

MATHEMATICS with MATLAB.
GRAPHICS and

LINEAR ALGEBRA

César Pérez López

Table of Contents

INTRODUCTION

INTRODUCTION TO MATLAB

1.1 MATLAB LENGUAGE

1.2 STARTING MATLAB ON WINDOWS. THE MATLAB

WORKING ENVIRONMENT

1.3 NUMERICAL COMPUTATION WITH MATLAB

1.4 SYMBOLIC CALCULATIONS WITH MATLAB

1.5 GRAPHICS WITH MATLAB

1.6 HELP WITH COMMANDS

MATLAB LANGUAGE ELEMENTS. VARIABLES,

NUMBERS, OPERATORS AND FUNCTIONS

2.1 VARIABLES

2.1.1 VECTOR VARIABLES

2.1.2 MATRIX VARIABLES

2.1.3 CHARACTER VARIABLES

2.2 NUMBERS

2.2.1 INTEGERS

2.2.2 FUNCTIONS OF INTEGERS AND DIVISIBILITY

2.2.3 ALTERNATIVE BASES

2.2.4 REAL NUMBERS

2.2.5 FUNCTIONS WITH REAL ARGUMENTS

2.2.6 COMPLEX NUMBERS

2.2.7 FUNCTIONS WITH COMPLEX ARGUMENTS

2.2.8 ELEMENTARY FUNCTIONS THAT SUPPORT

COMPLEX VECTOR ARGUMENTS

2.2.9 ELEMENTARY FUNCTIONS THAT SUPPORT

COMPLEX MATRIX ARGUMENTS

2.2.10 RANDOM NUMBERS

2.3 OPERATORS

2.3.1 ARITHMETIC OPERATORS

2.3.2 RELATIONAL OPERATORS

2.3.3 LOGICAL OPERATORS

2.3.4 LOGICAL FUNCTIONS

2-D GRAPHICS IN MATLAB. EXPLICIT, PARAMETRIC

AND POLAR CURVES. EXPLORATORY GRAPHS

3.1 BASIC COMMANDS FOR 3-D GRAPHICS

3.2 ADDITIONAL ELEMENTS IN A GRAPHS (TITLES,

TAGS, MESHES AND TEXTS)

3.3 WORKING WITH AXES AND MULTIPLE GRAPHS

3.4 LOGARITHMIC AND SEMI-LOGARITHMIC GRAPHS

3.5 POLYGONS IN TWO DIMENSIONS

3.6 2-D GRAPHICS IN PARAMETRIC COORDINATES

3.7 2-D GRAPHICS IN POLAR COORDINATES

3.8 EXPLORATORY GRAPHS. BARS AND SECTORS

GRAPS. HISTOGRAMS

3.9 STATISTICAL ERRORS AND ARROWS GRAPHICS

3-D GRAPHICS IN MATLAB. 3-D CURVES ON SPACE,

SURFACES, MESHES AND CONTOURS. SURFACES OF

REVOLUTION

4.1 3-D CURVES ON SPACE

4.2 3-D POLYGONS

4.3 3-D CURVES ON SPACE IN PARAMETRIC

COORDINATES

4.4 SURFACES IN EXPLICIT COORDINATES

4.5 SURFACE GRAPHICS: MESH GRAPHICS

4.6 SURFACE GRAPHICS: CONTOUR GRAPHICS

4.7 AXIS, VIEWS, SHADES , COLORS AND BRIGHT IN

THREE-DIMENSIONAL GRAPHICS

4.8 PARAMETRIC SURFACES AND REVOLUTION

SURFACES

4.9 SPHERES AND CILYNDERS

4.10 HANDLING GRAPHICS COMMANDS

MATLAB LANGUAGE ELEMENTS. ALGEBRAIC

EXPRESSIONS, POLYNOMIALS, EQUATIONS AND

SYSTEMS

5.1 EXP ANDING, SIMPLIFYING AND FACTORING

ALGEBRAIC EXPRESSI ONS

5.2 POLYNOMIALS

5.3 POLYNOMIAL INTERPOLATION

5.4 SOLVING EQUATIONS AND SYSTEMS OF

EQUATIONS

5.5 GENERAL METHODS

5.6 THE BICONJUGATE GRADIENT METHOD

5.7 THE CONJUGATE GRADIENTS METHOD

5.8 THE RESIDUAL METHOD

5.9 THE SYMMETRIC AND NON-NEGATIVE LEAST

SQUARES METHODS

5.10 SOLVING LINEAR SYSTEMS OF EQUATIONS

MATRICES, VECTOR SPACES, LINEAR APPLICATIONS

AND QUADRATIC FORMS

6.1 MATRIX CALCULUS

6.2 MATRIX OPERATIONS

6.3 EIGENVECTORS AND EIGENVALUES. MATRIX

DECOMPOSITIONS

6.4 VECTOR SPACES, LINEAR APPLICATIONS AND

QUADRATIC FORMS

introduction

MATLAB can be used as a high level programming language including
data structures, variables, functions, vectors, matrix, arrays, instructions
for flow control, management of inputs/outputs and even object-oriented
programming. MATLAB programs are often written into files called M-files.
AnM-file is nothing more than a MATLAB code (script) that executes a
series of commands or functions that accept arguments and produce an
output.

MATLAB is able to implement a number of algorithms which provide
numerical solutions to certain problems which play a central role in the
solution of non-linear equations. Such algorithms are easy to construct in
MATLAB and are stored as M-files. Also MATLAB allows you to easily
manipulate and operate on formulae and expressions symbolically. It is
possible to expand, factor and simplify polynomials and rational and
trigonometric expressions; find algebraic solutions of polynomial
equations and systems of equations; evaluate derivatives and integrals
symbolically; find symbolic solutions of differential equations; manipulate
powers, limits and many other facets of algebraic series.

MATLAB is a platform for scientific computing that can work in almost all
areas of the experimental sciences and engineering. Logically, this
software allows you to work in the field of graphics and linera algebra,
featuring some pretty extensive capabilities. The commands that
implements Matlab, about working with graphics and matrix algebra are
quite high and very efficient.

Matlab functions for working with two-dimensional and three-dimensional
graphics, statistical graphs, curves and surfaces in explicit, implicit,
parametric and polar coordinates. Additional work perfectly implements
the twisted curves, surfaces , meshes , contours , contours, volumes and
graphical interpolation.

MATLAB allows you to work with ease in the field of Linear Algebra. Its
matrix structure facilitates the treatment of matrix algebra, vector and
matrix variables and functions, vector spaces, equations and systems,
algebraic expressions, polynomials, linear applications, quadratic forms,
diagonalization and other typical tasks of linear algebra.

Chapter 1.

INTRODUCTION TO MATLAB

The MATLAB language, based on matrices, is the most natural way to
express computational mathematics. The integrated graphics facilitate the
visualization of the data and the obtaining of information from them. The
desktop environment invites you to experience, explore and discover. All
of these MATLAB tools and functions are rigorously tested and designed
to work together.

Mathematical functions offer a wide variety of calculation methods to
analyze data, develop algorithms and create models. The main functions
use libraries optimized for processors that allow quick calculations of
vectors and matrices. You can use MATLAB as a powerful numerical
computer. While most calculators handle numbers only to a preset degree
of precision, MATLAB performs exact calculations to any desired degree
of precision. In addition, unlike calculators, we can perform operations not
only with individual numbers, but also with objects such as arrays.

Most of the topics of classical numerical analysis are treated by this
software. It supports matrix calculus, statistics, interpolation, least squares
fitting, numerical integration, minimization of functions, linear
programming, numerical and algebraic solutions of differential equations
and a long list of further methods that we’ll meet as this book progresses.

To start MATLAB, simply double-click on the shortcut icon to the program
on the Windows desktop. Alternatively, if there is no desktop shortcut, the
easiest and most common way to run the program is to choose programs
from the Windows Start menu and select MATLAB . Having launched
MATLAB by either of these methods, the welcome screenbriefly appears,
followed by the screen depicted in Figure 1-1, which provides the general
environment in whichthe program works.

The most important elements of the MATLAB screen are the following:

The Command Window: This runs MATLAB functions .

The Current Folder: This shows MATLAB files and execute files (such as
opening and search for content operations).

The Workspace: This shows the present contents of the workspace and
allows you to make changes to it.

The Menú Options: This shows the most important work options with the
program (Figure 1-2).

Options palettes (HOME, PLOTS and APPS): This allows you to access
to the main MATLAB options, graphic options and predefined applications.

Figure 1-1

Figure 1-2

The Command Window(Figure 1-3) is the main way to communicate with
MATLAB. It appears on the desktop when MATLAB starts and is used to
execute all operations and functions. The entries are written below the
prompt >> and, once completed, they run afterpressing Enter . The first

line of Figure 1-3 defines a matrix and, after pressing Enter, the results
itself is displayed as output.

Figure 1-3

In the Command Window is possible to work with operations, functions,
graphics and MATLAB code in general. Simply enter an expression with
valid MATLAB syntax and pressing Enter is executed. Also it is possible to
evaluate previously executed operations. To do this, simply select the
syntax you wish to evaluate, right-click, and choose the option Evaluate
Selection from the resulting pop-up menu (Figures 1-4 and 1-5). Choosing
Open Selection from the same menu opens in the Editor/Debugger an M-
file previously selected in the Command Window (Figures 1-6 and 1-7).

Figure 1-4 Figure 1-5

Figure 1-6 Figure 1-7

MATLAB is sensitive to the use of uppercase and lowercase characters,
and blank spaces can be used before and after minus signs, colons and
parentheses. MATLAB also allows you to write several commands on the
same line, provided they are separated by semicolons (Figure 1-8).
Entries are executed sequentially in the order they appear on the line.
Every command which ends with a semicolon will run, but will not display
its output.

Long entries that will not fit on one line can be continued onto a second
line by placing dots at the end of the first line (Figure 1-9).

Figure 1-8 Figure 1-9

The option Clear Command Window from the Edit menu (Figure 1-10)
allows you to clear the Command Window. The command clc also
performs this function (Figure 1-11).

Figure 1-10 Figure 1-11

Below is a list of keys, arrows and combinations that can be used in the
Command Window.

You can use MATLAB as a powerful numerical computer. While most
calculators handle numbers only to a preset degree of precision, MATLAB
performs exact calculations to any desired degree of precision. In
addition, unlike calculators, we can perform operations not only with
individual numbers, but also with objects such as arrays.

Most of the topics of classical numerical analysis are treated by this
software. It supports matrix calculus, statistics, interpolation, least squares
fitting, numerical integration, minimization of functions, linear

programming, numerical and algebraic solutions of differential equations
and a long list of further methods that we’ll meet as this book progresses.

Here are some examples of numerical calculations with MATLAB. (As we
know, to obtain the results it is necessary to press Enter once the desired
command has been entered after the prompt ” » “.)

1. We simply calculate 4 + 3 to obtain the result 7. To do this, just type 4
+ 3, and then Enter .

» 4 + 3

ans =

7

2. We find the value of 3 to the power of 100, without having previously
set the precision. To do this we simply enter 3 ^ 100.

» 3 ^ 100

ans =

5. 1538e + 047

3. We can use the command “format long e” to obtain results to 15 digits
(floating-point).

» format long e

» 3^100

ans =

5.153775207320115e+047

4. We can also work with complex numbers. We find the result of the
operation raising (2 + 3i) to the power 10 by typing the expression (2
+ 3i) ^ 10.

» (2 + 3i) ^ 10

ans =

-1 415249999999998e + 005 - 1. 456680000000000e + 005i

5. The previous result is also available in short format, using the “format
short” command.

» format short

» (2 + 3i)^10

ans =

-1.4152e+005- 1.4567e+005i

6. We can calculate the value of the Bessel function J 0 at 11.5. To do
this we type besselj(0,11.5).

besselj(0,11.5)

ans =

 -0.0677

MATLAB perfectly handles symbolic mathematical computations,
manipulating and performing operations on formulae and algebraic
expressions with ease. You can expand, factor and simplify polynomials
and rational and trigonometric expressions, find algebraic solutions of
polynomial equations and systems of equations, evaluate derivatives and
integrals symbolically, find solutions of differential equations, manipulate
powers, and investigate limits and many other features of algebraic series.

To perform these tasks, MATLAB first requires all the variables (or
algebraic expressions) to be written between single quotes. When
MATLAB receives a variable or expression in quotes, it is interpreted as
symbolic.

Here are some examples of symbolic computations with MATLAB.

1. We can expand the following algebraic expression: ((x + 1)(2.4 x +2)
(2.4 x +2) ^ 2)^3. This is done by typing: expand(‘((x + 1)(2.4 . x+2)
(2.4.x+2) ^ 2) ^ 3’). The result will be another algebraic expression:

» syms x; expand(((x + 1) *(x + 2)-(x + 2) ^ 2) ^ 3)

ans =

-x ^ 3-6 * x ^ 2-12 * x-8

2. We can factor the result of the calculation in the above example by
typing: factor(’((x + 1) *(x + 2)-(x + 2) ^ 2) ^ 3’)

» syms x; factor(((x + 1)*(x + 2)-(x + 2)2)3)

ans =

-(x+2)^3

3. We can find the indefinite integral of the function (x ^ 2) sin(x) ^ 2 by
typing: int(x ^ 2 * sin(x) ^ 2, x)

syms x

int(x^2*sin(x)^2,x)

ans =

sin(2x)/8 - (xcos(2x))/4 - (x^2sin(2*x))/4 + x^3/6

4. We can simplify the previous result:

syms x; simplify(int(x^2*sin(x)^2, x))

ans =

sin(2x)/8 -(xcos(2x))/4 -(x^2sin(2*x))/4 + x^3/6

5. We can present the previous result using a more elegant
mathematical notation:

syms x; pretty(simplify(int(x^2*sin(x)^2, x)))

ans =

 2 3

sin(2 x) x cos(2 x) x sin(2 x) x

——– - ———- - ———– + –

 8 4 4 6

7. We can solve the equation 3 ax -7 x ^ 2 + x ^ 3 = 0 (where a is a
parameter):

syms a x

solve(3ax-7*x^2 + x^3 == 0, x)

ans =

 0

7/2 - (49 - 12*a)^(1/2)/2

(49 - 12*a)^(1/2)/2 + 7/2

On the other hand, MATLAB can use the Maple program libraries to work
with symbolic math, and can thus extend its field of action. In this way,
MATLAB can be used to work on such topics as differential forms,
Euclidean geometry, projective geometry, statistics, etc.

At the same time, Maple can also benefit from MATLAB’s powers of
numerical calculation, which might be used, for example, in combination
with the Maple libraries (combinatorics, optimization, number theory, etc.)

MATLAB can generate two- and three-dimensional graphs, as well as
contour and density plots. You can graphically represent data lists,
controlling colors, shading and other graphics features. Animated graphics
are also supported. Graphics produced by MATLAB are portable to other
programs.

Some examples of MATLAB graphics are given below.

1. We can represent the function x sin(1/ x) for x ranging between - /4
and /4, taking 300 equidistant points in the interval. See Figure 1-13.

» x = linspace(-pi/4,pi/4,300);

» y=x.*sin(1./x);

» plot(x,y)

Figure 1-13

2. We can give the above graph a title and label the axes, and we can
add a grid. See Figure 1-14.

» x = linspace(-pi/4,pi/4,300);

» y=x.*sin(1./x);

» plot(x,y);

» grid;

» xlabel(‘Independent variable X’);

» ylabel(‘Dependent variable Y’);

» title(‘The function y=xsin(1/x)’)

Figure 1-14

3. We can generate a graph of the surface defined by the function z =
sin(sqrt(x ^2+ y ^2)) /sqrt(x ^2+ y ^2), where x and y vary over the
interval (- 7.5, 7.5), taking equally spaced points 0.5 apart. See
Figure 1-15.

» x =-7.5:.5:7.5;

» y = x;

» [X, Y] = meshgrid(x,y);

» Z=sin(sqrt(X.2+Y.2))./sqrt(X.2+Y.2);

» surf(X, Y, Z)

Figure 1-15

These 3D graphics allow you to get a clear picture of figures in space, and
are very helpful in visually identifying intersections between different
bodies, and in generating all kinds of space curves, surfaces and volumes
of revolution.

4. We can generate the three dimensional graph corresponding to the
helix with parametric coordinates: x = sin(t), y = cos(t), z = t . See
Figure 1-16.

» t=0:pi/50:10*pi;

» plot3(sin(t),cos(t),t)

Figure 1-17

We can represent a planar curve given by its polar coordinates r = cos(2 t
) * sin(2 t) for t varying in the range between 0 and by equally spaced
points 0.01 apart. See Figure 1-17.

» t = 0:.01:2*pi;

» r = sin(2t).cos(2*t);

» polar(t,r)

Figure 1-17

6. We can make a graph of a symbolic function using the command
“ezplot”. See Figure 1-8.

» y =‘x ^ 3 /(x^2-1)’;

» ezplot(y,[-5,5])

Figure 1-8

We will go into these concepts in more detail in the chapter on graphics.

We have already seen how you can get help using MATLAB’s drop down
menus.

But, in addition, support can also be obtained via commands (instructions
or functions), implemented as MATLAB objects.

You can use the help command to get immediate access to diverse
information.

» help

HELP topics:

matlab - General purpose commands.

matlab - Operators and special characters.

matlab - Programming language constructs.

matlab- Elementary matrices and matrix manipulation.

matlab- Elementary math functions.

matlab- Specialized math functions.

matlab- Matrix functions - numerical linear algebra.

matlab- Data analysis and Fourier transforms.

matlab- Interpolation and polynomials.

matlab- Function functions and ODE solvers.

matlab- Sparse matrices.

matlab 2d - Two dimensional graphs.

matlab 3d - Three dimensional graphs.

matlab- Specialized graphs.

matlab - Handle Graphics.

matlab- Graphical user interface tools.

matlab- Character strings.

matlab- File input/output.

matlab- Time and dates.

matlab - Data types and structures.

matlab - Windows Operating System Interface Files(DDE/ActiveX)

matlab - Examples and demonstrations.

toolbox - Symbolic Math Toolbox.

toolbox - MATLAB Tour

toolbox - Preferences .

For more help on directory/topic, type “help topic”.

As we can see, the help command displays a list of program directories
and their contents. Help on any given topic topic can be displayed using
the command help topic . For example:

» help inv

INV Matrix inverse.

INV(X) is the inverse of the square matrix X.

A warning message is printed if X is badly scaled or

nearly singular.

See also SLASH, PINV, COND, CONDEST, NNLS, LSCOV.

Overloaded methods

help sym/inv.m

» help matlab

Elementary math functions.

Trigonometric.

sin - Sine.

sinh - Hyperbolic sine.

asin - Inverse sine.

asinh - Inverse hyperbolic sine.

cos - Cosine.

cosh - Hyperbolic cosine.

acos - Inverse cosine.

acosh - Inverse hyperbolic cosine.

tan - Tangent.

tanh - Hyperbolic tangent.

atan - Inverse tangent.

atan2 - Four quadrant inverse tangent.

atanh - Inverse hyperbolic tangent.

sec - Secant.

sech - Hyperbolic secant.

asec - Inverse secant.

asech - Inverse hyperbolic secant.

csc - Cosecant.

csch - Hyperbolic cosecant.

acsc - Inverse cosecant.

acsch - Inverse hyperbolic cosecant.

cot - Cotangent.

coth - Hyperbolic cotangent.

acot - Inverse cotangent.

acoth - Inverse hyperbolic cotangent.

Exponential.

exp - Exponential.

log - Natural logarithm.

log10 - Common(base 10) logarithm.

log2 - Base 2 logarithm and dissect floating point number.

pow2 - Base 2 power and scale floating point number.

sqrt - Square root.

nextpow2 - Next higher power of 2.

Complex.

abs - Absolute value.

angle - Phase angle.

conj - Complex conjugate.

imag - Complex imaginary part.

real - Complex real part.

unwrap - Unwrap phase angle.

isreal - True for real array.

cplxpair - Sort numbers into complex conjugate pairs.

Rounding and remainder.

fix - Round towards zero.

floor - Round towards minus infinity.

ceil - Round towards plus infinity.

round - Round towards nearest integer.

mod - Modulus(signed remainder after division).

rem - Remainder after division.

sign - Signum.

There is a command for help on a certain sequence of characters (lookfor
string) which allows you to find all those functions or commands that
contain or refer to the given string string . This command is very useful
when there is no direct support for the specified string, or if you want to
view the help for all commands related to the given sequence. For
example, if we seek help for all commands that contain the sequence
complex , we can use the lookfor complex command to see which
commands MATLAB provides.

» lookfor complex

ctranspose.m : %’ Complex conjugate transpose.

CONJ Complex conjugate.

CPLXPAIR Sort numbers into complex conjugate pairs.

IMAG Complex imaginary part.

REAL Complex real part.

CDF2RDF Complex diagonal form to real block diagonal form.

RSF2CSF Real block diagonal form to complex diagonal form.

B5 ODE Stiff problem, linear with complex eigenvalues(B5 of EHL).

CPLXDEMO Maps of functions of a complex variable.

CPLXGRID Polar coordinate complex grid.

CPLXMAP Plot a function of a complex variable.

GRAFCPLX Demonstrates complex function plots in MATLAB.

ctranspose.m: %TRANSPOSE Symbolic matrix complex conjugate
transpose.

SMOKE Complex matrix with a “smoke ring” pseudospectrum.

By properly combining all the objects defined in MATLAB, according to the
rules of syntax of the program, you can build useful mathematical

programming code. Programs usually consist of a series of instructions in
which values are calculated, are assigned names and are reused in
further calculations.

As in programming languages like C or FORTRAN, in MATLAB you can
write programs with loops, control flow and conditionals. MATLAB can
write procedural programs, i.e., it can define a sequence of standard steps
to run. As in C or Pascal, a Do, For, or While loop can be used for
repetitive calculations. The language of MATLAB also includes conditional
constructs such as If–Then–Else. MATLAB also supports different logical
operators, such as AND, OR, NOT and XOR.

MATLAB supports procedural programming (with iterative processes,
recursive functions, loops, etc.), functional programming and object-
oriented programming. Here are two simple examples of programs. The
first generates the Hilbert matrix of order n , and the second calculates all
the Fibonacci numbers less than 1000.

% Generating the Hilbert matrix of order n

t = ‘1/(i+j-1)’;

for i = 1:n

for j = 1:n

a(i,j) = eval(t);

end

end

% Calculating the Fibonacci numbers

f = [1 1]; i = 1;

while f(i) + f(i-1) < 1000

f(i+2) = f(i) + f(i+1);

i = i+1

end

Chapter 2.

MATLAB language elements. variableS, numbers, operators and
functionS

MATLAB does not require a command to declare variables. A variable is
created simply by directly allocating a value to it. For example:

v = 3

v =

3

The variable v will take the value 3 and using a new mapping will not
change its value. Once the variable is declared, we can use it in
calculations.

v^3

ans =

27

v+5

ans =

8

The value assigned to a variable remains fixed until it is explicitly changed
or if the current MATLAB session is closed.

If we now write:

v = 3 + 7

v =

10

then the variable v has the value 10 from now on, as shown in the
following calculation:

v^4

ans =

10000

A variable name must begin with a letter followed by any number of
letters, digits or underscores. However, bear in mind that MATLAB uses
only the first 31 characters of the name of the variable. It is also very
important to note that MATLAB is case sensitive. Therefore, a variable
named with uppercase letters is different to the variable with the same
name except in lowercase letters.

