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Preface

This book was written as a brief but self-contained introduction to the application
of geometric techniques to understanding the brain. The approach is illustrated
by characterising the data structures used to describe objects geometrically and,
subsequently, showing how measurements provided by sensory neurons can be used
to uncover the geometric descriptions of the objects present. A similar approach is
applied to characterising the actions made by an animal in order to handle an object,
and what this involves at the level of muscle contractions. Finally, it is shown that
the geometrical approach leads to new and distinctive experimental techniques.

The approach of this book relies heavily on visual representation of the material.
In this respect, I have been influenced by the book Dynamics: The Geometry of
Behaviour by Abraham and Shaw 1that gives a comprehensive introduction to the
ideas of nonlinear dynamics entirely in pictures. They wrote their book to show that
mathematical ideas can be communicated easily, and I think the material contained
in it has not been taken up as widely as it might be by neuroscientists for two
reasons. Firstly, there were no examples of applications to neuroscience in the book,
and secondly, they did not include the additional stage of how to turn the intuitive
visual ideas into equations that could be used to make testable predictions. This
book aims to fill those gaps.

The target readers are those with a neuroscience background, but the content is
also intended to be of interest to mathematicians, who will find that their brains
do mathematics which their minds are unaware of; to physicists, who will find
that brains have a few ideas of their own about how the world works; to computer
vision scientists and roboticists, who will discover alternatives to the computational
approaches with which they are familiar; and to neurologists, who will gain insight
into the different ways that abnormal behaviours can arise.

1 Abraham, R.H., Shaw, C.D. Dynamics: The Geometry of Behaviour. Second Edition. Addison-
Wesley Publishing Company, Redwood City, California (1992).
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vi Preface

The reader I have in mind is someone, maybe a school-leaver, maybe a university
student or maybe even a researcher, who has been introduced to calculus in the past
but is not aware of the insights generated by the geometric approach to the brain.
I have assumed some knowledge of neuroscience and mathematics which I have
reviewed in an appendix.

Deal, Kent, UK Richard A. Clement
February 2022
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Chapter 1
Mind and Brain

What sort of things are brains good at dealing with? The argument put forward here
is that they are adept at handling low-dimensional dynamical systems, primarily
because these capture the behaviour of biologically relevant objects. This approach
immediately raises the question of what are the distinctive brain mechanisms that
enable them to be good at this task? If the behaviour of a dynamical system is
described geometrically by the trajectory of a point corresponding to its state, then
the changes in the firing rates of a population of neurons can be used emulate the
changes in the coordinates of the state of the system as its behaviour changes.
Whilst expanding on this argument, the opportunity is taken to introduce the
basic terminology of dynamical systems theory and linear algebra that will recur
throughout the book.

1.1 Objects in Mind

Imagine you are out for a walk on a winter evening. The trees rustle gently in the
breeze. There is a clear sky with the stars just coming out. Suddenly a flying saucer
appears from over the horizon. It is a sure thing you will notice it. Now why is that?

One difference between the saucer and the rest of the scene illustrated in Fig. 1.1
is that it can change in only a limited way. It is a rigid object which can alter its
position along the left-right, up-down and near-far directions, and its orientation
along the pitch, roll and yaw axes. This property of the saucer can be summarised
by saying that it has six degrees of freedom. By comparison the trees have many
more degrees of freedom because every branch and twig moves differently in the
wind. Another difference between the saucer and the rest of the scene is that it
moves in a steady trajectory from one position and orientation to the next, so over
the short term at least, it is possible to make a prediction about where it will be in

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
R. A. Clement, Mathematical Tools for Neuroscience, Lecture Notes
in Morphogenesis, https://doi.org/10.1007/978-3-030-98495-3_1
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2 1 Mind and Brain

Fig. 1.1 How a flying saucer might appear when you are out walking on a winter evening

the future whereas different parts of the trees move in different directions depending
on the wind in an unpredictable manner.

Perhaps surprisingly, the behaviour of any object with a few degrees of freedom
of movement and predictable behaviour can be understood by using a geometric
description. The position and orientation of the flying saucer at any instant of time
can be specified by a sextuple of numbers each of which depends on the variation
along one of the degrees of freedom. Such a specification is referred to as the state
of the object. The geometric approach exploits the idea that the changes in the state
correspond to the trajectory of a point through some form of space even if it is
not immediately obvious what such a space might look like. The collection of all
trajectories taken by the object form a region of the space known as a manifold.

The description of the behaviour of an object in terms of its state is incomplete
without an additional specification of how it changes from one state to the next.
In geometric terms the state change corresponds to displacement of a point. Any
such quantity which has both a length and a direction is referred to as a vector.
So specification of how the state of the object changes is equivalent to assigning a
vector to every point on the manifold. This assignment is known as a vector field.
The combination of a manifold and an associated vector field is referred to as a
dynamical system.

In practice it is predominantly inanimate objects that satisfy the requirements for
a dynamical system in that they change from state to state according to a fixed rule.
In the case of the spaceship, at this very moment there might be a couple of aliens
wrestling over the controls to decide whether to land or go home, so the assumption
of a fixed rule may not be valid.

But now you notice that the spaceship is getting closer to the ground and it looks
as though it is going to land. You make your way towards it and by the time you get
to it the saucer has landed and a ramp has been lowered to the ground. A strange
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Fig. 1.2 Successive positions of an alien walking down a ramp. The images of the alien are faded
to indicate that they represent positions further back in time

being comes down the ramp, perhaps like that shown in Fig. 1.2. You have never
seen anything quite like it before but you can immediately tell that it has a lifelike
way of walking.

Again, the point to note is that the alien has relatively few degrees of freedom.
The movement patterns of animals are constrained by their skeletons and in the case
of this simulated alien each of its arms moves in a plane and can only bend at the
shoulder and elbow and so has only two degrees of freedom and similarly for the
legs.

Maybe you have taken your dog with you for the walk. The dog shows no interest
in the flying saucers and aliens but is engrossed by a plastic bag caught in a tree
which for it may or may not be a cat. So it is all very well to argue that the brain
can represent the behaviour of an object by the trajectory of a point on a manifold,
but one has to go further and explain how the ability to decide that there is an object
out there which corresponds to a particular dynamical system depends on the brain
involved.

1.2 Objects on the Brain

Consider the simpler situation of a primitive videogame where an icon of rocket is
shown moving across the screen. In order to ensure that the rocket does not simply
disappear if it reaches the edge of the screen one can wrap around the screen so
that when the spaceship reaches the edge of one side it continues travelling in the
same direction from the same position on the opposite side. In terms of geometric
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Fig. 1.3 Illustration of the plane diagram representation of a surface. Upper Figure Successive
positions of a spaceship following a trajectory on a torus. Middle Figure An intermediate step
in obtaining the plane representation of the torus. A tube is obtained by making a cut through
the doughnut shape and then uncurling it to give a tube. Lower Figure The plane diagram is
obtained by making a cut along the length of the tube and then unfurling it. In the plane diagram
representation of a torus when the spaceship reaches the edge of the rectangle it jumps to the
opposite side of the rectangle but continues travelling in the same direction. The edges of the plane
diagram that should be understood as glued together are indicated by arrows

description, wrapping around the screen constrains the spaceship to move along the
surface of a shape like a doughnut, as illustrated in Fig. 1.3.

The doughnut shape is an example of a torus and the unrolled representation of
the torus is referred to as a plane diagram. In the plane diagram representation
of a surface one begins with a polygon with 2n sides and then adds the additional
requirement that pairs of edges are taken to be attached. The attached sides can be
identified on the polygon by labelling each pair of edges with arrows to indicate how
the edges should be joined together. Sides with the same number of arrowheads are
taken to be glued together so that the arrowheads point in the same direction.

So here is a thing. The manifold with two degrees-of-freedom which is generated
by the path of the spaceship is equivalent to a surface situated within everyday three-
dimensional space. This observation raises the question of the space in which the
manifold is contained.

Everyday three-dimensional space has some distinctive properties, which are
simplest to explain with respect to a two-dimensional plane surface. Any point in
the plane can be specified by a pair of coordinates (x1, x2). The point specified by
the coordinates has a position given by a movement of an amount x1 along the
horizontal axis followed by an amount x2 along the direction of the vertical axis,
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Fig. 1.4 Diagram illustrating
how a point in the plane can
specified by the coordinates
(x1, x2) of a point on a graph
or by a vector sum of
horizontal and vertical
displacements x1h + x2v

Fig. 1.5 Diagram illustrating
a vector p, shown in black,
that cannot be generated by a
linear combination of the
vectors x1 and x2, shown in
blue, that lie in the plane
illustrated by a blue polygon

with the order in which the movements are made being unimportant. Using the
vector concept, a point X in the plane which is specified by a pair of coordinates
(x1, x2) can also be specified by a vector x which describes the change of position
from the origin to the point by a sum of multiples of vectors in the horizontal (h)
and vertical (v) directions, as illustrated in Fig. 1.4.

Given a pair of vectors, then their sum can be defined by attaching the head of
one vector to the tail of the other. On can go on to generate many vectors by adding
different multiples of two vectors together. Any such vector produced by adding
multiples of a pair of vectors is referred to as a linear combination of the original
set of vectors. If a vector cannot be expressed as a linear combination of the pair
of vectors then it is referred to as linearly independent of the pair of vectors. Such
a vector will lie outside the plane generated by linear combinations of the original
vectors as illustrated in Fig. 1.5, except in the case where the original vectors have
the same direction.

Although the linear combination concept can only be illustrated graphically for
two or three vectors, it extends to any number of vectors. This generalisation is
useful because many phenomena involve more than two or three variables and yet
the geometric approach can still be used. The set of all the vectors which can be
formed by linear combinations of a set of n linearly independent vectors constitutes
a vector space and the set of n linearly independent vectors itself is referred to
as the basis for the vector space which can be generated from it. The number
of independent vectors n is referred to as the dimension of the vector space. So,
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any vector x contained in a n-dimensional vector space can be written as a linear
combination of the n basis vectors (x1, x2, . . . , xn) of the space:

x = (x1x1, x2x2, . . . , xnxn) (1.1)

where the n-tuple of numbers (x1, x2, . . . , xn) are the coordinates of the vector.
Implicit in the explanation of how a pair of coordinates can be used to specify

the position of a point X in the plane is the assumption that the amount of the
corresponding vector x in the direction of the horizontal and vertical vectors can be
calculated. The amount of a vector x in the direction of another vector y is referred
to as the projection of x onto y. The projection of a pair of vectors onto each other
is given by the inner product of the vectors. This is an operation which takes two
vectors x and y and gives a single number that is a measure of their projection.
What is special about the plane is that it has an inner product, denote by a dot,
that is obtained by multiplying corresponding coordinates and then summing the
individual products:

x · y = x1y1 + x2y2 (1.2)

This inner product is referred to as the Euclidean inner product, or more succinctly
as the dot product .

The inner product can also be used to obtain a measure of the length of a vector,
denoted ‖x‖, by taking the square root of the inner product of a vector with itself.
The Euclidean inner product implies a measure of distance along a vector that is
familiar from Pythagoras’s theorem. If a vector x is taken to lie along the hypotenuse
of the right angle triangle formed by the projections (x1, x2) along the horizontal and
vertical directions respectively, as is the case for the vector illustrated in Fig. 1.4,
then the dot product is equivalent to Pythagoras’s theorem.

‖x‖‖x‖ = x · x = x1x1 + x2x2 (1.3)

It is also evident from Fig. 1.4 that the measure of projection provided by the dot
product is related to the angle between the two vectors. If the horizontal vector h is
assumed to be of unit length then the projection of the vector x onto the horizontal
vector is equal to the length of the vector x times the cosine of the angle between
the vectors. So the definition of the dot product in terms of coordinates is equivalent
to another formulation that is not so easy to calculate but is simpler to understand:

x · y = ‖x‖‖y‖(cosine of the angle between the vectors x and y) (1.4)

The definition of the Euclidean inner product generalises to n-tuples of coordinates:

x · x = x1x1 + x2x2 + . . . + xnxn (1.5)
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Fig. 1.6 Components of a
simplified model of a neuron.
Each input xi is multiplied by
an associated weight wi and
the output y is equal to the
sum of the weighted inputs
w · x

and so one can define distance in an artificial space with n-dimensions, each asso-
ciated with a different coordinate. The n-dimensional space of real numbers with
a Euclidean inner product defined on it is referred to as n-dimensional Euclidean
space. Generalising from the case of a doughnut-shaped surface contained within
three-dimensional Euclidean space one can describe an m-dimensional manifold as
a subset of n-dimensional Euclidean space, where the number n is greater than m.
This description is referred to as an embedding of the manifold in Euclidean space.
The advantage of this description is that every point on the embedded manifold then
has a unique n-tuple of coordinates given by the position of the point in Euclidean
space. Uniqueness of representation is a sine qua non for ensuring that the right
movement is made when interacting with an object in a given state.

The definition of the n-dimensional Euclidean inner product leads directly to the
reason that the geometric representation is suited to the capabilities of neurons. A
simple model of a neuron has a number of inputs, which describe the effects of the
synapses on the dendrites and cell body of the neuron, and a single output as shown
in Fig. 1.6. The individual inputs are weighted to represent the differing synaptic
strengths of the inputs and the sum of these weighted inputs corresponds to the
potential across the membrane of the cell body. Let the levels of the n inputs be
denoted by (x1, x2, . . . , xn) and the levels of the output be denoted by y. Further, let
the weights associated with each of the inputs be denoted by (w1, w2, . . . , wn) and
assume that the output depends on the sum of the inputs, then the output y of the
neuron is equal to the sum of the products of each input and its associated weight.

y = w1x1 + w2x2 + . . . + wnxn = w · x (1.6)

This model neuron behaves as though tuned to respond to an input vector x that is
aligned with the direction of the weight vector w because its output depends on the
cosine of the angle between the two vectors. As the output is directly proportional to
the inputs, the model is also known as a linear filter, tuned to the input that matches
the weight vector.
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Because such neurons compute the Euclidean inner product it is easy to set
up a neural representation of a two-dimensional Euclidean space by using a pair
of neurons, each specifying the coordinate of the point in a Cartesian system of
axes. One neuron has input weights that are a cosine function of the angle that
the direction of the point makes with the x-axis. The output of the neuron then
corresponds to the projection of the vector to the point onto the x-axis. The second
neuron carries out a similar computation for the y-axis coordinate.

This model is inaccurate because biological neurons have a limited range of
firing rates and only depolarisation of the membrane produces spikes so that a more
realistic description of the output of the neuron is given by taking only the positive
values of the output y+:

y+ =
{

y, if y ≥ 0
0, otherwise

(1.7)

Both these drawbacks can be overcome by using a population of p neurons to
represent the projection of an input onto each basis vector. The use of many neurons
to hold the value of a measured variable is referred to as a population code. For
example, the instantaneous direction of the rocket on the screen can be represented
by a population of p equally separated, unit length vectors, as illustrated in Fig. 1.7.

An estimate x̂ of the movement direction is given by the population vector, which
is the vector sum of the preferred directions of the population of p neurons weighted
by their responses:

x̂ = y+
1 w1 + y+

2 w2 + . . . + y+
p wp (1.8)

where the vectors w1, w2, . . . , wp specify the tuning directions of the population of
neurons. Note, however, that the length of the estimated vector will be given by the
sum of the responses of all the neurons responding to the input vector and so the
estimate has to be rescaled to obtain an accurate estimate of the length of the input
vector:

x̂ = y+
1 w1 + y+

2 w2 + . . . + y+
p wp

y+
1 + y+

2 + . . . + y+
p

(1.9)

Reduction of the output of a neuron by divisive inhibition from a pool of surrounding
neurons is widespread in nervous systems [3], and often leads to saturation of the
output as divisive inhibition becomes far more effective as the output increases.

Although a model that responds to a weighted sum of its inputs is a good first
approximation to the behaviour of a neuron, a more realistic model takes into
account the time required for the membrane potential to return its resting level.
Assuming that the rate of decay depends on the current value of the membrane
potential the behaviour of a model that incorporates the membrane potential can be
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Fig. 1.7 Alternative descriptions of a two-dimensional vector. Upper Figure The vector is
indicated in blue with respect to a pair of Cartesian axes described by the two basis vectors e1
and e2. Lower Figure A population coding of the vector, based on 16 neurons with preferred
tuning directions defined by the weight vectors (w1, w2, . . . , w16). These directions are plotted as
grey arrows. The lengths of the blue vectors indicate the responses of the corresponding neurons,
and the direction of the original vector can be reconstructed from the sum of these vectors. The
blue dots are added to show how the response of a neuron with cosine tuning varies with the angle
between its preferred direction and the target direction

described by the differential equation:

dy

dt
= −y

τ
+ w · x (1.10)

where τ is a constant referred to as the time constant τ .
The behaviour described by Eq. 1.10 can be understood by assuming that initially

the neuron has a constant input. If the input suddenly drops to zero then the
membrane potential will also change until the terms on the right hand side of
the equation sum to zero. The response of the neuron decreases exponentially, as
illustrated in Fig. 1.8 with a steepness that is determined by the time constant.

Although the membrane time constant of a single neuron is typically only a few
tens of milliseconds, an advantage of using population vector coding is that this
time constant can be increased by feedback connections within the population [2].
Both excitatory feedback connection of a neuron to itself and reciprocal inhibitory
connections between different neurons result in lengthening of the effective time
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Fig. 1.8 Plot of the response of specified by Eq. 1.10 to an abrupt removal of an input. The
response decreases exponentially at a rate that is determined by the time constant. In this case the
time constant was 1. The red lines illustrate the property of the exponential function that when the
amount of elapsed time t is equal to the time constant the output will have dropped to approximately
37% of its initial level

Fig. 1.9 Use of feedback to lengthen the time constant of a neuron. Upper Figure A positive
feedback connection indicated by a blue arrow. Lower Figure Reciprocal inhibitory feedback
connections, indicated by red arrows

constant so that a population of neurons can maintain a response even if an object is
temporarily hidden.

In the case of excitatory feedback illustrated in Fig. 1.9, the equation describing
the neuron can be put in the same form as Eq. 1.10 to show that the effective time
constant of the neuron τ ∗ has been lengthened by comparison with the original time
constant τ . Let a proportion k of the output be fed back then:

dy

dt
= −y

τ
+ ky + x = − (1 − τk)y

τ
+ x = − y

τ ∗ + x (1.11)
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where

τ ∗ = − τ

1 − τk
(1.12)

The effect of inhibitory feedback connections is easiest to grasp in neural networks
in which as many neurons respond to a signal change in one direction as respond
to a signal change in the opposite direction. A simple two neuron network with this
property is shown is also shown in Fig. 1.9. The behaviour of the neurons in this
circuit is described by the equations:

dy1
dt

= − y1
τ

− ky2 + x

dy2
dt

= − y2
τ

− ky1 − x

(1.13)

Given that the inputs to the two neurons are equal and opposite, from the symmetry
of the network it follows that the outputs will be equal and opposite, provided that
the outputs of both neurons are initially zero. So one can let y = y1 = −y2, and
substitute for y1 and − y2 in the pair of Eqs. 1.13 for the circuit. In both cases, the
result in an equation identical to the Eq. 1.11 for positive feedback, and the time
constant is correspondingly lengthened.

This outline of the properties of a simple model neural network indicates how
a brain could embody an object such as the spaceship on the game screen. A
brain with sufficient neurons can embed the manifold of the object in an n-
dimensional Euclidean space and a population of neurons can be used to keep track
of the trajectory of the object. Furthermore, given that the accuracy of the vector
reconstructed from the population of neurons depends on the number of neurons
[6], it follows that different brains will vary in their capability for interacting with
an object depending on the number of neurons they can throw at the problem. But
animal behaviour is not that simple. In the everyday world there are usually many
objects present and to achieve a goal the brain has to discern the relevant objects.

1.3 Using Your Grey Matter

The ability to identify and select the appropriate objects to interact with is perhaps
the most distinctive aspect of animal behaviour. What is the mechanism underlying
this ability? A working assumption is that the brain measures the physical properties
of the objects and uses this data to identify features of the objects, the idea being that
the objects can then be distinguished by their different combinations of features.

Given a feature one can arrange all the possible instances of the feature as points
on a manifold to obtain a feature space. The simplest features are directly related
to sensory measurements. For example, the opponent colour features of light/dark,
red/green and blue/yellow can be defined approximately in terms of the outputs
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Fig. 1.10 Correspondence of
the orientation and hue
feature spaces to the
projective line

of the long (L), medium (M) and short (S) wavelength cones in the retina by the
expressions L+M+S, L-M and L+M-S respectively and these triplets of numbers can
be used as coordinates of points in three-dimensional Euclidean space. In passing
it is important to note that just because the arrangement of features follows that of
points in Euclidean space does not mean that subjective sensations are separated
by the Euclidean distance between them, because all subjective sensations are
reconstructed from the outputs of sensory neurons and are interpreted within the
context of all the ongoing neural activity.

Other features, especially spatial ones, can be specified by an equivalence
relationship between points in Euclidean space. For example the real projective
space is formed by taking an n-dimensional Euclidean space with the point at the
origin removed and applying the relation that point x is equivalent to point y if and
only if x = λy for some decimal number λ. The simplest example of a projective
space is the projective line. Each point of the projective line is equivalent to the
collection of points on a line through the origin of a plane, excluding the origin.
So one can represent each point in the feature space by an icon consisting of an
orientated line and these can be arranged in a circle as illustrated in Fig. 1.10.

Another example of a real projective line can be created from the colour features.
By ignoring the light/dark coordinates, all the points in opponent colour feature
space are projected into the plane. One can then apply the projective line equivalence
relationship to obtain a circle where each point corresponds to a different hue.
Going anticlockwise from red to blue around the circumference of the circle the
hue becomes reddish-blue (magenta) and going further from blue to green the hue
becomes bluish-green (cyan) and so on. However when going from magenta to cyan
there is a hue (blue) which is neither reddish or greenish.

The equivalence relationship that defines an m- dimensional projective space
equates every point on a line through the origin in an (m + 1)-dimensional Euclidean
space to a single point, with the proviso that the origin of the Euclidean space is
excluded. In the case of the projective plane this means that one can take a sphere
and form the projective plane by joining points on the sphere that lie at opposite
ends of a line through the origin of the sphere, as illustrated in Fig. 1.11. Almost all
the pairs of antipodal points can be represented by a point on a hemisphere, but not
those on the equator. Points along the two halves of the equator have to be joined
together with a twist, and this can only by done by having an extra dimension which
enables one to make the twist without the surface intersecting itself. So the real
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Fig. 1.11 Hemisphere model of the real projective plane. Diametrically opposite points on the
equator are linked together as illustrated by the arrows in the middle diagram and the corresponding
plane diagram is shown on the right

Fig. 1.12 Plane diagram of a torus formed of a product space of orientation and hue features

projective plane is defined with respect to three dimensional Euclidean space but
cannot be embedded in a Euclidean space with less than four dimensions.

Another technique for defining new features is to form combinations of existing
ones. Given two manifolds X and Y then one can attach a point x from manifold X to
a point y from manifold Y to make a single point in a new manifold. The manifold
obtained by generating all the possible pairs is known the product space and is
denoted by X × Y. For example a torus can be considered to be the product space of
two circles, so once can use the product of the orientation and hue feature spaces to
form a new feature space with the form of a torus. The distribution of features in this
space can be illustrated by plotting the graphical feature associated with a point at a
corresponding point on the plane diagram of the space, as illustrated in Fig. 1.12.

Given a feature space then any trajectory across the manifold will generate
a sequence of features and such sequences can be used as stimuli to test the
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Fig. 1.13 Trajectories of the target (plotted as a blue line) and distractor (plotted as a grey line)
in the feature space used in the tracking task. The corresponding visual stimuli at regular time
intervals are illustrated by the grating icons, and the trajectories intersect at the third icon along.
Note that the feature space coordinates do not include time, so that the samples taken at regular
time intervals are not regularly spaced in the plot. Instead their separation depends on how rapidly
the features are changing

capabilities of the brain. For example, one of the experiments that demonstrated that
attention can select for specific visual objects on the basis of features, as opposed to
simply being in different locations, consists of a tracking task in which the subject
is presented with a target object and a distractor, both consisting of a grating with
changing orientation, colour saturation and spatial frequency but in the same spatial
location, and at the end of the display period has to report the final orientation of the
target.

The product space of orientation, saturation and spatial frequency of the tracking
task can be embedded in three-dimensional Euclidean space. The simplest way to
arrange the features is to use a cylindrical system of coordinates in which spatial
frequency is plotted along the long axis of the cylinder, saturation along the radius of
the cylinder and orientation around its circular base. An example of two trajectories,
one corresponding to the target and the other to the distractor, is illustrated in
Fig. 1.13 and a sample of the associated image sequence as it appears to the subject
of the experiment is shown in Fig. 1.14. Despite the changing form of both target
and distractor, subjects are able to track the target successfully [1].

A possible interpretation of the results of the tracking task is that equivalence
relationships between the measurements provided by the sensory neurons are used
to group the measurements into more complicated features which ultimately relate
to the type of objects which an organism has to interact with. An illustration of
where this approach leads is that it should be possible to define a relationship which
identifies the pairs of arms and legs which belong to the same person [4]. Then a
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Fig. 1.14 The leftmost two
columns are comprised of the
samples of the target and
distractor that are illustrated
by icons in Fig. 1.13 and the
column on the right shows the
combined stimulus which is
what the subject sees

Fig. 1.15 Illustration of how
an example of complicated
behaviour such as walking
can be simplified if it is
possible to match the relative
positions of corresponding
body parts (in this case head,
torso, arms and legs) with
points on a one-dimensional
manifold

cyclical behaviour pattern such as walking, which might appear complicated, has a
simple description as a point moving around a circle, as illustrated in Fig. 1.15.

Although the argument that objects can be identified by their characteristic
features sounds plausible, no one has yet succeeded in actually defining the features
used by the brain to identify an object such as a person walking. To be clear, the
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definition of a feature has to specify an equivalence relationship, and how it can
be computed, so that data which comply with the relation can be considered to
have the feature. This was possible for the opponent colour feature, where the
colour is defined by a specific cone ratio, and for orientation and hue, where a
projective relationship is used. But most features are not well-defined, so that the
term feature is possibly the second most overused term in neuroscience (the most
overused term is undoubtedly information). It may be that we need to move away
from investigating collections of features to more complicated relationships such
as the constraints underlying possible movements [5], some examples of which are
given in the next chapter.

1.4 About This Book

The argument of this book is that the type of data structures processed by the brain
can be understood by analysing them geometrically and its content is designed
to build on this geometrical approach by introducing examples of the geometric
structures that the brain has to work with and then describing how these data
structures are handled by neurons.

Depending on whether you are a visual or a symbolic thinker, a positive feature of
the geometric approach is that the ideas about how the brain works can be expressed
visually. For example, if one considers a discrete item of behaviour, such as moving
one’s gaze from one object to the next, then one can work out an underlying
mechanism using only geometric arguments [7]. The argument begins with the
assumption that there are three components to the behaviour: a stable equilibrium,
a threshold that has to be crossed for the action to begin and a trajectory that returns
the state of the mechanism to the stable equilibrium.

Given the required behaviour, one can develop a geometric description of the
underlying dynamical system as illustrated in Fig. 1.16. The manifold defined by
the collection of possible trajectories of a dynamical system is referred to as a state
space and an equilibrium state is referred to as a fixed point of the state space
because an equilibrium state is one that does not change. Using this terminology,
one can begin the description with a one-dimensional state space that has a vector
field directed towards a fixed point. This is then extended to a two dimensional state
space state space, because the trigger property requires a vector field transverse
to the one-dimensional system. It also requires a fold in the line representing the
one dimensional-system so that if the state of the system is displaced beyond the
fold the transverse vector field carries the state away from the stable equilibrium.
Finally, the return to the stable equilibrium can be ensured by further folding the
line of the one-dimensional system into an S-shape so that the state is guided back
to the equilibrium.

The features of the qualitative geometric model can be used to guide the
development of a corresponding quantitative model. For example by using a cubic
curve to describe the s-shaped one-dimensional system one can obtain a differential
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Fig. 1.16 Geometric construction of a mechanism for carrying out an action. Upper Figure The
first step is to create a system with a stable equilibrium. The simplest case consists of a one-
dimensional system. The equilibrium state is represented by a blue dot and the arrows indicate
that elsewhere the state of the system moves towards the equilibrium state. Middle Figure The
next step is to incorporate a trigger for initiating the action. This can be done by making a fold
in the one-dimensional system and extending it to two dimension by adding a transverse vector
field which is plotted in red. The black arrow indicates the displacement of the state from its stable
equilibrium position that results in the state of the system being carried away from its equilibrium
position. Lower Figure An additional fold results in the state of the state of the system returning
to equilibrium after it has been displaced from equilbrium. The black line illustrates the trajectory
associated with a complete action
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Fig. 1.17 Behaviour of the
quantitative model. Upper
Figure Transverse vector
field described by Eq. 1.14.
The blue line indicates the
position in the state space of
the one-dimensional system
in which the equilibrium state
will be placed to complete the
model. Lower Figure Vector
field of the completed model
defined by Eq. 1.15. The blue
dot indicates the stable
equilibrium position.
Although the state of the
system spirals back to
equilibrium after a
displacement indicated by the
black arrow, by comparison
with Fig. 1.16 the sudden
switch from one portion of
the one-dimensional system
to the other is absent

equation that specifies the transverse vector field illustrated in Fig. 1.17:

dx2
dt

= −(x3
2 − x2 + x1) (1.14)

The model is completed by adding a second equation that ensures that the state
moves along the folded line towards an equilibrium position at the point where x1
equals zero and x2 equals 1:

dx1
dt

= x2 − 1

dx2
dt

= −(x3
2 − x2 + x1)

(1.15)

Plots of how the two variables change over time once the state has passed the trigger
point are given in Fig. 1.18. These plots show that the two variables could provide
the signals necessary to control an action. But the trajectory of the model does not
have the abrupt threshold of the geometrical design illustrated in Fig. 1.16, and to
achieve this some additional constraints have to be defined mathematically and these
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Fig. 1.18 Plots of the value
of the model variables x1 and
x2 against time for the
trajectory illustrated by the
black line in Fig. 1.17. The
first variable could be used to
track the progress of the
action and the displacement
of the second variable from
its resting level could be used
as a velocity command,
reaching its peak midway
through the action

are covered in Chaps. 5 and 6. But even with a completed model one still has to test
if it matches the behaviour of an actual system and the geometrical approach leads
to new ways of characterising behaviour which are covered in Chap. 7.

