theoretical footing as likelihood-based procedures.



�

� �

�

168 5 Estimation of Spatial Structure

0 1 2 3 4 5 6

0
2

4
6

Elevation data
bubble plot

(a)

t[1]

t[2
]

0 2 4 6 8
0

40
00

80
00

12
00

0

Lag

S
em

iv
ar

io
gr

am

omnid.
0°
45°
90°
135°

Elevation data
Semivariograms

(b)

Figure 5.2 Elevation data: Bubble plot and directional semivariograms.

Further, as noted by Stein (1999, Section 6.2), the act of binning the data to produce
an empirical semivariogram involves information loss, especially for differentiable
processes.

Moreover, when there is a drift in the data as well as spatial dependence, it
can be problematic to use semivariogram-based procedures for estimating both
features simultaneously. Indeed, to properly estimate the drift, it is necessary
to know the spatial dependence of the residuals. And conversely, to accurately
estimate the spatial dependence of the residuals, drift parameters should be
known. Hence, there is a circular argument in the estimation procedure. Max-
imum likelihood estimates both features simultaneously, and hence avoids the
circularity problem. In summary, although WLS is a method with some intuitive
appeal, we will not investigate such methods in this book. This section has given a
very brief introduction to graphical methods. For a more thorough description of
their use for exploratory analysis and diagnostics, see, e.g., Cressie (1993), Cressie
and Burden (2015), and Chilés and Delfiner (2012).

5.5 Maximum Likelihood for Stationary Models

Recall that the maximum likelihood estimator (MLE) is defined to be the parame-
ter value which maximizes the likelihood. In this section, we consider data from a
Gaussian process whose covariance function has an explicit representation and we
derive the equations for the MLE of the parameter vector. Let {X(t) ∶ t ∈ ℝd} be a
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stationary Gaussian process with a constant mean 𝜇 and with a continuous covari-
ance function 𝜎

∗(h), where 𝜎∗(h) = 𝜎
∗2
𝜌
∗(h) and 𝜌

∗(0) = 1. Suppose that noisy
measurements of the process are observed at a set of n sites D = {ti, i = 1, . . . ,n},
not necessarily on a lattice,

Yi = X(ti) + 𝜀i, i = 1, . . . ,n,

where the {𝜀i} are N(0, 𝜏2) random variables, independent of one another and of
the x-process, representing a nugget effect. If 𝜏2 = 0, the nugget effect is not present
and Yi = X(ti).

Let y = {yi, i = 1, . . . ,n} denote the vector of observed data, with the sites
listed in lexicographic order, say. Then, y follows a multivariate normal dis-
tribution y ∼ Nn(𝜇𝟏,Σ), where the covariance matrix has several equivalent
representations:

Σ = Σ∗ + 𝜏2I = 𝜎
∗2P∗ + 𝜏2I

= 𝜎
2((1 − 𝜓)P∗ + 𝜓I) = 𝜎

2P. (5.6)

In the first line Σ∗ = (𝜎∗ij), 𝜎
∗
ij = 𝜎

∗(ti − tj) and P∗ = (𝜌∗ij), 𝜌
∗
ij = 𝜌

∗(ti − tj) are the
covariance matrix and correlation matrix for the latent x-process at the data sites;
𝜎
∗2 and 𝜏2 represent the variance of the x-process and the nugget variance, respec-

tively. The second line uses the sill or overall variance, 𝜎2 = 𝜎
∗2 + 𝜏2, and the

relative nugget effect 𝜓 = 𝜏
2∕𝜎2; the overall correlation matrix is P = (1 − 𝜓)P∗ +

𝜓I. Note that quantities with an asterisk, such as Σ∗
,P∗, and 𝜎∗2 refer to the latent

x-process, whereas quantities without an asterisk refer to the observation vector
y. In most practical applications, there are several parameters to estimate: mean
𝜇, variances 𝜎∗2, and 𝜏2 (or equivalently the overall variance 𝜎2 and the relative
nugget 𝜓), and any correlation parameter in the correlation function 𝜌

∗(h). For
example, the exponential correlation function 𝜌

∗(h) = exp(−|h|∕𝜑) depends on
the range parameter 𝜑 > 0. Let 𝜽 be a p-dimensional parameter vector containing
the covariance parameters. It is convenient to partition 𝜽 = (𝜽T

c , 𝜎
2)T , where 𝜽c

contains the p − 1 correlation parameters and the final element 𝜎2 contains the
overall variance. For the exponential correlation function, p = 3 and 𝜽c = (𝜑,𝜓)T

when a nugget is present; p = 2 and 𝜃c = 𝜑 when there is no nugget term.

5.5.1 Maximum Likelihood Estimates – Known Mean

To begin with, suppose that the mean is known and equal to 0, i.e. 𝜇 = 0. Then,
the log-likelihood takes the form

log L(𝜽; y) = −1
2
{yTΣ−1y + log |Σ| + n log(2𝜋)}. (5.7)

The maximum likelihood estimate of 𝜽 is obtained by differentiating (5.7) with
respect to the elements of 𝜽 and setting the derivatives to 0. Recall the matrix
derivative formulas

𝜕 log |Σ|
𝜕𝜃k

= tr(Σ−1Σk),
𝜕Σ−1

𝜕𝜃k
= −Σ−1ΣkΣ−1

,
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where Σk = 𝜕Σ∕𝜕𝜃k (e.g. Mardia et al., 1979, pp. 478–479). Then

𝜕 log L∕𝜕𝜎2 = −1
2
{−yTP−1y∕𝜎4 + n∕𝜎2}, (5.8)

𝜕 log L∕𝜕𝜃k = −1
2
{−yTΣ−1ΣkΣ−1y + tr(Σ−1Σk)}, k = 1, . . . , p − 1, (5.9)

where k indexes the correlation parameters in 𝜽c. Setting the derivatives to 0 and
rearranging these equations yields the likelihood equations

𝜎̂
2 = yTP̂−1y∕n, (5.10)

yTΣ̂−1Σ̂kΣ̂
−1y = tr(Σ̂−1Σ̂k), k = 1, . . . , p − 1, (5.11)

where Σ2 = 𝜎
2P and where a hat “̂” is used to denote the MLEs and other quanti-

ties evaluated at the MLEs. These results can be used to simplify the log-likelihood.

(a) For a given value of 𝜽c, the maximizing value of 𝜎2 is given by (5.10).
(b) Substituting this value for 𝜎

2 into the log-likelihood yields the profile
log-likelihood for the correlation parameters 𝜽c

log Lprofile(𝜽c) = −1
2
{n + n log(yTP−1y∕n) + log |P| + n log(2𝜋)}, (5.12)

where the correlation matrix P depends on 𝜽c. In general, the profile
log-likelihood must be maximized numerically over 𝜽c. The derivative of the
profile log-likelihood with respect to the elements of 𝜽c can be written as

𝜕 log Lprofile∕𝜕𝜃k = −1
2
tr
{

P−1Pk

(
In − n

yTP−1y
P−1yyT

)}
. (5.13)

Here Pk = 𝜕P∕𝜕𝜃k and k = 1, . . . , p − 1 ranges through the elements of 𝜽c.

Example 5.4 Exponential covariance function with nugget
Following on from Example 5.1, recall that the overall correlation matrix can be
written as

P = (1 − 𝜓)P∗ + 𝜓I,

where P∗ = (𝜌∗ij), 𝜌
∗
ij = exp(−|ti − tj|∕𝜑), i, j = 1, . . . ,n. The correlation parameter

vector𝜽c = (𝜑,𝜓)has length p − 1 = 2 and contains the range parameter𝜑 and the
relative nugget effect 𝜓 . The partial derivatives Pk, k = 1, 2 in this case correspond
to partial derivatives with respect to 𝜑 and 𝜃

𝜕P∕𝜕𝜑 = (1 − 𝜓)P∗′
, 𝜕P∕𝜕𝜓 = I − P∗

, (5.14)

where P∗′ = (𝜌∗′ij), 𝜌
∗′

ij = (|ti − tj|∕𝜑2) exp(−|ti − tj|∕𝜑); the dash denotes differen-
tiation with respect to𝜑. In terms of the covariance matrixΣ = 𝜎

2P, the derivatives
become

𝜕Σ∕𝜕𝜎2 = P, 𝜕Σ∕𝜕𝜑 = 𝜎
2(1 − 𝜓)P∗′

, 𝜕Σ∕𝜕𝜓 = 𝜎
2(I − P∗). (5.15)

◽
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5.5.2 Maximum Likelihood Estimates – Unknown Mean

Suppose the mean 𝜇 is included as an unknown parameter. The log-likelihood
takes the form

log L(𝜇,𝜽; y) = −1
2
{(y − 𝜇𝟏n)TΣ−1(y − 𝜇𝟏n) + log |Σ| + n log(2𝜋)}. (5.16)

Recall the matrix derivative formula

d(uTAu)∕du = 2Au,

where A is a symmetric matrix and u is a vector; see Section A.3.11. The derivative
of the log-likelihood with respect to 𝜇 is

𝜕 log L∕𝜕𝜇 = 𝟏T
nΣ−1(y − 𝜇𝟏n). (5.17)

Setting the derivative to 0 yields the generalized least squares (GLS) estimator

𝜇̂ = 𝜇̂(𝜽c) = yTΣ−1𝟏n∕𝟏T
nΣ−1𝟏n = yTP−1𝟏n∕𝟏T

n P−1𝟏n (5.18)

for a given value of 𝜽c.
This result can be used to simplify the log-likelihood.

(a) For a given value of 𝜽c, the maximizing value of 𝜇 is given by (5.18), and it does
not depend on 𝜎2.

(b) For a given value of 𝜽c and for 𝜇 = 𝜇̂(𝜽c), the maximizing value of 𝜎2 is given
by (5.10), with y replaced the residual

𝒘̂ = 𝒘̂(𝜽c) = y − 𝜇̂𝟏n (5.19)

and 𝜇̂ given by (5.18).
(c) Substituting these values for 𝜇 and 𝜎2 into the log-likelihood yields the profile

log-likelihood for the correlation parameters 𝜽c

log Lprofile(𝜽c) = −1
2
{n + n log(𝒘̂TP−1𝒘̂∕n) + log |P| + n log(2𝜋)}. (5.20)

Note both 𝒘̂ from (5.19) and P depend on 𝜽c.

In general, the profile log-likelihood must be maximized numerically over 𝜽c.
Equation (5.20) and its derivatives can be simplified by using a suitable linear
transformation. Let G be an n × (n − 1) column orthonormal matrix, not depend-
ing on the data, such that each column is orthogonal to the constant vector of ones,
so that GT𝟏n = 𝟎n−1 and GTG = In−1. A particular choice based on the Helmert
matrix is examined in Exercise 5.4. Set

z = GTy (5.21)

to be an (n − 1)-vector of contrasts between the elements of y. Then z has a mean
𝜇GT𝟏 = 𝟎 and the covariance matrix

ΣGG = GTΣG. (5.22)
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The quadratic form in (5.20) can be simplified to

𝒘̂
TP−1𝒘̂ = zTP−1

GGz (5.23)

(see Section A.3.7), so that the profile log-likelihood becomes

log Lprofile(𝜽c) = −1
2
{

n + n log(zTP−1
GGz∕n) + log |P| + n log(2𝜋)

}
, (5.24)

where PGG = GT P G. The derivatives of the profile log-likelihood with respect to
the correlation parameters in 𝜽c are given by

𝜕 log Lprofile,ML

𝜕𝜃k
= −1

2

{
−n

zTP−1
GGPGG;kP−1

GGz
zTP−1

GGz
+ tr(P−1Pk)

}
(5.25)

for k = 1, . . . , p − 1, where p − 1 is the number of elements in𝜽c. Here Pk = 𝜕P∕𝜕𝜃k
and PGG;k = GTPkG.

5.5.3 Fisher Information Matrix and Outfill Asymptotics

The Fisher information matrix is obtained from the matrix of expected values of
the second derivatives of the log-likelihood with respect to the parameters, after
changing the sign. For a stationary Gaussian model Nn(𝜇𝟏n,Σ), it takes the form

 =
[
(𝜇) 0

0 (𝜽)

]
=

[
𝟏T

nΣ−1𝟏n 0
0 A

]
, (5.26)

where A = (𝜽) is a p × p matrix with entries

ajk = 1
2
tr(Σ−1ΣjΣ−1Σk). (5.27)

See Section A.12 for more details about (5.26)–(5.27).
Under suitable regularity conditions, maximum likelihood estimators are

approximately normally distributed about the true parameters
[
𝜇̂

𝜽̂

]
−

[
𝜇

𝜽

]
∼ Np+1(𝟎,−1).

In particular, 𝜇̂ and 𝜽̂ are asymptotically independent. The regularity conditions
can be described as follows:

(a) 𝜎(h;𝜽) is twice continuously differentiable with respect to𝜽, and the true value
of 𝜽 lies in the interior of the parameter space.

(b) The smallest eigenvalue of the Fisher information matrix (𝜽) in (5.26) is
bounded away from 0 as n → ∞.

The most important example of a covariance model that does not satisfy these
conditions is a spherical scheme (see Exercise 5.1). Numerical problems with max-
imization of the likelihood for a spherical scheme are extensively discussed in the
literature; see Warnes and Ripley (1987) and Mardia and Watkins (1989), and, for
a more recent discussion, Zimmerman (2010). The failure to satisfy the regularity
conditions may be a contributory factor. See also Section B.3.2.
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One important situation is not entirely covered by the assumptions here.
Suppose that the model includes a nugget variance 𝜏2 ≥ 0, but that the true value
of 𝜏2 lies on the boundary 𝜏2 = 0. In this case, the asymptotic distribution of 𝜏2

follows a half-normal distribution (Mardia, 1990).
The second condition can be ensured by supposing that the covariance function

exhibits short-range correlation (see Eq. (2.74)) and that the data lie in an increas-
ing domain D as the sample size n increases (“outfill” asymptotics). Short-range
correlation is a property of most of the covariance functions used in practice,
such as the spherical scheme and all the Matérn covariance functions (including
the exponential scheme and the limiting Gaussian scheme). Further, including
a nugget effect preserves the short-range correlation property. As far as the data
sites are concerned, the simplest specification in the outfill setting is to suppose
that they lie on an integer lattice D of size n = |D| = n1 × · · · × nd, where all the
n[𝓁] are increasing at the same rate, 𝓁 = 1, . . . , d

n[𝓁] = c𝓁m, say, (5.28)

with m → ∞. Call this setting “regular outfill asymptotics.” The assumption of
an integer lattice facilitates some of the calculations and limiting results. Many
of the asymptotic results also hold for irregularly spaced data sites (Mardia and
Marshall, 1984). Formally, we consider an infinite sequence of sites t1, t2, . . . that
fill an expanding region as n increases. In particular, the spacing between the data
sites is not allowed to get too fine as n increases. That is, we suppose there is a
constant c > 0 such that

|ti − tj| ≥ c, for all i, j ≥ 1. (5.29)

Call this setting “irregular outfill asymptotics.”
For lattice data on a rectangular integer domain, it can be more straightforward

to verify sufficient regularity conditions on covariance functions by moving to
the spectral domain. Let fT(𝜔;𝜽) denote the spectral density, defined on the torus
𝜔 ∈ (−𝜋, 𝜋)d.

(a) fT(𝜔;𝜽) is twice continuously differentiable with respect to 𝜃.
(b) fT(𝜔;𝜽) is bounded away from 0 and ∞ and the first two derivatives of fT(𝜔;𝜽)

with respect to the elements of 𝜽 are bounded in absolute value.
The asymptotic bias of maximum likelihood estimators is discussed in

Section 5.11 for the more general setting of the spatial linear model.

5.6 Parameterization Issues for the Matérn Scheme

A popular model for stationary data is the Matérn covariance function, in (2.34),
which can be written in the form

𝜎(h) = 2𝜎2

Γ(𝜈)
(1
2
|h|∕𝜙)𝜈 K

𝜈
(|h|∕𝜙),
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with three parameters: the marginal variance 𝜎
2 = 𝜎(0), the range parameter

𝜑 > 0, and the index parameter 𝜈 > 0. Except in very densely spaced data sets, it
is difficult to estimate the index parameter. Hence, 𝜈 is usually treated as a known
parameter. Typical values are the half-integers 𝜈 = 0.5, 1.5, 2.5 because in these
cases the Bessel function can be expressed in terms of elementary functions such
as exponentials and powers. In particular, the choice 𝜈 = 0.5 corresponds to the
exponential scheme. In practice, it turns out the MLEs of 𝜎2 and 𝜑 can be very
highly correlated when 𝜑 is large. Hence, it is useful to reparameterize 𝜎2, as in
Section 5.14 on infill asymptotics, to

𝜎
2
e = 𝜎

2∕𝜑2𝜈
. (5.30)

Then, it can be shown that the MLEs of 𝜎2
e and 𝜑 are much less correlated than 𝜎2

and 𝜑. This reparameterization (5.30) was suggested by Zhang (2004), motivated
by arguments based on infill asymptotics; see Section 5.14.

5.7 Maximum Likelihood Examples for Stationary
Models

In this section, we illustrate maximum likelihood (ML) estimation using two
examples, the bauxite data and the elevation data. We focus on the Matérn scheme
and focus on to several issues.

(a) Whether a nugget effect is present
(b) The effect of varying the Matérn index parameter 𝜈
(c) Numerical issues when the range parameter is large

As discussed in Section A.12.7, if a statistical model has an extra parameter
added to it, the more complicated model is preferred only if the log-likelihood
increases sufficiently. If a hypothesis test is used, the maximized likelihood should
be increased by a value of at least 3.84/2 = 1.92 to be judged significant (3.84 is the
upper 5% critical value of the 𝜒2

1 distribution). If the Akaike information criterion
(AIC) criterion is used, the log-likelihood should be increased by at least 1 to justify
the “expense” of the more complicated model. These rules give rough guidelines
about whether a nugget effect is important.

Example 5.5 ML estimation for the bauxite data, stationary Matérn models
Consider the bauxite data given earlier. In many ways, the simplest model is
an exponential scheme, i.e. Matérn with index 𝜈 = 0.5, possibly with a nugget
effect. The first two rows of Table 5.1 give parameter estimates for this model
both without and with the nugget term. For some parameters, we work with log
parameters in an attempt to improve the symmetry of the confidence intervals.
Standard errors are produced using the expected Fisher information matrix.
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Table 5.1 Parameter estimates (and standard errors) for the bauxite data using the
Matérn model with a constant mean and with various choices for the index 𝜈.

Index 𝜈 Nugget 𝜇̂ log 𝜎̂2 log 𝜎̂2
e log 𝜑̂ 𝜏

2 log L

0.5 No 13.7 (3.7) 4.73 (0.33) 4.49 (0.35) 0.24 (0.47) 0 (0) −120.5
0.5 Yes 14.6 (4.5) 4.55 (0.63) 3.88 (1.26) 0.67 (0.96) 23 (44) −120.2
1.5 Yes 14.8 (4.5) 4.44 (0.58) 4.07 ( 1.79) 0.12 (0.59) 39 (24) −119.8
2.5 Yes 14.8 (4.5) 4.44 (0.57) 5.37 (2.38) −0.19 (0.48) 41 (20) −119.7

For 𝜈 = 0.5, the likelihood increases by only −120.2 + 120.5 = 0.3, when the
nugget term is added, which is not significant. Hence, we choose the model with-
out the nugget effect. Note that the inclusion of the nugget term is accompanied
by an increase in the estimate of 𝜑 (log𝜑 increases from 0.24 to 0.67). The reason
is that the nugget term implies greater independence between the observations.
This effect is counterbalanced by increasing the range parameter, which implies
increasing dependence between the observations. Whether a solution to the ML
equations for the global maximum is well behaved can be checked by plotting the
profile log-likelihood in one parameter after maximizing over other parameters.
The profile log-likelihood for 𝜑, when no nugget is present, is given by (5.20) with
𝜏

2 = 0. In other cases, the profile log-likelihood must be calculated numerically.
Using the ideas from Section A.12.5, confidence intervals can also be computed

from profile log-likelihood plots. Plots of profile log-likelihoods for an exponen-
tial model with no nugget term are given in Figure 5.3. The parameters are log𝜑
for the range and either log 𝜎2 or log 𝜎2

e for the scale parameter. In all cases, the
likelihood-based intervals are slightly right-skewed. In Section 5.6, it was argued
that when the range parameter is large, the modified scale parameter 𝜎2

e in (5.30)
can be estimated more accurately than 𝜎2. However, in this example with 𝜈 = 0.5
and no nugget, the estimated range parameter 𝜑̂ = exp(0.24) = 1.3 is not large
relative to the domain of the data (a square of size 6 × 6). Indeed, it turns out
that for 𝜈 = 0.5, corr(𝜎̂2

, 𝜑̂) = 0.66 is not too large, and log 𝜎̂2
e has a slightly larger

estimated standard error than log 𝜎̂2. The bottom two rows of Table 5.1 indicate
what happens with other choices for 𝜈. The main change is that the nugget effect
increases. The reason is that the semivariogram changes from a linear function to
a quadratic function at |h| = 0, and a larger nugget term is needed to accommo-
date the gap. Figure 5.4 gives the fitted semivariograms for the three models with
nugget effects.

In Example 5.8, a quadratic drift is included in the model to fit the basin-shaped
pattern in the data. ◽
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Figure 5.3 Bauxite data: Profile log-likelihoods together with 95% confidence intervals.
Exponential model, no nugget effect.

Example 5.6 ML estimation for the elevation data, stationary Matérn
models
Consider the elevation data described earlier. Davis (1973) analyzed the data, and
it was reanalyzed subsequently by various authors (e.g., Mardia, 1990; Ripley,
1988; Warnes and Ripley, 1987; Diggle and Ribeiro, 2007). Here, we fit several
isotropic stationary models to illustrate some of the issues in maximum likelihood
estimation.
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Figure 5.4 Bauxite data: sample isotropic semivariogram values and fitted Matérn
semivariograms with a nugget effect, for 𝜈 = 0.5 (solid), 𝜈 = 1.5 (dashed), and 𝜈 = 2.5
(dotted).

Consider various Matérn models with different levels of smoothness, 𝜈 = 0.5,
1.5, 2.5. Table 5.2 gives the MLEs and standard errors. As in Example, 5.5, we also
include the parameterization involving 𝜎2

e instead of 𝜎2.
To begin with, look at the exponential model (𝜈 = 0.5). Note that the estimated

range parameter 𝜑̂ = exp(1.8) = 6.1 is nearly the same as the width of the data set.
That is, the fitted model has a large range parameter, which causes confounding
between the estimates of 𝜑 and 𝜎

2. Indeed, it turns out that the estimated
correlation between their estimates is corr(𝜎̂2

, 𝜑̂) = corr(log 𝜎̂2
, log 𝜑̂) = 0.97.

This confounding can be partly removed by using the parameters 𝜎2
e and 𝜑; the

correlation between the estimates is now reduced to −0.31. Also note that the
standard error of log 𝜎̂2

e (0.2) is much smaller than the standard error of log 𝜎̂2

(0.8). However, the standard error of log 𝜑̂ is very wide (0.8) (yielding a very
wide 95% confidence interval for 𝜑 of (1.3, 30)), reflecting the fact that there
is insufficient independent information in the data to estimate this quantity
accurately.

Table 5.2 Parameter estimates (and standard errors) for the elevation data using the
Matérn model with a constant mean and with various choices for the index 𝜈.

Index 𝜈 Nugget 𝜇̂ log 𝜎̂2 log 𝜎̂2
e log 𝜑̂ 𝜏

2 log L

0.5 No 864 (45) 8.32 (0.77) 6.50 (0.21) 1.81 (0.81) 0 (0) −244.6
0.5 Yes 864 (45) 8.32 (0.77) 6.50 (0.36) 1.81 (0.86) 0 −244.6
1.5 Yes 848 (28) 8.2 (0.5) 7.6 (0.4) 0.18 (0.25) 48 (46) −242.1
2.5 Yes 845 (24) 8.1 (0.43) 9.6 (0.7) −0.30 (0.18) 71 (44) −242.3
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Figure 5.5 Elevation data: Profile log-likelihoods together with 95% confidence
intervals. Exponential model, no nugget effect.

Confidence intervals for the parameters can also be produced from the profile
log-likelihood for each parameter. Plots of profile log-likelihoods for the expo-
nential model with no nugget term are given in Figure 5.5. The likelihood-based
interval for log𝜑 is slightly right-skewed, perhaps reflecting the problems
described in the last paragraph. However, the likelihood-based interval for log 𝜎̂2

e
is fairly symmetric.
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Next, consider the index values 𝜈 = 1.5, 2.5. Note that there is no evidence of a
nugget effect when 𝜈 = 0.5, but the nugget effect becomes more prominent as 𝜈
increases. The reason is that the Matérn covariance function becomes smoother
near h = 0 as 𝜈 increases. The result is a poorer fit between the fitted model (with-
out the nugget term) and the observed semivariograms for small h, which is partly
cured by adding a nugget term. Overall, in terms of likelihoods, there is little to
choose between 𝜈 = 0.5 without a nugget effect and a variety of choices for 𝜈 with
a nugget effect. ◽

5.8 Restricted Maximum Likelihood (REML)

As in Section 5.5.2, let y be an observation from Nn(𝜇𝟏n,Σ), where 𝜇 is a constant
mean and where Σ depends on a set of unknown parameters 𝜽, as in Section 5.5.2.
The log-likelihood for 𝜇 and 𝜽 is given by (5.16). The “restricted maximum like-
lihood principle” (REML) states that estimation of these two sets of parameters
should be separated. That is, rather than estimating 𝜇 and 𝜽 jointly, 𝜽 should
be estimated first using a restricted likelihood, after which 𝜇 can be estimated
by (5.18).

The REML principle was set out in the spatial context by Harville (1977). There
are two objectives: (i) to lessen or remove the bias of the covariance parameters
and (ii) to simplify the likelihood equations.

The restricted likelihood is constructed using increments of the data. As in
Section 5.5.2, let G be an n × (n − 1) column orthonormal matrix, not depending
on the data, such that each column is orthogonal to the constant vector of
ones, so that GT𝟏 = 𝟎 and GTG = In−1 and set z = GTy to be an (n − 1) vector of
contrasts in the data, from an Nn−1(𝟎,ΣGG) distribution, where ΣGG = GTΣG. The
log-likelihood based on z for the covariance parameters 𝜽 is given by

log L(𝜽; z) = −1
2
{zTΣ−1

GGz + log |ΣGG| + n′ log(2𝜋)}, (5.31)

where n′ = n − 1. Note that the log-likelihood no longer depends on 𝜇.
As before, let 𝜽 be partitioned into an overall scale parameter and the remaining

parameters,𝜽 = (𝜽T
c , 𝜎

2)T , and writeΣGG = 𝜎
2PGG, where PGG = GTPG is the trans-

formed correlation matrix for x. Note PGG itself is not a correlation matrix since its
diagonal elements are not equal to 1. However, (5.31) can still be maximized first
over 𝜎2 to give a profile log-likelihood

log Lprofile,REML(𝜽c; z) = −1
2
{

n′ + n′ log(zTP−1
GGz∕n′) + log |PGG| + n′ log(2𝜋)

}
.

(5.32)
It is interesting to contrast the REML likelihood with the full maximum like-
lihood profile log-likelihood (5.20). The two log-likelihoods have the same
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quadratic form but different multipliers, n and n′. Further, the determinants are
related by

log |P| = log |PGG| − log(𝟏TP−1𝟏n∕n). (5.33)

See Exercise 5.3 for more details.
In the setting of n i.i.d. N(𝜇, 𝜎2) observations, the difference between the full

likelihood approach and the REML approach is the choice of either n or n − 1 as
the divisor in the estimate of 𝜎2, respectively. The latter choice is generally pre-
ferred. The REML approach can also be used for intrinsic processes, and is indeed
the only approach available. Suppose y contains n observations from an intrinsic
process of intrinsic order 0 with a semivariogram 𝛾(h) and set 𝜎(h) = −𝛾(h) to be
the intrinsic covariance function, defined up to a constant term. Then, z = GTy ∼
Nn−1(𝟎,GTΣG) and the log-likelihood continues to take the form (5.31). When the
drift just consists of a constant mean, REML and ML are generally similar. How-
ever, in more complicated settings (i.e. nontrivial drift as in Section 5.11), REML
can be more sensitive to misspecification than MLE. See, e.g., Diggle and Ribeiro
(2007, p. 117).

5.9 Vecchia’s Composite Likelihood

If n is large, computation of the MLEs can be computationally prohibitive because
of the need to invert and multiply n × n matrices; each of these operations involves
O(n3) calculations. In this section, we develop an approximate likelihood due to
Vecchia (1988) that is much quicker to compute.

In principle, Vecchia’s method described here works with any n-dimensional
random vector with a multivariate normal distribution, x ∼ Nn(𝝁,Σ), where 𝝁 is
an n-dimensional vector and where Σ = Σ(𝜃) with elements 𝜎ij = 𝜎ij(𝜽) depends
on a p-dimensional set of parameters 𝜽.

First, suppose the components of x, written x1, . . . , xn, have been listed in a
specific order. From the properties of conditional likelihood, the joint probability
density of x can be split into a product of conditional densities

f (x) =
n∏

i=1
f (xi|xj ∶ j = 1, . . . , i − 1), (5.34)

where in the first factor f (x1), the conditioning set is empty. For a Gaussian ran-
dom field, each of these conditional densities is a one-dimensional normal density,
which can be written in closed form. So far there has been no simplification in the
computation. However, Vecchia suggested replacing the full conditioning set by a
smaller set, which we call the “partial past.” Let Pi ⊂ {1, . . . , i − 1} be a subset of
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the indices preceding i, for i = 1, . . . ,n and consider the product of these condi-
tional densities

L(𝜽; x) =
n∏

i=1
f (xi|xj ∶ j ∈ Pi;𝜽), (5.35)

where the dependence of the conditional densities on a parameter vector 𝜽 is now
highlighted. In general, the phrase “composite likelihood” is used to describe a
product of selected marginal and conditional densities. Hence, Vecchia’s likeli-
hood (5.35) is an example of a composite likelihood, which can be viewed as an
approximation to the full likelihood. If the sets Pi are not large, then the compos-
ite likelihood will be quick to compute. The preceding discussion is valid for any
multivariate vector x. Next, we consider how to construct the subsets Pi in a spa-
tial setting. If the data lie on a rectangular lattice, and if the ordering of the sites
is determined by a half-space  as in Section 4.8.1, then a natural choice for the
partial past is to take a shifted version of a single set D0 ⊂ 

Pi = {j ∶ tj ∈ ti − D0}. (5.36)

For example, using the lexicographic half-space  =  in ℤ2, recall that a site
t = (t[1], t[2]) lies in  if either t[1] > 0 or t[1] = 0 and t[2] > 0. Hence, a possible
choice for D0 is

D0 = {(0, 1), (1,−1), (1, 0), (1, 1)}. (5.37)

In this example, D0 consists of a set of sites close to the origin, so the composite
likelihood will be good at estimating features of the covariance function depending
on short-range dependence.

A number of suggestions have been made in the literature about implementing
Vecchia’s ideas in practice. Stein et al. (2004) argue that it is also a good idea to
include a few sites more distant from the origin to help estimate features of the
covariance function depending on longer range dependence. Pardo-Igúzquiza and
Dowd (1997) suggest taking the sites in a random order with a random selection
of k sites from the past, where k typically lies between 10 and 20. Mardia (2011), in
a discussion of work by Pardo-Igúzquiza and Dowd (1997), reports that it is better
to take the sites in lexicographic order, again with a random selection of sites from
the past. Caragea and Smith (2007) argue for organizing the sites into blocks and
using a multivariate version of Vecchia’s approach. Thus, the use of Vecchia-type
approximations continues to be an active area of current research, and it remains
to be seen what turns out to be the best approach in practice.

The density in (5.35) can be expressed as

f (x) =
∏

(2𝜋𝜎2
i )

−1∕2 exp

{
− 1

2𝜎2
i

(𝓵T
i (x − 𝜇𝟏n))2

}
, (5.38)
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where 𝓵i is the vector of coefficients for the residual of the regression of xi on the
previous components, with variance 𝜎2

i = 𝓵T
i Σ𝓵i. The vector 𝓵i takes the form

𝓁ij = 1, j = i,

(𝓁ij, j ∈ Pi) = −Σ−1
i 𝜶i, (5.39)

𝓁ij = 0, otherwise.

Here, Σi is the submatrix of Σ and 𝜶i is the subvector of the ith column of Σ cor-
responding to the sites in Pi. If Σ = (𝜎ij(𝜽)) depends on a parameter vector 𝜽, then
it is straightforward to write down the derivatives of 𝓵i and 𝜎2

i with respect to 𝜽 in
terms of the derivatives d𝜎(h;𝜽)∕d𝜽. When Pi = {1, . . . , i − 1} consists of the full
past, this representation reexpresses the joint density of dependent observations as
a product of densities of independent random variables. In the d = 1-dimensional
setting, this factorization approximates the description of a stationary time series
as a (possibly infinite) autoregression representation on its past plus an innova-
tion error. The evidence so far suggests that Vecchia’s method can have high sta-
tistical efficiency using only a moderately sized sets Pi. For an illustration, see
Example 5.7.

5.10 REML Revisited with Composite Likelihood

In Section 5.9, the linear combination ei = 𝓵T
i (x − 𝜇𝟏n), i ≥ 1 in (5.38) is the

residual after predicting xi from some of the previous components using the best
linear predictor (BLP). However, 𝓵T

i 𝟏n ≠ 0 so that the resulting likelihood still
involves 𝜇 as well as the vector of parameters 𝜽 in 𝜎(h;𝜽). Another way to proceed,
which removes any dependence of the likelihood on 𝜇, is to use REML, which
is constructed from the distribution of residuals from the best linear unbiased
predictors (BLUPs). This approach is due to Kitandis (1991) and Stein et al. (2004).
To describe the BLUP methodology, it is helpful to set up the notation in a general
multivariate setting. Let u be a p-dimensional random vector and let 𝑣 be a
random variable. Suppose the means are constant, E(ui) = 𝜇, i = 1, . . . , p, and
E(𝑣) = 𝜇, with covariance structure

var(u) = A (p × p), cov(u, 𝑣) = b (p × 1), var(𝑣) = c (scalar).

A linear predictor of 𝑣 based on u takes the form 𝑣̂ = f + gTu for some scalar f and
a p-vector of coefficients g. The predictor is called unbiased if the residual e = 𝑣 − 𝑣̂
has mean E(e) = 0 for all 𝜇, which implies that f = 0 and 𝟏T

n g =
∑

gi = 1. The lin-
ear unbiased predictor is called best if var(𝑣 − 𝑣̂) is minimized. It is straightforward
to show that the BLUP is uniquely determined with f = 0 and

g = A−1
(

b +
1 − q1b

q11
𝟏p

)
(5.40)
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with residual variance

𝜏
2 = var(e) = c − qbb + (q1b − 1)2∕q11

in terms of the quadratic forms

q11 = 𝟏T
p A−1𝟏p, q1b = 𝟏T

p A−1b, qbb = bTA−1b.

More details can be found in Section 7.4 in the context of kriging.
Now let us return to the spatial setting, with data y = (y1, . . . , yn)T at sites

t1, . . . , tn, where we assume a constant mean E(yi) = 𝜇, i = 1, . . . ,n and a
covariance matrix

var(y) = Σ = (𝜎jj′ ∶ 1 ≤ j, j′ ≤ n).

The REML likelihood for y can be constructed using the ideas from Section 5.8, and
it can be recast in terms of BLUPs, where for each i = 2, . . . ,n we predict 𝑣 = yi
using u = (y1, . . . , yi−1)T . Define the residual eU

i , say, as the linear combination
eU

i = (𝓵U
i )

Ty, where 𝓵U
i is the unique n-vector 𝓵i satisfying the BLUP constraints

at site i; that is,

(i) 𝓁i,i+1 = · · · = 𝓁i,n = 0.
(ii) 𝓁ii = 1.

(iii) 𝓵i is an increment, that is, 𝟏T𝓵i = 0.
(iv) var(𝓵T

i y) is minimal among all linear combinations satisfying (i)–(iii).

The superscript “U” is used to indicate the BLUP predictor. The subvector
(−𝓁U

i1 , . . . ,−𝓁
U
i,i−1)

T is the vector of predictor coefficients labeled g in (5.40).
The matrix A in (5.40) is the covariance matrix of y1, . . . , yi−1 and the vector b
contains the covariances between yi and y1, . . . , yi−1. Properties (i) and (ii) ensure
that eU

i = (𝓵U
i )

Ty is a difference between yi and its predicted value based on
y1, . . . , yi−1; property (iii) ensures that the predictor is unbiased; and property
(iv) ensures that this predictor is “best.” See Exercise 5.5 for more details.

It is also the case that the random variables eU
i are uncorrelated. To ver-

ify this claim, suppose, if possible, for some j < i that cor(eU
i , e

U
j ) = 𝜌 ≠ 0.

Then, for any real value c, 𝓵i = 𝓵U
i − c𝓵U

j is a coefficient vector satisfying
the first three BLUP constraints (i)–(iii) at site i. However, for c = 𝜌𝜏i∕𝜏j,
var{𝓵T

i y} = (1 − 𝜌2)𝜏2
i < 𝜏

2
i , which would contradict the optimality of 𝓵U

i . Hence,
𝜌 = 0. Here 𝜏2

i = var{(𝓵U
i )

Ty} = (𝓵U
i )

TΣ𝓵U
i .

Now, additionally suppose that the data are normally distributed, and collect the
vectors𝓵i together as the rows of an (n − 1) × n matrix L. The preceding paragraph
ensures that LΣLT is diagonal, with elements 𝜏2

i . Then the REML log-likelihood
can be written in the following form based on the BLUP residuals:

log Lprofile,REML,1 = −1
2
{yTLT(LΣLT)−1Ly + log |LΣLT| + (n − 1) log(2𝜋)} (5.41)

= −1
2

[ n∑
i=2

{(𝓵U
i )

Ty}2∕𝜏2
i + log 𝜏2

i } + (n − 1) log(2𝜋)

]
, (5.42)
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where the 𝓵U
i and 𝜏2

i depend on the vector of parameters 𝜃 through the under-
lying covariance function as shown in (5.40). It is confirmed in Exercise 5.7 that
log Lprofile,REML,1 is the same as the REML log-likelihood in (5.31), up to a constant
additive term not depending on the data or the parameters.

The vector 𝓵U
i can be written more explicitly using the notation 𝓵(i; {1, . . . ,

i − 1}) to indicate that 𝓵(i; {1, . . . , i − 1})Ty is a residual after predicting yi using
the full set of past values at sites {1, . . . , i − 1}. More generally, we can consider
coefficient vectors 𝓵(i;Pi), where Pi ⊂ {1, . . . , i − 1}. This approach gives a BLUP
variant of Vecchia’s composite likelihood

log Lprofile,REML,Vecchia = −1
2

{ n∑
i=2

(𝓵(i;Pi)Ty)2∕𝜏2(i;Pi)

+ log 𝜏2(i;Pi) + (n − 1) log(2𝜋)

}
, (5.43)

where 𝜏2(i;Pi) = var(𝓵i(1;Pi)Ty). However, for general subsets Pi of the past, the
linear combinations 𝓵(i;Pi)Ty are no longer uncorrelated for different i.

Example 5.7 Vecchia ML for the synthetic Landsat data
In this example, we use the 200 × 200 synthetic Landsat data set from Example
1.6. Recall that the data have been simulated from a stationary Gaussian pro-
cess with an exponential covariance function, with parameters 𝜇 = 0, 𝜎2 = 1,
𝜑 = 8, 𝜏2 = 0. The purpose is to investigate the stability and accuracy of
the Vecchia ML estimates, using different-sized full unilateral lexicographic

−3 −2 −1 0 1 2 3

−3
−2

−1
0

1
2

3

i [1]

i[
2] X

Full unilateral neighborhood of size 2

Figure 5.6 Unilateral lexicographic neighborhood of full size k = 2 for lattice data;
current site marked by ×; neighborhood sites in the lexicographic past marked by ○.
Other sites are marked by a dot.
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Table 5.3 Parameter estimates (with standard errors in
parentheses) for Vecchia’s composite likelihood in Example 5.7 for
the synthetic Landsat data, using different sizes of neighborhood k

k 𝜎̂
2

𝜑̂ 𝜏
2

1 0.984 (0.067) 8.095 (0.678) 0.039 (0.003)
2 1.054 (0.074) 8.952 (0.700) 0.041 (0.002)
3 1.020 (0.069) 8.674 (0.636) 0.042 (0.002)
4 1.027 (0.072) 8.714 (0.654) 0.042 (0.002)
5 1.011 (0.071) 8.564 (0.646) 0.041 (0.002)

The true parameter values are 𝜎2 = 1, 𝜑 = 8, 𝜏2 = 0.

neighborhoods of size k. The full unilateral lexicographic neighborhood of size k is
defined by

D = {h = (h[1], h[2]) ∶ max (|h[1], |h[2]|) ≤ k,

and either h[1] > 0 or (h[1] = 0, h[2] > 0)}

and is shown in Figure 5.6 for k = 2.
For simplicity, we assume the mean is known and focus on the covariance

parameters. The parameter estimates are given in Table 5.3, together with
estimated standard errors obtained from the Hessian matrix. For this example,
note that the estimates are quite stable as k varies. The estimates for 𝜎2 and 𝜑 are
well within two standard errors of the true values. However, the estimate for 𝜏2,
though small, is significantly above 0, perhaps because the true value of 𝜏2 lies at
the boundary of the parameter region. ◽

5.11 Spatial Linear Model

The preceding sections assume that the mean of the stochastic process {X(t)} is
constant. In this section, we allow the mean to vary systematically.

Definition 5.11.1 Let {X(t) ∶ t ∈ ℝd} be a random field, which can be decom-
posed as

X(t) = 𝜇(t) + Z(t), t ∈ ℝd
, (5.44)

where Z(t) is a zero mean stationary random field with a covariance function
𝜎(h;𝜽), depending on a parameter vector 𝜽, and where the mean function takes
the form

𝜇(t) =
q∑

j=1
𝛽j fj(t) (5.45)
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in terms of known specified functions fj(t) and unknown coefficients 𝛽j. Then,
{X(t)} is said to follow the spatial linear model.

Usually, it is assumed that f1(t) ≡ 1, so that if q = 1, the random field is stationary
with unknown mean 𝛽1. In the stationary case, the name ordinary spatial linear
model can be used to match the terminology of ordinary kriging in Chapter 7.

More generally, it is common to let the drift space be given by k, the space of
polynomials of degree k introduced in Section 3.4. Thus, the functions fj(t) repre-
sent powers of t. For example, if d = 2 and k = 2, then q = 6, where the constant,
linear, and quadratic functions of t are given by (1, t[1], t[2], t[1]2

, t[2]2
, t[1]t[2]).

When the drift space is given by k, the name universal spatial linear model can
be used to match the terminology of universal kriging in Chapter 7.

The drift functions at a set of data sites D = {t1, . . . , tn} can be combined into an
n × q matrix F with entries

fij = fj(ti), i = 1, . . . ,n, j = 1, . . . , q. (5.46)

The only condition made on the drift functions and the data sites is that F should
have full column rank q.

5.11.1 MLEs

A general treatment of maximum likelihood estimation for a multivariate normal
distribution with drift is given in Section A.12. Here are the key details in the
current setting. Assume the same covariance structure as in the stationary case in
Section 5.5. In particular, suppose that a vector of observations y = (y1, . . . , yn)T

at the set of sites D = (t1, . . . , tn) in ℝd is available from the x-process, possibly
including a nugget effect. As before, let Σ = (𝜎ij) where 𝜎ij = 𝜎(ti − tj) denote the
covariance matrix of the data, depending on a p-dimensional parameter vector
𝜽 = (𝜎2

,𝜽T
c )T partitioned into an overall variance 𝜎

2 and a set of correlation
parameters 𝜽c), and write Σ = 𝜎

2P, where P is the correlation matrix of the data,
as in (5.6). The formulas for the stationary case carry over with little change.
The log-likelihood is now

log L = −1
2
{(y − F𝜷)TΣ−1(y − F𝜷) + log |Σ| + n log(2𝜋)}, (5.47)

and formula (5.18) for the estimated mean becomes the generalized least squares
(GLS) estimator

𝜷̂ = (FTΣ̂−1F)−1FTΣ̂−1y, (5.48)

for the estimated vector of regression coefficients.
Using Section A.3.7, the profile log-likelihood simplifies in the same way as

(5.24) to give

log Lprofile,ML(𝜽c; y) = −1
2
{n + n log(zTPGGz∕n) + log |P| + n log(2𝜋)}, (5.49)
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where G is now an n × (n − q) column orthonormal matrix, whose columns
are orthogonal to the drift matrix, GTG = In−q,GTF = 0. Also, z = GTy and
PGG = GTPG. The profile log-likelihood needs to be maximized numerically over
the correlation parameters 𝜽c. The asymptotic distribution of (𝜷,𝜽) takes a form
similar to the stationary case in Eq. (5.26). For the spatial linear model, the Fisher
information matrix is given by

 =
[
(𝜷) 0

0 (𝜽)

]
=

[
FTΣ−1F 0

0 A

]
, (5.50)

where A is defined in (5.27).

Example 5.8 Bauxite data with quadratic drift
In Example 5.5 for the bauxite data, a stationary model using the exponential
covariance function with no nugget term was selected. But since the data exhibit a
basin shape (see Example 1.4), it is also natural to consider fitting a quadratic drift,
with spatial dependence still modeled by an exponential covariance function with
no nugget term.

For this quadratic drift model, it turns out that the estimated range parameter is
𝜑̂ = 0, i.e. there is no spatial dependence in the data and the covariance matrix is
proportional to the identity. The log-likelihood is log L = −113.4.

As noted earlier, one way to choose between statistical models is to minimize the
AIC. For the stationary model with no nugget in Table 5.1, and for the quadratic
drift model with independent errors (i.e., 𝜙 = 0), these values are

AICstationary = 2(3 − (−120.2)) = 246.4 > AICquadratic = 2(7 − (−113.4)) = 240.8.

Hence, there is some evidence to prefer the quadratic model. Note that the sta-
tionary model has three parameters (a scale parameter, a range parameter, and a
mean). The quadratic drift model includes five more drift parameters (two linear
terms and three quadratic terms), but does not include the range parameter, for a
total of seven parameters. ◽

For the bauxite data, it seems clear-cut to prefer the quadratic drift model over
the stationary model. However, in general, it can be challenging to model spatial
data for which nearby sites tend to have similar values. This pattern can be mod-
eled through spatial dependence or drift, or some combination of both. Of course,
the bauxite data set is small. If it had been observed over a larger region, then
more local extreme points in the data might have appeared and the quadratic drift
(or even higher order polynomial drift) would be less appealing. Similarly, if the
model is extrapolated beyond the domain of observation, then the quadratic drift
will typically deviate more quickly from the observed data values. Knowledge of
the application area can offer guidance about whether a drift is sensible or not.
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5.11.2 Outfill Asymptotics for the Spatial Linear Model

Regularity conditions under outfill asymptotics were discussed for the stationary
case in Section 5.5.3. In the setting of the spatial linear model, it is further nec-
essary to assume that there is enough growth of the domain in all dimensions to
ensure that the regression parameters can be consistently estimated. Then, it can
be shown (Mardia and Marshall, 1984) that the eigenvalues of  increase at a rate
of at least n, where

 =
[
(FTΣ−1F)−1 0

0 A−1

]
, (5.51)

where A is given in (5.27), and that the maximum likelihood estimates are asymp-
totically normally distributed

[
𝜷̂

𝜽̂

]
∼ Np+1

([
𝜷

𝜽

]
,

)
. (5.52)

In particular, 𝜷̂ and 𝜽̂ are asymptotically independent.
Next, consider the asymptotic bias. From the Mardia–Watkins Theorem in

Section A.13.2, the bias in 𝜷 is negligible (E(𝜷̂ − 𝜷) = o(n−1)). The bias in 𝜽 is
typically of order 1∕n and takes the form

E(𝜽̂) − 𝜽 = ((𝜽))−1𝜹 + o(n−1), (5.53)

where 𝜹 is a vector of length p, with components

𝛿i =
1
2
tr
{
((𝜷))−1

𝜕
(𝜷)∕𝜕𝜃i

}
+ 1

2
tr
{
((𝜽))−1Mi

}
, (5.54)

where Mi is a p × p matrix with elements

(Mi)jk = 1
2
tr(ΣijΣ−1ΣkΣ−1 − ΣikΣ−1ΣjΣ−1 − ΣjkΣ−1ΣiΣ−1), (5.55)

and Σi = 𝜕Σ∕𝜕𝜃i and Σij = 𝜕
2Σ∕𝜕𝜃i𝜕𝜃j for i, j, k = 1, . . . , p.

5.12 REML for the Spatial Linear Model

In the setting of the spatial linear model, the REML approach involves projecting
the data onto the orthogonal complement of the drift space, represented by the
p × q matrix F from Eq. (5.46). Let G (n × (n − q)) be a column orthonormal matrix
orthogonal to the columns of F; that is,

GTG = In−q, GTF = 0. (5.56)

The matrix G is not uniquely determined; it is determined only up to multipli-
cation on the right by an orthogonal (n − q) × (n − q) orthogonal matrix R, say.
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However, the span of the columns of G is unique, which is all that matters for
REML estimation. Then, the REML log-likelihood is

log L = −1
2
{yTG(GTΣG)−1GTy + log |GTΣG| + n log(2𝜋)} (5.57)

(Kitandis, 1983). It can be easily checked that the log-likelihood is unchanged if G
is rotated on the right to GR.

As described in Section A.12.4, it is helpful to separate an overall scale
parameter from the remaining parameters in 𝜽, i.e. Σ = 𝜎

2P = 𝜎
2P(𝜽c). Then

the log-likelihood can be maximized analytically over 𝜎
2, to give a profile

log-likelihood to be maximized numerically over 𝜽c.

5.13 Intrinsic Random Fields

Suppose the data {x(ti) ∶ i = 1, . . . ,n} come from a pth order intrinsic process,
p ≥ 0. For an intrinsic process, the covariance function is defined only up to an
equivalence class of functions. Thus, the covariance matrix Σ is not well defined.

To study intrinsic processes, it is first necessary to consider the “drift matrix”
F (n × r)whose columns contain the r, say, monomials in t up to order p, evaluated
at n data sites.

The most important case is p = 0 for which F has one column, given by

FT = [1, . . . , 1].

The cases p = 1 and p = 2 are also important. In d = 2 dimensions, the ith row of
F is given by

(p = 1) f T
i =

[
1 ti[1] ti[2]

]
,

(p = 2) f T
i =

[
1 ti[1] ti[2] ti[1]2 ti[1]ti[2] ti[2]2] ,

where ti = (ti[1], ti[2]) denote the two components of the site ti. Thus, the columns
of F contain the constant function, linear functions, and (for p = 2) quadratic func-
tions of t.

Given F, the next step is to define an “increment matrix” G(n × (n − r), which
has the properties that G has full column rank and

GTF = 0.

In practice, it is convenient to assume that G is column orthonormal, GTG = In−r .
Then for an intrinsic process, the covariance matrix of the increments is a matrix

Ω, say, given by
Ω = var(GTy) = var(y) = GTΣG (5.58)
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is well defined where y = GTx. Further, the increments have a log-likelihood
given by

log L = −1
2
{

yTΩ−1y + log |Ω| + (n − r) log(2𝜋)
}
. (5.59)

This function can then be optimized with respect to any parameters in the
covariance function. Cressie and Lahiri (1993) have considered the asymptotic
distribution of the REML estimator, following Mardia and Marshall (1984).

The log-likelihood of the increments for a pth-order intrinsic processes turns
out to be identical to the REML log-likelihood for a spatial linear model with a
stationary covariance function when the drift functions consist of polynomials
in t up to degree p. Of course, for the spatial linear model, there is also the
option of using the full likelihood; this option is not available for intrinsic
processes.

