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Preface

The quantity and diversity of generated data (text, images, videos, audio files, etc.)
continue to increase. This has been mainly fueled by the increasing use of social
media platforms and the integration of low-cost sensors in a variety of digital
systems. The extraction of useful knowledge from these data and its modeling has
been the topic of extensive research in the past, and many advanced data mining and
machine learning techniques and tools have been developed over the years. Since
roughly 15 years, much has changed in the field of machine learning. The most
spectacular developments have been in the area of deep learning which has shown
state-of-the-art results in many challenging applications. Recent advances have been
spectacular and have captured much popular imagination. At the same time other
machine learning approaches continue to evolve. This is especially true in the case
of learning models dedicated to sequential data. Hidden Markov Models (HMMs)
are one of the most fundamental and largely applied statistical tools for modeling
sequential data. They have been viewed for a longtime as the workhorse model
for statistical time series analysis, have attracted interest in the machine learning
community, have been widely used in many fields, and have provided excellent
modeling results. HMMs provide solid statistical inference procedures in areas as
diverse as computer vision, multimedia processing, speech recognition, genomics,
machine translation, pattern recognition, energy and buildings, transportation sys-
tems, and finance. Even after more than five decades of research works on HMMs,
significant research problems remain. Examples include inference, selection of
the hidden state space’s cardinality, model selection, feature selection, and online
learning. The goal of this edited book is to present some recent works that try to
tackle these problems while demonstrating the merits of HMMs in a variety of
applications from different domains. The book contains 11 chapters tackling and
discussing different but complementary challenging problems related to HMMs
deployment in a variety of scenarios. The first chapter gives an introduction to
HMMs in a simple manner by presenting various basic concepts, such as the well-
known Baum Welch and Viterbi algorithms, via an interesting application that
concerns occupancy estimation in smart buildings. In Chap. “Bounded Asymmetric
Gaussian Mixture-Based Hidden Markov Models”, Xian et al. describe a framework
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that integrates the bounded asymmetric Gaussian mixture model into HMMs.
A detailed inference and parameters learning approach is proposed and applied
to occupancy estimation as well as human activity recognition. In Chap. “Using
HMM to Model Neural Dynamics and Decode Useful Signals for Neuroprosthetic
Control”, Diomedi et al. deploy HMM to model neural dynamics and decode
useful signal for neuroprosthetic control. Detailed simulations and experiments
are presented and discussed in that chapter. An interesting computer vision appli-
cation, of discrete HMMs, that concerns fire detection in images is described in
Chap. “Fire Detection in Images with Discrete Hidden Markov Models” by Ali et
al. The authors in Chap. “Hidden Markov Models: Discrete Feature Selection in
Activity Recognition” investigate the problem of indoor activities recognition, by
considering only ambient sensors, using HMMs and feature selection. Extensive
simulations and analysis are provided using a challenging data set. Unlike previous
chapters in which HMMs learning is based mainly on frequentist approaches,
Chap. “Bayesian Inference of Hidden Markov Models using Dirichlet Mixtures”
provides a fully Bayesian approach in the context of a Dirichlet-based HMM. The
proposed approach is based on reversible jump Markov chain Monte Carlo sampling
and is validated using video and speech data and compared with several benchmark
models. Chapter “Online Learning of Inverted Beta-Liouville HMMs for Anomaly
Detection in Crowd Scenes” deals with the challenging problem of HMMs online
learning where the authors considered the special case of semi-bounded positive
vectors modeling. The proposed model considers inverted Beta-Liouville mixtures
as emission probabilities and is learned using expectation maximization framework.
Its merits are shown thanks to a challenging application, namely anomaly detection
in crowd scenes. The same HMM model is estimated in Chap. “A Novel Continuous
Hidden Markov Model for Modeling Positive Sequential Data” via a variational
approach providing a compromise between purely Bayesian and frequentist learn-
ing. Several real data sets have been used to validate the proposed methodology.
Like some of the previous chapters, Chap. “Multivariate Beta-Based Hidden Markov
Models Applied to Human Activity Recognition” tackled the activity recognition
problem, yet using a novel multivariate Beta-based HMM architecture. Two learning
approaches have been proposed based on maximum likelihood estimation and
variational learning. The same HMM model was considered in Chap. “Multivariate
Beta-Based Hierarchical Dirichlet Process Hidden Markov Models in Medical
Applications”, but within a nonparametric Bayesian framework using hierarchical
Dirichlet processes (HDPs). The resulting infinite model is applied to the activity
recognition task. Chapter “Shifted-Scaled Dirichlet Based Hierarchical Dirichlet
Process Hidden Markov Models with Variational Inference Learning” considers also
a nonparametric Bayesian approach using HDPs in the context of shifted-scaled
Dirichlet HMMs. The approach is applied successfully to activity recognition and
texture modeling.

Montreal, QC, Canada Nizar Bouguila
Xiamen, China Wentao Fan
Grenoble, France Manar Amayri
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A Roadmap to Hidden Markov Models
and a Review of Its Application in
Occupancy Estimation

Samr Ali and Nizar Bouguila

1 Introduction

Hidden Markov models (HMMs) have drawn research interest in the past decade.
This is due to its now perceived capability in a variety of applications that
extend beyond the originally investigated speech-related tasks [1]. Indeed, examples
include recognition of handwritten characters, musicology, stock market forecast-
ing, predicting earthquakes, video classification, surveillance systems, and network
analysis.

HMMs are probabilistic models that fall under the generative machine learning
algorithms category. Generally, data modeling techniques in machine learning
classically fall under two main categories: discriminative or generative. Generally,
discriminative models are trained to infer a mapping between data inputs x to
class labels y, while generative models first learn the distribution of the classes
before predictions are made [2]. Mathematically, the former represents the posterior
probability p(y | x) with the latter denoting the joint probability p(x, y) that is used
to calculate the posterior accordingly for the classification. Each model has its own
properties and advantages that we summarize shortly.

Discriminative models usually achieve superior classification accuracy results
due to their primary learning objective of the boundary between classes [3]. These
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2 S. Ali and N. Bouguila

include the famous support vector machines (SVMs) and decision tree classifiers.
On the other hand, generative models require less training data, can be used for
outlier detection, and provide the ability to generate more training data with the
same input distribution upon completion of the training of the model. Mixture
models are another example of generative data models. An interested reader is
referred to [2, 4] for further discussions. Hybrid models with HMMs are also
possible such as in [5, 6]; however, this falls outside of our discussion.

In a manner of speaking, HMMs may be considered as an extension of mixture
models along the temporal axis. That is they are capable of spatio-temporal
modeling whereby both the space and time features may be taken into consideration.
As expected, this leads to better performances as well as an explainable machine
learning pipeline in applicable fields.

On the other hand, one of the modern world’s major issues is the conservation
of energy and sustainable development. Buildings are a major component of society
and are integral in such efforts. A report released on building energy efficiency by
the World Business Council for Sustainable Development states that buildings are
responsible for at least 40% of energy use in many countries, mainly from fossil
fuels [7, 8].

HVACL (Heating, Ventilation, Air Conditioning, and Lighting) systems utilize
about half of this amount in industrialized countries [9, 10]. Improving energy
efficiency through better control strategies is a highly researched area. Such HVACL
strategies already in place rely heavily on predetermined occupancy times as well
the number of occupants [11]. Due to such presumptions, a large amount of energy
consumed is actually wasted. This can be overcome by relying on the actual
occupancy of the building [12].

For highest control efficiency, a real-time input of occupancy information to the
systems is required [13]. Real-time occupancy estimation is essential in evacuation
of buildings and other emergencies [14]. Furthermore, on the long run, these
monitored buildings may be used for the prediction of future usage of the occupied
space with such occupancy estimation information [15, 16].

1.1 Objectives

The first objective of this chapter is to assimilate an intuitive introduction into
the insides and background of HMMs. Ergo, the aim is to simplify the concepts
for an interested reader and make connections between the various aspects of
this interesting technique. It is also imperative to mention that many excellent
resources exist for HMMs and we draw from them collectively. Additionally, we
also incorporate further directions of research and revolutionize the texts for a
modern take on the subject. All in all, this assembled guide provides a thorough
explanation of HMMs for beginners and practitioners alike. It is our aspiration that
this chapter becomes a reference for the next generation of researchers in this field.
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Another objective that this chapter tackles is to review the literature for the
application of HMMs in occupancy estimation and prediction in smart buildings.
Occupancy estimation refers to finding the true number of occupants in buildings.
While papers exist that review the application of machine learning techniques in
general for occupancy estimation in smart buildings [17–22], none undertake the
specific HMM technique independently and hence a comprehensive review remains
lacking. Hence, we endeavor to present an exhaustive discussion of relevant papers.

It is noteworthy to mention that we also survey the application of HMMs
in occupancy detection. Occupancy detection is closely related to occupancy
estimation. It is defined as identifying whether the area space is occupied by humans
or not. As such, it generalizes the occupancy estimation problem to only two levels.
This may sound trivial; however, it assuredly is a research-worthy problem with
significant impact on the energy consumption of buildings. Indeed, it has been
established that energy consumption in smart buildings can be reduced by 40% by
only performing occupancy detection [23–25]. We also identify limitations in the
employment of HMMs in occupancy estimation and potential general solutions for
this interesting application.

1.2 Outline

This chapter is organized as follows. Section 2 introduces HMMs, describes its
various model variations, and presents the mathematical formulations as well as
some of the applications of HMMs. Section 3 presents the application of occupancy
estimation and discusses the application of the models in the literature and its
impact. Finally, Sect. 4 concludes the chapter.

2 Hidden Markov Models

In this section, we introduce the HMM and present its various aspects. We begin
with an overview of the model in Sect. 2.1 and discuss its origin and assumptions.
We then evolve our description to divulge the topologies of HMMs in Sect. 2.2.
Next, we examine the Gaussian mixture model (GMM) and its famous Expectation–
Maximization (EM) algorithm in Sect. 2.3 as a building block for the upcoming
analysis of HMMs. In Sect. 2.4, we disclose the mathematical formulations for
the learning of its parameters. Then, in Sect. 2.5, we finalize our mathematical
discussions of HMMs with the final solution (the Viterbi algorithm) to the infamous
three problems that are well-posed for HMMs (introduced in Sect. 2.1). Finally,
we also briefly explore applications of HMMs in Sect. 2.6. It is our aspiration
that we present HMMs in an easy, accessible, and intuitive manner for future
generations of researchers and further motivate the progression of this interesting
area of probabilistic graphical modeling.
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2.1 Overview

HMMs are one of the most popular statistical methods used in sequential and time
series probabilistic modeling [26, 27]. A HMM is a well-received double stochastic
model that uses a compact set of features to extract underlying statistics [1]. Its
structure is formed primarily from a Markov chain of latent variables with each
corresponding to the conditioned observation. A Markov chain is one of the least
complicated ways to model sequential patterns in time series data. It was first
introduced by Andrey Markov in the early twentieth century. Late 1960s and early
1970s then saw a boom of papers by Leonard E. Baum and other researchers who
introduced and addressed its statistical techniques and modeling [26]. It allows
us to maintain generality while relaxing the independent identically distributed
assumption [28].

Mathematically, a HMM is characterized by an underlying stochastic process
with K hidden states that form a Markov chain. A graphical representation can
be seen in Fig. 1. It is also noteworthy to mention that the aforementioned latent
variable must be discrete in nature. This demonstrates the distinction between the
HMMs and another state space model known as the linear dynamical system [29]
whose description is out of the scope of this report. Each of the states is governed
by an initial probability π , and the transition between the states at time t can be
visualized with a transition matrix B = {bii′ = P(st = i′|st−1 = i)}. In each state
st , an observation is emitted corresponding to its distribution, which may be discrete
or continuous. This is the observable stochastic process set.

The emission matrix of the discrete observations can be denoted by � =
{�it (m) = P(Xt = ξm | st = i)}, where [m, t, i] ∈ [1,M] × [1, T ] × [1,K],
and the set of all possible discrete observations ξ = {ξ1, . . . , ξm, . . . , ξM }. On
the other hand, the respective parameters of a probability distribution define the
observation emission for a continuous observed symbol sequence. The Gaussian
distribution is most commonly used, which is defined by its mean and covariance
matrix � = (μ,�) [26, 30, 31]. Consequently, a mixing matrix must be defined
C = {cij = P(mt = j | st = i)} in the case of continuous HMM emission
probability distribution where j ∈ [1,M] such that M is the number of mixture

Fig. 1 A typical hidden Markov chain structure representation of a time series where z_1 denotes
the first hidden state z1 and X_1 denotes the corresponding observed state X1. This is shown
accordingly for a time series of length T
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components in set L = {m1, . . . , mM}. Hence, a discrete or continuous HMM may
be defined with the following respective parameters � = {B,�, π} or {B,C, �, π}.

We next briefly recall the two conditional independence assumptions that allow
for the tractability of the HMM algorithms [32]:

Assumption 1 Given the (t − 1)-st hidden variables, the t-th hidden variable
is independent of all other previous variables such that:

P(st | st−1, Xt−1, . . . , s1, X1) = P(st | st−1) (1)

This is known as the Limited Horizon assumption such that state st has a
sufficient representative summary of the past in order to predict the future.

Assumption 2 Given the t-th hidden variable, the t-th observation is inde-
pendent of other variables such that:

P(Xt | sT ,XT , sT −1, XT −1, . . . , st+1, Xt+1, st , st−1, Xt−1, . . . , s1, X1) = P(Xt | st )

(2)

This is known as the Stationary Process assumption such that the conditional
distribution of a state does not change over time and is independent of other
variables.

Now, we present the three classical problems of HMMs first introduced by
Rabiner in [26]: evaluation or likelihood, estimation or decoding, and training or
learning. These are described as follows:

1. Evaluation problem: It is mainly concerned with computing the probability that
a particular sequential or time series data was generated by the HMM model,
given both the observation sequence and the model. Mathematically, the primary
objective is computing the probability P(X | �) of the observation sequence
X = X1, X2, . . . , XT with length T given a HMM model �.

2. Decoding problem: It finds the optimum state sequence path I = i1, i2, . . . , iT
for an observation sequence X. This is mathematically s∗ = argmaxs P(s |
X,�).

3. Learning problem: It refers to building a HMM model through finding or
“learning” the right parameters to describe a particular set of observations.
Formally, this is performed with maximizing the probability P(X | �) of
the set of observation sequence X given the set of parameters determined �.
Mathematically, this is �∗ = argmax� P (X | �).



6 S. Ali and N. Bouguila

Fig. 2 A HMM transition
diagram with three states

Fig. 3 Lattice or trellis
HMM structure, which is a
representation of the hidden
states

For the thorough explanation of the HMM algorithms to follow, we also introduce
another visualization that depicts the graphical directed HMM structure as shown in
Fig. 2. Figure 3 shows transitions then when they become trellis or lattice.

2.2 Topologies

Though the main principal of this chapter is to impart an introduction to HMMs in
the simplest manner, we would be remiss not to bring the attention of the reader to
the main variants of HMMs. These pertain to its structure as well as its functionality.
Specifically, we may have the following:

• Hidden Markov Model (HMM): It is introduced in Sect. 2.1, and the entire
chapter is dedicated to discussing its details. This is the traditional model and is
the one referred to if no other distinctions are made to the name or referral to its
structure.

• Hidden Semi-Markov Model (HSMM): It explicitly deals with state duration
as its hidden stochastic process is based on a semi-Markov chain, so that a hidden
state is persistent for time duration td .
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• Factorial Hidden Markov Model (FHMM): It is a multilayer (each of which is
a HMM that works independently from other layers) state structure for modeling
of multiple loosely coupled random processes.

• Layered HMM (LHMM): It is made up of several composed HMMs at each
layer that run parallel to each other, providing an output to the higher layer.
Hence, each layer is connected to the next by inferential results.

• Autoregressive HMM (ARHMM): It can explicitly model the longer-range
correlations of sequential data by adding direct stochastic dependence among
observations.

• Non-Stationary HMM (NSHMM): It captures state duration behavior by
defining a set of dynamic transition probability parameters. It can model state
duration probabilities explicitly as a function of time.

• Hierarchical HMM (HHMM): It has multi-level states that describe a sequence
of inputs at various levels of details. In a way, this is likened to a HMM with
internal states generated from a sub-HMM in a tree-like structure.

Not only does a traditional HMM fall into the first category of the earlier
discussed variants but also is of a first-order nature. First-order HMMs refer to the
property that characterizes the model in terms of the current state’s dependency
on previous ones. When the Markovian conditional independence is held, then the
model may be referred to as first order. Indeed, this is omitted in many cases as
this is one of the main assumptions of HMMs. Nonetheless, other extensions exist
where connections between extra past states are made and the order would then be
imperative in the description of the model. Hence, an nth-order HMM is simply one
with a Markov chain structure in which each state depends on the prior n states.

There are various topologies of a traditional first-order HMM, which would
correspond to its transition matrix construction. That is, the connection between
the states (i.e., edges in the graph representation) can be omitted by setting the
corresponding element in B to zero. The following are well-known special cases:

1. Ergodic HMM: In this model, the transition probability between any two states
is nonzero. This is also known as a fully connected HMM. This is the most flexible
structure and is ubiquitous as it represents the traditional full-fledged HMM. This
allows the model to update its transition matrix with regard to the data for a data-
based approach. We note a depiction of this in both Figs. 2 and 3 where any of
the states can be visited from any other state.

2. Left-to-Right HMM: It requires that transitions can only be made from the
current state to its equivalent or a larger index resulting in an upper triangular
state transition matrix. This is done by simply initiating the lower triangle of the
state transition matrix to zeros so that any consequent updates leave it as such. In
effect, we have imposed a temporal order to the HMMs. These are typically used
in speech and word recognition applications. A graphical depiction is shown in
Fig. 4.
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Fig. 4 A left-to-right HMM
topology with three states

The structure of the HMM may also vary in regard to its emission distribution.
Even in the case of assuming a continuous distribution, we may have a single
distribution in each state or a mixture. This is a design choice and in infinite models,
which are outside the scope of this chapter, is of imperative significance.

Finally, we briefly bring to the attention of the reader a recent research direction
that has focused on proposing new HMM models for a data-driven approach. In
particular, emission distributions of the model are traditionally chosen to a GMM.
However, this is an assumption that does not hold for all cases. That is when the
nature of the data can be inferred to be nonsymmetric and its range does not expand
(−∞,∞). Indeed, other distributions have proven to be perform better in terms of
fitted models in these instances [33–36].

It naturally follows that would be the circumstance in time-based probabilistic
modeling using HMMs. This was proven to be true in multiple types of data such as:
Dirichlet, Generalized Dirichlet, and Beta Liouville-based HMMs for proportional
data [37, 38], inverted Dirichlet-based HMM for positive data [39], and von Mises–
Fisher-based HMM for spherical data [40]. Furthermore, the case of mixed data
(simultaneous continuous and discrete data) has also been recently investigated in
[41].

2.3 Gaussian Mixture Models and the
Expectation–Maximization Algorithm

The maximum likelihood is a general problem in the computational pattern recog-
nition and machine learning community. It pertains to estimating the parameters of
density functions given a set of data. The latter is assumed to be static for simplicity.
Concluding remarks in Sect. 2.6 address non-static (dynamic) data.

Assuming independent and identically distributed (i.i.d.) data X, a density
function of its distribution p or the likelihood of the parameters given the data
L(� | X), i.e., the incomplete data-likelihood function may be denoted with the
following:

p(X | �) =
N∏

i=1

p(xi | �) = L(� | X) (3)

The goal then as is evident from the name of the problem is to maximize this
function. Mostly this maximization is performed with the log of the function for ease
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of analytic purposes. This in turn results in finding the optimum set of parameters,
�∗, that best fit the distribution to X. Mathematically, that is:

�∗ = argmax� L(� | X) (4)

Consequently, the derivative of the function is found and solved when set to zero.
Indeed, it is noteworthy to mention that when p(x | �) is a Gaussian distribution
where � = (μ, σ 2), the solution forms the equations that are commonly used for
the mean and variance of a dataset. However, in many cases, solving the derivative
of the likelihood function is not analytically possible and hence the employment of
the Expectation–Maximization (EM) algorithm becomes necessary.

A question might then be raised here as to why we need mixtures. The answer
lies in its better ability to capture the underlying pattern of the data. For instance,
assume that the mean data point lies in between two subgroups (clusters) of the data.
Using a single component for its modeling will render sub-optimal results compared
to a mixture where the optimum solution would be to use two components.

The EM algorithm [42–46] is a general methodology for finding the maximum
likelihood estimate of the parameters. Effectively, these learned parameters best
model the underlying pattern of the data (or a particular dataset) when the latter
is incomplete. Indeed, assumption of such hidden parameters and their values
simplifies the process as we will discuss shortly.

We next introduce the general probabilistic formulation of mixture models of M

components:

p(x | �) =
M∑

i=1

ζipi(x | θi) (5)

where � = (ζi, . . . , ζM, θi, . . . , θM) such that
∑M

i=1 ζi = 1, which represents the
weights of each of the distributions’ density function pi(x | θi) with its respective
set of characterizing parameters θi . Note that pi(x | θi) will be considered to be a
Gaussian distribution for the remainder of this section, such that � = �g .

Then,

log(L(� | X)) = log
N∏

i=1

p(xi | �)

=
N∑

i=1

log

⎛

⎝
M∑

j=1

ζjpj (xi | θj )

⎞

⎠

(6)

This is difficult to solve as it contains the log of the sum. This may be simplified
with the assumption that this is incomplete data with mixture component labels
Y = {yi}Ni=1. That is, yi ∈ 1, . . . , M for each data point i with yi = k to signify the
mixture component k that the sample was generated by. It is noteworthy to mention
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that another, and arguably better, scheme to also achieve this is to denote this as a
latent indicator variable that becomes 1 at the position of the mixture component for
a sample, and 0 otherwise. Nevertheless, the likelihood now may be denoted by:

log(L(� | X,Y)) = log(p(X,Y | �))

=
N∑

i=1

log(p(xi | yi)p(y))

=
N∑

i=1

log(ζyi
pyi

(xi | θyi
))

(7)

Y is assumed to be a random vector with the Gaussian distribution (or any desired
distribution) to be computationally feasible. Then, applying Bayes’s rule:

pyi
(xi,�

g) = ζ
g
yi

pyi
(xi | θ

g
yi

)

pyi
(xi | �g)

= ζ
g
yi

pyi
(xi | θ

g
yi

)
∑M

k=1 ζ
g
k pk(xi | θ

g
k )

(8)

and y = (y1, . . . , yN) for an independent data sample in:

p(y | X,�g) =
N∏

i=1

p(yi | xi, θ
g) (9)

Consequently,

we may now compute the first step in the EM algorithm, which depends on
computing the expected value of the complete-data log-likelihood p(X,Y |
�) with respect toY givenX and the current parameter estimates �(t−1). This
is also referred to as the E-step. Generally, this is denoted as:

Q
(
�,�(t−1)

)
= E

[
log p(X,Y | �) | X,�(t−1)

]
(10)
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Then,

Q
(
�, �g

) =
∑

y∈ϒ

log(L(� | X, y))p
(
y | X,�g

)

=
∑

y∈ϒ

N∑

i=1

log
(
ζyi

pyi

(
xi | θyi

)) N∏

j=1

p
(
yj | xj ,�

g
)

=
M∑

y1=1

M∑

yi=1

. . .

M∑

yN =1

N∑

i=1

log
(
ζyi

pyi

(
xi | θyi

)) N∏

j=1

p
(
yj | xj , �

g
)

=
M∑

yi=1

M∑


i

. . .

M∑





M∑

i=1

M∑


=1

δ
,yi
log (ζ
p
 (xi | θ
))

N∏

j=1

p
(
yj | xj , �

g
)

=
M∑


=1

N∑

i=1

log (ζ
p
 (xi | θ
))

M∑

y1=1

M∑

y2=1

. . .

M∑

yN =1

δ
,yi

N∏

j=1

p
(
yj | xj ,�

g
)

(11)

This may be simplified further. First, for 
 ∈ 1, . . . , M:

∑M
y1=1

∑M
y2=1 . . .

∑M
yN =1 δ
,yi

∏N
j=1 p

(
yj | xj ,�

g
)

=
(∑M

y1=1 . . .
∑M

yi−1=1
∑M

yi+1=1 . . .
∑M

yN =1
∏N

j=1,j �=i p
(
yj | xj , �

g
))

p (
 | xi, �
g)

= ∏N
j=1,j �=i

(∑M
yj =1 p

(
yj | xj , �

g
))

p (
 | xi, �
g) = p (
 | xi, �

g)

(12)

as
∑M

i=1 p
(
i | xj ,�

g
) = 1. Then, replacing Eq. (12) into Eq. (11), we get

Q
(
�,�g

) =
M∑


=1

N∑

i=1

log (ζ
p
 (xi | θ
)) p
(

 | xi, �

g
)

=
M∑


=1

N∑

i=1

log (ζ
) p
(

 | xi, �

g
) +

M∑


=1

N∑

i=1

log (p
 (xi | θ
)) p
(

 | xi, �

g
)

(13)

This allows us to move into the next major step that is part of the EM step, which is
the maximization step.

In the M-step, the goal is to maximize the expectation computed through:

�(t) = argmax� Q(�,�(t−1)) (14)

(continued)
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This is repeated together with the E-step with a guarantee to converge to a
local maximum as the log likelihood is increased.

ζ
 and θ
 may be maximized independently due to the non-existence of a
relationship between them. We begin with the ζ
 and use the Lagrange multiplier
λ with the constraint

∑

 ζ
 = 1. This is due to the role that ζ
 undertakes as the

weight of each of the mixture components. Then, we need to solve the following:

∂

∂ζ


[
M∑


=1

N∑

i=1

log(ζ
)p(
 | xi,�
g) + λ

(
∑




ζ
 − 1

)]
= 0 (15)

or

N∑

i=1

1

ζ


p(
 | xi,�
g) + λ = 0 (16)

When both sides are summed, we end up with 
λ = −N , so that:

ζ
 = 1

N

N∑

i=1

p(
 | xi,�
g) (17)

This is a general result that holds for all mixture models, regardless of the
distribution at hand. As to the θ
, that is entirely dependent on the distribution
assumed. For us, that is θ = (μ,�) denoting the mean and the covariance matrix of
a D-dimensional Gaussian distribution (or component in this instance), respectively.
This is formulated by:

p
(x | μ
,�
) = 1

(2π)D/2|�
|1/2
exp− 1

2 (x−μ
)
T |�
|−1(x−μ
) (18)

Compute the log of Eq. (18) and ignore any constants as they are zeroed out when
we will compute the derivatives. Then, substitute into Eq. (13):

M∑


=1

N∑

i=1

log(p
(xi | μ
,�
))p(
 | xi,�
g)

=
M∑


=1

N∑

i=1

(
−1

2
log(|�|) − 1

2
(x − μ
)

T |�
|−1(x − μ
)

)
p(
 | xi,�

g)

(19)
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We now derive Eq. (19) with respect to μ and solve for zero:

N∑

i=1

|�
|−1(x − μ
)p(
 | xi,�
g) = 0 (20)

The result is

μ
 =
∑N

i=1 xip(
 | xi,�
g)

∑N
i=1 p(
 | xi,�g)

(21)

For �, first we rewrite Eq. (19) as:

∑M

=1

[
1
2 log

(∣∣∣�−1



∣∣∣
) ∑N

i=1 p (
 | xi, �
g) − 1

2

∑N
i=1 p (
 | xi, �

g) tr
(
�−1


 (xi − μ
)

(xi − μ
)
T

)]

= ∑M

=1

[
1
2 log

(∣∣∣�−1



∣∣∣
) ∑N

i=1 p (
 | xi, �
g) − 1

2

∑N
i=1 p (
 | xi, �

g) tr
(
�−1


 N
,i

)]

(22)

where N = (xi − μ
) (xi − μ
)
T .

Now, we can compute the derivative with respect to �
:

1

2

N∑

i=1

p(
 | xi,�
g)(2�
 − diag(�
)) − 1

2

N∑

i=1

p(
 | xi,�
g)(2N
,i − diag(N
,i ))

= 1

2

N∑

i=1

p(
 | xi,�
g)(2J
,i − diag(J
,i))

= 2R − diag(R)

(23)

where J
,i = �
 − N
,i and R = 1
2

∑N
i=1 p(
 | xi,�

g)J
,i . Setting derivative to
zero through 2R − diag(R) = 0 or R = 0, then:

N∑

i=1

p(
 | xi,�
g)(�
 − N
,i) = 0 (24)

or

�
 =
∑N

i=1 p(
 | xi,�
g)N
,i∑N

i=1 p(
 | xi,�g)

=
∑N

i=1 p(
 | xi,�
g) (xi − μ
) (xi − μ
)

T

∑N
i=1 p(
 | xi,�g)

(25)



14 S. Ali and N. Bouguila

Consequently, these are the final update equations for the parameters of GMM
with the EM algorithm:

ζ new

 = 1

N

N∑

i=1

p(
 | xi,�
g) (26)

μnew

 =

∑N
i=1 xip(
 | xi,�

g)
∑N

i=1 p(
 | xi,�g)
(27)

�new

 =

∑N
i=1 p(
 | xi,�

g)
(
xi − μnew




) (
xi − μnew




)T

∑N
i=1 p(
 | xi,�g)

(28)

2.4 Baum Welch Algorithm

The Baum Welch algorithm is a special case of the EM algorithm whereby we
can efficiently calculate the parameters of the HMM [47, 48]. In the context of
HMMs, this algorithm is of extreme importance [26]. The Baum Welch algorithm
is traditionally used to solve the estimation problem of HMMs. As a matter of fact,
this remains an active area of research with interesting recent results such as in [49].

This may be applied to the discrete as well as the continuous case. In this
chapter, we focus on the latter and further develop Sect. 2.3 for the computation
of such continuous emission distributions. The discrete case is a simplification of
the continuous case due to its limited parameters and hence can be induced in a
straightforward manner from our discussions.

The Baum Welch algorithm is also known as the forward–backward algorithm.
This is due to its composition of two approaches that when repeated recursively
form the complete algorithm. As you might have concluded, these algorithms are
named the forward algorithm and the backward algorithm. This iterative algorithm
requires an initial random clustering of the data, is guaranteed to converge to more
compact clusters at every step, and stops when the log-likelihood ratios no longer
show significant changes [50].

The forward algorithm solves the first problems that are posed for HMM
as discussed in Sect. 2.1, i.e., the evaluation problem. The forward algorithm
calculates the probability of being in state si at time t after the corresponding partial
observation sequence given the HMM model �. This defines the forward variable
ρt (i) = P(X1, X2, . . . , Xt , it = si | �), which is solved recursively as follows:

1. Initiate the forward probabilities with the joint probability of state si and the
initial observation X1:

ρ1(i) = πi�i(X1), 1 � i � K (29)
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2. Calculate how state qi′ is reached at time t + 1 from the K possible states si ,
i = 1, 2, . . . , K , at time t and sum the product over all the K possible states:

ρt+1(j) =
[

K∑

i=1

ρt (i)bij

]
�j(Xt+1), t = 1, 2, . . . , T − 1; 1 � j � K

(30)

3. Finally, compute

P(X | �) =
K∑

i=1

ρT (i) (31)

The forward algorithm has a computational complexity of K2T that is considerably
less than a naive direct calculation approach. A graphical depiction of the forward
algorithm can be observed in Fig. 5.

Figure 6 depicts the computation process of the backward algorithm in a HMM
lattice structure. It is similar to the forward algorithm, but now computing the

Fig. 5 Graphical
representation of the
evaluation of the ρ variable of
the forward algorithm in a
HMM lattice fragment

Fig. 6 Graphical
representation of the
evaluation of the β variable of
the backward algorithm in a
HMM lattice fragment
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tail probability of the partial observation from t + 1 to the end, given that we
are starting at state si at time t and model �. This has the variable βt (i) =
P(Xt+1, Xt+2, . . . , XT , it = si | �) and is solved as follows:

1. Compute an arbitrary initialization:

βT (i) = 1, 1 � i � K (32)

2. Compute the remainder of the variable with the update:

βt (i) =
K∑

i′=1

bii′�i′(Xt+1)βt+1(i
′), t = T − 1, T − 2, . . . , 1; 1 � i � K

(33)

In order to apply the Baum Welch algorithm, we must also define

γt (i) = P(it = si | X,�)

= P(X, it = si | �)

P (X | �)

= P(X, it = si | �)
∑K

i=1 P(X, it = si | �)

(34)

where γt (i) is the probability of being in state si at time t , given � and X. Also,
because of the Markovian conditional assumption, we can denote the following:

ρt (i)βt (i) = P(X1, X2, . . . , Xt , it = si | �)P (Xt+1, Xt+2, . . . , XT , it = si | �)

= P(X, it = si | �)

(35)

Then, we may also formulate the following:

γt (i) = ρt (i)βt (i)∑K
i′=1 ρt (i′)βt (i′)

(36)
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Further, another important variable needs to be defined. That is the probability of
path being in state si at time t and then transitioning at time t + 1 with bii′ to state
s′
i , given � and X. We denote this by ϕt (i, i

′) and formulate it as:

ϕt (i, i
′) = P(it = si, it+1 = s′

i | X,�)

= P(it = si, it+1 = s′
i , X | �)

p(X | �)

= ρt (i)bii′�i′(Xt+1)βt+1(i
′)

∑K
i=1

∑K
i′=1 ρt (i)bii′�i′(Xt+1)βt+1(i′)

= γt (i)bii′�i′(Xt+1)βt+1(i
′)

βt (i)

(37)

ρt (i) then considers the first observations ending at state si at time t , βt+1(i
′) the

rest of the observation sequence, and bii′�i′(Xt+1) the transition to state si′ with
observation Xt+1 at time t + 1. Hence, γt (i) may also be expressed as:

γt (i) =
K∑

i′=1

ϕt (i, i
′) (38)

whereby
∑T −1

t=1 ϕt (i, i
′) is the expected number of transitions made from si to si′

and
∑T

t=1 γt (i) is the expected number of transitions made from si .
The general re-estimation formulas for the HMM parameters π , and B are then

π̄i = γ1(i), 1 � i � K (39)

which is the relative frequency spent in state si at time T = 1, and

b̄ii′ =
∑T −1

t=1 ϕt (i, i
′)

∑T −1
t=1 γt (i)

(40)

which is the expected number of transitions from state si to si′ relative to the
expected total number of transitions away from state i.

For �, it is defined as a GMM, then we need to define another probability of the
generation of Xt from the 
th component of the ith GMM as:

γt (i
) = P(it = si, Yit = 
 | X,�)

= γt (i)
ci
�i
(Xt )

�i(Xt )

(41)
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where Yit is an indicator random variable for the mixture component at t for si .
Our earlier treatment of GMM in Sect. 2.3 enables us to easily derive the update
equations needed, which are

ci
 =
∑T

t=1 γt (i
)∑T
t=1 γt (i)

(42)

μi
 =
∑T

t=1 γt (i
)Xt∑T
t=1 γt (i
)

(43)

�i
 =
∑T

t=1 γt (i
)(Xt − μi
)(Xt − μi
)
T

∑T
t=1 γt (i
)

(44)

In case we have O sequences with each oth sequence of length To, then the
update equations are the summation across all sequences. This may be denoted by
the following:

πi =
∑O

o=1 γ o
1 (i)

O
(45)

bii′ =
∑O

o=1
∑To

t=1 ϕo
t (i, i′)

∑O
o=1

∑To

t=1 γ o
t (i)

(46)

ci
 =
∑O

o=1
∑To

t=1 γ o
t (i
)

∑O
o=1

∑To

t=1 γ o
t (i)

(47)

μi
 =
∑O

o=1
∑To

t=1 γ o
t (i
)Xo

t∑O
o=1

∑To

t=1 γ o
t (i
)

(48)

�i
 =
∑O

o=1
∑To

t=1 γ o
t (i
)(Xo

t − μi
)(X
o
t − μi
)

T

∑O
o=1

∑To

t=1 γ o
t (i
)

(49)

2.5 Viterbi Algorithm

Next, the Viterbi algorithm aims to find the most likely progression of states that
generated a given observation sequence in a certain HMM. Hence, it offers the
solution to the decoding problem. This involves choosing the most likely states at
each time t individually. Hence, the expected number of correct separate states is
maximized. This is illustrated in Fig. 7.
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Fig. 7 Graphical
representation of two
probable pathways in a HMM
lattice fragment. The
objective of the Viterbi
algorithm is to find the most
likely one

The main steps of the Viterbi algorithm can then be summarized as:

1. Initialization

δ1(i) = πi�i(X1), 1 � i � K (50)

ψ1(i) = 0 (51)

2. Recursion

For 2 � t � T , 1 � i′ � K (52)

δt (i
′) = max1�i�K [δt−1(i)bii′ ] �i′(Xt ) (53)

ψt(i
′) = argmax1�i�K [δt−1(i)bii′ ] (54)

3. Termination

P ∗ = max1�i�K [δT (i)] i∗T = argmax1�i�K [δT (i)] (55)

4. State sequence path backtracking

i∗t = ψt+1(i
∗
t+1), for t = T − 1, T − 2, . . . , 1 (56)

This finalizes our mathematical discussions of the famous HMMs.

2.6 Applications

Early applications of this powerful model were in speech-related application and this
has remained predominantly true. Indeed, it is an integral model in the musicology
field. However, to motivate the reader to further explore the horizons in applying the
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acquired knowledge, we briefly touch upon a diversity of applications where HMMs
are used in this section.

Bioinformatics is a field where HMMs are ubiquitous. For instance, it is
increasingly used in genomics, gene sequencing, and protein classification. An
interested reader is referred to [51] for a study of HMMs in a variety of biological
applications. Forecasting weather may also be performed utilizing HMMs such as
in [52].

Security applications are another field where the application of HMMs is
imperative. For instance, they may be deployed in video surveillance systems for
automatic detection of security threats as well as anomaly detection [53, 54] or
even to detect fraud in bank transactions [55]. HMMs are also applicable in gesture
recognition. An example is artificially intelligent cockpit control in [56]. You may
then infer that HMMs would also shine whenever spatio-temporal analysis is carried
out due to the nature of its composition.

As we will also discuss in Sect. 3, HMMs are highly influential in the area
of occupancy estimation. The latter is also dependent on Internet of Things (IoT)
technologies. A closely related area is activity recognition in which HMMs may be
used to classify such activities within a smart building environment [57]. A method
for efficient power usage is also proposed in [58] and another for power signature
anomaly detection in [59].

Similar to speech recognition, HMMs are highly preferred in natural language
processing and its subfields. Examples include recognition of handwritten characters
[60], writer identification and verification systems [61, 62], and speech synthesis for
the English language [63] and recently for Tamil [64]. We also refer an interested
reader to [65] for a systematic survey of the applications of HMMs.

As a concluding remark, we have already covered multiple research venues
within our discussion; nonetheless, many remain. For instance, thus far all the
HMMs discussed have assumed an offline deployment. That is the model does
not adapt to new data as it becomes available since the training is performed
once for a static model. Online models incorporate such new data. Furthermore,
incremental ones (a subcategory of them) do not forget the original parameters as
dynamic training is performed. An interested reader is referred to [66] for a recent
investigation of such a setup for HMMs.

Another potential expansion of this interesting work is the investigation of other
learning techniques that improve on the traditional Baum Welch algorithm. This is
because the latter suffers from a risk to over-fit or under-fit as well as vulnerability to
initialization conditions. Latest published articles include the variational inference
such as in [38, 40] as well as Maximum A Posteriori framework in [67, 68].
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3 Survey of the Employment of Hidden Markov Models in
Occupancy Estimation

In this section, we address the second question that we posed in the Introduction.
In particular, we review the application of HMMs in occupancy estimation of smart
buildings. Table 1 summarizes the list of papers that we survey. We also briefly
address the limitations of HMM deployment in occupancy estimation as well as
potential future areas of research and improvements in Sect. 3.1.

One of the early papers to report large-scale deployment of a sensor network for
occupancy estimation is [75]. The testbed consisted of an extensive set of sensors:
CO2, CO, TVOC, PM2.5, temperature, humidity, light, PIR, and sound that have
been deployed in nodes. The ground truth labels were collected with cameras,
whereas HMMs were trained for the estimation of occupancy with an average
accuracy of 73%. The data collection took place in 2008 and feature selection was
also taken into consideration. An important conclusion that this study also presented
is the realistic modeling of occupancy estimation with HMM in comparison with
other machine learning techniques such as the investigated support vector machines
and artificial neural networks. The smaller scale version of the same study reported
an 80% accuracy for HMM where acoustic features were not found as significant by
the feature selection algorithm [76].

Later on, 100 sensor points were utilized in [77] for building a real-time model
predictive control for building heating and cooling systems. This was again based on
the occupancy estimation of the smart building as well as the ambient environment
measurements. This is a recommended paper for feature extraction from the sensors
for the training of machine learning techniques and has extensive details regarding
the network design in the solar house where the study was carried out.

A HMM was utilized for occupancy estimation, while its extension the semi-
hidden Markov model was employed for the duration estimation of occupants. A
closely related investigation concluded that such an experimental setup results in a
17.8% reduction in the measured energy in the experiment test bed [78]. Further
analysis of the energy consumption was also incorporated in this study.

A PIR is utilized in [71] for real-time occupancy estimation with HMMs in smart
systems. The parameters of the HMM are learned via a simple EM algorithm within
an online deployment. This enables a better estimation of the parameters with an
increased efficiency over time.

In [73], authors investigate the incorporation of the location of the occupant as
well as his/her motion patterns. The designed location-aware HMM in the study
indeed improves the performance over conventional HMMs (up to 10%). Motion,
temperature, humidity, lighting, CO2, pressure, and sound level sensors were used
to collect the environmental conditions and the motion activities. These represent
the feature space that is then dynamically adapted by the proposed location-
aware HMM. A leave-one-out cross validation schema was used (in relation to
days, though the sampling was performed with a 3-minute time quantum). Feature
selection was also carried out with the Pearson correlation coefficient.
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Table 1 A list of the papers detailed in this chapter for occupancy detection and estimation in
smart buildings with the respective sensors utilized and the variant(s) of the hidden Markov model
(HMM). In the table, HMM represents the traditionally applied Gaussian Mixture Model-based
HMM

Paper Sensors HMM algorithm(s)

[69] Passive infrared (PIR) Inhomogeneous hidden
Markov models with
softmax regression
model

[70] PIR Markov chain

[71] PIR HMM

[72] Pressure, temperature, humidity, and light levels Occupant-based
deployed HMM

[73] Motion, temperature, humidity, lighting, CO2, pressure,
and sound levels

Location-aware and
conventional hidden
Markov models with
feature selection

[74] CO2, electricity consumption, and light HMM

[75] CO2, CO, TVOC, PM2.5, temperature, humidity, light,
PIR, and sound

HMM with feature
selection

[76] CO2, CO, TVOC, PM2.5, temperature, humidity, light,
PIR, and sound

HMM with feature
selection

[77] CO2, acoustics, motion, light, and local weather HMM and hidden
semi-Markov model

[78] CO2, acoustics, motion, light, and local weather HMM and hidden
semi-Markov model

[79] Reed switches, pressure, PIR, mercury contacts, flush Dynamic hidden
semi-Markov model

[80] Ultrasonic HMM

[81] Ultrasonic Inhomogeneous HMM

[82] CO2, dew point temperature, and power consumption HMM

[83] Temperature, humidity, light, and CO2 HMM

[84] CO2, temperature, relative humidity, acoustics, light, and
motion

HMM and hidden
semi-Markov model

[39] Luminance, CO2 concentration, relative humidity,
temperature, motion, power consumption, window and
door position, and acoustic pressure

Inverted Dirichlet-based
HMM

[85] Acoustics, light, motion, CO2, temperature, and relative
humidity

HMM and hidden
semi-Markov model

An interesting model is proposed by Gomez Ortega et al. [79] where a dynamic
hidden semi-Markov model is utilized for the problem of occupancy detection.
However, in contrast to the traditional hidden semi-Markov model, the state
duration is dynamic and the model is also capable of handling partially available
observations. Overall, the performance of the proposed model was found be of
significant higher accuracy (98%) than the conventional HMM and hidden semi-
Markov model techniques (65.6% and 91.7%, respectively). It is also noteworthy to
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mention that the incorporated weighted sensor approach appears to be of merit in
relation to inclusion of sensors of various natures.

In [80], ultrasonic sensors are used for occupancy detection. HMMs were found
to be robust even to unfavorable situations in real-time applications. Another
occupancy detection system with HMM is proposed in [81]. The system was
trained with the prior of occupants’ behavior input for the computation of the
posterior probability. It was tested in a real-world scenario where it performed
well. Nonetheless, it is important to mention that such computation discredits
a large portion of the inherent structure of HMMs as it confines its states by
user intervention rather than allowing the dynamic flexibility of the mathematical
formulations of the Baum Welch algorithm to shine through.

On the other hand, another approach has been recently suggested for the
occupancy detection and estimation as a general case using HMMs. In particular,
[72] proposes a methodology whereby the states no longer represent a particular
number of occupants or a state of occupancy, but rather an entire model does. That
is a model is trained for each level of occupancy in the estimation or the detection
problems. This occupant-based deployment of HMMs opens up the field for scalable
and flexible frameworks where an addition of level of occupancy will not interfere
with pre-existing ones. Occupancy detection is also now explicitly formulated as a
special case of occupancy estimation. That is because occupancy estimation would
then require a trained HMM for each number of occupants to be considered whereas
occupancy detection only requires two.

It is also noteworthy to mention the particular suitability of HMM within time-
aware model for occupancy detection. This claim has been proven in [83], in which
the authors compared the performance of HMM with linear regression, K-nearest
neighbor, classification and regression tree, random forest, and stochastic gradient
descent. The latter represents another suitable model.

Chaney et al. [82] presents a methodology for handling the challenges of feature
extraction as well as sensor fusion within the occupancy estimation problem. The
paper uses HMMs for occupancy detection and then infers the behavior of the
occupant(s) for profiling the power consumption. Further analysis of load shifts as
well as the benefits of occupants’ active engagement in demand response toward
a wholesome smart grid vision are also discussed. Overall, this paper serves to
incorporate the HMM within the larger image of more efficient energy consumption
in smart buildings as well as present the relatively untapped potential of real-time
occupancy detection systems.

This is further supported by the findings of [84] where a HMM was used
for occupancy estimation 18.5% energy savings were achieved in the space upon
incorporation of the proposed model within the conducted simulation. Hidden semi-
Markov model with exponential distribution functions also proved to be effective in
modeling the associated durations. A closely related work suggests a 30% saving in
energy though the investigation was carried out in a conference room [85].

In [39], the authors investigate more efficient representation of the emission
distribution through a data-driven approach. In particular, they propose an inverted
Dirichlet-based HMM and investigate its performance across various applications;
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one of which is occupancy estimation. Within the task, they compare the perfor-
mance of their proposed model versus other traditional HMMs. This represents
an interesting venue of research as this setup indeed improves the performance,
even within the classically deployed framework where states represent the level of
occupancy.