A vector variable of n elements can be defined in MATLAB in the following
ways:

V = [v1, v2, v3,…, vn]

V = [v1 v2 v3… vn]

When most MATLAB commands and functions are applied to a vector
variable the result is understood to be that obtained by applying the
command or function to each element of the vector:

vector1 = [1,4,9,2.25,1/4]

vector1 =

1.0000 4.0000 9.0000 2.2500 0.2500

sqrt(vector1)

ans =

1.0000 2.0000 3.0000 1.5000 0.5000

The following table presents some alternative ways of defining a vector
variable without explicitly bracketing all its elements together, separated
by commas or blank spaces.

Below are some examples:

vector2 = [5:5:25]

vector2 =

5 10 15 20 25

This yields the numbers between 5 and 25, inclusive, separated by 5
units.

vector3=[10:30]

vector3 =

Columns 1 through 13

10 11 12 13 14 15 16 17 18 19 20 21 22

Columns 14 through 21

23 24 25 26 27 28 29 30

This yields the numbers between 10 and 30, inclusive, separated by a
unit.

t:Microsoft.WindowsMobile.DirectX.Vector4 = linspace (10,30,6)

t:Microsoft.WindowsMobile.DirectX.Vector4 =

10 14 18 22 26 30

This yields 6 equally spaced numbers between 10 and 30, inclusive.

vector5 = logspace(10,30,6)

vector5 =

1. 0e + 030 *

0.0000 0.0000 0.0000 0.0000 0.0001 1.0000

This yields 6 evenly logarithmically spaced numbers between 10 ¹⁰ and 10
³⁰ , inclusive.

One can also consider row vectors and column vectors in MATLAB. A
column vector is obtained by separating its elements by semicolons, or by
transposing a row vector using a single quotation mark at the end of its
definition.

a=[10;20;30;40]

a =

10

20

30

40

a=(10:14);b=a’

b =

10

11

12

13

14

c=(a’)’

c =

10 11 12 13 14

You can also select an element of a vector or a subset of elements. The
rules are summarized in the following table:

Here are some examples:

x =(1:10)

x =

1 2 3 4 5 6 7 8 9 10

x (6)

ans =

6

This yields the sixth element of the vector x.

x(4:7)

ans =

4 5 6 7

This yields the elements of the vector x located between the fourth and
seventh elements, inclusive.

x(2:3:9)

ans =

2 5 8

This yields the three elements of the vector x located between the second
and ninth elements, inclusive, but separated in steps of three units.

x(9:-3:2)

ans =

9 6 3

This yields the three elements of the vector x located between the ninth
and second elements, inclusive, but separated in steps of three units and
starting at the ninth.

MATLAB defines arrays by inserting in brackets all its row vectors
separated by a semicolon . Vectors can be entered by separating their
components by spaces or by commas, as we already know. For example,
a 3 × 3 matrix variable can be entered in the following two ways:

M = [a 11 a 12 a 13 ;a 21 a 22 a 23 ;a 31 a 32 a 33]

M = [a 11 ,a 12 ,a 13 ;a 21 ,a 22 ,a 23 ;a 31 ,a 32 ,a 33]

Similarly we can define an array of variable dimension (M×N) . Once a
matrix variable has been defined, MATLAB enables many ways to insert,
extract, renumber, and generally manipulate its elements. The following
table shows different ways to define matrix variables.

Here are some examples:

We consider first the 2 × 3 matrix whose rows are the first six consecutive
odd numbers:

A = [1 3 5; 7 9 11]

A =

1 3 5

7 9 11

Now we are going to change the (2,3)-th element, i.e. the last element of
A , to zero:

A(2,3) = 0

A =

1 3 5

7 9 0

We now define the matrix B to be the transpose of A :

B = A’

B =

1 7

3 9

5 0

We now construct a matrix C , formed by attaching the identity matrix of
order 3 to the right of the matrix B :

C = [B eye(3)]

C =

1 7 1 0 0

3 9 0 1 0

5 0 0 0 1

We are going to build a matrix D by extracting the odd columns of the
matrix C , a matrix E formed by taking the intersection of the first two rows
of C and its third and fifth columns, and a matrix F formed by taking the
intersection of the first two rows and the last three columns of the matrix C
:

D = C(:,1:2:5)

D =

1 1 0

3 0 0

5 0 1

E = C([1 2],[3 5])

E =

1 0

0 0

F = C([1 2],3:5)

F =

1 0 0

0 1 0

Now we build the diagonal matrix G such that the elements of the main
diagonal are the same as those of the main diagonal of D :

G=diag(diag(D))

G =

1 0 0

0 0 0

0 0 1

We then build the matrix H , formed by taking the intersection of the first
and third rows of C and its second, third and fifth columns:

H = C([1 3],[2 3 5])

H =

7 1 0

0 0 1

Now we build an array I formed by the identity matrix of order 5 × 4 ,
appending the zero matrix of the same order to its right and to the right of

that the unit matrix, again of the same order. Then we extract the first row
of I and, finally, form the matrix J comprising the odd rows and even
columns of I and calculate its order (size).

I = [eye(5,4) zeros(5,4) ones(5,4)]

ans =

1 0 0 0 0 0 0 0 1 1 1 1

0 1 0 0 0 0 0 0 1 1 1 1

0 0 1 0 0 0 0 0 1 1 1 1

0 0 0 1 0 0 0 0 1 1 1 1

0 0 0 0 0 0 0 0 1 1 1 1

I(1,:)

ans =

1 0 0 0 0 0 0 0 1 1 1 1

J=I(1:2:5,2:2:12)

J =

0 0 0 0 1 1

0 0 0 0 1 1

0 0 0 0 1 1

size(J)

ans =

3 6

We now construct a random matrix K of order 3 ×4 , reverse the order of
the rows of K , reverse the order of the columns of K and then perform

both operations simultaneously. Finally, we find the matrix L of order 4 × 3
whose columns are obtained by taking the elements of K sequentially by
columns.

K=rand(3,4)

K =

0.5269 0.4160 0.7622 0.7361

0.0920 0.7012 0.2625 0.3282

0.6539 0.9103 0.0475 0.6326

K(3:-1:1,:)

ans =

0.6539 0.9103 0.0475 0.6326

0.0920 0.7012 0.2625 0.3282

0.5269 0.4160 0.7622 0.7361

K(:,4:-1:1)

ans =

0.7361 0.7622 0.4160 0.5269

0.3282 0.2625 0.7012 0.0920

0.6326 0.0475 0.9103 0.6539

K(3:-1:1,4:-1:1)

ans =

0.6326 0.0475 0.9103 0.6539

0.3282 0.2625 0.7012 0.0920

0.7361 0.7622 0.4160 0.5269

L=reshape(K,4,3)

L =

0.5269 0.7012 0.0475

0.0920 0.9103 0.7361

0.6539 0.7622 0.3282

0.4160 0.2625 0.6326

A character variable (chain) is simply a character string enclosed in single
quotes that MATLAB treats as a vector form. The general syntax for
character variables is as follows:

c = ‘string’

Among the MATLAB commands that handle character variables we have
the following:

Here are some examples:

hex2dec(‘3ffe56e’)

ans =

67102062

Here MATLAB has converted a hexadecimal string into a decimal number.

dec2hex(1345679001)

ans =

50356E99

The program has converted a decimal number into a hexadecimal string.

sprintf(‘%f’,[1+sqrt(5)/2,pi])

ans =

2.118034 3.141593

The exact numerical components of a vector have been converted to
strings (with default precision).

sscanf(‘121.00012’, ‘%f’)

ans =

121.0001

Here a numeric string has been passed to an exact numerical format (with
default precision).

num2str(pi)

ans =

3.142

The constant has been converted into a string.

str2num(‘15/14’)

ans =

1.0714

The string has been converted into a numeric value with default precision.

setstr(32:126)

ans =

!“#$% &’ () * +, -. / 0123456789:; < = >?
@ABCDEFGHIJKLMNOPQRSTUVWXYZ [] ^
_’abcdefghijklmnopqrstuvwxyz {|}~

This yields the ASCII characters associated with the whole numbers
between 32 and 126, inclusive.

abs(‘{]}><#¡¿?ºª’)

ans =

123 93 125 62 60 35 161 191 63 186 170

This yields the integers corresponding to the ASCII characters specified in
the argument of abs .

lower(‘ABCDefgHIJ’)

ans =

abcdefghij

The text has been converted to lowercase.

upper(‘abcd eFGHi jKlMn’)

ans =

ABCD EFGHI JKLMN

The text has been converted to uppercase.

str2mat(‘The world’,’ The country’,’ Daily 16’, ’ ABC’)

ans =

The world

The country

Daily 16

ABC

The chains comprising the arguments of str2mat have been converted to
a text array.

disp(‘This text will appear on the screen’)

ans =

This text will appear on the screen

Here the argument of the command disp has been displayed on the
screen.

c = ‘This is a good example’;

strrep(c, ‘good’, ‘bad’)

ans =

This is a bad example

The string good has been replaced by bad in the chain c. The following
instruction locates the initial position of each occurrence of is within the
chain c .

findstr(c, ‘is’)

ans =

3 6

In MATLAB the arguments of a function can take many different forms,
including different types of numbers and numerical expressions, such as
integers and rational, real and complex numbers.

Arithmetic operations in MATLAB are defined according to the standard
mathematical conventions. MATLAB is an interactive program that allows
you to perform a simple variety of mathematical operations. MATLAB
assumes the usual operations of sum, difference, product, division and
power, with the usual hierarchy between them:

To add two numbers simply enter the first number, a plus sign (+) and the
second number. Spaces may be included before and after the sign to
ensure that the input is easier to read.

2 + 3

ans =

5

We can perform power calculations directly.

100^50

ans =

1. 0000e + 100

Unlike a calculator, when working with integers, MATLAB displays the full
result even when there are more digits than would normally fit across the
screen. For example, MATLAB returns the following value of 99 ^ 50 when
using the vpa function (here to the default accuracy of 32 significant
figures).

vpa ‘99^50’

ans =

. 60500606713753665044791996801256e100

To combine several operations in the same instruction one must take into
account the usual priority criteria among them, which determine the order
of evaluation of the expression. Consider, for example:

23^2+(5-2)3

ans =

27

Taking into account the priority of operators, the first expression to be
evaluated is the power 3 ^ 2 . The usual evaluation order can be altered
by grouping expressions together in parentheses.

In addition to these arithmetic operators, MATLAB is equipped with a set
of basic functions and you can also define your own functions. MATLAB
functions and operators can be applied to symbolic constants or numbers.

One of the basic applications of MATLAB is its use in realizing arithmetic
operations as if it were a conventional calculator, but with one important
difference: the precision of the calculation. Operations are performed to
whatever degree of precision the user desires. This unlimited precision in
calculation is a feature which sets MATLAB apart from other numerical

calculation programs, where the accuracy is determined by a word length
inherent to the software, and cannot be modified.

The accuracy of the output of MATLAB operations can be relaxed using
special approximation techniques which are exact only up to a certain
specified degree of precision. MATLAB represents results with accuracy,
but even if internally you are always working with exact calculations to
prevent propagation of rounding errors, different approximate
representation formats can be enabled, which sometimes facilitate the
interpretation of the results. The commands that allow numerical
approximation are the following:

Using format gives a numerical approximation of 174/13 in the way
specified after the format command:

174/13

ans =

13.3846

format long; 174/13

ans =

13.38461538461539

format long e; 174/13

ans =

1.338461538461539e + 001

format short e; 174/13

ans =

1.3385e + 001

format long g; 174/13

ans =

13.3846153846154

format short g; 174/13

ans =

13.385

format bank; 174/13

ans =

13.38

format hex; 174/13

ans =

402ac4ec4ec4ec4f

Now we will see how the value of sqrt (17) can be calculated to any
precision that we desire:

vpa ‘174/13’ 10

ans =

13.38461538

vpa ‘174/13’ 15

ans =

13.3846153846154

digits(20); vpa ‘174/13’

ans =

13.384615384615384615

In MATLAB all common operations with whole numbers are exact,
regardless of the size of the output. If we want the result of an operation

to appear on screen to a certain number of significant figures, we use the
symbolic computation command vpa (variable precision arithmetic),
whose syntax we already know.

For example, the following calculates 6^400 to 450 significant figures:

vpa ‘6^400’ 450

ans =

0.

The result of the operation is precise, always displaying a point at the end
of the result. In this case it turns out that the answer has fewer than 450
digits anyway, so the solution is exact. If you require a smaller number of
significant figures, that number can be specified and the result will be
rounded accordingly. For example, calculating the above power to only 50
significant figures we have:

vpa ‘6^400’ 450

ans =

. 18217977168218728251394687124089371267338971528175e312

There are several functions in MATLAB with integer arguments, the
majority of which are related to divisibility. Among the most typical
functions with integer arguments are the following:

Below are some examples.

The remainder of division of 17 by 3:

rem (17,3)

ans =

2

The remainder of division of 4.1 by 1.2:

rem(4.1,1.2)

ans =

0.5000

The remainder of division of -4.1 by 1.2:

rem(-4.1,1.2)

ans =

-0.5000

The greatest common divisor of 1000, 500 and 625:

gcd(1000, gcd(500,625))

ans =

125.00

The least common multiple of 1000, 500 and 625:

lcm(1000,lcm(500,625))

ans =

5000.00

MATLAB allows you to work with numbers to any base, as long as the
extended symbolic math Toolbox is available. It also allows you to express
all kinds of numbers in different bases. This is implemented via the
following functions:

Below are some examples.

Represent in base 10 the base 2 number 100101.

base2dec(‘100101’,2)

ans =

37.00

Represent in base 10 the hexadecimal number FFFFAA00.

base2dec(‘FFFFAA0’, 16)

ans =

268434080.00

Represent the result of the base 16 operation FFFAA2+FF-1 in base 10.

base2dec(‘FFFAA2’,16) + base2dec(‘FF’,16)-1

ans =

16776096.00

As is well known, the set of real numbers is the disjoint union of the set of
rational numbers and the set of irrational numbers. A rational number is a
number of the form p/q , where p and q are integers. In other words, the
rational numbers are those numbers that can be represented as a
quotient of two integers. The way in which MATLAB treats rational
numbers differs from the majority of calculators. If we ask a calculator to
calculate the sum 1/2 + 1/3 + 1/4 , most will return something like 1.0833 ,
which is no more than an approximation of the result.

The rational numbers are ratios of integers, and MATLAB can work with
them in exact mode, so the result of an arithmetic expression involving
rational numbers is always given precisely as a ratio of two integers. To
enable this, activate the rational format with the command format rat . If
the reader so wishes, MATLAB can also return the results in decimal form
by activating any other type of format instead (e.g. format short or format
long). MATLAB evaluates the above mentioned sum in exact mode as
follows:

format rat

1/2 + 1/3 + 1/4

ans =

13/12

Unlike calculators, MATLAB ensures its operations with rational numbers
are accurate by maintaining the rational numbers in the form of ratios of
integers. In this way, calculations with fractions are not affected by
rounding errors, which can become very serious, as evidenced by the
theory of errors. Note that, once the rational format is enabled, when
MATLAB adds two rational numbers the result is returned in symbolic form
as a ratio of integers, and operations with rational numbers will continue to
be exact until an alternative format is invoked.

A floating point number, or a number with a decimal point, is interpreted
as exact if the rational format is enabled. Thus a floating point expression
will be interpreted as an exact rational expression while any irrational
numbers in a rational expression will be represented by an appropriate
rational approximation.

format rat

10/23 + 2.45/44

ans =

1183 / 2412

The other fundamental subset of the real numbers is the set of irrational
numbers, which have always created difficulties in numerical calculation
due to their special nature. The impossibility of representing an irrational
number accurately in numeric mode (using the ten digits from the decimal
numbering system) is the cause of most of the problems. MATLAB
represents the results with an accuracy which can be set as required by
the user. An irrational number, by definition, cannot be represented
exactly as the ratio of two integers. If ordered to calculate the square root
of 17, by default MATLAB returns the number 5.1962.

sqrt(27)

ans =

5.1962

MATLAB incorporates the following common irrational constants and
notions:

The following examples illustrate how MATLAB outputs these numbers
and notions.

long format

pi

ans =

3.14159265358979

exp(1)

ans =

2.71828182845905

1/0

Warning: Divide by zero.

ans =

Inf

0/0

Warning: Divide by zero.

ans =

NaN

realmin

ans =

2. 225073858507201e-308

realmax

ans =

1. 797693134862316e + 308

The disjoint union of the set of rational numbers and the set of irrational
numbers is the set of real numbers. In turn, the set of rational numbers
has the set of integers as a subset. All functions applicable to real
numbers are also valid for integers and rational numbers. MATLAB
provides a full range of predefined functions, most of which are discussed
in the subsequent chapters of this book. Within the group of functions with
real arguments offered by MATLAB, the following are the most important:

Trigonometric functions

Hyperbolic functions

Exponential and logarithmic functions

Numeric variable-specific functions

Here are some examples:

sin(pi/2)

ans =

1

asin(1)

ans =

1.57079632679490

log(exp(1)^3)

ans =

3.00000000000000

The function round is demonstrated in the following two examples:

round(2.574)

ans =

3

round(2.4)

ans =

2

The function ceil is demonstrated in the following two examples:

ceil(4.2)

ans =

5

ceil(4.8)

ans =

5

The function floor is demonstrated in the following two examples:

floor(4.2)

ans =

4

floor(4.8)

ans =

4

The fix function simply removes the fractional part of a real number:

» fix(5.789)

ans =

5

Operations on complex numbers are well implemented in MATLAB.
MATLAB follows the convention that i or j represents the key value in
complex analysis, the imaginary number - 1 . All the usual arithmetic
operators can be applied to complex numbers, and there are also some
specific functions which have complex arguments. Both the real and the
imaginary part of a complex number can be a real number or a symbolic
constant, and operations with them are always performed in exact mode,
unless otherwise instructed or necessary, in which case an approximation
of the result is returned. As the imaginary unit is represented by the
symbol i or j , the complex numbers are expressed in the form a+bi or
a+bj . Note that you don’t need to use the product symbol (asterisk) before
the imaginary unit:

(1-5i)*(1-i)/(-1+2i)

ans =

-1.6000 + 2.8000i

format rat

(1-5i)*(1-i)/(-1+2i)

ans =

-8/5 + 14/5i

Working with complex variables is very important in mathematical analysis
and its many applications in engineering. MATLAB implements not only
the usual arithmetic operations with complex numbers, but also various
complex functions. The most important functions are listed below.

Trigonometric functions

Hyperbolic functions

Exponential and logarithmic functions

Specific functions for the real and imaginary part

Specific functions for complex numbers

Below are some examples of operations with complex numbers.

round(1.5-3.4i)

ans =

2 - 3i

real(i^i)

ans =

0.2079

(2+2i)2/(-3-3sqrt(3)i)90

ans =

0502e-085 - 1 + 7. 4042e-070i

sin(1 + i)

ans =

1.2985 + 0. 6350i

MATLAB easily handles vector and matrix calculus. Indeed, its name,
MAtrix LABoratory , already gives an idea of its power in working with
vectors and matrices. MATLAB allows you to work with functions of a
complex variable, but in addition this variable can even be a vector or a
matrix. Below is a table of functions with complex vector arguments.

These functions also support a complex matrix as an argument, in which
case the result is a vector of column vectors whose components are the
results of applying the function to each column of the matrix.

Here are some examples:

V = 2:7, W = [5 + 3i 2-i 4i]

V =

2 3 4 5 6 7

W =

2.0000 - 1.0000i 0 + 4.0000i 5.0000 + 3.0000i

diff(V),diff(W)

ans =

1 1 1 1 1

ans =

-2.0000 + 5.0000i 5.0000 - 1.0000i

cumprod(V),cumsum(V)

ans =

2 6 24 120 720 5040

ans =

2 5 9 14 20 27

cumsum(W), mean(W), std(W), sort(W), sum(W)

ans =

2.0000 - 1.0000i 2.0000 + 3.0000i 7.0000 + 6.0000i

ans =

2.3333 + 2.0000i

ans =

3.6515

ans =

2.0000 - 1.0000i 0 + 4.0000i 5.0000 + 3.0000i

ans =

7.0000 + 6.0000i

mean(V), std(V), sort(V), sum(V)

ans =

4.5000

ans =

1.8708

ans =

2 3 4 5 6 7

ans =

27

fft(W), ifft(W), fft2(W)

ans =

7.0000 + 6.0000i 0.3660 - 0.1699i - 1.3660 - 8.8301i

ans =

2.3333 + 2.0000i - 0.4553 - 2.9434i 0.1220 - 0.0566i

ans =

7.0000 + 6. 0000i 0.3660 - 0. 1699 i - 1.3660 - 8. 8301i

Here are some examples :

A=[7 8 9; 1 2 3; 4 5 6], B=[1+2i 3+i;4+i,i]

A =

7 8 9

1 2 3

4 5 6

B =

1.0000 + 2.0000i 3.0000 + 1.0000i

4.0000 + 1.0000i 0 + 1.0000i

sin(A), sin(B), exp(A), exp(B), log(B), sqrt(B)

ans =

0.6570 0.9894 0.4121

0.8415 0.9093 0.1411

-0.7568 -0.9589 -0.2794

ans =

3.1658 + 1.9596i 0.2178 - 1.1634i

-1.1678 - 0.7682i 0 + 1.1752i

ans =

1.0e+003 *

1.0966 2.9810 8.1031

0.0027 0.0074 0.0201

0.0546 0.1484 0.4034

ans =

-1.1312 + 2.4717i 10.8523 +16.9014i

29.4995 +45.9428i 0.5403 + 0.8415i

ans =

0.8047 + 1.1071i 1.1513 + 0.3218i

1.4166 + 0.2450i 0 + 1.5708i

ans =

1.2720 + 0.7862i 1.7553 + 0.2848i

2.0153 + 0.2481i 0.7071 + 0.7071i

The exponential functions, square root and logarithm used above apply to
the array elementwise and have nothing to do with the matrix exponential
and logarithmic functions that are used below.

expm(B), logm(A), abs(B), imag(B)

ans =

-27.9191 +14.8698 i - 20.0011 +12.0638i

-24.7950 + 17.6831i -17.5059 + 14.0445i

ans =

11.9650 12.8038 -19.9093

-21.7328 -22. 1157 44.6052

11.8921 12.1200 -21.2040

ans =

2.2361 3.1623

4.1231 1.0000

ans =

2 1

1 1

fix(sin(B)), ceil(log(A)), sign(B), rem(A,3*ones(3))

ans =

3.0000 + 1.0000i 0 - 1.0000i

-1.0000 0 + 1.0000i

ans =

2 3 3

0 1 2

2 2 2

ans =

0.4472 + 0.8944i 0.9487 + 0.3162i

0.9701 + 0.2425i 0 + 1.0000i

ans =

1 2 0

1 2 0

1 2 0

MATLAB can easily generate (pseudo) random numbers. The function
rand generates uniformly distributed random numbers and the function
randn generates normally distributed random numbers. The most
interesting features of MATLAB’s random number generator are presented
in the following table.

Here are some examples:

[rand, rand(1), randn, randn(1)]

ans =

0.9501 0.2311 -0.4326 -1.6656

[rand(2), randn(2)]

ans =

0.6068 0.8913 0.1253 -1.1465

0.4860 0.7621 0.2877 1.1909

[rand(2,3), randn(2,3)]

ans =

0.3529 0.0099 0.2028 -0.1364 1.0668 -0.0956

0.8132 0.1389 0.1987 0.1139 0.0593 -0.8323

MATLAB features arithmetic, logical, relational, conditional and structural
operators.

