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Preface

Despite being nearly 500 years old, with work dating back to Cardano,

Euler, Gauss, Cauchy, Riemann, and many others, the subject of complex

analysis is still today a vital and active part of the mathematical sciences. In

addition to all the exciting theoretical work being done today, there are

important applications to physics, engineering, cosmology, and other

aspects of technology. Many of the world's most distinguished and

accomplished mathematicians conduct research in complex analysis.

Several recent Fields Medalists study complex analysis.

Although a venerable subject, complex analysis continues to grow and

prosper. New directions of development in the subject include dynamical

systems, quasiconformal mappings, harmonic measure, automorphism

groups, and the list can go on at some length. One of the sources of strength

for the subject is its interaction with diverse parts of mathematics, including

differential geometry, partial differential equations, functional analysis,

algebra, combinatorics, and many other aspects of the subject.

This Handbook of Complex Analysis presents contributed chapters by

several distinguished mathematicians, including a new generation of

researchers. More than a compilation of recent results, this book offers a

stepping stone for students to gain entry into the professional life of

complex analysis. The essays presented here are all accessible to graduate

students but will also be of considerable interest to the seasoned

mathematician. Classes and seminars, of course, play a role in the

maturation process that we are describing. But more is needed for the

unilateral study. This handbook will play such a role.



As noted, this book will serve as a reference and a source of inspiration

for mature mathematicians—both specialists in complex analysis and others

who want to become acquainted with current modes of thought and

investigation. And it will help the neophyte to become inured in the subject

matter.

The chapters in this volume are authored by leading experts in the

subject area, also gifted expositors. They are carefully crafted presentations

of diverse aspects of the �eld, formulated for a broad and diverse audience.

The editor intends this volume to be a touchstone for current ideas in the

broadly construed subject area of complex analysis. It should enrich the

literature and point to some new directions. The point here is not to present

an epitaph for complex analysis but rather to provide an entree to a whole

new life. We anticipate that the reader of this volume will be eager to

explore other parts of complex analysis literature and to begin to play an

active role in complex analysis research life.



Editor

Steven G. Krantz is a professor of mathematics at Washington University in

St. Louis. He has previously taught at UCLA, Princeton University, and

Pennsylvania State University. He has written more than 130 books and

more than 250 scholarly papers and is the founding editor of the Journal of

Geometric Analysis. An AMS Fellow, Dr. Krantz has been a recipient of the

Chauvenet Prize, Beckenbach Book Award, and Kemper Prize. He received

a PhD from Princeton University.
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Something about Poisson and Dirichlet

Steven R. Bell and Luis Reyna de la Torre

DOI: 10.1201/ 9781315160658-1
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1.1 Mathematical DNA

For reasons that have always been mysterious to the �rst author, he has often found himself thinking about the

Dirichlet problem in the plane and has fought urges to look for explicit formulas for the Poisson kernels associated

to various kinds of multiply connected domains, especially quadrature domains. He has obsessed about solutions to

the Dirichlet problem with rational boundary data (see [4]), and he cannot stop thinking about the Khavinson-

Shapiro conjecture about the same problem with polynomial data. His publication list is interspersed with papers

where he has given in and found formulas for the Poisson kernel in terms of the Szegő kernel and in terms of

Ahlfors maps. (See [2, 3] for an expository treatment of some of these results.) After thinking about the Dirichlet

problem his entire adult life, he can solve it a different way every day of the week. He recently looked up his

mathematical lineage at the Math Genealogy Project and found a possible explanation for his obsession. He is a

direct mathematical descendent of both Poisson and Dirichlet. These problems are in his blood!

The authors worked together on a summer research project at Purdue University in 2018 to �nd a particularly

elegant and simple way to approach these problems. We want to demonstrate here how Poisson and Dirichlet might

solve their famous problems today if they had lived another 200 years and developed a major lazy streak. We

assume that our reader has seen a traditional approach to this subject in a course on complex analysis and so will

appreciate the novelty and smooth sailing of the line of reasoning here, but just in case the reader hasn’t, we have

tried to present the material in a way that can be understood assuming only a background in basic analysis.

We would like to thank Harold Boas for reading an early draft of this work and making many valuable

suggestions for improvement. Harold knows a lot about the family business because he, like the �rst author, was a

student of Norberto Kerzman at MIT in the late 1970s.

1.2 Harmonic Functions

https://doi.org/10.1201/9781315160658-1


We de�ne a harmonic function on a domain Ω in the complex plane to be a continuous complex valued function 

u(z) on the domain that satis�es the averaging property on Ω, meaning that

whenever Dr(a), the disc of radius r about a, is compactly contained in Ω. It is well known that this de�nition of

harmonic function is equivalent to all the other standard de�nitions (see, for example, Rudin [7, Chap. 11]), and we

will demonstrate this in very short order. Since we will explore other de�nitions of harmonic, we will emphasize

that we are currently thinking of harmonic functions as being de�ned in terms of an averaging property by calling

them harmonic-ave functions.

We �rst note that analytic polynomials are harmonic-ave. Indeed, if 

P(z) = anz
n + an−1z

n−1 + … + a1z + a0, the averaging property is clear on discs centered at the origin

because the constant function a0 obviously satis�es the averaging property at the origin and so does zn for n ≥ 1

because

To see that the averaging property holds at a point a ∈ C, write

and expand to get a polynomial in (z − a). Now the argument we used at the origin can be applied to discs

centered at a.

It follows that the averaging property also holds for conjugates of polynomials in z, so polynomials in z are

harmonic-ave. Note also that complex valued functions are harmonic-ave if and only if their real and imaginary

parts are both harmonic-ave.

The Dirichlet problem on the unit disc is: given a continuous real valued function ϕ on the unit circle, �nd a

real valued function u that is continuous on the closure of the unit disc with boundary values given by ϕ such that

u is harmonic on D1(0). We will �nd a solution to this problem that is harmonic in the averaging sense in the next

section. To do so, we will need to know the elementary fact that a continuous real valued function on the unit circle

can be uniformly approximated on the unit circle by a real polynomial p(x, y). We will now demonstrate this little

fact, assuming the Weierstrass theorem about the density of real polynomials of one variable among continuous

functions on closed subintervals of the real line.

Suppose we are given a continuous real valued function ϕ on the unit circle. We wish to �nd a real polynomial

p(x, y) that is uniformly close to ϕ on the unit circle. Note that we may assume that ϕ(±1) = 0 because we may

subtract a polynomial function of the form ax + b to make ϕ zero at ±1. De�ne two continuous functions on

[−1, 1] via

and

We can uniformly approximate htop and hbot on [−1, 1] by real polynomials ptop(x) and pbot(x). Next, let χϵ(y) be

a continuous function that is equal to one for y > ϵ, equal to zero for y < −ϵ and follows the line connecting 

(−ϵ, 0) to (ϵ, 1) for −ϵ ≤ y ≤ ϵ. Let pϵ(y) be a polynomial in y that is uniformly close to χϵ on [−1, 1]. Now,

because ϕ vanishes at ±1, the polynomial

u(a) = 1
2π
∫

2π

0

u(a + reiθ) dθ

∫
2π

0

(reiθ)
n
dθ = rn ∫

2π

0

cos(nθ) dθ + irn ∫
2π

0

sin(nθ) dθ = 0 = 0n.

P(z) = P((z − a) + a)

¯

htop(x) = ϕ(x + i√1 − x2)

hbot(x) = ϕ(x − i√1 − x2).

ptop(x)pϵ(y) + pbot(x)pϵ(−y)



approximates ϕ on the unit circle, and the approximation can be improved uniformly by shrinking ϵ and improving

the approximations of the other functions involved.

We are now in position to solve the Dirichlet problem on the disc, but before we begin in earnest, this is a good

place to emphasize that Green's theorem for the unit disc depends on nothing more than the fundamental theorem

of calculus from freshman calculus. Indeed, let P(x, y) be a C1-smooth function. Let Ctop denote the top half of

the unit circle parameterized in the clockwise sense by z(x) = x + iytop(x), −1 ≤ x ≤ 1, where 

ytop(x) = √1 − x2, and let Cbot denote the bottom half of the unit circle parameterized in the counterclockwise

sense by z(x) = x + iybot(x), −1 ≤ x ≤ 1, where ybot(x) = −√1 − x2. Note that the unit circle C1(0)
parametrized in the counterclockwise sense is given by Cbot followed by −Ctop. Drum roll…

∫
C1(0)

P dx & = (∫
Cbot

−∫ _Ctop)P dx = ∫
1

−1

[P(x, ybot(x)) − P(x, ytop(x))] dx & = −∫
1

−1

(∫
ytop(x)

ybot(x)

∂P

∂y
(x, y

The other half of Green's formula follows by repeating the argument using the words left and right in place of top

and bottom. This argument on the disc can be easily generalized to demonstrate Green's theorem on any region that

can be cut up into regions that have a top boundary curve and a bottom curve and a left curve and a right curve. An

annulus centered at the origin cut into four regions by the two coordinate axes is such a domain. We will need

Green's theorem later in the paper when we study analytic functions from a philosophical point of view inspired by

our observations about harmonic functions and the Dirichlet problem.

1.3 Solution of the Dirichlet Problem on the Unit Disc

The unit disc has the special feature that given polynomial data ϕ, it is straightforward to write down a polynomial

solution to the Dirichlet problem with boundary values given by ϕ. Indeed, a polynomial p(x, y) in the real

variables x and y can be converted to a polynomial in z and z by replacing x by (z + z)/2 and y by (z − z)/(2i)
and expanding. It is now an easy matter to extend the individual terms in the sum to harmonic-ave functions on the

disc by noting that

is equal to one on the unit circle if n = m, equal to zn−m on the circle if n > m, and equal to zm−n on the circle if

m > n, each of which is harmonic-ave inside the unit circle.

Now, given a continuous real valued function ϕ on the unit circle, there is a sequence of real valued

polynomials pn(x, y) that converges uniformly to ϕ on the unit circle. Let un be the polynomial harmonic-ave

extension of pn to the disc described in the paragraph above. Note that un can be expressed as a constant plus a

polynomial in z that vanishes at the origin plus a polynomial in z that also vanishes at the origin. We now claim

that the functions un converge uniformly on the closed disc to a solution of the Dirichlet problem. To see this, we

must �rst show that real valued harmonic-ave functions u on the disc that extend continuously to the closure satisfy

the maximum principle in the form

Indeed, if the maximum value of such a function u occurs at a point z0 inside the unit circle, we can express the

value of u at z0 as an average of u over a small circle centered at z0. We can let the radius of that circle increase

until the circle touches the unit circle at a single point. The averaging property holds on the limiting circle because

of uniform continuity. Let M denote the maximum value u(z0). Now, in order for the average of a continuous

function that is less than or equal to M over that circle to be equal to M, it must be that u is equal to M on the

whole circle. Hence the value of u at the point where the inner circle touches the unit disc must also be M. This

proves the maximum principle inequality for real harmonic-ave functions. The minimum principle follows by

applying the maximum principle to −u.

¯̄̄

znzm¯

¯

¯

max{u(z) : z ≤ 1} = max{u(eiθ) : 0 ≤ θ ≤ 2π}.∣ ∣



Because the pn converge to ϕ uniformly on the unit circle, the sequence {pn} is uniformly Cauchy on the unit

circle, i.e., given ϵ > 0, there is an N such that |pn − pm| < ϵ on the unit circle when n and m are greater than N.

The maximum and minimum principle inequalities applied to the imaginary parts of un (which are zero on the unit

circle) allow us to conclude that the functions un are real valued. Furthermore, the maximum and minimum

principles applied to un − um show that the uniformly Cauchy estimates for the sequence {pn} on the unit circle

extend to hold for the sequence {un} on the whole closed unit disc, showing that {un} is uniformly Cauchy on the

closed unit disc. Hence, since the un are continuous, they converge uniformly on the closed unit disc to a

continuous function u that is equal to ϕ on the unit circle. Finally, it is clear that u is harmonic-ave on the inside of

the unit circle because the averaging property is preserved under uniform limits. We have solved the Dirichlet

problem in a purely existential manner without ever differentiating a function! We now turn to Poisson's problem

of �nding a formula for our solution.

1.4 Poisson's Formula

Notice that the set of harmonic-ave functions

is orthonormal under the inner product

De�ne KN(z,w) via

and observe that if u(z) = zn, then

(1.1)

for z ∈ D1(0) if N ≥ n because of the orthonormality of the terms in the sum. The same is true if u(z) ≡ 1 or 

u(z) = z n. We conclude that if u is the solution of the Dirichlet problem for polynomial data p of degree n as

constructed in the previous section, then formula (1.1) holds for u(z) for z ∈ D1(0) when N > n.

Using the famous geometric series formula,

we see that

converges uniformly in w = eiθ when z ∈ D1(0) to

{1, zn, z n : n = 1, 2, 3, …}̄

⟨u, v⟩ = 1
2π ∫

2π

0
u(eiθ) v(eiθ) dθ.̄

KN(z,w) := 1 +
N

∑
n=1

znw n +
N

∑
n=1

z nwn ,̄̄

u(z) = 1
2π ∫

2π

0
KN(z, eiθ)u(eiθ) dθ

¯

1 + ζ + … + ζN = 1
1−ζ

− ζN+1

1−ζ
,

KN(z,w) = 1 + (zw)
N−1

∑
n=0

znw n + (z w)
N−1

∑
n=0

z nwn¯̄̄̄

K(z,w) := 1 + zw
1−zw

+ zw
1−zw

,¯¯
¯
¯



and the error EN = |KN − K| is controlled via

when z ∈ D1(0) and |w| = 1. Hence, it follows by taking uniform limits that formula (1.1) holds for z ∈ D1(0)
with the N removed for the polynomials un that we constructed from polynomial boundary data pn. We can now let

the polynomials pn tend uniformly to ϕ and use the fact proved above that the corresponding solutions un to the

Dirichlet problem with boundary data pn converge uniformly to a solution u of the Dirichlet problem to obtain

Poisson's famous formula for the solution to the Dirichlet problem,

(1.2)

This formula reveals that the solution u can be written

where a0 is the (real valued) average of ϕ on the unit circle and h is an analytic function on D1(0) that vanishes at

the origin given via

where C1 denotes the unit circle parameterized in the standard sense using w = eiθ and dw = ieiθ dθ. It is now a

rather easy exercise to take limits of complex difference quotients to see that complex derivatives in z can be taken

under the integral sign in the de�nition of h. Hence, h(z) is in�nitely complex differentiable. It follows from the

Cauchy-Riemann equations that u is a C∞-smooth real valued function on D1(0) in x and y that satis�es the

Laplace equation there and solves the Dirichlet problem. Furthermore, u is the real part of an in�nitely complex

differentiable function H = a0 + h/2 on D1(0).

The maximum principle yields that u is the unique solution to the problem in the realm of harmonic functions

understood in the sense of averaging. We will see in the next section that it is also the unique solution among

harmonic functions de�ned in the traditional sense of satisfying the Laplace equation.

We remark here that rather simple algebra reveals the well-known formulas for the Poisson kernel,

and

It is a routine matter to extend the above line of reasoning to any disc (either by repeating the argument or

making a complex linear change of variables Az + B). Since a complex valued function is harmonic-ave if and

only if its real and imaginary parts are harmonic-ave, it follows from our work that a complex valued harmonic-ave

function is given locally by g + G  where g and G are in�nitely complex differentiable functions.

At this point, it would be tempting to experiment with thinking of analytic functions as being harmonic-ave

functions that do not involve the antianalytic G  parts. The formula for h above reveals that the analytic g part is

locally a uniform limit of analytic polynomials. Since {1, zn : n = 1, 2, 3, …} are orthonormal on the unit circle,

we could let

EN(z,w) ≤ 2|z|N+1

1−|z|

u(z) = 1
2π
∫

2π

0

K(z, eiθ)ϕ(eiθ) dθ.

u(z) = a0 + h(z) + h(z)̄

h(z) = 1
2π ∫

2π

0

ze−iθ

1 − ze−iθ
ϕ(eiθ) dθ = z

2πi ∫
C1

ϕ(w)

w(w − z)
dw,

K(z,w) = Re  1+zw
1−zw

= Re  w+z
w−z

¯
¯

K(z, eiθ) = 1−|z|2

|z−eiθ|2 .

¯

¯



and use the same line of reasoning that we used earlier in this section to conclude that

(1.3)

if f(z) is equal to 1 or zn with n ≤ N . The geometric series estimate we used above shows that kN(z,w)
converges uniformly in w on the unit circle for �xed z in D1(0) to

Hence, we can let N → ∞ in (1.3) to see that

(1.4)

when f is an analytic polynomial. Finally, if f is a uniform limit of analytic polynomials on an open set containing

the closed unit disc, we may conclude that f satis�es identity (1.4), too. The identity can easily be seen to be the

classical Cauchy integral formula on the unit disc, and from this point, the theory of analytic functions would gush

forth. In particular, analytic functions would be seen to be in�nitely complex differentiable and given locally by

convergent power series. We will explore this idea and various other alternate ways of thinking about analytic

functions after we verify that our de�nition of harmonic functions via an averaging property gives rise to the same

set of functions as any of the more standard de�nitions.

1.5 Traditional De�nitions of Harmonic Functions

Some complex analysis books de�ne harmonic functions to be twice continuously differentiable functions that

satisfy the Laplace equation. With this de�nition, one can use Green's identities on an annulus (which we pointed

out in section 1 to be quite elementary) to show that such harmonic functions satisfy the averaging property.

Hence, this class of functions could be seen to be the same as harmonic-ave functions. We won’t pursue this idea

here because we can easily prove something stronger with less effort.

It is most gratifying to de�ne harmonic functions to be merely continuous functions u whose �rst partial

derivatives exist and whose second partial derivatives ∂ 2u/∂x2 and ∂ 2u/∂y2 exist and satisfy the Laplace

equation. Call such functions harmonic-pde. We will now adapt a classic argument to show that the class of

harmonic-pde functions agrees with our class of continuous functions that satisfy the averaging property on an

open set. Indeed, if u is a harmonic-pde function de�ned on an open set containing the closed unit disc, then u

minus the harmonic-ave function U that we constructed solving the Dirichlet problem on the unit disc with the

same boundary values as u on the unit circle, if not the zero function, would have either a positive maximum or a

negative minimum. Suppose it has a positive maximum M > 0 at a point z0 in D1(0). Choose ϵ with 0 < ϵ < M .

Now

is equal to ϵ on the unit circle and attains a positive value at z0 that is larger than ϵ. Hence, v attains a positive

maximum at some point w0 in D1(0). The Laplacian of v at w0 is equal to 4ϵ, which is strictly positive. However,

the one variable second derivative test from freshman calculus applied to v in the x-direction yields that ∂ 2v/∂x2

kN(z,w) = 1 +
N

∑
n=1

znw n¯

f(z) = 1
2π
∫

2π

0

kN(z, eiθ) f(eiθ) dθ

k(z,w) := 1
1−zw

.̄

f(z) = 1
2π ∫

2π

0
k(z, eiθ) f(eiθ) dθ

v(z) := u(z) − U(z) + ϵ|z|2



must be less than or equal to zero. (If it were positive, v could not have a local maximum at w0.) Similarly, the

second derivative test in the y-direction yields that ∂ 2v/∂y2 must be less than or equal to zero. We conclude that

the Laplacian of v at w0 must be less than or equal to zero, which is a contradiction because the Laplacian is

strictly positive on D1(0). This shows that u − U  cannot have a positive value. If we replace u − U  by U − u, the

same reasoning shows that U − u cannot have a positive value. Hence U − u ≡ 0 on the unit disc, and we have

shown that u, like U, is harmonic in the sense of being averaging. Finally, because the operations of translating and

scaling preserve harmonic functions in both senses of the word, we can translate and scale any disc to the unit disc

to be able to deduce the equivalence of the two de�nitions of harmonic on any open set. We now stop hyphenating

harmonic and turn to hyphenating analytic.

1.6 Analytic Functions

When the 200+ year old Poisson and Dirichlet took a break from harmonic functions, they might have turned their

attention to similar considerations applied to analytic functions, which satisfy both the averaging property on discs

and Cauchy's theorem for circles.

In order to understand the rest of this section, the reader will need to know (or look up) the de�nition of the

complex contour integral ∫
γ

f dz along a curve γ, the basic estimate

and the fundamental theorem of calculus ∫
γ

f ′ dz = f(b) − f(a) for complex contour integrals, assuming that f is

continuously complex differentiable and that γ starts at a and ends at b. We will also use the differential operators

These two very important operators can be “discovered” by writing dz = dx + i dy and dz = dx − i dy and

manipulating

to appear in the form

The condition 
∂f
∂z = 0 is equivalent to writing the Cauchy-Riemann equations for the real and imaginary parts of f.

If h(z) is a complex differentiable function, then ∂h
∂z

= 0 and ∂h
∂z

= h′(z). Furthermore, ∂h
∂z

= 0 and ∂h
∂z

= h′(z).

We will denote the boundary circle of the disc Dr(a) parameterized in the counterclockwise sense by Cr(a).

Writing out the real and imaginary parts of the contour integral of a complex function f around Cr(a) and applying

Green's theorem for a disc to the real and imaginary parts yields, what we like to call, the complex Green's theorem

for a disc,

where dA denotes the element of area dx ∧ dy. (Using the real Green's theorem to prove the complex Green's

theorem is quick and easy, but a more civilized way to deduce the theorem would be to note that

∫
γ

f dz ≤ sup{ f(z) : z ∈ γ} ⋅  Length (γ),∣ ∣ ∣ ∣∂
∂z = 1

2 (
∂

∂x − i ∂
∂y )  and  ∂

∂z = 1
2 (

∂
∂x + i ∂

∂y ).̄

¯

df = ∂f
∂x dx + ∂f

∂y dy

df = ∂f
∂z

dz + ∂f
∂z

dz .̄̄

¯

¯

¯̄

¯
¯

∫
Cr(z0)

f dz = 2i∬
Dr(z0)

∂f

∂z
dA,

¯

d(f dz) = df

dz
dz ∧ dz + df

dz
dz ∧ dz = 0 + df

dz
(2idx ∧ dy)̄̄̄



and to apply Stokes’ theorem.)

De�ne a continuous complex valued function f to be analytic-circ on a domain Ω if it is harmonic on Ω (and so

satis�es the averaging property) and, for each closed subdisc of Ω, the complex contour integral of f over the

boundary circle is zero.

Complex polynomials are easily seen to be analytic-circ because the monomials are complex derivatives of

monomials one degree higher and the fundamental theorem of calculus for complex contour integrals reveals that

the integrals around closed curves are zero. It now follows that functions that are the uniform limit of complex

polynomials (in z) on each closed subdisc of Ω are analytic. We will now show that functions that are analytic-circ

must be the uniform limit of complex polynomials on each closed subdisc of Ω.

Suppose f is analytic-circ on Ω. Let Dr(z0) be a disc that is compactly contained in Ω and let Cr(z0) denote

the boundary circle parameterized in the counterclockwise sense. The complex Green's theorem for a disc yields

that

where dA denotes the element of area dx ∧ dy. Since this integral is zero for every disc compactly contained in Ω,

it follows that ∂f/∂z ≡ 0 on Ω, i.e., that the real and imaginary parts of f satisfy the Cauchy-Riemann equations.

Since harmonic functions are in�nitely differentiable, the textbook proof that f is complex differentiable can now

be applied.

Since being analytic-circ is a local property and is invariant under changes of variables of the form Az + B, we

may restrict our attention to a function f that is analytic-circ on a neighborhood of the closed unit disc. We can gain

more insight into the implications of the de�nition by noting that such a harmonic function is given by g + G

where g and G are in�nitely complex differentiable. It follows from our complex Green's calculation above that 

∂f/∂z = G′ ≡ 0 on Ω, and that f is therefore equal to the analytic part g plus a constant. From this point, it

follows that f is given by a Cauchy integral formula, and we merge into the fast lane of the classical theory of

analytic functions.

Of course, the traditional way to de�ne analytic functions is as complex differentiable functions on open sets.

Call such functions analytic-diff. We will now show that the traditional de�nition leads to the same class of

functions that we have de�ned as being analytic-circ.

Suppose that f is an analytic-diff function de�ned on an open set containing the closed unit square 

S := [0, 1] × [0, 1]. We will show that the complex integral of f around the counterclockwise perimeter curve σ of

the square must be zero. The well-known argument will be a beautiful bisection method tracing back to Goursat.

It follows from our assumption that f can be locally well approximated by a complex linear function in the

following sense. Suppose a is a point in S , and let ϵ > 0 be given. Since f ′(a) exists, there is a δ > 0 such that

where |Ea(z)| < ϵ when |z − a| < δ, z ≠ a. De�ne Ea(a) to be zero to make Ea continuous at a and so as to be

able to assert that

on the whole open set where f is de�ned and Ea is a continuous function in z on that set. Furthermore, |Ea(z)| < ϵ
on Dδ(a). The complex integral of the polynomial f(a) + f ′(a)(z − a) around any square is zero because �rst-

degree polynomials are derivatives of second-degree polynomials. If σh is the counterclockwise boundary curve of

a small square Sh of side h contained in Dδ(a) that contains the point a, it follows that

Hence,

0 = ∫
Cr(z0)

f dz = 2i∬
Dr(z0)

∂f

∂z
dA,

¯

¯

¯

¯̄

f(z)−f(a)
z−a

= f ′(a) + Ea(z)

f(z) = f(a) + f ′(a)(z − a) + Ea(z)(z − a)

∫
σh

f(z) dz = ∫
σh

Ea(z)(z − a) dz ≤ ϵ(√2h)(4h).∣ ∣ ∣ ∣



(1.5)

We will now follow a version of Goursat's famous argument to explain how this could be made too small if ∫
σ

f dz

were not zero.

Indeed, suppose that I := ∫
σ

f dz is not equal to zero. Note that I is equal to the sum of the integrals around

the four counterclockwise squares obtained by cutting the big square into four equal squares of side 1/2 since the

integrals along the common edges cancel. For these four integrals to add up to the non-zero value I, the modulus of

at least one of them must be greater than or equal to |I|/4. Name such a square S1 and its counterclockwise

boundary curve σ1. Note that

We may now dice up S1 into four equal subsquares and repeat the argument to obtain a square S2 with

boundary curve σ2 such that the modulus of the integral of f around σ2 is greater than or equal to |I| times the area

of S2. Continuing in this manner, we obtain a nested sequence of closed squares {Sn}∞
n=1 with boundary curves

σn, the diameters of which tend to zero as n → ∞, such that

(1.6)

There is a unique point a that belongs to all the squares. Now, given an ϵ less than I /(4√2), the squares that

eventually fall in the disc Dδ(a) that we speci�ed above satisfy both area inequalities (1.5) and (1.6), which are

incompatible. This contradiction shows that I must be zero!

Since any square can be mapped to the unit square via mapping of the form Az + B, it follows from a simple

change of variables that the integral of an analytic-diff function around any square must be zero. Furthermore, any

rectangle can be approximated by a rectangle subdivided into a union of n × m squares. It follows that the integral

of an analytic-diff function around any rectangle must be zero.

From this point, there are several standard arguments to prove the Cauchy integral formula on a disc for such

functions (see Ahlfors [1, p. 109] or Stein [9, p. 37]). It then follows from the Cauchy integral formula that such a

function would be locally the uniform limit of analytic polynomials, and so the function would be analytic-circ.

However, we can simplify these standard arguments by using some of the power of our work on harmonic

functions in the previous sections.

Suppose that f is analytic-diff on an open disc. Since f is complex differentiable, it is continuous. De�ne F(z)
at a point z in the disc by the integral of f along a horizontal “zig” from the center followed by a vertical “zag”

connecting to the point z. The fundamental theorem of calculus reveals that

Since the integral of f around rectangles is zero, we could also de�ne F via an integral along a vertical zag

followed by a horizontal zig. Using this de�nition, the fundamental theorem of calculus shows that

Hence, F is a continuously differentiable function whose real and imaginary parts satisfy the Cauchy-Riemann

equations, and furthermore, is a complex differentiable function such that F ′ = f on the disc. Repeat this

∫
σh

f dz ≤ (4√2 )ϵArea (Sh).∣ ∣∫
σ1

f dz ≥ I ⋅ Area (S1).∣ ∣ ∣ ∣∫
σn

f dz ≥ I ⋅ Area (Sn).∣ ∣ ∣ ∣ ∣ ∣∂
∂y F(x + iy) = if(x + iy).

∂
∂x F(x + iy) = f(x + iy).



construction to get a twice continuously complex differentiable function G such that G′′ = f.

Now, since G is twice continuously complex differentiable, it is easy to use the Cauchy-Riemann equations to

show that the real and imaginary parts of G are harmonic functions. Indeed, if G(x + iy) = u(x, y) + iv(x, y),

then the Cauchy-Riemann equations yield that

and

and we see that u and v satisfy the Laplace equation by equating the real and imaginary parts of G′′. Our work in

previous sections shows that these harmonic functions are C∞-smooth, and it follows that the real and imaginary

parts of f are C∞-smooth and satisfy the Laplace equation and the Cauchy-Riemann equations. We may now use

Green's theorem on a disc to prove the Cauchy theorem for f on discs. Hence, f is analytic-circ, and we have

proved the equivalence of the de�nitions, revealing that f is locally the uniform limit of complex polynomials and

is given by the Cauchy integral formula. The shortcuts we have revealed in the theory of analytic functions deliver

us to page 114 of Ahlfors.

Before we conclude this section, we present one last alternate way to de�ne analytic functions that might be of

interest to experienced analysts. The result is known (see, for example, Springer [8] or Globevnik [5]), but we are

in a position to prove it rather ef�ciently here. We now will de�ne a continuous complex valued function to be

analytic-ave on the unit disc if f(z)(z − a) satis�es the averaging property on circles Cr(a) contained in the disc,

i.e., if

whenever the closure of Dr(a) is contained in the unit disc. Note that this condition is equivalent to the condition

that

for each such circle. We will now prove that analytic-ave functions are analytic in the usual sense. This result can

be viewed as a version of Morera's theorem saying that a continuous complex valued function that satis�es the

Cauchy theorem on circles must be analytic.

Let χ(t) be an real valued non-negative function in C∞[0, 1] that is equal to one for t < 1
2  and equal to zero

for t > 3
4 . De�ne

where c is chosen so that ∫ ϕdA = 1. Let ϕϵ denote the approximation to the identity given by

The proof of our claim rests on a straightforward calculation that shows that

is (z − w) times a function ψϵ(z − w) that is radially symmetric about z in w. In fact,

The calculation hinges on the chain rule plus the fact that

G′ = ux + ivx = vy − iuy

G′′ = uxx + ivxx = −uyy − ivyy

0 = ∫
2π

0
f(a + reiθ)(reiθ) dθ

0 = ∫
Cr(a)

f dz

ϕ(z) = cχ(|z|2)

ϕϵ(z) = 1
ϵ2 ϕ(z/ϵ).

∂
∂z ϕϵ(z − w)̄

ψϵ(z) = c
ϵ4 χ

′( z 2/ϵ2).∣ ∣∂ ∂



Given a continuous function f on the unit disc such that f(z)(z − a) satis�es the averaging property on circles 

Cr(a) compactly contained in the disc, let fϵ = ϕϵ*f for small ϵ > 0. Note that fϵ is C∞ smooth on D1−ϵ(0) and

that fϵ converges uniformly on compact subsets of the unit disc to f as ϵ → 0. One can differentiate under the

integral in the convolution formula to see that

and the observation about the radially symmetric function and our hypothesis about f allows us to write the integral

in polar coordinates about z to conclude that fϵ satis�es the Cauchy-Riemann equations, and so is analytic-diff on 

D1−ϵ(0), and consequently, is analytic-circ there, too. It is easy to see that uniform limits of analytic-circ functions

are analytic-circ. We conclude that f is analytic-circ and so analytic in any sense of the word.

1.7 The Dirichlet Problem in More General Domains

We solved the Dirichlet problem on the unit disc, given polynomial boundary data, by explicitly extending

individual terms znzm as harmonic polynomials. Another way to approach this problem is via linear algebra.

Suppose a domain Ω is described via a real polynomial de�ning function r(x, y) (meaning that 

Ω = {x + iy : r(x, y) < 0}), where r(x, y) is of degree two. For Ω to be a bounded domain, it is clear that the

boundary of Ω, which is the zero set of r, must be a circle or an ellipse. Let Δ denote the Laplace operator. Now,

the map F  that takes a polynomial p(x, y) to the polynomial Δ(rp) maps the �nite-dimensional vector space PN

of polynomials of degree N or less to itself. (Multiplying by r increases the degree by two, and applying the

second-order operator Δ brings it back down by two.) We claim that the map F  is one-to-one on PN , and

therefore onto. Indeed, if Δ(rp) is the zero polynomial, then rp is a harmonic polynomial that vanishes on the

boundary. The maximum principle implies that it must be the zero polynomial. Consequently, p must be the zero

polynomial, and this proves that F  is a one-to-one linear mapping of a �nite-dimensional vector space into itself,

and so also onto. Now, to solve the Dirichlet problem on Ω, given polynomial boundary data q(x, y), we know

there is polynomial p such that Δ(rp) = Δq. The polynomial q − rp is harmonic on Ω and equal to q on the

boundary. It solves the Dirichlet problem. We could have solved the Dirichlet problem on the unit disc in the realm

of polynomials without ever writing a formula down! Now we can solve the Dirichlet problem on an ellipse using

the same procedure that we did on the disc. (However, the next obvious step, to try to write down a Poisson

integral formula on the ellipse, gets more complicated because the monomials are not orthonormal in the boundary

inner product of the ellipse.)

The Khavinson-Shapiro conjecture states that discs and ellipses are the only domains in the plane having the

property that solutions to the Dirichlet problem with polynomial data must be polynomials. It is tantalizing that it

seems so much harder to settle this question than the same problem with the word “polynomial” replaced by

“rational.” Only discs have the property that solutions to the Dirichlet problem with rational boundary data must be

rational (see [4]).

For the remainder of this section, we will let our Poisson and Dirichlet urges run rampant and explain how the

ideas in the previous sections might be used to solve the Dirichlet problem on more general domains. We will

dispense with proofs and follow a line of bold declarations. The interested reader can �nd a more sober exposition

of some of these ideas in Chapters 22 and 34 of [2] and in [3].

To solve the Dirichlet problem on a domain bounded by a Jordan curve, one can use Carathéodory's theorem

(the theorem that states that the Riemann map associated to such a domain extends continuously to the boundary

and maps the boundary one-to-one onto the unit circle) to be able to pull back solutions to the problem on the unit

disc to the domain. But we wonder if there might be a more elementary way to do it.

Gustafsson's theorem [6] states that a bounded �nitely connected domain with n continuous simple closed

boundary curves can be mapped to an n-connected quadrature domainΩ with smooth real analytic boundary via a

conformal mapping that is continuous up to the boundary and as close to the identity map in the uniform topology

∂
∂z

z2 = ∂
∂z

(z z) = z.̄∣ ∣¯̄∂fϵ
∂z =

∂ϕϵ
∂z *f = ∬

w∈D1(0)

∂ϕϵ

∂z
(z − w) f(w) dA,̄̄

¯

¯



of the closure of the domain as desired. Such a “nearby” quadrature domain has the property that the average of an

analytic function over the domain with respect to area measure is �nite linear combination of values of the function

and its derivatives at �nitely many points in the domain. The resulting “quadrature identity” is the same for all

analytic functions that are square-integrable with respect to area measure on the domain. Smooth real analytic

curves have “Schwarz functions” S(z) that are analytic on a neighborhood of the curve and satisfy S(z) = z on the

curve. The Schwarz functions associated to the boundary curves of our quadrature domain Ω have the following

stronger properties. There is a function S(z) that is meromorphic on an open set containing the closure of Ω that

has no poles on the boundary of Ω and satis�es the identity z = S(z) on the boundary. Quadrature domains can be

thought of as a generalization of the unit disc (which is a one point quadrature domain), and Gustafsson's

conformal mapping as a generalization of the Riemann map in the n-connected setting.

Given a continuous function ϕ on the boundary of our quadrature domain Ω, we can approximate it by a

rational function of x and y via the Stone-Weierstrass theorem since the family of such rational functions without

singularities on the boundary forms an algebra of continuous functions that separates points. Writing such a

rational function as a rational function of z and z and replacing z by S(z) produces a meromorphic function on a

neighborhood of the closure of Ω that has no poles on the boundary and that agrees with the given rational function

on the boundary. If we can solve the Dirichlet problem on Ω with boundary data

for �xed a in Ω and positive integers n, then, by subtracting such solutions from the data, we would have harmonic

functions that vanish on the boundary and have general pole behavior at z = a. We could then use these functions

to subtract off the poles of our meromorphic function and obtain a solution to the Dirichlet problem with the given

rational boundary data. Then we could take uniform limits and solve the Dirichlet problem for continuous

boundary data ϕ just like we did in the unit disc.

In case Ω is simply connected, it is possible to solve the Dirichlet problem with boundary data (z − a)−n
 using

a Riemann mapping function. Let f : Ω → D1(0) be a Riemann map. The Green's function G(z,w) for Ω is a

constant times

and derivatives

are harmonic on Ω − {w}, are continuous up to the boundary in z and vanish on the boundary in z, and the

singularity at w is precisely of the form a constant times (z − w)−m
. One does not need to know that the Riemann

map is continuous up to the boundary to see that these functions extend continuously up to the boundary in z and

vanish there. This follows from the fact that conformal mappings are proper mappings: the inverse image of a

compact subset of the unit disc is a compact subset of Ω.

Hence, in the simply connected case, we have a method to solve the Dirichlet problem rather analogous to the

method we used in the case of the unit disc. There is something appealing about taking a close approximation to

our original domain, followed by a close approximation to the boundary data, to be able to �nd an elementary

formula for the solution to the Dirichlet problem.

Riemann maps associated to simply connected quadrature domains can be expressed as rational combinations

of z and the Schwarz function, so solutions to the Dirichlet problem with rational boundary data can also be

expressed as rational combinations of z and the Schwarz function!

Another way to construct the Poisson kernel is to express it in terms of a normal derivative of the Green's

function, which, on a simply connected quadrature domain, is also expressible in terms of a Riemann map, and

hence, also expressible in terms of z and the Schwarz function. It follows that the Poisson kernel of a simply

connected quadrature domain is expressible in terms of z and the Scwharz function. Could we do similar things in

the multiply-connected setting? Could we use Ahlfors maps in place of a Riemann map? Might the Poisson kernel

there be expressible in terms of z and a Schwarz function and the harmonic measure functions? We wonder.

¯

¯

¯̄

1
(z−a)n

ln f(z)−f(w)

1−f(w) f(z)
,∣¯∣∂m

∂wm G(z,w)
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2.1 Introduction

One of the fundamental constructions for a region in the complex plane is the Cauchy integral—it

has many applications. In one complex variable, for instance, it can be used to show that a function

satisfying the Cauchy-Riemann equations can be represented locally as the sum of a power series. In

several variables, it can be used to show in iterated fashion that holomorphic functions on non-

pseudoconvex regions always extend holomorphically to larger regions. This is the Hartogs extension

phenomenon of 1906. There are alternatives, though, to generalizing the Cauchy integral to several

variables that do not involve iteration. Often they and their related operators are characterized as

canonical (e.g., Szegő), universal (e.g., Bochner-Martinelli), or geometric (e.g., Cauchy-Fantappiè).
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Such constructions are foundational to the method of integral representations which is important

for proving regularity of solutions to partial differential equations in several complex variables. That

method (including the applications and all kernel functions discussed here) is described well in the

Krantz contribution to this volume [24] as well as [23, 26].

The present article should be seen as an additional perspective on the method where the kernels

themselves are considered geometrically and computationally. In particular, we present one of the

alternatives as a natural cousin to the Cauchy integral. The Cauchy-Leray integral, in particular, is

constructed at once as a Cauchy-Fantappiè integral associated to domains that are weakly linearly

convex (as de�ned in §3) and have twice differentiable boundary. It is hoped that this special

relationship between the Cauchy and Cauchy-Leray integrals might be an avenue by which insights

for one variable leads to new insights for several variables.

Our study begins in one complex variable and explores similarities between the Cauchy integral

and Szegő projector. We include examples not only to show the similarities, but also to illustrate how

hidden symmetries can lead to calculations that suggest a general behavior. Speci�cally we exploit

the fact that the Cauchy integral has Möbius symmetry where the Szegő projector has holomorphic

symmetry.

We next introduce the kind of convexity needed to construct the Cauchy-Leray integral. By

default, all regions in one complex variable have this property and the Cauchy-Leray integral

simpli�es to the Cauchy integral. (Such simpli�cation is common to integrals of Cauchy-Fantappiè

type!) We then introduce the Fefferman measure and show that if the Cauchy-Leray kernel and Szegő
kernel are de�ned with respect to Fefferman measure, then they have the same Möbius symmetry and

holomorphic symmetry as in the case of one variable. We conclude by introducing a domain studied

recently by Barrett and Edholm where the L2-norm of the Cauchy-Leray operator can be found

explicitly [2]. The details of this higher dimensional case are outside the scope of this article, but

there is a resemblance to some of the examples in one variable and the unit ball.

We mention that many of the constructions discussed in this article also appear in the

contribution to this volume by Krantz [24]. The emphasis here, though, is on making further

connections between complex analysis in one and several variables and on enhancing the collection

of examples.

The Cauchy-Leray integral has been studied in other special cases, too. Barrett and Lanzani

studied the essential norm for the case of convex Reinhardt domains generally and for the case of Lp-

balls speci�cally [4]. As well, Barrett clari�es the vector bundle context in which the Cauchy-Leray

kernel arises naturally. This leads to an interpretation of the Cauchy-Leray integral as a way to

quantify a pairing between dual hypersurfaces in complex projective space [3].

2.2 Szegő kernel and Cauchy Kernel Under Transformation

In general, we assume Ω ⊂ C is a bounded region with C∞ smooth boundary. Most of the

discussion applies to more general regions, too, as will be apparent in examples.

2.2.1 Szegő kernel

To begin, the Lebesgue space L2(∂Ω) is de�ned with respect to arc length measure using the

Hermitian inner product



The Hardy space H 2(∂Ω) is loosely the subspace of functions that extend holomorphically to the

region Ω. Such extensions are unique by the Cauchy integral formula. To be precise, H 2(∂Ω) is the

closure in L2(∂Ω) of the space of functions A∞(Ω) that arise as boundary values of functions

holomorphic in Ω and smooth in Ω . Since H 2(∂Ω) is closed, one has an orthogonal projection 

S : L2(∂Ω) → H 2(∂Ω) called the Szegő projector.

By the Riesz Representation Theorem, one has that the Szegő projector is an integral operator. In

particular, an estimate based on the Cauchy integral formula shows for each z ∈ Ω that the point

evaluation g ∈ H 2(∂Ω) → g(z) is a continuous linear functional. So there is a unique element 

Sz = S( ⋅ , z) ∈ H 2(∂Ω) such that S g(z) = (g,Sz)∂Ω for g ∈ L2(∂Ω). Alternatively, the Szegő
kernel can be constructed by taking an orthonormal basis {ϕj} for H 2(∂Ω) and demonstrating

convergence of the series S(w, z) = ∑
j

ϕj(w)ϕj(z). With both approaches one has readily that 

S(w, z) = S(z,w).

The second approach is helpful for computing the Szegő kernel in the case of a highly symmetric

region like the unit disc Δ = {z : |z| < 1}. By Taylor's theorem, a holomorphic function on Δ is the

sum of its Maclaurin series. So a basis for H 2(∂Ω) is {ψj}j≥0 where ψj(z) = zj. In fact, this is an

orthogonal basis and upon normalization one has

(2.1)

A third approach to the Szegő kernel is via the Greens function. For the case of a simply

connected region, one can de�ne

and subsequently verify the reproducing and orthogonality properties. There is a messy

generalization of this for multiply connected regions that involves the associated harmonic measures

of the region. Such formulas highlight that the Szegő projector and kernel belong to the complex

analytic “canon” of a given region although the derivations are indirect and typically given via the

corresponding theory of the Bergman kernel, see [5, 14].

For our purposes, we consider the effect of a biholomorphism f : Ω1 → Ω2 on the Szegő
projector and kernel. Given that Ω1 and Ω2 have smooth boundaries, it is known that f extends

smoothly to Ω 1, f′ does not vanish on Ω1, and f′ is the square of a holomorphic function (see [5], p.

42). This leads to an isometry Λf : L2(∂Ω2) → L2(∂Ω1) given by g → (g°f)√f ′ that also

preserves Hardy spaces Λf : H 2(∂Ω2) → H 2(∂Ω1). It, too, yields the transformation law

(2.2)

(g,h)∂Ω = ∫
∂Ω

g h ds.̄

¯

¯

¯

S(w, z) = ∑
j≥0

wj

√2π

zj

√2π
= 1

2π
1

1−wz
.¯¯

S(w, z) = √− 1
2π2

∂ 2G(w,z)
∂w ∂z̄

¯

S1(w, z) = f ′(w)1/2
S2(f(w), f(z)) f ′(z)1/2.
¯



Notice that the reason for the isometry is due to how arc length is affected by a holomorphic map. If 

ds1, ds2 are the differentials of arc length on ∂Ω1, ∂Ω2, and if z(t) parameterizes ∂Ω1, then 

(f°z)(t) parameterizes ∂Ω2 with ds1 = |z′(t)| dt and 

ds2 = (f°z)′(t) dt = f ′(z(t)) z′(t) dt = f ′ ds1.

The transformation law enables one to write the Szegő kernel for a simply connected region in

terms of any biholomorphism to the unit disc. In particular, if Ω is simply connected and f : Ω → Δ

is biholomorphic, then the Szegő kernel for Ω is

(2.3)

2.2.2 Cauchy kernel

In contrast to the Szegő projector, there is the explicit Cauchy operator de�ned initially for 

g ∈ L1(∂Ω) according to

for z ∈ Ω. From this de�nition, one sees that C g is holomorphic in Ω. By restricting to functions 

g ∈ C∞(∂Ω), one can show that the holomorphic function C g extends smoothly to boundary. That

is, C  restricts to an operator C∞(∂Ω) → C∞(∂Ω). In fact, C  is bounded on L2(∂Ω) and therefore

extends continuously to a bounded projector C : L2(∂Ω) → H 2(∂Ω). (The reason that C

reproduces functions in the Hardy space is the Cauchy integral formula.) In this way, the Cauchy

projector arises as an explicitly de�ned alternative to the Szegő projector.

For further comparison with the Szegő projector, observe that the Cauchy projector can be

expressed via C g(z) = (g,Cz)∂Ω where

(2.4)

and T (w) is the positively oriented unit tangent vector at w ∈ ∂Ω.

It is apparent from these representations that the Cauchy projector and kernel will behave well

with respect to af�ne transformations f(z) = az + b for a, b ∈ C. In fact, they behave well with

respect to the larger class of Möbius transformations f(z) = (az + b)/(cz + d) for a, b, c, d ∈ C, 

ad − bc = 1. In particular, for a Möbius transformation f : Ω1 → Ω2 one has the same

transformation law for the Cauchy kernel as for the Szegő kernel,

(2.5)

This is a direct calculation that uses the fact that the tangent vectors at w ∈ ∂Ω1, f(w) ∈ ∂Ω2 are

related according to the chain rule by

∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣S(w, z) = 1
2π

f ′(w)1/2
f ′(z)1/2

1−f(w)f(z)
.

¯

¯

C g(z) = 1
2πi ∫

∂Ω

g(w) dw

w − z

Cz(w) = C(w, z) = 1
2πi

T (w)
w−z

¯

C1(w, z) = f ′(w)1/2 C2(f(w), f(z)) f ′(z)1/2.
¯



Naturally, the kernel transformation laws imply operator transformation laws; speci�cally, (2.2)

implies S1°Λf = Λf°S2 for a biholomorphism, and (2.5) implies C1°Λf = Λf°C2 for a Möbius

transformation.

2.2.3 Examples

From the Szegő kernel transformation law and the fact that the Szegő kernel for a disc is known, it is

immediate that the Szegő projector can be expressed in terms of the biholomorphism to the unit disc.

Given its Möbius invariance, the Cauchy operator, too, should be computable for regions with

enough Möbius symmetry. We consider three such examples bounded respectively by two circles,

two lines, and two logarithmic spirals as in Figure 2.1 The behavior of Möbius transformations with

respect to circles and lines is familiar, but they are well-behaved with respect to logarithmic spirals,

too. In particular, logarithmic spirals have constant curvature and a natural parameter when studied

invariantly with respect to Möbius transformation.

FIGURE 2.1
(i) Annulus, (ii) strip, and (iii) logarithmic sector.

Example 1.  The Szegő kernel for an annulus Ω = {z ∈ C : r < |z| < 1} can be computed the

same way as for a disc. In particular, holomorphic functions on an annulus can be written as the sum

of a Laurent series, so a basis for H 2(∂Ω) is {ψj}j∈Z
 where ψj = zj. This basis is orthogonal and

upon normalization one �nds

To show the utility of this representation, we compute the Szegő projector applied to a function 

g ∈ L2(∂Ω) supported on the outer circle. Let

Then for z ∈ Ω

T (f(w)) =
f ′(w)

|f ′(w)|
T (w) = cw+d

cw+d
T (w).

¯

S(w, z) = 1
2π
∑
j∈Z

wj zj

1 + r2j+1
.

¯

g(w) = {  
eijθ  if w = eiθ

0  if w = reiθ.

S g(z) = ∫
2π

0
eijθ( 1

2π ∑
k∈Z

e−ikθzk

1 + r2k+1
)dθ = zj

1+r2j+1 .



□

Meanwhile, the Cauchy projector, too, is easily computed. In particular,

so for z ∈ Ω one has C g(z) = 1
2π

2π

∫

0

∑
k≥0

zkei(j−k)θ dθ = zj. □

Example 2.  For the strip Ω = {z ∈ C : 0 < Im z < π} one has a biholomorphism f : Ω → Δ

given by

A computation using (2.3) shows therefore that

As for the annulus, we show how this can be used to compute the Szegő projector applied to a

function g ∈ L2(∂Ω) supported on the real axis. Take α > 0 and let

Then for z ∈ Ω

Standard methods of using residues to evaluate contour integrals are helpful for this integral. The

poles for the integrand are at x = ±iα and x = z + 2πik for k ∈ Z. Then by integrating over

squares with increasing side length Im z+(2k+1)π for k = 0, 1, 2, ..., and centered on the line 

x = Re z one �nds after applying the residue theorem that

The Cauchy projector is done likewise but one can integrate over the boundary of upper half discs of

increasing radii. The result for z ∈ Ω is

We mention that calculating the Szegő projector in this case is unremarkable. Indeed, in the presence

of a biholomorphism f : Ω → Δ, the Szegő projector for the strip can be represented as a conjugate

to the Szegő projector for the disc. That is, SΩ = Λf°SΔ°Λ−1
f

 where Λf : L2(∂Δ) → L2(∂Ω) is

the isometry from the earlier subsection.

C(eiθ, z) = 1
2πi

ieiθ

eiθ−z
= 1

2π
∑
k≥0

zke−ikθ̄

f(z) = ez−i
ez+i .

S(w, z) = 1
4πi csch z−w

2 .¯

g(w) = {  
(x2 + α2)

−1
 if w = x + i0  for x ∈ R

0  if w = x + iπ  for x ∈ R.

S g(z) = ∫
+∞

−∞

1

x2 + α2
( 1

4πi csch x−z
2 )dx.

S g(z) = 1
4iα csch iα−z

2 + ∑
k≥0

(−1)k

(z + 2πik)2 + α2
.

C g(z) = ∫
+∞

−∞

1

x2 + α2
( 1

2πi
1

x−z
)dx = 1

2iα(iα−z)
+ 1

z2+α2 .



Example 3.  For the logarithmic sector Ω = {z ∈ C : Im (z1+πi) > 0} one has a

biholomorphism f : Ω → Δ expressed using the principal value of a complex power via

In this case,

As for the strip, the Szegő projector is understood immediately through a biholomorphism 

f : Ω → Δ. Again, SΩ = Λf°SΔ°Λ−1
f  where Λf : L2(∂Δ) → L2(∂Ω) is the isometry from the

earlier subsection. The Cauchy projector, meanwhile, is best computed after change of parameter.

Using a constant speed parameter, the boundary spirals have parameterizations w± given by

In fact, the parameter t is related to the arc length parameter via t = s/√1 + π2. Consider a function

g ∈ L2(∂Ω) supported on the boundary spiral w+. Then for z ∈ Ω

After switching to an inversive arc length parameter this integral is computable like for the strip.

Take u = log t so that

(Typically the inversive arc length parameter for these spirals is given as u = √π log s; here any

multiple will suf�ce.) To show the utility of this representation consider g de�ned for α > 0 by

Again using a contour integral approach, one �nds poles for the integrand at u = ±iα and 

u = (log z + 2πik)/(1 − πi) for k ∈ Z. Restricting to the poles in the upper half plane and applying

the residue theorem gives

f(z) = z1+πi−i
z1+πi+i

.

S(w, z) = √1+π2

2πi
w+πi/2 z−πi/2

z1−πi−w1+πi
¯
¯

t > 0 → w±(t)
def
= ±t1−πi

C g(z) = 1
2πi ∫

∞

0
(g°w+)(t)

w′
+(t) dt

w+(t)−z

= 1−πi
2πi ∫

∞

0
(g°w+)(t) t−πi dt

t1−πi−z
.

C g(z) = 1−πi
2πi ∫

+∞

−∞
(g°w+)(eu) eu(1−πi) du

eu(1−πi)−z
.

g(w) = {  
(u2 + α2)

−1
 if w = w+(eu)  for u ∈ R

0  if w = w−(eu)  for u ∈ R.

C g(z) = 1−πi
2πi ∫

+∞

−∞

1

u2 + α2
eu(1−πi) du
eu(1−πi)−z

= 1−πi
2iα

eiα(1−πi)

eiα(1−πi)−z
+ ∑

k

′ 1

( log z+2πik
1−πi )

2
+α2



□
where the prime on the summation means to include only k for which Im ((log z+2πik)/(1-πi)) > 0

. For z = eiα t1−πi with α ∈ (0,π) this means k > ⌊ α
2π + 1−log t

2 ⌋ − α
2π .

2.2.4 Notes

Our de�nition of the Hardy space is the one used in Bell's book [5]. The classical de�nition says

that a function is in the Hardy space provided it is holomorphic and the supremum of its averages

along curves approximating the boundary from the inside is �nite. For the equivalence of these

de�nitions, see [5, p. 17].

As outlined in the Krantz contribution [24], the Szegő and Cauchy projectors are related via 

S = C (I +A )−1
 where the imaginary part of the Cauchy projector A

def
= C − C

* is the

Kerzman-Stein operator. This leads to the integral equation

giving the Szegő kernel as the unique solution to a Fredholm integral equation of the second

kind. See [5, 22].

From the last note it is apparent that C = S  only if A = 0. Kerzman and Stein give an

elementary geometric argument in terms of the kernel to show that this happens only for a disc or

half-plane. See [21]. Using Taylor expansions of the kernel, one can show that this result persists

when one uses measures besides arc length. See [9].

Our examples show how the Szegő kernel can be expressed in terms of the Riemann map.

Conversely, Kerzman and Trummer show how the Riemann map and Ahlfors maps can be

recovered numerically from the Szegő kernel after solving the Kerzman-Stein integral equation.

See [13, 22, 28].

Using the identity ∥C ∥ = √1 + ∥A ∥2, one can �nd

∥C ∥ = √1 + r for Example 1,

∥C ∥ = √2 for Example 2, and

∥C ∥ ≥ coth(1/2) for Example 3. (See [8].)

Other example regions for which the Cauchy and Kerzman-Stein operators are at least partially

computable include the wedge and ellipse. See [8, 10, 12, 16].

The Szegő kernel transformation law (2.2) extends in a simple way for the case of a proper

holomorphic map provided the target region is simply connected. If the target is multiply

connected, the transformation law involves derivatives of the associated harmonic measure

functions. See [15, 19, 20].

2.3 The Cauchy-Leray Operator

We now introduce a generalization of the Cauchy operator appropriate for convex domains in high

dimensions. Take n ≥ 2 and let D ⊂⊂ Cn be a domain with C2 smooth boundary and de�ning

function r. This means that D = {z ∈ Cn : r(z) < 0} for a continuously twice differentiable

function r : C
n → R with ∇r|∂D ≠ 0.

Sa(z) − ∫
w∈∂Ω

1

2πi
(
T (w)
w−z

−
T (z)
w−z

)Sa(w) dsw = Ca(z)
¯

¯̄

–

–

–



□

2.3.1 Convexity and weak linear convexity

Our understanding of a convex domain is one supported by hyperplanes tangent at the boundary. In

particular, the tangent space at any point of the boundary does not intersect the domain. In complex

coordinates this is written Re ⟨∂r(w),w − z⟩ > 0 for w = (w1, … ,wn) ∈ ∂D, 

z = (z1, … , zn) ∈ D. The brackets should be interpreted as

this is the natural pairing at w of the (1,0)-form ∂r with vector w − z. Our speci�c construction of

the Cauchy-Leray operator allows that D has a weaker geometric property called weak linear

convexity that can be expressed as ⟨∂r(w),w − z⟩ ≠ 0 for all w ∈ ∂D, z ∈ D. This means that the

maximal complex subspace of each tangent space at the boundary does not intersect the domain. The

difference between these conditions can be seen in the following examples.

Example 4.  Let D = {z ∈ C
2 : 2 Re z1 + z2

2 < 0}. Then w ∈ ∂D, z ∈ D mean that 

w1 + w1 + w2w2 = 0, z1 + z1 + z2z2 < 0. From this we estimate

It follows that D is convex, and therefore, also weakly linearly convex.

Example 5.  Let D = {z ∈ C2 : −1 + 2 Re z2
1 < 0}. Then w ∈ ∂D, z ∈ D mean that 

−1 + w2
1 + w2

1 = 0, −1 + z2
1 + z2

1 < 0. From this we estimate

So ⟨∂r(w),w − z⟩ = 0 means that w1 = 0 or w1 − z1 = 0. The former case is impossible since 

2 Rew2
1 = 1; the latter case is impossible since 2 Rew2

1 = 1 and 2 Re z2
1 < 1. It follows that 

⟨∂r(w),w − z⟩ ≠ 0 and D is weakly linearly convex.

To see that D is not convex, it is simplest to recognize that D is a product of a region bounded

inside a hyperbola (in the z1-plane) with a complex plane (in the z2-plane) as in Figure 2.2. To check

the claim algebraically take w = (w1,w2) ∈ ∂D with w1 = u + iv, w2 = 0 so that u2 − v2 = 1
2 .

Subsequently take z = (z1, z2) with z1 = 1
2u + i0, z2 = 0. Provided u2 > 1

2 , then z ∈ D since

⟨∂r(w),w − z⟩ =
n

∑
j=1

∂r

∂wj

(wj − zj);∣ ∣¯̄̄̄2 Re ⟨∂r(w),w − z⟩ = 2 Re (1(w1 − z1) + w2(w2 − z2))

= w1 + w1 − z1 − z1 + 2w2w2 − w2z2 − w2z2

> w2w2 + z2z2 − w2z2 − w2z2

= |w2 − z2|2

≥ 0.

¯

¯̄̄̄̄

¯̄̄̄

¯̄

⟨∂r(w),w − z⟩ = 2w1(w1 − z1) + 0(w2 − z2).

−1 + 2 Re z2
1 = −1 + 2( 1

2u )
2

= −2u2+1
2u2 < 0.



FIGURE 2.2
Product domain that is weakly linearly convex.

Meanwhile,

2.3.2 The Cauchy-Leray operator

For a smooth, bounded, weakly linearly convex domain D, the Cauchy-Leray operator applied to a

continuous function on the boundary is given by

(2.6)

for z ∈ D. The hypothesis of weak linear convexity implies that the denominator is nonzero for 

z ∈ D. The additional hypotheses of boundedness and smoothness of D imply that both the (2n − 1)
-form in the numerator is a continuous multiple of surface measure and the denominator is bounded

away from zero (for �xed z ∈ D). These ensure that the integral is �nite. Since also the integrand is

holomorphic in z and the boundary is �nite it follows that L g is holomorphic in D.

It is a harder fact that the Cauchy-Leray operator reproduces holomorphic functions in D. In

particular, if g is a continuous function on ∂D that extends continuously to D and holomorphically in

D, then L g = g. The usual proof of this for convex domains involves writing the Cauchy-Leray

kernel as a Cauchy-Fantappiè kernel using a generating form based on the pairing ⟨∂r(w),w − z⟩.
The argument is outlined in the Krantz contribution [24]; for more details, see also [23, 26].

It is important to note that the Cauchy-Leray operator reduces to the Cauchy operator in case 

n = 1. This can be seen easily by canceling the common non-zero factor ∂r/∂w in the numerator

and denominator of (2.6). Notice that the maximal complex subspace of the line tangent at the

boundary is the point of the boundary itself. So all smooth regions in ℂ are weakly linearly convex.

An equivalent formulation of the Cauchy-Leray operator is due to Stanton and involves the Levi

determinant

Here the subscripts refer to partial derivatives; i.e., rj = ∂r/∂wj, rk = ∂r/∂wk. If dσeuc is the

surface measure on ∂D (induced from ℂn), then

Re⟨∂r(w),w − z⟩ = Re (2w1(w1 − z1)) = Re (2(u + iv)( v2

u
+ iv)) = 0. □

L g(z) = 1
(2πi)n

∫
∂D

g(w) ∂r(w)∧(∂∂r)
n−1

⟨∂r(w),w−z⟩n
¯

¯

J(r) = −1 ⋅ det( ).
r r

k

rj r
jk

¯

¯

¯̄



(2.7)

for z ∈ D.

We point out that although the Cauchy-Leray operator is presented in terms of a de�ning

function, the operator does not depend on the choice of de�ning function. For this, consider the

second formulation and take de�ning functions r, r̃ related by r̃ = hr for a positive function h. From

the product rule, we �nd that if w ∈ ∂D (and so r(w) = 0) then |∇r̃(w)| = h(w)|∇r(w)|,

and using elementary linear algebra,

Combining these gives

which veri�es the claim.

Example 6.  To illustrate the two formulations, consider the unit ball 

D = {z ∈ C
2 : r(z)

def
= z1

2 + z2
2 − 1 < 0}. It is straightforward to check that

Meanwhile, J(r)(w) = 1 and |∇r(w)| = 2 when w ∈ ∂D. So then

To see that L = L S  it is enough to check that

Since dr annihilates vectors tangent to ∂D, this follows from wedging both sides by 

dr = w1dw1 + w1dw1 + w2dw2 + w2dw2 and applying the general formula 

L
Sg(z) =

(n−1)!
πn ∫

∂D
g(w)

J(r)(w) dσeuc(w)
|∇r(w)| ⟨∂r(w),w−z⟩n

⟨∂r̃(w),w − z⟩ = h(w)⟨∂r(w),w − z⟩,

det( ) = det( )

= det( )

= hn+1 det( ).

r̃ r̃
k

r̃j r̃
jk

¯

¯

hr hr
k

hrj hr
jk

+ hjrk + h
k
rj

¯

¯̄̄

hr hr
k

hrj hr
jk

¯

¯

r r
k

rj r
jk

¯

¯

J(r̃)(w)
|∇r̃(w)| ⟨∂r̃(w),w−z⟩n

=
J(r)(w)

|∇r(w)| ⟨∂r(w),w−z⟩n∣ ∣ ∣ ∣L g(z) = 1
(2πi)2 ∫

∂D

g(w) (w1dw1 ∧ dw2 ∧ dw2 + w2dw2 ∧ dw1 ∧ dw1)

(1 − w1z1 − w2z2)2
.

¯̄̄̄

¯̄

L
Sg(z) = 1

2π2 ∫
∂D

g(w) dσeuc

(1 − w1z1 − w2z2)2
.

¯̄

dσeuc = − 1
2 (w1dw1 ∧ dw2 ∧ dw2 + w2dw2 ∧ dw1 ∧ dw1).̄̄̄̄

¯̄̄̄



□dr ∧ dσeuc = |∇r| dx1 ∧ dy1 ∧ dx2 ∧ dy2 for an embedded boundary.

2.3.3 Notes

Our de�nition of weak linear convexity follows that of Andersson, Passare, and Sigurdsson [1, p.

16]. For the fact that any weakly linearly convex domain is pseudoconvex, see Proposition 2.1.8.

This will be used in the next section to show that J(r) ≥ 0 on ∂D.

The Cauchy-Leray operator is known alternatively in the literature as the Leray operator (or

transform), the Leray-Aǐzenberg operator, or simply the Cauchy operator for convex domains.

Using the Cauchy-Fantappiè method, Lanzani and Stein establish the reproducing property for

the Cauchy-Leray operator in the case that D is strictly ℂ-linearly convex. This condition is

stronger than weak linear convexity but weaker than convexity. The condition says 

⟨∂r(w),w − z⟩ ≠ 0 for w ∈ ∂D, z ∈ D∖{w}. See [25, p. 276].

2.4 The Cauchy-Leray Transformation Formula

We begin this section by introducing the Fefferman surface measure that was constructed for the

purpose of having a transformation law for the Szegő kernel under biholomorphic mappings in high

dimensions. We then establish the same transformation law for the Cauchy-Leray kernel under

Möbius transformations. We conclude with a summary of the properties of the Cauchy-Leray

operator that distinguish it from other reproducing kernels in high dimensions.

2.4.1 Fefferman surface measure

The Fefferman surface measure dσfeff  for a smooth pseudoconvex domain D = {z ∈ Cn : r(z) < 0}
is de�ned as the measure on ∂D for which

where as in the last section J(r) is the Levi determinant

and dv = dx1 ∧ dy1 ∧ ⋯ ∧ dyn is the volume measure in ℂn.

We explain brie�y the context in which J(r) is nonnegative on ∂D; this is needed for J(r)1/(n+1)

to be well-de�ned. At any point w ∈ ∂D, one can make a unitary change of coordinates so that 

rj(w) = 0, 1 ≤ j < n, and rn(w) ≠ 0. In these coordinates,

The latter determinant is the product of the eigenvalues of the Levi form restricted to the complex

tangent space. For a pseudoconvex domain such eigenvalues are nonnegative and we conclude that 

¯

dσfeff ∧ dr = −in 2−n+1J(r)1/(n+1)
dz1 ∧ dz1 ∧ ⋯ ∧ dzn ∧ dzn

= −2J(r)1/(n+1)
dv

¯̄

J(r) = − 1 ⋅ det( )
r rk

rj rjk

¯

¯

J(r)(w) = rn
2 det (rjk)n−1

j,k=1∣ ∣¯



J(r) ≥ 0 on ∂D. From the notes of last section it follows that J(r) ≥ 0, too, in the special case of

weak linear convexity.

Any constant multiple of dσfeff  also will be an invariant surface measure. Here, the constant was

chosen so that the measure coincides with the Euclidean surface measure for the boundary of a ball

as well as the arc length measure in one dimension.

With respect to Fefferman measure, we de�ne function spaces L2(∂D) using the inner product

(2.8)

If we further assume D1 is simply connected, then as in case n = 1 a biholomorphism 

F = (f 1, … , f n) : D1 → D2 gives rise to an isometry ΛF : L2(∂D2) → L2(∂D1) via 

g → (g°F)J
n/(n+1)
F  where we denote the complex Jacobian by JF = det(f j

k). As before, subscripts

refer to partial derivatives. Here, the condition on D1 ensures that the fractional power makes sense.

Notice, too, that the isometry preserves holomorphicity.

The reason for the fractional power in the isometry is due to the transformation of the Fefferman

measure. On ∂D1 and ∂D2, respectively,

It is standard for a biholomorphism that F *(dv) = JF
2 dv. The related identity 

J(r°F) = J(r) ⋅ |JF |2 follows from taking the determinant of both sides of

Since F *(dr) = d(r°F), we conclude F *(dσfeff) = JF
2n/(n+1)dσfeff .

It follows that if S : L2(∂D) → H 2(∂D) is the orthogonal projection (with respect to

Fefferman measure) to the subspace of functions that extend holomorphically to D then one has a

transformation law S1°ΛF = ΛF°S2. As before, this Szegő projector is an integral operator whose

kernel satis�es the transformation law

(2.9)

In dimension one this reduces to the situation of the previous section (where the requirement that D1

be simply connected was not necessary).

2.4.2 Cauchy-Leray transformation formula

We proceed to show that with respect to the Fefferman measure the Cauchy-Leray kernel is given by

(g,h)∂D = ∫
∂D

g h dσfeff .̄

dσfeff ∧ d(r°F) = −2J(r°F)1/(n+1)
dv

dσfeff ∧ dr = −2J(r)1/(n+1)
dv.∣ ∣( ) = ( )( )( ).

r°F (r°F)k
(r°F)j (r°F)jk

¯

¯

1 0

0 f l
j

r rm

rl rlm

¯

¯

1 0

0 fm

k

¯
¯∣ ∣S1(w, z) = J

n/(n+1)
F (w)S2(F(w),F(z))J

n/(n+1)
F (z).

¯



(2.10)

and this kernel satis�es the same transformation law as for the Szegő kernel provided F : D1 → D2

is a Möbius transformation. In this situation there is no further assumption about D1 since the

fractional power of JF makes sense. (See item (a) below.)

For the �rst claim, we start with the calculation

where the third step uses the de�nition of Fefferman measure and the second step uses 

∂r ∧ ∂r ∧ (∂∂r)
n−1

= −(2i)n(n − 1)!J(r) dv. (The proof of this identity is essentially the same as

what we used to explain why J(r) ≥ 0.) Since dr acts transversely to the boundary, it follows that

when restricting to ∂D and dividing by ⟨∂r(w),w − z⟩n,

Referring back to (2.6) and (2.8), we have L g(z) = (g,Cz)∂D provided Cz(w)
def
= C(w, z) with 

C(w, z) as expressed in (2.10).

For the second claim, we show that if F = (f 1, … f n) : D1 → D2 is a Möbius transformation

with f j = gj/gn+1 (1 ≤ j ≤ n), gj(w) = aj,1w1 + ⋯ + aj,nwn + aj,n+1 (1 ≤ j ≤ n + 1), and 

det(aj,k) = 1, then

(2.11)

Beyond what already is established, the proof requires the following:

For (a),

C(w, z) = (n−1)!
2πn

J(r)n/(n+1)(w)
⟨∂r(w),w−z⟩n

¯

1
(2πi)n

(∂r ∧ (∂∂r)
n−1

) ∧ dr = 1
(2πi)n

∂r ∧ ∂r ∧ (∂∂r)
n−1

= − (n−1)!
πn J(r) dv

= (n−1)!
2πn J(r)n/(n+1) dσfeff ∧ dr

¯̄̄

¯̄

(n−1)!
2πn

J(r)n/(n+1)(w)
⟨∂r(w),w−z⟩n

dσfeff
w = 1

(2πi)n
∂r(w)∧(∂∂r)

n−1

⟨∂r(w),w−z⟩n
.

¯

C1(w, z) = J
n/(n+1)
F

(w) C2(F(w),F(z)) J
n/(n+1)
F

(z).
¯

JF (z) = (1/gn+1(z))n+1(a)

∑ (r°F)j(w)(wj − zj) = ∑ rj(F(w))(f j(w) − f j(z))gn+1(z)/gn+1(w).(b)

( ) ( )



□

For (b),

With these in hand, if F : D1 → D2 is a Möbius transformation and r is a de�ning function for D2,

then

Taking conjugates establishes (2.11).

2.4.3 Comparison of kernels

Here we give a brief comparison of some of the more prominent boundary integral operators and

kernels in complex analysis. These include the ones discussed in this article as well as the Bochner-

Martinelli and Henkin-Ramirez integrals. For the latter operators, we refer to the Krantz contribution

to this volume [24] as well as [23, 26]. Of the kernels under consideration, the Szegő kernel stands

alone as a non-explicit kernel—its existence is known but it is known precisely only in special

situations.

JF (z) = det( ∂f j

∂zk
) = 1

gnn+1
det(aj,k − an+1,k

gj

gn+1
)

= 1
gn
n+1

det( )

= 1
gn
n+1

det( ) = 1
gn+1
n+1

det( )

= 1
gn+1
n+1

det( ) = 1
gn+1
n+1

.

aj,k − an+1,k gj/gn+1 0

an+1,k 1

aj,k gj/gn+1

an+1,k 1

aj,k gj

an+1,k gn+1

aj,k aj,n+1

an+1,k an+1,n+1

∑
k=1…n

(r°F)k(w)(wk − zk)

= ∑
j,k=1…n

rj(F(w)) gn+1(w)−1[aj,k − an+1,k gj(w)/gn+1(w)](wk − zk)

= ∑
j=1…n

rj(F(w)) gn+1(w)−1[gj(w) − gj(z) − [gn+1(w) − gn+1(z)]
gj(w)
gn+1(w)

]

= ∑
j=1…n

rj(F(w)) gn+1(w)−1[gn+1(z) gj(w)/gn+1(w) − gj(z)]

= ∑
j=1…n

rj(F(w))(f j(w) − f j(z))gn+1(z)/gn+1(w).

C1(w, z) ⋅ 2πn/(n − 1)! =
J(r°F)n/(n+1)(w)

(∑ (r°F)j(w)(wj−zj))
n

=
J(r)n/(n+1)(F(w))⋅|JF (w)|2n/(n+1)

(∑ (r°F)j(w)(wj−zj))
n

=
J(r)n/(n+1)(F(w))

(∑ rj(F(w))(f j(w)−f j(z)))
n ⋅

gn+1(w)n

gn+1(z)n
⋅ |JF (w)|2n/(n+1)

= J
n/(n+1)
F (w) ⋅

J(r)n/(n+1)(F(w))

(∑ rj(F(w))(f j(w)−f j(z)))
n ⋅ J

n/(n+1)
F (z)

= J
n/(n+1)
F (w)C2(F(w),F(z)) J

n/(n+1)
F (z) ⋅ 2πn/(n − 1)!.

¯

¯

¯



Beyond this, we have the Table 2.1 to summarize the key differences. Class of domain indicates

geometric requirements for construction of the kernel. (The degree of smoothness typically is what is

needed for the construction—twice differentiable for Cauchy-Leray and Henkin-Ramirez but only

once differentiable for Cauchy and Bochner-Martinelli.) Holomorphic refers to the free variable; in

particular, an operator with holomorphic kernel projects to a class of holomorphic functions even if

integration is done over just a subset of the boundary. The r-dependence indicates whether the

resulting operator depends on the de�ning function. Finally, invariance refers to symmetries or the

existence of a transformation law for the kernel. As shown in this article, there is invariance for the

Szegő and Cauchy-Leray kernels provided integration is done with respect to Fefferman measure.

TABLE 2.1

Comparison of reproducing kernels

Cauchy n = 1 Szegő n ≥ 1 Bochner-Martinelli n > 1 Cauchy-Leray n > 1 Henkin-Ramirez n > 1

Class of domain General General General Convex Strictly pseudoconvex

Holomorphic Yes Yes No Yes Yes

r-dependent No No No No Yes

Invariance Möbius Biholomorphism Af�ne Möbius Af�ne

2.4.4 Equivalence and example

We conclude with an explanation why L = L S  and present an additional example (besides the

sphere) that has enough symmetry to enable calculation of an L2-norm.

The equivalence of (2.6) and (2.7) is a consequence of working out the wedge products and using

standard formulas for surface area in terms of differential forms. To be precise, using the identity 

∂r ∧ ∂r ∧ (∂∂r)
n−1

= −(2i)n(n − 1)!J(r) dv from the earlier section, we have

(∂r ∧ (∂∂r)
n−1

) ∧ dr & = −(2i)n(n − 1)!J(r)
dr

|∇r|
∧ dσeuc & =

(2i)n(n − 1)!J(r)

|∇r|
dσeuc ∧ dr.

So when restricting to ∂D and dividing by (2πi)n ⟨∂r(w),w − z⟩n, we have

That L = L S  then follows from (2.6) and (2.7). This is essentially the same proof that Stanton

gave in [27].

Example 7.  We conclude with the domain for which Barrett and Edholm compute the L2-norm

of the Cauchy-Leray transform as a singular integral operator on the boundary [2],

for 0 ≤ β < 1. It is straightforward to check that D is strictly ℂ-linearly convex. (The de�nition of

this property is given in the Notes of §3.) In particular, 

⟨∂r(w),w − z⟩ = (w1 + βw1)(w1 − z1) − 1
2i (w2 − z2). So for w ∈ ∂D, z ∈ D,

¯̄

¯

1
(2πi)n

∂r(w)∧(∂∂r)
n−1

⟨∂r(w),w−z⟩n
= (n−1)!

πn

J(r)(w) dσeuc(w)
|∇r(w)| ⟨∂r(w),w−z⟩n

.
¯

D = Dβ = {z = (z1, z2) ∈ C
2 : r(z)

def
= z1

2 + βRe (z2
1) − Im z2 < 0}∣ ∣¯̄



The �rst step uses w ∈ ∂D and the second step uses z ∈ D. There is equality in the second and third

steps only if z ∈ ∂D and w1 = z1, respectively. To �nish the claim, it is enough to see that 

⟨∂r(w),w − z⟩ ≠ 0 for w, z ∈ ∂D with w1 = z1, w2 ≠ z2. But then, 

⟨∂r(w),w − z⟩ = − 1
2i

(w2 − z2) is clearly nonzero.

Using (2.6) we �nd that for a function g de�ned on ∂D,

for z ∈ D. Take wj = uj + ivj, zj = xj + iyj with uj, vj,xj, yj ∈ R so that 

v2 = (1 + β)u2
1 + (1 − β)v2

1 and y2 > (1 + β)x2
1 + (1 − β)y2

1 since w ∈ ∂D, z ∈ D, respectively.

In these coordinates the integral simpli�es to

The denominator is more complicated than our earlier examples, but still it is the square of a

quadratic function. As shown in [2] (and indicated in the notes below), there are hidden symmetries

that work to simplify the calculations. In fact, the �rst main result in [2] is the calculation

Alternatively, one might attempt simpler calculations, for instance, by (i) considering a simpli�ed

function g (as in Examples 1–3), (ii) restricting to β = 0 (so D is the Siegel upper half-space), or (iii)

evaluating only at z = (0, iy2) for y2 > 0.□

2.4.5 Notes

With respect to Fefferman measure, Hirachi proved the Szegő transformation formula for strictly

pseudoconvex domains and for certain strictly pesudoconvex CR manifolds [18]. Fefferman

introduced the measure in [17, p. 259].

Like the case n = 1, the Cauchy-Leray and Szegő projectors are the same only when the domain

is a Möbius image of a ball and only when one uses Fefferman measure. Similar results hold for

the case of the Bochner-Martinelli kernel. See [6, 7, 9].

A more detailed analysis of the Cauchy-Leray operator for the domain Dβ in Example 7 leads to

a representation that is reminiscent of that for the unit ball in Example 6. In particular, [2, §4]

shows how our �rst representation of L  for the ball is the same as that for Dβ if one replaces the

conjugate holomorphic integration variables (w1,w2) for the ball by “projective dual

coordinates” for Dβ. (The speci�cs of the duality construction are outside the scope of this

article.) The domain Dβ has been studied, too, using methods from differential geometry. See

[11].

2 Re ⟨∂r(w),w − z⟩ = ( w1
2 + βRe (w2

1)) − 2 Re ((w1 + βw1)z1) + Im z2

≥ w1 − z1
2 + βRe [(w1 − z1)2]

≥ 0.∣ ∣¯∣ ∣¯L g(z) = 1
(2πi)2 ∫

∂D

− 1
2i g(w) dw2 ∧ dw1 ∧ dw1

[(w1 + βw1)(w1 − z1) − 1
2i (w2 − z2)]

2

¯

¯

L g(z) = 1
4π2 ∫

R3

g(w) du2 ∧ du1 ∧ dv1

[(w1 + βw1)(w1 − z1) − 1
2i (w2 − z2)]

2
.

¯

L L2(Dβ,σfeff) = 1
4√1−β2

.∣∣ ∣∣
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3.1 Introduction

It was a pleasure to get an invitation from Professor Krantz to add a chapter on some topics from

function theory to this text that he is putting together. I have assumed that the reader is familiar

with basic material about complex numbers, analytic functions and maybe a bit of linear algebra

in the setting of ℝn and Cn. My goal is to introduce the reader to the basic material on fractional

linear transformations in the setting of the complex plane. There are many extensions from this

“scalar” setting to higher dimensional settings. I plan to segue from this complex analytic setting

to extending some scalar functions (the fractional linear transformations) to operator-valued

functions and eventually to prove one result about operators that are contractions. I have to leave

the readers at a point where if they are interested they can get into some extremely useful and

classical operator theory. I hope the reader will �nd the presentation readable and if not you

might try one of the references that I have listed. Any errors in the presentation are my own, but I

have tried to carefully read over the material with the hopes of culling out any serious “faux pas”.

https://doi.org/10.1201/9781315160658-3


3.2 Notations and De�nitions

The letters a,b,c, and d are �xed complex numbers, and the letters Z and W represent complex

variables. The letter C  stands for the complex plane and the notation S = C  ∪(∞) represents the

complex plane with the “point” at in�nity added. This can be realized as the closed unit sphere,

but we shall not need that information in our work.

The words “fractional linear maps” stand for the family of mappings f(Z) = aZ+b
cZ+d

= W .

These are also known as Mobius mappings. There are certain special cases (choices of a,b,c, or d

) that we wish to avoid and let us say a word about this matter. First, if c is zero and d is zero we

can see there will be serious questions about the meaning of such an expression. To avoid this we

assume (the determining number) ad− bc ≠ 0.
For if this were not the case we observe that for different values Z1 and Z2 the expression

implying that f is a constant mapping. So for example the choice of a = d = 1 and b = ı

2
 and 

c = 2ı would yield

Further, in this case if ad− bc = 0 and assuming c = 0, we have the unpleasant situation that

a = 0 or d = 0. We do not de�ne a f(Z) = aZ+b
cZ+d

= W  in these cases. We let the symbol L

denote this family of mappings. Note also that if λ ≠ 0 then f(Z) = aλZ+λb
cλZ+λd

 as well, so the

a,b,c, and d constants are not unique.

It is easy to arrive at

which implies that f is locally one-to-one (a proof is given later), but of course more is true. We

can �nd an inverse for f(Z) = W  which is g(W) = b−dW
cW−a

. Note that a computation shows for f

as above and g(Z) = AZ+B
CZ+D

 the functional composition of g with f, g°f(Z) = W(Z), yields

another element of L

and it will also follow that the determining number

Hence, L is closed under the operation of composition. Further, each f ∈ L is one-to-one and

has an inverse under composition in the set L.

The reader may have noticed that our requirement on ad− bc is reminiscent of the

determinant of a two-by-two matrix. In fact, it is very useful to identify the element f in 

f(Z1) − f(Z2) =
(Z2−Z1)(bc−ad)
(cZ1+d)(cZ2+d) = 0

f(Z) =
Z+ ı

2

2ıZ+1 = ı

2 .

f ′(Z) = (ad−bc)

(cZ+d)2
≠ 0

W(Z) =
(aA+cB)Z+(bA+dB)
(aC+cD)Z+(bC+dD)

(aA+ cB)(bC + dD) − (bA+ dB)(aC + cD) = (AD−BC)(ad− bc) ≠ 0.



f(Z) = aZ+b
cZ+d

= W  of L with the two by two matrix

Note �rst that if we consider the calculation with the composition of g and f as above, it is

just the matrix multiplication of the two matrices associated to g and f,

Further, our requirement for non-degeneracy of the determining number is the requirement

that the determinant of the associated matrix be non-zero (i.e., the matrices are invertible). Since

matrix multiplication is associative the same holds for L, (h°g)°f = h°(g°f). Hence, we now

can view L as a group with invertible elements. Note that since matrix multiplication is not

commutative the group L is not commutative. Further, if one recalls the easy formula for the

inverse of the two-by-two matrix

then the inverse is just

and the associated form for the inverse of f(Z) = W  is

and it has 1 for it determining number, and this is the same form for the inverse as we have

calculated above with the scalar λ = (bc− ad)−1. The elements of L play an important role in

the theory of conformal mappings, one variable operator theory, and several other aspects of

classical analysis and we shall discuss some of these uses later in this work.

It is possible to put an equivalence relation on L as follows.

De�nition 1  For each g and f in L, we say that g is equivalent to f if there exists an element h ∈ 

L with

where m is the inverse of h.

It is easy to check that this is an equivalence relation and we shall make use of the fact later.

Let us view some paradigm examples of elements of the L with their de�ning numbers.

1. The identity map f(Z) = Z, with ad− bc = 1.

T ≃ ( ).
a b

c d

( )( ) = ( )
A B

C D

a b

c d

(aA+ cB) (bA+ dB)

(aC + cD) (bC + dD)

( )
a b

c d

1
ad−bc

( )
d −b

−c a

g(W) = 1
ad−bc

dW−b
−cW+a

g = h°f°m,



2. Magni�cations, m(Z) = aZ, with ad− bc = a.

3. Linear mappings, l(Z) = aZ + b, with ad− bc = a.

4. Inversions, v(Z) = 1
Z
, with ad− bc = −1.

It is very useful to observe that a general element f(Z) = aZ+b
cZ+d

= W  of L can be built up of

these four maps. Namely, writing

we can write W11 = cZ, W22 = W11 + d, W3 = 1
W2

,… etc. to arrive at the decomposition

from the elementary maps.

There is something very useful that comes out of the elementary mappings above about a

general mapping from L.

Namely, it is obvious that the identity mapping preserves geometric shapes, in particular lines

and circles in the plane. Further, we see that translates also preserve geometric �gures. The

magni�cation map m(Z) = aZ also maps a circle with center P and radius r to a circle with

center aP and radius ar, and the reader can check that it maps af�ne lines to af�ne lines. Hence,

the �rst three maps above preserve the families of circles and lines in the plane. More is true in

that any map from L has this property. So, assuming that we identify lines as unbounded circles

through in�nity and circles in the plane as bounded circles, we have the following result.

Theorem 1  Every element of L maps circles to circles.

Proof: To prove this we have only to prove that the inversion map maps circles to circles.

First assume we consider the (bounded) circle C = (Z : Z = A+ r exp ıθ), θ ∈ [0, 2π].
Applying the inversion formula to these values we �nd

or in real coordinates with Z = x+ iy and −2Re(AZ) = αx+ βy

And this is the equation of a circle in the plane.

It may be useful for the reader to check that the circle

is mapped to the circle

and to

aZ+b
cZ+d

=
a/c(cZ+d)−( ad

c
−b)

cZ+d
= a

c
+

b− ad
c

cZ+d

1/Z −A 2 =
1+ A 2 Z 2−AZ−AZ

|Z|2 = r2,

( A 2 − r2)(x2 + y2) − αx− βy+ 1 = 0.

Z 2 + t̄Z + tZ +m = 0,

Z 2 + t
m
Z + tZ/m+ 1/m = 0, m ≠ 0,



if m = 0.

Note that if we consider an unbounded circle passing through in�nity of the form

C = [Z = x+ ımx] with m a real number, the inversion transformation maps C to the

unbounded circle of the form

which is the circle in the u,v plane, v = −mu. Similarly, one can show that the image of any

af�ne line in the plane is mapped to a circle under the inversion mapping and the discussion is

left for the reader. More generally, if the equation of the circle is given as t̄Z + tZ +m = 0,

then the inversion 1
Z

 takes the circle into the circle into the circle Z 2 + t
m
Z + tZ

m
, m ≠ 0,

and if m = 0 it is mapped into the circle tZ + tZ = 0.

3.3 Some Geometric Considerations

Assume Z1,Z2, and Z3 are three distinct complex numbers. They determine a circle in our sense.

Then the element T ∈ L of the form

has some interesting properties. Note that it maps Z1 to zero, and Z2 to the number 1, and Z3 to

in�nity. Thus the circle containing Z1,Z2, and Z3 is mapped to the circle containing 0,1, and the

point at in�nity. This f(Z) = aZ+b
cZ+d

= W  is known as the “cross ratio” and is denoted by the

form (Z,Z1,Z2,Z3). Now it follows from these properties if W1,W2, and W3 are three distinct

complex numbers the equation

maps the circle determined by Z1,Z2,Z3, one to one and onto the circle determined by the

points W1,W2,W3. This follows easily since setting Z = Z1 gives the value number zero in the

left terms and since W1 is the unique point in the righthand term giving the value zero it must

corresponding to Z1, etc., for the two remaining terms.

Note that in the above we have assumed the chosen points were �nite complex numbers. If

one of these points is in�nity we can still de�ne the cross ratio as follows. For the case Z1 = ∞,

we set (Z,∞,Z2,Z3) =
(Z2−Z3)
(Z−Z3)

, and if Z2 = ∞ it becomes (Z,Z1,∞,Z3) =
(Z−Z1)
(Z−Z3)

,

similarly for the case where Z3, equals ∞.

tZ + tZ + 1 = 0,

1
x+ımx

= 1−ım
x(1+m2)

= u+ ıv,

f(Z) = (Z−Z1)(Z2−Z3)
(Z−Z3)(Z2−Z1)

= W

f(Z) = (Z,Z1,Z2,Z3) = (W ,W1,W2,W3) = g(W),



As an example, consider the f(Z) = aZ+b
cZ+d

= W , 

f(Z) = (Z, 0, 1,−1) = (W , ı, 2, 4) = g(W). This takes the form

For this example the one circle determined by 0, 1,−1 is the circle Im(Z) = 0. The second is

the circle with center at (3, 9/2) and radius r = √85
2 .

The solution is W =
(16−6ı)Z+2ı

(6−2ı)Z+2
.

There are many more geometric properties enjoyed by the cross ratio and we mention one

more and refer the interested reader to the classic text by Ahlfors [1].

Theorem 2  The cross ratio (Z1,Z2,Z3,Z4) is real if and only if the four points [Zj] lie on a

circle.

There is an analytic proof given in Ahlfors but for those interested in some geometry consider

the equation

and draw some pictures.

One can check easily that elements f(Z) = aZ+b
cZ+d

= W  do not preserve length between

points in the plane. However, they have other important properties which we consider. Namely,

suppose Γ1(t) and Γ2(t) are two differentiable curves in the complex plane, and 

Γ1(to) = Γ2(to). The tangent lines to curves at the point Wo = Γ(to) yield two vectors, say V1

is a vector based at Wo and pointing in the direction of the tangent vector to Γ1, and similarly

assume V2 is a vector based at Wo and pointing in the tangent direction at Γ2(to). The angles are

chosen consistently with the orientation of the two curves. The angle between the curves Γ1 and 

Γ2 for the value of to is the angle, say ϕ, through which V1 must be rotated counterclockwise to

lie in the V2 direction. Now for an analytic function f de�ned in an open neighborhood of the

point Wo we have two more curves given by Λj(t) = f(Γj(t)). The function f is said to be

conformal at Wo if the angle between Λ1 and Λ2 at f(Wo) is equal to the angle between Γ1 and 

Γ2 at the point in question (and this is true for all such curves).

Theorem 3  An analytic function f is conformal at every point Zo where f
′
(Zo) is not zero.

Proof: By assumption f
′
(Zo) = A > 0. We show that there is a disk, 

C = [Z : |Z − Zo| < r] on which f is a one-to-one function. Since f′ is continuous, we may

choose a disc D = [Z | |Z − Zo| < r] with |f(Z) − f(Zo)| < (A/2) for Z ∈ C, and so that 

f
′
(Z) − f

′
(Zo) ≤ (A/2) for any Z ∈ D.

Let Z1 and Z2 be distinct points of D and let γ = γ(t) be the straight line segment in D

joining them. Then

f(Z) = 2Z
Z+1 = −2(W−ı)

(W−4)(2−ı)
= g(W).

arg(
(Z1-Z2)(Z3-Z4)
(Z1-Z4)(Z3-Z2)

)=arg(
(Z1-Z2)
(Z1-Z4)

)-arg(
(Z3-Z4)
(Z3-Z2)

)



With this fact we show that every oriented, smooth curve through the point Zo has its tangent

turned through the same angle, under the mapping f(Z). This implies that the angle between any

two such curves passing through Zo is preserved. So assume γ(t) is such a curve, γ(to) = Zo,

and γ
′
(to) is the tangent vector at the point in question. Now consider the image curve given by

f(γ(t)) = Γ(t). Γ
′
(to) = f

′
(Zo)γ

′
(to). Note that our assumption on f

′
(Zo) and the

smoothness of γ implies that Γ
′
(to) ≠ 0. Hence, the angles which tangent vectors γ

′
(to) and 

Γ
′
(to) make with the horizontal direction are related by the equation

Thus every curve through Zo is rotated through the same angle arg f
′
(Zo) which is a constant

(independent of the curve under consideration).

3.4 The Symmetry Principle

In the plane (R2) given a point P = (x, y) (assume with out loss of generality that y > 0) there

is a point naturally associated to P, namely the re�ection of P in the x-axis. That point is 

PQ = (x, −y). The x-axis is orthogonal (at right angles) to the segment joining P to PQ (and

bisects it). Note also, that if C is any circle in the plane containing P and PQ, its center must lie

on the real axis. Consequently, this circle must meets the x-axis at two points x1, and x2. The

angles at which the tangent lines to the circle at points x1, and x2, where it meets the x-axis, are

also ninety degree angles. That is, the circle meets the x-axis orthogonally. A picture will help at

this point.

In a more general setting, we wish to de�ne the idea of symmetry for any two (�nite) points

in the complex plane. So assume {Zj, j = 1, 2} are two distinct points in the plane. Let U be the

line segment joining them, with midpoint of U being u. Assume the slope of U is m. Then the

line G through u with slope −1
m

 is orthogonal to U. We say the points Zj are symmetric in the line

G. Again, since if we choose any circle C through Z1, and Z2, we see that U is a chord of this

circle and that the chosen circle C will meet G at exactly two points, say P1 and P2. The angles

formed by the tangent lines to C at P1 and P2 will be ninety degree angles. That is C meets G

orthogonally.

f(Z1) − f(Z2) = ∫
γ

f
′

(Z)dZ =

A|Z2 − Z1| −A/2|Z1 − Z1| = A/2|Z2 − Z1| ≠ 0.

arg(Γ
′
(to)) = arg f

′
(Zo) + arg γ

′
(to).



De�nition 2  Two points Z1 and Z2 are said to be symmetric with respect to a line (circle) E if

every circle through them intersects E orthogonally.

Theorem 4  Let E be a circle and let f ∈ L. Then two points Z1 and Z2 are symmetric in E if and

only if the images f(Z1) and f(Z2) are symmetric in the circle f(E) = E ′.

Proof: Consider the distinct points W1 = f(Z1),W2 = f(Z2). Let V′ be a circle containing W1

and W2 with V = f−1(V ′). Then V′ meets E′ at two points Q
′

1, and Q
′

2. The inverse points under

f, f−1(Q
′

j) = Qj lie on V. Hence, V is a circle containing Z1 and Z2, and so the angle formed by

the tangents to V at these points is ninety degrees. But f is conformal so the angles are preserved,

implying that the tangent angle to the image circle V′ is ninety degrees. This proves the

suf�ciency and we suggest the reader supply the necessity.

3.5 The Automorphism Group of the Unit Disc

One of the important subgroups of the group L is the set of one to one automorphisms of the unit

disc D = {Z : |Z| < 1}. That is the holomorphic, one to one, onto mappings of D onto D. To

develop this section it is useful to have a formula that relates two symmetric points in a given

circle.

So assume E is a given circle (�nite for this development) with center A and radius r. Let μ be

a given �nite point. The points A− r,A+ ır, and A+ r are three points of E. Utilizing the

cross ratio,

We have a mapping from E onto the circle given by the real axis. By the symmetry principle

if (μ)* is the refection of μ in E then T ((μ)* is symmetric to T (μ) in the real axis. In complex

notation (recall if Z = x+ ıy, then Z = x− ıy) we have T ((μ)* = T (μ).
From the immediate formula above this leads to the equation

If we solve this formula for (μ)* we �nd that

Note that

f(Z) = (Z,A− r,Z + ır,A+ r) =
{Z−(A−r)}{ır−r}
{Z−(A+r)}{ır+r}

= ı
Z−(A−r)
Z−(A+r)

.

ı
(μ)*−(A−r)

(μ)*−(A+r)
= (−ı)

μ−
A¯
( −r)

μ−(A+r)
.

(μ)* = A+ r2

μ−A
.

r2

μ−A
=

r2(μ−A)
|A−μ|2

≡ μA



and so the argument of (μA) is the same as arg ((μ)* −A). It follows that μ and (μ)* lie on the

same ray originating at the point A and that

To end this section, we prove an important and useful result about this special subgroup of L.
This subgroup will be denoted by A.

De�nition 3  A one-to-one holomorphic mapping from the unit disc D onto itself is called an

automorphism of the disc.

The next theorem will show that all such mappings are in L .

Theorem 5  A holomorphic mapping f ∈ L is in A if and only there is a number, c ∈ D and a

number t, |t| = 1 with

Proof: First if f has the given form and Z ∈ D, then it is easy to check that

so f maps D into D, and is one to one. Note that f has an inverse and from this f will map D onto

D and the unit circle onto the unit circle. Hence, f ∈ A.
Now assume f is in L and f is in A. Then, by the ontoness assumption, there is a point a in D

with f(a) = 0. By the formula for the symmetric point we see that a* = 1
a
. Now the symmetric

point of 0 is ∞ and so f(a*) = ∞ by the re�ection principle above. Such an automorphism has

the form (recall the cross ratio formula)

Now, using the fact that |f(exp(ıt)| = 1, t ∈ (0, 2π), we conclude that there is a number 

λ, |λ| = 1, so that

Thus f has the desired form.

3.6 Some Linear Algebra

In this section, we try to proceed to a bit of material, part of which is usually covered in an

undergraduate course but some of which will be a bit advanced. In giving the background we

hope that it will be partial review and that examples will �ll in the missing pieces. We assume

(μ)* −A = r2

|μ−A|
.

f(Z) = t Z−c
1−c̄Z

.

|Z − c|2 = |Z|2 + |c|2 − 2Re(c̄Z) ≤ |1 − c̄Z|2 = 1 + |cZ|2 − 2Re(c̄Z),

f(Z) =
(Z−a)(Z2−

1
a
)

(Z− 1
¯)
a

(Z2−a)
, .

f(Z) = λ
(Z−a)
1−aZ

.



you are familiar with the term “vector spaces” and if not you can �nd the de�nition in many

undergraduate texts. Think of Rn, or ℂn as paradigm examples. A vector space V is �nite

dimensional if there are a �nite number of non-zero vectors from V, say {vj}
n

j
 for which given a

vector X in V we may express it uniquely as the sum X =
n

∑
1

Cjvj, where the Cj are from the

scalar �eld (in our case usually the complex numbers). If this is not the case we say that V is

in�nite dimensional. For example the polynomials of degree less than or equal to n considered on

the interval [0,1] with pointwise addition and scalar multiplication are a �nite dimensional vector

space of dimension (n+1). A basis is given by the set {tk : k = 0, 1, 2, .… ,n}. However, if we

consider polynomials on the same interval of all degrees it is a vector space but it is not �nite

dimensional. As another example from basic calculus the Riemann integrable functions on the

interval [0.1] is also a vector space and it is not �nite dimensional. A norm on a vector space is a

non-negative, real valued function f(°) usually written as f(°) = ∥°∥, and it has essentially the

same properties as the absolute value function on the real line. So for example considering ℂn a

norm is given for Z = (z1, ..., zn) as Z 2 =
n

∑
1

zj
2, or in the case of the polynomials on

[0,1] as ||p(t)|| = max{|p(t) | t ∈ [0, 1]}. So we have ||x+ y|| ≤ ||x|| + ||y|| for vectors x and

y in V, and with C a scalar ||Cx|| = |C|||x||. Such vector spaces are called normed vector spaces.

If, whenever Xn is a sequence in a normed vector space V and if ||Xk −Xn|| → 0 (sequences

exhibiting such behavior are called Cauchy sequences) for k and n tending to in�nity, we know

that there is a unique vector X * ∈ V  with Xn −X * → 0 as n tends to in�nity then we say V

is a complete normed vector space. Further, if the operations in V are continuous in the sense that

for x and y in V we have the mapping from V × V  into V by the addition operation x+ y = z

and the scalar multiplication operation from C× V  by (C,x) → Cx then this a topological

normed vector space.

The examples above are topological normed vector spaces. We shall refer to them as normed

spaces. Note that the example given above of all polynomials on the interval [0,1] is not complete

in that the absolute value function |t− 1/2| is the limit of a Cauchy sequence from the

polynomials. Try to get a picture of how this might happen.This is a non-trivial statement and

requires proof, which we do not include. Now consider a few more examples. The �rst is called

“little l2” and is the vector space of vectors consisting of an in�nite number of complex numbers 

Z = (z1, z2, z3, ..., zn, ...) which satisfy the requirement 

∞

∑
1

zj
2 < ∞. For a speci�c example

take the terms to satisfy zj = 1/j. The norm is just Z 2 =
∞

∑
1

zj
2, and with this norm it is a

normed space. The set of polynomials of degree less than or equal to n is also such a space with

the sup norm we de�ned above for the space of all polynomials. Finally, a normed space is a

Hilbert space ℍ if the norm on ℍ is induced by an “inner product”. That is a mapping from 

V × V , usually written as < U ,W > , into ℂ which is linear in the �rst entry and anti-linear in

the second and for which ||u||2 =< U ,U > . That is, for U ,W ,Z ∈ H, and C a scalar,



and < U ,Z > =< Z,U > , and < CU ,Z >= C < U ,Z >. Normed spaces and Hilbert

spaces are very useful in theoretical aspects of analysis, but we only touch on one of the reasons

why. Mappings between normed spaces is one of the important aspects of analysis. For example,

the map on l2 given by Z = (z1, z2, z3, ...) → (z21, sin z2/2, z3, ..) is an interesting mapping

however it may not be easy to work with. It is what is called a nonlinear mapping because the

terms in it are not linear. The study of nonlinear analysis is an important and challenging �eld but

we are not going into that area. We study another set of mappings of equal importance called

“linear mappings”.

De�nition 4  A mapping T on a normed space V into a normed space V is called linear if for

vectors A and B in V and a scalar C ∈ C we have

Note that the vectors in the argument of T are in the space V whereas the vectors in the range

of T are in W. Some easy examples on say l2 are given by the identity 

Z = (z1, z2, z3, ...) → T1(Z) = (z1, z2, z3, ...), Z → T2(Z) = (0, z1, zz, z3, , , ) the shift

operator, Z → (z2, z1, z3, ...) = T3(Z), or �nally Z → (z1, z2/22, z3/32, ...) = T4(Z). Note

that the identity mapping T1 is one-to-one and maps all of l2 onto itself. In contrast T2 does not

have any of the vectors of the form (C, 0, 0,…),C ≠ 0 in its range. The linear operator T3 on

the other hand is one to one and maps onto all of l2, and �nally given the vector 

W = (1, 1/2, 1/3,…) ∈ l2 you can check that no vector will map onto it under T4. These

different behaviors are the norm in that the map T3 is special. It has what we call an inverse. That

is, there is another linear operator (on l2), say S, and we see that 

S(W) = S(w1,w2,w3, ..) = (w2,w1,w3, ..) has the property that S°T3(Z) = T3°S(Z) = Z

for all Z ∈ l2. We write this inverse as S = T −1. Note that, in the �rst few sections, I avoided

using this notation and wrote out the word “inverse” or used a different symbol. The reason for

this will come up later.

De�nition 5  An operator T from a normed space X into a normed space Y is invertible if it is

one-to-one and onto.

So if T is such an operator with T (X) = Y  then its inverse is S(Y ) = X. It is easy to see

that S°T (X) = S(Y ) = X = I(X), and that now S = T −1 is also linear. This follows for

example if when we choose Xj, j = 1, 2 in X and C ∈ C with T (Xj) = Yj, then 

S(Y1 + CY2) = S(T (X1) + CT (X2)) = S(T (X1 + CX2)) = X1 + CX2 = S(Y1) + CS(Y2).

De�nition 6  An operator T on a normed space X into a normed space Y is continuous at a point 

X * ∈ X if, whenever Xn ∈ X with Xn −X * → 0, then T (Xn) − T (X * → 0.

Note that for such operators continuity at one point implies continuity at all points of X. This is

easily checked by showing that for T as above it will be continuous at the origin. For if Wn → 0
in X the mapping W = X * −X is continuous by de�nition of normed space and so 

< U +W ,Z >=< U ,Z > + < W ,Z >,

T (A+ CB) = T (A) + CT (B).



T (Wn) = T (X * −Xn) = T (X *) − T (Xn) → 0, where Xn corresponds with the Wn under the

given map. Further there is another condition that is equivalent to continuity.

De�nition 7  A liner mapping T as above is said to bounded on X into Y if there is a number 

M > 0 for which

for all x ∈ X.

The in�mum of all such numbers M is called the norm of the operator T. Now the reader can

show that the concept of continuity is equivalent to the concept of boundedness for such linear

operators on normed spaces. All the operators we have introduced above are bounded linear

operators. T1, and T3 are invertible but T2, and T4 are not invertible. The operator T =

differentation on the polynomials on [0,1] is linear but not bounded since with Pn(t) =
tn

n
, one

has ||Pn|| = 1/n → 0, whereas T (Pn) = tn−1 = 1.

There is an idea used in such spaces which is referred to as completeness.

De�nition 8.  If every Cauchy sequence {xn} in a normed vector space X has a limit x in the

space then X is a complete normed vector space, or for short a Banach space. That is, if 

||xn − xk|| → 0;n, k → ∞ then ||xn − x|| → 0,n → ∞.

Having discussed (albeit brie�y) the idea of a linear operator on normed spaces we wish to

conclude with an idea that is useful in operators on Hilbert spaces.

3.7 Some Topology

The word topology has to do with a family of subsets of a given �xed set. In the hopefully

familiar setting of ℝ, ℝn or ℂ the paradigm of open sets are the open intervals, or open balls.

These are not all the open sets but any open set in the given space can be built up by unions of

these basic objects. These open sets come from the norms on the space, given a �xed P in one of

these spaces, the open ball with P as center is {Q | ||P −Q|| < ϵ} where ϵ is a positive number

and Q is from the space. One of the things that is basic to a �rst course in analysis (dealing with

ℝn or ℂ and the norm topology) is the idea of compactness. The idea of sequence has already

been discussed and the ideas related to them (e.g. subsequences, limit in�mum, etc.) are

important for the concept of compactness in this setting. So a set in one of these �nite

dimensional normed spaces is compact if whenever K is a subset of such a space and all the

elements of K are bounded by one �xed number then there is a sequence, say Xk in K, which

converges to a point of K. Another important aspect of this is when K is the (norm) closed unit

ball B in the space. That is the closed unit ball in a �nite dimensional normed space is compact.

That is there is sequence from B which converges (the points get close to each other and to the

limit point).

||T (x)|| ≤ M||x||,



In the in�nite dimensional situation this fails for the examples above with the norm topology.

For example consider l2 and the sequence ek = (0, 0, .., 0, 1, 0, 0...) with all zeros except in the

kth position where we have placed a one. These are in the closed unit ball but

Hence no subsequence of these terms can ever be close, when close means less than √2. The

critical point here is that the closed unit ball in an in�nite dimensional normed space can never be

compact (again we are thinking of the topology induced by the norm).

This lack of compactness of the unit ball makes the behavior of the linear operators appearing

in the next section somewhat dif�cult to handle in many situations. Although we will not get into

many examples we wanted the reader to be aware that there are deep topological dif�culties in

the study of these operators in the in�nite dimensional normed spaces.

3.8 Functions of Linear Operators

In this section I will do my best to sketch some properties of bounded linear operators acting on

Hilbert spaces (incidentally just to avoid any bad situations I am always thinking of spaces which

are separable). There is an old facetious saying concerning what one reads in print “Believe what

you read for it is true!”. I am going to apply this below in a few places (for short BWYRFIIT).

We see that it is possible to add linear operators and multiply by scalars and still remain

within the realm of (bounded) linear operators. We also have the concept of multiplication played

by composition. This operation is not commutative. For example on l2 set 

T5(Z) = (z2, z3, z4, ...) the backward shift. Then T5°T2(Z) = Z but T2°T5(Z) is not the

identity. However one way to obtain more interesting examples of such operators is by taking

nice functions f and considering the formal expression f(T ) when T is a bounded linear operator.

We want this to be another bounded linear operator (on the same space as T). For a simple

example if f(z) = z2 + (4 + 2ı) and T is a bounded linear operator what is the operator f(T )?
Of course we want the z2 term to give us T 2 = T°T . What about the constant term? We think of

powers of T (under composition) as above and T 0 = I the identity operator. So in this case f(T )
is the operator

Now what about another “nice” function like f(z) = exp(z). We will write β(X) to

represent all the bounded operators on X. Note we could consider bounded linear operators from

X into another normed space Y but considering X and Y as the same will make our point (and 

β(X,Y ) as all the bounded operators from X into Y). The more general case is pretty much the

same.

At this point recall our de�nition of the word “complete”. We invoke our BWYRFIIT

assumption and assert the fact that β(X) is complete and we ask the reader to accept that. That is

if Tn is a Cauchy sequence of operators (in the operator norm) then there is an operator T with Tn

converging to T (again in the operator norm ||Tn − Tk|| → 0,n, k → ∞ implies there is a unique

||ek − ej||2 = 2 j ≠ k.

f(T ) = T 2 + (4 + 2ı)I = S.



operator T with ||Tn − T || → 0). Some of these ideas will appear as we continue with this

example so we will not develop them any further.

So let us consider the partial sums of f and then of f(T ).

Now ||T || = C is a �xed real (non-negative) number in this inequality and it is known that the

series

converges for any �xed C. So the partial sums above 

M

∑
n=N

T n 1
n!

 are the partial sums of a

convergent series and so are a Cauchy sequence. This implies the terms 

N

∑
n=0

1

n!
T n are Cauchy

sequence in β(X) and so by completeness of B(X) they converge to an operator S ∈ β(X). If

we had looked at 

N

∑
n=0

1

n!
T n(x) with x ∈ X we would get an idea of how to prove the statement

about the completness of β(X).

At this juncture we need some even more technical material on Hilbert spaces and operators

on them. First assume that Hj, j = 1, 2 are Hilbert spaces. We wish to make a sum of these

spaces (which we can do as vector spaces) into another Hilbert space. Namely, writing

this is a vector space with pointwise addition and scalar multiplication. That is

and for a number c we have c(x, y) = (cx, cy). So that handles the vector space part of the

de�nition; now for the inner product part we de�ne

where the inner products are in the appropriate spaces (and we will drop the subscript notation

when it is obvious which space we are working with). This yields for the norm

N

∑
n=0

1

n!
T n −

M

∑
n=0

1

n!
T n =

M

∑
n=N

1

n!
T n ≤

M

∑
n=N

||T ||n 1
n! .

∞

∑
n=0

1

n!
C n

H = H1 ⊕H2 = {(x, y) : x ∈ H1, y ∈ H2}

(x, y) + (u, v) = (x+ u, y+ v),

< (x, y), (u, v) >H= < x,u >H1 + < y, v >H2 ,

< (x, y), (x, y) >= ||x||2 + ||y||2,



again the norms are in the appropriate spaces. Further using the idea of sesquilinear forms (this is

a use of BWYRFIIT) one can prove the following. For T a bounded operator on ℍ1 into ℍ2 there

is another operator S from ℍ2 into ℍ1 for which the following holds

This operator S is called the adjoint operator to T and is customarily written as T *.

De�nition 9  An operator T on a Hilbert space H is called unitary if TT * = T *T = I (the

identity).

As an example recall our operator T3(Z) = (z2, z1, z3, ..., zj, ..) on l2. If we write a basis for

l2 as Ej = (0, .., 0, 1, 0, 0, ..), where 1 is in the jth position and all other positions have a zero

then it is easy to check that

Further, using the de�nition we have

so that one can check T
*
1 T1 = T1T

*
1 = I, so T is a unitary operator (and its inverse is its adjoint 

T
*
1 ).

De�nition 10  An operator T on a Hilbert space H into a Hilbert space M is called a contraction if

||T (x)|| ≤ ||x|| for all x ∈ X. That is the norm ||T || ≤ 1, and is a strict contraction if ||T || < 1.

Note that if T is any operator in β(H,M) then the operator S = T/||T || is a contraction.

3.9 An Operator Equation

Recall the form of an f ∈ L , f(Z) = aZ+b
cZ+d

= W . Also recall that there are many different ways

to express this rational function. Some of the most obvious are as follows

as well as many others. So how do we lift this expression to an operator theoretic setting? If we

just assume A,B,C,D and T are operators on various spaces and try to plug these operators into

one of these expressions we have some immediate problems. Namely, since operators do not

commute the second equality gives pause for thought. Which should we choose? Next the

denominator will be an operator and we do not have (as yet) a way of thinking about such

expressions. One of the ways to get a useful recipe to overcome and deal with these problems is

to choose the following operator-theoretic form

< Tx, y >= < x,Sy > .

T1(E1) = E2 , T1(E2) = E1 , T1(Ej) = Ej, j > 2.

T
*
1 (E1) = E2,T

*
1 (E2) = E1,T

*
1 (Ej) = Ej, j > 2,

f(Z) = (aZ + b)(cZ + d)−1 = (cZ + d)−1(aZ + b) = a′ + b′Z
cZ+d

,



where the letters A,B,C,D and T represent bounded linear operators on various Hilbert

spaces.The importance of this choice is related to preserving contraction operators (see Theorem

7). Note that if we return to the scalar form of this expression we have

Now recalling the de�nition of the determining number of the linear fractional map in this form

(see page 1) we require (bc− ad) − bc ≠ 0. This makes sense in that if ad = 0 then in the

operator setting this would mean AD = 0, and this would imply our selected operator would be

the constant operator B. So let us return to the Hilbert space H = H1 ⊕H2 discussed above. If T

is in βH then we observe the following

where we claim the letters A and C represent bounded linear operators. A is a bounded operator

in β(H1), and C is in β(H1,H2). Let us check this claim. Choose xj, j = 1, 2 in H1. Consider

the expression

and using the linearity of T we deduce

This of course implies that A and C are linear on their respective spaces. Similarly one shows

that A(mx) = mA(x),C(mx) = mC(x) for scalars m. Now performing a similar argument

with the expression

it can be shown that B ∈ β(H2,H1), and C ∈ β(H2).

The discussion above shows that we may express an operator T on ℍ as a matricial equation.

In this expression we identify a point (x, y) ∈ H as a “vector”

and we identify T with the “two by two” operator matrix

With this identi�cation we have as a result

B−AT (I + CT )−1D,

b(1+cZ)−adZ

1+cZ
= (bc−ad)Z+b

1+cZ

T ((x, 0)) = (u, v) = (A(x),C(x)) ∈ H,

T ((x1, 0) + (x2, 0)) = T ((x1 + x2), 0)) = (A(x1 + x2),C(x1 + x2))

T ((x1, 0)) + T ((x2, 0)) = ((A(x1),C(x1)) + (A(x2, 0),C(x2)).

T ((0, y) = (u, v) = (B(y),D(y)),

( )
x

y

T = ( ).
A B

C D

T ((x, y)) = (A(x) +B(y),C(x) +D(y)).



With this de�nition of T we de�ne an operator expression

where Q = (I + CX)−1
D, and X ∈ β(H2,H1), and C ∈ β(H1,H2), and I is the identity on 

H2. Thus (I + CX)−1
 when it exists is a bounded operator on ℍ2 into itself, and so the operator

expression M maps ℍ2 into H1. One more piece of notation. Let

A speci�c examples for which this is true is when ||C|| < 1 and X is a contraction. Motivation

for this comes from the scalar case of the formula

which converges when |t| < 1. Hence, if we write

this series will converge in the operator norm and this then provides the operator-theoretic

meaning of the fraction on the left above.

Now we come to our last BWYRFIIT statement but before stating it we have need of another

de�nition.

De�nition 11  An operator T on a Hilbert space H is said to be positive if ⟨Tx,x⟩ ≥ 0, all 

x ∈ H.

So for example if T is a contraction then we see that

and so the operator (I − T *T ) is a positive operator. The next statement is a robust lemma

requiring several steps of computation and you might be able to muddle through it or you can

check reference [3], Chapter 7. The notation is that as above.

Theorem 6  Assume T is a unitary operator on H. Then, for each X in MT we have

With this result in hand we culminate this section with the following theorem

Theorem 7.  Assume X ∈ MT . If X is a contraction, then M(X;T ) is a contraction.

M(X;T ) ≡ B−AX(I + CX)−1
D ≡ B−AXQ,

MT ≡ {X ∈ β(H2,H1) : I + CX is invertible in H2}.

1
(1−t)

=
∞

∑
o

tn

1
I+CX

=
∞

∑
o

(−1)n(CX)n

< (I − T *T )x,x >= ||x||2 − ||Tx||2 ≥ 0

(I − (M(X;T ))*M(X;T )) = Q*(I −X *X)Q.



Proof: We have noted that if X is a contraction then the operator (I −X *X) is a positive

operator. Now consider the expression

We claim that this is also a positive operator. To check this assume x ∈ H1

But by Theorem 6 this implies that (I − (M(X : t)*)M(X : T )) is a contraction and thus 

M(X : T ) is a contraction.

Now where are we in terms of taking this path into operator theory? Well at this stage we are

at the brink of lots of interesting and deep operator theory and we are stopping here. One can take

“square roots” of positive operators (that is if A is a positive operator there is another operator B

with B2 = A, and using these operators it is possible to make operator valued isometries for the

setting of Theorem 7. If you have found any of this material interesting and want to pursue more

of it I strongly suggest the references Fabian et. al. [2]. There is a great deal of material dealing

with positive operators, the Wold decomposition and it is possible of course to get into this type

of material for Banach spaces.
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This is a short overview for the beginners (graduate students and advanced
undergraduates) on some aspects of biholomorphic maps.

A mathematical theory identi�es objects that are “similar in every detail” from
the point of view of the corresponding theory. For instance, in algebra, we use the
notion of isomorphism of algebraic objects (groups, rings, vector spaces, etc.),
while in topology homeomorphic topological spaces are considered similar in
every detail. The idea is to classify the objects under consideration.

In complex analysis the corresponding notion is the biholomorphism of the
main objects in the theory: complex manifolds. Two complex manifolds M1,M2

are biholomorphic if there is a bijective holomorphic map F : M1 → M2. Like in
those other theories one wants to �nd the biholomorphic classi�cation of complex
manifolds. This attempt is certainly an important motivation to study
biholomorphic transformations. The classi�cation problem appears to be a very
dif�cult problem, and only partial results (though very important and highly
interesting) are known.

The Riemann Mapping Theorem states that any two proper simply connected
domains in the complex plane are conformally equivalent. This is an exception.

The general case is: for any n ≥ 1 in ℂn any two “randomly” picked domains are
not biholomorphic. We will mention three examples to support this viewpoint. We
also are pointing out that in case n = 1 the classi�cation problem is well
researched and mostly understood. For n ≥ 2 it is way more complicated, and by
now the pursuit of it has produced many very interesting and deep results and also
created useful tools for SCV. Our intention is to put together various related
problems, re�ecting the authors interests, and in most cases refer the reader to
some published material where details can be found. There are many surveys on
most topics we consider. Quick search on MathSciNet shows that there are over
two thousand papers published on biholomorphic maps. By no means this article
is a comprehensive review. It should be considered as a glance into some of the
results in the theory of these transformations.

The approximate outline of this exposition follows.
We start with three examples of non-equivalence for some “similar” domains.

Then we introduce invariant metrics. Later we mention some important
biholomorphic invariants and the related question of the extension of a
biholomorphic mapping to the boundary. After that we consider the automorphism

group of a domain in ℂn, which is a biholomorphic invariant, and related results.
In the end we introduce and analyze “approximate” biholomorphic relations.

So we start with some examples.



□

4.2 Three Examples

The Riemann Mapping Theorem guaranties the biholomorphism of two proper

simply connected domains in ℂ. But once we look at non-simply connected
domains the situation drastically changes. Here's a result for annuli.

I). (F.H. Schottky, 1877) [52] Two annuli in 
C : Ω(ri,Ri) = {ri < ∣z∣ < Ri}; i = 1, 2 are conformally equivalent if and only
if r1/R1 = r2/R2.
Proof. (sketch) Denote the disc of radius r with center at the origin by Δ(r).
Without any loss of generality we may assume that r1 = r2 = 1, R1 > R2, and
that f : Ω(1,R1) → Ω(1,R2) is continuous to the boundary (we’ll address the
necessity of this in a later section), and maps the unit circle ∂Δ(1) of ∂Ω(1,R1)
into the unit circle of ∂Δ(1) ⊂ ∂Ω(1,R2). We will use the Schwarz re�ection
principle. The re�ection over ∂Δ(1) extends f to an analytic map from 

Ω(R−1
1 ,R1) to Ω(R−1

2 ,R2). We now continue to re�ect over the smaller circle 

∂Δ(R−1
1 ) and get f extended to Ω(R−3

1 ,R1). Continue this process inde�nitely
we get f extended to a conformal map of two punctured discs Ω(0,R1) to 
Ω(0,R2). Since f is bounded it can be extended to {0}; 

f : Ω(0,R1) → Ω(0,R2). Since f is now holomorphic, near the origin it will
satisfy |f(z)| ≤ C|z| for some constant C. This means that for large n we have 
∣R−n

2 ∣ ≤ C∣R−n
1 ∣. This cannot happen since by assumption R1 > R2.

For n > 1 in ℂn, a theorem analogous to the Riemann Mapping Theorem
does not hold even in the following case.

II). (Henri Poincaré, 1907) For n ≥ 2 the unit ball 

Bn = {(z1, ..., zn)∣
n

Σ
j=1

∣zj∣
2 < 1} and the polydisc 

Δn = {(z1, ..., zn)∣∣zi∣ < 1, i = 1, ...,n} are not biholomorphically equivalent.
Later on several proofs of this theorem will be provided.

In ℂn, n > 1 small perturbations of the unit ball may create a continuum of
non-biholomorphic domains.

III). (Burns-Shnider-Wells thm, 1978) We’ll present one consequence of the
main theorem from [7].

Consider the unit ball Bn ⊂ Cn, n ≥ 2, ϵ > 0. Then in the ϵ− neighborhood
of Bn there is an uncountable number of mutually non-biholomorphic domains
with real analytic boundaries, containing the ball and homeomorphic to the ball.

¯̄
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4.3 Some Invariant Metrics

By introducing an invariant metric into a domain in ℂn one can then consider
every biholomorphic map from one domain to another as an isometry with all the
consequences coming out of that. There are several invariant measures:
Kobayashi, Caratheodory, Bergman, and others. We refer the reader to a number
of books written on this. It is quite an extensive topic, and we will only touch on
this subject here. It will end with a proof of Poincare's example mentioned in the
previous section.

De�nition 4.3.1.  Let D be a domain in ℂn. The Carathéodory and Kobayashi
in�nitesimal pseudo-metrics are functions from D × C

n to [0, ∞) de�ned by

The Kobayashi indicatrix of D at z is

Kobayashi Extremal maps exist when D is bounded.
It was proved by Royden ([48] pp. 125–137). that every Kobayashi hyperbolic

complex manifold is in�nitesimally Kobayashi non-degenerate. The converse is
false ([37] Remark 3.5.11).

Proposition 4.3.2.  CD ≤ KD.
Proof. Let z ∈ D and v ∈ Cn. Let ε > 0 be given. There is an f ∈ O(D,Δ) and 
u ∈ Cn such that f(0) = z, df(0)(u) = v, and |u| < KD(z, v) + ε. There is a 
g ∈ O(D,Δ) such that g(z) = 0, and |dg(z)(v)| > CD(z, v) − ε. By Schwarz
lemma, |d(g°f)(0)(u)| ≤ |u|. It follows that

Letting ε → 0 yields that CD(z, v) ≤ KD(z, v).

Theorem 4.3.3.  The Kobayashi in�nitesimal pseudo-metric is decreasing under
holomorphic maps in the sense that if f ∈ O(D,Ω) then 
KΩ(f(z), df(z)(v)) ≤ KD(z, v).

CD(z, v) = sup{|dg(z)(v)| : g ∈ O(D,Δ), g(z) = 0},

KD(z, v) = inf{|u| : u ∈ C, f ∈ O(Δ,D), f(0) = z, df(0)(u) = v}.

ID,z := {v ∈ C
n : KD(z, v) < 1}.

CD(z, v) − ε < |dg(z)(v)| = |d(g°f)(0)(u)| ≤ |u| < KD(z, v) + ε.



□

□

Proof. Let ε > 0. Choose h ∈ O(Δ,D) and u ∈ C so that h(0) = z, 
dh(0)(u) = v, and KD(z, v) + ε > |u|. Since f°h ∈ O(Δ,Ω), and 
d(f°h)(0)(u) = df(z)(v), we see that |u| ≥ KΩ(f(z), df(z)(v)). Thus 
KD(z, v) + ε > KΩ(f(z), df(z)(v)) for each ε > 0.

Corollary 4.3.4.  The Kobayashi in�nitesimal pseudo-metric is invariant under
biholomorphic maps in the sense that if f is a biholomorphic mapping from D
onto Ω then

Moreover df(z)(ID,z) = IΩ,f(z).

Theorem 4.3.5.  Let n > 1. Then Δn and Bn are not holomorphically equivalent.
Proof. Suppose that g is a biholomorphic mapping from Bn onto Δn. Let a = g(0)
. There is an h ∈ Aut(Δn) with h(a) = 0. Let f = h°g. Then f(0) = 0. By
Corollary 4.3.4, df(0)(Bn) = Δn. That is impossible because Bn has a smooth
boundary and Δn does not.

4.4 Boundary Extension of a Biholomorphic Map

A set of biholomorphic invariants has been introduced by S. S. Chern, J.K. Moser
[12], and N. Tanaka [53]. These invariants can be used for C∞ manifolds of co-

dimension one in ℂn. To use them for the case of a biholomorphism f : D1 → D2

of bounded domains in ℂn with smooth boundaries one needs �rst to prove that f
can be extended smoothly to the boundary. We will now discuss this question of

extending a biholomorphic map between two bounded domains in ℂn to a
diffeomorphism or even a homeomorphism between the closures of these
domains.

In the case of one complex variable the conformal map f : D → Ω for

bounded domains in ℂ can be extended to a diffeomorphism D → Ω  if the
boundaries ∂D, ∂Ω are smooth, and to a homeomorphism if these boundaries are

piece-wise smooth simple closed curves. An examination of this problem in ℂ one
can �nd in [46].

In the case of Cn,n ≥ 2 the situation is much more complicated. A short
counterexample to the extendability is given by Fridman [20]: two domains D,Ω

KΩ(f(z), df(z)(v)) = KD(z, v).

¯̄



are constructed in ℂ2, both biholomorphic to the bidisk, both have piece-wise
smooth boundaries, and there is a C∞ diffeomorphism between them that extends
smoothly to their closures. However, no biholomorphic mapping F : D → Ω, nor 
F −1 can be extended continuously to the boundary. If D and Ω are strictly

pseudoconvex domains in ℂn with C∞ smooth boundaries the result of N.
Vormoor (and independently G. Henkin) [35, 58] shows that any biholomorphic
map between them extends to a homeomorphism of their closures.

The question of smooth extendability is a very dif�cult problem. A major
breakthrough was made by C. Fefferman in 1974. He proved the following
theorem [14].

Theorem 4.4.1.  Let f be a biholomorphic map from a domain D ⊂ Cn to another
domain Ω ⊂ Cn. Suppose that D and Ω are bounded strongly pseudoconvex
domains with C∞-smooth boundaries. Then f extends C∞ to the boundary.

Fefferman's original proof consists of two parts. First he considers the
behavior of the Bergman kernel near the boundary, which leads to precise
estimates of the Bergman metric near the boundary (for de�nitions and main
results regarding the Bergman kernel see the book by S. Krantz [41]). In the
second part, he proves the theorem using those estimates and the above mentioned
Vormoor's result. We would like to note that [14] is 65 pages long, and the
introduction (8 pages), has a very clear sketch of both parts of the proof.

Following this major accomplishment, there have been a number of
publications re�ning and presenting different proofs of the theorem. The book
[41] has a clear and different proof of this theorem. We should also mention two
more proofs that are widely cited: those by F. Forstneric [15] and S. Bell & E.
Ligocka [4].

The proof of F. Forstneric is based on two classical results: the edge-of-the-
wedge theorem and the Julia-Caratheodory theorem (for these classical results,
see e.g. [49, 50]). In this sense it is considered elementary.

Bell and Ligocka's proof of Fefferman's theorem made use of the Bergman
kernel. For a bounded domain D ⊂ Cn, the Bergman kernel function K(z,w) is

de�ned by K(z,w) =
∞

∑
j=1

φj(z)φj(w), where {φj} is an orthonormal basis for

the Bergman space B2 := L2(D) ∩ H(D). The Bergman kernel does not depend
on the orthonormal basis and it has the reproducing property that for each 

f ∈ B2(D), f(z) = ∫
D

K(z,w)f(w) dw.

¯



Let W s
0  denote the closure of C∞

0 (D) in the Sobolev space W s(D). Let 
H s(D) := W s(D) ∩ H(D) be the subspace of W s(D) consisting of
holomorphic functions. A domain D ⊂ C

n is said to satisfy Condition R if it is
bounded with smooth boundary and if for every s ≥ 0 there exist constants 
M > 0 and C > 0 such that the Bergman projection P : L2(D) → B2(D)
satis�es ∥Pf∥H s(D) ≤ C∥f∥W s+M

0 (D).

Theorem 4.4.2.  (Bell and Ligocka [4]) If D1 and D2 satisfy Condition R, then
any biholomorphic mapping between D1 and D2 extends smoothly to the
boundary.

It had been known that subelliptic estimates for the ∂ -Neumann operator

imply Condition R and that the ∂ -Neumann operator satis�es the subelliptic
estimates for bounded strictly pseudoconvex domains with smooth boundary.
Thus Bell and Ligocka's theorem implies the Fefferman Theorem.

Bell and Ligocka �rstly proved that Condition R implies the following two
conditions:

Condition A. K(⋅,w) ∈ C∞(D) for each w ∈ D,
Condition B. For each z0 ∈ ∂D, there are n + 1 points a0, … , an in D such

that K(z0, a0) ≠ 0 and

Using Conditions A and B, they proved that for a given biholomorphic map h

between domains D1 and D2 the Jacobian functions Jh(z) and (Jh(z))−1 are

bounded on D1. Assume that (Jh(z))−1 is not bounded. Then there exists a

sequence zn → z0 ∈ ∂D1 such that Jh(zn) → 0. The transformation rule for the
Bergman kernel function

and Condition A yield that K1(z0, a) = 0 for each a ∈ D1, which contradicts
Condition B.

Consider a point z0 ∈ ∂D1 and a sequence {zn} in D1 with zn → z0 such that

h(zn) tends to a point s0 ∈ ∂D2. By Condition B, there are points b0, b1, … , bn
such that K(s0, b0) ≠ 0 and

¯

¯

det( ) ≠ 0.
K(z0, aj)
∂K
∂zi

(z0, aj) i=1,…,n

j=0,1,…,n

K1(zn, a) = K2(h(zn),h(a))Jh(zn)Jh(a)̄



Let vj(s) = K2(s, bj)/K2(s, b0), j = 1, … ,n. Then

det(
∂vj
∂si

(s0)) = K2(s0, b0)−n−1Q ≠ 0. Set aj = h−1(bj) and 

uj(z) = K1(z, aj)/K1(z, a0), j = 1, … ,n. The relation

(
∂uj

∂zi
(zn)) = (

∂vj
∂si

(sn)
Jh(aj)

Jh(a0)
) ⋅ (

∂hj

∂zi
(zn))

then tells us that 
∂hj

∂zi
(zn) are bounded. This implies that 

∂hj

∂zi
 are bounded on D1.

Therefore, h is continuous up to the boundary. In particular h(z0) = s0. Since

the functions uj and vj are smooth local coordinates near z0 and s0 respectively.

With respect to these coordinates the mapping h is expressed as a linear mapping

given by vj =
Jh(aj)
Jh(a0)

uj. It follows that h can be extended smoothly to the

boundary in a neighborhood of z0.

4.5 Symmetry: Automorphism Group of a Domain

4.5.1 Automophism groups

A biholomorphic map of a manifold M onto itself is called an automorphism of
M. The set Aut(M) of all automorphisms of M forms a group. This group is
clearly a biholomorphic invariant. There is a relatively recent survey of this group
by S. Krantz [40], and we’ll refer to this paper throughout the section.

A good example of using Aut(D) as invariant is Poincare's original proof of
biholomorphic non-equivalence of the unit ball Bn and polydisk Δn (for n > 1)
by comparison of their automorphisms groups; they happen to be Lie groups of
different dimensions and therefore not isomorphic.

There has been a lot of effort devoted to the study of Aut(D). As with all
known invarians, this one is interesting (giving an idea of how “symmetric” a

Q := det( ) ≠ 0.
K2(s0, bj)
∂K2

∂si
(s0, bj) i=1,…,n

j=0,1,…,n

¯

det( ∂uj

∂zi
(z0)) ≠ 0, and det( ∂vj

∂si
(s0)) ≠ 0,

¯



domain is) but by no means de�ning (even for n = 1 two annuli have the same
automorphism group but might not be conformally equivalent). Moreover, after

many deep studies one may conclude that for a general “random” domain in ℂn

the Aut(D) = {id}. However, there is a large set of domains with non-trivial
group, and this is a justi�cation for detailed study of Aut(D).

One of the �rst results was the paper by H. Cartan (1935) [10] which proved

that Aut(D) is a real Lie group for any bounded domain D in ℂn. Bedford-Dadok
and Saerens-Zame [3, 51], proved that every compact Lie group can be realized as
an Aut(D) for some strictly pseudoconvex domain with a smooth boundary in a

suitable ℂn.

4.5.2 Description of automorphism groups and characterization of domains,

manifolds with a given group

Below for convenience we will use two notations for the holomorphic
automorphism of D: AutD or Aut(D).

Let D be a complex manifold. Consider a �xed point w ∈ D. The
automorphisms of D which �x w form the isotropy group at w,

For φ ∈ AutD the left coset of AutD,w with respect to φ is de�ned to be

For φ,ψ ∈ AutD, if ψ−1φ AutD,w then φAutD,w ∩ ψAutD,w = ∅; if 
ψ−1φ ∈ AutD,w then φAutD,w = ψAutD,w. The cosets space

is naturally a real analytic manifold. The map from the cosets space 
AutD/AutD,w to the orbit AutD(w) := {g(w) : q ∈ AutD} given by 
φAutD,w ↦ φ(w) is a bijective, real analytic map. Thus we have the following

Proposition 4.5.1.  The orbit AutD(w) is a real analytic submanifold of D. Its
dimension is dim AutD(w) = dim AutD − dim Aut D,w.

Let D be a bounded domain in ℂn or a Kobayashi hyperbolic manifold of
complex dimension n. It follows from the normal family theory that AutD,w is

AutD,w := {φ ∈ AutD : φ(w) = w}.

φAutD,w := {φg : g ∈  AutD,w}.

∈

AutD/AutD,w := {φAutD,w : φ ∈ AutD}



compact. If φ ∈ AutD,w is an automorphism which �xes w, its tangent map dφw

is a member of GL(n,C). When dφw = id, by looking at iterations of series
expansions of φ at w, we see that φ must be the identity map. This implies that the
map AutD,w → GL(n,C), φ ↦ dφw, is injective. Thus AutD,w is isomorphic to
a compact subgroup of GL(n,C). Since each compact subgroup of GL(n,C) is
conjugate to a subgroup of the unitary group U(n), it follows that AutD,w is
isomorphic to a subgroup of U(n). Thus dim AutD,w ≤ dimU(n) = n2.

A few examples of the Aut(D):
1. The automorphism group of the projective space: Aut(Pn) is isomorphic to 

PGL(n + 1,C). The proof can be found in [1], p. 41.
2. The detailed construction of the automorphism group of the ball Bn and the

polydisc Δn can be found in [1, p. 54]. As it is shown in that book the Aut(Bn) is
a real Lie group of dimension n2 + 2n, and dim(Aut(Δn) = 3n. So, these
groups have different dimensions for n > 1, and therefore not isomorphic for 
n ≥ 2.

Here's a way to describe the Aut(Bn).
Let 0 < λ < 1 and let f : Bn → Cn be de�ned by

(4.1)

Then f ∈ Aut(Bn) and f(0) = (λ, 0, … , 0). Fix a point a ≠ 0 in Bn. There is a
unitary transformation U such that Ua = (|a|, 0, … , 0). Let h be the
transformation in (4.1) with λ replaced by |a| and let g = U −1°h°U . Then 
g ∈ Aut(Bn), g(0) = a, and g(−a) = 0. The transformation g can be expressed
as

(4.2)

where

f1(z) = z1+λ
1+λz1

,

fj(z) = √1−λ2

1+λz1
zj, j = 2, … ,n.

g(z) =
Pa(z)+a

1+z⋅a +
√1−|a|2

1+z⋅a Qa(z),̄̄

Pa(z) = z⋅a
|a|2 a, Qa(z) = z − Pa(z).



It follows that every point in Bn is mapped to the origin by some member of 
Aut(Bn), hence the Aut(Bn) action is transitive and Bn is a homogeneous
domain. Thus dim AutBn,0 = 2n. Since each element of the unitary group U(n)
is an automorphism of Bn that �xes the origin, we see that U(n) is naturally a
subgroup of AutBn,0. Thus dim AutBn,0 = n2. Therefore 
dim Aut(Bn) = n2 + 2n.

The group U(n, 1) is the group of linear transformations under which the form

X1X1 + ⋯ + XnXn − X0X0 is invariant. So

In homogeneous coordinates, Bn is given by

Each W = ( ) in U(n, 1) gives a map gW ∈ Aut(Bn), where

(4.3)

The map gW is the identity map if and only if W ∈ S 1 := {eitI : t ∈ R}. Thus 

PU(n, 1) := U(n, 1)/S 1 is considered a subgroup of Aut(Bn). Since 

(n + 1)2 − 1 = dimPU(n, 1) ≤ dim Aut(Bn) = 2n + n2, we see that 
Aut(Bn) = PU(n, 1).

If b = (t, 0, … , 0), t > 0, c = bT , then A = ( ), 

d = α√1 + t2, where V ∈ U(n − 1), |α| = 1. Take α = 1, V = In−1 to obtain 

A = ( ) and d = √1 + t2. Then gW is given by (4.1) with 

λ = t/√1 + t2. The map in (4.3) is the transformation given by (4.2) with 
a = d−1b.

3. The automorphism group of the entire space ℂn, n ≥ 2 is not �nite

dimentional. Say, for ℂ2 it contains shears (w1 = z1;w2 = z2 + f(z1)) for any

¯̄̄

U(n, 1) = {W ∈ GL(n + 1,C) : W T( )W = ( ).
In 0

0 −1

Īn 0

0 −1

X1X1 + ⋯ + XnXn − X0X0 < 0.̄̄̄

A b

c d

gW (z) = Az+b
cz+d

.