Predicting occupancy is another task where HMMs are also applicable. This
task refers to a futuristic classification or making an educated guess of the future
value based on the trained model. Authors of [74] focused on utilizing only
environmental data for an indirect approach of occupancy estimation with machine
learning approaches. This is in contrast to direct approaches such as PIR motion
detectors, video cameras, or radio-frequency identification (RFID) technologies
for monitoring the occupants. Hence, all the latter were excluded and the study
concluded that HMMs were suitable for the prediction of occupancy, whereas they
chose decision trees for the estimation with an information gain criterion.

In another instance, a new Markov chain was developed with superior results in
comparison to other machine learning models [70]. These included artificial neural
network and support vector regression in various spatial scenarios. This was at both
room level and house level with temporal levels: 15-minute, 30-minute, 1-hour, and
24-hour ahead forecasts.

As discussed thus far, HMMs are ubiquitous in the field of occupancy estimation
and prediction [70, 71, 86]. Nonetheless, they are based on implicit assumption
of time-invariant transition probability matrix of the hidden states in the HMM.
However, this is not necessarily applicable to the dynamic changes that characterize
indoor occupancy [16, 87]. Hence, in [69], authors investigate the time-dependent
transitions between the different states of a HMM for the modelling of occupancy
estimation. In particular, this character of real-time indoor occupancy system
response is modelled with an inhomogeneous HMM with a softmax regression-
based emission probability. The features are extracted from the collected data of
fast-sampling infrared array sensors for both online and offline estimation.

Furthermore, and for the completeness of this review, we also briefly examine
other relevant surveys in the literature that touch upon similar topics. For instance,
[65] presents a systematic review of hidden Markov models in various applications.
The survey briefly describes the various variants of HMMs and then discusses the
respective prevalence of the model in applications as well as relevant papers. An
occupancy estimation paper is mentioned.

Shen et al. [88] also covers occupancy detection in its various faces. The
paper describes both conventional occupancy detection approaches and the modern
ambient sensor-based ones. It does also incorporate several HMM papers. However,
as is often the case in depth analysis of the topic is lacking due to the broad scope
of the paper.

In contrast, [17] is an occupancy detection dedicated survey that touches upon
various topics in that subject. This is a highly beneficial resource for those seeking
an introduction to occupancy detection field. The most common sensors and
their limitations are even described. The mention of HMMs is confined within
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the Occupancy estimation methods section, in particular, the estimation through
prediction techniques.

Even a more specific survey in the topic is [18] that focuses on data analytics
approaches. This translates to algorithms for feature extraction and data prepro-
cessing as well as review of machine learning techniques in general for occupancy
detection. Benchmarking and performance evaluation metrics are also introduced.
Hidden Markov models are only mentioned in terms of some papers in the literature
under the Probabilistic graphical models section.

To face the futuristic challenges of minimal intrusive occupancy monitoring and
effective data fusion techniques, authors of [89] survey existing papers for smart
buildings of which HMMs are a key player. Interesting side track topics include
future fields of research in this topic such as utilizing the existing infrastructure in
terms of WiFi as well as localization with an emphasis on multimodal data fusion
and privacy preservation.

Indeed, privacy concerns are such a major concern in this topic as previously
mentioned that authors of [19] propose a novel method in addition to their survey of
the topic. The paper deliberates the various techniques used for occupancy detection
in terms of the actual means to do so. For instance, that includes WiFi, Bluetooth,
PIR sensors, sensor fusion, etc. In relation to its HMM mention, it only occurs once
very briefly in relation to a paper in the PIR section titled Occupancy measurement
via passive infra-red (PIR) sensor. Sensors are also the major theme in [22] with
two papers in relation to HMMs.

Markov chains are dedicated a subsection in [20], which aims to review models
for the prediction of occupancy and window-opening behaviors in smart buildings.
Several papers concerning the employment of hidden Markov models are mentioned
in the paper, but no thorough discussion is covered due to the inclusion of other
machine learning techniques.

Salimi and Hammad [21] expands on the topic of occupancy modeling and
includes also a review of the control systems. The latter are a subsequent of the
former with occupancy modeling techniques advancing them greatly. This is due to
the increased efficiency and precision of such systems as well as its highly beneficial
impact in relation to energy and its consumption. This is an expansive paper and as
you would imagine highly involved in regard of the application rather the machine
learning technique at hand, i.e., HMMs. It is only mentioned in terms of approaches
used in papers.

3.1 Limitations and Future Venues of Improvement

In this section, we briefly discuss limitations and future venues of improvements
in relation to HMMs employment in occupancy estimation. This is in addition to
the first limitation that we covered whereby the structure of the HMM is inherently
assumed to correspond to the physical system. As discussed, as well as researched,
this is not always the case.
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In [90], pressure, temperature, humidity, and light levels were used for an
occupancy detection system. The raw features were utilized for the investigation
of multiple classical machine learning algorithms. The latter included Linear
Discriminant Analysis (LDA), Classification and Regression Trees (CART), and
Random Forest (RF) models with high accuracies reaching to 99%. Important
conclusions were drawn from this paper and enforce a significant aspect that is to
be considered in this field. That is, an appropriate selection of features and model
is integral to the overall accuracy performance of the system. This is also further
improved by incorporating the time information of the sensor data that is collected.

Another interesting venue that garners further investigation are simulation tools
that have the capability of generating data for model training with available ground
truth labels at a large scale. For instance, [87] proposes an algorithm that is capable
of characterizing an occupant’s presence whose resultant simulations can be then
used for building models. Indeed, this proposed technique utilizes inhomogeneous
HMMs for the generation of an occupancy detection time series. This system has
proven efficient when tested and represents a field that would have great impact due
to the limited availability of large-scale datasets, especially ones whose simulations
are closely emulating the real-life scenarios.

Indeed, an interested reader is referred to [16, 91] for further discussions on
various aspects of such simulation systems. Liao et al. [11] is another simulation
paper with graphical models for an interested reader. The gravity of such efforts
cannot be overstated due to also the lack of labelled data at a large scale. Data
augmentation is also another promising prospect that addresses this challenge [86].

4 Conclusion

In conclusion, we have presented a holistic treatment of the HMM topic and
an introduction to its insides. The chapter addresses the diverse aspects of the
model and provides the reader with insights into its structure and mathematical
formulations. We also survey its application in the field of occupancy estimation.
To the best of our knowledge, this is the first review of HMMs in that field. All in
all, this assembled guide provides a thorough explanation of HMMs for beginners
and practitioners alike. It is our aspiration that this chapter becomes a reference for
the next generation of researchers in this field.
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Bounded Asymmetric Gaussian
Mixture-Based Hidden Markov Models

Zixiang Xian, Muhammad Azam, Manar Amayri, Wentao Fan,
and Nizar Bouguila

1 Introduction

Hidden Markov models were introduced by Baum and his colleagues by estimating
its parameters using the maximum likelihood (ML) approach [1–4]. HMM has long
been referred to as a dynamic probabilistic model with discrete transition probability
that has been implemented in various applications such as speech processing [5–7],
anomaly detection [8], signature verification [9–11], as well as pattern recognition
applications like gesture and texture recognition [12–14]. Furthermore, it has been
also used in the smart buildings domain for occupancy estimation [15–17]. The
primary goal for using HMMs was to characterize real-world signals in terms
of signal models, which can help us improve signals by reducing noise and
transmission distortion, as well as to learn details about the signal source without
having to have the source available via simulations [7].

HMMs have been proved to be very practical while dealing with non-observable
data over a time interval to disclose the future values or reveal the latent variables.
Although some research works tend to improve the HMM structure by tuning
the initialization step in the context of parameter setting [18, 19], the training
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process of HMM considers the identical regulated classic form via the Expectation–
Maximization algorithm [20]. However, in most cases, the choice of emission
probability distributions is less discussed and generally adopts Gaussian mixture
models (GMMs) by default, often because of mathematical and practical conve-
nience and strong assumption of a common pattern for the data [21]. However,
this strong assumption is potentially insufficient to achieve the best modeling
performance because real-world data cannot be symmetric in all cases, not to
mention the unbounded support that prevents it from having a reliable modeling
capability in the presence of outliers. Note that most real-world data are asymmetric,
which is especially true in natural images, as shown in [22]. Therefore, some
research works have put forward the generalized Gaussian mixture model (GGMM)
[23–28], which can consider different shapes by changing its shape parameters that
control the distribution’s tail. Some research works have focused on improving the
distribution support for real-world data, which is always defined with a bounded
range, proposing the bounded Gaussian mixture model (BGMM) [29–31] and the
bounded generalized Gaussian mixture model (BGGMM) [32–34]. A bounded
asymmetric Gaussian mixture model (BAGMM) has been proposed in [35] to tackle
the drawbacks of assuming symmetric unbounded data in real-life applications.

In the present chapter, we propose to explore and evaluate the performance of
HMM by adopting BAGMM as emission probability distribution and comparing it
with the Gaussian mixture model-based HMM (GMM-HMM) and other general
Gaussian-based versions. Although we break the strong assumptions made by
Gaussian mixture models from emission probability distributions, the HMM still has
two main limitations [36]. A significant limitation is an assumption that successive
observations are independent. Another limitation is the Markov assumption itself,
i.e., that the probability of being in a given state at time t only depends on the
previous state at time t − 1. Therefore, we aim to show that the combination of
BAGMM and HMM can acquire better performance when handling real-world
data compared with traditional HMM and other Gaussian mixture-derived HMMs.
We will reveal the details about the parameters learning process of the proposed
model, including the parameters setting, i.e., the number of hidden states and
mixture components, and the performance. Indeed, the parameters setting has its
share of effect on the modeling accuracy. To tackle the parameters estimation task,
we introduce Expectation–Maximization (EM) framework [20] to maximize log-
likelihood. To emphasize our significant contributions to this research work briefly,
we first introduce a complete derivation of the equations for integrating the bounded
asymmetric Gaussian mixture into the HMM framework and apply this novel HMM
framework to real-world applications while comparing it with traditional HMM and
Gaussian mixture-derived HMMs.

The remainder of this chapter is organized as follows: After the introduction,
we recall the bounded asymmetric Gaussian mixture model (BAGMM) in detail,
including its probability density function (PDF) in Sect. 2. Section 3 briefly recalls
the structure and definition of traditional HMM. In Sect. 4, we specify the complete
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procedure about how to frame the BAGMM into HMM, including the parameters
learning algorithm. In Sect. 5, we present the applications and the results of our
proposed model compared with other selected models. The conclusion and potential
future works are presented in Sect. 6.

2 Bounded Asymmetric Gaussian Mixture Model

Given a D-dimensional random variable X = [X1, . . . , XD] that follows a M-
component mixture distribution, its probability density function (PDF) can be
written as:

p(X|Λ) =
M∑

m=1

p(x|ξm)pm (1)

where pm are the mixing coefficients that satisfy pj ≥ 0,
∑M

m=1 pm = 1,
ξm is the parameter of the distribution associated with mth cluster and Λ =
(ξ1, . . . , ξM, p1, . . . , pM) is the complete set of parameters of the asymmetric
Gaussian mixture model (AGMM).

The PDF associated with each component is the multidimensional asymmetric
Gaussian distribution (AGD) [37–43]:

f (X|ξm) =
D∏

d=1

2√
2π(σlmd

+ σrmd)
×

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

exp

[
− (Xd−μmd)2

2σ 2
lmd

]
Xd < μmd

exp

[
− (Xd−μmd)2

2σ 2
rmd

]
Xd ≥ μmd

(2)

where ξm = (μm, σ lm , σ rm) represents the parameters of AGD. Here, μm =
(μm1, . . . , μmD), σ lm = (σlm1, . . . , σlmD

), and σ rm = (σrm1 , . . . , σrmD
) are the

mean, left standard deviation, and right standard deviation of the D-dimensional
AGD, respectively. The bounded asymmetric Gaussian distribution (BAGD) for the
vector X can be written as:

p(X|ξm) = f (X|ξm)H(X|Ωm)∫
∂m

f (u|ξm)du
, where H(X|Ωm) =

{
1 if X ∈ ∂m

0 otherwise
(3)

where f (X|ξm) is the PDF of the AGD, the term
∫
∂m

f (u|ξm)du in Eq. (3) is the
normalized constant that shows the share of f (X|ξm), which belongs to the support
region ∂ . Given a set of independent and identically distributed vectors represented
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by X = (X1, . . . , XN), arising from a mixture of BAGDs with M components, then
its log-likelihood function can be defined as follows:

p(X|Λ) =
N∏

n=1

M∑

m=1

p(xn|ξm)pm (4)

We introduce stochastic indicator vectors Zn = (Zn1, . . . , ZnM), which satisfy
Znm ∈ {0, 1}, ∑M

m=1 Znm = 1. In other words, Znm, the hidden variable in each
indicator vector equals 1 if xn belongs to component j and 0, otherwise. The
complete data likelihood is given by:

p(X, Z|Λ) =
N∏

n=1

M∏

m=1

(p(xn|ξm)pm)Znm (5)

where Znm is the posterior probability and can be written as:

Znm = p(m|xn) = p(xn|ξm)pm∑M
m=1 p(xn|ξm)pm

and Z = {Z1, . . . , ZN }. (6)

3 Hidden Markov Model

For many real-world applications, such as occupancy estimation in buildings, we
wish to predict the following number of people in a time series given sequences
of the previous values. It is impractical to consider a general dependence of future
observations on all previous values. Therefore, the HMM assumes that the future
predictions are dependent on the most recent observations only. Moreover, the
HMM is a specific instance of the state space model that the latent variables are
discrete. The latent variable, which is the state of this hidden process, satisfies the
Markov property; that is, given the value of sn−1; the current state sn is independent
of all the states prior to the time n − 1. X = [x1, . . . , xN ] represents the observed
variables and S = [s1, . . . , sn] is the hidden state. A hidden Markov model is
governed by a set of parameters, such as the set of state transitions and emission
probability. There are three main tasks for HMM-based modeling; first is to optimize
those parameters for the model given training data; second is scoring that calculates
the joint probability of a sequence given the model; third is decoding that finds the
optimal series of hidden states (Fig. 1).

According to [44], given time series observations X = [x1, . . . , xn, . . . , xN ]
generated by hidden states S = [s1, . . . , sn, . . . , sN ]; sk ∈ [1,K] where K is
the number of the hidden states, we define the transition probability matrix as A:
Ajk = p(snk = 1 | sn−1,k = 1). They should satisfy 0 ≤ Ajk ≤ 1 with
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s1 s2 sn sN

xNxnx2x1

Fig. 1 Graphical representation for HMM

∑
k Ajk = 1, because they are probabilities. P(xm | Λ) is known as emission

probability, where Λ is a set of parameters governing the distribution if x is
continuous. Note that P(xm | Λ) will be an emission probability matrix if x is
discrete. The joint probability distribution over both hidden states and observed
variables is then given by:

p(X, S | Θ) = p (s1 | π)

[
N∏

n=2

p (sn | sn−1, A)

]
N∏

m=1

p (xm | Λ) (7)

where X = [x1, . . . , xN ], S = [s1, . . . , sN ], and Θ = {π , A,Λ} defines the set
of parameters of HMM. Indeed, there are a wide range of choices for emission
distribution that include Gaussian distribution and mixture models such as Gaussian
mixture model (GMM). It is worth mentioning that the emission distributions are
often taken as Gaussian mixtures for most continuous observations cases [44–47].

The parameters learning task is crucial for HMM. In this chapter, we focus
on the maximum log-likelihood approach via EM algorithm, which can also be
considered as a selection process among all models in such a way to determine
which model best matches the observations. It is intractable to directly maximize
the log-likelihood function, leading to complex expressions with no closed-form
solutions.

The EM framework starts with some initial parameters. Then, we need to
accumulate sufficient statistics and find the posterior distribution of the state
p
(
S | X,Θold ) by applying forward–backward algorithm in E step. We utilize this

posterior distribution to update parameters Θ via maximizing the complete data
likelihood with respect to each parameter in M step. The function Q

(
Θ,Θold ) can

be defined as:

Q
(
Θ,Θold

)
=
∑

S

p
(

S | X,Θold
)

ln p(X, S | Θ) (8)
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We introduce γ (snk) to denote the marginal posterior distribution of the nth state
snk and ξ

(
sn−1,j , snk

)
to define the joint posterior distribution of two successive

states sn−1,j , snk that xn−1, xn are emitted from the j th and kth model state,
respectively.

γ (snk) = P(snk | X,Θ)

ξ
(
sn−1,j , snk

) = P(sn−1,j , snk | X,Θ)
(9)

where γ (snk) denotes the conditional probability p(snk | X, θ), where snk = 1 if xn

is emitted from the kth model state, and snk = 0, otherwise.
We can make use of the definition of γ and ξ and substitute Eq. (8) with Eq. (9).

We obtain Q
(
θ , θold ) as:

Q
(
θ, θold

)
=

K∑

k=1

γ (s1k) ln πk +
N∑

n=2

K∑

j=1

K∑

k=1

ξ
(
sn−1,j , snk

)
ln Ajk

+
N∑

n=1

K∑

k=1

γ (snk) ln p (xn | Λnk)

(10)

4 BAGMM Integration into the HMM Framework

From the previous section, the emission distribution p (xn | Λnk) is often taken as
Gaussian mixture model (GMM) for most continuous observations cases. However,
the Gaussian distribution assumes that the data is symmetric and has an infinite
range, which prevents it from having a good modeling capability in the presence
of outliers. So, we suggest integrating the bounded asymmetric Gaussian mixture
model (BAGMM) into the HMM framework. The primary motivation behind this
choice is the bounded range support from BAGMMM and its asymmetric nature for
modeling non-symmetric real-world data. The BAGMM is flexible and has good
capabilities to model both symmetric and asymmetric data.

By replacing the emission probability distribution as BAGMM, we can integrate
BAGMM into the HMM framework, which is to substitute p (xn | Λnk) with Eq. (3)
in Eq. (10). In the E step, we obtain Q

(
θ , θold ) using Eq. (10). In the M step, we

maximize Q
(
θ, θold ) with respect to the parameters Θ = {π , A,Λ} in which we

treat γ, ξ as a constant. The details are discussed in the next subsection.
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4.1 Estimation of π and A

Using Lagrange multipliers, the maximization concerning πk and Ajk gives the
following:

πk = γ (s1k)∑K
j=1 γ

(
s1j

) (11)

Ajk =
∑N

n=2 ξ
(
sn−1,j , snk

)
∑K

l=1
∑N

n=2 ξ
(
sn−1,j , snl

) (12)

Note that the initialization for πk and Ajk should respect the summation constraints,∑K
k=1 πk = 1 and

∑K
k=1 Ajk = 1.

4.2 Estimation of Λ

To maximize Q
(
θ , θold ) with respect to Λk , we note that the final term in Eq. (10)

depends on Λk . The Λk is a set of parameters of the kth state emission probability
distribution, Λk = [p1, . . . , pm,μ1, . . . , μm, σl1, . . . , σlm, σr1, . . . , σrm]. Here, we
denote by ϕn(k,m) the probability of being at state sk at time n with respect to the
mth bounded asymmetric Gaussian mixture. According to [36, 48], the ϕn(k,m) can
be computed as:

ϕn(k,m) = α (snk) β (snk)∑K
k=1 α (snk) β (snk)

· p(xn|ξkm)pkm∑M
m=1 p(xn|ξkm)pkm

(13)

where α (sn) denotes the joint probability of observing all of the given data up to
time n and the hidden state sn, whereas β (sn) represents the conditional probability
of all future data from time n + 1 up to N given the hidden state of sn:

α (sn) ≡ p (x1, . . . , xn, sn) (14)

β (sn) ≡ p (xn+1, . . . , xN | sn) (15)

The mixing coefficient pnew
km of the mth bounded asymmetric Gaussian mixture in

the state k is given by:

pnew
km =

∑N
n=1 ϕn(k,m)

∑N
n=1

∑M
m=1 ϕn(k,m)

(16)

The mean μnew
kmd can be defined using the same approach.
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μnew
kmd =

∑N
n=1 ϕn(k,m)

{
xnd −

∫
∂km

f (u|ξkm)(u−μkmd)du
∫
∂km

f (u|ξkm)du

}

∑N
n=1 ϕn(k,m)

(17)

Note that in Eq. (17), the term
∫
∂km

f (u|ξkm)(u − μkmd)du is the expectation
of function (u − μkmd) under the probability distribution f (xd |ξkm). Then, this
expectation can be approximated as:

∫

∂km

f (u|ξkm)(u − μkmd)du ≈ 1

M

M∑

m=1

(mkmd − μkmd)H(mkmd |Ωkm) (18)

where mkmd ∼ f (u|ξkm) is a set of random variables drawn from the asymmetric
Gaussian distribution for the particular component m of the mixture model at the
state k. The term

∫
∂km

f (u|ξkm)du in Eq. (17) can be approximated as:

∫

∂km

f (u|ξkm)du ≈ 1

M

M∑

m=1

H(mkmd |Ωkm) (19)

and

μnew
kmd =

∑N
n=1 ϕn(k,m)

{
xnd −

∑M
m=1(mkmd−μkmd)H(mkmd |Ωkm)

∑M
m=1 H(mkmd |Ωkm)

}

∑N
n=1 ϕn(k,m)

(20)

The left standard deviation can be estimated by maximizing the log-likelihood
function with respect to σlkmd

, which can be performed using Newton–Raphson
method:

σ new
lkmd

= σ old
lkmd

−
⎡

⎣
(

∂2Q
(
θ , θold )

∂σ 2
lkmd

)−1 (
∂Q

(
θ , θold )

∂σlkmd

)⎤

⎦ (21)

where the first derivative of the model’s complete data log-likelihood with respect
to left standard deviation σlkmd

is given as follows:

∂Q
(
θ , θold )

∂σlkmd

= 0 (22)
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∂Q
(
θ , θold )

∂σlkmd

= ∂

∂σlkmd

N∑

n=1

ϕn(k,m)×
{

log pkm + log f (xn|ξkm) + log H(xn|km) − log
∫

∂km

f (u|ξkm)du

}

= ∂

∂σlkmd

N∑

n=1

ϕn(k,m)

{
log f (xn|ξkm) − log

∫

∂km

f (u|ξkm)du

}

=
N∑

n=1,xnd<μkmd

ϕn(k,m)

(
(xnd − μkmd)2

σ 3
lkmd

)

−
N∑

i=1,xnd<μjd

ϕn(k,m)

σ 3
lkmd

{∫
∂km

g1 (u | ξkm) (u − μkmd)2 du
∫
∂km

g1 (u | ξkm) du

}

(23)

The term
∫
∂km

g1(u|ξkm)(u − μkmd)2du can be approximated as below:

∫

∂km

g1(u|ξkm)(u − μkmd)2du ≈ 1

M

M∑

m=1

(lkmd − μkmd)2H(lkmd |Ωkm) (24)

where lkmd ∼ g1(xn|ξkm) is a set of random variables drawn from the asymmetric
Gaussian distribution with u < μkmd for the particular component m of the
mixture model at the state k. Similarly, the term

∫
∂km

g1(u|ξkm)du in Eq. (23) can
be approximated as:

∫

∂km

g1(u|ξkm)du ≈ 1

M

M∑

m=1

H(lkmd |Ωkm) (25)

The same approximation for the second-order derivative of the model’s complete
data log-likelihood with respect to left standard deviation is defined as follows:

∂2Q
(
θ , θold )

∂σ 2
lkmd

= −3
N∑

n=1,xnd<μkmd

ϕn(k,m)

(
(xnd − μkmd)2

σ 4
lkmd

)

−
N∑

n=1,xnd<μjd

ϕn(k,m)

(
−2

σ 3
lkmd

(
σlkmd

+ σrkmd

)
)

×

{
1
M

∑M
m=1 (lkmd − μkmd)2 H (lkmd | Ωkm)

1
M

∑M
m=1 H (lkmd | Ωkm)

}
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−
N∑

n=1,xnd<μkmd

ϕn(k,m)

σ 6
lkmd

{
1
M

∑M
m=1 (lkmd − μkmd)4 H (lkmd | Ωkm)

1
M

∑M
m=1 H (lkmd | Ωkm)

}

−
N∑

n=1,xnd<μkmd

−3ϕn(k,m)

σ 4
lkmd

{
1
M

∑M
m=1 (lkmd − μkmd)2 H (lkmd | Ωkm)

1
M

∑M
m=1 H (lkmd | Ωkm)

}

−
N∑

n=1,xnd<μkmd

ϕn(k,m)

σ 6
lkmd

⎧
⎪⎨

⎪⎩

(
1
M

∑M
m=1 (lkmd − μkmd)2 H (lkmd | Ωkm)

)2

(
1
M

∑M
m=1 H (lkmd | Ωkm)

)2

⎫
⎪⎬

⎪⎭

(26)

The right standard deviation can be estimated by maximizing the log-likelihood
function with respect to σrkmd

, which can be performed using Newton–Raphson
method:

σ new
rkmd

= σ old
rkmd

−
⎡

⎣
(

∂2Q
(
θ, θold )

∂σ 2
rkmd

)−1 (
∂Q

(
θ , θold )

∂σrkmd

)⎤

⎦ (27)

Similar approximations are used for
∂Q

(
θ ,θold

)

∂σrkmd
as follows:

∂Q
(
θ , θold )

∂σrkmd

= ∂

∂σrkmd

N∑

n=1

ϕn(k,m)×
{

log pkm + log f (xn|ξkm) + log H(xn|km) − log
∫

∂km

f (u|ξkm)du

}

= ∂

∂σrkmd

N∑

n=1

ϕn(k,m)

{
log f (xn|ξkm) − log

∫

∂km

f (u|ξkm)du

}

=
N∑

n=1,xnd≥μkmd

ϕn(k,m)

(
(xnd − μkmd)2

σ 3
rkmd

)

−
N∑

i=1,xnd≥μjd

ϕn(k,m)

σ 3
rkmd

{∫
∂km

g2 (u | ξkm) (u − μkmd)2 du
∫
∂km

g2 (u | ξkm) du

}

(28)

The term
∫
∂km

g2(u|ξkm)(u − μkmd)2du can be approximated as below:

∫

∂km

g2(u|ξkm)(u − μkmd)2du ≈ 1

M

M∑

m=1

(rkmd − μkmd)2H(rkmd |Ωkm) (29)
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where rkmd ∼ g2(xn|ξkm) is a set of random variables drawn from the asymmetric
Gaussian distribution with u ≥ μkmd for the particular component m of the
mixture model at the state k. Similarly, the term

∫
∂km

g2(u|ξkm)du in Eq. (28) can
be approximated as:

∫

∂km

g2(u|ξkm)du ≈ 1

M

M∑

m=1

H(rkmd |Ωkm) (30)

Similar approximations are used for
∂2Q

(
θ ,θold

)

∂σ 2
rkmd

as follows:

∂2Q
(
θ, θold )

∂σ 2
rkmd

= −3
N∑

n=1,xnd≥μkmd

ϕn(k,m)

(
(xnd − μkmd)2

σ 4
rkmd

)

−
N∑

n=1,xnd≥μjd

ϕn(k,m)

(
−2

σ 3
rkmd

(
σlkmd

+ σrkmd

)
)

×

{
1
M

∑M
m=1 (rkmd − μkmd)2 H (rkmd | Ωkm)

1
M

∑M
m=1 H (rkmd | Ωkm)

}

−
N∑

n=1,xnd≥μkmd

ϕn(k,m)

σ 6
rkmd

{
1
M

∑M
m=1 (rkmd − μkmd)4 H (rkmd | Ωkm)

1
M

∑M
m=1 H (rkmd | Ωkm)

}

−
N∑

n=1,xnd≥μkmd

−3ϕn(k,m)

σ 4
rkmd

{
1
M

∑M
m=1 (rkmd − μkmd)2 H (rkmd | Ωkm)

1
M

∑M
m=1 H (rkmd | Ωkm)

}

−
N∑

n=1,xnd≥μkmd

ϕn(k,m)

σ 6
rkmd

⎧
⎪⎨

⎪⎩

(
1
M

∑M
m=1 (rkmd − μkmd)2 H (rkmd | Ωkm)

)2

(
1
M

∑M
m=1 H (rkmd | Ωkm)

)2

⎫
⎪⎬

⎪⎭

(31)

4.3 Complete Algorithm

The complete learning of BAGMM-HMM is given in Algorithm 1, where epochmax

is the maximum number of iterations. The goal of this algorithm is to find the
optimal parameters of Θ = {π , A,Λ}.

The flowchart of this algorithm is shown in Fig. 2. First, we initialize π and
transition probability A with the mean probability according to the number of
hidden states and number of mixture components and employ K-Means to initialize
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Algorithm 1 Parameters learning for BAGMM-HMM
1: Input:Dataset X = {X1, . . . , XN }, epochmax .
2: Output: {π , A,Λ}.
3: {Initialization for Θ = [π,A,Λ] }:
4: {Expectation Maximization}:
5: while iterations ≤ epochmax or relative changes of parameters not converged do
6: {[E Step]}:
7: for all [X1, . . . , XN ] do
8: Compute γ (snk) and ξ

(
sn−1,j , snk

)
using forward–backward algorithm.

9: Accumulate sufficient statistics according to Eq. (8)
10: {[M step]}:
11: for all 1 ≤ j ≤ K do
12: Update πk , Ajk using Eqs. (11) and (12)
13: Update pnew

km , μnew
kmd , σ new

lkmd
, σ new

rkmd
& σ rj using Eqs. (16), (17), (21), and (27).

14: end for
15: end while

Fig. 2 Training process

parameters of BAGMM. Then, we iterate through the E step and M step until
convergence where we accumulate sufficient statistics using the forward–backward
algorithm in the E step and update the parameters in the M step.

5 Experimental Results

In this section, the effectiveness of our model is tested on some real-world appli-
cations, including occupancy estimation and human activity recognition (HAR).
We compare our approach (BAGMM-HMM) with asymmetric Gaussian mixture
model hidden Markov model (AGMM-HMM), bounded Gaussian mixture hidden
Markov model (BGMM-HMM), and Gaussian mixture model hidden Markov
model (GMM-HMM). For comparison, we use the following metrics: accuracy,
which is computed as:

(
T P + T N

T P + T N + FP + FN

)
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precision, which is computed as:

(
T P

T P + FP

)

recall, which is computed as:

(
T P

T P + FN

)

and specificity, which is computed as:

(
T N

T N + FP

)

In addition, particularly in case of imbalanced dataset, we must also examine the F1
Score, the harmonic mean of precision and recall, which is computed as:

2 × (precision × recall)/(precision + recall)

G-mean 1, the geometric mean of precision and recall, which is computed as:

√
precision × recall

G-mean 2, the geometric mean of specificity and recall, which is computed as:

√
specif icity × recall

Mathew’s correlation coefficient (MCC), which is computed as:

T P · T N − FP · FN√
(T P + FP)(T P + FN)(T N + FP)(T N + FN)

Here, the term T P stands for true positives, T N for true negatives, FP for false
positives, and FN stands for false negatives. Here, the term T P stands for true
positives, T N for true negatives, FP for false positives, and FN stands for false
negatives.

5.1 Occupancy Estimation

Indoor occupancy estimation is a critical analytical task for several applications,
such as smart buildings or monitoring the energy consumption for power saving.
Automating the devices in a building based on occupancy estimation has proved to
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be very efficient since some research works have indicated that one-third of energy
can be saved while using this technique [49, 50].

In terms of privacy, most occupancy detection systems and their modeling
approaches avoid employing cameras or audio recorders in favor of non-intrusive
sensors, which can be divided into two categories: pyroelectric infrared (PIR)
sensors and ambient sensors. For the first category, some research works have been
proposed to utilize PIR sensors, and ultrasonic sensors [51, 52]. For the second
category, some research works [17, 53] have considered environmental features,
such as CO2 human emission, temperature, humidity, and sound level. Moreover,
many machine learning approaches have been used to predict occupants, such
as Support Vector Machines (SVMs) [52], Logistic Regression [54], and HMMs
[15, 55, 56]. They have been utilized to model the extracted features from the
environmental data and proved their effectiveness in the occupancy estimation task.

In this section, we employ BAGMM-HMM to estimate occupancy in an office
room and hence be the first to tackle this problem with a bounded asymmetric
Gaussian mixture-based HMM. Our occupancy estimation task is based on low-cost
non-intrusive environmental sensors without bothering privacy policy.

5.1.1 Occupancy Detection Dataset

The dataset of the first experiment for occupancy detection is from UCI machine
learning Repository [55]. The experimental data about temperature, humidity, light,
the ratio of humidity, and CO2 were obtained from time-stamped pictures taken
every minute, which have two labels, occupied and not occupied, respectively. We
select training data from two days with 1993 observations and validation data from
four days with 4879 observations, for our experiments.

The results in Table 1 showed promising average accuracy for our BAGMM-
HMM as compared to AGMM-HMM, BGMM-HMM, and GMM-HMM: 94.90%,
78.30%, 83.58%, and 76.84%, respectively. These results show the effectiveness of
our proposed model for occupancy detection. BAGMM-HMM, AGMM-HMM, and
BGMM-HMM converge faster than traditional GMM-HMM because of bounded
range support.

In Fig. 3, we present the confusion matrix for this dataset using BAGMM-HMM.
Since this is binary classification, our parameters setting is 2 for both the number
of hidden states and mixture components. Figure 4 displays the ground truth and
our estimated results. From the figures mentioned above, we can see again that our
model has an excellent performance.

5.1.2 Occupancy Estimation Dataset

The dataset consists of environmental sensors data collected in an office of Grenoble
Institute of Technology, which is housing four people. The dataset comprises
luminance, CO2 concentration, relative humidity (RH), temperature, motion, power
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Table 1 Occupancy detection results using different HMM models

HMM models

Metrics BAGMM-HMM AGMM-HMM BGMM-HMM GMM-HMM

Epoch 4 3 3 15

Accuracy 94.90% 78.30% 83.58% 76.84%

Precision 95.83% 88.96% 90.51% 88.59%

Recall 94.90% 78.30% 83.58% 76.84%

Specificity 98.45% 93.70% 91.51% 93.28%

F1-score 95.06% 80.06% 84.80% 78.74%

G-mean 1 95.36% 83.45% 86.97% 82.50%

G-mean 2 96.66% 85.65% 89.22% 84.66%

MCC 87.24% 60.52% 67.49% 58.77%
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Fig. 3 Occupancy detection confusion matrix for BAGMM-HMM

consumption, window, door position, and acoustic pressure from a microphone.
The data collection is performed continuously with an interval of half an hour. The
number of occupants is obtained from recorded videos and used for validation only.

The dataset excludes the timestamp and label of occupants, which is observed
information, where the number of occupants is the hidden states that we need to
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Fig. 4 Occupancy detection using BAGMM-HMM

Start
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0 occupants 1 occupants 2 occupants 3 occupants 4 occupants

s1 s2 s3 s4

xn

Emission probability

Fig. 5 HMM for occupancy estimation according to the case of study

determine. Eight dimensional sensors outputs over a time interval t = 30 minutes
represent our data and there are five hidden states S = {s0, s1, s2, s3, s4} in this
dataset as shown in Fig. 5. At time t0, the number of occupants can be one of the
hidden states as shown using green arrows in Fig. 5. Each hidden state may switch to
another with the transition probability at any time, as shown using black arrows. The
red dashed arrows are the emission probabilities indicating the connections between
hidden states and observations at a specific time tn.

With respect to the choice of features, the research paper [57] indicates that the
level of CO2 does not rise immediately as a person comes in, and the authors
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only employed a subset of features for training: {acoustic pressure, occupancy
from power, motion counting}. Another consideration is to re-evaluate the nature
of the selected emission probability distribution, which is BAGMM in our work. In
this experiment, we use all the features except the datetime and occupancy labels.
The BAGMM-HMM is trained according to Algorithm 1 to estimate the model
parameters that are employed to test the validation dataset.

5.1.3 Experimental Results

The observations in the dataset are collected in the time frame of 20 days every 30
minutes. We choose to train our model using the data collected on days from May
4th, 2015 to May 14th, 2015; test and adjust the model parameters using the data
from May 15th, 2015 to May 20th, 2015; validate the model for the rest of data. The
compared models are also trained with the same raw data. We just let the models
exploit the features and tune the hyperparameters for the models.

After many experiments, the HMM models for our experiments use K = 5 for
the number of hidden states and M = 3 for the number of mixtures to have the best
performance. The occupancy estimation comparison results are presented in Table 2.
The BAGMM-HMM achieves the best performance with an average accuracy of
86.39% and the highest F1-score with 85.52% compared to 78.45% and 79.28%
for AGMM-HMM, 75.42%, and 64.86% for BGMM-HMM against 70.69%, and
75.42% for GMM-HMM, respectively. Our proposed model distinguishes itself as
compared to the other models with respect to the considered performance metrics.

The normalized confusion matrix is given in Fig. 6. We notice the dataset
is an imbalanced dataset from the confusion matrix. But overall, our model can
outperform the other HMM models with the same training data.

Figure 7 presents the results obtained from the BAGMM-HMM with 86.39%
accuracy, compared with the ground truth as shown with the blue line.

Table 2 Occupancy estimation comparison using different HMM models

HMM models

Metrics BAGMM-HMM AGMM-HMM BGMM-HMM GMM-HMM

Epoch 4 4 2 10

Accuracy 86.39% 78.45% 75.42% 70.69%

Precision 85.71% 82.91% 56.89% 83.97%

Recall 86.38% 78.45% 75.42% 70.69%

Specificity 75.04% 82.47% 24.57% 88.57%

F1-score 85.52% 79.28% 64.86% 75.42%

G-mean 1 86.05% 80.66% 65.51% 77.05%

G-mean 2 80.52% 80.43% 43.05% 79.13%

MCC 68.35% 57.37% 52.28% 54.39%
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Fig. 6 Occupancy estimation normalized confusion matrix for BAGMM-HMM

5.2 Human Activity Recognition (HAR)

Human activity recognition (HAR) has emerged as an active area of research over
the past few years [58, 59] due to many novel ubiquitous applications such as
smart buildings, just-in-time surveillance, interactive game interfaces, and home
healthcare. The goal of the activity recognition system is to recognize human
activities given video clips or environmental sensors data (for privacy concerns)
over a time series.
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Fig. 7 Occupancy estimation using BAGMM-HMM

5.2.1 HAR Dataset

In this section, we present our experimental results of the proposed model on the
challenging human activity recognition (HAR) dataset from UCI machine learning
repository [60]. The experiments using this dataset have been carried out with a
group of 30 volunteers who performed six activities (walking, walking upstairs,
walking downstairs, sitting, standing, laying) wearing a smartphone on the waist.
The data comprise 3-axial linear acceleration and 3-axial angular velocity collected
by the smartphone’s embedded accelerometer and gyroscope at a constant rate
of 50 Hz. Besides, the experiments have been video-recorded to label the data
manually. The dataset was randomly partitioned into two sets, where 70% of the
volunteers were selected to generate the training data and 30% for the test data.

5.2.2 Preprocessing and Data Visualization

We concatenate all the signal data from the Inertial Signals folder, which has nine
files, as our training features. However, the combined features are such a large
matrix with a size of 7352×1152 to which we applied principal component analysis
(PCA) to reduce the dimension from 1152 to 100. We utilize exploratory data
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Fig. 8 HAR dataset: instances per activity

analysis (EDA) to analyze the dataset. We notice that the dataset is balanced, as
indicated in Fig. 8 that shows the number of data instances per activity.

Furthermore, there are two categorical activities: static (sitting, standing, laying)
and dynamic (walking, walking upstairs, walking downstairs) activities, respec-
tively. The body acceleration features in the y-axis are significant in stationary
activity while not substantial in moving action, as shown in Fig. 9.

5.2.3 Methodology and Results

An HMM is trained for classifying each human activity using corresponding
training data. For the testing stage, the log-likelihood of given testing sensor data
is calculated by the respective six trained HMMs, and the class label is assigned
according to the maximum likelihood. Our training and predicting process can be
observed in Fig. 10.
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Furthermore, our proposed model outperforms other HMMs, with the best
configuration being K = 2 states and M = 2 mixture components associated with
each state shown in Table 3. For the sake of time saving, we decrease the number of
draws from the asymmetric Gaussian distribution during the M step from 4000 to
1000. The convergence of BAGMM-HMM is faster than the GMM-HMM model.
The results obtained with the BAGMM-HMM are indubitably better than those with
the HMMs, especially the highest accuracy of 84.64% for BAGMM-HMM.



54 Z. Xian et al.

trained HMM
WALKING DOWNSTAIRS

trained HMM
SITTING

trained HMM
STANDING

trained HMM
LAYING

trained HMM
WALKING UPSTAIRS

trained HMM
WALKING

raw data feature extraction
PCA

max score

unlabelled data

class label

Fig. 10 HMM for activity recognition according to the case of study

Table 3 Activity recognition results using different HMM models

HMM models

Metrics BAGMM-HMM AGMM-HMM BGMM-HMM GMM-HMM

Accuracy 84.62% 77.27% 76.92% 75.00%

Precision 92.31% 69.32% 70.94% 69.44%

Recall 84.62% 77.27% 76.92% 75.00%

Specificity 97.20% 95.24% 24.57% 95.00%

F1-score 83.44% 71.21% 71.64% 68.88%

G-mean 1 88.38% 73.19% 73.87% 72.16%

G-mean 2 90.69% 85.79% 85.45% 84.40%

MCC 83.93% 69.98% 70.16% 68.02%

6 Conclusion

In this chapter, we presented a new extension for the traditional HMM by modifying
its emission probability distribution as bounded asymmetric Gaussian mixture. The
main goal was to enhance HMM’s capability of modeling non-symmetric data with
bounded support without performing major modifications on its underlying conven-
tional structure. It is examined from all real-life applications that we have performed
that the proposed model outperforms all the comparable Gaussian mixture-based
HMMs, including the AGMM-HMM, BGMM-HMM, and the traditional Gaussian
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mixture-based HMM. The particular motivation in adopting bounded asymmetric
Gaussian mixtures as the emission probability distribution is encouraged by their
sound mathematical foundation and excellent capabilities to approximate and model
diverse shapes of real-world data. We have proved that our proposed approach is
very efficient for occupancy estimation in the context of smart buildings and for
activities recognition. Nonetheless, there are still various future works that have
been raised to extend this research. Future research could be devoted, for instance,
to adding feature selection to improve the modeling of high-dimensional time series
datasets or to integrate other probability density functions.
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Using HMM to Model Neural Dynamics
and Decode Useful Signals for
Neuroprosthetic Control

Stefano Diomedi, Francesco Edoardo Vaccari, Kostas Hadjidimitrakis,
and Patrizia Fattori

1 Introduction

Neurophysiological recordings consist in driving micro-electrodes in the brain
to directly record action potentials (also known as ‘spikes’) from the neurons.
This technique is known to have both an extremely good spatial (10–2 mm) and
temporal (10–3 s) resolution at the cost of high invasiveness [1]. Nevertheless, it has
contributed enormously to acquire new knowledge on brain function. Historically,
starting from Cajal’s work at the end of the nineteenth century, the predominant
‘neuron doctrine’ posited that single neurons were the functional units of the ner-
vous system [2–4], so studying their activity was crucial to test the neuroscientific
hypotheses. ¬This approach allowed to gain important insights about the function
of sensory areas, especially in the vision domain, since neurons in these areas act
as filters applied to the incoming stimuli. However, it fails to account for the more
complex associative and motor cortices for which, in the years, discrepancies started
to emerge [5–7]. In recent years, the focus of neuroscientific research shifted from
single cells to the ensembles of neurons [8] that are currently seen as the basic
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units of brain computations [9]. Thus, it became evident that studying what the
single neurons encode might not be the best approach to fully understand the brain
functions.

This new population approach was made possible, thanks to technological
advances allowing to record simultaneously the activity of large numbers of
neurons (in the order of the hundreds or even thousands) while the experimental
animals perform complex tasks. The availability of large datasets has prompted the
application of novel analytical methods that consider the neural population as a
whole (e.g. dimensionality reduction techniques: [10, 11]). These new methods have
become especially common in the study of associative and motor areas [12–14].

In the population approach, it is assumed that a neural population recorded
within an area, due to the local connectivity, undergoes through a series of ‘neural
states’ that are not observable directly from single cell discharges, but that can be
inferred indirectly from the population activity. Under this assumption, the spiking
activity of a neural ensemble can be modelled as a stochastic process defined by
precise dynamics, termed Hidden Markov Model (HMM). Since the pioneering
work by Abeles et al. [15] in motor cortex, HMMs have been widely used to
unravel the population dynamics that go beyond the single cell spikes. In brief,
the results about the detected neural states can be interpreted following two main
strands: for functional research purposes and for decoding relevant information for
neuroprosthetic applications. In the first strand, Mazurek et al. [16, 17] investigated
the mirror and non-mirror neurons of motor and premotor cortex and reported
that the population activity of the former led that of the latter during movement
generation. Interestingly, another application of HMM revealed that the activity
of the primary motor cortex can be segmented into two distinct neural states that
correspond in time with the acceleration/deceleration phases of the arm movements
[18].

Other authors exploited the HMM to decode information from neural population
activity in order to recognize patterns of activation characteristic of relevant
behavioural events. Indeed, it has been possible to efficiently detect transition from
a baseline activity to the planning epoch following a target presentation with a few
hundred milliseconds delay [19]. The specific target can be decoded directly from
the HMM obtaining discrete spatial positions [19] or running a continuous decoder
to move a cursor and, in parallel, an HMM to ‘click’ on a specific letter allowing a
faster communication [20].

More details about several past HMM applications in neurophysiology are
provided in Sect. 5.2.

2 General Principles OF HMM

Generally speaking, an HMM is a machine learning approach used for modelling
time series data [21]. It can be used to detect various patterns present within a
time series. These patterns are called ‘hidden states’ because they are not directly
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observable but can be indirectly detected from the time series. At the core of this
model there is the interaction between a Markov chain that determines the sequence
of the hidden states and a single (or multiple) observable time series called emission
sequences. In a Markov process the future state of the system stochastically depends
only on the present state and not on the past. In the case of the discrete HMMs,
the emission sequences are composed by ‘symbols’, each of which is emitted by
a hidden state with a specific emission probability. These probability distributions
can be non-parametric [18, 22] or governed by any parametric distribution. In this
regard, typically the Poisson distribution is used in neuroscience [19, 23], but also
Gaussian [20]. In the case of continuous HMMs, the observations are continuous
(typically drawn by a Gaussian distribution). Theoretical work proved that when an
appropriate discretization method is applied, discrete and continuous HMMs reach
similar performances [24]. However, since spikes are discrete by definition, discrete
HMMs are commonly used in neuroscience and here we will focus on this type
of HMM application. Moreover, for simplicity, we will treat the case of a single
emission variable HMM and show how it can be adapted for multiple emission
variables. The key concepts are still valid for multiple variables HMMs.

An HMM is generally defined by the following elements:

1. The number M of observable symbols in the time series (or emission sequences).
These sequences are used to train and validate the model.