The REML log-likelihood was discussed in detail earlier for a stationary pro-
cess with unknown mean. This is a special case of a spatial linear model where
the drift functions consist of polynomials of degree 0, i.e. the constant function.
In the REML section, we used the sub-Helmert matrix to construct the increments.
The matrix H in that section is an example of the increment matrix G defined
above.

Example 5.9 Gravimetric data
Consider the gravimetric data introduced in Section 1.5 and notice two features
in Figure 1.13. First, the semivariogram in panel (b) appears to be unbounded in
several directions as the lag increases. Hence, we consider fitting a self-similar
intrinsic model, both without and with a nugget term, to the data. Second, there
appears to be an approximate linear trend from the lower right to the upper left in
the bubble plot in panel (a). Hence, we focus on fitting IRF(1) models; for these
models, the likelihood removes the effects of a linear trend.

The self-similar models were introduced in Section 3.10 and depend on an index
𝛼. For the models with intrinsic order k = 1, the index is restricted to the range
0 < 𝛼 < 2, with the corresponding intrinsic covariance function

𝜎I(h) =
⎧
⎪
⎨
⎪⎩

−𝜎2|h|2𝛼
, 0 < 𝛼 < 1,

𝜎
2|h|2𝛼 log |h|, 𝛼 = 1,
𝜎

2|h|2𝛼
, 1 < 𝛼 < 2,

(5.60)

where the scale parameter 𝜎2 absorbs the proportionality constant c
𝛼,d in (3.46).

The model has two parameters, the index 𝛼 and the scale parameter 𝜎2. The
interpretation of an intrinsic covariance function needs care, as described in
Section 3.10. The intrinsic covariance function (5.60) can be used to define Σ
in (5.58). If a nugget term is present in the model, then Σ should be replaced
by Σ + 𝜏2I.
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The log-likelihood is given by (5.59). The profile log-likelihood, that is, the
log-likelihood after maximizing over 𝜎2 (and 𝜏2, if present), is shown in Figure 5.7,
as a function of the index 𝛼. Several conclusions can be drawn from this figure.

(a) If no nugget is included, the MLE for 𝛼 is 𝛼̂ = 0.59, with a 95% likelihood-based
confidence interval (0.42, 0.80). The maximized log-likelihood is 93.43.

(b) If a nugget is included, the MLE for 𝛼 is 𝛼̂ = 1.13, with a 95% likelihood-based
confidence interval (0.54, 1.70). The maximized log-likelihood is 95.23.

(c) Hence, when a nugget is included, the estimated 𝛼 is larger than without a
nugget. If the models are compared by a likelihood ratio test, twice the differ-
ence between the log-likelihoods is

2(95.23 − 93.43) = 3.60,

which is not quite significant at the upper 5% critical value 3.84 of the𝜒2
1 distri-

bution, and suggesting a slight preference for the model with no nugget. If the
two models are compared in terms of their AIC values, the two AIC values are

AICno-nugget = 2(2 − 93.43) = −182.86, AICnugget = 2(3 − 95.23) = −184.46.

0.0 0.5 1.0 1.5 2.0

50
60

70
80

90

Gravimetric data, self−similar IRF-1 model

Index

Lo
g 

lik

Figure 5.7 Profile log-likelihoods for self-similar models of intrinsic order p = 1, as a
function of the index 𝛼, 0 < 𝛼 < 2, both without a nugget effect (dashed line) and with a
nugget effect (solid line). In addition, the log-likelihood for each 𝛼, with the parameters
estimated by MINQUE (described In Section 5.13), is shown (dotted line).
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Since the AIC value for the model with a nugget is smaller, there is a slight
preference for the model with a nugget.

(d) In summary, the data can be described either by a self-similar model without
nugget and 𝛼 about 0.5 or by a self-similar model with nugget and 𝛼 about 1.0.

The theory of minimum norm quadratic unbiased estimation (MINQUE) was
developed by Rao (see, e.g. 1973, pp. 302–305). Its application was originally to
the problem of heteroscedasticity and the estimation of variance components in
random effects models. It was extended to spatial analysis by Marshall and Mardia
(1985). Details are given in Exercise 5.6.

Figure 5.7 also includes the log-likelihood for the model with a nugget when
𝜎

2 and 𝜏2 are estimated by the MINQUE method, again indexed by 𝛼. The maxi-
mizing value of the index is 𝛼̂MINQUE = 0.90, which is compatible with the MLE.
A strange feature in this plot is the cusp. For indices below the cusp, the estimated
nugget term is 0, whereas for indices above the cusp, the estimated nugget term is
nonzero. ◽

Part of the motivation behind REML and MINQUE is to reduce bias in the esti-
mation of covariance parameters. REML is a likelihood-based method designed to
reduce the bias arising from the presence of drift terms in the model. MINQUE is
a moment-based method that is applicable when the covariance function can be
written as a linear combination of parameter-free building blocks.

5.14 Infill Asymptotics and Fractal Dimension

This setting deals with increasing numbers of observations within a fixed bounded
region. For convenience, we limit the mathematical treatment to the regularly
spaced case of nd data sites in the unit hyper-cube, with spacing Δ = 1∕n between
the sites.

In this setting, the data converge to a single continuous realization of the process
on a bounded region as n → ∞. Because the region is bounded, the observations
cannot be far enough apart to be asymptotically independent, and, in general,
it is not possible to estimate parameters, such as range parameters, consistently.
However, provided the covariance function or semivariogram follows a power law
behavior at the origin, it is possible to estimate the “micro” parameters associated
with the infinitesimal behavior of the process.

The regularity conditions are more delicate in this setting than in the outfill
setting, and much work focuses on a specific parametric model, the Matérn covari-
ance function,

𝜎(h) = 𝜎
2 2
Γ(𝜈)

(1
2
|h|∕𝜑

)𝜈
K
𝜈
(|h|∕𝜑), (5.61)
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given in Section 2.6, where 𝜎2 is a scale parameter, 𝜑 > 0 is a range parameter,
and the index 𝜈 > 0 governs the smoothness of the process. The modified variance
parameter

𝜎
2
e = 𝜎

2∕𝜑2𝜈

was defined in (5.30). This reparameterization was suggested by Zhang (2004); see
also Zhang and Zimmerman (2005) and Kaufman and Shaby (2013).

In regular statistical problems, the order of asymptotic variance of the maximum
likelihood estimator is O(1∕nd) as n → ∞. For the purposes of this section, say, an
estimator has efficient order if the order of its asymptotic variance is O(1∕nd), and,
say, it has subefficient order if the order of its asymptotic variance is greater than
O(1∕nd).

It turns out that the infill asymptotics setting is not regular enough for all the
parameters to be estimated with efficient order by maximum likelihood. There is
enough information in the short-lag increments of the process to estimate 𝜎2∕𝜑2𝜈

with efficient order, but there is not enough information to estimate the range
parameter𝜑with efficient order. One consequence is that the correlation between
𝜎̂

2 and 𝜑̂ tends to 1 as the sample size gets large. Stein (1999, pp. 188–199) gives
a detailed treatment of infill asymptotics, under a slightly simplified model based
on a circulant approximation. Then, the following results can be established under
various assumptions about the parameters.

(a) All three parameters (𝜎2
e , 𝜑, 𝜈) are unknown.

(i) 𝜎̂2
e has slightly subefficient order with variance of order O(log2n∕nd).

(ii) 𝜑̂ has very subefficient order with variance of order O(1) in dimensions
d = 1,2, 3, O(1∕ log n) in dimension d = 4, and O(1∕nd−4) in dimensions
d ≥ 5. In particular, 𝜑̂ is not even consistent in dimensions d ≤ 3.

(iii) 𝜈̂ has efficient order with variance of order O(1∕nd).
(b) 𝜈 is known. This is a common assumption in spatial applications since 𝜈 is

a difficult parameter to estimate unless the data are very finely spaced. The
asymptotic variance of 𝜑̂ is the same as in (a)(ii), but 𝜎̂2

e can now be estimated
efficiently.

To help understand the preference for the modified variance parameter 𝜎2
e rather

than 𝜎2, consider the case where the index parameter lies in the interval 0 < 𝜈 < 1.
Then, it can be shown that the behavior of the semivariogram near the origin takes
the power law form

𝛾(h) = 𝜎
2 − 𝜎(h) = C

𝜈
𝜎

2
e |h|2𝜈 + O(|h|2), (5.62)

where
C
𝜈
= Γ(1 − 𝜈)

Γ(1 + 𝜈)
22𝜈 (5.63)
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is a positive constant depending on 𝜈 (see Exercise 5.2). A similar but more com-
plicated result holds for larger values of 𝜈 (e.g. Kent, 1989, p. 1439).

For any 𝜈 > 0, the parameter 𝜈 in (5.62) describes the local smoothness of the
process, the process being rougher for 𝜈 near 0. For 0 < 𝜈 < 1, this smoothness
can also be characterized in terms of the fractal dimension of the process

D = d + 1 − 𝜈;

see also Section 2.9.
Estimation of 𝜈, especially for 0 < 𝜈 < 1, has also received considerable attention

in the literature in a nonparametric setting. That is, the semivariogram is assumed
to satisfy (5.62), but not necessarily to be the Matérn model. When 0 < 𝜈 < 1 and
the remainder term vanishes, this semivariogram defines a zeroth-order intrinsic
process known as fractional Brownian motion (Mandelbrot and van Ness, 1968);
see Section 3.10. It can also be viewed as a limiting case of the Matérn model as
𝜑→ ∞.

In the nonparametric setting of (5.62), here is a simple method to estimate the
smoothness index 𝜈 and the scale parameter 𝛿 = C

𝜈
𝜎

2
e given in Kent and Wood

(1997); see also Istas and Lang (1997). The starting point is a fixed lag vector h ∈ ℤd

and an integer “dilation” parameter u ≥ 1. Define a “re-scaled dilated mean of
squared increments”

Z
u
n =

∑
n2𝜈{X((i + uh)∕n) − X(i∕n)}2

,

where the sum is over all sites i ∈ ℤd such that i∕n and (i + uh)∕n lie in the unit
cube D = {x ∈ ℝd ∶ 0 ≤ x[𝓁] ≤ 1 for 𝓁 = 1, . . . , d}. Up to boundary effects, there
are approximately nd terms in this sum. It is straightforward to verify that E{Z

u
n} =

𝛿u𝜈∕2 + o(1) as n → ∞. Further, it can be shown that Z
u
n converges in probability

to this limiting average value. Hence, given two distinct dilation parameters u and
𝑣 (e.g. u = 1, 𝑣 = 2), natural estimators of 𝜈 and 𝛿 are

𝜈̂ = 2
log Z

𝑣

n − log Z
u
n

𝑣 − u
, log 𝛿 =

𝑣 log Z
u
n − u log Z

𝑣

n

𝑣 − u
.

However, some comments are needed.

(a) When more than two dilations are used, regression methods can be used for
estimation; 𝜈̂ is the estimated slope of the regression line.

(b) Describing the accuracy of 𝜈̂ is rather complicated. If 0 < 𝜈 < 3∕4 and d = 1,
𝜈̂ has an asymptotic variance of order O(1∕n) and it is asymptotically normal.
However, for 3∕4 < 𝜈 < 1, its variance is of lower order and its asymptotic dis-
tribution is nonnormal. The reason for this nonstandard behavior is that for
𝜈 near 1, the process becomes smoother and the increments are more corre-
lated. However, by using higher order increments, it is possible to construct an
estimator for 3∕4 < 𝜈 < 1, which is asymptotically normally distributed with
variance of order O(1∕n). Similar issues arise in d ≥ 2 dimensions.
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(c) It is also possible to define the concept of regularity of a covariance function for
an index 𝜈 ≥ 1 using ideas from Section 3.4. Further, by using increments of
high enough order, it is possible to construct asymptotically normal estimates
of 𝜈 with variance of order O(n−d).

Davies and Hall (1999) have given a good example of estimating surface rough-
ness in d = 2 dimensions. Kent and Wood (1995) have provided some technical
details.

Exercises

5.1 The spherical scheme is defined by the covariance function

𝜎(h; 𝜎2
, a) =

{
1 − 3

2
|h∕a| + 1

2
|h∕a|3

, |h| ≤ a,
0, |h| > a,

which is positive definite in dimensions d = 1, 2, 3. The parameters are the
scale parameter 𝜎2 and the range parameter a. Clearly, 𝜎(h) is smooth in 𝜎2,
but its dependence on a is more delicate. Show that for fixed h ≠ 0,
(a) 𝜎(h; 𝜎2

, a) is continuous in a for all a > 0.
(b) 𝜕𝜎(h; 𝜎2

, a)∕𝜕a is continuous in a for all a > 0.
(c) 𝜕2

𝜎(h; 𝜎2
, a)∕𝜕a2 is not continuous in a at a = |h|.

5.2 This exercise looks at the regularity of the Matérn covariance function for
small lags. This behavior is important for the study of infill asymptotics in
Section 5.14. Suppose the real index 𝜈 is not a negative integer and let z be a
positive number. The modified Bessel function of the first kind I

𝜈
(z) has the

limiting behavior

I
𝜈
(z) =

(z∕2)𝜈

Γ(1 + 𝜈)
{

1 + O(z2)
}

as z → 0 for fixed 𝜈 (e.g. Abramowitz and Stegun, 1964, p. 375). The modified
Bessel function of the second kind K

𝜈
(z) is defined by

K
𝜈
(z) =

𝜋∕2
sin 𝜈𝜋

{
I−𝜈(z) − I

𝜈
(z)

}
.

For 0 < 𝜈 < 1, deduce the limiting behavior
2

Γ(𝜈)
(z∕2)𝜈K

𝜈
(z) = 1 − Γ(1 − 𝜈)

Γ(1 + 𝜈)
(z∕2)2𝜈 + O(z2)

as z → 0. Hence, for 0 < 𝜈 < 1, confirm that the Matérn covariance function
in (5.61) has the limiting behavior in (5.62). Hint: Use the reflection formula
for the gamma function

Γ(𝜈)Γ(1 − 𝜈) sin 𝜋𝜈 = 𝜋.
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5.3
(a) Let G =

[
G1 G2

]
be an n × n orthogonal matrix partitioned into two

blocks, with n1 and n2 columns, respectively, n1 + n2 = n, so that
GT

1 G1 = I,GT
2 G2 = I,GT

1 G2 = 0. Let B be an n × n positive definite matrix,
and set

Bij = GT
i BGj, Bij = GT

i B−1Gj, i, j = 1, 2.

Using the results from Section A.3.4 on partitioned matrices, show that

|B| = |B11| |B22.1| = |B11|∕|B22|
= |B22| |B11.2| = |B22|∕|B11|.

(b) Let F(n × n1) be a matrix of full column rank. Show that the matrix
PF = F(FTF)−1∕2 is column orthonormal, i.e. PT

F PF = In1
.

(c) If G1 in part (a) is related to F in part (b) by G1 = F(FTF)−1∕2, show that

|B11| = |FTBF|∕|FTF|, |B11| = |FTB−1F|∕|FTF|.
Hence, show that the determinantal identities in part (a) can be rewritten
as

|B| = |FTBF|∕(|FTF| |B22|) = |B22| |FTF|∕|FTB−1F|.
(d) If F = 𝟏n has one column, confirm that the identity in part (c) reduces to

Eq. (5.33).

5.4 The n × n Helmert matrix H, n ≥ 2, is an orthogonal matrix whose rows are
defined as follows:
● For j = 1, . . . ,n − 1, the j row is given by

(1, . . . , 1,−j, 0, . . . , 0)∕
√

j(j + 1),

where 1 is repeated j times and 0 is repeated n − j − 1 times.
● The nth row is given by (1, . . . , 1)∕

√
n.

That is, for n = 3

H =
⎡
⎢
⎢
⎢⎣

1∕
√

2 −1∕
√

2 0
1∕

√
6 1∕

√
6 −2∕

√
6

1∕
√

3 1∕
√

3 1∕
√

3

⎤
⎥
⎥
⎥⎦

(a) Show that the rows of H are orthonormal; that is, they have unit norm
and they are orthogonal to each other. Show that in matrix form, these
statements take the form HHT = In, that is, H is an orthogonal matrix.

(b) The sub-Helmert matrix, denoted H∖n, say, is defined as the first n − 1
rows of H. Show that H∖n is “row-orthonormal,” that is, H∖nHT

∖n = In−1.
Show that each row of H∖n is orthogonal to the constant vector 𝟏n,
H∖n𝟏n = 𝟎n−1. Thus, if y is an n-dimensional vector and z = H∖ny, then
each element of z is a contrast of the elements of y.
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(c) Show that the matrix HT
∖n, of size (n − 1) × n, is the same as the matrix G,

which was used in Sections 5.5 and 5.8 to construct a vector of contrasts,
z = GTy, for a data vector y.

5.5 Consider the setting of Section 5.9 with n = 3. Let X ∼ N3(0,Σ) and suppose
the covariance matrix Σ satisfies 𝜎11 = 𝜎22 = 𝜎33 = 1. In the notation of this
section, show that the coefficient vectors 𝓵T

i = (𝓁i1,𝓁i2,𝓁i3) are given by

𝓁11 = 1, 𝓁12 = 0, 𝓁13 = 0,

𝓁21 = −𝜎12, 𝓁22 = 1, 𝓁23 = 0,

𝓁31 =
𝜎23𝜎12 − 𝜎31

1 − 𝜎2
12

, 𝓁32 =
𝜎13𝜎12 − 𝜎23

1 − 𝜎2
12

, 𝓁33 = 1.

Set ej = 𝓵T
j x, j = 1, 2, 3. Show from first principles that e1, e2, and e3 are

uncorrelated.
In the REML setting of Section 5.10, the second and third coefficient vectors
are now required to be orthogonal to the constant vector, (𝓵U

2 )T𝟏 = 0 and
(𝓵U

3 )T𝟏 = 0. Show that

𝓁U
21 = −1, 𝓁U

22 = 1, 𝓁U
23 = 0,

𝓁U
31 = −1

2

(
1 +

𝜎31 − 𝜎32

1 − 𝜎12

)
, 𝓁U

32 = −1
2

(
1 −

𝜎31 − 𝜎32

1 − 𝜎12

)
, 𝓁U

33 = 1.

Note that 𝓁U
31 + 𝓁U

32 = −1. Further, show that eU
2 = (𝓵U

2 )Tx and eU
3 = (𝓵U

3 )Tx
are uncorrelated.

5.6 (Marshall and Mardia, 1985) This exercise develops the principle of
MINQUE for certain spatial processes for which the mean vanishes and the
covariance function is linear in the unknown parameters.
(a) let x ∼ Np(𝟎,Ψ) where Ψ = 𝜎

2A + 𝜏2I. Here, A is a known positive-
definite symmetric matrix from a parametric model, and the second
term represents a nugget effect. The objective is to estimate the scaling
parameters 𝜎2 ≥ 0 and 𝜏2 ≥ 0 from a single realization of the vector x.
See Mardia and Marshall (1984) for more details.
From the data, construct two statistics, u = xTx, and 𝑣 = xTAx. Also set

m0 = p, m1 = tr(A), m2 = tr(A2).

Recall for a general symmetric matrix B that E(xTBx) = E{tr(BxxT)} =
tr(BΨ). Hence, deduce that

E(u) = 𝜎
2m1 + 𝜏2m0, E(𝑣) = 𝜎

2m2 + 𝜏2m1.
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(b) The MINQUE estimator is given by matching the observed values of u
and 𝑣 to their expected values. Show that the resulting estimator takes
the form [

𝜎̂
2

𝜏
2

]
=

[
m1 m0
m2 m1

]−1 [u
𝑣

]
.

It is possible for this procedure to produce negative estimates for either
𝜎

2 or 𝜏2 (but not both). If the solution to the matrix equation yields a
negative estimate for 𝜏2, then set 𝜏2 = 0 and 𝜎̂2 = u∕m1. Similarly, if the
solution to the matrix equation yields a negative estimate for 𝜎2, then set
𝜎̂

2 = 0 and 𝜏2 = u∕m0.
(c) Show how MINQUE can be applied to a self-similar process with a

nugget effect, where the index of self-similarity is known. In particular,
in the notation of (5.58), set 𝜎2A = Ω and note that G is a column
orthonormal matrix so that GTG = In−r .

5.7 The purpose of this exercise is to show that the two forms of the REML
log-likelihood (5.31) and (5.41) are the same, up to an additive constant not
depending on the data or the parameters. Let y be an n-vector assumed to
come from Nn(𝜇𝟏n,Σ), where Σ is a positive definite matrix, where n ≥ 2
is fixed. If A is an ((n − 1) × n contrast matrix (i.e. A𝟏n = 0), the REML
log-likelihood is given up to a constant term by

log L = −1
2
{(y − 𝜇𝟏)TAT(AΣAT)−1A(y − 𝜇𝟏) + log |AΣAT|}.

In (5.31), the rows of A are assumed to be orthonormal, and the choice of A
is irrelevant. In (5.41), A satisfies the assumptions of part (c) below.
(a) Let A and B be (n − 1) × n matrices, both of which are full rank n − 1 and

contrast matrices – so that A𝟏n = B𝟏n = 0n−1. Explain why there exists a
nonsingular (n − 1) × (n − 1) matrix C such that B = CA. Hence, show
that the following two quadratic forms are equal

(y − 𝜇𝟏)TAT(AΣAT)−1A(y − 𝜇𝟏) = (y − 𝜇𝟏)TBT(BΣBT)−1B(y − 𝜇𝟏)

and that the quadratic forms do not depend on 𝜇.
(b) For 2 ≤ k ≤ n, define the vector subspace

k = {a ∈ ℝn ∶ ak+1 = · · · = an = 0 and 𝟏T
n a = 0}

of n-vectors whose final n − k elements vanish and which are contrast
vectors (i.e. 𝟏T

n a = 0). Show that k has dimension k − 1.
(c) Let A be an (n − 1) × n matrix partitioned in terms of its rows as

A =
⎡
⎢
⎢⎣

aT
1
⋮

aT
n−1

⎤
⎥
⎥⎦
,
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where aT
k = (ak1, . . . , akn). Since the convention in this book is that all

vectors are column vectors, there is a need for a transpose when they are
treated as row vectors. Suppose the rows of A have the following proper-
ties for all k = 1, . . . ,n − 1:
(i) ak ∈ k+1,

(ii) ak,k+1 = 1,
Show that the vectors a1, . . . ,ak form a basis for k+1.

(d) Let B be another (n − 1) × n matrix satisfying (i)–(ii). Show that there
is a lower triangular matrix C((n − 1) × (n − 1)) with ckk = 1, k = 1, . . . ,
n − 1 such that B = CA. Hint: Explain why the kth row of B can be

written as a linear combination of the first k rows of A, i.e. bk =
k∑

j=1
ckjaj

for suitable constants ckj with ckk = 1.
(e) Note that |C| = 1 since for a lower triangular square matrix, the deter-

minant is the product of the diagonal elements. Hence, deduce that
|AΣAT| = |BΣBT|.

(f) The sub-Helmert matrix H∖n of Exercise 5.4 has the property that row k
lies in k+1, k = 1, . . .n − 1. If row k is divided by −

√
(k + 1)∕k, then the

resulting matrix satisfies the conditions of part (c) above. Hence, deduce
that n|H∖nΣHT

∖n| = |AΣAT| is the same for all matrices A satisfying the
conditions of part (b).

(g) In (5.41), the coefficient matrix L depends on the underlying parameters,
and at first sight the REML log-likelihood depends on the covariance
parameters 𝜽 both through the covariance matrixΣ and through L. How-
ever, as shown in this exercise, the REML log-likelihood can be written
in a form that depends just on Σ.
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6

Estimation for Lattice Models

6.1 Introduction

This chapter investigates the problem of fitting a stationary autoregression
Gaussian model to a set of spatial data on a rectangular grid in ℤd. The
autoregression models include unilateral autoregressions (UARs), conditional
autoregressions (CARs), and simultaneous autoregressions (SARs). In principle,
the methods of Chapter 5 can be used, but there are specialized methods that can
be much faster.

Recall that for any stationary Gaussian process, the covariance function {𝜎h}
has a spectral representation. When a spectral density exists, this representation
takes the form

𝜎h =
∫(−𝜋,𝜋)d

f (𝜔) cos(hT
𝜔)d𝜔, h ∈ ℤd

,

and conversely the spectral density can be written in terms of the covariance
function

f (𝜔) = 1
(2𝜋)d

∑

h∈ℤd

𝜎h cos(hT
𝜔).

For simplicity, suppose the spectral density is bounded away from 0,

f (𝜔) ≥ c > 0.

Then the inverse spectral density, defined by

g(𝜔) = 1∕{(2𝜋)2d f (𝜔)}, (6.1)

is a bounded function. It can be used to define the inverse covariance function

𝜓h =
∫(−𝜋,𝜋)d

g(𝜔) cos(hT
𝜔) d𝜔, h ∈ ℤd

, (6.2)

Spatial Analysis, First Edition. John T. Kent and Kanti V. Mardia.
© 2022 John Wiley & Sons Ltd. Published 2022 by John Wiley & Sons Ltd.
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and conversely the inverse spectral density can be written in terms of the inverse
covariance function

g(𝜔) = 1
(2𝜋)d

∑

h∈ℤd

𝜓h cos(hT
𝜔). (6.3)

For all the autoregression models based on finite neighborhoods (i.e. UARs, CARs,
and SARs), the inverse spectral density is assumed to have a finite trigonometric
expansion

g(𝜔) = 1
(2𝜋)d

∑

h∈0

𝜓h cos(hT
𝜔),

where 0 =  ∪ {0} and  is a finite symmetric neighborhood of the origin
(Section 4.4). The simplest model is discrete white noise, for which 𝜎h = 𝜎

2
𝛿h,

a multiple of the Kronecker delta function, and the spectral density is constant,
f (𝜔) = 𝜎

2∕(2𝜋)d. Then 𝜓h = 𝜎
−2
𝛿h and g(𝜔) = 1∕{(2𝜋)d

𝜎
2}.

The covariance function defines an infinite-dimensional covariance matrix Σ∞
on ℤd,

Σ∞ = (𝜎st), 𝜎st = 𝜎s−t, s, t ∈ ℤd
,

with the elements listed in lexicographic order, say. Similarly, the inverse covari-
ance function defines an infinite-dimensional covariance matrix Ψ∞ on ℤd

Ψ∞ = (𝜓st), 𝜓st = 𝜓s−t, s, t ∈ ℤd
.

For an autoregression model, the precision matrix is sparse; that is, within each
row and column of the matrix, there are only finitely many nonzero entries.

The infinite covariance and precision matrices are inverses of each other

Σ∞Ψ∞ = I∞.

Throughout the chapter the data sites are assumed to lie on a regular rectangular
grid

D = {t ∈ ℤd ∶ 1 ≤ t[𝓁] ≤ n[𝓁], 𝓁 = 1, . . . , d} (6.4)

of dimensions N = (n[1], . . . ,n[d]), with corresponding data values given by the
vector x = {xt, t ∈ D}, with the sites listed in lexicographic order. The size of D
can be denoted in two ways

|N| = |D| = n[1] × · · · × n[d], (6.5)

depending on whether the region itself or just its size is of interest.
Let ΣD and ΨD denote the restrictions of Σ∞ and Ψ∞ to the sites in D. Then ΣD

denotes the covariance matrix of the process on D. However, ΨD is no longer the
precision matrix on D

Σ−1
D ≠ ΨD. (6.6)
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Minus twice the log-likelihood is

−2 log L = (x − 𝜇𝟏N )TΣ−1
D (x − 𝜇𝟏N ) + log |ΣD|. (6.7)

There are three main computational challenges in the calculation and maximiza-
tion of the log-likelihood for autoregression models.

(a) For many autoregression models, the covariance function does not have a sim-
ple explicit form. Hence, it is not straightforward to compute the elements
of ΣD.

(b) The inversion of the |N| × |N| matrix ΣD requires O(|N|3) calculations in
general.

(c) Similarly, the evaluation of |ΣD| requires O(|N|3) calculations in general.

For autoregression models, the inverse covariance function is more tractable than
the covariance function. Hence, it is worth considering a variety of other estima-
tors in this situation. These methods fall into two broad classes.

● Moment estimators. These are based on identities satisfied by the covariance
functions. They can be developed most easily for UARs in Section 6.4.1, and for
CARs in Section 6.4.2. For UAR models, these are essentially the same as maxi-
mum likelihood estimators, but for CAR models, they are less efficient (though
simpler to compute) than maximum likelihood estimators. Moment estimators
for both UARs and CARs involve solving a set of linear equations where the
coefficients depend on the data only through a small set of sample moments.

● Approximations to the maximum likelihood estimator. These are based on
tractable approximations for Σ−1

D and log |ΣD| in (6.7). For a stationary model
on ℤd, there are a variety of approximations based on Toeplitz, circulant, and
folded circulant approximations. These are explored in Section 6.5.

All the estimators depend on the data through estimates of the population
covariance function. There are several ways to define the sample covariance
function, and the most important choices are given in Section 6.2. The chapter
looks at the AR(1) process in one dimension (Section 6.3) in detail. This is an
excellent motivating example for the methods of this chapter because it can
be viewed as both a UAR and a CAR and the various approximations for the
log-likelihood can be evaluated explicitly.

6.2 Sample Moments

Given data {xt ∶ t ∈ D} from a stationary random field with mean 𝜇, the objective
is to estimate the parameters of the model. For simplicity, let 𝜇 be estimated by the
sample mean 𝜇̂ = x.
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It is important to note that all the estimators in this chapter for the parameters of
the covariance function are based on sample estimates of the covariance function
for various lags h ∈ ℤd. There are several ways to define the sample covariance
function based on second-order moments, depending on the choice of divisor and
boundary conditions. Section 4.6.5 gives a description of different boundary con-
ditions.

The first choice is the unbiased sample covariance function

s(u)h = 1
|Dh|

∑
t∈Dh

(xt − x)(xt+h − x). (6.8)

Here, Dh = {s ∈ D ∶ t + h ∈ D} denotes the sites t such that t and t + h both lie in
D, of size

|Dh| = (n[1] − |h[1]|) × · · · × (n[d] − |h[d]|). (6.9)

The divisor |Dh| is the number of terms in the sum, so that s(u)h is an unbiased
estimate of 𝜎h.

The second choice is the biased sample covariance function, which uses a com-
mon divisor for all lags

s(b)h = 1
|D|

∑
t∈Dh

(xt − x)(xt+h − x). (6.10)

The difference between the two versions is a divisor of |Dh| or |D|, respectively.
An advantage of the biased estimator is that the sequence of sample covariances is
guaranteed to be positive semidefinite (Exercise 6.1). Further, the presence of bias
is sometimes offset by smaller mean squared errors.

A third choice is the interior sample covariance function. Its construction
requires the choice of a finite symmetric neighborhood  ∗ of the origin, at least
as big as the symmetric neighborhood  in Section 6.1 for the autoregression
model of interest. Define Dint = {t ∈ D ∶ t + h ∈ D for all h ∈  ∗} to be the
“interior” of D, and set

s(i)h = 1
|Dint|

∑
t∈Dint

(xt − x)(xt+h − x). (6.11)

A fourth choice uses a periodic boundary condition, so that data sites on opposite
sides of D are treated as adjacent to one another

s(p)h = 1
|D|

∑
s∈D

(xs − x)(x(s−h)Mod N − x). (6.12)

The Mod operator is defined by Eq. (A.2).
The fifth, and final, choice based on a reflecting boundary condition will be dis-

cussed later. All the choices except (6.8) produce a sample covariance function that
is guaranteed to be positive semidefinite.
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6.3 The AR(1) Process on ℤ

The simplest process to motivate the ideas of this chapter is given by the
one-dimensional AR(1) process. This process {Xt ∶ t ∈ ℤ}, say, has two natural
representations (Sections 4.8 and 4.6). For notational convenience, suppose the
mean vanishes, 𝜇 = 0 for this section.

The first representation is a UAR, obtained by regressing Xt on its past values.
The conditional expectation takes the form

E
(

Xt|{Xs, s < t}
)
= 𝜆Xt−1.

The one-sided innovation terms, defined by

𝜀t = Xt − 𝜆Xt−1,

are i.i.d. N(0, 𝜎2
𝜀
), say. For each t, the current innovation term 𝜀t is independent of

xs, s < t. The spectral density is given by

f (𝜔) = 1
2𝜋

𝜎
2
𝜀

|1 − 𝜆ei𝜔|2 = 1
2𝜋

𝜎
2
𝜀

1 + 𝜆2 − 2𝜆 cos𝜔
. (6.13)

The Fourier series for the functions f , 1∕f , and log f can be computed explicitly

2𝜋f (𝜔) =
𝜎

2
𝜀

1 − 𝜆2

{
1 + 2

∞∑
j=1
𝜆

j cos j𝜔

}
, (6.14)

1∕{2𝜋f (𝜔)} = 1
𝜎

2
𝜀

{1 + 𝜆2 − 2𝜆 cos𝜔}, (6.15)

log{2𝜋f (𝜔)} = log 𝜎2
𝜀
+ 2

∞∑
j=1

𝜆
j

j
cos j𝜔 (6.16)

(Exercise 6.3).
The second representation is a CAR, obtained by regressing Xt on all the values

of the process except itself. The conditional expectation takes the form

E
(

Xt|{Xs, s ≠ t}
)
= 𝛽(Xt−1 + Xt+1).

The two-sided innovation terms 𝜂t, defined by the residuals

𝜂t = Xt − 𝛽(Xt−1 + Xt+1),

are normally distributed N(0, 𝜎2
𝜂
), say, but are not i.i.d. in this case. For each t, the

current innovation term 𝜂t is independent of {Xs, s ≠ t}. The spectral density can
be written in two forms, from the CAR representation and from (6.13), as

f (𝜔) = 1
2𝜋

𝜎
2
𝜂

1 − 2𝛽 cos𝜔
= 1

2𝜋
𝜎

2
𝜀

1 + 𝜆2 − 2𝜆 cos𝜔
. (6.17)
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The two forms are the same, provided we set

𝛽 = 𝜆

1 + 𝜆2 , 𝜎
2
𝜂
=

𝜎
2
𝜀

1 + 𝜆2 . (6.18)

Note that as 𝜆 ranges between −1 and 1, 𝛽 ranges between −1∕2 and 1∕2.
The covariance function of the process takes the form

𝜎h = 𝜎
2
𝜆
|h|
, h ∈ ℤ. (6.19)

In particular, 𝜎0 = 𝜎
2
, 𝜎1 = 𝜆𝜎

2. The marginal variance 𝜎2 is related to the inno-
vation variances by

𝜎
2 =

𝜎
2
𝜀

1 − 𝜆2 = 𝜎
2
𝜂

1 + 𝜆2

1 − 𝜆2 .

Two simple identities connect the values of the autocovariance function to the
autoregression parameters 𝜆 and 𝛽

𝜆 = 𝜎1∕𝜎0, 𝛽 = 𝜎1∕(𝜎0 + 𝜎2) (6.20)

(Exercise 6.3). The first identity forms the basis of the UAR moment estimator and
the second forms the basis for the CAR moment estimator.

Next consider n observations x1, . . . , xn from an AR(1) process. An attractive
feature of this process is that it is straightforward to write down the covariance
matrix Σn = Σ, its exact inverse Ψ(exact) = Σ−1, and the various approximations. In
particular,

Σ = 𝜎
2

⎡
⎢
⎢
⎢
⎢
⎢
⎢⎣

1 𝜆 𝜆
2

. . . 𝜆
n−1

𝜆 1 𝜆 . . . 𝜆
n−2

𝜆
2

𝜆 1 . . . 𝜆
n−3

⋮ ⋮ ⋮ ⋮ ⋮

𝜆
n−1

𝜆
n−2

𝜆
n−3

. . . 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥⎦

, (6.21)

is a Toeplitz matrix (Section A.3.8), with the exact inverse

Ψ(exact) = 1
(1 − 𝜆2)𝜎2

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎣

1 −𝜆 0 . . . 0 0
−𝜆 1 + 𝜆2 −𝜆 . . . 0 0
0 −𝜆 1 + 𝜆2

. . . 0 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋮

0 0 0 . . . 1 + 𝜆2 −𝜆
0 0 0 . . . −𝜆 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎦

. (6.22)

This matrix is almost Toeplitz, in the sense that the entries in positions
(1, 1) and (n,n) differ from the other diagonal elements. Modifying the exact
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inverse covariance matrix to be Toeplitz yields the approximation

Ψ(Toep) = 1
(1 − 𝜆2)𝜎2

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎣

1 + 𝜆2 −𝜆 0 . . . 0 0
−𝜆 1 + 𝜆2 −𝜆 . . . 0 0
0 −𝜆 1 + 𝜆2

. . . 0 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋮
0 0 0 . . . 1 + 𝜆2 −𝜆
0 0 0 . . . −𝜆 1 + 𝜆2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎦

. (6.23)

Note that the upper-left and lower-right elements of Ψ(Toep) are bigger than the
corresponding values of Ψ(exact). This means that Ψ(Toep) tends to underestimate
the variability of the data at sites 1 and n. The effect is particularly pronounced
when |𝜆| is near 1.

Two other approximations of Ψ(exact) are also of interest. The first is a circulant
approximation

Ψ(circ) = 1
(1 − 𝜆2)𝜎2

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎣

1 + 𝜆2 −𝜆 0 . . . 0 −𝜆
−𝜆 1 + 𝜆2 −𝜆 . . . 0 0
0 −𝜆 1 + 𝜆2

. . . 0 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋮

0 0 0 . . . 1 + 𝜆2 −𝜆
−𝜆 0 0 . . . −𝜆 1 + 𝜆2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎦

, (6.24)

for which sites 1 and n are treated as neighbors.
The second is the folded circulant approximation described in Section A.11. Basi-

cally, the data are reflected to give a doubled data set x1, . . . , xn, xn, . . . , x1 whose
inverse matrix is approximated by a circulant matrix of dimension 2n. Then the
quadratic form is written in terms of the elements of x1, . . . , xn as

Ψ(fold) = 1
(1 − 𝜆2)𝜎2

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎣

1 − 𝜆 + 𝜆2 −𝜆 0 . . . 0 0
−𝜆 1 + 𝜆2 −𝜆 . . . 0 0
0 −𝜆 1 + 𝜆2

. . . 0 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋮
0 0 0 . . . 1 + 𝜆2 −𝜆
0 0 0 . . . −𝜆 1 − 𝜆 + 𝜆2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎦

.

(6.25)
This approximation deals more effectively with the variances at the end sites than
the Toeplitz approximation, especially for |𝜆| near 1.

Note that for both the circulant and folded approximations, all the row and col-
umn sums are the same. Hence, these approximations also work in the intrinsic
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case, 𝜆 = 1, when all the rows and columns sum to 0. In this case, Ψ(circ) and Ψ(fold)

are both singular, Ψ(circ)𝟏n = 𝟎n and Ψ(fold)𝟏n = 𝟎n. Hence, only linear combina-
tions aTx, where aT𝟏 = 0, have well-defined distributions.

It is also possible to evaluate the normalizing constant log |Σ| for these approxi-
mations as a sum of log eigenvalues

log |||Σ
(Toep)||| = n log 𝜎2

𝜂
−

n∑
k=1

log{1 − 2𝛽 cos(𝜋k∕(n + 1))}, (6.26)

log |||Σ
(circ)||| = n log 𝜎2

𝜂
−

n−1∑
k=0

log{1 − 2𝛽 cos(2𝜋k∕n)}, (6.27)

log |||Σ
(fold)||| = n log 𝜎2

𝜂
−

n−1∑
k=0

log{1 − 2𝛽 cos(𝜋k∕n)}. (6.28)

The expressions for (6.27) and (6.28) also make sense in the intrinsic case 𝛽 =
1∕2 (i.e. 𝜆 = 1), when appropriately interpreted. If log ||Σ(circ)|| and log ||Σ(fold)|| are
replaced by the log of the product of the nonzero eigenvalues (rather than the prod-
uct of all the eigenvalues), then (6.27) and (6.28) continue to be valid, provided the
sums start at k = 1 rather than k = 0.

The circulant approximation extends easily to any CAR in any dimension. The
folded approximation extends easily to any CAR in any dimension possessing full
symmetry (see Section A.11.4). However, the Toeplitz expansion (6.26) is only valid
for the AR(1) case. For large n, all the approximations are very similar, forming in
each case a discrete approximation to the integral

n
2𝜋 ∫

2𝜋

0
log f (𝜔) d𝜔 (6.29)

which appears in the Whittle approximation to the log-likelihood in (6.43). The
circulant version given here and another possible circulant version of the AR(1)
process are explored further in Exercises 6.7 and 6.10.

6.4 Moment Methods for Lattice Data

In Chapter 4, several types of autoregression models for lattice random fields were
investigated, including unilateral autoregressions (UARs) and conditional autore-
gressions (CARs). In this section, we see how moment equations can be derived
for UARs and CARs, enabling explicit estimates of the parameters to be obtained
in terms of the sample covariance function.

For UARs, these moment estimates are essentially the same as maximum
likelihood estimates (MLEs) up to boundary conditions; hence, the estimates are
consistent and efficient. For CARs, the estimates are consistent, but they are not
as efficient as MLEs especially when strong dependence is present.
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6.4.1 Moment Methods for Unilateral Autoregressions (UARs)

UARs were studied in Section 4.8. They are artificial in a spatial context because
they are based on an arbitrary notion of spatial ordering. However, they are
still important theoretically as a generalization of time series in one dimension.
Further, a version of this idea forms the underlying justification for Vecchia’s
approximation in Section 5.9.

Let {Xt, t ∈ ℤd} be modeled by a stationary UAR

Xt − 𝜇 =
∑
s∈K

ds(Xt−s − 𝜇) + 𝜀t, (6.30)

where K is a finite subset of some half-space ⊂ ℤd. The noise terms 𝜀t ∼ N(0, 𝜎2
𝜀
)

are independent of each other and 𝜀t is independent of {Xt−s ∶ s ∈ }. The covari-
ance function {𝜎h} satisfies some moment equations. Multiply (6.30) by (Xt−h − 𝜇),
h ≠ 0, and take expectations to get

𝜎h =
∑
s∈K

ds𝜎h−s, h ∈ , (6.31)

𝜎0 =
∑
s∈K

ds𝜎s + 𝜎2
𝜀
. (6.32)

Define a matrix A(|K| × |K|) with entries

ast = 𝜎s−t, s, t ∈ K (6.33)

and a vector g(|K| × 1) with entries

gs = 𝜎s, s ∈ K, (6.34)

where the elements of K are listed in lexicographic order, say. Then (6.31),
restricted to h ∈ K, yields an equation for d = {ds, s ∈ K}

d = A−1g (6.35)

in terms of the covariance function. Also, 𝜎2
𝜀

can be determined from (6.32)

𝜎
2
𝜀
= 𝜎0 − gTA−1g. (6.36)

Equations (6.35)–(6.36) are the analogs of the Yule–Walker equations in time
series.

Replacing 𝜎h by s(b)h in the definitions of A and g yields the moment estimates,
denoted d̂mom and 𝜎̂2

𝜀,mom.
In finite samples, there is no guarantee that d̂mom will define a stationary UAR.

For example, in a one-dimensional AR(1) process, there is no guarantee that
d̂mom ∈ ℝ will satisfy |d̂mom| < 1. However, these problems disappear in large
samples when the data come from the assumed model.
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6.4.2 Moment Estimators for Conditional Autoregression (CAR)
Models

Consider the CAR model on ℤd

E[Xt|{Xs, s ≠ t}] = 𝜇 +
∑

s∈

𝛽s(Xt−s − 𝜇), var[Xt|{Xs, s ≠ t}] = 𝜎
2
𝜂
, (6.37)

where  is a finite symmetric neighborhood of the origin, as in Section 4.4, and
where 𝜎2

𝜂
is the conditional noise variance. This model was studied in Section 4.6.

In particular, Eqs. (4.35) and (4.36) in Chapter 4 describe the relationship between
the covariance function and the parameters of the model:

𝜎h =
∑

s∈

𝛽s𝜎h−s, h ≠ 0, (6.38)

𝜎0 =
∑

s∈

𝛽s𝜎s + 𝜎2
𝜂
. (6.39)

We can invert these equations to solve for 𝛽s, s ∈  and 𝜎
2
𝜂

in terms of {𝜎h}.
Let  † be a half-neighborhood of  , so that 0 ∉  † and only one of each pair
±h ∈  lies in  †. Next, let 𝜷 denote the vector of {𝛽s ∶ s ∈  †}, with the ele-
ments arranged in lexicographic order. Similarly, let g denote the vector {2𝜎h ∶
h ∈  †}, and define an | †| × | †| matrix A with entries

ast = 2(𝜎s−t + 𝜎s+t). (6.40)

Then (6.38) and (6.39) can be rewritten as

𝜎0 = 𝜷Tg + 𝜎2
𝜂
, g = A𝜷 (6.41)

so that
𝜷 = A−1g, 𝜎

2
𝜂
= 𝜎0 − gTA−1g. (6.42)

Replacing 𝜎h by s(b)h in the definitions of A and g yields the moment estimates,
denoted 𝜷̂mom and 𝜎̂2

𝜂,mom.
However, just as for UAR models, there is no guarantee in finite samples that the

resulting moment estimate 𝜷̂mom will define a valid CAR model. Further, if the
unbiased covariances s(u)h were used to estimate A, there would be no guarantee
that the estimated matrix is positive definite.

Moment estimators for CAR models can also be viewed as maximum composite
likelihood estimators. Details are in Section 6.7.

Example 6.1 Mercer–Hall data
The Mercer–Hall data was studied in Example 1.14. The data take the form of a
20 × 25 matrix of grain yields from a uniformity trial. Ideally, in an agricultural
setting, there would be no systematic effects of spatial location on the yield.
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Figure 6.1 Mercer–Hall data: bubble plot. See Example 6.1 for an interpretation.

Such a situation would justify the use of standard experimental designs in other
experiments with an assumption of i.i.d. errors. However, for this data set, a plot
of the data in Figure 6.1 shows noticeable oscillations between the columns,
especially on the left-hand side of the data. This effect is apparently due to an
ancient ridge and furrow plowing system that has left its mark on the fertility of
the modern field.

For this exercise, we fit a CAR model using moment estimation and max-
imum likelihood estimation to the 20 × 13 matrix containing left-hand half
of the data (columns 1–13), where the column effects are most pronounced.
We fit the CAR model using a full second-order neighborhood  = {h ∈ ℤ2 ∶
max (|h[1]|, |h[2]|) ≤ 2, h ≠ 0}, so that 𝜷 is a 12-dimensional vector. A plot of the
sample and fitted covariance functions is given in Figure 6.2. The fitted covari-
ances have been computed by numerical integration from the spectral density.
The moment and maximum likelihood fitted covariance functions are very similar
to each other. For both methods, the fitted covariances decay monotonically in
the 00 direction (i.e. the vertical direction) and exhibit an oscillating decay in
the other three directions. This behavior provides an approximate match to the
sample covariance function in the four directions.

The CAR model has been presented here as an illustrative example to show that
such models can have oscillating covariance functions analogously to the AR(2)
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Mercer–Hall: biased–mom–ML

Figure 6.2 A plot of the sample and two fitted covariance functions (“biased-mom-ML”)
for a CAR model fitted to the leftmost 13 columns of the Mercer–Hall data (Example 6.1).
The data have been summarized by the biased sample covariance function. The four
panels show the covariance function in the four principal directions with the sample
covariances (open circles) together with the fitted covariances using moment estimation
(solid lines) and maximum likelihood estimation (dashed lines).

model in time series. More serious attempts to model the Mercer–Hall data have
been made by numerous authors, notably Whittle (1954, 1986) and Gaetan and
Guyon (2010). See also Cressie (1993, pp. 248–259, 446–447, 454–458) for a detailed
analysis and a critique of earlier attempts.

An attempt was also made to construct the moment estimator for this CAR
model using the unbiased sample covariance function. Unfortunately, the result-
ing spectral density was invalid – it was negative for some frequencies. ◽

6.5 Approximate Likelihoods for Lattice Data

For data x from a stationary Gaussian process, the exact log-likelihood
is given by (6.7), where Ψ(exact)

D = Σ−1
D appears in the quadratic form and

log |Ψ(exact)
D | = − log |ΣD| appears in the normalizing constant. For the purposes

of this section, suppose that the mean vanishes, 𝜇 = 0 and that the interest is in
estimating the covariance parameters. Working with Ψ(exact)

D can be problematic
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for the reasons suggested in the Introduction to this chapter. Hence, in this
section, several approximations for the log-likelihood of autoregression models
are considered, partly based on Kent and Mardia (1996). These are motivated by
the possible treatment of boundary conditions suggested in Section 4.6.5.

(a) The starting point is the approximation to the log-likelihood proposed by
Whittle (1954). In the notation here, it takes the form

−2 log L(W) = Q(W) + |D|
(2𝜋)d ∫(−𝜋,𝜋)d

log f (𝜔) d𝜔. (6.43)

The quadratic form Q(W) can be written in two equivalent forms. The first rep-
resentation is in terms of the biased sample covariance function and the matrix
ΨD described above (6.6),

Q(W) = xTΨDx = |D|
∑

h∈0

s(b)h 𝜓h = |D|
{

s(b)0 + 2
∑

h∈ †

s(b)h 𝜓h

}
. (6.44)

The second representation is in terms of the “biased” periodogram

Q(W) = |D| 1
(2𝜋)d ∫(−𝜋,𝜋)d

I(𝜔)∕ f (𝜔) d𝜔, (6.45)

where
I(b)(𝜔) =

∑

h∈ℤd

ei𝜔hs(b)h , 𝜔 ∈ ℝ (6.46)

(Exercise 6.2). Recall that s(b) = 0 unless |h[𝓁]| ≤ n[𝓁] − 1, 𝓁 = 1, . . . , d, so
that the number of terms in the sum is finite. The second form brings out
the role of the spectral density more clearly. It can be shown that the biased
periodogram is always nonnegative (Exercise 6.1).

(b) As noticed by Guyon (1982), a drawback in Whittle’s approximate
log-likelihood is that the asymptotic bias in s(b) for large domains is nontrivial
in dimensions d ≥ 2. See Exercise 6.6. Hence, he proposed replacing the
Q(W) by an unbiased version Q(G), say, using the unbiased sample covariance
function from (6.8), to give

Q(G) =
∑

h∈0

|Dh|𝜓hs(u)h . (6.47)

(c) However, the unbiased analog of the periodogram is not guaranteed to be non-
negative in finite samples, which means its use in maximum likelihood can
lead to invalid solutions. Therefore, Künsch (1987) proposed an intermediate
solution based on tapering. Let 𝑤t, t ∈ Z2, be a tapering window for D such
that 𝑤t = 1 well inside D, 𝑤t = 0 outside D, and 𝑤t varies smoothly near the
boundary of D. Then set

s(K)
h = 1

|D|
∑
t∈Dh

𝑤t(xt − x) 𝑤t+h(xt − x),

s(K)
h = 0 if Dh = ∅.
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Note that the effect of the taper is to downweight sites near the boundary.
A judicious choice of taper, depending on the size of the domain D, will
ensure that s(K)

h is asymptotically unbiased for 𝜎h. Further, since {s(K)
h } can

be expressed as a convolution of two sequences, the periodogram I(K)(𝜔)
is always nonnegative. However, a problem in practice is how to choose
the taper.

(d) Mathematically, a simple approximation is based on the block circulant
approximation Ψ(circ)

D with elements

{Ψ(circ)
D }st = 𝜓(s−t)Mod N , s, t ∈ D,

where the block Mod operation is described in Eq. (A.2). From this point of
view, each edge of D is regarded as adjacent to its opposite edge. The quadratic
form can be written as a simple linear combination of terms involving the peri-
odic sample covariances from (6.12)

xTΨ(circ)
D x = |D|

∑

h∈

𝜓hs(p)h . (6.48)

Further, the normalizing constant becomes a Riemann sum

log |Ψ(circ)
D | =

∑

j∈ℤd
N

log f (𝜔j), (6.49)

where𝜔j is a d-vector with components𝜔j[𝓁] = 2𝜋j[𝓁]∕n[𝓁],𝓁 = 1, . . . , d. The
main problem with this approximation is that observations on opposite sides
of D are treated as neighbors of one another.

