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Preface

The purpose of this monograph is twofold: The one is to present a comprehensive
account of the so-called Renormalization-Group (RG) method and its extension,
which we named the doublet scheme, in a geometrical point of view with various
examples. The second is the application of the doublet scheme in the RG method
to the derivation of the so-called second-order (causal) fluid dynamics from the
relativistic as well as non-relativistic Boltzmann equations with quantum statistics.
All the contents of the monograph are virtually based on the authors original work
except for some review parts.

The RG method is a global and asymptotic analysis of differential equations,
which was developed by an Illinois group and others some thirty years ago. We
introduce the method in a purely mathematical way on the basis of the classical
theory of envelopes, a notion in elementary differential geometry.

Then a focus is put on the fact that the RG method provides us with a powerful
and transparent method for the reduction of dynamics, which includes an elementary
method of a construction of the invariant/attractivemanifolds and reduced dynamical
equations written in terms of the variables that constitute the coordinates of the
manifolds. They are the key concepts in the reduction theory of dynamical systems,
and thereby naturally lead to a foundation to existing theories in the specific physical
systems such as Krylov-Bogoliubov-Mitropolsky theory for non-linear oscillators
and Kuramoto’s reduction theory for evolution equations. Examples treated include
stochastic equations like Langevin and Fokker-Planck equations.

Although the RGmethod is applicable to discrete systems and thereby provides us
with an optimized discretization scheme of differential equations, we have omitted
the once prepared part on the discrete systems partly because of its irrelevance to
the second part and partly for the sake of making the already lengthy monograph
too voluminous. We hope that there will be a chance to publish the omitted part
somewhere else in the future.

The usual reduction theory including the RG method based on the perturbation
theory utilizes the zero modes of the linear operator in the unperturbed equation.
However, in the derivation of the so-called causal second-order fluid dynamics,which
has a nature of the mesoscopic dynamics of the given system, from the Boltzmann
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equation, one needs to extend the invariant manifold so as to incorporate appropriate
excited modes as the additional coordinate variables. In this monograph, a general
reduction theory is presented for constructing the mesoscopic dynamics with inclu-
sion of appropriate excited modes from the given microscopic equation, which is
formulated as an extension of the RG method and called the doublet scheme.

In the second part, we work out for the derivation of the second-order or causal
fluid dynamics on the basis of the doublet scheme: Thus we obtain not only the fluid
dynamic equations that are uniquely those in the energy frame but also the micro-
scopic formulae of the transport coefficients and the relaxation times in Kubo-like
formulae that admit natural physical interpretations. It is shown that the resultant
fluid dynamics is not only causal but also stable dissipative (non-)relativistic fluid
dynamics. The derivation of the mesoscopic dynamics beyond the fluid dynamics
in the non-relativistic regime is also one of the hot topics in physics of cold atoms.
The present monograph includes numerical analyses on these interesting physical
systems. We also provide an accurate and efficient numerical method for computing
the transport equations and relaxation times using the microscopic expressions. The
numerical method utilizes the double exponential formulae for integrations and the
direct matrix inversion method. The numerical calculations are fully worked out
for typical model systems composed of classical particles, a fermion system with a
Yukawa interaction, and boson system described by a chiral Lagrangian. The numer-
ical calculations are also presented for the non-relativistic system and a critical
comparison is made with the relaxation-time approximation, which is commonly
used in the current literature.

The presentation of the monograph, at least in the first part, is intended to be as
pedagogical as possible so that not only researchers who are not familiar with the
RG theory in physics but also motivated undergraduate students with mathematical
backgrounds such as introductory calculus including linear differential equations and
linear algebra may appreciate and understand the method.

Conversely, themonograph is not intended to be a systematic review of the current
status of the studies of the RG method and causal fluid dynamics either with respect
to its foundations or applications. Since the literature on these subjects is huge now
that making a systematic review on this subject is not the intention of the authors
and beyond the authors’ ability. Therefore we apologize to those whose important
articles are not cited in this monograph in advance.

Sakyo-ku, Kyoto, Japan
Upton, NY, USA
Minamiashigara, Kanagawa, Japan
June 2021
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Yuta Kikuchi
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Chapter 1
Introduction: Reduction of Dynamics,
Notion of Effective Theories, and
Renormalization Groups

1.1 Reduction of Dynamics of a Simple Equation and the
Notion of Effective Theory

Let us start with solving the following simple equation of a damped oscillator in
classical mechanics:

ẍ + 2ε ẋ + x = 0, (1.1)

where the positive parameter ε describes the strength of the friction, and is assumed
to be small, say, less than 1. Actually, we know the exact solution to Eq. (1.1) as

x(t) = A(t) sin φ(t), (A(t) := Āe−εt , φ(t) := ωt + θ̄ ), (1.2)

whereω := √
1 − ε2 with Ā and θ̄ being constant. One sees that the angular velocity

ω becomes small and the amplitude A(t) shows a slow damping along with time
owing to the friction ε. These are well known facts.

Now, let us dare to solve Eq. (1.1) by applying a simple perturbative expansion:

x(t) = x0(t) + εx1(t) + ε2x2(t) + · · · , (1.3)

substitution of which to (1.1) and the subsequent comparison of the coefficients of
εn (n = 0, 1, . . . ) leads to series of equations for xn(t), with ẍ0 + x0 = 0. If we take

x0(t) = A sin(t + θ), (A, θ; constant) (1.4)

as the zeroth order solution, the first-order equation reads

Lx1 = −A cos(t + θ),

(
L := d2

dt2
+ 1

)
, (1.5)

which is formally the equation of motion (Newton equation) for a forced oscillation
with the external force with the same frequency as that of the intrinsic one. Then
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there arises a resonance phenomenon, which leads to an ever increasing amplitude
of the oscillation because no friction is present;

x1 = −At sin(t + θ), (1.6)

which is proportional to t and called a secular term. As will be worked out in
Sect. 2.2, the second-order solution x2(t) contains similar terms, and the perturbative
solution up to the second order is given by

x(t) = A sin(t + θ) − εAt sin(t + θ) + ε2
A

2
{t2 sin(t + θ) − t cos(t + θ)},(1.7)

which shows that the amplitude of the oscillator increases with a polynomial of time
owing to the secular terms. This behavior is quite different from that of the exact
solution (1.2) of the damped oscillator, and hence a disaster.

We remark that the appearance of the secular terms are attributed to the fact that
the zero modes of the linear operator L constitutes the inhomogeneous term in the
higher-order equations.

Nevertheless, one might have recognized that the perturbative solution (1.7) is
actually nothing but the first few terms of the expansion of the exact solution in
terms of powers of ε: Indeed one can make the following manipulation,

x � A(1 − ε · t + ε2/2 · t2) sin((1 − ε2/2)t + θ)

� Aexp(−εt) sin(
√
1 − ε2t + θ), (1.8)

where one may have recognized that the secular terms are ‘renormalized’ into the
slowly-varying amplitude and the shifted angular velocity.

Here, we see the typical problems in the (naïve) perturbative expansion of the
solution of differential (or dynamical) equations; If the homogeneous equation is
expressed as Lx = 0 and the linear operator L has zero modes, a naïve perturbation
method of the solution gives rise to secular terms, which may give a valid description
in a local domain but would lead to an inadequate or even disastrous result in a global
domain.

Then the problem can be how to circumvent the appearance of secular terms and/or
resum the seemingly divergent perturbation series of the solution. Furthermore, the
secular terms appearing in the perturbation theory inherently contain small param-
eters, and are expected to be ‘renormalized’ into slow modes such as, say, some
amplitudes or phases. Therefore it is most desirable to be able to extract not only
the slow variables but also the dynamical equations that describe the slow motions
explicitly. Indeed, the amplitude A(t) and the phase φ(t) in the damped oscillator
discussed above satisfy the following simple equations,

d A

dt
= −εA,

dφ

dt
= 1 − 1

2
ε2. (1.9)
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This means that the intrinsic dynamics in the respective (time) scales is revealed, and
also the reduction of the degrees of freedom is achieved. In other words, one may say
that the respective effective theories in different energy/time scales are extracted.

One of the central aims of this monograph is to make an introductory account
of the so-called renormalization-group method [1, 2] in a geometrical way [3–6],
and thereby present elementary methods to achieve these tasks, i.e., reduction of
dynamics and construction of effective theories in a not only systematic but also
elementary manner.

1.2 Notion of Effective Theories and Renormalization
Group in Physical Sciences

Extracting low-energy slow dynamics with long wave lengths is of fundamental
significance in physical sciences since the birth of physics; it was actually one of the
essential ingredients of the method developed by Galileo Galiley [7], who invented
the method of experimentation in which conjectures are tested by actively modifying
Nature, effectively usedmathematics, and utilized the notion of idealization as is seen
in the discovery of the law of inertia that holds when resistance by the environment
can be neglected. The last point, which is often overseen, is of essential importance
for the success of the method of Galilei, and mostly based on a separation of (energy)
scales in modern languages. The recognition of separation of scales constitutes the
basis of the notion of (infrared) effective theories and the renormalization-group
method in various fields of physical sciences.

The concept of the renormalization group (RG) was introduced by Stuckelberg
and Petermann [8] as well as Gell-Mann and Low [9] in relation to an ambiguity
in the renormalization procedure of the perturbation series in quantum field theory
(QFT). The significance of the RG equation was greatly emphasized by Bogoliubov
and Shirkov [10, 11]; see also [12]. However, the essential nature of the RG is non-
perturbative [13–16]. Subsequently, as is well known, the machinery of the RG has
been applied to various problems in QFT and statistical physics with a great success
[17–19].

The essence of the RG in QFT and statistical physics may be stated as follows [13,
14, 18, 19]: Let �(φ, g(�),�) be the effective action (or thermodynamic potential)
obtained by integration of the field variable with the energy scale down to � from
infinity or a very large cutoff �0. Here g(�) is a collection of the coupling constants
including the wave-function renormalization constant defined at the energy scale at
�. Then the RG equationmay be expressed as a simple fact that the effective action as
a functional of the field variable φ should be the same, irrespective to how much the
integration of the field variable is achieved, i.e., �(φ, g(�),�) = �(φ, g(�′),�′).
If we take the limit �′ → �, we have

d�(φ, g(�),�)/d� = 0, (1.10)
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which is the Wilson RG equation [13], or the flow equation in the Wegner’s termi-
nology [14]; notice that Eq. (1.10) is rewritten as

∂�

∂ g
· d g
d�

= − ∂�

∂�
. (1.11)

If the number of the coupling constants is finite, the theory is called renormalizable.
In this case, the functional space of the theory does not change in the flow given by
the variation of �; one may say that the flow has an invariant manifold.

Owing to the very non-perturbative nature, the RG has at least two merits:
(A)Construction of infrared effective actions, (B)Resummation of the perturbation
series.

(A) Finding effective degrees of freedom and extract the reduced dynamics of
the effective variables in fact have constituted and still constitute the core of various
fields of theoretical physics. A notable aspect of the RG is that the RG equation gives
a systematic tool for obtaining the infrared effective theories with fewer degrees of
freedom than in the original Lagrangian relevant in the high-energy region [13]. This
is a kind of reduction of the dynamics.

(B) Applying the RG equation of Gell-Mann-Low type [9–11] to perturbative
calculations up to first lowest orders, a resummation in the infinite order of diagrams
of some kind can be achieved. That is, the RGmethod gives a powerful resummation
method [12].

An appearance of diverging series is a common phenomenon in every mathemat-
ical science not restricted in QFT, and some convenient resummation methods are
needed and developed [20–22]. Deducing a slow and long-wave length motion is
one of the basic problems in almost all the fields of physics. The problems may be
collectively called the reduction problem of dynamics. The RG method might be a
unified method for the reduction of dynamics.

1.3 The Renormalization Group Method in Global and
Asymptotic Analysis

It was an Illinois group [1] and Bricmont and Kupiainen [23] who showed that the
RG equations can be used for a global and asymptotic analysis of ordinary and partial
differential equations, and thereby give a reduction theory of dynamical systems of
some types.

Whereas the theory of Bricmont andKupiainen [23] is based on a scaling transfor-
mation (block transformation) applied to nonlinear diffusion equations in a rigorous
manner, a unique feature of the perturbative approach proposed by the Illinois group
[1] is to allow secular terms to appear. Then introducing an intermediate time τ like a
renormalization point in QFT, they rewrite the perturbative solution by ‘renormaliz-
ing’ the integral constants reminiscent of the procedure in QFT. Next declaring that
the renormalized solution should not depend on τ , theywrite down aGell-Mann-Low
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like equation with respect to τ , and finally mentioning that one is entitled to equate
τ to the physical time t , they succeed in obtaining a global solution of differential
equations.

Subsequently, one of the present authors [3–5] formulated the RG method in
terms of the classical theory of envelopes [24], where a geometrical interpretation
was given on the RG method1 in terms of the classical theory of envelopes in ele-
mentary differential geometry. He also formulated a short-cut prescription for the
renormalization-group (RG) method without introducing an intermediate time τ ,
which procedure was adopted in [1] but might have been somewhat mysterious to
those who were not familiar with the renormalization group in physics. A detailed
account of the geometrical formulation of the RG method is presented in Chap. 4. It
will be also emphasized in Chaps. 4 and 5 that the RGmethod as formulated in [5, 6]
and presented in this monograph may be viewed as a natural extension of the asymp-
totic method by Krylov, Bogoliubov, andMitropolski for non-linear oscillators [25].
The conventional resummation methods and asymptotic analysis applied to differen-
tial equations are reviewed in Chap. 3. The formulation of the RG method in terms
of envelope surfaces is given in [4], and an asymptotic analysis of partial differen-
tial equations such as Barlenblatt equation [26], Swift-Hohenberg equations [27], a
damped Kuramoto-Sivashinsky equation [28–31].

It was also elucidated in [5, 6] that the RG method by the Illinois group can
be nicely reformulated so that it provides us with a powerful systematic reduction
theory of dynamics. In particular, it gives an elementary realization of the geometrical
scenario of the reduction of dynamics proposed byYoshiki Kuramoto [30, 32]: Some
time ago, Kuramoto revealed the universal structure of all the existing perturbative
methods for reduction of evolution equations [30, 32]; when a reduction of evolution
equation is possible, the unperturbed equation admits neutrally stable solutions, and
succeeded in describing the reduction of dynamics in a geometrical manner, without
recourse to any particular mathematical theory as given in [33, 34].

In Chap. 5, the RG method is reformulated in a non-perturbative way, and then
a comprehensive formulation [6] of the reduction theory of dynamics based on the
perturbative RG method is given in terms of the notion of attractive/invariant mani-
fold [33, 34]. Then, in this chapter, a fully systematic reduction theory is developed
for generic system that contains zero modes in the homogeneous linear operator.2

A notable point is that the formulation is developed for the case in which the linear
operator is not semi-simple and has a Jordan cell structure as well as the semi-simple
case [6]; examples of the non semi-simple case include a soliton-soliton interaction
described by the KdV equation [6] and the extraction of the final speed of the Benney
equation [36], which is treated in Chap. 5 for the first time in the RG method.

1 We shall call the method by the Illinois group simply the renormalization-group method or RG
method in short.
2 We refer to the work byGorban andKarlin [35], in which they present a unique reduction theory of
dynamics with an emphasis on the notion of invariant manifold and show an extensive applications
of it to physical and chemical kinetics.
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The RG method has been applied to quite a wide class of problems by many
authors; see review articles by some of the original authors [2] for some references
on the subsequent works in some stage. To mention some; Graham [37] derived a
rotationally invariant amplitude equation appearing in the problem of pattern for-
mation. Sasa [38] derived a diffusion type phase equation, and Maruo, Nozaki, and
Yoshimori [39] derived Kuramoto-Sivashinsky equation [28, 29]. The discrete RG
method based on the notion of the discrete envelopes was developed by Kunihiro
and Matsukidaira [40], where a global and asymptotic analysis of discrete systems
was discussed and thereby an optimized discretization scheme of differential equa-
tions was proposed. The method was applied to analyze asymptotic behavior of the
non-linear equations appearing in cosmology [41, 42]. Boyanovsky and de Vega also
and their collaborators [43] apply the RG method to discuss anomalous transport
and relaxation phenomena in the early universe and quark-gluon plasma (QGP).
The RG method was also shown to be a powerful tool to resum divergent perturba-
tion series appearing in problems of quantum mechanics [44–46]. Possible relation
between renormalizability and integrability of Hamilton systems was discussed by
Yamaguchi and Nambu [47].

As some effort for more rigorously formulate the Illinois RG method, we can
refer to [48–52], although there should be more works of importance, in particular
by others.

1.4 Derivation of Stochastic Equations and Fluid Dynamic
Limit of Boltzmann Equation

Statistical physics, in particular, non-equilibrium statistical physics, is a collec-
tion of theories of how to reduce the dynamics of many-body systems to ones with
fewer variables, since the work of Boltzmann [53]. The time-irreversible Boltzmann
equation [55] , which is written solely in terms of the single-particle distribution
function for dilute gas systems [54], can be derived from the Bogoliubov-Born-
Green-Kirkwood-Yvon (BBGKY) hierarchy [55] , which is equivalent to Liouville
equation hence time-reversible; Bogoliubov [54] showed that the dilute-gas dynam-
ics as described by the hierarchy of the many-body distribution functions has an
attractive/invariant manifold [34] spanned by the one-particle distribution func-
tion . In fact, a sketch for deriving Euler equation from the Boltzmann equation as
the RG equation was given in [56]. In [57], the RG method was applied to derive the
Boltzmann equation from the BBGKY hierarchy where the essential importance of
the setting of the ‘initial’ condition was elucidated.

The Boltzmann equation in turn can be further reduced to the fluid dynamic
equation (Navier-Stokes equation) by a perturbation theory like Chapman-Enskog
method or Bogoliubov’s method [25, 54]. In [57], an attempt of the derivation of the
Euler equation from the classical non-relativistic Boltzmann equation with the use of
the RGmethod was presented, which is, unfortunately, based on an inadequate inner
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product in the functional space composed of distribution functions. Subsequently a
derivation of the dissipative fluid dynamics from the Boltzmann equation with the
corrected inner product was reported in [58]. A comprehensive derivation of the
Navier-Stokes equation based on [58] is presented in Chap. 8 on the basis of the
geometrical formulation of the RG method [3, 5, 6].

Recently, there is a growing interest in the relativistic fluid dynamics [59, 60].
Onemight get surprised to find that there is no established relativistic dissipative fluid
dynamic equations, as is detailed in Chap.10: For instance, there is an ambiguity of
the choice of the rest frame of the fluid [61, 62] owing to the energy-mass equivalence
inherent in the relativistic theory. Another problem is that the relativistic counter part
of the Navier-Stokes equation, which is called the first-order (dissipative) equation,
suffers from the loss of the causality because the equation becomes parabolic as the
diffusion equation is. Furthermore, it is found that the thermal equilibrium state can
be unstable if some relativistic dissipative fluid dynamic equations are applied [63].

A promising way of deriving the fluid dynamics that is free from these problems
may be to start with the relativistic Boltzmann equation, which does not have such
drawbacks, and derive the fluid dynamic limit of it by adopting some reduction theory
of dynamics [64–68]. It should benaturally recognized, however, that the crucial point
in such a project is how powerful and reliable is the reduction theory to be adopted.
Popularmethods among them are themultiple-scalemethod and/or use of a truncated
functional space ; see [67, 68], for instance. In fact, the problem is rather involved
because the derivation of a causal relativistic dissipative fluid dynamic equation must
incorporate some excited modes as well as the usual zero modes originating from
the conservation laws of energy-momenta and conserved charges. The excitedmodes
reflect relatively short time dynamics, which is called the mesoscopic dynamics. One
must say, however, there was no reliable reduction theory that properly identifies the
appropriate excited modes as well as the zero modes.

In Chap. 9, a general theory for constructing mesoscopic dynamics is presented
as an extension of the RG method utilizing the notion of envelopes, which is called
the doublet scheme [69]. Then the doublet scheme in the RG method is applied to
derive the relativistic second-order dissipative fluid dynamics in Chap. 12, which
is extended to the reactive-multiple-component case in Chap. 15. An accurate and
efficient numerical scheme is presented in Chap. 14, where numerical calculations
are worked out for single component system.

The construction of mesoscopic dynamics in the non-relativistic case will be
made in Chap. 16, where numerical results of the transport coefficients and the
relaxation times are also presented using the derived microscopic expressions of
them, and thereby some critical comparison is also made with the results obtained in
the relaxation-time approximation that is commonly used in the current literature.

Langevin equation [70–76] is a kind of kinetic equations, and can be reduced to
the time-irreversible Fokker-Planck equation [73–78], as is the fluid dynamics can
be derived as an asymptotic dynamics of the Boltzmann equation. In Chap. 7, the RG
method is applied to derive the Fokker-Planck equation from a generic multiplicative
Langevin equation.



8 1 Introduction: Reduction of Dynamics, Notion of Effective …

All the contents of themonograph are virtually based on the authors originalworks
except for some review parts that include Chap. 2 in which a description is given
on how secular terms appear ubiquitously in the perturbation theory, and Chap.3 in
which an account of various conventionalmethods for the asymptotic analysis ismade
with a focus on their universal aspect that they all utilize the solvability condition
of a linear inhomogeneous equation to make up some techniques with which the
appearance of secular terms is circumvented. The other review part is Chap. 10,
where a comprehensive account of the derivation of the relativistic dissipative fluid
dynamics based on the Chapman-Enskog and Israel-Stewart methods is given with
some comments.

The presentation of the monograph, at least in the first part, is intentionally made
as pedagogical as possible so that not only researchers who are not familiar with the
RG theory in physics but also undergraduate students with minimal mathematical
backgrounds such as linear differential equations and linear algebra may appreciate
and understand the method. Moreover we believe that simple but classical examples
that are worked out will help the reader to understand what the RG method does in
a geometrical way.

Conversely, the monograph is never intended to be a systematic review not only
on the RG method and but also the relativistic dissipative fluid dynamics either with
respect to its foundations or applications. In fact the literature on these subjects is
so large that it is virtually impossible and beyond the authors’ ability to make a
systematic review on the current status on these subjects. Therefore we apologize
those whose important articles are not cited in this monograph in advance.
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Analysis with Examples



Chapter 2
Naïve Perturbation Method for Solving
Ordinary Differential Equations and
Notion of Secular Terms

2.1 Introduction

If a differential equation has a small parameter ε, one may be inclined to try to
represent the solution by a power series of ε by applying the naïve perturbation
theory to solve it. However, surprisingly enough, such a simple-minded method
often leads to a disastrous result showing an unreasonable divergent behavior after
a long time, or in a global domain of the independent variables. One of the typical
causes of this undesired behavior is due to secular terms.

In this chapter, we analyze a few simple differential equations that have a small
parameter ε, and introduce the notion of a secular term, and then demonstrate that
secular terms are to appear in general in the naïve perturbation series of solutions of
ordinary differential equations.

The presentation of this chapter is quite pedagogical and intended to be an ele-
mentary introduction to standardmethods for solving linear inhomogeneous ordinary
differential equations, say, in the undergraduate level. Indeed we present a detailed
account of the Lagrange’s method of variation of constants in the appendix of this
chapter.

2.2 A Simple Example: Damped Oscillator

Let us first consider the following simple equation

m
d2x

dt2
= −kx − κ

dx

dt
. (2.1)

This is a Newton equation for a particle with mass m in a harmonic potential

U (x) = 1

2
kx2 (2.2)

giving the mechanical force−kx in accordance with the Hooke’s law, and the second
term in the right-hand side (r.h.s.) represents the air resistance (or friction) supposed

© Springer Nature Singapore Pte Ltd. 2022
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as an Asymptotic Analysis, Fundamental Theories of Physics 206,
https://doi.org/10.1007/978-981-16-8189-9_2

11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-16-8189-9_2&domain=pdf
https://doi.org/10.1007/978-981-16-8189-9_2


12 2 Naïve Perturbation Method for Solving Ordinary Differential …

to be proportional to the velocity

v = dx

dt
=: ẋ (2.3)

with a coefficient κ. Defining the angular velocity by

ω0 =
√

k

m
(2.4)

and making a replacement

ω0t → t, (2.5)

Equation (2.1) is converted to a simple form as

ẍ + 2εẋ + x = 0,

(
ε := κ

2mω0
> 0

)
(2.6)

with

ẍ := d2x

dt2
. (2.7)

Since Eq. (2.6) is a second-order linear differential equation, there exist two inde-
pendent solutions [21, 22], which may be obtained by inserting

x = eλt (2.8)

into (2.6); λ is found to be

λ = −ε ± i
√
1 − ε2 =: λ±. (2.9)

The general solution x(t) of (2.6) is given by a linear combination of the independent
solutions,

eλ±t = e−εte±iωt , (ω :=
√
1 − ε2), (2.10)

as

x(t) = ae−εteiωt + a∗e−εte−iωt , (2.11)

where the reality of x(t) has been taken into account.
If we parametrize the coefficient as
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a = − i

2
Āeiθ (2.12)

we have

x(t) = A(t) sin φ(t), A(t) := Āe−εt , φ(t) := ωt + θ̄, (2.13)

where Ā and θ̄ are both constant real numbers.
If it were not for the resistance, i.e., ε = 0, then the amplitude A(t) is time-

independent and the angular velocity ω = 1 with the period

T = 2π

ω
= 2π. (2.14)

In the following, we also use the word “frequency” in place of angular velocity if
any misunderstanding will not be expected.

Owing to the resistance proportional to ε, the amplitude A(t) decreases exponen-
tially in time and the ω becomes smaller with a longer period.

Although we know the exact solution to (2.6), we shall dare to apply a naïve
perturbative expansion [22] assuming that ε is small:

x = x0 + εx1 + ε2x2 + · · · (2.15)

Inserting (2.15) into (2.6), we have

ẍ0 + x0 + ε(ẍ1 + x1) + ε2(ẍ2 + x2) + · · · = −2ε(ẋ0 + εẋ1 + · · · ). (2.16)

Equating the coefficients of εn (n = 0, 1, . . . ), we have a series of equations as fol-
lows,

ẍ0 + x0 = 0, ẍ1 + x1 = −2ẋ0, ẍ2 + x2 = −2ẋ1, (2.17)

and so on.
If we define the linear operator

L = d2

dt2
+ 1, (2.18)

all the perturbative equations are expressed as

Lxn = −2ẋn−1, (n = 0, 1, . . . ) (2.19)

with x−1 = 0.
The zeroth order solution may be given by

x0 = Ā sin(t + θ) (2.20)
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with Ā and θ being integral constants. Then the first-order equation has a form of an
inhomogeneous equation as

ẍ1 + x1 = −2 Ā cos(t + θ) ≡ F(t). (2.21)

The inhomogeneous equation (2.21) may be solved using the Lagrange’s method of
variation of constants [21], an account of which is given below in Sect. 2.5. Using
the two independent solutions

x (1)(t) = cos(t + θ) and x (2)(t) = sin(t + θ) (2.22)

to the unperturbed equation,1 we set

x1 = C1(t)x
(1)(t) + C2(t)x

(2)(t) = C1(t) cos(t + θ) + C2(t) sin(t + θ) (2.23)

with a constraint

Ċ1x
(1)(t) + Ċ2x

(2)(t) = 0, (2.24)

where

Ċi := dCi

dt
, (i = 1, 2). (2.25)

Inserting (2.23) into (2.21), we have

Ċ1 ẋ
(1)(t) + Ċ2 ẋ

(2)(t) = F(t), (2.26)

where (2.24) has been utilized.
The set of Eqs. (2.24) and (2.26) for Ċ1 and Ċ2 yields

Ċ1 = −F(t)x (2)(t)/W (t), Ċ2 = F(t)x (1)(t)/W (t), (2.27)

where W (t) is the Wronskian

W (t) =
∣∣∣∣ x

(1)(t) x (2)(t)
ẋ (1)(t) ẋ (2)(t)

∣∣∣∣ =
∣∣∣∣ cos(t + θ) sin(t + θ)
− sin(t + θ) cos(t + θ)

∣∣∣∣ = 1. (2.28)

Thus we have

Ċ1 = Ā sin(2t + 2θ), Ċ2 = − Ā(1 + cos(2t + 2θ)). (2.29)

1 Although the choice x (1)(t) = cos t and x (2)(t) = sin t also will do, θ has been introduced for
later convenience.
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A simple integration leads to

C1 = −1

2
Ā cos(2t + 2θ) + α, C2 = − Āt − 1

2
Ā sin(2t + 2θ) + β (2.30)

with α and β being constants. Thus we have for x1(t)

x1 = − Āt sin(t + θ) +
(

α − Ā

2

)
cos(t + θ) + β sin(t + θ), (2.31)

where the last two terms satisfy the unperturbed equation and may be discarded
because we are interested in deriving a general solution to (2.6); the prefactors of the
two terms are interpreted to be renormalized into Ā and θ in x0(t). Thus we arrive
at

x1 = − Āt sin(t + θ), (2.32)

which is proportional to time and called a secular term [21, 22].
This result can be understood in physical terms: Equation (2.21) is of the same

form as that for a forced oscillator with no resistance but with an external force
fex(t) = −2 Ā cos(t + θ) having the same frequency as the intrinsic one. Then it
is expected that a resonance phenomenon occurs with an ever growing amplitude
because of no resistance, which reflects in the appearance of the very secular term.

We can proceed to the second-order equation, which now reads

ẍ2 + x2 = F1(t) + F2(t) (2.33)

with

F1(t) := 2 Ā sin(t + θ), F2(t) := 2 Āt cos(t + θ). (2.34)

Since (2.33) is a linear equation with F1,2(t) being the inhomogeneous terms, the
solution is given as a sum x2(t) = x (1)

2 + x (2)
2 of the solutions x (i)

2 to the same equa-
tions but with F(t) being replaced by Fi (t), respectively:

ẍ (i)
2 + x (i)

2 = Fi (t), (i = 1, 2). (2.35)

Applying the method of variation of constants as before, we have

x (1)
2 (t) = − Āt cos(t + θ) + Ā

2
sin(t + θ),

x (2)
2 (t) = Ā

2
t2 sin(t + θ) + Ā

2
t cos(t + θ) − Ā

4
sin(t + θ), (2.36)
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where the respective last term may be discarded because it is a solution to the homo-
geneous equation as was done before and implicitly for other similar terms even in
the present case.

Thus summing all the terms obtained so far, we arrive at the perturbative solution
to (2.6) in the second order as

x(t) � x0(t) + εx1(t) + ε2x2(t)

= Ā sin(t + θ) − ε Āt sin(t + θ)

+ ε2
Ā

2
{t2 sin(t + θ) − t cos(t + θ)} =: x̄(t). (2.37)

Notice the appearance of the secular terms given by polynomials of t that cause the
amplitude to ever increase with time contrary to the exact solution (2.13) in which
the amplitude decreases in time exponentially. Furthermore we see that the powers
of t in the secular terms in the perturbative (would-be) corrections becomes worse
in higher orders.

The reason of the appearance of the secular terms can be traced back to the fact
that the zero modes of the linear operator L = d2/dt2 + 1 in the unperturbed terms
appear as the inhomogeneous term in the perturbative equations.

Nevertheless, it is noteworthy that the secular terms in (2.37) can be absorbed into
the amplitude and phase with a weak time dependence of the unperturbed solution
up to ε3 as

x̄(t) � Ā

(
1 − εt + ε2

2
t2

)
sin

((
1 − ε2

2

)
t + θ

)

� Āe−εt sin(
√
1 − ε2 t + θ). (2.38)

Thus one sees that the perturbative solution (2.37) actually represents the first few
terms of the expanded formula of the exact solution (2.13) with respect to ε. Fur-
thermore the amplitude A(t) of the damped oscillator just discussed satisfies the
following equation

Ȧ = −εA, (2.39)

which shows that the time variation of A is proportional to ε and hence small.
What we have seen are typical phenomena and problems in naïve perturbation

method for solving differential equations. When the inhomogeneous terms in the
naïve perturbative equations contain zero modes of the linear operator L of the
homogeneous equation, the appearance of secular terms are inevitable, which actu-
ally may be resummed into nonsingular expressions. Furthermore, it seems that the
secular terms may be renormalized into the integral constants in the unperturbed
solutions. Then it would be desirable to extract such slow motions and write down
explicitly the equations to describe the slow motions.
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2.3 Motion of a Particle in an Anharmonic Potential:
Duffing Equation

In the previous section, we have dealt with a linear differential equation. In this
section and the following one, we shall apply the perturbative expansion to nonlinear
equations [21, 22].

Let us consider a particle with a mass m in a potential

U (x) = mω2

2
x2 + k ′

4
x4. (2.40)

The equation of motion (EOM) reads

mẍ = −dU

dx
= −mω2x − k ′x3, (2.41)

which is called Duffing equation . It is found that the mechanical energy

E = m

2
ẋ2 + x2

2
+ ε

4
x4 (2.42)

is conserved, i.e., time-independent. In fact,

dE

dt
= mẋ ẍ + dU

dx
ẋ = ẋ

[
mẍ + dU

dx

]
= 0 (2.43)

on account of (2.41). We can give a simple qualitative argument on the behavior
of x(t). Because the kinetic energy is semi-positive definite, we have an inequality
1
2mẋ2 = E −U (x) ≥ 0, leading to

mω2

2
x2 + k ′

4
x4 ≤ E . (2.44)

which implies that |x(t)| is bounded for E > 0;

|x(t)|2 ≤ (mω2/k ′)
[√

1 + Ek ′2/(mω)2 − 1
]
. (2.45)

Now making a replacement ωt → t and defining

ε := k ′

mω2
, (2.46)

Equation (2.41) is cast into the following form,

ẍ + x = −εx3. (2.47)
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In the present analysis, we assume that the strength of the anharmonic potential is
small, i.e.,

|ε| < 1. (2.48)

2.3.1 Exact Solution of Duffing Equation

Using the constancy of E , the time dependence of x(t) can be exactly obtained in
terms of elliptic functions[22]. Firstly, we note that Eq. (2.42) implies that

(
dx

dt

)2

= 2E − x2 − 1

2
εx4, (2.49)

which is reduced to a first-order equation as

dx

dt
= ±

√
2E − x2 − εx4/2. (2.50)

Let x varies from x0 to x as time does from t0 to t . Then Eq. (2.50) is readily integrated
out as

∫ t

t0

dt ′ = ±
∫ x

x0

dx ′√
2E − x ′2 − εx ′4/2

, (2.51)

or

t − t0 = ±
∫ x

x0

dx ′√
2E − x ′2 − εx ′4/2

. (2.52)

To convert the integrand into a convenient form, we first determine the amplitude
A, i.e., the maximum value of x :

ε

2
A4 + A2 − 2E = 0, (2.53)

which is solved for A2 as

A2 = 1

ε

(
−1 + √

1 + 4εE
)

� 1

ε

[
−1 +

(
1 + 2εE − 1

8
16ε2E2 + · · ·

)]

� 2E(1 − εE), (2.54)

where the expansion formula
√
1 + x = 1 + x/2 − x2/8 + · · · has been used in the

last equality. Using Eq. (2.53) for A2, the function in the integrand is rewritten as
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2E − x2 − ε

2
x4 = 2E − x2 − ε

2
x4 −

(
2E − A2 − ε

2
A4

)

= ε

2

(
A2 − x2)(x2 + A2 + 2

ε

)
. (2.55)

Then changing the integration variable by

x ′ = A cosφ′, (2.56)

Equation (2.52) is converted to a simple form as

t − t0 = ∓ 1√
1 + εA2

∫ φ

φ0

dφ′√
1 − k2 sin2 φ′ , (x0 = sin φ0), (2.57)

where

k2 := εA2/2

1 + εA2
. (2.58)

The integral in (2.57) is expressed in terms of the incomplete elliptic integral of the
first kind

F(φ, k) =
∫ φ

0

dφ′√
1 − k2 sin2 φ′ (2.59)

with k being the modulus. Then from (2.57), the period T is given by the time needed
for the phase to change from 0 to 2π;

T = 1√
1 + εA2

∫ 2π

0

dφ′√
1 − k2 sin2 φ′ = 1√

1 + εA2
4

∫ π/2

0

dφ√
1 − k2 sin2 φ

= 1√
1 + εA2

4F(π/2, k) = 4√
1 + εA2

K (k), (2.60)

where we have introduced the complete elliptic integral of the first kind

K (k) := F(π/2, k). (2.61)

When ε is small, i.e.,

|ε|A2 < 1, (2.62)

we have an approximate formula for K (k) using the expansion (1 − x)−1/2 = 1 +
x/2 + 3x2/8 + · · · as
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K (k) �
∫ π/2

0
dφ′

[
1 + k2

2
sin2 φ′ + 3k4

8
sin4 φ′ + · · ·

]

= π

2
[1 + 1

4
k2 + 9

64
k4 + · · · ], (2.63)

where we have used the Wallis’s formula with n being a positive integer

∫ π/2

0
dφ sin2n φ = (2n − 1)!!

(2n)!!
π

2
. (2.64)

Thus an approximate formula for K (k) is given as

K (k) � π

2

[
1 + ε

8
A2

]
. (2.65)

Hence

T � 2π
(
1 − ε

2
A2

) (
1 + ε

8
A2

)
� 2π

[
1 − 3ε

8
A2

]
, (2.66)

accordingly the frequency is given by

� ≡ 2π

T
� 2π

2π(1 − 3ε
8 A

2)
� 1 + 3ε

8
A2. (2.67)

We see that the anharmonic force makes the frequency larger and the period shorter.
This is physically plausible results because for a large amplitude, the nonlinear term
in the restoring force −k ′x3 would become significant, and a part of which effects
may be absorbed into a renormalization of the spring constant mω2 and hence the
frequency.

2.3.2 Naïve Perturbation Theory Applied to Duffing Equation

Although the exact solution is known as has been shown above, we here dare to apply
a naïve perturbative expansion

x = x0 + εx1 + εx2 + · · · , (2.68)

assuming that ε is small. Inserting this expansion into (2.47), we have

L(x0 + εx1 + ε2x2 + · · · ) = −ε(x0 + εx1 + ε2x2 + · · · )3, (2.69)
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with L = d2

dt2 + 1 defined in (2.18). Then equating the coefficients of εn (n =
0, 1, . . . ), we have a series of equations as follows,

Lx0 = 0, Lx1 = −x30 , Lx2 = −3x20 x1, (2.70)

and so on. The zero-th order solution may be given by

x0 = Ā cos(t + θ) (2.71)

with Ā and θ being integral constants.
The first-order equation has a form of an inhomogeneous equation which reads

ẍ1 + x1 = − Ā3 cos3(t + θ) = − Ā3

4
(3 cosφ(t) + cos 3φ(t)) , (2.72)

with

φ(t) = t + θ. (2.73)

Since Eq. (2.72) is a linear equation, the particular solution to it is given as a linear
combination x1 = x (1)

1 (t) + x (2)
2 (t) of those to the inhomogeneous equations with

homogeneous terms, cosφ(t) and cos 3φ(t), respectively:

ẍ (1)
1 + x (1)

1 = −3 Ā3

4
cosφ(t), (2.74)

ẍ (2)
1 + x (2)

1 = − Ā3

4
cos 3φ(t). (2.75)

These equations are of the same form as that of a forced oscillator without resistance
with external forces proportional to cosφ(t) and cos 3φ(t), the former of which
causes a resonance phenomenon described by a secular term as before. Although
the particular solution can be obtained by the method of variation of constants , here
we make a short cut by assuming that

x (1)
1 = at cosφ(t) + bt sin φ(t). (2.76)

Inserting this ansatz to (2.74), we have

ẍ (1)
1 + x (1)

1 = −2a sin φ(t) + 2b cosφ(t) = −3 Ā3

4
cosφ(t), (2.77)

which gives

a = 0 and b = −3 Ā3/8 (2.78)
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and hence

x (1)
1 = −3 Ā3

8
t sin φ(t). (2.79)

On the other hand, a simple application of the method of variation of constants (2.75)
gives

x (2)
1 = Ā3

32
cos 3φ(t). (2.80)

Thus we have for the particular solution x1(t)

x1(t) = −3 Ā3

8
t sin φ(t) + Ā3

32
cos 3φ(t). (2.81)

The approximate solution up to this order now reads

x(t) � Ā cosφ(t) − 3 Ā3

8
ε

[
t sin φ(t) − 1

12
cos 3φ(t)

]
, (2.82)

which contains a secular term causing the amplitude to grow infinitelywhen t → ∞.
This is a physically absurd result and a quite opposite behavior to the exact solution
that is bounded because of the restoring (confining) force.

Nevertheless we can make the following argument which suggests a possible
origin of the appearance of the secular term. Since

(3 Ā2/8) εt � sin[(3εt Ā2/8] (2.83)

for sufficiently small εt , the secular term and the unperturbed one in (2.82) can be
combined into

Ā cosφ(t) − 3 Ā3

8
εt sin φ(t) � Ā cosφ(t) − sin(3 Ā3εt/8) sin φ(t)

� Ā cos[φ(t) + 3εt Ā2/8]
= Ā cos[(1 + 3ε Ā2/8)t + θ]. (2.84)

Thus we have

x(t) � Ā cos[�t + θ] + ε
Ā3

32
cos 3φ(t), (2.85)

with

� := 1 + 3

8
ε Ā2, (2.86)
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which coincides with the shifted frequency (2.67) extracted from the exact solution
for small ε.

It is also to be noted that even if a part of the effects of the nonlinear term could
be absorbed through the renormalization of the spring constant, it is not the whole
effects of it; the nonlinear term also gives rise to an additional term with higher
harmonics.

2.4 van der Pol Equation

The final example is the van der Pol equation, which describes a self-sustained
oscillation [22];

ẍ + x = ε (1 − x2) ẋ, (2.87)

where ε is supposed to be small so as to the perturbation analysis is valid. It is
known that the van der Pol equation admits a limit cycle; see [79] for a pedagogical
explanation on what a limit cycle is in non-linear oscillators.

Let us apply the perturbative expansion to (2.87) as before,

x(t) = x0(t) + ε x1(t) + ε2 x2(t) + · · · . (2.88)

Inserting this expansion to (2.87), we have the following series of equations with
L = d2

dt2 + 1,

Lx0 = 0, (2.89)

Lx1 = (1 − x20 ) ẋ0, (2.90)

Lx2 = (1 − x20 ) ẋ1 − 2x0x1 ẋ0, (2.91)

and so on.
We take for the zeroth solution

x0(t) = A cos(t + θ). (2.92)

Then Eq. (2.90) becomes

Lx1 = −A

(
1 − A2

4

)
sin φ(t) + A3

4
sin 3φ(t), (φ(t) = t + θ). (2.93)

Again the first term of r.h.s. is a zero mode of L , and hence the particular solution
to this equation will contain a secular term. As was done in the previous section, the
application of the method of variation of constants leads to the solution as
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x1(t) = t
A

2

(
1 − A2

4

)
cosφ(t) − A3

32
sin 3φ(t). (2.94)

Thus up to the second order, we have

x(t) � A cosφ(t) + ε

[
t A

2

(
1 − A2

4

)
cosφ(t) − A3

32
sin 3φ(t)

]
, (2.95)

which contains a secular term proportional to t . Again the secular term can be
absorbed into the unperturbed solution, and then (2.95) is rewritten as

x(t) � A(t) cosφ(t) − ε
A3

32
sin 3φ(t). (2.96)

with

A(t) := A

[
1 + εt

2

(
1 − A2

4

)]
, (2.97)

which happens to satisfy the following equation up to ε2

dA
dt

= ε
A

2

(
1 − A2

4

)
� ε

A
2

(
1 − A2

4

)
. (2.98)

If one takes the last equality literally, it is readily verified that if A(0) �= 0,
limt →∞ A(t) = 2, which means that the van der Pol equation admits a limit cycle
with a radius 2; this result is in accordance with the behavior of the solution obtained
in numerical calculations and in resummation methods to be introduced later.

It is also noteworthy that the effects of the nonlinear term also create higher-
harmonics terms that could not be absorbed or renormalized away to the zeroth
order solution as might have been possible for the secular terms.

2.5 Concluding Remarks

We have seen typical phenomena and problems in the naïve perturbation method
for solving differential expansions using a few examples. When the inhomogeneous
terms in the naïve perturbative equations contain zero modes of the linear operator
L of the homogeneous equation, the appearance of secular terms is inevitable, which
actually do not appear in the exact solutions.

A rather generic phenomenon in such a resummation of the perturbation series
is that the resummed terms may be renormalized into the integral constants in the
unperturbed solution, like the amplitudes and/or phases, which should contain a small
parameter and thus would describe slow motions (or long-wave length phenomena),
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i.e., a kind of collective motion. Then it would be desirable to explicitly extract such
slow variables and the dynamical equations to describe their slow motions.

In fact, many methods have been developed to avoid the appearance of secu-
lar terms and in the same time achieve a resummation of the seemingly divergent
serieswith secular terms,which include Poincare-Lighthil-Luo,Krylov-Bogoliubov-
Mitropolskymethod, the reductive perturbation theory and so on [21, 22].All of these
existing methods are based on some techniques with which the appearance of secular
terms or singular terms are circumvented.

The renormalization-group (RG) method that we are going to introduce is one
of such methods: A unique feature of the method, however, lies in the fact that it
allows the appearance of secular terms in contrast to the conventional resummation
methods. Another merit of the RG method is that it provides us with an elementary
but constructive method to extract the reduced dynamical equations explicitly for the
slow motions embedded in the original dynamical equation.

Appendix: Method of Variation of Constants

Let us consider the following n-th order equation with the coefficients ai (t) (i =
1, 2, . . . , n) and the inhomogeneous term b(t):

x (n) + a1(t)x
(n−1) + · · · + an−1(t)ẋ + an(t)x = b(t), (2.99)

where x (k) := dkx/dtk .
The standard procedure of the method of variation of constants (MVOC) goes

as follows [21]. Let x1(t), x2(t), . . . , xn(t) be a set of independent solutions of the
homogeneous equation

Lxi := x (n) + a1(t)x
(n−1) + · · · + an−1(t)ẋ + an(t)x = 0 (2.100)

with i = 1, 2, . . . , n. The general solution to (2.100) is given by

x(t) =
n∑

i=1

Ci xi (t), (2.101)

with Ci (i = 1, 2, . . . , n) being arbitrary constants. In the MVOC, we start with the
following ansatz to a solution to (2.100),

x(t) =
n∑

i=1

Ci (t)xi (t), (2.102)

where the coefficients Ci (t)’s are now all functions of t in contrast to (2.101) where
they are constants, hence the name of MVOC.
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Differentiating Eq. (2.102) with respect to t , one has

ẋ(t) =
n∑

i=1

Ċi (t)xi (t) + Ci (t)ẋi (t). (2.103)

We demand the following condition to Ċi (t)’s

n∑
i=1

Ċi (t)xi (t) = 0. (2.104)

Then we have

ẋ(t) =
n∑

i=1

Ci (t)ẋi (t). (2.105)

For obtaining to convenient formulae, we demand the following conditions to the
higher derivatives of Ci (t)’s in addition to (2.104),

n∑
i=1

dkCi (t)

dtk
xi (t) = 0, (k = 2, . . . , n). (2.106)

Then the successive differentiations of (2.105) lead to

x (k)(t) =
n∑

i=1

Ci (t)x
(k)
i (t) (2.107)

for k = 2, . . . , n. Inserting these formulae for x (k)(t) into (2.99), we arrive at

n∑
i=1

Ċi (t)x
(n−1)
i (t) +

n∑
i=1

Ci (t) (Lxi ) =
n∑

i=1

Ċi (t)x
(n−1)
i (t) = b(t),

(2.108)

where (2.100) has been used.
Now Eqs. (2.104), (2.106) and (2.108) make a set of equations for Ċi (t) (i =

1, 2, . . . , n). For notational convenience. let introduce the following vectors and
matrix

C(t) =

⎛
⎜⎜⎜⎝
C1(t)
C2(t)

...

Cn(t)

⎞
⎟⎟⎟⎠ , b(t) =

⎛
⎜⎜⎜⎝

0
0
...

b(t)

⎞
⎟⎟⎟⎠ , x(t) =

⎛
⎜⎜⎜⎝
x1(t)
x2(t)

...

xn(t)

⎞
⎟⎟⎟⎠ (2.109)
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and

Ŵ (t) :=

⎛
⎜⎜⎜⎝

x1 x2 . . . xn
ẋ1 ẋ2 . . . ẋn
...

...
...

...

x (n)
1 x (n)

2 . . . x (n)
n

⎞
⎟⎟⎟⎠ . (2.110)

Then the set of equations for Ċi (t) (i = 1, 2) is rewritten in a compact form of a
vector equation as

Ŵ (t)
dC(t)

dt
= b(t). (2.111)

As is well known, when x1(t), x2(t), . . . , xn(t) are linearly independent, theWron-
skianW (t) := det Ŵ (t) does not vanishW (t) �= 0, and hence the inverse Ŵ−1(t) of
Ŵ (t) exists [21]. Therefore the solution to (2.111) is readily obtained by multiplying
the inverse Ŵ−1(t) as

dC(t)

dt
= Ŵ−1(t) b(t). (2.112)

Since the r.h.s. is represented in terms of the known functions, (2.112) should be
solved by a quadrature in principle.

As an example, let us give the case of a second-order equation:

ẍ + a1(t)ẋ + a2(t)x = b(t), (2.113)

for which (2.112) reads

Ċ1(t) = −b(t)x2(t)/W (t), Ċ2(t) = b(t)x1(t)/W (t), (2.114)

A simple integration gives

C1(t) = −
∫ t

t0

dt ′ b(t ′)x2(t ′)/W (t ′) + A

C2(t) =
∫ t

t0

dt ′ b(t ′)x1(t ′)/W (t ′) + B (2.115)

with A and B are integration constants, which are to be discarded when the particular
solution is concerned. Thus we have for the particular solution to (2.113)
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x(t) = −x1(t)
∫ t

t0

dt ′ b(t ′)x2(t ′)/W (t ′)

+ x2(t)
∫ t

t0

dt ′ b(t ′)x1(t ′)/W (t ′). (2.116)

This completes an elementary account of MVOC for the second-order inhomoge-
neous equation.

Finally we show some basic properties of the Wronskian:

dW

dt
=

∣∣∣∣ ẋ1 ẋ2
ẋ1 ẋ2

∣∣∣∣ +
∣∣∣∣ x1 x2
ẍ1 ẍ2

∣∣∣∣ =
∣∣∣∣ x1 x2
−a1(t)ẋ1 − a2(t)x1 −a1(t)ẋ2 − a2(t)x2

∣∣∣∣
= −a1(t)W (t), (2.117)

and hence

W (t) = e− ∫ t
t0
dt ′ a1(t ′)W (t0). (2.118)

which shows that

if W (t0) �= 0 ⇒ W (t) �= 0 ∀t. (2.119)



Chapter 3
Conventional Resummation Methods for
Differential Equations

3.1 Introduction

In the last chapter (Chap. 2), it was shown that the naïve perturbationmethod for solv-
ing differential equations does not necessarily work due to the ubiquitous appearance
of secular terms in the perturbative solutions; the secular terms make the perturbative
solutions become valid only in a local domain. Its appearance is inevitable when the
inhomogeneous terms in the perturbative equations contain the zero modes of the
linear operator L of the homogeneous equation.

In this chapter, we introduce several conventional methods [20–22, 30, 34] to
resum secular terms in the perturbative expansions with use of the examples treated
in the last chapter. It will be found that the essential notion involved in all themethods
is the solvability condition of linear equations [80–83]. Therefore this chapter will
start with an introductory account of it.

3.2 Solvability Condition of Linear Equations and
Appearance of Secular Terms: Fredholm’s Alternative

Since the conventional methods for circumventing secular terms to be introduced in
this chapter are all based on the solvability condition of linear equations [80–83],
we first make a basic account of it in general terms on the basis of the notion of
Fredholm’s alternative for linear operators [80–82]. Although some of the readers
might have never heard of the name, Fredholm’s alternative theorem [80–82] provides
us with the solvability condition of the equation and also the structure of the solution
when the solvability condition is not satisfied.

For an account of the theorem, let us start with a trivial equation for x

ax = b (3.1)

© Springer Nature Singapore Pte Ltd. 2022
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with a, x and b being complex numbers. A tricky point is that the solution may not
be generally expressed as the quotient x = b/a, because a can be 0. When a = 0,
we have two alternatives:

1. If b = 0, x can be any number, and the solution is undetermined.
2. If b �= 0, no solution exists.

This is a well-known fact.
A similar alternatives exists in the solution of a system of linear equations. Let us

consider a linear equation

Ax = b, x =

⎛
⎜⎜⎜⎝

x1
x2
...

xn

⎞
⎟⎟⎟⎠ , (3.2)

where A is an n × n matrix and b a given n-dimensional vector.

(1) When the determinant |A| �= 0, there exists the inverse A−1 and the solution is
uniquely given as

x = A−1b. (3.3)

(2) Alternatively, if |A| = 0 and accordingly the inverse of A does not exist, the
solution depends on the properties of b. Note that |A| = 0 implies that A has
zero eigenvalues with, say, m degeneracy. In this case, we have m independent
left and right eigenvectors U i ( �= 0) and Ũ i ( �= 0) (i = 1, 2, . . . , m) belonging
to the 0 eigenvalue as

AU i = 0, Ũ
†
i A = 0, (i = 1, 2, . . . , m). (3.4)

They are called the zero modes, and the subspace spanned by the zero modes is
called the kernel and denoted by KerA. Let us call the Ker A the P space; the
projection operator onto the P space is denoted by P . The compliment of the P
space is called the Q space and the projection operator onto it is denoted by Q.
Then the following alternative statements hold1:

(2-a) If b is orthogonal to all the zero modes, i.e.,

(Ũ
(0)
i , b) = 0, (i = 1, 2, . . . m), (3.5)

then we have a series of the solution

1 This is the simplest case of the theorem called Fredholm’s alternative theorem in the theory of the
linear operators in the functional analysis [80–82].
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x = A−1
Q b +

m∑
i=1

ciU
(0)
i = A−1Qb +

m∑
i=1

ciU
(0)
i , (3.6)

where

AQ := QAQ = AQ = QA (3.7)

and ci ’s are arbitrary constants.
[A simple example] As a simple example, let us consider a linear equation
(3.2) in two dimensions with

A =
(
1 1
2 2

)
and x =

(
x1
x2

)
. (3.8)

The inhomogeneous part b will be specified later. The eigenvalues of A
reads

λ1 = 0 and λ2 = 3, (3.9)

and the respective left eigenvectors are given by

U1 =
(

1
−1

)
and U2 =

(
1
2

)
, (3.10)

respectively, whereas the respective right eigenvectors are

Ũ1 =
(

2/3
−1/3

)
and Ũ2 =

(
1/3
1/3

)
, (3.11)

which satisfy the orthonormal condition

(Ũ i , U j ) = δi j , (i, j = 1, 2). (3.12)

The projection operator onto the Q space is found to be

Q = U2Ũ
†
2 = A/3. (3.13)

Let us consider a case where the inhomogeneous term b satisfies the solv-
ability condition. As an example, let

b =
(
2
4

)
, (3.14)

which satisfies the condition
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(Ũ1, b) = 0, (3.15)

the solution to the linear equation Ax = b is readily found to be

x1 + x2 = 2. (3.16)

If we apply the general formula (3.6), we find that this solution is also
represented with a parameter c as

(
x1
x2

)
= A−1Qb + cU1 = 1

3

(
2
4

)
+

(
c

−c

)
, (3.17)

accordingly,

x1 = 2/3 + c and x2 = 4/3 − c, (3.18)

which satisfy x1 + x2 = 2 with a special parametrization of the
one-dimensional solution space.

(2-b) If b does not satisfy the solvability condition, implying that

(Ũ
(0)
k , b) �= 0 (3.19)

for some (1 ≤) k (≤ m), then there exists no solution to Eq. (3.2), that is,
Eq. (3.2) is not solvable.

For example, if b =
(

1
−1

)
, for which (Ũ1, b) = 1 �= 0, then one readily

sees that the linear equation considered in (2-a) has no solution.

Thus (3.5) is called the solvability condition to the linear equation (3.2).

3.3 Solvability Condition of Linear Differential Equations
with Hermitian Operator

Next let us take the differential operator that has appeared in the previous chapter as
a linear operator;

L = d2

dt2
+ 1. (3.20)

We define the inner product for periodic functions u(t) and v(t) as

(u, v) :=
∫ 2π

0
dt u∗(t)v(t). (3.21)
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Here the periodicity of u(t) means that the following equalities hold

u(t + 2π) = u(t),
du(t)

dt
= du(t + 2π)

dt
. (3.22)

Then applying the partial integrations twice, it is found that L is a symmetric operator
with respect to this inner product for periodic functions,

(u, Lv) = (Lu, v). (3.23)

L has two independent zero modes,

u(1)
0 = 1√

π
sin t, u(2)

0 = 1√
π
cos t, (3.24)

which are made orthonormal bases as

(u(i)
0 , u( j)

0 ) = δi j . (3.25)

The functional space spanned by the zero modes is called the P space and the pro-
jection operator P onto it is given in terms of the integral kernel

P(t, t ′) = u(1)
0 (t)u(1)∗

0 (t ′) + u(2)
0 (t)u(2)∗

0 (t ′), (3.26)

as

(Px)(t) :=
∫ 2π

0
dt ′ P(t, t ′)x(t ′)

= u(1)
0 (t)(u(1)

0 , x) + u(2)
0 (t)(u(2)

0 , x). (3.27)

Let uλ(t) be a normalized eigenfunction belonging to a nonvanishing eigenvalue
λ of L:

Luλ(t) = λuλ(t), (uλ, uλ) = 1. (3.28)

As is well known, the eigenfunctions belong to different eigenvalues are orthogonal
to each other. We assume that degenerate eigenfunctions are distinguished also by λ
and made orthogonal to each other. Thus we have

(uλ, uλ′) = δλλ′ . (3.29)

The perturbative equations in the previous chapter take the following form

Lx = b(t). (3.30)
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The solvability condition for (3.30) reads

(u(i)
0 , b) = 0, (i = 1, 2). (3.31)

When this condition is satisfied, the identity

b = Qb, (Q := 1 − P) (3.32)

holds, and the solution to (3.30) may be formally given as

x = L−1Qb = L−1
Q b, (LQ := LQ). (3.33)

However, if the inhomogeneous term b contains the zero modes, sin t and/or cos t ,
as were the case in the examples treated in the previous chapter, b is expressed as

b = Pb + QB, with Pb �= 0, (3.34)

and the solvability condition is not satisfied. Thus the formal solution has singular
terms L−1Pb, which turns out to be expressed as secular terms.

To give amore precise argument, it is convenient to introduce a resolvent operator
[81]

R(z) := (z − L)−1, (3.35)

with z being a complex number z ∈ C. Then let us consider the linear equation

(L − z)x = b, (3.36)

the solution to which is given by

x = −R(z)b = − 1

z − L
Pb − 1

z − L
Qb = −1

z
Pb + 1

L − z
Qb (3.37)

when z �= ∀λ. It is now clear that the solution is singular for the limit z → 0 due to
the existence of the zero mode Pb �= 0 in the inhomogeneous term; the first term in
the right-hand side diverges as 1/z → ∞. This singular behavior manifests itself in
the form of secular terms.

All the conventional methods for resummation of the perturbative equations are
based on some formal manipulations to modify the target equation so that the solv-
ability condition is always satisfied. In these methods, some yet unknown constants
and functions that specify the perturbative solutions are introduced from the outset,
and the solvability conditions such as (3.31) for the perturbative equations are used
to determine the constants and functions. The variety of the resummation meth-
ods is that of the ideas to keep the solvability condition and hence circumvent the
appearance of the secular terms.
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3.4 Lindstedt-Poincaré Method: Duffing Equation
Revisited

We take the Duffing equation (2.47) for the demonstration of the Lindstedt-Poincaré
method for resummation:

ẍ + x = −εx3. (3.38)

In the Lindstedt-Poincaré method, one first takes into account the fact that the nonlin-
ear term would modify the period or frequency by rewriting the equation as follows,

ẍ + �2x = (�2 − 1)x − εx3, (3.39)

which is reexpressed as

L�x = (�2 − 1)x − εx3, (L� := d2

dt2
+ �2). (3.40)

The linear operator L� has the following zero modes

X (1)
0 :=

√
�

π
cos�t and X (2)

0 :=
√

�

π
sin�t. (3.41)

Here �2 is assumed to be expanded as

�2 = 1 + εω2
1 + ε2ω2

2 + · · · (3.42)

Aswas done in Sect. 2.3.2, we apply a perturbative expansion x = x0 + εx1 + ε2x2 +
· · · to (3.40) with (3.42), then we have

L�x0 = 0, (3.43)

L�x1 = ω2
1x0 − x30 , (3.44)

L�x2 = ω2
1x1 + ω2

2x0 − 3x20 x1, (3.45)

and so on.
The zeroth-order solution may be given by

x0 = Ā cos(�t + θ) (3.46)

with Ā and θ being integral constants. Then the first-order equation takes the form

L�x1 =
(
Āω2

1 − 3

4
Ā3

)
cosφ(t) − Ā3

4
cos 3φ(t) =: b1(t) (3.47)

with
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φ(t) := �t + θ. (3.48)

Now we recognize the first term of the inhomogeneous term b1(t) is a zero mode
of the unperturbed equation and would produce a secular term, which should be
avoided. This condition can be formulated in terms of the solvability condition.

We define an inner product for two periodic functions u and v as

(u, v) :=
∫ 2π/�

0
dt u∗(t)v(t). (3.49)

Incidentally, the zero modes (3.41) satisfy the ortho-normal condition with this inner
product as

(X (i)
0 , X ( j)

0 ) = δi j , (i, j = 1, 2). (3.50)

Then the solvability condition of Eq. (3.47) means that the inner product of the
right-hand side of (3.47) with the zero modes of L� should vanish: While one of
them

(X (2)
0 , b1) = 0 (3.51)

is satisfied automatically, the other yields

(X (1)
0 , b1) =

√
π

�

(
Āω2

1 − 3

4
Ā3

)
= 0, (3.52)

which leads to

ω2
1 = 3

4
Ā2. (3.53)

Thus on account of (3.42), we have

�2 � 1 + ε
3

4
Ā2 or � � 1 + ε

3

8
Ā2. (3.54)

Then (3.47) now reads

L�x1 = − Ā3

4
cos(3�t + 3θ), (3.55)

which is readily solved as

x1 = Ā3

32�2
cos(3�t + 3θ) ≡ A1 cos 3φ(t),

(
A1 := Ā3

32�2

)
. (3.56)
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We remark that the last result can be easily obtained by formally multiplying the
inverse operator

L−1
� = 1

d2

dt2 + �2
(3.57)

to (3.55) from the left as

x1 = − Ā3

4

1
d2

dt2 + �2
cos(3�t + 3θ) = − Ā3

4

1

−(3�)2 + �2
cos(3�t + 3θ)

= Ā3

32�2
cos(3�t + 3θ), (3.58)

where the fact that cos(3�t + 3θ) is an eigen function of L� with a non-vanishing
eigenvalue has been utilized;

L� cos(3�t + θ) = −8�2 cos(3�t + 3θ). (3.59)

Summing up the zeroth and first-order solutions, we get for x(t) up to the second
order of ε,

x(t) � Ā cos(�t + θ) + ε
Ā3

32�2
cos(3�t + 3θ) (3.60)

with � defined in (3.54), which is in accordance with the expanded formula of the
exact solution (2.67).

3.5 Krylov-Bogoliubov-Mitropolsky Method

The perturbative solution (3.60) to Duffing equation suggests that the perturbative
solution would be expressed as a sum of the unperturbed solution x0(t) with the
amplitude and frequency modified by the perturbation and the terms with higher
harmonics.

In the Krylov-Bogoliubov-Mitropolsky (KBM) method [20, 25] developed for
weakly nonlinear oscillators, this is taken as the general ansatz of the solution, and
transform the equations to those for the amplitude and phase. We shall see again that
the solvability conditions for the converted equations play an essential role for the
KBM method to work.

Because the KBM method involves a tedious calculation for converting the time
derivatives to the differentiation with respect to the amplitude and phase, we first
apply the method to a simplest example of a linear damped oscillator and then later
to nonlinear oscillators such as Duffing and van der Pol equations.
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3.5.1 Generalities

We treat weakly nonlinear oscillator which is written with use of the linear operator
L = d2

dt2 + 1 as

Lx = εF(x, ẋ, t). (3.61)

Inserting the perturbative expansion x = x0 + εx1 + ε2x2 + · · · into (3.61) and
equating the coefficients of εn (n = 0, 1, 2, . . . ), we have

Lx0 = 0, (3.62)

Lx1 = F(x0, ẋ0, t), (3.63)

Lx2 = ∂F

∂x

∣∣∣
x0,ẋ0

x1 + ∂F

∂ ẋ

∣∣∣
x0, ẋ1

ẋ1, (3.64)

and so on.
The zeroth order solution may be expressed as

x0 = Ā sin(t + θ) =: u0( Ā, φ0), (φ0 := t + θ). (3.65)

In the KBM method, respecting the above form of the zeroth order solution, we
assume that the exact solution takes the following form

x = u(A, φ) = u0(A, φ) + ρ(A, φ) = A sin φ + ρ(A, φ) (3.66)

with the expanded form of ρ(A, φ),

ρ(A, φ) = ερ1(A, φ) + ε2ρ2(A, φ) + · · · . (3.67)

To introduce another important condition for ρ(A, φ), let us introduce a linear
operator Lφ defined by

Lφ := d2

dφ2
+ 1, (3.68)

acting on function of φ ∈ [0, 2π). It has the zero modes given by cosφ =: u(1)
0 (φ)

and sin φ =: u(2)
0 ;

Lφu
(i)
0 = 0, (i = 1, 2). (3.69)

The constraint to be imposed on ρi (A, φ) is that it does not contain the zero modes
as expressed by
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(u(1)
0 , ρi ) =

∫ 2π

0
dφ cosφ ρi (A,φ) = 0,

(u(2)
0 , ρi ) =

∫ 2π

0
dφ sin φ ρi (A,φ) = 0,

(3.70)

where (u, v) denotes an inner product for arbitrary functions u(φ) and v(φ) defined
by

(u, v) :=
∫ 2π

0
dφ u∗(φ) v(φ). (3.71)

The whole time dependence of x(t) is given through those of A(t) and φ(t),
and their time-dependence themselves are assumed to be given by the following
differential equations

d A

dt
= F(A),

dφ

dt
= 1 + �(A), (3.72)

respectively, where the following expansion formulae are assumed

F(A) = εF1(A) + ε2F2(A) + · · · , �(A) = ε�1(A) + ε2�2(A) + · · · . (3.73)

The notable point is that their time-dependence is assumed to be governed solely by
the amplitude A.

So far the rather long preparation to solve the equation in the KBM method.
It should be noted that with the above set-up of the expansion ansatz, the naïve
expansion scheme as given in (3.64) is abandoned and somehow reorganized.

Now inserting the form (3.66) into (3.61), the equation is converted into those
with respect to ∂

∂A and ∂
∂φ

by the use of chain rule, as follows;

dx

dt
= du(A, φ)

dt
= d A

dt

∂u

∂A
+ dφ

dt

∂u

∂φ
= F(A)

∂u

∂A
+ (

1 + �(A)
)∂u

∂φ
,(3.74)

i.e.,

d

dt
= F(A)

∂

∂A
+ (

1 + �(A)
) ∂

∂φ
. (3.75)

Inserting (3.66) into the above formula, we have

dx

dt
= F(A)(sin φ + ∂ρ

∂A
) + (

1 + �(A)
)(
A cosφ + ∂ρ

∂φ

)

= A cosφ +
(
F(A) sin φ + �(A)A cosφ + ∂ρ

∂φ

)
+

[
F(A)

∂ρ

∂A
+ �(A)

∂ρ

∂φ

]
,

(3.76)
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where the first, second and third terms are order ε0, ε1 and ε2, respectively. Applying
the formula (3.75), we get the second derivative d2x

dt2 , for which we need the following
formulae,

d

dt
A cosφ =

[
F(A)

∂

∂A
+ (

1 + �(A)
) ∂

∂φ

]
A cosφ = F(A) cosφ − (1 + �(A))A sin φ

= −A sin φ + (F(A) cosφ − A�(A) sin φ) , (3.77)

d

dt

(
F(A) sin φ + �A cosφ + ∂ρ

∂φ

)

= F(A)

(
dF(A)

d A
sin φ + � cosφ + ∂2ρ

∂A∂φ

)
+ (1 + �(A))

(
F(A) cosφ − �A sin φ + ∂2ρ

∂φ2

)

=
(
F(A) cosφ − �A sin φ + ∂2ρ

∂φ2

)
+

[
F(A)

(
dF(A)

d A
sin φ + � cosφ + ∂2ρ

∂A∂φ

)

+ �(A)

(
F(A) cosφ − �A sin φ + ∂2ρ

∂φ2

)]
, (3.78)

d

dt

[
F(A)

∂ρ

∂A
+ �(A)

∂ρ

∂φ

]
=

[
F(A)

∂2ρ

∂φ∂A
+ �(A)

∂2ρ

∂2φ

]
+ o(ε3), (3.79)

where o(ε3) denotes terms of the order εn with n ≥ 3. Thus we finally arrive at

ẍ + x = ∂2ρ

∂φ2
+ ρ + (2F cosφ − 2A� sin φ) + F

(
dF

d A
sin φ + � cosφ + ∂2ρ

∂A∂φ

)

+ �(F cosφ − �A sin φ + ∂2ρ

∂φ2
) + F(A)

∂2ρ

∂φ∂A
+ �(A)

∂2ρ

∂φ2
+ o(ε3). (3.80)

3.5.2 Damped Oscillator

We first treat the simple linear equation of a damped oscillator (2.6), for which the
inhomogeneous term in (3.61) reads

F(x, ẋ, t) = −2ẋ . (3.81)

With use of (3.80) and (3.76), Eq. (3.61) takes the following form
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∂2ρ

∂φ2
+ ρ = −2(εA + F) cosφ + 2A� sin φ

− 2ε

(
F sin φ + �A cosφ + ∂ρ

∂φ

)
− F

(
dF

d A
sin φ + � cosφ + ∂2ρ

∂A∂φ

)

− �

(
F cosφ − �A sin φ + ∂2ρ

∂φ2

)
− F(A)

∂2ρ

∂φ∂A
− �(A)

∂2ρ

∂φ2

+ o(ε3)

=: b(φ) + o(ε3). (3.82)

The first order in ε of Eq. (3.82) now takes the form

Lφρ1 = −2(A + F1) cosφ + 2A�1 sin φ =: b1(φ). (3.83)

The solvability condition of (3.83) is given by

(u(1)
0 , b1) = 0 and (u(2)

0 , b1) = 0, (3.84)

which lead to

F1 = −A, �1 = 0, (3.85)

and hence b1 = 0 implying that

ρ1 = 0. (3.86)

Thus we have

d A

dt
= −εA,

dφ

dt
= 1 (3.87)

up to the second order of ε2. The equations are readily solved to give

A(t) = Āe−εt , φ(t) = t + θ. (3.88)

Inserting Eqs. (3.85) and (3.86), the second-order terms of Eq. (3.82) reads

Lφρ2 = −2F2 cosφ + 2A�2 sin φ − 2(F1 sin φ + �1A cosφ + ∂ρ1

∂φ
)

− F1

(
dF1

d A
sin φ + �1 cosφ + ∂2ρ1

∂A∂φ

)

= −2F2 cosφ + 2 A�2 sin φ + 2A sin φ − A sin φ

= −2F2 cosφ + A(2�2 + 1) sin φ

=: b2(φ) (3.89)
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The solvability condition of the last equation reads

(u(1)
0 , b2) = 0, (u(2)

0 , b2) = 0, (3.90)

which lead to

F2 = 0, �2 = −1

2
(3.91)

and hence b2 = 0 implying that

ρ2 = 0. (3.92)

Thus up to the third order we have

d A

dt
= −εA,

dφ

dt
= 1 − 1

2
ε2, (3.93)

the solutions to which read

A(t) = Āe−εt , φ(t) = (1 − 1

2
ε2)t + θ, (3.94)

respectively. Thus we have

x(t) = Āe−εt sin

(
(1 − 1

2
ε2)t + θ

)
. (3.95)

We note that the frequency � = 1 − 1
2 ε

2 is correct up to the third order because the
exact frequency is expanded as

√
1 − ε2 � 1 − ε2 − 1

8ε
4.