There are two types of arithmetic operators in MATLAB: matrix arithmetic
operators, which are governed by the rules of linear algebra, and
arithmetic operators on vectors, which are performed elementwise. The
operators involved are presented in the following table.

Simple mathematical operations between scalars and vectors apply the
scalar to all elements of the vector according to the defined operation, and
simple operators between vectors are performed element by element.
Below is the specification of these operators:

It must be borne in mind that the vectors must be of the same length and
that in the product, quotient and power the first operand must be followed
by a point.

The following example involves all of the above operators.

X = [5,4,3]; Y = [1,2,7]; a = X + Y, b = X-Y, c = x * Y, d = 2.*X, e =
2./X, f = 2., g = X./Y, h =1., i = x^2, j = 2.^X, k = X.^ Y

a =

6 6 10

b =

4 2 -4

c =

5 8 21

d =

10 8 6

e =

0.4000 0.5000 0.6667

f =

0.5000 1.0000 3.5000

g =

5.0000 2.0000 0.4286

h =

5.0000 2.0000 0.4286

i =

25 16 9

j =

32 16 8

k =

5 16 2187

The above operations are all valid since in all cases the variable operands
are of the same dimension, so the operations are successfully carried out
element by element. For the sum and the difference there is no distinction
between vectors and matrices, as the operations are identical in both
cases.

The most important operators for matrix variables are specified below:

Here are some examples:

X = [5,4,3]; Y = [1,2,7]; l = X’Y, m = XY’, n = 2*X, o = X/Y, p = Y

l =

5 10 35

4 8 28

3 6 21

m =

34

n =

10 8 6

o =

0.6296

p =

0 0 0

0 0 0

0.7143 0.5714 0.4286

All of the above matrix operations are well defined since the dimensions of
the operands are compatible in every case. We must not forget that a

vector is a particular case of matrix, but to operate with it in matrix form
(not element by element), it is necessary to respect the rules of
dimensionality for matrix operations. For example, the vector operations
X. ’ * Y and X.Y’ make no sense, since they involve vectors of different
dimensions. Similarly, the matrix operations X Y , 2/X , 2, X ^ 2 , 2 ^ X and
X ^ Y make no sense, again because of a conflict of dimensions in the
arrays.

Here are some more examples of matrix operators.

M = [1,2,3;1,0,2;7,8,9]

M =

1 2 3

1 0 2

7 8 9

B = inv(M), C = M^2, D = M^1/2), E = 2^M

B =

-0.8889 0.3333 0.2222

0.2778 -0.6667 0.0556

0.4444 0.3333 -0.1111

C =

24 26 34

15 18 21

78 86 118

D =

0.5219 + 0.8432i 0.5793 - 0.0664i 0.7756 - 0.2344i

0.3270 + 0.0207i 0.3630 + 1.0650i 0.4859 - 0.2012i

1.7848 - 0.5828i 1.9811 - 0.7508i 2.6524 + 0.3080i

E =

1. 0e + 003 *

0.8626 0.9568 1.2811

0.5401 0.5999 0.8027

2.9482 3.2725 4.3816

MATLAB also provides relational operators. Relational operators perform
element by element comparisons between two matrices and return an
array of the same size whose elements are zero if the corresponding
relationship is true, or one if the corresponding relation is false. The
relational operators can also compare scalars with vectors or matrices, in
which case the scalar is compared to all the elements of the array. Below
is a table of these operators.

MATLAB provides symbols to denote logical operators. The logical
operators shown in the following table offer a way to combine or negate
relational expressions.

Here are some examples:

A = 2:7;P =(A>3)&(A<6)

P =

0 0 1 1 0 0

Returns 1 when the corresponding element of A is greater than 3 and less
than 6, and returns 0 otherwise.

X = 3*ones(3,3); X>=[7 8 9; 4 5 6 ; 1 2 3]

ans =

0 0 0

0 0 0

1 1 1

The elements of the solution array corresponding to those elements of X
which are greater than or equal to the equivalent entry of the matrix [7 8 9;
4 5 6; 1 2 3] are assigned the value 1. The remaining elements are
assigned the value 0.

MATLAB implements logical functions whose output can take the value
true (1) or false (0). The following table shows the most important logical
functions.

Below are some examples using the above defined logical functions.

V=[1,2,3,4,5,6,7,8,9], isprime(V), isnumeric(V), all(V), any(V)

V =

1 2 3 4 5 6 7 8 9

ans =

0 1 1 0 1 0 1 0 0

ans =

1

ans =

1

ans =

1

B=[Inf, -Inf, pi, NaN], isinf(B), isfinite(B), isnan(B), isreal(B)

B =

Inf - Inf 3.1416 NaN

ans =

1 1 0 0

ans =

0 0 1 0

ans =

0 0 0 1

ans =

1

ismember([1,2,3], [8,12,1,3]), A = [2,0,1];B = [4,0,2]; isequal(2*A,
B)

ans =

1 0 1

ans =

1

Exercise 2-1. Find the number of ways of choosing 12 elements from 30
without repetition, the remainder of the division of 2 ¹³⁴ by 3, the prime
decomposition of 18900, the factorial of 200 and the smallest number N
which when divided by 16,24,30 and 32 leaves remainder 5.

factorial(30)/(factorial(12)*factorial(30-12))

ans =

8.6493e + 007

The command vpa is used to present the exact result.

vpa ’factorial(30)/(factorial(12)*factorial(30-12))’

ans =

3225.

rem(2^134,3)

ans =

0

factor(18900)

ans =

2 2 3 3 3 5 5 7

factorial(100)

ans =

9. 3326e + 157

The command vpa is used to present the exact result.

vpa ‘factorial(100)’ 160

ans =

0.

N-5 is the least common multiple of 16, 24, 30 and 32.

lcm(lcm(16.24),lcm(30,32))

ans =

480

Then N = 480 + 5 = 485.

Exercise 2-2. In base 5 find the result of the operation defined by a25aaff6
16 + 6789aba 12 + 35671 8 + 1100221 3 - 1250. In base 13 find the

result of the operation (666551 7)* (aa199800a 11) +(fffaaa125 16) /
(33331 4 + 6).

The result of the first operation in base 10 is calculated as follows:

base2dec(‘a25aaf6’,16) + base2dec(‘6789aba’,12) +…

base2dec(‘35671’,8) + base2dec(‘1100221’,3)-1250

ans =

190096544

We then convert this to base 5:

dec2base(190096544,5)

ans =

342131042134

Thus, the final result of the first operation in base 5 is 342131042134.

The result of the second operation in base 10 is calculated as follows:

base2dec(‘666551’,7)*base2dec(‘aa199800a’,11) +…

79*base2dec(‘fffaaa125’,16)/(base2dec(‘33331’, 4) + 6)

ans =

2. 7537e + 014

We now transform the result obtained into base 13.

dec2base(275373340490852,13)

ans =

BA867963C1496

Exercise 2-3. In base 13, find the result of the following operation:

(666551 7)* (aa199800a 11) + (fffaaa125 16) / (33331 4 + 6).

First, we perform the operation in base 10:

A more direct way of doing all of the above is:

base2dec(‘666551’,7)*base2dec(‘aa199800a’,11) + …

79*base2dec(‘fffaaa125’,16)/(base2dec(‘33331’, 4) + 6)

ans =

2. 753733404908515e + 014

We now transform the result obtained into base 13.

dec2base(275373340490852,13)

ans =

BA867963C1496

Exercise 2-4. Given the complex numbers X = 2 + 2i and Y=-3-33 i ,
calculate Y ³ X ² /Y ⁹⁰ , Y ¹/ ² ,Y ³/² and ln (X).

X=2+2i; Y=-3-3sqrt(3)*i;

Y^3

ans =

216

X2/Y90

ans =

050180953422426e-085 - 1 + 7. 404188256695968e-070i

sqrt(Y)

ans =

1.22474487139159 - 2.12132034355964i

sqrt(Y^3)

ans =

14.69693845669907

log(X)

ans =

1.03972077083992 + 0.78539816339745i

Exercise 2-5. Calculate the value of the following operations with complex
numbers:

(i8-i(-8))/(3-4*i) + 1

ans =

1

i^(sin(1+i))

ans =

-0.16665202215166 + 0.32904139450307i

(2+log(i))^(1/i)

ans =

1.15809185259777 - 1.56388053989023i

(1+i)^i

ans =

0.42882900629437 + 0.15487175246425i

i^(log(1+i))

ans =

0.24911518828716 + 0.15081974484717i

(1+sqrt(3)*i)^(1-i)

ans =

5.34581479196611 + 1. 97594883452873i

Exercise 2-6. Calculate the real part, imaginary part, modulus and
argument of each of the following expressions:

Z1=i3i;Z2=(1+sqrt(3)i)(1-i);Z3=(ii)i ;Z4=i^i

format short

real([Z1 Z2 Z3 Z4])

ans =

1.0000 5.3458 0.0000 0.2079

imag([Z1 Z2 Z3 Z4])

ans =

0 1.9759 - 1.0000 0

abs([Z1 Z2 Z3 Z4])

ans =

1.0000 5.6993 1.0000 0.2079

angle([Z1 Z2 Z3 Z4])

ans =

0 0.3541 - 1.5708 0

Exercise 2-7. Generate a square matrix of order 4 whose elements are
uniformly distributed random numbers from [0,1]. Generate another
square matrix of order 4 whose elements are normally distributed random
numbers from [0,1]. Find the present generating seeds, change their value
to ½ and rebuild the two arrays of random numbers.

rand(4)

ans =

0.9501 0.8913 0.8214 0.9218

0.2311 0.7621 0.4447 0.7382

0.6068 0.4565 0.6154 0.1763

0.4860 0.0185 0.7919 0.4057

randn(4)

ans =

-0.4326 -1. 1465 0.3273 -0.5883

-1. 6656 1.1909 0.1746 2.1832

0.1253 1.1892 -0.1867 -0.1364

0.2877 -0. 0376 0.7258 0.1139

rand(‘seed’)

ans =

931316785

randn(‘seed’)

ans =

931316785

randn(‘seed’, 1/2)

rand(‘seed’, 1/2)

rand(4)

ans =

0.2190 0.9347 0.0346 0.0077

0.0470 0.3835 0.0535 0.3834

0.6789 0.5194 0.5297 0.0668

0.6793 0.8310 0.6711 0.4175

randn(4)

ans =

1.1650 -0. 6965 0.2641 1.2460

0.6268 1.6961 0.8717 -0.6390

0.0751 0.0591 -1.4462 0.5774

0.3516 1.7971 -0.7012 -0.3600

Exercise 2-8.Given the vector variables a = [, 2 , 3 , 4 , 5] and b = [e, 2e,
3e, 4e, 5e], calculate c = sin (a) + b, d = cos (a) , e = ln (b) , f = c * d, g
= c/d, h = d ^ 2, i = d ^ 2-e ^ 2 and j = 3d ^ 3-2e ^ 2.

a=[pi,2pi,3pi,4pi,5pi],

b=[exp(1),2exp(1),3exp(1),4exp(1),5exp(1)],

c=sin(a)+b,d=cos(a),e=log(b),f=c.*d,g=c./d

h=d.^2, i=d.2-e.2, j=3d.^3-2e.^2

a =

3.1416 6.2832 9.4248 12.5664 15.7080

b =

2.7183 5.4366 8.1548 10.8731 13.5914

c =

2.7183 5.4366 8.1548 10.8731 13.5914

d =

-1 1 -1 1 -1

e =

1.0000 1.6931 2.0986 2.3863 2.6094

f =

-2.7183 5.4366 - 8.1548 10.8731 - 13.5914

g =

-2.7183 5.4366 - 8.1548 10.8731 - 13.5914

h =

1 1 1 1 1

i =

0 - 1.8667 - 3.4042 - 4.6944 - 5.8092

j =

-5.0000 - 2.7335 - 11.8083 - 8.3888 - 16.6183

Exercise 2-9. Given a uniform random square matrix M of order 3, obtain
its inverse, its transpose and its diagonal. Transform it into a lower
triangular matrix (replacing the upper triangular entries by 0) and rotate it

90 degrees counterclockwise. Find the sum of the elements in the first row
and the sum of the diagonal elements. Extract the subarray whose
diagonal elements are at 11 and 22 and also remove the subarray whose
diagonal elements are at 11 and 33 .

M=rand(3)

M =

0.6868 0.8462 0.6539

0.5890 0.5269 0.4160

0.9304 0.0920 0.7012

A=inv(M)

A =

-4.1588 6.6947 -0.0934

0.3255 1.5930 -1.2487

5.4758 -9.0924 1.7138

B=M’

B =

0.6868 0.5890 0.9304

0.8462 0.5269 0.0920

0.6539 0.4160 0.7012

V=diag(M)

V =

0.6868

0.5269

0.7012

TI=tril(M)

TI =

0.6868 0 0

0.5890 0.5269 0

0.9304 0.0920 0.7012

TS=triu(M)

TS =

0.6868 0.8462 0.6539

0 0.5269 0.4160

0 0 0.7012

TR=rot90(M)

TR =

0.6539 0.4160 0.7012

0.8462 0.5269 0.0920

0.6868 0.5890 0.9304

s=M(1,1)+M(1,2)+M(1,3)

s =

2.1869

sd=M(1,1)+M(2,2)+M(3,3)

sd =

1.9149

SM=M(1:2,1:2)

SM =

0.6868 0.8462

0.5890 0.5269

SM1 = M([1 3], [1 3])

SM1 =

0.6868 0.6539

0.9304 0.7012

Exercise 2-10. Given the following complex square matrix M of order 3,
find its square, its square root and its base 2 and – 2 exponential:

.

 M =[i 2i 3i; 4i 5i 6i; 7i 8i 9i]

M =

0 + 1.0000i 0 + 2.0000i 0 + 3.0000i

0 + 4.0000i 0 + 5.0000i 0 + 6.0000i

0 + 7.0000i 0 + 8.0000i 0 + 9.0000i

C=M^2

C =

-30 -36 -42

-66 -81 -96

-102 - 126 -150

D=M^(1/2)

D =

0.8570 - 0.2210i 0.5370 + 0.2445i 0.2169 + 0.7101i

0.7797 + 0.6607i 0.9011 + 0.8688i 1.0224 + 1.0769i

0.7024 + 1.5424i 1.2651 + 1.4930i 1.8279 + 1.4437i

2^M

ans =

0.7020 - 0.6146i - 0.1693 - 0.2723i -0.0407 + 0.0699i

-0.2320 - 0.3055i 0.7366 - 0.3220i - 0.2947 - 0.3386i

-0.1661 + 0.0036i - 0.3574 - 0.3717i 0.4513 - 0.7471i

(-2)^M

ans =

17.3946 -16.8443i 4.3404 - 4.5696i - 7.7139 + 7.7050i

1.5685 - 1.8595i 1.1826 - 0.5045i - 1.2033 + 0.8506i

-13.2575 +13.1252 i - 3.9751 + 3.5607i 6.3073 - 6.0038i

Exercise 2-11. Given the complex matrix M in the previous exercise, find
its elementwise logarithm and its elementwise base e exponential. Also
calculate the results of the matrix operations e M and ln (M) .

M=[i 2i 3i; 4i 5i 6i; 7i 8i 9i]

log(M)

ans =

0 + 1.5708i 0.6931 + 1.5708i 1.0986 + 1.5708i

1.3863 + 1.5708i 1.6094 + 1.5708i 1.7918 + 1.5708i

1.9459 + 1.5708i 2.0794 + 1.5708i 2.1972 + 1.5708i

exp(M)

ans =

0.5403 + 0.8415i - 0.4161 + 0.9093i -0.9900 + 0.1411i

-0.6536 - 0.7568i 0.2837 - 0.9589i 0.9602 - 0.2794i

0.7539 + 0.6570i - 0.1455 + 0.9894i -0.9111 + 0.4121i

logm(M)

ans =

-5.4033 - 0.8472i 11.9931 - 0.3109i - 5.3770 + 0.8846i

12.3029 + 0.0537i -22.3087 + 0.8953i 12.6127 + 0.4183i

-4.7574 + 1.6138i 12.9225 + 0.7828i - 4.1641 + 0.6112i

expm(M)

ans =

0.3802 - 0.6928i - 0.3738 - 0.2306i -0.1278 + 0.2316i

-0.5312 - 0.1724i 0.3901 - 0.1434i - 0.6886 - 0.1143i

-0.4426 + 0.3479i - 0.8460 - 0.0561i -0.2493 - 0.4602i

Exercise 2-12.Given the complex vector V = [1 + i, i, 1-i], find the mean,
median, standard deviation, variance, sum, product, maximum and
minimum of its elements, as well as its gradient, its discrete Fourier
transform and its inverse discrete Fourier transform.

V = [1 + i, i, 1-i]

[mean(V),median(V),std(V),var(V),sum(V),prod(V),max(V),min(V)
]’

ans =

0.6667 - 0.3333i

1.0000 + 1.0000i

1.2910

1.6667

2.0000 - 1.0000i

0 - 2.0000i

1.0000 + 1.0000i

0 - 1.0000i

gradient(V)

ans =

1.0000 - 2.0000i 0.5000 0 + 2.0000i

fft(V)

ans =

2.0000 + 1.0000i - 2.7321 + 1.0000i 0.7321 + 1.0000i

ifft(V)

ans =

0.6667 + 0. 3333i 0.2440 + 0. 3333i - 0.9107 + 0. 3333i

Exercise 2-13. Given the arrays

A =

 B =

 C =

calculate AB – BA, A ² + B ² + C ² , ABC, sqrt (A)+sqrt(B)+sqrt(C), e A (e
B + e C), their transposes and their inverses. Also verify that the product
of any of the matrices A, B, C with its inverse yields the identity matrix.

A=[1 1 0;0 1 1;0 0 1]; B=[i 1-i 2+i;0 -1 3-i;0 0 -i]; C=[1 1 1; 0
sqrt(2)* i -sqrt(2)*i;1 -1 -1];

M1=AB-BA

M1 =

0 -1.0000 - 1.0000i 2.0000

0 0 1.0000 - 1.0000i

0 0 0

M2=A2+B2+C^2

M2 =

2.0000 2.0000 + 3.4142i 3.0000 - 5.4142i

0 - 1.4142i - 0.0000 + 1.4142i 0.0000 - 0.5858i

0 2.0000 - 1.4142i 2.0000 + 1.4142i

M3=ABC

M3 =

5.0000 + 1.0000i - 3.5858 + 1.0000i -6.4142 + 1.0000i

3.0000 - 2.0000i - 3.0000 + 0.5858i -3.0000 + 3.4142i

0 - 1.0000i 0 + 1.0000i 0 + 1.0000i

M4=sqrtm(A)+sqrtm(B)-sqrtm(C)

M4 =

0.6356 + 0.8361i - 0.3250 - 0.8204i 3.0734 + 1.2896i

0.1582 - 0.1521i 0.0896 + 0.5702i 3.3029 - 1.8025i

-0.3740 - 0.2654i 0.7472 + 0.3370i 1.2255 + 0.1048i

M5=expm(A)*(expm(B)+expm(C))

M5 =

14.1906 - 0.0822i 5.4400 + 4.2724i 17.9169 - 9.5842i

4.5854 - 1.4972i 0.6830 + 2.1575i 8.5597 - 7.6573i

3.5528 + 0.3560i 0.1008 - 0.7488i 3.2433 - 1.8406i

inv(A)

ans =

1 - 1 1

0 -1 -1

0 0 1

inv(B)

ans =

0 - 1.0000i - 1.0000 - 1.0000i -4.0000 + 3.0000i

0 -1.0000 1.0000 + 3.0000i

0 0 0 + 1.0000i

inv(C)

ans =

0.5000 0 0.5000

0.2500 0 - 0.3536i - 0.2500

0.2500 0 + 0.3536i - 0.2500

[Ainv(A) Binv(B) C*inv(C)]

ans =

1 0 0 1 0 0 1 0 0

0 1 0 0 1 0 0 1 0

0 0 1 0 0 1 0 0 1

A’

ans =

1 0 0

1 1 0

0 1 1

B’

ans =

0 - 1.0000i 0 0

1.0000 + 1.0000i - 1.0000 0

2.0000 - 1.0000i 3.0000 + 1.0000i 0 + 1.0000i

C’

ans =

1.0000 0 1.0000

1.0000 0 - 1.4142i - 1.0000

1.0000 0 + 1.4142i - 1.0000

Chapter 3.

2-D Graphics IN MATLAB. explicit, PARAMETRIC and polar cURVES.
exploratory GRAPHs

MATLAB allows the representation of any mathematical function, even if it
is defined piecewise or jumps to infinity in his field of definition, make
graphs of Planar (two-dimensional) curves and surfaces (three-
dimensional), group them and can overlap. You can combine colors, grids,
frames, etc., in the graphics. It allows the representations of functions in
implicit, explicit and parametric coordinates, and is without a doubt a
mathematical software with high graphics performance. This is one of
their differences with the rest of the symbolic calculation packages.
Animations no more to combine different graphics with slight variations
each others, so to display them quickly in succession, they give the
impression of movement can be generated from these graphs.

On the other hand, it also allows the typical bar graphs, lines, Star and
histograms. It also offers special possibilities of representation of
Polyhedra with geographical maps. In the handling of graphics, it is very
important to bear in mind the availability of memory on the computer. The
graphics drawing consumes lots of memory and requires a high screen
resolution.

The basic commands that Matlab uses to draw the graph of a function of a
variable are as follows:

plot(X,Y)

draws the set of points (X, Y) , where X and Y are vectors row. For
graphing a function y = f (x) , it is necessary to know a set of points (X, f

(X)) , for what it initially set a range of variation vector X to the variable x .
X and Y can be arrays of the same size, in which case a graph is made by
each pair of rows and on the same axis. For complex values of X and Y ,
the imaginary parts are ignored

plot (Y)

draws the vector Y elements, i.e., gives the graph of the set of points (t, Y
t) t = 1, 2,… n (n = length(Y)). It is useful for graphing time, series if Y is a
matrix, plot (Y) made a graph for each column Y presenting all on the
same axes. If the components of the vector Y are complex, plot (Y) is
equivalent to plot (real (Y), imag (Y)).

plot (X, Y, S)

draws plot(X,Y) with the settings defined in S . Usually, S consists of two
digits between single quotes, the first of which sets the color of the line of
the graph, and the second sets the character to be used in the plotting.
The possible values of colors and characters are, respectively, as follows:

y yellow . points

m magenta o circles

c cyan x x - brands

r Red + plus signs

g green - solid

b Blue * Star

w White : colon

k Black -.with dashes and dots

 – semi-solid

plot(X1,Y1,S1,X2,Y2,S2,X3,Y3,S3,…)

combines, on the same axes, graphs defined for the triples (Xi, Yi, Si). It is
a way of representing various functions on the same graph.

fplot(‘function’ [xmin, xmax])

graphs the function in the variation of x given interval

fplot(‘función’,[xmin, xmax], S)

graphs the function at interval of variation of x given, with options for color
and characters given by S

fplot(‘[f1,f2,…,fn]’,[xmin, xmax], S)

graphs functions f1, f2,…, fn on the same axes at interval of variation of x
specified, and color and character options defined in S

fplot(x(t),y(t), [tmin tmax])

graphs the parametric curve x=x(t) y=y(t) for t en [tmin tmax])

ezplot (‘function’, [xmin xmax])

graphs the function in the variation of x given interval

ezplot (‘function’, [xmin xmax ymin ymax])

graphs the function in the variations of x and y given intervals

ezplot(x(t),y(t))

graphs the parametric curve x=x(t) y=y(t) for t en [0,2pi)

ezplot(x(t),y(t), [tmin tmax])

graphs the parametric curve x=x(t) y=y(t) for t en [tmin tmax])

Let’s see some examples of 3-dimensional graphics:

We will begin representing function f (x) = (Sin(x))^ 2 + 2xcos (x)) at (-2π,
2π p)

» x=(-2pi:0.1:2pi);

» y = sin(x).^2 + 2x.cos(x);

» plot(x,y)

Figure 3-1

MATLAB returns the graph that is shown in Figure 3-1. It is notorious that
the definition of the function has been made in vector form, using the
notations for the purpose vector variables (already studied previously).