2. The number N of the hidden states in the model.
3. The transition matrix (N × N) of the Markov chain that represents the probability

to switch from one hidden state to another and so it shapes the topology of the
model.

4. The emission matrix (N × M) that contains the probability for each of the N
states to emit each of the M symbols.

5. The initial probability vector that indicates the probability to trigger the Markov
chain starting from each hidden state.

In summary, every HMM is defined by the transition matrix, emission matrix and
the initial probability vector. To estimate these model parameters, the expectation–
maximization (EM) algorithm is commonly used. This is an iterative method in
which each iteration consists of two sequential steps: the ‘expectation’ (E) step,
where the expected log-likelihood function is computed and the ‘maximization’ (M)
step in which parameters are adjusted to maximize the log-likelihood. A special
case of the EM called Baum–Welch algorithm is usually applied to estimate the
HMM parameters that use a forward–backward process for the expectation step
(see below). However, since Baum–Welch algorithm is conditioned by the random
initialization of the model parameters, convergence to the global log-likelihood
maximum is not guaranteed. Thus, it is usual to train several models starting from
different initial parameters and to select the one with the highest log-likelihood
(but other strategies, such as pruning have been proposed; see below). During
the testing phase, given an experimental observation, the ‘Forward–Backward’
algorithm allows to estimate at each time point t the hidden states probability
combining information going forward from time 0 to time t (forward density) and
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also going from the end of the emission sequence back to time t (backward density).
The product between forward and backward densities at time t represents the hidden
state probability.

3 Neural Implementation of HMMs

In the previous section, we introduced the general principles behind the Hidden
Markov Model. In this section, we will provide concepts and instructions to apply
this model to neural activity data recorded from single electrodes or arrays.

Briefly, an electrophysiological dataset consists of the firing activity measured as
spike times (time stamps) of each neuron in the population during the task, usually
recorded for several trials. It also contains the timing of the task events such as
sensory stimuli and/or behavioural responses (e.g. visual/acoustic stimuli, eye/arm
movements) that allows to correlate neural activity to the observed behaviour.

In order to model the spikes with HMM, raw data must be converted into
emission sequences. If neurons are not simultaneously recorded, their time stamps
are aligned at one or multiple events by selecting a fixed temporal window. Then the
vector of spike time stamps is binned and converted to the vector of spike counts
(i.e. the number of spikes observed in each bin). The choice of the bin width is
crucial in order to achieve a good balance between noise/computational load on
one hand (narrower bins cause more noisy emission sequences and more data)
and temporal resolution needed to appropriately investigate the neural dynamics
on the other. For the application proposed here, the binned spike counts (a vector
for each unit) were summed up into a unique emission sequence that represented
the population activity. For this purpose, we assigned to each emission sequence
bin a symbol indicating the neuron that discharged during this time interval (for
example, ‘1’ if the first neuron discharged, ‘2’ if the second discharged and so on),
whereas to the bins during which no spike was observed ‘0’ was assigned. When
more than one cell discharged in the same bin, one symbol was randomly selected
[25]. For offline applications, especially when the amount of data is limited (in terms
of trial repetitions), the training data can be increased by permuting the trials (for
example, [cell1trial1 cell2trial1], but also [cell1trial1 cell2trial2] . . . ) and repeating
several times the random selection of one neuron from the pool that discharged in
the same bin [22]. After these processes, a set of emission sequences that represent
the population activity is created.

Before estimating the HMM parameters, the topology of the Markov process
must be explicitly defined during the initialization. In particular, two elements
have to be considered: the total number of hidden states in the model and which
transitions will be allowed and which ones will not.

The number of the states (the so-called order estimation problem) can be chosen
arbitrarily or it can be the result of a data driven approach. In this regard, many
methods have been proposed. We will briefly present a few of them and then we will
provide details about how we tackled this problem in our HMM neural application.
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The apparently simplest way to select a model would be to choose a topology
type (see below) and build several HMM with an increasing number of states, then to
select the model with the highest likelihood (or log-likelihood). Unfortunately, this
is not possible, since a more complex model is likely to fit better the data (overfitting
the data) rather than a simpler one, thus penalty terms to the likelihood can be
introduced to account for the increasing complexity of the model. This is the case
of Bayesian Information Criterion (BIC; [26]) and Akaike Information Criterion
(AIC; [27]), often used to model selection in the context of HMMs. However, the
estimate of an HMM complexity itself (required to compute the penalty term) is
not straightforward as for other models (such as linear models, where the number
of beta coefficients directly indicate model complexity) and it can be a problem per
sè because it dependents on the mere number of states and the number of symbols
(or the number of the probability distribution parameters in the case of continuous
HMMs), but it also strongly influenced by the topology of the Markov process.
Indeed, many estimates of HMM complexity have been adopted, some considering
the number of emission matrix elements [28], others the non-zero elements of the
transition matrix [29] or both the emission and the transition matrices [24, 30].

In order to obviate the issue of defining the complexity of an HMM, other
more complex metrics for model selection, such as Shannon’s entropy [31], mixture
minimum description length [30], inverse condition number (ICN) of the transition
matrix and analysis of HMM residuals [25] have been proposed. Alternatively,
different approaches to the problem are possible. We will present in detail the
‘consistency analysis’ on shuffled data that we performed for our application as
well as a couple of ‘pruning’ techniques.

The ‘consistency analysis’ involves training several HMMs with an increasing
number of states (and a fixed topology) and validating the models on a set of ‘test’
emission sequences in order to get the corresponding state probability sequences.
Then, it is possible to define as ‘consistent’ the sequences in which the probability
of each state exceeds an established threshold (e.g. 0.6, [17]). Accordingly, in a
sequence consistent with a 2-state-HMM both two states should have the maximum
probability above the threshold and so on for an increasing number of states. In
general, when the number of sequences that are consistent with a model increases,
the model accounts better for the data. Note that test emission sequences can be
shuffled (see below) to avoid overfitting [22]. Similarly, the number of the states
in the model can be selected using the log-likelihood on the shuffled emission
sequences. Also in this case, a set of HMMs with an increasing state number is
trained and then the log-likelihood (i.e. the probability to observe an emission
sequence given an HMM) is averaged across the test sequences. The number of
states of the HMM with the highest log-likelihood is selected for the subsequent
steps. Note that, in this case, the likelihood computed on shuffled data can be seen
as a ‘cross-validated’ likelihood, which is known to be not prone to overfitting when
model complexity increases and thus to not require penalty terms (see, for example,
[32]).

The topology of an HMM can assume a wide variety of designs, giving the
possibility to model many different processes [33]. A ‘stationary’ process can be
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modelled with an ergodic HMM, where all the states are fully connected (i.e. every
state transition is possible). When the processes to be modelled have a clear linear
or chronological structure, other HMM topologies, such as the simple linear model
where each state is only connected with itself (self-transition) and the next state,
can be used. To improve the flexibility of a linear HMM, for example, new state
transitions can be allowed to skip specific states in the sequence.

The topology can be defined when initializing the transition matrix by manually
setting to zero the probabilities that correspond to the forbidden state transitions.
Thus, during the training phase the model will never detect these transitions (ini-
tialized as ‘impossible’) and will estimate only the non-zero transition probabilities
(initialized as ‘possible’). In this way, it is possible, for example, to allow a state
sequence that flows from state 1 to state 4, but not vice versa, or allow a transition
from state 1 to both 2 and 3. In HMM applications to neural data, often the topology
depends on the behavioural task and on the area of the brain used to collect the
neural data. Note that the number of states and the topology of the Markov process
are defined mainly by the initialization of the transition matrix (sizes, zero and non-
zero elements, etc.), thus they are not independent from one another.

As an alternative to manually setting a topology and then estimating the optimal
number of states in the model, ‘pruning’ procedures can be used for choosing the
best structure for an HMM application (simultaneously determining the number of
states and the topology) with a semi-automated approach. In a few words, a complex
HMM is initially trained with the maximum number of states to be tested and the
topology as general as possible. Then, the least probable state [30] is removed (either
from the transition matrix, the emission matrix and the initial state probability
vector). The remaining parameters of the pruned model are used to initialize again
the training. The procedure is iteratively repeated until some stopping criterion is
met (based, for example, on BIC or AIC, see above). Instead of removing the least
probable state, during each pruning step it is possible to set to 0 the transition
matrix elements that do not cross a threshold [34]. During the subsequent step,
the threshold is increased to remove another state and the iterative procedure stops
when some criteria is met. The procedures of pruning are not common but allow an
automatic choice of the best model structure less biased by human intervention and
less sensitive to the random initialization of the parameters [34].

Once the number of states and the topology of the HMM have been chosen,
a key step is the initialization of the emission and transition matrices with non-
zero elements, since during the training phase the algorithm can converge to local
minima. These initial values can be assigned arbitrarily or with a pseudo-random
procedure (see next section).

To proceed with model fitting, it is common in the machine learning field to split
the dataset (the emission sequences) into two subsets, one for training and one for
validation (k-fold or leave-k-out cross-validation). The initialized HMM parameters
are fit during the training phase. After that, the validation dataset is used to assess
the goodness-of-fit and to obtain the state probability sequences. Results can be then
averaged across cross-validations.
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The detected states can be further analysed to extract information about the
brain area of interest such as the specific sequence of active states as well as the
timing of state onsets and offsets. In addition, these neural states (depending on the
experimental task) can carry important temporal/spatial information that can thus
be indirectly decoded from the neural data. In the following section, we will present
a real HMM application to provide an example of both possibilities (functional
research and decoding of neural data).

4 HMMs of Parietal Cortex Activity During an Arm
Movement Task

In our HMM application the dataset consisted of neural discharges recorded from
three different posterior parietal cortical areas, namely V6A, PEc and PE [35–37].
A detailed description about the general and experimental methods can be found
in previous reports [38–40]. Data were collected from a monkey trained to perform
an instructed delay arm reaching task towards visual targets located in nine spatial
positions (three directions × three depths), placed at eye level (Fig. 1a, b). The
animal sat on a primate chair in complete darkness and pressed a home button (HB)
to begin the trial. Randomly, one of the 9 LEDs lit up green and monkey had to fix
its gaze on it. After a variable waiting time, when the LED changed colour to red
(‘Go’ signal), the animal was required to perform an arm reaching movement and
hold the position until the LED turned off. Then, the animal returned the hand and
pressed the home button (Fig. 1c).

Cells that were recorded for ten correct trials for each target position were taken
into account for the analyses, without any further preselection. Our dataset included
three different populations of neurons recorded from three distinct parietal cortex
areas in the same monkey (V6A:105; PEc: 83; PE: 88 neurons).

For our neural application of HMM, we converted each trial spike train into an
emission sequence as described above and repeated this procedure 100 times for

Fig. 1 Experimental Design. (a) Experimental setup. Reaching movements were performed
toward one of nine LEDs (orange). HB: Home Button. (b) Top view of the reaching targets. (c)
Task sequence, from left to right: trial start (HB press, START), fixation onset and delay phase
(DELAY), movement (MOVE), touch and holding of the target for a variable time (HOLD), led
switch-off and return of arm to the HB to restart the trial (RETURN)
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each trial, thus obtaining 100 emission seq./trial. Since the task had a temporal
evolution with well-defined, sequential phases (initial phase, target onset, fixation
phase, go signal, movement and hold phase), we assumed that the dynamics of the
neural activity related to the task would follow a linear progress as well. We thus
built a linear HMM where only transitions from one state to the next or to the state
itself were allowed. Accordingly, the diagonal elements of transition matrix (i.e.
the probability to remain in a state) were initialized with pseudo-random values
in the range [0.99,0.999] and elements above the diagonal (i.e. the probability to
proceed to the next state) were set equal to: (1 − ai,i)/(1 − N) where ai,i are the
diagonal elements of the transition matrix and N is the total number of the states.
The elements under the diagonal were set to zero to prevent the Markov process
from moving backwards i.e. (from state 2 back to state 1). We then normalized the
matrix rows to obtain a total probability equal to 1. The elements of the emission
matrix were initialized as equal to 1/M (where M is the number of ‘symbols’ in the
alphabet, i.e. the number of neurons). Because the Baum–Welch maximization is
sensitive to the initial values used, during the training phase, we ran the algorithm
ten times for every target position starting each time with different initial parameters
as detailed above. More details can be found in [22].

To avoid overfitting, the models were cross-validated in two different ways. For
the preliminary consistency analysis (i.e. to choose the optimal number of states),
we trained the models on emission sequences generated from all the available trials
and we decoded sequences generated in the same way, but with an additional step
of bin shuffling (i.e. the tth-bin of the jth-sequence was randomly substituted by
the tth-bin of the ith-sequence). This atypical cross-validation allowed to test the
models on data not completely new, but not identical to the training dataset, with a
great computational advance. For all the subsequent analyses, we used a leave-one-
out cross-validation (models trained on nine trials and validated on the one left out)
and all the subsequent results here reported are referred to the validation dataset,
never seen by the models.

We trained the HMMs on data spanning from 1000 ms before and 1000 ms after
movement onset (one for each target position, nine models in total). We validated
them on the held-out data to study the population neural activity of areas V6A, PEc
and PE during the arm movements. The state probability sequences obtained by
these models were further analysed to get insights on the function and relationship
of the three parietal areas (see below).

As already mentioned, the HMM can be used to decode task related information
(i.e. task epoch, reaching target position) from the neural activity with a few
additional steps. In our case, in order to decode both the target position and the
task phase, we combined the pretrained HMMs in a boosted HMM with a larger
number of possible states (also known as ‘compound’ HMM; [33]). Specifically, we
merged the nine (one for each target position) 3-state HMMs already trained. Then,
we added the state that corresponded to the task epoch before target presentation
called ‘FREE’ by averaging its parameters across nine different 2-state HMMs (one
for each target position) trained on data that spanned from 500 ms before till 500 ms
after target presentation. The topology of the resulting 28-state (9 × 3 + 1) boosted
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Fig. 2 Schematic representation of the 28-state boosted HMM topology used for the decoding.
Arrows indicate which transitions are allowed (probability >0). The first state is averaged across
the nine targets (‘mean FREE’), while the others are specific for one of the nine targets. For spatial
reasons, black dots represent the missing states

HMM is shown in Fig. 2: the first possible state is the ‘mean FREE’ from which the
Markov process can go towards one of the nine possible DELAY states, depending
on the target position. Transitions from a state related with a target to a state related
with another target (for example, from DELAY1 to MOVE2) were not allowed
(Fig. 2).

We based our boosted model on the prior knowledge about the high spatial tuning
during reaching movements of the neural activity in the parietal areas we were
analysing [38, 39, 41–43]. If it had not been the case, we would have probably
tested that the states to put in ‘parallel’ in the model were different from one
another (enabling the target decoding). A viable option would have been to use a
2-way ANOVA on the estimated emission matrices and evaluate the significance
of the interaction states*neurons to check whether different states corresponded to
different neural modulations [44].

For the decoding, we merged emission sequences generated in the last 500 ms
before the target presentation with emission sequences generated in an interval that
spanned from 1000 ms before till 1000 ms after the movement onset signal. We
then fed the boosted HMM with fragments of the resulting emission sequences
obtained with a 200-ms sliding window (10-ms step). We took the neural state
with the highest probability averaged across each segment as the output of HMM
classifier: the selected states carried information both about the target (for example,
DELAY1 vs DELAY2; nine possible targets and FREE, i.e. no target) and the epoch
(for example, DELAY1 vs MOVE1; four possible epoch: FREE, DELAY, MOVE
and HOLD).

As a measure of the classification performance, we computed the accuracy (also
known as ‘recognition rate’, i.e. the number of correct classifications over the total
of classifications). The chance level was calculated shuffling 1000 times the vectors
of true class labels for epoch and target separately.
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4.1 Functional Characterization of the Parietal Cortex Areas

The application of HMM to the neural data succeeded in identifying hidden neural
states in all the three parietal areas of interest (V6A, PEc and PE), while the monkey
performed arm reaching movements [22]. A growing number of states (from 2 up
to 7) were tested for the consistency analysis and 3 resulted in optimal number to
efficiently model the neural population discharges (three states were detected in
100% of the emission sequences for both V6A and PEc, and in the 85.7% of the
sequences for PE). When we trained the model to identify more than three states,
the number of consistent sequences was greatly reduced. Furthermore, in agreement
with the consistency analysis, the models with two and three states had the highest
log-likelihoods in all areas and the goodness-of-fit dramatically collapsed as the
number of states was increased. Thus, in the next paragraphs we will present the
results obtained training 3-state HMMs.

Figure 3a shows the average state probability sequence inferred by the 3-state
models previously trained and validated separately for each spatial position reached
by the monkey. For the three areas (left, middle and right panels) the probabilities
and timing of the individual neural states are quite similar.

The first state (dark blue lines) was always present with high probability at the
beginning of the trial and fell shortly before the onset of movement. A second neural
state appeared (blue lines) at movement onset and lasted until movement end. The
third and last state (light blue lines) increased in probability around the end of the
movement and remained stable until the end of the time window analysed.

Just from this first inspection, the neural states seemed to be coincident with the
main phases of the task, that is waiting for the ‘go’ signal, moving the arm towards
the target and holding the reached target. Thus, these neural states were likely to
represent the neural correlates of the animal behaviour and, for simplicity, we will
refer to them as DELAY, MOVE and HOLD.

R2 was computed to measure the similarity between state sequence across
the three areas. We calculated the mean state probability sequence across the
nine targets for each area, then we reshaped the resulting [3 × 1000] ([n◦ of
states × n◦ of bins]) matrices with state probability to get probability vectors.
Pairwise comparisons between these vectors showed high R2 values, especially
when comparing V6A and PEc (R2 = 0.97666, p-value <0.05). PE state sequence
resulted slightly different from PEc and V6A at a first glance, but the R2 values
were still high (V6A vs PE R2 = 0.95864, p-value <0.05; PEc vs PE R2 = 0.95762
p-value <0.05).

To check the consistency of these results and to extract functional information
about the area of interest, we further studied state onset and offset timing.

Given the decoded state probability of an emission sequence, we checked when
a state was active or not placing a threshold of 0.7: when the state probability rose
above the threshold, we considered the state active (onset) and vice versa when
the probability fell under the threshold, the neural state was no more observable
(offset). Figure 3b shows the onset and offset timing distributions separately for
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Fig. 3 Neural states in parietal areas and their transitions. (a) Average hidden state probability
for 3-state HMMs. Coloured lines represent the time course of the probability of each state.
Symbols on x-axis represent the main behavioural events averaged across trials and positions; black
horizontal bars represent temporal variability. Horizontal dashed line: threshold set to identify
the transitions between states (0.7). (b) Timing of state rises (i.e. a hidden state probability
exceeded the threshold) and fall (i.e. the state probability dropped below the threshold). Y-axis:
frequency expressed as percentage of emission sequences. X-axis: time was binned in 40 ms. Other
conventions as in (a)

each area. Obviously, neural states involved in the same transitions had overlapping
onset/offset timing distribution (for example, DELAY offset and MOVE onset
greatly overlapped because they were involved in the first neural state transition).

The DELAY state ended at −54 ± 160 (mean ± SD), −75 ± 119 and
−106 ± 232 ms, in V6A, PEc and PE, respectively, with respect to movement onset,
whereas the MOVE state rose in V6A, PEc and PE at −14 ± 153, −40 ± 118 and
−51 ± 223 ms and fell 415 ± 113, 379 ± 84 and 371 ± 167 ms with respect
to the same event. Subsequently, the state HOLD rose at 457 ± 113, 409 ± 85
and 419 ± 166 ms, respectively, for V6A, PEc and PE. The distributions of
the transition timing were compared performing a series of Wilcoxon test. From
pairwise comparisons, all the distributions resulted significantly different (p < 0.05),
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even if timing differences were as low as 11 ms, likely due to high number of
samples in the distributions (only MOVE state fell timing resulted equal in PEc
and PE, p > 0.05; timing difference = 8 ms).

The Gini index was computed on the emission matrices to understand how single
units participated in the generation of the neural hidden states (similar to [23]; see
Sect. 5.2). Gini index ranges between 0 and 1. Values close to 1 indicate that neural
states activate only a few units, whereas values close to 0 indicate that the entire
population is active to generate the neural states. As reference values, we computed
Gini on three sets of synthetic emission matrices simulating three different types
of neural populations (10,000 simulations for each set). The first set of emission
matrices simulated a population with 1/3 (33%) of the cells active during each state
(median Gini index = 0.33), the second set a population with 2/3 of the cells (66%;
median Gini index = 0.55) and the last set a population entirely involved in each
state (100%; median Gini index 0.77). From our experimental data, we obtained a
median Gini index equal to 0.53 (V6A 0.49; PEc 0.54; PE 0.55), similar to the values
obtained from the second set of synthetic emission matrices (66% of the population
involved in each state). Thus, we could conclude that the majority of the parietal
neurons we recorded were active during multiple hidden states.

4.2 Decoding of Task Epoch and Target Position

We built a boosted-HMM algorithm merging HMMs trained separately (see above
and Fig. 2 for a schematic representation of the model). The state sequence
decoded by this boosted model allowed us to reliably predict the target position
and the behavioural epoch using neural data binned in short time windows. Indeed,
for epoch decoding, the accuracy was 83%, 88% and 68% (V6A, PEc and PE,
respectively; chance level: 28%); for target decoding, the accuracy was 88%, 74%
and 40% (V6A, PEc and PE, respectively, chance level: 11%). Figure 4 shows the
confusion matrices, a standard visualization method for classification results, in
which each element c(i,j) represents the probability to have an observation known
to be in class i and predicted to be in class j. Thus, the off-diagonal elements are
misclassifications. As it could be expected, errors occurred most frequently between
targets close one to another and misclassifications decreased with the increase
of the distance (R = −0.64; p = 5 × 10–10). Regarding task phase decoding,
misclassifications involved most frequently assigning one of the previous states with
respect to the correct one rather than assigning one of the following states (i.e., for
example, MOVE state, in case of error, was more likely classified as DELAY instead
of HOLD).
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Fig. 4 Confusion matrices describing the errors made by boosted Hidden Markov Model in the
recognition of target position (left) and task epochs (right). Results are expressed as percentage of
the total count of observations
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4.3 HMM: Parietal Cortex Functions and Information
Decoding

We showed how HMM can be applied to infer functional properties of individual
cortical areas and as a classifier to decode relevant information from neural activity.
HMM allowed to automatically segment the population discharges in distinct
patterns with a data driven approach. In this regard, the consistency analysis
proposed here allows to find the optimal state number, contributing to a further
reduction of the bias due to subjective data interpretation with respect to when the
number of states is arbitrarily chosen. For example, in a recent HMM application
[22], prompted by consistency analysis, we found a set of additional hidden states
(reaction time, initial and final movement phases and early part of the hold phase)
with respect to the three main states shown in Fig. 3.

Regarding the functional properties of the three parietal areas, the state transition
timing showed a temporal gradient in the detection of the onset of the movement
state. This transition occurred first in the most anterior area, i.e. PE, whereas
it occurred later moving towards the most posterior, PEc and then V6A. This
phenomenon is in line with the view of the parietal cortex as a body state estimator
[45], receiving an efferent copy of the motor plans produced in the motor cortex of
the frontal lobe and comparing the predicted posture with information coming from
the visual system (located more posteriorly than the areas we analysed here, in the
occipital lobe) and the proprioceptive one (located in the brain regions more anterior
than those studied here). The connectivity of the parietal region [35] can explain
the temporal gradient that characterized the differential timing of the MOVE state
activation.

We also showed the versatility of Hidden Markov Model in decoding relevant
information from neural activity, in our case target location and task phase. With a
unique algorithm, we were able to decode both these task features.

simultaneously and with high accuracy, especially inV6A and PEc. This is
particularly interesting in the field of BMIs, where such a neural decoder can be
easily implemented to reliably trigger the movement of a prosthetic artificial arm
and to eventually reinforce the target estimation.

In conclusion, the flexibility of this model makes it adaptable to address
many neuroscientific issues such as decision making [25], action execution and
observation [16, 17], space navigation [23]. Moreover, we showed that this machine
learning tool is well suited to functionally characterize a neuron ensemble as well as
to decode any information of interest contained in the population activity. For more
information on other HMM applications in neurophysiology, see the next section.
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5 Related Works

5.1 HMM Applications to Model Neurophysiological Data

In this section, we will present a few works that used HMM to model neurophys-
iological data, highlighting the key points of these applications, the most relevant
differences with the application we proposed and their main findings. First, we
will propose a selection of studies that have exploited HMMs to investigate mainly
functional aspects of neural activity. Then, we will report works that used HMMs to
decode the activity of neurons from a BMI perspective.

Abeles et al. [15] were among the first to apply HMMs in neuroscience to
examine whether the cortical activity went through a sequence of distinct neural
states in order to produce a particular behaviour, which in their case was moving
the arm to reach or withholding the movement. Two types of models, one with a
finer and another with a coarser time resolution were used and both detected the
same sequence of hidden states, showing a ‘global’ nature of the detected cognitive
states. To evaluate the possibility to predict the behaviour of the animals. Given
four different HMMs (each one trained on a different condition of the task) and an
unknown spike train, the highest likelihood was used to assess which model could
generate the new spike train with a highest probability and thus which behaviour was
‘encoded’ in the neural activity, reaching an overall accuracy of 90%. In addition,
to further investigate the neural hidden states, the authors computed the cross-
correlation between pairs of neurons in different states and found that the correlation
between single neurons varied considerably across the different states.

Similarly, Bollimunta et al. [25] applied HMM on the activity of lateral intra-
parietal (LIP) neurons during a random-dot motion direction discrimination task
and found that every choice that the animals made about the direction of motion was
associated with a specific sequence of hidden states. Furthermore, in some cases, a
state sequence could contain states associated with two different choice alternatives
indicating changes of mind between two possible future choices.

In another paper, Mazurek et al. [17] used HMM to study populations of mirror
and non-mirror neurons. Note that mirror neurons are known to respond during the
execution of a motor act, but also during the observation of the same act [46]. They
found that, during the observation of an action, mirror neurons encode the same
sequence of hidden states (initial, reaction time, movement, final) that they showed
during the execution of the same action. Coherently, a generalization analysis
proved that HMMs trained on execution trials were able to decode the correct state
sequence in observation trials for mirror, but not for non-mirror neurons. In a further
study, Mazurek and Schieber [16] compared the transition timing between mirror
neurons and non-mirror neurons and they unexpectedly found that mirror neurons
anticipated state activation and transition with respect to non-mirror cells.

HMMs have been well suited also to model the activity of hippocampal neurons,
known to be sensitive to the spatial position during environment navigation [23].
The authors demonstrated that each hidden state was tightly coupled with a
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specific position in space. To investigate the topology of the Markov process, the
authors computed the Gini coefficient, a sparsity measure, on the transition matrix
concluding that each hidden states were connected only to a few other states. The
same measure, computed on the emission matrix, revealed that each detected neural
state involved the activation of most parietal neurons in a cooperative way [22].

Kadmon Harpaz et al. [18] published a paper applying HMM to primary motor
cortex recordings. They found that the neural activity could be segmented during
arm movements in distinct patterns related to acceleration and deceleration phases.
As training algorithm, they adapted the standard forward–backward algorithm
to handle multiple emission variables and they incorporated the algorithm in a
simulated annealing regime, a probabilistic technique which aim is to approximate
the global maximum of a target function, in order to reduce the sensitivity to model
initialization.

Among the studies that tried to infer the animal behaviour decoding the neural
activity, surely one of the most relevant was published by Kemere et al. [19]. The
authors modelled the neural activity recorded in the premotor cortex with a multiple
emission variable HMM (continuous HMM). They demonstrated the possibility
to decode from neural states the different phases of a centre-out reaching task
(baseline, preparation, execution) and the direction of the arm movement before
movement onset (98% performance). An interesting aspect of the HMM approach
used by Kemere and colleagues was the ‘supervised’ initialization of the model. The
initial emission matrix values were assigned equal to the mean firing rate of each
neuron in the corresponding task phases. Moreover, the authors explored the trade-
off between the latency and the jitter (i.e. the trial-by-trial variability of the latency)
of the prediction. Ideally, the latency should be as lower as possible to reduce the
delay of the BMI activation and the jitter that can be seen as an indicator of decoding
reliability (the lowest, the best), also should be low. The authors showed that both
the latency and the jitter varied as a function of the probability threshold applied
to decode the hidden states with higher thresholds leading to higher latencies, but
lower jitter.

Another important work that leverages HMM for decoding neural activity is that
by Kao et al. [20]. The main idea behind this study was to test if the discrete
states inferred by HMM could be coupled with the continuous prediction of a
different algorithm (an optimized Kalman filter) to enhance the performance of a
BMI. This was the case, achieving a performance increase ≈5–10% with respect
to the state-of-the-art methods in closed-loop experiments. Regarding this HMM
implementation, we will report three peculiar features. First, two Markov topologies
(with a different number of states) have been used, mainly to account for slight
behavioural differences among animals. Second, the complexity of the recorded
neural data was first reduced applying a dimensionality reduction technique (PCA)
and only the first principal components were retained and used to feed the HMM
algorithm. Finally, HMM training was conducted in a totally supervised manner.
The emission matrix was built assigning the mean activity values obtained from
a training dataset, whereas the transition matrix was learnt by calculating the
proportion of transitions between potential states in the training dataset.
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In this section we presented a few examples of different applications of HMM
to neurophysiological data, trying to highlight the more relevant technical key
points that may interest the reader. In the following section, on the other hand, we
will discuss advantages and disadvantages of some mathematical tools or machine
learning methods that could be used to treat time series instead of HMM.

5.2 Other Approaches to Model Neurophysiological Data

Many other mathematical tools have been exploited to unravel interesting aspects of
the neural activity. It is getting more and more common to investigate the activity
of a neurons population in the form of ‘neural trajectories’. Basically, the idea is to
project the recorded activity of single cells onto a set of a few axes (or different
variables), reducing the dimensionality and so the complexity of the raw data.
For this purpose, many techniques have been used including Principal Component
Analysis (PCA, [47–49]) and a multitude of its derivatives, such as jPCA [10] and
dPCA [50]; Locally Linear Embedding [51–54]; Gaussian-Process Factor Analysis
(GPFA, [55]) and Linear Dynamical Systems (LDSs, [56, 57]).

In general, the greatest difference between these models and HMM is that they
all provide a low-dimensional representation of the neural activity with continuous
latent variables (or ‘states’), whereas Markov segments the spiking data into a few
discrete neural states. Thus, ‘whereas a HMM would indicate when the switches
occur [ . . . ], a dynamical model with continuous-valued states would allow one
to study the details of how the switching is carried out—in particular, along
what path and how quickly’ [55]. The choice is between a model (HMM) that
assumes stationarity in the neural activity within discrete states and the other
models/techniques that assume stationarity of the dynamics along the task (i.e. once
the axes/latent variables have been chosen, they are fix for the entire recording).
To leverage the advantages of both model types (discrete HMM and continuous
LDS), Switching Linear Dynamical Models (SLDSs) have been proposed, based
on continuous dynamics hierarchically dependent from a discrete Markov process
[58–61].

The decoding of behavioural states directly from cortical activity is a key point
in the development of efficient BMIs and other algorithms, besides HMM, have
been successfully applied. The Naïve Bayesian Classifier (NB) assured remarkably
high performances, despite its simplicity [62–64]. Since this classifier does not
incorporate any temporal dependency between the samples, this algorithm is not
commonly used to model time series. Recently, interest in neural networks has
exploded. To handle time series, Long-Short Term Memory networks (LSTM) are
a class of recurrent neural networks (RNNs) extremely interesting. LSTMs were
developed to deal with the vanishing gradient problem that can be encountered
when training traditional recurrent and a feature that is particularly relevant is their
capability to deal with lags of unknown duration between important events in a
time series. The capacity to learn variable temporal dependencies in the data is a
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great advantage over HMM in which, by definition, each time bin depends only
on the previous one. A way to obviate to this problem is applying Hidden Semi-
Markov Models (HSMMs; [65]) that take into account the duration of the current
state making more likely the transition towards the next state after a variable amount
of time. HSMMs have rarely been applied in neuroscience with a few examples to
analyse fMRI [66, 67] and EEG [68], but never for electrophysiological data, to the
best of our knowledge. The great flexibility of LSTMs and the fact that they do not
require special assumptions goes at the expense of their complexity and the number
of parameters that need to be trained. Accordingly, it has been demonstrated that
HMMs outperform LSTMs when the amount of data available is scarce, whereas
LSTMs have higher performance when the amount of data increases [24]. Due to
the paucity of the neural data in usual electrophysiological studies, until now and the
lower computation load required during the training, HMMs have been applied more
frequently. Finally, strength of HMMs with respect to other methods such as NB and
LSTMs is that they are an unsupervised machine learning technique, whereas either
NB (but also other classifiers, such as Support Vector Machines) or neural networks
need labelled data to train.

6 Conclusions

To conclude, HMMs represent a broad class of models that can be used in different
contexts and processes. In this chapter, we showed how to model neural activity and
obtain relevant information about the dynamics of neuronal populations, but also
how the very same model can be easily adapted for decoding purposes. This multi-
purpose property is hard to find in other types of models, because those that are used
to unravel the dynamics are not suited for directly decoding neural activity and vice
versa.

In sum, we argued here that HMMs are a powerful tool to analyse time-series
data, but like any other statistical method their strengths and weaknesses must
be carefully considered to choose the more appropriate model for each individual
application.
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Fire Detection in Images with Discrete
Hidden Markov Models

Samr Ali, Md. Hafizur Rahman, and Nizar Bouguila

1 Introduction

For any machine learning model, its capacity depends on how well the features are
represented. In discriminative approaches, heavy feature engineering is required to
get a proper representation of the target object. Such models perform well when
test data follow the same distribution as training data with very low variance. This
implies that discriminative models suffer from sample selection bias, i.e., small
training data do not represent the whole population, whereas generative models
learn probability distribution of the training dataset and can tackle out of distribution
datapoints in testing environment.

Hidden Markov models (HMMs) which are models that belong to the generative
paradigm learn a sequence of hidden states given any sequential observations.
Joint probability distributions of observations and hidden states describe that each
observation depends only on the hidden state at a certain timestamp which can
be computed by the likelihood. The likelihood of observations can be discrete or
continuous depending on the nature of the target object. In image classification,
images are represented by a two-dimensional matrix of discrete pixel values and
multinomial distribution can be used to compute the likelihood function.
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This is an interesting venue of research. For instance, the work [1] utilizes
multinomial hidden Markov model to detect hostile behaviors by extracting dynamic
features from the observations. 1D HMM proposed by [2] uses rescaled features
after applying Haar wavelet transformation to surpass the performance of 2D
face image recognition system. A second-order HMM proposed by [3] uses 3D
state transition matrix for image segmentation. Extracting keypoints such as SIFT
from images is a common feature engineering technique in image classification.
The work [4] models images by extracting binary symbols corresponding to a
3×3 neighborhood of keypoints which is fed to HMM to learn the optimal state
sequences. On the other hand, in Natural Language Processing (NLP), Qiao et al.
[5] propose a diversified HMM where transitions follow multinomial distribution
and Dirichlet process prior is placed on it to capture diversity of state sequences.

In comparison to the discussed, there is a research gap in modelling dynamic
texture with HMM. Dynamic texture is produced from a moving object which is
a sequence of images such as fire, sea-waves, smoke, etc. [6–11]. Each image or
frame is considered as a timestamp and has certain stationary properties. Because
of the nature of such problem, it can be modelled by HMM which has the capability
to capture appearance information by encoding observed variables and dynamic
properties over time by learning hidden states [12]. The authors [13] proposed
an nth order HMM to describe the dynamic features by applying the Baum–
Welch algorithm. Extracted features are used to classify target object by applying
traditional maximum likelihood (ML) criterion.

Forest fire detection is a challenging task given the dynamic texture, shape,
and color of fires depending on geographical and environmental factors. With the
advancement of image processing techniques, many researchers have proposed
different machine learning and deep learning-based solutions to detect fires effi-
ciently and effectively. The authors [14] proposed an ensemble learning technique
to improve the detection rate by applying three deep learning models and a decision
strategy. Based on spatial features of fire and non-fire images, the authors [15]
proposed a method using faster R-CNN model to detect suspected regions of fire.
Gathered features are sequentially modelled by an LSTM architecture to decide
whether there is fire or no fire in a certain timestamp. The authors [16] proposed
a CNN architecture with an efficient technique to compute convolutional filters
in Fourier domain for faster detection of wildfire on edge devices. To reduce
large variations of dynamic features in fire images, the authors [17] utilize fully
convolutional networks (FCNs) [18] to develop an encoder–decoder architecture for
efficient segmentation of fire images.

In contrast to deep learning models, traditional fire detection models rely on
hand-crafted features such as color, texture, and motion. The authors [19] proposed
an early fire detection system by adopting an RGB (red, green, blue) model which
makes decision based on intensity and saturation of R component. Brightness
information and color information are decoupled by transforming RGB color into a
mathematical space. Three decision rules are then used to extract fire pixel from
an image and fed to a surveillance system. Due to high volume of data from
live feed of surveillance cameras, it is necessary to filter irrelevant information
without losing relevant ones. To reduce the number of false positives, the authors
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[20] proposed BowFire, a classification model to detect fire in still images. Simple
Linear Iterative Clustering (SLIC) is applied to generate super pixel of respective
images. The model then uses color and texture features from super pixel regions
for detection of fire. The authors [21] proposed a real-time fire detection approach
based on HMMs. Moving pixels are first extracted by subtracting the intensity
values of subsequent frames and passed through rule-based decision function to
check whether they satisfy fire color conditions. Since fire pixels are dynamic in
nature as the illumination continuously changes from frame to frame, a clustering
technique is applied to determine the fire pixels, which is then used by HMM. A
hybrid fire detection technique proposed by [22] uses similar approach to get the set
of candidate fire regions. A luminance map is created from sequential observations
which is used in combination with HMM as final decision function. Although deep
learning-based models have superior performance to traditional approaches, more
sophisticated techniques such as knowledge distillation, pruning, quantization, etc.
are required to reduce model size for efficient deployment in a surveillance system.

Traditional hidden Markov models consider either high-level features or multi-
dimensional transition matrix or complex priors to achieve better performance. For
fire detection, HMM is applied to videos which requires moving object detection
and dimensionality reduction techniques. There is a research gap in application of
HMM to detect fire in still images. In this chapter, we present a simplified training
and testing framework to develop an HMM-based classification model. We consider
simple 1D representation of raw images by flattening their 2D representation and
show that it achieves better performance in detecting fires from images in terms of
four different evaluation metrics with faster inference time.

In summary, our contributions are the following:

• We present a technique for the deployment of HMMs in images. We utilize
multinomial HMMs to match the underlying properties of the data. These are
incarnated in the discrete values of the pixel data.

• We propose an end-to-end computer vision-enabled framework for the detection
of fire in small scale image datasets. The system has a superior performance to
neural network methods. We do not compare to deep learning methods due to its
requirement of large scale of data as well as undue complexity.

• We demonstrate real-time capabilities of the framework.

The remainder of this chapter is organized as follows: Sect. 2 presents the
proposed framework, Sect. 3 discusses the results and the experimental setup, and
finally, Sect. 4 concludes the chapter.

2 Proposed System

We utilize a hybrid maximum a posteriori (MAP) setup for the HMM parameters
and a pure Baum–Welch approach for the multinomial emission distribution. In
other words, we set priors on the transition matrix Bi,j , i ∈ [1, . . . , K], j ∈
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Fig. 1 A typical hidden Markov chain structure representation of a time series where z_1 denotes
the first hidden state z1 and X_1 denotes the corresponding observed state X1. This is shown
accordingly for a time series of length T

[1, . . . , K], and initial probabilities πi, i ∈ [1, . . . , K]. This is for K states s at
any given time t ∈ [1, . . . , T ]. Both are drawn from a Dirichlet distributionD such
that

P(π) = D(π |φπ) = D(π1, . . . , πK |φπ
1 , . . . , φπ

K) (1)

P(B) =
K∏

i=1

D(bi1, . . . , biK |φB
i1, . . . , φ

B
iK) (2)

to satisfy their requirements of probability values that add up to a unit sum (Fig. 1).
B is then defined by P(st+1 = j |st = i). The discrete observation set

�it (m) = P(Xt = ξm|st = i) for an observation Xt . This is defined for
(i, t, m) ∈ [1,K]x[1, T ]x[1,M] and ξ = [xi1, xi2, . . . , ξM ], where M is the
number of components. Hence, an HMM λ = {B,�, π}.

In [23], Rabiner first introduces the three classical problems of HMMs: eval-
uation or likelihood, estimation or decoding, and training or learning. These are
described as follows:

1. The evaluation problem is mainly concerned with computing the probability that
a particular sequential or time series datum was generated by the HMM model,
given both the observation sequence and the model. Mathematically, the primary
objective is computing the probability P(X|λ) of the observation sequence X =
X1, X2, . . . , XT with length T given an HMM model λ.

2. The decoding problem finds the optimum state sequence path I = i1, i2, . . . , iT
for an observation sequence X. This is mathematically s∗ = argmaxsP(s|X, λ).

3. The learning problem refers to building an HMM model through finding or
“learning” the right parameters to describe a particular set of observations.
Formally, this is performed with maximizing the probability P(X|λ) of the
set of observation sequences X given the set of parameters determined λ.
Mathematically, this is λ∗ = argmaxλP (X|λ).

In the following discussion, we present the respective solutions for the HMM
problems that we are concerned with in this chapter, assuming discrete emission
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observations. These are the evaluation and the learning problems. We also briefly
recall the two conditional independence assumptions that allow for the tractability
of the HMM algorithms [24]:

1. Given the (t − 1)st hidden variable, the t th hidden variable is independent of all
other previous variables such that

P(st |st−1, Xt−1, . . . , s1, X1) = P(st |st−1) (3)

2. Given the t th hidden variable, the t th observation is independent of other
variables such that

P(Xt |sT ,XT , sT −1, XT −1, . . . , st+1, Xt+1, st , st−1, Xt−1, . . . , s1, X1) = P(Xt |st )
(4)

2.1 Forward Algorithm

The forward algorithm (Fig. 2) calculates the probability of being in state si at time t

after the corresponding partial observation sequence given the HMM model λ. This
defines the forward variable ρt (i) = P(X1, X2, . . . , Xt , it = si |λ) which is solved
recursively as follows:

1. Initiate the forward probabilities with the joint probability of state si and the
initial observation X1: ρ1(i) = πi�i(X1), 1 � i � K .

Fig. 2 Graphical
representation of the
evaluation of the ρ variable of
the forward algorithm in an
HMM lattice fragment
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2. Calculate how state qi′ is reached at time t + 1 from the K possible states si ,
i = 1, 2, . . . , K at time t and sum the product over all the K possible states:

ρt+1(j) =
[∑K

i=1 ρt (i)bij

]
�j(Xt+1) for t = 1, 2, . . . , T − 1, 1 � j � K .

3. Finally, compute P(X|λ) = ∑K
i=1 ρT (i).

The forward algorithm has a computational complexity of K2T which is consider-
ably less than a naive direct calculation approach.

2.2 Baum–Welch Algorithm

Figure 3 depicts the computation process of the backward algorithm in an HMM
lattice structure. Together with the forward algorithm, this forms the forward–
backward algorithm through consequent iteration. In the context of HMMs, the
forward–backward algorithm is of extreme importance and is also known as the
Baum–Welch algorithm [23]. The Baum–Welch algorithm is traditionally used to
solve the estimation problem of HMMs. This iterative algorithm requires an initial
random clustering of the data, is guaranteed to converge to more compact clusters
at every step, and stops when the log-likelihood ratios no longer show significant
changes [25].

Similar to the forward algorithm, but now computing the tail probability of the
partial observation from t + 1 to the end, given that we are starting at state si
at time t and model λ, is the backward algorithm. This has the variable θt (i) =
P(Xt+1, Xt+2, . . . , XT , it = si |λ) and is solved as follows:

1. Compute an arbitrary initialization θT (i) = 1, 1 � i � K .
2. θt (i) = ∑K

i′=1 bii′�i′(Xt+1) for t = T − 1, T − 2, . . . , 1, 1 � i � K .

Fig. 3 Graphical
representation of the
evaluation of the θ variable of
the backward algorithm in an
HMM lattice fragment
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In order to apply the Baum Welch–algorithm, we must define

ϕt (i, i
′) = P(it = si, it+1 = s′

i |X, λ) = ρt (i)bii′�i′(Xt+1)θt+1(i
′)

p(X|λ)
(5)

where ϕt (i, i
′) is the probability of path being in state si at time t and then

transitioning at time t + 1 with bii′ to state s′
i , given λ and X. ρt (i) then considers

the first observations ending at state si at time t , θt+1(i
′) the rest of the observation

sequence, and bii′�i′(Xt+1) the transition to state si′ with observation Xt+1 at time
t + 1. Hence, γt (i) may also be expressed as

γt (i) =
K∑

i′=1

ϕt (i, i
′) (6)

whereby
∑T −1

t=1 ϕt (i, i
′) is the expected number of transitions made from si to si′

and
∑T −1

t=1 γt (i) is the expected number of transitions made from si .
The general re-estimation formulas for the HMM parameters π , B, and � are

then

1. π̄i = γ1(i), 1 � i � K

2. b̄ii′ = ∑T −1
t=1 ϕt (i, i

′)/
∑T −1

t=1 γt (i)

3. �̄i′(k) = ∑T
t=1

Xt=k

γt (i
′)/

∑T
t=1 γt (i

′)

2.3 HMM Framework

The proposed setup then constitutes of training a one-class multinomial HMM
classifier for the detection, i.e., two classifiers in total. In the remainder of the
chapter, we refer to these as fire detected and fire not detected. A depiction of the
proposed framework may be observed in Fig. 4.

Fig. 4 The proposed framework. The dotted arrows refer to the actions that are carried out. Text
above the dotted arrows refers to the training processes, while text below it refers to ones in
the testing stage. Sequentialization represents the procedure of converting an input image into a
sequential signal for the multinomial HMM to be trained on
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We proceed by first extracting the red channel from the image. This follows
the logic that fire would have a higher red saturation than other images or the
second class in this case. This computer vision technique while simple is quite
effective as we observe from the results of proposed model in the next section. The
process may also be generalized to a variety of dynamic textures that exist in nature
corresponding to their intrinsic properties. For instance, green saturation would
be expected to be higher in leaves, trees, grass, or vegetation in nature. Another
example is the higher saturation of the blue color for the detection of sea, rivers, or
water in general.

Nonetheless, this procedure is not sufficient to handle the detection problem
by itself. This is due to the complexity of the problem at hand, i.e., identification
of dynamic textures from images. As discussed, dynamic textures are defined as
textures that vary across time. Such sequential data has characteristics that present
it as an attractive problem to solve with HMMs [26, 27].

Moreover, other classes may still have high red color saturation. We can observe
in Sect. 3.1 that the negative class contains high red saturated images which do not
belong to the fire class. One such obvious example is a tree in the fall with reddish
leaves. As such, a purely color-based approach is not sufficient without another
supplement for a successful algorithm. In this chapter, we choose a machine learning
approach, i.e., the multinomial HMMs.