3.5.3 Duffing Equation

Next we treat the Duffing equation in the KBM method: ẍ + x = −εx3.
On account of (3.80), the equation is converted to the following form;

Lφρ = −(2F cosφ − 2A� sin φ) − F

(
dF

d A
sin φ + � cosφ + ∂2ρ

∂A∂φ

)

− �

(
F cosφ − �A sin φ + ∂2ρ

∂φ2

)
− F(A)

∂2ρ

∂φ∂A
− �(A)

∂2ρ

∂φ2

− ε(A sin φ + ρ)3 + o(ε3). (3.96)

Equating the terms of εn (n = 0, 1, 2, . . . ), we have
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Lφρ1 = −2F1 cosφ + 2A�1 sin φ − A3 sin3 φ

= −2F1 cosφ + A

(
2�1 − 3

4
A2

)
sin φ + A3

4
sin 3φ

=: b1(φ). (3.97)

The solvability condition (cosφ, b1) = (sin φ, b1) = 0 leads to

F1 = 0, �1 = 3

8
A2. (3.98)

Then we have the equation for ρ1

Lφρ1 = A3

4
sin 3φ, (3.99)

which yields

ρ1 = − A3

32
sin 3φ. (3.100)

Thus we have up to the second order of ε

x(t) = A sin(�t + θ) − ε
A3

32
sin 3(�t + θ), with � = 1 + ε

3A2

8
(3.101)

which agrees with the result given in the Lindstedt-Poincaré method (3.60) up to ε2.

3.5.4 The van der Pol Equation

Next we consider the van der Pol equation given by (2.87), which is reproduced
here,

ẍ + x = ε(1 − x2)ẋ . (3.102)

The first order-equation reads

Lφρ1 = 2A�1 cosφ + 2F1 sin φ −
(
A − A2

4

)
sin φ + A3

4
sin 3φ

= : b1(φ). (3.103)

The solvability condition (sin φ, b1) = (cosφ, b1) = 0 leads to

F1 = 1

2
A

(
1 − A2

4

)
, �1 = 0. (3.104)
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Thus the first-order equation is reduced to

∂2ρ1

∂φ2
+ ρ1 = A3

4
sin 3φ, (3.105)

yielding the solution

ρ1(φ) = − A3

32
sin 3φ, (3.106)

and the amplitude and phase equations are found to take the following forms, respec-
tively,

d A

dt
= ε

2
A

(
1 − A2

4

)
,

dφ

dt
= 1. (3.107)

The phase equation is readily solved to give

φ(t) = t + θ0. (3.108)

The amplitude equation has fixed points A = 0 and A = 2, the latter of which
suggests the existence of a limit cycle. Indeed, the solution to the amplitude equation
expressed as

1

2
εt =

∫ A(t)

A0

d A

A(1 − A2

4 )
=: I (A(t), A0). (3.109)

The integral of the right-hand side can be done as follows;

I (A(t), A0) = 1

2

∫ A2(t)

A2
0

dB

B(1 − B
4 )

= ln
A2(t)

|1 − A2(t)/4| + C (3.110)

with C = − ln A2
0

|1−A2
0/4| . Thus we have

A(t) = 2√
1 + (4/A2

0 − 1)e−εt
, (3.111)

which approaches 2 when t → ∞, showing a limit cycle with the radius 2. Then
collecting all the results in this order, we have

x(t) = 2 sin(t + θ0)√
1 + (4/A2

0 − 1)e−εt
− ε

A3(t)

32
sin(3t + 3θ0). (3.112)
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3.6 Multiple-Scale Method

In order to get motivated for the multiple-scale method, let us first look into the
solution of Duffing equation given up to ε2 in the previous sections; (3.60) or (3.101).
The lowest harmonics part of the solution is rewritten as

A sin(�t + θ) = A cos

(
ε
3A2

8
t

)
sin(t + θ) + A sin

(
ε
3A2

8
t

)
cos(t + θ). (3.113)

One may recognize that it has two time scales, i.e., the fast motion with frequency
1 and the slow motion with frequency ε 3A2

8 , which may be interpreted as a slowly
varying amplitude.

Similarly, the solution of the van der Pol equation (3.112) up to ε2 in the previous
subsection also contains two time scales; a fast oscillation with frequency 1 and a
slow variation of the amplitude with a time scale of 1/ε. It is naturally expected that
more time scales will appear when higher orders of ε are incorporated.

With this observation kept in mind, one introduces multiple times [20–22] as

t, t1 := εt, t2 := ε2t, · · · , (3.114)

and assumes that all the times t and tn (n = 1, 2, . . . ) are all mutually independent
in the multiple-scale method. For instance, we consider a function f (t1) of t1 = εt .
Differentiating it with respect to t , we have

d f

dt
= dt1

dt

d f

dt1
= ε

d f

dt1
, (3.115)

which may be regarded to be vanishingly small when ε is sufficiently small, and
hence f (t1) may regarded independent of t . In general, the solution to differential
equations containing a small parameter ε is expressed as

x = x(t, t1, t2, · · · ). (3.116)

Then

dx

dt
= dt

dt

∂x

∂t
+ dt1

dt

∂x

∂t1
+ dt2

dt

∂x

∂t2
+ · · ·

= ∂x

∂t
+ ε

∂x

∂t1
+ ε2

∂x

∂t2
+ · · · , (3.117)

or formally,

d

dt
= ∂

∂t
+ ε

∂

∂t1
+ ε2

∂

∂t2
+ · · · . (3.118)
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The second derivative is similarly expressed as

d2

dt2
= d

dt

d

dt

=
(

∂

∂t
+ ε

∂

∂t1
+ ε2

∂

∂t2
+ · · ·

) (
∂

∂t
+ ε

∂

∂t1
+ ε2

∂

∂t2
+ · · ·

)

= ∂2

∂t2
+ 2ε

∂2

∂t∂t1
+ ε2

(
∂2

∂t21
+ 2

∂2

∂t∂t2

)
+ · · · . (3.119)

In this subsection, we shall make an introductory account of this method using a
few examples.

3.6.1 Duffing Equation

As the first example, let us take the Duffing equation d2x
dt2 + 1 = −εx3. We expand

the solution x in terms of the powers of εn (n = 0, 1, 2, . . . );

x = x0 + εx1 + ε2x2 + · · · . (3.120)

Notice that all xi ’s are functions of t, t1, t2, . . . ;

xi = xi (t, t1, t2, . . . ). (3.121)

Then applying the formula (3.119) and equating the coefficients of the respective
order of εn , we have a series of equations as follows

Lx0 = 0, (3.122)

Lx1 = −
(
2

∂2x0
∂t∂t1

+ x30

)
, (3.123)

Lx2 = −
(
2

∂2x1
∂t∂t1

+ 3x20 x1 + ∂2x0
∂t21

+ 2
∂2x0
∂t∂t2

)
, (3.124)

and so on, where L := ∂2

∂t2 + 1, which has two independent zero modes

x (1)
0 (t) := sin(t + θ). x (2)

0 := cos(t + θ) (3.125)

with θ being arbitrary constant.We define the inner product for two periodic functions
u and v of t as follows

(u, v) =
∫ 2π

0
dt u∗(t)v(t). (3.126)
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The zeroth-order solution reads

x0 = A sin(t + θ), (3.127)

where thewould-be integral constants A and θ are actually functions of the remaining
independent variables;

A = A(t1, t2, . . . ), θ = θ(t1, t2, . . . ). (3.128)

Thus, we have

∂2x0
∂t∂t1

= ∂

∂t1
A cos(t + θ) = ∂A

∂t1
cos(t + θ) − A

∂θ

∂t1
sin(t + θ). (3.129)

The first-order equation now takes the following form

∂2x1
∂t2

+ x1 = −2

(
∂A

∂t1
cos(t + θ) − A

∂θ

∂t1
sin(t + θ)

)
− A3 sin3(t + θ),

= 2

(
A

∂θ

∂t1
− 3A3

8

)
sin(t + θ) − 2

∂A

∂t1
cos(t + θ) + A3

4
sin(3t + 3θ)

=: b1(t, t1, t2, . . . ). (3.130)

Here we have used the formula; sin3 φ = 1
4 (3 sin φ − sin 3φ).

The solvability condition of the last equation reads

(x (1)
0 , b1) = (x (2)

0 , b1) = 0, (3.131)

which lead to the following equations

∂θ

∂t1
= 3A2

8
,

∂A

∂t1
= 0. (3.132)

These equations are readily solved to give

θ = 3A2

8
t1 + θ1, A = A(t2, t3, . . . ), (3.133)

where θ1 is independent of t and t1 but may depend on (t2, t3, . . . ).
The first-order equation (3.130) is now solvable and yields

x1 = − A3

32
sin(3t + 3θ1). (3.134)

Then we have the perturbative solution up to ε2 as
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x = A sin(�t + θ1) − ε
A3

32
sin(3t + 3θ1),

(
� = 1 + ε

3A2

8

)
, (3.135)

which agrees with the solution obtained repeatedly.

3.6.2 Bifurcation in the Lorenz Model

The Lorenz model or Lorenz equation [84] is a system consisting of three variables
that is reduced from a simplified model for describing the atmospheric convection by
B. Saltzman [85]; this was actually the model equation for a two-dimensional fluid
layer heated from below and cooled from above uniformly. Interestingly enough, the
Lorenz equation has also some relevance to other fields of science [86] such as laser
physics, dynamos, Rikitake model of gyromagnetic reversal phenomenon and so
on. The Lorenz model not only describes the onset of the convection with varied
parameter but also shows a remarkable initial-value sensitivity of the solution for a
range of the parameters and the initial conditions. This is a chaos, as we now call it.

Now the Lorenz equation is given by

ξ̇ = σ(−ξ + η),

η̇ = rξ − η − ξζ,

ζ̇ = ξη − bζ.

(3.136)

The equation is rewritten as follows

dX
dt

= F(X; r) (3.137)

with

X :=
⎛
⎝

ξ
η
ζ

⎞
⎠ , F(X; r) :=

⎛
⎝

σ(−ξ + η)

−ξζ + rξ − η
ξη − bζ

⎞
⎠ . (3.138)

When F(X; r) vanishes at X = X0(r) = t (ξ0(r), η0(r), ζ0(r)), i.e.,

F(X0(r); r) = 0, (3.139)

Ẋ = 0 at this point. This means that X = X0(r) = const. is a special solution to
(3.138). Such a solution is called a steady solution and the point X = X0(r) is
called a fixed point.

The steady state is obtained from the following equation;

σ(−ξ0 + η0) = 0 − ξ0ζ0 + rξ0 − η0 = 0 ξ0η0 − bζ0 = 0, (3.140)
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which is readily solved to give the following two solutions

X(A)
0 =

⎛
⎜⎝

ξ
(A)
0

η
(A)
0

ζ
(A)
0

⎞
⎟⎠ =

⎛
⎝
0
0
0

⎞
⎠ , X(B)

0 =
⎛
⎜⎝

ξ
(B)
0

η
(B)
0

ζ
(B)
0

⎞
⎟⎠ =

⎛
⎝

±√
b(r − 1)

±√
b(r − 1)
r − 1

⎞
⎠ , (r > 1), (3.141)

the latter of which get to exist only when r > 1.
The linear stability analysis [34] shows that X (A)

0 is stable for 0 < r < 1 but
unstable for r > 1,while X (B)

0 is stable for 1 < r < σ(σ + b + 3)/(σ − b − 1) =: rc
but unstable for r > rc. This is a typical bifurcation phenomenonknown in dynamical
systems [34]. In this subsection, we shall confine ourselves to examining the non-
linear dynamics around the origin X (A)

0 for r ∼ 1, and derive a reduced dynamical
equation and an invariantmanifold of one dimension onwhich the variables (ξ, η, ζ)

is confined by the multi-scale method. It should be mentioned that the existence of
the reduced dynamics and the invariant manifold is supported by the center manifold
theorem [34].

We parametrize r as

r = 1 + μ and μ = χε2, χ = sgnμ. (3.142)

We expand the quantities as Taylor series of ε:

X = εX1 + ε2X2 + ε3X3 + · · · , (3.143)

where

X i =
⎛
⎝

ξi
ηi
ζi

⎞
⎠ , (i = 1, 2, 3, . . . ). (3.144)

To apply the multiple-scale method, we introduce the multi-scales of time as

t, t1 := εt, t2 := ε2t, · · · , (3.145)

and assume that all the times t and tn (n = 1, 2, . . . ) are all mutually independent
as before. Thus

X i = X i (t, t1, t2, . . . ). (3.146)

The first-order equation reads

(
∂

∂t
− L0

)
X1 = 0, (3.147)
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where

L0 =
⎛
⎝

−σ σ 0
1 −1 0
0 0 −b

⎞
⎠ , (3.148)

the eigenvalues of which are found to be

λ1 = 0, λ2 = −σ − 1, λ3 = −b. (3.149)

The respective eigenvectors are

U1 =
⎛
⎝
1
1
0

⎞
⎠ , U2 =

⎛
⎝

σ
−1
0

⎞
⎠ , U3 =

⎛
⎝
0
0
1

⎞
⎠ . (3.150)

Since the linear operator L0 is an asymmetric matrix, the left and the right eigen-
vectors are different2: The left eigenvector Ũ i satisfies the equation

L†
0Ũ i = λi Ũ i , (i = 1, 2, 3). (3.151)

We find the normalized left eigenvectors as follows,

Ũ1 = 1

1 + σ

⎛
⎝

1
σ
0

⎞
⎠ , Ũ2 = 1

1 + σ

⎛
⎝

1
−1
0

⎞
⎠ , Ũ3 =

⎛
⎝
0
0
1

⎞
⎠ . (3.152)

Indeed the following orthonormal conditions hold:

(Ũ i , U j ) = Ũ
∗
i · U j = δi j . (3.153)

The division of unity is represented as

I =
3∑

i=1

U i
t Ũ i =

3∑
i=1

|U i 〉〈Ũ i |, (3.154)

where Dirac’s bra-ket notation has been used. Then any three-dimensional vector
X0 can be represented as a linear combination of U i ’s (i = 1, 2, 3) as

2 A somewhat detailed account of left and right eigenvectors of an asymmetric matrix is given in
Sect. 3.6.2.
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X0 = I X0 =
(

3∑
i=1

U i
t Ũ i

)
X0 =

3∑
i=1

U i (Ũ i , X0)

=
3∑

i=1

CiU i , (Ci := (Ũ i , X0)). (3.155)

The general solution X1(t) of the first-order equation with the initial condition
X1(0) = X0 = ∑3

i=1 CiU i is expressed as

X1(t) = eL0tX0 = eL0t
3∑

i=1

CiU i =
3∑

i=1

Cie
L0tU i

= AU1 +
3∑

i=2

Ci eλi tU i , (3.156)

where we renamed C1 as A in the last equality.
Since both λ2 and λ3 are negative values, the terms with eλ2,3t die out asymptot-

ically when t → ∞. If we are interested in such an asymptotic state, we may only
keep the neutrally stable solution

X1(t, t1, . . . ) � A(t1, . . . )U1, for t → ∞, (3.157)

where we have made it explicit that the solution may depend on the slower times
ti (i = 1, 2, . . . ):

ξ1(t, t1, . . . ) = A, η1(t, t1, . . . ) = A, ζ1(t, t1, . . . ) = 0. (3.158)

The second order equation now reads

(
d

dt
− L0

)
X2 = −∂X1

∂t1
+

⎛
⎝

0
−ξ1ζ1
ξ1η1

⎞
⎠ = − ∂A

∂t1
U1 + A2U3 =: b2 (3.159)

In contrast to all the previous examples, the unperturbed solutions are not of
oscillatory nature but of exponential decay, andwe need to construct the inner product
properly to formulate the solvability condition. For this purpose, we recall what was
the practical role of the solvability condition of the perturbed equations. That is to
circumvent the appearance of the secular terms, which invalidates the perturbative
expansion after a long time although they can be a remnant of hidden slow modes of
the original equation.

Let us consider a particular solution to the equation given by

(dt − L0)X(t) = b, (3.160)



52 3 Conventional Resummation Methods for Differential Equations

where

dt := d

dt
(3.161)

and b being a constant vector. The solution to the inhomogeneous equation (3.160)
can be constructed by the method of variation of constants. First, the general solution
to the unperturbed equation

(dt − L0)X0(t) = 0 (3.162)

is given by

X0(t) = eL0tC, (3.163)

with C being a constant vector. Then we insert the ansatz

X(t) = eL0tC(t) (3.164)

into (3.160), and we have an equation for C(t) as

Ċ(t) = e−L0t b, (3.165)

which is solved to give

C(t) = C(t0) +
∫ t

t0

ds e−L0sb. (3.166)

Inserting this into the ansatz of the solution, we have

X(t) = eL0(t−t0)C(t0) + eL0t
∫ t

t0

ds e−L0sb

= eL0(t−t0)C(t0) + eL0t
∫ t

t0

ds e−L0s
3∑

i=1

|U i 〉〈 Ũ i |b〉

= eL0(t−t0)C(t0) +
3∑

i=1

eλi t
∫ t

t0

ds e−λi s |U i 〉〈Ũ i |b〉 (3.167)

where the division of unity (3.154) is inserted in the second equality.
Noting that λ1 = 0, we find that if 〈Ũ1|b〉 �= 0, then there appears a secular term

proportional to t − t0. Thus, the solvability condition of (3.159) with which the
appearance of a secular term is avoided is found to be

〈Ũ1|b2〉 = 0, (3.168)
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which gives

∂A

∂t1
= 0, (3.169)

implying that A has no dependence on t1;

A = A(t2, . . . ). (3.170)

Then, (3.159) is reduced to

(dt − L0)X2 = A2U3, (3.171)

the special solution to which formally reads

X2 = 1

dt − L0
A2U3 = 1

b
A2U3 =

⎛
⎝

0
0
ζ2

⎞
⎠ , (ζ2 = A2

b
). (3.172)

The third-order equation reads

(
d

dt
− L0

)
X3 = −∂X2

∂t1
− ∂X1

∂t2
+

⎛
⎝

0
χξ1 − ξ1ζ2

0

⎞
⎠

= −∂A

∂t2
U1 +

(
χA − 1

b
A3

)⎛
⎝
0
1
0

⎞
⎠ =: b3, (3.173)

where we have used the fact that

∂X2

∂t1
= 0 (3.174)

because ∂A/∂t1 = 0.
The solvability condition of the third-order equation reads

〈Ũ1|b3) = 0, (3.175)

which leads to

∂A

∂t2
= σ

σ + 1

(
χA − 1

b
A3

)
. (3.176)

Here we have used the formula
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⎛
⎝
0
1
0

⎞
⎠ = σ

σ + 1
U1 − 1

σ + 1
U2. (3.177)

Recalling that t2 = ε2t , we arrive at

d A

dt
= ε2

σ

σ + 1

(
χA − 1

b
A3

)
. (3.178)

The third-order equation now reads

(dt − L0)X3 = −χA − 1
b A

3

σ + 1
U2 (3.179)

which yields

X3 = χA − 1
b A

3

(σ + 1)2
U2. (3.180)

Thus collecting all the terms thus obtained, we have

X(t) = εAU1 + ε2

b
A2U3 + ε3

(1 + σ)2

(
χA − 1

b
A3

)
U2 (3.181)

up to O(ε3). The respective components take the following forms

ξ(t) = εA + ε3σ

(1 + σ)2

(
χA − 1

b
A3

)
,

η(t) = εA − ε3

(1 + σ)2

(
χA − 1

b
A3

)
,

ζ(t) = ε2
A2

b
.

(3.182)

The time-dependence of the trajectory is governed through that of the amplitude as
given by (3.178). One sees that

(i) χ = −1:
The right-hand side of (3.178) is negative definite (the equality holds only when
A = 0), and thus the origin A = 0 is stable.

(ii) χ = 1:

Equation (3.178) has two fixed points, A = 0 and A = √
b. The former (latter)

is an unstable (stable) fixed point. The amplitude equation can be solved by
quadrature as
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∫ A

A0

d A

A − 1
b A

3
= λ

∫ t

0
dt = λt

(
λ := ε2

σ

σ + 1

)
. (3.183)

The left-hand side is evaluated as follows:

∫ A

A0

d A

A − 1
b A

3
= 1

2

, ∫ A2

A2
0

dB

B(1 − B
b )

= 1

2
ln

∣∣∣∣∣
B

1 − B
b

∣∣∣∣∣
∣∣∣∣
A2

A2
0

(3.184)

which implies that

A2(t)

1 − A2(t)
b

= Ce2λt , (3.185)

with C being a constant ensuring that A(0) = A0. After some manipulation, we
have

A(t) = A0√
A2
0
b + (1 − A2

0
b )e−2λt

,

(
λ = ε2

σ

1 + σ

)
. (3.186)

This expression shows that A(0) = A0 and A(t) approaches b as t → ∞.

Appendix 1: Asymmetric Matrices, Left and Right
Eigenvectors, and Symmetrized Inner Product

In this appendix, wemake an account of asymmetric matrices and their left and right
eigenvectors. We also construct an inner product with which the asymmetric matrix
is made symmetric. One will see that projection operators play significant roles in the
formulations. The formulae below are given when the eigenvalues are discrete, but
should be valid for general linear operators with due modifications caring continuous
spectra.

1.1 Eigen Values and Vectors of an Asymmetric Matrix

Definition
For a given n × n matrix A, the right and left eigenvalues, λi and μi , are defined by
the following equations, respectively,

AU i = λi U i , (3.187)

Ũ
†
i A = μi Ũ

†
i , (3.188)
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with non-vanishing vectors U i and Ũ
†
i . The Hermite conjugate of the last equation

reads

A†Ũ i = μ∗
i Ũ i (3.189)

with μ∗ denoting the complex conjugate of μ. The characteristic equation for the left
eigenvalue μ reads with I being the n-dimensional unit matrix

0 = det(A† − μ∗ I ) = [det( tA − μI )]∗ = [det(A − μI )]∗, (3.190)

which means that det(A − μI ) = 0. This is the same equation as the characteristic
equation for the right eigenvalue λ. Thus we see that

μi = λi . (3.191)

From now on, the left eigenvalues are also denoted by λi .
We define a naïve inner product 〈U, V 〉 for arbitrary vectors U and V by

〈U, V 〉 := U†V =
n∑

k=1

U ∗
k Vk . (3.192)

We also use the notation for the inner product with the comma ‘,’ being replaced by
a vertical line ‘|’ as

〈U, V 〉 = 〈U | V 〉. (3.193)

It is easy to see that the right and left eigenvectors belonging to different eigen-
values are orthogonal to each other. In fact, since

〈Ũ j , AU i 〉 = λi 〈Ũ j , U i 〉 = 〈A†Ũ j , U i 〉 = λ j 〈Ũ j , U i 〉, (3.194)

we have

(λi − λ j ) 〈Ũ j , U i 〉 = 0. (3.195)

Thus

λi �= λi =⇒ 〈Ũ j , U i 〉 = 0. (3.196)

When λi is not degenerate, the eigenvectors are normalized as

〈Ũ i , U i 〉 = 1. (3.197)

Thus we have the ortho-normal conditions as
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〈Ũ j , U i 〉 = δi j . (3.198)

Let us rewrite the above facts using the bra-ket notaion for conciseness:

AU i =: A|U i 〉 = λi |U i 〉, Ũ
†
i A =: 〈Ũ i |A = λi 〈Ũ i |, (3.199)

〈Ũ j , AU i 〉 =: 〈Ũ j |A|U i 〉, 〈Ũ i |U j 〉 = δi j . (3.200)

An arbitrary ket vector |X〉 is represented as a linear combination of the right
eigenvectors as

|X〉 =
n∑

i=1

ci |U i 〉, with ci = 〈Ũ i |X〉. (3.201)

Similarly a bra vector 〈Y | is expressed as

〈Y | =
n∑

i=1

di 〈Ũ i |, with di = 〈Y |U i 〉. (3.202)

Projection Operators
First we discuss the simple case where the eigenvalue λi is not degenerate. In this
case, the projection operator to the eigenspace is given by

Pi = U i Ũ
†
i = |U i 〉〈Ũ i |. (3.203)

In fact, since

Pi |U j 〉 = |U i 〉〈Ũ i |U j 〉 = |U i 〉δij, (3.204)

we have for an arbitrary vector |W 〉 = ∑
j C j |U j 〉,

Pi |W 〉 =
∑
j

C j |U i 〉〈Ũ i |U j 〉 =
∑
j

C jδi j |U i 〉 = Ci |U i 〉, (3.205)

which shows that Pi is the projection operator onto the eigenspace belonging to the
eigenvalue λi . Furthermore Pi satisfies the idempotency as

Pi Pj = |U i 〉〈Ũ i |U j 〉〈Ũ j | = |U i 〉δi j 〈Ũ j | = δi j Pi . (3.206)

The completeness of the eigenvectors is expressed as

I =
n∑

i=1

Pi (3.207)
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Indeed multiplying the last formula to a ket vector |X〉, we have

I |X〉 =
n∑

i=1

Pi |X〉 =
n∑

i=1

|U i 〉〈Ũ i |X〉 =
n∑

i=1

Ci |U i 〉 = |X〉, (3.208)

where (3.201) has been used. Similarly,

〈Y |I =
n∑

i=1

〈Y |Pi =
n∑

i=1

〈Y |U i 〉〈Ũ i | =
n∑

i=1

di 〈Ũ i | = 〈Y |, (3.209)

where (3.202) has been used.

1.2 Spectral Representation

With the use of the projection operators Pi , we have a spectral representation of A
as

A =
n∑

i=1

λi Pi =
n∑

i=1

λi |U i 〉〈Ũ i |. (3.210)

When A Has Zero Modes
When λ1 = 0 and λ j �= 0 ( j �= 1), let us define the projection operator Q onto the
compliment of the zero mode as

Q := I − P1 =
n∑

i �=1

Pi =
n∑
j �=1

|U j 〉〈Ũ j |. (3.211)

Then

AQ =
n∑

i=1, j �=1

λi |U i 〉〈Ũ i |U j 〉〈Ũ j | =
n∑

i=1, j �=1

δi jλi |U i 〉〈Ũ j |

=
n∑
j �=1

λ j |U j 〉〈Ũ j |. (3.212)

Similary,

QA =
n∑

i=1, j �=1

λi |U j 〉〈Ũ j |U i 〉〈Ũ i | =
n∑

i=1, j �=1

δi jλi |U j 〉〈Ũ i | =
n∑
j �=1

λ j |U j 〉〈Ũ j |

= AQ. (3.213)
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We have also

AQ := QAQ = AQ = QA (3.214)

because Q2 = Q.
Using the above formulae, we can define the inverse of A applying only to the Q

space as follows

A−1
Q = (AQ)−1 = (QA)−1 =

n∑
j �=1

λ−1
j |U j 〉〈Ũ j |. (3.215)

1.3 The Case Where λi Is Degenerate

Let the eigenvalue λi is mi -tiply degenerate as

A |U iα〉 = λi |U iα〉, 〈Ũ iα| A = λi 〈Ũ iα|. (α = 1, 2, . . . ,mi ) (3.216)

We define the metric tensor η̂i by

〈Ũ iα|U iβ〉 =: ηi αβ . (α, β = 1, 2, . . . ,mi ), (3.217)

with (η̂)i αβ = ηi αβ . The inverse of η̂i is denoted by η̂−1
i which satisfies

(η−1
i )αγηi γβ = δαβ . (3.218)

Then projection operator onto the eigenspace belonging to the eigenvalue λi is
given by

Pi =
∑
αβ

|U iα〉(η−1
i )αβ〈Ũ iβ |. (3.219)

In fact, the following relations hold for Pi :

Pi |U jα〉 = δi j |U iα〉, Pi Pj = δi j Pi , (3.220)

the proof for which is given as follows:
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Pi |U jα〉 =
∑
α′β

|U iα′ 〉(η−1
i )α

′β〈Ũ iβ |U jα〉 =
∑
α′β

|U iα′ 〉(η−1
i )α

′βηi βαδi j

= δi j
∑
α′

|U iα′ 〉δα′
α

= δi j |U iα〉, (3.221)

Pi Pj =
∑
αβ

|U iα〉(η−1
i )αβ〈Ũ iβ |

∑
α′β′

|U jα′ 〉(η−1
j )α

′β′ 〈Ũ jβ′ |

=
∑
αβ

∑
α′β′

|U iα〉(η−1
i )αβ〈Ũ iβ |U jα′ 〉(η−1

j )α
′β′ 〈Ũ jβ′ |

=
∑
αβ

∑
α′β′

|U iα〉(η−1
i )αβηi βα′δi j (η

−1
j )α

′β′ 〈Ũ jβ′ |

= δi j
∑
αβ

∑
β′

|U iα〉(η−1
i )αβδ

β′
β 〈Ũ iβ′ |

= δi j
∑
αβ

|U iα〉(η−1
i )αβ〈Ũ iβ |

= δi j Pi . (3.222)

If the number of different eigenvalues of A is n̄ and the degeneracy of the eigen-
value λi (i = 1, 2, . . . , n̄) is mi , then the spectral representation of A is given by

A =
n̄∑

i=1

λi

(
mi∑

αi=1

|U iαi 〉〈Ũ iαi |
)

=
n̄∑

i=1

mi∑
αi=1

λi Piαi (3.223)

with

Piαi := |U iαi 〉〈Ũ iαi |. (3.224)

1.4 Symmetrized Inner Product

For notational simplicity, the indices iα are written as i when no confusion is
expected. We assume that the set of the right eigenvectors {U i } constitute a complete
set. Arbitrary vectors u1 and u2 are represented as linear combinations of the right
eigenvectors as

ui =
∑
j

c(i)
j U j , (i = 1, 2). (3.225)

We define the metric tensor g in terms of the left eigenvectors 〈Ũ i | as follows:
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g =
∑
i

Ũ i Ũ
†
i =

∑
i

|Ũ i 〉〈Ũ i |. (3.226)

Now we define the novel inner product (u1, u2) for arbitrary two vectors u1, u2

as follows:

(u1, u2) := 〈u1, gu2〉 =
∑
i

〈u1, Ũ i 〉〈Ũ i , u2〉. (3.227)

Then

(u1, Au2) =
∑
i

〈u1, Ũ i 〉〈Ũ i Au2〉 =
∑
i

〈u1, Ũ i 〉〈A†Ũ i , u2〉

=
∑
i

λi 〈u1, Ũ i 〉〈Ũ i , u2〉. (3.228)

On the other hand,

(Au1, u2) =
∑
i

〈Au1, Ũ i 〉〈Ũ i , u2〉 =
∑
i

〈u1, A†Ũ i 〉〈Ũ i , u2〉

=
∑
i

λ∗
i 〈u1, Ũ i 〉〈Ũ i , u2〉, (3.229)

which coincides with (3.228) when all the eigenvalues are real numbers, and hence
we have

(u1, Au2) = (Au1, u2) (3.230)

which means that A that has only real eigenvalues is manifestly Hermitian (symmet-
ric) under the new inner product.

Appendix 2: Solvability Condition of Linear Equations:
Fredholm’s Alternative Theorem

In this section, we summarize the condition for a linear equation can have solutions,
that is, the solvability condition, which is to be generalized to Fredholm’s alternative
theorem and further Riesz-Schauder’s theorem in functional analysis theory [80–82].

In the text, we started the discussion from a trivial equation ax = b for x , the
solution towhich becomes somewhat complicatedwhena = 0. Itwas alsomentioned
that we also encounter a quite similar situation when solving a system of linear
equations; Ax = b, where x = t(x1, x2, . . . , xn) and A is an n × n matrix. In this
appendix, we shall make amore detailed account of the solvability condition of linear
equations though without a mathematical rigor.
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For notational convenience, we here adopt the bra-ket notation of Dirac and write
the linear equation above as

A|x〉 = |b〉. (3.231)

In this section, we denote the eigenvector belonging to the eigenvalue λi of A as |λi 〉
instead of |U i 〉;

A|λi 〉 = λi |λi 〉, A†|λ̃i 〉 = λi |λ̃i 〉. (3.232)

When A is regular, all the eigenvalues are non-vanishing, and

|x〉 = A−1|b〉 =
n∑

i=1

λ−1
i |λi 〉〈λ̃i |b〉, (3.233)

where i takes into account the degeneracy.
On the other hand, When |A| = 0, and accordingly A is singular, A has zero

eigenvalues. Let us suppose that the degeneracy of the zero eigenvalue is m, and the
other eigenvalues are non-vanishing;

λ1 = · · · = λm = 0, λi �= 0 (i = m + 1, . . . , n). (3.234)

We denote the m independent eigenvectors with zero eigenvalues as |0; α〉 (α =
1, 2, . . . , m);

A|0; α〉 = 0, A†|0; α̃〉 = 0, (3.235)

which are called the zero modes. In mathematical terms,

|0;α〉 ∈ kerA, |0; α̃〉 ∈ kerA†, (3.236)

where kerA (kerA) denotes the subspace spanned by the zero modes of A (A†), and
is called the kernel of A (A†). We also call the kernel the P space, and the projection
operator onto the P space is denoted by P

P =
m∑

α=1

|0; α〉〈0; α̃|. (3.237)

The compliment of the P space is called the Q space and the projection operator onto
it is denoted by Q = I − P:

Q =
n∑

i=m+1

|λi 〉〈λ̃i |. (3.238)
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The following alternative statements hold.

1. If |b〉 is orthogonal to all the zero modes,

〈0; α̃|b〉 = 0, (i = 1, 2, ..m), (3.239)

then |b〉 is expressed as

|b〉 =
n∑

i=m+1

bi |λi 〉 =
n∑

i=m+1

|λi 〉〈λ̃i |b〉 = Q|b〉. (3.240)

Then we have a series of the solution

|x〉 = A−1
Q |b〉 +

m∑
α=1

cα|0; α〉, (3.241)

with ci ’s being arbitrary constants and

AQ := AQ =
n∑

i=m+1

λi |λi 〉〈λ̃i |, A−1
Q =

n∑
i=m+1

λ−1
i |λi 〉〈λ̃i |. (3.242)

2. If

P|b〉 �= 0, (3.243)

i.e., 〈0; α̃|b〉 �= 0 (1 ≤ ∃α ≤ m), then there exists no solution to Eq. (3.231),
that is, Eq. (3.231) is not solvable. Indeed if |x〉 is expressed by the complete set
spanned by the eigenvectors as

|x〉 =
m∑

α=1

cα|0; α〉 +
n∑

i=m+1

di |λi 〉 (3.244)

the left-hand side of (3.231) becomes

A|x〉 =
n∑

i=m+1

diλi |λi 〉, (3.245)

which lacks in components belonging to the P space in contrast to |b〉.
Thus (3.239) certainly gives the solvability condition to the linear equation

(3.231).



Chapter 4
Renormalization Group Method for
Global Analysis: A Geometrical
Formulation and Simple Examples

4.1 Introduction

We have seen that various methods have been developed to avoid the appearance of
secular terms in the perturbative solutions and thereby obtain a sensible solution of
differential equations in a global domain; it is to be noted that all of them are based
on the notion of the solvability condition of linear equations.

In this chapter, we introduce a quite different method [1] based on the renor-
malization group (RG) equation [8, 9, 14, 18, 87, 88] for obtaining perturbative
solutions of differential equations that are valid in a global domain through a resum-
mation of the perturbative expansions; the method is also found useful to get the
asymptotic behavior of solutions of differential equations. The method is relatively
simple in manipulation and has a wide variety of applications including singular and
reductive perturbation problems in a unified manner. It might be, however, difficult
to understand the method even for those who are familiar with the renormalization
groups in physics in understanding the reason why the very RG equation can be rel-
evant to and useful for global analysis of differential equations in the way presented
in [1] because the RG equation in physics is usually related with the scale invariance
of the system under consideration; for those who are not familiar with the notion of
the RG in physics, the method may have just looked mysterious.

Actually, what was done in [1] is a construction an approximate but globally
valid solution from a local solution of the given differential equation through a
seemingly mysterious equation that they call the RG equation. This fact suggests
that the RG method or rather RG equation in [1] may be formulated solely in terms
of purely mathematical notions without recourse to any physical intuitions. In the
following sections, it will be elucidated that this is the case, and clarified that the RG
equation may be better characterized as the envelope equation known in elementary
differential geometry [24], aswas first shown in [3–5]; see [6] for a later development.

The theory of the envelopes of a family of curves is long known in elementary
differential geometry [24], and one might have recognized that it has an improved
global nature in comparison with the member curves in the family. Therefore it could
have been expected that the theory of envelopes may have some usefulness for global

© Springer Nature Singapore Pte Ltd. 2022
T. Kunihiro et al., Geometrical Formulation of Renormalization-Group Method
as an Asymptotic Analysis, Fundamental Theories of Physics 206,
https://doi.org/10.1007/978-981-16-8189-9_4

65

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-16-8189-9_4&domain=pdf
https://doi.org/10.1007/978-981-16-8189-9_4


66 4 Renormalization Group Method for Global Analysis …

analysis of dynamical equations, although such a recognition had not been fullymade
until thework [3–5].1 Interestingly enough, the notion of envelopes, in turn, canmake
an account of the very RG equation in the quantum field theory, as is shown in [3].
Therefore onemay call the RG equation as used in the global and asymptotic analysis
in [1] may be called the renormalization group/envelope equation or RG/E equation
in short.

We note that the present geometrical formulation [3–6] of the RG method for
a global analysis of differential equations naturally leads to some elaborated pre-
scriptions of the method: It starts with solving the original equation faithfully as an
‘initial’ condition problem at an arbitrary time, say, t0, in the perturbation theory
without any modifications or rearrangements of the equation as are common in the
traditional methods as explained in Chap. 3; then it accordingly allows appearance of
secular terms in the perturbative solutions [1] in contrast to the traditional methods.
An important set up of the novel prescription of the method [3–6] is to suppose that
the ‘initial value’ at t = t0 is on an exact solution that is yet to be determined, and
the integral constants contained in the perturbative solutions are made dependent
on the ‘initial time’ t0 [3–6], whereby the renormalization procedure through an
introduction of an intermediate time scale τ [1] is totally unnecessary. The would-be
integral constants are then lifted to the dynamical variables by the renormalization
group/envelope equation . We shall also give a proof that the envelope function thus
constructed through the RG/E equation satisfy the original differential equation in a
global domain .

In this chapter, we start with giving an elementary account of the classical theory
of envelopes of a family of curves [3–5, 24], which will be also adapted so that it
can be applicable to the perturbative solutions of differential equations [3–5] as a
family of curves or trajectories. Then some simple examples that have been treated
in the previous chapters will be analyzed in the RG method.

4.2 Classical Theory of Envelopes and Its Adaptation for
Global Analysis of Differential Equations

In this section, we give an elementary account of the theory of envelopes of
curves/trajectories.

4.2.1 Envelope Curve in Two-Dimensional Space

Taking a family of curves in two-dimensional space, we first describes the very basic
mathematics of the classical theory of envelopes [3–5, 24]. We remark that when the

1 It should be remarked, however, that M. Suzuki [89] had shown that the notion of envelopes can
play a significant role in describing the properties of critical points and developed the coherent
anomaly method (CAM) for computing the critical exponents of the critical points.



4.2 Classical Theory of Envelopes and Its Adaptation for Global Analysis … 67

Fig. 4.1 The curve E is the envelope of the family of curves {Cτ }τ . ∇F denote the normal vector
of Cτ to which the tangent vector of E should be perpendicular

theory is applied to the curves obtained as the solutions of a differential equation, the
curves or trajectories in the x-y plane are given in a parameter representation with t
being the parameter as

u(t; τ) = (x(t; τ), y(t; τ)), (4.1)

where τ is another parameter with which the curves in the family are distinguished.
Let {Cτ }τ be a family of curves parametrized by a parameter τ in x-y plane and

given by the equation

F(x, y; τ) = 0. (4.2)

An envelope E of {Cτ }τ is a curve in the x-y plane that share the tangent at a contact
point with every curve Cτ ; see Fig. 4.1.

Our problem is to obtain the equation

G(x, y) = 0 (4.3)

that represents the envelope curve E of from the function F(x, y; τ) that gives the
family of curves {Cτ }τ .

This problem can be solved as follows. Let an arbitrary point (x, y) on E is a
point of tangency with

Cτ : F(x, y; τ(x, y)) = 0. (4.4)
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Conversely, the coordinate of the contact point are functions of τ ;

(x, y) = (x(τ ), y(τ )) =: (φ(τ), ψ(τ)). (4.5)

Along with a variation of τ , the point (φ(τ), ψ(τ)) moves on E, and hence the
tangent vector at that point is parallel to

(
dφ

dτ
,
dψ

dτ

)
=: t. (4.6)

Thus, for an infinitesimal variation τ → τ + �τ , we have

(dφ, dψ) = t �τ. (4.7)

The condition that E and Cτ share a tangent implies that t(x, y) is perpendicular to
the normal vector of Cτ at this point, which is proportional to

∇F =
(

∂F

∂x
,

∂F

∂y

)
=: n(x, y). (4.8)

Thus the condition of sharing a tangent at the contact point can be expressed by the
following two equations

F(φ(τ), ψ(τ); τ) = 0, (4.9)

n(x, y) · t(x, y) = Fx (x, y; τ)
∂φ

dτ
+ Fy(x, y; τ)

∂ψ

dτ
= 0, (4.10)

where

Fx = ∂F

∂x
, Fy = ∂F

∂y
. (4.11)

We remark that the condition of a common tangent (4.10) may be expressed as

n(x, y) · t(x, y)�τ = Fx (x, y; τ)dφ + Fy(x, y; τ)dψ = 0. (4.12)

For τ ′ �= τ corresponding to another point on E,

F(φ(τ ′), ψ(τ ′); τ ′) = 0 = F(φ(τ), ψ(τ); τ). (4.13)

Accordingly, for an infinitesimal �τ ,

0 = F(φ(τ + �τ), ψ(τ + �τ); τ + �τ) − F(φ(τ), ψ(τ); τ)

= Fx
∂φ

dτ
�τ + Fy

∂ψ

dτ
�τ + ∂F

∂τ
�τ. (4.14)
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Dividing the both sides by �τ and then taking the limit �τ → 0+ we have

Fx
∂φ

dτ
+ Fy

∂ψ

dτ
+ ∂F

∂τ
= 0, (4.15)

which is combined with (4.10) to give

∂F(x, y; τ)

∂τ
= 0. (4.16)

This is the basic equation of the classical theory of envelopes.
From (4.16), we can solve τ as

τ = τ(x, y), (4.17)

which is in turn inserted into F to give a function of (x, y) only. The resultant
function would be the desired envelope function of G(x, y),

G(x, y) ≡ F(x, y; τ(x, y)) = 0. (4.18)

An important caution is in order here: The equation G(x, y) = 0 may give not
only the envelope E but also a set of singular points of the family of curves {Cτ }τ ,
where

∂F

∂x
= ∂F

∂y
= 0, (4.19)

because the last condition is compatible with Eq. (4.16).
When the equation of each curve is expressed simply as

y = f (x, τ ), (4.20)

the condition (4.16) is reduced to a simpler one

∂ f

∂τ
= 0, (4.21)

and the envelope function is given by

y = f (x, τ (x)). (4.22)

As an example, let us take the following family of curves {Cτ }τ parametrized
by τ ,

y = f (x, τ ) = e−ετ (1 − ε · (x − τ)), (4.23)
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which goes minus-infinity when x − τ → ∞. We try to find out the function y =
g(x) describing the possible envelope E of the family of curves {Cτ }τ . From the
envelope equation

0 = ∂ f

∂τ
= −εe−ετ (1 − ε · (x − τ)) + εe−ετ = ε2 (x − τ), (4.24)

one has

τ = x, (4.25)

meaning that the parameter τ is identical with the x-coordinate of the point of the
tangency of E and Cτ . Thus the envelope function is found to be

y = g(x) = f (x, x) = e−εx , (4.26)

which converges to 0 when x → ∞ in contrast to all members of the family of
curves.

Thus, we see that the envelope function has a better (moderate) properties in a
global domain even though all members of the family of curves are bounded only
locally anddivergent asymptotically in a global domain. This property of the envelope
function has a great significance when the notion of envelopes is applied to a global
analysis of differential equations [3–5] and difference ones [40].

4.2.2 Envelope Curves/Trajectories in n-Dimensional Space

The notion of envelopes can be readily extended to the curves or trajectories in the
n-dimensional space [5].

A curve C in the n-dimensional space may be represented as

X(t) = t (X1(t), X2(t), . . . , Xn(t)) (4.27)

with one parameter (time) t ∈ [a, b]where a and b are real numbers (a < b). From
now on, the parameter t will be called ‘time’ and the word ‘trajectory’ will be also
used occasionally in place of ‘curve’.

Now let us consider a family of curves in the n-dimensional space where each
curve is represented by

Cτ : X(t; τ) = t (X1(t; τ), X2(t; τ), . . . , Xn(t; τ)), (4.28)
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where each member of curves is distinguished by a parameter τ . We suppose that
the family of curves {Cτ }τ has an envelope trajectory E:

E : XE(t) = t (XE1(t), XE2(t), . . . , XEn(t)). (4.29)

The function XE(t) may be constructed from X(t; τ) as follows. Let Cτ and E
share the tangent line at time t = t (τ )

XE(t (τ )) = X(t (τ ); τ). (4.30)

We note that the parameter τ can be reparametrized so as to be the contact time t (τ ),
i.e.,

t (τ ) = τ, and XE(τ ) = X(τ ; τ). (4.31)

The condition that E and Cτ has the common tangent at a time t = τ may imply
that the ‘velocities’ at this point are the same, i.e.,

dXE(t)

dt

∣∣∣∣
t=t (τ )

= ∂X(t, τ )

∂t

∣∣∣∣
t=t (τ )

. (4.32)

On the other hand, differentiating Eq. (4.30) with respect to τ , one has

dXE(t)

dt

∣∣∣∣
t=t (τ )

dt

dτ
= ∂X(t, τ )

∂t

∣∣∣∣
t=t (τ )

dt

dτ
+ ∂X(t, τ )

∂τ

∣∣∣∣
t=t (τ )

. (4.33)

Thus combining (4.32) and (4.33), we arrive at

∂X(t, τ )

∂τ

∣∣∣∣
t=t (τ )

= 0. (4.34)

This is the basic equation in the theory of envelope trajectories : From this equation,
the parameter value τ = τ(t) at the contact point can be extracted, and the envelope
function is given by

XE(t) = X(t; τ(t)). (4.35)

A caution is that (4.34) only gives a necessary condition for constructing the
envelope, because of the possible existence of singular points , as has been indicated
in the preceding subsection.
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4.2.3 Adaptation of the Envelope Theory in a Form
Applicable to Dynamical Equations

In the application of the envelope theory for constructing a solution of differential
equations valid in a global domain [3–5], the parameter is the ‘observation or probe
time’ t0, i.e., τ ≡ t0, at which the solution is to be ‘observed’ or ‘probed’. In addition
to t0, we have a set of integral constants C which determine the initial value and
hence conversely depend on t0;

C = C(t0), (4.36)

the functional form of which is yet totally unknown. Then the family of the curves
and trajectories are given by

{X(t; t0, C(t0))}t0 . (4.37)

Furthermore, we impose that

t0 = τ = t, (4.38)

i.e., each curve in the family is parametrized at the contact pointwith the envelope that
is supposed to be the exact solution of the differential equation. Then the envelope
equation (4.34) now reads

∂X(t, t0, C(t0))

∂t0

∣∣∣∣
t=t0

+ ∂X(t, ; t0, C(t0))

∂C
· dC
dt0

∣∣∣∣
t=t0

= 0. (4.39)

It should be noted here that themeaning of the present Eq. (4.39) is totally different
from that of (4.34) because Eq. (4.39) gives the equation of the unknown function
C(t). In other words, the unknown function C(t) is determined so that X(t; t, C(t))
becomes the envelope of the family of curves given by X(t; t0, C(t0)).We shall show
that the resultant envelope function XE(t) = X(t; t, C(t)) thus obtained becomes
an approximate but uniformly valid solution in a global domain.

A couple of comments are in order here:

(1) Equation (4.39) is essentially of the same form as the RG equation postulated in
[1], and those used in quantum field theory and statistical physics [8, 9, 14, 18,
87, 88], although it has been derived as the envelope equation adapted to the
analysis of dynamical equations solely with geometrical terms. Thus we shall
call Eq. (4.39) and its variants the renormalization group/envelope equation or
RG/E equation as well as the RG equation.

(2) The arbitrary time t0 corresponds to the renormalization point in the renormal-
ization program in quantumfield theory [18, 88], andwe shall call it ‘initial’ time,
because the perturbed solutions will be constructed around t ∼ t0, although it
may be more adequate to call it the ‘probe time’ or ‘observation time’.
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4.3 Damped Oscillator in RG Method

In this section, we take up the simple linear equation of a damped oscillator and
demonstrate how the RGmethodworks in detail.We shall see that the RG/E equation
leads to the dynamical equations for the would-be integral constants, the amplitude
A(t) and the phase θ(t), separately, and a resummation of infinite series of the
perturbation series is achieved through the RG/E equation.

4.3.1 Treatment as a Second-Order Differential Equation for
Single Dependent Variable x

The equation of the damped oscillator is given in (2.6), which we reproduce here

Lx = −2ε ẋ, with L := d2

dt2
+ 1, (4.40)

where ε (> 0) is supposed to be small. The exact solution to (4.40) is given by (2.13),
which reads

x(t) = Āe−εt sin(
√
1 − ε2t + θ̄ ), (4.41)

with Ā and θ̄ being constants to be determined by some initial condition, say, at
t = 0.

We try to obtain the solution around the ‘initial time’ t = t0 in a perturbative way,
expanding x as

x(t; t0) = x0(t; t0) + εx1(t; t0) + ε2x2(t; t0) + ..., (4.42)

where xn’s (n = 0, 1, 2, ...) satisfy

Lx0 = 0, Lx1 = −2ẋ0, Lx2 = −2ẋ1, (4.43)

and so on.
In the RG method, we make the following special set up, as shown in Fig. 4.2:

We suppose that the ‘initial’ value W (t0) of the solution at an arbitrary time t = t0
is always on an exact solution of (4.40) as

x(t0; t0) = W (t0). (4.44)

Conversely speaking, we suppose that the exact solution x(t) is given by

x(t) = W (t) = x(t; t). (4.45)
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Fig. 4.2 The unperturbed solution x(t; t0) which has the ‘initial’ value W (t0) that coincides with
the exact solution x(t) at t = t0. The ‘initial’ time t0 is arbitrary and hence may be t ′0, t ′′0 and so on

Then the exact solution as the ‘initial’ valueW (t0) at t = t0 should be also expanded
as

W (t0) = W0(t0) + εW1(t0) + ε2W2(t0) + . . . . (4.46)

The solution to the lowest-order equation (4.43) is given by the zero modes of
the linear operator L and may be written as

x0(t; t0) = A(t0) sin(t + θ(t0)), (4.47)

where we have made it explicit that the integral constants A and θ may depend on
the ‘initial’ time t0. The ‘initial’ value W0(t0) in the zeroth order is naturally given
by

W0(t0) = x0(t0; t0) = A(t0) sin(t0 + θ(t0)). (4.48)

We remark that the zeroth-order solution is a neutrally stable solution in the sense
that the absolute value of it will not diverge when t becomes large.

The first-order Eq. (4.43) now takes the form

Lx1 = −2A cos(t + θ). (4.49)
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In fact, the solution to this equation was worked out by the method of variation of
constants in Chap.2, and the general solution is given by (2.31), which can be cast
into the following form2

x1 = −At sin(t + θ) + C (1)
1 sin(t + θ) + C (2)

1 cos(t + θ), (4.50)

withC (i)
1 (i = 1, 2) being arbitrary constants.3 Here the last two terms are the general

solution to the unperturbed equation, that is , the zero modes of L .
Utilizing the ambiguities owing to the arbitrariness of the addition of the zero

modes (the independent solutions of L), the form of the particular solutions to the
inhomogeneous equations as the higher-order equations in the RGmethod are deter-
mined according to the following principle. First of all since we suppose that the
‘initial’ value at t = t0 is on an exact solution, the corrections from the zeroth-order
solution should be made as small as possible. Then it is an important observation that
possible secular terms contained in the general solution (4.50) are made to cancel
out with the zero modes at t = t0. Thus we arrive at the following prescription for
the construction of the particular solution to the higher-order equations:

(I) Only the functions independent of the zeromodes are retained except when
the secular terms proportional to the zero modes are present, for which the
zero modes are added so that the secular terms cancel out with them at
t = t0.

By this way, the possible contributions from the higher-orders to the zero modes are
renormalized away in the integral constants in the zeroth solution. The added zero
modes play a kind of ‘counter terms’ in the renormalization program in quantum
field theory[83, 88]. It should be emphasized here that the prescription given above
has no ambiguities for constructing the perturbative solutions.

In accordance with the above prescription (I), the constants C (i)
1 (i = 1, 2) are

chosen as

C (1)
1 = At0, C (2)

1 = 0, (4.51)

which leads to

x1(t; t0) = −A(t − t0) sin(t + θ), (4.52)

and accordingly,

x1(t = t0; t0) = W1(t0) = 0. (4.53)

2 The following elementary way of construction of the perturbative solutions is aimed at those who
are not familiar with inhomogeneous differential equations.
3 Since we are dealing with a second-order differential equation with respect to time, the number
of integral constants are two, and we have already introduced two integral constants A and θ . Thus
the seemingly new constants C (i)

1 (i = 1, 2) should be functions of A and θ .
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With this choice, one see that the secular term vanishes at the arbitrary ‘initial’ time
t0 and in the same time the possible difference between the exact value W (t0) and
the lowest one W0(t0) is made of higher order of ε.

The second-order equation now takes the form

Lx2 = 2A(t − t0) cos(t + θ) + 2A sin(t + θ). (4.54)

The general solution to the equation is given in (2.36) by the method of variation
of constants. Then adding a linear combination of the unpertubed solutions so as to
satisfy the prescription (I), we have

x2(t; t0) = A

2
(t − t0)

2 sin(t + θ) − A

2
(t − t0) cos(t + θ), (4.55)

so that

W2(t0) = 0. (4.56)

We remark that there appear no higher-order corrections to the ‘initial’ value W (t0)
because of the linearity of the equation. As has been noticed already, the choice
of the coefficients of the unperturbed solution or the zero modes corresponds to a
renormalization of the integral constants A(t0) and θ(t0) in the unperturbed solution.

Thus the perturbative solution up to O(ε2) reads

x(t; t0; A(t0), θ(t0)) = A(t0) sin(t + θ(t0)) − εA(t0)(t − t0) sin(t + θ(t0))

+ ε2
A(t0)

2
{(t − t0)

2 sin(t + θ(t0))

− (t − t0) cos(t + θ(t0))}. (4.57)

Herewe havemade explicit the fact that the solution depends on the integral constants
A(t0) and θ(t0). Accordingly, the ‘initial’ value that is supposed to be the exact
solution at t = t0 is given by

W (t0) = W0(t0) = A(t0) sin(t0 + θ(t0)), (4.58)

up to O(ε2).
Admittedly, the solution (4.57) contains secular terms, which vanish at t = t0 in

accordance with the prescription (I) in contrast to the perturbative solution (2.37)
given in the naïve perturbation method. As emphasized above, by way of making
the secular terms vanish at t = t0, the higher-order terms are renormalized into the
t0-dependent integral constants A(t0) and θ(t0), although the definite t0 dependence
of them are yet to be determined.

Here let us take a geometrical point of view: We have a family of curves
{Ct0}t0 given by functions {x(t; t0)}t0 parametrized with t0. They are all solutions
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of Eq. (4.40) up to O(ε2) which are supposed to coincide with the exact solution
around t = t0 locally up to the same order. The idea is that the envelope curve of
the family of the curves {Ct0}t0 will give a solution that coincides with the exact
solution up to to O(ε2) uniformly in a global domain of t , which will be shown
to be the case. From the way of construction of the perturbative solution, the point
Pt0(t0, x(t0, ; t0, A(t0), θ(t0))) should be on the exact solution, which means that Pt0
is the contact point of each curve with the envelope E. These conditions are neatly
summarized in the following envelope equation :

dx(t ; t0, A(t0), θ(t0))

dt0

∣∣∣∣
t0=t

= ∂x

∂t0

∣∣∣∣
t0=t

+ ∂x

∂A

dA

dt0

∣∣∣∣
t0=t

+ ∂x

∂θ

dθ

dt0

∣∣∣∣
t0=t

= 0. (4.59)

Here we repeat the important observations made in Sect. 4.2.3: The envelope Eq.
(4.59) has the same form as the renormalization-group equation in quantum field
theory [8, 9] to express the natural requirement that the values of physical quantities
should be independent of the renormalization point . Hence the authors in [1] called
essentially the same equation as (4.59) the renormalization group (RG) equation.

Inserting the perturbative solution (4.57) into (4.59) we have up to O(ε2),
(
d A(t0)

dt0
+ εA(t0)

) ∣∣∣∣
t0=t

sin φ(t) + A(t0)

(
dθ(t0)

dt0
+ 1

2
ε2

) ∣∣∣∣
t0=t

cosφ(t) = 0, ∀t
(4.60)

with φ(t) ≡ t + θ(t). A natural condition for the equation to hold ∀t is that the
coefficients of the independent functions sin φ(t) and cosφ(t) should vanish, and
thus we have the following amplitude and phase equations,

d A

dt
= −εA,

dθ

dt
= −ε2

2
. (4.61)

The readers should be familiar with these equations now because they appeared
in the conventional resummation methods such as Krylov-Bogoliubov-Mitropolsky
(KBM) andmultiple-scale method described in Sect. 3.5 and Sect. 3.6, respectively;
The solutions to these equations read

A(t) = Āe−εt , θ(t) = −ε2

2
t + θ̄ , (4.62)

respectively.
Thus the ‘initial’ value W (t) in this approximation is given as the envelope

xE(t) = W (t) = x(t ; t0 = t, A(t), θ(t)) = Āe−εt sin
(
(1 − ε2/2)t + θ̄

)
, (4.63)

which is certainly a uniformly valid in a global domain. Recall that the ’initial value’
W (t) has been supposed to be the exact solution.
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Fig. 4.3 The solutions of the damped oscillator based on numerics and RG method (4.63) with
ε = 0.5 and initial values x(0) = 1 and ẋ = −0.5

Figure 4.3 shows a comparison of the behavior in the phase space (x, ẋ) of the
RG solution xE(t) give by (4.63) and the exact solution (obtained by the numerical
calculation) for ε = 0.5. One sees that the agreement is excellent for a global domain
of time until the solution shows the complete damping, although xE(t) has been
constructed through the perturbative expansion only up to the second order.

Here we remark that the solution (4.63) is written as

xE (t) = A cosφ + ρ(A, φ), (4.64)

whereρ(A, φ) = 0, and the amplitude A and phaseφ satisfy the following equations,
respectively,

d A

dt
= F(A), with F(A) = 0, (4.65)

dφ

dt
= 1 + 
(A), with 
(A) = −ε2

2
. (4.66)

This structure of the presentation of the solution exactly in accord with that of
the ansatz for the solution of nonlinear oscillators adopted in the KBM method,
which might look mysterious in the first glance, but has been naturally derived in the
present RG method. It will be shown that this is generally true when the RG method
is applied, at least, to weakly nonlinear oscillators in Sects. 4.5 and 4.6.

The recipe of the RG method is summarized as follows:

1. Starting from the zero mode solution around arbitrary t = t0,
2. the higher-order solutions are constructed according to the prescription (I).
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3. Then the RG Eq. (4.59) is applied to construct the envelope of the family of the
curves, which is reduced to the dynamical equations of the would-be integral
constants of the zero modes, and the solution of the RG/E equation is inserted to
the initial value x(t ; t, A(t), θ(t)), which gives the approximate but uniformly
valid solution in a global domain by construction.

Finally a couple of comments are in order on the significance and ‘uniqueness’
of Eq. (4.61) as extracted from Eq. (4.60):

(1) Strictly speaking, Eq. (4.61) is a sufficient condition for Eq. (4.60) to holds,
because the argumentation based on the functional independence of sin φ(t) and
cosφ(t) is sloppy, because the coefficients of them are also functions of t . It
should be emphasized, however, a rigorous reduction of Eq. (4.61) from the
RG/E equation is possible by converting the equation to a system of first-order
equations , as is shown in Sect. 3.2 of Ref. [6] and below in Sect. 4.3.2.

(2) Whatweare doing is a kindof the reductionofdynamics , i.e., extracting simpler
equations from the original equation.AsYoshikiKuramoto emphasizes [32], one
of the principles of the reduction of dynamics is to obtain reduced equations that
are as simple as possible, even when the functional form of the solution could
become complicated. In the present case,we chooseEq. (4.61) because it not only
satisfies the required conditions but also simple although a more complicated set
of equations for A(t) and θ(t) may satisfy Eq. (4.60).

4.3.2 Treatment of Damped Oscillator as a System of
First-Order Equations

By defining a vector by

u =
(
x
y

)
, (y := ẋ), (4.67)

Equation (4.40) for the damped oscillator is converted to a system of first-order
equations as

(
d

dt
− L

)
u = −2εy

(
0

1

)
, (4.68)

with

L =
(

0 1
−1 0

)
. (4.69)
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We try to obtain a local solution to Eq. (4.68) around t = ∀t0 in the perturbation
theory. We expand the dependent variable and the initial value in Taylor series as

u(t; t0) = u0 + εu1 + ε2u2 + · · · (4.70)

with ui = t (xi , yi ), and the ‘initial’ value W(t0) at t = t0 is chosen to be an exact
solution, which is also expanded as

W(t0) = W 0 + εW 1 + ε2W 2 + · · · , (4.71)

The lowest-order equation reads

(
d

dt
− L

)
u0 = 0, (4.72)

the solution to which is given by

u0(t; t0) = C(t0)e
i tU+ + C∗(t0)e−i tU− =:

(
x0(t; t0)
y0(t; t0)

)
, (4.73)

where

U± =
(
1

±i

)
(4.74)

are the eigenfunctions of L belonging to the eigenvalues ±i , respectively;

LU± = ±iU±. (4.75)

This is a neutrally stable solution .We havemade it explicit that the integral constants
C(t0) andC∗(t0)may dependent on t0. The ‘initial’ value at t = t0 in this order reads,

W 0(t0) = z(t0)U+ + c.c., (4.76)

with

z(t0) = C(t0)e
i t0 . (4.77)

Here c.c. denotes the complex conjugate. We remark that the lowest-order solution
can be expressed in terms of the initial value as

u0(t; t0) = e(t−t0)LW 0(t0). (4.78)
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We remark that

y0(t; t0) = iC(t0)e
i t + c.c.. (4.79)

Owing to the equality

(
0

1

)
= (U+ − U−)/2i, (4.80)

the first-order equation reads

(
d

dt
− L

)
u1 = iy0(t; t0)(U+ − U−)

= (−Cei t − C∗e−i t )(U+ − U−). (4.81)

Applying the general formula (4.225) for the solution of the inhomogeneous
equation given in Sect. 4.7, Eq. (4.81) is formally solved as

u1(t; t0) = e(t−t0)LW 1(t0) + i
∫ t

t0

dse(t−s)L y0(s)(U+ − U−),

= e(t−t0)L

[
W 1(t0) + 1

2
{iCei t0U− + c.c.}

]

−
[
{(t − t0)Cei tU+ + i

1

2
Cei tU−} + c.c.

]
. (4.82)

One observes that the first line of (4.82) would gives rise to terms that could be
included in the unperturbed solution, and hence should be avoided according to the
prescription (I). This requirement is fulfilled by simply choosing the ‘initial’ value
W 1(t0) yet to be determined as

W 1(t0) = −1

2
{i z(t0)U− + c.c.} =: ρ1[z, z∗]. (4.83)

One may say that this is a kind of a renormalization of the integral constants in the
unperturbed solution. Thus we have

u1(t; t0) = −C(t0)e
i t {(t − t0)U+ + i

2
U−} + c.c.,

=:
(
x1(t; t0)
y1(t; t0)

)
. (4.84)

A comment is in order: The above solution could be more efficiently obtained by
using the operator method [3, 5, 6] presented in Appendix 2 Sect. 4.7 in this chapter.
In fact, the solution to (4.81) is formally expressed in the operator method as
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u1(t; t0) = − 1

dt − L
(Cei t − C∗e−i t )(U+ − U−), (4.85)

with dt := d
dt . However, using the formulae (4.238) and (4.237), we have

1

dt − L
ei tU+ = (t − t0)e

i tU+, (4.86)

1

dt − L
ei tU− = 1

i − (−i)
ei tU− = − i

2
ei tU−, (4.87)

respectively. Thus

u1(t; t0) = −C(t0)

[
(t − t0)e

i tU+ + i

2
ei tU−

]
+ c.c., (4.88)

which exactly coincides with (4.84), which implies that

y1(t; t0) = C(t0)e
i t {−i(t − t0) − 1/2} + c.c.. (4.89)

The second-order equation reads

(
d

dt
− L

)
u2 = iy1(t; t0)(U+ − U−)

= [
C(t0)e

i t {(t − t0) − i/2} + c.c.
]
(U+ − U−)

= C(t0)
([

(t − t0)e
i tU+ − (i/2)ei tU+

]

− [
(t − t0)e

i tU− − (i/2)ei tU−
]) + c.c.. (4.90)

with the ‘initial’ condition u2(t0; t0) = W 2(t0). By using the operator method [3, 5,
6] presented in Appendix 2 of this chapter, we have

1

dt − L
(t − t0)e

i tU+ = 1

2
(t − t0)

2ei tU+ (4.91)

1

dt − L
(t − t0)e

i tU− = 1

2i

{
(t − t0) − 1

2i

}
ei tU−

=
{
− i

2
(t − t0) + 1

4

}
ei tU−, (4.92)

respectively. Thus we have
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u2(t; t0) = C(t0)
([

1

2
(t − t0)

2ei tU+ − (i/2)(t − t0)e
i tU+

]

−
[
{− i

2
(t − t0) + 1

4
}ei tU− − (1/4)ei tU−

])
+ c.c.

= 1

2
C(t0)

([
(t − t0)

2 − i(t − t0)
]
ei tU+ + i(t − t0)e

i tU−
)

+ c.c..

(4.93)

Collecting all the terms up to the second order, we have

u(t; t0) = Cei t
[
U+ − ε{(t − t0)U+ + i

2
U−}

+ ε2

2
[{(t − t0)

2 − i(t − t0)}U+ + i(t − t0)U−]
]

+ c.c., (4.94)

with the ‘initial’ value

W(t0) = C(t0)e
i t0{U+ − i

ε

2
U−} + c.c.. (4.95)

The RG/E equation

du(t; t0)
dt0

∣∣∣
t0=t

= 0 (4.96)

gives

Ċei t [U+ − (i/2)U−] + Cei t [εU+ + (iε2/2)(U+ − U−)] + c.c. = 0, (4.97)

∀t up to the second order of ε. From the equality of the coefficient of U+, we have

Ċ = −(ε + iε2/2)C, (4.98)

which implies that the coefficient ofU− vanishes up to the second order of ε because

(iε/2)(Ċ + εC) = O(ε3). (4.99)

With the parameterization

C(t) = 1

2
A(t)eiθ(t), (4.100)

(4.98) leads to the amplitude and the phase, respectively, as

Ȧ = −εA, θ̇ = −ε2/2, (4.101)
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which yield

A(t) = A0e
−εt and θ(t) = −ε2t/2 + θ0 (4.102)

with A0 and θ0 being constants. The approximate solution as the envelope function
is given by

uE(t) = u(t; t) = W(t)

= C(t)ei t {U+ − i
ε

2
U−} + c.c.

= 1

2
A0e

−εtei{(1−ε2/2)t+θ0}{U+ − i
ε

2
U−} + c.c.. (4.103)

Thus we have the final solution to the damped oscillator that is valid in a global
domain as

x(t) = Ā sin(ωt + θ̄ ) (4.104)

where ω = 1 − ε2/2 and Ā and θ̄ are constants. The above expression coincides
with (4.63), and thus confirms the somewhat heuristic derivation of the amplitude
and phase qaution (4.61) from (4.60).

4.4 RG/E Analysis of a Boundary-Layer Problem Without
Matching; A System Treatment

Next we take up a linear but a typical boundary-layer problem [21, Chap.9]:

ε
d2y

dx2
+ (1 + ε)

dy

dx
+ y = 0, (4.105)

with the boundary condition

y(0) = 0, y(1) = 1. (4.106)

Because of the linearity, the exact solution is readily found to be

y(x) = e−x − e−x/ε

e−1 − e−1/ε
. (4.107)

To convert the equation in a form for which the regular perturbation theory is
applicable, we introduce the so called inner variable X by

εX := x, (4.108)
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and define the function of X by

Y (X) := y(x). (4.109)

Then the equation takes the following form,

LBY = −ε

(
d

dX
+ 1

)
Y, LB := d

dX

(
d

dX
+ 1

)
. (4.110)

We try to obtain the solution Y (X; X0) around an arbitrary point X = X0, where
the boundary value Y (X = X0; X0) is supposed to takes an exact solution, which we
denote as4

Y (X0; X0) = W (X0). (4.111)

From now on, we treat the problem as a system of first-order equations . One will
see tha the RG/E equation will lead to a couple of reduced equations in a rigorous
way.5

Equation (4.110) written inner variable X = x/ε is converted to a system of first-
order equations for

Z(X) =
(

Y
dY/dX

)
≡

(
Z1(X)

Z2(X)

)
. (4.112)

Defining the coefficient matrix as

L :=
(
0 1
0 −1

)
, (4.113)

we have

dZ
dX

= LZ + ε(Z1 + Z2)

(
0

−1

)
. (4.114)

We try to solve Eq. (4.114) by the perturbation theory around X = X0 with the
expansion Z = Z(0) + Z(1) + · · · .

The zeroth-order equation reads

4 The prescription for treating the higher order terms given in Ref. [3] was based on Ref. [1] which
is different from that given in Sect. 3 of [3] nor that presented in this monograph. As a result, the
formulae given in [3], unfortunately, suffere from some errors. Equations (4.5) through (4.10) in
Ref. [3] should be substituted by the corresponding expressions given below and Appendix 1 of
this chapter.
5 AnRG analysis in the scalar representation is given inAppendix 1 of this chapter, for an instructive
purpose.
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d

dX
Z(0) = LZ(0). (4.115)

The eigenvalues and the respective eigenvectors of L are found to be

λ1 = 0, U1 :=
(
1
0

)
; λ2 = −1, U2 :=

(−1
1

)
. (4.116)

We remark the equality

(
0

−1

)
= −(U1 + U2). (4.117)

Thus the zeroth-order solution is given by

Z(0)(X) = A(X0)U1 + B(X0)e
−XU2 =:

(
Z (0)
1

Z (0)
2

)
, (4.118)

which gives

Z (0)
1 + Z (0)

2 = A(X0). (4.119)

Then the first-order equation is given by

(
d

dX
− L

)
Z1 = −A(X0)(U1 + U2). (4.120)

The particular solution to (4.120) in the form suitable for the RG method is given in
the operator method6 as

Z1 = −A(X0)

[
1

d
dX − L

U1 + 1
d
dX − L

U2

]

= −A(X0)(X − X0)U1 − A(X0)U2, (4.121)

where the formulae (4.238) and (4.237) have been used; we remark that (4.121)
satisfies the principle (I).

Thus we have for the perturbative solution up to the first order

Z(X; X0) = Z(0) + εZ(1)

= A(X0)U1 + B(X0)e
−XU2

+ ε [−A(X0)(X − X0)U1 − A(X0)U2] + O(ε2). (4.122)

6 See Appendix 2 in this chapter.
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The RG/E equation up to the first order of ε

d

dX0
Z
∣∣∣
X0=X

= 0 (4.123)

is reduced to

0 = d A

dX
U1 + dB

dX
e−XU2 + ε

[
A(X)U1 − d A

dX
U2

]

=
(
d A

dX
+ εA(X)

)
U1 +

(
dB

dX
e−X − ε

d A

dX

)
U2. (4.124)

Then, because of the linear independence of U1 and U2, we have

d A

dX
= −εA(X) and

dB

dX
e−X − ε

d A

dX
= 0. (4.125)

We remark, however, that the first equation tells us that d A/dX =O(ε), and hence
the second equation actually means dB

dX e
−X = 0 or

dB

dX
= 0, (4.126)

up to the first order of ε. Thus solving the simple equations, we have

A(X) = A0e
−εX and B(X) = B̄. (4.127)

with A0 and B̄ being constant.
The envelope function is now given by

ZE(X) = Z(Z; X) = A(X)U1 + B(X)e−XU2 − εA(X)U2

=
(

(1 + ε)A0e−εX − B̄e−X

−εA0e−εX + B̄e−X

)

=
(

Āe−εX − B̄e−X

−ε Āe−εX + B̄e−X

)
(4.128)

up to the first order of ε with Ā := (1 + ε)A0. Thus

YE(X) = Z1(X; X) = Āe−εX − B̄e−X . (4.129)

In terms of the original variable x ,

yE(x) = Āe−x − B̄e−x/ε . (4.130)
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It is noteworthy that the resultant yE (x) can admit both the inner and outer bound-
ary conditions (4.106), simultaneously;

yE (0) = Ā − B̄ = 0, y(1) = Āe−1 − B̄e−1/ε = 1, (4.131)

which yield

Ā = B̄ = 1

e−1 − e−1/ε
(4.132)

and hence yE (x) coincides with the exact solution y(x) given in Eq. (4.107).