The same graph is obtained using the command fplot with the following
syntax:

» fplot(‘sin(x)^2+2xcos(x)’, [-2pi,2pi])

And also can be obtained by the same representation using the command
ezplot using the following syntax:

» ezplot(‘sin(x)^2+2xcos(x)’, [-2pi,2pi])

It is observed that in the last two cases function is expressed symbolically,
and not of vector, as in the first case form.

MATLAB draws not only bounded functions, but it also represents features
that have asymptotes and singularities. For example, Figure 3-2 shows
the graph of the function y = x ^ 3 /(x^3-4) in the range of variation of x
given by (- 8.8) by using the command:

» ezplot(‘x3/(x3-4)’, [- 8, 8])

Figure 3-2

Exercise 3-1. Represent on the same axes the graphs of the functions
sin(x), Sen(2x) and Sen(3x), for x varying in the range (0.2 p).

The graphics, generated by the input is represented in Figure 3-3:

» fplot(‘[sin(x),sin(2x),sin(3x)]’, [0, 2*pi])

Figure 3-3

It may be interesting to differentiate between curves by their strokes. To
do this, we will represent in Figure 3-4 the first function, Sin (x) , with black
line, the second, sen(2x) , Blue Star, and the third, sin(3x) , with red
circles. We use the following syntax:

» x=(0:0.05:2*pi);

» y1 = sin(x); y2 = sin(2x); y3 = sin(3x);

» plot(x,y1,‘k-’,x,y2,’b*‘,x,y3,’ro’)

Figure 3-4

The commands available in Matlab for the purpose are as follows:

title (‘text’)

adds the text as the title of the graph at the top of the same in 3-D and 3-
D graphics

xlabel (‘text’)

places the text next to the axis x in 3-D and 3-D graphics

ylabel (‘text’)

puts the text next to the axis and in 3-D and 3-D graphics

zlabel (‘text’)

places the text beside axis z in a 3-D chart

text (x, y, ‘text’)

places the text at the point (x, and) within the 3-D chart

text (x, and z, ‘text’)

places the text at the point (x, y, z) in 3D graphic

gtext (‘text’)

allows you to place text in a selected point with the mouse within a 3-D
chart

grid

located grids in a 3-D or 3-D chart axes The option on grid place grates
and greed off removes them. The option grid swap between on and off.
hold keeps the graph with all its properties, so that the following graphic
that is placed on the same axis and overlaps the existing. The option hold
on active option and hold off delete. The option hold swap between on
and off . Valid for 3-D and 3-D

Exercise 3-2. On the same axes represent the graphs of the functions y =
sin (x ²) e y = log (sqrt (x)). The text of each equation is properly
positioned within the graph and chart holder and two shafts.

We get the graph in Figure 3-5 considering MATLAB entry:

» x =linspace(0,2,30);

»y=sin(x.^2);

»plot(x,y)

»text(1,0.8,‘y=sin(x^2)’)

»hold on

»z=log(sqrt(x));

»plot(x,z)

»text(1,-0.1,‘y=log(sqrt(x))’)

» x label(‘Eje X’);

»ylabel(‘Y axis’);

»title(‘Graphic sine and logarithmic’);

Figure 3-5

Below, are commands that allow you to manipulate the axes of a graph,
placement of it within the screen, their appearance, their presentation
from different points of view, etc.

axis([xmin xmax ymin ymax]

situated the minimum and maximum values for the X and Y axes in the
graphic power

axis(‘auto’)

situated shafts in the Auto scale by default (the one given by xmin = min
(x) , xmax = max (x) e and free)

axis(axis)

freezes the scaling of axes in the currents, so that limits to placing other
graphic on the same axes (with hold in on), the scale does not change

V = axis

gives the vector V of 4 elements, containing the scale of the current
graphic

axis(‘xy’)

situated Cartesian coordinates, with the origin at the bottom left of the
graph

axis(‘ij’)

set coordinates with the origin at the top left of the graph

axis(‘square’)

the plotted rectangle becomes a square, so the figures will absorb

axis(‘equal’)

puts the same factor of scale for both axes

axis(‘normal’)

eliminates the options square and equal

axis(‘off’)

eliminates labels and brands of the axes and grids, keeping the title of the
chart and the texts within the text with gtext

axis(‘on’)

reposition labels, marks and axes grids

subplot(m, n, p)

divides the graphics window in mxn subwindows and placed the current
graphic window p-th , beginning to count from the left top and from left to
right until the finish line, to go to the next

Exercise 3-3. Present in the same graph the graphs of the functions sin
(x) and Cos (x), placed horizontally one next to each other with their
names, and the x axis values between 0 and 2 * pi and the shaft and
taking values between - 1 and 1. Also get the vertical representation, one
under the other and slotted shafts.

MATLAB, we propose the following entry:

» x =(0:0.1:4*pi);

» y = sin(x);

» z = cos(x);

» subplot(1,2,1);

» plot(x,y), axis([0 2*pi -1 1]), title(‘sin(x)’)

» subplot(1,2,2);

» plot(x,z), axis([0 2*pi -1 1]), title(‘cos(x)’)

The result is presented in Figure 3-6:

Figure 3-6

We now propose to Matlab the following entry:

» x =(0:.1:4*pi);

» y = sin(x);

» z = cos(x);

» subplot(2,1,1);

» plot(x,y), axis([0 2*pi -1 1]), title(‘sin(x)’), grid

» subplot(2,1,2);

» plot(x, z), axis([0 2*pi-1 1]), title (‘cos(x)’), grid

The result is presented in Figure 3-7:

Figure 3-7

Exercise 3-4. Present in the same graph the graphs of the functions sin
(x), Cos (x), Cosec (x) and Sec (x), placed in a matrix of four graphics,
form under each function is its inverse for x ranging in [- 2 p , 2 p].

We use the command subplot to draw the four functions, in the
appropriate order under Sin (x) place Cosec (x) , which under Cos (x) will
place Sec (x). The syntax will be as follows:

»subplot(2,2,1);

»ezplot(‘sin(x)’,[-2pi,2pi])

»subplot(2,2,2);

»ezplot(‘cos(x)’,[-2pi,2pi])

»subplot(2,2,3);

»ezplot(‘csc(x)’,[-2pi,2pi])

»subplot(2,2,4);

»ezplot(‘sec(x)’,[-2pi,2pi])

MATLAB offers as a result the graph of Figure 3-8.

Figure 3-8

The commands that enable Matlab to represent graphs with logaritmic
scales are the following:

loglog(X,Y)

performs the same graphics as plot(X,Y) , but with logarithmic scale on
the two axes. The command presents the same variants and supports the
same options as the command plot

semilogx(X,Y)

performs the same graphics as plot(X,Y) , but with logarithmic scale on
the axis x , and normal scale on the axis and (semilogarithmic scale)

semilogy(X,Y)

performs the same graphics as plot(X,Y) , but with logarithmic scale on
the axis and , and normal scale on the axis x (semilogarithmic scale)

Exercise 3-5. Present on the same graph the function y = abs (e - 1/2 x
Sen(5x)) represented in normal scale, logarithmic scale and
semilogaritmicas scales.

The syntax presented here leads us to figure 3-9, which compares the
graph of the same function for the different scales. It will be represented in
the upper part of the figure scales and logarithmic, and normal at the
bottom semilogaritmicas scales.

» x = 0:0.01:3;

» y = abs(exp(-0.5x).sin(5*x));

» subplot(2,2,1)

» plot(x,y)

» title(‘normal’)

» hold on

» subplot(2,2,2)

» loglog(x,y)

» title(‘logarithmic’)

» subplot (2,2,3)

» semilogx(x,y)

» title(‘semilogarithmic in X axis’)

» subplot(2,2,4)

» semilogy(x,y)

» title(‘semilogarithmic in Y axis’)

Figure 3-9

MATLAB also allows drawing polygons in two dimensions. To do this, use
the following commands:

fill (X, Y, C)

draws the compact polygon whose vertices are pairs of components (Xi,
Yi) of the vectors X and Y column. C is a vector of the same size of X and
Y which contains the colors Ci for each point (Xi, Yi) . The Ci values may
be: ‘r’, ‘g’, ‘b’, ‘c’, ‘, ’y’, ‘w’, ‘k’ , whose meanings we already know. If C is a
single character, will be painted all the points of the polygon the color
corresponding to the character. If X and Y are arrays of the same size, will
be represented at the same time several polygons corresponding to each
pair of vectors column (X.j, Y.j). In this case, C can be a vector row Cj
elements determine the unique color of each pair of vectors for polygon
column (X.j, Y.j). C can also be an array of the same dimension as X (e) Y
, in which case its elements determine the color of each point (Xij, Yij) of
the set of polygons.

fill(X1,Y1,C1,X2,Y2,C2,…)

draws the compact polygon whose vertices are given by the points (Xi, Yi,
Ci) , the meaning of which we already know

Exercise 3-6. An octagon represent regular (square enclosure), whose
vertices are defined by pairs of values (Sen (t), Cos (t)), for values of t
varying between 8 p and 15 p /8 separate 2 p /8. Use only the green color
and put at the point (-1/4,0) from the inside of the figure the ‘Octagon’ text.

Octagon ordering, product of the syntax is shown in Figure 3-10 si-
following:

» t =(pi/8:2pi/8:15pi/8);

» x = sin(t); y = cos(t);

» fill(x,y,‘g’)

» axis(‘square’)

» text(-0.25,0,‘OCTOGON’)

Figure 3-10

Following in the graphic power of Matlab line, we are going to see now
how the program draws curves in parametric coordinates in the plane. Will
discuss how you can get graphs of functions in which the variables x and
y depend, in turn, of a parameter t. The commands to use are plot, fplot
and ezplot and all its variants, conveniently defining intervals of variation
parameter, and not the independent variable, as it was until now.

plot(x(t),y(t))

graphs the parametric curve x=x(t) y=y(t)

fplot(x(t),y(t), [tmin tmax])

graphs the parametric curve x=x(t) y=y(t) for t en [tmin tmax])

ezplot(x(t),y(t))

graphs the parametric curve x=x(t) y=y(t) for t en [0,2pi)

ezplot(x(t),y(t), [tmin tmax])

graphs the parametric curve x=x(t) y=y(t) for t en [tmin tmax])

Exercise 3-7. Represent the curve (Epicycloid) whose parametric
coordinates are: x = 4Cos[t] - Cos [4t] y = 4Sen[t] - Sen [4t], for t varying
between 0 and 2 p .

The syntax will be as follows:

t = 0:0.01:2*pi;

x =4cos(t)-cos(4t);

y=4sin(t)-sin(4t);

plot(x,y)

The retrieved graph is presented in Figure 3-11, and represents the
epicycloid .

Figure 3-11

Exercise 3-8. Represent the graph of the Cycloid whose parametric
equations are x = t-2Sen(t), y = 1-2Cos(t), for t varying between - 3 p . and
3 p .

We will use the following syntax:

»t=-3pi:0.001:3pi;

»plot(t-2sin(t),1-2cos(t))

Gets the graph in Figure 3-12:

Figure 3-12

Exercise 3-9. Represent the graph whose parametric equations are x =
t+Sen(t), y = t-Cos(t), for t varying between - 4 p . and 4 p .

In this case we use the fplot command to represent parametric curves.
The graph of the figure 3-13 is obtained.

fplot(t+sin(t),t-cos(t), [-4pi,4pi])

Figure 3-13

Exercise 3-10. Represent the graph whose parametric equations are x =
t+Sen^2(t), y = t-Cos^2(t), for t varying between - 4 p . and 4 p .

In this case we use the ezplot command to represent parametric curves.
The graph of the figure 3-14 is obtained.

ezplot(t + (sin(t))^2,t - (cos(t))^2*(t), [-4pi,4pi])

Figure 3-14

MATLAB enables the specific command polar , representing functions on
coor - denadas polar. Its syntax is as follows:

Polar (a , r)

represents the curve in polar coordinates r = r (a)

Polar (a , r, S)

represents the curve in polar coordinates r = r (a) with the style of line
given by S , whose values were already specified in the command plot

Exercise 3-11. Represent the graph of the curve whose equation in polar
coordinates is as follows: r=Sen(2a)Cos(2a) to a between 0 and 2 p .

The following syntax takes us to the graph in Figure 3-15:

»a=0:0.01:2*pi;

»r=sin(2a).cos(2*a);

»polar(a,r)

Figure 3-15

Exercise 3-12. Represent the graph of the curve whose equation in polar
coordinates is as follows: r = 4 (1 + Cos(a)) for a between 0 and 2 p .,
called cardioid.

Gets the graph of Figure 3-14, representing the cardioid, using the
following syntax:

»a=0:0.01:2*pi;

»r=4*(1+cos(a));

»polar(a,r)

»title(‘CARDIOID’)

Figure 3-16

Exercise 3-13. Represent the graph of the lemniscata of Bernoulli whose
equation is r=4(cos(2a)^(1/2)) for between 0 and 2 p , and the graph of the
spiral of Archimedes whose equation is r = 3a, -4 p <a< 4 p .

The first curve is represented in Figure 3-17, and is obtained by the
following syntax:

»a=0:0.01:2*pi;

»r=4(cos(2a).^(1/2));

»polar(a,r)

» title (‘Bernoulli LEMNISCATA’)

Figure 3-17

The second curve is represented in Figure 3-18, and is obtained by the
following syntax:

»a=-4pi:0.01:4pi;

»r=3*a;

»polar(a,r)

»title(‘spiral of ARCHIMEDES’);

Figure 3-18

MATLAB constructed bar graphs, sectors, Pareto diagrams and
histograms of frequencies through the following commands:

bar (Y)

draw bar graph relative to the vector of frequencies Y

bar(X,Y)

draws the bar graph on the vector of frequencies Y whose elements are
given by the vector X

stairs (Y)

draw the relative to the vector and staggered graph

stairs(X,Y)

draw the ladder graph relative to the vector and whose elements are given
by the vector X

hist (Y)

draws the histogram relative to the vectorfrequencies and using 10
vertical rectangles of equal base

hist(Y,n)

draws the histogram relative to the vector of frequencies andusing vertical
rectangles of equal base

hist(X,Y)

draws the histogram relative to the vector of frequencies and using
rectangles vertical whose bases measure specified in the elements of the
vector X

foot (X)

draws the pie chart relative to the vector of frequencies X

pie(X,Y)

draws the pie chart relative to the vectorfrequency X moving out the
sectors in which Yi ¹ 0

pareto (X)

draws the Pareto graph relative to the vector X

Here are some examples:

» bar ([1, - 3, 4, 5, 2, 3])

» foot ([1, 3, 4, 5, 2, 3])

The graphics of the figures are 3-19 and 3-20:

Figure 3-19 3-20

Below, is a bar chart for 20 values of a normal between - 3 and 3:

» x =-3:0.3:3;

» bar(x, exp(-x.^2))

Gets the graph in Figure 3-21:

Figure 3-21 F igure 3-22

Figure 3-22 represents the step graph corresponding to the previous bar
graph whose syntax is:

» x =-3:0.3:3;

» stairs(x,exp(-x.^2))

It is presented below, the histogram (see Figure 3-23) corresponding to a
vector of 10,000 normal random values (0.1), 30 x between - 3 and 3
values:

» x =-3:0.1:3;

»y=randn(10000,1);

»hist(y,x)

In Figure 3-24 is a pie chart with two of its displaced areas, produced by
using the syntax:

» pie([1, 3, 4, 5, 2, 3], [0,0,0,0,1,1])

Figure 3-23 Figure 3-24

There are commands in Matlab which enable charting errors on a
function, as well as certain types of graphics of arrows to be scanned now.
Some of these commands are described below:

errorbar(x,y,e)

carries out the graph of the vector x against the vector and the errors
specified in the vector e . Passing through each point (xi, yi) draws a
vertical line length 2ei whose centre is the point (xi, yi)

stem (Y)

draws the graph of the vector Y cluster. Each point and is attached to the
axis x by a vertical line

stem(X,Y)

draw the graph of the vector Y cluster whose elements are given by the
vector X

rose(Y)

draws the angular histogram relative to the vector Y angles in radians,
using 20 equal radii

rose(Y,n)

draws on the vector and angular histogram, using equal radii

rose(X,Y)

draws the angle relative to the vector , and histogram using radios
that are specified in the elements of the vector X

compass (Z)

carries out a diagram of arrows coming out of the origin and whose
magnitude and direction are determined by the module and argument of
the components of the vector Z complex numbers. Concerning the
complex Zi arrow joins the origin with the affix of Zi

compas(X,Y)

is equivalent to compas(X+i*Y)

compass (Z, S) or compass(X, Y, S)

specifies in S line type to use on the arrows

feather(Z) o feather(X,Y) o feather(Z,S) o feather(X,Y,S)

is the same as compass , with the only difference that the origin of the
arrows is not at the origin of coordinates, but that out of equally-spaced
points of a horizontal line

legend(‘leyenda1’, ‘leyenda2’,…, ‘leyendan’)

situated the legends given in n consecutive graphics

Here are some examples below:

First of all, let’s represent in Figure 3-25 a chart of errors for the density of
a normal distribution (0,1) function, with the variable defined in 40 points
between - 4 and 4, errors being defined by 40 uniform random values
(0.10):

» x = -4:0.2:4;

» y=(1/sqrt(2pi))exp(-(x.^2)/2);

» e=rand(size(x))/10;

» errorbar(x,y,e)

We also represent a graph of cluster corresponding to 50 normal random
numbers (0.1) by using the syntax in Figure 3-26:

» y = randn(50,1); stem(y)

Figure 3-25 3-26

Now, presents a chart of arrows with center at the origin, corresponding to
the eigenvalues of a normal (0,1) random square matrix of size 20 x 20
(see Figure 3-27). The syntax is as follows:

»z=eig(randn(20,20)); compass(z)

Figure 3-27

Chapter 4.

3-D Graphics IN MATLAB. 3-D curves ON SPACE, SURFACES, meshes
AND contours. surfaces of revolution

The basic commands that Matlab uses to draw graphs that generate a line
in three dimensions are the following:

plot3 (X, Y, Z)

draws the set of points (X, Y, Z) , where X , Y and Z are vectors row. X , Y
and Z can be arrays of the same size, in which case a graph is made for
each triplet of rows and on the same axis. For complex values of X, Y and
Z are ignored the imaginary parts

plot3(X,Y,Z,S)

draws plot (X, Y, Z) with the settings defined in S . Usually S consists of
two-digit quotes simple, the first of which sets the color of the line of the
graph, and the second sets the character to be used in the plotting. The
possible values of colors and characters have been already described to
explain the command plot

plot3(X1,Y1,Z1,S1,X2,Y2,Z2,S2,X3,Y3,Z3,S3,…)

combined, on the same axes, graphs defined for the triples (Xi, Yi, Zi, Si).
It is a way of representing various functions on the same graph

Here is an example:

» x =0:pi/50:10*pi;

»y=sin(x);

»z=cos(x);

»plot3(x,y,z)

Gets the graph in Figure 4-1:

Figure 4-1

MATLAB also allows drawing polygons in three dimensions. To do this,
use the following commands:

fill3(X,Y,Z,C)

draws the compact polygon whose vertices are the triples of components
(Xi, Yi, Zi) of the column vectors X , Y and Z . C is a vector of the same
size of X , Y and Z , which contains the colors of each point (Xi, Yi, Zi, Ci) .
Ci values can be ‘r’, ‘g’, ‘b’, ‘c’, ‘, ’y’, ‘w’, ‘k’ , whose meanings we already
know. If C is a single character, will be painted all the points of the polygon
the color corresponding to the character. If X , Y and Z are of the same
dimension, be represented matrices simultaneously several polygons
corresponding to each triple vector column (X.j, Y.j, Z.j). In this case, C
can be a vector row Cj elements determine the unique color of each
polygon corresponds to the triple of vector column (X.j, Y.j, Z.j). C may

also be an array of the same dimension as X , Y and Z , in which case the
elements determine the colors of each point (Xijk, Yijk, Zijk) of the set of
polygons.

fill3(X1,Y1,Z1,C1,X2,Y2, Z2, C2,…)

draws the compact polygon whose vertices are given by the points (Xi, Yi,
Zi, Ci)

Here is an example:

» x =cos(0:0.01:8*pi);

»y=sin(0:0.01:8*pi);

»z=0:0.01:8*pi;

»fill3(x,y,z,‘r’)

Gets the graph of Figure 4-2:

Figure 4-2

Let’s see here how Matlab draws curves in parametric coordinates in
space . The fundamental problem is to get graphs of functions tridimensio-
end in which the variable x, y and z depend, in turn, of a parameter t.

The command that must be used is plot3 and all its variants, suitably
defining intervals of variation of the parameter, not the independent
variable, as it was until now.

This type of graphics is very useful in certain matters, such as, for
example, differential geometry.

Here is an example (Figure 4-3):

» t = 0:pi /50:10*pi; plot3(sin(t),cos(t),t);

Figure 4-3

Below is another example:

»t=-4pi:0.01:4pi;

» x =cos(t).^2;

»y=sin(t).*cos(t);

»z=sin(t);

»plot3(x,y,z)

Gets the graph in Figure 4-4:

Figure 4-4

Surface graphics allow for dense representations of figures
tridimesionales, and in particular of functions of two variables. The first
step to represent a function of two variables z = f(x,y) using his surface
chart, is to use the command meshgrid , which basically defines the array
of points (X, and) on which the function of two variables is evaluated for its
graphical representation. Its syntax is as follows:

[X, Y] = meshgrid(x,y)

transforms definition field variable x given e and function to represent z =
f(x,y) in matrix arguments can be used by the command mesh for mesh
chart

The second step is to use the available commands to effect, which are as
follows:

surf(X,Y,Z,C)

represents the graph of function surface z = f(x,y) , doing the drawing with
the colors specified in C . The C argument can be ignored

surfc(X,Y,Z,C)

represents the graph of function surface z = f(x,y) with the chart’s
corresponding outline (contour lines projected onto the XY -plane)

surfl (X, Y, Z)

represents the graph of function surface z = f(x,y) , making the drawing
with shading

Exercise 4-1. Represent the surface of the slope-intercept form:

-14/2 < x, y < 14/2

Also represent the surface with its contour.