We refer to the serialization process to produce a sequence as sequentialization.
This transfers an image into a sequence for the training as well as the testing of the
proposed model. The process constitutes of collating the pixels from left to right
and from top to bottom. This also emulates the way that humans perceive the pixel
values if presented to them in a tabular form as in the figure.

In order to deploy our model, we also investigate the optimum number of
states to employ for the classifiers. The approach that we carry out for this model
selection problem is by exploring the search space of the states to reach the optimum
performance in terms of the evaluation metrics. The latter are discussed in the
following section.

Once the classifiers are trained, we compute the forward probabilities for each
new testing image. This determines the likelihood that this image was generated by
an HMM. The final label is then assigned to the maximum resultant likelihood.

As this chapter addresses an application-based novelty, we delve into further
details in the following section (Sect. 3). Nonetheless, it is noteworthy to mention
that whereas multinomial HMMs and their learning algorithms are established, the
deployment of HMMs in the image domain is scarce at best. As such, this chapter
addresses a dire need to fill this gap and to further research this topic.
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3 Experimental Results

In this section, we present our results. In particular, Sect. 3.1 discusses the dataset
that we evaluate our proposed system on. Section 3.2 briefly introduces the
evaluation metrics employed. Finally, Sect. 3.3 presents the results.

3.1 Dataset

We evaluate our proposed framework using the forest fire detection dataset.1 The
dataset consists of 1900 3-channel (250–250) training and testing images split
equally across the classes, 950 images each. That is we have a balanced dataset
and the split for the training and testing is 80% to 20%, respectively. Samples of
the dataset may be observed in Figs. 5 and 6 for the fire and the no fire classes,
respectively.

However, the images are quite challenging due to its wide variability across the
different properties such as the lighting, the background, the visual elements, etc. It
is also imperative to mention that utilizing HMMs is motivated for this application
by the availability of only relatively small datasets. This is also highlighted by our
chosen dataset.

3.2 Evaluation Metrics

We evaluate the performance of the proposed model with the accuracy, precision,
recall, and F1-score measures. We also utilize the prior for comparison to neural
networks. The accuracy may be defined as the ability of the model to correctly
distinguish true positives (T P ) and true negatives (T N ) out of the complete data;
that is

Accuracy = T P + T N

T P + T N + FP + FN
(7)

where FP and FN represent the false positives and negatives, respectively.
Positive predictive value (PPV) or the precision denotes the percentage of

correctly identified positives in the predicted positives by

Precision = T P

T P + FP
(8)

1 https://data.mendeley.com/datasets/gjmr63rz2r/1.

https://data.mendeley.com/datasets/gjmr63rz2r/1
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Fig. 5 Dataset samples of the fire class
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Fig. 6 Dataset samples of the no fire class
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True positive rate (TPR) or the recall measures the percentage of correctly identified
positives in all positives. It is then mathematically denoted by

Recall = T P

T P + FN
(9)

Finally, the harmonic average of the precision and the recall or the F1-score is
defined by

F1-score = 2 ∗ Precision ∗ Recall

P recision + Recall
(10)

To demonstrate the real-time capabilities of the system, we record the time that is
required in testing the performance of the framework across each frame. This is
reported for each model deployed with a different number of states.

3.3 Result Discussions

3.3.1 Performance Evaluation

We have evaluated our HMM with different structure configurations. In particular,
we report the performance for K = 4, K = 5, and K = 6. We carried out three
runs for each of the models whose confusion matrices we recorded. These may be
observed in Figs. 7, 8, and 9 for the 4-state HMM, Figs. 10, 11, and 12 for the 5-state
HMM, and finally, Figs. 13, 14, and 15 for the 6-state HMM. The average time to
carry out the testing of a sequence or an image is recorded in Table 1. The proposed
model displays real-time capabilities that are desirable in sensitive applications such
as the one at hand.

It may also be observed that the higher the complexity of the model, the larger
the amount of time required for its execution. A good compromise then would be
the five-state-based multinomial HMM. Nonetheless, further analysis is required to
address the other performance metrics.
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Fig. 7 Confusion matrix of the results for 4-state multinomial HMM—Run 1

Fig. 8 Confusion matrix of the results for 4-state multinomial HMM—Run 2
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Fig. 9 Confusion matrix of the results for 4-state multinomial HMM—Run 3

Fig. 10 Confusion matrix of the results for 5-state multinomial HMM—Run 1
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Fig. 11 Confusion matrix of the results for 5-state multinomial HMM—Run 2 (optimum)

Fig. 12 Confusion matrix of the results for 5-state multinomial HMM—Run 3
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Fig. 13 Confusion matrix of the results for 6-state multinomial HMM—Run 1

Fig. 14 Confusion matrix of the results for 6-state multinomial HMM—Run 2
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Fig. 15 Confusion matrix of the results for 6-state multinomial HMM—Run 3

Table 1 Time performance
of the proposed framework
across 3 runs. The maximum
value is highlighted in bold

Time (s)

Number of States (K) 4 5 6

0.02 0.02 0.03

Table 2 Accuracy
fluctuation of the methods
across 3 runs. The maximum
value is highlighted in bold

Accuracy (%)

Number of States (K) 4 5 6

Run 1 69.74 76.05 73.95

Run 2 70.00 76.32 75.26

Run 3 69.21 68.42 73.95

Average 69.65 73.60 74.39

The fluctuation in accuracy, precision, recall, and F1-score may be observed in
Tables 2, 3, 4, and 5, respectively.

The accuracy of the models is at a maximum in the second run of the five-state-
based multinomial HMM. On the other hand, the highest average belongs to the
six-state-based one. Nonetheless, we need to consider other metrics, especially the
F1-score measure as it is a mean of the remaining two other measures: precision and
recall.

In terms of precision, the average shows that the higher the number of states of a
model, the better it performs. Indeed, the maximum precision which is highlighted
in bold belongs to the 6-state-based multinomial HMM in its first run. This agrees
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Table 3 Precision
fluctuation of the methods
across 3 runs. The maximum
value is highlighted in bold

Precision (%)

Number of States (K) 4 5 6

Run 1 64.48 78.61 83.70
Run 2 64.29 73.15 78.92

Run 3 63.37 62.87 72.20

Average 64.05 71.54 78.27

Table 4 Recall fluctuation of
the methods across 3 runs.
The maximum value is
highlighted in bold

Recall (%)

Number of States (K) 4 5 6

Run 1 87.89 71.58 59.47

Run 2 90.00 83.16 68.95

Run 3 91.05 90.00 77.89

Average 89.65 81.58 68.77

Table 5 F1-score fluctuation
of the methods across 3 runs.
The maximum value is
highlighted in bold

F1-score (%)

Number of States (K) 4 5 6

Run 1 74.39 74.93 69.54

Run 2 75.00 77.83 73.60

Run 3 74.73 74.03 74.94

Average 74.71 75.60 72.69

with the intuition that the more complex a model, the better the performance.
However, this is not the general case as in conclusion after discussing all the four
metrics used to measure.

The recall fluctuates with the lower number of states reporting better values.
Indeed, the highest value across the runs is depicted by the third run for the 4-state-
based HMM. The average values across the runs also depict the overall pattern of
performance.

In terms of F1-score, the highest across all runs is 5-state-based HMM with an
overall pattern on improvement in performance from 4 to 5 states. This is generally
followed by a plateau or drop by the 6 states. The average shows this pattern more
clearly. Finally, we choose the HMM structure with the optimum performance, i.e.,
the five-state-based one of the second run.

3.3.2 Comparative Analysis

We also compare our proposed multinomial HMM with a neural network. The
architecture is made up of 2 hidden layers each with a Rectified Linear Unit (ReLU)
activation layer. We did not choose a deeper model to avoid overfitting. Moreover,
we choose not to deploy a deep learning model on the evaluation dataset given its
relatively small size.
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Table 6 Performance of a
neural network across 3 runs

Run 1 2 3 Average

Accuracy 54.47% 55.00% 53.68% 54.38%

Precision 87.00% 88.00% 85.00% 86.67%

Recall 10.53% 11.58% 8.94% 10.35%

F1-score 18.78% 20.47% 16.19% 18.48%

The learning rate we utilized was 0.001 with a stochastic gradient descent
optimizer. This was applied for 10 training steps. Moreover, we employed a batch
size of 256. The performance results of the comparative models may be observed in
Table 6.

4 Conclusion

In conclusion, this chapter investigated a setup that allows us to successfully deploy
HMMs on images. In particular, we develop a system for fire detection, a dynamic
texture recognition problem. We applied model selection as well as ran multiple runs
for testing. We have superior results of 76% accuracy and 78% F1-score (K = 5).
This is in comparison to the neural networks which we trained on the same data.
It has a testing best accuracy of 50% and an F1-score of 20.47% (run three times).
We did not choose a deep learning model given the limited available data which
is actually one of the challenges of fire detection in images (visible spectrum) and
the availability of a benchmark dataset for it. Our proposed model also may be
considered a real-time one, given that the testing time for each image is around
0.02 s. Future works may include the fusion of multispectral image data as well as
relevant feature engineering.
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Hidden Markov Models: Discrete Feature
Selection in Activity Recognition

Samr Ali and Nizar Bouguila

1 Introduction

Smart cities are now closer to reality than ever [1]. Several efforts are carried out
across the areas of urban planning [2], energy [3], and buildings [4] among others
to achieve this futuristic vision. It is then prevalent that we investigate the various
applications of this paradigm. In particular, we focus on indoor activity recognition
using Internet of Things (IoT) sensors.

While IoT technology is becoming more prevalent, they may be utilized for
various applications [5–7]. Activity recognition is one such interesting application
that addresses the classification of the current activity that is carried out by
occupants of a particular environment space. Formally, this is a complex task given
the various challenges that are inherent to its definition.

In particular, activities may be interleaved (beginning another activity as you
complete another), concurrent (carrying out more than one activity at the same
time), and open to various interpretations (subjective in nature and dependent on
context) [8]. Furthermore, multiple residents further complicate the problem [9].
Another significant aspect to be considered in successfully studying this application
is the nature of the sensors to be considered as the data to be modelled. For instance,
these may be ambient, wearable, object, or mobile sensors [10].
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Each of these come with their own set of challenges and their appropriateness
depends upon the application as well as the contextual environment. Intuitively,
they may be used to complement each other. For thoroughness, we also mention
that activity recognition may be carried out with other means of data such as the
well-established vision-based methodologies [11, 12]. However, this falls outside
the scope of this chapter and also suffers from a privacy constraint.

While such a topic is increasingly investigated, a benchmark for its evaluation
is necessary and has been identified as the OPPORTUNITY dataset such as in
[13]. Indeed, the focus of the aforementioned paper is to present the performance
of various machine learning methods on this dataset. Specifically, the k-nearest
neighbour (KNN), nearest centroid classifier, linear discriminant analysis, and
quadratic discriminant analysis are compared whereby the KNN outperforms the
other models.

Nonetheless, in this chapter, we investigate the performance of the hidden
Markov models (HMMs) in solving this problem. HMMs are state-space generative
models that are capable of capturing intricate underlying patterns in sequential data
[14–23]. Sequential data refers to collected data where order is important. When
this order is time-based, this data is now referred to as time series data. This is the
case for sensor-collected data across time.

Furthermore, given the generative nature of the model, it is less prone to
overfitting as it learns the underlying pattern of the representative data rather than
the separating decision lines between different classes. The latter is the behaviour of
discriminative models. It is noteworthy to mention that by learning this conditional
probability, the performance of the latter is usually higher than the generative
models that learn the joint probability. Nonetheless, in a study of activity recognition
with mobile data, the performance of HMMs was found to be comparable with
support vector machines and multilayer perceptron [24]. In addition, it is imperative
that the model does not overfit in activity recognition given the aforementioned
challenges.

Utilization of HMMs for activity recognition is prevalent in the literature [25].
For instance, [8] shows how HMMs may be utilized for this problem as well as
several other machine learning approaches. On the other hand, [26] utilized a two-
layered HMM to capture the variability of the activities by using the first layer to
model groups of activities of the dataset followed by the individual activity at the
lower level. It was found that such a configuration is superior in its performance
in comparison to other models (traditional HMM, naive Bayes, and conditional
random field (CRF)). HMMs also outperform CRFs in classification of activities
in [27].

We also investigate both filter- and wrapper-based feature selection techniques
for discrete sequential data for HMM-based modelling. Filter-based feature selec-
tion methods refer to techniques that are carried out as a step in the preprocessing
of the data [28]. On the other hand, wrapper-based feature selection algorithms rely
on the exploration of the entire feature combination subspace [29–35]. The aim is
to reach the subset with the largest amount of information discarding any redundant
or unnecessary features.
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The rest of this chapter is organized as follows: Sect. 2 explores the HMM and the
feature selection approaches employed in our investigation. Next, Sect. 3 presents
the experimental setup and analyses the results. Finally, we draw the concluding
remarks in Sect. 4.

2 Hidden Markov Models and Feature Selection

In this section, we describe the model as well as feature selection methods that
we utilize for our investigations. Section 2.1 presents the HMM and its parameters
with a focus on discrete data. Next, Sect. 2.2 identifies the filter- and wrapper-based
techniques that we employ for feature selection.

2.1 Hidden Markov Models

A HMM is formed by double stochastic processes such as one is hidden and the
other is observed. In particular, K represents the hidden states that characterize the
model with a probability πi to start in a state i. These states form a Markov chain
and traversing between a state and another or even itself is defined according to
B = [bii′ = P(st+1 = i′|st = i)], a transition matrix defining the probabilities
between the current state st and the next one st+1.

As we focus on discrete HMMs for our investigations, we define a correspond-
ingly discrete observation set �it (m) = P(Xt = ξm|st = i) for an observation Xt .
This is defined for (i, t, m) ∈ [1,K]x[1, T ]x[1,M] and ξ = [xi1, xi2, . . . , ξM ].
This may be observed in Fig. 1. However, it is noteworthy to mention that a HMM
can just as easily be defined in the continuous case by varying the definition of the
observable process to match the distribution at hand, conventionally defined by a
Gaussian distribution or mixture model.

Fig. 1 Graphical
representation of the
multinomial hidden Markov
model
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2.2 Feature Selection Methods

The feature selection process that we incorporate for our investigations in this
chapter is a preprocessing stage. That is, it is a separate entity from the model and
carried out on the features before the training step. In this chapter, we address two
types of such methods: filter-based in Sect. 2.2.1 and wrapper-based in Sect. 2.2.2.

2.2.1 Filter-Based Techniques

Filter-based techniques are founded on information criteria and other statistical
measures for independence and correlation. They aim to ‘filter’ out redundant or
unnecessary data/features. Famous ones include the Pearson’s correlation [36] for
numerical labels (regression) and linear discriminant analysis [37] for categorical
labels (classification). Both of these are for numerical or continuous features. While
there are several for continuous data, we focus on ones suitable for discrete data
given our problem scope. In particular, we investigate the following methods:

1. Chi2: It is a measure of independence that makes two inherent assumptions: (1)
features are independent and (2) all expected frequencies are higher than 1 with
no more than 20% of all cells less than 5 [38]. These conditions are satisfied
by our data as the sensor data are collected independently of each other (though
inherent relationships may exist but this is as close to satisfying this assumption
as we can get). Moreover, the expected frequencies conditions are met. This
measure is defined by the Chi2:

χ2 =
∑ o2

j l − e2
j l

ej l

(1)

where ojl is the observation value at j and l with j as the index for the rows/data
instances in a total of J and l as the index for the columns/features in a total of
L. ejl represents the expected frequency.

2. Mutual Information: It is a measure of mutual dependence between the features
[39]. It is defined on the range [0,+∞). It is 0 when the features are truly
independent. It is based on the entropy measure H(X):

H(X) = −
∑

a∈A

P (X = a) log P(X = a) (2)

where a is a feature/discrete level/sensor reading in the set of all features A.
Hence, the mutual information I (.) may now be defined by:

I (X, Y ) = H(X) − H(X|Y ) (3)

where Y represents the labels.
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3. Cramer’s V: It is based on the Chi2 but is able to provide an idea of the degree
of association between the features [40]. It may be viewed as a transformation of
the χ2 as follows:

V =
√

χ2/n

min(J, L) − 1
(4)

where n = ∑
j,l njl represents the sample size. Its range is (0, 1] whereby 1

shows the strongest association and is a symmetrical measure.

Other metrics for discrete data are also available such as Kendall’s Tau or
Spearman’s correlations [41]; however, these are only suitable for ordinal data. The
latter refers to data where order is needed. Given the characteristics of the data that
we use for activity recognition in Sect. 3.2, these are not applicable.

2.2.2 Wrapper-Based Techniques

Two famous methodologies in wrapper feature selection are forward stepwise and
backward stepwise feature selection. In the prior, we begin by the smallest subset
of features, i.e., 1 and train the model on each of these subsets. Next, we evaluate
the model and increase the subset by 1 in every iteration choosing to move forward
with the highest performing subset.

Backward stepwise feature selection is also referred to as backward elimination
and is the technique of interest in this chapter in terms of wrapper methods. While
both of the wrapper techniques discussed here are computationally expensive, the
backward elimination is chosen given the results that will be discussed shortly in
the following section. The approach begins by training the model on feature subsets
of a number lower than the complete set by 1.

Next, the performance of the trained models is compared and the feature that
does not exist in the highest performing model is removed in the next stage. This
is consecutively repeated until the performance degrades in comparison to the
benchmark, i.e., the model trained on the full feature set. This results in a feature
subset that is on bar of or has a better performance than the benchmark.

3 Experimental Setup and Results

This section details the various aspects in relation to the experiments carried out for
our proposed framework. We first present the experimental setup of the proposed
investigation in Sect. 3.1. Next, the activity recognition datasets that are utilized are
discussed in Sect. 3.2. The evaluation metrics applied for the performance of the
model and its improvement are examined in Sect. 3.3. Finally, the analysis of the
results is carried out in Sect. 3.4.



108 S. Ali and N. Bouguila

3.1 Experimental Setup

The experimental setup that we employ in our investigations in this chapter is based
on training a model on the data of each activity, i.e., class, independently. The
testing of a new observation/collected reading of sensors is based on finding the
log likelihood by applying the forward algorithm for each of the models. The final
label is assigned according to the maximum resultant value.

This is an automation-friendly setup as it easily allows the addition of new activ-
ities by simply incorporating the additional trained models within the framework.
Moreover, such flexibility in the model further facilitates an improved online model
deployment. This also aids in the robustness of the model as each HMM is trained
on a single class allowing for a better modelling of the underlying distribution of the
data and elegantly handles the data imbalance.

Furthermore, usually data-driven models as well as knowledge-based ones that
utilize machine learning techniques under which HMMs fall suffer from scalability
problems [10]. This setup alleviates this constraint. Additionally, it presents flexi-
bility in the model to incorporate the variability in interpretation that characterizes
this paradigm. In particular, so long as common labelled data have a single trained
model on them, other definitions may be added as separate models. For instance,
if all previously labelled data were of eating sandwiches, then new data became
available for eating though of spaghetti then two different models may be trained on
them incorporating both variabilities. Depending on the application, these may be
potentially then pooled.

3.2 Data

In this chapter, we use the OPPORTUNITY Activity Recognition Dataset [42].
This dataset constitutes of various sensor-based (wearable, object, and ambient)
interleaved and hierarchical naturalistic activities of 4 subjects. It is considered as
the benchmark for various tasks such as activity recognition and automatic data
segmentation. In addition to its public availability that enables future researchers
access to compare to our investigations, it is indeed considered as the benchmarking
activity recognition dataset in [13]. We especially focus on two available subsets on
UCI Machine Learning Repository:1 Ordonez A and Ordonez B.

These are collected from two users in their own homes for a total of 35 days
of labelled real unsimulated data. Ordonez A is a 4-room house with 14 days of
labelled data. The labels/activities constitute of: Leaving, Toileting, Showering,
Sleeping, Breakfast, Lunch, Snack, Spare_Time/TV, and Grooming. In contrast, the
Ordonez B data is collected in a 5-room house setting with 21 labelled days of
the following activities: Leaving, Toileting, Showering, Sleeping, Breakfast, Lunch,

1 https://archive.ics.uci.edu/ml/datasets/opportunity+activity+recognition.

https://archive.ics.uci.edu/ml/datasets/opportunity+activity+recognition
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Fig. 2 The distribution and frequency of activities in Ordonez A dataset

Dinner, Snack, Spare_Time/TV, and Grooming. That is Ordonez B has the addition
Dinner activity. Moreover, we add the Idle label for both datasets in the times when
no activity is carried out.

The distribution of the data across the labels is not balanced; that is, we are
modelling an imbalanced dataset. This is shown in Figs. 2 and 3 for Ordonez A
and Ordonez B datasets, respectively. Our experimental setup allows us to tackle
this hindrance in an elegant manner. This is due to the nature of splitting the
labels for individual training of the model. Indeed, we no longer require an equal
balance of the data across the labels due to this. In addition, HMMs are generative
models, which learn the underlying representative distribution rather than a decision
boundary between the various classes as in the case of discriminative models. This
further solidifies the stability of the model in addition to its flexibility as discussed
in Sect. 3.1.

In terms of the features that make up the datasets, they are based on collected
data from binary sensors. The available data is in form of a log that we sample at
a 1-minute quantum (sampling rate). This results in a total of 20,456 data instances
for Ordonez A and 30,470 data instances for Ordonez B datasets.

The histograms for the distribution of the binary sensor values for the Ordonez
A dataset are shown in Figs. 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, and 15. On the
other hand, Figs. 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, and 27 show the sensor
value distributions for the Ordonez B dataset. There is a clear imbalance between
the recorded values of the binary sensors; that is, 10 of the sensors were turned off
most of the time in both of the datasets.
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Fig. 3 The distribution and frequency of activities in Ordonez B dataset

Fig. 4 Histogram of the values of the shower PIR sensor in bathroom in Ordonez A dataset
(encoded feature 0 in backward elimination feature subsets)
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Fig. 5 Histogram of the values of the basin PIR sensor in bathroom in Ordonez A dataset (encoded
feature 1 in backward elimination feature subsets)

Fig. 6 Histogram of the values of the cooktop PIR sensor in kitchen in Ordonez A dataset
(encoded feature 2 in backward elimination feature subsets)
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Fig. 7 Histogram of the values of the maindoor magnetic sensor in entrance in Ordonez A dataset
(encoded feature 3 in backward elimination feature subsets)

Fig. 8 Histogram of the values of the fridge magnetic sensor in kitchen in Ordonez A dataset
(encoded feature 4 in backward elimination feature subsets)
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Fig. 9 Histogram of the values of the cabinet magnetic sensor in bathroom in Ordonez A dataset
(encoded feature 5 in backward elimination feature subsets)

Fig. 10 Histogram of the values of the cupboard magnetic sensor in kitchen in Ordonez A dataset
(encoded feature 6 in backward elimination feature subsets)
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Fig. 11 Histogram of the values of the toilet flush sensor in bathroom in Ordonez A dataset
(encoded feature 7 in backward elimination feature subsets)

Fig. 12 Histogram of the values of the seat pressure sensor in living room in Ordonez A dataset
(encoded feature 8 in backward elimination feature subsets)
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Fig. 13 Histogram of the values of the bed pressure sensor in bedroom in Ordonez A dataset
(encoded feature 9 in backward elimination feature subsets)

Fig. 14 Histogram of the values of the microwave electric sensor in kitchen in Ordonez A dataset
(encoded feature 10 in backward elimination feature subsets)
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Fig. 15 Histogram of the values of the toaster electric sensor in kitchen in Ordonez A dataset
(encoded feature 11 in backward elimination feature subsets)

Fig. 16 Histogram of the values of the shower PIR sensor in bathroom in Ordonez B dataset
(encoded feature 0 in backward elimination feature subsets)
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Fig. 17 Histogram of the values of the basin PIR sensor in bathroom in Ordonez B dataset
(encoded feature 1 in backward elimination feature subsets)

Fig. 18 Histogram of the values of the door PIR sensor in kitchen in Ordonez B dataset (encoded
feature 2 in backward elimination feature subsets)
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Fig. 19 Histogram of the values of the maindoor magnetic sensor in entrance in Ordonez B dataset
(encoded feature 3 in backward elimination feature subsets).

Fig. 20 Histogram of the values of the fridge magnetic sensor in kitchen in Ordonez B dataset
(encoded feature 4 in backward elimination feature subsets)
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Fig. 21 Histogram of the values of the door PIR sensor in bedroom in Ordonez B dataset (encoded
feature 5 in backward elimination feature subsets)

Fig. 22 Histogram of the values of the cupboard magnetic sensor in kitchen in Ordonez B dataset
(encoded feature 6 in backward elimination feature subsets)
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Fig. 23 Histogram of the values of the toilet flush sensor in bathroom in Ordonez B dataset
(encoded feature 7 in backward elimination feature subsets)

Fig. 24 Histogram of the values of the seat pressure sensor in living room in Ordonez B dataset
(encoded feature 8 in backward elimination feature subsets)
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Fig. 25 Histogram of the values of the bed pressure sensor in bedroom in Ordonez B dataset
(encoded feature 9 in backward elimination feature subsets)

Fig. 26 Histogram of the values of the microwave electric sensor in kitchen in Ordonez B dataset
(encoded feature 10 in backward elimination feature subsets)
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Fig. 27 Histogram of the values of the door PIR sensor in living room in Ordonez B dataset
(encoded feature 11 in backward elimination feature subsets)

3.3 Evaluation Metrics

Accuracy may be defined as the measure that indicates the detection rate of the
model. Mathematically, that is:

Accuracy = TP + TN

TP + TN + FP + FN
(5)

where TP is the number of true positives, TN is the number of true negatives, and
FP and FN represent the number of false positives and negatives, respectively. On
the other hand, precision and recall allow us to measure the rate of true positives
detection and the rate of missed positives, correspondingly. These may be defined
by:

Precision = TP

TP + FP
(6)

Recall = TP

TP + FN
(7)
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The latter is particularly useful in imbalanced datasets. A balance of the two
measures in terms of their harmonic mean is the F-measure. This is computed by:

F-Measure = 2 ∗ Precision ∗ Recall

Precision + Recall
(8)

Together, these form the set of reported evaluation metrics that we report for our
investigations in the following subsection.

3.4 Results

In this section, we discuss and analyse our results. In particular, Sect. 3.4.1 presents
the results for the filter-based discrete methods, whereas Sect. 3.4.2 details the
results of the backward elimination technique. We also show the confusion matrix
of the model trained on the chosen feature subset at each stage in the latter. We
benchmark our feature selection investigations with the multinomial HMM trained
on the complete feature set.

We also vary the number of states (K) in order to allow for more flexibility in the
feature selection approaches and better model selection. While it is usually the case
that model selection for probabilistic models, such as HMMs, follow an information
criterion, this is not applicable in this chapter. Indeed, it was proven that in instances
where the physical meaning of the labels is not found to correspond to the states,
as is the case in our investigations, that the Akaike and the Bayesian information
criteria are no longer appropriate [43].

It is also noteworthy to mention that we vary the training and testing data splits
in order to investigate the best one for the training of the data and our investigations.
We have experimentally set it to 70% training data with the remainder used for
testing data. The resultant performance metrics are shown in Figs. 28 and 29 for the
Ordonez A and the Ordonez B datasets, respectively.

The confusion matrix showing the benchmark results is displayed in Figs. 30 and
31 for Ordonez A and Ordonez B datasets, respectively.

3.4.1 Filter-Based Methods

In the filter-based feature selection techniques, we are basically following a best
subset selection paradigm. Unfortunately, both the Chi2 and Cramer’s V methods
were found to be inapplicable. In the case of the Ordonez A dataset, there was no
sufficient data for a representative split after applying the Chi2 method and little
association was found with the Cramer’s V measure. This is logical because the
latter is based on the prior. For the Ordonez B dataset, considerable degrade was
observed after applying the Chi2 method even with 11 features and the Cramer’s V
measure’s results were also showing little association.
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Fig. 28 Performance metrics across increasing number of states for the multinomial HMM trained
on the complete feature set of Ordonez A dataset; K is ranging from 3 to 9

Fig. 29 Performance metrics across increasing number of states for the multinomial HMM trained
on the complete feature set of Ordonez A dataset; K is ranging from 3 to 9

On the other hand, the mutual information approach performed slightly better.
On the Ordonez A dataset, no significant improvement was found as shown in
Fig. 32 with 11 features, except of course for the reduced number of features.
Otherwise, it was found inapplicable on smaller subsets. This was similar for the
Ordonez B dataset though it ran for an even smaller subset of 10 features. The
confusion matrices for model trained with the resultant 11 and 10 features selected
are, respectively, illustrated in Figs. 33 and 34.

3.4.2 Backward Elimination

The binary nature of the data and its low number of features motivate the utilization
of the backward elimination in comparison to the forward stepwise feature selection
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Fig. 30 Confusion matrix of the optimum performing benchmarking model (K = 4) trained on
the complete feature set for Ordonez A dataset

technique. Additionally, the relatively poor performance of the filter-based methods
as discussed further enforces the choice of the algorithm. This is due to the inability
of the model to train properly on smaller feature subsets. In this section, we further
explore the capabilities of this wrapper technique on the utilized two datasets and
discuss our findings. It is noteworthy to mention that the performance metrics are
zeroed out for the combinations where the models fail to train.

At 11 features of the Ordonez A dataset, the first feature subset combination
to be generated in the process, we find out that the optimum performance is
depicted by the model trained with K = 3 on feature subset 4: [0 1 2 3 4 5 6
7 9 10 11]. This is shown for the accuracy, precision, recall, and F-measure in
Figs. 35, 36, 37, and 38, respectively. These are recorded as 60.00, 50.00, 60.00,
and 53.33%, correspondingly. The confusion matrix of this optimized model can be
seen in Fig. 39. Given this result, we use these features in the next round to create
combinations of smaller size (10 features).

However, these are lower than the performance of the benchmark model across
the board. This leads us to terminate the procedure for the Ordonez A dataset. It is
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Fig. 31 Confusion matrix of the optimum performing benchmarking model (K = 6) trained on
the complete feature set for Ordonez B dataset

noteworthy to mention that at this level, the model that was trained with optimum
set of features had a lower complexity of 1 less state than the benchmark.

On the other hand, graphs depicting the results over varying number of states for
11 features selected for the Ordonez B dataset are shown in Figs. 40, 41, 42, and
43 for the accuracy, precision, recall, and F-measure metrics, respectively. The best
configuration to move forward in this particular case would be feature subset 3 or
4 with a lower complexity of 3 states instead of the benchmark of K = 6 with the
performance metrics maintained at the same level. The confusion matrices for these
models are shown in Figs. 44 and 45.

From these results, we can conclude that the features encoded 8 (seat pressure
sensor in the living room) and 9 (bed pressure sensor in the bedroom) are
interchangeable. Upon inspection of their distribution across the two labels as shown
in Figs. 24 and 25, we decide to remove feature 8 in the next backward elimination
step. This results in an update in the encoding of the features as well to [f1, f2, f3,
f4, f5, f6, f7, f8, f10, f11, f12] where the count starts at 0.

In the next step of the backward elimination, we further optimize the model
not only by reducing the feature subset to 10 features but also find out a lower
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Fig. 32 Confusion matrix of the model trained on the mutual information selected set of 11
features for Ordonez A dataset

complexity model to have the optimum performance. In particular, the optimum
feature subset is 6: [0 1 2 3 4 6 7 8 9 10] as shown in Figs. 46, 47, 48, and 49 for the
accuracy, precision, recall, and F-measure metrics, respectively, with the confusion
matrix illustrated in Fig. 50. This leads us to drop the encoded feature 5. This results
in an update in the encoding of the features as well to [f1, f2, f3, f4, f5, f7, f8, f10,
f11, f12] where the count starts at 0.

For 9 feature subsets, Figs. 51, 52, 53, and 54 show the accuracy, precision, recall,
and F-measure metrics respectively with the confusion matrix illustrated in Fig. 55.
The precision now improves in this round of feature selection in comparison to
other higher numbered feature subsets and consequently the F-measure follows.
That comes at the expense of higher complexity of the model (1 more state larger
than the previous iteration). Nonetheless, this remains lower than the benchmark.
The highest performing subset excludes the encoded feature 4. In the next iteration,
we now encode features [f1, f2, f3, f4, f7, f8, f10, f11, f12] where the count starts
at 0.
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Fig. 33 Confusion matrix of the model trained on the mutual information selected set of 11
features for Ordonez B dataset
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Fig. 34 Confusion matrix of the model trained on the mutual information selected set of 10
features for Ordonez B dataset

Fig. 35 Accuracy of the backward elimination selected 11 features across trained HMMs with
various number of states for Ordonez A dataset
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Fig. 36 Precision of the backward elimination selected 11 features across trained HMMs with
various number of states for Ordonez A dataset

Fig. 37 Recall of the backward elimination selected 11 features across trained HMMs with various
number of states
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Fig. 38 F-measure of the backward elimination selected 11 features across trained HMMs with
various number of states for Ordonez A dataset

Fig. 39 Confusion matrix of the model trained with backward elimination selected set of 11
features (subset 4: [0 1 2 3 4 5 6 7 9 10 11]) for Ordonez A dataset (K = 3)
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Fig. 40 Accuracy of the backward elimination selected 11 features across trained HMMs with
various number of states for Ordonez B dataset

Fig. 41 Precision of the backward elimination selected 11 features across trained HMMs with
various number of states for Ordonez B dataset
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Fig. 42 Recall of the backward elimination selected 11 features across trained HMMs with various
number of states for Ordonez B dataset

Fig. 43 F-measure of the backward elimination selected 11 features across trained HMMs with
various number of states for Ordonez B dataset
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Fig. 44 Confusion matrix of the model trained with backward elimination selected set of 11
features (subset 3: [0 1 2 3 4 5 6 7 8 10 11]) for Ordonez B dataset (K = 3)
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Fig. 45 Confusion matrix of the model trained with backward elimination selected set of 11
features (subset 4: [0 1 2 3 4 5 6 7 9 10 11]) for Ordonez B dataset (K = 3)

Fig. 46 Accuracy of the backward elimination selected 10 features across trained HMMs with
various number of states for Ordonez B dataset
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Fig. 47 Precision of the backward elimination selected 10 features across trained HMMs with
various number of states for Ordonez B dataset

Fig. 48 Recall of the backward elimination selected 10 features across trained HMMs with various
number of states for Ordonez B dataset
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Fig. 49 F-measure of the backward elimination selected 10 features across trained HMMs with
various number of states for Ordonez B dataset

Fig. 50 Confusion matrix of the model trained with backward elimination selected set of 10
features (subset 6: [0 1 2 3 4 6 7 8 9 10]) for Ordonez B dataset (K = 3)
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Fig. 51 Accuracy of the backward elimination selected 9 features across trained HMMs with
various number of states for Ordonez B dataset

Fig. 52 Precision of the backward elimination selected 9 features across trained HMMs with
various number of states for Ordonez B dataset
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Fig. 53 Recall of the backward elimination selected 9 features across trained HMMs with various
number of states for Ordonez B dataset

Fig. 54 F-measure of the backward elimination selected 9 features across trained HMMs with
various number of states for Ordonez B dataset
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Fig. 55 Confusion matrix of the model trained with backward elimination selected set of 9
features (subset 6: [0 1 2 3 5 6 7 8 9]) for Ordonez B dataset (K = 4)

When selecting 8 features in the next step, we are able to improve the accuracy,
the precision, the recall, and the F-measure to 81.82% across the board. This is a
significant improvement. It comes with a more complex model of K = 9 for feature
subset 3: [0 1 2 3 4 5 7 8]. This may be observed in Figs. 52, 53, and 54 across
the performance metrics (Figs. 55, 56, 57, 58, and 59) with the confusion matrix of
the optimum performing feature subset shown in Fig. 60. The encoded feature 6 is
dropped in the next stage.

When selecting a feature subset of 7 features in the next stage, the results of
the backward elimination technique in terms of accuracy, precision, recall, and F-
measure are shown, respectively, in Figs. 61, 62, 63, and 64. The optimum feature
subset is the fourth one ([0 1 2 3 5 6 7]) with K = 3 now. This yields a performance
that is on bar with the benchmark at a lower model complexity as well as training
on nearly half the number of features. Given this feature subset, we now remove the
encoded feature 4 in the next round of feature selection (Fig. 65).

The performance of the model remains consistent when selecting 6 features.
However, the number of states is increased to 4 for the chosen subset. The accuracy,
precision, recall, and F-measure performance metrics of all trained models on all
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Fig. 56 Accuracy of the backward elimination selected 8 features across trained HMMs with
various number of states for Ordonez B dataset

Fig. 57 Precision of the backward elimination selected 8 features across trained HMMs with
various number of states for Ordonez B dataset

subsets of 6 features are shown in Figs. 66, 67, 68, and 69, respectively. The
confusion matrix of the optimum model is shown in Fig. 70. The selected feature
set does not have the encoded feature 6, so we remove it in the next stage of feature
selection.

The next stage witnesses an improvement in the performance at 81.82% accuracy,
77.27% precision, 81.82% recall, and 78.79% F-measure levels for the optimum
chosen feature subset 2: [0 1 2 3 5] as shown in Figs. 71, 72, 73, and 74, respectively.
We compute the next feature subsets accordingly without the encoded feature 4.
Nonetheless, it is noteworthy to mention that the complexity of the model now
becomes larger given that K = 8. The confusion matrix of the chosen trained model
is illustrated in Fig. 75.
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Fig. 58 Recall of the backward elimination selected 8 features across trained HMMs with various
number of states for Ordonez B dataset

Fig. 59 F-measure of the backward elimination selected 8 features across trained HMMs with
various number of states for Ordonez B dataset
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Fig. 60 Confusion matrix of the model trained with backward elimination selected set of 8
features (subset 3: [0 1 2 3 4 5 7 8]) for Ordonez B dataset (K = 9)

Fig. 61 Accuracy of the backward elimination selected 7 features across trained HMMs with
various number of states for Ordonez B dataset
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Fig. 62 Precision of the backward elimination selected 7 features across trained HMMs with
various number of states for Ordonez B dataset

Fig. 63 Recall of the backward elimination selected 7 features across trained HMMs with various
number of states for Ordonez B dataset
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Fig. 64 F-measure of the backward elimination selected 7 features across trained HMMs with
various number of states for Ordonez B dataset

Fig. 65 Confusion matrix of the model trained with backward elimination selected set of 7
features (subset 4: [0 1 2 3 5 6 7]) for Ordonez B dataset (K = 3)
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Fig. 66 Accuracy of the backward elimination selected 6 features across trained HMMs with
various number of states for Ordonez B dataset

Fig. 67 Precision of the backward elimination selected 6 features across trained HMMs with
various number of states for Ordonez B dataset
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Fig. 68 Recall of the backward elimination selected 6 features across trained HMMs with various
number of states for Ordonez B dataset

Fig. 69 F-measure of the backward elimination selected 6 features across trained HMMs with
various number of states for Ordonez B dataset
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Fig. 70 Confusion matrix of the model trained with backward elimination selected set of 6
features (subset 1: [0 1 2 3 4 5]) for Ordonez B dataset (K = 4)

Fig. 71 Accuracy of the backward elimination selected 5 features across trained HMMs with
various number of states for Ordonez B dataset
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Fig. 72 Precision of the backward elimination selected 5 features across trained HMMs with
various number of states for Ordonez B dataset

Fig. 73 Recall of the backward elimination selected 5 features across trained HMMs with various
number of states for Ordonez B dataset
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Fig. 74 F-measure of the backward elimination selected 5 features across trained HMMs with
various number of states for Ordonez B dataset

Fig. 75 Confusion matrix of the model trained with backward elimination selected set of 5
features (subset 2: [0 1 2 3 5]) for Ordonez B dataset (K = 8)
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In the next stage, we note a degradation in all the performance metrics as
shown in Figs. 76, 77, 78, and 79. This indicates that the optimum feature subset
has been achieved in the previous step. The physical correspondence of the final
chosen features are the following for the Ordonez B dataset: shower PIR sensor
in bathroom, basin PIR sensor in bathroom, door PIR sensor in kitchen, maindoor
magnetic sensor in the entrance, and microwave electric sensor in the kitchen.

We can also infer a general conclusion that the subset that does not include the
first feature is always incapable of training properly on both levels for all the models
(i.e., features). In the final iteration, we also note that this phenomenon is also shown
by another feature subset. Overall, this technique was capable of optimizing the

Fig. 76 Accuracy of the backward elimination selected 4 features across trained HMMs with
various number of states for Ordonez B dataset

Fig. 77 Precision of the backward elimination selected 4 features across trained HMMs with
various number of states for Ordonez B dataset
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Fig. 78 Recall of the backward elimination selected 4 features across trained HMMs with various
number of states for Ordonez B dataset

Fig. 79 F-measure of the backward elimination selected 4 features across trained HMMs with
various number of states for Ordonez B dataset

feature set for the Ordonez B to be lower than the half of the original number; a no
small feat.

4 Conclusion

In conclusion, this chapter investigated filter- and wrapper-based feature selec-
tion techniques for discrete data. The modelling of the data was carried out
with a multinomial HMM and appropriate model selection was performed. The
investigations were executed for the challenging indoor activity recognition task
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with ambient sensor binary features. Though the data was highly imbalanced, the
presented experimental setup is able to tackle this issue in an elegant manner. It also
facilitates flexibility, scalability, and robustness of the model. Overall, we found
out that the backward elimination, i.e., the wrapper-based method applied, was the
most appropriate for the dataset at hand. Its results on the Ordonez B dataset are
particularly encouraging. Future works may include the fusion of the sensor data as
well as relevant feature engineering as study cases with simplistic derived features
have shown promise.
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Bayesian Inference of Hidden Markov
Models Using Dirichlet Mixtures

Ravi Teja Vemuri, Muhammad Azam, Zachary Patterson, and Nizar Bouguila

1 Introduction

Artificial Intelligence (AI) has become an integral part of many technical solutions
due to the generation of large amounts of data from many sources. In general,
AI is used as an umbrella term to represent any machine or program capable of
showing characteristics such as self-optimization, learning, or inference. It can also
be defined as a system that is programmed to perform cognitive tasks similar to those
of human beings such as image recognition, natural language processing, speech
processing, etc.

Machine learning (ML) [2, 17] is a form of AI that enhances computers to
go beyond their capacities by involving various programming techniques and
algorithms. In ML, large amounts of data [27, 40] are processed to help “machines”
evolve with each iteration, which is referred to as learning. As data are essential to
learning, having organized data flow is critical for any ML algorithm to function.
The more clean, varied, machine-readable the data is, the more efficient is the
learning process. In ML, there are different types of learning algorithms that
fall under these three categories: supervised learning [24], unsupervised learning
[11, 20, 25], and reinforcement learning [44]. There are two kinds of data: labeled,
where the data is already segregated into groups based on certain identified
characteristics, and unlabelled, where the data is not segregated or tagged, are fed
to these algorithms based on their type.
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In supervised learning, models are trained on labeled data for tasks such as
classification [26] or regression. Here the algorithm is given a data set that is
sampled from the whole population of the data. The data is then divided into training
and testing sets, with a majority of the data in the training set. In the training phase,
using the algorithm, the machine is trained to identify and classify the data as per
labels. In the testing phase, the machine’s learning ability is tested using a testing
subset.

In unsupervised learning, data are unlabelled, and the goal is generally to find
data clusters [38, 46] based on various factors like data similarity, etc., resulting in
knowledge discovery. In this type of learning, the algorithm is left to run for several
iterations on the data to find out the hidden structures in the data, and the learning is
concluded when the learning is not progressing anymore, i.e., the algorithm reached
a convergence point.

In reinforcement learning, the algorithm tries to mimic the learning process in
human beings, learning from data in their lives using a trial-and-error method, i.e.,
favorable outputs are encouraged, and others are discouraged. This type of learning
process puts the algorithm in a test environment directly with a reward system
that decides whether each output is favorable. When the outcome is favorable, the
algorithm is rewarded, and in all other cases, the output is passed.

In this chapter, we are interested in exploring and proposing novel unsupervised
learning techniques. Nowadays, a great deal of data are mostly unlabelled, which
motivated us to propose our approach. In machine learning also there are two
kinds of learning approaches: stochastic and deterministic [32]; in the former, it
is believed that randomness in the learning process is efficient, and in the latter,
the learning process involves no randomness. Stochastic learning is further applied
to two families of approaches: generative and discriminative [12] modeling; in the
first method, learning is based on joint probabilities, and in the other, it is based
on conditional probabilities. Our proposed approach follows stochastic generative
modeling in a Bayesian framework involving HMMs and mixture models.

HMMs [19, 33] are advanced statistical models that follow a Markov process
[29] in system modeling. Such processes assume that an observable sequence
of observations is dependent on some hidden information and try to learn about
that based on visible observations. HMMs are efficient in speech recognition
applications and in any sequence analysis and time series analysis. HMMs are
usually used to represent dependent heterogeneous events because of which, they
are applied in various fields such as: econometrics [23], biology [28], genetics [18],
speech processing [33], and particularly finance [39].

HMMs are associated with a significant problem of choosing the number of
states. According to the classical approach solving this problem would require
hypothesis testing with complex parameters. This approach is usually not rec-
ommended and considered only an alternative because of regularity conditions,
and when asymptotic theory is not applicable. The likelihood ratio test needs to
be approximated using simulation techniques, which demand high computation.
In addition, the Akaike and Bayesian information criteria can be used, but they
fail to produce required confidence in the results as they are susceptible to over
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fitting and cannot handle high dimensional data. In a Bayesian setting, there
are different approaches for choosing the number of states in an HMM. For
instance, a Bayesian nonparametric methodology is presented in [31] in view of
the Dirichlet process. A downside of this methodology is that a single parameter
controls the clustering, making it difficult for prior specifications. A characteristic
option in contrast to the Dirichlet process model is to utilize mixture models with
multinomial allocations, which is the Dirichlet mixture model. Following [37] and
[35], we utilize a completely Bayesian framework, in light of the Reversible Jump
(RJMCMC) algorithm, proposed in [21], which permits, for the change in dimension
of the parameter space, changing the number of states from one iteration to the next.
The algorithm also permits estimating the joint posterior distribution of the number
of states and all the parameters. In this chapter, we demonstrate parameter estimation
and model selection with HMMs using MCMC [1] and Reversible Jump techniques
[22].

The rest of the chapter is organized as follows: Sect. 2 describes our HMM
modeling approach using mixture models in a Bayesian setting. Section 3 explains
the MCMC and RJMCMC algorithms employed for parameter estimation and
model selection in HMM. In Sect. 4, we experiment with a few applications to
demonstrate the effectiveness of our model in fitting real-world data. Finally, in
Sect. 5, we conclude our research.

2 The Learning Model

In this section, we present the proposed model, which is a combination of various
components, and we elaborate on each component and its contribution to the
parameter estimation and model selection processes. As we proceed, the following
sections and subsections will give more details about our modeling approach.