So a second goal of this book is to provide a self-contained introduction to
the mathematical techniques used in the geometrical approach in order that the
underlying ideas are made clear. This is especially important as the apparently
abstract conceptualisations such as that of the geometrical description of an action
turn out to have concrete embodiments in the brain, as described in the text in the
context of the examples.

To summarise, the aim of this book is to give examples of applications of
geometrical techniques relevant to mainstream neuroscience in order to motivate
the approach and to introduce sufficient background to the techniques to enable the
reader to understand what is involved in their application.
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Chapter 2
Biological Objects

Brains are adept at interacting with biological objects. How to characterise such
objects? Following the geometric approach, every possible combination of position
and orientation of an object is described by a point in a configuration space and the
instantaneous change in the position and orientation of the object is characterised
by a vector in the tangent space to the configuration space at that point. This
approach is extended to include specification of the length of a trajectory through
the configuration space and movements of the eye, arm and falling cat are shown
to follow the shortest path. In particular, the righting reflex of the falling cat
shows that effective behaviour depends on the animal following the appropriate
trajectory throughout the entire movement. The neural basis of trajectory following
is introduced in the context of an animal navigating a path towards a required
destination.

2.1 Configuration Spaces

The geometric approach can be extended to goal-directed behaviour, but to do so
requires some additional concepts. To begin, if every configuration of a mechanical
system is represented by a point then the collection of all the points can be used
to define a manifold referred to as the configuration space. More often than
not, mechanical constraints ensure that collections of data points generated by
configuration changes correspond to smooth manifolds.

In the case of the eye, it is approximately spherical and is embedded within
connective tissue in the orbit so that movements of the eye consist mainly of
rotations, and the configuration space is that of rotations in three-dimensional
Euclidean space. But for gaze directed at a distant object with the head upright
the eyes only make a subset of the rotations which are mechanically possible.
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Fig. 2.1 Use of afterimages to investigate the orientation of the eye. An afterimage is formed of
a cross on a wall facing the observer and the position of the afterimage is recorded with various
directions of gaze

This subset was initially investigated by using afterimages, which have a fixed
location on the retina and so move with the eye. A straightforward procedure
involves forming an afterimage of a cross, with the eyes in the straight ahead
position looking at a far point on the horizon with the head erect, and then measuring
the apparent orientation of the cross whilst looking at a wall perpendicular to the
primary position. This procedure is illustrated in Fig. 2.1.

The cross is not distorted when the point of fixation lies on the horizontal or
vertical meridians. In general, an afterimage of an oblique line does not appear to
alter its orientation at points along the associated oblique meridian, so the axis of
rotation must be perpendicular to the oblique meridian. Let the line passing through
the centre of rotation of the eye and the fovea be called the line of fixation, then
this finding is summarised by Listing’s law. Listing’s law states that if the eye
moves about a centre O so that the line of fixation moves away from the straight
ahead position OA to another position OB, then the displacement of the eyeball is
equivalent to rotating it around an axis perpendicular to the plane AOB [4].

If each rotation of the eye away from the straight ahead position made in
accordance with Listing’s law is represented by a point then a surface is defined
that corresponds to the projective plane [12]. To visualise why this is so represent
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Fig. 2.2 Plane diagram of the configuration space of an eye moved in accordance with Listing’s
law. A prominent blood vessel has been used to indicate the orientation of the eye in a selection of
positions. The outermost positions correspond to half turns of the eye and every pair at opposite
ends of a diagonal are the same position, arrived at by rotations in opposite directions. In the plane
diagram of the configuration space these positions are taken to be glued together, as indicated by
the black circle, giving the plane diagram of a projective plane. It is clear that only a small portion
of the configuration space is actually used by the eye

a rotation away from the straight ahead position by a vector that has a direction
equal to the axis of rotation and a length equal to the size of the rotation. The
maximum length of the vector is the half-turn π , and rotations through angles of plus
or minus π are equivalent. If the positions in the axis-angle diagram corresponding
to equivalent rotations are attached together then the plane diagram for the real
projective plane is obtained, as illustrated in Fig. 2.2.

For another example of a configuration space take the possible configurations of
a two-joint arm that moves only in the horizontal plane. These configurations could
be represented by points on a torus, with the position of each point determined by
the angles at the shoulder and elbow joints. But it is the position of the hand that is
biologically important, so the configuration space consists of the points that the hand
can reach. These points form an annulus, with the outer boundary of the annulus set
by the maximum extension of the arm and the inner boundary determined by the
difference in lengths between the upper part of the arm and the forearm. If it is
assumed that these distances are the same, as is approximately the case in humans,
then the configuration manifold corresponds to a disk as illustrated in Fig. 2.3.
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Fig. 2.3 Plane diagram of the configuration manifold associated with arm movements in the
horizontal plane. The target hand positions located in the horizontal plane are represented by
blue dots, and the relative positions of the shoulder, upper arm and forearm in each position
are illustrated by icons. In this case no sides of the diagram are glued together and the diagram
represents a portion of a plane

As the human arm cannot be bent backwards at the elbow there is a unique arm
configuration for each hand position.

The arm example is different from the eye example in that the configuration
changes involve shape changes. It illustrates how such configuration spaces can be
formed from combinations of shape changes and transformations of a given shape
in space. In the case of the horizontal movements of the arm, the shape is specified
by the angle between the upper arm and the forearm and the transformation consists
of a rotation about the shoulder joint.

In terms of manifolds, the configuration space can be constituted by taking a
base or shape manifold and attaching another manifold to every point of it. In this
context the attached manifold is referred to as a fibre and the manifold formed by
this construction is known as a fibre bundle. A fibre bundle is not necessarily
the same as the product of the base manifold with another manifold as can be
appreciated from the fibre bundle of a base manifold consisting of a circle with
a fibre consisting of a line. The product space consists of a cylinder, but the fibre
bundle can be either a cylinder or a Möbius strip, as illustrated in Fig. 2.4. A fibre
bundle which is equivalent to the product space is referred to as a trivial bundle.

The fibre component of the configuration manifold can often by identified
because it matches a pattern of symmetry of the configuration space. For example,
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Fig. 2.4 Illustration of the
possible fibre bundles
comprised of a circle for a
base and a line for a fibre.
Upper Figure The trivial
bundle is formed by the
product space of the base and
fibre manifolds and
corresponds to a cylinder.
Lower Figure It is also
possible to form a non-trivial
bundle by attaching the fibres
with a twist, giving a Möbius
band

the possible orientations of a fixed shape of the arm can be described by a rotation.
Such transformations are examples of symmetry operations, in that they leave
unchanged some property of the entity to which they are applied. The points of
a configuration space, together with a symmetry operation, form what is referred to
as a group structure.

In the case of rigid body transformations the relative positions of the points in
the space are unchanged. The collection of translations, rotations and reflections
associated with rigid body transformations of n-dimensional Euclidean space
is called the Special Euclidean group. The collection of just the rotations and
reflections is known as the Orthogonal group and that formed by just the rotations
is referred to as the Special Orthogonal group and is denoted by SO(n) where n is
the number of dimensions of the space. Each symmetry operation can be represented
by a point on a manifold so these collections of transformations are also manifolds.
A fibre bundle for which it also holds that the fibre is a group is referred to as a
principal bundle.

The distinction between base and fibre manifolds turns out to be very useful in
applying geometric ideas to the overall movement of an object which is produced
only by changes in the shape of the object such as the righting reflex of a falling cat.
In the case of the cat the configuration space is comprised of the possible positions
and orientations of the limbs and body of the cat in space. The manifold is equivalent
to a fibre bundle made up of a base consisting of the possible shapes of the cat and a
fibre formed by the possible positions and orientations of the cat in everyday three-
dimensional space [9].

A simple model of the spine of the cat can be made by assuming that the front and
back halves of the cat move as though they are joined together by a ball and socket
joint. The shape of the cat can then be specified by an angle ψ , which specifies its
backbend and an angle θ which specifies its roll, as illustrated in Fig. 2.5. The angle
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Fig. 2.5 The shape of the two cylinders model cat can be specified by a pair of angles that are
defined with respect to the plane determined by the axes of the front and back halves. The system
of axes has its origin located at the centre of mass of the cat. The e2 direction is aligned with the
bisector of the two halves and points in the up direction. The e3 direction is perpendicular to e2 in
the plane spanned by the two halves. The appendages to the cylinders are for illustration only and
are not part of the actual model. Upper Figure The angle between the two halves is denoted by ψ .
Lower Figure The tilt of the feet with respect to the vertical is denoted by θ

ψ corresponds to the angle between the two halves and so can vary between 0 and
π . When the two halves are parallel ψ equals 0 and when they are in line ψ equals
π . In both these limiting cases the axes of the two cylindrical halves have the same
direction and cannot be used to define a unique plane passing through them.

With this model of the spine the base manifold consists of the product SO(3) ×
SO(3) corresponding to the possible orientations of the front and back halves. For
the purposes of analysing the righting-reflex of the cat its position above the ground
can be ignored. Also, of the possible orientations SO(3) of the cat in space, only
the roll SO(1) is relevant for the righting. So the configuration space consists of
a principal fibre bundle comprised of a base manifold SO(3) × SO(3) and a fibre
SO(1).

From observations of the falling cat it can be seen that the body of the cat bends
but does not twist. This limited flexibillity can be incorporated into the model by
assuming a ‘no-twist’ condition that requires that the angle θ is equal and opposite
for both front and back halves [6]. The arrangement of possible shapes of this model
cat corresponds to that of the points on a projective plane as illustrated in Fig. 2.6.
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Fig. 2.6 Illustration that the arrangement of possible shapes of the falling cat corresponds to a
projective plane, because the diametrically opposite shapes with zero angle between the halves are
identical

Hence the configuration manifold can be simplified to the product of a rotation of a
point, which gives a circle, and the real projective plane.

2.2 Tangent Spaces

Given that a smooth surface can be generated by range of configurations of a
mechanical system, a change in the configuration of the mechanism will correspond
to a trajectory over the surface. The instantaneous changes in the position of a point
on the trajectory can be characterised by a vector that specifies the direction and
distance moved by the point. At any given position on the manifold the vector
describing the movement will lie in the tangent plane to the position, and being
able to specify the tangent plane is a first step in calculating the distance moved
along the trajectory.

The process of calculating the tangent plane is simplified by using the coordinates
of n-dimensional Euclidean space. The system of coordinates can be set up by
embedding the configuration space in Euclidean space. The embedding can be
specified by a set of parametric equations in which a pair of parameters, corre-
sponding to the two degrees of freedom for moving around the surface, determines
the coordinates. For example, the position of a point on a unit radius sphere can be
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Fig. 2.7 Specification of the
position of a point P on a
sphere by the angles of
latitude θ and longitude φ.
Given these parameters, the
coordinates of the point can
be calculated by using Eq. 2.1

identified by the angles of latitude θ and longitude φ, as illustrated in Fig. 2.7, and a
set of equations that give the corresponding coordinates in 3-dimensional Euclidean
space is:

x1 = sin(θ) cos(φ)

x2 = sin(θ) sin(φ)

x3 = cos(θ)

(2.1)

where the angle of latitude θ can vary between 0 and π and the angle of longitude
φ can vary between -π and π .

The rate of change of a function f (x1, x2, . . . , xn) of n variables with respect to
one of the variables xi is referred to as a partial derivative of f with respect to xi
and is denoted by ∂f (x1, x2, . . . , xn)/∂xi. It can be computed in the same way as a
derivative of one variable, simply by holding all the other variables constant when
forming the limit.

Let (θ, φ) be a set of parameters for a surface embedded in n-dimensional
Euclidean space then the partial derivatives ∂xi/∂θ and ∂xi/∂φ of the ith coordinate
of a point with parameters (θ, φ) specify the rate of change of the coordinate with
respect to each of the parameters and are given by the limits:

∂xi

∂θ
= xi (θ+h,φ)−xi (θ,φ)

h

∂xi

∂φ
= limh→0

xi (θ,φ+h)−xi (θ,φ)

h

(2.2)

So by making a small change in each parameter one can obtain a pair of vectors:

∂x
∂θ

=
(

∂x1
∂θ

,
∂x2
∂θ

, . . . , ∂xn
∂θ

)

∂x
∂φ

=
(

∂x1
∂φ

,
∂x2
∂φ

, . . . , ∂xn
∂φ

) (2.3)
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Fig. 2.8 Illustration of how tangent lines specified by partial derivatives of parameters can be
used to span a tangent plane at a given point on a sphere. The partial derivative with respect to
the latitude parameter θ is shown in red. This is tangent to the set of points, also shown in red, for
which the longitude parameter is fixed. Similarly, the partial derivative with respect to the longitude
parameter φ is shown in blue, as is the set of points for which the latitude parameter is fixed

Each of these n-tuples specify the direction of a tangent line through the point with
parameter values (θ , φ) and the pair of tangent lines span the tangent plane to the
surface at (θ , φ). This is illustrated for the sphere in Fig. 2.8. The procedure can be
generalised to n-dimensional manifolds to define a tangent space at any point on
the manifold, which has the same dimensionality as the manifold.

Given the tangent plane at every point on a surface, the length of a path between
two points on a surface can be computed by using straight lines tangent to the
path to approximate short segments of it and then adding the lengths of these
line segments together. But to calculate the length exactly the segments have to
be made infinitesimally small. For such displacements (dθ, dφ) one can calculate
the small changes ds in the Euclidean coordinates by using the partial derivatives of
the coordinates with respect to the parameters:

ds = ∂x
∂θ

dθ + ∂x
∂φ

dφ (2.4)

The square of the length of this infinitesimal displacement is then given by the dot
product of this change of coordinates vector with itself:

‖ds‖2 = ∂x
∂θ

· ∂x
∂θ

dθ2 + 2
∂x
∂θ

· ∂x
∂φ

dθdφ + ∂x
∂φ

· ∂x
∂φ

dφ2 (2.5)

= (
dθ dφ

)(
∂x
∂θ

· ∂x
∂θ

∂x
∂θ

· ∂x
∂φ

∂x
∂θ

· ∂x
∂φ

∂x
∂φ

· ∂x
∂φ

)(
dθ

dφ

)
(2.6)

= (
dθ dφ

)
G

(
dθ

dφ

)
(2.7)
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where the matrix G is referred to as the Riemannian metric or more succinctly as
simply the metric. A manifold with a Riemannian metric defined on it is referred
to a Riemannian manifold. In the case of the plane, the metric is simply equal to the
identity matrix, corresponding to the dot product definition of length in Euclidean
space.

A main use of the metric is in calculating the shortest path between two points
on a surface. For two points on a plane the path corresponds to a straight line.
For a curved surface one can locally determine the shortest path by calculating the
distance in the tangent plane and a curve which locally follows the shortest path
throughout its entire length is known as a geodesic.

On the sphere the geodesics are given by great circles, from which it is clear that
a geodesic is not directly identical to the shortest path in Euclidean space, because
for any pair of points that are not opposite each other there will be a long way round
and a short way round along the geodesic. But provided that it is checked that when
there is more than one geodesic path through two points, the shortest one is being
used, the geodesic does correspond to the shortest path.

An embedding of the projective plane into Euclidean space that corresponds to
the rotations of the eye is provided by the Veronese surface [2]. Let a point on
a sphere be specified by a unit vector v = (v1, v2, v3) then the coordinates of the
corresponding point on an embedding of the Veronese surface in six-dimensional
Euclidean space are given by the map χ :

χ(v1, v2, v3) = (v2
1, v2

2 , v2
3 ,

√
2v2v3,

√
2v3v1,

√
2v1v2) (2.8)

Since χ(v1, v2,v3) · χ(v1, v2,v3) = (v2
1 + v2

2 + v2
3)2 it follows from the definition of

v as a unit length vector that every point on the Veronese surface is specified by a
unit length vector. Hence the collection of points which form the Veronese surface
lie on a sphere in six-dimensional Euclidean space.

Given the set Eqs. 2.8 defining an embedding of the projective plane one can
go on to calculate the metric and the form of the geodesic curves. These turn out
to correspond to rotations of the eye about a fixed axis [2]. Listing’s law implies
that with the line of fixation in the straight ahead position, the possible axes of
rotation for movements made in accordance with Listing’s law must all lie in the
plane perpendicular to the straight ahead position. A further implication of Listing’s
law is that the corresponding plane, for an initial direction of the line of fixation
away from the straight ahead position, is normal to the direction which bisects the
angle between the straight ahead position and the initial direction of the line of
fixation. A consequence of this half-angle rule is that a rotation about a fixed axis
that starts with the line of fixation away from the primary position will trace out a
circle referred to as a direction circle on a sphere surrounding the eye [4]. Some
examples of direction circles are illustrated in Fig. 2.9.

For horizontal movements of the arm, embedding is straightforward because a
disk can be embedded in 2-dimensional Euclidean space. When a human moves



2.2 Tangent Spaces 31

Fig. 2.9 Illustration of the half-angle rule that follows from Listing’s law. Left Figure Let the
initial position of the line of fixation lie in a horizontal plane and make an angle θ with the straight
ahead direction. A vertical movement from this initial position made in accordance with Listing’s
law will consist of a rotation about an axis that makes an angle π + θ /2 with the straight ahead
direction. In the figure on the left the initial direction of the line of fixation is at an angle of 40 ◦ to
the straight ahead direction in the horizontal plane and the corresponding axis of rotation, which
is indicated by a black arrow, has moved back by 20 ◦. Successive positions of the line of fixation,
plotted in red, intersect with a sphere concentric with the eye to form a direction circle, that is
plotted in blue. Right Figure The arcs of several direction circles, viewed from directly in front of
the eye, when the axes of rotation are restricted to the horizontal plane. Because a half turn made
in accordance with Listing’s law always sweeps the line of fixation into the direction diametrically
opposite to the straight ahead direction, the directions intersect at the point where the opposite
direction intersects with the sphere surrounding the eye

an arm in the horizontal plane the trajectory of the movement is an approximately
straight line [10] which is the geodesic associated with the Euclidean metric.

When the falling cat is initially released it has zero angular momentum and the
conservation law requires that the angular momentum remains zero throughout the
fall, but by changing its shape the cat is able to generate angular momentum about
the e3 axis and this is balanced by angular movement of the body in the opposite
direction. Making a backbend alone does not produce angular momentum about the
e3 axis and making a roll alone only produces angular momentum about the e3 axis,
which is in contradiction to the conservation law. However, when its body is bent the
components of angular velocity about the e2 direction of the front and back halves
of the cat cancel giving a net component of angular velocity about the roll axis.

Let the plane containing the two halves of the cat make an angle χ with the
vertical. Then from the expression for the angular momentum of the system one can
derive an equation relating the angular velocity of the shape changes of the cat to
the angular velocity of the roll of the cat in space:

dχ

dt
= IL sin(

ψ
2 )

IP cos(ψ
2 )2 + IL sin(

ψ
2 )2

dθ

dt
(2.9)

where IL is the moment of inertia about the longitudinal axis and IP is the moment
of inertia about a perpendicular axis of one half of the model cat. For an actual cat
an estimate of the ratio IL/ IP is 0.25 [6, 9].
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The constraints described by Listing’s law and the hinge joints at the elbow
determine a relationship between the variables specifying the position of the eye
and arm respectively whereas the constraints on the movement of the cat set up
a relationship between the velocities of the variables specifying the shape of the
cat. The constraints on the velocities result in some paths through the configuration
space not being permitted. So a distinction is required between Riemannian
manifolds in which all paths are possible and sub-Riemannian manifolds in which
some paths are excluded.

In the case of the falling cat one can make a separation between the tangent
vectors to the configuration space associated with rotation of the cat and those
associated with change of its shape. The tangent vectors to the fibre of the
configuration space correspond to roll of the whole cat and so are not permitted
whereas the tangent vectors to the projective plane of the base manifold of the
configuration space are allowed. So although the configuration space of the falling
cat can be described by a manifold with a Riemannian metric given by the kinetic
energy of the displacement of the cat, it is more accurately described as a sub-
Riemannian manifold in which the tangent vectors that ensure conservation of
angular momentum are separated from those that do not. In the context of sub-
Riemannian geometry the tangent vectors allowed by the constraints are referred
to as horizontal directions as opposed to the vertical directions, which are not
allowed. One can still go to define a geodesic in the sub-Riemannian geometry as a
path in the shape manifold with a minimum length, as defined by the kinetic energy
metric, because by restricting the path to the horizontal directions one avoids the
physically impossible paths.

Three alternative trajectories are illustrated in Fig. 2.10. Montgomery [9] intro-
duced a trajectory which has the advantage that it works whatever values the
moments of inertia take, although it requires unfeasible shape changes by the cat.

Rademaker and Ter Braak [13] introduced a trajectory in which the angle ψ

between the two halves of the body is kept constant. However this trajectory only
works for a particular value of the angle ψ and with an estimated ratio for the
moments of inertia of 0.25 this angle is 120 ◦. As can be seen from Fig. 2.10 when
the cat is released with a realistic angle of 65 ◦ it fails to complete the half turn.
From a biological perspective, the trajectory is incorrect because an actual cat bends
forward to a much greater extent than it bends back.

The trajectory followed by a living cat is such that if it is initially held upside
down with its spine bent forwards and then released, first it bends to one side, then
backwards then to the other side and finally forwards again so that it has the same
shape on landing as it did on release [6]. This trajectory across the projective plane
is similar to that of the eye, as illustrated in Fig. 2.11. With respect to the front half
of the cat, the back of the cat rotates around a fixed axis, as does the eye in the orbit.
What is different is that the cat movement includes a backbend which requires that
the axis of rotation is moved back further than with Listing’s law.
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Fig. 2.10 Paths in shape space and the corresponding movement in physical space of three
alternative trajectories for the cat righting movement. The Kane-Scher trajectory is closest to that
actually used by the cat. Note that it is also the shortest of the three paths in the shape space

Fig. 2.11 Side view of the Kane-Scher trajectory drawn for comparison with the movement of the
eye according to Listing’s law illustrated in Fig. 2.9. The longitudinal axis of the front half of the
cat has been held fixed corresponding to the constant position of the skull in the eye movement
picture. Like the line of fixation of the eye, the longitudinal axis of the back half of the cat rotates
around a fixed axis, indicated by a black arrow
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2.3 Moving Around

Whilst it may be that discrete movements such as a saccade or a reaching movement
can be described by a trajectory through a configuration space, there is no obvious
way that this description will extend to more open-ended movements such as
exploration of a new environment. Animals move about in their environment to find
resources, so they have to be able both to locate the supplies and to be able to get
to them. Braitenberg [1] introduced what he referred to as vehicles to illustrate the
minimum capabilities required of a brain for it to be able to carry out such tasks. An
example of a bilaterally symmetrical vehicle is shown in Fig. 2.12.

These conceptual vehicles provide a simple approach to thinking about how
control of movement of the limbs might be extended to control of movement through
an animal’s environment. In the insects this is done by a process of local navigation
which involves obstacle avoidance, homing with respect to the landmarks and path
integration [5]. Avoidance behaviour is one of the simplest to implement. For
instance, in the case of the Braitenberg vehicle, if the connection between the visual
sensors and the motors are crossed then the vehicle will be attracted to light, but if
they are uncrossed then it will turn away from a light source [1].

A more sophisticated navigation mechanism involves the animal keeping track
of its heading direction and how far it has travelled in that direction so that it can
always calculate the path back to its original position simply by inverting the sum
of all the displacement vectors. In the continuous case, the animal keeps track of its
velocity and the overall displacement is calculated by integrating the instantaneous
velocity vector, a process referred to as path integration .

A key component of path integration is the maintenance of a heading direction
vector that gives the instantaneous direction and speed of movement of the animal.
Evidence for a mechanism for that maintains a heading direction signal has been
found in the brain of the fly, which is illustrated in Fig. 2.13 [16]. The mechanism

Fig. 2.12 A schematic diagram of the type of vehicle that Braitenberg [1] introduced. The vehicle
consists of a pair of light sensors and a pair of wheels each of which is driven by its own motor
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Fig. 2.13 Schematic diagram of the components of the heading direction mechanism of the fly
which is comprised of the elongated protocerebral bridge and the ellipsoid body. Both components
are made up of regions tuned to a particular heading direction of the fly, and the responses in
the regions can be summed to make a population vector representation of heading direction. The
protocerebellar bridge is distinguished by having two representations, one on each side

involves a region referred to as the central complex which includes the ellipsoid
body and elongated protocerebral bridge both of which are organised into segments.
The locus of neural activity in the ellipsoid body correlates with the heading
direction of the fly. Associated with this locus of activity are a pair of corresponding
regions of localised activity in the protocerebral bridge, one on each side. These
bumps of activity are also tuned to the turning direction of the fly so that the activity
on the left is greater when the fly is turning left and greater on the right when the fly
is turning right.

The guidance circuit involves two classes of neurons that can be labelled E-P
and P-E. Both have connections to the protocerebral bridge and ellipsoid body.
But the E-P neurons receive input signals from the ellipsoid body and pass them
to the protocerebral bridge, whereas the signals in the P-E neurons travel in the
opposite direction. The E-P neurons from the active region of the ellipsoid body
excite the pair of corresponding regions in the protocerebral bridge. However the
projections to the ellipsoid body from the P-E neurons excited by these regions of
the protocerebral bridge are offset with respect to the active region of the ellipsoid
body, so that if the fly is turning right the active location in the ellipsoid body
changes to a more rightward heading direction and similarly for turning left.

A model of these connections is given by a system of equations in which the
activity of each region i of the ellipsoid body together with that of the pair of regions
in the protocerebral bridge with the same orientation are described by a set of three
equations. The first equation describes the activity in the ellipsoid body and the
remaining two equations describe the activity in the two sides of the protocerebral
bridge.
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λ
dxi
dt

= −xi + 30(xn+i + xn+Li + x2n+i + x2n+Ri
)+

μ
dxn+i

dt
= −xn+i + (10xi − 125

n
∑n

j=1 xj + 1 + ω+)+

μ
dx2n+i

dt
= −x2n+i + (10xi − 125

n
∑n

j=1 xj + 1 + (−ω)+)+

(2.10)

where ω is the angular velocity of the fly, λ and μ are time constants equal to 80
and 65 ms respectively, and L and R are one-dimensional matrices that describe the
offset of the connections from the protocerebral bridge to the ellipsoid body. With
eight such regions, as illustrated in Fig. 2.13 and used in the simulations shown in
Fig. 2.14 L = (2,3,4,5,6,7,8,1) and R = (8,1,2,3,4,5,6,7). These equations are based
on a more complete model that was shown to replicate the experimental findings of
the changes in the activity in the central complex [16].

In rats the heading direction mechanism is combined with circuitry in the
hippocampus and neighbouring subiculum and entorhinal cortex that forms a map of
the surroundings of the animal. Heading direction neurons whose firing is tuned to
a particular heading direction of movement through the environment [15] are found
in the entorhinal cortex. But the hippocampal circuits have several other classes of
neurons with distinct properties.

Place cells in the hippocampus of rats fire when the animal is in a specific
location [11]. The neighbouring grid cells in the entorhinal cortex of a rat fire
when animal arrives at the vertices of a lattice of equilateral triangles [3], although
the positions of the vertices varies from neuron to neuron. A key difference between
place cells and grid cells is that whereas different sets of place cells fire in
different environments, the vertex spacing and orientation relations between grid
cells remains the same. A further class of neurons consist of the boundary cells
which fire when the animal is close to a boundary and these are found in both the
subiculum and enthorinal cortex [14]. Another form boundary cells, referred to as
boundary vector cells, are tuned to respond to a boundary at a specific distance and
orientation with respect to the animal [7]. These are found in the subiculum.

Our understanding of the workings of the hippocampal circuitry is still at an early
stage, but it offers tantalising insights into how data is organised deeper into the
brain. The discovery of the different classes of neurons in the rat should be put in the
context that the hippocampus in rats is much larger, relative to the whole brain, than
in humans. The hippocampus is also predominantly involved with spatial navigation
in rats whereas in humans only the posterior part is linked to navigation and the
structure as a whole appears to be more involved with setting up and recalling
memories. This finding has led to the hypothesis that the hippocampus in humans
builds a representation of a space of memories just as it does for everyday space,
but the nature of this space remains to be clarified [8].
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Fig. 2.14 Simulation of how the representation of heading direction by the active region of the
ellipsoid body is changed to match the outcome of turning movement of the fly produced by
Eqs. 2.10. In this example the fly begins in the straight ahead and then turns left and then right, as
indicated by the fly icons drawn in grey. The angular velocity and orientation of the fly are plotted
in black, whilst the population vector representation of orientation computed from the output of the
model is plotted in blue. The simulated orientation is jerky because of the small number of neurons
used in the simulation
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Chapter 3
Measurements

Given that it is possible to describe a biological object in terms of a manifold
and a vector field, the brain still has the problem of building the description using
only measurements. Colour measurements are used to illustrate that data can be
simplified by applying principal components analysis, resulting in a partition of
the data according to how the measurements vary with each other. The neural
implementation of this procedure corresponds to Hebbian learning and the comple-
mentary procedure of anti-Hebbian learning is also introduced using the cerebellum
as an example.