4.5 The van der Pol Equation in RG Method

The van der Pol equation was treated already in the previous chapters,7 which is
reproduced here;

ẍ + x = ε (1 − x2) ẋ, (4.133)

with ε being small so as to the perturbation analysis is valid.
We first convert the Eq. (4.133) to a system of first-order differential equations

as
(
d

dt
− L

)
u = εb(u) (4.134)

with

u =
(

x
y = ẋ

)
and b = (1 − x2) y

(
0
1

)
, (4.135)

and

L =
(

0 1
−1 0

)
(4.136)

is the linear operator defined in Sect. 4.3.2 for describing the harmonic oscillator
with the angular velocity 1: Their eigenvalues are±i and the respective eigenvectors
are given in (4.74), which we reproduce here; U± = t (1,±i).

We try to obtain a local solution to Eq. (4.134) around t = ∀t0 in the perturbation
theory. We expand the dependent variable in Taylor series as

u(t; t0) = u0 + εu1 + ε2u2 + · · · (4.137)

7 See Sect. 3.5.4, for instance.
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with ui = t (xi , yi ), and the ‘initial’ value W (t0) at t = t0 is chosen to be an exact
solution, which is also expanded as

W(t0) = W 0 + εW 1 + ε2W 2 + · · · , (4.138)

The lowest-order equation is the same as that in the case of the damped oscillator
and the solution to it has been also given in (4.73) as

u0(t; t0) = C(t0)e
i tU+ + C∗(t0)e−i tU− =:

(
x0(t; t0)
y0(t; t0)

)
, (4.139)

where

x0(t; t0) = z(t; t0) + z∗(t; t0), y0(t; t0) = i(z(t; t0) − z∗(t; t0)) (4.140)

with

z(t; t0) := C(t0)e
i t . (4.141)

The first-order equation is given by

(
d

dt
− L

)
u1 = (1 − x20 )y0

2i
(U+ − U−). (4.142)

However,

x20 y0 = i(z2 + 2|z|2 + z∗2)(z − z∗) = i
[
(z3 + |z|2z) − c.c.

]
. (4.143)

Thus the right-hand side of (4.142) reads

1

2

[{z − (z3 + |z|2z)} − c.c.
]
(U+ − U−) = 1

2

[{(1 − |C |2)Cei t − C3e3i t } − c.c.
]

× (U+ − U−)

= 1

2

[
{(1 − |C |2)Cei t − C3e3i t }U+

− {(1 − |C |2)Cei t − C3e3i t }U−
]

+ c.c.. (4.144)

However, on account of the formulae (4.238) and (4.237), we have
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1
d
dt − L

ei tU+ = (t − t0)e
i tU+, (4.145)

1
d
dt − L

e3i tU+ = 1

3i − i
e3i tU+ = − i

2
e3i tU+, (4.146)

1
d
dt − L

ei tU− = 1

i + i
ei tU+ = − i

2
ei tU−, (4.147)

1
d
dt − L

e3i tU− = 1

3i + i
e3i tU− = − i

4
e3i tU−. (4.148)

Thus the solution to the first-order equation is given by

u1(t; t0) = 1

2

[
{(1 − |C |2)C(t − t0)e

i t − C3(−i/2)e3i t }U+

− {(1 − |C |2)C(−i/2)ei t − C3(−i/4)e3i t }U−
]

+ c.c.. (4.149)

Summing the perturbative solutions up to the first order, we have

u(t; t0) = u0(t; t0) + εu1(t; t0)
= C(t0)e

i tU+ + ε

2

[
{(1 − |C |2)C(t − t0)e

i t − C3(−i/2)e3i t }U+

− {(1 − |C |2)C(−i/2)ei t − C3(−i/4)e3i t }U−
]

+ c.c.. (4.150)

Now the RG/E equation

d

dt0
u(t; t0)

∣∣∣
t0=t

= 0 (4.151)

is found to lead to

dC

dt
= ε

2
(1 − |C |2)C (4.152)

up to the first order of ε. We remark that the remaining terms are of higher order
because Ċ = O(ε). The solution as the envelope trajectory is given by

uE(t) = u(t; t)
=

[
C(t)ei t + i

ε

4
C3(t)e3i t

]
U+

+ i
ε

4

[
(1 − |C |2)Cei t − 1

2
C3e3i t

]
U− + c.c., (4.153)

up to the first order of ε.
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With the parametrization

C(t) = A(t)

2
eiθ(t) (4.154)

with A (≥ 0) and θ being real numbers, the reduced Eq. (4.152) leads to the amplitude
and phase equations, separately;

Ȧ = ε

2
A

(
1 − A2

4

)
, θ̇ = 0. (4.155)

These equations are the same as those derived in Sect. 3.5.4 by the KBMmethod,
and the solution to the amplitude equation is given in (3.111), which admits a limit
cycle with a radius 2.

One can proceed to the second-order analysis [90], which leads to a non-trivial
phase equation but no change in the amplitude equation as was given, for instance,
in [22].

4.6 Jump Phenomenon in Forced Duffing Equation

Herewe consider an extension of theDuffing Eq. (2.47) by adding aweak dissipative
effect proportional to the velocity and external harmonic force [22, 25] as given by

ẍ + 2κ ẋ + ω2x + αx3 = F cos
t, (4.156)

which is called the forced Duffing equation. In the following, we are going to discuss
the case where external force is weak with the angular velocity 
2 being close to the
intrinsic one ω2 and the resistivity 2κ and the anharmonicity of the potential α are
all small;

ω2 = 
2 + εδω2, (0 <)κ = εγ, α = εh, (4.157)

where |ε| is small but the sign of ε is not specified. Thus we have

ẍ + 2εγ ẋ + (
2 + εδω2)x + εhx3 = ε f cos
t. (4.158)

A comment is in order here: In practice, people are interested in analyzing the
jump phenomenon [22, 25, 91] in which the amplitude of the excited mode with the
frequency close to the external one 
 or its multiples with some rational numbers
shows a drastic change along with a slow variation of 
. For this purpose, it may be
more convenient to use the parametrization

ω = 
 + εσ, or 
 = ω − εσ. (4.159)
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One can translate it to our parametrization through the formula

εδω2 = 2ε
σ, or εσ = ε
δω2

2

. (4.160)

For calculational convenience, we also consider a similar equation with a different
external force as

ÿ + 2εγ ẏ + (
2 + εδω2)y + εhy3 = ε f sin
t. (4.161)

Then defining a complex variable z = x + iy, (4.158) and (4.161) are combined to
a single equation as

z̈ + 
2z = −ε

[
δω2z + 2γ ż + h

4
(3|z|2z + z∗3) − f ei
t

]
. (4.162)

Expanding z as

z = z0 + εz1 + ε2z2 + · · · , (4.163)

we try to solve Eq. (4.162) in the perturbation theory around an arbitrary time t = t0
with the ‘initial’ valueW (to), which is supposed to be an exact solution as a function
of t0 and expanded as; W (t0) = W0(t0) + εW1(t0) + ε2W2(t0) + · · · .

The zeroth-order equation reads

z̈0 + 
2z0 = 0, (4.164)

the solution to which may be written as

z0(t; t0) = A(t0)e
i
t+θ(t0), (4.165)

where A and θ are assumed to be real numbers without loss of generality and may
depend on the initial time t0. Defining the complex amplitude by

A(t0) := Aeiθ(t0), (4.166)

we can write the zeroth order solution as

z0(t; t0) = A(t0)e
i
t . (4.167)

The first-order equation now takes the form
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z̈1 + 
2z1 = −2γ ż0 − δω2z0 − h

4
(3|z0|2z0 + z∗ 3

0 ) + f ei
t

=
(

−2iγ
A − δω2A − 3hA2

4
A + f

)
ei
t − h

4
A∗3e−3i
t ,

(4.168)

the solution to which with a suitable form to apply the RG method is given by

z1(t; t0) = − i

2

(t − t0)

[
−2iγ
A − δω2A − 3h

4
|A|2A + f

]
ei
t

+ h

32
A∗3e−3i
t . (4.169)

Thus up to the first order, we have

z(t; t0) = A(t0)e
i
t − ε

i

2

(t − t0)

[
−2iγ
A − δω2A − 3h

4
|A|2A + f

]
ei
t

+ εh

32
A∗3e−3i
t . (4.170)

Note that there exists a secular term in the first-order term.
Then one finds that the RG/E equation dz

dt0
|t0=t = 0 leads to

Ȧ = ε
i

2


[
2iγ
A + δω2A + 3h

4
|A|2A − f

]
. (4.171)

Here we have neglected terms such as εdA/dt , which is O(ε2) because
dA/dt =O(ε).

The resultant reduced Eq. (4.171) is the complex time-dependent Ginzburg-
Landau equation (complex TDGL). From the real and imaginary part of (4.171), the
coupled equation for the amplitude A and the phase θ is obtained as

Ȧ = −εγ A − ε
ε f

2

sin θ, (4.172)

θ̇ = ε

2

δω2 + 3εh

8

A2 − ε f

2A

cos θ. (4.173)

The approximate but globally valid solution is given by the envelope function as

zE (t) = xE (t) + iyE (t) = z(t; t0 = t) = A(t)ei
t + εh

32
2
A∗3(t)e−3i
t

= A(t)ei(
t+θ(t)) + εh

32
2
A3(t)e−3i(
t+θ(t)), (4.174)

where the time dependence of A(t) is given by (4.171).
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Notice that we have the mode with the one-third period of the normal mode
with the amplitude proportional to A3(t), which would be absent when some other
resummation methods like the averaging [22, 34] were used.

For completeness, we write down the expressions of xE (t) and yE (t):

xE (t) = A(t) cos(
t + θ(t)) + εh

32
2
A3(t) cos{3(
t + θ(t))}, (4.175)

yE (t) = A(t) sin(
t + θ(t)) − εh

32
2
A3(t) sin{3(
t + θ(t))}. (4.176)

Now it would be of interest to examine the basic properties of the complex TDGL
given by (4.171). First let us see various limits of the equation.

1. f = 0, γ �= 0, h �= 0: No external force.In this case, (4.172) and (4.173) are
reduced to

Ȧ = −εγ A, θ̇ = ε

2

δω2 + 3εh

8

A2, (4.177)

respectively. The amplitude equation is readily solved by the quadrature to give

A(t) = Āe−εγ t , (4.178)

with Ā being a constant. Then the phase equation is also integrated out as follows:

θ(t) = θ(0) + ε

2

δω2t + 3εh

8


∫ t

0
ds Ā2e−2γ s

= θ(0) + ω2 − 
2

2

t + 3εh Ā2

16γ

(1 − e−2γ t ). (4.179)

Thus inserting these results into (4.174), we have

zE (t) = Āe−εγ tei(ω
′t+φ(t)) + εh Ā2

32
2
e−3εγ te−3i(ω′t+φ(t)) (4.180)

with

ω′ = 
 + ω2 − 
2

2

= 
[1 + ω2 − 
2


2
]  (
2 + ω2 − 
2)1/2 = ω, (4.181)

φ(t) = 3εh Ā2

16γ

(1 − e−2γ t ) + θ(0) −−−→

t →∞
3εh Ā2

16γ

+ θ̄ , (θ̄ := θ(0)). (4.182)

2. f = 0, γ = 0, h �= 0: No external force without resistance. This is the pure
Duffing equation given in (2.47). In this case, (4.172) and (4.173) are reduced to
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Ȧ = 0, θ̇ = ε

2

δω2 + 3εh

8

A2, (4.183)

respectively, which are readily integrated out to yield

A = constant, θ(t) =
(

ω2 − 
2

2

+ 3εh

8

A2

)
t + θ̄ . (4.184)

Inserting these results into (4.174), we reproduce the result given in the previous
chapters; see (3.60), for instance.

3. f �= 0, γ �= 0, h = 0: No nonlinear potential. In this case, we start from (4.171),
which is now reduced to

Ȧ = −
(

γ − iδω2

2


)
εA − ε

i

2

f. (4.185)

This inhomogeneous linear equation is readily solved by the method of variation
of constant, as follows. From the formal solution to the homogeneous equation,
we have

A(t) = C(t)e−ε�t , (� := γ − iδω2

2

) (4.186)

where C(t) satisfies the equation

Ċ = −ε
i

2

f eε�t , (4.187)

which is readily integrated out to yield

C(t) = C̄ − i
f

2
�

(
eε�t − 1

)
, (C̄ : constant). (4.188)

Thus we have forA(t)

A(t) = C̄e−ε�t − i
f

2
�

(
1 − e−ε�t

)

= −i
f

2
�
+

(
C̄ + i

f

2
�

)
e−εγ t+i δω2

2
 t , (4.189)

−−−→
t → ∞ −i

f

2
�
. (4.190)
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Inserting this result into (4.174), we have the solution

zE (t) = A(t)ei
t = Āei(
t−δ) +
(
C̄ + i

f

2
�

)
e−εγ t+iω′t , (4.191)

−−−→
t → ∞ Āei(
t−δ), (4.192)

where

Ā = f√
(ω2 − 
2)2 + 4
2γ 2

, tan δ = 2
γ

ω2 − 
2
. (4.193)

This is the familiar resonance formula. Figure4.4 shows the trajectories in the
phase space with ε = 0.1 for the cases of 1∼ 3; the solid lines denote the results
obtained in the RG method in the first order, while the dashed lines the exact
ones obtained by numerics. One sees that the RG results well reproduce the exact
solutions in the global domain in the asymptotic region.

Fig. 4.4 The solutions of the nonlinear oscillator with and without an external force (4.158) based
on numerics and RG method (4.171) with ε = 0.1. (1) f = 0, γ = 1, h = 1, 
 = 1, δω = 0, and
initial values x(0) = 0 and ẋ(0) = −0.953. (2) f = 0, γ = 0, h = 1, and initial values x(0) = 0
and ẋ(0) = −0.953. (3) f = 1, γ = 1, h = 0, 
 = 1, δω = 2, and initial values x(0) = 4 and
ẋ(0) = 2
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4. Stationary state. The stationary state that satisfies Ȧ = 0 or Ȧ = θ̇ = 0 is given
by

0 = −εγ A − ε
ε f

2

sin θ, (4.194)

0 = ε

2

δω2 + 3εh

8

A2 − ε f

2A

cos θ. (4.195)

Making cos2 θ + sin2 θ = 1, we can eliminate θ and end up with

A2

[(3h
4
A2 + (ω2 − 
2)

)2 + 4γ 2
2

]
= f 2, (4.196)

which is known to describe the jump phenomenon in the nonlinear oscillator
under the external periodic force [22, 25, 91]. Because the analysis of the jump
phenomenon is beyond the scope of the present monograph, and there are many
good literatures [22, 25, 91] on this subject, we shall not enter this interesting
problem here.

4.7 Proof of a Global Validness of the Envelope Function as
The approximate Solution to the Differential Equation

In this section, we shall show that the envelope function constructed through the
RG/E equation indeed satisfies the original differential equation in the given order
of approximation in a global domain using a generic equation [3–6].

First we notice that the differential equations considered so far can be converted
to a system of differential equations with single time derivative:

dX(t)

dt
= F(X(t); ε), (4.197)

where F may be a non-linear function of X and t . For example, van der Pol equation
is converted to the above form with the replacement of

X =
(
X1 = x
X2 = ẋ

)
, F =

(
X2

−X1 + ε (1 − X2
1) X2

)
. (4.198)

Let us suppose that we have an approximate solution X(t; t0) to Eq. (4.197) that is
locally valid around t = ∀ t0 up to O(εn); namely, the following equation is satisfied
for all t0 belonging to a global domain,

dX
dt

= F(X(t; t0); ε) + O(εn+1), ∀ t0. (4.199)
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Now, the RG/E equation reads

dX(t; t0)
dt0

∣∣∣
t=t0

= 0, ∀ t0, (4.200)

and the envelope function XE(t) is given by

XE(t) = X(t; t). (4.201)

It is now easy to show that XE(t) satisfies Eq. (4.197) for arbitrary t in the global
domain in which the ‘initial’ time t0 can be located, up to the same order as X(t; t0)
does locally at t ∼ t0. In fact, ∀t = t0 in the global domain,

dXE(t)

dt

∣∣∣∣
t=t0

= dX(t; t0)
dt

∣∣∣∣
t=t0

+dX(t; t0)
dt0

∣∣∣∣
t=t0

= dX(t; t0)
dt

∣∣∣∣
t=t0

= F(X(t; t); ε) + O(εn+1)

= F(XE(t); ε) + O(εn+1). (4.202)

This completes the proof. Here Eqs. (4.200) and (4.199) have been used together
with the definition of XE(t), Eq. (4.201).

It should be stressed that Eq. (4.202) is valid uniformly ∀t in the global domain
of t , in contrast to Eq. (4.199) which is in a local domain around t = t0.

Appendix 1: An RG Analysis of The Boundary-Layer
Problem in the Scalar Representation

In this Appendix, we take up again the boundary-layer problem analysed in Sect.
4.4, and make an RG analysis of the Eq. (4.105) with the boundary condition (4.106)
without converting it into a system.

With the use of the inner variable X := x/ε, Eq. (4.105) takes the form given in
(4.110), which we reproduce here;

LBY = −ε

(
d

dX
+ 1

)
Y, LB := d

dX

(
d

dX
+ 1

)
. (4.203)

We first obtain the solution Y (X; X0) around an arbitrary point X = X0, at
which Y (X; X0) is supposed to coincide with an exact solutionW (X); Y (X0; X0) =
W (X0). As in the text Sect. 4.4, Y (X; X0) and the exact solution W (X0) at X = X0

are expanded as

Y (X; X0) = Y0(X; X0) + εY1(X; X0) + ε2Y2(X; X0) + · · · , (4.204)
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and

W (X0) = W0(X0) + εW1(X0) + ε2W2(X0) + · · · , (4.205)

respectively.
Substituting the above expansion into (4.203), we have for the first few orders of

equations as

LBY0 = 0, LBY1 = −
(

d

dX
+ 1

)
Y0 (4.206)

and so on.
Inserting the ansatz Y0(X) = eλX into the zeroth order equation, we have λ(λ +

1) = 0, accordingly, λ = 0 or λ = −1. Hence we have for the zeroth order solu-
tion

Y0(X; X0) = A(X0) + B(X0)e
−X , (4.207)

with A(X0) and B(X0) being the (X0-dependent) integral constants. We note that
the initial value at X = X0 in the zeroth order is given by W0(X0) = A(X0) +
B(X0)e−X0 .

The first-order equation now takes the form

LBY1(X; X0) = −A(X0). (4.208)

Since a constant and hence A(X0) is a zero mode of the linear operator LB , the
general solution to (4.208) admits a secular term as

Y1(X; X0) = −A(X0)X + C (1)
1 + C (2)

1 e−X . (4.209)

However, following the prescription (I) for the RG method given in Sect. 4.3, the
integral constants are chosen as

C (1)
1 = A(X0)X0 and C (2)

1 = 0, (4.210)

which leads to

Y1(X; X0) = −A(X0)(X − X0). (4.211)

Thus up to the first order, we have

Y (X; X0) = A(X0) + B(X0)e
−X − εA(X0)(X − X0). (4.212)

Now let us obtain the envelope YE (X) of the family of functions {Y (X; X0)}X0

each of which has the common tangent with YE (X) at X = X0. As we now know, the
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condition for the construction of the envelope function with this property is obtained
by solving the envelope equation or RG/E equation as given by

dY (X; X0)

dX0

∣∣∣∣
X0=X

= 0, (4.213)

which is reduced to

(
d A(X0)

dX0
+ εA(X0)

) ∣∣∣∣
X0=X

− dB(X0)

dX0

∣∣∣∣
X0=X

e−X = 0, ∀X. (4.214)

For this equation to satisfy for arbitrary X , one may demand that the coefficients of
the (independent) unperturbed solutions should vanish;

d A

dX
= −εA,

dB

dX
= 0, (4.215)

the solutions to which read

A(X) = Āe−εX , B = B̄ = const. (4.216)

Then the envelope function is obtained as

YE (X) = Y (X; X) = W (X)

= A(X) + B̄e−X = Āe−εX + B̄e−X , (4.217)

which coincides with (4.129) that is derived rigorously in the text Sect. 4.4. Thus
although Eq. (4.215) is seemingly mere a sufficient condition for Eq. (4.214) to hold,
the consequence is rigorously correct, which fact may suggest that theremay bemore
persuasive mathematical arguments for deducing the vanishing of the coefficients of
the unperturbed solutions.

Appendix 2: Useful Formulae of Solutions for
Inhomogeneous Differential Equations for the RG Method

In the present formulation of the RG method, the particular solutions in the higher
orders are set up so that (1) possible fast modes should disappear and (2) the
contributions of possible secular terms vanish at an arbitrary ‘initial’ time t = t0.
We shall show that the simple rules to write down the particular solutions with such
conditions are expressed with the use of an operator method.



Appendix 2: Useful Formulae of Solutions for Inhomogeneous … 101

Appendix 2.1: General Formulae of the Particular Solution of
Inhomogeneous Equations Suitable For RG Method

W are interested in finding the particular solution to the equation given by

(
d

dt
− A

)
u(t; t0) = F(t), (4.218)

with the ‘initial’ condition at t = t0,

u(t0, t0) = W(t0), (4.219)

where A is a time-independent linear operator. The solution to the inhomogeneous
Eq. (4.218) can be constructed by the method of variation of constants. First, the
general solution to the unperturbed equation

(
d

dt
− A

)
u(t; t0) = 0 (4.220)

is readily solved to be

u0(t) = eAtC (4.221)

with C being a constant vector at this stage. Then we set the solution to (4.218) as

u(t; t0) = eAtC(t; t0) (4.222)

where C(t; t0) is now a time-dependent vector, which may depend on t0. Inserting
this expression into (4.218), we have eAt Ċ(t) = F(t) or

Ċ(t : t0) = e−At F(t). (4.223)

Integrating the last equation from t = t0 to t = t , we have

C(t; t0) = C(t0; t0) +
∫ t

t0

ds e−AsF(s). (4.224)

Inserting this into (4.222), we have the solution to (4.218) with the initial condition
(4.219) as follows;

u(t; t0) = eA(t−t0)W(t0) + eAt
∫ t

t0

dse−AsF(s), (4.225)
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where C(t0; t0) has been determined to be C(t0; t0) = e−At0W(t0) to satisfy (4.219).
This is the basic formula of the solution to the inhomogeneous Eq. (4.218), which is
utilized in several ways through this monograph.

Appendix 2.2: Typical Examples with A Being Semi-simple

For definiteness, let us take the case where A is semi-simple8 having eigenvalues λα

(α = 1, 2, ...) with the corresponding eigenvectors Uα as

AUα = λαUα. (4.226)

We shall consider some typical cases where the inhomogeneous term F(t)
in (4.218) takes the following forms in order: (1) F(t) = eλtUα , (λ �= λα) and
(2) F(t) = eλα tUα . Notice that when F(t) is given as a sum of them, the partic-
ular solution is given by a sum of those for the respective inhomogeneous term
because the equation is linear.

(1) When F(t) = eλtUα , (λ �= λα), Eq. (4.218) reads

(
d

dt
− A

)
u(t; t0) = eλtUα. (4.227)

Then the integral appearing in (4.225) is evaluated as follows:

eAt
∫ t

t0

ds e−AsF(s) = eAt
∫ t

t0

ds e−AseλsUα = eλα t
∫ t

t0

ds e−(λα−λ)sUα

= eλα t

λ − λα

[e−(λα−λ)t − e−(λα−λ)t0 ]Uα

= eλt0

λ − λα

[eλ(t−t0) − eλα(t−t0)]Uα. (4.228)

We remark that the second term is a solution of the unperturbed equation, which
implies that an unperturbed solution is produced from the second term in (4.225)
as well as the first term. Inserting (4.228) into (4.225), and noting that λα in the
denominator may be replaced by A, we have

u(t; t0) = eA(t−t0)

[
W(t0) − 1

λ − A
eλt0Uα

]
+ 1

λ − A
eλtUα. (4.229)

In the present formulation of the RG method based on the perturbation theory,
the solution should be well approximated by the lowest perturbation to make

8 The case when A is not diagonalizable and has a Jordan cell will be considered later.
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the perturbative expansion as valid as possible. In the present case, u(t; t0) is
supposed to be an perturbative correction to the solution and hence should be
made as small as possible.Now thefirst termof (4.229) is an unperturbed solution
and hence should be discarded in the perturbative expansion. Thus we end up
with the particular solution given by

u(t; t0) = 1

λ − A
eλtUα. (4.230)

We note that this final form is simply obtained by a formal manipulation: Mul-
tiplying the inverse operator

(
d
dt − A

)−1
to the both side of (4.227) as

u(t; t0) = 1
d
dt − A

eλtUα = 1

λ − A
eλtUα (4.231)

where the relation d
dt e

λt = λeλtUα has been used.
(2) When F(t) = eλα tUα , Eq. (4.218) reads

(
d

dt
− A

)
u(t; t0) = eλα tUα. (4.232)

Then the integral appearing in (4.225) is evaluated as follows:

eAt
∫ t

t0

ds e−AsF(s) = eAt
∫ t

t0

ds e−AseλαsUα = eλα t
∫ t

t0

ds e−(λα−λα)sUα

= eλα t
∫ t

t0

ds Uα

= eλα t (t − t0)Uα. (4.233)

We note the appearance of the secular term. Then inserting this formula into
(4.225), we have for the particular solution

u(t; t0) = eA(t−t0)W(t0) + (t − t0)e
λα tUα. (4.234)

Since the first term is an unperturbed solution in the perturbative expansion, we
may discard it for the perturbed solution. Thus we have

u(t; t0) = (t − t0)e
λα tUα, (4.235)

for the particular solution, which is composed so as to vanish at t = t0 in accor-
dance with the construction prescription of the perturbative solution in the RG
method.
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This form of solution can be given by a formal prescription as

u(t; t0) = 1
d
dt − A

eλα tUα = (t − t0)e
λα tUα. (4.236)

Appendix 2.3: Formal Prescription for Obtaining Particular
Solutions of Inhomogeneous Equations Suitable for RG
Method

On the basis of the results and suggested formal prescription, we here generalize and
summarize the the rules of an operator method for obtaining the particular solutions
suitable for the application of the RG method:

1
d
dt − A

eλtUα = 1
d
dt − λα

eλtUα = 1

λ − λα

eλtUα, (λ �= λα), (4.237)

1
d
dt − A

eλα tUα = 1
d
dt − λα

eλα tUα = (t − t0)e
λα tUα. (4.238)

Similary, one can verify that

1
d
dt − A

(t − t0)
neλα tUα = 1

d
dt − λα

(t − t0)
neλα tUα

= 1

n + 1
(t − t0)

n+1eλα tUα. (4.239)

Furthermore, when λ �= λα ,

1
d
dt − A

(t − t0)
neλtUα = eλt0

1

dτ − A
τ neλτUα

∣∣∣∣
τ=t−t0

= eλt0∂n
λ

1

dτ − A
eλτUα

∣∣∣∣
τ=t−t0

, (4.240)

where dτ := d
dτ
. Hence, for example,

1
d
dt − A

(t − t0)e
λtUα = 1

λ − A
{(t − t0) − 1

λ − A
}eλtUα, (4.241)

1
d
dt − A

(t − t0)
2eλtUα = 1

λ − A
{(t − t0)

2 − 2

λ − A
(t − t0) + 2

(λ − A)2
}eλtUα, (4.242)

where A may be replaced with λα .



Chapter 5
RGMethod for Asymptotic Analysis with
Reduction of Dynamics: An Elementary
Construction of Attractive/Invariant
Manifold

5.1 Introduction

In Chap. 4 (the last chapter), we have introduced the RG method [1, 38, 39, 48–52,
92–96] for obtaining perturbative solutions of differential equations that are valid
in a global domain through a resummation of the perturbative expansions, on the
basis of the formulation given in [3–5]. In this chapter, we reformulate the method in
a non-perturbative way [6] by adapting the Wilsonian renormalization-group (RG)
or Wegner-Houghton’s flow equations developed in statistical physics and quantum
field theory [14, 87]; The formulation will be given also in a way that it is clear that
the RG method provides us with a powerful reduction theory of dynamical systems
[6]. Then confining ourselves to cases where a perturbative treatment is possible,
we shall show that the RG method gives a powerful but also mechanical method
to construct the attractive/invariant manifold and the reduced dynamics on it of the
dynamical systems [6], which are the essential ingredients of the center manifold
theory in the conventional reduction theory [33, 34, 97].

One of the merits of the RGmethod lies in the fact that the natural coordinates for
describing the invariant or attractive manifold are explicitly provided by the integral
constants of the unperturbed solution [3–5]. It is to be noted that the reduction
scheme provided by the RG method is also in accordance with that elucidated by
Yoshiki Kuramoto three decades ago [32]: Kuramoto noticed that when a reduction
of evolution equation is possible, the unperturbed equation admits neutrally stable
solutions, and elucidated that the universal structure of the perturbative reduction
of dynamics can be formulated as an extended scheme of the Krylov-Bogoliubov-
Mitropolsky (KBM)method [25] for weakly nonlinear oscillators, on the basis of the
reductive perturbation theory [98] with some ansatz on the form of the solutions as is
the case in KBMmethod. In this respect, we remark that the KBM scheme naturally
emerges in the RG method as was shown in the last chapter (Chap. 4).

© Springer Nature Singapore Pte Ltd. 2022
T. Kunihiro et al., Geometrical Formulation of Renormalization-Group Method
as an Asymptotic Analysis, Fundamental Theories of Physics 206,
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5.2 Non-perturbative RG/E Equation for Reduction
of Dynamics

We begin with the following generic dynamical equation with n degrees of freedom;

dX
dt

= F(X, t), (5.1)

with X = t (X1, X2, . . . , Xn) and F = t (F1, F2, . . . , Fn), where n may be infin-
ity.

We assume that there exists at least a solution X(t) = W(t) to Eq. (5.1). with
some initial condition, say, at t = 0. Then we try to solve the equation with an
‘initial’ condition at an arbitrary time t = t0 > 0.

X(t = t0) = W(t0). (5.2)

As is indicated in Sect. 4.2.3, the arbitrary time t0 corresponds to the renormalization
point in the renormalization theory in quantum field theory [18, 88]. The reason
why we call it ‘initial’ time lies in the fact that the perturbed solutions are to be
constructed around t ∼ t0, although it may be more adequate to call it the ‘probe
time’ or ‘observation time’.

We write the solution with the ‘initial’ condition (5.2) as

X(t) = X(t; t0,W(t0)), with X(t0; t0,W(t0)) = W(t0). (5.3)

This is a rather trivial equation.
In some situation where the initial values at t = 0 are confined in a some domain,

the solution after a long time t → ∞ is confined in a well defined manifold with
m degrees of freedom, where m may be less than or equal to n. Such a manifold is
called the invariant/attractive manifold of the evolution equation [33, 34].

If t0 is such a time for which such an asymptotic behavior is realized, then the
‘initial’ value W(t0) should be parametrized by a vector C(t0) with m dimensions,
which may be given by the collection of the integral constants at t = t0:

W(t0) = W [C(t0)], with dim C = m. (5.4)

As is seen in Fig. 5.1, even when the ‘initial’ point (t0, W(t0)) may be shifted
to (t ′0, W(t ′0)), the values on the solution at t does not change; X(t; t0,W(t0)) =
X(t; t ′0,W(t ′0)) or

X(t; t ′0,W(t ′0)) − X(t; t0,W(t0)) = 0. (5.5)

Dividing it by t ′0 − t0 and then taking the limit

t ′0 − t0 =: �t0 → 0+, (5.6)
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one has

dX
dt0

= ∂X
∂t0

+ dX
dW

· dW
dt0

= 0. (5.7)

Note that this is an exact equation from which the time evolution of W(t) can be
extracted.This gives a non-perturbative foundationof theRG/Eequation to be applied
to a global analysis, say, in the asymptotic region.

A remark is in order here: The Eq. (5.7) may be compared to the non-perturbative
RG equations byWilson [87] or flow equations byWegner-Houghton [14] and so on
in quantum field theory (QFT) and statistical physics [17–19]. The arbitrary time t0 in
the present case corresponds to (the logarithm of) the renormalization point with the
energy scale, and the integral constants C(t0) to physical values such as the coupling
constants and the masses to be renormalized in QFT. One will also recognize that
the existence of an invariant manifold of the dynamical system may correspond to
the renormalizability of the theory in QFT.

5.3 Perturbative RG/E Equation

When the perturbative theory is used to obtain X(t; t0,W(t0)), the equality of
X(t; t0,W(t0)) and X(t; t ′0,W(t ′0)) in the perturbation theory may be valid only
for

t ∼ t0 and t ∼ t ′0, (5.8)

as shown in Fig. 5.1. Then, in view that the limit

t ′0 → t0+ (5.9)

is taken in deriving the RG/E Eq. (5.7), we can demand the equality t0 = t+ for
obtaining as good as possible approximation. In practice, the infinitesimal difference
between t0 and t will be discarded and simply use the equality1

t0 = t. (5.10)

Thus we arrive at a restrictive RG/E equation as

dX
dt0

∣
∣
∣
∣
t0=t

= ∂X
∂t0

∣
∣
∣
∣
t0=t

+ dX
dW

· dW
dt0

∣
∣
∣
∣
t0=t

= 0. (5.11)

1 This equality t0 = t will be understood with a caution in Chap. 7 where stochastic equations are
treated: The times t0 and t may represent the coarse-grained and microscopic ones, respectively,
and hence may have quite different time scales from each other.
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Fig. 5.1 The perturbative solutions x(t; t0), x(t.; t ′0), x(t; t ′′0 ) and so on have the exact values
W (t0), W (t ′0) and W (t ′′0 ) of the solution xE(t) at the respective ‘initial’ times t0, t ′0 and t ′′0 and so
on. Conversely, the exact solution xE(t) can be obtained as the envelope curve of the family of
curves x(t; t0), x(t; t ′0) and x(t; t ′′0 )

In Sect. 4.2.3, we have given a geometrical interpretation of Eq. (5.11) that it is
the envelope equation for constructing an envelope curve from the family of curves
as the perturbative solutions with different ‘initial’ time t0.2 Accordingly the solution
to be valid in a global domain is given by the would-be ‘initial’ value

W(t) = X(t; t) = XE(t) (5.12)

which is interpreted as the envelope of the family of curves given by the perturbative
solutions.

As was done in Sect. 4.7, It can be proved thatW(t) satisfies the original equation
(5.1) in a global domain up to the order with which X(t; t0) satisfies around t ∼ t0
[3, 5, 6] because of the following equality

dW(t)

dt
= dX(t; t0)

dt

∣
∣
∣
∣
t0=t

+dX(t; t0)
dt0

∣
∣
∣
∣
t0=t

= dX(t; t0)
dt

∣
∣
t0=t , (5.13)

due to (5.11).

2 It is worth emphasizing that a reasoning to set t0 equal to t (or t+) has been naturally derived
here, which setting was done in a rather ad hoc way in [1].
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Fig. 5.2 An illustration of the invariant/attractive manifold with m dimensions of n-dimensional
dynamical system. After a long time, the state vector X is attracted to a well-defined manifold M
with m dimensions and to be confined there

5.4 Invariant/Attractive Manifold and Renormalizability

As we will see in the generic example to be treated in the subsequent section, there
is a universal structure of the reduction of dynamics. In this section, we shall give
some conceptual exposition of the general structure of the reduction of dynamics
in the RG method based on the perturbation theory with an emphasis of a trade-off
relation of the simplicity of the reduced equation and that of the representation of
the invariant/attractive manifold.

Let the invariant manifold M is represented by the coordinate s with dim[s] =
m ≤ n: See Fig. 5.2. The reduced dynamics of Eq. (5.1) onMmay be given in terms
of a vector field G by

ds
dt

= G(s), (5.14)

and the manifold M is represented by

X = R(s). (5.15)

Our task is to obtain the vector field G and the representation of the manifold R in a
perturbation method. We consider a situation where the vector field F is composed
of an unperturbed part F0 and the perturbative one P , i.e.,
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F = F0(X) + ε · P(X, t). (5.16)

Here notice that F0 has no explicit t-dependence, while P(X, t) does. We assume
that the unperturbed problem is solved and an attractive/invariant manifold M0 is
easily found.

Nowwe try to solve Eqs. (5.1) and (5.16) by a perturbation theorywith the ‘initial’
condition

X(t0) = W(t0), (5.17)

at an arbitrary time t = t0 in the asymptotic region. The decisive point of our method
is to assume that

W(t0) = R(s(t0)), (5.18)

that is, the ‘initial’ point is supposed to be on the invariant manifold M to be deter-
mined. Now we apply the perturbation theory with an expansion

X(t; t0,W(t0)) = X0 +
∞

∑

n=1

εnXn(t; t0,W(t0)). (5.19)

Here we have made it explicit that X is dependent on the ‘initial’ condition. We also
expand the ‘initial’ value as

W(t0) = W 0(t0) + ρ(t0), (5.20)

with

ρ(t0) =
∞

∑

n=1

εnW n(t0). (5.21)

Now the unperturbed equation reads

dX0

dt
= F0(X0). (5.22)

As promised, we suppose that an attractive manifold is found for this equation as

X0(t) = R(s(t;C(t0))), (5.23)

where C(t0) is the integral constant (vector) with

dimC(t0) = m ≤ n (5.24)

and may depend on t0.
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Here comes an important point of our method; we identify that

s(t0) = C(t0), (5.25)

which gives a natural parameterization of the manifold M0. This is a simple but a
significant observation: It is not necessary to give any ansatz for the representation of
the manifold because we only have to solve the unperturbed equation and the integral
constants are trivially obtained.

The deformation of the manifold ρ(t0) at t = ∀t0 should be, by definition, deter-
mined so as to be independent of the unperturbed solution at t = t0, i.e., W 0(t0),
which implies that possible perturbative corrections proportional to the unperturbed
solution is renormalized away into W 0(t0) [3, 5].

In fact, it is a general rule that there exists a trade-off relation between the sim-
plicity of the reduced dynamical equation and that of the representation of the invari-
ant/attractive manifold. In the present case, the choice of the ρ is intimately related to
the resulting reduced differential equation. The notion of the reduction of the dynam-
ics may mean that the resulting reduced equation should be as simple as possible
because we are interested to reduce the dynamics to a simpler one. We shall see that
the above choice of the deformation leads to the simpler form of the reduced differ-
ential equation without terms coming from the redundant unperturbed solutions.

Let us show more details of the above prescription by proceeding to the higher-
order equations. The first-order equation reads

dX1

dt
= F′

0(X0)X1 + P(X0). (5.26)

The solution to this inhomogeneous equation is composed of a sum of the general
solution of the homogeneous equation and the particular solution of the inhomo-
geneous equation. If the unperturbed solution X0(t) has a part of neutrally stable
solution, there appear secular terms in the special particular as well as genuinely
independent functions. It is a simple fact that the secular terms can be arranged so as
to vanish at t = t0, which may be interpreted as a renormalization condition to the
unperturbed solution. Then the correction of the ‘initial’ value is now determined as

W 1(t0) = X1(t = t0). (5.27)

Notice that the ‘initial’ value is determined after solving the equation, hence the
functional form of it as a function of t0 is explicitly given without recourse to any
ansatz because we are solving the equation faithfully in principle. If it were that
W 1(t0) = 0 contains additional unperturbed solutions, it would lead to a more com-
plicated dynamics as noticed above.

We can proceed to any higher orders of the perturbative expansion keeping the
above basic prescription. Then the deformation of the ‘initial’ value ρ(t0) and hence
the total ‘initial’ value W(t0) are given solely in terms of C(t0),
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Fig. 5.3 An illustration of the perturbative construction of the invariant/attractive manifold with
m dimensions of n-dimensional dynamical system. The zeroth-order manifold with dimension m
is denoted as M0; the coordinates of M0 is given by a vector s, which is nicely identified with the
integral constants C in the zeroth-order solution. The nonperturbative manifold is denoted by M,
which is deformed from M0 by the perturbation. The rate of the deformation ρ is, however, given
as a function of s = C, the coordinates of the unperturbed manifold M0

W(t0) = W 0[C(t0)] + ρ[C(t0)]. (5.28)

Now the dynamics of C(t) is determined by the RG/E equation Eq.(5.11);

dX
dt0

∣
∣
∣
∣
t0=t

= ∂X
∂t0

∣
∣
∣
∣
t0=t

+∂X
∂C

· dC
dt0

∣
∣
∣
∣
t0=t

= 0, (5.29)

which leads to the dynamical equation of C(t). Then themanifoldM (more precisely,
the trajectory on it) is represented as

X(t) = W(t) = W 0[C(t)] + ρ[C(t)], (s = C). (5.30)

Equations (5.29) and (5.30) constitute our basic equations in the reduction theory
of dynamics based on the RG method. The geometrical picture of the perturbative
construction of the attractive/invariant manifold is illustrated in Fig. 5.3. We remark
that these equations correspond to the basic postulates inKuramoto’s theory of reduc-
tion of evolution equations [32].
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Equation (5.30) shows that the whole dynamics is given solely in terms of C(t)
with dimensionm ≤ n. Onemay have recalled a correspondence between the renor-
malizability in quantum field theory [19] and the existence of a finite dimensional
invariant manifold in the theory of dynamical systems where the would-be integral
constants C = (C1,C2, . . . ,Cm) in the unperturbed solution play a quite similar
role to the renormalized coupling constants including the renormalized masses, and
ρ[C] to the unrenormalizable operators that are represented by the renormalized
constants. The last aspect that ρ[C] is represented solely in terms of C is analogous
to the Polchinski theorem [15, 19] in quantum field theory. We also remark that
Eq.(5.30) justifies the slaving principle by Haken [99].

A comment is in order; When the unperturbed system is given by a linear operator
is not semi-simple and has a Jordan cell, there will be a slight modification of the
above scenario due to a technical complexity; see Sect. 5.6.

5.5 Example I: A Generic System with the Linear Operator
Having Semi-simple Zero Eigenvalues

In the Lorenz model analyzed in the previous chapters, the asymptotic state around
the fixed point (ξ, η, ζ ) = 0 for r ∼ 1 is confined in a one-dimensional manifold
embedded in the three-dimensional phase space as given by (3.182):

ξ(t) = εA + ε3σ
(1+σ)2

(χ A − 1
b A

3),

η(t) = εA − ε3

(1+σ)2
(χ A − 1

b A
3),

ζ(t) = ε2 A2

b ,

⎫

⎪⎬

⎪⎭

(5.31)

and the original dynamics given in terms of the non-linear system consisting of three
variables are reduced to single equation given by (3.178);

d A

dt
= ε2

σ

σ + 1

(

χ A − 1

b
A3

)

. (5.32)

The manifold (with dimensions less than the original one of the phase space)
in which the asymptotic state is confined is called the invariant manifold or center
manifold [33, 34]. In the present case, the state variables with any initial values tend
to be attracted to this manifold, hence the manifold is also an attractive manifold.

In this section, we shall show how the RG method gives a natural way for con-
structing the invariant manifold and deducing the reduced dynamics on it, taking up
a generic system in which the linear operator A has semi-simple zero eigenvalues
and those with negative real parts: In this case, the invariant manifold may be also
called the center manifold [33, 34].
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5.5.1 Generic Model that Admits an Attractive/Invariant
Manifold

We treat the following rather generic n-dimensional system of first-order equations:

(
d

dt
− A

)

u = εF(u), (5.33)

where A is a linear operator (a matrix and/or differential/integral operator) and F a
nonlinear function of u with ε being a small parameter, say, satisfying the inequal-
ity |ε| < 1. We assume that A is semi-simple and has multiply degenerated zero
eigenvalues and other eigenvalues of A have a negative real part.

We are interested in constructing the attractive/invariant manifold M and the
reduced dynamics on it to be realized asymptotically when t → ∞ in the pertur-
bation theory. For this purpose, we try to solve the equation in the perturbation
theory by expanding u as

u(t; t0) = u0(t; t0) + εu1(t; t0) + ε2u2(t; t0) + · · · , (5.34)

with the ‘initial’ value W(t0) at an arbitrary time t0 in the asymptotic regime. We
suppose that the equation has been solved up to t = t0 and the solution has the value
W(t0) at t0 on M. In other words, u(t) = W(t) gives a global solution to (5.33)
confined on M. We assume that the exact solution can be expanded as follows:

W(t0) = W 0(t0) + εW 1(t0) + ε2W 2(t0) + · · · . (5.35)

They are yet to be determined in this stage of the procedure.
The lowest-order equation reads

(
d

dt
− A

)

u0 = 0. (5.36)

We assume that the multiplicity of the zero eigenvalues is m, which implies that
the dimension of ker A is m;

AU i = 0, (i = 1, 2, . . . , m). (5.37)

It is also assumed that the other eigenvalues have negative real parts;

AUα = λαUα, Reλα < 0, (α = m + 1, m + 2, . . . , n). (5.38)

It is taken for granted that U i ’s and Uα’s are linearly independent. Since the linear
operator A may not be symmetric (self-adjoint), we need to specify the properties of
the adjoint operator A†, which has the same eigenvalues as A has;
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A†Ũ i = 0, (i = 1, 2, . . . ,m), (5.39)

A†Ũα = λ∗
αŨα, (α = m + 1,m + 2, . . . , n). (5.40)

Here we suppose that Ũ i ’ and Ũα’s are linearly independent. We have an orthogo-
nality condition

(Ũa,Ub) = 〈Ũa|Ub〉 = δab, (a, b = 1, 2, . . . , n) (5.41)

where we have demanded the normalization condition for a = b. In the second
equality, we have used Dirac’s bra-ket notation for an inner product.

The projection operator Pa onto the eigenstate Ua is given by

Pa = |Ua〉〈Ũa| (5.42)

in the bra-ket notation. Then the projection operator onto the kernel ker A reads

P =
m

∑

i=1

Pi . (5.43)

The projection operator Q onto the compliment to the kernel is given by

Q = I − P =
n

∑

α=m+1

Pα, (5.44)

and accordingly

P + Q = I. (5.45)

We have also the idempotency of the projection operators as

P2 = P, Q2 = Q. (5.46)

Now the general solution to the homogeneous Eq. (5.36) is readily given by

u0(t; t0) = eAt C̄(t0) (5.47)

with C̄ being a constant vector, which can be expressed as a linear combination of
the eigenvectors of A as

C̄ =
n

∑

a=1

Ca(t0)Ua . (5.48)
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Then (5.47) is reduced to

u0(t; t0) =
n

∑

a=1

Ca(t0)e
AtUa =

n
∑

a=1

eλa tCa(t0)Ua

=
m

∑

i=1

Ci (t0)U i +
n

∑

α=m+1

eλα tCα(t0)Uα. (5.49)

Since we are interested in the asymptotic state in the limit t → ∞, we may
discard the second part in (5.49) composed of n − m terms which would die out in
this asymptotic state, and hence we take for the zero-th solution

u0(t; t0) =
m

∑

i=1

Ci (t0)U i (5.50)

with the ‘initial’ value

u0(t0; t0) = W 0(t0) =
m

∑

i=1

Ci (t0)U i =: W 0[C(t0)], (5.51)

where C(t0) is an m-dimensional vector defined by

C(t0) = t (C1(t0), C2(t0), . . . , Cm(t0)). (5.52)

5.5.2 First-Order Analysis

The first-order equation reads

(
d

dt
− A

)

u1 = F(u0(t; t0)). (5.53)

This is a linear inhomogeneous equation, which may be solved using the method of
variation of constants for a system of first-order equation, as has been already utilized
in Chap. 3. For completeness, we repeat it here. We start with the formal solution to
the homogeneous equation

u1(t; t0) = eAt ũ, (5.54)

which is inserted into (5.53) but now with ũ being supposed to be time-dependent.
Then we have an equation for ũ as ˙̃u = e−At F(u0), which is readily integrated out
to give
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ũ(t; t0) =
∫ t

t0

ds e−AsF(u0) + ũ(t0; t0). (5.55)

Thus the solution of (5.53) with the ‘initial’ condition u1(t0; t0) = W 1(t0) is
found to be

u1(t; t0) = eAt
[∫ t

t0

ds e−AsF(u0) + ũ(t0; t0)
]

= e(t−t0)AW 1(t0) +
∫ t

t0

ds e(t−s)AF(u0(s; t0)), (5.56)

where ũ(t0; t0) = e−At0W 1(t0).
Here a couple of remarks are in order:

(1) The first-order correction to the ‘initial’ value W 1(t0) is and can be taken so as
to belong to the Q-space, because ifW 1(t0) had a component belonging to kerA
or P space, such a component could be “renormalized away” into W 0.

(2) Although F(u0(s; t0)) is seemingly time-dependent, it is a constant vector
F(u0(s; t0)) = F(W 0(t0)).

Inserting the identity I = P + Q in front of F(u0) in the integral, the integral
in (5.56) is evaluated as follows,

∫ t

t0

ds e(t−s)AF(u0(s; t0)) =
∫ t

t0

ds e(t−s)A(P + Q)F(W 0(t0))

=
∫ t

t0

ds e(t−s)A PF(W 0(t0))

+
∫ t

t0

ds e(t−s)A QF(W 0(t0)). (5.57)

However,

the 1st term =
∫ t

t0

ds e(t−s)A PF(W 0(t0)) =
∫ t

t0

ds PF(W 0(t0))

= (t − t0) PF(W 0(t0)). (5.58)

Since

AQ = QA = QAQ =
n

∑

α=m+1

|Uα〉〈Ũα|A|Uα〉〈Ũα| =: AQ, (5.59)

has no zero eigenvalues, the second integral is evaluated as follows,
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the 2nd integral =
∫ t

t0

ds e(t−s)AQ QF(W 0(t0))

= eAQt (−A−1
Q )

[

e−AQs
]t

t0
QF(W 0(t0))

= eAQ(t−t0)A−1
Q QF(W 0(t0)) − A−1

Q QF(W 0(t0)). (5.60)

Thus we have for the first-order solution

u1(t; t0) = e(t−t0)AQ [W 1(t0) + A−1
Q QF(W 0(t0))]

+(t − t0)PF(W 0(t0)) − A−1
Q QF(W 0(t0)). (5.61)

The first term containing the ‘initial’ value correction W 1(t0) formally belongs to
the Q space and is composed of fast modes which would die out asymptotically as
t → ∞. However, we have supposed that we are dealingwith an asymptotic analysis
in which such fast modes have already died out. Our point is that such a construction
of the solution is possible by choosing the yet-unknown ‘initial’ valueW 1(t0) so that
such undesired terms disappear. Indeed the first term disappear by choosing W 1(t0)
as

W 1(t0) = −A−1
Q QF(W 0(t0)) = −A−1QF(W 0(t0)). (5.62)

Here and from now on, we shall use a simplified notation for

f (AQ)Q = f (A)Q (5.63)

for any function f (x) even for the inverse as f (A) = A−1. We note that W 1(t0) is
orthogonal to the P space, and depends on t0 only through C(t0). With this choice,
we have for the first-order solution

u1(t; t0) = (t − t0)PF − A−1QF. (5.64)

It is to be noted that the argument of F is W 0(t0) and hence a function of C(t0). In
a later section, we shall show a short-cut prescription to reach the final form (5.64).

Since the ‘initial’ value W(t0) is supposed to be the exact solution, the above
construction of the first-order solution implies that the invariant manifold is modified
to M1, which is represented by

M1 = {u|u = W 0 − εA−1QF(W 0)}. (5.65)

If one stops in this order, the approximate solution reads

u(t; t0) = W 0 + ε{(t − t0)PF − A−1QF}, (5.66)
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which contains a secular term proportional to a function belonging to the P space,
and should be valid locally around t ∼ t0.

To obtain the solution that is uniformly valid in a global domain, we apply the
RG/E equation to (5.66),

du/dt0|t0=t = 0, (5.67)

which leads to

0 = dW 0(t0)

dt0

∣
∣
∣
t0=t

− ε

[

PF(W 0(t)) + A−1Q
dF
dW 0

dW 0

dt0

∣
∣
∣
t0=t

]

. (5.68)

However, since dW 0(t)/dt is already of order ε1, the second term in the big
bracket is of higher order and may be neglected. Thus we arrive at

dW 0(t)

dt
= εPF(W 0(t)), (5.69)

which is reduced to an m-dimensional coupled equation by making an inner product
with Ũ i as

dCi (t)

dt
= ε〈Ũ i , F(W 0[C])〉, (i = 1, 2, · · · ,m). (5.70)

The global solution representing a trajectory on the invariant manifold up to this
order is given by

u(t) = u(t; t0 = t) =
m

∑

i=1

Ci (t)U i − εA−1QF(W 0[C]), (5.71)

with C(t) being the solution to (5.70).
In short, we have derived the invariant manifold as the ‘initial’ value represented

by (5.71) and the reduced dynamics (5.70) on it in the RG method in the first-order
approximation.

5.5.3 Second-Order Analysis

We can proceed to the second-order analysis naturally. The second-order equation
reads

(
d

dt
− A

)

u2 = F′(u0)u1, (5.72)
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where

(F′(u0)u1)i =
n

∑

j=1

{

∂(F ′(u0))i/∂(u0) j
}

(u1) j . (5.73)

Much the sameway as in the first-order case, the second-order solution is formally
obtained to give

u2(t; t0) = e(t−t0)AW 2(t0) +
∫ t

t0

dse(t−s)AF′(u0(s; t0))u1(s; t0). (5.74)

After inserting u1(t; t0) given in (5.64) into the integrand, a straightforward but
somewhat tedius evaluation of the integral yields

u2(t; t0) = e(t−t0)A
[

W 2(t0) − {

A−1QF′A−1QF − A−2QF′PF
}]

+A−1QF′A−1QF − A−2QF′PF

−(t − t0)
{

PF′A−1QF + A−1QF′PF
}

+1

2
(t − t0)

2PF′PF, (5.75)

where the argument of F and F′ is W 0[C]. The ‘initial’ value W 2(t0) that actually
gives the second correction of the global solution is determined so as to cancel out
the fast modes in the first line in (5.75) as before;

W 2(t0) = A−1QF′(W 0)A
−1QF(W 0) − A−2QF′PF, (5.76)

which implies that the invariant manifold is modified to M2 as represented by

M2 = {u|u = W 0[C] + ρ[C]}; ρ = εW 1 + ε2W 2, (5.77)

in the second-order approximation.
Now the second-order solution reads

u2(t; t0) = A−1QF′A−1QF − A−2QF′PF

−(t − t0)
{

PF′A−1QF + A−1QF′PF
}

+1

2
(t − t0)

2PF′PF. (5.78)

We note that the ‘initial’ value u2(t = t0; t0) of which at t = t0 coincides withW 2(t0)
given by (5.76). Thus the full expression of the solution up to the second order is
given by
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u(t; t0) = W0(t0) + ε{(t − t0)PF − A−1QF}
+ε2

[

A−1QF′A−1QF − A−2QF′PF − (t − t0)
{

PF′A−1QF + A−1QF′PF
}

+ 1

2
(t − t0)

2PF′PF
]

. (5.79)

This is a locally valid solution around t = ∀t0. To construct a globally valid solution
from it, we apply the RG/E equation du/dt0|t0=t = 0 to (5.79), which is reduced to

Ẇ 0(t) − εPF − εA−1QF′Ẇ 0 + ε2
{

PF′A−1QF + A−1QF′PF
} = 0. (5.80)

Operating the projections P and Q to the both sides of (5.80), respectively, we
have

Ẇ 0(t) − εPF + ε2PF′A−1QF = 0, (5.81)

−εA−1QF′Ẇ 0 + ε2A−1QF′PF = 0. (5.82)

Firstly, we notice that the last equation (5.82) is reduced to

εA−1QF′(−Ẇ 0 + εPF) = 0, (5.83)

which is identically satisfied on account of (5.81) up to this order. Thus, we end up
with the reduced equation given by

Ẇ 0(t) = εPF − ε2PF′A−1QF, (5.84)

which is further reduced by taking an inner product with Ũ i to

Ċi = ε〈Ũ i , F − εF′A−1QF〉, (i = 1, 2, . . . ,m), (5.85)

i.e., m-dimensional coupled equations. Note that the time derivative is an order of
ε, implying that the equation describes a slow dynamics with a fewer degrees of
freedom than that of the microscopic Eq. (5.33).

The global solution giving the trajectory on the invariant manifold is given by the
‘initial’ value as

u(t) = W(t) = W 0[C] + ρ[C]
= W 0[C] − εA−1QF + ε2{A−1QF′A−1QF − A−2QF′PF}, (5.86)

with C(t) being the solution to (5.85). Notice that the argument of F and F′ in the
above expression is all W 0, hence the right-hand side is a function of C , i.e.,

u(t) = u[C]. (5.87)
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Recall that C was introduced as the integral constants of the unperturbed solution.
A remark is in order here: The present formulation using the projection operators

and the resultant RG/E Eq. (5.85) governing the slowmotion resemble those byMori
theory [100] for deriving the Langevin equation from a generic dynamical equation.

5.6 Example II: The Case With the Generic System with
the Linear Operator Having a Jordan Cell Structure

We start with the same n-dimensional system as Eq. (5.33);

(
d

dt
− A

)

u = εF(u), (5.33).

In this section, however, we shall deals with the case where the linear operator A
has 0 eigenvalues with degeneracy ofm but not digonalizable and accordingly A has
an m-dimensional Jordan cell structure. The other eigenvalues of A are assumed to
have negative real parts as in the last section.

5.6.1 Preliminaries for a Linear Operator with
Two-Dimensional Jordan Cell

Weshall specifically dealwith a simple casewhere the Jordan cell is two-dimensional;
m = 2. In this case, we have the normalized vectors U1 and U2 that satisfy

AU1 = 0, AU2 = U1, (5.88)

while other eigenvalues have negative real parts;

AUα = λαUα, Reλα < 0, (α = 3, 4, · · · , n). (5.89)

We assume that U i (i = 1, 2) and Uα’s are linearly independent. Since the linear
operator A may not be symmetric (self-adjoint), we need to specify the properties of
the adjoint operator A†. The adjoint operator A† is defined by

〈V , AU〉 = 〈A†V ,U〉, (5.90)

where 〈V , U〉 is the Hermitian inner product. The adjoint A† has also the same
Jordan cell structure as A has;

A†Ũ1 = 0, A†Ũ2 = Ũ1, (5.91)
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and

A†Ũα = λ∗
αŨα, Reλ∗

α < 0, (α = 3, 4, · · · , n). (5.92)

We assume that Ũ i ’ and Ũα’s are linearly independent.
We take the following normalization condition for the Jordan cell vectors as3

〈Ũ2,U1〉 = 1, 〈Ũ1,U2〉 = 1, (5.93)

where 〈 , 〉 denotes the inner product. In the Dirac’s bra-ket notation for an inner
product, they are expressed as

〈Ũ2|U1〉 = 1, 〈Ũ1|U2〉 = 1. (5.94)

We note also the following orthogonality

〈Ũ1,U1〉 = 〈A†Ũ2,U1〉 = 〈Ũ2, AU1〉 = 〈Ũ2, 0〉 = 0. (5.95)

For the rest of the eigenvectors, we have the orthogonal condition

〈Ũα|Uβ〉 = δαβ, (α, β = 3, 4, . . . , n) (5.96)

where we have demand the normalization condition for α = β.
Let P and Q be the projection operators onto the subspace spanned by {U1,U2}

and its orthogonal compliment spanned by Uα’s, respectively:

P + Q = 1. (5.97)

The projection operator to the P space is expressed as

P = |U1〉〈Ũ2| + |U2〉〈Ũ1|. (5.98)

which implies that for an arbitrary vector u belonging to the P space is expressed as

P|u〉 = 〈Ũ2|u〉|U1〉 + 〈Ũ1|u〉|U2〉 = C1U1 + C2U2, (5.99)

with

C1 := 〈Ũ2|u〉, C2 := 〈Ũ1|u〉. (5.100)

3 The present ortho-normalization conditions are different from those adopted in [6], but the standard
ones.
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If we confine ourselves in the P space and choose U i (i = 1, 2) as the bases of
the P space, A and U i ’s are represented as

A ∼
(

0 1
0 0

)

, U1 =
(

1
0

)

= Ũ2, U2 =
(

0
1

)

= Ũ1, (5.101)

which has the orthogonality condition 〈Ũ2|U2〉 = 0. The projection operator P reads

P =
(

1
0

)
(

1 0
) +

(

0
1

)
(

0 1
) =

(

1 0
0 1

)

. (5.102)

The projection operator Qa onto the eigenstateUα (α = 3, 4, . . . , n) is expressed
by

Qα = |Uα〉〈Ũα| (5.103)

in the bra-ket notation. Then the projection operator onto the Q space reads

Q =
n

∑

α=3

Qα =
n

∑

α=3

|Uα〉〈Ũα| = 1 − P. (5.104)

We also note the idempotency of the projection operators as

P2 = P, Q2 = Q. (5.105)

Then we have the following useful formula for the operation of the time-evolution
operator et A,

et Au = et A(P + Q)u = et A(C1U1 + C2U2) + et AQu

= C1e
t AU1 + C2e

t AU2 + et AQu

= C1U1 + C2(1 + t A)U2 + et AQu

= (C1 + C2t)U1 + C2U2 + et AQu, (5.106)

withC1 := 〈Ũ2|u〉 andC2 := 〈Ũ1|u〉. Here the last term in (5.106) is further reduced
on account of (5.104) as

et AQu =
n

∑

α=3

et A|Uα〉〈Ũα|u〉 =
n

∑

α=3

eλα tCα|Uα〉 (5.107)

with Cα := 〈Ũα|u〉, which tends to vanish when t → ∞ because

|eλα t | = e−t |Reλα | → 0. (5.108)
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5.6.2 Perturbative Construction of the Attractive/Invariant
Manifold

We are in a position to construct the attractive/invariant manifold M and the reduced
dynamics on it for the system (5.33). Since these notions are to become valid asymp-
totically as t → ∞, we are going to make an asymptotic analysis in the perturbation
theory utilizing the RG method.

As before, we first expand the solution u(t) at an arbitrary but large time t0 with
respect to ε as

u(t; t0) = u0(t; t0) + εu1(t; t0) + ε2u2(t; t0) + · · · , (5.109)

with the ‘initial’ value u(t0; t0) = W(t0) being supposed to be an asymptotic form
of an exact solution: More specifically, t = t0 is large enough so that the asymptotic
solution u(t; t0) has a value on the invariantmanifoldM. In otherwords, u(t) = W(t)
gives an asymptotic but global solution to (5.33) confined onM. Therefore we should
also expand the “initial’ value’ W(t0) as

W(t0) = W 0(t0) + εW 1(t0) + ε2W 2(t0) + · · · .

= W 0(t0) + ρ(t0), (5.110)

where ρ(t0) is supposed to be independent of W 0. They are yet-unknown functions
to be determined through faithfully solving the equation in the perturbation theory.

The lowest-order equation takes the same form as that given in (5.36), which reads
(d/dt − A)u0 = 0 with the ‘initial’ condition

u0(t0; t0) = W 0(t0). (5.111)

Utilizing the formula (5.106), the solution to the lowest-order equation is readily
given by

u0(t; t0) = e(t−t0)Au0(t0; t0)
= [C (0)

1 + C (0)
2 (t − t0)]U1 + C (0)

2 U2 + e(t−t0)AQW 0 (5.112)

where

C (0)
1 := 〈Ũ2|u0〉 = 〈Ũ2|W 0〉, C (0)

2 := 〈Ũ1|W 0〉. (5.113)

Sinceweare interested in constructing the invariantmanifold to be realized asymp-
totically for t → ∞, the lowest-order solution should be as stationary as possible.
The formula (5.112) tells us that such a solution is provided with the choice of the
‘initial’ condition

C (0)
2 = 〈Ũ1|W 0〉 = 0 and QW 0 = 0, (5.114)
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and we have

u0(t; t0) = C (0)
1 (t0)U1. (5.115)

Accordingly, the ‘initial’ value reads

W 0(t0) = C (0)
1 (t0)U1, (5.116)

and the lowest order manifold is represented as

M0 = {u0|u0 = C (0)
1 U1}. (5.117)

We remark that the second condition of Eq. (5.114) implies that

〈Ũα|W 0〉 = 0, (α = 3, 4, . . . , n). (5.118)

A comment is in order here:
The zero-th order solution is constituted only by the genuine zero mode U1, but not
U2 that is the other constituent of the Jordan cell in contrast to the semi-simple case.
This is a point for the construction of the invariant manifold using the RG method
when A has a Jordan cell. We shall see that the following perturbative calculations
are performed with ease by this set up where the zeroth-order solution has no time
dependence: If we had included the U2 in the zeroth-order solution, it necessarily
becomes time dependent. The component in the U2 direction will be incorporated
by the perturbation together with those in the Q space. However, we will see that
the amplitude of U2 in turn constitutes the reduced dynamics together with C (0)

1 . We
shall give more words on the treatment of the reduced dynamics and the coordinates
of the invariant manifold later in the final stage.

The first-order equation has the same form as that given by (5.53), which reads
(d/dt − A)u1 = F(u0(t; t0)), the formal solution to which is also given by (5.56),

u1(t; t0) = e(t−t0)AW 1(t0) +
∫ t

t0

ds e(t−s)AF(u0(s; t0)). (5.119)

In accordance with the prescription of the RGmethod that the perturbed solutions
are chosen so that the part of unperturbed solutions vanish at t = t0, the form of the
‘initial’ value W 1(t0) is chosen so as to be independent of W 0;

W 1(t0) = C (1)
2 (t0)U2 + QW 1(t0), (5.120)

with the component QW 1 yet to be specified later in the process of the solution.
Then the first term of the solution (5.119) is evaluated as follows:
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e(t−t0)AW 1(t0) = e(t−t0)AC (1)
2 (t0)U2 + e(t−t0)AQW 1(t0)

= C (1)
2 (t0)[1 + (t − t0)A]U2 + e(t−t0)AQW 1(t0)

= C (1)
2 (t0)[(t − t0)U1 + U2] + e(t−t0)AQW 1(t0). (5.121)

Next, we evaluate the second term of (5.119). Noting that u0(s; t0) is actually
independent of s, the integrand in (5.119) is reduced as follows:

e(t−s)AF(u0(s; t0)) = e(t−s)A(P + Q)F(u0(s; t0))
= e(t−s)APF(u0(s; t0)) + e(t−s)AQF(u0(s; t0))
= (C (F)

1 (t0) + (t − s)C (F)
2 (t0))U1

+C (F)
2 (t0)U2 + e(t−s)AQF, (5.122)

with

CF
1 (t0) := 〈Ũ2|F〉, CF

2 (t0) := 〈Ũ1|F〉. (5.123)

Then the integral is evaluated as

∫ t

t0
ds e(t−s)AF(u0(s; t0)) = ((t − t0)C

(F)
1 + 1

2
(t − t0)

2C (F)
2 )U1 + (t − t0)C

(F)
2 U2

− A−1QF(u0(t; t0)) + e(t−t0)A A−1QF(u0(t; t0)).
(5.124)

Collecting all the terms, we have the first-order solution as

u1(t; t0) = e(t−t0)A[QW 1(t0) + A−1QF]
+{C (1)

2 (t0)(t − t0) + C (F)
1 (t0)(t − t0) + C (F)

2 (t0)
1

2
(t − t0)

2}U1

+{C (1)
2 (t0) + C (F)

2 (t0)(t − t0)}U2 − A−1QF, (5.125)

where we have suppressed the terms proportional to (t − t0)n≥2 which do not con-
tribute to the RG/E equation nor to the invariant manifold. We remark that the argu-
ment of F is W 0[C (0)

1 ].
The yet unspecified Q-component of the ‘initial’ value QW 1(t0) can be now

determined so that the possible fast mode in the first line of (5.125) vanishes. Then
we have

QW 1(t0) = −A−1QF, (5.126)
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which implies that the first-order ‘initial’ value W 1(t0) is now written as

W 1(t0) = u1(t0; t0) = C (1)
2 (t0)U2 − A−1QF. (5.127)

Thus the first-order solution now takes a somewhat simpler form

u1(t; t0) = {C (1)
2 (t0)(t − t0) + C (F)

1 (t0)(t − t0) + C (F)
2 (t0)

1

2
(t − t0)

2}U1

+{C (1)
2 (t0) + C (F)

2 (t0)(t − t0)}U2 − A−1QF. (5.128)

Then the solution to (5.33) in the first-order approximation is given by

u(t; t0) = C (0)
1 (t0)U1 + ε

[

{C (F)
1 (t0)(t − t0) + C (1)

2 (t0)(t − t0)

+1

2
C (F)
2 (t0)(t − t0)

2}U1 + {C (F)
2 (t0)(t − t0) + C (1)

2 (t0)}U2 − A−1QF
]

.

(5.129)

The RG/E equation

du(t; t0)
dt0

∣
∣
∣
∣
t0=t

= 0 (5.130)

in this order now leads to

0 = Ċ (0)
1 U1 − ε{(C (F)

1 + C (1)
2 )U1 + (C (F)

2 − Ċ (1)
2 )U2 + 1

A
QF′Ċ (0)

1 U1.(5.131)

Equating the coefficients of the independent vectors, we arrive at the reduced
dynamical equation with two degrees of freedom as

Ċ (0)
1 = ε

(

〈Ũ2|F〉 + C (1)
2

)

, Ċ (1)
2 = 〈Ũ1|F〉, (5.132)

where we have inserted the definition of C (F)
i (i = 1, 2) given in (5.123). We now

see that the attractive/invariant manifold M1 is given by

u(t) = W(t) � W 0[C (0)
1 ] + W 1[C (0)

1 ],
= C (0)

1 (t)U1 + εC (1)
2 (t)U2 − εA−1QF, (5.133)

with C (0)
1 (t) and C (1)

2 (t) being governed by (5.132). Notice that u(t) is a functional
of C (0)

1 (t) and C (1)
2 (t). One finds that the invariant manifold is deformed by the

perturbation to the Q space as well as the remaining direction in the P space. The
deformation in the Q direction is a function solely of C (0)

1 .
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An important remark is in order here: There is an imbalance of the treatment of
the coordinate C (0)

2 , which gives a deformation of the manifold in the P space with
the amplitude of order O(ε), whereas the time dependence is not small without the
small parameter as seen in the right-hand side of (5.132). Such an imbalance can be
naturally made disappear by the redefinition of

εC (1)
2 = C (0)

2 . (5.134)

Then the reduced evolution equation (5.132) and the expression of the invariant
manifold (5.133) rewritten, respectively, as

Ċ (0)
1 = C (0)

2 + ε〈Ũ2|F〉, Ċ (0)
2 = ε〈Ũ1|F〉, (5.135)

and

u(t) = W(t) � W 0[C (0)
1 ] + W 1[C (0)

1 ],
= C (0)

1 (t)U1 + C (0)
1 (t)U2 − εA−1QF. (5.136)

We now see that bothC (0)
1,2(t) become the slow variables and give the zero-th order

coordinates of the invariant manifold, although the deformation

− εA−1QF =: ρ(C0
1 (t)) (5.137)

of it in the Q direction is solely given by the amplitude of the zero eigenvector C (0)
1 .

In the second-order analysis given below, we shall also use the notation C (0)
2

instead ofC (1)
2 in the final stage. We shall see that the invariant manifold is expressed

in the form of

u(t) = C (0)
1 (t)U1 + C (0)

2 (t)U2 + ρ(C0
1 (t),C

(0)
2 ). (5.138)

This form has been taken as the ansatz by Y. Kuramoto [32] for the functional
form of the invariant manifold when the linear operator of the unperturbed equation
has a two-dimensional Jordan cell.

Second-Order Analysis
We can proceed to incorporate the second-order corrections: Using the first-order
solution u1(t; t0) given in (5.128), we solve the second-order Eq. (5.72), which reads
(d/dt − A)u2 = F′(u0)u1. The formal solution to (5.72) is already presented in
(5.74), which reads

u2(t; t0) = e(t−t0)AW 2(t0) +
∫ t

t0

dse(t−s)AF′(u0(s; t0))u1(s; t0), (5.139)

where u1(t; t0) given in (5.128) is to be inserted.