2.1 The Bayesian Model

As previously mentioned in the chapter, we choose to implement a Bayesian
approach [36] in our modeling, in which Θ represents a vector of parameters
describing the model. For a given data set Y, Bayes’ theorem is

p(Θ|Y) ∝ p(Y|Θ)p(Θ) (1)

where p(Y|Θ) is the likelihood and p(Θ) is the prior distribution of the parameter
set. Later on, in this section, we discuss in detail the prior distributions of our
parameter set and the complete hierarchical model, which is the heart of the
proposed modeling approach where the joint probability is computed.
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2.2 Mixture Model

Mixture models are probabilistic models which aim to fit data containing a given
number of clusters using the same or different probabilistic distributions where k

represents the number of clusters, often called a mixture of k components, where
each component fits a cluster of the whole data. A d-dimensional random variable
y = [y1, . . . , yd ]T is said to follow a mixture of k components if its probability
density function takes following form:

φ(y;Θ) =
k∑

j=1

πiφ(y; ξj ) (2)

where ξj = (μj , αj ) is the set of parameters for the j th component, πj are the
mixing probabilities, which are always positive and sum to 1. μj = (μj1, . . . , μjd)

is the mean and αj = (αj1, . . . , αjd) is the sharpness parameter. Θ , the set of
all parameters, is represented as Θ = {π1, . . . , πk, ξ1, . . . , ξk}. Here, k represents
the number of components in the mixture and is always greater than or equal to 1.
φ(y;μj , αj ) in Eq. (2) is the density of the Dirichlet distribution [15]:

φ(yt ;μj , αj ) = Γ (|αj |)∏d
i=1 Γ

(
μji |αj |

)
d∏

i=1

y
μji |αj |−1
i (3)

where
∑d

i=1 yi = 1 and |αj | = ∑d
i=1 αji, αji > 0 ∀i = 1, . . . , d . Given α the

mean and variance of the Dirichlet distribution can be given as follows:

μd = E(yd) = αd

|α| (4)

σ 2
d = V ar(yd) = αd(|α| − αd)

|α|2(|α| + 1)
(5)

2.3 Hidden Markov Model

Given, y = (yt )
T
t=1 which are the vectors of observations with respect to time T ,

HMMs assume that the distribution of each data point yt depends on hidden states,
which are unobserved and are denoted by st and can take values from 1 to k. The
hidden variable s = (st )

T
t=1 is often called a “regime” or “state”—we adopt the

former word throughout the rest of the chapter. In HMMs that follow the Markov
chain property, it is assumed that the hidden state variable st always depends on past
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realizations of y and s as shown in Eq. (6):

p(st = j |st−1 = i) = aij (6)

where aij is the element of a transition probability matrix denoted by A = (aij ). A
transition probability matrix A, where each row is a vector of stationary probabilities
given by π and satisfies π

′
A = π

′
, and stationary probabilities decide the initial

state of the model from which, with time, the state transition takes place. As it is
assumed in HMMs that, for every state change st an observation yt is noticed, which
follows a marginal probability distribution given in Eq. (2). The same equation can
also be represented as:

yt |π,μ, α ∼ Σk
i=1πiφ(yt ;μi, αi) (7)

Equation (7) can also be expressed as follows involving st :

yt |s, π, μ, α ∼ Σk
i=1πiφ(yt ;μst , αst ) (8)

Here, we assume that the number of components k (i.e., the number of states) is
unknown and subject to inference and we can observe that for k = 1 the model in
Eq. (7) reduces to a simple random walk with drift.

2.3.1 Prior Distributions

In any Bayesian modeling approach [13, 36, 37], prior information is one’s belief
about an unknown quantity before considering any evidence about it. Usually, prior
information would be a probability distribution describing the unknown parameters
in a model. Since the prior information is a probability distribution describing a
parameter, the parameters of such a prior distribution are called hyper-parameters.
In our case, we have three prior distributions for three unknown parameters
(μi, αi, aij ) of the model, found in Eqs. (9), (10), and (11) as follows:

μi ∼ D(δ1, . . . , δk) ∼ Γ (
∑k

j=1 δj )
∏k

j=1 Γ (δj )

k∏

j=1

μ
δj −1
ij (9)

aij ∼ D(η1, . . . , ηk) (10)

where the mean μi and each row of the transition probability matrix aij has a
Dirichlet distribution as prior with δ = {δ1, . . . , δk} and η = {η1, . . . , ηk} as
the hyper-parameters. The sharpness parameter α = {α1, . . . , αk} has an inverse
Gamma as a prior as follows:

αi ∼ |αi |−3/2 exp (−1/(2|αi |)) (11)
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2.3.2 Complete Hierarchical Model

The joint probability distribution like in [37] for all the variables including their
hyper-parameters can be represented according to Eq. (12) as follows:

p(k,A,μ, α, s, y) = p(k)p(A|k, η)p(μ|δ, k)p(α)p(s|A)p(y|μ, α, s) (12)

where p(s|A) = p(s1|A)

T∏

t=2

p(st |st−1, A) (13)

The term p(st |st−1, A) from Eq. (13) is given by Eq. (6) and p(s1 = i|A) = πi , and
from Eq. (12)

p(y|s, μ, α) =
T∏

t=1

φ(yt ;μst , αst ) (14)

Figure 1 is a directed acyclic graph (DAG) representing the complete hierarchical
model in which the usual convention is followed where the square boxes represent
fixed or observed quantities and the circles represent the unknowns.

Fig. 1 Directed acyclic graph for the complete hierarchical model
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3 Markov Chain Monte Carlo Methodology

The mixture model [14] approach taken in this chapter is a fairly complex one and
requires MCMC techniques to approximate the posterior distribution. A detailed
description of these computational techniques can be found in [16, 37]. To get the
realizations from the posterior joint distribution with all the parameters, we use the
following moves at each sweep of the MCMC algorithm :

1. Update the transition probability matrix A
2. Update the allocations s

3. Update the mean μ

4. Update the sharpness parameter α

5. Update standard deviation σ

6. Consider split or combine moves
7. Consider birth or death moves

3.1 Gibbs Moves

Moves from (1–5) presented in the algorithm are called Gibbs moves and follow
[37]. In move 1, the ith row of A is sampled from a Dirichlet distribution D(η +
ni1, . . . , η + nik) where:

nij =
T −1∑

t=1

I {st = i, st+1 = j} (15)

is the number of jumps from state i to state j . In move 2, the state allocations
s1, . . . sT are sampled one at a time from t = 1, .., T by drawing new values from
the full conditional distribution in Eq. (16). For t = 1, the first factor is replaced by
the stationary probability πi , and for t = T , the rightmost factor is replaced by 1.
Here φ(yt ;μi, αi) is the density of a Dirichlet random variable with mean μi and
sharpness parameter αi .

p(st = i|S) ∼ ast−1iφ(yt ;μi, αi)aist+1 (16)

where S = {s1, . . . , sT }. In move 3, the mean μi is updated by sampling from a log-
normal distribution whose mean is the natural log of the mean from the previous
iteration with a transformation μ∗

il = log(
μil

(1−μil)
) and with Σ2 as co-variance

matrix where Σ2 = diag[0.01, . . . , 0.01]. The whole equation is represented in
Eq. (17).

μ∗
i ∼ LN(log(μ

∗(t−1)
i ),Σ2) (17)
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In move 4, αi is updated in a similar fashion like μi with the only difference being
where the parameters of the log-normal distribution are changed, and Σ2 is replaced
by σ 2 whose value is 0.01, the equation is given as Eq. (18). As αi is updated, in
move 5, σ is updated using the new values of α according to Eq. (5).

|αi | ∼ LN(log(|αi |t−1)), σ 2) (18)

3.2 Split and Combine Moves

In the above mentioned moves, 6 and 7 are considered as reversible jump MCMC
moves which allow the number of components to increase or decrease by 1. In move
6, a state at a given point of time is chosen to split or combine with probabilities bk

and dk = 1 − bk , respectively. As d1 = bkmax = 0. We use bk = dk = 1
2 for

k = 2, 3, . . . , kmax − 1. In the combine move we suppose the current state of the
MCMC algorithm is x̃ with ãij , etc., as parameters with a total of k+1 states. Then,
we randomly choose a pair (j1, j2) which are two adjacent states and combine them
to a single new state j∗ resulting in an MCMC with x states and k components.

For the combine move, the parameters are updated as follows Eqs. (19), (20),
and (21):

μj∗ = π̃j1μj1 + π̃j2μj2

π̃j1 + π̃j2

(19)

μ2
j∗ + σ 2

j∗ = π̃j1(μ
2
j1

+ σ 2
j1

) + π̃j2(μ
2
j2

+ σ 2
j2

)

π̃j1 + π̃j2

(20)

aj∗j = π̃j1

π̃j1 + π̃j2

ãj1j + π̃j2

π̃j2 + π̃j2

ãj2j for j �= j∗,

aij∗ = ãij1 + ãij2 for i �= j∗, (21)

and for any t with s̃t equal to j1orj2, st is set to j∗ and the remaining s̃t are
simply copied. Similarly, a state j∗ is selected at random in the split move and split
into two new components j1 and j2.

In the split move, a state j∗ is randomly selected and split into two new states j1
and j2. In the old representation, we assume that x is the current state with a total of
k states and after the move is executed the system is represented with x̃ with a total
of k + 1 states. The goal of the split move is to split j∗ in a way that the stationary
probabilities for the chain of hidden states satisfy the following: π̃j = πj f or j �=
j1, j2, π̃j1 = u0πj∗ and π̃j2 = (1 − u0)πj∗ . This can be achieved by sampling
u0 ∼ Be(2, 2), uj ∼ Be(r, s) f or each j �= j1, j2 and vi ∼ Be(r, s) f or each i �=
j1, j2. The parameters of the Beta distribution r and s are given from Eq. (23). The
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transition probabilities Ã after the split are updated according to the Eq. (22) where
Ki = πi

πj∗
:

ãj1j = uj

u0
aj∗j , ãj2j = 1 − uj

1 − u0
aj∗j for j �= j1, j2, (22)

ãij1 = viaij∗, ãij2 = (1 − vi)aij∗ for i �= j1, j2,

ãj1j2 = u1

(
1 −

∑

i �=j∗

uj

u0
aj∗j

)
,

ãj2j1 =
{
(1 − u1)

∑

j �=j∗
ujaj∗j + u0u1 −

∑

i �=j∗
Kiviaij∗

}/
(1 − u0)

r = 1 − u0(1 + c2)

c2 , s = r
1 − u0

u0
if u0 ≤ 1

2
(23)

s = 1 − (1 − u0)(1 + c2)

c2 , r = s
u0

1 − u0
if u0 >

1

2

Here c2 is known as the squared coefficient of variation of the Beta distribution, and
for the reasons mentioned in [37] we assume it to be c2 = 0.5 for numerical result
stability. We discuss u1, which is the range for Ã : [uL

1 , uU
1 ] and is given as follows:

uL
1 = max

(
1 − 1 − ∑

i �=j1,j2
Ki/u0 × ãij1

1 − ∑
j �=j1,j2

ãj1,j

, 0

)
, (24)

uU
1 = min

{
1 − 1 − ∑

i �=j1,j2
K − i/u0 × ãij1 − (1 − u0)/u0 × (1 − ∑

j �=j1,j2
ãj2j )

1 − ∑
j �=j1,j2

ãj1,j

, 1

}

During the split move if uL
1 > uU

1 , it means that there is no valid range for Ã and
the move is rejected. If uL

1 < uU
1 , the move is not rejected and we can get the u1 by

u1 ∼ uL
1 + (uU

1 − uL
1 )Be(1, 1).

In the split move after splitting new parameters μj∗ , σj∗ are computed as follows:

μ̃j1 = μj∗ − z1σj∗

√
π̃j2

π̃j1

, μ̃j2 = μj∗ − z1σj∗

√
π̃j1

π̃j2

(25)

σ̃ 2
j1

= z2(1 − z2
1)σ

2
j∗

πj∗
π̃j1

, σ̃ 2
j2

= (1 − z2)(1 − z2
1)σ

2
j∗

πj∗
π̃j2

In this process of splitting, we make use of a two-dimensional random vector z

which is sampled from a Beta distribution as z1 ∼ zU
1 Be(1, 1) and z2 ∼ Be(1, 1)

and zU
1 is given in Eq. (26), which is the upper bound for z1 and in which μ′

i s are
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properly sorted.

zU
1 = min

{
μj∗ − μj∗−1

σj∗

√
π̃j1

π̃j2

,
μj∗+1 − μj∗

σj∗

√
π̃j2

π̃j1

, 1

}
(26)

At last, we choose to reallocate the observation that belongs to st = j∗ before
splitting to j1 and j2. We achieve this by using a restricted backward algorithm. Let
us assume that st = j∗ for t1 ≤ t ≤ t2 with st1−1 �= j∗ and st2+1 �= j∗. Then we
sample s̃t1, . . . , s̃t2 one at a time from t = t1 to t = t2 with conditional probabilities
given as follows:

p(s̃t = j |Δ) ∼ ãs̃t−1,j
φ(yt ; μ̃j , σ̃

2
j )bt (i) for j = j1, j2 (27)

where Δ = {y, s̃t1−1, s̃t1 , . . . , s̃t1+1 ∈ [j1, j2], . . . , s̃t1 ∈ [j1, j2], s̃t2+1, Ã, μ̃, σ̃ } and
bt (i) = p(yt+1, . . . , yt2 , s̃t1+1 ∈ [j1, j2], . . . , s̃t1 ∈ [j1, j2], s̃t2+1|s̃t = j, Ã, μ̃, σ̃ )

and for j = j1, j2

bt2(i) = ãi,s̃t2+1 (28)

For t = t2 − 1, . . . , t1, bt (i) is given as follows:

bt (i) =
∑

j=i1,i2

bt+1(j)ãij φ(yt+1; μ̃j , σ̃
2
j ) (29)

when t1 = 1, the as̃t−1,j
from Eq. (27) is replaced by π̃j which is the stationary

probability and when t2 = T , ãi,s̃t2+1 from Eq. (28) is replaced by 1.
As per the reverse jump algorithm, the acceptance probability of a split move is

given as min(1, R), and it is min(1, R−1) for the combine move.

R = p(y|s̃, μ̃, α̃)

p(y|s, μ, α)
× p(k + 1)

p(k)
× p(Ã|k + 1, η)

p(A|k, η)
× p(s̃|Ã)

p(s|A)
× dk+1

bkPalloc
× J (30)

×
[ 1

zU
1

g1,1

( z1

zU
1

)
g1,1(z2)g2,2(u0)

1

uU
1 − uL

1

g1,1

( u1 − uL
1

uU
1 − uL

1

) ∏

j

gr,s (uj )
∏

i

gr,s (vi )
]−1

where gr,s is the Be(r, s) density, Palloc is the probability of allocation for s̃t , and J

is the Jacobian determinant (explained in the Appendix).

3.3 Birth and Death Moves

Now we talk about birth and death moves as our final step in the RJMCMC
algorithm. In this move, we randomly choose between birth and death with
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probabilities bk and dk , respectively. An empty state is selected at random in the
death move among all the empty states and deleted. Then the remaining rows A are
normalized, and the st is not changed.

In birth move the aim is to create a new state j∗. To do this we sample j∗ row
which will be a new row of A from a Dirichlet prior D(δ, . . . , δ). Then we draw vi

i �= j∗ from Be(1, k) and set:

ãij = (1 − vi)aij f orj �= j∗, (31)

aij∗ = vi

The new parameters for this state are generated in the same way as previously
mentioned, and the st remains untouched as the new state is empty. Similar to
split and combine move the acceptance probability is computed to satisfy the rule
of reversible jump where at any time t , the number of states can be increased or
reduced. So, the acceptance probability for these moves is: min(1, R) for birth and
min(1, R−1) for death.

R = p(k + 1)

p(k)
× kk × p(s̃|Ã)

p(s|A)
× (k + 1) × dk+1

bk(k0 + 1)

{ ∏

i

g1,k(vi)
}−1 × J

(32)

where k0 is the number of states before birth and J is the Jacobian determinant given
by

J =
∑

i �=j∗
(1 − vi)

k−1 (33)

The entire MH-within-Gibbs learning for HMM-DMM can be summarized as
follows:
Input: Observations X with k number of components
Output: HMM-DMM parameter set, k components

1. Initialization
2. Step at time t : For t = {1, . . . , n}

Gibbs Sampling Part
• Generate s from Eq. (16)
• Generate nij from Eq. (15)
• Generate aij from Eq. (10)
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Metropolis-Hastings and RJMCMC
• Sample μi, αi from Eq. (17), (18)
• Compute σi from Eq. (5)
• Compute acceptance ratio (R) for split and combine move from Eq. (30)
• Compute acceptance ratio (R) for birth and death move from Eq. (32)

4 Experiments

In this section, we provide experiments to validate the proposed model with real-
world applications. According to the literature [33], in many cases, HMMs are
known to work well with sequential or time series data. In this chapter, we conducted
experiments using our model with video and speech data sets which are both time
series in nature.

4.1 Human Activity Recognition

The outcome of this experiment is to recognize various human activities, cluster the
appropriate activities, and check the appropriateness of the clustering process with
various available metrics.

The motivation behind choosing this application as our clustering task is to high-
light the importance of recognizing human activities in daily life and its applications
in various real-life scenarios. Much learning and knowledge can be derived from
this task. Its application can be further extended to trending research areas such as
human behavior analysis, criminal activity recognition, gait recognition, etc.

We choose two well-known activity recognition data sets, namely: KTH [41]
(See Fig. 2) and UCF101 [43] (See Fig. 3). Both data sets contain human activities
of different kinds. KTH contains actors performing six types of outdoor activities.
Each of these activities is performed by 25 people in a similar background setup
captured with a static camera with 25 frames per second (fps). Each image video
sequence has a resolution of 160 x 120 pixels with an average length of 4 seconds.
In UCF101, we have 101 human actions of 25 categories. Each action category has
around 4–7 videos.

For our model to effectively cluster the human activities, we process the video
data according to the following experimental setup: First, we extract the frames from
the video using video prepossessing techniques, then a feature extraction technique
called SIFT [30] is applied to the extracted frames which are images to generate
BoVW (Bag of Visual Words).

For this experiment, we consider four actions from the KTH data set: walking,
jogging, running, and boxing. From UCF data set, we consider pull-ups, push-ups,
swing, and haircut. To begin, a BoVW [47, 49] is generated for each of these actions
and fed to the model by combining BoVW for all the actions belonging to one data
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Fig. 2 KTH data set

Fig. 3 UCF data set

set without disturbing the sequence, i.e., avoiding the shuffle. The model is then
left to iterate until it converges, that is, until the average value of the latest batch
of iterations for the parameters is approximately equal to zero or remains constant.
Each iteration computes all seven stages of the MCMC algorithm, including the
reversible jump, and the parameters are used to evaluate the model’s performance
using the four performance metrics listed in Table 1 [8, 10]. Then for the same
BoVW, we use HMM with GMM [34] and standard normal distributions as base
models to compare our results.
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Table 1 Activity recognition with KTH

States HMM-DMM HMM-GMM HMM-std. norm

K Acc Pre Rec F1 Acc Pre Rec F1 Acc Pre Rec F1

2 49.07 49.07 49.87 49.32 47.28 47.21 47.28 42.79 43.52 28.12 43.92 43.34

3 72.35 72.38 72.35 71.89 64.74 66.65 64.14 69.97 61.71 65.92 61.71 69.54

4 82.92 83.97 82.92 81.28 72.35 72.38 72.35 71.89 66.42 74.16 66.42 53.18

Table 2 Activity recognition with UCF

States HMM-DMM HMM-GMM HMM-std. norm

K Acc Pre Rec F1 Acc Pre Rec F1 Acc Pre Rec F1

2 54.94 61.30 54.94 67.23 52.55 74.61 52.55 67.79 49.55 47.44 49.55 65.31

3 67.27 79.47 67.27 75.24 62.72 76.15 62.72 72.55 59.27 59.34 59.27 57.40

4 83.22 85.72 83.22 85.18 75.88 78.93 75.88 79.25 68.94 72.62 68.94 61.09

In Tables 1 and 2, we have displayed the relevant results of our model for the
learning task of activity recognition. As can be observed, we started the model
with two states and left the learning model to figure out the right number of states.
After many iterations, it is clearly visible that our model could arrive at the correct
number of states with the best parameters and produce better results than the other
benchmark models. From Tables 1 and 2, it can be seen that our model score for
a number of states gradually increases from a non-optimal number of states to the
optimal number of states, with the following accuracies: 49.07 and 72.94, 82.92%
and 54.94, 67.27, 83.22%, respectively, for KTH and UCF activities. It can also be
observed that our model outperforms the benchmark models in both cases.

4.2 Speaker Recognition

Speaker recognition is the task of automatically detecting the speaker by exploiting
the speaker-specific information included in speech waves to validate the identities
claimed by persons accessing systems; in other words, it enables voice access
control of various services. Voice dialing, banking over a telephone network,
telephone shopping, database access services, information and reservation services,
voice mail, security control for private information, and remote computer access are
all applicable services. Another key use for speech recognition technology is as a
forensic tool. Speaker recognition also has several significant advantages over other
types of identity identification, such as iris scans, facial recognition, and fingerprint
scans. To begin, because all phones have microphones, it is commonly utilized
for verification on mobile phones. Second, it is inexpensive to incorporate into
other devices like home appliances and automobiles; third, because of the rapid
proliferation of IoT devices, it is convenient and familiar to most users. Finally, it
has been demonstrated to be extremely accurate in some conditions.
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The goal of this experiment is to cluster and identify various voices in a speech
sample. In this process, we take several steps to make the speech into a machine-
understandable format to be fed to the model.

According to the literature, HMMs have proved their prominence in efficiently
processing and clustering speech data on multiple occasions. This is our main
motivation to experiment with speech data. Another reason to work with speech
data is to showcase the learning efficiency of the model and thereby establish a
scope for the model to extend applications to advanced research domains such
as emotion detection, speech verification [6, 9, 10] and speech classification [4],
automatic speech recognition (ASR) [3, 5, 7], automatic audio transcription [48],
etc.

In order to facilitate our experimentation, we have selected a prominent lead-
ers speech data set1 which contains speeches prominent leaders like Benjamin
Netanyahu, Jens Stoltenberg, Julia Gillard, Margaret Thatcher, and Nelson Mandela
as folder names. Each audio sample is of one-second 16,000 sample rate PCM
encoded.

For this experiment, we have selected four speakers as mentioned in Fig. 4 as
part of audio prepossessing for each speaker sample; we employ Mel-frequency
cepstral coefficients (MFCCs) [45] for feature extraction and perform voice activity
detection (VAD) [42] to eliminate pauses in the speech sample prior to the feature
extraction step.

As a result of audio processing for each speaker sample, a feature matrix is
obtained and is given as input to our model after excluding the labels for the
clustering process without disturbing the sequence of the feature vectors.

The model is then left to iterate until it converges, that is, until the average value
of the latest batch of iterations for the parameters is approximately equal to zero or
remains constant. Each iteration computes all seven stages of the MCMC algorithm,
including the reversible jump, and the parameters are used to evaluate the model’s
performance using the four performance metrics listed in Table 1. Then for the
same feature vector of speech samples, we use HMM with GMM [34] and standard
normal distributions as base models to compare our results.

The model is then run for a set number of iterations until it converges, that is,
until the average value of the latest batch of iterations for the parameters is about
equal or does not change: all seven stages of the MCMC, including the reverse jump
component, are computed in each iteration, and the parameters are utilized to verify
the model for performance using the four performance metrics shown in Table 3.
Then, using the same feature vector of voice samples, we compare our findings
using HMM with GMM [34] and HMM with standard normal distributions as base
models.

In Table 3, in this speaker recognition learning problem, we have shown the
appropriate findings of our model. As can be seen, we started the model with two
states and left the learning model to determine the optimal number of states. After

1 https://www.kaggle.com/kongaevans/speaker-recognition-dataset/version/1.

https://www.kaggle.com/kongaevans/speaker-recognition-dataset/version/1
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Fig. 4 Speaker speech samples

many iterations, it is evident that our model could reach the proper number of states
with the appropriate parameters and produce better outcomes than other benchmark
models.

From Table 3, it can be observed that our model performed poorly for non-
optimal number of states with low accuracy: 55.07%, precision: 57.28% and we can
also notice that the performance of the model gradually improved while approaching
the optimal number of states and finally reaching a maximum accuracy and precision
of 79.46 and 79.47%, respectively, outperforming the benchmark models.
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Table 3 Speaker recognition

States HMM-DMM HMM-GMM HMM-std. norm

K Acc Pre Rec F1 Acc Pre Rec F1 Acc Pre Rec F1

2 55.07 57.28 55.07 0.08 52.50 53.00 52.50 49.96 51.12 51.29 51.12 46.22

3 64.73 64.61 64.73 55.78 61.91 65.48 61.91 37.13 58.80 58.25 58.80 40.56

4 79.46 79.47 79.46 75.17 71.45 71.38 71.45 67.72 63.93 63.81 63.93 54.19

5 Conclusion

In this chapter, we provide a Bayesian learning framework for HMMs to efficiently
learn the model parameters. In addition, we looked into a new reversible jump
Markov chain Monte Carlo technique for determining the number of states in
HMMs. We use a mixture modeling strategy to boost our model’s learning capacity
by introducing Dirichlet mixtures. We ran experiments on well-known data sets
from video and voice domains to illustrate our model’s usefulness in a number of
tasks. Throughout this experimentation, we looked at a variety of pre-processing and
domain-specific feature extraction algorithms to help with the model’s learning pro-
cess. Furthermore, we validated the learning efficiency of our models by comparing
their outcomes and performance using well-known performance metrics, revealing
that our models outperformed current benchmark models. We can incorporate a
more complex mixture modeling technique to aid in parameter estimation and
modeling choices in future studies. In the future, feature selection algorithms could
be included to improve the generalization capabilities of the model.

Appendix

In this section, we explain the computation of Jacobian determinant which is a part
of the acceptance ratio of split and combine move:

Table 4 presents a Jacobian matrix which has partly block diagonal structure, and
our goal is to find out its determinant. For that, first, we identify sub-determinants
across the diagonal and evaluate the sub-determinants individually and finally
multiply the resultant to obtain the determinant of the whole matrix, and the same
is shown below:
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Table 4 Table of partial derivatives

ãjj1 ãjj2 ãj1j ãj2j ãij2 ãj2j1 μ̃j1 μ̃j2 σ̃j1 σ̃j2

ãij∗ x x 0 0 0 x 0 0 0 0

vi x x 0 0 0 x 0 0 0 0

ãj∗j 0 0 x x x x 0 0 0 0

uj 0 0 x x x x 0 0 0 0

u0 0 0 x x x x x x x x

u1 0 0 0 0 x x 0 0 0 0

μ̃j∗ 0 0 0 0 0 0 x x 0 0

z1 0 0 0 0 0 0 x x x x

σ̃j∗ 0 0 0 0 0 0 x x x x

z2 0 0 0 0 0 0 0 0 x x

J1 =
∣∣∣∣∣

diag (vi) diag (1 − vi)

diag
(
ãij∗

) − diag
(
ãij∗

)

∣∣∣∣∣ =
∣∣∣∣∣
I diag (1 − vi)

0 − diag
(
ãij∗

)

∣∣∣∣∣ = ∏
i �=j∗ ãij∗

J2 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

diag
(

uj

u0

)
diag

(
1−uj

1−u0

)
− col

(
u1uj

u0

)
col

(
(1−u1)uj −∑

i �=j∗vi ãii 
∂γi /∂ãj∗j

1−u0

)

diag
(

ãj∗j

u0

)
− diag

(
ãj∗j

1−u0

)
− col

(
u1 ãj∗j

u0

)
col

(
(1−u1)ãj∗

1−u0

)

− row

(
uj ãj∗j

u2
0

)
row

(
(1−uj )ãj∗j

(1−u0)2

) u1

(
1−˜̃ai1 i1 −˜̃ai1 i2

)

u0

u1+˜̃ai2 i1
1−u0

0 0 ˜̃ai1i1 + ˜̃ai1i2

u0

( ˜̃ai1 i1 +˜̃ai1 i2

)

1−u0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

J3 =

∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 0 0

−σj∗

√
1−u0
u0

σj∗
√

u0
1−u0

2z1u0

σ 2
j∗ z2

(
1−z2

1

)2
2z1(1−u0)

σ 2
j∗ (1−z2)

(
1−z2

1

)2

z1σ 3
j∗

2

√
1−u0
u0

− z1σ 3
j∗

2

√
u0

1−u0

u0
z

2(1−z2
1)

(1−u0)

(1−z2)
(
1−z2

1

)

0 0 u0
σ 2

j∗
(
1−z2

1

) 1−u0
σ 2

j∗ (1−z2)2(
1−z2

1

)

∣∣∣∣∣∣∣∣∣∣∣∣∣

=
√

u0(1−u0)
σ

j∗z2
2(1−z2)2(1−z2

1)
3

J2 here is evaluated in the same way as shown in [37].
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Online Learning of Inverted
Beta-Liouville HMMs for Anomaly
Detection in Crowd Scenes

Rim Nasfi and Nizar Bouguila

1 Introduction

Data categorization is rapidly becoming one of the most important parts of data
analysis, particularly with the exponential growth of data under all sorts of formats.
Thereby, it is crucial to study and discover hidden patterns in order to extract
valuable information promoting accurate and solid decision making.

When modeling data, it is a notable fact that Gaussian mixture models (GMMs)
are not always the perfect solution for all data types. Through HMM deployment,
most existing related works have not considered the characteristics of data sets.
In fact, most of the work present in the literature relies on the use of Gaussian
distributions. Although HMMs were mainly developed for discrete and Gaussian
data [39], diversity of applications in contexts and domains such as activity
recognition, image categorization, and dynamic forecasting, increased the necessity
of modifying the underlying HMM model so that it efficiently suits those new data
types [37, 42].

Thanks to the proliferation of carried research on these distributions and their
mathematical simplicity, most finite mixture models mainly consider Gaussian as
their basic distributions. Nevertheless, it is undeniable that the least appropriate way
of modeling non-Gaussian data is to use Gaussian distributions [11]. For example,
inverted Dirichlet or generalized inverted Dirichlet [5, 18, 20] can often outperform
the Gaussian mixture model for modeling positive vectors in many applications such
as image categorization, human action video recognition, etc. Recently, numerous
works have been achieved in order to model positive vectors based on inverted
Dirichlet mixture models [5, 37]. However, the inverted Dirichlet distribution has
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a very restraining covariance structure that significantly limited its flexibility. In our
work, we propose to model positive vectors based on a finite mixture model with
inverted Beta-Liouville (IBL) distributions embedded into the framework of HMMs
as emission probabilities.

Inverted Beta-Liouville mixture models have recently arisen as an efficient way
to model positive vectors [10]. Thanks to its general covariance structure and its
smaller number of parameters compared to the inverted Dirichlet and generalized
inverted Dirichlet [6, 34], IBL has proven its effectiveness when dealing with
positive vectors modeling [28]. Originally derived from the Liouville distributions
family [26]. As earlier mentioned, one of the main advantages of the IBL is its
general covariance structure that can either be positive or negative. It is noteworthy
to mention that the discussed distribution has not been extensively investigated
and that only a handful of works have adopted it, giving more room to further
exploitation of this surprisingly underrated distribution. Even more effectively,
this choice is mainly motivated by the fact that the IBL distribution contains
inverted Dirichlet distribution as a special case and therefore can provide more
flexibility compared to previously investigated distributions [37]. Also, compared
with Gaussian that can only approximate symmetric distributions, IBL allows both
symmetric and asymmetric distributions.

The work presented in this manuscript can be viewed intellectually at two
different levels. First, it allows the application, for the first time to the best of our
knowledge, of IBL-based HMMs to effectively handle positive vectors; second, it
proposes to undertake online-based learning of parameters by applying an online
EM procedure for HMMs.

The remainder of this chapter is organized as follows: In Sect. 2, we present some
of the work related to online and incremental learning, and we discuss the choice
of application in this paper. Section 3 presents HMMs, their formulation, and the
online EM derivations. Section 4 explains the choice of the IBL mixture models
and details derivations and parameters estimation. Then, in Sect. 5 we present our
applied model as well as results and interpretations. Finally, we conclude with some
insights and future work perspectives.

2 Related Work

The performance of hidden Markov models (HMMs) is often acclaimed through
their massive use in several complex real-world applications namely image cate-
gorization [21], action recognition [22], occupancy estimation in smart buildings
[37], and unusual events detection [20]. HMMs are highly capable of representing
probability distributions corresponding to these complex real-world phenomena
when they are fed an adequate number of states as well as a sufficiently rich
set of data. Nevertheless, the mentioned applications tend to often drain HMMs’
performance particularly when results need to be inferred from very long sets of
data such as videos in an action recognition context. In fact, in the context of
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HMMs, analyzing large sets of training data is costly, laborious, and long sustained.
Thus, there is often not enough analyzed data to be representative of the underlying
distribution, causing the HMM to incorporate some uncertainty.

In such cases, it is suitable to update the model’s parameters online [44]. Online
learning of new data sequences permits the adaptation of the HMM parameters
while new data becomes available. This way of feeding data to the model is also
called an incremental method. It is actually common for a model to be fed additional
data after its training. This allows for a more adaptation of HMMs as a result of
newly acquired data. Therefore, incremental learning is an undeniable asset to refine
HMMs’ behavior toward any novelties encountered in the environment and thus
reducing their level of uncertainty by maintaining a high level of performance.

When applying incremental learning for HMM parameters estimation, there
are commonly standard techniques used that mostly involve batch learning. Those
techniques can either rely on specialized EM techniques [16] such as Baum–Welch
(BW) algorithm [4] or on numerical optimization techniques such as the Gradient
Descent algorithm [33], where regardless of the used technique, parameters are
estimated after numerous training repetitions prior to maximizing an objective
function over certain independent validation data. In most cases, when applying
a batch learning technique, a fixed-length sequence O = o1, o2, .., oT of T training
observations, oi is hypothetically available during the whole learning process. If we
suppose that O is assembled into a block D of training data, each training iteration
involves observing all sub-sequences in D prior to updating HMM parameters.
When a new block of data comes through, the previously trained HMM cannot
accommodate the second batch without accumulating and storing all the training
data in memory. It will eventually train again for the beginning making use of all the
cumulative data involving both batches. This procedure is deemed to be necessary
in order to prevent any sort of corruption of the previously acquired knowledge, and
that could compromise the HMM performance. Notwithstanding, there are clearly
some significant costs relating to processing time and storage requirements when
using batch learning methods. Time and memory complexity would grow linearly
with the length and number of training observation sequences and quadratically with
the number of HMM states.

As a viable alternative, numerous online learning techniques have been proposed
in the literature; this includes techniques based on EM [13, 36] where numerical
optimization and recursive estimations are performed, and EM variants such as
BOEM (Block Online EM) [32]. These methods assume the observation is a stream
of data and are particularly used in situations where training symbols are organized
into a block of one or more sub-sequences. Their parameters are re-estimated
upon observing each new sub-sequence of symbols. Some of the aforementioned
techniques are tailored to update HMM parameters at a symbol level, also perceived
as recursive or sequential estimation techniques. Symbol-wise updated techniques
are designed for situations in which training symbols are received one at a time
where parameters are then re-estimated upon observing each new symbol. Across
the full range of contexts, HMMs parameters are updated from new training data,
beyond any requirement for access to the formerly learned training data and most
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plausibly preventing corruption of any previously acquired knowledge [14]. In this
manner, the main takeaway of the stated techniques is essential to allow sustaining a
high level of performance while preserving the memory requirements, given the fact
that storing data from previous training phases is completely unnecessary. Besides,
bearing in mind that training is only performed on the new training sequences,
and not all accumulated data, online learning also provides lower time complexity
when learning new data. In this work, we aim to study the effectiveness of online-
based HMMs compared to standard-learning-based HMMs when used along with a
remarkably interesting distribution, that is the Inverted Beta-Liouville, as emission
probabilities.

Further to the raised interest in online learning as a technical concern, the
studies carried out in this work revolve around analyzing human-related visual
data. We choose to bring a special focus on disclosing information from looking
at videos with humans doing certain activities and analyzing, in particular, security
surveillance to predict certain anomalies. Indeed, it would be of great help to
assist in detecting either normal or abnormal events or behaviors and use this as
a starting point to make decisions such as in the contexts of smart cities where
there is a growing need to improve security. In fact, this can be achieved by quickly
and accurately identifying criminal activities in a real-time fashion [15]. Similarly,
in an entertainment environment, activity recognition can notably improve users’
experience by automatically recognizing different player’s actions during a game of
tennis or a soccer game for example [31, 41], with the goal of understanding the
action of each player and how they interact with each other.

What is challenging in performing this type of analysis, is that crowded scenes
and dynamic environments are bound to a degraded performance as soon as the
crowd becomes too dense [19]. In fact, the number of independent objects moving at
the same time and the occlusions it involves degrades the performance of detection.
Additionally, the dynamic background is an important restriction when it comes to
tracking movements.

As far as HMMs are concerned, modeling normal scenes and determining
whether an unseen video sequence deviates from normality is an achievable task,
which serves perfectly the anomaly detection aim. In the work of Bettini et al. in [7],
the features used are histograms that can be seen as positive vectors once extracted.
The likelihood criterion for anomaly detection is somehow efficient despite the
simple adaptive threshold adopted by the classifier. The work is obviously relying
on different processes leading together to detection results, which constitutes a clear
limitation to the improvement of the global approach and the use of a standardized,
unique model, capable of providing a more compact representation of the data and
thus a more accurate anomaly detection. In a related context, the author in [47]
exploits the notion of profiling an online anomaly sampling to model dynamic
scenes in a way that optimizes the intrusion detection rate by refraining from using
any manual labeling of the training data set. The method relies on a Dynamic
Bayesian Network (DBN) to model each behavior pattern. Further, an online Like-
lihood Ratio Test (LRT) method is used to detect abnormal behavior, while normal
behavior is recognized when sufficient visual evidence is available. The mentioned
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procedure lacks accuracy since some events can sometimes be undetected by the
model due to missing visual evidence or ambiguities between event classes. This
can be avoided by taking the temporal information into consideration by developing
a Baum–Welch EM algorithm to the mixture of DBNs to learn the behavior model
directly rather than taking a phased approach such as the one adopted. Andrea et al.
[1–3] used HMMs with Gaussian mixtures to characterize the normal behavior of
a crowd by learning normal motion patterns from the optical flow of image blocks.
The method relied mainly on Principal Component Analysis (PCA) to build feature
prototypes, along with spectral clustering to find the optimal number of models to
group video segments containing similar motion patterns. An HMM was trained for
each model and used for event recognition and anomaly detection.

3 Hidden Markov Models

Hidden Markov Models are described according to Ghahramani [24], as an ubiq-
uitous tool to model time series data. They have been used for decades in
speech recognition systems as well as artificial intelligence and pattern recognition
applications. These models are a generalization of mixture models [25]. In fact,
the probability density functions overall observable states defined by an HMM are
considered as a mixture of densities defined by each state.

HMMs allow us to represent probability distributions over sequences of observa-
tions, with the assumption that observations are discrete. An observation at time t is
denoted by the variable OT .

Hidden Markov Models are governed by two main properties. First, it assumes
that the observation at time t is generated by some process whose state ht is
hidden from the observer. Second, it assumes that the state of this hidden process
satisfies the Markov property; that is, given the value of ht−1; the current state ht is
independent of all the states prior to the time t − 1.

A hidden Markov model is characterized by a set of parameters that will be
specified later in this paper. The task of the learning algorithm is to find the best
set of state transitions and emission probabilities between the states of the model.
Therefore, an output sequence or a set of these sequences is given. To illustrate our
model, we are first listing various HMM notations and enumerating the upcoming
used work script.

3.1 Notations and Offline EM for HMMs

We consider a HMM with continuous emissions and K states. We put y =
{y0, y1, . . . , yT } the sequence of observed data with yt ∈ R

L. The observation for
the l-th feature at time t , which is represented by the l-th component of yt , is denoted
by ylt .
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Let x = {x0, x1, . . . , xT } be the sequence of hidden data. The transition matrix
of the Markov chain associated with this sequence is denoted as B = {bij = P(xt =
j |xt−1 = i)} and π is the initial state probability. Thus the complete-data likelihood
can be expressed as

p(x, y|Λ) = πx0cx0(y0)

T∏

t=1

bxt−1,xt cxt (yt ) (1)

where Λ is the set of model parameters, πx0 is the initial state (x0) probability, and
cxt (yt ) is the emission probability given state xt .

The M-step aims to maximize the data log-likelihood. By denoting Z as hidden
variables and X as the data, we can express the data likelihood L(θ |X) = p(X|θ)

by

E(X, θ) − R(Z) =
∑

Z

p(Z|X) log(p(X,Z)) −
∑

Z

p(Z|X) log(p(Z|X))

=
∑

Z

p(Z|X) log(p(X|θ))

= log(p(X|θ))
∑

Z

p(Z|X) log(p(X|θ))

= log(p(X|θ)) = L(θ |X)

(2)

with θ representing all the HMM parameters, E(X, θ) is the value of the complete-
data log-likelihood with the maximized parameters θ , and R(Z) is the log-likelihood
of the hidden data given the observations.

The expected complete-data log-likelihood is

E
(
X, θ, θold

)
=

∑

Z

p(Z|X, θold) log(p(X,Z|θ)) (3)

In the following, we take the case of a unique observation sequence, X, then the
complete-data likelihood is expanded as

p(X,Z|θ) = p(h0)

T −1∏

t=0

p(ht+1|ht )

T∏

t=0

p(mt |ht )p(xt |ht ,mt ) (4)

When considering an HMM, as defined earlier in this section, where the final time
T may be unbounded in the online case, offline learning consists of adjusting the
model parameters to maximize the likelihood of a given training sequence y0−→T .
This procedure results in the following update equations that can be reviewed in
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detail in a previous work [37]:

b̂
(n+1)
ij =

∑T
t=1 P(xt−1 = i, xt = j |y0−→T , θ̂n)∑T

t=1 P(xt−1 = i|y0−→T , θ̂n)
(5)

ĉ
(n+1)
jk =

∑T
t=1 P(xt = j, yt = k|y0−→T , θ̂n)∑T

t=1 P(xt = j |y0−→T , θ̂n)
(6)

where k = 1, . . . , K and the probabilities on the right-hand side are conditioned
on the training sequence y0−→T and on the current parameters’ estimate θ̂n ≡
({b̂(n)

ij }, {ĉ(n)
jk }). Computation of these quantities can be done efficiently using the

forward–backward procedure, although this will imply storing the whole training
sequence.

3.2 Online EM for HMMs

Online learning has proven to be an effective way to improve learning, mainly in
large-scale settings [9, 36]. In this work, we build upon the work presented by
Mongillo et al. in [36] and Cappé in [13], to put forward an online and incremental
EM algorithm for HMMs. For the matter, a recall of Cappés’ online EM is desired.
The latter uses a stochastic approximation approach in the scope of sufficient
statistics in order to achieve a limiting EM recursion. This EM recursion is nothing
but a batch-based EM algorithm with infinite data. All the parameter updates are
handled in a recursive manner. This procedure is built around a forward-only
smoothing recursion, in which the expected sufficient statistics needed for parameter
updates are computed recursively. This can be achievable thanks to an expectation–
maximization algorithm that updates and improves lower bounds on the likelihood
after each observation.

In this phase, we focus on calculating the likelihood of an observation sequence
of a given length to classify it. After determining the sequence category, we use the
corresponding data to train a specific HMM and use its parameters to update the
previously trained HMM corresponding to the said category.

The adopted method consists of applying the online EM developed in [36],
which we expand to handle positive vector modeling thanks to the adoption of IBL
mixtures as emission probabilities.