α√1 + t2 0

0 V

¯
√1 + t2 0

0 In−1



entire function f.
4. More examples one can �nd in A. Isaev's book [36].
5. One more interesting result. It can be proved that if D is a bounded domain

in ℂn and dim(Aut(D)) = n2 + 2n, then D is biholomorphic to Bn. A. Isaev

gave explicit classi�cation of all domains D in ℂn for which 
n2 − 1 ≤ dim(Aut(D) < n2 + 2n. These results are fully presented in [36].

4.5.3 Greene-Krantz conjecture

In case of strictly pseudoconvex domains with smooth boundary only the unit ball
has a NON-compact group of holomorphic automorphisms. This was proved by
B. Wong [59]. The non-compactness of Aut(D) means that for at least one point 
z0 ∈ D the orbit Aut(D)(z0) has an accumulation point p on the boundary. J. P.
Rosay [47] extended Wong's theorem by proving that if p is a strictly
pseudoconvex point of ∂D then D is biholomorphic to the ball. The proof of
Wong-Rosey theorem can be done by the scaling method ([40], p. 227). In the
same survey one can �nd various versions of this theorem (even for in�nite
dimensional cases).

Because of these theorems, the description of smoothly bounded domains with
non-compact automorphism group becomes interesting. All the known examples
of such domains reveal that the accumulation point on ∂D is of “�nite type in the

sense of Kohn, D’Angelo, and Catlin”. (A boundary point of a domain in ℂ2 is of
�nite type if the boundary has �nite order of contact with complex manifolds

through the point; precise de�nition for ℂn can be found in [40]). In 1991, R.
Greene and S. Krantz made the following conjecture [30]:

Conjecture. Let D be a smoothly bounded domain in ℂn. Suppose that x ∈ D

has a boundary orbit accumulation point for the automorphism group in the sense
that there are automorphisms ϕj ∈ Aut(D) and a point p ∈ ∂D such that 
ϕj(x) → p as j → ∞. Then p is a point of �nite type.

There have been many attempts to resolve this conjecture, only partial results
have been obtained by now; for a more detailed discussion on it see [40].

4.5.4 Narasimhan's question

In this section, we will again use the notation AutD instead of Aut(D).

A bounded domain Ω ⊂ Cn is said to have Property N if there exists a
compact subset K of Ω with the property that for each z ∈ Ω there is an 
f ∈ AutΩ such that f(z) ∈ K. For z ∈ Ω and a subgroup Γ of AutΩ, 



Γ(z) := {f(z) : f ∈ Γ} is the Γ-orbit of z. If S ⊂ Ω, then Γ(S) denotes the
union of the Γ-orbits of the points in S:

Thus, Property N is equivalently de�ned as follows: Ω is said to have property N
if there is a K ⊂⊂ Ω such that AutΩ(K) = Ω. The following is a question by R.
Narasimhan:

Question 1. If Ω is a bounded domain in ℂn with Property N, is Ω necessarily a
homogeneous domain?

A discrete subgroup of AutΩ is a subgroup of AutΩ that is discrete in the
compact open topology, the default topology of AutΩ. Recall that we say a
subgroup Γ of AutΩ acts on Ω freely if each f ∈ Γ  is �xed-point free.

The following theorem is by S. Frankel [16].

Theorem 4.5.2.  Let Ω be a convex hyperbolic domain in Cn and suppose that
there is a discrete subgroup Γ ⊂ AutΩ such that Ω/Γ  is compact. Then Ω is
biholomorphic to a bounded symmetric domain.

Frankel �rst proved a distortion theorem for convex holomorphic embeddings
and used this to reduce a complex analysis problem to one in af�ne geometry.
Then he applied rescaling to produce a continuous family of automorphisms. His
particular technique of boundary localization was very different from what had
gone before, and he called it the rescale blow-up.

Kazhdan conjectured that each irreducible bounded domain which admits both
a compact quotient and a one-parameter group of holomorphic automorphisms
must be biholomorphic to a bounded symmetric domain. Frankel [16] �rst
con�rmed the conjecture for bounded convex domains. Subsequent work by
Nadel [44] and Frankel [17] proved it in general.

Theorem 4.5.3.  Let M be a compact complex manifold. Then the group AutM  is
a complex Lie transformation group and its Lie algebra consists of holomorphic
vector �elds on M.

The above theorem is due to Bochner and Montgomery [5, 6]. For bounded

domains in ℂn, we have the following theorem of H. Cartan [9, 11].

Theorem 4.5.4.  Let D be a bounded domain in Cn. Then the group AutD is a Lie
transformation group and the isotropy subgroup AutD,z at any point z ∈ D is

Γ(S) := ∪z∈SΓ(z) = {f(z) : z ∈ S, f ∈ Γ}.



compact. If X is in the Lie algebra of AutD, then JX is not in the Lie algebra of 
AutD.

Theorem 4.5.5.  (Kobayshi [39, p. 81]) Let M be a hyperbolic manifold. Then the
group AutM  is a Lie transformation group and the isotropy subgroup AutM,x of
M at any point x ∈ M  is compact.

The essential reason for the above three theorems is the following

Theorem 4.5.6.  (Bochner and Montgomery [6]) Let G be a locally compact group
of differentiable transformations of a manifold M. Then G is a Lie transformation
group.

Theorem 4.5.5 is also based on the following early result of van Danzig and
van der Waerden [13].

Theorem 4.5.7.  Let M be a connected, locally compact metric space and GM the

group of isometries of M. Then GM is locally compact with respect to the

compact-open topology.

4.6 Determining Sets and Fixed Points

Let M be a complex manifold, f : M → M  a holomorphic map. z0 ∈ M  is a
�xed point for f if f(z0) = z0.

The following is a result in the classical function theory [43, 45]: if 
f : M → M  is a conformal self-mapping of a plane domain M which �xes three
distinct points then f(ζ) = ζ.

This one-dimensional result is true even for endomorphisms of a bounded
domain D ⊂⊂ C. To prove this one needs to �rst use the well known theorem,
stating that if an endomorphism of D �xes two distinct points, then it is an
automorphism; and then use the above cited [43, 45] theorem.

We now introduce two notions to discuss how this result can be extended for
higher dimensions.

For a complex manifold M let H(M,M) be the set of holomorphic maps
from M to M, i.e., the set of endomorphisms of M. The group of holomorphic
automorphisms of M, Aut(M) is a subset of H(M,M).



De�nition 4.6.1.  A set K ⊂ M  is called a determining subset of M with respect
to Aut(M) (H(M,M) resp.) if, whenever g is an automorphism (endomorphism
resp.) such that g(k) = k ∀k ∈ K, then g is the identity map of M.

So, any three points of a plane domain D form a determining set for Aut(D)
as well as for H(D).

The other notion is Fix(f), it denotes the set of �xed points {x ∈ M  | 
f(x) = x} of f.

So, if M is a plane domain, and Fix(f) is discrete, then the cardinality of this
set #Fix(f) ≤ 2 for any f according to our remarks at the beginning of this
section.

We now have two classes of problems to investigate. First: the description and
properties of determining sets for various complex manifolds. There are many
results in classical analysis and topology proving the non-emptiness of Fix(f), or
�nding it for a given function. Our second class of problems to discuss is different
from those: for a given M which sets can be Fix(f) for some holomorphic 
f ∈ H(M,M).

4.6.1 Determining sets

The notion of determining sets was �rst introduced in [25]. That paper was an
attempt to �nd a higher dimensional analog of the above one-dimensional result.
Determining sets (for automorphisms and endomorphisms) in case of bounded

domains in ℂn have been further investigated in the following papers [26–29, 38,
54, 55].

Let's �rst look now at some examples of discrete non-determining and
determining sets (from [25]).

Example 4.6.2.  Let A = {z ∈ C : 1/2 < |z| < 2}. This is an annulus in the
plane. The map τ(z) = 1/z has two �xed points (i.e., 1 and −1), yet τ is not the
identity mapping, so these points are not a determining set. Since the Aut(A) is
well known one can check that any two points in general position in A do form a
determining set.

Example 4.6.3.  In ℂ2 consider a shear of the form τ(z,w) = (z,w + ϕ(z)),

where ϕ is any entire function on the plane. Then τ is a biholomorphic map of ℂ2.

If ϕ has in�nitely many distinct zeros then τ will have in�nitely many �xed



points, even though τ is not the identity. So, the set of these zeros does not form a
determining set for Aut(C2).

By contrast, any biholomorphic (conformal) map of ℂ that �xes two points must

be the identity. So, any two distinct points in ℂ form a determining set for the 
Aut(C).

Example 4.6.4.  It can be shown that a biholomorphic map of the unit ball Bn in ℂn

that �xes n + 1 points in general position (in the usual sense of topology) must be
the identity. One may check this by using the description of the automorphism
group of the ball given in the previous section. We leave the details to the
interested reader. So, this set of n + 1 points forms a determining set for the ball.

We also note that no set of n points in Bn forms a determining set. Indeed, let 
p1, … , pn be the n points. Since the ball is a homogeneous domain, we may
consider g ∈ Aut(Bn) such that g(p1) = 0. Now the set (g(p1), g(p2) … , g(pn))
lies in a linear space L of dimension dim(L) ≤ n − 1. Therefore, there is a
rotation f ∈ Aut(Bn) that keeps all the points of L �xed. So, the automorphism 
h = g−1fg ∈ Aut(Bn) is not an identity and �xes all the n points (p1, … , pn).

Example 4.6.5.  Consider the domain 
Um = {(z1, z2) ∈ C2 : z1

2m + z2
2m < 1}, any integer m ≥ 2. Then any

automorphism of Um that �xes two points in general position must be the identity.

This result follows because the automorphism group of Um is well-known to

consist only of rotations in each variable separately.
Contrast this example with the result from the last example (for the unit ball in

ℂn).

Example 4.6.6.  Let Um be one of the domains from the last example. Let V be

any rigid domain in ℂn (here rigid means that the domain has no automorphisms
except the identity). Then, for an arbitrary chosen pair of points z ∈ Um,w ∈ Um,
and an arbitrary x ∈ V , any automorphism of Um × V  which �xes both (z,x) and
(w,x) will be the identity. For instance, the points z = ((1/2, 0),x) and 
w = ((0, 1/2),x) will do.

We will present now a few results when the determining set K is discrete and
refer the interested reader to the above mentioned papers for more results and
unsolved problems.

We will need two more notions. Let M be a complex manifold. Let Ws(M)
denote the set of s-tuples (x1, … ,xs), where xj ∈ M , such that {x1, … ,xs} is a∣ ∣ ∣ ∣



determining set with respect to Aut(M). Similarly, Ŵs(M) denotes the set of s-
tuples (x1, … ,xs) such that {x1, … ,xs} is a determining set with respect to 

H(M,M). So Ŵs(M) ⊆ Ws(M) ⊆ M s. We now introduce two values s0(M)
and ŝ0(M). In case Aut(M) = id, s0(M) = 0, otherwise s0(M) is the least
integer s, such that Ws(M) ≠ ∅. If Ws(M) = ∅ for all s then s0(M) = ∞.

Analogously symbol ŝ0(M) denotes the least integer s such that Ŵs(M) ≠ ∅, if

no such integer exists (i.e. Ŵs(M) = ∅ for all s) then ŝ0(M) = ∞. In all cases 
s0(M) ≤ ŝ0(M).

1. For hyperbolic manifolds of dimension n the following estimate holds 
ŝ0(M) ≤ n + 1.

First we note that this estimate for bounded domains in ℂn was proved by J.P.
Vigue (see [55]). In that paper a more precise theorem is proved. Let a be a point
in a bounded domain D. Then there is an open set U ⊂ Dn such that 

(a, ..., a) ∈ U  and for all (z1, ..., zn) ∈ U , (z1, ..., zn) ∈ Ŵs(M).
For a general hyperbolic manifold M one may consider a small Kabayashi ball

b ∈ M  such that it is biholomorphic to a domain D ⊂ C
n. Pick a point a ∈ M .

Let f : M → M  be a holomorphic map such that f(a) = a. Consider a small
Kobayashi ball b = b(a, ϵ) whose closure is compact in M, and such that b is
biholomorphic to a bounded domain D ⊂ Cn; let h : b → D be such a
biholomorphic map. Note that since the Kobayashi distance is non-increasing
under holomorphic maps, we have f : b → b, and therefore g = hfh−1 : D → D.
By using the above mentioned result, one can pick n points z1, ..., zn ∈ D, such

that Z = (h(a), z1, ..., zn) ∈ Ŵn+1(D). Consider the set of n + 1 points 
h−1(Z) = (a,h−1(z1), ...,h−1(zn)) ⊂ b. If our function f ∈ H(M,M) (in
addition to a) is also �xing all points h−1(zj), i.e. f|h−1(Z) = id, then g|Z = id

and therefore g = id. We conclude that f|b = id, and consequently f = id. So, 

h−1(Z) ∈ Ŵn+1(M), and therefore ŝ0(M) ≤ n + 1.
2. The above statement implies same inequality for automorphisms of a

hyperbolic manifold M, s0(M) ≤ n + 1.
However, for automorphisms much more information can be provided. s0(M)

depends on how large the group Aut(M) is. If M is a bounded domain in ℂn (
dim(M) = n) then the general estimate (s0(M) ≤ n + 1) can be re�ned to 
s0(M) ≤ n for domains that are not biholomorphic to the unit ball Bn ⊂ Cn, and



the only hyperbolic manifolds for which s0(M) = n + 1 are those biholomorphic
to the ball. This gives a characterization of the ball in Cn.

3. If a positive integer s ≥ s0(M), then Ws(M) ≠ ∅, so there are s points
such that if an automorphism of M �xes these points it will �x any point of M.
Now the question arises whether the choice of these s points is generic. The
answer is positive for any hyperbolic manifold M: Ws(M) ⊆ M s is open and
dense if not empty. Similar topological properties for the determining sets of
endomorphisms of a general hyperbolic manifold do not hold.

4.6.2 Isolated �xed point sets, cardinality

In classical mechanics the following Euler's theorem is well known: the general
displacement of a rigid body with one point �xed is a rotation about some axis.

So, if one considers an orientation-preserving isometry of a domain in ℝ3 �xing
one point, the �xed point set of this isometry will necessarily contain at least a

segment, so the �xed point set cannot be a discrete set. In the euclidean space ℝn,
one can always �nd a domain which has a euclidean isometry with exactly one

�xed point, however for any n, if an isometry of a domain in ℝn has two �xed
points it will force the existence of at least a segment to belong to the �xed point
set, and so this set will be at least one dimensional.

Switching to complex analysis, we remark that any holomorphic

automorphism of a bounded domain in ℂn (or in general, hyperbolic manifold) is
an isometry in an invariant metric, so an Euler type statement is certainly
meaningful, that is if this automorphism has a discrete �xed point set one can
inquire what its cardinality and structure might be. To describe this more
precisely, let f : M → M  be a holomorphic self-map of a complex manifold M.
Suppose that Fix(f) is discrete. We shall examine mostly two questions. First,

how large this set can be for speci�c cases: M is a bounded domain in ℂn, a
hyperbolic manifold, etc., while f is a holomorphic automorphism or
endomorphism. Second, the structure of Fix(f), namely which points of M could
form such a set for some holomorphic self-map of M. Everywhere below we
consider only holomorphic self-maps (automorphisms or endomorphisms) of
various complex manifolds, and for the sake of compactness the word
holomorphic may be omitted.

In examining the cardinality of a discrete �xed point set, let's �rst consider the
situation in one dimension. For a bounded domain D ⊂ C the discrete �xed point
set of a holomorphic map f : D → D can have no more than two points. This
follows from the above mentioned observation: any set of three points in D must



be a determining set for endomorphisms. An annulus gives an example of a
domain that has an automorphism with exactly two �xed points.

In ℂn the situation is not yet completely clear. Here are a few statements we
know.

1. For a convex domain one has the following theorem: the isolated �xed point
set of any endomorphism consists of at most one point. This statement follows
from the main theorem in [56]: such a set has to be connected. The proof is based
on establishing that in Bergman metric there is a unique geodesic connecting two
�xed points, and it (the geodesic) will then also belong to the �xed point set.

2. For a bounded strictly pseudoconvex domain D in Cn with real analytic
boundary the number of points in a discrete �xed point set of an automorphism is
�nite. Moreover, there is a number m = m(D) such that #(Fix(f)) ≤ m.

Here's a proof of this statement. If D is biholomorphic to the ball or if n = 1,
then the statement is clear. Assume that n ≥ 2 and D is not biholomorphic to the
ball. By a theorem in [57], there is a neighborhood U1 of D such that each

automorphism of D extends to be an injective holomorphic map on U1. Consider a

g ∈ Aut(D). Choose domains U2,U3 with smooth boundaries so that 
D ⊂⊂ U3 ⊂⊂ U2 ⊂⊂ U1. For every h ∈ Aut(D) in some neighborhood of g,
h(∂U2) is so close to G(∂U2) that h(∂U2) ∩ g(U3) = ∅. Since h(U2) is a
connected component of Cn\h(∂U2) and since h(U2) ⊃ D, we see that 
h(U2) ⊃ g(U3) for every h ∈ Aut(D) in some neighborhood of g. Since Aut(D)
is compact, there is a neighborhood Q of D such that Q ⊂ g(U1) for each 
g ∈ Aut(D). Let U be the interior of the intersection of the sets
g(U1), g ∈ Aut(D). Then U ⊃ Q and g(U) = U  for each g ∈ Aut(D). That is,
each automorphism of D is also an automorphism of U. There is a �nite cover of
open sets {V j : j = 1, ...,m} of D such that each pair of points in a Vj is
connected by a unique distance-minimizing geodesic with respect to the Bergman
metric of U. Let f ∈ Aut(D). If f �xes two points in a Vj, f must �x each point
on the unique distance-minimizing geodesic connecting the two points.
Consequently, each Vj contains at most one isolated �xed point of f. Therefore,
the number of isolated �xed points of f is ≤ m.

3. Must the cardinality of an isolated �xed point set of an automorphism or
endomorphism be bounded by a number depending only on the dimension of the

manifold under consideration? For endomorphisms of bounded domains in ℂn the
answer is negative. It is also negative for automorphisms of a general hyperbolic

manifold and the entire ℂn. However, for an automorphism of a bounded domain



in ℂn the answer is not yet clear. Let's consider several examples demonstrating
some of the results.

Example 4.6.7.  For any k ∈ N, there exists a bounded domain D ⊂ Cn, n ≥ 2,
and a holomorphic endomorphism f : D → D, such that #(Fix(f)) = k.

Proof. Without any loss of generality we can present an example for n = 2.
Let S be the open Riemann surface in 

C
2 : S = {(x, y) ∈ C

2 y2 = (x − a1)...(x − ak)}, where a1, ..., ak are k distinct

points in ℂ. The restriction g of (x, y) → (x, −y) to S has exactly k �xed points.
Following ([34], VIII, C8, p. 257) there exists a holomorphic retraction 
ρ : V → S of an open neighborhood V of S onto S. Now the mapping 
f := g°ρ : V → V  has exactly k �xed points. Of course V is not bounded, but we
can consider a bounded open set W ⊂ V , (as, 0) ∈ W  for all s = 1, ..., k and
such that g(W) = W . This bounded domain will have the same property.

Example 4.6.8.  There exists a hyperbolic manifold with a holomorphic
automorphism whose �xed point set is discrete and consists of an in�nite number
of points.

Proof. Consider the submanifold X of D2 de�ned by y2 = B(x), where D is
the open unit disc and B is a Blaschke product with an in�nite number of zeroes,
the restriction to X of the map (x, y) → (x, −y) is an automorphism of X and has
an in�nite number of isolated �xed points.

Example 4.6.9.  For any n ≥ 2 and any k ∈ N , there exists a polynomial
automorphism f of C

n, such that #(Fix(f)) = k. Moreover, let 
n ≥ 2; p1, p2, ..., pk are k distinct points in Cn. Then there exists a polynomial
automorphism g ∈ Aut(Cn) such that Fix(g) = {p1, p2, ..., pk}.

Proof. Let a1, ..., ak be k distinct complex numbers. Consider the map 
H : Cn → Cn given by

w1 = z1 + z2 + (z1 − a1)(z1 − a2)...(z1 − ak)
w2 = z2 + (z1 − a1)(z1 − a2)...(z1 − ak)
ws = izs for all s = 3, ...,n
This map is an automorphism, whose �xed point set is the set of the following

k points: (a1, 0, ..., 0), (a2, 0, ..., 0), ....., (ak, 0, ..., 0).
Now pj = (aj, bj), aj ∈ C, bj ∈ C

n−1. Without any loss of generality we
assume that the a′

j s are all distinct (in case they are not, one can �rst use an

invertible linear transformation of ℂn to achieve this). Consider the polynomial
transformation F : w1 = z1,w′ = z′ + f(z1), where f : C → C

n−1 is the∣



Lagrange interpolation polynomial map satisfying f(aj) = bj, w′ = (w2, ...,wn).
Then F(aj, 0) = pj, j = 1, ..., k, and F ∈ Aut(Cn). Now the automorphism 
g = F°H°F −1 is such that Fix(g) = {p1, p2, ..., pk}.

Some problems
1. Let D be a bounded domain in Cn, f ∈ Aut(D), and Fix(f) is a discrete

set. Can #(Fix(f)) = ∞?
If one considers the domain D ⊂ Cn which is a direct product of n annuli, one

can then �nd an f ∈ Aut(D) with #(Fix(f)) = 2n. So, the next natural
question is

2. Let n ≥ 2,D be a bounded domain in ℂn, with a piecewise smooth
boundary, f ∈ Aut(D), and Fix(f) is a set of isolated points. Can 
#(Fix(f)) ≥ 2n + 1 ? (As noted earlier, for n = 1 the answer is negative). A
more restricted version of this question is

3. Is there a number m such that for any strongly pseudoconvex domain 
D ⊂⊂ Cn, ∂D ∈ C∞, and f ∈ Aut(D), if Fix(f) is a set of isolated points,
then #(Fix(f)) ≤ m, where m = m(n) (i.e. m depends on the dimension only)?

4.6.3 Fixed point sets consisting of one or two points

In this section we’ll discuss which subsets of a manifold D can be Fix(f) for
some holomorphic automorphism or endomorphism f : D → D. As the title
suggests we’ll consider two cases.

First we consider the case when every single point of a domain is the Fix(f)
for a suitable holomorphic f.

Theorem 4.6.10.  [28, Theorem 2.1] If every point of a hyperbolic manifold D is a
�xed point set for some holomorphic automorphism of D, then D is a
homogeneous manifold.

Proof. 1. First we note that the theorem will follow from a local statement: let 
x ∈ D, then there exists a neighborhood Ux of x such that for any y ∈ Ux there is

a g ∈ Aut(D) such that g(y) = x. Indeed, if this is true consider two arbitrary
points a, b ∈ D, connect them by a compact path L, cover L by a �nite number of 
Ux,x ∈ L, and one can obtain an f ∈ Aut(D), such that f(a) = b.

2. We now prove the local statement. Let x ∈ D. By [29], for each point 
x ∈ D there is an invariant Hermition metric in some neighborhood of the orbit 
G(x), where G = Aut(D). Consider a small enough ball b(x, ϵ) in that metric
with center x and radius ϵ, ϵ > 0 will be determined by the construction later. Let 
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y ∈ b(x, ϵ); consider the orbit O(y) = {z ∈ D : ∃g ∈ Aut(D), g(y) = z}.
Consider now a point p ∈ O(y), such that d(x, p) = d(x,O(y)), where d(⋅, ⋅)
denotes the distance function induced by the local invariant metric. Clearly, 
p ∈ b(x, ϵ). If p = x, there is nothing to prove; otherwise consider a small ball b1

of radius < d(x, p) that lies inside b(x, d(x, p)), and such that 

∂b1 ∩ ∂b(x, d(x, p)) = p. This construction is possible if ϵ is small enough, �xing
such an ϵ = ϵ(x), we denote b(x, ϵ) = Ux.

We observe that O(y) ∩ b(x, d(x, p)) = ∅. Let q denote the center of the ball
b1. By the assumption of the theorem there exists an h ∈ Aut(D) whose �xed

point set is q. Now h(p) ≠ p, and h(p) ∈ ∂b1, since h(∂b1) = ∂b1. We now
conclude that h(p) ∈ O(y) ∩ b(x, d(x, p)), which contradicts the previous
observation that this intersection is empty. Therefore x = p ∈ O(y), and the
theorem has been proved.

We now provide the following example.

Theorem 4.6.11.  There exists a domain D in ℂ with in�nite number of points each
of which is the �xed point set for a holomorphic automorphism of D.

Proof. Consider D = C\ ∪
n∈Z

Δ(n, 1/3) where Δ(n, 1/3) is a disk with center at 

n ∈ Z and radius 1/3. Consider fk : z → (−z + (2k + 1)). Then for any 
k ∈ Z, fk ∈ Aut(D), and its �xed point set consists of one point 
Fix(f) = {k + 1/2}.

Let's now consider pairs of points as �xed point sets. Though such domains
exist, no domain can have too many pairs of distinct points as a �xed point set for
an automorphism.

Theorem 4.6.12.  Let D ⊂⊂ Cn. The set N ⊂ D2 of all pairs, each of which
cannot be a �xed point set for a holomorphic automorphism of D, contains a full
measure set in D2.

It follows from the following two Lemmas. The �rst is a classical statement
(see [8] p. 80; also [54] thm 2.3) proving that for z ∈ D and its isotropy subgroup 
Iz = {f(z) = z, f ∈ Aut(D)} there is a local system of coordinates where each 
f ∈ Iz is a linear map.

Lemma 4.6.13.  There exists a holomorphic map ϕ : D → Cn such that 
ϕ(z) = 0,ϕ′(z) = id, and for all f ∈ Iz one has ϕ°f = f ′(z)°ϕ.
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The theorem will now follow from the second lemma.

Lemma 4.6.14.  Let D ⊂⊂ Cn, a ∈ D. Then there exists a complex analytic set 
Z ⊂ D, (dimZ < n), such that if b ∈ D\Z then the two points {a, b} are such
that for any automorphism f �xing these two points, the �xed point set of f is at
least one (complex) dimensional.

Proof. Using the previous lemma we �rst �nd the function ϕ for the point a. Let 
Z = {z ∈ D|ϕ(z) = 0}. If b ∈ D\Z, then suppose f ∈ Aut(D) and f �xes both
points a and b. We have f ′(a) ⋅ ϕ(b) = ϕ(f(b)) = ϕ(b). Since by choice 

ϕ(b) ≠ 0, and ϕ is biholomorphic in the neighborhood U of a, for a number 
λ, |λ| > 0, small enough, there exists a point c ∈ U ⊂ D, c ≠ a,ϕ(c) = λϕ(b),
and f(c) ∈ U . Now ϕ(f(c)) = f ′(a) ⋅ ϕ(c) = f ′(a) ⋅ λϕ(b) = λϕ(b) = ϕ(c).

Since ϕ is biholomorphic in U, we have f(c) = c.

4.7 Approximate Biholomorphisms

4.7.1 “Approximate” biholomorphism: exhaustion

As noted in the introduction two randomly picked domains in ℂn are likely to be
non-equivalent (=non-biholomorphic). Can they be “approximately” equivalent?
Let's make this question precise. Consider a sequence of bounded domains 
{Dk}∞

k=1 ⊂ C
n, such that all Dk ⊂ D and lim

k→∞
Dk = D in some topology of

domains in ℂn. So, D can be approximated by Dk for large k. Suppose now that

there is a domain G ⊂⊂ C
n such that each Dk is a biholomorphic image of G, 

fk : G → Dk a biholomorphic map onto Dk. In this case we will say that D can be

exhausted by G. So, G is approximately equivalent to D.

So, if given a bounded domain G in ℂn what can it exhaust? The list Λ(G) of
these domains is of course a biholomorphic invariant. The range varies widely
depending on G, and we’ll mention several examples. By de�nition Λ(G)
contains G. We will show that if G is homogeneous then Λ(G) consists only of G
itself:

Theorem 4.7.1.  If G,D are bounded domains in Cn, G is homogeneous and D can
be exhausted by G (in the Hausdorff topology), then D is biholomorphic to G.



By the way, since the ball and the polydisc in ℂn for n > 1 are non-
biholomorphic it follows that neither can exhaust the other and there should be
“largest” imbedding of each into the other. The precise estimates have been
obtained by H. Alexander [2], which can be considered as another proof of the
Poincare's Example.

If G is a smooth, bounded strictly pseudoconvex domain, then Λ(G) has only
the following elements: G and the unit ball Bn[21]. Comparing this example with
the above theorem shows that the notion of exhaustion is not symmetric: it
happens that D ∈ Λ(G) but Λ(D) does not contain G.

For half-the ball in ℂn, n ≥ 2, S = {z : z = (z1, ..., zn) ∈ Bn, Re(zn) > 0},
Λ(S) contains the unit ball and the polydisk [19]. This, by the way shows that S is
not biholomorphically equivalent to any smooth, bounded strictly pseudoconvex
domain (though, of course, this can be proved by other means).

The above theorem shows that a homogeneous domain exhausts only itself.
On the other side of the spectrum is the following domain.

Theorem 4.7.2.  (Fridman [18]) There exists a universal domain U ⊂⊂ C
n which

can exhaust any other bounded domain in Cn (in the Hausdorff topology).

So, this domain is “almost” equivalent to any other domain in ℂn. Any
domain/set that has the approximation property described in this theorem we will
call a universal domain/set.

As we noticed at the start of this exposition, there is no version of the

Riemann mapping theorem in ℂn. The above statement can be considered the

approximate Riemann mapping theorem for any ℂn.
A short explicit construction one can �nd in [18], it will not be repeated here.

We’ll make a few remarks concerning the universal domain.
There is a great �exibility of constructing this domain. That is, such a domain

can have the automorphism group isomorphic to ℤk, for any k ∈ N. Also one can

construct many such non-biholomorphic domains; this gives an example of two
domains that can exhaust each other but are non-equivalent.

There is a great variety of universal domains. And most of them have one
curious property we are about to describe. The exposition is short and elementary,
but the statements are useful when dealing with general biholomorphic mappings
and therefore we are including them here. It would be helpful for the interested
reader to know the construction before reading about the following property of U.
It is as follows. There is a designated point p ∈ ∂U  such that to approximate a



domain G ⊂ Cn with a given precision ϵ, one has to �nd a small δ and a
biholomorphic imbedding T : U → G, such that the δ-neighborhood 
Wδ = B(p, δ) ∩ U  will “blow up” to cover most of G while T will squeeze
everything else outside that neighborhood in U almost to a point. This will

accomplish the goal: T (Wδ) ⊂ G will be ϵ-close to G, while the rest of T (U\Wδ)
will be small enough to not create a larger approximation mistake. We use the
notation B(p, δ) for a ball at center p and radius δ.

So, by an obvious association we can call p a “source” of all domains in ℂn,
and the described property a “Big Bang property”. One can also express this
property by stating that for any δ > 0 the set B(p, δ) ∩ U  is also a universal
domain. Is the existence of such a “source” necessary for a universal domain? We
prove the following

Theorem 4.7.3.  Let U be a universal domain. If the boundary ∂U  does not contain
any complex analytic variety of dimension one then ∂U  contains a “source”, that
is such a point p ∈ ∂U  that B(p, δ) ∩ U  is a universal set for any δ > 0.

Corollary 4.7.4.  If n = 1 then any universal domain has a “source” on the
boundary.

The proof of the Theorem is based on a generalization for several complex
variables of a one-dimensional Hurvitz theorem. For completeness, we include the
proof.

Lemma 4.7.5.  Let G,D be bounded domains in Cn. Suppose that there is a
sequence of domains {Vk}, Vk ⊂ G, and maps Fk : Vk → D such that

1. Fk(Vk) = D and Fk is a biholomorphic mapping.

2. For any compact K ⊂ G

a) there exists a number m such that Vs ⊃ K, s ≥ m, and
b) the sequence {Fs} for s ≥ m tends uniformly on K to a map F : K → C

n.
If F(G) contains a point z0 ∈ D then F is a biholomorphism between G and

D.

Proof. 1 Evidently F(G) ⊂ D. We want to show that F(G) ⊂ D. Let w0 ∈ G be
such a point that F(w0) = z0 and ϵ > 0 be so small that the balls in Kobayashi's
metric B1 = BD(z0, ϵ) ⊂⊂ D and B2 = BG(w0, 2ϵ) ⊂⊂ G. Let z ∈ B1 for a

large enough k, Fk(w0) ∈ B1. Therefore, F −1
k

(z) ∈ B2. Let w be the limit point

of {F −1
k

(z)}. Evidently, F(w) = z. We have proved that F(G) ⊃ B1. F is a limit

¯
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of regular holomorphic mappings. Since G is connected F can be either regular at
every point in G or the Jacobian of F vanishes on G. In the latter case F(G) could
not contain any open set (by Sard's theorem). Since F(G) ⊃ B1, F is regular on
G. This implies that F is an open mapping, so F(G) ⊂ D.

2. We will show now that F is one-to-one. Let w′,w′′ ∈ G. For a large number
k and the Kobayashi metric ρ we have

When k → ∞ we obtain ρG(w′,w′′)) ≤ ρD(F(w′),F(w′′)). Hence, if 
F(w′) = F(w′′) then w′ = w′′.

3. To �nish the proof we have to show now that F(G) ⊃ D. Without any loss

of generality we may assume, passing to a subsoquence if necessary, that {F −1
k }

converges uniformly on compacta to f : D → G . Repeating the �rst step of the
proof for this mapping we obtain f(D) ⊂ G. For the mapping F°f : D → D and

any z ∈ D we have F°f(z) = lim
k→∞

[Fk°F −1
k (z)] = z.

Hence, F(G) ⊃ D completing the proof of the Lemma.

Proof of the Theorem 4.7.3: In [18], the existence of two universal
holomorphically non-equivalent domains is proved. Let G be one of them that is

not biholomorphically equivalent to U.G can be represented as G =
∞
∪
k=1

Vk where

open sets Vk ⊂ Vk+1 ⊂⊂ G for all k. Since U is universal there exists a sequence
of biholomorphic imbeddings fk : U → G such that fk(U) ⊃ Vk. Consider now 

Uk = fk(U) and Fk = f−1
k

. Since {Fk} is a sequence of bounded holomorphic
maps we may assume, taking a subsequence if necessary, that {Fk} converges

uniformly on any compact K ⊂ G. Let F = limFk, F : G → U . Since U is not
equivalent to G, F : G → ∂U  according to the lemma. Since ∂U  does not contain
any analytic curves, F(G) = p is a point on ∂U . Let δ > 0. We are going to prove

that U ′ = B(p, δ) ∩ U  is a universal set. Let M be any domain in ℂn, K a compact
in M. Since G is universal, there exists a biholomorphic imbedding g : G → M

such that g(G) ⊃ K. Denote K1 = g−1(K) —compact in G. {Fk} converges
uniformly on K1 to p. Therefore, there exists a number N such that FN(K1) ⊂ U ′

. Consider now fN = F −1
N : U ′ → G and h = g°fN : U ′ → M . According to the

construction h(U ′) ⊃ K. This completes the proof of the Theorem.

ρG(w′,w′′) = ρG(F −1
k °Fk(w′),F −1

k °Fk(w′′))

≤ ρD(Fk(w′),Fk(w′′))

≤ ρD(Fk(w′),F(w′)) + ρD(F(w′),F(w′′)) + ρD(F(w′′),Fk(w′′)).

¯

¯
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Using the same Lemma, we now prove the Theorem 4.7.1.
Proof. Pick two points: z0 ∈ G, w0 ∈ D. Since G is homogeneous then we may
assume that for all k, fk(z0) = w0. Now, one can see that the sequence {fk}
converges uniformly on compacta and its limit is f : G → D a biholomorphism.

4.7.2 Upper semicontinuity of automorphism groups

It is a general geometric observation that “small perturbations can destroy

symmetry but not create symmetry”. In case of domains in ℂn, one may interpret

this statement more precisely. Let {Dk}∞
k=1 be bounded domains in ℂn and this

sequence tends to a bounded domain D ⊂ Cn in some topology on domains in ℂn.
Loosely put, is it possible that Aut(Dk) is “larger” than Aut(D) for all k large
enough? If that was possible, perturbation (in the given topology) of D of any
small size can create domains with more symmetry. This question is referred to as
non-semi-continuity property for automorphism groups.

We will mention here several statements and examples pertaining to the
question; for more detailed discussion on semi-continuity and open questions see
[22–24, 40].

In the early eighties, R. Greene and S.G. Krantz ([31–33]) examined this
question. They proved an upper semicontinuity result in the C2 topology, and gave
the �rst counterexample to the upper semicontinuity principle. In [23, 24, 42] the
semicontinuity question has been examined further for various other topologies.
We also note here that in Riemannian geometry results of this kind have been
obtained by various authors.

Here's the statement in the C∞ topology: the semi-continuity holds in this
case; for a more precise statement see [40, p. 232].

Theorem 4.7.6.  (Green, Krantz) Let U ⊂ C
n be a smoothly bounded, strongly

pseudoconvex domain. Let U ′ be another smoothly bounded domain whose
boundary is suf�ciently close to ∂U  in the C∞ topology. Then Aut(U ′) is a
subgroup of Aut(U).

In [32], the same authors provide the following counterexample of the failure

of upper semicontinuity in the C 1−ϵ topology (for any ϵ ∈ (0, 1)).

Example 4.7.7.  There are pseudoconvex domains {Dj}
∞
j=1 and D0, each of which

is C∞ and strongly pseudoconvex except at one point, such that Aut(Dj) ≠ {id}



for all j ≥ 1,Aut(D0) = {id}, and Dj → D0 in the C 1−ϵ topology, any 
ϵ ∈ (0, 1).

The other statements and examples below are in the topology induced by the
Hausdorff metric; we denote the corresponding metric space by Hn, space of all

bounded domains in ℂn with the metric equal to the Hausdorff distance between
boundaries of domains.

Example 4.7.8.  There is a bounded C∞ domain D in ℂ that is not simply
connected, and such that for any neighborhood U of D in the Hausdorff metric

there is a C∞ domain D̃ in U such that Aut(D̃) is not isomorphic to any
subgroup of Aut(D).

Construction. B(z0, r) denotes an open disk with center z0 and radius r.

Consider an (N + 1)-connected domain D = Δ\
N

∪
s=1

Δ s where Δ = B(0, 1) is

the open unit disk and all Δ s are smaller non-intersecting closed disks, whose
boundaries lie entirely in Δ. For a given 1 > ϵ > 0, �x a positive ϵ1 ≤ ϵ and such

that the set S = {z ∈ Δ|Re(z) > −1 + ϵ1} contains all Δ s. Suppose a natural
number j > 1 is also given. We now choose a positive δ such that 
L(S) ⊂ B(1, 1/2j) where L is a Möbius transformation L(z) = z+a

1+za
, and 

a = 1 − δ. We observe that L(Δ) = Δ. Consider now 

M =
j−1
∩
k=0

(L(D) ⋅ exp( 2πk
j
i) (each term is a rotation of L(D) by angle 2πk

j
). One

can verify that by construction ℤj acts on M. We de�ne D̃j = L−1(M). Then 

D̃j ⊂ D, and since Aut(D̃j) is isomorphic to Aut(M), ℤj is isomorphic to a

subgroup of Aut(D̃j). Also the difference D\D̃j ⊂ Δ\S and therefore the

Hausdorff distance between D and D̃j is less than ϵ. If N ≥ 2 the group Aut(D)
is �nite. Since j could be chosen to be arbitrarily large, the statement has been
proved.

Remarks. The above construction works for any �nitely connected domain: in
any neighborhood of this domain and any integer j there is a domain whose

automorphism group contains ℤj. A similar construction can be done in ℂn for any

n ≥ 1.

¯

¯

¯



Theorem 4.7.9.  (Fridman and Poletsky [23]) Let M be any domain in Cn. Then
there exists an increasing sequence of bounded domains Mk ⊂ Mk+1 ⊂⊂ M

such that M = ∪Mk and Aut(Mk) contains a subgroup isomorphic to Zk.

This statement can be proved by using the remark in the �rst sub-section: for
each n ∈ N there exists a universal domain whose automorphism group has a

subgroup isomorphic to ℤn.

So, for any domain (even a rigid one, i.e. with Aut(D) = {id}) one can make
a perturbation of less than a given size and obtain a domain with a large cyclic
group. The natural question arises: which Lie groups will a similar statement hold
for? It will hold for any �nite group:

Theorem 4.7.10.  Let G be a group of order m < ∞. For any n ≥ m the set of
bounded domains in Cn whose automorphism group contains a subgroup
isomorphic to G is everywhere dense in Hn.

A detailed proof of this theorem is given in [22].

So arbitrarily small perturbation of a domain in ℂn may create a domain with a
larger automorphism group. But in provided examples the groups are discrete, of
dimension zero. The natural question arises: can small perturbation in Hn create
domains with larger dimensions of automorphism groups? The following answer
is “no”.

Theorem 4.7.11.  (Fridman, Ma, Poletsky [24]) The function dim(Aut(D)) is
upper semicontinuous on Hn.
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5.1 Introduction

Since the foundational work of Kohn on subelliptic theory of the ∂ -Neumann Laplacian on smoothly bounded

strongly pseudoconvex domains ([Ko63, Ko64]) and that of Hörmander on the L2-estimates of the ∂ -operator on

bounded pseudoconvex domains in ℂn ([H65]), it has been known that, unlike the classical Dirichlet or Neumann

Laplacian, existence and regularity of the ∂ -Neumann Laplacian closely depend on geometry of the underlying

domains (see the surveys [BSt99, Ch99, DK99, FS01] and the monographs [CS99, St09]). It is natural to expect

that spectral behavior of the ∂ -Neumann Laplacian is also more sensitive to geometric properties of the underlying

domains than the classical Laplacians.

In spectral analysis of self-adjoint differential operators, two problems stand out: discreteness and positivity of

their spectra. Both are widely studied problems in physical sciences with important rami�cations. Discrete spectra

are seen in many physical phenomena such as light emission and string vibration, while positivity is related to

whether a physical system has positive ground state energy.

Positivity of the classical Dirichlet Laplacian is well understood. As a consequence to the classical Hardy

inequality, the bottom of the spectrum of the Dirichlet Laplacian on a domain in ℝn that satis�es the outer cone

condition is positive if and only if the inradius of the domain is �nite (cf. [D95]). Whereas positivity of the

Dirichlet Laplacian is not sensitive to boundary geometry of the underlying domain, positivity of the ∂ -Neumann

Laplacian, as we will see, is.

In this Chapter, we study the ∂ -Neumann problem from spectral theoretic perspective. Our emphasis is on the

interplay between spectral behavior of the ∂ -Neumann Laplacian and geometry of the underlying domains. This is

evidently motivated by Marc Kac's famous question “Can one hear the shape of a drum?” ([Ka66]). Here we are

¯

¯

¯

¯

¯

¯

¯

¯

¯
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interested in determining geometry of a domain in ℂn from positivity of the ∂ -Neumann Laplacian. (See [Fu05,

Fu08] for related results.)

The plan of this paper is as follows: In Section 5.2, we review the classical setup of the ∂ -Neumann problem.

In Section 5.3, we present a spectral theoretic setup for the ∂ -Neumann Laplacian and prove that these two setups

are equivalent, and as a consequence, we establish the self-adjointness of the ∂ -Neumannh Laplacian. In Section

5.4, we review the concept of pseudoconvexity. In Section 5.5, we provide a treatise of Hörmander's L2-estimates

of the ∂ -operator through the lens of spectral theory. In Section 5.6, we prove the converse to Hörmander's

theorem.

We have made an effort to present a treatment that is accessible and self-contained, modulus extensive usage of

spectral theorems for self-adjoint operators. An excellent treatise on spectral theory of differential operators can be

in Davies’ book ([D95]).

5.2 The ∂-Neumann Laplacian

In this section, we review the classical setup of the ∂ -Neumann problem. In the subsequent section, we will present

a spectral theoretic setup for the ∂ -Neumann Laplacian and prove that these two setups are equivalent. As a

consequence, we establish the self-adjointness of the ∂ -Neumannh Laplacian.

5.2.1 The Cauchy-Riemann operator

The ∂ -operator, also known as the Cauchy-Riemann operator, is arguably the most important differential operator

in complex analysis. Let

Let Ω be a domain in ℂn and let f ∈ C∞(Ω). De�ne

Thus ∂f : C∞(Ω) → C∞
(0,1)(Ω) and ∂f : C∞(Ω) → C∞

(1,0)(Ω). It is easy to check that the exterior differential

operator d = ∂ + ∂ . Let φ =
n

∑
j=1

φjdzj ∈ D0,1(Ω), the space of (0, 1)-forms with smooth coef�cients compactly

supported on Ω. Then

where

is the formal adjoint of ∂ . Let Lloc
(0,1)

(Ω) be the space of (0, 1)-forms with locally integrable coef�cients. Let 

f ∈ Lloc(Ω) and g ∈ Lloc
(0,1)(Ω). We say that

¯

¯

¯

¯

¯

¯

¯

¯

¯

¯

∂
∂zj

= 1
2 (

∂
∂xj

− i ∂
∂yj

) and ∂
∂zj

= 1
2 (

∂
∂xj

+ i ∂
∂yj

).̄

∂f =
n

∑
j=1

∂f

∂zj
dzj and ∂f =

n

∑
j=1

∂f

∂zj
dzj .̄

¯
¯

¯

¯̄

⟨∂f,φ⟩ =
n

∑
j=1

⟨
∂f

∂zj
,φj⟩ = −

n

∑
j=1

⟨f,
∂φj

∂zj
⟩ = ⟨f,ϑφ⟩,̄

¯

ϑφ = −
n

∑
j=1

∂φj

∂zj

¯

∂f = ḡ



in the sense of distribution if

A locally integrable function f is holomorphic on Ω if ∂f = 0 in the sense of distribution. Such a function is

necessarily smooth. In fact, it has power series representation at any point in Ω.

Let

be the space of (0, 1)-forms with L2-coef�cients, equipped with the standard Hermitian inner product with the

corresponding norm given by

Note that here we use the convention that under the standard Hermitian metric on ℂn, ⟨dzj, dzk⟩ = δjk where 

δjk = 1 if j = k and δjk = 0 if j k.

We now extend the ∂ -operator to be a densely de�ned closed operator

with

Namely, the domain of ∂  is the space of all L2-functions f such that ∂f ∈ L2
(0,1)(Ω) in the sense of distribution.

The ∂ -operator acts on (p, q)-forms, 0 ≤ p, q ≤ n, is de�ned as follows. Let u ∈ C∞
(p,q)(Ω). Write

(5.1)

where I = (i1, … , ip) is a p-tuple and J = (j1, … , jq) a q-tuple of integers in [1, n], dzI = dz1 ∧ … ∧ zip , 

dzJ = dzj1 ∧ … ∧ dzjq , and the prime indicates that the sum is taken over strictly increasing tuples. Then 

∂ q : C∞
(p,q)(Ω) → C∞

(p,q+1)(Ω) is given by

(We may suppress the subscript q when it is clear from the context.) Let D(p,q)(Ω) be the space of (p, q)-forms

with smooth compactly supported coef�cients. For φ ∈ D(p,q)(Ω), the formal adjoint 

ϑq : D(p,q+1)(Ω) → D(p,q)(Ω) of ∂ q is given by

where K runs over all strictly increasing q-tuples.

⟨f,ϑφ⟩ = ⟨g,φ⟩, ∀φ ∈ D(0,1)(Ω).

¯

L2
(0,1)(Ω) = {f =

n

∑
j=1

fjdzj∣fj ∈ L2(Ω)}̄

∥f∥2 =
n

∑
j=1

∫
Ω

fj
2 dV .∣ ∣=

¯

∂ : L2(Ω) → L2
(0,1)(Ω)̄

Dom (∂)={f ∈ L2(Ω)∣ ∃C > 0, |⟨f,ϑφ⟩| ≤ C∥φ∥, ∀φ ∈ D(0,1)(Ω)}.̄

¯̄

¯

u = 1
p!q! ∑

I,J

uIJdzI ∧ dzJ =
′

∑
I,J

uIJ dzI ∧ dzJ .̄̄̄

¯̄̄
¯

∂ qu =
′

∑
I,J

∂uIJ ∧ dzI ∧ dzJ .̄̄̄̄

¯

ϑqu = (−1)p+1
n

∑
k=1

′

∑
I,K

∂uI,kK

∂zk
dzI ∧ dzK .̄
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Exercise 5.2.1  Show that

Let Lloc
(p,q)(Ω) be the space of (p, q)-forms with locally integrable coef�cients. Let u ∈ Lloc

(p,q)(Ω) and 

v ∈ Lloc
(p,q+1)(Ω). We say that

(5.2)

in the sense of distribution if

(5.3)

Let L2
(p,q)(Ω) be the space of (p, q)-forms u with L2-coef�cients, equipped with the standard Euclidean metric:

for u given by (5.1).

The ∂ -problem is to solve the ∂ -equation (5.2) and to study existence and regularity of the solutions.

De�nition 5.2.2  The operator∂ q : L2
(p,q)(Ω) → L2

(p,q+1)(Ω) is de�ned in the sense of distribution. More precisely,

(5.4)

and hence by the Riesz representation theorem, there exists v ∈ L2
(p,q)(Ω) such that ∂ qu = v in the sense of

distribution as de�ned by (5.3).

Lemma 5.2.3  (1) The operator ∂ q : L2
(p,q)

(Ω) → L2
(p,q+1)

(Ω) is densely de�ned and closed. (2) ∂ q+1°∂ q = 0.

Proof: (1) Since D(p,q)(Ω) ⊂ Dom (∂q) ⊂ L2
(p,q)(Ω) and D(p,q)(Ω) is dense in L2

(p,q)(Ω), so is Dom (∂q). Hence, 

∂ q is densely de�ned in L2
(p,q)(Ω). Suppose that uj ∈ Dom (∂q) and uj → u in L2

(p,q)(Ω) and ∂ quj → v in 

L2
(p,q+1)(Ω). Then for any φ ∈ D(p,q+1)(Ω),

Thus, u ∈ Dom (∂q) and ∂ qu = v. Therefore, ∂ q is closed.

(2) This follows from

and form degrees consideration.

⟨∂ qf,φ⟩ = ⟨f,ϑqφ⟩, ∀f ∈ C∞
(p,q)(Ω), φ ∈ D(p,q+1)(Ω).̄

∂ qu = v̄

⟨v,φ⟩ = ⟨u,ϑqφ⟩, ∀φ ∈ D(p,q+1)(Ω).

∥u∥2 = 1
p!q!

∑
I,J

∥uIJ∥2 =
′

∑
I,J

∥uIJ∥2

¯̄

¯

Dom (∂q)={u ∈ L2
(p,q)(Ω) ∣ ∃C > 0, |⟨u,ϑφ⟩| ≤ C∥φ∥,

∀φ ∈ D(p,q+1)(Ω)}

¯

¯

¯̄̄

¯̄

¯̄̄

⟨u,ϑqφ⟩ = lim
j→∞

⟨uj,ϑqφ⟩ = lim
j→∞

⟨∂ quj,φ⟩ = ⟨v,φ⟩.̄

¯̄̄

d°d = (∂ q+1 + ∂q+1)°(∂ q + ∂q)

= ∂ q+1°∂ q + ∂ q+1°∂q + ∂q+1°∂ q + ∂q+1°∂q = 0

¯̄

¯̄̄̄



Since here we will work only in ℂn with the �at Euclidean metric. There is no difference between the theory

for (p, q)-forms and that for (0, q)-forms. For simplicity of notation, we will restrict ourselves to (0, q)-forms.

De�nition 5.2.4  The operator∂
*
q : L2

(0,q+1(Ω) → L2
(0,q)(Ω) is the adjoint of ∂ q. Thus its domain is given by

(5.5)

As we will show shortly, u ∈ Dom (∂
*
q ) imposes a boundary condition on u when Ω has C1-smooth boundary bΩ

and u ∈ C 1
(0,q)(Ω).

REMARK 5.2.5  The ∂ q-operator de�ned by De�nition 5.2.2 can be considered as the adjoint of the formal adjoint 

ϑq : L2
(p,q+1)(Ω) → L2

(p,q)(Ω) whose domain Dom (ϑq)=D(p,q+1)(Ω). It is sometimes referred as the maximal

extension of ∂ q : D(p,q)(Ω) → D(p,q+1)(Ω). The ∂
*
q -operator, the adjoint of ∂ , de�ned by De�nition 5.2.4, is then

the closure of ϑq. It is sometimes referred as the minimal extension of ϑq.

5.2.2 Integration by parts

Let Ω be a bounded domain in ℝn with C1-boundary. Let r(x) be a de�ning function for Ω, i.e., r ∈ C 1(Rn), 

Ω = {x ∈ Rn∣ r(x) < 0}, and dr 0 on bΩ. The outward normal direction is then given by 
→
n = ∇r/ ∇r . By

replacing r by r/|∇r|, we may assume that |∇r| = 1 on bΩ. By the divergence theorem, we have for any 

F = (F1, … ,Fn) ∈ C 1(Ω),

(5.6)

Let u, v ∈ C 1(Ω). Applying (5.6) to F with Fj = uv and Fk = 0 for all k j, we have

Therefore,

(5.7)

Now let Ω ⊂⊂ Cn be a domain with C1-boundary. Let r = r(z) be a de�ning function of Ω such that |dr| = 1 on 

bΩ.

The following formulas are complex versions of (5.7). Note that we will slightly abuse the notation and use 

⟨⋅, ⋅⟩ to denote both the pointwise inner product associated with the metric and the integral of the pointwise inner

product over the domain.

Lemma 5.2.6  Let u, v ∈ C 1(Ω). Then

¯̄

Dom (∂
*
q )={u ∈ L2

(0,q+1)(Ω)∣ ∃C > 0, ⟨u, ∂ qv⟩ ≤ C∥v∥,

∀v ∈ Dom (∂q)}.

¯∣¯∣¯¯¯¯¯̄̄= ∣ ∣¯

∫
Ω

∇ ⋅ F dx = ∫
bΩ

F ⋅
→
ndS.

¯̄=

∫
Ω

∂

∂xj

(uv) dx = ∫
bΩ

uv ∂r
∂xj

dS .̄̄

∫
Ω

∂u

∂xj

v dx = −∫
Ω

u ∂v
∂xj

dx + ∫
bΩ

u ⋅ v ∂r
∂xj

dS.̄¯¯

¯



(5.8)

(5.9)

To generalize the integration by parts formula to forms, it is convenient to study the contraction operator. For a

k-form u and a vector ξ, the contractionξ┘u is a (k − 1)-form de�ned by

(5.10)

It is easy to check that

(5.11)

Let I = (i1, … , ip) and J = (j1, … , jq). Let K be a tuple of positive integers. We will use J∖K to denote the

tuple obtained by deleting entries in K from J. We have

Moreover,

For a vector ξ, we de�ne its dual form by

where ⟨⋅, ⋅⟩ denotes the pointwise standard Hermitian inner product on ℂn. Thus if

then

Similarly, we can de�ne the dual vector of a 1-form. Let ξ be a (0, 1)-vector, it follows from straightforward

computation that for any (p, q)-form u and (p, q − 1)-form v,

⟨ ∂u
∂zj

, v⟩ = −⟨u, ∂v
∂zj
⟩+ ∫

bΩ

u ⋅ v ∂r
∂zj

dS .̄̄

−10pcand

⟨ ∂u
∂zj

, v⟩ = −⟨u, ∂v
∂zj
⟩+ ∫

bΩ

u ⋅ v ∂r
∂zj

dS .̄̄̄

ξ┘u(η1, … , ηk−1) = u(ξ, η1, … , ηk−1).

ξ┘(u ∧ v) = (ξ┘u) ∧ v + (−1)degu
u ∧ (ξ┘v).

∂
∂zj

┘dzk = δjk.

∂
∂zl

┘(dzI ∧ dzJ) = {  

−10pcand

∂
∂zl

┘(dzI ∧ dzJ) = {  

¯
0, l I;

(−1)s−1
dzI∖{l} ∧ dzJ , l = is,

∈

¯

¯̄

0, l J;

(−1)p+s−1
dzI ∧ dzJ∖{l}, l = js.

∈

¯

ξ* = ⟨⋅, ξ⟩,

ξ =
n

∑
j=1

(aj
∂

∂zj
+ bj

∂

∂zj
),

¯

ξ* =
n

∑
j=1

(ajdzj + b̄jdzj).̄̄
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Given a (p, q)-form u and (p′, q ′)-form f with p′ ≥ p, q ′ ≥ q, the interior productu ∨ f is a (p′ − p, q ′ − q)-form

de�ned by

for any (p′ − p, q ′ − q)-form g. Therefore, we have

Using these notations, we have:

Lemma 5.2.7  Let u ∈ C 1
(0,q)(Ω). Then

(5.12)

Proof: This follows from simple computations:

As a consequence of Lemma 5.2.7, we have:

Lemma 5.2.8  Let Ω ⊂⊂ Cn be a bounded domain with a C 1-smooth de�ning function r. Write

Let u ∈ C 1
(0,q)(Ω). Then u ∈ Dom (∂ *) if and only if T┘u = 0 on bΩ, which is

(5.13)

on bΩ for every (q − 1)-tuple K. In this case, ∂ *u = ϑu.

De�nition 5.2.9  For 1 ≤ q ≤ n − 1, the ∂ -Neumann Laplacian □q : L2
(0,q)(Ω) → L2

(0,q)(Ω) is given by

⟨ξ┘u, v⟩ = ⟨u, ξ* ∧ v⟩.

⟨u ∨ f, g⟩ = ⟨f,u ∧ g⟩,

ξ┘u = ξ* ∨ u.

∂ =
n

∑
j=1

dzj ∧ ∂
∂zj

,

ϑ = −
n

∑
j=1

∂

∂zj
┘ ∂

∂zj
.

¯̄
¯

¯

¯

⟨u, ∂φ⟩ = ⟨ϑu,φ⟩+ ∫
bΩ

⟨(∂r)*┘u,φ⟩ dS̄̄

⟨u, ∂φ⟩ = ⟨u,
n

∑
j=1

dzj ∧ ∂
∂zj

φ⟩ =
n

∑
j=1

⟨
∂

∂zj
┘u, ∂

∂zj
φ⟩

= ⟨ϑu,φ⟩ +
n

∑
j=1

∫
bΩ

⟨
∂

∂zj
┘u,φ⟩ ∂r

∂zj
dS

= ⟨ϑu,φ⟩+ ∫
bΩ

⟨(∂r)*┘u,φ⟩ dS.

¯̄
¯¯¯

¯

¯

T = (∂r)
*

=
n

∑
j=1

∂r

∂zj
∂

∂zj
.̄̄

¯̄

n

∑
k=1

ukK
∂r
∂zk

= 0

¯

¯



with

On the bottom degree forms, the ∂ -Neumann Laplacian is given by □0 = ∂
*
0 ∂0 with

and on the top degree forms □n = ∂n−1∂
*
n−1 with

The ∂ -Neumann problem is to study existence and regularity of solution to the equation

(5.14)

REMARK 5.2.10  Suppose Ω = {r(z) < 0} be a bounded domains with C1-boundary. By Lemma 5.2.8, if 

u ∈ C 2(Ω), then f ∈ Dom (□0) if and only if

on bΩ. This boundary condition resembles the Neumann boundary condition but they are not the same. For 

u = fdz1 ∧ … ∧ dzn with f ∈ C 2(Ω), u ∈ Dom (□n) if and only if u = 0 on bΩ, which is exactly the Dirichlet

boundary condition.

By Lemma 5.2.8, for a smooth form u in Dom (∂ *), ∂ *u = ϑu. Therefore, on a smooth form that is in the

domain of □, we have

Therefore, as a differential operator, the ∂ -Neumann Laplacian in ℂn is just a constant multiple of the usually

Laplacian, acting coef�cient-wise on forms. (Indeed, as we remarked earlier, on top degree forms, it is one-fourth

of the Dirichlet Laplacian.) What distinguishes it from the classical Dirichlet or Neumann Laplacian is the ∂ -

Neumann boundary conditions:

(5.15)

□q = ∂ q−1∂
*
q−1 + ∂

*
q ∂ q̄̄̄̄

Dom (□q) = {u ∈ L2
(0,q)(Ω)∣u ∈ Dom (∂

*
q-1), ∂

*
q-1u ∈ Dom (∂q-1),

u ∈ Dom (∂q), ∂qu ∈ Dom (∂
*
q )}.

¯̄̄

¯̄̄

¯̄̄

Dom (□0)={u ∈ L2(Ω)∣u ∈ Dom (∂0), ∂0u ∈ Dom (∂
*
0 )}̄̄̄

¯̄

Dom (□n)={u ∈ L2
(0,n)(Ω)∣u ∈ Dom (∂

*
n-1), ∂

*
n-1u ∈ Dom (∂n-1)}.̄̄̄

¯

□u = f.

¯

n

∑
j=1

∂u

∂zj
∂r
∂zj

= 0
¯

¯̄̄

¯̄

□ = ∂∂ * + ∂ *∂ = ∂ϑ + ϑ∂

= −∑
j,l

dz l ∧ ∂
∂zl

( ∂
∂zj

┘ ∂
∂zj

) − ∑
j,l

∂

∂zj
┘ ∂

∂zj
(dz l ∧ ∂

∂zl
)

= −∑
j

∂ 2

∂zj∂zj
= − 1

4 Δ.

¯̄̄̄̄̄

¯̄̄
¯
¯̄

¯

¯

¯

u ∈ Dom (∂ *) and ∂u ∈ Dom (∂ *).̄̄̄
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It does not follow readily from the above de�nition whether the ∂ -Neumann Laplacian is densely de�ned or

self-adjoint. This will be answered in the next section after we introduce a spectral theoretic setup for the ∂ -

Neumann Laplacian.

5.3 Spectral Theoretic Setup

We now present the spectral theoretic setup for the ∂ -Neumann Laplacian. We will show that the ∂ -Neumann

Laplacian de�ned by its associated quadratic form is consistent with the one de�ned through De�nition 5.2.9. As a

consequence, we establish the self-adjoint property of the ∂ -Neumann Laplacian and show that the domain of its

square root is the same as that of its associated quadratic form. We will use R (T) and N (T) to denote

respectively the range and kernel of the operator T.

Lemma 5.3.1.  Let T : H1 → H2 be a densely de�ned and closed operator and let T * be its adjoint. Then the

following are equivalent:

1. R (T) is closed.

2. There exists a positive constant C such that ∥f∥ ≤ C∥Tf∥ for all f ∈ Dom (T) ∩N (T)⊥
.

3. R (T*) is closed.

4. There exists a positive constant C such that ∥f∥ ≤ C∥T *f∥ for all f ∈ Dom (T*) ∩N (T*)
⊥

.

Proof: We �rst prove the implication (1) ⇒ (2). In this case, T : Dom (T) ∩N (T)⊥ → R (T) is a bijective

closed map. Its inverse is also a closed map from the closed subspace R (T) into ℍ1. Applying the closed graph

theorem, we thus have (2). We now prove (2) ⇒ (1). Suppose Tfj → g. Write fj = f 1
j + f 2

j  where f 1
j ∈ N (T)

and f 2
j ∈ N (T)⊥

. Then by (2), f 2
j  is a Cauchy sequence in ℍ1. Assume lim

j→∞
f 2
j = f. Then Tf = g ∈ R (T)

since T is closed. The proof of (3) ⇔ (4) follows the same lines as that of (1) ⇔ (2).

We proceed to prove (2) ⇒ (4). For any f ∈ Dom (T) ∩N (T)⊥
 and g ∈ Dom (T*) ∩N (T*)

⊥
,

Since g ∈ N (T*)
⊥

=R (T), the above inequality implies that (4). The proof of the implication (4) ⇒ (2) is

similar.

Lemma 5.3.2  Let T : H1 → H2 be a densely de�ned closed operator. Let F be a closed subspace of H2 such that 

F ⊃ R (T). Then R (T)=F if and only if there exists an positive constant C such that

In this case, for any g ∈ N (T)⊥, there exists f ∈ Dom (T*) such that ∂ *f = g and ∥f∥ ≤ C∥g∥.

Proof: We �rst prove the forward implication. It suf�ces to prove that

is a bounded set in ℍ2. Let f ∈ B and let g ∈ F . Assume that g = Th for some h ∈ Dom (T). Then

Thus by the uniform boundedness theorem, the set B is bounded.

¯

¯

¯̄

¯

⟨g,Tf⟩ = ⟨T *g, f⟩ ≤ ∥T *g∥∥f∥ ≤ C∥T *g∥∥Tf∥.∣ ∣ ∣ ∣¯∥f∥ ≤ C∥T *f∥, ∀f ∈ Dom (T*) ∩ F.

¯

B = {f ∈ Dom (T*) ∩ F∣∥T*f∥ ≤ 1}

⟨f, g⟩ = ⟨f,Th⟩ = ⟨T *f,h⟩ ≤ ∥h∥ < ∞.∣ ∣ ∣ ∣ ∣ ∣
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We now prove the backward direction. Let g ∈ F . Consider the linear functional T *f ↦ ⟨f, g⟩ on R (T*). To

prove that this is well-de�ned, it suf�ces to show

This obviously holds when f ∈ F ⊥ ⊂ R (T)⊥=N (T*). When f ∈ F , this follows from the Schwarz inequality

and the assumption. By the Hahn-Banach theorem, there exists an h ∈ H1 such that ⟨f, g⟩ = ⟨T *f,h⟩. Therefore,

g = Th. Furthermore, since F ⊥ ⊂ N (T*), we have R (T*)=R (T
*
F∩Dom(T*)), which is closed by the

assumption. The last statement in the lemma then follow from Lemma 5.3.1.

Let Q be a non-negative, densely de�ned, and closed sesquilinear form on a complex Hilbert space ℍ with

domain Dom (Q). Then Q uniquely determines a non-negative and self-adjoint operator S such that 

Dom (S1/2)=Dom (Q) and

(5.16)

for all u, v ∈ Dom (Q) (see, for example, Theorem 4.42 in [D95]).

For any subspace L ⊂ Dom (Q), let λ(L) = sup{Q(u,u)∣u ∈ L, ∥u∥ = 1}. For any positive integer j, let

(5.17)

Since S is self-adjoint and non-negative, its spectrum σ(S) is a non-empty closed subset of [0, ∞). The bottom of

the spectrum is given by inf σ(S) = λ1(Q). The essential spectrumσe(S) is a closed subset of σ(S) that consists

of isolated eigenvalues of in�nite multiplicity and accumulation points of the spectrum. Furthermore, σe(T ) is

empty if and only if λj(Q) → ∞ as j → ∞. In this case, λj(Q) is the jth eigenvalue of S, wherein the eigenvalues

are arranged in increasing order and repeated according to multiplicity. The bottom of the essential spectrum 

inf σe(T ) is the limit of λj(Q) as j → ∞ (see [D95, Chapter 4]). We set inf σe(S) = ∞ if σe(S) = ∅.

Let Tk : Hk → Hk+1, k = 1, 2, be densely de�ned and closed operators on Hilbert spaces. Assume that 

R (T1) ⊂ N (T2), Let T
*
k  be the adjoint of Tk. Then T

*
k  is also densely de�ned and closed. Let

with its domain given by Dom (Q)=Dom (T
*
1) ∩ Dom (T2). The Proposition 5.3.3 shows that the ∂ -Neumann

Laplacian as de�ned by De�nition 5.2.9 is consistent with the one de�ned using the quadratic form as above. As

the consequence, the ∂ -Neumann Laplacian de�ned by De�nition 5.2.9 is self-adjoint (see Theorem 5.3.9 below).

Proposition 5.3.3  Q(u, v) !!is a densely de�ned, closed, non-negative sesquilinear form. The associated self-

adjoint operator □ de�ned through (5.16) is identical to the one given by

(5.18)

and

⟨f, g⟩ ≤ C∥T *f∥∥g∥, ∀f ∈ Dom (T*).∣ ∣ Q(u, v) = ⟨S 1/2u, S 1/2v⟩

λj(Q) = inf{λ(L)∣L ⊂ Dom (Q), dim(L)=j}.

Q(u, v) = ⟨T
*
1 u,T

*
1 v⟩ + ⟨T2u,T2v⟩

¯

¯

Dom (□)={f ∈ H2∣f ∈ Dom (Q),

T2f ∈ Dom (T
*
2), T

*
1f ∈ Dom (T1)}

□ = T1T
*
1 + T

*
2 T2.
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Proof: The closedness of Q follows easily from that of T1 and T2. The non-negativity follows from the de�nition.

We now prove that Dom (Q) is dense in ℍ2. Since N (T2)⊥=R (T
*
2) ⊂ N (T

*
1) and

we have

Since Dom (T
*
1) and Dom (T2) are dense in ℍ2, Dom (Q) is dense in N (T2) ⊕N (T2)⊥=H2.

Recall that f ∈ Dom (□) if and only if f ∈ Dom (Q) and there exists a g ∈ H2 such that

(5.19)

(see, for example, Lemma 4.4.1 in [D95]). Thus

We now prove the opposite containment. Suppose f ∈ Dom (□). For any u ∈ Dom (T2), we write 

u = u1 + u2 ∈ (N (T
*
1) ∩ Dom (T2)) ⊕N (T

*
1)

⊥
. Note that N (T

*
1)

⊥
⊂ R (T

*
2)

⊥
=N (T2). It follows from

(5.19) that

Hence T2f ∈ Dom (T
*
2). The proof of T

*
1 f ∈ Dom (T1) is similar. For any w ∈ Dom (T

*
1), we write 

w = w1 + w2 ∈ (N (T2) ∩ Dom (T
*
1)) ⊕N (T2)⊥. Note that N (T2)⊥=R (T

*
2) ⊂ N (T

*
1). Therefore, by

(5.19),

Hence, T
*
1 f ∈ Dom (T

**
1 )=Dom (T1). It follows from the de�nition of □  that for any f ∈ Dom (□) and 

u ∈ Dom (Q),

Hence, □ = T1T
*
1 + T

*
2 T2.

De�nition 5.3.4  Let T be a self-adjoint operator on a Hilbert space. (1) T is positive if its spectrum σ(□) ⊂ [c, ∞)
for some c > 0. (2) T is essentially positive if there is a constant c > 0 such that σe(□) ⊂ [c, ∞). (3) T is gap

positive if there is a constant c > 0 such that σ(□) ∩ (0, c) = ∅.

Thus for a self-adjoint operator T, we have:

The following proposition is due to Hörmander [H65, Theorems 1.1.2 and 1.1.4]. Let N (Q)=N (T
*
1) ∩N (T2)

. Note that when it is non-trivial, N (Q) is the eigenspace of the zero eigenvalue of □ . When R (T1) is closed,

¯

Dom (T2)=N (T2) ⊕ (Dom (T2) ∩N (T2)⊥),

Dom (Q) = Dom (T
*
1) ∩ Dom (T2)

= (N (T2) ∩ Dom (T
*
1)) ⊕ (Dom (T2) ∩N (T2)⊥).

Q(u, f) = ⟨u, g⟩, for all u ∈ Dom (Q)

Dom (□) ⊃ {f ∈ H2∣f ∈ Dom (Q), T2f ∈ Dom (T
*
2), T

*
1f ∈ Dom (T1)}.

|⟨T2u,T2f⟩| = |⟨T2u1,T2f⟩| = |Q(u1, f)| = |⟨u1, g⟩| ≤ ∥u∥ ⋅ ∥g∥.

¯

⟨T *
1 w,T

*
1 f⟩ = ⟨T *

1 w1,T
*
1 f⟩ = Q(w1, f) = ⟨w1, g⟩ ≤ ∥w∥ ⋅ ∥g∥.∣ ∣ ∣ ∣ ∣ ∣ ∣⟨□f,u⟩ = ⟨□1/2f, □1/2u⟩ = Q(f,u)

= ⟨T
*
1 f,T

*
1 u⟩ + ⟨T2f,T2u⟩ = ⟨(T1T

*
1 + T

*
2 T2)f,u⟩.

positivity ⇒ essential positivity ⇒ gap positivity.
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N (T2)=R (T1) ⊕N (Q).

Proposition 5.3.5.  The following statements are equivalent:

1. □ is gap positive.

2. □ has closed range R (□).

3. Both T1 and T2 have closed ranges R (T1) and R (T2).

4. There exists a positive constant such that

(5.20)

Proof: Since R (T1) ⊂ N (T2),

The proposition then follows from Lemma 5.3.1.

The following proposition is well-known (compare [H65, Theorem 1.1.2 and Theorem 1.1.4], [C83,

Proposition 3], and [Sh92, Proposition 2.3]).

Proposition 5.3.6  The operator □ is positive if and only if R (T1)=N (T2) and R (T2) is closed.

Proof: Assume □  is positive. Then 0 is in the resolvent set of □  and hence □  has a bounded inverse 

G : H2 → Dom (□). For any u ∈ H2, write u = T1T
*
1 Gu + T

*
2 T2Gu. If u ∈ N (T2),

Hence, T
*
2 T2Gu = 0 and u = T1T

*
1 Gu. Therefore, R (T1)=N (T2). Similarly, R (T

*
2)=N (T

*
1). Therefore, 

T
*
2  and hence T2 have closed range. To prove the opposite implication, for any u ∈ Dom (Q), we write 

u = u1 + u2 ∈ N (T2) ⊕N (T2)⊥
. Note that u1,u2 ∈ Dom (Q). Since N (T2)=R (T1)=N (T

*
1)

⊥
 and T2

has closed range, it follows from Lemma 5.3.1 that that there exists a positive constant c such that 

c∥u1∥2 ≤ ∥T
*
1 u1∥2 and c∥u2∥2 ≤ ∥T2u2∥2. Thus

Hence, inf σ(□) ≥ c > 0.

For a subspace L ⊂ H2, denote by PL⊥  the orthogonal projection onto L⟂ and T2|L⊥  the restriction of T2 to

L⟂. The next proposition generalizes Proposition 5.3.6 (see [Fu05]).

Proposition 5.3.7  The following statements are equivalent:

1. □ is essentially positive.

2. R (T1) and R (T2) are closed and N (Q) is �nite dimensional.

3. N (Q) is �nite dimensional, N (T2) ∩N (Q)⊥=R (T1), and R (T2|
N (Q)⊥) is closed.

4. There exists a �nite dimensional subspace L ⊂ Dom (T
*
1) ∩N (T2) such that 

N (T2) ∩ L⊥=PL⊥(R (T1)) and R (T2|L⊥) is closed.

∥f∥2
2 ≤ C 2Q(f, f), ∀f ∈ Dom (T

*
1) ∩ Dom (T2), f ⊥ N (Q).

H2 = N (T2)⊥ ⊕N (T2)=N (T2)⊥ ⊕R (T1) ⊕ (N (T2)⊖R (T1)⊥)

= R (T
*
2) ⊕R (T1) ⊕ (N (T2) ∩N (T

*
1)).

¯

¯̄

0 = (T2u, T2Gu) = (T2T
*
2 T2Gu, T2Gu) = (T

*
2 T2Gu, T

*
2 T2Gu).

c∥u∥2 = c(∥u1∥2 + ∥u2∥2) ≤ ∥T
*
1 u1∥2 + ∥T2u2∥2 = Q(u,u).



Proof: We �rst prove (1) implies (2). Suppose a = inf σe(□) > 0. If inf σ(□) > 0, then N (Q) is trivial and (2)

follows from Proposition 5.3.6. Suppose inf σ(□) = 0. Then σ(□) ∩ [0, a) consists only of isolated points, all of

which are eigenvalues of �nite multiplicity of □ (see [D95, Theorem 4.5.2]). Hence N (Q), the eigenspace of the

eigenvalue 0, is �nite dimensional. Choose a suf�ciently small c > 0 so that σ(□) ∩ [0, c) = {0}. By the spectral

theorem for self-adjoint operator, there exists a �nite regular Borel measure μ on σ(□) × N and a unitary

transformation U : H2 → L2(σ(□) × N, dμ) such that U □ U −1 = Mx, where Mxφ(x,n) = xφ(x,n) is the

multiplication operator by x on L2(σ(□) × N, dμ) (see [D95, Theorem 2.5.1]). Let PN (Q) be the orthogonal

projection onto N (Q). For any f ∈ Dom (Q) ∩N (Q)⊥
,

where χ[0,c) is the characteristic function of [0, c). Hence Uf is supported on [c, ∞) × N. Therefore,

It then follows from Proposition 5.3.5 that both T1 and T2 have closed range.

To prove (2) implies (1), we use Proposition 5.3.5 in the opposite direction: There exists a positive constant c

such that

(5.21)

Proving by contradiction, we assume inf σe(□) = 0. Let ε be any positive number less than c. Since 

L[0,ε) = R (χ[0,ε)(□)) is in�nite dimensional, there exists a non-zero g ∈ L[0,ε) such that g ⊥ N (Q). However,

contradicting (5.21).

We do some preparations before proving the equivalence of (3) with (1) and (2). Let L be any �nite

dimensional subspace of Dom (T
*
1) ∩N (T2). Let H′

2 = H2⊖L. Let T ′
2 = T2|H′

2
 and let T

*
1

′ = T
*
1 H′

2
. Then 

T ′
2 : H′

2 → H3 and T
*
1

′ : H′
2 → H1 are densely de�ned, closed operators. Let T ′

1 : H1 → H′
2 be the adjoint of T

*
1

′.

It follows from the de�nitions that Dom (T1) ⊂ Dom (T′
1). The �nite dimensionality of L implies the opposite

containment. Thus, Dom (T1)=Dom (T′
1). For any f ∈ Dom (T1) and g ∈ Dom (T

*
1

′)=Dom (T
*
1) ∩ L⊥,

Hence T ′
1 = PL⊥°T1 and R (T′

1)=PL⊥(R (T1)) ⊂ N (T′
2). Let

be the associated sesquilinear form on H′
2 with Dom (Q′)=Dom (Q) ∩ L⊥.

We are now in position to prove that (2) implies (3). In this case, we take L = N (Q) in the above settings. By

Proposition 5.3.5, there exists a positive constant c such that

We then obtain (3) by applying Proposition 5.3.6 to T ′
1, T ′

2, and Q′(f, g).

Finally, we prove (4) implies (1). By Proposition 5.3.6, we know that there exists a positive constant c such that

UPN (Q)f = χ[0,c)Uf = 0,

Q(f, f) = ∫
σ(□)×N

x Uf 2 dμ ≥ c∥Uf∥2 = c∥f∥2.∣ ∣c∥f∥2 ≤ Q(f, f), for all f ∈ Dom (Q) ∩N (Q)⊥.

Q(g, g) = ∫
σ(□)×N

xχ[0,ε) Ug
2 dμ ≤ ε∥Ug∥2 = ε∥g∥2,∣ ∣ ∣⟨T ′

1f, g⟩ = ⟨f,T
*
1

′g⟩ = ⟨f,T
*
1 g⟩ = ⟨T1f, g⟩.

Q′(f, g) = ⟨T ′
1

*f,T ′
1

*g⟩ + ⟨T ′
2f,T ′

2g⟩

Q(f, f) = Q′(f, f) ≥ c∥f∥2, for all f ∈ Dom (Q′).

Q(f, f) ≥ c∥f∥2, for all f ∈ Dom (Q) ∩ L⊥.
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The rest of the proof follows the same lines of the above proof of the implication (2) ⇒ (1), with N (Q) there

replaced by L.

Let

be the quotient space of N (T2) and R (T1). This is the cohomology of the complex

It measures the extent to which one cannot solve the equation T1u = f for f ∈ N (T2). When R (T1) is closed,

H inherits the following metric structure from ℍ2:

with which H is complete. Furthermore, as we noted before,

Thus H is isomorphic to N (Q) in this case. Together with Proposition 5.3.7, we obtain:

Proposition 5.3.8  □ is essentially positive if and only if R (T1) and R (T2) are closed and H is �nite dimensional.

For 1 ≤ q ≤ n − 1, let

with Dom (Qq)=Dom (∂q) ∩ Dom (∂
*
q-1). The bottom and top degree cases are de�ned similarly with 

Q0(u, v) = ⟨∂0u, ∂0v⟩ and Qn(u, v) = ⟨∂
*
nu, ∂

*
nv⟩. By Proposition 5.3.3, Qq is a densely de�ned, non-

negative, closed sesquilinear form and the associated self-adjoint operator is the ∂ -Neumann Laplacian. More

precisely, we have:

Theorem 5.3.9  The ∂ -Neumann Laplacian □q : L2
(0,q)(Ω) → L2

(0,q)(Ω) is the densely de�ned self-adjoint operator

such that

and

Furthermore, u ∈ Dom (□q) if and only if u ∈ Dom (Qq) and there exists a g ∈ L2
(0,q)(Ω) such that

for all v ∈ Dom (Qq).

5.4 Pseudoconvexity

H = N (T2)/R (T1)

H1
T1
→ H2

T2
→ H3.

∥[f]∥ = inf{∥f + g∥2∣g ∈ R (T1)},

N (T2)=R (T1) ⊕ (N (T2) ∩R (T1)⊥)=R (T1) ⊕N (Q).

Qq(u, v) = ⟨∂ qu, ∂ qv⟩ + ⟨∂
*
q−1u, ∂

*
q−1v⟩̄̄̄̄

¯̄

¯̄̄̄

¯

¯

Dom (□1/2)=Dom (∂q) ∩ Dom (∂
*
q-1 )̄̄

Qq(u, v) = ⟨□1/2
q u, □1/2

q v⟩.

Qq(u, v) = ⟨g, v⟩
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Pseudoconvexity is a central concept in several complex variables. In this section, we will review the rudiments of

this concept. Interested readers can �nd a more extensive treatment in [Kr01]. One of the most striking differences

between one complex variable and several complex variables is the Hartogs extension phenomenon, of which the

following is the simplest example:

Example 5.4.1  Suppose f(z1, z2) is a holomorphic function on 

Ω = {(z1, z2) ∈ C2∣ z1 < 2, z2 < 2}∖{(z1, z2) ∈ C2∣ z1 < 1, z2 < 1}. Then f has a holomorphic

extension f̃ to Ω̂ = {(z1, z2)∣ z1 < 2, z2 < 2}.

Proof: For |z1| < 1, expanding f(z1, z2) as a Laurent series in z2, we have

where

Since f(z1, z2) is holomorphic on {|z1| < 2} when |z2| = 3/2, it follows that aj(z1) is holomorphic on

{|z2| < 2}. Moreover, since f(z1, z2) is holomorphic on {|z1| < 2} when 1 < |z2| < 2, we have aj(z1) = 0 on 

{1 < |z1| < 2} when j < 0. Hence aj(z1) = 0 on {|z1| < 2}. Therefor, f is holomorphic on Ω̂.

Convexity is not preserved under a biholomorphic map and whence not a natural notion in several complex

variables. Pseudoconvexity is the analogous notion in several complex variable that is invariant under

biholomorphic maps.

Recall that a domain Ω in ℝn is convex if the line segment joining every pair of points in Ω also lies in Ω. For a

C2-smooth real-valued function ρ, the real Hessian of ρ is the symmetric matrix:

For economy of notations, we will identify the tangent space Tp(Rn) with ℝn.

Proposition 5.4.2.  Let Ω = {ρ < 0} be a bounded domain in Rn with C 2-boundary. Then Ω is convex if and only

if

(5.22)

where Tp(bΩ) = {ξ ∈ Rn∣
n

∑
j=1

∂ρ

∂xj

(p)ξj = 0} is the real tangent space of bΩ at p.

Proof: We �rst prove the necessity. Let p ∈ bΩ. After a translation and a rotation, we may assume that p is the

origin and the positive xn-axis is the outward normal direction for bΩ at p. Thus

Proving by contradiction,we assume that

∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣∣ ∣ ∣ ∣f(z1, z2) =
∞

∑
j=−∞

aj(z1)zj2,

aj(z1) = 1
2πi ∫

|z2|=3/2

f(z1, ζ)

ζ j+1
dζ.

HR
ρ (p) = ( ∂ 2ρ(p)

∂xj∂xk
)

1≤j,k≤n
.

HR
ρ (p)(ξ, ξ) =

n

∑
j,k=1

∂ 2ρ(p)

∂xj∂xk

ξjξk ≥ 0 ∀ξ ∈ Tp(bΩ)

ρ(x) = xn + 1
2

n

∑
j,k=1

∂ 2ρ(p)

∂xj∂xk

xjxk + o( x 2).∣ ∣
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is not semi-positive de�nite. After a rotation, we may assume that the above matrix is diagonalized and

where one of the λj's, say λ1, is negative. However, this leads to a contradiction as we will then have (−ε, 0, … , 0)

and (ε, 0, … , 0) in Ω for suf�ciently small ε > 0 but (0, … , 0) is not in Ω.

The proof of suf�ciency is left as an exercise.

A domain Ω is said to be strictly convex at a boundary point p if the inequality (5.22) is strict when 

ξ 0. A domain is strictly convex if it is strictly convex at any of its boundary points.

Exercise 5.4.3  Let Ω = {ρ(x) < 0} ⊂⊂ Rn is a convex domain with C2-boundary. Let ρ̃M = ρe−M|x|2
. Show

that Ωε = {ρ̃M < ε} is strictly convex when M is suf�ciently large and ε is suf�ciently small. Use this to prove

the suf�ciency in Proposition 5.4.2.

De�nition 5.4.4  Let Ω = {ρ < 0} ⊂ Cn be a bounded domain with C2-boundary. Then Ω is Levi-pseudoconvex at

p ∈ bΩ if

It is strictly pseudoconvex at p if the above inequality is strict when ξ 0. The domain Ω is said to be Levi-

pseudoconvex or strictly pseudoconvex if it is Levi-pseudoconvex or respectively strictly pseudoconvex at every

boundary point. The Hermitian matrix

is called the complex Hessian of ρ.

REMARK 5.4.5  (1) The notions of Levi-pseudoconvexity and strict pseudoconvexity do not depend on the choice of

local holomorphic coordinates. More precisely, if bΩ is Levi-pseudoconvex (respectively, strictly pseudoconvex) at

p ∈ bΩ and w = Ψ(z) is a biholomorphic map from a neighborhood U of p into ℂn, then Ψ(bΩ ∩ U) is Levi-

pseudoconvex (strictly pseudoconvex) at Ψ(p). This is a consequence of the following functorial property of

vectors and forms: Let ξ̃ = Ψ*(ξ), p̃ = Ψ(p), and ρ̃ = ρ°Ψ −1. Then

(2) Every bounded convex domain Ω with C2-smooth boundary is Levi-pseudoconvex. The converse is of

course not true as a smoothly bounded planar domain is always Levi-pseudoconvex but not necessarily convex.

The proof of the �rst statement is as follows. Let ξ ∈ Cn. Write ξj = tj + isj. Then

(∂ 2ρ(p)/∂xj∂xk)n−1
j,k=1

ρ(x) = xn +
n−1

∑
j=1

λj xj
2 +

n−1

∑
j=1

∂ 2ρ(p)

∂xj∂xn

xjxn + 1
2

∂ 2ρ(p)
∂x2

n
x2
n + o( x 2),∣ ∣ ∣ ∣=

Hρ(p)(ξ, ξ) =
n

∑
j,k=1

∂ 2ρ(p)

∂zj∂zk
ξjξ̄k ≥ 0,

∀ξ ∈ T
1,0
p (bΩ) = {ξ ∈ Cn∣

n

∑
j=1

∂ρ

∂zj
(p)ξj = 0}.

¯

=

Hρ(p) = ( ∂ 2ρ(p)
∂zj∂zk

)̄

Hρ̃(p̃)(ξ̃, ξ̃) = ∂∂ ρ̃(ξ̃, ¯̃
ξ)(p̃) = ∂∂ρ(ξ, ξ̄)(p) = Hρ(p)(ξ, ξ).̄̄



and the convexity of Ω implies that the real Hessian

Now let ξ ∈ T 1,0(bΩ). Replacing ξ by iξ in the above inequality and then adding the result to the above inequality,

we then obtain

Proposition 5.4.6  Let Ω ⊂⊂ Cn be strictly pseudoconvex with C 2-boundary. Then

1. There exist a neighborhood U of bΩ, a de�ning function of Ω, and a positive constant c > 0 such that

(5.23)

2. For any p ∈ bΩ, there exist a neighborhood U and a biholomorphic map from U into Cn such that 

bΩ ∩ U  is strictly convex.

Proof: (1) Let ρ̃ = ρ + Mρ2. It follows from direct computations that

From the strict pseudoconvexity of Ω, we know that there exist a neighborhood U of bΩ, a positive constant c > 0,

and a suf�ciently small ε > 0 such that

By choosing M suf�ciently large, we then obtain (5.23).

(2) Let ρ be a de�ning function of Ω that satis�es (5.23). After a translation and a unitary transformation, we

may assume that p is the origin and the positive xn-axis is the real outward direction. Thus,

After a change of holomorphic coordinates in the form of w = Ψ(z):

we have

HR
ρ (p)(t, s) =

n

∑
j,k=1

∂ 2ρ(p)

∂xj∂xk

tjtk +
n

∑
j,k=1

∂ 2ρ(p)

∂yj∂yk
sjsk + 2

n

∑
j,k=1

∂ 2ρ(p)

∂xj∂yk
tjsk

= 2Re (
n

∑
j,k=1

∂ 2ρ(p)

∂zj∂zk
ξjξk)+2

n

∑
j,k=1

∂ 2ρ(p)

∂zj∂z̄k
ξjξ̄k ≥ 0

n

∑
j,k=1

∂ 2ρ

∂zj∂zk
ξjξ̄k ≥ 0.

¯

n

∑
j,k=1

∂ 2ρ(z)

∂zj∂zk
ξjξ̄k ≥ c ξ 2, ∀z ∈ U , ∀ξ ∈ Cn.

¯∣ ∣n

∑
j,k=1

∂ 2ρ̃(z)

∂zj∂zk
ξjξ̄k = (1 + 2Mρ)

n

∑
j,k=1

∂ 2ρ(z)

∂zj∂zk
ξjξ̄k + 2M ⟨∂ρ, ξ⟩ 2.

¯̄∣ ∣n

∑
j,k=1

∂ 2ρ(z)

∂zj∂zk
ξjξ̄k ≥ c ξ 2, ∀z ∈ U , ξ ∈ Cn with  ⟨∂ρ, ξ⟩ 2 ≤ ε ξ 2.

¯∣ ∣ ∣ ∣ ∣ ∣ρ = Re zn+Re (
n

∑
j,k=1

∂ 2ρ(p)

∂zj∂zk
zjzk)+

n

∑
j,k=1

∂ 2ρ(p)

∂zj∂z̄k
zjz̄k+o(|z|2).

wj = zj, 1 ≤ j ≤ n − 1; wn = zn +
n

∑
j,k=1

∂ 2ρ(z)

∂zj∂zk
zjzk ,̄



■

It follows from (5.23) that

is positive de�nite. It then follows that after a unitary transformation in the w-variables, the quadratic term in the

Taylor expansion of ρ̃ is

where the λj's are positive. This implies that bΩ is strictly convex at p. After possible shrinking of U, we then

obtain that bΩ ∩ U  is strictly convex in the w-coordinates.

De�nition 5.4.7  Let f : Ω → [−∞, ∞). It is an exhaustion function of Ω if {z ∈ Ω∣f(z) < c} ⊂⊂ Ω for any 

c ∈ R. It is plurisubharmonic on Ω if

1. f is upper-semicontinuous on Ω;

2. For any z ∈ Ω and ξ ∈ Cn, u(t) = f(z + tξ) is subharmonic on {t ∈ C∣z + tξ ∈ Ω}.

We say f is strictly plurisubharmonic at p ∈ Ω if there exist a neighborhood U of p and a positive constant c > 0
such that f(z) − c|z|2 is plurisubharmonic on U. It is strictly plurisubharmonic on Ω if it is strictly

plurisubharmonic at every point in Ω.

Exercise 5.4.8  Let f ∈ C 2(Ω). Show that f is plurisubharmonic function if and only if its complex Hessian Hf(z)
is semi-positive de�nite at any z ∈ Ω and f is strictly plurisubharmonic if and only if Hf(z) is positive de�nite for

any z ∈ Ω.

De�nition 5.4.9  (1) A domain Ω ⊂ Cn is called pseudoconvex if it can be exhausted from inside by smoothly

bounded strictly pseudoconvex domains. More precisely, there exists a sequence of smoothly bounded strictly

pseudoconvex domains Ωj such that Ωj ⊂ Ωj+1 and ∪∞
j=1Ωj = Ω. (2) A domain Ω ⊂ Cn is a domain of

holomorphy if there is no domain Ω̃ such that Ω ⫋ Ω̃ and every holomorphic function on Ω extends

holomorphically to Ω̃.

Evidently, every domain in ℂ is pseudoconvex. Indeed, every bounded domain in ℂ with C2-boundary is strictly

pseudoconvex according to De�nition 5.4.4. In this case, T 1,0(bΩ) is trivial.

Theorem 5.4.10  Let Ω be a domain in Cn. Then the following statements are equivalent:

1. Ω is pseudoconvex.

2. − log δ(z) is plurisubharmonic on Ω, where δ(z) is the Euclidean distance from z to the boundary bΩ of

Ω.

3. Ω has a smooth strictly plurisubharmonic exhaustion function.

Furthermore, if Ω has C 2-smooth boundary, then the above statements are equivalent to Ω being Levi-

pseudoconvex.

We skip the proof and refer the interested reader to [Kr01].

Theorem 5.4.11  Let Ω ⊂ Cn. Then Ω is pseudoconvex if and only if Ω is a domain of holomorphy.

ρ̃(w) = Re wn+
n

∑
j,k=1

∂ 2ρ̃(w)

∂wj∂wk
wjwk+o(|w|2).

¯
¯

( ∂ 2ρ̃(w)
∂wj∂wk

)̄

n

∑
j=1

λj wj
2,∣ ∣



The proof of suf�ciency is not very dif�cult. The opposite direction is usually referred to as the Levi problem,

and it was solved in the 1950's by Oka. We again refer the reader to [H91, Kr01] for detail.

5.5 Hörmander's L2-Estimates

In this section, we present Hörmander's L2-estimates for the ∂ -operator through the lens of spectral theory of the ∂
-Neumann operator. The following main theorem in this section is due to Hörmander ([H65]).

Theorem 5.5.1  Let Ω be a bounded pseudoconvex domain in Cn with diameter D. Then

(5.24)

Consequently, for any f ∈ N (∂q), there exists u ∈ Dom (∂q-1) such that

(5.25)

We divide the proof into several steps, presented in the following subsections.

5.5.1 The Morrey-Kohn-Hörmander formula

We �rst introduce some notations. For (0, q)-forms

on a domain Ω in ℂn and a real-valued function φ ∈ C 2(Ω), we write:

We also write:

Let L2
(0,q)(Ω, e−φ) be the space of (0, q)-forms with weighted L2-coef�cients equipped with the norm

and the inner product ⟨u, v⟩φ = ⟨u, ve−φ⟩. Let ∂
*
φ,q be the adjoint of ∂ q : L2

(0,q)(Ω, e−φ) → L2
(0,q+1)(Ω, e−φ).

Since

¯̄

inf σ(□q) ≥ q

D2e
, 1 ≤ q ≤ n − 1.

¯̄

∂u = f  and  ∥u∥2 ≤ D2e
q

∥f∥2 .̄

u =
′

∑
|J|=q

uJdzJ and v =
′

∑
|J|=q

vJdz J̄̄

¯

Hφ(u, v) =
′

∑
K

n

∑
j,k=1

∂ 2φ

∂zj∂zk
ujKvkK; Hφ(u) = Hφ(u,u).

¯
¯

∇u 2 =
′

∑
|J|=q

n

∑
k=1

∂uJ

∂zk

2

.∣¯∣ ∣¯∣∥u∥2
φ =

′

∑
|J|=q

∫
Ω

uJ
2e−φ dV ,∣ ∣¯̄⟨∂u, v⟩

φ
= ⟨∂u, ve−φ⟩ = ⟨u, ∂ *(e−φv)⟩ = ⟨u, eφ∂ *(e−φv)⟩

φ
,̄̄̄̄



we obtain that Dom (∂ *)=Dom (∂
*
φ) and

(5.26)

The following integration by parts formula, due to Morrey-Kohn-Hörmander, plays an important role in the L2-

theory of the ∂ -problem.

Theorem 5.5.2  Let Ω = {z ∈ Cn ∣ ρ(z) < 0} ⊂⊂ Cn be a bounded domain with C 2-boundary and let ρ be a

de�ning function of Ω such that |∇ρ| = 1 on bΩ. Let φ ∈ C 2(Ω) be a real-valued functions. Then for any 

u ∈ C 2
(0,q)(Ω) ∩ Dom (∂ *),

(5.27)

Proof: We will (5.27) step by step. We �rst prove it for the simplest case when φ = 0 and q = 1. (This case is due

to Morrey. The formula for a general q is due to Kohn. With the weight φ, it is due to Hörmander.) In this case,

since

we have

(5.28)

(5.29)

Applying integration by parts formula (5.8), we have

Summing up from j, k = 1 to n and using the boundary condition

¯̄

∂
*
φ = eφ∂ *e−φ = ∂ * + (∂φ)

*
┘.̄̄̄̄

¯

¯

¯̄

∥∂u∥2
φ + ∥∂

*
φu∥2

φ = ∫
bΩ

Hρ(u)e−φ dS + ∫
Ω

( ∇u
2

+ Hφ(u))e−φ dV .̄̄∣¯∣∂u = ∑
1≤j<k≤n

(
∂uk

∂zj
−

∂uj

∂zk
)dzj ∧ dzk ,̄

¯̄
¯̄

∥∂u∥2 = ∑
j<k

∂uk

∂zj
−

∂uj

∂zk

2

= ∑
j<k

(
∂uk

∂zj

2

+
∂uj

∂zk

2

− ⟨
∂uk

∂zj
,

∂uj

∂zk
⟩ − ⟨

∂uj

∂zk
,

∂uk

∂zj
⟩)

=
n

∑
j,k=1

(
∂uj

∂zk

2

− ⟨
∂uj

∂zk
,

∂uk

∂zj
⟩)

¯∥¯̄∥∥¯∥ ∥¯∥¯̄̄̄∥¯∥¯̄and

∥∂ *u∥2 =
n

∑
j=1

∂uj

∂zj

2

=
n

∑
j,k=1

⟨
∂uj

∂zj
,

∂uk

∂zk
⟩.̄∥ ∥⟨

∂uj

∂zk
, ∂uk

∂zj
⟩ = −⟨ ∂ 2uj

∂zj∂zk
,uk⟩+ ∫

bΩ

∂uj

∂zk
uk

∂ρ
∂zj

dS

= ⟨ ∂uj

∂zj
, ∂uk

∂zk
⟩+ ∫

bΩ

(
∂uj

∂zk
uk

∂ρ

∂zj
−

∂uj

∂zj
uk

∂ρ

∂zk
) dS

¯̄̄¯
¯

¯
¯̄
¯



we then have

(5.30)

We now play the “Morrey trick” to convert the boundary term into a desirable form: Since 

n

∑
j=1

uj∂ρ/∂zj = 0 on 

bΩ, we can write

(5.31)

for some f ∈ C 1 near bΩ. Differentiating both sides with respect to zk, multiplying the result by uk, and then

summing up over k = 1 to n, we have

Therefore, on bΩ, we have

(5.32)

Combining (5.28), (5.29), (5.30), and (5.32), we then obtain (5.27) when φ = 0 and q = 1.

We now prove (5.27) when q = 1 but with a general real-valued φ ∈ C 2(Ω). We write

For the economy of notation, we also write

and so on. It is easy to check that

(5.33)

As in the proof of the previous case, we have

(5.34)

k

∑
k=1

uk
∂ρ
∂zk

= 0  on bΩ,

n

∑
j,k=1

⟨
∂uj

∂zk
,

∂uk

∂zj
⟩ =

n

∑
j,k=1

⟨
∂uj

∂zj
,

∂uk

∂zk
⟩+ ∫

bΩ

n

∑
j,k=1

∂uj

∂zk
uk

∂ρ
∂zj

dS.
¯̄̄
¯

n

∑
j=1

uj
∂ρ
∂zj

= f ⋅ ρ

¯̄

n

∑
k=1

(
n

∑
j=1

(
∂uj

∂zk

∂ρ

zj
+ uj

∂ 2ρ

∂zk∂zj
)) =

n

∑
k=1

uk(ρ
∂f
∂zk

+ f
∂ρ
∂zk

).
¯̄
¯̄̄

n

∑
j,k=1

ujuk
∂ 2ρ

∂zj∂zk
= −

n

∑
j,k=1

uk
∂uj

∂zk
∂ρ
∂zj

.̄̄̄̄

¯

∂j = ∂/∂zj, ∂φ
j = −eφ∂je

−φ = −∂j + ∂jφ.

ρj = ∂jρ, φjk = ∂k∂jφ,̄̄

[∂k, ∂
φ

j ] = φjk .̄̄

∥∂u∥2
φ + ∥∂

*
φu∥2

φ = ∥∇u∥2
φ +

n

∑
j,k=1

(⟨∂φ
j uj, ∂φ

k
uk⟩− ⟨∂kuj, ∂ juk⟩

φ
).̄̄̄̄̄



It follows from the integration by part formula (5.8) and commutative identity (5.33) that

Summing up over j, k = 1 to n and using the boundary condition ∑uj∂jρ = 0, we then obtain that the last

boundary term vanishes. Using the Morrey trick (5.31) to the �rst boundary term, we then obtain formula (5.27)

when q = 1.

We now prove Theorem 5.5.2 in its full generality. We �rst �x some notations. Suppose A and B are tuples of

integers between 1 and n of same length. We let ϵAB be the sign of permutation from A to B if they contain the same

set of integers and be zero if otherwise. Throughout the proof, we will use the capital letter J and L to denote

strictly increasing q-tuples, K strictly increasing (q − 1)-tuples, and M strictly increasing (q + 1)-tuples. The

lower case letters j,k, and l will denote integers running from 1 to n. If J = (j1, … , jq), then jJ denotes the 

(q + 1)-tuple (j, j1, … , jq). Note that

(5.35)

Let

Then

It follows that

⟨∂kuj, ∂ juk⟩
φ

= ⟨uj, ∂φ

k
∂ juk⟩

φ
+ ∫

bΩ

uj∂juk∂kρe
−φ dS

= ⟨uj, ∂ j∂
φ

k
uk⟩

φ
− ⟨∂j∂kφuj,uk⟩

φ
+ ∫

bΩ

uj∂juk∂kρe
−φ dS

= ⟨∂
φ

j uj, ∂
φ

k uk⟩
φ

− ⟨∂j∂kφuj,uk⟩
φ

+ ∫
bΩ

uj∂juk∂kρ e
−φ dS − ∫

bΩ

uj∂
φ
j uk∂jρ e

−φ dS

¯̄̄̄̄

¯̄̄̄

¯

¯̄̄̄

ϵjJMϵlLM = ϵjJlL

u =
′

∑
J

uJ dzJ .̄

∂u =
′

∑
J

∑
j

∂uJ

∂zj
dzj ∧ dzJ

=
′

∑
M

(∑
j

′

∑
J

∂uJ

∂zj
ϵjJM)dzM .

¯
¯
¯̄

¯
¯

∂u 2 =
′

∑
M

(
′

∑
J,L

∑
j,l

∂uJ

∂zj

∂uL

∂zl
ϵjJMϵlLM) =

′

∑
J,L

∑
j,l

∂uJ

∂zj
∂uL

∂zl
ϵjJlL

=
′

∑
J,L

∑
j=l

∂uJ

∂zj
∂uL

∂zl
ϵjJ
lL

+
′

∑
J,L

∑
j l

∂uJ

∂zj
∂uL

∂zl
ϵjJ
lL

=
′

∑
J

∑
j J

∂uJ

∂zj

2

−
′

∑
K

∑
j l

∂ulK

∂zj

∂ujK

∂zl

=
′

∑
J

∑
j

∂uJ

∂zj

2

−
′

∑
K

∑
j,l

∂ulK

∂zj

∂ujK

∂zl
.∣¯∣¯¯¯¯¯¯=̄

¯

∈ ∣¯∣ =̄

¯∣¯∣¯¯



(5.36)

Since

we have

(5.37)

Therefore, we have

(5.38)

The rest of the proof follows along the same lines as in the previous case, modulus index complications. Details are

given below. It follows from the integration by part formula (5.8) that

(5.39)

Using commutative identity (5.33), we then obtain that

(5.40)

Notice that since u ∈ Dom (∂ *),

(5.41)

We now repeat the Morrey trick: From (5.41), we have

∂ *u = −
′

∑
K

∑
k

∂ukK

∂zk
dzK ,̄̄

∂ *u 2 =
′

∑
K

∑
k,l

∂ukK

∂zk
∂ulK

∂zl
.∣¯∣¯¯∥∂u∥2

φ + ∥∂
*
φu∥2

φ = ∥ ∇u ∥2
φ

+
′

∑
K

∑
j,l

(−⟨∂ julK, ∂ lujK⟩
φ

+ ⟨∂
φ

k ukK, ∂
φ

l ulK⟩
φ
).

¯̄∣¯∣¯̄⟨∂ julK, ∂ lujK⟩
φ

= ⟨ulK, ∂φ
j ∂ lujK⟩

φ
− ∫

bΩ

ulK∂ lujKρj̄ e
−φdS .̄̄̄̄̄

⟨ulK, ∂
φ

j ∂ lujK⟩
φ

= ⟨ulK, ∂ l∂
φ

j ujK⟩
φ

− ⟨ulK,φ l̄jujK⟩
φ

= ⟨∂
φ

l ulK, ∂
φ

j ujK⟩
φ

− ∫
bΩ

ulK∂φ
j ujKρl e

−φdS − ⟨ulK,φjl̄ujK⟩
φ

.

¯̄

¯

¯

∑
j

ujKρj = 0  on bΩ.

∑
j

ujKρj̄ = fρ̄
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for some C1 function f in a neighborhood of bΩ. Applying ∂l to both sides, multiplying them by ulK , then

summing up over l, we then have

(5.42)

Back-substituting (5.40) into (5.39), then (5.38), and using boundary conditions (5.41) and (5.42), we then obtain

the desirable (5.27).

The following formula, sometimes referred as the twisted Morrey-Kohn-Hörmander formula, is a

consequence of Theorem 5.5.2 (compare [BSt99] and [Ch13]).

Corollary 5.5.3  Let Ω = {z ∈ Cn∣ρ(z) < 0} ⊂⊂ Cn be a bounded domain with C 2-boundary and let ρ be a

de�ning function of Ω such that |dρ| = 1 on bΩ. Let a,φ ∈ C 2(Ω) be real-valued functions with a ≥ 0. Then for

any u ∈ C 2
(0,q)(Ω) ∩ Dom (∂ *),

(5.43)

Proof: Let ε > 0. Applying Theorem 5.5.2 with φ replaced by φ̃ε = φ − log(a + ε) and using the identities

and

we obtain

Letting ε → 0, we then obtain the desirable identity (5.43).

The following estimate is due to Catlin [Ca87]. The proof presented here is from [BSt99]:

Theorem 5.5.4.  Let Ω = {z ∈ Cn∣ρ(z) < 0} ⊂⊂ Cn be a bounded domain with C 2-boundary and let ρ be a

de�ning function of Ω such that |dρ| = 1 on bΩ. Let b ∈ C 2(Ω) with b ≤ 0. Then

(5.44)

Proof: Taking a = 1 − eb and φ = 0 in the twisted Morrey-Kohn-Hörmander formula (5.43), we have

∑
j,l

ulK∂lujKρj̄ = −∑
j,l

ulKujKρ l̄j  on bΩ.̄̄

¯

¯̄

∥√a ∂u∥2
φ + ∥√a ∂

*
φu∥2

φ = ∫
bΩ

aHρ(u)e−φ dS

+ ∫
Ω

(a ∇u
2

+ aHφ(u) − Ha(u))e−φ dV + 2Re⟨(∂a)
*
┘u, ∂

*
φu⟩

φ
.

¯̄∣¯∣¯̄∂
*
φ̃ = ∂ * + (∂ φ̃)

*
┘ = ∂

*
φ − (a + ε)−1(∂a)

*
┘̄̄̄̄̄

Hφ̃(u) = Hφ(u) − (a + ε)−1
Ha(u) + (a + ε)−2 ∂a)*┘u 2,∣¯∣∥√a + ε ∂u∥2

φ + ∥√a + ε ∂
*
φu∥2

φ = ∫
bΩ

(a + ε)Hρ(u)e−φ dS

+ ∫
Ω

((a + ε) ∇u
2

+ (a + ε)Hφ(u) − Ha(u))e−φ dV + 2Re⟨(∂a)
*
┘u, ∂

*
φu⟩

φ
.

¯̄∣¯∣¯̄¯Qq(u,u) ≥ ∫
Ω

ebHb(u) dV , ∀u ∈ Dom (∂ *) ∩ C2
(0,q)(Ω).̄̄
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(5.45)

Applying Schwarz inequality to the second term on the right hand side, we have

(5.46)

The desirable inequality (5.44) then follows.

Proposition 5.5.5  Let Ω be a bounded pseudoconvex domain with C 2-boundary. Let D be the diameter of Ω.

Then

(5.47)

Proof: Let p be a point in Ω. Let b = −1 + z − p 2/D2. We then obtain (5.47) from (5.44).

In the next subsection, we will transform (5.47) from an apriori estimate to a bona �de one: namely, we will

establish (5.47) for all u ∈ Dom (Qq). This is done by applying the Friederichs lemma (see Lemma 5.5.6 below).

5.5.2 The density lemmas

Density is a subtle issue in the ∂ -Neumann problem. This issue was overlooked in some early literature and was

addressed by Hörmander in [H65]. (We refer the reader to [H03] for a fascinating history about the ∂ -Neumann

problem, especially the density issue in the problem.) The presentation here is similar to that of [CS99].

We begin with the Friedrichs Lemma. Let χ ∈ C∞
c (Rm) be a radial symmetric function such that χ > 0 on 

|x| < 1, χ = 0 on |x| ≥ 1, and ∫
Rm

χdx = 1. Let χε(x) = (1/εm)χ(x/ε) denote the standard Friedrichs

molli�ers. Before we proceed to prove this important lemma, we �rst recall the following simple facts.

1. The product of a Lipschitz continuous function and the �rst order derivative of an L2-function is a well-

de�ned distribution:

where Dj = ∂/∂xj.

2. Let ϕ ∈ D(U). Let ϕy(⋅) = ϕ(⋅ − y) and

Let T ∈ D ′(U) be a distribution. Then y ↦ T (ϕy) is C∞(Uϕ). This is due to the fact that ϕy(x) = ϕ(x − y)
depends smoothly on y.

3. Let T ∈ D ′(Rm) and let g ∈ C∞
0 (Rm). Then for any test function ϕ ∈ D(Rm),

∥√a ∂u∥2 + ∥√a ∂ *u∥2 ≥ ∫
Ω

a ∇u
2
dV − 2Re⟨(∂a)

*
┘u, ∂ *u⟩

+
′

∑
K

n

∑
j,k=1

∫
Ω

eb( ∂ 2b
∂zj∂zk

+ ∂b
∂zj

∂b
∂zk

)ujKukK dV .

¯̄∣¯∣¯̄¯̄̄∥√a ∂u∥2 + ∥∂ *u∥2 ≥ ∫
Ω

a ∇u
2
dV

+
′

∑
K

n

∑
j,k=1

∫
Ω

eb ∂ 2b
∂zj∂zk

ujKukK dV .

¯̄∣¯∣¯̄Qq(u,u) ≥ q

eD2 ∥u∥2, ∀u ∈ Dom (∂ *) ∩ C2
(0,q)(Ω).̄̄∣ ∣¯¯aDj(f)(ψ) = −∫

Rm

fDj(aψ) dx, ψ ∈ D(Rm),

Uϕ = {y ∈ U ∣Suppϕy ⊂ U}.



where g−(x) = g(−x) and t(x) = T (g−
x ) = T (g(x − ⋅)). Note that t(x) ∈ C∞(Rm). Thus a convolution of

a distribution and a compactly supported smooth function results in a smooth function.

Lemma 5.5.6  (Friederichs).  Let f ∈ L2(Rm) be compactly supported in an open set U ⊂ Rm.

1. Let a be a Lipschitz function on U. Then

(5.48)

2. Let L =
m

∑
j=1

ajDj + a0 where aj, 1 ≤ j ≤ m, are Lipschitz on U and a0 ∈ C(U). If Lf ∈ L2(Rm),

then

(5.49)

Proof: (1) Note that

and

Therefore,

Since a is Lipschitz continuouis on U, we have that

almost everywhere on the support of f. Therefore, by Young's inequality, we have

(T*g)(ϕ) = T (g−*ϕ) = ∫
Rm

t(x)ϕ(x) dx

aDj(f*χε) − (aDj(f))*χε → 0  in L2(Rm).

f*χε → f, L(f*χε) → Lf  in L2(Rm).

a(x)Dj(f*χε)(x) = −a(x)∫
Rm

f(y) ∂χε

∂yj
(x − y) dy

= ∫
Rm

a(x)f(x − εy) 1
ε

∂χ
∂yj

(y) dy

(aDjf)*χε = (aDjf)(χε(x − ⋅))

= −∫
Rm

f(y) ∂
∂yj

(a(y)χε(x − y)) dy

= −∫
Rm

f(y)( ∂a
∂yj

(y)χε(x − y) + a(y) ∂χε

∂yj
(x − y)) dy

= −∫
Rm

f(x − εy)( ∂a
∂yj

(x − εy)χ(y) − a(x − εy) 1
ε

∂χ
∂yj

(y)) dy.

aDj(f*χε) − (aDjf)*χε = −∫
∂a

∂yj
(x − y)f(x − y)χε(y) dy

+ ∫ (a(x) − a(x − εy))f(x − εy) 1
ε

∂χ
∂yj

(y) dy.

|a(x) − a(x − y)| ≤ M|y|  and  |∂a/∂yj| ≤ M

∥aDj(f*χε) − (aDjf)*χε∥ ≤ M∥f∥(∫ χε dy + ∫ y
∂χε

∂yj
dy) ≤ C∥f∥.∣ ∣
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Thus we have now proved that there exists a positive constant C such that

(5.50)

We now show how this implies (1). Let fk ∈ C∞
c (Rm) be a sequence of functions such that fk → f in L2(Rm).

Then

By (5.50), the �rst term on the right hand side tends to 0 as k → ∞. The second term tends to 0 as ε → 0 because 

fk ∈ C∞
c (Rm).

(2) By the �rst part, we know that ∥L(f*χε) − (Lf)*χε∥ → 0. Since Lf ∈ L2(Rm), we have 

∥(Lf)*χε − Lf∥ → 0. We then obtain (5.49).

In proving the density of C k(Ω) ∩ Dom (∂ *) in Dom (Qq), We will localize the problem near the

boundary of Ω by using a partition of unity. The following formula is convenient for this purpose:

Lemma 5.5.7  Let χj ∈ C 2, 1 ≤ j ≤ m, be partition of unity such that 

m

∑
j=1

χ2
j = 1 on Ω . Then

Proof: By straightforward computations, we have

and

where (∂φ)
*
 denotes the (0, 1)-vector that is dual to ∂φ with respect to the ambient metric h and ⌟ denotes the

contraction operator. Summing up and using the fact that ∑χj∂χj = 0, we then have

∑ _j = 1^m &Qφ(χju, χju) & = Qφ(u,u) +
m

∑
j=1

(⟨∂χj ∧ u, ∂χj ∧ u⟩
φ

+ ⟨(∂χj)
*
┘u, (∂χj)

*
┘u⟩

φ
) & = Q

We can now state and prove the following density theorem due to Hörmander ([H65]).

Theorem 5.5.8  Let k be a positive integer. Let Ω = {ρ < 0} be a bounded domain in Cn with C k+1-boundary.

Then Dom (∂
*
q-1) ∩ Ck(Ω) is dense in Dom (Qq) in the graph norm ∥u∥Q = (∥u∥2 + Qq(u,u))

1/2
.

We divide the proof into several steps by �rst proving the following lemmas.

∥aDj(f*χε) − (aDjf)*χε∥ ≤ C∥f∥, ∀f ∈ L2(Rm).

∥aDj(f*χε) − (aDjf)*χε∥ ≤ ∥aDj((f − fk)*χε) − (aDj(f − fk))*χε∥

+ ∥aDj(fk*χε) − (aDjfk)*χε∥.

¯̄

¯

m

∑
j=1

Qφ(χju,χju) = Qφ(u,u) +
m

∑
j=1

⟨ ∂χj
2u,u⟩

φ∣¯∣⟨∂(χju), ∂(χju)⟩
φ

= ⟨χ2
j∂u, ∂u⟩

φ
+ 2Re⟨χj∂χj ∧ u, ∂u⟩

φ
+ ⟨∂χj ∧ u, ∂χj ∧ u⟩

φ

¯̄̄̄̄̄̄̄

⟨∂
*
φ(χju), ∂

*
φ(χju)⟩

φ
= ⟨χ2

j∂ *u, ∂ *u⟩
φ

+ ⟨χ2
j(∂φ)

*
┘u, (∂φ)

*
┘u⟩

φ

+ ⟨(∂χj)
*
┘u, (∂χj)

*
┘u⟩

φ
− 2Re ⟨χj(∂χj)

*
┘u, ∂ *u⟩

φ

+ 2Re⟨χ2
j∂ *u, (∂φ)

*
┘u⟩

φ
− 2Re⟨χj(∂χj)

*
┘u, (∂φ)

*
┘u⟩

φ

¯̄̄̄̄̄

¯̄̄̄

¯̄̄̄

¯̄

¯

¯̄̄̄

¯̄
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Lemma 5.5.9  (1) For any domain Ω ⊂⊂ Cn, D(0,q−1)(Ω) is dense in Dom (∂
*
q-1) in the graph norm 

∥f∥∂ * = (∥f∥2 + ∥∂ *f∥2)
1/2

. (2) For f ∈ L2
(0,q−1)

(Ω), f ∈ Dom (∂
*
q-1) if and only if ϑf̃ ∈ L2

(0,q)
(Cn) where 

f̃ = f on Ω and f̃ = 0 on Cn∖Ω.

Proof: The �rst part follows directly from the fact that ∂ *, being the adjoint of maximally de�ned operator ∂ , is

minimally de�ned (see the Remark after De�nition 5.2.4). Thus D(0,q−1)(Ω) is dense in Dom (∂
*
q-1) in the graph

norm ∥f∥∂ * = (∥f∥2 + ∥∂ *f∥2)
1/2

. To prove the second part, we let f ∈ Dom (∂
*
q-1). Set f̃ = f on Ω and f̃ = 0

on Cn∖Ω. For any φ ∈ D(0,q−1)(Cn),

It follows that ϑf ∈ L2
(0,q)(Cn). Conversely, suppose f ∈ L2

(0,q−1)(Ω) with ϑf̃ ∈ L2
(0,q−1)(Cn). Then for any 

φ ∈ D(0,q−1)(Ω),

Hence f ∈ Dom (∂
*
q-1).

Lemma 5.5.10  Let Ω ⊂⊂ Cn be a bounded domain with C 1-boundary. Then C∞
(0,q)(Ω) is dense in Dom (Qq) in

the ∥ ⋅ ∥Q-norm.

Proof: Let f ∈ Dom (Qq). Let {Ωj}
m
j=0 be a covering of Ω  with the following properties:

1. Ω0 ⊂⊂ Ω.

2. Ωj ∩ bΩ ∅, 1 ≤ j ≤ m.

3. There exist a suf�ciently small constant ε0 and (outward) unit vectors 
→
nj ∈ Cn such that for any ε with 

0 < ε < ε0,

and

where

Let {ψj} be a partition of unity subordinated this covering. We may assume that Suppψj ⊂⊂ Ωj. Let

(5.51)

Then ∂fε,ϑfε ∈ L2(Ω+
ε ). Furthermore, ∂fε → ∂f and ϑfε → ϑf on L2(Ω). Regularizing fε with the Friederichs

molli�ers (here the convolutions of forms with the Friederichs’ molli�er χε are done component-wise), we have the

desirable f
*
ε = fε*χδε ∈ C∞

(0,q)(Ω) with δε > 0 suf�ciently small, depending on ε, such that f
*
ε → f in the ∥ ⋅ ∥Q-

norm as ε → 0 by Lemma 5.5.6.

¯

¯̄̄

¯̄

¯

¯̄̄

⟨f̃, ∂φ⟩
Cn

= ⟨f, ∂φ⟩
Ω

= ⟨ϑf, φ⟩Ω .̄̄

⟨f, ∂φ⟩
Ω

= ⟨f̃, ∂φ⟩
Cn

= ⟨ϑf̃, φ⟩
Cn

= ⟨ϑf, φ⟩Ω .̄̄

¯

¯

¯

=

∪m
j=1{z − 2ε

→
nj∣z ∈ Ωj ∩ Ω} ∪ Ω0 ⊂⊂ Ω−

ε

∪m
j=1{z + 2ε

→
nj∣z ∈ Ωj ∩ Ω} ∪ Ω0 ⊃⊃ Ω+

ε

Ω−
ε = {z ∈ Ω∣dist (z, bΩ) > ε} and Ω+

ε = {z ∈ Cn∣dist (z,Ω) < ε}.

fε(z) = ψ0(z)f(z) +
m

∑
j=1

ψj(z)f(z − 2ε
→
nj).

¯̄̄

¯
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Let Ω ⊂⊂ Cn be a bounded domain with C1-boundary. Let ρ ∈ C 1 be a normalized de�ning function of Ω.

For f ∈ L2
(0,q)(Ω), write

where

Then f ν, f τ ∈ L2
(0,q)

(Ω). Note that for f ∈ C 1
(0,q)

(Ω),

Thus f τ ∈ Dom (∂
*
q-1).

Lemma 5.5.11  Let Ω ⊂ Cn be a bounded domain with C 1,1-boundary. Let f ∈ Dom (Qq). Let f̃ ν  be extension of

fν to 0 outside of Ω. Then (1) ∂ f̃ ν ∈ L2
(0,q+1)(Cn); (2) f τ ∈ Dom (∂

*
q-1).

Proof: We �rst prove (1). Notice that since ρ ∈ C 1,1, we have f ν ∈ Dom (∂). From Lemma 5.5.10, we may

assume f ∈ C∞
(0,q)(Ω). By Lemma 5.2.7, for any φ ∈ D(0,q+1)(Cn), we have

It follows that ∂ f̃ ν = ∂̃f ν ∈ L2(Cn), where ∂̃f ν  is the extension of ∂f ν  to 0 outside of Ω. The proof of (2) is

similar.

We are now in position to prove Theorem 5.5.8. Let Ω be a bounded domain in ℂn with C k+1-boundary. Let ρ
be a normalized de�ning function of Ω. Let {Ωj}

m
j=0 be a covering of Ω  and let {ψj}

m
j=0 be a partition of unity

subordinated to the covering as in the proof of Lemma 5.5.10. Let f ∈ Dom (Qq). For suf�ciently small ε, set

Note that Suppf ν−

ε ⊂⊂ Ω−
ε . Let

when δε is suf�ciently small. By Lemma 5.5.9, ϑf̃ ν ∈ L2
(0,q−1)(Cn) and by Lemma 5.5.11, ∂ f̃ ν ∈ L2

(0,q+1)(Cn). It

follows from Lemma 5.5.6 that

(5.52)

Let fj(z) = f̃(z − 2εnj) and let

f ν = ∂ρ ∧ fN , f τ = f − f ν ,̄

fN := (∂ρ)
*
┘f =

′

∑
|K|=q−1

(
n

∑
j=1

∂ρ

∂zj
fjK)dzK .̄̄

¯

(∂ρ)
*
┘f τ = 0.̄

¯

¯̄

¯

¯

⟨f̃ ν, ϑφ⟩
Cn

= ⟨f ν, ϑφ⟩Ω

= ⟨∂f ν, φ⟩
Ω

− ∫
bΩ

⟨∂ρ ∧ f ν, φ⟩ dS

= ⟨∂f ν, φ⟩
Ω

.

¯̄

¯

¯̄̄̄

¯

f ν−

ε (z) = ψ0(z)f̃ ν(z) +
m

∑
j=1

ψj(z)f̃ ν(z + 2ε
→
nj).

fε,ν = f ν−

ε *χδε ∈ D(0,q)(Ω),

¯

fε,ν → f ν in the ∥ ⋅ ∥Q -norm.

→



Then ∂f τ+
ε (z) ∈ L2

(0,q+1)(Ω
+
ε ) and ϑf τ+

ε ∈ L2
(0,q−1)(Ω

+
ε ). let

where δε is suf�ciently small. Then fε,τ(z) ∈ C k
(0,q)(Ω) ∩ Dom (∂ *). Furthermore, by Lemma 5.5.6,

(5.53)

Therefore, fε = fε,ν + fε,τ ∈ C k
(0,q)

(Ω) ∩ Dom (∂ *) and converges f in the ∥ ⋅ ∥Q-norm as ε → 0. This concludes

the proof of Theorem 5.5.8.

We now prove Theorem 5.5.1. Let Ωj be a sequence of smooth bounded pseudoconvex domains such that 

Ωj ⊂⊂ Ωj+1 and ∪∞
j=1Ωj = Ω. By Proposition 5.5.5 and Theorem 5.5.8, we have

where QΩj  is the quadratic form associated to the ∂ -Neumann Laplacian on Ωj. Let f ∈ L2
(0,q)

(Ω) and ∂f = 0.

By Proposition 5.3.6 (and its proof), there exists uj ∈ L2
(0,q−1)(Ωj) such that

Passing to a subsequence, we may assume that uj converges to some u ∈ L2
(0,q−1)(Ω) weakly. It follows that

Since the above estimates hold for any 1 ≤ q ≤ n − 1, we obtain Theorem 5.5.1 by applying Proposition 5.3.6 in

the reverse direction.

5.6 Hearing Pseudoconvexity

In this section, we establish the following characterization of pseudoconvexity via spectrum of the ∂ -Neumann

Laplacian. Thus in Kac's language, one can “hear” pseudoconvexity via the ∂ -Neumann Laplacian. The

presentation follows closely those in [Fu05, Fu08].

Theorem 5.6.1  Let Ω be a bounded domain in Cn such that int (cl (Ω)) = Ω. Then the following statements are

equivalent:

1. Ω is pseudoconvex.

2. inf σ(□q) > 0, for all 1 ≤ q ≤ n − 1.

3. inf σe(□q) > 0, for all 1 ≤ q ≤ n − 1.

We �rst introduce some terminologies. The Dolbeault and L2-cohomology groups on Ω are de�ned respectively

by

f τ +

ε (z) = ψ0(z)f τ(z) +
m

∑
j=1

ψj(z)(fj(z))τ .

¯

fε,τ(z) = ψ0(z)(f τ*χδε(z)) +
m

∑
j=1

ψj(z)(fj*χδε(z))τ ,

¯̄

fε,τ → f τ in the ∥ ⋅ ∥Q -norm.

¯̄

Q
Ωj

q (f, f) ≥ q

D2e
∥f∥2, f ∈ Dom (Q

Ωj
q ),

¯̄

∂uj = f on Ωj,  and ∥uj∥2
Ωj

≤ D2e
q

∥f∥2
Ωj

.̄

∂u = f on Ω and ∥u∥2 ≤ D2e
q

∥f∥2 .̄

¯

¯



and

These cohomology groups are in general not isomorphic. For example, when a complex variety is deleted from Ω,

the L2-cohomology group remains the same but the Dolbeault cohomology group could change from trivial to

in�nite dimensional. As noted in the paragraph preceding Proposition 5.3.8, when R (∂q-1) is closed in L2
(0,q)(Ω), 

H
0,q
L2 (Ω) ≅N (□q).

The implication (1) ⇒ (2) is Hörmander's L2-estimates of the ∂ -operator [H65], and it holds without the

assumption int (cl (Ω)) = Ω (see Theorem 5.5.1 in the previous section). The implication (2) ⇒ (3) is trivial.

It remains to prove the implication (3) ⇒ (1). This is a consequences of the sheaf cohomology theory dated

back to Oka and Cartan (cf. [Se53, L66, Siu67, Br83, O82]). An elementary proof of (3) implying (1), following

[Fu05], is given below. The proof uses ideas from sheaf cohomology theory in [L66]. When adapting Laufer's

method to the L2-settings, one encounters a dif�culty: While the restriction to the complex hyperplane of the

smooth function resulting from the sheaf cohomology arguements for the Dolbeault cohomology groups is well-

de�ned, the restriction of the corresponding L2 function is not. This dif�culty was overcome in [Fu05] by

appropriately modifying the construction of auxiliary (0, q)-forms. In showing that (3) implies (1), we will actually

prove the following statement:

Proposition 5.6.2  Let Ω be a bounded domain in Cn such that int (cl (Ω)) = Ω. If dimH
(0,q)
L2 (Ω) < ∞ for all 

1 ≤ q ≤ n − 1, then Ω is pseudoconvex.

To illustrate the idea of the proof, we �rst show the case when n = 2. Proving by contradiction, we assume that

Ω is not pseudoconvex. Then there exists a domain Ω̃⊋Ω such that every holomorphic function on Ω extends to Ω̃.

Since int (cl (Ω)) = Ω, Ω̃∖cl (Ω) is non-empty. After a translation and a unitary transformation, we may assume

that the origin is in Ω̃∖cl (Ω) and there is a point z0 in the intersection of z2-plane with Ω that is in the same

connected component of the intersection of the z2-plane with Ω̃ as the origin. For any α ∈ N, let

Since the origin is not in Ω , uα ∈ C∞
(0,1)(Ω). In particular, uα ∈ L2

(0,1)(Ω). Furthermore, one checks easily that 

∂uα = 0. In fact, we have

Let M be an integer such that M > dim H̃(0,1)(Ω). Then there exists a nontrivial linear combination of the uα's

such that [u] = [0]. Namely, there exists an v ∈ L2(Ω) such that ∂v = u. Let

H 0,q(Ω) =
{f∈C∞

(0,q)(Ω)∣∂ qf=0}

{∂ q−1g∣g∈C∞
(0,q−1)

(Ω)}

¯

¯

H
0,q
L2 (Ω) =

{f∈L2
(0,q)(Ω)∣∂ qf=0}

{∂ q−1g∣g∈L2
(0,q−1)(Ω)}

.
¯

¯

¯

¯

uα =
(α+1)!zα2
|z|2(α+2) (−z1dz2 + z2dz1).
¯
¯̄̄̄

¯̄

¯

∂(−
α!zα+1

2

|z|2(α+1) ) = z1uα .̄
¯

u =
M

∑
α=1

cαuα

¯

F(z1, z2) = z1v(z1, z2) +
M

∑
α=1

cα
α!zα+1

|z|2(α+1) .¯
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(5.54)

Then ∂F = 0. Notice that since Ω is bounded, F ∈ L2(Ω). Thus F is holomorphic on Ω. However,

(5.55)

This contradicts the fact the F extends to a holomorphic function on Ω̃ and the origin and a point z0 ∈ Ω are in the

same connected component of Ω̃ ∩ {z1 = 0}.

The above proof follows the lines of arguments of Laufer [L66] for the Dolbeault cohomology groups. In this

case, this proof works for all n ≥ 2 after an inductive argument, even without the assumption int (cl (Ω)) = Ω

because here u ∈ C∞
(0,1)(Ω) and v ∈ C∞(Ω), and the restriction of v to Ω ∩ {z1 = 0} post no problem. While the

above proof still works for the L2-cohomology groups, there is a subtlety needed to be addressed: The restriction of

an L2-function to a hyperplane is not well-de�ned. In fact, when we obtain (5.55), we have actually utilized a

version of the following lemma:

Lemma 5.6.3  Let v1, … , vn−1 ∈ L2(Ω) and let m ∈ N. Assume that G is a continuous function on Ω such that

(5.56)

If m ≥ n − 1, then G(0, … , 0, zn) = 0 for all (0, … , 0, zn) ∈ Ω.

Proof: Let (0, … , 0, z0
n) ∈ Ω. Write z′ = (z1, … , zn−1). Then for a suf�ciently small positive numbers a1 and a2,

we have

For any δ ∈ (0, 1), we have

Since m ≥ n − 1, letting δ → 0, we obtain from the Lebesgue dominated convergence theorem that

Thus G(0′, zn) = 0 for zn − z0
n < a2.

We now return to the proof of Proposition 5.6.2. The above lemma illustrates the dif�culty when one tries to

adopt the arguments of the Dolbeault cohomology groups for the L2-cohomology groups to higher dimension 

¯

F(0, z2) =
M

∑
α=1

cαα!

zα+1
2

.

G(z) =
n−1

∑
j=1

zmj vj(z).

D(a1, a2) := { z′ < a1} × { zn − z0
n < a2} ⊂ Ω.∣ ∣ ∣ ∣(∫

D(a1,a2)
G(δz′, zn) 2 dV)

1/2

≤ am1 δ
m

n−1

∑
j=1

(∫
D(a1,a2)

vj(δz
′, zn) 2 dV)

1/2

≤ am1 δ
m−n+1

n−1

∑
j=1

(∫
D(a1δ,a2)

vj(z
′, zn) 2 dV)

1/2

≤ am1 δ
m−n+1

n−1

∑
j=1

(∫
Ω

vj(z) 2χD(a1δ,a2)(z) dV)
1/2

.∣ ∣ ∣ ∣∣ ∣∣ ∣∫
D(a1,a2)

G(0′, zn) 2 dV = 0.∣ ∣∣ ∣



n > 2. In order for the proof to work, we need to obtain a version of (5.54) but with the term z1 in front of v

replaced by zm1  with m ≥ n − 1. This was done in [Fu05]. We return to the case for n = 2 to illustrate the idea.

For α,m ∈ N, let

Note that uα,1 = uα. It is straightforward to check that

Proceeding as before, we then obtain a non-trivial linear combination of uα,m (with m �xed and α runs from 1 to a

suf�ciently large integer M) and a function v ∈ L2(Ω) such ∂v = u. Thus

is an L2-holomorphic function on Ω in a desirable form. By choosing m ≥ n − 1, we can then make this proof

works for all n ≥ 2.

We now provide a proof of Proposition 5.6.2 for all n but assuming the L2-cohomology groups H
(0,q)
L2 (Ω) are

trivial. We again prove by contradiction and assume that Ω is not pseudoconvex. Then there exists a domain Ω̃⊋Ω

such that every holomorphic function on Ω extends to Ω̃. After a translation and a unitary transformation, we may

assume that the origin is in Ω̃∖cl (Ω) and there is a point z0 in the intersection of zn-plane with Ω that is in the

same connected component of Ω̃ ∩ {z1 = … = zn−1 = 0} as the origin.

Let m be a positive integer (to be speci�ed later). Let kq = n. For any {k1, … , kq−1} ⊂ {1, 2, … ,n − 1}, we

de�ne

(5.57)

where rm = |z1|2m + … + |zn|2m. As usual, d̂zkj  indicates the deletion of dzkj  from the wedge product.

Evidently, u(k1, … , kq) ∈ L2
(0,q−1)(Ω) is a smooth form on Cn∖{0}. Moreover, u(k1, … , kq) is skew-symmetric

with respect to the indices (k1, … , kq−1). In particular, u(k1, … , kq) = 0 when two kj's are identical.

We now �x some notional conventions. Let K = (k1, … , kq) and J a collection of indices from {k1, … , kq}.

Write dzK = dzk1 ∧ … ∧ dzkq , z
m−1
K = (zk1 ⋯ zkq)

m−1
, and d̃zkj = dzk1 ∧ … ∧ d̂zkj ∧ … ∧ dzkq . Denote by 

(k1, … , kq∖J) the tuple of remaining indices after deleting those in J from (k1, … , kq). For example,

It follows from a straightforward calculation that

∂u(k1, … , kq) & = −
q!mzm−1

K

r
q+1
m

(rmdzK + (
n

∑
ℓ=1

zm−1
ℓ zmℓ dzℓ) ∧ (

q

∑
j=1

(−1)jzkj d̃zkj)) & = −
q!mzm−1

K

r
q+1
m

∑
n

(5.58)

uα,m =
(α+1)!zmα

2 (z1z2)m−1

(|z1|2m+|z2|2m)α+2 (−z1dz2 + z2dz1).
¯̄̄
¯̄̄̄

∂(−
α!zm(α+1)

2

(|z1|2m+|z2|2m)α+1 ) = mzm1 uα,m .̄
¯

¯

F(z1, z2) = mzm1 v(z1, z2) +
M

∑
α=1

cα
α!zm(α+1)

(|z1|2m+|z2|2m)α+1
¯

u(k1, … , kq) =
(q−1)!(zk1⋯zkq)m−1

r
q
m

×
q

∑
j=1

(−1)jzkjdzk1 ∧ … ∧ d̂zkj ∧ … ∧ dzkq ,

¯̄

¯̄̄̄

¯̄

¯̄̄̄̄̄̄̄̄̄

(4, 6, 3, 1∖(4, 1, 6∖4, 6)) = (4, 6, 3).

¯̄̄̄̄̄̄̄ℓ=1

ℓ k1,…=



It follows that u(1, … ,n) is a ∂ -closed (0,n − 1)-form.

By Proposition 5.3.6, we have R (∂q-1)=N (∂q) for all 1 ≤ q ≤ n − 1. We now solve the ∂ -equations

inductively, using u(1, … ,n) as initial data. Let v ∈ L2
(0,n−2)(Ω) be a solution to ∂v = u(1, … ,n). For any 

k1 ∈ {1, … ,n − 1}, de�ne

Then it follows from (5.58) that ∂w(k1) = 0. Let v(k1) ∈ L2
(0,n−3)(Ω) be a solution of ∂v(k1) = w(k1).

Suppose for any (q − 1)-tuple K ′ = (k1, … , kq−1) of integers from {1, … ,n − 1}, q ≥ 2, we have

constructed v(K ′) ∈ L2
(0,n−q−1)(Ω) such that it is skew-symmetric with respect to the indices and satis�es

(5.59)

where |K ′| = k1 + … + kq−1 as usual. We now construct a (0,n − q − 2)-forms v(K) satisfying (5.59) for any

q-tuple K = (k1, … , kq) of integers from {1, … ,n − 1} (with K′ replaced by K). Let

Then it follows from (5.58) that

Therefore, by the hypothesis, there exists a v(K) ∈ L2
(0,n−q−2)(Ω) such that ∂v(K) = w(K). Since w(K) is

skew-symmetric with respect to indices K, we may likewise choose v(K) so that it is skew-symmetric with respect

to its indexes. This then concludes the inductive step.

Now let

where u(n) = −zmn /rm, as given by (5.57). Then F(z) ∈ L2(Ω) and ∂F(z) = 0. By the hypothesis, F(z) has a

holomorphic extension to Ω̃. By Lemma 5.6.3, we have

¯

¯̄̄

¯

w(k1) = −mzmk1
v + (−1)1+k1u(1, … ,n∖k1).

¯̄

∂v(K ′) = m

q−1

∑
j=1

(−1)jzm
kj
v(K ′∖kj) + (−1)q−1+|K ′|u(1, … ,n∖K ′)̄

w(K) = m

q

∑
j=1

(−1)jzm
kj
v(K∖kj) + (−1)q+|K|

u(1, … ,n∖K).