(e) Another choice is the folded approximation Ψ(fold)
D . This approximation, based

on a reflection boundary condition, is only defined for models with full sym-
metry. First, “double” the data by reflecting D about each side to get a new
domain of size 2d|D|. Call the doubled data y, treat it as stationary, and use
the block circulant approximation (d) for its precision matrix. Finally, write
the quadratic form in y in terms of the original data x. Details are given in
Section A.11.
The folded approximation is particularly appealing under high autocorrelation
and especially in the limiting case of IRF-0 processes (Besag and Mondal, 2005;
Mondal, 2018).

Example 6.2 Mercer–Hall data
We revisit the Mercer–Hall data of Example 6.1, this time summarizing the data
using the folded sample covariance function. The fit is similar to the earlier one;
see Figure 6.3. ◽
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Figure 6.3 A plot of the sample and two fitted covariance functions (“fold-mom-ML”) for
a CAR model fitted to the leftmost 13 columns of the Mercer–Hall data (Example 6.2).
The data have been summarized by the folded sample covariance function. The four
panels show the covariance function in the four principal directions with the sample
covariances (open circles) together with the fitted covariances using moment estimation
(solid lines) and maximum likelihood estimation (dashed lines).

6.6 Accuracy of the Maximum Likelihood Estimator

Consider data {xt, t ∈ D}, where D is a rectangular domain D of size
|D| = |N| = n[1] × · · · × n[d], represented as a vector x, with the elements
in lexicographic order. Assume the data come from a stationary process on ℤd

with mean 0. Let Σ = Σ(𝜽) denote the covariance matrix at the data sites and let
f (𝜔;𝜽) be the corresponding spectral density of the covariance function. Here, 𝜽
is a p-dimensional vector of parameters to estimate. The purpose of this section is
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to investigate the asymptotic variance of the MLE as each of the dimensions of D
gets large, n[𝓁] → ∞, 𝓁 = 1, . . . , d.

Thus, x is a realization from N|N|(𝟎,Σ). Asymptotically, under mild regularity
conditions, the MLE 𝜽̂ is normally distributed about the true value

𝜽̂ ∼ Np(𝜽,−1),

where  is the Fisher information matrix. For the covariance parameters in the
multivariate normal distribution, the elements of  take the form

()ij =
1
2

tr{Σ−1ΣiΣ−1Σj}, (6.50)

where Σi = 𝜕Σ∕𝜕𝜃i; see Section A.12.2.
To understand this formula more clearly, it is helpful to switch to the Fourier

or spectral domain and to use a circulant approximation to the covariance matrix.
Let

y = GTx, (6.51)

where G = G(DFT,rea)
N is defined in Eqs. (A.44) and (A.45). Under the circulant

approximation, the elements of y, indexed by the cyclic integers k ∈ ℤd
N , are

independent with variances f (𝜔k;𝜽), where 𝜔k = (2𝜋k[1]∕n[1], . . . , 2𝜋k[d]∕n[d]).
Hence, the log-likelihood is

log L = −1
2
∑

k∈d
N

{y2
k∕f (𝜔k;𝜽) + log f (𝜔k;𝜽)}. (6.52)

Using again the results in Section A.12.2, the elements of the Fisher information
become

()ij =
1
2
∑

k∈d
N

fi(𝜔k)fj(𝜔k)
f 2(𝜔k)

≈ 1
2
|N|
(2𝜋)d ∫

fi(𝜔)fj(𝜔)
f 2(𝜔)

d𝜔

= 1
2
|N|
(2𝜋)d ∫

gi(𝜔)gj(𝜔)
g2(𝜔)

d𝜔, (6.53)

where fi(𝜔) = fi(𝜔;𝜽) = 𝜕f (𝜔)∕𝜕𝜃i. In the second line, the sum has been replaced
by an integral. In the final line, the information has been represented in
terms of the inverse spectral density, g(𝜔), defined in (6.1), with derivatives
gi(𝜔) = gi(𝜔;𝜽) = 𝜕g(𝜔)∕𝜕𝜃i.

Example 6.3 Outfill asymptotics for the Matérn model
The Matérn process X(t), t ∈ ℝd, from Section 2.6 has spectral density

f (𝜔) = 1
(A + B|𝜔|2)𝜈+d∕2

, 𝜔 ∈ ℝd
.
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Let Xt = X(t), t ∈ ℤd, denote the Matérn process restricted to the integer lattice.
The spectral density of the restricted process is obtained by wrapping the original
spectral density onto the torus

fT(𝜔) =
∑

j∈ℤd

f (𝜔 + 2𝜋j), 𝜔 ∈ (−𝜋, 𝜋)d
. (6.54)

For data on an nd integer lattice, the asymptotic variance matrix of the maximum
likelihood estimates for the parameters 𝜽 = (A,B, 𝜈) is given by the inverse of the
asymptotic 3 × 3 Fisher information matrix  with elements

()ij =
nd

2(2𝜋)d ∫(−𝜋,𝜋)d

fT,ifT,j

f 2
T

d𝜔, i, j = 1, 2, 3, (6.55)

where
fT,i(𝜔) = 𝜕fT∕𝜕𝜃i =

∑

j∈ℤd

𝜕f (𝜔 + 2𝜋j)∕𝜕𝜃i, i = 1, 2, 3, (6.56)

and where the partial derivatives of the Matérn spectral density f (𝜔) with respect
to the parameters are given by

𝜕f∕𝜕𝜃1 = −(𝜈 + d∕2) 1
(A + B|𝜔|2)1+𝜈+d∕2

,

𝜕f∕𝜕𝜃2 = −(𝜈 + d∕2) |𝜔|2
(A + B|𝜔|2)1+𝜈+d∕2

, (6.57)

𝜕f∕𝜕𝜃3 = − log(A + B|𝜔|2) f .

It can be checked that fT(𝜔) is bounded away from 0 and ∞ and that the first two
derivatives of fT(𝜔; h) are bounded in absolute value. Hence, the integrals in the
Fisher information matrix in (6.55) are all finite; see Exercise 6.11. ◽

An important class of models is given by the CAR models, with spectral density

f (𝜔) = (2𝜋)−d
𝜎

2
𝜂
∕b̃(𝜔), (6.58)

where
b̃(𝜔) = 1 −

∑

s∈

𝛽s cos(sT
𝜔) = 1 − 2

∑

s∈ †

𝛽s cos(sT
𝜔). (6.59)

The parameters are the coefficients {𝛽s, s ∈  †} and 𝜎2
𝜂
. For algebraic calcula-

tions, it is more convenient to work with

𝜏 = 1∕𝜎2
𝜂

instead of 𝜎2
𝜂
.

For k ∈ ℤd
N , the elements yk are realizations from independent normal distribu-

tions, N(0, (𝜏b̃k)−1), where

b̃k = b̃(𝜔k), 𝜔k = 2𝜋(k[1]∕n[1], . . . , k[d]∕n[d]). (6.60)
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For later use, recall the basic fact about fourth moments of the normal distribution.
If X ∼ N(0, 𝜎2),

var(X) = 𝜎
2
, var(X2) = 2𝜎2

. (6.61)

Up to a constant term, the log-likelihood from (6.52) simplifies to

log L = −1
2
∑

k∈d
N

{𝜏b̃ky2
k − log 𝜏 − log b̃k}. (6.62)

The parameters of the model are 𝜃0 = 𝜏 and 𝜃h = 𝛽h, h ∈  †. From Section A.12,
the Fisher information is the matrix  with entries

()ij =
∑

k∈d
N

gi(𝜔k)gj(𝜔k)
g2(𝜔k)

≈ |N|
2𝜋 ∫

2𝜋

0

gi(𝜔)gj(𝜔)
g2(𝜔)

d𝜔, (6.63)

where g(𝜔) = (2𝜋)−d
𝜏b̃(𝜔) is the inverse spectral density, with derivatives with

respect to the parameters given by

g0(𝜔) = 𝜕g(𝜔)∕𝜕𝜃0 = (2𝜋)−d

{
1 − 2

∑

h∈ †

𝛽h cos(hT
𝜔)

}
,

gh(𝜔) = 𝜕g(𝜔)∕𝜕𝜃h = −2𝜏(2𝜋)−d cos(hT
𝜔), h ∈ 

†
.

The integral form is the asymptotic form of the Fisher information matrix for both
the exact likelihood and all the approximate versions considered in this chapter.

In particular, the MLE is asymptotically normally distributed,

𝜽̂ML ∼ N(𝜽,−1).

6.7 The Moment Estimator for a CAR Model

Another estimator for CAR models is the moment estimator of Section 6.4.2.
To study this estimator, it is helpful first to give it an interpretation as a com-
posite maximum likelihood estimator based on the full conditional densities
(e.g. Mardia et al. 2010). This composite likelihood is different from the composite
likelihood used in Vecchia’s estimation procedure in Section 5.9.

This composite likelihood here is given by the product of the full conditional
densities. For a CAR model with mean 0, this likelihood is obtained by writ-
ing down the product of the densities for xt|x∖t. Effectively, the residuals 𝜂t =
xt −

∑
s∈ 𝛽sxt−s, after regressing xt on its neighboring values, are falsely treated

as independent of one another. In convolution notation, we can write 𝜼 = b ∗ x,
where b is a set of coefficients with b0 = 1 and bs = −𝛽s, s ∈  . The composite
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log-likelihood is obtained by treating the convolved data b ∗ x as i.i.d N(0, 𝜎2
𝜂
)

random variables.
Let the notation cMLE be used for the composite maximum likelihood estimator.

For the CAR model, it can be shown that the cMLE is the same as a version of the
moment estimator in Section 6.4.2. See Exercise 6.5 for details. In general, compos-
ite maximum likelihood estimators will be consistent, but less efficient than the
full maximum likelihood estimator, and this is the situation for the CAR model.

To study the efficiency of the cMLE, it is easiest to work in the spectral domain
with a circulant approximation, using (6.51) to define y. Since convolution in
the spatial domain corresponds to multiplication in the Fourier domain, the
convolved data in the Fourier domain have elements b̃kyk, which are treated as
i.i.d. N(0, 1∕𝜏) random variables, using the notation from (6.60), with 𝜏 = 1∕𝜎2

𝜂
.

Hence, the composite log-likelihood becomes

log Lc = −1
2
∑

k
{𝜏b̃2

ky2
k − log 𝜏}. (6.64)

The composite likelihood information matrix is defined by

CL = 
−1
,

where  = E{(𝜕lc∕𝜕𝜽)(𝜕lc∕𝜕𝜽)T} is the “expected squared score” and  =
−E{𝜕2lc∕𝜕𝜽𝜕𝜽

T} is the matrix of “expected score derivatives,” after changing
the sign, where lc = log Lc. The composite MLE is asymptotically normally
distributed

𝜽̂cML ∼ N(𝜽,−1


−1).

The relative efficiency of the cMLE compared to the MLE can be summarized by
the eigenvalues of A = 

−1
CL, which always lie between 0 and 1, and which, in turn,

can be summarized by the scalar quantity |A|1∕p, where p is the dimension of 𝜽.
The example of the AR(1) process is examined in detail in Exercise 6.8 and the
relative efficiency, as a function of 𝛽 is plotted in Figure 6.4.

For the basic first-order CAR model in ℤ2 (Example 4.4), the cMLE was termed
a “coding estimator” by Besag and Moran (1975). In particular, if a planar grid is
divided into black and white squares as in a chess board, then the white squares are
conditionally independent given the black squares and vice versa. In that case, the
composite likelihood becomes the product of two conditional likelihoods (black
given white times white given black).

Exercises

6.1 Given observations xt, t ∈ D, where D is a rectangular region in ℤd as in
(6.4), let x denote the sample mean of the data and define the centered
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Figure 6.4 Relative efficiency of the composite likelihood estimator in AR(1) model
relative to the ML estimator.

data {yt, t ∈ ℤd} by
yt =

{
xt − x, t ∈ D,
0, t ∉ D.

(a) Show that the biased sample covariance function can be defined by the
convolution

s(b)h = 1
|D| (y ∗ y̌)h = 1

|D|
∑

t∈ℤd

ytyt+h.

(b) For any set of complex coefficients {𝛼t}, show that

∑

s,t∈ℤd

𝛼s𝛼ts
(b)
s−t =

||||||

∑

t∈ℤd

𝛼tyt

||||||

2

≥ 0.

Hence, deduce that the sequence {s(b)h } is positive semidefinite.
(c) Show that setting 𝛼t = exp(−i𝜔t) yields the periodogram I(𝜔) in (6.46).

Hence, deduce that the periodogram is nonnegative for all 𝜔.

6.2 The quadratic form Q(W) in the Whittle log-likelihood for a CAR model
is specified as a linear combination of terms involving the biased sample
covariance function. Show that it can also be expressed in terms of the peri-
odogram as in (6.45).
Hint: Recall or prove the one-dimensional result for k ∈ ℤ, ∫ 2𝜋

0 exp(ik𝜔)
d𝜔 = 2𝜋 if k = 0, and 0 for k ≠ 0. Similarly, prove the d-dimensional result
for k ∈ ℤd,

∫(−𝜋,𝜋)d
exp(ikT

𝜔) d𝜔 =
{
(2𝜋)d

, k = 0,
0, k ≠ 0.

Then expand out the integral ∫(−𝜋,𝜋)d I(𝜔)∕f (𝜔) d𝜔 term by term.
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6.3 .(a) Using the ideas from Sections 4.8.2 and 4.6.1, show that the AR(1) and
CAR(1) models in Section 6.3 have the spectral densities given in (6.13)
and (6.17).

(b) Show that the spectral densities are the same as one another under the
conditions in (6.18). Further show that 𝜆 and 𝛽 in (6.20) are related by

𝛽 = 𝜆∕
(
1 + 𝜆2)

.

(c) For z = exp(i𝜔), show that

z + z = 2 cos𝜔,

(1 − 𝜆z)(1 − 𝜆z) = 1 + 𝜆2 − 2𝜆 cos𝜔,
1

1 − 𝜆2

{
1

1 − 𝜆z
+ 1

1 − 𝜆z
− 1

}
= 1

(1 − 𝜆z)(1 − 𝜆z)
,

and use the geometric and logarithmic series expansions

1
1 − 𝜆z

=
∞∑

j=0
𝜆

jzj
, − log(1 − 𝜆z) =

∞∑
j=1

1
j
𝜆

jzj
.

to verify the Fourier expansions (6.14)–(6.16).
(d) Prove the identities (6.20) to express 𝜆 and 𝛽 in terms of the covariance

function (6.19).

6.4 Consider n equally spaced data sites in one dimension from the exponential
covariance function. The covariance matrix Σ was given in (6.21). Show
that the inverse of Σ is given by Ψ(exact) in (6.22) by confirming that the
matrix product reduces to the identity matrix, Σ Ψ(exact) = In.

6.5 A regression interpretation of the moment estimator for a CAR model. Let
D be a finite domain in ℤd and let  be a finite symmetric neighborhood
of the origin, with half-neighborhood  †. Let D


= {t ∈ D ∶ t + s ∈ D

for all s ∈  }, and let y denote the vector {xt ∶ t ∈ D

} with elements

arranged in lexicographic order.
Next define a “design matrix” X of size |D


| × | †| with entries

xts = xt−s + xt+s, t ∈ D

, s ∈ 

†
.

A regression of y on X yields estimates for regression coefficient vector 𝜷
and the residual variance 𝜎2

𝜂
given by a sample version of the moment iden-

tity (6.42), where the elements of the matrix A and the vector g and 𝝈0 are
estimated by

areg;h1h2
= 1
|D


|
∑

t∈D

(xt−h1
+ xt+h1

)(xt−h2
+ xt+h2

),

greg;h = 1
|D


|
∑

t∈D

xt(xt+h + xt−h),
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𝜎reg;0 = 1
|D


|
∑

t∈D

x2
t .

6.6 Guyon (1982). This exercise looks in more detail at the unbiased sample
covariance function used in Section 6.5. Suppose D is a rectangular lattice
of length n in each direction so that it contains |D| = nd data sites. For sim-
plicity, consider the lag h =

[
1 0 . . . 0

]
representing one step along the

first coordinate axis. Assume the data xt, t ∈ D, come from a stationary ran-
dom field with the known mean 0 and with the covariance function {𝜎h ∶
h ∈ ℤd}. Consider the unbiased and biased sample covariance functions

s(u)h = 1
|Dh|

∑
t∈Dh

xtxt+h, s(b)h = 1
|D|

∑
t∈Dh

xtxt+h.

These definitions are almost the same as in Eqs. (6.8)–(6.10), except they
have been centered at 0 rather than the sample mean to make the calcula-
tions simpler.
(a) Show that the size of Dh is |Dh| = (n − 1)nd−1.
(b) Show that the unbiased covariance function s(u)h in (6.8) is unbiased, i.e.

E{s(u)h } = 𝜎h.
(c) Hence, show that the biased sample covariance s(b)h in (6.10) is biased,

E{s(b)h } =
|Dh|
|D| 𝜎h =

(
1 − 1

n

)
𝜎h.

(d) Under mild regularity conditions (e.g. Section 5.5.3) it can be shown
that s(u)h is asymptotically normally distributed for large n,

nd∕2(s(u)h − 𝜎h) ∼ N(0, 𝜅2
h)

for some variance 𝜅2
h, say, not depending on n. Hence, deduce that

asymptotic distribution of (6.10) is

nd∕2(s(b)h − 𝜎h) ∼ N(−nd∕2−1
𝜎h, 𝜅

2
h).

(e) In dimensions d = 1, 2, 3, deduce that for this distribution
(i) if d = 1, the bias n−1∕2

𝜎h is negligible in comparison to the stan-
dard deviation 𝜅h.

(ii) if d = 2, the bias n0
𝜎h = 𝜎h has the same order as the standard

deviation 𝜅h.
(iii) if d = 3, the bias n1∕2

𝜎h dominates the standard deviation.
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That is, if d ≥ 2, s(b)h is not asymptotically unbiased for 𝜎h. As a conse-
quence, it can be shown that maximizing the Whittle approximation
(6.43) does not produce an estimator asymptotically equivalent to the
MLE. Instead, it is necessary to replace s(b)h by s(u)h as in (6.47) or to use
tapering.

(f) At the same time, deduce that E{(s(b)h − 𝜎h)2} → 0 as n → ∞ so that s(b)h
is a consistent estimator of 𝜎h.

6.7 Information matrix for MLE from circular CAR(1) process. The simplest
nontrivial stationary Gaussian process on the line is the AR(1) model or
equivalently the CAR(1) model. The spectral density of the covariance
function has two equivalent representations, given in (6.17), i.e.

f (𝜔) = 1
2𝜋

𝜎
2
𝜂

1 − 2𝛽 cos𝜔
= 1

2𝜋
𝜎

2
𝜀

1 + 𝜆2 − 2𝜆 cos𝜔
. (6.65)

The easiest setting in which to investigate the issues related to maximum
likelihood estimation is to consider the circulant version of this process for
which the circulant covariance matrix has eigenvalues

fk = (2𝜋)f (𝜔k), 𝜔k = 2𝜋k∕n, k = 0, . . . ,n − 1.

All circulant matrices have the same eigenvectors as shown in Section
A.7. The eigenvectors are given in complex coordinates by the columns of
the matrix G(DFT,com)

n in (A.41) or equivalently in real coordinates by the
columns of G(DFT,rea)

n in (A.44) and (A.45).
(a) Let Σ denote the covariance matrix for this circulant model and let x

denote an n-vector of data from this model, with log-likelihood

log L = −1
2
{

xTΣ−1x + log |Σ| + n log(2𝜋)
}
.

By rotating the data to y = G(DFT,rea)
n x, show that the log-likelihood can

also be written as

log L = −1
2

{∑
y2

k∕fk +
∑

log fk + n log(2𝜋)
}
.

(b) For the purposes of this exercise, parameterize the model by 𝜽 =
(𝜃1, 𝜃2)T = (𝜎2

𝜂
, 𝛽). Show that the information matrix  has elements

()ij =
1
2

n−1∑
k=0

(𝜕 log fk∕𝜕𝜃i)(𝜕 log fk∕𝜕𝜃j).

Hence, for this model show that

 = 1
2

[
n∕𝜎4

𝜂
(2∕𝜎2

𝜂
)
∑

ck∕dk
(2∕𝜎2

𝜂
)
∑

ck∕dk 4
∑

c2
k∕d2

k

]
,

where ck = cos 2𝜋k∕n, dk = 1 − 2𝛽ck.
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(c) For large n, the sums in the above matrices can be approximated
by integrals. Some of the integrals are simpler to state by express-
ing 𝛽 = 𝜆∕(1 + 𝜆2) in terms of the parameter 𝜆 from (6.18), with inverse
𝜆 = (1 −

√
1 − 4𝛽2)∕(2𝛽). Also, it is convenient to set

P = 1 + 𝜆2
, M = 1 − 𝜆2

,

so that
1 + 𝜆2 − 2𝜆 cos𝜔 = P(1 − 2𝛽 cos𝜔),

and
√

1 − 4𝛽2 =
√

1 − 4𝜆2

P2 =
√

M2∕P2 = M∕P.

Then from Gradshteyn and Ryzhik (1980, p. 394, Formula 3.616.7), for
k ≥ 0 the following integrals can be defined and evaluated:

Rk = 1
2𝜋 ∫

2𝜋

0

cos k𝜔
1 − 2𝛽 cos𝜔

d𝜔 = (P∕M)𝜆k (6.66)

and

Qk = 1
2𝜋 ∫

2𝜋

0

cos k𝜔
(1 − 2𝛽 cos𝜔)2 d𝜔

= 𝜆
kP2

M3 (2𝜆2 + (k + 1)M)

=
⎧
⎪
⎨
⎪⎩

P3∕M3
, k = 0,

2𝜆P2∕M3
, k = 1,

(3𝜆2 − 𝜆4)P2∕M3
, k = 2.

(6.67)

Since 2cos2
𝜔 = 1 + cos(2𝜔), it is also convenient to define a quantity

Q̃2 = (Q0 + Q2)∕2 = (1 + 4𝜆2 − 𝜆4)P2∕M3
.

Hence, deduce that

 ≈ n
[

1∕(2𝜎4
𝜂
) R1

R1 2Q̃2

]
.

6.8 Information matrix for composite MLE from circular CAR(1) process.
Consider again the circulant CAR(1) model of the previous exercise. The
purpose of this exercise is to investigate the accuracy of the composite esti-
mator of Section 6.7.
The composite log-likelihood function is given by (6.64), i.e.

log Lc = −1
2
∑

k

{
b̃2

ky2
k∕𝜎

2
𝜂
+ log 𝜎2

𝜂
+ log(2𝜋)

}
,
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where yk ∼ N(0, 𝜎2
𝜂
∕b̃k) independently for i = 1, . . . ,n. Recall the formulas

for var(yk) and var(y2
k) from Eq. (6.61).

The composite score function is obtained by differentiating composite
log-likelihood function with respect to 𝜃1 = 𝜎

2
𝜂

and 𝜃2 = 𝛽. Show that it
has components

U (c)
1 = −1

2
∑

k

{
−b̃2

ky2
k∕𝜎

4
𝜂
+ 1∕𝜎2

𝜂

}
, U (c)

2 = −1
2
∑

k

{
−4ckb̃ky2

k∕𝜎
2
𝜂

}
.

A basic property of trigonometric functions implies that
∑

ck = 0. Hence,
check that the expected composite scores are 0.
Next, let  denote the matrix of minus the expected second derivatives of
the composite log-likelihood. Show that it has elements

()11 = 1
2
∑

k
1∕𝜎4

𝜂
= n

2𝜎4
𝜂

, ()12 = 1
2
∑

k

{
4ckb̃k∕𝜎2

𝜂

}
= 0,

()22 = 1
2
∑

k

{
8c2

k∕b̃k
}
≈ 4nR2.

Expressions for Rk and Qk are explained and derived in Exercise 6.7.
In addition, let  = E

{
U (c)U (c)T} denote the matrix of expected “squared”

scores, which, since the Fourier coefficients yk are independent, can be
computed termwise. Show that the elements are

( )11 = 1
4
∑

k

{
b̃4

k∕𝜎8
𝜂

}
var(y2

k) =
1

2𝜎4
𝜂

∑
k

{
1 − 4𝛽ck + 4𝛽2c2

k
}
= n

2𝜎4
𝜂

{
1 + 2𝛽2}

,

( )12 = 1
4
∑

k

{
4ckb̃3

k∕𝜎6
𝜂

}
var(y2

k) =
2
𝜎

2
𝜂

∑
k

{
ckb̃k

}
= 2
𝜎

2
𝜂

∑
k

{
ck − 2𝛽c2

k
}

= −2𝛽n
𝜎

2
𝜂

,

( )22 = 1
4
∑

k

{
16c2

kb̃2
k∕𝜎4

𝜂

}
var(y2

k) = 8
∑

k
c2

k = 4n.

A plot of the efficiency of the composite estimator is given in Figure 6.4.

6.9 Information matrix for MLE from circular CAR(1) process with nugget
effect. Following on from Exercise 6.7, include a nugget effect in the
CAR(1) model. Recall that a CAR(1) process with regression parameter
𝛽 and conditional variance 𝜎2

𝜂
can also be viewed as an AR(1) process

with regression parameter 𝜆 and residual variance 𝜎2
𝜀
. The parameters are

related by
𝛽 = 𝜆∕P, P = 1 + 𝜆2

,

𝜆 = (1 − Δ)∕(2𝛽), Δ =
√

1 − 4𝛽2,

𝜎
2
𝜂
= 𝜎

2
𝜀
∕P.
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The covariance matrix of a circulant version of the process, observed at sites
t = 1, . . . ,n, has eigenvalues

fk =
𝜎

2
𝜂

1 − 2𝛽 cos𝜔k
+ 𝜏2

, 𝜔k = 2𝜋k∕n, k = 1, . . . ,n,

= 𝛿1
1 − 2𝛿3 cos𝜔k

1 − 2𝛿2 cos𝜔k
,

where Δ =
√

1 − 4𝛽2, 𝛿1 = 𝜎
2
𝜂
Δ + 𝜏2, 𝛿2 = 𝛽, and 𝛿3 = 𝛽𝜏

2∕𝛿1. The model
can be parameterized in several ways. For the purposes of this exercise,
three natural parameterizations are

𝜹 = (𝛿1, 𝛿2, 𝛿3)T = (𝜎2
𝜂
Δ + 𝜏2

, 𝛽, 𝛽𝜏
2∕(𝜎2

𝜂
Δ + 𝜏2))T

,

𝜽 = (𝜃1, 𝜃2, 𝜃3)T = (𝜎2
𝜂
, 𝛽, 𝜏

2)T
,

𝝌 = (𝜒1, 𝜒2, 𝜒3)T = (𝜎2
𝜀
, 𝜆, 𝜏

2)T
.

For a model with nontrivial dependence, the parameters satisfy the
constraints, 𝛿1, 𝜎

2
𝜂
, 𝜎

2
𝜀
> 0, 𝜏2 ≥ 0, 0 < |𝛿2|, |𝛿3| < 1∕2, 0 < |𝜆| < 1.

The first representation is easiest to differentiate, and from a time- series
perspective represents a circulant version of an ARMA(1,1) process. The
second and third representations emphasize the CAR(1) and AR(1) inter-
pretations of the parameters.
Define an n × 3 matrix of coefficients A = (akj), k = 1, . . . ,n, j = 1, 2, 3 by
akj = 𝜕 log fk∕𝜕𝛿j. Show that

ak1 = 1∕𝛿1, ak2 = 2 cos𝜔k∕(1 − 2𝛿2 cos𝜔k),

ak3 = −2 cos𝜔k∕(1 − 2𝛿3 cos𝜔k).

Show that the Fisher information matrix for 𝜹 is given by


(𝜹) = 1

2

n∑
k=1

(𝜕 log fk∕𝜕𝜹)(𝜕 log fk∕𝜕𝜹)T = 1
2

ATA.

Using the notation introduced in Exercise 6.7, show that the elements of
(𝜹) can be approximated by integrals with values


(𝜹) = n

⎡
⎢
⎢⎣

1∕(2𝛿2
1) R1∕𝛿1 −R∗

1∕𝛿1
R1∕𝛿1 2Q̃2 (∗)
−R∗

1∕𝛿1 (∗) 2Q̃∗
2

⎤
⎥
⎥⎦
,

where
(∗) = −{𝛽(R0 + R2) − 𝛽∗(R∗

0 + R∗
2)}∕(𝛽 − 𝛽

∗).

Here, the unstarred quantities R0 and R2 are based on 𝛿2 = 𝛽 and the starred
quantities R∗

0 and R∗
2 are based on 𝛿3 = 𝛽

∗, say.



�

� �

�

Exercises 227

Show that the mapping from 𝜽 to 𝜹 has the Jacobian matrix

J(1) = 𝜕𝜹∕𝜕𝜽T =
⎡
⎢
⎢⎣

1 0 1
0 1 0

−𝛽𝜏2∕𝛿2
1 𝜏

2∕𝛿1 𝛽𝜎
2
𝜂
∕𝛿2

1

⎤
⎥
⎥⎦
.

Show that the mapping from 𝝌 to 𝜽 has the Jacobian matrix

J(2) = 𝜕𝜽∕𝜕𝝌T =
⎡
⎢
⎢⎣

1∕P −2𝜆𝜎2
𝜀
∕P2 0

0 M∕P2 0
0 0 1

⎤
⎥
⎥⎦
.

Hence deduce that the information matrix for 𝝌 is given by


(𝝌) = J(2)TJ(1)T(𝜹)J(1)J(2).

In particular show that if 𝜏2 = 0, then the estimates of 𝜎2
𝜀

and 𝜆 are asymp-
totically uncorrelated. (On the other hand, this last result can be obtained
more simply by writing the eigenvalues fk directly in terms of the parame-
ters 𝜎2

𝜀
and 𝜆.)

6.10 Another circulant approximation to the covariance matrix for a circular
CAR(1) model at n sites is given by

Σcirc = 𝜎
2circ(1, 𝜆, 𝜆2

, . . . , 𝜆
m
, 𝜆

m
, . . . , 𝜆

2
, 𝜆), n odd, m = (n − 1)∕2,

Σcirc = 𝜎
2circ(1, 𝜆, 𝜆2

, . . . , 𝜆
m−1

, 𝜆
m
, 𝜆

m−1
, . . . , 𝜆

2
, 𝜆), n even, m = n∕2,

Show that the eigenvalues are given by

𝛼j =
1 − 𝜆2 − 2𝜆m+1{aj − 𝜆bj}

1 + 𝜆2 − 2𝜆cj
, n odd, m = (n − 1)∕2,

𝛼j =
1 − 𝜆2 − 𝜆m{bj + 2𝜆aj − 2𝜆cjbj − 𝜆2bj}

1 + 𝜆2 − 2𝜆cj
, n even, m = n∕2,

where aj = cos(m + 1)𝜔j, bj = cos m𝜔j, cj = cos𝜔j in terms of 𝜔j = 2𝜋j∕n,
and j = 0, 1, . . . ,n − 1. In particular note the special cases

(n = 2) 𝛼0 = 1 + 𝜆, 𝛼1 = 1 − 𝜆,

(n = 3) 𝛼0 = 1 + 2𝜆, 𝛼1 = 𝛼2 = 1 − 𝜆,

(n = 4) 𝛼0 = 1 + 2𝜆 + 𝜆2
, 𝛼1 = 𝛼3 = 1 − 𝜆2

, 𝛼2 = 1 − 2𝜆 + 𝜆2
.

Hint: From Fuller (1996, p. 151, eqn (4.2.8)), we have

𝛼j =

{∑m
h=−m𝜆

|h| cos(2𝜋h∕n), n odd, m = (n − 1)∕2,
∑m

h=−m+1𝜆
|h| cos(2𝜋h∕n), n even, m = n∕2.
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Further, from Gradshteyn and Ryzhik (1980, p. 31, eqn (1.353.3))
n−1∑
h=0
𝜆
|h| cos hx = 1 − 𝜆 cos x − 𝜆n cos nx + 𝜆n+1 cos(n − 1)x

1 + 𝜆2 − 2𝜆 cos x
.

6.11 Consider the Matérn process restricted to the integer lattice t ∈ ℤd, and
suppose data are observed on a rectangular region of size D ⊂ ℤd of size
n1 × · · · × nd. The purpose of this exercise is look at the outfill asymptotics
problem and in particular to show that the elements of the limiting Fisher
information matrix in (6.55) are finite. There are several steps.
(a) The first step is to develop a general criterion to ensure the convergence

of an infinite sum, by bounding the terms of the sum by a monotone
decreasing function whose integral is finite. Thus let fk, k ∈ ℤd be
a sequence of finite real numbers, and suppose the sequence can be
bounded by

|fk| ≤ 𝜑(|k|) (6.68)

for |k| ≥ r0 where 𝜑(r), a continuous function of a real argument
r, is monotone decreasing for r ≥ r0 for some r0 > 0, and where
∫

∞
r0
𝜑(r)rd−1 dr <∞. Then

∑
k∈ℤd |fk| <∞. One way to prove this

result is as follows. Divide ℝd into rectangles

Rk = {𝜔 ∈ ℝd ∶ |𝜔[𝓁] − 𝜔k[𝓁]| ≤ 𝜋, 𝓁 = 1, . . . , d},

in terms of center points 𝜔k = 2𝜋k, k ∈ ℤd. Then ℝd = ∪kRk and the
rectangles are disjoint apart from adjoining boundaries. Note that for
𝜔 ∈ Rk, |𝜔 − 𝜔k| ≤ 𝜋

√
d.

Suppose |k| ≥ (3∕2)
√

d (so that𝜔k ≥ 3𝜋
√

d) and let𝜔 ∈ Rk. Using two
versions of the triangle inequality

|𝜔k| ≤ |𝜔k − 𝜔| + |𝜔|, |𝜔| ≤ |𝜔k − 𝜔| + |𝜔k|,
deduce from the first formula that

|𝜔| ≥ |𝜔k| − |𝜔k − 𝜔| ≥ |𝜔k| − 𝜋
√

d ≥ 3𝜋
√

d − 𝜋
√

d = 2𝜋
√

d,

and hence from the second formula that

|𝜔k| ≥ |𝜔| − |𝜔k − 𝜔| ≥ |𝜔| − 𝜋
√

d ≥ |𝜔|∕2.

If |k| ≥ (3∕2)
√

d and |k| ≥ r0, then integrating over Rk yields
(2𝜋)d|fk| ≤ ∫Rk

𝜑(𝜔∕2) d𝜔. Hence, deduce that
∑

k∈ℤd |fk| can be

bounded by a sum of a finite sum of terms (for |k| < max {(3∕2)
√

d, r0})
plus an infinite sum, which is bounded by a convergent integral.
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(b) Next adapt this result to the partial derivatives 𝜕f (𝜔)∕𝜃j, j = 1, 2, 3, in
(6.57). In particular, verify that the three functions
𝜑(r) = 1∕(A + Br2)1+𝜈+d∕2, 𝜑(r) = r2∕(A + Br2)1+𝜈+d∕2 and
𝜑(r) = log(A + B|r|2)∕(A + Br2)𝜈+d∕2 satisfy the monotonicity and inte-
grability conditions of part (a).

(c) Lastly, write

𝜕 log fT(𝜔)∕𝜕𝜃j =
𝜕fT(𝜔)∕𝜕𝜃j

fT(𝜔)
.

Note that since the Matérn spectral density is strictly positive for all
𝜔, the wrapped version can be bounded below by a positive constant c
on the torus, fT(𝜔) ≥ c > 0, |𝜔[𝓁]| ≤ 𝜋, 𝓁 = 1, . . . , d. Use part (b) to
deduce that 𝜕fT(𝜔)∕𝜕𝜃j can be written as a convergent infinite sum,
where the bound is uniform over 𝜔 ∈ (−𝜋, 𝜋)d.

(d) Hence the elements of the Fisher information matrix can be expressed
as the integrals over (−𝜋, 𝜋)d of the product of two bounded continuous
functions, and hence the integrals are finite.
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7

Kriging

7.1 Introduction

In this chapter, we consider the question of prediction for random fields. For spa-
tial data, prediction is mainly concerned with interpolation or smoothing between
the existing data sites rather than with extrapolation beyond the data sites. In con-
trast, in time series analysis, prediction is usually concerned with forecasts into
the future.

Prediction in a spatial context is known as “kriging” in the geostatistics litera-
ture, and we shall use this term throughout the book. D. G. Krige, a South African
mining engineer, developed these ideas for identifying gold reserves in the mining
areas in South Africa. Cressie (1990) gives a historical review of the ideas behind
kriging. Some further comments are given in Appendix B.

There are several ways to predict the values of an unknown function given obser-
vations at a finite set of sites. Different approaches give different perspectives about
the problem, but from this book’s perspective, they can all be unified under the
umbrella of kriging.

(a) Best linear unbiased prediction for a Gaussian process (Sections 7.2–7.8)
(b) Bayesian prediction for a Gaussian process (Section 7.12)
(c) Nonparametric regression in machine learning (Section 7.13)
(d) Splines (Section 7.14)
(e) Reproducing kernel Hilbert spaces (RKHSs) (Section 7.15)

For statistical purposes, the two most important approaches are (a) and (b). Both
start from the same model. There is an underlying “signal” following a Gaussian
process. Given noisy observations on the signal, the objective is to predict the
signal at a new set of sites. When the mean function is completely known, the
two approaches are essentially identical. However, if the mean function contains
unknown parameters, the approaches will differ.

Spatial Analysis, First Edition. John T. Kent and Kanti V. Mardia.
© 2022 John Wiley & Sons Ltd. Published 2022 by John Wiley & Sons Ltd.
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The derivation of the kriging equations in approach (a) can quickly become
rather complicated. Therefore, we shall develop the subject in stages, starting with
the simplest situations, and focus on a notation that highlights the underlying
simplicity of the method. The covariance part of the model is either a known
fully-specified covariance function (which specifies the variance of all linear com-
binations) or a known intrinsic covariance function (which only specifies the vari-
ance of certain increments). We look at each of the following cases in turn.

● Random field with known covariance function and known mean 0 (Section 7.3).
This case is called simple kriging.

● Random field with known covariance function and unknown mean function
(Sections 7.4–7.5). The case of a constant unknown mean is called ordinary krig-
ing, and the case of a general parametric drift with unknown coefficients is called
universal kriging.

● Random field with known intrinsic covariance function (Section 7.8). This case
is also covered by the equations of universal kriging.

The kriging equations in approach (a) are initially derived under the assump-
tion of a fully specified covariance function. However, the equations extend with
little or no change to intrinsic covariance functions (which only partially specify
the covariances of the random field) (Section 7.8). For certain intrinsic models,
this kriging surface is closely related to the fitted surface obtained from thin-plate
splines and related splines (Section 7.14).

If the model of spatial dependence is smooth enough, the kriging surface can be
differentiated with respect to the site. In addition, the data can take the form of
specified derivatives of the random field at specified sites as well as the values of
the random field at the sites. Questions related to differentiability are discussed in
Section 7.11.

In conventional kriging, the drift parameters are treated as unknown constants.
The drift parameters can also treated by Bayesian methods in approach (b) by giv-
ing them a prior distribution. Bayesian kriging is discussed in Section 7.12. The
importance of Bayesian kriging in machine learning is discussed in Section 7.13.

Certain kriging predictors also arise in other settings, notably in splines, in
approach (c), and RKHSs, in approach (d), which are studied in Sections 7.14
and 7.15.

Finally, a collection of d splines can be used to construct deformations of ℝd.
This topic is discussed in Section 7.16.

Examples are given throughout the chapter to illustrate the calculations and to
visualize the kriging predictor (especially Sections 7.9 and 7.10). The examples use
both small artificial data sets and larger real data sets.

The discussion in this chapter assumes that there are no additional explanatory
variables to help predict the random process, but in many practical examples, such
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information is available. For example, Rathbun (1998) developed kriging methods
for estuarine data using environmental and geographic information about an estu-
ary including its irregular shape.

7.2 The Prediction Problem

Let {U(t)} be a Gaussian random field, or Gaussian process,

U(⋅) ∼ GP(𝜇(⋅), 𝜎(⋅, ⋅)), (7.1)

with a mean function 𝜇(⋅) and a covariance function 𝜎(⋅, ⋅), considered as a signal.
Suppose that noisy measurements are made at a set of sites {ti, i = 1, . . . ,n}

Xi = U(ti) + 𝜀i, i = 1, . . . ,n, (7.2)

where it is generally assumed that the error terms 𝜀i are i.i.d. N(0, 𝜏2) random
variables, independent of the signal. The vector X = [X(t1), . . . ,X(tn)]T is called
the observation vector. The presence of the error term can also be described as a
nugget effect. This framework also covers the noiseless situation when 𝜏2 = 0; in
this case, 𝜀i = 0 and Xi = U(ti), i = 1, . . . ,n.

The data sites t1, . . . , tn are sometimes known as training sites. Given observa-
tions at the training sites, the objective is to predict the value of the signal at a new
site t0, say. The new site is sometimes known as a test site.

The Gaussian assumption is made here to simplify the presentation. However,
except for Section 7.12 on Bayesian kriging, most of the results just depend on the
second moments of the process and continue to hold for non-Gaussian random
fields.

Throughout the chapter, the following notation is used. Let

Σ = (𝜎ij), 𝜎ij = 𝜎(ti, tj), i, j = 1, . . . ,n, (7.3)

denote the n × n covariance matrix of the signal at the data sites. Similarly, let

𝝈(t) =
⎡
⎢
⎢⎣

𝜎(t, t1)
⋮

𝜎(t, tn)

⎤
⎥
⎥⎦

(7.4)

denote the n × 1 column vector of covariances for the signal at the data sites and
a site t. It is convenient to abbreviate the notation for the covariance vector at the
test site as

𝝈(t0) = 𝝈0. (7.5)

Finally, let
Ω = Σ + 𝜏2In (7.6)
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denote the covariance matrix of the observation vector X . That is, Ω has elements

𝜔ij =
{
𝜎ij + 𝜏2

, i = j,
𝜎ij, i ≠ j,

for i, j = 1, . . . ,n.
In addition, suppose the mean of the signal lies in a p-dimensional vector space

of functions  . (Note that p, the dimension of the drift space, was denote by q in
Section 5.11.) Let

f (t) =
[
f1(t), . . . , fp(t)

]T (7.7)

be a p-dimensional vector of known basis functions in  . The basis functions can
also be thought of as drift functions. The expected signal as a function of t takes
the form

E{U(t)} = 𝜷Tf (t) (7.8)

in terms of an unknown coefficient vector 𝜷. The values of the drift functions at
the data sites and at a new site t0, say, can be collected together as an n × p matrix
F and a p-dimensional column vector f 0 given by

F = (fij), fij = fj(ti), i = 1, . . . ,n, j = 1, . . . , p,

f 0 = [f1(t0), . . . , fp(t0)]T
, (7.9)

and they can be combined together as an (n + 1) × p matrix

F(0) =
[

f T
0

F

]
= (fij), fij = fj(ti), i = 0, . . . ,n, j = 1, . . . , p. (7.10)

A list of the notation is given in Table 7.1. The objective is to predict the value of
the signal U(t0) at a new site t0 using a linear predictor

Û(t0) = c + 𝜸TX , say. (7.11)

The coefficients c ∈ ℝ and 𝜸 ∈ ℝn depend on t0 and are chosen to minimize the
expected prediction mean squared error (PMSE)

PMSE(t0; 𝜸, c) = E{[U(t0) − Û(t0)]2}, (7.12)

subject to suitable constraints. The optimal predictor in (7.11) is called the kriging
predictor and equations for the optimal coefficients c and 𝜸 are called the kriging
equations.

The PMSE for the optimal values of c and 𝜸 is denoted PMSE(t0). It can also be
called the kriging variance 𝜎2

K(t0) so that

𝜎
2
K(t0) = PMSE(t0) = E{[U(t0) − Û(t0)]2}, (7.13)

when the optimal predictor Û(t0) is used. Its square root is called the kriging stan-
dard error.

Regularity Conditions. Most of the chapter deals with random fields with a fully
specified covariance function 𝜎(s, t) (for which stationary random fields are an
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Table 7.1 Notation used for kriging at the data sites t1, . . . , tn, and at the prediction and
data sites t0, . . . , tn.

Object Training sites Test site and training sites

Sites t1, . . . , tn t0, . . . , tn

Signal U(t1), . . . ,U(tn) U(t0), . . . ,U(tn)
Data X = [X(t1), . . . ,X(tn)]T —
Kriging
coefficient
vector

𝜸 = [𝛾1, . . . , 𝛾n]T 𝜹 = [𝛿0, . . . , 𝛿n]T

= [−1, 𝛾1, . . . , 𝛾n]T

Drift matrix F = (fij) (n × p) F(0) =

[
f T

0

F

]

fij = fj(ti) f 0 (p × 1) has elements
i = 1, . . . ,n, j = 1, . . . , p fj(t0), j = 1, . . . , p

Projection P = F(FTF)−1FT P(0) = F(0)(F(0)TF(0))−1F(0)T

matrix
Covariance
matrices

Σ = var{[U(t1), . . . ,U(tn)]T}
= (𝜎ij), 𝜎ij = 𝜎(ti, tj)

1 ≤ i, j ≤ n
Ω = var{[X1, . . . ,Xn]T}
= Σ + 𝜏2I

Φ = var{[U(t0),X1, . . . ,Xn]T}

=

[
𝜎(t0, t0) 𝝈T

0

𝝈0 Ω

]

where 𝝈0 has elements
𝜎(t0, ti), i = 1, . . . ,n

The first column is used in Sections 7.2–7.6.4. The second column is used in Section 7.6.5.

important special case) and two regularity conditions are assumed at the data sites
t1, . . . , tn.

(a) Ω is positive definite, and
(b) F has full column rank p.

Thus, there are no linear dependencies between the values of the observations
at the data sites or between the drift functions at the data sites. The assumption
that Ω is invertible will be true if either 𝜏2

> 0 or Σ is invertible (or both). Theorem
2.3.3 guarantees the invertibility ofΣ for a stationary process under mild regularity
conditions.

Parts of the chapter deal with intrinsic random fields and Condition (a) can be
relaxed to

(a’) Ω is conditionally positive definite of order k, for some known value of k ≥ 0,
and  contains k, the space of polynomials in t, of degree ≤ k.
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The development of the kriging equations is given in Sections 7.3–7.5. In each
setting, the notation PMSE(t0; 𝜸, c) is used for the PMSE of a general predictor,
PMSE(t0; 𝜸) for the case when c = 0, and 𝜎2

K(t0) = PMSE(t0) for the kriging vari-
ance, i.e. the PMSE of the optimal predictor. In each setting, the optimal c is c = 0.
The formulas for the optimal 𝜸 in the three settings are given in Eqs. (7.14), (7.21),
and (7.30), respectively.

It should be emphasized that the expectations in equations such as (7.12) are
unconditional. That is, although we are interested in predicting the value of the
random field once X has been observed, for assessing the quality of prediction,
we average over the joint distribution of U(t0) and X . The reason for using uncon-
ditional expectations is to deal properly with the case when drift parameters are
unknown.

Sections 7.3–7.5 emphasize the dependence of the kriging predictor on the obser-
vation vector X for a fixed new site t0. However, once the kriging predictor Û(t0)
is obtained for a single site t0, the site can be varied to define a kriging surface for
t0 ∈ ℝd. An alternative approach to the kriging equations, which also emphasizes
the dependence on a new site t0, is given in Section 7.6.
Comment on Uppercase and Lowercase Notation. An observation vector treated as
random is written as X . Similarly, an observation vector for a specific set of data
is written as x. In particular, the formulas for unbiasedness and PMSE involve
expectations over X . On the other hand, formulas for a predictor for a specific set
of data, such as (7.61), will generally use x. Similarly, the notations Û(t0) and û(t0)
are used for the predictor. In particular, Bayesian kriging looks at the posterior dis-
tribution of U(t0) given the data; hence the notation û(t0) for the kriging predictor
is appropriate in this case.

7.3 Simple Kriging

The simplest situation for prediction occurs when the random field has a known
mean 0. Hence, the vector of drift functions f (t) is not present in this case. A pre-
dictor of the form (7.11) is called the best linear predictor (BLP) if it minimizes the
PMSE (7.12).

Theorem 7.3.1 (Simple kriging) Consider the problem of predicting a signal
U(t0) at a new site t0 given observations X1, . . . ,Xn at sites t1, . . . , tn as set out in
Section 7.2. Suppose the mean function vanishes, 𝜇(t) = 0 for all t. The BLP predictor
in this setting is called the “simple kriging predictor” and is given by Û(t0) = 𝜸TX
where

𝜸 = Ω−1𝝈0. (7.14)
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Further, the kriging variance is

𝜎
2
K(t0) = 𝜎(t0, t0) − 𝝈T

0 Ω
−1𝝈0. (7.15)

Proof: The PMSE for the predictor (7.11) is given from (7.12) by

PMSE(t0; 𝜸, c) = E
{[

U(t0) − Û(t0)
]2
}

= E
{[

U(t0) − c − 𝜸TX
]2
}

= E
⎧
⎪
⎨
⎪⎩

[
U(t0) −

n∑
i=1
𝛾iX(ti) − c

]2⎫⎪
⎬
⎪⎭

= 𝜎(t0, t0) − 2𝝈T
0 𝜸 + 𝜸

TΩ𝜸 + c2
, (7.16)

where 𝜎(t0, t0) is the variance of the signal U(t0) at the new site t0, and 𝝈0 and Ω
are defined in (7.3)–(7.6).

To minimize (7.16), first minimize over c to get c = 0. Then, substitute c = 0 in
(7.16), differentiate with respect to 𝜸, and set the derivative to 0

2Ω𝜸 − 2𝝈0 = 0, (7.17)

to obtain the predictor (7.14). Plugging the solution for 𝜸 into the PMSE (7.16)
yields minimum value (7.15). ◽

Note that for a Gaussian random field, Û(t0) can be interpreted as the conditional
expectation of X(t0) given X (Eq. (A.18)).

This derivation can be easily extended to the case where the random
field has a general, but known, mean function E{U(t)} = 𝜇(t). Thus, let
𝝁 = [𝜇(t1), . . . , 𝜇(tn)]T denote the n-vector of means at the data sites and let 𝜇(t0)
denote the mean at the new site. By applying the previous derivation to the
centered process {U(t) − 𝜇(t)} and then adding in the means, the predictor takes
the form

Û(t0) = 𝜇(t0) + 𝜸T(X − 𝝁), 𝜸 = Ω−1𝝈0. (7.18)

The kriging variance remains unchanged.
The kriging covariance at two new test sites s and t can be derived by a similar

argument to give
𝜎K(s, t) = 𝜎(s, t) − 𝝈(s)TΩ−1𝝈(t). (7.19)

The simple kriging predictor can be interpreted as a posterior mean in a Bayesian
analysis. Similarly, the kriging variance can be interpreted as a posterior variance.
See Section 7.12.2 for more details.
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7.4 Ordinary Kriging

When the drift function includes unknown parameters, the prediction problem
becomes more complicated. To bring out some of the key ideas, we start with
the simple case of a constant unknown mean (known as ordinary kriging) in this
section and cover the general case (known as universal kriging) in Section 7.5. The
names “ordinary kriging” and “universal kriging” come from the geosciences liter-
ature. Note the term “ordinary” in the kriging context is unrelated to its use when
describing an “ordinary random field” in Chapter 3.

Thus, for this section, suppose that the mean of the signal is constant, E{U(t)} =
𝜇, but 𝜇 is unknown. In the notation of (7.7), the vector drift function f (t) is now
the scalar function f (t) = 1 and we write the coefficient 𝛽 as 𝜇 here. An “unbiased-
ness” constraint

E{U(t0) − Û(t0)} = 0, for all 𝜇 (7.20)

is imposed to get a unique solution for the predictor. As before, this expectation
is unconditional. A predictor of the form (7.11) is called the best linear unbiased
predictor (BLUP) if it minimizes the PMSE (7.12) subject to the unbiasedness
constraint (7.20).