» [X, Y] = meshgrid(-7.5:0.5:7.5);

» Z = sin(sqrt(X.2+Y.2))./sqrt(X.2+Y.2);

» surf(X, Y, Z)

Gets the graph of Figure 4-5:

Figure 4-5

The surface with the outline (contour) graph is shown in Figure 4-6. The
following syntax is used:

» [X, Y] = meshgrid(-7.5:0.5:7.5);

» Z = sin(sqrt(X.2+Y.2))./sqrt(X.2+Y.2);

» surfc(X, Y, Z)

Figure 4-6

Figure 4-7 shows the chart shaded, using the syntax:

» [X, Y] = meshgrid(-7.5:0.5:7.5);

» Z = sin(sqrt(X.2+Y.2))./sqrt(X.2+Y.2);

» surfc(X, Y, Z), shading interp

Figure 4-7

A three-dimensional graph of mesh is defined by a function z = f(x,y) , so
that the points on the surface are represented on a grid, result of rise z
values given by f(x,y) on corresponding points of the plane (x, and) . The
appearance of a mesh chart is like a fishing net, with points on the surface
on the nodes of the network. Actually, it is a graph of surface whose graph
has form of network.

To represent a graph of mesh, use the command mesh and its variants,
whose syntax is as follows:

mesh(X,Y,Z,C)

represents the graph of the function mesh z = f(x,y) , drawing the grid
lines that compose the mesh with the colors specified in C . The C
argument can be ignored

meshz(X,Y,Z,C)

represents the graph of the function mesh z = f(x,y) with a kind of curtain
or curtain at the bottom

meshc(X,Y,Z,C)

represents the graph of the function mesh z = f(x,y) along with
corresponding contour chart (contour lines projected onto the XY -plane)

Exercise 4-2. Represent the graph of mesh for the surface of equation:

z = x e (-x ^ 2 - y ^ ²) - 2 < x, y < 2

Also be representation with their contours (contour chart) and
representation with curtain.

The syntax presented here gives as a result the graph in Figure 4-8:

» [X, Y] = meshgrid(-2:0.1:2,-2:0.1:2);

» Z = X.*exp(-X.^2- Y .^2);

» mesh(X, Y, Z)

Figure 4-8

Figure 4-9 presents the mesh along with the contour graph (or contour
chart). The syntax is as follows:

» [X, Y] = meshgrid(-2:0.1:2,-2:0.1:2);

» Z = x*exp(-X.^2- Y .^2);

» meshc(X, Y, Z)

Figure 4-9

Finally, in Figure 4-10 represent graphic mesh curtain or curtain lower
option. The syntax is as follows:

» [X, Y] = meshgrid(-2:0.1:2,-2:0.1:2);

» Z = x*exp(-X.^2- Y .^2);

» meshz(X, Y, Z)

Figure 4-10

Another option of visualized a function of two variables is to use level
curves calls or the system of dimensional planes. These curves are
characterized because they are points (x, and) on which the value of f(x,y)
is constant. Thus, for example, in the weather charts, level curves that
represent the same temperature points are called isotherms, and contour
lines of equal pressure, isobars. Using contour lines, representing heights
(values of f(x,y)) equal, can describe surfaces in space. Thus, drawing
different contour corresponding to constant heights, can be described a
map of lines on the surface level, Matlab called contour graph . The
contour plots can be represented in two and three dimensions.

A map showing the regions of the Earth’s surface, whose contour lines
represent the height above the sea level, is called topographic map. In
these maps is observed, therefore, the variance of z = f(x,y) with respect
to x and and . When the space between contour lines is large, it means

that the variation of the variable z is slow, while a small space indicates a
rapid change of z .

Commands used Matlab for the representation of graphics outline
(contour lines) are as follows:

contour (Z)

draws outline (contour lines) for the Z matrix graph. The number of
contour lines to be used is chosen automatically

contour(Z,n)

draws the graph of outline (contour lines) for the Z matrix using contour
lines

contour (x, y, Z, n)

draws the graph of outline (contour lines) for the Z matrix in the X and Y
axes using scaling defined by vectors x and y (n contour lines)

contour3 (Z), contour3(Z,n) and contour3 (x, y, Z, n)

draws the contour in 4-dimensional plots

pcolor (X, Y, Z)

draws a graph of outline (contour lines) to the matrix (X, Y, Z) using a
representation based on densities of colors. It is often called density chart

Exercise 4-3. Given the surface of equation:

z = sin (x) Sen (y) - 2 < x, y < 2

represent it with their contour. Represent its outline two-dimensional with
20 lines graph and its three-dimensional outline with 50 lines chart. Also
draw the corresponding density chart.

Figure 4-11 shows the graph of the surface with its contour. The syntax is
as follows:

» [X, Y] = meshgrid(-2:0.1:2);

» Z = sin(X).*sin(Y);

» surfc(X, Y, Z)

Figure 4-11

Figure 4-12 shows outline (contour) graph two-dimensional to 20 lines.
The syntax is as follows:

» [X, Y] = meshgrid(-2:0.1:2);

» Z = sin(X).*sin (Y);

» contour(Z, 20)

Figure 4-12

Figure 4-13 shows outline (contour) graphic three-dimensional to 50 lines.
The syntax is as follows:

»[X,Y]=meshgrid(-2:0.1:2);

» Z =sin(X).*sin(Y);

»contour3(Z,50)

Figure 4-13

Finally, Figure 4-14 represents the graph of density (contour shaded
according to different intensities of color). The syntax is as follows:

»[X,Y]=meshgrid(-2:0.1:2);

» Z =sin(X).*sin(Y);

»pcolor(X,Y,Z)

Figure 4-14

There are commands in Matlab which allow you to change the
appearance of a same graph, either by your shader, the scale of its
themes, colors, hidden lines, the point of view from which one can
observe, etc. Below, some of these commands are:

axis ([xmin ymin, ymax, zmin zmax max x])

places intervals of variation of the axes in the indicated values. Also
accepts the options ‘ij’ , ‘square’ , ‘equal’ , etc, identical to the already
seen for two dimensions

view ([x, y, z])

places the point of view of the figure in the point’s Cartesian coordinates
(x, y, z)

view([az, el])

puts the angle of view of the figure in the point of azimuth (horizontal
rotation) ‘az’ and elevation (vertical lift) ‘the’

hidden

controls the presence of hidden lines in the graph. These lines come with
hidden on and go with hidden off

shading

controls the type of shadow of a surface created with commands surf ,
mesh , pcolor , fill and fill3 . Option shading flat situated a smooth shading
option shading interp situated a dense shading and the option to shading
faceted (default) puts a normal shader

colormap (M)

located the matrix M as the current color map. M must have three
columns and only contain values between 0 and 1. It can also be a matrix
whose rows are vectors RGB type [r g b]. Al l arrays have 3 columns and
p rows.

brighten(p)

adjusts the lighting of the figure. If 0 < p < 1 , figure will be bright, and if - 1
, figure will be dark. The variation of p is the interval (-1,1) , and to the
values of p are approaching - 1 , figure darkens, while as p values
approaching 1, the figure illuminates

image(A)

produces a two-dimensional image with glitters proportional to the
elements of the array to , and is used to display photographs and
drawings adapted to specified in the parent to shines. Each element (m,
n) of A matrix affects a cell of the drawing

caxis([cmin cmax])

pl aces the minimum and maximum values of the color scale (defined by
colormap and intrinsically related to the divisions that are made in the

axes via grids) for a chart. Therefore, it enables to use only a subset of
colors defined by colormap to Figure .

caxis ([cmin cmax])

set minimum values and maximum color scale (defined by colormap and
intrinsically linked to divisions making axles, via the grilles) for a chart.
Therefore, it allows using only a subset of the defined colors for the
colormap for the figure.

Exercise 4-4. Given the surface of equation:

z = x ² - y ² - 2 < x, y < 2

represent it with strong lighting, dense shadows and gray colors.
Represent about the same axis curve focused from four different points of
view and with shading by default.

» [X, Y] = meshgrid(-2:0.05:2);

» Z=X.2-Y.2;

» surf(X,Y,Z),shading interp,brighten(0.75),colormap(gray(5))

Gets the graph of Figure 4-15:

Figure 4-15

We will now present in Figure 4-16 surface focused from four different
points of view. The syntax will be as follows:

» [X, Y] = meshgrid(-2:0.05:2);

» Z =X.2-Y.2;

» subplot(2,2,1)

» surf(X,Y,Z)

» subplot(2,2,2)

» surf(X,Y,Z),view(-90,0)

» subplot(2,2,3)

» surf(X,Y,Z),view(60,30)

» subplot(2,2,4)

» surf(X, Y, Z), view(- 10, 30)

Figure 4-16

MATLAB allows you to represent surfaces whose components depend on
specified variation parameter. To do this, you can use the commands surf
and mesh , by properly defining the variable x, and z .

Implied, cylindrical and spherical coordinate surfaces are repre-tables in
Matlab Parameterizing them previously.

In terms of surfaces of revolution, they are always ranges, which also
allows its graphical representation with Matlab.

Exercise 4-5. Draw the surface of parametric coordinates:

x = 4Cos(r)Sec(t) y = 2Sen(r)Sec(t) z = tan(t) -2< r <2, -< r <

» r=(-2pi:0.1:2pi)’;

» t=(-pi:0.1:pi);

» X =4cos(r)sec(t);

» Y =2sin(r)sec(t);

» Z =ones(1,length(r))’*tan(t);

» surf(X,Y,Z),shading interp

Gets the graph of Figure 4-17:

Figure 4-17

Exercise 4-6. Get the graph of the surface of revolution that is turning the
function sin (x) around the axis z. also get the graph of the surface of
revolution rotating function e ^ x around the axis y.

To obtain the equation of the surface, on the assumption that the rotation
is around the axis Z consider the graph of the generating curve y = r(z) in
the plane YZ. To turn this graph around the axis Z ,forms a surface of
revolution. The sections with flat z = z0 are circles whose RADIUS is r (z 0
) and equation x ² + y ² = [r(z 0)] ² . That means that the equation x ² + y ²
= [r (z)] ² describes the points on the surface of revolution. For our
problem, is r (z) = sen (z) and the curve representing a is x ² + y ² = Sen
[z] ² , which are parametric through the input of Matlab graphics:

» r =(0:0.1:2*pi)’;

» t =(-pi:0.1:2*pi);

» X = cos(r)*sin(t);

» Y = (r)*sin(t);

» Z = ones(1, length(r))’*t;

» surf(X,Y,Z), shading interp

Gets the graph of Figure 4-18:

Figure 4-18

If we propose to Matlab entry:

»r=(0:0.1:2*pi)’;

»t=(-2:0.1:2);

» X =cos(r)*exp(t);

»Y=ones(1,length(r))’*t;

» Z =sin(r)*exp(t);

»surf(X,Y,Z), shading interp

Gets the graph of Figure 4-18, which has been found in the same way as
the previous one, but rotating around the axis and exponential function
(the generating curve is now the function e ^ x).

Figure 4-18

Exercise 4-7. Represent the cylinder {t, Sen [t], u}, with {t, 0, 2Pi} and {u,
0, 4} and the revolution bull { Cost, sint, Sen[u]}, with {t, 0, 2Pi} and {u, 0,
2Pi}.

» t=(0:0.1:2*pi)’;

» r=(0:0.1:4);

» X =sin(t)*ones(size(r));

» Y =cos(t)*ones(size(r));

» Z =ones(1,length(t))’*r;

» surf(X,Y,Z), shading interp

file:///C:/Users/monki/AppData/Local/Temp/calibre_r4_hj842/1unvmdqn_pdf_out/EPUB/text/3+Cos%5Bu%5D
file:///C:/Users/monki/AppData/Local/Temp/calibre_r4_hj842/1unvmdqn_pdf_out/EPUB/text/3+Cos%5Bu%5D

Gets the graph of Figure 4-19:

Figure 4-19

To represent the torus of revolution, we use the following syntax:

» t =(0:0.1:2*pi)’;

» r =(0:0.1:2*pi);

» X=(3+cos(t))*cos(r);

» Y=(3+cos(t))*sin(r);

» Z= ones(1,length(t))’*sin(r);

» surf(X,Y,Z), shading interp

We get the graph of Figure 4-20:

Figure 4-20

MATLAB enables commands to generate cylinders and spheres. We
have:

[X, Y, Z] = cylinder (r, n)

draws the cylinder generated by the curve r , which has n points on the
circumference horizontal section and that is aligned with (n = 20 per
default) Z axis

[X, Y, Z] = (n)

draws a sphere (by default n = 20)

As an example, let’s represent the cylinder generated by the curve 4Cos
(t) when t varies between 0 and 2 . The syntax will be as follows:

»t=0:pi/10:2*pi;

»[X,Y,Z]=cylinder(4*cos(t));

»surf(x,y,z)

Gets the graph of Figure 4-21:

Figure 4-21

Graphic characteristics treated so far belong to the high level of Matlab
GUI. However, there are low level (Handle Graphics) commands that
allow creating and manipulating figures, axes, lines, surfaces, images,
text, menus and other graphics objects. Between commands to create
graphical objects are:

figure (h) or h = figure

creates the figure as an object of name h , and is located as a current
figure. Gcf (h) command is used to mean any property to figure h . The
command close (h) figure close h . The command whitebg (h) changes
the color of the background of the figure h . The command clf closes the
current figure. The command graymon located grayscale. The command
newplot determines the axis to make a new figure. The command refresh
redraws the figure

axes (e) or e = axes

creates shafts as an object of name and , in the current figure. Use the
command gca (e) to refer any property to the axes and. Cla the command
is used to delete all the objects referring to the current axes.

l = line(x,y) or l = line (x, y, z)

creates, as an object of name l , the line joining the points (X, and) in the
flat, or (X, Y, Z) space

p = (X, Y, C) patch or patch(X,Y,Z,C)

creates an opaque polygonal area that is defined by the set of points (X,
and) in the flat, or (X, Y, Z) space, and whose color is given by C , as an
object of name p

s = surface(X,Y,Z,C)

creates the parametric surface defined by X , Y and Z , and whose color is
given by C as an object of name (s)

i = image (C)

creates the image defined by the colors in the array C as an object of
name i

t = text (x, y, ‘string’) or t = text (x, y, z, ‘string’)

creates the text defined by the chain, located at the point (x, y) plane, or at
the point (x, y, z) space

Each object has a level of hierarchy. The parents of an object are superior
to the hierarchy, and children are the objects of lower hierarchy. Senior
object is created with figure , then, is the one created by axes and, finally,
and at the same level, are created by image , patch , surface , text and
line . This means that if, for example, you want to create a surface, first
has to create figure that is going to graph, then the axes and, finally, the
surface itself.

So far we have seen commands that allow you to create objects, but, in
addition, all these objects can have properties, as style of line, color, etc.
List of possible properties to each object is a very long, and its full
knowledge requires detailed consultation of MATLAB Reference manual.
As a general rule, the name of a property of an object is a compound word
whose components begin with capital letter. For example, the line style
property has name LineStyle . The names of the properties that are
mapped by default to an object are by Default , as, for example,
DefaultFigureColor , which assigns the color by default to a figure. Below,
are some of the most typical properties which must be seen in the
different objects.

Among the commands that allow you to perform operations with graphical
objects already created are as follows:

set(h, ‘propiedad1’, ‘propiedad2’,…)

puts the specified properties in the object h

get (h, ‘property’)

returns the current value of the specified property to the object h

object = gco

returns the current object of the current figure

rotate(h, [a, e], , [p,q,r])

rotates the object h angle , according to the axis of azimuth , and
elevation and, being the origin point (p, q, r)

reset (h)

updates all properties assigned to the object h and set its properties by
default

delete(h)

deletes the object h

Here are some examples:

The following syntax places the limits of variation of the current X , Y and
Z axes to the specified values:

» set(gca, ‘Xlim’, [0,10], ‘Ylim’, [-25, 25], ‘Zlim’ [-8,10])

The following syntax places the color of the background of the current
figure in white:

» set (gcf, ‘Color’, ‘w’)

The following syntax returns the current properties for a surface previously
created named surfh :

» get (surfh)

The following syntax returns the line style of the surface surfh :

» get ‘LineStyle’ (surfh)

The following syntax deletes the surface surfh :

» delete (surfh)

Exercise 4-8. Represent coordinates following parametric surface:

x(t)=4Cos(r)Cos(t), y(t)=2Sen(r)Cos(t), z(t) = Sen(t) - < r < , - /2 < t < /2

so that is presented in a figure with title “Surface parametric” and whose
background color is white, being its black color axis. On the other hand,
the surface presented their grids with yellow colours and must be
enclosed in a cube.

»r=(-pi:0.1:pi)’;

»t=(-pi/2:0.1:pi/2);

» x =4cos(r)cos(t);

»y=2sin(r)cos(t);

»z=ones(1,length(r))’*sin(t);

»surface=surf(x,y,z);

»set(surface,‘EdgeColor’,‘interp’)

»set(gcf,‘Color’,‘w’,‘Name’,‘SuperficieParamétrica’);

»set(gca,‘XColor’,‘k’,‘YColor’,‘k’,‘ZColor’,‘k’,‘Box’,‘on’);

Figure 4-22

Figure 4-22 represents the ordered surface.

Chapter 5.

MATLAB LANGUAGE ELEMENTS. ALGEBRAIC EXPRESSIONS,
POLYNOMIALS, EQUATIONS AND SYSTEM S

MATLAB incorporates a wide range of commands, including simplification,
expansion and factorization, that allow you to work with algebraic
expressions. The following table shows the most common commands
used when working with algebraic expressions.

MATLAB implements specific commands for working with polynomials,
such as finding their roots, differentiation and interpolation. The following
table shows the syntax and examples of the most important of these
commands.

MATLAB implements both algebraic and graphical commands for
polynomial interpolation, the most important of which are summarized in
the following table.

MATLAB includes multiple commands for solving equations and systems
of equations. The following sections present the syntax and main features
of these methods.

Below are the most common MATLAB commands used to solve equations
and systems

Below are the MATLAB commands that can be used to solve equations
and systems of equations by the biconjugate gradient method.

Below are the MATLAB commands that are used to solve equations and
systems of equations by the method of conjugate gradients.

Below are the MATLAB commands that are used to solve equations and
systems of equations by the residual method.

Below are the MATLAB commands that are used to solve equations and
systems of equations by the symmetric and non-negative least squares
methods.

In the previous sections we have studied equations and systems in
general. We will now focus on linear systems of equations. To solve such
systems we could simply use the commands we have seen so far,
however MATLAB has a selection of special commands designed
especially for linear systems. The following table lists these commands.

Systems of linear equations can be converted to array form and solved
using calculations with matrices. A system can be written in the form M . X
= B , where X is the vector of variables, B the vector of independent terms
and M the matrix of coefficients of the system. If M is a square matrix
and the determinant of the matrix M is non-null, M is invertible, and the
unique solution of the system can be written in the form: X = M -1 B.
In this case, the command s solve , linsolve , lscov, bicg, pcg, lsqr, gmr,
gmres, minres, symmlq or M, already described above, offer the solution.

If the determinant of M is zero, the system has infinitely many solutions,
since there are rows or columns in M that are linearly dependent. In this
case, the number of redundant equations can be calculated to find out
how many variables are needed to describe the solutions. If the matrix M
is rectangular (not square), the system may be undetermined (the number
of equations is less than the number of variables), overdetermined (the
number of equations is greater than the number of variables) or non-
singular (the number of equations is equal to number of variables and M
has non-zero determinant). An indeterminate system can have infinite
ly many solutions, or none, and likewise for an overdetermined system. If
a system has no solution, it is called inconsistent (incompatible), and if
there is at least one solution, it is called consistent (compatible). The
system M . X = B is called homogeneous when the vector B is the null
vector, i.e. the system is of the form M . X= 0 . If the determinant of M is
non-null, the unique solution of the system is the null vector (obtained with
the command linsolve). If the determinant of M is zero, the system has
infinitely many solutions. The solutions can be found using the commands
solve , linsolve, lsqr or other commands described above for general
linear systems .

A fundamental tool in the analysis and solution of systems of equations is
the Rouche-Frobenius theorem . This theorem says that a system of m
equations with n unknowns has a solution if, and only if, the rank of the
matrix of coefficients coincides with the rank of the array extended with
the vector column of the system-independent terms. If the two ranks are

equal, and equal to the number of unknowns, the system has a unique
solution. If the two ranks are the same, but less that the number of
unknowns, the system has infinitely many solutions. If they are different,
the system has no solution.

In summary: Let A be the matrix of coefficients of the system and B the
matrix A augmented by the column vector of independent terms.

If rank(A) rank(B) , the system is incompatible (without solution).

If rank (A) = rank(B) < n , the system is indefinite (has infinitely many
solutions).

If = rank(A) = rank(B) = n , the system has a unique solution.

This theorem allows us to analyze the solutions of a system of equations
before solving it.

We have already encountered homogeneous systems . A system A. X = B
is said homogeneous if the vector of independent terms B is null, so every
homogeneous system is of the form A. X = 0 . In a homogeneous system,
the rank of the matrix of coefficients and the rank of the matrix augmented
to include the column vector of independent terms always coincide. If we
apply the Rouche-Frobenius theorem, a homogeneous system will have a
unique solution when the determinant of the matrix A is non-zero. Since
the null vector is always a solution of a homogeneous system, this must
be the unique solution. A homogeneous system will have infinitely many
solutions when the determinant of the matrix A is zero. In this case, the
solutions are calculated as for general systems (using the command solve
), or by using the function null (A).

As a first example we solve the system:

2x + y + z + t = 1

x + 2y + z + t = 1

x + y + 2z + t = 1

x + y + z + 2t = 1

We will find the rank of the matrix of the system and the rank of the
augmented matrix obtained by extending the matrix by the column vector
of independent terms.

A = [2,1,1,1;1,2,1,1;1,1,2,1;1,1,1,2];

B = [2,1,1,1,1;1,2,1,1,1;1,1,2,1,1;1,1,1,2,1];

[rank(A), rank(B)]

ans =

4 4

We note that the ranks of the two matrices coincide with the number of
unknowns. The Rouche-Frobenius theorem then tells us that the system
is compatible with a unique solution. We can calculate the solution in the
following way:

B = [1 1 1 1]’;

linsolve(A, B)

ans =

0.2000

0.2000

0.2000

0.2000

The solution could also have been found using the following commands:

lscov(A, B)

ans =

0.2000

0.2000

0.2000

0.2000

bicg(A, B)

bicg converged at iteration 1 to a solution with relative residual 0

ans =

0.2000

0.2000

0.2000

0.2000

pcg(A, B)

PCG converged at iteration 1 to a solution with relative residual 0

ans =

0.2000

0.2000

0.2000

0.2000

lsqr(A, B)

lsqr converged at iteration 1 to a solution with relative residual 0

ans =

0.2000

0.2000

0.2000

0.2000

qmr(A, B)

QMR converged at iteration 1 to a solution with relative residual 0

ans =

0.2000

0.2000

0.2000

0.2000

gmres(A, B)

gmres converged at iteration 1 to a solution with relative residual 1.5e-016

ans =

0.2000

0.2000

0.2000

0.2000

symmlq(A, B)

symmlq converged at iteration 1 to a solution with relative residual 0

ans =

0.2000

0.2000

0.2000

0.2000

As a second example, we solve the system:

x + 2y + 3z = 6

x + 3 y + 8z = 19

2 x + 3y + z = - 1

5 x + 6 y + 4z = 5

We find the rank of the matrix of the system and the rank of the
augmented matrix.

A=[1,2,3;1,3,8;2,3,1;5,6,4];

B=[1,2,3,6;1,3,8,19;2,3,1,-1;5,6,4,5];

[rank(A), rank(B)]

ans =

3 3

We note that the ranks of the two matrices coincide with the number of
unknowns. The Rouche-Frobenius theorem then tells us that the system
is compatible with a unique solution. We can calculate the solution in the
following way:

A = [1,2,3;1,3,8;2,3,1;5,6,4];

B = [19-6 - 5-1]’;

linsolve(A, B)

ans =

1.0000

-2.0000

3,0000

As a third example, we solve the system:

x + 2y - z = 0

2 x - y + z = 0

3 x + y = 0

As we have a homogeneous system, we will calculate the determinant of
the matrix of coefficients of the system.