∂w(K) = m

q

∑
j=1

(−1)jzmkj∂v(K∖kj) + (−1)q+|K|∂u(1, … ,n∖K)

= m

q

∑
j=1

(−1)jzmkj(m ∑
1≤i<j

(−1)izmkiv(K∖kj, ki) + m ∑
j<i≤q

(−1)i−1
zmkiv(K∖kj, ki)

− (−1)q+|K|−kju(1, … ,n∖(K∖kj))) + (−1)q+|K|∂u(1, … ,n∖K)

= (−1)q+|K|(−m

q

∑
j=1

(−1)j−kjzmkju(1, … ,n∖(K∖kj)) + ∂u(1, … ,n∖K))

= (−1)q+|K|(−m

q
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zmkju(kj, (1, … ,n∖K)) + ∂u(1, … ,n∖K)) = 0
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¯

¯

¯

¯

F = w(1, … ,n − 1) = m
n−1
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zmj v((1, … ,n − 1)∖j) − (−1)n+
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for zn near z0
n. (Recall that z0 ∈ Ω is in the same connected component of {z′ = 0} ∩ Ω̃ as the origin.) This

contradicts the analyticity of F near the origin.

Finally, we prove Proposition 5.6.2 in its full generality. The proof essentially combine those of the previous

two cases. For any integers α ≥ 0, m ≥ 1, and q ≥ 1, and for any {k1, … , kq−1} ⊂ {1, 2, … ,n − 1}, let

Then as in the previous case, we have

In particular, uα,m(1, … ,n) is ∂ -closed. Our next goal is to solve the ∂ -equation in L2-spaces inductively with

the (0,n − 1)-forms uα,m(1, … ,n) as the initial data, and eventually produce an L2-holomorphic function on bΩ.

This holomorphic function has a holomorphic extension to Ω. By the method of the construction, the extension has

a singularity at the origin, which leads to a contradiction with the hypothesis. We now provide the details.

Let Sq = N (Qq). By Proposition 5.3.7, R (∂q-1)=N (∂q) ∩ S⊥
q , 1 ≤ q ≤ n − 1. Let M be a integer such

that M > dimSq for all 1 ≤ q ≤ n − 1. Fix an integer m ≥ n − 1. Let F0 be the linear span of 

{uα,m(1, … ,n); α = 1, … ,M n−1}. For any u ∈ F0 and for any {k1, … , kq−1} ⊂ {1, … ,n − 1}, we set

if u =
k

∑
j=1

cjuαj,m(1, … ,n). We decompose F0 into a direct sum of M n−2 subspaces, each of which is M-

dimensional. Since dim(Sn−1) < M  and uα,m(1, … ,n) ∈ N (∂n-1), there exists a non-zero form u in each of

the subspaces such that ∂vu(∅) = u for some vu(∅) ∈ L2
(0,n−2)(Ω). Let F1 be the M n−2-dimensional linear span

of all such u's. We extend u ↦ vu(∅) linearly to all u ∈ F1.

For 0 ≤ q ≤ n − 1, we use induction on q to construct an M n−q−2-dimensional subspace Fq+1 of Fq with the

properties that for any u ∈ Fq+1, there exists vu(k1, … , kq) ∈ L2
(0,n−q−2)(Ω) for all 

{k1, … , kq} ⊂ {1, … ,n − 1} such that vu(k1, … , kq) depends linearly on u; vu(k1, … , kq) is skew-symmetric

with respect to indices K = (k1, … , kq); and

where |K| = k1 + … + kq.

We now show how to construct Fq+1 and vu(k1, … , kq) for u ∈ Fq+1 and {k1, … , kq} ⊂ {1, … ,n − 1}
once Fq has been constructed. For any u ∈ Fq and any {k1, … , kq} ⊂ {1, … ,n − 1}, write K = (k1, … , kq),

and let

uα,m(k1, … , kq) =
(α+q−1)!zmα

n (zk1
⋯zkq)m−1

r
α+q
m

q

∑
j=1

(−1)jzkj d̃zkj
¯̄̄
¯̄

∂uα,m(k1, … , kq) = −
(α+q)!mzmα

n zm−1
K

r
α+q+1
m

(rmdzK

+ (
n

∑
ℓ=1

zm−1
ℓ zmℓ dzℓ) ∧ (

q

∑
j=1

(−1)jzkj d̃zkj))

= m
n−1

∑
ℓ=1

zmℓ uα,m(ℓ, k1, … , kq).

¯̄̄̄

¯̄̄̄

¯̄

¯̄

u(k1, … , kq−1,n) =
k

∑
j=1

cjuαj,m(k1, … , kq−1,n)

¯

¯

∂vu(K) = m

q

∑
j=1

(−1)jzm
kj
vu(K∖kj) + (−1)q+|K|u(1, … ,n∖K),̄

wu(K) = m

q

∑
j=1

(−1)jzmkjvu(K∖kj) + (−1)q+|K|
u(1, … ,n∖K).



■

Then as in the previous case,

We again decompose Fq into a direct sum of M n−q−2 linear subspaces, each of which is M-dimensional. Since 

dim(Sn−q−2) < M  and ∂wu(K) = 0, there exists a non-zero form u in each of these subspaces such that 

∂vu(K) = wu(K) for some vu(K) ∈ L2
(0,n−q−2)(Ω). Since wu(K) is skew-symmetric with respect to indices K,

we may choose vu(K) to be skew-symmetric with respect to K as well. The subspace Fq+1 of Fq is then the

linear span of all such u's.

Note that dim(Fn−1) = 1. Let u be any non-zero form in Fn−1 and let

Then F ∈ L2(Ω) and ∂F = 0. Therefore, F is holomorphic on Ω and hence has a holomorphic extension to Ω̃.

Restricting to zn-plane as in the previous case, we then arrive at a contradiction to the analyticity of F near the

origin. We therefore conclude the proof of Proposition 5.6.2.

Positivity of the ∂ -Neumann Laplacian can also be used to characterize pseudoconvexity on domains with

holes in ℂn. We refer the reader to [FLS] for the following and other related results.

Theorem 5.6.4.  Let Ω̃ be a bounded domain with connected complement in Cn and let D ⊂⊂ Ω̃ be a relatively

compact open subset with connected complement in Ω̃. Let Ω = Ω̃∖D. Suppose Ω̃ has Lipschitz boundary and D

has C 2-boundary. Then both Ω̃ and D are pseudoconvex if and only if the ∂ -Neumann Laplacian □q on (0, q)-

forms on Ω is positive for 1 ≤ q ≤ n − 2 and gap positive for q = n − 1.

REMARK 5.6.5  (1) It can be proved, using the close graph theorem and the fact that ∂  is a closed operator, that if 

H
0,q
L2 (Ω) is �nite dimensional then R (∂q-1) is closed. Thus the assumption in Proposition 5.6.2 is equivalent to

statement (3) in Theorem 5.6.1.

(2) It follows from Theorem 3.1 in [H04] that for a domain Ω in ℂn with C3-boundary, if inf σe(□q) > 0 for

some q between 1 and n − 1, then Levi-form of bΩ cannot have exactly n − q − 1 positive and q negative

eigenvalues. Characterization of a smooth bounded domain in ℂn with inf σ(□q) > 0 for a �xed q is still unsolved.

(3) For any domain in ℂn, if the Dolbeault cohomology group on (0, q)-form for a �x q is �nite dimensional,

then it is trivial (cf. [L66]). The L2-analogue of this result–even on bounded domains–remains open. The following

related conjecture is also open: If Ω is an unbounded pseudoconvex domain Ω in ℂn, then the Bergman space 

A2(Ω) –the space of square integrable holomorphic functions on Ω–is either trivial or in�nite dimensional. This

conjecture holds for domains in ℂ but fails in ℂ2 if the pseudoconvexity assumption is removed ([W84]; see [PZ17]

and references therein for related results).
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6.1 Introduction

The connection between symmetry and artistic design has a long history (see e.g.,

Weyl [30]). In this paper, we describe the application of domain coloring to the

creation of symmetric designs and animations. First, we examine domain coloring

in its original setting as a method for sketching graphs of complex-valued

functions. Then we will describe the creation of designs in the Euclidean complex

plane and the non-Euclidean hyperbolic upper half-plane.

At the very end of the twentieth century, Farris [11] played a principal role in

developing the use of domain coloring to sketch graphs of functions, f : C→ C.

The idea is to use a color wheel, a well-known tool in the visual arts. A basic

example of a color wheel is shown at the top left of Figure 6.1. This color wheel

is used to mark locations in the complex plane. For each value of w, the value of 

C (w) is a unique color (at least in principle). For example, on the top left of

Figure 6.1, the values of w that are near i are colored greenish-yellow, while

values near −1 have a light blue tint. As values approach zero they turn black,

and beyond a certain radius they are all colored white. By composing a function 

f(z) with C , we get a function C (f(z)) that gives a color portrait of f(z). For

instance, on the top right of Figure 6.1, a color map for w = z2 is shown. Notice,

how the colors near w = 0 cycle twice through the rainbow as we move once

around w = 0. The connection to winding numbers is thereby made visually

evident. Also, contour lines meet at right angles away from w = 0, just as they do

for the function w = z. This illustrates conformality of w = z2 away from the

origin. There is a software now that produces color plots with great ease [23, 27].

At the bottom of Figure 6.1, we show a color plot of the function 

w = 3(z+ 1)(z− i)2(z− 1 + i)3. This plot was produced with the free

SageMath system [23, 24]. Just these two commands were needed:



FIGURE 6.1

Top left: Color plot for w = z over [−2, 2] × [−2, 2]; a basic color map C . Top right: Color plot for 

w = z2. Bottom: SageMath color plot for w = 3(z+ 1)(z− i)2(z− 1 + i)3. (First published in “Creating

Symmetry: The Artful Mathematics of Wallpaper Patterns” by James S. Walker, Notices of the Amer.

Math. Soc., Vol 62, No 11 (Dec. 2015), pp. 1350–1354, published by the American Mathematical Society.

©2015 American Mathematical Society).

The plot that SageMath produced clearly marks the location of the zeros at 

−1, i, and 1 − i and their multiplicities of 1, 2, and 3, respectively. All this

information is encoded in the number of times the colors of the rainbow are

cycled through in the neighborhood of each zero. There are several nice examples

of color plots at the web site created by Crone [7], including plots of branching in

Riemann surfaces. The reader may also wish to explore color plotting using the

free software, SymmetryWorks [27].

6.1.1 Pseudocode for Creating Color Plots

We have found the most challenging part of producing color plots is the creation

of a domain colored image using a speci�c color map. In Figure 6.2, we provide

pseudocode for this procedure. It is usually a straightforward task to supplement

this procedure with additional code for creating symmetric designs using various

functions. For color maps, we will adopt the clever idea of Farris of using color

photos of natural scenes, rather than a simple color wheel. The color images we



used for the designs in this paper are shown in Figure 6.3. For those readers not

wishing to reinvent the wheel, the software [27] can be used for artistic designs

like the ones we discuss in the remainder of this paper.

FIGURE 6.2

Pseudocode for applying a color map to function w = f(z).

FIGURE 6.3
Images for color maps, from public domain stock images found on the Internet. Left to right: Waratah

�ower with yellow border, Reptile, Buoy.



6.2 Designs in the Euclidean Complex Plane

In the geometry of the Euclidean plane, there are three basic symmetry operations

(congruences). They are (1) translation, (2) rotation, and (3) re�ection. For a

complex variable, z = x+ iy, these symmetry operations are exempli�ed by the

following mappings:

1. Translation: Tc : z → z+ c, where c = a+ ib is a complex constant.

2. Re�ection through the x-axis: Rx : z → z, i.e., z = x+ iy → x− iy.

3. Rotation by θ around the origin: ρθ : z → eiθ z, where eiθ = cos θ+ i sin θ
.

Any Euclidean symmetry (congruence) can be expressed as a �nite composition

of these basic mappings. This set of all symmetries of the plane is a mathematical

group, the Euclidean group, denoted by E2.

For creating symmetric designs, we will apply domain coloring to a function 

w = f(z) that has symmetry with respect to a group of transformations. If S is a

transformation of the complex plane ℂ, then the function f is symmetric with

respect to S if

(6.1)

The set of symmetries of a function f is a mathematical group, Sf. Our method for

creating designs is to apply domain coloring to functions that have some pre-

assigned symmetry group. For that purpose, the Euclidean group is too large. The

only functions symmetric under all mappings in E2 are constant functions. To

obtain non-trivial symmetric designs we restrict to discrete subgroups of E2. We

will examine symmetric designs created from symmetries with respect to these

three discrete subgroups:

1. Symmetry with respect to a lattice of two-dimensional translations

¯

f(S(z)) = f(z) for allz ∈ C

Tmu+nv : z → z+mu+ nv allm,n ∈ Z,



where u and v are non-collinear complex numbers. Enforcing this

symmetry creates a tessellation over the lattice in ℂ generated by u and v.

2. Symmetry with respect to rotation about the origin by an nth root of unity:

Enforcing this symmetry creates a rosette, having n-fold rotational

symmetry about the origin.

3. Symmetry with respect to both a lattice of two-dimensional translations and

rotation by an nth root of unity about the origin. Symmetric designs of this

type are only possible for rotations ρ2π/n with n = 2, 3, 4, or 6. We shall

refer to a design with this symmetry as a rotationally symmetric wallpaper

pattern.

All of these basic examples can be modi�ed to add more symmetry to a design,

including various re�ective symmetries. We will discuss these modi�cations as

we examine these three basic symmetric designs.

6.2.1 Translational Symmetry

On the left of Figure 6.4, we show a design having symmetry with respect to a

lattice of two-dimensional translations. The lattice is rectangular, and is generated

by the non-collinear complex numbers u = 2100 and v = 1700i. The positive

integers, 2100 and 1700, are the width and height in pixels of the image used for

the color map. That color map image is the Waratah �ower image shown in

Figure 6.3. The function f(z) that we used to create the design is, for z = x+ iy,

(6.2)

This formula assumes that the lower left corner of the Waratah �ower image is

located at the origin in ℂ, and uses mod-equivalence from elementary number

theory to ensure that f is symmetric with respect to translations over the lattice

generated by u and v. The image on the left of Figure 6.4 resembles a sheet of

postage stamps, rather than a complex artistic design. Although if one began with

an image of a person (say Marilyn Monroe), or a commodity (say a Campbell's

ρ2π/n : z → ei2π/nz for fixedn ∈ Z,n ≠ 0

f(x+ iy) = [x mod2100] + i[y mod1700]



soup can) then one could easily produce designs reminiscent of some of Andy

Warhol's famous pictures.

FIGURE 6.4
Left: Design having translational symmetry over a square lattice. Right: Rosette design having 6-fold

rotational symmetry.

6.2.2 Rotational Symmetry

6.2.2.1 Rosettes

On the right of Figure 6.4, we show an example of a design having symmetry

with respect to rotation about the origin by a 6th root of unity. In other words, it

has 6-fold rotational symmetry. The color map used to create the image is the

Waratah �ower image shown in Figure 6.3, but without the yellow border. The

function we used to create the design is

(6.3)

Since (ei2π/6)
6
= 1, it follows that f(z) is symmetric with respect to the rotation 

ρ2π/6, i.e., it has 6-fold rotational symmetry. We choose array values for 

z = x+ iy so that the rosette design is a square image of dimensions 

1000 × 1000 pixels. The black colored regions in the design correspond to values

of f lying outside the region in ℂ corresponding to the color map. Later, we will

show an interesting alternative way to color these values.

f(z) = (1 + i) + i z6

4 + z−6



On the left of Figure 6.5, we show an example of a design having 5-fold

rotational symmetry. It also has symmetry with respect to re�ection through the

x-axis. The color map used to create the image is the Reptile image shown in

Figure 6.3. The function we used to create the design is

(6.4)

FIGURE 6.5
Left: Rosette having 5-fold rotational symmetry and re�ection symmetries. Right: Rectangular view of

rosette design with 6-fold rotational symmetry plus curved lattice symmetry.

The terms of f(z) are grouped so that f(z) = f(z) clearly holds. Therefore, f is

symmetric with respect to the x-axis re�ection Rx. To verify that f is symmetric

with respect to the rotation ρ2π/5, we note that f is an example of a �nite sum of

the form:

(6.5)

which is symmetric with respect to 5-fold rotation about the origin. The relation

between Equations (6.4) and (6.5) is that we can insure symmetry with respect to

re�ection through the x-axis by requiring am,n = an,m. This condition on the

coef�cients, {am,n}, follows by considering f(z) = f(z) in terms of the

coef�cients of the basis functions zmzn in Equation (6.5).

f(z) = (2 + 3i)(z5 + z5) + i(z6 z1 + z6z1) + i
2000 (z4 z−6 + z−6 z−4 )̄̄̄̄̄

¯

f(z) = ∑ am,nz
m znm,n

m≡n mod5

¯

¯
¯



On the right of Figure 6.5, we show another design which combines rotational

symmetry with the mod operation used in Section 6.2.1. The function we used is

the following composition:

(6.6)

We are applying the function g to the square image of the rosette design on the

right of Figure 6.4. This is, in effect, using an in�nite version of the tessellation

design in Figure 6.4 as color map. (This is the alternative way, mentioned above,

for coloring pixels lying outside of a �nite color map.) The composite function

satis�es g(f(ei2π/6z)) = g(f(z)). Hence, the design on the right of Figure 6.5 has

6-fold rotational symmetry. This design also has several interesting features from

both artistic and mathematical perspectives:

z
f
→ (1 + i) + i

4 z6 + z−6 = u+ iv
g
→ [u mod1000] + i[v mod1000]

For large magnitude z, we have f(z)~iz6/4. Consequently, when

composed with g, the lattice of images of the Waratah �ower are

(approximately) pre-images of iz6/4 acting on the cells of a rectangular

lattice of Waratah �ower images (as shown on the left of Figure 6.4 but

without the yellow grid lines). That explains the rotated, shrunken

appearance of the �owers along a curved lattice. These �owers are most

easily visible at the four corners of the square image. The curved grid of

the lattice is shown clearly on the right of Figure 6.6, where we included

the yellow borders in the Waratah �ower image for our color map.

(1)

The square framing of the design, along with the appearance of multiple

small �owers approaching the four corners of the frame, draws the

viewer's attention to the 4-fold rotational symmetry of the design's frame.

This may lead to an ambiguity in the viewer's mind as to the validity of 6-

fold rotational symmetry for the design itself. From an artistic perspective,

we like this ambiguity. In fact, the 6-fold symmetry only holds for points

in the image that remain within the image boundaries upon rotation by 

2π/6. On the left of Figure 6.6 we show a larger scale view of the design,

within a circular frame. This latter design clearly displays 6-fold rotational

symmetry.

(2)

For small magnitude z, we have f(z)~z−6. Consequently, the curved

lattice contains an in�nity of pre-images approaching the pole of

(3)



FIGURE 6.6
Left: Circular view of rosette design with 6-fold rotational symmetry plus curved lattice symmetry. Right:

Curved lattice lines marked on rosette design with curved lattice symmetry.

6.2.2.2 Animations

We have also created animations involving our symmetric designs. We will just

give one illustration of the ideas involved. The animation we describe can be

found at this link:

We produced this animation in the following way. First, we selected a unit-length

complex number p = eiθ for small positive θ. We then created a succession of

designs using the mappings:

(6.7)

multiplicity 6 at z = 0. The sizes of the pre-images decrease rapidly to 0

as z → 0, hence they become incapable of realization with the digital

images that we are working with here. This explains the random looking

colored pixels lying within a region interior to the six �ower-like parts of

image. Those �ower-like parts lie across the unit-circle, where |z| ≈ 1.

Some of the curved lattice within the unit-circle is visible in the image on

the right of Figure 6.6.

https://www.youtube.com/watch?v=Pf1vJPywXWs

z → (1 + i) + pn (i/4)z6 + 1
pn

1
z6

= u+ iv
C

[u mod1000] + i[v mod1000]−→



for n = 0, 1, 2,… , 99. This produced 100 separate designs that are displayed one

after another to create the animation. The interesting thing about this animation is

that it will appear to rotate in the positive angular direction on its outer part versus

a negative angular rotation on its inner part. The reason for this is that pn has

angle nθ for n = 0, 1, 2,… , 99, which is a sequence of increasing angles in the

counter-clockwise direction. The outer part of the design corresponds to values of

z that have lengths larger than 1, and for larger values of |z| we have

so the outer part of the design successively rotates through the angles 

nθ = arg(pn), n = 0, 1, 2,… , 99. A similar argument shows that for z close to

0, the design simultaneously rotates through the angles −nθ.

6.2.3 Rotationally Symmetric Wallpaper Designs

6.2.3.1 Four-fold and Two-fold Wallpaper Symmetry

In Figure 6.7, we show a wallpaper design that is symmetric with respect to 4-

fold symmetry and various re�ection symmetries. For this design, we used the

Reptile image. To create a function f having square lattice symmetry and four-

fold rotational symmetry, we follow the procedure described by Farris [9]. First,

we use as a basis the set of complex exponentials {Em,n(z) = e2πi(mx+ny)} for

all m,n ∈ Z and z = x+ iy ∈ C. Any �nite, or convergent, sum 

∑ am,nEm,n(z) is guaranteed to have the required translational symmetry. To

obtain rotational symmetry, we employ group averaging. In this case, the group is

the rotations given by powers of i = e2πi/4. The group average Wm,n of Em,n is

de�ned by Wm,n(z) =
1
4

3

∑
k=0

Em,n(ikz). Any �nite, or convergent, linear

combination f(z) =∑ am,nWm,n(z) is guaranteed to have both square lattice

symmetry and four-fold rotational symmetry about the origin.

(1 + i) + pn (i/4)z6 + 1
pn

1
z6

≈ pn (i/4)z6



FIGURE 6.7
Left: 4-fold rotationally symmetric design, with additional symmetries. Unit cell on its right marked in

green. Right: 2-fold rotationally symmetric design with no additional symmetries.

The speci�c function f that we employed is

(6.8)

In this equation, the functions {Wm,n(z)} are grouped in order to enforce

re�ectional symmetry through the x-axis. To see this, we �rst rewrite the terms of 

Wm,n to remove the powers of i. The term Em,n(iz) satis�es

Iterating this relation yields Em,n(i2z) = E−m,−n(z) and Em,n(i3z) = E−n,m(z)
. Therefore,

(6.9)

Now, if we apply re�ection through the x-axis to Em,n(z), we obtain

f(z) = [W1,0(z) +W0,−1(z)] + 0.5[W1,5(z) +W−5,−1(z)]

+ 0.1i[W−2,4(z) +W−4,2(z)] − 0.05i[W−6,3(z) +W−3,6(z)]

Em,n(iz) = Em,n(−y+ ix)

= ei2π(−my+nx)

= En,−m(z)

Wm,n(z) =
1
4 [Em,n(z) +En,−m(z) +E−m,−n(z) +E−n,m(z)]

( ) ( )



Iterating this relation, we obtain En,−m(z) = En,m(z), E−m,−n(z) = E−m,n(z),
and E−n,m(z) = E−n,−m(z). Therefore,

Consequently, terms of the form

appearing in Equation (6.8), are symmetric with respect to re�ection through the

x-axis.

The symmetry with respect to Rx is apparent in the design in Figure 6.7, but

there are other symmetries as well. For example, it has re�ectional symmetry Ry

about the y-axis. Since the y-axis is a rotation by 2π/4 of the x-axis, the function

f must be symmetric with respect to Ry. More precisely, Ry equals the conjugation

operation ρ−1
2π/4Rx ρ2π/4 in the symmetry group Sf. Other re�ection symmetries

follow from group operations, such as re�ection through the line y = x and

re�ection through the line y = −x.

This wallpaper design is symmetric with respect to translation by the two

independent vectors 1 and i in ℂ. The cells of the lattice generated by 1 and i are

clearly evident. To the right of the design, we show a unit cell, the contents of

which generate the entire design via translations by m ⋅ 1 + n ⋅ i, for m,n ∈ Z.

One interesting feature of the design is that the center of the unit cell is a point of

4-fold rotational symmetry for the design. This can be proved as follows.

Assuming this unit cell has its lower left corner at the origin, its center is 1
2 + 1

2 i

. The following mappings

imply that τ1°ρ2π/4 preserves 1
2 + 1

2 i and rotates the unit cell by 2π/4.

Consequently, 1
2 + 1

2 i is a center of 4-fold rotational symmetry. A similar

argument shows that the midpoint of the top side of the unit cell is a center of 2-

Em,n(z) = Em,n(x− iy)

= Em,−n(z)

¯

¯̄
¯

Wm,n(z) = 1
4 [Em,−n(z) +En,m(z) +E−m,n(z) +E−n,−m(z)]

= W−n,−m(z)

¯

a[Wm,n(z) +W−n,−m(z)]

1
2 + 1

2 i
⋅i
→ −1

2 + 1
2 i

τ1 1
2 + 1

2 i−→



fold rotational symmetry. Hence, by four-fold rotation, the midpoints of each side

of the unit cell are centers of 2-fold symmetry.

Two-fold rotationally symmetric wallpaper patterns can be generated in

multiple ways. One, rather elementary, way is to just stretch a 4-fold pattern to

create a rectangular lattice. The rectangular lattice for a 2-fold design, that is not

4-fold, is generated by the basis vectors 1 and ri, where r > 0 and r ≠ 1. Such a

design can be generated from a 4-fold design by simply stretching or shrinking

the 4-fold design in the vertical direction. With the digital images we are creating,

that can be done by even the most rudimentary image processing programs. A

second method would be to use a group average approach, as we did with the 4-

fold case. For instance, we can use group averages 

Wm,n(z) =
1
2 (Em,n(z) +Em,n(−z)). A �nite, or convergent, linear combination

f(z) =∑ am,nWm,n(z) will then have both 2-fold rotational and square lattice

symmetry. An example is shown on the right of Figure 6.7. The function f(z) that

we used for this design is

(6.10)

Unlike the design on the left of Figure 6.7, this design has no additional

symmetries. This corresponds to the absence of grouping of related terms in

Equation (6.10), of the kind that we have in Equation (6.8).

6.2.3.2 Three-Fold Wallpaper Symmetry

On the top left of Figure 6.8, we show a wallpaper design that is symmetric with

respect to 3-fold symmetry. Next to the design is an image of a unit cell for the

lattice of the design, a rhombus with sides constructed from the complex numbers

1 and ω = ei2π/3. The rhombic lattice for translational symmetry is de�ned by the

vectors m+ nω, for all m,n ∈ Z and ω = ei2π/3. Every complex number z can

be expanded uniquely as z = u+ vω for unique u, v ∈ R. The functions, 

Em,n(z) for m,n ∈ Z, are de�ned by Em,n(z) = Em,n(u+ vω) = ei2π(mu+nv)

for all u, v ∈ R. These functions are periodic over the cells of the rhombic lattice

generated by 1 and ω. The group averages, {Wm,n}, for the group of 3-fold

rotations about the origin, are de�ned by

f(z) = W1,0(z) +W0,−1(z) + 0.5W1,5(z) + 0.1iW−2,4(z) − 0.05iW−6,3(z)

Wm,n(z) =
1
3 [Em,n(z) +Em,n(ωz) +Em,n(ω2z)]



(6.11)

FIGURE 6.8
Top Left: Wallpaper design with 3-fold rotational symmetry. Top Right: a rhombic unit cell, marked in

green. Bottom: Wallpaper design with 6-fold rotational symmetry and additional re�ection symmetries.

This de�nition of Wm,n(z) ensures that it has 3-fold rotational symmetry. To

verify that it has translational symmetry, we need to further examine the terms 

Em,n(ωz) and Em,n(ω
2z). Since z = ω satis�es the factored equation 

0 = (z3 − 1) = (z− 1)(z2 + z+ 1), it follows that ω2 = −1 − ω. Therefore,



Thus, Em,n(ωz) = En,−m−n(z). Iterating this relation, we obtain 

Em,n(ω
2z) = E−m−n,m(z). These relations show that

(6.12)

Hence, Wm,n is a linear combination of the basis functions {Em,n}, so it also

enjoys translational symmetry over the rhombic lattice. Consequently any

function f de�ned by a �nite, or convergent, sum ∑
m,n

am,nWm,n(z) has both 3-

fold rotational symmetry and rhombic lattice symmetry. Furthermore, because of

the group operation Em,n ⋅ Ej,k = Em+j,n+k for the basis functions {Em,n}, we

can also include products of the form Wm,n ⋅Wj,k in the terms for f. Speci�cally,

the function we used to create the design on the top left of Figure 6.8 is

It has 3-fold rotational symmetry because each of the factors, W2,3 and W1,4, and

the term W1,0 have that symmetry. Moreover, it has translational symmetry over

the lattice because f is a linear combination of the basis functions {Em,n}.

Remark 6.2.1.  In this example, we were indeed fortunate that a rotation by 2π/3
maps each basis function Em,n, periodic over the lattice, into another such basis

function. That fact allowed us to create a 3-fold rotationally symmetric wallpaper

design. The Crystallographic Restriction Theorem below implies that this can not

happen for most n-fold rotational symmetries.

6.2.3.3 Six-fold wallpaper symmetry

In Figure 6.8, we show a wallpaper design that is symmetric with respect to 6-

fold symmetry and various re�ection symmetries. Before we discuss the

mathematics of creating this design, we will take a moment to comment on its

Em,n(ωz) = Em,n(uω+ vω2)

= Em,n(−v+ (u− v)ω)

= ei2π(−mv+n(u−v))

= ei2π(nu+(−m−n)v)

= En,−m−n(z)

Wm,n(z) =
1
3 [Em,n(z) +En,−m−n(z) +E−m−n,m(z)]

f(z) = 2W2,3(z) ⋅W1,4(z) +W1,0(z)



artistic features. The design presents an appearance of interlocking circular

regions. The larger regions have a central, three-armed cross that appears to be a

center of three-fold rotational symmetry. Slightly smaller circular regions have

dark blue, hexagonally shaped �gures about their centers, which appear to have 6-

fold rotational symmetry. If you relax your focus slightly, the whole design

appears to �oat in the background as your attention rapidly shifts between these

interlocking circles with different symmetries. These features slightly disguise the

location of the rhombus shaped cells that form the lattice for the design.

We used the Buoy image for the color map of this design. To create a function

f having rhombic lattice symmetry and six-fold rotational symmetry, we note that

6-fold rotational symmetry about the origin is equivalent to 3-fold rotational

symmetry combined with 2-fold rotational symmetry. Two-fold rotational

symmetry about the origin in ℂ corresponds to the mapping ρπ : z → −z. Since 

Em,n(−z) = E−m,−n(z), it follows that Wm,n(−z) = W−m,−n(z) for all 

m,n ∈ Z. Consequently, if f is a �nite, or convergent, sum of terms of the form

then f is symmetric with respect to Rπ and R2π/3 and thus symmetric with respect

to R2π/6.

The function f that we used to create the design in Figure 6.8 is somewhat

complicated. Suf�ce it to say that it had the following form:

(6.13)

for certain complex constants, a, b, and c. The terms for f(z) can be regrouped so

that f is a linear combination of terms of the form Wm,n(z) +W−m,−n(z). Hence,

f has 6-fold rotational symmetry. However, the terms for f were grouped in the

pairs shown in Equation (6.13) in order to enforce re�ection symmetry Rx about

the x-axis. To see that this symmetry holds, we examine the effect of Rx : z → z

on Em,n:

a[Wm,n(z) +W−m,−n(z)]

f(z) = a[W2,3(z) +W3,2(z)] + a[W−2,−3(z) +W−3,−2(z)]

+ b[W1,5(z) +W5,1(z)] + b[W−1,−5(z) +W−5,−1(z)]

+ c[W3,4(z) +W4,3(z)] + c[W−3,−4(z) +W−4,−3(z)]

¯

( ) ( )



Thus, Em,n(z) = Em,−m−n(z). Iterating this relation, we obtain

Combining these relations with Equation (6.12), we obtain Wm,n(z) = Wn,m(z).
Consequently, terms of the form

are symmetric with respect to re�ection through the x-axis. Since f is a �nite sum

of such terms, it has this symmetry, too. Our design has other symmetries as well.

For example, since ρπ°Rx : z → −z, the function f is mirror symmetric through

the y-axis.

At the beginning of our discussion of this 6-fold symmetric design, we

mentioned circles having centers of 3-fold rotational symmetry within the

rhombic cells of the design's lattice. The point 2
3 + 1

3 ω within the rhombic unit

cell is a center of 3-fold symmetry. The following mappings

imply that τ1°ρ2π/3 preserves 2
3 + 1

3 ω and rotates the rhombic unit cell by 2π/3.

Consequently, 2
3 + 1

3 ω is a center of 3-fold rotational symmetry. Furthermore,

implies that τ1+ω°ρ2π/3 preserves 1
3 + 2

3 ω, and so it is a second point of 3-fold

symmetry within the rhombic unit cell.

6.2.3.4 The crystallographic restriction

We have shown that wallpaper designs can be generated with n-fold rotational

symmetry when n = 2, 3, 4, and 6. In fact, these are the only possible n-fold

rotationally symmetric wallpaper designs.

Em,n(z) = Em,n(u+ vω)

= Em,n(u+ v(−1 − ω)) [sinceω=ω2]

= ei2π(mu+(−m−n)v)

= Em,−m−n(z)

¯̄

¯

¯

En,−m−n(z) = En,m(z) and E−m−n,m(z) = E−m−n,n(z)̄̄

¯

a[Wm,n(z) +Wn,m(z)]

¯

2
3 + 1

3 ω
⋅ω

−1
3 + 1

3 ω
τ1 2

3 + 1
3 ω−→−→

1
3 + 2

3 ω
⋅ω −2

3 − 1
3 ω

τ1+ω 1
3 + 2

3 ω−→−→



□

Theorem 6.2.2  (The Crystallographic Restriction) An n-fold rotationally

symmetric wallpaper design is only possible if n = 2, 3, 4, or 6.

Proof. In the standard basis for R2 ≡ C, the n-fold rotation ρ2π/n has matrix form

The trace of this matrix is 2 cos(2π/n). However, the trace is invariant under

change of basis. For the basis that generates the lattice of cells for the wallpaper

design, the trace of the matrix for ρ2π/n must be an integer. Hence, 

2 cos(2π/n) = k for some k ∈ Z. Therefore, we have

(6.14)

The only possible integers k for which Equation (6.14) can hold are 

k = 0,±1,±2, which yield n = 2, 3, 4, and 6.

There is an interesting analysis of this restriction when n = 5 in [10]. Some

Matlab® programs for creating designs when n = 5 are in [28, p. 98]. These

designs are related to quasicrystals[25, 28].

6.2.4 Summary

We have shown a number of symmetric designs generated by the application of

complex analysis to the geometry of the Euclidean plane. The mathematics we

have used is widely employed in crystallography [18, 25]. Many more designs,

and a more thorough treatment including the relation to crystallography, can be

found in the book by Farris [9]. In the next section, we describe symmetric

designs that use properties of complex analysis in hyperbolic geometry.

6.3 Designs in the Hyperbolic Upper Half-Plane

We have also created designs using the symmetries in the geometry of the

hyperbolic upper half-plane. Some of the designs we have created are shown in

Figure 6.9. The symmetries in these designs are much different than those we

discussed above for the Euclidean plane. The design at the top of Figure 6.9 is

( )
cos(2π/n) − sin(2π/n)

sin(2π/n) cos(2π/n)

cos(2π/n) = k/2, k ∈ Z



entitled Blugold Fireworks. It was exhibited as part of the 2018 Mathematical Art

Exhibition held in San Diego [13]. The other two designs are more recent

creations. One quite interesting feature of these designs, from a mathematical

perspective, is that they display some of the principal geometric objects in the

hyperbolic upper half-plane. We will describe what these principal objects are,

and how the designs are constructed. But in order to do so, we �rst recount the

basic mathematics underlying the geometry of the hyperbolic upper half-plane.

References for additional details are [5, 9, 16, 20, 28].

FIGURE 6.9
Top: Blugold Fireworks design, using Buoy as color map. Middle and Bottom: Two designs using Reptile.

6.3.1 Geometry of the Hyperbolic Upper Half-Plane

The hyperbolic upper half-plane, ℍ, is the subset of ℂ de�ned as follows:

H = {x+ iy |x ∈ R, y > 0}



(6.15)

with differential metric

(6.16)

With this metric, the length ℓ(γ) of a smooth curve γ(t) = x(t) + iy(t), 
a ≤ t ≤ b, is de�ned as

This metric is related to the metric dsE+  for the Euclidean plane, restricted to 

E+ = {(x, y) |x ∈ R, y > 0}, de�ned by

(6.17)

In other words, ds = dsE+/y. This relation is crucial to verifying a number of

important facts about the geometry of ℍ. We begin by discussing the isometries

of ℍ.

6.3.1.1 Isometries of ℍ

The isometries of ℍ are mappings f : H→ H that preserve the differential metric

ds. We will show in the next theorem that the set

(6.18)

contains all the holomorphic isometries of ℍ.

There is also a notion of area in ℍ. The area of a region U  will be denoted by 

A(U ). The area differential dA in ℍ is given by

ds =
√dx2+dy2

y

ℓ(γ) = ∫
b

a

√x′(t)2 + y′(t)2

y(t)
dt = ∫

b

a

|z′(t)|

Im z(t)
dt

dsE+ = √dx2 + dy2

SH = {f(z) = az+b
cz+d

: a, b, c, d ∈ Rwith ad− bc = 1}



(6.19)

and so we compute A(U ) by

(6.20)

for a suitable region U ⊂ H. By a suitable region, we mean any region U ⊂ H

for which the integral in (6.20) is de�ned, say, as a Riemann integral. The area

differential dA makes sense, by a dimensional argument, when viewed as 

dA = dAE+/y2 and noting that the length differential satis�es ds = dsE+/y. It

also follows from basic facts of Riemannian geometry:

as shown in [2, p. 188, 241]. In this case, (gi,j) = ( ), and we obtain

ds and dA as de�ned in (6.16) and (6.19). We will show that isometries in Sℍ also

preserve area in ℍ.

Theorem 6.3.1.  The set Sℍ de�ned in (6.18) contains all the holomorphic

isometries of ℍ. In addition to preserving the metric differential ds, these

isometries also preserve the area differential dA. The isometries in Sℍ are also

described by

(6.21)

Proof. For f(z) = az+b
cz+d

 in Sℍ, we have

dA = 1
y2

dx dy

A(U ) = ∫
U

1

y2
dx dy

ds2 =
n

∑
i,j=1

gi,jdx
idxj

(differential metric squared)

⇒
dΩ =

n

∑
i,j=1

√det(gi,j) dx
1 ∧…∧ dxn

 (differential volume element)

1/y2 0

0 1/y2

SH = {f(z) = az+b
cz+d

: a, b, c, d ∈ Rwith ad− bc > 0}



and therefore Im f(z) = Im z / |cz+ d|2. Consequently, f(z) ∈ H if and only if 

z ∈ H. (Note: cz+ d = 0 is only possible when z = −d/c ∈ R and such z are

not in ℍ.)

Now, for f(z) = u+ iv with u ∈ R and v > 0, we have v = y/|cz+ d|2. We

also have

where we made use of the Cauchy-Riemann equations to simplify the Jacobian 

|J| for the change of variables in the �rst line. Consequently, we obtain

and that shows that f(z) is an isometry of ℍ. Moreover, in our calculations we

computed f ′(z) for z ∈ H, so f is holomorphic on ℍ.

To prove preservation of dA, we calculate as above:

and du dv/v2 = dx dy/y2 follows just as above. Thus, the isometry f also

preserves the area differential dA.

Now, suppose that f(z) = az+b
cz+d

 with ad− bc > 0. Let r2 = ad− bc. Then,

2i Im f(z) = (ad−bc)(z−z)
|cz+d|2

= 1
|cz+d|2

2i Im z

¯

du2 + dv2 = J (dx2 + dy2)

= [( ∂u
∂x

)
2
+ ( ∂u

∂x
)
2
](dx2 + dy2)

= f ′(z) 2(dx2 + dy2)

= 1
|cz+d|4

(dx2 + dy2)∣ ∣∣ ∣du2+dv2

v2
=

|cz+d|4

y2
⋅ 1

|cz+d|4
(dx2 + dy2)

= dx2+dy2

y2

du dv = = |J| dx dy

= 1
|cz+d|4

dx dy

f(z) = r2

r2
a′z+b′

c′z+d′

= a′z+b′

c′z+d′



□

with a′d′ − b′c′ = 1. Therefore, f(z) is in Sℍ, as de�ned in (6.18). Since the

reverse inclusion obviously holds, it follows that Sℍ is described by both (6.18)

and (6.21).

Finally, by [4, Theorem 5], all holomorphic mappings from the disc 

D = {z : |z| < 1} to itself have the form F(z) = t(z− c)/(1 − c̄z), for some 

t, c ∈ C with |t| = 1 and |c| < 1. Conjugating each F with the conformal map 

g : D→ H given by g(z) = z+i
iz+1 , we obtain all the functions f = g°F°g−1 that

belong to Sℍ. We omit the details for verifying this last statement, because we

will not be using the fact that Sℍ consists of all the holomorphic isometries of ℍ.

Complete details are in [26, Theorem 2.4, p. 222].

Remark 6.3.2.  Theorem 6.3.1 deals with the holomorphic isometries of ℍ.

There are other isometries. For example, the function f(x+ iy) = −x+ iy is an

isometry, since it clearly preserves ds. However, it is not holomorphic on ℍ due to

its failure to satisfy the Cauchy-Riemann equations.

Theorem 6.3.1 tells us that these sets of mappings are all isometries:

1. Mρ : z → ρz, for ρ > 0. In E+, this mapping would be a similarity

transformation when ρ ≠ 1, not an isometry. In ℍ, however, this mapping

is an isometry for all ρ > 0.

2. τu : z → z+ u, for u ∈ R. Thus, all horizontally oriented translations are

isometries of ℍ.

3. Ir : z → −r
z/r  for r > 0. This operation is called inversion through the

circle of radius r, center 0 in ℂ. However, it is also inversion through the

upper semicircle in ℍ de�ned by S r
0 = {z ∈ H : z = r}. In other words,

S r
0 = {x+ iy : x2 + y2 = r, y > 0}. In subsequent work, we shall also

deal with upper semicircles of radius r and center u ∈ R, which we denote

by S r
u. Note that S r

u = τu(S r
0) and S r

0 =Mr(S 1
0).

These special isometries generate all the isometries in Sℍ through composition. In

fact, if c ≠ 0, then by long division we obtain ∣ ∣



hence f = τa/c°M1/c2°I1°τd/c. While if c = 0, then

Since c = 0, ad− bc = 1 reduces to ad = 1, and we have

Thus, f = Ma2°τb/a.

6.3.1.2 Geodesics

A geodesic in ℍ, connecting two points z1 and z2, is a (piecewise) smooth curve 

γ(t) = x(t) + iy(t) for a ≤ t ≤ b that satis�es γ(a) = z1, γ(b) = z2, and which

has minimum length ℓ(γ). We shall now prove that, in E+, these geodesics lie

along vertical rays or semicircles.

Theorem 6.3.3.  The geodesics in ℍ lie along the following two types of curves in

E+: (1) vertical rays Ru emanating from ℝ: 

Ru = {u+ iy : y > 0, fixedu ∈ R}, or (2) open semicircles S r
u centered on ℝ:

S r
u = {x+ iy : (x− u)2 + y2 = r2, y > 0, fixedu ∈ R, r > 0}.

Proof. First, we consider z1 = iy1 and z2 = iy2, choosing subscripts so that 

y2 > y1 > 0. For a smooth curve γ(t) = x(t) + iy(t) satisfying γ(a) = y1 and 

γ(b) = y2, we have

Moreover, this lower bound of ln(y2/y1) is realized for 

γ(t) = [y1 + (y2 − y1)t]i for 0 ≤ t ≤ 1. Therefore, this function γ is a geodesic

az+b
cz+d

= a
c
+ b−da/c

cz+d

= a
c
+ 1

c2
−1

z+d/c

az+b
d

= a
d
z+ b

d

f(z) = a2(z+ b/a)

ℓ(γ) = ∫
b

a

√x′(t)2 + y′(t)2

y(t)
dt

≥ ∫
b

a

y′(t)

y(t)
dt

= ln(y2/y1)



∎

in ℍ, and clearly it lies on the ray R0. The minimum property also extends to the

class of all continuous, piecewise smooth curves, by splitting integrals over [a,b]

into �nite sums of integrals. Since the horizontal translation τu is an isometry,

conjugation with τu implies that geodesics also lie along each vertical ray Ru.

Second, we consider two points z1 ≠ z2 on the open semicircle S 1
0 , having 

arg(z2) = θ2 > θ1 = arg(z1). The isometry f(z) = (z+ 1)/(−z+ 1) maps S 1
0

to R0, with iy2 = f(z2), iy1 = f(z1), and y2 > y1. Given a geodesic 

γ(t) = i[(y1 + (y2 − y1)t] for 0 ≤ t ≤ 1, connecting iy1 and iy2 on R0, we

apply the isometry f−1 to obtain f−1°γ as a geodesic on S 1
0  connecting z1 and

z2. Thus, S 1
0  contains geodesics in ℍ. Since the isometry Mr maps S 1

0  to S r
0  it

follows that S r
0  contains geodesics in ℍ. Finally, since the isometry τu maps S r

0  to

S r
u, it follows that S r

u contains geodesics in ℍ.

Remark 6.3.4.  The distance d(z1, z1) between two points z1, z2 ∈ H is de�ned to

be the length of a geodesic that connects z1 and z2. For example, we found above

that d(x+ iy1,x+ iy2) = ln(y2/y1) for y2 > y1 > 0. In general, for 

x+ iy1,x+ iy2 ∈ H, we have d(x+ iy1,x+ iy2) = | ln(y2/y1)|. It is

important to note that |ln(y2/y1)| → ∞ if either y1 → 0 or y2 → 0.

Consequently, the real line ℝ is a line at in�nity for all points in ℍ.

There is a distance formula for all z,w ∈ H, given by

(6.22)

but we will not need it. Interested readers will �nd a proof of (6.22) in Katok [16,

Theorem 1.2.6, p. 6].

For simplicity, in the rest of the paper, we shall refer to rays of type Ru and

open semicircles of type S r
u as geodesics. Strictly speaking, they contain

geodesics, but there is little chance of confusion and our language is more

straightforward if we simply call them geodesics as well. These geodesics in ℍ
can be interpreted as a model for the unde�ned term lines referred to in postulates

of geometry. In fact, these geodesics do satisfy the �rst four of Euclid's postulates.

However, they violate the notion of Euclidean parallelism. For example, in the

image at the top of Figure 6.10, the two geodesics on the left intersect at a point.

d(z,w) = ln |z−w|+|z−w|
|z−w|−|z−w|
¯
¯



Yet, they fail to intersect the vertical geodesic on the right of the image. This

situation violates the uniqueness of a parallel line, through a point not on a line,

required in Euclidean geometry.

Returning to the artworks in Figure 6.9, it is interesting that parts of these

designs correspond to geodesics. On the top of Figure 6.10 we have shown that

geodesics of both types, S r
u and Ru, are evident within the design shown at the

bottom of Figure 6.9. Parts of the other two designs also correspond to these types

of geodesics. For instance, on the bottom right image in Figure 6.10 we have

shown how a part of the middle design in Figure 6.9 corresponds to both types of

geodesics in ℍ.

FIGURE 6.10
Top: Four geodesics, drawn in yellow over one of our hyperbolic designs. The two intersecting geodesics

on the left are of types Ru and S r
u. The two disjoint geodesics on the right are also of types Ru and S r

u.

Bottom Left: Portion of the same hyperbolic design that contains horocycles. Bottom Middle: Yellow

circles indicating some of these horocycles. These horocycles are orthogonal to geodesics. Bottom Right:

Yellow semicircle and green vertical line indicating geodesics on the middle design in Figure 6.9.

The images at the bottom of Figure 6.10 also contain geometric objects

related to geodesics in ℍ. These objects are circles that are tangent to ℝ at one

point and have all other points lying in ℍ. To be speci�c, for u ∈ R and r > 0, a

horocycle Hr(u) is de�ned by

{



□

so in E+ it is a circle with center (u, r) ∈ R2, and radius r, but omitting the point 

(u, 0) on the x-axis. These horocycles are not geodesics. However, we will now

discuss how the family of all horocycles are orthogonal curves in ℍ for the family

of all geodesics.

6.3.1.3 Angles and Conformality in ℍ, Horocycles and Geodesics

An angle in ℍ is de�ned to be an angle between tangent vectors of two curves

meeting at a point. The following theorem shows that these angles are the same in

both ℍ and E+.

Theorem 6.3.5.  Let θℍ and θE+  be the angles between two curves at some

intersection point in ℍ and E+, respectively. Then, θH = θE+ .

Proof. We can write the in�nitesimal quadratic form ds2 = (dx2 + dy2)/y2 as

where ⟨[dx, dy], [dx, dy]⟩E+  stands for the standard inner product of the vector of

differentials [dx,dy] with itself, and ∥[dx, dy]∥2
H

 is our notation for ds2 thought of

as a quadratic form of the vector [dx,dy]. The inner product ⟨[dx, dy], [dx̃, dỹ]⟩
H

corresponding to this quadratic form is then

Consequently, cos θH satis�es

Thus, we must have θH = θ+
E

.

Hr(u) = {x+ iy : (x− u)2 + (y− r)2 = r2, y > 0}

ds2 =
⟨[dx,dy],[dx,dy]⟩

E+

y2

= ∥[dx, dy]∥2
H

⟨[dx, dy], [dx̃, dỹ]⟩
H
= dx dx̃+dy dỹ

y2

cos θH =
⟨[dx,dy],[dx̃,dỹ]⟩

H

∥[dx,dy]∥H ∥[dx̃,dỹ]∥H

= dx dx̃+dy dỹ

√dx2+dy2 √dx̃2+dỹ2

= cos θE+



□

Since angles in ℍ and E+ always correspond to angles between tangent

vectors, we have proved that angles in the two geometries are always the same.

The two geometries are said to be conformal.

Corollary 6.3.6.  The isometries in Sℍ preserve angles in ℍ.

Proof. If f(z) = (az+ b) / (cz+ d) ∈ SH, then f ′(z) = 1/|cz+ d|2 ≠ 0.

Therefore, f is a conformal mapping on E+ by [4, Theorem 3]. Hence, Theorem

6.3.5 above implies that f is a conformal mapping on ℍ.

This corollary can also be proved using the identity

relating inner products and quadratic forms, and the fact that an isometry

preserves the quadratic form ds2. However, our proof highlights the relation

between the geometries of E+ and ℍ.

We now return to the concept of horocycles in ℍ, and how they are illustrated

in the designs shown in Figure 6.9. The simplest type of horocycles are the sets of

form, {t+ iv : t ∈ R}, parameterized by varying iv with v > 0. These sets are

horizontal lines in E+, but in ℍ they are not geodesics. Each geodesic ray Ru, for 

u ∈ R, lies orthogonal in E+ at each of its points to one of these horizontal lines,

and therefore each geodesic ray Ru also lies orthogonal in ℍ at each of its points

to one of these horocycles {t+ iv, t ∈ R}.

The second type of horocycles are those that lie orthogonal to points of open

semicircle geodesics. The isometry Ir(z) = −r2/z maps the geodesic ray R0 to

itself (with ri held �xed), and maps the geodesic ray R−r to the open semicircular

geodesic S
r/2
r/2 . The horocycles for R−r, expressed as {t+ ryi : t ∈ R} for each 

y > 0, are mapped by Ir to sets of the form {w ∈ H : w− r
2y i

2
= ( r

2y )
2
},

which are circles in E+ except for the one point 0 + 0i ∉ H. By Corollary 6.3.6,

these horocycles are orthogonal to the open semicircular geodesic S
r/2
r/2  at all of

its points. They are circles in E+ that are tangent to the point (0, 0), and all their

points excepting (0, 0) lie in ℍ. Conjugating with horizontal translation τu for any

�xed u ∈ R, we �nd that the horocycles for all open semicircular geodesics in ℍ
are circles in E+ except for one point that is tangent to ℝ. Since these horocycles

2⟨v,w⟩ = ∥v + v∥2 − ∥v∥2 − ∥w∥2∣ ∣



are all tangent to ℝ at the same point u, with all radii r > 0, it follows that each

family of horocycles is also orthogonal to the geodesic ray Ru at each of its

points. On the bottom left and bottom middle of Figure 6.10, we illustrate a

collection of such horocycles in one of our designs. The geodesics drawn on the

design at the top of this �gure are orthogonal at each of their points to such

horocycles. On the bottom right of Figure 6.10, we show a part of the middle

design in Figure 6.9 that exhibits both horocycles and geodesics.

Creating designs with hyperbolic symmetry

Our method for creating designs with hyperbolic symmetries is similar to our

method for Euclidean symmetries. We symmetrize a given function f with domain

ℍ. The symmetries will be a subgroup of Sℍ. We cannot use Sℍ itself because the

only functions on ℍ, symmetric with respect to all the transformations in Sℍ, are

constant functions. Following Farris [9], we will use the subgroup Γ known as the

modular group. The modular group Γ is de�ned as

(6.23)

Note that jn−mk is the determinant of the matrix ( ) of coef�cients of 

f(z) = jz+k

mz+n
. The set Γ is a group because composition of two members 

f(z) = jz+k

mz+n
 and g(z) = j′z+k′

m′z+n′  satis�es

which corresponds to multiplication of the matrices of coef�cients of f and g:

and we know that determinants of matrices respect multiplication. So the

determinants of each of the matrices in the equation above satisfy 1 ⋅ 1 = 1,

hence f°g is a member of Γ. Furthermore, f−1(z) = nz−k
−mz+j

, and therefore 

f−1 ∈ Γ .

Γ = {f(z) = jz+k

mz+n
: j, k,m,n ∈ Z, jn−mk = 1}

j k

m n

(f°g)(z) = (jj′+km′)z+(jk′+kn′)
(mj′+nm′)z+(mk′+nn′)

( )( ) = ( )
j k

m n

j′ k′

m′ n′

jj′ + km′ jk′ + kn′

mj′ + nm′ mk′ + nn′



Remark 6.3.7.  The group Sℍ is isomorphic to a subgroup of the matrix factor

group:

where SL(2,R) is the special linear group consisting of all 2 by 2 matrices over

ℝ having determinant 1, and Id is the 2 by 2 identity matrix. The group 

PSL(2,R) is related to the projective geometry of all lines through the origin [5,

p. 179]. It is called the projective special linear group over ℝ. The group Γ is

isomorphic to PSL(2,Z) = SL(2,Z) / {Id,−Id}, where SL(2,Z) consists of

matrices in SL(2,R) with integer coef�cients.

The special isometries, Mr, τu, Ir, mostly are not members of Γ due to the

requirement that their coef�cients belong to ℤ. In fact, the special isometries that

belong to Γ are

1. Translations: T n : z → z+ n, for n ∈ Z. The unit-translation T1 will be

written as just T. These translations obey the group operation in Γ: 

T m°T n = T m+n for all m,n ∈ Z.

2. Inversion: I : z → −1/z

Compositions with these isometries are suf�cient to generate all the isometries in

Γ.

Theorem 6.3.8.  The unit translation T and inversion I  generate Γ. More

precisely, if f ∈ Γ , then f can be written as some interlaced composition of I

with various translations Tp:

(6.24)

Proof. Let f(z) = jz+k

mz+n
 be an arbitrary function in Γ. First, suppose m = 0.

Then f(z) = (j/n)z+ (k/n) and we have jn = 1. Consequently, (j,n) = (1, 1)
or (−1,−1). Hence, either f(z) = z+ k or f(z) = z− k, and so f = T k or 

PSL(2,R) = SL(2,R) / {Id,−Id}

f = (
L

∏
ℓ=1

T pℓI)T p0



□

f = T −k. Now, if m ≠ 0, we reduce to the �rst case as follows. We have, where 

ℓ ∈ Z,

If |j| > |m|, the division algorithm gives j = mq + r with 0 ≤ |r| < |m|. Hence 

T −qf(z) =
rz+(k+ℓn)
mz+n

. Then apply I  to obtain IT −qf(z) = −mz−n
rz+(k+ℓn)

 with 

|r| < |m|. Applying powers of T, followed by I , eventually results in a

remainder r = 0 as coef�cient of z in the denominator. That is, we arrive at T p0

for some p0 ∈ Z. Thus, we obtain

Solving for f, we obtain the result in Equation (6.24).

The symmetrization fS of a function f, de�ned on ℍ, can be done as follows

(6.25)

Since Γ is a group, the function fS is guaranteed to satisfy the symmetry condition

f(g(z)) = f(z) for all g ∈ Γ . In practice, of course, we can typically only create

partial sums of the in�nite series for fS. Nevertheless, as shown above, our

designs using such partial sums display many important features of the geometry

of ℍ.

To create designs by domain coloring of fS(z), we need to express the series

de�ning fS in a more convenient form. To do that, we observe that the condition 

jn−mk = 1 can be rewritten as

(6.26)

Equation (6.26) is a famous one from Number Theory. It is equivalent to the

integers j and k being relatively prime, i.e., their greatest common divisor is 1,

If(z) = −mz−n
jz+k

, T ℓf(z) = (j+ℓm)z+(k+ℓn)
mz+n

(
L

∏
s=1

IT −qs)f = T p0

fS(z) =∑
g∈Γ

f(g(z))

nj+ (−m)k = 1



which we write as gcd(j, k) = 1. The numbers n and −m are called Bézout

coef�cients for j and k, and they ensure that Equation (6.26) holds. Because

will hold if j and k are perturbed by j = ℓm and k = ℓn for ℓ ∈ Z, these Bézout

coef�cients determine all transformations g having the form

where (n, −m) is a single pair of Bézout coef�cients for (j, k). Therefore, we

will assume that the initial function f has period 1 in the x-variable, and write fS

as

(6.27)

To ef�ciently calculate the series in Equation (6.27), we use a recursive, tree-

based method for computing relatively prime pairs of positive integers and

associated pairs of Bézout coef�cients. Randall [22] proves that pairs of relatively

prime positive integers can be computed using F(j, k) = (2j+ k, j) in the

following recursive formulas:

starting from either (2, 1) or (3, 1) as initial pair. This recursive calculation

generates two distinct trinary trees with roots (2, 1) and (3, 1), as illustrated in

Figure 6.11. We have found that there is a similar recursive computation for

�nding associated Bézout coef�cients that works for both of the nodes (j, k) in
these trinary trees. In [14], we show that using G(u, v) = (v,u− 2v) and the

recursive equations

det( ) = 1
j k

m n

g(z) = ℓ + jz+k

mz+n

fS(z) = ∑
gcd(j,k)=1

f( jz+k

mz+n
)

F(j, k) = (2j+ k, j)

F(k, j) = (2k+ j, k)

F(j, −k) = (2j− k, j)

( ) ( )



FIGURE 6.11

Left: Trinary tree of relatively prime positive integers generated by (2, 1). Right: Trinary tree of relatively

prime positive integers generated by (3, 1). Middle: Trinary tree of Bézout coef�cients generated by (0, 1),
corresponding to both of the other trees. All trees are shown to a depth of 2.

starting from (u, v) = (0, 1), generates Bézout coef�cients (u, v) satisfying 

uj+ vk = 1 for each node (j, k) in both trees of relatively prime positive

integers. See the tree in the middle of Figure 6.11. From these Bézout

coef�cients, and their associated pairs (j, k) of relatively prime positive integers,

we obtain transformations g(z) = jz+k

mz+n
∈ Γ .

Based on this recursive, tree-based organization of elements of Γ we compute

symmetrized designs by the following procedure:

Hyperbolic Symmetrized Design Procedure

1. Start with a function f(z) having period 1 in x. It corresponds to 

(j, k) = (1, 0) and (m,n) = (0, 1). Then add f(−1/z), corresponding to 

(j, k) = (0,−1), and (m,n) = (1, 0). For this step, we have 

f(z) + f(−1/z).

2. Run through the trinary trees of relatively prime integers (j, k), starting at

the roots (2, 1) and (3, 1). For each pair (j, k), and associated Bézout

coef�cients (m, −n) at the corresponding node in the Bézout tree, add the

terms f( jz+k

mz+n
) and f( −jz+k

mz−n
) to the terms already summed.

G(u, v) = (v,u− 2v)

G(v,u) = (u, v− 2u)

G(u, −v) = (−v,u+ 2v),



3. After adding a large number of terms—we typically used about 400 terms

—create a symmetrized design using the Domain Coloring Procedure in

Figure 6.2.

The designs in Figure 6.9 were all created using this method, starting with various

functions f. For example, the design in the middle of Figure 6.9 was created using

An animation illustrating the steps in the method above, in the construction of the

Blugold Fireworks design, can be found at the link given in [15].

6.3.1.4 Rotational Symmetry and Tessellation of ℍ
The designs we have created relate to a number of other additional aspects of the

geometry of ℍ. For example, on the left of Figure 6.12 we show a clip from the

third design in Figure 6.9. Overlayed on this clip is a circle surrounding a point of

3-fold rotational symmetry in ℍ. It is important to note that this 3-fold rotational

symmetry exists within ℍ and not within E+. To see that we do have 3-fold

symmetry in ℍ, in contrast to what we are used to seeing with Euclidean

geometry, we need to discuss some further ideas from hyperbolic geometry. We

�rst begin by describing the signi�cance of the yellow circle on the left of Figure

6.12. Its center in E+ is marked by a blue dot. This circle is the locus of points

that are a �xed distance ρ from the yellow dot in ℍ. To be precise, we have the

following theorem.

Theorem 6.3.9.  For �xed ρ > 0, the locus of points Cρ(x+ iy) that are distance

ρ in ℍ from a �xed point x+ iy is equal to the circle in E+ with center 

x+ iy cosh ρ and radius sinh ρ. (See Figure 6.12.)

Proof. Begin by supposing that the �xed point is i. Using the distance formula 

d(iy1, iy2) = | ln(y2/y1)|, the two points ieρ and ie−ρ are both distance ρ from i

in ℍ. So, ieρ, ie−ρ ∈ Cρ(i). The midpoint on the i-axis in E+ between these two

points is i cosh ρ, and it is Euclidean distance sinh ρ from both points. Now, map 

Cρ(i) in ℍ to Cρ(0) in the unit disc D, using the isometry 

f(z) = (iz+ 1) / (z+ i) from ℍ to D described below in Section 6.3.1.5. As

discussed in that same section, the metric differential dsD has rotational

invariance about 0, and therefore Cρ(0) is a Euclidean circle about 0 (although its

f(x+ iy) = 2i y cos(2πx) + 2y sin(2πy/3)



□

radius is not equal to ρ). Then map Cρ(0) back to Cρ(i) in ℍ using the isometry 

f−1(z) = (z+ i) / (iz+ i) from D to ℍ. Because f−1(z) is a linear fractional

transformation, it maps Euclidean circles to Euclidean circles, hence Cρ(i) is a

circle in E+. Since we found its center and radius must be i cosh ρ and sinh ρ, we

have proved the result for �xed point i. Conjugating with TxMy, we get the result

for �xed point x+ iy.

FIGURE 6.12

Left: Illustration of circular region in ℍ with center at point of 3-fold rotational symmetry in ℍ. Right:

Hyperbolic circle of radius ρ centered at the point x+ iy ∈ H, and its Euclidean center and radius in E+.

The yellow dot, located within a triangular region with curved edges on the

left of Figure 6.12, is a center for a 3-fold rotation in ℍ. It is located at 

1/2 + (√3/6)i. Before we show that it is a center for a 3-fold rotation in ℍ, we

show that the point z1 = 1/2 + (√3/2)i is also a center for a 3-fold rotation in

ℍ. This point z1 is marked by a green dot on the graph on the top of Figure 6.13.

It is related to a tessellation of ℍ that we will discuss shortly. For now, observe

that it lies at a vertex of a region labeled TI  in the tessellation. We will show

that z1 is a �xed point for TI , and that TI  has order 3 in the group Γ. We have

so z1 is a �xed point for TI . Moreover, we have

TI (z1) =
−1

1/2+(√3/2)i
+ 1 = 1/2 + (√3/2)i



□

which shows that TI  has order 3 in Γ.

We now turn to z2 = 1/2 + (√3/6)i. We observe that z2 = IT −2z1. But, 

IT −2 is an isometry. Hence we can apply the following Lemma:

Lemma 6.3.10.  Suppose z is a �xed point for g ∈ SH, and that g has �nite order

k. If f ∈ SH, then f°g°f−1 has �xed point f(z) and order k.

Proof. We �nd that (f°g°f−1)°f(z) = (f°g)(z) = f(z) so f(z) is a �xed point.

Moreover, (f°g°f−1)
j
= f°gj°f−1 for any integer j ≥ 0. When j = k, we have 

gk = Id, so (f°g°f−1)
k
= f°f−1 = Id. Also, when j < k, if f°gj°f−1 = Id,

then we would have gj = f−1°f = Id and that would contradict k being the

order of g. Consequently, f°g°f−1 has order k.

Applying the Lemma, we see that 1/2 + (√3/6)i = IT −2z1 is a �xed point

for h = IT −2°TI°(IT −2)
−1

 and h has order 3.

Returning to the left of Figure 6.12, the signi�cance of the yellow dot and the

circle enclosing it can now be explained in terms of rotation in ℍ. Since the

yellow dot corresponds to the �xed point z2 for the isometry h of order 3, it is

analogous to a 3-fold rotation in E+. In fact, for points suf�ciently close to z2, the

metric differential ds = dsE+/y is approximately equal to a multiple of dsE+ .

Consequently, the isometry h is acting like a 3-fold rotation in E+ in the limit of

approaching z2. The enlargement of parts of the design as one rotates towards the

vertical corresponds to what we see in E+. By Theorem 6.3.1, we know that area

is preserved by isometries. Hence, in ℍ, the upper arm of the �gure along the

vertical direction, has exactly the same area as each of the two lower arms of the

�gure (extending out from the edges of the curved triangle).

There are also many other centers of 3-fold rotation in ℍ that are illustrated in

this design. If we let zk = IT kz1 for k = −3,−4,−5,…, then Lemma 6.3.10

implies that we have centers of 3-fold rotations at each zk. Since each point 

T kz1 = z1 + k lies along a horizontal horocycle in E+, applying the inversion I

maps them to a circular horocycle in E+. We can see some of these points zk in

the image on the bottom right of Figure 6.13. They are lying above the blue curve,

extending downwards towards the bottom left corner, which is a slightly lower

TI (z) = z−1
z

, (TI )2(z) = −1
z−1 , (TI )3(z) = z



horocycle belonging to the same family of horocycles tangent to 0 in ℝ. Finally,

let zk = TIT kz1 for k = 2, 3, 4,…. This produces another collection of centers

of 3-fold rotations that are on a second horocycle that moves away to the right of

z1 towards 1 in ℝ. Some of these centers are visible in the �gure as well. For all

of these centers, we observe repetitions of the curved triangle containing z1 but at

smaller scale. They are only smaller scale in E+. In ℍ, isometries preserve area,

so these curved triangles all have the same area in ℍ as the one containing z1, i.e.,

they are of the same scale in ℍ.

In addition to 3-fold centers, there are numerous centers of 2-fold rotational

symmetries in ℍ. The point z = i is a �xed point for I  which has order 2. It is

shown as a red dot in the tessellation at the top of Figure 6.13. Applying

isometries to i we obtain sequences of 2-fold centers lying along horocycles.

These centers of symmetry are plotted as red dots on the image shown on the

right of Figure 6.13.

We have discussed the relation between our design and the tessellation shown

at the top of Figure 6.13. We shall now discuss this tessellation in more detail.

Equation (6.24) shows how any f ∈ Γ  can be written in terms of powers of T

interlaced with I . Starting from a fundamental domain, indicated by the shaded

region F  in the �gure, and applying compositions of I  with powers of T

generates this tessellation of ℍ. In fact, the construction of the tessellation

reproduces all the possible combinations of powers of T interlaced with I  in

Equation (6.24). We now make all of these ideas precise with the following

theorem.



FIGURE 6.13

Top: Tessellation of ℍ generated by T and I . Regions are labeled by transformations that produce them

from shaded region F . Bottom Left: Location of center of 3-fold symmetry (yellow dot). This center lies at

the intersection of three geodesics, shown in blue and orange in this image and in the tessellation above it.

Bottom Right: Centers of 3-fold (yellow dots) and 2-fold (red dots) symmetries located along horocycles.

Theorem 6.3.11.  The modular group Γ generates a tessellation of ℍ via

(6.28)

where F = {z ∈ H : |z| ≥ 1, |Re z| ≤ 1/2}, and every pair of regions f(F)
and g(F) for f ≠ g have disjoint interiors.

Proof. First, we show that H = ∪
f∈Γ

f(F). Let z be an arbitrary element in ℍ. We

will show that there is a g(z) = jz+k

mz+n
∈ Γ  for which w = g(z) ∈ F . Then we

will have f(w) = z for f = g−1, which will establish the decomposition of F  in

Equation (6.28). Our main tool is

H = ∪
f∈Γ

f(F)



□

(6.29)

which was shown for all isometries at the beginning of the proof of Theorem

6.3.1. Since there are only �nitely many m,n ∈ Z for which |mz+ n| ≤ 1, it

follows from (6.29) that there are only �nitely many g ∈ Γ  for which 

Im g(z) ≥ Im z. Therefore, we can choose a g ∈ Γ  for which Im g(z) is

maximal. If |Re g(z)| > 1/2, then we may compose g with some power of T so

that |Re g(z)| ≤ 1/2. Therefore, without loss of generality, we assume that 

|Re g(z)| ≤ 1/2. Then we must have |g(z)| ≥ 1, because if |g(z)| < 1 we would

have 0 < Im g(z) < 1, hence Im [Ig(z)] = Im[ −1
g(z) ] > Im g(z) and that

contradicts the maximality of Im g(z). Thus, |Re g(z)| ≤ 1/2 and |g(z)| ≥ 1, and

so w = g(z) ∈ F .

Second, we prove that f(F) and g(F) have disjoint interiors when f ≠ g.

But this is equivalent to F  and g(F) having disjoint interiors for every 

g(z) =
jz+k

mz+n
∈ Γ  not equal to Id. Suppose �rst that m = 0. Then g(z) = z± k,

for k ≠ 0, hence F  and g(F) have disjoint interiors. Now, suppose m ≠ 0. Let z

be in the interior of F . Hence |Re z| < 1/2 and |z| > 1. We then have

Since m ≠ 0, the strict lower bound (|m| − |n|)2 + mn  is a positive integer.

Consequently, |mz+ n|2 > 1 and so Im g(z) < Im z. Since g−1(w) = nw−k
−mw+j

,

if w = g(z) were in the interior of F , then the same argument yields 

Im g−1(w) < Imw. Hence Im z < Im g(z), and this contradiction shows that the

interiors of F  and g(F) are disjoint.

A remarkable feature of the animation in [15] is how new features are added

near the bottom of the screen that clearly correspond to the bottom portions of the

tessellation shown in Figure 6.13.

6.3.1.5 Mappings to the Disk D

We have emphasized the hyperbolic upper half-plane as a model for non-

Euclidean geometry. Another model, which is equivalent to ℍ, uses the unit disc 

D = {z ∈ C : |z| < 1} as underlying set of points. Needham [20, pp. 317–318]

Im g(z) = Im z / |mz+ n|2

|mz+ n|2 = m2 z 2 + 2(Re z)mn+ n2

> m2 + n2 − mn = (|m| − |n|)2 + mn∣ ∣ ∣ ∣ ∣ ∣∣ ∣



shows that the map f(z) = iz+1
z+i

 is a conformal map from ℍ to D, and it induces

a metric differential dsD on D given by

(6.30)

where ds2
E
= dx2 + dy2 is the Euclidean metric differential for D as a subset of

the Euclidean plane E. With this metric for D, the map f : H→ D is an isometry.

Consequently, it maps geodesics in ℍ to geodesics in D. The geodesics in D lie

on either arcs of circles that intersect the unit circle at right angles, or diameters in

D (which also intersect the unit circle at right angles). An excellent treatment of

this disc model for non-Euclidean geometry can be found in Krantz [17]. More

details about the geometry, including tessellations of D, are in Climenhaga and

Kotek [5].

There is an abundance of artistic designs in D that have already been created.

The designs by Escher, using curved polygonal tessellations of D are surely the

most famous [8]. The mathematics of creating curved polygonal tessellations of D

was worked out by Coxeter [6]. An entertaining app for creating your own

designs, using Coxeter's tessellations of D, can be found at the link in [3]. In

Figure 6.14 we show two designs we created with this app. Design 1 used one

of our Waratah �ower rosettes as source image. It clearly retains the original 6-

fold rotational symmetry of the original rosette. More importantly, from an

artistic standpoint, it contains an ambiguity of �gure-ground relations. If you

view Design 1 from a far distance, the design features a star with six arms

emanating from the central region of the design. However, when you move up

close, this star fades into the background and six green/red �ower-like regions

closer to the circular boundary of the disc are more prominent.

ds2
D
= 2

1−|z|2
ds2

E



FIGURE 6.14
Two designs created with [3]. Design 2 includes tessellating curves, shown in white. Above Design 2

are two zooms showing 3-fold symmetries in the hyperbolic disc D.

Design 2 used one of our 6-fold symmetric wallpaper designs as source

image. This latter design is particularly interesting in that it includes curved

polygons (shown in white) that form a tessellation of D. The app [3] created this

design by loading a clip of the source image into a central curved hexagon, shown

in white at the center of Design 2. During the design process, it successively

displays the iteration of isometries of this central, fundamental, hexagonal region

to �ll out the rest of the curved hexagons that are tessellating the disc. As with the

tessellation of ℍ we discussed above, there are centers of 2-fold and 3-fold

symmetries in the completed design. It is easy to spot centers for 2-fold and 3-

fold hyperbolic rotational symmetry near the top and bottom of the image. The 3-

fold centers are located at intersections of the tessellating curves (see the two

zooms on the right of Figure 6.14), just as they occur at such intersections for the

tessellation of ℍ. Notice that the original 6-fold symmetry of the source image is

lost in Design 2, due to the clipping of only a part of the source image within

the central curved hexagon. From an artistic standpoint, we like this symmetry

breakage in Design 2.



It is also an important fact that both 1/(1 − |z|2) and ds2
E
= dx2 + dy2 are

invariant under rotations centered at 0. Since eiθz 2 = 1, we have the invariance

of 1/(1 − |z|2) by rotation by θ, and the invariance of ds2
E

 under rotation holds

because rotation by θ can be expressed as an orthogonal matrix. Since ds2
D

 is the

product of 1/(1 − |z|2) and ds2
E

, it is invariant under rotation about the origin.

This rotational invariance is exhibited near the centers of both Design 1 and

Design 2 in Figure 6.14, where these designs retain the rotational symmetry

about the origin enjoyed by the rosette and wallpaper designs used as their source

images. Similar 3-fold and 2-fold hyperbolic rotational symmetries, and 4-fold

Euclidean rotational symmetry about the origin, are even more clearly evident in

Escher's Circle Limit III woodcut [8] (if one ignores the different colors of the

�shes).

We have also produced images using conformal maps from ℍ to D. For

example, Stein [26, p. 211] shows that log z de�nes a conformal map from the

half-disc {z = x+ iy : |z| < 1, y > 0} ⊂ D to the half-strip 

{w = u+ iv : u < 0, 0 < v < π} ⊂ H. With this idea in mind, we created a

design in D using a multiple of f(z) = log z + log(−z) and Blugold Fireworks

as color map. It is shown in Figure 6.15. This design clearly shows 6-fold

rotational symmetry about the origin in D and re�ection symmetries through six

diameter geodesics. We intend to continue exploring mappings from ℍ to D,

including ones that more fully exploit the isometric equivalence of ℍ and D.

FIGURE 6.15

Design created using log z+ log(−z).

Conclusion

∣ ∣



We have shown a number of symmetric designs generated by the application of

complex analysis to the non-Euclidean geometry of the hyperbolic upper-half

plane and the hyperbolic disc. The history of the mathematics of hyperbolic

geometry is a fascinating one. References for this history include Needham [20]

and Greenberg [12]. Penrose [21, Chap. 2] has some fascinating insights.

Mathematics related to hyperbolic geometry continues right up to the present day,

see e.g., Adams [1].
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One of the most exciting results in the classical complex analysis is the Riemann mapping theorem which says
that, except the whole complex plane, every simply connected plane domain is biholomorphically equivalent to the
unit disc. Thus, the topological property “simply connected” is already suf�cient to describe, up to

biholomorphisms, a large class of plane domains. On the other hand, the Euclidean ball and the bidisc in ℂ2 are
topologically equivalent simply connected domains but they are not biholomorphic. This observation, which
(under some additional assumptions) was made by H. Poincaré as early as at the end of 19th century, shows that
even inside the class of bounded simply connected domains there is no single model (up to biholomorphisms) as it
is in the plane case. To make the situation at that time more clear let us quote Carathéodory who wrote: “Die

Ü
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Übertragung der Riemannschen Theorie auf Funktionen von mehreren Veränderlichen ist bisher aber nicht
gelungen: Es liegen nur ganz vereinzelte und ziemlich dürftige Versuche vor, aus denen man hauptsächlich das
eine ersehen kann, daß nämlich die Verhältnisse hier ganz anders liegen, so daß man nicht einmal recht weiß, wo
man den Spaten anzusetzen hat, um die vermutete Goldader zu �nden.”

If two domains G,D ⊂ Cn are biholomorphically equivalent, then they have the same bounded holomorphic
functions, the same plurisubharmonic functions with a certain singularity, and the same amount of analytic discs

(up to a biholomorphic map). Based on this observation it is important to associate with domains in ℂn tractable
objects that are invariant under biholomorphic mappings. Provided that these objects are suf�ciently concrete, one
can hope to be able to decide, at least in principle, whether two given domains are biholomorphically distinct. We
say that a system of functions (dD)D⊂Cn  a domain,n∈N, dD : D × D → R+, is a Schwarz-Pick system (or a
holomorphically contractible system) of functions if it satis�es the following two conditions:

a) dD equals the Poincaré distance of the unit disc;

b) if D ⊂ Cn, G ⊂ Cm are domains and F : D → G a holomorphic mapping, then 
dG(F(z),F(w)) ≤ dD(z,w), z,w ∈ D, i.e. F operates as an contraction.

An object of this kind was introduced by C. Carathéodory in the thirties of the last century using the set of
bounded holomorphic functions. In fact he de�ned a family of pseudodistances on domains via a “generalized”
Schwarz Lemma. Thus, in particular, biholomorphic mappings operate as isometries. For such objects the name
“invariant pseudodistances” has become popular. With the help of this pseudodistance he was able to give a simple

proof of the fact that the ball and the bidisc in ℂ2 are not holomorphically equivalent (without the additional
assumption which was needed in Poincaré's argument)(see Section 7.1.3). Moreover, N. Kritikos exploiting the
Carathéodory distance has shown that every biholomorphic mapping f from the domain 
D := {z ∈ C2 : z1 + z2 < 1} onto itself has the origin as a �xed point, i.e., f(0) = 0, (see Section 7.1.9).

It turns out that this family is the smallest possible Schwarz-Pick system of functions but also that it is suffers
from some unpleasant properties which makes its discussion more dif�cult. For example: (1) the topology induced
by the Carathéodory distance on a domain does not necessarily coincide with the standard topology of that domain,
if the domain is unbounded; (2) the Carathéodory distance is, in general, not an inner distance which causes (at
least at the moment) two different notions of “completeness”, even for a bounded domain (see Section 7.1.7).

Discussing the family of plurisubharmonic function has led to the Green function which is not a
pseudodistance but keeps the property that holomorphic mappings act as contractions with respect to the Green
functions. Although the Green function plays an important role in modern pluripotential theory, we will only
mention this family during the article but omit a detailed discussion (see Chapter 7.4).

Besides using families of functions to associate (via an extremal problem) tractable objects with domains in ℂn,
one can consider sets of analytic discs as new biholomorphic invariants. This idea is due to S. Kobayashi. While
the family of Carathéodory pseudodistances is the smallest Schwarz-Pick system, the family of Kobayashi
pseudodistances is the greatest one. Moreover, the dif�culties for the Carathéodory distance mentioned above does
not appear for the Kobayashi distance.

For certain types of domains (convex domains or strongly linearly convex domains) it turned out that the
Carathéodory and the Kobayashi pseudodistance coincide, a deep result which is due L. Lempert. Whether this
equality would imply the convexity of the discussed domain was a long standing problem which only recently had
a negative answer. At the end of Chapter 7.3 we will shortly present and discuss this example.

Moreover, all these objects admit in�nitesimal versions associating to any “tangent vector” a speci�c length
contractible under holomorphic mappings.

The main goal of this article is to introduce these concepts of “holomorphically contractible families of

functions” for domains in ℂn and to emphasize how to apply them.
Both authors thank S. Krantz for his kind invitation to write this survey.

7.1 The Carathéodory Pseudodistance

7.1.1 The hyperbolic geometry of the unit disc D∣ ∣ ∣ ∣



The unit planar disc D := {λ ∈ C : |λ| < 1} is the classical model domain for many problems of Complex
Analysis. Recall that any simply connected domain whose boundary consists of at least two different points is
biholomorphic to D (Riemann theorem, cf. e.g. [Con78]). For λ′,λ′′ ∈ D let

p(λ′,λ′′) : & =
1

2
log

1 + m(λ′,λ′′)

1 − m(λ′,λ′′)
= tanh−1(m(λ′,λ′′)) ≥ m(λ′,λ′′), where m(λ′,λ′′) : & =

λ′ − λ′′

1 − λ′λ′′
,

Remark 7.1.1.

Lemma 7.1.2  (Schwarz–Pick lemma, cf. [Rud74]) Let f ∈ O(D, D) 1. Then:

Remark 7.1.3.

(1)O(X,Y ) denotes the space of all holomorphic mappings f : X → Y ; O(X) := O(X, C).

To see more geometric properties of the space (D, p) we apply the following procedure (cf. [Rin61]), which is
known from metric analysis. Let d ∈ {p, m}. We associate to any curve α : [0, 1] → D (we always assume that
curves are continuous) its d-length Ld(α) ∈ [0, +∞],

∣¯∣One can check that p : D × D → R+ is a distance. It is called the Poincaré (hyperbolic) distance. Moreover, 
m : D × D → [0, 1) is also a distance (the Möbius distance).

(a)

Recall that the group Aut(D) of holomorphic automorphisms of D consists of all mappings of the form 
D∋λ ↦ eiθha(λ) ∈ D, where θ ∈ R, a ∈ D, and ha(λ) := λ−a

1−aλ
. Observe that ha(a) = 0 and h−1

a = h−a.
In particular, the group Aut(D) acts transitively on D.

(b)

¯

The topology generated by p (resp. xsm) on D coincides with the standard Euclidean topology of D and the
metric space (D, p) (resp. (D, m)) is complete.

(c)

lim
λ′≠λ′′,λ′,λ′′→λ

p(λ′,λ′′)
|λ′−λ′′|

= lim
λ′≠λ′′,λ′,λ′′→λ

m(λ′,λ′′)
|λ′−λ′′|

= 1
1−|λ|2 =: 𝛄(λ), λ ∈ D.(d)

p(f(λ′), f(λ′′)) ≤ p(λ′,λ′′), λ′, λ′′ ∈ D, i.e. f is a contraction of the metric space (D, p).(a)

The following statements are equivalent:(b)

f ∈ Aut(D);(i)

p(f(λ′), f(λ′′)) = p(λ′,λ′′), λ′, λ′′ ∈ D, i.e. f is an isometry of the metric space (D, p);(ii)

p(f(λ′
0), f(λ′′

0)) = p(λ′
0,λ′′

0) for some λ′
0, λ′′

0 ∈ D with λ′
0 ≠ λ′′

0 .(iii)

Note that for any a, b ∈ D, a ≠ b there exists a unique h = ha,b ∈ Aut(D) such that h(a) = 0 and 
h(b) ∈ (0, 1).

(a)

For a, b ∈ D, a ≠ b, let αa,b(t) := h−1(th(b)), t ∈ [0, 1], where h := ha,b. Note that αa,b : [0, 1] → D is a
curve, αa,b(0) = a, and αa,b(1) = b. Observe that Ia,b := αa,b([0, 1]) lies on the unique circle Ca,b that passes
through a and b and is orthogonal to T := ∂D (if 0 ∈ Ia,b, then Ca,b is a line through 0).

(b)

One can prove that the p-segment {c ∈ D : p(a, c) + p(c, b) = p(a, b)} coincides with Ia,b.
Indeed, since p is invariant under Aut(D), we may assume that a = 0, b ∈ (0, 1). We have to prove that 

{c ∈ D : p(0, c) + p(c, b) = p(0, b)} = [0, b]. In other words, 1+|c|
1−|c|

1+m(c,b)
1−m(c,b)

= 1+b
1−b

 if and only if c ∈ [0, b].

Direct calculations show that the left hand side is equivalent to |c| ≤ b and |c| = Rec.

(c)

The sets Ca,b ∩ D play in the geometry of (D, p) the role of straight lines. Thus the �fth Euclidean axiom is
not ful�lled in (D, p). Consequently, (D, p) is a model of a non-Euclidean geometry (the Poincaré disc model
or Klein–Beltrami model).

(d)



Note that Ld(α) ≥ d(α(0),α(1)). We say that α is d-recti�able if Ld(α) < +∞. We de�ne 
di : D × D → [0, +∞],

Clearly, di ≥ d. We say that d is inner if di = d.

Remark 7.1.4.  In view of Remark 7.1.1(d) we get:

Moreover, we associate to any piecewise C 1-curve α : [0, 1] → D its γ-length L𝛄(α) := ∫
1

0
𝛄(α(t)) α′(t) dt.

Theorem 7.1.5.  p(a, b) = pi(a, b) = Lp(αa,b), a, b ∈ D, a ≠ b. In particular, p is inner, but m is not inner.
Moreover, Lp(α) = L𝛄(α) for every piecewise C 1 -curve α : [0, 1] → D.

The following proposition shows that the non-Euclidean geometry of (D, p) �ts perfectly with the holomorphic
structure of D.

Proposition 7.1.6.  For any mapping f : D → D the following conditions are equivalent:

7.1.2 The Carathéodory pseudodistance. The general Schwarz–Pick lemma

We are going to extend the functions m and p to arbitrary domains G ⊂ Cn. There are several ways to proceed.
Here, we use the method based on bounded holomorphic functions (this way was the �rst also from the historical
point of view; cf. [Car26], [Car27], [Car28]). For any domain G ⊂ Cn, n ≥ 1, put

A standard Montel argument shows that cG is �nite. It is clear that cG = tanh−1(mG) ≥ mG and (by the

Schwarz–Pick lemma) mD = m and cD = p. Observe that mCn ≡ 0 (by the Liouville theorem). Obviously, we
can always pass from mG to cG or conversely. In the sequel we will use both mG and cG.

We are not going to discuss the in�nitesimal form γG of mG and cG (like γ in §7.1.1) in details. Nevertheless, in

the sequel some proofs will require methods based on γG. Therefore, we de�ne

Since m, p, and γ are invariant under Aut(D), we get

Ld(α) := sup{
N

∑
j=1

d(α(tj−1),α(tj)) : N ∈ N, 0 = t0 < t1 < ⋯ < tN = 1}.

di(λ′,λ′′) : = inf{Ld(α) : α : [0, 1] → D is a curve, λ′ = α(0), λ′′ = α(1)},

λ′,λ′′ ∈ D.

Lp = Lm and therefore pi = mi.
Indeed, by Remark 7.1.1(d), for any compact K ⊂ D and ε > 0 there exists a δ > 0 such that 
0 ≤ p(λ′,λ′′) − m(λ′,λ′′) ≤ ε|λ′ − λ′′| for all λ′,λ′′ ∈ K with |λ′ − λ′′| ≤ δ. In particular, 
Lp(α) ≤ Lm(α) + εL∥ ∥(α) for any curve α : [0, 1] → K. Hence pi ≤ mi.

(a)

A curve α : [0, 1] → D is p-recti�able if and only if α is m recti�able if and only if α is recti�able in the
Euclidean sense. In particular, di is a distance.

(b) ∣ ∣f is a p-isometry;(i)

either f ∈ Aut(D) or f ∈ Aut(D).(ii)̄

mG(z′, z′′) : = sup{m(f(z′), f(z′′)) : f ∈ O(G, D)}, z′, z′′ ∈ G,

cG(z′, z′′) : = sup{p(f(z′), f(z′′)) : f ∈ O(G, D)}, z′, z′′ ∈ G.

𝛄G(z;X) := sup{𝛄(f(z))|f ′(z)X| : f ∈ O(G, D)}, z ∈ G, X ∈ Cn.

( ′ ′′) | ( ′′)| ( ) ( ′) ′ ′′



Applying Montel's theorem, we �nd that for any z′, z′′ ∈ G there exists an f ∈ O(G, D) such that f(z′) = 0, 
|f(z′′)| = mG(z′, z′′). Any such a function f will be called an extremal function for mG(z′, z′′). Since m and p are
distances, the functions mG and cG are pseudodistances; mG is called the Möbius pseudodistance forG; cG is the

Carathéodory pseudodistance forG. As a direct consequence of the de�nitions, we get

Theorem 7.1.7.  (General Schwarz–Pick lemma). For arbitrary domains G ⊂ Cn, D ⊂ Cm and for any
holomorphic mapping F : G → D we have

In particular, if F is biholomorphic, then the equalities hold.

In other words, the systems (mG)G, (cG)G are holomorphically contractible.

Remark 7.1.8.

7.1.3 Carathéodory pseudodistance in balanced domains

One of the natural questions of complex analysis of several variables is to �nd a suf�ciently rich category of
domains G ⊂ Cn for which one may perform some effective calculations/estimates etc. The most natural one is

the category of balanced domains. We say that a domain G ⊂ Cn is balanced if for any z ∈ G and λ ∈ D the point
λz belongs to G.

If G is balanced, then denote by h the Minkowski function of G, h(z) := inf{t > 0 : 1
t
z ∈ G}. Note that

h(λz) = |λ|h(z);
h is upper semicontinuous;
G = Gh = {z ∈ Cn : h(z) < 1}.

mG(z′, z′′) = sup{|f(z′′)| : f ∈ O(G, D), f(z′) = 0}, z′, z′′ ∈ G,

cG(z′, z′′) = sup{p(0, f(z′′)) : f ∈ O(G, D), f(z′) = 0}, z′, z′′ ∈ G,

𝛄G(z;X) = sup{|f ′(z)X| : f ∈ O(G, D), f(z) = 0}, z ∈ G, X ∈ Cn.

mD(F(z′),F(z′′)) ≤ mG(z′, z′′), cD(F(z′),F(z′′)) ≤ cG(z′, z′′), z′, z′′ ∈ G.

Observe that from the point of view of the general Schwarz–Pick lemma the Carathéodory pseudodistance is
minimal in the following sense:
If (dG)G is any system of functions dG : G × G → R, where G runs on all domains in all Cn 's, such that 
dD(F(z′),F(z′′)) ≤ dG(z′, z′′), z′, z′′ ∈ G, F ∈ O(G, D), and dD = m (resp. dD = p), then mG ≤ dG
(resp. cG ≤ dG).

(a)

Note that in Theorem 7.1.7 we do not claim that mD(F(z′
0),F(z′′

0)) = mG(z′
0, z′′

0) for some z′
0, 

z′′
0 ∈ G, z′

0 ≠ z′′
0 , implies that F is biholomorphic (cf. Lemma 7.1.2(b). This is not true even for D = G⊈Cn

and even under more restrictive assumptions on z′
0, z′′

0  —take for instance D = G = D2; then using Theorem
7.1.10(b) we easily conclude that |z1| = mD2((0, 0), (z1, z2)) = mD2(F(0, 0),F(z1, z2)) provided that 
|z1| ≥ |z2|, where F(z1, z2) := (z1, 0).

(b)

Using the Montel argument one can easily prove the following continuity property:

If (Gk)∞
k=1 is a sequence of subdomains of G such that Gk ⊂ Gk+1, k ∈ N, and G =

∞
∪
k=1

Gk, then 

mGk
↘ mG, cGk

↘ cG, and 𝛄Gk
↘ 𝛄G.

(c)

Similar to Remark 7.1.1(d), one can check that γG is a “strong” derivative of cG in the following sense: for any

a ∈ G and X ∈ Cn with ∥X∥ = 1 2 we have 𝛄G(a;X) = lim
cG(z′,z′′)
∥z′−z′′∥ . Note that for n = 1 the above

formula is equivalent to the following one: 𝛄G(a; 1) = lim
z′≠z′′, z′,z′′→a

cG(z′,z′′)
|z′−z′′|

.

(d)

z′,z′′→a, z′≠z′′

z′−z′′

∥z′−z′′∥
→X

¯



It is clear that in the case where n = 1 the only balanced domains are discs centered at 0, e.g. D = Dh with 
h(λ) = |λ|.

Remark 7.1.9  Let G ⊂ C2 be an arbitrary convex balanced domain. Then ∂G can be described in the following
non-standard way which will be used in Section 7.1.9.
2Here and in the sequel ∥X∥ := (|X1|2 + … + |Xn|)

1/2
 denotes the Euclidean norm in ℂn.

We associate to each point a = (a1, a2) ∈ ∂G either the point ( a1 , a2
|a1|
a1

) ∈ R+ × C provided that a1 ≠ 0,

or the circle {0} × Ta2 provided that a1 = 0. Observe that ∂G, and then also G, is completely determined by its
image ∂G∗ under the above mapping. The set ∂G∗ is called the parametrization of ∂G.

Using mainly the Hahn-Banach theorem one obtains the following result which helps to write down formulas
for the Carathéodory pseudodistance for some domains.

Theorem 7.1.10.  Let G = Gh ⊂ Cn be a balanced domain.

Note that for G = D part (a) is nothing else than the classical Schwarz lemma.

Remark 7.1.11.  For a balanced domain G ⊂ Cn and a point a ∈ G denote by ha an automorphism of G with 

ha(a) = 0 (if it exists). Recall that:

Corollary 7.1.12.  If G = Gh is a balanced convex domain in ℂn, a ∈ G, and if ha ∈ Aut(G) is such that 
ha(a) = 0, then mG(a, z) = h(ha(z)), z ∈ G. In particular, mDn(a, z) = max{m(aj, zj) : j = 1, … ,n} and 

mBn
(a, z) = (1 −

(1−∥a∥2)(1−∥z∥2)
|1−⟨z,a⟩|2 )

1
2
.

Remark 7.1.13.

∣ ∣For every f ∈ O(G, D) with f(0) = 0, we have |f| ≤ h in G and |f ′(0)z| ≤ h(z), z ∈ Cn. In particular, 
mG(0, ⋅) ≤ h in G.

(a)

The following conditions are equivalent:(b)

mG(0, ⋅) = h in G;(i)

𝛄G(a; ⋅) = h in ℂn;(ii)

h is a seminorm, i.e. h(z + w) ≤ h(z) + h(w);(iii)

G is convex.(iv)

if G = Dn, then we may take ha(z1, … , zn) := (ha1(z1), … , han(zn));(a)

if G = Bn and a ≠ 0, then we may take

where ⟨⋅, ⋅⟩ stands for the standard complex scalar product in ℂn.

(b)

ha(z) := 1
∥a∥2

√1−∥a∥2(∥a∥2z−⟨z,a⟩a)−∥a∥2a+⟨z,a⟩a

1−⟨z,a⟩
,

Note that mDn  is calculated via the maximum of the Möbius distances of the corresponding factors. In fact, it
turns out that this kind of product property is true for arbitrary product-domains, i.e. the so called product
property mD×G((a, b), (z,w)) = max{mD(a, z), mG(b,w)} holds for arbitrary domains D ⊂ Cn, G ⊂ Cm

(cf. [JP89]).

(a)

In the context of Corollary 7.1.12 one should point out that there are only a few classes of domains G for
which cG may be effectively calculated. Besides the unit polydisc and ball, the formulas are known for

(b)



□

Corollary 7.1.14.

Note that Bn and Dn (n ≥ 2) are topologically equivalent. Nevertheless, they are not biholomorphically

equivalent as the next corollary shows. So the situation in higher dimensions differs strictly from the one
dimensional case where the unit disc can be treated as a biholomorphically equivalent model for almost all simply
connected domains.

Corollary 7.1.15  (Poincaré theorem, cf. [Car26], [Rei21]). For n ≥ 2 there is no biholomorphic mapping of Dn

onto Bn.

Proof. Suppose that F = (F1, … ,Fn) : Dn → Bn is biholomorphic. Since Aut(Bn) acts transitively on Bn, we

may assume that F(0) = 0. Then, by Theorem 7.1.10(b) and Corollary 7.1.12, we have 

max{ z1
2, … , zn

2} = (mDn(0, z))2 = (mBn
(0,F(z))) = F1(z) 2 + … + Fn(z) 2, z ∈ Dn. The right

hand side is C ∞, the left hand side is even not differentiable; contradiction.

Remark 7.1.16.  Poincaré has started the �rst steps into proving the corollary under the additional assumption that
the biholomorphic mapping is regular up to the boundary. The above result has been proved by Reinhardt (see
[Rei21]) without assuming this boundary condition. According to Reinhardt, Poincaré studied the question of the

biholomorphically equivalence of three dimensional surfaces in ℂ2 via establishing their groups of

biholomorphism. Along this discussion he observed that there are domains in ℂ2 bounded by such three
dimensional surfaces which cannot mapped biholomorphically onto the other one if the mapping is also assumed
to be holomorphic up to the boundary. The proof above which as Carathéodory wrote does not use any calculation
was, in fact, given by Carathéodory (see [Car26]).

The above Poincaré theorem may be generalized in the following way.
For α = (α1, … ,αk) ∈ Nk let Bα := Bα1 × … × Bαk

.

Theorem 7.1.17.  (cf. [JP08], Theorem 2.1.17). Let α = (α1, … ,αk) ∈ Nk, β = (β1, … ,βℓ) ∈ Nℓ. Then the
following conditions are equivalent:

Moreover, every biholomorphic mapping F : Bα → Bβ is, up to a permutation of Bβ1
, … , Bβk

, of the form 
F(z) = (F1(z1), … ,Fk(zk)), z = (z1, … , zk) ∈ Bα, where Fμ ∈ Aut(Bαs

), s = 1, … , k.

In the case where k = n ≥ 2, α1 = … = αn = 1, ℓ = 1, β1 = n the result reduces to the Poincaré theorem
(Corollary 7.1.15).

Remark 7.1.18.  The above theorem may be generalized to the case of Carathéodory isometries F : Bα → Bβ (cf.
Proposition 7.1.6). For more complicated domains the situation becomes unknown.

7.1.4 Carathéodory hyperbolicity

example for complex ellipsoids, the symmetrized bidisc, and the Neile parabola (cf. [JP13], §§2.11, 7.1,
16.6).

If B(a, 3r) ⊂ G, then mG(z′, z′′) ≤ mB(z′,2r)(z
′, z′′) =

∥z′−z′′∥
2r , z′, z′′ ∈ B(a, r). In particular, cG is

continuous.

(a)

If G is a bounded domain, R := diam(G) (in the Euclidean sense), then 

mG(z′, z′′) ≥ mB(z′,R)(z
′, z′′) = ∥z′−z′′∥

R
, z′, z′′ ∈ G. Consequently, if G is biholomorphic to a bounded

domain, then the topology induced by cG is equivalent to the Euclidean topology of G, i.e. topcG = topG.

(b) ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣there exists a biholomorphism Bα → Bβ ;(i)

ℓ = k and α = β up to a permutation.(ii)



□

In general, the pseudodistance cG need not be a distance, e.g. cCn ≡ 0. Note that cG ≡ 0 if and only if 

H ∞(G) ≃ C, where “H ∞(G) ≃ C ” means that all bounded holomorphic functions on G are constant, i.e. G is
a Liouville domain. On the other hand, cG is a distance if and only if the space H ∞(G) of all bounded

holomorphic functions on G separates points in G. If cG is a distance, then we say that G is c-hyperbolic. By

Corollary 7.1.14(b), if G is biholomorphic to a bounded domain, then G is c-hyperbolic.
If G ⊂ C1, then G is c-hyperbolic if and only if H ∞(G) C. In other words, if a domain G ⊂ C1 is not a

Liouville domain, then it is c-hyperbolic.
If n ≥ 2, then there are domains such that cG 0 but G is not c-hyperbolic. For example, take the convex

balanced domain G := {z ∈ C2 : z1 + z2 < 1}.

7.1.5 The Carathéodory topology

Recall (Corollary 7.1.14(b)) that if G is biholomorphic to a bounded domain, then topcG = topG. In ℂ1 the
situation is extremely simple, namely we have

Proposition 7.1.19.  If G ⊂ C1 is c-hyperbolic, then topcG = topG.

Proof. Let G∋as → a ∈ G in the Euclidean sense. Observe that |f − f(a)| ≤ ∥f − f(a)∥G ⋅ mG(a, ⋅), 
f ∈ H ∞(G). Consequently, f(as) → f(a) for any f ∈ H ∞(G). Since H ∞(G) C, there exists an 

f0 ∈ H ∞(G), f0 0, with f0(a) = 0. Write f0(z) = (z − a0)kg(z), z ∈ G, where g(a0) ≠ 0. Clearly, 
g ∈ H ∞(G). Since f0(as) → 0 and g(as) → g(a) ≠ 0, we have as → a in topG.

Unfortunately, for n ≥ 3 there exist c-hyperbolic domains with topcG ≠ topG.

Theorem 7.1.20.  (cf. [JPV91])
For any n ≥ 3 there exists a c-hyperbolic domain G ⊂ Cn such that topcG⊈topG.

 For n = 2 we do not know whether such a domain exists  3

7.1.6 The Inner Carathéodory Pseudodistance

Let d ∈ {cG, mG}. Similarly as in §7.1.1, for a curve α : [0, 1] → G we may de�ne its d-length Ld(α). If 
α : [0, 1] → G is a piecewise C 1-curve, then we can also de�ne its γG-length by the formula 

L𝛄G(α) := ∫
1

0
𝛄G(α(t);α′(t))dt. Moreover, we de�ne

Observe that by Remark 7.1.4(b) in the case G = D the above formula gives pi (resp. mi).

Theorem 7.1.21.

Corollary 7.1.22.

≃

≡∣ ∣ ≃

≡

di(z′, z′′) = inf{Ld(α) : α : [0, 1] → G, α is a curve

rectifiable in the Euclidean sense with α(0) = z′, α(1) = z′′}, z′, z′′ ∈ G.

LmG
= LcG

 and, moreover, if α : [0, 1] → G is a curve recti�able in the Euclidean sense, then 
LcG

(α) < +∞.
(a)

If α is piecewise C 1, then LcG
(α) = L𝛄G(α).(b)

If α : [0, 1] → G is a curve recti�able in the Euclidean sense, then for any ε > 0 there exists a piecewise C 1 -
curve β : [0, 1] → G such that β(0) = α(0), β(1) = α(1), and |LcG

(α) − LcG
(β)| ≤ ε.

(c)

ci
G = mi

G.(a)

ci
G

 is a pseudodistance and for any F ∈ O(G,D) we have ci
D

(F(z′),F(z′′)) ≤ ci
G

(z′, z′′), z′, z′′ ∈ G, with
equality for biholomorphic mappings.

(b)



We say that ci
G

 is the inner Carathéodory pseudodistance forG. Notice that the de�nition of ci
G

 is a little bit

different than the one in §7.1.1. Here we take only those curves that are recti�able in the Euclidean sense.  We

do not know whether in the de�nition of ci
G

 the Euclidean recti�ability of α may be omitted.  It is known that

this is possible in the case where G is γ-hyperbolic, i.e. 𝛄G(a;X) > 0 for all a ∈ G and X ∈ Cn∖{0} (e.g. G is
biholomorphic to a bounded domain); cf. [Bar95] for a general discussion.

In view of the equality p = pi one could conjecture that cG = ci
G. Unfortunately, this not true as the following

theorem shows.

Theorem 7.1.23.  (cf. [Vig83]). Let a, b ∈ G, a ≠ b. Suppose that there exists an f ∈ O(G, D) which is extremal
for mG(a, b) (f(a) = 0 ) and such that |f ′(a)X| < 𝛄G(a;X) for all X ∈ Cn∖{0}. Then cG(a, b) < ci

G
(a, b).

3Open problems are marked “  …  ”.

Example 7.1.24  (cf. [JP90]). Let P := {z ∈ C : 1/R < |z| < R} (R > 1). If g ∈ O(P , D) is an extremal function
for mP (1, −1), then the function f(z) = 1

2
(g(z) + g(1/z)), z ∈ P , is also extremal for mP (1, −1) and 

f ′(1) = 0. Hence by Lemma 7.1.23 we get cP (1, −1) < ci
P

(1, −1).
Notice that even the following better result is true (cf. [JP91b]).
For a ∈ (1/R,R) we have: ci

P (a, z) = cP (a, z) if and only if z ∈ (1/R,R).

7.1.7 Completeness—general discussion

Recall that in the theory of Riemannian manifolds the concept of completeness for the distance induced by length
has a successful history to clarify via this metric notion geometric properties of the manifold itself and vice versa
(e.g. the result of Hopf and Rinow later in this section). So the study of completeness in the context of invariant
distances may give some hope to get a better understanding of complex analysis problems via metric properties.

It is well-known that the theory of holomorphic functions of several complex variables essentially differs from
the theory of one variable. One of the main differences lies in the fact that each domain G ⊂ C is a domain of
existence of a holomorphic function, i.e. there exists an f ∈ O(G) such that there are no a ∈ G and 0 < r < R

with D(a, r) ⊂ G, D(a,R) G, such that the function f|D(a,r) extends holomorphically to D(a,R) (D(a, τ)

stands for the disc centered at a and of radius τ). If G = intG , then the above function f may be even chosen in the
space H ∞(G) (cf. e.g. [JP00], §§1.7, 1.8). This is not longer true for domains G ⊂ Cn with n > 1. For example,
if G0 ⊂ Cn (n > 1) is a domain and K ⊂ G0 a compact subset such that G := G0∖K is a domain, then any
function holomorphic in G extends holomorphically to G0 (cf. [JP00], Theorem 2.6.6). For instance, one can take 

G0 := B(R), K := B(r) with 0 < r < R (Hartogs’ Kugelsatz). These types of phenomena have led to the
following three important notions.

Let G ⊂ Cn be a domain and let ∅ ≠ F ⊂ O(G). We say that G is:

an F-domain of holomorphyif there are no a ∈ G and 0 < r < R with B(a, r) ⊂ G, B(a,R) G, such that

for every function f ∈ F  there exists an f̃ ∈ O(B(a,R)) such that f̃ = f on B(a, r) (cf. [JP00], §1.7); if 
F = O(G), then we say that G is a domain of holomorphy; if F = H ∞(G), then we say that G is an H ∞-
domain of holomorphy;

F-holomorphically convexif for every compact K ⊂ G the set K̂F := {z ∈ G : ∀f∈F : f(z) ≤ ∥f∥K} is

also compact (cf. [JP00], §1.10); if F = O(G), then we say that G is holomorphically convex; if 
F = H

∞(G), then we say that G is H ∞-convex;
pseudoconvex if the function G∋z ↦ − log dist(z, ∂G) is plurisubharmonic.

A geometric background of pseudoconvexity may be based on the following two facts (cf. [Hör94]):
— If \varOmega⊈RN  is a convex domain, then the function \varOmega∋x ↦ − log dist(x, ∂\varOmega)

is a convex function, where the dist(x, ∂\varOmega) is taken in the Euclidean sense.

ci
G

(z′, z′′) = inf{L𝛄G(α) : α : [0, 1] → G, α is a piecewise C 1 -curve joining z′ and z′′}, z′, z′′ ∈ G.(c)

⊂
¯

¯

⊂∣ ∣



— A function u ∈ C 2(\varOmega, R) is convex iff 
N

∑
j,k=1

∂ 2u

∂xj∂xk

(x)XjXk ≥ 0, x ∈ \varOmega, 

X = (X1, … ,XN) ∈ RN .
Summarizing, the property “pseudoconvex” can be seen as a kind of complex analogue of standard convexity.
One can easily check that each domain G ⊂ C is a domain of holomorphy, holomorphically convex, and

pseudoconvex.
It is well known that in the case where F = O(G) the above three notions are equivalent (cf. [JP00], Theorem

2.5.7).
Observe (see Theorem 7.1.25) that in the case where F = H

∞(G) the �rst two notions are strictly connected
with completeness of the space (G, cG).

The implication (pseudoconvexity ⟹ domain of holomorphy) is called the Levi problem and it was
formulated by E.E. Levi in 1910 (cf. [Lev10]). The �rst positive answer has been given 30 years later in 1942 by
K. Oka (cf. [Oka42] —the case n = 2) and in 1953 ([Oka53])—the general case). In the general case the Levi
problem has been independently solved by H.-J. Bremermann (cf. [Bre54]) and F. Norguet (cf. [Nor54]).

Proposition 7.1.25.  Let G ⊂ Cn be a c-hyperbolic domain.

In particular, in both cases G is pseudoconvex.

Observe that the assumption in (b) is stronger than in (a).

In the general situation let G be an arbitrary domain in ℂn equipped with a continuous distance dG, e.g. 

dG = cG when G is c-hyperbolic. We point out that the dG-topology may be different from topG. We distinguish

four different notions of completeness.

(C1) G is weakly dG-complete if the metric space (G, dG) is complete.

(C2) G is dG-complete if any dG-Cauchy sequence in the sense of dG converges to a point in G with respect to 

topG.

(C3) G is dG-�nitely compact if all dG-balls (with �nite radius) are relatively compact in G in the sense of topG.

(C4) G is weakly dG-�nitely compact if all dG-balls (with �nite radius) are relatively compact in G in the sense of

dG.

Remark 7.1.26.

As it is known from differential geometry, a theorem of H. Hopf asserts the equivalence of Cauchy-
completeness and �nite compactness. This result was generalized by W. Rinow (cf. [Rin61]) and S. Cohn-Vossen
(cf. [CV35]) to the situation we are interested in.

Assume that any Cauchy sequence in the sense of cG converges to a point in G with respect to the Euclidean
topology. Then G is an H ∞ -domain of holomorphy.

(a)

Assume that all balls (with �nite radius) in the sense of cG are relatively compact in G in the Euclidean sense.
Then G is H ∞ -convex and is an H ∞ -domain of holomorphy.

(b)

(C3) ⇒ topdG = topG.(a)

(C3) ⟹ (C2) ⟹ (C1).(b)

In the case of the Carathéodory distance it is not known whether (C1) ⟹ (C3). A counterexample is known
in the category of complex spaces (cf. [JPV93]).

(c)

The only well understood case is the planar case which was studied by M.A. Selby (cf. [Sel74]) and N.
Sibony (cf. [Sib75]).
Let G ⊂ C be c-hyperbolic. Then G is c-complete if and only if G is c-�nitely compact.

(d)



Let dG be a continuous distance on G. Analogously as for the case dG = cG, we say that dG is innerif dG = diG
, where

Remark 7.1.27.  Let dG be a continuous inner distance on G. Then

Consequently, dG is also inner the sense of Rinow (cf. [Rin61]).

Theorem 7.1.28.  Let dG denote a continuous inner distance on G. Then topG = topdG and (C1) ⟺ (C2) ⟺

(C3) ⟺ (C4).

Recall that unfortunately cG is in general not inner.

7.1.8 Carathéodory completeness

Proposition 7.1.25(b) can be made more precise during the next result.

Theorem 7.1.29.  (cf. [P�84]) For a c-hyperbolic domain G ⊂ Cn the following statements are equivalent:

We say that a domain G ⊂ Cn is ℂ-convex if for any complex line L = a + bC (a, b ∈ Cn, b ≠ 0) with 
L ∩ G ≠ ∅ the intersection L ∩ G is connected and simply connected (as a planar domain). Any convex domain is

ℂ-convex. It is known (cf. [Hör94], [APS04]) that if G is C 2-smooth, then G is ℂ-convex iff 

(L r)(z;X) :=
n

∑
j,k=1

∂ 2u

∂zj∂zk
(z)XjXk ≥

n

∑
j,k=1

∂ 2r

∂zj∂zk
(z)XjXk , z ∈ ∂G, 

X ∈ T C
z (∂G) := {X ∈ Cn :

n

∑
j=1

∂r

∂zj
(z)Xj = 0}, where r is a de�ning function for ∂G (i.e. r is a C 2-function

on an open neighborhood U of ∂G satisfying U ∩ G = {z ∈ U : r(z) < 0}, U∖G = {z ∈ U : r(z) > 0}, and 

gradr(z) ≠ 0 for every z ∈ ∂G).

Theorem 7.1.30.  (cf. [KZ13]) For any bounded ℂ-convex domain G ⊂ Cn and any boundary point a ∈ ∂G there

exists an f ∈ O(G, D) with lim
G∋z→a

f(z) = 1. In particular, any bounded ℂ-convex domain G ⊂ Cn is c-�nitely

compact.

It is known that if G is C 2-smooth, then G is pseudoconvex iff (L r)(z;X) ≥ 0, z ∈ ∂G, X ∈ T C
z (∂G),

where r is a de�ning function (cf. [JP00], §2.2).
A bounded C 2-smooth domain G ⊂ Cn is called strongly pseudoconvex (cf. [JP00], De�nition 2.2.4) if 

(L r)(z;X) > 0, z ∈ ∂G, X ∈ T C
z (∂G)∖{0}, where r is a de�ning function.

A boundary point a of a bounded domain G ⊂ Cn is called a peak-point with respect to a family F ⊂ C (G) if

there exists an f ∈ F  such that |f(a)| = 1 and |f(z)| < 1 for z ∈ G∖{a}. It is known that if G is strongly

diG(z′, z′′) = inf{LdG(α) : α : [0, 1] → G, α is a curve

rectifiable in the Euclidean sense with α(0) = z′, α(1) = z′′}, z′, z′′ ∈ G.

dG(z′, z′′) = inf{LdG(α) : α : [0, 1] → G, α is continuous

as a mapping into metric space (G, dG), α(0) = z′, α(1) = z′′}, z′, z′′ ∈ G.

G is c-�nitely compact;(i)

for any z0 ∈ G and for any sequence (zν)ν∈N ⊂ G without accumulation points (w.r.t topG ) in G there

exists an f ∈ O(G, D) with f(z0) = 0 and sup
ν∈N

f(zν) = 1.

(ii) ∣ ∣¯¯∣ ∣¯¯¯



pseudoconvex, then any boundary point is a peak-point with respect to O(G). If G is a bounded pseudoconvex

domain in ℂ2 with real analytic boundary, then any boundary point is a peak point with respect to C (G) ∩ O(G)
(cf. [BF78]).

Remark 7.1.31.  Using peak-functions we conclude that:

Remark 7.1.32.

We say that a domain G ⊂ Cn is Reinhardt (n-circled) if (eiθ1z1, … , eiθnzn) ∈ G for any (z1, … , zn) ∈ G

and θ1, … , θn ∈ R.
In the class of Reinhardt domains the c-completeness is completely understood and even expressed by a

geometric condition.

Theorem 7.1.33  ([P�84]), [Fu94]), [Zwo00a]). Let G ⊂ Cn be a pseudoconvex Reinhardt domain. Then the
following conditions are equivalent:

7.1.9 An application

Shortly after Carathéodory had introduced his pseudodistance, Kritikos (see [Kri27b]) was able to prove the
following result using this at that time new object. Looking at his proof one �nds already a lot of ideas like
complex geodesics and indicatrices which were also later used and made more explicit. Therefore we believe that
the interested reader may enjoy to see some details of the proof.

Theorem 7.1.34.  Let D := {z ∈ C2 : z1 + z2 < 1} and let F ∈ Aut(D), then F(0) = 0.

Remark 7.1.35.  (1) Observe that this result was received before (also by Kritikos) but under some additional
assumption on the boundary behavior of F (see [Kri27a]). With this new tool at hand he was able to argue now
only with the inner geometry of the domain D.

¯

¯

Any bounded strongly pseudoconvex domain in ℂn and any bounded pseudoconvex domain in ℂ2 with real
analytic boundary is c-�nitely compact (cf. [BF78], [FM94], [FS81]).

(a)

Any bounded convex domain is c-�nitely compact.(b)

In the context of Proposition 7.1.25(b)  it is not known whether the property “c-complete” implies that G

is H ∞-convex 

(a)

Observe that although the notions “H ∞-domain of holomorphy” and “H ∞-convex” coincide for bounded
plane domains (cf. [AS75]) they are not comparable in higher dimensions (cf. [Sib75]).

(b)

There exists a bounded pseudoconvex balanced domain G in ℂ3 with a continuous Minkowski function which
is not c-complete although it is an H ∞-convex H ∞-domain of holomorphy (cf. [JP91a]). Other examples
of domains sharing these properties were given by P.R. Ahern and R. Schneider (cf. [AS75]) and N. Sibony
(cf. [Sib75]).

(c)

It is well known that any bounded pseudoconvex domain with smooth C ∞-boundary is H ∞-convex and an 

H ∞-domain of holomorphy.  Despite much efforts no example has been constructed of a domain of this

type not being c-�nitely compact 

(d)

G is c-�nitely compact;(i)

G is c-complete;(ii)

G is bounded and ful�lls the following so called Fu-condition:if G ∩ Vj ≠ ∅, then G ∩ Vj ≠ ∅, where 
Vj = {z ∈ Cn : zj = 0}.

(iii)̄ ∣ ∣ ∣ ∣



□

□

(2) In the meantime there exists the same result for every domain D of the following form: 

D = {z ∈ Cn :
n

∑
j=1

zj
2pj < 1}, where pj ∈ (0, ∞)∖{1}, j = 1, … ,n (see [JP13], Corollary 16.4.6).

Moreover, using Lie theory the general case of bounded Reinhardt domains containing the origin is due to T.
Sunada (see [Sun78]).

(3) There are other examples of balanced domains which are even not Reinhardt such that any automorphism
of it has the origin as a �x point, e.g. the minimal ball {z = (z1, … , zn) ∈ Cn : ∥z∥2 + z2

1 + … + z2
n < 1}

(see [Kim91], [Zwo96]).

(4) Even more obscure there exists a bounded convex domain in ℂ2 with C∞-smooth boundary such that 
Aut(D) = {idD} (see [Eic61]); this example solves a question posed by H. Behnke and P. Thullen in [BT70],
chapter VII, §9.1.

The proof of Theorem 7.1.34 needs several steps. The ones for which the Carathéodory distance is used will be
explained in detail while the other steps mainly consisting of some calculations will be skipped.

Lemma 7.1.36.  Let G ⊂ Cn be a domain and let φ ∈ O(D,G) be a complex geodesic, i.e. 
cG(φ(λ′),φ(λ′′)) = cD(λ′,λ′′), λ′,λ′′ ∈ D, then 𝛄G(φ(λ);φ′(λ)(1 − |λ|2)) = 1, λ ∈ D.

Proof. We �rst assume that λ0 = 0. We know that φ(λ) ≠ φ(0) for all λ ∈ D∗. Take any sequence (λs)
∞
s=1 ⊂ D∗

such that λs → 0. We know that m(φ(λs),φ(0))
|λs|

→ 1. Passing to a subsequence we may assume that λs/ λs → eiθ

and φ(λs)−φ(0)
∥φ(λs)−φ(0)∥

→ X. Then

In particular, φ(0) ≠ 0. Now we have

Finally, 1 = 𝛄G(φ(0);X)∥φ′(0)∥ = 𝛄G(φ(0); eiθφ′(0)) = 𝛄G(φ(0);φ′(0)).

Now let λ0 ∈ D be an arbitrary point. Then put ψ(λ) := φ( λ+λ0

1+λλ0
), λ ∈ D. Thus ψ(0) = φ(λ0). Therefore,

which gives the claim in the lemma.

Let G, φ be as in the lemma and let a ∈ G. We de�ne the c-indicatrix at a as 

I(G; a) := {X ∈ Cn : 𝛄G(a;X) < 1}. Note that the indicatrix is a convex balanced domain in ℂn and if λ0 ∈ D,
then φ′(λ0)(1 − |λ0|2) ∈ ∂I(G;φ(λ0)).

Recall (cf. Theorem 7.1.10(b)) that if D ⊂ Cn is a convex balanced domain, then for every boundary point 
a ∈ ∂D there is the following complex geodesic φa(λ) := λa,λ ∈ D. In particular, we have I(D; 0) = D.

Lemma 7.1.37.  Let G ⊂ Cn be a domain, a ∈ G, and F ∈ Aut(G), then F ′(a)(I(G; a)) = I(G;F(a)) ; in
particular, F ′(a) is a linear isomorphism from I(G; a) onto I(G; f(a)).

Proof. Note that F ′(a) de�nes a linear isomorphism from ℂn onto ℂn. Fix an X ∈ I(G; a). Then 
1 > 𝛄G(a;X) = 𝛄G(F(a);F ′(a)X). Thus F ′(a)X ∈ I(G;F(a)). Arguing now with F −1 instead of F, we see
the inverse conclusion.

To get a part of the indicatrix of D at a point a ∈ D we will �nd some complex geodesics through a. From
now on let I(a) := I(D; a).

∣ ∣ ∣ ∣∣ ∣1 = lim
s→+∞

m(φ(λs),φ(0))
|λs|

= lim
s→+∞

m(φ(λs),φ(0))
∥φ(λs)−φ(0)∥

⋅ ∥
φ(λs)−φ(0)

λs
∥

= 𝛄G(φ(0);X)∥φ′(0)∥.

φ(λs)−φ(0)
∥φ(λs)−φ(0)∥ = λs

|λs|

φ(λs)−φ(0)
λs

∥
φ(λs)−φ(0)

λs
∥

→ eiθ
φ′(0)

∥φ′(0)∥ = X.

¯

1 = 𝛄G(ψ(0);ψ′(0)) = 𝛄G(φ(λ0);φ′(λ0))(1 − |λ0|2),



□

□

Lemma 7.1.38.  If r ≠ s are real numbers of the closed unit interval ([−1, 1], then the map ψr,s : D → C,

is a biholomorphic mapping from D onto C∖[r, s] sending 0 to ∞. Moreover, ψr,s maps T onto the closed interval
[r,s].

Proof. Recall that the Joukowski transform D∋λ
h

↦ λ2+1
2λ  is a conformal map from D onto C∖[−1, 1] sending T

onto [−1, 1]. Thus the map λ ↦ r + (h(λ) − 1) r−s
2  does the job and this is exactly the map given by the formula

in the above lemma.

Let Φ : C2 → C2 be given by Φ(z) := (z1 + z2, z1 − z2), z = (z1, z2) ∈ C2. Then ψ is a biholomorphic

map from ℂ2 onto ℂ2. Set D̃ := Φ(D). Observe that D̃ ⊂ D2.

Our next aim is to �nd some complex geodesics in D̃. Put φ̃r,s(λ) := (λ,λψr,s(λ)), λ ∈ D. Note that φ̃r,s is a
holomorphic mapping. Then we have the following result.

Lemma 7.1.39.  If r ≠ s are real points inside of [−1, 1], then φ̃r,s(D) ⊂ D̃ ⊂ D2 and φ̃r,s is a complex geodesic

in D̃.

Proof. (a) Note that u(z) := |z1| + |z2|, z ∈ C2, is plurisubharmonic. Then h := u(Φ−1°φ̃r,s) is a subharmonic
function on D which is not identically constant. Applying that h(eit) = 1 for all real t and the maximum principle

leads to the fact that h < 1 on D. Hence, φ̃r,s(D) ⊂ D̃.
(b) Fix now two points λ′,λ′′ ∈ D. Then

The last inequality follows using the Schwarz–Pick lemma.

Applying that the Carathéodory distance is invariant under biholomorphic mappings we �nally have:

Corollary 7.1.40.  If r ≠ s are two real numbers in [−1, 1], then

de�nes a complex geodesic in D. Or more explicit,

With a similar argument as above we obtain a few more complex geodesics for D.

Lemma 7.1.41.  Let a ∈ D. Then the mappings

are complex geodesics in D.

Proof. Because of the symmetry of D it suf�ces to study the �rst map; call it φ.
Put Ψ : D → C2, Ψ(z) := (z1, z2

1−z1
). Note that ψ is an injective holomorphic mapping with 

Ψ(D) =: D̃ ⊂ D2. Then φ̃(λ) := (a1,
(1−|a1|)λ

1−a1
) maps D to D̃ and also to D2. Therefore, if λ′,λ′′ ∈ D, then

¯

ψr,s(λ) := (r−s)λ2+2(r+s)λ+r−s

4λ
, λ ∈ D,

¯

¯

cD(λ′,λ′′) ≥ c
D̃

(φ̃r,s(λ′), φ̃r,s(λ′′)) ≥ cD2(φ̃r,s(λ′), φ̃r,s(λ′′))

= max{cD(λ′,λ′′), cD(λ′ψr,s(λ′),λ′′ψr,s(λ′′))} ≥ cD(λ′,λ′′).

φr,s(λ) := (
λ+λψr,s(λ)

2
,
λ−λψr,s(λ)

2
), λ ∈ D,

φr,s(λ) = ( r−s
8 λ2 + 1

2 (1 + r+s
2 ) + r−s

8 , s−r
8 λ2 + 1

2 (1 − r+s
2 ) + s−r

8 )

D∋λ ↦ (a1, (1 − |a1|)λ) ∈ D, D∋λ ↦ ((1 − |a2|)λ, a2) ∈ D

cD(λ′,λ′′) ≥ c
D̃

(φ̃(λ′), φ̃(λ′′)) ≥ cD2(φ̃(λ′), φ̃(λ′′))

= max{cD(a1, a1), cD(λ′,λ′′)} = cD(λ′,λ′′).



□

□

Using Ψ −1 �nishes the proof.

Now �x a point a ≠ 0 in D. We are going to describe certain complex geodesics through a. Because of the
symmetry of D we assume that the aj's are non negative real values with 0 < a1 + a2 < 1.

Lemma 7.1.42.  Let a ∈ D as before. Whenever s ∈ [−1, 1], s ≠ a1−a2

a1+a2
, then

i.e. there is a one parameter family φr(s),s of complex geodesics in D through the point a.

Proof. A simple calculation gives immediately the result.

Hence we obtain the following boundary points of the indicatrix I(a).

Corollary 7.1.43.  Let a be as above and λ0 := a1 + a2. Then all the following points

belong to ∂I(a).

Moreover, a simple calculation gives the following explicit form of the points in (a):

Then the following set M, described in (a), (b), and (c) below, belong to the parametrization of ∂I(a), where 
0 < a1 + a2 < 1, aj ∈ R+:

Analyzing the set in (a) gives that it consists of an interval on the line ℓ given through the

(7.1)

with the following endpoints

which lie in the open �rst quadrant except the case when a1 = 0 (resp. a2 = 0).
Moreover, the point in (c) lies on the γ-axis between the projections of the �rst endpoint and the point, where ℓ

cuts the γ-axes. On the other hand, the point given in (b) with positive second coordinate lies on the positive α-axes
between the projection of the second endpoint given above and the point, where ℓ cuts the α-axes. The remaining

r(s) := 4(a1−a2)+s(1−a1−a2)2

(1+a1+a2)2 ∈ [−1, 1], r(s) ≠ s, φr(s),s(a1 + a2) = a,

φ′
r(s),s(λ0)(1 − λ0

2) ∈ ∂I(a), s as above,(a) ∣ ∣(0, (1 − a1)(1 −
a2

2

(1−a1)2 )),(b)

((1 − a2)(1 −
a2

1

(1−a2)2 ), 0)(c)

1−a1−a2

2 (1 + 3a1 − a2 + s(1 − a1 − a2), 1 − a1 + 3a2 − s(1 − a1 − a2)), s as above.

1−a1−a2

2 (1 + 3a1 − a2 + s(1 − a1 − a2), 1 − a1 + 3a2 − s(1 − a1 − a2)), s as above;(a)

(0, ±(1 − a1)(1 −
a2

2

(1−a1)2 ));(b)

((1 − a2)(1 −
a2

1

(1−a2)2 ), 0).(c)

α = −γ + 1 − (a1 + a2)2

((1 + a1 − a2)(1 − a1 − a2), 2a2(1 − a1 − a2)),

(2a1(1 − a1 − a2), (1 − a1 + a2)(1 − a1 − a2)),



□

point in (b) is just opposite. Therefore, it needs at least three lines each of which cuts the set M to cover M, and no
pair of these lines are symmetric with respect to 0.

The remaining step consist of the following claim which immediately implies Theorem 7.1.34.

Lemma 7.1.44.  There is no linear isomorphism A : I(0) → I(a), if a ∈ D, a ≠ 0.

Proof. Assume the contrary. Then there exists a linear isomorphism Ψ of ℂ2 onto itself given by the inverse of A,
that sends ∂I(a) onto ∂I(0). Let us assume that

where p = p1 + ip2, q = q1 + iq2,u = u1 + iu2, v = v1 + iv2 ∈ C. If (γ,α + iβ) ∈ ∂I(a)∗, then 
Ψ(γ,α + iβ) ∈ ∂I(0). More concrete,

Or, if (A,B) ≠ (0, 0), then the point

is the corresponding point in ∂I(0)∗. If A = B = 0, then the corresponding point is given by (0,C + iD)T.

Using that this new point belongs to ∂I(0) it follows that C 2 + D2 = (1 − √A2 + B2)
2
, resp. C 2 + D2 = 1.

Applying now this equation to those points in ∂I(a) with β = 0 leads to the following equality

(7.2)

Recall that a non trivial interval on some line, given by the equation α = −γ + c, belongs to part β = 0 of 
∂I(a)∗. Therefore the former equation after substituting α by c − γ is true for all γ ∈ R, i.e. its left side is the

square of a polynomial. Hence one obtains that 0 = det( ) = det( ). Therefore, 

(p1γ + q1α)2 + (p2γ + q2α)2 = (Pγ + Qα)2 for all α and γ. Then equation (7.2) is of the form

A similar argument as before leads to

Finally, (7.2) reads as follows: (Rγ + Qα)2 = (1 ± (Pγ + Qα))2. So one obtains that 
∂I(a)∗ ∩ (R+ × (R + i0)) consists of at most four lines pairwise symmetric to the origin. But this was already
impossible for that part of ∂I(a)∗ ∩ (R+ × (R + i0)) which was discovered in (7.1); a contradiction.

As a �nal consequence there is the following complete description of Aut(D).

Theorem 7.1.45.  If D := {z ∈ C2 : z1 + z2 < 1}, then Aut(D) = {φα,β,ψγ,δ : α,β, γ, δ ∈ R}, where

Note that the behavior of Aut(D) is extremely opposite to the one of the bidisc or the ball.

Ψ(z) = (pz1 + qz2,uz1 + vz2), z ∈ C2,

Ψ(γ,α + iβ) = (A + iB,C + iD), where

A := p1γ + q1α − q2β, B := p2γ + q1β + q2α,

C := r1γ + v1α − v2β, D := u2γ + v2α + v1β.

(√A2 + B2, (C + iD)( A

√A2+B2
− i B

√A2+B2
))

4((p1γ + q1α)2 + (p2γ + q2α)2)

= (1 + (p1γ + q1α)2 + (p2γ + q2α)2) − (u1γ + v1α)2 − (u2γ + v2α)2)2.

p1 − q1 q2 − q2

q1 q2

p1 q2

q1 q2

(u1γ + v1α)2 + (u2γ + v2α)2 = (1 ± (Pγ + Qα))2.

(u1γ + v1α)2 + (u2γ + v2α)2 = (Rγ + Qα)2, γ,α ∈ R.∣ ∣ ∣ ∣φα,β(z) := (eiαz1, eiβz2), ψγ,δ(z) := (eiγz2, eiδz1), z = (z1, z2) ∈ D.



□

To present the proof of Theorem 7.1.45 the following lemma is needed which, in fact, is a special case of a
theorem of H. Cartan (cf. [Car30]).

Lemma 7.1.46.  If F = (f1, f2) : D → D be holomorphic with F(0, 0) = (0, 0), ∂f1

∂z1
(0, 0) = 1, ∂f1

∂z2
(0, 0) = 0, 

∂f2

∂z1
(0, 0) = 0, ∂f2

∂z2
(0, 0) = 1, then F = idD.

Proof of Theorem 7.1.45. Let F ∈ Aut(D). Then the mapping F̂ζ de�ned as F̂ζ(z) := F −1( 1
ζ
F(ζz)), ζ ∈ T

and z ∈ D, is an automorphism of D which satis�es the assumptions of the former lemma. Hence, F̂ζ = idD. Or
in other words one has that F(ζz) = ζF(z) for all ζ ∈ T and z ∈ D. Using the expansion of F into homogeneous
polynomials leads to the fact that F is a linear isomorphism of D. Taking the form of D into account the claim in
the theorem is now an easy consequence.

Finally, let us quote another result due to H. Cartan (see [Car36]) whose proof is also based on the
Carathéodory pseudometric. To quote H. Cartan: “Pour la demonstration nous utiliserons la métrique de
Carathéodory”.

Theorem 7.1.47.  Let Gj ⊂ Cnj , j = 1, 2, be bounded domains. Then for every Φ in the connected component of 
Aut(G) that contains the identity, there exist Φj ∈ Aut(Gj), j = 1, 2, such that Φ(z,w) = (Φ1(z),Φ2(w)), 
z ∈ G1, w ∈ G2.

Looking back one can already here say that certain problems in several complex variables could be
successfully handled using the language of metric geometry.

7.2 The Kobayashi pseudodistance and the Kobayashi–Royden pseudometric

In the previous chapter, we discussed the Carathéodory pseudodistance for domains G ⊂ Cn using an extremal
problem for O(G, D). About thirty years later, S. Kobayashi introduced another pseudodistance based on the
family O(D,G), the set of so-called analytic discs in G. We already learnt that the Carathéodory pseudodistances
form the smallest family of pseudodistances being a Schwarz-Pick system. It will turn out that the new family is
the largest possible one.

7.2.1 The Lempert function

First we introduce a family (ℓG)G of functions ℓG : G × G → R+ from which the new pseudodistance will be
derived as the largest pseudodistance below ℓG.

Before we are able to present the formal de�nition, we have to make the following observation.

Remark 7.2.1.  Let G be a domain in ℂn and z′, z′′ ∈ G. Then there exists a curve α : [0, 1] → G connecting the

points z′, z′′. Using the Weierstrass approximation theorem we �nd a polynomial map P : [0, 1] → G with 
P(0) = z′ and P(1) = z′′. Then it is easy to choose a bounded simply connected domain D ⊂ C, [0, 1] ⊂ D, such

that P(D) ⊂ G. By the Riemann mapping theorem we conclude that z′, z′′ lie on an analytic disc φ : D → G with 
φ(0) = z′ and φ(σ) = z′′ for some 0 ≤ σ < 1. Summarizing we see that any two points in a domain G ⊂ Cn lie
on an analytic disc in G.

De�nition 7.2.2.  Let G be a domain in ℂn and z′, z′′ ∈ G. Put

ℓG is called to be the Lempert function forG.

ℓG(z′, z′′) := inf{p(λ′,λ′′) : λ′,λ′′ ∈ D : ∃φ∈O(D,G) : φ(λ′) = z′, φ(λ′′) = z′′}

= inf{p(0,λ′′) : λ′′ ∈ D : ∃
φ∈O(D,G) : φ(0) = z′, φ(λ′′) = z′′},

ℓ∗
G := tanh ℓG.

¯



Intuitively, the larger a disc in G containing the points z′, z′′ the smaller the value of ℓG(z′, z′′). For example, 

ℓCn(z′, z′′) = 0 for all pairs of points z′, z′′ ∈ Cn (φR(λ) := z′ + Rλ(z′′ − z′) is an analytic disc in ℂn with 
φR(0) = z′ and φR(1/R) = z′′).

Moreover observe that:

The following example shows that, in general, the Lempert function does not ful�ll the triangle inequality; thus
it is not a pseudodistance.

Example 7.2.3  (cf. [PS89]) Let G := {z ∈ C2 : z1z2 < 1, z2 < 10} and let a := (1, 0), b := (0, 1) be two
points in G. Then using the above properties one easily sees that the following equality is true:

On the other hand there is the following lower estimate of ℓG(a, b): let φ = (φ1,φ2) ∈ O(D,G) be an analytic
disc with φ(0) = a and φ(s) = b, where s ∈ (0, 1). Since φ1(s) = 0 and φ2(0) = 0, the functions φj may be

written as φ1(λ) = (s − λ)φ̃1(λ) and φ2(λ) = λφ̃2(λ), λ ∈ D, where φ̃j ∈ O(D, C). Note that φ̃1(0) = 1/s and
φ̃2(s) = 1/s.

Take an arbitrary r ∈ (s, 1). Using that |φ1φ2| < 1 on G, the maximum principle leads to 

φ̃1(λ)φ̃2(λ) ≤ 1
(r−s)r

 as long as |λ| ≤ r. Or when r tends to 1, then φ̃1φ̃2 ≤ 1
1−s

.

Now observe that the function φ̃2 − φ̃2(0) ∈ O(D, 20D) and vanishes at zero. Hence Schwarz's lemma
implies that |φ̃2(λ) − φ̃2(0)| ≤ 20|λ| for all λ ∈ D. Or |φ̃2(0)| ≥ |φ̃2(s)| − 20s = 1/s − 20s. Moreover, 
|φ̃2(0)|

s
= φ̃1(0)φ̃2(0) ≤ 1

1−s
. Combining the last two inequalities leads to 1 − 20s2 ≤ s2

1−s
 or after some simple

calculations to ℓG(a, b) ≥ p(0, 1/5) > p(0, 1/10) = ℓG(a, 0) + ℓG(0, b), which contradicts the triangle
inequality.

Remark 7.2.4.  Already here we draw the attention of the reader to the fact that convex domains will play a non-
expected important role during the discussion of invariant functions. For example, for a convex domain G ⊂ Cn

the triangle inequality for the Lempert function ℓG is true.
Indeed, �x a convex domain G⊈Cn and three pairwise different points z,w, s ∈ G. Then, if ε > 0 is given,

there exist analytic discs φ,ψ ∈ O(D,G) and numbers τ,σ ∈ (0, 1), τ < σ, such that φ(0) = z, 

φ(τ) = w = ψ(τ), ψ(σ) = s, and ℓG(z,w) + ε > p(0, τ), ℓG(w, s) + ε > p(τ,σ). De�ne χ(λ) :=
(λ−σ)(λ−1/σ)
(λ−τ)(λ−1/τ) ,

λ ∈ C∖{τ, 1/τ}. Obviously, χ is holomorphic on U∖{τ} for an open neighborhood U of D, having a simple pole
at τ. Moreover, observe that χ(T) ⊂ [0, 1). Finally, de�ne the “convex” combination h := (φ − ψ)χ + ψ. Since 

φ(τ) = ψ(τ), it turns out that h is holomorphic on D satisfying h(T) ⊂ G and h(0) = z. Applying some
maximum principle, it follows that h ∈ O(D,G) with h(0) = z, h(σ) = s. Therefore,

which proves, since ε was arbitrarily chosen, the triangle inequality.
Later on (cf. Chapter 7.3) we will learn that, due to a very deep result of L. Lempert [Lem81], [Lem82],

[Lem84] and H.L. Royden & P.M. Wong [RW83] even more is true, namely ℓG = cG for such domains.