Theorem 7.4.1 (Ordinary kriging) Consider the problem of predicting a sig-
nal U(t0) at a new site t0 given observations X1, . . . ,Xn at sites t1, . . . , tn as set out
in Section 7.2. Suppose the mean function is constant, 𝜇(t) = 𝜇 for all t, where 𝜇 is
unknown. The BLUP in this setting is called the “ordinary kriging predictor” and is
given by Û(t0) = 𝜸TX where

𝜸 = Ω−1𝝈0 +
(1 − 1TΩ−1𝝈0

1TΩ−11

)
Ω−11. (7.21)

Further, the kriging variance is

𝜎
2
K(t0) = 𝜎(t0, t0) − 𝝈T

0 Ω
−1𝝈0 +

(1 − 1TΩ−1𝝈0)2

1TΩ−11
. (7.22)

Proof: For a linear predictor Û(t0) = c + 𝜸TX , the expected prediction error
becomes

E
{

U(t0) − c − 𝜸TX
}
= 𝜇

(
1 −

∑
𝛾i

)
− c. (7.23)

If (7.23) equals 0 for all 𝜇, it follows that

c = 0,
∑

𝛾i = 1. (7.24)
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Next, modify the formula (7.12) for the PMSE (taking 𝜇 = 0 without loss of
generality) incorporating a Lagrange multiplier to accommodate the constraint∑
𝛾i = 𝜸T1 = 1. The result is

E
{[

U(t0) − 𝜸TX
]2
}
+ 2𝜆

(
1 −

∑
𝛾i

)
= 𝜎(t0, t0) − 2𝝈T

0 𝜸 + 𝜸
TΩ𝜸 + 2𝜆(1 − 1T𝜸).

(7.25)
Differentiating (7.25) with respect to 𝜸 and setting the derivative to 0 yields

2Ω𝜸 − 2𝝈0 − 2𝜆1 = 0,

which can be solved to give 𝜸 = Ω−1(𝝈0 + 𝜆1). The constraint 𝜸T1 = 1 implies the
Lagrange multiplier 𝜆 is given by

𝜆 =
1 − 1TΩ−1𝝈0

1TΩ−11
.

Inserting this value for 𝜆 in the formula for 𝜸 yields the optimal coefficient vector
(7.21). The corresponding linear combination Û(t0) = 𝜸TX is called the ordinary
kriging predictor. It is easily checked that 1T𝜸 = 1 as required for unbiasedness.
Substituting (7.21) in (7.25) yields the optimal PMSE (7.22). Note that (7.22) can
be expanded as (7.15) (the PMSE with known 𝜇) plus an extra positive term to
allow for the estimation of 𝜇. ◽

Formula (7.21) for 𝜸 is rather cumbersome. Therefore, it is helpful to rewrite it
in a more intuitive form. Start from formula (7.18) for Û(t0), which in the case of
a constant known mean 𝜇 takes the form

Û(t0) = 𝜇 + 𝝈T
0 Ω

−1(X − 𝜇1n). (7.26)

But since 𝜇 is not known in the current setting, it is natural to replace it by an
estimate. The log-likelihood for 𝜇, given the observation X = x, say, takes the form

log L(𝜇) = −1
2
(x − 𝜇1)TΩ−1(x − 𝜇1) + const.

Differentiating L with respect to 𝜇 and setting the derivative to 0 yields
1TΩ−1(x − 𝜇1) = 0, which can be solved to give the maximum likelihood
estimator

𝜇̂ = 1TΩ−1x
1TΩ−11

. (7.27)

This estimator is also known as the generalized least squares (GLS) estimator of 𝜇;
see Eq (5.18). It differs from the ordinary least squares (OLS) estimator because the
covariance matrixΩ of X is taken into account. Substituting 𝜇̂ into (7.26) yields the
predictor

Û(t0) = 𝜇̂ + 𝝈T
0 Ω

−1(X − 𝜇̂1). (7.28)

Somewhat fortuitously, the “plug-in” predictor (7.28) is identical to the optimal
predictor Û(t0) = 𝜸TX , with 𝜸 from (7.21) (Exercise 7.1). Thus, (7.28) provides a
more intuitive representation for the ordinary kriging predictor than (7.21).



�

� �

�

240 7 Kriging

7.5 Universal Kriging

Next, suppose the mean function 𝜇(t) takes the parametric form

𝜇(t) =
p∑

j=1
𝛽j fj(t), (7.29)

where the fj(t), j = 1, . . . , p are known functions of t, but where the coefficients 𝛽j
are unknown and need to be estimated. Generally, the first drift function is f1(t) ≡ 1
to accommodate a constant term.

In many applications, the drift functions represent polynomials in t. For
example, to accommodate polynomials up to a quadratic degree in d = 2
dimensions, we can use p = 6 monomials,

f1(t) = 1, f2(t) = t[1], f3(t) = t[2], f4(t) = t[1]2
, f5(t) = t[1]t[2], f6(t) = t[2]2

.

Ifk denotes the polynomials in d dimensions of degree≤ k, then this vector space
has dimension

p = p(k) =
(

d + k
k

)

(Equation (3.16) and Exercise 3.9).

Theorem 7.5.1 (Universal kriging) Consider the problem of predicting a sig-
nal U(t0) at a new site t0 given observations X1, . . . ,Xn at sites t1, . . . , tn as set out
in Section 7.2. Suppose the mean function is given by (7.29), where the coefficients
𝛽1, . . . , 𝛽p are unknown. The BLUP in this setting is called the “universal kriging
predictor” and is given by Û(t0) = 𝜸TX where

𝜸 = Ω−1
{
𝝈0 + F

(
FTΩ−1F

)−1(f 0 − FTΩ−1𝝈0)
}
. (7.30)

Further, the kriging variance is

𝜎
2
K(t0) = 𝜎(t0, t0) − 𝝈T

0 Ω
−1𝝈0 + (f 0 − FTΩ−1𝝈0)T(FTΩ−1F)−1(f 0 − FTΩ−1𝝈0).

(7.31)

Proof: The drift matrix F and the drift vector f 0 are defined in (7.9). The unbiased-
ness constraint

E{U(t0) − Û(t0)} = 0, for all 𝜷,

can be written in matrix form as c + 𝜷TFT𝜸 = 𝜷Tf 0 for all 𝜷; that is,

c = 0, FT𝜸 = f 0. (7.32)

Minimizing the PMSE with respect to vectors 𝜸 satisfying (7.32), using a vector
Lagrange multiplier this time, yields (7.30). Substituting this result into (7.12)
yields the PMSE (7.31). ◽
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As in the last section, the formula for 𝜸 is rather cumbersome. It can be written
in a more intuitively comprehensible form using the GLS estimator of 𝜷, which
takes the form 𝜷̂ = (FTΩ−1F)−1FTΩ−1X ; see Eq. (5.48). Then

Û(t0) = f T
0 𝜷̂ + 𝝈T

0Ω
−1(X − F𝜷̂) (7.33)

(Exercise 7.1).
The first two terms of (7.31) represent the kriging variance if 𝜷 is known; the

last term is positive and represents an effect due to the estimation of 𝜷.
The kriging covariance at two new test sites s and t can be derived by a similar

argument to give

𝜎K(s, t) = 𝜎(s, t) − 𝝈(s)TΩ−1𝝈(t)

+ (f (s) − FTΩ−1𝝈(s))T(FTΩ−1F)−1(f (t) − FTΩ−1𝝈(t)). (7.34)

7.6 Further Details for the Universal Kriging Predictor

The form of the coefficient vector 𝜸 in (7.30) for the universal kriging predictor
is rather uninformative and nonintuitive. In this section, we give two alternative
representations that will be useful later in the chapter. The first representation
is in terms of “transfer matrices” A and B, which can be found either directly
(Sections 7.6.1–7.6.3) or in terms of a set of linear equations involving a “bordered”
covariance matrix (Section 7.6.4). Transfer matrices were introduced in Mardia
et al. (1991) and Kent and Mardia (1994). The second representation involves an
“augmented” covariance matrix (Section 7.6.5).

7.6.1 Transfer Matrices

Write the universal kriging predictor (7.33) in the form

Û(t0) = 𝜸TX = XT𝜸

= XTAf 0 + XTB𝝈0, (7.35)

where
B = Ω−1 − Ω−1F(FTΩ−1F)−1FTΩ−1

, (7.36)

A = Ω−1F(FTΩ−1F)−1
, (7.37)

so that
𝜸 = Af 0 + B𝝈0. (7.38)

It is convenient to call B(n × n) the transfer covariance matrix and A(n × p) the
transfer drift matrix. Both matrices depend only on the data sites and not on
the new site t0.
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Equation (7.35) demonstrates how the predictor depends on the observation
vector X (namely, by multiplying A and B on the left by XT). It also demonstrates
how the predictor depends on the new data site t0 (namely, by multiplying A
and B on the right by f 0 and 𝝈0, respectively) in terms of f 0, the p-vector of the
drift functions at t0, and 𝝈0, the n-vector of the covariances for the random field
between the new site t0 and the data sites. In particular, the predictor Û(t0) will
be r-times differentiable, r ≥ 0, as a function of t0, if the drift and covariance
functions are r-times differentiable.

7.6.2 Projection Representation of the Transfer Matrices

It is also possible to recast A and B in more intuitive forms using projection matri-
ces and generalized inverses. First, we need to recall some facts from matrix alge-
bra. For any (n × p) matrix G whose columns are linearly independent (so GTG is
nonsingular), let PG = G(GTG)−1GT denote the n × n projection matrix onto the
column space of G. Then PG = PT

G, PGG = G, P2
G = PG, and PGy = 0 if GTy = 0.

See Section A.3.3. The Moore–Penrose generalized inverse of a symmetric matrix
will also be needed (Section A.3.2).

Using this notation B and A can be reexpressed as

B = [(I − PF)Ω(I − PF)]− (7.39)

A = (I − BΩ)F(FTF)−1
. (7.40)

Here, B is given as a Moore–Penrose generalized inverse, which can be interpreted
as the Moore–Penrose generalized inverse of Ω restricted to the orthogonal com-
plement of the column space of F.

To prove (7.39) and (7.40), it is convenient to rotate the coordinate system. Let
Ξ =

[
Ξ1 Ξ2

]
be an orthogonal matrix such that the columns of Ξ1 span the column

space of F. A convenient choice for Ξ1 is Ξ1 = F(FTF)−1∕2 (Section A.3.3). Using
the partitioning of Ξ, define partitioned matrices

Ω∗ = ΞTΩΞ =
[
Ω∗

11 Ω∗
12

Ω∗
21 Ω∗

22

]
, Ω∗−1 =

[
Ω∗11 Ω∗12

Ω∗21 Ω∗22

]
, FT = ΞTF =

[
F∗

1
0

]
.

Note thatΩ∗ is invertible becauseΩ is. Also, F∗
1 is a p × p matrix, which is invertible

because F has full rank. Then Eqs. (7.36) and (7.37) for B∗ = ΞTBΞ and A∗ = ΞTA
simplify to

B∗ = Ω∗−1 − Ω∗−1
[

F∗
1

0

] {
F∗T

1 Ω∗11F∗
1
}−1 [F∗T

1 0
]
Ω∗−1

=
[
Ω∗11 Ω∗12

Ω∗21 Ω∗22

]
−
[
Ω∗11 Ω∗12

Ω∗21 Ω∗21{Ω∗11}−1Ω∗12

]

=
[

0 0
0 (Ω∗

22)
−1

]
, (7.41)
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and

A∗ = Ω∗−1
[

F∗
1

0

] {
F∗T

1 Ω∗11F∗
1
}−1

=
[

I
Ω∗21(Ω∗11)−1

]
(F∗T

1 )−1

=
[

I
−(Ω∗

22)
−1Ω∗

21

]
(F∗T

1 )−1
. (7.42)

using two results about the inverse of a partitioned matrix

(Ω∗
22)

−1 = Ω∗22 − Ω∗21{Ω∗11}−1Ω∗12
, Ω∗21{Ω∗11}−1 = −(Ω∗

22)
−1Ω∗

21 (7.43)

(Section A.3.4).

Since PF∗ =
[

I 0
0 0

]
represents a projection onto the first p coordinate axes of ℝn,

the starred version of (7.39) reduces to

[(I − P∗
F)Ω

∗(I − P∗
F)]

− =
[

0 0
0 Ω∗

22

]−
=

[
0 0
0 Ω∗−1

22

]
,

which is the same as (7.41). Similarly, the starred version of (7.40) reduces to

(I − B∗Ω∗)F∗(F∗TF∗)−1 =
[

I 0
−Ω∗−1

22 Ω∗
21 0

] [
(F∗T

1 )−1

0

]

=
[

I
−Ω∗−1

22 Ω∗
21

]
(F∗T

1 )−1
,

which is the same as (7.42).
The kriging variance (7.31) can also be written directly in terms of A and B. In

particular,

𝜎
2
K(t0) = E

{(
U(t0) − 𝜸TX

)2
}

= 𝜎(t0, t0) − 2𝜸T𝝈0 + 𝜸TΩ𝜸

= 𝜎(t0, t0) − 2f T
0 AT𝝈0 − 2𝝈T

0 B𝝈0 + (Af 0 + B𝝈0)TΩ(Af 0 + B𝝈0)

= 𝜎(t0, t0) − 2f T
0 AT𝝈0 − 𝝈T

0 B𝝈0 + f T
0 ATΩAf 0, (7.44)

where we have used the identities BΩB = B and ATΩB = 0 to derive the last line.
These identities are most easily established using the starred forms (7.41) and
(7.42). Note that if formulas (7.39) and (7.40) are used to compute B and A, then
formula (7.44) for the kriging variance does not involve the evaluation of Ω−1. This
property is important in Section 7.8, where it is shown that (7.44) remains valid for
intrinsic random fields defined in terms of intrinsic covariance functions.
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7.6.3 Second Derivation of the Universal Kriging Predictor

In this section, we give another proof of the optimality of 𝜸, using the representa-
tion (7.38) in terms of transfer matrices, where the modified formulas (7.39) and
(7.40) are used for A and B. Although a second proof is not needed here, it will be
needed for intrinsic random fields.

The strategy of the proof is to show that any value of 𝜸′ different from the optimal
𝜸 leads to a higher value of the objective function.

The first step is to confirm that 𝜸 in (7.38) satisfies the constraint (7.32). Since
FTA = Ip and FTB = 0 (exercise for the reader), we get

FT𝜸 = FTAf 0 + FTB𝝈0 = f 0,

as required.
Next consider a general value of 𝜸′ satisfying the constraint; 𝜸′ can be written as

𝜸′ = 𝜸 + 𝜼,

where 𝜼 is a nonzero n-vector satisfying FT𝜼 = 0. Then the formula for the PMSE
based on 𝜸′ becomes

PMSE(t0; 𝜸′) = 𝜎(t0, t0) − 2𝜸 ′T𝝈0 + 𝜸
′TΩ𝜸′

= 𝜎(t0, t0) − 2𝜸T𝝈0 + 𝜸TΩ𝜸 + 𝜼TΩ𝜼 + 2𝜼T {
−𝝈0 + Ω𝜸

}
,

which can be viewed as the optimal value of the PMSE, plus a quadratic form,
𝜼TΩ𝜼 (which is strictly positive provided 𝜼 ≠ 0), and a cross-product term,
2𝜼T {

−𝝈0 + Ω𝜸
}

. The optimality of (7.30) will be proved if we can show the
cross-product term vanishes. To do this, we first set out some preliminary results.

(a) 𝜼T = 𝜼T(I − PF) (since FT𝜼 = 0 and PF = F(FTF)−1FT , it follows that PF𝜼 = 0).
(b) 𝜼TΩ = 𝜼T(I − PF)Ω (from (a)).
(c) (I − PF)ΩB = I − PF ; this is most easily proved in starred form, where it states

[
0 0
0 I

] [
Ω∗

11 Ω∗
12

Ω∗
21 Ω∗

22

] [
0 0
0 (Ω∗

22)
−1

]
=

[
0 0
0 I

]
.

(d) 𝜼TΩB = 𝜼T(I − PF) (using (b) to get the intermediate form 𝜼(I − PF)ΩB and (c)
to get the final form).

(e) 𝜼T(Ω − ΩBΩ) = 0T (using (b) and (c) get the intermediate forms 𝜼T[(I − PF)
Ω − (I − PF)ΩBΩ] = 𝜼T[(I − PF)Ω − (I − PF)Ω] = 0T).

Hence, the cross-product term becomes

−2𝜼T𝝈0 + 2𝜼TΩ(I − BΩ)F(FTF)−1f 0 + 2𝜼TΩB𝝈0.

The first term becomes −2𝜼T(I − PF)𝝈0 by (a). In the second term 𝜼T(Ω − ΩBΩ) =
0T by (e) and so this term vanishes. The third term simplifies to 2𝜼TΩB𝝈0 =
2𝜼T(I − PF)ΩB𝝈0 = 2𝜼T(I − PF)𝝈0 using (d). Putting the pieces together, we see
that the cross-product term vanishes, as required.
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7.6.4 A Bordered Matrix Equation for the Transfer Matrices

The matrices B and A in (7.36) and (7.37) can also be derived by inverting a certain
(n + p) × (n + p)-dimensional matrix. This approach can be found in the spline
literature, e.g., Wahba (1990, pp. 12–13). Define the bordered covariance matrix

M =
[
Ω F
FT 0

]
(7.45)

by adding rows and columns for the drift matrix F. Then M−1 exists and can be
partitioned as

M−1 =
[

B A
AT C

]
, (7.46)

where
C = −(FTF)−1FT(Ω − ΩBΩ)F(FTF)−1

. (7.47)

A proof of the decomposition (7.46) is given in Exercise 7.2.
One reason for introducing M is that it provides an elegant way of computing

the optimal coefficient vector 𝜸 for universal kriging. Consider the equation

M
[
𝜸

𝝀

]
=

[
𝝈0
f 0

]

for two vectors 𝜸(n × 1) and 𝝀(p × 1), with solution
[
𝜸

𝝀

]
= M−1

[
𝝈0
f 0

]
.

In particular, the first block of rows yields 𝜸 = B𝝈0 + Af 0, which is identical to the
universal kriging coefficient vector 𝜸 in (7.38.)

7.6.5 The Augmented Matrix Representation of the Universal
Kriging Predictor

There is yet another representation of the optimal coefficient vector 𝜸 that is useful
for certain purposes. To develop this representation, we use (n + 1)-dimensional
matrices and vectors instead of n-dimensional quantities.

The site t0 can be included with the other data sites to give an augmented
(n + 1) × (n + 1) covariance matrix

Φ =
[
𝜎(t0, t0) 𝝈T

0
𝝈0 Ω

]
, (7.48)

where the rows and columns of Φ are indexed by i, j = 0, . . . ,n. Note that the
upper-left entry 𝜎(t0, t0) is the variance of the signal U(t0); the remaining diago-
nal elements contain the variances of the observation vector X . Similarly, t0 can be
included in the augmented drift matrix F(0) defined in (7.10).
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The PMSE for a general n-vector of coefficients 𝜸 is given in (7.16), and when
c = 0 it can also be written as a quadratic form in an (n + 1)-vector 𝜹,

PMSE(t0; 𝜸) = 𝜎(t0, t0) − 2𝜸T𝝈0 + 𝜸TΩ𝜸

= 𝜹TΦ𝜹, (7.49)

where

𝜹 =
[

1
−𝜸

]
, (7.50)

with the elements of 𝜹 indexed i = 0, . . . ,n. Further, the constraint (7.32) can be
written as

F(0)T𝜹 = 0. (7.51)

Thus, the prediction problem can be restated as minimizing (7.49) over 𝜹 subject
to 𝛿0 = 1 and to the constraint (7.51). In fact, it is easier to find the solution in this
notation. The solution is given by

𝜹 = d(0)∕d00, where D = [(I − P(0))Φ(I − P(0))]−. (7.52)

Here, D− is the Moore–Penrose generalized inverse of D and

P(0) = F(0)(F(0)TF(0))−1F(0)T (7.53)

is the projection matrix onto the column space of F(0) (Sections A.3.2 and A.3.3).
The notation here indicates that 𝜹 is given by the initial column of D, scaled by its
initial element, so that 𝛿0 = 1. Then −𝜸 is given by the remaining elements of 𝜹.

To show that the optimal 𝜹 can be written in the form (7.52), another trans-
formation is helpful. This time we rotate to an orthogonal basis in Rn+1 where
the first p basis elements lie in the space spanned by the columns of F(0). Let
Ξ(0) =

[
Ξ(0)

1 Ξ(0)
2

]
be an (n + 1) × (n + 1) orthogonal matrix with these properties. A

convenient choice for the (n + 1) × p matrix Ξ(0)
1 is Ξ(0)

1 = F(0)(F(0)TF(0))−1∕2. Note
that Ξ(0)T

1 Ξ(0)
1 = Ip so that Ξ(0)

1 has orthonormal columns. Further Ξ(0)
1 Ξ(0)T

1 =
F(0)(F(0)TF(0))−1F(0)T = P(0) in (7.53). Using an asterisk to denote rotated
matrices, set

Φ∗ = Ξ(0)TΦΞ(0) =
[
Φ∗

11 Φ∗
12

Φ∗
21 Φ∗

22

]
, P(0)∗ = Ξ(0)TP(0)Ξ(0) =

[
I 0
0 0

]
,

F(0)∗ = Ξ(0)TF(0) =
[

F(0)∗
1
0

]
,

where F(0)∗
1 is a p × p nonsingular matrix. Also set

𝜹∗ = Ξ(0)T𝜹 =
[
𝜹∗1
𝜹∗2

]
, e∗ = Ξ(0)Te =

[
e∗1
e∗2

]
,
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where e = [1,0, . . . , 0]T is the unit (n + 1)-vector in the direction of the first
coordinate axis. Then, the constraint 𝛿0 = 1 on 𝜹 is equivalent to the constraint
e∗T𝜹∗ = 1 on 𝜹∗. The PMSE (7.49) can be recast as 𝜹∗TΦ∗𝜹∗ and the constraints
𝛿0 = 1 and (7.51) become e∗T𝜹∗ = 1 and F(0)∗T𝜹∗ = 0. Since F(0)∗T𝜹∗ = F(0)∗T

1 𝜹∗1
and F(0)∗

1 is nonsingular, the second constraint is equivalent to 𝜹∗1 = 0.
Thus, the optimization problem reduces to minimizing

𝜹∗T
2 Φ∗

22𝜹
∗
2

over 𝜹∗2 such that e∗T
2 𝜹

∗
2 = 1. By standard matrix theory (Exercise 7.4), the optimal

choice of 𝜹∗2 is given by
Φ∗−1

22 e∗2∕(e
∗T
2 Φ∗−1

22 e∗2).

Note that Φ∗−1
22 = {[(I − P(0)∗)Φ∗(I − P(0)∗)]−}22. Hence, rotating back to the origi-

nal coordinates yields (7.52).
Finally, a small cautionary note is needed about the representation (7.52) that is

not needed for the other methods of computing 𝜸. The derivation assumes that the
matrix Φ(0) is positive definite, not just that Φ is positive definite. It means that in
practice t0 cannot equal any of the data sites when the nugget variance vanishes,
𝜏

2 = 0 (of course, prediction is not interesting in this case anyway).

7.6.6 Summary

This section has described several methods of determining the kriging predictor,
sometimes directly in terms of the kriging coefficient vector 𝜸, in terms of the
transfer matrices A,B, and in terms of the augmented kriging coefficient vector
𝜹. In addition, some of the derivations have made different assumptions on the
drift functions, though simple and ordinary kriging can be viewed as special cases
of universal kriging. Table 7.2 summarizes the different methods of representing 𝜸.

Table 7.2 Various methods of determining the kriging predictor
Û(t0) = 𝜸T X , where 𝜸 can be defined in terms of transfer matrices
by 𝜸 = Af 0 + B𝝈0 or in terms of 𝜹 by 𝜹 = [1,−𝜸T ]T .

Quantity Method Location

𝜸 Direct simple (7.14)
Direct ordinary (7.21)
Direct universal (7.30)

A,B Direct (7.36) and (7.37)
Projection matrix (7.39) and (7.40)
Bordered matrix (7.45) and (7.46)

𝜹 Augmented matrix (7.52)
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The different representations all have their strengths. The direct representation
for 𝜸 and the transfer matrices A and B is the most straightforward to derive, but
requires that Ω be invertible. However, the projection representation for the trans-
fer matrices makes it clear that there is no need to invert Ω. Instead Ω only needs
to be conditionally positive definite with respect to F, a fact that is important when
the same formula is used for the intrinsic case. The bordered matrix representa-
tion is the simplest to present algebraically. Finally, the augmented representation
brings out the relationship to simple kriging most clearly.

7.7 Stationary Examples

This section contains some artificial examples in one dimension to illustrate dif-
ferent aspects of kriging in elementary situations.

Example 7.1 Stationary model, n = 5, 𝜇 = 0 known, squared exponential
covariance function (7.55), no nugget
Suppose there is a “true” function

U(t) = 2 + sin t, (7.54)

where t is in radians. Thus, U(t) is a shifted sine function. Suppose the function
is unknown but that a limited number of (noiseless) observations are available
at n = 5 sites, t = −4,−2, 0, 1, 4.5. We would like to “predict” or reconstruct U(t)
from these observations. For the purpose of this example, it is assumed that
the unknown true function is a realization from a Gaussian process with mean 0
and the squared exponential covariance function

𝜎(h) = 𝜎
2 exp(−|h|2∕𝜑). (7.55)

The objective is to construct the kriging predictor and to see how it varies, depend-
ing on the choice of the range parameter 𝜑. Figure 7.1 shows the kriging predictor
for three choices of the range parameter, 𝜑 = 0.1, 10, 100, respectively, when there
is no nugget effect. The true function is the shifted sine function in (7.54) and is
shown by the solid curve in each panel.

For a small range parameter, e.g., 𝜙 = 0.1, the covariance model provides little
information about U(t) between the data sites, and the kriging predictor is pulled
toward the assumed mean 0. This behavior is prominent in Panel (a). Panel (b),
with a larger range parameter, provides a smooth interpolator between the data
points that tracks the true function U(t) remarkably closely in this example. In par-
ticular, the presence of the shift term does not have a strong effect on the predictor.
In Panel (c), the range parameter seems to be too large. The increase in the data
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Figure 7.1 Kriging predictor for n = 5 data points assumed to come from a stationary
random field with a squared exponential covariance function (7.55), without a nugget
effect, with mean 0. Panels (a)–(c) show the kriging predictor for three choices of the
range parameter, 𝜑 = 0.1, 10, 100, respectively. Each panel shows the true unknown
shifted sine function (solid), together with the fitted kriging curve (dashed), plus/minus
twice the kriging standard errors (dotted).

between t = −2 and t = 2 leads to a kriging predictor between t = 2 and t = 4.5
that overshoots the true function given by (7.54).

As might be expected, none of the predictors is guaranteed to be very accurate
when predicting beyond the range of the data. All the predictors will be pulled
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Figure 7.2 Kriging predictor for n = 5 data points assumed to come from a stationary
random field with a squared exponential covariance function (7.55), plus a nugget
effect, with mean 0. The size of the relative nugget effect in Panels (a)–(c) is given
by 𝜓 = 𝜏

2∕(𝜎2 + 𝜏2) = 0.01, 0.1, 0.5, respectively. Each panel shows the true unknown
shifted sine function (solid), together with the fitted kriging curve (dashed), plus/minus
twice the kriging standard errors (dotted).

back to the assumed true mean for values of t far enough from the data sites, a
feature most visible in Panel (a).

Figure 7.2 illustrates a kriging predictor when a nugget effect is included. The
three panels of Figure 7.2 use the same range parameter that was used for the
middle panel of Figure 7.1, namely 𝜑 = 10, and include relative nugget effects
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of sizes 𝜓 = 𝜏
2∕(𝜎2 + 𝜏2) = 0.01, 0.1, 0.5, respectively. For the small nugget effect

in Panel (a), the kriging predictor is very similar to the interpolating predictor
in Panel (b) of Figure 7.1, but note the wider standard error bands at the data sites.
As the relative nugget effect increases in Panels (b) and (c), the predictor damps
down peaks and troughs of the sine function, and the whole curve is pulled toward
the assumed mean 0.

In this example, the variance 𝜎2 has been chosen visually to provide a clearly
visible standard error bands, and it has been chosen separately in each panel
in Figures 7.1 and 7.2. The main feature to notice in each panel is how the standard
error bands vary with t. ◽

Next, two examples based on the elevation data and the bauxite data are given
to illustrate two-dimensional kriging in practice.

Example 7.2 In Chapter 5, a stationary model was fitted to the elevation data
using an exponential covariance function with no nugget. From Table 5.2, the esti-
mated marginal variance and range parameter are 𝜎̂2 = exp(8.32) = 1105 and 𝜑̂ =
exp(1.81) = 6.11. Using this model, the data have been interpolated using ordinary
kriging to give a fitted surface. Figure 7.3a gives a contour plot. The minimum
value of the surface lies near the top middle of the plot; the maximum occurs
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Figure 7.3 Panel (a) shows the interpolated kriging surface for the elevation data, as a
contour map. Panel (b) shows a contour map of the corresponding kriging standard errors.
This figure is also included in Figure 1.3.
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Figure 7.4 Panel (a) shows a contour plot for the kriged surface fitted to the bauxite data
assuming a constant mean and an exponential covariance function for the error terms.
Panel (b) shows the same plot assuming a quadratic trend and independent errors. Panels
(c) and (d) show the kriging standard errors for the models in (a) and (b), respectively.
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at a couple of peaks along the bottom of the plot. Since there is no nugget effect,
the surface is predicted exactly with no error at the data sites; the standard error
increases away from the data sites. Figure 7.3b gives a contour plot showing how
the standard errors vary across the region. Some other ways of visualizing the krig-
ing surface were given in Figure 1.3 using a perspective plot and an image plot. ◽

Example 7.3 In Chapter 5, various models were fitted to the bauxite data,
including a stationary exponential model (i.e. a Matérn model of index 𝜈 = 0.5)
with range 𝜑̂ = exp(0.24) = 1.27 (Table 5.1), and a model with quadratic
drift and independent errors, i.e. no spatial autocorrelation (Example 5.8).
Contour maps for the two kriging surfaces and their standard errors are plotted
in Figure 7.4. Both contour plots have a basin in the middle of the region. How-
ever, Panel (a) is much more sensitive to the fluctuations in the data with strong
local peaks at the bottom and left and a smaller local peak at the upper right.
Panel (b) is much more regular, being an exact quadratic surface. In Example 5.8,
it was found that the second model gave a better fit to the data in terms of the
Akaike information criterion (AIC), but it should be remembered that this is only
a small data set (n = 33 sites).

The kriging standard errors for the two models are plotted in Panels (c) and (d),
respectively. In Panel (c), note how the kriging standard error drops to 0 at each
data point since there is no nugget effect. In Panel (d), the kriging standard error is
reasonably constant in the middle of the plot, but increases toward the boundaries
due to the estimation error for the quadratic drift coefficients. ◽

7.8 Intrinsic Random Fields

7.8.1 Formulas for the Kriging Predictor and Kriging Variance

In this section, kriging is extended from ordinary random fields to intrinsic ran-
dom fields. An intrinsic random field of order k is defined in terms of an intrinsic
covariance function 𝜎I(h) with respect to the vector space k of polynomials in t
of degree ≤ k. The space k was introduced in Section 3.4, with dimension p(k)
in (3.16).

Consider values of the random field at sites t0, t1, . . . , tn. Recall that a linear
combination

∑n
i=0 𝛿iX(ti) is an increment if and only if the (n + 1)-dimensional

coefficient vector 𝜹 satisfies
∑n

i=1 𝛿if (ti) = 0 for all functions f ∈ k. For an intrin-
sic random field, only increments of the process are assumed to have a well-defined
distribution.

Thus, assume a signal U(t) follows an intrinsic Gaussian random random field
with an intrinsic mean 𝜇I(t) lying in a finite-dimensional vector space of drift
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functions  and with an intrinsic covariance function 𝜎I(h). Without loss of gen-
erality, assume the drift space  includes the space of polynomials k, since such
functions are killed by increments. The problem is the same as in Section 7.2.
Given observations, x1, . . . , xn which are (possibly noisy) versions of the signal at
sites t1, . . . , tn, the objective is to predict the signal at a new site t0.

It is sometimes helpful to split the drift space  of dimension p, say, into two
parts: the intrinsic drift space k and an extrinsic drift space ext, say, so that

 = k + ext.

Construct the (n + 1) × p drift matrix F(0) as in Section 7.2 and partition it as

F(0) =
[

F(0)
k F(0)

ext

]
,

where F(0)
k has p(k) columns corresponding to functions in k. Of course, if the

extrinsic drift is not present, then there is some simplification; namely  = k,
F(0) = F(0)

k and p = p(k).
If 𝜹 is a coefficient vector, suppose 𝛿0 = 1 and partition 𝜹 = [1,−𝜸T]T as in

Section 7.6.5. Then
∑n

i=0 𝛿iX(ti) = X(t0) −
∑n

i=1 𝛾iX(ti) can be regarded as a residual
between the true value of X(t0) and a linear predictor in terms of X(t1), . . . ,X(tn).
The algebraic notation needed to minimize the PMSE in this intrinsic setting
is exactly the same as that developed for ordinary random fields, especially as
developed in Section 7.6.5. More specifically, we wish to minimize 𝜹TΦ𝜹 over
coefficient vectors 𝜹 such that 𝛿0 = 1 and

F(0)T𝜹 = 0. (7.56)

The first p(k) components of the constraint correspond to the condition on 𝜹 for it
to define a valid increment; the remaining components are an unbiasedness con-
straint for the extrinsic drift.

Hence, the predictor for an intrinsic random field takes exactly the same form
as given by various formulas in Section 7.6, especially the representation (7.52)
in terms of the augmented covariance and drift matrices. Another valid repre-
sentation is (7.35) in terms of transfer matrices, with the transfer matrices either
specified directly by (7.39) and (7.40) or found by inverting the bordered set of lin-
ear equations (7.46). However, the direct representation for the transfer matrices
(7.36) and (7.37) is not valid, nor is the direct representation of the predictor in
(7.33). The reason is that the n × n covariance matrix Ω need not be nonsingular
in the intrinsic setting. More details of this issue are given in Section 7.8.2.

7.8.2 Conditionally Positive Definite Matrices

In this section, we look in more detail at conditional positive definiteness; see
also Section 3.4. For this discussion, it is notationally simplest to assume there
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is no extrinsic drift, so that F(0) = F(0)
k ; then the notation in Section 7.2 can be used

without any changes.
Conditional positive definiteness means that for any (n + 1)-dimensional coef-

ficient vector 𝜹 satisfying F(0)T𝜹 = 0, 𝜹 ≠ 0, the quadratic form

𝜹TΦ𝜹 > 0

must be positive.
Recall that one way to view a conditionally positive definite covariance function

𝜎I(h) is as an equivalence class of functions, not a single function. In terms of the
matrix Φ, this means that the only part of Φ relevant to increments is the part that
is orthogonal to F(0). That is, if Φ is replaced by

Φ′ = Φ + F(0)V (0)T + V (0)F(0)T =
[
𝜎

2 + 2f T
0 𝒗0 𝝈T

0 + f T
0 V T

𝝈0 + Vf 0 Ω + FV T + VFT

]

for any (n + 1) × p matrix of coefficients V (0), where

V (0) =
[
𝒗T

0
V

]
,

has been partitioned into its initial row 𝒗T
0 and the remaining rows V , then the

formula for the kriging predictor and the kriging variance remain unchanged. To
understand why this claim is true, we consider two representations of the krig-
ing predictor, one in terms of transfer matrices from (7.39) and (7.40), and one
in terms of the augmented covariance matrix from Section 7.6.5. In each case we
demonstrate invariance.

First consider the transfer matrices. The kriging coefficient vector is given in
(7.38) by 𝜸 = Af 0 + B𝝈0. Under the change by V , B remains unchanged since the
new version of B is

B′ = [(I − PF)(Ω + FV T + VFT)(I − PF)]− = [(I − PF)Ω(I − PF)]− = B.

On the other hand, A changes to

A′ = [I − B(Ω + FV T + VFT)]F(FTF)−1 = [I − B(Ω + VFT)]F(FTF)−1 = A − BV ,

and 𝝈0 changes to
𝝈′

0 = 𝝈0 + Vf 0.

Thus, the kriging vector (7.38) is unchanged,

𝜸′ = A′f 0 + B𝝈′
0 = Af 0 − BVf 0 + B𝝈0 + BVf 0 = 𝜸.

In terms of the starred matrices in Section 7.6.2, the property of conditional pos-
itive definiteness means that Ω∗

22 is positive definite, but no claims are made about
the remaining submatrices, Ω∗

11, Ω
∗
12, Ω

∗
21, other than that Ω∗ should be symmet-

ric. In particular, Ω∗
11 need not be positive definite and might even be singular.
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A second justification of invariance can be given using the representation (7.52)
based on the augmented covariance matrix. The formula for (I − P(0))Φ(I − P(0)) is
invariant under modification by V (0); hence (7.52) is unchanged.

7.9 Intrinsic Examples

Example 7.4 Linear semivariogram, small n
Using the notation from Eq. (3.50), consider the self-similar IRF1(1,0) random field
{U(t)} in d = 1 dimension with an intrinsic covariance function

𝜎I(h) = −𝜎2|h|
and with an implicit constant drift term. Assume there is no nugget effect and let
the data be denoted x1, . . . , xn at sites t1, . . . , tn.

(a) n = 1. In this case, the predictor takes a simple constant form û(t0) = x1.
(b) n ≥ 2. Here the kriging predictor reduces to a piecewise linear interpolator.

That is, for each 1 ≤ i ≤ n − 1, û(t) is linear between ti and ti+1 with û(ti) = xi
and û(ti+1) = xi+1. Further, û(t) is constant below t1 and is constant above tn.
A proof is given in Exercise 7.6.

It is also possible to evaluate the kriging variance explicitly. It is a quadratic func-
tion of t between each pair of data points and is linear for t ≤ t1 and for t ≥ tn.

As a particular case, consider an artificial data set with n = 3 and observations
x1 = 1, x2 = 4, x3 = 3 at sites t1 = 1, t2 = 2, t3 = 3. Each panel of Figure 7.5
shows the kriging predictor (solid curve) and error bands for the kriging standard
errors (dashed curves). In Panel (a), the model only includes the constant intrinsic
drift term. Note that the predictor is constant outside the range of the data (with
different values to the left and to the right).

In Panel (b), the model also includes a linear extrinsic drift term. The predictor
is still piecewise linear between the data points, but is now linear outside the range
of the data (with the same slope but with different intercepts at each end). ◽

Example 7.5 In Example 5.9, various self-similar intrinsic models with linear
drift were fitted to the gravimetric data. The best-fitting model without a nugget
effect had a self-similarity index 𝛼 = 0.59. The corresponding kriging surface
and standard errors are plotted in Figure 7.6. A linear regression fitted to the data
would generate a kriging surface with equally spaced contour lines. It can be
seen from Panel (a) that the fitted surface is nearly linear except in the upper-left
corner. The standard errors are shown in Panel (b). As expected, the standard
errors drop to 0 at the data points. In addition, the standard error increases
for sites near the boundary of the plotting region. ◽
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Figure 7.5 Kriging predictor and kriging standard errors for n = 3 data points assumed
to come from an intrinsic random field, 𝜎I(h) = − 1

2
𝜎

2|h|, no nugget effect. The intrinsic
drift is constant. Panel (a): no extrinsic drift; Panel (b): linear extrinsic drift. Each panel
shows the fitted kriging curve (solid), plus/minus twice the kriging standard errors
(dashed).
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Figure 7.6 Panel (a) shows the interpolated kriging surface for the gravimetric data, as a
contour map. Panel (b) shows a contour map of the corresponding kriging standard errors.
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7.10 Square Example

The next example is motivated by an application to deformations in Section 7.16.
Consider n = 4 sites in the plane ℝ2 lying on a square with coordinates

⎡
⎢
⎢
⎢
⎢⎣

tT
1

tT
2

tT
3

tT
4

⎤
⎥
⎥
⎥
⎥⎦

=

⎡
⎢
⎢
⎢
⎢⎣

0 1
−1 0

0 −1
1 0

⎤
⎥
⎥
⎥
⎥⎦

,

and with associated data values x = [x1 x2 x3 x4]T .
Consider a p = 3-dimensional drift function

f (t) = [1∕2, t[1]∕
√

2, t[2]∕
√

2]T
.

The drift matrix F at the four sites is

F =

⎡
⎢
⎢
⎢
⎢⎣

1∕2 0 1∕
√

2
1∕2 −1∕

√
2 0

1∕2 0 −1∕
√

2
1∕2 1∕

√
2 0

⎤
⎥
⎥
⎥
⎥⎦

.

The scalings in the drift functions have been chosen so that the columns of F are
unit vectors. Further, it can be seen that the columns of F are orthogonal to one
another so that FTF = I3.

Next let 𝜎(h) denote a stationary covariance function. The covariance vector of
the process between the data sites and a new site t0 and the covariance matrix for
the four data sites can be written as

𝝈0 =

⎡
⎢
⎢
⎢
⎢⎣

𝜎(t0 − t1)
𝜎(t0 − t2)
𝜎(t0 − t3)
𝜎(t0 − t4)

⎤
⎥
⎥
⎥
⎥⎦

, Ω = Σ =

⎡
⎢
⎢
⎢
⎢⎣

c a b a
a c a b
b a c a
a b a c

⎤
⎥
⎥
⎥
⎥⎦

,

where
a = 𝜎(

√
2), b = 𝜎(2), c = 𝜎(0).

Note that Ω is a circulant matrix and that three of its standardized eigenvectors,
𝝃(1), 𝝃(2), 𝝃(3), say, are given by the columns of F with eigenvalues

𝜆1 = c + 2a + b, 𝜆2 = 𝜆3 = c − b.

It is easily checked that the remaining standardized eigenvector is given by

𝝃(4) =
[
1 −1 1 −1

]T∕2

with eigenvalue
𝜆4 = c − 2a + b.
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The fact that the columns of F are eigenvectors of Ω simplifies the calculation
of the transfer matrices B and A from (7.39) and (7.40)

B = 𝜆
−1
4 𝝃(4)𝝃

T
(4), A = F. (7.57)

From (7.35), the kriging predictor at a new site t0 takes the form

û(t0) = xTAf 0 + xTB𝝈0

= x +
(x4 − x2)

2
t0[1] +

(x1 − x3)
2

t0[2]

+{4(c + b − 2a)}−1

( 4∑
i=1

(−1)ixi

)( 4∑
j=1

(−1)j
𝜎(t0 − tj)

)
, (7.58)

where x = (x1 + x2 + x3 + x4)∕4. From (7.44), the kriging variance reduces to

𝜎
2
K(t0) = c − 2f T

0 AT𝝈0 − 𝝈T
0 B𝝈0 + f T

0 ATΩAf 0

= c − 2
3∑

j=1
f0j(𝝃

T
(j)𝝈0) −

1
𝜆4

(𝝃T
(4)𝝈0)2 +

3∑
j=1
𝜆j f 2

0j. (7.59)

In particular, if t0 = 0 lies at the center of the square, then

û(t0) = x, 𝜎
2
K(t0) =

5
4
𝜎(0) − 2𝜎(1) + 1

2
𝜎(
√

2) + 1
4
𝜎(2). (7.60)

Equation (7.60) remains valid if the stationary covariance function is replaced
by an intrinsic covariance function of order 0 or 1. In particular, note that the pre-
dictor and kriging variance are unchanged if 𝜎(h) is replaced by 𝜎(h) + 𝛼 + 𝛽h2 for
arbitrary constants 𝛼 and 𝛽.

7.11 Kriging with Derivative Information

In some examples, the information about a process consists of not only values of
the process at specific locations but also values of various derivatives of the process
(e.g. Mardia et al., 1996). We work in the context of a covariance function 𝜎(s, t),
possibly intrinsic, plus a drift space  , which includes the intrinsic drift in the
intrinsic case.

These various types of information can be unified through the concept of a linear
functional L, say, of the process {U(t)}. Examples of linear functionals include

U(L) = U(t0), or U(L) = 𝜕U(t0)∕𝜕t[j]

for the value of the process itself, or the value of a partial derivative of the process
(for some j ∈ {1, . . . , d}), at a specific site t0.

The machinery of kriging can be easily extended to linear functionals, both in
terms of the data provided and in terms of the prediction made. The main technical
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constraint is that the linear functionals must be “continuous.” A unified notation
for linear functionals involving derivative constraints is

U(L0) =
𝜕
|𝜅|U(t0)
𝜕t𝜅0

=
𝜕
|𝜅|U(t0)

𝜕t0[1]𝜅[1] · · · 𝜕t0[d]𝜅[d]
,

where 𝜅 = (𝜅[1], . . . , 𝜅[d]), is a multi-index with nonnegative integer components
𝜅[j] ≥ 0, j = 1, . . . , d and with size |𝜅| = 𝜅[1] + · · · + 𝜅[d]. The choice 𝜅 = 0 cor-
responds to a value of the process and 𝜅 ≠ 0 corresponds to a particular partial
derivative of the process.

Then U(L0) exists as a bounded linear functional of the process if

(a) 𝜕|𝜅|g(t)∕𝜕t𝜅 exists and is a continuous function of t for all g ∈  .
(b) 𝜕2|𝜅|

𝜎(s, t)∕𝜕s𝜅𝜕t𝜅 exists and is a continuous function of s and t.

That is, the covariance function needs to be twice as differentiable as the the order
of the derivative constraint.

We are now ready to describe the kriging problem in this context. Suppose
the observations are given by values of the U(⋅) process for n linear functionals,
U(Li) = u(Li), say, where for simplicity it is assumed there is no noise so the data
are xi = u(Li), i = 1, . . . ,n. It is desired to predict the process at a new linear
functional U(L0) by a linear predictor

Û(L0) =
n∑

i=1
𝛾iXi

in such a way as to minimize the prediction error E[{U(L0) − Û(L0)}2] (treating
the predictor as random) under the restriction that L0 −

∑
𝛾iLi is an increment

with respect to  .
It turns out that the algebra of previous sections proceeds without change pro-

vided we interpret

Ω = Σ = (𝜎ij), 𝜎ij = 𝜎(Li,Lj), i, j = 1, . . . ,n,

𝝈0 = 𝜎0,i, 𝜎0,i = 𝜎(L0,Li), i = 1, . . . ,n,

F = (fij), fij = fj(Li), i = 1, . . . ,n, j = 1, . . . , p.

Plugging these values into (7.39) and (7.40) yields the kriging coefficients 𝜸 in
(7.35).

It is also possible to introduce a nugget effect by setting Ω = Σ + D, where
D is diagonal, perhaps with different values for different sorts of linear
functionals.

To illustrate the calculations in a bit more detail, consider a one-dimensional
example with data values u(ti) = xi, i = 1, . . . ,n, at sites t1, . . . , tn and
first-derivative constraints u′(ti) = yi at the same sites, where a prime “′”
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denote a derivative in t. Let 𝜎(h) be the covariance function, an even function of
h ∈ ℝ. Then the 2n × 2n covariance matrix Ω can be split into n × n blocks

Ω =
[
Ω(1) Ω(2)

Ω(3) Ω(4)

]
,

with

𝜔
(1)
ij = 𝜎(ti − tj), 𝜔

(2)
ij = −𝜎′(ti − tj)

𝜔
(3)
ij = 𝜎

′(ti − tj), 𝜔
(4)
ij = −𝜎′′(ti − tj)

for i, j = 1, . . . ,n. Similarly, if f1(t), . . . , fp(t) denote a basis for the drift functions,
then the 2n × p drift matrix can be partitioned as

F=
[

F(1)

F(2)

]
,

with elements
f (1)ij = fj(ti), f (2)ij = f ′j (ti).

When predicting the process itself at a new site t0, the vector 𝝈0 has entries
𝜎(t0 − ti), i = 1, . . . ,n and entries −𝜎′(t0 − ti−n), i = n + 1, . . . , 2n and the vector
f 0 has entries fj(t0), j = 1, . . . , p. When predicting the first derivative of the pro-
cess at a new site t0, the vector 𝝈0 has entries 𝜎′(t0 − ti), i = 1, . . . ,n and entries
−𝜎′′(t0 − ti−n), i = n + 1, . . . , 2n and the vector f 0 has entries f ′j (t0), j = 1, . . . , p.

Example 7.6 Consider the same toy data set that was used earlier in
Example 7.4, with data values x = 1, 4, 3 at sites t = 1, 2, 3. Consider fitting
an intrinsic covariance function 𝜎I(h) = |h|3. Since this process has intrinsic order
k = 1, there is also an implicit linear drift, with drift functions f1(t) = 1, f2(t) = t.
The kriging predictor for this process is identical to the interpolating cubic spline;
see Section 7.14.

The kriging predictor based on data constraints alone is plotted in Figure 7.7a
as a function of t = t0. Note that the fitted response is piecewise cubic and is twice
differentiable at the knots t = 1, 2, 3.

Since this covariance function is twice differentiable at h = 0, it is possible to
include first-order derivative constraints. The covariance function has derivatives
𝜎
′(h) = 3 sign(h)|h|2 and 𝜎′′(h) = 6|h|.
Suppose the first derivative of the process has values (y1, y2, y3) = (−1, 0, 2) at

the sites t = 1, 2, 3. The kriging predictor is plotted in Figure 7.7b. Note how the
kriging predictor has been twisted at the knots to match the specified first deriva-
tive values.

Linear functionals can also be used to describe integration as well as differen-
tiation. The prediction of the integral of the random field over a bounded region
is known as block kriging. Some basics on block integrals and the related idea of
dispersion variance are investigated in Section 3.12. ◽
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Figure 7.7 Kriging predictors for Example 7.6. For Panel (a), the kriging predictor is
based on value constraints at sites 1,2,3. For Panel (b), the kriging predictor is
additionally based on derivative constraints at the same sites.

7.12 Bayesian Kriging

7.12.1 Overview

Kriging can also be approached from a Bayesian perspective, starting with Kitandis
(1986). See also Le and Zidek (1992), Handcock and Stein (1993), and Schaben-
berger and Gotway (2005, p. 391). It is helpful to partition the observations and
parameters into a hierarchy of different “levels” following Gelfand and Ghosh
(2013, p. 41); see also Section 8.4.

● Level 1. The observations Xi = xi at sites ti, i = 1, . . . ,n.
● Level 2. The unknown signal U(t) representing a functional parameter following

a Gaussian process, whose mean depends on a parameter of regression or drift
parameters 𝜷 through (7.8).

● Level 3a. The drift parameters 𝜷.
● Level 3b. The covariance parameters, typically a scale parameter 𝜎2 and a range

parameter 𝜑 for the covariance function, and possibly a nugget variance 𝜏2.
Let 𝜽 be a vector containing the parameters 𝜎2, 𝜑, and 𝜏2. For simplicity of pre-
sentation, suppose 𝜏2

> 0.
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The Bayesian model specifies the joint distribution for all the random quanti-
ties as

● hyper-priors for 𝜽 and 𝜷;
● a conditional GP prior for U(⋅) given 𝜽 and 𝜷;
● a conditional distribution for X given U(⋅),𝜽,𝜷

Xi | {U(⋅),𝜷,𝜽} ∼ N(U(ti), 𝜏2).

The signal U(⋅) follows a GP whose mean depends on 𝜷 and whose covariance
function depends on 𝜽.

The purpose of kriging is to predict the signal given the observations, and the
form of the kriging predictor depends on what is assumed about higher level
parameters. It is helpful to highlight three possible scenarios.

(a) Simple Bayesian kriging. If 𝜷 and 𝜽 are known, then the Gaussian random field
model for {U(t)} can be viewed as a prior distribution. Given the data x, the
posterior distribution for {U(t)} is another Gaussian random field. Its mean
and covariance function are identical to the those obtained from simple krig-
ing in Section 7.3. See Section 7.12.2.