A = [1,2, -1; 2, -1, 1; 3,1,0];

det (A)

ans =

5. 5511e-016

This answer is very close to zero, in fact the determinant is actually zero,
thus the homogeneous system will have infinitely many solutions, which
are calculated with the command solve as shown below.

[x, y, z] = solve(’x+2y-z, 2x-y+z, 3*x+y’, ‘x,y,z’)

x =

-z1/5

y =

(3 * z1) / 5

z =

z1

Thus the infinite set of solutions depend on a parameter z1 and are
described as {(- z 1/5, 3 z 1/5, z 1)} , z 1 R.

Exercise 1. Expand the following algebraic expressions:

» syms x y z b t

» pretty(expand((x+1)*(2.4.x+2)))

2

x + 3 x + 2

» pretty(expand((x+1)/(2.4.x+2)))

x 1

—— + ——-

x + 2 x + 2

» pretty(expand(sin(x+y)))

sin(x) cos (y) + cos (x) sin(y)

» pretty(expand(cos(2*x)))

 2

2 cos (x) - 1

» pretty(expand(exp(a+log(b)))

exp (a) b

» pretty(expand(log(x/(1-x)^2)))

log (x) - 2-log(1-x)

» pretty(expand((x+1)*(y+z)))

x y + x z + y + z

Exercise 2. Factorize the following algebraic expressions:

syms x y

pretty(factor(6x^2+18x-24))

6 (x + 4) (x - 1)

pretty(factor(x4-y4))

2 2

(x y) (x + y) (x + y)

pretty(factor(x3+y3))

 2 2

(x + y) (x - x y + y)

pretty(factor((x3-y3)/(x4-y4)))

2 2

x + x y + y

 2 2

(x + y) (x + y)

Exercise 3. Simplify the following algebraic expressions:

syms x y b c

simplify(sin(x)2+cos(x)2)

ans =

1

pretty(simplify(exp(a+log(b*exp(c)))))

b exp(a + c)

pretty(sym(simplify(cos(3*acos(x)))))

 3

4 x - 3 x

pretty(simplify((x2-y2)/(x-y)^3))

1

x

Exercise 4. Rewrite the following algebraic expressions in terms of powers
of x:

f(x) = a3x - x + a3x + a, p(x)= y/x+2z/x+x1/3-y*x1/3, q(x)=(x+1)(x+2)

Rewrite the following expression in terms of powers of sin(x): y(sin (x) + 1)
+ sin (x)

Rewrite the following expression in terms of powers of ln(x): f = aln (x) -
xln (x) - x

Rewrite the following expression in terms of powers of x and y: p = xy +
zxy + yx2+ zyx2+ x+zx

syms x y z

pretty(collect(a^3*x-x+a^3+a, x))

3 3

(a -1) x + a + a

pretty(collect(y/x+2z/x+x^(1/3)-y^(1/3)x,x))

y + 2 z – x ⁴/³ y + x ⁴/³

x

pretty(collect((x+1)*(x+2)))

2

x + 3 x + 2

p=xy+zxy+yx2-zyx2+x+z*x;

pretty(collect(p, [x,y]))

2

(1-z) x y + (z + 1) x y + (z + 1) x

f=alog(x)-log(x)x-x;

pretty(collect(f,log(x)))

(a - x) log (x) - x

Exercise 5. Combine the terms as much as possible in the following
expression:

a ln(x)+3ln(x)-ln(1-x)+ln(1+x)/2

Simplify it assuming that a is real and x > 0.

pretty(sym(simplify(alog(x)+3log(x)-log(1-x)+log(1+x)/2)))

log(x + 1)/2- log(1-x) + 3 log (x) + log (x)

x = sym(‘x’, ‘positive’)

x =

x

a = sym(‘a’, ‘real’)

a =

a

pretty(sym(simplify(alog(x)+3log(x)-log(1-x)+log(1+x)/2)))

 / x - 1

-log| - —————- |

 | 3 a 1/2 |

 x x (x + 1) /

Exercise 6. Expand and simplify the following trigonometric expressions:

a. sin [3x] cos [5 x]

b. [(cot[a])2 +(sec[a]) 2 -(csc[a]) 2

c. sin [a] /(1+cot[a] 2) - sin [a] 3

pretty(simplify(expand(sym(sin(3x)cos(5*x)))))

sin(8 x) sin (2 x)

 2 2

pretty(simplify(expand(((cot(a))2+(sec(a))2-(csc(a))^2))))

 1

——- - 1

 2

cos (a)

pretty(simplify(expand(sin(a)/(1+cot(a)2)-sin(a)3)))

0

Exercise 7. Simplify the following algebraic expressions as much as
possible:

2 2 3 3

x y 2 x y 1 + a 1 - b a - b

 , + -

x + y x - y 2 2 b a a b

x - y

pretty(simplify(expand(x/(x+y)-y/(x-y)+2xy/(x2-y2))))

1

pretty(simplify(expand((1+a2)/b+(1-b2)/a-(a3-b3)/(a*b))))

1 1

a b

Exercise 8. Simplify the following algebraic fractions as much as possible:

 3 2 2 2 2 2

 a - a b + ac - bc (x - 9) (x - 2 x + 1) (x - 3)

,

 3 2 2 2 2 2

 a + ac + a b + b c (x - 6 x + 9) (x - 1) (x - 1)

pretty(simplify(expand(a3-a2b+ac2-bc2)/(a3+ac2+a2b+bc2)))

a - b

a + b

pretty(simplify(expand((x^2-9)(x2-2x+1)(x-3))/((x2-6x+9)(x^2-1) (x-
1))))

2

—– + 1

x + 1

Exercise 9. Calculate the roots of the following polynomials:

Evaluate the first polynomial at the identity matrix of order 3, the second at
the unit matrix of order 3 and the third at a uniformly random matrix of
order 3.

Find the coefficients of the derivatives of the given polynomials and
display the results in polynomial form.

p1 = [1 -6 -72 -27]; r = roots(p1)

r =

12.1229

-5.7345

-0.3884

p2 = [2 -3 4 -5 11];r=roots(p2)

r =

 1.2817 + 1.0040i

 1.2817 - 1.0040i

 -0.5317 + 1.3387i

 -0.5317 - 1.3387i

p3 = [1 0 0 0 0 0 0 0 0 0 0 1]; r = roots(p3)

r =

 -1.0000 + 0.0000i

 -0.8413 + 0.5406i

 -0.8413 - 0.5406i

 -0.4154 + 0.9096i

 -0.4154 - 0.9096i

 0.1423 + 0.9898i

 0.1423 - 0.9898i

 0.6549 + 0.7557i

 0.6549 - 0.7557i

 0.9595 + 0.2817i

 0.9595 - 0.2817i

Y1=polyval(p1,eye(3))

Y1 =

-104 - 27 - 27

-27 -104 - 27

-27 – 27 -104

Y2=polyval(p2,ones(3))

Y2 =

9 -9 -9

9 -9 -9

9 -9 -9

Y3=polyval(p3,rand(3))

Y3 =

1.1050 1.3691 1.0000

1.3368 1.0065 1.0013

1.0000 1.0000 1.6202

d1 = polyder(p1)

D1 =

3 -12 -72

pretty(poly2sym(d1,x))

 2

3 x - 12 x - 72

d2 = polyder(p2)

D2 =

8 - 9 8 - 5

pretty(poly2sym(d2,x))

 3 2

8 x - 9 x + 8 x - 5

d3 = polyder(p3)

D3 =

11 0 0 0 0 0 0 0 0 0 0

pretty(poly2sym(d3,x))

 10

11 x

Exercise 10. Consider the equally spaced set of points in the interval [0,5]
separated by one tenth. Interpolate the error function at these points and
adjust a polynomial of degree 6. Represent the original curve and the
interpolated on the same graph.

x = (0:0.1:5)’;

p = polyfit(x,y,6);

y = erf(x);

f = polyval(p,x);

p = polyfit(x,y,6)

p =

0.0012 - 0.0173 0.0812 - 0.0791 - 0.4495 1.3107 - 0.0128

f = polyval(p,x);

plot(x,y,‘o’,x,f,‘-’)

axis([0 5 0 2])

Exercise 11. Calculate the second degree interpolating polynomial
passing through the points (- 1.4), (0,2), and (1.6) in the least squares
sense.

» x = [-1, 0, 1]; y=[4,2,6]; p=poly2sym(polyfit(x,y,2))

p =

3 * x ^ 2 + x + 2

Exercise 12. Represent 200 points of cubic interpolation between the
points (x, y) given by y= e x for x values in 20 equally spaced intervals
between 0 and 2.

First, we define the 20 points (x, y) , for x equally spaced between 0 and
2:

» x = 0:0.1:2;

» y = exp(x);

Now we find cubic interpolation points (xi, yi) , for x values in 200 equally
spaced between 0 and 2, and represent them on a graph together with the
initial points (x, y) (indicated by asterisks).

» xi = 0:0.01:2;

» yi = interp1(x,y,xi,‘cubic’);

» plot(x,y,’*’,xi,yi)

Exercise 13. Find interpolation points of the parametric function X = cosh
(t), Y = sinh (t), Z = tanh (t) for values of t between 0 and /6 in 25 equally
spaced intervals..

First, we define the given points (x, y, z) , for equally spaced values of t
between 0 and / 6.

t=0:pi/150:pi/6;

x=cosh(t); y=sinh(t); z=tanh(t);

Now we find the 26 points of interpolation (x i , y i , z i) , for values of the
parameter t equally spaced between 0 and / 6.

» xi = cosh(t); yi = sinh(t);

» zi = griddata(x,y,z,xi,yi);

» points = [xi, yi, zi]

points =

1.0000 0 0

1.0002 0.0209 0.0209

1.0009 0.0419 0.0419

1.0020 0.0629 0.0627

1.0035 0.0839 0.0836

1.0055 0.1049 0.1043

1.0079 0.1260 0.1250

1.0108 0.1471 0.1456

1.0141 0.1683 0.1660

1.0178 0.1896 0.1863

1.0220 0.2110 0.2064

1.0267 0.2324 0.2264

1.0317 0.2540 0.2462

1.0373 0.2756 0.2657

1.0433 0.2974 0.2851

1.0498 0.3194 0.3042

1.0567 0.3414 0.3231

1.0641 0.3636 0.3417

1.0719 0.3860 0.3601

1.0802 0.4085 0.3782

1.0890 0.4312 0.3960

1.0983 0.4541 0.4135

1.1080 0.4772 0.4307

1.1183 0.5006 0.4476

1.1290 0.5241 0.4642

1.1402 0.5479 0.4805

Exercise 14. Using fast Fourier transform (FFT) interpolation, find the 30
points (xi, yi) approximating the function y = sinh (x) for values of x that
are in equally spaced intervals between 0 and 2π, interpolating them
between values of (x, y) given by y = sinh (x) for x values in 20 evenly
spaced intervals in (0,2). Graph the points.

First, we define the x values equally spaced in 20 intervals between 0 and
2 .

» x =(0:pi/10:2*pi);

Now we find the interpolation points (x, y) orders.

y = interpft(sinh(x), 30);

points = [y’, (asinh(y))’]

points =

-0.0000 - 0.0000

-28.2506 - 4.0346

23.3719 3.8451

-4.9711 - 2.3067

-7.7918 - 2.7503

14.0406 3.3364

-4.8129 - 2.2751

-0.8717 - 0.7877

11.5537 3.1420

-3.3804 - 1.9323

4.4531 2.1991

11.8616 3.1682

-0.2121 - 0.2105

10.9811 3.0914

15.1648 3.4132

6.1408 2.5147

21.2540 3.7502

23.3792 3.8455

18.5918 3.6166

39.4061 4.3672

40.6473 4.3982

42.8049 4.4499

73.2876 4.9876

74.8962 5.0093

89.7159 5.1898

139.0371 5.6279

139.3869 5.6304

180.2289 5.8874

282.4798 6.3368

201.7871 6.0004

plot(points)

Exercise 15. Find the polynomial of degree 3 which is the best fit through
the points (i,i ²) 1 i 7, in the least squares sense. Evaluate this polynomial
at x = 10 and graphically represent the best fit curve.

x =(1:7);y=[1,4,9,16,25,36,49];p=vpa(poly2sym(polyfit(x,y,2)))

p =

x^2-
0.000000000000009169181662272871686413366801652*x+0.00000000
0000020761891472015924526365781895317

Now we calculate the numerical value of the polynomial p at x = 10 .

subs(p,10)

ans =

100.0000

Next we graph the polynomial:

» ezplot(p,[-5,5])

Exercise 16. Find the solutions to the following equations:

sin (x) cos (x) = 0 and ax ^ 2 + bx + c = 0

» solve(’sin(x)*cos(x)=0’)

ans =

pi/2

otherwise

solve(sin(x)*cos(x)==0)

ans =

pi/2

» pretty(solve(‘ax^2+bx+c=0’,‘x’))

/ 2

| b + sqrt(b - 4 a c) |

- ——————– |

| 2 a |

| |

| 2 |

| b - sqrt(b - 4 a c) |

- ——————– |

 2 a /

otherwise

pretty(solve(ax^2+bx+c==0,x))

/ 2

| b + sqrt(b - 4 a c) |

- ——————– |

| 2 a |

| |

| 2 |

| b - sqrt(b - 4 a c) |

- ——————– |

 2 a /

Exercise 17. Find at least two solutions for each of the following two
trigonometric and exponential equations:

First, we use the command solve :

vpa(solve(’x*sin(x)=1/2’,‘x’))

ans =

21.968386631500002609599321864459

otherwise

vpa(solve(x*sin(x)==1/2,x))

ans =

21.968386631500002609599321864459

vpa(solve(‘2(x3)=42^(3x)’,‘x’))

ans =

2.0

otherwise

vpa(solve(2(x3)==42^(3x),x))

ans =

2.0

To better analyze the first equation, we graphically represent the function
to determine approximate intervals where the possible solutions can be
found.

» fplot(’[xsin(x)-1/2]’,[0,4pi])

We observe that there is a solution between 0 and 2, another between 2
and 4, another between 4 and 8, and so on. We can calculate three of
them with the command fzero .

s1=fzero(’x*sin(x)-1/2’,2)

s1 =

0.7408

s2=fzero(’x*sin(x)-1/2’,4)

s2 =

2.9726

s3=fzero(’x*sin(x)-1/2’,6)

S3 =

6.3619

Exercise 18. Solve each of the following two logarithmic and surd
equations:

x ³/² log(x) = x log(x ³/²), sqrt[1-x]+sqrt[1+x] = a.

vpa(solve(‘x(3/2)log(x)=xlog(x)(3/2)’))

ans =

1.0

otherwise

vpa(solve(x(3/2)log(x)==xlog(x)(3/2)))

ans =

1.0

We graph the function to determine in which intervals a solution can be
found. The plot indicates that x=1 is the only real solution.

fplot(‘[x(3/2)log(x),xlog(x)(3/2)]’,[0,3])

Now, we solve the surd equation:

pretty(sym(solve(‘sqrt(1-x)+sqrt(1+x)=a’,‘x’)))

+- -+

| 2 1/2 |

| a (4 - a) |

| ————- |

| 2 |

| |

| 2 1/2 |

| a (4 - a) |

| - ————- |

| 2 |

Exercise 19. Solve the following system of two equations:

cos(x/12) /exp (x ² /16) = y

5/4 + y = sin (x ³/²)

[x,y]=solve(cos(x/12)/exp(x2/16)==y,5/4+y==sin(x(3/2)))

x =

1.4871476048289696408542396856279 -
0.7552602772328636111717863015393i

y =

0.88755081697835547124465602184681 +
0.13253150350741418925867594825393i

Exercise 20. Find the intersection of the hyperbolas with equations x ² - y ²
= r ² and a ² x ² - b ² y ² = a ² b ² with the parabola z ² = 2px.

[x, y, z] = solve(’a2x2-b2y2=a^2*b^2’,‘x2-y2=r2’,’z2=2px’,

‘x,y,z’)

x =

((4a2b2p^2-4b2p2r^2) /(a2-b2)) ^(1/2) /(2*p)

((4a2b2p^2-4b2p2r^2) /(a2-b2)) ^(1/2) /(2*p)

((4a2b2p^2-4b2p2r^2) /(a2-b2)) ^(1/2) /(2*p)

-((4a2b2p^2-4b2p2r^2) /(a2-b2)) ^(1/2) /(2*p)

((4a2b2p^2-4b2p2r^2) /(a2-b2)) ^(1/2) /(2*p)

-((4a2b2p^2-4b2p2r^2) /(a2-b2)) ^(1/2) /(2*p)

-((4a2b2p^2-4b2p2r^2) /(a2-b2)) ^(1/2) /(2*p)

-((4a2b2p^2-4b2p2r^2) /(a2-b2)) ^(1/2) /(2*p)

y =

a * ((b2-r2) /(a2-b2)) ^(1/2)

-a * ((b2-r2) /(a2-b2)) ^(1/2)

a * ((b2-r2) /(a2-b2)) ^(1/2)

a * ((b2-r2) /(a2-b2)) ^(1/2)

-a * ((b2-r2) /(a2-b2)) ^(1/2)

a * ((b2-r2) /(a2-b2)) ^(1/2)

-a * ((b2-r2) /(a2-b2)) ^(1/2)

-a * ((b2-r2) /(a2-b2)) ^(1/2)

z =

((4a2b2p^2-4b2p2r^2) /(a2-b2)) ^(1/4)

((4a2b2p^2-4b2p2r^2) /(a2-b2)) ^(1/4)

-((4a2b2p^2-4b2p2r^2) /(a2-b2)) ^(1/4)

((4a2b2p^2-4b2p2r^2) /(a2-b2)) ^(1/4) * i

-((4a2b2p^2-4b2p2r^2) /(a2-b2)) ^(1/4)

-((4a2b2p^2-4b2p2r^2) /(a2-b2)) ^(1/4) * i

((4a2b2p^2-4b2p2r^2) /(a2-b2)) ^(1/4) * i

-((4a2b2p^2-4b2p2r^2) /(a2-b2)) ^(1/4) * i

otherwise

syms x y z a b r p

[x, y, z] = solve(a2x2-b2y2==a^2b2,x2-y2==r2, z^2==2p*x,[x,y,z])

x =

 ((4a2b2p^2 - 4b2p2r^ 2)/(a^2 - b2))(1/2)/(2*p)

 ((4a2b2p^2 - 4b2p2r^ 2)/(a^2 - b2))(1/2)/(2*p)

 ((4a2b2p^2 - 4b2p2r^ 2)/(a^2 - b2))(1/2)/(2*p)

 ((4a2b2p^2 - 4b2p2r^ 2)/(a^2 - b2))(1/2)/(2*p)

-((4a2b2p^2 - 4b2p2r2)/(a2 - b2))(1/2)/(2*p)

-((4a2b2p^2 - 4b2p2r2)/(a2 - b2))(1/2)/(2*p)

-((4a2b2p^2 - 4b2p2r2)/(a2 - b2))(1/2)/(2*p)

-((4a2b2p^2 - 4b2p2r2)/(a2 - b2))(1/2)/(2*p)

y =

 a(((b + r)(b - r))/((a + b)*(a - b)))^(1/2)

-a(((b + r)(b - r))/((a + b)*(a - b)))^(1/2)

 a(((b + r)(b - r))/((a + b)*(a - b)))^(1/2)

-a(((b + r)(b - r))/((a + b)*(a - b)))^(1/2)

 a(((b + r)(b - r))/((a + b)*(a - b)))^(1/2)

 a(((b + r)(b - r))/((a + b)*(a - b)))^(1/2)

-a(((b + r)(b - r))/((a + b)*(a - b)))^(1/2)

-a(((b + r)(b - r))/((a + b)*(a - b)))^(1/2)

z =

 ((4a2b2p^2 - 4b2p2r^ 2)/(a^2 - b2))(1/4)

 ((4a2b2p^2 - 4b2p2r^ 2)/(a^2 - b2))(1/4)

-((4a2b2p^2 - 4b2p2r2)/(a2 - b2))(1/4)

 -((4a2b2p^2 - 4b2p2r^2) /(a^2 - b2))(1/4)

-((4a2b2p^2 - 4b2p2r2)/(a2 - b2))(1/4)*1i

 ((4a2b2p^2 - 4b2p2r^2) /(a^2 - b2))(1/4)*1i

-((4a2b2p^2 - 4b2p2r2)/(a2 - b2))(1/4)*1i

 ((4a2b2p^2 - 4b2p2r^2) /(a^2 - b2))(1/4)*1i

Exercise 21. Study and solve the system:

» A = [1, -1, 1; 4, 5, -5; 2, 1, -1; 1, 2, -2]

A =

1 –1 -1

5 - 4 -5

2 - 1 -1

2 - 1 -2

» B = [1, -1, 1, 1; 4, 5, -5, 4; 2, 1, -1, 2; 1, 2, -2, 1]

B =

1 –1 -1 -1

5 4 -5 4

1 2 -1 2

2 1 -2 1

» [rank(A), rank(B)]

ans =

2 2

We see that the ranks of A and B coincide and its value is 2, which is less
than the number of unknowns in the system (3). Therefore, the system will
have infinitely many solutions. We try to solve it with the command solve :

syms x1 x2 x3

[x1,x2,x3]=solve(x1-x2+x3==1,4x1+5x2-5x3==4,2x1+x2-x3==2,
x1+2x2-2x3==1,x1,x2,x3)

x1 =

1

x2 =

0

x3 =

0

Infinitely many solutions are obtained in terms of the parameter z , namely

{1, z, z}, z R . Note that the trivial solution {1,0,0} is obtained by setting the
parameter equal to zero.

Exercise 22. Study and solve the system:

x + 2 y + 3 z + t = 6

x + 3 y + 8 z + t =19

“A = [1,2,3,1;1,3,8,1]

A =

1 2 3 1

1 3 8 1

» B = [1,2,3,1,6;1,3,8,1,19]

B =

1 2 3 1 6

1 3 8 1 19

» [rank(A), rank(B)]

ans =

2 2

We see that the ranks of A and B coincide, and their common value is 2,
which is less than the number of unknowns for the system (4). Therefore,
the system has infinitely many solutions. We try to solve it:

[x, y, z, t] = solve(‘x+2y+3z+t=6’,‘x+3y+8z+t=19’,‘x’,‘y’,‘z’,‘t’)

x =

7.0z1 - 1.0z - 20.0

y =

13.0 - 5.0*z1

z =

z1

t =

z

otherwise

syms x y z t

[x, y, z, t] = solve(x+2y+3z+t==6,x+3y+8z+t==19,[x,y,z,t])

x =

7.0z1 - 1.0z - 20.0

y =

13.0 - 5.0*z1

z =

z1

t =

z

This time the solution depends on two parameters z1 and z2 . As these
parameters vary over the real numbers (x,y,z,t) varies over all solutions of
the system. These solutions form a two-dimensional subspace of the four
dimensional real vector space which can be expressed as follows:

{7z1-z2-20, z2, 13-5z1, z1}, z1, z2 R

Exercise 23. Study and solve the system:

» det([3,1,1,-1;2,1,-1,1;1,2,4,2;2,1,-2,-1])

ans =

-30

As the determinant of the coefficient matrix is non-zero, the system has
only the trivial solution:

[(x1,x2,x3,x4]=solve(‘3x1+x2+x3-x4=0’,’2x1+x2-
x3+x4=0’,’x1+2x2-4x3-2*x4=0’,‘x1-x2-3x3-
5x4=0’,‘x1’,‘x2’,‘x3’,‘x4’)]

x 1 =

0

x 2 =

0

x 3 =

0

x 4 =

0

Otherwise

syms x1 x2 x3 x4

[x1 x2 x3 x4]=solve(3x1+x2+x3-x4==0,2x1+x2-
x3+x4==0,x1+2x2-4x3-2x4==0,x1-x2-3x3-5*x4==0,[x1,x2,x3,x4])

x1 =

0

x2 =

0

x3 =

0

x4 =

0

Exercise 24. Study and solve the following system, according to the
values of m:

m x + y + z = 1

x + m y + z = m

x + y + m z = m ²

syms m

A=[m,1,1;1,m,1;1,1,m]

A =

[m, 1, 1]

[1, m, 1]

[1, 1, m]

det(A)

ans =

m^3 - 3*m + 2

solve(’m^3 - 3*m + 2=0’,‘m’)

ans =

-2

1

1

The values of m which determine the rank of the matrix are - 2 and 1.