130 5 RG Method for Asymptotic Analysis with Reduction of Dynamics …

For a further reduction of (5.139), it is found convenient tofirst define the following
quantities;

g = C (1)
2 (t0)U1 + C (F)

1 U1 + C (F)
2 U2, h = −A−1QF + C (1)

2 U2. (5.140)

Then making a straightforward but rather tedious manipulations, we arrive at

u2(t; t0) = e(t−t0)A[W 2(t0) + {A−1QF′h + A−2QF′(g}]
+(t − t0)

{−A−1QF′g + PF′h
} − {A−1QF′h + A−2QF′g}

+O((t − t0)
2) (5.141)

where the last term denote those that vanish when the RG/E equation is applied. As
was done before, we demand that the fast motion as described by the exponential
functions as eλα t disappear, which is achieved by the choice of the ‘initial’ value as

W 2(t0) = − (

A−1QF′h + A−2QF′g
)

, (5.142)

which belongs to theQ-space and give rise to a deformation of the invariant manifold.
With this choice of the ‘initial’ value, we have for the second-order solution

u2(t; t0) = (t − t0)
{−A−1QF′g + PF′h

} − {A−1QF′h + A−2QF′g}
+O((t − t0)

2), (5.143)

where the last term denotes the term that vanishes when the RG/E equation is applied.
Collecting all the terms, the solution to (5.33) in the second-order approximation is
given by

u(t; t0) = C (0)
1 (t0)U1 + ε

[

{C (F)
1 (t − t0) + C (1)

2 (t0)(t − t0) + 1

2
C (F)
2 (t − t0)

2}U1

+{C (F)
2 (t − t0) + C (1)

2 (t0)}U2 − A−1QF
]

+ε2
[

(t − t0)
{−A−1QF′g + PF′h

} − {A−1QF′h + A−2QF′g}
]

+O((t − t0)
2, (5.144)

where the terms which vanish when the RG/E equation is applied are suppressed.
Here g and h are defined in (5.140).

The RG/E equation du/dt0|t0=t = 0 leads to

Ċ (0)
1 U1 − ε(C (F)

1 + C (1)
2 )U1 + ε(Ċ (1)

2 − C (F)
2 )U2 − εA−1QF′Ċ (0)

1 U1

−ε2
{−A−1QF′g + PF′h

} − ε2
{

A−1QF′Ċ (1)
2 U2 + A−2QF′Ċ (1)

2 U1

}

= 0,

(5.145)
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because of Ċ (0)
1 = O(ε). Operating P and Q onto (5.145), we obtain

0 = {Ċ (0)
1 − εC (1)

2 − εC (F)
1 )}U1 + (εĊ (1)

2 − εC (F)
2 )U2 − ε2PF′h, (5.146)

0 = −ε2A−2QF′Ċ (1)
2 U1 − εA−1QF′

{

Ċ (0)
1 U1 + εĊ (1)

2 U2 − εg
}

. (5.147)

Taking the inner product with Ũ2 and Ũ1 with (5.146), respectively, we have

{

Ċ (0)
1 = εC (1)

2 + ε〈Ũ2|F + εF′h〉,
Ċ (1)
2 = 〈Ũ1|F + εF′h〉, (5.148)

where we have inserted the definition ofC (F)
i (i = 1, 2) given in (5.123). We remark

that (5.147) is a higher order quantity of O(ε3) because of (5.148), provided that

QF′U1 = 0, (5.149)

which is a kind of the necessary condition for the reduction of the dynamics is
realized. Equating the components in the U1,U2 in (5.146), we have the reduced
dynamics with the replacement εC (1)

2 = C (0)
2 as follows,

{

Ċ (0)
1 = C (0)

2 + ε〈Ũ1, F + εF′h〉,
Ċ (0)
2 = ε〈Ũ2, F + εF′h〉, (5.150)

where F and F′ are functions solely of W 0(t) = C (0)
! (t)U1. The trajectory on the

manifold M2 is given by

u(t) = W(t) = W 0(t) + εW 1(t) + ε2W 2(t),

= C (0)
1 (t)U1 + C (0)

2 (t)U2 − εA−1QF

−ε2{A−1QF′h + 〈Ũ2, F〉A−2QF′U2},
= C (0)

1 (t)U1 + C (0)
2 (t)U2 + ρ(C0

1 (t),C
(0)
2 ), (5.151)

with

ρ(C0
1 (t),C

(0)
2 (t)) = −εA−1QF − ε2{A−1QF′h + 〈Ũ2, F〉A−2QF′U2}.

(5.152)

Comments are in order: The solution is solely described by the coordinates C (0)
1

and C (0)
2 representing the P space as in the previous subsection. Conversely, the

dynamics can not be described only by the coordinate in the zero-th manifold in this
case; the dimension of the invariantmanifold is increased from that of the unperturbed
invariant manifold. The deformation of the zero-th order invariant manifold C (0)

1 U1

is given by not only the counter part of the Jordan doublet C (0)
2 U2 but also the
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Q-space vector which is, however, a function of the coefficients C0
1 and C

(0)
2 , as was

taken for granted by Kuramoto [32] for the form of the invariant manifold when the
linear operator in the unperturbed equation has a two-dimensional Jordan cell.

5.7 Concluding Remarks

The reduction theory presented in this chapter has applicabilities to various problems
in various sciences, in particular, non-equilibrium physics. We shall see such exam-
ples in Chap. 7 where stochastic equations are treated and extensive developments in
Part II where derivation of fluid dynamical equations in the quantum (non)relativistic
systems are derived and their properties are extensively examined.

Appendix: Useful Formulae of Solutions for Inhomogeneous
Differential Equations for the RG Method II: When A Is
Non Semi-Simple

In the RG method as a reduction theory of dynamics [5, 6], the particular solutions
in the higher orders are set up with the rules that (1) the contributions of possible
secular terms disappear at an arbitrary ‘initial’ time t = t0, and (2) possible fast
modes should be absent. Some simple formulae for particular solutions that satisfy
the rule (1) are presented in Sect. 4.7 in the case where the linear operator appearing
in the inhomogeneous differential equation is semi-simple. It is to be noted, however,
the formulae presented in in Sect. 4.7 do satisfy the rule (2), too, for the semi-simple
operator.

In the present Appendix, we shall give some useful formulae [6] fo the solutions
of the inhomogeneous differential equations where the linear operator A is not semi-
simple but has a Jordan cell structure.

1. two-dimensional Jordan cell
Let us consider the case where A has a two dimensional Jordan cell structure as

AU1 = 0, AU2 = U1. (5.153)

The adjoint A† has also a Jordan cell structure4;

A†Ũ1 = 0, A†Ũ2 = Ũ1. (5.154)

4 The adjoint operator A† is defined by 〈V , AU〉 = 〈A†V ,U〉, where 〈V ,U〉 is the Hermitian inner
product.
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We define the projection operators P and Q onto the subspace {U1,U2} and its
orthogonal compliment, respectively: P + Q = 1. We take the following normal-
ization condition,

〈Ũ2,U1〉 = 1, 〈Ũ1,U2〉 = 1. (5.155)

If we confine ourselves in the P space and choose U i (i = 1, 2) as the bases of
the P space,

A =
(

0 1
0 0

)

, (5.156)

U1 =
(

1
0

)

= Ũ2, U2 =
(

0
1

)

= Ũ1. (5.157)

The projection operator onto the P space is expressed as P = U1Ũ
†
2 + U2Ũ

†
1,

and accordingly, an arbitrary vector U can be expressed as

PU = 〈Ũ2,U〉U1 + 〈Ũ1,U〉U2. (5.158)

Let F = f (t)G with G being a constant vector, then the contribution of the P
space to the integral in (4.225) can be performed as follows:

eAt
∫ t

t0
ds e−As f (s)PG =

∫ t

t0
ds eA(t−s) f (s)

[

〈Ũ2, G〉U1 + 〈Ũ1, G〉U2

]

=
∫ t

t0
ds f (s)

[

〈Ũ2, G〉U1 + 〈Ũ1, G〉U2 + (t − s) 〈Ũ1, G〉U1

]

=
∫ t

t0
ds

[

f (s)PG + f (s)(t − s) 〈Ũ1, G〉U1}
]

, (5.159)

=
∫ t

t0
ds f (s)PG +

∫ t

t0
ds

∫ s

t0
ds′ f (s′)〈Ũ1, G〉U1. (5.160)

In the last equality, a partial integration has been made. Thus, making the operator
identity

eAt
∫ t

t0

ds e−As ≡ 1
d
dt − A

(5.161)

as before, we have, for example,



134 5 RG Method for Asymptotic Analysis with Reduction of Dynamics …

1
d
dt − A

PG = (t − t0)PG + 1

2
(t − t0)

2〈Ũ1, G〉U1, (5.162)

1
d
dt − A

(t − t0)
n PG = 1

(n + 1)
(t − t0)

n+1PG,

+ 1

(n + 2)(n + 1)
(t − t0)

n+2〈Ũ1, G〉U1. (5.163)

The formulae involving QG are the same as those in the semi-simple case.
2. Three-dimensional Jordan cell

Next let us take the case where A has a three-dimensional Jordan cell [6] such as

AU1 = 0, AU2 = U1, AU3 = U2. (5.164)

The adjoint equation reads

A†Ũ1 = 0, A†Ũ2 = Ũ1, A†Ũ3 = Ũ2. (5.165)

The normalization condition reads

〈Ũ3,U1〉 = 〈Ũ2,U2〉 = 〈Ũ1,U3〉 = 1. (5.166)

Let us call the sub-vector space spanned by {U1, U2, U3} the P space and the
compliment of it Q space. The projection operator onto the P space is given by

P = U1Ũ
†
3 + U2Ũ

†
2 + U3Ũ

†
1, (5.167)

and the projection operator onto Q space is given by Q = 1 − P . If we confine
ourselves in the P space and choose U i (i = 1, 2, 3) as the bases of the P space,

A =
⎛

⎝

0 1 0
0 0 1
0 0 0

⎞

⎠ , (5.168)

U1 =
⎛

⎝

1
0
0

⎞

⎠ = Ũ3, U2 =
⎛

⎝

0
1
0

⎞

⎠ = Ũ2, U3 =
⎛

⎝

0
0
1

⎞

⎠ = Ũ1. (5.169)

Let F = f (t)G with G being a constant vector, then the contribution of the P
space to the integral in (4.225) is calculated as follows:



Appendix: Useful Formulae of Solutions for Inhomogeneous … 135

eAt
∫ t

t0
ds e−As f (s)PG =

∫ t

t0
ds eA(t−s) f (s)

[

〈Ũ3, G〉U1 + 〈Ũ2, G〉U2 + 〈Ũ1, G〉U3

]

=
∫ t

t0
ds f (s)

[〈Ũ3, G〉U1 + 〈Ũ2, G〉U2 + (t − s)〈Ũ2, G〉U1

+ 〈Ũ1, G〉U3 + (t − s)〈Ũ1, G〉U2 + 1

2
(t − s)2〈Ũ1, G〉U1

]

=
∫ t

t0
ds

[

f (s)PG + f (s)(t − s) {〈Ũ2, G〉U1 + 〈Ũ1, G〉U2}

+ 1

2
f (s)(t − s)2〈Ũ1, G〉U1

]

. (5.170)

Using the formal identification (5.161), we have

1
d
dt − A

f (t)PG =
∫ t

t0
ds f (s)PG +

∫ t

t0
ds

∫ s

t0
ds′ f (s′){〈Ũ2, G〉U1 + 〈Ũ1, G〉U2}

+
∫ t

t0
ds

∫ s

t0
ds1

∫ s1

t0
ds2 f (s2)〈Ũ1, G〉U1, (5.171)

where partial integrations have been made as in (5.160).



Chapter 6
Miscellaneous Examples of Reduction of
Dynamics

6.1 Introduction

In this chapter, we take up several examples of a system of differential equations
and apply the renormalization-group (RG) method [1, 38, 39, 48–52, 92–96] as
formulated in [3–6] for obtaining the reduced dynamics of them with different char-
acteristics. The examples include a bifurcation in the Lorenz model [84, 86], and
the Hopf bifurcation [34, 86] in Brusselator [30, 83] with the diffusion term. Fur-
thermore we shall analyze an extended Takens equation [101] and Benney equation
[36], both of which have a Jordan cell structure in the linear operator appearing in
the zeroth-order equation.

6.2 RG/E Analysis of a Bifurcation in The Lorenz Model

In this section, we shall show how a bifurcation phenomenon of the Lorenz model
[84, 86] (3.136) (or (3.138) in a vector notation) is described in the RG method,
which was also performed with the use of the multiple-scale method in Chap. 3: As
was mentioned there, what we are doing is to construct a center manifold and the
reduced dynamics [33, 34, 86] on it in a perturbative way.

We reproduce the Lorenz equation (3.138) [84, 86] here;

dX
dt

= F(X; r), (6.1)

with

X :=
⎛
⎝

ξ

η

ζ

⎞
⎠ , F(X; r) :=

⎛
⎝

σ(−ξ + η)

−ξζ + rξ − η

ξη − bζ

⎞
⎠ . (6.2)

We shall dare to recapitulate the formulae written in Chap. 3 for convenience and
completeness.
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There are two steady states of the equation; the one is the origin

0 =: X (A)
0 (6.3)

and the others are given by

X (B)
0 = t (±√b(r − 1), ±√b(r − 1), r − 1). (6.4)

As in Chap. 3, we shall try to obtain the slow dynamics and the invariant manifold
or center manifold [33, 34, 86] around the origin X (A)

0 for r ∼ 1. For describing r
around 1, we parametrize it as r = 1 + μ with μ = χε2 and χ = sgnμ.

Let X(t; t0) be a local solution around t ∼ ∀t0 in the asymptotic regime, and
represent it as a perturbation series;

X(t; t0) = εX1(t; t0) + ε2X2(t; t0) + ε3X3(t; t0) + · · · , (6.5)

with

X i =
⎛
⎝

ξi
ηi
ζi

⎞
⎠ , (i = 1, 2, 3, . . . ). (6.6)

We suppose that the ‘initial’ value W(t0) of X(t; t0) at t = t0 is made equal to
that of an exact solution, which we denote as XE(t),

W(t0) := X(t0; t0) = XE(t0). (6.7)

The ‘initial’ value as the exact solution should also be expanded as

W(t0) = W 0(t0) + ε W 1(t0) + ε2 W 2(t0) + · · · . (6.8)

The first order equation reads

(
d

dt
− L0

)
X1 = 0, with L0 =

⎛
⎝

−σ σ 0
1 −1 0
0 0 −b

⎞
⎠ . (6.9)

The linear operator L0 has one zero eigenvalue λ1 = 0 and two negative ones λ2 =
−σ − 1 and λ3 = −b, and the respective eigenvectors are given as follows,

U1 =
⎛
⎝
1
1
0

⎞
⎠ , U2 =

⎛
⎝

σ

−1
0

⎞
⎠ and U3 =

⎛
⎝
0
0
1

⎞
⎠ . (6.10)

Thegeneral solution of thefirst-order equation is expressed as a linear combination
of the normal modes given by
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AU1 + Beλ2tU2 + Ceλ3tU3. (6.11)

However, since we are interested in the asymptotic state after a long time, we take
the neutrally stable solution

X1(t; t0) = A(t0)U1 = t (A(t0), A(t0), 0) = t (ξ1, η1, ζ1), (6.12)

which implies that

W 1(t0; t0) = A(t0)U1. (6.13)

The second-order equation is now expressed as

(
d

dt
− L0

)
X2 =

⎛
⎝

0
−ξ1ζ1
ξ1η1

⎞
⎠ = A2U3. (6.14)

Using the formula (4.237), we find that the particular solution to which is given by

X2 = 1
d
dt − L0

A2U3 = 1

0 − (−b)
A2U3 =

⎛
⎝

0
0
ζ2

⎞
⎠ with ζ2 = A2

b
. (6.15)

Accordingly, the second-order correction of the ‘initial’ value reads

W 2(t0) = t (0, 0,
1

b
A2(t0)). (6.16)

The third-order equation now takes the form of

(
d

dt
− L0

)
X3 =

⎛
⎝

0
χξ1 − ξ1ζ2

0

⎞
⎠ =

(
χ A − 1

b
A3

)⎛
⎝
0
1
0

⎞
⎠

=
(

χ A − 1

b
A3

)[ σ

σ + 1
U1 − 1

σ + 1
U2

]
. (6.17)

According to the formulae (4.238) and (4.237), we have

1
d
dt − L0

U1 = (t − t0)U1, (6.18)

1
d
dt − L0

U2 = 1

0 − (−σ − 1)
U2 = 1

σ + 1
U2, (6.19)

respectively. Thus we have
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X3 = (χ A − 1

b
A3)
{ σ

σ + 1
(t − t0)U1 + 1

(σ + 1)2
U2

}
, (6.20)

implying that the third-order correction to the ‘initial’ value is

W 3(t0) = χ A − 1
b A

3

(σ + 1)2
U2. (6.21)

Note the appearance of a secular term in (6.20).
Now collecting the all the terms obtained so far, we have

X(t; t0, A(t0)) = εA(t0)U1 + ε2
1

b
A2U3 + ε3(χ A − 1

b
A3)

×
{ σ

σ + 1
(t − t0)U1 + 1

(σ + 1)2
U2

}
, (6.22)

where we have remade explicit the t0-dependence of the integral constant A(t0).
Now we take a geometrical point of view. We have a family of trajectories

{X(t; t0, A(t0))}t0 parametrized by t0. Let us obtain the envelope trajectory E of
this family with t0 being the contact point with the envelope. Thus we postulate the
envelope equation

dX
dt0

∣∣∣
t0=t

= 0, (6.23)

which leads to

ε
d A

dt
U1 − ε3

σ

σ + 1
(χ A − 1

b
A3)U1 = 0, (6.24)

up to (ε3). Thus we arrive at

d A

dt
= ε2

σ

σ + 1

(
χ A − 1

b
A3

)
, (6.25)

on account of the linear independence of U i (i = 1, 2, 3). This is the same as the
reduced equation (3.178) obtained in the multiple-scale method in Sect. 3.6.2.

The envelope trajectory as the (approximate) solution to be valid in a global
domain is now given by

XE(t) = εX1(t, t0 = t, A(t)) + ε2X2(t, t0 = t, A(t)) + ε3X3(t, t0 = t, A(t))

= = εW 1(t) + ε2W 2(t) + ε3X3(t)

= εA(t)U1 + ε2

b
A2(t)U3 + ε3

(1 + σ)2
(χ A(t) − 1

b
A3(t))U2, (6.26)
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up toO(ε3), which again coincideswith the results (3.181) given in themultiple-scale
method in Sect. 3.6.2. Further detailed account of the results are discussed there.

6.3 RG/E Analysis of the Brusselator with a Diffusion
Term: Extraction of Slow Dynamics Around The Hopf
Bifurcation Point

In Chap.3 and Sect. 6.2, we saw that the qualitative behavior in the Lorenz model
changes along with that of the parameter contained in the model. This phenomenon
is called bifurcation [34, 86].

In this section, we take a celebrated model system which admits a Hopf bifurca-
tion [34, 86], the Brusselator [30, 83] with and without a diffusion term.

6.3.1 The Model Equation

The Brusselator [30, 83] is an example of systems showing a Hopf bifurcation
[34, 86]. Here we treat this interesting example in the RG/E method, and thereby
demonstrating its simple and transparent manipulation for getting the reduction of
the dynamics as well as the invariant manifold.

The Brusselator is given by1

∂X

∂t
= A − (B + 1)X + X2Y + DX

∂2X

∂x2
, (6.27)

∂Y

∂t
= BX − X2Y + DY

∂2Y

∂x2
, (6.28)

where A, B, DX and Dy are constant; it is further assumed that A and B are positive
numbers. In the present analysis, we fix the value of A, and vary B as the control
parameter of the system.

In this model, there is a homogeneous steady state, which satisfies the following
equation,

A − (B + 1)X + X2Y = 0, BX − X2Y = 0. (6.29)

We find that the steady state is given by the fixed point

(X0, Y0) = (A, B/A). (6.30)

1 We follow [30] for the presentation and the notations.
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We are interested in the dynamical behavior around the steady state. So we define
the new variables as

ξ := X − X0, η := Y − Y0. (6.31)

Then we have a vector equation for

u(t, r) :=
(

ξ(t, r)
η(t, r)

)
(6.32)

as

∂u
∂t

= (L + D̂∇2)u + F(ξ, η)

(
1

−1

)
, (6.33)

where

L =
(

(B − 1) A2

−B −A2

)
, D̂ =

(
Dx 0
0 Dy

)
(6.34)

and

F(ξ, η) = B

A
ξ 2 + 2Aξη + ξ 2η. (6.35)

6.3.2 Linear Stability Analysis

Let us first make a linear stability analysis of the fixed point (6.30) with F(ξ, η) being
neglected. Inserting the ansatz u = u0exp[ik · r + 
t] with u0 being non-vanishing
into the linearized equation u̇ = Lu, we have

(
(B − 1) − Dxk2 A2

−B −A2 − Dyk2

)
u0 = 
u0, (6.36)

the characteristic equation to which reads


2 + b(k)
 + c(k) = 0, (6.37)

with
{
b(k) = 1 − B + A2 + (Dx + Dy)k2,

c(k) = A2 + {A2Dx + (1 − B)Dy}k2 + Dx Dyk4.
(6.38)
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The fixed point is stable (unstable) when the real part(s) of the roots 
± of (6.37)
are negative (positive), for which 
± may be either real or complex. In the present
analysis, we assume that Dx > Dy , which implies that

√
Dx

Dy
>

√
A2 + 1 − 1

A
. (6.39)

In this case, a detailed analysis shows that the fixed point is stable when b(k) >

0, and c(k) > 0, ∀k, i.e.,

1 + A2 > B. (6.40)

Thus the critical condition for that is given by

kc = 0 and B ↗ 1 + A2 ≡ BC , (6.41)

at which the fixed point becomes unstable.2

6.3.3 Perturbative Expansion with the Diffusion Term

Now let us analyze the slow motion and the slow manifold around the critical point
B = Bc by defining the following variables with a small parameter ε

B = BC(1 + μ), ε = √|μ|, and χ = sgn(μ), (6.42)

which implies that

μ = χε2 = (B − Bc)/Bc. (6.43)

In this case,

b(k) = 1 − B + A2 + (Dx + Dy)k
2 = Bcμ + (Dx + Dy)k

2. (6.44)

Thus we assume that the order of the spatial derivative

D̂∇2u ∼ ε2. (6.45)

Therefore, we attach the factor ε2 to this term so as to make explicit that this term is
of O(ε2).

2 If B is decreased from a large value to B ′
c ≡

(
1 + A

√
Dx
Dy

)2
> BC , another instability (Turing

instability) occurs [30]. But we shall not discuss this instability in the present analysis.
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Then we first try to obtain an approximate solution u(t, r; t0) around arbitrary
t = t0 by expanding it w.r.t. ε:

u(t, r; t0) = εu1(t, r; t0) + ε2u2(t, r; t0) + ε3u3(t, r; t0) + · · · ; (6.46)

ui (t, r; t0) =
(

ξ1(t, r; t0)
ηi (t, r; t0)

)
, (i = 1, 2, . . . ). (6.47)

Correspondingly the initial value or space profile u(t = t0, r; t0) =: W(t0, r) at t =
t0 is also expanded as

W(t0, r) = εW 1(t0, r) + ε2W 2(t0, r) + ε3W 3(t0, r) + · · · . (6.48)

The Eq. (6.33) is rewritten as

(∂t − L0)u = ε2 D̂∇2u +
[
ε2(Bcξ

2/A + 2Aξ1η1) + ε3
{
χBcξ1

+ 2Bcξ1ξ2/A + 2A(ξ1η2 + ξ2η1) + ξ 2
1 η1
}]
U0 + · · · ,

(6.49)

with

L0 =
(

A2 A2

−(A2 + 1) −A2

)
, U0 =

(
1

−1

)
. (6.50)

Then the first few-order equations read

(∂t − L0)u1 = 0, (6.51)

(∂t − L0)u2 =
(
Bc

A
ξ21 + 2Aξ1η1

)
U0, (6.52)

(∂t − L0)u3 =
(

χBcξ1 + 2Bc

A
ξ1ξ2 + 2A(ξ1η2 + ξ2η1) + ξ21 η1

)
U0 + D̂∇2u1,(6.53)

and so on. The eigenvalues of the asymmetric matrix L0 are readily found to be

± i A =: ±iω, (6.54)

and the respective eigenvectors are given by

Uω =
(

1
−1 + i

A

)
, U−ω = Ūω =

(
1

−1 − i
A

)
, (6.55)

where z̄ denotes the complex conjugate of z:

L0Uω = iωUω, L0U−ω = −iωU−ω. (6.56)
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The adjoint eigenvector U∗
ω satisfying the eigenvalue equation

t L0U∗
ω = iωU∗

ω (6.57)

is given by

U∗
ω = 1

2

(
1 − i A
−i A

)
, (6.58)

which satisfies the orthonormal relation

(U∗
ω,Uω) ≡ tU∗

ωUω = 1. (6.59)

Note that the following orthogonal property is automatically satisfied,

(U∗
ω, Ūω) = tU∗

ωŪω = 0. (6.60)

Now the solution to the first-order equation (6.51) is readily found to be

u1(t, r; t0) = C(t0, r)Uωe
iωt + c.c., (ω ≡ A), (6.61)

which implies that

ξ1(t, r : t0) = C(t0, r)eiωt + c.c., η1(t, r : t0) = C(t0, r)
(

−1 + i

A

)
eiωt + c.c.

(6.62)

Here C(t0, r) is the (complex) integral constant, which may depend on r as well as
t0. Accordingly, the initial value or space profile at t = t0 in this order is given by

W 1(t0, r) = C(t0, r)Uωe
iωt0 + c.c. (6.63)

A simple manipulation shows that the second-order equation (6.52) now takes the
form

(∂t − L0)u2 =
[
C2 (1 + i A)2

A
U0e

2iωt + c.c.

]
+ 2|C | (1 − A)2

A
U0.

(6.64)

Noting that U0 defined in (6.50) is expressed in terms of the eigenvectors as

U0 = 1

2
(Uω + U−ω), (6.65)



146 6 Miscellaneous Examples of Reduction of Dynamics

the solution to Eq. (6.64) is calculated as follows: Using the formula (4.237) given
in Sect. 4.7, we have

1

∂t − L0
U±ωe

2iωt = 1

2iω ∓ iω
U±ωe

2iωt , (6.66)

which leads to

1

∂t − L0
U0 = 1

2

[
1

iω
Uω + 1

32iω
U−ω

]
= 1

2A

( −2i A
1 + 2i A

)
. (6.67)

Similarly,

1

∂t − L0
U0 = 1

2

1

−L0
(Uω + U−ω) = 1

2

(
1

−iω
Uω + 1

iω
U−ω

)

= −1

A2

(
0
1

)
. (6.68)

Thus we have for the solution to the second-order equation (6.64)

u2(t, r; t0) = {C2(t0, r)V+e2iωt + c.c.} + |C(t0, r)|2V 0, (6.69)

where

V+ = 1 + i A

3A3

( −2i A
1 + 2i A

)
, V 0 = 2

A2 − 1

A3

(
0
1

)
. (6.70)

Accordingly,

ξ2(t, r; t0) = − 2

3
i
(1 + i A)2

A2
C2(t0, r)e

2iωt + c.c., (6.71)

η2(t, r; t0) =
(

(1 + i A)2

3A3
(1 + 2i A)C2(t0, r)e

2iωt + c.c.

)
+ 2(A2 − 1)

A3
|C(t0, r)|2. (6.72)

We note that the initial profile at t = t0 in this order is given by

W 2(t0, r) = {C2(t0, r)V+e2iωt0 + c.c.} + |C(t0, r)|2V 0. (6.73)

After straightforward but tedious manipulations with use of the above results, we
find that the third order equation (6.53) takes the following form,

(∂t − L0)u3 =
[(

W1(t0, r)eiωt + W3(t0, r)e3iωt
)

+ c.c.
] 1
2
(Uω + U−ω)

+D̂∇2
(
C(t0, r)Uωe

iωt + c.c.
)
. (6.74)
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Here

W1(t0, r) = αC(t0, r) + β|C |2C(t0, r), W3(t0, r) = γC3(t0, r), (6.75)

where

α = χBc = χ(1 + A2), β = −2 + A2

A2
+ i

−4A4 + 7A2 − 4

3A3
, (6.76)

γ = 2
Bc

A
V+ξ + 2A(V+η + V+ξ Ūη + Uη), (6.77)

with

V+ξ = −2i
(1 + i A)2

3A2
, V+η = (1 + 2i A)

(1 + i A)2

3A3
, Uη = − A − i

A
. (6.78)

According to the formula (4.237), the solution to the equation

(∂t − L0)v = f (r)eλtUω with λ 
= iω (6.79)

is given by

v = 1

∂t − L0
f (r)eλtUω = 1

λ − iω
f (r)eλtUω. (6.80)

On the other hand, when λ = iω, the solution to

(∂t − L0)v = eiωt f (r)Uω (6.81)

is given by

v = (t − t0)e
iωt f (r)Uω, (6.82)

as shown in (4.238).
Thus, we have the solution to the third order equation (6.74) as

u3(t; t0) =
[W1

2
{(t − t0)Uω + 1

2iω
U−ω}eiωt + W3

4iω
(Uω + 1

2
U−ω)e3iωt

]
+ c.c.

+ (t − t0)D̂∇2
(
CUωe

iωt + c.c.
)
. (6.83)

Here the initial values have been chosen to be

W3(t0, r) =
[W1(t0, r)

4iω
U−ωe

iωt0 + W3(t0, r)
4iω

(Uω + 1

2
U−ω)e3iωt0

]
+ c.c. (6.84)

Here notice that U−ω = Ūω is the complex conjugate of Uω.
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Collecting all the terms thus obtained to have the approximate u(t, r; t0):

u(t, r; t0) = ε
(
C(t0, r)Uωe

iωt + c.c.
)

+ ε2
(
{C2V+e2iωt + c.c.} + |C |2V 0

)

+ ε3
[[W1

2
{(t − t0)Uω + 1

2iω
Ūω}eiωt + W3

4iω
(Uω + 1

2
Ūω)e3iωt

]
+ c.c.

+ (t − t0)D̂∇2
(
CUωe

iωt + c.c.
)]

. (6.85)

6.3.4 The Reduced Dynamics and Invariant Manifold

Now applying the RG/E equation

∂u
∂t

∣∣∣
t0=t

= 0 (6.86)

to (6.85), we have

ε
∂C(t, r)

∂t
Uω − ε3

{
1

2
W1(t, r) + D̂∇2C(t, r)

}
Uω = 0, (6.87)

where terms of the order O(ε4) or higher are neglected. Taking the inner product
with U∗

ω, we have the following complex Ginzburg-Landau equation

∂C(t, r)
∂t

− D̄∇2C(t, r) = 1

2
αC(t, r) + 1

2
β|C(t, r)|2C(t, r), (6.88)

where

D̄ = (U∗
ω, D̂Uω) = 1

2
(DX + DY ) − i

A

2
(DX − DY ), (6.89)

and α and β are defined by (6.76). Note that β is a complex number, and so is D̄
when DX 
= DY .

The attractive manifold is given by the initial value as
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u(t, r) =W(t, r) = εW 1(t, r) + ε2W 2(t, r) + ε3W(t, r)

= ε
[
C(t, r)Uωe

iωt + c.c.
] + ε2

[
(C2(t, r)V+e2iωt + c.c.) + |C(t, r)|2V 0

]

+ ε3
[{W1(t, r)

4iω
Ūωe

iωt + W3(t, r)
4iω

(Uω + 1

2
Ūω)e3iωt

}
+ c.c.

]
.

(6.90)

These results coincide with those obtained in the reductive perturbation method [30].
In contrast to the previousmethods inwhich identification of the solvability condition
for avoiding the appearance of secular terms is essential, the present method has no
such adhoc procedure because secular terms are allowed to appear, which are to be
renormalized away by means of the RG/E equation mechanically.

6.4 Example with a Jordan Cell I: Extended Takens
Equation

As an example for the dynamical system with a linear operator of a Jordan cell struc-
ture, let us take an extended Takens equation [101] with three-degrees of freedom,
which reads

ẋ = y + εax2, ẏ = εbx2, ż = −z + ε f (x, y, z), (6.91)

where f (x, y, z) is analytic function of (x, y, z). It will be shown that the seemingly
ad hoc condition (5.149), which becomes relevant only when the system has more
than two-degrees of freedom, gives a restriction to the form of f (x, y, z).

Let us convert Eq. (6.91) to a system with the definition u = t (x, y, z);

(
d

dt
− A

)
u = εF(u), (6.92)

where

A =
⎛
⎝
0 1 0
0 0 0
0 0 −1

⎞
⎠ , F(u) =

⎛
⎝

ax2

bx2

f (x, y, z)

⎞
⎠ . (6.93)

Notice that A has a two-dimensional Jordan cell;

AU1 = 0, AU2 = U1, AU3 = −U3, (6.94)

where
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U1 =
⎛
⎝
1
0
0

⎞
⎠ = Ũ2, U2 =

⎛
⎝
0
1
0

⎞
⎠ = Ũ1, U3 =

⎛
⎝
0
0
1

⎞
⎠ = Ũ3. (6.95)

Here Ũ i (i = 1, 2, 3) are the adjoint eigenvectors and a pair of a cell;

A†Ũ1 = 0, A†Ũ2 = Ũ1, A†Ũ3 = −Ũ3. (6.96)

The projection operators onto the P and Q subspaces are given by

P = |U1〉〈Ũ2| + |U2〉〈Ũ1| = diag(1, 1, 0), (6.97)

Q = 1 − P = diag(0, 0, 1), (6.98)

respectively.
We are interested in the asymptotic behavior of the solution at t → ∞. The solu-

tion to (6.92) around t ∼ t0 with the ‘initial’ value W(t0) at t = t0 is denoted by
u(t; t0), which is expanded as

u = u0 + εu1 + ε2u2 + · · · , (6.99)

together with the ‘initial’ value W = W 0 + εW 1 + ε2W 2 + · · · .

The lowest order equation reads

(dt − A)u0 = 0, (6.100)

the solution to which is expressed in the asymptotic region as

u0(t; t0) = C (0)
1 (t0)U1 = t (C (0)

1 (t0), 0, 0). (6.101)

According to the general formulation given in the last section, the quantities which
we only have to evaluate are as follows,

C (F)
1 = 〈Ũ2, F(u0)〉 = a(C (0)

1 )2, (6.102)

C (F)
2 = 〈Ũ1, F(u0)〉 = b(C (0)

1 )2, (6.103)

A−1QF(u0) = − f (u0)U3. (6.104)

Then the solution to the first order equation (dt − A)u1 = F(u0) reads

u1(t; t0) = {a(C (0)
1 )2(t − t0) + C (1)

2 (t − t0) + 1

2
b(C (0)

1 )2(t − t0)
2}U1

+{b(C (0)
1 )2(t − t0) + C (1)

2 }U2 + f (u0)U3. (6.105)
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If we stop at this order, the full solution is given by u = u0 + εu1. Applying the
RG/E equation, we have

Ċ (0)
1 = ε(a(C (0)

1 )2 + C (1)
2 ), Ċ (1)

2 = b(C (0)
1 )2. (6.106)

And the trajectory on the manifold M�M1 is given by

u(t) = C (0)
1 (t)U1 + εC (1)

2 (t)U2 + ε f (C (0)
1 (t), 0, 0)U3. (6.107)

Let us proceed to the second-order analysis. We first examine the necessary con-
dition (5.149) for the reduction, which reads in the present case

0 = QF′(u0)U1 = Q

⎛
⎜⎝
2aC(0)

1 0 0

2bC(0)
1 0 0

∂ f
∂x

∂ f
∂y

∂ f
∂z

⎞
⎟⎠U1 = Q

⎛
⎜⎝
2aC(0)

1
2bC(0)

1
∂ f
∂x

⎞
⎟⎠ = ∂ f (x, 0, 0)

∂x

∣∣∣∣
x=C(0)

1

U3.

This demands that f (x, y, z) should not depend on x when y = z = 0. For instance,
the function f (x, y, z) = x3y + xz2 + g(y, z) will do.

With this condition taken for granted, let us analyze the RG/E equation in the
second order. We first notice the following relations,

h = −A−1QF(u0) + C (1)
2 U2 = f (u0)U3 + C (1)

2 U2 =
⎛
⎝

0
C (1)
2

f (u0)

⎞
⎠ (6.108)

and hence

F′(u0)h =
⎛
⎜⎝
2aC (0)

1 0 0
2bC (0)

1 0 0
0 ∂ f

∂y
∂ f
∂z

⎞
⎟⎠

u=u0

⎛
⎝

0
C (1)
2

f (u0)

⎞
⎠ =

⎛
⎝

0
0

∂ f
∂y C

(1)
2 + ∂ f

∂z f (u0)

⎞
⎠ , (6.109)

which implies that

〈Ũ2|F′(u0)h〉 = 0, 〈Ũ1|F′(u0)h〉 = 0. (6.110)

Thus we see that the RG/E equation has no corrections in this order.
To obtain the second-order correction to the trajectory, we need to evaluate the

following;

− A−1QF′h = (C (1)
2

∂ f

∂y
+ f (u0)

∂ f

∂z
)U3, −A−2QF′U2 = −∂ f

∂y
U3, (6.111)

where the derivatives are evaluated at u = u0 = t (C (0)
1 (t), 0, 0) as before. Thus the

second-order correction of the ‘initial’ value reads
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W 2(t0) = ( f (u0)
∂ f

∂z
+ C (1)

2

∂ f

∂y
− 〈Ũ1|F〉∂ f

∂y
)U3. (6.112)

Hence the trajectory in the second-order approximation is given by

u(t) = W(t) = C (0)
1 (t)U1 + εC (1)

2 (t)U2 + ε f (u0)U3

+ ε2
[
f (u0)

∂ f

∂z
+ C (1)

2

∂ f

∂y
− 〈Ũ1|F〉∂ f

∂y

]

u=u0

U3. (6.113)

Here C (0)
1 (t) and C (1)

2 (t) are governed by the Takens equation (6.106). We see that
the higher order terms does not affect the dynamics but modifies the trajectory only
in the U2 and the Q-direction.

6.5 Example with a Jordan Cell II: The Asymptotic Speed
of a Pulse Given in the Benney Equation

The Kortweg-de Vries (KdV) equation [102] itself can be derived as an asymptotic
equation for describing the weakly nonlinear shallow water waves by Kortweg and
deVries and as the long-wave length limit of the one-dimensional non-linear coupled
oscillators as investigated by Fermi, Pasta, Ulam and Tsingou [102, 103]. It reads

∂u

∂t
+ 6u

∂u

∂x
+ ∂3u

∂x3
= 0. (6.114)

The KdV equation is integrable and admits one-pulse solution given by

u(x, t) = c

2
sech2

[√
c(x − ct)

2

]
=: ϕ(x − ct; c), (6.115)

where the velocity c is an arbitrary constant. We are interested in what occurs when
the remaining few parts G of the derivative expansion are added to it;

∂t u + 6u∂xu + ∂3
x u + εF(∂xu) = 0, F(u) := ∂2

x u + ∂4
x u, (6.116)

where

∂t u := ∂u

∂t
, ∂xu := ∂u

∂x
(6.117)

and so on. Equation (6.116) was first derived and studied by Benney [36] and bears
his name.

To study the problem, it is found convenient to change the coordinate to that
moving with the pulse. With the change of the independent variables to
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t = t, z = x − ct, (6.118)

the partial derivatives are converted as

∂t = ∂t , ∂x = ∂z (6.119)

and hence the KdV and Benney equations get to have the following forms

∂t u + I [u] = 0, I [u] = −c∂zu + 6u∂zu + ∂3
z u, (6.120)

and

∂t u + I [u] + εF(u) = 0, (6.121)

respectively. We remark that the following relation holds,

I [ϕ(z − b; c)] = 0, (6.122)

for an arbitrary constant b.
Making the perturbative expansion u = u0 + εu + . . . , we try to solve theBenney

equation (6.121) around t ∼ t0. The zeroth order equation is given by

∂t u0 + I [u0] = 0, (6.123)

for which we take one-soliton solution with the velocity c located around z ∼ b(t0)
as given by

u0(z, t; t0, b(t0), c(t0)) = ϕ(z − b(t0); c(t0)) (6.124)

where it is made explicit that the velocity as well as the position of the soliton may
be t0 dependent.

The first-order equation reads

∂t u1 = −∂ I

∂u

∣∣∣
u=u0

u1 + F(u0) ≡ Au1 + F(u0). (6.125)

Here we have defined the linear operator

A ≡ c∂z − ∂3
z − 6(∂zu0 + u0∂z). (6.126)

It is noteworthy that A has a two-dimensional Jordan cell with a zero eigenvalue;

AU1 = 0, AU2 = U1, (6.127)

where
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U1 = ∂zu0 = ∂zϕ(z − b(t0); c(t0)), U2 = −∂cu0 = −∂cϕ(z − b(t0); c)|c=c(t0).

(6.128)

The adjoint operator A† is given by

A† = −c∂z + ∂3
z + 6u0∂z, (6.129)

which has also a Jordan cell structure

A†Ũ1 = 0, A†Ũ2 = Ũ1, (6.130)

where Ũ1 is identified with u0

Ũ1 = u0(z, t; t0, b(t0), c(t0)). (6.131)

The following orthogonality relations hold:

〈Ũ1|U1〉 = 〈Ũ2|U2〉 = 0. (6.132)

We call the subspace spanned by U1 and U2 the P space, while the complement of
the P space called the Q space, and their respective projection operators are given
by

P = |U1〉〈Ũ2|
〈Ũ2|U1〉

+ |U2〉〈Ũ1|
〈Ũ1|U2〉

, Q = 1 − P. (6.133)

The solution to (6.125) is given by

u1(t; t0, b(t0), c(t0)) = e(t−t0)AW1(t0) +
∫ t

t0

ds e(t−s)AF(u0). (6.134)

Here the ‘initial’ value may be set to be independent to U1 and hence given by

W1(t0) = QW1(t0). (6.135)

A comment is in order here: The possible termC (1)
2 (t0)U2 inW1(t0) is intentionally

omitted here because its effect may be renormalized into the t0 dependence of the
velocity c(t0) in the zero-th solution.

The second term of (6.134) can be evaluated as follows: First we note that F(u0) in
the integrand is independent of time s, and hence we can apply the formulae (5.106)
to get
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e(t−s)AF = et A(P + Q)F = e(t−s)A(C (F)
1 (t0)U1 + C (F)

2 (t0)U2) + e(t−s)AQF

=
{
C (F)
1 (t0) + C (F)

2 (t0)(t − s)
}
U1 + C (F)

2 (t0)U2 + e(t−s)AQF,

(6.136)

where

C (F)
1 (t0) = 〈Ũ2|F〉

〈Ũ2|U1〉
, C (F)

2 (t0) = 〈Ũ1|F〉
〈Ũ1|U2〉

. (6.137)

Then using the formulae (5.125) we see (6.134) is evaluated to be

u1(t; t0) = e(t−t0)A[QW1(t0) + A−1QF] + {C (F)
1 (t − t0) + C (F)

2

1

2
(t − t0)

2}U1

+C (F)
2 (t0)(t − t0)U2 − A−1QF, (6.138)

where we have suppressed the terms proportional to (t − t0)n≥2 which do not con-
tribute the RG/E equation nor the invariant manifold, as before. To avoid the appear-
ance of the rapid mode, the Q space part of the ‘initial’ value is determined as

QW1(t0) = −A−1QF. (6.139)

Thus we arrive at the perturbative solution to the Benney equation up to the second
order as

u(z, t; t0) = u0(z, t; t0) + ε{C (F)
1 (t − t0) + C (F)

2

1

2
(t − t0)

2}U1

+ε{C (F)
2 (t0)(t − t0)U2 − A−1QF},

= ϕ(z − b(t0); c) + ε{C (F)
1 (t − t0) + C (F)

2

1

2
(t − t0)

2}U1

+ε{C (F)
2 (t0)(t − t0)U2 − A−1QF}. (6.140)

Then applying the RG/E equation, we have

0 = ∂u(z, t; t0)
∂t0

∣∣∣
t0=t

= −ḃ∂zϕ(z − b(t); c) + ċ∂cϕ(z − b(t); c)

− ε
{
C (F)
1 (t))U1 + C (F)

2 (t)U2

} ∣∣∣
t0=t

. (6.141)

Since ∂zϕ = U1 and ∂cϕ = −U2 with t0 = t on account of (6.128), we have the
following coupled equation

ḃ = −εC (F)
1 (t), ċ(t) = −C (F)

2 (t). (6.142)
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Here the higher-order terms of εn (n ≥ 2) are neglected. The asymptotically global
solution is given as the envelope function

uE (z, t) = u(z, t; t−0 = t) = ϕ(z − b(t); c(t)) − εA−1QF. (6.143)

As an example, let us calculate the asymptotic velocity the pulse c(t → ∞) ≡ c∗
for which ċ = 0, or

0 = C(F)
2 ∝ 〈Ũ1|F〉 =

∫ ∞
−∞

dz u0

(
∂2u0
∂z2

+ ∂4u0
∂z4

)

= −
∫ ∞
−∞

dz

⎡
⎣
(

∂u0
∂z

)2
−
(

∂2u0
∂z2

)2⎤
⎦

= − c2
√
c

8

⎡
⎣
∫ ∞
−∞

dζ

(
d

dζ
sech2ζ

)2
− c

4

∫ ∞
−∞

dζ

(
d2

dζ 2
sech2ζ

)2⎤
⎦ .

(6.144)

Then using the following formulae

(
d

dζ
sech2ζ

)2

= 4(sech4ζ − sech6ζ ), (6.145)

(
d2

dζ 2
sech2ζ

)2

= 4(2sech2ζ − 3sech4ζ )2, (6.146)

∫ ∞

−∞
dζ sech2nζ = 2

∫ 1

0
du (1 − u2)n−1 = 2

(2n − 2)!!
(2n − 1)!! , (6.147)

we get

〈Ũ1|F〉 = −c2
√
c

8

(
16

15
− c

4

64

21

)
= 2c2

√
c

21

(
c − 7

5

)
. (6.148)

Thus the stationary condition C (F)
2 = 0 determine the asymptotic velocity as

c∗ = 7

5
, (6.149)

which agrees with the result given in other methods [104].
We note that the RG method is also applied to the pulse interaction described by

the KdV equation in [6], where the same linear operator with a Jordan cell appears.
The present analysis of the Benney equation based on the RG method has been first
shown in this monograph [105].



Chapter 7
RG Method Applied to Stochastic
Equations

7.1 Introduction

In this chapter, after a brief historical and introductory account of the celebrated
Brownian motion [70, 106–109] and the Langevin equation [70–72], the Fokker-
Planck (F-P) equation [77, 78] is derived as a reduced equation in a coarse-grained
invariant manifold [34, 110] spanned by the averaged distribution function from
a generic Langevin equation with time-reversal invariance on the basis of the RG
method [1, 3–6, 38, 39, 48–52, 92–96] in the way as given in [57].

In derivation of kinetic or transport equations for describing the nonequilibrium
properties of a physical system the following two basic ingredients are commonly
seen [32, 54, 111–113]:

(a) The reduced dynamics is characterized with a longer time scale than that appear-
ing in the original (microscopic) evolution equation, and

(b) the reduced dynamics is described by a time-irreversible equation even when
the original microscopic equation is time-reversible,

which are interrelated with but relatively independent of each other. For instance, the
derivation of the Boltzmann equation [53] by Bogoliubov [54] shows that the dilute-
gas dynamics as a dynamical system with many-degrees of freedom has an attrac-
tive/invariant manifold [34, 110] spanned by the one-particle distribution function in
the asymptotic regime after a long time; the Boltzmann equation in turn can be further
reduced to the fluid dynamic equation (Euler/Navier-Stokes equations) by a pertur-
bation theory like Chapman-Enskog method [113] or Bogoliubov’s method [25, 54]
and the RG method as is extensively discussed in the subsequent chapters of this
monograph.

Similarly, the Langevin equation which may be time-reversible can be reduced to
the time-irreversible F-P equation with a longer time scale than the scale in Langevin
equation [74–76].

In the derivation of the F-P equation based on the RG method, the averaged
distribution functions [114, 115] will be prepared as the integral constants of the
solution of microscopic evolution equations. Then, as was the case with other exam-
ples treated in the previous chapters, the RG/E equation will lift the integral constants
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in the unperturbed solution to the dynamical variables, which are slow variables and
the reduced dynamical equation is expressed solely in terms of the lifted integral
constants.

It often occurs that a hierarchy in the time scales still remains within the dynam-
ical variables in the kinetic/transport equations thus obtained [32, 74–76, 112]. For
instance, the F-P equation may be further reduced to, say, a slow Fokker-Planck
equation asymptotically after a long time [74–76]. In that case, an adiabatic elimi-
nation of (relatively) fast variables in the Langevin or the F-P equations is possible.
In the second half of this chapter, we shall show that the RG method as developed
in Chap. 5 provides us with a powerful method for an adiabatic elimination of fast
variables from the F-P equation [57].

7.2 Langevin Equation: Simple Examples

As an example of a stochastic motion, we first consider Brownian motion of a tiny
particle popping out of a pollen, with a mass m immersed and moving in water
at room temperature. A biologist Robert Brown [106] observed in 1826–1827 that
the tiny particles show rapid and random motions as if it were alive, which was
later disproved by himself. In 1905, Einstein [107] proposed a systematic theory
for describing such particles, Brownian particles, although Einstein himself was
not so enthusiastic in directly relating his particles to Brownian particles because
experimental results were still not so clear as those presented by Perrin later in
1910 [109]: Einstein argued in [107] that such a motion could be an evidence of
the existence of molecules or atoms. Incidentally, it is amazing, as is emphasized by
Gardiner [74], that the paper by Einstein contains almost all the pivotal theories that
now constitute the essential ingredients of the nonequilibrium statistical mechanics
which includes Chapman-Kolmogorov equation, a simple Fokker-Planck equation,
a typical fluctuation-dissipation theorem and so on. Later the motion of the Brown-
ian particle was nicely given a mathematical formulation by P. Langevin [70], who
showed that the correct application of the theory by Smoluchowski [108] gives the
same result as that given by Einstein: In his paper, Langevin introduced a novel
differential equation, a stochastic equation , which is now called the Langevin equa-
tion , although the standard formulation of the Langevin equation with an explicit
incorporation of the correlators of the noises, which we shall follow here, seems to
have been first given by Uhlenbeck and Ornstein [71].

For simplicity, let us consider the one-dimensional case and assume that the par-
ticle moves along the x axis:

{
dx
dt = v,

m dv
dt = −μv + R(t),

(7.1)



7.2 Langevin Equation: Simple Examples 159

where μ denotes the friction coefficient which comes from the averaging effect of
the collisions of the water molecules with the Brownian particle, and R(t) represents
the remaining fluctuations that can not be taken into account by the averaging which
is nicely represented by the frictional force. If the Brownian particle is a sphere with
radius a, then Stokes’s law tells us thatμ = 6πaηwith η being the shear viscosity of
the water. Einstein used the value η = 1.35 × 10−3 Pa · s (Pa = kg/(m · s2)), while
it takes the value 1.002 × 10−3 kg/(m · s) for water at T = 20 ◦C. The number
density of the water in which the Brownian particles are suspended may be identified
with the number of the molecules contained in the volume of 1m3, the weight of
which roughly amounts to 106 g at T = 300K, while 1mol of water is composed of
N0 � 6 × 1023 molecules and weighs 18g. Thus the number density of the water is
estimated to be

n = N0 × 106

18
= 3.3 × 1028 (/m3). (7.2)

The average velocity of the water molecule in one direction is estimated to be ū �
300m/s. Let the radius a of the Brownian particle be 1 × 10−6 m. Then the number
of the collisions of the water molecule with a Brownian particle is roughly1

Ncoll � 1

2
ūπa2n � 1.6 × 1019/s, (7.3)

which implies that the timedurationbetween subsequent collisions ofwatermolecules
and a Brownian particle is as tiny as 10−19 s.

It will be found that the relaxation time is given by τr = 1/γ , which may be
as short as 10−8 s for a Brownian particle with a mass ∼10−15 kg but is also long
enough so that the number of collisions of the water molecules with the Brownian
particle within the relaxation time is as huge as 1011. Thus the fluctuations of the
force, R(t), may be treated as a stochastic variable with, say, 1011 samples, and
affects the Brownian particle as background noise. Then it should be noted that the
dynamical variables x and v governed by R(t) also become stochastic variables.

The average of R(t) over such samples should vanish by its definition as

〈R(t)〉R = 0. (7.4)

This treatment of the residual force R(t) may implicitly imply that the infinitesimal
time step �t assumed in (7.1) is actually much larger than the each interval of the
collisions of the water molecules with the Brownian particle. We further assume that
the noises in different times are independent, which means that the time-correlation
function of the noises is proportional to the delta function;

〈R(t1)R(t2)〉R = 2Dδ(t1 − t2). (7.5)

1 The number is claimed to be as larger as 1021 in [72] with no reasoning provided.
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Since the spectral function of such a correlation function is flat and does not peaks,
such a noise is called ‘white’. We remark also that the noise is stationary, i.e.,
invariant under the shift of time

ti → ti + t ′ (∀t ′), (7.6)

in accordance with the Brownian particles are immersed in the ’water’ in thermal
equilibrium.

Since the second equation of (7.1) is an inhomogeneous but linear equation,
it can be formally solved as follows. The solution to the homogeneous equation
v̇ = −(μ/m) · v reads

v(t) = Ce−γ t with γ = μ

m
. (7.7)

Assuming that C is now time dependent and inserting the homogeneous solution to
(7.1), we have Ċ = 1

m e
γ t R(t), the solution to which is given by

C(t) = 1

m

∫ t

0
dt ′ eγ t ′ R(t ′) + v0 (7.8)

with v0 being the integral constant. Thus the solution to (7.1) is found to be

v(t) = v0e
−γ t + 1

m

∫ t

0
dt ′ e−γ (t−t ′)R(t ′), (7.9)

with the ‘initial’ condition v(0) = v0.
With the ‘initial’ velocity v0 fixed, let us take the average over R(t ′). Noting that

R(t ′) for t ′ > 0 is independent of v0 and accordingly

〈R(t ′)〉R = 0 for t ′ > 0, (7.10)

we have

〈v(t)〉R = v0e
−γ t + 1

m

∫ t

0
dt ′ e−γ (t−t ′)〈R(t ′)〉R = v0e

−γ t . (7.11)

On the other hand, the time-correlation function for v(t1) and v(t2) with ti > 0
(i = 1, 2) is evaluated as follows,

〈v(t1)v(t2)〉R = e−γ (t1+t2)

[
v2
0 + 1

m2

∫ t1

0
ds1

∫ t2

0
ds2 e

γ (s1+s2)〈R(s1)R(s2)〉R
]

= e−γ (t1+t2)

[
v2
0 + 2D

m2

∫ t1

0
ds1

∫ t2

0
ds2 e

γ (s1+s2)δ(s1 − s2)

]
. (7.12)
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By considering the cases for t1 > t2 and t2 > t1, separately, the second term is
found to take the form

D

γm2

(
e2γ t< − 1

)
, (7.13)

where t< denotes the smaller one of t1 and t2. Thus after some simple manipulations,
we arrive at

〈v(t1)v(t2)〉R = v2
0e

−γ (t1+t2) + D

γm2

(
e−γ |t1−t2| − e−γ (t1+t2)

)
, (7.14)

which tends to

〈v(t1)v(t2)〉R 1/γ 
 t,t ′−−−−−→ D

γm2
e−γ |t1−t2|. (7.15)

For

γ −1 
 t1 = t2 =: t, (7.16)

the average of the kinetic energy of the Brownian particle is found to be

〈
1

2
mv2(t)

〉
R

= D

2γm
= 1

2
kBT , (7.17)

where the equipartition law has been assumed in the last equality. Thus we have

D

kBT
= mγ = μ, (7.18)

which is the fluctuation-dissipation relation first derived by A. Einstein [107].
Now let us represent the dynamical variables x(t) =: u1(t) and v =: u2(t) col-

lectively by

u(t) :=
(
x(t)
v(t)

)
=
(
u1(t)
u2(t)

)
, (7.19)

and introduce the stochastic distribution function [114, 115]

f (x, t) := δ(u(t) − x), (7.20)

where u(t) satisfies the stochastic differential equation

du
dt

= h(u) + ĝ R(t), (7.21)
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with

h(u) :=
(
u2(t)
−γ u2

)
, ĝ :=

(
0 0
0 m−1

)
, R(t) :=

(
0

R(t)

)
. (7.22)

Then we have the following continuity equation as will be shown below:

∂ f (x, t)

∂t
= −∇x · [(h(x) + ĝ(x)R) f (x, t)], (7.23)

where we have written down when ĝ can be a function of the dynamical variables
u(t), i.e., the case of themultiplicative noise [74–76]. This continuity equation (7.23)
for the stochastic distribution function is calledKubo’s stochastic Liouville equation .
Equation (7.23) can be derived with use of the definition (7.20), as follows,

∂ f (x, t)

∂t
= ∂

∂t
δ(u(t) − x) = u̇(t) · ∂

∂u(t)
δ(u(t) − x)

= −(h(u(t)) + ĝ(u(t))R(t)) · ∂

∂x
δ(u(t) − x)

= −∇x
[
(h(u(t)) + ĝ(u(t))R(t))δ(u(t) − x)

]
= −∇x

[
(h(x) + ĝ(x)R(t))δ(u(t) − x)

]
= −∇x

[
(h(x) + ĝ(x)R(t)) f (x, t)

]
. (7.24)

We emphasize again that this formal derivation shows that (7.23) is valid even when
ĝ is a function of the dynamical variables u(t), i.e., the case of the multiplicative
noise [74–76].

In the subsequent section, we shall take a generic Langevin equation with a more
general structure and derive the F-P equation governing the averaged distribution
function.

7.3 RG/E Derivation of Fokker-Planck Equation
from a Generic Langevin Equation

In this section, the RG method is applied for the derivation of the Fokker-Planck
(F-P) equation [74–76, 112, 115] fromKubo’s stochastic Liouville equation (7.23),
as advertised in the last section. One of the important ingredients in the derivation
is that the ‘initial’ value of the stochastic distribution function at arbitrary time t0
is chosen to be on the averaged distribution function for the RG/E equation, which
leads to the F-P equation governing the averaged distribution function. It will be
found the time t0 appearing in the RG/E equation is a coarse-grained macroscopic
time.
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7.3.1 A Generic Langevin Equation with a Multiplicative
Noise

As a generalization of (7.21), let us take the following system of dynamical equations
for the n-dimensional vector2 u = t (u1, u2, . . . , un)

dui
dt

= hi (u) +
n∑
j=1

gi j (u)R j (t), (7.25)

where Ri (t) (i = 1, 2, ..., n) denotes stochastic variables to be realized with the
probability P(R) = P(R)dR with the vanishing average

〈Ri (t)〉R = 0, (i = 1, 2, . . . , n). (7.26)

Here 〈O(t)〉R denotes the average of O(t) with respect to the noise R:

〈O(t)〉R :=
∫

dRP(R)O(t). (7.27)

We assume that the noise are stationary though the noise may be or not may be
Gaussian.

In the vector notation, (7.25) is written in a compact form as

du
dt

= h(u) + ĝ(u)R, (7.28)

with h(u) = t (h1(u), h2(u), . . . , hn(u)) and ĝ(u) denotes an n times n matrix, the
(i, j) component is given by gi j (u). Although the similarity of (7.28) with (7.21) is
apparent, the coefficient matrix ĝ of the noise is not a constant but now allowed to
depend on the dynamical variables u: Such a noise term is said to be multiplicative
noise, where as the way of the noise entering (7.21) is said to be additive noise
[74–76]. From now on, we shall suppress the subscript R for the averaging.

As in the simple case, let

f (u, t) = δ(u(t) − u) (7.29)

be the distribution function of u at time t when the stochastic time evolution u is
governed by Eq. (7.28). From the way of the derivation given in (7.24), it is clear that
the distribution function satisfies the continuity equation or the Kubo’s stochastic
Liouville equation (7.23)

2 We have changed an argument x of the distribution function to u.
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∂ f

∂t
+ ∇u · [(h + ĝR) f ] = 0, (7.30)

with ∇u = ( ∂
∂u1

, ∂
∂u2

, . . . , ∂
∂un

). We remark that ∇u acts on f as well as h and ĝ.

7.3.2 The RG/E Derivation of the Fokker-Planck Equation

In the following derivation, we shall take the perturbative RG method for the deriva-
tion, which is of approximate nature but will be found to be applicable even when
the noise is non-Gaussian.

The method which we shall take for derivation of the F-P equation for the multi-
plicative noise is an adaptation [57] of that proposed in [56] for a simpler equation3;
we shall make clear the importance of the identification of the ‘initial’ condition for
obtaining the averaged equation, thereby keep the conformity in the presentation of
the RG method with those applied to other problems in the previous chapters.

The method begins with a change of independent variables [56] for (7.30)

(t, u) → (τ, X) (7.31)

by

τ = t, X = u −
∫ t

ds h(u(s)). (7.32)

Then the derivatives with respect to t and u become

∂

∂t
= ∂τ

∂t

∂

∂τ
+ ∂X

∂t
· ∂

∂X
= ∂

∂τ
− h · ∂

∂X
, (7.33)

∂

∂ui
= ∂τ

∂ui

∂

∂τ
+ ∂X

∂ui
· ∂

∂X
= ∂

∂Xi
, (7.34)

respectively, where

∂

∂X
= (

∂

∂X1
,

∂

∂X2
, . . . ,

∂

∂Xn
) =: ∇X . (7.35)

With this new independent variables, the Langevin equation (7.30) becomes

3 In [57], a different method that utilizes a kind of the ‘interaction picture’ familiar in the time-
dependent perturbation theory in quantum mechanics [116–118] was also presented.



7.3 RG/E Derivation of Fokker-Planck Equation from a Generic Langevin Equation 165

∂ f

∂τ
− h · ∂ f

∂X
+ (∇X · h) f + h · ∇X f + ∇X (ĝR f )

= ∂ f

∂τ
+ (∇X · h) f + ∇X (ĝR f ) = 0. (7.36)

Next, we introduce a small parameter ε and define a new variable x by

εX = x. (7.37)

Then we have

∂

∂Xi
= ∂x

∂Xi
· ∂

∂x
= ε

∂

∂xi
. (7.38)

One finds that Eq. (7.30) now takes the form

∂ f

∂τ
= −ε[∇x(ĝR f ) + (∇x · h) f ], (7.39)

with

∇x = (
∂

∂x1
,

∂

∂x2
, . . . ,

∂

∂xn
). (7.40)

To apply the RG method, we first try to solve Eq. (7.39) around an arbitrary
time τ = ∀τ0 by the perturbation theory. The solution is denoted by f̃ (u, τ ; τ0) and
expanded as

f̃ (u, τ ; τ0) = f̃0(u, τ ; τ0) + ε f̃1(u, τ ; τ0) + ε2 f̃2(u, τ ; τ0) + . . . , (7.41)

with the ‘initial’ condition

f̃ (u, τ0; τ0) = f̄ (u, τ0). (7.42)

The ‘initial’ distribution function f̄ (u, τ0) is also expanded as

f̄ (u, τ0) = f̄0(u, τ0) + ε f̄1(u, τ0) + ε2 f̄2(u, τ0) + . . . , (7.43)

where

f̃i (u, τ0; τ0) = f̄i (u, τ0), (i = 1, 2, . . . ). (7.44)

As an important ansatz, we demand that the ‘initial’ distribution function f̄ (u, τ0)

takes the value of the averaged distribution function P(u, τ0) at τ = τ0;

f̄ (u, τ0) = f̃ (u, τ = τ0; τ0) = P(u, τ0). (7.45)
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Onewill recognize that this choice of the ‘initial’ condition naturallymakes the RG/E
equation identified with the F-P equation.

Inserting (7.41) into (7.39) and equating the coefficient of εn (n = 0, 1, . . . ), we
have the following series of equations,

∂ f̃0
∂τ

= 0, (7.46)

∂ f̃1
∂τ

= −[∇x(ĝR f̃0) + ∇x · h f̃0], (7.47)

∂ f̃2
∂τ

= −[∇x(ĝR f̃1) + ∇x · h f̃1], (7.48)

and so on.
The zeroth-order equation (7.46) shows that the solution f̃0(x, τ ; τ0) is time inde-

pendent;

f̃0(x, τ ; τ0) = f̃0(x, τ0; τ0) = f̄0(u, τ0), (7.49)

where we havemade explicit that f̃0(x, τ ; τ0)may depend on x as well as the ‘initial’
time τ0.

Inserting (7.49) into (7.47), we see that the r.h.s. of (7.47) has no time dependence.
Then the first-order solution is readily obtained by a quadrature as

f̃1(x, τ ; τ0) = −
∫ τ

τ0

ds ∇x · (ĝR(s) f̄0) − (τ − τ0)(∇x · h) f̄0(u, τ0). (7.50)

Notice the appearance of the secular term.
Inserting f̃1(x, τ ; τ0) into (7.48), we find that the second-order solution is given

by

f̃2(x, τ ; τ0) =
∫ τ

τ0

ds1

∫ s1

τ0

ds2 L1(s1)L1(s2) f̄0(u, τ0)

+ (τ − τ0)
2

2
(∇x · h)(∇x · h) f̄0(u, τ0) (7.51)

with

L1(s) := −∇x ĝR(s), (7.52)

up to terms linear in R, which vanish when averaged over the noise.
The distribution function P̃(u, τ ; τ0) averaged over the noise is given by
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P̃(u, τ ; τ0) = 〈 f̃ (u, τ ; τ0)〉
= f̄0(u, τ0) − ε(τ − τ0)(∇x · h) f̄0(u, τ0)

+ε2
∫ τ

τ0

ds1

∫ s1

τ0

ds2〈L1(s1)L1(s2)〉 f̄0(u, τ0)

+ ε2
1

2
(τ − τ0)

2∇x · h∇x · h f̄0(u, τ0). (7.53)

For steady noises, their time correlation function

〈Ri (s1)R j (s2)〉 =: 
i j (s1.s2) (7.54)

is a function of the time difference s1 − s2 and may be written as


i j (s1.s2) = 
i j (s1 − s2). (7.55)

For definiteness, we furthermore assume that the noise is a white noise as given by


i j (s1 − s2) = 2δi j Diδ(s1 − s2). (7.56)

Then the integral of the correlation function
∫ t
t0
ds1

∫ s1
t0
ds2〈L1(s1)L1(s2)〉 can be

further reduced as follows:∫ τ

τ0

ds1

∫ s1

τ0

ds2 〈L1(s1)L1(s2)〉 =
∫ τ

τ0

ds1

∫ s1

τ0

ds2
∂

∂xi
gi j

∂

∂xk
gkl〈R j (s1)Rk(s2)〉

= ∂

∂xi
gi j

∂

∂xk
gkl

∫ τ

τ0

ds1

∫ s1

τ0

ds2 2δ jk D jδ(s1 − s2).

Here we make the change of the integral variables as follows

s1 = s, s1 − s2 = σ. (7.57)

Then∫ τ

τ0

ds1

∫ s1

τ0

ds2 〈L1(s1)L1(s2)〉 = 2
∂

∂xi
gi j D j

∂

∂xk
gk j

∫ τ

τ0

ds
∫ τ−τ0

0
dσ δ(σ )

= 2(τ − τ0)
∂

∂xi
gi j D j

∂

∂xk
gk jθ(τ − τ0). (7.58)

Thus collecting all the terms up to this order and recovering the variable u instead
of x, we have4

4 ∂/∂ui = ∂/∂Xi = (∂xi/∂Xi )(∂/∂xi ) = ε∂/∂xi .



168 7 RG Method Applied to Stochastic Equations

P̃(u, τ ; τ0) = f̄0(u, τ0) − (τ − τ0)(∇u · h) f̄0(u, τ0)

+2(τ − τ0)
∂

∂ui
gi j D j

∂

∂uk
gk jθ(τ − τ0) f̄0(u, τ0)

+1

2
(τ − τ0)

2∇u · h∇u · h f̄0(u, τ0). (7.59)

The RG/E equation

∂ P̃

∂τ0

∣∣∣
τ0=τ

= 0 (7.60)

gives

0 = ∂ f̄0(u, τ )

∂τ
+ (∇u · h) f̄0(u, τ ) − 2

∂

∂ui
gi j D j

∂

∂uk
gk jθ(0) f̄0(u, τ )

= ∂ f̄0(u, t)

∂t
+ (∇u · h f̄0(u, t)

) − ∂

∂ui
gi j D j

∂

∂uk
gk j f̄0(u, t). (7.61)

In the last equality, the τ derivative is changed to the t derivative with the use of the
formula (7.33); i.e., the operator ∇ hits not only h but also f0(u, t). Here we have
used the identity

θ(0) = 1/2. (7.62)

Then noting the choice of the ‘initial’ value (7.45), we arrive at the familiar form
of the F-P equation for the multiplicative Gaussian noise [74–76],

∂P(u, t)

∂t
= −∇u · (hP(u, t)) + Dj

∂

∂ui

[
gi j

∂

∂uk

(
gkj P(u, t)

)]
. (7.63)

This means that the ‘initial’ distribution function at an arbitrary time t = t0 before
averaging must coincide with the averaged distribution to be determined. The ‘ini-
tial’ value may be considered as the integral constant in the unperturbed equation,
which would move slowly being governed by the RG/E equation. In other words, the
averaging is automatically made by the RG method.

Now it is often the case that the matrix ĝ is a diagonal one as

gi j = δi j g j , (7.64)

for which, (7.63) is further reduced to a simpler form as

∂P(u, t)

∂t
= −∇u · (hP(u, t)) +

n∑
j=1

Dj
∂

∂u j

[
g j

∂

∂u j

(
g j P(u, t)

)]
. (7.65)
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We note the following trivial identity,

∂2

∂u2
(
g2P

) = ∂

∂u

(
g
∂gP

∂u

)
+ ∂

∂u

(
gP

∂g

∂u

)
, (7.66)

which implies that

∂

∂u j

[
g j

∂

∂u j

(
g j P(u, t)

)] = ∂2

∂u2j

(
g2j P

) − ∂

∂u j

[
g j

(
∂g j

∂u j

)
P

]
. (7.67)

Then (7.65) is rewritten as

∂P(u, t)

∂t
= −∇u ·

(
h̃P(u, t)

)
+

n∑
j=1

∂2

∂u2j

(
Djg

2
j P(u, t)

)
, (7.68)

with

(h̃)i = hi + Digi

(
∂gi
∂ui

)
. (7.69)

For the Brownian motion (7.21), (7.63) takes the familiar form [74–76],

∂P(x, v, t)

∂t
= −v

∂

∂x
P(x, v, t) + γ

∂

∂v
vP(x, v, t) + D

m2

∂2

∂v2
P(x, v, t),

(7.70)

which is called the Kramers equation [119].
In conclusion, we emphasize the fact that the coarse graining of time is inevitably

incorporated in the derivation of the F-P equation from theLangevin equation through
the stochastic Liouville equation. Indeed, Eq. (7.45) shows that the ‘initial’ value of
the stochastic distribution function f (u, t, t0) at t = t0 is set to that of themacroscopic
distribution function P(u, t0) for which effects from all the fluctuating ‘forces’ R(t)
due to the ‘water molecules’ acting on the ‘Brownian particle’ during the order of
the relaxation time are averaged up. If we recall that the time scale of fluctuating
forces is much less than the relaxation time, we see that the ‘initial’ time t0 entering
P(u, t0) in the RG method is a coarse-grained time, different from that of the time t
in the Langevin equation, and hence the time derivative ∂/∂t0 in the RG/E equation
is amacroscopic-time derivative [57]. Moreover, the solution P(u, t) of the RG/E as
the F-P equation may be interpreted as an ‘averaged invariant manifold’ onto which
the stochastic distribution function is to get relaxed within the relaxation time [57].
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7.4 Adiabatic Elimination of Fast Variables
in Fokker-Planck Equation

In this section, we shall show that the reduction theory [6] based on the RG method
[1, 3, 5, 6], which is presented in Chap. 5, nicely provides us with a simple but
systematic method of the adiabatic elimination of fast variables appearing in the F-P
equations [57]. In fact, because of the linearity of the F-P equation, it is a rather easy
task once the slow and fast variables are identified as is often the case. Incidentally,
the techniques developed for it [73, 120–125] has a noticeable affinity with the
perturbation theory in quantum mechanics [117, 118, 126, 127], as emphasized in
[123, 125].

A typical problem in this category [73, 120–122, 124] is to derive the Smolu-
chowski equation [128], hopefully with corrections, describing the time evolution
of the space distribution P̃(x, t) of the Brownian particles in the large friction limit
γ = μ/m → ∞ from theKramers equation (7.70) for describing the time evolution
of the space-velocity distribution P(x, v, t) of the particles.