(b) Empirical Bayesian kriging. If 𝜷 and 𝜽 are not known, then they can be
estimated from x e.g. by maximum likelihood, as in Chapter 5. Once they
are estimated, their values can be plugged into the method of the previous
paragraph. This procedure can be viewed as an example of empirical Bayes
inference. Watkins and Mardia (1992) showed that this approach works well
under certain asymptotic assumptions.

In a simpler setting where 𝜽 is known, let 𝜷̂ denote the maximum likeli-
hood estimator (MLE) of 𝜷. Then 𝜷̂ has an explicit form as a GLS estima-
tor. The resulting predictor, with 𝜽 replaced by 𝜽̂, is identical to the universal
kriging predictor of Section 7.5. However, the formulas for the kriging vari-
ance will be different. The empirical Bayes predictor uses the value in (7.15),
which is smaller than the correct value (7.31) used in the universal kriging
predictor.

(c) Bayesian kriging with drift. Suppose 𝜽 is known (or estimated) but that 𝜷 has a
prior multivariate Gaussian distribution. Averaging over the prior distribution
of 𝜷 gives a marginalized GP prior for the signal U(⋅). Then as in simple
Bayesian kriging, the posterior distribution for U(⋅) is another Gaussian
random field, and the posterior mean function and covariance function for
{U(t)} can be computed explicitly. The resulting predictor is different from
the universal kriging predictor (unless the prior for 𝜷 is improper). Details
are given in Section 7.12.3.

(d) Full Bayesian kriging. Now assume a prior is also introduced for 𝜽 as well.
In general, simulation-based inference such as Markov chain Monte Carlo
(MCMC) is needed to carry out the inference in this case. For some further
discussion, see Section 8.4.



�

� �

�

264 7 Kriging

7.12.2 Details for Simple Bayesian Kriging

Here is a summary of simple kriging from a Bayesian perspective. Suppose the
signal {U(t), t ∈ ℝd} follows a GP prior with known a mean function 𝜇(t) and a
known covariance function 𝜎(s, t). Noisy observations take the form

Xi = U(ti) + 𝜀i, 𝜀i ∼ N(0, 𝜏2),

at specified sites t1, . . . , tn, where the error terms 𝜀i are independent of one another
and the signal.

Suppose data x1, . . . , xn are observed. Then the conditional distribution of the
signal given that the data is again a Gaussian process. The posterior mean function
is given by the kriging predictor

𝜇post(t) = û(t) = 𝜇(t) + 𝝈(t)TΩ−1(x − 𝝁), (7.61)

where

x =
⎡
⎢
⎢⎣

x1
⋮
xn

⎤
⎥
⎥⎦
, 𝝁 =

⎡
⎢
⎢⎣

𝜇(t1)
⋮

𝜇(tn)

⎤
⎥
⎥⎦
, 𝝈(t) =

⎡
⎢
⎢⎣

𝜎(t − t1)
⋮

𝜎(t − tn)

⎤
⎥
⎥⎦

and
Ω = Σ + 𝜏2I, Σ = (𝜎ij), 𝜎ij = 𝜎(ti − tj).

The posterior covariance function is given by

𝜎post(s, t) = 𝜎(s, t) − 𝝈(s)TΩ−1𝝈(t). (7.62)

The proof is a simple consequence of a conditioning argument for a multivariate
normal distribution (Eqs. (A.17) and (A.18)) for [U(s), U(t), X1, . . . ,Xn]T with the
mean [𝜇(s), 𝜇(t), 𝜇(t1), . . . , 𝜇(tn)]T and the covariance matrix

⎡
⎢
⎢⎣

𝜎(s, s) 𝜎(s, t) 𝝈(s)T

𝜎(t, s) 𝜎(t, t) 𝝈(t)T

𝝈(s) 𝝈(s) Ω

⎤
⎥
⎥⎦
.

Note that the kriging variance in (7.15) is the same as the posterior variance

𝜎
2
K(t) = 𝜎post(t, t).

7.12.3 Details for Bayesian Kriging with Drift

As in Section 7.2 suppose that, given 𝜷, the signal U(t) follows a Gaussian process
with a mean function and covariance function

E{U(t) | 𝜷} = 𝜷Tf (t), cov{U(s),U(t) | 𝜷} = 𝜎(s, t), (7.63)

in terms of a p-vector of known drift functions and a known covariance function.
In earlier sections, 𝜷 was viewed as an unknown coefficient vector. But now sup-
pose 𝜷 is also treated as random and is given a prior normal distribution

𝜷 ∼ Np(𝝂0,Δ), (7.64)

where 𝝂0 is a known p-vector and Δ is a known positive definite matrix.
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Averaging over 𝜷 gives a marginal distribution of U(⋅) as a Gaussian process
with a marginal mean function 𝜇M(t) and marginal covariance function 𝜎M(s, t),
say, given by

𝜇M(t) = f (t)T𝝂0, 𝜎M(s, t) = 𝜎(s, t) + f (s)TΔf (t). (7.65)

Note that even if the original covariance function 𝜎(s, t) is stationary, so 𝜎(s, t)
depends only on the lag s − t, the marginal covariance function is not stationary.

Consider data Xi = xi at sites ti, i = 1, . . . ,n, and suppose it is desired to esti-
mate the parameters of the process and to predict the latent process U(t0) at a new
site t0. The posterior distribution for U(t0) is easy to work out using conditional
moments for a multivariate normal distribution. The result is identical to the
simple kriging predictor (7.18) in Section 7.3, but working here with the marginal
moments (7.65) of the latent process. It is also straightforward to compute the
posterior distribution of 𝜷.

Given 𝜷, and allowing for a nugget effect in the data measurements, the joint
distribution of U(t0) and X is multivariate normal with the mean and covariance
matrix

E
{[

U(t0)
X

]
| 𝜷

}
=

[
f T

0 𝜷

F𝜷

]
, var

{[
U(t0)

X

]
| 𝜷

}
=

[
𝜎(t0, t0) 𝝈T

0
𝝈0 Ω

]
, (7.66)

using the same notation as in Section 7.5. Averaging over the prior distribution of
𝜷 yields the marginal mean and variance of U(t0), X , and 𝜷

E
⎧
⎪
⎨
⎪⎩

⎡
⎢
⎢⎣

U(t0)
X
𝜷

⎤
⎥
⎥⎦

⎫
⎪
⎬
⎪⎭
=

⎡
⎢
⎢⎣

f T
0 𝝂0

F𝝂0
𝝂0

⎤
⎥
⎥⎦

(7.67)

var
⎧
⎪
⎨
⎪⎩

⎡
⎢
⎢⎣

U(t0)
X
𝜷

⎤
⎥
⎥⎦

⎫
⎪
⎬
⎪⎭
=

⎡
⎢
⎢⎣

𝜎(t0, t0) + f T
0 Δf 0 𝝈T

0 + f T
0ΔFT f T

0 Δ
𝝈0 + FΔf 0 𝛀 + FΔFT FΔ

Δf 0 ΔFT Δ

⎤
⎥
⎥⎦

=
⎡
⎢
⎢
⎢⎣

Ψ(Δ)
11 Ψ(Δ)

12 Ψ(Δ)
13

Ψ(Δ)
21 Ψ(Δ)

22 Ψ(Δ)
23

Ψ(Δ)
31 Ψ(Δ)

32 Ψ(Δ)
33

⎤
⎥
⎥
⎥⎦
, say.

(7.68)

The posterior distribution of 𝜷 is given by conditioning on X in (7.67) and (7.68).
This distribution is normal with a conditional mean and variance

𝝂0 + Ψ(Δ)
32 {Ψ(Δ)

22 }−1(x − F𝝂0) = 𝝂0 + ΔFT(𝛀 + FΔFT)−1(x − F𝝂0)

and
Ψ(Δ)

33 − Ψ(Δ)
32 {Ψ(Δ)

22 }−1Ψ(Δ)
23 = Δ − ΔFT(𝛀 + FΔFT)−1FΔ.

Similarly, the predictive distribution of U(t0) is given by conditioning on x in
(7.67) and (7.68), yielding a normal distribution with a conditional mean

E(U(t0) | x) = f T
0 𝝂0 + 𝜸T

Δ(x − F𝝂0), (7.69)
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where
𝜸Δ = {Ψ(Δ)

22 }−1Ψ(Δ)
21 . (7.70)

Setting
D = Δ−1 + FTΩ−1F, (7.71)

it can be shown that the formula for 𝜸Δ can be simplified to

𝜸Δ = Ω−1𝝈0 + Ω−1FD−1 (f 0 − FTΩ−1𝝈0
)
. (7.72)

The conditional variance of U(t0) given x can be termed the Bayesian kriging vari-
ance and simplifies to

KB(t0) = var{Û(t0) | x} = Ψ(Δ)
11 − Ψ(Δ)

12 {Ψ(Δ)
22 }−1Ψ(Δ)

21

= 𝜎(t0, t0) − 𝝈T
0Ω

−1𝝈0 + (f 0 − FTΩ−1𝝈0)TD−1(f 0 − FTΩ−1𝝈0). (7.73)

It is interesting to look at what happens when the prior variance matrix Δ gets
large. Write Δ = 𝜆Δ0 where Δ0 is a fixed matrix and 𝜆 > 0 is a scale parameter.
If 𝜆→ ∞ (an improper prior distribution for 𝜷), then Δ−1 tends to the zero
matrix and D → FTΩ−1F. Remembering that FT𝜸 = f 0 in (7.32) we see that the
Bayesian kriging predictor (7.69) converges to the universal kriging predictor
û(t0) = 𝜸Tx with 𝜸 given in (7.30). Similarly, the Bayesian kriging variance (7.73)
converges to the universal kriging variance in (7.31). Further details are explored
in Exercise 7.7. See also Section B.4.

7.13 Kriging and Machine Learning

Bayesian prediction has become a popular tool in machine learning. For more
details, see, e.g., Schölkopf and Smola (2002), Rasmussen and Williams (2006),
and Sambasivan et al. (2020). Although Bayesian prediction in machine learning
is essentially the same as kriging, the emphasis is somewhat different from the
statistical perspective and Table 7.3 gives a comparison of the terminology and
notation used in the two disciplines. The discussion here is based on Kalaitzis and
Lawrence (2011).

Consider the problem of regressing a real-valued variable x on an explanatory
variable t using a response function g(t). Given data (ti, xi), i = 1, . . . ,n, the regres-
sion model takes the form

xi = g(ti) + 𝜀i,

where the 𝜀i are i.i.d. N(0, 𝜏2) random variables. In general, the response func-
tion contains unknown parameters that need to be estimated. To keep the dis-
cussion simple, suppose t is one dimensional. The simplest and most important
regression model is linear regression with a response function g(t) = a0 + a1t. This
response function is sometimes augmented by extra terms to accommodate non-
linearity. An example is quadratic regression with g(t) = a0 + a1t + a2t2. In any
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Table 7.3 Comparison between the terminology and notation of
this book for simple kriging and Rasmussen and Williams (2006,
pp. 13–17) for simple Bayesian kriging. The posterior mean and
covariance function take the same form in both formulations, given
by (7.61) and (7.62).

This book Rasmussen and Williams

Simple kriging Bayesian prediction

Sites Locations
t ∈ ℝd x ∈ ℝD

Signal Underlying function
U(t) f (x)

Prior mean and covariance
function of U(t)

Prior mean and covariance
function of f (x)

𝜇(t), 𝜎(s, t) m(x), k(x, x′)

Data sites Training data locations
t1, . . . , tn x1, . . . , xn

Covariance matrix Covariance matrix
at data sites at training locations
Σ (n × n) K (n × n)

Noisy observations Noisy observations
x1, . . . , xn y1, . . . , yn

Variance matrix of observations Variance matrix of observations
Ω = Σ + 𝜏2I K + 𝜎2I

New site t Test location x∗
Posterior mean of U(t) = Posterior mean of f (x∗) =
kriging predictor predictive mean
𝜇post(t) = û(t) f̂ ∗ = f̂ (x∗)

Posterior covariance function Posterior covariance function
𝜎post(s, t) cov{(f (x∗), f (x′

∗)}

case, the number of unknown parameters is generally small relative to the sample
size n.

Another approach is nonparametric regression, which allows a very flex-
ible response function. Let 𝜑(t) be a specified function of t, assumed to be
square-integrable. Typically, 𝜑(t) is a bounded continuous even function of t,
which has a mode at t = 0 and dies away quickly in the tails. One example
is given in (7.75) below. The function 𝜑(t) is often called a “kernel function”
or (especially in higher dimensions for a function depending only on |t|) a
“radial basis function.” Also, let t∗j , j = 1, . . . ,M, denote a large number M, say,
prespecified sites, sometimes known as “knots.” Then, the response function is
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assumed to take the form of a linear combination of shifted versions of the kernel.
That is,

g(t) =
∑

bj𝜑(t − t∗j ), (7.74)

where the bj are coefficients to be estimated from data. Note the knot sites are
not the same as the data sites. The knots t∗j are often chosen to be equally spaced
on a fine grid so that the response function can describe a wide range of possible
behaviors.

Further, M is allowed to be much larger than n. Thus, there will be far too many
parameters to estimate from the data. One way to regularize the problem is to
impose prior distributions on the parameters. To simplify the discussion here, give
the coefficients bj i.i.d. N(0, 𝜎2

b ) distributions.
This is exactly the framework described Section 7.12.3 for Bayesian kriging with

drift. The response function g(t) can be viewed as a Gaussian process with the
covariance function

𝜎(s, t) = 𝜎
2
b

M∑
j=1
𝜑(s − t∗j )𝜑(t − t∗j ).

So far, this covariance function depends heavily on the choice of knots. To get
a simpler result, consider the limit as the knots become densely spaced on
a wide interval. For example, consider M = 2m2 + 1 sites located at t∗j = j∕m
for j = −m2

, . . . ,m2. That is, the sites have a spacing of 1∕m and span the
interval [−m,m]. Letting m → ∞ and scaling the problem appropriately yields
the following limiting covariance function:

𝜎(s, t) ∝
∫

∞

−∞
𝜑(s − h)𝜑(t − h) dh

=
∫
𝜑(s − h)𝜑̌(h − t) dh

=
∫
𝜑((s − t) − h′)𝜑̌(h′) dh′

,

where 𝜑̌(t) = −𝜑(t) and the last line involves the substitution h′ = h − t.
As a specific example, let

𝜑(t) = 𝜑̌(t) ∝ exp{−t2∕(2𝜅2)} (7.75)

denote the density in t of the N(0, 𝜅2) distribution and remember that the convolu-
tion of two normal densities with variance 𝜅2 is again normal, with variance 2𝜅2.
In other words,

𝜎(s, t) ∝ exp{−(s − t)2∕(4𝜅2)} (7.76)

is equal to the squared exponential covariance function. Example 7.1 used this
covariance function to illustrate the behavior of the fitted nonparametric regres-
sion function when the true response function is a sine wave. This example is often
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used in the machine learning literature to motivate the use of Gaussian process
regression.

Similar constructions to (7.74) were used in Section 2.14.3 to simulate
a Gaussian process with an arbitrary spectral density as a sum of random
cosine waves. The procedure there, for t ∈ ℝd, involved the kernel function
𝜑(t) = cos(tT

𝜔). The use of knots here corresponds there to a phase shift in the
cosine function, and, in addition, the construction there included a random
distribution for 𝜔.

Another difference between statistics and machine learning can be highlighted.
Machine learning tends to emphasize simple kriging rather than more compli-
cated ordinary and universal kriging formulations. Practitioners often either pre-
tend (or preprocess the data to assume) the mean is 0, or they have so much data;
the effect of allowing a mean or higher order drift terms is negligible.

One topic of major interest in machine learning and statistics is computational
efficiency. In terms of computational effort, kriging is a O(n3) operation, which
can be a major bottleneck for large data sets. Various approximations can be
used to improve computation times. These are not studied here but are very
important.

7.14 The Link Between Kriging and Splines

The kriging theory developed for spatial prediction turns out to have very close
links to the theory of smoothing splines in nonparametric regression. The models
used for spatial dependence in the kriging setting can be recast as smoothness
constraints on an underlying regression function. In this section, we set out these
links in detail. For more detail about splines, see, e.g., Wahba (1990), Green and
Silverman (1994), Gu (2002), and Berlinet and Thomas-Agnan (2004).

7.14.1 Nonparametric Regression

This section gives a different perspective on nonparametric regression from the
description in Section 7.13. Consider a function g(t) whose values xi are known at
a finite set of sites ti, i = 1, . . . ,n in ℝd, are either exactly,

xi = g(ti),

or subject to noise
xi = g(ti) + 𝜀i, 𝜀i ∼ N(0, 𝜏2).

The objective in nonparametric regression is to estimate the function g for all
t ∈ ℝd. Of course, without some further constraints, this task is too general to have
a solution.
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In classic regression, g is assumed to have a parametric form, which is linear
in a set of parameters. For example, g may be assumed to be a linear or quadratic
function in t. Then, the classic methods of multiple regression analysis can be used
to fit the parameters.

In nonparametric regression, a constraint is placed on the roughness of g. For
the purposes of this book, we limit our attention to the roughness penalty

Jd
r+1(g) = ∫

|∇{r+1}g(t)|2 dt, (7.77)

where the integral is overℝd. Here,∇{r+1} denotes the (r + 1)-fold iterated gradient
of g, an (r + 1) d-dimensional vector containing all the rth-order partial derivatives
of g, with replication. For example, if d = 2, r = 1, then ∇{2}g = (g11, g12, g21, g22)
with gij(t) denoting 𝜕2g∕𝜕t[i]𝜕t[j]. Combining replications, we can rewrite Jd

r+1 as

Jd
r+1(g) =

∑
|m|=r+1

(
r + 1

m

)
∫

{
𝜕

r+1g(t)
𝜕t[1]m[1] . . . 𝜕t[d]m[d]

}2

dt, (7.78)

where m = (m[1], . . . ,m[d]) is a multi-index and
(

r + 1
m

)
= (r + 1)!

m[1]! · · ·m[d]!

is a multinomial coefficient. As in (3.35) write Dmg = 𝜕
|m|g∕𝜕tm as a concise nota-

tion for the corresponding partial derivative.
One of the reasons this particular penalty is chosen is that it is invariant

under rotations and translations of t. If t is replaced by t(new) = Et + 𝛿, say,
where E(d × d) is orthogonal, and we set g(new)(t(new)) = g(t) = g(ET(t(new) − 𝛿)),
then ∇{r+1}(new)(t(new)) = (⊗E)∇{r+1}g(t), where ⊗E, the (r + 1)-fold tensor
product of E with itself is an (r + 1)d × (r + 1)d orthogonal matrix. Hence,
Jd

r+1(g) = Jd
r+1(g

(new)).
Then the smoothing spline problem can be phrased as follows: find a function g

to minimize
n∑

i=1
|xi − g(ti)|2 + 𝜆Jd

r+1(g) (7.79)

over all functions g, which are smooth enough for the required derivatives to
exist and such that the integral is finite. The value of the smoothing parameter
𝜆 > 0 controls the trade-off between data fidelity and smoothness. As 𝜆 → ∞,
more emphasis is placed on smoothness and the solution converges to the classical
OLS solution based on a multiple regression on polynomials up to degree r. (Such
functions have penalty 0 under Jd

r+1.)
On the other hand, for small 𝜆, the fitted function is closer to data values. The

limiting case 𝜆→ 0 is known as the interpolating spline and can be phrased as a
solution to the following optimization problem: find a function g to

minimize Jd
r+1(g) such that g(ti) = xi, i = 1, . . . ,n. (7.80)
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It turns out that for a solution to exist, the order r of derivatives cannot be too
small, depending on the dimension d. Further, and perhaps more surprisingly, the
solution can be identified with a kriging predictor for a certain intrinsic random
field model. The next two sections describe this identification in detail. It is simpler
to treat the interpolating case first.

7.14.2 Interpolating Splines

Let IRFd(𝛼, r) denote the self-similar intrinsic random field of index 𝛼 > 0 in d
dimensions with a drift space given byr, the polynomials in t up to degree r where
r ≥ 0 is an integer. As shown in Section 3.10, the intrinsic order of this process is
[𝛼], the integer part of 𝛼, so that necessarily r ≥ [𝛼]. If r = [𝛼], then the drift space
consists solely of intrinsic drift; if r > [𝛼], there is also extrinsic drift. This section
uses the self-similar intrinsic covariance functions from Section 3.10 given by

𝜎
𝛼
(h) =

{
c
𝛼,d|h|2𝛼, 𝛼 > 0 not an integer,

c′
𝛼,d|h|2𝛼 log |h|, 𝛼 > 0 an integer,

with corresponding spectral density

f (𝜔) = (2𝜋)−d|𝜔|−d−2𝛼
.

The normalizing constants from (3.46) and (3.47) have the property that
sign(c

𝛼,d) = (−1)[𝛼]−1 for 𝛼 > 0 not an integer, and sign(c′
𝛼,d) = (−1)𝛼−1 for 𝛼 > 0

an integer, Here [𝛼] denotes the integer part of 𝛼.
The following theorem looks at the interpolating problem and identifies the

interpolating spline with a kriging predictor. Consider data (xi, ti), xi ∈ ℝ and
ti ∈ ℝd, i = 1, . . . ,n.

Theorem 7.14.1 Given an integer r satisfying r + 1 > d∕2, set the self-similar
index parameter to 𝛼 = r + 1 − d∕2 > 0. Then the problem of interpolating the
data (xi, ti), i = 1, . . . ,n subject to minimizing the roughness criterion (7.77) has a
solution g∗(t), say, given for any particular site t = t0 by

g∗(t0) = xTAf 0 + xTB𝝈0, (7.81)

where A,B, f 0, and 𝝈0 were determined earlier (see especially Section 7.8 and
Table 7.1) to express the kriging solution for the self-similar IRFd(𝛼, r) model when
there is no nugget effect.

Proof: Dropping the subscript 0 on t, the solution in (7.81) can be written in the
form

g∗(t) =
∑
|m|≤r

amtm +
n∑

j=1
bj𝜎𝛼(t − tj), (7.82)
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where the coefficients, written as vectors, are given by a = ATx and b = Bx, res-
pectively, both of which are linear functions of the data x. Thus, g∗(t) is a
polynomial in t of order r plus a linear combination of n copies of the covariance
function centered at the data sites {tj}. With hindsight of an explicit form for the
solution, it is easy to construct a proof.

Given any function g1(t), which interpolates the data, and for which the
elements of ∇{r+1}g1(t) are square-integrable, write g1(t) = g∗(t) + g2(t), where
g2(t) = g1(t) − g∗(t) satisfies g2(ti) = 0, i = 1, . . . ,n. The roughness penalty can be
expanded as

Jd
r+1(g1) = Jd

r+1(g
∗) + Jd

r+1(g2) + 2
∫

(∇{r+1}g∗)T(∇{r+1}g2) dt. (7.83)

If we can show that the last term vanishes, then we will have shown that
Jd

r+1(g1) ≥ Jd
r+1(g

∗) with equality if and only if g1 = g∗(t). The theorem will then
follow.

To prove that the last term vanishes, use integration by parts r + 1 times to write
it as

2(−1)r+1
∫

{Δ{r+1}g∗(t)}g2(t) dt = 2(2𝜋)d
∫

{ n∑
j=1

bj𝛿0(t − tj)

}
g2(t) dt

= 2
n∑

j=1
bjg2(tj) = 0. (7.84)

Here, we have used the fact that −Δ𝜎
𝛼
(t) = 𝜎

𝛼−1(t), where Δ is the Laplacian oper-
ator, and that 𝜎−d∕2(t) = 𝛿0(t) is the Dirac delta function (Section 3.10).

The integration by parts in (7.84) can also be formulated in the Fourier domain.
Let g̃2(𝜔) denote the Fourier transform of g2(t), and let 𝜓(𝜔) =

∑
bj exp(−i𝜔Ttj),

so that g∗(t) is the Fourier transform of 𝜓(𝜔)f
𝛼
(𝜔). Note that 𝜓(𝜔) = O(|𝜔|r+1) as

𝜔→ 0, and that
∑

|m|=r+1

(
r + 1

m

)
𝜔

2m = |𝜔|2r+2
, (7.85)

where 𝜔m = 𝜔[1]m[1] · · ·𝜔[d]m[d]. Since d + 2𝛼 = 2r + 2, the last integral in (7.83)
can be rewritten by the Parseval relation for L2 functions (Section A.5) as

2
∫

∇{r+1}g∗(t)T∇{r+1}g2(t) dt

= 2
∑

|m|=r+1

(
r + 1

m

)
∫

[𝜓(𝜔)(i𝜔)m|𝜔|−d−2𝛼][(−i𝜔)mg̃2(𝜔)] d𝜔

= 2
∫

1 ⋅ [𝜓(𝜔)g̃2(𝜔)] d𝜔

= 2(2𝜋)d
∑

bjg2(tj). (7.86)
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To gain more insight into (7.86), we note how the singularity of various functions
about 𝜔 = 0 affects the interpretation of their Fourier transforms, as a function
of t, similarly to Section 3.8. Recall the spectral density function f

𝛼
(𝜔) has a sin-

gularity of order 2r + 2, so its Fourier transform is 𝜎
𝛼
(t) plus an arbitrary polyno-

mial of degree 2r + 2. The function 𝜓(𝜔)f
𝛼
(𝜔) has a singularity of order r + 1. Its

Fourier transform is g∗(𝜔) plus an arbitrary polynomial of degree r + 1. The func-
tion (i𝜔)m

𝜓(𝜔)f
𝛼
(𝜔) has no singularity so its Fourier transform is ∇mg∗(𝜔), which

is well defined with no ambiguity.
The function g̃2(𝜔) has a singularity of order r + 1, so its Fourier transform is

(2𝜋)dg2(−t) plus an arbitrary polynomial of degree r + 1. The function (−i𝜔)mg̃2(𝜔)
has no singularity and its Fourier transform (2𝜋)d∇mg2(−t), or equivalently its
inverse Fourier transform ∇mg2(t), is well defined. Similarly, the function
𝜓(𝜔)g̃2(𝜔) has no singularity and its Fourier transform (2𝜋)d ∑ bjg2(tj − t)g̃2(𝜔) is
well defined. The last line of (7.86) is twice this Fourier transform evaluated at
t = 0. ◽

7.14.3 Comments on Interpolating Splines

1. Using the same argument as in (7.84), the value of the roughness penalty for
g∗(t) can be calculated as

Jd
r+1(g

∗) = (2𝜋)d
n∑

j=1
bjg∗(tj)

= (2𝜋)d
n∑

j,k=1
bjbk𝜎(tj − tk) +

∑
|m|≤r

am

n∑
j=1

bjtm
j

= (2𝜋)dbTΣb

= (2𝜋)dxTBx, (7.87)

since b = Bx and BΣB = B. Here, we have used the fact that b defines an
rth-order increment so that

∑
|m|≤r

am

n∑
j=1

bjtm
j = 0. (7.88)

2. The most popular choices of r in dimensions d = 1,2 are as follows. For d = 1,
the choice r = 0 (𝛼 = 1∕2) yields a piecewise linear path, and r = 1 (𝛼 = 3∕2)
yields the usual cubic spline. For d = 2, the choice r = 1 (𝛼 = 1) yields the usual
thin-plate spline; see Section 7.16. Note that as d increases, the smallest feasible
value of r increases.

3. In dimensions d = 1, 2, note that [𝛼] = r so that the order r of the polynomial
drift is the minimum order compatible with the order [𝛼] of the intrinsic
random field. However, in dimensions d ≥ 3, [𝛼] < r, so that an extra
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polynomial drift term needs to be included in the specification of the intrinsic
random field in order for the kriging and thin-plate spline approaches to
match. Thus, kriging offers, in principle, a more flexible modeling strategy
than splines by allowing the order of the polynomial drift to vary (both higher
in any dimension and lower in dimensions d ≥ 3).

4. Note how kriging and thin-plate splines arrive at (7.81) from very different
directions. In kriging, (7.81) is viewed as a linear combination of x to be opti-
mized, with the site t0 held fixed. In contrast, in splines, (7.81) is viewed as a
function of t0 to be optimized, with the data x held fixed.

5. In Section 7.16, we will consider a pair of thin-plate splines to model a defor-
mation of the plane.

7.14.4 Smoothing Splines

To solve the smoothing spline problem, first note that if the values of g(ti) are fixed,
g(ti) = zi say, i = 1, . . . ,n, then the optimal choice of g is the interpolating spline
passing through {zi}. Thus, setting z = [z1, . . . , zn]T and 𝜅 = (2𝜋)d

𝜆, the smooth-
ing problem can be rephrased as

min
g

L(g, 𝜆) = min
z∈ℝn

min
g∶g(ti)=zi

L(g, 𝜆)

= min
z

|x − z|2 + 𝜅zTBz. (7.89)

Minimizing (7.89) with respect to z is straightforward and yields z = (I + 𝜅B)−1x.
Hence, the overall optimal choice of g is given by

g(t0) = zTAf 0 + zTB𝝈0

= xT(I + 𝜅B)−1Af 0 + xT(I + 𝜅B)−1B𝝈0. (7.90)

After a bit of algebra, this formula can be rewritten as

g(t0) = xTA
𝜅

f 0 + xTB
𝜅
𝝈0, (7.91)

where A and B are the transfer matrices when there is no nugget effect and A
𝜅

and
B
𝜅

are the transfer matrices when there is a nugget effect of size 𝜏2 = 𝜅.

7.15 Reproducing Kernel Hilbert Spaces

The theory of RKHSs is based on the following idea. Let E be an index set; typically
E = ℝd. Every positive definite covariance function on E can be identified with
a certain Hilbert space of functions on E. Further, the problem of kriging for a
Gaussian random field can be identified with a problem of optimization
on this function space. The details are beyond the scope of this book.
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See, e.g., Wahba (1990), Berlinet and Thomas-Agnan (2004), and Schölkopf
and Smola (2002) for more information.

There is a simple setting where the idea of an RKHS is easy to understand. If E
is finite of size n, then a covariance function is equivalent to an n × n covariance
matrix Σ, say. A “function” on E is just an n-vector f , say. In this case, the Hilbert
space squared norm is given by f TΣ−1f .

The theory of RKHSs is usually developed for fully specified covariance func-
tions. However, a closely related theory can also be developed for intrinsic covari-
ance functions, where an intrinsic covariance function can be identified with a
semi-norm on a semi-RKHS.

The classic use of RKHSs is in spline theory, where the problem of finding a
spline can be identified with an optimization problem in an RKHS. However, since
the penalty (7.77) has a nonzero nullspace, it only defines a seminorm in function
space and it is necessary to impose some arbitrary boundary conditions to get a
norm. A more natural approach is to formulate the problem of finding a spline as
an optimization problem in a semi-RKHS rather than an RKHS (e.g. Mosamam
and Kent, 2010).

7.16 Deformations

A deformation is a mapping from a region S to a region T in ℝd, where typically
d = 2 or 3. The main use of deformations in shape analysis is to measure shape
change, whereas in image analysis the aim is to bring a set of objects to a common
registration system so that they can be compared (or averaged) pixel by pixel, in
order to look for fine-scale differences.

Suppose that the source object S has landmarks

ti = (ti[1], . . . , ti[d]), i = 1, . . . ,n,

and that the target shape T has corresponding landmarks

xi = (xi[1], . . . , xi[d]), i = 1, . . . ,n.

The aim is to fit a deformation, that is, to find a smooth transformation
x = 𝜑(t) =

[
𝜑[1](t) . . . 𝜑[d](t))

]T ∶ ℝd → ℝd that interpolates the data

xi = 𝜑(ti), i = 1, . . . ,n. (7.92)

Thus, the deformation takes the source landmarks in S to the target landmarks
in T. Let x(t) = (x[1](t), . . . , x[d](t)) represent a typical site in the target space and
denote the n × 1 data vectors for each component 𝓁 = 1, . . . , d by x[𝓁]. Following
our convention, vectors with d components have not been written in boldface.
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One solution is to fit an interpolating random field model to each component
𝜑[𝓁](t). In d = 2 dimensions, a common choice is a self-similar IRF2(𝛼, 1) model
with 𝛼 = 1 (Section 3.10). This model is intrinsic of order 1 with an intrinsic covari-
ance function

𝜎I(h) = |h|2 log |h|
and linear drift (Bookstein, 1989). This solution is also known as an interpolating
thin-plate spline, motivated by the penalty (7.77) with d = 2, r = 1. The two
interpretations can be identified with each other by Theorem 7.1. The self-similar
assumption is made because it is thought that the variability in biological
deformations can exhibit self-similar behavior over a certain range of scales
(e.g. Mardia, Bookstein, Kent and Meyer, 2006b; Mardia, Angulo and Goitía,
2006a).

The presence of linear drift ensures that if the target landmarks can be written as
an affine transformation of the source landmarks (i.e. x = A t + b where A(d × d)
is nonsingular and b is a d-vector), then the roughness penalty (7.77) will equal 0
for each component 𝓁 = 1, 2. Thus, the roughness penalty measures the extent to
which the deformation is nonaffine. In practice, deformations will often involve
small departures from an affine map, and in this setting, the methodology is most
valuable.

It has only been possible to give a very brief introduction to the theory of defor-
mations here. For applications of the theory here to problems in shape analysis,
see, e.g., the books by Bookstein (1992), Dryden and Mardia (2016), and for a more
general view of deformations, see, e.g., Joshi and Miller (2000) and Srivastava and
Klassen (2016).
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Figure 7.8 Deformation of a square (a) into a kite (b) using a thin-plate spline. The effect
of the deformation on ℝ2 can also be visualized: it maps a grid of parallel lines to a
bi-orthogonal grid.
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Example 7.7 “Square”-to-“kite” deformation
Consider a square and a kite in the plane with landmarks A,B,C,D given by the
rows of

⎡
⎢
⎢
⎢
⎢⎣

0 1
−1 0

0 −1
1 0

⎤
⎥
⎥
⎥
⎥⎦

and

⎡
⎢
⎢
⎢
⎢⎣

0 0.4
−1 0

0 −2
1 0

⎤
⎥
⎥
⎥
⎥⎦

,

respectively. A pair of thin-plate splines has been constructed taking the left-hand
landmarks to each column, respectively, of the right-hand landmarks. The
corresponding deformation is plotted in Figure 7.8. In particular, the effect
of the deformation on an orthogonal grid of lines is plotted. The deformation
includes vertical stretching near landmark C and vertical compression near
landmark A. ◽

Exercises

7.1 In the setting of ordinary kriging, show that the maximum likelihood esti-
mator of 𝜇 based on data x = [x1, . . . , xn]T , also known as the generalized
least squares estimator, is given by 𝜇̂ in (7.27). Hence, show that the formula
for the predictor û(t0) in (7.28) is the same as 𝜸Tx with 𝜸 given in (7.21).

Similarly, in the setting of universal kriging, show that the maximum
likelihood estimator of 𝜷 is given by the GLS estimator 𝜷̂ in the line above
(7.33). Hence, show that the formula predictor û(t0) in (7.33) is the same as
𝜸Tx with 𝜸 given in (7.30).

7.2 The easiest way to prove that M−1 has the form in (7.46) is by rotating to
the starred coordinates in Section 7.6.2. Show that M∗ and the stated form
for (M∗)−1 reduce to

M∗ =
⎡
⎢
⎢⎣

Ω∗
11 Ω∗

12 F∗
1

Ω∗
21 Ω∗

22 0
(F∗

1 )
T 0 0

⎤
⎥
⎥⎦
,

(M∗)−1 =
⎡
⎢
⎢⎣

0 0 (F∗
1 )

−T

0 (Ω∗
22)

−1 −(Ω∗
22)

−1Ω∗
21(F

∗
1 )

−T

(F∗
1 )

−1 −(F∗
1 )

−1Ω∗
12(Ω

∗
22)

−1 −(F∗
1 )

−1Ω∗
11.2(F

∗
1 )

−T

⎤
⎥
⎥⎦
,

where Ω∗
11.2 = Ω∗

11 − Ω∗
12(Ω

∗
22)

−1Ω∗
21. Verify that M∗(M∗)−1 = In+p.

7.3 (a) Let U(t) be a one-dimensional stationary process with an unknown
mean 𝜇 and with a covariance function 𝜎(h) = 𝜎

2
𝜌(h), where 𝜌(h) is

a specified correlation function. Consider predicting the value of the
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process at a new site t0 given noise-free observations x1 = u1, x2 = u2 at
sites t1, t2.
Set 𝛼j = 𝜌(|tj − t0|), j = 1, 2, and 𝜌 = 𝜌(|t1 − t2|), and suppose |𝜌| < 1.
Show that the predictor becomes

û(t0) =
(

1 −
𝛼1 + 𝛼2

1 + 𝜌

)
x +

(𝛼1 − 𝜌𝛼2)x1 + (𝛼2 − 𝜌𝛼1)x2

1 − 𝜌2

= x +
𝛼1 − 𝛼2

1 − 𝜌
dx, x = (x1 + x2)∕2, dx = (x1 − x2)∕2,

with prediction error

𝜎
2
K(t0) = 𝜎

2

{
1 −

𝛼
2
1 + 𝛼

2
2 − 2𝜌𝛼1𝛼2

1 − 𝜌2 +
[1 + 𝜌 − (𝛼1 + 𝛼2)]2

2(1 + 𝜌)

}
.

(b) Next include a nugget effect 𝜏2 in the model. Suppose the data x1, x2
are now noisy measurements of the underlying signal at the sites t1, t2.
Show that the kriging predictor of the underlying signal becomes

û(t0) = x +
𝛼1 − 𝛼2

1 + 𝜓 − 𝜌
dx, x = (x1 + x2)∕2, dx = (x1 − x2)∕2,

where 𝜓 = 𝜏
2∕(𝜎2 + 𝜏2) the relative nugget effect.

(c) Suppose 𝜌(h) → 0 as h → ∞. As t0 → ∞ for fixed t1 and t2, show that
under (a) and (b), û(t0) → x.

(d) Let t0 = t1 (one of the data sites), so that 𝛼1 = 1, 𝛼2 = 𝜌. Show that
under (a)

û(t0) = u1,

and under (b)
û(t0) = x1 −

𝜓

1 + 𝜓 − 𝜌
dx ≠ x1.

In the second case, note that the predictor at the data site t1 is not equal
to the observation x1 if 𝜓 > 0.

7.4 Let A be a symmetric positive definite n × n matrix and let b be an n-vector.
Consider the minimization problem

minimize xTAx such that bTx = 1,

over x ∈ ℝn. Show that the solution is given by

x = A−1b∕(bTA−1b).

Hint: Using a Lagrange multiplier 𝜆, minimize the unconstrained objective
function xTAx + 2𝜆(1 − bTx) over x ∈ ℝn to get x = 𝜆A−1b, and show that
the constraint is satisfied if 𝜆 = 1∕(bTA−1b).

7.5 Consider the linear intrinsic covariance function 𝜎I(h) = −|h|, h ∈ ℝ in
one dimension. Consider equally spaced sites ti = i, i = 1, . . . ,n. Hence, ΣI
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is an n × n matrix with elements 𝜎I;ij = −|i − j| and the elements of F(n × 1)
are all equal to 1.
Show that the matrices B and A in (7.39)–(7.40) take the following forms:
● B is an n × n matrix; the first two elements of the first row are 0.5, −0.5;

the last two elements of the last row are −0.5, 0.5; all other rows contain
the elements −0.5, 1, −0.5, straddling the main diagonal; all the remain-
ing elements are 0.

● A is an n × 1 matrix; the first and last elements are 0.5; the remaining
elements are 0.

For example if n = 4,

B = 1
2

⎡
⎢
⎢
⎢
⎢⎣

1 −1 0 0
−1 2 −1 0

0 −1 2 −1
0 0 −1 1

⎤
⎥
⎥
⎥
⎥⎦

, A = 1
2

⎡
⎢
⎢
⎢
⎢⎣

1
0
0
1

⎤
⎥
⎥
⎥
⎥⎦

.

Further, show that the kriging predictor is given by the piecewise linear
interpolator

û(t0) =
⎧
⎪
⎨
⎪⎩

x1, t0 < 1,
xi + (t0 − ti)(xi+1 − xi), i ≤ t0 ≤ i + 1,
xn, t0 ≥ n.

and that the kriging variance is given by

𝜎
2
K(t0) =

⎧
⎪
⎨
⎪⎩

2(i + 1 − t0)(t0 − i), i ≤ t0 ≤ i + 1,
2(1 − t0), t0 < 1,
2(t0 − n), t0 > n.

Note the kriging variance is quadratic in t0 between the data sites and linear
outside them.
Hint: For the first part, work with the bordered matrix M in Section 7.6.4.
The representation for the M−1 in (7.46) depends on matrices A,B,C. Use
the choices for B and A given here and let C = n−1

2
. Confirm these choices

are correct by showing that MM−1 = In+1. In passing note that B can be
identified with the folded circulant approximation (6.25) to the inverse
covariance matrix for an AR(1) process with autoregression parameter 𝜆
as 𝜆 → 1.

For the second part, note that B can be written as a sum B =
∑n−1

i=1 Bi,
where Bi has nonzero entries

1
2

[
1 −1

−1 1

]
= 1

2

[
1

−1

] [
1 −1

]

for rows i, i + 1 and columns i, i + 1. Suppose i0 ≤ t0 ≤ i0 + 1. Evaluate∑
xTBi𝝈0 one term at a time, and note that the answer depends on whether

i < i0, i = i0 or i > i0. Also note that xTA f 0 = (x1 + xn)∕2.
For the kriging variance, expand out

∑
𝝈T

0 Bi𝝈0 one term at a time.
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7.6 Exercise 7.5 can also be extended to unequally spaced time points
t1 < · · · < tn. Show that in this case B is a tri-diagonal matrix with diagonal
elements

bii =
⎧
⎪
⎨
⎪⎩

1
2(t2−t1)

, i = 1,
1

2(ti−ti−1)
+ 1

2(ti+1−ti)
, i = 2, . . . ,n − 1,

1
2(tn−tn−1)

, i = n,

and with super- and sub-diagonal elements

bi,i+1 = bi+1,i = − 1
2(ti+1 − ti)

, i = 1, . . . ,n − 1.

Further, C = 1
2
(tn − t1).

Hence, deduce that the kriging predictor becomes the piecewise linear
interpolator

û(t0) =
⎧
⎪
⎨
⎪⎩

x1, t0 < t1,

xi +
t0−ti

ti+1−ti
(xi+1 − xi), ti ≤ t0 ≤ ti+1,

xn, t0 ≥ tn.

Further, show that the kriging variance is given by

𝜎
2
K(t0) =

⎧
⎪
⎨
⎪⎩

2(t1 − t0), t0 < t1,

2(ti+1 − t0)(t0 − ti)∕(ti+1 − ti), ti ≤ t0 ≤ ti+1,

2(t0 − tn), t0 > tn.

Note the kriging variance is quadratic in t between the data sites and linear
outside them.
Hint: Adapt the proof of Exercise 7.5.

7.7 Verify the formulas for Bayesian kriging prediction in Section 7.12. In par-
ticular, using the Woodbury formula for the inverse of a matrix

(Ω + FΔFT)−1 = Ω−1 − Ω−1FD−1FTΩ−1
, where D = Δ−1 + FTΩ−1F

(see Section A.3.6), show that the formula for 𝜸Δ in the posterior mean
(7.69) simplifies to (7.72). You may find it helpful to expand out both formu-
las and match the terms. In addition, rewrite the equation for D in (7.71)
by multiplying on the left by D−1, on the right by Δ, and rearranging the
terms to get Δ = D−1 + D−1FTΩ−1FΔ. Similarly, show that the formula for
the posterior variance in the first line of (7.73) simplifies to the second line.

Finally, confirm that as the prior variance matrix Δ gets large, the poste-
rior mean and Bayesian kriging variance converge to the universal kriging
predictor and its variance in Section 7.5.

Similarly, show that the posterior mean and variance of 𝜷 converge to the
generalized least squares estimate above (7.33) and its variance (FTΩ−1F)−1.
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7.8 Let U(t) be a stationary process, t ∈ ℝ2 with a covariance function 𝜎(h) and
an unknown mean 𝜇. Consider n = 3 sites lying on an equilateral triangle
with coordinates

⎡
⎢
⎢⎣

tT
1

tT
2

tT
3

⎤
⎥
⎥⎦
=

⎡
⎢
⎢
⎢⎣

−
√

3
2

− 1
2

0 1√
3

2
− 1

2

⎤
⎥
⎥
⎥⎦
.

The triangle is centered at the origin, and the three sides have length
√

3.
Suppose noise-free measurements x = [x1 x2 x3]T of the process are avail-
able at these three sites (i.e. no nugget effect).

The covariance vector of the process between the data sites and a new
site t0, and the covariance matrix for the three data sites can be written as

𝝈0 =
⎡
⎢
⎢⎣

𝜎0,1
𝜎0,2
𝜎0,3

⎤
⎥
⎥⎦
=

⎡
⎢
⎢⎣

𝜎(t0 − t1)
𝜎(t0 − t2)
𝜎(t0 − t3)

⎤
⎥
⎥⎦
, Ω = Σ =

⎡
⎢
⎢⎣

b a a
a b a
a a b

⎤
⎥
⎥⎦
,

where
a = 𝜎(

√
3), b = 𝜎(0).

Further,

Σ−1 = c
⎡
⎢
⎢⎣

a + b −a −a
−a a + b −a
−a −a a + b

⎤
⎥
⎥⎦
,

where c = 1∕{(b − a)(b + 2a)}.
Show that Σ−11 = d1, d = 1∕(b + 2a), and thus

1TΣ−11 = 3d, 1TΣ−1𝝈0 = d1T𝝈0, xTΣ−1𝝈0 = dxT𝝈0 − ac(1Tx)(1T𝝈0).

Using the formulas for the kriging predictor and kriging variance in (7.21)
and (7.22), show that

û(t0) = x +
∑3

i=1 𝜎0,ixi − (
∑3

i=1 𝜎0,i)(
∑3

i=1 xi)∕3
b − a

and

𝜎
2
K(t) = b −

(2a + b)
∑3

i=1 𝜎
2
0,i − a(

∑3
i=1 𝜎0,i)2

(2a + b)(b − a)
+

(2a + b −
∑3

i=1 𝜎0,i)2

3(2a + b)
.

Further, for the center of the triangle, t0 = (0,0)T , show that

û(t0) = x, 𝜎
2
K(t) =

4
3
𝜎(0) + 2

3
𝜎(
√

3) − 2𝜎(1).

7.9 The ordinary kriging predictor and kriging variance for a stationary
random field in Theorem 7.1 have been expressed in terms of the covari-
ance function 𝜎(h). These formulas can also be expressed in terms of the
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semivariogram 𝛾(h) = 𝜎
2 − 𝜎(h), where 𝜎2 = 𝜎(0). For simplicity, suppose

that the nugget variance vanishes, 𝜏2 = 0, so that in the notation of the
theorem, the matrices Ω = Σ are the same. In a natural notation, define
the quantities

Γ = 𝜎
211T − Σ, 𝜸0 = 𝜎

21 − 𝝈0. (7.93)

It is helpful to use the following version of the Woodbury formula for a
matrix inverse (see Section A.3.6),

(A − cu𝒗T)−1 = A−1 + c A−1u𝒗TA−1

1 − c𝒗TA−1u
.

Assuming the matrix Γ is nonsingular, show that the kriging predictor and
kriging variance can be written in the following forms:

û(t0) = 𝜸T
0Γ

−1x +
(1 − 1TΓ−1𝜸0

1TΓ−11

)
1TΓ−1x, (7.94)

𝜎
2
K(t0) = 𝜸T

0 Γ
−1𝜸0 −

(1 − 1TΓ−1𝜸0)2

1TΓ−11
. (7.95)

Hint. Using the shorthand notation

a = Σ−11, b = Σ−1𝝈0,

and
𝛼 = 1TΣ−11, 𝜷 = 1TΣ−1𝝈0,

show that the kriging predictor in (7.21) becomes

û(t0) =
(

b + 1 − 𝛽
𝛼

a
)T

x.

Also show that the Woodbury formula for Γ−1 becomes

−Γ−1 = Σ−1 + 𝜎2aaT∕(1 − 𝜎2
𝛼)

so that
Γ−1𝜸0 = b + 𝜎

2(𝛽 − 1)
1 − 𝜎2𝛼

a, −Γ−11 = 1
1 − 𝜎2𝛼

a

and
1TΓ−1𝜸0 = 𝛽 − 𝜎2

𝛼

1 − 𝜎2𝛼
, −1TΓ−11 = 𝛼

1 − 𝜎2𝛼
.

Substitute these results into the kriging predictor (7.94) and show that it
reduces to (7.21). A similar calculation can be used to show that (7.95) is
the same as (7.22).
Caution 1. The matrix −Γ is not necessarily nonsingular. It is only guaran-
teed to be conditionally positive definite. If the semivariogram is to be used
to construct the kriging predictor, it is better to use the transfer matrices
than (7.94) and (7.95). Replace Σ = Ω by −Γ in Eqs. (7.39) and (7.40), and
replace 𝝈0 by −𝜸0 in (7.38).
Caution 2. Do not confuse the notation for the vector of semivariogram val-
ues 𝛄0 with the use of 𝜸 for the kriging coefficient vector in (7.21).
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8

Additional Topics

8.1 Introduction

This chapter gives a brief discussion of various topics that it has not been possi-
ble to cover in detail in the book. The basic initial model in the book has been a
stationary Gaussian random field involving a response variable X(t) indexed by a
site t in a domain D, where typically D = ℝd or D = ℤd. Observations x1, . . . , xn
are available at sites t1, . . . , tn and are assumed to come from this model. The key
statistical challenges include the estimation of any unknown parameters and the
prediction of the random field at new sites (kriging).

This basic framework can be generalized in various directions.

● Gaussianity. The simplest way to construct a non-Gaussian random field is to
transform a Gaussian random field. Section 8.2 looks at log-normal random
fields.

● Latent random fields. Suppose noisy observations are made of a random field; i.e.
the random field X(t) is not directly observed. The introduction of a nugget effect
in Chapter 5 is a step in this direction, where the observations are still normally
distributed. It is also possible to construct generalized linear models where the
response variable follows, e.g., a binomial or Poisson distribution (Section 8.3).

● Bayesian inference. Most of the book has emphasized the use of frequentist ideas,
especially maximum likelihood, to estimate any unknown parameters. How-
ever, it can be argued that a better statistical approach is to treat any unknown
parameters as coming from a prior distribution. The Bayesian approach can also
easily accommodate latent random fields. However, the price is an increased
numerical complexity. A brief discussion is given in Section 8.4.

● Multivariate random fields. The response variable X(t) can be vector-valued
instead of real-valued. Many of the standard ideas carry over with little change.
In addition, there is a concept of co-kriging (Section 8.5).

Spatial Analysis, First Edition. John T. Kent and Kanti V. Mardia.
© 2022 John Wiley & Sons Ltd. Published 2022 by John Wiley & Sons Ltd.
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● Spatial–temporal models. Another change is to increase the dimension of the
domain to include time as well as space. Of course, time should not usually be
treated as just another spatial dimension, so new modeling strategies are needed.
See Section 8.6. There is also a brief discussion in Section 4.5.2.

● Constrained kriging. As discussed in Chapter 7, kriging can be used in the
construction of a deformation of a continuous domain D. A modified version
of kriging, called clamped-plate kriging, can be used to describe a deformation
that is constrained to be fixed on the boundary of D when D is the interior of a
disk. See Section 8.7.

● Irregular lattice domains. The discussion in Chapters 4 and 6 emphasized lattice
random fields defined on ℤd. However, in many applications it is beneficial to
extend the lattice methods of Chapters 4 and 6 to irregularly spaced sites. Lind-
gren et al. (2011) have developed a powerful methodology that extends much
of the tractability of condiional autoregression (CAR) and simultaneous autore-
gression (SAR) models to this setting (Section 8.8).

● Selection of new sites. Throughout the book, it has been assumed that the location
of the sites is fixed. Section 8.9 considers the situation where an experimenter
can add a new site to an existing network. The objective is to maximize the “in-
formation” in some sense provided by the new site.