We here derive a version of the EM procedure that does not require the storage
of the inputs by reproducing the EM update (Eqs. 5 and 6) in terms of sufficient
statistics updated recursively
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3.2.1 Sufficient Statistics for Parameter Estimation

The required sufficient statistics are

φijk(T ; θ) = 1

T

T∑

t=1

δ(yt − k) · P(xt−1 = i, xt = j |y0−→T , θ) (7)

with 1 ≤ i, j ≤ K and 1 ≤ k ≤ M , where δ(·) is the Kronecker delta: 1 when
its argument is 0 and 0 otherwise. The prefactor 1

T
ensures that φijk(T ; θ) do not

diverge for an infinitely long training sequence T −→ ∞.
The update equations can thus be written as follows:

b̂
(n+1)
ij =

∑
k φijk(T ; θ̂n)∑
jk φijk(T ; θ̂n)

(8)

ĉ
(n+1)
jk =

∑
i φijk(T ; θ̂n)∑
ik φijk(T ; θ̂n)

(9)

3.2.2 Recurrence Relations

φ
γ

ijk(T ) = 1

T

T∑

t=1

δ(yt − k) · P(xt−1 = i, xt = j, xT = γ |y0−→T ) (10)

where we drop the explicit independence on the model parameters θ assumed to be
constant and hence

∑
γ φijk(T ) = φijk(T ). We can then write

P(xt−1 = i, xt = j, xT −1 = ζ, xT = γ, y0−→T ) = P(yT |xT = γ )

× P(xT = γ |xT −1 = ζ )P (xt−1 = i, xt = j, xT = ζ, y0−→T −1)
(11)

where we used the product rule and the dependency conditions. Dividing both sides
by P(y0−→T −1) and summing over ζ we get

P(xt−1 = i, xt = j, xT = γ |y0−→T )

=
∑

ζ

ηζγ (yT ) · P(xt−1 = i, xt = j, xT −1 = ζ |y0−→T −1)
(12)

with

ηζγ (yT ) ≡ P(yT |xT = γ )P (xT = γ |xT −1 = ζ )

P (yT |y0−→T −1)
(13)
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Equation 13 inserted into Eq. 10 provides the following recurrence relation for
the φ

γ

ijk:

φ
γ

ijk(T ) = 1

T
· δ(yT − k) · ηij (yT ) · P(xT −1 = j |y0−→T −1) + 1

T

T −1∑

t=1

δ(yt − k)

·
∑

ζ

ηζγ (yT ) · P(xt−1 = i, xt = j, xT −1 = ζ |y0−→T −1)

(14)

by changing the order of summation we can write the second term on the right-hand
side of the equation as

1

T

T −1∑

t=1

δ(yt − k) ·
∑

ζ=1

ηij (yT ) · P(xt−1 = i, xT −1 = ζ |y0−→T −1)

=
(

1 − 1

T

) ∑

ζ

ηζγ (yT ) · φ
ζ
ijk(T − 1)

(15)

Finally by inserting Eq. (15) into Eq. (14) and changing terms order we obtain

φ
γ

ijk(T ) =
∑

ζ

ηζγ (yT )

× φ
ζ
ijk(T − 1) + 1

T
[δ(yT − k) · gij (ζ, γ ) · ωζ (T − 1) − φ

ζ
ijk(T − 1)]

(16)

with gij (ζ, γ ) ≡ δ(i−ζ )·δ(j−γ ), and ωζ (T −1) ≡ P(xT −1 = ζ |y0−→T −1), which
can be computed recursively, and ηζγ (yT ) is expressed in terms of the model’s
parameters as

ηζγ (yT ) = bζγ cγ,yT∑
m,k bm,kck,yT

ωm(T − 1)
(17)

with cγ,yT
is the probability of emitting an output yT in state γ , that is cγ,yT

≡∑
k cγ k · δ(yT − k)
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4 Inverted Beta-Liouville Mixture Model

We suppose a D-dimension vector X = (X1, . . . , XD) is drawn from an inverted
Beta-Liouville distribution [23], then we have

p(X|αd, . . . , αd, α, β, λ) =
Γ

(∑D
d=1 αd

)
Γ (α + β)

Γ (α)Γ (β)

D∏

d=1

X
αl−1
d

Γ (αd)

× λβ

( D∑

d=1

Xd

)α−∑D
d=1 αd

(
λ +

D∑

d=1

Xd

)−(α+β)

(18)

where Xd > 0 for d = 1, . . . , D, α > 0, β > 0 and λ > 0. In fact, the
IBL distribution can be viewed as a generalized form of the inverted Dirichlet
distribution that involves multiple symmetric and asymmetric modes. The mean,
variance, and covariance of the IBL distribution are given by

E(Xd) = λα

β − 1

αd∑D
d=1 αd

(19)

V ar(Xd) = λ2α(α + 1)

(β − 1)(β − 2)

αd(α + 1)
∑D

d=1 αd(
∑D

d=1 αd + 1)

− λ2α2

(β − 1)2

αd
4

(
∑D

d=1 αd)
4

(20)

Cov(Xm,Xn) = αmαn∑D
d=1

[
λ2α(α + 1)

(β − 1)(β − 2)(
∑D

d=1 αd + 1)

− λ2α2

(β − 1)2(
∑D

d=1 αd)

] (21)

If a set of data contains N vectors: X = {X1, . . . , XN}, where each Xi =
(Xi1, . . . , XiD) is drawn from the IBL mixture model with M components and is
defined as follows:

p(Xi|π ,Θ) =
M∑

j=1

πjp(Xi|θj ) (22)

where Θ = (θ1, . . . , θM), p(Xi|θ) denotes the IBL distribution in Eq. (18) asso-
ciated with the j th component with parameters θj = (αj1, . . . , αjD, αj , βj , λj ),
and
π = (π1, . . . , πM) are the mixing coefficients where 0 ≤ πj ≤ 1 and

∑M
j=1 = 1.
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Maximum Likelihood Estimation
In order to learn the models’ parameters, we choose a learning approach based on
Maximum Likelihood (ML). The values of different parameters are obtained by
maximizing the log-likelihood function such as

Θ̃ = argmax
Θ

log p(X|π ,Θ) (23)

where the log-likelihood function is given by

L(X|π ,Θ) = log p(X|π ,Θ) = log
N∏

i=1

p(Xi|π ,Θ)

=
N∑

i=1

log

( M∑

j=1

πjp(Xi|θj )

) (24)

We define latent variables as indicators for a set of observed data. Let Z =
{Z1, . . . , ZN}, each Zi = (Zi1, . . . , ZiM) corresponds to an observed data vector
Xi, where Zij ∈ {0, 1} and

∑M
j=1 Zij = 1, and Zij = 1 if Xi belongs to component

j , and 0 otherwise. The log-likelihood of the complete data can thus be expressed
as follows:

Φ(X,Z|π ,Θ) =
N∑

i=1

M∑

j=1

Zij

{
log πj + log p(Xi|θj )

}
(25)

Next, the conditional expectation of the complete-data log-likelihood is maximized
in the M-step of the EM algorithm, which is given by

Ω(X|Θ) =
N∑

i=1

M∑

j=1

〈
Zij

〉 {
log πj + log p(Xi|θj )

}
(26)

with the posterior probability
〈
Zij

〉
being the expected value of the indicator variable

and is given by

〈
Zij

〉 = πjp(Xi|θj )∑M
k=1 πkp(Xi|θk)

(27)
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We maximize the conditional expectation of the complete-data log-likelihood by
computing the first derivatives with respect to all parameters

∂Ω(X|Θ)

∂αj

=
N∑

i=1

〈
Zij

〉 [
log

D∑

d=1

Xid − log(λj +
D∑

d=1

Xid)

]

+ [Ψ (αj + βj ) − Ψ (αj )]
N∑

i=1

〈
Zij

〉
(28)

∂Ω(X|Θ)

∂βj

=
N∑

i=1

〈
Zij

〉 [
log λj − log(λj +

D∑

d=1

Xid)

]

+ [Ψ (αj + βj ) − Ψ (βj )]
N∑

i=1

〈
Zij

〉
(29)

∂Ω(X|Θ)

∂αjd

=
N∑

i=1

〈
Zij

〉 [
log Xid − log

D∑

d=1

Xid

]

+ [Ψ (

D∑

d=1

αjd − Ψ (αjd)]
N∑

i=1

〈
Zij

〉
(30)

∂Ω(X|Θ)

∂λj

=
N∑

i=1

〈
Zij

〉 [βj

λj

− αj + βj

λj + ∑D
d=1 Xid

]
(31)

with Ψ (.) being the digamma function. It is obvious that a closed-form solution for
θj does not exist. Thus, to estimate these parameters, we use the Newton–Raphson
method [38] such as

θ
(t+1)
j = θ

(t)
j − H(θ

(t)
j )−1 ∂Ω(X|π (t), Θ(t))

∂θ
(t)
j

(32)

where H(θ
(t)
j )−1 represents the inverse Hessian matrix for parameter θj and is

described in detail in [28].

4.1 Online Update for the Sufficient Statistics and Model
Parameters

To set up an online EM, we start with an initial guess for the model parameters θ̂ (0),
the initial state probabilities, ωζ ≡ P(x0 = ζ ), and the sufficient statistics, φ̂

γ

ijk(0).
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After removing the contribution of the sufficient statistics such as performed in [36],
state estimates, ωζ (T ), which represent the probability of being in the state ζ at time
T are then expressed such as

ω̂ζ (T ) =
∑

m

ηmζ (yT ; θ̂ (T − 1)) · ω̂m(T − 1) (33)

Finally, the parameters are re-estimated according to the following equations:

b̂ij (T ) =
∑

k

∑
ζ φ

ζ
ijk(T )

∑
j,k

∑
ζ φ

ζ
ijk(T )

(34)

ĉjk(T ) =
∑

i

∑
ζ φ

ζ
ijk(T )

∑
i,k

∑
ζ φ

ζ
ijk(T )

(35)

5 Experiments and Results

In this section, extensive experiments are conducted and we have implemented
several real-world topical yet challenging applications using the online HMM with
IBL emission probabilities. We are mainly comparing our new approach to its
classical online Gaussian-based HMMs competitors and other new adaptations that
we executed for the sake of comparison and testing, e.g., inverted Dirichlet-based
online HMM (Online ID-HMM) and Dirichlet-based online HMM (Online Dir-
HMM). It is noteworthy that the learning of the mentioned adaptations has been
based on the same methodology described in the previous section to learn the IBL
mixture-based HMM. Real-world applications on two video data sets, an anomaly
in a crowd context and direction-related anomaly detection in an airport, are tested
to validate the performance of our model.

Recognition of human action in videos gained a great deal of attention thanks to
the multitude of applications in many domains such as human–computer interfaces,
video surveillance [40, 49], and activity biometry [17]. Applications involve but are
not limited to, detecting violence, hostile behavior, and sexual harassment [45], not
to mention life-threatening events such as pedestrians accidents, criminality [43].

It is worthwhile to mention that dealing with crowded scenes analysis often
involves a sizable amount of individuals acquiring irregular directions in an
exceedingly vast region hence the complexity of the task. Anomalies or abnormal
events can be intuitively defined as any occurrence of a deviation from the
conventional crowd behavior in an exceedingly vast video. Moreover, an anomaly
could eventually be a pattern that does not follow expected traditional behavior in a
given context.
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Hidden Markov Models are indeed an appropriate tool to tackle this problem
since they are particularly suitable when working with dynamic data such as videos,
and attempting to unveil unknown natures of anomalies.

5.1 Anomaly Detection in a Crowd of Pedestrians

The main goal of this experiment is to detect any anomalies in the surveillance
video of the publicly available UCSD Ped1 and Ped2 data set [29]. Both data sets
are formed from video sequences of pedestrians on a walkway and divided into a
training set, with normal frames only, and a testing set composed of both normal
and abnormal frames. These two data sets only differ in the camera viewpoint from
which footage has been captured. We still are able to benefit from ground truth,
provided for all test sequences. Sample frames from the training set with different
crowd densities and anomalies are presented in Figs. 1 and 2. In the following we
proceed to the feature extraction in a procedure we describe briefly (see [19] for
further details).

Fig. 1 Frames from the Ped1 normal (upper row) and abnormal activities (bottom row) with
anomalies highlighted

Fig. 2 Frames from the Ped2 normal (upper row) and abnormal activities (bottom row) with
anomalies highlighted
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The pre-processing involves a gray-level re-sampling of the frames to a size of
160 × 240 pixels, with a filter-based Gaussian noise reduction where the filter size
is [3, 3] and σ = 1.1. Next, we perform some dimensional sampling steps in order
to meet HMMs use requirements such as lowering the length of our histograms
(12 in this application), small volumes extracted from sequences, called cuboids,
are repeated several times in a sequence in order to avoid model overfitting. The
dimensional sampling adopted here consists in dividing sequences into cuboids each
of them subdivided into 8 subregions, 2 along each direction. Pixels’ contribution
within a subregion is weighted by its magnitude and is computed in the same fashion
as in [19]. We model each cuboid by a series of 8 normalized histograms through
which a dynamic mechanism embedded in each cuboid is illustrated. An HMM is
trained for each cuboid location taking into account all the available observations.

We set a threshold to compare each computed likelihood from the testing videos
in order to fulfill the classification task. This threshold is tied to the location of
cuboids and is set using the minimum likelihood value of training samples at each
location multiplied by a factor k chosen depending on the frequency of anomalous
sequences and can either be k = 1, k < 1, or k > 1 [19].

Eventually, when dealing with applications such as anomaly detection, we wish,
as far as practicable, to achieve the optimal Equal Error Rate (EER). However, the
latter is not the only point of performance on which we should rely when assessing
our results. The overall performance can thus be studied by computing the Area
Under the Curve (AUC).

We choose to set our model to a number of states K = 2 and a number of
mixtures per state M = 3. It is better to keep those two values low as they drastically
contribute to the simplicity of computing. We also carry offline and online trials for
the sake of comparison. Results will be detailed later in this section. The number
of states K and mixture components M is set using K-means [27] clustering of the
training data, with the number of clusters varying from 2 to 20.

We train each HMM with a set of training features for each of the classes 10
times. Then we keep track of the scored results as an average across the training
times. Results and comparison with different used models in the same experimental
context can be observed in Table 1.

Table 1 Average recognition
rates for different used
HMMs in the context of video
anomaly detection UCSD,
ped1 and ped2 data sets

Method Ped1 Ped2

GMM-HMM 72.03 73.19

ID-HMM 75.28 77.51

GID-HMM 89.99 87.27

IBL-HMM 90.09 90.41
Online GMM-HMM 88.60 84.53

Online ID-HMM 91.13 91.72

Online GID-HMM 89.03 84.33

Online IBL-HMM 95.10 92.69

Bold values are to reference models
implemented as the main contribution
of this manuscript



192 R. Nasfi and N. Bouguila

The results show an apparent improvement each time we chose to integrate
the online EM into the HMM framework. This is related to the gradual adjust-
ment of the parameters that allow for better fitting of the data by the proposed
model. Nonetheless, it is noteworthy to mention that Online IBL-HMM performed
significantly better than its offline peer, plus even better than the inverted Dirichlet-
based HMM and the generalized inverted Dirichlet-based HMM as well. The online
setup combined with an appropriate choice of distribution contributed to this decent
amelioration.

5.2 Anomaly Detection: Airport Security Line-Up

This application permits identifying people going in the wrong direction in an
airport security line-up. The videos are treated as sequences extracted from the
anomalous Behavior data set [48]. The latter has been gathered from a surveillance
camera hung up to the ceiling and filming vertically downwards. One part of the
data set is clear from any anomalies and hence used for the training step, while the
other is used for testing purposes. Figure 3 shows some frames from the data set.

Anomalies displayed in this data set are of a larger scale compared to the previous
application, we then choose to increase the cuboid size to prevent as much as
possible false positive cuboids. Here we choose 80 × 80 pixels. We use AUC-ROC
curve [12] as a performance assessment measure. What is interesting, is that in this
binary classification context, a model has to predict whether the frame is an anomaly
or not. The AUC curve measures the models’ performance depending on various
thresholds. The highest AUC score will help us determine the best model. The AUC-
ROC curve is plotted with True Positive Rate (TPR) and False Positive Rate (FPR).
We thought it would also be interesting to allow some interest in evaluating the
Equal Error Rate (EER) as a performance assessment. EER is an optimized value
where a false positive intersects with a false negative. The better a model is the lower
its EER score. Results are displayed in Fig. 4.

T PR = T ruePositive

T ruePositive + FalseNegative
(36)

Fig. 3 Frames from Anomalous Behavior airport wrong direction with highlighted anomalies
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Fig. 4 AUC-ROC curve comparison of the proposed online IBL-HMM with other methods for
anomalous behavior data set

Table 2 Average recognition
rates for different used
HMMs in the context of
video anomaly detection
Anomalous Behavior data set
both online and offline

Method Online Offline

GMM-HMM 86.13 79.02

ID-HMM 89.64 80.11

GID-HMM 91.17 86.98

IBL-HMM 94.83 92.06

Bold values are to reference mod-
els implemented as the main con-
tribution of this manuscript

FPR = FalsePositive

T rueNegative + FalsePositive
(37)

Performances of different tested methods displayed in Table 2 show the sig-
nificant role played by the online learning method in improving the detection
performance of anomalous events.

5.3 Abnormal Crowd Behavior: Escape Scene

This experiment aims to capture abnormal crowd behavior in three different scenes
in the video sequence of unusual crowd events captured synthetically by the
University of Minnesota (UMN) [46]. The data set is composed of videos of 11
different scenarios of an escape event in 3 different indoor and outdoor scenes:
Lawn, Indoor, and Plaza. Each video is composed of an initial part of normal
behavior followed by sequences of abnormal behavior where people run from the
center of the scene to simulate an escaping event. All footage is recorded at a frame
rate of 30 frames per second at a resolution of 640 × 480 using a static camera.
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Figure 5 shows sample frames of these scenes. Here, the process for identifying the
likely patterns is performed in a similar way as in [35], where we use the bag of
words [30] method to identify the events and normal videos for training LDA [8].
For computational simplicity, the resolution of the particle grid is kept at 25% of
the number of pixels. We partition our frames into blocs of C clips. Then, from
each clip Cj , W visual words are extracted. We randomly pick visual words of size
5 × 5 × 10 and code a book of size S using K-means clustering. In this case, we
extract W = 30 visual words from a block of 10 frames. Thus a final codebook
contains C = 10 clips. To evaluate our model, 50 different frames of each scene are
selected.

Table 3 shows the average accuracy comparison of several tested methods namely
online-based and offline-based HMMs implemented for the sake of this particular
comparison. We specifically want to focus on the role played by online HMMs
compared to offline models but in detecting escape scenes, we also want to focus
on the role played by the IBL as a distribution to improve the average recognition
accuracy of anomalous scenes. Overall, the proposed method achieves the best
accuracy with an average of 89.12%, which is higher than the average accuracy
of 83.53% where we did not use the online-based model. We also observe that both
online and offline IBL-HMM perform better compared to other methods.

Fig. 5 Frames from the UMN data set with normal (upper row) and abnormal escape scenes
(bottom row) from three different indoor and outdoor scenes

Table 3 Average recognition
rates for different used
HMMs in the context of a
crowd escape scene detection
on the UMN data set, both
online and offline

Method Online Offline

GMM-HMM 71.13 69.80

ID-HMM 76.08 73.42

GID-HMM 83.40 78.55

IBL-HMM 89.12 83.53

Bold values are to reference mod-
els implemented as the main con-
tribution of this manuscript



Online Learning of Inverted Beta-Liouville HMMs for Anomaly Detection in. . . 195

Fig. 6 AUC-ROC curve for each of the tested models on the UMN data set

For further performance evaluation, we have presented the ROC curves in Fig. 6
for the different used models and can thus observe that our method achieves a better
ratio and the number of false positives is significantly lower.

One of the main takeaways is the crucial role that online learning plays
in reducing false positive detection of anomalous behavior especially in binary
contexts where only two scenarios such as “normal” or “escape scene” are possible.
Clearly, in the mentioned situations we aim for the least false positive detection rate
possible to avoid false alerts and thus reduce unnecessary alarming situations.

6 Conclusion

There is a multitude of techniques that researchers are adopting to address the
challenge of abundant and massive data modeling. Online learning methods are
one of the most powerful tools to handle big streams of data such as videos in a
real-time context. Using HMMs is also a suitable way to deal with dynamic data
such as videos, but the biggest challenge remains in finding the most powerful
distribution to faithfully model specific types of data such as positive vectors.
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Further, the interest in adopting IBL mixtures for modeling our data arose from
the limitations encountered when other distributions such as Gaussian mixtures and
inverted Dirichlet were adopted. In fact, IBL mixtures provided a smaller number
of parameters compared to the generalized inverted Dirichlet, not to mention that it
showed its effectiveness when dealing with positive vectors modeling in contrast to
the rest of the tested distributions. In this paper, we proposed a model in which all
the aforementioned problems are addressed simultaneously in the case of human
activities modeling and anomalies detection. The developed approach applies
online learning of parameters within the HMM framework. Experimental results
involving challenging real-life applications such as anomaly detection in a human
crowd context showed that the proposed approach is highly promising. We have
demonstrated that the proposed method is highly effective at discriminating between
scenes of normal and abnormal behavior, and that our approach operates in real-
time. Future works are intended to be done in the near future extending this work to
different flexible distributions and considering a hybrid Generative-Discriminative
model using Support Vector Machines kernels to improve classification capabilities
and to further reduce error rates.
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A Novel Continuous Hidden Markov
Model for Modeling Positive Sequential
Data

Wenjuan Hou, Wentao Fan, Manar Amayri, and Nizar Bouguila

1 Introduction

Nowadays, sequential data modeling has become a critical research topic in different
fields, ranging from gesture recognition [1], human genome sequences modeling
[2], text clustering [3] to abnormal behaviors detection [4]. One of the most effective
approaches for modeling sequential data is the Hidden Markov model (HMM) [5, 6],
which is formulated by assuming that each observed data instance in a hidden state is
generated from a probability distribution (often known as the emission distribution).
When observations are continuous, we have the continuous HMM with a continuous
probability distribution as the emission density.

For continuous HMM, the Gaussian distribution or the Gaussian mixture model
(GMM) has normally been applied as the emission density due to their well-defined
properties [7, 8]. This choice, however, the Gaussian distribution or the GMM, is
not suitable in situations where we have non-Gaussian data [9–14]. According to
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various studies, other distributions can also be adopted as the emission densities for
HMMs and are able to provide superior performance than Gaussian-based HMMs
for modeling sequential data [15–18]. Particularly, the mixture of inverted Beta-
Liouville (IBL) distributions [19] has shown promising performance in modeling
positive data that are naturally involved in a variety of real-world applications [19–
23]. Therefore, the aim of this work is to propose an effective approach for modeling
positive sequential data by formulating a continuous HMM with the IBL mixture
model as the emission density.

The contributions of our work can be summarized as follows. Firstly, we
propose a novel continuous HMM for modeling positive sequential observations,
in which the emission distribution of each hidden state is distributed according
to an IBL mixture model that has shown better capability for modeling positive
data than other popular distributions (e.g., the Gaussian distribution). Secondly, the
proposed IBL-based HMM is learned by theoretically developing a convergence-
guaranteed algorithm based on variational Bayes (VB) [24, 25]. The VB inference
is a deterministic learning algorithm for approximating probability densities through
optimization and has been successfully applied in various Bayesian models. Lastly,
we demonstrate the advantages of our model by conducting experiments on real-
world positive sequential data sets.

The remaining part of this chapter can be listed as follows. In Sect. 2, we propose
the continuous HMM with IBL mixtures. In Sect. 3, we develop a learning algorithm
based on VB inference to estimate the parameters of our model. In Sect. 4, we
provide experimental results of our model on two real-world sequential data sets.
Finally, conclusion is given in Sect. 5.

2 The HMM with Inverted Beta-Liouville Mixture Models

2.1 The Formulation of IBL-HMM

If a D-dimensional vector X = (X1, . . . , XD) in RD+ is distributed according to
an inverted Beta-Liouville (IBL) distribution [19], then the probability dentistry
function is defined by:

IBL(X|λ, α, β) = �(α + β)�(
∑D

d=1 λd)

�(α)�(β)

D∏

d=1

X
λd−1
d

�(λd)

(
∑D

d=1 Xd)α−∑D
d=1 λd

(1 + ∑D
d=1 Xd)α+β

,

(1)

where {λ, α, β} is the set of parameters of the IBL distribution.
Now we can formulate a continuous HMM that deploys a mixture of k IBL

distributions as its emission density. Then, we can define the IBL-based HMM
(denoted by IBL-HMM) based on a set of parameters � = {π , a, c,λ,α,β}, where
π = {πi}Ni=1 denotes the vector of initial-state probabilities, a = {aij }N,N

i=1,j=1
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Fig. 1 The graphical model
that represents the proposed
IBL-HMM

denotes the state transition matrix, c = {cik}N,K
i=1,k=1 is the matrix of mixing

coefficients with cik indicates the mixing coefficient of component k under the state
i; λ = {λik}N,K

i=1,k=1, α = {αik}N,K
i=1,k=1, and β = {βik}N,K

i=1,k=1 are the parameters
of the IBL distributions, where λik , αik , and βik represent the parameters of the kth
IBL distribution in state i.

Given a sequence of T observations X = {xt }Tt=1, where xt = {xtd}Dd=1
represents the feature vector at time t , we can define the complete-data likelihood
for the IBL-HMM as

p(X, S,L|�) = πs1

[ T −1∏

t=1

ast st+1

][ T∏

t=1

cst lt IBL(xt |λst lt , αst lt , βst lt )

]

, (2)

where the latent variable st is the state indicator, and the latent variable lt is the
indicator of the mixture component. Then, we can represent the likelihood function
of model parameters � as

p(X|�) =
∑

S,L

πs1

[ T −1∏

t=1

ast st+1

][ T∏

t=1

cst lt IBL(xt |λst lt , αst lt , βst lt )

]

. (3)

Figure 1 shows the graphical model that represents the proposed IBL-HMM.

2.2 The Prior Distributions

As we formulate the IBL-HMM through the Bayesian framework, we need to assign
prior distributions for all random variables. For parameters π , a, and c, we adopt
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Dirichlet distributions Dir(·) as their priors as in [15, 16, 26]

p(π) = Dir(π |θλ
1 , . . . , θλ

N), (4)

p(a) =
N∏

i=1

Dir(ai1, . . . , aiN |θa
i1, . . . , θ

a
iN ), (5)

p(c) =
N∏

i=1

Dir(ci1, . . . , ciK |θc
i1, . . . , θ

c
iK). (6)

For positive parameters λ, α, and β, following [19], we adopt Gamma distribu-
tions G(·) as their priors

p(λ) =
N∏

i=1

K∏

k=1

D∏

d=1

G(λ|m, b) =
N∏

i=1

K∏

k=1

D∏

d=1

b
mikd

ikd

�(mikd)
λmikd−1e−bikdλikd , (7)

p(α) =
N∏

i=1

K∏

k=1

G(α|u, v) =
N∏

i=1

K∏

k=1

v
uik

ik

�(uik)
α

uik−1
ik e−vikαik , (8)

p(β) =
N∏

i=1

K∏

k=1

G(β|u′, v′) =
N∏

i=1

K∏

k=1

v
′u′

ik

ik

�(u′
ik)

β
u′

ik−1
ik e−v′

ikβik . (9)

3 Model Fitting by Variational Bayes

In this part, we systematically develop an effective learning approach that is tailored
for learning the proposed IBL-HMM based on variational Bayes (VB). The central
idea of our VB model learning approach is to discover a suitable approximation
q(S, L,�) to the true posterior p(S,L,�|X), where {S,L,�} denotes the set of
latent and unknown variables in IBL-HMM as described previously. To obtain a
tractable inference procedure, we apply the mean-field theory [27] as

q(S, L,�) = q(S, L)q(�) = q(S, L)q(a)q(π)q(c)q(λ)q(α)q(β). (10)

Based on VB inference, we can find the approximations q(S, L) and q(�) (also
known as variational posteriors) by maximizing the objective function, which is the
evidence lower bound (ELBO) and is defined by:

ELBO(q) =
∫

q(S, L,�) ln
p(X, S,L,�)

q(S, L,�)
dSdLd�
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=ELBO(q(π)) + ELBO(q(a)) + ELBO(q(c)) + ELBO(q(S, L))

+ ELBO(q(λ)) + ELBO(q(α)) + ELBO(q(β)) + Constant.

(11)

3.1 The Optimization of q(a), q(π), and q(c)

The variational posteriors of the initial state probability matrix q(π), the state
transition matrix q(a), and the mixing coefficient matrix q(c) can be optimized by
maximizing the ELBO in (17) as

q(a) =
N∏

i=1

Dir(ai1, . . . , aiN |	a
i1, . . . , 	

a
iN ). (12)

q(π) = Dir(π1, . . . , πN |	π
1 , . . . , 	π

N), (13)

q(c) =
N∏

i=1

Dir(ci1, . . . , ciK |	c
i1, . . . , 	

c
iK), (14)

where the involved hyperparameters can be obtained by:

	a
ij =

T −1∑

t=1

ωa
ijt + θa

ij , (15)

	π
i = ωπ

i + θπ
i , (16)

	c
ik =

T∑

t=1

ωc
ikt + θc

ik, (17)

with ωa
ijt , ωλ

i , and ωc
ikt that are defined by:

ωa
ijt = q(st = i, st+1 = j), (18)

ωπ
i = q(s1 = i), (19)

ωc
ikt = q(st = i, lt = k). (20)
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It is noteworthy that the values of ωa
ijt , ωπ

i , and ωc
ikt can be easily obtained through

the classic forward–backward algorithm according to [28].

3.2 The Optimization of q(λ), q(α), and q(β)

The variational posteriors q(λ),q(α), and q(β) can be optimized by maximizing the
ELBO with respect to the corresponding parameter as

q(λ) =
N∏

i=1

K∏

k=1

D∏

d=1

G(λikd |m∗
ikd , b∗

ikd ), (21)

q(α) =
N∏

i=1

K∏

k=1

G(αik|u∗
ik, v

∗
ik), (22)

q(β) =
N∏

i=1

K∏

k=1

G(βik|u′∗
ik, v

′∗
ik), (23)

where we have

m∗
ikd =mikd +

T∑

t=1

ωc
ikt λ̄ikd

[

ψ(

D∑

d=1

λ̄ikd) + ψ ′(
D∑

d=1

λ̄ikd)

D∑

j �=d

(〈ln λikj 〉

− ln λ̄ikj )λ̄ikj − ψ(λ̄ikd)

]

, (24)

b∗
ikd = bikd −

T∑

t=1

ωc
ikt

[

ln xtd − ln(

D∑

d=1

xtd)

]

, (25)

u∗
ik =uik +

T∑

t=1

ωc
ikt

[
β̄ikψ

′(ᾱik + β̄ik)(〈ln βik〉 − ln β̄ik) + ψ(ᾱik + β̄ik)

− ψ(ᾱik)
]
ᾱik, (26)

v∗
ik = vik −

T∑

t=1

ωc
ikt

[

ln(

D∑

d=1

xtd) − ln(1 +
D∑

d=1

xtd)

]

, (27)
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u′∗
ik =u′

ik +
T∑

t=1

ωc
ikt

[
ᾱikψ

′(ᾱik + β̄ik)(〈ln αik〉 − ln ᾱik) + ψ(ᾱik + β̄ik)

− ψ(β̄ik)
]
β̄ik, (28)

v′∗
ik = v′

ik +
T∑

t=1

ωc
ikt ln(1 +

D∑

d=1

xtd), (29)

where the expected values in above equations are given by:

λ̄ikd = m∗
ikd

b∗
ikd

, ᾱik = u∗
ik

v∗
ik

, β̄ik = u′∗
ik

v′∗
ik

, (30)

〈
ln λikd

〉 = ψ(m∗
ikd ) − ln b∗

ikd , (31)

〈
ln αik

〉 = ψ(u∗
ik) − ln v∗

ik,
〈
ln βik

〉 = ψ(u′∗
ik) − ln v′∗

ik. (32)

3.3 The Optimization of q(S,L)

The joint variational posterior q(S, L) is optimized by maximizing the ELBO with
respect to the state indicator S and the mixture component indicator L

q(S,L) = 1

Z
π∗

s1

T −1∏

t=1

a∗
st st+1

T∏

t=1

c∗
st ,lt

IBL∗(xt |λst lt , αst lt , βst lt ), (33)

where we have

π∗
i = exp

[ ∫

q(π) ln πidπ

]

= exp

[

�(	π
i ) − �(

N∑

i=1

	π
i )

]

, (34)

a∗
ij = exp

[ ∫

q(a) ln aij da
]

= exp

[

�(	a
ij ) − �(

N∑

j=1

	a
ij )

]

, (35)

c∗
ik = exp

[ ∫

q(c) ln cikdc
]

= exp

[

�(	c
ik) − �(

K∑

k=1

	c
ik)

]

. (36)
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IBL∗(xt |λst lt , αst lt , βst lt ) = exp

[
〈
ln

�
(∑D

d=1 λikd

)

∏D
d=1 �(λikd)

〉 + 〈
ln

�(αik + βik)

�(αik)�(βik)

〉

+
(

ᾱik −
D∑

d=1

λ̄ikd

)

ln

(
D∑

d=1

xtd

)

− (
ᾱik + β̄ik

)
ln

(

1 +
D∑

d=1

xtd

)

+
D∑

d=1

(
λ̄ikd − 1

)
ln xtd

]

, (37)

where the normalizing constant Z in (33) can be obtained by:

Z = q(X|�∗) =
∑

S,L

π∗
s1

T −1∏

t=1

a∗
st st+1

T∏

t=1

c∗
st ,lt

IBL∗(xt |λst lt , αst lt , βst lt ). (38)

It is noteworthy that (38) can be considered as an approximation to the likelihood of
the optimized model with parameters �∗, as we compare it with (3).

As the ELBO(q) in (11) is convex with respect to each of the variational
posterior, the proposed VB inference algorithm for leaning IBL-HMM is guaranteed
to converge [27]. Moreover, it is straightforward to inspect the convergence status
by checking if the variation in ELBO(q) has fallen below some predefined threshold
(e.g., less than 10−4). The VB-based algorithm for learning the IBL-HMM is
provided in Algorithm 2.

Algorithm 2 The VB inference of IBL-HMM
1: Initialize hyperparameters
2: Initialize ωπ , ωa, andωc from their prior distributions with (4), (5), and (6)
3: Compute 	π , 	a , and 	c with (15), (16), and (17)
4: Initialize π , a, and c with (34)∼(36)
5: repeat
6: Compute the responsibilities ωλ, ωa , and ωc using λ, a, and c with (18), (19), and (20)
7: Optimize variational posteriors q(λ), q(α), and q(β) with (21) ∼ (23)
8: Update 	π , 	a , and 	c using ωπ , ωa , and ωc with (15), (16), and (17)
9: Update λ, a, and c using 	π , 	a , and 	c with (34)∼(36)

10: Compute the approximated likelihood Z using (38)
11: until Convergence is reached

4 Experimental Results

In order to test the effectiveness of the proposed IBL-HMM and the developed VB
model learning method, we conducted two experiments on two real-world positive
sequential data sets. We initialized the hyperparameters as follows: mikd = 0.5,
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Table 1 The detailed information of the tested data sets

Data sets No. of observations No. of features No. of classes

AR 75128 8 4

EEG 14980 14 2

bikd = 0.01, uik = 0.1, and vik = 0.05. The initial value of the number of mixture
components K in the IBL mixture model was set to 10. The number of hidden
states for all experiments was set to 2. These values were chosen based on cross-
validation.

4.1 Data Sets and Experimental Settings

In our experiments, two publicly available data sets from the UCI Machine Learning
Repository1 were adopted for testing the performance of the proposed IBL-HMM,
including the activity recognition with healthy older people using a batteryless
wearable sensor data set (denoted by the AR data set), and the EEG eye state data
set (denoted by the EEG data set).

The AR data set contains sequential motion data from 14 healthy older people
aged 66 to 86 years old using a batteryless, wearable sensor on top of their clothing
for the recognition of activities in clinical environments. It includes 75218 data
sequences that can be divided into 4 different activities (sit on bed, sit on chair,
lying, and ambulating), where each sequence contains 8 features (e.g., Acceleration
reading in G for frontal axis, Received signal strength indicator, etc.).

The EEG data set contains data sequences that were obtained from one con-
tinuous EEG measurement with the Emotiv EEG Neuro headset. The duration of
the measurement was 117 seconds. The eye state (open or closed) was detected
via a camera during the EEG measurement and added later manually to the file after
analyzing the video frames. This data set includes 14980 sequences with 14 features.
Table 1 summarizes the information of these two real-life sequential data sets.

In our experiment, these two data sets were normalized and then modeled by
the proposed IBL-HMM. In order to demonstrate the advantages of our model, we
compared it with other well-defined HMMs that employ different mixture models as
their emission densities: the HMM with Gaussian mixture models, which is learned
by VB inference (GMM-HMM-VB) [8], the HMM with Dirichlet mixture model,
which is learned by EM algorithm (DMM-HMM-EM) [16], the HMM with inverted
Dirichlet mixture model, which is learned by EM algorithm (IDMM-HMM-EM)
[17], and the HMM with inverted Dirichlet mixture model, which is learned by VB
inference (IDMM-HMM-VB) [26]. For the tested models, we adopted the same

1 https://archive.ics.uci.edu.

https://archive.ics.uci.edu
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Table 2 The average
recognition performance over
10 runs by different
approaches

Methods The AR data set

GMM-HMM-VB [8] 0.801 ± 0.011

DMM-HMM-EM [16] 0.827 ± 0.009

IDMM-HMM-EM [17] 0.839 ± 0.015

IDMM-HMM-VB [26] 0.855 ± 0.013

IBL-HMM 0.881 ± 0.010

Table 3 The average
recognition performance over
10 runs by different
approaches

Methods The EEG data set

GMM-HMM-VB [8] 0.839 ± 0.012

DMM-HMM-EM [16] 0.853 ± 0.017

IDMM-HMM-EM [17] 0.882 ± 0.015

IDMM-HMM-VB [26] 0.903 ± 0.021

IBL-HMM 0.932 ± 0.016

parameter values as in their original papers. All tested models were implemented on
the same data sets as described in our experiments.

Tables 2 and 3 demonstrate the recognition performance by different models on
the two real data sets. As we can see from these two tables, the proposed IBL-HMM
with VB inference is able to outperform other HMM-based approaches with higher
recognition accuracies for all data sets, which verified the merits of applying IBL-
based HMMs for modeling activities and EEG data. We may also notice that HMM
based on Gaussian mixture models (GMM-HMM-VB) has obtained the lowest
recognition performance for both data sets, which verifies that the HMM with GMM
emission densities is not a good choice for modeling positive sequential data.

5 Conclusion

In this chapter, we proposed a novel continuous HMM for modeling positive
sequential observations, in which the emission distribution of each hidden state is
distributed according to an IBL mixture model that has shown better capability
for modeling positive data than other popular distributions (e.g., the Gaussian
distribution). The proposed IBL-HMM was learned by theoretically developing
a convergence-guaranteed algorithm based on VB inference. We demonstrated
the advantages of our model by conducting experiments on real-world positive
sequential data sets.
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Multivariate Beta-Based Hidden Markov
Models Applied to Human Activity
Recognition

Narges Manouchehri, Oumayma Dalhoumi, Manar Amayri,
and Nizar Bouguila

1 Introduction

Human Activity Recognition (HAR) has become a vibrant research area and
several studies have been conducted so far. Analyzing activities is complicated but
valuable in our real life and it has been mainly used for important applications
such as automated surveillance systems [1, 2], remote monitoring, healthcare [3–6],
analyzing environments such as smart buildings [7–21]. Scientists have leveraged
various approaches to obtain activity-related information and a noticeable amount
of systems have been developed. In addition, there is a tremendous improvement
in using smart technologies, and diverse electronic devices were introduced to
our daily lives. This has led to generating a huge amount of data based on two
mainstream systems: vision and sensor-based platforms [22–26]. Collecting vision-
based data is relatively easy and such type of data has been initially used for
activity recognition over the past decades. Working with these data may provide
good results; however, we face some critical issues such as lack of privacy. On
the other hand, due to the popularity of using low-priced sensors, capturing human
behaviors and logging of daily data became so practical and common. A significant
amount of research was conducted in the light of such a convenient solution. To
collect sensor-based data, there are a variety of techniques such as deploying object-
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tagged, ambient, and wearable sensors [27–33]. Though using a sensing platform
such as smartwatches, smartphones, or tagged objects may not always be feasible.
For instance, we may simply forget to wear the device or miss-use an object. Thus,
collecting data from the sensors that need human interaction is more challenging.
This motivated us to focus on ambient sensors platforms [34–39] as they are
independent of users during the procedure of data collection.

Analyzing human activity naturally carries some issues such as complexity of
association of activities to multiple users, extraction of distinguishable features for a
specific activity, differentiating similar activities (for instance walking and running),
unexpected events that affect the activity (for example falling down during walking),
generating an unknown class of activity as a result of an accidental event, diverse
pattern and styles for a single activity even for a specific individual, high complexity
of some activities (such as cooking that needs several actions), environmental noise,
and difficulties of data annotation.

Thanks to the rapid progress of computational power and admirable development
in numerous analytical methods, many machine learning techniques have been
broadly applied to extract meaningful patterns and infer human activities in the
past couple of decades [40]. For instance, deep learning methods are among the
most attractive ones [41–43] and have shown outperformance compared to previous
supervised machine learning techniques in several fields. However, these models
need large-scale labeled data for training and evaluation. Annotation is a remarkable
barrier as it is expensive and time-consuming. These characteristics encouraged
us to focus on Hidden Markov Models (HMMs), which are known as powerful
generative models specifically for temporal data. HMMs have demonstrated great
potential in different fields and applications such as speech processing, anomaly
detection, healthcare, facial identification, stock market and financial analysis and
human activity recognition [44–55]. Considering several works in this domain, we
realize that the typical choice of emission probability distribution follows Gaussian
Mixture Models (GMM) [56–61]. In recent years, some researches have shown that
this assumption of Gaussianity could not be generalized while working on various
kinds of data. Thus, other distributions such as Dirichlet, generalized Dirichlet, and
inverted Dirichlet distribution [62–65] have been applied as capable alternatives.
This motivated us to conduct our research on multivariate Beta mixture models
(MBMM), which has a high potential and flexibility to model the symmetric,
asymmetric, and skewed data [66, 67]. Thus, we improved structure of HMM
assuming that emission probabilities are raised from MBMM.

To estimate the parameter of our models including HMM and MBMM param-
eters, we apply two well-known methods: maximum likelihood (ML) approach
and variational inference framework with adoption of Expectation–Maximization
framework. Each of these methods has its own pros and cons. In ML, we determine
the model parameters in such a way that they maximize the likelihood. However, this
technique may lead to overfitting and convergence to a local maximum. To tackle
such issues, full Bayesian inferring methods have been introduced to approximate
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the likelihood. Despite achieving more precise results, these approaches are compu-
tationally expensive. In recent years, variational inference has been proposed, which
is faster than fully Bayesian approaches and provides better results compared to ML
[68].

The paper is organized as follows: in Sect. 2, we discuss HMM. Sections 3 and 4
are devoted to parameter estimation with ML and variational inference, respectively.
In Sect. 5, we present the results of evaluating our proposed model in human activity
recognition. We conclude in Sect. 6.

2 Hidden Markov Model

Hidden Markov Model (HMM) is generally applied in predicting hidden states using
sequential data and changing systems such as weather patterns, speech, text, etc. It
is specifically useful when we aim to compute the probability for a sequence of
events that may not be directly visible in the world. To explain HMM, we express
first Markov chain. Let us assume to have a sequence of events or states. Further to
Markov property, a principal assumption in establishing first-order Markov Model
is that future event or state depends only on the current event or state and not on
any other previous states. To express mathematically, the probability of an event
at a specific point of time t only depends on the event at time step t − 1. This
characteristic is one of the strengths of Markov Model. For instance, let us imagine
that we would like to predict tomorrow’s weather. Thus, we need to examine
only today’s weather and the previous day’s data have no impact on our current
prediction. In HMM the state of the system will be unknown or hidden; however, our
system will emit a visible symbol at every particular time step t . These observable
symbols are the only information that we have access to. To describe HMM, we
explain following parameters:

– Transition probability: This is the probability of changing one state at time step
t to another state or same state at time step t + 1. A principle property is that all
the transition probabilities given the current state sum up to 1.

– Initial Probability: At time step 0, the initial state of HMM that the system will
start from is denoted as π . All probabilities sum up to 1.

– Emission Probability or observation likelihoods: These are the parameters
expressing the probability of an observation generated from a specific state.

In this work, we use following notations to describe HMM:

• We assume to have an ordered observation sequence X = {X1, . . . , XT }
generated by hidden states H = {h1, . . . , hT } hj ∈ [1,K] such that K is the
number of the states.

• Transition matrix: B = {bjj ′ = P(ht = j ′ | ht−1 = j)}. This shows the
probabilities of transition between the states:
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• Emission matrix: C = {Cij = P(mt = j | ht = i)} for j ∈ [1,M] such that M

is the number of mixture components associated with the state j .
• πj : Initial probability to begin the observation sequence from the state j .

Thus, HMM is denoted by λ = {B,C, ϕ, π} such that ϕ is the set of mixture
parameters. In our work, we will apply multivariate Beta mixture model that has
one shape parameter. In HMM, we need to tackle three problems:

1. Evaluation problem: Given the model parameter λ, and a sequential dataset
represented by X , we need to find the likelihood of p(X | λ).

2. Learning problem: In HMM as an unsupervised learning method, number of
visible symbol is known and number of hidden states is unknown. In learning
process, we try to find the best set of state transitions and emission probabilities
through Expectation Maximization (EM) algorithm. This process is called
Forward–Backward or Baum–Welch algorithm.

3. Decoding problem: After having the estimations for transition and emission
probabilities, we can then use model parameters to predict hidden states that
generated the observable sequence. This decoding process is known as Viterbi
Algorithm.

Emission probability distributions in HMM are commonly assumed to follow
Gaussian mixtures [56, 60, 69–74]. In this work, we construct HMM using multi-
variate Beta mixture model as emission probabilities. Our motivation behind this
choice is flexibility of multivariate Beta distribution (MB) and its potential to
model different-shaped data [75, 76]. To describe it, we assume first to have a D-
dimensional vector X = (

x1, . . . , xd

)
drawn from a MB distribution with following

probability density function where 0 < xd < 1 and Γ (.) indicates the Gamma
function:

MB(X | α) = Γ (| α |)∏D
d=1 x

αd−1
d∏D

d=0 Γ (αd)
∏D

d=1(1 − xd)(αD+1)

[
1 +

D∑

d=1

xd

(1 − xd)

]−|α|
(1)

α = (
α0, α1, . . . , αD

)
is the shape parameter where αd > 0 for d = 0, . . . , D

and | αj |= ∑D
d=0 αd . Figure 1 illustrates some examples of this distribution with

various parameters.

Fig. 1 Multivariate Beta distribution
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Fig. 2 Multivariate Beta mixture model with multiple components

Figure 2 illustrates some examples of finite multivariate Beta mixture model [77–
79] with multiple components.

By changing the emission probability distribution, some modifications in the
expectation maximization (EM) estimation process happen and we set following
notations for the quantities:

γ t
ht ,mt

� p(ht ,mt | x0, . . . , xT ) (2)

which represent the estimates of the states and mixture components and,

ξ t
ht,ht+1 � p(ht , ht+1 | x0, . . . , xT ) (3)

for representing the local states sequence given the whole observation set. In
expectation step (E-step), we estimate γ t

ht ,mt
and ξ t

ht ,hr+1 for all t ∈ [1, T ].
These quantities are obtained with the initial parameters at E-step and the result
of the maximization step (M-step) subsequently. We compute them with a similar
forward–backward procedure as for HMM with mixtures of Gaussians. In M-step,
we aim to maximize the data log-likelihood by maximizing its lower bound. We
represent Z and X as the hidden variables and data, respectively. The data likelihood
L(θ | X) = p(X | θ) is expressed by

E(X, θ) − R(Z) =
∑

Z

p(Z | X) log(p(X, Z)) −
∑

Z

p(Z | X) log(p(Z | X))

=
∑

Z

p(Z | X) log(p(X | θ)) = log(p(X | θ))
∑

Z

p(Z | X) (4)

= log(p(X | θ)) = L(θ | X)

where θ represents all the HMM parameters. E(X, θ) is the value of the complete-
data log-likelihood with the maximized parameters θ . R(Z) is the log-likelihood of
hidden data given the observations.
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The expected complete-data log-likelihood is defined as follows:

E(X, θ, θold ) =
∑

Z

p(Z | X, θold ) log(p(X, Z | θ)) (5)

In this part, we explain first the case of a unique observation X and then we
extend it to the whole dataset X.

The complete-data likelihood for X can be expressed by

p(X, Z | θ) = p(h0)

T −1∏

t=0

p(ht+1 | ht )

T∏

t=0

p(mt | ht )p(xt | ht ,mt ) (6)

The different terms of the expression are identified as follows:

p(X, Z | θ) = πh0

T −1∏

t=0

Bht ,ht+1

T∏

t=0

Cht ,mtMB(xt | ht ,mt ) (7)

As we assume that MB distribution is emission probability, we substitute it in
Eq. (7) and after applying logarithm to the expression, we get the complete-data
log-likelihood:

log(p(X, Z | θ)) = log(πh0) +
T −1∑

t=0

log(Bht ,ht+1) +
T∑

t=0

log(Cht ,mt )+

+
T∑

t=0

log

(

Γ

(
D∑

d=0

αd

))

− log

(
D∏

d=0

Γ (αd)

)

+
D∑

d=1

(
(αd − 1) log xd

)

(8)

−
D∑

d=1

(
(αd + 1) log(1 − xd)

)
−
(

D∑

d=0

αd

)

log

[
1 +

D∑

d=1

xd

1 − xd

]

The expected complete-data log-likelihood can then be written:

E(X, θ, θold ) =
K∑

k=1

M∑

m=1

γ 0
k,m log(πk) +

T∑

t=0

K∑

k=1

M∑

m=1

γ t
k,m log(Ck,m) (9)

+
T −1∑

t=0

K∑

i=1

K∑

j=1

ξ t
i,j log(Bi,j ) + logMB(X | α)
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logMB(X | α) =
T∑

t=0

D∑

d=0

K∑

k=1

M∑

m=1

γ t
k,m

[
log

(
Γ

( D∑

d=0

αk,m,d

))

− log

( D∏

d=0

Γ

(
αk,m,d

))
+

D∑

d=1

(
(αk,m,d − 1) log xd

)
(10)

−
D∑

d=1

(
(αk,m,d + 1) log(1 − xd)

)
−
( D∑

d=0

αk,m,d

)
log

[
1 +

D∑

d=1

xd

1 − xd

]]

For the dataset with more than one sequential observations, a sum over n ∈
[1, N], N ≥ 1 has to be added in front of Eq. (9). The sum over time goes from 0 to
Tn. Length of the observations is n and xd changes to xnd .