It seems that Brinkman [120] was the first who considered the problem seriously,
though more reliable derivations were provided later [73, 121, 122, 124]; see [73,
125] for a review. It should be also remarked that Mastuo and Sasa [129] was the
first who utilized the RG method given in [1] as a tool for eliminating the velocity
in a F-P equation for describing molecular engines [130–132].

We shall show that our reduction theory based on the RG method as given in [3,
5, 6] applied for the elimination of fast variables in the F-P equation [57] is free
from any ansatz and has a clear correspondence with and hence provide a foundation
to those given in other methods.

For definiteness, we take the following 2-dimensional Langevin equation [73]
with γ being a positive large number,

{
ẋ = hx (x, y) + gx(x, y)
x (t),

ẏ = γ hy(x, y) + f (x, y) + √
γ gy(x, y)
y(t),

(7.71)

where 
i (t) (i = x, y) are Gaussian noises satisfying

〈
i (t)
 j (t
′)〉 = 2Diδi jδ(t − t ′). (7.72)

We follow Ref. [73] for the notations. Because of the large friction given by the term
containing γ , the variable y is a fast variable. Our task is to eliminate the fast variable
y adiabatically, and this obtain a reduced evolution equation given solely in terms of
x .

Before doing this task, we first eliminate the most rapid variables, i.e., 
i (t)
(i = x, y) to obtain the dynamics written only in terms of x and y. This is tantamount
to transforming the Langevin equation (7.71) to a F-P equation as was done in the
previous section.
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In terms of the notation used in the previous section, we find that

h̃x = hx + Dxgx
∂gx
∂x

, (7.73)

h̃ y = γ hy + f + γ Dygy
∂gy
∂y

, (7.74)

ĝ =
(
gx 0
0

√
γ gy

)
. (7.75)

The corresponding F-P equation for the probability W (x, y, t) reads5

∂W

∂t
= − ∂

∂x

(
hx + Dxgx

∂gx
∂x

)
− ∂

∂y

(
γ hy + f + γ Dygy

∂gy
∂y

)

+ ∂2

∂x2
(
Dxg

2
xW
) + γ

∂2

∂x2
(
Dyg

2
yW
)

=: [L̂1 + γ L̂0]W, (7.76)

where

L̂1 = − ∂

∂x

(
hx + Dxgx

∂gx
∂x

)
− ∂

∂y
f (x, y) + Dx

∂2

∂x2
g2x , (7.77)

L̂0 = − ∂

∂y

(
hy + Dygy

∂gy
∂y

)
+ Dy

∂2

∂y2
g2y . (7.78)

7.4.1 Perturbative Expansion in the Case of a Strong Friction

When γ is large, this equation clearly shows that the effects of L̂0 overwhelms that
of L̂1, which may be thus treated as a perturbation. To implement this, we introduce
a scaled time τ by

ετ = t with ε := 1

γ
< 1. (7.79)

Our equation now takes the form

(
∂

∂τ
− L̂0

)
W = ε L̂1W, (7.80)

5 We use the notation W instead of P for the probability density.
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We shall apply the perturbation theory to (7.80) with L̂0 and L̂1 being the unper-
turbed and perturbative part, respectively. Let us suppose that a solution is given in
the perturbation series;

W (τ, x, y) = W0(τ, x, y) + εW1(τ, x, y) + ε2W2(τ, x, y) + . . . . (7.81)

Following the general scheme of the RG method [3–6] presented in the previous
chapters, we first try to construct the perturbed solution around an arbitrary time
τ ∼ τ0 in the asymptotic region as

W̃ (τ, x, y; τ0) = W̃0(τ, x, y; τ0) + εW̃1(τ, x, y) + ε2W̃2(τ, x, y; τ0) + . . . .

(7.82)

with the ‘initial’ conditions given at τ = τ0 belonging to the asymptotic region;

W̃i (τ0, x, y; τ0) = Wi (τ0, x, y), (7.83)

which implies that

W (τ, x, y) = W̃ (τ, x, y; τ). (7.84)

It is readily found that W̃n’s (n = 0, 1, 2, . . . ) satisfy the following equations,
respectively,

(
∂

∂τ
− L̂0

)
W̃0 = 0, (7.85)(

∂

∂τ
− L̂0

)
W̃n = L̂1W̃n−1, (n = 1, 2, . . . ). (7.86)

7.4.2 The Eigenvalue Problem of L̂0

To proceed, we must first solve the eigenvalue problem of the unperturbed operator
L̂0(y, x) acting on functions of y with x being a mere parameter:

L̂0ϕn(y; x) = −λn(x)ϕn(y; x). (7.87)

Here we assume the eigenvalues are all discrete ones, mainly for notational simplic-
ity. As is the case with the Kramers equation, we are interested in the case where
L̂0(y, x) has unique zero eigenvalue; we denote the corresponding eigenfunction as
ϕ0(y; x) =: ϕst (y; x),

L̂0(y, x)ϕ0(y; x) = 0, with λ0(x) = 0. (7.88)
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We call ϕ0(y; x) = ϕst (y; x) the stationary distribution function because it satisfies
the zeroth order evolution equation (7.85).

Since L̂0(y, x) is not a symmetric (Hermitian) operator,6 we introduce the corre-
sponding adjoint operator L̂†

0, which satisfies

L̂†
0ϕ̃n(y; x) = −λn(x)ϕ̃n(y; x). (7.89)

The explicit form of L̂†
0 will be given later.

Now it is readily verified7 that Eq. (7.88) is rewritten as [75]

L̂0ϕ0(y; x) = − ∂

∂y

[
D(1) − ∂

∂y
D(2)

]
ϕ0(y; x) = 0, (7.90)

with

D(1) := hy(x; y) + Dygy(x, y)
∂gy(x, y)

∂y
, D(2) := Dyg

2
y(x; y). (7.91)

Equation (7.90) implies that

∂(D(2)ϕ0)

∂y
= D(1)ϕ0 = D(1)

D(2)
(D(2)ϕ0), (7.92)

which is readily solved to yield

ϕ0(y; x) = N

D(2)
exp

[∫ y

dy′ D
(1)

D(2)

]
= Ne−�(y;x), (7.93)

where

�(y; x) := ln D(2) −
∫ y

dy′ D
(1)

D(2)
. (7.94)

Then it is a remarkable fact that L̂0 can be cast into a form of a Sturm-Liouville
operator [80] in terms of � as follows

L̂0 = ∂

∂y

(
D(2)(y; x)e−�(y;x) ∂

∂y
e�(y;x)

)
. (7.95)

6 See Sect. 3.6.2 for an introductory account of asymmetric matrices and related subjects.
7 In the following, the presentation is somewhat based on [75].



174 7 RG Method Applied to Stochastic Equations

In fact,

∂

∂y

(
D(2)(y; x)e−�(y;x) ∂

∂y
e�(y;x)

)
= ∂

∂y

[
D(2)(y; x)

(
∂�

∂y
+ ∂

∂y

)]

= ∂

∂y

(
−D(1) + ∂D(2)

∂y
+ D(2) ∂

∂y

)

= − ∂

∂y
D(1) + ∂2

∂y2
D(2) = L̂0. (7.96)

Then we find that the following operator is an Hermite operator,8

e�(y;x) L̂0 =: Ĥ0. (7.97)

To show that an operator is Hermitian or not, one must specify the functional space
on which the operator acts.We note that the unperturbed equation (7.85) is expressed
in a form of the continuity equation as

∂W̃0

∂τ
+ ∂S[W̃0]

∂y
= 0, (7.98)

with

S[W̃0] =
(
D(1) − ∂

∂y

)
W̃0 =

(
D(2)(y; x)e−�(y;x) ∂

∂y
e�(y;x)

)
W̃0 (7.99)

which is the probability current or probability flux. For simplicity, we demand that
any solution W̃0 to (7.85) satisfies the (natural) boundary condition;

lim|y| → ∞ S[W̃0] = 0. (7.100)

Now that the functional space has been specified, let us examine the properties of
the operator Ĥ0 by calculating the following ‘matrix element’ given in terms of two
arbitrary functions Y1(y) and Y2(y) satisfying the natural boundary condition

8 The fact that L̂0 is written in a form of a Sturm-Liouville operator [80] suggests that the operator
can be made a symmetric or Hermitian operator with a weighted inner product.
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〈Y1|Ĥ0|Y2〉 :=
∫ ∞

∞
dy Y1(y)e

� L̂0Y2(y)

=
∫ ∞

∞
dy Y1(y)e

� ∂

∂y

(
D(2)(y; x)e−�(y;x) ∂

∂y
e�(y;x)

)
Y2(y)

= Y1(y)e
�

(
D(2)(y; x)e−�(y;x) ∂

∂y
e�(y;x)

)
Y2(y)

∣∣∣∣
∞

−∞

−
∫ ∞

∞
dy

∂

∂y

(
Y1(y)e

�
)
D(2)(y; x)e−�(y;x) ∂

∂y

(
e�(y;x)Y2(y)

)
.

(7.101)

The first term is rewritten in terms of the flux as

Y1(y)e
� (−S[Y2])

∣∣∣∞−∞
= 0, (7.102)

where the last equality is due to the boundary condition posed on Y2(y). Then per-
forming a partial integration to the second term, we have

〈Y1|Ĥ0|Y2〉 = −
(
D(2)(y; x)e−�(y;x) ∂

∂y
Y1(y)e

�

) (
e�(y;x)Y2(y)

) ∣∣∣∣
∞

−∞

+
∫ ∞

∞
dy

∂

∂y

(
D(2)(y; x)e−�(y;x) ∂

∂y
Y1(y)e

�

)
e�(y;x)Y2(y)

=
∫ ∞

∞
dy
(
e�(y;x) L̂0Y1(y)

)
Y2(y) = 〈Ĥ0Y1|Y2〉, (7.103)

where the boundary term vanishes because of the boundary condition posed on Y1;

lim|y| → ∞ S[Y1] = 0. (7.104)

Thus we have established that Ĥ0 is a Hermitian operator:

Ĥ†
0 = Ĥ0. (7.105)

Comments are in order here.

1. The following operator is also a Hermitian operator

Ĥ0 = e−�/2Ĥ0e
−�/2, (7.106)

since

Ĥ †
0 = e−�/2Ĥ†

0 e
−�/2 = Ĥ0. (7.107)
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2. If we use the stationary distribution function ϕ0(y; x) in place of �, Ĥ0 is
expressed as

Ĥ0 = 1√
ϕ0(y; x) L̂0

√
ϕ0(y; x). (7.108)

Then what are eigenvalues and eigenfunctions of Ĥ0? In fact, it is readily found
that ψn(y; x) defined below is the eigenfunctions of Ĥ0 with eigenvalue −λn:

Ĥ0ψn(y; x) = −λnψ(y; x), ψn(y; x) := 1√
ϕ0(y; x)ϕn(y; x). (7.109)

In fact,

Ĥ0ψn(y; x) =
(

1√
ϕ0(y; x) L̂0

√
ϕ0(y; x)

)(
1√

ϕ0(y; x)ϕn(y; x)
)

= 1√
ϕ0(y; x) L̂0ϕn(y; x) = −λn

1√
ϕ0(y; x)ϕn(y; x) = −λnψ(y; x).

(7.110)

Similarly, the adjoint eigenfunctions9 are formally given by

ψ̃n(y; x) = √
ϕ0(y; x)ϕ̃n(y; x). (7.111)

Indeed, with the use of the adjoint form of (7.108), we have

Ĥ †
0 ψ̃n(y; x) =

(√
ϕ0(y; x)L̂†

0

1√
ϕ0(y; x)

)√
ϕ0(y; x)ϕ̃n(y; x)

= √
ϕ0(y; x)L̂†

0ϕ̃n(y; x) = −λn

√
ϕ0(y; x)ϕ̃n(y; x) = −λnψ̃n(y; x).

(7.112)

As is well known in quantum mechanics [117, 118], however, if the number of
degrees of freedom is one, then there is no degeneracy in the eigenvalues and the
eigenfunctions can be made real functions. In the case of Ĥ0, it implies that

ψ̃n(y; x) = ψn(y; x). (7.113)

Then combining (7.109) and (7.111), we have

ϕ̃n(y; x) = 1

ϕ0(y; x)ϕn(y; x), (7.114)

9 An adjoint eigenvector is an adjoint vector of the left eigenvector in the terminology given in
Sect. 3.6.2.
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which implies that

ϕ̃0(y; x) = 1. (7.115)

Owing to the Hermiticity of Ĥ0, the orthonormality holds;∫
ψn(y; x)ψm(y; x)dy =

∫
ϕ̃n(y; x)ϕm(y; x)dy = δnm . (7.116)

We also assume the completeness of the eigenfunctions

∞∑
n=0

ψn(y; x)ψn(y
′; x) =

∞∑
n=0

ϕ̃n(y; x)ϕn(y
′; x) = δ(y − y′). (7.117)

Next let us show that all the eigenvalues λn for n �= 0 is positive definite. Utilizing
that Hermitness of Ĥ = e� L̂0, we have∫ ∞

∞
dy ψn(y; x)Ĥ0ψn(y; x) = −λn

=
∫ ∞

∞
dy ψn(y; x)e�(y;x)/2 ∂

∂y

(
D(2)(y; x)e−�(y;x) ∂

∂y
e�(y;x)e−�(y;x)/2ψn(y; x)

)

= −
∫ ∞

∞
dy

∂

∂y

(
ψn(y; x)e�(y;x)/2) D(2)(y; x)e−�(y;x) ∂

∂y

(
e�(y;x)/2ψn(y; x)

)

= −
∫ ∞

∞
dy

(
∂

∂y
ψn(y; x)e�(y;x)/2

)2

D(2)(y; x)e−�(y;x) ≤ 0, (7.118)

where the equality holds only for n = 0, which shows that

λn > 0, (n �= 0). (7.119)

Now we define the projection operator P̂ to the kernel of L̂0 by

[P̂ϕ](y; x) = ϕ0(y; x)
∫

ϕ̃0(y
′; x)ϕ(y′; x)dy′. (7.120)

From (7.95), one finds that the adjoint of L̂0 is given by

L̂†
0 = e�(y;x) ∂

∂y

(
D(2)(y; x)e−�(y;x)) ∂

∂y
. (7.121)

Then we see that the zero mode for the adjoint operator is given by ϕ̃0(y; x) = 1 as
has been already deduced in (7.115). The projection operator to the complement to
the kernel is denoted by Q̂,
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[Q̂ϕ](y; x) = [(1 − P̂)ϕ](y; x)
=

∞∑
n=1

ϕn(y; x)
∫

dy′ϕ̃n(y
′; x)ϕ(y′; x). (7.122)

In the following, we assume that

P̂ L̂1 P̂ = 0, (7.123)

which can be always satisfied by redefinition of L̂0 and L̂1. In terms of the notions
in quantum field theory [133], L̂1 is normal-ordered with respect to the vacuum
|0〉 := ϕ0; 〈0|L̂1|0〉 = 0.

7.4.3 The Solution to the Perturbative Equations

The general solution to the lowest-order equation (7.85) is given by

W̃0(τ, x, y; τ0) =
∞∑
n=0

Pn(x; τ0)ϕn(y; x)e−λnτ , (7.124)

where we have made explicit that the integral constants Pn(x; τ0) may depend on
the ‘initial’ time τ0 as well as the other variable x . We remark that (7.124) has the
‘initial’ value

W (τ0, x, y) = W̃0(τ0, x, y; τ0) =
∞∑
n=0

Pn(x; τ0)ϕn(y; x)e−λnτ0 . (7.125)

Since we are interested in the asymptotic (long time) behavior at t → ∞, we
may keep only the stationary solution in the sum as

W̃0(τ, x, y; τ0) � P0(x; τ0)ϕ0(y; x) = W0(τ0, x, y). (7.126)

Notice the last equality holds because of the stationarity of the solution. Accordingly,

P̂W̃0(τ, x, y; τ0) = W̃0(τ, x, y; τ0). (7.127)

Let us proceed to the higher-order equations (7.86). The solution to Eq. (7.86) is
formally given by

W̃n(τ, x, y; τ0) = 1

∂τ − L̂0

L̂1W̃n−1 = 1

∂τ − L̂0

(P̂ + Q̂)L̂1W̃n−1

= Xn(τ, x, y; τ0) + Yn(τ, x, y; τ0), (7.128)
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where

Xn := P̂W̃n(τ, x, y; τ0) = 1

∂τ − L̂0

P̂ L̂1W̃n−1, (7.129)

Yn := Q̂W̃n(τ, x, y; τ0) = 1

∂τ − L̂0

Q̂ L̂1W̃n−1, (7.130)

for n = 1, 2, . . . . Here we have utilized the commutability of L̂0 and the projection
operators,

[L̂0, P̂] = 0, [L̂0, Q̂] = 0. (7.131)

It is well known that the solution to an inhomogeneous equation has an ambiguity
due to the freedom to add a function proportional to the unperturbed solution. We
determine the form of the particular solution to the inhomogeneous equations (7.86)
so that the possible P-space component in the perturbed solutions for n ≥ 1 vanishes
at τ = τ0;

P̂W̃n(τ0, x, y; τ0) = Xn(τ0, x, y; τ0) = 0. (7.132)

In fact, itwill be found that this condition is alwaysmade satisfiedowing to the appear-
ance of secular terms proportional to (τ − τ0)

n multiplied to the P-space component.
The particular solutions to the perturbative equations (7.86) with the ‘initial’

condition (7.132) can be obtained in a mechanical way, as is presented in Sect. 4.7.
We first note that for any constant vectorU the following formulae hold, as given by
(4.237) and (4.239), respectively,

1

∂τ − L̂0

Q̂U = 1

−L̂0

Q̂U, (7.133)

1

∂τ − L̂0

(τ − τ0)
n P̂U = 1

(n + 1)
(τ − τ0)

n+1 P̂U, (7.134)

for n = 0, 1, 2.... In particular, the formula (4.238) gives

1

∂τ − L̂0

P̂U = (τ − τ0)P̂U. (7.135)

We also note the following formula, as given by (4.241)

1

∂τ − L̂0

(τ − τ0)Q̂ L̂1U = (τ − τ0)
1

−L̂0

Q̂ L̂1U − 1

(−L̂0)2
Q̂ L̂1U. (7.136)

Here, notice that [L̂0, Q̂] = 0, so Q̂/L̂0 = L̂−1
0 Q̂ = Q̂ L̂−1

0 Q̂. We remark that these
particular solutions are all compatible with the ‘initial’ condition (7.132).
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It is readily seen that X1 identically vanishes because

P̂ L̂1W̃0 = P̂ L̂1 P̂W̃0 = 0, (7.137)

on account of (7.123) and (7.127). Thus we have for the first-order solution

W̃1(τ, x, y; τ0) = Y1 = 1

−L̂0

Q̂ L̂1W̃0. (7.138)

A couple of remarks are in order:

1. One may replace the operator Q̂ with P̂ + Q̂ = 1 in this expression owing to
Eq. (7.137). Although such simplification in the expressions may be done also for
higher-order solutions, we shall retain the Q̂ operator for definiteness, since the
expression (−L̂0)

−1 L̂1 itself is ill-defined because of the zero eigenvalue of L̂0.
2. The solution (7.138) satisfies the ‘initial’ condition (7.132) as

W̃1(τ0, x, y, τ0) = W1(τ0, x, y) = 1

−L̂0

Q̂ L̂1W0(τ0, x, y). (7.139)

[The 2nd order]
Using the formula (7.135), we have

X2 = 1

∂τ − L̂0

P̂ L̂1
1

−L̂0

Q̂ L̂1W̃0 = (τ − τ0)P̂ L̂1
Q̂

−L̂0

L̂1W̃0. (7.140)

Similarly with use of the formula (7.133), we have for the Q-space component

Y2 = 1

∂τ − L̂0

Q̂ L̂1
1

−L̂0

Q̂ L̂1W̃0 =
(

Q̂

−L̂0

L̂1

)2

W̃0. (7.141)

W̃2(τ, x, y, τ0) is given by a sum of these terms;

W̃2(τ, x, y, τ0) = (τ − τ0)P̂ L̂1
Q̂

−L̂0

L̂1W̃0 +
(

Q̂

−L̂0

L̂1

)2

W̃0, (7.142)

which gives the ‘initial’ value at τ = τ0 as

W̃2(τ0, x, y, τ0) = W2(τ0, x, y) = 1

L̂0

Q̂ L̂1
1

L̂0

Q̂ L̂1W0(τ0, x, y), (7.143)

in accordance with (7.132).

[The 3rd order]
Since P̂ L̂1X2 = 0 because of (7.123),
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X3 = 1

∂τ − L̂0

P̂ L̂1Y2 = (τ − τ0)P̂ L̂1

(
Q̂

−L̂0

L̂1

)2

W̃0, (7.144)

where (7.135) has been used in the last equality. With use of (7.133) and (7.136), the
Q-space component becomes

Y3 = [
(τ − τ0)

Q̂

−L̂0
L̂1 P̂ L̂1

Q̂

−L̂0
L̂1 − Q̂

(−L̂0)2
L̂1 P̂ L̂1

Q̂

−L̂0
L̂1 +

(
Q̂

−L̂0
L̂1

)3 ]
W̃0.

(7.145)

Thus we have for the third-order solution

W̃3(τ, x, y; τ0) =
[
(τ − τ0){P̂ L̂1

(
Q̂

−L̂0

L̂1

)2

+ Q̂

−L̂0

L̂1 P̂ L̂1
Q̂

−L̂0

L̂1}

− Q̂

(−L̂0)2
L̂1 P̂ L̂1

Q̂

−L̂0

L̂1 +
(

Q̂

−L̂0

L̂1

)3]
W̃0, (7.146)

which satisfies the ‘initial’ condition (7.132) as

W̃3(τ0, x, y; τ0) =
[
− Q̂

(−L̂0)2
L̂1 P̂ L̂1

Q̂

−L̂0

L̂1 +
(

Q̂

−L̂0

L̂1

)3]
W̃0. (7.147)

[The 4th order]
With use of the formulae (7.134), one obtains

X4 =
[ 1
2
(τ − τ0)

2 P̂ L̂1
Q̂

−L̂0
L̂1 P̂ L̂1

Q̂

−L̂0
L̂1 + (τ − τ0)

{−P̂ L̂1
Q̂

(−L̂0)2
L̂1 P̂ L̂1

Q̂

−L̂0
L̂1

+P̂ L̂1(
Q̂

−L̂0
L̂1)

3}]W̃0. (7.148)

Similarly,

Y4 = [
(τ − τ0)

⎧⎨
⎩ Q̂

−L̂0

L̂1 P̂ L̂1

(
Q̂

−L̂0

L̂1

)2

+
(

Q̂

−L̂0

L̂1

)2

P̂ L̂1
Q̂

−L̂0

L̂1

⎫⎬
⎭

− Q̂

(−L̂0)2
L̂1 P̂ L̂1

(
Q̂

−L̂0

L̂1

)2

− Q̂

−L̂0

(
Q̂

−L̂0

L̂1

)2

P̂ L̂1
Q̂

−L̂0

L̂1

− Q̂

−L̂0

L̂1
Q̂

(−L̂0)2
L̂1 P̂ L̂1

Q̂

−L̂0

L̂1 +
(

Q̂

−L̂0

L̂1

)4 ]
W̃0. (7.149)
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Adding the two terms, we have

W̃4(τ, x, y; τ0) =
[ 1
2
(τ − τ0)

2 P̂ L̂1
Q̂

−L̂0
L̂1 P̂ L̂1

Q̂

−L̂0
L̂1

+ (τ − τ0){−P̂ L̂1
Q̂(

−L̂0
)2 L̂1 P̂ L̂1 Q̂

−L̂0
L̂1 + P̂ L̂1

(
Q̂

−L̂0
L̂1

)3

+ Q̂

−L̂0
L̂1 P̂ L̂1

(
Q̂

−L̂0
L̂1

)2
+ (

Q̂

−L̂0
L̂1)

2 P̂ L̂1
Q̂

−L̂0
L̂1}

− Q̂

(−L̂0)2
L̂1 P̂ L̂1

(
Q̂

−L̂0
L̂1

)2
− Q̂

−L̂0

(
Q̂

−L̂0
L̂1

)2
L̂1 P̂ L̂1

Q̂

−L̂0
L̂1

− Q̂

(−L̂0)2
L̂1

Q̂

−L̂0
L̂1 P̂ L̂1

Q̂

−L̂0
L̂1 +

(
Q̂

−L̂0
L̂1

)4]
W̃0. (7.150)

We remark that the ‘initial’ value at τ = τ0 has no P-space component;

P̂W̃4(τ0, x, y; τ0) = 0. (7.151)

[The perturbative result in the 4th order]
Summing up the results up to the fourth order, we have the approximate solution
with secular terms

W̃ (τ, x, y; τ0) �
4∑

i=0

εi W̃i (τ, x, y; τ0). (7.152)

Since it is quite lengthy, we do not write down the explicit expression of the sum.
Because of the secular terms, this solution given in the naive perturbation theory
becomes invalid as τ − τ0 → ∞.

7.4.4 Application of the RG/E Equation

Now we apply the RG/E equation to the perturbative solution with secular terms

dW̃

dτ0

∣∣∣∣
τ0=τ

= 0. (7.153)

Applying the projection operators and recovering the original time variable τ = t/ε,
we have for the P- and Q-space components

∂

∂t
P̂W0(τ, x, y) = ε P̂ L̂1

⎡
⎣ 3∑
n=1

εn−1

(
Q̂

−L̂0
L̂1

)n
− ε2

Q̂

−L̂0

Q̂

−L̂0
L̂1 P̂ L̂1

Q̂

−L̂0
L̂1

⎤
⎦W0(τ, x, y),

(7.154)
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and
⎡
⎣ Q̂

−L̂0
L̂1 + ε

(
Q̂

−L̂0
L̂1

)2⎤⎦ ∂

∂t
W0 = ε

{ Q̂

−L̂0
L̂1 P̂ L̂1

Q̂

−L̂0
L̂1 + ε2

Q̂

−L̂0
L̂1 P̂ L̂1(

Q̂

−L̂0
L̂1)

2

+ε2

(
Q̂

−L̂0
L̂1

)2
P̂ L̂1

Q̂

−L̂0
L̂1
}
W0, (7.155)

respectively. Here we have utilized the fact that W̃0(τ, x, y; τ0 = τ) = W0(τ, x, y)
and Eq. (7.127). Here it is found that the second equation (7.155) turns out redundant
because it follows from the first one (7.154).

We note that Eq. (7.154) is exactly the same as the one given in [74, 122, 125]
in quite different methods. Indeed, our L̂0 and L̂1 correspond to −L1 and L2 in
Sect. 6.4 of Ref. [75], respectively, and then Eq. (7.154) is recognized to be the same
as Eq. (6.4.101) in Ref. [75] up to the ‘initial’ value due to the Laplace transformation.
We note that the fourth-order term in (7.154) may be rearranged as a multiplicative
operator in the left hand side as if a wave-function renormalization in quantum field
theory [57], as

(
1 + ε2 P̂ L̂1

Q̂

(−L̂0)2
L̂1

)
∂

∂t
W0(τ, x, y) = ε P̂ L̂1

⎡
⎣ 3∑
n=1

εn−1
( Q̂

−L̂0
L̂1
)n⎤⎦W0(τ, x, y).

(7.156)

In fact, multiplying Eq. (7.155) by −ε P̂ L̂1 L̂
−1
0 and summing the result with

Eq. (7.154), one arrives at Eq. (7.156). Equation (7.156) corresponds to Eq. (6.4.100)
in [74] with identification

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Â = P̂ L̂1
Q̂

−L̂0
L̂1,

B̂ = P̂ L̂1
Q̂

−L̂0
L̂1

Q̂
−L̂0

L̂1,

Ĉ = P̂ L̂1
Q̂

−L̂0
L̂1

Q̂
−L̂0

L̂1
Q̂

−L̂0
L̂1,

D̂ = −P̂ L̂1
Q̂

(−L̂0)2
L̂1,

(7.157)

where we have attached the hat ˆ for indicating the operator nature. In terms of these
symbols, Eq. (7.154) is expressed as

∂

∂t
P̂W0(τ, x, y) = ε

[
Â + ε B̂ + ε2(Ĉ + D̂ Â)

]
W0(τ, x, y) (7.158)

with ε = γ −1. Equation (7.158) is to be compared with (6.4.101) in [74].
We shall not use the form (7.156) in the following, as is usual in the literature

[74, 122, 125].
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7.4.5 Smoluchowski Equation with Corrections

Next let us calculate the action of the projection operator P̂ in (7.154), which leads
to the equation of the space-time dependence of P0(x; τ). To show that this is the
case, let us operating the projection P̂ on the both sides of (7.156).10 We shall show
a couple of typical integrations. Firstly, noting that the P̂-projection and τ -derivative
are commutable, we have

P̂
∂

∂τ
W0(τ, x, y) = ∂

∂τ

∫ ∞
∞

dy ϕ̃0(y; x)W0(τ, x, y) = ∂P0(x; τ)

∂τ

∫ ∞
∞

dy ϕ̃0(y; x)ϕ0(y; x)

= ∂P0(x; τ)

∂τ
, (7.159)

where we have used the expression

W0(τ, x, y) = P0(x; τ)ϕ0(y; x) (7.160)

owing to (7.126).
Inserting the completeness condition (7.117) between the operators and using the

bra-ket notation as in Sect. 3.6.2

|n〉〈ñ| = ϕn(y; x)
∫ ∞

−∞
dy′ ϕ̃n(y

′; x) (7.161)

we have

ÂW0(τ, x, y) = P̂ L̂1
Q̂

−L̂0

L̂1W0(τ, x, y) = P̂ L̂1
Q̂

−L̂0

L̂1|0〉P0(x; τ)

=
∑
n,m,l

〈ϕ̃0|L̂1|n〉〈ñ| Q̂

−L̂0

|m〉〈m̃|L̂1|l〉〈l̃|0〉P0(x; τ)

=
∑
n �=0

〈0̃|L̂1|n〉 1

λn(x)
〈ñ|L̂1|0〉P0(x; τ)

=
∞∑
n=1

L̂0,n
1

λn(x)
L̂n,0P0(x; τ)

=: L̂AP0(x; τ), (7.162)

where L̂n,m(x) denotes the y-averaged operator as given by

L̂n,m(x) :=
∫

dyϕ̃n(y; x)L̂1(x, y)ϕm(y; x). (7.163)

10 Note that this operation is nothing but performing the integration
∫
dy with respect to the fast

variable y because ϕ̃(y; x) = 1.
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Quite similarly,

B̂W0(τ, x, y) = P̂ L̂1
Q̂

−L̂0

L̂1
Q̂

−L̂0

L̂1W0(τ, x, y)

=
∞∑

n,m=1

L̂0,n
1

λn(x)
L̂n,m

1

λm(x)
L̂m,0P0(x; τ)

=: L̂BP0(x; τ), (7.164)

ĈW0(τ, x, y) = P̂ L̂1
Q̂

−L̂0

L̂1
Q̂

−L̂0

L̂1
Q̂

−L̂0

L̂1W0(τ, x, y)

=
∞∑

n,m,l=1

L̂0,n
1

λn(x)
L̂n,m

1

λm(x)
L̂m,l

1

λl(x)
L̂l,0P0(x; τ)

=: L̂CP0(x; τ). (7.165)

We have also

D̂|0〉 = −P̂ L̂1
Q̂

(−L̂0)2
L̂1|0〉 = −

∑
n,m,l

〈0̃|L̂1|n〉〈ñ| Q̂

(−L̂0)2
|m〉〈m̃|L̂1|0〉

= −
∑
n �=0

〈0̃|L̂1|n〉 1

λ2
n

〈ñ|L̂1|0〉 = −
∞∑
n=1

L̂0,n
1

λ2
n(x)

L̂n,0 =: L̂D.

(7.166)

Thus (7.158) takes the form

∂

∂t
P0(x, t) = γ −1

[
L̂A + γ −1L̂B + γ −2(L̂C + L̂DL̂A)

]
P0(x, t). (7.167)

This is a generalized corrected Smoluchowski equation corresponding to the
Langevin equation with a multiplicative noise.

7.4.6 Simple Examples

As examples, we shall give a Smoluchowski equation for a multiplicative noise and
the corrected Smoluchowski equation.

Let us take the following model equation with a multiplicative noise [129];

{
ẋ = y,

ẏ = −γ y −U ′(x) + √
γ T (x)
y(t),

(7.168)
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withU ′(x) = dU (x)/dx . This equation is obtained from (7.71)with the replacement

hx (x, y) = y, gx(x, y) = 0, hy(x, y) = −y,

f (x, y) = −U ′(x), gy(x, y) = √
T (x). (7.169)

We assume for the time correlation of the noise as

〈
y(t1)
y(t2)〉 = 2δ(t1 − t2), (7.170)

where we have set Dy = 1 in (7.72) for simplicity. Then D(i) (i = 1, 2) defined in
(7.91) now read

D(1) = −y, D(2) = T (x). (7.171)

The corresponding F-P equation reads

∂W (x, y, τ )

∂τ
= (L̂0 + γ −1 L̂1)W (x, y, τ ) (7.172)

with

L̂0 = ∂

∂y
y + T (x)

∂2

∂y2
, L̂1 = −y

∂

∂x
+ U ′(x)

∂

∂y
. (7.173)

The normalized stationary state is given from the general formula of the zero
mode (7.93) as

ϕ0(y; x) = N

D(2)
exp

[∫ y

0
dy′ D

(1)

D(2)

]
= N

T (x)
exp

[
− 1

T (x)

∫ y

0
dy′ y′

]

= N

T (x)
e−y2/(2T (x)) = 1√

2T (x)
e−y2/(2T (x)), (7.174)

where the normalization constant N has been chosen to be

N = √
T (x)/2. (7.175)

Then the operation of the hermitian operator Ĥ0 on ψ(y; x) is evaluated as follows,

Ĥ0ψ(y; x) = ey
2/4T (x)

(
∂

∂y
y + T (x)

∂2

∂y2

)
e−y2/4T xψ(y; x)

=
(
T (x)

∂2

∂y2
− y2

4T (x)
+ 1

2

)
ψ(y; x)

= −
(

−1

2

∂2

∂η2
+ 1

2
η2

)
ψ(y; x) + 1

2
ψ(y; x) (7.176)
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with

η := y/
√
2T (x). (7.177)

Then the eigenvalue equation for Ĥ0 (7.109) now reads

(
−1

2

∂2

∂η2
+ 1

2
η2

)
ψn(η; x) =

(
λn(x) + 1

2

)
ψn(η; x). (7.178)

This is exactly the eigenvalue equation for a harmonic oscillator with the potential
η2/2 in elementary quantum mechanics [117, 118]. Thus we have

λn = n, (n = 0, 1, 2 . . . ) (7.179)

ϕn≥1(y; x) = 1

2nn!Hn(y/
√
2T (x))ϕ0(y; x), (7.180)

where Hn(x) is the Hermite polynomial in the n-th order. The conjugate eigenfunc-
tions are

ϕ̃n(y; x) = Hn(y/
√
2T (x)), ϕ̃0(y; x) = 1. (7.181)

In accordance with the general argument presented before, the projection operator
P̂ is given by a simple integration

P̂ = ϕ0(y; x)
∫

dy. (7.182)

To obtain the reduced dynamics, we only have to calculate the y-averaged operators
L̂n,0(x) and L̂0,n(x).

Since the eigenfunctions are given by those of the harmonic oscillator in elemen-
tary quantum mechanics [117, 118], the necessary calculations to be done below are
straightforward even when somewhat tedious. Therefore we shall omit the details of
the computational processes in the following.

First we notice that since P̂ L̂1 P̂ = 0,

L̂1 = L̂0,0(x) = 0. (7.183)

The non-vanishing term is evaluated to be

L̂0,n(x) =
∫

dyL̂1ϕn(y; x) = −
∫

dy(y∂x −U ′(x)∂y)ϕn(y; x) = −δ1,n
∂

∂x

√
T

2
.

(7.184)
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So we only have to calculate L̂1,0: A straightforward calculation gives

L̂1ϕ0(y; x) = −(y∂x −U ′(x)∂y)ϕ0(y; x)

= −ϕ1(y; x)
√

2

T

(
T

∂

∂x
+U ′(x) + ∂T

∂x

)
− ϕ3(y; x)

√
72

T

∂T

∂x
, (7.185)

which implies that

L̂m,0 =

⎧⎪⎪⎨
⎪⎪⎩

−
√

2
T

(
T ∂

∂x +U ′(x) + ∂T
∂x

) ; m = 1,

−
√

72
T

∂T
∂x ; m = 3,

0; others.

(7.186)

Using the above results, one obtains L̂A defined in (7.162) as

L̂A = L̂0,1 L̂1,0 = ∂

∂x

(
T

∂

∂x
+U ′(x) + ∂T

∂x

)
. (7.187)

Because of (7.167), we now find that the generalized Smoluchowski equation for
multiplicative noise without corrections takes the form [129]

∂P0(x, t)

∂t
= γ −1L̂AP0(x, t)

= γ −1 ∂

∂x

(
T

∂

∂x
+U ′(x) + ∂T

∂x

)
P0(x, t). (7.188)

If T (x) is independent of x , (7.188) reduces exactly to the Smoluchowski equation
[128].

Next let us investigate corrections to the Smoluchowski equation (7.188). Accord-
ing to (7.167), we need to calculate the operator L̂B for the γ −2 correction and
L̂C + L̂DL̂A for the γ −3 one.

On account of (7.184) and (7.186),

L̂B =
∑
m=1,3

L̂0,1
1

λ1(x)
L̂1,m

1

λm(x)
L̂m,0. (7.189)

However, owing to the parity conservation, it is found that

L̂1,1 = L̂1,3 = 0, (7.190)

and hence

L̂B = 0. (7.191)
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Again on account of (7.184) and (7.186),

L̂C =
∞∑

m=1

∑
l=1,3

L̂0,1L̂1,m
1

m
L̂m,l

1

l
L̂l,0. (7.192)

In the following, we shall deal with the case where T has no x dependence.Then,
a straightforward computation gives

L̂1,m = −δm,2

√
T/2

∂

∂x
, (7.193)

L̂2,l = √
T/2

{
δl,3

∂

∂x
− δl,14

( ∂

∂x
+U ′(x)/T

)}
, (7.194)

L̂3,0 = 0. (7.195)

Thus we have

L̂C = ∂2

∂x2

(
T

∂

∂x
+U ′(x)

)2

. (7.196)

Because of (7.184), L0,n ∝ δ1,n , then (7.166) tells us that

L̂D = −L̂A, (7.197)

which implies that

L̂DL̂A = − ∂

∂x

(
T

∂

∂x
+U ′(x)

)
∂

∂x

(
T

∂

∂x
+U ′(x)

)
. (7.198)

Then putting

T
∂

∂x
+U ′(x) =: F̂, (7.199)

we have

L̂C + L̂DL̂A = ∂2
X F̂ F̂ − ∂x F̂∂x F̂ = ∂X

[
∂x F̂ − F̂∂x

]
F̂ . (7.200)

However,

∂x F̂ − F̂∂x = (T ∂2
x + U ′′(x) + U ′(x)∂x ) − (T ∂x +U ′(x))∂x = U ′′(x),

(7.201)
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which leads to

L̂C + L̂DL̂A = ∂

∂x
U ′′(x)

(
T

∂

∂x
+U ′(x)

)
. (7.202)

Thus we arrive at the following corrected Smoluchowski equation [74, 122, 125]

∂P0(x, t)

∂t
= γ −1 ∂

∂x

[
1 + γ −2U ′′(x)

] (
T

∂

∂x
+U ′(x)

)
P0(x, t). (7.203)

7.5 Concluding Remarks

The RG method has been used for deriving the Fokker-Planck (F-P) equation from
the stochastic Liouville equation (Kubo’s equation) in such a way that the coarse
graining of time [134–136] is naturally achieved through the construction of the
asymptotic invariant manifold [34, 110]. Technically speaking, the essential role the
choice of the ‘initial’ value on the invariant manifold has been elucidated, which
is reminiscent of the work by Bogoliubov [54], Lebowitz [111], Kubo [115] and
Kawasaki [112].

We have also shown that the reduction theory [6] based on the RG method as
presented in Chap. 5 makes a systematic method for obtaining the reduced evolution
equation of the distribution function given solely in terms of slow variables, that is,
the adiabatic elimination of fast variables appearing in the F-P equations.

The F-P equation is a linear equation with a form similar to Schrödinger equa-
tion, and the perturbation theory developed here has also quite similar structure as the
usual time-(in)dependent perturbation theory in quantummechanics, which includes
the Born-Oppenheimer approximation [123, 125]. Thus the techniques developed
in the present section may have useful implications to problems in quantummechan-
ics [137].



Chapter 8
RG/E Derivation of Dissipative Fluid
Dynamics from Classical Non-relativistic
Boltzmann Equation

8.1 Introduction: Fluid Dynamics as Asymptotic Slow
Dynamics of Boltzmann Equation

The fluid dynamics may be identified with the slow dynamics of the kinetic equation
of a many-body system in the asymptotic regime after a long time. For example,
the time evolution of a rarefied many-body system can be described as a sequential
relaxation process with different time scales, as follows [54, 112, 115].

(I) In the beginning of the time evolution of a prepared state, the whole dynamical
evolution of the systemwill be governed by Hamiltonian dynamics that is time-
reversal invariant, and theLiouville equation for the distribution functions holds.

(II) As the system gets old, the dynamics is relaxed into the kinetic regime, where
the time evolution of the system is well described by a partial truncation of the
BBGKY (Bogoliubov-Born-Green-Kirkwood-Yvon) hierarchy [54, 55, 115,
138] for the one-, two-, and s-body distribution functions with s = 3, 4, . . . ,
and the Boltzmann equation for one-body distribution function describes a
coarse grained slower dynamics, in which the time-reversal invariance is lost
by a loss of information by the truncation.

(III) Then, as the system is further relaxed, the time evolution will be described in
termsof thefluid dynamical variables, i.e., theflowvelocity, the particle-number
density, and the local temperature. In this sense, the Navier-Stokes equation
together with the energy equation with the heat current is the asymptotic slow
dynamics of the kinetic equation. In the rest of the chapter, we shall collectively
use the term of the Navier-Stokes equation including the energy equation with
the heat current.

Thus one sees that the derivation of the Navier-Stokes equation provides us with
a nice ‘playground’ to apply some reduction theories of dynamics as emphasized by
Kuramoto [32]. Indeed the celebrated Chapman-Enskog method [113] for deriving
the fluid dynamics from the Boltzmann equation can be viewed as an application of
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T. Kunihiro et al., Geometrical Formulation of Renormalization-Group Method
as an Asymptotic Analysis, Fundamental Theories of Physics 206,
https://doi.org/10.1007/978-981-16-8189-9_8

191

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-16-8189-9_8&domain=pdf
https://doi.org/10.1007/978-981-16-8189-9_8


192 8 RG/E Derivation of Dissipative Fluid Dynamics …

the multiple-scale method [20, 21]. Thus it is natural and intriguing to apply the RG
method [1] as introduced in the previous chapters [3, 5, 6] as a powerful reduction
theory to such an interesting task.1 In this chapter, we deals with a non-relativistic
rarefied system with a classical statistics and apply the RG method based on the per-
turbation theory [57, 58] to derive the Navier-Stokes equation from the Boltzmann
equation [53, 113, 139–141] with the small inhomogeneity in the asymptotic regime
being identified as a small parameter for the perturbative expansion.2 The deriva-
tion consists of a two-fold construction, i.e., the explicit construction of deformed
distribution function as the attractive/invariant manifold and the reduced differential
equation for the slow variables to be identified with the fluid dynamic equation where
the microscopic expressions of the transport coefficients are explicitly given in terms
of the distribution function in a form of the Kubo formula [142].

8.2 Basics of Non-relativistic Classical Boltzmann Equation

Let us consider a non-relativistic many body system composed of single species
with a mass m. The Boltzmann equation [53, 113, 139–141] is a transport equation
describing the time evolution of one-particle distribution function defined in the
phase space (r, p = mv):

∂

∂t
f (r, v, t) + v · ∇ f (r, v, t) = C[ f ](r, v, t), (8.1)

with ∇ = ∂/∂ r . The right-hand side of the above equation is called the collision
integral,

C[ f ](r, v, t) = 1

2!
∫
d3v1

∫
d3v2

∫
d3v3 ω(v, v1|v2, v3)

×
(
f (r, v2, t) f (r, v3, t) − f (r, v, t) f (r, v1, t)

)
, (8.2)

where ω(v, v1|v2, v3) denotes the transition probability which comes from the
microscopic two-particle interaction. We remark that ω(v, v1|v2, v3) includes the
delta functions reflecting the energy-momentum conservation laws as

ω(v, v1|v2, v3) ∝ δ(m |v|2/2 + m |v1|2/2 − m |v2|2/2 − m |v3|2/2)
× δ3(m v + m v1 − m v2 − m v3), (8.3)

1 As for other references of the RG method with a comment on its historical development, see
Sect. 1.3.
2 See also [56] where a sketch is given for deriving the Euler equation from the Boltzmann equation
on the basis of the RG method as given in [1].
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and satisfies the following relations based on the indistinguishability of identical
particles and the time reversal symmetry in the scattering process:

ω(v, v1|v2, v3) = ω(v1, v|v3, v2) = ω(v2, v3|v, v1) = ω(v3, v2|v1, v). (8.4)

On account of the symmetry property (8.4), the convolution of the collision inte-
gral and an arbitrary function �(v) of v can be into the following symmetric form,

∫
d3v �(v)C[ f ](r, v, t)

= 1

2!
1

4

∫
d3v

∫
d3v1

∫
d3v2

∫
d3v3 ω(v, v1|v2, v3)

× (�(v) + �(v1) − �(v2) − �(v3))

×
(
f (r, v2, t) f (r, v3, t) − f (r, v, t) f (r, v1, t)

)
. (8.5)

We call a function �c(v) a collision invariant if the convolution vanishes as

∫
d3v �c(v)C[ f ](r, v, t) = 0. (8.6)

Now, from the expression (8.5), it is clear that if �c(v) is a conserved quantity in the
collision process satisfying

�c(v2) + �c(v3) = �c(v1) + �c(v), (8.7)

�c(v) is a collision invariant. Then one sees that the energym |v|2/2 and themomen-
tum mv are collision invariants due to the energy and momentum conservation, and
a constant, i.e., 1, is also a collision invariant due to the particle number conservation
law. Thus we have

∫
d3v 1C[ f ](r, v, t) = 0, (8.8)

∫
d3vmvi C[ f ](r, v, t) = 0, (i = 1, 2, 3) (8.9)

∫
d3vm|v|2/2C[ f ](r, v, t) = 0. (8.10)

In the present chapter, we assume that there is no other conserved quantities than
the above five quantities. Then it is concluded that any collision invariant �c(v) can
be expressed as a linear combination of the five collision invariants given above

�c(v) = α(r, t) + β(r, t) · mv + γ (r, t)m |v|2/2. (8.11)
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An important notice is in order here: The coefficients α(r, t), β(r, t), and γ (r, t)
may depend on (r, t).

Corresponding to the five collision invariants (1, mv, m |v|2/2), the Boltzmann
equation (8.1) leads to the following balance equations

∂

∂t
ρ + ∇ · (ρ U) = 0, (8.12)

∂

∂t
(ρ Ui ) + ∇ j (ρ U j Ui + P ji ) = 0, (8.13)

∂

∂t
(ρ |U |2/2 + E) + ∇ j

(
(ρ |U |2/2 + E)U j + Q j + P ji U i

) = 0, (8.14)

where we have introduced the mass density ρ, the flow velocity Ui of the whole
system, the internal energy E , the pressure tensor Pi j , and the heat flux Qi , which
are defined by

ρ(r, t) := m
∫
d3v f (r, v, t), (8.15)

Ui (r, t) := m

ρ

∫
d3v vi f (r, v, t), (8.16)

E(r, t) :=
∫
d3v

m |v − U |2
2

f (r, v, t), (8.17)

Pi j (r, t) :=
∫
d3vm (vi −Ui ) (v j −U j ) f (r, v, t), (8.18)

Qi (r, t) :=
∫
d3v

m |v − U |2
2

(vi −Ui ) f (r, v, t), (8.19)

respectively. With the use of Eqs. (8.12) and (8.13), Eqs. (8.13) and (8.14) can be
reorganized to make the following forms

ρ
∂

∂t
U i + ρ U · ∇Ui + ∇ j P ji = 0, (8.20)

ρ
∂

∂t
(E/ρ) + ρ U · ∇(E/ρ) + Pi j ∇ iU j + ∇ · Q = 0. (8.21)

Here the first and the second equations may be viewed as the Newton equation and
the energy equation, respectively.

We note that although the set of the balance equations (8.12), (8.20), and (8.21)
takes seemingly the same form as the set of the fluid dynamic equations, it is not
closed and has no dynamical information unless an explicit time dependence of
f (r, v, t) is obtained as a solution to the Boltzmann equation (8.1).
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In the Boltzmann theory, an entropy density and an entropy current are defined
by

s(r, t) := −
∫
d3v f (r, v, t)

(
ln f (r, v, t) − 1

)
, (8.22)

J is (r, t) := −
∫
d3v vi f (r, v, t)

(
ln f (r, v, t) − 1

)
, (8.23)

respectively. Then the Boltzmann equation (8.1) leads to the balance equation for
the entropy density as

∂

∂t
s(r, t) + ∇ · J s(r, t) =

∫
d3v C[ f ](r, v, t) ln f (r, v, t). (8.24)

If we define the entropy of the system by

S(t) :=
∫
d3r s(r, t), (8.25)

it is found that the entropy S(t) is conserved when ln f (r, v, t) is a collision invari-
ant, and hence f (r, v, t) is expressed as

f (r, v, t) = exp
[
α(r, t) + β(r, t) · mv + γ (r, t)m |v|2/2

]
, (8.26)

which can be cast into the form of the Maxwellian by a slight rearrangement of the
variables as

f eq(r, v, t) = n(r, t)
[

m

2π T (r, t)

] 3
2

exp

[
m

2 T (r, t)
|v − u(r, t)|2

]
, (8.27)

where the five fields n, T , and ui are called fluid dynamical variables.
We note that the collision integral of f eq(r, v, t) vanishes:

C[ f eq](r, v, t) = 0, (8.28)

due to the detailed balance condition for the equilibrium distribution,

ω(v, v1|v2, v3)
(
f eq(r, v2, t) f eq(r, v3, t) − f eq(r, v, t) f eq(r, v1, t)

)
= 0,

(8.29)

which itself is owing to the energy-momentum conservation law (8.3).
Let us consider the simple case of the equilibrium state putting f (r, v, t) =

f eq(r, v, t). Then we find that the quantities defined by Eqs. (8.15)–(8.19) take the
following forms in the equilibrium state
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ρ = m n, Ui = ui , E = 3

2
n T, (8.30)

Pi j = n T δi j , Qi = 0, (8.31)

respectively. Substituting these expressions, we see that the balance equations (8.12),
(8.20), and (8.21) take the following forms

∂

∂t
n + ∇ · (n u) = 0, (8.32)

m n
∂

∂t
ui + m n u · ∇ui + ∇ i (n T ) = 0, (8.33)

n
∂

∂t
(3 T/2) + n u · ∇(3 T/2) + n T ∇ · u = 0, (8.34)

respectively. These are nothing but the Euler equation for an ideal fluid without
dissipative effects. One thus finds that the dissipative effects such as viscosities that
are present in the Navier-Stokes equation come from the deviation or deformation
of f (r, v, t) from f eq(r, v, t). In the subsequent sections, we shall obtain the very
deformation by faithfully solving the Boltzmann equation in the asymptotic regime
in the RG method.

8.3 Asymptotic Analysis and Dynamical Reduction of
Boltzmann Equation in RG Method

In this section, we shall apply the RG method [57, 58] as formulated in the previous
chapters [3, 5, 6] to make an asymptotic analysis of the Boltzmann equation in
the asymptotic regime with a small spatial inhomogeneity, and deduce not only the
attractive/invariant manifold spanned by the fluid dynamical variables but also the
reduced differential equation for the fluid dynamical variables, which is to take the
form of the Navier-Stokes equation.

8.3.1 Preliminaries and Set Up

To circumvent possible complexities inherent in continuous variables, we treat the
arguments v as discrete variables, following [32]: With this treatment, one will read-
ily recognize the apparent correspondence of the present treatment to the general
formulation of the RG method [6] presented in Chap. 5.

Now let us consider a system confined in a finite volume V . Then using the
relation
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∫
d3v =

∫
d3 p

1

m3
=

∑
v

(2π)3

V

1

m3
=

∑
v

h3, h := 1

m

2π

V 1/3
, (8.35)

we define a discrete form of the distribution function f (r, v, t) by

fv(r, t) := h3 f (r, v, t), (8.36)

which satisfies the relation
∫
d3v f (r, v, t) =

∑
v

fv(r, t). (8.37)

Then the Boltzmann equation (8.1) now reads

∂

∂t
fv(r, t) + v · ∇ fv(r, t) = C[ f ]v(r, t), (8.38)

where

C[ f ]v(r, t) := h3 C[ f ](r, v, t)

= 1

2!
∑
v1

∑
v2

∑
v3

ω(v, v1|v2, v3)

× (
fv2(r, t) fv3(r, t) − fv(r, t) fv1(r, t)

)
. (8.39)

As promised, we apply the RG method to extract the low-frequency and long-
wavelength dynamics from the Boltzmann equation in the asymptotic regime, where
we suppose that the spatial variation governed by Eq. (8.38) is small, that is,

∇ fv(r, t) = O(ε). (8.40)

For making this smallness explicit, we use a scaled coordinate r̄ defined by

r̄ := ε r, (8.41)

accordingly,

∇ = ε
∂

∂ r̄
=: ε ∇̄. (8.42)

Then Eq. (8.38) is converted to a form to which the perturbation theory is readily
applicable as

∂

∂t
fv(r̄, t) = C[ f ]v(r̄, t) − ε v · ∇̄ fv(r̄, t). (8.43)

We note that this ε may be identified with the Knudsen number.
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From now on, we write r̄ and ∇̄ as r and ∇, respectively, for simplicity.
Let f̃v(r, t ; t0) be an approximate solution to Eq. (8.43) around t = t0 in the

asymptotic region where the spatial inhomogeneity has become small. We make a
perturbative expansion for f̃v(r, t ; t0) as

f̃v(r, t ; t0) = f̃ (0)
v (r, t ; t0) + ε f̃ (1)

v (r, t ; t0) + ε2 f̃ (2)
v (r, t ; t0) + · · · .

(8.44)

We impose that f̃v(r, t ; t0) satisfies the ‘initial’ condition at t = t0 as

f̃v(r, t = t0 ; t0) = fv(r ; t0), (8.45)

where fv(r, t0) is supposed to be the value of the exact solution fv(r, t) yet to be
determined at t = t0, and is also expanded as follows,

fv(r ; t0) = f (0)
v (r ; t0) + ε f (1)

v (r ; t0) + ε2 f (2)
v (r ; t0) + · · · . (8.46)

We set the ‘initial’ conditions order by order as

f̃ (�)
v (r, t = t0 ; t0) = f (�)

v (r ; t0), � = 0, 1, 2, . . . . (8.47)

Substituting the expansion (8.44) into Eq. (8.43), we obtain the series of the
perturbative equations. We will suppress the arguments (r, t ; t0) and (r ; t0) when
misunderstanding is not expected.

8.3.2 Analysis of Unperturbed Solution

The zeroth-order equation reads

∂

∂t
f̃ (0)
v = C[ f̃ (0)]v. (8.48)

Since we are interested in the slow motion which is to be realized asymptotically as
t → ∞, we look for the stationary solution

∂

∂t
f̃ (0)
v = 0, (8.49)

which is satisfied when

C[ f̃ (0)]v = 0. (8.50)
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This equation is identical to Eq. (8.28), and hence the solution is given by the local
Maxwellian (8.27):

f̃ (0)
v (r, t ; t0) = f eqv (r ; t0)

= h3 n(r ; t0)
[

m

2πT (r ; t0)
] 3

2

exp

[
− m |v − u(r ; t0)|2

2 T (r ; t0)
]
.

(8.51)

Here, the particle-number density n(r ; t0), local temperature T (r ; t0), and flow
velocity u(r ; t0) are integration constantswhich are independent of t butmaydepend
on t0 and r .

The zeroth-order ‘initial’ value is given by

f (0)
v (r; t0) = f eqv (r ; t0), (8.52)

or in the vector notation,

f̃
(0)

(r, t; t0) = f eq(r ; t0), (8.53)

f (0)(r ; t0) = f eq(r ; t0), (8.54)

where the components of the respective components are given by

[
f̃

(0)
(r, t; t0)

]
v

:= f̃ (0)
v (r, t; t0), (8.55)

and so on.

8.3.3 First-Order Equation

The first-order equation now reads

∂

∂t
f̃

(1) = A f̃
(1) + f eq F, (8.56)

where we have introduced an operator A and a vector F, components of which are
given by

Avk := ∂

∂ fk
C[ f ]v

∣∣∣∣
f= f eq

, (8.57)

Fv := − 1

f eqv

v · ∇ f eqv , (8.58)

respectively.
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We shall solve Eq. (8.56) to construct a solution which describes a slow motion
realized in the asymptotic regime. To this end, we clarify the properties of the linear
operator A to proceed further.

First, we introduce a new operator L defined in terms of A as

Lvk := f eq−1
v Avk f eqk

= − 1

2!
∑
v1

∑
v2

∑
v3

ω(v, v1|v2, v3) f eqv1
(δvk + δv1k − δv2k − δv3k),

(8.59)

which is called the collision operator [112, 113].
Let us define the inner product for arbitrary two vectors ϕ and ψ by

〈ϕ , ψ 〉 :=
∑

v

f eqv ϕv ψv = 〈ψ , ϕ 〉. (8.60)

Then it is found that the collision operator L is self-adjoint (Hermitian) with respect
to this inner product.3 In fact, we have for arbitrary vectors ϕ and ψ ,

〈ϕ , L ψ 〉 = 〈 L ϕ , ψ 〉. (8.61)

A proof of Eq. (8.61) is given as follows: With the use of the explicit form of L
in Eq. (8.59), the left-hand side of Eq. (8.61) is calculated to be

〈ϕ , L ψ 〉 =
∑

v

∑
k

f eqv ϕv Lvk ψk

= − 1

2!
∑

v

∑
v1

∑
v2

∑
v3

ω(v, v1|v2, v3) f eqv f eqv1

× ϕv (ψv + ψv1 − ψv2 − ψv3). (8.62)

Then bearing the symmetry property (8.4) of ω(v, v1|v2, v3), we make the change
of the dummy variables (v, v1, v2, v3) in the following three ways,

(v, v1, v2, v3) → (v1, v, v3, v2), (v2, v3, v, v1), and (v3, v2, v1, v),(8.63)

which give the following three equalities

〈ϕ , L ψ 〉 = − 1

2!
∑

v

∑
v1

∑
v2

∑
v3

ω(v, v1|v2, v3) f eqv f eqv1

× ϕv1 (ψv + ψv1 − ψv2 − ψv3), (8.64)

3 A proof is given in Appendix A (Sect. 8.5) that the inner product that makes the self-adjointness
of L apparent is uniquely given as (8.60).
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〈ϕ , L ψ 〉 = 1

2!
∑

v

∑
v1

∑
v2

∑
v3

ω(v, v1|v2, v3) f eqv f eqv1

× ϕv2 (ψv + ψv1 − ψv2 − ψv3), (8.65)

〈ϕ , L ψ 〉 = 1

2!
∑

v

∑
v1

∑
v2

∑
v3

ω(v, v1|v2, v3) f eqv f eqv1

× ϕv3 (ψv + ψv1 − ψv2 − ψv3), (8.66)

respectively. Adding the above four expressions of 〈ϕ , L ψ 〉 and dividing by four,
we have

〈ϕ , L ψ 〉 = − 1

2!
1

4

∑
v

∑
v1

∑
v2

∑
v3

ω(v, v1|v2, v3) f eqv f eqv1

× (ϕv2 + ϕv3 − ϕv − ϕv1) (ψv2 + ψv3 − ψv − ψv1)

= 〈ψ , L ϕ 〉, (8.67)

where we have used the invariance under the exchange ofϕ andψ in the last equality.
However, on account of the symmetry property of the inner product (8.60), we have
the equality

〈ψ , L ϕ 〉 = 〈 L ϕ , ψ 〉, (8.68)

which, combined with (8.67), completes the proof of the self-adjointness of L .

8.3.4 Spectral Analysis of Collision Operator L

Next, we investigate the spectral properties of the linear operator L . It is found that
L has five zero modes, that is, eigenvectors whose eigenvalues are zero, and the
dimension of the kernel of L is five, i.e., dim[KerL] = 5 [139]:

L ϕα
0 = 0, α = 0, 1, 2, 3, 4, (8.69)

where the five zero modes ϕ0
α are given by

ϕ0
0 v := 1, (8.70)

ϕi
0 v := m δvi , i = 1, 2, 3, (8.71)

ϕ4
0 v := m

2
|δv|2 − 3

2
T, (8.72)

with δv := v − u. We note that ϕα
0 are nothing but the collision invariants, which are

orthogonal to each other as
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〈ϕα
0 , ϕ

β

0 〉 = cα δαβ, (8.73)

with

c0 := n, (8.74)

ci := m n T, i = 1, 2, 3, (8.75)

c4 := 3

2
n T 2. (8.76)

The other eigenvalues than the zero modes are found to be negative because the
following inequality holds for an arbitrary vector ϕ

〈ϕ , L ϕ 〉 = − 1

2!
1

4

∑
v

∑
v1

∑
v2

∑
v3

ω(v, v1|v2, v3) f eqv f eqv1

× (ϕv2 + ϕv3 − ϕv − ϕv1)
2

≤ 0, (8.77)

where the first line has been derived from Eq. (8.67) with ψ = ϕ. The equality is
satisfied when

ϕv2 + ϕv3 = ϕv + ϕv1 , (8.78)

which implies that ϕv must be a collision invariant. Thus we see that any eigenvector
other than the zero modes must belong to a negative (definite) eigenvalue.

Finally, we define a projection operator P onto KerL spanned by the zero modes
ϕα
0 , by

[
P ψ

]
v

:=
4∑

α=0

ϕα
0 v

1

cα
〈ϕα

0 , ψ 〉, (8.79)

and denote the projection operator to the space complement to KerL as

Q := 1 − P. (8.80)

We call KerL the P space and the space complement to the P space the Q space.

8.3.5 Solution to First-Order Equation

Multiplying the first-order equation (8.56) by f eq−1
v , we have

∂

∂t

(
f eq−1 f̃

(1)) = L
(
f eq−1 f̃

(1)) + F. (8.81)
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The first-order solution is readily obtained as

f eq−1 f̃
(1)

(t) = e(t−t0)L
[
f eq−1 f (1) + L−1 Q F

]

+ (t − t0) P F − L−1 Q F. (8.82)

The first-order ‘initial’ value vector f (1)(r; t0) is now determined so that the
would-be fast motion coming from the Q space disappears. Thus, we can set

f (1)(r; t0) = − f eq L−1 Q F, (8.83)

with which the first-order solution (8.82) is reduced to

f̃
(1)

(r, t; t0) = f eq
{
(t − t0) P F − L−1 Q F

}
. (8.84)

We note the appearance of the secular term proportional to t − t0.

8.3.6 Second-Order Solution

Then the second-order equation reads

∂

∂t
( f eq−1 f̃

(2)
) = L ( f eq−1 f̃

(2)
) + (t − t0)

2 G + (t − t0) H + I, (8.85)

where G, H , and I denote vectors, the respective components of which are defined
by

Gv := 1

2

[
B[P F , P F]]

v
, (8.86)

Hv := −[
B[P F , L−1 Q F]]

v
− 1

f eqv

v · ∇[
f eq P F

]
v
, (8.87)

Iv := 1

2

[
B[L−1 Q F , L−1 Q F]]

v
+ 1

f eqv

v · ∇[
f eq L−1 Q F

]
v
, (8.88)

respectively. Here, we have introduced a vector
[
B[ϕ , ψ]]

v
defined for arbitrary

vectors ϕ and ψ as

[
B[ϕ , ψ]]

v
:=

∑
k

∑
l

Bvkl ϕk ψl , (8.89)

with
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Bvkl := 1

f eqv

∂2

∂ fk ∂ fl
C[ f ]v

∣∣∣∣
f= f eq

f eqk f eql

= 1

2!
∑
v1

∑
v2

∑
v3

ω(v, v1|v2, v3)

× f eqv1
(δv2k δv3 l + δv3k δv2 l − δvk δv1 l − δv1k δvl). (8.90)

The solution to this equation is found to be

f eq−1 f̃
(2)

(r, t; t0) = e(t−t0)L
[
f eq−1 f (2) + 2 L3 Q G + L−2 Q H + L−1 Q I

]

+ 1

3
(t − t0)

3 P G + 1

2
(t − t0)

2 (P H − 2 L−1 Q G)

+ (t − t0) (P I − 2 L−2 Q G − L−1 Q H)

− 2 L−3 Q G − L−2 Q H − L−1 Q I . (8.91)

By setting the ‘initial’ value in the second order as

f (2)(r; t0) = f eq (−2 L3 Q G − L−2 Q H − L−1 Q I), (8.92)

we can eliminate the fast motion due to the Q-space component and obtain the
second-order solution as

f̃
(2)

(r, t; t0) = f eq
{
1

3
(t − t0)

3 P G + 1

2
(t − t0)

2 (P H − 2 L−1 Q G)

+ (t − t0) (P I − 2 L−2 Q G − L−1 Q H)

− 2 L−3 Q G − L−2 Q H − L−1 Q I
}
. (8.93)

Notice again the appearance of the secular terms in Eq. (8.93).

8.3.7 Application of RG/E Equation and Construction
of a Global Solution

Collecting all the terms obtained in the perturbative analysis so far, the ‘initial’ value
and the solution in the second-order approximation are given by

f (r; t0) = f eq − ε f eq L−1 Q F

− ε2 f eq (2 L−3 Q G + L−2 Q H + L−1 Q I) + O(ε3), (8.94)
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f̃ (r, t; t0) = f eq + ε f eq
{
(t − t0) P F − L−1 Q F

}

+ ε2 f eq
{
1

3
(t − t0)

3 P G + 1

2
(t − t0)

2 (P H − 2 L−1 Q G)

+ (t − t0) (P I − 2 L−2 Q G − L−1 Q H)

− 2 L−3 Q G − L−2 Q H − L−1 Q I
}

+ O(ε3), (8.95)

respectively. Needless to say, we have

f̃ (r, t0; t0) = f (r; t0), (8.96)

by construction.
We note the approximate solution (8.95) is valid only for t 	 t0 due to the secular

terms.Ashas beendone through thismonograph,we can, however, obtain the solution
that is valid in a global domain through constructing the envelope of these diverging
local solutions parametrized by t0. A key to construct the envelope is a set of the
envelope equation or RG/E equation and an envelope function.

Now recalling that
[
f̃ (r, t ; t0)

]
v

:= f̃v(r, t ; t0), the RG/E equation reads

d

dt0
f̃v(r, t ; t0)

∣∣∣∣
t0=t

= 0, (8.97)

which is reduced to

∂

∂t

{
f eq − ε f eq L−1 Q F − ε2 f eq (2 L−3 Q G + L−2 Q H + L−1 Q I)

}

− ε f eq P F − ε2 f eq (P I − 2 L−2 Q G − L−1 Q H) + O(ε3) = 0. (8.98)

It is noteworthy that since the derivativewith respect to t0 only hits the fluid dynamical
variables as the integral constants in the unperturbed solution, Eq. (8.98) actually
gives the equation governing the time evolution of the five variables n(r ; t), T (r ; t)
and u(r ; t) in f eq.

The envelope function f Ev (r, t) to give the solution valid in a global domain of t
is given by the ‘initial’ value (8.94) with the replacement of t0 = t as

f Ev (r, t) = f̃v(r, t ; t0 = t) = fv(r ; t), (8.99)

= [
f eq − ε f eq L−1 Q F − ε2 f eq (2 L−3 Q G

+ L−2 Q H + L−1 Q I)
]
v
(r ; t0 = t) + O(ε3). (8.100)

where the functions n(r ; t), T (r ; t) and u(r ; t) therein are the solutions to
Eq. (8.98). In accordance with the proof given for a generic case in Sect. 4.7, it



206 8 RG/E Derivation of Dissipative Fluid Dynamics …

is proved that the envelope function (8.100) satisfies the Boltzmann equation (8.43)
up to O(ε2) in a global domain of t , as follows: For arbitrary t , the time derivative
of the envelope function reads

∂

∂t
f Ev (r, t) = ∂

∂t
f̃v(r, t ; t)

= ∂

∂t
f̃v(r, t ; t0)

∣∣∣∣
t0=t

+ d

dt0
f̃v(r, t ; t0)

∣∣∣∣
t0=t

= ∂

∂t
f̃v(r, t ; t0)

∣∣∣∣
t0=t

, (8.101)

where the relation (8.99) and the RG/E equation (8.97) have been used. Since
f̃v(r, t ; t0) satisfies the Boltzmann equation (8.43) up to O(ε2) at t ∼ t0, the fol-
lowing equality holds at t ∼ t0:

∂

∂t
f̃v(r, t ; t0) = C[ f̃ ]v(r, t ; t0) − ε v · ∇ f̃ (r, t ; t0) + O(ε3). (8.102)

Substituting Eq. (8.102) into Eq. (8.101) and using the definition of the envelope
function (8.99), we have

∂

∂t
f Ev (r, t) = C[ f E]v(r, t) − ε v · ∇ f E(r, t) + O(ε3), (8.103)

valid for arbitrary t . This concludes that f Ev (r, t) is actually the global solution to
the Boltzmann equation (8.43) up to O(ε2).

Equation (8.98) tells us that all the fluid dynamic variables are slow variables
because

∂

∂t
f eq(r; t) = O(ε). (8.104)

Thus the RG/E equation (8.98) describes the macroscopic dynamics as expected.
Finally, we note that on account of Eq. (8.104), Eq. (8.98) is further simplified as

∂

∂t

{
f eq(r; t) − ε f eq L−1 Q F

}

− ε f eq P F − ε2 f eq (P I − 2 L−2 Q G − L−1 Q H) + O(ε3) = 0,

(8.105)

because

∂

∂t

{
− ε2 f eq (2 L−3 Q G + L−2 Q H + L−1 Q I)

}
= O(ε3), (8.106)
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which follows from the fact that L , Q, G, H , and I are functions of f eqv and the time
derivative hits f eqv in these quantities.