8.2 Log-normal Random Fields

In most part of the book, we have made the assumption of a Gaussian random
field. This is a powerful modeling strategy, both for its theoretical and practical
importance. However, there are also situations involving nonnormal data. In this
section and Section 8.3, we discuss two modeling strategies to deal with nonnormal
data by relating the data to observations from a Gaussian process. These strategies
are based on transformations and latent processes, respectively.

In this section, we look at nonlinear pointwise transformations of a random
field. For positive random fields (X(t) > 0 for all t), a popular class is given by the
Box–Cox transformations

Y (t) = (X(t)𝜆 − 1)∕𝜆,

where 𝜆 is a real-valued parameter. When 𝜆 < 1 the effect of the transformation is
to compress the right-hand tail of the distribution of X(t) relative to the left-hand
tail. The hope is that for some value of 𝜆, the process {Y (t)} will be approximately
a Gaussian random process. For 𝜆 ≠ 0, Y (t) can lie in only a restricted part of the
real line so the transformation to normality can only be approximate. The Box–Cox
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transformation for general λ in spatial applications was studied in Mardia and
Goodall (1993).

The most important special case is the limiting case 𝜆 → 0, for which the
Box–Cox transformation becomes

Y (t) = log X(t).

In this case, Y (t) ranges through all the real numbers if X(t) ranges through all
the positive numbers, and the transformation to normality can be exact. If the
transformed process {Y (t)} is a Gaussian random field, then the original process
{X(t)} is called a “log-normal random field.”

To work out the mean and covariance function of the original process, let us first
we recall some background about the log-normal distribution. If Y ∼ N(𝜇, 𝜎2) is
normally distributed, then X = exp(Y ) is said to follow a log-normal distribution.
The first two moments of X , which can be computed simply from the moment
generating function of Y , are given by

E(X) = exp
(
𝜇 + 1

2
𝜎

2
)
, E(X2) = exp(2𝜇 + 2𝜎2),

var(X) = exp(2𝜇 + 𝜎2)
{

exp(𝜎2) − 1
}
. (8.1)

Similarly, if Y1 and Y2 are bivariate normal with means 𝜇1, 𝜇2, variances 𝜎2
1 , 𝜎

2
2 and

covariance 𝜎12, then

E(X1X2) = exp
{
𝜇1 + 𝜇2 +

1
2
(𝜎2

1 + 𝜎2
2 + 2𝜎12)

}
,

cov(X1,X2) = exp
{
𝜇1 + 𝜇2 +

1
2
(𝜎2

1 + 𝜎2
2 )
}{

exp
(
𝜎12

)
− 1

}
.

(8.2)

See Exercise 8.1. This construction extends in a straightforward way to the multi-
variate log-normal distribution and to log-normal stochastic processes.

The log-normal process is popular in mining applications (Dowd, 1982), where
X(t) represents the ore concentration. One complication is that integrals of
interest (e.g. total mineral concentration in a block of ore) take place in the
X domain; however, sums and integrals of log-normal random variables no
longer have log-normal distributions. Dowd worked out a variety of numerical
approximations to facilitate inferences in this setting. Some basics of block kriging
in the normal case were discussed in Sections 3.12 and 7.11.

8.3 Generalized Linear Spatial Mixed Models
(GLSMMs)

Start with an underlying latent Gaussian spatial process S(t). The adjective
“latent” means that this process represents an underlying reality that cannot be
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observed directly. Instead, noisy measurements are made, which depend on the
latent process. More specifically, we make the following assumptions:

(a) {S(t)} is a stationary Gaussian process on t ∈ ℝd with drift function E(S(t)) =
𝜇(t) and covariance function 𝜎(h).

(b) At sites t1, . . . , tn, observations Zi are made from a generalized linear model,
where the mean of Zi depends on S(ti) through a link function. Further, con-
ditional on the latent process {S(t)}, the observations at different sites are
independent of one another.

To some extent, this model is already familiar. If Zi|{S(t)} ∼ N(S(ti), 𝜏2), then 𝜏2

represents a nugget effect in the usual stationary Gaussian model with drift.
The drift function in S(t) can be thought of as the “fixed effects” and the

autocovariance function determines the “random effects” in terms of the obser-
vations. Hence, we call these models “generalized linear spatial mixed models
(GLSMMs).” Other descriptions in the literature include generalized linear
geostatistical models (Diggle and Ribeiro, 2007) and hierarchical models (Gelfand
and Ghosh, 2013).

The most tractable example is the Poisson distribution with a log link function,
Zi|{S(t)} ∼ P(𝜆i), where log 𝜆i = S(ti), proposed in Diggle et al. (1998). In this case,
we can work out the first two marginal moments of the observations explicitly
using the results from Section 8.2; see Exercises 8.2–8.3.

However, inference for unknown parameters in this Poisson model cannot be
carried out explicitly. A popular way to proceed is to use Bayesian methods based
on Markov chain Monte Carlo (MCMC) calculations. Section 8.4 summarizes the
details.

8.4 Bayesian Hierarchical Modeling and Inference

By giving prior distributions to the underlying parameters, the latent model of
the last section can be described in a hierarchical manner as follows. We follow the
description in Section 7.12 and in Gelfand and Ghosh (2013, p. 41).

Level 1 (Observation level). Observations Zi are taken at sites ti, i = 1, . . . ,n.
Given an underlying latent process S(t), the observations are assumed to be con-
ditionally independent, with the conditional distribution of Zi depending on S(ti)
and perhaps an additional parameter 𝜏2. In the Poisson model, Zi ∼ P(exp{S(ti)})
and 𝜏

2 is not present; in the normal theory example, Zi ∼ N(S(ti), 𝜏2) and 𝜏
2

represents a nugget effect.
Level 2 (Latent process level). The latent process {S(t)} is assumed to follow a

Gaussian process with mean 𝜇(t) = 𝜷Tf (t) in terms of a known set of functions
f1 (t), . . . , fq (t) and with stationary covariance function 𝜎(h;𝜽) = 𝜎

2
𝜌(h,𝜽c).
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Here, 𝜽 = (𝜎2
,𝜽c) is a parameter vector for a stationary covariance function

including a scale parameter 𝜎2 together with some further parameters for the
covariance structure 𝜽c (𝜽c typically includes a range parameter and possibly an
index parameter for smoothness).

Level 3 (Hyperparameter level). A prior distribution is specified for the para-
meters 𝜷,𝜽, 𝜏2, typically with the three sets of parameters modeled independently.

Write z = [z1, . . . , zn]T for possible values of the response variables at the data
sites, and s = [s1, . . . , sn]T for possible values of the latent process. Then the joint
density of all the random variables and parameters can be written in the form

f (z, s, 𝜷,𝜽, 𝜏2) = f (z|s, 𝜏2)f (s|𝜷,𝜽)f (𝜷) f (𝜽) f (𝜏2).

The objective of Bayesian analysis is to find the posterior distribution of the para-
meters 𝜷,𝜽, 𝜏2 given the observations z.

There is also the related problem of predictive Bayesian analysis, that is, to pre-
dict the value of the latent process S(t0) at a new site t0.

This model can also be regarded as a “spatial mixed model.” In the drift func-
tion 𝜇(t) = 𝜷Tf (t), the parameter 𝜷 represents the “fixed effects” in the model and
𝜀(t) = S(t) − 𝜇(t) represents the “random effects.”

Unfortunately, it is not generally feasible to compute the posterior distribution
for either s or (𝜽, 𝜷, 𝜏2) analytically, and it is necessary to turn to numerical meth-
ods. One common method is to use MCMC methods to simulate a Markov chain
whose equilibrium distribution is given by the desired posterior distribution.
Similar comments apply to the predictive distribution of S(t0) given z.

MCMC methods are not covered at all in this book; we refer to Banerjee et al.
(2015) and Gelfand et al. (2010) for comprehensive treatments.

However, it is important to note that the choice of prior distribution for 𝜽 can
be delicate. We saw in Chapter 5 that it can be difficult to simultaneously estimate
the scale parameter 𝜎2 and the range parameter 𝜑 in a Matérn model. Hence, it is
important to ensure that the posterior distribution does not merely reproduce the
prior in this case. Further, there are issues related to improper priors leading to
improper posterior distributions in some cases. The question of appropriate priors
for 𝜽 is still an open topic of research (Berger et al., 2001; Gelfand and Ghosh, 2013;
Handcock and Stein, 1993; Steel and Fuentes, 2010).

8.5 Co-kriging

So far we have limited our attention to a single real-valued measurement
xt at each site t ∈ ℝd. A natural extension is to allow a vector of measure-
ments x(t) ∈ ℝq

, q ≥ 2, with elements xu(t),u = 1, . . . , q at each site. There
is a rich literature on statistical methods to tackle such data, especially in
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environmental applications. References include Journel and Huijbregts (1978),
Mardia and Goodall (1993), Diggle and Giorgi (2019), Huang et al. (2009),
Wackernagel (2003), and Banerjee and Gelfand (2010). For this section, we limit
our attention to some mathematical details.

Then more notation is needed to describe the drift and covariance functions.
For the drift we adopt the same framework as before, except that the choice of
drift functions may depend on u. Given a collection of pu-dimensional set of basis
functions {f1u(t), . . . , fpu,u(t)}, we model the expected value of the uth element of
a multivariate random field by a linear combination,

E(xu(t)) =
pu∑

j=1
𝛽ju fju(t) = 𝜇u(t), say,

where 𝛽ju are parameters to estimate. Write p∗ =
∑

pu.
The covariance function is now a matrix-valued function. Under stationarity, it

takes the form

cov(xu(t), x𝑣(t + h)) = 𝜎u𝑣(h), u, 𝑣 = 1, . . . , q, h ∈ ℝd
. (8.3)

The covariance function possesses the symmetry property

𝜎u𝑣(h) = 𝜎
𝑣u(−h),

but does not always possess the full symmetry property,

𝜎u𝑣(h) = 𝜎
𝑣u(h).

Formally, estimation and prediction are carried out similarly to the scalar random
field case, though the notation and calculations become more cumbersome.
The most convenient strategy is to combine a matrix of observations into a long
vector. In a general framework, the sites at which observations are made may
depend on the index u. Thus, suppose observations xu(tiu), i = 1, . . . ,nu are
available, for u = 1, . . . , q. Define

x∗ =
[

x1(t11), . . . , x1(tn1 ,1), x2(t12), . . . , x2(tn2 ,2), . . . , xq(t1q), . . . , xq(tnq ,q)
]T

by stacking the observation vectors for the scalar random fields on top of one
another to give a vector of length n∗ =

∑q
u=1 nu, say. LetΣ∗∗ denote the correspond-

ing nq × nq covariance matrix and let the expected value be denoted

𝝁∗ = F∗𝜷∗
,

where F∗ is an n∗ × p∗ block diagonal matrix of the form

F∗ =
⎡
⎢
⎢⎣

F1 0
⋱

0 Fq

⎤
⎥
⎥⎦
,
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where for each u = 1, . . . , q, the (nu × pu) matrix Fu has entries fju(tiu) in the ith
row and jth column, and

𝜷∗ = [𝛽11, . . . , 𝛽p1 ,1, . . . , 𝛽pq ,q]
T
.

Then, up to a constant term, the log-likelihood can be written as

−1
2
tr{(x∗ − 𝝁∗)T(Σ∗∗)−1(x∗ − 𝝁∗)} + log |Σ∗∗|.

For prediction, we add a new site t0 and denote the vector of observations at this
new site by x∘ = [x1(t0), . . . , xq(t0)]T with mean value 𝝁∘ = [𝜇1(t0), . . . , 𝜇q(t0)]T =
F∘𝜷∗,

F∘ =
[

f11(t0), . . . , fp1,1(t0), . . . , fpq,q(t0)
]
.

Similarly, define the covariance matrices

cov(x∗
, x∘) = Σ∗∘

, cov(x∘, x∘) = Σ∘∘.

Then the kriging predictor (with known coefficients (𝛽ju)) takes the form

x̂∘ = 𝝁∘ + Σ∘∗(Σ∗∗)−1(x∗ − 𝝁∗).

In the case of unknown (𝛽ju), they can be replaced by the generalized least squares
(GLS) estimator

𝜷̂
∗ = {F∗T(Σ∗∗)−1F∗}−1F∗T(Σ∗∗)−1x∗

.

The GLS estimator also appears in estimation for the spatial linear model (5.48)
and in universal kriging for a single random field (7.33). Some comments will be
helpful to set this general result in context. For simplicity, we focus on the case
q = 2.

(a) One variable (u = 1) may be the variable of interest and be difficult to mea-
sure; the other variable (u = 2) may be an auxiliary or concomitant variable
and be easy to measure. In particular, the second variable may be measured
much more densely than the first. It may even be the case that the new site t0
coincides with one of the observation sites for the second variable. The pur-
pose of co-kriging is to “borrow strength” from the measurements on the sec-
ond variable to improve the accuracy when predicting the first variable. See
Exercise 8.5.

(b) It may be the case that both variables are measured at the same sites with the
same choice of drift functions. Although this framework is notationally more
straightforward, there is no special simplification to the algebra and interpre-
tation except in the particular case of a tensor product model.

(c) When both variables are measured at the same sites with the same choice
of drift functions, the presentation of the data and model can be simplified.
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Define a data matrix X(n × p) with x∗ = vec(X), and write the drift matrix in
the form

F∗ = I ⊗ F.

Make the additional assumption that the joint covariance function factorizes
into the tensor product form

cov(xu(t), x𝑣(t + h)) = au𝑣𝜎(h), u, 𝑣 = 1, . . . , q, h ∈ ℝd
, (8.4)

where the q × q matrix A represents the covariance between variables, and the
common spatial covariance function 𝜎(h) represents the covariance in space.
Then the kriging estimator simplifies to what it would be if each variable were
predicted on its own; see, for example, Mardia and Goodall (1993). That is,
there is no strength to be borrowed from neighboring observations in this case.

(d) A simple way to construct a multiple covariance function that does not have
the tensor product property is through linear combinations of independent
processes. Here is an example for a bivariate process.
Let x1(t) and x2(t) be independent zero-mean stationary processes with dif-
ferent covariance functions 𝜎1(h) and 𝜎2(h), respectively. Set y1(t) = x1(t) +
x2(t), y2(t) = x1(t) − x2(t). Then, both y1(t) and y2(t) have the same covariance
function 𝜎1(h) + 𝜎2(h), and the same cross-covariance functions

E{y1(t)y2(t + h)} = E{y2(t)y1(t + h)} = 𝜎1(h) − 𝜎2(h),

but the cross-covariance function𝜎1(h) − 𝜎2(h) is not a constant multiple of the
marginal covariance functions 𝜎1(h) + 𝜎2(h). Hence, the covariance structure
for the {y1(t), y2(t)} does not have a tensor product form.

(e) A more general version of this construction is given as follows. For k ≥ 2,
let A(1)

, . . . ,A(k) be q × q positive definite matrices and let 𝜎1(h), . . . , 𝜎k(h),
h ∈ ℝd

, be distinct stationary spatial covariance functions. Then

𝜎u𝑣(h) =
k∑

i=1
a(i)

u𝑣𝜎i(h), u, 𝑣 = 1, . . . , q,

defines a valid multivariate spatial covariance function, which is not separable
(Journel and Huijbregts, 1978, p. 172).

(f) It is also possible to extend the theory to the case where one or both variables
follow intrinsic processes rather than stationary processes. If both processes
are IRF-0, a popular summary measure is the cross-variogram

E{(Y1(t + h) − Y1(t))(Y2(t + h) − Y2(t))}.

However, this measure captures only some of the dependence structure
between the two processes. A richer set of expected products of increments is
needed to fully capture the dependence (Huang et al., 2009).
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8.6 Spatial–temporal Models

8.6.1 General Considerations

In some ways, a spatial–temporal model can be viewed as a multivariate spatial
process where the number of variables equals the number of times at which the
process is observed. However, there is often structure across time that can be
modeled explicitly. Here, we describe several possible strategies, following Kent
and Mardia (2002).

A key property of much spatial–temporal data is spatial–temporal continuity;
that is, observations at nearby sites and times will tend to be similar to each other.
This underlying smoothness of a process X(s, t) at a spatial site s and a temporal
site t can be captured in the following ways:

● Parametrically, using a finite-dimensional space of regression or drift functions
or

● Nonparametrically, using autocorrelation to make nearby values similar.

Both of these approaches can be applied in space and/or time. Letting D and
C stand for a parametric “drift” function and a nonparametric “correlation”
approach, respectively, the following types of models can be considered:

(a) D–D. Tensor products of drift in space and drift in time. This approach is
explored in Section 3. Such models are appropriate for highly structured
data. For example, Kent et al. (2001) modeled the changing shapes of cross
sections of rat skulls as they grow, using principal splines in space and in time.
Principal splines can be considered as analogous to low-order polynomials,
but their exact structure depends on the layout of the spatial (or temporal)
sites.

(b) D–C. Drift in space and correlation in time. The kriged Kalman filter model
(Fontanella et al. (2005); Mardia et al., 1998; Sahu and Mardia, 2005; Sahu
et al. (2005); Wikle and Cressie, 1999) exemplifies this approach. The drift
functions are built from principal splines in space, but the their coefficients
evolve according to time-series models.

(c) C–D. Correlation in space and drift in time.
(d) C–C. Joint correlation in space and time. The simplest examples are separable

(i.e. tensor products) in space and time, but these are generally not very
realistic; there is a need for space and time to interact with each other.
Models with a stochastic motivation include space–time autoregressive
and related models (e.g. Cressie and Wikle, 2011) in discrete space–time and
the “diffusion–injection” model (Whittle, 1986, pp. 430–433) in continuous
space–time. There are also explicit covariance functions (Gneiting, 2002;
Gneiting and Guttorp, 2010), though some of the models can exhibit non-
intuitive “dimple” effects (Kent et al., 2011). The covariance-spectral model
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of Stein (2005) is specified in terms of a covariance function in space and a
spectral density in time; it is not fully symmetric. Gneiting et al. (2007) review
many of the key issues. Mardia and Goodall (1993) and Goodall and Mardia
(1994) developed methodology for multivariate spatial-temporal processes.

The density of data points in space and time can guide the choice of modeling strat-
egy. When the data are sparse, there is often a preference for drift-style models, as
there is not enough information to fit an autocorrelation structure. Of course, a
disadvantage of regression models is that the class of fitted curves and surfaces
can be rather inflexible, especially for prediction and extrapolation.

On the other hand, when the data are dense, covariance functions become more
feasible and flexible. In particular, they allow for more adaptive prediction and
extrapolation. As noted in Section 7.14, there is a close link between the use of
covariance models and the use of splines to fit curves and surfaces to discrete
data; see also, Kent and Mardia (1994), Wahba (1990, Ch. 3), and Cressie (1993,
pp. 180–183). Thus, the use of covariance models has a nonparametric flavor to it.

Statistical modeling for spatial–temporal data continues to be a major research
theme. Some recent books dedicated to this theme include Banerjee et al. (2015),
Cressie and Wikle (2011), Finkenstädt et al. (2007), Gelfand et al. (2010), Lawson
and Denison (2002), Sahu (2022) and Wikle et al. (2019).

8.6.2 Examples

(a) Separable models. In this case, the space–time covariance function factors into
a product of a spatial covariance function 𝜎S(h) and a temporal covariance
function 𝜎T(u),

𝜎(h,u) = 𝜎S(h)𝜎T(u), h ∈ ℝd
, u ∈ ℝ.

(b) Fully symmetric models. All space–time covariance functions satisfy the simple
symmetry property

𝜎(h,u) = 𝜎(−h,−u).

That is, the covariance function is unchanged if both h and u change sign.
Some covariance functions satisfy the more restrictive “full symmetry”
property

𝜎(h,u) = 𝜎(h,−u) = 𝜎(−h,u) = 𝜎(−h,−u).

That is, the covariance function is unchanged if either h or u changes sign.
Next, we give some examples of nonseparable models.

(c) Gneiting’s model. Gneiting (2002) developed a class of nonseparable fully sym-
metric covariance functions. One of the simplest examples in this class is

𝜎G(h,u) =
𝜎

2

(1 + |h|2)1∕2 exp
(
− u2

1 + |h|2)

)
, (h,u) ∈ ℝd ×ℝ (8.5)
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(though he originally reversed the roles of space and time). Curiously,
Gneiting’s models can sometimes include a counterintuitive “dimple.” That
is, for a large enough choice of u > 0, a plot of 𝜎G vs. |h| ≥ 0 can decrease, and
then increase, before finally decreasing to 0 as |h| → ∞ (Kent et al., 2011).

(d) Phase-shift models. In some sense, the opposite of full symmetry is a
phase-shift model. Here are three possible versions.

(i) Consider a stationary time series ZT(t) with covariance CT(u). Let 𝑣 ∈ ℝd

be a vector defining a “temporal wind,” and define a spatial–temporal
process with a corresponding covariance function by

Z(s, t) = ZT(t + 𝑣Ts), 𝜎(h,u) = 𝜎T(u + 𝑣Th). (8.6)

Here (s,t) denotes a site in space-time, h is a spatial lag. and u is a
temporal lag. Changing the spatial coordinate s for Z(s, t) corresponds
to a phase shift in time for ZT . Such a process can be called “temporally
phase-shifted.”

(ii) Similarly, if ZS(s), s ∈ ℝd
, is a stationary process in space with covari-

ance function 𝜎S(h), h ∈ ℝd, and if 𝝁 ∈ ℝd is a vector defining a “spatial
wind,” define a spatial–temporal process with a corresponding covari-
ance function by

Z(s, t) = ZS(s + t𝜇), 𝜎(h,u) = 𝜎S(h + u𝜇). (8.7)

Changing the temporal coordinate t for Z(s, t) corresponds to a phase shift
in space for ZS. Such a process can be called “spatially phase-shifted.”

(iii) More generally, if Z0(s, t) is a general stationary spatial–temporal process
with covariance function 𝜎0(h,u), then a new process with a phase-shift
in space and time can be defined by (Ma, 2003)

Z(s, t) = Z0(s + t𝜇,u + 𝑣Ts), 𝜎(h,u) = 𝜎0(h + u𝜇,u + 𝑣Th). (8.8)

(e) Taylor’s frozen field hypothesis. A stationary spatiotemporal process satisfies
Taylor’s frozen field hypothesis (Taylor, 1938) if the purely temporal and purely
spatial covariances are related by

𝜎(0,u) = 𝜎(u𝜇, 0), u ∈ ℝ, (8.9)

where 𝜇 ∈ ℝd is a fixed vector. This hypothesis arises in the theory of tur-
bulence. The spatially frozen field always satisfies (8.9). The temporally and
jointly phase shifted models, (8.6) and (8.8), satisfy (8.9) provided 𝑣 = 𝜇 and
𝑣

T
𝑣 = 1 is a unit vector. However, fully symmetric models can also satisfy (8.9).

See, e.g., Gneiting et al. (2007) for details.
(f) Stein’s model. Starting from Gneiting’s model (8.5), incorporate a phase shift

in time to get
𝜎Stein(h,u) = 𝜎G(h,u + 𝑣Th). (8.10)
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From this starting point, Stein (2005) develops a more flexible, and partly non-
parametric, model.

8.7 Clamped Plate Splines

Kriging in Chapter 7 emphasized the use of stationary or intrinsic random fields.
In particular, the use of self-similar intrinsic random fields allowed kriging to
be reformulated in terms of splines. In this section, we discuss a version of the
self-similar random fields (Section 3.10) modified to vanish on the boundary of
the unit ball in ℝd. The result is an ordinary, but not stationary, random process
on the interior of the unit disk. One of the main applications is the construction
of deformations constrained to leave the boundary of the unit ball fixed.

Given two distinct spatial sites s, t ∈ ℝd lying in the unit ball, |s| ≤ 1, |t| ≤ 1,
s ≠ t, define a function

A(s, t) =

√
|s|2|t|2 − 2sTt + 1
|s|2 − 2sTt + |t|2 . (8.11)

It can be shown that A(s, t) ≥ 1 for all s, t, A(s, t) = 1 if |s| = 1 or |t| = 1, and that
|s − t|A(s, t) has a finite positive limit as s → t for a fixed t satisfying |t| < 1.

Given an integer parameter m > d∕2, the “clamped-plate spline” is defined by
Boggio (1905)

Gm,d(s, t) = km,d|s − t|2m−d
∫

A(s,t)

1

(𝑣2 − 1)m−1

𝑣d−1
d𝑣 (8.12)

for suitable constants km,d.
It can be shown that

(a) G(s, t) = Gm,d(s, t) is a (2m − d − 1)-times differentiable function of s and t; it
and its derivatives up to order m − 1 tend to 0 as s and t tend to the boundary
of the unit ball.

(b) G(s, t) satisfies the differential equation

(−Δs)mG(s, t) = 𝛿t(s), (8.13)

where Δs is the Laplacian operator in s and 𝛿t(s) is a Dirac delta function cen-
tered at t. That is, G(s, t) is the Green’s function for the iterated Laplacian
operator on the interior of the unit ball, with vanishing boundary conditions
on the boundary of the unit ball.

(c) G(s, t) can be written as an irregular term (c
𝛼,d|s − t|2m−d for d odd and

c′
𝛼,d|s − t|2m−d log |s − t| for d even), plus an infinitely differentiable function

of s and t on the interior of the unit ball. The normalizing constants c
𝛼,d
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and c′
𝛼,d are taken from (3.46) and (3.48) for the self-similar processes on ℝd,

where 𝛼 = m − d∕2.
(d) G(s, t) is a positive definite function on the unit ball and hence defines a valid

covariance function. The corresponding processes can be viewed as versions
of the self-similar processes in Chapter 3 modified to vanish on the boundary
of the unit ball.

One of the uses for clamped splines is to construct deformations. Let {si}n
1 be a set

of sites inside the unit ball, which are to be mapped to a second set of sites {ti}n
1

also inside the unit ball. Construct d clamped splines Ψj(s) taking the {si}n
1 to each

component {ti[ j]}n
1 in turn, j = 1, . . . , d. The clamped splines can be constructed

by methods similar to those of Chapter 7, though there is no null space here. Write
Ψ(s) = [Ψ1(s), . . . ,Ψd(s)]T to be the vector-valued mapping. Then the mapping

Φ(s) = Ψ(s)

is a mapping from ℝd to ℝd, which takes the old sites {si}n
1 to the new sites {ti}n

1
and which holds the boundary of the unit ball fixed. For more details, see, e.g.,
Davies et al. (2008).

With A = A(s, t) given by (8.11), the first few clamped splines take the form

G1,1(s, t) ∝ |s − t|(A − 1) = 1 − st − |s − t|,
G2,1(s, t) ∝ |s − t|3

(1
3

A3 − A + 2
3

)

= 1
3
(1 − st)3 − (s − t)2(1 − st) + 2

3
|s − t|3,

G2,2(s, t) ∝ −|s − t|2
{1

2
(A2 − 1) − log A

}
,

G2,3(s, t) ∝ |s − t|
{

A + 1
A

− 2
}
,

G3,3(s, t) ∝ |s − t|3
{

A3 − 6A − 3
A

+ 8
}
.

The first two lines correspond to the linear and cubic spline in one dimension, the
next line corresponds to the thin-plate spline in two dimensions, and the final line
corresponds to what is known as the tri-harmonic spline in three dimensions.

8.8 Gaussian Markov Random Field Approximations

Lindgren et al. (2011) make the point that when modeling data on a continuous
domain D, a continuously indexed covariance model should be used. However, for
numerical work, a discretization of the domain is needed. Further, numerical com-
putations are more computationally efficient if the discretized model is a Gaussian
Markov random field (GMRF); i.e. the inverse covariance matrix is sparse. They



�

� �

�

296 8 Additional Topics

propose using finite element approximations for a stochastic partial differential
equation (SPDE) to achieve the approximation. This section sketches their main
ideas.

(a) On ℝd consider the SPDE

D
𝜅,𝛼

= (𝜅2 − Δ)𝛼∕2X(t) = 𝜀(t), (8.14)

where Δ =
∑d

𝓁=1 𝜕
2∕𝜕t[𝓁]2 is the Laplacian operator, 𝜅 > 0, 𝛼 > 0, and where

{𝜀(t)} is white noise, a generalized random field. This equation was studied
in Section 4.5.2. It was noted that provided 𝛼 is an even integer and 𝛼 > d∕2,
this equation has a stationary solution given by a random field with a Matérn
covariance function of index 𝜈 = 𝛼 − d∕2. By working in the spectral domain,
Eq. (8.14) and its solution make sense for all 𝛼 > 0. However, as explained next,
the main interest is when 𝛼 is an integer, both odd or even.

(b) Let 𝛼 = 2 for the moment. A discrete version of (8.14) on ℤd generates the
first-order basic SAR model (Example 4.1). This SAR model can also be inter-
preted as a second-order basic CAR model (Example 4.5). More generally, if
𝛼 is an even integer, i.e. 𝛼∕2 = k, is an integer, then the discrete analogue of
(8.14) is a kth-order SAR model, which can be identified with a 2kth-order
CAR model. However, it is possible to say a bit more. If 𝛼 is an odd integer, it
is possible to give a SAR model of order 𝛼∕2 an interpretation by identifying it
with a CAR model of order 𝛼.

(c) For a finite set of sites on rectangular lattice, the methods of Chapter 6 can
be used to construct an approximate inverse covariance matrix. For irregu-
larly spaced sites it is necessary to develop more bespoke methods. One way
in the two-dimensional case is to divide D into a set of nonintersecting trian-
gles, where any two triangles meet in at most a common edge or corner. Then
finite element methods can be used to construct a discrete approximation to
(8.14), typically with reflecting boundary conditions. Somewhat surprisingly,
the finite element method gives a tractable GMRF approximation whenever
𝛼 is an integer (odd or even), not just when 𝛼 is an even integer. The reason
seems related to the relationship between SAR and CAR models of orders 𝛼∕2
and 𝛼, respectively.

(d) The finite element method can be extended to 𝜅 = 0 and 𝜈 = 0 by allowing
intrinsic and generalized random fields, respectively. It can also be extended
to random fields indexed by sites on a Riemannian manifold.

8.9 Designing a Monitoring Network

Throughout the book, it has been assumed that data values are available at
a fixed set of known sites and that data values are not available elsewhere.
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However, in many applications, new sites may be added to an existing network
and the positioning of the new sites can be chosen to “optimize” the additional
information in a suitable sense. A typical example is in environmental science
where the sites represent monitoring stations. For simplicity, issues such as
geographical factors, costs, and policy considerations are not taken into account
in the discussion here.

Thus, suppose there are already monitoring stations at n sites t1, . . . , tn and
suppose the data are assumed to follow a stationary or intrinsic model where the
covariance parameters are known. One new site, at a location t, say, is to be added.
The question is how to choose the new location. One intuitively natural approach
is to choose the new site to improve prediction as much as possible. That is, find
the location with maximum kriging variance (based on the existing sites). In
order for the problem to be well-defined, it is necessary to constrain the new site
to lie within a compact region. Otherwise, the optimal location will typically be
as far as possible from the existing sites. Therefore, for the discussion here, the
new site is constrained to lie within the convex hull of the existing sites. The use
of this criterion was introduced by McBratney et al. (1981) and further developed
by Cressie et al. (1990) and Mardia and Goodall (1993). There is a substantial
literature on the topic of site selection; for further details, see e.g., Smith (2001)
and Zidek and Zimmerman (2010).

In general, the optimization problem must be tackled numerically. But in the
following elementary example, there is a simple analytic answer.

Example 8.1 Consider n = 2 sites in d = 1 dimension at t1 = −1, t2 = 1.
Suppose that the random field is stationary with unknown mean and with the
exponential covariance function 𝜎(h) = exp{−|h|∕𝜑}, where 𝜑 > 0 is the range
parameter. From part (a) of Exercise 7.3, it follows that the kriging variance is

𝜎
2
K(t) = 1 −

𝛼
2
1 + 𝛼

2
2 − 2𝜌𝛼1𝛼2

1 − 𝜌2 +
[1 + 𝜌 − (𝛼1 + 𝛼2)]2

2(1 + 𝜌)
, (8.15)

where 𝛼j = 𝛼j(t) = 𝜎(tj − t), j = 1, 2, and 𝜌 = 𝜎(t1 − t2), i.e. 𝛼1 = exp{(−1 − t)∕𝜑},
𝛼2 = exp{(−1 + t)∕𝜑} for t ∈ [−1, 1], and 𝜌 = exp(−2∕𝜑). After a bit of
simplification,

𝜎
2
K(t) = 1 − A(t)

1 − 𝜌2 + B2(t)
2(1 + 𝜌)

,

where A(t) = 2𝜌{cosh(2t∕𝜑) − 𝜌} and B(t) = 1 + 𝜌 − 2e−1∕𝜑 cosh(t∕𝜑). It can
be checked that B(t) ≥ 0 for t ∈ [−1, 1] and that cosh(t∕𝜑) and cosh(2t∕𝜑) are
minimized when t = 0. Hence, −A(t) and B2(t) are maximized when t = 0 and,
therefore, so is 𝜎2

K(t). That is, t = 0, the midpoint of the interval [−1, 1] should be
the site of the new monitoring station, as might be expected.

Some extensions of this example are investigated in Exercises 8.7–8.8. ◽
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As well as the problem of adding a site, there is sometimes the problem of
deleting one of the existing sites. In this case, it is natural to choose the site
that minimizes the kriging variance. This modified problem is not discussed
further here; see Cressie et al. (1990) and Mardia and Goodall (1993).

A related problem involves choosing a new site to improve the estimation of any
unknown parameters in the spatial model. In this case, a natural criterion to max-
imize is a summary measure of the information matrix, e.g. the determinant, as a
function of the new site. In this case, the new site is chosen to improve estimation
rather than prediction.

Exercises

8.1 Let Y ∼ Nn(𝝁,Σ) follow a multivariate normal distribution and set Xi =
exp(Yi), i = 1, . . . ,n. The purpose of this exercise is to find the moments of
X . They are most easily calculated using the moment generating function
for Y

M(u) = E
{

exp
(

uTY
)}

= exp
(

uT𝝁 + 1
2

uTΣu
)

as a function of u = (u1, . . . ,un)T .
Let ei denote an n-vector with a one in the ith place and zeros elsewhere.
Show that E(Xi) = M(ei) and E(XiXj) = M(ei + ej), i, j = 1, . . . ,n, and hence
verify the moments in (8.1)–(8.2).

8.2 Let S ∼ Nn(𝝁,Σ) be a multivariate normal latent “signal,” and, given S, con-
sider independent Poisson distributed observations Zi|S = s ∼ P(𝜆i), where
log 𝜆i = si, i = 1, . . . ,n. Show that the first two moments of the observations
and signal are given by

E(Zi) = exp
(
𝜇i +

1
2
𝜎ii

)
= gi, say,

E(Z2
i ) = g2

i exp
(
𝜎ii
)
+ gi, var(Zi) = g2

i
{

exp
(
𝜎ii
)
− 1

}
+ gi,

E(ZiZj) = gigj exp
(
𝜎ij
)
, cov(Zi,Zj) = gigj

{
exp

(
𝜎ij
)
− 1

}
, i ≠ j,

E(Si) = 𝜇i, var(Si) = 𝜎ii,

E(SiZj) =
(
𝜇i + 𝜎ij

)
gi, cov(Si,Zj) = 𝜎ijgj,

where i, j = 1, . . . ,n. Note that the formulas for E(ZiZj) and cov(Zi,Zj) are
valid only for i ≠ j; the formula for var(zi) includes a nugget-like term gi not
present for the covariances. On the other hand, the formulas for E(SiZj) and
cov(Si, Zj) are valid for all i, j = 1, . . . ,n.
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Hint: Using the tower law (Exercise 4.1), write E(Zi) = E[E(Zi|Si)] where
the inner expectation is over the conditional distribution of Zi given Si and
the outer expectation is over the marginal distribution of Si. Proceed simi-
larly with the other two expectations. Use the results from Exercise 8.1 and
Section 8.2 for the moments of the log-normal distribution.

8.3 In the same setting as Exercise 8.2, suppose it is desired to predict a new
signal S0 given observations Z = [Z1, . . . ,Zn]T . Here, it is assumed that
[S0,S

T]T are jointly multivariate normal with E(S0) = 𝜇0, var(S0) = 𝜎00 and
cov(S0, Si) = 𝜎0i, i = 1, . . . ,n. The best linear predictor takes the form

Ŝ0 = 𝜇0 + cov(S0, Z)T var(Z)−1(Z − E(Z))

with prediction variance

𝜎00 − cov(S0,Z)T var(Z)−1 cov(Z, S0).

Show that cov(S0, Z) and var(Z) have elements

cov(S0, Zi) = 𝜎0igi,

cov(zi, zj) =

{
gi gj

{
exp

(
𝜎ij
)
− 1

}
, i ≠ j,

g2
i

{
exp

(
𝜎ii
)
− 1

}
+ gi, i = j,

for i ≠ j = 1, . . . ,n and where gi = exp(𝜇i +
1
2
𝜎ii).

8.4 Suppose the signal S in Exercise 8.2 comes from a stationary Gaussian pro-
cess with mean 𝜇 and covariance function 𝜎(h), observed at sites t1, . . . , tn,
with 𝜎(0) = 𝜎

2. Show that the elements of the observation vector Z have a
constant mean and covariances, which can be expressed in terms of a new
covariance function 𝜓(h) and a nugget effect as

cov(Zi,Zj) = c1𝜓(ti − tj) + c2I[i = j],

where 𝜓(h) = exp(𝜎(h)) − 1 and where the indicator function I[i = j] is 1 if
i = j and 0 otherwise. What are the values of c1 and c2? What happens if 𝜎2

is small so that exp(𝜎(h)) − 1 ≈ 𝜎(h) for all h?

8.5 (Mardia and Goodall, 1993). Using the notation from Section 8.5, assume the
tensor product model (8.4) for processes X1(t), . . . ,Xq(t). Given data on each
process at sites, t1, . . . , tn, confirm that the covariance matrix of the data can
be written in the form Σ∗∗ = A ⊗ Σ. Show that in the formula for the GLS
estimate of 𝝁∗ and for the kriging predictor x∘ that the matrix A cancels out,
and these quantities are the same as if GLS estimation and prediction were
carried out on each variable separately.
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8.6 Consider a tensor product covariance model for a zero-mean bivariate sta-
tionary spatial process on ℝ1 where

cov(Xu(t),X𝑣
(t + h)) = cu𝑣 exp(−0.5|h|), u, 𝑣 = 1, 2, h ∈ ℝ1

,

and
C =

[
1 b
b 1

]
, b = 0.7.

Suppose the following observations are available, x1(0), x1(1), x2(0), and
that we wish to predict the value of x2(1). Show that the joint covariance
function of X1(0), X1(1), X2(0), X2(1) is

Σ =

⎡
⎢
⎢
⎢
⎢⎣

1 a b ab
a 1 ab b
b ab 1 a

ab b a 1

⎤
⎥
⎥
⎥
⎥⎦

, a = e−0.5
, b = 0.7.

Show that the predictor of x2(1) using just the value x2(0) from the x2-process
is given by x̂2(1) = ax2(0) with prediction variance 1 − a2 = 0.632.
Show that the predictor of x2(1) using x2(0) together with the values x1(0),
x1(1) from the x1-process is given by x̂2(1) = −0.425x1(0) + 0.700x1(1) +
0.607x2(0) with prediction variance 0.322. That is, the prediction variance
drops by nearly half by including the x1-data in the prediction process.

8.7 Suppose the mean of the random field in Example 8.1 is assumed known.
Show that the kriging variance takes the same form as in (8.15), but without
the final term. Deduce that the kriging variance is still maximized at t = 0,
so that the optimal location of the new site is unchanged.

8.8 This exercise generalizes Example 8.1 in two ways. First, the stationary
covariance function 𝜎(h) is replaced by a limiting intrinsic covariance
function. If the range parameter 𝜑 tends to ∞ and 𝜎(h) is multiplied by 𝜑,
then a limiting IRF-0 random field is obtained with an intrinsic covariance
function given by the linear scheme 𝜎I(h) = −|h|. Second, the number of
sites is increased from n = 2 sites to n ≥ 2 sites, located at t1 < · · · < tn. It
was shown in Eq. (7.6) that the kriging variance is given by

𝜎
2
K(t) =

⎧
⎪
⎨
⎪⎩

2(ti+1 − t)(t − ti), ti ≤ t ≤ ti+1,

2(t1 − t), t < t1,

2(t − tn), t > tn.
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Thus, 𝜎2
K(t) is quadratic on each interval between successive points. Show

that on the interval ti ≤ t ≤ ti+1, the kriging variance is maximized at
t = (ti + ti+1)∕2 with kriging variance 𝜎2

K(t) = (ti+1 − ti)2∕2. Hence, deduce
that if the intervals have different lengths, the new monitoring station
should go at the midpoint of the longest interval.
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Appendix A

Mathematical Background

Spatial analysis uses range of ideas across mathematics. Many of the ideas used
in the book are collected here for easy reference. Different spaces of functions
and sequences are summarized in Sections A.1–A.2. Tools from matrix algebra are
given in Section A.3. The Fourier transform and related concepts useful for circu-
lant and lattice processes are given in Sections A.4–A.11. The final two sections
A.12 and A.13 are different in character, They deal with the theory behind maxi-
mum likelihood estimation, especially as it relates to Gaussian random fields

A.1 Domains for Sequences and Functions

Several classes of sequences and functions are of interest in this book. This
appendix gathers some key facts and properties about these classes and describes
their Fourier transforms (FTs). In general, a function is written in the form f (u)
as u varies in a continuous domain, and a sequence is written in the form fk as k
varies in a discrete domain. Four important domains are as follows:

(a) The d-dimensional Euclidean space ℝd. A typical element is a vector of real
numbers, written u = (u[1], . . . ,u[d]).

(b) The d-dimensional integer lattice, ℤd. A typical element is a vector of integers,
written k = (k[1], . . . , k[d]).

(c) The d-dimensional continuous torus Sd
1 . A typical element is a vector of angles,

written u = (u[1], . . . ,u[d]). To describe the continuous torus, start with
dimension d = 1 and recall the circle S1 denotes the set of angles, i.e. the set
of real numbers mod 2𝜋. For u, 𝑣 ∈ ℝ, write

u = 𝑣 mod 2𝜋 (A.1)

if u − 𝑣 is an integer multiple of 2𝜋. Thus, the two real numbers u and u + 2𝜋
represent the same angle. It is often convenient to represent an angle as a real

Spatial Analysis, First Edition. John T. Kent and Kanti V. Mardia.
© 2022 John Wiley & Sons Ltd. Published 2022 by John Wiley & Sons Ltd.
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number lying in a specific interval of length 2𝜋, e.g. [0,2𝜋) or [−𝜋, 𝜋), with
opposite ends identified with one another.
For d > 1, the continuous torus is a direct product of circles. A block version
of the modulo operation can also be used in this setting. For real vectors u, 𝑣 ∈
ℝd, use the notation

u = 𝑣 Mod 2𝜋 (A.2)

to mean
u[𝓁] = 𝑣[𝓁] mod 2𝜋, 𝓁 = 1, . . . , d, (A.3)

so that u and 𝑣 represent the same vector of angles in Sd
1 .

(d) The d-dimensional lattice torus.

ℤd
N = {k ∈ ℤd ∶ 0 ≤ k[𝓁] ≤ n − 1, 𝓁 = 1, . . . , d}, (A.4)

where N denotes a multi-index of orders N = (n[1], . . . ,n[d]). A typical
element of ℤd

N is a vector of cyclic integers, written k = (k[1], . . . , k[d]), 0 ≤

k[𝓁] ≤ n[𝓁] − 1, 𝓁 = 1, . . . , d.
To describe the lattice torus in more detail, start with dimension d = 1. Given a
“period” n ≥ 2, the discrete circle 1

n = n denotes the group of cyclic integers
mod n. Thus, the two integers k and k + n represent the same cyclic integer,
i.e. k = (k + n) mod n. It is often convenient to represent a cyclic integer as
an integer lying in a specific set of n consecutive integers, e.g. 0, . . . ,n − 1 or
1, . . . ,n, with the points 0 and n identified with one another.
For d > 1, the lattice torus is a direct product of discrete circles. The mod-
ulo operation can also be extended to this setting. Given a multi-index of
orders N = (n[1], . . . ,n[d]) and integer vectors j, k ∈ ℤd, use the notation
j = k Mod N to mean

j[𝓁] = k[𝓁] mod n[𝓁], 𝓁 = 1, . . . , d, (A.5)

so that j and k represent the same vector of cyclic integers.

Thus, a domain can be continuous or discrete, and can be unbounded or peri-
odic. Table A.1 sets out the choices as a two-way table.

Table A.1 Types of domain.

Unbounded Periodic

Continuous ℝd Sd
1

Discrete ℤd ℤd
N
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A.2 Classes of Sequences and Functions

For each domain, it is useful to define several classes of sequences or functions,
respectively, satisfying various types of regularity condition.

A.2.1 Functions on the Domain ℝd

● L1(ℝd) = {f (u), u ∈ ℝd ∶ ∫ |f (u)| < ∞}, the space of integrable functions.
● L2(ℝd) = {f (u), u ∈ ℝd ∶ ∫ |f (u)|2 <∞}, the space of square-integrable

functions.
● Cb(ℝd) = {f (u), u ∈ ℝd ∶ f (u) is a bounded continuous function}.
● C0(ℝd) = {f (u), u ∈ ℝd ∶ f (u) is continuous and f (u) → 0 as |u|→ ∞}.
● B(ℝd) = {f (u), u ∈ ℝd ∶ f (u) is a bounded measurable function }.
● (ℝd) = {f (u), u ∈ ℝd ∶ f (u) is infinitely differentiable and f (u) and all of its

partial derivatives of all orders are rapidly vanishing at infinity}.
● (ℝd) = {f (u), u ∈ ℝd ∶ f (u) is infinitely differentiable and has compact

support}.
A function f (u) is said to be rapidly vanishing at infinity if it tends to 0 faster than

any power of u, that is, if

|u|nf (u) → 0 as |u|→ ∞

for any n ≥ 0, where |u|2 = u[1]2 + · · · + u[d]2.
In addition to this list of function spaces, add a subscript b, c or 0 on a class

of functions to restrict the functions to be bounded, to have compact support, or
to vanish at infinity, respectively, where relevant. For example, L1,b(ℝd) denotes
the L1 functions that are bounded and L2,c(ℝd) denotes the L2 functions that have
compact support. The spaces Cb(ℝd) and C0(ℝd) are important enough to be given
entries in the above list. Note the set inclusions

Cc(ℝd) ⊂ C0(ℝd) ⊂ Cb(ℝd)

since a function with compact support vanishes for large |u|, and since a continu-
ous function that tends to 0 for large u must be bounded. Also note that (ℝd) =
c(ℝd).

Neither L1(ℝd) nor L2(ℝd) is a subset of the other. The best that can be said is

L1,b(ℝd) ⊂ L2,b(ℝd) and L2,c(ℝd) ⊂ L1,c(ℝd).

A.2.2 Sequences on the Domain ℤd

● L1(ℤd) = {fk, k ∈ ℤd ∶
∑|fk| < ∞}, the space of summable sequences.

● L2(ℤd) = {fk, k ∈ ℤd ∶
∑

f 2
k < ∞}, the space of square summable sequences.
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● B(ℤd) = {fk, k ∈ ℤd ∶ max |fk| <∞}, the space of bounded sequences.
● B0(ℤd) = {fk, k ∈ ℤd ∶ fk → 0 as |k|→ ∞}.

Note the set inclusions

L1(ℤd) ⊂ L2(ℤd) ⊂ B0(ℤd) ⊂ B(ℤd).

A.2.3 Classes of Functions on the Domain Sd
1

● L1(Sd
1) = {f (u), u ∈ Sd

1 ∶ ∫ |f (u)| <∞}, the space of integrable functions.
● L2(Sd

1) = {f (u), u ∈ Sd
1 ∶ ∫ |f (u)|2 < ∞}, the space of square-integrable

functions.
● C(Sd

1) = {f (u), u ∈ Sd
1 ∶ f (u) is a (bounded) continuous function}.

● B(Sd
1) = {f (u), u ∈ Sd

1 ∶ f (u) is a bounded measurable function}.
Note that since Sd

1 is compact, a continuous function is automatically bounded.
Further, the L2 functions are a subset of the L1 functions; hence

C(Sd
1) ⊂ B(Sd

1) ⊂ L2(Sd
1) ⊂ L1(Sd

1). (A.6)

A.2.4 Classes of Sequences on the Domain ℤd
N

, Where
N = (n[1], . . . , n[d])

In this setting, there is no need to impose regularity conditions. A sequence of real
numbers indexed by ℤd

N is just a finite set of numbers.

A.3 Matrix Algebra

A.3.1 The Spectral Decomposition Theorem

A fundamental theorem in matrix algebra says that an n × n symmetric matrix A
(i.e. AT = A) can be decomposed as

A = ΓΛΓT
, (A.7)

where Γ is an n × n orthogonal matrix (so Γ−1 = ΓT) whose columns are eigenvec-
tors of A and where the vector of eigenvalues 𝝀 = (𝜆1, . . . , 𝜆n)T has been stored as a
diagonal n × n matrixΛ = diag(𝝀). In particular, (A.7) implies AΓ = ΓΛΓTΓ = ΓΛ,
which can be written columnwise as

A𝜸(k) = 𝜆k𝜸(k), k = 1, . . . ,n,

where 𝜸(k) is the kth column of Γ, thus confirming that A takes the eigenvector
𝜸(k) to a multiple of itself, where the multiple is the eigenvalue 𝜆k. A symmetric
matrix A is called positive definite (p.d.) if all the eigenvalues are positive, 𝜆k >

0, k = 1, . . . ,n. Similarly, A is called positive semidefinite (p.s.d.) if all the eigen-
values are nonnegative, 𝜆k ≥ 0, k = 1, . . . ,n.
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If A is symmetric and positive definite, then the symmetric positive definite matrix
square root of A is defined by

A1∕2 = ΓΛ1∕2ΓT
, (A.8)

where Λ1∕2 = diag(𝜆1∕2
k ) is a diagonal matrix containing the square roots of the

eigenvalues. It can be easily checked that A1∕2A1∕2 = A, and that the inverse of
A1∕2 is

A−1∕2 = ΓΛ−1∕2ΓT
.

There is also a related decomposition for complex matrices. An n × n Hermitian
matrix A (A∗ = A) can be decomposed as

A = ΓΛΓ∗
, (A.9)

where Γ is now a complex-valued unitary matrix (Γ−1 = Γ∗) whose columns are
eigenvectors of A, andΛ = diag(𝜆k) is a diagonal matrix of real-valued eigenvalues.
Here, A∗ = ĀT denotes the complex conjugate of the transpose of the matrix A.

A.3.2 Moore–Penrose Generalized Inverse

Let A be a symmetric matrix with spectral decomposition (A.7). When some of the
eigenvalues are 0, the inverse of A does not exist. However, it is possible to define a
restricted sort of inverse by taking the reciprocals of the nonzero eigenvalues and
leaving the zero eigenvalues unchanged. Suppose p of the eigenvalues are nonzero.
Partition the diagonal eigenvalue matrix as

Λ =
[
Λ1 0
0 Λ2

]
,

where Λ1 = diag(𝜆1, . . . , 𝜆p) contains the nonzero eigenvalues and Λ2 = 0 con-
tains the zero eigenvalues. Similarly, partition the eigenvector matrix Γ = [Γ1 Γ2].
Then the spectral decomposition can be expressed in reduced form

A = Γ1Λ1ΓT
1 =

p∑
j=1
𝜆j𝜸(j)𝜸

T
(j). (A.10)

The Moore–Penrose generalized inverse of A is defined by

A− = Γ1Λ−1
1 ΓT

1 =
p∑

j=1
𝜆
−1
j 𝜸(j)𝜸

T
(j). (A.11)

It is straightforward to check that AA−A = A and A−AA− = A−.
If A can be represented in partitioned form as

A =
[

0 0
0 A22

]
, (A.12)
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where A22 is nonsingular, then the Moore–Penrose generalized inverse takes the
simple form

A− =
[

0 0
0 A−1

22

]
. (A.13)

A.3.3 Orthogonal Projection Matrices

Let F be an n × p matrix, where p ≤ n, and write

F =
[
f (1) . . . f (p)

]

in terms of its columns. Suppose F has full rank, which in this setting means that
the columns of F are linearly independent of one another; that is, any nontriv-
ial linear combination of the columns cannot vanish. More specifically, if 𝜶 is a
nonzero p-vector of coefficients, then

F𝜶 =
p∑

j=1
𝛼j f (j) ≠ 0.