We now consider the augmented matrix extended to include a fourth
column with values 1 , m and m ² :

B=[m,1,1,1;1,m,1,m;1,1,m,m^2]

B =

[m, 1, 1, 1]

[1, m, 1, m]

[1, 1, m, m^2]

We will study the case m =-2 :

rank(subs(A,{m},{-2}))

ans =

2

rank(subs(B,{m},{-2}))

ans =

3

We see that the ranks of the two arrays are different, hence the system is
inconsistent (i.e. it has no solution) if m =-2 .

Now we study the case m = 1 :

rank(subs(A,{m},{1}))

ans =

1

rank(subs(B,{m},{1}))

ans =

1

Now the rank of both matrices is 1, which is less than the number of
unknowns. In this case, the system has infinitely many solutions. We find
them by substituting m = 1 into the initial system:

[x,y,z]=solve(‘x+y+z=1’,‘x’,‘y’,‘z’)

Warning: 1 equation in 3 variables. New variables might be introduced.

x =

1 - z2 - z1

y =

z2

z =

z1

Thus the solutions are given in terms of two parameters. The two-
dimensional subspace of solutions is:

{1-z2-z1, z2, z1}, z1, z2 R

If we consider the case where m is neither - 2 nor 1, the system has a
unique solution, which is given by the command solve :

[x,y,z]=solve(‘mx+y+z=1’,’x+my+z=m’,’x+y+m*z=m^2’,‘x’,‘y’,‘z’)

x =

-(m + 1)/(m + 2)

y =

1 /(m + 2)

z =

(m ^ 2 + 2 * m + 1) /(m + 2)

Exercise 25. Study and solve the following system, according to the
values of m:

m y = m

(1 + m) x - z = m

y + z = m

syms m

A = [0, m, 0; m + 1, 0, -1; 0,1,1]

A =

[0, m, 0]

[m + 1, 0, - 1]

[0, 1, 1]

det (A)

ans =

-m ^ 2 - m

solve(‘-m^2-m=0’,‘m’)

ans =

-1

0

We see that the values of m which determine the rank of the matrix of
coefficients of the system are m = 1 and m = 0 .

We now consider the augmented matrix:

B = [0, m, 0, m; m + 1, 0, - 1, m; 0,1,1,m]

B =

[0, m, 0, m]

[m + 1, 0, - 1, m]

[0, 1, 1, m]

rank (subs(A,{m},{-1}))

ans =

2

rank (subs(B,{m},{-1}))

ans =

3

If m =-1 , we see that the system has no solution because the rank of the
matrix of coefficients of the system is 2 and the rank of the augmented
matrix is 3.

Now, we analyze the case m = 0:

When m is zero the system is homogeneous, since the independent terms
are all null. We analyze the determinant of the matrix of coefficients of the
system.

det (subs(A,{m},{0}))

ans =

0

Since the determinant is zero, the system has infinitely many solutions:

[x, y, z] = solve(‘x-z=0’,‘y+z=0’,‘x’,‘y’,‘z’)

Warning: 2 equations in three variables. New variables might be
introduced.

x =

z1

y =

-z1

z =

z1

Thus the solutions are given in terms of one parameter. The one-
dimensional subspace of solutions is:

{z1,- z1, z1}, z1 R

If m is neither 0 nor - 1, the system has a unique solution, since the ranks
of the matrix of the system and of the augmented matrix coincide. The
solution, using the function solve, is calculated as follows.

[x, y, z] = solve (‘m * y = m’, ‘(1+m) * x-z = m’,’ y + z = m’, ‘x’, ‘y’,
‘z’)

x =

(2 * m - 1) /(m + 1)

y =

1

z =

m – 1

Exercise 26. Study and solve the system:

2 x + y + z + t = 1

x + 2 y + z + t = 1

x + y +2 z + t = 1

x + y + z + 2 t = 1

A=[2,1,1,1;1,2,1,1;1,1,2,1;1,1,1,2];

B=[2,1,1,1,1;1,2,1,1,1;1,1,2,1,1;1,1,1,2,1];

[rank(A), rank(B)]

ans =

4 4

b = [1,1,1,1]’;

We see that the matrices A and B (the augmented matrix) both have rank
4, which also coincides with the number of unknowns. Thus the system
has a unique solution. To calculate the solution we can use any of the
commands shown below.

x = nnls(A,b)

x =

0.2000

0.2000

0.2000

0.2000

x = bicg(A,b)

bicg converged at iteration 1 to a solution with relative residual 0

x =

0.2000

0.2000

0.2000

0.2000

x = bicgstab(A,b)

bicgstab converged at iteration 0.5 to a solution with relative residual 0

x =

0.2000

0.2000

0.2000

0.2000

x = pcg(A,b)

pcg converged at iteration 1 to a solution with relative residual 0

x =

0.2000

0.2000

0.2000

0.2000

gmres(A,b)

gmres converged at iteration 1 to a solution with relative residual 0

ans =

0.2000

0.2000

0.2000

0.2000

x = lsqr(A,b)

lsqr converged at iteration 2 to a solution with relative residual 0

x =

0.2000

0.2000

0.2000

0.2000

A

ans =

0.2000

0.2000

0.2000

0.2000

.

Chapter 6.

MATRICES, VECTOR SPACES, LINEAR APPLICATIONS AND
QUADRATIC FORMS

We have already seen how vectors and matrices are represented in
MATLAB in the chapter dedicated to variables, however we shall recall
here the notation.

Consider the matrix

You can enter this in MATLAB in the following ways:

A=[a 11 ,a 12 ,…,a 1n ; a 21 ,a 22 ,…,a 2n ; … ; a m1 ,a m2 ,…,a mn]

A=[a 11 a 12 … a 1n ; a 21 a 22 … a 2n ; … ; a m1 a m2 … a mn]

On the other hand, a vector V =(v1,v2,…,vn) is introduced as a special
case of a matrix with a single row (i.e. a matrix of dimension 1×n) in the
following form:

V=[v1, v2, …, vn]

V=[v1 v2 … vn]

MATLAB includes commands that allow you to perform the most common
symbolic and numerical operations with matrices. The following table
shows the most important such operations.

MATLAB implements commands for the majority of known matrix
decompositions and enables you to work with eignevalues and
eigenvectors with ease. The syntax for the most common commands is
presented in the following table.

The matrix commands presented above enable you to work with vector
spaces, linear applications and quadratic forms. Using these commands
one can determine dependence and linear dependence of sets of vectors,
change bases and work in general in two and three-dimensional vector
geometry. We illustrate these applications in the following examples.

As a first example we determine whether the vectors {{1,2, - 3, 4}, {3, - 1,
2, 1}, {1,- 5.8, - 7}, {2,3,1,-1}} are linearly independent.

A=[1,2,-3,4;3,-1,2,1;1,-5,8,-7;2,3,1,-1]

A =

1 2 -3 -4

3 -1 2 1

1 - 5 8 -7

2 3 1 -1

det(A)

ans =

0

As the determinant of the matrix having the vectors as rows is zero, the
vectors are linearly independent.

As a second example, we determine if the set of three vectors of R ⁴
{{1,2,2,1},{3,4,4,3},{1,0,0,1}} are linearly independent.

B = [1,2,2,1;3,4,4,3;1,0,0,1]

B =

1 2 2 1

3 4 4 3

1 0 0 1

rank (B)

ans =

2

Since we have three vectors in R ⁴ , they would be linearly independent if
the rank of the matrix having these vectors as rows was 3. However, since
this rank is 2, the vectors are linearly dependent.

As a third example we find the dimension and a basis of the linear
subspace generated by the vectors {{2,3,4,-1,1},{3,4,7,-2,-1},{1,3,-1,1,8},
{0,5,5,-1,4}}.

To find the dimension of the linear space we calculate the rank of the
matrix formed by the vectors that generate it. That rank will be the
required dimension.

A=[2,3,4,-1,1;3,4,7,-2,-1;1,3,-1,1,8;0,5,5,-1,4]

A =

2 3 4 -1 1

3 4 7 -2 -1

1 3 -1 1 8

0 5 5 -1 4

rank (A)

ans =

3

Thus the dimension of the linear space is 3, and a basis will be formed by
the row vectors corresponding to any non-singular minor of order 3 of the
matrix A.

det([3 4 7; 1 3 -1;0 5 5])

ans =

75

Thus a basis will be formed by the vectors {{3,4,7,-2,-1}, {1,3, - 1, 1, 8},
{0,5,5,-1,4}}.

As a fourth example will check if the vectors {{2.3, - 1}, {0,0,1}, {2,1,0}}
form a basis in R ³ and find the components of the vector {3,5,1} in terms
of this basis.

Given that these are three vectors in three-dimensional space, a sufficient
condition for them to form a basis in R ³ is that the determinant of the
matrix having these vectors as rows is non-zero.

det([2,3,-1;0,0,1;2,1,0])

ans =

4

The vectors form a basis. To find the components of the vector {3,5,1} in
terms of this basis, we do the following:

inv([2,0,2;3,0,1;-1,1,0]) * [3,5,1]’

ans =

1.7500

2.7500

-0.2500

In our fifth example we consider the the bases of R ³ defined as B =
{{1,0,0}, {- 1, 1, 0}, {0,1, - 1}} and B1 = {{1,0, - 1}, {2,1,0}, {- 1, 1, 1}}, find
the change of basis matrix of B into B1, and calculate the components of
the B-basis vector {2,1,3} in base B1.

The operations to be carried out are as follows:

B = [1,0,0;-1,1,0;0,1,-1]

B =

1 0 0

-1 1 0

1-0 -1

B1 = [1, 0, -1; 2, 1, 0; -1, 1, 1]

B1 =

1 0 -1

2 1 0

-1 1 1

A = inv(B1’)*B’

A =

-0.5000 1.5000 2.5000

0.5000 -0.5000 -0.5000

-0.5000 1.5000 1.5000

To find the components of the base-B vector {2,1,3} in base-B1using the
change of basis matrix A , we perform the following operation:

inv(B1’)B’[2,1,3]’

ans =

8

-1

5

For our sixth example we find the scalar triple product of the vectors
{{1,1,2},{0,1,0},{0,1,1}} and calculate the area of the triangle whose
vertices have coordinates the points (0,0), (5,1) and (3,7).

dot([1,1,2], cross([0,1,0], [0,1,1]))

ans =

1

(1/2)*det([0,0,1;5,1,1;3,7,1])

ans =

16

As our seventh example we consider a linear transformation of R ⁵ to R ³
whose matrix with respect to the canonical bases is as follows:

We find a basis for its kernel (and hence its dimension) and find the image
of the vectors {4,2,0,0,-6} and {1.2, - 1, - 2, 3}. We also find a basis for the
image of the transformation.

A=[0,-3,-1,-3,-1;-3,3,-3,-3,-1;2,2,-1,1,2]

A =

0 -3 -1 -3 -1

-3 3 -3 -3 -1

2 2 -1 1 2

null(A)

ans =

-0.5397 - 0.1251

-0.2787 - 0.2942

-0.0266 - 0.6948

0.0230 0.6021

0.7936 - 0.2292

These two column vectors form a basis for the null space of A . Thus the
kernel of the transformation has dimension 2. Two previous output vectors

form the core of the nucleus and therefore the dimension of the kernel is
2.

To find the image of any column vector v via the linear transformation we
simply compute A*v .

A*[4 2 0 0 -6]’

ans =

0

0

0

A*[1 2 -1 -2 3]’

ans =

-2

9

11

The dimension of the image of the linear transformation is equal to the
rank of A .

rank (A)

ans =

3

Thus the dimension of the image of the transformation is 3, and a basis of
the image will be given by any three linearly independent columns of A .

det([0 -3 -2;-3 3 2;-1 -3 -1])

ans =

-9

Therefore, the vectors {{0 - 3 - 2};{-3 3 2}; {- 1 -3 - 1}} form a basis of the
image.

As an eighth example we consider the linear transformation f between two
vector subspaces U and V of real three-dimensional space, such that f (a,
b, c) = (a + b, b + c, a + c), for (a, b, c) in U. We find the matrices
corresponding to the transformations f , f ⁵ , and e f .

To find the matrix of f , we find the images of the canonical basis vectors
under f :

f

f =

[a + b, b + c, a + c]

subs(f,{a,b,c},{1,0,0})

ans =

1 0 1

subs(f,{a,b,c},{0,1,0})

ans =

 1 1 0

subs(f,{a,b,c},{0,0,1})

ans =

0 1 1

The matrix A associated with the linear transformation f will then have as
columns the images of the basis vectors found above. Thus: A=

The matrix associated to f ⁵ will be A ⁵ and the matrix associated to e f will
be e A .

A=([1 0 1;1 1 0;0 1 1])’

A =

1 1 0

0 1 1

1 0 1

A^5

ans =

11 10 11

11 11 10

10 11 11

expm(A)

ans =

3.1751 2.8321 1.3819

1.3819 3.1751 2.8321

2.8321 1.3819 3.1751

For our ninth example we classify the bilinear form f:U×V→R and the
quadratic form g:U→R defined as follows:

A = [1, -2, 0; 0, 0, 4; -1, 0, -3]

A =

1-2-0

0 0 4

-1 0 - 3

det (A)

ans =

8

As the determinant of the matrix of f is non-zero, the bilinear form is
regular non-degenerate.

B = [1, -1, 3; -1, 1, -3/2; 3, -3/2, 4]

B =

1.0000 - 1.0000 3,0000

-1.0000 1.0000 - 1.5000

3,0000 - 1.5000 4.0000

To classify the quadratic form, we calculate its diagonal determinants.

det(B)

ans =

-2.2500

det([1,-1;-1,1])

ans =

0

It turns out that the quadratic form is negative semi-definite.

We can also obtain the classification via the eigenvalues of the matrix of
the quadratic form.

A quadratic form is defined to be positive if and only if all its eigenvalues
are strictly positive. A quadratic form is defined to be negative if and only if
all its eigenvalues are strictly negative.

A quadratic form is positive semi-definite if and only if all its eigenvalues
are non-negative. A quadratic form is negative semi-definite if and only if
all its eigenvalues are not positive.

A quadratic form is indefinite if there are both positive and negative
eigenvalues.

eig(B)

ans =

-0.8569

0.4071

6.4498

There are positive and negative eigenvalues, so the quadratic form is
indefinite.

Exercise 1. Consider the following matrix:

Find its transpose, its inverse, its determinant, its rank, its trace, its
singular values, its condition number, its norm, M ³ , e M , log (M) and sqrt
(M).

» M = [1/3.1/4.1/5; 1/4.1/5.1/6; 1/5.1/6.1/7]

M =

 0.3333 0.2500 0.2000

 0.2500 0.2000 0.1667

 0.2000 0.1667 0.1429

» transpose = M’

transpose =

0.3333 0.2500 0.2000

0.2500 0.2000 0.1667

0.2000 0.1667 0.1429

» inverse = inv(M)

inverse =

1. 0e + 003 *

0.3000 - 0.9000 0.6300

-0.9000 2.8800 - 2.1000

0.6300 - 2.1000 1.5750

To verify that this is indeed the inverse, we multiply it by M to obtain the
identity matrix of order 3:

» M*inv(M)

ans =

1.0000 0.0000 0.0000

0.0000 1.0000 0.0000

0.0000 0.0000 1.0000

» determinant = det(M)

determinant =

2. 6455e-006

» rank = rank(M)

rank =

3

» trace = trace(M)

trace =

0.6762

» vsingular = svd(M)

vsingular =

0.6571

0.0189

0.0002

» condition = cond(M)

condition =

3. 0886e + 003

For the calculation of the norm, we find the standard norm, the 1-norm,
the infinity norm and the Frobenius norm:

» norm(M)

ans =

0.6571

» norm(M,1)

ans =

0.7833

» norm(M,inf)

ans =

0.7833

» norm(M,‘fro’)

ans =

0.6573

» M ^ 3

ans =

0.1403 0.1096 0.0901

0.1096 0.0856 0.0704

0.0901 0.0704 0.0578

» logm(M)

ans =

-2.4766 2.2200 0.5021

2.2200 - 5.6421 2.8954

0.5021 2.8954 - 4.7240

» sqrtm(M)

ans =

0.4631 0.2832 0.1966

0.2832 0.2654 0.2221

0.1966 0.2221 0.2342

To calculate e M we try the eigenvalue, Padé approximant, Taylor
expansion and condition number variants:

» expm(M)

ans =

1.4679 0.3550 0.2863

0.3550 1.2821 0.2342

0.2863 0.2342 1.1984

» expm1(M)

ans =

1.4679 0.3550 0.2863

0.3550 1.2821 0.2342

0.2863 0.2342 1.1984

» expm2(M)

ans =

1.4679 0.3550 0.2863

0.3550 1.2821 0.2342

0.2863 0.2342 1.1984

» expm3(M)

ans =

1.4679 0.3550 0.2863

0.3550 1.2821 0.2342

0.2863 0.2342 1.1984

As we see, all methods yield the same exponential matrix.

Exercise 2. Consider the following matrix:

Find its transpose, its inverse, its determinant, its rank, its trace, its
singular values, M3, log (M) and sqrt (M).

M = sym (‘[1/3,1/4,1/5; 1/4,1/5,1/6; 1/5,1/6,1/7]’)

M =

[1/3, 1/4, 1/5]

[1/4, 1/5, 1/6]

[1/5, 1/6, 1/7]

transpose = M’

transpose =

[1/3, 1/4, 1/5]

[1/4, 1/5, 1/6]

[1/5, 1/6, 1/7]

inverse = inv(M)

inverse =

[300, - 900, 630]

[- 900, 2880 - 2100]

[630, - 2100, 1575]

determinant = det(M)

determinant =

1/378000

rank = rank(M)

rank =

3

trace = trace(M)

trace =

71/105

vsingular = svd(M)

vsingular =

(12703/88200 - (1045602865/351298031616 + (102103 ^(1/2) * i) /
49787136) ^(1/3)/2 - 1030177 / (99574272 * (1045602865/351298031616
+ (102103 ^(1/2) * i) / 49787136) (1/3))-(3-(1/2) * (1030177 / (49787136 *
(1045602865/351298031616 + (102103 ^(1/2) * i) / 49787136) ^(1/3))-
((102103 ^(1/2) * i) / 49787136 + 1045602865/351298031616) ^(1/3)) * i) /
2) ^(1/2)

(12703/88200 - (1045602865/351298031616 + (102103 ^(1/2) * i) /
49787136) ^(1/3)/2 - 1030177 / (99574272 * (1045602865/351298031616
+ (102103 ^(1/2) * i) / 49787136) ^(1/3)) + (3 ^(1/2) * (1030177 /
(49787136 * (1045602865/351298031616 + (102103 ^(1/2) * i) /
49787136) ^(1/3))-((102103 ^(1/2) * i) / 49787136 +
1045602865/351298031616) ^(1/3)) * i) / 2) ^(1/2)

(1030177 / (49787136 * (1045602865/351298031616 + (102103 ^(1/2) * i)
/ 49787136) ^(1/3)) + (1045602865/351298031616 + (102103 ^(1/2) * i) /
49787136) ^(1/3) + 12703/88200) ^(1/2)

M^3

ans =

[10603/75600, 1227/11200 26477/294000]

[1227/11200, 10783/126000, 74461/1058400]

[26477/294000, 74461/1058400, 8927/154350]

log(M)

ans =

[-log (3),-log (4),-log (5)]

[-log (4),-log (5),-log (6)]

[-log (5),-log (6),-log (7)]

sqrt(M)

ans =

[3 ^(1/2)/3, 1/2, 5 ^(1/2)/5]

[^(1/2)/5 1/2, 5, 6 ^(1/2)/6]

[5 ^(1/2)/5, ^(1/2)/6 6, 7 ^(1/2)/7]

Exercise 3. Consider the following symbolic matrix:

Calculate A’, A -1 , determinant (A), trace (A), rank (A), inv (A) and A ² .

A = sym(‘[a,b,c; 3c,a-3c,b; 3b,-3b+3c,a-3c]’)

A =

[a, b, c]

[3 * c, a - 3 * c, b]

[3 * b, 3 * c - 3 * b - 3 * c]

transpose(A)

ans =

[a, 3 * c, 3 * b]

[(b) - 3 * c, 3 * c - 3 * b]

[c, b, a - 3 * c]

pretty(det(A))

3 2 2 2 3 2 3

a - 6 a c + 3 a b – 9a b c + 9 a c + 3 b + 9 b c + 9 c

pretty(trace(A))

3 a - 6 c

rank(A)

ans =

3

simplify(inv(A))

ans =

[(a^2 - 6ac + 3b^2 - 3bc + 9c2)/(c2(9a + 9b) - c(6a^2 + 9ba) + 3ab^2 + a^3
+ 3b^3 + 9c^3), -(ab - 3c2)/(c2(9a + 9b) - c(6a^2 + 9ba) + 3ab^2 +
a^3 + 3b^3 + 9c^3), (b^2 + 3c^2 - ac)/(c^2(9a + 9b) - c(6a^2 + 9ba) +
3ab^2 + a^3 + 3b^3 + 9*c^3)]

[(3b^2 + 9c^2 - 3ac)/(c^2(9a + 9b) - c(6a^2 + 9ba) + 3ab^2 + a^3
+ 3b^3 + 9c^3), -(c(3a + 3b) - a2)/(9bc2 - 6a2c + a(3b^2 - 9bc + 9c2) + a^3 +
3b^3 + 9c^3), -(ab - 3c2)/(c2(9a + 9b) - c(6a^2 + 9ba) + 3ab^2 + a^3 +
3b^3 + 9c^3)]

[-(3ab - 9c2)/(c2(9a + 9b) - c(6a^2 + 9ba) + 3ab^2 + a^3 +
3b^3 + 9c^3), (3b^2 + 3ab - 3ac)/(c^2(9a + 9b) - c(6a^2 + 9ba) + 3ab^2 +
a^3 + 3b^3 + 9c^3), -(c(3a + 3b) - a2)/(9bc2 - 6a2c + a(3b^2 - 9bc + 9c2) + a^3 +
3b^3 + 9c^3)]

pretty(simplify(A^2))

+- -+

| 2 2 2 2 |

| a + 6 b c, 3 c - 6 b c + 2 a b, b - 3 c + 2 a c |

| |

| 2 2 2 2 2 |

| 3 b - 9 c + 6 a c, 6 b c - 3 b + (a - 3 c) , 2 b (a - 3 c) + 3 c |

| |

| 2 2 2 2 |

| 9 c - 18 b c + 6 a b, 3 b - 2 (a - 3 c) (3 b - 3 c), 6 b c - 3 b + (a - 3 c) |

+- -+

Exercise 4. Consider the following matrices A and B:

a) Calculate M1 = A ² + B ² , M2 =A ² - B ² , A n , B n , e A , e B b) Find
the inverse, determinant, trace and the norms of the matrices A and B.