3.1 Linear Transformations

Whilst the movements of biological objects can be described in terms of trajectories
through configuration spaces, and furthermore such descriptions can be used in
specifying the movements, it remains to be shown that the brain can make use of
such descriptions when interacting with other animals. The task for the brain is
to take physically measurable variables and identify the animals present and the
configurations of their bodies.

An extensively investigated example of a measurement made by the visual
system is that of colour. In a typical colour matching experiment the subject views
a small stimulus which is usually restricted to around 2 ◦ in diameter so that only
the fovea is stimulated. The field is split into two halves and a pair of lights A and
B, presented in one half, have to be matched in colour to a pair of lights C and
D, presented in the other half, as illustrated in Fig. 3.1. The main finding of colour
matching experiments, referred to as the trichromatic law of colour matching, is
that the colour of any stimulus can be matched by an additive mixture of three fixed
primary colours [29].
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Fig. 3.1 Presentation of the
stimuli in a colour matching
experiment. The light C is
specified by the experimenter.
The task for the subject is to
alter the intensity of the lights
A, B and D until both sides of
the presentation appear to
have the same colour. In the
simplest case the lights are
monochromatic and by
choosing successive lights
from the electromagnetic
spectrum for C, the colour
matching functions plotted in
Fig. 3.2 can be derived

The experimental findings can be described geometrically by treating each
colour stimulus as a vector, with the direction of the vector representing the
qualitative nature of the colour and the size of the vector representing the amount
of the colour. The vectors v1, v2 and v3 are given by the functions of wavelengths
v1(λ), v2(λ) and v3(λ) respectively, which describe the spectral power distribution
of the fixed primary light sources. In vector notation, the trichromatic law states that
any colour c can be matched by a linear combination of v1, v2 and v3.

c = c1v1 + c2v2 + c3v3 (3.1)

If one of the coordinates c1, c2 or c3 is negative, then one can move the term
involved to the other side of the equation, to obtain a description of the physical
situation where one pair of colours is matched by another pair.

In 1931 a standard colorimetric observer was defined by the ‘Commission
Internationale de l’Éclairage’ (abbreviated to CIE). The experimental results from
many colour matching experiments were combined by expressing them all in terms
of colour matches with three monochromatic light sources r, g and b, located at
wavelengths of 700, 546, and 435.8 nanometres respectively. The relative amounts
of the sources were set so that a colour mixture made by equal amounts of r, g and b
appears white. The coordinates r(λ), g(λ) and b(λ) required to match a light with a
unit radiant power at wavelength λ are functions of λ referred to as colour matching
functions. The colour matching functions which form the specification of the C.I.E.
observer are plotted in Fig. 3.2.

The C.I.E. also constructed an xyz space which simplifies the representation
of colour. Negative values in the color matching functions were eliminated by
expressing the colour matching functions in terms of hypothetical primary lights
referred to as x, y and z which were also chosen so that a linear combination of equal
amounts of the primary lights appears white. Further simplification was achieved by
selecting the lights so that the y light matched the apparent luminance of a colour
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Fig. 3.2 Average colour matching functions obtained with r, g and b monochromatic lights.
r(λ)—red, continuous line, g(λ)—green, broken line, and b(λ)—blue, dotted line. The wave-
lengths of the r, g and b lights are indicated by red, green and blue vertical lines. An individual’s
colour matching functions will depend on both the viewing conditions and the viewer

Fig. 3.3 Color matching functions of xyz colour space. x(λ)—continuous line, y(λ)—broken line,
and z(λ)—dotted line

and the x and z lights made no contribution to the luminance match. The colour
matching functions in this space are plotted in Fig. 3.3.

The transformation from rgb to xyz colour space was specified by a set of linear
equations:

x = 2.3649r − 0.5156g + 0.0052b,

y = −0.8971r + 1.4273g − 0.0144b,

z = −0.4678r − 0.0883g + 1.0092b,

(3.2)
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The transformation between colour spaces is an example of a linear transforma-
tion because the xyz basis vectors are specified by linear functions of the rgb basis
vectors. For a linear transformation T it holds that for every vector p and every
vector q:

T(p + q) = T(p) + T(p) (3.3)

and if a is a constant used to multiply the length of a vector then:

T(ap) = aT(p) (3.4)

The coefficients of a linear combination can be written as a row of numbers, and
the coefficients of a system of linear equations can be arranged into an m row by n
column array of numbers referred to as a matrix. A matrix is denoted by a single
upper case letter such as A and an individual number in the array is referred to as an
element and is denoted by a lower case letter such as a. The element in the ith row
and j th column of a matrix A is specified by adding subscripts to the label for the
element.

The product of two matrices A and B is denoted putting the capital letters in
sequence AB and is defined so that a system of linear equations can be written more
succinctly as a matrix equation. The rule is that the element in the ith row and j th
column of the product is equal to the sum of the products of successive elements in
the ith row the first matrix with successive elements in the j th column of the second
matrix. This rule can be written more succinctly using the sigma notation as:

abij =
n∑

k=1

aikbkj (3.5)

where n is the number of elements in the rows of the first matrix and also the number
of elements in the columns of the second matrix. Applying the matrix notation, the
description of the linear transformation from rgb to xyz colour space can be written
as:

⎛
⎝ x

y
z

⎞
⎠ =

⎛
⎝ 2.3649 −0.5156 0.0052

−0.8971 1.4273 −0.0144
−0.4678 −0.0883 1.0092

⎞
⎠

⎛
⎝ r

g
b

⎞
⎠ (3.6)

If the linear transformation describes a change of the basis of a vector space then
the matrix of the transformation will have the same number of rows and columns.
Matrices with this property are referred to as square matrices .

The colour matching functions can be directly related to the properties of the
three classes of light sensitive cones in the retina, by a linear transformation from
the xyz space to the cone space. The three classes of cones have peaks in their
spectral sensitivities at long, medium and short wavelengths and will be denoted
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Fig. 3.4 Cone spectral sensitivities of the l (dotted line), m (dashed line) and s (continuous line)
cones. B, G, Y and R correspond to the wavelengths which appear blue, green, yellow and red
respectively

by l, m and s respectively. Estimates of the spectral sensitivities of the cones were
initially derived from colour matching experiments with subjects who lacked one of
the cone types [25, 28] and were corroborated by subsequent direct physiological
measurement of the cone sensitivities. Subsequently these estimates have been
revised to take into account individual differences in the genotypes [26]. The ratios
of the maximum sensitivities of the l, m and s cones have been estimated as 1: 0.5 :
0.025 respectively, and these ratios reflect the relative number of the different types
of cone in the retina [3]. The spectral sensitivities of the cones are plotted in Fig. 3.4

As the colour data can be described by coordinates of points in any number of
sets of three basis vectors, the first step in analysing the data involves finding a set of
basis vectors that simplifies the task of making use of the data. This can be done by
assuming that a linear transformation T turns a set of basis vectors into the required
set and then changing the basis vectors so that T becomes the identity transformation
that does not change anything. The matrix of the identity transformation I has the
diagonal form:

I =

⎛
⎜⎜⎝

1 0 . 0
0 1 . 0
. . . .

0 0 . 1

⎞
⎟⎟⎠ (3.7)

One can take a linear transformation defined by a square matrix T, which turns
a set of coordinates U into a set of coordinates V, and combine it with a change of
basis matrix S, that turns the sets of coordinates X and Y into U and V respectively.
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Applying these transformations in sequence gives:

SY = TSX (3.8)

so

Y = S−1TSX = PX (3.9)

where S−1 stands for the inverse of the matrix S which has the property that
multiplication of a square matrix by its inverse gives the identity matrix I.

The matrices P and S−1TS both describe the same linear transformation and
are referred to as similar matrices. The key to finding the simplest diagonal form
of the linear transformation T involves finding a type of vector referred to as an
eigenvector, which changes size but not direction under the transformation:

T(u) = λu (3.10)

where λ is a constant specifying the change in size that is referred to as the
eigenvalue. If one can find n different eigenvalues, where n is the number of basis
vectors, then one can write them into the rows of the matrix S, and apply the
definition of an eigenvector given in Eq. 3.10 to obtain the equivalence relation:

TS = ΛS (3.11)

where Λ is a matrix with all elements equal to zero except for the diagonal elements
which are equal to the eigenvalues of T.

Λ =

⎛
⎜⎜⎝

λ1 0 . 0
0 λ2 . 0
. . . .

0 0 . λn

⎞
⎟⎟⎠ (3.12)

from which it follows that S−1TS must be a diagonal matrix.
This diagonalisation procedure reveals the simplest description of a linear

transformation and will be applied in the next section.

3.2 Principal Components Analysis

Every pth stimulus generates responses in a collection of n neurons. This n-tuple of
responses (v

p
1 , v

p
2 , . . . , v

p
n ) can be used to specify the coordinates of a vector vp in

a vector space referred to in this context as a data space. Given m measurement
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n-tuples, the mean of the ith coordinate vi is defined as:

mean(vi) = 1

m

m∑
p=1

v
p

i (3.13)

and the variance of the ith coordinate vi is defined to be:

variance(vi) = 1

m

m∑
p=1

(v
p
i − mean(vi))

2 (3.14)

Similarly the covariance between coordinate vi and coordinate vj is defined as:

covariance(vij ) = 1

m

m∑
p=1

(v
p
i − mean(vi)) × (v

p
j − mean(vj )) (3.15)

Analysis of the data can often be simplified by subtracting the mean of each
coordinate from every data point. For mean-subtracted data mean (vi) = 0 for every
coordinate, so the variance becomes:

variance(vi) = 1

m

m∑
p=1

v
p
i × v

p
i = 1

m

m∑
p=1

(v
p
i )2 (3.16)

and the covariance becomes:

covariance(vij ) = 1

m

m∑
p=1

v
p
i × v

p
j (3.17)

Let the mean-subtracted data be represented by a matrix V that is formed by writing
the coordinates of successive data vectors into successive rows.

V =

⎛
⎜⎜⎝

v1
1 v1

2 . v1
n

v2
1 v2

2 . v2
n

. . . .

vm
1 vm

2 . vm
n

⎞
⎟⎟⎠ (3.18)

The transpose of a matrix is obtained by writing successive rows of the matrix into
successive columns of the new matrix, and is denoted by superscript T. By using the
transpose operation the covariances of the mean-subtracted data can be conveniently
represented by an n row by n column covariance matrix given by 1

mV�V since for
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each element of the covariance matrix it holds that:

1

m
(V�V)ij = 1

m

m∑
p=1

v
p

i × v
p

j = covariance(vij ) (3.19)

The covariance matrix is symmetric in that for every element cij it holds that cij =
cji .

Now any symmetric matrix can be used to define a quadric surface in Euclidean
space. A quadric surface is defined by a quadratic equation. The surface can be
described by a matrix equation of the form

X�AX + B�X + c = 0 (3.20)

where A is a n × n symmetric matrix, B is a n × 1 matrix, c is a constant and
the transposition operations are necessary to ensure that the matrix products can be
computed.

The simplest equations for quadric surfaces occur when A is a diagonal matrix
and the matrix B is zero so that the surface is centered at the origin. Written out in
full the quadratic equation is:

a11x
2
1 + a22x

2
2 + . . . + annx2

n + c = 0 (3.21)

and some examples of surfaces described by this equation when c is a positive
number are illustrated in Fig. 3.5.

If the matrix A contains nonzero elements off the diagonal then the quadric
surface will be rotated with respect to the basis vectors as illustrated in Fig. 3.6.
The representation of the surface by a diagonal matrix can be recovered by applying
an inverse rotation to the coordinates.

A set of vectors are orthogonal if the inner product between every possible
pair of them is zero. In two dimensions this corresponds to the vectors being
perpendicular to each other. If the set of orthogonal vectors are also all of unit length,
as is the case for the basis vectors of Euclidean space, then they are referred to as
orthonormal. Linear transformations that preserve the orthogonality of vectors, as is
the case for transformation between Euclidean spaces, are referred to as orthogonal
transformations and the corresponding matrices as orthogonal matrices.

For the simplest case of rotation of points in two-dimensional Euclidean space
through an angle θ , as shown in Fig. 3.7, the corresponding orthogonal matrix Rθ

is:

Rθ =
(

cos(θ) − sin(θ)

sin(θ) cos(θ)

)
(3.22)



3.2 Principal Components Analysis 47

Fig. 3.5 Examples of central
quadrics. Upper figure.
Sphere. Middle figure
Hyperboloid of one sheet.
Lower figure Hyperboloid of
two sheets

Fig. 3.6 Rotation of a
quadric surface associated
with nonzero elements off the
diagonal of the matrix A

Fig. 3.7 Clockwise rotation
of a pair of Euclidean basis
vectors e1 and e2 through an
angle θ into the new pair of
Euclidean basis vectors e′

1
and e′

2
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This matrix describes a clockwise rotation of the basis vectors. For an anticlockwise
rotation R−θ the matrix is:

R−θ =
(

cos(−θ) − sin(−θ)

sin(−θ) cos(−θ)

)
=

(
cos(θ) sin(θ)

− sin(θ) cos(θ)

)
= R�

θ (3.23)

As the anticlockwise rotation is the inverse of the clockwise rotation, this result
illustrates a distinctive property of orthogonal matrices which is that their transpose
is equal to their inverse.

RR−1 = RR� = I (3.24)

The diagonalisation procedure introduced with similar matrices can be applied
to the matrix of coefficients A of a quadric form to eliminate the off-diagonal
coefficients. The required rotation matrix can be found by forming a matrix of the
eigenvectors of the matrix A that defines the quadric surface. For example, in the
case of the matrix used to illustrate the rotated quadric surface in Fig. 3.6.

A =
⎛
⎜⎝

7
4

√
3

4 0√
3

4
5
4 0

0 0 3

⎞
⎟⎠ (3.25)

The matrix of unit length eigenvectors S is:

S =
⎛
⎜⎝

− 1
2

√
3

2 0√
3

2
1
2 0

0 0 1

⎞
⎟⎠ (3.26)

so S�AS can be calculated to be:

⎛
⎜⎝

− 1
2

√
3

2 0√
3

2
1
2 0

0 0 1

⎞
⎟⎠

⎛
⎜⎝

7
4

√
3

4 0√
3

4
5
4 0

0 0 3

⎞
⎟⎠

⎛
⎜⎝

− 1
2

√
3

2 0√
3

2
1
2 0

0 0 1

⎞
⎟⎠ =

⎛
⎝ 1 0 0

0 2 0
0 0 3

⎞
⎠ (3.27)

Diagonalisation of the covariance matrix of a set of data answers the question of
how to choose an appropriate set of basis vectors for data. The matrix of the n
eigenvectors of the symmetric covariance matrix is an orthogonal matrix. When the
orthogonal transformation is applied to the data then the covariance matrix becomes
diagonal. The transformation of the data so that the coordinates of the first basis
vector have the largest amount of variance, the coordinates on the second basis
vector have the next largest amount of variance and so on, is referred to as principal
components analysis.
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An example of the application of principal components analysis by the nervous
system is provide by the early stages of colour processing. A range of surface
reflectance functions that approximately corresponds to those found in everyday
life is provided by the Munsell chip set. This is a set of coloured chips that have
been selected so that the changes between neighbouring chips of hue, saturation
and lightness appear equal. Measurements of the reflectance functions have been
made at five nanometre intervals [17] and tabulated values of the cone sensitivities
at 5 nm intervals have also been made available [26] so the response of a cone can
be approximated by the sum.

response of cone =
74∑
i=0

v(380 + 5i)c(380 + 5i) (3.28)

where the range 380 to 750(= 380 + 5 × 75) nm is the range over which the cones
respond. To be equivalent to the integrated response each element of the sum should
be multiplied by the 5 nm interval between samples, but inclusion of this scale factor
does not affect the subsequent analysis of the data.

The effect of diagonalisation of the covariance matrix of the cone responses
is illustrated in Fig. 3.8. The eigenvalues of the covariance matrix are in the
ratio 33033: 94: 1, showing that by far the largest component of the variance is
associated with the first eigenvector, which acts as a light-dark filter. The next
largest component of covariance is provided by the second eigenvector which acts
an opponent red-green filter and the third eigenvector corresponds to blue-yellow
opponent filter [4]. These are plotted in Fig. 3.9.

A technique for measuring the weighting of the light-dark filter involves adjust-
ing the relative brightness of two alternately flickering lights so that the apparent
flicker disappears. Two different alternately flickering hues merge into a single
apparent hue at a low flicker frequency, but if they differ in brightness they will

Fig. 3.8 Illustration of the ellipsoid defined by the covariance matrix of the cone responses to the
Munsell chip set, before and after diagonalisation. Note that the elements of the matrix A defining
the quadric surface have been taken directly from the covariance matrix so a large covariance
leads to a flattening of the ellipsoid in that direction. In statistics presentations the reciprocal of
the covariance is usually taken in the definition of the ellipsoid so that a large variance gives an
elongation of the ellipsoid in that direction
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Fig. 3.9 Basis vectors for
approximating cone
responses to the Munsell chip
set. The eigenvectors of the
principal components are
plotted as continuous lines
and the experimental data are
plotted as dashed lines

continue to flicker at a higher frequency because lights differing in brightness fuse
at a higher frequency. The weighting of the red-green opponent-colour filters has
been investigated experimentally by a hue cancellation technique. This technique
involves taking a light that produces a red sensation and adding a light that produces
a green sensation until a stimulus is produced that appears neither red nor green to
the observer. By carrying out this procedure with a range of monochromatic lights
the weighting of the opponent colour filter can be determined experimentally and a
similar procedure can be applied to the blue-yellow filter [11]. The experimentally
determined weightings are plotted as dashed lines in Fig. 3.9.

3.3 Hebbian Learning

The drawback of population coding is that many neurons fire in response to a
single stimulus and this leaves the brain with the problem of how to tell that all
these responses are due to the same stimulus. This problem can be overcome by a
neural mechanism referred to as Hebbian learning after its originator [10]. The
idea is captured by the succinct description that “neurons wire together if they
fire together” [13]. This behaviour can be incorporated in the model neuron by
continuously changing the weights according to the formula:

Δwi = ηxiy (3.29)
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where η is a learning rate parameter. But with this formulation the weights can
grow without limit so an additional specification is required to ensure this does not
happen. If the weight vector is divided by its length after each change the learning
rule becomes

Δwi = ηy(xi − ywi) (3.30)

and this modification ensures that the weight vector retains its unit length. In effect,
growth of the term xiy that determines the weight change is countered by the
feedback term ywi [15]. The rule for implementing Hebbian learning given in
Eq. 3.30 is closely related to principal components analysis in that after the learning
has finished the weights of the neuron will be equal to the eigenvector with the
largest eigenvalue. Furthermore, the rule can be extended to more than one neuron.
If the outputs of m neurons are indexed by the variable j then the extended rule is:

Δwij = ηyj (xi −
i∑

k=1

ykwki) (3.31)

and with this learning rule, the weights associated with successive neurons corre-
spond to the successive eigenvectors of the covariance matrix of the input [21].

Whilst it is easiest to understand the components in the data if they are listed in
order of the amount of variation in the data which they account for, allowing each
neuron to signal a linear combination of the eigenvectors has the advantage that loss
of some of the neurons will result in a degradation of the signalling of the data, but
not a loss of one or more of the components. So in the case of colour vision, loss
of some of the colour opponent neurons would be expected to result in degraded
red/green and blue/yellow discrimination but not loss of one type of discrimination
only. Evidence that neurons carry a mixture of the components comes from principal
components analysis of colour sensitive neurons in the thalamus. The variation
of the responses could be accounted for by three factors, corresponding to the
light/dark, red/green and blue/yellow components, but it was found that individual
neurons responded to a linear combination of the components [30].

Although the assumption that the cone numbers ratios l:m:s equal 1:0.5:0.025
is valid for an average over many subjects, individuals show great variability in
their cone ratios, with l:m ratios ranging between 10:1 and 1:2. If the opponent
colour channels were fixed linear combinations of the cone signals, then one would
expect the wavelength corresponding to the percept of unique yellow, which appears
neither reddish or greenish to vary with the cone ratios [5]. However experimental
investigations have revealed no correlation between l:m ratios and the wavelength of
the unique yellow, which varies little from 580 nm [14]. The conclusion drawn from
these experiments was that a mechanism of neural plasticity is involved in setting the
relative weights of the cones in the opponent colour channels. The Hebbian learning
mechanism of principal components analysis explains the invariance of the unique
yellow, because the predicted zero crossings of the red-green basis vector with l:m
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Fig. 3.10 Illustration of the
effect of a 4.5 ◦ rotation of the
opponent color basis vectors.
Upper Figure Red-green
opponent colour matching
function after rotation of the
basis vectors. Middle Figure
Blue-yellow opponent colour
matching function after
rotation of the basis vectors.
The opponent colour filter
now matches more closely
that measured experimentally.
Lower Figure With rotation
of the opponent-colour
channels the location of the
unique green changes with
the ratio m/(l+m) of l and m
cones, as is found
experimentally [23]. In all
the graphs the experimental
data are shown by dashed
lines

ratios of 10:1, 2:1 and 1:2 are at wavelengths of 576, 578, and 578 nanometres
respectively.

Unlike unique yellow, unique green does change wavelength with changes in the
l:m cone ratio. A possible explanation for this is that the principal components are
rotated so that the blue-yellow sensitivity function more closely matches that found
experimentally as illustrated in Fig. 3.10.

Often the data will consist of successive samples from a spatial or temporal
continuum. In the case of the colour data, the samples were taken from successive
points along the electromagnetic spectrum. The distance separating the position of
the first and last sample defines the length of the sampling window, and the results
of principal components analysis depends on both the covariance structure of the
data and the length of the window used to sample the data.

The effect of the window length is easiest to appreciate when the covariance
between sampling points depends only on the distance between the sampling points
and not on the selection of samples used in the calculation, as is the case for
instance for photographic images of natural scenes. If the window is small the
successive eigenvalues correspond to filters that compute successive derivatives of
the data, and ideally will match the best fixed window length filters that can be
made for calculating successive derivatives. These can be described by discrete
Legendre functions [8] and Fig. 3.11 shows that principal components analysis of
data taken from a one-dimensional strip of photographs of natural images [9] results
in eigenvectors that closely match the Legendre functions.
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Fig. 3.11 Effect of length of the sampling window on principal components analysis of visual
images. Left Figure With a short window length of 0.2 ◦ of visual angle, the eigenvectors are filters
that compute successive derivatives of the samples. With a uniform covariance these converge to
the discrete Legendre functions shown by dotted lines for the first three eigenvectors. Right Figure
With a long window length of 20 ◦ of visual angle, the eigenvectors converge to approximations
of successive components of the Fourier series. The first three sinusoidal components are again
shown by dotted lines

At the other extreme, if the window is infinitely long the eigenvectors will
correspond to the sinusoidal functions of the Fourier series [27]. The change in
the form of the eigenvectors with increasing window length is also illustrated in
Fig. 3.11 by plotting the eigenvectors with a long window alongside those obtained
with a short window. Although the window is not infinitely long, there is a noticeable
change in the form of the eigenvectors towards the sinusoidal components of the
Fourier series. It is possible that the shift between the place cell responses in the
hippocampus and the grid cell responses in the entorhinal cortex correspond to a just
such change from a local representation to a Fourier representation [20] associated
with a change in the size of the area processed by the neurons.

Associated with the change in eigenfunctions is a change in the distribution
of eigenvalues, as illustrated in Fig. 3.12. With small windows, the eigenvalues of
successive eigenvectors are initially large but decline rapidly in size, whereas with
large windows the eigenvalues start much smaller but decline much more slowly
with successive eigenvectors. So in practice it is usual to use a small window so that
the first few eigenvectors account for all the covariance of the data.

In many cases, the largest eigenvectors account for most of the covariance
of the data, and this fact can be exploited to transform data from lying in a
high-dimensional space to a low-dimensional space, a procedure referred to as
dimensionality reduction. For example, take the length changes of the six eye
muscles as the gaze is transferred from one target to another. There are six
extraocular muscles involved in rotation of the eye, which are grouped in three pairs:
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Fig. 3.12 Comparison of the
distribution of eigenvalues
obtained by principal
component analysis of natural
images with a short window
(plotted in blue) or a long
window (plotted in black)

Fig. 3.13 Illustration of the
paired actions of the
extraocular muscles of the
right eye. The horizontal
recti, indicated by the letter
H, rotate the eye about a
vertical axis. The vertical
recti, indicated by the letter V,
rotate the eye about an axis in
the horizontal plane. The
remaining oblique muscles
also rotate the eye about an
axis in the horizontal plane

the lateral and medial rectus, the superior and inferior rectus and the superior and
inferior oblique muscles. The recti muscles have their origin at the back of the orbit,
as does the superior oblique, whilst the inferior oblique arises at the front of the orbit
on the nasal side. The lateral and medial recti, referred to as the horizontal recti, lie
on either side of the eye, and the superior and inferior recti, referred to as the vertical
recti, lie above and below the eye respectively. The superior oblique passes through
a loop of cartilage at the front of the orbit and back over the upper portion of the eye,
attaching to the eye underneath the superior rectus. The inferior rectus passes under
the eye, outside the inferior rectus and attaches to the eye underneath the lateral
rectus. The layout of the muscles is illustrated schematically in Fig. 3.13.

The length changes required to hold the eye in a particular position can be
computed from a model of the mechanics of the extraocular muscles that has
successfully predicted the outcomes of squint surgery [18, 19, 24]. Calculation of
the length changes associated with a selection of target directions within 25 ◦ of the
straight ahead direction generates a set of six-dimensional data and the eigenvalues
generated by principal components analysis are plotted in Fig. 3.14. The plot shows
that almost all the variance of the data can be generated by linear combinations
of the first two eigenvectors so in effect, the data lies in a two-dimensional space
spanned by the first two eigenvectors.

As a final point, the data is often organised into an n × m matrix. In the case
of the cone responses m equals three and n equals the number of Munsell chips.
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Fig. 3.14 Relative sizes of
the six eigenvalues obtained
by principal components
analysis of length changes of
the six eye muscles over a
range of gaze directions. The
figure illustrates that almost
all the variance is described
by linear combinations of the
first two eigenvectors

It can be computationally efficient to work directly with these rectangular matrices
without having to form the square covariance matrix. For the n × m matrix A it
is possible to find associated matrices X, Y and Z such that AX = ZY and A�Z =
XY� where Y is a matrix of zeroes except for the first n or m (whichever is smaller)
diagonal elements. The columns of X are referred to as the right singular vectors of
A and the columns of Z as the left singular vectors of A. The right singular vectors
are identical to the eigenvectors of A�A and the left singular vectors are identical to
the eigenvectors of AA� since:

A�AX = A�ZY = XY�Y (3.32)

and

AA�Z = AXY� = ZYY� (3.33)

The values of the non-zero elements of Y are referred to as the singular values of
A and it also follows that the singular values correspond to the square roots of the
eigenvalues of A�A. Since the eigenvectors of a symmetric matrix are orthonormal,
the original matrix A is equal to the product ZYX� of the three matrices X, Y and
Z. This representation of A is referred to as its singular value decomposition. If A
is an m row by n column matrix, X is an n row by n column matrix, Y is an n row
by n column matrix of zeroes, except for the first n or m diagonal elements and Z is
an m row by m column matrix [12, 22].

3.4 Anti-Hebbian Learning

The complement to Hebbian learning is anti-Hebbian learning in which co-firing
of inputs results in a reduction of the output of a neuron. The linear filter model
neuron illustrated in Fig. 1.6 can be made to show anti-Hebbian learning by applying
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the learning rule:

Δwi = −ηxiy (3.34)

where η is a constant that specifies the learning rate. By comparison with the
Hebbian learning rule given by Eq. 3.29 it can be seen that all that is involved in
obtaining anti-Hebbian learning is a sign change in the update rule.

Whereas the result of Hebbian learning is that the neuron responds most to the
component of the input which is varying the most, anti-Hebbian learning results in
the neuron responding least to this component. So if the output of the neuron y is
replaced by another signal s, the neuron can effectively be trained not to respond
to the main component of variation of s. A version of anti-Hebbian learning that
ensures the neuron does not respond to the main component of variation of the
training signal is based on the covariance update rule:

Δwi = −η covariance(s, xi) (3.35)

This type of learning turns out to be very useful for eliminating sensory signals that
are not due to a change in the environment but are a by-product of an animal’s own
actions.