ℓG : G × G → R+ is a symmetric function;(a)

(ℓG)G is a contractible family of functions with respect to holomorphic mappings, i.e. if F ∈ O(G,D), then 
ℓD(F(z′),F(z′′)) ≤ ℓG(z′, z′′), z′, z′′ ∈ G;

(b)

in particular, we have ℓD(F(z′),F(z′′)) = ℓG(z′, z′′) whenever F : G → D is a biholomorphic map;(c)

ℓD = p (use the Schwarz–Pick lemma);(d)

cG ≤ ℓG;(e)

if there is a family (dG)G of functions dG : G × G → R+ contractible under holomorphic mappings with 
dD = p, then dG ≤ ℓG. In other words, the system (ℓG)G is the largest Schwarz-Pick system of functions.

(f) ∣ ∣ ∣ ∣ℓG(a, 0) + ℓG(b, 0) = ℓC(0, 1) + ℓD(10)(0, 1) = ℓ10D(0, 1) = ℓD(0, 1/10) = p(0, 1/10).∣ ∣ ∣ ∣∣ ∣¯¯¯ℓG(z, s) ≤ p(0,σ) = p(0, τ) + p(τ,σ) ≤ ℓG(z,w) + ℓG(w, s) + 2ε,



Moreover, the Lempert function is in general not continuous.

Proposition 7.2.5.  Let G := {z ∈ Cn : h(z) < 1} denote a balanced pseudoconvex domain with Minkowski
function h, i.e. h : Cn → [0, +∞) is a plurisubharmonic function with h(λz) = |λ|h(z) (λ ∈ C, z ∈ Cn ). Then 
ℓG(0, z) = p(0, h(z)), z ∈ G. In particular, ℓ∗

Bn
(0, z) = ∥z∥, z ∈ Bn, and ℓ∗

Dn(0, z) = max{|zj| : j = 1, … ,n}, 
z ∈ Dn.

The proof is based on the maximum principle for subharmonic functions.
Since there are many bounded balanced pseudoconvex domains whose Minkowski functions are not

continuous, Proposition 7.2.5 shows that the Lempert function is in general not continuous, even not as a function
of one variable.

But ℓG is always upper semicontinuous.

Proposition 7.2.6.  The Lempert function ℓG is upper semicontinuous.

Recall that ℓG may be de�ned via analytic discs φ ∈ O(D,G), i.e. discs with a compact image φ(D) in G.
Hence a small deformation of such a φ easily leads to the former result.

Although those defects described above one has to emphasize that, in general, it is easier to handle ℓG than cG.

To conclude this paragraph some other properties of the Lempert function will be summarized. In order to be able
to calculate the Lempert function the following results turn out to be helpful.

Proposition 7.2.7.  Suppose that two domains G ⊂ Cn and D ⊂ Cm are given. If z′, z′′ ∈ G and w′,w′′ ∈ D, then
the following formula

is true.

It is said that the family of Lempert functions satis�es the product property. It should be emphasized, that the
proof of Proposition 7.2.7 is much simpler than the one for the product property of the Carathéodory
pseudodistances.

Finally, we mention how the Lempert family behaves under an increasing union of domains.

Proposition 7.2.8.  Let G,Gj ⊂ G, j ∈ N, be domains with the property that Gj ↗ G. Then ℓGj
↘ ℓG.

7.2.2 Tautness

Although the Lempert function need not to be continuous, there is a suf�ciently rich family of pseudoconvex
domains whose Lempert functions are continuous.

De�nition 7.2.9.  Let \varOmega ⊂ Cn be a domain. Then Ω is called tautif the space O(D, \varOmega) is
normal, i.e. whenever we start with a sequence (fj)

∞
j=1 ⊂ O(D, \varOmega), then there exists a subsequence 

(fjν)
∞
ν=1 with fjν → f ∈ O(D, \varOmega) locally uniformly in D or there exists a subsequence (fjν)

∞
ν=1 which

diverges uniformly on compact sets, i.e. for any two compact sets K ⊂ D, L ⊂ \varOmega there is an index ν0

such that fjν(K) ∩ L = ∅ if ν ≥ ν0.

Before we continue our investigations, we make a small digression on tautness. We only collect the most
important results on this subject omitting their proofs.

Remark 7.2.10.

¯̄

ℓG×D((z′,w′), (z′′,w′′)) = max{ℓG(z′, z′′), ℓD(w′,w′′)}

Any taut domain is pseudoconvex.(a)

Any bounded hyperconvex domain G ⊂ Cn, i.e. any bounded domain G for which there exists a negative
plurisubharmonic exhaustion function φ : G → (−∞, 0), is a taut domain. In particular, any bounded convex
domain is a taut one. Note that a hyperconvex domain is pseudoconvex.

(b)



□

Now, we come back to our discussion on the Lempert function. Namely, we want to study this function on taut
domains. Our �rst result is the following one.

Proposition 7.2.11.  Let z′, z′′ be two points of a taut domain G ⊂ Cn. Then there exist a holomorphic map 
φ ∈ O(D,G) and a number σ ∈ [0, 1) with φ(0) = z′, φ(σ) = z′′, and ℓG(z′, z′′) = p(0,σ). Such a φ is called to
be an extremal disc in G passing through the points z′, z′′ .

Proof. By de�nition we �nd a sequence (φj)
∞
j=1 ⊂ O(D,G) satisfying

Since G is a taut domain and φj(0) = z′, we can choose subsequences (φjν)
∞
ν=1 ⊂ (φj)

∞
j=1 and 

(σjν)
∞
ν=1 ⊂ (σj)

∞
j=1 with φjν → φ ∈ O(D,G) locally uniformly in D and σjν → σ ∈ [0, 1). From this we

conclude that φ(σ) = z′′, φ(0) = z′, and p(0,σ) = ℓG(z′, z′′). Hence, we have proved that there always exist
extremal discs through two given points.

Remark 7.2.12.  (a) Note that the claim of Proposition 7.2.11 is not longer true if G is not taut. For example, take 
G0 := B2∖{(1/2, 0)} and z′ := (0, 0), z′′ := (1/4, 0). Using the analytic discs D∋λ ↦ (Rλ, s(R)λ(λ − 1

4R )), 
R < 1, s(R) ≪ 1, one can easily deduce that ℓG0(z

′, z′′) ≤ p(0, 1/4).
Now suppose that there exists φ = (φ1,φ2) ∈ O(D,G0), φ(0) = z′, φ(σ) = z′′ such that 

ℓG(z′, z′′) = p(0,σ). Thus σ ≤ 1/4. On the other hand, the Schwarz lemma implies that 1/4 ≤ σ. Hence 
φ1(1/4) = 1/4, i.e. φ1(λ) ≡ λ. Since φ ∈ O(D, B2), it turns out that φ2 ≡ 0. In particular, φ(1/2) = (1/2, 0)
which contradicts the de�nition of G.

(b) Let D ⊂ Cn be an arbitrary domain. Observe that if φ ∈ O(D,D) is an extremal disc through two different
points z′, z′′ ∈ D with φ(0) = z′ and φ(σ) = z′′, i.e. 0 < σ = ℓ∗

D(z′, z′′), then φ(D) cannot be relatively compact

in D. Otherwise one could �nd a number θ ∈ (0, 1) and a new analytic disc φ̃(λ) := φ(λ) + λ
σθ

(φ(σ) − φ(θσ)), 
λ ∈ D, in D. Then φ̃(0) = z′ and φ̃(θσ) = z′′; a contradiction.

Moreover, we have the following result on the continuity on ℓG.

Proposition 7.2.13.  If G is a taut domain in ℂn, then the Lempert function ℓG is continuous on G × G.

7.2.3 The Kobayashi pseudodistance

To overcome the dif�culty connected with the triangle inequality we modify the function ℓG in such a way that the
new function becomes a pseudodistance, the largest one below of ℓG.

De�nition 7.2.14.  Let G ⊂ Cn be a domain and z′, z′′ ∈ G. Put

Any bounded pseudoconvex domain with C 1-boundary is taut. We point out that these domains are also
hyperconvex (cf. [KR81]) so that (b) yields tautness, too.

(c)

In the case of a balanced pseudoconvex domain G := {z ∈ Cn : h(z) < 1} with Minkowski function h, there
is even a complete characterization of tautness (cf. [Bar83]), namely:
G is taut if and only if h is continuous with h ≥ C∥ ∥ for a suitable C > 0.

(d)

Let Π : D → G be a holomorphic covering, i.e. for any point a ∈ G there exists an open neighborhood 
U = U(a) ⊂ G such that Π−1(U) is the union of pairwise disjoint open sets Vα ⊂ D such that Π|Vα

 is a
biholomorphic mapping from Vα onto U. Then D is taut if and only if G is taut (cf. [Bar71]).

(e)

The above property and the uniformization theorem in classic complex analysis immediately imply the
following result.
A domain G ⊂ C is taut if and only if #(C∖G) ≥ 2 if and only if there exists a holomorphic covering 
Π : D → G.

(f)

φj(0) = z′, φj(σj) = z′′ (0 ≤ σj < 1), and p(0,σj) ↘ ℓG(z′, z′′).

( ′ ′′)



k∗
G := tanh kG. The function kG is called the Kobayashi pseudodistance for G.

kG was introduced in 1967 by S. Kobayashi (see [Kob67]).

Remark 7.2.15.  Notice that the following properties hold for the system (kG)G:

To be able to continue the discussion on the Lempert function and the Kobayashi pseudodistance we need at
least a few examples for which these objects can be calculated.

Example 7.2.16.  Let h be a seminorm on ℂn. Denote by G := {z ∈ Cn : h(z) < 1} the associated open unit h-
ball. Then kG(0, z) = ℓG(0, z) = p(0, h(z)), z ∈ G. In fact, by Corollary 7.1.12 and Proposition 7.2.5 we have 
p(0, h(z)) = cG(0, z) ≤ kG(0, z) ≤ ℓ(0, z) ≤ p(0, h(z)).

In particular, we mention the following special cases.

Example 7.2.17.  (a) kDn(0, z) = ℓDn(0, z) = max{p(0, |zj|) : 1 ≤ j ≤ n}, (b) 
kBn

(0, z) = ℓBn
(0, z) = p(0, ∥z∥).

As a consequence of this example we obtain (cf. Corollary 7.1.14)

Proposition 7.2.18.  The function kG : G × G → [0, +∞) is continuous.

7.2.4 General properties of k

We already know that the ∥ ∥-topology of a domain G ⊂ Cn is stronger than the kG-topology on G. We remember

that in the case of the Carathéodory distance the ∥ ∥-topology can be different from the cG-topology. To discuss the

analogous question for the Kobayashi distance we need the following observation; see [Kob73].

Proposition 7.2.19.  The Kobayashi pseudodistance is inner, i.e. if z′, z′′ ∈ G, then

denotes the kG-length of α.

kG(z′, z′′) :

= inf{
N

∑
j=1

ℓG(zj−1, zj) : N ∈ N, z0 = z′, z1, … , zN−1 ∈ G, zN = z′′},

kG is a pseudodistance on G;(a)

even more, kG is the largest minorant of ℓG that satis�es the triangle inequality;(b)

if F ∈ O(G,D), then kD(F(z′),F(z′′)) ≤ kG(z′, z′′), i.e. the system (kG)G is contractible with respect to
holomorphic mappings;

(c)

kD = ℓD = p. Even more, we have:(d)

if (dG)G is a system of pseudodistances dG : G × G → R+ with the properties stated in (c) and (d), then 
dG ≤ kG;

(e)

in particular, cG ≤ kG.(f)

kG(z′, z′′) = inf{LkG
(α) : α : [0, 1] → G

 is continuous and ∥ ∥-rectifiable with α(0) = z′, α(1) = z′′},  where

LkG
(α) := sup{

N

∑
j=1

kG(α(tj−1),α(tj)) : N ∈ N, 0 = t0 < t1 < … < tN = 1}
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Recall that, in general, the formula analogous to that of Proposition 7.2.19 fails to hold for the Carathéodory
pseudodistance.

It is obvious that a necessary condition for the ∥ ∥-topology and the kG-topology to be equal is that kG is a

distance. We say that a domain G ⊂ Cn is k-hyperbolic if its Kobayashi pseudodistance is a distance.

Remark 7.2.20.  By the well-known inequality cG ≤ kG it is clear that any c-hyperbolic domain is also k-
hyperbolic. Therefore, any bounded domain G is k-hyperbolic.

So far we have shown that the Kobayashi pseudodistance is continuous and inner. These conditions suf�ce to
prove the following comparison property of the topologies (cf. [Bar72]). Recall the situation for the Carathéodory
pseudodistance which was more complicated.

Proposition 7.2.21.  If G is a k-hyperbolic domain in ℂn, then its ∥ ∥ -topology is equal to the kG-topology.

Proof. Since kG is continuous, every kG-ball is a ∥ ∥-open set. Suppose now that there is a norm-ball B(a, r) ⊂⊂ G

which is not kG-open. Then there exists a point b ∈ B(a, r) containing no kG-ball. Therefore one may �nd points 

zj ∈ G∖B(a, r), j ∈ N, with sj := kG(b, zj) → 0.
Using the k-hyperbolicity of G and the continuity it follows that kG(b, z) ≥ s > 0, z ∈ ∂B(a, r), for some s.

Now one applies the innerness. Thus for every j there is a curve γj in G connecting b with zj such that 

LkG
(γj) ≤ 2sj. Take a point aj ∈ ∂B(a, r) lying on the j-th curve. Then 2sj ≥ kG(b, aj) + kG(aj, zj) ≥ s; a

contradiction.
It should be mentioned that for a bounded domain G this result follows directly from Exercise 7.2.17.

Applying that the Kobayashi pseudodistance kG is the largest pseudodistance below of ℓG, Propositions

7.2.8 and 7.2.7 immediately lead to the two following properties.

Remark 7.2.22.

In calculations of the Kobayashi pseudodistance holomorphic coverings often play an important role because
of the following result of S. Kobayashi (cf. [Kob05]) whose proof is based on the lifting property for holomorphic
coverings.

Theorem 7.2.23.  Let Π : G̃ → G be a holomorphic covering. Then for x, y ∈ G and x̃ ∈ G̃, Π(x̃) = x, the
Lempert function and the Kobayashi pseudodistance for G satisfy the following formulas:

Remark 7.2.24.

Let G =
∞
∪
ν=1

Gν , where (Gν)∞
ν=1 is an increasing sequence of domains in ℂn. Then for z′, z′′ ∈ G we have 

ℓG(z′, z′′) = lim
ν→∞

ℓGν(z′, z′′).

(a)

The Kobayashi pseudometric satis�es the product property.(b)

ℓG(x, y) = inf{ℓ
G̃

(x̃, ỹ) : ỹ ∈ G̃, Π(ỹ) = y},

kG(x, y) = inf{k
G̃

(x̃, ỹ) : ỹ ∈ G̃, Π(ỹ) = y}.

From the previous theorem we conclude that if all k
G̃

-balls with �nite radii are relatively compact subsets of 

G̃, then for x, y ∈ G, and x̃ ∈ G̃, Π(x̃) = x, there exists a point ỹ ∈ G̃ with Π(ỹ) = y and 

kG(x, y) = k
G̃

(x̃, ỹ) (the same statement is also true for the Lempert functions provided that G̃ is taut).

(a)

Notice that in general Theorem 7.2.23 is not true in the following strong sense, namely, that there exists a

point ỹ ∈ G̃ with k
G̃

(x̃, ỹ) = kG(x, y) (this was a question posed by Kobayashi; the counterexample is due
to W. Zwonek).

(b)
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So far we know only few examples of domains G for which cG kG. For plane domains we have the
following complete characterization of such domains.

Proposition 7.2.25.

Proof. In the case when G is c-hyperbolic there is the holomorphic covering Π : D → G. According to Remark
7.2.24(a) there exist points λ′,λ′′ in the unit disc such that Π(λ′) = z′, Π(λ′′) = z′′, and 
kG(z′, z′′) = kD(λ′,λ′′) = p(λ′,λ′′). On the other hand, cG(z′, z′′) can be written as 
cG(z′, z′′) = p(f(z′), f(z′′)) for a suitable f ∈ O(G, D). For the function f°Π ∈ O(D, D) this implies

Now, the Schwarz–Pick lemma tells us that f°Π is a biholomorphic map, and therefore Π is biholomorphic.
We turn to the proof of claim (b). Since G is not c-hyperbolic, we have cG ≡ 0. In the case where the universal

covering of G is given by ℂ, it is clear that kG ≡ 0. So we may assume that Π : D → G is the universal covering.

Hence by Theorem 7.2.23 and Remark 7.2.24(a), we conclude that whenever z′, z′′ ∈ G, z′ ≠ z′′, then there are

points λ′, λ′′ ∈ D, Π(λ′) = z′, Π(λ′′) = z′′ with kG(z′, z′′) = p(λ′,λ′′) > 0.

Corollary 7.2.26.  Let P := {λ : 1/R < |λ| < R} (R > 1 ). Then for z′, z′′ ∈ P , z′ ≠ z′′, we have 
cP (z′, z′′) < kP (z′, z′′).

7.2.5 The Kobayashi–Royden pseudometric

In Chapter 7.1 we have already learned that for the Carathéodory pseudodistance there is an in�nitesimal version,
the Carathéodory–Reiffen pseudometric, which measures the lengths of tangent vectors. A similar notion with
respect to the Kobayashi pseudodistance was introduced by Royden in 1997 (see [Roy71]). Because of its strong
relation to the Kobayashi pseudometric it will be introduced here but only shortly investigated.

Let G be a domain in ℂn. The function 𝛋G : G × Cn → R+ de�ned by 
𝛋G(z;X) := inf{𝛄(λ) α : ∃φ∈O(D,G) ∃λ∈D : φ(λ) = z, αφ′(λ) = X} is called the Kobayashi–Royden
pseudometric.

Remark 7.2.27.  Observe that:

Since any domain G ⊂ C has D or ℂ as its universal covering, Theorem 7.2.23 also implies that ℓG satis�es
the triangle inequality; hence kG = ℓG.

(c)

We also mention that for G := C∖{0, 1} we have cG ≡ 0 whereas kG(z′, z′′) > 0 if z′ ≠ z′′; i.e. G is k-
hyperbolic. The latter fact follows because of Theorem 7.2.23 and the well-known result that D is the
universal covering of G.

(d)

Moreover, the covering result may be used to obtain a formula of the Kobayashi distance for the punctured
disc D∗, namely: if a ∈ (0, 1) and z ∈ D∗ with z = |z|iθ, θ ∈ (−π,π], then 

kD∗
(a, z) = tanh−1( θ2+(log |z|−log a)2

θ2+(log |z|+log a)2 ).

(e)

≡

Let G be a c-hyperbolic domain in ℂ and let us suppose that there is at least one pair of different points z′, 
z′′ ∈ G with kG(z′, z′′) = cG(z′, z′′). Then G is biholomorphically equivalent to D and so kG ≡ cG.

(a)

If a plane domain G is not c-hyperbolic, then cG ≡ 0 and either kG ≡ 0 or G is k-hyperbolic.(b)

p(f°Π(λ′), f°Π(λ′′)) = cG(z′, z′′) = kG(z′, z′′) = p(λ′,λ′′).∣ ∣𝛋G(z;X) = inf{α > 0 : ∃φ∈O(D,G) : φ(0) = z, αφ′(0) = X}

= inf{α > 0 : ∃φ∈O(D,G) : φ(0) = z, αφ′(0) = X};

(1)

¯

𝛋G(z;λX) = |λ|𝛋G(z;X), λ ∈ C, X ∈ Cn, z ∈ G ⊂ Cn;(2)

𝛋D(F(z);F ′(z)X) ≤ 𝛋G(z;X), F ∈ O(G,D), z ∈ G ⊂ Cn, X ∈ Cn.(3)
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Moreover, it turns out that whenever there is a system (δG)G of functions δG : G × Cn → R+ (G ⊂ Cn) with
the properties (3) and (5), then δG ≤ 𝛋G for any G. We recall that we already know that also 𝛄G ≤ δG is true.

Remark 7.2.28.  Recall that γG could be thought as a certain derivative of the Carathéodory pseudodistance (cf.

Remark 7.1.8(d)). A similar result is true with respect to the Lempert function.

To see at least a few concrete examples, we calculate the Kobayashi–Royden pseudometric for balanced
pseudoconvex domains.

Proposition 7.2.29.  Let G = Gh be a balanced pseudoconvex domain in ℂn given by its Minkowski function h.
Then 𝛋G(0;X) = h(X), X ∈ Cn.

Proof. First of all observe that if h(X) ≠ 0, then D∋λ
φ

↦ λX/h(X) is an analytic disc in G with φ(0) = 0, 
φ′(0) = X/h(X); hence we obtain 𝛋G(0;X) ≤ h(X).

The fact that the same inequality is also true if h(X) = 0 is left to the reader (cf. Example 7.2.16). On the other
hand, let φ ∈ O(D,G) with φ(0) = 0, αφ′(0) = X (α > 0). As in Proposition 7.2.5, we observe that 
h(φ(λ)) = h(λφ̃(λ)) < 1, and therefore h°φ̃ ≤ 1.

Thus we end up with h(X) = h(αφ′(0)) = αh°φ̃(0) ≤ α, which guarantees the missing inequality.

We emphasize that the proof above is based on the information that G is pseudoconvex, i.e. that the
Minkowski function is plurisubharmonic; in general it is false (cf. [FS87]).

Applying Proposition 7.2.29 leads to the following formulae.

Example 7.2.30.
(a) For z ∈ Bn and X ∈ Cn, the following formula is true.

For the proof use the fact that 𝛋Bn
 is invariant under Aut(Bn).

In particular, this formula immediately yields to the following observation: if G is a bounded domain, then
there exists a constant C > 0 such that for any z ∈ G, X ∈ Cn the following inequality 𝛋G(z;X) ≥ C∥X∥ is
true.

Hence 𝛋G(z; ⋅) assigns a length to any tangent vector at z, and moreover (3) shows that the system (𝛋G)G
is contractible with respect to holomorphic mappings. In particular, if F : G → D is a biholomorphic map,
then

𝛋D(F(z);F ′(z)X) = 𝛋G(z;X), z ∈ G, X ∈ Cn;(4)

𝛋D(λ;X) = 𝛄(λ)|X| = 𝛄D(z;X), λ ∈ D, X ∈ C;(5)

for any domain G ⊂ Cn we have 𝛄G ≤ 𝛋G (use the Schwarz–Pick lemma);(6)

for any domain G ⊂ Cn we have 𝛄G ≤ 𝛋G;(7)

κG is upper semicontinuous on G × Cn; note that, in general, κG is not continuous (see Proposition 7.2.29);(8)

𝛋G1×G2(a;X) = max{𝛋G1(a1;X1),𝛋G2(a2;X2)}, where Gj ⊂ Cnj , j = 1, 2, are domains and 
a = (a1, a2) ∈ G1 × G2 and X = (X1,X2) ∈ Cn1 × Cn2 , i.e. κ satis�es the product property.

(9)

Assume that G ⊂ Cn is a taut domain. Then (see [Pan94], [NP08])(a)

𝛋G(a;X) = lim 1
|λ|

ℓG(z, z + λX ′), a ∈ G, X ∈ Cn.
C∖{0}∋λ→0

z→a

X ′→X

Without the assumption that G is taut this formula remains, in general, not true.(b)

𝛋Bn
(z;X) = (

∥X∥2

1−∥z∥2 +
|⟨z,X⟩|2

(1−∥z∥2)2 )
1/2

.



(b) A similar argument leads to the corresponding formula for the unit polycylinder.

(c) Moreover it turns out that, in general, 𝛋G(z; ⋅) is not a norm on ℂn. For example put 
G := {z ∈ D2 : z1z2 < 1/2}; G is a bounded balanced pseudoconvex domain with Minkowski function 

h(z) = max{ z1 , z2 , √2|z1||z2|}. Therefore we know that 𝛋G(0;X) = h(X). In particular, 

𝛋G(0; ( 3
2 , 3

2 )) = 3
√2

> 2 = 𝛋G(0; (1, 1
2 )) + 𝛋G(0; ( 1

2 , 1)).

Moreover, Proposition 7.2.29 can be also used to describe biholomorphic mappings between balanced
pseudoconvex domains.

Corollary 7.2.31.  Let Gj = Ghj
⊈Cn be pseudoconvex balanced domains with Minkowski functions hj, j = 1, 2.

Then the following conditions are equivalent:

Remark 7.2.32.
(a) Observe that Ψ := F −1°F ′(0) is a biholomorphic mapping of G1 sending the origin to the origin. Moreover, 

Ψ ′(0) = id. In case where G1 is bounded, a result similar to Lemma 7.1.46 �nally yields that ψ = idG1  or 

F = F ′(0), i.e. F is a linear isomorphism. Note that the assumption “G1 is bounded” is essential–take for instance 

G1 = G2 = C and ψ(z) := z(1 − z).
(b) Moreover, a deep result by Kaup–Upmeier (see [KU76]) says that whenever there exists a biholomorphic
mapping F : G1 → G2, then there is another one sending 0 ∈ G1 to 0 ∈ G2. In particular, if G1 is

biholomorphically equivalent to G2, then G1 is linearly equivalent to G2.

Similarly as in the case of the Lempert function (cf. §7.2.3), we also obtain better results for the Kobayashi–
Royden pseudometric on taut domains. Since the argument here is more or less the same, we only formulate the
result.

Proposition 7.2.33.  Let G be a taut domain in ℂn. Then

Recall that the γG–length has led to the inner Carathéodory pseudometric which, in general, is different to cG.

On the other hand the Kobayashi pseudodistance can be obtained via integration of the Kobayashi-Royden
pseudometric.

Theorem 7.2.34.  Let G ⊂ Cn be an arbitrary domain. Then

where L𝛋G
(α) := ∫

1

0
𝛋G(α(t);α′(t))dt.

As a direct consequence of Remark 7.2.27(9) and the former theorem one obtains the product property for the
Kobayashi pseudometric.

𝛋Dn(z;X) = max{ |X1|
1−|z1|2 , … ,

|Xn|
1−|zn|2 }.∣ ∣∣ ∣ ∣ ∣there exists a biholomorphic mapping F : G1 → G2 with F(0) = 0 ;(i)

there exists a ℂ-linear isomorphism L : Cn → Cn such that h2°L = h1, i.e. G1 and G2 are linearly
equivalent.

(ii)

for any z ∈ G and for any X ∈ Cn there exists an extremal analytic disc φ ∈ O(D,G), i.e. φ(0) = z and 
𝛋G(z;X)φ′(0) = X ;

(a)

the Kobayashi–Royden pseudometric is continuous on G × Cn.(b)

kG(z′, z′′) = inf{L𝛋G
(α) : α a piecewiseC 1-curve inG connecting z′ and z′′},



□

Corollary 7.2.35.  Let Gj ⊂ Cnj , j = 1, 2, be given domains. Then

where a = (a1, a2), b = (b1, b2) ∈ G1 × G2.

7.2.6 k-hyperbolicity

Let M and N be complex manifolds with M a relatively compact open subset of N, and f : D∗ → M  a

holomorphic mapping. When does f extend to a holomorphic mapping f̃ : D → N  ? The classical case of this
question is when N = P1 is the Riemann sphere and M = P1∖{0, 1, ∞}. Then extending f is equivalent to the big
Picard theorem. Recall that M here is k-hyperbolic. On the other hand put 

M := {(z,w) ∈ D∗ × C : w < √2e1/|z| < 1} ⊂ P2. Then (see [Kie70]) M is k-hyperbolic. (Using similar

techniques, it can be shown that M is complete hyperbolic). De�ne f : D∗ → M  putting f(z) := (z, e1/z). It is

easy to see that f cannot be extended to a holomorphic map f̃ : D → P2. Hence, the big Picard theorem cannot be
simply generalized to higher dimensions. According to this extension problem there is some need to discuss k-
hyperbolicity.

The following generalization of the big Picard theorem is given by M. H. Kwack (cf. [Kwa69]).

Theorem 7.2.36.  Let f : D∗ → G be a holomorphic map, where G is a k-hyperbolic domain in ℂn. Assume that
for a sequence (λk)∞

k=1 ⊂ D∗ with λk → 0 the sequence (f(λk))∞
k=1 converges to a point z0 ∈ G. Then f extends

to a holomorphic map f̃ : D → G.

Remark 7.2.37.  Take G := C∖D and f : D∗ → G, f(z) := 1/z. Then G is hyperbolic, but f does not extend to the
whole unit disc. Therefore, it is clear that an additional property of f is needed to get the extension result. On the
other hand there is the following example by D.D. Thai and P.J. Thomas (see [TT98]): there exists a subharmonic

function u on D, such that the Hartogs domain Hu := {z ∈ D × C : z2 < e−u(z1)} is not Kobayashi hyperbolic,

nevertheless any holomorphic f ∈ O(D∗,Hu) extends to a holomorphic map f̃ : D → Hu.

Proof of Theorem 7.2.36. Without loss of generality, we may assume that the sequence rk := |λk| is strictly

decreasing and that z0 = 0 ∈ G. We are going to prove that the function f̃ given by f̃(λ) := f(λ), λ ∈ D∗, 

f̃(0) := 0 is continuous on D. Fix an ε ∈ (0, dist(0, ∂G)). Since G is k-hyperbolic, we have BkG
(0, δε) ⊂ B(ε)

with δε being a suitable positive number. By assumption there is a k0 ∈ N such that for k ≥ k0 we have 

f(λk) ∈ BkG
(0, δε/2). Applying Remark 7.2.24(g) for λ ∈ D∗, |λ| = rk, we obtain

Therefore, f(∂D(rk)) ⊂ B(ε) if k ≥ k1.
It remains to show that if rk+1 < |λ| < rk, k ≫ 1, then f(λ) ∈ B(ε). But this is an easy consequence of the

fact that the Euclidean norm is a plurisubharmonic function and the maximum principle for the subharmonic
function λ ↦ ∥f(λ)∥.

Hence, it is important to have tools to decide whether a given domain is k-hyperbolic.
In the class of convex domains containing the origin the following result due to T. J. Barth (cf. [Bar80]) is true.

Theorem 7.2.38.  Let G ⊂ Cn be a convex domain, 0 ∈ G. Moreover, assume that no complex line through 0 stays
inside G. Then G is biholomorphically equivalent to a bounded domain. In particular, G is k-hyperbolic.

Remark 7.2.39.
(a) It seems to be still an open problem whether G is even biholomorphic equivalent to a bounded convex domain.
(b) In [BS09] one may �nd even a longer list of equivalent properties for a convex domain to be k-hyperbolic.

Similar results for ℂ-convex domains are given in [NS07].

kG1×G2(a, b) = max{kG1(a1, b1), kG2(a2, b2)},∣ ∣¯∣ ∣kG(0, f(λ)) ≤ kG(0, f(λk)) + kG(f(λk), f(λ))

≤ kG(0, f(λk)) + kD∗
(λk,λ) < δε

2
+ π

− log rk
< δε  if k ≥ k1 ≥ k0.



Moreover, the following criteria for hyperbolicity are extremely useful.

Theorem 7.2.40.  Let Π : G̃ → G be a holomorphic covering. Then we have: G̃ is k-hyperbolic if and only if G is
k-hyperbolic.

A similar result is due to A. Eastwood (see [Eas75]).

Theorem 7.2.41.  Let Gj ⊂ Cnj , j = 1, 2, be domains and let F ∈ O(G1,G2). Assume that G2 is k-hyperbolic and

that there exists an open covering (Uα)α∈A of G2 such that each connected component of F −1(Uα) is a k-
hyperbolic domain, α ∈ A. Then G1 is k-hyperbolic.

Since it is simpler to deal with κG than with kG, it is important to express the property “hyperbolic” in terms of

the associated metric. Let G be any domain in ℂn. Then G is κ-hyperbolic if for any z0 ∈ G there exist a
neighborhood U = U(z0) ⊂ G and a positive real number C such that 𝛋G(z;X) ≥ C∥X∥, z ∈ U , X ∈ Cn.

There is the following characterization of k-hyperbolicity.

Theorem 7.2.42.  For a domain G in ℂn the following properties are equivalent:

7.2.7 Examples

In the class of Reinhardt domains a complete characterization of hyperbolicity exists. To be able to formulate this
theorem several notions are needed:

Vj := {z ∈ Cn : zj = 0}, j = 1, … ,n;
Dα,C := {z ∈ Cn, zj ≠ 0  if αj < 0 : z1

α1 ⋯ zn
αn < eC}, where α ∈ Rn∖{0} and C ∈ R;

M(n × n;S) := the set of all n × n-matrices with entries in S ⊂ C;

for A = (Aj
k)

j,k=1,…,n ∈ M(n × n; Z), denote by Aj its j-th row;

for A ∈ M(n × n; Z) put ΦA : (C∖{0})n → (C∖{0})n, Φ(z) := (zA
1
, … , zA

n

).

Theorem 7.2.43.  (cf. [Zwo99]) Let G be a pseudoconvex Reinhardt domain in ℂn. Then the following properties
are equivalent:

G is k-hyperbolic;(i)

topG = topkG ;(ii)

for any domain G′ ⊂ Cm, any w′ ∈ G′, any z′ ∈ G, and any neighborhood U = U(z′) ⊂ G there exist

neighborhoods V = V (w′) ⊂ G′ and Ũ = Ũ(z′) ⊂ U  such that if f ∈ O(G′,G) with f(w′) ∈ Ũ , then 
f(V ) ⊂ U  ;

(iii)

condition (iii) is true for G′ = D and w′ = 0 ∈ D ;(iv)

G is κ-hyperbolic;(v)

for any z′ ∈ G there exists a Kobayashi-ball around z′ with �nite radius r, which is a bounded subset of ℂn;(vi)

any point z′ ∈ G has a neighborhood U = U(z′) ⊂ G such that, for z, w ∈ U , kG(z,w) ≥ M∥z − w∥,
where M is a suitable positive constant.

(vii) ∣ ∣ ∣ ∣G is c-hyperbolic;(i)

G is k-hyperbolic;(ii)

logG := {x ∈ Rn : (ex1 , … , exn) ∈ G} contains no af�ne lines, and either Vj ∩ G = ∅ or Vj ∩ G (treated
as a domain in Cn−1 ) is c-hyperbolic, j = 1, … ,n ;

(iii)

there exist A ∈ M(n × n; Z), |detA| = 1, and a vector C ∈ Rn such that

G ⊂ DA,C := DA1,C1
∩ … ∩ DAn,Cn

,

(iv)
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7.2.8 Kobayashi completeness

Since c ≤ k, every c-complete domain is k-complete. So Section 7.1.8 provides a lot of examples of k-complete
domains. On the other hand, the following necessary condition shows that there are many domains which are not
k-complete.

Proposition 7.2.44.  Any k-complete domain is taut.

Proof. Let (φj)
∞
j=1 ⊂ O(D,G). Assume that (φj)

∞
j=1 is not uniformly divergent. This implies that there are

compact sets K ⊂ D and L ⊂ G such that, without loss of generality, φj(λj) ∈ L with λj ∈ K. Fix z∗ ∈ L and
let 0 < r < 1 with K ⊂ D(r). Then for λ ∈ D(r) we obtain

Hence, ∪
j∈N

φj(D(r)) ⊂ BkG
(z∗,C + 1) ⊂⊂ G. Therefore, Montel's theorem guarantees the existence of a

subsequence (φjν)
∞
ν=1 ⊂ (φj)

∞
j=1 which converges locally uniformly to a map in O(D,G).

Corollary 7.2.45.  Any k-complete domain is a domain of holomorphy.

Remark 7.2.46.  For a while there was the question whether tautness can imply k-completeness. The �rst negative
example was found by J.-P. Rosay (cf. [Ros82]). Later in this section we will present another example.

There is a simple example of a domain which is not c-complete, but which is k-complete, namely the punctured
disc D∗. This observation is a direct consequence of the next result due to S Kobayashi (cf. [Kob67], [Kob05]).

Theorem 7.2.47.  If Π : G̃ → G denotes a holomorphic covering between domains in ℂn, then the following
statements are equivalent:

Proof. (i) ⟹ (ii): According to Theorem 7.2.40, G is k-hyperbolic. Fix a ball BkG
(z0, r) in G. By Theorem 7.2.23

it is clear that BkG
(z0, r) ⊂ Π(Bk

G̃
(z̃0, r)), where z̃0 is a point in G̃ with Π(z̃0) = z0. Recall that k

G̃
 is inner and

so this implies that k-completeness is equivalent to k-�nite compactness. Hence, Bk
G̃
(z̃0, r) ⊂⊂ G̃, and therefore 

BkG
(z0, r) ⊂⊂ G.

(ii) ⟹ (i): As above, G̃ is k-hyperbolic. Fix a k
G̃

-Cauchy sequence (z̃ν)∞
ν=1 ⊂ G̃. Then obviously (Π(z̃ν))∞

ν=1
is a kG-Cauchy sequence. By assumption, this sequence converges to a point z0 ∈ G. Using again Theorem 7.2.23

it is easy to construct a subsequence (zνμ)∞
μ=1

 of (zν)∞
ν=1 and points z̃0,μ ∈ G̃ with Π(z̃0,μ) = z0 and 

k
G̃

(z̃νμ , z̃0,μ) < 1/μ. Thus k
G̃

(z̃0,μ, z̃0,λ)
λ,μ→∞

0. On the other hand, there exist a neighborhood BkG
(z0, r) of z0

and neighborhoods Uμ of z̃0,μ such that Π|Uμ
: Uμ → BkG

(z0, r) is biholomorphic, μ ∈ N. Put 

Vμ := Π−1(BkG
(z0, r/2)) ∩ Uμ; then k

G̃
(z̃0,μ, ∂Vμ) ≥ r/2. This observation together with k

G̃
= ki

G̃
 shows that

for a suf�ciently large μ0 we obtain z̃0,μ0 = z̃0,μ, μ ≥ μ0. Put z̃0 := z̃0,μ0 . Then a standard argument leads to 

lim
ν→∞

k
G̃

(z̃ν, z̃0) = 0.

either Vj ∩ G = ∅ or Vj ∩ G is c-hyperbolic as a domain in Cn−1, j = 1, … ,n ;

G is algebraically equivalent to a bounded domain (i.e. there exists a matrix A ∈ M(n × n; Z) such that ΦA is
de�ned on G and gives a biholomorphic mapping from G to the bounded domain ΦA(G) );

(v)

G is k-complete, (i.e. G is k-hyperbolic and every kG-Cauchy sequence in G converges (in the standard
topology) to a point in G).

(vi)

kG(φj(λ), z∗) ≤ kG(φj(λ),φj(λj)) + kG(φj(λj), z∗)

≤ p(λ,λj) + sup{kG(z, z∗) : z ∈ L} =: C.

G̃ is k-complete;(i)

G is k-complete.(ii)

−→



Example. C∖{0, 1} is a k-complete domain but it is even not c-hyperbolic.

We will see that the property of k-completeness is a local one (cf. [Eas75]) in contrast to the property of being
c-�nitely compact.

Theorem 7.2.48.  Let G be a bounded domain in ℂn. Suppose that any boundary point z0 ∈ ∂G permits a bounded
neighborhood U = U(z0) such that any connected component of G ∩ U  is k-complete. Then G itself is k-
complete.

Remark 7.2.49.  The above theorem also provides a simple argument to show that any strongly pseudoconvex
domain is k-complete using only the existence of local peak functions.

By Theorem 7.2.43 we know that any bounded pseudoconvex Reinhardt domain containing 0 is k-complete.
Moreover, tautness, i.e. the continuity of its Minkowski function, is necessary for a balanced domain to be k-
complete. Nevertheless, the following result shows that tautness, even in the case of a balanced domain, does not
imply k-completeness.

Theorem 7.2.50.  (cf. [JP91a]) There exists a bounded taut balanced pseudoconvex domain 
G = Gh = {z ∈ Cn : h(z) < 1} (n ≥ 3 ) with continuous Minkowski function h which is not k-complete.

Remark 7.2.51.

Up to now  it is an open problem whether every bounded pseudoconvex domain with C ∞-smooth boundary

is k-complete  The strongest result in the negative direction is the following unpublished one due to N. Sibony;
cf. [Sib81a].

Theorem 7.2.52.  There exists a pseudoconvex non k-complete domain G ⊂⊂ B2 given as a connected component
of {z ∈ B(3) : u(z) < 1}, where u ∈ PSH(B(3)) ∩ C (B(3)) ∩ C ∞(B(3)∖{0}), gradu(z) ≠ 0 if z ≠ 0, and 
u(0) = 1.

To conclude this section one should emphasize that k-completeness is much easier to handle than c-
completeness; nevertheless, there are still a lot of unsolved questions.

7.3 Lempert's theorems and the symmetrized bidisc

In this last chapter, we discuss various results telling that for certain domains G ⊂ Cn the extremal invariant
pseudodistances coincide.

7.3.1 Lempert's theorems

Theorem 7.3.1.  (1st theorem of Lempert, [Lem81], [Lem82]). If G ⊂ Cn is a domain which is the union of an
increasing sequence of domains Gj each biholomorphically equivalent to a convex domain, then cG = ℓG. In
particular, the Carathéodory pseudodistance and the Kobayashi pseudodistance coincide on such a G.

To give an idea of the proof one �rst observes that it suf�ces to prove Theorem 7.3.1 in the case when G is
bounded, convex, and 0 ∈ G (cf. Remark 7.1.8(c) and Proposition 7.2.8).

 It would be very interesting to know whether such an example could be also constructed in ℂ2  We
emphasize that the method used to prove Theorem 7.2.50 does not work in the two-dimensional case.

(a)

 So far it is totally unclear how to characterize the k-completeness (or the c-completeness) of a bounded

pseudoconvex balanced domain via the properties of its Minkowski function 

(b)



So from now on G is assumed to be bounded convex and 0 ∈ G. Fix then two different points a and b in G.
Then Proposition 7.2.11 allows to �nd an extremal disc φ ∈ O(D,G) with φ(0) = a, φ(σ) = b, and 
p(0,σ) = ℓG(a, b). So it remains to �nd a holomorphic function f ∈ O(G, D) such that f°φ = idD. Indeed, 
p(λ′,λ′′) ≤ cG(φ(λ′),φ(λ′′)) ≤ ℓG(φ(λ′),φ(λ′′)) ≤ p(λ′,λ′′), λ′,λ′′ ∈ D; in particular, cG(a, b) = ℓG(a, b).

To see how convexity enters the proof a few notions have to be repeated. Let 
z ∙ w := ⟨z,w⟩ = z1w1 + … + znwn. Since G is convex, there is the Minkowski function 
qG(z) := inf{t ∈ (0, ∞) : z/t ∈ G} and the dual Minkowski subnorm q̂G(z) = sup{Re(z ∙ w) : w ∈ ∂G}, 
z ∈ Cn. Note that a point z sits in G if and only if qG(z) < 1.

Let F := C(T, Cn). Then F together with the norm ∥f∥F := sup{|f(λ)| : λ ∈ T} is a Banach space. If ψ ∈ F

, put Q(ψ) := sup{qG(ψ(λ)) : λ ∈ T}. Then Q is a Minkowski subnorm on F. Moreover, let 

A := {ψ ∈ F : ψ ∈ C(D, Cn) ∩ O(D, Cn)}.

Now �x an arbitrary analytic disc φ0 ∈ O(D, Cn) with φ0(λ′) = z′, φ0(λ′′) = z′′ and de�ne 
V0 := {ψ ∈ A : ψ(λ′) = ψ(λ′′) = 0}. According to Remark 7.2.12(b) it follows for any ψ ∈ V0 that 
sup{qG(φ0(λ) + ψ(λ)) : λ ∈ D} ≥ 1. Consequently, Q(φ0 + ψ) ≥ 1.

Looking at the functional Rφ0 + V0∋tψ0 + ψ
l

↦ t it is easily seen that l ≤ Q and so, by the Hahn-Banach

theorem, it can be extended to a ℝ-linear functional L on F, L ≤ Q. Finally, setting μ(ψ) := L(iψ) − iL(iψ) one
ends up with a continuous linear functional μ ∈ F ′ with μ|V0 = 0; μ may be thought as a Borel measure on T.

Using the F. and M. Riesz theorem one concludes that μ is given as μ = λh̃∗τ
(λ−λ′)(λ−λ′′)

, λ ∈ T, where h̃ is a

mapping from D to ℂn, each of its components belongs to the Hardy space on D (h̃ ∈ H 1(D, Cn)), the star means
the boundary value componentwise, and τ stands for the normalized Lebesgue measure on T.

Put u := λh̃
(λ−λ′)(λ−λ′′)  on D∖{λ′,λ′′}. Then it follows that q̂G(φ∗(λ)) = 0 and 

Re(φ∗(λ) ∙ u∗(λ)) = q̂G(u∗(λ)) almost everywhere on T. Modifying h̃ leads �nally to a mapping 

h ∈ H 1(D, Cn), h ≠ 0, such that Re(φ∗(λ) ∙
h∗(λ)
λ

) = q̂G(
h∗(λ)
λ

) for almost all λ ∈ T. So far the geometric
property has been heavily exploited.

The �nal step starts with the condition that Re((z − φ∗(λ)) ∙ h∗(λ)
λ

) < 0 for z ∈ G and almost all λ ∈ T
which is a consequence of the result just before. Then pure complex analysis reasoning leads to the existence of the
left inverse for φ which was above postulated to be found.

The proof above is based on the unpublished paper [RW83]; details may be found in [JP13].

Remark 7.3.2.  To generalize the above situation, an analytic disc φ ∈ O(D,G), G a domain in ℂn, is said to be
weak m-extremal for points λ1, … ,λm ∈ D (pairwise different and m ≥ 2) if there is no analytic disc 

h ∈ O(D,G) with φ(λk) = h(λk), k = 1, … ,m. And a mapping f ∈ O(D,G) is called an m-extremal mapif
there exists a holomorphic mapping F ∈ O(G, D) with F°f = B, where B is a Blaschke product of order m − 1.
So Lempert's result as described before may be read as: any weak 2-extremal disc is a 2-geodesic. There was some
hope that the Lempert result may be generalized in this context claiming that if G is convex, then any weak m-
extremal analytic disc φ ∈ O(D,G) is also m-geodesic for all m ≥ 2. But as it turned out such a proposition is
already false for G = B2 and m ≥ 4 (see [KZ16]). Moreover, there are convex domains for which this kind of
result fails to hold for m = 3 (cf. [War15]).

To be able to formulate the second result the following notion is needed. A domain G ⊂ Cn with a C 2-

de�ning function r is called to be strongly linearly convexif (L r)(a;X) >
n

∑
j,k=1

∂ 2r

∂zj∂zk
(a)XjXk , a ∈ ∂G, 

X ∈ T C
a (∂G)∖{0}.

Theorem 7.3.3.  (2nd Lempert theorem, [Lem84]). Let G ⊂ Cn be a domain which can be written as the union of
an increasing sequence of bounded strongly linearly convex domains Gj. Then again cG = ℓG.

A readable and complete proof can be found in [KW12].

¯

¯

¯∣ ∣



Later, D. Jacquet (see [Jac06]) was able to extend the above results to bounded ℂ-convex domains with a
smooth C2 boundary.

Theorem 7.3.4.  Let G ⊂ Cn be a bounded ℂ-convex domain with a smooth C 2 -boundary. Then G can be
exhausted by a sequence of bounded strongly linearly convex domains; in particular, cG = ℓG.

A few words to the proof of Jacquet's result:

A function u ∈ C 2(D;R), D a domain in ℂn, is called to be ℂ-convex (resp. strongly ℂ-convex), if

Let D ⊂ Cn be a domain with C 2-boundary. Then:

D is ℂ-convex if and only if − log dist2(⋅, ∂D) is a ℂ-convex function on D ∩ U  for some open neighborhood 
U = U(∂D).

If u is a ℂ-convex function, then uε := − log(eu − ε(1 + ∥z∥2)) ↘ u as ε ↘ 0, and the uε are strongly ℂ-

convex functions. In particular, this leads to an exhaustion by strongly linearly convex domains.

At the moment it is unclear whether the former theorem remains true without assumptions on the smoothness
of the boundary.

7.3.2 The symmetrized bidisc

For a long time it was absolutely unclear whether Theorem 7.3.3 is eventually a consequence of Theorem 7.3.1.
The surprising answer to that question was found by discussions which do not belong directly to the �eld of
several complex variables; it stems from discussions of the so called μ-synthesis problem. That is an interpolation
problem for analytic matrix valued functions which may be thought as a generalization of the classical problems of
Nevanlinna–Pick. Here μ denotes a positive cost function that generalizes for example the operator norm for
matrices. Then the μ synthesis problem is to �nd an analytic matrix valued function on D such that it satis�es a
�nite number of interpolation conditions together with the condition that μ(f) ≤ 1 on D. The precise de�nition of
the cost function μ will be omitted; for our purpose μ is taken as the spectral radius r(A) of a 2 × 2 matrix A.

In this section as a special case of the μ-synthesis problem only the spectral Nevanlinna–Pick problem will be
discussed. To be more precise: given pairwise different points λ1, … ,λN ∈ D and k × k matrices A1, … ,AN , 
r(Aj) < 1, then the problem is to construct an analytic k × k matrix valued function F on D such that F(λj) = Aj

, j = 1, … ,N , and r(F(λ)) ≤ 1 for all λ ∈ D, where r(A) := max{|λ| : λ is an eigenvalue of A} denotes the
spectral radius of A.

When k = 1 this is just the classical Nevanlinna–Pick problem, and it is well known that a suitable F exists if
and only if a certain n × n matrix formed from the λj's and Aj's is positive de�nite (this is Pick's Theorem).

Put \varOmegak := {A ∈ M(k × k; C) : r(A) < 1} and call this set in Ck2
 the unit spectral ball. So the

above problem consists in �nding certain holomorphic mappings into \varOmegak with prescribed values at
given points.

The unit spectral ball shares a lot of interesting properties. Only a few will be mentioned here:

\varOmegak is a pseudoconvex domain but it is neither convex nor bounded (in fact it contains even complex
lines);
\varOmegak is balanced, but not taut (i.e. the Montel theorem does not hold for O(D, \varOmegak)).

Recall that if A ∈ \varOmegak, then det(xIk − A) = xn +
k

∑
j=1

(−1)jψk,j(A)xk−j, where the ψk,j(A) is

given via the elementary symmetric polynomials σk,j and the eigenvalues of A. Hence, there are the following
maps ψk : \varOmegak → Ck, A ↦ (ψk,1(A), … ,ψk,k(A)) and σk : Dk → Ck, λ ↦ (σk,1(λ), … ,σk,k(λ)).

Lu(a;X) ≥
(resp. >)

∑
j,k=1

∂ 2u

∂zj∂zk
(a)XjXk −

n

∑
j=1

∂u

∂zj
(a)Xj ,

a ∈ D, X ∈ Cn∖{0}.∣ ∣



Then it turns out that ψk(\varOmegak) = σk(Dk) =: Gk is a domain in ℂk which is called the k–dimensional
symmetrized polydisc.

If the spectral Nevanlinna–Pick problem with data λ1, … ,λN ∈ D and A1, … ,AN ∈ \varOmegak can be
solved, then using ψk the interpolation problem with data λ1, … ,λN ∈ D and ψk(A1), … ,ψk(AN)) ∈ Gk

allows a solution in Gk. So the original problem may be studied in two steps:

(a) solve the corresponding interpolation problem in Gk (note that the number of parameters now involved is 

N(1 + k), while in the spectral Nevanlinna–Pick problem it is N(1 + k2);
(b) try to lift the solution in Gk to a holomorphic mapping F from D to \varOmegak with F(λj) = Aj.

From now on it is assumed that k = 2, N = 2. Then G2 is the so called symmetrized bidiscwhich shares the

following interesting geometric properties most of them are found in [AY04]:

ψ2(A) = (trace(A), det(A));
G2 = {(s, p) ∈ C2 : s − sp + p 2 < 1}; in particular, G2 is bounded, pseudoconvex, and taut;

G2 is not convex and has no smooth boundary;

G2 cannot be exhausted by domains Gj biholomorphic to convex domains (see [Cos04b], [Cos04a], [Edi03]);

i.e. Theorem 7.3.1 cannot be applied;

G2 is ℂ-convex (see [NPZ08]);

G2 is not homogeneous, the orbit of 0 under Aut(G2) is given by {(2λ,λ2) : λ ∈ D}.

In order to study the spectral Nevanlinna–Pick problem one has to �nd conditions to solve the corresponding
interpolation problem in the symmetrized bidisc. So let λ1,λ2 ∈ D and points z′, z′′ ∈ G2 be given. Without loss
of generality one may assume that z′ ≠ z′′ and λ1 = 0 and λ2 = σ ∈ (0, 1). Obviously, a necessary condition for
the existence of a solution is that ℓ∗

G2
(z′, z′′) ≤ σ. On the other hand, if ℓ∗

G2
(z′, z′′) < σ, then there exists an

analytic disc φ ∈ O(D, G2) with φ(0) = z′ and φ(τ) = z′′ with a certain τ ∈ [ℓ∗
G2

(z′, z′′),σ]. Then the disc 
φ̃(λ) := φ(λτ/σ) does the job of interpolation. So it remains to determine the number ℓ∗

G2
(z′, z′′) or at least a

lower bound. Note that a �rst lower bound is obviously given by the Möbius function mG2
(z′, z′′).

In fact, J. Agler -N. Young [AY01] and C. Costara [Cos04b], [Cos04a] were able to prove the following result.

Theorem 7.3.5.  (Theorem of Agler-Young, Costara).

where Φλ : G2 → D, (s, p) ↦ 2λp−s

2−λs
. In particular, ℓG2  is given by the following concrete formula

An different proof was given by P. P�ug and W. Zwonek (see [PZ12]).

Theorem 7.3.6.  The symmetrized bidisc can be exhausted by bounded strongly linearly convex domains. In
particular, by Theorem 7.3.3, cG2 = ℓG2 .

As a byproduct this result together with former properties of G2 leads to the following consequence answering

an old question by L. Aizenberg.

Corollary 7.3.7.  There exist a strongly linearly convex domain in ℂ2 which cannot be exhausted by a sequence of
domains biholomorphically equivalent to convex domains.

The �rst idea to extend the above result to higher dimensions was without success. In fact, in [NPZ07] and
[NPTZ08] the authors were able to show that the equality of cGn

 and ℓGn
 fails for n ≥ 3. Nevertheless, there is still

a great hope that this equality remains true for all ℂ-convex domains.

∣¯∣ ∣ ∣mG2(z
′, z′′) = max{m(Φλ(z′),Φλ(z′′)) : λ ∈ T} = ℓG2(z

′, z′′),

maxζ∈T
(s1p2−s2p1)ζ 2+2(p1−p2)ζ+s2−s1

(s2p1−s1)ζ 2+2(1−p1p2)ζ+s1p2−s2
.∣¯̄̄̄∣



Remark 7.3.8.  It should be mentioned that the symmetrized polydisc appears as a special case of a large family of
other domains whose construction will be shortly presented (see [Zap15]). Fix natural numbers n ≥ 2, s ≤ n, and 

r1, … , rs such that 
s

∑
j=1

rj = n. On the product space A :=
s

∏
j=1

{0, 1, … , rj}∖{(0, … , 0)} de�ne an ordering

saying for α,β ∈ A that α < β if there exists an j0 ∈ {1, … , s} with αj0 < βj0  and αj = βj for j0 < j ≤ s.

Then A = {α1, … ,αN} for N :=
s

∏
j=1

(rj + 1) + 1 where αj < αj+1 for all possible j. Then the following set

is a bounded pseudoconvex domain satisfying the following properties:

E cannot be exhausted by domains biholomorphically equivalent to convex ones;

if one of the rj ≥ 3, then cE ≠ ℓE and E is not ℂ-convex;
if r2 = ⋯ rs = 1, then E is linearly convex and, consequently, pseudoconvex.

Moreover, E2,1,1,1 = G2 and for the so-called tetrablock E2,2,1,1 (see [AWY07]) the Carathéodory pseudodistance

and Lempert function coincide and both domains are ℂ-convex (see [EZ09], [EKZ13], and [Zwo13]).

So the discussion of this general class of domains gives hope that ℂ-convexity may lead to the equality of the
Carathéodory pseudodistance and the Lempert function.

What remains is to answer problem (b) of the possibility to lift solutions of the Nevanlinna–Pick problem to
solutions of the spectral Nevanlinna-Pick problem (see [NPT11]).

Theorem 7.3.9.  Let A1 = α1I2, … ,Ak = αkI2 ∈  \varOmega2,Ak+1, … ,Aℓ ∈ \varOmega2 non scalar
matrices (i.e. matrices which have not the form of the previous Aj), and φ ∈ O(D, G2) such that φ(λj) = ψ(Aj), 

j = 1, … , ℓ. Then there exists a φ̃ ∈ O(D, \varOmega2) satisfying ψ°φ̃ = φ and φ̃(λj) = Aj for j = 1, … , ℓ,
if and only if φ′

2(λj) = αjφ
′
1(λj), j = 1, … , k.

Hence, the spectral Nevanlinna–Pick problem is solved in dimension 2 and, as a byproduct, new information
with respect to the equality of c and ℓ is obtained. Nevertheless, as it was seen a lot of unsolved problems remain
for further research. Let us �nish this article with the one of the most important conjecture in this area: Let 
G ⊂ Cn be C-convex, then cG = ℓG. All experiences so far make it highly probable that the answer will be “yes”.

E = En,s,r1,…,rs := {z ∈ CN : 1 +
N

∑
j=1

(−1) αj

zjλ
αj

≠ 0 for all λ ∈ Ds}∣ ∣¯



7.4 Epilogue

7.4.1 The Green function

First let us recall the notion of the classical Green function (cf. [Ran95]). Let G ⊂ C be a domain and let a ∈ G.
We say that a function gG(a, ⋅) : G → (−∞, +∞] is the classical Green function of G with pole at a if:

gG(a, ⋅) is harmonic on G∖{a};
gG(a, a) = +∞;
the function G∖{a}∋z ↦ gG(a, z) + log |z − a| extends to a harmonic function on G;
there exists a polar set F ⊂ ∂G 4, such that:

if ζ ∈ (∂G)∖F , then lim
G∋z→ζ

gG(a, z) = 0,

if ζ ∈ F  or ζ = ∞ ∈ ∂G, then gG(a, ⋅) is bounded near ζ.

4A set A ⊂ C is said to be polar, if for every a ∈ A there exist r > 0 and u ∈ SH (D(a, r)), u −∞, such that u = −∞ on A ∩ D(a, r).

Observe that gD(a, z) = − log z−a
1−az

, a, z ∈ D.

Theorem 7.4.1.  (a) If G ⊂ C is a domain such that ∂G is not polar, then for every a ∈ G the Green function 
gG(a, ⋅) exists and is unique. Moreover, gG(a, z) > 0 for z ≠ a and the function gG : G × G → (0, +∞] is
symmetric and continuous.
(b)If gG(a, ⋅) exists, then, by the maximum principle for subharmonic functions, we get

For an arbitrary domain G ⊂ Cn, Theorem 7.4.1(b) suggests the following de�nition of the pluricomplex
Green function with pole at a:

With this notation Theorem 7.4.1(b) reads as follows: for G ⊂ C, if gG(a, ⋅) exists, then gG(a, ⋅) = − log gG(a, ⋅).
Observe that gD = m and for any holomorphic mapping F : G ↦ D we have gD(F(z),F(w)) ≤ gG(z,w), 
z,w ∈ G. Thus the system (gG)G is holomorphically contractible and therefore mG ≤ gG ≤ ℓ∗

G.
Similar to cG and ℓG, the pluricomplex Green function has its in�nitesimal form 

AG(a;X) := lim sup
λ→0

1
|λ| gG(a, a + λX), a ∈ G, X ∈ Cn, which is called the Azukawa pseudometric (cf.

[Azu86]). One can easily check that AG(a;λX) = |λ|AG(a;X), AD(a; 1) = 𝛄, and 
AD(F(z);F ′(z)X) ≤ AG(z;X) for any F ∈ O(G,D). In particular, 𝛄G ≤ AG ≤ 𝛋G.

The following deep result corresponds to the harmonicity of gG(a, ⋅) on G∖{a}. It establishes an important
link between the theory of the pluricomplex Green function and pluricomplex analysis.

Theorem 7.4.2.  (cf. [Kli85]) For each a ∈ G the function log gG(a, ⋅) is a maximal plurisubharmonic function on 
G∖{a}. In particular, if log gG(a, ⋅) ∈ L∞

loc(G∖{a}) (e.g. if the set G is bounded), then (ddc log gG(a, ⋅))n = 0 in 
G∖{a}, where (ddc⋅)n denotes the Monge–Ampère operator 5.

We collect below various basic properties of the Green and Azukawa functions.

Remark 7.4.3  (cf. [JP13], Proposition 7.2.10)

–

–

≡∣¯∣−gG(a, z) = sup{v(z) : v ∈ SH (G, [−∞, 0)),

sup
w∈G∖{a}

(v(w) − log w − a ) < +∞}, z ∈ G.∣ ∣gG(a, z) := sup{u(z) : u : G → [0, 1), logu ∈ PSH(G),

sup
w∈G∖{a}

u(w)
∥w−a∥

< +∞}, z ∈ G.



5If u is C 2, then (ddcu)n = det [ ∂ 2u
∂zj∂zk

]
j,k=1,…,n

.

Example 7.4.4  (cf. [JP13], Proposition 7.1.3) Consider the Reinhardt domain G := {(z1, z2) ∈ C2 : z1z2 < 1}.
Then

If b ∈ G0 := {(z1, z2) ∈ G : z1z2 ≠ 0}, then gG(0, b) = |b1b2|1/2 > |b1b2| = gG(b, 0). Thus gG is not

symmetric. If D is a subdomain of G (with 0, b ∈ D), then gD(0, b) > gD(b, 0) provided that D is suf�ciently
close to G. Thus there exist regular domains D ⊂ C2 (e.g. bounded Reinhardt domains with real analytic
boundary) such that gD is not symmetric. Observe that the invariant functions discussed before are all symmetric

ones.
If G0∋as → 0, then

Consequently, gG is not continuous in the �rst variable.

Let X = (X1,X2) ∈ C2, X1X2 ≠ 0. Then

Hence, AG is not continuous in the �rst variable.

In the case where G is hyperconvex the pluricomplex Green function and the Azukawa metric are much more
regular than in the general case (cf. [Dem87], [Kli85], [Kli91], [Zwo00b]).

Theorem 7.4.5.  (cf. [JP13], Proposition 4.2.10, Theorem 5.1.2). Assume that G is bounded hyperconvex. Then:

log gG(a; ⋅) ∈ PSH(G) and sup
w∈G∖{a}

gG(a,w)
∥w−a∥

< +∞.(a)

log AG(a; ⋅) ∈ PSH(G).(b)

If Gs ↗ G, then gGs
↘ gG and AGs

↘ AG.(c)

If G = Gh ⊂ Cn is a balanced domain, then the following conditions are equivalent:(d)

gG(0, ⋅) = h on G;(i)

AG(0; ⋅) = h on ℂn;(ii)

G is pseudoconvex.(iii)

If G is bounded, then for any z0 ∈ G the function G∋z ↦ gG(z, z0) is continuous. For unbounded domains
G the function G∋z ↦ gG(z, z0) need not be continuous; cf. Example 7.4.4.

(e)

For any G the function gG is upper semicontinuous on G × G. Note that, by (d), the function 

G∋z ↦ gG(a, z) need not be continuous (even for bounded domains of holomorphy).

(f)

For any G the function AG is upper semicontinuous on G × Cn. Note that, by (d), the function 

Cn∋X ↦ AG(a;X) need not be continuous (even for bounded domains of holomorphy).

(g)

¯∣ ∣gG(a, z) = {  , z ∈ G,

AG(a;X) = {  , X = (X1,X2) ∈ C2.

m(a1a2, z1z2),  if a ≠ 0

|z1z2|1/2,  if a = 0

𝛄(a1a2)|a2X1 + a1X2|,  if a ≠ 0

|X1X2|1/2,  if a = 0

gG(as, b) = m(as,1as,2, b1b2) → |b1b2| < |b1b2|1/2 = g(0, b).

A(as;X) = 𝛄(as,1as,2)|as,2X1 + as,1X2| → 0 < |X1X2|1/2 = AG(0;X).

lim
z→∂G

gG(a, z) = 1, a ∈ G.(a)



□

Under some stronger assumptions gG and A are even in some sense Lipschitz (cf. [NPT09]).

From a general point of view the invariant objects studied so far were de�ned via certain extremal problems
related to:

At the end of the eighties E.A. Poletsky invented and partially developed a general holomorphic discs method,
which in the meantime became one of the important tools of modern complex analysis. This method permits to
reduce in some sense problems of type (c) to (b). It has various important applications, due to A. Edigarian (cf.
[Edi02]) and E.A. Poletsky (cf. [Pol91], [Pol93], [EP97]). In particular, one may express the pluricomplex Green
function in the language of holomorphic discs by the following Poletsky formula.

Theorem 7.4.6  (cf. [PS89], [Pol91], [Pol93], [Edi97a])

where ordcf stands for the order of zero of f at c.

The idea of the proof (cf. [Edi97a]). The maximum principle for subharmonic functions implies that gG ≤ g̃G.
The system (g̃G)G is holomorphically contractible. In particular, g̃G ≤ ℓ∗

G. Fix an a ∈ G and let u := log ℓ∗
G(a, ⋅).

Observe that log gG(a, ⋅) = sup{v ∈ PSH(G) : v ≤ u}. The main proof consists of two steps.

(*) If φ ∈ O(D,G) is such that φ(0) = z and a ∉ φ(T), then

(**) The function

is plurisubharmonic and ũ = sup{v ∈ PSH(G) : v ≤ u}.
Property (**) implies that ũ = log gG(a, ⋅). On the other hand, by (*), log g̃G(a, z) ≤ ũ, which �nishes the

proof.

Exploiting the Poletsky formula, A. Edigarian proved the product property for the Green function (cf.
[Edi97b], [Edi01]; some special cases had been solved before in [JP91c], [JP91d], and [JP95]).

For any domains Gj ⊂ Cnj , j = 1, 2, we have gG1×G2((a1, a2), (z1, z2)) = max{gG1(a1, z1), gG2(a2, z2)}, 
aj, zj ∈ Gj, j = 1, 2. Consequently, A has the product property 
AG1×G2

((a1, a2); (X1,X2)) = max{AG1
(a1;X1), AG2

(a2;X2)}, aj ∈ Gj, Xj ∈ Cnj , j = 1, 2.

gG is continuous on G × G , where gG|G×∂G := 1.(b)̄

AG is continuous.(c)

AG(a;X) = lim
λ→0

1
|λ|

gG(a, a + λX), a ∈ G, X ∈ Cn.(d)

holomorphic mappings f : G → D, e.g. mG(a, z), 𝛄G(a;X);(a)

analytic discs φ : D → G, e.g. ℓG(a, z), 𝛋G(a;X);(b)

logarithmically plurisubharmonic functions u : G → [0, 1), e.g. gG(a, z), AG(a;X).(c)

gG(a, z) = inf ∏
λ∈φ−1(a)

λ ordλ(φ−a) =: g̃G(a, z), a, z ∈ G,
φ∈O(D,G)

φ(0)=z

a∈φ(D)

¯∣ ∣¯log g̃G(a, z) ≤ 1
2π ∫

2π

0
u(φ(eit))dt.

ũ(w) := inf{ 1
2π ∫

2π

0
u(φ(eit))dt : φ ∈ O(D,G), φ(0) = w}, w ∈ G,̄



7.4.2 Sibony pseudometric

Besides the Green function and the Azukawa pseudometric there are other invariant objects de�ned via extremal
problems for plurisubharmonic functions. The most important one is the Sibony pseudometric, introduced by N.
Sibony in [Sib81b] in the context of κ-hyperbolicity. It is de�ned as

where

Observe that the family (SG)G is holomorphically contractible and 𝛄G ≤ SG ≤ AG. Moreover, SG(a; ⋅) is a
seminorm for any a ∈ G, and therefore, if G = Gh is a non-convex pseudoconvex balanced domain (e.g. 
{(z1, z2) ∈ D2 : z1z2 < 1/2}), then S(0; ⋅) AG(0; ⋅) = h (see [Kli89]). On the other hand if 
G := {z ∈ C : 1/2 < |z| < 2}, then 𝛄G(a; 1) < SG(a; 1) = AG(a; 1), a ∈ G (cf. [JP13]). In contrast to the
previous invariant pseudometrics, the Sibony pseudometric is in general not upper semicontinuous (cf. [JP13]).
Recent research was focused on boundary behavior of SG, see e.g. [For09], [FL09]. In particular, if 

G := {z ∈ C2 : 1/2 < ∥z∥ < 1}, then c1

t1/2 ≤ SG(Pt;X) ≤ c2

t1/2  for suf�ciently small t > 0, where 
Pt := (1/2 + t, 0), X := (1, 0). Consequently, using [Kra92], we observe that 
𝛄G(Pt;X) < SG(Pt;X) < 𝛋G(Pt;X), 0 < t ≪ 1. Notice that the Sibony pseudometric is the “in�nitesimal
version” of the following holomorphically contractible family of functions

Unfortunately, we have to confess that up to now almost nothing is known on properties of sG.

7.4.3 Bergman metric

In the recent years the theory of the Bergman kernel and the Bergman metric became a very important tool for
many questions in complex analysis (e.g. extension of biholomorphic mappings to the boundary). A detailed
discussion of this topic is skipped in this survey by several reasons, mainly by lack of space. Nevertheless, for the
convenience of the reader let us recall some basic de�nitions.

For a domain G ⊂ Cn let L2
h(G) be the Hilbert space of all holomorphic square integrable functions with the

scalar product ⟨f, g⟩ := ∫
G

fgdL 2n. Then there exists a unique Bergman kernel KG : G × G → C such that

KG(⋅, y) ∈ L2
h(G), y ∈ G,

f(y) = ⟨f, KG(⋅, y)⟩, f ∈ L2
h(G), y ∈ G.

Examples of KG for different G can be found in the article by S.G. Krantz in this book. Recall that the Bergman
kernel KG of a domain G ⊂ Cn is a C ∞-function on G × G. From now on we assume that KG(z, z) > 0, z ∈ G

(e.g. G bounded), which guarantees that the function z ↦ log KG(z, z) is plurisubharmonic and C 2. Then KG

leads to the following positive semide�nite Hermitian form

and the Bergman pseudometric 𝛃G(z;X) := √BG(z;X), z ∈ G, X ∈ Cn. Finally, set

SG(a;X) := sup{((Lu)(a;X))
1
2 : u ∈ \eusbSG(a)}, a ∈ G, X ∈ Cn,

\eusbSG(a) := {u : G → [0, 1), logu ∈ PSH(G), u(a) = 0, u isC 2 near a}.∣ ∣ ≡

sG(a, z) := sup{√u(z) : u ∈ \eusbSG(a)}, a, z ∈ G.

¯

BG(z;X) :=
n

∑
ν,μ=1

∂ 2

∂zν∂zμ
log KG(z, z)XνXμ

¯
¯

bG(z′, z′′) := (\smallint𝛃G)(z′, z′′) = inf{∫
1

0
𝛃G(α(t);α′(t))dt :

α : [0, 1] → G  is a piecewiseC 1-curve with α(0) = z′, α(1) = z′′},

z′, z′′ ∈ G;



bG is the Bergman pseudodistance on G. We point out that the Bergman pseudodistance is invariant only under

biholomorphic mappings, so from general point of view it is not holomorphically contractible. Nevertheless, we
have 𝛄G ≤ 𝛃G for bounded domains G ([Hah76]). On the other hand there are bounded very regular domains 
G ⊂ Cn such that 𝛃G ≤ 𝛋G fails to hold ([DF80]).

It has to be emphasized that the pluricomplex Green function turned out to be a very important tool in getting
results of the Bergman theory. The reader who is interested in more details in the Bergman theory (for example,
related to exhaustiveness and completeness) is invited to continue his study with diving into this new �eld, see e.g.
[JP13], [Kra13], [Bło15], [Che15], [KZ15].
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8.1 Introduction

Let's illustrate the above quote with a very simple example.
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There is an enormous amount of literature dedicated to studying the

properties of analytic functions at large encoded in their local expansions in

Taylor series—cf., the classical monographs by P. Dienes and L. Bieberbach

([3], [4, Ch. X]). One of the �rst results in this direction is the following

beautiful theorem of L. Kronecker ([4, Ch. X]).

Consider a perfect “bell-shaped graph” f(x) = 1
1+x2 . If we take its

Taylor series around the origin

we note immediately that it diverges for all real x : |x| ≥ 1. Why? Of

course, the answer is clear, if we replace x by a complex variable z, the

function f(z) := 1
1+z2  has two polar singularities at z = ±i on the

boundary of the circle of convergence. Thus, since the Taylor series

naturally converge in disks in the complex plane, the presence of

complex singularities interferes with the behavior of the series in the

real domain.

(i)

f(x) =
∞

∑
0

(−1)nx2n,

In the opposite direction, if we consider the Taylor series

that converges only for |x| < 1, the function f(x) extends as a smooth,

in fact a real-analytic function, to all real x < 1. In fact, if we consider 

f(z) :=
∞

∑
0

cos(√n )zn as an analytic function of the complex

variable z, it extends as an analytic function to the whole complex

plane C∖{1} except one point z = 1, where f(z) has an essential

singularity. How do we know that?

(ii)

f(x) =
∞

∑
0

cos(√n )xn



Theorem 8.1.1.  (L. Kronecker, 1881 [12]) The Taylor series 

∞

∑
0

anz
n

represents a rational function f(z) = P(z)/Q(z), P,Q are polynomials and 

max(degP , degQ) = N  if and only if all the determinants

Our example (i) illustrates this theorem with N = 2. Since rational

functions are obviously globally de�ned on the whole Riemann sphere,

Kronecker's theorem is a very good example of a mandatory analytic

continuation (single-valued as well) of a locally de�ned Taylor series.

The example (ii) is an illustration of a compilation of results of L. Leau

—1899, S. Wigert—1900 and G. Faber—1903, cf. [4, p. 337 ff].

Theorem 8.1.2.  (G. Faber, L. Leau, S. Wigert.) The Taylor series 

∞

∑
0

anz
n

with the radius of convergence 1 extends to C∖{1} if and only if there

exists a (unique) entire function g(z) of order zero (minimal type) such that 

an = g(n), n = 1, 2, ⋯. If g(z) is a polynomial of degree m then 1 is a

pole of order m + 1.

(Recall that an entire function g is called of minimal type if for every 

ε > 0 there exists a constant Cε such that f(z) ≤ Cεe
ε|z|.)

For example, the geometric series 

∞

∑
0

zn = 1
1−z

 illustrates the latter

part of the theorem with m = 0.

To illustrate the ideas behind this and similar results, let's sketch a

slightly more modern result of this type due to T. Qian ([14]) and D.

Khavinson [8] (the latter with a different, much shorter proof).

det = 0 for all n ≥ N .

⎛⎜⎝a0 ⋯ an

a1 ⋯ an+1

⋮
an ⋯ a2n

⎞⎟⎠ ∣ ∣



Theorem 8.1.3.  [8, 14]. Let f(z) =
∞

∑
1

bnz
n be an analytic function in 

D := {|z| < 1}, and bn = g(n), where g is of minimal type in the sector 

Sφ := {z : arg z < φ, 0 < φ ≤ π
2 }. Then, f(z) extends to the “heart-

shaped” domain Ωφ := {z = reiθ, 2π − cotφ ⋅ log r > θ > cotφ ⋅ log r}.

Note that when φ = π
2 , Ωφ = C∖[1, +∞).

Sketch of the proof [8] following ideas of Le Roy and Lindelöf [4, p.

340 ff].] By the residue theorem

(8.1)

where γ is any contour in Sφ enclosing the integers 1, ⋯ ,N  and no others.

(Can choose, e.g., for γ the boundary of the sector 

{w : arg(w − α) ≤ φ, w − α ≤ R, 0 < α < 1
2 ,R = N + 1

2 }.) 

γ = γφ ∪ γR, where γR is a circular part of the boundary, while γφ
comprises two sides of the angle with vertex at α.

An elementary argument yields that for all 

w ∈ C∖
∞
∪

n=−∞
{z : |z − n| < η, η > 0-small}, e2πiw − 1 ≥ c > 0, 

c = c(η) is a constant ([4, p. 341]). Hence, the part of the integral (8.1)

restricted to γR tends to zero when R → ∞ (i.e., N → ∞) for z = −r, 

0 < r < 1, i.e., z in D and on the negative radius. (This is seen from an

elementary estimate eπiw − e−πiw ≥ ceπR| sin θ| > c, for w = α + Reiθ,

assuming at �rst φ < π
α

.) Thus, for z ∈ (−1, 0] in D,

(8.2)∣ ∣ N

∑
1

g(n)zn = ∫
γ

g(w)zwdw

e2πiw − 1
,∣ ∣ ∣ ∣ ∣ ∣∣ ∣f(z) = ∫

Γφ

g(w)zw

e2πiw − 1
dw,



where Γφ := lim
R→∞

γφ = {w ⋅ arg(w − α) = ±φ}. Thus, in order for the

integrand in (8.2) to decay exponentially on Γφ, we obtain using the

assumptions on g, that it suf�ces to have

and

This proves the statement for φ < π
2 , since (8.2), an analytic function in z,

converges for all z ∈ Ωφ and coincides with f on (−1, 0). Finally, 

Ω π
2

= ∪
φ< π

2

Ωφ. □

Remark. The assumptions on g can be relaxed somewhat further (to g being

of exponential type less than π—cf. [4, pp. 341–342]). It is not known

whether Ωφ is the largest domain one can extend f(z) to. Thus, the “only

if” part is still missing, unlike for classical results of Kronecker and Leau

(Thms. 8.1.1 and 8.1.2).

Of course, it is impossible in an article like this one to survey all

beautiful topics investigated in the classical avenue of analytic continuation:

monodromy, continuation of algebraic functions, over-convergence and gap

series, universal Taylor series, and many others. We hope that an interested

reader will be tempted to continue research on her own: [4, Ch. X, XI], [3]

are good books to start. The more recent vast literature on universal Taylor

series can be found on MathSciNet.

From these classical themes of continuation of Taylor series, let's make

a leap to the problem of analytic continuation of solutions of most basic

equations of mathematical physics.

8.2 Continuation of Solutions of Linear PDE

cotφ ⋅ log |z| < arg z, for  arg(w − α) = φ

2π − cotφ ⋅ log |z| > arg z for  arg(w − α) = −φ.



8.2.1 ODE vs. PDE

It is well known that the solution of the initial value problem for the linear

ODE

(8.3)

with the coef�cients aj's and f analytic in a domain Ω containing the origin,

extends as analytic function throughout Ω. (It might end up being multi-

valued, if Ω is not simply connected, i.e., has holes, but nevertheless can be

analytically continued everywhere in Ω.)

Yet, if we consider a very simple initial value problem for PDE:

(8.4)

the easily found solution w := x
1−xy

 blows up arbitrarily close to the initial

line {y = 0} on the hyperbola y = 1/x. How can we explain this?

Moreover, if we consider a more general initial value problem for (8.4)

with arbitrary “data” w(x, 0) = f(x), where f is a polynomial, or an entire

function, one easily checks that the solution is

This is striking since it yields that the variety Γ := {xy = 1} is the only

possible carrier of singularities for all solutions to (8.4), independently of

the data, as long as the data itself has no singularities.

Let's postpone the heuristic explanation of this fact till later and discuss

another natural problem of analytic continuation coming from mathematical

physics.

8.2.2 G. Herglotz’ memoir of 1914

w(n)(z) + an−1(z)w(n−1)(z) + ⋯ + an(z)w′(z) + a0(z)w(z) = f(z),

w(0) = w0, ⋯ ,w(n−1)(0) = wn−1,

∂w
∂y = x2 ∂w

∂x , w(x, 0) = x;

w(x, y) := f( x
1−xy

).



The following question was �rst tackled by G. Herglotz in 1914 (also, cf.

[15, 18]). Imagine a solid in ℝ3, or a “plate” (a domain) in ℝ2, Ω, bounded

by, say, a nice algebraic surface (or, a curve).

Let

(8.5)

where

be the “gravitational” or “electrostatic” potential of Ω. Obviously, u is

harmonic outside Ω, and the natural question tackled by Herglotz was: how

far can one harmonically continue u(x) inside Ω before running into a

singular point? (Herglotz did answer the question in ℝ2 and made some

headway in ℝ3, but because his prize-winning memoir appeared on the

brink of World War I it fell into oblivion while most of the results were

rediscovered by other authors—cf. the references in [10, 16]. For example,

if Ω is a disk or a ball, then, of course, (e.g., n = 3) by the mean value

theorem, we have:

(dy, of course, stands for the Lebesgue measure in ℝn.)

So, uΩ(x) extends as a harmonic function everywhere in ℝ3 except for

the center of the ball. This goes back to I. Newton and is well-known. What

is perhaps less well-known is that conclusion stays true for

uΩ(x) = ∫
Ω

kn(x, y) dy,

kn(x, y) = 1
2π log 1

|x−y| , n = 2

= −1
4π

1
|x−y| , n = 3

uΩ(x) = − 1
4π ∫

{|y|<1}

dy

|x − y|
= const

|x|

uΩ,p(x) = − 1
4π ∫

Ω

p(y) dy
|x − y|

, Ω = {y : y < 1}∣ ∣



with an ARBITRARY polynomial, or even an entire density p(y). In the

latter case, all the symmetry associated with the ball goes out the window,

and the conclusion that uΩ,p extends harmonically to all of R
3∖{0},

matches Leau's theorem from Section 8.1 in mystery and beauty.

Herglotz’ problem is often restated in more “physical” terms: consider

the exterior gravitational potential of an analytic mass density p0(y) in the

region Ω. Find a smaller object E inside Ω and a different mass-density p1

on E that is gravi-equivalent to p0, i.e., such that the potential uE,p1  and 

uΩ,p0  coincide outside of Ω.

Example 8.2.1.  For Ω = {x : x < 1} ⊂ R3 (or, more generally, ℝn) 

p0 = polynomial of degree ≤ N , E = {0} and p1 is the distribution of

order ≤ N  at the origin.

Example 8.2.2  (cf., [9, 10, 16]). An oblate spheroid

(planet Earth, e.g.). Then, for say, uniform density p0 ≡ 1 (or any other

polynomial, or, entire density) uΩ(x) extends into Ω∖E, where

is the caustic disc. The relevant density p1 on E (relevant to p0 = 1) is

algebraic and equals const(a2 − b2 − x2
1 − x2

2)
1/2

 —cf. [10, Ch. 15].

Example 8.2.3.  A prolate spheroid Ω := { x2
1

a2 + x2
2

b2 + x2
3

b2 ≤ 1, a > b > 0}

gives a completely different picture, an exciting mystery on its own. The

potential uΩ extends to Ω∖E, but E in this case is a 1-dimensional segment 

{x2 = x3 = 0, |x1| ≤ √a2 − b2}, while the density p1 = (a2 − b2 − x2
1)

is a polynomial. Moreover, below we shall touch upon the rather deep

problem regarding the dramatic differences in singularities of uΩ in the∣ ∣Ω := {x ∈ R3 : x2
1
a

+ x2
2

a2 + x2
3

b2 ≤ 1, a > b > 0}

E := {x3 = 0,x2
1 + x2

2 ≤ a2 − b2}



latter two examples: bounded, a square-root type singularity in the former,

and unbounded—in the latter.

8.2.3 A further discussion of the Herglotz question

As one readily obtains directly from (8.5) via Green's theorem,

(8.6)

where χΩ(x) = {   and stands for the characteristic function

of Ω. Denote by M, the so-called modi�ed Schwarz potential (of ∂Ω) the

solution of the following initial value problem

(8.7)

(The solution exists and is unique by the Cauchy–Kovalevskaya theorem—

cf. [10], e.g.) Then, the function

(8.8)

gives the desired continuation. Indeed, uΩ − M  is harmonic in Ω near Γ
and coincides with uΩ on Γ together with its �rst derivatives. The statement

then follows by a straightforward application of Green's formula—cf. [10,

Thm. 6.1].

For an arbitrary polynomial or entire mass density p, we only need to

modify (8.7) and de�ne Mp as a solution of the initial value problem

ΔuΩ = χΩ,

1, x ∈ Ω

0, x ∈ R∖Ω̄

ΔM = 1 near Γ := ∂Ω;
M = ∇M = 0 on Γ .

u := {  
uΩ, outside Ω
uΩ − M inside Ω



(8.9)

If instead of M we consider the Schwarz potential uΓ  of Γ de�ned by

(8.10)

(n = 2 or 3, as in our examples), then obviously, MΓ = 1
2n x 2 − uΓ .

Similarly, Mp = Q − uΓ ,p, where Q is a polynomial, an entire function

such that ΔQ = p, and uΓ  accordingly de�ned as a solution of the initial

value problem similar to (8.10):

(8.11)

Thus, if we could show that the singularities of any initial value problem for

the Laplace operator posed on Γ are only dictated by Γ itself, not by initial

data ( 1
2n x 2, or Q), we would have achieved the high ground needed for

understanding the Herglotz’ problem. A deep and beautiful theory of Leray

explains the origins for the appearance of singularities of initial value

problems near initial surfaces—cf. [10, Ch. 13, 19–20] and Leray's original

papers referenced there.

Indeed, generically, it asserts that the singularities appear and take off

(locally, sic!), from the initial surfaces at the same places and along the

same routs independently of data. Moreover, in dimension 2, and also, in

higher dimensions, but only for quadratic surfaces, it has been proved that

the local theory of Leray, �rst veri�ed only near initial surfaces, holds

globally—cf. [10]. Here, we will simply illustrate the Leray principle by a

{  
ΔMp = p near Γ ;
Mp = ∇Mp = 0 on Γ .

{  
ΔuΓ = 0 near Γ ;

uΓ = 1
2n x 2 on Γ ; graduΓ = 1

n

→
x on Γ∣ ∣ ∣ ∣{  

ΔuΓ ,p = 0 near Γ ;
uΓ ,p = Q, ∇uΓ ,p = ∇Q on Γ .∣ ∣



couple of straightforward examples. We only sketch the main steps, more

details can be found in [10].

Example 8.2.4.  Let Ω = { x2

a2 + y2

b2 − 1 < 0, a > b} be an ellipse, 

Γ := ∂Ω.

One can calculate uΓ , and then further

(8.12)

(z = x + iy, as usual). So, the singularities of uΓ  are at the foci of Ω. The

solution of the initial value problem (8.10) is �ne by the Cauchy–

Kovalevskaya theorem near complexi�ed quadratic curve Γ̂  in ℂ2,

except for 4 points {(± a2

c
, ± b2

c
)} on Γ̂  where C–K theorem breaks

down. From those “bad” points, as Leray's theory asserts, the singularities

travel along 4 complex (characteristic) lines 

{(x, y) ∈ C
2 : x ± iy = const} tangent to Γ̂  at the above characteristic

points. These lines, the “carriers” of singularities, reach the “real” space ℝ2

at the foci (±c, 0) of the ellipse. Since the carries of singularities depend on

Γ only, logarithmic potentials of Ω with arbitrary polynomial, or entire

densities exhibit the same behavior and might become singular only at the

foci as well.

Moreover, when b ↑ a, c ↓ 0, an ellipse becomes a circle, the “bad”

points on Γ̂  all move to in�nity, and the singularities of (8.12) change from

algebraic (√ -type) to polar- c
z

 at the origin, the limiting position of the

collapsing foci.

A similar but technically much more demanding analysis provides the

justi�cation for Examples 8.2.1–8.2.3 in ℝ3, and in general in ℝn—cf. [10]

and the works of G. Johnsson referenced therein. However, we emphasize

1
2 ∇uΓ = ∂uΓ

∂z = a2+b2

a2−b2 z − 2ab
a2−b2

√z2 − c2, c2 − a2 − b2
¯̄̄

Γ̂ := {x, y ∈ C : x2

a2 + y2

b2 − 1 = 0}



that for algebraic surfaces of degree ≥ 3 in ℝn, n ≥ 3, the analysis of

Herglotz’ problem, i.e., the global version of Leray's principle, is still

waiting to be discovered.

We shall �nish this section with another transparent example illustrating

Leray's theory.

Example 8.2.5.  Consider the initial value problem

(8.13)

One readily �nds the solution u(x, y) = x4

4 + 3y4/3

4  that is “rami�ed”

around {y = 0}. The latter is, in fact, Leray's characteristic tangent to Γ at

the (unique, w.r.t. ∂ 2

∂x∂y  operator) “bad” characteristic point (0, 0).

In higher dimensions the situation is more complicated. In a nutshell,

there are more “complex characteristic lines” tangent to the initial surface

that we view as continuation of Γ into ℂn. These lines carry out singularities

off the initial surface. The analytic functions having singularities on a piece

of an analytic hypersurface however must be singular on the whole

hypersurface by a celebrated theorem of Hartogs (in ℂn, n > 1, of course).

In other words, the singularities propagate from “bad” points on the

complexi�ed (embedded into ℂn) surface Γ and then exhibit themselves in

ℝn at points where the Leray characteristic tangent, the carrier of

singularities, hit ℝn. This is transparent and proved rigorously (cf. [10, Ch.

13], e.g.), by G. Johnsson for quadratic surfaces in ℝn—cf. [10, Ch. 19-20]

and references to Johnsson's original papers contained therein. This also

explains the difference in the nature of singularities in Examples (8.2)–

(8.3). In the case of the oblate spheroid, each point on the circular caustic 

{x2
1 + x2

2 ≤ a2 − b2,x3 = 0} is a “meeting point” of true characteristic

lines coming from ℂ3 and tangent at characteristic points on the

∂ 2u
∂x∂y = 0, near Γ := {y = x3};
∂u
∂x = y, ∂u

∂y = x on Γ .



complexi�ed surface {(x1,x2,x3) ∈ C3 : x2
1

a2 + x2
2

a2 + x2
3

b2 − 1 = 0, a > b}

. For the prolate spheroid, each point of the caustic segment 

{|x1| ≤ √a2 − b2,x2 = x3 = 0} is a meeting point of in�nitely many

characteristics, thus causing unbounded singularities. So, intuitively, the

idea that “more carriers of singularities meeting at a point in ℝn” should

result in a “heavier” singular behavior is tempting and reasonable. However,

essentially, nothing has been rigorously proved along these lines. A worthy

and challenging avenue for further research.

8.3 Analytic Continuation and Problems of Uniqueness

Consider the spherical shell Ω := {x ∈ R
3 : r < x < R} (

x 2 = x2
1 + x2

2 + x2
3, as usual). Let u be a harmonic function in Ω that

vanishes on the segment (−R, −r) of the x1-axis. Then, let us pose the

question (cf. [10, Ch. 9]).

Question 8.3.1.  Must u also vanish on the segment r < x1 < R, 

x2 = x3 = 0 ?

The same question in 2 dimensions can be easily settled by elementary

complex analysis. To �x the ideas, let r = 1, R = 2, n = 2. Consider the

harmonic function v(z) := u(z) + u(z) in the annulus Ω := {1 < |z| < 2}
. By the Schwarz effection principle, v ≡ 0 in a small disk centered on 

(−2, −1), say, {z : z + 3
2 < 1

4 }. Hence, v ≡ 0 in Ω and, accordingly, 

2u(x) = v(x) = 0 on (1, 2). Thus, in this situation, the answer is “yes”.

Although, the answer is also “yes” in ℝn, n ≥ 3, the above argument of

course, fails. Moreover, the above argument doesn’t work either if instead

of a line through the center of the annulus, or a spherical shell, we consider

an arbitrary line still cutting Ω in two disjoint segments. It might come as a

surprise that the answer remains “yes” if R
r

> 3 (a thick annulus, or shell),

but becomes “no, not necessarily” if R
r

≤ 3 (a thin annulus) and the

constant 3 is sharp (cf. [10, Ch. 9], [11]). Even more intriguing ([10, Ch.∣ ∣∣ ∣¯∣ ∣



9]), the same question posed for a torus in ℝ3, has always a negative answer

in general.

What is the high ground for this question? The answer is analytic

continuation. Indeed, a harmonic in a domain Ω ⊂ Rn, n ≥ 2, function u

automatically extends as a holomorphic function of n variables to a domain 

Ω̂ in ℂn. Ω̂ can be viewed in a rather simple way as follows. For all 

xo ∈ R
n∖Ω, consider the isotropic cone

Γxo := {z ∈ Cn :
n

∑
1

(zj − x0
j)

2
= 0}. Then, Ω̂ := Cn∖ ∪

xo∈Rn∖Ω
Γxo  —

cf. [1, Ch. 1].

The beautiful fact established in the theory of linear analytic PDE is that

solutions of ALL PDEs (Δn+ lower terms) u = f with, say polynomial or

entire coef�cients in Ω automatically extend to Ω̂. For example, if 

Ω = {|x| < 1} is the unit ball in ℝn, n ≥ 2, 

Ω̂ = z ∈ C
n : (∥z∥4 −

n

∑
1

z2
j

2

)

1/2

+ ∥z∥2 < 1 , the celebrated Lie

ball (cf. [1, 2, 10]). (For n = 2, Ω̂ = {(X,Y ) ∈ C
2 : X ± iY }, the

bidisk (cf. [1, 2, 10]). Thus, a suf�cient condition that would yield an

af�rmative answer to our question, is whether the intersection 

Ω̂ ∩ {Y = c} the harmonicity hull of the shell Ω and the complexi�ed line 

{y = c} (in dimension 2, e.g.) is connected or not. In the original question

for the annulus, for example, this intersection becomes 

{(X, c) : r < |X ± ic| < R} and is disconnected if R−r
2 < c < r, and

connected if 0 < c ≤ R−r
2 . If R

r
≥ 3, e.g., R−r

2 ≥ r > c, so the

intersection of Ω̂ and the complex line {Y = c} is connected. The fact that

the constant 3 is sharp is seen (T. Ransford) by taking Ω to be an annulus

separating {0, −i} from i, and u(z) := Re√z(z − i)(z + i), where we

can take any branch of the square root. Then, u(x) = 0, x < 0 and 

u(x) > 0, x > 0. R
r

< 3 but can be made arbitrary close to 3—see [11],

[10, Ch. 9] for more details.

⎧⎪⎨⎪⎩ ∣ ∣ ⎫⎪⎬⎪⎭ ∣ ∣



As is remarked in [11], this simple consideration allows to answer

questions similar to Q. 8.3.1 not only for solutions of linear PDE with the

power of the Laplacian in the principle part but also for functions

represented by arbitrary Riesz potentials, the latter, in general, need not

satisfy any linear PDE.

8.4 Analytic Continuation of Series of Zonal Harmonics and

Series of Orthogonal Polynomials

By analogy with analytic continuation of Taylor series, let's consider the

problem of �nding singularities of other series expansions. To �x the ideas,

let

(8.14)

be an axially symmetric harmonic function in the unit ball in ℝ3. an ∈ R, 

lim
n→∞

|an|1/n = 1, Pn(x) = 1
2nn!

dn

dxn [(x2 − 1)n] are Legendre polynomials

(orthogonal on [−1, 1], ∥Pn∥
2
2 = 2

2n+1 ). r = (x2
1 + x2

2 + x2
3)

1/2
 the

distance to the origin, θ is the usual azimuth angle in spherical coordinates.

One can easily verify that the expansion (8.14) diverges for r > 1, so u

must have singularities on the unit sphere S 2 := {r = 1}. The question is

where? The following remarkable theorem was proved by G. Szegő in 1954

[17].

Theorem 8.4.1.  u(r, θ) extends harmonically across the circle 

(1, θ0 : 0 ≤ φ ≤ 2π) on the sphere S 2 if and only if the Taylor series (!) 

f(ξ) :=
∞

∑
k=0

anξ
n extends across ξ0 := eiθo .

u :=
∞

∑
n=0

anr
nPn(cos θ)



This is a truly amazing result, since at �rst glance, the expansions in

zonal harmonics and the Taylor series built with the same coef�cients

should have nothing in common. Moreover, inspired by Szegő's theorem,

Nehari proved the following beautiful follow-up [13].

Theorem 8.4.2.  Let {an} ∈ C, satisfy lim
n→∞

|an|1/n = 1
R

, R > 1 and let 

f(t) =
∞

∑
n=0

anPn(t) be (as is easily checked) an analytic function inside the

ellipse DR with foci at ±1 and sum of whose semiaxes equals R. In other

words, DR := {(x, y) : x2

a2 + y2

b2 < 1, a + b = R, a − b = 1
R
}. P(t), as

in Szegő's theorem, denote Legendre polynomials. Then, f(t) is analytically

continuable across to ∈ ∂DR if and only if the analytic function 

g(s) :=
∞

∑
n=0

ans
n, |s| < R, where s and t are related by the conformal map 

s = φ(t) = t + √t2 − 1, φ : Ĉ∖[−1, 1] → {s ∈ C : s > 1}, 

φ(∞) = ∞, is analytically continuable across the corresponding point 

s0 = φ(t0), (t0 = 1
2 (s0 + s−1

0 )), s0 ∈ {s : |s| = R}.

Once again, the reader should observe how Nehari's result,

unexpectedly, connects the singularities of the expansion in orthogonal

polynomials with seemingly disjoint Taylor series.

Since there is a wide variety of results allowing one to identify

singularities of Taylor series on the circle of convergence, the above two

results provide a powerful tool for identifying singularities of harmonic

functions and orthogonal polynomial expansions.

Both theorems can be signi�cantly extended by replacing Legendre

polynomials with arbitrary Jacobi orthogonal polynomials (R. P. Gilbert

(1969), P. Ebenfelt–D. Khavinson–H. S. Shapiro (1996))—cf. [10, Ch. 10],

[5], [6] and references therein.

Recall that for α,β > −1, the Jacobi polynomials are orthogonal

polynomials on [−1, 1] with respect to the weight (1 − x)α(1 + x)β,

normalized by P
α,β
n (1) = ( ). So, α = β = 0 corresponds to

¯∣ ∣n + α

n



Legendre polynomials, α = β = − 1
2  —Tschebysheff polynomials (that, in

turn, under a suitable change of variables, correspond to monomials zn, 

n ≥ 0 in the unit disk—cf. [5, 6, 10]; α = β = k−3
2 , k ≥ 2 being an integer

corresponds to ultraspherical polynomials appearing in expansions of

axially symmetric harmonic functions in ℝk (Gegenbauer polynomials).

Now, the original proofs of Thms. 8.4.1 and 8.4.2 boil down to writing

down the given expansions in terms of a certain integral and ingenious

manipulation of the latter. The “high ground” approach advocated and

developed in [5, 6] consists of noticing that ALL relevant expansions in

general Jacobi polynomials can be interpreted as solutions of a Cauchy

problem for a linear PDE in two variables with the same initial data. Of

course, the partial differential operator corresponding to every particular

expansion is different in each case. But all of them share the same principal

part, the part of the differential operator that involves the senior derivatives.

A deep result in the theory of linear PDE, based on the 1970 extension by

M. Zerner (cf. [10, Ch. 4] of the classical Cauchy–Kovalevskaya theorem

yields that the singularities of the solutions of the Cauchy problems locally

depend exclusively on the principal part of the differential operator. Hence,

all the expansions in Thms. 8.4.1 and 8.4.2 share the same singularities thus

unveiling the mystery behind Szegő's and Nehari's results.



8.5 An Epilogue

This article's only intent is to initiate for the curious reader a few possible

modern directions in the classical theme of analytic continuation. There is

absolutely no way to cover all possible topics, thus our choices were limited

to several topics the author felt most comfortable with.

There are so many themes that were left out entirely, e.g., beautiful

results of Eisenstein regarding algebraic properties of Taylor series

depending on properties of coef�cients—[3, 4]. Essentially, no deep and

subtle results, starting from Painlevé classical researchers, dealing with

classi�cation of singularities and analytic continuation of solutions to

nonlinear ODE in the complex domain—cf., e.g., [7]. In classical potential

theory, we left out beautiful modern generalizations due to A. Givental of

the Newton's “no gravity in the ellipsoidal cavity” theorem, Ivory's theorem,

MacLauren's mean value theorem for ellipsoids, viewed from the modern

viewpoint of analytic continuation of Cauchy's problem for the Laplace

equation—cf. [9, 10] and references therein. The theme of analytic

continuation of solutions to the Dirichlet problem in domains with algebraic

boundaries is far from developed and has an attractive array of important

open problems, even in two dimensions—cf. [10, Ch. 18]. Even more basic

open problems await an interested reader if one extends the search for

singularities of solutions to the classical Dirichlet problem for the Laplacian

to that for Helmholtz’ equation. In other words, expanding the program to

study possible singularities of the eigenfunctions of the Laplacian in

domains with algebraic boundaries. The reigning open conjecture that

ellipsoids are the ONLY domains for which all eigenfunctions are entire

(and of exponential type) remains virtually untouched.

A fairly recent solution by P. Ebenfelt and D. Khavinson—cf. [10, Chs.

11, 12] of the problem of re�ection of harmonic functions across analytic

hypersurfaces in higher dimensions (or, why doesn’t Schwarz re�ection

principle work in, say, ℝ3?) opens up a new venue for investigations: the

“antenna problem”. In short, it is the question of the possibility of re�ection

from a point to a compact set vs. point-to-point re�ection.

Once again, more important for applications is the re�ection question

for solutions of the Helmholtz equation, i.e., the eigenfunctions for the



Laplacian. That playing �eld is widely open as well—cf. [10] and

references therein.

Finally, we have only mentioned in passing the powerful methods of

analytic continuations of solutions of linear analytic PDE combined with

the modern techniques of several complex variables. The results culminate

in Leray's theory of propagation of irregularities through ℂn. The underlying

techniques based on the so-called method of “globalizing families” is both

clear and quite powerful—cf. [10, Chs. 4–10, 19, 20] and references

therein.

However, at present, the theory is more or less complete (we mean the

global theory of propagation of singularities) mostly in two variables and

also in n ≥ 3-variables, but there exclusively for singularities initiated on

quadratic surfaces [10, Ch. 19–20]. Once again, the importance of the

remaining open problems is dif�cult to overestimate.

In conclusion, by this short survey, we wanted to demonstrate that the

classical theme of analytic continuation of functions of one variable that has

intrigued researchers for at least 200 years since the concept of an analytic

function had come into focus, is alive, doing well and is quite rich with

plenty of attractive and beautiful problems, conjectures, and attractive

routes for further study. Thus, we hope that this small survey and the

appended references will prompt the reader to invest time and effort in

further research on these truly “eternal” topics.
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9.1 Introduction to This Chapter

This chapter is devoted to complex convexity. Which are the most signi�cant results presented
here? This is the question that I answer in this �rst section of the chapter. But �rst I shall explain
why real convexity is of interest, why complex convexity is important, and why mathematical
morphology is a useful tool in the study of convexity.

What makes the approach in the present chapter different from other presentations of the
subject? Also, this question will receive an answer.

9.1.1 Why is real convexity of interest?

A subset A of Rn is de�ned to be convex if for any pair {a, b} of points in A the whole interval
[a,b] is also contained in A. A function f : Rn → [−∞, +∞] is said to be convex if its �nite
epigraph

(9.1)

is a convex set.

epifinite(f) = {(x, t) ∈ Rn × R; f(x)⩽t},



Convex functions possess a property of great importance in optimization theory: A local
minimum of a convex function Rn → R is automatically a global minimum. In other words, if 
f : Rn → R is convex and f(x)⩾c for all points x in a neighborhood of a, however small, then 
f(x)⩾c for all x in Rn.

Real convexity appears naturally also in complex analysis: the indicator function of the
Fourier transform (de�ned in Cn) of a function or distribution in Rn of compact support is
convex.

We collect in Section 9.2 de�nitions and basic properties of convex sets and functions in
vector spaces over the �eld of real numbers or over the �eld of complex numbers.

9.1.2 Why is complex convexity important?

In one complex variable, complex convexity of sets is not of great importance. Given any open
set Ω of the complex plane C and a point p not belonging to Ω, we de�ne a rational function 
z ↦ 1/(z − p) which cannot be extended as a holomorphic function across p.

But in two variables, the set of singularities of a rational function, indeed of any
meromorphic function, cannot be just a singleton set. There are easy examples of two sets ω ⊂ Ω

such that any holomorphic function in ω can be extended to a holomorphic function in Ω.
This phenomenon gives rise to the concept of domains of holomorphy, which are domains

such that there are holomorphic functions that cannot be continued to a larger domain, in a sense
to be made precise. Related to these is the de�nition of a pseudoconvex domain. That a domain
of holomorphy is pseudoconvex was proved by Eugenio Elia Levi (1883–1917); the converse, at
the time an unsolved problem, came to be known as the Levi problem. It was solved by Kiyoshi
Oka (1901–1978) in two variables, and later in any �nite dimension by Oka, François Norguet
(1929–2010) and Hans-Joachim Bremermann (1926–1996)—for a survey, see (Slatyer 2016).

So these phenomena point to the fact that there are great differences between the geometry of
C and the geometry of C2. We can draw two-dimensional �gures on a paper, and we can visualize
objects in three dimensions. Nowadays there are even nice programs that create �gures on the
screen that can be rotated to exhibit all properties of an object in three-space. But two complex
variables is a challenge because they correspond to four real coordinates.

Can you see in four dimensions? Yes, it is indeed possible to train one's inner eyes to see in
four dimensions. A nontrivial but most rewarding sport. We can actually arrive at true
stereoscopic vision … However, if you are not yet a master of four-dimensional landscapes, you
will appreciate the Hartogs sets, named for Friedrich Moritz Hartogs (1874–1943), where we can
be content with three real variables (Re z1, Im z1, |z2|) instead of the four 
(Re z1, Im z1, Re z2, Im z2). An example is Figure 9.1 on page 281. To view Reinhardt domains,
named for Karl Reinhardt (1895–1941), we need only ( z1 , z2 ) ∈ R2.

9.1.3 Why is mathematical morphology a useful tool in the study of convexity?

Mathematical morphology can be super�cially described as applied lattice theory. As such it is
about the operations (x, y) ↦ x ∧ y = min(x, y) and (x, y) ↦ x ∨ y = max(x, y) in an ordered
set. These operations replace addition and multiplication in a ring, and an important example is

the Boolean ring of all subsets of a given set, with ∧ as intersection and ∨ as union.
In convexity theory, we see that the intersection of two convex sets is convex, while the union

is, in general, not. But we still have a lattice, in that the convex hull of the union of two convex∣ ∣ ∣ ∣



sets is the smallest convex set containing the two, and therefore is the supremum of the two. This
can then be done analogously for convex functions, and, more generally for plurisubharmonic
functions. It turns out that complete lattices are important; they are the ordered sets which allow
in�ma and suprema also of in�nite families.

Mathematical morphology provides us with important concepts in the theory of ordered sets
that are helpful in understanding several related phenomena in mathematics. See Section 9.3 for
more details.

9.1.4 Which are the most signi�cant results reported in the present chapter?

An important observation is the non-local character of lineal convexity for general sets. As
always, properties such that the local and global variants are different create dif�culties—which
may be challenging.

Because of the non-local character just mentioned, it is of importance to know that for
bounded sets with a smooth boundary, the property of being locally lineally convex actually
implies the global property. This is proved in Section 9.6.

9.1.5 What makes the approach in the present chapter different from other presentations

of the subject?

Complex convexity is quite a well-studied �eld, and the ways to approach it are not many.
However, we shall view convexity from the inside as well as from the outside, and this gives
perhaps interesting perspectives. A set is concave if and only if its complement is convex, and the
two notions should be studied together.

As mentioned, a subset A of Rn is de�ned to be convex if for any pair {a, b} of points in A,
the whole segment [a,b] is also contained in A. This is what we can call convexity from the
inside, i.e., looking at subsets of the given set. But we can also look at the set from the outside: If
p does not belong to A and A is open or closed, then there is a half-space that contains A but not
p. This is the Hahn–Banach theorem, of utmost important in convexity theory, both in �nite
dimension and in�nite dimension. Explicitly, we say that a set in a vector space over R or C is
lineally concave if it is a union of hyperplanes, and lineally convex if its complement is lineally
concave. In one dimension, hyperplanes are just points, so every set is both lineally concave and
lineally convex. In higher dimensions a convex set need not be lineally convex, but if it is open or
closed, this is true. All this is true both in the real and the complex settings. For more details, see
Section 9.4.
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9.2 Introduction to Convexity

9.2.1 Introduction to this section

The theory of convexity of sets and functions in vector spaces is a highly developed and very rich
theory. We collect in this section de�nitions and basic properties of convex sets and functions in
vector spaces over the �eld of real numbers or over the �eld of complex numbers. However, we
present but a bare minimum of what is needed for the rest of this chapter. For fuller accounts, see
the classical book by R. Tyrrell Rockafeller (1970, 1997), the books by Jean-Baptiste Hiriart-
Urruty and Claude Maréchal (1993, 2002), and also my book manuscript (ms 2021).

9.2.2 Sets, mappings, and order relations

9.2.2.1 Notation for numbers, norms, and derivatives

We write N = {0, 1, 2, …} for the set of natural numbers, following Bourbaki (1963:67),1 and
Z, R, C for the ring of integers, the �elds of real and complex numbers.

We shall use the lp-norm ∥z∥p = (∑
j

zj
p)

1/p

, 1⩽p < +∞, and the l∞-norm 

∥z∥∞ = sup
j

zj  for z ∈ Cn. When any norm can serve, we write only ∥z∥.

The bilinear inner product of two vectors in Rm or Cn shall be denoted by a dot:∣ ∣∣ ∣



The Euclidean norm will be written like this:

We shall denote by B<(c, r) and B⩽(c, r) the open ball and the closed ball, respectively,
with center at c ∈ Cn and radius r ∈ R for any norm, thus

If n = 1, we shall write instead D<(c, r) and D⩽(c, r) for the disks.

The closure, interior and boundary of a subset A of a topological space will be denoted by A ,

A∘ and ∂A, respectively. Thus B<(c, r) = B⩽(c, r) if r is positive, and B⩽(c, r)° = B<(c, r)
for all real r.

For derivatives of functions we shall use the notation

1Alfred Tarski (1956:121) calls 0 a natural number.

Differentials are written as

(9.2)

9.2.2.2 Counting with in�nities

We shall also use a notation for the extended real line

thus creating the two-point compacti�cation of R by adding two in�nities, +∞ and 
−∞ = −(+∞). We also add these in�nities to the integers,

Similarly we write Y! = Y ∪ {−∞, +∞} for any subset Y of R.
How shall we de�ne a sum like (+∞) + (−∞) ? Can addition 

R × R∋(x, y) ↦ x + y ∈ R be extended to an operation R! × R!∋(x, y) ↦ x + y ∈ R! in a
reasonable way? A convenient solution, pioneered by Jean-Jacques Moreau (1923–2014) in his
paper (1970), is to de�ne two extensions, upper addition and lower addition . The �rst is an upper
semicontinuous mapping from R! × R! into R!; the second a lower semicontinuous mapping.

x ⋅ y = x1y1 + ⋯ + xmym; z ⋅ w = z1w1 + ⋯ + znwn, x, y ∈ Rm, z,w ∈ Cn.

∥x∥2 = √x ⋅ x; ∥z∥2 = √z ⋅ z, x ∈ Rm, z ∈ Cn .̄

B<(c, r) = {z ∈ Cn; ∥z − c∥ < r} and B⩽(c, r) = {z ∈ Cn; ∥z − c∥⩽r}.

¯

¯

fxj
= ∂f

∂xj
, fyj = ∂f

∂yj
, fzj = ∂f

∂zj
= 1

2 (fxj
− ifyj),

fzj = ∂f
∂zj

= 1
2

(fxj
+ ifyj), fzjzk = ∂ 2f

∂zj∂zk
, j, k = 1, … ,n.̄̄̄̄

df = d′f + d′′f, where d′f=∑ f zj
dzj and d′′f=∑ f z̄k

dz̄k.

R! = R ∪ {−∞, +∞} = [−∞, +∞],

Z! = Z ∪ {−∞, +∞} = [−∞, +∞]Z.



They are denoted by 
⋅

+ and +
⋅

 and are de�ned by the requirements of being commutative and to

satisfy

(9.3)

When there are several terms we may use the summation symbol with a dot:

(9.4)

A convenient rule is the following.

Lemma 9.2.1.  For any element c ∈ R! and any function f : X → R! de�ned on an arbitrary set
X we have

(9.5)

Note that there are no exceptions to this formula.

Proof We just need to check all possibilities where our intuition is less reliable than usual, i.e.,
when c = ±∞ or X is empty.

We also note the equivalence

(9.6)

9.2.2.3 Sets

The empty set, the unique set with no elements, will be denoted by ∅. If A and B are sets such
that every element of A belongs also to B, then A is said to be a subset of B and B a superset of
A. This is written A ⊂ B and B ⊃ A.

The family of all subsets of a set W is called the power set of W, and will denoted by P(W).
Thus A ∈ P(W) if and only if A ⊂ W . We denote by Pfinite(W) the family of all �nite subsets
of W.

We shall use the usual symbols for the intersection and union of a family (Aj)j∈J  of sets:

x
⋅

+ (+∞) = +∞ forall x ∈ R!;

x
⋅

+ (−∞) = −∞ forall x ∈ [-∞, +∞[; and

x +
⋅
y = −((−x)

⋅
+ (−y)) forall x, y ∈ R!.

m

∑
j=1

∙tj = t1
⋅

+ ⋯
⋅

+ tm, tj ∈ R!.

inf
x∈X

(c
⋅

+ f(x)) = c
⋅

+ inf
x∈X

f(x).

a
⋅

+ b⩾c ⇔ a⩾c +
⋅

(−b), a, b, c ∈ R!.

( )



□

(9.7)

When the index set J has only two elements, we write A1 ∩ A2 and A1 ∪ A2.
The set of all elements in A that are not elements of B is called the set-theoretical difference

of A and B, written A∖B. When A is equal to the whole set W we can write ∁B for W∖B, the
complement of a subset B of W.

The Cartesian product of two sets X and Y is the set of all pairs (x, y) with x ∈ X and y ∈ Y

. The Cartesian product of n sets Xj, j = 1, … ,n, denoted by

is the set of all n-tuples (x1, … ,xn) with xj ∈ Xj.
To any set A ⊂ X we associate its characteristic function χA de�ned to take the value 1 in A

and the value 0 in X∖A. We also de�ne its indicator function indfA, which takes the value 0 in
A and the value +∞ in its complement.

9.2.2.4 Graphs, epigraphs and hypographs

De�nition 9.2.2.  To any mapping f : X → Y  we de�ne its graph:

a subset of the Cartesian product X × Y .

De�nition 9.2.3  To any function f : X → R!, we associate its epigraph

(9.8)

and its strict epigraph

(9.9)

We de�ne its �nite epigraph as

(9.10)

and its strict �nite epigraph as

∩
j∈J

Aj and ∪
j∈J

Aj, Aj ∈ P(W).

X1 × ⋯ × Xn =
n

∏
j=1

Xj,

graph(f) = {(x, y); f(x) = y} ⊂ X × Y ,

epi(f) = {(x, t) ∈ X × R!; t⩾f(x)};

epistrict(f) = {(x, t) ∈ X × R!; t > f(x)}.

epifinite(f) = {(x, t) ∈ X × R; t⩾f(x)};

( ) ( ) ( )



□

□

(9.11)

The �rst two being subsets of the Cartesian product X × R! the following two of the product 
X × R.

It is easy to pass from the �nite epigraph to the strict �nite epigraph as well as in the other
direction:

(9.12)

Similarly for epistrict and epi.

The �nite epigraph of a function f : Rn → R! is contained in the closure (taken for the usual
topology in Rn × R) of epistrictfinite(f), maybe strictly.

De�nition 9.2.4.  Analogously we de�ne the hypograph of a function:

(9.13)

as well as the strict hypograph, hypostrict(f), the �nite hypograph, hypofinite(f), and the strict
�nite hypograph, hypofinite

strict(f).

It is often convenient to express properties of mappings in terms of their epigraphs or
hypographs.

9.2.2.5 Inverse and direct images

To any mapping f : X → Y  we de�ne two mappings on a higher level,

The �rst is de�ned by

(9.14)

Here f *(B) is called the inverse image of B. The second is de�ned by

(9.15)

epistrictfinite(f) = {(x, t) ∈ X × R; t > f(x)}.

epistrictfinite(f) = ∪
c>0

epifinite(f + c); epifinite(f) = ∩
c>0

epistrictfinite(f − c).

hypo(f) = {(x, t) ∈ X × R!; t⩽f(x)},

f * : P(Y ) → P(X) and f* : P(X) → P(Y).

f *(B) = {x ∈ X; f(x) ∈ B}, B ∈ P(Y ).

f*(A) = {f(x); x ∈ A}, A ∈ P(X).



□

□

□

The set f*(A) is called the (direct) image of A. We write Im (f), the image of f, for f*(X).
The mappings f* and f* are the simplest examples of the pullbacks and pushforwards used in

differential geometry, and similarly in homology theory and distribution theory.

De�nition 9.2.5  To any function f : X → R!, we associate its effective domain, denoted by 
dom(f) and de�ned as the set where the function takes values less than +∞:

the inverse image of R ∪ {−∞}.

9.2.3 De�ning convex sets

It is most convenient to de�ne convex functions with the help of convex sets. This also has the
advantage that we can treat functions with in�nite values without dif�culty. That is why we start
now with convex sets.

De�nition 9.2.6.  A rectilinear segment in a vector space E is the set

where a and b are its endpoints. A subset A of a vector space is said to be convex if 
{a, b} ⊂ A implies [a, b] ⊂ A.

Every segment, every straight line, and all af�ne subspaces are convex sets.
It is worth noticing that to check convexity of a set, only its intersections with one-

dimensional subspaces need to be considered. In other words, a set A ⊂ E is convex if and only
if the inverse image f *(A) is an interval (bounded or unbounded) in R for every mapping 
f : R → E of the form f(t) = ta + b, t ∈ R, a, b ∈ E.

A convex set A in Rn need not have interior points, but it does so if we consider it as a subset
of the smallest af�ne space that contains it. We de�ne the relative interior of A, denoted by 
relint(A), as the interior taken with respect to the topology in this af�ne subspace that is
induced by the usual topology on Rn. In this way every convex set, even if only a singleton set,

has a nonempty relative interior. The set A∖relint(A) is the boundary of A taken in the smallest
af�ne space containing A and is more interesting than the boundary of A if the space mentioned
is not all of Rn.

9.2.3.1 The convex hull

De�nition 9.2.7  Given a subset A of a vector space E, we de�ne the convex hull of A as the
smallest convex set containing A. It will be denoted by cvxh(A).

The convex hull is well de�ned since any intersection of convex sets is convex.

9.2.4 The Hahn–Banach theorem

dom(f) = {x ∈ X; f(x) < +∞} = f *([−∞, +∞[),

[a, b] = {(1 − t)a + tb; t ∈ R, 0⩽t⩽1},

¯



□

Among the af�ne subspaces we will pay attention to the hyperplanes, those of codimension 1,
which means that they are de�ned by a single equation ξ(x) = c, where ξ is a nonzero linear
form on the vector space. Other important sets are the half-spaces, which are de�ned by an
inequality ξ(x)⩾c or ξ(x) > c.

A topological vector space is a vector space E equipped with a topology such that both
addition

and multiplication by scalars

are continuous.
After having restricted some variables, we see that all translations x ↦ x + a are continuous

as well as all mappings t ↦ ta for a �xed a. The latter property implies that the inverse image of
an open set in E under the mapping t ↦ ta is open for the usual topology in C. Similarly of the
�eld of scalars is R.

Theorem 9.2.8.  (The Hahn–Banach theorem)  Every open convex set in a topological vector
space E is the intersection of a family of open half-spaces.

Every closed convex set in a topological vector space is the intersection of a family of closed
half-spaces—and also the intersection of a family of open half-spaces.

There are topological vector spaces with dual equal to zero. The separation can then seem like a
paradox. It is resolved by the fact that in these vector spaces, the only open convex sets are the
empty set and the whole space.

Here we shall accept this important theorem and refer to its proof in any of the many books
on functional analysis.

Werner Fenchel (1952) characterized the sets that are intersections of a family of open half-
spaces and called them evenly convex . As the Hahn–Banach theorem states, all open convex
sets, and all closed convex sets are evenly convex. So are all strictly convex sets and a set like the
closed triangle in R2 with one vertex removed de�ned by 0 < x1 + x2⩽1, x1⩾0, x2⩾0. An
open triangle with one boundary point added is not evenly convex. See Section 9.7, page 326 for
the de�nition of re�ned half-spaces, which serve to represent general convex sets.

9.2.5 Supporting hyperplanes

De�nition 9.2.9.  Given any set A in a topological vector space E, a supporting hyperplane is a
hyperplane Y such that A is contained in one of the closed half-spaces de�ned by Y and such
that the closure of A meets Y.

Theorem 9.2.10  Let A be a convex subset of a topological vector space E with ∅ ≠ A ≠ E and
let a be any boundary point of A. Then there exists a supporting hyperplane of A passing through
a.

E × E∋(x, y) ↦ x + y ∈ E

C × E∋(t,x) ↦ tx ∈ E



□

□

□

Proof In view of the Hahn–Banach theorem, there is a closed hyperplane Y that passes through a
and such that A is in one of the closed half-spaces de�ned by Y.

A set A in a topological vector space is said to be bounded if for any neighborhood U of the
origin there exists a number λ0 such that λU  contains A for all λ with |λ|⩾λ0.

Corollary 9.2.11  Let A be a bounded nonempty subset of a topological vector space and let a be
any boundary point of cvxh(A). Then there exists a supporting hyperplane of A passing through
a.

Proof We apply the theorem to cvxh(A). A supporting hyperplane of cvxh(A) must also be a
supporting hyperplane of A.

9.2.6 De�ning convex functions

De�nition 9.2.12  A function f : E → R! de�ned in a vector space E is said to be convex if its
�nite epigraph is convex as a subset of E × R. We shall write CVX(E, R!) for the set of these
functions.

The functions that take one of the values −∞, +∞ identically are convex, since their �nite
epigraphs are, respectively, the whole space E × R and the empty set. An af�ne function is
convex, since its �nite epigraph is a closed half-space.

It is easy to see that a function f : E → R! is convex if and only if it satis�es Jensen's
inequality

(9.16)

Here we de�ne 0 ⋅ (+∞) = 0 ⋅ (−∞) = 0 (or else consider only 0 < t < 1). There are more
general inequalites to be described now.

9.2.7 Strict and strong convexity

De�nition 9.2.13  We shall say that a set A in a vector space is strictly convex if every supporting
hyperplane cuts its closure in only one point. This means that the boundary of A does not contain
any intervals of nonzero length. A function is said to be strictly convex if its �nite epigraph is
strictly convex.

De�nition 9.2.14  A function f : Rn → R! is said to be strongly convex if for every point
a ∈ E there is a positive number s such that x ↦ f(x) − s∥x∥2

2 is convex in a neighborhood of a
(we use a Euclidean norm here).

A subset A of �nite-dimensional vector space E is said to be strongly convex if for every
point a ∈ E there is strongly convex function f so that A agrees with the set 
{x ∈ Rn; f(x1, … ,xn−1) < xn} near a for some choice of coordinates in E.

f((1 − t)x + ty)⩽(1 − t)f(x)
⋅

+ tf(y), x, y ∈ E, 0⩽t⩽1.



□

□

□

The function R∋x ↦ √1 + x2 is strongly convex, but we see that the number s cannot be
chosen independently of a.

The function R∋x ↦ x4 is strictly convex but not strongly convex.

9.2.8 The convex envelope

De�nition 9.2.15  Given a function f : A → R!, where A is a subset of a vector space E, the
largest convex function F : E → R! such that F |A⩽f is called the convex envelope of f and will
be denoted by cvxe(f). □

Remark 9.2.16  In general we have

(9.17)

The convex envelope of f : E → R! evaluated at a point x is equal to the in�mum of all
expressions

where the λj and the a(j) satisfy λj⩾0, ∑λj = 1 and ∑λja
(j) = 0. We note that the points 

(x + a(j), f(x + a(j))) belong to epifinite(f), implying that the point

belongs to cvxh(epifinite(f)) and that therefore (x, (cvxe(f))(x) + t) belongs to 
cvxh(epifinite(f)) for every positive number t.

Remark 9.2.17  We have inclusions

(9.18)

The two inclusion relations here can be strict.

De�nition 9.2.18  Let A be any subset of a vector space E and let f : A → R! be any function
de�ned on A. We shall say that f is convex extensible if it is the restriction to A of a convex
function de�ned on all of E, i.e., if there is a convex function F : E → R! such that F |A = f.

There may exist more than one convex extension of a given function f. For example 
F(x) = |x| − 1 and F +(x) = max(|x| − 1, 0), x ∈ R, have the same restriction to A = Z∖{0}

(cvxe(f))(x) = inf
t∈R

[t; (x, t) ∈ cvxh(epifinite(f))].

N

∑
j=1

λjf(x + a(j)),

(∑λj(x + a(j)),∑λjf(x + a(j)))

epistrictfinite(cvxe(f)) = cvxh(epifinite
strict(f))

⊂ cvxh(
finite
epi(f)) ⊂ epifinite(cvxe(f)).



. If there exists a convex extension, then cvxe(f) is the largest one.

9.2.9 Normed spaces

To any vector space E over the �eld of real numbers, we associate its algebraic dual E ⋆, the
vector space of all linear forms on E, i.e., the functions ξ : E → R satisfying 
ξ(x + ty) = ξ(x) + tξ(y) for all x, y ∈ E and all t ∈ R.

We say that a function E∋x ↦ ∥x∥ ∈ R is a norm if ∥x∥⩾0 with equality if and only if 
x = 0; ∥x + y∥⩽∥x∥ + ∥y∥ for all x and y; and �nally ∥tx∥ = t∥x∥ for all x ∈ E and all
positive numbers t. This means that the function E 2∋(x, y) ↦ ∥x − y∥ is a metric with the extra
property of being positively homogeneous. The subadditivity and the homogeneity together
imply that x ↦ ∥x∥ is convex.

The space Rn of all n-tuples can be normed by the lp norm ∥ ⋅ ∥p, 1⩽p⩽ + ∞, which is
de�ned for 1⩽p < +∞ by

When p = +∞ this has to be interpreted as a limit. More explicitly one de�nes

In addition to the algebraic dual E⋆, which is de�ned for any vector space, we consider for

any normed vector space E also its dual space, denoted by E′ and consisting of all continuous
linear forms on E. These are the linear mappings ξ : E → R such that |ξ(x)|⩽C∥x∥ for some
constant C. On the dual we de�ne the norm dual to ∥ ⋅ ∥ by

(9.19)

It follows that |ξ(x)|⩽∥ξ∥′ ⋅ ∥x∥ for all x ∈ E and all ξ ∈ E ′.

When E = Rn, we may identify both E⋆ and E′ with Rn, and the evaluation of ξ at the point
x, i.e., the number ξ(x), is then the inner product, de�ned by ξ ⋅ x = ξ1x1 + ⋯ + ξnxn. The
Euclidean norm ∥ ⋅ ∥2, de�ned by ∥x∥2

2 = x ⋅ x, is dual to itself:

It is not dif�cult to prove that the norm dual to ∥ ⋅ ∥1 is ∥ ⋅ ∥∞ and vice versa. More generally,
one can prove that the norm dual to ∥ ⋅ ∥p is ∥ ⋅ ∥q, where q = p/(p − 1), 1 < p < +∞, with a
natural interpretation also when p = 1, +∞. This statement follows from Hölder's inequality and
its converse.

A vector space provided with a Euclidean norm is called a Euclidean space.

∥x∥p = (∑ xj
p)

1/p
, x = (x1, … ,xn) ∈ Rn.∣ ∣∥x∥∞ = maxj|xj|, x ∈ Rn.

∥ξ∥′ = sup
∥x∥⩽1

ξ(x) , ξ ∈ E ′.∣ ∣∥ξ∥′
2 = sup

∥x∥2⩽1
ξ(x) = ∥ξ∥2 = √∑ ξ2

j .



□

□

□

9.2.10 Duality in convex analysis

By the term duality we aim at properties and results that involve a vector space and its dual. The
most important examples are the support function and the Fenchel transformation, to be de�ned
now.

9.2.10.1 The support function

De�nition 9.2.19  Given any subset A of a vector space E we de�ne its support function HA by

Here E ⋆ is the algebraic dual of E.

Example 9.2.20  If A is a ball, A = B⩽(c, r) with r⩾0, or B<(c, r) with r > 0, then 
HA(ξ) = ξ(c) + r∥ξ∥′, ξ ∈ E ⋆, where ∥ ⋅ ∥ is an arbitrary norm in E and ∥ ⋅ ∥′ its dual norm,
de�ned on E ⋆ in (9.19) above.

9.2.10.2 The Fenchel transformation

De�nition 9.2.21  To any function φ : E → R! we de�ne its Fenchel transform φ̃ by

de�ned for ξ ∈ E ⋆, the algebraic dual of E.

It follows that

(9.20)

called Fenchel's inequality.

It is evident that φ̃ is the smallest function g such that ξ(x)⩽φ(x)
⋅

+ g(ξ) holds.
For any family of functions (φj)j∈J , φj ∈ F(E, R!), we clearly have

(9.21)

We see that the support function of a set is the Fenchel transform of its indicator function: 

HA = ˜indfA.

Example 9.2.22  If the graph of a function φ is a paraboloid, φ(x) = a + β ⋅ x + 1
2 c∥x∥2

2, 
x ∈ Rn, where a ∈ R, β ∈ Rn and c > 0, then the same is true of the graph of its transform: 

HA(ξ) = sup
x∈A

ξ(x), ξ ∈ E ⋆.

φ̃(ξ) = sup
x∈E

(ξ(x) − φ(x)),

ξ(x)⩽φ(x)
⋅

+ φ̃(ξ), x ∈ E, ξ ∈ E ⋆,

sup
j∈J

φ̃ = (inf
j∈J

φ)̃ .



□φ̃(ξ) = −a + 1
2 c

−1∥ξ − β∥2
2.

We now ask what happens if we apply the transformation again. We let Ξ be any nonempty

subset of E⋆, and de�ne the Fenchel transform of any function f de�ned on Ξ by

Here we can take Ξ = {0} as well as Ξ = E ⋆. In a normed space it is customary to take Ξ = E ′

, the dual of E.
The equivalence

(9.22)

follows easily from the de�nition.

We may form the second transform ˜̃φ of a function de�ned on E. The main result in the
theory of the Fenchel transformation is the following.

Theorem 9.2.23.  (Fenchel's theorem)  Let φ be a function de�ned on a vector space E and let Ξ
be any nonempty subset of its algebraic dual E ⋆. Then we always have ˜̃φ⩽φ. Equality holds if
and only if

Property (B) here means that if φ(a) > s, then there are linear forms ξ1, … , ξm in Ξ and a
number θ > 0 such that φ(x) > s when |ξj(x − a)|⩽θ, j = 1, … ,m. We shall denote this
topology by σ(E,Ξ). (We get the chaotic topology when Ξ = {0}, implying that the only lower
semicontinuous functions are the constants.)

In Rn we usually choose Ξ = Rn; the semicontinuity is then semicontinuity with respect to
the usual topology of Rn.

Before we go on, let us consider other expressions of this semicontinuity. The topology 
σ(E,Ξ) on E gives rise to a topology in E × R, viz. the product topology, for which a basis for
the neighborhoods of a point (a, s) ∈ E × R are given by the sets

Let us call this topology τ(E × R,Ξ).
So a function φ that satis�es the three conditions can be represented as the supremum of a

family of af�ne functions φ(x) = sup
ξ

(ξ(x) − φ̃(ξ)). This can be most helpful in proving that

f̃(x) = sup
ξ∈Ξ

(ξ(x) − f(ξ)), x ∈ E.

φ̃⩽f if and only if f̃⩽φ, φ ∈ F(E, R!), f ∈ F(Ξ, R!),

φ is convex;(A)

φ is lower semicontinuous for the weakest topology for which all linear forms in Ξ
are continuous; and

(B)

φ does not take the value −∞ unless it is identically equal to −∞.(C)

{(x, t); |ξj(x − a)| < θ, j = 1, … ,N , |t − s| < θ}, ξj ∈ Ξ, θ > 0.



certain functions are convex.
We accept Fenchel's Theorem without proof here.
It is now clear that Fenchel's inequality can be improved to

For Werner Fenchel's pioneering work on duality in convexity theory, see (1949, 1952, 1953,
1983).

9.2.11 Introduction to complex convexity

Every vector space over the �eld of complex numbers is at the same time a real vector space,
obtained by simply restricting the multiplication by complex scalars to real scalars. So everything
what we have said here about convexity applies also to complex vector spaces. But the presence
of complex numbers gives birth to new phenomena. Let us list here several variants of complex
convexity, in increasing order of strength. Most of them will be considered in detail in later
sections of this chapter, some of them in other chapters.

1. An open set Ω in Cn is pseudoconvex if there is a continuous plurisubharmonic function
de�ned in Ω that tends to +∞ at the boundary of Ω. See, e.g., (Hörmander 1990: Theorem
2.6.7 and De�nition 2.6.8.)

2. An open set Ω in Cn is a domain of holomorphy if there exists a holomorphic function
de�ned in Ω that cannot be continued, in a precise sense, over the boundary of Ω. See, e.g.,
(Hörmander 1990: De�nition 2.5.1).

3. A connected open set Ω in Cn is called hyperconvex if there is a continuos negative
plurisubharmonic function u de�ned in Ω such that the sublevel set {z ∈ Ω; u(z)⩽c} is
compact for every negative number c. See, e.g., (Kerzman & Rosay 1981).

There are several different notions of convexity related to lineal convexity. In increasing order of
strength we have:

1. Local weak lineal convexity in the sense of Yužakov & Krivokolesko; see De�nition 9.5.8
on page 303;

2. Local weak lineal convexity; see De�nition 9.5.7 on page 302;

3. Weak lineal convexity, originally introduced as Planarkonvexität by Behnke & Peschl
(1935:158,162); see De�nition 9.5.3 on page 301;

4. Lineal convexity, introduced as convexité linéelle by André Martineau (1966: 73;
1977:228); see De�nition 9.5.1 on page 300;

5. C-convexity, originally introduced as convexité linéelle forte by Martineau (1967:400;
1968; 1977:265,325).

Hörmander (1994: De�nition 4.6.6) de�nes an open susbset of Cn to be C convex if Ω ∩ L

is a connected and simply connected subset of L for every af�ne complex line L.

Andersson, Passare & Sigurdsson (2004: De�nition 2.2.1) �rst de�nes a subset E of P to be
C -convex if E ≠ P and both E and its complement P∖E are connected. A subset E of Pn

is called C -convex if all its intersections with complex lines are C-convex.

ξ(x)⩽ ˜̃φ(x)
⋅

+ φ̃(ξ).



6. Then we have the usual convex sets already discussed; see De�nition 9.2.6) on page 256.

7. The strict convex sets; see De�nition 9.2.13 on page 258.

8. The strong convex sets; see De�nition 9.2.14 on page 259.

9.2.12 Notes on the history of the concepts discussed in this chapter

I learned about lineal convexity from André Martineau during the academic year 1967–1968
when I was in Nice with him. His premature death on 1972 May 04 was a great loss to world
mathematics. He introduced also the notion of strong lineal convexity (1968), which, however,
was not geometrically de�ned. Later Znamenskij (1979) found a geometric characterization; the
property is now called C-convexity. Nowadays the most important sources for C-convexity are
the book by Hörmander (1994) and the survey by Andersson, Passare & and Sigurdsson (2004).
My earlier contributions to the �eld are to be found in (1978, 1996, 1997, 2016, 2019).

9.2.13 A note on terminology

Heinrich Behnke and Ernst Peschl (1935) introduced the notion which is now known as weak
lineal convexity. They called it Planarkonvexität.

André Martineau used the terms convexité linéelle and linéellement convexe—see Martineau
(1966:73) and (1968:427), reprinted in (Œuvres de André Martineau 1977:228) and (1977:323),
respectively. In French there are two adjectives, linéaire, corresponding to the English linear; and
linéel, which I rendered as lineal. (There is also an adjective linéal.) Martineau obviously wanted
a distinctive term in order to signal the special meaning of his convexity, not to be misunderstood
as ordinary convexity. Diederich & Fornæss (2003) and Diederich & Fischer (2006) write
“lineally convex.”

In Russian, the adjective  is most often used for both French terms linéel and
linéaire, and this is the term used by Aĭzenberg, Krivokolesko, Yužakov, and others who write in
Russian. In the translations into English of these Russian texts, there appears most often linear
convexity and linearly convex.

Also Znamenskiĭ (1979:83; 1990:1037) used , as did Znamenskiĭ & Znamenskaya
(1996:359).

Later Znamenskiĭ (2001) used  (usually translated as ‘ruled’; a common term is 
 ‘ruled surface’). He thus established the distinction between lineal, linéel and linear,

linéaire in Russian (Yuriĭ Zelinskij, personal communication 2013 March 26).
Hörmander (1994:290, De�nition 4.6.1), Andersson, Passare & Sigurdsson (2004:16,

De�nition 2.1.2), and Jacquet (2008:8, De�nition 2.1.2) used linear and linearly and thus did not
keep the distinction introduced by Martineau. In my opinion, these authors unnecessarily copied
the usage in the translations from Russian and did not pay attention to the pioneering work of
Martineau. It should also be noted that the English lineal is actually the older of the two words,
being attested since the fourteenth century, while linear is attested from 1706 (Webster 1983).

Another term is hypoconvex. The �rst appearance in this context2 that I have found is in
Helton & Marshall (1990:182), where it is used for sets with a boundary of class C2 and has the
meaning of ‘strongly lineally convex’ (satisfying the strict Behnke–Peschl differential condition
as I called it in my paper (1998:3); later it was weakened to a synonym of lineally convex by
Whittelsey (2000:678), and used in this sense by Agler & Young (2004:379). The term helpfully
reminds us that it signi�es a property weaker than convexity.



2Norberto Salinas (1976:144, 1979:327) used the term hypoconvex in a different sense.

9.3 Introduction to Mathematical Morphology

9.3.1 Introduction to this section

Lattice theory is a mature mathematical theory thanks to the pioneering work by Garrett Birkhoff

(1911–1996), ∅ystein Ore (1899–1968), and others in the �rst half of the twentieth century. A
standard reference is still Birkhoff's book (1995), �rst published in 1940.

Mathematical morphology is a branch of science that was created in the 1960s by Georges
Matheron (1930–2000) and Jean Serra. It thrives in complete lattices.

Mathematical morphology can be described as lattice theory applied to several branches of
science, in particular, to image analysis and image processing, where many concepts and
procedures can be successfully described with concepts from mathematical morphology. In this
section we give the most basic de�nitions and the simplest properties—those that will be useful
in the coming parts of the chapter. For more complete treatments, see the books by Matheron and
Serra mentioned in the list of references as well as my papers (2007, 2010) and my book
manuscript (ms 2021).