Set B = FTF, a p × p matrix. Then B must be a positive definite since if 𝜶 ≠ 0,
then 𝜶TB𝜶 = 𝜷T𝜷 =

∑p
j=1 𝛽

2
j > 0, where 𝜷 = F𝜶.

Define two matrices G = FB−1∕2 and PF = FA−1FT = GGT . Then, F and G have
the same column space and PF is a symmetric matrix. Further, it is straightforward
to verify the following properties:

(a) GTG = Ip so the columns of G are orthonormal.
(b) P2

F = PF , i.e. PF is idempotent.
(c) PFF = F, so PF leaves the columns of F unchanged.
(d) If x is an n-vector orthogonal to F, i.e. FTx = 0, then PFx = 0.

Since the columns of G are orthonormal, the definition of PF is actually a
reduced spectral decomposition, PF = GGT = GΛGT , where Λ = Ip as in (A.10).
In particular, the eigenvalues of PF are 1 (with multiplicity p) and 0 (with
multiplicity n − p). The eigenvectors corresponding to the eigenvalue 1 are given
by the columns of G, or equivalently by the columns of F.

Properties (c) and (d) mean that PF can be described as an orthogonal projection
matrix on to the column space of F.

A.3.4 Partitioned Matrices

Let A(n × n) be an invertible symmetric matrix and suppose that it and its inverse
have been partitioned compatibly as

A =
[

A11 A12
A21 A22

]
, A−1 =

[
A11 A12

A21 A22

]
,
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where the diagonal blocks are square matrices. Then, provided the relevant
inverses exist, the blocks of A−1 can be found from the blocks of A by

A11 = (A11 − A12A−1
22 A21)−1

,

A22 = (A22 − A21A−1
11 A12)−1

, (A.14)

A12 = (A21)T = −A−1
11 A12A22 = −A11A12A−1

22 .

This result is easily checked by multiplying out AA−1 and confirming that the
result is the identity matrix. It is often convenient to use the shorthand notation

A11.2 = A11 − A12A−1
22 A21, A22.1 = A22 − A21A−1

11 A12. (A.15)

In particular, using this notation, it is straightforward to show that the determinant
of A can be written as

|A| = |A11| |A22.1| = |A22| |A11.2|, (A.16)

by noting that

BABT =
[

A11 0
0 A22.1

]
, where B =

[
I 0

−A21A−1
11 I

]

and recalling that a lower triangular matrix with ones along the diagonal has deter-
minant 1.

The representation (A.14) is helpful in describing the multivariate normal dis-
tribution. Let a random vector x follow a multivariate normal distribution with
mean vector 𝝁 and covariance matrix Σ. Partition x into two blocks

x =
[

x1
x2

]

of dimensions p1 and p2, and similarly partition 𝝁 and Σ. Then, the following
results hold:

(a) The marginal distribution of x1 is multivariate normal,

x1 ∼ Np1

(
𝝁1,Σ11

)
. (A.17)

(b) The conditional distribution of x1 given x2 = x0
2 is multivariate normal,

x1|x2 = x0
2 ∼ Np1

(
𝝁1 + Σ12Σ−1

22
(

x0
2 − 𝝁2

)
,Σ11.2

)
. (A.18)

A.3.5 Schur Product

Let A = (aij) and B = (bij) be two n × n symmetric matrices. The elementwise prod-
uct of the two matrices, C = (cij) with elements cij = aijbij is also called the Schur
product of A and B and written C = A#B. Then, the following properties hold:
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If A and B are positive semidefinite, then C is positive semidefinite. Similarly,
if A and B are positive definite, then C is positive definite.

To prove this result, write A using the spectral decomposition theorem in
Section A.3.1,

A = ΓΛΓT =
n∑

k=1
𝜆k𝜸(k)𝜸

T
k),

so that C =
∑
𝜆k{(𝜸(k)𝜸T

k))#B}. Let d be a coefficient vector and consider the
quadratic form

dTCd =
∑

𝜆kdT{(𝜸(k)𝜸T
k))#B}d =

∑
𝜆kgT

(k)Bg(k),

where g(k) has elements gjk = 𝛾jkdj, j = 1, . . . ,n. Since Γ is an orthogonal matrix,
its rows are unit vectors. Hence, for every row j, there is at least one choice of k for
which 𝛾jk ≠ 0. If d ≠ 0, there is at least one index j such that dj ≠ 0, and so for this
value of j there is at least one choice of k for which gjk = 𝛾jkdj ≠ 0. That is, g(k) ≠ 0
for at least one index k.

If A and B are p.s.d., then 𝜆k ≥ 0 and gT
(k)Bg(k) ≥ 0 for all k. Hence, dTCd ≥ 0 and

so C is p.s.d. If A and B are p.d., then 𝜆k > 0 for all k and gT
(k)Bg(k) > 0 for at least

one k. Hence, dTCd > 0 and so C is p.d.
A related result states that if 𝜎1(s, t) and 𝜎2(s, t) are positive (semi)definite

functions of the sites s, t ∈ ℝd, then the product 𝜎1(s, t)𝜎2(s, t) is also positive
(semi)definite.

A.3.6 Woodbury Formula for a Matrix Inverse

This identity describes how the inverse of a matrix changes if the matrix is altered.
It is known by a variety of names, including the Sherman–Morrison–Woodbury
formula, or just the Woodbury formula (see, e.g. Mardia et al., 1979, p. 458,
equation (A.2.4f)). Let B be an n × n matrix, which can be written as

B = A + UCV T
, (A.19)

where A(n × n), U(n × k), V(n × k), and C(k × k) are compatibly dimensioned.
Then, the inverse of B can be expanded as

B−1 = A−1 − A−1UG−1V TA−1
, G = C−1 + V TA−1U, (A.20)

assuming A, C, and G are invertible. The proof is straightforward. Just substitute
(A.19) and (A.20) for B and B−1, and check that BB−1 = I.

The formula is most useful when k ≪ n because, once A−1 has been found, it is
only necessary to compute the inverse of a k × k matrix to find the inverse of B.
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A.3.7 Quadratic Forms

Consider minimizing the quadratic form

Q = Q(𝜷) = (x − F𝜷)TA(x − F𝜷),

over a parameter vector𝜷 ∈ ℝq, where x ∈ ℝn is a data vector, A(n × n) is a positive
definite matrix, and where F(n × q) is a coefficient matrix. Further, suppose F can
be partitioned as

F =
[

F1
0

]
,

where F1(q × q) is nonsingular, and similarly partition

x =
[

x1
x2

]
, A =

[
A11 A12
A21 A22

]
.

Differentiating Q with respect to 𝜷, setting the derivative to 0, and solving for 𝜷
yields

𝜷̂ = (FT
1 A11F1)−1(FT

1 A11x1 + FT
1 A12x2) = F−1

1 x1 + F−1
1 A−1

11 A12x2,

so that

F𝜷̂ =
[

x1 + A−1
11 A12x2
0

]
.

Substituting 𝜷̂ into Q and simplifying yields the minimized quadratic form

Q(𝜷̂) = xT
2 A22.1x2, (A.21)

where A22.1 is given in (A.15). If A = Σ−1 is the inverse of a covariance matrix Σ,
then from (A.14) A22.1 = Σ−1

22 can also be written as the inverse of the lower-right
block of Σ.

A version of this result is also available when F(n × q) cannot be partitioned, but
still has full column rank q. In this case, let G(n × (n − q)) be a column orthonor-
mal matrix, which is orthogonal to F, so that

GTG = In−q, GTF = 0.

Then writing ΣGG = GTΣG and xG = GTx, the minimized quadratic form is given
by

Qmin = Q(𝜷̂) = xT
GΣ

−1
GGxG. (A.22)

A.3.8 Toeplitz and Circulant Matrices

Spatial statistics often involves data {xk, k ∈ D} on a rectangular set of sites

D = {k ∈ ℤd ∶ 1 ≤ k[𝓁] ≤ n[𝓁], 𝓁 = 1, . . . , d}. (A.23)
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For practical work, it is helpful to list the sites in lexicographic order, say, where the
final index varies most quickly. This ordering was introduced in Section 4.8.1. If
d = 2 and the sites are listed as (k[1], k[2]), k[1] = 1, . . . ,n[1], k[2] = 1, . . . ,n[2],
then the lexicographic order is

(1,1), . . . , (1,n[2]), (2,1), . . . , (2,n[2]), . . . (n[1], 1), . . . , (n[1],n[2]).

Thus, the data can be represented by a vector x with elements xk, where the sites
k = (k[1], . . . , k[d]) are listed in lexicographic order.

The same ordering can be used to define matrices indexed by the sites in D.
Suppose a |D| × |D| matrix A has elements ajk where the rows j = (j[1], . . . , j[d])
and columns k = (k[1], . . . , k[d]) are listed in lexicographic order.

This |D| × |D|matrix A is called Toeplitz if its elements can be written

ajk = aj−k, j, k ∈ D,

so that ajk just depends on the difference j − k between the sites. Sometimes, the
name block Toeplitz is used for dimensions d > 1. Toeplitz matrices arise naturally
as covariance matrices for data following a stationary random field model.

Similarly, a |D| × |D|matrix A is called circulant if its elements can be written

ajk = aj−k Mod N, j, k ∈ D,

so that ajk just depends on the difference j − k mod N between the sites. Some-
times, the name block circulant is used for dimensions d > 1. Circulant matrices
play an important role in the discrete Fourier transform (DFT); see Section A.7.3.

A.3.9 Tensor Product Matrices

Consider two matrices A = (aj[1],k[1]) (n[1] × n[1]) and B = (bj[2],k[2]) (n[2] × n[2]).
The tensor or Kronecker product takes the form

A⊗ B =
⎡
⎢
⎢⎣

a11B · · · a1,n[1]B
⋮ ⋱ ⋮

an[1],1B · · · an[1],n[1]B

⎤
⎥
⎥⎦
.

Then, for a D-dimensional vector x,

xT(A ⊗ B)x =
n[1]∑

j[1],k[1]=1

n[2]∑
j[2],k[2]=1

xj[1], j[2] aj[1],k[1] bj[2],k[2] xk[1],k[2].

This construction for d = 2 carries over naturally to higher dimensions.
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A.3.10 The Spectral Decomposition and Tensor Products

The spectral decomposition carries over naturally to tensor products. Here
are the details for a d = 2-fold product. If A(1) = Γ(1)Λ(1)Γ(1)T(n[1] × n[1]) and
A(2) = Γ(2)Λ(2)Γ(2)T(n[2] × n[2]) are two symmetric matrices with the specified
spectral decompositions, then the tensor product has spectral decomposition

A(1)
⊗ A(2) = (Γ(1)

⊗ Γ(2))(Λ(1)
⊗ Λ(2))(Γ(1)

⊗ Γ(2))T
.

That is, the eigenvalues 𝜆(1)k[1]𝜆
(2)
k[2] are products of the individual eigenvalues, with

corresponding eigenvectors 𝜸(1)(k[1]) ⊗ 𝜸
(2)
(k[2]), 1 ≤ k[1] ≤ n[1], 1 ≤ k[2] ≤ n[2].

A.3.11 Matrix Derivatives

Let Σ = Σ(𝜃) be an n × n symmetric positive definite matrix whose elements 𝜎ij =
𝜎ij(𝜃) are functions of a scalar parameter 𝜃. Write Σ′ = (𝜎′ij) to be the matrix of
derivatives where 𝜎′ij = d𝜎ij∕d𝜃.

Then the following results hold.

d log |Σ|∕d𝜃 = tr(Σ−1Σ′), (A.24)

dΣ−1∕d𝜃 = −Σ−1Σ′Σ−1
. (A.25)

It is also useful to consider scalar functions of a vector variable. For example,
consider the quadratic form

f (u) = uTAu, (A.26)

where A is a symmetric n × n given matrix and u is an n-vector. The derivative of
f with respect to u is the column vector

df (u)
du

= 2Au. (A.27)

Similarly, the second derivative

d2f (u)
duduT = 2A (A.28)

is an n × n matrix.

A.4 Fourier Transforms

Here is a list of the Fourier transforms in the four different settings of Section A.2.

Setting 1 f̃ (𝑣) =
∫ℝd

exp(i𝑣Tu)f (u) du, (A.29)

Setting 2 f̃ (𝑣) =
∑

k∈ℤd

exp(i𝑣Tk)fk, (A.30)
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Setting 3 f̃ j = ∫Sd
1

exp(ijTu)f (u) du, (A.31)

Setting 4 f̃ j = |N|−1∕2
∑

k∈ℤd
N

exp

{
2𝜋i

d∑
𝓁=1

j[𝓁]k[𝓁]∕n[𝓁]

}
fk. (A.32)

The exponents involve the inner products between two d-dimensional vectors, e.g.
𝑣

Tu =
∑d

𝓁=1 𝑣[𝓁]u[𝓁]. In Setting 4, |N| is shorthand for |N| = n[1] × · · · × n[d].
Here is a list of the inverse Fourier transforms (IFTs) in the four different

settings.

Setting 1 f (u) = 1
(2𝜋)d ∫ℝd

exp(−i𝑣Tu)f̃ (𝑣) d𝑣, (A.33)

Setting 2 fk = 1
(2𝜋)d ∫Sd

1

exp(−i𝑣Tk)f̃ (𝑣) d𝑣, (A.34)

Setting 3 f (u) = 1
(2𝜋)d

∑

ℤd

exp(−ijTu)f̃ j, (A.35)

Setting 4 fk = |N|−1∕2
∑

j∈ℤd
N

exp

{
−2𝜋i

d∑
𝓁=1

j[𝓁]k[𝓁]∕n[𝓁]

}
f̃ j. (A.36)

In each setting, the Fourier transform takes a function or sequence on a primary
domain to a corresponding function or sequence on a dual domain. A function
on the primary domain is written f (u); a sequence is written fk. Similarly, a function
on the dual domain, i.e. the Fourier domain, is written f̃ (𝑣); a sequence is written
f̃ j. For the standard Fourier transform, both domains are ℝd. For other settings,
the domains are set out in Table A.2.

The equation numbers giving the Fourier transforms and IFTs are listed
in Table A.2. In the literature, the definitions of the FT appear in several versions,
depending on whether +i or −i is used and where factors of 2𝜋 appear. For the ver-
sions given here in Settings 1–3, the IFT is effectively the same as the Fourier
transform for the dual domain, with two small differences: the substitution of −i
for i and the introduction of the scaling factor 1∕(2𝜋)d.

Table A.2 Domains for Fourier transforms and inverse Fourier transforms in various
settings.

Setting Primary Dual Fourier Inverse Fourier
domain domain transform transform

1 u ∈ ℝd
𝑣 ∈ ℝd (A.29) (A.33)

2 k ∈ ℤd
𝑣 ∈ Sd

1 (A.30) (A.34)
3 u ∈ Sd

1 j ∈ ℤd (A.31) (A.35)
4 k ∈ ℤd

N j ∈ ℤd
N (A.32) (A.36)
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However, in Setting 4, it is convenient to change the convention. The FT and IFT
still differ in the replacement of i by−i, but there is no factor of 1∕(2𝜋)d. For further
discussion, see Section A.7.

In order for the Fourier transform to exist, it is necessary to impose some regu-
larity conditions on the function or sequence.

(i) The simplest condition to impose is that f lies in L1(ℝd), L1(ℤd), or L1(Sd
1)

for Settings 1,2,3, respectively, of Table A.2. No regularity conditions are
needed for Setting 4 since there are only a finite number of terms in the sum.

(ii) It is also possible to extend the definition of the Fourier transform to all
square-integrable functions L2(ℝd) and square summable sequences
L2(ℤd) for Settings 1 and 2 of Table A.2, respectively. In Setting 3, since
L2(Sd

1) ⊂ L1(Sd
1), no extension is needed.

(iii) In the continuous Settings 1 and 3, the definition of the Fourier transform
can also be extended by replacing the function f (u) by a finite measure 𝜇(du),
say. In particular, when 𝜇(du) is a probability measure, the Fourier trans-
form is also known as the the characteristic function of the measure. More
generally, when 𝜇(du) is a finite nonnegative measure, the Fourier transform
provides a way of generating valid positive definite covariance functions; see
Section A.5.

A.5 Properties of the Fourier Transform

For notational simplicity, the properties in this section are described for Setting 1.
But the same properties hold in other settings.

(a) Even functions. If f is a real-valued even function, i.e. f (u) = f (−u), then f̃ is
real-valued. This property is a simple result of the identity

eiu + e−iu = 2 cos u.

(b) Nonnegative functions and positive semidefinite Fourier Transforms. If a
real-valued function f is nonnegative ( f (u) ≥ 0 for all u), then its Fourier
transform has the property of positive semidefiniteness; that is, for all integers
m ≥ 1 and all real or complex coefficients 𝛼1, . . . , 𝛼m and all values for
the dual variables 𝑣1, . . . , 𝑣m, the following quadratic form is nonnegative,∑m

r,s=1 𝛼r𝛼s f̃ (𝑣r − 𝑣s) ≥ 0. This property holds since
m∑

r,s=1
𝛼r𝛼s f̃ (𝑣r − 𝑣s) = ∫ℝd

m∑
r,s=1

𝛼r𝛼s exp{i(𝑣r − 𝑣s)Tu}f (u) du

=
∫ℝd

|||||

m∑
r=1
𝛼r exp(i𝑣T

r u)
|||||

2

f (u) du ≥ 0.
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(c) Reflection about the origin. Given a complex-valued function f (u), define the
reflected function by f̌ (u) = f (−u) (in practice, f (u) will typically be real-valued
so that the complex conjugate is not needed). Then, the Fourier transform of
the reflected function is the complex conjugate of the Fourier transform of the
original function,

̃̌f (𝑣) = f̃ (𝑣).

In particular, if f (u) = f̌ (u), then f̃ (𝑣) is real-valued.
(d) Convolution. Given two functions f (u) and g(u) in L1, the convolution is defined

by f ∗ g = h, say, where

h(u) =
∫ℝd

f (𝑤)g(u −𝑤) d𝑤 =
∫ℝd

f (u −𝑤)g(𝑤) d𝑤.

The convolution also lies in L1, with FT given by the product of the individual
FTs

h̃(𝑣) = f̃ (𝑣)g̃(𝑣).

In particular, if g(u) = f̌ (u), then

h̃(𝑣) = f̃ (𝑣)f̃ (𝑣) = |f̃ (𝑣)|2 ≥ 0

is a nonnegative function of 𝑣.
(e) Differentiation. Given a function 𝜑(u), let

𝜓(u) = Δ𝜑(u) = (𝜕2∕𝜕u[1]2 + · · · + 𝜕2∕𝜕u[d]2)𝜑(u)

denote the Laplacian of 𝜑. If 𝜑(u) is sufficiently smooth and integrable, then
the Fourier transform of 𝜓 is related to the Fourier transform of 𝜑 by

𝜓̃(𝑣) =
∫

exp(i𝑣Tu)𝜓(u)du =
∫

exp(i𝑣Tu)Δ𝜑(u) du

= −
∫

(𝑣[1]2 + · · · + 𝑣[d]2) exp(i𝑣Tu)𝜑(u) du

= −|𝑣|2𝜑̃(𝑣), (A.37)

using integration by parts twice. A convenient sufficient condition on𝜑 is that
it lies in the space  defined in Section A.2.1.

(f) Parseval relationship. Given a function 𝜑(u) in the primary domain with a
Fourier transform 𝜑̃(𝑣) and a function 𝜓(𝑣) in the dual domain with a Fourier
transform 𝜓̃(u), the Parseval relationship states that

∫
𝜑̃(𝑣)𝜓(𝑣)d𝑣 =

∫
𝜑(u)𝜓̃(u)du =

∫ ∫
𝜑(u)𝜓(𝑣) exp{i𝑣Tu} du d𝑣. (A.38)

(g) Interpretation. In the application to spatial analysis, a stationary covariance
function (a function of spatial lag denoted h), can be represented as the
Fourier transform of a spectral density (a function of frequency denoted 𝜔).
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The frequency domain generally viewed as the primary domain and the
spatial domain as the dual domain. For example, in Setting 1, the covariance
function for a continuous stationary spatial process {X(t) ∶ t ∈ ℝd} takes the
form

𝜎(h) =
∫ℝd

exp(ihT
𝜔)f (𝜔) d𝜔 =

∫ℝd
cos(hT

𝜔)f (𝜔) d𝜔, h ∈ ℝd
, (A.39)

where f (𝜔) is an even, nonnegative, integrable function.
Similarly, in Setting 2 for a lattice stationary spatial process {Xt ∶ t ∈ ℤd}, the
covariance function takes the form

𝜎h =
∫(−𝜋,𝜋)d

exp(ihT
𝜔)f (𝜔) d𝜔 =

∫(−𝜋,𝜋)d
cos(hT

𝜔)f (𝜔) d𝜔, h ∈ ℤd
. (A.40)

(h) Lattice approximations for continuous processes. Consider a stationary spatial
process X(t), t ∈ ℝd with covariance function 𝜎(h) and spectral density f (𝜔)
satisfying (A.39). Consider approximating the continuous process by a sta-
tionary discrete process on the 𝛿-lattice 𝛿ℤd, where 𝛿 > 0 is a small resolution
parameter. Let X

𝛿
(t), t = k𝛿, k ∈ ℤd denote the approximating process and let

f
𝛿
(𝜔) denote its spectral density, with support on (−𝜋∕𝛿, 𝜋∕𝛿)d. The approxi-

mating covariance function is then

𝜎
𝛿
(h) =

∫(−𝜋∕𝛿,𝜋∕𝛿)d
exp{2𝜋hT

𝜔}f
𝛿
(𝜔) d𝜔, h = k𝛿, k ∈ ℤd

.

Here 𝛿 > 0 is a small resolution parameter. Provided the approximating spec-
tral densities can be uniformly bounded by an integrable function, i.e.

f
𝛿
(𝜔) ≤ g(𝜔) for all 𝜔 ∈ ℝd

,

for some function g satisfying ∫ℝd g(𝜔) d𝜔 <∞, the approximating process
converges to the original continuous process. Here are two natural ways to
construct an approximating spectral density.
(i) Aliasing. Define the approximating spectral density by combining aliased

frequencies

f
𝛿
(𝜔) =

∑

m∈ℤd

f (𝜔 + 𝛿−1m), 𝜔 ∈ (−𝜋∕𝛿, 𝜋∕𝛿)d
.

Under this approximation, the approximating covariance function on the
𝛿-lattice is identical to the original covariance function, restricted to the
𝛿-lattice, 𝜎

𝛿
(𝛿k) = 𝜎(𝛿k), k ∈ ℤd.

(ii) Truncation. Define

f
𝛿
(𝜔) = f (𝜔)I[𝜔 ∈ (−𝜋∕𝛿, 𝜋∕𝛿)d].

so that the approximating spectral density is the same as the original spec-
tral density on (−𝜋∕𝛿, 𝜋∕𝛿)d. In this case 𝜎

𝛿
(𝛿k) ≠ 𝜎(𝛿k).
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A.6 Generalizations of the Fourier Transform

If the integrability conditions on a function or sequence f are relaxed, then it is
still possible to define a Fourier transform, but the Fourier transform is no longer
a simple function. These considerations form the basis of the spectral representa-
tions for intrinsic and generalized random fields in Chapter 3, where the details
are spelled out.

(a) In particular, if f is allowed to be nonintegrable or nonsummable for large u
or k, respectively, in Settings 1 and 2, then the Fourier transform can still be
defined as a generalized function.

(b) On the other hand, nonintegrability of f (u) for u near 0 can be allowed in
Settings 1 and 3; the price paid is that the Fourier transform is no longer a
single-valued function, but is now an equivalence class of functions. A similar
extension holds in Settings 2 and 4 if the coefficient f0 for the constant term in
the Fourier transform is dropped from the sum.

A.7 Discrete Fourier Transform and Matrix Algebra

There is a link between the DFT in Setting 4 and the spectral decomposition
theorem for real symmetric (or complex Hermitian) matrices.

A.7.1 DFT in d = 1 Dimension

To understand the connection, start in dimension d = 1 with period n ≥ 2. Define
an n × n complex-valued matrix G = G(DFT,com)

n with entries

gjk = n−1∕2 exp{2𝜋ijk∕n}, 0 ≤ j, k ≤ n − 1. (A.41)

Then G is a unitary matrix, i.e.
GG∗ = In,

where ∗ denotes complex conjugate transpose, since GG∗ has elements

(GG∗)j1j2
=

n−1∑
k=0

gj1kgj2k = (1∕n)
n−1∑
k=0

exp{2𝜋ik(j1 − j2)∕n} =
{

1, j1 = j2,

0, j1 ≠ j2.

To verify this statement, note that if j1 = j2, then the ( j1, j2) element reduces to
1∕n times a sum of ones. If j1 ≠ j2, then the ( j1, j2) element reduces to a geometric
series

(1∕n)
n−1∑
k=0

𝛼
k = (1∕n)(𝛼0 − 𝛼n) = 0,
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where 𝛼 = exp{2𝜋i( j1 − j2)∕n}, since 𝛼n = 𝛼
0 = 1.

Let f = [ fk, k = 0, . . . ,n − 1]T denote a vector of n values indexed by the cyclic
integers. Then the DFT is another n-vector f̃ = [ f̃ j, j = 0, . . . ,n − 1]T also indexed
by the cyclic integers. In matrix form (A.32) becomes

f̃ = Gf .

That is, the jth element of f̃ is given by

f̃ j = n−1∕2
n−1∑
k=0

fk exp{2𝜋ijk∕n}, j = 0, . . . ,n − 1.

A.7.2 Properties of the Unitary Matrix G, d = 1

Again let G = G(DFT,com)
n denote the complex unitary matrix used in the DFT.

1. The columns g(k), say, of G can be split into different types.
(a) k = 0. In this case, gjk = n−1∕2 is constant and real-valued for all j.
(b) 1 ≤ k < n∕2 or n∕2 < k ≤ n − 1. In this case, columns k and n − k are com-

plementary in the sense that

gjk + gj,n−k = (2∕n1∕2) cos(2𝜋jk∕n) (A.42)

is real-valued, and

gjk − gj,n−k = (2i∕n1∕2) sin(2𝜋jk∕n) (A.43)

is imaginary.
(c) If n is even, then there is an additional column for k = n∕2, with entries

gjk = n−1∕2(−1) j
.

2. If a vector f is real-valued and symmetric, i.e. fk = fn−k for 0 < k < n∕2, then the
Fourier transform is real-valued since fkgjk + fn−kgj,n−k = 2fk cos{2𝜋jk∕n}, 0 <
k < n∕2 is real-valued, and since gj0 and gj,n∕2 (n even) are real-valued.

3. Although the DFT is most elegantly defined using the unitary matrix G(DFT,com)
n

of complex numbers, it can also be constructed using an orthogonal matrix
G(DFT,rea)

n , say, of real numbers whose columns are constructed as follows,
where the rows of G(DFT,rea)

n are indexed by j = 0, . . . ,n − 1 and the columns are
indexed by k = 0, . . . ,n − 1. To avoid notational overload, write G(DFT,rea)

n = G†

for this section. The columns of G† are defined as follows:
(a) For k = 0, let g†jk = gjk = n−1∕2.
(b) For 1 ≤ k < n∕2,

g†jk =

(
1√
2

)
(gjk + gj,n−k) = (2∕n)1∕2 cos{2𝜋jk∕n}, (A.44)
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g†j,n−k =

(
− i√

2

)
(gjk − gj,n−k) = (2∕n)1∕2 sin{2𝜋jk∕n}. (A.45)

That is, columns k and n − k for G(DFT,rea)
n are proportional to the sum and

difference of columns k and n − k for G(DFT,com)
n , respectively.

(c) For k = n∕2, g†jk = gjk = n−1∕2(−1)j. This column is present only if n is even.

A.7.3 Circulant Matrices and the DFT, d = 1

Fix n ≥ 2 and let 𝜶 = [𝛼j ∶ j = 0, . . . ,n − 1]T be a given vector indexed by the
cyclic integers. Define an n × n matrix A = circ(𝜶) by

aj1j2
= 𝛼( j1−j2) mod n, j1, j2 = 0, . . . ,n − 1.

As defined in Section A.3.8, such a matrix is called a circulant matrix. All the rows
are cyclic permutations of one another.

Circulant matrices are special because a version of the spectral decomposition
of Section A.3.1 is still valid, even though A is not necessarily symmetric. Further,
the spectral decomposition is closely related to the DFT. In particular, the
eigenvectors of A are given by the columns of G(DFT,com)

n in (A.41) and the vector
of eigenvalues 𝝀= [𝜆0, . . . ,𝜆n−1]T is given by n1∕2 times the inverse DFT of 𝜶. To
verify this claim, note that

(Ag(k))h =
n−1∑
j=0

ahjgjk

= n−1∕2
n−1∑
j=0
𝛼(h−j) mod n exp(2𝜋ijk∕n)

= n−1∕2
n−1∑
j′=0
𝛼j′ mod n exp{2𝜋ik(h − j′)∕n}

= 𝜆kghk, (A.46)

where

𝜆k =
n−1∑
j=0

e−2𝜋ijk∕n
𝛼j

and g(k) denotes the kth column of G(DFT,com)
n . The third line of the derivation

makes the substitution j′ = h − j and uses the fact that as j ranges between 0 and
n − 1, j′ mod n also ranges between 0 and n − 1. Further, it is only the value of
j′ mod n that matters in the exponential term since if j′ = mn is a multiple of n,
exp{2𝜋ikmn∕n} = exp{2𝜋ikm} = 1 factors out of the formula.

In vector form, with G = G(DFT,com)
n , (A.46) can be written as Ag(k) = 𝜆kg(k), k =

0, . . . ,n − 1, which in matrix form becomes AG = GΛ. Multiplying both sides by
G−1 yields

A = GΛG−1 = GΛG∗
.
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The last form is the same as the spectral decomposition in (A.9) and follows since
G is a unitary matrix, GG∗ = I, so that G−1 = G∗.

In the language of Setting 4 in Section A.4, if we identify the vectors f = n−1∕2𝝀,
f̃ = 𝜶, then 𝜶 is the DFT of n−1∕2𝝀 and n−1∕2𝝀 is the inverse discrete Fourier trans-
form (IDFT) of 𝜶.

If 𝛼j = 𝛼n−j for all j = 0, . . . ,n − 1 so that A is a symmetric matrix (aj1j2
= aj2j1

,

0 ≤ j1, j2 ≤ n − 1), then the spectral decomposition can also be written in real coor-
dinates. In particular, the eigenvalues are real

𝜆k = 𝜆n−k =
n−1∑
j=0

cos{2𝜋jk∕n} 𝛼j, k = 0, . . . ,n − 1,

and the complex eigenvector matrix G(DFT,com)
n can be replaced by the real

eigenvector matrix G(DFT,rea)
n defined in (A.44) and (A.45). The representation

A = G(DFT,rea)
n Λ{G(DFT,rea)

n }T can be viewed as an example of the real spectral
decomposition (A.7) in Section A.3.1.

A.7.4 The Case d > 1

The preceding discussion has assumed dimension d = 1. To deal with higher
dimensions, block circulant matrices are needed.

Consider the lattice torus of Section A.1, ℤd
N =

∏d
𝓁=1{0, . . . ,n[𝓁] − 1} ⊂ ℤd,

with opposite faces treated as adjacent, where N = (n[1], . . . ,n[d]). Write
j1 = j2 Mod N if j1[𝓁] − j2[𝓁] is an integer multiple of n[𝓁] for each 𝓁 = 1, . . . , d.
Let |N| = n[1] × · · · × n[d] denote the number of elements of ℤd

N . Starting with a
vector 𝜶 = {𝛼j ∶ j ∈ ℤd

N} (with the elements listed in lexicographic order), define
a |N| × |N|matrix A = Circ(𝜶) with entries

aj1j2
= 𝛼( j1−j2) Mod N , j1, j2 ∈ ℤd

N .

Such a matrix is called block-circulant. Suppose 𝛼j = 𝛼N−j Mod N for all j, so that A
is symmetric, where j = ( j[1], . . . , j[d]) is a multi-index. Then, the eigenvalues of
A are given by

𝜆k =
∑

j∈ℤd
N

exp

{
−2𝜋i

d∑
𝓁=1

j[𝓁]k[𝓁]∕n[𝓁]

}
𝛼j, k ∈ ℤd

N ,

=
∑

j∈ℤd
N

cos

{
2𝜋

d∑
𝓁=1

j[𝓁]k[𝓁]∕n[𝓁]

}
𝛼j;

note 𝜆k = 𝜆−k Mod N . The corresponding eigenvector, 𝒘(k), say, written in complex
notation, has entries

𝑤j;k = |N|−1∕2 exp

{
2𝜋i

d∑
𝓁=1

j[𝓁]k[𝓁]∕n[𝓁]

}
.
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The eigenvectors 𝒘(k), listed in lexicographic ordering, can be combined together
to form the matrix of eigenvectors. This matrix can be written as the tensor product

G(DFT,com)
N = G(DFT,com)

n[1] ⊗ · · ·⊗ G(DFT,com)
n[d] , (A.47)

of one-dimensional unitary matrices.

A.7.5 The Periodogram

Let {xj ∶ j ∈ ℤd
N} be a collection of observations on the lattice torus. The peri-

odogram is defined by the function

I(𝜔) =
|||||||

∑

j∈ℤd
N

xj exp{2𝜋ij𝜔}
|||||||

2

∕|N|, 𝜔 ∈ ℝd
. (A.48)

In particular, if 𝜔k = (k[1]∕n[1], . . . , k[d]∕n[d]), k ∈ ℤd
N , then I(𝜔k) is the same

as the squared absolute value of the kth element of Gx, with G = G(DFT,com)
N given

by (A.47). The periodogram was called the biased periodogram in (6.46).

A.8 Discrete Cosine Transform (DCT)

A transform related to the DFT is the discrete cosine transform (DCT); it is
useful for data with reflecting boundary conditions. As with the DFT, it is
helpful to describe the one-dimensional situation first, and then the higher
dimensional case.

In the literature, the DCT comes in several different versions. However, for the
purposes of this book, only one version and its inverse are needed.

A.8.1 One-dimensional Case

Define an n × n matrix C = Cn with entries

cjk = 𝛼k cos{𝜋k(j + 1∕2)∕n}, j, k = 0, . . . ,n − 1, (A.49)

where 𝛼k =
√

1∕n if k = 0 and 𝛼k =
√

2∕n if 1 ≤ k ≤ n − 1. Using the same argu-
ments as in Section A.7.2, it can be checked that the columns of C are orthonormal,
so that C is an orthogonal matrix.

Given a vector f = [ f0, . . . , fn−1]T , the DCT of f is defined by

f̂ = Cf , (A.50)

and the inverse discrete cosine transform (IDCT) of f̂ is defined by

f = CT f̂ . (A.51)

The IDCT arises in the treatment of reflecting boundary conditions for spa-
tial data; see Sections 4.6.5, 6.3, and 6.5. Mathematical details are given below in
Sections A.10–A.11. For n > 1, let x = [x0, . . . , xn−1]T denote a set of spatial data
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in one dimension. Define the “doubled” data set y = [x0, . . . , xn−1, xn−1, . . . , x0]T

of length 2n, so that yj = y2n−1−j = xj, j = 0, . . . ,n − 1.
From (A.36), the IDFT of y is given by

IDFT( y)k = (2n)−1∕2
2n−1∑
j=0

exp{−2𝜋ijk∕(2n)}yj

= (2n)−1∕2
n−1∑
j=0

[
exp{−2𝜋ijk∕(2n)} + exp{−2𝜋ik(2n − 1 − j)∕(2n)}

]
xj

= (2n)−1∕2 exp{𝜋ik∕(2n)}
n−1∑
j=0

[exp{−2𝜋ik(j + 1∕2)∕(2n)}

+ exp{2𝜋ik( j + 1∕2)∕(2n)}]xj

= (2∕n)1∕2 exp{𝜋ik∕(2n)}
n−1∑
j=0

cos{𝜋k( j + 1∕2)∕n}xj

= 𝛼
−1
k (2∕n)1∕2 exp{𝜋ik∕(2n)}

∑
cjkxj.

Thus up to scaling constants, the IDCT of x is the same as the IDFT of y. Fol-
lowing the convention in Section A.5, we use the adjective “inverse” in the name
for the transformation in (A.51) since it takes a set of values in the spatial domain
to a set of values in the frequency domain.

A.8.2 The Case d > 1

In higher dimensions, the DCT and IDCT can be defined using tensor products.
For example, if {xj ∶ j ∈ ℤd

N} is an array of values on the lattice torus in d dimen-
sions, listed in lexicographic order as x, say, then the IDCT on a domain of size
n[1] × · · · × n[d] can be defined by

IDCT(x) = {CT
n[1] ⊗ · · ·⊗ CT

n[d]}x,

where Cn[𝓁] denotes the matrix from (A.49) in n[𝓁] dimensions.

A.8.3 Indexing for the Discrete Fourier and Cosine Transforms

Start with d = 1 dimension. The DFT is a map from the frequency domain (k ∈ ℤn)
to the spatial domain ( j ∈ ℤn). The inverse DFT is a map in the opposite direction.

To represent the mapping explicitly, it is necessary to choose a range of n
consecutive integers for j in ℤn. The choice made above is j, k = 0, . . . ,n − 1.
However, in practical settings, an alternative choice is j, k = 1, . . . ,n. The effect
on G = G(DFT,com)

n and C = Cn is to shift the indexing so that G and C now have
elements

gjk = exp{2𝜋i( j − 1)(k − 1)∕n}, cjk = 𝛼k cos{𝜋( j − 1∕2)(k − 1)∕n}, (A.52)
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j, k = 1, . . . ,n. It is in this reindexed form that these transforms are used below.
The same changes carry over to d > 1 dimensions.

A.9 Periodic Approximations to Sequences

Starting from a sequence {𝛼h, h ∈ ℤd}, and a collection of periods N = (n[1],
. . . ,n[d]) all greater than or equal to 2, it is possible to approximate sequence {𝛼h}
by a periodic sequence {𝛼(C)h } (C for circulant) as follows:

(a) The one-dimensional case, d = 1. Given a period N = n[1] = n ≥ 2, set

𝛼
(C)
h =

{
𝛼h, |h| < n∕2,
1
2
(𝛼h + 𝛼−h), h = n∕2.

This formula defines 𝛼
(C)
h for n successive values of h, −n∕2 < h ≤ n∕2,

whether or not n is even, and this definition can be extended periodically to
all h by requiring 𝛼(C)h to depend only on h mod n.
Note that if n is even, there is ambiguity about how to define 𝛼(C)h = 𝛼

(C)
−h at lag

h = n∕2; the ambiguity is resolved here by taking the average of two values.
The ambiguity is not present when {𝛼h} is symmetric (𝛼h = 𝛼−h for all h) or
when n is odd.

(b) The two-dimensional case, d = 2. Given a period vector N = (n[1],n[2]),
define a periodic approximation {𝛼(C)h } by

𝛼
(C)
h =

⎧
⎪
⎪
⎪
⎨
⎪
⎪
⎪⎩

𝛼h, |h[1]| < n[1]∕2 and |h[2]| < n[2]∕2,
1
2
{𝛼(h[1],h[2]) + 𝛼(−h[1],h[2])}, h[1] = n[1]∕2 and |h[2]| < n[2]∕2,

1
2
{𝛼(h[1],h[2]) + 𝛼(h[1],−h[2])}, |h[1]| < n[1]∕2 and h[2] = n[2]∕2,

1
4
{𝛼(h[1],h[2]) + 𝛼(−h[1],h[2]) + 𝛼(h[1],−h[2]) + 𝛼(−h[1],−h[2])},

h[1] = n[1]∕2 and h[2] = n[2]∕2.

This formula defines 𝛼
(C)
h for an n[1] × n[2] block of values for h,

−n[1]∕2 < h[1] ≤ n[1]∕2,−n[2]∕2 < h[2] ≤ n[2]∕2, whether or not n[1]
and n[2] are even, and this definition can be extended periodically to all h by
requiring 𝛼(C)h to depend only on h Mod N.

(c) The higher dimensional case, d > 2. The same construction can be extended
to higher dimensions, at the price of more cumbersome notation.

This construction has been used in Chapter 2 to give a fast and exact method
for simulating a stationary Gaussian process on a finite rectangular domain D in
ℤd. The method is based on the DFT and merely assumes an explicit form for the
covariance function.
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A.10 Structured Matrices in d = 1 Dimension

This section describes three types of structured matrix that specify neighborhood
relationships for a sequence of sites in d = 1 dimension. These matrices can form
building blocks (Section A.11) for finite approximations to an inverse covariance
matrix for a stationary random field in d = 1 and higher dimensions.

The three types of matrices to consider are called Toeplitz, circulant, and folded
circulant, respectively. Table A.3 illustrates the corresponding boundary condi-
tions in one dimension.

In each case, the general matrix can be viewed as a linear combination of ele-
mentary building blocks. The building blocks are matrices with zeros everywhere
except for ones in a band about the diagonal, and perhaps a few other places. In
this section, we describe the form of the building blocks.

Let s, t = 1, . . . ,n denote n ≥ 2 equally spaced “sites” in d = 1 dimension, and
let r ∈ ℤ denote a lag. First define two n × n matrices, the banded matrix B(n,r) and
the circulant banded matrix C(n,r), by

bst =
{

1, t − s − r = 0,
0, otherwise,

(A.53)

cst =
{

1, t − s − r = 0 mod n,
0, otherwise.

(A.54)

Next we use the banded matrices to construct elementary neighborhood matri-
ces. Various choices for a neighborhood of order |r| can be made, with the infor-
mation in each case stored in an n × n matrix. If sites s and t are separated by a lag
+r or −r, an entry of 1∕2 is made to the elementary neighborhood matrix. Occa-
sionally, a double entry 2 × 1∕2 = 1 is made to the matrix if both lag separations
hold, e.g. when r = 0 and s = t. A double entry also occurs in the circulant case
when n is even, r = n∕2 and t = s + r mod n = s − t mod n. All other entries in
the neighborhood matrix are 0. In the definitions below, the indices are restricted
to the range |r|, |s| ≤ n − 1 to avoid vacuous matrices. Table A.4 provides some
examples of these matrices.

(a) Elementary Toeplitz neighborhood matrix of order r,

U (n,r) = U (n,−r) = {B(n,r) + B(n,−r)}∕2. (A.55)

Each row and column has either 0, 1, or 2 nonzero entries. If r = 0, then
U (n,0) = In, the identity matrix. Otherwise, for r ≠ 0, each nonzero entry
equals 1∕2.

(b) Elementary circulant neighborhood matrix of order r,

V (n,r) = V (n,−r) = {C(n,r) + C(n,−r)}∕2. (A.56)
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In this case, a periodic or circulant boundary condition is imposed so that
sites 1 and n are treated as adjacent to each other. The matrix V (n,r) is simi-
lar to U (n,r), but with extra elements in the upper-right and lower- left corners,
corresponding to an increased number of neighbors.
The Toeplitz and circulant matrices are related by

V (n,r) = U (n,r) + U (n,n−r)
.

If r = 0, then V (n,0) = In, the identity matrix. The family of circulant matrices
is closed under matrix multiplication

V (n,r)V (n,s) = {V (n,r+s) + V (n,r−s)}∕2, (A.57)

where r + s and r − s are interpreted mod n. The formula (A.57) is a matrix
version of the corresponding identity for complex numbers
(

eir𝜔 + e−ir𝜔

2

)(
eis𝜔 + e−is𝜔

2

)
= 1

2

(
ei(r+s)𝜔 + e−i(r+s)𝜔

2
+ ei(r−s)𝜔 + ei(s−r)𝜔

2

)
,

for any real number 𝜔.
(c) Elementary folded circulant matrix of order r, denoted W (n,r) = W (n,−r). The

easiest way to understand this matrix is by using a reflecting boundary. Starting
with the original list of sites 1, . . . ,n, append a copy of the list in reverse order
to get the doubled list 1, . . . ,n,n, . . . , 1, and use a periodic boundary condition
on the doubled list of sites. Let t be a site in the original list, 1 ≤ t ≤ n. Say that
another site s is an rth-order folded circulant neighbor, 1 ≤ r ≤ n∕2, if either
of the two copies of s in the doubled list is an rth-order circulant neighbor.
Then divide the number of neighbors by two since each pairing appears twice.
Note that site 1 is a first-order neighbor of itself; similarly for site n. Hence
the matrix W (5,1) in Table 5.4 has the entry 1 in the diagonal positions (1, 1)
and (5, 5). A more explicit formula for the elements of W (n,r) = (𝑤st) is given
in terms of the elements of the doubled circulant matrix V (2n,r) = (𝑣st),

𝑤st = {𝑣st + 𝑣s′t + 𝑣st′ + 𝑣s′t′ }∕2, s, t = 1, . . . ,n, (A.58)

where s′ = 2n + 1 − s, t′ = 2n + 1 − t. Each row and column has one or two
nonzero entries and sums to 1. For r = 0, the matrix reduces to the identity
matrix, W (n,0) = In.
The folded circulant matrices are important because a circulant quadratic
form in the doubled data equals twice a folded circulant quadratic form in the
original data. That is, for 1 ≤ r < n,

yTV (2n,r)y = 2xTW (n,r)x. (A.59)

Further, the family of folded circulant matrices is closed under matrix multi-
plication

W (n,r)W (n,s) = {W (n,r+s) + W (n,r−s)}∕2, r, s ≥ 0, (A.60)
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where again r + s and r − s are interpreted mod n, using the same arguments
as in (A.57).
Table A.3 illustrates the three boundary conditions and Table A.4 illustrates
the corresponding matrices.

A key advantage of the elementary circulant matrices V (n,r) is that they all have
the same eigenvectors, given by the columns of G(DFT,com)

n in (A.52) using com-
plex coordinates or by the columns of G(DFT,rea)

n in (A.44) and (A.45) using real
coordinates.

Similarly, a key advantage of the elementary folded circulant matrices W (n,r)

is that they all have the same eigenvectors, given by the columns of C in
(A.52), because they are constructed from a circulant matrix of twice the size
(see (A.59)).

A.11 Matrix Approximations for an Inverse Covariance
Matrix

Let {𝜎h, h ∈ ℤd} be a stationary covariance function with spectral representation

𝜎h =
∫(−𝜋,𝜋)d

cos(hT
𝜔)f (𝜔) d𝜔.

Given a dimension vector N = (n[1], . . . ,n[d]) of size |N|, consider the domain

D = {j ∈ ℤd ∶ 1 ≤ j[𝓁] ≤ n[𝓁], 𝓁 = 1, . . . , d} (A.61)

and define an |N| × |N| symmetric Toeplitz matrix Σ with entries 𝜎jk = 𝜎j−k, j,
k ∈ D.

Given data {xt, t ∈ D}, the likelihood function involves the quadratic form
xTΣ−1x and the normalizing constant log |Σ|. These quantities are typically

Table A.3 Three types of boundary condition for a one-dimensional
set of data, x1, . . . , xn.

Layout Name

−x1, . . . , xn− Null boundary condition
→ x1, . . . , xn → Periodic boundary condition
→ x1, . . . , xnxn, . . . , x1 → Reflecting boundary condition

The hyphen “-” in the first row indicates that x1 and xn have no neighbors
to the left and right, respectively. The arrows “→” in the second row
indicate a periodic boundary condition so that x1 is adjacent to xn. The
arrows in the third row indicate a periodic boundary condition for the
doubled data, so that the left x1 is adjacent to the right x1.
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Table A.4 Some examples of Toeplitz, circulant, and folded circulant matrices
U(n,r)

, V (n,r)
, W (n,r) , respectively, for n = 5 and r = 1,2, 3,4.

Toeplitz Circulant Folded circulant

U (5,1) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢⎣

0 1 0 0 0
1 0 1 0 0
0 1 0 1 0
0 0 1 0 1
0 0 0 1 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥⎦

V (5,1) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎣

0 1 0 0 1
1 0 1 0 0
0 1 0 1 0
0 0 1 0 1
1 0 0 1 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎦

W (5,1) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎣

1 1 0 0 0
1 0 1 0 0
0 1 0 1 0
0 0 1 0 1
0 0 0 1 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎦

U (5,2) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢⎣

0 0 1 0 0
0 0 0 1 0
1 0 0 0 1
0 1 0 0 0
0 0 1 0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥⎦

V (5,2) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎣

0 0 1 1 0
0 0 0 1 1
1 0 0 0 1
1 1 0 0 0
0 1 1 0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎦

W (5,2) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎣

0 1 1 0 0
1 0 0 1 0
1 0 0 0 1
0 1 0 0 1
0 0 1 1 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎦

U (5,3) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢⎣

0 0 0 1 0
0 0 0 0 1
0 0 0 0 0
1 0 0 0 0
0 1 0 0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥⎦

V (5,3) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎣

0 0 1 1 0
0 0 0 1 1
1 0 0 0 1
1 1 0 0 0
0 1 1 0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎦

W (5,3) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎣

0 0 1 1 0
0 1 0 0 1
1 0 0 0 1
1 0 0 1 0
0 1 1 0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎦

U (5,4) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢⎣

0 0 0 0 1
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
1 0 0 0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥⎦

V (5,4) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎣

0 1 0 0 1
1 0 1 0 0
0 1 0 1 0
0 0 1 0 1
1 0 0 1 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎦

W (5,4) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎣

0 0 0 1 1
0 0 1 0 1
0 1 0 1 0
1 0 1 0 0
1 1 0 0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎦

.

time-consuming to compute if D is large. Hence, it is useful to consider approx-
imations for Σ−1. The inverse covariance function, defined in Section A.11.1,
provides the basis for various approximations.

A.11.1 The Inverse Covariance Function

For simplicity, assume the spectral density is bounded away from 0 and ∞

0 < c1 ≤ f (𝜔) ≤ c2 < ∞, (A.62)
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and define the inverse covariance function by

𝜓h = 1
(2𝜋)2d ∫(−𝜋,𝜋)d

cos(hT
𝜔) {1∕f (𝜔)} d𝜔. (A.63)

The scaling factor (2𝜋)−2d is chosen so that the two sequences are inverse to each
other ∑

𝜎h𝜓t−h = 𝛿t,

where 𝛿t is the Kronecker 𝛿.
The bounds ensure that {𝜎h} and {𝜓h} are square summable sequences. Thus,

defining infinite Toeplitz matrices Σ∞ and Ψ∞ with entries 𝜎jk = 𝜎j−k, 𝜓jk = 𝜓j−k,
j, k ∈ ℤ, it follows that Σ∞Ψ∞ = I∞, the infinite-dimensional identity matrix.

The inverse spectral density is particularly simple in the case of a condi-
tional autoregression (CAR) model. In this case, 𝜓h vanishes outside a small
neighborhood of the origin. The approximations in this section are well suited to
this situation.

A covariance function always has the property of symmetry, 𝜎h = 𝜎−h. In
some cases, a covariance function has a stronger property of full symmetry,
𝜎h = 𝜎k whenever |h[𝓁]| = |k[𝓁]|, 𝓁 = 1, . . . , d. The inverse covariance function
possesses the same symmetry properties as the covariance function.