For example, electric fish have adapted muscle cells to produce electric pulses
and have receptors that respond to the electric currents created by the pulses. The
currents depend on the surroundings of the fishes and can be used to guide their
interactions with their environment. But the changes in the currents produced by
objects close to the fish are very small compared with those produced by the pulses
themselves and have to be separated out before they can be used [2]. This task
is performed by the cerebellum-like structure of the fish illustrated in Fig. 3.15
which consists of granule cells and associated parallel fibres that form synapses with
ganglion cells. The granule neurons receive sensory information about the activity
of muscles in the body of the fish and the generation of the electric pulses and the
ganglion cells receive sensory information from the electric current receptors. Anti-
Hebbian learning could be used by the cerebellum-like structure to create a signal
that predicts the sensory input due to self-motion of the animal, enabling its removal.

Similar processing is required for motor behaviour. Neural signals always show a
degree of variation and drift and so the signals have to be constantly monitored and
updated and the cerebellum is highly involved in this task. Damage to the cerebellum
results in inaccurate movements and a failure to adapt to changes in muscle strengths
[16]. This role is particularly significant for more demanding movement control
tasks, such as dealing with interaction torques associated with shape changes, since
these vary with the movement speed. Patients with cerebellar ataxia make more
variable movements because they do not change their neural control signals to match
the changes in the interaction torques [1].

The main input to the dentate and fastigial nuclei of the cerebellum comes
from the Purkinje cells, which are inhibitory. The behaviour of the Purkinje cells
is controlled by a characteristic circuit, a simplified diagram of which is shown
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Fig. 3.15 Possible role of anti-Hebbian learning in sensory signal processing in the electric fish.
Upper Figure Schematic diagram of the circuit found in the electrosensory lateral line lobe of the
electric fish. The granule cells (drawn in grey) form a separate cluster. They receive input signals
associated with movement of the animal’s body and the generation of electrical pulses by the
animal. The ganglion cells (drawn in black) receive inputs from both the parallel fibres and from
electroreceptors in the animal’s skin (drawn in red). Lower Figure Block diagram of the proposed
signal flow in the cerebellar-like structure. The weights of the inhibitory ganglion cells are adjusted
until there is no covariance between the motor command and the training signal, whereupon their
output is equal to the component of the electrical signal produced by the activity of the animal’s
own muscles [6]

in Fig. 3.16. In the circuit signals are processed by granule cells and then passed
to the Purkinje cells. The axons of the granule cells are unmyelinated and spread
out to form parallel fibres that run transverse to the dendritic trees of the Purkinje
cells. Long term depression of synapses of the parallel fibres with the Purkinje cell
dendrites can be induced by climbing fibre inputs which originate in the inferior
olive. Each Purkinje cell has only one climbing fibre connected to it, but the fibre
branches and wraps around the dendrites of the cell. Parallel fibre excitation results
in a single spikes from the Purkinje cells, which are referred to as simple spikes to
distinguish them from the multiple spikes resulting from climbing fibre excitation
that are referred to as complex spikes.

A possible scheme for how the cerebellum could act to compensate for the
variations in the strengths of eye movement commands is illustrated in Fig. 3.16
[7]. In this case the task is to maintain calibration of the vestibulo-ocular reflex
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Fig. 3.16 Possible role for anti-Hebbian learning in processing of motor signals. Upper Figure
Schematic diagram of the circuit repeated in the cerebellar cortex. Purkinje cells (drawn in black)
receive inputs from climbing fibres (drawn in red) and from a dense layer of granule cells (drawn in
grey). The granule cells have only a few short dendrites that receive excitatory inputs from mossy
fibres (drawn in blue). Although this diagram captures part of the circuitry it does not include all the
features. Not included are the large-bodied Golgi cells, the stellate and the basket cells. All of these
receive inputs from the parallel fibres and have inhibitory outputs. The Golgi cells connect with
the granule cells, and the stellate and basket cells form synapses with the Purkinje cells. Lower
Figure Block diagram of the proposed signal flow in the vestibulo-ocular reflex. The mossy fibres
carry motor commands, the climbing fibres deliver the amount of retinal slip and anti-Hebbian
learning ensures that output from the Purkinje fibres alters until the motor command generates an
eye movement exactly matching the head velocity [7]

which acts to keep the gaze direction aligned with the target and so ensure a stable
retinal image despite head movements. If the head moves in one direction, the reflex
produces a compensatory eye movement which is in the opposite direction to the
head movement but of the same size.

The reflex depends on a neural pathway from the semicircular canals, which
signal head velocity, on to the vestibular nucleus and ending on the oculomotor
neurons, that drive the eye muscles. If the neural pathway is not perfectly reliable it
will require calibration, and the region of the cerebellum involved with the reflex is
the flocculus. Within this part of the cerebellum some of the Purkinje neurons send
outputs directly to the vestibular nucleus. Assuming that the mossy fibres deliver a
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copy of the motor command and that the training signal provided by the climbing
fibres consists of the slippage of the retinal image, then after training, the output of
the Purkinje neurons will carry the signal that must be added to the head velocity to
ensure no slippage.
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Chapter 4
From Local to Global

Individual sensory neurons can only signal measurements from a restricted region
of space. To combine the individual descriptions of an object the brain has to be
able to turn a local description into a global description. The task of making use of
a retinal image is used as an example of how measurements from the outline of a
manifold can be used to recover a global description by applying Morse theory.

4.1 Critical Points

Given a smooth manifold embedded in n-dimensional Euclidean space one can go
on to use the value of any one of the coordinates of a point to indicate the height
of the point on the manifold. Any function which can be used to assign a height to
every point on a manifold is referred to as a height function. By investigating how
the arrangement of points varies with the height one can gain insight into the shape
of the manifold. For example, given a set of global coordinates (x1, x2, x3) for a
point on a surface embedded in everyday three-dimensional space, one can assume
that the x3 coordinate gives the height of the point. In particular, the points on the
manifold where the tangent plane is orthogonal to the height function mark changes
in the way the shape depends on the height as illustrated in Fig. 4.1 and are referred
to as critical points.

Also illustrated by the example in Fig. 4.1, is that the tangent planes of the surface
can be orthogonal to the direction of the height function at several different heights.
In order to be able to differentiate the height functions with respect to the points
on the surface it must be turned into a single-valued function. This can be done by
introducing local coordinates. A local description of an m-dimensional manifold is
provided by a function φ from each point in a neighbourhood of the manifold to
an m-dimensional Euclidean space. In this way every point in the neighbourhood is
assigned a unique set of coordinates (x1, x2, . . . xm), referred to as local coordinates.
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Fig. 4.1 An example of how a height function can by used to isolate the component parts of a
three-dimensional surface. Left Figure A surface with the critical points associated with the height
function plotted in blue. The critical points mark changes in the shape of the surface. Right Figure
Illustration of how the surface is comprised of component shapes separated by the critical points.
From the top these are: a bag, two tubes, one tube, a bag and a tube, two tubes and a bag

Fig. 4.2 Illustration of a system of local coordinates for the sphere. In effect, given a sphere
specified by the equation x2

1 + x2
2 + x2

3 = r2, the hemisphere drawn in blue is being treated as

the graph of the function f (x1, x2) = −
√

r2 − x2
1 − x2

2 where the negative sign outside the square
root symbol is used to indicate that the negative square root is being taken. The local coordinates
(p1, p2) of a point P on the graph are given by the projection of the point onto the plane spanned
by the vectors x1 and x2

An example of how local coordinates are set up for a portion of a sphere is shown
in Fig. 4.2.

Although the theory of height functions extends to manifolds embedded in
n-dimensional Euclidean space, only its application to surfaces embedded in 3-
dimensional Euclidean space will be considered here, because this aspect of the
theory is pertinent to the perception of solid objects. Let f (x1, x2) be a smooth
function of a system of local coordinates (x1, x2) which describes a patch of a
surface. The local coordinates can be set up with the origin at the critical point
so that f (0, 0) = 0. Then by the fundamental theorem of calculus the value of the
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Fig. 4.3 Local description of the behaviour of a function f (x1, x2) in the neighbourhood of a
critical point at the origin (0,0). A plot of the function is shown in the top left hand figure. The
straight line to an example pair of local coordinates (x1, x2), is indicated by a red arrow. The graph
of the corresponding function f (tx1, tx2) of a variable t, where t varies from 0 to 1, is shown in
black. This function is used to derive the component functions g1 and g2 as described in the text

function at any point with local coordinates (x1, x2) is equal to the integral of the
derivative of the function along the straight line from the origin to the point (x1, x2).
If the distance along the straight line is specified by a variable t , where t is zero at
the origin and one at the point (x1, x2) then this description of the function can be
written as:

f (x1, x2) =
∫ 1

0

df (tx1, tx2)

dt
dt =

∫ 1

0

∂f

∂x1

∣∣∣
(tx1,tx2)

x1dt +
∫ 1

0

∂f

∂x2

∣∣∣
(tx1,tx2)

x2dt

(4.1)

By putting gi(x1, x2) = ∫ 1
0

∂f
∂xi

∣∣∣
(tx1,tx2)

dt this equivalence can be rewritten as:

f (x1, x2) = g1(x1, x2)x1 + g2(x1, x2)x2 (4.2)

as illustrated in Fig. 4.3.
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Fig. 4.4 Local description of the behaviour of a function in the neighbourhood of a critical point
by a quadratic function

Since the origin of the system of local coordinates is a critical point all the gj

functions are zero at the origin and one can repeat this argument with each of them:

gj (x1, x2) =
∫ 1

0

dgj (tx1, tx2)

dt
dt =

∫ 1

0

∂gj

∂x1

∣∣∣
(tx1,tx2)

x1dt +
∫ 1

0

∂gj

∂x2

∣∣∣
(tx1,tx2)

x2dt

(4.3)

Proceeding as before, putting hij (x1, x2) = ∫ 1
0

∂gj

∂xi

∣∣∣
(tx1,tx2)

dt the expression for f in

terms of two functions g1 and g2 becomes an expression in terms of four functions
h11, h12, h2,1 and h2,2:

f (x1, x2) = h11(x1, x2)x
2
1 + h12(x1, x2)x1x2 + h21(x1, x2)x2x1 + h22(x1, x2)x

2
2

(4.4)

as illustrated in Fig. 4.4
By putting:

a1,1 = h1,1, a2,2 = h2,2 and a1,2 = a2,1 = h1,2 + h2,1

2
(4.5)
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Fig. 4.5 Illustration of the
approximation of a function
in a small neighbourood of a
critical point by a quadric
surface

the local definition of the function f can be written as a quadratic form:

f (x1, x2) = X�AX (4.6)

where X is the 2 row by 1 column matrix of local coordinates. The symmetric matrix
A can be diagonalised so in the neighbourhood of the critical point the shape of the
surface patch can be described by a linear combination of the signed square of each
of the local coordinates [12], as illustrated in Fig. 4.5. This finding is referred to as
the Morse lemma.

4.2 Receptive and Association Fields

To interact effectively with other animals the brain has to be able to identify the
positions and velocities of the limbs of the animals. But most of the sense organs do
not give direct access to quantitative values for the positions of physical surfaces,
only to measurements of some property of the surfaces. In the case of the retinal
image, measurements of the intensity distribution of light reflected from the surfaces
in view can be described by a function of position on the retina and the graph of this
function defines a new surface embedded in three-dimensional Euclidean space, as
illustrated in Fig. 4.6.

Analysis of the retinal image in vertebrates begins with rods and cones. But
whilst an individual rod or cone receptor signals the intensity at a particular position
on the surface, this signal does not reach the brain as it has to be turned into nerve
impulses prior to transmission along the length of optic nerve. This conversion is
done by the retinal ganglion cells which combine the responses of many receptors.
A distinctive feature of the ganglion cells in the retina is that each neuron receives
inputs from a limited area of the retina, referred to as its receptive field [7].

The strengths of the connections associated with each position in the receptive
field can be found experimentally by flashing small spots of light at each position
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Fig. 4.6 Graph of the image intensity of the left half of Fig. 4.1 as a function of retinal position

and measuring the response of the neuron. In the retina the receptive fields of the
cells have a concentric organisation consisting of a centre and a surrounding ring.
The centre responds to a stimulus being turned either on or off, while the surround
responds to a light action that is opposite to that of the centre. The output of the
neuron therefore depends on the difference between the stimulation of the centre
and surround, for if a large light spot covers both the centre and surround then the
response is less than with stimulation of either the centre or surround alone [9], so
the cell can be thought of as signalling the local contrast of the image.

For cells which respond linearly, both the centre and surround sensitivity profiles
of retinal receptive fields can be described by Gaussian functions of position [13]
and the overall receptive field profile can be described by the difference between
the surround Gaussian and the centre Gaussian. Such Difference-of-Gaussian
(abbreviated to DoG) functions are described by the equation :

DoG(x) = a

σ
√

2π
exp −

(
x√
2σ

)2

− b

sσ
√

2π
exp −

(
x√
2sσ

)2

(4.7)

where σ and sσ specify the square root of the variances of the Gaussian functions
of the centre and surround respectively, and s, a and b are constants. If a = b =
1, the Gaussian functions used are normal distributions, so each has an area under
the curve equal to one, and if the entire receptive field is stimulated uniformly, the
responses from the centre and surround cancel out and a zero response is produced.
An example of a Difference-of-Gaussian weighting function is plotted in Fig. 4.7.

The property of the receptive fields of cortical cells that distinguishes them from
the receptive fields of cells in the retina and lateral geniculate nucleus is that they
are elongated in one direction and so respond best to slits of light, dark bars and
edges [8]. A distinction can be made between simple cells, whose receptive fields
can be explored with stationary spots of flashing light, and complex cells which
respond poorly to stationary spots of flashing light, but do respond to moving bars
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Fig. 4.7 Description of a
rotationally symmetric
receptive field by the
Difference-of-Gaussian
function defined by Eq. 4.7. If
the variables x1 and x2 are
taken to be the visual angle in
degrees, then region
illustrated corresponds to a
1 ◦ by 1 ◦ retinal patch. Upper
Figure The excitatory centre
is gc(x1, x2) is described by a
normal distribution with σ =
0.023. Middle Figure The
broader inhibitory surround
gs(x1, x2) is described by a
normal distribution with sσ =
0.194. Lower Figure Graph
of the Difference-of-Gaussian
function resulting from
subtracting the inhibitory
surround from the excitatory
centre

and edges. The receptive fields of simple cells can be divided into mutually exclusive
regions, each of which responds to light on or light off. Complex cells do not in
general have subdivisions of their receptive fields although they too are tuned to
stimuli with specific widths and orientations.

The Difference-of-Gaussian model of receptive fields can be extended to simple
cells by using a one-dimensional Difference-of-Gaussian function to describe
the cross-section of the receptive field and a Gaussian function to describe the
lengthways profile of the receptive field. Typically this is three times the width of
the receptive field as illustrated in Fig. 4.8.

Another difference between cortical receptive fields and retinal receptive fields
is in the greater range of profiles. In the retina, most linear receptive fields are
approximately radially symmetric, but in the cortex the weighting w(x) of the
cross-section can vary from being symmetric, for which w(x) = w(−x) to being
antisymmetic for which w(x) = −w(−x). This may reflect the ability of cortical
neurons to calculate not just local functions but also derivatives of these functions.
For example, the derivative of the symmetric Difference-of-Gaussian weighting
function is antisymmetric as illustrated in Fig. 4.8.

Evidence for the existence of spatial frequency filters early on in the visual
pathway comes not just from neurophysiology but also from psychophysics [1], and
the latter technique has provided quantitative estimates of the filters of the human
visual system. An example set of such filters, which were described by receptive
fields formed by differences of either two or three Gaussian functions, is illustrated
in Fig. 4.9 [16]. One characteristic of a filter tuned in the frequency domain is its
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Fig. 4.8 Description of the receptive field weighting of a simple cell by the product of a cross-
section function with a Gaussian function lengthways. Upper Figure A receptive field with a
cross-section described by Difference-of-Gaussian function with same parameters as those used in
Fig. 4.7. Lower Figure A receptive field with a cross-section corresponding to the rate of change
of the Difference-of-Gaussian function with position

Fig. 4.9 Spatial frequency tuning of filters in the human visual system. The bandwidth of the
filters change with frequency, as can be seen by comparing the bandwidths of the filter tuned
to the lowest spatial frequency with that of the filter tuned to the highest spatial frequency. The
bandwidths are indicated by the dotted red lines

bandwidth, which can be specified in terms of the difference between the upper and
lower frequencies at which the filter produces half of its maximum response. The
psychophysical findings have revealed that the bandwidths of the filters are not the
same in every filter but change with the frequency to which the filter is tuned. So it
is clear that a range of different filters is involved in vision and the particular profiles
shown in Figs. 4.7 and 4.8 were chosen simply to reflect the average of the range.

Whilst a cortical cell does not respond to a stimulus presented outside its
receptive field, such stimuli can markedly alter the response of the neuron to a
stimulus lying within its receptive field. In particular, extending a contour with the
preferred orientation of a neuron beyond its receptive field increases its response,
whilst the presence of a contour with a different orientation decreases its response
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Fig. 4.10 Combination of
separate parts of a smooth
curve into a single extended
curve. Although many parts
of the blue lines are hidden
they can clearly be seen to
form a set of six curved lines

[11]. The enhancement of the responses of the neurons of the visual cortex helps to
bring together the responses to different parts of a contour into a single whole, as
illustrated in Fig. 4.10. By analogy with the idea of a receptive field, the cortical
neuron can also be thought of as having an association field that extends well
beyond its receptive field and results in enhanced responses to smooth contours
[6].

Insight into how a contour is formed can be gained by assuming that it is
generated by the path of a Braitenberg vehicle such as that portrayed in Fig. 2.12.
The simplest case arises when the vehicle moves over a flat surface on which the
wheels do not slip, so that the vehicle can move forwards or backwards, or turn, or
make a combination of these movements, but what it cannot do is move sideways. In
visual terms, the no-slip condition is just what is required to ensure that only smooth
contours result in edge facilitation.

As illustrated in Fig. 4.11, the configuration space for the vehicle is a three-
dimensional Euclidean space in which the first two axes can be conveniently
positioned in the plane so the remaining axis is located perpendicular to the plane.
Following through with this description the retina corresponds to a base manifold
R2 and each hypercolumn of the visual cortex, which consists a set of orientation
columns that span the entire range of orientations, corresponds to the principal fibre
bundle R2 × S1.

The no-slip constraint requires that the possible velocities of the vehicle lie in
a two-dimensional portion of the tangent space, spanned by a vector x1 which
has a length and direction specified by the linear velocity of the vehicle, and a
vertical vector x2 that describes the rate of change of orientation of the linear
velocity vector. So, as with the manifold of the falling cat, the tangent space of
the sub-Riemannian configuration space can be divided into horizontal and vertical
directions. In this case the horizontal directions are contained in the tangent plane
of allowed movements spanned by x1 and x2.

To apply the vehicle analogy to contour processing one can assume that the
vehicle travels at unit velocity so that its linear velocity is given by the tangent
vector to the retinal outline (sin(θ ), cos(θ ), 0) where θ is the orientation of the edge
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Fig. 4.11 Tangent space for movements of the Braitenberg vehicle portrayed in Fig. 2.12 along
a retinal contour. The path of the vehicle is shown by a dashed line. At a given point P on the
ground, the tangent to the path makes an angle θ with the horizontal meridian and this angle is
used to characterise the retinal tangent vector x1. The change in the orientation of the vehicle is
specified by a displacement in the vertical direction x2, and the combination of displacements is
given by the vector sum x = x1 + κx2 where κ is the curvature of the path of the vehicle at the
point P

on the retina. Locally, a smooth curve follows the path of a circle and the reciprocal
of the radius of the circle is referred to as the curvature of the curve, and is denoted
by κ . For a straight line the curvature is zero. By putting the size of the vertical shift
equal to the curvature of the outline, the three-dimensional curve keeps track of the
curvature of the retinal contour. So within the geometric framework, the processing
carried out in the cortex effectively converts an outline on the retina into a curve in
three-dimensional space.

The linear combination defining the tangent vector in three-dimensional
Euclidean space is then specified by Eq. 4.8:

x = (sin(θ), cos(θ), 0) + κ(0, 0, 1)) = x1 + κx2 (4.8)

As the vehicle moves along its path the vector x will trace a path in three-
dimensional Euclidean space and the length of this path can be can be calculated
by applying the Euclidean metric. Hence at any given position on a contour the
length of the tangent vector x = x1 + κx2 is given by:

‖x‖ = ‖x1 + κx2‖ =
√

1 + κ2 (4.9)

The length γ of the three-dimensional path between two points on the retinal contour
is then given by the integral:

γ =
∫ 1

0

√
1 + κ2dt (4.10)

where t is a parameter specifying the position on the retinal contour that is equal to
0 at the start point and 1 at the end point [4].
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Fig. 4.12 Illustration of the role of an association field. The black lines indicate possible paths of
smooth outlines passing through a horizontally-orientated receptive field. The blue line segments
show the orientations of examples of receptive fields stimulated by such paths, which are grouped
in a characteristic bow tie shape. The association field is formed by a weighted combination of
the stimulated receptive fields and activation of the association field enhances the response of the
horizontally-orientated receptive field. The weights are specified by a Gaussian function of the path
lengths given by the sub-Riemannian metric defined by Eq. 4.10 and are indicated by the saturation
of the blue colour of the example receptive fields

Given a metric for a contour one can model an association field by using a
Gaussian function of the distance from the receptive field centre to specify the
weight distribution. This is illustrated in Fig. 4.12, where the weight assigned to
the output of neighbouring receptive fields is indicated by the saturation of the blue
icons. The quantitative description of the orientated filters and the association fields
can be combined to model the behaviour of the early stages of the visual cortex.
Neurons with the same preferred orientation respond to changes along a height
function perpendicular to the orientation to which they are tuned as illustrated in
Fig. 4.13. It turns out that the neurons that respond to the first derivative of the local
contrast function are ideally suited to signalling the location of the critical points.

4.3 Bump Functions

Research in neuroscience is distinctive in that one always has, at the back of
one’s mind, the thought that an experimental finding might have implications for
understanding our subjective experiences. But our subjective worlds are a result of
so much neural elaboration that it is difficult to gain insight into the early stages of
processing of the sensory stimuli. Just because we find a neural signal for critical
points is no guarantee that the nervous system cares about this one way or another.
But certainly, a capability of the visual system must be to be able to take local
measurements from an object and turn them into a unified description of it. One has
to answer the question of what sort of description is being used.
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Fig. 4.13 An illustration of
how cortical neurons that
respond to the first derivative
of contrast could find the
critical points of surface. The
direction of the height
function is indicated by an
arrow. The responses are
maximal at the critical points
as can be seen by comparison
with Fig. 4.1

A prerequisite for successful interaction with an object is its shape because it
cannot be effectively manipulated without this knowledge. The most fundamental
properties of shape are topological and concern questions such as how many holes
does the object have and discrimination experiments have revealed that animals are
adept at distinguishing the presence of holes [2, 3]. The presence of holes can be
detected by application of the Morse lemma. For a surface the signs of the squares
can be both positive, both negative or they can be opposite. The shapes associated
with such conditions, correspond to a local minimum, a local maximum or a saddle.
A sphere will have a local maximum and a local minimum at the intersections with
the height function and a hole will have a saddles at opposite intersections. So the
local shapes are grouped in pairs and the number of local shapes will vary with the
number of holes. To exploit this relationship one can begin by calculating the Euler
characteristic χ(S) given by:

χ(S) = number of minima + number of maxima- number of saddles (4.11)

For the example shown in Fig. 4.1 there is one maximum, two minima and five
saddles, giving an Euler characteristic of 1 + 2 − 5 = −2. The Euler characteristic
is also equal to two minus twice the number of holes g so g = (2 - χ(S))/2 which is
this case is equal to 2, as is the case.

But to be able to handle an object one often needs the slant of the holes and
protrusions so as to grasp it safely. In the neighbourhood of a point on the outline
of a surface, it follows from the Morse lemma that the shape of the surface can
be approximated by a quadratic function. Given a pair of critical points which
are adjacent to each other with respect to the height function one can interpolate
between the critical points to obtain the shape of the portion of the surface lying
between them. It is even simpler to interpolate the slant of the tangent planes, which
is a linear function of position along the height function, as illustrated in Fig. 4.14.
But this presupposes that the brain can identify pairs of corresponding critical points
and the separation between them. Furthermore, the interpolation procedure acts
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Fig. 4.14 Illustration of surface shape estimation by tangent plane interpolation. An estimation
of surface slant and how it changes with height can be obtained from points on the outline of the
figure. The estimates are indicated by the appearance of a disk which becomes more elongated
with increasing slant. A single height function only gives an estimate of slant in the direction of
the height function and to obtain an estimate of the slant of the surface in all directions, the results
from height functions with different orientations would have to be combined

along the direction of the height function as illustrated in Fig. 4.14 and to obtain
the overall shape of the object the results of applying the procedure along all the
possible directions of the height function would have to be combined.

The analysis of critical points depends on having the manifold embedded
in Euclidean space and a source of ideas about how the brain might combine
information from critical points comes from the theory of the embedding process.
It turns out that a smooth manifold can always be embedded in a high-dimensional
Euclidean space [15]. The simplest proof of the embedding theorem applies only
to manifolds that can be covered by a finite number N of neighbourhoods. The
neighbourhoods can be large or small and can be located anywhere on the manifold,
as illustrated in Fig. 4.15 for a two-dimensional manifold, so that by defining enough
neighbourhoods one can cover the entire manifold. A neighbourhood can also be
defined at a boundary by aligning the direction of one of the local coordinates with
the boundary.

The task of amalgamating the collection of local coordinates into a single
global system of coordinates requires a procedure to smoothly combine the local
descriptions. A useful tool for this task is the bump function b(x1, x2) which is a
smooth function that is non-zero for all points in the neighbourhood of a given point
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Fig. 4.15 Examples of different sizes and positions of possible neighbourhoods of a surface. Each
of the blue regions indicates a neighbourhood of a point on the manifold. At a boundary of the
manifold, the shape of the neighbourhood can be matched to that of the boundary

on the surface, and zero everywhere else. An example of a bump function is:

b(x1, x2) =
⎧⎨
⎩

exp

(
1

x2
1+x2

2−1

)
, when(x2

1 + x2
2 ) < 1

0, otherwise
(4.12)

and this function is plotted in Fig. 4.16.
The embedding of a surface M can be constructed by combining the local

coordinates into a set of smooth functions of position on the surface, each of
which specifies a coordinate. For each neighbourhood region Ri on M set up
a system of local coordinates φi that maps each point in Ri into a point with
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where s is the number of neighbourhood regions. Now if one takes two distinct
points P and Q on the surface then if P is in region Ri and Q is not then bi(pi
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points are different. If the bump functions of the two points are the same then
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is that any smooth manifold can be embedded in Euclidean space (albeit a high-
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Fig. 4.16 Graph of an
example bump function
b(x1, x2) that can be used to
combine local descriptions of
surfaces. Also shown are
graphs of the functions
x1b(x1, x2) and x2b(x1, x2)

which can be used to ensure
unique coordinates for each
point on the surface

dimensional one) and so the properties of any smooth manifold can be analysed in
terms of relations between sets of coordinates.

Coordinates are most often used in the specification of a function or vector field
that varies smoothly over a manifold and bump functions are also useful for forming
a global specification of functions and vector fields given in local coordinates.
For example, if a point P on a surface lies within the neighbourhoods of k bump
functions then one can define k representations of the value of a function g defined
on the surface by bi(xi

1, x
i
2) where 1 ≤ i ≤ k. One can rescale these representations

so that they sum to unity and then recover the value of g(P) simply by summing
them:

b̂i(xi
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1 , x1
2 )g(P ) + b2(x2
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2 )g(P )
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2 ) + b2(x2
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2 ) + . . . + bk(xk
1 , xk

2 )

(4.14)

Now this sum in Eq. 4.14 is the same as that given in Eq. 1.9 for reconstruction of
the direction and length of a vector in a plane by a population of model neurons. The
analogy is not entirely correct because the derivative of a bump function must tend
to zero as the value of the bump function tends to zero to ensure smooth blending
of the functions and this is not true for the positive half of the cosine function, but
it does indicate how a neural system could combine the outputs of a population of
neurons to reconstruct the values of functions and vector fields over entire surfaces.
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Fig. 4.17 Schematic diagram of the topographic arrangement of the larger areas of the right visual
cortex which receives input from the left visual field as shown by the inset diagram with one half
greyed out. The horizontal meridian is plotted in red and the vertical meridian is plotted in blue.
Contours of 10, 20, and 30 ◦ of visual angle with respect to the foveal direction and plotted as
black lines of increasing thickness. The cortical areas abut along either a horizontal or a vertical
meridian, which minimises connection lengths between the representation of a visual direction in
different cortical areas. The locations of the areas are distinguished by the letter d for dorsal and v
for ventral

The idea that the visual cortex could use bump functions to interpolate mea-
surements is no more than speculation, but it is in keeping with the presence of
both simple and complex neurons in the visual cortex. Whilst simple cells, which
have receptive fields that can be divided into mutually exclusive regions, have the
properties required for the image filters, complex cells are suited to carrying out
the task of the bump functions. Furthermore, there are many cortical areas beyond
the primary visual cortex, as illustrated in Fig. 4.17, containing neurons with larger
and larger receptive fields. Given that the receptive field sizes of neurons in the
visual cortex approximately double in size at successive stages of the pathway it may
be that the surface is reconstructed in stages by using successively more extensive
bump functions, each of which responds to the sum of the smaller bump functions.
By incorporating bump functions with a range of neighbourhood sizes the spatially
separated orientations of the tangent planes at the critical points could be merged
across the whole of the surface.
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4.4 Gradient Space

An obvious criticism of emphasising the constraints available from smooth surfaces
is that not all surfaces are smooth. But such surfaces also have constraints which
can be exploited. In particular, if the surface is not smooth, but polyhedral, then
the intersection of two flat faces will produce a line on the retina that provides a
restriction on the possible orientations of the faces [10, 14]. The derivation of this
constraint follows the viewing geometry illustrated in Fig. 4.18.