8.4 Reduction of RG/E Equation To fluid Dynamic
Equation: Derivation Of Navier-Stokes Equation

We are now in a position to derive fluid dynamic equation from (8.105).4 First we
note that the RG/E equation (8.105) contains fast modes belonging to the Q space as
well as the fluid dynamic modes or slow modes belonging to the P space. Since the
fluid dynamic equations should be closed within the the latter variables, the former
components should be projected out from the equation. This task can be simply
accomplished by applying a projection operator P f eq−1 from the left of Eq. (8.105)
as

P f eq−1 ∂

∂t

{
f eq − ε f eq L−1 Q F

}
− ε P F − ε2 P I = 0, (8.107)

where we have omitted O(ε3).
Next, in order to extract a more concrete form of the slow dynamics, which is to

be identified with the fluid dynamic equations, we take the inner product of (8.107)
with the zero modes ϕα

0 v , which may be interpreted as a kind of averaging. The result
takes the form

〈ϕα
0 , f eq−1 ∂

∂t
f eq 〉 − ε 〈ϕα

0 , F 〉 − ε2 〈ϕα
0 , I 〉 = 0, (8.108)

where we have used the relations

〈ϕα
0 , P F 〉 = 〈ϕα

0 , F 〉, 〈ϕα
0 , P I 〉 = 〈ϕα

0 , I 〉, (8.109)

which follow from the definitions (8.60) and (8.79), and the equality

〈ϕα
0 , f eq−1 ∂

∂t

{
− ε f eq L−1 Q F

}
〉 = 0, (8.110)

which follows from the expansion

4 It is to be remarked that the substitution of the one-particle distribution function (8.100) into
the exact balance equations (8.12), (8.20), and (8.21), which are already in the forms of fluid
dynamic equations, leads to the Navier-Stokes equation. An explicit and detailed derivation is given
in Sect. 8.5.
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〈ϕα
0 , f eq−1 ∂

∂t

{
f eq L−1 Q F

}
〉 = ∂

∂t

{
〈ϕα

0 , L−1 Q F 〉
}

− 〈 ∂

∂t
ϕα
0 , L−1 Q F 〉,

(8.111)

and the fact that not only ϕα
0 but also ∂ϕα

0/∂t belong to the P space as follows:

∂

∂t
ϕ0
0v = 0 = 0 × ϕ0

0v, (8.112)

∂

∂t
ϕi
0v = −m

∂

∂t
ui = −m

∂

∂t
ui × ϕ0

0v, (8.113)

∂

∂t
ϕ4
0v = −m δvi ∂

∂t
ui − 3

2

∂

∂t
T = −ϕi

0v
∂

∂t
ui − 3

2

∂

∂t
T × ϕ0

0v, (8.114)

which have been calculated from Eqs. (8.70)–(8.72).
From now on, we shall show that the reduced RG/E equation (8.108) is nothing

but the fluid dynamic equation, i.e., the Navier-Stokes equation [139].
First, we try to express the first term of Eq. (8.108) in terms of the fluid dynamic

variables. From the definition of the equilibrium distribution function (8.51), we
have

[
f eq−1 ∂

∂t
f eq

]
v

= ϕ0
0 v

1

n

∂

∂t
n + ϕ

j
0 v

1

T

∂

∂t
u j + ϕ4

0 v

1

T 2

∂

∂t
T . (8.115)

Then using the orthogonality condition (8.73) of the zero modes together with the
normalization constants (8.74)–(8.76), we find the first term of Eq. (8.108) is reduced
to

〈ϕ0
0 , f eq−1 ∂

∂t
f eq 〉 = ∂

∂t
n, (8.116)

〈ϕi
0 , f eq−1 ∂

∂t
f eq 〉 = m n

∂

∂t
ui , i = 1, 2, 3, (8.117)

〈ϕ4
0 , f eq−1 ∂

∂t
f eq 〉 = n

∂

∂t
(3 T/2). (8.118)

Next, let us also try to express the second term of Eq. (8.108) in terms of the fluid
dynamic variables. First, using the definition (8.58), F is found to be expressed in
terms of the fluid dynamic variables as

Fv = −ϕ0
0 v

1

n
u · ∇n − ϕ

j
0 v

1

T
u · ∇u j − ϕ4

0 v

1

T 2
u · ∇T

− ϕ̃i0
1 v

1

n
∇ i n − ϕ̃

i j
1 v

1

T
∇ i u j − ϕ̃i4

1 v

1

T 2
∇ i T, (8.119)

where

ϕ̃iα
1 v := δvi ϕα

0 v. (8.120)
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Then taking the inner product of Eq. (8.119) with ϕα
0 , we find that the second term

of Eq. (8.108) is reduced to

〈ϕ0
0 , F 〉 = −∇ · (n u), (8.121)

〈ϕi
0 , F 〉 = −m n u · ∇ui − ∇ i (n T ), i = 1, 2, 3, (8.122)

〈ϕ4
0 , F 〉 = −n u · ∇(3 T/2) − n T ∇ · u. (8.123)

In the derivation, we have used the orthogonality relation (8.73) and the following
formulae

〈ϕ0
0 , ϕ̃

j0
1 〉 = 0, 〈ϕ0

0 , ϕ̃
jk
1 〉 = n T δ jk, 〈ϕ0

0 , ϕ̃
j4
1 〉 = 0, (8.124)

〈ϕi
0 , ϕ̃

j0
1 〉 = n T δi j , 〈ϕi

0 , ϕ̃
jk
1 〉 = 0, 〈ϕi

0 , ϕ̃
j4
1 〉 = n T 2 δi j , (8.125)

〈ϕ4
0 , ϕ̃

j0
1 〉 = 0, 〈ϕ4

0 , ϕ̃
jk
1 〉 = n T 2 δ jk, 〈ϕ4

0 , ϕ̃
j4
1 〉 = 0, (8.126)

for i, j, k = 1, 2, 3, which are results of a direct calculation.
Finally, we also express the third term of Eq. (8.108) in terms of the fluid dynamic

variables. Using the formula (8.88) of I , we have

〈ϕα
0 , I 〉 = 1

2
〈ϕα

0 , B[L−1 Q F , L−1 Q F] 〉 + 〈 ϕ̃
iα
1 , f eq−1 ∇ i

[
f eq L−1 Q F

]
〉.

(8.127)

We remark that the first term containing B turns out to vanish nicely in the present
formulation:

〈ϕα
0 , B[L−1 Q F , L−1 Q F] 〉 = 0, (8.128)

which is due to the fact that ϕα
0 are the collision invariants as shown in Eq. (8.6). A

detailed proof is presented in Sect. 8.5.
On account of Eq. (8.128) and a chain rule with ∇ i , Eq. (8.127) is cast into the

form

〈ϕα
0 , I 〉 = ∇ i

[
〈 ϕ̃

iα
1 , L−1 Q F 〉

]
− 〈∇ i ϕ̃

iα
1 , L−1 Q F 〉. (8.129)

Since L−1 Q F belong to the Q space, an insertion of Q in front of ϕ̃
iα
1 in the first

term and ∇ i ϕ̃
iα
1 in the second term does not change the values of the inner products

as,

〈 ϕ̃
iα
1 , L−1 Q F 〉 = 〈 Q ϕ̃

iα
1 , L−1 Q F 〉, (8.130)

〈 ∇ i ϕ̃
iα
1 , L−1 Q F 〉 = 〈 Q ∇ i ϕ̃

iα
1 , L−1 Q F 〉. (8.131)
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Thus, we have

〈ϕα
0 , I 〉 = ∇ i

[
〈 Q ϕ̃

iα
1 , L−1 Q F 〉

]
− 〈 Q ∇ i ϕ̃

iα
1 , L−1 Q F 〉. (8.132)

For the further reduction of Eq. (8.132), we shall calculate Q ϕ̃
iα
1 , Q ∇ i ϕ̃

iα
1 , and

L−1 Q F one by one. A straightforward calculation based on Eqs. (8.124)–(8.126)
reduces Q ϕ̃

iα
1 to

[
Q ϕ̃

i0
1

]
v

= 0, (8.133)[
Q ϕ̃

i j
1

]
v

= π i j
v , j = 1, 2, 3, (8.134)[

Q ϕ̃
i4
1

]
v

= J iv , (8.135)

where

π i j
v := m �i jkl δvk δvl , (8.136)

J iv :=
(m
2

|δv|2 − 5

2
T

)
δvi , (8.137)

with

�i jkl := 1

2

(
δik δ jl + δil δ jk − 2

3
δi j δkl

)
. (8.138)

In a similar way, Q ∇ i ϕ̃
iα
1 is calculated to be

[
Q ∇ i ϕ̃

i0
1

]
v

= 0, (8.139)[
Q ∇ i ϕ̃

i j
1

]
v

= 0, j = 1, 2, 3, (8.140)[
Q ∇ i ϕ̃

i4
1

]
v

= −π i j
v σ i j , (8.141)

with

σ i j := �i jkl ∇kul . (8.142)

By combining Eq. (8.119) with the equalities (8.133)–(8.135), we have

Q F = − 1

T
π i j σ i j − 1

T 2
J i ∇ i T . (8.143)

We note that π i j and J i in Eqs. (8.136) and (8.137) are the microscopic representa-
tions of the dissipative currents.

Collecting the results obtained so far, we arrive at the expression of the third term
of Eq. (8.108) that is nicely written in terms of the transport coefficients:
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〈ϕ0
0 , I 〉 = 0, (8.144)

〈ϕi
0 , I 〉 = ∇ j (2 η σ i j ), i = 1, 2, 3, (8.145)

〈ϕ4
0 , I 〉 = ∇ i (λ ∇ i T ) + 2 η σ i j σ i j . (8.146)

Here we have defined

η := − 1

10 T
〈π i j , L−1 π i j 〉, (8.147)

λ := − 1

3 T 2
〈 J i , L−1 J i 〉, (8.148)

and utilized the space rotational symmetry [112, 113],

〈π i j , L−1 π kl 〉 = 1

5
�i jkl 〈πmn , L−1 πmn 〉, (8.149)

〈 J i , L−1 J j 〉 = 1

3
δi j 〈 J k , L−1 J k 〉, (8.150)

〈π i j , L−1 J k 〉 = 0, (8.151)

We stress that η and λ are transport coefficients, called shear viscosity and heat con-
ductivity, respectively, and Eqs. (8.147) and (8.148) provide with their microscopic
representations, which are the same as those by the Chapman-Enskog expansion
method [112, 113].

Now let us define the following “time-evolved” microscopic currents,

π i j (τ ) := eLτ π i j , J i (τ ) := eLτ J i . (8.152)

Then it is remarkable that (8.147) and (8.148) can be written as the time-correlation
functions as

η = 1

10 T

∫ ∞

0
dτ 〈π i j (0) , π i j (τ ) 〉, (8.153)

λ = 1

3 T 2

∫ ∞

0
dτ 〈 J i (0) , J i (τ ) 〉, (8.154)

which are in the same form as the Kubo formula of the same quantities [115].
CollectingEqs. (8.116)–(8.118), (8.121)–(8.123), and (8.144)–(8.146) andputting

back ε = 1, the reduced RG/E equation (8.108) is found to be

∂

∂t
n = −∇ · (n u), (8.155)

m n
∂

∂t
ui = −m n u · ∇ui − ∇ i p + ∇ j (2 η σ j i ), i = 1, 2, 3, (8.156)

n
∂

∂t
e = −n u · ∇e − p∇ · u + 2 η σ i j σ i j + ∇ · (λ ∇T ), (8.157)
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with e = 3 T/2 and p = n T . We emphasize that the set of Eqs. (8.155)–(8.157)
perfectly agrees with the Navier-Stokes equation [139].

8.5 Summary

We have shown that the Navier-Stokes equation is extracted from the Boltzmann
equation as the macroscopic slow dynamics with use of the RG method. In this
method, one begins with solving the Boltzmann equation faithfully by the perturba-
tion method in the asymptotic regime where the spatial inhomogeneity is expected
small; the expansion parameter is the Knudsen number. The zeroth-order solution
is chosen to be the local equilibrium distribution function, which is identical to the
Maxwellian expressed in terms of the five fluid dynamic variables corresponding to
the collision invariants. The dissipative effects are taken into account as a deformation
of the distribution function caused by the spatial inhomogeneity as the perturbation.
After defining the inner product in the function space spanned by the distribution
function, the deviation from the Maxwellian that gives rise to the dissipative effects
is constructed so that it is precisely orthogonal to the zero modes with respect to the
inner product.

The present scheme based on the RG method for deriving the dissipative fluid
dynamics from the underlying kinetic theory is of a generic nature and should be
applicable in the relativistic and quantum statistical cases, which will be shown to
be the case in Chap. 11.

Appendix 1: Foundation of the Symmetrized Inner Product
(8.60)

In this Appendix, on the basis of the general theory for asymmetric linear operators
given in Sect. 3.6.2, we shall show the inner product defined by (8.60) is the unique
choice for making the self-adjointness of the collision operator L apparent.

In general, L is an asymmetric matrix and hence L has right eigenvectors U i and

left eigenvectors Ũ
†
i with i = 1, 2, . . ., which satisfy

L U i = λi U i , (8.158)

Ũ
†
i L = λi Ũ

†
i , (8.159)

respectively. Here, λi with i = 1, 2, . . . are corresponding eigenvalues. AHermitian
conjugate of Eq. (8.159) is

L† Ũ i = λ∗
i Ũ i , (8.160)
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with λ∗
i being a complex conjugate of λi . Without loss of generality, we can impose

the orthogonality and completeness as follows:

Ũ
†
i U j = δi j , (8.161)∑

i

U i Ũ
†
i = 1, (8.162)

respectively. An inner product with respect to the right eigenvectors U i with i =
1, 2, . . . is defined as

〈ϕ , ψ 〉 := ϕ† gψ, (8.163)

where g is a metric tensor

g =
∑
i

Ũ i Ũ
†
i . (8.164)

We note that the following symmetry property with respect to U i with i = 1, 2, . . .

is realized:

〈U i , U j 〉 = δi j , (8.165)

which can be derived from Eq. (8.161). This inner product leads to

〈ϕ , L ψ 〉 = ϕ† g L ψ =
∑
i

ϕ† Ũ i Ũ
†
i L ψ

=
∑
i

λi ϕ
† Ũ i Ũ

†
i ψ, (8.166)

and

〈 L ϕ , ψ 〉 = (L ϕ)† gψ = ϕ† L† gψ =
∑
i

ϕ† L† Ũ i Ũ
†
i ψ

=
∑
i

λ∗
i ϕ† Ũ i Ũ

†
i ψ . (8.167)

Accordingly, when all the eigenvalues are real number as λ∗
i = λi with i = 1, 2, . . .,

the self-adjoint nature of L is automatically respected,

〈ϕ , L ψ 〉 = 〈 L ϕ , ψ 〉. (8.168)

From now on, we show that the eigenvalues λi with i = 1, 2, . . . are actually real
number and then derive an explicit form of the metric g. We will see that the resultant
g reproduces the natural inner product (8.60).
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Using the definition of L in Eq. (8.59), we find that f eqv Lvk is a symmetric matrix,
that is,

f eqv Lvk = f eqk L kv. (8.169)

In fact, we calculate f eqv Lvk to be

f eqv Lvk = − 1

2!
∑
v1

∑
v2

∑
v3

ω(v, v1|v2, v3) f eqv f eqv1
(δvk + δv1k − δv2k − δv3k)

= − 1

2! (δvk av + bvk − cvk − dvk), (8.170)

with

av :=
∑
v1

∑
v2

∑
v3

ω(v, v1|v2, v3) f eqv f eqv1
, (8.171)

bvk :=
∑
v2

∑
v3

ω(v, k|v2, v3) f eqv f eqk , (8.172)

cvk :=
∑
v1

∑
v3

ω(v, v1|k, v3) f eqv f eqv1
, (8.173)

dvk :=
∑
v1

∑
v2

ω(v, v1|v2, k) f eqv f eqv1
. (8.174)

We note that

bvk = bkv, cvk = ckv, dvk = dkv, (8.175)

which lead to Eq. (8.169). As an instance, we present a proof in the case of dvk:

dvk =
∑
v1

∑
v2

ω(v, v1|v2, k) f eqv f eqv1

=
∑
v1

∑
v2

ω(k, v2|v1, v) f eqv f eqv1

=
∑
v1

∑
v2

ω(k, v2|v1, v) f eqk f eqv2

=
∑
v1

∑
v2

ω(k, v1|v2, v) f eqk f eqv1
= dkv, (8.176)

where the symmetry property of the transition probability (8.4) and the detailed
balance (8.29) have been used in the second and third lines, respectively, and the
dummy variables v1 and v2 have been interchanged in the final line.
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Since Lvk is real as

Lvk = L∗
vk = L†

kv, (8.177)

we rewrite Eq. (8.169) as

L† = f eq L f eq−1, (8.178)

with

f eqvk := f eqv δvk. (8.179)

We note that f eq−1 is the inverse of f eq.
Substituting Eq. (8.178) into Eq. (8.160), we have

f eq L f eq−1 Ũ i = λ∗
i Ũ i , (8.180)

which can be converted to

L f eq−1 Ũ i = λ∗
i f eq−1 Ũ i . (8.181)

By comparing this equation with Eq. (8.158), we can read

λ∗
i = λi , (8.182)

f eq−1 Ũ i = U i . (8.183)

From Eq. (8.182), we conclude that all eigenvalues of L are real number and hence
the self-adjoint nature of L is respected under the inner product (8.163). Furthermore,
using Eq. (8.183) and the completeness (8.162), we find that the metric tensor g is
nothing but f eq:

g =
∑
i

f eq U i Ũ
†
i = f eq. (8.184)

Thus, an explicit form of the inner product (8.163) reads

〈ϕ , ψ 〉 =
∑

v

∑
k

ϕv f eqvk ψk

=
∑

v

∑
k

ϕv f eqv δvk ψk =
∑

v

f eqv ϕv ψk. (8.185)

We stress that the derived inner product (8.185) is identical to the inner product
(8.60). The proof for the uniqueness of the inner product (8.60) is completed.
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Appendix 2: Alternative Derivation of Navier-Stokes
Equation from RG/E Equation

In this Appendix, we present an alternative but somewhat short-cut derivation of the
Navier-Stokes equation, utilizing the fact that the RG/E equation (8.97) implies that
the envelope function f Ev given by Eq. (8.100) satisfies the Boltzmann equation up to
O(ε2), as was shown in Sect. 8.3.7;

∂

∂t
f Ev + ε v · ∇ f Ev = C[ f E]v. (8.186)

In other words, Eq. (8.186) contains the same dynamical information as the RG/E
equation (8.97) does. Therefore it is expected that Eq. (8.186) leads to the Navier-
Stokes equation, as the RG/E equation (8.97) did.

First we notice the following identities hold for the envelope function,

∑
v

C[ f E]v = 0, (8.187)

∑
v

m vi C[ f E]v = 0, (8.188)

∑
v

m |v|2/2C[ f E]v = 0. (8.189)

Then it is apparent that Eq. (8.186) can be reduced to the following balance equations
up to O(ε2) in the same manner as was done in Sect. 8.2 for the exact distribution
function:

∂

∂t
ρ + ε ∇ · (ρ U) = 0, (8.190)

ρ
∂

∂t
U i + ε

[
ρ U · ∇Ui + ∇ j P ji

]
= 0, (8.191)

ρ
∂

∂t
(E/ρ) + ε

[
ρ U · ∇(E/ρ) + Pi j ∇ iU j + ∇ · Q

]
= 0, (8.192)

where ρ, Ui , E , Pi j , and Qi are given in terms of the envelop function as

ρ = m
∑

v

f Ev , (8.193)

Ui = m

ρ

∑
v

vi f Ev , (8.194)

E =
∑

v

m |v − U |2
2

f Ev , (8.195)
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Pi j =
∑

v

m (vi −Ui ) (v j −U j ) f Ev , (8.196)

Qi =
∑

v

m |v − U |2
2

(vi −Ui ) f Ev , (8.197)

respectively.
Now for calculational convenience, we express f Ev in the following form,

f Ev = f eqv (1 + φv) = f eqv (1 + [
φ
]
v
), (8.198)

with φ being the Q-space vector defined by

φ := −ε L−1 Q F − ε2 (2 L−3 Q G + L−2 Q H + L−1 Q I) + O(ε3), (8.199)

which are to be inserted into Eqs. (8.193)–(8.197) in order.
First the mass density ρ (8.193) is calculated as

ρ = m
∑

v

f eqv (1 + φv)

= m 〈ϕ0
0 , ϕ0

0 〉 + m 〈ϕ0
0 , φ 〉

= m n, (8.200)

where the formula ϕ0
0v = 1, the definition of the inner product (8.60), the orthog-

onality relation (8.73), and the orthogonality between the zero modes ϕα
0 and the

Q-space vector φ have been used. Much the same way, the flow velocity Ui and the
total energy E given in (8.194) and (8.195), respectively, are calculated to give

Ui = 1

n

∑
v

vi f eqv (1 + φv) = 1

m n

∑
v

(ϕi
0v + m ui ) f eqv (1 + φv)

= 1

m n

[
〈ϕi

0 , ϕ0
0 〉 + m ui 〈ϕ0

0 , ϕ0
0 〉 + 〈ϕi

0 , φ 〉 + m ui 〈ϕ0
0 , φ 〉

]

= ui , (8.201)

E =
∑

v

m |v − u|2
2

f eqv (1 + φv) =
∑

v

(ϕ4
0v + 3

2
T ) f eqv (1 + φv)

= 〈ϕ4
0 , ϕ0

0 〉 + 3

2
T 〈ϕ0

0 , ϕ0
0 〉 + 〈ϕ4

0 , φ 〉 + 3

2
T 〈ϕ0

0 , φ 〉

= 3

2
n T, (8.202)

respectively.
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The calculation of the pressure tensor Pi j given in (8.196) is slightly involved:

Pi j =
∑

v

m (vi − ui ) (v j − u j ) f eqv (1 + φv) =
∑

v

ϕ̃
i j
1v f eqv (1 + φv)

= 〈 ϕ̃
i j
1 , ϕ0

0 〉 + 〈 ϕ̃
i j
1 , φ 〉

= n T δi j + 〈 Q ϕ̃
i j
1 , φ 〉, (8.203)

where the formulaeϕi
0v = m δvi = m (vi − ui ) and ϕ̃αi

1v = ϕα
0v δvi havebeen inserted,

and the inner products between ϕα
0 and ϕ̃

αi
1 given by Eqs. (8.124)–(8.126) have been

used. Now it is noteworthy here that we only have to evaluate Pi j up to O(ε), because
Pi j enters as the form of ε Pi j into the balance equations (8.190)–(8.192), which are
valid up to O(ε2). Noticing that

〈 Q ϕ̃
i j
1 , φ 〉 = −ε 〈π i j , L−1 Q F 〉 + O(ε2)

= −ε 2 η σ i j + O(ε2), (8.204)

where Eqs. (8.134), (8.143), and (8.147) have been used, we end up with

Pi j = n T δi j − ε 2 η σ i j + O(ε2). (8.205)

In a quite similar way, the heat flow Qi given in (8.197) is calculated to give

Qi =
∑

v

m |v − u|2
2

(vi − ui ) f eqv (1 + φv) =
∑

v

(ϕ̃4i
1v + 3

2
T ϕi

0v) f eqv (1 + φv)

= 〈 ϕ̃
4i
1 , ϕ0

0 〉 + 3

2
T 〈ϕi

0 , ϕ0
0 〉 + 〈 ϕ̃

4i
1 , φ 〉 + 3

2
T 〈ϕi

0 , φ 〉 = 〈 ϕ̃
4i
1 , φ 〉

= 〈 Q ϕ̃
4i
1 , φ 〉

= −ε 〈 J i , L−1 Q F 〉 + O(ε2)

= −ε λ ∇ i T + O(ε2). (8.206)

In summary, we have obtained the explicit forms of ρ, Ui , E , Pi j , and Qi , as
follows,

ρ = m n, Ui = ui , E = e n, (8.207)

Pi j = p δi j − ε 2 η σ i j + O(ε2), Qi = −ε λ ∇ i T + O(ε2), (8.208)

respectively, where e = 3 T/2 and p = n T .
Substituting these expressions into the balance equations (8.190)–(8.192), we

have the equations which describe the slow dynamics of T , n, and ui up to O(ε2), as
follows,

∂

∂t
n = −ε ∇ · (n u), (8.209)
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m n
∂

∂t
ui = −ε m n u · ∇ui − ε ∇ i p + ε2 ∇ j (2 η σ j i ), (8.210)

n
∂

∂t
e = −ε n u · ∇e − ε p∇ · u + ε2 2 η σ i j σ i j + ε2 ∇ · (λ ∇T ), (8.211)

where the following formula has been utilized

σ i j ∇ i u j = σ kl �kli j ∇ i u j = σ kl σ kl . (8.212)

Putting back ε = 1, we find that the set of these equations is nothing but the Navier-
Stokes equation given in Eqs. (8.155)–(8.157).

In conclusion of this Appendix, we give a comment on the next-order equation,
the Burnett equation. In the present derivation of the Navier-Stokes equation given
by Eqs. (8.209)–(8.211), the expressions of Pi j and Qi up to O(ε) were needed and
computed using only the first-order terms of φ, although the expression of φ up to
O(ε2) is available. It is noteworthy that it can be utilized to obtain the next-order
equation of the Navier-Stokes equation. Indeed Pi j and Qi are calculated up to O(ε2)

to give

Pi j = n T δi j − ε 2 η σ i j − ε2
[
2 〈π i j , L−3 Q G 〉 + 〈π i j , L−2 Q H 〉

+ 〈π i j , L−1 Q I 〉
]
, (8.213)

Qi = −ε λ ∇ i T − ε2
[
2 〈 J i , L−3 Q G 〉 + 〈 J i , L−2 Q H 〉 + 〈 J i , L−1 Q I 〉

]
. (8.214)

Here the second-order terms in the above equations can be converted into

2 〈π i j , L−3 Q G 〉 + 〈π i j , L−2 Q H 〉 + 〈π i j , L−1 Q I 〉
= 2 〈 L−3 π i j , G 〉 + 〈 L−2 π i j , H 〉 + 〈 L−1 π i j , I 〉, (8.215)

2 〈 J i , L−3 Q G 〉 + 〈 J i , L−2 Q H 〉 + 〈 J i , L−1 Q I 〉
= 2 〈 L−3 J i , G 〉 + 〈 L−2 J i , H 〉 + 〈 L−1 J i , I 〉, (8.216)

where we have used the self-adjointness of L and the fact that L−1 π i j , L−2 π i j ,
L−3 π i j , L−1 J i , L−2 J i , and L−3 J i belong to the Q space. With the use of G, H ,
and I given by Eqs. (8.86)–(8.88), we have

Pi j = n T δi j − ε 2 η σ i j

− ε2
{
〈 L−3 π i j , B[P F , P F] 〉 − 〈 L−2 π i j , B[P F , L−1 Q F] 〉

+ 1

2
〈 L−1 π i j , B[L−1 Q F , L−1 Q F] 〉

− 〈 L−2 π i j , f eq−1 v · ∇( f eq P F) 〉
+ 〈 L−1 π i j , f eq−1 v · ∇( f eq L−1 Q F) 〉

}
+ O(ε3), (8.217)
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Qi = −ε λ ∇ i T

− ε2
{
〈 L−3 J i , B[P F , P F] 〉 − 〈 L−2 J i , B[P F , L−1 Q F] 〉

+ 1

2
〈 L−1 J i , B[L−1 Q F , L−1 Q F] 〉

− 〈 L−2 J i , f eq−1 v · ∇( f eq P F) 〉
+ 〈 L−1 J i , f eq−1 v · ∇( f eq L−1 Q F) 〉

}
+ O(ε3). (8.218)

Although the further reduction is beyond the scope of this chapter, we point out that
Pi j and Qi contain bilinear terms with respect to σ i j and ∇ i T owing to the terms
with B. For instance,

1

2
〈 L−1 π i j , B[L−1 Q F , L−1 Q F] 〉

= bπππ �i jkl σ km σ lm + bπ J J �i jkl (∇kT ) (∇l T ), (8.219)

with

bπππ := 6

35 T 2
〈 L−1 π i j , B[L−1 π ik , L−1 π jk] 〉, (8.220)

bπ J J := 1

10 T 4
〈 L−1 π i j , B[L−1 J i , L−1 J j ] 〉, (8.221)

where Eq. (8.143) and the following formulae have been used,

�i jlm �ikln � jkmn = 35/12, �i jkl �i jkl = 5. (8.222)

These bilinear terms are called the Burnett term [113, 141], which is known to be
derived also by the Chapman-Enskog expansion method as a next order equation of
the Navier-Stokes equation, i.e., the Burnett equation [113].

Appendix 3: Proof of Vanishing of Inner Product Between
Collision Invariants and B

In this Appendix, we present the proof for the identity given by Eq. (8.128).
We start with the definition of the collision invariants:

∑
v

ϕα
0v C[ f ]v = 0. (8.223)
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Since the above equation is valid for an arbitrary fv , we can take the derivatives with
respect to fv . Then the second derivative reads

∑
v

ϕα
0v

∂2

∂ fk∂ fl
C[ f ]v = 0. (8.224)

Taking the value of Eq. (8.224) at fv = f eqv , we have an identity

∑
v

ϕα
0v f eqv Bvkl f

eq−1
k f eq−1

l = 0 (8.225)

with B being defined in Eq. (8.89).
By multiplying arbitrary vectors f eqk ψk and f eql χl to the identity (8.225), and

then summing up with respect to k and l , we have

0 =
∑

v

ϕα
0v f eqv

∑
k

∑
l

Bvkl ψk χl

=
∑

v

ϕα
0v f eqv B[ψ , χ ]v

= 〈ϕα
0 , B[ψ , χ] 〉, (8.226)

where the notation (8.90) has been used. Finally, puttingψ = χ = L−1 Q F, we find
that Eq. (8.226) becomes Eq. (8.128). This completes the proof of Eq. (8.128).



Chapter 9
A General Theory for Constructing
Mesoscopic Dynamics: Doublet Scheme
in RG Method

9.1 Introduction

We have seen that the RGmethod [1, 38, 39, 48–52, 92–96] as described in Chaps. 4
and 5 based on [3, 5, 6, 40, 46, 57, 58] has a wide applicability for deriving the slow
dynamics with fewer degrees of freedom from the underlying microscopic equations
in the perturbation theory.1 The slow dynamics can be described by coarse-grained
collective variables or macroscopic variables such as the amplitudes and phases of
oscillators. The key ingredient of the method is the zero modes of the unperturbed
evolution operator, which are to be promoted by the nonlinear terms to the dynamical
variables forming the invariant manifold [33, 34] on which the dynamical motion
is confined: The reduced evolution equation of the would-be zero modes on the
manifold is provided through the RG/E equation.2

In some interesting problems in physics, however, it becomes necessary to con-
struct a mesoscopic dynamics which would be given, say, by partial coarse-graining
of the microscopic equation [144–151], [62, pp. 78–81], [152–154]. A natural way
to achieve this task is to incorporate appropriate excited or fast modes as well as the
zero modes to construct the invariant manifold on which the mesoscopic variables
are defined: Fig. 9.1 gives a schematic picture of the invariant/attractive manifold
composed of the zero and excited modes.

Then how can one identify the appropriate excited modes describing the invariant
manifold of the mesoscopic scale and derive the mesoscopic dynamics on it. In this
chapter, we shall present a general scheme [69] to overcome these problems by
extending the RG method presented in the previous chapters. The general scheme is
called the doublet scheme in the RG method because the excited modes necessary to

1 As for some historical development of the RG method, see Sect. 1.3.
2 We remark that one can see in [35, 143] extensive applications of a reduction theory to physical
and chemical kinetics based on the notion of invariant manifolds with quite different formulation
from the RG method.
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Fig. 9.1 A schematic picture of the invariant/attractive manifold spanned by the zero and excited
modes: The zero-modemanifold is represented by the (blue) dashed line, while the solid line denotes
the orbit of an exact solution to the microscopic equation. The surface shows the invariant/attractive
manifold extended by incorporating excited modes. Under the time evolution of the system, the
exact solution starting from a point away from the surface is rapidly attracted along the solid line to
the surface, then after performing a fast motion on it, the solution approaches the dashed line, and
eventually shows a slow motion confined on it

describe the mesoscopic dynamics turn out to always appear pairwise and the RG/E
equation still plays the essential role to give the reduced evolution equation [69]. It
is found that the doublet scheme can be applicable to derive a mesoscopic dynamics
from a wide class of evolution equations, although only one example is treated in this
chapter: In Part II of the present monograph, the scheme will be applied to derive the
relativistic and nonrelativistic fluid dynamics in the mesoscopic scales [155–157].

This chapter is based on [69] with some elucidations, and organized as follows:
In Sect. 9.2, we describe the doublet scheme in the RG method. In Sect. 9.3, we
analyze the Lorenz model [84] in the doublet scheme and demonstrate the validity
of the doublet scheme as a method for constructing the invariant/attractive manifold
that incorporates the excited modes as well as the zero modes.

9.2 General Formulation

In this section, using a generic evolution equation we extract its mesoscopic dynam-
ics by constructing the invariant/attractive manifold incorporating the appropriate
excited modes as well as the zero modes of its linearized evolution operator: The
appropriate excited modes are identified on the basis of the natural principle inherent
in the reduction theory [32] that the resultant dynamics should be as simple as pos-
sible with as few as possible variables. In fact, there is still a trade-off between the
simplicity/complexity of the reduced equation and the representation of the invari-
ant/attractive manifold. We shall choose the variables so that the reduced equation
becomes simpler. These principles lead to a unique extraction of the excited modes
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to be incorporated for describing the mesoscopic dynamics, and it turns out that these
additional modes always appear pairwise, and hence the name of the doublet scheme.

9.2.1 Preliminaries

As a generic evolution equation, we treat the following system of nonlinear differ-
ential equations for X with dimX = N (1 < N ≤ ∞),

∂

∂t
X = G(X) + ε F(X), (9.1)

or in terms of components

∂

∂t
Xi = Gi (X1, . . . , XN ) + ε Fi (X1, . . . , XN ), i = 1, . . . , N . (9.2)

Here G(X) and F(X) are non-linear functions of X , and ε is introduced as an
indicator of the smallness of F(X) that is to be set to 1 in the final stage. When
F(X) is absent, the vector X(t) governed by Eq. (9.1) is supposed to be relaxed to
a stationary solution Xeq after a long time as

X(t → ∞) → Xeq, (9.3)

which satisfies the stationary condition

G(Xeq) = 0. (9.4)

Here, we assume that when the initial conditions are varied, the resultant stationary
solution Xeq forms a well-defined M0-dimensional manifold where 1 ≤ M0 ≤ N ,
and accordingly the whole manifold Xeq is parametrized by M0 integral constants

(C1, . . . , CM0) =: C, (9.5)

belonging to some M0-dimensional domain;

Xeq = Xeq(C). (9.6)

For a given set of {Cα}α=1, ..., M0 , let us define the linearized evolution operator A
by

Ai j := ∂

∂X j
Gi (X1, . . . , XN )

∣
∣
∣
∣
X=Xeq

. (9.7)
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By differentiating the i-th component of Eq. (9.4) with respect to Cα with α =
1, . . . , M0, we have

0 = ∂Gi

∂Cα

=
N

∑

j=1

∂Gi

∂X eq
j

∂X eq
j

∂Cα

=
N

∑

j=1

Ai j

∂X eq
j

∂Cα

, (9.8)

or

A · (∂Xeq/∂Cα) = 0, (9.9)

in the matrix notation. Equation (9.9) tells us that the linear operator A has M0

independent (right) eigenvectors belonging to the zero eigenvalue, i.e., zero modes

ϕα
0 := ∂Xeq/∂Cα, ϕα

0i = ∂X eq
i /∂Cα, (9.10)

and accordingly

dim [ker A] = M0. (9.11)

It should be noted that the matrix A is not necessarily symmetric but generally asym-
metric one.3 Then, let us denote the left eigenvectors belonging to zero eigenvalue
by, ϕ̃α

0 , which satisfy

A†ϕ̃α
0 = 0. (9.12)

We assume that the other than zero eigenvalues λa of A are discrete real negative
values:

Aϕ
λa

= λaϕλa
, λa < 0 (a = M0 + 1, . . . , N ). (9.13)

We assume that they are not degenerate: λa �= λb for a �= b. The right eigenvector
belonging to λa is denoted by ϕ̃

λa
:

A†ϕ̃
λa

= λaϕ̃λa
. (9.14)

We note that the tangent space of the invariantmanifold at X eq = X(C) is spanned
locally by the zero modes ϕα

0 with α = 1, . . . , M0.
Let us introduce an inner product between arbitrary vectors ψ = (ψ1, . . . , ψN )

and χ = (χ1, . . . , χN ) as

〈ψ |χ 〉 :=
N

∑

i=1

ψ∗
i χi , (9.15)

3 See Sect. 3.6.2 for basic mathematical facts about an asymmetric matrix.
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which has the positive definiteness of the norm as

〈ψ |ψ 〉 > 0, for ψ �= 0. (9.16)

Since the basis vectors ϕα
0 with α = 1, . . . , M0 are not necessarily orthogonal,

we define the ‘metric’ tensor in the kernel space of A by

η
αβ

0 := 〈 ϕ̃α
0 |ϕβ

0 〉. (9.17)

Then we define the projection operator P0 onto the kernel of A, which we call the
P0 space, and the projection operator Q0 onto the Q0 space as the complement to the
P0 space by

P0 ψ :=
M0∑

α,β=1

ϕα
0 η−1

0αβ 〈 ϕ̃
β

0 |ψ 〉, (9.18)

Q0 := 1 − P0, (9.19)

where η−1
0αβ is the inverse matrix of the P0-space metric matrix η

αβ

0 :

M0∑

γ=1

η−1
0αγ η

γβ

0 = δβ
α . (9.20)

We can verify the idempotency of P0 as follows

P0P0 ψ = P0

M0∑

α,β=1

ϕα
0 η−1

0αβ 〈 ϕ̃
β

0 |ψ 〉

=
M0∑

α,β=1

M0∑

γ1,γ2=1

ϕ
γ1
0 η−1

0γ1γ2〈 ϕ̃
γ2
0 |ϕα

0 〉 η−1
0αβ 〈 ϕ̃

β

0 |ψ 〉

=
M0∑

α,β=1

M0∑

γ1,γ2=1

ϕ
γ1
0 η−1

0γ1γ2η
γ2α η−1

0αβ 〈 ϕ̃
β

0 |ψ 〉

=
M0∑

γ,β=1

ϕ
γ

0 η−1
0γ1β〈 ϕ̃

β

0 |ψ 〉 = P0 ψ . (9.21)

As is shown in Sect. 3.6.2, the right and left eigenvectors belonging to different
eigenvalues are orthogonal to each other:

a �= b =⇒ 〈ϕ̃
λa

|ϕ
λb

〉 = 0. (9.22)
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Since λa �= 0 is not degenerate, the eigenvectors are normalized as follows,
〈ϕ̃

λa
|ϕ

λa
〉 = 1. Thus,

〈ϕ̃
λa

|ϕ
λb

〉 = δab. (9.23)

The projection operator Q0 is now expressed as

Q0 =
N

∑

a=M0+1

|ϕ̃
λa

〉〈ϕ
λa

|. (9.24)

Then the idempotency of Q0 follows directly from (9.23) as,

Q2
0 =

N
∑

a=M0+1

|ϕ̃
λa

〉〈ϕ
λa

|
(

N
∑

b=M0+1

|ϕ̃
λb

〉〈ϕ
λb

|
)

=
N

∑

a,b=M0+1

|ϕ̃
λa

〉〈ϕ
λa

|ϕ̃
λb

〉〈ϕ
λb

| =
N

∑

a,b=M0+1

|ϕ̃
λa

〉δab〈ϕλb
|

=
N

∑

a=M0+1

|ϕ̃
λa

〉〈ϕ
λa

| = Q0. (9.25)

Following the general argument given in Sect. 3.6.2, we introduce a modified
inner product for arbitrary two vectors ϕ and ψ with the metric as

〈ϕ , ψ 〉 := 〈ϕ|gψ 〉, (9.26)

where

g :=
M0∑

α=1

|ϕ̃α
0 〉〈ϕα

0 | +
N

∑

a=M0+1

|ϕ̃
λa

〉〈ϕ
λa

|. (9.27)

Then, as is shown in Sect. 3.6.2, the following relation holds for arbitrary two vectors
ψ and χ

〈ϕ , Aψ 〉 = 〈ϕ|gAψ 〉

=
N

∑

a=M0+1

λa〈ϕ|ϕ̃
λa

〉〈ϕ
λa

|ψ〉, (9.28)

〈 Aϕ , ψ 〉 = 〈Aϕ|gψ 〉

=
N

∑

a=M0+1

λa〈ϕ|ϕ̃
λa

〉〈ϕ
λa

|ψ〉 = 〈ϕ , Aψ 〉, (9.29)
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which tells us that A is self-adjoint. Here we have used the reality of λa;

λ∗
a = λa . (9.30)

Wewill see that this self-adjoint nature of A plays an essential role inmaking the form
of the resultant equation simpler. Similarly, the following identities for an arbitrary
vector ψ follow from the self-adjointness of the projection operators;

〈ϕα
0 , P0 ψ 〉 = 〈 P0 ϕα

0 , ψ 〉 = 〈ϕα
0 , ψ 〉, 〈ϕα

0 , Q0 ψ 〉 = 〈 Q0 ϕα
0 , ψ 〉 = 0.

(9.31)

9.2.2 Construction of the Approximate Solution Around
Arbitrary Time

To extract the mesoscopic slow dynamics of Eq. (9.1) in the asymptotic region sup-
posing that an initial condition for the exact solution X(t) is given, say, at t = −∞,
we first construct an approximate solution composed of the zero modes and the
appropriate excited modes around arbitrary time by the perturbation theory.

In accordance with the general formulation of the RG method [3, 5, 6, 46] pre-
sented in Chaps. 4 and 5, we try to construct a perturbative solution X̃(t ; t0) with
the ‘initial’ condition at t = t0:

X̃(t = t0 ; t0) = X(t0), (9.32)

where it has been made explicit that X̃(t = t0 ; t0) may depend on t0.
We expand the ‘initial’ value as well as the perturbative solution as follows:

X̃(t ; t0) = X̃0(t ; t0) + ε X̃1(t ; t0) + ε2 X̃2(t ; t0) + · · · , (9.33)

X(t0) = X0(t0) + ε X1(t0) + ε2 X2(t0) + · · · , (9.34)

where the respective terms are set to obey the ‘initial’ conditions at t = t0 as

X̃ l(t = t0 ; t0) = X l(t0), l = 0, 1, 2, . . . , (9.35)

respectively. We shall construct the zeroth-order ‘initial’ value X̃0(t0 ; t0) = X0(t0)
as close as possible to the exact value X(t0).

Insertion of the above expansions into Eq. (9.1) leads to a series of the perturbative
equations by equating the coefficients of the respective powers of ε. In the following,
we shall carry out the perturbative analysis up to the second order, which is necessary
to obtain a sensible mesoscopic dynamics.

Before entering the perturbative analysis, we give the geometrical picture, in
Fig. 9.1, of the way how the invariant/attractive manifold spanned solely by the
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zero modes is extended and thus improved so as to capture the whole mesoscopic
dynamics.

Now, the zeroth-order equation reads

∂

∂t
X̃0(t ; t0) = G(X̃0(t ; t0)). (9.36)

Since we are interested in the slow motion that would be realized asymptotically as
t → ∞, we try to find a stationary solution, which satisfies

∂

∂t
X̃0(t ; t0) = 0. (9.37)

This equation is satisfied when X̃0(t ; t0) is a fixed point, G(X̃0(t ; t0)) = 0, which
is nothing but Eq. (9.4). Thus, on account of the uniqueness of the fixed point which
has been assumed, we can identify X̃0(t ; t0) with Xeq:

X̃0(t ; t0) = Xeq(t0), (9.38)

which implies that

X0(t0) = X̃0(t = t0 ; t0) = Xeq(t0). (9.39)

We remark that Xeq(t0) has a t0-dependence through the integral constants Cα(t0)
(α = 1, . . . , M0) defined by Eq. (9.6);

Xeq(t0) := Xeq(C1(t0), . . . , CM0(t0)). (9.40)

From now on, we suppress the t0-dependence of the solutions when no misunder-
standing is expected.

9.2.3 First-Order Solution and Introduction of the Doublet
Scheme

The first-order equation is now given by

∂

∂t
X̃1(t) = A X̃1(t) + F0, (9.41)

with

F0 := F(Xeq). (9.42)
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The general solution to the linear inhomogeneous equation (9.41) is readily
obtained with the use of the method of variation of the constants: The solution
can be written as X̃1 = eAt c(t), and c(t) satisfies the equation ċ = e−At F0, which
is solved by the quadrature. Then the solution with the ‘initial’ condition

X1(t0) = X̃1(t = t0 ; t0) =: φ(t0), (9.43)

is expressed in terms of the projection operators P0 and Q0 as

X̃1(t ; t0) = eA(t−t0) φ + (t − t0) P0 F0 + (eA(t−t0) − 1) A−1
Q0

Q0 F0, (9.44)

where A−1
Q0

was introduced in Sect. 3.6.2 and has the following property,

A−1
Q0

:= Q0A
−1Q0 = Q0

N
∑

a=M0+1

A−1|ϕ̃
λa

〉〈ϕ
λa

| = Q0

N
∑

a=M0+1

1

λa
|ϕ̃

λa
〉〈ϕ

λa
|

=
N

∑

a=M0+1

1

λa
|ϕ̃

λa
〉〈ϕ

λa
| = A−1Q0, (9.45)

which imply that

A−1
Q0

= A−1
Q0
Q0 = A−1Q0. (9.46)

In the following, we shall use the last notation.
Without loss of generality, we can suppose that φ(t0) is orthogonal to the tan-

gent space spanned by the zero modes {ϕα
0 }α=1, ..., M0 and hence belongs to the Q0

space, because the possible zero modes contained in φ can be eliminated by the
redefinition of the zeroth-order ‘initial’ value Xeq through a shift of the parameters
(C1(t0), . . . , CM0(t0)).

We note the existence of the secular term in Eq. (9.44) apparently invalidate the
perturbative solution when |t − t0| becomes large.

It is found convenient for later discussions to expand eA(t−t0) with respect to t − t0
and retain the terms in the first order as

X̃1(t ; t0) = φ(t0) + (t − t0) (A φ + P0 F0 + Q0 F0). (9.47)

The neglected terms of O((t − t0)n) (≥ 2) are irrelevant when we apply the RG/E
equation.

Weare now in aposition to introduceoneof the central ideas of the doublet scheme.
The problem we must solve is how to extend the vector space beyond that spanned
by the zero modes to accommodate the appropriate excited modes for constructing
the closed mesoscopic dynamics. We call the additional vector space the P1 space,
which is a subspace of the Q0 space.
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Although it is admittedly not apparent a priori whether such a vector space exists,
it will be found that the form of the perturbative solution (9.47) itself naturally
leads to the way how to construct the P1 space on the basis of the basic principle of
the reduction theory of dynamical systems that the closed reduced system is to be
composed of a as small as possible number of variables and equations. In the present
case, this principle is realized by imposing the condition that the tangent space of the
perturbative solution at t = t0 should be spanned by a as small as possible number
of independent vectors. Then we should require that

(I) A φ and Q0 F0 belong to a common vector space.

Next, we note that the solution (9.47) at t ∼ t0 is a linear combination of a vector
P0 F0 belonging to the P0 space and three new vectors, i.e., φ, A φ, and Q0 F0.
Therefore, the minimal P1 space that is closed is readily obtained if the following
condition is additionally satisfied:

(II) The P1 space is spanned by the bases of the union of φ and A φ.

The first condition (I) may be restated that both φ and A−1 Q0 F0 belong to a
common vector space: We note that this condition is in accordance with the fact that
φ belongs to the Q0 space.

Thus, to get the more detailed structure of the P1 space, one only have to cal-
culate A−1 Q0 F0 and identify the basis vector fields of the vector subspace which
A−1 Q0F0 belongs to, and will also constitute the basis vectors to express φ. The
vector Q0 F0[C] would span a vector space when C = (C1, . . . , CM0) is varied in
the domain where C is defined. Let the dimension of the vector space is a finite
number, say, M1. Then, there exist M1 independent vectors ϕ

μ
1 withμ = 1, . . . , M1

so that Q0 F0[C] for any C can be expressed as a linear combination of them as

Q0 F0 =
M1∑

μ=1

fμ(C)ϕ
μ
1 , (9.48)

where fμ(C) are numerical coefficients solely dependent on F0 and hence functions
of C = (C1, . . . , CM0). Note that using the freedom in the choice of the set of the
basis vectors ϕ

μ
1 (μ = 1, . . . , M1), we can make a suitable choice of them in actual

problems on the basis of physical meaning and/or conditions such as symmetry
properties.

Now, the fact ϕμ
1 ’s belong to the Q0 space implies that

Q0ϕ
μ
1 = ϕ

μ
1 , (9.49)

then we can write as

A−1 ϕ
μ
1 = A−1 Q0 ϕ

μ
1 , (9.50)
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without any mathematical ambiguity. Thus, we can also write as

A−1 Q0 F0 =
M1∑

μ=1

(A−1 ϕ
μ
1 ) fμ. (9.51)

Note that since detAQ0 �= 0, i.e., AQ0 is non-singular, provided that ϕ
μ
1 with μ =

1, . . . , M1 are mutually independent, which we have assumed.
Our task for finding the adequate variables for describing the reduced (meso-

scopic) dynamics is tantamount to requiring A−1 Q0 F0 and φ belong to the same
vector subspace. This requirement is readily met by adopting the M1 vectors A−1 ϕ

μ
1

as the bases of the vector space to which A−1 Q0 F0 and φ belong.
Here we note that it may happen that some of the coefficients fμ are iden-

tically equal to 0, and the corresponding subset of the M1 independent vectors
{A−1 ϕ

μ
1 }μ=1,2,...,M1 do not appear. However, to develop a general theory that is appli-

cable to the generic case, we shall keep all the coefficients fμ and the M1 vectors
{A−1 ϕ

μ
1 }μ=1,2,...,M1 .

Now in the generic case in which we are interested, φ can be expressed as

φ(t0) =
M1∑

μ=1

(A−1 ϕ
μ
1 )C ′

μ(t0). (9.52)

Here we have introduced new M1 coefficientsC ′
μ(t0), which have the meaning of the

integral constants in the context of the solution of the present differential equation
and have the t0 dependence C ′

μ(t0) as Cα(t0)’s do.
It is worth emphasizing that the form of φ given in Eq. (9.52) is the most general

one that makes A φ and Q0 F0 (as given by (9.48)) belong to a common vector space
provided that A−1 Q0 F0 is expressed by Eq. (9.51).

Now we see that the P1 space is the vector space spanned by A−1 ϕ
μ
1 and ϕ

μ
1

(μ = 1, . . . , M1). We call the pair of

A−1 ϕ
μ
1 and ϕ

μ
1 , (9.53)

the doublet modes. One also sees that the Q0 space is a sum of the P1 space spanned
by the doublet modes and the Q1 space which is the complement to the sum of the
P0 and P1 spaces. The projection operators to the P1 and Q1 spaces are denoted by
P1 and Q1, respectively: Their explicit expressions are given by
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P1 ψ :=
M1∑

μ,ν=1

ϕ
μ
1

(

η−1
10μ,0ν 〈ϕν

1 , ψ 〉 + η−1
10μ,1ν 〈 A−1 ϕν

1 , ψ 〉)

+ A−1
M1∑

μ,ν=1

ϕ
μ
1

(

η−1
11μ,0ν 〈ϕν

1 , ψ 〉 + η−1
11μ,1ν 〈 A−1 ϕν

1 , ψ 〉)

=
∑

m,n=0,1

A−m
M1∑

μ,ν=1

ϕ
μ
1 η−1

1mμ,nν 〈 A−n ϕν
1 , ψ 〉, (9.54)

Q1 := Q0 − P1, (9.55)

respectively, where ψ is an arbitrary vector and η−1
1mμ,nν (m, n = 0, 1) denotes the

inverse of the metric matrix η
mμ,nν
1 of the P1 space:

η
mμ,nν
1 := 〈 A−m ϕ

μ
1 , A−n ϕν

1 〉, (m, n = 0, 1; μ, ν = 1, . . . , M1). (9.56)

As a check, we show that P1 satisfies the properties of the projection operator of the
P1 space:

P2
1 ψ =

∑

l,p=0,1

A−l
M1∑

ρ,σ=1

ϕ
ρ
1 η−1

1lρ,pσ

∑

m,n=0,1

M1∑

μ,ν=1

〈 A−p ϕσ
1 , A−m ϕ

μ
1 〉 η−1

1mμ,nν 〈 A−n ϕν
1 , ψ 〉

=
∑

l,p=0,1

A−l
M1∑

ρ,σ=1

ϕ
ρ
1 η−1

1lρ,pσ

∑

m,n=0,1

M1∑

μ,ν=1

η
pσ,mμ
1 η−1

1mμ,nν 〈 A−n ϕν
1 , ψ 〉

=
∑

l,p=0,1

A−l
M1∑

ρ,σ=1

ϕ
ρ
1 η−1

1lρ,pσ

∑

n=0,1

M1∑

ν=1

δ
p
n δσ

ν 〈 A−n ϕν
1 , ψ 〉

=
∑

l,p=0,1

A−l
M1∑

ρ,σ=1

ϕ
ρ
1 η−1

1lρ,pσ 〈 A−p ϕσ
1 , ψ 〉

= P1

for any vector ψ , which shows the idempotency of P1;

P2
1 = P1. (9.57)

Similarly,
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P1ϕ
ρ
1 =

∑

m,n=0,1

A−m
M1∑

μ,ν=1

ϕ
μ
1 η−1

1mμ,nν 〈 A−n ϕν
1 , ϕ

ρ
1 〉

=
∑

m,n=0,1

A−m
M1∑

μ,ν=1

ϕ
μ
1 η−1

1mμ,nν η
nν,0ρ
1

=
∑

m=0,1

A−m
M1∑

μ=1

ϕ
μ
1 δ0mδρ

μ

= ϕ
ρ
1 , (9.58)

P1
(

A−1 ϕ
ρ
1

) =
∑

m,n=0,1

A−m
M1∑

μ,ν=1

ϕ
μ
1 η−1

1mμ,nν 〈 A−n ϕν
1 , A−1 ϕ

ρ
1 〉

=
∑

m,n=0,1

A−m
M1∑

μ,ν=1

ϕ
μ
1 η−1

1mμ,nν η
nν,1ρ
1

=
∑

m=0,1

A−m
M1∑

μ=1

ϕ
μ
1 δ1mδρ

μ

= A−1 ϕ
ρ
1 . (9.59)

Thus, on account of the self-adjointness4 of P1, we have the following equalities for
an arbitrary vector ψ ,

〈ϕ
μ
1 , P1 ψ 〉 = 〈ϕ

μ
1 , ψ 〉, 〈 A−1 ϕ

μ
1 , P1 ψ 〉 = 〈 A−1 ϕ

μ
1 , ψ 〉. (9.60)

These formulae will play an important role in Sect. 9.2.6.

9.2.4 Second-Order Analysis

To write down the second-order equation, it is found convenient to introduce a third-
order and second-order rank tensors B and F1 whose components are given by

Bi jk := ∂2

∂X j ∂Xk
Gi (X)

∣
∣
∣
∣
X=Xeq

, F1i j := ∂

∂X j
Fi (X)

∣
∣
∣
∣
X=Xeq

, (9.61)

respectively. Then the second-order equation is written as

∂

∂t
X̃2(t) = A X̃2(t) + K (t − t0), (9.62)

4 We recall that the self-adjointness of A is shown in (9.29).
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with the inhomogeneous term

K (t − t0) := 1

2
B

[

X̃1(t ; t0) , X̃1(t ; t0)
] + F1 X̃1(t ; t0), (9.63)

where we have introduced the symbol for arbitrary two vectors ψi = (ψ)i and χi =
(χ)i as

(B
[

ψ , χ
]

)i =
N

∑

j=1

N
∑

k=1

Bi jk ψ j χk . (9.64)

We are going to solve Eq. (9.62) in a way where the ‘initial’ values suitable to
describe the slow dynamics are obtained so that the solution would describe the
motion coming from the P0 and P1 spaces.

The general solution to Eq. (9.62) is obtained, say, by the method of variation of
constants, and reads

X̃2(t) = eA(t−t0) X̃2(t0)+
∫ t

t0

dt ′ eA(t−t ′) K (t ′ − t0)

= eA(t−t0) X̃2(t0)+
∫ t

t0

dt ′ P0 K (t ′ − t0)

+
∫ t

t0

dt ′ eA(t−t ′) Q0 K (t ′ − t0), (9.65)

where we have inserted the identity 1 = P0 + Q0 in front of K (t ′ − t0) in the second
equality. Using the simple formula

K (t ′ − t0) = e(t ′−t0)∂/∂s K (s)
∣
∣
∣
s=0

, (9.66)

and then carrying out integration with respect to t ′, we have

X̃2(t) = eA(t−t0) X̃2(t0) + (1 − e(t−t0)∂/∂s) (−∂/∂s)−1 P0 K (s)
∣
∣
∣
s=0

+ (eA(t−t0) − e(t−t0)∂/∂s) (A − ∂/∂s)−1 Q0 K (s)
∣
∣
∣
s=0

= eA(t−t0)
[

X̃2(t0) + Q1 (A − ∂/∂s)−1 Q0 K (s)
∣
∣
∣
s=0

]

+ (1 − e(t−t0)∂/∂s) (−∂/∂s)−1 P0 K (s)
∣
∣
∣
s=0

+ (eA(t−t0) − e(t−t0)∂/∂s) P1 (A − ∂/∂s)−1 Q0 K (s)
∣
∣
∣
s=0

− e(t−t0)∂/∂s Q1 (A − ∂/∂s)−1 Q0 K (s)
∣
∣
∣
s=0

, (9.67)
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where 1 = P0 + P1 + Q1 has been inserted in front of (A − ∂/∂s)−1 Q0 K (s) in the
second line of Eq. (9.67). We note that the contributions from the inhomogeneous
term K (t − t0) are decomposed into two parts, whose time dependencies are given
by eA(t−t0) and e(t−t0)∂/∂s , respectively. The former gives a fast motion characterized
by the eigenvalues of A acting on the Q1 space, while the time dependence of the
latter is independent of the dynamics due to the absence of A. Since we are interested
in the motion coming from the P0 and P1 spaces, we eliminate the former associated
with the Q1 space with a choice of the ‘initial’ value X̃2(t0) that has not yet been
specified, as follows:

X̃2(t0) = −Q1 (A − ∂/∂s)−1 Q0 K (s)
∣
∣
∣
s=0

, (9.68)

with which Eq. (9.67) is reduced to

X̃2(t) = (1 − e(t−t0)∂/∂s) (−∂/∂s)−1 P0 K (s)
∣
∣
∣
s=0

+ (eA(t−t0) − e(t−t0)∂/∂s) P1 (A − ∂/∂s)−1 Q0 K (s)
∣
∣
∣
s=0

− e(t−t0)∂/∂s Q1 (A − ∂/∂s)−1 Q0 K (s)
∣
∣
∣
s=0

. (9.69)

By introducing a “propagator”

G(s) := (A − ∂/∂s)−1, (9.70)

in Eqs. (9.68) and (9.69), we write the ‘initial’ value and solution to Eq. (9.62) as

X2(t0) = X̃2(t = t0 ; t0) = −Q1 G(s) Q0 K (s)
∣
∣
∣
s=0

, (9.71)

and

X̃2(t ; t0) = (1 − e(t−t0)∂/∂s) (−∂/∂s)−1 P0 K (s)
∣
∣
∣
s=0

+ (eA(t−t0) − e(t−t0)∂/∂s) P1 G(s) Q0 K (s)
∣
∣
∣
s=0

− e(t−t0)∂/∂s Q1 G(s) Q0 K (s)
∣
∣
∣
s=0

, (9.72)

respectively. We note the appearance of secular terms in Eq. (9.72).
Thus, up to the second order of ε, we have the approximate solution that is locally

valid around t ∼ t0 as
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X̃(t ; t0) = Xeq + ε

[

eA(t−t0) φ + (t − t0) P0 F0 + (eA(t−t0) − 1) A−1 Q0 F0

]

+ ε2
[

(1 − e(t−t0)∂/∂s) (−∂/∂s)−1 P0 K (s)
∣
∣
∣
s=0

+ (eA(t−t0) − e(t−t0)∂/∂s) P1 G(s) Q0 K (s)
∣
∣
∣
s=0

− e(t−t0)∂/∂s Q1 G(s) Q0 K (s)
∣
∣
∣
s=0

]

, (9.73)

with the ‘initial’ value at t = t0

X(t0) = Xeq + ε φ − ε2 Q1 G(s) Q0 K (s)
∣
∣
∣
s=0

+ O(ε3). (9.74)

9.2.5 RG Improvement of Perturbative Expansion

As we have repeatedly noted in the procedure of the solution, the perturbative solu-
tion (9.73) contains the secular terms, which make the solution (9.73) only valid
around t = t0.

To construct a solution that is valid in a global domain from the perturbative
solution (9.73), we adopt the RG method [3, 5, 6, 40, 58]. That is, we apply the
RG/E equation to the local solution (9.73)

d

dt0
X̃(t ; t0)

∣
∣
∣
∣
t0=t

= 0, (9.75)

which leads to

∂

∂t
Xeq + ε

[

− A φ + ∂

∂t
φ − P0 F0 − Q0 F0

]

+ ε2
[

− P0 K (0) − (A − ∂/∂s) P1 G(s) Q0 K (s)
∣
∣
∣
s=0

+ (∂/∂s) Q1 G(s) Q0 K (s)
∣
∣
∣
s=0

]

= 0, (9.76)

up to the second order of ε. We remark that the RG/E equation (9.76) actually gives
the equation of motion by lifting the would-be integral constants Cα in Xeq and C ′

μ

in φ to dynamical variables. Furthermore, we have a globally improved solution as
the envelope trajectory [5] that is given by the ‘initial’ value (9.74) as
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Xglobal(t) := X(t0 = t)

= Xeq + ε φ − ε2 Q1 G(s) Q0 K (s)
∣
∣
∣
s=0

∣
∣
∣
∣
t0=t

+ O(ε3), (9.77)

where the exact solution to the RG/E equation (9.76) is to be inserted.
We emphasize that the solution (9.77) together with the dynamical equation

(9.76) constitutes the mesoscopic dynamics of Eq. (9.1): Equation (9.77) gives the
(extended) invariant/attractive manifold of Eq. (9.1), and Eq. (9.76) the dynamical
equation incorporating the mesoscopic dynamics defined on the manifold.

9.2.6 Reduction of RG/E Equation to Simpler Form

In this section, we reduce the RG/E equation (9.76) to a simpler form by a kind of
averaging.

We first note that Eq. (9.76) contains terms belonging to the Q1 space that are not
supposed to constitute the mesoscopic variables.5 These variables can be eliminated
by taking the inner product of Eq. (9.76) with the zero modes ϕα

0 and the excited
modes A−1 ϕ

μ
1 used in φ. This is a kind of averaging.

First we note the fact that ∂Xeq/∂t belongs to the P0 space as

∂

∂t
Xeq =

M0∑

α=1

ϕα
0

∂

∂t
Cα, (9.78)

which follows from Eqs. (9.10) and (9.40).
Then the averaging is accomplished by multiplying the projection operators P0

and P1 from the left-hand side of Eq. (9.76), which are reduced to

P0
∂

∂t
Xeq + ε

[

P0
∂

∂t
φ − P0 F0

]

− ε2 P0 K (0) = 0, (9.79)

ε

[

− P1 A φ + P1
∂

∂t
φ − P1 Q0 F0

]

− ε2 P1 (A − ∂/∂s) P1 G(s) Q0 K (s)
∣
∣
∣
s=0

= 0, (9.80)

respectively, up to O(ε2).
We also note that K (0) in (9.79) takes the simple form,

5 We note that these variables in the Q1 space may be incorporated to the mesoscopic equation as
noise terms to make a stochastic mesoscopic dynamics or a Langevin equation [100, 158, 159].
Such an attempt to obtain a stochastic mesoscopic dynamics is quite interesting but beyond the
scope of the present work.
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K (0) = 1

2
B

[

φ , φ
] + F1 φ, (9.81)

owing to Eqs. (9.63) and (9.47).
To get more concrete formulae of Eqs. (9.79) and (9.80), we take the inner product

of them with the basis vectors ϕα
0 in the P0 and A−1 ϕ

μ
1 in the P1 space, respectively,

which lead to

〈ϕα
0 ,

∂

∂t
(Xeq + ε φ) 〉 − ε 〈ϕα

0 , F0 + ε F1 φ 〉 = ε2
1

2
〈ϕα

0 , B
[

φ , φ
] 〉, (9.82)

ε 〈 A−1 ϕ
μ
1 ,

∂

∂t
φ 〉 − ε 〈 A−1 ϕ

μ
1 , F0 + ε F1 φ 〉 = ε 〈 A−1 ϕ

μ
1 , A φ 〉

+ ε2
1

2
〈 A−1 ϕ

μ
1 , B

[

φ , φ
] 〉,

(9.83)

respectively. Here, we have omitted the terms of O(ε3).
The calculation of the inner product of the last term (9.80) with A−1 ϕ

μ
1 is rather

involved. Firstly,with a repeated use of the identities (9.60) due to the self-adjointness
of A and the definition of P1, we have

〈 A−1 ϕ
μ
1 , (A − ∂/∂s) P1 G(s) Q0 K (s)

∣
∣
∣
s=0

〉
= 〈 (A − ∂/∂s) A−1 ϕ

μ
1 , P1 G(s) Q0 K (s)

∣
∣
∣
s=0

〉
= 〈 (ϕ

μ
1 − A−1 ϕ

μ
1 ∂/∂s) , P1 G(s) Q0 K (s)

∣
∣
∣
s=0

〉.
= 〈 P1 (ϕ

μ
1 − A−1 ϕ

μ
1 ∂/∂s) , G(s) Q0 K (s)

∣
∣
∣
s=0

〉.
= 〈 (ϕ

μ
1 − A−1 ϕ

μ
1 ∂/∂s) , G(s) Q0 K (s)

∣
∣
∣
s=0

〉
= 〈 (A − ∂/∂s) A−1 ϕ

μ
1 , G(s) Q0 K (s)

∣
∣
∣
s=0

〉, (9.84)

which is further reduced owing to the self-adjointness of A again to

〈 A−1 ϕ
μ
1 , (A − ∂/∂s)G(s) Q0 K (s)

∣
∣
∣
s=0

〉 = 〈 A−1 ϕ
μ
1 , Q0 K (s)

∣
∣
∣
s=0

〉
= 〈 A−1 ϕ

μ
1 , K (0) 〉, (9.85)

where the definition of G(s) given in (9.70) has been used in the first equality. Then
inserting (9.81) into K (0), we finally arrive at

〈 A−1 ϕ
μ
1 , (A − ∂/∂s) P1 G(s) Q0 K (s)

∣
∣
∣
s=0

〉

= 1

2
〈 A−1 ϕ

μ
1 , B

[

φ , φ
] 〉 + 〈 A−1 ϕ

μ
1 , F1 φ 〉. (9.86)
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Wenote that the pair of Eqs. (9.82) and (9.83) is also the equation ofmotion governing
Cα in Xeq and C ′

μ in φ, which is much simpler than Eq. (9.76). We shall shortly give
more words on the significance of the equality (9.86).

There are some notable points in the derivation of the mesoscopic dynamics done
above:

(i) The equations for the mesoscopic dynamics, that is, Eqs. (9.82) and (9.83),
are local ones composed of finite number of terms, although the nonlocal term
G(s) Q0 K (s)|s=0 in Eq. (9.80) consists of an infinite number of terms without
the averaging;

G(s) Q0 K (s)
∣
∣
∣
s=0

=
∞

∑

n=0

A−1−n Q0
∂n

∂sn
K (s)

∣
∣
∣
s=0

, (9.87)

This nice feature clearly originates from the averaging procedure by A−1 ϕ
μ
1

(not by ϕ
μ
1 ) and the fact that the P1 space is spanned by the doublet modes

A−1 ϕ
μ
1 and ϕ

μ
1 . It is remarkable that when ϕ

μ
1 were used for the averaging

instead of A−1 ϕ
μ
1 , it would lead to a complicated equation with an infinite

number of terms: In fact, the reduction of infinite terms into a single term K (0)
as was shown in Eq. (9.86) is not obtained in this case, as is shown below;

〈ϕ
μ
1 , (A − ∂/∂s) P1 G(s) Q0 K (s)

∣
∣
∣
s=0

〉
= 〈 (A − ∂/∂s)ϕ

μ
1 , P1 G(s) Q0 K (s)

∣
∣
∣
s=0

〉
= 〈 (A ϕ

μ
1 − ϕ

μ
1 ∂/∂s) , P1 G(s) Q0 K (s)

∣
∣
∣
s=0

〉
�= 〈 (A ϕ

μ
1 − ϕ

μ
1 ∂/∂s) , G(s) Q0 K (s)

∣
∣
∣
s=0

〉, (9.88)

because A ϕ
μ
1 does not belong to the P1 space.

Needless to say, the reduceddynamical equation composedof an infinite number
of terms is quite undesirable. Thus we find that the averaging by A−1 ϕ

μ
1 used

in the definition of φ is essential to obtain the correct mesoscopic dynamics.
(ii) The mesoscopic dynamics of a generic equation (9.1) consists of Eqs. (9.82)

and (9.83) and the invariant/attractive manifold given in Eq. (9.77). It is note-
worthy that reflecting the trade-off relation between the simplicities of them,
the invariant/attractivemanifold is represented by a rather complicated nonlocal
equation, whereas the reduced differential equations are local equations with a
finite number of terms.

(iii) The mesoscopic dynamics given by Eqs. (9.82) and (9.83) is consistent with the
slow dynamics described solely by the zero modes in the asymptotic regime.
A proof for this natural property of the mesoscopic dynamics will be presented
in Sect. 9.2.7.
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(iv) The doublet scheme in the RG method has been constructed with the require-
ment that the tangent space of the first-order perturbative solution (9.47) at
t = t0 should be spanned by a as small as possible number of independent
vectors. This geometrical way of construction might sound somewhat techni-
cal. More explicit and natural way of derivation of the doublet scheme will be
presented in Sect. 9.3, where the structure of the P1 space and the functional
form of φ are determined through a faithful solution of the generic evolution
equation (9.1).

(v) As is clear from the derivation, the doublet scheme developed here as a reduc-
tion theory of the mesoscopic dynamics has a universal nature and should be
applicable to a wide class of evolution equations, as long as the microscopic
equation is expressed as Eq. (9.1) with the linear operator A having only real
eigenvalues and being self-adjoint. As a demonstration, we shall apply the dou-
blet scheme in the RG method to the Lorenz model in Sect. 9.3. In Chaps. 12,
15, and 16, we shall apply the scheme to the Boltzmann equation to derive so
called the second-order fluid dynamics. An extension of the doublet scheme to
the case where A has complex eigenvalues should be possible but is left as a
future project for the moment.

9.2.7 Transition of the Mesoscopic Dynamics to the Slow
Dynamics in Asymptotic Regime

In this section, we shall show that the motion described by the mesoscopic dynam-
ics Eqs. (9.82) and (9.83) derived in the previous section for (9.1) asymptotically
approaches the motion described by the would-be zero modes as derived by the RG
method in Chap. 5.

First we derive the slow dynamics described only by the zero modes from the
generic evolution equation (9.1) with the RG method developed in Chap. 5 for later
comparison.

In this method, the first task is to obtain the perturbative solution X̃ to Eq. (9.1)
around an arbitrary ‘initial’ time t = t0 with the ‘initial’ value X(t0); X̃(t = t0 ; t0) =
X(t0). We expand the ‘initial’ value as well as the solution with respect to ε as shown
in Eqs. (9.33) and (9.34), and obtain the series of the perturbative equations with
respect to ε.

The zeroth-order equation is the same as Eq. (9.36). Since we are interested in the
slow motion realized asymptotically for t → ∞, we adopt the static solution Xeq as
the zeroth-order solution:

X̃0(t ; t0) = Xeq, (9.89)

which means that the zeroth-order ‘initial’ value reads
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X0(t0) = X̃0(t0 ; t0) = Xeq. (9.90)

The first-order equation reads

∂

∂t
X̃1(t ; t0) = A X̃1(t ; t0) + F0, (9.91)

where A and F0 have been defined in Eqs. (9.7) and (9.42), respectively. The general
solution to the first-order equation is given by

X̃1(t ; t0) = eA(t−t0)
[

X̃1(t0 ; t0) + A−1 Q0 F0

]

+ (t − t0) P0 F0 − A−1 Q0 F0,

(9.92)

where P0 denotes the projection operator onto the P0 space, i.e., the kernel of A, and
Q0 the projection operator onto the Q0 space; P0 + Q0 = 1.

To obtain the slow dynamics described solely by the variables in the P0 space, we
eliminate the fast motion coming from theQ0 space, which is possible by utilizing the
freedom of the choice of the ‘initial’ value X̃1(t0 ; t0) that has not yet been specified
as follows:

X1(t0) = X̃1(t0 ; t0) = −A−1 Q0 F0, (9.93)

with which Eq. (9.92) is reduced to

X̃1(t ; t0) = (t − t0) P0 F0 − A−1 Q0 F0. (9.94)

Then the second-order equation now takes the form

∂

∂t
X̃2(t ; t0) = A X̃2(t ; t0) + U(t − t0), (9.95)

where

U(s) := 1

2
B

[

s P0 F0 − A−1 Q0 F0 , s P0 F0 − A−1 Q0 F0
]

+ F1 (s P0 F0 − A−1 Q0 F0). (9.96)

Here B and F1 is defined in Eq. (9.61).
The solution to the second-order equation (9.95) is found to be

X̃2(t ; t0) = eA(t−t0)
[

X̃2(t0 ; t0) + (A − ∂/∂s)−1 Q0 U(s)
∣
∣
∣
s=0

]

+ (1 − e(t−t0)∂/∂s) (−∂/∂s)−1 P0 U(s)
∣
∣
∣
s=0

− e(t−t0)∂/∂s (A − ∂/∂s)−1 Q0 U(s)
∣
∣
∣
s=0

, (9.97)
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which still contains components in the Q0 space. As in the first-order case, the
possible fast motion caused by the Q0 space components can be eliminated with the
choice of the ‘initial’ value X̃2(t0 ; t0) in the second order as

X2(t0) = X̃2(t0 ; t0) = −(A − ∂/∂s)−1 Q0 U(s)
∣
∣
∣
s=0

, (9.98)

and accordingly we have for the second-order solution

X̃2(t ; t0) = (1 − e(t−t0)∂/∂s) (−∂/∂s)−1 P0 U(s)
∣
∣
∣
s=0

− e(t−t0)∂/∂s (A − ∂/∂s)−1 Q0 U(s)
∣
∣
∣
s=0

. (9.99)

Thus we have the perturbative solution up to O(ε2) as

X̃(t ; t0) = Xeq + ε

[

(t − t0) P0 F0 − A−1 Q0 F0

]

+ ε2
[

(1 − e(t−t0)∂/∂s) (−∂/∂s)−1 P0 U(s)
∣
∣
∣
s=0

− e(t−t0)∂/∂s (A − ∂/∂s)−1 Q0 U(s)
∣
∣
∣
s=0

]

, (9.100)

with the ‘initial’ value at t = t0

X(t0) = Xeq − ε A−1 Q0 F0

− ε2 (A − ∂/∂s)−1 Q0 U(s)
∣
∣
∣
s=0

. (9.101)

Note the appearance of the secular term proportional to t − t0.
As before in this monograph, we utilize the RG method as formulated in [3,

5, 6, 40, 58] to obtain a globally improved solution from this local perturbative
solution (9.100); namely, applying the RG/E equation

dX̃1(t ; t0)/dt0|t0=t = 0, (9.102)

to Eq. (9.100), we have

∂

∂t
(Xeq − ε A−1 Q0 F0) − ε P0 F0 + ε2

[

− P0 U(0)

− (−∂/∂s) (A − ∂/∂s)−1 Q0 U(s)
∣
∣
∣
s=0

]

= 0, (9.103)

where
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U(0) = 1

2
B

[

A−1 Q0 F0 , A−1 Q0 F0
] − F1 A

−1 Q0 F0, (9.104)

which follows from Eq. (9.96). Note that Eq. (9.103) is the equation governing the
slow variables Cα(t) in Xeq.