3 HMM Parameters Estimation with Maximum Likelihood

The maximization of expectation of complete-data log-likelihood with respect to π ,
B, and C results in following updated equations:

πnew
k ∝

N∑

n=1

M∑

m=1

γ
0,n
k,m (11)

Bnew
k,k′ ∝

N∑

n=1

Tn−1∑

t=0

ξ
t,n
k,k′ (12)

Cnew
k,m ∝

N∑

n=1

Tn∑

t=0

γ
t,n
k,m (13)

where k, k′ = {1, . . . , K}, and m = {1, . . . ,M}.
To estimate the parameter of logMB(X | α) in Eq. (10), we use EM algorithm

[77]. To tackle this problem, we need to find a solution to the following equation:

∂ logMB
(

X | α

)

∂αk,m, d
= γ t

k,mΨ0

( D∑

d=0

αk,m,d

)
− γ t

k,mΨ0(αk,m,d) (14)

− log

[
1 +

D∑

d=1

xld

1 − xld

]]
= 0

where Ψ0(.) is the digamma function.
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As there is no closed-form solution to estimate our parameters, we apply
Newton–Raphson method as an iterative technique to maximize logMB(α).

The global estimation equation is given by

θnew = θold − H(θold )−1 ∂L(X | θold )

∂θold
(15)

H is the Hessian matrix associated with logMB(X | α) and G is the first
derivatives vector defined by

G =
(

∂ logMB(X | α)

∂αk,m,d

, . . . ,
∂ logMA(X | α)

∂αk,m,D

)T

(16)

The Hessian of logMB(X | α) is calculated with the second derivatives:

∂2 logMB(X | α)

∂2αk,m,D

= γ t
k,mΨ1

(
D∑

d=0

αk,m,D

)

− γ t
k,mΨ1(αk,m,D) (17)

∂2 logMB(X | α)

∂αk,m,d1∂αk,m,d2

= γ t
k,mΨ1

( D∑

d=0

αk,m

)
(18)

where Ψ1(.) is the trigamma function.

H = γ̄ ×

⎛

⎜⎜⎜
⎜⎜⎜
⎜⎜⎜⎜
⎝

Ψ1

(
∑D

d=0 αd

)
− Ψ1(α1) Ψ1

(
∑D

d=0 αd

)
. . . Ψ1

(
∑D

d=0 αd

)

Ψ1

(
∑D

d=0 αd

)
Ψ1

(
∑D

d=0 αd

)
− Ψ1(α2) . . . Ψ1

(
∑D

d=0 αd

)

.

.

.
. . .

.

.

.

Ψ1

(
∑D

d=0 αd

)
. . . Ψ1

(
∑D

d=0 αd

)
− Ψ1(αD)

⎞

⎟⎟⎟
⎟⎟⎟
⎟⎟⎟⎟
⎠

(19)

Thus, H can be written as follows:

H = D + δAAT (20)

where D is a diagonal matrix,

D = diag[−γ̄ Ψ1(αD)] (21)
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and,

δ = γ̄ Ψ1

( D∑

d=0

αd

)
(22)

AT = (a0, . . . , aD), d = 0, . . . , D (23)

Thus, we have

H−1 = D−1 + δ∗A∗T

A∗ (24)

where D−1 is computed as follows:

A∗ = −1

γ̄

(
1

Ψ1(α1)
, . . . ,

1

Ψ1(αD)

)
(25)

δ∗ = γ̄ Ψ1

( D∑

d=1

αd

)[
Ψ1

( D∑

d=1

αd

) D∑

d=1

1

Ψ1(αd)
− 1

]
(26)

γ̄ = ∑D
d=1

∑T
t=1 γ d,t is the cumulative sum to the state estimates of the observation

sequence. After having H−1 and G, we update the parameters of the MB mixture
model. We monitor data likelihood and whenever there is no or minor change
and less than a threshold, we achieve convergence. As the data log-likelihood is
maximized with its lower bound, convergence of this bound can help us to stop
iterations. This lower bound is given by E(X, θ, θold ) − R(Z) in Eq. (5). R(Z) is
derived using Bayes rule:

p(Z | X) = p(h0)p(m0 | h0)

T∏

t=1

p(ht | ht−1)p(mt | ht ) (27)

= p(h0)
p(m0, h0)

p(h0)

T∏

t=1

p(ht , ht−1p(mt , ht ))

p(ht−1)p(ht )

We denote ηt � p(ht | x) and R(Z) is

R(Z) =
K∑

k=1

[
η0

k log(η0
k) + ηT

k log(ηT
k ) − 2

T∑

t=0

ηt
k log(ηt

k)

]

+
T∑

t=0

M∑

m=1

K∑

k=1

γ t
k,m log(γ t

k,m) +
T −1∑

t=0

K∑

k=1

K∑

k′=0

ξ t
i,j log(ξ t

i,j ) (28)
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4 HMM Parameters Estimation with Variational Inference

In this section, we will discuss variational approach in which we consider all the
parameters of HMM (such as transition matrix, the parameters of the emission
distributions, mixing matrix, initial state, vector coefficients) as random variables.
So, we assume a prior distribution for each of them. The likelihood of a sequence of
observations X given the model parameters is defined as follows such that S is the
set of hidden states and L the set of mixtures’ components:

p(X | A,C, π, α) =
∑

S

∑

L

πs1

[ T∏

t=2

ast−1,st

][ T∏

t=1

cst ,mt p(xt | αst ,mt )

]
(29)

Using the complete-data likelihood, we have

p(X) =
∫

dπdAdCdα
∑

S,L

p(A,C, π, α)p(X, S, L | A,C, π, α) (30)

As this quantity is intractable, we apply a lower bound by introducing an
approximating distribution q(A,C, π, α, S, L) of p(A,C, π, α, S, L | X), which
is the true posterior. Thus,

ln(p(X)) = ln

{∫
dAdCdπdα

∑

S,L

p(A,C, π, α)p(X, S, L | A,C, π, α)

}

≥
∫

dπdAdCdα
∑

S,L

q(A,C, π, α, S, L) ln

{
p(A,C, π, α)p(X, S, L | A,C, π, α)

q(A,C, π, α, S, L)

}

(31)

Considering Jensen’s inequality and recalling that KL(q || p) ≥ 0, we have
KL(q || p) = 0 when q equals the true posterior where KL is the Kullback–Leibler
distance between the true posterior and its approximate distribution. L(q) could be
considered as a lower bound to ln p(X) such that:

ln(p(X)) = L(q) − KL(q(A,C, π, α, S, L)‖p(A,C, π, α, S, L | X)) (32)

The true posterior distribution is not computationally tractable. So, we consider
a restricted family of distributions with the help of mean field theory and we can
write q in a factorized form: q(A,C, π, α, S, L) = q(A)q(C)q(π)q(α)q(S, L).
Thus, the lower bound can be defined by

ln(p(X)) ≥
∑

S,L

∫
dAdCdπdαq(π)q(A)q(C)q(α)q(S, L){ln(p(π)) + ln(p(A))
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+ ln(p(C)) + ln(p(α)) + ln(πs1) +
T∑

t=2

ln(ast−1,st ) +
T∑

t=1

ln(cst ,mt )

+
T∑

t=1

ln(p(xt | αst ,mt )) − ln(q(S, L)) − ln(q(π)) − ln(q(A)) − ln(q(C))

(33)

− ln(q(α))} = F(q(π)) + F(q(C)) + F(q(A)) + F(q(α)) + F(q(S, L))

We need to define the priors of all HMM parameters. A natural choice for the
prior of parameters A,C, and π is the Dirichlet distribution as all the coefficients of
these matrices and vector are strictly positive, less than 1, with each row summing
up to one.

p(π) = D(π | φπ) = D(π1, . . . , πK | φπ
1 , . . . , φπ

K)

p(A) =
K∏

i=1

D(ai1 , . . . , aiK | φA
i1
, . . . , φA

iK
)

p(C) =
M∏

i=1

D(ci1, . . . , ciM | φC
i1

, . . . , φC
iM

) (34)

For α as the shape parameter of multivariate Beta distribution, we define a
conjugate prior that can be expressed as follows:

p(α) = f (ν, μ)[Γ (
∑D

l=1 αl)
∏D

l=1 Γ (αl)
]ν

D∏

l=1

e−μl(αl−1) (35)

where f (ν, μ) is a normalization coefficient and (ν, μ) are hyperparameters. As
evaluation of the normalization coefficient is difficult, this prior is intractable and
we approximate it with the Gamma distribution G expressed as follows:

p(αijl) = G(αij l | uijl, vij l) = v
uijl

ij l

Γ (uij l)
α

uijl−1
ij l e−vij lαij l (36)

where l ∈ [1,D], i ∈ [1,K] and j ∈ [1,M] and u and v are strictly positive
hyperparameters.

p({αij }K,M
i,j=1) =

D∏

l=1

K∏

i=1

M∏

j=1

v
uijl

ij l

Γ (uij l)
α

uijl−1
ij l e−vij lαij l (37)
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The optimization of q(A), q(C), and q(π) are independent from the emission
distributions and common to other continuous HMM.

F(q(A)) =
∫

dAq(A) ln

[∏K
i=1

∏K
j=1 a

wA
ij −1

ij

q(A)

]
(38)

wA
ij =

T∑

t=2

γ A
ijt + φA

ij (39)

γ A
ijt � q(st−1 = i, st = j) (40)

q(A) =
K∏

i=1

D(ai1, . . . , aiK | wA
i1, . . . , w

A
iK) (41)

q(π) = D(π1, . . . , piK | wπ
1 , . . . , wπ

K) (42)

wπ
i = γ π

i + φπ
i (43)

γ π
i � q(s1 = i) (44)

q(C) =
K∏

i=1

D(ci1, . . . , ciM | wC
i1, . . . , w

C
iM) (45)

wC
ij =

T∑

t=1

γ C
ijt + φC

ij (46)

γ C
ijt � q(st = i, mt = j) (47)

For optimizing F(q(α)), we have

F(q(α)) =
∫

dαq(α) ln

{∏K
i=1

∏M
j=1 p(αij )

∏T
t=1 p(xt | αij )

γ c
ij t

q(α)

}
(48)

The log-evidence maximization is given by
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q(α) =
K∏

i=1

M∏

j=1

q(αij ), q(αij ) =
D∏

l=1

G(αij l | u�
ij l, v

�
ij l) (49)

u�
ij l = uijl + Uij l , v�

ij l = vij l − Vij l (50)

Uij l =
P∑

p=1

〈Zpij 〉ᾱij l

[
Ψ

( D∑

d=1

ᾱijd

)
− Ψ (ᾱij l)

+
D∑

d=1,d 
=l

Ψ ′
(

D∑

d=1

ᾱijd

)

ᾱijd(〈ln(αijd)〉 − ln(ᾱijd))

]
(51)

Vij l =
P∑

p=1

〈Zpjd〉
[

ln xpl − ln(1 − xpl) − ln

[
1 +

D∑

l=1

xil

(1 − xpl)

]]
(52)

The value of Zpij = 1 if Xpt belongs to state i and mixture component j and zero,
otherwise. Thus, 〈Zpij 〉 = ∑T

t=1 γ C
pij t = p(s = i, m = j | X) and we compute

responsibilities through a simple forward–backward procedure [80]. In the E-step,
the parameters that were estimated in previous step are kept fixed and q(S, L) is
estimated. We rewrite L(q) [81] as follows:

L(q) = F(q(S, L)) − KL(q(A,C, π, α) | p(A,C, π, α)) (53)

where

F(q(S, L)) =
∑

S

q(S)

∫
q(π) ln(πs1)dπ +

∑

S

q(S)

∫
q(A)

T∑

t=2

ln(ast−1,st )dA

+
∑

S,L

q(S, L)

∫
q(C)

T∑

t=1

ln(cst ,mt )dC

+
∑

S,L

q(S, L)

∫
q(α)

T∑

t=1

ln(f (xt | αst ,mt ))dα −
∑

S,L

q(S, L) ln(q(S, L))

(54)

and the second term is fixed in this E-step. Thus, we have

π�
i � exp[〈ln(πi)〉q(π)] = exp[Ψ (wπ

i ) − Ψ

(∑

i

wπ
i

)
]
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a�
jj ′ � exp[〈ln(ajj ′)〉q(A)] = exp[Ψ (wA

jj ′) − Ψ

(∑

j ′
wA

jj ′

)
]

c�
ij � exp[〈ln(cij )〉q(C)] = exp[Ψ (wC

ij ) − Ψ

(∑

j

wC
ij

)
] (55)

Ψ and 〈.〉 indicate the Digamma function and expectation with respect to the
quantity indicated as a subscript, respectively. Then, we optimize the following
quantity:

ln(p�(Xt | αst ,lt )) =
∫

q(α) ln(p(Xt | αst ,lt ))dα (56)

where

p
(
Xt | αst ,lt

) =
⎡

⎣
Γ
(∑D

l=0 αijl

)∏D
l=1 x

αjl−1
t l

∏D
d=0 Γ

(
ααijl

)∏D
l=1 (1 − xd) (αD) + 1

×
[

1 +
D∑

l=1

xtl

(1 − xtl)

]−
(∑D

l=0 αijl

)⎤

⎥
⎦

γ C
ij t

(57)

Then, we substitute Eq. (57) in Eq. (56). We discussed in detail the variational
inference for the case of multivariate Beta mixture models [67] and similar to our
previous works, we have

ᾱij l = uijl

vij l

, 〈ln(αijd)〉 = Ψ (uijd) − ln(vijd) (58)

The optimized q(S, L) is defined by

q(S, L) = 1

W
π�

s1

T∏

t=2

a�
st−1,st

T∏

t=1

c�
st ,lt

p�(Xt | θst ,lt ) (59)

where W as the normalizing constant is

W =
∑

S,L

π�
s1

T∏

t=2

a�
st−1,st

T∏

t=1

c�
st ,lt

p�(Xt | θst ,lt ) (60)

W is the likelihood of the optimized model (A�, C�, π�, α�, S, L) and we can
compute it via a forward–backward algorithm [80, 81]. The variational Bayesian
learning of the MB-based HMM is presented in Algorithm 1.
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Algorithm 1 Variational learning of MB-based distributions

1. φA = ones(1,K) × 1/K , φC = ones(1,M) × 1/M , φπ = ones(1,K) × 1/M

2. vij l = 1, uijl = αinitij l
, for all i, j, l

3. Draw the initial responsibilities γ A, γ C , and γ π from prior distributions with Eq. (34).
4. Compute wA,wC , and wπ with Eqs. (39), (43) and (46).
5. Initialize A,C, and π with coefficients computed with Eq. (55)
6. hlik kold = 106; hlik new = 105; iter = 0
7. while | hlik old − hlik new |≥ tol & iter ≤ maxIter do
8. Compute data likelihood dlik using X, u, v, and αinit with Eqs. (1) and (58).
9. Compute responsibilities γ A, γ C and γ π with forward–backward procedure using dlik, A,C,

and π. Eqs. (40), (44) and (47).
10. Update u and v with Eqs. (50) to (52).
11. Update wA,wC , and wπ using responsibilities γ A, γ C , and γ π with Eqs. (39), (43) and (46).

Update A,C, and π using wA,wC , and wπ with Eq. (55).
12. stopping criteria Compute hlik new with Eq. (60) and forward–backward procedure
13. iter + = 1

5 Experimental Results

To evaluate our proposed methodology, we selected datasets including ambient
sensors-based samples. We used a dataset called opportunity. In this publicly
available resource [82, 83], information was collected with three types of sensors
including external and wearable sensors. Figure 3 shows the setup and some of the
sensors fixed in points of interest or attached to volunteer users. We will test our
proposed algorithm just on a part of data collected by ambient sensors. This system
was able to recognize activities of different levels such as:

– Modes of locomotion sit, stand, lie, walk, idle (no activity).
– 5 high-level activity classes.
– 17 mid-level gesture classes (e.g., open/close door/fridge/dishwasher, drink).
– Low-level action classes relating 13 actions to 23 objects.

The ambient sensors include 13 switches and 8 3D acceleration sensors in kitchen
appliances and furniture. Data were collected from 4 volunteers with 6 runs of
experiment for each one of individuals (5 activities of daily life and one drill run,
which is a scripted sequence of activities). In our test, we focused on four actions:
standing, walking, lying, and sitting of four individuals in drill mode. Figure 4
illustrates the frequencies of activities for each individual. While modeling these
four datasets, we faced some issues. The first challenge was having missing data
points and we replaced them with the median of each feature in all 4 datasets. As
shown in Fig. 4, all datasets are unbalanced, which results in biased inference.
So, we applied Synthetic Minority Over-sampling Technique (SMOTE) to have
balanced datasets. Considering the various ranges of features, we normalized data
with Min-Max scaling method as follows:
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Fig. 3 Setup, wearable, object, and ambient sensors

X = X − Xmin

Xmax − Xmin

(61)

We compared the performance of three models: MB-based HMM with ML
(MB-HMM-ML) and variational (MB-HMM-VR) approach as well as Gaussian
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Fig. 4 Frequencies of activities for four individuals

mixture model HMM (CHH-HMM). To evaluate the performance of our proposed
model, we applied following metrics. T P, T N,FP , and FN represent the total
number of true positives, true negatives, false positives, and false negatives,
respectively.

Accuracy = T P + T N

Total number of observations

Precision = T P

T P + FP
(62)

Recall = T P

T P + FN

F1 − score = 2 × precision × recall

precision + recall

The results of evaluation are presented in Figs. 5 and 6. As it is shown, MB-
HMM-VR has the highest F1-score in all four cases with 87.39%, 88.53%, 91.64%,
and 86.34%. In each dataset, the results of MB-MHH-VR outperform the ones of
other two models. This promising outcome indicates the capability of our proposed
model.

In Fig. 6, the size of data in each cluster (after SMOTE over-sampling) is shown,
and it is multiplied by 4 as we consider equal samples for each cluster and the total
observation in each dataset is demonstrated also. In the case of individual 3, we have
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Fig. 5 Model performance evaluation

Fig. 6 Model performance evaluation
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the best results with 91.64, 90.79, and 89.02 percent of F1-score for MB-HMM-VR,
MB-HMM-ML, and GMM-HMM, respectively. This output could be a result of its
size (approximately doubled compared to the other three datasets).

6 Conclusion

In this work, we proposed multivariate Beta-based hidden Markov models as a
new extension of the HMMs and applied them to human activity recognition. Our
motivation was that the assumption of Gaussianity could not be valid for all types
of data. Other distributions such as multivariate Beta distribution have demonstrated
considerable flexibility to model data in various real-life applications. Multivariate
Beta distribution could be symmetric, asymmetric, or various skewed forms. Here,
we assumed that emission probability distributions are raised from multivariate
Beta mixture models. We believe that such modifications in the structure of GMM-
based HMM, which has been typically used, may carry some robustness. To find
the parameter of our MB-based HMM model, we applied two different learning
methods, maximum likelihood, and variational inference approach. Then, we tested
our model on four datasets related to human activity recognition. Our main goal
was studying and detecting the activities of an individual based on analyzing
ambient sensor-based data. The results of our test indicate that our proposed model
outperforms the conventionally used model such as GMM-based HMM. In future
work, we can study the activities of several individuals and test other distributions
as emission probabilities.
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Multivariate Beta-Based Hierarchical
Dirichlet Process Hidden Markov Models
in Medical Applications

Narges Manouchehri and Nizar Bouguila

1 Introduction

Hidden Markov model (HMM) is a powerful approach generally applied to model
Markov process systems with hidden states. This method is widely used specifically
in cases where we would like to capture latent information from observable
sequential data. This method has been successfully applied in several domains of
science and technology. In this chapter, we will focus on medical application of
this strong modeling approach. In medicine, HMM can assist us in monitoring
patient’s health changes, expressing progressive alterations to patients’ situation
or treatment process over time. For instance, it could be employed in verification
of a disease development, evaluating health condition, inspecting the results, and
probability assessment of transitions from a healthy to a disease state. HMM could
be effective in prediction and future risk estimation. There are several works devoted
to HMMs such as diagnosing Schizophrenia [1], analyzing cardiac function [2–
4], eye tracking [5], classification of EEG signals [6], B cell receptor sequence
analysis [7], EEG-based sleep stage scoring [8], estimating dynamic functional
brain connectivity [9], cancer analysis [10–13], predicting recurrence of cancers
[14], genetics [15, 16], speech recognition [17–22], predicting drug response [23],
cancer biomarkers detection [24], analyzing chemotherapy outcomes [25], human
activity analysis [26–31] such as fall detection and senior activity analysis using
motion sensors [32], HIV prediction [33], sentiment analysis [34], medical image
processing [35–37], and many other applications [38–46].

N. Manouchehri · N. Bouguila (�)
Concordia Institute for Information Systems Engineering, Concordia University, Montreal, QC,
Canada
e-mail: narges.manouchehri@mail.concordia.ca; nizar.bouguila@concordia.ca

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
N. Bouguila et al. (eds.), Hidden Markov Models and Applications,
Unsupervised and Semi-Supervised Learning,
https://doi.org/10.1007/978-3-030-99142-5_10

235

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-99142-5_10&domain=pdf
mailto:narges.manouchehri@mail.concordia.ca
mailto:nizar.bouguila@concordia.ca
https://doi.org/10.1007/978-3-030-99142-5_10


236 N. Manouchehri and N. Bouguila

However, in most of the applications, nature of sequential data is recursive. To
handle this situation, some extensions to typical HMM such as hierarchical hidden
Markov model [47] and hierarchical Dirichlet process hidden Markov model (HDP-
HMM) [48–50] have been proposed. In particular, HDP-HMM has considerable
flexibility thanks to its nonparametric structure and has been applied in various
areas such as speaker diarization, abnormal activity recognition, classifying human
actions, motion detection, segmentation, and classification of sequential data [51–
53]. This elegant structure is a solution to one of the challenges in HMM that
is defining the proper number of states. Also, it lets us learn more complex and
multimodal emission distributions in the hierarchical structure of sequences in real-
world applications.

Another issue while dealing with HMM is choosing a distribution for emission
probabilities. In several works devoted to HMM, Gaussian Mixture Models (GMM)
have been commonly used for modeling emission probability distribution [54–
59]. However, this assumption could not be generalized, and recent researches
indicate that other alternative such as Dirichlet, generalized Dirichlet, and inverted
Dirichlet distribution [60–64] could be considered for several types of data. Inspired
by these efforts, we were motivated to choose multivariate Beta mixture models
(MBMM) that provide considerable flexibility to model symmetric, asymmetric,
and skewed data [65, 66]. So, we construct our HDP-HMM model assuming that
the emission probabilities follow MBMM. We call our novel HDP-HMM model
“multivariate Beta-based hierarchical Dirichlet process hidden Markov models”
(MB-HDP-HMM).

To learn our proposed model, a variety of approaches have been investigated. For
instance, maximum likelihood approach may result in overfitting and converging
toward a local maximum. Another method is fully Bayesian inference that is precise
but has a long computational time. To overcome these prohibitive drawbacks, vari-
ational Bayesian approaches [67–69] have been proposed and applied to numerous
machine learning algorithms. This learning method is faster than fully Bayesian one
and more precise compared to the maximum likelihood approach.

Finally, we evaluate our proposed models on a medical application. The main
motivation is that our model is unsupervised, which makes it an adequate tool when
data labelling is expensive and takes considerable time. Health-related applications
are good examples because there are just medical experts who are eligible to
label medical data. Moreover, having predictable and explainable results in such
a sensitive domain is one of the essential needs. Therefore, decisions-making and
inference based on black boxes [70–72] may not be absolutely trustable. Another
concerning challenge is our limitation to access a huge amount of data because of
the tough confidentiality rules in healthcare. Thus, some platforms, such as deep
learning, which provide precise results but need lots of data for learning [73] could
not be easily used. Our proposed algorithm could handle datasets of various sizes,
and the process is explainable in human terms.
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Our contributions in this chapter could be summarized as follows:

1. We propose a modified version of the hierarchical Dirichlet process hidden
Markov model in which emission probabilities are raised from multivariate Beta
mixture models. This model, which is less costly compared to deep learning, is
capable to fit different sizes of datasets and outcomes are explainable.

2. We apply variational inference to learn our proposed algorithm and secure having
accurate outcomes within a proper time interval.

3. We measure the performance of our model and compare it with similar alterna-
tives in medical applications.

This chapter is organized as follows: In Sect. 2, we construct our model and
describe multivariate Beta-based hidden Markov models and multivariate Beta-
based hierarchical Dirichlet process of hidden Markov model. Section 3 is devoted
to parameter estimation with variational inference. In Sect. 4, we present the
results of evaluating our proposed model in human activity recognition. Finally,
we conclude in Sect. 5.

2 Model Specification

To express our proposed model, we start by explaining the basic structure of HMM
for a sequence of events or states. Then, we will add the assumption of having
multivariate Beta mixture models as emission probabilities. We call this model,
multivariate Beta-based hidden Markov model. Then, we discuss the hierarchical
Dirichlet process of this modified hidden Markov model, called multivariate Beta-
based hierarchical Dirichlet process hidden Markov model.

2.1 Multivariate Beta-Based Hidden Markov Model

Further to the Markovian characteristics of HMM, in the first-order Markov model,
the probability of each event t depends just on state t − 1 that happens immediately
before t . In HMM, a system with hidden states emits observable symbols at any
specific point of time.

To mathematically formulate HMM, we need the following parameters:

– Transition probability: Indicating the probability of a change in state from t to
t + 1. Sum of all these probabilities given the current state is equal to 1.

– Initial Probability: The initial state that the system starts from it is denoted as π .
These probabilities also sum up to 1.

– Emission probability or observation likelihoods: Parameters indicating the prob-
ability of a data point being generated from a specific state.
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In our work, HMM is expressed by λ = {B,C, ϕ, π} and the following notations:

1. T : Length of the sequence of our interest, M: the number of mixture components
in set L = {m, . . . , mM }, K: the number of the states.

2. A state sequence S = {S1, . . . , ST } drawn from P(st | st−1, . . . , s1) = P(st |
st−1).

3. Sequential data X = {X1, . . . , XT }.
4. Transition probability from state i to i′: A = {aii′ = P(st = i′ | st−1 = i)}.
5. Emission probability of observing j from state i: B = {Bij = P(mt = j | st =

i)} for j ∈ [1,M].
6. πj : Initial probability to begin the sequence from the state j .
7. ϕ is the set of mixture parameters. In this chapter, we apply multivariate Beta

mixture model and ϕ is the shape parameter, αij = (α1ij , . . . , αDij ), with i ∈
[1,K] and j ∈ [1,M].

We can denote the complete likelihood of HMMs as follows:

p(X | A,B, π, α) =
∑

S

∑

L

πs1

[ T −1∏

t=1

ast ,st+1

][ T∏

t=1

bst ,mt p(xt | αst ,mt )

]
. (1)

Here, we explain the model for one sequence. In case of having more observa-
tions, this could be generalized by adding a summation over the whole sequence.

p(xt | αst ,mt ) is the multivariate Beta distribution (MB). To describe it in detail,
let us assume to have a D-dimensional observation, X = (

x1, . . . , xD

)
, where all its

elements are greater than zero and less than one.
The probability density function of multivariate Beta distribution [74] is

expressed as follows:

p(X | α) = Γ (| α |)∏D
d=1 x

αd−1
d∏D

d=0 Γ (αd)
∏D

d=1(1 − xd)(αd+1)

[
1 +

D∑

d=1

xd

(1 − xd)

]−|αj |
. (2)

α = (
α0, . . . , αD

)
is the shape parameter such that αd > 0 for d = 0, . . . , D,

| α |= ∑D
d=0 αd , and Γ (.) represents the Gamma function.

Figures 1 and 2 illustrate some examples of multivariate Beta distributions and
multivariate Beta mixture models, respectively. These figures illustrate the flexibility

Fig. 1 Multivariate Beta distribution with different shape parameters
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Fig. 2 Multivariate Beta mixture models with 2, 3, 4, and 5 components

of this distribution. So, it has the capability of capturing symmetric and asymmetric
shapes of data [65, 66].

Thus, assuming that emission probabilities are raised from MB mixture model,
complete log-likelihood of p(X | B,C, π, α) could be written as

log(p(X, Z | λ)) = log(πs1) +
T −1∑

t=1

log(ast ,st+1) +
T∑

t=1

log(bst ,mt )+

+
T∑

t=1

[
log

(
Γ

( D∑

d=0

αd

))
− log

( D∏

d=0

Γ (αd)

)
+

D∑

d=1

(
(αd − 1) log xd

)

−
D∑

d=1

(
(αd + 1) log(1 − xd)

)
−

( D∑

d=0

αd

)
log

[
1 +

D∑

d=1

xd

1 − xd

]]
(3)

2.2 Multivariate Beta-Based Hierarchical Dirichlet Process of
Hidden Markov Model

To express our hierarchical HMM, we need first to describe Dirichlet process (DP)
and stick-breaking construction [75, 76]. The Dirichlet process [77] is an extension
of the Dirichlet distribution. It has two inputs, a nonnegative precision scalar, ε,
and a base distribution G0. DP is defined over the measurable space (Θ,B). For a
disjoint set of B = {B1, . . . , BD} and partition of Θ , the Dirichlet process is defined
as follows where

⋃
i Bi = Θ:

(G (B1) , . . . ,G (BD)) ∼ Dir (εG0 (B1) , . . . , εG0 (BD)) . (4)
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In terms of dimensionality, DP is infinite (D → ∞). If we draw G from a DP
expressed by G ∼ DP (εG0), we will have

G =
∞∑

i=1

piδθi
. (5)

θi indicated the location drawn from G0 and is related to a measure, pi .
We can consider θi as the emission probability at state i in HMM. To move

forward, we need to explain general definition of a stick-breaking process. Let us
assume a probability mass function p = (p1, . . . , pd+1), so we have

pi = Vi

i−1∏

i′=1

(1 − Vi′) , pd+1 = 1 −
d∑

i=1

pi Vi ∼ Beta (vi, ωi) . (6)

vi = (v1, . . . , vd) and ω1 = (ωd, . . . , ωi) are nonnegative, real parameters for
i = 1, . . . , d. The value of d could be either finite or infinite, and finite case is
similar to a distribution called generalized Dirichlet distribution (GDD) [78, 79]. In
infinite case, we may have various ranges of priors by changing v and ω [80]. For
HDP-HMM, we construct a draw from DP with the following representation of a
stick-breaking process:

G =
∞∑

i=1

piδθi
, pi = Vi

i−1∏

j=1

(
1 − Vj

)
, Vi ∼ Beta(1, γ ), θi ∼ G0. (7)

γ = ∑
i βi affects a draw from DP. If γ → 0, a measure degeneration at a

random component with location drawn from G0 happens. In contrast, if γ → ∞,
the breaks are very small and G that reaches to convergence to the empirical
distribution of the individual draws from G0, and G0 is reproduced.

If we focus on a distribution from which we draw the data and show it by p(x | θ)

with parameter θ , a DP mixture model is presented by

xi |θi ∼ p (x | θi) , θi | G ∼ G, G | γG0 ∼ DP (γG0) . (8)

Hidden Markov models could be considered as a special case of mixture models
that are dependent on the states. The supports of the mixtures are shared among
them with various mixing weights. We represent state-dependent mixture model of
HMM as follows where θi ≡ (bi1, . . . , biM), distribution is MB, and the initial state
is selected from π :

xt

∣∣θst ∼ MB (
θst

)
, θst

∣∣ st−1 ∼ Gst−1 , Gi =
D∑

i′=1

aii′δθi′ . (9)
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If we consider each transition as a DP, it will make a problem specifically if
we assume that each row, i, is raised from an infinite transition probability matrix
expressed as follows:

Gi =
∞∑

i′=1

aii′δθii′ , aii′ = Vii′
i′−1∏

k=1

(1 − Vik) , Vii′ ∼ Beta(1, γ ), θii′ ∼ G0.

(10)

aii′ presents the i′th component of ai that is an infinite vector. In case of having
a continuous G0, the probability of transition to a previous state is zero for each θii′
because p (θm = θn) = 0 for m �= n. Thus, such approaches are not practical to
construct Dirichlet process of HMM.

Hierarchical Dirichlet process hidden Markov model is proposed to tackle this
issue. In hierarchical Dirichlet process (HDP), the base distribution, G0, over Θ is
itself arised from a DP that relatively assures us that G0 will be almost discrete. We
formulate the process as

Gm ∼ DP (βG0) , G0 ∼ DP(γH). (11)

In HDP as a two-level hierarchical structure, the distribution on the data points
in Θ is changed from the continuous H to the discrete, but infinite G0. If we draw
for Gm multiple times, the weight on the same set of states will be substantial. This
procedure and second level of DP can be expressed as follows with truncation level
of K:

G0 =
K∑

i=1

piδθi
, pi = Vi

i−1∏

i′=1

(1 − Vi′) , Vi ∼ Beta(1, γ ), θi ∼ H (12)

(Gm (θ1) ,Gm (θ2) , . . . , Gm (θK)) ∼ Dir (βp1, βp2, . . . , βpK) .

G (θi) indicates a probability measure at location θi . To summarize the procedure
of two-level hierarchy, we assume to have a DP at top level through which the
number of states and their observation parameters are chosen. Then, the mixing
weights are considered as prior for second level where the transition probabilities
are drawn. As a conjugacy between these two levels does not exist, there is not a
truly variational solution [81]. To construct HDP-HMM, we use a prior similar to
Eq. (6) that is more general and flexible compared to the stick-breaking process
for drawing from the DP, in which we draw simultaneously both of Beta(1, α)-
distributed random variables and the atoms associated with the resulting weights.
As we explained before, Eq. (6) could be considered as a GDD, and its density
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function of V = (V1, . . . , VK) is expressed as follows where v = (v1, v2, . . . ) and
ω = (ω1, ω2, . . . ):

f (V ) =
K∏

i=1

f (Vi) =
K∏

i=1

Γ (vi + ωi)

Γ (vi) Γ (ωi)
V

vi−1
i (1 − Vi)

ωi−1 . (13)

By changing V to p, the density of p is defined by

f (p) =
K∏

i=1

(
Γ (vi + ωi)

Γ (vi) Γ (ωi)
p

vi−1
i

)
p

ωK−1
K+1 (1 − P1)

ω1−(v2+ω2) × · · · × (14)

(1 − PK−1)
ωK−1−(vK−1+ωK−1) .

Mean and variance for each element, pi , are

E [pi] = vi′
∏i′−1

�=1 ω�
∏i′

�=1 (v� + ω�)
, V [pi] = vi′ (vi′ + 1)

∏i′−1
�=1 ω� (ω� + 1)

∏i′
�=1 (v� + ω�) (v� + ω� + 1)

. (15)

GDD is a special case of typical standard Dirichlet distribution. In GDD case,
the construction of p from the infinite process of Eq. (14) is referred by p ∼
GDD(v,ω). For a set of N observations that are independent identically distributed

(iid) , Xn
iid∼ Mult(p), the posterior of the respective priors presented by v′ and ω′

is parametrized as follows:

v′
i = vi +

N∑

n=1

1 (Xn = i) , ω′
i =

∑

j>i

N∑

n=1

1 (Xn = j) . (16)

1(·) is an indicator function that will be equal to one if the argument is true and
zero, otherwise. This is applied to count the number of times the random variables
are equal to values of interest.

3 Variational Learning

To estimate model’s parameters, we adopt variational inference. In this method, we
introduce an approximating distribution q(A,B, π, α, S, L) for the true posterior
p(A,B, π, α, S, L | X). Then, we try to minimize the distance between these two
distributions with the help of Kullback–Leibler distance. As marginal distribution
is not tractable, we try to find a tractable lower bound in it. Based on Jensen’s
inequality, as KL(q || p) ≥ 0, KL(q || p) = 0 when q is equal to true posterior.
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L(q) as a lower bound to ln p(X) could be found by

ln(p(X)) = L(q) − KL(q(A,B, π, α, S, L)‖p(A,B, π, α, S, L | X)). (17)

The true posterior distribution is practically intractable and cannot be directly
applied in variational inference. Borrowing the idea from mean field theory, we
consider a restricted family of distributions q and adopt a factorization approach
[82, 83]. So, we have

q(A,B, π, α, S, L) = q(A)q(B)q(π)q(α)q(S, L). (18)

With the help of iterative expectation maximization (EM), we perform this
approximation. Expectation step is as follows [84] such that mi is the expected
number of data points from a component in an iteration with truncation to K

dimensions:

〈ln Vi〉 = ψ (1 + 〈xi〉) − ψ

(
1 + γi +

K∑

i′=i

〈xi′ 〉
)

(19)

〈ln (1 − Vi)〉 = ψ

⎛

⎝γi +
K∑

i′=i+1

〈xi′ 〉
⎞

⎠ − ψ

(
1 + γi +

K∑

i′=i

〈xi′ 〉
)

(20)

〈ln p1〉 = 〈ln Vi〉 (21)

〈ln pk〉 = 〈ln Vk〉 +
k−1∑

i′=1

〈ln (1 − Vi′)〉 2 ≤ k < K (22)

〈ln pK 〉 =
K−1∑

i′=1

〈ln (1 − Vi′)〉 . (23)

ψ represents the digamma function. Then, we optimize the following quantity:

ln(p�(Xt | αst ,mt )) = φB
ijt

∫
q(α) ln(p(Xt | αst ,mt ))dα (24)

= φB
ijt

∫
q(α) ln

⎛

⎜⎜⎜⎝

Γ

(∑D
d=1 αijl

)

∏D
d=1 Γ (αijl)

⎞

⎟⎟⎟⎠ dα + φB
ijt

∫
q(α)

[ D∑

d=1

(
(αd − 1) log xtd

)

−
D∑

d=1

(
(αd + 1) log(1 − xtd)

)
−

( D∑

d=0

αd

)
log

[
1 +

D∑

d=1

xtd

1 − xtd

]]
dα,
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where φB
ijt � q(st−1 = i, mt = j) and ∗ indicates an optimized parameter. p(Xt |

αst ,mt ) is the MB distribution. We presented in detail the variational inference of
multivariate Beta mixture models in our previous works [66, 85], and similar to
them, we have

ᾱij l = uijl

vij l

(25)

〈
Γ (

∑D
d=1 αijl)∏D

d=1 Γ (αijl)

〉
= ln

Γ
(∑D

l=1 αjl

)
∏D

l=1 Γ
(
αjl

) +
D∑

l=1

αjl

[
ψ

( D∑

l=1

αjl

)
− ψ

(
αjl

)]

×
[〈

ln αjl

〉 − ln αjl

]
+ 1

2

D∑

l=1

α2
j l

[
ψ ′

( D∑

l=1

αjl

)
− ψ ′(αjl

)]

×
〈(

ln αjl − ln αjl

)2
〉
+ 1

2

D∑

a=1

D∑

b=1,a �=b

αja αjb

[
ψ ′

( D∑

l=1

αjl

)

×
(〈

ln αja

〉 − ln αja

)
×

(〈
ln αjb

〉 − ln αjb

)]
(26)

〈ln(αijd)〉 = Ψ (uijd) − ln(vijd). (27)

In maximization step, we update variational factors as follows:

q(A) =
K∏

i=1

GDD(v′
i ,ω

′
i ) (28)

q(α) =
K∏

i=1

M∏

j=1

q(αij ), q(αij ) =
D∏

d=1

G(αij l | u�
ij l, v

�
ij l) (29)

q(π) = D(v′
π ,ω′

π ). (30)

Considering [84], we have

q(γ ) =
K∏

i=1

K−1∏

i′=1

G (c + 1, d − 〈ln (1 − Vii′)〉) (31)

q (γπ ) =
K−1∏

i=1

G (τπ1 + 1, τπ2 − 〈ln (1 − Vπi)〉) . (32)
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u�
ij l = uijl + Uij l , v�

ij l = vij l − Vij l (33)

Uij l =
P∑

p=1

〈Zpij 〉ᾱij l

[
Ψ

( D∑

d=1

ᾱijd

)
− Ψ (ᾱij l) (34)

+
D∑

d=1,d �=l

Ψ ′
( D∑

d=1

ᾱijd

)
ᾱijd (〈ln(αijd)〉 − ln(ᾱijd))

]

Vij l =
P∑

p=1

〈Zpjd〉
[

ln xpl − ln(1 − xpl) − ln

[
1 +

D∑

d=1

xd

(1 − xpl)

]]
. (35)

ψ
(
.
)

and ψ ′(.
)

in the above equations represent the digamma and trigamma
functions. The value of Zpij = 1 if Xpt belongs to state i and mixture component
j , and zero, otherwise. Thus, 〈Zpij 〉 = ∑T

t=1 φC
pij t = p(s = i, m = j | X), and we

compute responsibilities through a simple forward–backward procedure [86].

π�
i � exp[〈ln(πi)〉q(π)]. (36)

4 Experimental Results

We tested our algorithm in human activity recognition (HAR). Providing infor-
mation and discovering knowledge about individuals’ physical activities is one
of the most attractive and important topics in numerous fields of science and
technology. Human activity recognition using various types of devices and sensor
networks is broadly used in a vast range of applications such as health, athletics,
and senior monitoring, rehabilitation, improving well-being, discovering patterns,
and detecting activities for security. Several scientists have focused on this complex
subject; however, there are lots of aspects to be addressed. In this application, data
are collected by wearable, object, and ambient sensors. For instance, in medicine,
caregivers could monitor and recognize the activities of patients who are suffering
from morbid obesity, diabetes, dementia, or other mental disorders. This helps
the healthcare system by preventing undesirable consequences based on predicting
abnormal activities. Due to the sensitivity of domains in which HAR could be used,
we tested our algorithm on this application as there are still issues for investigation
in realistic conditions. We chose a real dataset, called opportunity [87, 88], in
which information was collected with three types of sensors including external and
wearable sensors. Figures 3 and 4 show the setup and some types of sensors. Some
of these sensors were fixed in points of interest, and the others were attached to
volunteer users.
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Fig. 3 Platform and sensor setup

Fig. 4 Wearable sensors

This system was able to recognize activities of different levels as shown in Fig. 5.
The detailed information about sensors is as follows:

– Body-worn sensors: 7 inertial measurement units (IMUs), 12 3D acceleration
sensors, 4 3D coordinates from a localization system.

– Object sensors: 12 objects are instrumented with wireless sensors measuring 3D
acceleration and 2D rate of turn.
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Fig. 5 Different levels of activities

– Ambient sensors: 13 switches and 8 3D acceleration sensors in kitchen appli-
ances and furniture.

The experiment is based on data collected from 4 users and 6 runs per users
including 5 Activity of Daily Living (ADL) and one “drill” run. ADL is associated
with a very natural manner of daily activities, and in a drill, individuals execute a
scripted sequence of activities.

We consider here the mode of collection for four actions: standing, walking,
lying, and sitting. Also, we focused on the first individual and her/his 2 runs of
activities (first and third) and tested our algorithms on them.

4.1 First Individual, First Run of Activities

This dataset includes 4 activities of the first individual and has 108 features. By
analyzing data, we faced some challenges while testing our proposed algorithm on
this dataset. We summarize the issues and solutions as follows:

1. Oversampling to handle unbalanced data: As it is shown in Fig. 6, the number
of instances in each cluster is very different, and standing, walking, lying, and
sitting have 59.7%, 17.4%, 19.9%, and 3% of share, respectively. It is worth
noting that such inequality in the distribution of observations per class causes
a frequency bias, and our model may place more emphasis on learning from
instances with more common occurrence. We tackled this issue with the help
of Synthetic Minority Oversampling Technique (SMOTE). In this approach,
we generate new data points by interpolating between instances in the original
dataset. So, we achieved having a balanced dataset with 22,380 instances in each
cluster as shown in Fig. 7.

2. Feature scaling via normalization to handle various ranges of features:
The second issue that we faced was a broad range of features in the dataset. We
plotted some of the features in Fig. 8 to support our idea through visualization.
These box plots indicate that the minimum and maximum values, as well as
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Fig. 6 Bar and pie chart of HAR dataset 1

Fig. 7 Oversampling results with SMOTE

distribution of features, are so diverse. Also, Fig. 9 illustrates some examples
of feature distribution vs. activity labels. The solution to tackle this problem is
normalization or Min-Max scaling. This technique shifts and re-scale values in
such a way that their ranges will end up between 0 and 1. To do this, we use the
following formula:

X = X − Xmin

Xmax − Xmin

. (37)

3. Replacing missing values with the median of each feature: Similar to lots of cases
while dealing with real-world applications, this dataset includes missing values.
Table 1 indicates the number of missing values and their associated columns. As
it was shown in Fig. 8, some features have outliers. Thus, our strategy in missing
value imputation and minimizing the effect of outliers is replacing them with the
median of each feature.
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Fig. 8 Examples of different ranges of features

Fig. 9 Feature distribution vs. labels
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Table 1 The number of Nan in each column

Column Numbers of Nan in each column

1, 2, 3 454

4, 5, 6, 10, 11, 12 , 28, 29, 30 20

13, 14, 15 92

19, 20, 21 1681

22, 23, 24 311

34, 35, 36 37,507

Fig. 10 Correlation matrix

4. Dimensionality reduction: This dataset has 108 attributes. Figure 10 illustrates
correlation matrix of its features. As a part of preprocessing step, we reduced the
number of attributes while saving as much of the variation in the dataset as pos-
sible. This helps us to prevent some issues such as reducing computational time,
increasing the overall model performance, avoiding the curse of dimensionality,
reducing the chance of overfitting, decreasing the probability of multicollinearity
and high correlation among features, and removing noise by keeping just the
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Table 2 Model performance evaluation results

Method Accuracy Precision Recall F1score

MB-HDP-HMM-VR 88.33 88.34 88.33 88.34

MB-HMM-VR 86.72 86.75 86.76 86.76

GMM-HMM 85.67 85.75 85.71 85.72

most important attributes. In our experiments, we applied Principal Component
Analysis (PCA) to reduce dimensions.