With the arrival of tropical geometry, lattice theory can (now) be viewed as a tropicalization
of other mathematical theories. Developments originate in several branches of mathematics, for
instance algebra (Blyth & Janowitz 1972, Blyth 2005), logic (Stoltenberg-Hansen et al. 1994,
Gierz et al. 2003), general topology and functional analysis (Gierz et al. 2003:xxx–xxxii),
convexity theory (Singer 1997), and, for mathematical morphology with applications in image
processing, books by Matheron (1975), Serra (1982), Serra, Ed. (1988), and Heijmans (1994);
articles by Heijmans & Ronse (1990), Ronse (1990), Ronse & Heijmans (1991, 1998), Heijmans
(1995), Serra (2006), and Ronse & Serra (2008, 2010). Other areas where concepts from lattice
theory are used include semantics (abstract interpretation) of programming, the theory of fuzzy
sets, fuzzy logic, and formal concept analysis (Ganter & Wille 1999). For general lattice theory a
standard reference is Grätzer (1998).

This variety of sources for fundamental concepts has led to varying terminology and hence to
dif�culties in tracing history.

The two concepts of lattice and complete lattice must be carefully distinguished. This
becomes obvious when we see that a complete lattice L can contain another complete lattice M
with M as a sublattice of L … but M is not a sub-complete-lattice of L (see Example 9.3.15).

A useful tool in the sequel will be generalized inverses and generalized quotients. They come
in two versions, lower and upper.

To de�ne an inverse of a general mapping seems to be a hopeless task. However, if the
mapping is between preordered sets, there is some hope of constructing mappings that can serve
in certain contexts just like inverses do.

There is an analogy between lattice theory and the theory of vector spaces. The theory of
topological vector spaces was developed to a large extent because of the theory of distributions,
which in turn was motivated by applications in partial differential equations. Developments in
image processing motivated a renewed interest in lattice theory, in particular in complete lattices.
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Lattice theory was applied to switching circuits, and it was then enough, because of general
�niteness conditions, to form models using lattices, but in image processing it is more convenient
to assume completeness; for a motivation, see (Ronse 1990).

While vector spaces are useful in modelling linear problems, lattices seem to be more
adapted to nonlinear problems. Auditory phenomena are often additive: all the instruments of an
orchestra can be heard, while with visual phenomena this is not so: one object can block another
from our view. This indicates that linear models may suf�ce for the �rst kind of phenomena
(Fourier analysis and synthesis are successful for sound waves), while the visual ones are more in
agreement with nonlinear operators, like maximum and minimum.

There are also analogies between topological spaces and preordered sets, in particular
lattices. The continuous linear mappings in the �rst case correspond to increasing mappings in
the second.

A comparison of the equations a + x = b and a ∨ x = b shows that the second is more
complicated than the �rst: The �rst has the unique solution x = b − a for a, b ∈ R, while the
second has no solution if a, b ∈ R with a > b; a unique solution x = b if a < b and in�nitely
many solutions x⩽a if a = b. In our schools we tend to prefer problems with a unique solution
but in real life problems are more like a ∨ x = b.

9.3.2 Preorders and orders

For the morphological operations on the computer screen, we need to consider families of sets.
The family of all subsets of a given set is ordered by the inclusion relation, which is an example
of an order relation. It is therefore convenient to introduce concepts that will be useful in the
general theory of order relations. In this subsection we shall do so.

De�nition 9.3.1  A preorder in a given set X is a relation (a subset of X × X = X 2) which is
re�exive and transitive. A preordered set is a set together with a preorder.

An order is a preorder which is antisymmetric. An ordered set is a set together with an order.
Two elements x and y are said to be comparable if either x⩽y or y⩽x.
An order is said to be total if any two elements are comparable.

The de�nition of preorder means, if we denote the relation by ⩽, that

(9.23)

(9.24)

The de�nition of order means that the relation shall in addition satisfy

(9.25)

x⩽x, x ∈ X; and that

x⩽y and y⩽z impliesx⩽z, x, y, z ∈ X.

x⩽y y⩽x ⇒ x = y, x, y ∈ X.
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We shall write x < y if x⩽y and x ≠ y. We shall also write x⩾y and x > y for y⩽x and 
y < x, respectively.

As already mentioned, a basic example of an ordered set is the power set of a set W with the
order relation given by inclusion, thus A⩽B being de�ned as A ⊂ B for A,B ∈ P(W).

Suppose that we have two preorders de�ned in a set X; denote them by ⩽ and ≼. The
preorder ⩽ is said to be �ner than the preorder ≼, and ≼ is said to be coarser than ⩽, if x⩽y

implies x≼y for all x,y.
There is a �nest preorder in a set, viz. when we de�ne x⩽y to mean that x = y. This preorder

is an order; let us call it the discrete order . There is also a coursest preorder in any set X, when
we declare that x⩽y for all x, y ∈ X. Let us call this the chaotic preorder . The set of all
preorders on any set is thus an ordered set with a largest and a smallest element.

In a preordered set L, given a, b ∈ L, the interval[a,b] is the set

in particular to be used when L = R!. We shall write [a, b]Z for an interval of integers, thus

(9.26)

De�nition 9.3.2  An equivalence relation is a preorder which is symmetric, i.e., such that x≼y if
and only if y≼x.

This means that x⩽y implies y⩽x for all x, y ∈ X.

9.3.3 Mappings between preordered sets

In preordered spaces the increasing mappings are of importance:

De�nition 9.3.3  If f : X → Y  is a mapping from a preordered set X to a preordered set Y, then
we say that f is increasing if

We shall write incr(X,Y ) for the set of all increasing mappings X → Y .
We shall say that f is decreasing if

for all elements x,x′ ∈ X.

The increasing mappings play the same role in the context of ordered sets as the linear
mappings in the theory of vector spaces and as the continuous mappings in the theory of
topological spaces.

A preorder ⩽ is �ner than another preorder ≼ if and only if the identity mapping 
(X, ⩽) → (X, ≼) is increasing.

{x ∈ L; a⩽x⩽b},

[a, b]Z = [a, b] ∩ Z = {x ∈ Z; a⩽x⩽b}, a, b ∈ Z.

forall x,x′ ∈ X, therelation x⩽Xx
′ implies f(x)⩽Y f(x′).

therelation x⩽Xx
′ implies f(x)⩾Y f(x′)
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If f, g : X → Y  are increasing, then so are f ∧ g and f ∨ g. If also h : Y → Z is increasing,
then so is h°f : X → Z. In particular, when X = Y , we have the three operations 
(f, g) ↦ f ∧ g, f ∨ g, g°f, which all preserve the property of being increasing.

A comparison with topology is in order here. If f : X → Y  is a mapping of a topological
space X into a topological space Y with topologies (families of open sets) τX and τY, we can

de�ne a new topology τf in X as the family of all sets

Then f is continuous if and only if τX is �ner than τf.
For mappings f : X → X with target set equal to the domain we can form the iterations f°f,

f°f°f and so on, and among these mappings those that satisfy f°f = f are of interest:

De�nition 9.3.4  We shall say that a mapping f : X → X is idempotent if f°f = f, i.e., if 
f(f(x)) = f(x) for all x ∈ X. A mapping which is both increasing and idempotent will be
called an ethmomorphism.

De�nition 9.3.5  We shall say that a mapping f : X → X is extensive if it is larger than the
identity, i.e., f(x)⩾x for all elements x ∈ X. We shall say that it is antiextensive if it is smaller
than the identity, i.e., f(x)⩽x for all x ∈ X.

We de�ne the invariance set of a function f : X → X as the set of all x ∈ X such that 
f(x) = x. We denote it by invar(f). For extensive mappings f the invariance set is decreasing
in f, while it is increasing in f for antiextensive mappings.

9.3.4 Cleistomorphisms and anoiktomorphisms

De�nition 9.3.6.  A cleistomorphism in an ordered set X is an ethmomorphism (see De�nition
9.3.4) κ : X → X which is extensive (see De�nition 9.3.5); in other words, which satis�es the
following three conditions.

(9.27)

(9.28)

(9.29)

for all elements x,x′ ∈ X.

The element κ(x) is said to be the closure of x. Elements x such that κ(x) = x are called
invariant or closed (for this operator). An element is closed if and only if it is the closure of some

{x ∈ X; f(x) ∈ V }, V ∈ τY .

x⩽x′ impliesκ(x)⩽κ(x′);

κ(κ(x)) = κ(x);

x⩽κ(x), x ∈ X.
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element (and then it is the closure of itself).
In many applications the set X is the power set P(W) of some set W. Then the

cleistomorphism is given as an intersection:

When W is a topological space, a basic example is the topological closure operator which
associates to a set in a topological space its topological closure, i.e., the smallest closed set

containing the given set, denoted by A ↦ A . In fact a cleistomorphism in P(W) de�nes a
topology in W if and only if it satis�es, in addition to (9.27), (9.28), (9.29) above, two extra
conditions, viz.

(9.30)

where ∅ denotes the empty set.
Another cleistomorphism of great importance is the operator which associates to a set A in

Rn its convex hull, the smallest convex set containing the given set, denoted by cvxh(A). The

composition A ↦ cvxh(A) is a cleistomorphism, whereas the composition in the other order, 

A ↦ cvxh(A) is not idempotent if n⩾2. We see that the composition of two cleistomorphisms

is sometimes, but not always, a cleistomorphism.
Dual to the concept of cleistomorphism is the concept of anoiktomorphism.

De�nition 9.3.7  An ethmomorphism α : X → X is said to be an anoiktomorphism if it is
antiextensive; in other words, if it satis�es the following three conditions.

for all elements x,x′ ∈ X.

The composition of a cleistomorphism and an anoiktomorphism is always idempotent:

Proposition 9.3.8  Let α,κ : L → L be an anoiktomorphism and a cleistomorphism. Then 
η = α°κ and θ = κ°α are ethmomorphisms.

Proof That η and θ are increasing is obvious. Since κ is extensive, we get

Since α is antiextensive, we get

A = ∩
Y

(Y ;Y is closed andY ⊃ A).̄

¯

∅ = ∅ andA ∪ B = A ∪ B for allA,B ⊂ W ,̄̄̄̄

¯

¯

x⩽x′ impliesα(x)⩽α(x′);

α°α = α;

α(x)⩽x,

η°η = α°κ°α°κ⩾α°α°κ = α°κ = η.

η°η = α°κ°α°κ⩽α°κ°κ = α°κ = η,
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so η is idempotent. The proof for θ is similar.

Example 9.3.9  A typical example is when we take α and κ as the operations of taking the interior

and the topological closure in a topological space, respectively; α(A) = A°, κ(A) = A . Then a
�xed point of the composition α°κ is called a regular open set and a �xed point of κ°α is called
a regular closed set. These operations are neither extensive nor antiextensive in general.

Proposition 9.3.10  The in�mum of a family of cleistomorphisms in a complete lattice L is a
cleistomorphism. The supremum of any family of anoiktomorphisms in L is an
anoiktomorphism.

Proof Let κj, j ∈ J , be cleistomorphisms and de�ne κ = ∧j∈Jκj, meaning that the value of κ at 

x ∈ L equals ∧j∈Jκj(x). Clearly κ is increasing and larger than the identity. It follows that 
κ°κ⩾κ. To prove the opposite inequality, we note that κ°κ⩽κj°κj = κj. Taking the in�mum
over all j we get what we want.

The result for anoiktomorphisms follows by duality.

9.3.5 Lattices and complete lattices

Let L be an ordered set and A a subset of L. An element b ∈ L is said to be the in�mum of all
elements a ∈ A if b is the largest minorant of all a ∈ A. This means that b⩽a for all elements 
a ∈ A, and that if b′⩽a for all a ∈ A, then b′⩽b. The in�mum, if it exists, is necessarily unique.
The in�mum of the empty set exists if and only if L possesses a largest element, and if so, the
in�mum is this largest element.

We shall write

for the in�mum of all elements in A; if A has only n elements we write b = a1 ∧ ⋯ ∧ an. If the
in�mum belongs to A, we call it a minimum . As an example, the set of all positive real numbers
has 0 as its in�mum, but 0 is not a positive number and therefore not a minimum.

Similarly we de�ne the supremum

as the smallest majorant of all elements in A. If the supremum belongs to A, we call it a
maximum . The supremum of all elements in the empty set, sup

x∈∅
x, exists if and only if L has a

smallest element.

De�nition 9.3.11  Let L be a nonempty set. If any subset consisting of two elements in L has an
in�mum, we shall call L an inf-semilattice; similarly, if any two-set of L has a supremum, we
shall call L a sup-semilattice. If L is both an inf-semilattice and a sup-semilattice we shall call L
a lattice.

¯

b = inf
a∈A

a = inf(a; a ∈ A) = ∧a∈Aa

c = sup
a∈A

a = sup(a; a ∈ A) = ∨a∈Aa
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De�nition 9.3.12  If any nonempty subset (�nite or in�nite) of a nonempty set L has an in�mum,
L will be said to be a complete inf-semilattice; analogously we de�ne complete sup-semilattice
and complete lattice.

We may denote the smallest element in a complete lattice by 0 and the largest by 1. We have

the in�mum of the empty set exists and is 1, and the supremum of the empty set is 0.

A sublattice is de�ned just like a subgroup with respect to the operations ∧ and ∨: that M is
a sublattice of L means that for all x, y ∈ M , x ∧ y and x ∨ y, when calculated in L, are
elements of M. A sublattice is therefore something more than a subset with the induced order;
see the following examples.

Example 9.3.13  The space of real-valued continuous functions on a topological space is a lattice
with the usual order: f⩽g if and only if f(x)⩽g(x) for all x. The space C 1(Rn, R) of real-
valued continuously differentiable functions on Rn is not a sublattice of C(Rn, R) if n⩾1. It is

not even a lattice on its own. (The functions R∋x ↦ √t2 + x2, t > 0, converge to x ↦ |x| as 
t → 0, but there is no in�mum in C 1(R, R).)

Example 9.3.14  The family P(W) of all subsets of a set W is a complete lattice, with 
∧Aj = ∩Aj and ∨Aj = ∪Aj. The compact sets in Rn form a sublattice K (Rn) of P(Rn).
This lattice is a complete inf-semilattice but not a complete sup-semilattice. The family 
Kcvx(Rn), n⩾1, of all convex compact sets is a lattice but not a sublattice of K (Rn): the
supremum of two convex compact sets is not always the same in the two lattices.

Example 9.3.15  The family of all closed sets in Rn, denoted by C (Rn), is a sublattice of 
P(Rn): the union and intersection of two closed sets are closed. But, although C (Rn) is a
complete lattice, it is not a sub-complete-lattice of the complete lattice P(Rn) when n⩾1. The
union of a family of closed sets is not always closed, but there is a supremum, viz. the closure of
the union. Thus, �nite suprema agree with those in P(Rn) while in�nite suprema do not.

Example 9.3.16  The set F(Rn, R!) of all functions de�ned on Rn and with values in the
extended real line R! is a lattice under the usual order for real numbers, extended in an obvious
way to the two in�nities. The subset of all convex functions is ordered in the same way and is
also a lattice under this order. However, the convex functions CVX(Rn, R!) do not form a
sublattice of F(Rn, R!) if n⩾1. The supremum of two convex functions is equal to the
pointwise supremum of them:

but the in�ma are different in the two lattices: the in�mum in the lattice of convex functions is

sup
x∈L

x = inf
x∈∅

x = 1; inf
x∈L

x = sup
x∈∅

x = 0;

(f ∨ g)(x) = f(x) ∨ g(x) = max(f(x), g(x)),

f ∧cvx g = sup(h ∈ CVX(Rn, R!); h⩽f, g)⩽f ∧ g = min(f, g),
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where the supremum of all h⩽f, g is calculated in F(Rn, R!) and has a sense because that
lattice is complete. That the two in�ma may be different is shown by easy examples like 
f(x) = ex, g(x) = e−x, x ∈ R. Here min(f, g)(x) = e−|x|, while f ∧cvx g = 0.

9.3.5.1 Dilations and erosions in complete lattices

Mappings of the form P(Rn)∋A ↦ A + B ∈ P(Rn) with a �xed set B are called dilations. It
can be proved that a mapping P(Rn) → P(Rn) which commutes with translations and the
formation of in�nite unions is necessarily of this form. In lattice theory it is therefore natural to
take the latter property as a de�nition:

De�nition 9.3.17  We say that a mapping δ : L → M , where L and M are complete lattices, is a
dilation if it commutes with the formation of suprema, i.e.,

for all subsets A of L.

In particular we get δ(0L) = 0M  (take A empty), while

(9.31)

De�nition 9.3.18  Similarly we shall say that ε is an erosion if it commutes with the formation of
in�nite in�ma,

for all subsets A of L.

We note that ε(1L) = 1M  (take A empty), while ε(0L) = ∧x∈Lε(x)⩾0M .
Dilations and erosions are always increasing. Indeed, we have δ(x ∨ y) = δ(x) ∨ δ(y). If 

x⩽Ly, this equation simpli�es to δ(y) = δ(x) ∨ δ(y)⩾Mδ(x), which shows that δ is increasing, 
δ ∈ incr(L,M). A similar argument shows that erosions are increasing.

In Rn or Cn we de�ne δB, εB : P(G) → P(G) by δB(A) = A + B and 
εB(A) = {x ∈ G; x + B ⊂ A}. It is easily seen that δB(A) ⊂ C if and only if A ⊂ εB(C). In a
lattice this may be written as δ(x)⩽y iff x⩽ε(y), equivalently as epiδ = (hypoε)̆ , where the
symbol ̆  means that we swap the components: for a subset A of a Cartesian product X × Y  we
de�ne

(9.32)

May we use this as a model to de�ne erosions from dilations and conversely in the more general
lattice situation? Indeed this is the case, and we shall do so in the next subsection.

δ(∨x∈Ax) = ∨x∈Aδ(x)

δ(1L) = ∨x∈Lδ(x)⩽1M .

ε(∧x∈Ax) = ∧x∈Aε(x)

Ă = {(y,x); (x, y) ∈ A} ⊂ Y × X.
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Example 9.3.19  The mapping f * : P(Y ) → P(X), de�ned by (9.14), is both a dilation and an
erosion, while f* : P(X) → P(Y ), de�ned in (9.15), is a dilation but in general not an erosion.

9.3.6 Inverses and quotients of mappings

9.3.6.1 Introduction

In this subsection we shall study inverses and quotients of mappings between ordered sets which
are analogous to inverses 1/y and quotients x/y of positive numbers. The theory of lower and
upper inverses de�ned in Subsubsection 9.3.6.2 generalizes the theory of Galois connections as
well as residuation theory and the theory of adjunctions. An interesting question is to what extent
a generalized inverse can serve as a left inverse, as a right inverse, and how an inverse of an
inverse relates to the identity mapping. These inverses and quotients can be used to create a
convenient formalism for a uni�ed treatment of dilations δ : L → M  and erosions ε : M → L as
well as of cleistomorphisms κ = ε°δ : L → L and anoiktomorphisms α = δ°ε : M → M .

In general a mapping g : X → Y  between sets does not have an inverse. If g is injective, we
may de�ne a left inverse u : Y → X, thus with u°g = idX, where idX denotes the identity

mapping in X, de�ning u(y) in an arbitrary way when y is not in the image of g. If g is
surjective, we may de�ne a right inverse v : Y → X, thus with g°v = idY . We then need to
de�ne v(y) as an element of the preimage {x; g(x) = y}. In the general situation this has to be
done using the axiom of choice. In a complete lattice, however, it could be interesting to de�ne 
v(y) as the supremum or in�mum of all points x such that g(x) = y, even though this supremum
or in�mum need not belong to the set of points that are mapped to y. At any rate, the preimage of
y is contained in the interval de�ned by the in�mum and the supremum. However, for various
reasons it is convenient to take instead the in�mum of all x such that g(x)⩾y or the supremum of
all x such that g(x)⩽y. This yields better monotonicity properties. (The case g(x) = y is
allowed, since we can take the preorder in Y be the discrete order.)

If, given a mapping g : L → M  from an ordered set L into an ordered set M, we can �nd
mappings u, v : M → L such that hypou = (epig)̆  or epiv = (hypog)̆ , we would be content
to have some kinds of inverses to g. However, usually the best we can do is to study mappings
satisfying either hypou ⊃ (epig)̆  or epiv ⊃ (hypog)̆ . This will be the approach in what
follows, where we shall de�ne not one but two inverses, viz. the lower (to be denoted by g[−1])
and the upper (written as g[−1]).

9.3.6.2 De�ning inverses of mappings

De�nition 9.3.20.  Let L be a complete lattice, M a preordered set, and g : L → M  any mapping.
We then de�ne the lower inverse g[−1] : M → L and the upper inverse g[−1] : M → L as the
mappings

(9.33)

g[−1](y) = ∨x∈L(x; g(x)⩽My)) = ∨x∈L(x; (x, y) ∈ epig);

g[−1](y) = ∧x∈L(x; g(x)⩾My)) = ∧x∈L(x; (x, y) ∈ hypog),



□

□

□

(9.34)

where y ∈ M .

As a �rst observation, let us note that these inverses are always increasing. If there exists a
largest element 1M, then g[−1](1M) = 1L. Similarly, if M possesses a smallest element 0M, then 

g[−1](0M) = 0L. If M has the chaotic preorder, then both inverses are constant, g[−1] = 1L and 

g[−1] = 0L identically. Here the lower inverse is larger than the upper inverse.

Example 9.3.21  For any mapping f : X → Y  we de�ned in (9.14) and (9.15) the mappings 
f * : P(Y ) → P(X) and f* : P(X) → P(Y ). We note that, for all A ∈ P(X) and all 

B ⊂ P(Y ) we have f*(A) ⊂ B if and only if A ⊂ f *(B). It follows that (f *)
[−1]

= f* and 

(f*)[−1] = f *. From this we see that ((f *)
[−1]

)[−1] = f * and that ((f*)[−1])
[−1] = f*.

9.3.6.3 Properties of inverses

We note that we always have

(9.35)

in other words, if y⩾g(x), then x⩽g[−1](y); and

(9.36)

in other words, if y⩽g(x), then x⩾g[−1](y). Here R̆ for a subset R of X × Y  is de�ned by
(9.32). In general, these inclusions are strict.

Example 9.3.22  If f : P(G) → P(G) is the dilation f(A) = δU(A) = A + U , A ∈ P(G),
where G is an abelian group and U a �xed subset of G, called the structuring element, then

the erosion associated to δU. A most fundamental example.

The compositions αU = δU°εU  and κU = εU°δU  are the anoiktomorphism and the
cleistomorphism associated to δU, respectively.

When X = Y = Rn, the upper inverse of δU is not interesting, since

for all C if U has interior points, and equal to C if U = {0}.

epig ⊂ (hypog[−1])̆,

hypog ⊂ (epig[−1])̆,

(δU)[−1](C) = ∪
A∈P(G)

(A; δU(A) ⊂ C) = εU(C), C ∈ P(G),

(δU)[−1](C) = ∅



□

An ideal inverse u would satisfy u°g = idL, g°u = idM , and the inverse of u would be g. It is
therefore natural to compare g[−1]°g and g[−1]°g with idL; g°g[−1] and g°g[−1] with idM; and

inverses of inverses of g with g. We shall not do so here but refer the reader to the book
manuscript (ms 2020).

9.3.6.4 Quotients of mappings

We shall now generalize the de�nitions of upper and lower inverses.

De�nition 9.3.23  Let a set X, a complete lattice M, and a preordered set Y, as well as two
mappings f : X → M  and g : X → Y  be given. We de�ne two mappings f/⋆ g, f/⋆g : Y → M

by

We shall call them the lower quotient and the upper quotient of f and g.

We shall often assume that X, M and Y are all complete lattices, but this is not necessary for the
de�nitions to make sense.

The mappings f/⋆ g, f/⋆g ∈ F(Y ,M) are always increasing.
The quotients f/⋆ g and f/⋆g increase when f increases, and they decrease when g increases

—just as with the division of positive numbers:

If g(x)⩽Y y, then f(x)⩽M(f/⋆ g)(y); if g(x)⩾Y y, then f(x)⩾M(f/⋆g)(y). In particular,

We note some special cases.
(1). If we specialize the de�nitions to the situation when X = M  and f = idX, then 

f/⋆ g = idX/⋆ g = g[−1] and f/⋆g = idX/⋆g = g[−1]; cf. De�nition 9.3.20. So inverses are
quotients.
(2). A second special case is this: Taking Y = M  and g = f in the de�nition we see that, for all
mappings f : X → M  we have

(9.37)

(f/⋆ g)(y) = ∨x∈X(f(x); g(x)⩽Y y), y ∈ Y ;

(f/⋆g)(y) = ∧x∈X(f(x); g(x)⩾Y y), y ∈ Y .

X
g ↙ ↘f

Y → M

f/⋆ g,f/⋆g

If f1⩽Mf2 and g1⩾Yg2, then f1/⋆ g1⩽Mf2/⋆ g2 and f1/⋆g1⩽Mf2/⋆g2.

if g(x)=y, then (f/⋆g)(y)⩽Mf(x)⩽M(f/⋆ g)(y).

f/⋆ f⩽idM⩽f/⋆f;

( / ) ( / )



(9.38)

9.3.7 Set-theoretical representation of dilations, erosions, cleistomorphisms, and

anoiktomorphisms

We present here an easy result for translation-invariant operators on the family of subsets of an
abelian group, putting several operations under a common roof.

Proposition 9.3.24.  Let S be a subset of an abelian group G. Then the dilation, erosion,
cleistomorphism and anoiktomorphism with structuring element S can all be written in the form

(9.39)

for special choices of the structuring elements S, T, U, viz.

(9.40)

We can also write the mappings as

where

for A,B ∈ P(G).

Proof The dilation δ = δS , the erosion ε = δ[−1], the cleistomorphism κ = ε°δ, and the
anoiktomorphism α = δ°ε can be written

We now let
f(B) = B + S, h(A) = A + S in the �rst case;
f(B) = B, h(A) = A in the second case;
f(B) = B, h(A) = A + S in the third case; and
f(B) = B + S, h(A) = A in the fourth case;

(f/⋆ f)°f = f = (f/⋆f)°f.

φS,T ,U(A) = ∪
x∈G

(x + S; x + T ⊂ A + U), A ∈ P(G),

δS = φS,{0},{0}, εS = φ{0},S,{0}, αS = φS,S,{0}, κS = φ{0},S,S.

φ = (f/⋆ g)°h,

f(B) = B or B+S, g(B)=B+S, h(A)=A or A+S,

δ(A) = ∪
B∈P(G)

(B + S; B + S ⊂ A + S),

ε(A) = ∪
B∈P(G)

(B; B + S ⊂ A),

κ(A) = ∪
B∈P(G)

(B; B + S ⊂ A + S),

α(A) = ∪
B∈P(G)

(B + S; B + S ⊂ A).
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□

while g(B) = B + S in all four cases.

We can think of the points as atoms and the sets x + S as molecules. Then δ(A) and α(A)
consists of molecules, the latter of those that are contained in A; whereas ε(A) and κ(A) consists
of centers of molecules (which makes sense if the structuring set S is symmetric).

9.4 Lineally Convex Hartogs Domains

Abstract of this sectionWe study lineally convex domains of a special type, viz. Hartogs domains,
and prove that such sets can be characterized by local conditions if they are smoothly bounded.

9.4.1 Introduction to the present section

Lineal convexity is a kind of complex convexity intermediate between usual convexity and
pseudoconvexity. More precisely, if A is a convex set which is either open or closed, then A is
lineally convex (this is true also in the real category), and if Ω is a lineally convex open set in Cn,
the space of n complex variables, then Ω is pseudoconvex. Now pseudoconvexity is a local
property in the sense that if any boundary point of an open set Ω has an open neighborhood ω
such that Ω ∩ ω is pseudoconvex, then Ω is pseudoconvex; the analogous result holds for
convexity. But it is well known that the property of lineal convexity is not a local property in this
sense—for easy examples see SubSection 9.4.3. The purpose of this section is to investigate to
what extent this is true for sets that are of a special form: the Hartogs domains.

Let us now give the main de�nition.

De�nition 9.4.1  A set A in Cn is said to be lineally concave if it is a union of hyperplanes. It is
called lineally convex if its complement is lineally concave.

A lineally convex set whose boundary is suf�ciently smooth satis�es a differential condition.
Let ρ be a de�ning function for Ω (see De�nition 9.4.18), and let H and L denote, respectively,
the Hessian and the Levi form at a boundary point a of Ω. Then the differential condition says
that

(9.41)

where TC(a) is the complex tangent space at the point a. See SubSection 9.4.5 for details. Every
lineally convex domain of class C2 satis�es the differential condition—for the converse, see
Section 9.6. Here we shall prove that this is so in the special case of Hartogs domains, which we
now proceed to de�ne.

De�nition 9.4.2  A Hartogs set in Cn × C is a set which contains, along with a point 
(z, t) ∈ Cn × C, also every point (z, t′) with |t′| = |t|. It is said to be a complete Hartogs set if
it contains, with (z, t), also (z, t′) for all t′ with |t′|⩽|t|.

|H(s)|⩽L(s) for all vectors s ∈ TC(a),
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Here we shall study open and complete Hartogs sets; they are always de�ned by a strict
inequality |t| < R(z), thus

(9.42)

where R is a function on Cn with values in R!.

Given R, we de�ne a set ω in Cn by ω = {z ∈ Cn; 0 < R(z)⩽ + ∞}. We shall say that Ω is
a Hartogs domain overω, or that ω is the base of Ω, if (9.42) holds with R(z) positive if and only
if z ∈ ω.

Most of our results will be concerned with the case n = 1, thus

(9.43)

The main result here is the following theorem.

Theorem 9.4.3  Let Ω be a bounded complete Hartogs domain in C2 with boundary of class C 2.
If Ω satis�es the differential condition (9.41) at all boundary points, then Ω is lineally convex.

Thus for complete Hartogs domains, the property of being lineally convex is a local property.
Next we consider sets with R of class C2 in ω but which do not necessarily have a smooth
boundary at points (z, t) with z ∈ ∂ω.

In this case we prove:

Theorem 9.4.4  Let ω be a bounded open set in the complex plane C. If the closure of ω is not a
disk, then lineal convexity over ω is not a local condition: we can �nd a Hartogs domain Ω over
ω and two open sets ω0 and ω1 such that the Hartogs domains Ωj over ωj are lineally convex, 

j = 0, 1, but their union Ω = Ω0 ∪ Ω1 is not. If on the other hand ω is a disk, and Ω is a Hartogs
domain satisfying the differential condition (9.41) at all boundary points over ω, then Ω is
lineally convex.

Corollary 9.4.5  Let ω be an open set in C which is equal to the interior of its closure, and let Ω
be a Hartogs domain over ω. Then the differential condition (9.41) imposed on all boundary
points over ω is equivalent to lineal convexity if and only if ω is a disk.

9.4.2 Weak lineal convexity

There are several other notions related to lineal convexity:

De�nition 9.4.6  An open connected set is called weakly lineally convex if through any boundary
point there passes a complex hyperplane which does not intersect the set. An open set is said to
be locally weakly lineally convex3 if through every boundary point a ∈ ∂Ω there is a complex
hyperplane Y passing through a such that a does not belong to the closure of Y ∩ Ω.

Ω = {(z, t) ∈ Cn × C; |t| < R(z)},

Ω = {(z, t) ∈ C × C; |t| < R(z)} = {(z, t) ∈ ω × C; |t| < R(z)}.



3There are actually two versions of this concept: see De�nitions 9.5.7 and 9.5.8.

It is not dif�cult to prove that local weak lineal convexity implies pseudoconvexity.
For complete Hartogs sets it is very easy to see that weak lineal convexity implies lineal

convexity:

Lemma 9.4.7  A complete Hartogs domain which is weakly lineally convex and has a lineally
convex base is lineally convex.

Proof Let (z0, t0) ∈ Cn × C be an arbitrary point in the complement of Ω, a Hartogs domain
de�ned by (9.42). If R(z0) > 0, then the point (z0,R(z0)t0/ t0 ) belongs to ∂Ω, and if Ω is
weakly lineally convex, there is a hyperplane passing through that point which does not cut Ω.
Then the parallel plane through (z0, t0) does not cut Ω either. If R(z0)⩽0, then z0 does not
belong to the base, and a hyperplane with equation ζ ⋅ z = ζ ⋅ z0 will do, since the base is lineally
convex. This proves the lemma.

9.4.3 The non-local character of lineal convexity

The domain

(9.44)

is easily seen to be lineally convex. Indeed, if (z0, t0) ∉ V  with t0 ≠ 0, then the complex line 
{(z, t); z0t = t0z} passes through (z0, t0) and does not cut V; if on the other hand t0 = 0, we
can for instance take the line {0} × C. A simple example of a domain that is locally lineally
convex but not lineally convex can be built up from this set as follows.

Example 9.4.8  (Kiselman 1996, Example 2.1.)

FIGURE 9.1
An open connected Hartogs set in C2 which is locally weakly lineally convex but not weakly lineally convex. Coordinates 
(z, t) ∈ C2; (x, y, t ) ∈ R3.

∣ ∣V = {(z, t) ∈ C2; t < z }∣ ∣ ∣ ∣∣ ∣
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De�ne �rst

and then

where r is a constant with 2 < r < √5. All these sets are lineally convex. The two points 

(±i, √5) belong to the boundary of Ω0; in the three-dimensional space of the variables 
(Re z, Im z, |t|), the set representing Ω0 has two peaks, which have been truncated in Ω r

0 .
We now de�ne Ω r by glueing together Ω0 and Ω r

0: De�ne Ω r as the subset of Ω0 such that 
(z, t) ∈ Ω r

0  if Im z > 0; we truncate only one of the peaks of Ω0.
The point (i − ε, r) for a small positive ε belongs to the boundary of Ω r and the tangent

plane at that point has the equation t = r and so must cut Ω r at the point (−i + ε, r). Therefore 
Ω r is not lineally convex, but it agrees with the lineally convex sets Ω0 and Ω r

0  when Im z < δ

and Im z > −δ, respectively, for a small positive δ. The set has Lipschitz boundary; in particular
it is equal to the interior of its closure.

Proposition 9.4.9  Let ω0 and ω1 be two bounded open subsets in the complex plane such
that none is contained in the closure of the other. Then there exists a Hartogs domain over 
ω = ω0 ∪ ω1 that is not lineally convex, but is such that the subsets Ωj over ωj are both lineally
convex, j = 0, 1.

Proof Take two points a ∈ ω1∖ω0 and b ∈ ω0∖ω1, which exist by hypothesis. It is no restriction
to assume that a = i, b = −i. Then take c > 0 so large that ω is contained in the disk of radius 
c − 1 and with center at the origin. We then de�ne as in Example 9.4.8,

and

where r is a number slightly smaller than √c2 + 1 but so close to that number that the peak that
we have truncated in Ω1 near i ∈ C lies outside ω0, and the peak near −i lies outside ω1. This is

possible since we have assumed that i ∉ ω0, −i ∉ ω1, and Ω0 and Ω1 differ only above small

neighborhoods of i and −i. These neighborhoods shrink to {i, −i} as r increases to √c2 + 1. We
now de�ne Ω to agree with Ωj over ωj, j = 0, 1. The conclusion is as in Example 9.4.8.

9.4.4 Smooth vs. Lipschitz boundaries

The lineally convex set Ω0 constructed in Example 9.4.8 has the remarkable property that it
cannot be approximated by lineally convex sets with smooth boundary. Its boundary, which is

Ω+ = {(z, t); |z| < 1and|t| < |z − 2|};

Ω− = {(z, t); |z| < 1and|t| < |z + 2|},

Ω0 = Ω+ ∩ Ω−; Ω r
0 = {(z, t) ∈ Ω0; t < r},∣ ∣¯̄Ω0 = {(z, t) ∈ C2; t < z ± c  and  t < z ± i(1 + √c2 + 1) },∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣Ω1 = {(z, t) ∈ Ω0; |t| < r},

¯̄



Lipschitz, cannot in any reasonable way be rounded off if we want to preserve lineal convexity.
This is why we shall continue this investigation to see whether smoothly bounded sets admit a
passage from the local to the global.

Before doing so, however, we shall illustrate the difference between domains which can be
approximated by smoothly bounded lineally convex domains and those that have only Lipschitz
boundary.

Let Ω be a complete Hartogs domain with R a function of class C1, ω being the open set
where R > 0. Often it will be convenient to use not R but h = R2 to de�ne the set, thus

(9.45)

The complex tangent plane at a boundary point (z0, t0) with z0 ∈ ω has the equation

(9.46)

The tangent plane intersects the plane t = 0 in the point

(9.47)

If Rz(z0) = 0, the tangent plane has the equation t = t0, and in this case we de�ne b(z0) = ∞,
the in�nite point on the Riemann sphere S 2 = C ∪ {∞}.

Proposition 9.4.10  Let R ∈ C 1(C) and de�ne Ω by (9.43). If Ω is bounded and lineally convex,
then b(z), de�ned by (9.47), does not belong to ω, so that b is a continuous mapping from ω into 
S 2∖ω. Its range contains S 2∖ω.

Proof Clearly b is continuous as a mapping into C except where Rz = 0. Near such points,
however, 1/b is continuous. The point (b(z0), 0) cannot belong to Ω since Ω is lineally convex;
thus b(z0) ∉ ω. From every point (z, 0) outside the closure of Ω we can draw a tangent to Ω: this
shows that the range of b contains C∖ω; clearly it also contains ∞.

Corollary 9.4.11  If Ω is as in Proposition 9.4.10, then Ω is connected. The same is true if Ω is the
union of an increasing family of bounded lineally convex sets Ωj de�ned by functions 
Rj ∈ C 1(C).

Proof Let ω1 be a component of ω and let Ω1 be the set over ω1. Then the image of the boundary

of Ω1 under b contains S 2∖ω1. Since b(z0) ∉ ω there can be no other component: we must have 
ω1 = ω. The statement about ∪Ωj is now immediate.

Corollary 9.4.11 should be compared with the following easy result for Lip-schitz boundaries.

Ω = {(z, t) ∈ ω × C; |t| < R(z)} = {(z, t) ∈ ω × C; |t|2 < h(z)}.

t − t0 = α(z − z0),  where α =
hz(z0)

t0
=

2t0Rz(z0)
R(z0) .̄

b(z0) = z0 −
h(z0)
hz(z0) = z0 −

R(z0)
2Rz(z0) .

¯

¯

¯
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Proposition 9.4.12  Let ω be any open set in C. Then there exists a Lipschitz continuous function 
R ∈ C(C) such that ω is the set where R is positive and the set Ω de�ned by R is lineally
convex.

Proof We de�ne R(z) = inf
a∉ω

z − a . The set Ω is lineally convex since it is an intersection of sets

of the type V de�ned in (9.44).

The set MsupR where the function R assumes its maximum can be rather arbitrary as shown be
the next proposition.

Proposition 9.4.13  Given any closed set M in the complex plane such that its complement is a
union of open disks of radius r there exists a Lipschitz continuous function R such that 
MsupR = M  and the domain Ω de�ned by (9.45) with this R is lineally convex.

Proof De�ne R(z) = min(r, inf
a∈A

z − a ), where A is the set of all centers of disks of radius r

in the complement of M.

But when R is of class C1, the set MsupR is convex:

Theorem 9.4.14  Let R : Cn → R be a function of class C 1 or more generally a continuous
function which is the limit of an increasing sequence of functions Rj of class C 1 in the sets 

{z; Rj(z) > 0}. We assume that R is positive only in a bounded subset of the complex plane.
The functions Rj de�ne open sets Ωj, which we assume to be lineally convex. Then the set 

MsupR = {z; R(z) = sup
w
R(w)} is convex.

This could be proved here, but it is more easily done with the methods of Section 9.7: see
Theorems 9.7.29 and 9.7.30.

If a set does not have a boundary of class C1, we cannot give a meaning to the notion of
tangent plane. However, if the set is the union of an increasing family of sets with smooth
boundaries, it is possible to use instead their tangent planes and then pass to the limit. Such limits
of tangent planes can serve as well, as explained in the following lemma.

Lemma 9.4.15  Let Ω be the union of an increasing family of open lineally convex sets Ωj with
boundaries of class C 1. Let (jk) be a sequence tending to +∞, and let Yk be the complex
tangent plane of ∂Ωjk  at some point in the boundary of Ωjk , k ∈ N. Assume that the Yk

converge to a hyperplane Y in the topology of hyperplanes. Then Y does not intersect Ω.

Proof Suppose there is a point z ∈ Y ∩ Ω. Then also z ∈ Y ∩ Ωjk  for all large k. Since Ωjk  is
open, there is a ball B<(z, ε) ⊂ Ωjk  for large k, say for k⩾k0. But then Yk intersects B<(z, ε)

for all large k, say for k⩾k1. Thus Yk ∩ Ωjk  is non-empty for all k⩾ max(k0, k1), contradicting
the lineal convexity of Ωjk .

To recognize such limits of tangent planes we shall use the concept in the following de�nition.

∣ ∣∣ ∣
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De�nition 9.4.16  Let X be any subset of Cn and a a point in the boundary ∂X. We shall say that
a complex hyperplane Y is an admissible tangent plane to ∂X at a if there exists an open set A
with boundary of class C 1 such that A and X are disjoint, a belongs to the boundary of A, and Y
is the complex tangent plane to A at a.

Proposition 9.4.17.  Let Ω ⊂ Cn be the union of an increasing family of lineally convex open
sets Ωj with boundaries of class C 1. Then any admissible tangent plane Y to ∂Ω is the limit of a
sequence of tangent planes Yj to ∂Ωj. Therefore, in view of Lemma 9.4.15, Y cannot intersect Ω.

Proof Let a and A be as in De�nition 9.4.16. By a coordinate change we may suppose that a = 0,
that the real tangent plane to ∂A at the origin has the equation yn = 0, and that A is de�ned by
an inequality yn > f(z1, ..., zn−1,xn) near the origin for some function f of class C1, which
consequently vanishes at the origin together with its gradient. Write z′ = (z1, ..., zn−1) ∈ Cn−1.
We then know that all points in Ω satisfy yn < f(z′,xn). De�ne 
g(z′,xn) = f(z′,xn) + ∥z′∥2

2 + x2
n, and let Ac be the set of all points such that 

yn > g(z′,xn) − c. We let c = cj be the largest real number such that Ac and Ωj are disjoint.

Now 0 ∈ ∂Ω and Ωj ↗ Ω; therefore we can be sure that cj tends to zero as j → ∞. There is a

point zj which is common to the boundaries of Acj  and Ωj. Since A and Ωj are disjoint, we have 

∥(zj)
′
∥2

2 + (xj
n)

2
⩽cj. The real tangent plane to ∂Acj  at zj is identical to the real tangent plane to 

∂Ωj at that point. We can control its slope, for the gradient of g is

which is continuous and vanishes at the origin. Since ((zj)
′
,xj

n) tends to the origin, this shows
that the real tangent plane to ∂Acj  at zj must be close to the real hyperplane yn = 0 if j is large,
and then the complex tangent plane to ∂Acj  at zj is close to the complex hyperplane zn = 0. The
last statement now follows from Lemma 9.4.15.

9.4.5 Differential conditions

De�nition 9.4.18  Let Ω be an open set in Cn with boundary of class C 1. Then a function 
ρ ∈ C 1(Cn) is called a de�ning function for Ω, if dρ ≠ 0 wherever ρ = 0 and if 
Ω = {z ∈ Cn; ρ(z) < 0}. (Here the differential d is de�ned in (9.2).)

De�nition 9.4.19  The complex tangent space at a point a on the boundary of Ω is de�ned by

We shall denote it by TC(a). The real tangent space is de�ned by

gradg = gradf + grad(∥z′∥2
2 + x2

n),

n

∑
j=1

∂ρ

∂zj
(a)sj = 0.

Re
n

∑
j=1

∂ρ

∂zj
(a)sj = 0



□

□

□

and will be denoted by TR(a). The complex tangent plane is then a + TC(a); it is contained in
the real tangent plane a + TR(a).

To be able to characterize sets by in�nitesimal conditions, we shall describe boundaries and
their curvature using de�ning functions and the Hesse and Levi forms. We now give the needed
de�nitions.

De�nition 9.4.20  The complex Hessian (or complex Hesse form) of a function f of class C 2 is
de�ned to be

(9.48)

a quadratic form in the tj.

De�nition 9.4.21  The Levi form of f is the Hermitian form

(9.49)

We say that Ω satis�es the Levi condition at a ∈ ∂Ω if

(9.50)

where ρ is a de�ning function for Ω; and that Ω satis�es the strong Levi condition at a if strict
inequality holds in (9.50) for t ≠ 0.

De�nition 9.4.22  The real Hessian of a function f of real variables x1, … ,xm is

(9.51)

a quadratic form.

When a function of n complex variables is given, its real Hessian in the 2n real variables 
(Re z1, Im z1, … , Re zn, Im zn) can be expressed using its complex Hessian and its Levi form
as

HC
f (z; t) = ∑

∂ 2f

∂zj∂zk
(z)tjtk, z ∈ Cn, t ∈ Cn,

Lf(z; t) = ∑
∂ 2f

∂zj∂zk
(z)tjt̄k, z ∈ Cn, t ∈ Cn.

¯

Lρ(a; t)⩾0 when t ∈ TC(a),

HR
f (x; s) = ∑

∂ 2f

∂xj∂xk

(x)sjsk, x ∈ Rm, s ∈ Rm,

HR
f

(z; s) = 2(ReHC
f

(z; t) + Lf(z; t)),



□

for z ∈ Cn, s ∈ R2n, t ∈ Cn, tj = s2j−1 + is2j.
Thus the characterization of convexity mentioned in the introduction is that 

ReHC
ρ (a; t) + Lρ(a; t) be nonnegative for all a ∈ ∂Ω and all t ∈ TR(a). For a lineally convex

set the same inequality holds for all t ∈ TC(a). It is then equivalent to L(a; t)⩾|H(a; t)| for 
a ∈ ∂Ω and t ∈ TC(a).

De�nition 9.4.23  We shall say that a set Ω with boundary of class C 2 satis�es the Behnke–
Peschl differential condition at a boundary point a of Ω if

(9.52)

where ρ is a de�ning function for Ω. We shall say that Ω satis�es the strict Behnke–Peschl
differential condition at a if there exists a positive number ε such that we have

(9.53)

for all s ∈ TC(a).

It is easy to prove that these conditions are invariant under complex af�ne mappings. They also
do not depend on the choice of de�ning function. They were introduced for n = 2 by Behnke
and Peschl (1935:169).

These conditions should be compared with the differential condition for convexity: 
|Hρ(s)|⩽Lρ(s) for all vectors s in the real tangent space TR(a). This is a local condition, and it
is well known that it is equivalent to convexity of Ω. The proof of this fact most conveniently
goes via approximation of the set by sets satisfying the corresponding strong condition, i.e., 
Hρ(s) ⩽Lρ(s) − ε∥s∥2

2 for a positive ε and for all s ∈ TR(a).

The following two lemmas are well known; cf. (Zinov′ev 1971) and (Hörmander 1994:
Corollary 4.6.5). We include them for ease of reference.

Lemma 9.4.24  Let Ω be an open subset of Cn with boundary of class C 2. If Ω is locally weakly
lineally convex, then Ω satis�es the Behnke–Peschl differential condition at every boundary
point.

Proof Let a be an arbitrary boundary point of a locally weakly lineally convex open set Ω. Then
there exists a complex hyperplane through a that does not cut Ω close to a. This hyperplane
cannot be anything but TC(a) since the boundary is of class C1. Therefore if we take an arbitrary
vector s ∈ TC(a) and consider the function φ(t) = ρ(a + ts) of a real variable t, its second
derivative must be non-negative at the origin. If we express the condition φ′′(0)⩾0 in terms of H
and L we get ReH(s) + L(s)⩾0, which, since H is quadratic and L sesquilinear, is equivalent to
|H|⩽L.

HC
ρ (a; s) ⩽Lρ(a; s) forallvectors s ∈ TC(a),∣ ∣HC

ρ (a; s) ⩽Lρ(a; s) − ε∥s∥2
2∣ ∣∣ ∣



Lemma 9.4.25.  Let Ω be an open subset of Cn with boundary of class C 2. If Ω satis�es the strict
Behnke–Peschl differential condition at every boundary point, then Ω is locally weakly lineally
convex.

Proof With φ as in the proof of the previous lemma we must have φ′′(0) > 0 if Ω satis�es the
strict Behnke–Peschl differential condition. This imples that TC(a) cannot cut Ω close to a.

It is known that if Ω is a connected open set with boundary of class C1 which is locally weakly
lineally convex, then Ω is weakly lineally convex; see, e.g., (Hörmander 1994: Proposition 4.6.4).
We shall come back to this result in SubSection 9.4.7.

9.4.6 Differential conditions for Hartogs domains

In this subsection we shall see what the differential conditions look like in the case of a complete
Hartogs domain in C2. Let Ω be a complete Hartogs domain in C2 de�ned by (9.45). If h is of
class C1, we can choose as its de�ning function

It must satisfy d′ρ ≠ 0 when ρ = 0, which means that d′ρ = t̄dt − hz dz ≠ 0 when |t|2 = h(z).
Since the �rst term of d′ρ is t̄dt, which is non-zero everywhere except in the plane t = 0, the
only condition is that hz ≠ 0 when h = 0, i.e., that h itself shall be a de�ning function in C. It
de�nes a subset ω of the complex plane over which Ω is situated.

Lemma 9.4.26  Let h be a de�ning function of an open set ω in C of class Ck, k⩾1. Then the
complete Hartogs domain in C2 de�ned by (9.45) has boundary of class Ck. When k⩾2, it
satis�es the Behnke–Peschl differential condition at every boundary point if and only if h
satis�es the condition

(9.54)

Furthermore Ω satis�es the strict Behnke–Peschl differential condition if and only if there is strict
inequality in (9.54).

Proof Let us look at the Hessian and Levi forms of ρ(z, t) = |t|2 − h(z). They are, respectively,

The differential condition |H|⩽L takes the form

The tangent plane is de�ned by −hzs1 + t̄s2 = 0. When t ≠ 0 we use this equation to eliminate
s2: the condition takes the form (9.54). Near t = 0 we eliminate instead s1 and get

ρ(z, t) = t t̄ − h(z), (z, t) ∈ C × C.

|hz|2

h
⩾hz z + hzz wherever h > 0.̄∣ ∣H(s) = −hzzs

2
1 and L(s)=-hz z̄|s1|2+|s2|2, s=(s1, s2) ∈ C2.

|hzz||s1|2⩽ − hzz|s1|2 + |s2|2 for all s ∈ TC(a).̄



□

This inequality is satis�ed, even strictly, at all boundary points suf�ciently close to t = 0,
provided hz ≠ 0 near h = 0. Therefore, if h is a de�ning function for ω, then ρ is a de�ning
function for Ω and condition (9.54) implies the Behnke–Peschl differential condition at all
boundary points of Ω, including those where t = 0. Conversely, if ρ is a de�ning function for Ω,
then h is a de�ning function for ω, and the Behnke–Peschl differential condition for ρ implies the
condition (9.54) for h.

Remark 9.4.27  We can also express the Behnke–Peschl differential condition (9.54) in terms of

the radius R = √h. It becomes

(9.55)

which is less convenient to work with than (9.54). If h is concave, then hzz + |hzz|⩽0, so that
(9.54) holds. More generally, if R is concave, then Rzz + |Rzz|⩽0, which implies that (9.55))
holds. It is also possible to express the Behnke–Peschl differential condition in terms of the
function f = − logR. It then takes the form

(9.56)

We note that (z, t) ↦ |t|2 − h(z) is convex if and only if h is concave, and that 
(z, t) ↦ log ∥z∥2 + f(z) is plurisubharmonic if and only if f is.

9.4.7 Approximating bounded lineally convex Hartogs domains by smoothly bounded

ones

Theorem 9.4.28.  Let

(9.57)

be a bounded complete Hartogs domain in C2 with boundary of class C 2. Suppose Ω satis�es the
Behnke–Peschl differential condition at all boundary points. Then Ω can be approximated from
the inside by Hartogs domains

which satisfy the strict Behnke–Peschl differential condition all boundary points (z, t) except
those where hz(z) = 0. In fact, we can take hε = h − ε with ε positive and small enough.

(hzz + hzz ) h
|hz|2 ⩽1.̄∣ ∣Rz

2⩾ R2
z + RRzz + RRzz,∣ ∣ ∣ ∣¯¯¯fzz − 2f 2

z ⩽fzz.∣ ∣¯Ω = {(z, t) ∈ C2; t 2 < h(z)}∣ ∣Ωε = {(z, t); |t| < Rε(z)}



Proof This is an instance where it is more convenient to use h rather than R. The Behnke–Peschl
differential condition (9.54) contains the value of h only at one place, and hε = h − ε has the
same derivatives as h, so we can write

except when hz = 0. Thus the boundary of Ωε satis�es the strict Behnke–Peschl differential
condition except at the points where hz = 0. So far the argument is valid for all positive ε. We
need to check that hε is a de�ning function; otherwise we cannot apply Lemma 9.4.26. But the

gradient of hε is the same as that of h, which is non-zero when h = 0, hence also when hε = 0,

provided ε is small enough. Thus hε is indeed a de�ning function for all small ε, proving the

theorem.

We shall now see that the approximating sets Ωε that we constructed in Theorem 9.4.28 are, in
fact, lineally convex. Let us agree to say that a complex plane with the equation z = constant is
vertical and a plane with the equation t = constant is horizontal.

Proposition 9.4.29  Let Ω be a bounded complete Hartogs domain in C2 with boundary of class 
C 2 satisfying the strict Behnke–Peschl differential condition except possibly at the points where
the tangent plane is horizontal. Then Ω is lineally convex.

We shall need the following three lemmas.

Lemma 9.4.30  Let Ω be as in Proposition 9.4.29 and let L be a complex line in C2 which is not
horizontal. Then L ∩ Ω consists of a �nite number of open sets bounded by C 2 curves obtained
as transversal intersections of L and ∂Ω (and L ∩ ∂Ω consists of these curves plus a �nite
number of isolated points).

Proof Take an arbitrary boundary point a and let L be a complex line through a which is not
horizontal. If L is the tangent plane, L = a + TC(a), then the proof of Lemma 9.4.25 shows that

L intersects Ω  near a only in the point a. If, on the other hand, L is not the tangent plane, then 
L ∩ (a + TC(a)) ≠ L, so ∂Ω cuts L transversally, and ∂Ω ∩ L is a C2 curve in L near a. Thus 
L ∩ ∂Ω consists of a number of C2 curves plus isolated points—by compactness there can only
be �nitely many curves and points.

Lemma 9.4.31.  Let Ω and L satisfy the hypotheses of the previous lemma. Then Ω ∩ L is
connected, and Ω ∩ (a + TC(a)) is empty for all a ∈ ∂Ω.

Proof We shall follow the proof of Proposition 4.6.4 in (Hörmander 1994)—we only have to be
careful to avoid horizontal planes. Let (zj, tj), j = 0, 1, be two points in L ∩ Ω. We have to
prove that they belong to the same component of L ∩ Ω. Suppose �rst that both t0 and t1 are non-

zero. Since Ω is connected, there is a curve γ which goes from γ(0) = (z0, t0) to γ(1) = (z1, t1).
We can actually do this in such a way that the complex line Ls that contains γ(0) and γ(s), 

0 < s⩽1, is never horizontal. Indeed, we �rst go from (z0, t0) to (z0, 0) along a curve in the
plane z = z0 avoiding (z0, t1); then along a curve in the plane t = 0 from (z0, 0) to (z1, 0); and

|hz|
2

h−ε
>

|hz|
2

h
⩾hzz + hzz̄∣ ∣¯



then �nally from (z1, 0) to (z1, t1) along a curve in the plane z = z1 avoiding (z1, t0). (We know
that t0 ≠ t1.) Thus none of the lines Ls is horizontal, and we can apply Lemma 9.4.30 to them.

Consider the set C of all s ∈]0, 1] such that γ(0) and γ(s) belong to the same component of 
Ls ∩ Ω. Then certainly C contains all suf�ciently small numbers, for γ(0) and γ(s) are then in
the line z = z0, whose intersection with Ω is a disk. The set C is open as a subset of ]0, 1] in view
of Lemma 9.4.30, but so is its complement with respect to ]0, 1]. Since it is non-empty, it must
contain 1, i.e., (z0, t0) and (z1, t1) belong to the same component of L ∩ Ω. If one of t0, t1 is

zero, we choose a point with non-zero second coordinate in the neighborhood and argue as
above.

Consider now a tangent plane L = a + TC(a) and planes Lε = aε + TC(a) parallel to it,
where we write aε = (z0, (1 − ε)t0) if a = (z0, t0). We already know from Lemma 9.4.25 that L
cannot intersect Ω close to a. However, it cannot cut Ω at all, for if it did, then a parallel plane Lε

for some small positive ε would intersect Ω in a component close to a and another nonempty set
at some distance from a, thus in a disconnected set. This proves Lemma 9.4.31.

Lemma 9.4.32  Let Ω be as in Proposition 9.4.29 and let a ∈ ∂Ω be such that the tangent plane is
horizontal. Then Ω ∩ (a + TC(a)) is empty; in other words R has a global maximum at a.
Consequently any horizontal plane L intersects Ω in �nitely many open sets bounded by C 2

curves obtained as transversal intersections of L by ∂Ω.

Proof Let (z0, t0) be a boundary point such that the tangent plane is horizontal, i.e., Rz(z0) = 0.
Suppose the tangent plane cuts Ω in some point (z1, t1). We must then have t1 = t0. Since Ω and
its base ω are connected, we can �nd a curve γ in ω connecting z0 to z1, say γ(s) = zs, s ∈ [0, 1]

. Consider now the tangent planes at the points (zs,R(zs)); we denote them by 
Ls = (zs,R(zs)) + TC(zs,R(zs)). It is no restriction to assume t0 > 0, so that R(z0) = t0. We
know that L0 is horizontal, but certainly not all the Ls can be horizontal, since 

R(z1) > |t1| = |t0| = R(z0). Let s0 be the in�mum of all s such that Ls is not horizontal; we

must have 0⩽s0 < 1. The planes Ls with 0⩽s⩽s0 are identical and all intersect Ω in the point 

(z1, t1). It is now clear that there exists a tangent plane Ls with s just a little bit larger than s0

which is not horizontal and still cuts Ω. This contradicts Lemma 9.4.31.

Proof of Proposition 9.4.29 We know from Lemma 9.4.31 that a tangent plane which is not
horizontal does not intersect Ω; we obtain the same conclusion from Lemma 9.4.32 for a
horizontal tangent plane. Thus Ω is weakly lineally convex. Lemma 9.4.7 shows that this implies
lineal convexity.

We can now �nally state the main result of this section:

Theorem 9.4.33  Let Ω be a bounded complete Hartogs domain in C2 with boundary of class C 2.
If Ω satis�es the Behnke–Peschl differential condition (9.52) at all boundary points, then Ω is
lineally convex.

Proof Using Theorem 9.4.28 we construct open sets Ωε, which tend to Ω. Also, if R(z0) > 0, the

tangent plane of ∂Ωε at (z0,√R(z0)2 − ε) tends to that of ∂Ω at (z0,R(z0)). The sets Ωε are



lineally convex by Proposition 9.4.29. Then also their limit Ω is lineally convex. Indeed, if a
tangent plane to ∂Ω intersected Ω, then it would cut also Ωε for all suf�ciently small ε, and then
also for ε small enough the corresponding tangent plane to ∂Ωε would cut Ωε. This is a
contradiction.

9.4.8 The non-local character of lineal convexity, revisited

Having settled the question of lineal convexity of smoothly bounded Hartogs domains we now
turn to sets of the form

(9.58)

where ω is a given open set in C and h is a C2 function in the closure of ω satisfying h > 0 and
the Behnke–Peschl differential condition (9.54). Its boundary is smooth enough over points in ω,
but is only Lipschitz at points over ∂ω. It turns out that when ω is a disk, then the Behnke–Peschl
differential condition implies lineal convexity: we shall study this question in SubSection 9.4.9.
On the other hand, if ω is a set such that ω is not a disk, then the Behnke–Peschl differential
condition does not imply lineal convexity. This is the topic of the present subsection.

The property of being a disk is invariant under Möbius mappings, and disks are the only sets
that remain convex under all Möbius mappings. This is a kind of explanation for the phenomenon
we encounter here, and it is therefore natural to study how the Behnke–Peschl differential
condition (9.52) behaves under Möbius mappings. This is explained in the next lemma.

Lemma 9.4.34  Let Ω be a Hartogs domain in C2 de�ned by |t| < R(z), let a,b,c,d be four
complex numbers with ad − bc ≠ 0, and let Ω1 be the Hartogs domain de�ned by 
|t| < R1(z) = |c + dz|R((a + bz)/(c + dz)). Then Ω and Ω1 are lineally convex
simultaneously. The two functions h and h1(z) = |c + dz|2h((a + bz)/(c + dz)) satisfy the
Behnke–Peschl differential condition (9.54) simultaneously.

Proof Take constants α, β and c of which not both of α and β are zero, and consider the mapping

Under it the pull-back of the hyperplane of equation c + αz + βt = 0 is the hyperplane of
equation cz0 + αz1 + βt = 0. It follows that the pull-back of a lineally convex set in C2 is a
complex homogeneous lineally convex set in C3. Now any linear mapping of the form

with ad − bc ≠ 0 preserves lineal convexity, and mappings

Ω = {(z, t) ∈ ω × C; |t| < R(z)} = {(z, t) ∈ ω × C; |t|2 < h(z)},

¯

(C∖{0}) × C × C∋(z0, z1, t) ↦ (z1/z0, t/z0) ∈ C2.

C3∋(z0, z1, t) ↦ (cz0 + dz1, az0 + bz1, t) ∈ C3

C3∋(z0, z1, t) ↦ (1, az0+bz1

cz0+dz1
, t
cz0+dz1

) ∈ C3



preserve lineally convex sets which are complex homogeneous. If we transport this back to C2

we get a mapping of the form

This proves that Ω and Ω1 as de�ned in the statement of the lemma are lineally convex at the
same time. The statement about the differential condition for h and h1 can be veri�ed directly,

perhaps most easily if we check it for the special mappings z ↦ c + dz and z ↦ 1/z, which
together generate all Möbius mappings.

Lemma 9.4.35  Let K be a compact subset of C with connected complement. Assume that K is
not a disk. Then there exists a closed disk D1 containing K such that K ∩ ∂D1 has at least two
components.

Proof Let D0 be the closed disk of minimal radius that contains K. By hypothesis K ≠ D0 and 

C∖K is connected, so there exists a point a0 ∈ ∂D0∖K. Let H be an open half plane that

contains K but is such that a0 ∉ H . Now consider the closed disk D1 of minimal radius among

those that contain K and have ∂H as a tangent. We claim that there are four points 
a, b, c, d ∈ ∂D1 which are in that order along the circumference and with a, c ∉ K, b, d ∈ K.
This will show that b and d belong to different components of K ∩ ∂D1. To �nd these points we
argue as follows. Let a be the point of ∂D1 at which ∂H is tangent; thus a ∈ ∂D1 and a ∉ K.
Next, D1 D0, so there is a point c ∈ ∂D1∖D0. Thus c ∉ K. Finally we claim that there are
two points b, d ∈ ∂D1 ∩ K on either side of the segment [a,c]. This is so because if one of the
arcs from a to c were disjoint from K, then it can easily be seen that D1 would not be minimal

among the disks that contain K and are tangent to ∂H. This completes the proof.

Theorem 9.4.36  Let ω be a bounded connected open subset of C such that the complement S 2∖ω
of its closure with respect to the Riemann sphere S 2 = C ∪ {∞} has at least one component
which is not a disk. Then there exists a Hartogs domain de�ned by a smooth function and with
base ω such that it is not lineally convex, although ω = ω0 ∪ ω1 and the Hartogs domains over 
ω0 and ω1 are both lineally convex. In particular the function de�ning Ω satis�es the Behnke–
Peschl differential condition (9.54).

Proof Let K be the complement of a component of S 2∖ω which is not a disk; thus K contains ω.
Moreover the complement of K is connected and ∂K ⊂ ∂ω. We may assume that K is compact:
if not we use a Möbius mapping to reduce ourselves to that case. Let a, b, c, d ∈ ∂D1 be the four
points whose existence is guaranteed by Lemma 9.4.35; recall that b, d ∈ K and a, c ∉ K. Now
take a new closed disk D2 which does not contain a,b, or d, but contains c in its interior, and is so

close to D1 that b and d belong to different components of K∖D2. This is possible because a
does not belong to K. Now we map D2 onto the closed right half plane, taking a to 0 and some

point outside K and near c to in�nity. We are thus reduced to a situation where K is still compact
in C, whereas ∂D2 is the imaginary axis, with a = 0 and Im b and Im d of different signs, say for
de�niteness Im b < 0 and Im d > 0. Moreover we can take D2 so close to D1 that the points in K
which are not in D2 are never real. Then we can de�ne a function R as follows. First take a

(z, t) ↦ ( a+bz
c+dz

, t
c+dz

).

¯

⊂

¯

¯̄



smooth concave function ψ of a real variable such that ψ(s) = 1 when s⩾0 and ψ(s) < 1 for 
s < 0, but still so that ψ(Re z) > 0 for all points z ∈ ω. Then de�ne

This function is continuous, even identically one, in a neighborhood of the intersection of ω and
the real axis.

The tangent plane at a point (z0, t0) ∈ ∂Ω with z0 ∈ ω has the equation (9.46). In particular,
we may take t0 = R(z0) and get

In the present case R is locally a function of Re z, say R(z) = k(x), so that Rz = kx/2 is real.
Thus the tangent plane is

and, writing z = z0 + z1, we obtain

When x1 < 0 and kx(x0) is positive and small,

Since ω is connected and has the point b on its boundary, we can choose z0 such that y0 < 0 and 

x0 < 0 with kx(x0) arbitrarily small, so small that indeed |t| < R(z0). Then we choose 
z = z0 + z1 ∈ ω with Im z > 0. Thus R(z) = 1, so the tangent plane at (z0,R(z0)) cuts Ω in a
point above z. This proves that Ω is not lineally convex. However, if we look at the parts of ω
where Im z > −ε and Im z < ε respectively, then R is the restriction of a globally concave
function in each of them and therefore de�nes a lineally convex set.

Theorem 9.4.37  Let ω be a bounded open set in C such that S 2∖ω is not connected. Then there is
a function h ∈ C∞(ω), h > 0, which satis�es the Behnke–Peschl differential condition (9.54)
but is such that the Hartogs domain it de�nes over ω is not lineally convex.

Proof If one of the components of S 2∖ω is not a disk, we already know the result by Theorem
9.4.36. The case when all components of S 2∖ω are disks remains to be considered. This means
that ω is a disk from which countably many disks (at least one) have been removed. Any one of
these holes can be moved by a Möbius transformation so that it becomes concentric with the
outer circumference of ω; in other words ω is an annulus r0⩽|z|⩽r1 from which possibly a
number of disks have been removed. It is clearly enough to consider the case of the annulus, for
the possible presence of other holes will not destroy our conclusion.

So assume ω is the annulus r0⩽|z|⩽r1 and de�ne R0(z) = 1 − ax2 − by2, where 0 < a < b

and b is so small that R0 > 0 in ω. Next de�ne φ to be a concave C∞ function of one real

¯

R(z) = {  
ψ(Re z)  when z ∈ ω, Re z < 0, Im z < 0;

1  at other points in ω.

t = R(z0) + 2Rz(z0)(z − z0).

t = R(z0) + kx(x0)(z − z0) = R(z0) + kx(x0)(x − x0) + ikx(x0)(y − y0),

t 2 = R(z0)2 + 2kx(x0)R(z0)x1 + kx(x0)2
x2

1 + kx(x0)2
y2

1.∣ ∣ t 2 ≈ R(z0)2 + 2kx(x0)R(z0)x1 < R(z0)2.∣ ∣¯¯¯¯¯¯̄¯¯



variable such that φ(s) = s for all s⩽1 − br2
0 + ε and φ(s) = c when s⩾1 − ar2

0 − ε for some
positive ε and a suitable constant c; by necessity we must have c < 1 − ar2

0. De�ne 
R1(z) = φ(R0(z)). We observe that R0 = R1 in a neighborhood of the intersection of the
imaginary axis and ω. Both R0 and R1 are concave in C, so the corresponding Hartogs domains

over |z| < r1 are convex and therefore lineally convex. It follows that the Hartogs domains over
ω are lineally convex. Now de�ne R to agree with R0 in the right half plane and with R1 in the

left half plane. Note that R(z) = R1(z) = c at points z ∈ ω close to −r0, so that the tangent
plane at a boundary point over such a point has the equation t = t0 with t0 = c < 1 − ar2

0. But
over a point z in ω close to r0 we have R(z) = R0(z) > c, so the tangent plane t = t0 cuts Ω.

This proves that Ω cannot be lineally convex.

9.4.9 Hartogs domains over a disk

The Behnke–Peschl differential condition over a disk remains to be studied. We shall see that it is
then equivalent to lineal convexity.

We shall write D(c, r) for the open disk in the complex plane with center c and radius r, and
just D for the open unit disk D(0, 1).

Proposition 9.4.38  Let h ∈ C 2(D), h > 0, be a real-valued function which satis�es the Behnke–
Peschl differential condition

(9.59)

Let φ ∈ C 2(R) be real-valued, decreasing and satisfy φ⩽1 everywhere and φ′′ < 0 wherever 
φ < 1. Assume that there are constants a and A such that

(9.60)

and

(9.61)

wherever 0 < φ(z z) < 1. Then g(z) = φ(z z)h(z) satis�es the differential condition wherever 
φ(z z) > 0 and |z| < 1, provided φ′/φ′′ is small enough, more precisely if either A⩽1 or else

Proof With g(z) = φ(zz)h(z) we have

¯∣ ∣|hz|
2

h
⩾hz z + hzz , z < 1.̄∣ ∣ ∣ ∣Re [ 2zhz(z)

h(z) ]⩽a < 1

2zhz(z)
h(z)

⩽A < +∞∣ ∣¯̄¯φ′(s)
sφ′′(s)

⩽ 2(1−a)
A2−1

when s issuchthat 0 < φ(s) < 1.

¯

′



Thus what we have to prove is, writing r for |z|,

We expand the left-hand side and �nd that the term 2φ′ Re zhz appears on both sides. We shall
therefore prove

This formula follows from |hz|
2/h⩾hz z + |hzz|, which holds by hypothesis, and

(9.62)

which we shall prove now. We divide both sides of this inequality by the positive quantity 

−r2φ′′h (if φ′′ is zero there is nothing to prove), and �nd the equivalent inequality

Since −(φ′)2/φφ′′ is positive, it suf�ces to prove that

This inequality, in turn, follows from

which holds as soon as 2 + t⩾2Rew + t|w|2. By hypothesis Rew⩽a < 1 and |w|⩽A, so (9.62)
follows as soon as either A⩽1 or else A > 1 and t⩽2(1 − a)/(A2 − 1). This proves the
proposition.

Example 9.4.39  As an example of the function φ in Proposition 9.4.38 we let s0 be an arbitrary
number such that 0 < s0 < 1 and take a smooth function φ satisfying φ(s) = 1 for s⩽s0 and
whose derivative is φ′(s) = −C exp(−1/(s − s0)) for s > s0. Then we determine C to make 
φ(1) = 0; this means that we choose C to satisfy

gz = φ′ ⋅ zh + φhz,

gzz = φ′′ ⋅ z2h + 2φ′zhz + φhzz,

gzz = φ′′ ⋅ |z|2h + φ′h + 2φ′Re zhz + φhzz.

¯

¯̄

¯̄

|φ′zh+φhz|2

φh
⩾r2φ′′h + φ′h + 2φ′Re zhz + φhzz + φ′′z2h + 2φ′zhz + φhzz .

¯
¯∣¯̄∣r2φ′ 2h

φ
+

φ|hz|2

h
⩾r2φ′′h + φ′h + φhzz + φ′′z2h + 2φ′zhz + φhzz .̄∣¯̄∣¯r2φ′ 2h

φ
⩾r2φ′′h + φ′h + φ′′ z2h + 2φ′ zhz ,∣¯̄∣− φ′ 2

φφ′′ ⩾ − 1 − φ′

r2φ′′ + − z2

r2 − 2 φ′zhz

r2φ′′h
= −1 − φ′

r2φ′′ + 1 + φ′

r2φ′′
2zhz

h
.∣¯̄∣ ∣ ∣1 + t⩾ 1 + tw  when t = φ′(r2)

r2φ′′(r2)
 and w = 2zhz(z)

h(z)
.∣ ∣(1 + t)2⩾ 1 + tw 2 = 1 + 2tRew + t2 w 2,∣ ∣ ∣ ∣C ∫

1

s0

e−1/(s−s0)ds = 1.



We note that φ′(s)/sφ′′(s) = (s − s0)2/s, which varies between 0 and (1 − s0)2. Thus if 
1 − s0 is small enough, we can conclude that the new function φ(zz)h(z) satis�es the Behnke–
Peschl differential condition (9.59) over the open unit disk and it agrees with h when |z|⩽√s0. □

We need to study condition (9.60) more closely. In fact it has a simple geometric meaning.

De�nition 9.4.40  Let a complete Hartogs domain

be de�ned over a bounded domain ω in C by a function h ∈ C 1(ω), h > 0. Denote by (b(z), 0)
the point at which the tangent at a point (z, t) ∈ ∂Ω with z ∈ ω intersects the plane t = 0 (put 
b(z) = ∞ if there is no such point in C). We shall say that Ω satis�es the tangent condition if

(9.63)

where d denotes the distance from a point to a set.□

If Ω is de�ned by a function h⩾c > 0 and is lineally convex, then it must satisfy the tangent
condition, but not only that—we can deduce important quantitative information from its lineal
convexity:

Lemma 9.4.41  Let R ∈ C 1(ω) be such that the set Ω de�ned by (9.58) is lineally convex. Then

(9.64)

If R⩾c > 0 in ω, then Ω satis�es the tangent condition (9.63).

Proof The tangent plane at a point (z0, t0) ∈ ∂Ω with z0 ∈ ω is given by equation (9.46), and 
b(z) is given by equation (9.47). The equation for the tangent can also be written as 
t = α(z − b(z0)). If Ω is lineally convex, then this tangent cannot intersect Ω, so we must have 
|t|⩾R(z) whenever z, z0 ∈ ω. Thus

inserting the value of α = 2 Rz(z0) = hz(z0) /√h(z0) we obtain

We now let z, z0 vary in ω to get the desired conclusion.

¯

Ω = {(z, t) ∈ ω × C; |t|2 < h(z)}

inf
z∈ω

d(b(z),ω) > 0,

inf
z∈ω

d(b(z),ω)⩾
inf
ω
R

2sup
ω

Rz

⩾
inf
ω
h

sup
ω

hz

.∣ ∣ ∣ ∣|t| = |α(z − b(z0))|⩾R(z) for all z, z0 ∈ ω;∣ ∣ ∣ ∣ ∣ ∣z − b(z0) ⩾ R(z)
2|Rz(z0)|

=
√h(z)h(z0)

|hz(z0)|
.∣ ∣



The idea is to prove that the tangent condition is not only necessary as in Lemma 9.4.41, but also
suf�cient if ω is a disk, which we shall do in Proposition 9.4.42. We then proceed to prove that Ω
does satisfy the tangent condition under our hypotheses if ω is a disk.

Proposition 9.4.42  Assume that h ∈ C 2(D), h > 0, satis�es the Behnke–Peschl differential

condition (9.59) and that Ω satis�es the tangent condition. Let φ be the function constructed in
Example 9.4.39. Then φ(z z)h(z) satis�es the differential condition if s0 is suf�ciently close to
1. Therefore, by Theorem 9.4.33, the open set {(z, t) ∈ D × C; |t|2 < φ(zz)h(z)}, which has a 
C 2 boundary, is lineally convex; as a consequence also its limit as s0 tends to 1, viz. Ω itself, is
lineally convex.

Proof Using formula (9.47) for b(z), the relation between the inequality (9.60) used in the proof
of Proposition 9.4.38 and the tangent condition is easy to establish. We observe that 
|b(z)| = |z − h(z)/hz(z)| > |z| if and only if Re 2zhz(z)/h(z) < 1. Thus if Ω satis�es the
tangent condition, then h satis�es (9.60) for some a < 1 and all z in some suf�ciently narrow
annulus √s0⩽|z|⩽1.4

De�ne

If A⩽1 we are done; otherwise we can choose s0 < 1 so close to 1 that 

(1 − s0)2⩽2(1 − a(s0))/(A2 − 1). Proposition 9.4.38 can be applied and shows that φ(z z)h(z)
satis�es the differential condition.

We shall now prove that it can never happen that Re 2zhz(z)/h(z)⩾1 for any z with |z|⩽1.

Proposition 9.4.43  If h ∈ C 2(D), h > 0, satis�es the Behnke–Peschl differential condition

(9.59), then Ω satis�es the tangent condition (9.63).

Proof Let us de�ne

This is a decreasing function and it is continuous where it is �nite. The tangent condition for 
Ωr = {(z, t) ∈ D(0, r) × C; |t|2 < h(z)} means precisely that b0(r) > r. It is clear that the
condition is satis�ed for a very small r. Indeed, b(0) = −h(0)/hz(0) is either ∞ or a non-zero
complex number; in view of the continuity, |b(z)| > r if |z|⩽r and r is small enough.

If the tangent condition is satis�ed for a particular Ωr, then by Proposition 9.4.42 the set Ωr

is lineally convex, so Lemma 9.4.41 can be applied and shows that b0(r)⩾r + ε, where

¯

¯
¯

A = sup
|z|⩽1

2zhz(z)
h(z)

and a(s0)= sup
√s0 ⩽ |z|⩽1

Re [ 2zhz(z)
h(z)

].∣ ∣¯¯b0(r) = inf
|z|⩽r

b(z) , 0 < r⩽1.∣ ∣ε =
inf

|z|⩽1
R

2sup
|z|⩽1

Rz

> 0.∣ ∣



4Here we could remark that it would be enough to require that b(z) ∉ ω only for all z ∈ ∂ω, supposing that h ∈ C 2(ω). The
stronger condition used in De�nition 9.4.40 is however easier to handle in the proof of Proposition 9.4.43.

We know that b0(r) > r for small values of r, and we have just seen that if b0(r) > r, then also 
b0(r)⩾r + ε, for a positive ε that does not depend on r. Therefore that function cannot assume
any value in the interval ]r, r + ε[: it must satisfy b0(r) > r all the way up to and including 
r = 1. This means that Ω satis�es the tangent condition.

Theorem 9.4.44  Let h ∈ C 2(D), h > 0, satisfy the Behnke–Peschl differential condition (9.59).
Then the open set Ω = {(z, t) ∈ D × C; |t|2 < h(z)} is lineally convex.

Proof If h ∈ C 2(D) with h > 0 in D we see from Proposition 9.4.43 that Ω satis�es the tangent
condition, so that Proposition 9.4.42 can be applied. In the general case with h ∈ C 2(D), h > 0,
we apply this result to a smaller disk rD, r < 1, to conclude that the domain over rD is lineally
convex. Then we let r → 1.

9.5 Weak Lineal Convexity

We start this section with a general presentation of weak lineal convexity. We then discuss local
variants of this property.

A locally weakly lineally convex open set with boundary of class C1 is also (globally) weakly
lineally convex provided that it is bounded. But, as shown by Yuriĭ Zelinskiĭ, this is not true for
unbounded domains. The purpose here is to construct explicit examples, Hartogs domains,
showing this. Their boundary can have regularity C 1,1 or C∞.

Obstructions to constructing smoothly bounded domains with certain homogeneity properties
will be discussed.

9.5.1 Introduction

After the main de�nitions about variants of lineal convexity, we shall approach the comparison
global vs. local. In my paper (1998) I proved that a differential condition that I called the
Behnke–Peschl differential condition implies that a bounded and connected open subset of Cn

with boundary of class C2 is weakly lineally convex. The proof relied on a result by Yužakov and
Krivokolesko (1971a, 1971b), proved also in (Hörmander 1994: Proposition 4.6.4).

Yuriĭ Zelinskij (2002a, 2002b) published an example of an unbounded set that is locally
lineally convex but not lineally convex. His example is not very explicit. We shall construct here
an explicit example—actually a Hartogs domain, which has the advantage of being easily
visualized in three real dimensions. We construct domains with boundary of class C 1,1 and a
certain homogeneity property (Example 9.5.13), and show that this cannot be done with a
boundary of class C2 (Proposition 9.5.18). However, the boundary can be of class C∞ if the
homogeneity requirement is dropped (Example 9.5.14).

9.5.2 Lineal convexity

The property of being lineally convex was de�ned in De�nition 9.4.1 on page 279. To wit:

¯̄

¯̄



□

□

□

De�nition 9.5.1  A subset of Cn is said to be lineally convex if its complement is a union of
complex af�ne hyperplanes.

To every set A there exists a smallest lineally convex subset μ(A) that contains A. Clearly the
mapping μ : P(Cn) → P(Cn), where P(Cn) denotes the family of all subsets of Cn (the
power set), is increasing and idempotent, in other words an ethmomorphism (morphological
�lter). It is also larger than the identity, so that μ is a cleistomorphism (closure operator) in the
ordered set P(Cn).

This kind of complex convexity was introduced by Heinrich Behnke (1898–1997) and Ernst
Ferdinand Peschl (1906–1986). I learnt about it from André Martineau (1930–1972) when I was
in Nice during the academic year October 1967 through September 1968. See Martineau's papers
(1966, 1967, 1968), also in (Œuvres de André Martineau 1977).

Are there lineally convex sets which are not convex? This is obvious in one complex variable,
and from there we can easily construct, by taking Cartesian products, lineally convex sets in any
dimension that are not convex. But these sets do not have smooth boundaries. Hörmander
(1994:293, Remark 3) constructs open connected sets in Cn with boundary of class C2 as
perturbations of a convex set. These sets are lineally convex and close to a convex set in the C2

topology, and therefore starshaped with respect to some point if the perturbation is small. Also
the symmetrized bidisk

studied by Agler & Young (2004) and P�ug & Zwonek (2012), is not convex—not even
biholomorphic to a convex domain (Nikolov et al. (2008)—but it is starshaped with respect to the
origin (Agler & Young 2004: Theorem 2.3). So we may ask:

Question 9.5.2  Does there exist a lineally convex set in Cn, n⩾2, with smooth boundary that is
not starshaped with respect to any point?

We shall return to this question in SubSection 9.5.10.

9.5.3 Weak lineal convexity

De�nition 9.5.3  An open subset Ω of Cn is said to be weakly lineally convex if there passes,
through every point on the boundary of Ω, a complex af�ne hyperplane which does not cut Ω.

It is clear that every lineally convex open set is weakly lineally convex. The converse does not
hold. This is not dif�cult to see if we allow sets that are not connected:

Example 9.5.4  Given a number c with 0 < c < 1, de�ne an open set Ωc in C2 as the union of
the set

with the two sets obtained by permuting x1, x2 and y2. Thus Ωc consists of six boxes. It is easy
to see that it is weakly lineally convex, but there are many points in its complement such that
every complex line passing through that point hits Ωc.

{(z1 + z2, z1z2) ∈ C2; z1 , z2 < 1},∣ ∣ ∣ ∣{z = (x1 + iy1,x2 + iy2) ∈ C2; c < x1 < 1, y1 < 1, x2 < c, y2 < c}∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣



□

□

□

□

Any complex line intersects the real hyperplane de�ned by y1 = 0 in the empty set or in a
real line or in a real two-dimensional plane, and the three-dimensional set {z; y1 = 0} ∩ Ωc is
easy to visualize.

It is less easy to construct a connected set with these properties, but this has been done by
Yužakov & Krivokolesko (1971b:325, Example 2). See also an example due to Hörmander in the
book by Andersson, Passare & Sigurdsson (2004:20–21, Example 2.1.7).

However, the boundary of the constructed set is not of class C1, and this is essential. Indeed,
Yužakov & Krivokolesko (1971b:323, Theorem 1) proved that a connected bounded open set
with “smooth” boundary is locally weakly lineally convex in the sense of De�nition 9.5.8 below
if and only if it is lineally convex. It is then even C-convex (1971b:324, Assertion). See also
Corollary 4.6.9 in (Hörmander 1994), which states that a connected bounded open set with
boundary of class C1 is locally weakly lineally convex if and only if it is C-convex (and every C-
convex open set is lineally convex).

There cannot be any cleistomorphism connected with the notion of weak lineal convexity for
the simple reason that the property is de�ned only for open sets. We might therefore want to
de�ne weak lineal convexity for arbitrary sets. We may ask:

Question 9.5.5  Is there a reasonable de�nition of weak lineal convexity for all sets which keeps
the de�nition for open sets and is such that there is a cleistomorphism associating to any A ⊂ Cn

the smallest set that contains A and is weakly lineally convex?

Question 9.5.6  The operation L ↦ L ∩ Ω associating to a complex line L its intersection with
an open set Ω has continuity properties that seem to be highly relevant for weak lineal convexity.
Here the family of complex lines can arguably have only one topology, but for the family of sets 
L ∩ Ω there is a choice of several topologies, especially if Ω is unbounded.

Can an interesting theory be built starting from this remark?

9.5.4 Local weak lineal convexity

De�nition 9.5.7  We shall say that an open set Ω ⊂ Cn is locally weakly lineally convex if for
every point p there exists a neighborhood V of p such that Ω ∩ V  is weakly lineally convex.

Obviously, a weakly lineally convex open set has this property, but the converse does not hold,
which is obvious for sets that are not connected: Take the union of two open balls whose closures
are disjoint. Also for connected sets the converse does not hold as we showed in Example 9.4.8.
In that example it is essential that the boundary is not smooth.

Zelinskij (1993:118, Example 13.1) constructs an open set which is locally weakly lineally
convex but not weakly lineally convex. The set is not equal to the interior of its closure.

De�nition 9.5.8  Let us say that an open set Ω is locally weakly lineally convex in the sense of
Yužakov and Krivokolesko (1971b:323) if for every boundary point p there exists a complex
hyperplane Y passing through p and a neighborhood V of p such that Y does not meet V ∩ Ω.

Zelinskij (1993:118, De�nition 13.1) uses this de�nition and calls the property 

 (lokal′naja linejnaja vypuklost′).



□

As we shall see, this property is strictly weaker than the local weak lineal convexity de�ned
above in De�nition 9.5.7.

Hörmander (1994:Proposition 4.6.4) and Andersson, Passare & Sigurdsson (2004:
Proposition 2.5.8) use this property only for open sets with boundary of class C1. Then the
hyperplane Y is unique.

For all open sets, local weak lineal convexity obviously implies local weak lineal convexity in
the sense of Yužakov and Krivokolesko. In the other direction, Hörmander's Proposition 4.6.4
shows that for bounded open sets with boundary of class C1, local weak lineal convexity in the
sense of Yužakov and Krivokolesko implies local weak lineal convexity (even weak lineal
convexity if the set is connected).

Nikolov (2012:Proposition 3.7.1) and Nikolov et al. (2013:Proposition 3.3) have a local result
in the same direction: If Ω has a boundary of class Ck, 2⩽k⩽∞, and Ω ∩ B<(p, r), where p is a
given point, is locally weakly lineally convex in the sense of Yužakov and Krivokolesko at all
points near p, then there exists a C-convex open set ω (hence lineally convex) with boundary of

class Ck such that ω ∩ B<(p, r′) = Ω ∩ B<(p, r′) for some positive r′.
However, in general, the two properties are not equivalent:

Example 9.5.9  The bounded connected open subset Ω r of C2, taking r = 2, which was de�ned
in Example 9.4.8 on page 281, has Lipschitz boundary and is locally weakly lineally convex in
the sense of Yužakov and Krivokolesko but not locally weakly lineally convex. While Ω r is

locally weakly lineally convex for 2 < r < √5, the set Ω2 is not locally weakly lineally convex:
The point (0, 2) does not have a neighborhood with the desired property. But it does satisfy the
property of Yužakov and Krivokolesko.

9.5.5 Approximation by smooth sets

Let Aj ⊂ Cnj  be two lineally convex sets in Cnj , j = 1, 2. Then it is easy to see that their
Cartesian product A1 × A2 ⊂ Cn1+n2  is lineally convex. In particular, if n1 = n2 = 1, then
every Cartesian product in C2 is lineally convex. However, these sets cannot always be
approximated by lineally convex sets with smooth boundaries.

If Ωj, j = 1, 2, are convex open sets, then Ω = Ω1 × Ω2 is convex and can be approximated
from within by convex open set Ω[ε] with C∞ boundaries, Ω[ε] ↗ Ω as ε ↘ 0.

But if we let Ω1 be an annulus and Ω2 a disk, e.g.,

then it cannot be approximated by smooth weakly convex sets from the inside as we shall see in
the next proposition and its corollary.

Proposition 9.5.10  Let ω be a nonempty bounded open subset of R2 with boundary of class C 1.

Suppose that inf
x∈ω

x1 > 0. De�ne a Reinhardt domain Ω as

Then Ω is not locally weakly lineally convex.

Ω = Ω1 × Ω2 = {z ∈ C2; 1 < z1 < 3, z2 < 1},∣ ∣ ∣ ∣∣ ∣ Ω = {z ∈ C2; ( z1 , z2 ) ∈ ω}.∣ ∣ ∣ ∣



□

□

Proof. Take a point q = (q1, q2) ∈ Ω with q1 < 0, q2⩾0. Denote by Ω+ the set of all x ∈ Ω

such that x1 > 0 and x2 > 0, and by Lα the complex line of equation z2 − q2 = α(z1 − q1), 

α⩾0. For α = 0, the line cuts Ω+ in (−q1, q2); for large α it does not cut Ω+. Now choose the
smallest α such that Lα does not cut Ω+. Then Lα contains at least one point p ∈ ∂Ω+, and Lα is

the tangent plane of ∂Ω at p. Since this line meets Ω in q, Ω is not weakly lineally convex. But
we can say more: It is not even locally weakly lineally convex. To see this, �rst note that 
α = (p2 − q2)/(p1 − q1) > 0. Then there are points z ∈ Ω belonging to the tangent at p
arbitrarily close to p. Indeed, since α is positive, a point z satisfying

belongs to Ω if it is close enough to p. In terms of z1 this means that

in other words that z1 ∉ D⩽(0, p1) and that z1 ∈ D<(c1, r1), the open disk with center at 
c1 = q1 − q2/α and radius r1 = p2/α = p1 − c1. Since r1 = p1 − c1, there are points 
z1 ∈ D<(c1, r1)∖D⩽(0, p1) which are arbitrarily close to p1.

Corollary 9.5.11  A Reinhardt domain

with r1 > 0 is lineally convex but cannot be approximated by lineally convex domains with
boundary of class C 1.
Proof. If a domain Ω[ε] approximates Ω from the inside in the sense that

then there is also a Reinhardt domain with this property: We may construct such a set by
averaging over all rotations.

We can now apply the proposition to Ω[ε].

9.5.6 The Behnke–Peschl and Levi conditions

We refer to SubSection 9.4.5 for the de�nitions of the real and complex Hessian, the Levi form
as well as the Levi condition and the strong Levi condition. Moreover, we de�ned there the
Behnke–Peschl differential condition and the strict Behnke–Peschl differential condition.

The Behnke–Peschl differential condition says that the restriction of the real Hessian to the
complex tangent space at any boundary point shall be positive semide�nite; for the strong case,
positive de�nite.

Because of the different homogeneity of HC and L, the inequality ReHC
ρ + Lρ⩾0 is

equivalent to L⩾ HC . The inequality L⩾ HC ⩾0 shows that the Behnke–Peschl differential
condition implies the Levi condition.

In my paper (1998) I proved that a bounded connected open set with boundary of class C2 is
weakly lineally convex if it satis�es the Behnke–Peschl differential condition.

|z1| > p1 and |z2| < p2

|z1| > p1 and |q2 + α(z1 − q1)| < p2;

Ω = {z ∈ C2; r1 < z1 < R1, z2 < R2}∣ ∣ ∣ ∣Ω[ε] ⊂ Ω ⊂ Ω[ε] + B<(0, ε),∣ ∣ ∣ ∣



□

□

That this condition is necessary for weak lineal convexity was known since Behnke and
Peschl (1935); the suf�ciency was unknown at the time.

9.5.7 Yužakov and Krivokolesko: Passage from local to global

Let us quote the part of Proposition 4.6.4 in (Hörmander 1994) which is important for us:

Proposition 9.5.12  Let Ω ⊂ Cn be a bounded connected open set with boundary of class C 1 and
assume that Ω is locally weakly lineally convex in the sense of Yužakov and Krivokolesko. Then
Ω is weakly lineally convex.

The result was proved by Yužakov & Krivokolesko (1971a, 1971b) under the condition that the
boundary is “smooth.”

9.5.8 A new example

We shall construct explicit Hartogs domains here with the properties mentioned in Zelinskij's
example. We start with the simplest.

Example 9.5.13  De�ne a function φ⋄ : C → R by

Then Ωφ⋄ = {z ∈ C2; 1 + φ⋄(z1) + z2
2 < 0} has boundary of class C 1,1 and is locally

weakly lineally convex but not weakly lineally convex.

FIGURE 9.2
The set Ωφ⋄ ∩ {z ∈ C2; z2 = 0}.

The properties of the set in this example will be discussed now and the properties will be seen to
hold from Proposition 9.5.15.

φ⋄(z1) =  

⎧⎪⎨⎪⎩−x2
1 − y2

1, x1⩽0 or y1⩽0;

−x2
1 + y2

1, 0⩽y1⩽x1;

x2
1 − y2

1, 0⩽x1⩽y1.∣ ∣



The tangent plane at a boundary point p = (p1, p2) with Re p1 > 0, Im p1 > 0, and 

(Re p1)2 > (Im p1)2 + 1, has the equation −p1(z1 − p1) + p2(z2 − p2) = 0 and it passes

through the point q = (p1 − |p2|2/p1, 0). Choosing p = (3 + i, √7) we get 
q = ( 9

10 + i 17
10 , 0) ∈ Ωφ⋄ , proving that Ωφ⋄  is not lineally convex.

We note that the tangent plane at a boundary point p with Re p1⩽0 or Im p1⩽0 is contained
in the complement of Ωφ⋄ ; in particular, it hits the plane z2 = 0 at the point 
q = (p1/|p1|2, 0) ∉ Ωφ⋄ . We also note that the part of Ωφ⋄  where 0 < x1 < y1 is convex, so any
tangent plane of this part does not intersect it. Similarly, the part where 0 < y1 < x1 is convex.
Therefore Ω⋄

φ is the union of two lineally convex sets, taking the subsets where x1 < max(y1, 0)
, and y1 < max(x1, 0), respectively.

When x1 < 0 or y1 < 0 we get φ⋄
z1

(z1) = −z1, φ⋄
z1z1

(z1) = 0, φ⋄
z1z1

(z1) = −1; when 
0 < y1⩽x1 we have φ⋄

z1
(z1) = −z1, φ⋄

z1z1
(z1) = −1 and φ⋄

z1z1
(z1) = 0; when 0 < x1⩽y1 we

have φ⋄
z1

(z1) = z1, φ⋄
z1z1

(z1) = 1 and φ⋄
z1z1

(z1) = 0. In all three cases |φz1z1 | − φz1z1 = 1. An
application of Proposition 9.5.15 below now gives the result, except that it does not give anything
at the exceptional points, where the function is not of class C∞, i.e., those with y1 = 0, x1 > 0
or x1 = 0, y1 > 0. However, we have already seen that at these points, the tangent plane does not
cut Ωφ⋄ .

The boundary of Ωφ⋄  is not of class C2 at the points where y1 = 0, x1 > 0 or x1 = 0, y1 > 0
. The passage from −x2

1 − y2
1 for y1⩽0 to −x2

1 + y2
1 for 0⩽y1⩽x1 cannot be made analytically.

The function φ⋄ is not of class C 1,1 at the points where x1 = y1, x1 > 0, but this is of no
consequence, since these points do not belong to the closure of the set it de�nes.

We note that the function φ⋄ in the example is homogeneous of degree two:

It is therefore natural to ask if there is a C∞ homogeneous function φ with the same properties.
More precisely, we may ask for functions φ : C → R which yield a locally weakly lineally
convex domain that is not weakly lineally convex in four different cases.

1.1. Is there a C∞ function φ with these properties?

1.2. Is there a homogeneous C∞ function φ with these properties?

2.1. Is there an analytic function φ with these properties?

2.2. Is there a homogeneous analytic function φ with these properties?

As we shall see, the answer to the �rst question is in the af�rmative (Example 9.5.14). But the
answer to Question 1.2 is in the negative (Proposition 9.5.18).

Example 9.5.14  Now de�ne φ⋆ : C → R by

where χ ∈ C∞(R) is a function of one real variable such that χ′ is convex and which satis�es

¯

¯̄

¯

¯̄

φ⋄(z1) = φ⋄( z1 eit) = z1
2ψ(t), z1 ∈ C, t ∈ R.∣ ∣ ∣ ∣φ⋆(z1) = {  

−x2
1 + χ(y1), x1⩾y1;

−y2
1 + χ(x1), x1⩽y1,



□

The convexity of χ′ implies that 2|y1|⩽|χ′(y1)|⩽ max(2|y1|, 1) with equality to the left for 
y1 ⩾ 1

2 . This implies that we must have 1
2 < χ( 1

2 ) − χ(− 1
2 ) < 1, and we can actually choose

χ so that χ( 1
2 ) − χ(− 1

2 ) is any given number in that interval.
For de�niteness we now choose ρ = − 1

4 , σ = 0, χ( 1
2 ) − χ(− 1

2 ) = 3
4 , which implies that 

φ⋄ − 1
4

⩽φ⋆⩽φ⋄, that Ωφ⋆  contains Ωφ⋄ , and that the set of points z ∈ Ωφ⋆  with Re z1⩾ 1
2

 and 
Im z1⩾ 1

2  is unchanged compared to Ωφ⋄ . We choose χ as a suitable third primitive of

for a number c, 0 < c⩽ 1
2 , and a positive constant C, taking χ′′′(y1) equal to zero when |y1|⩾c.

This implies that χ′ is even and that χ(0) = 1
2
ρ + 1

2
σ = − 1

8
. Then

has boundary of class C∞ and is locally weakly lineally convex but not lineally convex, since,

just as for Ωφ⋄ , the tangent plane at the boundary point p = (3 + i, √7) passes through 
q = ( 9

10 + i 17
10 , 0) ∈ Ωφ⋆ .

The properties mentioned in these two examples will follow from the next proposition and its
corollary.

Proposition 9.5.15  Let φ : C → R be a function of class Ck, k = 2, 3, … , ∞,ω (Cω denoting
the family of all real analytic functions), and de�ne an open set in C2 as

We assume that

(9.65)

and that

(9.66)

Then Ωφ has boundary of class Ck and satis�es the Behnke–Peschl differential condition at every
boundary point. If the inequality is strict at a certain point, we get the strict Behnke–Peschl
differential condition at that point.

χ(y1) = {  
−y2

1 + ρ, y1⩽ − 1
2

;

y2
1 + σ, y1⩾ 1

2
.∣ ∣ χ′′′(y1) = C exp(1/(y1 − c) − 1/(y1 + c)), − c < y1 < c,

Ωφ⋆ = {z ∈ C2; 1 + φ⋆(z1) + z2
2 < 0}∣ ∣Ωφ = {z ∈ C2; 1 + φ(z1) + z2

2 < 0}.∣ ∣φz1 ≠ 0whereverφ = −1,

(−φ − 1)(|φz1z1
| − φz1z1

)⩽|φz1
|2 inthesetwhere − φ − 1⩾0.̄



Proof In Lemma 9.4.26 on page 288 I described the domain by an inequality of the form 
|z2|2 < h(z1) and found that the Behnke–Peschl differential condition takes the form 
h(hz1z1 + |hz1z1 |)⩽|hz1 |

2, which, with h(z1) = −φ(z1) − 1, yields (9.66).

Corollary 9.5.16  Let φ have the form φ(z1) = −x2
1 + χ(y1) for x1⩾y1 and 

φ(z1) = −y2
1 + χ(x1) for y1⩾x1. We assume that χ ∈ C k(R), k⩾2, with −2⩽χ′′ and such that

χ(y1) > −1 when χ′(y1) = 0. Then the conclusion of Proposition 9.5.15 holds under the
assumption

(9.67)

Proof The condition (9.65) is satis�ed, since the gradient of φ in this case vanishes only when 
x1 = 0 and χ′(y1) = 0. Then 1 + φ(z1) + |z2|2 = 1 + χ(y1) + |z2|2 > 0, so z = (iy1, z2)
cannot be a boundary point of Ω.

Condition (9.66) reduces to

provided x2
1 − χ(y1) − 1⩾0. If −2⩽χ′′, we have

which gives (9.67). We then see that in this case the inequality holds also if x2
1 − χ(y1) − 1 < 0.

In Example 9.5.14, the de�ning function 1 − x2
1 + χ(y1) + z2

2 has nonvanishing gradient
everywhere since χ′ > 0 everywhere. Smoothness follows.

The function φ⋆ is not of class C∞ in the set where x1 = y1, x1 > 0, but again this is
unimportant since these points do not belong to the closure of Ωφ⋆ . An application of Corollary
9.5.16 now gives the result. In fact, with the choice of ρ = − 1

4 , σ = 0, we need only note that 
χ(y1)⩾ − y2

1 − 1
4  everywhere, and that χ′(y1)⩾2|y1|, so that

thus with strict inequality in (9.67) and (9.66); similarly for x1⩽y1.

Remark 9.5.17  It might be of interest to understand where the proof of Hörmander's Proposition
4.6.4 quoted above breaks down in the unbounded case. An important step in the proof is to see
that, if we have a continuous family (Lt)t∈[0,1] of complex lines, the set T of parameter values t
such that Lt ∩ Ω is connected is both open and closed. Thus, if 0 ∈ T , then also 1 ∈ T . We shall
see that closedness is no longer true for the sets in Examples 9.5.13 and 9.5.14.

De�ne complex lines

¯

1
4
χ′(y1)2 + χ(y1) + 1⩾0, y1 ∈ R.

(x2
1 − χ(y1) − 1)( − 1

2 − 1
4 χ

′′(y1) + 1
2 − 1

4 χ
′′(y1))⩽ − x1 − 1

2 iχ′(y1) 2 = x2
1 + 1

4 χ
′(y1)2,∣ ∣ ∣ ∣− 1

2 − 1
4 χ

′′(y1) + 1
2 − 1

4 χ
′′(y1) = 1

2 + 1
4 χ

′′(y1) + 1
2 − 1

4 χ
′′(y1) = 1,∣ ∣ ∣ ∣1

4
χ′(y1)2 + χ(y1) + 1⩾ 3

4
> 0, x1⩾y1,

Lt = {z ∈ C2; z2 = t(z1 − 1 − i)}, t ∈ [0, 1],



□

which all pass through (1 + i, 0) ∉ Ωφ⋆ . Then Lt ∩ Ωφ⋆  is connected for 0⩽t < 1 while 
L1 ∩ Ωφ⋆  is not.

We shall �rst see that L1 ∩ Ωφ⋆  is disconnected. If z ∈ L1 ∩ Ωφ⋆  and x1⩽0 or y1⩽0, then

Since we have chosen ρ = − 1
4 , the quantity f(z) can be negative only if x1 + y1 > 0, which

implies that z1 satis�es either x1 > |y1| or y1 > |x1|. Therefore the real hyperplane of equation 
x1 = y1 divides L1 ∩ Ωφ⋆  into two sets, which are nonempty since (2, 1 − i) and (2i, i − 1) both
belong to L1, the �rst with y1 < x1, the second with y1 > x1, and that both belong to Ωφ⋆  in
view of the fact that χ(0)⩽0.

Next we shall see that Lt ∩ Ωφ⋆  is connected when 0⩽t < 1. Given t such that 0⩽t < 1, we
obtain for z ∈ Lt ∩ Ωφ⋆  with x1, y1⩽0,

This yields the estimate

which is negative when |z1| = Rt for a large enough number Rt, which depends on t. Obviously
Rt tends to +∞ as t → 1, which explains that L1 ∩ Ωφ⋆  is disconnected. Let Γt be the arc in Lt

with |z1| = Rt and x1⩽0 or y1⩽0, thus contained in Ωφ⋆ .
An arbitrary point a ∈ Lt ∩ Ωφ⋆  can be joined to a point in Γt by a straight-line segment

contained in Ωφ⋆  and therefore also contained in Lt ∩ Ωφ⋆ . If Re a1⩽0 or Im a1⩽0 this follows
from the fact that the set of points in Ωφ⋆  with argument of z1 equal to that of a1 is convex;
otherwise from the fact that the points in Ωφ⋆  with 0⩽Im z1 < Re z1 is convex, as is the set of
points with 0⩽Re z1 < Im z1.

9.5.9 An impossibility result

Proposition 9.5.18  Let Ωφ = {z ∈ C2; 1 + φ(z1) + z2
2 < 0}, where φ is positively

homogeneous of degree two and of class C 2 where it is negative. Then either φ is constant and 
Ωφ is lineally convex; or φ is not constant and Ωφ is not connected.

The set Ωφ⋄  in Example 9.5.13 has the properties mentioned here except that its boundary is not
of class C2: We have a striking contrast between the regularity classes C 1,1 and C2.
Proof. For functions φ : C → R which are positively homogeneous of degree two, i.e., of the
form φ(z1) = |z1|2ψ(t), z1 = z1 eit ∈ C, t ∈ R, condition (9.66) on φ takes the form

to hold in the set where −r2ψ − 1⩾0; equivalently

f(z) = 1 + φ⋆(z1) + |z2|2⩾1 − |z1|2 + ρ + |z1 − 1 − i|2 = 3 + ρ − 2(x1 + y1).

1 + φ⋆(z1) + z2
2⩽1 − (1 − t2) z1

2 − 2t2(x1 + y1) + 2t2.∣ ∣ ∣ ∣1 + φ⋆(z1) + z2
2⩽3 + 4 z1 − (1 − t2) z1

2,∣ ∣ ∣ ∣ ∣ ∣∣ ∣∣ ∣(−r2ψ − 1)[−ψ +√( 1
4 ψ

′′)
2

+ ( 1
2 ψ

′)
2

− 1
4 ψ

′′]⩽r2(ψ2 + 1
4 ψ

′2),

4ψ + (−r2ψ − 1)[√ψ′′2 + 4ψ′2 − ψ′′]⩽r2ψ′2.



□

From this we obtain, if we divide by r2 and let r tend to +∞,

(9.68)

But this condition is also suf�cient, which follows on multiplication by r2 and adding the trivial

inequality 4ψ − [√ψ′′2 + 4ψ′2 − ψ′′]⩽0.

To get rid of the square root in (9.68) we rewrite it as

where the left-hand side is of degree four.
We now introduce a function g by de�ning g(t) as the positive square root of −ψ(t) if ψ(t) is

negative and as 0 at all other points. Thus g is of class C2 where it is positive, and ψ = −g2

there. The points where g = 0, equivalently ψ⩾0, are not of interest, since for them 
1 + |z1|2ψ(t) + |z2|2⩾1 > 0, implying that z does not belong to the closure of Ωφ.

We get an inequality of degree eight but which is easy to analyze:

(9.69)

Thus, for each t such that g(t) > 0, either g′(t) = 0 or g(t) + g′′(t)⩽0. If g′ is zero everywhere,
i.e., if g is constant, it is known that Ωφ is lineally convex, in particular weakly lineally convex.

Wherever g is positive and g′ is nonzero we get g + g′′⩽0. This implies that any local maximum
of g is isolated and that there can only be one point where the maximum is attained.5 Hence,

unless g′ vanishes everywhere, g + g′′⩽0 everywhere. We de�ne h = g + g′′⩽0 and obtain for
any a ∈ R

The function g attains its maximum at some point which we may call a, and the formula then
shows that g(t)⩽g(a) cos(t − a) for all t with a⩽t⩽a + π/2. In particular, g must have a zero t0
in the interval ]a, a + π/2]. By symmetry, g has a zero t1 also in the interval [a − π/2, a[, hence

at least two zeros in a period. This means that Ω is not connected, since the union of the rays 
arg z1 = t0 and arg z1 = t1 divides the z1-plane.

9.5.10 A set which is not starshaped

A subset A of a vector space is said to be starshaped with respect to a point a ∈ A if the segment
[a,b] is contained in A as soon as b belongs to A.

In answer to Question 9.5.2 we mention a modi�cation of the set Ωφ⋄  which is not starhaped.

(−ψ)[√ψ′′2 + 4ψ′2 − ψ′′]⩽ψ′2.

ψ′2(ψ′2 + 2(−ψ)ψ′′ − 4ψ2)⩾0,

g5g′2(g + g′′)⩽0.

g(t) = g(a) cos(t − a) + g(a)∫
t

a

sin(t − s)h(s)ds, t ∈ R.



□

Example 9.5.19  De�ne φ♯ : C → R by

Then Ωφ♯ = {z ∈ C2; 1 + φ♯(z1) + z2
2 < 0} has boundary of class C 1,1 and is lineally

convex, but it is not starshaped with respect to any point.

This set can conceivably be modi�ed to have a boundary of class C∞ like in Example 9.5.14.
However, it is unbounded.

Question 9.5.20  Does there exist a bounded set with boundary of class C 2 which is lineally
convex but not starshaped?

FIGURE 9.3
The set Ωφ♯ ∩ {z ∈ C2; z2 = 0}.

5De�ning a function g : R → R of period 2π by g(t) = | cos 2t| when 0⩽t⩽π and g(t) = 1 when π < t < 2π, we get a
function which satis�es inequality (9.69) in R∖πZ, but not the conclusions we have drawn from it. This function is not of class

C2 (but of class C 1,1).

Question 9.5.21  What about a Hartogs domain with these properties?

The set Ω de�ned in Corollary 9.5.11 is bounded, lineally convex and not starshaped, but it has
only a Lipschitz boundary. It cannot be approximated by a lineally convex set with smooth
boundary.

9.6 A Differential Inequality Characterizing Weak Lineal Convexity

φ♯(z1) = {  
−x2

1 − y2
1, x1 + y1⩽0;

− 1
2

(x1 − y1)2, x1 + y1⩾0.∣ ∣



□

Abstract of this section
Behnke and Peschl introduced in 1935 the notion of Planarkonvexität, now called weak lineal
convexity. They showed that, for domains with smooth boundary, it implies that a differential
inequality is satis�ed at every boundary point. We shall prove the converse here.

9.6.1 Introduction

In an article published in the Mathematische Annalen in 1935, Heinrich Behnke (1898–1979)
and Ernst Peschl (1906–1986) introduced a notion of convexity called Planarkonvexität,
nowadays known as weak lineal convexity. They showed that for domains in the space of two
complex variables with boundary of class C2, this property implies that a differential inequality is
satis�ed at every boundary point. Here we shall prove that, conversely, the differential inequality
is suf�cient for weak lineal convexity.

Behnke and Peschl (1935:170) proved that for sets with smooth boundary, weak lineal
convexity is a local property (see Theorem 9.6.2 below).

Both usual convexity and pseudoconvexity can be characterized in�nitesimally. The simplest
example of such a result is that a C2 function of one real variable is convex if and only if its
second derivative is nonnegative. More generally, a domain in Rn with boundary of class C2 is
convex if and only if the Hessian of a de�ning function is positive semide�nite in the tangent
space at every boundary point. Similarly, an open set in Cn with boundary of class C2 is
pseudoconvex if and only if the Levi form of a de�ning function is positive semide�nite in the
complex tangent space at every boundary point (the Levi condition).

In analogy with these two classical results, we shall prove in the present section that a
bounded connected open subset of Cn with boundary of class C2 is weakly lineally convex if and
only if the real Hessian of a de�ning function is positive semide�nite in the complex tangent
space at every boundary point (the Behnke–Peschl condition).

It is easy to see that semide�niteness is necessary. It is also known—indeed, this is the
Hauptsatz of Behnke and Peschl (1935)—that the corresponding strong condition, i.e., that the
real Hessian be positive de�nite, is suf�cient. Thus what we have proved is that semide�niteness
is suf�cient.

In the case of convexity and pseudoconvexity, the best way to deal with semide�niteness is to
approximate the domain by domains which satisfy the corresponding stronger condition of
de�niteness. This is not how we approach the problem here, at least not directly. The idea of
proof of the main result here is instead to construct Hartogs domains which share a tangent plane
with the given domain.

Question 9.6.1  Can a weakly lineally convex domain with smooth boundary be approximated
from the inside by domains satisfying the strong Behnke–Peschl condition? (For Hartogs
domains this is known; see Theorem 9.4.33.

9.6.2 The main result

To be able to characterize sets by in�nitesimal conditions, we shall describe boundaries and their
curvature using de�ning functions and the Hesse and Levi forms. We refer to the de�nitions
already given in SubSection 9.4.5.

As noted in the introduction, lineal convexity is not a local condition. Simple examples of
sets which are locally lineally convex but not weakly lineally convex can be found in Section 9.4.



□

However, weak lineal convexity is a local condition for sets with smooth boundary. The precise
result is as follows.

Theorem 9.6.2  Let Ω be a bounded connected open set in Cn with boundary of class C 1.
Assume that for every boundary point a, the closure of the intersection of Ω with the complex
tangent plane at a does not contain a. Then Ω is weakly lineally convex.

For sets in C2 or P2 with boundary of class C2, this was proved by Behnke and Peschl
(1935:170). For a proof under the hypotheses stated here, see (Hörmander 1994: Proposition
5.6.4.) See also (Andersson, Passare & Sigurdsson 2004: Proposition 2.5.8). We shall need this
result in our proof.

We recall two lemmas from Section 9.4: Lemmas 9.4.24 and 9.4.25, both due to Behnke and
Peschl (1935: Theorems 7 and 8); local weak lineal convexity is called Planarkonvexität im
kleinen by them. Cf. also (Zinov′ev 1971), (Hörmander 1994: Corollary 5.6.5).

Combining Lemma 9.4.25 and Theorem 9.6.2 we can deduce that the strict Behnke–Peschl
differential condition (9.53) at all boundary points is suf�cient for weak lineal convexity. This is
the Hauptsatz of Behnke and Peschl (1935:170) (for sets in C2 or P2). We now state our main
result, that in fact also the weaker condition (9.52) is suf�cient:

Theorem 9.6.3  Let Ω be a bounded connected open set in Cn with boundary of class C 2. Then Ω
is weakly lineally convex if and only if Ω satis�es the Behnke–Peschl differential condition
condition (9.52) at every boundary point.

If Ω is locally weakly lineally convex, has a C1 boundary, and in addition is bounded, then Ω is
also C-convex and lineally convex. This follows from (Andersson, Passare & Sigurdsson 2004:
Proposition 2.5.8), who consider sets in projective space. I do not know how their result can be
applied to unbounded domains in Cn with smooth boundary; such domains are not necessarily
smoothly bounded in Pn.

9.6.3 Results for Hartogs domains

Lineal convexity for Hartogs sets is easier to handle than in the general case. For some results,
see Section 9.4, in particular Theorems 9.4.33 and 9.4.44.

Proposition 9.6.4.  Let Ω be an open set in Cn and de�ne

(9.70)

This is the largest complete Hartogs set contained in Ω. If Ω is lineally convex, then ΩH  is
lineally convex; similarly for weak lineal convexity. If ∂Ω is of class C 2 except perhaps where 
zn = 0, then so is the boundary of ΩH  at all points z with zn ≠ 0 and satisfying the condition

(9.71)

ΩH = {z ∈ Cn; (z1, … , zn−1,λzn) ∈ Ω for all λ ∈ C with |λ|⩽1}.

2M|zn| < |ρzn(z)|,



where M is a bound for the second derivatives ρznzn  and ρznzn . If, in addition, Ω satis�es the
Behnke–Peschl differential condition (9.52) at all boundary points with zn ≠ 0, then so does ΩH

at all boundary points with zn ≠ 0 satisfying (9.71).

Proof If Ω is lineally convex, then also ΩH , as an intersection of lineally convex sets, has this
property:

Assume now that Ω is only weakly lineally convex, and let a point a on the boundary of ΩH

be given. Then for some λ with |λ| = 1, a is on the boundary of Ωλ de�ned above, and a
hyperplane through a which does not intersect Ωλ does not intersect ΩH  either. (The argument is
valid for all a; if an = 0 we even have a ∈ ∂Ωλ for all λ.)

If ρ de�nes Ω, then

(9.72)

de�nes ΩH  in a neighborhood of its closure. De�ne

We can calculate

The value of θ which de�nes the supremum in (9.72) solves the equation φ′′
θ = 0, and the

implicit function theorem can be applied if φ′′
θθ ≠ 0 there. This condition is ful�lled if

(9.73)

where M is a bound for the second derivatives of ρ as de�ned in the statement of the proposition.
However, when φ′

θ = 0, the expression ρzneiθzn is real, so that (9.73) simpli�es to (9.71). The
implicit function theorem then says that the boundary of ΩH  is as smooth as that of Ω where the
condition is satis�ed.

Now assume that Ω satis�es the Behnke–Peschl condition at a boundary point a of ΩH  with 
an ≠ 0. Then a is on the boundary of some Ωλ, |λ| = 1, as already noted above. Consider the
functions

¯

ΩH = ∩
|λ|⩽1

Ωλ, where Ωλ = {z ∈ Cn; (z1, … , zn−1,λzn) ∈ Ω}.

ρH(z) = sup
θ∈R

ρ(z1, … , zn−1, eiθzn)

φ(z1, … , zn, θ) = ρ(z1, … , zn−1, eiθzn), (z, θ) ∈ Cn × R.

φθ = −2Im (ρzneiθzn);

φθθ = −2Re (ρzneiθzn) − 2Re (ρznzne2iθz2
n) + 2ρznzn zn

2 .̄∣ ∣Re (ρzneiθzn) > 2M zn
2,∣ ∣ ∣ ∣φλ(s) = ρλ(a + st), φH(s) = ρH(a + st), s ∈ R, t ∈ TC(a),



where ρλ(z) = ρ(z1, … , zn−1,λzn), the de�ning function for Ωλ obtained by rotating ρ in the
last coordinate.

The Behnke–Peschl condition holds for Ωλ, which means that (φλ)′′(0)⩾0. Now φH⩾φλ

and both functions vanish at the origin, which implies (φH)′′(0)⩾(φλ)′′(0). Thus the condition
holds for ΩH . This completes the proof.

In an application of this proposition in the next subsection we shall let Ω be de�ned near an
arbitrarily given point by an inequality yn < f(z′,xn) for some real-valued function f of n − 1
complex variables and one real variable. Then ρ(z) = yn − f(z′,xn) is a de�ning function for Ω
near the given point. (Here xn = Re zn, yn = Im zn, and z′ = (z1, … , zn−1).) We see that 
ρzn = − 1

2 (fxn
+ i), so that ρzn ⩾ 1

2 . Moreover

This implies that a suf�cient condition for (9.71) to hold is

(9.74)

where C is a bound for fxnxn
.

Remark 9.6.5  Condition (9.71) has a simple geometric meaning. With the de�ning function 
ρ(z) = yn − f(z′,xn) it says that the intersection of the boundary of Ω with the subspace 
z′ = constant has smaller curvature than the intersection of the boundary of ΩH  with the same
subspace where the two boundaries meet. For simplicity we shall use the stronger condition
(9.74) instead.

9.6.4 Proof of the main result

We shall now prove Theorem 9.6.3. In view of Theorem 9.6.2 it is enough to prove that the
complex tangent plane a + TC(a) does not cut Ω near a. We shall assume that a + TC(a) cuts Ω
in a point b and then show that this leads to a contradiction if b is close to a.

First of all we may assume that n = 2 by looking at the two-dimensional af�ne complex
subspace that contains a, b and a third point on the normal to ∂Ω through a. We may also assume
that the coordinate system is chosen so that a = 0 and the real tangent plane a + TR(a) has the
equation Im z2 = 0. We recall that both weak lineal convexity and the Behnke–Peschl condition
(9.52) are invariant under complex af�ne mappings. The complex tangent plane at a then has the
equation z2 = 0, so that b2 = 0. We shall consider a neighborhood W of a such that three
conditions are satis�ed. Let

and let V be its intersection with C × R:∣ ∣ ρznzn = ρznzn = − 1
4 fxnxn

.̄

C|zn| < 1,

W = {z ∈ C2; z1 < R1, z2 < R2}∣ ∣ ∣ ∣V = {(z1,x2) ∈ C × R; |z1| < R1, |x2| < R2}.



The three conditions are:

To satisfy these conditions we have to specify the numbers R1, R2 and C. We �rst choose R1 and

R2 so that (A) and (B) hold, and then de�ne a constant C as follows. Since f is a function of class

C2 de�ned in a neighborhood of the closure of V and with vanishing derivatives of order up to
one at the origin, there exists a constant C such that

for all (z1,x2) ∈ V . We �nally shrink R1 if necessary to make (C) hold.

With the choice of coordinate system we have made, the normal at a is the y2-axis. Let c be a

point on that axis with Im c2 < 0; it is convenient to take c = − 1
4 iR2. Thus c = (0, c2) and 

c = −Im c2 = 1
4 R2. The circle in the plane z1 = 0 with center at c and radius |c| passes

through a and is tangent to the x2-axis at that point.

We shall prove that f(b)⩽0 (hence that b ∉ Ω) for all b with |b1| < R1. Assume the contrary:
f(b) > 0. Consider the plane z1 = b1 and the graph of f restricted to that plane. Draw the normal
to the graph of f(b1, ⋅ ) through the point z2 = if(b1, 0) in the z2-plane. This normal intersects

the line y2 = Im c2 at a point, which we call p2. De�ne p1 = b1 and p = (p1, p2) ∈ C2. The

slope of the normal is determined by the slope of the graph at z1 = b1, x2 = 0, i.e., by fx2(b1, 0).
This derivative can however be controlled: we know that fx2(b1, 0) is not more than C|b1| in
modulus. The distance between p and c is

where the last estimate is a consequence of (C). Thus |p − c|⩽M|b1| with M = 1
2 CR2.

We have constructed a disk D0 in the plane z1 = 0 with center at c2 and with z2 = 0 on its

boundary, and now let D1 be the disk in the plane z1 = b1 with center at p2 and if(b1, 0) on its

boundary (and therefore containing z2 = 0):

First of all the set Ω shall be de�ned in W by an inequality Im z2 < f(z1, Re z2)
for some function f which is of class C2 in a neighborhood of the closure of V.

(A)

Next we shall assume that condition (9.74)) is satis�ed for all z ∈ W  with some
margin:

(This is to allow a change of coordinates later.)

(B)

R2sup
V

fx2x2
< 2

3
< 1.∣ ∣Third, R1 shall be so small that MR1 + C(1 + M 2)R2

1 < 1
4 R2, where 

M = 1
2 CR2 and C is de�ned below.

(C)

|f(z1,x2)| ⩽C( z1
2 + x2

2),

|fx2(z1,x2)| ⩽C(|z1| + |x2|),  and 

|fx2x2(z1,x2)| ⩽C ∣ ∣∣ ∣ p − c = fx2(b1, 0) ( c + f(b1, 0))⩽C b1 ( 1
4 R2 + C b1

2)⩽ 1
2 CR2 b1 ,∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣}



Both disks are moreover contained in Ω ∩ W . For D0 this is obvious from the construction; for

D1 this can be seen as follows. The center of D1 is p2 and its radius r1 is |if(b1) − p2|. The disk

is contained in W if |p2| + r1⩽R2. This inequality follows from the estimates we already have:

where the last inequality follows from (C). Thus D1 ⊂ W . That D1 ⊂ Ω now follows from (B);
cf. Remark 9.6.5.

If we construct a Hartogs domain by rotating Ω around an axis which passes through c and p,
then this Hartogs domain will have a on its boundary and contain b. This is precisely what we
shall do.

We introduce new coordinates (w1,w2) so that the w1-axis, i.e., the plane w2 = 0, passes

through c and p. The w2-axis need not be changed. This means that the new coordinates shall be

de�ned as

Indeed z = c gives w = 0 and z = p yields w = b = (b1, 0). We now de�ne ΩH  in the w-
coordinates. The tangent plane with equation z2 = 0 has the equation 
w2 = −c2 − (p2 − c2)w1/b1 and is also the tangent plane to ∂ΩH  at the point w = (0, −c2). It
intersects ΩH  at the point z = b, i.e., w = (b1, −p2). That this point is an element of ΩH  follows
from the construction of D1.

We shall now apply Theorem 9.4.33 to ΩH  over the disk |w1| < R1 in the w1-plane. To be

able to do so we have to check that there is a point of ΩH  over every point w1 with |w1| < R1, or

equivalently that (w1, 0) ∈ ΩH  for all w with |w1| < R1.
In the new coordinate system, the inequality de�ning Ω becomes

Denote the right-hand side by g(w1, Rew2). In particular

Recalling the estimate |p2 − c2|⩽M|b1| above, we get

the last inequality coming from (C). This ensures that every point (w1, 0) with |w1| < R1 lies in
Ω and therefore also in ΩH .

We know that ΩH  satis�es the Behnke–Peschl differential condition at all boundary points if
the condition in the w-coordinates corresponding to (9.74) is valid. Note that 
|w2 − z2 + c2|⩽M|z1| independently of the choice of b ∈ W , from which we deduce

D0 = {z ∈ C2; z1 = 0, z2 − c2 < c };

D1 = {z ∈ C2; z1 = b1, z2 − p2 < if(b1, 0) − p2 }.∣ ∣ ∣ ∣∣ ∣ ∣ ∣p2 + r1⩽2 p2 + C b1
2⩽2 c2 + 2 p2 − c2 + C b1

2⩽ 1
2 R2 + 2MR1 + CR2

1⩽R2,∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣w1 = z1, w2 = z2 − c2 − (p2 − c2)z1/b1.

Imw2 < −Im c2 − Im (p2 − c2)w1/b1 + f(w1, Rew2 + Re (p2 − c2)w1/b1).

g(w1, 0) = −Im c2 − Im (p2 − c2)w1/b1 + f(w1, Re (p2 − c2)w1/b1).

g(w1, 0)⩾ 1
4 R2 − M w1 − C(1 + M 2) w1

2⩾ 1
4 R2 − MR1 − C(1 + M 2)R2

1 > 0,∣ ∣ ∣ ∣



The second derivative of g with respect to Rew2 is the same as the second derivative of f with
respect to x2 = Re z2, so from (B) we can conclude that the condition (4.5) is satis�ed also in
the w-coordinates for all points w ∈ ∂ΩH  with |w1| < R1.

It now follows from Theorem 9.4.44 that ΩH  is lineally convex, which contradicts the fact
that the tangent plane at the point w = −c intersects ΩH  in w = (b1, −p2). This completes the
proof.

9.7 Generalized Convexity

Abstract of this section
Inspired by mathematical morphology we study generalized convexity and prove that certain
subsets of Hartogs domains are convex in a generalized sense.

9.7.1 Introduction to this section

By the Hahn–Banach theorem, an open convex set in Rm is an intersection of open half-spaces;
its complement a union of closed half-spaces. What if we replace the latter by balls? We shall
study here a kind of generalized convexity where a set is called concave if it is a union of closed
balls; its complement thus being an intersection of complements of closed balls. This will be
done in particular for Hartogs domains which are lineally convex.

Lineal convexity is a kind of complex convexity intermediate between usual convexity and
pseudoconvexity. More precisely, if A is a convex set in Cn which is either open or closed, then A
is lineally convex (this is true also in the real category), and if Ω is a lineally convex open set in
Cn, then Ω is pseudoconvex.

As mentioned on page 263, there are several different notions of convexity related to lineal
convexity.

The main results are presented in Subsections 9.7.8 and 9.7.10. It is shown there that certain
subsets of Hartogs domains have convexity properties originating in mathematical morphology.
We also study external tangent planes of sets that do not necessarily have a smooth boundary.

9.7.2 Hyperplanes, tangent planes and multifunctions

Hyperplanes are af�ne subspaces with real or complex codimension 1, and they will play an
important role in the sequel.

To any real hyperplane Y in Cn and every point a ∈ Y  there is a unique complex hyperplane 
Y[a] that contains a and is contained in Y. In fact

We note that Y[a] depends continuously on (Y , a) for the natural topology on hyperplanes and
points.

Conversely, every complex hyperplane Z in Cn is contained in a real hyperplane, but there are
now several choices. If a complex hyperplane Z is given and is de�ned by the equation 

w2 ⩽ z2 + 1
4 R2 + MR1⩽ 3

2 R2.∣ ∣ ∣ ∣
Y[a] = Y ∩ (i(Y − a) + a).



□

□

β ⋅ (z − a) = 0, then for any complex number θ with |θ| = 1 the real hyperplane Z [θ] de�ned by
Re θ(β ⋅ (z − a)) = 0 contains Z. The real hyperplane Z [θ] does not depend on the choice of 

a ∈ Z and satis�es (Z [θ])[b] = Z for every b ∈ Z.

If a real hyperplane Y and a point a ∈ Y  are given, then (Y[a])
[θ] = Y  for two values of θ

with |θ| = 1. Explicitly, if Y is given by the equation Reβ ⋅ (z − a) = 0, then Y[a] is given by 

β ⋅ (z − a) = 0 and (Y[a])
[θ] by Re θ(β ⋅ (z − a)) = 0; the two choices θ = ±1 give us Y back.

For the de�nition of the real and complex tangent spaces to an open subset Ω of Cn with
boundary of class C1, as well as the real and complex tangent planes, we refer to De�nition
9.4.19.

Clearly TΩ,C(b) = TΩ,R(b)[0]; for the tangent planes, b + TΩ,C(b) = (b + TΩ,R(b))[b].

De�nition 9.7.1  If A is a subset of Cn, we shall denote by ΓA(a) the set of all complex
hyperplanes Z which pass through the origin and are such that a + Z does not intersect A.

De�nition 9.7.2  A mapping F : X → P(Y ) will be called a multifunction from X into Y and
will be written F : X⇉Y . (This means that the value, image, or �ber F(x) of F at a point x is a
subset of Y, possibly empty.) The graph of a multifunction F, denoted by graph(F), is the set 
{(x, y) ∈ X × Y ; y ∈ F(x)}.

If X and Y are topological spaces, we can equip X × Y  with the Cartesian product topology. In
all cases considered here, X is a T1 space—equivalently, all singleton sets are closed. If so, for 

graph(F) to be a closed subset of X × Y , it is necessary but not suf�cient that the �ber

be a closed subset of Y for every a ∈ X.
Thus ΓA is a multifunction ΓA : Cn⇉Grn−1(Cn) = Mn,n−1(C) with values in the

Grassmann manifold of all complex hyperplanes in Cn passing through the origin. If Ω is open, 
ΓΩ(a) is closed for every a ∈ Cn. See also Proposition 9.7.15.

Lineal convexity of a set A means that ΓA(a) is nonempty for every a ∈ Cn∖A; weak lineal
convexity of an open set Ω that ΓΩ(b) is nonempty for every b ∈ ∂Ω.

Let us agree to say that a topological space is connected if the only sets which are both open
and closed are the empty set and the whole space (not necessarily distinct).6 A subset of a
topological space is said to be connected if it is connected as a topological subspace.

Zelinskiĭ (1981) has proved that a bounded lineally convex open set Ω is C-convex if and only
if ΓΩ(b) is connected for every boundary point b. See also (Andersson, Passare & Sigurdsson
2004:46, Theorem 2.5.2) for the corresponding result on subsets of projective space.

6We follow here Bourbaki (1961:I:§11:1) in that the empty space is de�ned to be connected. Adrien Douady (personal
communication, 2000 June 26) argued for the empty space not to be connected. The difference is important in De�nition 5, where
C-convexity is de�ned.

9.7.3 Accessibility

We refer to SubSection 9.3.7 for the set-theoretical operations δS, εS, κS and αS with respect to a

structuring element S. It is convenient to express closedness and openness for some of these

F(a) = ({a} × Y ) ∩ graph(F)



□

□

operators in terms of accessibility:

De�nition 9.7.3  If A is a subset of Rm or Cn and b a point in this space, we shall say that b is S-
accessible from the outside if b belongs to the closure of αS(∁A). In particular we shall speak
about accessibility from the outside by balls of radius r if S is equal to B⩽(0, r) or B<(0, r). □

Remark 9.7.4  If b is S-accessible from the outside of a certain class, then there is also a set T of

the same class such that A ∩ T = {b}. Indeed, if S satis�es

then T can be taken as the set of all x such that f(x) + ∥x − b∥2
2⩽0. □

We shall consider regularity classes C k,β, where k ∈ N and 0⩽β⩽1, meaning that the functions
considered are of class Ck and all derivatives of order k are Hölder continuous of order β, with
the understanding that C k,0 = C k.

De�nition 9.7.5  If b ∈ ∂A is accessible from the outside by a structuring element S having
boundary of class C k,β with k⩾1, then we shall say that the unique tangent plane to S at b is an
external tangent space of A at b. The set of all external tangent spaces at a point b, a subset of the
Grassmann manifold Grm−1(Rm) = Mm,m−1(R) of all real hyperplanes passing through the

origin, will be denoted by Θk,β
A,R(b), and the corresponding multifunction ∂A⇉Grm−1(Rm) by 

Θ
k,β
A,R.

If Ω is an open subset of Cn, we shall denote by Θk,β
Ω,C(b) the set of all complex hyperplanes

through the origin contained in planes in Θk,β
Ω,R(b); we call them complex external tangent spaces.

It is the set of all complex hyperplanes Z = Y[0], Y ∈ Θ
k,β
Ω,R(b).

When the class is clear from the context or is unimportant, we shall omit the superscripts k,β.

It is easy to see that Θ1,1
Ω,R = Θ2

Ω,R = Θ∞
Ω,R.

The relation between ΓΩ(b) and Θ2
Ω,C(b), b ∈ ∂Ω, seems to be of interest.

De�nition 9.7.6  Let us say that Ω is tangentially lineally convex at b ∈ ∂Ω if no complex
external tangent plane of class C 2 at b meets Ω, i.e., if Θ2

Ω,C(b) ⊂ ΓΩ(b).

Proposition 9.7.7  Let b ∈ A ⊂ Rm be accessible from the outside by balls of radius r > 0. Then

Θ
k,β
A,R(b) is connected.

Proof Take b = 0 and assume that A ∩ Uj = {0}, j = 0, 1, where Uj is the set of all points x

such that fj(x) < 0, and fj is a function of a given regularity and with nonvanishing gradient

wherever it is zero. This is justi�ed by Remark 9.7.4. We now form fs = (1 − s)f0 + sf1, 
0⩽s⩽1, and claim that the set where fs is negative de�nes an open set Us which serves to prove

that all gradients

¯̄

{x; f(x) < 0} ⊂ S ⊂ {x; f(x)⩽0},

¯̄

( )( ) ( )( )( ) ( )( )



□

□

can occur, implying that there is a curve connecting the hyperplane de�ned by f0 to that de�ned

by f1. We note that the gradient of fs is nonzero at the origin except in the case when 

(gradf1)(0) is a negative multiple of (gradf0)(0). In that case, however, the hyperplanes
de�ned by the two gradients are the same, so there is nothing to prove. We modify fs outside a

neighborhood of the origin if necessary to make sure that it satis�es the requirement that its
gradient be nonzero everywhere where the function itself vanishes.

If x ∈ A∖{0}, then x ∉ Uj, j = 0, 1, so that fj(x) > 0, j = 0, 1. This implies that 

fs(x) > 0, so that x ∉ Us. Thus we have proved that A ∩ Us ⊂ {0}; obviously A ∩ Us ⊃ {0}

. In conclusion, we have proved that the tangent plane of Us at b = 0 belongs to Θk,β
A,R(0) for all s

with 0⩽s⩽1.

Example 9.7.8  Let us de�ne a cleistomorphism

as the cleistomorphism with structuring element U = ∁B<(0, r) for some positive radius r. It
follows that κr(A) is closed for any set A, perhaps most easily seen by observing that its
complement, denoted by αr(∁A), is the union of all open balls B<(x, r) that are contained in ∁A
.

Thus κr(A) is the smallest invariance set containing A whose boundary points are all
accessible by balls of radius r, and we see that the boundary points of a closed set F are
accessible by such balls if and only if κr(F) = F .

To treat open sets, we de�ne λr(A) as the interior of κr(A). In view of Proposition 9.3.8 the

operation A ↦ λr(A) = (κr(A))° is an ethmomorphism. If we restrict it to open sets, it is larger
than the identity, i.e., λr(Ω) ⊃ Ω for all open sets Ω. So accessibility for open sets is de�ned by
the �xed points of λr.

The in�mum of all the κr, r > 0, is just the topological closure.

9.7.4 Concavity and convexity with respect to a structuring element or a family of

structuring elements

Just as it is sometimes easier to look at lineally concave sets rather than lineally convex sets, it
can be more convenient to de�ne accessibility from the inside than from the outside. We shall do
this in terms of concavity and convexity with respect to a structuring element, treating both
properties in parallel:

De�nition 9.7.9  Given a subset S (called structuring element) of an abelian group G, we shall
say that a subset A of G is S-concave if it is a union of translates x + S with x in some subset X
of G. We shall say that it is S-convex if its complement is S-concave.

We de�ne the S-kernel of a set A, denoted by αS(A), as the union of all translates x + S

contained in A. We de�ne the S-hull of a set B, denoted by κS(B), as the complement of the S-
kernel of ∁B.

(gradfs)(0) = (1 − s)(gradf0)(0) + s(gradf1)(0)

¯̄

¯̄̄̄̄

κr : P(Cn) → P(Cn) orκr : P(Rm) → P(Rm)



□

□

Obviously ∁αS(A) = κS(∁A).
The anoiktomorphism αS

has as �xed points the S-concave sets. We have αS(A) ⊂ A ⊂ κSA) for all nonempty sets 
S ∈ P(G) and all A.

We can consider the sets x + S as voxels or pixels, and see that no smaller sets are allowed to
build up a S-concave set. Or we can think of elements x as atoms and sets x + S as molecules—
no free atoms are allowed; they must all be part of a molecule.

What we have done so far is de�ne concavity and convexity with respect to a single set S. Let
us also consider families S  of structuring sets:

De�nition 9.7.10  Given a family S  of subsets of an abelian group G, we shall say that a subset
A of G is S  -concave if it is a union of translates x + S with x ∈ X ⊂ G, S ∈ S . We shall say
that B is S  -convex if its complement is S -concave.

We de�ne

called the S  -kernel of A, and κS (B) = ∁αS (∁B), called the S  -hull of B.

Thus {S}-concavity is the same as S-concavity.
Classical examples are when we take S  as the family U  of all open half-spaces in Rm,

de�ned by an inequality ξ ⋅ x > c, or the the family C  of all closed half-spaces in Rm, de�ned by
an inequality ξ ⋅ x⩾c, with ξ ∈ Rm∖{0}, c ∈ R. We can also consider the set of all real or
complex hyperplanes, or intersections of complex hyperplanes with balls.

Example 9.7.11  The set A = ]0, 1[2 ∪ {(0, 0)} ⊂ R2 (an open square with a vertex added) is

convex, but is not an intersection of open half planes, nor of closed half planes; in other words, it
is not evenly convex in the sense of Fenchel (1952)—see the discussion about this class of sets in
SubSection 9.2.4, page 257. We obtain

indicating that more general half planes are needed.