To get a more explicit form of the equation for the slow variables, it is found
useful to make an ’averaging’; i.e., we take the inner product of Eq. (9.103) with the
zero modes ϕα

0 ;

〈ϕα
0 ,

∂

∂t
(Xeq − ε A−1 Q0 F0) 〉 − ε 〈ϕα

0 , F0 − ε F1 A
−1 Q0 F0 〉

= ε2
1

2
〈ϕα

0 , B
[

A−1 Q0 F0 , A−1 Q0 F0
] 〉 + O(ε3). (9.105)

We are now in a position to give a proof that the mesoscopic dynamics given in the
doublet scheme is consistent with the slow dynamics given above in the asymptotic
regime after a long time. First we notice that there exists a separation of time scales
between the fast motion of C ′

μ belonging to the P1 space and the slow motion of Cα

in the P0 space. Thanks to this separation of the time scales, which tends to become
more significant as time goes by, the asymptotic behavior of the solution to Eq. (9.83)
can be obtained by adiabatically eliminating the variables C ′

μ in the P1 space.
Since C ′

μ appears in Eq. (9.82) in the order of O(ε2), it suffices to construct the
solution C ′

μ valid up to O(1) for obtaining the closed equation for Cα valid up to
O(ε2). Equation (9.83) for C ′

μ tells us that such an equation for C ′
μ takes the form

M1∑

ν=1

〈 A−1 ϕ
μ
1 , A−1 ϕν

1 〉 ∂

∂t
C ′

ν =
M1∑

ν=1

〈ϕ
μ
1 , A−1 ϕν

1 〉 (C ′
ν + fν) + O(ε), (9.106)

where the time dependence of Cα is ignored without a loss of generality. Here recall
that the eigenvalues of A except for the zero are supposed to be real negative as
mentioned in Sect. 9.2.1. Then one finds that 〈 A−1 ϕ

μ
1 , A−1 ϕν

1 〉 is a positive definite
matrix, while 〈ϕ

μ
1 , A−1 ϕν

1 〉 is a negative definite. Thus, one finds that C ′
μ + fμ

decays exponentially down to 0 in the asymptotic regime after a long time,

C ′
μ → − fμ, for t → ∞, (9.107)

up to terms of O(ε). Thus on account of (9.52),

φ(t) → −
M1∑

μ=1

(A−1ϕ
μ
1 ) fμ = −A−1 Q0 F0, (9.108)

where the last equality follows from Eq. (9.51). Inserting Eq. (9.108) into Eq. (9.82),
one arrives at a closed equation forCα , which turns out to be the same as Eq. (9.105).
This is what we wanted to show: the mesoscopic dynamics derived by the doublet
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scheme has a natural property that it is consistentwith the slow dynamics as described
with only the zero modes in the asymptotic regime after a long time.

9.3 An Example: Mesoscopic Dynamics of the Lorenz
Model

In this section, we apply the doublet scheme in the RGmethod developed in the previ-
ous section Sect. 9.2 to extract the mesoscopic dynamics of the Lorenz model [84].
This is an extension of the analysis done in Sect. 6.2 where the RG method was
applied to extract the slow dynamics utilizing solely the would-be zero modes; the
results were shown to be equivalent with those given by the multiple scale analysis
done in Sect. 3.6.2.

For the sake of a self-contained presentation, we shall recapitulate and repeat
some expressions presented in Sects. 3.6.2 and 6.2. The Lorenz model reads

⎧

⎪⎨

⎪⎩

ξ̇ = σ(−ξ + η),

η̇ = rξ − η − ξζ,

ζ̇ = ξη − bζ,

(9.109)

with model parameters σ > 0, r > 0, and b > 0. The linear stability analysis [34]
shows that the origin (A) is stable for 0 < r < 1 but unstable for r > 1, while
the latter steady states (B) (ξ, η, ζ ) = (+√

b(r − 1),+√
b(r − 1), r − 1) and (C)

(ξ, η, ζ ) = (−√
b(r − 1),−√

b(r − 1), r − 1) are stable for 1 < r < σ(σ + b +
3)/(σ − b − 1) =: rc but unstable for r > rc.

Here, we investigate the non-linear stability around the origin (A) for r ∼ 1: A
similar analysis was done in Sects. 3.6.2 and 6.2 in the level of the slow dynamics
but not in the mesoscopic dynamics.

In the situation in which we are interested, the deviation of r from 1 is small and
the absolute values of the amplitudes of (ξ, η, ζ ) are small. As before, we introduce
a small quantity ε instead of r as r = 1 + χε2, where χ = ±1 depending on the sign
of r − 1, and we scale the dynamical variables as

⎛

⎝

ξ

η

ζ

⎞

⎠ =: ε

⎛

⎝

X
Y
Z

⎞

⎠ =: X . (9.110)

Then the Lorenz model is cast into the form

d

dt
X = A X + ε

⎛

⎝

0
−X Z
X Y

⎞

⎠ + ε2

⎛

⎝

0
χ X
0

⎞

⎠ , A =
⎛

⎝

−σ σ 0
1 −1 0
0 0 −b

⎞

⎠ .(9.111)
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As is shown in Sects. 3.6.2 and 6.2, eigenvalues and their respective (right) eigen-
vectors of A are given as follows: λ1 = 0, λ2 = −1 − σ , and λ3 = −b and

U1 =
⎛

⎝

1
1
0

⎞

⎠ , U2 =
⎛

⎝

σ

−1
0

⎞

⎠ , U3 =
⎛

⎝

0
0
1

⎞

⎠ . (9.112)

As was shown in Sect. 9.2.1, when all the eigenvalues are real numbers as in this
case, the apparently asymmetric linear operator A is made symmetric with respect
to a suitably defined inner product. Thus, we see that the Lorenz model (9.111) can
be analyzed by the doublet scheme in the RG method developed in the last section
where the symmetric property of the linear operator A is utilized.

Let X(t0) be a point on an exact solution. We try to solve Eq. (9.111) in a pertur-
bation method around t = t0 with X(t0) being set to the ‘initial’ value. We assume
that the ‘initial’ value and the approximate solution X̃(t; t0) can be expanded with
respect to ε as follows:

X(t0) = X0(t0) + ε X1(t0) + ε2 X2(t0) + · · · , (9.113)

and

X̃(t; t0) = X̃0(t; t0) + ε X̃1(t; t0) + ε2 X̃2(t; t0) + · · · , (9.114)

where

X̃ l(t = t0; t0) = X l(t0), l = 0, 1, 2, . . . . (9.115)

Inserting these expansions into Eq. (9.111) and equating the coefficients of εl , we
have a series of equations for X̃ l(t; t0).

The zeroth-order equation reads

d

dt
X̃0(t; t0) = AX̃0(t; t0). (9.116)

As the asymptotic solution as t → ∞, we take the zero mode solution as before;

X̃0(t; t0) = C(t0)U1, (9.117)

where C(t0) is an integral constant and we have made it explicit that the solution
may depend on the ‘initial’ time t0. C(t0) corresponds to Cα(t0) in the general case
discussed in Sect. 9.2 with M0 = 1. The solution (9.117) leads to the ‘initial’ value

X0(t0) = X̃0(t = t0; t0) = C(t0)U1. (9.118)

In this case, the P0 space is spanned solely by the zero mode U1.
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The first-order equation now takes the form

d

dt
X̃1(t; t0) = AX̃1(t; t0) + C2(t0)U3. (9.119)

The general solution to (9.119) is written as

X̃1(t; t0) = eA(t−t0)X1(t0) + (eA(t−t0) − 1)A−1C2(t0)U3

= X1(t0) + (t − t0)(AX1(t0) + C2(t0)U3) + O((t − t0)
2). (9.120)

As was done in the general formulation in Sect. 9.2, we specify the ‘initial’ value
X1(t0) so that the dimension of the tangent space given by the term proportional to
t − t0 of the solution (9.120) is as small as possible. This requirement is satisfied if
AX1(t0) belongs to the vector space spanned by U3. Thus with the use of a constant
C ′(t0), we write

X1(t0) = A−1U3C
′(t0) = −1

b
U3C

′(t0). (9.121)

Note that C ′(t0) is interpreted as another integral constant corresponding to C ′
μ(t0)

in Sect. 9.2 with M1 = 1.
According to the general scheme developed in the last section, the P1 space is

spanned by the doublet modes

(

U3, A−1U3
)

. (9.122)

Here a warning is necessary: the doublet modes in the present simple model
with three degrees of freedom happen to belong to a common space since U3 is an
eigenvector of A. Accordingly, the left vector U2 belongs to the Q1 space that is
complement to the P0 and P1 spaces. Thus the vector space accommodating the local
solution is decomposed as follows:

P0 : U1, P1 : U3, Q1 : U2, (9.123)

where the vectors in the right-hand side of the colon are the respective basis vectors.
Using the time-dependent function defined by

K (t − t0) := χC(t0) − C3(t0)

b
(1 − e−b(t−t0)) + C(t0)C ′(t0)

b
e−b(t−t0), (9.124)

the second-order equation is written as

d

dt
X̃2(t; t0) = AX̃2(t; t0) + K (t − t0)

1

1 + σ
(σU1 − U2). (9.125)
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The solution to Eq. (9.125) is given by

X̃2(t; t0) = eA(t−t0)
[

X2(t0) + Q1(A − ∂/∂s)−1Q0K (s)
1

1 + σ
(σU1 − U2)

∣
∣
∣
s=0

]

+ (1 − e(t−t0)∂/∂s)(−∂/∂s)−1P0K (s)
1

1 + σ
(σU1 − U2)

∣
∣
∣
s=0

+ (eA(t−t0) − e(t−t0)∂/∂s)P1(A − ∂/∂s)−1Q0K (s)
1

1 + σ
(σU1 − U2)

∣
∣
∣
s=0

− e(t−t0)∂/∂s Q1(A − ∂/∂s)−1Q0K (s)
1

1 + σ
(σU1 − U2)

∣
∣
∣
s=0

. (9.126)

The unwanted fast mode belonging to the Q1 space can be eliminated by a choice
of the ‘initial’ value X2(t0) as

X2(t0) = X̃2(t = t0; t0) = −Q1(A − ∂/∂s)−1Q0K (s)
1

1 + σ
(σU1 − U2)

∣
∣
∣
s=0

= −((−1 − σ) − ∂/∂s)−1K (s)
∣
∣
∣
s=0

1

1 + σ
(−U2), (9.127)

and accordingly

X̃2(t; t0) = (1 − e(t−t0)∂/∂s)(−∂/∂s)−1K (s)
∣
∣
∣
s=0

1

1 + σ
σU1

− e(t−t0)∂/∂s((−1 − σ) − ∂/∂s)−1K (s)
∣
∣
∣
s=0

1

1 + σ
(−U2). (9.128)

Thus the perturbative solution up to O(ε2) is given by

X̃(t; t0) = C(t0)U1 + ε

[

eA(t−t0)A−1U3C
′(t0) + (eA(t−t0) − 1)A−1C2(t0)U3

]

+ ε2
[

(1 − e(t−t0)∂/∂s)(−∂/∂s)−1K (s)
∣
∣
∣
s=0

1

1 + σ
σU1

− e(t−t0)∂/∂s((−1 − σ) − ∂/∂s)−1K (s)
∣
∣
∣
s=0

1

1 + σ
(−U2)

]

, (9.129)

with the ‘initial’ value at t = t0

X(t0) = C(t0)U1 + εA−1U3C
′(t0)

+ ε2
[

− ((−1 − σ) − ∂/∂s)−1K (s)
∣
∣
∣
s=0

1

1 + σ
(−U2)

]

. (9.130)

The solution (9.129) is valid only locally around t = t0 owing to the secular terms,
which diverge when |t − t0| goes infinity. A solution to Eq. (9.111) that is valid in a
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global domain of t can be constructed by the RG method. Application of the RG/E
equation

d

dt0
X̃(t; t0)

∣
∣
∣
∣
t0=t

= 0, (9.131)

to Eq. (9.129) leads to

ĊU1 + ε

[

− U3C
′ + A−1U3Ċ ′ − C2U3

]

+ ε2
[

− K (0)
1

1 + σ
σU1

− (−∂/∂s)((−1 − σ) − ∂/∂s)−1K (s)
∣
∣
∣
s=0

1

1 + σ
(−U2)

]

= 0, (9.132)

which is further reduced to the dynamical equations to thewould-be integral constants
C and C ′ as

Ċ = ε2
σ

1 + σ

(

χC(t) + b−1C(t)C ′(t)
)

, (9.133)

Ċ ′ = −bC ′(t) − bC2(t). (9.134)

Here we have used the following formula derived from (9.124),

K (0) = χC(t) + b−1C(t)C ′(t). (9.135)

Then the globally improved solution defined on the invariant/attractive manifold
is given in terms of the slow variables C(t) and C ′(t) as

Xglobal(t) := X(t0 = t)

= C(t)U1 + εA−1U3C
′(t)

+ ε2
[

((−1 − σ) − ∂/∂s)−1K (s)
∣
∣
∣
s=0

1

1 + σ
U2

]∣
∣
∣
∣
t0=t

. (9.136)

With the use of the identity

((−1 − σ) − ∂/∂s)−1K (s) = −χC − C3/b

1 + σ
+ e−bs C(C2 + C ′)

b2 − b(1 + σ)
, (9.137)

one finds that the respective components t (ξ, η, ζ ) = ε X are given by
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ξ = εC + ε3
σ

1 + σ

[

− χC − C3/b

1 + σ
+ C(C2 + C ′)

b2 − b(1 + σ)

]

, (9.138)

η = εC − ε3
1

1 + σ

[

− χC − C3/b

1 + σ
+ C(C2 + C ′)

b2 − b(1 + σ)

]

, (9.139)

ζ = −ε2
C ′

b
. (9.140)

It is to be noted that the invariant/attractive manifold (9.136) is a two-dimensional
manifold parametrized by the two parameters C and C ′, in contrast to that obtained
in Sects. 3.6.2 and 6.2 where the zero mode was only employed to construct the slow
dynamics.

To see what has been obtained, let us see an asymptotic behavior after a long time,
where the time dependence of the fast variable C ′(t) is negligible while that of the
slow one C(t) is not, which implies that the former becomes a slaving variable of
the latter. Inserting Ċ ′ � 0 into Eq. (9.134), we have

C ′ � −C2, (9.141)

substitution of which into Eqs. (9.133), (9.138)–(9.140) leads to a closed equation
with respect to C as

Ċ = ε2
σ

1 + σ
(χC(t) − b−1C3(t)), (9.142)

and the one-dimensional invariant manifold parametrized only by C . We note that
these equations written by C are the same as the reduced equations derived by
employing the would-be zero mode from the outset done in Sects. 3.6.2 and 6.2.

It is worth emphasizing that the set of Eqs. (9.133) and (9.134) governing the
dynamics of C and C ′ describes the mesoscopic dynamics of the Lorenz model,
and the corresponding two-dimensional invariant/attractive manifold is given by
Eqs. (9.138)–(9.140). It would be interesting to compare the present result with
the previous ones obtained by various reduction theories, e.g., the center manifold
theory [33, 34]. This is, however, beyond the scope of this monograph.

In the rest of this section, we shall show the numerical results with the parameter
set

b = 8/3 and σ = 10. (9.143)

First, we shall analyze the unstable motion around the origin (A) by setting

χ = +1 and ε = 0.5, (9.144)

accordingly,

r = 1 + χε2 = 1.25. (9.145)
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Fig. 9.2 The solid line shows the numerical solution of the Lorenz model, while the dashed line
the one-dimensional manifold given by imposing the constraint C ′ = −C2, for the parameter set
b = 8/3, σ = 10, ε = 0.5, and χ = +1. One sees that after some time, both the two curves are
confined in a surface, which is the invariant/attractive manifold (surface) given by Eqs. (9.138)–
(9.140) that is obtained in the doublet scheme. The square and cross are the fixed points (A) and (C),
respectively, while the big dot with the coordinate (ξ, η, ζ ) = (−0.297, −0.212, 3.437) denotes
the point fromwhich the solution becomes to move on the invariant/attractive manifold. (The figure
is slightly modified, with permission, from Fig. 3 in [69]. Copyright Elsevier (2016))

In this setting, while the origin (A) is unstable, the steady states (B) and (C) are stable
because 1 < r < rc � 24.7.

Figure9.2 shows thenumerical result for the trajectoryof the solution toEq. (9.111)
with the initial values (ξ, η, ζ ) = (1, 5, 15): The figure also includes the two-
dimensional attractive manifold described by Eqs. (9.138)–(9.140) for the meso-
scopic dynamics and the one-dimensional manifold for the slow dynamics obtained
by imposing the constraint on Eqs. (9.138)–(9.140). We see that the trajectory tends
to be attracted to the two-dimensional manifold at a rather early time, after which the
trajectory remains on it. Then it tends to be confined in the one-dimensional manifold
of the slow dynamics, and finally approaches the steady state (C) asymptotically.

In Fig. 9.3, we show separately the time dependence of each coordinate ξ(t),
η(t), and ζ(t) of the solution to the three-dimensional original equation (9.111) of
the Lorenz model together with those given by (9.138)–(9.140) with the solution
to the reduced equation (9.133) and (9.134). We find that the solution given by the
reduced mesoscopic dynamics are almost the same as those of the original Lorenz
equation (9.111). Thus, we can conclude the validity of the doublet scheme in the RG
method as a general theory for extracting the mesoscopic dynamics in an asymptotic
regime. The material so far is essentially contained in [69].

Now, although the reduced equations (9.133) and (9.134) together with the rep-
resentation of the attractive/invariant manifold (9.138)–(9.140) have been extracted
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Fig. 9.3 The time dependence of ξ , η, and ζ with the initial value set at (ξ, η, ζ ) =
(−0.297, −0.212, 3.437), i.e., the point denoted by the big dot in Fig. 9.2: The parameter set
is the same as that for Fig. 9.2. The solid lines are the solution to the reduced equations (9.133),
(9.134), and (9.138)–(9.140) of the Lorenz equation (9.111), while the dashed lines the numerical
solution to (9.111). One sees that the original equation is approximated by the set of reduced equa-
tions quite well in the asymptotic region after some time. (The figure is slightly modified, with
permission, from Fig. 4 in [69]. Copyright Elsevier (2016))

in the perturbation theory formally assuming that ε is small, the reduced equations
are to be solved exactly in the RG method. It is worth emphasizing that through this
process of solution terms in the infinite orders of ε are summed up, as stressed in [1,
3, 5, 6, 40, 46, 57, 58], and hence it may turn out that the resummed solution gives
a rather good approximation to the exact solutions even with large values of ε, say,
as large as ε > 1. We shall now show that it is indeed the case.

Under the same initial conditions with the parameter values for b and σ being
kept the previous ones, we shall examine the case of

ε = 2.0, (9.146)

and accordingly, r = 5.0 < rc � 24.7, for which the fixed point (A) is unstable
while (B) and (C) are stable. Figure9.4 shows the numerical results for b = 8/3,
σ = 10, ε = 2.0, and χ = +1: The solid line shows the trajectory of the original
Lorenz equation (9.111) while the surface is the two-dimensional manifold described
by Eqs. (9.138)–(9.140) given by the doublet scheme in the RG method. We see that
the trajectory is rapidly attracted to the two-dimensional attractive manifold, and is
eventually confined on it, where the trajectory forms a spiral and approaches the
steady state (B) asymptotically. This result tells us that the mesoscopic dynamics
derived by the doublet scheme is powerful enough to reveal the essential properties
of the exact solution in a wide range of time beyond the asymptotic regime even for
ε = 2.0.

This powerfulness of the doublet scheme is further confirmed in Fig. 9.5 where the
separate behavior of ξ(t), η(t), and ζ(t) given by (9.138)–(9.140) with the solution
of Eqs. (9.133) and (9.134) being inserted well reproduce the time dependence of
the solution to the original Lorenz equation (9.111); notice that the exact solutions
are denoted by dashed lines.

Thus, we can conclude that the doublet scheme in theRGmethod based on the per-
turbation theory provides us with a powerful construction method of the mesoscopic
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Fig. 9.4 The numerical solution to the Lorenz model (9.111) with b = 8/3, σ = 10, ε = 2.0, and
χ = +1. The solid line represents the solution, while the surface denotes the two-dimensional
manifold described by Eqs. (9.138)–(9.140). The dashed line shows the one-dimensional manifold
that we obtain by substituting C ′ = −C2 into Eqs. (9.138)–(9.140). The square and cross denote
(A) and (B), respectively, while the circle a point from which the solution begins to be confined on
the two-dimensional manifold
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Fig. 9.5 The time dependence of ξ , η, and ζ , where the parameters are set as b = 8/3, σ = 10,
ε = 2.0, and χ = +1. The dashed lines denote the solution to the original equation (9.111), while
the solid lines the solution to the reduced equations (9.133), (9.134), and (9.138)–(9.140), whose
initial values are (ξ, η, ζ ) = (0.244, 0.240, 2.701) corresponding to the circle in Fig. 9.4

dynamics that includes non-perturbative effects caused by the perturbation terms
even with ε > 1, which would not to be taken into account in a naive perturbation
theory.

Finally, we give a theoretical analysis on the qualitative difference of the behaviors
between ε = 0.5 and ε = 2.0 cases: As shown in Figs. 9.3 and 9.5, the solution with
ε = 0.5 shows an over damping around (C), while the solution with ε = 2.0 a
damped oscillation around (B).
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Let us investigate the dynamical properties of Eqs. (9.133) and (9.134) around the
respective stationary solution to them. For χ = +1, Eqs. (9.133) and (9.134) have
two stationary solutions

(±√
b, −b), (9.147)

which correspond to the steady states (B) and (C), respectively. Expanding C and C ′
as

(C,C ′) = (±√
b + δC,−b + δC ′), (9.148)

we linearize Eqs. (9.133) and (9.134) as

d

dt

(

δC
δC ′

)

=
(

0 ±ε2 σ
1+σ

1√
b

∓2b
√
b −b

) (

δC
δC ′

)

. (9.149)

Since the dynamical property of Eqs. (9.133) and (9.134) around (B) or (C) are
determined by eigenvalues of the matrix in the above linearized equation, we analyze
an eigenvalue equation given by

λ2 + bλ + ε2
σ

1 + σ
2b = 0, (9.150)

with λ being the eigenvalue. We find that there exists a critical value of ε, which is
written as

ε∗ :=
√

b(1 + σ)

8σ
. (9.151)

In fact, for 0 < ε < ε∗, λ is real negative and (δC, δC ′) shows an over damping,
while for ε > ε∗, λ is complex whose real part is negative and (δC, δC ′) shows a
damped oscillation. Substituting b = 8/3 and σ = 10 into Eq. (9.151), we find that
ε∗ ∼ 0.61. It is noteworthy that this value of ε∗ nicely explains the reason why the
solution with ε = 0.5 shows the over damping around (C), while the solution with
ε = 2.0 the damped oscillation around (B).

Appendix: Constructive Formulation of the Doublet Scheme
in the RG Method

In this Appendix, we show that a faithful solution of the generic equation (9.1)
aiming at obtaining a simplest closed equation without fast modes naturally leads to
the doublet scheme in the RG method introduced in Sect. 9.2. The detailed strategy
is as follows:
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(1) We start from the zero-th order solution that is a stationary state as in Sect. 9.2.
(2) With the first-order ‘initial’ value φ, we obtain the perturbative solution X̃(t ; t0)

by formally introducing the projection operators P1 and Q1 without the explicit
forms yet specified.

(3) We eliminate the undesirable fast modes belonging to the Q1-space from
X̃(t ; t0).

(4) Then the RG/E equation applied to thus constructed perturbative solution
X̃(t ; t0) lead to the reduced evolution equation solely composed of the P0 and
P1 modes including φ.

(5) Finally, we determine the explicit forms of φ and P1 modes so that the reduced
equation is closed and has a fewer number of terms and degrees of freedom.

As declared above, we start with X̃0(t; t0) = Xeq(t0) as adopted in Sect. 9.2.2.
Then the first-order perturbative solution is given by Eq. (9.44), which reads

X̃1(t ; t0) = eA(t−t0)
[

A−1 Q0 F0 + φ
] + (t − t0) P0 F0 − A−1 Q0 F0. (9.152)

The insertion of the identity 1 = P0 + P1 + Q1 behind eA(t−t0) converts this solution
into

X̃1(t ; t0) = eA(t−t0) (P0 + P1 + Q1)
[

A−1 Q0 F0 + φ
] + (t − t0) P0 F0 − A−1 Q0 F0

= eA(t−t0)
[

Q1 A−1 Q0 F0 + Q1 φ
]

+ eA(t−t0)
[

P1 A−1 Q0 F0 + P1 φ
]

+ (t − t0) P0 F0 + P0 φ − A−1 Q0 F0, (9.153)

where the identity P0A−1Q0 = 0 has been used.
We suppose that the modes belonging to the Q1 space are a fast and undesired

modes, which are to be eliminated for constructing the mesoscopic dynamics. This
elimination is simply accomplished by choosing not-yet specified ‘initial’ value as

Q1 φ = −Q1 A
−1 Q0 F0, (9.154)

which is a simple but important procedure adopted in the RG method. Thus
Eq. (9.153) now takes the form consisting of the P0 and P1 modes only as

X̃1(t ; t0) = eA(t−t0)
[

P1 A
−1 Q0 F0 + P1 φ

]

+ (t − t0) P0 F0 + P0 φ − A−1 Q0 F0. (9.155)

The second-order perturbative analysis is carried out much the similar way as
that in Sect. 9.2.4, and we arrive at the perturbative solution in the second-order
approximation as
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X̃(t ; t0) = Xeq + ε

[

eA(t−t0) (P1 φ + P1 A
−1 Q0 F0) + (t − t0) P0 F0

+ P0 φ − A−1 Q0 F0

]

+ ε2
[

(1 − e(t−t0)∂/∂s) (−∂/∂s)−1 P0 K (s)
∣
∣
∣
s=0

+ (eA(t−t0) − e(t−t0)∂/∂s) P1 G(s) Q0 K (s)
∣
∣
∣
s=0

− e(t−t0)∂/∂s Q1 G(s) Q0 K (s)
∣
∣
∣
s=0

]

. (9.156)

Here K (s) are defined by

K (s) = 1

2
B

[

X̃1(s + t0 ; t0) , X̃1(s + t0 ; t0)
] + F1 X̃1(s + t0 ; t0). (9.157)

Applying the RG/E equation

dX̃(t ; t0)/dt0|t0=t = 0, (9.158)

to X̃(t ; t0) thus obtained, we have the following reduced equation,

∂

∂t
Xeq + ε

[

− A P1 φ − A P1 A
−1 Q0 F0

+ ∂

∂t
(P0 φ + P1 φ − Q1 A

−1 Q0 F0) − P0 F0

]

+ ε2
[

− P0 K (0) − (A − ∂/∂s) P1 G(s) Q0 K (s)
∣
∣
∣
s=0

+ (∂/∂s) Q1 G(s) Q0 K (s)
∣
∣
∣
s=0

]

= 0. (9.159)

This is a kind of the master equation for the reduced dynamics. Operating the pro-
jection operators P0 and P1 onto Eq. (9.159), we obtain the reduced equations

P0
∂

∂t
Xeq + ε

[

P0
∂

∂t
(P0 φ + P1 φ − Q1 A

−1 Q0 F0)

− P0 F0

]

− ε2 P0 K (0) = 0, (9.160)
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ε

[

− P1 A P1 φ − P1 A P1 A
−1 Q0 F0

+ P1
∂

∂t
(P0 φ + P1 φ − Q1 A

−1 Q0 F0)

]

− ε2 P1 (A − ∂/∂s) P1 G(s) Q0 K (s)
∣
∣
∣
s=0

= 0, (9.161)

respectively. The inner product between ϕα
0 and Eq. (9.160) leads to

〈ϕα
0 ,

∂

∂t
(Xeq + ε (P0 φ + P1 φ − Q1 A

−1 Q0 F0)) 〉
= ε 〈ϕα

0 , F0 〉 + ε2 〈ϕα
0 , K (0) 〉, (9.162)

with

K (0) = 1

2
B

[

P0 φ + P1 φ − Q1 A
−1 Q0 F0 , P0 φ + P1 φ − Q1 A

−1 Q0 F0
]

+ F1 (P0 φ + P1 φ − Q1 A
−1 Q0 F0). (9.163)

We are now in the position to determine the structure of the P1 space and the
functional form of φ. We shall perform this task step by step.

First, from the observation of Eq. (9.162) we find that if the equality

Q1 A
−1 Q0 F0 = 0, (9.164)

is satisfied, Eq. (9.162) is reduced into a simper form as

〈ϕα
0 ,

∂

∂t
(Xeq + ε (P0 φ + P1 φ)) 〉 = ε 〈ϕα

0 , F0 〉 + ε2 〈ϕα
0 , K (0) 〉,(9.165)

with

K (0) = 1

2
B

[

P0 φ + P1 φ , P0 φ + P1 φ
] + F1 (P0 φ + P1 φ). (9.166)

In fact, the imposed condition (9.164) can be utilized to determine the P1 space,
as follows. We start from the generic representation

A−1 Q0 F0 =
M1∑

μ=1

(A−1 ϕ
μ
1 ) fμ. (9.167)

As mentioned in Sect. 9.2.3, A−1 ϕ
μ
1 with μ = 1, 2, . . . , M1 are linearly indepen-

dent, and supposed to make the basis vectors of the P1 space.
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Owing to Eq. (9.154), Eq. (9.164) is equivalent to

Q1 φ = 0. (9.168)

Without loss of generality, we assume that φ contains no zero modes

P0 φ = 0, (9.169)

as discussed in Sect. 9.2.3. Thus we find that φ belongs to the P1 space as

P1 φ = φ, (9.170)

and is represented as

φ =
M1∑

μ=1

(A−1 ϕ
μ
1 )C ′

μ(t0), (9.171)

where the coefficients C ′
μ(t0) denotes a would-be integral constant.

By taking the inner product between A−1 ϕ
μ
1 and Eq. (9.161), we have

ε 〈 A−1 ϕ
μ
1 ,

∂

∂t
φ 〉

= ε 〈 A−1 ϕ
μ
1 , A P1 A

−1 Q0 F0 〉 + ε 〈 A−1 ϕ
μ
1 , A P1 φ 〉

+ ε2 〈 A−1 ϕ
μ
1 , (A − ∂/∂s) P1 G(s) Q0 K (s)

∣
∣
∣
s=0

〉, (9.172)

the third term of which apparently produces infinite numbers of terms because of
G(s), which is undesirable for the reduced dynamics. To consider whether it could
be avoided, let us calculate it as

〈 A−1 ϕ
μ
1 , (A − ∂/∂s) P1 G(s) Q0 K (s)

∣
∣
∣
s=0

〉
= 〈 (A − ∂/∂s) A−1 ϕ

μ
1 , P1 G(s) Q0 K (s)

∣
∣
∣
s=0

〉
= 〈 (ϕ

μ
1 − A−1 ϕ

μ
1 ∂/∂s) , P1 G(s) Q0 K (s)

∣
∣
∣
s=0

〉, (9.173)

where we have used the self-adjointness of A. If ϕ
μ
1 are also the vectors belonging

to the P1 space, we can further reduce Eq. (9.173) as follows:
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〈 (ϕ
μ
1 − A−1 ϕ

μ
1 ∂/∂s) , P1 G(s) Q0 K (s)

∣
∣
∣
s=0

〉
= 〈 P1(ϕμ

1 − A−1 ϕ
μ
1 ∂/∂s) , G(s) Q0 K (s)

∣
∣
∣
s=0

〉
= 〈 (A − ∂/∂s) A−1 ϕ

μ
1 , G(s) Q0 K (s)

∣
∣
∣
s=0

〉
= 〈 A−1 ϕ

μ
1 , (A − ∂/∂s)G(s) Q0 K (s)

∣
∣
∣
s=0

〉
= 〈 A−1 ϕ

μ
1 , Q0 K (s)

∣
∣
∣
s=0

〉
= 〈 A−1 ϕ

μ
1 , K (0) 〉, (9.174)

where the identity (A − ∂/∂s)G(s) = 1 has been used in the third equality. Thus
we are lead to identify ϕ

μ
1 as additional components of the P1 space and redefine

the vector space spanned by both of A−1 ϕ
μ
1 and ϕ

μ
1 as the P1 space. These pairs of

A−1 ϕ
μ
1 and ϕ

μ
1 are nothing but the doublet modes introduced in Sect. 9.2.3.

The structure of the P1 space simplifies the other terms in the right-hand side of
Eq. (9.172) as follows:

〈 A−1 ϕ
μ
1 , A P1 A

−1 Q0 F0 〉 = 〈ϕ
μ
1 , A−1 Q0 F0 〉, (9.175)

〈 A−1 ϕ
μ
1 , A P1 φ 〉 = 〈ϕ

μ
1 , φ 〉. (9.176)

Substituting Eqs. (9.169), (9.170), and (9.174)–(9.176) into Eqs. (9.165) and (9.172),
respectively, we arrive at the same equations as Eqs. (9.82) and (9.83). This implies
that the constructive introduction of the doublet scheme in the RG method has been
successfully completed.
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RG/E Derivation of Second-Order

Relativistic and Non-relativistic Dissipative
Fluid Dynamics



Chapter 10
Introduction to Relativistic Dissipative
Fluid Dynamics and Its Derivation from
Relativistic Boltzmann Equation by
Chapman-Enskog and Fourteen-Moment
Methods

10.1 Basics of Relativistic Dissipative Fluid Dynamics

Relativistic fluid dynamics is the powerfulmeans to describe low-frequency and long-
wavelength dynamics of an interacting many-body system, when the flow velocity
and/or the velocities of the constituent particles of the fluid are large and comparable
to the light velocity [62]. In fact, relativistic fluid dynamic equations have been used
to analyze the dynamics of a hot matter composed of quarks and gluons, i.e., the
quark-gluon plasma (QGP) [160, 161], which should have been being created in the
experiments of relativistic heavy ion collision at the Relativistic Heavy Ion Collider
(RHIC) at Brookhaven National Laboratory and the Large Hadron Collider (LHC)
at CERN; see Refs. [60, 162] as recent summaries. The relativistic dissipative fluid
dynamics is also relevant to the soft-mode dynamics [163–165] around the possible
critical point(s) in QCD phase diagram [166, 167]; see [168] for the latest up date.
Moreover, the relativistic dissipative fluid dynamic equation has been also applied
to various high-energy astrophysical phenomena [59, 169–171].

As is clearly demonstrated in Sect. 8.5 of Chap. 8 for the non-relativistic case,
the fluid dynamic equation can be reorganized to a set of balance equations of the
energy and momenta as well as the particle number, which was assumed to be the
sole conserved quantity (or ‘charge’). As will be shown later, the balance equation
for the energy and momenta are combined into the conservation law for the energy-
momentum tensor T μν

0 in the covariant notation as

∂μT
μν
0 = 0, (10.1)

while the particle number conservation is expressed in terms of the particle current
or flow Nμ

0 as

∂μN
μ
0 = 0. (10.2)
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As is clearly shown in Sect. 133 of Ref. [62], the energy-momentum tensor of the
ideal system is written as

T μν
0 = euμuν − P�μν, (10.3)

where e and P denote the proper internal energy and pressure, respectively, while
�μν is the projection tensor onto the space like vector given by

�μν := gμν − uμuν, (10.4)

with uμ(x) being the flow velocity, which is normalized as

uμu
μ = gμν uμ uν = 1. (10.5)

In the present and the following chapters, we use the Minkowski metric gμν =
diag(+1,−1,−1,−1) and the natural unit, i.e.,

� = c = kB = 1. (10.6)

The particle current of the ideal fluid is given by

Nμ
0 = nuμ, (10.7)

in terms of the mass density n.
It is, however, to be noted thatwe have not necessarily reached a full understanding

of the theory of relativistic fluid dynamics for viscousfluids, although there have been
many important studies [62, 64–68, 172] since Eckart’s pioneering work [61]. For
instance, we can indicate following three fundamental problems (a)∼ (c) with the
relativistic fluid dynamic equations for viscous fluids, one of which is inherent in
any relativistic theory and the other two may or may not be related to the first one.

(a) Ambiguities and ad-hoc ansatz in the definition of the flow velocity [61, 62,
64, 173, 174]. The very equivalence of the mass and the energy in the relativity
makes ambiguous the definition of the flow velocity or the rest frame of the fluid.
Thus the form of the relativistic dissipative fluid dynamic equation depends on
the definition of the flow velocity uμ(x). One of the typical rest frames is the
particle frame in which the fluid velocity is proportional to that of the particle
current Nμ(x), i.e.,

uμ(x) := Nμ/
√
NμNμ, (10.8)

The other typical one is the energy frame in which the fluid velocity is propor-
tional to that of the energy flow T μνuν , i.e.,

uμ := T μνuν/
√
uσT στTτρuρ. (10.9)
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Indeed the dissipative relativistic fluid dynamic equation was first constructed
on the particle frame in a phenomenological way by Eckart [61], whereas the
famous Landau-Lifshitz equation is on the energy frame [62].
The standard way of the phenomenological construction of the relativistic dissi-
pative fluid dynamic equation is based on the following two plausible principles
and an ansatz on the rest frame:

(1) the particle-number and energy-momentum conservation laws,
(2) the law of the increase in entropy

and

(3) the choice of the rest frame of the fluid or definition of the flow velocity.

The items (1) and (2) are equally employed in the non-relativistic case, i.e., the
construction of the Navier–Stokes equation, while the third item (3) is specific
for the relativistic case owing to the mass-energy equivalence.
To be more explicit, let δT μν and δNμ be the dissipative part of the energy-
momentum tensor and the particle current, respectively: The total energy-
momentum tensor and the particle current are given by a sum of the ideal and
dissipative parts as

T μν = T μν
0 + δT μν, Nμ = Nμ

0 + δNμ, (10.10)

respectively. The point is that the energy-momentum and particle-number con-
servation laws together with the law of the increase in entropy do not supply
sufficient conditions for a unique determination of the forms of δT μν and δNμ,
and hence some physical ansatz involving the flow velocity uμ are necessary.
In the phenomenological derivations of the fluid dynamics by Eckart [61] and
Landau-Lifshitz [62], it is commonly taken for granted that there are no con-
tribution from the dissipation to the internal energy nor to the particle-number
density, which implies that the dissipative parts δT μν and δNμ should obey the
following constraints,

(i) δe := uμ δT μν uν = 0, (10.11)

(ii) δn := uμ δNμ = 0, (10.12)

respectively.
Note that Eqs. (10.11) and (10.12) are constraints only on the longitudinal parts
of the dissipative energy-momentum tensor and particle current.
It is found that if the particle frame (Eckart frame) (10.8) is adopted for the
definition of the flow velocity, the transverse part of the dissipative particle
current satisfies the constraint [172] as

(iii) νμ := �μν δN ν = 0, (10.13)
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which physically means that there is no dissipative particle current νμ.
On the other hand, if the energy frame (10.9) is adopted for the definition of
the flow velocity [62], we have a condition on the transverse part of the energy-
momentum flow as

(iv) Qμ := �μν δT νρ uρ = 0, (10.14)

which means that there is no heat current Qμ of dissipative origin.
We note that the conditions (iii) and (iv) and hence the two of frames spec-
ified by these conditions can not be connected with each other by a Lorentz
transformation.
Here we remark that there is a proposal by Stewart [64] for the condition for the
particle frame, as given by (ii), (iii), and

(v) δT μ
μ = δe − 3 δP = 0, (10.15)

where

δP := −�μν δT μν/3, (10.16)

is the dissipative pressure to be identified with the standard bulk pressure. In
the present case, the condition (i) of Eckart is replaced by a different one (v),
which imposes a constraint between the dissipative internal energy δe and the
dissipative pressure δP . One may ask if both the Eckart and Stewart ansatz make
sense or not. It is noteworthy that the most general derivation [175] of the fluid
dynamic equation on the basis of the phenomenological argument gives a class
of equations which can allow the existence of the dissipative internal energy δe
and the dissipative particle-number density δn as well as the standard dissipative
pressure δP .

(b) Unphysical instabilities of the equilibrium state [63, 176]. There arises an
unphysical instability of the equilibrium state caused by a special form of the
constitutive equation involving the heat flux conventionally adopted in the Eckart
(particle) frame [63, 176]. The unphysical instability might be attributed to the
lack of causality, and Israel-Stewart method is presently being examined in con-
nection to this problem [177–190]. Although their equation may get rid of the
instability problem with a choice of the relaxation times as shown in Ref. [63],
we emphasize that there exists no connection between the unphysical instabili-
ties and the lack of causality. In fact, the Landau-Lifshitz equation is free from
the instabilities of the equilibrium state in contrast of the Eckart equation. Fur-
thermore, one should notice that the causal equation by Israel and Stewart is
an extended version of the Eckart equation and hence it can naturally exhibit
unphysical instabilities depending on the values of transport coefficients and
relaxation times contained in the equation [191].

(c) A lack of causality inherent in the first-order dissipative equations [65–68]. The
relativistic dissipative fluid dynamic equations proposed by Eckart, Landau and
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Lifshitz, and Stewart, unfortunately, suffer from instantaneous propagation of
information, which ought to be completely prohibited in a consistent relativistic
theory.
The origin of this deficiency is the parabolic character of the equations containing
the time derivative only in the first order [64, 145]. Thus, in order to solve
instantaneous propagation, we should modify the form of the equations to the
hyperbolic equation by additional terms which contains the second-order time-
derivative, which are called relaxation terms with relaxation times and lengths.
In 1967,Müller [146, 147] examined the origin of the causality problemdue to an
instantaneous propagation of the information present even in the non-relativistic
case and proposed a method to introduce relaxation terms: He traced back the
undesired instantaneous propagation in the conventional theory to the neglects of
some higher-order contributions of dissipative effects to the entropy through the
heat flow and viscous stress. Restoring these terms, Müller derived a modified
Navier–Stokes equation with relaxation terms.
Some ten years later, Müller’s theory was rediscovered and extended to the
relativistic fluid equations by Israel [65]. The resultant causal equation is now
called the second-order fluid dynamic equation, while the Eckart, Landau and
Lifshitz, and Stewart equations the first-order fluid dynamic equations.
In 1996, Jou andhis collaborators [148, 150] called the description by the second-
order equation mesoscopic since it occupies an intermediate level between the
descriptions by fluid dynamics and kinetic theory. In fact, in the fields of the non-
relativistic fluid, Müller’s second-order equation has been applied to various
kinetic problems, e.g., in plasma and in photon transport, whose dynamics often
cannot be described by the Navier–Stokes equation because the systems are not
close to equilibrium state. Since the advent of Israel’s second-order fluid dynamic
equations, a number of new proposals or elaborations of the second-order equa-
tions have appeared [192–198], on the basis of the Müller-Israel method in
principle.

The lesson that we can derive from the above description (a)∼ (c) may be that it
is necessary to have recourse to a microscopic theory underlying the fluid dynamics
beyond the phenomenological ones to get a hint on a unique choice of the frame
or the flow velocity of the dissipative relativistic fluid, thereby derive the correct
second-order as well as the first-order relativistic fluid dynamic equations.

In this chapter, after giving a brief account of some of basic properties of the
relativistic Boltzmann equation with quantum statistics, we shall describe in detail
two standard reduction methods for deriving fluid dynamic equations from the rel-
ativistic Boltzmann equation in a way where the mathematical requirements and
physical but possibly ad-hoc assumptions become as clear as possible. The first is
the Chapman-Enskog method based on the perturbation theory; the resultant fluid
dynamic equation remains, however, of parabola type, and accordingly is not free
fromcausality problem.Thenweproceed to an account of the Israel-Stewart fourteen-
moment method based on the Grad’s moment method [144], which leads to the fluid
dynamic equation of a hyperbolic nature.
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Althoughwe shall not discuss the (in)stability properties of the resultant equations,
one will recognize that both the methods make specific ansatz on the distribution
functions to choose but not derive the rest frames of the fluids.

10.2 Basics of Relativistic Boltzmann Equation with
Quantum Statistics

For obtaining the proper relativistic fluid dynamic equation, it is legitimate and
natural to employ the relativistic Boltzmann equation which is Lorentz invariant and
expected to be free from causality problem [67, 68];moreover, numerical simulations
show that the relativistic Boltzmann equation is free from an apparent instability, as
far as we are aware of, and the stability is proved at least for the linearized version
of it [199, 200].

In this section, we summarize basic properties of the relativistic Boltzmann equa-
tion with quantum statistics [67, 68].

The relativistic Boltzmann equation reads

pμ∂μ f p(x) = C[ f ]p(x), (10.17)

where f p(x) is the one-particle distribution function with pμ being the four-
momentum of the on-shell particle with mass m, i.e.,

pμ pμ = m2 and p0 =
√
m2 + p2 > 0. (10.18)

The collision integral C[ f ]p(x) is given by

C[ f ]p(x) := 1

2!
∫
dp1

∫
dp2

∫
dp3 ω(p, p1|p2, p3)

×
(
(1 + a f p(x)) (1 + a f p1(x)) f p2(x) f p3(x)

− f p(x) f p1(x) (1 + a f p2(x)) (1 + a f p3(x))
)
, (10.19)

where a takes the values a = +1, −1 and 0 for a boson, fermion, andBoltzmann gas,
respectively. Here, ω(p, p1|p2, p3) is the transition probability due to the micro-
scopic two-particle interaction, which has the symmetry property

ω(p, p1|p2, p3) = ω(p2, p3|p, p1) = ω(p1, p|p3, p2) = ω(p3, p2|p1, p),

(10.20)

due to the interchangeability of particles and the time-reversal invariance. We note
that it includes the constraint by the energy-momentum conservation law



10.2 Basics of Relativistic Boltzmann Equation with Quantum Statistics 269

ω(p, p1|p2, p3) ∝ δ4(p + p1 − p2 − p3). (10.21)

In Eq. (10.19), we have abbreviated an integration measure as

dp := d3 p
(2π)3 p0

, (10.22)

with p being the spatial components of the four momentum pμ. In the following, we
suppress the arguments x when no misunderstanding is expected.

For an arbitrary vector ϕp, the collision integral satisfies the following identity
thanks to the above-mentioned symmetry property (10.20),

∫
dp ϕp C[ f ]p = 1

2!
1

4

∫
dp

∫
dp1

∫
dp2

∫
dp3 ω(p, p1|p2, p3)

× (ϕp + ϕp1 − ϕp2 − ϕp3)

×
(
(1 + a f p) (1 + a f p1) f p2 f p3

− f p f p1 (1 + a f p2) (1 + a f p3)
)
. (10.23)

Substituting (1, pμ) into ϕp(x) in Eq. (10.23), we find that (1, pμ) are collision
invariants

∫
dp C[ f ]p = 0, (10.24)

∫
dp pμ C[ f ]p = 0, (10.25)

due to the particle-number and energy-momentum conservation in the collision pro-
cess, respectively. We note that the function

ϕ0p(x) := α(x) + pμ βμ(x), (10.26)

is also a collision invariant where α(x) and βμ(x) are arbitrary functions of x .
Because of the conservation laws as given by Eqs. (10.24) and (10.25), the rela-

tivistic Boltzmann equation (10.17) is nicely reduced to the balance equations

∂μN
μ = 0, ∂μT

μν = 0, (10.27)

where the particle current Nμ and the energy-momentum tensor T μν are defined by

Nμ :=
∫
dp pμ f p, (10.28)

T μν :=
∫
dp pμ pν f p, (10.29)
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respectively.
It should be noted, however, that any dynamical properties are not contained

in these equations unless the evolution of f p has been obtained as a solution to
Eq. (10.17).

In the Boltzmann theory, the entropy current may be defined [67] by

Sμ := −
∫
dp pμ

[
f p ln f p − (1 + a f p) ln(1 + a f p)

a

]
, (10.30)

which satisfies

∂μS
μ = −

∫
dp C[ f ]p ln

[
f p

1 + a f p

]
, (10.31)

due to Eq. (10.17).
One sees that Sμ is conserved only if ln( f p/(1 + a f p)) is a collision invariant,

i.e.,

ln( f p/(1 + a f p)) = ϕ0p = α(x) + pμ βμ(x). (10.32)

Now it is of an essential importance [68] that the functions α(x) and βμ(x) can
be represented by the local temperature T (x), chemical potential μ(x), and flow
velocity uμ(x) with the normalization condition (10.5), with the use of the Gibbs
relation [55], dS = 1

T (dE − PdV ), where S, E , and V denote the entropy, internal
energy and the volume of the system at (local) thermal equilibrium. Thus it is found
that the entropy-conserving distribution function can be expressed as [68]

f p = 1

e(pμ uμ(x)−μ(x))/T (x) − a
=: f eqp , (10.33)

which is identified with the local equilibrium distribution function.1

The collision integral identically vanishes for the local equilibrium distribution
f eqp as

C[ f eq]p = 0, (10.34)

owning to the detailed balance

1 The quantum relativistic equilibrium distribution function given by (10.33) was first derived by
Juüttner [201] in 1928. The five independent variables T (x), μ(x), and uμ(x) are called fluid
dynamic variables.

We remark that an explicit derivation of (10.33) from the entropy-conserving distribution func-
tion for quantum statistics is given in Sect. 2.7 of [68] with the use of the Gibbs relation, whereas
the classical statistics is discussed in [67] where the classical distribution function (Jüttner function
[202]) is derived with the use of the Gibbs-Duhem relation [55].
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ω(p, p1|p2, p3)
(
(1 + a f eqp ) (1 + a f eqp1 ) f eqp2 f eqp3

− f eqp f eqp1 (1 + a f eqp2 ) (1 + a f eqp3 )
)

= 0, (10.35)

which are guaranteed by the energy-momentum conservation (10.21).
Substituting f p = f eqp into Eqs. (10.28) and (10.29), we have

Nμ = n uμ = Nμ
0 , (10.36)

T μν = e uμ uν − P �μν = T μν
0 . (10.37)

Here, n, e, and P denote the particle-number density, internal energy, and pressure,
respectively, whose microscopic representations are given by

n :=
∫
dp f eqp (p · u)

= (2π)−3 4π m3
∞∑

k=1

ak−1 ekμ/T (km/T )−1 K2(km/T ), (10.38)

e :=
∫
dp f eqp (p · u)2

= m n

[∑∞
k=1 ak−1 ekμ/T (km/T )−1 K3(km/T )

∑∞
l=1 al−1 elμ/T (lm/T )−1 K2(lm/T )

−
∑∞

k=1 ak−1 ekμ/T (km/T )−2 K2(km/T )
∑∞

l=1 al−1 elμ/T (lm/T )−1 K2(lm/T )

]
, (10.39)

P :=
∫
dp f eqp (−pμ pν �μν/3)

= m n

∑∞
k=1 ak−1 ekμ/T (km/T )−2 K2(km/T )

∑∞
l=1 al−1 elμ/T (lm/T )−1 K2(lm/T )

. (10.40)

Here, K2(z) and K3(z) are the second- and third-order modified Bessel functions,
whose explicit form is given by

K�(z) = 2� �!
(2 �)! z

−�

∫ ∞

z
dτ (τ 2 − z2)�−1/2 e−τ , � = 2, 3. (10.41)

Setting a = 0 in the above expressions, we can check that the classical expressions
for n, e, and P [67] are reproduced. We note that Nμ

0 and T μν
0 in Eqs. (10.36) and

(10.37) are identical to those in the relativistic Euler equation, which describes the
fluid dynamics without dissipative effects, and n, e, and P defined by Eqs. (10.38)–
(10.40) are the equations of state of the dilute gas. Since the entropy-conserving
distribution function f eqp reproduces the relativistic Euler equation, we find that the
dissipative effects are attributable to the deviation of f p from f eqp .
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10.3 Review of Conventional Methods to Derive Relativistic
Dissipative Fluid Dynamics from Relativistic
Boltzmann Equation

In this section, we give a review of the Chapman-Enskog method [67, 68, 113]
based on the perturbation theory and the Israel-Stewart fourteen-moment method
[66–68, 113] based on the Grad’ moment method [144]; they are popular methods to
determine an explicit form of the deviation δ f p and derive the relativistic dissipative
fluid dynamic equation.

This review is in principle based on the monograph by de Groot et al. [67].
We treat, however, the relativistic Boltzmann equation with quantum statistics as
the underlying kinetic equation. Note that the relativistic Boltzmann equation with
classical statistics is treated in Ref. [67], so please refer to that.

10.3.1 Chapman-Enskog Method

Before entering the Chapman-Enskog method [67, 68, 113] to be applied to the
relativistic Boltzmann equation (10.17), we note that on account of the identity (see
(10.4)),

gμν = uμuν + �μν, (10.42)

the Lorenz-invariant derivative in the left hand side of Eq. (10.17) is rewritten as

pμ∂μ = gμν pν∂μ = (uμuν + �μν)pν∂μ = p · u ∂

∂τ
+ p · ∇, (10.43)

with p · u = pνuν and

∂

∂τ
:= uμ ∂μ, ∇μ := �μν ∂μ, (10.44)

are the covariant temporal and spatial derivatives, respectively.

10.3.1.1 Preliminaries

Now the Chapman-Enskog method starts from the physical assumption that the
deformation of the distribution function from that for the local equilibrium state is
solely caused by the small inhomogeneity of the system, and one rewrites the rela-
tivistic Boltzmann equation (10.17) into the following form with the use of (10.43),
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p · u ∂

∂τ
f p + ε p · ∇ f p = C[ f ]p. (10.45)

Here one should notice that the parameter ε is attached to the partial derivative∇μ in
Eq. (10.45) to make it explicit that the spatial inhomogeneity is small in accordance
with the basic assumption of the method mentioned above. This modification can be
formally achieved by introducing a scaled spatial coordinate

r̄ = ε r → r, (10.46)

as was done in the non-relativistic case; see Eq. (8.41).
To extract the slow dynamics from the Boltzmann equation (10.45) in the

Chapman-Enskog method, one adopts the multiple-scale method [20–22] among
traditional reduction methods, which are described in Chap. 3 in this monograph;
see Sect. 3.6 for a self-contained account of the multiple-scale method.

According to this method, which is based on an observation of the possible exis-
tence of a hierarchy of various time scales in the dynamics, one introduces new
temporal variables as

τ (1) := ε τ, τ (2) := ε2 τ, . . . , (10.47)

with an ad hoc assumption that they are independent variables. In accordance with
this assumption, f p is treated as a function of τ (i) with i = 1, 2, . . .:

f p = f p(τ ) = f p(τ
(1), τ (2), . . .). (10.48)

We note that τ (i+1) represents slower scale than τ (i) for i = 1, 2, . . .. Then with use
of the chain rule,

∂

∂τ
=

∞∑

i=1

∂τ (i)

∂τ

∂

∂τ (i)
=

∞∑

i=1

εi
∂

∂τ (i)
, (10.49)

Equation (10.45) can be cast into the following form,

p · u
[
ε

∂

∂τ (1)
+ ε2

∂

∂τ (2)
+ · · ·

]
f p + ε p · ∇ f p = C[ f ]p. (10.50)

To solve Eq. (10.50), we apply the perturbation theory by expanding f p as

f p = f (0)
p + ε f (1)

p + ε2 f (2)
p + · · · := f (0)

p + δ f p. (10.51)

Substituting Eq. (10.51) into Eq. (10.50) and equating the coefficient of εi , one
obtains a series of equations for f (i)

p (i = 0, 1, 2, . . . ).
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10.3.1.2 Zero-th Order Solution

The zeroth-order equation is found to take the form

C[ f (0)]p = 0, (10.52)

which implies, on account of Eq. (10.34), that the zeroth-order solution is given by
the local equilibrium distribution function (10.33) as:

f (0)
p = f eqp . (10.53)

Here T , μ, and uμ that parametrize f eqp are functions of τ (1), τ (2), and so on;

T = T (τ (1), τ (2), . . .), μ = μ(τ (1), τ (2), . . .), uμ = uμ(τ (1), τ (2), . . .).

(10.54)

We remark here that the Gibbs relation is utilized to make the quantum local equilib-
rium distribution function expressed in terms of the fluid dynamic variables including
the flow velocity [68] as given by (10.33).

10.3.1.3 Higher Orders

Let us proceed to the higher orders by solving the perturbative equations order by
order. In this section, we shall carry out the perturbative analysis up to the second
order of ε.

A couple of remarks are in order here:

(1) Generic special solutions of the higher-order equations as inhomogeneous equa-
tions may also contain secular terms proportional to the zero-th order solution
f eqp as well as f eqp itself in addition to independent functions. In the follow-
ing analysis, we construct the perturbative solutions so that they do not contain
such secular terms and the zero-th order solution and whence δ f p defined in Eq.
(10.51) will gives a net deviation of f p from f eqp and produces the dissipative
effects only. One will see that solvability condition for inhomogeneous linear
differential equations [80–82] plays an important role there; see Chap.3 for a
detailed account of this issue.

(2) It will, however, turn out that the unique perturbative solutions can not be
obtained solely by the solvability condition in contrast to the non-relativistic
case. In the traditional methods of the reduction of the relativistic Boltzmann
equation, it is customary to impose a condition to fix the frame of the flow
velocity, which is called ‘matching conditions’ or ‘conditions of fit’.

On account of Eq. (10.34), the collision integral is expanded as follows,
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C[ f ]p = C[ f eq]p +
∫
dq

δ

δ fq
C[ f ]p

∣∣∣∣
f = f eq

δ fq + O(δ f 2)

= f eqp f̄ eqp

∫
dq L pq ( f eqq f̄ eqq )−1 δ fq + O(δ f 2), (10.55)

where L pq denotes the kernel of the linearized collision integral defined by

L pq := ( f eqp f̄ eqp )−1 δ

δ fq
C[ f ]p

∣∣∣∣
f = f eq

( f eqq f̄ eqq )

= − 1

2!
∫
dp1

∫
dp2

∫
dp3 ω(p , p1|p2 , p3)

× f eqp1 f̄ eqp2 f̄ eqp3
f̄ eqp

(δpq + δp1q − δp2q − δp3q), (10.56)

and f̄ eqp is given by

f̄ eqp := 1 + a f eqp = e(p·u−μ)/T

e(p·u−μ)/T − a
. (10.57)

In Eq. (10.56), we have introduced an abbreviated delta function as

δpq := (2π)3 p0 δ3( p − q), (10.58)

which has the following nice property when integrated with an arbitrary function Fp

as
∫
dq δpq Fq = Fp, (10.59)

with the integration measure given by (10.22). In the following, we shall call the ker-
nel L pq the linearized collision operator when any misunderstanding is not expected.

10.3.1.4 First-Order Solution: Spectral Properties of the Linearized
Collision Operator

Then we see that the first-order equation takes the form

∫
dq L pq ( f eqq f̄ eqq )−1 f (1)

q = ( f eqp f̄ eqp )−1

[
p · u ∂

∂τ (1)
+ p · ∇

]
f eqp . (10.60)

As in the non-relativistic case in Chap. 8, the spectral properties of the linearized
collision operator L pq has a basic importance for the subsequent analyses.
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First of all, owing to the conservation laws of the energy-momentum and the
particle number, L pq has the zero eigenvalue, and the eigenvectors belonging to the
zero eigenvalue are nothing but the collision invariants (1, pμ) (μ = 0, 1, 2, 3).
In fact, by differentiating Eq. (10.34) with respect to the five independent variables
μ/T and uμ/T , we can show that the following equalities hold, respectively,

∫
dq L pq · 1 = 0 and

∫
dq L pq q

μ = 0, (10.61)

with μ = 0, 1, 2, 3.
It is to be noted that L pq is an asymmetric matrix and hence the above (1, pμ)

are right eigenvectors of L pq ; see Sect. 3.6.2 for asymmetric matrices and left and
right eigenvectors. For later convenience, we shall here give the left eigenvectors
belonging to the zero eigenvalue of L pq . By differentiating Eqs. (10.24) and (10.25)
with respect to f p and then setting f p = f eqp , we have

∫
dp 1 · f eqp f̄ eqp L pq = 0 and

∫
dp pμ f eqp f̄ eqp L pq = 0, (10.62)

with μ = 0, 1, 2, 3, which tells us that

f eqp f̄ eqp and f eqp f̄ eqp pμ, (10.63)

are the left eigenvectors belonging to the zero eigenvalue of L pq .
We note that Eqs. (10.61) and (10.62) can be derived by the explicit calculation

based on the definition of L pq given in Eq. (10.56).
With these spectral properties of L pq taken for granted, it is still necessary to

impose the solvability condition and the conditions of fit to obtain a solution to the
linear inhomogeneous equation (10.60) in an unambiguous way, as noted before.

10.3.1.5 Solvability Condition for the First-Order Equation

First let us recall the notion of the solvability condition of inhomogeneous linear
equations, an account of which is given in Chap. 3, in particular in Sect. 3.6.2. If
we apply this notion to the linear inhomogeneous equation (10.60), we find that the
equation is solvable only if the right hand side of Eq. (10.60) dose not contain any
collision invariants, which requires the following two equations hold,

∫
dp 1 ·

[
p · u ∂

∂τ (1)
+ p · ∇

]
f eqp = 0,

∫
dp pμ

[
p · u ∂

∂τ (1)
+ p · ∇

]
f eqp = 0.

(10.64)

In fact, if f eqp f̄ eqp and f eqp f̄ eqp pμ are multiplied by Eq. (10.60) and then the integra-
tion of the resultant expressions is carried out with respect to p, we see that both the
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left- and right-hand sides of (10.60) vanish consistently, owing to Eqs. (10.62) and
(10.64), respectively.

After some computation presented in a supplemental Chap. 13, Eq. (10.64) is
reduced into three equations for which the physical significance is apparent, as fol-
lows:

∂

∂τ (1)
T = −T

∂P

∂e

∣∣∣∣
n

∇ · u, (10.65)

∂

∂τ (1)

μ

T
= − 1

T

∂P

∂n

∣∣∣∣
e

∇ · u, (10.66)

∂

∂τ (1)
uμ = 1

T
∇μT + T n

e + P
∇μ μ

T
. (10.67)

On account of Eqs. (10.65)–(10.67), we see that the right-hand side of Eq. (10.60)
now takes the following form

( f eqp f̄ eqp )−1

[
p · u ∂

∂τ (1)
+ p · ∇

]
f eqp

= −�p
−∇ · u

T
+ Jμ

p

n

e + P
∇μ

μ

T
− πμν

p

σμν

T
, (10.68)

where

�p := (p · u)2
[
1

3
− ∂P

∂e

∣∣∣∣
n

]
− (p · u)

∂P

∂n

∣∣∣∣
e

− 1

3
m2, (10.69)

Jμ
p := −�μν pν

[
(p · u) − e + P

n

]
, (10.70)

πμν
p := �μνρσ pρ pσ , (10.71)

with

�μνρσ := 1

2

[
�μρ �νσ + �μσ �νρ − 2

3
�μν �ρσ

]
, (10.72)

σμν := �μνρσ ∇ρuσ . (10.73)

We note that the inhomogeneous term (10.68) contains no collision invariants
thanks to the solvability condition, and that Eqs. (10.65)–(10.67) are the same as the
relativistic Euler equation if we finish the perturbative analysis up to the first-order
and set ∂/∂τ = ∂/∂τ (1). Thus we sees that the solvability condition play the essen-
tial role in giving the dynamic equations governing the slow motion of T , μ, and
uμ which were originally introduced merely to parametrize the zeroth-order solution
f eqp . We note that it has been already shown in Chap. 3 that the solvability condi-
tion play a decisive role in various reduction theories [20, 30, 34, 83], not specific
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to the Chapman-Enskog method based on the multiple-scale analysis utilizing the
perturbation theory.

10.3.1.6 Conditions of Fit for the First-Order Solution

Now that the right-hand side of Eq. (10.60) has been made free from the zero modes,
we can apply the inverse operator of L pq to the r.h.s. to obtain a particular solution
without giving rise to a singularity. However, the solution to the inhomogeneous
equation (10.60) still suffers from an ambiguity owing to the existence of the zero
modes of the linear operator L pq , which are nothing but the five collision invariants.
In fact, the general solution to (10.60) is given by a sum of the special solution and
a linear combination of the zero modes with five arbitrary coefficients, as

f (1)
p = f eqp f̄ eqp

{∫
dq L−1

pq

[
− �p

−∇ · u
T

+ Jμ
p

n

e + P
∇μ

μ

T
− πμν

p

σμν

T

]

+ C(x) + Cμ(x) pμ

}
, (10.74)

where C(x) and Cμ(x) are arbitrary but dependent on x , say, through T , μ, and uμ,
for instance. Here L−1

pq denotes the formal inverse matrix of the linearized collision
integral L pq . One can check that Eq. (10.74) solves Eq. (10.60) by substituting
Eq. (10.74) into Eq. (10.60) and then using Eq. (10.61).

Thus we have ended up with a solution with arbitrary functions C(x) and Cμ(x),
and it is clear that it would be desirable if one has some appropriate constraints to
determine the arbitrary functions C(x) and Cμ(x) in a unique way. This is the place
where the matching conditions or the conditions of fit play some role.

An account of the conditions of fit goes as follows [67]. First, one requires that
the particle-number density and internal energy in the non-equilibrium state is the
same as those in the local equilibrium state, and accordingly set

n =
∫
dp (u · p) f p =

∫
dp (u · p) f eqp , (10.75)

e =
∫
dp (u · p)2 f p =

∫
dp (u · p)2 f eqp . (10.76)

For consistency, one also imposes the constraints to the higher-order terms

∫
dp (u · p) δ f p = 0, (10.77)

∫
dp (u · p)2 δ f p = 0. (10.78)
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We note that the requirement (10.75) and (10.76) exactly correspond to the ansatz
(10.12) and (10.11), respectively, mentioned in Sect. 10.1.

Still we need three constraints. The remaining three conditions can be obtained by
a choice of the rest frame of the flow velocity uμ(x) with three degrees of freedom.
Popular choices of them are the energy (Landau-Lifshitz) and the particle (Eckart)
frames.

[Energy frame]: The fluid dynamic equation in the energy frame [62] is obtained
by imposing the condition

∫
dp (�μν pν) (u · p) δ f p = 0, (10.79)

which correspond to the ansatz (10.14) for the heat currentmentioned inSect. 10.1.
[Particle frame]: On the other hand, the fluid dynamic equation in the particle

frame [61] is obtained by

∫
dp (�μν pν) δ f p = 0, (10.80)

which correspond to the ansatz (10.13) for the dissipative particle current men-
tioned in Sect. 10.1.

These conditions imposed to the distribution function in the higher orders are called
the conditions of fit.

In the case of δ f p = f (1)
p , a straightforward calculation gives for the energy

frame,

C(x) = Cμ(x) = 0, (10.81)

while for the particle frame,

C(x) = 0, (10.82)

Cμ(x) = λCE n T

(e + P)2
∇μ μ

T
. (10.83)

Here λCE denotes the heat conductivity, that is, one of the transport coefficients,
whose microscopic representation will be given later by Eq. (10.95).
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10.3.1.7 Second-Order Solution

The second-order equation reads

∫
dq L pq ( f eqq f̄ eqq )−1 f (2)

q = ( f eqp f̄ eqp )−1

[
p · u ∂

∂τ (1)
+ p · ∇

]
f (1)
p

+ ( f eqp f̄ eqp )−1 p · u ∂

∂τ (2)
f eqp , (10.84)

where the second-derivative term of the collision integral C[ f ]p is suppressed
because it is irrelevant in this order of approximation.

Equation (10.84) is an inhomogeneous equation as was the case with the first-
order equation. Thus the solvability condition to be imposed on Eq. (10.84) is given
by

∫
dp (1, pμ)

{[
p · u ∂

∂τ (1)
+ p · ∇

]
f (1)
p + p · u ∂

∂τ (2)
f eqp

}
= 0, (10.85)

which actually leads to the equation governing the slow dynamics of T , μ, and uμ.
Summing up the first-order and second-order solvability conditions (10.64) and

(10.85). we have

0 =
∫
dp (1, pμ)

{
p · u

[
ε

∂

∂τ (1)
+ ε2

∂

∂τ (2)

]
+ ε p · ∇

}
( f eqp + ε f (1)

p )

=
∫
dp (1, pμ)

[
p · u ∂

∂τ
+ ε p · ∇

]
( f eqp + ε f (1)

p ), (10.86)

up to the second order of ε. Here we have used the identity,

∂/∂τ = ε ∂/∂τ (1) + ε2 ∂/∂τ (2) + O(ε3). (10.87)

Equation (10.86) constitutes one of the evolution equations for T (x), μ(x), and
uμ(x).

Equation (10.86) can be cast into more familiar forms written in terms of the
divergence of the currents. In fact, omitting O(ε3), putting back ε = 1, and using
the equality p · u ∂/∂τ + p · ∇ = pμ∂μ, we obtain

∂ν

[ ∫
dp pν ( f eqp + f (1)

p )

]
= 0 and ∂ν

[ ∫
dp pμ pν ( f eqp + f (1)

p )

]
= 0,

(10.88)

which is equivalent to the set of equations
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∂μN
μ = 0 and ∂μT

μν = 0, (10.89)

where

Nμ =
∫
dp pμ ( f eqp + f (1)

p ) =: Nμ
0 + δNμ, (10.90)

T μν =
∫
dp pμ pν ( f eqp + f (1)

p ) =: T μν
0 + δT μν. (10.91)

Here δNμ and δT μν denote the dissipative components of the particle-number current
and energy-momentum tensor, respectively, while Nμ

0 and T μν
0 the non-dissipative

(ideal) components whose definitions are given by Eqs. (10.36) and (10.37).
After the straightforward manipulations, we find that

δNμ = λCE
( n T

e + P

)2 ∇μ μ

T

+ C T
∂n

∂μ
uμ + Cν T

[
∂e

∂μ
uμ uν − n �μν

]
, (10.92)

δT μν = ζCE �μν ∇ · u + 2 ηCE σμν

+ C T

[
∂e

∂μ
uμ uν − n �μν

]
+ Cρ T

{[
T

∂e

∂T
+ μ

∂e

∂μ

]
uμ uν uρ

− (e + P) (uμ �νρ + uν �ρμ + uρ �μν)

}
, (10.93)

where ζCE and ηCE are kinds of transport coefficients as the thermal conductivity λCE,
and called the bulk and shear viscosity, respectively: Their microscopic expressions
are given by

ζCE = − 1

T

∫
dp

∫
dq f eqp f̄ eqp �p L

−1
pq �q , (10.94)

λCE = 1

3 T 2

∫
dp

∫
dq f eqp f̄ eqp Jμ

p L−1
pq Jqμ, (10.95)

ηCE = − 1

10 T

∫
dp

∫
dq f eqp f̄ eqp πμν

p L−1
pq πqμν, (10.96)

respectively.
Finally, we shall present the explicit forms of δNμ and δT μν in the energy frame

and the particle frame.
Substituting C and Cμ in Eqs. (10.81)–(10.83) into Eqs. (10.92) and (10.93), we

find that those in the energy frame read
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δNμ = λCE
( n T

e + P

)2 ∇μ μ

T
, (10.97)

δT μν = ζCE �μν ∇ · u + 2 ηCE σμν, (10.98)

which satisfy the ansatz (10.11), (10.12), and (10.14).
On the other hand, those in the particle frame read

δNμ = 0, (10.99)

δT μν = ζCE �μν ∇ · u + 2 ηCE σμν − λCE n T 2

e + P

[
uμ ∇ν μ

T
+ uν ∇μ μ

T

]
,

(10.100)

which satisfy the ansatz (10.11)–(10.13) that characterize the particle frame.
We note that δT μν given by (10.100) is often rewritten in terms of a time derivative

by using Eq. (10.67) as

δTμν = ζCE �μν ∇ · u + 2 ηCE σμν

+ T λCE
{
uμ

[
1

T
∇νT − ∂

∂τ
uν

]
+ uν

[
1

T
∇μT − ∂

∂τ
uμ

]}
. (10.101)

10.3.2 Israel-Stewart Fourteen-Moment Method

In the Israel-Stewart fourteen-moment method for deriving the relativistic fluid
dynamics [66–68, 113], one starts from the following ansatz for the distribution
function

f p = f eqp (x) (1 + f̄ eqp (x)�p), (10.102)

with

�p = a(x) + bμ(x) pμ + cμν(x)p
μ pν . (10.103)

Here f̄ eqp (x) is the local equilibrium distribution function that may depend on space-
time x through the fluid variables T (x), μ(x), and uμ(x), and the deviation �p is
supposed to be so small that the second and higher order of it can be neglected. Note
that the prefactor of pμ pν in Eq. (10.103) obeys the constraints

cμν = cνμ and cμ
μ = 0, (10.104)
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without loss of generality because pμ pν = pν pμ and pμ pμ = m2. The coefficient
functions a(x), bμ(x), and cμν(x) in Eq. (10.103) are yet to be determined as well
as the fluid variables contained in f eqp .