The depth of a point is specified by the x3 coordinate and its retinal image is given
by the intersection of the ray from the origin to the point with the x3 = −1 plane
and so the flat surface of a face of the polyhedron can be described by a function of
the x1 and x2 variables:

− x3 = f (x1, x2) (4.15)

Given this function, the orientation of the surface is defined by its gradient:

(g1, g2) = (
∂f (x1, x2)

∂x1
,
∂f (x1, x2)

∂x2
) (4.16)

and the collection of all possible coordinates (g1, g2) are referred to as the gradient
space.

Fig. 4.18 Illustration of the gradient space constraint on the orientations of intersecting flat
surfaces. Two surfaces that intersect in three-dimensional space are drawn in grey, and the
corresponding retinal projections are drawn in blue. A vector orthogonal to one of the surfaces is
plotted in red and the corresponding vector in gradient space is plotted in blue. The gradient space
constraint is that the gradient space representations of the orientations of both surfaces must lie on
the broken, blue line perpendicular to the retinal projection of the edge formed by the intersection
of the faces
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With this description of surface orientation (1, 0,−g1) and (0, 1,−g2) are
tangent vectors in the x1 and x2 directions and (g1, g2, 1) is a vector orthogonal
to the surface. It follows that if (v1, v2, v3) is a line lying in the surface:

(v1, v2, v3) · (g1, g2, 1) = 0 so (v1, v2) · (g1, g2) = −v3 = v · g (4.17)

where v is a vector with coordinates (v1, v2) that specifies the direction of the line
on the retina and g is a vector with coordinates (g1, g2) that specifies the gradient
space representation of the orientation of the surface. When two faces intersect the
rate of change of depth with distance along the retinal projection of the edge given
by Eq. 4.17 has to be the same for both surfaces so:

v · g1 = v · g2 = −v3 so v · (g1 − g2) = 0 (4.18)

where g1 and g2 are the gradient space representations of the surfaces. It follows that
the gradient space representations of the surfaces must lie on a line perpendicular
to the retinal projection of the edge. So if the visual system does interpolate tangent
planes between critical points, it can extend the tangent plane description of the
surface to polyhedral surfaces when the information from critical points is no longer
available.

The folded card illustrated in Fig. 4.18 looks flatter as the angle between the
two halves is increased, so a card with one side folded further back will require
that the gradient space representations of each half shift from the their positions
with the symmetrical figures if the gradient space constraint is to be obeyed. The
apparent orientation of each half of the card can be measured subjectively by setting
a picture line so that it appears orthogonal to the surface of the card in depth, and
such measurements show that the gradient space representations do indeed shift so
that the edge formed by the intersection of the two halves has a slant approximately
midway between the two symmetrical cases [5].
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Chapter 5
Actions

The simplest form of interaction with a biological object that an animal can make
is a discrete behavioural event or an action. A geometric description of an action
as a slow-fast system is introduced and applied to eye and arm movements. It is
then extended to include the decision process of which action to make, which is
described in terms of alternative trajectories.

5.1 Slow-Fast Systems

Any system which exhibits an alternation of slowly varying and rapidly varying
behaviours can be modelled by a slow-fast system in which the rate of change of one
of the differential equations describing the system is multiplied by a small amount.
The simplest class of such a system consists of a pair of equations. Let the small
parameter be denoted by ε then the pair of equations are:

dx1
dt

= f1(x1, x2)

ε
dx2
dt

= f2(x1, x2)

(5.1)

where f1 and f2 are both functions of the variables x1, and x1 and ε is greater than
zero but much less than 1.

The behaviour of the variable x2 evolves on a much faster time scale that of the
other variable, so x2 is a referred to as a fast variable and x1 is referred to as a
slow variable. The parameter ε determines the timescale on which the fast variable
behaves. If one can assume that the magnitude of the derivative of the fast variable
is of order unity then the equation of the fast variable becomes:

0 ≈ f2(x1, x2) (5.2)

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
R. A. Clement, Mathematical Tools for Neuroscience, Lecture Notes
in Morphogenesis, https://doi.org/10.1007/978-3-030-98495-3_5

81

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-98495-3_5&domain=pdf
https://doi.org/10.1007/978-3-030-98495-3_5


82 5 Actions

So with a very small value for ε this equation is a close approximation to the
equation:

0 = f2(x1, x2) (5.3)

which describes a curve on the plane, referred to as the slow manifold.
Two simple examples of slow-fast systems are defined by Eqs. 5.4 and 5.5 in

which the slow manifold is specified by a cubic function [15]:

dx1
dt

= x2

ε
dx2
dt

= −(x3
2 + x2 + x1)

(5.4)

The state space behaviour of this system is illustrated in Fig. 5.1. Points in the
plane will move rapidly onto the slow manifold and then home slowly to the stable
equilibrium of the system, so the entire slow manifold in this case attracts points
towards itself.

The second example system can be made simply by changing the sign of one of
the terms in the equation for the slow manifold:

dx1
dt

= x2

ε
dx2
dt

= −(x3
2 − x2 + x1)

(5.5)

and the behaviour of this system is also illustrated in Fig. 5.1. In this system the slow
manifold has two attracting portions and one repelling portion. Points in the plane
move rapidly onto an attracting portion of the manifold and then slowly towards the
fold between the attracting portion and the repelling portion. The point then jumps
from the end of one attracting portion onto the other attracting portion and again
continues slowly towards the repelling portion. So every point eventually becomes
trapped in a loop leading to repetitive behaviour referred to as a limit cycle.

It turns out the slow-fast equations capture the abrupt threshold that was lacking
in the model for an action developed at the end of the first chapter. If a constant is
added to the slow equation of the second example system of Eqs. 5.5 the equilibrium
position is moved away from the origin and the behaviour of the system is that
required for an action.

dx1
dt

= x2 − 1

ε dx2
dt

= −(x3
2 − x2 + x1)

(5.6)

The behaviour of this system of equations is illustrated in the upper half of Fig. 5.2.
The figure illustrates that Eq. 5.6. describes an action that involves a jump return to
equilibrium. A smooth return can be made by using a slow manifold consisting of a
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Fig. 5.1 Behaviour of two
examples of a slow-fast
system. The vector field
defined by the system
equations is represented by
the red arrows. Six example
trajectories are shown. Each
trajectory begins at the point
marked with a black dot. The
slow manifold is marked by a
thick blue line. Upper Figure
The system defined by
Eqs. 5.4 has a stable fixed
point marked by a blue dot.
The trajectories all end up at
this point. Lower Figure In
the system defined by
Eqs. 5.5 the fixed point is
marked by a blue circle to
indicate that it is unstable.
The trajectories all move
towards the slow manifold
and then follow a clockwise
path along it until they reach
a fold whereupon they follow
the vector field onto another
part of the slow manifold
leading to cyclical behaviour

surface with a fold. An example of such behaviour is provided by the system three
equations:

dx1
dt

= −x2 − 1

dx2
dt

= −x2 − x3

ε dx3
dt

= −(x3
3 + x2x3 + x1)

(5.7)

and the behaviour of this system is illustrated in the lower portion of Fig. 5.2.
With this system of equations an action is deemed to have occurred when the

state of the system is moved over the fold and drops rapidly back onto the slow
manifold. The rapid change in state models the switching that occurs at the onset of
an action. The threshold for initiating an action is specified by the locus of critical
points on the slow manifold. The projection of this fold curve into the (x1(s), x2(s))
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Fig. 5.2 Behaviour of two
possible models for an action.
Upper Figure Behaviour of
Eq. 5.6, which has an abrupt
return to equilibrium. Lower
Figure Behaviour of Eq. 5.7,
which has a smooth return to
equilibrium

plane is described by the parametric equations

x1(s) = 2s3

x2(s) = −s2 (5.8)

where s is a variable that describes how far along the fold curve the point
(x1(s), x2(s)) is from the origin.

5.2 Velocity Commands

An example of an action is provided by the eye movements used to transfer gaze
from one part of the scene to another. Such movements are referred to as saccades.
The simplest case of purely horizontal movements can be used to illustrate the
distinctive characteristics of saccadic eye movements. Saccades show a relatively
invariant relationship between the size of the movement and the peak velocity and
duration of the movement which is illustrated in Fig. 5.3. The peak velocity of
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Fig. 5.3 Characteristics of saccadic eye movements. Upper Figure Changes of eye position with
time for a range of saccade sizes. Lower Figure Corresponding changes of eye velocity as a
function of time

saccades typically varies from thirty to seven hundred degrees per second and their
duration varies from 30 to 100 ms for eye movements of a half to forty degrees
in amplitude. The peak velocity progressively saturates with increasing saccade
amplitude after 20 ◦ whereas the duration of the movements varies approximately
linearly with amplitude. This consistent relationship between amplitude, duration
and peak velocity of saccades is termed the main sequence [2].

The most direct route for signals involved in the control of saccades runs from
the retina to the superior colliculus, then on to the brainstem, and terminates at the
oculomotor nuclei. At the physiological level, neuronal recordings in awake animals
have provided detailed information about the circuitry involved in the generation of
saccades. The motoneurons that innervate the extraocular muscles are located in the
nuclei of cranial nerves III, IV and VI and have a burst-tonic pattern of discharge.
The rate at which spikes are produced during the burst correlates with eye velocity
and the steady level of tonic activity correlates with the eye position at the end of
the saccade [12, 13].

The burst of activity is generated by burst neurons which fire during saccadic
movements in a preferred direction (their on direction) and are silent for movements
in the opposite direction (their off direction). They can be classified into long-lead
burst neurons, which steadily increase their firing before a saccade, and short-lead
burst neurons, which only begin firing shortly before the start of the saccade. In
addition to the burst units in the brainstem, there is also a class of cells referred to as
omnipause neurons. These fire continuously except just before and during saccades
in any direction, during which time they cease firing.
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The action involved in generation of a saccade can be described by a slow/fast
system of equations with three variables x1, x2 and x3. In effect the x1 variable holds
the size of the required eye displacement and its value decreases according to the
integral of a velocity command specified by the x2 variable. For convenience, in the
context of slow-fast modelling, the velocity command neurons will be referred to as
burst neurons and the neurons specifying the slow manifold will be referred to as
pause neurons.

The Eqs. 5.7 of the slow/fast action system have to be modified to include a time
constant λ that can be set to ensure that the rate at which the velocity command
changes matches that found in saccades.

λ dx1
dt

= −x2 − 1

λ dx2
dt

= −x2 − x3

λε dx3
dt

= −(x3
3 + x2x3 + x1)

(5.9)

A value of 0.01 for ε ensures that the fast x3 variable changes much faster than the
other two variables and a value of 0.018 for λ results in simulated saccades which
follow the main sequence for humans.

An advantage of specifying the velocity of the eye, as opposed to its position, is
that the steady level of firing of the oculomotor neurons related to eye position can
be generated by integrating the burst neuron signal. The oculomotor integrator
output n is given by the integral of the velocity command y+. As the value of the n

variable corresponds to the position of the eye, the system of equations obtained
by combining the three slow/fast Eqs. 5.9 with an equation for the oculomotor
integrator:

λ dx1
dt

= −x2 − 1

λ dx2
dt

= −x2 − x3

λε dx3
dt

= −(x3
3 + x2x3 + x1)

dn
dt

= κx+
2

(5.10)

gives a model of the brainstem saccadic control circuit. The parameter κ scales
the burst signal generated by the behavioural model to the eye velocities found
experimentally, and this model was used to generate the representative curves shown
in Fig. 5.3 [5].
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Fig. 5.4 Illustration of the movement of the hand resulting from a five degree change of the
shoulder angle (red arrows) and of the elbow angle (blue arrows) from various starting positions.
The relative orientations of the upper arm and lower arm are shown in black for an example
position. The ratio of the sizes of the hand displacements resulting from the shoulder angle and
elbow angle changes depending on the position of the hand

Arm movements are more complicated than eye movements because the dis-
placement of the hand for a given set of joint angle changes varies with the arm
configuration. This effect is illustrated in Fig. 5.4. This constraint is embodied
in the responses of neurons in the motor cortex. In a reaching task, in which
monkeys were trained to move their hand from a starting position straight ahead
to a target on a diagonal, neurons in the primary motor cortex were found to
have a preferred direction of movement for which they responded maximally and
cosine tuning with respect to this preferred direction and these are the properties
required for a population vector code of direction [7]. Subsequent recordings made
during a drawing task revealed that the direction of the population vector correlated
with the direction of the instantaneous displacement of the monkey’s hand and its
length correlated with the speed of hand movement [10]. However, when the arm
movements were restricted to the horizontal plane, but required flexion of the elbow,
then the population code was found to be no longer aligned with direction of the
hand movement but with the relative changes in the joint angles [11] as illustrated
in Fig. 5.5.

To ensure straight paths of hand movement, the velocity signal given to the
joint angle integrators has to be scaled by the projection of the direction of hand
movement resulting from a change in one of the joint angles onto the target direction
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Fig. 5.5 Illustration of the alignment of the responses of a population of neurons in the motor
cortex. Black arrows are used to indicate sixteen equal-sized hand movements made from the
example starting position of Fig. 5.4. For a hand movement in a particular direction a fixed ratio
of shoulder and elbow rotations is required, and this is specified by the orientation and size of
the corresponding grey arrow shown on the left. Each of these vectors is a linear combination of
the displacements due to a shoulder movement (red arrow) and an elbow movement (blue arrow)
alone. The responses of neurons in the motor cortex were found to be aligned with the joint angle
change vectors rather than with the hand displacement vectors [11]

(Tx,Ty). The model for eye movements can be adapted to incorporate this constraint
giving a model for arm movements:

λ dx1
dt

= −x2 − 1

λ dx2
dt

= −x2 − x3

λε dx3
dt

= −(x3
3 + x2x3 + x1)

dφ
dt

= (j11, j12) · (Tx, Ty)κx+
2

dθ
dt

= (j21, j22) · (Tx, Ty)κx+
2

(5.11)

where φ, is the shoulder angle, θ is the elbow angle, j11, j12, j21, and j22 are
elements of the matrix of the transformation of changes in the (x,y) coordinates
of the hand into changes in the (φ, θ ) coordinates of the shoulder and elbow. This
model was used to produced the simulations shown in Fig. 5.6. The behaviour of the
eye movement variables are plotted alongside to illustrate the common role of burst
and pause neurons in the two types of movement.
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Fig. 5.6 Positive values of the slow-fast model variables for an eye movement, specified by
Eqs. 5.10, and a horizontal arm movement, specified by Eqs. 5.11. The positive values of the
variables x1, x2 and x3 correspond to the firing rates of three classes of neurons. The x1 neurons
have a pattern of firing that matches the difference between the current eye or arm position and the
required one, a quantity referred to as motor error. The x2 neurons have a burst pattern of firing
identical to the instantaneous velocity of the movement and the x3 have a pause pattern of firing

Although the arm movement model appears different from the eye movement
model in the involvement of the variables used in the neural integration, this
difference becomes less if the eye movements involve both horizontal and vertical
directions. In this case accurate integration of angular velocity requires knowledge
of the current position [14], as in the arm movement model. However, in both cases
further processing is required to convert a neural signal corresponding to the velocity
of movement to one that further ensures the mechanical constraints of muscle and
connective tissue are satisfied. In this respect arm movements are more complicated
than eye movements because the load and shape of the arm can change leading to
altered force requirements. The additional neural signals required to overcome these
constraints are supplied in part by the stretch reflex, which the eye does not have,
and in part by the cerebellum.
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5.3 Deciding What to interact With

Whilst it is relatively straightforward to formulate a mechanism for carrying out
an action, that still leaves open the question of how to select what to interact with.
A simple example of this task consists of the decision as to which of two indistinct
targets to look at; the one on the left or the one on the right. The longer one waits the
more sure one becomes of where the target is so there is a trade-off between making
an accurate eye movement and making a quick decision. This type of behaviour
can be modelled by a pair of neurons, each of which integrates the evidence for
one of the objects and is referred to in this context as an accumulator. When the
level of one of the accumulators reaches a threshold then an eye movement to the
corresponding target is made.

The build-up to an action during this decision phase can be incorporated into the
slow-fast model of an action by adding an accumulator:

λ da
dt

= Θ(a)z

λ dx1
dt

= −x2 − 1

λ dx2
dt

= −x2 − x3 − μa

λε dx3
dt

= −(x3
3 + x2x3 + x1)

dn
dt

= − n
Tn

+ κy+

(5.12)

where Θ(a) is the Heaviside theta function which is 1 if a is greater than zero and
zero otherwise and μ is a positive constant. The Heaviside function ensures a steady
build-up of the accumulator when the output of x3 variable is positive and that the
output of the accumulator never becomes negative. The amplitude of the saccade
depends on the value of μ. The behaviour of this model is illustrated in Fig. 5.7.
Unlike the original slow-fast model there is no step initiation of the action, but rather
a steady build-up to the action.

In most cases an interaction with the world involves more than just a decision to
move right or left. One way to be able to make decisions about whether to look at a
target anywhere in the visual field is to have an accumulator for every direction, and
this type of structure is found in the superior colliculus. The superior colliculus is a
layered structure with visual cells located superficially and multi-sensory and motor
cells located in intermediate and deeper layers. The visual cells in the superficial
layers are arranged topographically so that the retinal area that must be stimulated
for a cell to respond depends on the position of the cell in the colliculus. Electrical
stimulation of the deep layers of the superior colliculus results in a saccade to a
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Fig. 5.7 Projection of trajectories of the 4-Dimensional system specified by Eqs. 5.12 into the 3-
dimensional space of the slow-fast system of equations. The state of the system moves steadily
away from the equilibrium state as the accumulator output increases

Fig. 5.8 Topographic map of the saccades elicited from one half of the superior colliculus. The
inset picture illustrates the system of coordinates used to specify the direction of the line of fixation
with respect to the head. The arrows on the left half of the colliculus, which is plotted in grey,
indicate the direction and size of a saccade following electrical stimulation of the corresponding
part of the colliculus. The right half of the colliculus has been used to indicate the positions of the
horizontal meridian, plotted as a red dashed line and the vertical meridian, plotted as a blue dashed
line. The black lines indicate points at ten, twenty and thirty degree angles with the line of fixation

position in the contralateral visual field which is approximately the same as that of
the receptive fields in the overlying sensory layer, as illustrated in Fig. 5.8.

The classes of neurons found in the colliculus match those found in the
brainstem. The build-up cells in the colliculus are distinguished from burst cells
by showing a steady increase in firing rate tens of milliseconds before the onset
of a saccade and the fixation cells behave like the omnipause neurons in that
they fire steadily except during a saccade. The main difference between the
collicular neurons and the brainstem neurons is that in keeping with the topographic
organisation of the colliculus the build-up and burst cells respond maximally in



92 5 Actions

Fig. 5.9 Construction of the Marroquin pattern by overlaying three arrays of dots, differing in
orientation by sixty degree steps. With a larger array of dots, fluctuating patterns of circles and
polygons are seen [9]

association with eye movements of a particular amplitude and direction. Fixation
cells increase their activity during periods of active fixation. These are found at the
rostral pole of the colliculus, at the location of the collicular representation of the
fovea.

But sometimes it is by no means obvious how a brain decides that a target is
present. For example, in even a simple pattern of dots, such as the Marroquin
pattern, [9] it can be difficult to say exactly what the pattern consists of, with
circles and patterns of polygons appearing and disappearing all the time. This is
surprising as the pattern is simply constructed by overlaying three rectangular grids
with orientations differing by 60 ◦ as illustrated in Fig. 5.9.

When viewing the Marroquin figure subjects look predominantly at the centres of
the circles, but the paths taken between circles vary between subjects as illustrated
in Fig. 5.10. So successive cycles of a decision followed by an action do not appear
to be deterministic and are better described by a probabilistic process. The nature
of this probabilistic process is constrained by the distributions of the amplitudes of
the saccades and the intervals between them which are also plotted in Fig. 5.10 [1].
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Fig. 5.10 Scanpaths made whilst viewing the Marroquin pattern. Upper Figure Illustration of the
different scanpaths made by two different viewers. Lower Figure Saccade amplitude and fixation
duration distributions, made by averaging the results from eight subjects [1]

These distributions are compatible with the idea that the exploration is carried in
the same way as optimal foraging, in that the task is to visit as many target sites as
possible whilst travelling the shortest distance possible. In particular, the long tail
of the amplitude distribution is a signature of such a strategy [3].

But the control of saccades also involves many higher regions of the brain. The
cortical frontal eye fields, supplementary eye fields and lateral intraparietal area are
all involved in specification of the target position for a saccade, and signals from
these areas are passed via the basal ganglia to the superior colliculus. In addition,
the firing patterns of many neurons in the cerebellum correlate with eye movements,
especially in the context of adaptive behaviour. Cells have also been found in the
enthorinal cortex that act like grid cells for the direction of saccades in a scene [8].
In this context, it may be that it is difficult to assemble successive fixations of the
Marroquin pattern precisely because the grids are spaced at orientations of sixty
degrees apart which may overload the grid neurons.
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5.4 Unexpected Consequences of Nonlinear Behaviour

At the end of the first chapter, the slow-fast model of an action was used to introduce
the geometric approach and although the design of the model was straightforward
it turns out that it has additional equilibrium behaviour to that intended. The
unexpected behaviour occurs because the slow manifold obtained by putting ε

equal to zero in the equation for the fast variable does not match what is actually
happening in the model along the fold line. Along the fold of the slow manifold the
partial derivative of the fast variable with respect to the slow variable x1 ceases to
be defined.

By projecting the vector field of the slow manifold onto the plane spanned by
the x2 and x3 variables one can remove the singularities along the fold line and
investigate the behaviour close to the fold. It transpires that there is an unstable
equilibrium on the fold line that causes some trajectories to loop back as illustrated
in Fig. 5.11 [4].

It is also possible for the trajectory to pass close to the fixed point on the fold line
and pass onto the unstable portion of the slow manifold. This can lead to dramatic

Fig. 5.11 Projection of the
vector field on the slow
manifold onto the plane
spanned by the x2 and x3
directions. Upper Figure The
region projected is indicated
by the small red marking on
the three-dimensional figure.
Lower Figure Projection of a
small region close to the
equilibrium point of the slow
manifold. The fold is marked
by the blue line. Close to the
unstable equilibrium position,
marked by the red dot on the
fold line, trajectories are
attracted to the point along
one diagonal and repelled
along the opposite diagonal
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Fig. 5.12 Behaviour of
Eqs. 5.13 showing a dramatic
change in behaviour with a
very small parameter change.
Upper Figure Onset of small
oscillations with
a = 0.5766230683749112
Lower Figure Onset of much
longer cycles with
a = 0.5766230683749111
The abrupt transition from a
small amplitude oscillation to
a large amplitude oscillation,
with no intervening
medium-sized oscillation, is
referred to as a canard [6]

changes in behaviour, which are easiest to illustrate in two dimensions using the
system of equations:

dx1
dt

= x2 − a

ε
dx2
dt

= −(x3
2 − x2 + x1)

(5.13)

When a = 0 this system of equations becomes identical to the second example
of a slow-fast system given by Eqs. 5.5 and the behaviour of the system is a limit
cycle. However, if a = 1 this system of equations becomes identical to the first
model for an action given by Eqs. 5.6 and the behaviour of the system consists of
a trajectory towards a stable equilibrium. The transition between these two types
of behaviour occurs around the value a = 0.577 when the trajectoriy starts to
move onto the unstable portion of the slow manifold and is very abrupt as can be
seen from Fig. 5.12. Such transitions are difficult to pick up experimentally, because
they happen in such a narrow parameter range, but they do highlight how a sudden
transition from stable to oscillatory behaviour can happen suddenly in nonlinear
systems.
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Chapter 6
Brain and Body

Given a specification of an action, in terms of a trajectory over a configuration
space, additional control signals are required to ensure the mechanical constraints
are obeyed throughout the movement. Linear modelling of biological tissue is
introduced and applied to the orbital plant and the oculomotor neural integrator. The
linear approach is extended to simple nonlinear behaviour, using the larynx as an
example. Nonlinearities lead to a greater range of behaviours of which heteroclinic
cycles form one example.

6.1 Mechanics of Biological Tissue

Animal movements are effected by neural control of patterns of contraction and
relaxation of muscles. The force exerted by a muscle on an object attached to it is
referred to as tension and it can be described by the effect of an actively contracting
element on a combination of spring and viscous damping components.

The major part of the behaviour of a mechanical spring can be described by a
linear relationship between the tension f of the spring and its extension x from its
resting length:

f = kx (6.1)

where k is a constant referred to as the stiffness of the spring. A spring is portrayed
diagrammatically by coil as this is the typically form of metal spring.

The damping force produced by the passive viscous tissues acts to oppose
changes in the length of a muscle and is linearly proportional to the rate of
change of the length of the muscle. The standard example of viscous damping is
a mechanical bicycle pump which gives little resistance when you push the piston
in slowly but a lot more if you do it quickly, and for this reason a viscous element
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Fig. 6.1 Schematic diagram of a spring and viscous damper acting in parallel

Fig. 6.2 A mechanical system equivalent to that of the oculomotor plant. The angle of rotation of
the eye is specified by θ and the torque produced by the plant by τ . The system is comprised of
two sub-systems acting in series. Each of the subsystems consist of a spring and a viscous element
in parallel

is portrayed pictorially by a simplified cross-section of the piston mechanism. A
viscous damping force f can be described by the differential equation:

f = r
dx

dt
(6.2)

where r is the damping constant of the element.
The mechanical system that has to be changed to obtain the required movement

is referred to as the plant. The mechanical behaviour of biological tissue can often
be described by a combination of spring and viscous damping elements acting in
parallel, as illustrated in Fig. 6.1. For example, the spring and viscous components
of the muscles and connective tissues that hold the eye in place can be described by
a pair of spring and damper combinations acting in series as shown in Fig. 6.2.

As movements of the eye usually only involve rotations, the displacement of
the eye can be described by a rotation angle and the forces resulting from the
displacement act to rotate the eye and so are examples of torques. Let θ be the
rotation of the eye away from the straight ahead direction and τ the torque produced
by the stretching of the tissue attached to the eye, then the equation for the orbital
plant can be written as:

((T1T2
d2

dt2 + (T1 + T2)
d

dt
+ 1)θ = k(T3

d

dt
+ 1)τ (6.3)

where T1, T2 and T3 are time constants determined by the spring constants and
viscosities of the two elements and k is an overall stiffness constant that depends
on the stiffnesses of the individual springs. For the human eye the stiffness of the
plant is approximately 0.56 N/rad. Typical values of the time constant in humans are
0.012, 0.260 and 0.072 [6].
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The effect of neural signals on muscles was initially investigated by electrically
stimulating an isolated muscle. A single pulse produces a brief, transient rise in
tension known as a twitch, but if the pulse is repeated in a train the twitches
merge and there is a sustained increase in tension referred to as tetanus. As the
rate at which the pulses are repeated increases, eventually all trace of the individual
twitches disappears and the muscle tension increases no further. Passive stretching
of a contracted muscle is opposed by a force which can be modelled by an elastic
element placed in series with the actively contracting portion of the muscle. Also
when a stretched muscle is suddenly released there is an immediate reduction in the
length of the muscle, and concomitant decrease of the force exerted by the spring
component, followed by an exponential decrease in length while the tension remains
constant at its new level. This can be explained by assuming that there is a spring
and viscous damper in parallel with the actively contracting element [10]. These
considerations lead to the mechanical model of a muscle illustrated in Fig. 6.3.

An example of how muscles act to produce movement is provided by saccadic
eye movements. Combining the muscle and plant model, as illustrated in Fig. 6.4,
gives a model for the mechanics of eye movements. Note that the part of the spring
components of the muscle that acts along its whole length have been incorporated
into the plant model [14].

Fig. 6.3 Muscle model. The tension produced by the action of a neural signal on the muscle is
denoted by a

Fig. 6.4 A mechanical model of the extraocular muscles and passive tissues of the orbit acting
in the horizontal plane. The angle of rotation of the eye is specified by θ and in the equilibrium
position the torque τa generated by the muscle is equal to the opposing torque τp produced by the
passive tissue
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The equation for the muscle model can be written as:

fm = − r

k

dfm

dt
− r

dθ

dt
− a (6.4)

As the forces on the mass of the globe must balance one has that:

m
dx2

dt2 = fm − fp (6.5)

and so one can rewrite Eq. 6.6 with the passive force fp expressed in terms of the
force developed by the muscle:

((T1T2
d2

dt2
+ (T1 + T2)

d

dt
+ 1)θ = k(T3

d

dt
+ 1)(fm − m

dx2

dt2
) (6.6)

One implication of this equation that the eye will not stay in a particular position
unless there is a constant force which overcomes the force due to the spring
extension. As was pointed out in the previous chapter, the correct neural signal for
the constant force can be obtained by integrating the eye velocity command, rather
than specifying the eye position independently of eye velocity.

But the mechanics of the oculomotor plant are such that the response of the
system also depends on the rate of change of the applied force and to ensure the
velocity of a saccade matches that specified by the burst neurons an additional slide
component of neural activity is needed. An example of the profiles of the velocity
pulse, neural integrator step and slide components are shown in Fig. 6.5. Both the
required slide and integrated velocity command signals can be calculated by linear
transformations of the velocity command [12] and the neural implementation of the
velocity integration will be outlined in the next section.