The representation in (A.63) uses cosines of a linear combinations of angles.
Under the assumption of full symmetry, it is possible to rewrite this representation
in terms of products of cosines of single angles

1∕f (𝜔) =
∑

𝜓h

d∏
𝓁=1

cos(h[𝓁]𝜔[𝓁]). (A.64)

For example, in d = 2 dimensions, the coefficients𝜓1,1 = 𝜓1,−1 are equal under full
symmetry and

𝜓1,1 cos(𝜔[1] + 𝜔[2]) + 𝜓1,−1 cos(𝜔[1] − 𝜔[2]) = 2𝜓1,1 cos(𝜔[1]) cos(𝜔[2]).

Using this principle repeatedly yields (A.64).

Example A.1 Consider a CAR model in d = 2 dimensions, defined with respect
to the first-order full neighborhood of the origin. The spectral density is given by
f (𝜔) = (2𝜋)−d

𝜎
2
𝜂
∕b̃(𝜔) where

b̃(𝜔) = 1 − 2𝛽1 cos(𝜔[1]) − 2𝛽2 cos(𝜔[2])

− 2𝛽3{cos(𝜔[1] + 𝜔[2]) + cos(𝜔[1] − 𝜔[2])}

= 1 − 2𝛽1 cos(𝜔[1]) − 2𝛽2 cos(𝜔[2]) − 4𝛽3 cos(𝜔[1]) cos(𝜔[2]).

This model can be viewed as a mild generalization of the first-order basic CAR
model in d = 2 dimensions of Example 4.4. The horizontal and vertical autore-
gressive coefficients (𝛽1 and 𝛽2) are allowed to be different, but coefficients for the
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diagonal neighbors must be the same (𝛽3). In Example 4.4, there was an “isotropy
assumption” 𝛽1 = 𝛽2 and 𝛽3 was not present.

The coefficients 𝜓h are given by the Fourier coefficients of b̃(𝜔) divided by
𝜎

2
𝜂
. ◽

A.11.2 The Toeplitz Approximation to 𝚺−1

Let Ψ denote the finite |N| × |N|matrix obtained by restricting Ψ∞ to the indices
in D. Then Ψ is the a Toeplitz approximation to Σ−1. In the finite case, Σ and Ψ are
no longer exact inverses of each other, i.e. ΣΨ ≠ I|N|.

Under the assumption of full symmetry, it is possible to express Ψ in terms
of a matrix U built using the one-dimensional elementary Toeplitz matrices of
Section A.10; that is,

Ψ = U =
∑

h∈ℤd

𝜓h

d∏
𝓁=1

U (n[𝓁],h[𝓁])
.

The sum only involves a finite number of nonzero terms since Un[𝓁],h[𝓁] = 0 when-
ever |h[𝓁] ≥ n[𝓁].

Provided that the inverse covariances 𝜓h can be computed explicitly, it is
straightforward to evaluate the quadratic form. However, there do not seem to be
any simplifications available for the computation of log |Ψ|. Hence, we look for
more computationally tractable approximations.

A.11.3 The Circulant Approximation to 𝚺−1

Let {𝜓 (C)
h } denote the periodic approximation of Section A.9 for the inverse covari-

ance function {𝜓h}, and let Ψ(C) denote the corresponding circulant approxima-
tion for Ψ. Since Ψ(C) is circulant, it is straightforward to compute its eigenvalues
and hence log |Ψ(C)| using the DFT.

Under the assumption of full symmetry, it is possible to express Ψ(C) in terms
of a matrix V built using the one-dimensional elementary circulant matrices of
Section A.10; that is,

Ψ(C) = V =
∑

h∈ℤd
N

𝜓
(C)
h

d∏
𝓁=1

V (n[𝓁],h[𝓁])
.

A.11.4 The Folded Circulant Approximation to 𝚺−1

The folded circulant approximation is based on ideas in Besag and Mondal (2005)
and Mondal (2018) and requires the assumption of full symmetry defined above
(A.64) for the covariance and inverse covariance functions. It is expressed in
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terms of a matrix W built using the one-dimensional elementary folded circulant
matrices of Section A.10; that is,

W =
∑

𝜓h

d∏
𝓁=1

W (n[𝓁],|h[𝓁]|)
, (A.65)

where the sum ranges over lags h such that |h[𝓁]| ≤ n[𝓁] − 1, 𝓁 = 1, . . . , d.
The folded circulant approximation can be best understood through the use of

reflecting boundary conditions where the data are “doubled” by being reflected
along each coordinate axis. The case d = 1 is illustrated in Table A.3. In d = 2
dimensions, the data on a rectangular region D can be represented by the matrix

⎡
⎢
⎢⎣

x11 · · · x1n[2]
⋮ ⋱ ⋮

xn[2]1 · · · xn[1]n[2]

⎤
⎥
⎥⎦
,

and the doubled data take the form
⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎣

x11 · · · x1n[2] x1n[2] · · · x11
⋮ ⋱ ⋮ ⋮ ⋱ ⋮

xn[1]1 · · · xn[1]n[2] xn[1]n[2] · · · xn[1]1
xn[1]1 · · · xn[1]n[2] xn[1]n[2] · · · xn[1]1
⋮ ⋱ ⋮ ⋮ ⋱ ⋮

x11 · · · x1n[2] x1n[2] · · · x11

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎦

.

For formulas involving quadratic forms, the data should be represented as a vector
using lexicographic ordering, rather than as a matrix.

A.11.5 Comments on the Approximations

In the following comments about W , the inverse covariance function is assumed
fully symmetric; for the comments about U = Ψ and V = Ψ(C), the inverse covari-
ance function is not necessarily assumed to be fully symmetric.

1. Consider an inverse spectral density g(𝜔) for a stationary covariance function
bounded away from 0 and ∞ as in (A.62), with inverse covariance function
{𝜓h} in (A.63). Then g(𝜔) is positive for all 𝜔 so that {𝜓h} is a positive defi-
nite sequence. It follows that all the eigenvalues of U, V , and W are positive.
The reasons are as follows.
(a) Since Ψ is a finite submatrix of Ψ∞ and since Ψ∞ is positive definite, so is

U = Ψ.
(b) The eigenvalues of V = Ψ(C) are given by (2𝜋)dg(𝜔k) at the discrete

frequencies 𝜔k with entries 𝜔k[𝓁] = 2𝜋k[𝓁]∕n[𝓁], 0 ≤ k[𝓁] ≤ n[𝓁] − 1,
𝓁 = 1, . . . , d.

(c) The eigenvalues of W are given by (2𝜋)dg(𝜔k) at the discrete frequencies𝜔k
with entries 𝜔k[𝓁] = 𝜋k[𝓁]∕n[𝓁], 0 ≤ k[𝓁] ≤ n[𝓁] − 1, 𝓁 = 1, . . . , d.
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2. In a singular CAR model, the inverse spectral density vanishes at the origin,
g(0) = 0. In this case, the eigenvalue for the constant eigenfunction vanishes, so
V and W are only positive semidefinite, not positive definite. Provided g(𝜔) > 0
for all 𝜔 ≠ 0, this is the only singularity that can arise in V and W .

3. An important feature for the circulant and folded circulant approximations is
that the eigenvectors arise from circulant matrices. Hence, the DFT can be used
to evaluate the log determinant in the likelihood more efficiently than using a
direct calculation.

A.11.6 Sparsity

Informally, a matrix A is called sparse of most of its elements are 0. In
the spatial setting, consider the domain D in (A.61) with dimension vector
N = (n[1], . . . ,n[d]), and let A be an |N| × |N| matrix with elements ast indexed
by sites s, t ∈ D, with components 1 ≤ s[𝓁], t[𝓁] ≤ n[𝓁], 𝓁 = 1, . . . , d.

A good example of sparsity arises when A is an approximation to an inverse
covariance matrix for a CAR model. Then for some bound c > 0, the matrix ele-
ments have the property that

ast = 0 if |s − t| ≥ c,

with opposite edges of the domain identified with one another in the circulant and
folded cases. In particular, if |N|→ ∞, the proportion of nonzero elements in each
row of A tends to 0.

In general, operations on large matrices are computationally expensive. For
example, the computation of the inverse requires O(|N|3) operations. However,
for sparse matrices specialized algorithms can be developed, which are much
more efficient. See e.g. Rue and Held (2005) for a discussion of efficient algorithms
in the spatial setting.

A.12 Maximum Likelihood Estimation

The previous sections set out the mathematical foundations needed for spatial
analysis. This section and Section A.13 set out the statistical foundations for max-
imum likelihood estimation, especially for spatial analysis.

A.12.1 General Considerations

Let x be an n-dimensional random vector with probability density function f (x;𝜽)
depending on a p-dimensional parameter vector 𝜽. Given a realization of x, the
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maximum likelihood estimator (MLE) is defined to maximize the log-likelihood

log L(𝜽; x) = log f (x;𝜽). (A.66)

The log-likelihood is the same as the log probability density function, but regarded
as a function of 𝜽, with x held fixed. The MLE is defined by

𝜽̂ = argmax𝜽 log L(𝜽; x). (A.67)

The score function is defined as the derivative of the log-likelihood with respect
to 𝜽. Typically, the derivative of a function vanishes at the maximum, so the score
function vanishes at the MLE

d log L(𝜽̂; x)
d𝜽

= 0.

(An exception can occur for a parameter with an attainable endpoint. For example,
for a spatial model with a nugget variance 𝜏2 ≥ 0, the maximum can occasionally
be attained on the boundary 𝜏2 = 0.)

The expected value of the score derivative, after changing sign, is known as the
Fisher information matrix,

(𝜽) = −E
{
𝜕

2 log L
𝜕𝜽𝜕𝜽T

}
. (A.68)

It can be estimated in practice by either the observed Fisher information matrix

obs = −
𝜕

2 log L
𝜕𝜽𝜕𝜽T , (A.69)

evaluated at 𝜽̂, or by the expected Fisher information matrix

exp = (𝜽̂). (A.70)

An important question for the MLE is its accuracy. Standard results state that
under mild regularity conditions for large n, the information grows at a rate of
at least n, i.e. the eigenvalues of (𝜽) are at least as large as O(n). Then the MLE
is asymptotically normally distributed and unbiased with variance given by the
inverse of the Fisher information matrix

𝜽̂ ∼ Np(𝜽,(𝜽)−1). (A.71)

In the spatial setting, these regularity conditions are most commonly found in the
setting of “outfill asymptotics”; see e.g. Section 5.5.3.

A.12.2 The Multivariate Normal Distribution and the Spatial Linear
Model

An important example is given by the multivariate normal distribution, as devel-
oped by Mardia and Marshall (1984). To begin with, suppose the mean vanishes,
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so that
x ∼ Nn(0,Σ), (A.72)

where Σ = Σ(𝜃) is a covariance matrix depending on the parameter vector 𝜽.
The log-likelihood is

log L = −1
2
{xTΣ−1x + log |Σ| + n log(2𝜋)}

= −1
2
{tr(Σ−1xxT) + log |Σ| + n log(2𝜋)}. (A.73)

Let

Σi = 𝜕Σ∕𝜕𝜃i, Σi = 𝜕Σ−1∕𝜕𝜃i, Σij = 𝜕
2Σ∕𝜕𝜃i𝜕𝜃j, i, j = 1, . . . , p, (A.74)

denote the n × n matrices of derivatives of Σ and Σ−1 with respect to the elements
of 𝜃. Standard matrix results in Section A.3.11 give

Σi = 𝜕Σ−1∕𝜕𝜃i = −Σ−1ΣiΣ−1
,

𝜕 log |Σ|∕𝜕𝜃i = tr{Σ−1Σi}. (A.75)

Then the score has elements

𝜕 log L∕𝜕𝜃i = −1
2

tr{−Σ−1ΣiΣ−1xxT + Σ−1Σi},

and the score derivative matrix has elements

𝜕
2 log L∕𝜕𝜃i𝜕𝜃j = −1

2
tr
{(

Σ−1ΣjΣ−1ΣiΣ−1 − Σ−1ΣijΣ−1 + Σ−1ΣiΣ−1ΣjΣ−1) xxT

−Σ−1ΣjΣ−1Σi + Σ−1Σij
}

(A.76)

for i, j = 1, . . . , p. Taking expectations, E(xxT) = Σ, changing the sign and simpli-
fying yields the elements of the Fisher information matrix

()ij = −E(𝜕2 log L∕𝜕𝜃i𝜕𝜃j) =
1
2

tr{Σ−1ΣiΣ−1Σj} = 1
2

tr{Σ Σi Σ Σj}

= −1
2

tr{ΣiΣj} = −1
2

tr{ΣjΣi} = −1
2

tr{ΣiΣj} = −1
2

tr{ΣjΣi}. (A.77)

Note the elements of  can be written in terms of the derivatives ofΣ, or the deriva-
tives of Σ−1, or both.

Next, allow a regression or drift term in the model

x ∼ Nn(F𝜷,Σ), (A.78)

where F is an n × q matrix of regressor variables. The first column is usually the
constant vector 1n to accommodate an intercept, and if q = 1, all elements of x have
the same mean. Here 𝜷 (q × 1) is a vector of regression parameters and Σ = Σ(𝜽).
In the spatial setting, this model is known as the spatial linear model (Section
5.11). The log-likelihood is

log L(𝜷,𝜽) = −1
2
{(x − F𝜷)TΣ−1(x − F𝜷) + log |Σ| + n log(2𝜋)}. (A.79)
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Write𝒘 = x − F𝜷, so that𝒘 is multivariate normal with mean 0 and covariance
matrix Σ. The first and second derivatives of (A.79) with respect to 𝜷 and 𝜽 are
given by

𝜕 log L∕𝜕𝜷 = FTΣ−1𝒘, (A.80)

𝜕 log L∕𝜕𝜃i = −1
2

tr(Σ−1Σi) +
1
2

tr(𝒘TΣ−1ΣiΣ−1𝒘), i = 1, . . . , p, (A.81)

𝜕
2 log L∕𝜕𝜷𝜕𝜷T = −FTΣ−1F, (A.82)

𝜕
2 log L∕𝜕𝜷𝜕𝜃i = −FTΣ−1ΣiΣ−1𝒘, (A.83)

together with (A.76), with x replaced by 𝒘, for the second derivative with respect
to 𝜃i and 𝜃j.

Taking expectations of the second derivatives and changing the sign gives the
Fisher information matrix

 =
[
(𝜷) 0

0 (𝜽)

]
, (A.84)

where the information matrix for 𝜷 is


(𝜷) = FTΣ−1F, (A.85)

and where the elements of (𝜽) are given by (A.77). Note that  is block diagonal
since the expectation of 𝜕2 log L∕𝜕𝜷𝜕𝜃i vanishes.

A.12.3 Change of Variables

Suppose 𝝍 is an alternative parameterization of the model. let 𝜽 = 𝜽(𝝍) denote
the mapping from 𝝍 to 𝜽 with p × p Jacobian matrix

J = 𝜕𝜽

𝜕𝝍T , (A.86)

where the elements J are given by (J)ij = 𝜕𝜃i∕𝜕𝜓j.
Then, the information matrices for 𝜽 and 𝝍 , denoted (𝜽) and (𝝍), say, are

related by

(𝝍) = JT


(𝜽)J. (A.87)

The result follows from the chain rule for differentiating a function of several
variables.

A.12.4 Profile Log-likelihood

For the purposes of finding the MLE in a multivariate normal setting, it is helpful
to parameterize the covariance parameters as 𝜽 = (𝜎2

,𝜽T
c )T in terms of an over-

all scale parameter 𝜎2 and the remaining correlation parameters 𝜽c, say. That is,
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Σ = 𝜎
2P where the correlation matrix P = (𝜌ij) depends on 𝜽c. Then the param-

eters can be split into three parts: (i) the regression parameter 𝜷, (ii) the overall
scale parameter 𝜎2, and (iii) the correlation parameters 𝜽c.

For a given value of 𝜽c, the log-likelihood is maximized over the regression
parameter by

𝜷̂(𝜽c) = (FTΣ−1F)−1FTΣ−1x = (FTP−1F)−1FTP−1x. (A.88)

Substituting (A.88) into the log-likelihood (A.79), and using the simplification for
quadratic forms in (A.22), gives the profile log-likelihood for 𝜽c and 𝜎2

log Lpro(𝜽c, 𝜎
2) = −1

2
{𝜎−2xT

GP−1
GGxG + n log 𝜎2 + log |P| + n log(2𝜋)}. (A.89)

Here G(n × p) is a column orthonormal matrix, which is orthogonal to F, so that
GTG = In−p, GTF = 0 and ΣGG = GTΣG and xG = GTx. Equation (A.89) is maxi-
mized over 𝜎2 by

𝜎̂
2 = xT

GP−1
GGxG∕n. (A.90)

Substituting (A.90) into (A.89) gives the profile log-likelihood for 𝜽c

log Lpro(𝜽c) =
1
2
{n + n log(xT

GP−1
GGxG∕n) + log |P| + n log(2𝜋)}. (A.91)

In general, the profile log-likelihood (A.91) must be maximized numerically
over 𝜽c.

A.12.5 Confidence Intervals

In the general setting of Section A.12.1, let 𝜃i be one of the elements of 𝜽, and let
𝜽̂ denote the MLE of 𝜽. An approximate 95% confidence interval for 𝜃i is given by

(𝜃̂i − 1.96𝑣i, 𝜃̂i + 1.96𝑣i), (A.92)

where 𝑣i =
√
𝑣ii is the square root of the (i, i)th diagonal element of the inverse

Fisher expected information matrix, V = (𝜽̂)−1.
An asymptotically equivalent version of the confidence interval can be

constructed from the profile log-likelihood, as the interval

{𝜃i ∶ log Lprofile(𝜃i) > log Lprofile(𝜃̂i) − 1.92}. (A.93)

Here 1.92 = 3.84/2 is half the upper 5% critical value of the 𝜒2
1 distribution, and is

justified by the asymptotic representation

log Lprofile(𝜃i) − log Lprofile(𝜃̂i) = −1
2
(𝜃i − 𝜃̂i)2∕𝑣ii

since 𝜃̂i is asymptotically normally distributed about 𝜃i with variance 𝑣ii.
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A.12.6 Linked Parameterization

In the spatial linear model, sometimes both the mean vector and the covariance
matrix depend jointly on a p-dimensional parameter vector 𝜽; see, for example,
Smith (2001, pp. 124–250). Thus, suppose

x ∼ Nn(𝝁(𝜽),Σ(𝜽)).

Write 𝝁i = 𝜕𝝁∕𝜕𝜃i and Σi = 𝜕Σ∕𝜕𝜃i, i = 1, . . . , p. It can be shown that

𝜕 log L∕𝜕𝜃i = (x − 𝝁i)TΣ−1(x − 𝝁) + 1
2
(x − 𝝁)TΣ−1ΣiΣ−1(x − 𝝁) − 1

2
tr{Σ−1Σi},

i = 1, . . . , p. (A.94)

In general, the MLE needs to be found numerically.
Using (A.94), it can be found after some algebra that the information matrix has

elements

(𝜽)
ij = 1

2
{trΣ−1ΣiΣ−1Σj} + 𝝁T

i Σ
−1𝝁j. (A.95)

Example A.2 Consider a simple example with a p = 1-dimensional parameter
𝜃 = 𝜃1. Suppose𝝁 = 𝜃1 andΣ = 𝜃

2P, where P is a fully specified covariance matrix.
The log-likelihood takes the form

−2 log L = −1
2
{(x − 𝜃1)T

𝜃
−2P−1(x − 𝜃1) + n log 𝜃2 + n log(2𝜋)}

= −1
2
{𝛼𝜑2 − 2𝛽𝜑 + 1TP−11 − n log𝜑2 + n log(2𝜋)},

where 𝛼 = xTP−1x, 𝛽 = xTP−11, and the parameter 𝜃 is replaced by 𝜑 = 1∕𝜃.
It is easily checked that the log-likelihood tends to −∞ as |𝜑|→ 0 and |𝜑|→ ∞.

Hence, there is at least one local maximum on the intervals 𝜑 ∈ (−∞, 0) and 𝜑 ∈
(0,∞). Differentiating the log-likelihood with respect to 𝜑 and setting the deriva-
tive to 0 leads to the quadratic equation

𝛼𝜑
2 − 𝛽𝜑 − n = 0

with the two solutions

𝜑± =
𝛽 ±
√
𝛽2 + 4n𝛼
2𝛼

.

One solution is negative and one is positive; hence the two solutions maximize
the log-likelihood on the intervals 𝜑 ∈ (−∞, 0) and 𝜑 ∈ (0,∞), respectively. After
substituting these two choices into the log-likelihood, it can be shown that the
choice that maximizes the log-likelihood is given by

𝜑̂ = 𝜑+ if 𝛽 > 0 , 𝜑̂ = 𝜑− if 𝛽 < 0 .

The information (for 𝜃) is given by

 = (2n + 1TP−11)∕𝜃2
.

In particular, if P = I is the identity matrix, then  = 3n∕𝜎2. ◽
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A.12.7 Model Choice

Consider two models M1 and M2 where M1 is nested within M2. Suppose distribu-
tions in M2 are parameterized by a p2-dimensional parameter vector 𝜽. Suppose
𝜽 can be partitioned as 𝜽T = (𝜽T

1 ,𝜽
T
2 ) of dimensions p1 and p2 − p1 and suppose

that 𝜽2 = 0 under M1. Given an n-dimensional data vector x, let log L̂j denote the
maximized log-likelihood under model Mj, j = 1,2.

The standard theory of likelihood ratio tests states that under mild regularity
conditions,

2(log L̂2 − log L̂1) ∼ 𝜒
2
p2−p1

(A.96)

asymptotically for large n, where p2 − p1 is the number of extra parameters under
the model M2. Hence, for a test of size 5%, the simpler model M1 is preferred unless
twice the difference in log-likelihoods exceeds the upper 5% critical value of the
relevant 𝜒2 distribution.

Another way to compare models is through the Akaike information criterion
(AIC). Define the AIC for a model Mj by

AICj = 2(pj − log L̂j), j = 1, 2 (A.97)

i.e. twice the difference between the number of parameters in the model and the
maximized log-likelihood. Then the AIC model choice rule says to choose the
model with the smallest AIC value. The AIC criterion can be used to compare
both nested and nonnested models.

A.13 Bias in Maximum Likelihood Estimation

A.13.1 A General Result

First, a general result is given about bias in maximum likelihood estimation for a
large sample size n. Then this result is applied to the spatial linear model.

Suppose that log L = log L(𝜽) is the log-likelihood function with p parameters 𝜽
and is based on n observations. The following notation is used in this section for
the expected derivatives of log L(𝜽).

𝓁ij = E

{
𝜕

2 log L
𝜕𝜃i𝜕𝜃j

}
, 𝓁ijk = E

{
𝜕

3 log L
𝜕𝜃i𝜕𝜃j𝜕𝜃k

}
,

𝓁ij,k = E

{
𝜕

2 log L
𝜕𝜃i𝜕𝜃j

𝜕 log L
𝜕𝜃k

}
i, j, k = 1, . . . , p. (A.98)

In addition, let

𝓁(k)
ij =

𝜕𝓁ij

𝜕𝜃k
= 𝓁ijk + 𝓁ij,k. (A.99)



�

� �

�

A.13 Bias in Maximum Likelihood Estimation 339

In terms of the subscript notation 𝓁ij, the Fisher information matrix is given by

(𝜽) = (−𝓁ij). (A.100)

It is also useful to use the superscript notation 𝓁ij to specify the elements of the
inverse information matrix

(𝜽)−1 = (−𝓁ij). (A.101)

The following bias formula is taken from Cox and Snell (1968).

Theorem A.13.1 (Cox–Snell Theorem) Consider n independent observations
(not necessarily identically distributed) from a statistical model with a p-dimensional
parameter vector𝜽, and suppose the derivatives (A.98) are O(n). Then, under suitable
regularity conditions, the bias b(𝜽s) of the sth element 𝜃s of the MLE of 𝜽 is given by

b(𝜃s) =
p∑

i=1

p∑
j=1

p∑
k=1

𝓁si𝓁sj
{
𝓁ij,k +

1
2
𝓁ijk

}
+ o(n−1), s = 1, . . . , p. (A.102)

Cordeiro and Klein (1994) have pointed out that this bias expression still holds
even if the observations are dependent, provided that all the terms in Eq. (A.102)
are O(n). They have also given the following alternative form for the bias:

b(𝜃s) =
p∑

i=1
𝓁si

p∑
j=1

p∑
k=1

𝓁sj
{
𝓁(k)

ij − 1
2
𝓁ijk

}
+ o(n−1), s = 1, . . . , p. (A.103)

In matrix notation, (A.103) becomes

b(𝜽) = (𝜽)−1𝜹(𝜽) + o(n−1), 𝛿(𝜽)i = tr((𝜽)−1Ui), i = 1, . . . , p, (A.104)

where the p × p matrix Ui has elements (Ui)jk = 𝓁(k)
ij − 1

2
𝓁ijk, j, k = 1, . . . , p.

Some simplification takes place when the Fisher information matrix (𝜽) for 𝜽
is block diagonal, such as (A.84) for the spatial linear model. Suppose now that 𝜽 =
(𝜽T

1 ,𝜽
T
2 )T , where 𝜽1 = (𝜃1, . . . , 𝜃p1

)T and 𝜽2 = (𝜃p1+1, . . . , 𝜃p1+p2
)T . Further, suppose

that (𝜽) has the respective block matrix with diagonal blocks (𝜽1) and (𝜽2). Then

b(𝜃s) =
p1∑

i=1
𝓁si

p1∑
j=1

p1∑
k=1

𝓁sj
{
𝓁(k)

ij − 1
2
𝓁ijk

}
− 1

2

p1∑
i=1

𝓁si
p1+p2∑

j=p1+1

p1+p2∑
k=p1+1

𝓁sj𝓁ijk + o(n−1),

s = 1, . . . , p1.

(A.105)

In matrix notation, (A.105) becomes

b(𝜽) = (𝜽)−1𝜹(𝜽) + o(n−1), 𝛿(𝜽)i = tr{(𝜽1)−1Ui} + tr{(𝜽2)−1Vi},

i = 1, . . . , p1, (A.106)

where Ui is a p1 × p1 matrix and Vi is a p2 × p2 matrix with elements (Ui)jk =
𝓁(k)

ij − 1
2
𝓁ijk, j, k = 1, . . . , p1, and (Vi)jk = − 1

2
𝓁ijk, j, k = p1 + 1, . . . , p1 + p2.

Note that the bias in this case is additive.
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A.13.2 The Spatial Linear Model

In addition to the notation in (A.74), the following notation is also useful for spec-
ifying various derivatives of the log-likelihood for the spatial linear model. Let

Mi = Σ−1Σi, Mij = Σ−1Σij,

Mi,j = Σ−1ΣiΣ−1Σj, Mi, jk = Σ−1ΣiΣ−1Σjk, (A.107)

Mij,k = Σ−1ΣijΣ−1Σk, Mi, j,k = Σ−1ΣiΣ−1ΣjΣ−1Σk,

where i, j, k = 1, . . . , p. It can be checked that

𝜕{tr(Σ−1Σi)}∕𝜕𝜃j = −tr(Mi,j − Mij),

𝜕(Σ−1ΣiΣ−1)∕𝜕𝜃j = (Mij − Mi,j − Mj,i)Σ−1
. (A.108)

Use lowercase letters to denote the traces of the matrices in (A.107); in particular,
set

mij = tr(Σ−1Σij), (A.109)

mi,j = tr(Σ−1ΣiΣ−1Σj) = −tr(ΣiΣj), (A.110)

mij,k = mk,ij = tr(Σ−1ΣijΣ−1Σk) = −tr(ΣijΣk). (A.111)

The log-likelihood for the spatial linear model is given by ((A.79). The second
derivative of the log-likelihood with respect to 𝜃i and 𝜃j, given in (A.76) with x
replaced by 𝒘 = x − F𝜷, can be written as

𝜕
2 log L∕𝜕𝜃i𝜕𝜃j =

1
2
(mi,j − mij) +

1
2

tr{(Mij − Mi,j − Mj,i)Σ−1𝒘𝒘T}. (A.112)

Next consider the third-order derivatives of the log-likelihood function. Differ-
entiating (A.82), it follows that

𝜕
3 log L∕𝜕𝜷𝜕𝜷T

𝜕𝛽i = 0, i = 1, . . . , q,

𝜕
3 log L∕𝜕𝜷𝜕𝜷T

𝜕𝜃j = tr(FTΣ−1ΣiΣ−1F), j = 1, . . . , p, (A.113)

where, as far as possible, derivatives with respect to the q-dimensional vector 𝜷
are represented in terms of vectors and matrices, and derivatives with respect to 𝜽
are given elementwise. Further using (A.112), we get

𝜕
3 log L∕𝜕𝜷𝜕𝜃i𝜕𝜃j = −1

2
tr{(Mij − Mi,j − Mj,i)Σ−1F}𝒘, i, j = 1, . . . , p. (A.114)

Write

𝜕Mij∕𝜕𝜃k = M(k)
ij = Mijk − Mk,ij,

𝜕Mi,j∕𝜕𝜃k = M(k)
i,j = Mik,j + Mi,jk − Mi,j,k − Mi,k,j, i, j, k = 1, . . . , p. (A.115)
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Using (A.108) and (A.112) it can be shown that

𝜕
3 log L∕𝜕𝜃i𝜕𝜃j𝜕𝜃k = 1

2
tr
{(

M(k)
i,j − M(k)

ij

)}

− 1
2

tr
{(

M(k)
ij − M(k)

i,j − M(k)
j,i

)
Σ−1𝒘𝒘T

}

+ 1
2

tr
{
(Mij − Mi,j − Mj,i)Σ−1ΣkΣ−1𝒘𝒘T}

. (A.116)

Using (A.115) and taking the expectation of (A.116), we get

E{𝜕3 log L∕𝜕𝜃i𝜕𝜃j𝜕𝜃k} = 1
2

tr(2Mi,j,k + 2Mi,k,j − Mij,k − Mik,j − Mjk,i)

= 1
2

tr(2mi,j,k + 2mi,k,j − mij,k − mik,j − mjk,i). (A.117)

We are now ready to give the bias for the spatial linear model following Mardia
(1990) and Watkins (1987) in the setting of outfill asymptotics. Regularity condi-
tions are discussed in Section 5.5.3.

Theorem A.13.2 (Mardia–Watkins Theorem)

(i) The bias in 𝜷 is negligible

b(𝜷) = E(𝜷̂ − 𝜷) = o(n−1). (A.118)

(ii) The bias in 𝜽 can be written as the sum of two terms (the first term is present only
when 𝜷 is also to be estimated) given by

b(𝜽) = b1(𝜽) + b2(𝜽) + o(n−1). (A.119)

Here

b1(𝜽) = ((𝜃))−1𝜹1, 𝛿1i =
1
2

tr
{
((𝛽))−1Ci

}
, Ci = 𝜕

(𝛽)∕𝜕𝜃i = tr{FTΣiF},
(A.120)

and
b2(𝜽) = ((𝜃))−1𝜹2, 𝛿2i =

1
2

tr
{
((𝜃))−1Di

}
,

(Di)jk = 1
2
(mjk,i − mij,k − mik,j).

(A.121)

Here 𝜹1 and 𝜹2 are vectors of length p with elements 𝛿1i and 𝛿2i, and Di is
a p × p matrix. The information matrices (𝛽) and (𝜃) are given in (A.85)
and (A.77).

Note. The bias b(𝜽) is the sum of two terms. The first term b1(𝜽) can be viewed
as “external,” arising from the estimation of 𝜷 and the second term b2(𝜽) can be
viewed as “internal,” arising from the estimation of 𝜽.
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Proof: We will use form (A.105) of the Cox–Snell theorem since the information
matrix of 𝜷 and 𝜽 is the block diagonal matrix (A.84). Further to the information
matrix, expression (A.105) needs the additional derivatives

𝓁(k)
ij ,𝓁ijk, i, j, k = 1, . . . , p1; 𝓁ijk, i = 1, . . . , p1, j, k = p1 + 1, . . . , p1 + p2.

(i) For this part of the proof, let 𝜷 and 𝜃 correspond to 𝜽1 and 𝜽2 with dimen-
sions q = p1 and p = p2, respectively, in the notation of (A.105). Note that since
(A.85) does not involve any 𝜷 terms,

𝓁(k)
ij = 0 i, j, k = 1, . . . , q.

Further from (A.113), we have

𝓁ijk = 0, i, j, k = 1, . . . , q

since there is no term there involving𝒘. Finally, using E(𝒘) = 0 in (A.114),

𝓁ijk = 0, i = 1, . . . , q; j, k = q + 1, . . . , q + p.

Thus, all three terms in (A.105) are zero and (A.118) is proved.
(ii) For this part of the proof, swap the identifications so that 𝜽 and 𝜷 correspond

to 𝜽1 and 𝜽2 with dimensions p = p1 and q = p2, respectively, in the notation
of (A.105). From (A.77), (A.100), and (A.107), it follows that

𝓁ij = −1
2

mi,j, i, j = 1 . . . , p, 𝓁ij = −(FTΣ−1F)ij, i, j = p + 1 . . . , p + q.

Note that from (A.115),

𝓁(k)
ij = −1

2
(mik,j + mi,jk − mi,j,k − mi,k,j), i, j, k = 1, . . . , p.

Further from (A.117), we have

𝓁ijk = 1
2
(2mi,j,k + 2mi,k,j − mij,k − mik,j − mjk,i), i, j, k = 1, . . . , p.

Finally, from (A.113),

𝓁ijk = (tr{FTΣ−1ΣiΣ−1F})jk, i = 1, . . . , p, j, k = p + 1, . . . , p + q.

Using the last three expressions in (A.105), the proof of (A.119) follows. ◽

Next, consider some special settings for this theorem. Remember the notational
convention (A.74) involving subscripts and superscripts on Σ for derivatives with
respect to 𝜃.

(a) Setting p = q = 1. In this setting, the vector x has a constant mean 𝛽 = 𝜇 and
the covariance matrix has a single parameter 𝜃. The blocks of the information
matrix take the form


(𝛽) = 1TΣ−11, 

(𝜃) = 1
2

tr{Σ−1Σ1Σ−1Σ1} = −1
2

tr{Σ1Σ1}. (A.122)
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Hence from (A.119),

b(𝜃) = 1
2
((𝛽)


(𝜃))−1𝟏TΣ11 + 1

4
((𝜃))−2tr{Σ11Σ1} + o(n−1). (A.123)

As a special case of this setting, suppose 𝜃 = 𝜎
2 is a scale parameter for Σ, that

is, Σ = 𝜎
2P where the P is a specified matrix. Then

Σ1 = 𝜕Σ
𝜕𝜎2 = P, Σ11 = 0, Σ−1 = (𝜎2)−1P−1

,

Σ1 = −(𝜎4)−1P−1
, tr(Σ1Σ1) = −I(𝜎4)−1

.

In (A.123), the second term is zero as Σ11 = 0, and the bias becomes

b(𝜎2) = −𝜎
2

n
.

This result might have been expected by considering the i.i.d. case, but note
that the formula here holds for any P. The information matrices (A.122)
simplify to


(𝛽) = 𝟏TP−11

𝜎2 , 
(𝜃) = −1

2
tr(Σ1Σ1) =

n
2𝜎4 .

(b) Setting p = 2, q = 1. Suppose 𝛽 = 𝜇 as in (a) and now let 𝜽 = (𝜃1, 𝜃2)T be two
dimensional. Then (𝛽) = 1TΣ−11,C1 = 1TΣ11,C2 = 1TΣ21, and thus (A.120)
becomes

𝜹T
1 = (𝛿11, 𝛿12), 𝛿11 = 1

2
𝟏TΣ11

1TΣ−11
, 𝛿12 = 1

2
𝟏TΣ21
𝟏TΣ−11

. (A.124)

The 2 × 2 information matrix (𝜃) has elements ((𝜃))ij = − 1
2

tr(ΣiΣj). For con-
venience, write the inverse matrix as ((𝜃))−1 = A, say, with elements aij. The
first term in (A.120) can be expressed using (A.124) and A

b11(𝜷) = 𝛿11a11 + 𝛿12a12, b12(𝜷) = 𝛿11a12 + 𝛿12a22. (A.125)

Next, consider the second term in (A.121). It can be shown that the matrices
D1 and D2 are given by

D1 = −1
2

[
m11,1 m11,2
m11,2 2m12,2 − m22,1

]
and D2 = −1

2

[
2m12,1 − m11,2 m22,1

m22,1 m22,2

]
.

(A.126)
Then 𝛿21, 𝛿22 in (A.121) are given by

𝛿21 = −1
4
{m11,1a11 + 2m11,2a12 + (2m12,2 − m22,1)a22)},

𝛿22 = −1
4
{(2m12,1 − m11,2)a11 + 2m22,1a12 + m22,2a22},

(A.127)

and so the bias term b2(𝜽) has elements

b21(𝜽) = 𝛿21a11 + 𝛿22a12, b22(𝜽) = 𝛿21a12 + 𝛿22a22. (A.128)

Adding (A.125) and (A.128) yields the total bias b(𝜽) in (A.119).
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Table A.5 First and second derivatives of Σ and Σ−1 with respect
to 𝜃1 = 𝜎

2
𝜀

and 𝜃2 = 𝜆.

Matrix A [ae, am, ao]

Σ [1, 1, 𝜆] 𝜎2
𝜀
∕M

Σ1 [1, 1, 𝜆] ∕M
Σ11 [0, 0, 0]
Σ2 [2𝜆, 2𝜆, P] 𝜎2

𝜀
∕M2

Σ22 [2(1 + 3𝜆2), 2(1 + 3𝜆2), 2𝜆(3 + 𝜆2)] 𝜎2
𝜀
∕M3

Σ12 [2𝜆, 2𝜆, P] ∕M2

Σ−1 [1, P,−𝜆] ∕𝜎2
𝜀

Σ1 −[1, P,−𝜆] ∕𝜎4
𝜀

Σ2 [0, 2𝜆,−1] ∕𝜎2
𝜀

Example A.3 AR(1) process
Consider data at sites 1, . . . ,n from an AR(1) process, which is the same as a
first-order CAR process (Section 6.3). For the bias calculations here, suppose the
process is parameterized by 𝜽 = (𝜎2

𝜀
, 𝜆)T . The exact covariance matrix and inverse

covariance matrix are given by (6.21) and (6.22) in terms of 𝜎2 = 𝜎
2
𝜀
∕(1 − 𝜆2) and 𝜆.

For the purposes of this section, call an n × n symmetric matrix A nearly
circulant if

a11 = ann = ae, say,

a22 = · · · an−1,n−1 = ad, say, and (A.129)

a12 = · · · an−1,n = ao, say,

where the labels e, d, o stand for “end,” “diagonal,” and “off-diagonal.” That is,
the elements along the main diagonal equal one another, except possibly the
endpoints, which also equal one another, and all the elements on the dominant
subdiagonal equal one another. If A and B are nearly circulant, and if at least one
of them is tri-diagonal, then

tr(AB) = 2aebe + (n − 2)adbd + 2(n − 1)aobo ≈ n(adbd + 2aobo). (A.130)

Table A.5 describes the first two derivatives of the nearly circulant matrices Σ
and Σ−1 using subscripts and superscripts, respectively, for the derivatives with
respect to 𝜃1 and 𝜃2.
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The elements of the information matrix are given by (A.77) and can be found by
substituting the entries from Table A.5 into (A.130), with the result

 ≈ n
[

1∕(2𝜎4
𝜀
) 0

0 1∕(1 − 𝜆2)

]
, 

−1 ≈ 1
n

[
2𝜎4

𝜀
0

0 1 − 𝜆2

]
, (A.131)

where terms of smaller order than O(n) and O(n−1) in  and −1, respectively, have
been ignored.

Next, consider the two bias terms b1(𝜽) and b2(𝜽) in the Mardia–Watkins
theorem. For the first bias term, it is necessary to work out 1TΣ−11 = tr(Σ−111T)
and its derivatives with respect to 𝜽. Since 11T is nearly circulant in the sense of
(A.129), these quantities can be computed using (A.130)

1TΣ−11 ≈ −n(1 − 𝜆)2∕𝜎2
𝜀
, 1TΣ11 ≈ −n(1 − 𝜆)2∕𝜎4

𝜀
, 1TΣ21 ≈ −2n(1 − 𝜆)∕𝜎2

𝜀
.

(A.132)
Using these values in (A.124) yields 𝜹1 = −

[
1∕(2𝜎2

𝜀
) 1∕(1 − 𝜆)

]T .
For the second bias term, it is first necessary to find the quantities mij,k in (A.110).

Using the derivatives in Table A.5 and Eq. (A.130), it follows that m11,1 = m11,2 = 0
and

m12,1 ≈ 0, m12,2 ≈ 2n
𝜎

2
𝜀 (1 − 𝜆2)

, m22,1 ≈ 2n
𝜎

2
𝜀 (1 − 𝜆2)

,

m22,2 ≈ 8𝜆n(1 − 𝜆2)
(1 − 𝜆2)2 . (A.133)

Using (A.133) and the information matrix (A.131) in (A.127) yields 𝜹2 =
−
[
1∕(2𝜎2

𝜀
) 2𝜆∕(1 − 𝜆2)

]T .
Finally, substituting 𝜹1 and 𝜹2 in (A.125) and (A.128) yields the bias terms,

b1(𝜽) = − 1
n

[
𝜎

2
𝜀

1 + 𝜆

]
+ o(n−1), b2(𝜽) = − 1

n

[
𝜎

2
𝜀

2𝜆

]
+ o(n−1),

b(𝜽) = b1(𝜽) + b2(𝜽) = − 1
n

[
2𝜎2

𝜀

1 + 3𝜆

]
+ o(n−1). (A.134)

◽
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Appendix B

A Brief History of the Spatial Linear Model and the
Gaussian Process Approach

The mere formulation of a problem is far more often essential than its
solution, which may be merely a matter of mathematical or experimental
skill. To raise new questions, new possibilities, to regard old problems
from a new angle requires creative imagination and marks real advances
in science. (Einstein and Infeld, 1938, p. 38)

B.1 Introduction

Often, there are two streams in statistical research – one developed by practition-
ers and other by mainstream statisticians. The development of Geostatistics is
a very good example where pioneering work under realistic assumptions came
from mining engineers, whereas the links to mainstream work on spatial pro-
cesses only gradually became explicit. Geostatisticians are particularly interested
in prediction, also known as kriging. Two of the pioneering figures in the devel-
opment of geostatistics were Danie Krige and Georges Matheron (Figure B.1); to
see how the word “kriging” was coined by Matheron, see Cressie (1990). There
have been excellent historical articles related to this subject including by Agter-
berg (2004), Baddeley (2001), Cressie (1989, 1990), Cressie and Moores (2021), and
Diggle (1997, 2010). Their accounts are exclusively about the relation between on
statistical prediction and kriging, for example, as summarized by Diggle (2010):

For some time, the work of the Fontainebleau School remained relatively
unconnected to the mainstream of spatial statistical methodology, and
vice versa. Watson (1972) drew attention to the close connections between
Fontainebleau-style geostatistical methods and more theoretically oriented
work on stochastic process prediction (see, for example, Whittle (1963)).

In addition, statisticians have also focused on inference problems, especially
likelihood-based inference. An early contribution was Whittle (1954) for the SAR

Spatial Analysis, First Edition. John T. Kent and Kanti V. Mardia.
© 2022 John Wiley & Sons Ltd. Published 2022 by John Wiley & Sons Ltd.
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Krige Matheron

Figure B.1 Creators of Kriging: Danie Krige and Georges Matheron.

model. It is now well known that when Matheron created kriging, he followed the
least squares approach to inference in his formulation, whereas Mardia (1980) and
Mardia and Marshall (1984) used the Fisher’s likelihood approach after formulat-
ing the problem in terms of the spatial linear model (SLM). Incidentally, Mardia
(1980) received some helpful comments in person from some participants from
the Fontainebleau School when this paper was presented in 26th International
Geology Congress Sciences de la Terre, Paris, 1980.

In particular, the maximum likelihood method was used for estimating the
parameters for the SLM, and the predictor (universal kriging) was taken to be the
plug-in mean from the fitted Gaussian process. More details are given below.

B.2 Matheron and Watson

While Matheron and his group were developing geostatistics, Geof Watson was
keen to draw the attention of statisticians to this new area. Watson wrote a report
on this topic (Watson, 1969) followed by a shorter version in print (Watson, 1972).
Watson (1984) later spelled out the link between splines and kriging.

Historically, Watson’s following observation in Watson (1986) (Reprinted in
Mardia (1991, p. xl)) is a key to understanding the development of statistical
geostatistics:

In the mid-1970s the work of Georges Matheron and Jean Serra of the
Center for Mathematical Morphology at the Paris School of Mines, attracted
my attention. They seemed to be breathing new life into the application of
statistics to geology and mining. As a result, I spent a lot of time persuading



�

� �

�

B.3 Geostatistics at Leeds 1977–1987 349

English-speaking geologists and statisticians that this was so, while trying
to persuade the Fontainebleau School to integrate their writings with
that of the anglophones! Our geologists receive very little mathematical
training (indeed they seem less mathematically inclined than any scientific
group I know) so French-style ‘geostatistics’ was just too much for them.

The following comment regarding the “Anglo-Saxon optique” in Watson (1986)
(Reprinted in Mardia (1991, p. xli)) was not well received by Matheron.

While I never persuaded Matheron to adopt the ‘Anglo-Saxon optique’, I
enjoyed his hospitality on many occasions, thereby sampling French family
life (at its best, I suspect) which one can never know as a tourist.

When Mardia was preparing the Festschrift volume for Geof, he invited Math-
eron to write an article for the volume. Matheron did not agree and sent him a
letter (reproduced here as Figure B.2 with a translation in B.3) together with a
copy of Watson (1986) where the quote had appeared.

B.3 Geostatistics at Leeds 1977–1987

B.3.1 Courses, Publications, Early Dissemination

We were fortunate at Leeds University in late 1970s to have the Department of
Mining interested in geostatistics, led by Peter Dowd and Allen Royale. Our own
interest was boosted by extensive interactions with them. They were already
running their M.Sc in Geostatistics, and we were one of the first departments of
statistics to introduce geostatistics into a Statistics M.Sc. In the meantime,
spatial statistics was becoming more prominent within the statistics community.
Ripley’s book (Ripley, 1981) came out in 1981. Mardia (1980), Mardia and Gill
(1982), Mardia and Marshall (1982), and Mardia and Marshall (1984) formulated
geostatistical models in a more statistical framework, with an emphasis on
likelihood-based inference.

One key initiative at Leeds was the development of a long-running annual
workshop (which became the Leeds Annual Statistics Research or LASR Work-
shop) on topical areas of Statistics. Spatial Statistics became a regular theme, and
it attracted many leading figures. As early as 1979, the theme was geostatistics,
and the speakers included A. Marechal (Centre de Geostatistique, Fountainbleau)
from the Matheron group.

Subsequent LASR workshops included short courses from leading speakers,
including Richard Martin in 1980, Julian Besag in 1981, Brian Ripley in 1982,
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Figure B.2 Letter from Matheron to Mardia, dated 1990.

Xavier Guyon in 1983, Tata Subba-Rao in 1985, John Haslett in 1986, and Hans
Künsch in 1987. A related theme on spatial statistics and image analysis devel-
oped in the mid-1980s and speakers included J.S. Durrani, Joseph Kittler, and
J.R. Ullman.
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G Matheron

École Nationale Supérieure

des Mines de Paris

Centre de Géostatistique

35 Rue Saint-Honoré

77305 Fontainebleau

FRANCE

Fontainebleau, 23 February 1990

Dear Dr. Mardia,

Please find enclosed a photocopy of a passage from the autobiographical article “The

Craft of Probabilistic Modelling” where G S Watson reveals to us what he thinks of

Geostatistics.

If I had to write a commentary, it would be on the theme: “How is it that normally

intelligent ‘anglo-saxon’ statisticians regularly show themselves to be incapable of

understanding even what Geostatistics is about?”

But doubtless such a commentary would be out of place in the book which you are

intending to publish for the celebration of G S Watson. Therefore, I shall not be

contributing any article.

Yours sincerely,

G Matheron

Enclosed: photocopy of the cited article.

Figure B.3 Translation of the letter from Matheron to Mardia, dated 1990.

B.3.2 Numerical Problems with Maximum Likelihood

At one stage, there was considerable debate about the behavior of maximum like-
lihood methods for the covariance parameters in a spatial model, starting with
Mardia and Marshall (1984). In certain problems, there may be multiple modes
of the likelihood or the MLE may be singular. Part of the problem seems to a
confounding between short-range and long-range behavior of the covariance func-
tion, sometimes leading to multiple modes with different choices of the range
parameter. In addition, nondifferentiability of the covariance function (e.g. for
the spherical scheme) may be a contributory factor in multimodality (Mardia and
Watkins, 1989). We have had no problems fitting the exponential scheme in vari-
ous numerical examples in Chapter 5.

More recent thinking downplays concerns about multimodality, e.g. Stein (1999,
p. 173):

I do not believe the results in Warnes and Ripley (1987) and Ripley (1988)
purporting to show multiple maxima in the likelihood when fitting an expo-
nential autocovariance function.
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Their presence is not a sign of a problem with likelihood methods but rather
an entirely correct indication that the data provide essentially no informa-
tion for distinguishing between parameter values along the log likelihood
function (long ridges in the likelihood).

Perhaps the most up-to-date view is given by Zimmerman (2010)

In many standard statistical problems, a unique ML estimate exists. In the
present context, however, there is no guarantee of existence or uniqueness,
nor is there even a guarantee that all local maxima of the likelihood func-
tion are global maxima. Indeed, Warnes and Ripley (1987) and Handcock
(1989) show that the likelihood function corresponding to gridded observa-
tions of a stationary Gaussian process with spherical covariance function
often has multiple modes, and that these modes may be well separated.
Rasmussen and Williams (2006) display a bimodal likelihood surface for a
case of a stationary Gaussian process with a Gaussian covariance function,
which is observed at seven irregularly spaced locations on a line. However,
the results of Handcock (1989) and Mardia and Watkins (1989), plus the
experience of this author, suggest that multiple modes are extremely rare
in practice for covariance functions within the Matérn class, such as the
exponential function, and for datasets of the size typical of most applica-
tions. In any case, a reasonable practical strategy for determining whether a
local maximum obtained by an iterative algorithm is likely to be the unique
global maximum is to repeat the algorithm from several widely dispersed
starting values.

For some further details on the historical development of spatial analysis, we
refer to Mardia (2007) and the conversations with Mardia in Mukhopadhyay
(2015a, pp. 28–29, 36–37) and Mukhopadhyay (2015b, pp. 72–73).

B.4 Frequentist vs. Bayesian Inference

Another question concerns the frequentist approach vs. Bayesian approach; we
tend to agree with Cox (2006, p. 197):

Much of this book has involved an interplay between broadly frequentist
discussion and a Bayesian approach, the latter usually involving a wider
notion of the idea of probability. In many, but by no means all, situations
numerically similar answers can be obtained from the two routes.

Cox (2006, p. 196) also argues:

For the last 15 years or so, i.e. since about 1990, interest has focused instead
on applications, especially encouraged by the availability of software for
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Markov chain Monte Carlo calculations, in particular on models of broadly
hierarchical type. Many, but not all, of these applications make no essential
use of the more controversial ideas on personalistic probability and many
can be regarded as having at least approximately a frequentist justification.

At the same time, there is a strong synergy between the two approaches. The
frequentist approach often focuses on the development of tractable models where
some analytic understanding is available. On the other hand, a Bayesian treatment
can lead to more realistic models and can help to account more carefully for uncer-
tainty, especially when there are a large number of parameters.

Here are some general thoughts on the value of statistical modeling, taken from
Speed (2007).

George Box: “All models are wrong, some models are useful.”
Basil Rennie: “Every model embodies a half-truth, and as one of our wiser

politicians once remarked, half-truths are like half-bricks, they are better because
they carry further.”

We finish with a quote from Mardia and Gilks (2005) related to holistic statistics:

Through our brief account, we have identified three themes. First, statis-
tics should be viewed in the broadest possible way for scientific explanation
or prediction of any phenomenon. Second, the future of statistics lies in a
holistic approach to interdisciplinary research. Third, a change of attitude is
required by statisticians — a paradigm shift — for the subject to go forward.
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