In view of the above example we now de�ne more general half-spaces, called here re�ned half-
spaces, by which we mean convex sets Y such that

for some ξ ∈ Rm∖{0} and c ∈ R. Let us denote by Y  the family of all such sets Y.
Obviously κC (A) is always a closed set. In view of the Hahn–Banach theorem it is equal to

the closed convex hull of A. The mapping κU  takes an open set to its convex hull (which is open)

αS(A) = ∪
x∈G

(x + S; x + S ⊂ A), A ∈ P(G),

αS (A) = ∪ (x + S; x + S ⊂ A),x∈G

S∈S

A° = ]0, 1[2⊊A⊊κU (A) = [0, 1[2⊊κC (A) = [0, 1]2 = A ,̄

{x ∈ Rm; ξ ⋅ x < c} ⊂ Y ⊂ {x ∈ Rm; ξ ⋅ x⩽c}



□

and a compact set to its convex hull (which is closed).
This is convexity viewed from the outside. We can also work with convexity from the inside:

We de�ned in De�nition 9.2.7 on page 256 the convex hull of a set A ⊂ Rm. It can easily be
proved that cvxh = κY , showing that the re�ned half-spaces serve also for convex sets which
are not evenly convex—see Section 9.2, page 257, for these sets.

The operation cvhx maps any set to its convex hull, which need not be closed even if A is
closed. The composition clos°cvxh takes any set to its closed convex hull. (The composition 
cvxh°clos is not idempotent if m⩾2.)

De�nition 9.7.12  We shall say that an open subset of Rm or Cn is r-concave if it is a union of
open balls of radius r. A closed subset is called r-concave if it is a union of closed balls of radius
r. A set is called r-convex if its complement is r-concave.

This de�nition agrees for open sets in C with that of Sergey Favorov and Leonid Golinskii
(2015:3). They de�ned the r-convex hull of a set E ⊂ C, denoted by conv

r
(E), as the set

Thus ∁conv
r

(E) is a union of open disks. They call a set r-convex if conv
r

(E) = E. Such a set

is always closed. The generalization to Rm or Cn is obvious, and we see that conv
r

(E) is exactly

the set κB<(0,r)(E) with the notation from De�nition 9.7.9. When r tends to +∞, we get the

closed convex hull cvxh(E) as a limiting case.7

7The notion of r-convex closed sets is used by these authors as an hypothesis in results on Blaschke-type conditions for the Riesz
measure of a subharmonic function, thus in a context quite different from the one studied here. Since I worked on generalized
convexity during the period 1996–2001 (see for example Proposition 4.9 in my paper (1996) and then again since 2014, and with
quite different problems, our respective studies are independent.

9.7.5 Lineal convexity viewed from mathematical morphology

Lineal concavity is an example of S -concavity, taking S  equal to the family Z  of all complex
hyperplanes in Cn containing the origin. Weak lineal convexity means that κZ (Ω) does not meet
the boundary of Ω.

There are also local variants of these de�nitions: we take S = Zr as the family of all
intersections Z ∩ B⩽(0, r), where Z is a complex hyperplane passing through the origin. The
corresponding Zr-convexity, for some positive r, can be called uniform local lineal convexity.

Let us take again the family S  of structuring elements in De�nition 9.7.10 as the set 
Z ⊂ P(P(Cn)) of all complex af�ne hyperplanes in Cn. We de�ne a dilation 
ψ : P(Z ) → P(Cn) by

(9.75)

Its lower inverse ψ[−1] : P(Cn) → P(Z ) is de�ned by

convr(E) = ∩(∁D<(z, r); E ⊂ ∁D<(z, r)), E ⊂ C, r > 0.

¯

ψ(B) = ∪
Z∈B

Z, B ∈ P(Z ).

( ) ( ( ) ) ( )



(9.76)

We note that ε = ψ[−1] is an erosion—as the lower inverse of a dilation, but also easily seen
directly. There is a relation between ΓA and ε:

The upper inverse ε[−1] : P(Z ) → P(Cn) of ε is a dilation de�ned by

(9.77)

By composition we obtain an anoiktomorphism αZ : P(Cn) → P(Cn):

the union of all complex af�ne hyperplanes contained in A. We can also form

We have αZ (A) = A (equivalently αZ (A) ⊃ A) if and only if A is lineally concave, which
happens if and only if ∁A is lineally convex. If Ω is open, it is lineally convex if and only if 
αZ (∁Ω) ⊃ ∁Ω, and weakly lineally convex if and only if αZ (∁Ω) ⊃ ∂Ω.

9.7.6 Exterior accessibility of Hartogs domains

We shall now study Hartogs domains in Cn × C, where we write coordinates as 
(z, t) ∈ Cn × C.

To de�ne complete Hartogs sets, we may use either the function R, the function h = R2, or
the function f = − logR. An open complete Hartogs set is then de�ned equivalently by 
|t| < R(z); |t|2 < h(z); t < e−f , and we are free to choose whichever is convenient for a
speci�c calculation. We note that if f is plurisubharmonic, then Ω, de�ned by log |t| + f(z) < 0,
is pseudoconvex.

Complex hyperplanes in Cn × C are of three kinds:

1. A hyperplane can be given by an equation β ⋅ (z − z0) = 0 for some β ∈ Cn∖{0} and
some point z0 ∈ Cn (we shall call it a vertical hyperplane ).

2. It can have the equation t = c for some complex constant c (we shall call it a horizontal
hyperplane ).

3. Finally it can have the equation t = β ⋅ (z − z0), where β is nonzero. Such a hyperplane
intersects the hyperplane t = 0 in a hyperplane in Cn containing z0.

ψ[−1](A) = ∪
B∈Z

(B; ψ(B) ⊂ A) = {Z ∈ Z ; Z ⊂ A}, A ∈ P(Cn).

ΓA(b) = {Z ∈ ε(∁A); b ∈ Z}.

ε[−1](B) = ∩
A∈P(Cn)

(A; ε(A) ⊃ B) = ∪
Z∈B

Z = ψ(B), B ∈ P(Z ).

αZ (A) = (ε[−1]°ε)(A) = (ψ°ψ[−1])(A) = ∪(Z; Z ⊂ A), A ∈ P(Cn),

κZ (B) = (ε°ε[−1])(B) = (ψ[−1]°ψ)(B), B ∈ P(Z ).∣ ∣



The projection Cn × C∋(z, t) ↦ (z, |t|) ∈ Cn × R can be used to visualize the set.
Equivalently, we can look at the intersection of Ω with the set {(z, t); z ∈ Cn, t⩾0}. A
hyperplane is then represented in Cn × R by either

1. a vertical plane;

2. a horizontal plane |t| = |c|; or

3. a cone t = β ⋅ (z − z0)  with vertices at all the points z satisfying β ⋅ (z − z0) = 0; when
n = 1 just the unique point z0.

If b = (z0, t0) is a boundary point with t0 = 0, then there is a complex line of equation z = z0 in
the complement of Ω, and there may or may not exist a hyperplane in ΓΩ(b) —if the set ω in Cn

where R is positive is lineally convex, there is such a hyperplane. If on the other hand 
b = (z0, t0) is a boundary point satisfying t0 = R(z0) > 0, then a hyperplane Z ∈ ΓΩ(b) is
given by an equation t/t0 = β ⋅ z; the parallel hyperplane b + Z passing through b has the
equation t/t0 = 1 + β ⋅ (z − z0). It may happen that all real hyperplanes containing b + Z cuts
Ω, but if this is not the case, the only real hyperplane containing b + Z and not cutting Ω is that
of equation Re (t/t0) = 1 + Reβ ⋅ (z − z0).

Theorem 9.7.13  Let a function R : Cn → [−∞, +∞] be given and consider the complete
Hartogs set Ω de�ned as in De�nition 9.4.2. Assume that Ω is open and weakly lineally convex.
Then R is continuous at every point where it is �nite and positive, and all boundary points of Ω
satisfying (z0, t0) with t0 = R(z0) > 0 are accessible from the outside of class C 2. In fact,
every complex hyperplane which passes through a boundary point (z0, t0) with 
t0 = R(z0) > 0 and does not meet Ω is contained in a real external tangent plane. In particular 
ΓΩ(b) ⊂ ΘΩ,C(b) for all points b = (z0, t0) with t0 = R(z0) > 0 (ΘΩ,C(b) is de�ned in
De�nition 9.7.5).

Proof Any point (z0, t0) with t0 = R(z0) > 0 belongs to the boundary of Ω, so there exists by
hypothesis a vector β ∈ Cn such that the complex hyperplane de�ned by t/t0 = 1 + β ⋅ (z − z0)
lies entirely in the complement of Ω. We shall prove that there is a real external tangent plane of
class C2 containing it.

That the complex hyperplane does not meet Ω means that

Now

with equality if and only if |1 + z| = 1. It follows that for any γ > 1
2 ,

with equality only when z = 0. Hence

∣ ∣ ∣ ∣ ∣ ∣∣ ∣∣ ∣ ∣ ∣∣ ∣R(z)
|t0| ⩽ 1 + β ⋅ (z − z0) , z ∈ Cn.∣ ∣1 + z ⩽ 1

2 + 1
2 1 + z 2 = 1 + Re z + 1

2 z 2, z ∈ C,∣ ∣ ∣ ∣ ∣ ∣|1 + z|⩽1 + Re z + γ|z|2, z ∈ C,



with equality between the �rst and last expression only when z = z0 or β = 0. Therefore, if we
choose c > 1

2 ∥β∥2
2,

with equality only when z = z0.
So the set

taking c > 1
2 ∥β∥2

2, is a set with smooth boundary and the real hyperplane de�ned by 
Re t/t0 = 1 + Reβ ⋅ (z − z0) is an external tangent plane of class C2 of Ω at (z0, t0).

From what we just proved it follows in particular that R is upper semicontinuous where
positive. On the other hand, Ω is open by hypothesis, which, as we noted, implies that the
restriction R|ω is lower semicontinuous.

9.7.7 Unions of increasing squences of domains

If an increasing family (Vj)j∈N of open sets in Rm is given with union V and if b ∈ ∂V , let us
denote by lim supΘVj,R(b), understood as (lim supΘVj,R)(b), all limits of real hyperplanes 

Yj ∈ ΘVj,R(b(j)) at points b(j) ∈ ∂Vj such that b(j) → b as j → ∞. Here ΘV (b) is de�ned in
De�nition 9.7.5. We shall use a similar notation for the complex hyperplanes: lim supΘΩj,C(b)
when Ωj increases to Ω, and also lim supΓΩj

(b).

Proposition 9.7.14  Let (Vj)j∈N be an increasing family of open subsets of Rm. De�ne ΘV ,R as

in De�nition 9.7.5 using as structuring element a set S with boundary of class C k,β with k⩾1.
Then ΘV ,R(b) ⊂ lim supΘVj,R(b) for all points b ∈ ∂V . A similar result holds for the complex
external tangent planes ΘΩ,C(b) of an open subset Ω of Cn. Here the inclusion can be strict. The
limit superior is always nonempty.

Proof Take b = 0 and let U be an open set with boundary of the class in question such that 

V ∩ U = {0}, de�ned as the set of all points x where φ(x) is negative, φ being of the right

class and with nonvanishing gradient where it is zero. Let φs, s > 0, be the function

and let Us be the set where φs is negative. We note that when x ∈ V , then x ∉ U , so that φ(x)⩾0

. If x ∈ V ∩ Us, then φ(x)⩾0 while φs(x) < 0. So ∥x∥2
2 < s − φ(x)⩽s. Since φ is of class C1,

its gradient at any point in V ∩ Us is close to its gradient at the origin. For every large enough j
there is a smallest sj such that Usj  and Vj have a common boundary point b(j). Necessarily, then, 

∥b(j)∥2
2⩽s. For large j, sj is small, so small that the external tangent plane of Usj  at b(j) is as close

1 + β ⋅ (z − z0) ⩽1 + Reβ ⋅ (z − z0) + γ β ⋅ (z − z0) 2

⩽1 + Reβ ⋅ (z − z0) + γ∥β∥2
2 ⋅ ∥z − z0∥2

2,∣ ∣ ∣ ∣R(z)/ t0 ⩽1 + Reβ ⋅ (z − z0) + c∥z − z0∥2
2, z ∈ Cn,∣ ∣U = {(z, t); Re (t/t0) > 1 + Reβ ⋅ (z − z0) + c∥z − z0∥2

2},

¯̄

φs(x) = φ(x) − s + ∥x∥2
2, x ∈ Rm,



as we like to the tangent plane of U at the origin. This shows that any hyperplane in ΘV ,R(0) can
be approximated by hyperplanes in ΘVj,R(b(j)).

Proposition 9.7.15  Let (Ωj)j∈N
 be an increasing family of lineally convex open subsets of Cn

and denote their union by Ω. Then lim supΓΩj
(b) = ΓΩ(b). In particular the graph of ΓΩ is

closed.

Proof If Z ∉ ΓΩ(b), then b + Z intersects Ω. Take a compact ball K in Ω that contains a point of 
b + Z in its interior. Then for all suf�ently large j, Ωj contains K. All hyperplanes which are
close enough to b + Z intersect K and hence also Ωj for these j. Therefore, if Zj tends to Z and 

b(j) ∈ ∂Ωj tends to b, then b(j) + Zj intersects Ωj for large j. This means that hyperplanes 
b(j) + Zj with Zj ∈ ΓΩj

(b(j)) cannot approach b + Z. So we have lim supΓΩj
(b) ⊂ ΓΩ(b).

The opposite inclusion is trivially true.

Lemma 9.7.16  If A is a closed set in Rm and b ∈ ∂A, then Θ2
A,R(b), where we use a Euclidean

ball as structuring element, is nonempty.

Proof Given b ∈ ∂A and a positive number s, take c ∉ A with ∥c − b∥2 < s. Take then r > 0
maximal so that B<(c, r) does not cut A. Clearly r⩽s. On the boundary of this ball, there must
exist a point p ∈ A. Then ∥p − b∥2⩽r + s⩽2s, and p is accessible from the outside of class C2,
which means that Θ2

A,R(p) is nonempty. Since s is arbitrarily small, the closure of the the graph

of Θ2
A,R has a nonempty �ber over b.

Theorem 9.7.17  Let Ω be an open subset of Cn such that it is equal to the interior of its closure.
If Ω is tangentially lineally convex at all points b in some open subset B of ∂Ω (see De�nition

9.7.6), then Θ1
Ω,C(b) ⊂ Θ2

Ω,C(b) ⊂ ΓΩ(b), and ΓΩ(b) is nonempty for all b ∈ B. In particular,
tangential lineal convexity at all points b ∈ ∂Ω implies weak lineal convexity.

Proof We apply Lemma 9.7.16 to A = Ω . Then the interior of A is equal to Ω. Moreover, 
graph(ΓΩ) is closed; see Proposition 9.7.15.

If Ω is lineally convex, ΓΩ(b) is not necessarily connected, not even when Ω is a Hartogs set, as
is shown by the example below as well as by Example 9.4.8 in Section 9.4, page 281.

Example 9.7.18  Let Ω be the Cartesian product of an annulus and a disk,

a lineally convex set. We de�ne complex hyperplanes Zβ passing through 0 by the equations 

βz1 = (1 − β)z2, z ∈ C2, β ∈ [0, 1]. Use a ball B⩽(0, r) with 0 < r < 1 as structuring element.
Then Θ2

Ω,C(b), where b = (1, 1), consists of all the Zβ, β ∈ [0, 1], whereas ΓΩ(b) consists of Z0

and Zβ for 1
2 ⩽β⩽1. Thus ΓΩ(b) does not contain Θ2

Ω,C(b). We also note that ΓΩ(b) is not

connected; it has two components, {Z0} and {Zβ; 1
2 ⩽β⩽1}.

¯

¯

¯

Ω = {(z1, z2) ∈ C2; 1 < z1 < 2, z2 < 1},∣ ∣ ∣ ∣



□

□

□

If 0 < β < 1
2 , then there are points z = (−1 − s, z2) ∈ Zβ ∩ Ω far from b = (1, 1) (take

s > 0, s = −1 − z1 < 2/β − 4) as well as points in Zβ ∩ Ω arbitrarily close to b.
The set Ω is lineally convex, but if we approximate it from the inside by a set with boundary

of class C 1 containing all points in Ω with distance to ∂Ω at least equal to ε > 0, then we get a
set which is Z1-convex but not Zr-convex for r⩾1 + ε > 1. (For S -convexity, se De�nition
9.7.10; for Zr-convexity, see the beginning of SubSection 9.7.5.)

9.7.8 Convexity properties of superlevel sets

De�nition 9.7.19  Given any function f on a set X and with values in the set R! of extended real
numbers and an element c of [−∞, +∞], we de�ne its (non-strict) superlevel set as 
{x ∈ X; f(x)⩾c}. Analogously we de�ne its (non-strict) sublevel set as {x ∈ X; f(x)⩽c}.

Given a complete Hartogs set with radius function R, we shall denote by Mc the superlevel set 

{z ∈ Cn; R(z)⩾c}.

Example 9.7.20  Consider the lineally convex Hartogs set Ω ⊂ C × C de�ned by the radius
function

Then (0, 2) belongs to the boundary of Ω and ΓΩ((0, 2)) consists of precisely two elements, the
hyperplanes de�ned by t = −z and t = z, respectively; thus it is not connected. (This shows that
Ω is not C-convex in view of Zelinskiĭ's criterion mentioned near the end of SubSection 9.7.2.)

However, the union of all the ΓΩ(b) with b ∈ ∂Ω is connected. We note that ΓΩ((i, √5)) is
connected and contains ΓΩ((0, 2)). See Example 9.4.8 in Section 9.4.

The boundary points of Ω are accessible from the outside by balls of a not too large radius,
and ΘΩ,C((0, 2)) consists of all hyperplanes t = λz, with λ ∈ [−1, 1]. We also note that the

intersection of Ω with the complex line t = c has two components if 2⩽ c < √5.
Also, for a = s + i(1 − s/2) with a small positive number s, the superlevel set MR(a) is 

B<(0, r)-convex for r slightly smaller than √5, whereas for s = 0, a = i, the superlevel set 
MR(i), now equal to {i, −i}, is B⩽(0, r)-convex for any r but not convex. (This is a warning that
r-convexity is not so meaningful for sets that are not regular open or regular closed.)

For simplicity we shall assume below that n = 1.

Theorem 9.7.21  Let Ω ⊂ C × C be a complete lineally convex Hartogs domain de�ned as in
(9.42) with n = 1. Assume that a point a ∈ ω is such that R(a) < supR. Then there exists an 
r > 0 such that if a belongs to the erosion εD<(0,r)(ω), then a ∈ αD⩽(0,r)(∁MR(a)). In other
words, since a belongs to the open set ω, the distance r to ∁ω is positive, and a is exterior
accessible in MR(a) by disks of radius r.

Proof There is a complex hyperplane (thus a complex line in the present situation) in the
complement of Ω which passes through (a,R(a)). It cannot be vertical since a ∈ ω and it cannot
be horizontal since R(a) < supR, so it must have an equation of the form

R(z) = min(|z − 2|, |z + 2|), |z| < 1; R(z) = 0, |z|⩽1.∣ ∣t



□

where β ≠ 0 and aβ = a − 1/β is the point where the line hits the line t = 0.
This implies that the cone in C × R de�ned by |t|/R(a)⩾|β(z − aβ)| does not meet any

point (z, |t|) ∈ Ω, in particular that a belongs to the disk D⩽(aβ, s) with center at aβ and radius 

s = |a − aβ| = 1/|β|. As noted, this disk does not meet ω, so a ∈ αD⩽(0,s)(∁MR(a)). We note
�nally that s = a − aβ ⩾d(a, ∁ω) = r.

There is no uniformity here: r depends on a. But if Ω is bounded and we restrict attention to
points a in a compact subset of ω and with R(a)⩾c > 0, we can choose a �xed r > 0. Thus 
MR(a) is D<(0, r)-convex.

There may be several lines of the form t = β(z − aβ) as mentioned in the proof. Then among
all the possible values of β ∈ C we can take the in�mum of their absolute values, and any limit
of these numbers must also de�ne a line in the complement of Ω, since the complement is closed.
This gives the largest possible value to r = 1/|β|.

In Example 9.7.20 we see that, for a real such that 0 < a < 1,

implying that the number r obtained in the proof can be smaller than it is in an actual situation.

Remark 9.7.22  In the other direction, if a closed r-convex set M in C is given, then there exists a
lineally convex open set in Cn × C with radius function R such that MsupR = M ; see
Proposition 9.4.12 on page 284.

Corollary 9.7.23  If Ω is lineally convex and bounded, and its boundary is of class C 1 at the set
where R > 0, then a point a ∈ ω belongs to αD⩽(0,r)(∁MR(a)) if

This is the case for all points z with R(z) = R(a) if

We see that r ↗ +∞ when R(a) ↗ supR, meaning that the superlevel set becomes more and
more convex. We shall make this precise in Theorem 9.7.29.

Proof In this situation there is only one line in the complement of Ω passing through (a,R(a)),
and the absolute value of the coef�cient β is ∥(gradR)(a)∥2 = 2|Rz|. The radius r depends on a
and may vary, but among all the points z with R(z) = R(a) its lower bound is positive.

We now consider a situation with two levels, R(a) and R(a) + s⩾R(a).

Theorem 9.7.24  Let Ω ⊂ C × C be a lineally convex Hartogs domain de�ned as in De�nition
9.4.2 with n = 1 and take a point a ∈ ω ⊂ C with R(a) < supR. Then there exists a number 
r > 0 such that for all s⩾0,

t
R(a)

= 1 + β(z − a) = β(z − aβ),∣ ∣ r = 2 − a > d(a, ∁ω) = 1 − a,

r⩽ 1
∥(gradR)(a)∥2

.

r⩽ 1
sup
z∈ω

(∥(gradR)(z)∥2;R(z)=R(a))
.

( )



□

where the inequality means that any point w with R(w) = R(a) + s is outside the disk 
D<(aβ, r1) with r1 = r + sr/R(a).

It follows that w is accessible with disks of radius r1 in the complement of the superlevel set 
MR(a)+s.

Proof As in the proof of Theorem 9.7.21, we see that the cone de�ned by |t|/R(a)⩾|β(z − aβ)|,
where β is the coef�cient in the equation of the line in the complement of Ω passing through 
(a,R(a)), viz. t/R(a) = 1 + β(z − a), does not contain any point of the form (z, |t|) in Ω. We
take r = 1/|β|. In particular the disk D<(aβ, r1) with r1 = r + sr/R(a) for any w with 
R(w) = R(a) + s does not meet MR(a)+s.

Since also (w,R(w)) admits a line t/R(w) = 1 + γ(z − w) in the complement of Ω, we
must have |γ|⩽|β|, so the corresponding radius r2 = 1/|γ| is not smaller than r1.

9.7.9 Admissible multifunctions

De�nition 9.7.25  Let Ω be an open subset of Cn and γ : B⇉Grn−1(Cn) a multifunction
de�ned on a subset B of the boundary of Ω and with values in the Grassmann manifold of all
hyperplanes through the origin. Consider the following three conditions on γ.

(9.78)

(9.79)

(9.80)

We shall say that γ is admissible if these conditions are satis�ed.

It follows that graph(γ) is connected if ∂Ω is connected; see Lemma 9.7.27 below.
An example of an admissible multifunction is ΓΩ : ∂Ω⇉Grn−1(Cn) provided ΓΩ(b) is

connected for every b ∈ ∂Ω. (In particular, this is the case if the boundary is of class C1.) The
graph is then automatically closed in view of Proposition 9.7.15. It is easy to see that in
Examples 9.7.18 and 9.7.20, there is no admissible multifunction γ in any neighborhood of the
points (1, 1) and (0, 2), respectively.

If Ω is tangentially lineally convex, a candidate for γ might be the closure of ΘΩ,C. Then
property (9.78) holds by hypothesis, (9.79) by construction, and (9.80) may hold if the boundary
of Ω is suf�ciently regular.

Example 9.7.26  Let Ω be a convex open set in Cn. If Ω is empty or equal to the whole space,
then its boundary is empty. If Ω is a slice, then its boundary has two components.

d(a,MR(a)+s)⩾ sr
R(a)

,

γ(b) ⊂ ΓΩ(b) forall b ∈ B;

thegraphof γ isclosed; and

γ(b) isnonemptyandconnectedforevery b ∈ B.



□

In all other cases, ∂Ω is connected, and we know that the set of all real hyperplanes passing
through a �xed boundary point b and not intersecting Ω is connected. Then also the set of all
complex hyperplanes containing b and contained in such a real hyperplane is connected—the
mapping Y ↦ Y[b] is continuous as we noted in Section 9.7.2. Thus ΓΩ is an admissible
multifunction except in the �rst-mentioned cases, even if the boundary is not of class C 1.

If a lineally convex open set Ω has a C1 boundary, ΓΩ(b), a singleton set, depends
continuously on b. When ΓΩ(b) is no longer a singleton, the following result will serve instead of
the continuity.

Lemma 9.7.27  Let Ω be an open set in Cn and γ : A⇉Grn−1(Cn) an admissible multifunction
on a subset A of ∂Ω. Then the graph of γ over B,

is connected for every connected subset B of A. In particular the graph of γ is connected if the
boundary of Ω is connected and γ is de�ned on all of it.

Proof Assume that graph
B

(γ) = V0 ∪ V1, where the Vj are disjoint and closed relative to 

graph
B

(γ). De�ne Bj as the set of all points b such that some hyperplane in γ(B) belongs to Vj, 

j = 0, 1. Then B0 and B1 are disjoint, since by hypothesis every γ(b) is connected. Moreover B0

and B1 are closed relative to B, since the graph of γ is closed and the manifold Grn−1(Cn) is

compact. By hypothesis B is connected, so either B0 or B1 must be empty. Hence V0 or V1 is

empty, proving that the graph of γ over B is connected.
We note that γ*(B) is connected as a continuous image of the graph (it is the projection of

the graph on the target space Grn−1(Cn)).

Proposition 9.7.28  Let Ω be an open subset of Cn and F an af�ne subspace of Cn. Denote by 
ΩF  the set Ω ∩ F  considered as an open subset of F. Every complex hyperplane Z in Cn which
does not contain F gives rise to a complex hyperplane ψ(Z) = Z ∩ F  in F. Let an admissible
multifunction γ : B⇉Grn−1(Cn) be given and de�ne a multifunction γF on B ∩ ∂ΩF  by 

γF (b) = {ψ(Z); Z ∈ γ(b)}. Then γF is an admissible multifunction on B ∩ ∂ΩF .

Proof Since ψ(Z) ⊂ Z, it is clear that γF (b) ⊂ ΓΩF
(b); thus (9.78) in De�nition 9.7.25 holds.

The graph of γ over any compact subset of ∂Ω is compact; hence the graph of γF over any

compact subset of ∂ΩF  is compact, thus closed: property (9.79) holds. Finally (9.80) follows
since ψ is continuous and thus maps connected subsets onto connected subsets.

The proposition can in particular be applied to ΓΩ if ΓΩ(b) is connected for all b ∈ ∂Ω.

9.7.10 Links to ordinary convexity

Theorem 9.7.29  Let R be a continuous real-valued function de�ned on Cn and de�ne Ω as in
De�nition 9.4.2. Assume that Ω is connected and that its boundary is of class C 1 (at least in a
neighborhood of MsupR). Then the set MsupR where R attains its maximum,

graphB(γ) = {(b,Z); b ∈ B and Z ∈ γ(b)},

( )



(9.81)

is convex.

Proof A set is convex if and only if its intersection with every one-dimensional complex af�ne
subspace is convex. Therefore it is enough to prove the theorem for n = 1.

So let n = 1 and let a belong to the boundary of MsupR. We shall prove that there is an open
half plane with a on its boundary which does not meet MsupR, proving the convexity of that set.

We have (gradR)(a) = 0, and near a there are points c with (gradR)(c) nonzero and
arbitrarily small. In view of Corollary 9.7.23 this means that there is a disk of arbitrarily large
radius with c on its boundary. The disk is of the form D⩽(cβ, r), where r = |c − cβ|, 
cβ = c − 1/β being the point where the line t/R(c) = 1 + β(z − c) hits the plane t = 0. The
normalized vectors (c − cβ)/|c − cβ| have an accumulation point, and this proves that the union
of all the disks D⩽(cβ, r) when c varies in an arbitrarily small neighborhood of a contains an
open half plane with a on its boundary. We are done.

The assumption that the boundary be of class C1 can be weakened, as we shall now show.

Theorem 9.7.30  Let R be a continuous real-valued function de�ned on Cn and de�ne Ω by
(9.42). Assume that Ω is bounded and connected and that there exists an admissible multifunction
γ de�ned at all points (z0, t0) with t0 = R(z0) > 0, thus on the boundary over the base of Ω
(see De�nition 9.7.25). Then the set MsupR where R attains its maximum is convex.

For a Hartogs domain Ω we always have ΓΩ(b) ⊂ ΘΩ,C(b) when b = (z0, t0) with 
t0 = R(z0) > 0 (Theorem 9.7.13); if the domain is tangentially lineally convex, we have 
ΓΩ(b) = ΘΩ,C(b). For such domains we therefore have an admissible multifunction 
γ = ΓΩ = ΘΩ,C: (9.78) is obvious; (9.79) follows from Proposition 9.7.15; (9.80) follows from
Proposition 9.7.7.

We note that the hypothesis is satis�ed in particular if Ω is lineally convex and R is of class
C1. In (Kiselman 1996, Theorem 4.8) the result was proved under this hypothesis, and even under
the weaker one that R can be approximated from below by C1 functions.

In view of Zelinskiĭ's characterization of C-convex sets mentioned near the end of Section
9.7.2, the hypotheses are satis�ed for C-convex sets, again taking γ = ΓΩ. There are easy
examples which show that MsupR need not be convex if we drop the hypothesis of
connectedness; see Example 9.4.8.

Proof of Theorem 9.7.30. Again, the set MsupR is convex if its intersection with every one-
dimensional complex af�ne subspace is convex. Proposition 9.7.28 shows that if we have an
admissible multifunction on a subset of ∂Ω, then there is one also on a corresponding subset of 
∂ΩF , F being any af�ne subspace of Cn × C. Therefore, taking F as the Cartesian product of a
complex line in Cn and the line z = 0, we see that it is enough to prove the theorem for n = 1.

So let n = 1. To prove that MsupR is convex means to prove that the segment [s0, s1] is
contained in MsupR if s0, s1 ∈ MsupR. There is no loss in generality if we assume that s0 = −1
and s1 = 1.

A non-vertical and non-horizontal complex line through (a, t0) with t0 ≠ 0 has the equation

MsupR = {z ∈ Cn; R(z) = supR},∣ ∣∣ ∣ t



where aβ = a − 1/β is the point where the line hits the plane t = 0. We de�ne

In case R is differentiable at the point a, β is uniquely determined if we require that the line be in 
ΓΩ((a, t0)).

We denote as before by ω the set of all points z ∈ C such that R(z) > 0. In general the
external tangent is not unique and we shall denote by Q(a) the set of all points a − 1/β that can
be obtained from complex lines in γ((a, t0)), thus

(9.82)

We de�ne Q(a) = {a} when a ∉ ω. Thus Q is a multifunction, Q : S 2⇉S 2∖ω; its images Q(a)
are compact and connected.

The radius can always be estimated by

with equality for z = a, assuming β ≠ 0. In particular, if w ∈ MsupR, then

If aβ ∈ Q(a)∖{∞}, then necessarily β ≠ 0, so that

(9.83)

Assume that −1 and 1 belong to MsupR; we shall then prove that any point c ∈ [−1, 1]
belongs to MsupR. Consider Q(c + iy) for real y. We know from Lemma 9.7.27 that the set 
Q*(c + iR) is connected. If ω is bounded and y or −y is very large, then Q(c + iy) = {c + iy}.
In general we can prove that Im a > 1 implies that Im b > 0 for all b ∈ Q(a), and similarly 
Im a < −1 implies Im b < 0 for all b ∈ Q(a). This follows from the following lemma.

Lemma 9.7.31  If Ω is a complete Hartogs domain in C2 with radius function R and if 
±1 ∈ MsupR, then for all b ∈ C with |Re a|⩽1 and all b ∈ Q(a)∖{∞} we have

Proof We know from (9.83) that |a − b|⩽| ± 1 − b|. Expanding |±1 − b|2 − |a − b|2⩾0, we get

t
t0 = 1 + β(z − a) = β(z − aβ), z ∈ C,

q(a,β) = {  
a − 1/β if β ≠ 0,

∞ if β = 0.

Q(a) = {q(a,β); β ∈ γ(a,R(a))} ⊂ S 2 = C ∪ {∞}, a ∈ ω.

R(z)⩽R(a)|β| ⋅ |z − aβ|, z ∈ C, a ∈ ω, β ∈ γ(a,R(a)), aβ = q(a,β),

R(a)|β| ⋅ |a − q(a,β)| = R(a)⩽R(w)⩽R(a)|β| ⋅ |w − q(a,β)|.

|a − aβ|⩽|w − aβ|, a ∈ ω, w ∈ MsupR, aβ ∈ Q(a)∖{∞}.

Im a⩾1implies Im b⩾ 1
2 (Im a − 1) and

Im a⩽ − 1implies Im b⩽ 1
2

(Im a + 1).



□

from which we deduce that 1⩾(Im a)(Im a − 2Im b), an inequality which implies those in the
lemma.

Proof of Theorem 9.7.30, cont’d. So Q(c + iy) must pass from the upper half plane to the lower
half plane when y goes from large positive values to large negative values, c being �xed. But it
can never pass the real axis at points with x⩾1 or x⩽ − 1. Indeed, if b is real and larger than or
equal to 1, we get from (9.83), taking a = c + iy,

implying Re a⩾1, so that c⩾1 contrary to assumption. Likewise, Q(c + iy) cannot pass the real
axis at a point with x⩽ − 1.

However, Q(c + iy) cannot pass from numbers with arbitrarily large positive imaginary part
to numbers with large negative imaginary part in the strip −1 < Re z < 1 either. In fact, ω is
connected, so there exists a curve contained in ω connecting −1 to 1, and Q(c + iy) cannot cross
that curve.

Hence it is impossible for Q(c + iy) to pass from the upper half plane to the lower half plane
if it has only �nite values. So it must have an in�nite value, which means that c + iy0 ∈ MsupR

for at least one y0.
We thus know that there is a y0 such that c + iy0 ∈ MsupR; without loss of generality we

may assume that it is nonnegative. Choose y0 as small as possible. If y0 = 0 we are done: 
c ∈ MsupR. Let us assume that y0 > 0 and try to reach a contradiction.

By (9.83) any point b ∈ Q(a)∖{∞} must lie in each of the three half planes

The intersection of these three half planes is a triangle, and the union of these triangles when 
a = c + iy with y ∈ [ 1

2 y
0, y0] is bounded. Thus the possible �nite values for b when a varies as

indicated is bounded, and for a = c + iy with 1
2 y

0⩽y < y0 the point b cannot be in�nity. On the
other hand, when a = c + iy0 ∈ MsupR, then Q(a) must contain ∞. This means that the set of all
points b ∈ Q(a) originating from points a = c + iy with y ∈ [ 1

2 y
0, y0] consists of ∞ and a

nonempty bounded set; it is not connected, in contradiction to Lemma 9.7.27. This contradiction
shows that we must have c ∈ MsupR and proves the theorem.

It is easy to modify Theorem 9.7.30 using Möbius mappings, at least if n = 1. In fact, any
mapping

preserves lineal convexity, as was shown in (Kiselman 1996:Lemma 8.1). Denote by aβ the point

where a line t/t0 = 1 + β(z − z0) intersects the z-plane. The line can be mapped by a Möbius
mapping to a line t′ = constant. This mapping takes the point aβ to in�nity, and all circles in the

z-plane which pass through aβ are mapped onto straight lines. Convex sets are transformed

accordingly:

2(Re b)(Re a ∓ 1) + 1 − (Im a)(Im a − 2Im b)⩾(Re a)2⩾0,

|a − b|⩽|1 − b| = b − 1,

a − b ⩽ 1 − b a − b ⩽ − 1 − b , a − b ⩽ c + iy0 − b .∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣C × C∋(z, t) ↦ ( a+bz
c+dz

, t
c+dz

) = (z′, t′) ∈ C × C



□

□

De�nition 9.7.32  Let b be a complex number or ∞. Let us say that a subset A of the Riemann
sphere C ∪ {∞} is b-convex if
(10.4.1). b ∉ A; and
(10.4.2). φ*(A) is convex if φ is a Möbius mapping which maps b to in�nity.

Corollary 9.7.33 (to Theorem 9.7.30)  Let Ω and γ be as in Theorem 9.7.30, assume that n = 1
and let π denote the projection de�ned by π(z, t) = z. Consider a line Z ∈ γ(a), where 
a = (z0, t0), t0 = R(z0) > 0, and let b be the point such that (b, 0) ∈ a + Z. Then the set 
π*((a + Z) ∩ Ω) is b-convex.

9.8 Duality of Functions De�ned in Lineally Convex Sets

Abstract of this section
The term duality represents a collection of ideas where two sets of mathematical objects confront
each other. A most successful duality is that between the space D(Ω) of test functions (smooth
functions of compact support) and its dual D ′(Ω) of distributions.

Similarly, the theory of analytic functionals, developed by André Martineau in his doctoral
thesis (1963)—also in (Œuvre de André Martineau 1977:47–210)—is based on a duality, now
between the Fréchet space of holomorphic functions O(Ω) in an open set Ω and its dual O ′(Ω).
In many, but not all respects, it is analogous to distribution theory.

In complex geometry, lineal concavity and lineal convexity can be treated successfully using
concepts of duality.

9.8.1 Introduction to this section

Lineal convexity, a kind of complex convexity intermediate between usual convexity and
pseudoconvexity, appears naturally in the study of Fantappiè transforms of analytic functionals.
A set is called lineally convex if its complement is a union of complex hyperplanes. This
property can be most conveniently de�ned in terms of the notion of dual complement: the dual
complement of a set in Cn is the set of all hyperplanes that do not intersect the set. It is natural to
add a hyperplane at in�nity and consider Cn as an open subset of Pn, complex projective space of
dimension n. The de�nition of dual complement is then the same, and somewhat more natural:
the set of all hyperplanes is again a projective space. In this setting, the dual complement is often
called the projective complement. Indeed, Martineau (1966) called it le complémentaire projectif;
the term dual complement used here was introduced by Andersson, Passare and Sigurdsson in a
preprint from 1991 of their forthcoming book (2004).

We can now simply de�ne a lineally convex set as a set which is the dual complement of its
dual complement (here it becomes obvious that we should identify the hyperplanes in the space
of all hyperplanes with the points in the original space). So this duality works well for sets. What
about functions?

In convexity theory, a convenient dual object of a set is its support function as de�ned in
Section 9.2. For functions, we have the Fenchel transformation, de�ned as well in Section 9.2.

Is there a duality for functions that generalizes the duality for sets de�ned by the dual
complement? In this section we shall study such a duality. We call it the logarithmic
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transformation. It has many properties in common with the Fenchel transformation. However,
there are some striking differences. The effective domain, de�ned by formula (De�nition 9.2.5),
of a Fenchel transform is always convex, but the effective domain of a logarithmic transform
need not be lineally convex (Example 9.8.16). This is connected with the fact that the union of an
increasing sequence of lineally convex sets is not necessarily lineally convex (Example 9.8.17).
However, the interior of the effective domain of a logarithmic transform is always lineally convex
(Theorem 9.8.14), and the transform is plurisubharmonic there (Theorem 9.8.18).

Working with functions de�ned on Pn is the same as working with functions de�ned on 
C1+n∖{0} which are constant on complex lines, i.e., homogeneous of degree zero. For instance
a plurisubharmonic function on an open subset of Pn can be pulled back to an open cone in 
C1+n∖{0} and the pullback is plurisubharmonic for the 1 + n coordinates there. However, I
cannot de�ne a duality for such functions. I have been led to consider instead functions de�ned
on subsets of C1+n∖{0} which are homogeneous in another sense: they satisfy 
f(tz) = − log |t| + f(z). Such functions are not pullbacks of functions on projective space, but
the duality works for them. In a coordinate patch like z0 = 1 we can identify them with functions
on a subset of Pn. Given any function F on Cn, we can de�ne a function f on C1+n∖{0} by 
f(z) = F(z1/z0, … , zn/z0) + c log |z0| when z0 ≠ 0 and f(z) = +∞ when z0 = 0, where c is
an arbitrary real constant; this function is homogeneous in the sense that f(tz) = c log |t| + f(z)
, so we can choose any type of homogeneity. In other words, locally all kinds of homogeneity are
equivalent, and there is no restriction in imposing the homogeneity we have here, viz. c = −1.

As mentioned in Section 9.2, there are several other notions related to lineal convexity. The
property called Planarkonvexität in German (see Behnke & Peschl 1935), or weak lineal
convexity is weaker than lineal convexity: an open connected set is called weakly lineally convex
if through any boundary point there passes a complex hyperplane which does not intersect the

set. Aĭzenberg (1967) proved that these domains are precisely the components of Ω** (for
notation see SubSection 9.8.2 below).

Strong lineal convexity was de�ned by Martineau (1966:De�nition 2.2) as a topological
property of the space of holomorphic functions in a domain. Martineau (1966: Theorem 2.2) and
Aĭzenberg (1966) proved independently that convex sets are strongly lineally convex. The
property was given a geometric characterization by Znamenskij (1979). This geometric property
is now called C-convexity. Its relation to lineal convexity has been studied by Zelinskij (1988)
and others. For these two properties we refer also to the survey by Andersson, Passare and
Sigurdsson (2004) and the monograph by Hörmander (1994).

Another generalization is the notion of m-lineal convexity to be studied in the next section.

9.8.2 Notation

Let A be a subset of C1+n∖{0}, where n⩾1. We shall say that A is homogeneous if tz ∈ A as
soon as z ∈ A and t ∈ C∖{0}. To any homogeneous subset A of C1+n∖{0} we de�ne its dual
complement A* as the set of all hyperplanes passing through the origin which do not intersect A.
Since any such hyperplane has an equation ζ ⋅ z = ζ0z0 + ⋯ + ζnzn = 0 for some 
ζ ∈ C1+n∖{0}, we can de�ne

A* = {ζ ∈ C1+n∖{0}; ζ ⋅ z ≠ 0 forevery z ∈ A}.



(9.84)

Strictly speaking, we should have two copies of C1+n∖{0} (a Greek and a Latin one), and
consider A* as a subset of the dual (i.e., the Greek) space. A homogeneous set is called lineally
convex if C1+n∖A is a union of complex hyperplanes passing through the origin. A dual

complement A* is always lineally convex, and we always have A** ⊃ A. The set A** is called
the lineally convex hull of A. A set A is lineally convex if and only if A = A**.

The operation of taking the dual complement is an example of a Galois correspondence, and
the operation of taking the lineally convex hull de�nes a cleistomorphism in the ordered set of all
subsets of C1+n∖{0}. For the general de�nitions of these concepts, see Section 9.3.

We shall write z = (z0, z′) = (z0, z1, … , zn) for points in C1+n∖{0}, with z0 ∈ C and 
z′ = (z1, … , zn) ∈ Cn. Homogeneous sets in C1+n∖{0} correspond to subsets of projective n-
space Pn, and we can transfer the notions of dual complement and lineal convexity to Pn. In the

open set where z0 ≠ 0 we can use z′ as coordinates in Pn.
We shall denote by

(9.85)

the hyperplane de�ned by ζ. Then the dual complement can be conveniently de�ned as

(9.86)

and its set-theoretical complement in C1+n∖{0} is

(9.87)

The complement of the lineally convex hull A** can be written as

We shall use this idea in the following lemma.

Lemma 9.8.1  For any subset Γ of C1+n∖{0} we de�ne

Then A is lineally convex. Moreover A** = A = Γ * and A* = Γ ** ⊃ Γ .

Proof Clearly A as the complement of a union of hyperplanes is lineally convex, so A** = A.
The statement a ∈ A is equivalent to γ ⋅ a ≠ 0 for all γ ∈ Γ , which by de�nition means that 

Yζ = {z ∈ C1+n∖{0}; ζ ⋅ z = 0}, ζ ∈ C1+n∖{0},

A* = {ζ; Yζ ∩ A = ∅},

∁A* = (C1+n∖{0})∖A* = {ζ; Yζ ∩ A ≠ ∅}.

∁A** = ∪
α∈A*

Yα.

A = ∁(∪γ∈ΓYγ) = ∩γ∈Γ∁Yγ.



a ∈ Γ *; thus A = Γ *. As a consequence, A* = Γ **.

How does the operation of taking the dual complement intertwine with the topological operations

of taking the interior and closure? The answer is the following (we write A∘ for the interior and 

A  for the closure of a set A).

Proposition 9.8.2  For any homogeneous subset A of C1+n∖{0} we have

Proof (A) and (B). To see that A* is closed if A is open we only have to look at (9.86). The same
formula shows that A* is open if A is closed.

(C). Since A∘ is open, A°* is closed according to (A), so that A°* = A°* ⊃ A*.

(D). Since A * is open according to (B), and since A * ⊂ A*, we get A * ⊂ A*°. To prove the

inclusion A*° ⊂ A * we argue as follows. If ζ ∈ A*°, then Yθ ∩ A = ∅ for all θ near ζ. The union

of these hyperplanes Yθ is a neighborhood of Yζ, so ζ ∈ A *.

(E). If A = B with B open, then according to (D), A* = B* = B*°, the interior of the closed
set B*.

This proves the proposition.

If A is the interior of a closed set C, we get A* = C °* ⊃ C *, possibly strictly.

Corollary 9.8.3  If a subset A of C1+n∖{0} is strongly contained in a set B in the sense that 

A ⊂ B°, then B* is strongly contained in A*.

Proof Using (C) and (D) in Proposition 9.8.2 we see that A ⊂ B° implies 

B* ⊂ B°* ⊂ A * = A*°.

Corollary 9.8.4  If a subset A of C1+n∖{0} is lineally convex, then its interior A° is also lineally
convex.

Proof If A = B*, then A° = B*° = B* by (D) in Proposition 9.8.2, which shows that A∘ is
lineally convex.

By way of contrast, the closure of a lineally convex set is not necessarily lineally convex if n⩾2.
It turns out that the lineal convexity of the closure is connected with the question whether we
have equality in (C) in Proposition 9.8.2, as shown by the following result.

¯

If A is open, then A* is closed.(A)

If A is closed, then A* is open.(B)

A* ⊂ A°*.(C)̄

A*° = A *.(D)̄

If A is the closure of an open set, then A* is the interior of a closed set.(E)

¯̄

¯̄̄

¯

¯

¯̄

¯

¯

¯

¯̄

¯
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Corollary 9.8.5  Let B be any lineally convex subset of C1+n∖{0}. Then its closure B is lineally
convex if and only if its dual complement A = B* satis�es (C) in Proposition 9.8.2 with
equality.

Proof Using the lineal convexity of B and then (C) and (D) in Proposition 9.8.2, we get

Thus equality in (C) is equivalent to B being lineally convex.

The inclusion (C) in Proposition 9.8.2 can be strict simply for dimensionality reasons. This will
be clear from the following result, where we use the interior relative to a subspace instead of the
interior with respect to the whole space.

Proposition 9.8.6  Let A be a homogeneous set in C1+n∖{0} which is contained in a complex
subspace F of C1+n. Let AF = relint(A) denote the relative interior of A, i.e., the interior

taken with respect to F. Then A* ⊂ (AF )* ∪ F◇, where F◇ is the set

If A is open in F, then A* ∪ F◇ is closed.

Note that when F = C1+n, then F◇ is empty and we are reduced to Proposition 9.8.2.

Proof Take a point ζ ∉ (AF )* ∪ F◇. Then there is a point a ∈ AF ∩ Yζ  and a non-zero vector 
b ∈ F∖Yζ . If θ is close to ζ, then the hyperplane Yθ cuts the complex line {a + tb; t ∈ C} in a

unique point a(θ, t) close to a, and since a is in the relative interior of A, a(θ, t) belongs to A as

soon as θ is close enough to ζ. Therefore θ ∉ A* for all these θ, which means that ζ ∉ A*.

Finally, if A is open in F, then A* ∪ F◇ = A* ∪ F◇ ⊂ (AF )* ∪ F◇ = A* ∪ F◇, since 
AF = A and F◇ is closed.

Example 9.8.7  It is now obvious that the inclusion in (C) can be strict. Take a nonempty
relatively open set A ⊂ F ≠ C1+n. Then A° = ∅, and A°* = C1+n∖{0}. But 

A* ⊂ (AF )* ∪ F◇ = A* ∪ F◇ ≠ C1+n ∖ {0}.

Example 9.8.8  Also the inclusion in Proposition 9.8.6 can be strict. There are sets A such that 

A° = ∅, A °= B ≠ ∅, and B* = A*. Thus A°* = C1+n∖{0} and 

A* = B* = B* ≠ C1+n∖{0}. Such a set is the set A of all z ∈ C1+2 with |z1|2 + |z2|2 < |z0|2

and either z1 is a complex rational or z2 = 0. (Here the only choice for F is the whole space, so
that F◇ is empty.)

Example 9.8.9  A simple example of a lineally convex set whose closure is not lineally convex is
the following. De�ne

¯

B = A* ⊂ A°* = B*°* = B** .̄̄̄

¯

¯

¯

¯̄̄

¯

¯

¯̄

{ { { {



□

Then A is lineally convex. Any hyperplane which avoids A must pass through the point 

(z0, z1, z2) = (1, 0, 0). But this point belongs to A . This shows that A  is not lineally convex.
More generally, let Γ be a lineally convex subset of the Greek copy of C1+n∖{0} and de�ne

A as in Lemma 9.8.1. We can easily choose Γ without interior points but still such that the union

has interior points. Thus Γ ° = ∅, ∁A = (∁A)
°

≠ ∅. Then (A)
**

= A*°* = Γ °* = C1+n∖{0}

(see Lemma 9.8.1 and (D) in Proposition 9.8.2), but A = ∁((∁A)
°
) ≠ C1+n∖{0}. This shows

that A  cannot be lineally convex.

9.8.3 Duality for functions

A function f : C1+n∖{0} → R! with values in the extended real line will be called (−1) -
homogeneous if

(9.88)

For such functions we de�ne the logarithmic transform L f:

(9.89)

We de�ne log 0 = −∞. The difference − log |ζ ⋅ z| − f(z) is well-de�ned if f(z) < +∞;
another way to formulate the de�nition is to use lower addition +

⋅
:

(9.90)

Lower and upper addition are de�ned in Section 9.2 on page 253.

Proposition 9.8.10  For any homogeneous function f : C1+n∖{0} → R! its logarithmic
transform L f is a homogeneous function with

A = {z ∈ C1+2∖{0}; z1 < z2 }; A = {z ∈ C1+2∖{0}; z1 ⩽ z2 }∣ ∣ ∣ ∣¯∣ ∣ ∣ ∣¯̄∪
γ∈Γ

Yγ = ∁A

¯̄

¯

¯

f(tz) = − log t + f(z), z ∈ C1+n∖{0}, t ∈ C∖{0}.∣ ∣(L f)(ζ) = sup
z∈dom(f)

(− log ζ ⋅ z − f(z)), ζ ∈ C1+n∖{0}.∣ ∣(L f)(ζ) = sup
z

((− log ζ ⋅ z ) +
⋅

(−f(z))), ζ ∈ C1+n∖{0}.∣ ∣dom(L f) ⊂ (dom(f))*,



□

(9.91)

where dom(f) denotes the effective domain of f.

Proof The homogeneity of L f is obvious from its de�nition (9.89). To prove (9.91), we note that

ζ ∉ (dom(f))* means by de�nition that the hyperplane Yζ and the effective domain dom(f)

have a common point z (cf. (9.87)), so that (L f)(ζ)⩾ − log |ζ ⋅ z| − f(z) = +∞, thus 
ζ ∉ dom(L f). The inclusion (9.91) may be strict as will be shown below: see Example 9.8.16
and Remark 9.8.21.

The analogue of Fenchel's inequality holds:

(9.92)

Moreover the usual rules for a Galois correspondence hold: f⩽g implies L f⩾L g, and we
always have L (L f)⩽f. As a consequence of these two properties, L °L °L = L . A function
f will be called L  -closed if L (L f) = f (equivalently, if it belongs to the range of L ). Some
simple examples follow.

Example 9.8.11  If f assumes the value −∞, then L f is +∞ identically. The same is true if f
never takes the value +∞ (n⩾1). If f is +∞ identically, then L f is −∞ identically. If 
f(z) = − log |t| when z = ta for a �xed a ∈ C1+n∖{0} and +∞ otherwise, then 
(L f)(ζ) = − log |ζ ⋅ a|. If f(z) = − log |α ⋅ z| for some α, then (L f)(ζ) = − log |t| when 
ζ = tα and +∞ otherwise. All these functions are L -closed.

As a consequence of (9.90), we note that sup
j

L fj = L (inf
j
fj) for any indexed family (fj) of

functions. Indeed this follows from the rule sup
j

(c +
⋅
aj) = c +

⋅
sup
j

aj, which is valid also for

any constant c ∈ R!. This implies that any supremum of L -closed functions is L -closed; in
fact, we have

(9.93)

if the fj are L -closed.

Homogeneous functions appear rather naturally in complex analysis. Let μ be an analytic
functional in an open subset ω of Cn, μ ∈ O ′(ω). Its Fantappiè transform is

which is a holomorphic function of ζ ∈ Ω*, where Ω is the set of all z ∈ C1+n∖{0} such that 
z0 ≠ 0 and (z1/z0, … , zn/z0) ∈ ω. This implies that log |Fμ| is plurisubharmonic in Ω*, and

− log ζ ⋅ z ⩽f(z)
⋅

+ (L f)(ζ), ζ, z ∈ C1+n∖{0}.∣ ∣sup
j
fj = sup

j
L (L fj) = L (inf

j
L fj)

(Fμ)(ζ) = μ(z ↦ (ζ0 + ζ1z1 + ⋯ + ζnzn)−1),



□

□

it is moreover homogeneous in the sense of (9.88). (We de�ne it as +∞ outside Ω*.)
Given f de�ned in C1+n∖{0}, we can de�ne a function F in Cn by putting 

F(z′) = f(1, z1, … , zn), z′ ∈ Cn. Conversely, if F is de�ned in Cn, we can de�ne a
homogeneous function f in C1+n∖{0} by

The transform (9.89) then takes the form

(9.94)

In particular, if F is radial (i.e., a function of ∥z′∥2 = r), then the transform becomes

(9.95)

Example 9.8.12  Take F(r) = 0 when r⩽R and F(r) = +∞ otherwise in (9.95). Then 
(LF)(ρ) = − log(1 − Rρ), ρ < 1/R, and (LF)(ρ) = +∞, ρ⩾1/R. The second transform is 
L (LF) = F , so that F is L -closed.

Example 9.8.13  The radial function

is selfdual, i.e., (LF)(ρ) = − 1
2 log(1 − ρ2). Going back to C1+n∖{0}, we see that the function

has this property. This function therefore plays the same role as the convex function 
f(x) = 1

2
∥x∥2

2, x ∈ Rn, for usual convexity.

Now let A be a homogeneous set in C1+n∖{0}. We de�ne a function dA, the distance to the

complement of A relative to C1+n∖{0}, as

(9.96)

f(z) = {  
F(z1/z0, … , zn/z0) − log |z0|, z ∈ C1+n∖{0}, z0 ≠ 0;

+∞ z ∈ C1+n∖{0}, z0 = 0.

(LF)(ζ ′) = sup
F(z′)<+∞

(− log 1 + ζ ′ ⋅ z′ − F(z′)), ζ ′ ∈ Cn.∣ ∣(LF)(ρ) = sup
F(r)<+∞

(− log(1 − ρr) − F(r)), ρ = ∥ζ ′∥2⩾0.

F(r) = − 1
2

log(1 − r2)

f(z) = {  
− 1

2 log( z0
2 − ∥z′∥2

2), z ∈ C1+n∖{0}, z0 > ∥z′∥2;

+∞, z ∈ C1+n∖{0}, z0 ⩽∥z′∥2∣ ∣ ∣ ∣∣ ∣dA(z) = inf(∥z − w∥2; w ∈ (C1+n∖{0})∖A), z ∈ C1+n∖{0}.



The function − log dA is homogeneous, and it is less than +∞ precisely in the interior of A.
Analogously we de�ne a function dA*  by

(9.97)

where A* is the dual complement of A de�ned by (9.84). If A is empty, then dA = 0 identically,
whereas dA* = +∞ identically.

Theorem 9.8.14  Let f : C1+n∖{0} → R! be any homogeneous function. Then

(9.98)

where dA*  is de�ned by (9.97) taking A = dom(f), and C = − inf
∥z∥2=1

f(z)⩽ + ∞. We have 

C = −∞ if and only if f is +∞ identically; in this case L f is −∞ identically. We have 
C = +∞ if and only if f is unbounded from below on the unit sphere S; then L f is +∞
identically. If f is bounded from below on S, then C < +∞ and (9.98) shows that L f has at

most logarithmic growth at the boundary of (dom(f))*; moreover

(9.99)

and

(9.100)

In particular dom(L f) = (dom(f))* if dom(f) is closed.

Lemma 9.8.15  For any subset A of C1+n∖{0} we have

(9.101)

and

(9.102)

dA*(ζ) = inf( ζ − θ ; θ ∈ (C1+n∖{0})∖A*), ζ ∈ C1+n∖{0},∣ ∣C − log ∥ζ∥2⩽(L f)(ζ)⩽C − log dA*(ζ), ζ ∈ C1+n∖{0},

dom(f)
*

= (dom(f))*° = (dom(L f))° ⊂ dom(L f) ⊂ (dom(f))* ,̄

dom(L f) ⊂ (dom(f))* ⊂ (dom(f))°* .̄
¯

ζ ⋅ z ⩾dA*(ζ)∥z∥2, ζ ∈ C1+n∖{0}, z ∈ A,∣ ∣ζ ⋅ z ⩾∥ζ∥2dA(z), ζ ∈ A*, z ∈ C1+n∖{0}.∣ ∣



Proof Given ζ ∈ C1+n∖{0} and z ∈ A we de�ne α = ζ + tz where t = −∥z∥−2
2 (ζ ⋅ z). Then 

α ⋅ z = 0, which, if α ≠ 0, means that α ∈ ∁A* since z ∈ A. Therefore 
dA*(ζ)⩽∥ζ − α∥2 = |ζ ⋅ z|/∥z∥2, which proves the �rst inequality except when 
ζ = ∥z∥−2

2 (ζ ⋅ z)z. Since dA*  is continuous, this restriction can be removed. If we now

interchange the role of ζ and z, we get |ζ ⋅ z|⩾∥ζ∥2dA**(z). But A** ⊃ A, so dA**(z)⩾dA(z).
This proves the lemma. (Interchanging z and ζ once more, we see that (9.101) holds even for all 
z ∈ A**.)

Proof of Theorem 9.8.14 By the Schwarz inequality and (9.101) applied to A = dom(f) we get

Thus

The cases where +
⋅

 and 
⋅

+ give different results never occur, so we can replace +
⋅

 by usual

addition. This proves (9.98); note that sup
A∩S

(−f) = sup
S

(−f) = −inf
S
f.

We already know that dom(L f) ⊂ (dom(f))*; see (9.91). If ζ ∈ (dom(f))*° and 
C < +∞, then dA*(ζ) > 0 and (L f)(ζ)⩽C − log dA*(ζ) < +∞, so that ζ ∈ dom(L f). This

proves that (dom(f))*° ⊂ dom(L f) ⊂ (dom(f))*. Taking the interior of these sets we get
(9.99); taking the closure we get (9.100) (cf. Proposition 9.8.2).

Example 9.8.16  The effective domain of L f may fail to be lineally convex, although it is

squeezed in between the two lineally convex sets (dom(f))*° = dom(f)
*
 and (domf)*; see

(9.99). Indeed, let wk = (k−2, k−1, 1) ∈ C1+2 and de�ne f(wk) = log k, k = 1, 2, 3, …, and 
f(z) = +∞ when z ∉ Cwk. Then

Put α = (1, 0, 0) and β = (1, 1, 0). Then

so that α ∉ dom(L f), whereas

showing that β ∈ dom(L f). The points wk de�ne hyperplanes

¯

¯

− log ∥ζ∥2⩽ − log ζ ⋅ z ⩽ − log dA*(ζ), ζ ∈ C1+n∖{0}, z ∈ A ∩ S.∣ ∣(L f)(ζ) = sup
z∈A∩S

(− log ζ ⋅ z − f(z))  ∣ ∣ ⎧⎪⎨⎪⎩⩽(− log dA*(ζ)) +
⋅

sup
A∩S

(−f);

⩾ − log ∥ζ∥2 + sup
A∩S

(−f).

¯

(L f)(ζ) = sup
k

(− log ζ0/k + ζ1 + kζ2 ), ζ ∈ C1+2∖{0}.∣ ∣(L f)(α) = sup
k

(− log k−1 ) = +∞,∣ ∣(L f)(β) = sup
k

(− log k−1 + 1 ) = 0,∣ ∣ }



□

which converge to a hyperplane Yw = {ζ; ζ2 = 0} with w = limwk = (0, 0, 1). By (9.99),

Both α and β belong to Yw, but as k → +∞, the hyperplanes Ywk  approach α more rapidly than

β (note that α ⋅ wk = 1/k2, while β ⋅ wk = 1/k + 1/k2). This explains why α ∉ dom(L f)
while β ∈ dom(L f). A hyperplane which avoids dom(L f) must be either one of the
hyperplanes Ywk , or (possibly) their limit Yw. However, the hyperplanes Ywk  do not contain α,

and the hyperplane Yw intersects dom(L f) in β. Therefore there is no hyperplane which passes

through α and avoids dom(L f). This shows that dom(L f) is not lineally convex. In

particular we must have (dom(f))*° ≠ dom(L f) ≠ (dom(f))*; cf. (9.99).

Example 9.8.17  A fundamental property of convexity is that the union of an increasing sequence
of convex sets is convex. (More generally, this is true for the union of a directed family.) This is
not so with lineal convexity. Let Ak be the set of all ζ such that (L f)(ζ)⩽k. It is easy to see that
this is a lineally convex set; indeed,

The union of the Ak is dom(L f). If we let f be the function constructed in Example 9.8.16 we
get an example where the Ak are lineally convex but their union is not.

Theorem 9.8.18  Let f be a function on C1+n∖{0} which is bounded from below on the unit
sphere and let L f be its transform de�ned by (9.89). Then L f is plurisubharmonic in the
interior of dom(L f), which is a lineally convex set. Moreover L f is locally Lipschitz

continuous in (dom(L f))°; more precisely

where dA*  is the distance to the complement of dom(L f).

Proof Consider the function g(ζ) = − log |ζ ⋅ z|. Its gradient has length ∥z∥2/|ζ ⋅ z|. At the point 
α = ζ + tz, where t = −∥z∥−2

2 (ζ ⋅ z), g takes the value +∞, so

Now L f is a supremum of functions of the form g plus a constant for various choices of z. All
competing functions must satisfy dom(g) ⊃ dom(L f), so that ddom(g)⩾dA* . Therefore they
have a gradient whose length is at most 1/dA*(ζ), which implies that L f is Lipschitz continuous
as indicated. That L f is plurisubharmonic now follows from standard properties of such
functions: f is a continuous supremum of plurisubharmonic functions.

Ywk = {ζ; ζ0k
−2 + ζ1k

−1 + ζ2 = 0},

(domf)
*

= ∁(Yw ∪ (∪Ywk)) ⊂ dom(L f) ⊂ (dom(f))* = ∁(∪Ywk).̄

Ak = ∩
z∈dom(f)

{ζ ∈ C1+n∖{0}; − log ζ ⋅ z − f(z)⩽k}.∣ ∣lim sup
t→0+

(L f)(ζ+tθ)−(L f)(ζ)
t

⩽ ∥θ∥2

d
A*(ζ)

, ζ ∈ (dom(L f))°, θ ∈ C1+n,

¯

ddom(g(ζ)⩽∥α − ζ∥2⩽ |ζ⋅z|
∥z∥2

= 1
∥gradg(ζ)∥2

.



Finally (9.99) shows that (dom(L f))° is lineally convex: it is equal to the dual complement
of the closure of dom(f).

9.8.4 Examples of functions in duality

In this subsection we shall make a detailed study of the functions

(9.103)

and

(9.104)

where 0⩽c⩽1, A is any homogeneous subset of C1+n∖{0}, A* its dual complement, and where
dA and dA*  are de�ned by (9.96) and (9.97), respectively.

We shall call f0 = IA the logarithmic indicator function of the set A. Its restriction to the unit
sphere is the indicator function in the usual sense. And L f0 = L IA is analogous to the support
function of A, thus preserving the situation from convex analysis where the support function is
the Fenchel transform of the indicator function. We shall determine this function explicitly: it is 
φ1 = − log dA* .

More generally, it turns out that the function φ1−c is essentially dual to fc. It might seem

strange to consider functions like f0 which are not plurisubharmonic . We must have 

L (L f0) < f0 in the interior of A. From this point of view it is more natural to consider

(9.105)

and

(9.106)

If A is contained in a coordinate patch z0 ≠ 0 and if moreover ∥z∥2/|z0| is bounded when z ∈ A

, then fc and gc are �nite in the same set and differ there by a bounded function. If moreover 

(1, 0, … , 0) is an interior point of A, then ζ0 ≠ 0 when ζ ∈ A* and ∥ζ∥2/|ζ0| is bounded there,

fc(z) =
−(1 − c) log ∥z∥2 − c log dA(z), z ∈ A;

+∞, z ∈ (C1+n∖{0})∖A,

φc(ζ) =
−(1 − c) log ∥ζ∥2 − c log dA*(ζ), ζ ∈ A*;

+∞, ζ ∈ (C1+n∖{0})∖A*,

gc(z) =
−(1 − c) log |z0| − c log dA(z), z ∈ A;

+∞, z ∈ (C1+n∖{0})∖A,

ψc(ζ) =
−(1 − c) log |ζ0| − c log dA*(ζ), ζ ∈ A*;

+∞, ζ ∈ (C1+n∖{0})∖A*.



□

so φc and ψc are �nite in the same set and their difference is bounded there. Therefore our results

on fc and φc can easily be translated into inequalities for gc and ψc.

The �rst result is a simple inequality.

Proposition 9.8.19  With fc and φc de�ned by (9.103) and (9.104) we have L fc⩽φ1−c for 
0⩽c⩽1.

Proof If ζ ∉ A*, then φ1−c(ζ) = +∞, so the inequality certainly holds. If on the other hand 
ζ ∈ A*, we can estimate (L fc)(ζ) using Lemma 9.8.15:

The supremum is over the set A(c) of all z such that fc(z) < +∞, that is

(9.107)

(A(c) can be empty; in that case L fc is −∞ identically.)

We now study inequalities in the other direction. The cases c = 0 and c = 1 are easy and will be
considered �rst.

Proposition 9.8.20  For any homogeneous subset A of C1+n∖{0} we have 
L IA = L f0 = φ1 = − log dA* . (The analogue of the support function of A.)

Remark 9.8.21  Note that here dom(L f0) = A*° = A * = (dom(f)0)*° is open and lineally

convex, whereas (dom(f)0)* = A*; again we see that the inclusion dom(L f) ⊂ (dom(f))*

may be strict (cf. (D) in Proposition 9.8.2).

Lemma 9.8.22  Assume that A is homogeneous and not empty. For every ζ ∈ A* there is a
point z ∈ ∂A, z ≠ 0, such that |ζ ⋅ z|⩽dA*(ζ)∥z∥2.

Proof For every ζ ∈ A* there is a point α ∈ ∂A*, α ≠ 0, such that ∥α − ζ∥2 = dA*(ζ). Thus 

α ∉ A*° = A * (cf. (D) in Proposition 9.8.2). Now α ∉ A * means that Yα ∩ A ≠ ∅ (see (9.85)

(L fc)(ζ)

= sup
z∈A(c)

[− log ζ ⋅ z + (1 − c) log ∥z∥2 + c log dA(z)]

= sup
z∈A(c)

[−(1 − c) log ζ ⋅ z + (1 − c) log ∥z∥2 − c log ζ ⋅ z + c log dA(z)]

⩽ sup
z∈A(c)

[−(1 − c) log(dA*(ζ)∥z∥2) + (1 − c) log ∥z∥2

−c log(∥ζ∥2dA(z)) + c log dA(z)]

⩽ − (1 − c) log dA*(ζ) − c log ∥ζ∥2 = φ1−c(ζ).∣ ∣ ∣ ∣ ∣ ∣A(c) = {  
A for c = 0;

A° for 0 < c⩽1.

¯

¯̄̄



and (9.87)). On the other hand α ∈ ∂A* ⊂ A* ⊂ A°* (cf. (C) in Proposition 9.8.2), so that 
Yα ∩ A° = ∅. Therefore Yα meets the boundary of A, and we can choose z ∈ S ∩ ∂A such that 

α ⋅ z = 0. Then |ζ ⋅ z| = |(ζ − α) ⋅ z|⩽∥ζ − α∥2 ⋅ ∥z∥2 = dA*(ζ)∥z∥2.

Proof of Proposition 9.8.20 If A = ∅, we have L IA = − log dA* = −∞. Otherwise the lemma

provides us, given any ζ ∈ A*, with a point z ∈ ∂A ∩ S such that

For ζ ∈ (C1+n∖{0})∖A* both L f0 and φ1 take the values +∞. Thus L f0⩾φ1 everywhere.

The inequality L f0⩽φ1 was proved already in Proposition 9.8.19.

Proposition 9.8.23  Assume A that is open and not empty. Then there is a constant M, which
depends on the geometry of A, such that

In fact M can be taken as inf
S
f1 = inf

S
(− log dA), where as before S is the unit sphere.

Here dom(L f1) = A* = (dom(f)1)* is closed and lineally convex; cf. (9.99).

Lemma 9.8.24  Assume A has a nonempty interior and take any point z ∈ A°. Then there is a
constant C such that |ζ ⋅ z|⩽C∥ζ∥2dA(z) for all ζ.
Proof Given z ∈ A° de�ne C = ∥z∥2/dA(z). We have

The best choice is a point z ∈ S such that dA(z) = sup
S

dA, so that C = 1/sup
S

dA.

Proof of Proposition 9.8.23 Using the lemma above we get for any ζ ∈ A*,

When ζ ∉ A*, there is a point z ∈ A such that ζ ⋅ z = 0, and since A is open, f1(z) < +∞, so
that (L f1)(ζ) = +∞. Thus we have L f1⩾φ0 − M  everywhere. The inequality IA*⩾L f1 was
already proved in Proposition 9.8.19.

Theorem 9.8.25  Let A be an open homogeneous set. Then A is lineally convex if and only if 
− log dA is L -closed.

¯

(L f0)(ζ) = sup
w∈A

(− log ζ ⋅ w + log ∥w∥2)⩾ − log ζ ⋅ z + log ∥z∥2

⩾ − log dA*(ζ) = φ1(ζ).∣ ∣ ∣ ∣φ0 = IA*⩾L f1 = L (− log dA)⩾IA* − M.

|ζ ⋅ z|⩽∥ζ∥2∥z∥2 = C∥ζ∥2dA(z).

(L f1)(ζ) = sup
w∈A

(− log ζ ⋅ w + log dA(w))⩾ − log ζ ⋅ z + log dA(z)

⩾ − logC − log ∥ζ∥2 = φ0(ζ) − M.∣ ∣ ∣ ∣



□

Proof If A = B*, then L IB = − log dB* = − log dA by Proposition 9.8.20, so − log dA is L -
closed. Conversely, Proposition 9.8.23 shows that L (− log dA)⩾IA* − M , which implies 

L (− log dA)⩽ − log dA** + M . Therefore, if z belongs to the open set A** (cf. Proposition
9.8.2), then L (− log dA(z)) is �nite. If − log dA is L -closed, this is equivalent to − log dA(z)
being �nite, which implies z ∈ A. Thus A** ⊂ A; this inclusion means that A is lineally convex.

Theorem 9.8.26  A closed lineally convex set A can be recovered from L IA. Indeed, if A is a set
with these properties different from C1+n∖{0}, then IA⩾L IA⩾IA − M , so that A is the set
where L IA is �nite. If A is equal to C1+n∖{0}, then L IA is −∞ identically. If A is a closed

and lineally convex set such that ∥z′∥2⩽R|z0| for all z ∈ A, then L IA⩾IA − log √1 + R2.

This theorem is thus analogous to the result in convexity theory which states that a closed convex
set can be recovered from its support function. By way of contrast, an open set A can be
recovered from L IA only under special conditions, since L IA = L I

A
. If A is open and equal

to the interior of its closure, and if its closure is lineally convex, then A is the interior of the set
where L IA is �nite. But an open lineally convex set can always be recovered from L (− log dA)
; see Proposition 9.8.23.

Proof If A is closed, lineally convex and not equal to all of C1+n∖{0}, then A* is open and
nonempty, so we can apply Proposition 9.8.23 to A* and obtain

From Proposition 9.8.20 we have L IA = − log dA* . Combining this information we deduce that

Since A is lineally convex, A = A**, and we see that L IA and IA are �nite in the same set (and

differ there at most by a bounded function).
The last statement follows if we keep track of the constant in Lemma 9.8.24. Alternatively we

can compare IA with the function F(z) = − log |z0| when ∥z′∥2⩽R|z0|, de�ning F(z) = +∞

otherwise. This gives F(z)⩾IA(z)⩾F + log |z0| − log ∥z∥2 for z ∈ A, so that 

IA⩾F − log √1 + R2 everywhere, implying that L IA⩾LF − log √1 + R2. Since LF = F

(cf. Example 9.8.12), we can conclude that L IA⩾F − log √1 + R2⩾IA − log √1 + R2 in A.

Finally we shall deduce an estimate from below for L fc when 0 < c < 1. We shall need a
de�nition.

De�nition 9.8.27  We shall say that A satis�es the homogeneous interior cone condition if there
exist positive numbers γ and R such that for every b ∈ ∂A and every r⩽R, the inequality

holds for every b ∈ ∂A and every r⩽R.

¯

IA**⩾L (− log dA*)⩾IA** − M.

IA**⩾L (− log dA*) = L IA⩾IA** − M.

sup
z

(dA(z); ∥z − b∥2⩽r∥b∥2)⩾γr∥a∥2



Proposition 9.8.28  Assume that A is open, nonempty, and satis�es the homogeneous interior
cone condition just de�ned. Then there is a constant M such that φ1−c⩾L fc⩾φ1−c − M  for
every c ∈ [0, 1].

Here dom(L fc) = (dom(fc))*° for 0⩽c < 1, whereas it is closed for c = 1 as already noted.
In particular a set with Lipschitz boundary satis�es the homogeneous interior cone condition.

To prove this proposition we shall need a lemma which combines Lemmas 9.8.22 and 9.8.24.
The requirements concerning the point z are somewhat contradictory, since z ∈ ∂A in the �rst
and z ∈ A° in the second. Nevertheless, we can �nd a compromise:

Lemma 9.8.29  With A as in Proposition 9.8.28, there exists a constant C such that for every 

ζ ∈ A* there is a point z = zζ ∈ A such that

Proof First pick any point w ∈ A. It will serve as the point zζ for all ζ such that dA*(ζ)⩾R∥ζ∥2:

and

for a constant C⩾ max(R−1, ∥w∥2/dA(w)).
The case dA*(ζ)⩽R∥ζ∥2 remains to be considered. To a given ζ ∈ A* we choose α ∈ ∂A*, 

α ≠ 0, such that ∥α − ζ∥2 = dA*(ζ) = r∥ζ∥2, r⩽R. Since Yα meets ∂A (cf. the proof of

Lemma 9.8.22), we can choose a ∈ ∂A, a ≠ 0, such that α ⋅ a = 0. The homogeneous interior
cone condition now implies the existence of a point z = zζ ∈ A such that dA(z)⩾γr∥a∥2 and 
∥z − a∥2⩽r∥a∥2⩽R∥a∥2. Then |ζ ⋅ a| = |(ζ − α) ⋅ a|⩽∥ζ − α∥2∥a∥2 = dA*(ζ)∥a∥2 and 
∥z − a∥2⩽r∥a∥2 = ∥a∥2dA*(ζ)/∥ζ∥2, so that

Here the last inequality follows from ∥z − a∥2⩽R∥a∥2; it is no restriction to assume that R < 1.
On the other hand dA(z)⩾γr∥a∥2 = γ∥a∥2dA*(ζ)/∥ζ∥2 so that

With the constant

this proves the lemma.

|ζ ⋅ z|⩽C∥ζ∥2dA(z) and |ζ ⋅ z|⩽CdA*(ζ)∥z∥2.

ζ ⋅ w ⩽∥ζ∥2∥w∥2 =
∥w∥2

dA(w)
∥ζ∥2dA(w)⩽C∥ζ∥2dA(w)∣ ∣ζ ⋅ w ⩽∥ζ∥2∥w∥2 =

∥ζ∥2

d
A*(ζ) dA*(ζ)∥w∥2⩽ 1

R
dA*(ζ)∥w∥2⩽CdA*(ζ)∥w∥2∣ ∣ζ ⋅ z = ζ ⋅ a + ζ(z − a) ⩽ ζ ⋅ a + ∥ζ∥2 z − a ⩽2dA*(ζ)∥a∥2⩽ 2

1−R
dA*(ζ)∥z∥2.∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ζ ⋅ z ⩽2dA*(ζ)∥a∥2⩽ 2

γ
dA(z)∥ζ∥2.∣ ∣C = max[ 1

R
,

∥w∥2

dA(w) , 2
1−R

, 2
γ
]



Proof of Proposition 9.8.28 Since A is open, dom(fc) = A for all c; cf. (9.107). Using the
lemma we get for any ζ ∈ A*, taking z ∈ A from Lemma 9.8.29,

If ζ ∉ A*, then (L fc)(ζ) = φ1−c(ζ) = +∞.

9.8.5 The support function of a convex set

Let A0 be a subset of Cn. Its support function is

(9.108)

If A0 is closed and convex, then HA0
 determines A0; in fact, A0 is the set of all z′ = (z1, … , zn)

such that Re (ζ ′ ⋅ z′)⩽HA0
(ζ ′) for all ζ′. Now let A be the homogeneous set of all

z ∈ C1+n∖{0} such that z0 ≠ 0 and z′/z0 ∈ A0. With the set A we associate the function L IA
de�ned by

(9.109)

the projective analogue of the support function. What is the relation between these two support
functions? To answer this question we �rst modify IA a little and de�ne

(9.110)

If A0 is bounded, then hA and L IA are �nite in the same set and differ there by a bounded

function.
We shall express hA in terms of HA0

. We �rst formulate an auxiliary result, which we shall

need for convex sets in the complex plane only, but which is also valid in Rn. We shall therefore
use the real support function

(L fc)(ζ) = sup
w∈A

(− log ζ ⋅ w + (1 − c) log ∥w∥2 + c log dA(w))

⩾ − log |ζ ⋅ z| + (1 − c) log ∥z∥2 + c log dA(z)

= (1 − c)(log ∥z∥2 − log |ζ ⋅ z|) + c(log dA(z) − log |ζ ⋅ z|)

⩾(1 − c)(log ∥z∥2 − log(CdA*(ζ)∥z∥2)

+c(log dA(z) − log(C∥ζ∥2dA(z))

= −(1 − c) log dA*(ζ) − c log ∥ζ∥2 − logC = φ1−c(ζ) − M.∣ ∣HA0(ζ
′) = sup

z′∈A0

Re (ζ ′ ⋅ z′), ζ ′ = (ζ1, … , ζn) ∈ Cn.

(L IA)(ζ) = − log dA*(ζ) = sup
z∈A

(− log ζ ⋅ z + log ∥z∥2), ζ ∈ C1+n∖{0},∣ ∣hA(ζ) = sup
z∈A

(− log ζ ⋅ z + log z0 ), ζ ∈ C1+n∖{0}.∣ ∣ ∣ ∣( )



(9.111)

Lemma 9.8.30  Let A be a convex set in Rn. Then

(9.112)

with equality on the left if 0 ∉ A°, and on the right if 0 ∈ A .

Proof For any set A we have, writing S for the unit sphere,

If A is convex and x ∉ A, then there is a ξ ∈ S such that ξ ⋅ x⩾HA(ξ); thus ∥x∥2⩾ξ ⋅ x⩾HA(ξ),
so that ∥x∥2⩾inf

S
HA. This shows that inf

x∉A
∥x∥2⩾inf

S
HA and proves (9.112) for all convex sets.

Now assume that 0 ∉ A°. Then A must be contained in a half-space {x; ξ ⋅ x⩾c} for some 
ξ ∈ S and c⩾0, which shows that HA(−ξ)⩽ − c⩽0. If A is empty, (9.112) has the form 
−∞⩽ − ∞⩽0, so the result is true. If A is not empty, then we can choose c = inf

x∈A
∥x∥2, so that 

inf
S
HA⩽ − c = − inf

x∈A
∥x∥2; we have proved equality on the left in (9.112).

On the other hand, if 0 ∈ A  and HA(ξ) < c for some ξ ∈ S and some c, then necessarily 
c > 0 and the vector cξ cannot belong to A, so that inf

x∉A
∥x∥2⩽∥cξ∥2 = c. Thus inf

x∉A
∥x∥2⩽inf

S
HA

; we have proved equality on the right in (9.112).

Lemma 9.8.31  For any convex set A in Rn we have

(9.113)

(9.114)

where t+ = max(t, 0), t− = max(−t, 0) for t ∈ R.

Proof If 0 ∉ A, then (9.113) is just the �rst part of (9.112) with equality, and (9.114) reduces to 
0 = 0. If 0 ∈ A, then (9.113) reduces to 0 = 0 while (9.114) is the second part of (9.112) with
equality.

Proposition 9.8.32  Let A0 be any convex set in Cn, and A the homogeneous set of all 
z ∈ C1+n∖{0} such that z0 ≠ 0 and z′/z0 ∈ A0. De�ne HA0  and hA by (9.108) and (9.110),

HA(ξ) = sup
x∈A

ξ ⋅ x, ξ ∈ Rn.

− inf
x∈A

∥x∥2⩽ inf
∥ξ∥2 =1

HA(ξ)⩽ inf
x∉A

∥x∥2

¯

inf
S
HA = inf

ξ∈S
sup
x∈A

ξ ⋅ x⩾sup
x∈A

inf
ξ∈S

ξ ⋅ x = sup
x∈A

(−∥x∥2) = − inf
x∈A

∥x∥2.

¯

inf
x∈A

∥x∥2 = sup
∥ξ∥2 =1

HA(ξ)−;

inf
x∉A

∥x∥2 = inf
∥ξ∥2 =1

HA(ξ)+,



respectively. Then

(9.115)

Proof If A is empty, (9.115) certainly holds, because both sides are equal to −∞. Fix 
ζ ∈ C1+n∖{0} and denote by L the linear mapping z′ ↦ ζ ′ ⋅ z′. If A is not empty, then

(9.116)

where a(ζ0) denotes the point in the closure of L(A0) which is closest to −ζ0. Here the �rst
equality holds because, in view of the homogeneity, it is enough to let z vary with z0 = 1 in the
de�nition of hA.

We now note that

which shows that the support function of the set M = L(A0) + ζ0 is

We can apply (9.113) to the convex set M. This yields

where the �rst equality is that of (9.116), and thus proves (9.115).

Conversely, we can express HA0  in terms of hA.

Proposition 9.8.33  Let A0 be a bounded but not necessarily convex set in Cn, and A the set of
all z ∈ C1+n∖{0} such that z0 ≠ 0 and z′/z0 ∈ A0. De�ne HA0  and hA by (9.108) and (9.110),
respectively. Then

(9.117)

hA(ζ) = inf
|t|=1

log (HA0(tζ
′) + Re (tζ0))−, ζ ∈ C1+n∖{0}.

e−hA(ζ) = inf
z′∈A0

ζ0 + ζ ′ ⋅ z′ = inf
s∈L(A0)

ζ0 + s = ζ0 + a(ζ0) ,∣ ∣ ∣ ∣ ∣ ∣HA0(tζ
′) = sup

z′∈A0

Re (tζ ′ ⋅ z′) = sup
z′∈A0

Re tL(z′) = sup
s∈L(A0)

Re ts = HL(A0)(t),

HM(t) = HA0(tζ
′) + Re (tζ0), t ∈ C.

e−hA(ζ) = ζ0 + a(ζ0) = sup
|t|=1

HM(t)− = sup
|t|=1

(HA0(tζ
′) + Re (tζ0))−,∣ ∣HA0

(ζ ′) = lim (−ζ0 − e−hA(ζ)), ζ ′ ∈ Cn.
ζ0∈R

ζ0→−∞



□

Proof We can still use (9.116) even though A0 now is perhaps not convex, if we let a(ζ0) denote

one of the closest points to −ζ0 in the closure of L(A0). Let ζ0 be real and tend to −∞. Then

where a(−∞) is an accumulation point of a(ζ0) as ζ0 ∈ R and ζ0 → −∞. It is a point in the
closure of L(A0) which satis�es

This implies (9.117).

9.8.6 The dual functions expressed as a dual complement

In convexity theory, the Fenchel transform generalizes the support function: the support function
(9.111) is just the Fenchel transform of the indicator function. Conversely, we can express the

Fenchel transform f̃ of a function f in terms of the support function if we add one dimension: by

de�nition we have f̃(ξ) = sup
x

(ξ ⋅ x − f(x)), and we see that f̃(ξ) = Hepif(ξ, −1), where 

Hepif  is the support function of the �nite epigraph of f, i.e.,

We already know that the dual complement A* of a closed set A can be expressed in terms of
the dual function (indeed, A* is the set where L IA is �nite; see Proposition 9.8.20). Conversely,
we shall see here that we can express the dual function in terms of a dual complement if we go
up one step in dimension (cf. (9.130) below). The functions will then give rise to Hartogs sets,
which we proceed to discuss.

Hartogs domains and complete Hartogs domains were de�ned in Section 9.4 above. We shall
generalize this in two ways: �rst we shall need to study sets that are not necessarily open; second,
it is natural to add a hyperplane at in�nity and look at subsets of projective space. Thus we
consider sets A ⊂ (C1+n∖{0}) × C that are homogeneous in the sense of SubSection 9.8.3, i.e.,
such that (sz, st) ∈ A if (z, t) ∈ A and s ∈ C∖{0}. We shall say that A is a complete Hartogs
set if (z, t′) belongs to A as soon as (z, t) ∈ A and |t′|⩽|t|. Such a set is therefore de�ned by an
inequality |t| < R(z) or |t|⩽R(z) for some function R with 0⩽R⩽ + ∞. We shall however use 
f = − logR to indicate the radius of the disks.

De�nition 9.8.34  Let f : C1+n∖{0} → R! be a homogeneous function and X a homogeneous
subset of C1+n∖{0}. We associate to f and X a homogeneous complete Hartogs set E(X; f) in 
C1+n+1: it is the set of all (z, t) ∈ (C1+n∖{0}) × C such that t ⩽e−f(z) when z ∈ X, and 

t < e−f(z) when z ∉ X.

The �ber of E(X; f) over z is thus the whole t-plane if f(z) = −∞; it is a closed disk of �nite
positive radius if z ∈ (dom(f)) ∩ X and f(z) > −∞; it is an open disk of �nite positive radius
if z ∈ (dom(f))∖X and f(z) > −∞; it is the origin if z ∈ X∖dom(f); �nally, the �ber is

e−hA(ζ) + ζ0 = ζ0 + a(ζ0) + ζ0 → −Re a(−∞),∣ ∣HA0
(ζ ′) = sup

z′∈A0

Re (ζ ′ ⋅ z′) = sup
s∈L(A0)

Re s = Re a(−∞).

Hepif(ξ, η) = sup
(x,y)∈Rn×R

(ξ ⋅ x + ηy; f(x)⩽y), (ξ, η) ∈ Rn × R.∣ ∣∣ ∣



empty if z ∉ X ∪ dom(f). If X1 ⊂ X2 and f1⩾f2, we have an obvious inclusion 
E(X1; f1) ⊂ E(X2; f2).

Every complete Hartogs set A is of the form E(X; f) for some X and some f: we can take X
as the set of all z such that the �ber is not open and de�ne f(z) as the in�mum of all real
numbers c such that (z, e−c) belongs to A. A complete Hartogs set de�nes the set 
X ∩ {z; f(z) > −∞} uniquely: if f(z) > −∞, then z ∈ X if and only if the �ber over z is
closed and nonempty. On the other hand the choice of X ∩ {z; f(z) = −∞} is immaterial in the
de�nition of E(X; f).8

8To get uniqueness, one could for example require that X always contain {z; f(z) = −∞} or that these two sets be disjoint, or
else take the Riemann sphere as the �ber over points in X such that f(z) = −∞, but we shall refrain from doing so.

Theorem 9.8.35  Consider the dual complement of E(X; f),

(9.118)

If both X and dom(f) are empty, then also E(X; f) is empty and E(X; f)* is equal to the
whole set C1+n+1∖{0}. If on the other hand X ∪ domf ≠ ∅, then E(X; f) is nonempty and its

dual complement E(X; f)* is a subset of (C1+n∖{0}) × C and a complete Hartogs set, thus

for some set Ξ and some function φ. Here the function φ is uniquely determined:

(9.119)

thus φ = L f as soon as dom(L f) ⊂ (X ∪ dom(f))*, in particular if X ⊂ dom(f).

We de�ne the set Ξ as follows. We let ζ ∈ Ξ if and only if ζ ∈ (X ∪ dom(f))* and either f
takes the value −∞ or

(9.120)

or else

E(X; f)* = {(ζ, τ) ∈ C1+n+1∖{0}; ζ ⋅ z + τt ≠ 0 forall (z, t) ∈ E(X; f)}.

E(X; f)* = E(Ξ;φ)

φ(ζ) =  
⎧
⎨
⎩

(L f)(ζ) when ζ ∈ (X ∪ dom(f))*, and

+∞ whenζ ∈ (C1+n∖{0})∖(X ∪ domf)*;

inf
z∈dom(f)∩X

ζ ⋅ z ef(z)⩾ inf
w∈dom(f)∖X

ζ ⋅ w ef(w)∣ ∣ ∣ ∣forall z0 ∈ X ∩ dom(f)wehave ζ ⋅ z0 ef(z0) > inf
z∈dom(f)∩X

ζ ⋅ z ef(z).∣ ∣ ∣ ∣



(9.121)

If f is not +∞ identically, then Ξ is uniquely determined, so that this is the only set which

satis�es E(X; f)* = E(Ξ;φ). Moreover, we always have

(9.122)

which proves that Ξ ∪ dom(φ) = (X ∪ dom(f))*. The particular cases when X is empty or
equal to dom(f) are of interest. If domf ≠ ∅ we have

(9.123)

If dom(f) is closed and nonempty and f is lower semicontinuous and never takes the value −∞,
then

(9.124)

Remark 9.8.36  If X ∪ dom(f) ≠ ∅, then E(X; f)* contains

and is contained in

If X is a subset of dom(f), then φ = L f and these inclusions simplify to:

(9.125)

We also note the following two special cases. If f = +∞ identically, then

In this case the de�nition of Ξ in the theorem yields Ξ = X *.
We have

E(X; f)* ∩ ((C1+n∖{0}) × {0}) = (X ∪ dom(f))* × {0},

E(∅; f)* = E((dom(f))*;L f) ⊃ E(dom(L f);L f).

E(dom(f); f)* = E(∅;L f).

(E(∅;L f) ∩ ((X∖dom(f))* × (C∖{0}))) ∪ ((X ∪ dom(f))* × {0})

E((dom(L f)) ∪ (X ∪ dom(f))*;L f).

E(∅;L f) ∪ ((dom(f))* × {0}) ⊂ E(X; f)* ⊂ E((domf)*;L f).

E(X; +∞) = X × {0} andE(X; +∞)* = X *.

{



□

(9.126)

if f assumes the value −∞.

Proof of Theorem 9.8.35 If X ∪ dom(f) is empty, then E(X; f) is empty, and its dual
complement is the whole space except the origin. If X ∪ dom(f) is not empty, then the

hyperplane (C1+n∖{0}) × {0} cuts E(X; f), so that no point (0, τ) belongs to E(X; f)*,
which therefore is contained in (C1+n∖{0}) × C.

We need to �nd the conditions for (ζ, τ) to belong to E(X; f)*. This happens precisely when
ζ ⋅ z + τt is non-zero for all (z, t) ∈ E(X; f). The case τ = 0 is easy: we �nd that 

(ζ, 0) ∈ E(X; f)* if and only if ζ ⋅ z ≠ 0 for all z ∈ X ∪ dom(f), thus if and only if 

ζ ∈ (X ∪ dom(f))*. This proves (9.122). Now let τ ≠ 0. Then we see that (ζ, τ) ∈ E(X; f)*

precisely when the following three conditions hold:

(9.127)

(9.128)

(9.129)

Fix ζ ∈ (X ∪ dom(f))*. We see that the three formulas (9.127)–(9.129) imply that

and that they are implied by |τ| < exp(−(L f)(ζ)). This shows that φ is as described in (9.119),
and it only remains to be seen when the inequality |τ|⩽ exp(−(L f)(ζ)) is strict. The condition
on τ means that it shall belong to all open disks of radius ζ ⋅ z ef(z) for z ∈ (dom(f)) ∩ X, and

all closed disks of radius ζ ⋅ w ef(w) for w ∈ dom(f)∖X. Now an intersection of a family of
closed disks is always closed, and an intersection of nonempty concentric open disks with �nite
radii is closed exactly when it contains, along with any disk, also a disk of strictly smaller radius.
This is what is expressed by conditions (9.120) and (9.121). Finally (9.123) and (9.124) follow
from an analysis of (9.120)–(9.121) in the special cases X = ∅ and X = dom(f).

Corollary 9.8.37  The logarithmic transform L f of any function f can be obtained from the dual
complement of E(∅; f): it is minus the logarithm of a certain distance, viz. the distance from 

(ζ, 0) to the complement of E(∅; f)* in the direction (0, … , 0, 1):

E(X; f)* = (X ∪ dom(f))* × {0} = E((X ∪ dom(f))*;L f),

τ < ζ ⋅ z ef(z) for all z ∈ (dom(f)) ∩ X;∣ ∣ ∣ ∣τ ⩽ ζ ⋅ w ef(w) for all w ∈ (domf)∖X;∣ ∣ ∣ ∣|ζ ⋅ z| ≠ 0 for all z ∈ X∖dom(f).

|τ|⩽ exp(−(L f)(ζ)),∣ ∣∣ ∣



(9.130)

Proof This follows from (9.123). The result also explains why we cannot expect these functions
to be pullbacks of functions on projective space.

9.8.7 Lineally convex Hartogs sets

Intuitively, it seems that E(∅; f) and E(dom(f); f) ought to be lineally convex simultaneously.
This is not quite true. We shall note three results in the positive direction, Propositions 9.8.38–
9.8.40 below, and one result in the negative direction, Example 9.8.41. Then we shall establish
conditions under which it is true that f is L -closed if and only if E(dom(f); f) is lineally
convex (Corollary 9.8.43), as well as conditions which guarantee that f is L -closed if and only if
E(∅; f) is lineally convex (Theorem 9.8.49).

Proposition 9.8.38  If E(X; f) is lineally convex, then also X ∪ dom(f) and 
E(X ∪ dom(f); f) are lineally convex. In particular, if E(∅; f) is lineally convex, then so are 
dom(f) and E(dom(f); f).

Proof Suppose that E(X; f) is lineally convex. That X ∪ dom(f) is lineally convex then
follows from the easily proved result that the intersection of a lineally convex set and a complex
subspace is lineally convex as a subset of the latter. If E(X; f) is lineally convex, then also 
E(X; f + a) is lineally convex for any real number a. Any intersection of lineally convex sets
has the same property, so we only need to note that E(X ∪ dom(f); f) is equal the intersection
of all E(X; f − a), a > 0.

Proposition 9.8.39  If f is upper semicontinuous and there exists a set X such that E(X; f) is
lineally convex, then E(∅; f) is lineally convex.

Proof We know from Corollary 9.8.4 that E(X; f)° is lineally convex if E(X; f) is lineally

convex. Now E(X; f)° = E(∅; f) if f is upper semicontinuous, hence the result.

However, the semicontinuity of f is not important—it is the fact that the effective domain is open
which is relevant. This is shown by the following result.

Proposition 9.8.40  If X ∪ dom(f) is open and E(X; f) is lineally convex, then 
E(X∖dom(f); f) is lineally convex. In particular, E(∅; f) is lineally convex if dom(f) is open
and E(X; f) is lineally convex for some subset X of domf.

Proof Assume that E(X; f) is lineally convex. Then also E(X; f + a) is lineally convex for any
real a, and we shall prove that the union of all E(X; f + 1/k), k = 1, 2, …, which equals 
E(X∖dom(f); f), is lineally convex.

The hyperplanes in C1+n+1 will be denoted by Y(ζ,τ) in analogy with (9.85), thus

(9.131)

(L f)(ζ) = − log(inf
τ

( τ ; (ζ, τ) ∈ C1+n+1∖E(∅; f)
*
)).∣ ∣

Y(ζ,τ) = {(z, t) ∈ (C1+n × C)∖{0}; ζ ⋅ z + τt = 0}.



□

Let (z, t) ∉ E(X∖dom(f); f) be given with z ∈ X ∪ dom(f). For any k there is a hyperplane 
Y(ζ k,τ k) that contains the point (z, t) and which does not meet the set E(X; f + 1/k). We may
assume that ∥ζ k∥2

2 + τ k 2 = 1. Take an accumulation point (ζ, τ) of the sequence (ζ k, τ k).
Since X ∪ dom(f) is open, we can be sure that τ ≠ 0. The hyperplane Y(ζ,τ) passes through 
(z, t) and does not meet E(X∖dom(f); f) since τ ≠ 0. If on the other hand z ∉ X ∪ dom(f),
there is a hyperplane Y(ζ,0) which passes through (z, t) and does not cut E(X; f).

The openness in Proposition 9.8.40 cannot be dispensed with as we shall see now.

Example 9.8.41  There is a function f such that E(dom(f); f) is lineally convex while E(∅; f)
is not. De�ne

and let f = − logR. Then dom(f) consists of the complement of the hyperplanes Yζ, 
ζ = (1, −k), and

is lineally convex. (Note, however, that E(X; f) is not lineally convex if X contains dom(f)
strictly; cf. Example 9.8.9.) The function f is L -closed; cf. (9.93) and Theorem 9.8.42 below. To
prove that E(∅; f) is not lineally convex, let us note that (1, 0, 1) ∉ E(∅; f), for R(1, 0) = 1.
Suppose there exists a hyperplane Y(ζ,τ) which passes through the point (1, 0, 1) but does not cut 
E(∅; f). Then ζ0 + τ = 0. We must also have τ ≠ 0 since (1, 0, 0) ∈ E(∅; f) as well as ζ1 ≠ 0
since (1, 2, 1) ∈ E(∅; f). Moreover

Taking z = (ζ1, −ζ0) we see that there is a number m such that ζ1 = −mζ0, and we can
conclude that, taking z0 = 1,

However, for z1 close to 1/m we must have

so that

for all z1 close to 1/m. This is impossible, which shows that there is no such hyperplane.

∣ ∣R(z) = inf
k∈N∖{0}

|(k + 1)z1 − z0 − z0/k|, z = (z0, z1) ∈ C1+1∖{0},

E(dom(f); f) =
∞
∩
k=1

{(z, t); z ∉ Y(1,−k)and t ⩽ (k + 1)z1 − z0 − z0/k }∣ ∣ ∣ ∣|ζ⋅z|
|τ| =

|ζ⋅z|
|ζ0| ⩾inf

k
(k + 1)z1 − z0 − z0/k forall z.∣ ∣|ζ⋅z|

|ζ0| = m z1 − 1/m ⩾inf
k

(k + 1)z1 − 1 − 1/k .∣ ∣ ∣ ∣inf
k

(k + 1)z1 − 1 − 1/k = (m + 1)z1 − 1 − 1/m ,∣ ∣ ∣ ∣m|z1 − 1/m|⩾(m + 1)|z1 − 1/m|



Theorem 9.8.42  If f = LL f in (X ∪ dom(f))**, then E((X ∪ dom(f))**; f) is lineally
convex. In particular, if we assume domf to be lineally convex and X ⊂ dom(f), then 
LL f = f in dom(f) implies that E(dom(f); f) is lineally convex.

Conversely, if E(X; f) is lineally convex, then f = L (L f) in X ∪ dom(f), which is a
lineally convex set. If f is bounded from below on the unit sphere, then f = L (L f) = +∞

outside dom(f)
**

. Thus in this case L (L f) = f everywhere if X ⊃ dom(f)
**

∖dom(f).

Proof Suppose that f = LL f in (X ∪ dom(f))**. Take

We shall then prove that there is a hyperplane Y(ζ,τ) (see (9.131)) which contains (z0, t0) and

does not cut E((X ∪ domf)**; f). Consider �rst the case

We know that t0 > e−f(z0). By the de�nition of L f and since 

(LL f)(z0) = f(z0) > − log t0 , we can choose ζ such that

Then we take τ = −ζ ⋅ z0/t0, so that (z0, t0) ∈ Y(ζ,τ) and −(L f)(ζ) > log |τ|. Moreover, for
any (z, t) ∈ Y(ζ,τ) we have

which shows that (z, t) ∉ E((X ∪ dom(f))**; f). The case z0 ∉ (X ∪ dom(f))** remains to
be considered. In this case there is a hyperplane Yζ that contains z0 and does not meet 

(X ∪ dom(f))**, so the hyperplane Y(ζ,0) does not cut E((X ∪ dom(f))**; f).
Now assume that E(X; f) is lineally convex. We already know that X ∪ dom(f) is lineally

convex (cf. Proposition 9.8.38). If f assumes the value −∞, then 
E(X; f) = (X ∪ dom(f)) × C, and f = LL f = −∞ in X ∪ dom(f). If f > −∞, let z0 be

any point in X ∪ dom(f) and take t0 such that t0 > e−f(z0), thus (z0, t0) ∉ E(X; f). By

hypothesis there is a hyperplane Y(ζ,τ) which passes through (z0, t0) and does not meet E(X; f).
Since (z0, 0) ∈ E(X, f), we must have τ ≠ 0, so we obtain a minorant of f of the form 
− log |ζ ⋅ z| + log |τ|⩽f(z), where the left-hand side takes the value − log t0 < f(z0) at the
point z0 and moreover can be chosen larger than any number less than f(z0). Thus 
(LL f)(z0)⩾f(z0) and we conclude that LL f = f in all of X ∪ dom(f).

Finally, assume that f⩾ − C on the unit sphere without any further assumption. Thus,
putting A = dom(f), we have f⩾g = IA − C, so that L f⩽L g = C − log dA*  by Proposition
9.8.20. We now note that dA* = dA*°  and take the transformation once again, this time using
Proposition 9.8.23. We get LL f⩾LL g⩾IA*°* − M − C. In particular L f(z) = +∞ if 

z ∉ A*°* = A ** = dom(f)
**

 (cf. (D) in Proposition 9.8.2). This �nishes the proof.

¯̄

(z0, t0) ∉ E((X ∪ dom(f))**; f).

z0 ∈ (X ∪ dom(f))**.∣ ∣ ∣ ∣− log ζ ⋅ z0 − (L f)(ζ) > − log t0 .∣ ∣ ∣ ∣f(z)⩾(LL f)(z)⩾ − log |ζ ⋅ z| − (L f)(ζ) = − log |τt| − (L f)(ζ) > − log |t|,∣ ∣ ∣ ∣¯̄



□
Corollary 9.8.43  Assume that f is bounded from below on the unit sphere and that dom(f) is
closed and lineally convex. Then f is L -closed if and only if E(dom(f); f) is lineally convex.

We now proceed to study the case when dom(f) is open and f tends to +∞ at the boundary.
Propositions 9.8.44 and 9.8.47 below are applicable when f tends rather fast to +∞, and
Theorem 9.8.49 in a more general situation.

Proposition 9.8.44  Let f be a homogeneous function on C1+n∖{0} which tends to +∞ at the
boundary of dom(f) = A in the strong sense that f⩾ − C − log dA for some constant C, where
dA is de�ned by (9.96). Then f is L -closed if and only if E(∅; f) is lineally convex.

Proof If f is L -closed, then its effective domain A = A° must be lineally convex by Theorem

9.8.14, for A = (dom(LL f))° = dom(L f)
*
 in view of (9.99) applied to L f (this function

is bounded from below on the unit sphere unless f is +∞ identically, a trivial case). Theorem
9.8.42 now shows that E(A; f) is lineally convex and Proposition 9.8.40 implies that E(∅; f) is
lineally convex.

Conversely, assume that E(∅; f) is lineally convex. In view of Theorem 9.8.42 it only
remains to be proved that LL f = f = +∞ outside A = dom(f). Now if f⩾ − C − log dA,
then L f⩽C +L (− log dA)⩽C + IA*  by Proposition 9.8.23. We take the transformation again
and obtain LL f⩾ − C +L IA* = −C − log dA** , using Proposition 9.8.20. But dom(f) is
lineally convex, so A** = A. Hence LL f = +∞ in the complement of A.

Functions with bounded logarithmic transforms exhibit the behavior studied in Proposition
9.8.44:

Proposition 9.8.45  Let f be a homogeneous function on C1+n∖{0} such that dom(f) = A

equals the interior of its closure and such that dom(f) is lineally convex. Assume that f is
bounded from below on the unit sphere and that L f is bounded from above in S ∩ dom(L f).
Then f⩾ − C − log dA, where C is a constant.

Proof We have L f⩽C + IB, where B = dom(L f). Therefore 
f⩾L (L f)⩾ − C +L IB = −C − log dB* = −C − log dB*° . The next lemma shows that 

B*° = A.

Lemma 9.8.46  Let f be a homogeneous function on C1+n∖{0} such that

Assume that f is bounded from below on the unit sphere and that dom(f) is lineally convex.

Then (dom(L f))*° = dom(f).
Proof From (9.99) we deduce, recalling that f is bounded from below on S, that

¯

¯

dom(f)
°

= dom(f).̄

¯

dom(f)
**

⊃ (dom(L f))* ⊃ (dom(f))** .̄



□

Now, since domf is lineally convex, so is its interior dom(f)
°

= dom(f) (Corollary 9.8.4).

Therefore dom(f) ⊃ (dom(L f))* ⊃ dom(f). Taking the interior of these sets we get 

(dom(L f))*° = dom(f).

Under a regularity assumption we can let f tend to in�nity at a slower pace:

Proposition 9.8.47  Let f be a homogeneous function on C1+n∖{0} which tends to +∞ at the
boundary of dom(f) = A in the sense that f⩾ − C − c log dA on the unit sphere for some
constants C and c with 0 < c⩽1. Assume that A* satis�es the homogeneous interior cone
condition (De�nition 9.8.27). Then f is L -closed if and only if E(∅; f) is lineally convex.

Remark 9.8.48  It can be easily proved that if A is lineally convex and its dual complement A*

satis�es the homogeneous interior cone condition, then so does its set-theoretic complement ∁A.

Proof In view of Theorem 9.8.42 and the proof of Proposition 9.8.44, it only remains to be
proved that LL f = f = +∞ outside dom(f) if E(∅; f) is lineally convex. Now if 
f⩾ − C − c log dA on the unit sphere S, then we obtain f⩾ − C + fc everywhere, introducing
the function fc of (9.103). We take the logarithmic transformation once to obtain 

L f⩽C +L fc⩽C + φ1−c (Proposition 9.8.19), and then again to get 
LL f⩾ − C +Lφ1−c⩾ − C − M + fc, this time applying Proposition 9.8.28 to the function 
φ1−c and using the homogeneous interior cone condition (De�nition 9.8.27) on A*. This shows
that LL f equals +∞ in the complement of A.

We �nally come to the general case of a function which tends to in�nity at the boundary.

Theorem 9.8.49  Let f be a homogeneous function on C1+n∖{0}. Assume that f is bounded from
below on the unit sphere and tends to +∞ at the boundary of A = dom(f) in the sense that 
As = {z ∈ S; f(z) < s} is strongly contained in dom(f) for all numbers s, i.e., the closure of
As is contained in the interior of A. (This implies that A is open.) Assume moreover that A*

satis�es the homogeneous interior cone condition. Then E(∅; f) is lineally convex if and only if f
is L -closed.

Proof For the proof we shall need the functions fA,r, where A is a homogeneous set and r is a
positive number, de�ned as fA,r = − log r + IA, thus fA,r = − log r − log ∥z∥2 when z ∈ A

and fA,r = +∞ otherwise. We note that L fA,r = log r − log dA*  (Proposition 9.8.20, so that 
(ζ, τ) belongs to E(A*;L fA,r) if and only if ζ ∈ A* and r|τ|⩽dA*(ζ).

What remains to be done, considering Theorem 9.8.42 and the proof of Proposition 9.8.44, is
the following, assuming E(∅; f) to be lineally convex. Given any z0 ∉ dom(f) = A it is
required to �nd a hyperplane Y(ζ,τ) with τ ≠ 0 which does not cut E(∅; f) and passes through 
(z0, t0) with t0  arbitrarily small; the problem is to avoid the vertical hyperplanes, those with 
τ = 0. Since f is bounded from below on S, there is a number R such that E(∅; f) is contained in
E(∅; fA,R). On the other hand, given any ε > 0, there is a homogeneous set K which is strongly
contained in A and such that f⩾ − log ε on S∖K; this means that E(∅; f) is contained in 
E(∅; fA,ε) ∪ E(∅; fK,R). We shall �nd a hyperplane which does not cut the latter set for a

¯̄

¯∣ ∣



suitable choice of ε. This amounts to �nding (ζ, τ) in E(∅; fA,ε)
* ∩ E(∅; fK,R)*, equivalently in 

E(A*;L fA,ε) ∩ E(K *;L fK,R); cf. (9.123). The hyperplane shall also contain a point (z0, t0)
with t0 = δ positive but arbitrarily small.

We shall thus �nd ζ and τ such that

We take 0 ≠ τ = −(ζ ⋅ z0)/t0 to ensure that (z0, t0) belongs to Y(ζ,τ), and then the problem is
reduced to �nding ζ such that

(9.132)

Since by hypothesis z0 ∉ A = A**, there is a point ζ 0 ∈ A* such that ζ 0 ⋅ z0 = 0. If ζ0 is in the
interior of A*, then �nding ζ is easy: we have dK *(ζ 0)⩾dA*(ζ 0) > 0 = ζ 0 ⋅ z0  and can take ζ
close to ζ0. If on the other hand ζ 0 ∈ ∂A*, we argue as follows. By the homogeneous interior
cone condition,

for some positive constant γ. On the other hand

Given any positive δ, it is thus enough to choose ε such that ε z0 ⩽δγ to satisfy the �rst
inequality in (9.132) for some ζ close to ζ0, more precisely satisfying ζ − ζ 0 ⩽s ζ 0  for any
given suf�ciently small positive s. The second is then satis�ed strictly when ζ = ζ 0, because A*

is strongly contained in K* by Corollary 9.8.3, so that dK *(ζ 0) > dA*(ζ 0) = 0, and it must
therefore also be satis�ed for all ζ satisfying ζ − ζ 0 ⩽s ζ 0  for all suf�ciently small positive s.
This completes the proof.

9.8.8 A necessary differential condition for L -closed functions

It is well known that convex functions as well as plurisubharmonic functions of class C2 can be
characterized by differential conditions. Is the same true for L -closed functions? We shall �rst
establish a necessary differential condition.

Proposition 9.8.50  Suppose that f is an L -closed function of class C 2 in some open set Ω of 
C1+n∖{0}. Then

(9.133)

∣ ∣ 0 ≠ τ ⩽ 1
ε
dA*(ζ) and  τ ⩽ 1

R
dK *(ζ).∣ ∣ ∣ ∣0 ≠ ζ ⋅ z0 ⩽ δ

ε
dA*(ζ) and  ζ ⋅ z0 ⩽ δ

R
dK *(ζ).∣ ∣ ∣ ∣ ∣ ∣sup

∥ζ−ζ 0∥2

⩽s∥ζ 0∥2dA*(ζ)⩾γs∥ζ 0∥2

sup
∥ζ−ζ 0∥2 ⩽s∥ζ 0∥2

ζ ⋅ z0 = s∥ζ 0∥2∥z0∥2.∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣∣ ∣ ∣ ∣∑(fzjzk − 2fzjfzk)bjbk ⩽∑ fzjzkbjb̄k, inΩ forall b ∈ C1+n.∣ ∣¯



In particular, if n = 1 and we de�ne F(z) = f(1, z), z ∈ C, then

(9.134)

Proof De�ne g(z) = − log |β ⋅ z|. For every point a where f(a) is �nite there is a vector β such

that gradg(a) = gradf(a). Indeed, let us �rst note that by homogeneity ∑ ajfzj(a) = −1/2
for all a. If we choose βj = fzj(a), then β ⋅ a = −1/2 and

takes the value

at z = a. Then by L -closedness f(z)⩾f(a) + g(z) − g(a) for all z, for the de�nition of the L -
transformation uses precisely the functions g plus a constant. Take a curve t ↦ γ(t) such that 
γ(0) = a and compare the two functions φ = f°γ and ψ = f(a) + g°γ − g(a). We have 

φ(0) = ψ(0) and φ′(0) = ψ′(0) and must therefore have φ′′(0)⩾ψ′′(0). We calculate φ′′:

The corresponding formula for ψ simpli�es to

since gzj  is holomorphic, i.e., gzjzk = 0. Also

Moreover gzj = fzj  at z = a, so that

The inequality φ′′(0)⩾ψ′′(0) then means that

If we now let the direction γ ′(0) vary, this means that (9.133) holds.

Fzz − 2F 2
z ⩽Fzz.∣ ∣¯∂g

∂zj
(z) = − 1

2
βj

β⋅z

∂g
∂zj

(a) = − 1
2

βj

β⋅a = βj

1
2 φ

′′(t) = Re ∑ fzjzk(γ(t))γ ′
j(t)γ

′
k(t)

+∑ fzjzk(γ(t))γ ′
j(t)γ

′
k(t) + Re ∑ fzj(γ(t))γ ′′

j (t).̄̄

1
2 ψ

′′(t) = Re ∑ gzjzk(γ(t))γ ′
j(t)γ

′
k(t) + Re ∑ gzj(γ(t))γ ′′

j (t),

¯

gzjzk(z) = 1
2

βjβk

(β⋅z)2 = 2gzj(z)gzk(z).

1
2 ψ

′′(0) = 2Re ∑ fzj(a)fzk(a)γ ′
j(0)γ ′

k(0) + Re ∑ fzj(a)γ ′′
j (0).

Re ∑ fzjzk(a)γ ′
j(0)γ ′

k(0) +∑ fzjzk(a)γ ′
j(0)γ ′

k(0) + Re ∑ fzj(a)γ ′′
j (0)

⩾2Re ∑ fzj(a)fzk(a)γ ′
j(0)γ ′

k(0) + Re ∑ fzj(a)γ ′′
j (0).

¯̄



We shall now prove that the differential condition (9.134) is not suf�cient for L -closedness in a
simply connected domain which is not a disk.

Lemma 9.8.51  Let f be an L -closed function which is of class C 1 in a neighborhood of a point 
a ∈ C1+1∖{0}. We consider its restriction to z0 = 1, and write z for the coordinate there, thus 
F(z) = f(1, z). Let G(z) = log |1 + βz|, z ∈ C. We now choose β such that 
∂F(a)/∂z = ∂G(a)/∂z = −β/(1 + βa). With this value of β we have 
F(z)⩾F(a) + G(z) − G(a) for all z. In particular F(z)⩾F(a) at all points on the circle 
|1 + βz| = |1 + βa|.

The proof is easy.

Proposition 9.8.52  Let ω be a connected open subset of the Riemann sphere S 2 = C ∪ {∞}
such that S 2∖ω has at least one component which is not a disk. Then there exists a function F
which is +∞ in S 2∖ω, C∞ in ω, and satis�es the differential condition (9.134) in ω such that 
LL f ≠ f at some point in ω for the corresponding function f de�ned by 
f(z0, z1) = F(z1/z0) − log |z0|.

Proof Let K be the complement of a component of S 2∖ω which is not a disk; thus K contains ω.
Moreover the complement of K is connected and ∂K ⊂ ∂ω. Let a,b,c,d be the four points whose
existence is guaranteed by Lemma 9.4.35; recall that b, d ∈ K and a, c ∉ K. Since they are on a
circle, we can move them by a Möbius transformation: we can move a to 0 and c to ∞, and b,d to
some points on the real axis, d < 0 < b. Also b, d ∈ ∂ω since b, d ∈ ∂K. Now de�ne

Here we choose ε > 0 so small that the disk ∥z∥2⩽ε does not intersect K; this means that the
function is continuous, even identically zero in a neighborhood of the intersection of ω and the
imaginary axis. Moreover we choose ε so small that F satis�es the differential condition 

(∂F/∂y)2⩽∂ 2F/∂y2, and such that the point b1 = b − iε belongs to ω. This means that F
satis�es (9.134). Now at a point b2 near b1, F takes arbitrarily small positive values. If there is a

function G tangent to F at such a point, it forces F to be positive at some point with negative real
part. Indeed, the circle |1 + βz| = |1 + βb2| passes through points arbitrarily close to the line 
Im z = Im b2 (see Lemma 9.8.51). This is a contradiction, since we de�ned F to be identically
zero at all points in ω in the left half plane, and there are such points by construction.

9.9 Lineal Convexity in In�nite Dimension

Abstract of this section
The purpose of this section is to study some problems on lineal convexity in spaces of in�nite
dimension, in particular to prove that a pseudoconvex or lineally convex set which is open in a

¯

¯̄

F(z) =  
⎧⎪⎨⎪⎩exp(−1/(Im z + ε))  when z ∈ ω, Re z > 0, Im z > −ε,

0  at other points in ω,

+∞  otherwise.
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subspace can be extended to an open set in the whole space which is pseudoconvex or lineally
convex, respectively.

Given a pseudoconvex open set ω in Ck regarded as a subspace Ck × {0} of Ck × Cn−k = Cn,
we can fatten it into pseudoconvex set which is open in the whole space by taking a Cartesian

product ω × ω′ for a suitable set ω′ in Cn−k. How can this be done in an in�nite-dimensional
space? It is also of interest to construct a set which tapers off at the boundary of ω.

In an in�nite-dimensional Hausdorff topological vector space the subspaces of �nite
dimension (which are always closed) and those subspaces of �nite codimension which are closed
are of particular interest. Here the codimension of a subspace F of E is the dimension of the
quotient space E/F .

9.9.1 Generalizing lineal convexity

We start by generalizing the concept of lineally convex set to higher codimenions:

De�nition 9.9.1  Let E be a topological vector space and A a subset of E. We shall say that A is
m-lineally convex if its complement is a union of closed af�ne subspaces of codimension m.

Thus 1-lineal convexity is just lineal convexity as de�ned in De�nition 9.4.1 on page 279. An
m-lineally convex set is also k-lineally convex for k⩾m. An m-lineally convex open set in Cn is 
(n − m)-pseudoconvex in the sense of Rothstein (1955:130).

9.9.2 Inverse images of m-lineally convex sets

The intersection of an m-lineally convex set with a subspace is also m-lineally convex in that
subspace—more generally, we have the following result.

Proposition 9.9.2  Let f : E → F  be a continuous linear mapping of a topological vector space E
into another one, F. If Y is an m-lineally convex subset of F, then its inverse image A = f *(Y )
under f is also m-lineally convex.

Proof Take x ∈ E∖X. Then y = f(x) belongs to F∖Y  and by hypothesis we can �nd a linear
subspace K ⊂ F  of codimension m such that y + K does not meet Y. The inverse image 

H = f *(K) is a vector subspace of E and E/H is of �nite dimension. For the codimensions we
obtain

So E∖X is a union of closed af�ne subspaces of codimension at most m, thus X is m-lineally
convex.

9.9.3 Constructing thicker sets

Theorem 9.9.3  Let E be a normed complex vector space, V an open cone in E which is m-
lineally convex, and F a vector subspace of E of dimension m. Assume that V ∩ F = F∖{0}. If
ω is a pseudoconvex open set in F, then

codimE(H) = dimE/H = dim f*(E)/K⩽ dimF/K = codimFK = m.

( )



is open and pseudoconvex in E, and Ω ∩ F = ω.

Proof We have

(9.135)

so that E∖Ω is the vector sum of two closed sets in E. Let B be the unit ball in E. Since F is of
�nite dimension and V contains F∖{0}, there is a positive number s such that

in view of the homogeneity of F and V we have for all r > 0

(9.136)

Let now x ∈ E∖Ω with ∥x∥⩽r/s. There is, according to (9.135) a representation x = y + z of x
with y ∈ F∖ω and z ∈ E∖V . It follows that ∥y∥⩽r/s, for if we have ∥y∥ > r/s, it would follow
from (9.136) that y ∈ F∖(rs−1B). This proves that

Since (rs−1B) ∩ (F∖ω) is compact and the vector sum of a compact set and a closed set is
closed, we have �nally proved that (rB)∖Ω is closed; consequently, since r is arbitrary, that Ω is
open.

In order to prove that Ω is pseudoconvex, we shall �nd, given any point y ∈ E∖Ω, a
continuous linear projection π : E → F  such that π*(ω) contains Ω but not y.

So let y belong to E∖Ω. We then have y ∉ x + V  for some x ∈ F∖ω. By hypothesis there
exists a closed vector subspace H of E of codimension m and such that y − x + H does not meet
V. Lemma 9.9.4 below shows that y − x + H = H and since F is of codimension m and 
F ∩ H = {0}, we have E = F + H, a direct sum. The projection π : E → F  with kernel H and

image F is continuous. Since y − x ∈ H, we have π(y) = π(x) = x ∈ F ; that is, y ∉ π*(ω). On
the other hand, π*(V ) = F∖{0}, which after a translation proves that π*(x + V ) = F∖{x},
hence

Summing up, y ∉ π*(ω) and π*(ω) ⊃ π*(π*(Ω) = Ω, the conclusion we wanted.

During the proof above we needed the following lemma.

Ω = ∩
x∈F∖ω

(x + V )

E∖Ω = (F∖ω) + (E∖V ),

(F∖B) + sB ⊂ V ;

[F∖(rs−1B)] + rB ⊂ V .

rB∖Ω ⊂ [(rs−1) ∩ (F∖ω)] + (E∖V ).

π*(Ω) ⊂ ∩
x

(F∖{x}; x ∈ F∖ω) = ω.



Lemma 9.9.4  Let V be an m-lineally convex open cone in a topological vector space E. Assume
that V contains F∖{0}, where F is a vector subspace of E of dimension m. Then A∖V  is a union
of closed vector subspaces of dimension m; in fact, every closed af�ne vector subspace of E
which is contained in E∖V  and of codimension m contains the origin and is a linear subspace.

Proof Let H be a subspce of E of codimension m and such that (a + H) ∩ V = ∅. We shall thus
prove that a + H = H. If we had F + H ≠ E, there would exist x ∈ F ∩ H, x ≠ 0. Then 
a + rx ∈ a + H ⊂ E∖V . But a + rx belongs to V for all suf�ciently large r since 
x ∈ F∖{0} ⊂ V . This contradiction shows that F + H = E; it follows that a can be represented
as a = y + z, where y ∈ F , z ∈ H and y = a − z ∈ a + H. Hence

in other words that 0 ∈ a + H, which is a vector subspace of E. This proves the lemma and so
completes the proof of Theorem 9.9.3.

Let us note that we also have the next result, which is closely related to the theorem just proved.

Theorem 9.9.5  Let E, F, V and Ω be as in Theorem 9.9.3. Assume that that ω is m-lineally
convex in F. Then Ω is also m-lineally convex.

Proof Let y ∈ E∖Ω. As in the proof of Theorem 9.9.3, there is an x ∈ F∖ω and a projection 
π : E → F  such that π(y) = π(x) = x. According to Proposition 9.9.2, π*(ω) is m-lineally
convex and it follwos that Ω, the intersection of all the sets π*(ω) for the various choices of π, is
also m-lineally convex.

9.9.4 Constructing convex cones

Finally we shall indicate how it is possible to construct cones V that can serve in Theorems 9.9.3
and 9.9.5.

Proposition 9.9.6  Let E be a topological vector space and let Aj, j = 1, … , p, be mj-lineally
convex subsets of E. Then the intersection A = A1 ∪ ⋯ ∪ Ap is m-lineally convex, where 
m = m1 + ⋯ + mp.

Proof Take any point a ∈ E∖A. Then a ∈ E∖Aj for every j and there exists a closed subspace F
of E of codimension mj such that a + Fj does not meet Aj. The intersection F = F1 ∩ ⋯ ∩ Fp

is closed and of codimension at most equal to m and does not cut A. We are ready.

Let us denote by T the unit circle T = {t ∈ C; |t| = 1}, and by TA = {tx; x ∈ A} the circled
set generated by a set A in a vector space.

Lemma 9.9.7  If V is an open convex cone in a complex vector space E, then TV  is 1-lineally
convex.

Proof If TV  is equal to E there is nothing to prove, so let us suppose that TV ≠ E. If 
a ∈ E∖TV , let us denote by F = Ca the vector subspace generated by a. Then F does not meet
V (note that the origin does not belong to V), so the Hahn–Banach theorem gives us a closed

y ∈ (y + H) ∩ F ⊂ (a + H) ∩ (V ∪ {0}) ⊂ {0};



hyperplane H that contains F and does not meet V. Now TH = H, so H does not meet TV

either, and, since a ∈ H, this proves that TV  is 1-lineally convex.

Proposition 9.9.8  Let V1, … ,Vm be open convex cones in a topological vector space E. Then

is m-lineally convex.

Proof We combine Proposition 9.9.2 and Lemma 9.9.7.

Proposition 9.9.9  Let E be a normed complex vector space, F a vector subspace of E and 
ξ1, … , ξm nonzero linear forms on E such that their restrictions to F have norm at most equal to
1. Then

(9.137)

is an open m-lineally convex cone in E.

Proof Let us de�ne

This is a convex function and it never takes the value −∞, since

for every x ∈ E and every y ∈ F . Hence we have −∥x∥⩽uj⩽∥x∥. The cone

is convex and open in view of the continuity of uj. From Proposition 9.9.8 we see that 

V = TV1 ∪ ⋯ ∪ TVm is m-lineally convex.

Let us also note that the cone V de�ned by (9.137) contains the cone

This cone is open in F but not in E. If we make it a bit thicker to obtain an open cone in E, it can
serve in Theorems 9.9.3 and 9.9.5 provided F is a subspace of dimension m and

this latter condition means that the restrictions of the ξj to F form a base in the dual of F.

V = TV1 ∪ ⋯ ∪ TVm

V = {x ∈ E; ∥x − y∥ < supj=1,…,m ξj(y) forsome y ∈ F}∣ ∣uj(x) = inf
y∈F

(∥x − y∥ − Re ξj(y)), x ∈ E, j = 1, … ,m.

∥x − y∥ − Re ξj(y)⩾∥x − y∥ − ∥y∥⩾ − ∥x∥ > −∞

Vj = {x ∈ E; uj(x) < 0}

V0 = F∖
m
∩
j=1

ker ξj.

F ∩ ker ξ1 ∩ ⋯ ∩ ker ξm = {0};
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10.1 Introduction

In the complex analysis of one variable, the Cauchy integral formula plays a
central role. Indeed, virtually all of the fundamental results in the subject are
derived from that simple formula.

https://doi.org/10.1201/9781315160658-10


In the realm of harmonic functions, the Poisson kernel and integral formula
play a central role. Fundamental results, such as the Fatou theorem about
nontangential boundary behavior of harmonic and holomorphic functions,
depend critically on the nature of the Poisson kernel, and particularly on the
shape of its singularity.

In the complex analysis of several variables—where the quality of the
analysis depends on the geometry of the domain in question—the nature of
kernels plays an even more critical role. On the one hand, it is generally very
dif�cult to calculate the relevant kernels. On the other hand, knowledge of the
kernels is a valuable tool.

It is a pleasure to thank Joseph A. Cima for a careful reading of this paper
and for many constructive suggestions.

10.2 The Cauchy Formula in One Complex Variable

Throughout this paper we use the term domain to mean a connected open set in ℂ
or ℂn.

Viewed properly, the Cauchy integral formula in one complex variable is not
a result about holomorphic functions. Rather, it is a result about arbitrary smooth
functions. And it is a corollary of Stokes's theorem. We now explicate this point
of view.

The language of differential forms is needed in order to formulate Stokes's
theorem. We say just a few words about the matter here. We shall only need
differential 1-forms. You know from calculus that, in the plane, these are
generated by dx and dy. In complex analysis, we let

Correspondingly, we de�ne

It is worth noting that

dz = dx + idy and dz = dx − idy .̄

∂
∂z = 1

2 (
∂

∂x − i ∂
∂y ) and ∂

∂z = 1
2 (

∂
∂x + i ∂

∂y ) .̄

∂
∂z z = 1 , ∂

∂z z = 0̄



and

There are corresponding intuitively appealing pairings between ∂/∂z and dz and
between ∂/∂z and dz.

If ω = udz + vdz is a 1-form, then

(10.1)

Of course, 1-forms can be integrated over 1-manifolds, such as the circle, and 2-
forms can be integrated over 2-manifolds, such as the sphere or torus or a planar
domain.

Finally, we recall the exterior differential operator d. In the complex setting

we can decompose d = ∂ + ∂ , where

and

Refer back to equation (10.1).

Theorem 10.2.2.  (Stokes)  Let Ω ⊆ C be a bounded open set with C1 boundary.
Let ω be a differential form of degree 1 with coef�cients in C 1(Ω). Then

Standard references for Stokes's theorem are [RUD] and [DER]. The Stokes's
theorem that we have recorded here is the standard one, simply expressed in
complex notation.

Now we have

Proposition 10.2.3  Let Ω ⊆ C be a simply connected domain with C 1 boundary.

Let f be a C 1 function on Ω . Then it holds, for z ∈ Ω, that

∂
∂z z = 1 , ∂

∂z z = 0 .̄̄̄

¯̄
¯

dω = ∂u
∂z dz ∧ dz + ∂v

∂z dz ∧ dz = ( ∂v
∂z − ∂u

∂z )dz ∧ dz .̄̄̄̄̄

¯

∂ω = ∂v
∂z
dz ∧ dz̄

∂ω = ∂u
∂z
dz ∧ dz .̄̄̄

¯

∫
∂Ω

ω = ∫
Ω

dω = ∫
Ω

∂ω + ∂ω.̄

¯

( )



(10.2)

Proof: Fix a point z ∈ Ω and let ϵ > 0 be so small that D(z, ϵ) ⊆ Ω. We apply

Stokes's theorem to the 1-form f(ζ)/(ζ − z) dζ on the domain Dϵ ≡ Ω∖D(z, ϵ).
Thus we obtain

(10.3)

Now, as ϵ → 0+, the right-hand side of equation (10.3) tends to

just because 1/(ζ − z) is integrable. Let us examine the left-hand side of (10.3).
We write

It is worth noting that ∂Ω and ∂D(z, ϵ) have opposite orientations because of
their different roles in the boundary of Ωϵ. Now the �rst expression on the right-
hand side of this last display is the �rst term of the right-hand side of (10.2). It
remains to analyze the second term on the right-hand side of this last display.

In fact, we have

f(z) = 1
2πi ∫

∂Ω

f(ζ)

ζ − z
dζ − 1

2πi ∫ ∫

Ω

∂f/∂ζ
ζ−z

dζ ∧ dζ .
¯¯

¯

¯

1
2πi

∫
∂Ωϵ

f(ζ)

ζ − z
dζ = 1

2πi
∫ ∫

Ωϵ

∂f/∂ζ
ζ−z

dζ ∧ dζ .
¯¯

1
2πi ∫ ∫

Ω

∂f/∂ζ
ζ−z

dζ ∧ dζ ,
¯¯

1
2πi ∫

∂Ωϵ

f(ζ)

ζ − z
dζ

= 1
2πi ∫

∂Ω

f(ζ)

ζ − z
dζ − 1

2πi ∫
∂D(0,ϵ)

f(ζ)

ζ − z
dζ .



□

as ϵ → 0+.
Putting together all the pieces, we �nd that we have derived equation (10.2).
It is important to note now that, if Ω is as in the statement of the

proposition and f ∈ C 1(Ω) and holomorphic on the interior, then equation
(10.2) simpli�es to

This, of course, is the Cauchy integral formula that one can �nd in any complex
analysis text.

10.3 Harmonic Functions and the Poisson Kernel

If we take it on faith that the Dirichlet problem on the disc always has a solution
(see, for instance, [GRK]), then we may discover a formula for that solution in
the following fashion.

Let f be an L2 function on ∂D, the boundary of the unit disc. Then we may
expand f, in the L2 topology, as a Fourier series:

1
2πi ∫

∂D(0,ϵ)

f(ζ)

ζ − z
dζ = 1

2πi ∫
2π

0

f(z + ϵeit)
ϵeit

iϵeit dt

= 1
2π ∫

2π

0
f(z + ϵeit) dtv

→ f(z)

¯

f(z) = 1
2πi ∫

∂Ω

f(ζ)

ζ − z
dζ .

f(eiθ) =
∞

∑
j=−∞

f̂(j)eijθ

=
∞

∑
j=−∞

1

2π
∫

2π

0
f(t)e−itj dt ⋅ eijθ

= ∫
2π

0
f(t)( 1

2π

∞

∑
j=−∞

eij(θ−t)) dt .



Now each character eijt has a harmonic extension to the disc given by 
φj(reit) ≡ r|j|eijt. So it is natural to consider that the harmonic extension of f to
the disc D is given by

It behooves us then to calculate the sum

Now we have

We see that

A similar calculation shows that

As a result,

f(reiθ) = ∫
2π

0
f(t)( 1

2π

∞

∑
j=−∞

r|j|eij(θ−t)) dt

Pr(ei(θ−t)) = 1
2π

∞

∑
j=−∞

r|j|eij(θ−t) .

Pr(e
i(θ−t)) = 1

2π

−1

∑
−∞

r−jeij(θ−t) + 1
2π

∞

∑
1

rjeij(θ−t) + 1
2π ≡ I + II + III .

I = 1
2π

∞

∑
1

rje−ij(θ−t)

= 1
2π

∞

∑
0

rj+1e−i(j+1)(θ−t)

= 1
2π
re−i(θ−t)

∞

∑
j=0

(re−i(θ−t))
j

= 1
2π re

−i(θ−t) ⋅ 1
1−re−i(θ−t)

= 1
2π

r

ei(θ−t)−r
.

II = 1
2π

r

e−i(θ−t)−r
.

Pr(ei(θ−t)) = 1
2π ⋅ r

ei(θ−t)−r
+ 1

2π ⋅ r

e−i(θ−t)−r
+ 1

2π = 1
2π ⋅ 1−r2

1−2r cos(θ−t)+r2 .



This is the Poisson kernel.
The basic result about this kernel is as follows.

Theorem 10.3.1  Let f be a continuous function on the unit circle T = ∂D. Then
the function

is continuous on D and harmonic on D. Note that F(eiθ) = f(eiθ).

10.4 Introduction to the Bergman Theory

Stefan Bergman introduced his reproducing kernel in 1921. It was anticipated
somewhat by the thesis of S. Bochner, which was later published in [BOC]. Since
Hilbert space was a very new idea at the time, Bergman's approach made quite an
impact.

In this section we work only in ℂ, the complex plane. Let Ω ⊆ C be a
domain. De�ne the Bergman space

Observe that A2(Ω) is a closed subspace of L2(Ω). The orthogonal subspace B
is also of interest. Of course, L2(Ω) = A2(Ω) ⊕ B.

Lemma 10.4.1  Let K ⊆ Ω be compact. There is a constant CK > 0, depending
on K, such that

Proof: In what follows, D(z, r) is the open disc with center z and radius r. Also
dA denotes 2-dimensional area measure.

Since K is compact, there is an r(K) = r > 0 so that, for any 
z ∈ K,D(z, r) ⊆ Ω. Therefore, for each z ∈ K and f ∈ A2(Ω), the mean value
theorem tells us that

F(reiθ) = Pr*f(eiθ) .

¯

A2(Ω) = {f holomorphic onΩ : ∫
Ω

f(z) 2 dA(z)1/2 ≡ ∥f∥A2(Ω) < ∞}.∣ ∣sup
z∈K

f(z) ≤ CK∥f∥A2(Ω) , all f ∈ A2(Ω).∣ ∣



□

□

Lemma 10.4.2  The space A2(Ω) is a Hilbert space with the inner product 

⟨f, g⟩ ≡ ∫
Ω

f(z)g(z) dA(z).

Proof: Everything is clear except for completeness. Let {fj} ⊆ A2 be a
sequence that is Cauchy in norm. Since L2 is complete there is an L2 limit
function f. We need to see that f is holomorphic. But Lemma 4.1 yields that norm
convergence implies normal (uniform on compact sets) convergence. And
holomorphic functions are closed under normal limits. Therefore, f is
holomorphic and A2(Ω) is complete.

Lemma 10.4.3  For each �xed z ∈ Ω, the functional

is a continuous linear functional on A2(Ω).

Proof: This is immediate from Lemma 4.1 if we take K to be the singleton {z}.

We may now apply the Riesz representation theorem to see that there is an
element kz ∈ A2(Ω) such that the linear functional Φz is represented by inner
product with kz : if f ∈ A2(Ω), then for all z ∈ Ω we have

De�nition 10.4.4  The Bergman kernel is the function K(z, ζ) = kz(ζ), z, ζ ∈ Ω.
It has the reproducing property

|f(z)| = 1
A(D(z,r))

∫
D(z,r)

f(t) dA(t)

≤ (A(D(z, r)))−1/2∥f∥L2(D(z,r))

≤ C ⋅ r−1∥f∥A2(Ω)

≡ CK∥f∥A2(Ω). □∣ ∣¯Φz : f ↦ f(z), f ∈ A2(Ω)

f(z) = Φz(f) = ⟨f, kz⟩.

¯

f(z) = ∫ K(z, ζ)f(ζ) dA(ζ), ∀f ∈ A2(Ω).



Proposition 10.4.5  The Bergman kernel K(z, ζ) is conjugate symmetric: 

K(z, ζ) = K(ζ, z).

Proof: By its very de�nition, K(ζ, ⋅) ∈ A2(Ω) for each �xed ζ. Therefore, the
reproducing property of the Bergman kernel gives

On the other hand,

Proposition 10.4.6  The Bergman kernel is uniquely determined by the properties
that it is an element of A2(Ω) in z, is conjugate symmetric and reproduces 
A2(Ω).

Proof: Let K ′(z, ζ) be another such kernel. Then

Since L2(Ω) is a separable Hilbert space, then so is its subspace A2(Ω).
Thus there is a complete orthonormal basis {ϕj}

∞
j=1 for A2(Ω).

Proposition 10.4.7  Let K be a compact subset of Ω. Then the series

sums uniformly on K × K to the Bergman kernel K(z, ζ).