6.2 Linear Behaviour

The behaviour of a mechanical system is encapsulated in Newton’s three laws. In
particular, Newton’s second law states that for a particle of mass m at a position x
the effect of a force f is to cause an acceleration of the particle

m
d2x

dt2 = f (6.7)
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Fig. 6.5 Components of the
neural signal required for a
fifteen degree saccade. The
components can be
distinguished by the shapes of
their graphs. The pulse
component is given by the
neural signal that specifies the
velocity of the eye movement.
The slide component is
required to overcome the
changes in the viscous forces
on the eye, which last well
beyond the end of the pulse.
The remaining step
component is formed by
integrating the velocity
signal. This position signal is
needed to balance the changes
in the spring forces resulting
from the eye movement. The
required signal for the
saccade is given by the sum
of these components

This second order equation can be rewritten as a system of first order differential
equations:

dx
dy

= y

dy
dt

= f
m

(6.8)

where the pair of values (x, y) correspond to the instantaneous position and velocity
of the system and specify the state of the system.

The simplest form of this system of equations consists of a pair of linear
differential equations with constant coefficients. This form of the system of
differential equations can be written in matrix notation as:

(
dx1
dt

dx2
dt

)
=

(
a11 a12

a21 a22

) (
x1

x2

)
(6.9)

where the matrix elements a11, a11, a11 and a22 are all constants.
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Let V be an eigenvector of the matrix A and let λ be the corresponding eigenvalue,
so that:

(
a11 a12

a21 a22

)(
v1

v2

)
= λ

(
v1

v2

)
(6.10)

Then a solution to the system of differential equations is given by

(
x1

x2

)
= eλt

(
v1

v2

)
(6.11)

since differentiating both sides of the solution with respect to t gives:

( dx1
dt

dx2
dt

)
= λeλt

(
v1

v2

)
= eλt

(
a11 a12

a21 a22

) (
v1

v2

)
=

(
a11 a12

a21 a22

) (
x1

x2

)
(6.12)

All the possible solutions can be made by linear combination of the two eigenvectors
λ1 and λ2 of the system:

(
x1

x2

)
= pλeλt

(
u1

u2

)
= qλeλt

(
v1

v2

)
(6.13)

where p and q are constants.
In the case of a two dimensional linear system with constant coefficients the

manifold consisting of all the possible states has the simple form of a plane, so it is
straightforward to make a visual representation of the vector field of the system by
computing ( dx1

dt
, dx2

dt
) at an array of values (x1, x2) and then plotting the values of

the derivatives as vectors, as illustrated in Figs. 6.6 and 6.7.
If both of the eigenvalues are real and positive then the arrows point away from

the origin and the system is said to have a source at the origin. The simplest such
system is described by the system of equations:

( dx1
dt

dx2
dt

)
=

(
1 0
0 1

) (
x1

x2

)
(6.14)

Similarly if both of the eigenvalues are real and negative then the arrows point
towards the origin and the system is said to have a sink at the origin. The simplest
such system is described by the system of equations:

( dx1
dt

dx2
dt

)
=

(−1 0
0 −1

) (
x1

x2

)
(6.15)

A third possibility is that both the eigenvalues are real but of opposite sign so that
the arrows point towards the origin along one direction and away from the origin
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Fig. 6.6 Plots of the eigenvalues and vector fields associated with a source, sink and saddle.The
directions and lengths of each of the arrows represent the vectors associated with a sample of points
from the vector field
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Fig. 6.7 Plots of the eigenvalues and vector fields associated with a spiral source, spiral sink and
centre
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along another direction. Such a system is said to have a saddle at the origin and the
simplest example is described by the system of equations:

( dx1
dt

dx2
dt

)
=

(
1 0
0 −1

) (
x1

x2

)
(6.16)

If an eigenvalue λ = a + bi is complex then each eigenvalue produces two real
solutions. Starting with the solution:

(
x1

x2

)
= e(a+bi)t

(
v1

v2

)
(6.17)

one can apply Euler’s formula to the complex exponential to obtain an alternative
form for the solution:

(
x1

x2

)
= eat(cos(bt) + i sin(bt)) ×

(
Re

(
v1

v2

)
+ Im

(
v1

v2

))
(6.18)

Separating real and imaginary parts gives two solutions:

(
x1

x2

)
= eat cos (bt)Re

(
v1

v2

)
− eat sin (bt)Im

(
v1

v2

)
(6.19)

The complex conjugate eigenvalue gives the same solutions but with different signs.
If both of the real parts of the eigenvalues are positive then the arrows point away

from the origin and the system is said to have a spiral source at the origin. A simple
example of such a system is described by the system of equations:

( dx1
dt

dx2
dt

)
=

(−1 1
−1 −1

) (
x1

x2

)
(6.20)

Similarly if both of the eigenvalues are real and negative then the arrows point
towards the origin and the system is said to have a spiral sink at the origin. A
simple example of such a system is described by the system of equations:

( dx1
dt

dx2
dt

)
=

(
1 −1
1 −1

) (
x1

x2

)
(6.21)

A third possibility is that both the eigenvalues are imaginary but of opposite sign. In
this case the arrows lie tangent to circles centred at the origin. Such a system is said
to have a centre at the origin and the simplest example is described by the system
of equations:

( dx1
dt

dx2
dt

)
=

(
0 1

−1 0

) (
x1

x2

)
(6.22)
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Fig. 6.8 Graphical
illustration of the strengths of
the connections in a model
neural integrator consisting of
sixteen neurons arranged in a
row. The saturation of the
blue dot with coordinates
(i, j) represents the strength
of the connection between the
ith and jth neurons in the row.
The ith column represents all
connections from the ith
neuron in the row. Each
neuron has the same pattern
of connections so the dot
pattern simply shifts
vertically with successive
neurons in the row

Initial ideas about the neural mechanism of the oculomotor integrator were based
on the ideas of positive feedback to a single neuron or mutual inhibition between
pairs of antagonistic neurons that were introduced in the first chapter [5]. But
simultaneous measurements of the behaviour of many neurons in the oculomotor
integrator revealed that their firing persists during steady fixation over a wide range
of times with the shortest times being associated with neurons located dorsally and
rostrally and the longest times with neurons located ventrally and caudally [11].
A simple model for the neural integrator consists of a row of neurons in which
there are stronger excitatory connections going forwards along the row and a weaker
excitatory connections going backwards [7, 11]. A possible set of relative strengths
of the connections for a row of sixteen neurons is illustrated in Fig. 6.8.

The behaviour of the model is described by a system of linear differential
equations:

⎛
⎜⎜⎜⎜⎜⎝

dx1
dt

dx2
dt

·
·

dxn
dt

⎞
⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎝

w11 w12 · w1n
w21 w22 · w2n
· · · ·
· · · ·

wn1 wn2 · wnn

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

x1

x2

·
·

xn

⎞
⎟⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎜⎝

s1

·
sk
0
0

⎞
⎟⎟⎟⎟⎟⎠

(6.23)

In the model only the first few inputs s1 to sk are active. If one applies a pulse to the
network then as one goes along the row the pulse occurs later and is more spread
out in time. Summing all the outputs of the neurons gives an integrated signal. This
behaviour is illustrated for a 128 neuron model in Fig. 6.9.
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Fig. 6.9 Response of a neural integrator model consisting of 128 neurons with the pattern of
connections illustrated in Fig. 6.8. Only the first four neurons in the row received a velocity input
and the time constant of the individual neurons was 5 ms. The responses of the first, middle and
last neurons in the row are plotted in blue. The network output is given by the sum of the individual
responses is plotted in black

6.3 Nonlinear Behaviour

To recapitulate, in geometrical terms, a dynamical system specifies how every point
on a manifold will move. As the instantaneous change in the position is equivalent
to a vector, a dynamical system effectively assigns a vector to every point on the
manifold. A dynamical system can therefore be considered to be a manifold M
with a vector field F defined on it. Let the coordinates of a point on the manifold
be given by an n-tuple of numbers x = (x1, x2, . . . xn), then the behaviour of the
dynamical system can be described by a set of equations which specifies how the
system changes from one state to the next as time goes by:

dx1
dt

= f1(x1, x2, . . . , xn)
dx2
dt

= f2(x1, x2, . . . , xn)

· · ·
dxn
dt

= fn(x1, x2, . . . , xn)

(6.24)

where (x1, x2, . . . xn) are all functions of time.
Two relatively simple examples of two-dimensional dynamical systems are

provided by the slow-fast systems specified by Eqs. 5.4 and 5.5. As illustrated
in Fig. 5.1 they have quite different behaviours in that in the first system all the
trajectories end up at an equilibrium whereas in the second system all the trajectories
end up in a limit cycle, and yet their equations are not so different. One way of
understanding why the behaviour has changed is to begin by investigating what
is required for the behaviour of the system to persist despite small changes in the
equations, a condition referred to as being structurally stable.
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The stability of the system of equations at a fixed point x∗ can be investigated by
assuming that the behaviour of the nonlinear system close to the equilibrium state
is the same as that of the linear system obtained by projecting the trajectories onto
the tangent space to the manifold at the fixed point. The projection is defined by the
Jacobian matrix J of the partial derivatives of the functions (f1, f2, . . . fn) of the
coordinates evaluated at the fixed point x∗:

J =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂f1
∂x1

∣∣∣
x∗

∂f1
∂x2

∣∣∣
x∗ . . .

∂f1
∂xn

∣∣∣
x∗

∂f2
∂x2

∣∣∣
x∗

∂f2
∂x2

∣∣∣
x∗ . . .

∂f2
∂xn

∣∣∣
x∗

. . .

∂fn
∂x1

∣∣∣
x∗

∂fn
∂x2

∣∣∣
x∗ . . .

∂fn
∂xn

∣∣∣
x∗

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(6.25)

and with the linearisation assumption the system of Eqs. 6.24 for the dynamical
system simplify to a matrix equation at the fixed point.

d(X − X∗)

dt
= J(X − X∗) (6.26)

Given the linear system of Eqs. 6.26 one can go to investigate the stability of the
equilibrium state by calculating the eigenvalues of the Jacobian matrix. If all the
real parts of the eigenvalues are negative then the fixed point is stable, but if the
real part of any eigenvalue is positive then the fixed point is unstable. The stability
defined by the eigenvalues is referred to as linear stability to distinguish it from
structural stability .

There is a problem with the linearisation approach in that it does not say how to
classify a centre for which the real part of the eigenvalues is zero. The underlying
reason for this drawback is that the behaviour of a system with a centre is not
structurally stable in that a small changes in the equations can lead to an abrupt
switch from stable to unstable behaviour, or vice versa, at the fixed point. Such
qualitative changes of behaviour are referred to as a bifurcation.

The possible bifurcations of system can be investigated by altering some
parameter μ which affects the behaviour of the system. The system of n first order
differential equations with a parameter μ can be written as:

dx1
dt

= f1(x1, x2, . . . , xn, μ)
dx2
dt

= f2(x1, x2, . . . , xn, μ)

· · ·
dxn
dt

= fn(x1, x2, . . . , xn, μ)

(6.27)
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To illustrate this approach, take the two examples of slow-fast systems specified
by Eqs. 5.4 and 5.5 and treat them as a single system with a bifurcation parameter
μ:

dx1
dt

= x2

ε
dx2
dt

= −(x3
2 + μx2 + x1)

(6.28)

The system has a fixed point at the origin which is stable when μ is greater than 0
and unstable when μ is less than 0. When μ is 0 a centre is formed. The changes
in the eigenvalues of the Jacobian matrix of the fixed point as the value of μ is
altered from 0.25 to 0 to −.25 and the corresponding vector fields of the system are
illustrated in Figs. 6.10, 6.11 and 6.12. This type of bifurcation is referred to as a
Hopf bifurcation

The vector field close to the fixed point can be described as a vector field over the
product of three manifolds. The stable and unstable manifolds are associated with
the trajectories approaching and leaving the equilibrium state respectively and the
centre manifold is defined by the collection of trajectories that neither approach or
move away from the equilibrium state. Because the lengths of the vectors attached
to the stable and unstable manifolds change exponentially with distance from the

Fig. 6.10 Behaviour of
Eq. 6.28 with the parameter μ

equal to 0.25. Upper Figure:
Eigenvalues of the Jacobian
matrix of the system
evaluated at the fixed point at
the origin. In this and the
subsequent two figures the
eigenvalues are plotted in red.
With the given parameter
value, both eigenvalues are
less than zero and the system
is stable at the origin. Lower
Figure: The vector field close
to the fixed point. The state of
the system moves rapidly
onto the slow manifold,
shown in blue, and then along
the slow manifold to the
stable fixed point at the
origin, shown by a filled dot
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Fig. 6.11 Behaviour of
Eq. 6.28 with the parameter
equal to 0. Upper Figure:
Eigenvalues of the Jacobian
matrix, which consist of a
pair of purely imaginary
numbers. Lower Figure:
Diagram of the vector field of
the system. Away from the
fixed point the state of the
system moves rapidly onto
the slow manifold, shown in
blue. But close to the fixed
point states follow an
elliptical trajectory centred on
the fixed point

equilibrium state, close to the equilibrium state the behaviour of the system is
determined by the trajectories which make up the centre manifold.

6.4 Production of Voice Sounds

Voice sounds are produced by forcing air through the trachea resulting in oscillatory
movements of the vocal folds of the larynx and a schematic illustration of a single
cycle of the oscillation is shown in Fig. 6.13. The frequency of oscillation depends
on both the stiffness of the muscles in the folds and the pressure with which air is
forced through the folds so a quantitative description of the sound production has
to include both of these components. To put such a description in context, it should
be borne in mind that the pressure oscillations at the vocal folds are subsequently
modified as they pass through the throat and mouth, where movement of the tongue
can be used to produce the different vowel and consonant sounds of speech.

Each fold of the larynx can be modelled by a combination of mass, spring and
viscous damping elements with the masses connected by a spring as illustrated in
Fig. 6.14. This model captures the changes in the relative positions of the front
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Fig. 6.12 Behaviour of
Eq. 6.28 with the parameter μ

equal to −0.25. Upper
Figure: Eigenvalues of the
Jacobian matrix, which are
both greater than zero
indicating that the system is
unstable at the origin. Lower
Figure: Diagram of the vector
field of the system. The state
of the system moves rapidly
onto the attracting portions of
the slow manifold, shown in
blue, and then along the slow
manifold to a limit cycle

and back of the folds as the air is forced through. However the linear model is
not correct because it does not include the increased stiffness that occurs when the
two folds collide. This increased stiffness can be included in the model by adding a
function g to the linear equations specifying a threefold increase in stiffness during
the collision. The pressure f due to the air flow through the larynx is assumed to be
smooth until after it passes through the narrowest part of the larynx whereupon the
flow forms a jet. The pressure of the jet is equal to that of the cavity above the vocal
folds, which is assumed to be zero.

The behaviour of this system can be described by a system of four differential
equations [15]:

dx1
dt

= y1

m1
dy1
dt

= −r1y1 − k1x1 − kc(x1 − x2) − g1 + f

dx2
dt

= y2

m2
dy2
dt

= −r2y2 − k2x2 − kc(x2 − x1) − g2

(6.29)
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Fig. 6.13 A single cycle of the oscillatory movement of the larynx. A cross section of the larynx
is drawn in black, with the direction of airflow illustrated by a blue arrow and the direction of the
cycle indicated by the arrow on the red circle. In the position shown at the top left of the figure, the
larynx is at rest. The lower portion of the larynx begins widening until the airway is fully open. The
lower portion then begins closing until the two folds collide and then settle back into their resting
state. A mathematical description has to capture the way in which the movement of the upper parts
of the folds follows that of the lower parts

Fig. 6.14 Linear mechanical model of the larynx in which separate mass, spring and viscous
damping elements are used to model the behaviour of the upper and lower parts of the folds.
The mechanical link between the upper and lower parts is modelled by including a spring element
joining the two masses
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A fixed point of the system of equations is a solution to the system of equations:

0 = y1

0 = −k1x1 − kc(x1 − x2) + f

0 = y2

0 = −k2x2 − kc(x2 − x1)

(6.30)

Although there is more than one solution to this equation, only the fixed point
at (x1, x2) = (0, 0) does not require negative pressure and so is the only possible
solution given the airflow assumptions of the model. The fixed point corresponds
to a position where the vocal folds are just separated in their mechanical resting
position.

The importance of identifying the Hopf bifurcation that occurs at the onset of
phonation is that one can go on to to find the parameter values that must be reached
for phonation to occur. For the model larynx there are two parameters that can be
varied by neural commands: the subglottal pressure and the stiffness of the muscles
in the vocal folds. An exploration of the role of the air pressure is illustrated in
Fig. 6.15. With increased airflow pressure the system undergoes a Hopf bifurcation
giving rise to oscillatory movements of the vocal folds that increase in amplitude
with the air pressure.

There are many other bifurcation mechanisms than just the Hopf bifurcation and
a direct approach to uncovering the range of behaviours inherent in a model is to
investigate the possible bifurcations of the system of equations. This knowledge

Fig. 6.15 Development of
oscillatory behaviour of the
lower vocal fold through a
Hopf bifurcation with
increasing airflow through the
trachea
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is a prerequisite for ensuring that the quantitative description can account for the
entire range of behaviours found experimentally. In this context models involving
the bilateral organisation of the brain are particularly apposite as even a slight
imbalance in the symmetry often leads to a change of behaviour. Such analyses
have been carried for models of the larynx in humans [15] and the corresponding
syrinx in birds [2] and for models of the oculomotor system [1, 4]. In the case
of models of the larynx and oculomotor system the predicted bifurcations of the
models give rise to behaviours which are found clinically. However it is difficult
to test if the bifurcation structures resulting from changes in the parameters of
the models match those found clinically as the behaviour of each individual will
typically correspond to the behaviour of a model with a fixed set of parameters
so there is no direct way of finding out what bifurcation occurs in an individual
when the parameters are changed. The situation is better for models of birdsong
involving the syrinx, during which different sounds can be produced by varying the
pressure of airflow through the syrinx and the stiffness of the muscles of the syrinx
so that the bifurcation structure found in a given bird can be compared directly
with that predicted experimentally [2]. One advantage of having a validated model
is that it can then be used to produce synthetic birdsong for use in experimental
investigations, where removal of the extraneous fluctuations of normal birdsong
leads to more reliable experimental results [3].

6.5 Heteroclinic Cycles

Although the behaviour of simple systems often consists of trajectories leading to
a stable equilibrium or a limit cycle in more complicated systems other types of
stable behaviour become possible. In particular saddle points enable a trajectory to
leave the point along an unstable direction and return to it along a stable direction
and when several saddle points are present a trajectory can leave one saddle point
along an unstable direction and approach another saddle point along a direction
which is stable. Such trajectories are referred to as a heteroclinic trajectories. The
importance of heteroclinic trajectories is that a stable heteroclinic cycle can be used
to embody components of behaviour that go together.

A well-defined example of a stable heteroclinic cycle forms part of the behaviour
of the Lotka-Volterra equations used to describe predator-prey population dynamics
[8]. The example consists of a system of three equations:

dx1
dt

= x1(1 − w1,1x1 − w1,2x2 − w1,3x3)

dx2
dt

= x2(1 − w2,1x1 − w2,2x2 − w2,2x3)

dx3
dt

= x3(1 − w3,2x1 − w3,2x2 − w3,1x3)

(6.31)
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where the wi,j are elements of the 3 x 3 matrix of constants W:

W =
⎛
⎝ 1 1.2 0.8

0.8 1 1.2
1.2 0.8 1

⎞
⎠ (6.32)

The key feature of these equations is that the constant amount of inhibition from
the other variables is asymmetric and this makes it possible for the system to cycle
through states where one variable inhibits the others. The system of equations has
eight equilibrium states; one at the origin, three where two variables are zero, three
where one variable is zero and one where the three variables are equal. None of
these fixed points is stable. The inhibition constants have been chosen to allow a
heteroclinic trajectory that cycles past each of the saddle points at (1,0,0), (0,1,0)
and (0,0,1). This heteroclinic trajectory is illustrated in Fig. 6.16 and the plots of the
variables over time show them characteristically activating in sequence.

An example of the role of heteroclinic cycles is provided by the olfactory
pathway of the locust. Sensors on the antennae connect to local circuits referred
to as glomeruli in the antennal lobe. The glomeruli are interconnected by a class
of neurons referred to as intrinsic neurons and the output generated by the inter-
connected glomeruli is carried to the mushroom body by projection neurons where
they synapse on the Kenyon cells. An olfactory stimulus causes a subset of the

Fig. 6.16 Example of a heteroclinic cycle. In this and the subsequent two figures, both the time
series of the system variables and a state space representation have been plotted. Right Figure:
Illustration of how the trajectory of the system follows the stable direction towards and the unstable
direction away from a succession of saddle points to form a closed loop. Left Figure: Associated
with a heteroclinic cycle is a sequential activation of the variables, which is apparent in their plots
against time
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projection neurons to fire repeatedly in sequence, and this can be assumed to be
a heteroclinic cycle. For a different olfactory stimulus there will be a different
heteroclinic cycle so each heteroclinic cycle acts a signature of a particular odour
[9].

The switching between different cycles with different inputs can be illustrated
by adding an input mechanism that depends on the general level of activity to the
Lotka-Volterrra system of Eqs. 6.31:

dxi

dt
= xi(ρ(4(x1 + x2 + x3) + si ) − wi,1x1 − wi,2x2 − wi,3x3 (6.33)

where S is a set of inputs to each of the three neurons and ρ is the nonlinear function:

ρ(x) = 1 − 2

1 + exp (10(x − 0.4))
(6.34)

In this case the numbers used in the matrix W were 1, 5 and 0.2. Figures 6.17
and 6.18 and illustrate how the repeating patterns of firing of the model neurons
alter with a change in the input [13].

Fig. 6.17 Example of a heteroclinic cycle produced by the system of Eqs. 6.33 with the input
S = (0.72, 0.089, 0.737). This figure should be viewed in conjunction with Fig. 6.18 where an
entirely different heteroclinic cycle is produced when the input is changed, illustrating that different
inputs can be characterised by different heteroclinic cycles



References 117

Fig. 6.18 Example of a heteroclinic cycle produced by the system of Eqs. 6.33 with the input
S = (0.189, 0.037, 0.342)
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Chapter 7
Analysis of Experimental Measurements

How does a geometric approach help us investigate the brain? The technique of
delay space embedding can be used to transform a sequence of measurements of
a neural system’s behaviour into a corresponding dynamical system. The system
copy can be analysed to obtain the local dimensionality and eigenvalues at the fixed
points of the system, just as if the equations for a model of the system were available.
The eye movement disorder of nystagmus is used as an example of this approach.
In addition to the local analysis, topological data analysis can be used to obtain a
description of the overall structure of the manifold of the dynamical system.

7.1 Delay Embedding

In practice one is not usually given the equations describing the behaviour one is
interested in and local linear analysis has to be extended to be applicable directly
to the measurement data. The key to applying the linear approach directly to data
is that measurements taken over time can be used to reconstruct the trajectory of
the system through its state space and such reconstructed trajectories can be used to
compute the properties of the local linear behaviour.

These techniques can be illustrated by an example system provided by the Euler’s
equations, which describe the behaviour of a rotating rigid body:

dx1
dt

= x2x3

dx2
dt

= −2x1x3

dx3
dt

= x1x2

(7.1)
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Fig. 7.1 Some example
trajectories of the Euler
system of Eqs. 7.1. The figure
illustrates that the manifold
defined by the collection of
trajectories is a sphere

In this case the collection of possible trajectories of the system define a manifold
consisting of a sphere embedded in three-dimensional Euclidean space as illustrated
in Fig. 7.1.

The first question to investigate is the dimension of the manifold. There is no
straightforward way of doing this directly but it can be done indirectly by calculating
the dimension of the tangent spaces at a sample of points on the manifold. In the
case of the example system specified by the system of Eqs. 7.1 the manifold is a
surface for which the curvature becomes less and less apparent as one selects a
neighbourhood closer and closer to the point. So if one calculates the principal
components of the covariance matrix of the points in the neighbourhood, then
the largest eigenvectors will lie in the tangent plane. By repeating the principal
components calculation with a range of neighbourhood sizes one obtains a range
of values for the eigenvalues, but the key point is that only the eigenvalues of the
eigenvectors that lie in the tangent plane will scale directly with neighbourhood
size [5]. Hence the number of such eigenvalues corresponds to the dimension of the
tangent plane, in this case two. This calculation is illustrated in Fig. 7.2.

For the example system defined by Eqs. 7.1 there are six fixed points with
coordinates (0, 0, ±1), (0, ±1, 0) and (0, 0, ±1). Following this approach with
the example system defined by Eq. 7.1, the Jacobian matrix is:

J =

⎛
⎜⎜⎝

0 x3 x2

−2x3 0 −2x1

x2 x1 0

⎞
⎟⎟⎠ (7.2)

which has eigenvalues ±i
√

2 and 0, ±1 and 0 and ±i
√

2 and 0 for the fixed points
(0, 0, ±1), (0, ±1, 0) and (0, 0, ±1) respectively.

The calculations of the dimensionality of the tangent space and the eigenvalues of
the fixed points have all been done using solutions to the known Eqs. 7.1, but usually
the system of equations is not known. The starting point for analysing measurements
from an unknown dynamical system involves embedding the dynamical system in
a Euclidean space, with the proviso that the embedding is a smooth map φ with
a smooth inverse, in order to preserve the properties of the dynamical system. In
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Fig. 7.2 Estimation of the local dimensionality of the example system specified by Eqs. 7.1. The
figure on the left illustrates how points on the manifold in the neighbourhood of the point with
coordinates (0,0,1) are selected by choosing those within a sphere with a radius r and centre at
(0,0,1). The graph on the right illustrates two patterns of scaling of the singular values of the
trajectory matrix, which is formed by writing the coordinates of each point in the neighbourhood
into a row of the matrix. The singular values of the trajectory matrix correspond to the square roots
of the eigenvalues of the trajectory covariance matrix. Two of the singular values, plotted in blue,
are identical and scale directly with neighbourhood radius. These correspond to the eigenvectors
lying in the tangent plane. One singular value, plotted in red, scales with the square of the radius.
This correspond to the eigenvector in the direction (0,0,1). The results of the numerical procedures
are plotted as points and these lie on the continuous lines which were calculated analytically [5]

particular, a delay embedding consists of a sequence of p measurements s(x) taken
at successive time intervals τ :

Y = φ(X) = (s(x(t)), s(x(t + τ )), . . . , s(x(t + (p − 1)τ ))) (7.3)

In the context of delay embedding the p-dimensional Euclidean space in which the
delay vectors lie is referred to as the delay space.

In the neighbourhood of the a fixed point X∗ a linear approximation to the
behaviour of the unknown system will hold, so one can describe the behaviour by a
system of equations of the form:

d(X − X∗)
dt

= JF(X − X∗) (7.4)

although the functions F = (f1, f2, . . . , fp) that define the behaviour of the system
are not known. By using delay embedding the eigenvalues of the matrix JF can be
found from the measured behaviour of the system [4].
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The copy of the dynamical system in delay space consists of a vector field G
defined on a the embedded manifold φ(M) and the behaviour of the embedded
system is described by the system of equations:

dy1
dt

= g1(y1, y2, . . . , yp)

dy2
dt

= g2(y1, y2, . . . , yp)

. . .

dyp
dt

= gp(y1, y2, . . . , yp)

(7.5)

In the neighbourhood of a fixed point Y∗ the equation describing the behaviour of
the embedded system simplifies to the linear equation:

JG =

⎛
⎜⎜⎜⎜⎜⎜⎝

∂g1
∂y1

∣∣∣
Y∗

∂g1
∂y2

∣∣∣
Y∗ . . .

∂g1
∂yp

∣∣∣
Y∗

∂g2
∂y1

∣∣∣
Y∗

∂g2
∂y2

∣∣∣
Y∗ . . .

∂g2
∂yp

∣∣∣
Y∗

. . .

∂gp
∂y1

∣∣∣
Y∗

∂gp
∂y2

∣∣∣
Y∗ . . .

∂gp
∂yp

∣∣∣
Y∗

⎞
⎟⎟⎟⎟⎟⎟⎠

(7.6)

So in the neighbourhood of the fixed point the behaviour of the embedded system is
described by the linear equation:

d(Y − Y∗)
dt

= JG(Y − Y∗) (7.7)

Furthermore, from the definition of the embedding given in Eq. 7.3 it follows
that:

(Y − Y∗) = Jφ(X − X∗) (7.8)

where Jφ is the Jacobian of the delay embedding evaluated at X∗:

Jφ =

⎛
⎜⎜⎜⎜⎜⎜⎝

∂φ1
∂x1

∣∣∣
X∗

∂φ1
∂x2

∣∣∣
X∗ . . .

∂φ1
∂xp

∣∣∣
X∗

∂φ2
∂x2

∣∣∣
X∗

∂φ2
∂x2

∣∣∣
X∗ . . .

∂φ2
∂xp

∣∣∣
X∗

. . .

∂φp
∂x1

∣∣∣
X∗

∂φp
∂x2

∣∣∣
X∗ . . .