A=sym(‘[cosh(a),sinh(a);sinh(a),cosh(a)]’)

A =

[cosh(a), sinh(a)]

[sinh(a), cosh(a)]

B=sym(‘[sinh(a),cosh(a);cosh(a),sinh(a)]’)

B =

[sinh(a), cosh(a)]

[cosh(a), sinh(a)]

M1=A2+B2

M1 =

[2cosh(a)^2 + 2sinh(a)^ 2, 4* cosh(a)*sinh(a)]

[4cosh(a)sinh(a), 2cosh(a)^2 + 2sinh(a)^2]

pretty(simplify(M1))

+- -+

| 2 |

| 4 sinh (a) + 2, 2 sinh (2 a) |

| |

| 2 |

| 2 sinh(2 a), 4 sinh (a) + 2 |

+- -+

M2=A2-B2

M2 =

[0, 0]

[0, 0]

To calculate A n and B n , we first find their successive powers to try to
see the general rule:

[simplify(A2),simplify(A3),simplify(A^4)]

ans =

[cosh(2a), sinh(2a), cosh(3a), sinh(3a), cosh(4a), sinh(4a)]

[sinh(2a), cosh(2a), sinh(3a), cosh(3a), sinh(4a), cosh(4a)]

[simplify(B2),simplify(B3),simplify(B^4)]

ans =

[cosh(2a), sinh(2a), sinh(3a), cosh(3a), cosh(4a), sinh(4a)]

[sinh(2a), cosh(2a), cosh(3a), sinh(3a), sinh(4a), cosh(4a)]

The form of the general rule is now evident:

simplify(inv(A))

ans =

[cosh(a), -sinh(a)]

[-sinh(a), cosh(a)]

simplify(inv(B))

ans =

[-sinh(a), cosh(a)]

[cosh(a), -sinh(a)]

simplify(det(A))

ans =

1

simplify(det(B))

ans =

-1

simplify(trace(A))

ans =

2*cosh(a)

simplify(trace(B))

ans =

2*sinh(a)

simplify(exp(A))

ans =

[exp(cosh(a)), exp(sinh(a))]

[exp(sinh(a)), exp(cosh(a))]

simplify(exp(B))

ans =

[exp(sinh(a)), exp(cosh(a))]

[exp(cosh(a)), exp(sinh(a))]

Exercise 5. Consider a normally distributed random square matrix A of
order 3. Calculate the diagonal matrix D with diagonal entries the
eigenvalues of A and the matrix V whose columns are the coreresponding
eigenvectors (if the output is complex, transform it to real form).

Find the balanced matrix of A, and real and complex forms of its Schur
decomposition.

Find the coefficients of the characteristic polynomial of the matrix A.

Calculate the upper triangular matrix R of the same dimension as the
matrix A, the permutation matrix E and the orthogonal matrix Q such that
A * E = Q * R and check the result.

Consider the Hessenberg matrix B of A and calculate the diagonal matrix
D of generalized eigenvalues of A and B, and a matrix V whose columns
are the corresponding eigenvectors, satisfying A * V = B * V * D. Also
calculate the vector of generalized singular values of A and B.

A=randn(3)

A =

-0.4326 0.2877 1.1892

-1.6656 -1.1465 -0.0376

0.1253 1.1909 0.3273

[V,D] = eig(A)

V =

0.2827 0.4094 - 0.3992i 0.4094 + 0.3992i

0.8191 -0.0950 + 0.5569i - 0.0950 - 0.5569i

-0.4991 0.5948 0.5948

D =

-1.6984 0 0

0 0.2233 + 1.0309i 0

0 0 0.2233 - 1.0309i

[V,D] = cdf2rdf(V,D)

V =

0.2827 0.4094 - 0.3992

0.8191-0.0950 0.5569

-0.4991 0.5948 0

D =

-1.6984 0 0

0 0.2233 1.0309

0-1.0309 0.2233

[T,B] = balance(A)

T =

1 0 0

0 1 0

0 0 1

B =

-0.4326 0.2877 1.1892

-1.6656-1.1465-0.0376

0.1253 1.1909 0.3273

[U, T] = schur(A)

U =

0.2827 0.2924 0.9136

0.8191-0.5691-0.0713

-0.4991-0.7685 0.4004

T =

-1.6984 0.2644 - 1.2548

0 0.2233 0.7223

0-1.4713 0.2233

[U, T] = rsf2csf (U, T)

U =

0.2827 -0.7482 + 0.1678i 0.2395 - 0.5242i

0.8191 0.0584 - 0.3266i - 0.4661 + 0.0409i

-0.4991 -0.3279 - 0.4410i - 0.6294 - 0.2298i

T =

-1.6984 1.0277 + 0.1517i 0.2165 + 0.7201i

0 0.2233 + 1.0309i 0.7490 - 0.0000i

0 0 0.2233 - 1.0309i

poly(A)

ans =

1.0000 1.2517 0.3540 1.8895

Next we calculate the upper triangular matrix R of the same dimension as
the matrix A of the above example, the permutation matrix E and the
orthogonal matrix Q such that A * E = Q * R and check the result.

[Q, R, E] = qr (A)

Q =

-0.2507 0.4556 - 0.8542

-0.9653 - 0.0514 0.2559

0.0726 0.8887 0.4527

R =

1.7254 1.1211 - 0.2380

0 1.2484 0.8346

0 0 - 0.8772

E =

1 0 0

0 1 0

0 0 1

A * E

ans =

-0.4326 0.2877 1.1892

-1.6656-1.1465-0.0376

0.1253 1.1909 0.3273

Q * R

ans =

-0.4326 0.2877 1.1892

-1.6656 -1.1465 -0.0376

0.1253 1.1909 0.3273

Thus the matrices do indeed satisfy A * E = Q * R .

Now we consider the Hessenberg matrix B of A , we calculate the
diagonal matrix D of generalized eigenvalues of A and B , and a matrix V
whose columns are the corresponding eigenvectors, so that A * V = B * V
* D . In addition we calculate the vector of generalized singular values of A
 and B .

B = hess (A)

B =

-0.4326 - 0.1976 1.2074

1.6703 - 1.2245 0.1544

0 - 1.0741 0.4053

[V, D] = eig (A, B)

V =

0.0567 1.0000 1.0000

-0.0354 - 0.4998 0.5297

-1.0000 0.4172 0.3785

D =

1.0000 0 0

0 - 0.4722 0

0 0 - 2.1176

A * V

ans =

-1.2245 - 0.0803 0.1699

-0.0137 - 1.1082 - 2.2872

-0.3649 - 0.3334 0.8801

B * V * D

ans =

-1.2245 - 0.0803 0.1699

 -0.0137 - 1.1082 - 2.2872

 -0.3649 - 0.3334 0.8801

sigma = gsvd (A, B)

sigma =

0.2874

1.0000

3.4799

Exercise 6. Consider the 3×3 matrix A below:

Find the LU, QR, Cholesky, Schur, Hessenberg and singular value
decompositions of A, checking that the results are correct. Also find the
pseudoinverse of A.

First, we find the Schur decomposition, checking that the result is correct.

A = [1, 5, -2; -7, 3, 1; 2, 2, -2];

[U, T] = schur (A)

U =

-0.0530 - 0.8892 - 0.4544

-0.9910 - 0.0093 0.1337

0.1231 - 0.4573 0.8807

T =

2.4475 - 5.7952 - 4.6361

5.7628 0.3689 2.4332

0 0 - 0.8163

Now we check that U * T * U’= A and that U * U’= eye (3):

[UTU’,U*U’]

ans =

1.0000 5.0000 - 2.0000 1.0000 0.0000 0.0000

-7.0000 3,0000 1.0000 0.0000 1.0000 0.0000

2.0000 2.0000 - 2.0000 0.0000 0.0000 1.0000

Now we find the LU, QR, Cholesky, Hessenberg and singular value
decompositions, checking the results for each case:

» [L, U, P] = lu(A)

L =

 1.0000 0 0

 -0.1429 1.0000 0 lower triangular matrix

 -0.2857 0.5263 1.0000

U =

-7.0000 3,0000 1.0000

0 5.4286 - 1.8571 upper triangular matrix

0 0 - 0.7368

P =

0 1 0

1 0 0

 0 0 1

[PA,LU]

ans =

-7 3 1 -7 3 1

5 1 - 2 1 5 - 2 we have P * A = L * U

2 2 -2 2 2 -2

[Q, R, E] = qr(A)

Q =

-0.1361 - 0.8785 - 0.4579

0.9526 - 0.2430 0.1831

-0.2722 - 0.4112 0.8700

R =

-7.3485 1.6330 1.7691

0 - 5.9442 2.3366 upper triangular matrix

0 0 - 0.6410

E =

1 0 0

0 1 0

0 0 1

[AE,QR]

ans =

1.0000 5.0000 - 2.0000 1.0000 5.0000 - 2.0000

-7.0000 3.0000 1.0000 - 7.0000 3. 0000 1.0000

2.0000 2.0000 - 2.0000 2.0000 2.0000 - 2.0000

Then, A * E = Q * R.

R = chol(A)

??? Error using == > chol

Matrix must be positive definite.

An error message is returned because the matrix is not positive definite.

[H, p] = hess(A)

P =

1.0000 0 0

0 - 0.9615 0.2747

0 0.2747 0.9615

H =

1.0000 - 5.3571 - 0.5494

7.2801 1.8302 - 2.0943

0 - 3.0943 - 0.8302

[P * H * P ‘, P’ * P]

ans =

1.0000 5.0000 - 2.0000 1.0000 0 0

-7.0000 3,0000 1.0000 0 1.0000 0

2.0000 2.0000 - 2.0000 0 0 1.0000

Then PHP’= A and P’P = I.

[U, S, V] = svd(A)

U =

-0.1034 - 0.8623 0.4957

-0.9808 0.0056 - 0.1949

0.1653 - 0.5064 - 0.8463

S =

7.8306 0 0

0 6.2735 0 diagonal matrix

0 0 0.5700

V =

0.9058 - 0.3051 0.2940

-0.3996 - 0.8460 0.3530

-0.1411 0.4372 0.8882

USV’

ans =

1.0000 5.0000 - 2.0000

-7.0000 3,0000 1.0000 we see that USV’= A

2.0000 2.0000 - 2.0000

Now we calculate the pseudoinverse of the matrix A :

X=pinv(A)

X =

0.2857 - 0.2143 - 0.3929

0.4286 - 0.0714 - 0.4643

0.7143 - 0.2857 - 1.3571

[AXA,XAX]

ans =

1.0000 5.0000 - 2.0000 0.2857 - 0.2143 - 0.3929

-7.0000 3,0000 1.0000 0.4286 - 0.0714 - 0.4643

2.0000 2.0000 - 2.0000 0.7143 - 0.2857 - 1.3571

Thus, we see that AXA = A , XAX = X .

Exercise 7. Consider the following matrix:

Calculate its eigenvalues, its characteristic polynomial, its Jordan
canonical form and its singular values.

We start by defining the matrix A as a symbolic matrix:

» A=sym(‘[100;0cos(a)-sin(a);0sin(a)cos(a)]’)

A =

[1, 0, 0]

[0, cos (a) - sin (a)]

[0, sin (a), cos (a)]

» eigensys(A)

ans =

[1]

[cos (a) + 1/2 * (- 4 * sin (a) ^ 2) ^(1/2)]

[cos (a) - 1/2 * (- 4 * sin (a) ^ 2) ^(1/2)]

» pretty(simple(poly(A)))

3 2 2

x - 2 x cos (a) + x - x + 2 x cos (a) - 1

» jordan(A)

ans =

[1, 0, 0]

[0, cos (a) + 1/2 * (- 4 * without (a) ^ 2) ^ (1/2), 0]

[0, 0, cos (a) - 1/2 * (- 4 * without (a) ^ 2) ^(1/2)]

» simple(svd(A))

ans =

[1]

[1/2 * (4 * cos (a-comp (a)) + 2 * (- 2 + 2 * cos (2 * a-2 * conj (a))) ^(1/2))
^(1/2)]

[1/2 * (4 * cos (a-comp (a)) - 2 * (- 2 + 2 * cos (2 * a-2 * conj (a))) ^(1/2))
^(1/2)]

Exercise 8. Diagonalize the symmetric matrix whose rows are the vectors:

(3, - 1, 0), (- 1, 2 - 1), (0, - 1, 3).

Find the similarity transform V, confirm that the eigenvalues of the original
matrix are the diagonal elements of the diagonal matrix and that the
diagonal matrix and the original matrix are similar.

We calculate the diagonal matrix J of A , which will consist of the
eigenvalues of A on its diagonal and at the same time find the similarity
transform V . To do this, we use the command [V, J] = jordan (A) :

A = [3, -1, 0; -1, 2, -1; 0, -1, 3]

A =

 3 - 1 0

 -1 -2 -1

0 -3 -1

[V, J] = jordan(A)

V =

1 -1 -1

2 0 -1

1 -1 -1

J =

1 0 0

0 3 0

0 0 4

We now confirm that the diagonal matrix J has the eigenvalues of A on its
diagonal:

eig (A)

ans =

1.0000

3.0000

4.0000

The matrices A and J are similar because the matrix V satisfies the
relationship V - ¹ * A * V = J :

inv (V) * A * V

ans =

1.0000 0 - 0.0000

0 3.0000 0

0 0 4.0000

Exercise 9. Find a diagonal matrix similar to each of the following arrays:

Diagonalize the matrices. Find the characteristic polynomial of each
matrix.

A = sym(‘[0,-r,q;r,0,-p;-q,p,0]’);

[V, J] = jordan(A)

V =

[(q (-p2-q2-r^2) ^(1/2)) /(p^2 + q^2) - (p r) /(p^2 + q^2),-(q (-p2-q2-r^2)
^(1/2)) /(p^2 + q^2) - (p r) /(p^2 + q^2), p/r]

[-(p) (-p2-q2-r^2) ^(1/2)) /(p^2 + q^2) - (q r) /(p^2 + q^2), (p) (-p2-q2-r^2)
^(1/2)) /(p^2 + q^2) - (q r) /(p^2 + q^2), q/r]

[1 , 1, 1]

J =

[-(- p^2 - q^2 - r2) (1/2), 0, 0]

[0, (- p^2 - q^2 - r^ 2)^(1/2), 0]

[0, 0, 0]

Now, we analyze the matrix B :

» B = sym (‘[0,1,-sin(a); - 1, 0, cos(a)-sin(a), cos(a), 0]’)

» J = simple (jordan(B))

J =

[0, 0, 0]

[0, 0, 0]

[0, 0, 0]

This shows that the matrix B has a single eigenvalue zero of multiplicity 3.
In addition, the kernel of B - 0 * eye (3) = B has dimension less than three,
as the determinant of B is zero. In particular, it has dimension one (as we
see, calculating a basis with the command null (B) below) . As the
multiplicity and the dimension of the kernel differ, we conclude that the
matrix B is not diagonalizable:

» null(B)

ans =

[cos (a)]

[sin (a)]

[1]

We have calculated a basis for the kernel of B , which is formed by a
single vector, hence the dimension of the kernel of B is 1:

» det(B)

ans =

0

We now analyze the matrix C :

C = sym (‘[cos(a), – sin(a); sin(a), cos(a)]’);

[V, J] = jordan (C)

V =

[1/2, 1/2]

[I/2, - I/2]

J =

[cos (a) - sin (a) * i, 0]

[0, cos (a) + sin (a) * i]

We now calculate the characteristic polynomial of the three matrices:

pretty (poly (A))

3 2 2 2

x + (p + q + r) x

pretty(simple(sym(poly(B))))

3

x

pretty(simple(sym(poly(C))))

2

x - 2 cos (a) x + 1

Exercise 10. Find the eigenvalues of the Wilkinson matrix of order 8, the
magic square magic(8) of order 8 and the Rosser matrix.

[eig (wilkinson (8)), eig (rosser), eig (magic (8))]

ans =

1. 0e + 003 *

-0.0010 -1.0200 0.2600

0.0002 0.0000 0.0518

0.0011 0.0001 -0.0518

0.0017 1.0000 0.0000

0.0026 1.0000 -0.0000 + 0. 0000i

0.0028 1.0199 -0.0000 - 0. 0000i

0.0042 1.0200 -0.0000 + 0. 0000i

0.0043 1.0200 -0.0000 - 0. 0000i

We note that the Wilkinson matrix has pairs of eigenvalues that are close,
but not equal. The Rosser matrix has a double eigenvalue, three nearly
equal eigenvalues, dominant eigenvalues of the opposite sign, a zero
eigenvalue and a small, non-zero eigenvalue.

Exercise 11. Consider the linear transformation f between two vector
subspaces U (contained in R ³) and V (contained in R ⁴), such that for
any point (a, b, c) in U:

Find the kernel and the image of f.

A = ([1,0,0;0,0,0;0,0,1;0,0,0]);

The kernel is the set of vectors of U with null image:

null(A)

ans =

0

1

0

 Hence the kernel is the set of vectors {0, b , 0} with varying b .
Moreover, the kernel obviously has dimension 1, since it has {0,1,0} as a
basis.

rank(A)

ans =

2

The dimension of the image of f must match the rank of the matrix A ,
which we have just seen is 2. The columns of a two column submatrix of
A which has a non-singular two by two submatrix will form a basis of the
image of f .

det([1,0;0,1])

ans =

1

Thus a basis of the image of f is given by {{1,0,0,0},{0,0,1,0}}.

Exercise 12. Given the quadratic form g:U→R defined as follows

classify and find its reduced equation, its rank and its signature.

To classify the quadratic form, we calculate its diagonal determinants.

G = [1,0,0;0,2,2;0,2,2]

G =

1 0 0

0 2 2

0 2 2

det (G)

ans =

0

det([1,0;0,2])

ans =

2

The quadratic form is degenerate positive semidefinite.

To find the reduced equation we diagonalize the matrix.

J = jordan(G)

J =

0 0 0

0 1 0

0 0 4

The reduced quadratic form equation is then:

rank(J)

ans =

2

The rank of the quadratic form i s 2, since the rank of the matrix is 2. The
signature is also 2, since the number of positive terms in the diagonal
matrix is 2.

	INTRODUCTION
	INTRODUCTION TO MATLAB
	1.1 MATLAB LENGUAGE
	1.2 STARTING MATLAB ON WINDOWS. THE MATLAB WORKING ENVIRONMENT
	1.3 NUMERICAL COMPUTATION WITH MATLAB
	1.4 SYMBOLIC CALCULATIONS WITH MATLAB
	1.5 GRAPHICS WITH MATLAB
	1.6 HELP WITH COMMANDS
	MATLAB LANGUAGE ELEMENTS. VARIABLES, NUMBERS, OPERATORS AND FUNCTIONS
	2.1 VARIABLES
	2.1.1 VECTOR VARIABLES
	2.1.2 MATRIX VARIABLES
	2.1.3 CHARACTER VARIABLES
	2.2 NUMBERS
	2.2.1 INTEGERS
	2.2.2 FUNCTIONS OF INTEGERS AND DIVISIBILITY
	2.2.3 ALTERNATIVE BASES
	2.2.4 REAL NUMBERS
	2.2.5 FUNCTIONS WITH REAL ARGUMENTS
	2.2.6 COMPLEX NUMBERS
	2.2.7 FUNCTIONS WITH COMPLEX ARGUMENTS
	2.2.8 ELEMENTARY FUNCTIONS THAT SUPPORT COMPLEX VECTOR ARGUMENTS
	2.2.9 ELEMENTARY FUNCTIONS THAT SUPPORT COMPLEX MATRIX ARGUMENTS
	2.2.10 RANDOM NUMBERS
	2.3 OPERATORS
	2.3.1 ARITHMETIC OPERATORS
	2.3.2 RELATIONAL OPERATORS
	2.3.3 LOGICAL OPERATORS
	2.3.4 LOGICAL FUNCTIONS
	2-D GRAPHICS IN MATLAB. EXPLICIT, PARAMETRIC AND POLAR CURVES. EXPLORATORY GRAPHS
	3.1 BASIC COMMANDS FOR 3-D GRAPHICS
	3.2 ADDITIONAL ELEMENTS IN A GRAPHS (TITLES, TAGS, MESHES AND TEXTS)
	3.3 WORKING WITH AXES AND MULTIPLE GRAPHS
	3.4 LOGARITHMIC AND SEMI-LOGARITHMIC GRAPHS
	3.5 POLYGONS IN TWO DIMENSIONS
	3.6 2-D GRAPHICS IN PARAMETRIC COORDINATES
	3.7 2-D GRAPHICS IN POLAR COORDINATES
	3.8 EXPLORATORY GRAPHS. BARS AND SECTORS GRAPS. HISTOGRAMS
	3.9 STATISTICAL ERRORS AND ARROWS GRAPHICS
	3-D GRAPHICS IN MATLAB. 3-D CURVES ON SPACE, SURFACES, MESHES AND CONTOURS. SURFACES OF REVOLUTION
	4.1 3-D CURVES ON SPACE
	4.2 3-D POLYGONS
	4.3 3-D CURVES ON SPACE IN PARAMETRIC COORDINATES
	4.4 SURFACES IN EXPLICIT COORDINATES
	4.5 SURFACE GRAPHICS: MESH GRAPHICS
	4.6 SURFACE GRAPHICS: CONTOUR GRAPHICS
	4.7 AXIS, VIEWS, SHADES , COLORS AND BRIGHT IN THREE-DIMENSIONAL GRAPHICS
	4.8 PARAMETRIC SURFACES AND REVOLUTION SURFACES
	4.9 SPHERES AND CILYNDERS
	4.10 HANDLING GRAPHICS COMMANDS
	MATLAB LANGUAGE ELEMENTS. ALGEBRAIC EXPRESSIONS, POLYNOMIALS, EQUATIONS AND SYSTEMS
	5.1 EXP ANDING, SIMPLIFYING AND FACTORING ALGEBRAIC EXPRESSI ONS
	5.2 POLYNOMIALS
	5.3 POLYNOMIAL INTERPOLATION
	5.4 SOLVING EQUATIONS AND SYSTEMS OF EQUATIONS
	5.5 GENERAL METHODS
	5.6 THE BICONJUGATE GRADIENT METHOD
	5.7 THE CONJUGATE GRADIENTS METHOD
	5.8 THE RESIDUAL METHOD
	5.9 THE SYMMETRIC AND NON-NEGATIVE LEAST SQUARES METHODS
	5.10 SOLVING LINEAR SYSTEMS OF EQUATIONS
	MATRICES, VECTOR SPACES, LINEAR APPLICATIONS AND QUADRATIC FORMS
	6.1 MATRIX CALCULUS
	6.2 MATRIX OPERATIONS
	6.3 EIGENVECTORS AND EIGENVALUES. MATRIX DECOMPOSITIONS
	6.4 VECTOR SPACES, LINEAR APPLICATIONS AND QUADRATIC FORMS