¯

¯

∫
Ω

K(z, t)K(ζ, t) dA(t) = K(ζ, z).̄̄

∫
Ω

K(z, t)K(ζ, t) dA(t) = ∫ K(ζ, t)K(z, t) dA(t)

= K(z, ζ)

= K(z, ζ). □

¯
¯
¯

¯̄

K(z, ζ) = K(ζ, z) = ∫ K ′(z, t)K(ζ, t) dA(t)

= ∫ K(ζ, t)K ′(z, t) dA(t)

= K ′(z, ζ) = K ′(z, ζ). □

¯̄

¯
¯

¯̄

∞

∑
j=1

ϕj(z)ϕj(ζ)̄



Proof: Let {ϕj} be a complete orthonormal basis for the Bergman space. By the
Riesz-Fischer and Riesz representation theorems, we obtain

(10.4)

In the last lines we have used Lemma 4.1 and the Hahn-Banach theorem.
Therefore,

and the convergence is uniform over z, ζ ∈ K. For �xed z ∈ Ω, (10.4.) shows

that {ϕj(z)}∞
j=1 ∈ ℓ2. Hence we have that ∑ϕj(z)ϕj(ζ) ∈ A2(Ω) as a function

of ζ. Let the sum of the series be denoted by K ′(z, ζ). Notice that K′ is conjugate
symmetric by its very de�nition. Also, for f ∈ A2(Ω), we have

where convergence is in the Hilbert space topology. [Here f̂(j) is the jth Fourier
coef�cient of f with respect to the basis {ϕj}. ] But Hilbert space convergence
dominates pointwise convergence (Lemma 4.1) so

sup
z∈K

(
∞

∑
j=1

ϕj(z) 2)

1/2

= sup
z∈K

{ϕj(z)}∞
j=1 ℓ2

= sup
∞

∑
j=1

ajϕj(z)

= sup f(z)

≤ CK .∣ ∣ ∥ ∥∥{aj}∥ℓ2=1

z∈K ∣ ∣∥f∥
A2=1

z∈K ∣ ∣∞

∑
j=1

ϕj(z)ϕj(ζ) ≤ (
∞

∑
j=1

ϕj(z) 2)

1/2

(
∞

∑
j=1

ϕj(ζ) 2)

1/2∣¯∣ ∣ ∣ ∣ ∣¯̄∫ K ′(⋅, ζ)f(ζ) dA(ζ) = ∑ f̂(j)ϕj(⋅) = f(⋅),



□

□

Therefore, K′ is the Bergman kernel.

REMARK 10.4.8  It is worth noting explicitly that the proof of Proposition 4.7
shows that

equals the Bergman kernel K(z, ζ) no matter what the choice of complete
orthonormal basis {ϕj} for A2(Ω).

Proposition 10.4.9  If Ω is a bounded domain in C then the mapping

is the Hilbert space orthogonal projection of L2(Ω, dA) onto A2(Ω).

Proof: Notice that, by Fubini's theorem, P is idempotent and self-adjoint and that 
A2(Ω) is precisely the set of elements of L2 that are �xed by P.□

Given a holomorphic mapping Φ : Ω1 → Ω2, we may ask to compare the
complex derivative Φ′ with the real Jacobian determinant JR(Φ). The fact of the
matter, and this is easy to check just using the Cauchy–Riemann equations, is
that

A holomorphic mapping f : Ω1 → Ω2 of domains Ω1 ⊆ C,Ω2 ⊆ C is said
to be biholomorphic (or conformal) if it is one-to-one, onto, and f ′(z) 0 for
every z ∈ Ω1.

In what follows we denote the Bergman kernel for a given domain Ω by KΩ.

Proposition 10.4.10  Let Ω1,Ω2 be domains in C. Let f : Ω1 → Ω2 be
conformal. Then

Proof: Let ϕ ∈ A2(Ω1). Then, by change of variable,

f(z) = ∫ K ′(z, ζ)f(ζ) dA(ζ), all f ∈ A2(Ω).

∑ϕj(z)ϕj(ζ)̄

P : f ↦ ∫
Ω

K(⋅, ζ)f(ζ) dA(ζ)

detJR(Φ) = |Φ′|2 .

=

f ′(z)KΩ2(f(z), f(ζ))f ′(ζ) = KΩ1(z, ζ).̄



□

□

By the remark following Proposition 4.9, this simpli�es to

By change of variables, the expression in braces { } is an element of A2(Ω2). So
the reproducing property of KΩ2  applies, and the last line equals

= f ′(z)(f ′(z))
−1
ϕ(f−1(f(z))) = ϕ(z) .

By the uniqueness of the Bergman kernel, the proposition follows.

Proposition 10.4.11  For z ∈ Ω it holds that KΩ(z, z) > 0.

Proof: Now

If in fact K(z, z) = 0 for some z then ϕj(z) = 0 for all j hence f(z) = 0 for
every f ∈ A2(Ω) by Proposition 4.7. This is absurd.

De�nition 10.4.12  For any Ω ⊆ C, we de�ne a Hermitian metric on Ω by

This means that the square of the length of a tangent vector ξ at a point z ∈ Ω is
given by

The metric that we have de�ned is called the Bergman metric.

∫
Ω1

f ′(z)KΩ2(f(z), f(ζ))f ′(ζ)ϕ(ζ) dA(ζ)

= ∫
Ω2

f ′(z)KΩ2(f(z), ζ̃)f ′(f−1(ζ̃))ϕ(f−1(ζ̃))

× detJRf
−1(ζ̃) dA(ζ̃).

¯

¯

f ′(z)∫
Ω2

KΩ2(f(z), ζ̃){(f ′(f−1(ζ̃)))
−1
ϕ(f−1(ζ̃))} dA(ζ̃).

KΩ(z, z) =
∞

∑
j=1

ϕj(z) 2 ≥ 0.∣ ∣g(z) = ∂ 2

∂z∂z logK(z, z), z ∈ Ω.̄

ξ 2
B,z = g(z)ξξ̄ .∣ ∣



In a Hermitian metric g, the length of a C1 curve γ : [0, 1] → Ω is given by

If P,Q are points of Ω then their distance dΩ(P ,Q) in the metric is de�ned to be
the in�mum of the lengths of all piecewise C1 curves connecting the two points.

It is not a priori obvious that the Bergman metric for a bounded domain Ω is
given by a positive de�nite matrix at each point.

Proposition 10.4.13  Let Ω1,Ω2 ⊆ C be domains and let f : Ω1 → Ω2 be a
biholomorphic mapping. Then f induces an isometry of Bergman metrics:

for all z ∈ Ω1, ξ ∈ C. Equivalently, f induces an isometry of Bergman distances
in the sense that

for all P ,Q ∈ Ω1.

Proof: This is a formal exercise, but we include it for completeness:
From the de�nitions, it suf�ces to check that

(10.5)

for all z ∈ Ω,w ∈ C. But, by Proposition 4.10,

(10.6)

since log |f ′(z)|2 is locally

ℓ(γ) = ∫
1

0
(g(γ(t)) γ ′(t) γ ′(t))1/2dt.̄

|ξ|B,z = |f ′(z)ξ|B,f(z)

dΩ2
(f(P), f(Q)) = dΩ1

(P ,Q)

gΩ2(f(z))(f ′(z)w)(f ′(z)w) = gΩ1(z)ww̄̄

gΩ1(z) = ∂ 2

∂z∂z logKΩ1(z, z)

= ∂ 2

∂z∂z log{|f ′(z)|2KΩ2(f(z), f(z))}

= ∂ 2

∂z∂z logKΩ2(f(z), f(z))

¯

¯

¯

( )



□

hence is annihilated by the mixed second derivative. But line (10.6) is nothing
other than

and (10.5) follows.

Proposition 10.4.14  Let Ω ⊂⊂ C be a domain. Let z ∈ Ω. Then

Proof: Now

by the Riesz-Fischer theorem,

10.4.1 Calculating the Bergman Kernel

We present three methods for calculating the Bergman kernel on the unit disc 
D ⊆ C. For the �rst, we use Proposition 4.7.

Construction of the Bergman Kernel with an Orthonormal Basis

Now we �rst notice that {ζ j}∞
j=0

 forms an orthogonal basis for A2(D). This

follows just from circular symmetry. In order to use 4.7, we need an orthonormal

log(f ′) + log(f ′) + C̄

gΩ2(f(z))
∂f(z)

∂z
∂f(z)

∂z

¯

¯

K(z, z) = sup
f∈A2(Ω)

|f(z)|2

∥f∥2
A2

= sup
∥f∥A2(Ω)=1

f(z) 2.∣ ∣K(z, z) = ∑ ϕj(z) 2

= ( sup
∥{aj}∥ℓ2=1

∑ϕj(z)aj )

2

= sup
∥f∥A2=1

f(z) 2,∣ ∣ ∣ ∣∣ ∣= sup
f∈A2

|f(z)|2

∥f∥2
A2

.



basis. So we calculate that

Hence a complete orthonormal system for A2(D) is

We then may calculate that

Set α = zζ . Then we have

This is our �rst calculation of the Bergman kernel for D.

Construction of the Bergman Kernel by Way of Differential Equations

It is actually possible to obtain the Bergman kernel of a domain in the plane
from the Green's function for that domain (see [KRA3, Section 1.3.3]). Let us
now summarize the key ideas. Unlike the �rst Bergman kernel construction, the

∫
D

ζ j 2 dA(ζ) = ∫
2π

0
∫

1

0
r2j ⋅ r drdθ = 2π

2j+2 .∣ ∣ {
√2j+2⋅ζ j

√2π
}

∞

j=0
.

KD(z, ζ) =
∞

∑
j=0

zjζ j(2j + 2)

2π
.

¯

¯

KD(z, ζ) = 1
2π

∞

∑
j=0

(2j + 2)αj

= 1
π

∞

∑
j=0

(j + 1)αj

= ( α
π

∞

∑
j=0

αj)

′

= ( α
π

⋅ 1
1−α

)
′

= 1
π

⋅ 1
(1−α)2

= 1
π

⋅ 1

(1−zζ)
2 .̄



present one will work for any domain with C2 boundary. Thanks to work of
Garabedian [GAR], one can say rather precisely what the Green's function of any
planar domain is (see also [JAK]).

First, the fundamental solution for the Laplacian in the plane is the function

This means that △ζΓ(ζ, z) = δz in the sense of distributions. [Observe that δz

denotes the Dirac “delta mass” at z and △ζ is the Laplacian in the ζ variable.] In

more prosaic terms, the condition is that

for any C∞ function φ with compact support. We write, as usual, ζ = ξ + iη.
[This topic is treated in detail in [KRA1, Ch. 0, 1].]

Given a domain Ω ⊆ C, the Green's function is posited to be a function 
G(ζ, z) on Ω × Ω that satis�es

where Fz(ζ) = F(ζ, z) is a particular harmonic function in the ζ variable (to be
speci�ed momentarily). Moreover, it is mandated that G( ⋅ , z) vanish on the
boundary of Ω. One constructs the function F( ⋅ , z), for each �xed z, by solving
a Dirichlet problem with boundary data Γ( ⋅ , z). Again, the reference [KRA1, p.
40] has all the particulars. It is worth noting, and this point is not completely
obvious but is discussed in [KRA1, Ch. 1], that the Green's function is a
symmetric function of its arguments.

The next proposition establishes a striking connection between the Bergman
kernel and the classical Green's function.

Proposition 10.4.15  Let Ω ⊆ C be a bounded domain with C 2 boundary. Let 
G(ζ, z) be the Green's function for Ω and let K(z, ζ) be the Bergman kernel for
Ω. Then

(10.7)

Γ(ζ, z) = 1
2π log ζ − z .∣ ∣∫ Γ(ζ, z) ⋅ △φ(ζ) dξdη = φ(z)

G(ζ, z) = Γ(ζ, z) − Fz(ζ) ,

K(z, ζ) = 4 ⋅ ∂ 2

∂ζ∂z G(ζ, z) .̄̄



Proof: Our proof will use a version of Stokes's theorem written in the notation of
complex variables. This matter was discussed earlier in the paper. It says that, if 

u ∈ C 1(Ω), then

(10.8)

where again ζ = ξ + iη. The reader is invited to convert this formula to an
expression in ξ and η and to con�rm that the result coincides with the standard
real-variable version of Stokes's theorem that can be found in any calculus book
(see, e.g., [THO], [BLK]).

Now we already know that

(10.9)

Here we think of the logarithm as a multivalued holomorphic function; after we
take a derivative, the ambiguity (which comes from an additive multiple of 2πi)
goes away.

Differentiating with respect to z (and using subscripts to denote derivatives),
we �nd that

We may rearrange this formula to read

We know that G, as a function of ζ, vanishes on ∂Ω. Hence so does Gz. Let 

f ∈ C 2(Ω) be holomorphic on Ω. It follows that the Cauchy formula

can be rewritten as

¯

∮
∂U

u(ζ) dζ = 2i ⋅ ∫ ∫

U

∂u
∂ζ

dξ dη ,̄

G(ζ, z) = 1
4π log(ζ − z) + 1

4π log (ζ − z) + F(ζ, z) .̄

Gz(ζ, z) = 1
4π

−1
ζ−z

+ Fz(ζ, z) .

1
ζ−z

= −4π ⋅ Gz(ζ, z) + 4πFz(ζ, z) .

¯

f(z) = 1
2πi ∮

∂Ω

f(ζ)

ζ − z
dζ



□

Now we apply Stokes's theorem (in the complex form) to rewrite this last as

where ζ = ξ + iη. Since f is holomorphic and F is real-valued, we may
conveniently write this last formula as

Now formula (10.9) tells us that Fζz = Gζz. Therefore, we have

(10.10)

With a suitable limiting argument, we may extend this formula from functions f
that are holomorphic and in C 2(Ω) to functions in A2(Ω).

It is straightforward now to verify that 4Gζz satis�es the �rst three
characterizing properties of the Bergman kernel, just by examining our
construction. The crucial reproducing property is, of course, formula (10.10).
Then it follows that

That is the desired result.

It is worth noting that the proposition we have just established gives a
practical method for con�rming the existence of the Bergman kernel—by relating
it to the Green's function, whose existence is elementary. See [HAP1] for a
version of these techniques in the several complex variables context.

Now let us calculate. Of course, the Green's function of the unit disc D is

f(z) = −2i∮
∂Ω

f(ζ)Fz(ζ, z) dζ .

f(z) = 4 ⋅ ∫ ∫

Ω

(f(ζ)Fz)ζ(ζ, z) dξ dη ,̄

f(z) = 4 ⋅ ∫ ∫

Ω

f(ζ)Fζz(ζ, z) dξ dη .̄̄

¯̄

f(z) = ∫ ∫

Ω

f(ζ)4Gζz(ζ, z) dξ dη .̄̄

¯

¯̄

K(z, ζ) = 4 ⋅ ∂ 2

∂ζ∂z G(ζ, z) .̄̄



as a glance at any classical complex analysis text will tell us (see, for example,
[AHL] or [HIL]). Verify the de�ning properties of Green's function for yourself.

With formula (10.7) in mind, we can make life a bit easier by writing

Here we think of the expression on the right as the concatenation of four
multivalued functions, in view of the ambiguity of the logarithm function. This
ambiguity is irrelevant for us because the derivative of Green's function is still
well de�ned (i.e., the derivative annihilates additive constants).

Now we readily calculate that

and

In conclusion, we may apply Proposition 4.15 to see that

This result is consistent with that obtained in the other two calculations (see
above and below).

Construction of the Bergman Kernel by Way of Conformal Invariance

Let D ⊆ C be the unit disc. First we notice that, if either f ∈ A2(D) or 

f ∈ A2(D), then

(10.11)

G(ζ, z) = 1
2π log ζ − z − 1

2π log|1 − ζz| ,∣ ∣¯G(ζ, z) = 1
4π log(ζ − z) + 1

4π log(ζ − z)

− 1
4π log(1 − ζz) − 1

4π log(1 − ζz) .

¯

¯̄̄

∂G
∂z = 1

4π ⋅ −1
ζ−z

+ 1
4π ⋅ ζ

1−ζz̄̄̄̄

∂ 2G
∂ζ∂z

= 1
4π

⋅ 1
(1−ζz)2 .̄̄

K(z, ζ) = 1
π

⋅ 1

(1−z⋅ζ)
2 .̄

¯

f(0) = 1
π
∫ ∫

D

f(ζ) dA(ζ) .



This is the standard, two-dimensional area form of the mean-value property for
holomorphic or harmonic functions.

Of course, the constant function u(z) ≡ 1 is in A2(D), so it is reproduced by
integration against the Bergman kernel. Hence, for any w ∈ D,

or

By (10.11), we may conclude that

for any w ∈ D.
Now, for a ∈ D �xed, consider the Möbius transformation

We know that

We may thus apply Proposition 4.10 with ϕ = h to �nd that

This is our formula for the Bergman kernel.

10.4.2 The Poincaré-Bergman Metric on the Disc

1 = u(w) = ∫ ∫

D

K(w, ζ)u(ζ) dA(ζ) = ∫ ∫

D

K(w, ζ) dA(ζ) ,

1
π

= 1
π
∫ ∫

D

K(w, ζ) dA(ζ) .

1
π

= K(w, 0)

h(z) = z−a
1−az

.̄

h′(z) =
1−|a|2

(1−az)2 .̄

K(w, a) = h′(w) ⋅ K(h(w),h(a)) ⋅ h′(a)

=
1−|a|2

(1−aw)2 ⋅ K(h(w), 0) ⋅ 1
1−|a|2

= 1
(1−aw)2 ⋅ 1

π

= 1
π

⋅ 1
(1−wa)2 .

¯

¯

¯

¯



If D ⊆ C is the unit disc, z ∈ D, then De�nition 4.12 shows that

where the subscript B indicates that we are working in the Bergman metric. We
now use this formula to derive an explicit expression for the Poincaré distance
from 0 ∈ D to r + i0 ∈ D, 0 < r < 1. Call this distance d(0, r). Then

Elementary comparisons show that, among curves of the form 
ψ(t) = t + iw(t), 0 ≤ t ≤ 1, the curve γ(t) = tr + i0 is the shortest in the
Poincaré metric. Further elementary arguments show that a general curve of the
form ψ(t) = v(t) + iw(t) is always longer than some corresponding curve of the
form t + iw̃(t). We leave the details of these assertions to the reader. Thus

Since rotations are conformal maps of the disc, we may next conclude that

Finally, if w1,w2 are arbitrary, then the Möbius transformation

satis�es ϕ(w1) = 0,ϕ(w2) = (w2 − w1)/(1 − w1w2). Then Proposition 4.15
yields that

w B,z = { 2|w|2

(1−|z|2)2 }
1/2

=
√2 w

1−|z|2 ,∣ ∣ ∣ ∣d(0, r) = inf{∫
1

0
γ ′(t) B,γ(t)dt :

γ isacurvein D, γ(0)=0, γ(1)=r+i0}.∣ ∣d(0, r) = ∫
1

0

√2r

(1 − (rt)2)
dt

= √2∫
r

0

1

1 − t2
dt

= 1
√2

log( 1+r
1−r

).

d(0, reiθ) = 1
√2

log( 1+r
1−r

).

ϕ : z ↦ z−w1

1−w1z̄

¯

( )



We note in passing that the expression 
ρ(w1,w2) ≡ |(w1 − w2)/(1 − w1w2)| is called the pseudohyperbolic distance.
It is also conformallly invariant, but it does not arise from integrating an
in�nitesimal metric (i.e. lengths of tangent vectors at a point). A fuller discussion
of both the Poincaré metric and the pseudohyperbolic metric on the disc may be
found in [GARN].

10.5 Preliminary Facts about Boundary Smoothness

The Riemann mapping theorem is a powerful result. It allows us to transfer the
function theory of one proper, simply connected domain in the plane to another.
But for many applications we need to know something about the boundary
regularity of a conformal mapping. Does the mapping extend univalently and
bicontinuously to the boundary? Does it extend smoothly to the boundary?

Curiously, the second of these questions was answered �rst—by Paul
Painlevé in his thesis [PAI]. About 35 years later, Constantin Carath’eodory
[CAR] answered the �rst question (and it is the �rst question that is typically
treated in textbooks, not the second—although [GRK] is one of the exceptions).

For many purposes, continuity to the boundary is insuf�cient. In the recent
work [APF], studies were made of the Bergman kernel on a variety of domains
with different boundary geometries. The behavior of the kernel on a simply
connected domain Ω was studied by considering a conformal mapping 
φ : Ω → D and the corresponding transformation formula

(see Proposition 4.10). In order to pass back and forth, it was essential to know
that the expression |φ′(z)| is bounded above and below:

(10.12)

d(w1,w2) = d(0, w2−w1

1−w1w2
)

= 1
√2
(

1+
w2−w1

1−w1w2

1−
w2−w1

1−w1w2

).

¯∣¯∣∣¯∣¯
KΩ(z, ζ) = KD(φ(z),φ(ζ))φ′(z)φ′(ζ)̄

c1 ≤ |φ′(z)| ≤ c2 .



Note also that a set of inequalities like (5.1) tells us that the amount of stretching
that occurs under the map φ is bounded above and below; this fact was also
crucial in the results of [APF].

A result that implies the kind of estimates we have been discussing is the
following

Theorem 10.5.2  Let Ω ⊆ C be a bounded, simply connected domain in C with
suf�ciently smooth boundary. Then any conformal mapping φ : Ω → D will
extend univalently and continuously differentiably to Ω , and the inverse mapping
φ−1 will extend univalently and continuously differentiably to D.

With this theorem in hand, we know that |φ′| extends continuously to the

compact set Ω . Thus it is bounded. In other words,

Likewise, (φ−1)
′  extends continuously to the compact set D. So it is bounded.

But then

and hence1

In the statement of Theorem 5.2, we have intentionally been imprecise about
what “suf�ciently smooth” means, since that is one of the main points of the rest
of this section. For the moment, we shall content ourselves with proving the next
result (see [BEK]). First, some de�nitions.

We shall require a brief discussion of the concept of boundary smoothness.
We will offer two approaches to the question.

Boundary Smoothness by Way of Calculus: We will only consider domains with
�nitely many boundary components. Each boundary component will be a simple
closed curve—see Figure 10.1.

If S1 is the unit circle in the plane, parametrized by t ↦ eit, then we may
think of each boundary curve γj as given by

¯

¯

¯

|φ′(z)| ≤ C for all z ∈ Ω .∣ ∣¯1
φ′(φ−1(z)) = (φ−1)

′
(z) ≤ C ,∣ ∣ ∣ ∣φ′(φ−1(z)) ≥ 1
C

.∣ ∣



Let k ∈ {0, 1, 2, …}. We say that ∂Ω is Ck if γ ′
j is never zero, each j, and the

�rst k partial derivatives of the function γj exist, each j, and each derivative is

continuous.

Boundary Smoothness by Way of a De�ning Function: In geometric analysis it is
frequently useful to think of a domain Ω in space as the sublevel set of a function 
ρ = ρΩ. For example, the unit disc is given by

(10.13)

It is a nice exercise with the implicit function theorem to see that any domain
whose boundary consists of C1 curves can be written as the sublevel set of some
function ρ, as in equation (10.13). We usually demand that ∇ρ ≠ 0 on ∂Ω in
order to prevent degeneracies and, more particularly, so that ∇ρ(P) gives a well-
de�ned outward normal vector at each boundary point P. We say that 
Ω = {z ∈ C : ρ(z) < 0} has Ck boundary, k ∈ {0, 1, 2, …}, if there is a
de�ning function ρ that is Ck.

1Implicit in this discussion is an important point that ought to be explicitly enunciated. Namely, if Ω1 and 

Ω2 are domains with C2 boundary and φ : Ω1 → Ω2 is a conformal map, then there are constants c,C > 0
such that c ⋅ dist(φ(z), ∂Ω2) ≤ dist(z, ∂Ω1) ≤ C ⋅ dist(φ(z), ∂Ω2). In other words, φ preserves—
qualitatively speaking—the distance to the boundary. This assertion follows from the Hopf lemma, a result
that we treat below.

γj : S 1 → C .

D = {z ∈ C : ρ(z) ≡ |z|2 − 1 < 0} .



FIGURE 10.1
A domain with �nitely many boundary components.

We say that a bounded domain Ω ⊆ C has C∞ (or smooth) boundary if there
is a function ρ : C → R such that ρ is C∞,

and ∇ρ is nowhere zero on ∂Ω.
It is worth noting that possession of a de�ning function says nothing about

the topology of the domain. The domain could be simply connected or not.

Example 10.5.4  Let

Then Ω is the region bounded by an ellipse. Certainly, Ω has C∞ boundary.

Theorem 10.5.5  Let k ∈ {0, 1, 2, …}. Then there is an integer N = N(k) such
that, if Ω ⊆ C is a bounded domain with CN boundary, then any conformal
mapping φ : Ω → D will extend to be univalent and Ck from Ω  to D. Likewise,

the inverse mapping φ−1 will extend to be univalent and Ck from D to Ω . It may
be shown—although it requires considerable extra effort—that N may be taken to
be k + 1, or even k + ϵ.

This theorem is properly attributed to P. Painlevé, who proved it in his thesis
[PAI]. Over the years, it has been sharpened through work of Kellogg,
Warschawski, Pommerenke, and others. We shall indicate some of these results
in what follows.

Let Ω ⊆ C be a domain. We say that Ω satis�es Bell's Condition R if, for
each k ∈ {0, 1, 2, …}, there is an ℓ ∈ {0, 1, 2, …} such that, whenever 
f : Ω → C has bounded derivative up to order ℓ , then PΩf (the Bergman
projection of f) has bounded derivatives up to order k. Condition R has proved to
be of historical importance in the study of holomorphic mappings. In this section
we prove that D = D(0, 1) satis�es a version of Condition R (see Theorem
5.13). This will be the key to the proof below of Theorem 5.5.

If Ω is a domain and Φ : Ω → C, then we say that Φ is k times boundedly
continuously differentiable, and we write Φ ∈ C k

b (Ω), if all partial derivatives 

Ω = {z ∈ C : ρ(z) < 0},

Ω = {z ∈ C : ρ(z) = ( z+z
2

)
2

+ ( z−z
8i

)
2

− 1 < 0}.¯̄

¯̄

¯̄



(∂/∂x)s(∂/∂y)tΦ of order s + t ≤ k on Ω (the interior of Ω, not the boundary)
exist, are continuous, and are bounded. We let C∞

b (Ω) = ∩kC
k
b (Ω). If 

Φ ∈ C k
b

(Ω), then we set

We also need an idea of continuity of derivatives at the boundary: A function 

Φ : Ω → C is called Ck if all partial derivatives of Φ up to and including order k
extend continuously to Ω . As before, C∞(Ω) is de�ned to be ∩kC

k(Ω).

De�nition 10.5.6  If f, g ∈ C k(Ω), then we say that f and gagree up to orderk on
∂Ω if

for all s + t ≤ k.

Lemma 10.5.7  For every k = 0, 1, 2, … there is a function λk ∈ C k(R) such
that

1. λk(x) = 0 if x ≤ 1
3 ,

2. λk(x) = 1 if x ≥ 2
3 ,

3. 0 ≤ λk(x) ≤ 1 for all x ∈ R.

Proof: Let

Obviously ψ ∈ C k(R). De�ne

Then ϕ ∈ C k and ϕ(x) 0 only if 1/3 < x < 2/3. Observe that ϕ(x) ≥ 0 for
all x. Let

∥Φ∥C k
b (Ω) = ∑

s+t≤k

sup
Ω

( ∂
∂x )

s
( ∂

∂y )
t

Φ(x + iy) .∥ ∥¯¯̄̄¯( ∂
∂x )

s
( ∂

∂y )
t

(f(z) − g(z)) ∂Ω = 0∣ψ(x) = {  
xk+1 if x ≥ 0 ,

0 if x < 0 .

ϕ(x) = ψ(x − 1
3

) ⋅ ψ(−x + 2
3

) .

=

x



□

□

Then u ∈ C k(R),u(x) = 0 for x ≤ 1/3, and u ≡ c a positive constant for 
x ≥ 2/3. De�ne

This function has all the required properties.

It is actually possible to �nd a C∞ function with properties 1, 2, and 3 of
Lemma 5.7.

Lemma 10.5.8  If Ω ⊆ C is a domain with Ck boundary, 
Ω = {z ∈ C : ρ(z) < 0}, and if U is a neighborhood of ∂Ω on which 

|∇ρ| ≥ c > 0, then there is a Ck function αk on Ω  such that

1. αk = 0 on Ω∖U ,
2. αk = 1 in a neighborhood of ∂Ω.

Proof: Choose a number ϵ > 0 such that, if −ϵ < ρ(z) < 0, then z ∈ U ∩ Ω. Let
λk be as in the last lemma. De�ne

Then αk has all the desired properties.

Lemma 10.5.9  Let Ω = {z ∈ C : ρ(z) < 0} be a bounded domain with C∞

boundary. Given g ∈ C∞(Ω), choose f(z) = ρ(z)g(z). If h ∈ A2(Ω) (the
Bergman space—see Section 4), then

Proof: We want to integrate by parts, but h is not de�ned on ∂Ω so we need a
limiting argument.

Let ϵ > 0 be small and let Ωϵ = {z : ρ(z) < −ϵ}. Then de�ne 

fϵ(z) = (ρ(z) + ϵ)g(z). Notice that fϵ ∈ C∞(Ω ϵ) and fϵ ∂Ωϵ = 0. Also 

u(x) = ∫
x

−∞
ϕ(t) dt.

λk(x) = 1
c
u(x).

¯

αk(z) = λk(1 +
ρ(z)
ϵ ).

¯

∫
Ω

h(ζ) ∂
∂ζ
f(ζ) dξ dη = 0.̄

¯∣



h ∈ C∞(Ω ϵ). So, by Green's theorem (or just the one-variable fundamental
theorem of calculus, applied one variable at a time),

(10.14)

There is no boundary term since h ⋅ fϵ ∂Ωϵ ≡ 0. But h ∈ A2(Ω) so (∂/∂ζ)h ≡ 0
and the last expression is 0.

Finally, let

Then, using (10.14),

By the Cauchy–Schwarz inequality, this is

Now ∫
Ω

1 − χϵ(ζ) 2 dξ dη clearly tends to zero as ϵ → 0+. Also we see that 

∂fϵ/∂ζ → ∂f/∂ζ uniformly. So, letting ϵ → 0, we obtain

¯

∫
Ωϵ

h(ζ) ∂
∂ζ fϵ(ζ) dξ dη = −∫

Ωϵ

(
∂

∂ζ
h(ζ)) ⋅ fϵ(ζ) dξ dη.̄̄∣¯χϵ(ζ) = {  

1 if ζ ∈ Ωϵ ,

0 if ζ Ωϵ.∈

∫
Ω

h(ζ) ∂
∂ζ f(ζ) dξ dη = ∫

Ω

h(ζ) ∂
∂ζ f(ζ) dξ dη − ∫

Ω

h(ζ)χϵ(ζ) ∂
∂ζ fϵ(ζ) dξ dη

≤ ∫
Ω

h(ζ) ∂f
∂ζ (ζ) 1 − χϵ(ζ) dξ dη

+ ∫
Ω

h(ζ) χϵ(ζ) ⋅ ∂f
∂ζ (ζ) −

∂fϵ

∂ζ (ζ) dξ dη .∣¯∣ ∣¯̄∣∣¯∣∣ ∣∣ ∣∣¯∣∣ ∣ ∣ ∣≤ (∫
Ω

h(ζ) 2 ∂f
∂ζ (ζ)

2
dξ dη)

1/2

⋅ (∫
Ω

1 − χϵ(ζ) 2 dξ dη)
1/2

+(∫
Ω

h(ζ) 2 dξ dη)
1/2

⋅ (∫
Ω

∂f

∂ζ
(ζ) −

∂fϵ

∂ζ
(ζ)

2

dξ dη)

1/2

.∣¯∣ ∣ ∣ ∣ ∣∣¯∣ ∣ ∣∣ ∣ ∫
Ω

h(ζ) ∂f
∂ζ (ζ) dξ dη = 0.̄



□That is the desired conclusion.

If Φ : Ω1 → Ω2 is conformal, then we might expect the Bergman kernel for
Ω1 to be related to that for Ω2. This is indeed the case, as our Proposition 4.10
showed. We review it now:

Theorem 10.5.10  If Φ : Ω1 → Ω2 is conformal then

We conclude this section with Bell's projection formula, which is based on
Theorem 5.10.

If Ω ⊆ C is a domain and K its Bergman kernel, then for any square
integrable f on Ω we de�ne

This is the Bergman projection.

Recall that, if Ω is a bounded domain in ℂ, then the mapping

is the Hilbert space orthogonal projection of L2(Ω, dA) onto A2(Ω).
Next is Bell's formula:

Proposition 10.5.11  Let Ω1,Ω2 be domains and let

be a conformal map. Let f ∈ L2(Ω1). Then

Proof: We sketch the proof. For any f ∈ L2(Ω1) and g ∈ L2(Ω2),

KΩ1(z,w) = Φ′(z)KΩ2(Φ(z),Φ(w))Φ′(w).̄

PΩf(z) = ∫
Ω

f(ζ)KΩ(z, ζ) dξ dη.

P : f ↦ ∫
Ω

K(⋅, ζ)f(ζ) dA(ζ)

Φ : Ω1 → Ω2

PΩ2((Φ−1)
′
⋅ (f°Φ−1)) = (Φ−1)

′
⋅ ((PΩ1f)°Φ−1).

⟨ ⟩ ⟨ ⟩



Since g ∈ L2(Ω2) was arbitrary, we may conclude that Bell's identity is proved.
□

The next lemma, due to Bell, is central to the theory.

Proposition 10.5.12  If Ω = {z ∈ C : ρ(z) < 0} is a bounded domain with C∞

boundary, if u ∈ C k+1(Ω), and if k ≥ 1, then there is a g ∈ C k(Ω) that agrees
with u up to order k on ∂Ω and such that PΩg = 0.

Proof: Let αk be as in Lemma 5.8. We de�ne g by induction. For the C1 case, let

where

Then

where η1 is de�ned by this identity and is continuous on Ω . Then

(So v1 and u agree to order zero on ∂Ω.) In particular, v1 − u|∂Ω = 0. Also

⟨PΩ2
((Φ−1)

′
⋅ (f°Φ−1)), g⟩

2
= ⟨(Φ−1)

′
⋅ (f°Φ−1),PΩ2

g⟩
2

= ⟨f, ((PΩ2
g)°Φ) ⋅ Φ′⟩1

= ⟨PΩ1
f, ((PΩ2

g)°Φ) ⋅ Φ′⟩1

= ⟨((PΩ1
f)°Φ−1) ⋅ (Φ−1)

′
,PΩ2

g⟩
2

= ⟨((PΩ1
f)°Φ−1) ⋅ (Φ−1)

′
, g⟩

2
.

¯̄

v1(z) = ∂
∂z w1(z) ,

w1(z) =
α1(z)⋅u(z)⋅ρ(z)

(∂ρ/∂z)(z) .

v1(z) = α1(z) ⋅ u(z) + ρ(z) ⋅ ∂
∂z (

α1(z)⋅u(z)
(∂ρ/∂z)(z)

)

≡ α1(z) ⋅ u(z) + ρ(z) ⋅ η1(z) ,

¯

v1 − u = ρ(z) ⋅ η1(z) near ∂Ω.

PΩv1(z) = ∫
Ω

K(z, ζ) ∂
∂ζ w1(ζ) dξ dη = 0



by Lemma 5.9.
Suppose inductively that we have constructed wℓ−1 and vℓ−1 = ∂

∂z
wℓ−1 such

that vℓ−1 agrees to order (ℓ − 1) − 1 with u on ∂Ω and PΩvℓ−1 = 0. We shall
now construct a function wℓ of the form

(10.15)

such that vℓ = ∂
∂z wℓ agrees with u up to order ℓ − 1 on ∂Ω and PΩvℓ = 0.

Let αℓ be as in Lemma 5.8 and de�ne a differential operator D  on Ω  by

Notice that

(10.16)

when z ∈ ∂Ω. We de�ne

(10.17)

Then, with wℓ de�ned as in (10.15) and vℓ = ∂
∂z wℓ, we have

If z ∈ ∂Ω, then (using (10.16), (10.17))

(10.18)

wℓ = wℓ−1 + θℓ ⋅ ρℓ

¯

D(ϕ) = αℓ

|∂ρ/∂z|2 Re( ∂ρ
∂z

∂ϕ
∂z̄ ).

Dρ(z) = 1

θℓ =
αℓD

ℓ−1(u−vℓ−1)
ℓ!∂ρ/∂z

.

D
ℓ−1(u − vℓ) = D

ℓ−1u −D
ℓ−1 ∂

∂z (wℓ−1 + θℓ ⋅ ρℓ)

= D
ℓ−1(u − vℓ−1) − θℓ

∂ρ
∂z ⋅ (Dρ)ℓ−1 ⋅ ℓ!

+ (terms that involve a factor of ρ).

D ℓ−1(u − vℓ − 1) −D ℓ−1(u − vℓ−1) + 0 = 0.



□

Since any directional derivative at P ∈ ∂Ω is a linear combination of

we may re-express our task as follows: We need to see that

for all s + t = ℓ − 1 (notice that the case s + t < ℓ − 1 follows from the
inductive hypothesis and the explicit form of wℓ in (10.15)). The case 
s = 0, t = ℓ − 1 was treated in (10.18). If s ≥ 1, then we write

(10.19)

Since (s − 1) + t = ℓ − 2, the expression in parentheses is 0 on ∂Ω by the
inductive hypothesis. But τ is a directional derivative tangent to ∂Ω (because D
is normal); hence (10.18) is 0.

The induction is now complete, and vℓ has been constructed. We set vℓ = g.
Then

by Lemma 5.9.

We shall use Bell's lemma (Proposition 5.10) twice. Our �rst use right now
is on the disc. First, note the following two simple facts:

D = a(P) ∂
∂x + b(P) ∂

∂y and τ=-b(P) ∂
∂x +a(P) ∂

∂y ,

(τ)sD t(u − vℓ) ∂Ω = 0∣τ s
D

t(u − vℓ) = τ(τ s−1
D

t(u − vℓ)).

PΩg(z) = ∫
Ω

KΩ(z, ζ)g(ζ)dξ dη = ∫
Ω

KΩ(z, ζ) ∂
∂ζ
wk(ζ) dξ dη = 0

If KD is the Bergman kernel for the disc, then(a)

( ∂
∂z )

k
K(z,w) =

(k+1)!wk

π(1−z⋅w)k+2 ≤
(k+1)!

(1−|w|)k+2 .∣ ∣ ∣¯¯∣If u ∈ C k(D) and if uvanishes to order k at ∂D (i.e., u agrees with the zero
function to order k at ∂D), then there is a C > 0 such that 

u(z) ≤ C ⋅ (1 − |z|)k.

(b)̄ ∣ ∣



□

Theorem 10.5.13.  ([ConditionRfor the disc])  If k ≥ 1 and u ∈ C k+2(D), then 
∥PDu∥C k−1

b
(D) < ∞.

Proof: Use Proposition 5.12 to �nd a function v ∈ C k+1(D) that agrees with u to
order k + 1 on ∂D and such that Pv = 0. Then PD(u − v) = PDu, and u − v

vanishes to order k + 1 on ∂D. In particular, by observation (b) above, 

u(ζ) − v(ζ) ≤ C ⋅ (1 − |ζ|)k+1. Then, for j ≤ k − 1, we have

where we have used observation (a) above. This last integral is clearly bounded,
independent of z.

REMARK 10.5.14  Item (b) above actually holds on any bounded domain Ω with

Ck boundary: If u ∈ C k(Ω) vanishes to order k on ∂Ω, then there is a C > 0
such that

Here, for z ∈ Ω,

Of course, δΩ could also be replaced here by any Ck-smooth de�ning function.
This is immediate from the de�nitions and the Taylor expansion in the normal
direction (in terms of powers of the de�ning function ρ).

10.6 Smoothness to the Boundary of Conformal Mappings

¯

¯∣ ∣( ∂
∂z )

j
PDu(z) = ( ∂

∂z )
j
PD(u − v)(z)

= ∫
D

(
∂

∂z
)

j

KD(z, ζ)(u − v)(ζ) dξ dη

≤ ∫
D

(j + 1)!(1 − |ζ|)−j−1C ⋅ (1 − |ζ|)k+1 dξ dη ,∣ ∣ ∣ ∣∣ ∣¯u(z) ≤ C ⋅ δΩ(z)k.∣ ∣δΩ(z) = inf
w Ω

z − w .
∈ ∣ ∣



□

Let Ω = {z ∈ C : ρ(z) < 0} be a bounded and simply connected domain with 
C∞ boundary. Let F : D → Ω be a conformal mapping. We wish to show that

the one-to-one continuation of F to D (provided by Theorem 5.2) is actually in 

C∞(D). For this we need a few lemmas. The �rst is a classical result from the
theory of partial differential equations due to Hopf.

Lemma 10.6.1  (Hopf's lemma)  Let U ⊆ C be smoothly bounded. Let u be a
harmonic function on U, continuous on the closure U . Suppose that u assumes a
local maximum value at P ∈ ∂U . Let ν be the unit outward normal vector to ∂U
at P. Then the one-sided lower derivative ∂u/∂ν, de�ned to be

is positive.

Proof: It is convenient to make the following normalizations: Assume that u
assumes the value 0 at P and is negative nearby and inside U; �nally take the
negative of our function so that u has a local minimum at P.

Now, since U has smooth boundary, there is an internally tangent disc at P.
After scaling, we may as well suppose that it is the unit disc and that P = 1 + i0.
Thus we may restrict our positive function u, with the minimum value 0 at P = 1
, to the closed unit disc. Note in particular that u(0) > 0. Set C = u(0) > 0.

The Harnack inequality shows that u(r) ≥ [(1 − r)/(1 + r)]u(0), hence

The desired inequality for the normal derivative of u now follows.

REMARK 10.6.2  It is worth noting that the de�nition of the derivative and the
fact that P is a local maximum guarantee—just from �rst principles—that the
indicated one-sided lower normal derivative will be nonnegative. The Hopf
lemma asserts that this derivative is actually positive.

Lemma 10.6.3.  If Ω is a bounded, simply connected domain with C∞ boundary
and if F : D → Ω is a biholomorphic mapping, then there is a constant C > 0
such that

¯

¯

¯

∂u
∂ν

= lim inf
t→0+

u(P)−u(P−tν)
t

,

u(1)−u(r)
1−r

=
−u(r)
1−r

≤ −
u(0)
1+r

≡ −C
1+r

≤ − C
2 .

δΩ(F(z)) ≤ C(1 − |z|), all z ∈ Ω.



□

□

Here δΩ(z) = inf
w Ω

z − w .

Proof: The issue has to do only with points z near the boundary of D, and thus
with points where F(z) is near the boundary of Ω. Consider the function 
w ↦ log F −1(w) . This function is de�ned for all w suf�ciently near ∂Ω and
indeed on Ω∖{F(0)}. And it is harmonic there. Moreover, it is continuous on 
(Ω∖{F(0)}) ∪ ∂Ω, with value 0 on ∂Ω. In particular, it attains a (global)
maximum at every point of ∂Ω, since F −1(w) < 1 if w ∈ Ω∖{F(0)}. So the
Hopf lemma applies. The logarithm function has nonzero derivative at all points.
The conclusion of the lemma follows from combining this fact with the “normal
derivative” conclusion of the Hopf lemma. That is, we show that

at each P ∈ ∂D. [Note that here, as in the Hopf lemma, no differentiability at
boundary points is assumed: The derivative estimates are on the “lower
derivative” only, which, as a lim inf, always exists and has value in the extended
reals.]

Lemma 10.6.4  With F ,Ω as above and k ∈ {0, 1, 2, …} it holds that

Proof: Since F takes values in Ω, it follows that F is bounded. Now apply the
Cauchy estimates on D(z, (1 − |z|)).

Lemma 10.6.5  If ψ ∈ C 2k+2(Ω) vanishes to order 2k + 1 on ∂Ω, then 
F ′ ⋅ (ψ°F) ∈ C k

b (D). That is, F ′ ⋅ (ψ°F) has bounded derivatives up to and
including order k.

Proof: For j ≤ k we have

But

∈ ∣ ∣∣ ∣ ∣ ∣∂
∂ν F −1

P ≥ c > 0∣ ∣∣( ∂
∂z )

k
F(z) ≤ Ck(1 − |z|)−k.∣ ∣¯( ∂

∂z )
j
(F ′ ⋅ (ψ°F)) =

j

∑
ℓ=0

( )( ∂
∂z )

ℓ
(F ′) ⋅ ( ∂

∂z )
j−ℓ

(ψ°F) .∣ ∣ ∣ j

ℓ ∣



□

(10.20)

is a linear combination, with complex coef�cients, of terms of the form

where m ≤ j − ℓ and n1 + ⋅ ⋅ ⋅ + nk ≤ j − ℓ. So (10.20) is dominated by

By Lemma 6.3, this is

□

REMARK 10.6.6  There is a remarkable formula of Faà di Bruno that formalizes
the expansion for the higher derivatives of a composition. While the identity was
�rst discovered in the eighteenth century, it is still being studied today (in the
higher-dimensional version).

Lemma 10.6.7  Let G : D → C be holomorphic and have the property that

for j = 0, … , k + 1. Then each (∂/∂z)jG extends continuously to D for 
j = 1, … , k.

Proof: It is enough to treat the case k = 0. The general case follows inductively.
If P ∈ ∂D, then we de�ne

It is clear that this de�nes a continuous extension of G to ∂D.

( ∂
∂z )

j−ℓ
(ψ°F)

[(( ∂
∂z )

m
ψ)(F(z))] ⋅ ( ∂

∂z )
n1
F(z) ⋯ ( ∂

∂z )
nk
F(z)

C ⋅ δΩ(F(z))2k+1−(j−ℓ)(1 − |z|)−n1 ⋯ (1 − |z|)−nk

≤ C ⋅ δΩ(F(z))k+1 ⋅ (1 − |z|)−k−1.

≤ C ⋅ (1 − |z|)k+1 ⋅ (1 − |z|)−k−1 ≤ C.

( ∂
∂z )

j
G(z) ≤ Cj < ∞∣ ∣¯G(P) = ∫

1

0
G′(tP) ⋅ Pdt + G(0).



□

Theorem 10.6.8.  ([Painlevé])  If Ω = {z ∈ C : ρ(z) < 0} is a bounded, simply
connected domain with C∞ boundary and F : D(0, 1) → Ω is a conformal
mapping, then F ∈ C∞(D) and F −1 ∈ C∞(Ω).

Proof: Let k ∈ {1, 2, …}. By Proposition 5.12 applied to the function u = 1 on 

Ω, there is a function v ∈ C 2k+8(Ω) such that v agrees with u up to order 2k + 8
on ∂Ω and PΩv = 0. Then ϕ ≡ 1 − v satis�es PΩ(ϕ) = PΩ1 − PΩv = 1 and ϕ
vanishes to order 2k + 8 on ∂Ω. By Lemma 6.5, F ′ ⋅ (ϕ°F) ∈ C k+3

b (D). By

Lemma 6.7, F ′ ⋅ (ϕ°F) ∈ C k+2(D). By Theorem 5.13, 
PD(F ′ ⋅ (ϕ°F)) ∈ C k−1(D) and has k − 1 bounded derivatives. But the
transformation law (Proposition 5.11) tells us that

Thus F′ has bounded derivatives up to order k − 1. By Lemma 6.7, all derivatives

of F up to order k − 2 extend continuously to D. Since k was arbitrary, we may

conclude that F ∈ C∞(D).

To show that F −1 ∈ C∞(Ω), it is enough to show that the Jacobian

determinant of F as a real mapping on D does not vanish at any boundary point
of D (we already know it is everywhere nonzero on D). Since F is holomorphic, F
continues to satisfy the Cauchy–Riemann equations on D. So it is enough to

check that, at each point of D∖D, some �rst derivative of F is nonzero. This
assertion follows from a Hopf lemma argument analogous to the proof of Lemma
6.1. Details are left as an exercise.

Classically, Theorem 6.8 was proved by studying Green's potentials.
The result dates back to P. Painlevé's thesis. All the ideas in the proof we have
presented here are due to S. Bell and E. Ligocka [BELL]. An account of Bell's
approach, in a more general context, can be found in [BEK].

10.7 The Bochner–Martinelli Formula in Several Complex

Variables

If ω is a differential form on Ω ⊆ R
N  then, in coordinates, ω can be written as a

�nite sum of terms of the form ωαdx
α, where α is a multi-index and ωα is a

¯̄

¯

¯

PD(F ′ ⋅ (ϕ°F)) = F ′ ⋅ ((PΩϕ)°F) = F ′ ⋅ 1 = F ′.

¯

¯

¯

¯

¯

¯



smooth function. Differential forms on ℂn may be written in this fashion also,

since ℂn is canonically identi�ed with R2n. However, it is much more convenient
to use complex notation. Thus if Ω ⊆ Cn and ω is a differential form on Ω, then
ω is a sum of terms of the form ωαβdz

α ∧ dzβ, where α,β are multi-indices with
|α| ≤ n, |β| ≤ n. If 0 ≤ p, q ≤ n and

then ω is said to be a differential form of type (or bidegree) (p, q).
In classical advanced calculus, only a differential form of total degree m may

be integrated on a space or surface or manifold of (real) dimension m. Likewise,
in our new notation, only forms of type (p, q) with p + q = m may be integrated
on a space or surface or manifold of (real) dimension m.

If ω = ∑
α,β

ωαβdz
α ∧ dzβ, then we de�ne

Letting d denote the usual exterior differential operator on forms (see [RUD],

[FED]), we see by a straightforward calculation that d = ∂ + ∂.
Notice that when f is a C1 function (or (0, 0) form) then

Since the differentials dzj are linearly independent, we conclude that ∂f ≡ 0 on

Ω if and only if ∂f/∂zj ≡ 0 for j = 1, … ,n. That is, ∂f ≡ 0 on Ω if and only if
f is holomorphic in each variable separately.

The language of differential forms is needed in order to formulate Stokes's
theorem:

¯

ω = ∑
|α|=p,|β|=q

ωαβ ∧ dzαdzβ ,̄

¯

∂ω =
n

∑
j=1

∑
α,β

∂ωαβ

∂zj
dzj ∧ dzα ∧ dzβ ,̄

∂ω =
n

∑
j=1

∑
α,β

∂ωαβ

∂zj
dzj ∧ dzα ∧ dzβ .̄

¯
¯̄

¯

∂f = ∑
j

∂f

∂zj
dzj .̄

¯
¯

¯̄

¯̄



Theorem 10.7.1.  (Stokes)  Let Ω ⊆ Cn be a bounded open set with C1 boundary.
Let ω be a differential form of bidegree (p, q) with coef�cients in C 1(Ω). Then

Standard references for Stokes's theorem are W. Rudin [1] and G. de Rham
[1]. The Stokes's theorem that we have recorded here is the standard one simply
expressed in complex notation.

The full Cauchy integral formula in ℂ is a formula not just about
holomorphic functions but about all continuously differentiable functions. We
now derive this more general result for all Cn,n ≥ 1, and learn what
consequences it has for the function theory of both one and several variables.

De�nition 10.7.2.  On ℂn we let

The form η is sometimes called the Leray form. We will often write ω(z) to mean
dz1 ∧ … ∧ dzn and likewise η(z) to mean 
n

∑
j=1

(−1)j+1
zjdz1 ∧ … ∧ dzj−1 ∧ dzj+1 ∧ … ∧ dzn.

The genesis of the Leray form is explained by the following lemma.

Lemma 10.7.3.  For any z0 ∈ C
n, any ϵ > 0, we have

Proof: Notice that dη(z) = ∂η(z) = nω(z). Therefore, by Stokes's theorem,

¯

∫
∂Ω

ω = ∫
Ω

dω = ∫
Ω

∂ω + ∂ω.̄

ω(z) ≡ dz1 ∧ dz2 ∧ … ∧ dzn

η(z) ≡
n

∑
j=1

(−1)j+1zjdz1 ∧ … ∧ dzj−1 ∧ dzj+1 ∧ … ∧ dzn.

¯
¯̄̄

¯̄̄̄̄

∫
∂B(z0,ϵ)

η(z) ∧ ω(z) = n∫
B(z0,ϵ)

ω(z) ∧ ω(z).̄̄

¯̄̄̄

∫
∂B(z0,ϵ)

η(z) ∧ ω(z) = ∫
B(z0,ϵ)

d[η(z) ∧ ω(z)].̄̄



□

Of course, the expression in [ ] is saturated in dz's so, in the decomposition 

d = ∂ + ∂, only the term ∂  will not die. Thus the last line equals

Remark:
Notice that, by change of variables,

A straightforward calculation shows that

where q(n) = [n(n − 1)]/2. We denote the value of this integral by W(n).

Theorem 10.7.4.  (Bochner–Martinelli)  Let Ω ⊆ C
n be a bounded domain with

C1 boundary. Let f ∈ C 1(Ω). Then, for any z ∈ Ω, we have

Proof: Fix z ∈ Ω. We apply Stokes's theorem to the form

¯̄

∫
B(z0,ϵ)

ω(z) ∧ ω(z) = ∫
B(0,ϵ)

ω(z) ∧ ω(z)

= ϵ2n ∫
B(0,1)

ω(z) ∧ ω(z).

¯̄

¯

∫
B(0,1)

ω(z) ∧ ω(z)

= (−1)q(n) ⋅ (2i)n ⋅ (volume of the unit ball inCn ≈ R2n),

¯

¯

f(z) = 1
nW(n)

∫
∂Ω

f(ζ)η(ζ − z) ∧ ω(ζ)

|ζ − z|2n

− 1
nW(n)

∫
Ω

∂f(ζ)

|ζ − z|2n
∧ η(ζ − z) ∧ ω(ζ).

¯̄

¯
¯̄

Lz(ζ) ≡
f(ζ)η(ζ−z)∧ω(ζ)

|ζ−z|2n

¯̄



on the domain Ωz,ϵ ≡ Ω∖B(z, ϵ), where ϵ > 0 is chosen so small that 

B(z, ϵ) ⊆ Ω. Note that Stokes's theorem does not apply to forms that have a
singularity; thus, we may not apply the theorem to Lz on any domain that

contains the point z in either its interior or its boundary. This observation helps to
dictate the form of the domain Ωz,ϵ. As the proof develops, we shall see that it
also helps to determine the outcome of our calculation.

Notice that

but that the two pieces are equipped with opposite orientations.
Thus, by Stokes,

(10.21)

Notice that we consider z to be �xed and ζ to be the variable. Now

(10.22)

Observing that

we �nd that the second term on the far right of (10.22) dies and we have

¯

¯

∂(Ωz,ϵ) = ∂Ω ∪ ∂B(z, ϵ)

∫
∂Ω

Lz(ζ) − ∫
∂B(z,ϵ)

Lz(ζ) = ∫
∂Ωz,ϵ

Lz(ζ)

= ∫
Ωz,ϵ

dζ(Lz(ζ)).

dζLz(ζ) = ∂ ζLz(ζ)

= ∂f(ζ)∧η(ζ−z)∧ω(ζ)
|ζ−z|2n

+ f(ζ) ⋅ [
n

∑
j=1

∂

∂ζ j
( ζj−zj

|ζ−z|2n )]ω(ζ) ∧ ω(ζ).

¯

¯̄̄

¯

¯̄¯

∂
∂ζj

( ζj−zj

|ζ−z|2n ) = 1
|ζ−z|2n − n

ζj−zj
2

|ζ−z|2n+2 ,̄
¯̄∣¯̄∣



Substituting this identity into (10.21) yields

(10.23)

Next we remark that

(10.24)

Since |f(ζ) − f(z)| ≤ C|ζ − z| (and since each term of η(ζ − z) has a factor of

some ζ j − zj) it follows that the integrand of T2 is of size 

O(|ζ − z|)−2n+2 ≈ ϵ−2n+2. Since the surface over which the integration is
performed has area ≈ ϵ2n−1, it follows that T2 → 0 as ϵ → 0+.

By Lemma 7.3, we also have

(10.25)

Finally, (10.23)–(10.24) yield that

dζLz(ζ) =
∂f(ζ)∧η(ζ−z)∧ω(ζ)

|ζ−z|2n .
¯̄̄

∫
∂Ω

Lz(ζ) − ∫
∂B(z,ϵ)

Lz(ζ) = ∫
Ωz,ϵ

∂f(ζ) ∧ η(ζ − z) ∧ ω(ζ)

|ζ − z|2n
.

¯̄̄

∫
∂B(z,ϵ)

Lz(ζ) = f(z)∫
∂B(z,ϵ)

η(ζ − z) ∧ ω(ζ)

|ζ − z|2n

+∫
∂B(z,ϵ)

(f(ζ) − f(z))η(ζ − z) ∧ ω(ζ)

|ζ − z|2n

≡ T1 + T2.

¯̄

¯̄

¯̄

¯̄

T1 = ϵ−2nf(z)∫
∂B(z,ϵ)

η(ζ − z) ∧ ω(ζ)

= nϵ−2nf(z)∫
B(0,ϵ)

ω(ζ) ∧ ω(ζ)

= nW(n)f(z)

¯̄

¯



□

Since

the last integral is absolutely convergent as ϵ → 0+ (remember that ∂f is
bounded). Thus we �nally have

This is the Bochner–Martinelli formula.

Corollary 10.7.5  If Ω ⊆ C is a bounded domain with C 1 boundary and if 

f ∈ C 1(Ω) then, for any z ∈ Ω,

Proof: It is necessary only to note that, when n = 1,

Corollary 10.7.6  With hypotheses as in Corollary 7.5, and the additional

assumption that ∂f = 0 on Ω, we have

10.8 The Bergman Kernel in Several Complex Variables

The basic theory of the Bergman kernel in several complex variables is exactly
like that in one complex variable. The proofs are all soft analysis and proceed
step by step in just the same way.

(∫
∂Ω

Lz(ζ))− nW(n)f(z) + o(1) = ∫
Ωz,ϵ

∂f(ζ) ∧ [ η(ζ−z)
|ζ−z|2n ] ∧ ω(ζ).̄
¯̄

η(ζ−z)
|ζ−z|2n = O( ζ − z −2n+1),∣¯̄∣ ∣ ∣¯f(z) = 1

nW(n) ∫
∂Ω

Lz(ζ) − 1
nW(n) ∫

Ω

∂f(ζ) ∧
η(ζ−z)
|ζ−z|2n ∧ ω(ζ).̄
¯̄

¯

f(z) = 1
2πi ∫

∂Ω

f(ζ)

ζ − z
dζ − 1

2πi ∫
Ω

(∂f(ζ)/∂ζ)

ζ − z
dζ ∧ dζ.

¯
¯

ω(ζ) = dζ , η(ζ − z) = ζ − z , and nW(n)=2πi.̄̄̄̄

¯

f(z) = 1
2πi ∫

∂Ω

f(ζ)

ζ − z
dζ.



All these ideas have been gathered under the rubric of “Hilbert space with
reproducing kernel,” an idea �rst formulated by Aronszajn in [ARO]. All that is
really needed to make the theory run is a version of our Lemma 4.1. For the
Bergman space, the proof of this lemma in one variable works just as well in
several variables. For the Szegő space, an application of the Bochner–Martinelli
formula does the job.

10.9 The Szegő and Poisson-Szegö Kernels

The basic theory of the Szegö kernel is similar to that for the Bergman kernel—
they are both special cases of a general theory of “Hilbert spaces with
reproducing kernel” (see [ARO]). Thus we only outline the basic steps here,
leaving details to the reader.

Let Ω ⊆ Cn be a bounded domain with C2 boundary. Let A(Ω) be those

functions continuous on Ω  that are holomorphic on Ω. Let H 2(∂Ω) be the space
consisting of the closure in the L2(∂Ω, dσ) topology of the restrictions to ∂Ω of
elements of A(Ω) (here dσ is (2n − 1)-dimensional area measure on the
boundary). Then H 2(∂Ω) is a proper Hilbert subspace of L2(∂Ω). Each element
f ∈ H 2(∂Ω) has a natural holomorphic extension to Ω given by its Poisson
integral Pf. It is the case (see [KRA1, Ch. 8]) that, for σ− almost every ζ ∈ ∂Ω,
it holds that

Here, as usual, νζ is the unit outward normal vector to ∂Ω at the point ζ.

For each �xed z ∈ Ω the functional

is continuous (why?). Let kz(ζ) be the Hilbert space representative for the
functional ψz. De�ne the Szegö kernel S(z, ζ) by the formula

If f ∈ H 2(∂Ω) then

¯

lim
ϵ→0+

f(ζ − ϵνζ) = f(ζ).

ψz : H 2(∂Ω)∋f ↦ Pf(z)

S(z, ζ) = kz(ζ) , z ∈ Ω, ζ ∈ ∂Ω.̄



for all z ∈ Ω. We shall not explicitly formulate and verify the various uniqueness
and extremal properties for the Szegö kernel. The reader is invited to consider
these topics.

Let {ϕj}
∞
j=1 be an orthonormal basis for H 2(∂Ω). De�ne

For convenience we tacitly identify here each function with its Poisson extension

to the interior of the domain. Then, for K ⊆ Ω compact, the series de�ning S′

converges uniformly on K × K. By a Riesz-Fischer argument, S ′(⋅, ζ) is the
Poisson integral of an element of H 2(∂Ω), and S ′(z, ⋅) is the conjugate of the

Poisson integral of an element of H 2(∂Ω). So S′ extends to 

(Ω × Ω) ∪ (Ω × Ω), where it is understood that all functions on the boundary

are de�ned only almost everywhere. The kernel S′ is conjugate symmetric. Also,

by Riesz-Fischer theory, S′ reproduces H 2(∂Ω). Since the Szegö kernel is
unique, it follows that S = S ′.

The Szegö kernel may be thought of as representing a map

from L2(∂Ω) to H 2(∂Ω). Since S is self-adjoint and idempotent, it is the Hilbert
space projection of L2(∂Ω) to H 2(∂Ω).

The Poisson-Szegö kernel is obtained by a formal procedure from the Szegö
kernel: this procedure manufactures a positive reproducing kernel from one that
is not necessarily positive. Note in passing that, just as we argued for the
Bergman kernel in the last section, S(z, z) is never 0 when z ∈ Ω.

Proposition 10.9.1  De�ne

Then for any f ∈ A(Ω) and z ∈ Ω it holds that

Pf(z) = ∫
∂Ω

S(z, ζ)f(ζ)dσ(ζ)

S ′(z, ζ) =
∞

∑
j=1

ϕj(z)ϕj(ζ) , z, ζ ∈ Ω.̄

¯̄

S : f ↦ ∫
∂Ω

f(ζ)S(⋅, ζ)dσ(ζ)

P(z, ζ) =
|S(z,ζ)|2

S(z,z)
, z ∈ Ω, ζ ∈ ∂Ω.



□

□

Proof: Fix z ∈ Ω and f ∈ A(Ω) and de�ne

Then u ∈ H 2(∂Ω) hence

This is the desired formula.

REMARK 10.9.2  In passing to the Poisson-Szegö kernel, we gain the advantage
of positivity of the kernel (for more on this circle of ideas, see [KRA1, Ch. 1, 8]
and also [KAT, Ch. 1]). However, we lose something in that P(z, ζ) is no longer
holomorphic in the z variable nor conjugate holomorphic in the ζ variable. The
literature on this kernel is rather sparse and there are many unresolved questions.

As an exercise, use the paradigm of Proposition 9.1 to construct a positive
kernel from the Cauchy kernel on the disc (be sure to �rst change notation in
the usual Cauchy formula so that it is written in terms of arc length measure on
the boundary). What familiar kernel results?

Like the Bergman kernel, the Szegö and Poisson-Szegö kernels can almost
never be explicitly computed. They can be calculated asymptotically in a number
of important instances, however (see [FEF], [BOS]). We will give explicit
formulas for these kernels on the ball.

Lemma 10.9.3  The functions {zα}, where α ranges over multi-indices, are
pairwise orthogonal and span H 2(∂B).

Proof: The orthogonality follows from symmetry considerations. For the
completeness, notice that it suf�ces to see that the span of {zα} is dense in A(B)
in the uniform topology on the boundary. By the Stone-Weierstrass theorem, the
closed algebra generated by {zα} and {zα} is all of C(∂B). But the monomials 

f(z) = ∫
∂Ω

f(ζ)P(z, ζ)dσ(ζ).

u(ζ) = f(ζ)
S(z,ζ)
S(z,z)

, ζ ∈ ∂Ω.
¯

f(z) = u(z) = ∫
∂Ω

S(z, ζ)u(ζ)dσ(ζ)

= ∫
∂Ω
P(z, ζ)f(ζ)dσ(ζ).

¯



□

□

zα,α 0, are orthogonal to A(B) (use the power series expansion about the
origin to see this). The claimed density follows.

Lemma 10.9.4  Let 1 = (1, 0, … , 0). Then

Proof: We have that

Lemma 10.9.5  Let ρ be a unitary rotation on Cn. For any z ∈ B, ζ ∈ ∂B, we
have that S(z, ζ) = S(ρz, ρζ).

Proof: This is a standard change of variables argument, and we omit it.

Theorem 10.9.6  The Szegö kernel for the ball is

Proof: Let z ∈ B be arbitrary. Let ρ be the unique unitary rotation such that ρz is
a multiple of 1. Then, by 10.4,

□

Corollary 10.9.7  The Poisson-Szegö kernel for the ball is

=̄

S(z, 1) = (n−1)!
2πn

1
(1−z1)n

.

S(z, 1) = ∑
α

zα ⋅ 1α

∥zα1 ∥2
L2(∂B)

=
∞

∑
k=0

zk1

η(k)
= 1

2πn

∞

∑
k=0

zk1(k + n − 1)!

k!

= (n−1)!
2πn

∞

∑
k=0

( )zk1

=
(n−1)!

2πn
1

(1−z1)n
. □

k + n − 1

n − 1

¯

S(z, ζ) =
(n−1)!

2πn
1

(1−z⋅ζ)
n .̄

S(z, ζ) = S(ρ−11, ζ) = S(1, ρζ) = S(ρζ, 1) =
(n−1)!

2πn
1

(1−(ρζ)⋅1)
n

=
(n−1)!

2πn
1

(1−ζ⋅(ρ−11))
n =

(n−1)!
2πn

1
(1−z⋅ζ)

n .

¯
¯

¯̄

P(z, ζ) = (n−1)!
2πn

(1−|z|2)
n

1−z⋅ζ 2n
.∣¯∣



10.10 A Variety of Different Kernels

A kernel is constructible if it can be written down explicitly. A kernel is non-
constructible (or canonical) if it is produced abstractly by some functional-
analytic argument.

In the theory of one complex variable, all canonical kernels (the Cauchy
kernel, the Poisson kernel) are constructible, and all constructible kernels are
canonical.

Not so in several complex variables. Certainly in ℂn we may produce the
Bergman and Szegő kernels abstractly. But, in general (except on domains with a
great deal of symmetry like the ball or the polydisc or the bounded symmetric
domains of Cartan), these kernels are quite dif�cult to construct. Fefferman
[FEF] produced an asymptotic expansion for the Bergman kernel on a strongly
pseudoconvex domain (and Boutet de Monvel/Sjöstrand [BOS] did something
similar for the Szegö kernel), but these arguments are quite deep and dif�cult.

It was considered to be quite exciting around 1970 when, independently, G.
M. Henkin [HEN1], Grauert and Lieb [GRL], and Ramirez [RAM] were able to
actually construct reproducing kernels on strongly pseudoconvex domains. These
constructions were highly nontrivial, but they produced a formula quite
analogous to the Cauchy kernel of one complex variable. In particular, these new
reproducing kernels K(z, ζ) had the important property that they were
holomorphic in the free z variable. This meant that the new kernels K(z, ζ)
would not only reproduce holomorphic functions; they would also create
holomorphic functions. That is to say, if dμ were any �nite measure, then

will be a holomorphic function in z.
The new kernels proved to be particularly useful. For instance, they could be

used to produce explicit solutions to the equation ∂u = f (see [HEN2], for
instance, or [KRA1, Ch. 5]). They could also be used to attack various problems
in the theory of function algebras.

Here we sketch the Henkin construction for a domain Ω which is strongly
convex (all boundary curvatures positive). For the full details of the matter,
consult [KRA1, Ch. 5].

f(z) ≡ ∫ K(z, ζ) dμ(ζ)

¯



We begin with an idea called the Cauchy–Fantappié formula or formalism.
This is a device for creating reproducing formulas in complex analysis. Good
references for this notion are [RAN] and [KOP].

Recall the notation ω(z) and η(z) from our discussion of the Bochner–
Martinelli formula in De�nition 7.2, ff. Further recall that a straightforward
calculation shows that

where q(n) = [n(n − 1)]/2. We denote the value of this integral by W(n).

Theorem 10.10.1  Let Ω ⊂⊂ Cn be a domain with C 1 boundary. Let 
w(z, ζ) = (w1(z, ζ), … ,wn(z, ζ)) be a C 1, vector-valued function on 

Ω × Ω∖{diagonal} that satis�es

Then we have, for any f ∈ C 1(Ω) ∩ {holomorphic functions onΩ} and any 

z ∈ Ω, the formula

Of course, it should be understood here that ζ is the variable of integration and z
is a free variable.

Sketch of Proof: For convenience we restrict attention to complex dimension 2.
We may assume that z = 0 ∈ Ω.

∫
B(0,1)

ω(z) ∧ ω(z)

= (−1)q(n) ⋅ (2i)n ⋅ (volume of the unit ball inCn ≈ R2n),

¯

¯̄

n

∑
j=1

wj(z, ζ)(ζj − zj) ≡ 1.

¯

f(z) = 1
nW(n)

∫
∂Ω

f(ζ)η(w) ∧ ω(ζ).

If α1 = (a1
1, a1

2),α2 = (a2
1, a2

2) are 2− tuples of C1 functions on Ω  that

satisfy 
2

∑
j=1

akj (ζ) ⋅ (ζj − zj) = 1, let

(a)̄



□
[Warning: Be careful if you decide to apply Stokes's theorem.] From the theory
of the Bochner–Martinelli kernel, we know that the last line is 2 ⋅ W(2) ⋅ f(0).

Now let

where S2 is the symmetric group on 2 letters (which, of course, has just two

elements) and ϵ(σ) is the signature of the permutation σ. Prove that B is
independent of α1.

B(α1,α2) = ∑
σ∈S2

ϵ(σ)a1
σ(1) ∧ ∂(a2

σ(2)) ,̄

It follows that ∂B = 0 on Ω∖{0} (indeed ∂B is an expression like B with

the expression a1
σ(1) replaced by ∂a1

σ(1)).

(b)̄̄̄

¯

Use (b), especially the paranthetical remark, to prove inductively that if 
β1 = (b1

1, b1
2),β2 = (b2

1, b2
2), then there is a form γ on Ω∖{0} such that

(c)

[B(α1,α2) − B(β1,β2)] ∧ ω(ζ) = ∂γ = dγ.̄

Prove that if α1 = α2 = (w1,w2) then B(α1,α2) simpli�es as(d)

B(α1,α2) ∧ ω(ζ) = (2 − 1)!η(w) ∧ ω(ζ).

Let S  be a small sphere of radius ϵ > 0 centered at 0 such that S ⊆ Ω.
Use part (c) to see that

(e)

∫
∂Ω

f(ζ)η(w) ∧ ω(ζ) = ∫
S

f(ζ)η(w) ∧ ω(ζ).

Now use (c) and (d) to see that

where

(f)

∫
S

f(ζ)η(w) ∧ ω(ζ) = ∫
S

f(ζ)η(v) ∧ ω(ζ) ,

v(z, ζ) =
ζj−zj

|ζ−z|2 .
¯

}



We assume that Ω is strongly convex, i.e., that the matrix of (real) second partial
derivatives of ρ induces a positive de�nite quadratic form.

De�ne the complex tangent line to ∂Ω at a point P ∈ ∂Ω to be the zero set of
the function

Now the Taylor expansion of ρ about a point P ∈ ∂Ω, expressed in complex
notation, is

Here E (z) is an error term of order 3 and higher.
This last may be rewritten (because P ∈ ∂Ω so ρ(P) = 0) as

And, because Ω is hypothesized to be strongly convex, we �nd that

We conclude that the variety {z : LP (z) = 0} only intersects Ω  at the point
P. For this reason, we may use the notation of the Cauchy–Fantappié formula to
de�ne

and

It follows then that

Ω = {z ∈ C2 : ρ(z) < 0} .

LP (z) = ρ(P) + ∂ρ
∂z1

(P)(z1 − P1) + ∂ρ
∂z2

(P)(z2 − P2) .

ρ(z) = ρ(P) + ∂ρ
∂z1

(P)(z1 − P1) + ∂ρ
∂z2

(P)(z2 − P2) + ∂ρ
∂z1

(P)(z1 − P 1)

+ ∂ρ
∂z2

(P)(z2 − P 2) + (quadratic terms) + E (z) .

¯̄
¯

¯̄
¯

ρ(z) = 2ReLP (z) + (quadratic terms) + E (z) .

ρ(z) = 2ReLP (z) + (positive term) .

¯

w1(z,P) =
(∂ρ/∂z1)(P)
LP (z)

w2(z,P) =
(∂ρ/∂z2)(P)
LP (z) .

2

∑
j=1

wj ⋅ (zj − Pj) = 1 .



So Cauchy–Fantappié theory applies, using this (w1,w2), and we get a
reproducing kernel.

In the case that Ω is the unit ball B, the reader may check that the resulting
kernel is the Szegő kernel.

10.11 Constructible Kernels Versus Non-Constructible Kernels

We close our discussion of reproducing kernels with a consideration of how the
Szegő kernel is related to the more explicit kernel that arises from the Cauchy–
Fantappié formalism. This set of ideas is due to Kerzman and Stein [KES].

C. Fefferman [FEF] made an important contribution in 1974 when he
produced an asymptotic expansion for the Bergman kernel of a strongly
pseudoconvex domain. Basically he was able to write

where P (the principal term) is, in suitable local coordinates, the Bergman kernel
of the ball and E  (the error term) is a term of strictly lower order (in some
measurable sense). This powerful formula gives one a means for calculating
mapping properties of the Bergman integral. Fefferman himself used the formula
to calculate the boundary asymptotics of Bergman metric geodesics (for the
purpose of proving the smooth boundary extension of biholomorphic mappings).
Fefferman states in his paper—although the details have never been worked out
—that there is a similar asymptotic expansion for the Szegő kernel of a strongly
pseudoconvex domain.

At about the same time, Boutet de Monvel and Sjöstrand [BOS] used the
technique of Fourier integral operators [HOR] to directly derive an asymptotic
expansion for the Szegő kernel of a strongly pseudoconvex domain. This
expansion is quite similar to Fefferman's: there is a principal term, which in
suitable local coordinates is the Szegő kernel of the ball, and there is an error
term which is of lower order. It is not known whether the techniques of [BOS]
can be used to derive an asymptotic expansion for the Bergman kernel.

The main purpose of the present section is to consider another method, due to
Kerzman and Stein, for deriving asymptotic expansions for the canonical kernels
that is more elementary and uses less machinery. Fefferman's rather complicated

argument uses Kohn's solution of the ∂ -Neumann problem as well as the theory

K(z, ζ) = P(z, ζ) + E (z, ζ) ,

¯



of nonisotropic singular integrals. Boutet de Monvel and Sjöstrand's argument
uses the theory of Fourier integral operators. The method of Kerzman and Stein
[KES] that we treat here uses only basic complex function theory and a little
functional analysis.

At this time there are virtually no results about asymptotic expansions for the
canonical kernels on weakly pseudoconvex domains. Some interesting partial
results appear in [HAN].

The ideas that we present now have thus far only been developed on strongly
pseudoconvex domains. It is an important open problem to determine how to
carry out a similar program on �nite type domains or more general domains.

In previous sections, we have de�ned the Szegő projection 
S : L2(∂Ω) → H 2(Ω). We also have a mapping H : L2(∂Ω) → H 2(Ω) that is
determined by the constructive Henkin kernel discussed above. We note that H
de�nes a bounded operator from L2(∂Ω) to H 2(Ω) (the Hardy space—see
[KRA, Chapter 8]) for the following reason.

Let Ω be strongly pseudoconvex. This means that the Levi form is positive
de�nite at each boundary point (see [KRA1, Ch. 3] for details). It is known that 
∂Ω, when equipped with balls coming from the complex structure and the usual
boundary area measure (see [STE], [KRA1, Ch. 8]), is a space of homogeneous
type in the sense of Coifman and Weiss [COW]. Further, it is straightforward to
verify that the Henkin operator H satis�es the hypotheses of the David-Journé T1
theorem for spaces of homogeneous type (see [CHR] for a nice exposition of
these ideas). Thus we may conclude that the Henkin operator maps L2(∂Ω) to 
L2(∂Ω). Since the Henkin kernel also obviously maps L2(∂Ω) to holomorphic
functions, we may conclude that the Henkin integral maps L2(∂Ω) to H 2(∂Ω).

Now of course S, being a projection, is self-adjoint. So S = S*. It is not at all
true that H = H*, but one may calculate (see below for the details) that 
A ≡ H* − H is small in a measurable sense.

We also have

Let us discuss these four identities for a moment.
For the �rst, notice that S is the projection onto H2, and H preserves

holomorphic functions. So certainly HS = S. For the second, we calculate that

HS = S , SH* = S ,

SH = H , H*S = H* .



(because H preserves holomorphic functions) and thus = ⟨Sx, y⟩. Hence 
SH* = S. For the third, notice that H maps to the holomorphic functions and S
preserves holomorphic functions. And, for the fourth, we calculate that

In conclusion, H*S = H*.
Now we see that

As a result,

so

In conclusion,

If, indeed, we can show that A is norm small in a suitable sense, then 

(I − A)−1 is well de�ned by a Neumann series. Thus we may write

Hence we have expressed the Szegő projection S as an asymptotic expansion in
terms of the Henkin projection H. By applying this asymptotic expansion to the
Dirac delta mass, this last formula can be translated into saying that the Szegő
kernelS can be written as an asymptotic expansion in terms of the Henkin kernel.

Some new ideas connected with the discussion here appear in [KRA4].
It should be noted that Ewa Ligocka [LIG] has shown that these same ideas

may be applied to expand the Bergman kernel in an asymptotic expansion in
terms of the Henkin kernel. We shall not treat the details of her argument here.

⟨SH*x, y⟩ = ⟨H*x, Sy⟩ = ⟨x, HSy⟩ = ⟨x, Sy⟩

⟨H*Sx, y⟩ = ⟨Sx, Hy⟩ = ⟨x, SHy⟩ = ⟨x, Hy⟩ = ⟨H*x, y⟩ .

SA = S(H* − H) = SH* − SH = S − H .

S = H + SA

S(I − A) = H .

S = H(I − A)−1 .

S = H + HA + HA2 + ⋯ + HAj + HAj+1 + ⋯ .



10.12 Concluding Remarks

Reproducing kernels are part of the bedrock of modern analysis. A detailed
treatment of reproducing kernels in the real variable setting appears in [BIN1],
[BIN2]. Of course, there are many books about integral kernels in the complex
analysis setting. Certainly, [RAN] is one of the most comprehensive. The book
[KRA1] also has considerable treatment of the Bergman, Szegő, and Poisson-
Szegő kernels.

We expect that the ideas presented here will be central to our subject for a
good many years to come.
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11.1 Preliminary

The Riemann mapping theorem (Theorem 11.2.1) is the most important and
beautiful theorem in the �eld of one complex variable. It basically asserts

that any two reasonable simply connected domains in ℂ are biholomorphic.
This is a non-trivial result. We all know, if two domains are simply
connected, then they are homeomorphic, i.e., a bijective continuous
mapping from the �rst domain to the second domain exists. Indeed, for two
reasonably simply connected domains, we can even �nd a bijective smooth

https://doi.org/10.1201/9781315160658-11


mapping between the two domains. This result is classical. However, from
smooth mapping to holomorphic function is not trivial at all. After all, a
holomorphic function is a harmonic mapping (i.e., both components are
harmonic). The generic smooth mapping is far away from being harmonic.
This is the point of the Riemann mapping theorem which states, a
biholomorphism (i.e., a bijective holomorphic mapping of which the inverse
is also holomorphic) can still be found after a careful treatment. This note
requires the reader to have a little background on complex analysis and
partial differential equations.

For the following, we give several useful and well-known theorems in
complex variables. We also include a brief proof for some of them. For the
details, readers are referred to standard textbooks of complex variables (see,
e.g., Taylor [6]).

The �rst theorem is called the argument principle.

Theorem 11.1.1  (argument principle). Let C ⊂ C be a closed contour, i.e.,
a simple closed Jordan curve. Let D be the region enclosed by C. If f(z) is

a holomorphic function on D, and f has no zeros on C, then

where N(0) denotes the number of zeros inside the contour C, with
multiplicities counted.

Here, we give a very brief proof. By change of variables z ↦ w := f(z),
we have that

where the last equation is due to a direct computation. This completes the
proof of the argument principle.

We are not satis�ed by knowing how many zeros are inside a contour C.
Roughly speaking, for a �xed q in the image of f, we want to compute the

1

2π√-1
∮
C

f ′(z)

f(z)
dz = N(0)

1

2π√-1
∮
c

f ′(z)

f(z)
dz = 1

2π√-1
∮
f(C)

1

w
dw = N(0),



number of z so that f(z) = q. For this, we observe f(z) − q and obtain the
following generalized argument principle.

Corollary 11.1.1  (generalized argument principle) Let C ⊂ C be a closed
contour, i.e., a simple closed Jordan curve. Let D be the region enclosed by

C. Let f(z) be a holomorphic function on D. Fix q ∈ f(D) and assume
there is no z ∈ C so that f(z) = q. Then

where N(q) denotes the number of z for which f(z) = q inside the contour
C, with multiplicities counted.

We observe that

for all holomorphic functions f. Observe that 
f ′(z)

f(z)−q
 is continuous on C if

and only if f(z) ≠ q on C. Thus,

is continuous. But a continuous function with image of integers is a
constant function. This completes the proof. Moreover, the generalized
argument principle says N(q) remains constant on each component of 
f(D)\f(C) as long as no points in f−1(q) cross the boundary.

The generalized argument principle is quite useful for determining the
bijectivity of a mapping. We will see it soon.

Theorem 11.1.2.  (Strong maximal principle and Hopf lemma) Let U be a
bounded domain with smooth (C∞) boundary and u be a non-constant

harmonic function on U . Then there exists a point p ∈ ∂Ω so that 

1

2π√-1
∮
C

f ′(z)

f(z) − q
dz = N(q)

1

2π√-1
∮
C

f ′(z)

f(z) − q
dz ∈ Z

+

1

2π√-1
∮
C

f ′(z)

f(z) − q
dz



u(p) = max
z∈Uu(z) and u(p) > u(z) for arbitrary z ∈ U . Moreover, at p,

we have that ∂u
∂n (p) > 0, where ∂u

∂n (p) > 0 is the outward directional
derivative at p.

In the proof, we also need the following Schwarz re�ection principle.

Theorem 11.1.3.  (Schwarz re�ection principle). Assume that f : U → C,
where U is an open subset of C and ∂U  is real analytic, is a holomorphic
function which extends continuously to ∂U . If f maps ∂U  into another real
analytic curve M ⊂ C, then f extends holomorphically to an open

neighborhood of U .

11.2 The Riemann Mapping Theorem and Its Proof

Theorem 11.2.1.  (Riemann mapping theorem). Let U be a non-empty
simply connected open proper subset with real analytic boundaries ∂U  of C,
then there exists a biholomorphic mapping f (i.e. a bijective holomorphic
mapping whose inverse is also holomorphic) from U onto the open unit disk

For simplicity, we will call such a mapping a Riemann mapping.

In this note, we only consider bounded domains with real analytic
boundaries.

To construct a Riemann mapping, we assume that

for some z0 ∈ U . Here u and v are real functions that will be de�ned later.
Since the exponential function has no zeros, f(z) will have its only zero at
z0. By the generalized argument principle, f must be bijective, because 

N(q) = N(0) for an arbitrary q ∈ f(U). We want to construct f with some
constraints as follows.

D := {z ∈ C : |z| < 1}.

f(z) = (z − z0)eu(z)+√-1v(z),



1. The function f has to be holomorphic.

2. We hope the image of f to be the unit disc D.

3. We need to verify that the f is a biholomorphism.

Among others, we look at condition 2. Since we hope the image of f is the
unit disc D, we hope f maps ∂U  to ∂D. For this aim, we hope |f(z)| = 1,

whenever z ∈ ∂U . It is equivalent to say that z − z0 eu(z) = 1. We, hence,
construct a function f as follows. We want to �nd a harmonic function u

de�ned in U  such that

for z ∈ ∂U .

By solving the Dirichlet problem, one can �nd a harmonic function such
that

for z ∈ ∂U . Indeed, Green's kernel extends to a simply connected domain

containing U  by the Schwarz re�ection principle, and so u is harmonic on a

larger domain containing U . After �nding u, we need to �nd the conjugate
harmonic function v. The v is de�ned as follows:

(11.1)

Since U is simply connected and uxx = −uyy by the harmonicity of u, one
can see the de�nition is independent of the path from z0 to z. The u and v

clearly satisfy the following Cauchy–Riemann equation:

We will use Theorem 11.1.2 to verify f|∂U  is a diffeomorphism from ∂U
onto ∂D and then we can verify by the argument principle, the condition 3,

u(z) = − log |z − z0|,

u(z) = − log |z − z0|,

v = ∫
z

z0

ux dy − uy dx.

ux = vy and uy = −vx.



namely the biholomorphism from U onto D. On ∂U ,

Thus, for arbitrary z ∈ ∂U , |f(z)| = 1, i.e., f(z) ∈ ∂D.

We want to show that e√-1ν := e√-1(Arg (z-z0)+v(z)) is a covering map from 
∂U  onto ∂D. Observe that the conjugate harmonic function of ν is 
−μ := − log |z − z0| − u(z). Since, by the Cauchy–Riemann equation, the
tangential directional derivative of ν is the same as the outward directional

derivative of μ, we �rst verify ∂μ
∂n ≠ 0 on ∂U . By the strong maximal

principle and the Hopf lemma, one can see that 
∂μ
∂n > 0 at all maximal

points. Indeed, by u|∂U = − log |z − z0||∂U , we see that μ|∂U = 0. And
when z → z0, μ → −∞. So it turns that all points on ∂U  are maximal
points, and hence, we can use the Hopf lemma on all ∂U . It implies 
∂μ
∂n (z) > 0 for all z ∈ ∂U . Thus, the tangential directional derivative of ν is
nonzero and e√-1ν  is a local diffeomorphism. So e√-1ν  is a covering map.

Since e√-1ν  is a covering map, so does f|∂U .
At the last, we use the generalized argument principle to verify that f is a
bijective holomorphic function from U onto D. Indeed, f|∂U  maps ∂U  to 
∂D and thus, if |q| < 1, there is no z ∈ ∂U  so that f(z) = q. By inspecting

one �nds z0 is the only zero of f, and it is simple, namely N(0) = 1.

Consequently, N(q) = 1 for all q ∈ D by the discussion after Corollary
11.1.1. So f is a biholomorphism by Corollary 11.1.1.

11.3 An Example

We now bring the Riemann mapping theorem to some precise examples to
see what these Riemann mappings look like. To get a precise computation,

f(z) = (z − z0)e− log z−z0 +√-1v(z) = z−z0

|z−z0|
e√-1v(z) = e√-1(Arg(z-z0)+v(z)).

f(z) = (z − z0)eu(z)+√-1v(z),



we need a bounded domain of smooth boundary with an explicit Green's
function. So we mainly work on the unit disk because otherwise, the Green
function is hard to obtain explicitly.

Example 11.3.1  Let U be the unit disc D and z0 ∈ D.

One can check that u(z) = − log |1 − z0z| solves the following Dirichlet
problem:

Indeed, on ∂D, we have that

It is also easy to check u is harmonic because the only singular point of 

log |1 − z0z| is outside D and ∂
∂z log 1 − z0z

2 =
−z0(1−z0z)

|1−z0z|2 = − z0

1−z0z

which is holomorphic.

We are going to use u to look for v. Letting z0 = x0 + √-1y0 and 

z = x + √-1y, we let g(z) = 1 − z0z and thus, u(z) = − log |g(z)|. One
can de�nitely use the knowledge of Calculus III (�nding potential) to �nd
the conjugate v of u. Here, we give another approach.

Observe that g(z) maps the closed unit disk into the right half plane 
K = {w ∈ C : Rew > 0}. The principal branch 

Log(w) = log w + √-1 arg w of the logarithm with − π
2

< argw < π
2

 is

holomorphic on K. Therefore, the composite function 

Logg(z) = log g(z) + √-1 arg g(z) is holomorphic on D. Hence, arg g(z)
is the harmonic conjugate for log |g(z)|. Thus,

{  
Δu = 0 z ∈ D

u(z) = − log |z − z0| z ∈ ∂D.

|1 − z0z|2

= 1 + |z|2|z0|2 − 2Rez0z

= |z|2 + |z0|2 − 2Rez0z

= |z − z0|2.

v = arg(1 − z0z).



This gives us

One can see this is actually a Möbius transformation that maps z0 to 0.

For the cases of unbounded domains and rough boundary, readers may
consult the book Taylor [5] (Page 398-402). Other references include
Conway [1] (Page 277), Fuchs [2] (Page 31-32), Needham [3] (Page 550-
554) and Nevanlinna–Paatero [4] (Page 325-327).

Acknowledgments. The author thanks the anonymous referee for
constructive suggestions.
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12.1 Introduction

In his work on automorphic functions [6] Fricke shows that if Γ ⊂ SL(2,C) is a subgroup, then the trace of any

word in the generators is a polynomial with integral coef�cients in the �nitely many variables consisting of the

traces of the generators of Γ together with �nitely many of their products. The case Γ has two generators, 

Γ = ⟨A,B⟩ has been particulary well studied. There the trace of any word w(A,B) ∈ Γ  is a polynomial in the

three complex variables x, y and z where

x = tr(A), y = tr(B), z = tr(AB).
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(12.1)

As a consequence every conjugacy class of an element w(A,B) in Γ uniquely determines a polynomial P(x, y, z)
with integral coef�cients: de�ne P by

Horowitz [17] showed that the polynomial P may not determine the conjugacy class of w(A,B) uniquely,

although, for a given polynomial, there are only �nitely many conjugacy classes represented by cyclically reduced

words w(A,B) giving P. These results are largely based around the conjugacy invariance of trace and Fricke's

simple identity

Traina [29, Corollary 1.] develops a family of trace identities to establish the following theorem.

Theorem 12.1.1.  (Uniqueness)  Cyclically reduced words w1 = w1(a, b) and w2 = w2(a, b) can have the same

trace polynomial only if the absolute values of the exponents of the generators of a in w2 arise from those in w1 by

a permutation, and the same must be true for the exponents of b

Our initial interest lies in understanding these polynomial trace identities further and their connection with

discrete groups of Möbius transformations. The Möbius group acts as linear fractional transformations of the

Riemann sphere;

and through the Poincaré extension we identify Möb(Ĉ) with Isom+(H3) the group of orientation preserving

isometries of hyperbolic 3-space. A thorough discussion of these things can be found in Beardon's book [2]. The

numbers x,y,z de�ned above at (12.1) are not well de�ned in PSL(2,C), and so we �rst identify new parameters.

Given two matrices A,B ∈ SL(2,C) we de�ne the parameters

(12.2)

Here [A,B] = ABA−1B−1 is the multiplicative commutator. These parameters depend only on the conjugacy

class of ⟨A,B⟩ and are well de�ned in the projective group PSL(2,C). They determine the group ⟨A,B | ⋯⟩
uniquely up to conjugacy if γ(A,B) ≠ 0, [12].

Note that γ(A,B) is unchanged by Nielson moves (automorphisms of the free group of rank 2) on the

generating pair {A,B}, so for instance

and so forth. The parameters are set up so that if ⟨A,B⟩ = I, the trivial group, then (γ,β, β̃) = 0 ∈ C3.

In this article we are primarily interested in a special family of words, called good words, and the family of

trace polynomials they generate. These words are de�ned in Section 12.5 below. This remarkable family W  has the

following properties reminiscent of the Chebyshev polynomials:

1. [Semigroup structure] W  forms a semigroup under the operation

(12.3)

P(x, y, z) = tr(w(A,B)).

tr(AB) + tr(AB−1) = tr(A) ⋅ tr(B).

PSL(2,C)∋ ± [ ] ↔ az+b
cz+d

∈ Möb(Ĉ)
a b

c d

γ(A,B) = tr[A,B] − 2, β(A) = tr2(A) − 4, β(B) = tr2(B) − 4.

γ(A,B) = γ(B,A) = γ(A,AmB−1An)

w1(a, b)*w2(a, b) = w1(a,w2(a, b))



2. [Polynomials and composition] For each w(a, b) ∈ W  there is an associated monic polynomial with integer

coef�cients in two complex variables Pw(γ,β). These polynomials have the property that if 

w1(a, b),w2(a, b) ∈ W , then

(12.4)

That is the semigroup operation above induces polynomial composition.

3. [Commutators and bounded roots] Given a representation of

into SL(2,C), a ↦ A, b ↦ B, set γ = γ(A,B) and β = β(A). Then for w = w(a, b) ∈ Γ , w is a good

word and we have

Here we will prove the density of the roots of good word polynomials in the exterior of the moduli space of

discrete and faithful representations of Γ, that is 3 (b). The hard part of 3 (c) concerns the structure of the

boundary, and the only proof we have relies on some very deep results concerning the geometry of discrete groups,

such as the density and the ending lamination theorems, see [26]. This is because Rβ can be identi�ed with the

(moduli) space of discrete and faithful geometrically �nite representations of Z*Z2, with the generator of Z = ⟨A⟩
and β(A) = β. The “pants” decomposition of a geometrically �nite Riemann surface with fundamental group 

Z*Z2 or Zp*Z2 shows that Rβ is topologically a punctured disk. These are obtained from the disk with two cone

points of order two glued along its boundary to a disk with two holes (or punctures). In the case β = 0, R  is

known in the literature as the Riley slice and the boundary ∂R is a topological circle [1]. This is expected to

persist for all other β ∈ C as well. The geometrically in�nite faithful representations lie in the continuum

(topological circle ?) ∂R.

The complement C∖Rβ consists of nondiscrete groups apart from a countable discrete set in Rβ of points

which are the roots of polynomials corresponding to relators in groups that are discrete but not splitting. There are

some conjectures about the structure of the polynomials and the words they come from - basically that they are

associated with Dehn surgeries on two bridge knots and links and associated Hecke groups (obtained by adding an

Pw1*w2
(γ,β) = Pw1

(Pw2
(γ,β),β)

Γ = ⟨a, b b2 = 1⟩∣Commutator independence from the third complex variable β(B),(a)

γ(A,w(A,B)) = Pw(γ,β)

Suppose A is not an irrational rotation, equivalently

and denote the zero set of the polynomials by

Then Z  is compact and

where Rβ is nonempty, unbounded and conformally equivalent to the punctured disk.

(b)

β {−4sin2(rπ) : r ∈ R∖Q},∈

Zβ = {z ∈ C : Pw(z,β) = 0 for some w ∈ Γ}

¯

C∖Zβ = Rβ̄

The group ⟨A,B⟩ is discrete and free on generators

if and only if γ(A,B) ∈ Rβ.

(c)

⟨A,B⟩ ≅⟨A⟩*⟨B⟩

¯

¯

¯



unknotting tunnel). The cusp points on the boundary arise from pinching a geodesic (arising from a Farey word) of

the Riemann surface with fundamental group Z*Z2 as in [19], giving a ray in the unbounded region ending on ∂R,

while from the bounded region C∖∂R cusps are associated with Dehn surgery limits (via Thurston's Dehn Surgery

theorem) from the inside.

Indeed it is the strong connection between these representation spaces of discrete groups, low dimensional

hyperbolic geometry and topology and the good word polynomials that motivates our consideration of them. The

geometry of commutators plays an important role in understanding the geometry and topology of discrete groups

and their associated quotients, hyperbolic 3-manifolds and 3-orbifolds. For instance if A,B ∈ Γ  where Γ is a

discrete subgroup of SL(2,C), we put β = β(A) and then suppress it writing Pw(γ) for Pw(γ,β) to �nd that 

{Pw(γ) : w ∈ W } is a collection of traces of commutators in Γ. Further, if w ∈ W , then the semigroup operation

gives w*w*⋯*w ∈ W  and

gives a sequence of commutator traces from the holomorphic dynamical system given by iteration of the

polynomial Pw. As perhaps the simplest nontrivial example, with w(a, b) = bab−1, we have Pw(γ,β) = γ(γ − β).

If β = 0, then we see γ, γ 2, … , γn … is a sequence of commutator traces. If 0 < |γ| < 1, then the sequence 

{γn}n≥0 accumulates on 0. It is not a particularly dif�cult exercise to show this can’t happen in a discrete group,

and we therefore obtain the classical Shimitzu-Leutbecher inequality.

FIGURE 12.1

The Riley slice (shaded region) is symmetric about the origin and its complement meets the real line in the interval [−4, 4] and the imaginary axis in 

[−2, 2]. From David Wright. In [21] it is shown that the exterior - the closure of the complement of the Riley slice - is the Julia set of the good word

semigroup for groups generated by a parabolic and an elliptic of order two. Also illustrated are the �rst few thousand roots of the good word

polynomials.

Theorem 12.1.2  (Shimitzu-Leutbecher inequality).  If ⟨A,B⟩ ⊂ SL(2,C) is discrete and A is parabolic (β = 0),

then |γ| = |tr[A,B] − 2| ≥ 1.

Jørgensen's inequality [18] follows in the same way if |β| < 1 for then 0 is an attracting �xed point for the

iterates of Pw and the disk D(0, 1 − |β|) lies in the Fatou set so γ D(0, 1 − β ) and so |γ| + |β| ≥ 1. We will

give other examples later.

In order to fully exploit these polynomials in low dimensional topology and geometry, it is crucial to

understand more about them and develop a systematic approach to uncovering the inequalities and regions of

moduli space where their roots lie. For instance, to understand and extend the important 1
2 log 3 theorem of Gabai,

Meyerhoff and Thurston [8], used to prove the topological rigidity of hyperbolic three manifolds [7], an ad hoc

approach required rigorous estimates on the computation of 100+ matrix multiplications—these words were called

killer words as they removed small regions of moduli space using discreteness criteria, such as Jørgensen's

Pw(γ),Pw*w(γ) = Pw(Pw(γ)), … ,Pw*w*⋯*w(γ) = P °n
w (γ)

∈ ∣ ∣



inequality or other criteria, such as contradicting a choice of shortest geodesic. An approach based on good words

is far simpler since estimates are required for the roots of a polynomial equation with integer coef�cients of lesser

degree. Such searches have been used to resolve a number of problems such as:

1. The unique minimal volume 3-orbifold (co-volume lattice of hyperbolic isometries) identi�ed as the

arithmetic Coxeter re�ection group 3-5-3, extended by the order two symmetry induced from the diagram

[14, 22].

2. Structure of the singular set. Tables 6-10 of [9, 14] give sharp bounds for the distance between components of

the singular set of a hyperbolic 3-orbifold and the distance between tetraheral, octahedral and icosahedral

points in a Kleinian group.

3. Automorphism groups of 3-manifolds and 3-dimensional Hurwitz groups. Sharp bounds for the order of the

automorphism group of a hyperbolic 3-manifold group in terms of the volume and analogous to the 

84(g − 1) Theorem of Hurwitz [5]

4. Margulis constant. The Margulis constant is achieved in a two- or three- generator group, the case of two

generator groups is completely resolved, [13] and the only remaining case concerns Kleinian groups

generated by three elements of order two.

5. Geodesic length spectrum of 3-folds. Inequalities are used to �nd bounds on the length of intersecting closed

geodesics, or non-simple geodesics, which are within a factor of 2 of being sharp. These together with

estimates on the Margulis constant, yield good bounds for the thick and thin decompositions of hyperbolic 3-

manifolds.

6. Explicit examples of small volume hyperbolic 3-manifolds and 3-orbifolds with various geometric properties

including a sequence of orbifolds with torsion of order q interpolating between the smallest volume cusped

orbifold (q = 6) and the smallest volume limit orbifold q → ∞, hyperbolic 3-manifolds with automorphism

groups with large orders in relation to volume and in arithmetic progression, and the smallest volume

hyperbolic manifolds with totally geodesic surfaces in [4].

In this paper we uncover a group V  of elements of unit norm in a quaternion algebra Q with associated

indeterminates, which maps under an “evaluation homomorphism” ρ : V → PSL(2,C) to a group which includes

these good words on two generators. Further V  naturally extends to a larger group which gives a corresponding

extension of the isometry group ρ(V ). Roughly, polynomials R,S,T and W in the indeterminates u and v form a

“quaternion” (R,S,T ,W) ∈ Q, which has norm 1 when

(12.5)

A special case of interest occurs when u or v is ±1, in which case this equation reduces to the polynomial Pell

equation,

(12.6)

An obvious similarity between the two equations is that the solution sets have a natural group structure; this is

what we will exploit to begin to understand the structure of good words. However, there are signi�cant differences.

For instance while the solutions P(x), Q(x) of the polynomial Pell equation must have integer coef�cients, there

are members of V  whose polynomials have coef�cients which need not even be rational (see Section 12.8.7 for an

example). We also note that (12.5) has some solutions with strictly complex coef�cients: a simple example is 

R(u, v) = uv, S(u, v) = T (u, v) = 1, W(u, v) = i. However, when we con�ne ourselves to solutions with

rational coef�cients, some remarkable properties emerge; in particular, it turns out all that such solutions actually

have half-integer coef�cients Section 8.

In order to study these word polynomials more fully, as well as justify the sorts of results we are seeking, we

need to develop a few ideas from hyperbolic geometry and, in particular, from the geometry of discrete groups of

hyperbolic isometries of hyperbolic 3-space.

R2 − (u2 − 1)S 2 − (v2 − 1)T 2 + (u2 − 1)(v2 − 1)W 2 = 1

P 2(x) − (x2 − 1)Q2(x) = 1,



12.2 Background in Hyperbolic Geometry

Let Isom+(H3) be the group of orientation preserving isometries of ℍ3, hyperbolic 3-space,

of constant negative curvature equal to −1.

We brie�y review some well-known facts about the group Isom+(H3); see e.g. [2, 12] or [23] for more details.

Each f ∈ Isom+(H3) is the Poincaré extension of a Möbius transformation of the boundary ∂H3 which we

identify as Ĉ = C ∪ {∞}, the Riemann sphere. Hence there is a natural isomorphism between Isom+(H3) and 

PSL(2,C). Using the de�nition at (12.2) we can thus de�ne the trace and β and γ parameters for isometries 

f, g ∈ Isom+(H3), simply by setting tr(f) = tr(A), β(f) = β(A) and γ(f, g) = γ(A,B), where 

A,B ∈ PSL(2,C) represent f and g respectively.

Each non-identity f ∈ Isom+(H3) has either one or two �xed-points on the boundary Ĉ. If there is just one,

then f is called parabolic; if there are two, then we de�ne the axis of f, ax(f) to be the hyperbolic geodesic line

joining them. Now f leaves ax(f) invariant, and its action on this geodesic is a translation along by a distance 

τ = τ(f) ≥ 0, the translation length of f, together with a rotation through an angle η = η(f), the holonomy of f

around ax(f). If τ(f) > 0, then η ∈ (−π,π], is taken anticlockwise around ax(f), as determined by the direction

of the translation of ax(f) performed by f, and the right-hand rule; in this case f is called loxodromic. If τ(f) = 0,

that is if f �xes ax(f) pointwise, then f is called elliptic, in which case the distinction between clockwise and

anticlockwise disappears, and we may assume that η ≥ 0, that is η ∈ (0,π].
When f is elliptic or loxodromic the parameters τ(f) and η(f) together determine f up to conjugacy.

When f is parabolic or the identity, we set τ(f) = η(f) = 0.

The following lemma classi�es the isometries in Isom+(H3) up to conjugacy, and identi�es, for each isometry,

the conjugations which leave it unchanged.

Lemma 12.2.1  A non-identity isometry f ∈ Isom+(H3) is conjugate to z + 1 if f is parabolic, and otherwise to a

unique isometry of the form f(z) = reiθz, where r = eτ(f) ≥ 1, −π < θ ≤ π if r > 1, and 0 ≤ θ ≤ π if r = 1.

If gfg−1 = f, then either g is the identity, g and f have exactly the same �xed points on Ĉ, or, f is an elliptic of

order 2, and g is an elliptic of order 2 which interchanges the endpoints of ax(f).

As previously remarked, both parameters β(f) and γ(f, g) are invariant under conjugacy. Conversely, if 

β(f) ≠ 0, then β(f) determines f up to congugacy, and if γ(f, g) ≠ 0, then β(f), β(g) and γ(f, g) together

determine the group ⟨f, g⟩ up to congugacy [12]. We prove this result in Theorem 12.4.1 below by identifying a

canonical representation.

Both the parameters γ(f, g) and β(f) encode geometric information. For instance:

(12.7)

and, when f is elliptic or loxodromic,

(12.8)

H3 = {x = (x1,x2,x3) ∈ R3,x3 > 0},  with metric ds =
|dx|
x3

β(f) = 4sinh2( τ+iη

2 ),

γ(f, g) = 1
4
β(f)β(g)sinh2(Δ),



where Δ = Δ(ax(f), ax(gfg−1)) represents the complex distance between ax(f) and ax(gfg−1) (the imaginary

part of this distance, which represents the angle between the two axes, is de�ned modulo π, so the right-hand side

of (12.8) is well de�ned). It is an elementary fact (see e.g. [2] or Theorem 12.4.1 below) that γ(f, g) = 0 if and

only if f and g share a �xed point on the boundary Ĉ of ℍ3; indeed for non-parabolic f and g, this follows

immediately from (12.8), Δ being 0 when the axes of f and gfg−1 either meet at a point of Ĉ or coincide. In

applications we often want to distinguish between these two cases. We develop an algebraic test in Section 12.6.

12.3 Matrix Identities

We collect some matrix identities for later use. Let

(12.9)

where ad − bc = 1. Then

(12.10)

(12.11)

and when m = 0

(12.12)

(12.13)

In particular we have the useful trace identities, when m = 0

(12.14)

(12.15)

M = [ ], P = [ ],

Q = [ ], N = [ ],

k m

0 k−1

1 1

0 1

0 i√k

i/√k 0

a b

c d

QNQ−1 = [ ],
d kc

b/k a

MNM −1 = [ ],
a + k−1mc −m2c + mk(d − a) + k2b

k−2c d − k−1mc

[M,N ] = [ ]
ad − k2bc ab(k2 − 1)

cd(k−2 − 1) ad − k−2bc,

[P ,N ] = [ ].
1 + c2 + ac 1 − a2 − ac

c2 1 − ac

tr[M,N ] = 2 − (k − k−1)
2
bc

tr[P ,N ] = 2 + c2



FIGURE 12.2

Illustrated are two loxodromic elements f and g. The axes are the hyperbolic lines connecting the �xed points in Ĉ. Each of f and g has a translation

length—the distance a point is moved along the axes—denoted τ(f) and τ(g). The common perpendicular has hyperbolic length δ. When viewed along

this common perpendicular, the two axes form an angle θ. All of these quantities are related by the formula .

4γ(f,g)
β(f)β(g) = sinh2(δ + iθ)

(3)

12.4 Two-Generator Groups

We now classify up to conjugacy all two-generator subgroup of Isom+(H3), by �nding a canonical representative

for each conjugacy class. Throughout we always use the principle values of square roots.

Theorem 12.4.1  Every group generated by two non-identity isometries in Isom+(H3) is conjugate to a group of

the form ⟨f, g⟩, where f and g have matrix representatives A and B respectively in PSL(2,C) such that either:

Case 1.

(12.16)

A = , B = [ ]
⎡⎢⎣ √β(f)(β(f)+4)+β(f)

2√β(f)
0

0
√β(f)(β(f)+4)−β(f)

2√β(f)

⎤⎥⎦ a b

c d



(12.17)

and

(12.18)

when γ(f, g) ≠ 0, and either

(12.19)

when γ(f, g) = 0; or

Case 2.

(12.20)

or

Case 3.

(12.21)

where ℓ = 0 when β(g) ≠ 0, and can take any complex value when β(g) = 0.

The three cases are respectively the cases β(f) ≠ 0 (f non-parabolic), β(f) = 0 and γ(f, g) ≠ 0 and 

β(f) = γ(f, g) = 0 (f parabolic).

Proof. We set β = β(f), γ = γ(f, g). Suppose �rst that f is loxodromic or elliptic (β ≠ 0). By Lemma 12.2.1

we can conjugate f so that its matrix representative A is diagonal.

By (12.14) we have that γ = −bcβ, whence

(12.22)

We have (a + d)2 − 4 = β(g), and since B is determined only up to sign, we may thus assume that 

a + d = √β(g) + 4. Together with (12.22), this gives that a and d are either as given by (12.17) or are obtained

a = 1
2 (√β(g) + 4 + √ 4γ(f,g)+β(f)β(g)

β(f) )

d = 1
2 (√β(g) + 4 − √ 4γ(f,g)+β(f)β(g)

β(f) ),

c = −b = √ γ(f,g)
β(f)

b = 0, c = 1 or b = 1, c = 0 or b = c = 0

A = [ ], B = [ ],
1 1

0 1

0 −1/√γ(f, g)

√γ(f, g) √β(g) + 4

A = [ ],

B = [ ]

1 1

0 1
1
2 [√β(g) + 4 + √β(g)] ℓ

0 1
2 [√β(g) + 4 − √β(g)]

bc = −γ

β
, ad = 1 − γ

β



□

from these by interchanging the values of a and d. Using (12.10), we may then conjugate A and B if necessary, to

interchange a and d, so that (12.17) holds, and A is still diagonal.

Let r and s be the diagonal entries of A. We have (r + s)2 − 4 = β, and since A is determined only up to sign,

we may assume that r + s = √β(β + 4)/√β. Together with the condition rs = 1, this gives that either A or A−1

takes the form given by (12.16). Since ⟨A−1,B⟩ and ⟨A,B⟩ are the same group, we may assume that A satis�es

(12.16).

Finally, we apply a conjugacy of the type (12.11) (with m = 0) to A and B to adjust the values of b and c,

leaving A unchanged. If b, c ≠ 0 (i.e. when γ ≠ 0), we can use such a conjugacy to give b are c any values subject

to (12.22); in particular, we can make (12.18) hold. If exactly one of the values of b and c is nonzero, then we

conjugate to make it 1. The only other possibility is b = c = 0, so the options given in (12.18) and (12.19) are

exhaustive.

Now we suppose that f is parabolic. Using Lemma 12.2.1 we conjugate so that f(z) = z + 1, so that its matrix

representative A = [ ]. By (12.15) c2 = γ, and we may assume, since B is determined only up to sign, that 

c = √γ.

Now we have two subcases, determined by whether or not γ = 0. If γ ≠ 0, then c ≠ 0, and we apply the

conjugation (12.11) with k = 1 and m = −a/c to A and B, leaving A the same, and changing a to 0, whence

(12.23)

Let B(+) and B(−) be the matrices obtained by taking the + and - signs respectively in (12.23). We show that 

⟨A,B(+)⟩ and ⟨A,B(−)⟩ are conjugate groups in PSL(2,C). A conjugation of the form (12.11) with k = i and 

m = 0 takes A to A−1 and B(−) to −B(+). Thus ⟨A,B(−)⟩ is conjugate to ⟨A−1, −B(+)⟩ = ⟨A,B(+)⟩ in 

PSL(2,C) as required. Thus, without loss of generality, we take the + sign in (12.23).

If γ = 0, then c = 0 so ad = 1. As in previous cases, we may assume that a + d = √β(g) + 4, so that B must

take the form (12.21), up to an interchange of the diagonal entries. If β(g) = 0, then these entries are the same, and

we are done. Otherwise a ≠ d, and we can apply a further conjugation of the form (12.11), with k = 1, so as to get

both ℓ = 0 and to leave A unchanged. Now B is diagonal, and interchanging a and d replaces B by B−1. Since this

operation leaves the group ⟨A,B⟩ unchanged, we may assume that B is given by (12.21).

Remarks. We can characterize geometrically the four ways of assigning values to b and c given by (12.18)

and (12.19). In (12.18) γ ≠ 0, so b, c ≠ 0 and f and g have no common �xed points in Ĉ. In this case, as remarked

in the proof, b and c can be made to take any values whose product is −γ/β, and the exact choice is rather

arbitrary. However, the normalization that we have chosen is quite natural from a geometric viewpoint; it makes

the �xed points of g mutually reciprocal, and (consequently), when g is non-parabolic, the common perpendicular

of ax(f) and ax(g) is the geodesic with endpoints ±1. When g is parabolic, the �xed point is z = 1. See [22] for

more details.

The �rst two cases of (12.19), when {b, c} = {0, 1} occur when f and g have a single common �xed point in Ĉ

. If f is loxodromic, then this point is repulsive when b = 0, c = 1, and attractive when b = 1, c = 0. If f is elliptic,

then f rotates ℍ3 anticlockwise (resp. clockwise) around ax(f) oriented away from the shared �xed point when 

b = 0, c = 1 (resp. b = 1, c = 0). (When the elliptic f is order two, these two cases are conjugate.) Finally 

b = c = 0 when f and g are both elliptic or loxodromic and have the same axis.

Note that, when γ = 0, although β(f), β(g) and γ do not determine the conjugacy class of ⟨f, g⟩, when 

β(f) ≠ 0 (and symmetrically when β(g) ≠ 0) then there are only three possibilities. Only when 

β(f) = β(g) = γ = 0 (Case 3 of the theorem with β(g) = 0) do the same parameters give an in�nite family of

non-conjugate groups.

1 1

0 1

B = [ ].
0 −1/√γ

√γ ±√β(g) + 4



□

12.5 Good Words

A good word on the letters a and b is a word of the form

where s1 = ±1, sj = (−1)j+1
s1, and the rj take integer values.

Thus the powers of b in a good word alternate in sign. By setting r1 = 0 (resp. rm−1 = 0), we obtain a good

word which begins (resp. ends) with a power of a.

A good word is even if r1 + r2 + … rm−1 is even, odd otherwise, balanced if m is even, unbalanced

otherwise, and regular if s1 = 1, irregular otherwise. If rj = 0 for any 1 < j < m − 1, then w(a, b) collapses into

a shorter good word (which has the same balance, parity and regularity as the original word), so we may assume

that these interior powers are non-zero.

The following easy observation is quite useful. We leave the proof to the reader.

Theorem 12.5.1  The regular balanced words in ⟨a, b⟩, say Γreg, comprise a subgroup of the free group on a and b,

of which the regular balanced even words form an index-two subgroup.

Lemma 12.5.1  The group of regular balanced even words, say Γ even
reg , on a and b is generated by a2, ba2b−1 and 

[b, a] = bab−1a−1.

Proof. Let w = bar1b−1ar2 … bar2m−1b−1 be regular, balanced and even. We use induction on m. We have

(12.24)

when i and j are both even, and

(12.25)

when i and j are both odd. This deals with the case m = 1 and the induction step when r1 and r2 have the same

parity.

If r1 and r2 have the opposite parity, then m > 1, and we use the same identities together with

This completes the proof.

The next corollary is also immediate.

Corollary 12.5.1  Suppose that a has order three, a3 = 1. Then the group of regular balanced even words on a and

b is a two generator group generated by a and bab−1.

We recall here the well known identity

This tells us that the regular balanced words in Γ = ⟨a, b⟩ lie in the group Γ (2) generated by squares of elements.

w(a, b) = bs1ar1bs2ar2 … bsm−1arm−1bsm

baib−1aj = (ba2b−1)
i/2

(a2)
j/2

baib−1aj = (ba2b−1)
(i−1)/2

[b, a](a2)
(j+1)/2

bar1b−1ar2bar3b−1ar4 = (bar1b−1ar2−1)[b, a]−1(bar3+1b−1ar4)

[b, a] = (ba)2 (a−1b−1a)
2

(a−1)
2



Corollary 12.5.2  The group of regular balanced even words on a and b lies in the group generated by the four

squares

The remark following the next result, Theorem 12.5.2, shows that the index between these two groups is in�nite. In

fact, for any representation in SL(2,C), the trace �elds are Q(trΓ even
reg ) = Q(β, γ) and Q(β, γ,β(ba)), using our

earlier notation.

We can now state our �rst main theorem.

Theorem 12.5.2  Let w = w(a, b) = bar1b−1ar2 … bar2m−1b−1 be a regular balanced even word, then there are

polynomials rw, sw, tw,ww, such that

(12.26)

rw(0, 0) = 1 and

is also a polynomial, and if f, g ∈ Isom+(H3) are not the identity, have parameters β = β(f), β′ = β(g) and 

γ = γ(f, g), and if A and B are the matrices from Theorem 12.4.1 which represent (up to conjugacy) f and g

respectively, then: for f non-parabolic (β ≠ 0)

(12.27)

where Q = √β(β + 4) and a, b, c, d are as in (12.17) and (12.18); and for f parabolic (β = 0), with γ ≠ 0

(12.28)

and for f parabolic, with γ = 0

(12.29)

In particular, the trace tr(w(f, g)) = 2rw(β, γ) ∈ Z[x, z].

Remark. A key feature here is that the polynomials rw, sw, tw and ww, and in case (12.28) the whole matrix, are

independent of β′ = β(g). In particular this is true of traces of the matrix representations above.

We prove the above result in Section 12.7. We can also use it to �nd w(A,B) when w is unbalanced; we do

this next for non-parabolic f.

Γ even
reg < ⟨a2, (bab−1)

2
, (ba)2, (aba−1)

2
⟩

2rw, 2sw, 2tw, 2ww, rw − sw, tw − ww ∈ Z[x, z],

gw(x, z) :=
sw(x,z)−zww(x,z)

x

w(A,B) =
⎡

⎣

rw(β, γ) +
sw(β,γ)Q

β
ab[βtw(β, γ) + ww(β, γ)Q]

cd[βtw(β, γ) − ww(β, γ)Q] rw(β, γ) −
sw(β,γ)Q

β

⎤

⎦

w(A,B) = [ ],
rw(0, γ) + γtw(0, γ) 4gw(0, γ) + 2ww(0, γ)

2γww(0, γ) rw(0, γ) − γtw(0, γ)

w(A,B) = [ ]
1 4gw(0, 0) − (β′ + √β′√β′ + 4)ww(0, 0)

0 1



Corollary 12.5.3  If w = w(a, b) = bar1b−1ar2 … b−1ar2m−2b is a regular unbalanced even word, then there are

polynomials rw, sw, tw,ww with half-integer coef�cients such that for f non-parabolic

(12.30)

where a, b, c, d are as in (12.17) and (12.19).

Proof. First note that w̃ = w*b−1 is balanced, thus

using (12.22). We have now found the polynomials for w explicitly in terms of those for w̃:

□

We now extend the de�nition of the polynomials rw, sw, tw and ww to arbitrary good words.

De�nition. Let w be a good word. If w is regular and even, then then the polynomials rw, sw, tw and ww are as

de�ned in Theorem 12.5.2 for balanced w, and Corollary 12.5.3 for unbalanced w. If w is regular and odd, then 

v := w. a is regular and even and we de�ne rw = rv, sw = sv, tw = tv and ww = wv. Finally, if w = w(a, b) is

irregular, then w′ = w(a, b−1) is regular, and we de�ne rw = rw′  etc. Note that (w. a)′ = w′. a, so that if w is

irregular and odd, we have rw = r(w.a)′ = rw′.a and so forth.

If w = w(a, b) is an irregular even word, then w′ is regular and even. Since β(g−1) = β(g) and 

γ(f, g−1) = γ(f, g), Theorem 12.5.2 and Corollary 12.5.3 show that w(f, g) = w′(f, g−1) is conjugate to w′(f, g)
; in particular these have the same trace 2rw(β, γ) = 2rw′(β, γ).

Since for any good word w = w(a, b), the commutator [a,w] is balanced and even, it follows easily that 

γ(f,w(f, g)) = pw(β, γ), for some polynomial pw ∈ Z[x, z] as �rst observed in [12]. The next result expresses

these polynomials in terms of tw and ww.

Theorem 12.5.3  Let w = w(a, b) be a good word, β = β(f), γ = γ(f, g) and h = w(f, g), then there is a

polynomial pw ∈ Z[x, z], such that

(12.31)

w(A,B) = [ ],
a(rw(β, γ) + sw(β, γ)Q) b(tw(β, γ) + ww(β, γ)Q)

c(tw(β, γ) − ww(β, γ)Q) d(rw(β, γ) − sw(β, γ)Q)

w(A,B) = w̃(A,B)B = [ ] =
⎡

⎣

rw̃ + sw̃Q

β
ab(βtw̃ + ww̃Q)

cd(βtw̃ − ww̃Q) rw̃ − sw̃Q

β

⎤

⎦

a b

c d

⎡⎢⎣a[rw̃ + sw̃Q

β
−

γ

β
(βtw̃ + ww̃Q)] b[rw̃ + sw̃Q

β
+ (1 − γ

β
)(βtw̃ + ww̃Q)]

c[rw̃ − sw̃Q

β
+ (1 − γ

β
)(βtw̃ − ww̃Q)] d[rw̃ − sw̃Q

β
−

γ

β
(βtw̃ − ww̃Q)]

⎤⎥⎦= [ ]
a((rw̃ − γtw̃) + gw̃Q) b[rw̃ + (β − γ)tw̃ + (gw̃ + ww̃)Q]

c[rw̃ + (β − γ)tw̃ − (gw̃ + ww̃)Q] d((rw̃ − γtw̃) − gw̃Q)

rw = rw̃ − γtw̃

sw = gw̃

tw = rw̃ + (β − γ)tw̃
ww = gw̃ + ww̃

γ(f,h) = pw(β, γ)



□

If w is balanced, then

(12.32)

If w is unbalanced, then

(12.33)

Proof for non-parabolic f. We may assume that f and g have matrix representatives A and B, respectively as given

by (12.16)-(12.19). Suppose �rst that w is regular and even, and set W = w(A,B). The required identities follow

from (12.14) and (12.22), together with (12.27) when W is balanced and (12.30) when W is unbalanced. For

balanced w, pw ∈ Z[x, z] follows from (12.26). For unbalanced w, using the results and notation of the proof of

Corollary 12.5.3, we have

again by (12.26). Consequently, also tw + xww ∈ Z[x, z], and the same then follows for pw, as given by (12.33).

If w is odd, the result follows from the previous case, together with the identity [A,W ] = [A,WA]. Finally

suppose that w is irregular, then the commutator [a,w] is irregular and even, and [a,w]′ = [a,w′] is regular. Since,

as previously noted, tr([a,w]) = tr([a,w]′) = tr([a,w′]), we are reduced to the case where w is regular.

It is not dif�cult to prove the above directly when f is parabolic. However, we will instead use a limiting

argument in Section 12.7 (Corollary 12.7.1).

12.5.1 Examples of word polynomials

Before going too much further it is worthwhile giving a few examples of polynomials. These appear in Table 12.1

below.

TABLE 12.1

Some examples of word polynomials.

Polynomial word

γ(γ − β) bab

(β + 4)(γ − β)γ ba2b

(β − γ + 1)2
γ babab

γ(1 − 2β + γ 2 − (β − 2)γ) baba−1b

γ(1 + β(β + 1)(β + 4) − (β + 4)(2β + 1)γ + (β + 4)γ 2) baba2b

(β2 − (γ − 4)β − 4γ + 1)
2
γ ba2ba2b

γ(γ − β)(β − γ + 2)2 bababab

γ(β2 + γ 3 − 2βγ 2 + (β − 1)βγ) bababa−1b

γ(β + 4)(β2 + γ 3 − 2βγ 2 + (β − 1)βγ) baba2ba−1b

γ 3(γ − β)(β + 4)(β(γ 2 − 3γ − 4) − β2(γ + 1) + 4γ 2 + 4γ + 1) ba−2bababa−2bab

The last polynomial here is quite long, but it has the remarkable property that it has γ = 0 as a super-attracting

�xed point. We will need this fact later.

pw(x, z) = z(x − z)(xt2
w(x, z) − (x + 4)w2

w(x, z)),

pw(x, z) = z(t2
w(x, z) − x(x + 4)w2

w(x, z)).

tw − xww = rw̃ + (x + z)tw̃ − x(gw̃ + ww̃)

= rw̃ + (x + z)tw̃ − (sw̃ − zww̃) − xww̃

= (rw̃ − sw̃) + (x + z)(tw̃ − ww̃) ∈ Z[x, z],



12.6 Applications

Inequalities such as Jørgensen's inequality hold quite generally for discrete groups of isometries of negatively

curved metrics in an appropriate form as it is essentially based on Zassenhaus’ lemma (see eg. [20]). However, it is

the explicit and sharp nature of these and other inequalities in terms of natural parameters which yield good

information in three dimensional hyperbolic geometry.

If ⟨f, g⟩ is discrete and non-elementary, which in this setting the latter means that ⟨f, g⟩ is not virtually abelian,

then we may recover Jørgensen's inequality, [18] as follows. Recall we sketched a proof for this earlier at Theorem

12.1.2.

Theorem 12.6.1  Let ⟨f, g⟩ be a discrete nonelementary subgroup of SL(2,C). Then

(12.34)

If w is a good word and if h = w(f, g), then we have γ(f,h) = pw(γ,β), where pw is the polynomial of Theorem

12.5.3 and so we deduce from Jørgensen's inequality applied to the group ⟨f,h⟩, that

unless γ(f,h) = 0, in which case ⟨f,h⟩ is elementary.

We would like to understand how this exception happens more generally.

If |β(f)| + |γ(f,h)| < 1 and γ(f,h) ≠ 0, then ⟨f, g⟩ is non-elementary since f is either loxodromic or elliptic

of order at least 7. Then Jørgensen's inequality implies that ⟨f, g⟩ cannot be discrete. On the other hand, this group

may be elementary if γ(f,h) = 0. However, in this case, we know that the �xed point sets of f and of h on Ĉ

intersect, and they may coincide; for non-parabolic f and h, coincidence means that they have the same axis. We

can use polynomials to determine when this happens.

Proposition 12.6.1  Let ⟨f, g⟩ be discrete and non-elementary, and h = w(f, g) for a good word w. Set 

β = β(f) ≠ −4, and γ = γ(f, g) ≠ β, 0. Then the �xed point sets of f and h on Ĉ coincide if and only if 

tw(β, γ) = ww(β, γ) = 0

Proof. We suppose �rst that w is regular and even. We may suppose that f and g are normalized so that their matrix

representatives are as given in Theorem 12.4.1 (speci�cally, by (12.16)-(12.19) for β ≠ 0, and by (12.21) for 

β = 0), and consequently that the matrix representative for h is given by Theorem 12.5.2.

Suppose �rst that β ≠ 0, so that f is loxodromic or elliptic with �xed points 0 and ∞ on the boundary. Since 

abcd = γ(γ − β)/β2 ≠ 0, (12.27) and (12.30) show that h shares these �xed points if and only if

when w is balanced, and

when it is not. Since also β ≠ 0 and Q ≠ 0, this is equivalent to tw(β, γ) = ww(β, γ) = 0 in both cases.

Now suppose �rst that β = 0, so that f(z) = z + 1 with �xed point ∞. If ∞ is also the only �xed point of h,

then h must also be parabolic, and by (12.28), we must have rw(0, γ) = 1 and ww(0, γ) = 0, in order to get the

right trace and the right �xed point respectively. The determinant condition then gives tw(0, γ) = 0. The converse

is clear.

If w is regular and odd, then the �xed point sets of f and h on Ĉ coincide if and only if the same is true of the

�xed point sets of f and hf. Since w.a is even this occurs exactly when tw.a = ww.a = 0, by the previous case, and

since tw = tw.a and ww = ww.a, we are done. If w is irregular then h = w′(f, g−1), so that, since β(g−1) = β(g), 

|β(f)| + |γ(f, g)| ≥ 1.

|β(f)| + |γ(f,h)| = |β| + |pw(β, γ)| ≥ 1

βtw(β, γ) ± ww(β, γ)Q = 0,

tw(β, γ) ± ww(β, γ)Q = 0,



□
γ(f, g−1) = γ(f, g) and w′ is regular, the previous cases give that the �xed point sets of f and h on Ĉ coincide if

and only if tw′(β, γ) = ww′(β, γ) = 0, and we are done, since by de�nition, tw = tw′  and ww = ww′ .

The above, together with (12.32) and (12.33), gives the following corollary which is useful. It allows us to

obtain a contradiction to discreteness unless we can identify a multiple root, which is easy to do computationally,

using the vanishing of a discriminant.

Corollary 12.6.1.  Let f, g and h be as above and let β ≠ −4, β ≠ γ and γ ≠ 0. If f and h have the same �xed

points in Ĉ, then z = γ is a multiple root of pw(β, z).

Remark. The converse of this result is false. For example, when f is parabolic, f and h cannot have the same �xed

points on the boundary unless h is also parabolic, but inspection of (12.32) and (12.33) shows that pw(0, z) has no

simple roots apart from z = 0.

12.7 Quaternion Algebras

In order to prove Theorem 12.5.2, we switch from matrices into the slightly more abstract setting of quaternion

algebras. The objects we will be dealing with here are essentially the same as matrices of the form (12.27), but

with numbers replaced by indeterminates (we will let x and z correspond to β and γ respectively), and with square

roots de�ned abstractly. We �rst recall some basic facts; see [24] or [30] for more details.

For each �eld F of characteristic ≠ 2 and non-zero a, b ∈ F, the quaternion algebra

(12.35)

is de�ned to be the associative algebra over the �eld F with multiplicative identity 1 and basis {1, i, j, k}, with

multiplication determined by i2 = a, j2 = b, ij = −ji = k, whence also k2 = −ab, jk = −bi and ki = −aj. The

generic member of A  is thus x + yi + zj + wk, where x, y, z,w ∈ F; we may abbreviate this to (x, y, z,w).

A  is also isomorphic to the algebra of matrices of the form

(12.36)

over the extension �eld F(ξ1, ξ2), where ξ2
1 = a and ξ2

2 = b.

If n = (x, y, z,w) ∈ A , then the conjugate of n is given by

and the norm of n by

Note that the norm becomes the determinant under the mapping (12.36).

For reference, multiplication in the quaternion algebra (12.35) is given explicitly by

A = ( a,b
F
),

[ ]
x + yξ1 (z + wξ1)ξ2

(z − wξ1)ξ2 x − yξ1

n = (x, −y, −z, −w),̄

N(n) = nn = x2 − ay2 − bz2 + abw2 = x2 − ay2 − b(z2 − aw2) ∈ F.̄

( )( ′ ′ ′ ′)



(12.37)

If the �eld F is the �eld of fractions of an integrally closed integral domain R, we de�ne an R-lattice in A  to

be a �nitely generated R-module L in A ; L is an ideal if FL = A . An element α ∈ A  is an integer (over R) if 

R[α] is an R-lattice. An order in A  is an ideal which is also ring with 1. By contrast with the commutative case,

the set of all integers in A  is not generally a ring.

We will be particularly concerned with elements of norm 1. Note that these are units, and in any order which is

closed under conjugation, they form a multiplicative group.

We consider the following quaternion algebra over the �eld of rational functions in two indeterminates.

Theorem 12.7.1.  The set V0 of elements of norm 1 of Q0 of the form

where

(12.38)

(12.39)

and

(12.40)

is a group. This group is not trivial as, for instance,

{
1

2
(x + 2 + xi),

1

2
(x + 2 + (x − 2z)i − 2k),

1

2
(z + 2 − zi − j − k)} ⊂ V0

Proof. Let u = (r, s, t,w) = (1/2)(r1, s1, t1,w1) ∈ V0. The fact that this has norm 1 gives 

u−1 = u = (r, −s, −t, −w), so clearly V0 is closed under inversion. We need only show that it is also closed

under multiplication. We have

(12.41)

Reducing modulo 2 gives

(x, y, z,w)(x′, y′, z′,w′)

= (xx′ + ayy′ + bzz′ − abww′, xy′ + yx′ + b(wz′ − zw′),

xz′ + zx′ + a(yw′ − wy′), xw′ + wx′ + yz′ − zy′).

Q0 := ( (x+4)/x,z(z−x)
R(x,z)

)

[r(x, z) + s(x, z)i + t(x, z)j + w(x, z)k],

2r, 2s, 2t, 2w ∈ Z[x, z],

r(0, 0) = 1

s(x, z) ≡ zw(x, z) modx,

¯

r2
1 − ( x+4

x
)s2

1 − z(z − x)t2
1 + ( x+4

x
)z(z − x)w2

1 = 4

(r1 − s1)2 ≡ r2
1 − s2

1

≡ z(z − x)(w2
1 − t2

1)

≡ z(z − x)(w1 − t1)2 mod 2,



□

whence r1 − s1 ≡ w1 − t1 ≡ 0 mod 2, and so

(12.42)

(12.43)

Let u2 = (1/2)(r2, s2, t2,w2), u3 = (1/2)(r3, s3, t3,w3) ∈ U , then using (12.37), u2u3 = (1/2)(r, s, t,w),

where

(12.44)

The congruence (12.40) applied to u2 and u3 shows that each of these is a polynomial. Moreover, since (12.40) also

gives s2(0, 0) = 0, setting x = z = 0 in (12.44) then gives (12.39). Next

so (12.40) holds for u2u3. It remains to show that the polynomials r, s, t and w have integer coef�cients. We have

(12.45)

using (12.42) and (12.43), whence r ∈ Z[x, z]. Similar, and easier, arguments give the same conclusion for s, t and

w.

Remark. It is not dif�cult to show that r(0, 0) = ±1 and s(x, z) ≡ ±zw(x, z) modx follow from (12.41), so

that (12.39) and (12.40) are just normalizing choices of sign.

For each �xed β,β′, γ ∈ C, with β ≠ 0, if we let Q = √β(β + 4) and D1 and D2 be any �xed numbers such

that D1D2 = γ(γ − β)/β2, then the evaluation map

(12.46)

is an algebra homomorphism from Q0 to M2(C), the algebra of 2 × 2 matrices over ℂ.

For β = 0, γ ≠ 0, we set

r1(x, z) ≡ s1(x, z) mod 2,

t1(x, z) ≡ w1(x, z) mod 2.

2r = r2r3 + ( x+4
x

)s2s3 + z(z − x)t2t3 − z(z − x)( x+4
x

)w2w3

= r2r3 + z(z − x)t2t3 + (x + 4)zw2w3

+ (x + 4)( s2(s3−zw3)
x

+ zw3(s2−zw2)
x

)

2s = r2s3 + s2r3 + z(z − x)(w2t3 − t2w3)

2t = r2t3 + t2r3 + ( x+4
x

)(s2w3 − w2s3)

2w = r2w3 + w2r3 + s2t3 − t2s3

2(s − zw) = (r2 + zt2)(s3 − zw3) + (r3 − zt3)(s2 − zw2) + xz(t2w3 − w2t3),

2r = r2r3 + ( x+4
x

)s2s3 + z(z − x)t2t3 − z(z − x)( x+4
x

)w2w3

≡ r2r3 + s2s3 + z(z − x)(t2t3 − w2w3) mod  2

≡ 0 mod 2,

ϕβ,β′,γ([r(x, z) + s(x, z)i + t(x, z)j + w(x, z)k])

=
⎡

⎣

r(β, γ) + s(β,γ)Q
β

D1(βt(β, γ) + w(β, γ)Q)

D2(βt(β, γ) − w(β, γ)Q) r(β, γ) − s(β,γ)Q
β

⎤

⎦

( ( ) ( ) ( ) ( ) )



(12.47)

where g (a polynomial by (12.40)) is given by

(12.48)

and

(12.49)

The next theorem shows that the maps ϕ0,β′,γ arise as limits of maps ϕβ,β′,γ (after conjugating ϕβ,β′,γ in such a

way as to make its �xed points approach a common limit as β → 0). It follows that the maps ϕβ,β′,γ are all algebra

homomorphisms (this is also not dif�cult to show directly). In particular, each ϕβ,β′,γ restricted to V0 is a group

homomorphism to SL(2,C), and thence by projection to PSL(2,C).

Theorem 12.7.2  Suppose that β ≠ 0, γ ≠ 0, k2 = 1/√β, and that

(i.e. D1 = ab and D2 = cd, where a, b, c, d are given by (12.17) and (12.18)),

Then for γ ≠ 0, x ∈ Q,

ϕ0,β′γ([r(x, z) + s(x, z)i + t(x, z)j + w(x, z)k])

= [ ],
r(0, γ) + γt(0, γ) 4g(0, γ) + 2w(0, γ)

2γw(0, γ) r(0, γ) − γt(0, γ)

g(x, z) := s(x,z)−zw(x,z)
x

,

ϕ0,β′,0([r(x, z) + s(x, z)i + t(x, z)j + w(x, z)k])

= [ ]
r(0, 0) 4g(0, 0) − (β′ + √β′√β′ + 4)w(0, 0)

0 r(0, 0)

Q = √β(β + 4), Q′ = √β√β + 4,

m = −k−1[ 1
√β

+
√β′+4

2√γ
], m1 =

√β′+4+√β′

2√γ
,

D1 = − 1
2
√ γ

β
(√β′ + 4 + √ 4γ+ββ′

β
),

D2 = 1
2
√ γ

β
(√β′ + 4 − √ 4γ+ββ′

β
)

D′
1 = −( √γ

2√β
)(√β′ + 4 +

2√γ√1+ββ′/(4γ)

√β
),

D′
2 = ( √γ

2√β
)(√β′ + 4 −

2√γ√1+ββ′/(4γ)

√β
),

C =  

M = [ ]C, M1 = [ ].

⎧⎪⎨⎪⎩[ ], if Q′ = Q

[ ], if Q′ = −Q

√D′
1/D1 0

0 √D′
2/D2

0 i√D′
1/D2

i√D′
2/D1 0

k m

0 k−1

1 m1

0 1



(12.50)

and

(12.51)

Proof. Since D′
1D

′
2 = D1D2, the diagonal entries of C are the same, in the case Q′ = Q, and the off-diagonal

entries of C divided by i are mutually reciprocal, otherwise. Thus we can apply (12.11) and (12.10) respectively to

obtain

Thus

(12.52)

where, using (12.11), and writing r(β, γ) = r etc.