∂φp
∂xp

∣∣∣
X∗

⎞
⎟⎟⎟⎟⎟⎟⎠

(7.9)

Applying the equivalence specified by Eq. 7.8 to 7.7 gives the equation:

Jφ
d(X − X∗)

dt
= JGJφ(X − X∗) (7.10)
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Fig. 7.3 Trajectories reconstructed from the x1 variable of the saccade generation model specified
by Eqs. 5.12. Saccades were simulated in sizes ranging from 2.5 to 25◦ in 2.5◦ steps. The sampling
interval τ was 50 ms and triples of successive samples were used to create a three-dimensional
delay space reconstruction of the state space trajectories. For comparison with the trajectories
shown in Fig. 5.7 it should be noted that in the this figure the state moves clockwise round the
trajectories

and joining this equation with Eq. 7.4 for the linear behaviour of the original system
gives the equivalence:

d(X − X∗)
dt

= JF(X − X∗) = J−1
φ JGJφ(X − X∗) (7.11)

From which it follows that:

JF = J−1
φ JGJφ (7.12)

The matrices JF and JG are similar matrices, which have the property that their
eigenvalues are the same, so it is possible to recover the eigenvalues for the linear
behaviour of an unknown system from experimental measurements.

For a neuroscience example of the application of this procedure consider the
slow-fast model of saccadic eye movements. The pair of complex eigenvalues that
characterise the spiral towards the origin of the trajectories can be calculated to be
−13.8 +/36.7 i with the parameters for human eye movements. The trajectories
reconstructed from the x1 variable are shown in Fig. 7.3, and the eigenvalues
calculated numerically from these trajectories are −14.1 +/35.6 i.

7.2 An Unstable Neural Pathway

Unstable movements are unfortunately not uncommon. An example of an eye
movement disorder is nystagmus, which consists of the eye being unable to remain
steady, but instead making repetitive movements away from and back towards
the target gaze direction. In particular, one form of nystagmus, that starts during
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Fig. 7.4 Local dimensionality derived from experimental measurements of eye movements
recorded from a person with nystagmus. The velocity data was embedded in five-dimensional
Euclidean space using the method of delays. The slope of the plot of a singular value that scales
linearly with neighbourhood radius is indicated by the dashed line and the three singular values
that have slopes between 0.5 and 1.5 are plotted in blue. The scaling of three of the singular values
indicates that the system is three-dimensional close to the origin, which corresponds to the target
direction

infancy, involves both eyes moving together and predominantly horizontally, with
the movement away having an increasing velocity. Although the nystagmus is
approximately periodic over a few cycles it can vary considerably over time,
especially with changes in attention.

The eye movement instability of nystagmus provides an example of where one
can apply geometric analysis techniques directly to measurements without the
guidance of a model. A typical nystagmus waveform can have either one of two
equilibrium positions. An example of local linear analysis of a waveform with one
equilibrium position is illustrated in Fig. 7.4. In this waveform the eye repeatedly
drifts with increasing velocity away from the fixation target and is returned towards
the target by a saccade.

The velocity of the waveform, which reflects the neural control signal, was
embedded in five-dimensional Euclidean space and it was found that three singular
values scale with the radius of the neighbourhood centred on the origin. The three
eigenvalues associated with this three-dimensional system were calculated from
the Jacobian matrix, calculated at the origin, of a three-dimensional trajectory
reconstruction. Two of the eigenvalues formed a complex pair that describe the
stable spiral in towards the origin at the end of the saccades, and the third eigenvalue
characterises the unstable drift of the eye away from the fixation target. In this case
the eigenvalue corresponds to a time constant for the drift of 30 ms which is similar
to the values found in other recordings [1, 2].

This result provides a test for models of nystagmus in that whilst many models,
both animal and computational, produce waveforms that look like nystagmus,
none of them have been shown to have fixed points with the eigenvalues found
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in the experimental data. Given that learning how to use and understand such
models requires a considerable investment of time, local linear analysis provides
a simple method for screening out models which do not have the behaviour found
experimentally.

7.3 Topological Data Analysis

Clearly, analysis of measurements made close to a fixed point only reveals a
limited amount about the behaviour of a neural system. What can one do with the
measurements made away from the fixed point? One promising approach involves
moving away from looking at continuously varying properties such as eigenvalues
to investigating discrete properties. One can still look for topological structure in the
data, in particular the presence of holes in the geometric structure of the data. This
can be done by finding closed circuits in the data space that enclose the holes.

The first step in looking for closed circuits involves specifying how the data
points can be connected up. The portion of space enclosed by a collection of k + 1
points is referred to as a simplex σ [p1, p2, . . . , pk+1]. The low number simplexes
are illustrated in Fig. 7.5. The 0-, and 1- simplexes often referred to by name, which
are vertex and edge respectively. Each k-simplex is made up of a collection of
(k − 1)- simplexes and these components are referred to as faces. Simplexes can be
organised into a simplicial complex. These are collections of simplexes in which
each simplex has a face in common with another. The degree of the complex is given
by the simplex with the highest degree.

An orientation can be assigned to a simplex by numbering each vertex in turn.
Assigning an orientation to a simplex allows one to keep track of the direction of a
path through a simplex. The direction of the path can be indicated by the ordering
of the the vertices so:

[1, 2] = −[2, 1] (7.13)

The boundary of a k-simplex can be specified by adding all the k − 1 simplexes
that make up the larger simplex. These can be found by removing each vertex of the
simplex in turn as:

[1, 2, 3] = [1, 2] + [2, 3] − [1, 3] (7.14)

Fig. 7.5 Illustrations of the basic simplexes
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The map from a k-simplex to a (k − 1)-simplex is referred to as the boundary
matrix and is denoted by ∂k

∂k([1, 2, . . . , k + 1]]) =
k∑

i=0

(−1)i[1, 2, . . . xi . . . , k + 1] (7.15)

where xi is the vertex removed.
A path through a simplicial complex can be defined as consisting of a collection

of linked k-dimensional simplices (σ1, σ2, . . . σn) selected from the complex. Such
collections are referred to as a chain and are denoted by ck. Each chain can by
described by a vector:

ck = a1σ1 + a2σ2 + . . . + anσn (7.16)

where the values of the coefficients a1, a2, . . . , an are 1 or 0. The collection of these
vectors forms a vector space Ck .

A chain complex C is a sequence of vector spaces Ck in which successive spaces
are related by the boundary matrix Ck − ∂k → Ck−1

0 − ∂k+1 → Ck − ∂k → Ck−1 − · · · → C1 − ∂1 → C0 − ∂0 → 0 (7.17)

So now one can look for paths that end up back where they start from. Such a path
should enclose a part of the simplicial complex and if it does not then there is a
hole in the complex. The type of hole will depend the dimension of the simplexes
in the path in that a loop of k-dimensional simplexes will enclose a k-dimensional
simplex.

The kernel of the boundary matrix ∂k, which is comprised of all vectors
transformed to the zero vector by the matrix, consists of k-cycles, and the image
of the boundary matrix ∂k+1, which is comprised of all vectors not transformed to
the zero vector by the matrix, consists of boundaries. The Betti number is defined
by:

βk = dimension of the kernel of ∂k − dimension of the image of ∂k+1 (7.18)

The zeroth Betti number is the number of connected spaces. The first Betti number
is the number of two-dimensional holes, the second Betti number is the number of
three-dimensional holes and so on.

For example, a simplicial complex consisting of a tetrahedron is topologically
equivalent to the sphere. The collections of 0, 1 and 2 simplexes that make up the
tetrahedron form vector spaces C0, C1, and C2. These vector spaces have 4, 6 and
4 basis vectors as illustrated in Fig. 7.6, and the boundary matrices describing the
transformations between successive vector spaces are given in Tables 7.1 and 7.2.

The dimension of the kernel of ∂2 is 1 and the dimension of the image of ∂3 is
0 so β2 equals 1. The dimension of the kernel of ∂1 is 3 and the dimension of the
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Table 7.1 Boundary map ∂2
from triangles to edges

[1,2,3] [1,2,4] [1,3,4] [2,3,4]

[1,2] 1 1 0 0

[1,3] −1 0 1 0

[1,4] 0 −1 −1 0

[2,3] 1 0 0 1

[2,4] 0 1 0 −1

[3,4] 0 0 1 1

Table 7.2 Boundary map ∂1
from edges to vertices

[1,2] [1,3] [1,4] [2,3] [2,4] [3,4]

[1] −1 −1 −1 0 0 0

[2] 1 0 0 −1 −1 0

[3] 0 1 0 1 0 −1

[4] 0 0 1 0 1 1

Fig. 7.6 Example of basis vectors associated with the vector spaces associated with chains

image of ∂2 is 3 so β1 equals 0. Finally, the dimension of the kernel of ∂0 is 4 and
the dimension of the image of ∂1 is 3 so β1 equals 1. In effect, Betti number zero
tells you that there is only 1 simplicial complex, Betti number 1 tells you there are
no holes bounded by edges and Betti number 2 tells you there is one hole bounded
by triangular faces, corresponding to the inside of the tetrahedron.

Simultaneous recordings from many electrodes has led to an abundance of high-
dimensional data sets in neuroscience and so a technique for revealing the geometric
structure of such data sets will prove very useful. For a simple example of how
topological data analysis can be applied to high-dimensional data take the six-
dimensional data set of length changes of the extraocular muscles illustrated in
Fig. 3.14 which was used in the dimensionality reduction example of Chap. 3. Such
a data set can be turned into a graph by placing an edge between any point that lies
within a radius r of another point. With an appropriate set of choice of radius a graph
is formed that has a zeroth Betti of 1 and the first and second Betti numbers are zero
as illustrated in Fig. 7.7. This result signifies that the arrangement of data points is
topologically equivalent to points lying on a portion of a sphere. But the form of the
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Fig. 7.7 Two examples of a graph derived from a set of data points. The data points were the length
changes of the six extraocular muscles used to illustrate the use of principal components analysis
in dimensionality reduction, and the layout of the data points follows the form of the associated
visual directions which lie within 25◦ of the straight ahead direction. With a threshold radius of
2.75 for connecting the data points a graph is obtained for which the first three Betti numbers are
1,0 and 0 respectively. But with a smaller threshold radius of 2.5 for connecting the data points a
graph is obtained for which the first three Betti numbers are 1,2 and 0 respectively. The two holes
associated with the second Betti number can be seen above and below the centre of the graph on
the right

graph depends on the choice of radius and with a different radius different values
for the Betti numbers are obtained. So reliable results from the technique require its
repeated use with a range of radii, so that consistent sets of Betti numbers can be
found.

A less direct method of applying topological data analysis has proved pertinent
to neuroscience applications. The odours produced by animals involve numerous
chemical reactions so that recognised by the pattern of molecules present. But the
relative levels of the molecules fluctuate with environmental conditions and so the
correlational structure recovered by principal components analysis is unreliable.
However, one can still gain insight into the manifold in which the data points lie
by forming the correlation matrix between the measured levels of the molecules and
then setting a threshold at which a link is created. So one can form a simplicial
complex with the vertices corresponding to the different molecules. One can then
compute the first few Betti numbers of the complex and the relationship between the
number of edges and the Betti numbers as the threshold varies gives an indication
of the form of the manifold in which the data lies.

In particular, with data from a Euclidean space the curves of Betti number
as a function of number of edges have lower and lower peaks with successive
Betti numbers, whereas with data from a hyperbolic space the curves all peak at
approximately the same level. In the case of odor molecules, this type of analysis
indicates that the data lies in a hyperbolic space. In such a space the distance
between points matches that of a tree structure in that the shortest path between
points often involves backing up a branch to get to a point on a neighbouring branch
and such a tree structure represents an arrangement of the odours corresponding to
an optimal classification of them [3, 6].
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Chapter 8
Where Are We Going With All This?

What are the implications of using geometric techniques for understanding the
brain? After assessing the current limitations, the relationship with complementary
techniques are outlined and it is argued that neuroscience is in need of a mathematics
more suited to the behaviour of neurons as opposed to mathematics suited to our
thought processes.

8.1 Review of the Geometric Approach

The starting point of this book was the argument that the brain is adept at
handling objects which have few degrees of freedom and predictable behaviour.
Of especial importance are biological objects, whose movement behaviour reflects
the constraints of a skeleton. Examples of such biological objects were provided
by the eye and arm. Underlying movements of the eye is a ball and socket joint
and underlying movements of the arm in the horizontal plane is a hinge joint. The
configuration space of the ball and socket movement was found to consist of a
projective plane and that of the hinge movement was a Euclidean plane.

It was further argued that neurons are adept at computing properties in Euclidean
space and that a first step in dealing with biological objects involves embedding
them in Euclidean space. Both the Veronese embedding of the projective plane
and the Euclidean space representation of a plane can be distinguished from the
majority of embeddings by the property that the region surrounding every point
the surface maintains, not just the topological properties, but the same angles and
distances as a local Euclidean space. Manifolds with this property are referred to
as flat manifolds [7]. It may be that such flat manifolds make computation of
the properties of the objects simpler for the brain, by locally preserving the metric
properties of Euclidean space. Certainly, other embeddings such as that of the
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Fig. 8.1 Summary diagram of the geometric approach argued for in this book

righting movement of the cat or of head movements, stay close to the flat manifold
requirement.

A schematic outline of the geometric approach is shown in Fig. 8.1 and to be
realistic, the examples presented in this book are concerned with data taken close
to the muscles on the motor side and the eye on the sensory side and it remains to
be demonstrated that the geometric approach can be extended to more complex data
structures, such as facial expressions, or to a broader range of data structures, such
as those involved in speech and language.

But maybe one cannot tackle problems such as recognition, speech and language
without knowing the limitations of the representations that the brain uses for
its low-level processing. For instance, one approach to making pictures of the
projective plane is to plot the projection of a higher–dimensional embedding onto
the Euclidean plane. Two projections of a five-dimensional embedding of the
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Fig. 8.2 Two projections of an embedding of the real projective plane into three-dimensional
Euclidean space. The projection on the left is known as the cross-cap and that on the right is
referred to as the Steiner surface

Fig. 8.3 Plastic bag as a cat lying beneath a car

projective plane are shown in Fig. 8.2. The drawback of this approach is that because
of the way the visual system works, exploiting the fact than the outline corresponds
to a fold of the surface when the projection is from three-dimensional Euclidean
space to two, the projections are always seen as two different three-dimensional
objects.

At the very least, the approach should allow one to understand, in the sense of
what happens next, the interactions of other brains with the world. For instance, a
human can look at the scene shown in Fig. 8.3 and automatically register that one is
looking at a plastic bag stuck under a car. But my dog does not seem to be able to
do this and acts as though there is cat there, especially if the wind moves the bag.

If the sequence of processes illustrated in the summary Fig. 8.1 does reflect
the way the brain operates, then it is natural to question why it works like this.
It may simply be that processes required for this way of working match those
available for individual neurons so that primitive brains set the ground plan for
future developments. The model neuron illustrated in Fig. 1.6 is ideal for carrying
out linear filtering because it calculates the Euclidean inner product. But more
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than that, because neurons receive many synaptic inputs they can work with
high-dimensional Euclidean spaces. Similarly, synaptic plasticity provides a basis
for Hebbian learning and a range of depolarising mechanisms enable slow-fast
behaviour.

For a single nerve cell the equation describing the depolarising mechanism has
the form:

C dv
dt

= f (v, r1, r2, . . . , rn)

drs
dt

= gs(v, rs )
(8.1)

where v is the membrane potential and C is its capacitance. The remaining s
variables r1, r2, . . . , rs are variables that describe the rates at which ion channels
open and close. Because of the time course of the rates, a simplified model of the
spiking neuron can be made using only 1 rate variable for the combined effects
of the sodium channel closing and potassium channel opening, and the membrane
voltage equation of this model defines a cubic slow manifold curve, as illustrated in
Fig. 8.4 [19].

A possible exploitation of the slow-fast behaviour of the nerve cell may occur
in the fish escape circuit. Given a sudden mechanical stimulus a goldfish makes a
c-start response in which the front and back halves of its body bend away from the
stimulus into a c shape, with its head pointing away from the stimulus. Subsequently
the tail is pushed back to propel the animal away from the stimulus. The response
is controlled by a pair of Mauthner cells which are excited by the VIIIth nerve and
inhibited by the commisural passive hyperpolarising potential neurons, in both cases
by a combination of fast electrical and slower chemical synapses. The electrical
inhibition is reciprocal so that firing of the Mauthner cells also hyperpolarises
the hyperpolarising potential neurons, hence their description. Mauthner cells also

Fig. 8.4 Behaviour of a simplified version of the Hodgkin-Huxley model of the nerve impulse
consisting of a membrane voltage x2 equation and an ion channel x1 rate equation. The model
illustrates that slow-fast behaviour is inherent in the mechanism of excitable nerve cells
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excite spinal motorneurons and cranial relay neurons which in turn excite another
group of hyperpolarising potential neurons that electrically inhibit the Mauthner
cells [16]. The Mauthner cells have the very short membrane time constant required
for them to act as the fast variable, and the chemical and electrical synapses could
supply the pair of inhibitory inputs required for the behaviour of the slow variables,
in Eq. 5.7, although this proposal is currently no more than speculation.

The control of an action provides an example of how successive elaborations of
a ground plan might be effected. The action could be controlled by a single neuron,
if the slow-fast description of the Mauthner cell is correct, or it could be controlled
by a circuit of neurons such as that involving burst and pause cells in the brainstem
saccadic circuitry or the behaviour of the basic circuit could be subsumed into that
of interacting regions such as the basal ganglia and the motor cortex.

Birdsong provides another elaboration of an action circuit. The songs consist
of very brief vocalisations, several of which occur in sequence to form a syllable
lasting up to several hundred milliseconds. The syllables are in turn joined in
sequence to form short segments referred to as phrases or motifs lasting around
a second. The motor neurons of the muscles in the syrinx and surrounding area
and of the respiratory muscles are both activated by signals from the robust nucleus
of the archistriatum (RA for short). Individual RA neurons produce a characteristic
sequence of bursts for a given phrase. The RA is itself driven by neurons in the High
Vocal Centre (HVC), each of which produce a single burst at a specific moment of a
particular phrase. One possibility is that the RA and HVC correspond to the motor
cortex and premotor frontal cortex responsible for voluntary movements in humans
[2].

8.2 Alternative Approaches

The brain can be understood, in the sense of knowing what will happen if you make
a change to it, at many levels ranging from molecular concentrations at the cellular
level through to thought processes at the cognitive level and it is reasonable to ask if
there is a useful role for the geometric approach. The choice of level of explanation
often depends upon what you want from the investigation. If you need to know how
a drug affects synaptic transmission then you have to find out what is happening at
the synapses, whereas if you want to investigate object recognition then you need
to measure what is happening with millions of neurons. But the behaviour of the
brain, in terms of whether or not it responds to a change and how strongly, must be
the same at all levels, given the assumption that mental activity is entirely down to
brain activity.

The advantage of the behavioural explanation is that it is not tied to a particular
chemical, cellular or anatomical mechanism. Given that corresponding parts of
the brain vary from species to species, another advantage is that the behavioural
explanation is not tied to a particular species. The differences between species are
perplexing. For example in the cat retina a distinction can be made between X cells,



136 8 Where next?

in which the different parts of the receptive field summate linearly, and Y cells in
which the different areas do not summate linearly. These X and Y cells have been
identified with the anatomically distinct beta and alpha cells respectively. In the
primate, a distinction can be made between P (parvocellular) and M (magnocellular)
cells, which have been identified with midget and parasol cells respectively. But
whereas the X and Y cells send axonal terminations to both the main layers of the
cat lateral geniculate nucleus, the P and M cells terminate in separate layers of the
monkey lateral geniculate nucleus [14]. This is part of a wider problem in that the
number of layers of the nucleus varies from three in the rat to six in the human and
whereas the sequence of ipsilateral and contralateral layers is contra, ipsi, contra,
ipsi, ipsi and contra in humans, the corresponding sequence in tree shrews is ipsi,
contra, contra, contra, ipsi and contra [4]. As far as I am aware, we have no cogent
explanation for these differences, but an analysis of the behaviour of these neurons
can be used to capture the common functionality of these markedly different circuits.

But there are many insightful approaches to understanding behaviour. In the
context of evolution, it is natural to think that animal behaviour results from
optimising some characteristic in order to give a species evolutionary advantage.
Unfortunately, specifying exactly what is being optimised in all the broad expanse
of features is not easy. For example, take the superior rectus muscle of the swordfish
eye which has a large swelling with a different composition from that of the other
extraocular muscles. It turns out that this part of the muscle acts as a heater for the
brain of the animal [1]. There is no straightforward method for calculating how the
loss of strength of the muscle is balanced by an increased temperature of the brain
in a way that is optimal for the swordfish.

But a useful consequence of the evolutionary approach is that it naturally pushes
one into to looking at many different species in order to check that a particular
property is indeed being optimised. Exploring the behaviour of different species has
proved to be an effective strategy for investigating neural mechanisms, in particular
when it is possible to experimentally manipulate a neural circuit with relatively few
neurons such as that of the lobster stomatogastric ganglion and to obtain results
that are easier to understand than those from circuits with the enormous number of
neurons usually encountered [12]. The drawback of using a smaller animal is that
it is harder to measure accurately the physical properties of the sensory and motor
components to which the circuit is attached and this makes it that much harder to
relate the neural signals to the behaviour of the animal [6].

This is an important point because it turns out the processing that the brain
has to carry out is simplified by judicious construction of the sensory and motor
components external to the brain. In the case of the visual system, the initial
processing is directed towards isolating the outlines of individual biological objects
in preparation for interaction with them. The projection from everyday three-
dimensional space to the two-dimensional retinal image, which can be taken to
be a loss of data that has to be corrected for, makes identification of the outline
easier. This feature of the projection is illustrated in Fig. 8.5. The figure shows the
projection of a sphere covered with a uniform distribution of dots. Because of the
projection, the density of dots in the image is much higher at the edges of the image
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Fig. 8.5 Illustration of how the projection in the eye from three dimensions to two makes the task
of recovering the outlines of objects easier. The example object is a sphere covered with a uniform
distribution of dots. In the two-dimensional projection the dot density increases markedly at the
edges. This argument is portrayed graphically in the lower portion of the figure which shows the
dot density as a function of position, for the dots within the blue horizontal band in the image.
Dots where chosen for this picture, but the argument holds with patches of colour or texture such
as might be found on an object covered allover in the same material

as illustrated by the histogram of dots in the horizontal band across the image, so
that half the work in identifying the outline is already done. Figure 8.5 also indicates
that there are many viable alternative functions to local contrast that can be used in
the analysis of the retinal image. One alternative is the density of values as a function
of height [13]. Similar changes occur in the derivative a function defined by the area
of the surface at a given height [9].

On the motor side, the anatomical arrangement of the muscles ensures that the
changes in the axis of rotation of each muscle that occur when the initial position
of the eye is away from the straight ahead direction are aligned with the changes
specified by the half-angle rule of Listing’s law. In part this is due to the broad
insertions of the muscles into the eye and in part due to the orbital tissue attached
to the muscle. To take the superior rectus as an example, when the eye is turned
nasally, the fibres of the muscles furthest away from the nose are stretched the most.
Hence the effective point of insertion of the muscle moves away from the nose. The
opposite effect occurs with movements away from the nose [8]. Furthermore, the
check ligaments in the orbit act like pulleys which ensure that also help to ensure
that the changes in the axis of rotation are in accordance with Listing’s law [10].
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Failure to take into account the role of sensory and motor components external
to the brain can be avoided by following the unquestionably logical approach of
investigating the transformations of energy as it is processed by the sense organs and
used to generate movements, given that these transducers have to obey the laws of
physics like any other object. For neuroscience applications, the language of control
theory has proved especially useful for understanding how a brain interacts with its
world. Following the control theory approach, the description of the transformation
of a neural signal to a physical movement is referred to as the forward model and
the description of the transformation of the movement made into the corresponding
neural signal is referred to as the inverse model. For example, Eq. 6.6 which
describes how tension developed in the extraocular muscles moves the eye is a
forward model and the combination of the burst, step and slide signals is an inverse
model. For a given eye movement, applying the inverse model gives the required
neural signal. This approach still leaves open the question of how the movement
should be made, and a solution to this problem is to apply a function, referred to as
the cost function, that specifies how good or bad the movement is for the animal.

In the control theory framework, Eqs. 6.24 which were introduced in the Chap. 6
to describe how a system changes from one set to the next, are enhanced by
including functions g1, g2, · · · , gm of additional control variables c1, c2, . . . , cm
that can be used to alter the behaviour of the system:

d1
dt

= f1(x1, x2, . . . , xn, g1(c1, c2, . . . , cm), . . . , gm(c1, c2, . . . , cm))

d2
dt

= f2(x1, x2, . . . , xn, g1(c1, c2, . . . , cm), . . . , gm(c1, c2, . . . , cm))

. . .

dn
dt

= fn(x1, x2, . . . , xn, g1(c1, c2, . . . , cm), . . . , gm(c1, c2, . . . , cm))

(8.2)

But Eqs. 8.2 for a controlled dynamical system can also be interpreted geometri-
cally. For example, for the falling cat equation 2.9 can be considered to have two
control variables ψ and θ which specify the shape of the cat. This specification
corresponds to a point in the projective plane and the entire righting movement
forms a closed loop in the space of controlled variables, as illustrated in Fig. 2.10.
Alternative ways of making the righting movement are all associated with different
loops, some examples of which were shown in Fig. 2.10. The required righting
movement is given by the shortest of the possible closed loops, so now the problem
of choosing the right way to make a movement becomes one of defining a metric on
the space of control variables.

In the case of the falling cat the space of control variables can be given a metric
derived from the kinetic energy associated with the shape changes. This metric takes
its simplest form with the most symmetrical form of the cat, which consists of two
spheres so that the transverse and axial moments of inertia are identical. This version
of the metric is identical to that of Listing’s law and similarly, the paths following
geodesic curves in the projective plane consist of direction circles. So rather than
optimising some cost function, a strategy that will guarantee that the appropriate
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movement is made consists of finding the shortest path in the most symmetrical
version of the surface, then translating the solution back to the original problem [11].

But also important for understanding the brain is the fact that it does not
behave entirely deterministically. Instead of having access to the coordinates
(x1, x2, . . . , xn) of a point X on a manifold the brain maybe only has access to a
representation of the coordinates Y = (x1 + ν1, x2 + ν2, . . . , xn + νn) of a point
X where the coordinates are contaminated by the addition of noise (ν1, ν2, . . . , νn).
One approach to overcoming this misinformation is to estimate the probability of
the coordinates x by applying Bayes’s theorem:

P(X|Y) = P(Y|X)P(X)

P(Y)
(8.3)

where P(X|Y)is the posterior probability of the coordinates of the point being
X given the measured coordinates Y, P(Y|X) is the likelihood of measuring the
coordinates of Y given a set of coordinates x, X is the prior probability of the point
X and Yis the probability of measuring the coordinates of Y. Different senses give
different estimates of the shapes of surfaces and these are combined in the optimal
manner prescribed by Bayes’s theorem, although this finding gives no insight into
the neural mechanism and how we should expect the combination to change when
the brain is damaged.

The Bayesian explanation of behaviour can only work if the brain is able to
specify the required probabilities correctly. But this may not require them to be
made explicit. Rather, the probabilities may be implicit in the structure of the brain.
To take an example from the visual system, estimation of the probability that two
edges are part of the same outline can be built into the connections of the visual
cortex [15]. A geometric approach to the problem of calculating the probability of
co-occurrence of edges begins with the description of the configuration space of
the possible edge orientations given in Chap. 4. Ordinarily, the curvature value κ at
each point is determined by the contour in the image and the cortical representation
is given by the solution of the system of differential equations:

dx1
dt

= cos(θ)

dx2
dt

= sin(θ)

dx3
dt

= κ

(8.4)

All the variables in this equation are functions of a parameter t, corresponding to the
distance moved along the contour, so xi, θ and κ should be understood as xi(t), θ (t)
and κ(t). If instead, it is assumed that the probability of the orientation at successive
points along a retinal contour are distributed at random, then cortical contours can
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also be generated by solving the system of stochastic differential equations:

dx1
dt

= cos(θ)

dx2
dt

= sin(θ)

dx3
dt

= N(0, σ )

(8.5)

In this system of equations it has been assumed that successive orientations
are distributed according to a normal distribution N(0, σ ) with a mean of zero
and variance of σ 2. On can go on to compute many solutions to this equation,
always starting from the same horizontal retinal orientation. One can then project
these three-dimensional trajectories back down onto the retina to find out what
this assumption implies about the retinal contours. The findings are simplest to
understand if one makes a histogram of how many cortical trajectories pass through
each small portion of the retina and such a histogram is illustrated in Fig. 8.6, where
the number of trajectories passing through each region is indicated by the intensity
of the blue colour. The histogram has the bow-tie shape of the association fields
of the visual cortex, so it may that rather than having a population of neurons

Fig. 8.6 Illustration of the histogram produced by taking many solutions to the system of
stochastic differential equations 8.5 and then counting how many trajectories pass through each
region of the retina. This number is represented by the intensity of the blue colour at each point.
It can be seen that this histogram has the characteristic bow-tie shape also shown by the strength
of the connections between orientation columns in the visual cortex. So these lateral connections
may embody the same estimate of the probability distribution for the co-occurrence of orientations
that is assumed in the stochastic equations
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whose firing explicitly represents the probability distribution of edge orientations,
the probability distribution may be represented implicitly by the distribution of
horizontal connections between the orientation columns in the cortex.