After solving the above-mentioned issues, we tested our algorithm on this
dataset. To assess the model performance, we used the four following criteria:

Accuracy = T P + T N

Total number of observations
(38)

Precision = T P

T P + FP
, Recall = T P

T P + FN

F1score = 2 × precision × recall

precision + recall
.

T P, T N,FP , and FN represent the total number of true positives, true negatives,
false positives, and false negatives, respectively. Table 2 illustrates the evaluation
results and comparing our proposed model with similar alternatives. As it is shown,
MB-HDP-HMM-VR outperforms other models by 88.33%, 88.34%, 88.33 %,
88.34% of accuracy, precision, recall, and F1 score, respectively.

4.2 First Individual, Second Run of Activities

This dataset has 25,305 observations, including 10379, 6029, 7603, 1294 instances
for standing, walking, sitting, lying, respectively. As illustrated in Fig. 11, we have
the same issue of unbalancing that we had in the previous dataset. We solve this
problem with SMOTE and get a balanced dataset as shown in Fig. 12.

Moreover, we need normalization as the ranges of attributes are broadly different.
Figures 13 and 14 demonstrate characteristics of some of features.

The next challenge is replacing missing values. In Fig. 15, we show the number
of missing values for the attributes. We take the same strategy as the previous case
and replace them with the median of attributes.

To make sure that having high dimensionality will not affect model performance
and to avoid potential issues that we discussed previously, we use PCA to reduce
features. The correlation matrix of dataset is demonstrated in Fig. 16.
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Fig. 11 Bar and pie chart of HAR dataset 2
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Fig. 12 Oversampling results with SMOTE

Fig. 13 Examples of different ranges of features

Fig. 14 Feature distribution vs. labels
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Fig. 15 The number of missing values in each feature

Fig. 16 Correlation matrix
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Table 3 Model performance evaluation results

Method Accuracy Precision Recall F1score

MB-HDP-HMM-VR 86.43 86.66 88.43 86.55

MB-HMM-VR 84.88 84.87 84.88 84.87

GMM-HMM 84.37 84.39 84.37 84.38

Table 3 illustrates the evaluation results of comparing our proposed model
with similar alternatives. MB-HDP-HMM-VR has improved robustness with 86.43,
86.66, 88.43, 86.55 percentage of accuracy, precision, recall, and F1 score, respec-
tively.

In Fig. 17, we compare the results of testing our model on two datasets. We have
better results in the first dataset considering these graphs. One of the causes could be
having more data points in the first dataset as its size is twice larger than the second
dataset (22380 vs. 10379 in each cluster).

5 Conclusion

In this chapter, we proposed multivariate Beta-based hierarchical Dirichlet process
hidden Markov models as a new extension of HMMs and applied it to two real
datasets. The nonparametric structure of this model assists in handling issues such
as defining the number of states. Another motivation to work on this novel algorithm
was that we cannot generalize the assumption of Gaussianity in all cases. Over the
past decades, other alternative distributions have been applied to numerous real-
world datasets. One of the proper choices is multivariate Beta distribution that has
demonstrated good potential and flexibility in fitting data. By changing its shape
parameter, we could model data with various shapes such as symmetric, asymmetric,
skewed ones. In our model, we assumed that emission probability distributions
follow multivariate Beta mixture models. This modification may result in having
better outputs compared to the conventional cases where we consider GMM-based
HMM. To learn the model, we applied variational inference that is slightly faster
than fully Bayesian inference and more precise compared to deterministic methods.
This promising strategy is successful in various domains. Finally, we evaluated our
model on two real datasets, and considering the outcomes, we could infer that our
proposed model demonstrates more robustness. In future steps, we can focus on
feature selection and integrate it into our model.
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Fig. 17 Results comparison
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1 Introduction

The hidden Markov model (HMM) is a type of probabilistic model in which each
data point is in a hidden state produced by a probability distribution called an
emission probability [1]. This approach has been used in a variety of time series
applications and sequential data like anomaly detection [2], facial identification [3],
speech recognition [4], machine translation [5], financial analysis [6], healthcare [7],
human activity recognition [8], and gesture recognition [9]. The mathematical basis
of HMM was initially established by Baum and Petrie [10]. Its primary structure
is a Markov chain of latent variables. One of the simplest methods to represent
sequential patterns in time series data is to use a Markov chain. This method keeps
generality while loosening the assumption of independent identically distributed
variables [11]. Depending on the type of data (which can be continuous or discrete),
HMM and its emission probability are continuous or discrete [12–15]. Section 2
summarizes the theoretical explanation and main features of HMMs.

The application of HMMs for discrete and Gaussian data has been the focus of
most previous research [1, 16]. However, many efforts have recently been made to
adapt the learning equations to non-Gaussian continuous data. In fact, they showed
that a Gaussian-based HMM is not the best option for modeling some types of data
(like proportional data) because of the symmetric aspect and unbounded support of
the Gaussian distribution [12, 17–19]. Inspired by these efforts, we are motivated to
select an alternative for the emission probability distribution. This work is developed
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based on a continuous HMM framework for modeling proportional data using
mixtures of shifted-scaled Dirichlet (SSD) distributions [20]. It is worth mentioning
that the Dirichlet distribution is the most commonly used distribution in modeling
proportional data. However, the shifted-scaled Dirichlet distribution has previously
demonstrated that it performs better than the Dirichlet distribution in modeling this
kind of data [21–25]. To the best of our knowledge, the model that we introduce in
this work is novel and we call it a “shifted-scaled Dirichlet-based hidden Markov
model” (SSD-HMM).

Some extensions of traditional HMMs, such as the hierarchical hidden Markov
model [26] and hierarchical Dirichlet process hidden Markov model (HDP-HMM)
[27–29], have been developed in the last two decades. Because of its nonparametric
structure, HDP-HMM provides a lot of versatility and has been used in a lot of
different applications. This method allows us to learn more complicated emission
distributions while simultaneously determining the appropriate number of states
throughout the learning process. Therefore, as an extension of our novel algorithm,
we propose a Bayesian nonparametric approach as the second part of our work and
we call it the “SSD-based hierarchical Dirichlet process hidden Markov model”
(SSD-HDP-HMM).

The expectation maximization technique is commonly used to train an HMM.
However, because this method includes a summation of all conceivable combina-
tions of hidden states and mixture components, it is computationally intractable.
Furthermore, using the maximum likelihood method might result in overfitting and
convergence to a local rather than a global maximum. There are some alternative
approaches for training HMM models such as fully Bayesian methods like Markov
Chain Monte Carlo (MCMC). However, MCMC requires incredibly extensive
calculations that are extremely time consuming [30–32]. Variational learning (VL)
techniques have recently been offered as a computationally tractable way of learning
HMMs. VL allows us to overcome the drawbacks of the previously mentioned
methods [33, 34]; therefore, we employ this method for learning our models.

Finally, we evaluate our models with two real-life applications, activity recogni-
tion (AR) [35] and texture clustering [36]. Action recognition has received a lot of
attention in previous decades in application domains such as healthcare monitoring
[37], robotics [38], fitness tracking [39], and security [40, 41]. We tested our models
on a dataset that includes accelerometer data (collected with a smartphone worn on
the waist). Individuals were engaged in a variety of activities, including walking,
walking upstairs, walking downstairs, sitting, standing, and laying.

For the second application, we focused on texture clustering. The major elements
used to characterize pictures are texture, shape, and color. Many image processing
applications rely on texture information, such as medical image processing [42],
texture classification [43–46], natural object recognition [47], and so on. These
different applications motivated us to test our model on this challenging application
with the publicly available UIUC dataset that has already been used in other research
[48, 49]. We employ VGG16 as a robust feature selection approach to extract
features from UIUC images and then compare our proposed model with other
similar alternatives. This technique is a popular neural network architecture that
has been already tested in feature selection tasks [50–52].
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In summary, the main contributions of this work are:

• Considering mixtures of SSD distribution as the emission probability distribution
for HMM and showing its outperformance in modeling proportional data in
comparison with Dirichlet and Gaussian mixture models

• The entire derivation of the SSD-HMM model equations
• The entire derivation of the SSD-HDP-HMM model equations

The rest of this chapter is organized as follows: HMM is discussed in Sect. 2.
Section 3 is devoted to parameter estimation using variational learning for SSD-
HMM and SSD-HDP-HMM models. We represent the results of analyzing our
suggested models in Sect. 4, and then we conclude in Sect. 5.

2 Hidden Markov Models

Hidden Markov models are a common technique for modeling time series data.
They have been used in speech recognition systems, text clustering, and pattern
recognition applications for decades. We can consider HMMs as a generalized
version of mixture models. That is, the probability density functions produced by
an HMM across all observable states can be seen as a mixture of densities formed
by each state [19, 53]. The hidden Markov model is defined by two basic features;
first, it presupposes that an observation at time t is the result of a process in state
ht which is hidden from the observer. Second, the present state ht , given the value
of ht − 1, is independent of all previous states of time t − 1. The second feature
is called the Markov property. To develop our HMM model, we introduce some
notation. X = {X1, . . . , XT } is the generated sequence of observations by hidden
states S = {s1, . . . , st , . . . , sT } and st ∈ [1, N ], where N is the number of states.
A = {

Aii′ = P
(
st = i′ | st−1 = i

)}
is transition probabilities matrix that presents

the probabilities of transition between the states. C = {
Cij = P (mt = j | st = i)

}

is the emission probabilities matrix for continuous case (CHMM), where i ∈ [1, N ],
j ∈ [1,K]. The number of mixture components in set L = {m1, . . . , mt , . . . , mK}
is denoted by K which is assumed to be uniform for all the states. The initial
probability vector, πi , represents the probability of starting the observation sequence
from state i. In summary, using all the abovementioned notation, an HMM is defined
as λ = {A,C, π,�}, where � is the set of mixture model parameters [1].

3 Variational Learning

3.1 Shifted-Scaled Dirichlet-Based Hidden Markov Model

In this section, we start with an explanation of mixtures of shifted-scaled Dirichlet
distributions and then derive the equations of the variational approach to update
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our model’s parameters. As we mentioned before, in the previous work, emission
probability distributions for continuous observations are frequently assumed to have
a Gaussian distribution [54, 55]. The ability of the Dirichlet and scaled Dirichlet
(SD) [56, 57] mixture models to fit proportional data motivated us to use a more
general form of them called the shifted-scaled Dirichlet mixture model as the
emission probability for HMM [20–25, 58–61].

In variational learning, all of the parameters including HMM parameters (A,
C, and π ) and emission distribution parameters θ = {αijl, βij l, τij } are treated

as random variables. We consider X = (
−→
X 1, . . . ,

−→
X t, . . . ,

−→
X T ) as a set of

T independent identically distributed observations in which each
−→
Xt is a D-

dimensional positive vector which is generated from a mixture of SSD distributions.
The finite SSD mixture model which is a linear combination of K components is
expressed as follows:

p
(−→

X t | −→W,
−→
θ
)

=
K∑

j=1

Wjp(
−→
X t | −→

θj ) (1)

where Wj is a mixing coefficient (weight) which should satisfy two conditions,
∑K

j=1Wj = 1 and 0 < Wj < 1. As a result, the likelihood function of the SSD
mixture model is

p(X | −→W,
−→
θj ) =

T∏

t=1

⎧
⎨

⎩

K∑

j=1

Wjp(
−→
Xt | −→

θj )

⎫
⎬

⎭
(2)

Also, p(
−→
X t | −→

θj ) is a mixture component with parameter θj that in our model is an
SSD distribution that is defined as follows [20]:

p(
−→
Xt | −→

θj ) = 	(αij+)
∏D

l=1 	(αijl)

1

τD−1
ij

∏D
l=1 β

−
αijl

τij
ij l X

(
αij l

τij

−1)

tl
⎛

⎜
⎝
∑D

l=1(
Xtl

βij l

)

1

τij

⎞

⎟
⎠

αij + (3)

where α = {αijl}N,K,D
i,j,l , β = {βijl}N,K,D

i,j,l , and τ = {τij }N,K
i,j are positive SSD

parameters. Also Xt > 0,
∑D

l=1 Xtl = 1, and αij+ = ∑D
l=1 αijl . 	(.) indicates the

Gamma function which is 	(t) = ∫∞
0 xt−1e−xdx.

For each Xvt (where v is the vth observed vector), we introduce a latent variable
Zvij that shows which cluster and state are assigned to Xvt . In other words, Zvij = 1
if the Xvt belongs to state i and cluster j , otherwise Zvij = 0. Also, Zvij must
satisfy this condition

∑K
j=1 Zvij = 1.
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In HMMs, the probability of the complete data can be stated as follows for given
model parameters:

p(X, S,L | A,C, π, θ) = πs1

[
T∏

t=2

Ast−1,st

][
T∏

t=1

Cst ,ml
p
(
Xt | θst ,ml

)
]

(4)

where X is a sequence of T observations, S is the set of hidden states, and L

stands for the set of mixture components. It is worth mentioning that for the sake
of simplification, the model is derived for a single observation series. In order
to incorporate more observation sequences (which is recommended to prevent
overfitting), the related equations need to be updated to include a summation of these
sequences. Therefore, the likelihood of X given model parameters is expressed as
follows:

p(X | A,C, π, θ) =
∑

S

∑

L

πs1

[
T∏

t=2

Ast−1,st

][
T∏

t=1

Cst ,ml
p
(
Xt | θst ,ml

)
]

(5)

A precise computation of this equation is impossible because it requires the
summation of all possible combinations of mixture components and states. The most
common approach for solving it is to use the Baum-Welch algorithm to maximize
the data likelihood with regard to the model parameters [1]. However, there are
several flaws with this strategy such as the potential for overfitting and the lack of a
convergence guarantee. Another tested solution to compute intractable equations (5)
is variational learning. This approach calculates the marginal likelihood of data
using an approximate distribution Q of the true posterior p. In the SSD-HMM
model, data marginal likelihood is expressed as

p(X) = (6)
∫

dAdCdπdαdβdτ
∑

S,L

p(A,C, π, α, β, τ ) × p(X, S,L | A,C, π, α, β, τ )

The variational learning is based on this equation [34]:

ln(p(X)) = L(Q) + KL(Q‖P) (7)

where L(Q) is the variational lower bound for ln p(X) and defined by

L(Q) =
∫

Q(�) ln(
p(X | �)p(�)

Q(�)
)d� (8)
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and the Kullback–Leibler divergence between the approximation Q and the poste-
rior p is represented by KL(Q‖P):

KL(Q || P) = −
∫

Q(�) ln(
Q(�)

p(� | X)
)d� (9)

where � = {A,C, π, α, β, τ, S, L}. Minimizing KL allows the best approximation
of the true posterior p, and due to the fact that KL ≥ 0, this can be accomplished
by maximizing L(Q). Having Q and (8), we can take the lower bound as follows
[12]:

ln(p(X)) = ln{
∫

dAdCdπdαdβdτ
∑

S,L

p(A,C, π, α, β, τ )

× p(X, S,L | A,C, π, α, β, τ )}

≥
∫

dAdCdπdαdβdτ
∑

S,L

Q(A,C, π, α, β, τ, S, L)

× ln

{
p(A,C, π, α, β, τ )p(X, S, L | A,C, π, α, β, τ )

Q(A,C, π, α, β, τ, S, L)

}
(10)

Now, using the mean-field assumption [62], we take a restricted family of distribu-
tions to be able to calculate Q(�). Therefore, we have factorized Q(�):

Q(A,C, π, α, β, τ, S, L) = Q(A)Q(C)Q(π)Q(α)Q(β)Q(τ)Q(S,L) (11)

Using (10) and (11), the lower bound can be written as follows:

ln p(X) ≥
∑

S,L

∫
dAdCdπdαdβdτQ(π)Q(A)Q(C)Q(α)Q(β)Q(τ)Q(S,L)

× {ln(p(π)) + ln(p(A)) + ln(p(C)) + ln(p(α)) + ln(p(β)) + ln(p(τ))

+ ln
(
πs1

)+
T∑

t=2

ln
(
Ast−1,st

)+
T∑

t=1

ln
(
Cst ,mt

)+
T∑

t=1

ln
(
f
(
Xt | θst ,mt

))

− ln(Q(S,L)) − ln(Q(A)) − ln(Q(π)) − ln(Q(C)) − ln(Q(α))

− ln(Q(β)) − ln(Q(τ))} = F(Q(π)) + F(Q(C)) + F(Q(A))

+ F(Q(S,L)) + F(Q(α)) + F(Q(β)) + F(Q(τ)) (12)

The above lower bound, in general, has several maxima; hence, it is not convex.
As a result, the solution depends on initialization. We are now going to define
prior distributions for model parameters to be able to evaluate (12). The priors for
the parameters A, C, and π are selected as Dirichlet distributions D since their
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coefficients are positive and less than one:

p(π) = D(π1, . . . , πN | φπ
1 , . . . , φπ

N) (13)

p(A) =
N∏

i=1

D(Ai1 , . . . , AiN | φA
i1
, . . . , φA

iN
) (14)

p(C) =
N∏

i=1

D(Ci1 , . . . , CiK | φC
i1

, . . . , φC
iK

) (15)

The conjugate priors for SSD parameters are chosen as follows [63]:

p(αijl) = G(αij l | uijl, νij l) = ν
uijl

ij l

	(uij l)
α

uijl−1
ij l e−νij lαij l (16)

p(βijl) = D(βij l | −→
hij ) = 	(

∑D
l=1 hijl)

∏D
l=1 	(hijl)

D∏

l=1

β
hijl−1
ij l (17)

p(τij ) = G(τij | qij , sij ) = q
sij
ij

	(qij )
τ

qij −1
ij e−sij τij (18)

where uijl , νij l , hijl , qij , and sij are positive SSD hyperparameters and G is the
Gamma distribution. Since the variables are considered statistically independent,
the prior distributions for SSD parameters are

p(−→α ) =
N∏

i=1

K∏

j=1

D∏

l=1

p(αijl) (19)

p(
−→
β ) =

N∏

i=1

K∏

j=1

D∏

l=1

p(βijl) (20)

p(−→τ ) =
N∏

i=1

K∏

j=1

p(τij ) (21)

Now we can optimize each factor F(Q(.)) in (12) by maximizing the lower bound
with respect to that factor because they are independent of each other. First we will
optimize Q(π), Q(A), and Q(C) which are independent of the SSD parameters and
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have already been studied [12, 64, 65]. Therefore, according to the previous work,
we can optimize Q(A) using the Gibbs inequality in the following procedure:

F(Q(A)) =
∫

dAQ(A) ln

⎡

⎣
∏N

i=1
∏N

i′=1 A
wA

ii′−1

ii′
Q(A)

⎤

⎦ (22)

Q(A) =
N∏

i=1

D
(
Ai1, . . . , AiN | wA

i1, . . . , w
A
iN

)
(23)

where

wA
ij =

T∑

t=2

γ A
ijt + φA

ij (24)

γ A
ijt � Q(st−1 = i, st = j) (25)

Similarly for the Q(π) and Q(C), we have

Q(π) = D (π1, . . . , πN | wπ
1 , . . . , wπ

N

)
(26)

wπ
i = γ π

i + φπ
i (27)

γ π
i � Q(s1 = i) (28)

and

Q(C) =
N∏

i=1

D
(
Ci1, . . . , CiK | wC

i1, . . . , w
C
iK

)
(29)

wC
ij =

T∑

t=1

γ C
ijt + φC

ij (30)

γ C
ijt � Q(st = i, mt = j) (31)
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The forward–backward procedure may then be used to derive the values of
responsibilities γ A

ijt , γ π
i , and γ C

ijt [66].
The next step is optimizing Q(α). Using (19) and (12), we have

F(Q(α)) =
∫

dαQ(α) ln{p(−→α )
∏T

t=1 p(Xt | αijl)
γ c

ij t

Q(α)
} (32)

Similarly for Q(β) and Q(τ), we can obtain

F(Q(β)) =
∫

dβQ(β) ln{p(
−→
β )
∏T

t=1 p(Xt | βijl)
γ c

ij t

Q(β)
} (33)

and

F(Q(τ)) =
∫

dτQ(τ) ln{p(−→τ )
∏T

t=1 p(Xt | τij )
γ c

ij t

Q(τ)
} (34)

The optimal values for Q(α), Q(β), and Q(τ) can be calculated by

Q
(
αijl

) =
N∏

i=1

K∏

j=1

D∏

l=1

G(αij l | u

ij l, ν



ij l) (35)

Q
(
βijl

) =
N∏

i=1

K∏

j=1

D∏

l=1

D(βij l | −→
h 


ij l) (36)

Q
(
τij

) =
N∏

i=1

K∏

j=1

G(τij | q

ij , s



ij ) (37)

We may calculate the above hyperparameters using Appendix 1. The 
 superscript
illustrates the optimized value of these parameters.

Finally, we optimize the value of Q(S,L). We can write F(Q(S,L)) as follows
[12]:

F(Q(S,L)) =
∑

S,L

Q(S,L) × ln

(
π


s1

∏T
t=2 A


st−1,st

∏T
t=1 C


st ,mt
p

(
Xt | θst ,mt

)

Q(S,L)

)

(38)

The optimized Q(S,L) is written as:

Q(S,L) = 1

�
π


s1

T∏

t=2

A

st−1,st

T∏

t=1

C

st ,lt

p

(
Xt | θst ,lt

)
(39)
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where

� =
∑

S,L

π

s1

T∏

t=2

A

st−1,st

T∏

t=1

C

st ,lt

p

(
Xt | θst ,lt

)
(40)

and

π

i � exp

[
EQ ln (πi)Q(π)

]
(41)

π

i = exp

[

�
(
wπ

i

)− �

(
∑

i

wπ
i

)]

A

jj ′ � exp

[
EQ ln

(
Ajj ′

)
Q(A)

]
(42)

A

jj ′ = exp

⎡

⎣�
(
wA

jj ′
)

− �

⎛

⎝
∑

j ′
wA

jj ′

⎞

⎠

⎤

⎦

C

ij � exp

[
EQ ln

(
Cij

)
Q(C)

]
(43)

C

ij = exp

⎡

⎣�
(
wC

ij

)
− �

⎛

⎝
∑

j

wC
ij

⎞

⎠

⎤

⎦

and also

ln p

(
Xt | θst ,lt

) =
∫

Q(θ) ln(p
(
Xt | θst ,lt

)
)dθ (44)

In this work, p
(
Xt | θst ,lt

) = [
SSD(α, β, τ )

]γ C
ij t with SSD is defined in (3).

Therefore, we have

ln p

(
Xt | θst ,lt

) =γ C
ijt

∫
Q(θ) ln

(
	(αij+)

∏D
l=1 	(αijl)

)
dα + (45)

γ C
ijt

∫
Q(θ) ln

( 1

τD−1
ij

∏D
l=1 β

−
αijl

τij
ij l X

(
αij l

τij

−1)

tl
⎛

⎜
⎝
∑D

l=1(
Xtl

βij l

)

1

τij

⎞

⎟
⎠

αij +
)
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The expected value of the first part of this equation is analytically intractable. So,
we use the lower bound introduced in [34] as an approximation for it:

EQ ln
( 	(αij+)
∏D

l=1 	(αijl)

) ≥ ᾱij l ln
(
αijl

)
{

�

(
D∑

l=1

ᾱij l

)

− �
(
ᾱij l

)

+
D∑

d=1,d �=l

ᾱijd� ′
(

D∑

l=1

ᾱij l

)
(
EQ ln

(
αijd

)− ln
(
ᾱijd

))
⎫
⎬

⎭

(46)

The second integral of (45) can be rewritten as follows:

EQ ln
( 1

τD−1
ij

∏D
l=1 β

−
αijl

τij
ij l X

(
αij l

τij

−1)

tl
⎛

⎜
⎝
∑D

l=1

(Xtl

βij l

)
1

τij

⎞

⎟
⎠

αij +
)

= −(D − 1)τ̄ij+ (47)

D∑

l=1

{(
− ᾱij l

τ̄ij

)
ln(βij l) +

( ᾱij l

τ̄ij

− 1
)

ln(Xtl)
}
−

(αij+) ln
( D∑

l=1

(Xtl

βij l

)
1

τij
)

The last term in the above equation is again analytically intractable, following [63],
and we take the lower bound described below as its approximation:

ln
( D∑

l=1

(Xtl

βij l

)
1

τij
)

≥ − ln τij

τ ij

∑D
l=1

( xtl

βij l

)
1

τ ij ln
( xtl

βij l

)

∑D
l=1

( xtl

βij l

)
1

τ ij

+ const. (48)

It is worth mentioning that by comparing (40) and (5), we can see that this
equation represents the estimated likelihood of the improved model, which the
forward–backward method can efficiently compute. Because F(Q(.)) reflects the
model’s log-marginal likelihood, the number of states N and the number of mixture
components K may be calculated using it as a model selection criterion in the
proposed model. Consequently, we may run our variational learning algorithm
with various N and K values and choose ones that result in the greatest F(Q).
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Algorithm 1 presents our suggested algorithm for learning the SSD-HMM model
using the variational inference approach.

Algorithm 1 Variational learning of SSD-HMM

1. Initialize φA, φC , and φπ .
2. Initialize uijl , νij l , hijl , qij and sij .
3. Draw the initial responsibilities γ A, γ C , and γ π from prior distributions using (13), (14),

and (15).
4. Calculate wA,wC , and wπ with (24), (30) and (27).
5. Initialize A,C, and π using (41), (42), and (43).
6. repeat
7. Calculate data likelihood using X, uijl , νij l , hijl , qij and sij using (3).
8. Calculate responsibilities γ A, γ C and γ π using forward–backward procedure with (25) , (31),

and (28).
9. Update hyperparameters using Appendix 1.

10. Update wA,wC , and wπ using γ A, γ C , and γ π with (24), (30) and (27).
11. Update A,C, and π using wA,wC , wπ with (41), (42), and (43).
12. until convergence criterion is reached.

3.2 Shifted-Scaled-Based Hierarchical Dirichlet Process
Hidden Markov Model

The hierarchical Dirichlet process is built on a hierarchical framework that employs
several Dirichlet processes (DPs) [67–69]. Our proposed model, SSD-HDP-HMM,
uses the hierarchical Dirichlet process over hidden Markov models. This structure
comprises at least two layers, with the base measure of the DP dispersed by other
DPs at each level. For the purpose of simplicity, we will use a two-level HDP model
in this work following previously suggested HDP-HMM models [27, 29]. As the
first layer, we take G0 to be a top-level (global level) Dirichlet process. G0 has H as
its base distribution and γ as the concentration parameter. Therefore, we can write
G0 ∼ DP(γ,H). Moreover, G0 is the base distribution of an unlimited number
of second-level (local level) Dirichlet processes in the HDP. Thus, G0 is shared
between all the i states. A grouped dataset X with N sets exists at the second level.
Each set has a Gi with i ∈ {1, . . . , N}, where Gi ∼ DP(λ,G0). In our SSD-HDP-
HMM model, Gi is the transition distribution for state i, where N is the number of
states.

Stick-breaking construction will be used in the creation of our model since it is
a very straightforward method to HDP model implementation [67, 70]. Since we
have a two-level HDP, we use two stick-breaking structures in this work, one for the
global level and the other one for the local level. Therefore, applying stick-breaking
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construction, the global level distribution G0 would be expressed by

G0 =
∞∑

i=1

ψiδθi
, θi ∼ H,

∞∑

i=1

ψi = 1 (49)

ψi = ψ ′
i

i−1∏

s=1

(1 − ψ ′
s), ψ ′

i ∼ Beta(1, γ )

θi is a set of independent random variables derived from the base distribution H

which in our model is an SSD distribution. δθi
represents an atom at θi which is

accessible for all Gi . Using the same manner, we can obtain the local level for the
infinite number of DP’s Gi using stick-breaking construction as follows:

Gi =
∞∑

j=1

εij δ�ij
, �ij ∼ G0,

∞∑

j=1

εij = 1 (50)

εij = ε′
ij

j−1∏

s=1

(1 − ε′
is ), ε′

ij ∼ Beta(1, λ)

Following the previous work in [71], in order to map two HDP levels together,
we take a binary latent variable Wij,i′ , which is equal to 1 if �ij is associated with
θi′ ; otherwise, it is equal to 0. Also, in order to produce a sequence of data X =
{X1, . . . , XT } for our HMM framework, we consider first θ ′ = {θ ′

1, . . . , θ
′
T } as a

sequence of parameters. Then, we draw θ ′
1 from G0 and the rest of the parameters

from GZt , θ ′
i+1 ∼ GZt , where Zt is a state index that equals i if θ ′

t = θi . Finally,
the sequence of data X is generated using these θ ′ parameters, Xt ∼ P(X | θ ′

t ).
Because each sequence is modeled independently, the joint likelihood of the SSD-
HDP-HMM can be written as [27]

p(X, θ, ψ ′, ε′,W,Z) = p(θ)p(ψ ′)p(ε′)p(W | ψ ′) (51)

×
∏

v

p
(
Zv | ε′,W

)∏

t

p (Xvt | θ, Zvt )

where v is the number of the observed sequences. As we mentioned in the previous
section, in the variational learning approach, we are trying to find an estimation
Q(�) for the true posterior p(� | X) since it is intractable. By applying mean-field
theory, we can rewrite Q(�) as disjoint tractable components:

Q(θ,ψ ′, ε′,W,Z) = Q(θ)Q(ψ ′)Q(ε′)Q(W)Q(Z) (52)

=
∏

i

Q (θi)Q
(
ψ ′

i

)∏

i,j

Q
(
ε′
ij

)
Q
(
Wij

)∏

v

Q (Zv)
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where � = {θ, ψ ′, ε′,W,Z}. Then, using Q(�), we maximize the lower bound
L(Q) introduced in (10) with respect to each Q factor to minimize the KL
divergence between Q and the posterior P . In the SSD-HDP-HMM model, we need
the transition matrix Aii′ to be able to calculate Q(θ) and Q(Z). However, we have
a challenge for this term:

EQ ln Aii′ = EQ ln
∑

j

Wiji′εij (53)

Because we need to sum all of the sticks allocated to atom θ ′
i (for atom θi stick-

breaking construction), this expectation is not tractable. Therefore, according to
what they did in [27], we derive a lower bound for solving this issue as follows:

EQ ln
∑

j

Wiji′εij ≥ EQ ln
∑

j

Wiji′e
EQ ln εij (54)

≈ ln
∑

j

EQ

[
Wiji′

]
eEQ ln εij

Therefore,

A

ii′ = exp

{
EQ ln Aii′

}
(55)

≈ exp

⎧
⎨

⎩
ln
∑

j

EQ

[
Wiji′

]
eEQ ln εij

⎫
⎬

⎭

The other solution is that we could take the variational distribution Q(W) and Q(ε)

instead of the above approximation to obtain EQ ln Aii′ . The performance would
stay almost the same, but the algorithm would be more time consuming in this case
[27].

3.2.1 Update Q(Zv) and Q(θi)

We have

p̃ (Xvt | θi) = exp
{
EQ ln p
 (Xvt | θi)

}
(56)

and we already obtained ln p
 (Xvt | θi) in (44) to (48). Also, the forward algorithm
can be written as follows:

αvt (i) = p̃ (Xvt | θi)

∞∑

s=1

αv,t−1(s)Ãsi (57)
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which is the variational joint probability of Zvt = i and the sequence Xv until step
t [27, 62]. Also, the backward algorithm is

βvt (i) =
∞∑

s=1

Ãis p̃
(
Xv,t+1 | θs

)
βv,t+1(s) (58)

which is the variational probability of the sequence Xv after t given Zvt = i [27, 62].
Then, we can calculate γvt (i) which is the marginal of Zvt for Q(Zv):

γvt (i) = αvt (i)βvt (i)∑
s αvt (s)βvt (s)

(59)

For our SSD-HDP-HMM model, θ = {α, β, τ}; therefore,

Q
(
αijl

) =
N∏

i=1

K∏

j=1

D∏

l=1

G(αij l | u

ij l, ν



ij l) (60)

Q
(
βijl

) =
N∏

i=1

K∏

j=1

D∏

l=1

D(βij l | −→
h 


ij l) (61)

Q
(
τij

) =
N∏

i=1

K∏

j=1

G(τij | q

ij , s



ij ) (62)

where the hyperparameters can be updated using Appendix 2.

3.2.2 Update Q(W), Q
(
ψ ′), and Q

(
ε′)

In the previous section, we used the lower bound L(Q) to update Q(Z) and
Q(θ), but for updating Q(W), Q

(
ψ ′), and Q

(
ε′) the case is different. Since our

approximation of the expected log of A in (54) does not produce tractable variational
parameter updates for Q(W), Q

(
ψ ′), and Q

(
ε′), we employ a latent variable Sv

and a variational distribution Q(Sv | Zv) for the vth observed sequence to lower
bound L(Q) locally [27]. Sv interacts with Zv and Wiji′ in the following way: the
tuple (Zv,t−1 = i, Svt = j) denotes that the next state Zvt may be discovered by
selecting the j th stick of the ith DP and setting Zvt = i′ if Wij,i′ = 1. In the paper
[27], instead of using Q(Zv,t−1, Zvt ) to obtain the state transition, they introduced
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a triple Q(Zvt , Sv,t+1,WZvt ,Sv,t+1). Therefore, they came up with this local lower
bound:

EQ1
(
Zv,t−1 = i, Zvt = i′

)
ln
∑

j

Wij,i′εij (63)

≥ EQ

∑

j

Wij,i′1
(
Zv,t−1 = i, Svt = j

)
ln εij

Also, the joint variational distribution of Sv and Zv is

Q(Sv, Zv) = Q(Sv | Zv)Q (Zv) = Q(Zv)
∏

t

Q (Svt | Zv) (64)

In the forward–backward algorithm, we already updated Q(Z). The expectation
value of Q

(
Zv,t−1 = i, Svt = j

)
can be updated by

Q
(
Zv,t−1 = i, Svt = j

) = EQ1
(
Zv,t−1 = i, Svt = j

)
(65)

≡ ξvt (i, j)

where ξvt (i, j) is equivalent to γ C
ijt in (31) for the vth observed sequence and can be

obtained by

ξvt (i, j) ∝ αv,t−1(i) exp
{
EQ ln εij

}×
∏

i′

[
exp

{
EQ

[
ln θi′,Xvt

]}
βvt

(
i′
)]ϕij,i′

(66)

with

EQ ln εij = EQ ln ε′
ij +

∑

s

EQ ln
(
1 − ε′

is

)
(67)

Here, α and β are the forward and backward algorithms, respectively. We recall that
Wij is the atom associated with the j th stick in the ith state.
Also, we have

Q
(
Wij,i′ = 1

) ≡ ϕij,i′ (68)

where

ϕij,i′ ∝ exp

{

EQ ln ψi′ +
∑

v,t

ξvt (i, j)EQ ln θi′,Xvt

}

(69)
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with

EQ ln ψi′ = EQ ln ψ ′
i′ +

∑

s<i′
EQ ln

(
1 − ψ ′

s

)
(70)

Using variational distributions Q(ψ ′
i ) = Beta (ci, di) and Q(ε′

ij ) = Beta
(
aij , bij

)
,

we have

EQ ln ψ ′
i = � (ci) − � (ci + di) (71)

EQ ln
(
1 − ψ ′

i

) = � (di) − � (ci + di) (72)

EQ ln ε′
ij = �

(
aij

)− �
(
aij + bij

)
(73)

EQ ln
(

1 − ε′
ij

)
= �

(
bij

)− �
(
aij + bij

)
(74)

where

aij = 1 +
∑

v,t

ξvt (i, j) (75)

bij = λ +
∑

v,t

∑

j ′>j

ξvt

(
i, j ′) (76)

ci = 1 +
∑

i′,j
EQWi′j,i (77)

di = γ +
∑

i′,j

∑

s>i

EQWi′j,s (78)

Our suggested algorithm for variational learning of the SSD-HDP-HMM is
described in Algorithm 2.

Algorithm 2 Variational learning of SSD-HDP-HMM
1. Initialize λ, γ , uijl , νij l , hijl , qij and sij .
2. repeat
3. Update Q(Zv) using the forward and backward algorithms using (57) to (59).
4. Update Q(θ) using (60) to (62) and appendix 2.
5. Update Q (Svt | Zv) using (66).
6. Update Q (W) using (68).
7. Update Q

(
ψ ′) and Q

(
ε′) using (71) to (78).

8. until convergence criterion is reached.
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4 Experimental Results

We tested our proposed models on two real-world applications: an activity recog-
nition dataset [35] and a texture clustering [36]. Then, to assess how successful
they are, we compare them to three other models: HDP-HMM, DMM-HMM
(hidden Markov model with Dirichlet mixture model emissions), and GMM-HMM
(hidden Markov model with Gaussian mixture model emissions). Using both real
and anticipated labels of clusters, we use four metrics to assess our model’s
performance:

Accuracy = T P + T N

T P + T N + FP + FN
(79)

Precision = T P

T P + FP
(80)

Recall = T P

T P + FN
(81)

F1 − score = 2 ∗ precision ∗ recall

precision + recall
(82)

where TP, TN, FP, and FN represent true positives, true negatives, false positives,
and false negatives, respectively.

We present the average results after testing our model ten times with each dataset
in order to deliver a more accurate result. Since our model is based on mixtures of
shifted-scaled Dirichlet distributions, the data must be proportional as we discussed
in Sect. 3. Therefore, we first normalize each record (row of the dataset) making
it between 0 and 1 and then divide it by its summation of dimensions to make it
proportional. Then, we use principal component analysis (PCA) to filter the most
significant features of data [72].

4.1 Activity Recognition

The introduction of smartphones has significantly affected human lives. The
existence of advanced features in these devices resulted in their continuous presence
in our lives. Consequently, this presence provides a chance to keep track of our
activities using a variety of sensors [73, 74]. Data generated by such devices could
be used in many applications such as healthcare monitoring, life and fitness tracking,
and transportation planning.
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In our work, we applied an activity recognition (AR) dataset in which data were
collected via accelerometer [75] and gyroscope sensors in a Samsung Galaxy S
II. To gather the information, behavior of 30 participants aged between 19 and
48 [74] was monitored while wearing smartphones on the waist. This method of
collecting data is one of the easiest ways because we do not need any additional
equipment [74]. This is in contrast to other existing techniques for collecting
AR data, which rely on special devices. Data are collected during six activities:
walking, walking upstairs, walking downstairs, sitting, standing, and lying down.
This dataset is randomly divided into two partitions: 70% of data are considered
as a training dataset and 30% as a test dataset, and we have 10,299 data points in
total. According to Fig. 1, nearly identical numbers of data points were received
from all of the participants. Also, by looking at Fig. 2, we can see that the
share of information associated with various activities is relatively similar. The
lowest number of recorded activities belongs to the walking downstairs with 1406
instances. Therefore, to have a balanced dataset (consist of the same number of
samples in all output classes), we randomly select the same number of data points
from other categories before feeding our model (overall 8436 observations).

By looking at the probability density function (PDF) distribution in Fig. 3, we
can see that motionless activities have a totally different distribution from moving
activities. Besides, we can understand that the moving activity distributions are
similar to each other, which is the same case for motionless activities. To have
a better understanding of the data, we provide a 2D scatterplot of our data using
different colors for each cluster in Fig. 4. As we can see in this plot, almost all of the
features can be separated into different regions except standing and sitting, although
there is considerable overlap with data points from other clusters especially near
the boundaries. Therefore, we expect that dividing standing and sitting into two
separate clusters may be a challenging task for a machine learning algorithm. We

Fig. 1 Activity count per participant
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WALKING_UPSTAIRS WALKING_DOWNSTAIRS

WALKING

STANDINGSITTING

LAYING

15.0% 13.7%

16.7%

18.5%17.3%

18.9%

Fig. 2 Percentage of each category

Fig. 3 Probability density function of the AR dataset

should mention that by using PCA, we reduced the number of features from 562 to
122 in order to filter the most important features. The result of testing our models
is presented in Table 1. According to this table, the SSD-HDP-HMM model has
an accuracy of 97.66%, which is a better result than the previously studied model,
HDP-HMM. Also, the SSD-HMM model obtained higher accuracy than DMM-
HMM and GMM-HMM models. As a result, using SSD as the parent distribution
helped our models to fit the data better than either Dirichlet or Gaussian mixture
model. In addition, by comparing the SSD-HDP-HMM model to the SSD-HMM
model, we can find that hierarchical models are better in learning complicated data
than non-hierarchical models.
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Fig. 4 2D scatterplot of 2 features of the AR dataset

Table 1 Activity recognition
dataset results

Method Accuracy Precision Recall F1-score

SSD-HDP-HMM 97.66 97.66 97.63 97.64

HDP-HMM 95.29 95.38 95.36 95.36

SSD-HMM 93.88 94.03 94.06 94

DMM-HMM 86.65 86.12 86.36 86.11

GMM-HMM 93.59 93.11 93.13 93.11

4.2 Texture Clustering

As the second application, we chose to use a challenging dataset called the
University of Illinois Urbana Champaign (UIUC) texture dataset. This dataset has
25 classes, each with 40 images of size 480×640. Figure 5 shows some sample
images of from UIUC dataset. The diversity of 2D and 3D transformations, as
well as lighting fluctuations in this dataset, made it a difficult application for
machine learning algorithms. Therefore, we applied VGG16 to extract features of
images. VGG16 is a popular strong deep learning model which has already shown
its capabilities in feature extraction. We also acknowledge that this model is not
designed for feature selection and we used an arbitrary intermediate layer to extract
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Fig. 5 Samples of UIUC texture dataset

Fig. 6 Probability density function of UIUC texture dataset

features of images. Then using PCA, we reduced the number of features extracted
by VGG16 from 4096 to 1251. Figure 6 shows the PDF distribution of one of the
most important features. As we can see in this figure, the distribution of classes is
quite similar to one another, and we verified that this is true for other features as
well. Therefore, this makes the clustering task hard. This conclusion may also be



SSD-Based HDP-HMM with Variational Learning 285

Fig. 7 2D scatterplot of 2 features of the UIUC dataset

obtained by looking at Fig. 7, which is a 2D scatterplot. In this figure, some of the
clusters are in totally separated regions and most of them have overlap with one
another. As a result, we chose to test our model with the almost-separated classes 3,
4, and 7 (see Fig. 5). As we mentioned before, each of the classes has 40 images,
so our dataset is already balanced. Table 2 displays the results of our model testing.
Our proposed hierarchical model, SSD-HDP-HMM, has the greatest accuracy of
the examined models, with 81.8 percent. This demonstrates that, owing to the SSD
distribution, this model fits the data better than the classical HDP-HMM model.
Furthermore, the SSD-HMM model outperforms the basic Dirichlet and Gaussian
HMM mixture models.
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Table 2 UIUC texture
dataset results

Method Accuracy Precision Recall F1-score

SSD-HDP-HMM 81.8 80.7 69.7 80.6

HDP-HMM 80.2 77.2 75.3 75.2

SSD-HMM 77.2 81.1 80.1 73

DMM-HMM 75.7 71.9 69.7 69.7

GMM-HMM 56 53.8 54.1 48

5 Conclusion

In this work, we introduced two novel models, the “SSD-HMM” and the “SSD-
HDP-HMM,” respectively. Also, we derived a variational learning algorithm for
each of them. These learning methods have various advantages that help overcome
the disadvantages of other learning algorithms, for example, tractable learning algo-
rithms, reliable approximations, and ensured convergence. Also, the flexibility of
the SSD distribution in fitting data particularly in proportional cases was the major
incentive to use it for emission probabilities in our research. In the experimental
section, we demonstrated the benefits of using mixtures of the SSD distributions
instead of Gaussian and Dirichlet mixture models in the HMM framework. We
can identify the proper number of clusters, which is the number of hidden states
throughout the learning process, using a nonparametric Bayesian model. Finally, we
got promising results when we applied our proposed models to two challenging real-
world applications: activity recognition and texture clustering. We may concentrate
on feature selection and integrate it into our models in the future works.
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Appendices

Appendix 1

u

ij l = uijl +

V∑

v=1

EQZvij × αijl

⎡

⎣�(

D∑

s=1

αijs) − �
(
αijl

)+
D∑

s �=d

� ′(
D∑

s=1

αijs

)

(83)×αijs(EQ ln αijs − ln αijs)
]

ν

ij l = νij l −

V∑

v=1

EQZvij ×
[ 1

τij

ln
βijl

xvl

+ ln
( D∑

s=1

( xvs

βijs

)
1

τij
)]

(84)
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h

ij l = hijl +

V∑

v=1

EQZvij ×
[ ¯−αijl

¯τij

+ ¯αijl

¯τij

×
( xvl

¯βijl

)
1

¯τij × 1

∑D
s=1

( xvs

¯βijs

) ¯
τ−1
ij

]

(85)

q

ij = qij +

V∑

v=1

EQZvij ×
[
1 − D + (αij+)

τij

∑D
l=1

( xvl

βij l

)τ−1
ij

ln
( xvl

βij l

)

∑D
l=1

( xvl

βij l

)τ−1
ij

]
(86)

s

ij = sij −

V∑

v=1

EQZvij ×
[ D∑

l=1

αijl

τij
2

ln
( xvl

βij l

)]
(87)

Also, the expected values are given by

ᾱij l = EQαijl = u

ij l

v

ij l

, βij l = EQβijl = h

ij l

∑D
l=1 h


ij l

τ̄ij = EQτijl = q

ij

s

ij

, EQZvij =
T∑

t=1

γ C
vij t = p(s = i, m = j | X)

EQ ln αijl = �(u

ij l) − ln v


ij l (88)

Appendix 2

u

ij l = uijl +

N∑

i′=1

ϕij,i′
T∑

t=1

V∑

v=1

ξvt (i, j) × αijl× (89)

[
ψ
( D∑

s=1

αijs

)
− ψ

(
αijl

)+
D∑

s �=d

ψ ′(
D∑

s=1

αijs

)
× αijs(EQ ln αijs − ln αijs)

]

ν

ij l = νij l −

N∑

i′=1

ϕij,i′
T∑

t=1

V∑

v=1

ξvt (i, j)
[ 1

τij

ln
βijl

Xtl

+ ln
( D∑

s=1

(
Xts

βijs

)

1

τij
)]

(90)

h

ij l = hijl +

N∑

i′=1

ϕij,i′
T∑

t=1

V∑

v=1

ξvt (i, j)
[ ¯−αijl

¯τij

+ ¯αijl

¯τij

×
(Xtl

¯βijl

)
1

¯τij × 1

∑D
s=1

(Xts

¯βijs

) ¯
τ−1
ij

]

(91)
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q

ij = qij +

N∑

i′=1

ϕij,i′
T∑

t=1

V∑

v=1

ξvt (i, j)
[
1 − D + (αij+)

τij

∑D
l=1

(Xtl

βij l

)τ−1
ij

ln
(Xtl

βij l

)

∑D
l=1

(Xtl

βij l

)τ−1
ij

]

(92)

s

ij = sij −

N∑

i′=1

ϕij,i′
T∑

t=1

V∑

v=1

ξvt (i, j)
[ D∑

l=1

αijl

τij
2

ln (
Xtl

βij l

)
]

(93)
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