Thus

using (12.40) at the last step. Since conjugation preserves traces, we then have lim
β→0

a22 = r(0, γ) − γt(0, γ).

lim
β→0

Mϕβ,β′,γ(x)M −1 = ϕ0,β′,γ(x)

lim
γ→0

M1ϕ0,β′,γ(x)M −1
1 = ϕ0,β′,0(x)

Cϕβ,β′γ(x)C−1 =
⎡

⎣

r(β, γ) + s(β,γ)Q′

β
D′

1(βt(β, γ) + w(β, γ)Q′)

D′
2(βt(β, γ) − w(β, γ)Q′) r(β, γ) − s(β,γ)Q′

β

⎤

⎦

Mϕβ,β′γ(x)M −1 = [ ],
a11 a12

a21 a22

a11 = r + sQ′

β
− k−2[ 1

√β
+

√β′+4
2√γ

]( √γ

2√β
)⋅

⋅ (√β′ + 4 −
2√γ√1+ββ′/(4γ)

√β
)(βt − wQ′)

= r + sQ′

β
− √γ

2 [1 +
√β√β′+4

2√γ
]⋅

⋅ (√β′ + 4 − 2 √γ

√β
+ O(√β))(√βt − 2w + O(β))

lim
β→0

a11 = lim
β→0

[r + sQ′

β
− √γ

2 (1 +
√β√β′+4

2√γ
)(√β′ + 4 − 2 √γ

√β
)(√βt − 2w)]

= lim
β→0

[r + 2s
√β

+ √γ(1 +
√β√β′+4

2√γ
)(t√γ + w√β′ + 4 − 2w √γ

√β
)]

= lim
β→0

[r + 2s
√β

+ √γ(t√γ + w√β′ + 4 − w√β′ + 4) − 2wγ

√β
]

= lim
β→0

[r + 2(s−γw)

√β
+ tγ] = r(0, γ) + γt(0, γ),

a21 = k−2( √γ

2√β
)(√β′ + 4 −

2√γ√1+ββ′/(4γ)

√β
)(βt − wQ′)

= ( √γ

2 )(√β′ + 4 −
2√γ√1+ββ′/(4γ)

√β
)(βt − wQ′)



□

so

(12.53)

again using (12.40).

Finally we show that lim
β→0

a12 = 2w(0, γ) + 4g(0, γ). Since Det(ϕβ,β′,γ) = 1, and this determinant is preserved

under conjugation and limits, it suf�ces to show that

This is readily veri�ed by letting β → 0 in (12.41), keeping in mind the de�nition of g, (12.48). This completes the

proof of (12.50). A similar, but much easier, calculation gives (12.51). Forming the conjugate

using (12.11), and letting γ → 0, gives the matrix at (12.49).

12.7.1 Proof of Theorem 12.5.2

Let

(12.54)

Each wi ∈ V0. Let A, B be as in Theorem 12.4.1, Q = √β(β + 4). In the �rst case, β ≠ 0, we calculate

(12.55)

(12.56)

(12.57)

In the second case, β = 0, γ ≠ 0, we have

(12.58)

lim
β→0

a21 = ( √γ

2 )lim
β→0

( −2√γ

√β
)(−2w√β) = 2γw(0, γ) = 2s(0, γ),

(r(0, γ) + γt(0, γ))(r(0, γ) − γt(0, γ)) − 2s(0, γ)(2w(0, γ) + 4g(0, γ)) = 1.

[ ][ ][ ],
1 m1

0 1

r(0, γ) + γt(0, γ) 4g(0, γ) + 2w(0, γ)

2γw(0, γ) r(0, γ) − γt(0, γ)

1 −m1

0 1

w1 = 1
2

(x + 2,x, 0, 0),

w2 = 1
2

(x + 2,x − 2z, 0, −2)

w3 = 1
2

(z + 2, −z, −1, −1).

A2 = 1
2 [ ]

β + 2 + Q 0

0 β + 2 − Q

BA2B−1 = 1
2 [ ]

β + 2 + (β − 2γ)Q/β −2abQ

2cdQ β + 2 − (β − 2γ)Q/β

[B,A] = 1
2 [ ].

γ + 2 − γQ/β −ab(β + Q)

−cd(β − Q) γ + 2 + γQ/β,

A2 = [ ],
1 2

0 1



□

(12.59)

(12.60)

Finally, if β = γ = 0, then A2 is still given by (12.58), and

(12.61)

and

(12.62)

In this last case the matrices do depend on β(g), but are independent of the parameter ℓ.

Thus, in all cases, a straightforward calculation using the evaluation map at (12.46) gives

where β = β(f), β′ = β(g) and γ = γ(f, g), and where (in the case β ≠ 0), we set D1 = ab and D2 = cd with

a,b,c,d given by (12.17) and (12.19). Since, by Lemma 12.5.2, these words generate all regular balanced even

words in A and B, it follows immediately that every such word is ϕβ,β′,γ(w) for some w ∈ V0. Theorem 12.5.2

then follows, using Theorem 12.7.1, (12.42) and (12.43).

Corollary 12.7.1  Let A(β) and B(β,β′, γ) be the matrix representatives of f and g respectively given by

Theorem 12.4.1, where now we have made the dependency on parameters β = β(f), β′ = β(g) and γ = γ(f, g)
explicit. Let w(a, b) be a regular balanced even word. Let β ≠ 0, and k, M and M1 as in Theorem 12.7.2, then for 

γ ≠ 0,

(12.63)

and

(12.64)

Since polynomials and the trace function are continuous, and trace is preserved under conjugation, Theorem 12.5.3

for β = 0 follows from the case β ≠ 0, by letting β → 0.

12.7.2 A Change of Variable

BA2B−1 = [ ],
1 0

−2γ 1

[B,A] = [ ]
1 −1

−γ γ + 1

BA2B−1 = [ ]1 2 + β(g) + √β(g)√β(g) + 4

0 1

[B,A] = [ ]
1 (β(g) + √β(g)√β(g) + 4)/2

0 1

A2 = ϕβ,β′,γ(w1), BA2B−1 = ϕβ,β′,γ(w2), [B,A] = ϕβ,β′,γ(w3),

lim
β→0

M(w(A(β),B(β,β′, γ)))M −1 = w(A(0),B(0,β′, γ))

lim
γ→0

M1(w(A(0),B(0,β′, γ)))M −1
1 = w(A(0),B(0,β′, 0))



We now introduce two new parameters which can be used to describe 2-generator groups (up to conjugacy), and

which, when β ≠ 0, can be used interchangeably with β and γ and will simplify many formulas in what follows.

For f, g ∈ Isom+(H3) we de�ne

(12.65)

so λ = (β(f) + 2)/2. When f is elliptic or loxodromic,

(12.66)

In terms of our earlier parameters

Rewriting (12.7) and (12.8) in terms of λ(f) and μ(f, g) gives

and

where we recall Δ—the complex distance between axes—is de�ned above at (12.8). An important special case is

captured by the next lemma.

Lemma 12.7.1  If g is order 2, λ(g) = −1, and we obtain the particularly simple form:

Unwinding these parameters gives

(12.67)

If λ = λ(f) ≠ 1 then it determines f up to congugacy, and if further, μ = μ(f, g) ≠ 1, then λ and μ together

determine the group ⟨f, g⟩. When λ ≠ 1, we can rewrite the matrices A and B at (12.16) in terms of the new

parameters as

(12.68)

where now, writing λ(g) = λ′,

(12.69)

λ = λ(f) = (tr2(f) − 2)/2 = cosh(τ + iη),

μ = μ(f, g) =
tr2(f)−2tr[f,g]

tr2(f)−4
.

μ = 1 −
2γ(f,g)
β(f)

λ(f) = cosh(τ(f) + iη(f)),

μ(f, g) = 1 − (λ(g) − 1)sinh2(Δ),

μ(f, g) = cosh(2Δ).

β(f) = 2(λ(f) − 1), and γ(f, g) = −(λ(f) − 1)(μ(f, g) − 1)

A = , B = [ ],
⎡⎢⎣ √λ2−1+(λ−1)

√2(λ−1)
0

0
√λ2−1−(λ−1)

√2(λ−1)

⎤⎥⎦ a b

c d

a = 1
√2
(√λ′ + 1 + √λ′ − μ), d = 1

√2
(√λ′ + 1 − √λ′ − μ),



and b and c are given by (12.19) when μ = 1, and otherwise

(12.70)

for μ ≠ 1.

Given a regular balanced even word w, we can now rewrite the matrix w(A,B) at (12.27) as

(12.71)

where a, b, c, d are given by (12.69) and (12.70), and, setting x = 2(u − 1), z = −(u − 1)(v − 1), the

polynomials Rw,Sw,Tw,Ww are given by

(12.72)

(12.73)

The congruence (12.40) ensures that Sw is a polynomial. For arbitrary balanced words we take the above as

de�nitions of Rw etc. Recall that, in this case, there is a regular even balanced word v such that rw = rv, sw = sv

etc., so that it remains true that Sw is a polynomial in this case.

Each of the polynomials 2Rw, 2Sw, 2Tw, and 2Ww has integer coef�cients, and corresponding to these new

parameters, we de�ne the quaternion algebra Q by

(12.74)

Here, the indeterminates u and v correspond to λ and μ respectively. It is straightforward to show that the map 

ρ : Q0 → Q given by

(12.75)

is an isomorphism. On the right-hand side, x and z are converted into terms of u and v by the formulae

(12.76)

these conversions being just the same as those relating β and γ to λ and μ. The proof uses the observations that

It is then easy to see that the inverse map is given by

c = −b = √ 1−μ

2

[ ]
Rw(λ,μ) + Sw(λ,μ)√λ2 − 1 2ab(Tw(λ,μ) + Ww(λ,μ)√λ2 − 1)

2cd(Tw(λ,μ) − Ww(λ,μ)√λ2 − 1 Rw(λ,μ) − Sw(λ,μ)√λ2 − 1

Rw(u, v) = rw(x, z), Ww(u, v) = ww(x, z)

Sw(u, v) = 2sw(x, z)/x, Tw(u, v) = xtw(x, z)/2.

Q = ( u2−1,v2−1
R(u,v)

),

ρ(r, s, t,w) = (r, s
u−1 , (u − 1)t,w)

x = 2(u − 1), z = −(u − 1)(v − 1), (u = x+2
2 , v = 1 − 2z

x
),

u2 − 1 = x2

2 ( x+4
x

) and v2 − 1 = 2
x2 z(z − x).



(12.77)

Where we now use the second pair of equations in (12.76) to convert the right-hand side back into terms of x and z.

We can now characterize the image under ρ of the group V0 de�ned in Theorem 12.7.1. This result is a direct

consequence of (12.75), (12.76), (12.77) and the de�nition of V0.

Theorem 12.7.3  V := ρ(V0) comprises the elements

of Q for which R(1, 1) = 1, and each of 2R, 2(u − 1)S, 2(u − 1)−1
T , 2W and S + (v − 1)W  is a polynomial of

the form

such that, for each term, m ≥ n and an,m is an integer multiple of 2m−n (in particular, each an,m is an integer).

Remark. The condition on S(u, v) + (v − 1)W(u, v) is equivalent to (12.40): we have 

g(x, z) := (s(x, z) − zw(x, z))/x = (S(u, v) + (v − 1)W(u, v))/2. Note also that this condition insures that 

S(u, v) is a polynomial.

If x = (r(x, z), s(x, z), t(x, z),w(x, z)) ∈ V0, and if

then by the de�nition of ρ, the matrix at (12.71) is ϕβ,β′,γ(x) (β ≠ 0). Accordingly we de�ne, for each 

λ ≠ 1,λ′,μ ∈ C, the algebra homomorphisms ψλ,λ′,μ : Q → M2(C) by

(12.78)

where a, b, c, d are given by (12.69) and (12.70). We thus have

Proposition 12.7.1  For β ≠ 0,β′, γ ∈ C, x ∈ V0,

where λ = 1 + β/2, λ′ = 1 + β′/2 and μ = 1 − 2γ/β.

In some respects λ and μ are better parameters to use than β and γ: they have a simpler geometrical

interpretation, the matrix representations and quaternion algebras are simpler and neater, and there is an obvious

symmetry between λ and μ, corresponding to the symmetry between two loxodromics with perpendicular axes

(SubSection 12.8.2 below). They also have a major drawback: μ is unde�ned when f is parabolic, so to deal with

this case we still need β and γ.

12.8 Elements of Unit Norm in Q

ρ−1(R,S,T ,W) = (R, x
2 S, 2

x
T ,W)

(R,S,T ,W) = (R(u, v),S(u, v),T (u, v),W(u, v))

∑ an,m(u − 1)m(v − 1)n

ρ(x) = (R(u, v),S(u, v),T (u, v),W(u, v)) ∈ V ,

ψλ,λ′,μ(R,S,T ,W)

= [ ],
R(λ,μ) + S(λ,μ)√λ2 − 1 2ab(T (λ,μ) + W(λ,μ)√λ2 − 1)

2cd(T (λ,μ) + W(λ,μ)√λ2 − 1) R(λ,μ) − S(λ,μ)√λ2 − 1

ψλ,λ′,μ(ρ(x)) = ϕβ,β′,γ(x),



We have found a group V  of elements of norm 1 in Q, which maps under each evaluation homomorphism ψλ,λ′,μ

to a group which includes the regular balanced even words in two generators f and g, where f is elliptic or

loxodromic. In this section will show how V  naturally extends to a larger group which we will denote U , and this

gives a corresponding extension of the isometry group ψλ,λ′,μ(V ). We look further at this group in Section 12.8.2.

To begin with we consider properties of elements of norm 1 in general.

The requirement that (R,S,T ,W) ∈ Q has norm 1 is given explicitly by

(12.79)

We will con�ne our attention to the solutions of (12.79) for which R,S,T,W are all polynomials, with the additional

normalizing condition that R(1, 1) = 1. These solutions clearly form a group, which we denote by U1.

We de�ne the degree of u = (R,S,T ,W) ∈ U1 by

It is easy to check that deg(uv) ≤ deg(u) + deg(v). For any �xed degree it is possible in principle to evaluate all

members of U1 of any �xed degree d, by equating coef�cients in (12.79), and we have done this for d ≤ 4. Table

12.2 lists all members of U1 of degree at most 2 (up to sign changes of the components S, T and W). In this case,

the polynomials, like those of V , all have integer or half-integer coef�cients. Our main result in this section is that

all members of Q with components in Q[u, v] and norm in Z[u, v] have this property, and that they form an order

(with reference to the underlying ring Z[u, v]). We de�ne

TABLE 12.2

(R,S,T ,W) ∈ U1 of degree at most 2.

R S T W

1 0 0 0

u 1 0 0

v 0 1 0

u v 0 1

v 0 u 1

uv 1 u 0

uv v 1 0

uv v u 1

2u2 − 1 2u 0 0

2v2 − 1 0 2v 0

(1 + u + v − uv)/2 (v − 1)/2 (u − 1)/2 1/2

(1 + u − v + uv)/2 (v + 1)/2 (u − 1)/2 1/2

(1 − u + v + uv)/2 (v − 1)/2 (u + 1)/2 1/2

(−1 + u + v + uv)/2 (v + 1)/2 (u + 1)/2 1/2

Theorem 12.8.1.

1. O is the set of quaternions of the form (R,S,T ,W) + 1
2 P(u, v)((u + 1)(v + 1), v + 1,u + 1, 1),

where R,S,T ,W ,P ∈ Z[u, v].

2. O is the unique maximal order of Q, which contains i and j.

R2 − (u2 − 1)S 2 − (v2 − 1)T 2 + (u2 − 1)(v2 − 1)W 2 = 1

deg(u) = max{deg(R), deg(S) + 1, deg(T ) + 1, deg(W) + 2}.

O = {u = (R,S,T ,W) ∈ Q |R,S,T ,W ∈ Q[u, v],N(u) ∈ Z[u, v]}



It follows (since O is clearly closed under conjugation) that the elements of O of norm 1 form a group, which

we denote U .

The appearance of half-integer coef�cients in O is reminiscent of the Hurwitz order H  in ℍ, the quaternions

of Hamilton, de�ned as H = { 1
2 (n1 + n2i + n3j + n4k) ∈ H n1,n2,n3,n4 ∈ Z,n1 ≡ n2 ≡ n3 ≡ n4 mod 2}

. Theorem 12.8.1 has no analog for H ; there are plenty of quaternions with integer norm and components which

are rational but not half-integers, for example (3/5, 4/5, 0, 0). However, both the characterizations of O given in

the Theorem have their counterparts for H . It is easy to see that H  comprises the quaternions of the form 

u + 1
2 (1, 1, 1, 1), where u ∈ Z4, and corresponding to Theorem 12.8.1 (2), we have the following classical result

(see e.g. [30]).

Theorem 12.8.2  H  is the unique maximal order of H, which contains i and j.

We will take an axiomatic approach which covers both of these theorems.

We may also characterize H  as the set of quaternions with integer norm and half-integer components; this

amounts to the simple observation that, for integers a,b,c,d

(12.80)

The integers also satisfy the similar property

(12.81)

As a simple application of this we observe that a quaternion u with rational components and integer norm has no

component with denominator divisible by 4. For if this occurred we would have, clearing denominators, a

quaternion with integer components not all even, and norm divisible by 16, contrary to (12.81).

We say that a commutative ring which satis�es (12.80) or (12.81) has the four squares property and the strong

four squares property, respectively. To justify this terminology, we show that (12.81) ⇒ (12.80). Suppose that

(12.81) holds, and that a2 + b2 + c2 + d2 ≡ 0 mod 4, then 

(a − b)2 + (a + b)2 + (c − d)2 + (c + d)2 = 2(a2 + b2 + c2 + d2) ≡ 0 mod 8, and so applying (12.81), we get 

a ≡ bmod 2 and c ≡ dmod 2. The same argument with b and c interchanged gives a ≡ cmod 2, and so 

a ≡ b ≡ c ≡ dmod 2, proving (12.80). The converse fails in general (consider, for example, R = Z4), but holds

when R is an integral domain. In this case, if R has characteristic 2, then 12 + 12 + 02 + 02 = 0, so that (12.80)

fails, and the implication is vacuous. Otherwise suppose that (12.80) holds, and a2 + b2 + c2 + d2 ≡ 0 mod 8,

then by (12.80) a ≡ b ≡ c ≡ dmod 2, and we have 

( a−b
2 )

2
+ ( a+b

2 )
2

+ ( c−d
2 )

2
+ ( c+d

2 )
2

= 1
2 (a2 + b2 + c2 + d2) ≡ 0 mod 4. Applying (12.80) again gives 

( a−b
2 ) ≡ ( a+b

2 ) ≡ ( c−d
2 ) ≡ ( c+d

2 ) ≡ 0 mod 2, whence it easily follows that a ≡ b ≡ c ≡ d ≡ 0 mod 2.

The main step in our proofs is to show that, if R has the (strong) four squares property, then the polynomial

rings R[x1,x2, … ,xn] also have this property, together with some generalizations thereof.

Lemma 12.8.1  Suppose R is a commutative ring and suppose φi (1 ≤ i ≤ 4) are �xed polynomials in 

R[x1,x2, … ,xn] such that

1. the constant term in each φi is 1,

2. for each non-constant monomial rx
p1

1 x
p2

2 …x
pn
n  in each φi, at least one of the powers pi is odd,

3. φ1 ≡ φ2 ≡ φ3 ≡ φ4 ≡ 0  mod 2,

Then for all k ≥ 1, if

∣a2 + b2 + c2 + d2 ≡ 0 mod 4 ⇒ a ≡ b ≡ c ≡ dmod 2.

a2 + b2 + c2 + d2 ≡ 0 mod 8 ⇒ a ≡ b ≡ c ≡ d ≡ 0 mod 2.

For all a ∈ R, a2 ≡ 0 mod 2 ⇒ a ≡ 0 mod 2,when k = 1



(12.82)

(12.83)

(12.84)

and, for p1, p2, p3, p4 ∈ R[x1,x2, … ,xn]

then

Proof. We �rst note that (12.84)⇒(12.83)⇒(12.82). We have already seen the �rst of these implications; for the

second note that if (12.82) fails then there is r ∈ R with r2 ≡ 0 mod 2, r 0 mod 2, in which case (12.83) fails

with a = b = r, c = d = 0. Thus the hypotheses of the lemma for any k imply those for all smaller k.

For convenience, we suppose that n = 2 (the proof for n > 2 is an obvious generalization of this). Throughout

this proof we order ℝ2 lexicographically, that is (a, b) < (c, d) when either a < c or a = c and b < d.

Suppose that polynomials φi(x, y) = ∑ ci(m,n)xmyn ∈ R[x, y] are as in the statement of the lemma, and

that pi(x, y) = ∑ ai(m,n)xmyn ∈ R[x, y].
We use induction on k. Let k ∈ N, and suppose that the theorem holds for smaller values. The hypotheses are

(12.85)

together with the conditions (12.82), (12.83) and (12.84) on R according as k = 1, k = 2 or k ≥ 3. First suppose

that k = k1 > 3, then by the case k = 3 each pi ≡ 0 mod 2, and by the induction hypothesis we apply the case 

k = k1 − 2 to the pi/2 ∈ R[x, y] to get the required result. We suppose then that k ≤ 3.

For k = 1, 2, 3 respectively, the required result can be stated in terms of coef�cients as, for all n,m ∈ Z,

(12.86)

(12.88)

We set p2
i (x, y) = ∑ si(m,n)xmyn (1 ≤ i ≤ 4), and de�ne vectors

We have, for p and q even,

Rhasthefoursquaresproperty,whenk = 2

Rhasthestrongfoursquaresproperty,whenk ≥ 3

φ1p
2
1 + φ2p

2
2 + φ3p

2
3 + φ4p

2
4 ≡ 0 mod 2k,

⋅p1 ≡ p2 ≡ p3 ≡ p4 mod 2k/2 when k is even

⋅p1 ≡ p2 ≡ p3 ≡ p4 ≡ 0 mod 2(k−1)/2 and

p1 + p2 + p3 + p4 ≡ 0 mod 2(k+1)/2 when k is odd

≡

φ1(x, y)p2
1(x) + φ2(x, y)p2

2(x) + φ3(x, y)p2
3(x) + φ4(x, y)p2

4(x) ≡ 0 mod 2k.

⋅a1(n,m) + a2(n,m) + a3(n,m) + a4(n,m) ≡ 0 mod 2

⋅a1(n,m) ≡ a2(n,m) ≡ a3(n,m) ≡ a4(n,m) mod 2

⋅a1(n,m) ≡ a2(n,m) ≡ a3(n,m) ≡ a4(n,m) ≡ 0 mod 2 and

a1(n,m) + a2(n,m) + a3(n,m) + a4(n,m) ≡ 0 mod 4

c(m,n) = (c1(m,n), c2(m,n), c3(m,n), c4(m,n))

a(m,n) = (a1(m,n), a2(m,n), a3(m,n), a4(m,n))

s(m,n) = (s1(m,n), s2(m,n), s3(m,n), s4(m,n)).



(12.89)

and, for p or q odd

(12.90)

whereupon summing gives us

(12.91)

with the last sum only present when p and q are even.

Equating the coef�cient of x2ny2m in the left side of (12.85) to 0 mod 2k gives, using the second hypotheses

on the φi,

(12.92)

By (12.90), each term in the �rst sum is even, whence using (12.91) with p = 2n, q = 2m, 
4

∑
i=1

a2
i (n,m) ≡ 0 mod 2. Since ∑ a2

i (n,m) ≡ (∑ ai(n,m))
2

mod 2, (12.82) gives the congruence (12.86).

For k = 1, this completes the proof.

We now prove (12.88) for k = 2 and (12.88) for k = 3 by induction on (n,m). Suppose the result holds for all 

(s, t) < (n,m). We �rst show, for p ≤ 2n, q ≤ 2m with p or q odd, that

(12.93)

(12.94)

(12.95)

The �rst of these follows from (12.90) and the induction hypothesis, and the other two from (12.91) since, for 

(s, t) < (p/2, q/2) ≤ (n,m), and k = 2

si(p, q) = 2 ∑ ai(s, t)ai(p − s, q − t) + a2
i (p/2, q/2)(s,t)<(p/2,q/2)

si(p, q) = 2 ∑ ai(s, t)ai(p − s, q − t),(s,t)<(p/2,q/2)

4

∑
i=1

si(p, q) = 2 ∑
(s,t)<(p/2,q/2)

a(s, t) ⋅ a(p − s, q − t) +
4

∑
i=1

a2
i (p/2, q/2),

∑ s(p, q) ⋅ c(p′, q ′) +
4

∑
i=1

si(2n, 2m) ≡ 0 mod 2k.p+p′=2n,q+q ′=2m

p or q is odd

si(p, q) ≡ 0 mod 2k−1, (i = 1, 2, 3, 4)

4

∑
i=1

si(2n, 2m) ≡
4

∑
i=1

a2
i (n,m) mod 2k, and

4

∑
i=1

si(p, q) ≡ 0 mod 2k,



□

using the induction hypothesis at the �rst congruence, and (12.86) at the second.

For k = 3, by the induction hypothesis, each ai(s, t) is even, for (s, t) < (p/2, q/2) ≤ (n,m), and

Here we use the lemma for k = 2, which gives (12.88), at the �rst step and the induction hypothesis at the second.

Recalling that c1(p′, q ′) ≡ c2(p′, q ′) ≡ c3(p′, q ′) ≡ c4(p′, q ′) mod 2, by the third hypothesis on the φi, and

using (12.93), the summand in the �rst sum of (12.92) is

This, together with (12.92) and (12.94) gives a2
1(n,m) + a2

2(n,m) + a2
3(n,m) + a2

4(n,m) ≡ 0 mod  2k, whence

by hypothesis we get (12.88) for k = 2 and the �rst half of (12.88) for k = 3,

When k = 3 we have 

((a1(n,m) + a2(n,m) + a3(n,m) + a4(n,m))/2)2 ≡ (a1(n,m)/2)2 + (a1(n,m)/2)2 + (a1(n,m)/2)2 + (a1(
, whence using (12.82) we complete the proof of (12.88).

We �rst note a simple special case (φ1 = φ2 = φ3 = φ4 = 1, k = 2, 3).

Corollary 12.8.1  If the ring R satis�es the (strong) four squares property (12.80), then so does the polynomial ring 

R[x1,x2, … ,xn]. In particular this is true of Z[x1,x2, … ,xn].

Corollary 12.8.2  If a, b ∈ Z[u1,u2 …uk] can be written a ≡ αα′ mod 4, b ≡ ββ′ mod 4, with 

α,α′,β,β′ ∈ Z[u1,u2 …uk] satisfying α ≡ α′ mod 2, β ≡ β′ mod 2, and φ1 = αβ, φ2 = −α′β, φ3 = −αβ′, 

φ4 = α′β′ satisfy the hypotheses of Lemma 12.8.1, then for R,S,T ,W ∈ Z[u1,u2 …uk],

(12.96)

and if a, b 0 mod 2,

(12.97)

a(s, t) ⋅ a(p − s, q − t) ≡ a1(s, t)
4

∑
i=1

ai(p − s, q − t)

≡ 0 mod 2,

1
2 a(s, t) ⋅ a(p − s, q − t) ≡ a1(p − s, q − t)

4

∑
i=1

ai(s, t)

2

≡ 0 mod 2 by (12.88).

s(p, q) ⋅ c(p′, q ′) =
4

∑
i=1

si(p, q)ci(p
′, q ′)

= 2k−1
4

∑
i=1

(
si(p, q)

2k−1
)ci(p′, q ′)

≡ 2k−1c1(p′, q ′)
4

∑
i=1

si(p, q)

2k−1
mod 2k

= c1(p′, q ′)
4

∑
i=1

si(p, q)

≡ 0 mod 2k (by (12.95))

R2 − aS 2 − bT 2 + abW 2 ≡ 0 mod 4 ⇒ R ≡ aS ≡ bT ≡ abW mod 2

≡

R2 − aS 2 − bT 2 + abW 2 ≡ 0 mod 8 ⇒ R ≡ S ≡ T ≡ W ≡ 0 mod 2



□

Proof. Multiplying the left-hand side of (12.96) through by αβ, and setting r = R, s = αS, t = βT  and 

w = αβW , gives the equivalent form

(12.98)

Lemma 12.8.1 then gives (12.96) with k = 2, and (12.97) with k = 3.

Theorem 12.8.3  Let R be an integral domain of characteristic ≠ 2, with �eld of fractions K. Let a, b,α,β ∈ R be

such that α2 ≡ amod 2 and β2 ≡ bmod 2, and let Q be the quaternion algebra 
a,b
K

. Let O comprise the

quaternions of the form r + r
2 c, where c = (αβ,β,α, 1), and r and the components of r are in R, then

1. O is an order in Q, and N(u) ∈ R for each u ∈ O. If moreover R has the property that 2 x2 ⇒ 2 x for

all x ∈ R, then O is independent of the choice of α and β.

2. If further

(a) R is integrally closed

(b) 2 is prime in R

(c) a and b are not divisible by 2;

(d) If a and b divide x, then ab divides x.

(e) If b y2 − ax2, then b|x, y, and if a y2 − bx2, then a|x, y.

(f) If u = (x, y, z,w) ∈ R4, and N(u) = x2 − ay2 − bz2 + abw2 ≡ 0 mod 4, then 

x ≡ αy ≡ βz ≡ αβwmod 2,

then every quaternion in 1
2 R

4 with norm in R is in O, and every order which contains i and j lies in O. In

particular, O is maximal.

Proof. Clearly O is an ideal. For u = (x, y, z,w) ∈ R4, a straightforward calculation gives 

uc ≡ cu ≡ (x + αy + βz + αβw)c mod 2 and c2 = −(b − β2)(a − α2)1 + 2αβc ≡ 2αβc mod 4, from which

it follows that O is also a ring. Since N(c) = (α2 − a)(β2 − b) ≡ 0 mod 4, it readily follows that N(u) ∈ R for 

u ∈ O.

If 2 x2 ⇒ 2 x for all x ∈ R, and α1,β1 ∈ R satisfy α2
1 ≡ amod 2 and β2

1 ≡ bmod 2, then

so by hypothesis α1 ≡ αmod 2, and similarly β1 ≡ βmod 2. It follows that 

(α1β1,β1,α1, 1) = (αβ,β,α, 1) mod 2, so that the de�nition of O is independent of the choice of α and β.

Now suppose that (2a)–(2f) hold. If u = (x, y, z,w) ∈ 1
2 R

4 and N(u) ∈ R, then (2f) applied to 2u, gives 

2x ≡ α2y ≡ β2z ≡ αβ2wmod 2. By (2b) and (2c) we may cancel modulo 2 to obtain 2x ≡ 2αβw, 2y ≡ 2βw
and 2z ≡ 2αw (all mod 2). That is 2u ≡ 2wc mod 2, so u ∈ O. (so far using only (2b), (2c) and (2f))

Now let O′ be an order which contains i and j, and suppose v = (x, y, z,w) ∈ O′, then because R is integrally

closed, tr(v), tr(iv), tr(jv), tr(kv) and N(v) are all in R ([30], Corollary 3.6). These give in turn 2x ∈ R, 

2ay ∈ R, 2bz ∈ R, 2abw ∈ R and x2 − ay2 − bz2 + abw2 ∈ R. Setting X = 2x, Y = 2ay, Z = 2bz, 

W = 2abw, multiplying the last equation by 4ab gives

(12.99)

whence

(12.100)

αβr2 − α′βs2 − αβ′t2 + α′β′w2 ≡ 0 mod 4. ∣ ∣∣ ∣∣ ∣ (α1 − α)2 ≡ (α1 − α)(α1 + α) = α2
1 − α2 ≡ 0 mod 2,

abX 2 − bY 2 − aZ 2 + W 2 ∈ 4abR

W 2 − bY 2 ∈ aR W 2 − aZ 2 ∈ bR



□

□

By (2e) it follows that a|W ,Y  and b|W ,Z, which together with (2d) also gives ab|W . It follows that 

x, y, z,w ∈ 1
2 R, and since N(v) ∈ R, the �rst statement then gives v ∈ O.

Theorem 12.8.3 with R = Z and a = b = −1, α = β = 1 gives Theorem 12.8.2. In this case (2f) is the

statement that ℤ has the four squares property.

Proof of Theorem 12.8.1 . First, we show that any element of O has half-integer coef�cients. Let 

u = (R,S,T ,W) ∈ O, let d be the lowest common denominator of all the coef�cients (reduced as far as possible)

of the components of u, then du ∈ Z[u, v]4
 and N(du) ∈ d2Z[u, v]. If d is divisible by an odd prime p, then

reducing the coef�cients in du mod p we obtain a nonzero quaternion in Qp := ( u2−1,v2−1
Zp[u,v]

), which has zero

norm, but this is impossible as we will show that Qp is a division algebra. By [24], Theorem 2.3.1, it suf�ces to

show that the equation

has no solution with p, q ∈ Zp(u, v). Setting v = 1 this equation becomes (u2 − 1)p2(u, 1) = 1, which clearly has

no solution, as (u2 − 1) is not a square. So we conclude that d is a power of 2. If d were a multiple of 4, then du

would have integer coef�cients, not all even, and norm divisible by 16, but the second part of Corollary 12.8.2,

with a = u2 − 1, b = v2 − 1, α = u + 1, β = v + 1, α′ = u − 1, β′ = v − 1, shows that this is impossible.

To complete the proof, we apply Theorem 12.8.3 with R = Z[u, v], a = u2 − 1, b = v2 − 1, α = u + 1, 

β = v + 1. In this case, we can easily verify (2a)-(2d). To prove (2e), let u2 − 1 p2(u, v) + (1 − v2)q2(u, v),

where p, q ∈ Z[u, v]. For all v ∈ (−1, 1), both summands on the right-hand side are nonnegative. Hence, when 

u = ±1, both vanish. It follows that u2 − 1 divides p and q. Together with the corresponding statement obtained

by interchanging u and v, this gives (2e). Finally, the �rst part of Corollary 12.8.2 gives (2f).

Lemma 12.8.2  There is a member of u ∈ U1 with irrational coef�cients.

An example is the quartic

which has norm 1 whenever 2a − 3a2 − b2 = 1 − 2a + a2 − ab = 0. A routine calculation shows that these have

real solutions a = b = 1/2, and where a and b are the (unique) real roots of 2x3 − 2x2 + 2x − 1 and 

2x3 + 6x2 + 4x − 1 respectively. These roots are not rational.

12.8.1 Generation

Here we consider the question as to whether or not U  �nitely generated. We thank Alan Reid for providing us with

a simpler proof than our earlier argument based on arithmetic Kleinian groups.

Theorem 12.8.4  The group U  is not �nitely generated.

Proof. We may identify U  is the obvious way with the group of elements of norm 1 in the quaternion algebra

(12.101)

Suppose that O is a (maximal) order in QQ and simply specialize u,v as follows. Put u = 0 and, for p a prime 

p ≥ 3,

which has conjugate v = 1
2 (p − √p2 − 4) ∈ (−1, 1). Then QQ has homomorphic image

(u2 − 1)p2(u, v) + (v2 − 1)q2(u, v) = 1 ∣u = [(1 − u2)(a − av2 + v2) + u2v, (v − 1)((b − au)(v + 1) + uv),

(1 − a)(1 − v)(1 − u2) + u, a + bv − u(a − 1)(v − 1)],

QQ = ( u2−1,v2−1
Q(u,v) ),

v = 1
2 (p + √p2 − 4),

¯



□

(12.102)

Apart from the identity, the other real embedding is σ(v) = v and so σ(v2 − 1) = v2 − 1 < 0. Hence the group of

elements of norm 1 in the order O so specialized is some arithmetic Fuchsian group coming from a division

algebra over QQ(v), see Theorem 12.9.1 below.

Now the rank of this group must go to in�nity with p as there are only �nitely many arithmetic Fuchsian

groups whose quotients are surfaces of a given topological type, [24]. In particular, this implies the group of

elements of norm 1 of O cannot be �nitely generated.

Calculation shows that the 5-element set

(12.103)

each of which is of degree 1 or 2, generates every member of U  of degree at most 4. However, we also have for

example (proof omitted) that u below does not lie in the subgroup generated by these elements.

12.8.2 Quaternions as Isometries

We now look at what happens to the members of U  under the evaluation map ψλ,λ′,μ. We will assume for the

moment that λ,μ ∉ [−1, 1] and λ′ = −1, and abbreviate ψλ,−1,μ to ψ. We set Γ = Γ(λ,μ) = ψ(U ). Now (12.69)

and (12.70) become

(12.104)

and in addition

and so ψ((R,S,T ,W)) is

(12.105)

First we revisit the three quaternions wi ∈ V0 (i = 1, 2, 3) de�ned at (12.54), which have images 

w̃i := ρ(wi) ∈ V , namely

(12.106)

(
−1, 1

2 (p2−2+p√p2−4)

Q(√p2−4)
),

¯̄

{(u, 1, 0, 0), (v, 0, 1, 0), (u, v, 0, −1), 1
2 (1 + u + v − uv, v − 1, 1 − u, −1),  

1
2 (1 + u + v − uv, v − 1, 1 − u, 1)},

u = 1
2

(−1 + u2 − 2u3 − v2 + 3u2v2 + 2u3v2, 1 − u + 2u2 − v2 + 5uv2 − 2u2v2,

1 − u2 + v − 2uv + u2v + 4u3v, 1 + u − v + 3uv − 4u2v)

a = −d = 1
√2

√−1 − μ, c = −b = 1
√2

√1 − μ

ab = cd = 1
2

√1 − μ√−1 − μ = ± 1
2

√μ2 − 1,

[ ].
Rw + Sw√λ2 − 1 ±(Tw + Ww√λ2 − 1)√μ2 − 1

±(Tw − Ww√λ2 − 1)√μ2 − 1 Rw − Sw√λ2 − 1

w̃1 = (u, 1, 0, 0),

w̃2 = (u, v, 0, −1),

w̃3 = 1
2

(1 + u + v − uv, v − 1, 1 − u, −1),



As we have already seen (or directly from (12.105)), these map respectively to the isometries f2, gf 2g−1 and

[g,f], where λ(f) = λ, μ(f, g) = μ, f is loxodromic (since λ ∉ [−1, 1]), ax(f) = (0, ∞), and g is an order 2

elliptic whose axis is disjoint from ax(f) (since μ ∉ [−1, 1]), and has mutually reciprocal endpoints. As noted in

the remarks after the proof of Theorem 12.4.1, this means that the common perpendicular of ax(f) and 

ax(gf 2g−1) has endpoints ±1.

We have now got back the subgroup of Γ comprising the balanced even words in f and g (since g is order 2, the

distinction between regular and irregular words now vanishes). We can now extend this subgroup. Let φf(z) = −z

, φh(z) = 1/z φ(z) = −1/z; these three isometries are each of order 2, have mutually orthogonal axes and

generate a Klein 4-group, K. We de�ne h = gφf . Recall (12.68) that g has matrix representative B = [ ].

Thus, using (12.104), h and h2 have respective matrix representatives

The axis of h has endpoints ±1, and λ(h) = μ. Also h2 ∈ Γ ; speci�cally h2 = ψ((v, 0, ±1, 0)).

At this point a certain symmetry between f and h is becoming apparent. Both are loxodromic, both have

squares in Γ and their axes are mutually perpendicular. To develop this symmetry further we express h, like f, as a

product of two order 2 elliptics. Set g̃ = fφh; explicitly, g̃(z) = A/z, where f(z) = Az, so that g̃ has order 2. We

now have

We can summarise all this by saying that the pair (h, g̃) is obtained from (f, g) (up to conjugacy) by interchanging

the parameters λ and μ.

Theorem 12.8.5  The subgroup P of ⟨f,h⟩ comprising the isometries of the form f n1hm1f n2hm2 … f nkhmk , where

n1 + n2 + …nk and m1 + m2 + …mk are both even, is a subgroup of Γ.

Sketch of Proof. We �rst show that P = ⟨f 2,h2, fh2f−1,hf 2h−1⟩. This can be done using induction along the

same lines as the proof of Lemma 12.5.2. We have already seen that f 2,h2 ∈ Γ . The proof is completed by

showing that fh2f−1, hf 2h−1 have respective matrix representatives

□

Clearly P is a �nite-index subgroup of ⟨f,h⟩, and it follows in particular that if Γ is discrete, then so is ⟨f,h⟩.

Further (see (12.105)) a suf�cient condition for this is that λ and μ both lie in a discrete subring of ℂ (i.e. a subring

of the ring of integers of some imaginary quadratic �eld).

Corollary 12.8.3  If R is a discrete subring of C, f and h are non-parabolic non-identity isometries in Isom+(H3)
with perpendicular axes, and λ(f),λ(h) ∈ R, then ⟨f,h⟩ is discrete.

a b

c d

Mh = 1
√2
[ ], Mh2 = [ ]

√μ + 1 ±√μ − 1

±√μ − 1 √μ + 1

μ ±√μ2 − 1

±√μ2 − 1 μ

gφf = h, g̃φh = f,

λ(h) = μ(f, g), λ(f) = μ(h, g̃),

ax(φf) = ax(f), ax(φh) = ax(h).

Mfh2f−1 = [ ]

= ψ((v, 0, ±u, ±1))

Mhf 2h−1 = [ ]

= ψ((u, v, 0, ∓1)).

μ ±(λ + √λ2 − 1)√μ2 − 1

±(λ − √λ2 − 1)√μ2 − 1 μ

λ + μ√λ2 − 1 ∓√λ2 − 1√μ2 − 1

±√λ2 − 1√μ2 − 1 λ − μ√λ2 − 1



□

In particular we have discreteness when λ(f),λ(h) are integers. Another discrete example is 

λ(f) = λ(h) = −1+√3
2

, which minimizes max{τf , τh} among all two generator non-elementary groups having

loxodromic generators with perpendicular axes, [23]. We discuss discreteness criteria further in Section 12.9.

Additionally, we can add in all the order 2 elliptics and preserve discreteness. These elliptics fall into three

Klein 4-groups: K := {φf ,φh,φ}, Kf := {φf , g̃, g̃φf} and Kh := {φh, g, gφh}.

Theorem 12.8.6.  The group P1 generated by KKf and Kh is an extension of ⟨f,h⟩ of index at most 2.

Proof. Every α ∈ P1 can be represented by a word in {φf ,φh,φ, g, g̃, f,h} which we suppose to have the fewest

possible elliptic letters, and with the �rst elliptic letter occurring as close to the right as possible. If a ∈ K ∪ Kf

then afa=f±1, so that af = f±1a, and similarly af−1 = f∓1a. If a = g then 

af±1 = gf±1 = g(φff
±1φ−1

f
)g−1g = hf±1h−1g, because f and φf commute. By our assumptions about the

word, it follows that no elliptic letter can immediately precede an f±1, and symmetrically it cannot immediately

precede an h±1 either. It follows that all of the elliptic letters are at the right of the word. But the product of any

two elliptics is either another elliptic or a product of (at most two) of the loxodromics f±1 and h±1, so the word

contains at most one elliptic letter. Thus P1 is an extension of ⟨f,h⟩ of index at most 2.

12.9 Arithmeticity

In this section we �rst recall some further terminology concerning quaternion algebras with an aim to extending

the discreteness conditions described above. This section is adapted from Section 4 of [9].

Let k be a number �eld. A placeν of k is an equivalence class of valuations on k. Such a place is real (complex)

if it is associated to a real embedding (conjugate pair of complex embeddings) of k. We denote by kν the

completion of k at the place ν. If Q is a quaternion algebra over k, we say that Q is rami�ed at ν if Q ⊗k kν  is a

division algebra of quaternions. Otherwise ν is unrami�ed. If ν is a real place, then Q is rami�ed if and only if 

Q ⊗k kν ≡ H. It is straightforward to check whether a quaternion algebra Q = ( a,b
k
) is rami�ed at a real place ν;

if ν corresponds to the real embedding σ, then Q is rami�ed at ν if and only if σ(a) and σ(b) are both negative.

We can now de�ne an arithmetic Kleinian group. Let k be a number �eld with one complex place and Q a

quaternion algebra over k rami�ed at all real places. Next let ρ be an embedding of Q into SL(2,C), let O be an

order of Q and O1 the elements of norm 1 in O. Then ρ(O1) is a discrete subgroup of SL(2,C) and its projection

to PSL(2,C) is an Kleinian group. Kleinian groups so constructed, together with those which are commensurable

to them, are arithmetic. We note in passing that arithmetic Fuchsian groups arise in a similar manner. However, in

that case, the number �eld is totally real and the algebra rami�ed at all real places except the identity.

For a subgroup Γ of SL(2,C) the invariant trace �eld is de�ned as

(12.107)

Then we set

Then QΓ  is a quaternion algebra over Q(tr(Γ)). Additionally, if tr(Γ) consists of algebraic integers we see that

kΓ = Q({tr2(g) : g ∈ Γ})

QΓ = {∑ ai gi : ai ∈ Q(tr(Γ)), gi ∈ Γ}

OΓ = {∑ ai gi : ai ∈ RQ(tr(γ)), gi ∈ Γ}



□

is an order in QΓ . Here RQ(tr(γ)) is the ring of integers in Q(tr(Γ)). Then Γ is arithmetic if and only if the

following conditions are satis�ed:

1. kΓ  is an algebraic number �eld;

2. tr(Γ) consists of algebraic integers;

3. for every ℚ-isomorphism σ : kΓ → C, other than the identity or complex conjugation, σ(tr(Γ (2))) is

bounded in ℂ.

In practice, it is hard to apply this characterization directly, the problem being to establish the boundedness of

the traces at real embeddings. However, in [9] we obtained the following more useful method for proving groups

discrete.

Theorem 12.9.1  Let Γ be a �nitely generated non-elementary subgroup of SL(2,C) such that

1. kΓ  has exactly one complex place or is totally real;

2. tr(Γ) consists of algebraic integers;

3. QΓ (2) is rami�ed at all non-identity real places of kΓ ,

then Γ is a subgroup of an arithmetic Kleinian or Fuchsian group.

Corollary 12.9.1  A group of elements G  of norm 1 in an order O of the quaternion algebra QQ,

is a discrete subgroup of an arithmetic Kleinian group if

u is a complex algebraic integer with irreducible polynomial of degree n, which has n − 2 real conjugates, 

r1, r2, … , rn−2, all of which lie in the interval (−1, 1).

v is an algebraic integer in Q(u).

for each non-identity real embedding σi : Q(u) → Q, σ|Q = id, de�ned by σi(u) = ri, the image 

σ(v) ∈ (−1, 1).

Proof. The �rst condition gives Q(u) a number �eld of degree n over ℚ with one complex place, and v ∈ Q(u)

then gives Q(u, v) = Q(u). If σi is a real embedding, then σi(u2 − 1) = σi(u)2 − 1 = r2
i − 1 < 0, and

σi(v2 − 1) < 0 by hypothesis, so the quaternion algebra is rami�ed at all the real places. Next, the trace is

2R(u, v) ∈ Z(u, v), which must be an algebraic integer since both u and v are.

12.10 Discreteness: Necessary Conditions

Let Γ := ψλ,λ′,μ(U ), a subgroup of SL(2,C) which, we recall, comprises the matrices of the form

where the polynomials R, S, T and W are polynomials with half-integer coef�cients satisfying (12.79), with

and b and c are given by (12.19) when μ = 1, and c = −b = √ 1−μ

2  otherwise.

We know that Γ extends the group of regular even balanced words in A and B given by

QQ = ( u2−1,v2−1
Q(u,v) )

W = [ ]
R(λ,μ) + S(λ,μ)√λ2 − 1 2ab(T (λ,μ) + W(λ,μ)√λ2 − 1)

2cd(T (λ,μ) − W(λ,μ)√λ2 − 1) R(λ,μ) − S(λ,μ)√λ2 − 1

a = 1
√2
(√λ′ + 1 + √λ′ − μ), d = 1

√2
(√λ′ + 1 − √λ′ − μ),



(12.108)

As we have observed (Theorem 12.5.1) this group is an index two subgroup of the group of all regular

balanced words in A and B. Similarly we can show that Γ an index two subgroup of the group Γ̃  generated by Γ
and A. To see this, it is enough to show that, for G ∈ Γ , AGA−1 ∈ Γ , a straightforward calculation using (12.11).

It follows in particular that Γ is discrete if and only if Γ̃  is.

Another routine calculation, using (12.14) and the facts that β(A) = 2(λ − 1) and

gives

Since R2 − (λ2 − 1)S 2 − (μ2 − 1)(T 2 − (λ2 − 1)W 2) = 1 we then have

We write β = β(A) and γ̃ = γ(A,W) to obtain the following three identities:

and |γ̃||β − γ̃|

The three equations above enable us to use the following test for the discreteness of Γ̃  (and so of Γ).

Theorem 12.10.1  Let c0 = 2 − 2 cos(π/7) ≈ 0.198062 and λ2,μ2 ≠ 1. Then with the notation above, Γ is

discrete if and only if for every W ∈ Γ  the following three inequalities hold.

(12.109)

(12.110)

(12.111)

Proof. [⇒] First suppose {Wi}
∞
i=1 ⊂ Γ  is an in�nite sequence, that Wi → id as i → ∞, and that (with the obvious

notation) γi ≠ 0,β. Then of course ultimately the last inequality is violated since 

γi = γ(A,Wi) = tr[A,Wi] − 2 → 0. To remove the assumption that γi ≠ 0,β we consider two cases.

Case 1. γi = 0 for in�nitely many i. Then Wi has a �xed point in common with A in Ĉ. Now 

X = BAB−1 ∈ Γ  (only if B is order 2). If X shares a �xed point with A, or maps one �xed point to another, then

A = , B = ( ),
⎛⎜⎝ λ+√λ2−1−1

√2√λ−1
0

0 −λ+√λ2−1+1
√2√λ−1

⎞⎟⎠ a b

c d

4abcd = bc(1 + bc) = 4( μ−1
2 )(1 + μ−1

2 ) = μ2 − 1,

γ(A,W) = tr[A,W ] − 2 = −8(λ − 1)abcd(T 2(λ,μ) − W 2(λ,μ)(λ2 − 1))

= −2(λ − 1)(μ2 − 1)(T 2(λ,μ) − W 2(λ,μ)(λ2 − 1))

γ(A,W) − β(A) = −2(λ − 1)[R2(λ,μ) − (λ2 − 1)S 2(λ,μ)]

|β| + |γ̃| = 2 λ − 1 (1 + μ2 − 1 T 2(λ,μ) − W 2(λ,μ)(λ2 − 1) )

|β| + |β − γ̃| = 2 λ − 1 (1 + R2(λ,μ) − (λ2 − 1)S 2(λ,μ) )∣ ∣ ∣ ∣∣ ∣∣ ∣ ∣ ∣= 4 λ − 1 2 μ2 − 1 R2(λ,μ) − (λ2 − 1)S 2(λ,μ) T 2(λ,μ) − W 2(λ,μ)(λ2 − 1)∣ ∣ ∣ ∣∣ ∣∣ ∣|β| + |γ̃| ≥ 1, if γ̃ ≠ 0, and

|β| + |β − γ̃| ≥ 1,  if γ̃ ≠ β, and

|γ̃||γ̃ − β| ≥ c0,  if ˜γ ≠ 0,β.



□

A and XAX−1 have a common �xed point in Ĉ and hence

so γ(A,B) = 0 or γ(A,B) = β. However, μ = 1 − 2γ/β ∈ {±1} in either case, and this is excluded by

hypothesis. We now deduce that X−1WiX does not share a �xed point with A for in�nitely many i, and 

XWiX
−1 → id.

Case 2. γi = β for in�nitely many i. Then Vi = WiAW
−1
i → A, 0 = γ(A,Vi) = γ(A,A−1Vi) and so we reduce

to the �rst case by replacing Wi by [A−1,Wi] → id.

[⇐] Next, suppose the group Γ is discrete, but one of these inequalities is violated for some W ∈ Γ . The �rst

two inequalities are Jørgensen's inequality and a well known variant of it [10]. These are necessary conditions for

the discreteness of the group ⟨A,B⟩ provided this group is not virtually abelian. The last condition is a result of

Cao [3] improving other versions of inequalities Jørgensen found [11, 18] for discrete groups generated by two

elements of the same trace. We state this in the following lemma.

Lemma 12.10.1  If ⟨f, g⟩ is Kleinian and β(f) = β(g), then |γ(f, g)| ≥ c0 where

This bound is sharp and achieved in the (2, 3, 7)-triangle group.

Thus the violation of one of these inequalities shows that ⟨A,W⟩ is virtually abelian. If the group is abelian,

then γ(A,W) = 0. If WAW −1 = A−1, the dihedral case, then WAW −1A−1 = A−2, and hence

By hypothesis A is not parabolic (λ ≠ 1). If A is loxodromic, then ⟨A,W⟩, being discrete, is Kleinian unless W

�xes or interchanges the �xed points of A. Otherwise there would be three, and hence uncountably many limit

points, [2]. These reduce to the cyclic or dihedral cases. If A is elliptic, then |β| < 1 is required to violate either of

the �rst two inequalities. That is A has order 7 or more. The classi�cation of the elementary discrete groups [2]

shows this to reduce to the abelian or dihedral cases as well. What remains is the case ⟨A,W⟩ is a discrete group

with the last inequality violated. Then this group is elementary and as γ(A,WAW −1) = γw(γw − β) a little

argument using the classi�cation of the elementary discrete groups reduces to the previous cases.

12.11 Examples

We calculate some of the polynomials for balanced, even, good words in f and g, and investigate when these have

the same axis as f. For W = fgf 5g−1fgf 2g−1f−3,

The only solution of t(u, v) = w(u, v) = 0 is u = −1/2, v = −1/3. For these values we also have s(u, v) = 0
and r(u, v) = −1, i.e. W is a relator of ⟨f, g⟩ for these values. However, we return back to (12.65) and (12.66) to

see

0 = γ(A,X) = γ(A,BAB−1) = γ(A,B)(γ(A,B) − β)

c0 = 2 − 2 cos( π
7

)

γ(A,W) = tr(WAW −1A−1) − 2 = trA2 − 2 = tr2(A) − 4 = β(A)

2r(u, v) = −1 + 3u − 2u2 − 10u3 + 4u4 + 8u5 − v − 3uv + 8u2v + 4u3v

− 8u4v + 2v2 − 6uv2 − 6u2v2 + 14u3v2 + 4u4v2 − 8u5v2

2s(u, v) = −1 + 2u + 10u2 − 4u3 − 8u4 − v − 4uv + 4u2v + 8u3v + 2uv2

− 6u2v2 − 4u3v2 + 8u4v2

2t(u, v) = (u − 1)(−1 + 2u + 4u2)(−1 − 2u + 4u2 + 4u3 − 4uv + 4u3v)

2w(u, v) = (1 + 6u − 4u2 − 20u3 + 8u4 + 16u5 − 2v + 6uv + 8u2v − 20u3v

− 8u4v + 16u5v)

( )/



so f has order three and f and g.

Corollary 12.11.1  Let Γ be a Kleinian group and f, g ∈ Γ . Then

if and only if f has order 3 and ⟨f, g⟩ is a Euclidean triangle group or an abelian group.

Of course if f and g commute then fgf 5g−1fgf 2g−1f−3 = 1, then f 6 = 1.

For W = fgf 5g−1f−2

This time t and w have a common factor −1 + 2u + 4u2, so that they vanish simultaneously when 

u = 1/4(−1 ± √5), and for all values of v. However, s(1/4(−1 ± √5), v) = 1/2(−1 + √5) ≠ 0, so W can

never be a relator of ⟨f, g⟩.
For W = fgfg−1f 2gfg−1fgf−1g−1f 2gf−1g−1

Here W is a relator in the group that minimizes the maximum of the two translation lengths max{τf , τh}, when f

and h are two loxodromics with perpendicular axes [23]. Now t and w have a common factor (u − 1), so that they

vanish simultaneously when u = 1. However, t = w = 0 also holds when v = 0 (perpendicular axes), when u = 0

and when u = −1 ± i√3. In the last two cases r = 1 and (consequently) s = 0.

These examples raise some general questions:

1. Which words can be relators? (ie for which words do s = t = w = 0, r = ±1 have a solution, apart from the

trivial solutions u = 1 (f = Identity) and v = 1 (f and g have the same axis)?)

2. For which words do t and w have a non-constant common factor in which neither of the variables u and v is

absent? (giving an in�nite family of solutions for t = w = 0)

3. For which words do t and w have no such common factor, so that t = w = 0 has only �nitely many roots,

and one of these roots also makes s = 0 and (hence) r = ±1 (ignoring the trivial cases u = 1, v = 1). Is any

such group discrete?

12.11.1 Explicit Formulae

We now give (without going into details of the computation) explicit values for the polynomials R = Rw, S = Sw,

T = Tw and Ww of (12.71) associated with the even word w = f n1gf n2g−1f n3gf n4g−1f n5 , which are expressed

in terms of Chebyshev polynomials indexed by various combinations of the powers ni. For such a word, and for 

S ⊆ {1, 2, 3, 4, 5}, we let TS(u) = T(ϵ1n1+ϵ2n2+ϵ3n3+ϵ4n4+ϵ5n5)/2(u), US(u) = U(ϵ1n1+ϵ2n2+ϵ3n3+ϵ4n4+ϵ5n5)/2−1(u),

β = 2u − 2 = −3, γ = β(1 − v)/2 = −2

fgf 5g−1fgf 2g−1f−3 = 1

2r(u, v) = −1 − 3u + 2u2 + 4u3 − v + 3uv + 2u2v − 4u3v

2s(u, v) = 1 + 2u − 4u2 − v + 2uv + 4u2v

2t(u, v) = (u − 1)(1 + 2u)(−1 + 2u + 4u2)

2w(u, v) = (−1 + 2u)(−1 + 2u + 4u2)

r(u, v) = −u − u2 + u3 + u4 + u5 − v2 + uv2 − u2v2 + u3v2 + 2u4v2

− 2u5v2 + v4 − 3uv4 + 2u2v4 + 2u3v4 − 3u4v4 + u5v4

s(u, v) = −1 + u2 + 2u3 + u4 + v2 − 2uv2 + 3u2v2 − 2u4v2 − v4

+ 2uv4 − 2u3v4 + u4v4

t(u, v) = (u − 1)(u + 1)(u − v + uv)(−1 − u − u2 − v + uv + v2

− 2uv2 + u2v2)

w(u, v) = (u − 1)(−u − u2 − u3 − v − uv − u2v − u3v + v2 − uv2 − u2v2

+ u3v2 + v3 − uv3 − u2v3 + u3v3)



where ϵi = −1 if i ∈ S, ϵi = 1 if i ∉ S, e.g. T{2,3}(u) = T(n1−n2−n3+n4+n5)/2(u). (We set U−1(x) = 0, and, for 

n < 0, Tn(x) = T|n|(x), Un−1(x) = −U|n|−1(x)).

We have calculated:

S(u, v) is the same, but with US substituted for TS throughout in (12.11.1) above,

Remark: These formulae exhibit the general fact that if the sequence (n1,n2,n3,n4,n5) is reversed, the sign

of t is changed, and r, s, w are unchanged.

We thus have, for the shorter word An1BAn2BAn3  (n4 = n5 = 0)

S(u, v) the same, but with Un−1 substituted for Tn throughout, and

(12.112)

W(u, v) the same, but with Un−1 substituted for Tn throughout.

12.12 Roots of Trace Polynomials

The purpose of this section is to establish a theorem which shows that the zero sets of the “good word” trace

polynomials discussed in Section 12.5 are dense in the complement of the space of discrete and faithful

representations of Zp*Z2 for 3 ≤ p ≤ ∞. Indeed we show that the complement of the representations which are

discrete and free on marked generators is the Julia set of the semigroup of good word polynomials, where we

de�ne the Julia set of any family P of analytic functions mapping an open set U ⊆ C into itself, as the set of 

z ∈ U  such that P is not a normal family in any neighbourhood of z.

Theorem 12.12.1  Let f,g be Möbius transformations with β = β(f) ≠ −4, β(g) = −4, γ = γ(f, g) and suppose

that ⟨f, g⟩ is not discrete and free on the two generators f and g. Then for any open set U, γ ∈ U ∈ C there is a

R(u, v) = 1
4 ∑

S⊆{2,3,4}

(−1)|S|
TS(u) v2

+ 1
2 (T∅(u) − T{2,4}(u))v

+ 1
4 (T∅(u) + T{2}(u) + T{3}(u) + T{4}(u) + T{2,4}(u) + T{2,3,4}(u) 

⎛

⎝

⎞

⎠

T (u, v) = 1
4 ∑

S⊆{2,3,4}

(−1)|S|
TS∪{5}(u) v

+ 1
4 (T{3,5}(u) − T{1,3}(u) + T{2,5}(u) − T{1,4}(u) 

− T{1,2,3}(u) + T{3,4,5}(u) − T{1}(u) + T{5}(u)).

⎛

⎝

⎞

⎠

W(u, v) = 1
4 ∑

S⊆{2,3,4}

(−1)|S|
US∪{5}(u) v

+ 1
4

(U{1,3}(u) + U{3,5}(u) + U{1,4}(u) + U{2,5}(u) 

+ U{1,2,3}(u) + U{3,4,5}(u) + U{1}(u) + U{5}(u)).

⎛

⎝

⎞

⎠

R(u, v) = 1
2

[(T(n1+n2+n3)/2(u) − T(n1−n2+n3)/2(u))v 

+ (T(n1+n2+n3)/2(u) + T(n1−n2+n3)/2(u))],

T (u, v) = 1
2

[T(n1+n2−n3)/2(u) − T(n1−n2−n3)/2(u)],



good word w = w(f, g) for which the polynomial qw(z) = pw(z,β), given by Theorem 12.5.3, has a root in U.

Proof. Since g is of order two, every member of ⟨f, g⟩ can be represented as a good word in f and g. There are two

cases.

12.12.1 ⟨f, g⟩ is discrete but not free on generators

In this case there is a nontrivial good word w ∈ ⟨f, g⟩ representing the identity, whence 0 = γ(w, f) = pw(γ,β)
so that γ itself is the root of a good word polynomial.

12.12.2 ⟨f, g⟩ is not discrete

Let U be a neighbourhood of γ and de�ne the good word polynomial zero set as

In Section 12.5.1 we gave a few examples of good words. From that table we quickly deduce that among many

other points

Thus Z  contains at least three �nite points. To simplify notation we suppress the β variable in our word

polynomials. Next, suppose that for some good word v we have pv(U) ∩Z ≠ ∅. Then there is a word w ∈ ⟨f, g⟩
and z ∈ U  such that pw(pv(z)) = 0. However, we know that the set of good words is closed under composition,

and pw(pv(z)) = pw*v(z). Thus z ∈ Z . We are left to consider the subcase.

12.12.2.1 For all good words v, pv(U) ∩Z = ∅

Let F = {pv : vis a good word}. We have seen that on U F  omits Z  which contains at least three points. Thus

Montel's criterion shows that the functions of F  restricted to U is a normal family. In other words U does not meet

the Julia set of F . Since ⟨f, g⟩ is not discrete, there is a sequence of good words {wi}
∞
i=1 in ⟨f, g⟩ with 

wi → identity as i → ∞ (this convergence is in the topology of PSL(2,C), that is in each entry of representative

matrices).

It follows that each neighbourhood of 0 meets pwi
(U) for some i. We will thus be done if we can show that Julia

set of F  contains some neighbourhood of 0.

12.12.2.2 Density of roots near 0

We analyse this case in a fairly general framework using some of the theory of the dynamics of polynomial

semigroups. Much more can be found about this subject, see for instance [15, 16, 25, 27, 28] and the references

therein. The point here is that, for each nonzero β = β(f), we can �nd a good word polynomial which has 0 as a

repelling �xed point, and another which has zero as a superattracting �xed point under iteration. In such a setting,

the Julia set of the semigroup generated by these two polynomials contains a neighbourhood of 0 and the

preimages of 0 are dense in it.

Lemma 12.12.1  Let p and q be entire functions, with a common �xed point c, which is superattractive for p and

repulsive for q. Let P be the semigroup ⟨p, q⟩, then the Julia set of P contains a neighbourhood of c.

Proof. This is a standard “push me, pull you” argument which we sketch. We may assume that c = 0. We have 

p(z) = azm + O(zm+1), q(z) = μ(z + bz2 + O(z3)), where a ≠ 0, m ≥ 2 and |μ| > 1. We construct a sequence

of functions {fn} inductively by f0(z) = z and fn+1(z) = g(f(z)), where g is either p or q. We choose r > 0 to

be suf�ciently small that we can ignore higher degree terms in p and q. Let z0 = z be chosen with |z| < r, suppose

that f0, f1, … fk have already been de�ned, and set zi = fi(z). If |zk| ≥ r, then let fn+1(z) = p(f(z)); otherwise

let fn+1(z) = q(f(z)). As soon as |zk| ≥ r, the next number zk+1 is much smaller; then the zi gradually increase

Z = {z ∈ C :  there is a good word w so that pw(z,β) = 0}

{0,β, 1 + β, 2 + β} ⊂ Z .

pwi
(γ) = tr[f,wi] − 2 → tr[f, identity] − 2 = 0



□

in size (because |μ| > 1), until eventually it exceeds r, and the process begins again. The sequence {zi} is bounded

above and below |a|rm ≤ zi ≤ |μ|r.

If fn+1(z) = p(fn(z)), then the logarithmic derivative

If fn+1(z) = q(fn(z)), then

If |zn−1| ≥ r, then |zn| ≥ |a|rm, and it takes t applications of q to get the size of zi over r again, where t is at most

about log|μ|(1/( a rm−1)), in the course of which we multiply the absolute value of the logarithmic derivative by

at least

which can be made as close to 1 as we like by taking r suf�ciently small. Each time we apply p, we multiply the

logarithmic derivative by approximately m. It follows that 
f ′
n(z)

fn(z) → ∞ as n → ∞. Since the |fn(z)| is bounded

below, it also follows that |f ′
n(z)| → ∞ as well. Thus no subsequence of {fn(z)} can converge to an analytic

function. Since |fn(z)| is bounded above, {fn(z)} cannot converge to ∞ either. Thus ⟨p, q⟩ is not a normal family

on any neighbourhood of z.

To complete our proof we recall from Section 12.5.1 the trace polynomials γ(γ − β) from the word bab, 

(β − γ + 1)2
γ from the word babab, γ(1 − 2β + γ 2 − (β − 2)γ) from the word baba−1b and 

γ 3(γ − β)(β + 4)(β(γ 2 − 3γ − 4) − β2(γ + 1) + 4γ 2 + 4γ + 1) from the word ba−2bababa−2bab.

The last polynomial here is superattractive at z = 0 and the rest have multipliers at 0 of −β, (1 + β)2 and 

1 − 2β respectively, so that for each β ≠ 0 at least one of them has z = 0 as a repulsive �xed point. Thus, by the

lemma, the Julia set of the trace polynomials contains a neighbourhood of 0, and so a zero-free region U has an

image under a trace polynomial into a region which intersects the Julia set, contradicting the fact that these

polynomials generate a normal family on U. The case β = 0 is separately dealt with in [21].

References

[1] H. Akiyoshi, M. Sakuma, M. Wada and Y. Yamashita, Punctured torus groups and two bridge knot groups (I), Lecture Notes in Mathematics

1909, Springer-Verlag Berlin Heidelberg, 2007.

[2] A. Beardon, The geometry of discrete groups, Springer–Verlag, 1983.

[3] C. Cao, Some trace inequalities for discrete groups of Möbius transformations, Proc. Amer. Math. Soc., 123, (1995), 3807–3815.

[4] M. D. E. Conder and G. J. Martin, Cusps, triangle groups and hyperbolic 3-folds, Journal of the Australian Mathematical Society, 55, (1993),

149–182.

[5] M. D. E. Conder, G. J. Martin and A. Torstensson, Maximal symmetry groups of hyperbolic 3-manifolds, New Zealand J. Math., 35, (2006), 37–

62.

[6] R. Fricke and F. Klein, Vorlesungen über die Theorie der automorphen Functionen, Chapter 2, Teubner, Leipzig, 1897.

[7] D. Gabai, On the Geometric and Topological Rigidity of Hyperbolic 3-Manifolds, J. American Math. Soc., 10, (1997), 37–74.

[8] D. Gabai, R. Meyerhoff and N. Thurston, Homotopy hyperbolic 3-manifolds are hyperbolic, Ann. of Math., 157, (2003), 335–431.

[9] F. W. Gehring, C. Maclachlan, G. J. Martin and A. W. Reid Arithmeticity, Discreteness and Volume, Trans. Amer. Math. Soc., 349, (1997),

3611–3643.

[10] F. W. Gehring and G. J. Martin, Iteration theory and inequalities for Kleinian groups, Bull. Amer. Math. Soc., 21, (1989), 57–63.

[11] F. W. Gehring and G. J. Martin, Some universal constraints for discrete Möbius groups, Paul Halmos; Celebrating 50 Years of Mathematics,

Springer-Verlag, New York, pp. 205–220.

[12] F. W. Gehring and G. J. Martin, Commutators, collars and the geometry of Möbius groups, J. d’Analyse Math., 63, (1994), 175–219.

f ′
n+1(z)

fn+1(z)
= p′(zn) zn

p(zn)

f ′
n(z)

fn(z)
≃ m

f ′
n(z)

fn(z)

f ′
n+1(z)

fn+1(z)
= q ′(zn) zn

q(zn)

f ′
n(z)

fn(z)
≃ z+2bz2

z+bz2

f ′
n(z)

fn(z)
≃ (1 + bz)

f ′
n(z)

fn(z)∣ ∣(1 − bzn )(1 − bzn+1 ) … (1 − bzn+t ) ≥ (1 − |b|r)t ≥ (1 − |b|r)C log(1/r)∣ ∣ ∣ ∣ ∣ ∣∣ ∣



[13] F. W. Gehring and G. J. Martin, (p,q,r)-Kleinian groups and the Margulis constant, Complex analysis and dynamical systems II, Contemp.

Math., 382, (2005), 149–169.

[14] F. W. Gehring and G. J. Martin, Minimal covolume lattices I: spherical points of a Kleinian group, Annals of Math., 170, (2009), 123–161.

[15] A. Hinkkanen and G. J. Martin, The Dynamics of Semigroups of Rational Functions I, Proc. London Math. Soc., 73, (1996), 358–384.

[16] A. Hinkkanen and G. J. Martin, Julia sets of rational semigroups, Math. Z. 222, (1996), 161–169.

[17] R. Horowitz, Characters of free groups represented in the two-dimensional linear group, Comm. Pure Appl. Math., 25, (1972), 635–649.

[18] T. Jø rgensen, On discrete groups of Mobius transformations, Amer. J. Math., 98, (1976), 739–749.

[19] L. Keen and C. Series, The Riley Slice of Schottky Space, Proc. London Math. Soc., 69, (1994), 72–90.

[20] G.J. Martin, On discrete isometry groups of negative curvature, Paci�c journal of mathematics, 160, (1993), 109–127.

[21] G.J. Martin, Nondiscrete parabolic characters of the free group F2: supergroup density and Nielsen classes in the complement of the Riley slice,

Math. ArXiv 2001.10077.

[22] T. H. Marshall and G. J. Martin, Volumes of hyperbolic 3-manifolds: Notes on a paper of D. Gabai, G. Meyerhoff and P. Milley, J. Conf. Geom.

and Dynamics, 7, 34–48, 2003.

[23] T. H. Marshall and G. J. Martin, Minimal co-volume hyperbolic lattices, II: Simple torsion in a Kleinian group, Ann. Math., 176, (2012), 261–

301.

[24] C. Maclachlan and A. Reid, The arithmetic of hyperbolic 3-manifolds, Springer–Verlag, 219, 2003.

[25] R. Stankewitz and H. Sumi, Dynamical properties and structure of Julia sets of postcritically bounded polynomial semigroups, Trans. Amer.

Math. Soc., 363, (2011), 293–5319.

[26] H. Namazi and J. Souto, Non-realizability and ending laminations: Proof of the density conjecture, Acta Math., 209, (2012), 323–395.

[27] H. Sumi, On dynamics of hyperbolic rational semigroups, J. Math. Kyoto Univ. 37 (1997) 717–733.

[28] H. Sumi, Rational semigroups, random complex dynamics, and singular functions on the complex plane, SUGAKU 61, (2009), 133–161.

[29] C. R. Traina, Trace polynomial for two generator subgroups of SL(2,), Proc. Amer. Math.Soc., 79, (1980), 369–372.

[30] John Voight, Quaternion Algebras, unpublished lecture notes, available at https://math.dartmouth.edu/ jvoight/ quat-book.pdf

https://math.dartmouth.edu/


13

Boundary Value Problems on

Klein Surfaces

Vicentiu Radulescu and Monica Rosiu

DOI: 10.1201/ 9781315160658-13

CONTENTS

13.1 Introduction

13.2 Klein Surfaces and Symmetric Riemann Surfaces

13.3 The Dirichlet Problem for Harmonic Functions

13.3.1 The symmetric Green function

13.3.2 The symmetric harmonic measure

13.3.3 The Dirichlet problem on the complex double

13.3.4 The Dirichlet problem on the Klein surface

13.4 The Neumann Problem for Harmonic Functions

13.4.1 The symmetric Neumann function

13.4.2 The symmetric harmonic kernel function

13.4.3 Integral representations on the double cover

13.4.4 Integral representations on the Klein surface

Concluding remarks

Acknowledgments

References

https://doi.org/10.1201/9781315160658-13


13.1 Introduction

In the preface to the �rst edition of Courant-Hilbert's “Methoden der

mathematischen Physik” (see [12]), R. Courant noted the danger that

mathematical research would lose the initial link between the problems and

methods of analysis and the physical and geometric intuition, the tendencies

being to re�ne the methods and to extreme generalize the existing concepts.

Over the years, these trends led to an increasing distinction between

pure and applied mathematicians, who severely criticized each other. This

constructive criticism gave rise to the theory of real numbers and to many

topological concepts including non-orientable surfaces. It is obvious that

some areas that use mathematical methods but their object is derived from

physical and geometric intuition are disadvantaged in such a discussion.

The present paper is a piece of the bridge between the theoretical

approach of the pure mathematician and the practical interest of the

engineer, physicist and applied mathematician. The main purpose is to bring

together various geometrical and physical concepts relating to surfaces that

have motivated the development of the theory of Klein surfaces.

Riemann surfaces, in the form of domains spread out over the complex

plane were introduced in Riemann's dissertation whose methods were

developed much further in the �rst edition of Riemann's paper on Abelian

functions “Theorie der Abel'schen Functionen” (see [27]), in 1857.

Riemann's works provided the basic tools to classify all compact orientable

surfaces and, more generally, to study the topology of manifolds. They are

equally important for the development of algebraic geometry and the

geometric treatment of complex analysis. As for the importance that was

attached to this topic, it suf�ces to say that Albert Einstein's “general theory

of relativity” is wholly based on Riemann's ideas.

In his “Extremale quasikonforme Abbildungen und quadratische

Differentiale” (see [35]) Teichmüller considered the cases of oriented

bordered Riemann surfaces and non-orientable Riemann surfaces. He

de�ned the double of a oriented bordered Riemann surfaces or of a non-

orientable Riemann surfaces. These are closed Riemann surfaces with genus

depending on the original surfaces. He introduced the notions of

meromorphic functions, n-differentials and divisors on bordered non-

orientable Riemann surfaces.



Teichmüller de�ned, through two examples, the notion of conformal

invariant for non-orientable regions. It is important to note that according to

Teichmüller's de�nition, a conformal mapping (even in the orientable case)

preserves only the angles, but not necessarily the orientation. Thus, such a

mapping is also de�ned in the non-orientable case. Teichmüller exhibited

complete systems of conformal invariants for some special surfaces. For

example, a simply connected domain with two distinguished points in the

interior has one conformal invariant, namely the Green function.

Teichmüller considered special cases of the fact that one deals with non-

orientable surfaces by passing to the orientation double cover. To treat the

most general surfaces, he considered a symmetrization process on the

corresponding doubles. This idea was used to solve the main problem of

extremality, known as the Teichmüller theorem. By using the two-sheeted

covering (an annulus) of the Möbius strip, he gets the Teichmüller distance.

He showed that problems on the projective plane with two distinguished

points can be reduced to similar problems on the sphere with four

distinguished points. In two examples of non-orientable surfaces, Möbius

strip and the projective plane, the problem of �nding the conformal

invariants is lifted to the oriented double cover. Teichmuller considered

problems on the Klein bottle and lifted them to problems concerning the

case of the torus. The torus is the two-sheeted orientation covering of the

Klein bottle.

The genesis and development of the idea of symmetry are related to

Lie's and Klein's research that were inspired by their deep interest in the

theory of groups and in various aspects of the notion of symmetry.

According to Klein's Erlangen program, a geometry is determined by a

“domain of action” (the plane, space, etc.) and a “group of automorphisms”

(or a symmetry group) acting on the domain. When we change the

symmetry group we change the geometric scheme under consideration,

namely we obtain a new “geometry.”

Thus, the main difference between, say, Euclidean and hyperbolic

geometry is not the possibility of constructing one or more lines passing

through a point and not intersecting a given line, but the difference in the

structure of the respective groups of symmetries of Euclidean and

hyperbolic geometry. Therefore, the object of the geometry is the study of

those properties of a domain that are preserved by the transformations in a



symmetry group. The description of all possible geometries is an open

problem.

In the same way, classifying non-classical topological compact surfaces

is the same thing as classifying all orientation reversing involutions of a

classical compact surface.

This brings us to the interesting question of the possible global forms of

various (say, two-dimensional) geometric systems (Euclidean, hyperbolic,

elliptic) �rst stated (in connection with Euclidean geometry) by the

outstanding geometer W. K. Clifford. Today this question is known as the

Clifford-Klein problem and the possible global forms of geometries are

called Clifford-Klein forms.

It is known that there are only two spatial forms of two-dimensional

elliptic geometry (the sphere and the elliptic plane), but there are as many as

�ve forms of two-dimensional Euclidean geometry (the ordinary Euclidean

plane, the in�nite Möbius strip, the in�nite cylinder, the torus and the so-

called Klein bottle). Finally, there are in�nitely many forms of two-

dimensional hyperbolic geometry.

In this context, non-orientable surfaces are a possible geometric system

capable of “modelling” the real shape of the universe surrounding us. For

more details, we refer to the book by Weeks [37], which �lls the gap

between the simplest examples, such as the Mobius strip and the Klein

bottle, and the sophisticated mathematics found in upper-level college

courses.

Spencer and Schiffer in their advanced monograph “Functionals of

Finite Riemann Surfaces,” extended the investigation of �nite Riemann

surfaces from the point of view of functional analysis, that is, the study of

the various Abelian differentials of the surface in their dependence on the

surface itself.

The methodology that Schiffer and Spencer employed is characterized

by Ahlfors’ next comment: “such a surface has a double, obtained by

re�ection across the boundary, and one of the main features of the book is

the systematic use of this symmetrization process.”

The notion of Klein surface goes back to Felix Klein due to his closing

remarks in [15], even though one does not �nd a de�nition of a Klein

surface there. Klein surfaces generalize Riemann surfaces, and they are

dianalytic manifolds of complex dimension 1. Roughly speaking, a Klein



surface is a surface on which the notion of angle between two tangent

vectors at a given point is well-de�ned, and so is the angle between two

intersecting curves on the surface.

Basic function theory on Klein surfaces and the relation between

compact Klein surfaces and real algebraic function �elds were developed in

the monograph “Foundations of the Theory of Klein surfaces” (see [3]) by

N. Alling and N. Greenleaf. They showed that every Klein surface can be

represented as the quotient of a Riemann surface by a conjugate analytic

involution. Thus, it is natural to extend on Klein surfaces the most

fundamental problems in engineering, physics and other sciences. Alling

and Greenleaf were the ones who introduced the name “Klein surface.”

Our approach is an alternative theory to the standard theory given by

Alling and Greenleaf and aims at the natural imbedded of calculus on Klein

surfaces in the well-known Cartan's model of calculus on manifolds. We

have developed this theory because of the unusual behavior from the

analytical point of view of the Alling and Greenleaf's results. For instance,

functions are not usual functions but equivalence classes of families of

meromorphic functions relative to dianalytic atlases. Such a family de�nes

an usual function if and only if all its members are the same real constant.

The meromorphic differentials are also equivalence classes of families of

functions satisfying some compatibility conditions that lead to the

impossibility of de�ning a consistent integral on Klein surfaces (see [3,

Theorem 1.10.4]).

We follow Schiffer and Spencer's method to study the objects on Klein

surfaces by means of the complex double, whose existence and uniqueness

are demonstrated in [3].

We are enabled to bring together systematically and concisely the

concepts of the Green and Neumann functions, the harmonic kernel

function and the harmonic measure and to build from them an elegant

generalization for the basic ideas of boundary value problems on Klein

surfaces.

The main objectives of study in this paper are the Dirichlet problem and

the Neumann problem for harmonic functions on Klein surfaces. The

technique is based on the fact that according to a classical result due to

Klein, the boundary value problems on a Klein surface can be reduced to

similar problems on its complex double. This process has many advantages,



starting from the fact that complex double is a symmetric Riemann surface,

that is, a Riemann surface endowed with a �xed point free antianalytic

involution. Consequently, we obtain harmonic functions on a Klein surface

by adding together a pair of harmonic functions on the symmetric Riemann

surface, whose singularities lye at symmetric points. In our study, we use

methods that have wide applicability in function theory and partial

differential equations.

The symmetric conditions on the boundary determine symmetric

solutions on the complex double, which lead to solutions for the similar

problems on the Klein surface. Speci�cally, in the case of Klein surfaces,

the formula for the solution of the Dirichlet problem is expressed in terms

of an analogue of the Green function, which has the symmetry in argument

and parameter. In these terms, we extend the use of the Green function to

the study of the harmonic measure on a Klein surface. That is why we

distinguish the method to solve the Dirichlet problem for harmonic

functions on a Klein surface, once the harmonic measure on a symmetric

Riemann surface is known. This procedure generates an explicit formula for

the solution of the Dirichlet problem on a Klein surface, which is similar to

the Poisson integral. At the same time, we rewrite the Radon–Nikodym

derivative of harmonic measure against the symmetric arc length.

The corresponding solution of the Neumann problem for harmonic

functions on a Klein surface is expressed in terms of an analogue of a

Neumann function.

The harmonic kernel function is related to the classical domain

functions, such as the Green function and the Neumann function on a Klein

surface. In such a way it is possible to solve both boundary value problems

of potential theory on a Klein surface, once the harmonic kernel function on

a symmetric Riemann surface is known.

We refer to Krantz [16–18, 20] for an excellent exposition of various

topics at the interplay between complex analysis and partial differential

equations.

The study of objects on Klein surfaces is an important part of surface

topology due to the applications of these surfaces in several �elds of

science, such as quantum physics, chemistry and biology. Indeed, for a

physicist, Möbius's band and Klein's bottle are essential elements in the so-

called annulment of divergences. In chemistry, the recent synthesis and the



“half-cutting” of a molecular Möbius strip (see [36]) was considered as a

spectacular event, described as “the most topologically stimulating

molecular structure synthesized to date” it catalyzed the birth of extrinsic

graph theory, dealing with topological chirality, a �eld now burgeoning in

mathematics.

The study of liquid crystals is another �eld where Klein surfaces have

surprisingly materialized themselves. In the so-called nematic liquids, the

molecules form ribbons that may or may not be orientable (see [9]). A

systematic topological analysis highlighted the double topological character

of distortions in liquid crystals differentiated for “energetic reasons” (see

[10]). If we consider the potential function of some form of internal energy

of the ribbons, then the normal derivative on the border characterizes the

�ow of energy across the border. It may be necessary to determine this

potential knowing the respective �ow or the values of the potential on the

border. These are boundary value problems that will be solved in this paper.

The natural tendency of some macromolecules to store energy through

distortions, a fact well-known to chemists, might be the cause itself for the

formation of non-orientable strings, thus making obvious the practical need

of dealing with boundary value problems related to them.

A uni�ed principle for science that works with dualism is presented in

terms of torsion �elds and the non-orientable surfaces, namely the Klein

Bottle, the Möbius strip and the projective plane, in (see [26]). This

principle is applied to the complex numbers and cosmology, to non-linear

systems integrating the issue of hyperbolic divergences with the change of

orientability, to the biomechanics of vision and the mammal heart, to the

morphogenesis of crustal shapes on Earth in connection to the wavefronts of

gravitation, elasticity and electromagnetism, to pattern recognition of

arti�cial images and visual recognition, to neurology and the topographic

maps of the sensorium, to perception, in particular of music.

As it is noticed in (see [14]), these are the types of problems that

contribute to a unifying treatment of orientable and non-orientable surfaces,

not only from the topological point of view (see [11] and [34]) but also

from an analytical point of view (see [33] and [3]).



13.2 Klein Surfaces and Symmetric Riemann Surfaces

Klein surfaces are the most general two-manifolds that support harmonic

functions. In order to be able to extend results about boundary value

problems for harmonic functions on Riemann surfaces to Klein surfaces, we

have to review some results on the topology of surfaces, Klein surfaces, and

the uniformization of Riemann surfaces. The history of Klein surfaces is

going back to Klein (see [15]) who considered the group of conformal maps

of the Klein bottle and other non-orientable surfaces. In their monograph,

Schiffer and Spencer (see [33]) did the �rst modern study of the surfaces

endowed with dianalytic structures. Much of the material of this Section

will be presented without proofs and will be completed with references to

proofs. The main reference to topology of surfaces is the monograph of

Ahlfors and Sario (see [2]).

A connected topological Hausdorff space X  is a surface with boundary

if every point P̃ ∈ X  has an open neighborhood Ũ , which is

homeomorphic to a relatively open subset of the closed upper half-plane. A

homeomorphism h : Ũ → h(Ũ) is called a local parameter at the point 

P̃ ∈ Ũ . The boundary ∂X  of X  consists of those points P̃ ∈ X , such that

h(P̃) ∈ R, for all the local parameters h at the point P̃ . The pair (Ũ ,h) is

called a chart. Let hi : Ũi → hi(Ũi) and hj : Ũj → hj(Ũj) be two local

parameters, such that Ũi ∩ Ũj ≠ ∅, i, j ∈ I. The mapping hi°h
−1
j : 

hj(Ũi ∩ Ũj) → hi(Ũi ∩ Ũj) is called a transition function.

Let A and B be non-empty open sets in the closed upper half-plane. A

continuous map of A into B is analytic on A (resp., antianalytic on A) if it

extends to an analytic (resp., antianalytic) function on some neighborhood

of A in ℂ into C. If f or the complex conjugate of f is analytic on each

connected component of the set A, then f is called dianalytic on A.

An atlas of the surface X  is a family A = {(Ũi,hi)|i ∈ I } of charts,

where (Ũi)i∈I  is an open cover of X . The atlas A  is dianalytic if all of its

transition functions are dianalytic. Two dianalytic atlases A  and B are

called equivalent if A  ∪B is a dianalytic atlas as well. An equivalence

class A of dianalytic atlases of X  is called a dianalytic structure on X.



A Klein surface is a surface X  with boundary endowed with a

dianalytic structure A and will be denoted by X. Observe that a classical

Riemann surface is an orientable Klein surface with empty boundary.

The main tool in our study is the complex double of a Klein surface.

Details about the history of this concept may be found in [33] and for some

of its applications see [3], [11] and [34].

Let X be a Klein surface endowed with the maximal atlas 

A = {(Ũi,hi)|i ∈ I }. We recall the construction of the complex double

of X, which we shall use in order to apply results about Riemann surfaces to

Klein surfaces. We consider the disjoint union S = ∪
i∈I

Ũi. Let (Ũi,hi) and 

(Ũj,hj) be two charts, such that Ũi ∩ Ũj ≠ ∅. For a point P̃ ∈ Ũi ∩ Ũj, the

set S has two points, which both correspond to the point P̃ , namely the

point P̃ ∈ Ũi and the same point P̃ ∈ Ũj. We denote the latter one with P̃ ∗.

Next, we identify the points P̃  and P̃ ∗, if the corresponding transition

function is analytic. If ∂X ≠ ∅, then there are two points lying over each

boundary point of X. Identifying these two points, we obtain a surface O2,

which is called the complex double of the surface X. The two points of O2,

which lie over the same point of X are called symmetric points of O2. For

more details, see Alling and Greenleaf [3].

Similar to the orientable case it is obtained that the cover group of the

double cover π : O2 → X is generated by an orientation reversing

involution. For details, see Seppala and Sorvali [34].

The next theorem relates a Klein surface to its complex double. We refer

to [3] for the proof and more details.

Theorem 13.1.  Given a Klein surface X, there exist a double cover 

π : O2 → X of the Klein surface X by a Riemann surface O2 and an

antianalytic involution k : O2 → O2, with π°k = π, such that X is

dianalytically equivalent with O2/<k>, where <k> is the group generated

by k. Conversely, given a pair (O2, k) consisting of a Riemann surface X

and an antianalytic involution k, the orbit space O2/<k> admits a unique

structure of Klein surface, such that f : O2 → O2/<k> is a morphism of

Klein surfaces, provided that one regards O2 as a Klein surface.



The mapping π is a local homeomorphism at all points P ∈ O2, for

which π(P) ∉ ∂X. At points lying over the boundary of X, the mapping π

is a folding map similar to the mapping x + iy → x + i|y| at the real axes.

For more details about the folding map and the morphisms of Klein

surfaces, see [3] and [4].

By Poincaré's uniformization theorem, each compact Riemann surface

of algebraic genus g⩾2 can be represented as an orbit space H/Γ + of the

upper half complex plane H. Next, H is endowed with the conformal

structure induced by the group M of the Möbius transformations and the

acting group Γ + is a Fuchsian group, that is, a discrete subgroup of M. The

group Γ + can be chosen with no elements of �nite order. For details, we

refer to Poincaré [23].

In his unpublished thesis, Preston proved the real counterpart of

Poincaré's uniformization theorem: for a Klein surface X of algebraic genus

g⩾2, there exists a non-euclidean crystallographic (NEC in short) group Γ ,
that is, a discrete subgroup of the extended modular group, such that X and 

H/Γ  are isomorphic as Klein surfaces. This NEC group can be assumed

having no orientation preserving mapping of �nite order. For details, see

[24] and [28].

By Klein's de�nition, a symmetric Riemann surface, (O2, k), is a

Riemann surface O2, together with an orientation reversing involution 

k : O2 → O2. The involution k is called a symmetry of O2. For more

details about symmetries of a topologic surface, see [34].

A set D of O2 is called symmetric if k(D) = D. Thus, given Ω a subset

of X, then π−1(Ω) = D is a symmetric subset of O2.
A function f de�ned on a symmetric set is called a symmetric function if it

is k-invariant, that is, f = f°k.

Next, we identify X with the orbit space O2/<k> obtained by

identifying P with k(P), for all P ∈ O2. If Ũ  is a parametric disk on X,

then π−1(Ũ) = U ∪ k(U) is a pair of symmetric disks of O2, hence it is

natural to consider restrictions on U ∪ k(U) for the local study of the

objects on O2. Since k is an involution without �xed points, one can

suppose that U ∩ k(U) = ∅.



We identify the points of O2, respectively X, with their images on ℂ from

the corresponding local parameters, with respect to the relation between the

dianalytic atlas on X and the analytic atlases on O2. Let z be the local

parameter on U. Then k(z) is the local parameter on k(U) and 

z̃ = k̃(z) = π(z) = π(k(z)) = {z, k(z)} is the local parameter on Ũ .

Let F(X) be the vector space of the complex functions on the Klein

surface X and Fs(O2) the vector space of the symmetric functions on O2.
By Theorem 13.1, we conclude that there exists an isomorphism π∗ : 
F(X) → Fs(O2), between the vector spaces F(X) and Fs(O2). Indeed, let

F : X → C be a complex function on X, that can take the value ∞ only on

�nite sets. Its lifting f to O2 is given by

(13.1)

Then, it is easy to see that the function π∗, de�ned by π∗(F) = f is an

isomorphism.

Also, to any function g : O2 → C, we can associate a function 

f = g + g°k, which is a symmetric function on O2. Thus, (13.1) de�nes a

function F on X.

Let γ̃ be a piecewise smooth Jordan curve on a parametric disk Ũ . The

curve γ̃ has exactly two lifts from π−1(Ũ). If γ̃(0) = z̃0 = {z0, k(z0)} and

if γ is the lift of γ̃ on O2 from z0, then k°γ is the lift of γ̃ on O2 from k(z0).

We refer to [1] for details about covering surfaces. By de�nition of γ, we

obtain π°γ = π°k°γ, hence for any continuous real-valued function F

de�ned on γ̃, the function f = F°π is a continuous real-valued symmetric

function on γ ∪ k(γ).
The Euclidean lengths of the two curves γ and its symmetric k°γ, that is

their lengths with respect to the metric ds = |dz|, may be different. We

modify this metric and get a new metric dσ on O2, such that the lengths of γ
and k°γ, with respect to the metric dσ, will be the same. We de�ne a

symmetric metric on O2 by

¯

f(z) = f(k(z)) = F(z̃), z ∈ O2, z̃ = π(z).

¯



Then the dσ-lengths of γ and k°γ are equal. By de�nition, the length of γ̃ is

the common dσ-length of γ and k°γ. Then

is a metric on X. The metric dΣ is invariant with respect to the group of

conformal or anticonformal transition functions of X.

By de�nition,

For more details about measure and integration on Klein surfaces, see

[5].

Any Riemann surface O2 of class C1 is endowed with a Riemannian

metric determined by the line element

where ν is a positive function. If μ is identically zero, then the metric

and the local parameter z are called isothermal.

It is known that the isothermal metric ds de�nes a natural analytic

structure on O2. Similar to the orientable case, the isothermal metric dσ

de�nes a dianalytic structure on the Klein surface X. See [2] for details.

Next, we give an example of a symmetric isothermal metric (see

Schiffer and Spencer [33]).

Example 13.1.  The simplest example of a Klein surface is provided by the

Möbius strip. Consider R > 1 and the annulus

dσ = 1
2 (ds + ds°k).

dΣ(z̃) = dσ(z) = dσ(k(z)), z̃ = π(z) ∈ X

∫
γ̃

FdΣ = ∫
γ

fdσ = ∫
k°γ

fdσ.

ds = ν|dz + μdz| ,̄

ds(z) = ν(z)|dz|

AR = {z ∈ C 1
R

< |z| < R }∣



of the z-plane. The Möbius strip, denoted by M, is obtained from AR by

identifying the points z and −1/z. Let k : AR → AR de�ned by 

k(z) = −1/z. Then (AR, k) is a symmetric Riemann surface and the

quotient space AR/<k> is a Möbius strip. The Möbius strip is obtained by

cutting the ring along the real axis in the z-plane and joining the two halves

together along corresponding boundaries. Thus, the annulus AR with points

z and −1/z identi�ed is a canonical form for the Möbius strip. The

Euclidean metric

is not symmetric. We de�ne a symmetric isothermal metric on AR by

By de�nition, the metric on the Möbius strip is

thus,

The area element da on AR is

where m is the Lebesgue measure in the complex plane. Then the area

element dA  on the Möbius strip is

hence

¯
¯

¯

ds = |dz|

dσ = 1
2 (|dz| + d(− 1

z
) )∣¯∣= 1

2 (1 + 1
|z|2 )|dz|.

dΣ(z̃) = dσ(z) = dσ(k(z)

dΣ(z̃) = 1
2
(1 + 1

|z|2 )|dz|.

da(z) = 1
4 (1 + 1

|z|2 )
2
dm(x, y),

dA (z̃) = da(z) = da(k(z)),



Let γ : [a, b] → AR be a piecewise continuously differentiable curve and let

f : γ([a, b]) → C be a continuous function. The integral of f on the curve γ,
denoted by ∫

γ

fdσ, is de�ned by

and

Let γ be a σ-recti�able Jordan arc γ, parametrized in terms of the arc σ-

length. Therefore, γ : z = z(s) = x(s) + iy(s), s ∈ [0, l], where l is the σ-

length of γ. Then the unit inward normal vector to γ at z(s) is 

nσ = (− dy

dσ
, dx
dσ
) and we denote by ∂

∂nσ
 the inward normal derivative,

with respect to the symmetric metric dσ. In this way, our approach is

consistent with Nevanlinna [22], Bergman [8] and Schiffer and Spencer

[33]. For more details about the normal derivative and Green's identities in

terms of dσ, see [7].

13.3 The Dirichlet Problem for Harmonic Functions

This section is devoted to the study of harmonic functions with Dirichlet

boundary condition on a Klein surface. The similar analysis in the complex

plane has been developed in Krantz [18, Section 1.2].

The notion of harmonic function, as being a solution of the Laplace

equation, makes sense on a Klein surface. Moreover, a Klein surface is the

most general two-manifold in which this notion of harmonic function makes

dA (z̃) = 1
4
(1 + 1

|z|2 )
2
dm(x, y).

∫
γ

fdσ = 1
2

b

∫
a

f(γ(t))(1 + 1
|γ(t)|2 )|γ ′(t)|dt

∫ ∫
M

FdA = 1
8
∫ ∫
AR

f(z)(1 + 1

|z|2 )
2
dm(x, y).



sense. For details, see [3]. We notice that the notion of analytic function is

meaningless on a Klein surface.

The Dirichlet problem on an arbitrary Riemann surface can be solved

because the property that a function that is harmonic remains invariant

under bi-holomorphic mappings. For the existence of a harmonic function

that vanishes on the boundary and has a �nite number of isolated

singularities with given singular parts in a relatively compact region, which

is contained in a chart of a Riemann surface, we refer to Ahlfors and Sario

[2].

Any Klein surface X can be regularly imbedded in a border free surface

using a duplication process (see [2]). Therefore, for the boundary problems

involving a part of ∂X we can consider it as a part of the boundary of a

region on a border free surface.

Let O2 be a region in the complex plane, bounded by a �nite number of

analytic Jordan curves. Then O2 = O2 ∪ ∂O2 can be conceived as a

bordered Riemann surface (see [1], [33]). Because the Klein surfaces X and 

O2/<k> are dianalytically equivalent, a boundary value problem on a

region Ω of the Klein surface X, can be replaced by a similar problem on a

symmetric region D of its double O2, as follows.

Consider the Dirichlet problem on X for harmonic functions

(13.2)

where Ω is a region of X bounded by a �nite number of σ- recti�able Jordan

curves and F is a continuous real-valued function on ∂Ω.
We de�ne D = π−1(Ω) and f = F°π on ∂D. Then D is a symmetric

region of O2, bounded by a �nite number of σ-recti�able Jordan curves on

O2, some of which may contain part of ∂O2. Since π°k = π, we obtain 

f = f°k on ∂D, hence f is a symmetric, continuous real-valued function on

∂D. The Dirichlet problem (13.2) on X is equivalent with the following

Dirichlet problem for harmonic functions on O2

¯

{  
ΔU = 0 on Ω

U = F  on ∂Ω.



□

(13.3)

For details about the Dirichlet problem on bordered Riemann surfaces,

see Ahlfors and Sario [2].

The Dirichlet problem turned out to be fundamental in many areas of

mathematics and physics. For example, if D is a thin, heat-conducting metal

plate and f is a continuous temperature distribution on ∂D, then the solution

u of problem (13.3) represents the resulting steady-state heat distribution on

D (see [12], [19]).

Using the maximum principle for harmonic functions, it follows that the

Dirichlet problem (13.3) with continuous boundary values has a unique

solution for any region D with only regular points. For some basic

monotonicity, analytic and variational methods of the theory of partial

differential equations of elliptic type, we refer to [32].

The symmetric conditions on the boundary imply symmetric solutions

for the problem (13.3). For more details, see Schiffer and Spencer [33].

Proposition 13.2.  A solution u of the problem (13.3) is a symmetric

function on D.

Proof. Let u be a solution of the problem (13.3). We de�ne ũ : D → R by 

ũ = 1
2 (u + u°k). Then Δũ = 0 on D. By hypothesis, f = f°k on ∂D,

hence

Thus, ũ is also a solution of the problem (13.3). The uniqueness of the

solution yields ũ = u on D, therefore, u = u°k on D.

13.3.1 The symmetric Green function

Let D be a symmetric region bounded by a �nite number of σ-recti�able

Jordan curves on the symmetric Riemann surface O2.
Fix a point ζ ∈ D.  The function υ(z, ζ) = − ln|z − ζ| is harmonic at

all points z ≠ ζ. Let w be the solution of the Dirichlet problem on D, with

{  
Δu = 0 on D

u = f on ∂D.

¯

ũ = 1
2 (f + f°k) = f on∂D.



the boundary condition w(z) = υ(z, ζ) on ∂D. The unique function 

GD(z, ζ) = υ(z, ζ) − w(z) de�ned on D\{ζ} is called the Greenfunction

of the region D, with singularity at ζ (see [2]).

We assume that u and v are continuously twice differentiable in D and

once on the boundary ∂D. We will use the following Green formula:

where dσ is the arc σ-length element on ∂D and the derivatives on the left

are taken with respect to the inward normal on ∂D. For more details, see

[22].

The next theorem is similar to the Cauchy integral formula for harmonic

functions in terms of the metric dσ.

Proposition 13.3.  (Green representation formula) Let D be a symmetric

region bounded by a �nite number of σ-recti�able Jordan curves and let u

be a harmonic function in D and continuously differentiable on its boundary

∂D. Then, for all ζ in D,

(13.4)

where the derivatives are taken with respect to the inward normal on ∂D.

Proof. Fix a point ζ ∈ D and a positive number ε that is less than the

Euclidean distance of ζ to ∂D. De�ne Dε = D∖D(ζ, ε). Let Cε be the

negatively oriented circle of radius ε, centered at ζ. We apply the Green

formula for Dε, with the harmonic functions u and υ. It follows that

(13.5)

¯

∫
∂D

(u ∂v
∂nσ

− v ∂u
∂nσ

)dσ = −∫ ∫
D

(uΔv − v Δu)dxdy,

u(ζ) = 1
2π ∫

∂D

(u(z)
∂υ(z,ζ)

∂nσ
− υ(z, ζ)

∂u(z)
∂nσ

)dσ,

¯

∫
∂D

(u ∂υ
∂nσ

− υ ∂u
∂nσ

)dσ = − ∫
Cε

(u ∂υ
∂nσ

− υ ∂u
∂nσ

)dσ.



□

The curve −Cε is parameterized by z = z(θ) = ζ + εeiθ, 0⩽θ⩽2π. We

deduce that

As the function u has continuous partial derivatives in D, there is a constant

C such that ∂u
∂ρ ⩽C on Cε. Then, on Cε, we obtain

We observe that the right-hand side of the last inequality tends to zero as ε
tends to zero. Therefore,

Using the mean value property, we have

Then relation (13.5) becomes

The proof is now complete.

Following Nevannlina (see [22]), we obtain that the values of u inside

D are determined from its values and the values of the normal derivative of

the Green function on the boundary ∂D.

Theorem 13.4

− ∫
Cε

υ ∂u
∂nσ

dσ = ∫
−Cε

υ ∂u
∂nσ

dσ = −ε
2π

∫
0
υ(z(θ), ζ)

∂u(z(θ))
∂ρ dθ.∣ ∣ ∫

−Cε

υ ∂u
∂nσ

dσ ⩽2πCε|ln ε|.∣ ∣lim
ε→0

∫
−Cε

υ ∂u
∂nσ

dσ = 0.

∫
Cε

u ∂υ
∂nσ

dσ = −
2π

∫
0
u(z(θ))dθ = −2πu(ζ).

∫
∂D

(u ∂υ
∂nσ

− υ ∂u
∂nσ

)dσ = 2πu(ζ).



□

Let D be a symmetric region, whose boundary ∂D consists of a �nite

number of σ-recti�able Jordan curves. If u is harmonic on D and

continuously differentiable on ∂D, then for all ζ in D,

(13.6)

Proof. Applying Green's formula for D with the harmonic functions u and

w, we obtain

(13.7)

Dividing (13.7) by 2π, and adding this identity to the Green representation

formula, we obtain (13.6).

The function

is called the Poisson kernel of the Laplace operator and the Dirichlet

problem on the region D.

We de�ne G
(k)
D (z, ζ̃) as

on D\{ζ, k(ζ)}.
Let ws be the solution of the Dirichlet problem on D, with the boundary

condition ws(z) = 1
2 [υ(z, ζ) + υ(z, k(ζ)] on ∂D. Then

u(ζ) = 1
2π ∫

∂D

u(z)
∂GD(z,ζ)

∂nσ
dσ.

∫
∂D

(υ ∂u
∂nσ

− u ∂w
∂nσ

)dσ = 0.

Pζ(z) = 1
2π

∂GD(z,ζ)
∂nσ

G
(k)
D (z, ζ̃) = 1

2 [GD(z, ζ) + GD(z, k(ζ))]

¯

G
(k)
D (z, ζ̃) = 1

2 [υ(z, ζ) + υ(z, k(ζ)] − ws(z).



Therefore, G
(k)
D (z, ζ̃) is a harmonic function of z in D\{ζ, k(ζ)}, with

singularities − 1
2

ln|z − ζ| and − 1
2

ln|z − k(ζ)| at ζ and k(ζ), respectively.

Also, G
(k)
D (z, ζ̃) = 0 for all z on ∂D.

We can derive the following result (see [7]):

Proposition 13.5.  For every symmetric region D, the function G
(k)
D (⋅, ζ̃) is

symmetric on D, that is, for all z ∈ D,

Consequently, the function G
(k)
D (z, ζ̃) is called the symmetric Green

function of the region D, with singularities at ζ and k(ζ).
An explicit form for the symmetric Green function of the annulus is

obtained in [7]. For additional information on this topic we refer to [33].

13.3.2 The symmetric harmonic measure

Let D be a symmetric region bounded by a �nite number of σ-recti�able

Jordan curves on O2 and B(∂D) the σ-algebra of Borel sets of ∂D. The σ-

algebra of symmetric Borel sets of ∂D is denoted by Bs(∂D) and 

Bs(∂D) = {U ∪ k(U)|U ∈ B(∂D) }.
The harmonic measure for D is a function ωD : D ×Bs(∂D) → [0, 1]

such that:

1. for each ζ ∈ D, the map B ↦ ωD(ζ,B) is a Borel probability

measure on ∂D;

2. if f : ∂D → R is a continuous function, then the solution of the

Dirichlet problem, for D and the boundary function f, is the

generalized Poisson integral of f on D given by

(13.8)

For details, see [25].

¯̄

G
(k)
D

(z, ζ̃) = G
(k)
D

(k(z), ζ̃).

PDf(ζ) = ∫
∂D

f(z)dωD(ζ, z), ζ ∈ D.



Remark 1.  The uniqueness of ωD is a consequence of the Riesz

representation theorem.

An extensive study of the harmonic measure is developed in [13].

A method of determining the harmonic measure is given by the

following characterization (see [25]):

Proposition 13.6.  The function ωD(⋅,B), is the solution of the generalized

Dirichlet problem with boundary function f = 1B.

The harmonic measure for D is related to another conformal invariant,

the Green function for the symmetric region D.

Using Theorem 13.4 and the fact that Borel measures are determined by

their actions on continuous functions, we obtain a representation of the

harmonic measure in terms of the inward normal derivative of the Green

function with respect to dσ.

Proposition 13.7.  Let D be a symmetric region, whose boundary ∂D
consists of a �nite number of σ-recti�able Jordan curves. If ζ ∈ D, then for

any z ∈ ∂D,

Thus, the harmonic measure for ζ ∈ D is absolutely continuous to arc

σ-length on ∂D and on ∂D, the density being

Let ω
(k)
D

: D ×Bs(∂D) → [0, 1] be the function de�ned by

where ζ̃ = {ζ, k(ζ)}, ζ ∈ D, B ∈ Bs(∂D); see [29].

dωD(ζ, z) =
∂GD(z,ζ)

∂nσ
⋅
dσ(z)

2π .  

dωD

dσ
= 1

2π
∂GD(z,ζ)

∂nσ
= Pζ(z).

ω
(k)
D

(ζ̃,B) = 1
2 [ωD(ζ,B) + ωD(k(ζ),B)],



Remark 2.  The symmetry of the region D implies that the function 

ω
(k)
D (ζ̃,B) is symmetric with respect to B on Bs(∂D), that is, for any B ∈ 

Bs(∂D),

The function ω
(k)
D (ζ̃,B) is called the symmetric harmonic measure for

D.

The function

is called the symmetric Poisson kernel for the region D.

13.3.3 The Dirichlet problem on the complex double

The following Poisson integral formula both reproduces and creates

harmonic functions on the complex double. Roughly speaking, the next

theorem yields the formula for the solution of the Dirichlet problem (13.3)

on a symmetric region D, in terms of the symmetric Green function.

Theorem 13.8.  Let D be a symmetric region bounded by a �nite number of

σ-recti�able Jordan curves and let f be a symmetric, continuous function on 

∂D. There is a unique symmetric function u on D, which is harmonic in D,

continuous on D, such that u = f on ∂D. Moreover, for all ζ in D,

(13.9)

Proof. By Theorem 13.4, for all ζ ∈ D,

ω
(k)
D (ζ̃,B) = ω

(k)
D (ζ̃, k(B)).

P
(k)

ζ̃
(z) = 1

2π
∂G

(k)
D (z,ζ̃)
∂nσ

, z ∈ D

¯

¯

u(ζ) = 1
2π ∫

∂D

f(z)
∂G(k)

D
(z,ζ)

∂nσ
dσ, ζ ∈ D.

u(ζ) = 1
2π

∫
∂D

u(z) ∂GD(z,ζ)
∂nσ

dσ.



□

Replacing ζ with k(ζ) we obtain

Adding the last two equations and dividing by 2, we obtain

for all ζ ∈ D. By Proposition 13.2, u is a symmetric function on D, then the

left-hand side of the last equality is u(ζ). We conclude that for all ζ in D,

The uniqueness of the solution of the Dirichlet problem for harmonic

functions implies relation (13.9).

Theorem 13.8 is the equivalent of the Poisson formula for the solution

of the Dirichlet problem on the disc in the complex plane, see Krantz [20,

Section 7.3]. In such a way, Theorem 13.8 creates a function that agrees

with f on the boundary of the domain D and is harmonic inside.

The formula for the solution to the Dirichlet problem on the annulus is

obtained in [6].

In a similar way, we obtain the following representation of the solution

of the problem (13.3) on a symmetric region D, in terms of the symmetric

harmonic measure.

Theorem 13.9.  Let D be a symmetric region bounded by a �nite number of

σ-recti�able Jordan curves and let f be a symmetric, continuous function on 

∂D. There exists a unique symmetric function u on D, which is harmonic

on D, continuous on D, such that u = f on ∂D. For all ζ in D, we have

u(k(ζ)) = 1
2π ∫

∂D

u(z)
∂GD(z,k(ζ))

∂nσ
dσ.

u(ζ)+u(k(ζ))
2

= 1
4π

∫
∂D

u(z)[ ∂GD(z,ζ)
∂nσ

+ ∂GD(z,k(ζ))
∂nσ

]dσ,

u(ζ) = 1
4π ∫

∂D

u(z)[ ∂GD(z,ζ)
∂nσ

+ ∂GD(z,k(ζ))
∂nσ

]dσ.

¯

¯

u(ζ) = ∫
∂D

f(z)dω
(k)
D (ζ̃, z).



□

(13.10)

Proof. Let ζ be a point in D. By (13.8), for all ζ ∈ D,

Replacing ζ with k(ζ) we get

Adding the last two equations and dividing by 2, we obtain

for all ζ in D. By Proposition 13.2, u is a symmetric function on D, then the

left-hand side of the last equality is u(ζ) and we conclude that for all ζ in D,

The proof is now complete.

By Proposition 13.7, we obtain the Radon-Nikodym derivative of

symmetric harmonic measure for D against σ-arc length.

Proposition 13.10.  Let D be a symmetric region whose boundary ∂D
consists of a �nite number of σ-recti�able Jordan curves. If ζ ∈ D, then for

any z ∈ ∂D,

This result shows that the symmetric harmonic measure for D is

absolutely continuous to arc σ-length on ∂D and on ∂D, the density being

u(ζ) = ∫
∂D

f(z)dω(ζ, z)dσ.

u(k(ζ)) = ∫
∂D

u(z)dω(k(ζ), z)dσ.

u(ζ)+u(k(ζ))
2 = 1

2 ∫
∂D

f(z)[dω(ζ, z) + dω(k(ζ), z)],

u(ζ) = ∫
∂D

f(z)dω
(k)
D (ζ̃, z).

dω
(k)
D (ζ̃, z) =

∂G(k)
D

(z,ζ̃)

∂nσ
⋅
dσ(z)

2π .



13.3.4 The Dirichlet problem on the Klein surface

Let X be a Klein surface and let Ω be a region bounded by a �nite number

of σ-recti�able Jordan curves. The Klein surface X is the factor manifold of

the symmetric Riemann surface O2 with respect to the group <k>. Then, Ω

is obtained from the symmetric region D by identifying the corresponding

symmetric points.

The Green function of Ω with singularity at ζ̃ is de�ned by

where z̃ = π(z).

By de�nition, the function GΩ(z̃, ζ̃) is continuous on Ω , harmonic on 

Ω\{ζ̃} and has the singularity at ζ̃ = π(ζ).

Remark 3.  By Proposition 13.5, it follows that GΩ(z̃, ζ̃) is well-de�ned on 

Ω.

An explicit form for the Green function of the Möbius strip is obtained

in [7].

The harmonic measure for Ω, ωΩ : Ω ×B(∂Ω) → [0, 1], is de�ned by

for all ζ̃ ∈ Ω and B̃ = π(B) ∈ B(∂Ω).
The function

is called the Poisson kernel for the region Ω.

dω
(k)
D

dσ
= 1

2π

∂G(k)
D

(z,ζ̃)

∂nσ
= P

(k)

ζ̃
(z).

GΩ(z̃, ζ̃) = G
(k)
D (z, ζ̃) = G

(k)
D (k(z), ζ̃),

¯

ωΩ(ζ̃, B̃) = ω
(k)
D (ζ̃,B) = ω

(k)
D (ζ̃, k(B)).

P
ζ̃
(z̃) = P

(k)

ζ̃
(z) = P

(k)

ζ̃
(k(z)), z ∈ D



□

Remark 4.  By Remark 2, it follows that the function ωΩ is well-de�ned. By

Proposition 13.5, it follows that the function P
ζ̃
 is well-de�ned, too.

The symmetric solutions on O2 determine the solutions of the similar

problems on the Klein surface X.

Consequently, we obtain the solution of the Dirichlet problem on the

region Ω, with respect to the Green function of Ω.

Theorem 13.11.  Let F be a continuous real-valued function on the border 

∂Ω. The solution of the Dirichlet problem (13.2) with the boundary

function F is the function U de�ned on Ω , by the relation u = U°π, where

π is the canonical projection of O2 on X and u is the solution (13.9) of the

Dirichlet problem (13.3) on the symmetric region D, with the boundary

function f, given by f = F°π.

Proof. By de�nition, ΔU(ζ̃) = Δu(ζ) = 0, for all ζ̃ ∈ Ω, where ζ̃ = π(ζ).
Thus, U is a harmonic function on Ω. The symmetry of the function f on 

∂D implies

for all ζ̃ ∈ ∂Ω. Due to the uniqueness of the solution, the function U

de�ned on Ω  by

for all ζ̃ in Ω , where ζ̃ = π(ζ), is the solution of the Dirichlet problem

(13.2) on Ω.

In a similar way, we obtain the solution of the problem (13.2) on the

region Ω, with respect to the harmonic measure for the region Ω.

Theorem 13.12.  Let F be a continuous real-valued function on the border 

∂Ω. The solution of the problem (13.2) with the boundary function F is the

function U de�ned on Ω , by the relation u = U°π, where π is the canonical

¯

U(ζ̃) = u(ζ) = f(ζ) = f(k(ζ)) = F(ζ̃),

¯

U(ζ̃) = u(ζ) = u(k(ζ)),

¯

¯



projection of O2 on X and u is the solution (13.10) of the problem (13.3) on

the symmetric region D, with the boundary function f, given by f = F°π.

By Proposition 13.10, we obtain the Radon-Nikodym derivative of

harmonic measure for Ω against Σ-arc length.

Proposition 13.13.  Let Ω be a region bounded by a �nite number of σ-

recti�able Jordan curves. If ζ̃ ∈ Ω, then for all z̃ ∈ ∂Ω,

This result implies that the harmonic measure for Ω is absolutely

continuous to arc Σ-length on ∂Ω and on ∂Ω, the density being

13.4 The Neumann Problem for Harmonic Functions

This section is devoted to the study of harmonic functions with Neumann

boundary condition on a Klein surface. The similar analysis in the complex

place has been developed by Schiffer and Spencer [33].

Consider the Neumann problem for harmonic functions

(13.11)

where Ω is a region of X bounded by a �nite number of σ-recti�able Jordan

curves and G is a continuous real-valued function on ∂Ω.
We de�ne D = π−1(Ω) and g = G°π on ∂D. Since π°k = π, we

obtain that D is a symmetric region bounded by a �nite number of σ-

dωΩ(ζ̃, z̃) = dω
(k)
D (ζ̃, z) = dω

(k)
D (ζ̃, k(z)).

dωΩ

dΣ
= P

ζ̃
(z̃).

{  
ΔU = 0 on Ω

∂U
∂nΣ

= G on ∂Ω,



□

recti�able Jordan curves on O2, some of that may contain part of ∂O2 and g

is a symmetric, continuous real-valued function on the boundary ∂D.
The Neumann problem on X is equivalent with the following Neumann

problem on O2

(13.12)

Since k is an antianalytic involution, the symmetry of D and the

symmetry of g on ∂D, imply that the prescribed values of the normal

derivative satisfy the compatibility condition

Therefore, the Neumann problem on O2 for the region D and the boundary

function g has solutions. For details, see [21].

Proposition 13.14.  If the problem (13.12) admits a solution, then it is

unique up to an additive constant.

Proof. Let u1 and u2 be solutions of the problem (13.12). If u = u1 − u2,

then u is harmonic on D and ∂u
∂nσ

= 0 on ∂D. Applying Green's �rst

identity, we get

Therefore, u is constant on D.

Proposition 13.15.  The solution of the problem (13.12) is a symmetric

function on D.

Proof. Let u be a solution of the problem (13.12). We de�ne ũ : D → R by 

ũ = 1
2 (u + u°k). By hypothesis g = g°k on ∂D, then ∂ũ

∂nσ
= ∂u

∂nσ
= g on 

{  
Δu = 0 on D

∂u
∂nσ

= g on ∂D.

∫
∂D

gdσ = 0.

∫ ∫
D

(u2
x + u2

y)dxdy = 0.

¯



□

∂D and Δũ = 0 on D. Thus, ũ is also a solution of the problem (13.12). By

Proposition 13.14, there is a constant c such that ũ = u + c on D. Thus, 

u°k = u + 2c on D and using the symmetry of the region D, we obtain 

u = u°k + 2c on D. Hence c = 0, that is, u°k = u on D.

13.4.1 The symmetric Neumann function

Let ζ be a point inside D. A Neumann function ND(z, ζ) for the region D,

with singularity at ζ, in terms of the metric dσ, is the function

where h(z, ζ) is a solution of the following Neumann problem in terms of

the metric dσ:

where l = ∫
∂D

dσ is the σ-length of ∂D.

Remark 5.  The boundary value of the inward normal derivative of the

Neumann function is a constant equal to 2π
l

.

Theorem 13.16.  Let D be a symmetric region bounded by a �nite number

of σ-recti�able Jordan curves. If u is harmonic in D and continuously

differentiable on ∂D then, up to an additive constant,

Proof. Fix a point ζ ∈ D and a positive number ε that is less than the

Euclidean distance of ζ to ∂D. De�ne Dε = D∖D(ζ, ε). Let Cε be the

negatively oriented circle of radius ε, centered at ζ. Applying Green formula

for Dε with the harmonic functions h and u, we obtain

ND(z, ζ) = υ(z, ζ) − h(z, ζ),  z ∈ D, z ≠ ζ,

{  
Δh(z, ζ) = 0 , z ∈ D

∂h
∂nσ

(z, ζ) = ∂υ
∂nσ

(z, ζ) − 2π
l

,  z ∈ ∂D,

u(ζ) = − 1
2π

∫
∂D

∂u(z)
∂nσ

ND(z, ζ)dσ, ζ ∈ D.

¯

( )



□

(13.13)

Dividing (13.13) by 2π and adding this identity to the Green representation

formula, it follows that

Thus, u is determined up to the additive constant 1
l
∫

∂D

u(z)dσ.

Let N
(k)
D (z, ζ̃) be the function de�ned by

where ND(z, k(ζ)) is a Neumann function for the region D, with singularity

at k(ζ) and ζ̃ = {ζ, k(ζ)}. Therefore,

where hs is a harmonic function on D that satis�es

Therefore, N
(k)
D (z, ζ̃) is a harmonic function of z in D∖{ζ, k(ζ)}, with

singularities at ζ and k(ζ) and 
∂N

(k)
D

∂nσ
(z, ζ̃) = 2π

l
, for all z ∈ ∂D.

An explicit form for the function N
(k)
D (z, ζ̃) of the annulus and of the

Möbius strip are obtained in [31].

Proposition 13.17.  If D is a symmetric region, then the function N
(k)
D

(z, ζ̃)
is symmetric with respect to z on D, that is, for any z ∈ D,

∫
∂D

(h ∂u
∂nσ

− u ∂h
∂nσ

)dσ = 0.

u(ζ) = − 1
2π ∫

∂D

N(z, ζ) ∂u
∂nσ

dσ + 1
l
∫

∂D

udσ.

N
(k)
D (z, ζ̃) = 1

2 [ND(z, ζ) + ND(z, k(ζ))], z ∈ D∖{ζ, k(ζ)},

N
(k)
D (z, ζ̃) = 1

2 [υ(z, ζ) + υ(z, k(ζ))] − hs(z, ζ̃), z ≠ ζ, z ≠ k(ζ),

∂hs

∂nσ
(z, ζ̃) = 1

2 [
∂υ

∂nσ
(z, ζ) + ∂υ

∂nσ
(z, k(ζ))] − 2π

l
.



□

Proof. Let h∗(⋅, ζ) be a harmonic function in D, such that

Therefore,

By Proposition 13.15, h∗(⋅, ζ) is a symmetric function. Hence the function

is a symmetric function, harmonic in D∖{ζ̃} and 
∂M (k)

D

∂n (z, ζ̃) = 2π
l

. So, 

N
(k)
D (z, ζ̃) and M

(k)
D (z, ζ̃) are solutions of the same Neumann problem.

Thus, by Proposition 13.14, there is a constant c such that 

N
(k)
D (z, ζ̃) = M

(k)
D (z, ζ̃) + c. Since M

(k)
D (z, ζ̃) is a symmetric function, we

obtain that N
(k)
D (z, ζ̃) is also a symmetric function.

Let ζ0 be a point of D. A Neumann function ND(z, ζ) is not a conformal

invariant, but the difference ND(z, ζ) − ND(z, ζ0) is a Neumann function

and has a vanishing normal derivative on ∂D, hence it is a conformal

invariant. We rede�ne the difference

to be a Neumann function for the region D on the Riemann surface O2, see

[33].

The function N
(k)
D

(z, ζ̃, ζ̃0) de�ned by

N
(k)
D (z, ζ̃) = N

(k)
D (k(z), ζ̃).

∂h∗

∂nσ
(z, ζ) = 1

2
( ∂υ

∂nσ
(z, ζ) + ∂υ

∂nσ
(k(z), ζ)) − 2π

l
, z ∈ ∂D.

∂h∗

∂nσ
(z, ζ) = ∂h∗

∂nσ
(k(z), ζ), for all z ∈ ∂D.

M
(k)
D

(z, ζ̃) = 1
2 [υ(z, ζ) + υ(k(z), ζ)] − h∗(z; ζ)

ND(z, ζ, ζ0) = ND(z, ζ) − ND(z, ζ0)

N
(k)
D

(z, ζ̃, ζ̃0) = 1
2 [ND(z, ζ, ζ0) + ND(z, k(ζ), k(ζ0))],



for all z ∈ D\{ζ̃, ζ̃0}, is called asymmetric Neumann function for the

region D.

13.4.2 The symmetric harmonic kernel function

Let D be a symmetric region in the complex plane, bounded by a �nite

number of σ-recti�able Jordan curves. In this section, we introduce closed

systems (φi)i  of harmonic functions in D, which are orthonormal with

respect to the Dirichlet integral

We recall some notions and results about orthogonal harmonic functions.

For more details, see [8].

Let Λ2(D) be the set of harmonic functions φ in D with a �nite

Dirichlet integral

such that

where ND(z, ζ) is the Neumann function of D with its singularity at the

�xed point ζ, ζ ∈ D.

Remark 6.  The second condition is imposed to normalize D{φ,φ} to be

zero if and only if φ vanishes identically.

Proposition 13.18.  There exists a closed system (φi)i for the class Λ2(D),

which is orthonormal with respect to the Dirichlet integral, that is,

Let ζ be a point inside D. The harmonic kernel function KD(z, ζ) of the

closed orthonormal system (φi)i for the region D, with respect to the point 

¯

D{φi,φj} = ∫ ∫
D

( ∂φi

∂x

∂φj

∂y + ∂φi

∂y

∂φj

∂x )dxdy.

D{φ} = D{φ,φ} < ∞

D{ND(z, ζ),φ(ζ)} = 2πφ(ζ),

D{φi,φj} = δij, δii = 1, δij = 0, i ≠ j.



ζ, is the function de�ned by

The harmonic kernel function is uniquely characterized by the following

properties:

and

An extensive study of the harmonic kernel function is due to [8].

The representation of the harmonic kernel function in terms of a closed

orthonormal system gives the opportunity to solve numerically the Dirichlet

problem for arbitrarily multiply connected regions. This is an important tool

in physics, in particular in �uid mechanics, elasticity and electricity.

It is known that the harmonic kernel function KD(z, ζ), the Green

function GD(z, ζ) and the Neumann function ND(z, ζ) satisfy the relation

(13.14)

We �rst derive a formula that solves the Dirichlet problem (13.3). We

prove that if u is harmonic inside a region D and continuous on ∂D, then

we can determine the values of u inside of D by integrating on ∂D the

product of u times the inward normal derivative of the harmonic kernel

function for the region D, which is a �xed function that depends only on D.

Theorem 13.19.  Let D be a symmetric region bounded by a �nite number

of σ-recti�able Jordan curves. If u is harmonic in D and continuous on D,
then, up to an additive constant,

KD(z, ζ) = ∑∞
i=1 φi(z)φi(ζ), z ∈ D.̄

KD(z, ζ) = KD(ζ, z)

D{KD(z, ζ),φ(ζ)} = φ(ζ), φ ∈ Λ2(D).

KD(z, ζ) = 1
2π [ND(z, ζ) − GD(z, ζ)], z ∈ D.̄

¯

u(ζ) = − ∫
∂D

u(z) ∂KD(z,ζ)
∂nσ

dσ, ζ ∈ D.



□

(13.15)

Proof. From (13.6), the solution of the Dirichlet problem (13.3) is

(13.16)

Using (13.14), we obtain

for any z ∈ ∂D, where l is the length of ∂D (see [21]). Combining this

relation with (13.16), we �nd

Thus, u is determined up to the additive constant 1
l
∫

∂D

u(z)dσ.

Next, we derive a formula that solves the Neumann problem (13.12).

Theorem 13.20.  Let D be a symmetric region bounded by a �nite number

of σ-recti�able Jordan curves. If u is harmonic in D and continuously

differentiable on ∂D then, up to an additive constant,

(13.17)

Proof. By Theorem 13.16, using Green formula, it follows that, up to an

additive constant, a solution of the Neumann problem is given by

u(ζ) = 1
2π ∫

∂D

u(z)
∂GD(z,ζ)

∂nσ
dσ, ζ ∈ D.

∂KD(z,ζ)
∂nσ

= 1
2π

∂ND(z,ζ)
∂nσ

− 1
2π

∂gD(z,ζ)
∂nσ

= 1
l

− 1
2π

∂GD(z,ζ)
∂nσ

,

u(ζ) = − ∫
∂D

u(z)
∂KD(z,ζ)

∂nσ
dσ + 1

l
∫

∂D

u(z)dσ.

u(ζ) = − ∫
∂D

∂u(z)
∂nσ

KD(z, ζ)dσ, ζ ∈ D.



□

□

(13.18)

The constant is chosen such that u(z) is in Λ2(D).

By (13.14), for ζ ∈ ∂D, we have

Substituting this in (13.18), we obtain (13.17).

Let K
(k)
D (z, ζ̃) be the function de�ned by

where KD(z, k(ζ)) is the harmonic kernel function of the closed

orthonormal system (φi)i, for the region D, with respect to the point k(ζ).

The function K
(k)
D

(z, ζ̃) is in Λ2(D) (see [8], [30]).

Proposition 13.21.  If D is a symmetric region, then the function K
(k)
D (z, ζ̃)

is symmetric with respect to z on D, that is, for every z ∈ D,

Proof. We use (13.14) and the symmetric properties of the symmetric Green

function and symmetric Neumann function.

Let ζ0 be a point of D. Let Λ2
0(D) be the class of harmonic functions φ

that satisfy the conditions:

and

u(ζ) = − 1
2π

∫
∂D

∂u(z)
∂nσ

ND(z, ζ)dσ, ζ ∈ D.

KD(z, ζ) = 1
2π
ND(z, ζ).

K
(k)
D (z, ζ̃) = 1

2 [KD(z, ζ) + KD(z, k(ζ))], z ∈ D,̄

¯̄

K
(k)
D (z, ζ̃) = K

(k)
D (k(z), ζ̃).

D{φ,φ} < ∞

φ(ζ0) = 0.



The harmonic kernel function KD(z, ζ, ζ0) of the class Λ2
0(D) is related to

the harmonic kernel function KD(z, ζ) of the class Λ2
0(D) by the following

identity:

The harmonic kernel function KD(z, ζ) for the region D, with respect to

the point ζ is not a conformal invariant but the harmonic kernel function 

KD(z, ζ, ζ0) is invariant under conformal mapping (see [8]), therefore, 

KD(z, ζ, ζ0) is well-de�ned on the Riemann surface O2.

The function K
(k)
D (z, ζ̃, ζ̃0) de�ned by

for all z ∈ D\{ζ̃, ζ̃0}, is called the symmetric harmonic kernel function for

the region D.

13.4.3 Integral representations on the double cover

We �rst express the solution of the Neumann problem (13.12) for harmonic

functions in terms of dσ as a line integral involving the boundary function

and a symmetric Neumann function.

Theorem 13.22.  Let D be a symmetric region bounded by a �nite number

of σ-recti�able Jordan curves and let g be a symmetric, continuous function

on ∂D. If u is harmonic in D and g is its inward normal derivative on ∂D,
then up to an additive constant

(13.19)

Proof. By Theorem 13.16, up to the additive constant 1
l
∫

∂D

u(z)dσ, we have

for all ζ ∈ D,

KD(z, ζ, ζ0) = KD(z, ζ) − KD(ζ, ζ0).

K
(k)
D (z, ζ̃, ζ̃0) = 1

2 [KD(z, ζ, ζ0) + KD(z, k(ζ), k(ζ0))],

¯

u(ζ) = − 1
2π ∫

∂D

g(z)N
(k)
D

(z, ζ̃)dσ, ζ ∈ D.



□

Replacing ζ with k(ζ) we get

Adding the last two equations and dividing by 2, we obtain, up to the

additive constant 1
l
∫

∂D

u(z)dσ,

By Proposition 13.15, u is a symmetric function on D, then the left-hand

side of the last equality is u(ζ). Therefore,

up to the additive constant 1
l
∫

∂D

u(z)dσ.

Similarly, we obtain a formula for the symmetric solution of the

Neumann problem (13.12) on a symmetric region D, in terms of the

symmetric harmonic kernel function.

Theorem 13.23.  Let D be a symmetric region bounded by a �nite number

of σ-recti�able Jordan curves. Let g be a symmetric, continuous function on

∂D. If u is harmonic in D and g is its inward normal derivative on ∂D, then

up to an additive constant,

(13.20)

u(ζ) = − 1
2π ∫

∂D

g(z)ND(z, ζ)dσ .

u(k(ζ)) = − 1
2π ∫

∂D

g(z)ND(z, k(ζ))dσ.

u(ζ)+u(k(ζ))
2

= − 1
2π

∫
∂D

g(z) ND(z,ζ)+ND(z,k(ζ))
2

dσ.

u(ζ) = − 1
4π ∫

∂D

g(z)[ND(z, ζ) + ND(z, k(ζ))]dσ,

u(ζ) = − ∫
∂D

g(z)K
(k)
D (z, ζ̃)dσ, ζ ∈ D.



□
Proof. It is similar with the proof of the Theorem 13.22. Here we use

Theorem 13.20.

The next theorem yields a formula for the symmetric solution of the

Dirichlet problem (13.3) on a symmetric region D, in terms of the

symmetric harmonic kernel function.

Theorem 13.24.  Let D be a symmetric region bounded by a �nite number

of σ-recti�able Jordan curves. Let f be a symmetric, continuous function on 

∂D. There is a unique symmetric function u on D, which is harmonic on D,

continuous on D, such that u = f on ∂D. For all ζ in D,

(13.21)

Proof. By Theorem 13.19, for all ζ ∈ D,

Replacing ζ with k(ζ) we get, for all ζ ∈ D,

Adding the last two equations and dividing by 2, it follows that

for all ζ ∈ D.
By Proposition 13.2, u is a symmetric function on D, then the left-hand

side of the last equality is u(ζ) and we conclude that for all ζ in D,

¯

¯

u(ζ) = − ∫
∂D

f(z)
∂K

(k)
D (z,ζ̃)
∂nσ

dσ.

u(ζ) = − ∫
∂D

u(z)
∂KD(z,ζ)

∂nσ
dσ.

u(k(ζ)) = − ∫
∂D

u(z) ∂KD(z,k(ζ))
∂nσ

dσ.

u(ζ)+u(k(ζ))
2 = − 1

2 ∫
∂D

u(z)[ ∂KD(z,ζ)
∂nσ

+
∂KD(z,k(ζ))

∂nσ
]dσ,

[ ]



□
The uniqueness of the solution of the Dirichlet problem for harmonic

functions implies (13.21).

13.4.4 Integral representations on the Klein surface

Let ζ̃ be a point inside Ω. A Neumann function NΩ(z̃, ζ̃) for the region Ω,

with singularity at ζ̃ is de�ned by

(13.22)

where z̃ = π(z).

Remark 7.  By Proposition 13.17, it follows that NΩ(z̃, ζ̃) is well-de�ned on

Ω.

Therefore, NΩ(z̃, ζ̃) is a harmonic function on Ω∖{ζ̃}, which has a

constant normal derivative ∂NΩ

∂nΣ
 on the boundary ∂Ω and has a logarithmic

pole at the point ζ̃ = π(ζ).
Next, we derive the solution of the Neumann problem (13.11) on the

region Ω.

Theorem 13.25.  Let G be a continuous real-valued function on ∂Ω. Then,

up to an additive constant, the solution of problem (13.11) is the function U

de�ned by the relation u = U°π, where π is the canonical projection of O2

on X and u is the solution (13.19) of the problem (13.12) on the symmetric

region D, with the inward normal derivative g given by g = G°π on ∂D.
Proof. The symmetry of the function u on D, yields

u(ζ) = − 1
2
∫

∂D

u(z)[ ∂KD(z,ζ)
∂nσ

+ ∂KD(z,k(ζ))
∂nσ

]dσ.

NΩ(z̃, ζ̃) = N
(k)
D

(z, ζ̃) = N
(k)
D

(k(z), ζ̃),

ΔU(ζ̃) = Δu(ζ) = Δu(k(ζ)) = 0 for all ζ̃ ∈ Ω,



□

where ζ̃ = π(ζ).

Using the symmetry of the function g on ∂D, we obtain

for all ζ̃ ∈ ∂Ω. Then, up to an additive constant, the function U de�ned on

Ω by

for all ζ̃ in Ω, is the solution of problem (13.11).

Let ζ̃ be a point inside Ω. The harmonic kernel function KΩ(z̃, ζ̃) of the

closed orthonormal system (φi)i, for the region Ω, with respect to the point 

ζ̃ = {ζ, k(ζ)} is de�ned by

Remark 8.  By Proposition 13.21, it follows that KΩ(z̃, ζ̃), is well-de�ned

on Ω.

The symmetric solutions on O2 determine the solutions of the similar

problems on the Klein surface X. Thus, we obtain the solution of the

Dirichlet problem (13.2) on the region Ω, with respect to the harmonic

kernel function, for the region Ω.

Theorem 13.26.  Let F be a continuous real-valued function on the border 

∂Ω. The solution of the problem (13.2) with the boundary function F is the

function U de�ned on Ω , by the relation u = U°π, where π is the canonical

projection of O2 on X and u is the solution (13.21) of the problem (13.3) on

the symmetric region D, with the boundary function f given by f = F°π.

Proof. By de�nition,

∂U
∂nΣ

(ζ̃) = ∂U
∂nσ

(ζ) = g(ζ) = g(k(ζ)) = G(ζ̃),

U(ζ̃) = u(ζ) = u(k(ζ)),

KΩ(z̃, ζ̃) = K
(k)
D (z, ζ̃) = K

(k)
D (k(z), ζ̃), z̃ = π(z) ∈ Ω.

¯

ΔU(ζ̃) = Δu(ζ) = 0 for all ζ̃ ∈ Ω,



□

where ζ̃ = π(ζ), thus U is a harmonic function. The symmetry of the

function f on ∂D, implies

Due to the uniqueness of the solution, the function U de�ned on Ω  by

for all ζ̃ in Ω , where ζ̃ = π(ζ), is the solution of problem (13.2) on Ω.

The next theorem gives the solution of the Neumann problem (13.11) on

the region Ω, with respect to the harmonic kernel function, for the region Ω.

Theorem 13.27.  Let G be a continuous real-valued function on the border 

∂Ω. Then, up to an additive constant, the solution of the problem (13.11)

with the normal derivative G on ∂Ω is the function U de�ned on Ω , by the

relation u = U°π, where π is the canonical projection of O2 on X and u is

the solution (13.20) of the problem (13.12) on the symmetric region D, with

the normal derivative function g given by g = G°π on ∂D.

Proof. By de�nition,

where ζ̃ = π(ζ), thus U is a harmonic function. The symmetry of the

function g on ∂D, implies

for all ζ̃ ∈ ∂Ω. Thus, up to an additive constant, the function U de�ned on 

Ω  by

U(ζ̃) = u(ζ) = f(ζ) = f(k(ζ)) = F(ζ̃) for all ζ̃ ∈ ∂Ω.

¯

U(ζ̃) = u(ζ) = u(k(ζ)),

¯

¯

ΔU(ζ̃) = Δu(ζ) = 0 for all ζ̃ ∈ Ω,

∂U(ζ̃)
∂nΣ

= ∂u(ζ)
∂nσ

= g(ζ) = g(k(ζ)) = G(ζ̃),

¯

U(ζ̃) = u(ζ) = u(k(ζ)),



□is the solution of the problem (13.11) on Ω.

Concluding remarks

The methods developed in this paper remain valid in the case of all

differential operators associated to conformal invariant metrics. Such an

example corresponds to the invariant Laplacian (or sometimes the Laplace-

Beltrami operator for the Poincaré-Bergman metric), see Krantz [18,

Section 6.5]. We also refer to the pseudo-hyperbolic metric, which is

conformally invariant, but it does not arise from integrating an in�nitesimal

metric (that is, lengths of tangent vectors at a point). A comprehensive

analysis of the pseudo-hyperbolic metric on the disc may be found in

Krantz [16].

To the best of our knowledge, there are not further results involving

either linear or non-linear elliptic equations on Klein surfaces. This study

can include qualitative and quantitative properties of solutions but also

related singular or degenerate phenomena. We consider that the

mathematical analysis of these classes of PDEs on Klein surfaces is a very

rich and attractive research �eld at the interplay between complex analysis

and non-linear analysis.
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