For many tasks, such as facial recognition or language comprehension, there is
no obvious extension of the existing approaches to understanding the behaviour.
Nevertheless, artificial neural networks can be trained on data sets, such as those
obtained from different views of a face, and can learn to recognise different faces
and so provide working models for many tasks for which there had not previously
been any working models. The great advantage of artificial neural networks is that
all the connection strengths are known, and so are easier to analyse than real nervous
systems for which only a small fraction of the connection strengths are known. One
straightforward technique for analysing the behaviour of such a network is to select
slow points on the trajectory where the state of the system is changing least [17]. A
measure of the changes in the state variables is given by a function analogous to the
kinetic energy of mechanical systems:

k(X) = 1

2
‖dx1

dt
,

dx2

dt
, · · · ,

dxn

dt
‖2 (8.6)

and an example application of the technique is shown in Fig. 8.7. The technique
picks out the parts of a trajectory close to a fixed point and by starting trajectories

Fig. 8.7 Example of the use
of slow points, plotted in red,
to gain insight into the
behaviour of an artificial
neural net. By running
simulations with different
initial conditions a range of
trajectories is generated,
which can be used to uncover
the regions in state space
where the behaviour of the
network is approximately
linear. In this case the
trajectories consist of
heteroclinic cycles produced
by the system of Eqs. 6.33
described in Chap. 6
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from different locations all the fixed points can be identified and their behaviour
characterised by applying the numerical techniques described in Chap. 7.

Understanding of what makes a brain decide on this or that behaviour is going to
continue to require all the above approaches and undoubtedly others in the future.
But whatever the approach, sooner or later neuroscientists are going to have to come
up with the mathematics that is appropriate for their brains rather than their minds.

8.3 Mathematics for Neurons

A mathematical approach enables exploration of the properties of any system,
irrespective of whether or not it has a known physical basis. Very often the
successful outcome of the exploration is a classification of the possible behaviours
of the system and identification of the archetypal instances of each class. An early
example of the success of this approach was the enumeration of the possible sections
of a conic surface and the derivation of their basic equations. A similar example is
provided by the identification of the possible behaviours of a two-dimensional linear
system around a fixed point.

However, understanding the brain requires more than just a classification of the
possible behaviours of neural networks. Brains are so complicated that some part of
some brain will probably provide an example of even the most esoteric behaviour
discovered by physics or mathematics, but the behaviour may be extraneous to
the successful interaction of an animal with its world. In order to understand the
importance of such unexpected behaviours we have to go further and discover the
significance for the animal’s interaction with the world.

The brain can only effect interactions with objects which it can embody. What
sort of mathematics best describes such an embodiment? The argument put forward
in this book is that an object, especially a biological one, is best described by a
vector field over a manifold.

To adapt a saying about a chess, n-dimensional Euclidean space is a sea in which
a gnat may drink and an elephant may bathe. From a geometric perspective the point
is that n-dimensional Euclidean space is a place where descriptions of the gnat and
elephant can be accommodated simultaneously. The advantage of embedding data
from biological objects in Euclidean space is that geometric relationships can easily
be computed in Euclidean space and used to determine the manifolds on which the
data lie.

The use of high-dimensional Euclidean spaces changes the way in which
computations need to be done. For example, a straightforward method for telling
if an object has moved or the eye has moved is to convert the retinal direction of
the object to a head-based frame of reference in which the object does not change
direction with movement of the eyes. Following this approach one can go on to ask
where in the brain the conversion to a head-based frame of reference takes place
and where the signal specifying the eye movement comes from. But an alternative
approach is to embed both the retinal position of the object and the position of
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Fig. 8.8 Illustration of how the horizontal position of a target could be represented in a product
space of neurons selective for retinal position and eye position with respect to the head

the eye with respect to the head in Euclidean spaces and then form the product
space. One then has a Euclidean space big enough to hold every possible object/eye
position coordinates as illustrated in Fig. 8.8.

Allied to the change in the nature of the computation is a change in the type
of question that has to be asked to discover what is going on. The difference is
illustrated in Fig. 8.9 which compares a description in Cartesian coordinates with a
description in n-dimensional Euclidian space. In the Cartesian system of coordinates
there is a frame of reference provided by the axes which are fixed at the origin.
Using this description immediately leads to the question of the frame of reference
of the brain. In the case of the oculomotor system the question might be whether the
system uses an eye-based or a head-based frame of reference.

The over-arching goal of the program of identifying these archetypal behaviours
is to arrive at a classification of the possible data structures that can be processed by
neurons. For example, one possibility is that brains are adept at handling invariants
of projections from three-dimensional space onto two-dimensional space.

The sensory and motor cortices are anatomically similar so it seems likely
that they also handle data structures in the same way and consideration of how
manifolds are processed in the cortices gives an idea of where the flexibility of the
manipulations come from. In Fig. 8.10 two examples of two-dimensional manifolds
are shown together with their outlines. The folded surface on the left could be an
example of a visual stimulus which could be reconstructed from its outline by the
visual cortex. On the right is another example of folded surface which could occur in
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Fig. 8.9 Comparison of the use of embedding in three-dimensional Euclidean space and n-
dimensional Euclidean space. The upper row of figures illustrates the coordinate systems, the
middle row gives a table of the coordinates of the 5 points numbered in the top left figure and the
lowest row shows how the surface might be represented. Left Column: Given a three-dimensional
system of coordinates, one can use it as a frame of reference within which the position of every
point on a surface can be specified. We are familiar with the effectiveness of this description from
everyday interaction with computers. Right Column: Alternatively, one can describe the position
and shape of a surface using coordinates in an n-dimensional space. In this approach the outline of
the object is specified and properties of the surface are described locally by population coding. You
might reasonably comment that I have taken a unified description you do understand and turned it
into multiple little descriptions that you do not understand. But whilst our minds prefer the three-
dimensional description, it may be that the neurons below the level of consciousness find working
in n-dimensional space easier, because they can get by with using only local interactions
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Fig. 8.10 Possible examples of manifolds in the cortex and their corresponding outlines. The
figure on the left illustrates a folded surface reconstructed from an outline in the visual cortex. The
figure on the right illustrates a slow manifold reconstructed from an outline in the motor cortex.
The idea here is that just as the visual cortex interprets outlines the motor cortex could be passed
an outline and could reconstructed the slow manifold required to specify a particular action

the context of control of eye movements. Comparison of these two examples leads
to the idea that rather than specifying the slow manifold directly when an action
is to be made, the motor cortex could have the outline passed to it and reconstruct
the required slow manifold in the same way as the visual cortex. Once established
the behaviour of the cortical neurons would follow that of a slow-fast system for an
action and recordings from neurons in the motor cortex have provided evidence for
the spiral attractor that forms part of such a system [5].

For a single view of smooth surface, the only invariants of the projection of the
outline onto the plane are the fold and the cusp. But when successive views are
allowed then additional invariants arise, such as an outline that looks like that of a
swallow’s tail [3] and such invariants may be especially relevant when movement is
involved, although this remains to be demonstrated experimentally.

As a final point, whilst the brain may make use of embedding in Euclidean
space, Hebbian learning, critical points and slow-fast control to embody dynamical
systems, the brain itself is probably best not treated as a single dynamical system.
Many areas of the brain contain topographic arrays of neurons that show a steady
increase with position in the array of the spatial range over which they operate,
of which the visual cortical areas are the most obvious example. But such ranges
also occur in time, as in the neural integrator, where a range of time constants are
computed. This gives the brain enormous flexibility in that the appropriate one can
be selected as it is required [18]. So if the brain has to interact with an object, one
idea is that it builds a model of the behaviour of the object and uses it to calculate
how to get the target outcome. But this solution may be misleading in that the brain
may only ever work with temporary models, and rather than making a complex set
of calculations with a model in which the parameters are fixed, it repeatedly creates
a new model for each step of the task. This is why we have to be very cautious in
analysing neural data, because it may only lie on a given manifold for a very short
duration.

To finish, I should point out that neuroscientists more than anybody should
know that our understanding of the world depends on our individual brains and
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the geometric approach to tackling how brains work will not be for everyone. My
aim in writing this book has been to introduce enough background and examples of
the approach for the reader to be able decide for themselves whether or not to take
it further.

8.4 Further Reading

8.4.1 Brain

Glickstein M Neuroscience: a historical introduction. The MIT Press, Cambridge,
Massachusetts, 2014. It is easy to lose one’s way when faced with the myriad of
experimental findings about the brain. This book is exceptional in that the author
easily describes the different approaches that have led to successful insights into the
workings of the brain, so that the reader comes away with a clear understanding of
how to prioritise experimental findings in neuroscience.

Nassim C Lessons from the Lobster. The MIT Press, Cambridge, Massachusetts,
2018. This books gives the reader insight into what working in a multi-disciplinary
neuroscience laboratory is like, as well as very clearly explaining the significance
of experimental findings from the stomatogastric ganglion of the lobster.

8.4.2 Geometry

Katok, A and Climenhaga V Lectures on Surfaces: (almost) everything you
wanted to know about them. American Mathematical Society, Student Mathematical
Library Volume 46, 2008. It is easy to lose one’s way when faced with the myriad
of mathematical techniques that one could apply to the workings of the brain. This
extensively illustrated book gently guides the reader through the different geometric
approaches, many of which have already been applied to neural mechanisms.
The authors concentrate on surfaces which enables them to give relatively simple
explanations and proofs so that the reader gains a clear impression of what would
be involved in taking it further with a particular technique. More than that, the
authors have unified the approaches by using each of them to reveal an alternative
formulation of the Euler characteristic of the surface. In its simplest form the Euler
characteristic relates the number of faces, edges and vertices of a polyhedron. But
that is just number one of the seven alternative formulations the authors arrive at by
the end of the book. There are some of the out-of-sequence parts and the index is
minimalist so that you have to read it more than once to become familiar with where
all the definitions are, but maybe that is no bad thing.

Kendig K Never a dull moment. American Mathematical Society/Mathematical
Association of America Spectrum Volume 93, MAA Press, Providence, Rhode
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Island. 2018. Many mathematical ideas appear perplexing at first, mainly because
they seem to have come from nowhere. In this instructive biography, the author
explains the background to the discoveries of the pioneering topologist Hassler
Whitney. In particular, he uses many diagrams to make the point that Whitney began
exploring topics such as embedding and projections by drawing figures of specific
cases, although these were not included in his subsequent published papers.
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Chapter 9
Appendix: Background Material

9.1 Brains

Brains act to ensure that the state of the body is maintained at a stable, functioning
level—a property referred to as homeostasis. The brain uses the same type of
mechanism to ensure that the environment which the individual lives in remains
stable. Imagine a cat sitting in front of a fire. It moves so that it so not too hot and
not too cold. Now imagine a lot of cats sitting in front of the fire. Every cat wants to
sit in the same place. Brains developed to sort this type of problem out. Of course
brains developed to handle more than just the problem of who sits where in front
of the fire. The top cat, in terms of the one who gets what it wants, will have the
largest repertoire of behaviours so it can counter the greatest range of situations that
the world throws at it.

From the homeostasis perspective it follows that a brain will require several
components:

(1) A mechanism for recognising situations that have happened before, so that an
appropriate counteraction can be taken.

(2) A mechanism for controlling and executing the counteraction.
(3) A mechanism for prioritising the strength and direction of behaviour, an aspect

of behaviour referred to as motivation.
(4) A mechanism, referred to as learning, for altering the behaviour of all three of

the above components to adapt them to a changing world.

Although brains require all four mechanisms there is no straightforward mapping
of these functions onto the most prominent structures of the brain, some of which
are illustrated schematically in Fig. 9.1.

The cortex is where sensory inputs and motor outputs are used to form a
coherent understanding of the world and what to do about it. There are a number
of specialised regions, such as the visual areas at the back of the head, and the
somatosensory and motor areas down the side of the head.
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Fig. 9.1 A schematic diagram of some of the main anatomically identifiable of the brain. Left
Figure: External appearance showing the cerebral cortex and cerebellum. Middle Figure: Some
of the structures lying deeper in the brain: basal ganglia (red), amygdala (green) and brainstem
(grey). The four black dots represent the paired superior and inferior colliculi. Right Figure: Other
structures lying deeper in the brain: hippocampus (blue) and thalamus (orange)

Fig. 9.2 Schematic illustration of the lobular structure of the cerebellum. The cerebellum is
viewed from above and has been unrolled so the vestibulocerebellum is visible

Damage to a specialised area causes long term problems with the corresponding
function. The primary motor area, also referred to as M1, provides the main input
to the pathway from the cortex to the skeletal muscles. Damage to M1 results in
a paralysis, from which the person usually recovers, and long-term difficulty in
coordinating movements.

The next most prominent external structure of the brain after the cortex is
the cerebellum. Damage to the cerebellum results in uncoordinated movements.
The cerebellum is made up of a number of small lobes, as illustrated highly
schematically in Fig. 9.2. Like the cortex, the cerebellum is comprised of two
hemispheres but in this case the two hemispheres are joined by an unpaired portion
referred to as the vermis. At the base of the cerebellum are three further lobes.
The central one of these lobes is referred to as the nodule and each of the outside
ones is referred to as the flocculus. The flocculus and nodule receive inputs directly
from the vestibular nucleus and project back to them and so are referred together as
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the vestibulocerebellum. The main portion of the cerebellum projects to the dentate
nucleus and on to the cortex via the dorsal thalamus and also to the red nucleus,
which is a source of descending spinal pathways. The vermis and surrounding region
projects to the fastigial nucleus and on to the spinal neurons. The three attachments
of the cerebellum to the brainstem are referred to as peduncles and the outputs from
the cerebellum leave by the superior peduncle. Input from the somatosensory and
motor cortices arrives via the middle peduncular lobe. Sensory signals from the
spinal cord and vestibular system enter the cerebellum through the inferior peduncle.
Neural signals from the nucleus referred to as the inferior olive also enter via the
inferior peduncle.

In the middle of the brain are the thalamus and basal ganglia, which are
comprised of three major nuclei, namely the caudate nucleus, putamen and globus
pallidus and two smaller nuclei, the substantia nigra and the subthalamic nucleus.
Brain damage studies have shown that the basal ganglia are primarily involved in
movement selection and control.

Also forming part of the midbrain is the amygdala, which takes part in link-
ing motivation with action, and the hippocampus. Damage to the hippocampus
in humans results in difficulties with long term memory formation. The name
hippocampus was adopted because of a perceived resemblance of the shape of the
structure to that of a seahorse, but another perceived resemblance to a ram’s horn
lead the alternative name of Ammon’s horn. The three main subdivisions of the
hippocampus are designated CA1, CA2 and CA3 where CA is an abbreviation of
the Latin name Cornu Ammonis. In between CA1 and the surrounding entorhinal
cortex, with which the hippocampus has extensive interconnections, lies a region
referred to as the subiculum.

The insect brain, illustrated in Fig. 9.3, has a different ground plan from the
vertebrate brain. The major part of the insect brain is comprised of the optic lobe.
The output of the sensory cells of the compound eye passes to the lamina, then the
medulla and then on to the lobula. Signals from olfactory sensors on the antennae
pass to the antennal lobe and on to the mushroom bodies, which are involved with
memory and learning. Between the mushroom bodies is the central complex that
integrates sensory inputs and processed signals from the mushroom bodies.

Fig. 9.3 A schematic
diagram of the insect brain.
The components of the optic
lobe is shown in blue. The
antennal lobe is shown in
green and the mushroom
bodies are shown in outline.
The central complex is drawn
in red
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9.2 Calculus

Description of the effect of an action on an object requires specification both of the
magnitude of the action and of the new situation of the object. A typical example
could involve the contraction of a muscle changing the position of an object. More
generally, any quantity which can change is referred to as a variable and the relation
between a pair of variables (x, f (x)) is referred to as a function if each value of x
is associated with a unique value of f (x). A visual representation of a function can
be made by plotting x along a horizontal axis and y along a vertical axis. The plot
of the (x, y) pairs generated by the function form a graph of the function.

The effect of a change by an amount h in a variable from x to x + h depends on
the ratio of h to f (x + h) − f (x). This ratio will depend on the size of the step h
and the value at x can be defined as the limiting value of the ratio as h approaches
zero. This value is referred to as the derivative of f(x) at x, and is denoted by df (x)

dx
and is formally defined as:

df (x)

dx
= lim

h→0

f (x + h) + f (x)

h
(9.1)

The graphical representation extends to the process of differentiation. One can draw
a straight line between the points (x, f (x))and(x + h, f (x + h)), and as h is made
smaller the line will align with the tangent to the graph at the point (x, f (x)). The
derivative corresponds to the slope of the tangent as illustrated in Fig. 9.4.

The graphical approach can also be used to define a further quantity referred to
as the integral of f (x), also illustrated in Fig. 9.4, which works in the opposite way
to the derivative. The definite integral of a function f (x) over an interval from a
value a of x to a value b of x corresponds to the area under the graph of the function.

Fig. 9.4 Illustration of the derivative df (x)
dx

evaluated at x = a and the integral
∫ b

a
f (x)dx as

limiting processes. The graph of the function f(x) is plotted in blue
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To compute this area one can begin by dividing the interval between a and b into
n equal parts letting the width of each part be denoted by h. The sum Sn of the
areas of the n rectangles which can be fitted under the graph of f (x) then gives an
approximation to the area under the graph between a and b. The integral of f (x)

between a and b is given by the limiting value of Sn as the width of the vertical strips
is made vanishingly small.

∫ b

a

f (x)dx = lim
h→0

Sn (9.2)

A simple example of a function is f (x) = kx where k is a constant. The graph of
this function is a straight line and any function which has a graph that is a straight
line is referred to as a linear function. Given a value for x, there is a corresponding
value for y(= kx) and this pair of values is represented by a point a distance x

along the horizontal axis and y along the vertical axis. Also shown is a graph of
the derivative of f (x). Since the slope of the graph of f (x) is constant at k, the
derivative is also constant at this value, as illustrated in Fig. 9.5.

One of the simplest nonlinear functions is f (x) = x2 and the graph of this
equation, which is drawn in Fig. 9.6, is referred to as a parabola. This nonlinear
function is an example of a power function which has the form f (x) = xr where r
specifies the number of times that x is multiplied by itself.

Another useful class of functions is provided by functions of the form f (x) = rx .
In particular the nonlinear function referred to as the exponential function has the
form f (x) = ex where e is a constant which is approximately 2.7183. The value of
this function is the same as that of its derivative, for all values of x, as illustrated in
Fig. 9.7.

Another commonly occurring nonlinear relationship occurs with cyclical
behaviour. If one takes a point moving anticlockwise round a circle of unit radius
at a unit velocity then one can define two new functions. The sine function is given
by the ratio of the x coordinate of the point to the radius and the cosine function
is given by the ratio of the y coordinate of the point to the radius, as illustrated in
Fig. 9.8.

Fig. 9.5 Example of a graph of the function f(x) = k x with k = 1
2
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Fig. 9.6 Example of a graph of the function f (x) = xr with r = 2

Fig. 9.7 Example of a graph of the exponential function

Fig. 9.8 Example of a graph of the sine function. The derivative of a sine function is a cosine
function and the integral is a negative cosine function

For the example functions plotted in the figures it can be seen that differentiation
of a function is the inverse of integration of the function. This relationship is made
use of explicitly in Chap. 5 so I include now a justification of the statement but you
can save this part for later without impeding your reading of this book.
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To show that the inverse relationship follows from the definition of differentiation
and integration, begin by expressing a definite integral in terms of indefinite
integrals, which give the value of a definite integral from a fixed starting value u:

∫ b

a

f (x)dx =
∫ b

u

f (x)dx −
∫ a

u

f (x)dx = F(b) − F(a) (9.3)

where F(a) and F(b) are indefinite integrals. Given this notation one can specify
the relationship between integration and differentiation as:

dF(x)

dx
= f (x) (9.4)

and this equivalence is referred to as the fundamental theorem of calculus. To
understand why this relationship holds begin by noting that from the definition of
differentiation it holds that:

dF(x)

dx
= lim

h→0

F(x + h) − F(x)

h
(9.5)

As the graph of f (x) does not have any breaks in the examples shown, for any
arbitrarily small number ε one can define a variable y such that x − h ≤ y ≤ x + h

and find a value of h small enough to ensure that that f (x)− ε ≤ f (y) ≤ f (x)+ ε.
Furthermore if m and M are the minimum and maximum values of f (y) on the
interval then f (x) − ε ≤ m ≤ M ≤ f (x) + ε. From the definition of an integral it
follows that:

hm ≤
∫ x+h

x

f (x)dx ≤ hM (9.6)

and

f (x) − ε ≤
∫ x+h

x
f (x)dx

h
≤ f (x) + ε (9.7)

Since ε can be made arbitrarily small it must hold that:

lim
h→0

∫ x+h

x f (x)dx

h
= f (x) (9.8)

as required to show that the fundamental theorem holds.



Glossary of Terms with Hidden
Assumptions

Attractor An attractor is a region of state space which captures trajectories that
arrive in its surroundings. But what shape is the region? This question is usually
avoided by considering simple cases where the shape is well defined. See the
entries for point attractor and continuous attractor.

Conductance-based model A conductance-based model of a neural network
gives a description of the membrane potential of each neuron. Such models are
useful for investigating the effects of the level of a particular transmitter. The
drawback is that they require many parameters to specify the characteristics of
the ion channels. Also, they do not usually incorporate the effects of the close
proximity of a population of neurons firing together, which generates electric
field currents that enable neurons to affect the behaviour of other neurons with
which they have no direct connection.

Continuous attractor The term continuous attractor has been introduced to
refer to a collector of adjacent point attractors in order to model memory for
continuous variables. For example, the horizontal eye position controller could
be modelled by a line attractor consisting of a line of point attractors each
corresponding to a particular position. Another example is the circuit that holds
the heading direction in a fly. Since the activity in the neural network consists of a
localised hill of activity representing orientation or heading direction such neural
embodiment of continuous attractors are also referred to as bump attractors.
But given the definition of an attractor as a region of space that captures all
trajectories that arrive in its surroundings, two adjacent points cannot both be
point attractors. What you can have is a line or a surface, such as the slow
manifold used in the action model, in state space to which all trajectories are
attracted. The dynamics within the attracting region remain to be specified. In
the case of horizontal eye position, the state of the oculomotor integrator moves
slowly to a point attractor at the origin. In the case of an action, the state follows
a trajectory towards a spiral attractor at the equilibrium position.
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Dimensionality reduction At first glance, throwing away unimportant parts of
the data to obtain a simpler system whose behaviour is effectively the same as
the original system seems like a good idea. The problem lies in the definition
of unimportant. The most widely used technique of dimensionality reduction
in neuroscience is principal components analysis. But principal components
analysis of the cone responses to the Munsell chip set gives that 99.7 % of the
variance is carried by the light-dark channel. So following the dimensionality
reduction approach one would ignore how the nervous system deals with hue
and colour saturation data entirely.

Firing rate model A firing model of a neural network is one in which the output
of each neuron can only be positive, corresponding to the average of the outputs
of a population of biological neurons whereas in a conductance-based neuron
model the output of each neuron corresponds to its membrane potential. The
firing rate approach was based on the assumption that a neuron can be either
excitatory or inhibitory. Subsequently it was found that a single neuron can
release more than one type of transmitter and so may excite or inhibit other
neurons, depending on their ongoing acitivity.

Point attractor A point attractor consists of a single point in state space that
nearby trajectories all converge to. In the case of a linear system such a point
is also referred to sink. The idea of a point attractor has proved especially useful
for thinking about memory. If it is assumed that separate objects are represented
by separate attractors, then an input to a neural network from measurements of
part of an object could force the state of the network onto a trajectory that passes
near to the attractor corresponding to the object, whereupon the state drops onto
the attractor and the object is recognised.
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*Page numbers in bold indicate definitions*
A
Accumulator, 90
Anti-Hebbian learning, 55–59
Arm movements

configuration space, 23–24
geodesic, 30–31
slow-fast system, 87–89

Association field, 68–70

B
Base manifold, 24

Braitenberg vehicle, 69
cat righting movement, 26–27

Basis, 5
Bayes’s theorem, 139
Betti number, 126–128
Bifurcation, 108

birdsong, 114
eye movements, 114
Hopf, 109, 113–114
larynx, 113–114

Birdsong
action control, 135
bifurcation, 114

Boundary matrix, 126
Braitenberg vehicle, 34, 69
Bump function, 73–75
Burst neurons, 86

C
Canard, 95
Cat righting movement

base manifold, 26–27

configuration space, 25–27
fibre, 26–27
trajectory, 31–32, 138

Central complex, 35
Centre, 105, 108
Centre manifold, 109
Cerebellum, see Anti-Hebbian learning
Chain, 126
Chain complex, 126
Colour

matching, 39–43
opponent colour, 11–12, 48–52

Configuration space, 21–27
arm movements, 23–24
Braitenberg vehicle, 69
cat righting movement, 25–27
eye movements, 21–23

Coordinates, 4
local, 62

Covariance, 45
Critical points, 61–73, 84

D
Damping constant, 98
Data space, 44
Degrees of freedom, 1, 3
Delay embedding, 120–123
Delay space, 121
Dimension, 5
Dimensionality reduction, 53
Direction circle, 30
Dot product, 6
Dynamical system, 2
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E
Edge statistics, 139–141
Eigenvalue, 44, 123
Eigenvector, 44
Embedding, 7, 11, 27

delay, 120–123
embedding theorem, 73–75
sphere, 27
Veronese surface, 30

Euclidean metric, 30
Euclidean space, 7, 142–143
Euler characteristic, 72
Extraocular muscles, 53–54, 137

swordfish, 136
topological data analysis, 127–128

Eye movements
bifurcation, 114
configuration space, 21–23
direction circle, 30
extraocular muscles, 53–54, 137
geodesic, 30
Listing’s law, 22, 137
nystagmus, 123–125
saccades, 84–85

F
Feature space, 11
Fibre, 24

Braitenberg vehicle, 69
cat righting movement, 26–27

Fibre bundle, 24
Fixed point, 16

centre, 105, 108
saddle, 105
sink, 102
source, 102
spiral sink, 105
spiral source, 105

Flat manifold, 131

G
Geodesic, 30, 32

arm movements, 30–31
direction circle, 30
eye movements, 30

Gradient space, 77–78
Grid cells, 36, 53, 93
Group structure, 25

H
Hebbian learning, 50–55

Height function, 61–73
Heteroclinic cycle, 114–116
Hippocampus, 36
Hole perception, 72
Hopf bifurcation, 109, 113–114
Horizontal directions, 32, 69
Hyperbolic space, 128

I
Identity matrix, 43
Inverse matrix, 44

J
Jacobian matrix, 108

L
Larynx, 110–111

bifurcation, 113–114
Learning

anti-Hebbian, 55–59
Hebbian, 50–55

Limit cycle, 82
Linear combination, 5
Linear filter, 7
Linear transformation, 41, 41–42
Listing’s law, 22, 137

direction circle, 30
Local coordinates, 62
Local navigation, 34
Lotka-Volterra equations, 114–115

M
Main sequence, 85
Manifold, 2

base, 24
centre, 109
embedding, 7, 11, 27
fibre, 24
fibre bundle, 24
flat, 131
Riemannian, 30
slow, 82
sub-Riemannian, 32, 69–70

Marroquin pattern, 92
Matrix, 42

boundary, 126
identity, 43
inverse, 44
Jacobian, 108
orthogonal, 46
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similar, 44, 123
square, 42
symmetric, 46
transpose, 45

Mauthner cell, 134
Mean, 45
Mechanics, 97–100
Metric, 30

Euclidean, 30
Riemannian, 30

Morse lemma, 65

N
Navigation, 34–36

local, 34
Nystagmus, 123–125

O
Oculomotor integrator, 86, 106
Odours

classification, 128
recognition, 115–116

Opponent colour, 11–12, 48–51
Orthogonal matrix, 46
Orthogonal vector, 46

P
Partial derivative, 28
Path integration, 34
Pause neurons, 86
Place cells, 36
Plane diagram, 4
Plant, 98
Population code, 8
Prediction, 1
Principal components analysis, 48, 50–54
Product space, 13
Projective plane, 12

Q
Quadric surface, 46–48

R
Receptive field, 65–67
Riemannian manifold, 30
Riemannian metric, 30

S
Saccades, 84–85

main sequence, 85
Saddle, 105
Shape manifold, see Base manifold
Similar matrix, 44
Simplex, 125
Simplicial complex, 125
Singular value decomposition, 54–55
Singular values, 55, 120, 124
Sink, 102
Slow-fast system, 81–84, 123

arm movements, 87–89
Slow manifold, 82
Slow points, 141
Source, 102
Space

colour, 39–43
configuration, 21–27
data , 44
delay, 121
Euclidean, 7, 142–143
feature, 11
gradient, 77–78
hyperbolic, 128
product, 13
state, 16
tangent, 27–29
vector, 5

Special Orthogonal group, 25
Spiral sink, 105
Spiral source, 105
Square matrix, 42
Stability

linear, 108
structural, 107

State, 2
State space, 16
Stiffness, 97
Stomatogastric ganglion, 136
Sub-Riemannian manifold, 32, 69–70
Superior colliculus, 90–92
Swordfish, 136
Symmetric matrix, 46
Symmetry operations, 25

T
Tangent space, 27–29
Time constant, 9
Topological data analysis, 125–128

Betti number, 126–128
extraocular muscles, 127–128

Transpose of a matrix, 45
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V
Variance, 45
Vector, 2

coordinates, 4
linear combination, 5
orthogonal, 46

population code, 8
Vector space, 5

basis, 5
dimension, 5

Veronese surface, 30
Vestibulo-ocular reflex, 57–59
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