We note that if the conditions of fit (10.77)–(10.79) is imposed on the distribution
function (10.102), then T (x), μ(x), uμ(x), a(x), bμ(x), and cμν(x) can not be inde-
pendent, and thus, the total number of independent functions within T , μ, uμ, a, bμ,
and cμν is fourteen.

10.3.2.1 Constraints and Moment Equations

To determine the fourteen functions, we utilize the fourteen-moment equationswhich
will be derived by multiplying the relativistic Boltzmann equation (10.17) by appro-
priate fourteen quantities dependent on the momentum p, and integrating them with
respect to p.

In the Israel-Stewart method, the five collision invariants (1, pμ) and the second
moments pμ pν are adopted as the fourteen quantities: In fact, the number of the
independent components of

1, pμ, pμ pν, (10.105)

is fourteen because the number of independent components of pμ pν = pν pμ is nine
due to pμ pμ = m2.

Thus the Israel-Stewart fourteen-moment equations consist of the five constraints
imposed by the collision invariant properties Eqs. (10.24) and (10.25) for 1 and pμ,

∫
dp pν ∂ν

(
f eqp (1 + f̄ eqp �p)

)
= 0,

∫
dp pμ pν ∂ν

(
f eqp (1 + f̄ eqp �p)

)
= 0,

(10.106)

and the nine equations given by the second moments

∫
dp pμ pν pρ ∂ρ

(
f eqp (1 + f̄ eqp �p)

)
=

∫
dp

∫
dq pμ pν f eqp f̄ eqp L pq �q .

(10.107)

Here we have made the following expansion for the collision operator in the right-
hand side, with the use of Eqs. (10.34) and (10.56),

C[ f ]p = C[ f eq]p +
∫
dq

δ

δ fq
C[ f ]p

∣∣∣∣
f = f eq

f eqq f̄ eqq �q + O(�2)

= f eqp f̄ eqp

∫
dq L pq �q + O(�2), (10.108)
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wherewe have suppressed the terms of O(�2)which are to be neglected as promised.
The five equations (10.106) are identical to the balance equations. Indeed they

are written as

∂μN
μ = 0 and ∂μT

μν = 0, (10.109)

where

Nμ = n uμ + δNμ and T μν = e uμ uν − P �μν + δT μν, (10.110)

with

δNμ =
∫
dp pμ f eqp f̄ eqp �p, (10.111)

δT μν =
∫
dp pμ pν f eqp f̄ eqp �p. (10.112)

The nine equations (10.107) are called the relaxation equations, which are equa-
tions characteristic in the moment method, not seen in the Chapman-Enskogmethod.
Indeed, the relaxation equations (10.107) contain novel coefficients other than the
transport coefficients, which are called the relaxation times and so on.

10.3.2.2 Calculational Set Up

We are in a position to compute the needed integrals and derive explicit forms of
the balance and relaxation equations, from which one can read off the microscopic
expressions of the transport coefficients and relaxation times.

Before entering the detailed calculation, we first note that �p in Eq. (10.103) is
at most bilinear of the momentum. Then, with use of

πμ
p := �μν pν and πμν

p = �μνρσ pρ pσ , (10.113)

we convert (10.103) into a form with which the physical significance of respective
terms are obvious as

�p = Ap � + Bp πμ
p Jμ + Cp πμν

p πμν, (10.114)

where

Ap = A2 (p · u)2 + A1 (p · u) + A0, (10.115)

Bp = B1 (p · u) + B0, (10.116)

Cp = C0, (10.117)
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and �, Jμ, and πμν are introduced in place of a, bμ, and cμν ; note that the number
of independent components of the set of variables is not altered by this replacement
and remains 9. We remark that Jμ and πμν are of space-like and their covariant
components are obtained as

Jμ = �μν J
ν, πμν = �μνρσ πρσ , (10.118)

respectively. We stress that the coefficients A2, A1, A0, B1, B0, and C0 are yet to be
determined, say, by the conditions of fits together with some additional conditions.

Substituting Eq. (10.114) into Eqs. (10.111) and (10.112), δNμ and δT μν are
calculated to be

δNμ =
[ ∫

dp f eqp f̄ eqp (p · u) Ap

]
uμ � +

[ ∫
dp f eqp f̄ eqp

1

3
πν
p πpν Bp

]
Jμ

=
[
A2 a3 + A1 a2 + A0 a1

]
uμ �

+
[
B1

1

3
(m2 a1 − a3) + B0

1

3
(m2 a0 − a2)

]
Jμ, (10.119)

and

δTμν =
[ ∫

dp f
eq
p f̄

eq
p (p · u)2 Ap

]
uμ uν � +

[ ∫
dp f

eq
p f̄

eq
p

1

3
π

ρ
p πpρ Ap

]
�μν �

+
[ ∫

dp f
eq
p f̄

eq
p

1

3
π

ρ
p πpρ (p · u) Bp

]
(uμ Jν + uν Jμ)

+
[ ∫

dp f
eq
p f̄

eq
p

1

5
π

ρσ
p πpρσ Cp

]
πμν

=
[
A2 a4 + A1 a3 + A0 a2

]
uμ uν �

+
[
A2

1

3
(m2 a2 − a4) + A1

1

3
(m2 a1 − a3) + A0

1

3
(m2 a0 − a2)

]
�μν �

+
[
B1

1

3
(m2 a2 − a4) + B0

1

3
(m2 a1 − a3)

]
(uμ Jν + uν Jμ)

+
[
C0

2

15
(m4 a0 − 2m2 a2 + a4)

]
πμν, (10.120)

respectively. Here a0, a1, a2, a3, and a4 are defined in Eq. (13.36), which reads
a� := ∫

dp f eqp f̄ eqp (p · u)�, (� = 0, 1, 2, . . .); we note that some of a� are expressed
in terms of the thermodynamic quantities T , μ, n, e, P .

Now we have come to the place where one needs to impose the conditions of fit
for a further reduction of the formulae.
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10.3.2.3 Energy Frame

First we consider the energy frame. Substituting δ f p = f eqp f̄ eqp �p into Eqs. (10.77),
(10.78) and (10.79), we can confirm that these conditions of fit exactly correspond
to the ansatz (10.12), (10.11), and (10.14), respectively, which we recapitulate for
convenience

δn = uμ δNμ = 0, (10.121)

δe = uμ uν δTμν = 0, (10.122)

Qμ = �μν uρ δTνρ = 0. (10.123)

Applying these conditions of fit to δNμ and δT μν in Eqs. (10.119) and (10.120), we
have

A2 a3 + A1 a2 + A0 a1 = 0, (10.124)

A2 a4 + A1 a3 + A0 a2 = 0, (10.125)

B1
1

3
(m2 a2 − a4) + B0

1

3
(m2 a1 − a3) = 0. (10.126)

Under these constraints, δNμ and δT μν take the following forms

δNμ =
[
B1

1

3
(m2 a1 − a3) + B0

1

3
(m2 a0 − a2)

]
Jμ, (10.127)

δT μν = −�μν

[
− A2

1

3
(m2 a2 − a4) − A1

1

3
(m2 a1 − a3)

− A0
1

3
(m2 a0 − a2)

]
� + C0

2

15
(m4 a0 − 2m2 a2 + a4) πμν,

(10.128)

respectively. We now impose the conditions that the prefactors of �, Jμ, and πμν

are all set to 1, which implies another three conditions

B1
1

3
(m2 a1 − a3) + B0

1

3
(m2 a0 − a2) = 1, (10.129)

−A2
1

3
(m2 a2 − a4) − A1

1

3
(m2 a1 − a3) − A0

1

3
(m2 a0 − a2) = 1, (10.130)

C0
2

15
(m4 a0 − 2m2 a2 + a4) = 1. (10.131)

Solving the six equations (10.124)–(10.126) and (10.129)–(10.131) for A2, A1,
A0, B1, B0, and C0, we have
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A2 = 1

−a4
m2 (a21−a0 a2)
3 (a22−a1 a3)

− a3
m2 (a0 a3−a1 a2)
3 (a22−a1 a3)

− a2
m2

3

, (10.132)

A1 = −A2
a2 a3 − a1 a4
a22 − a1 a3

, (10.133)

A0 = A2
a23 − a2 a4
a22 − a1 a3

, (10.134)

B1 = 3 m2 a1−a3
m2 a0−a2

−(m2 a2 − a4) + m2 a1−a3
m2 a0−a2

(m2 a1 − a3)
, (10.135)

B0 = −B1
m2 a2 − a4
m2 a1 − a3

, (10.136)

C0 = 5
2
3 (m4 a0 − 2m2 a2 + a4)

. (10.137)

These quantities are complicated functions of T and μ, but A2, B1 and C0 can be
reduced into compact forms as follows:

A2 = 1
∫
dp f eqp f̄ eqp (p · u)2 �p

, (10.138)

B1 =
e+P
n

1
3

∫
dp f eqp f̄ eqp (p · u) πpμ Jμ

p
, (10.139)

C0 = 1
1
5

∫
dp f eqp f̄ eqp πpμν π

μν
p

, (10.140)

where Eqs. (13.41)–(13.43) have been used together with the definitions (10.69)–
(10.71), that is,

�p =
[
1

3
− ∂P

∂e

∣∣∣∣
n

] [
(p · u)2 − (p · u)

a0 a3 − a1 a2
a21 − a0 a2

+ a22 − a1 a3

a21 − a0 a2

]
, (10.141)

Jμ
p = −π

μ
p

[
(p · u) − m2 a1 − a3

m2 a0 − a2

]
. (10.142)

Substituting the above A2, A1, A0, B1, B0, and C0 into �p, we have

�p = Pp �
∫
dq f eqq f̄ eqq Pq �q

+ e + P

n

Jμ
p Jμ

1
3

∫
dq f eqq f̄ eqq Jqν J ν

q

+ π
μν
p πμν

1
5

∫
dq f eqq f̄ eqq πqρσ π

ρσ
q

, (10.143)

where Pp and Jμ
p are defined by
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Pp :=
[
1

3
− ∂P

∂e

∣∣∣∣
n

] [
(p · u)2 − (p · u)

a2 a3 − a1 a4
a22 − a1 a3

+ a23 − a2 a4

a22 − a1 a3

]
, (10.144)

Jμ
p := −π

μ
p

[
(p · u) − m2 a2 − a4

m2 a1 − a3

]
. (10.145)

Here we have used the equalities

∫
dp f eqp f̄ eqp (p · u)2 �p = 1

1
3 − ∂P

∂e

∣∣∣
n

∫
dp f eqp f̄ eqp Pp �p, (10.146)

∫
dp f eqp f̄ eqp (p · u) πpμ Jμ

p = −
∫
dp f eqp f̄ eqp Jpμ Jμ

p , (10.147)

which are attributed to the identities
∫
dp f eqp f̄ eqp (1, (p · u))�p = 0, (10.148)

∫
dp f eqp f̄ eqp πpμ Jμ

p = 0. (10.149)

By comparingEqs. (10.141) and (10.142)withEqs. (10.144) and (10.145), respec-
tively, we find that the coefficients of (p · u)2 (πμ

p (p · u)) are common between Pp

(Jμ
p ) and �p (J

μ
p ), but those of the others are not the case. It is noted that the dif-

ferences between Pp and �p (Jμ
p and Jμ

p ) come only from the collision invariants
(1, pμ), and hence the following identities hold,

∫
dq L pq (Pq , Jμ

q ) =
∫
dq L pq (�q , Jμ

p ), (10.150)
∫
dp f eqp f̄ eqp (Pp, Jμ

p ) L pq =
∫
dp f eqp f̄ eqp (�p, Jμ

p ) L pq . (10.151)

Let us substitute �p in Eq. (10.143) into Eqs. (10.106) and (10.107) to derive
the explicit forms of the balance equations and relaxation equations together with
the microscopic representations of the transport coefficients and relaxation times.
The balance equations (10.106) are easily found to take the forms ∂μNμ = 0 and
∂μT μν = 0 with

Nμ = n uμ + Jμ, (10.152)

T μν = e uμ uν − (P + �)�μν + πμν. (10.153)

We see that the resultant Nμ and T μν surely satisfy the conditions of fit (10.121),
(10.122), and (10.123) for the energy frame because of the space-like nature of Jμ,
�μν , and πμν .

Owing to the identity
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pμ pν = [(p · u) uμ + πμ
p ] [(p · u) uν + πν

p]
= (uμ uν − �μν/3) (p · u)2 + (uμ πν

p + uν πμ
p ) (p · u) + πμν

p + m2 �μν/3

=
[
uμ uν − 1

3
�μν

] [
1

1
3 − ∂P

∂e

∣∣∣
n

Pp + (p · u)
a2 a3 − a1 a4
a22 − a1 a3

− a23 − a2 a4
a22 − a1 a3

]

− uμ

[
Jν

p − m2 a2 − a4
m2 a1 − a3

πν
p

]
− uν

[
Jμ

p − m2 a2 − a4
m2 a1 − a3

πμ
p

]

+ πμν
p + m2

3
�μν, (10.154)

derived from

πμν
p = πμ

p πν
p − �μν πρ

p πpρ/3 = πμ
p πν

p − �μν [m2 − (p · u)2]/3 (10.155)

and the definitions of Pp andJp in Eqs. (10.144) and (10.145), the relaxation equa-
tions (10.107) can be reduced to the the following three equations with different
ranks,

∫
dp (Pp, Jμ

p , πμν
p )

[
(p · u)

∂

∂τ
+ p · ∇

]
( f eqp + f eqp f̄ eqp �p)

=
∫
dp

∫
dq (Pp, Jμ

p , πμν
p ) f eqp f̄ eqp L pq �q . (10.156)

Herewehave used the fact that the components proportional to the collision invariants
1 and pμ vanish owing to the balance equations (10.106) and Eq. (10.62).

The right-hand side of the relaxation equations (10.156) is reduced into

∫
dp

∫
dq Pp f eqp f̄ eqp L pq �q =

[∫
dp

∫
dq f eqp f̄ eqp Pp L pq Pq∫
dp f eqp f̄ eqp Pp �p

]
�, (10.157)

∫
dp

∫
dq Jμ

p f eqp f̄ eqp L pq �q = e + P

n

[∫
dp

∫
dq f eqp f̄ eqp Jpν L pq Jν

q∫
dp f eqp f̄ eqp Jpν J ν

p

]
Jμ,

(10.158)
∫
dp

∫
dq πμν

p f eqp f̄ eqp L pq �q =
[∫

dp
∫
dq f eqp f̄ eqp πpρσ L pq π

ρσ
q∫

dp f eqp f̄ eqp πpρσ π
ρσ
p

]
πμν.

(10.159)

Then, we write the left-hand side of the relaxation equations (10.156) as
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∫
dp (Pp, Jμ

p , πμν
p ) f eqp f̄ eqp

[
(p · u)

∂

∂τ
+ p · ∇

]
μ − p · u

T

+
∫
dp (Pp, Jμ

p , πμν
p )

[
(p · u)

∂

∂τ
+ p · ∇

]
f eqp f̄ eqp �p. (10.160)

To convert the first terms into familiar forms, we replace the temporal derivative in
the integrand by the spatial derivative on the basis of the relativistic Euler equations,
which are obtained by setting ∂/∂τ (1) = ∂/∂τ in Eqs. (10.65)–(10.67). As a result,
we have

[
(p · u)

∂

∂τ
+ p · ∇

]
μ − p · u

T
= −�p

−∇ · u
T

+ Jμ
p

n

e + P
∇μ

μ

T
− πμν

p

σμν

T
.

(10.161)

This equation is the same as Eq. (10.68) derived in the context of the Chapman-
Enskog method. Using the expression (10.161), we calculate the first terms in Eq.
(10.160) to be

∫
dpPp f eqp f̄ eqp

[
(p · u)

∂

∂τ
+ p · ∇

]
μ − p · u

T

=
[

− 1

T

∫
dp f eqp f̄ eqp Pp �p

]
(−∇ · u), (10.162)

∫
dpJμ

p f eqp f̄ eqp

[
(p · u)

∂

∂τ
+ p · ∇

]
μ − p · u

T

=
[

1

3 T 2

∫
dp f eqp f̄ eqp Jpν J ν

p

]
n T 2

e + P
∇μ μ

T
, (10.163)

∫
dp πμν

p f eqp f̄ eqp

[
(p · u)

∂

∂τ
+ p · ∇

]
μ − p · u

T

=
[

− 1

10 T

∫
dp f eqp f̄ eqp πpρσ πρσ

p

]
2 σμν. (10.164)

Next let us calculate the second terms in Eq. (10.160). The temporal derivative
of the variables �, Jμ, and πμν in � will give the relaxation equations which we
wanted. The derivative, however, hits not only �, Jμ, and πμν but also f eqp f̄ eqp and
the prefactors in �. Thus, the second terms include several terms other than the
relaxation terms given by the temporal derivative of �, Jμ, and πμν . In this section,
we focus only the relaxation terms.

Then, the second terms in Eq. (10.160) is reduced to
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∫
dpPp

[
(p · u)

∂

∂τ
+ p · ∇

]
( f eqp f̄ eqp �p)

=
[∫

dp f eqp f̄ eqp Pp (p · u)Pp∫
dp f eqp f̄ eqp Pp �p

]
∂

∂τ
� + · · · , (10.165)

∫
dpJμ

p

[
(p · u)

∂

∂τ
+ p · ∇

]
( f eqp f̄ eqp �p)

= e + P

n

[∫
dp f eqp f̄ eqp Jpν (p · u)Jν

p∫
dp f eqp f̄ eqp Jpν J ν

p

]
�μν ∂

∂τ
Jν + · · · , (10.166)

∫
dp πμν

p

[
(p · u)

∂

∂τ
+ p · ∇

]
( f eqp f̄ eqp �p)

=
[∫

dp f eqp f̄ eqp πpρσ (p · u) π
ρσ
p∫

dp f eqp f̄ eqp πpρσ π
ρσ
p

]
�μνρσ ∂

∂τ
πρσ + · · · . (10.167)

Collecting Eqs. (10.157)–(10.159), (10.162)–(10.164), and (10.165)–(10.167),
we construct the relaxation equations as follows:

� = −ζ IS ∇ · u − τ IS
�

∂

∂τ
� + · · · , (10.168)

Jμ = λIS
( n T

e + P

)2 ∇μ μ

T
− τ IS

J �μν ∂

∂τ
Jν + · · · , (10.169)

πμν = 2 ηIS σμν − τ IS
π �μνρσ ∂

∂τ
πρσ + · · · . (10.170)

Here ζ IS, λIS, and ηIS denote the transport coefficients, that is, the bulk viscosity,
heat conductivity, and shear viscosity given by

ζ IS := − 1

T

[ ∫
dp f eqp f̄ eqp Pp �p

]2

∫
dp

∫
dq f eqp f̄ eqp Pp L pq Pq

, (10.171)

λIS := 1

3 T 2

[ ∫
dp f eqp f̄ eqp Jpμ Jμ

p

]2

∫
dp

∫
dq f eqp f̄ eqp Jpμ L pq Jμ

q
, (10.172)

ηIS := − 1

10 T

[ ∫
dp f eqp f̄ eqp πpμν π

μν
p

]2

∫
dp

∫
dq f eqp f̄ eqp πpμν L pq π

μν
q

, (10.173)

respectively, while τ IS
� , τ IS

J , and τ IS
π the relaxation times for the channels of the bulk

pressure �, thermal flux Jμ, and stress pressure πμν given by
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τ IS
� := −

∫
dp f eqp f̄ eqp Pp (p · u)Pp∫
dp

∫
dq f eqp f̄ eqp Pp L pq Pq

, (10.174)

τ IS
J := −

∫
dp f eqp f̄ eqp Jpμ (p · u)Jμ

p∫
dp

∫
dq f eqp f̄ eqp Jpμ L pq Jμ

q
, (10.175)

τ IS
π := −

∫
dp f eqp f̄ eqp πpμν (p · u) π

μν
p∫

dp
∫
dq f eqp f̄ eqp πpμν L pq π

μν
q

, (10.176)

respectively. It is to be noted that all the microscopic expressions of the transport
coefficients (10.171)–(10.173) are clearly different from those (10.94)–(10.96) given
by the Chapman-Enskog method.

The relaxation equations (10.168)–(10.170) tell us that �, Jμ, and πμν are to be
relaxed to the following forms

� = −ζ IS ∇ · u, (10.177)

Jμ = λIS
( n T

e + P

)2 ∇μ μ

T
, (10.178)

πμν = 2 ηIS σμν, (10.179)

after a long time, longer than τ IS
� , τ IS

J , and τ IS
π , respectively.

Inserting the above�, Jμ, andπμν into Nμ and T μν in Eqs. (10.152) and (10.153),
we find that the resultant forms of Nμ and T μν have the same forms as those by the
Chapman-Enskog method, although the microscopic expressions of the transport
coefficients are mutually different.

10.3.2.4 Particle Frame

Next we analyze the case of the particle frame, whose conditions of fit are expressed
as Eqs. (10.121), (10.122), and (10.11), which we recapitulate here for convenience,

vμ = �μν δNν = 0. (10.180)

Much the same way as in the case of the energy frame, the functional form of
�p can be determined, as follows. The parameters A2, A1, A0, and C0 are given by
Eqs. (10.132)–(10.134), (10.137), while B1 and B0 reads

B1 = −3

−(m2 a2 − a4) + m2 a1−a3
m2 a0−a2

(m2 a1 − a3)
, (10.181)

B0 = −B1
m2 a1 − a3
m2 a0 − a2

. (10.182)

Furthermore, B1 is found to be nicely reduced into a compact form as



10.3 Review of Conventional Methods to Derive Relativistic Dissipative … 293

B1 = − 1
1
3

∫
dp f eqp f̄ eqp (p · u) πpμ Jμ

p
= 1

1
3

∫
dp f eqp f̄ eqp Jpμ Jμ

p
. (10.183)

Thus we have

�p = Pp �
∫
dq f eqq f̄ eqq �q �q

− Jμ
p Jμ

1
3

∫
dq f eqq f̄ eqq Jqν J ν

q

+ π
μν
p πμν

1
5

∫
dq f eqq f̄ eqq πqρσ π

ρσ
q

. (10.184)

Now that �p has been obtained in the form given in Eq. (10.184), one can derive
the balance and relaxation equations fromEqs. (10.106) and (10.107), respectively, as
was done in the case of the energy frame. The particle-number current and the energy-
momentum tensor constituting the balance equations ∂μNμ = 0 and ∂μT μν = 0 thus
read

Nμ = n uμ, (10.185)

T μν = e uμ uν − (P + �)�μν + uμ J ν + Jμ uν + πμν, (10.186)

respectively. These energy-momentum tensor and particle-number current are in
accord with the conditions of fit (10.121), (10.122), and (10.180), or equivalently the
ansatz (10.11)–(10.13) that characterize particle frame.

Although it is found that the relaxation equations for � and πμν are also of
the same forms as those in the energy frame, the relaxation equation for Jμ to be
obtained from (10.107) takes a form different from that in the energy frame, as we
shall show below. An explicit calculation of the right-hand side of (10.107) gives

∫
dp

∫
dq Jμ

p f eqp f̄ eqp L pq �q = −
[∫

dp
∫
dq f eqp f̄ eqp Jpν L pq J ν

q∫
dp f eqp f̄ eqp Jpν J ν

p

]
Jμ,

(10.187)

whereas the left-hand side can be expanded as

∫
dp Jμ

p

[
(p · u)

∂

∂τ
+ p · ∇

]
( f eqp f̄ eqp �p)

= −
[∫

dp f eqp f̄ eqp Jpν (p · u) J ν
p∫

dp f eqp f̄ eqp Jqν J ν
q

]
�μν ∂

∂τ
Jν + · · · . (10.188)

Thus we have the relaxation equation for Jμ as

Jμ = −λ′IS n T 2

e + P
∇μ μ

T
− τ ′IS

J �μν ∂

∂τ
Jν . (10.189)



294 10 Introduction to Relativistic Dissipative Fluid Dynamics …

Here λ′IS and τ ′IS
J denote the heat conductivity and relaxation time for the channel

of the thermal flux, respectively, which are defined by

λ′IS := 1

3 T 2

[ ∫
dp f eqp f̄ eqp Jpμ Jμ

p

]2

∫
dp

∫
dq f eqp f̄ eqp Jpμ L pq Jμ

q
, (10.190)

τ ′IS
J := −

∫
dp f eqp f̄ eqp Jpμ (p · u) Jμ

p∫
dp

∫
dq f eqp f̄ eqp Jpμ L pq Jμ

q
. (10.191)

We note that λ′IS is equal to λIS in Eq. (10.169) owing to the equalities

∫
dp f eqp f̄ eqp Jpμ Jμ

p =
∫
dp f eqp f̄ eqp Jpμ Jμ

p , (10.192)
∫
dp

∫
dq f eqp f̄ eqp Jpμ L pq Jμ

q =
∫
dp

∫
dq f eqp f̄ eqp Jpμ L pq Jμ

q , (10.193)

which are derived from Eqs. (10.61), (10.62), and (10.149), while τ ′IS
J is newly

defined, that is, τ ′IS
J �= τ IS

J , because of

∫
dp f eqp f̄ eqp Jpμ (p · u) Jμ

p �=
∫
dp f eqp f̄ eqp Jpμ (p · u)Jμ

p . (10.194)

Thus the relaxation time for the channel of the thermal flux is different between the
energy frame and the particle frame.

A small remark is in order: Since the set of the balance equations and the relaxation
equations thus obtained is based on the fourteen-moment method that incorporates
the second-order of the space-time derivatives, the Israel-Stewart fourteen-moment
method may be interpreted to provide us with the so-called mesoscopic dynamics
[148, 150], which lies in the intermediate level between the fluid dynamics derived
by the Chapman-Enskog method and the microscopic dynamics described by the
underlying Boltzmann equation, as was indicated in Sect. 10.1.

10.3.3 Concluding Remarks

In this chapter, after giving an argument on the need of a derivation of relativistic
dissipative fluid dynamic equation from the underlying microscopic theory to settle
down the fundamental problems in the theory of relativistic fluid dynamics, we have
given a detailed account of the Chapman-Enskog method based on the perturbation
theory and the Israel-Stewart fourteen-moment method for deriving fluid dynamic
equations from the relativistic Boltzmann equation. Although the two methods are
different in whether having recourse to a perturbation or truncated-function method,
they equally rely on the two principles, namely, the solvability condition related to
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the conservation laws embodied in the collision integral and the conditions of fit (or
matching conditions). One might have, however, recognized the somewhat ad hoc
nature of the latter, which can lead to the local rest frame of the fluid at one’s disposal,
which may be even different from the popular energy and particle frames.

In the subsequent chapters, we shall show that the application of the RG method,
which starts from a faithful solution of the Boltzmann equation based on the pertur-
bation theory, is free from such an ad hoc nature in principle, and can lead to the fluid
dynamic equations uniquely. Although we have not discussed the stability problem
of the relativistic fluid dynamic equations in this chapter, we shall see that the fluid
dynamic equations derived by the RG method gets rid of the stability problem.



Chapter 11
RG/E Derivation of Relativistic
First-Order Fluid Dynamics

11.1 Introduction

There have been various attempts [66–68, 113, 144, 172] to derive relativistic dis-
sipative fluid dynamic equations from the relativistic Boltzmann equation [67, 68],
and some of past works certainly succeeded in deriving the known equations in the
various local rest frames by identifying the assumptions and/or approximations to
reproduce the equations. In fact, we showed in the previous Chap. 10 that the stan-
dard derivation of relativistic fluid dynamic equations based on the Chapman-Enskog
expansion or Israel-Stewart fourteen moment methods [67, 68] utilizes the ansatz
(10.11)–(10.15) as the crucial constraints on the distribution function.

One may say, however, that it is curious that the physical meanings of these
assumptions/approximations or possible uniqueness of a local rest frame have been
hardly questioned nor elucidated. Our point is that this unsatisfactory situation stems
from an incomplete application of the reduction theory of the dynamics or rather the
incompleteness of the theories adopted. For instance, the Chapman-Enskog method
is formulated as an application of the multiple-scale method [20, 21], an account
of which as a reduction theory is presented in Sect. 3.6, where the reader might
have recognized that the multiple-scale method does not necessarily have a solid
foundation, in particular, in treating higher order terms because of the lack of the
exact independence of the multiple times t, t1 = εt, t2 = ε2t, . . ..

In this respect, let us recall that the RG method [1, 38, 39, 48–51, 65, 92–96]
as presented in Chaps. 4 and 5 on the basis of [3–6, 46, 203] also provides us
with a powerful and systematic tool for the reduction of the dynamics even in the
context of the asymptotic analysis as shown in Chap. 5, where it was shown that the
RG method provides us with an elementary way to construct the invariant/attractive
manifold of the dynamics in the asymptotic region as well as the reduced equation on
the manifold. The fourteen moment method of Israel-Stewart can be interpreted to be
an approximate theory of the construction of the invariant manifold of the asymptotic
solution of the relativistic Boltzmann equation within a restricted functional space.

© Springer Nature Singapore Pte Ltd. 2022
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Indeed it is noteworthy that the RG method applied to the non-relativistic Boltz-
mann equation successfully applied to obtain the Navier-Stokes equation together
with the microscopic expressions of the transport coefficients [57, 58], as is shown in
detail for the classical statistics in Chap. 8. It is also encouraging that the RGmethod
proves to be an elementary but systematic method for obtaining the asymptotic slow
dynamics of some other kinetic equations like Langevin and/or Fokker-Planck equa-
tions, where an essential role of the coarse graining of the time is elucidated, as
shown in Chap. 7.

Thus, it is quite natural to apply the RGmethod to derive the relativistic dissipative
fluid dynamic equations from the relativistic Boltzmann equation, as an extension
of the non-relativistic case. It will, however, turn out that the necessity of the coarse
graining of the space and time have to bemade apparent in deriving the fluid dynamics
as the asymptotic solution of the relativistic Boltzmann equation. Aswas emphasized
in the non-relativistic case in Chap. 8, the RG method is based on a faithful solution
of the equation, involving no ad hoc ansatz, and thus it is expected that the physical
meanings and the validity of the ansatz posed in the phenomenological derivation
will be clarified in the process of the reduction in the RG method.

In fact, we shall show that the resultant relativistic dissipative fluid dynamic
equation is uniquely defined on the energy frame and admits the stable equilibrium
state.

As for the choice of the local rest frame, it is to be noted that thefluid velocityuμ(x)
constitutes the very fluid dynamic variables together with the temperature T (x) and
chemical potential μ(x), which are the averaged slow variables to be determined by
the reduction theory employed, in principle. In the usual derivation of the relativistic
fluid dynamics from the Boltzmann equation, however, the existence of the fluid
velocity uμ(x) is taken for granted and used to define the local rest frame to rewrite
the kinetic equation from the out set, which implies that the fluid velocity is treated
differently from the other fluid dynamic variables. In the formulation below, we shall
first derive the fluid velocity as an averaged variable. Thenwe show that it turns out to
be identified with the macroscopic vector that defines the local rest frame. Moreover,
this identification is found to be essential to lead the uniqueness of the energy frame.

Although the Boltzmann equation that we adopt is admittedly valid only for a
dilute gas, it is expected that the form of the derived fluid dynamic equation itself
can have a universal nature even for dense systems; this is found plausible if one
recalls the wide applicability of the Navier-Stokes equation beyond dilute systems
although it can be also derived from the non-relativistic Boltzmann equation, as is
shown in [57, 58, 113] and in Chap. 8.

Although the RGmethod extended in the framework of the doublet scheme devel-
oped in Chap. 9 is capable to lead to the causal stable relativistic fluid dynamic equa-
tion [69, 155], i.e., the so called second-order equation, this task is rather involved
and is postponed in the next chapter. This chapter is devoted to the derivation of the
first-order relativistic dissipative fluid dynamic equation based on the RG method
developed in Chap. 5.
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11.2 Preliminaries

We start from recapitulating the basic facts presented in Sect. 10.2 on the relativistic
Boltzmann equation, which reads

pμ∂μ f p(x) = C[ f ]p(x), (10.17)

where f p(x) denotes the one-particle distribution function with pμ being the four-
momentumof the on-shell particlewithmassm, andC[ f ]p(x) is the collision integral
given by

C[ f ]p(x) := 1

2!
∫
dp1

∫
dp2

∫
dp3 ω(p, p1|p2, p3)

×
(
(1 + a f p(x)) (1 + a f p1(x)) f p2(x) f p3(x)

− f p(x) f p1(x) (1 + a f p2(x)) (1 + a f p3(x))
)
, (10.19)

where a takes a fixed value +1, −1 or 0 depending whether a boson, fermion, and
Boltzmann gas is treated. Here the integration measure is expressed in a compact
form as

dp := d3 p
(2π)3 p0

, (10.22)

with p being the spatial components of the four momentum pμ. The transition
probability ω(p, p1|p2, p3) has the important symmetry property (10.20) due to
the interchangeability of particles and the time-reversal invariance.

11.3 Introduction and Properties of Macroscopic Frame
Vector

Since we are interested in the fluid dynamic regime where the time and space depen-
dence of the physical quantities are small, we try to solve the relativistic Boltzmann
equation (10.17) in the situation where the space-time variation of f p(x) is small
and extract a reduced dynamics with a coarse-grained space-time scales from it.

To make a coarse graining with the Lorentz covariance retained, we introduce a
time-like Lorentz covariant vector aμ

F to define the local frame [204, 205],

aμ
F (x), (11.1)

which is directed to the positive time direction
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a0F(x) > 0, (11.2)

with the normalization aμ
F (x)aFμ(x) = 1. Notice that aμ

F (x) may depend on xμ but
not on the momentum pμ.

Although the flowvelocity uμ(x) is simply adopted as themacroscopic flowvector
in the standard method (see Sect. 10.3.1) without any physical reasoning, we shall
give an argument [204, 206] on why aμ

F (x) with the above properties must coincide
with the flow velocity uμ(x) in the next section.

With the use of the projection operator on the space-like vector defined by

�
μν
F (x) := gμν − aμ

F (x)aν
F(x), (11.3)

we decompose the derivative ∂
∂xμ

=: ∂μ into time-like and space-like ones as

∂μ = aμ
F (x)aν

F(x) ∂ν + �
μν
F (x)∂ν = aμ

F (x)
∂

∂τ
+ ∂

∂σμ

, (11.4)

where

∂

∂τ
:= aμ

F ∂μ,
∂

∂σμ

:= �
μν
F ∂ν. (11.5)

Thus, aμ
F (x) specifies the covariant but macroscopic coordinate system where the

local rest frame of the flow velocity and/or the flow velocity itself are defined: Since
such a coordinate system is called frame, we call aμ

F the macroscopic frame vector.
Then, the relativistic Boltzmann equation (10.17) in the new coordinate system

(τ , σμ) is written as

p · aF(τ , σ )
∂

∂τ
f p(τ , σ ) + p · ∂

∂σ
f p(τ , σ ) = C[ f ]p(τ , σ ), (11.6)

where aμ
F (τ , σ ) ≡ aμ

F (x) and f p(τ , σ ) ≡ f p(x). We remark the prefactor of the
time derivative is a Lorentz scalar and positive definite;

p · aF(τ , σ ) > 0, (11.7)

which is easily verified by taking the rest frame of p0.
Now, as was done in the standard method in Sect. 10.3.1 and also in the non-

relativistic case (see Eq. (8.41)), we introduce a scaled spatial coordinate

σ̄ μ := ε σμ → σμ. (11.8)

Then Eq. (11.6) is converted into
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∂

∂τ
f p(τ , σ ) = 1

p · aF(τ , σ )
C[ f ]p(τ , σ ) − ε

1

p · aF(τ , σ )
p · ∂

∂σ
f p(τ , σ ).

(11.9)

Here, the parameter ε is a measure of the non-uniformity of the system and may
be identified with the ratio of the mean free path to the representative macroscopic
length scale of the system, i.e., the Knudsen number:

K = 


L
, 
 : mean free path, L : macroscopic length scale. (11.10)

Conversely speaking, the present analysis will not be applicable to the Knudsen
regime where the mean free path is much larger than the macroscopic inhomo-
geneities of the system [67] nor Knudsen layer with a thickness as tiny as a few
mean free path near the wall [68].

11.4 Perturbative Solution to Relativistic Boltzmann
Equation and RG/E Equation as Macroscopic
Dynamics

Because of the presence of a small parameter, Eq. (11.9) has a form suitable to apply
the perturbation theory. In the physical terms, the fact that the expansion parameter
ε is attached to the spatial derivative implies that only the spatial inhomogeneity
causes the dissipative effects, as was the case in the non-relativistic case in Chap. 8.

We shall now apply the RG method to derive the fluid dynamic equation from the
Boltzmann equation (11.9) in the asymptotic region on the basis of the perturbation
theory. It should be noted that the parameter ε will be set back to unity eventually
after the end of calculation.

11.4.1 Construction of Approximate Solution Around
Arbitrary Time in the Asymptotic Region

Let f p(τ, σ ) be an exact solution (with some initial condition posed at a far past time)
in the asymptotic region i.e., the fluid dynamic region, where the time dependence
of the system is slow and the length scales of the inhomogeneities of the system is
large. We assume that the exact solution can be expanded with respect to ε as

f p(τ , σ ) = f (0)
p (τ , σ ) + ε f (1)

p (τ , σ ) + ε2 f (2)
p (τ , σ ) + · · · . (11.11)
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In accordance with the general formulation of the RG method [3, 6, 46], we first
try to obtain the perturbative solution f̃ p to Eq. (11.9) around an arbitrary time τ = τ0
in the asymptotic region with the ‘initial’ value at τ = τ0 set to the exact value as

f̃ p(τ = τ0 , σ ; τ0) = f p(τ0 , σ ). (11.12)

Here we have made explicit that the solution may depend on the ‘initial’ time τ0.
An important remark is in order here: We suppose that the time variation of

aμ
F (τ , σ ) is as small as, say, that of the flow velocity, and hence much smaller than
the typical time variation of themicroscopic processes as described by theBoltzmann
equation. We are, however, seeking for a local solution to Eq. (11.9) that suffices to
be valid only around τ � τ0 in the RG method. Therefore the time dependence of
aμ
F (τ , σ ) in Eq. (11.9) may be neglected and set to the value aμ

F (τ0 , σ ) as

aμ
F (τ , σ ) → aμ

F (τ0 , σ ) =: aμ
F (σ ; τ0), (11.13)

for the purpose of obtaining a local solution around τ � τ0 in the RG method. Then
we only have to solve the modified equation

∂

∂τ
f p(τ , σ ) = 1

p · aF(σ ; τ0)
C[ f ]p(τ , σ ) − ε

1

p · aF(σ ; τ0)
p · ∂

∂σ
f p(τ , σ ).

(11.14)

The solution to (11.14) is expanded with respect to ε as follows;

f̃ p(τ , σ ; τ0) = f̃ (0)
p (τ , σ ; τ0) + ε f̃ (1)

p (τ , σ ; τ0) + ε2 f̃ (2)
p (τ , σ ; τ0) + · · ·

(11.15)

with the ‘initial’ condition posed on each term to coincide with the corresponding
exact value at τ = τ0 as

f̃ (l)
p (τ0 , σ ; τ0) = f (l)

p (τ0 , σ ), l = 0, 1, 2, . . . . (11.16)

Inserting the above expansions into Eq. (11.14) and equating the respective terms
proportional to εn (n = 0, 1, 2, . . . ), we obtain the equation for f̃ (n)

p (τ0 , σ ; τ0).
The zeroth-order equation reads

∂

∂τ
f̃ (0)
p (τ , σ ; τ0) = 1

p · aF(σ ; τ0)
C[ f̃ (0)]p(τ , σ ; τ0). (11.17)

Since we are interested in the slow motion in the asymptotic region with large τ0. we
take the stationary solution or the fixed point,
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∂

∂τ
f̃ (0)
p (τ , σ ; τ0) = 0, (11.18)

or

1

p · aF(σ ; τ0)
C[ f̃ (0)]p(τ , σ ; τ0) = 0, ∀σ, (11.19)

which implies that ln f̃ (0)
p (τ , σ ; τ0) can be represented as a linear combination of

the five collision invariants (1 , pμ) as shown in Sect. 10.2, and hence the zero-th
order solution is nothing but a local equilibrium distribution function (10.33) as
expressed by

f̃ (0)
p (τ , σ ; τ0) = 1

exp{[p · u(σ ; τ0) − μ(σ ; τ0)]/T (σ ; τ0)} − a
=: f eqp (σ ; τ0).

(11.20)

Accordingly, the ‘initial’ value at τ = τ0 reads

f (0)
p (τ0 , σ ) = f̃ (0)

p (τ0 , σ ; τ0) = f eqp (σ ; τ0).

We emphasize that the Gibbs relation plays an essential role [68] in making the quan-
tum local equilibrium distribution function expressed in terms of the fluid dynamic
variables including the flow velocity as given by (10.33) and accordingly (11.20).

Now we demonstrate that the equality

aμ
F (σ ; τ0) = uμ(σ ; τ0). (11.21)

Since uμ and ∂μ are the only available Lorentz vectors at hand, the generic Lorentz-
covariant vector is expressed as

aμ
F (x) = A1(x) u

μ + A2(x) ∂μT + A3(x) ∂μμ + A4(x) u
ν ∂νu

μ, (11.22)

where Ai (x) with i = 1, 2, 3, 4 are arbitrary Lorentz-scalar functions. We assume
that the possible space-time dependence of them only come through the temperature
and the chemical potential;

Ai (x) = Ai (T (x), μ(x)). (11.23)

Now utilizing the decomposition of the derivative ∂μ

∂μ = uμ uν ∂ν + �μν ∂ν = uμ D + ∇μ, (D := uμ ∂μ; ∇μ := (gμν − uμ uν)∂ν),

(11.24)

we can rewrite Eq. (11.22) as
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aμ
F = (A1 + A2 DT + A3 Dμ) uμ + A2 ∇μT + A3 ∇μμ + A4 Duμ

≡ Ct (T, μ) uμ + δwμ, (11.25)

where

Ct (T, μ) := A1 + A2 DT + A3 Dμ, δwμ := A2 ∇μT + A3 ∇μμ + A4 Duμ.

(11.26)

Now the relative magnitudes of Ct (T, μ) and δwμ matters in the present argument,
although the equality a2F = 1 gives aminor constraint on them at the present stage. An
important observation here is that the terms with coefficients A2, A3, and A4 in δwμ

are all derivative terms, which are supposed to be small in the fluid dynamic regime
even in the dissipative regime if the dynamics is governed by the fluid dynamics at
all. In fact, as for the space-like derivative terms with the coefficients A2 and A3 in
δwμ are of higher order with respect to the dissipative effect and should be ignored
in the perturbative approach which we adopt, where dissipative effects are treated
as a perturbation. Then as for the time-like derivative term with A4 in δwμ should
be also ignored in the outset, because the unperturbed solution in the perturbative
approach adopted is stationary with no time dependence. Thus we conclude that the
equality (11.21) holds.1

We remark that the five integral constants T (σ ; τ0), μ(σ ; τ0), and uμ(σ ; τ0)

may equally depend on τ0 as well as σ . For making the expressions simple, we
introduce the following quantity with the equality (11.21) being taken for granted,

f̄ eqp (σ ; τ0) := 1 + a f eqp (σ ; τ0)

= e[p·u(σ ; τ0)−μ(σ ; τ0)]/T (σ ; τ0)

e[p·u(σ ; τ0)−μ(σ ; τ0)]/T (σ ; τ0) − a
, (11.27)

and suppress the coordinate arguments (σ ; τ0) and themomentum subscript p, when
no misunderstanding is expected

11.4.1.1 Properties of the Linear Evolution Operator and the Adequate
Inner Product

The first-order equation reads

∂

∂τ
f̃ (1)
p (τ ) =

∫
dq ( f eqp f̄ eqp ) L̂ pq ( f eqq f̄ eqq )−1 f̃ (1)

q (τ ) + ( f eqp f̄ eqp ) Fp, (11.28)

1 We shall show in Sect. 11.6.1 that even if we were to include δwμ, the leading term of δwμ in the
resultant fluid dynamic equation is of third order with respect to temporal and spatial derivatives
of the fluid variables, which are of higher order than the dissipative terms in the fluid dynamic
equations and negligible.
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where the linear evolution operator L̂ and the inhomogeneous term Fp are defined
by

L̂ pq := 1

p · u L pq

= − 1

p · u
1

2!
∫
dp1

∫
dp2

∫
dp3 ω(p , p1|p2 , p3)

× f eqp1 f̄ eqp2 f̄ eqp3
f̄ eqp

(δpq + δp1q − δp2q − δp3q), (11.29)

Fp := −( f eqp f̄ eqp )−1 1

p · u p · ∇ f eqp , (11.30)

respectively.We remark that now that the equality (11.21) holds, we have the identity
∂

∂σμ
= ∇μ. We also note that L ( �= L̂) in the first line of Eq. (11.29) is nothing but

the linearized collision integral introduced in Eq. (10.56), and the linear evolution
operator L̂ is proportional to but not the same as L .

To discuss the spectral properties of the linear operator L̂ , we first introduce an
inner product

〈ϕ , ψ 〉 :=
∫
dp (p · u) f eqp f̄ eqp ϕp ψp, (11.31)

for arbitrary two vectors ϕp and ψp. It should be noted that this inner product is a
unique one that respects the self-adjoint nature of L̂ shown in (11.33).2

We remark that the norm defined through this inner product is positive definite

〈ϕ , ϕ 〉 =
∫
dp (p · u) f eqp f̄ eqp (ϕp)

2 > 0, for ϕp �= 0, (11.32)

since (p · u) > 0 on account of Eqs. (11.7) and (11.21).We shall see that this positive
definiteness (11.32) of the inner product plays an essential role inmaking the resultant
fluid dynamic equation assure the stability of the thermal equilibrium state, as it
should be, in contrast to some phenomenological equations.

Now one finds the following remarkable properties of the linear operator L̂:

(1) L̂ is self-adjoint with respect to this inner product:

〈ϕ , L̂ ψ 〉 = − 1

2!
1

4

∫
dp

∫
dp1

∫
dp2

∫
dp3 ω(p , p1|p2 , p3) f

eq
p f

eq
p1 f̄

eq
p2 f̄

eq
p3

× (ϕp + ϕp1 − ϕp2 − ϕp3) (ψp + ψp1 − ψp2 − ψp3)

= 〈 L̂ ϕ , ψ 〉. (11.33)

2 A proof of the uniqueness of it is presented in Appendix 13.1.
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(2) L̂ is semi-negative definite:

〈ϕ , L̂ ϕ 〉 = − 1

2!
1

4

∫
dp

∫
dp1

∫
dp2

∫
dp3ω(p , p1|p2 , p3) f eqp f eqp1 f̄ eqp2 f̄ eqp3

× (ϕp + ϕp1 − ϕp2 − ϕp3)
2

≤ 0. (11.34)

This inequality implies that the eigenvalues of L̂ are negative or zero. Indeed,
L̂ has multiple zero eigenvalues, and the eigenvectors belonging to the zero
eigenvalues are given by

ϕα
0p :=

{
pμ, α = μ,

1, α = 4,
, (11.35)

which accordingly satisfy

[
L̂ ϕα

0

]
p ≡

∫
dq L̂ pq ϕα

0q = 0. (11.36)

These five eigenvectors span the kernel of L̂ , and are called the zero modes of
L̂ . It is to be noted that these zero modes are collision invariants, which satisfy

∫
dp ϕα

0p C[ f ]p = 0, (11.37)

as seen from Eqs. (10.24) and (10.25) in Chap. 10.

The kernel of L̂ is also called the P space, and its complement space the Q
space; the projection operators onto the respective spaces are denoted by P and Q,
respectively. Of course,

Q = 1 − P. (11.38)

To express the projection operators, it is found convenient to first define the P-space
metric matrix η

αβ

0 ;

η
αβ

0 := 〈ϕα
0 , ϕ

β

0 〉. (11.39)

Then the projection operator P is expressed as [6]

[
P ψ

]
p

:=
∑
α,β

ϕα
0p η−1

0αβ 〈ϕ
β

0 , ψ 〉, (11.40)

where η−1
0αβ is the inverse of the metric matrix η

αβ

0 ;
∑

γ η−1
0αγ η

γβ

0 = δβ
α .
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Let us show that the operator P has certainly the properties of the projection
operator onto the P space spanned by the zero modes. First, the idempotency of P is
shown as follows:

[
P(P ψ)

]
p = P

(∑
γ,σ

ϕ
γ

0p η−1
0γ σ 〈ϕσ

0 , ψ 〉
)

=
∑
α,β

∑
γ,σ

ϕα
0p η−1

0αβ 〈ϕ
β

0 , ϕ
γ

0 〉 η−1
0γ σ 〈ϕσ

0 , ψ 〉

=
∑
α,β

∑
γ,σ

ϕα
0p η−1

0αβ η
βγ

0 η−1
0γ σ 〈ϕσ

0 , ψ 〉

=
∑
α,β

∑
σ

ϕα
0p η−1

0αβ δβ
σ 〈ϕσ

0 , ψ 〉

=
∑
α,β

ϕα
0p η−1

0αβ 〈ϕ
β

0 , ψ 〉

= [
P ψ

]
p, ∀ψ, (11.41)

which implies that the idempotency P ,

P2 = P. (11.42)

It follows also that Q2 = (1 − P)2 = 1 − 2P + P2 = 1 − P = Q. Accordingly,
their eigenvalues are real numbers, 0 and 1. Furthermore,

[
Pϕ

γ

0

]
p =

∑
α,β

ϕα
0p η−1

0αβ 〈ϕ
β

0 , ϕ
γ

0 〉

=
∑
α,β

ϕα
0p η−1

0αβ η
βγ

0

=
∑

α

ϕα
0p δγ

α

= ϕ
γ

0p, (11.43)

and accordingly,

[
Qϕ

γ

0

]
p = [

(1 − P)ϕ
γ

0

]
p = 0. (11.44)

It is then readily shown that P and hence Q is self-adjoint with this inner product;
to show that this is the case, it suffices to demonstrate that 〈ϕα

0 , P ϕ
β

0 〉 = η
αβ

0 =
〈 P ϕα

0 , ϕ
β

0 〉, which is self-evident.
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11.4.1.2 First-Order Analysis

The solution to Eq. (11.28) with the ‘initial’ condition at τ = τ0

f̃ (1)(τ = τ0) := f̃ (1)
p (τ = τ0 , σ ; τ0) = f (1) := f (1)

p (σ ; τ0), (11.45)

is given by

f̃ (1)(τ ) = f eq f̄ eq
{
e(τ−τ0)L̂

[
( f eq f̄ eq)−1 f (1) + L̂−1 Q F

]

+ (τ − τ0) P F − L−1 Q F

}
, (11.46)

with

[
f eq

]
pq

:= f eqp δpq and
[
f̄ eq

]
pq

:= f̄ eqp δpq . (11.47)

The first term in Eq. (11.46) belongs to the Q space, and would create fast motion
that is not included in the fluid dynamics. This undesirable term can be, however, sim-
ply eliminated by choosing the ‘initial’ value f (1), which has not yet been specified,
as

f (1) = f̃ (1)(τ0) = − f eq f̄ eq L̂−1 Q F. (11.48)

Then, the first-order solution is now given by

f̃ (1)(τ ) = f eq f̄ eq
[
(τ − τ0) P F − L̂−1 Q F

]
, (11.49)

with the ‘initial’ value (11.48). The secular term proportional to τ − τ0 in Eq. (11.49)
apparently invalidates the perturbative solution when |τ − τ0| becomes large.

It is worth mentioning that the standard Chapman-Enskog expansion method
[67] presented in Sect. 10.3.1 includes a set of conditions for making secular terms
disappear, which are nothing but the solvability condition of the balance Eqs. (10.64).
In the present RGmethod, secular terms are allowed to appear and no constraints are
imposed on the distribution function in an apparent way. In fact, the effects of the
secular terms will be renormalized away into the unperturbed distribution function,
which is in turn to acquire the slow time dependence.

We remark here that the application of the RG/E equation to f̃ (τ ) = f̃ (0)(τ ) +
ε f̃ (1)(τ ) leads to the relativistic Euler equation ∂μT

μν
0 = ∂μN

μ
0 = 0 with

T μν
0 = e uμ uν − P �μν, Nμ

0 = n uμ, (11.50)

where e, P , and n denote the internal energy, pressure, particle-number density
defined in Eqs. (10.38)–(10.40), respectively. We note that the explicit formulae of
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T μν
0 and Nμ

0 calculated with the distribution function coincide with those given in
Eqs. (10.36) and (10.37), respectively. A detailed derivation of them will be given in
Sect. 11.4.1.4.

One thus finds that one must proceed to the second order to get a dissipative fluid
dynamic equation in the RG method,

11.4.1.3 Second-Order Analysis

The second-order equation reads

∂

∂τ

[
( f eq f̄ eq)−1 f̃ (2)(τ )

]
= L̂

[
( f eq f̄ eq)−1 f̃ (2)(τ )

]

+ (τ − τ0)
2 G + (τ − τ0) H + I, (11.51)

with

Gp := 1

2

[
B[P F , P F]]p, (11.52)

Hp := −[
B[P F , L̂−1 Q F]]p − ( f

eq
p f̄

eq
p )−1 1

p · u p · ∇[
f eq f̄ eq P F

]
p, (11.53)

Ip := 1

2

[
B[L̂−1 Q F , L̂−1 Q F]]p + ( f

eq
p f̄

eq
p )−1 1

p · u p · ∇[
f eq f̄ eq L̂−1 Q F

]
p.

(11.54)

Here, we have defined
[
B[ϕ , ψ]]p for arbitrary functions ϕ and ψ of momentum

by

[
B[ϕ , ψ]]p :=

∫
dq

∫
dr Bpqr ϕq ψr , (11.55)

with

Bpqr := ( f eqp f̄ eqp )−1 1

p · u
δ2

δ fqδ fr
C[ f ]p

∣∣∣∣
f = f eq

( f eqq f̄ eqq ) ( f eqr f̄ eqr )

= 1

p · u
1

2!
∫
dp1

∫
dp2

∫
dp3 ω(p , p1|p2 , p3)

f eqp1 f̄ eqp2 f̄ eqp3
f̄ eqp

×
{
(δp2q δp3r + δp3q δp2r − δpq δp1r − δp1q δpr ) (1 − f̄ eqq − f̄ eqr )

+
[
(δp2q + δp3q) (δpr + δp1r )

− (δpq + δp1q) (δp2r + δp3r )
]
( f̄ eqq − f̄ eqr )

}
. (11.56)
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The solution to Eq. (11.51) is found to be

f̃ (2)(τ ) = f eq f̄ eq
{
e(τ−τ0)L̂

[
( f eq f̄ eq)−1 f (2) + 2 L̂−3 Q G + L̂−2 Q H + L̂−1 Q I

]

+ 1

3
(τ − τ0)

3 P G + 1

2
(τ − τ0)

2
[
P H − 2 L̂−1 Q G

]

+ (τ − τ0)
[
P I − 2 L̂−2 Q G − L̂−1 Q H

]

− 2 L̂−3 Q G − L̂−2 Q H − L̂−1 Q I

}
. (11.57)

The would-be fast motion can be eliminated again by a choice of the ‘initial’ value
f (2) as

f (2) = f̃ (2)(τ0) = − f eq f̄ eq
[
2 L̂−3 Q G + L̂−2 Q H + L̂−1 Q I

]
. (11.58)

Then the second-order solution is now expressed as

f̃ (2)(τ ) = f eq f̄ eq
{
1

3
(τ − τ0)

3 P G + 1

2
(τ − τ0)

2
[
P H − 2 L̂−1 Q G

]

+ (τ − τ0)
[
P I − 2 L̂−2 Q G − L̂−1 Q H

]

− 2 L̂−3 Q G − L̂−2 Q H − L̂−1 Q I

}
. (11.59)

In contrast to the standardChapman-Enskog expansionmethod [67], secular terms
are present and that no constraints on the solution are imposed for defining the rest
frame of the flow.

Thus the approximate solution up to the second order is given by

f̃ p(τ , σ ; τ0) = f̃ (0)
p (τ , σ ; τ0) + ε f̃ (1)

p (τ , σ ; τ0) + ε2 f̃ (2)
p (τ , σ ; τ0) + O(ε3)

= f eq + ε f eq f̄ eq
[
(τ − τ0) P F − L̂−1 Q F

]

+ ε2 f eq f̄ eq
{
1

3
(τ − τ0)

3 P G + 1

2
(τ − τ0)

2
[
P H − 2 L̂−1 Q G

]

+ (τ − τ0)
[
P I − 2 L̂−2 Q G − L̂−1 Q H

]

− 2 L̂−3 Q G − L̂−2 Q H − L̂−1 Q I

}
+ O(ε3), (11.60)

which is valid only locally around τ = τ0 due the secular terms.
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11.4.1.4 Extraction of the Fluid Dynamics Through RG/E Equation

Following the general argument of the RGmethod presented in Chap. 4, we can take
a geometrical point of view that we have now a family of curves f̃ p(τ , σ ; τ0) given
by (11.60)which are parameterized by τ0: They are all on the exact solution f p(σ ; τ)

at τ = τ0 up to O(ε2), but only valid locally for τ near τ0. So it is conceivable and
actually the case that the envelope of the family of curves which contacts with each
local solution at τ = τ0 will give a global solution in the asymptotic region.

The envelope which contact with any curve in the family at τ = τ0 is obtained by
the RG/E equation,

d

dτ0
f̃ p(τ , σ ; τ0)

∣∣∣∣
τ0=τ

= 0, (11.61)

or explicitly

∂

∂τ

[
f eq − ε f eq f̄ eq L̂−1 Q F

]
− ε f eq f̄ eq P F

− ε2 f eq f̄ eq
[
P I − 2 L̂−2 Q G − L̂−1 Q H

]
+ O(ε3) = 0, (11.62)

which gives the equation of motion governing the dynamics of the five slow vari-
ables T (σ ; τ), μ(σ ; τ), and uμ(σ ; τ) in f eqp (σ ; τ). The global solution in the
asymptotic region is given as an envelope function,

f Ep (τ , σ ) = f p(σ ; τ0 = τ) = f̃ p(τ , σ ; τ0 = τ)

= f eq − ε f eq f̄ eq L̂−1 Q F − ε2 f eq f̄ eq
[
2 L̂−3 Q G

+ L̂−2 Q H + L̂−1 Q I
]∣∣∣∣

τ0=τ

+ O(ε3), (11.63)

where the solution of Eq. (11.62) is to be inserted.
As was proved in Chap. 4 in general, the envelope function f Ep (τ , σ ) satisfies

Eq. (11.14) in a global domain up to O(ε2) owing to the condition (11.61), although
f̃ p(τ , σ ; τ0) itself was constructed as a local solution around τ ∼ τ0. Furthermore,
one finds that f Ep (τ , σ ) describes a slow motion of the one-particle distribution
function since the time-derivatives of the quantities in f Ep (τ , σ ) are all in the order
of ε or higher.

In summary, we have obtained an approximate solution to Eq. (11.9) that is valid
in a global domain in the asymptotic region in the form of the pair of Eqs. (11.62)
and (11.63); the latter provides gives the functional form of the distribution function
written solely in terms of the fluid dynamical variables while the former the time-
evolution equations of the fluid dynamical variables, which is to be reduced to the
fluid dynamic equation.
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11.4.1.5 Reduction of RG/E Equation to the Fluid Dynamic Equation

We observe that the RG/E equation (11.62) includes fast modes that should not be
identified as the fluid dynamic modes. While these modes could be incorporated
to make a Langevinized fluid dynamic equation, we average out them to have the
genuine fluid dynamic equation. This averaging can be made by taking the inner
product of Eq. (11.62) with the zero modes ϕα

p .
To calculate the inner product explicitly, we first note that the following equalities

hold;

〈ϕα
0 , P ψ 〉 = 〈 P ϕα

0 , ψ 〉 = 〈ϕα
0 , ψ 〉, (11.64)

〈ϕα
0 , Q ψ 〉 = 〈 Q ϕα

0 , ψ 〉 = 0. (11.65)

for arbitrary ψ . Indeed Eqs. (11.64) and (11.65) follow from the self-adjointness
of the projection operators and (11.43) and (11.44). Then one sees that following
equality holds because of L̂−1Q = QL̂−1Q,

ε 〈ϕα
0 , P F〉 + ε2 〈ϕα

0 ,
[
P I − 2 L̂−2 Q G − L̂−1 Q H

]
〉

= ε 〈ϕα
0 , F + ε I 〉

= ε

∫
dp ϕα

0p p · ∇
[
f eqp − ε f eqp f̄ eqp

[
L̂−1 Q F

]
p

]

+ ε2
1

2
〈ϕα

0 , B[L̂−1 Q F , L−1 Q F]〉. (11.66)

However, owing to the fact thatϕα
0p are the collision invariants as shown inEq. (11.37),

one can show the equality3

〈ϕα
0 , B[ψ , χ ] 〉 = 0. (11.67)

Thus, Eq. (11.66) takes the form

ε 〈ϕα
0 , P F〉 + ε2 〈ϕα

0 ,
[
P I − 2 L̂−2 Q G − L̂−1 Q H

]
〉

= ε

∫
dp ϕα

0p p · ∇
[
f eqp − ε f eqp f̄ eqp

[
L̂−1 Q F

]
p

]
, (11.68)

and accordingly the averaging by the inner product leads to

∫
dp ϕα

0p

[
(p · u)

∂

∂τ
+ ε p · ∇

][
f eqp − ε f eqp f̄ eqp

[
L̂−1 Q F

]
p

]
= 0,

(11.69)

3 A detailed proof of Eq. (11.67) is presented in Appendix 13.5.
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up to the second order.
Putting back ε = 1 in Eq. (11.69), and using the identity

(p · u)
∂

∂τ
+ p · ∇ = pμ ∂μ, (11.70)

which follows from Eq. (11.5) together with aμ
F = uμ, we arrive at

∂μ J
μα = 0, (11.71)

with

Jμα :=
∫
dp pμ ϕα

0p

[
f eqp − f eqp f̄ eqp

[
L̂−1 Q F

]
p

]
. (11.72)

This is the fluid dynamic equation that we wanted. Indeed it is worth noting that
Jμα perfectly agrees with the one obtained by inserting the solution f Ep (τ , σ ) in Eq.
(11.63) into Nμ and T μν in Eq. (10.27):

Nμ = Jμ4, T μν = Jμν. (11.73)

Thuswe confirm that Eq. (11.71) is the relativistic dissipative fluid dynamic equation.
The current Jμα is decomposed into two parts as Jμα = Jμα

0 + δ Jμα , where

Jμα
0 :=

∫
dp pμ ϕα

0p f eqp , (11.74)

δ Jμα := −
∫
dp pμ ϕα

0p f eqp f̄ eqp
[
L̂−1 Q F

]
p = −〈 ϕ̃

μα
1 , L̂−1 Q F 〉,(11.75)

with

ϕ̃
μα
1p := pμ ϕα

0p
1

p · u . (11.76)

As one can readily recognize, Jμα
0 and δ Jμα represent the ideal and dissipative parts

of the current, respectively. Correspondingly, Nμ and T μν in Eqs. (11.73) are also
decomposed into the ideal and dissipative parts as

Nμ = Nμ
0 + δNμ, T μν = T μν

0 + δT μν, (11.77)

respectively, where

Nμ
0 := Jμ4

0 , δNμ := δ Jμ4, (11.78)

T μν
0 := Jμν

0 , δT μν := δ Jμν. (11.79)
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Let us reduce the expression of the dissipative part δ Jμα to a simpler form. First,
we note that F in Eq. (11.30) is written as

Fp = −ϕ̃
μ4
1p ∇μ

μ

T
+ ϕ̃

μν
1p ∇μ

uν

T
= −ϕ̃

μα
1p ∇μXα, (11.80)

where

Xα :=
{−uν/T, α = ν,

μ/T, α = 4.
(11.81)

We also note the identity

〈ϕ , L−1 Q ψ 〉 = 〈 Q ϕ , L̂−1 Q ψ 〉. (11.82)

Then one finds that the dissipative part δ Jμα takes the following form,

δ Jμα = η
μανβ

1 ∇νXβ, (11.83)

with

η
μανβ

1 := 〈ϕ
μα
1 , L̂−1 ϕ

νβ

1 〉, (11.84)

where

ϕ
μα
1p := [

Q ϕ̃
μα
1

]
p. (11.85)

Note that ϕμα
1p �= ϕ̃

μα
1 . Equation (11.83) expresses that the dissipative current is given

by a product of quantities of different physical significances. Indeed η
μανβ

1 has some
information about the transport coefficients, while ∇νXβ is identical to the corre-
sponding thermodynamic forces.

Using Eqs. (11.69) and (11.80), we canwrite down the relativistic dissipative fluid
dynamic equation defined in the covariant coordinate system (σ ; τ) as

∫
dp ϕα

0p

[
(p · u)

∂

∂τ
+ p · ∇

][
f eqp + f eqp f̄ eqp

[
L̂−1 ϕ

νβ
1

]
p ∇νXβ

]
= 0. (11.86)

It will be found that this form of the relativistic dissipative fluid dynamic equation
plays an essential role in the stability analysis of the fluid dynamics presented in
Sect. 11.6.2.
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11.5 First-Order Fluid Dynamic Equation and Microscopic
Expressions of Transport Coefficients

In this section, we give the explicit form of the currents Jμα = Jμα
0 + δ Jμα and

accordingly have the relativistic dissipative fluid dynamic equations with the micro-
scopic expressions of the transport coefficients.

A simple calculation of the integral in Eq. (11.74) for Jμα
0 leads to the following

form of the ideal part,

Jμα
0 =

{
e uμ uν − P �μν, α = ν,

n uμ, α = 4,
(11.87)

where e, P , and n denote the internal energy, pressure, and particle-number density,
respectively, the explicit forms of which are given in Eqs. (10.38)–(10.40).

The dissipative part δ Jμα is given by (11.83). Since Xβ in (11.83) is already given
by (11.81), let us calculate the remaining factor η

μανβ

1 in Eq. (11.83), which task is
tantamount to that of ϕ

μα
1p as seen from Eq. (11.84).

By the straightforward calculation presented in Chap.13. we see that ϕ
μα
1p takes

the form

ϕ
μα
1p =

{−�μν �̂p + π̂μν
p , α = ν,

n

e + P
Ĵμ
p , α = 4.

(11.88)

Here, �̂p, Ĵ
μ
p , and π̂

μν
p are themicroscopic representations of the dissipative currents

whose definitions are given by

(�̂p, Ĵμ
p , π̂μν

p ) := 1

p · u (�p, Jμ
p , πμν

p ). (11.89)

with

�p = (p · u)2
[
1

3
− ∂P

∂e

∣∣∣∣
n

]
− (p · u)

∂P

∂n

∣∣∣∣
e

− 1

3
m2, (11.90)

Jμ
p = −�μν pν

[
(p · u) − e + P

n

]
, (11.91)

πμν
p = �μνρσ pρ pσ . (11.92)

It is to be noted that ϕμα
1p is a linear combination of �̂p, Ĵ

μ
p , and π̂

μν
p , but not that of

�p, J
μ
p , and π

μν
p which have been treated as the microscopic representations of the

dissipative currents in theChapman-Enskog expansionmethod and the Israel-Stewart
fourteen moment method, which are reviewed in Chap. 10.
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Now that the explicit form of ϕ
μα
1p has been obtained as in Eq. (11.88), we can

write down η
μανβ

1 given by (11.84). Thus, noting following identities

〈 Ĵμ , L̂−1 Ĵ ν 〉 = 1

3
�μν 〈 Ĵ a , L̂−1 Ĵa 〉, (11.93)

〈 π̂μν , L̂−1 π̂ρσ 〉 = 1

5
�μνρσ 〈 π̂ab , L̂−1 π̂ab 〉, (11.94)

we have

η
μρνσ
1 = −T ζ �μρ �νσ − 2 T η �μρνσ , (11.95)

η
μρν4
1 = η

ν4μρ
1 = 0, (11.96)

η
μ4ν4
1 = λ

(
n T

e + P

)2

�μν, (11.97)

where

ζ := − 1

T
〈 �̂ , L̂−1 �̂ 〉, (11.98)

λ := 1

3 T 2
〈 Ĵμ , L̂−1 Ĵμ 〉, (11.99)

η := − 1

10 T
〈 π̂μν , L̂−1 π̂μν 〉, (11.100)

which are nothing but the transport coefficients, i.e., the bulk viscosity ζ , the heat
conductivity λ, and the shear viscosity η.

The expressions of the transport coefficients Eqs. (11.98)–(11.100) can be cast
into the forms

ζ = − 1

T

∫
dp

∫
dq f eqp f̄ eqp �p L

−1
pq �q , (11.101)

λ = 1

3 T 2

∫
dp

∫
dq f eqp f̄ eqp Jμ

p L−1
pq Jqμ, (11.102)

η = − 1

10 T

∫
dp

∫
dq f eqp f̄ eqp πμν

p L−1
pq πqμν, (11.103)

respectively. Here, �p, J
μ
p , and π

μν
p are the microscopic representations of the dis-

sipative currents given by Eqs. (11.90)–(11.92), and L−1
pq = L̂−1

pq (q · u)−1 denotes

the inverse matrix of L pq = (p · u) L̂ pq . It turns out that these expressions are in
agreement with those obtained by the Chapman-Enskog expansion method [67]; see
Eqs. (10.94), (10.95), and (10.96).

Now, let us rewrite the expressions of ζ , λ, and η in a more familiar form, i.e.,
the Green-Kubo formula [142, 207, 208] in the linear response theory [54, 55, 115,
138, 209]. Frist we define the ‘time-evolution’ operator es L̂ that acts on an arbitray
vector ψp as
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ψp(s) := [
es L̂ψ

]
p =

∫
dq

[
es L̂

]
pq ψq . (11.104)

Then we itroduce the ‘time-evolved’ dissipative currents by

⎛
⎝ �̂p(s)

Ĵμ
p (s)

π̂
μν
p (s)

⎞
⎠ :=

⎡
⎣es L̂

⎛
⎝ �̂

Ĵμ

π̂μν

⎞
⎠

⎤
⎦

p

=
⎡
⎣es L̂ Q

⎛
⎝ �̂

Ĵμ

π̂μν

⎞
⎠

⎤
⎦

p

, (11.105)

where the last equality holds since all the dissipative currents �̂p , Ĵ
μ
p , and π̂

μν
p belong

to the Q space. Integrating out (11.105) over the whole range of the ’time’ s, we have

∫ ∞

0
ds

⎛
⎝ �̂p(s)

Ĵμ
p (s)

π̂
μν
p (s)

⎞
⎠ = −

⎡
⎣L̂−1

⎛
⎝ �̂

Ĵμ

π̂μν

⎞
⎠

⎤
⎦

p

. (11.106)

where L̂−1 may be understood as L̂−1Q. Then we can rewrite Eqs. (11.98)–(11.100)
as

ζ =
∫ ∞

0
ds R�(s), λ =

∫ ∞

0
ds RJ (s), η =

∫ ∞

0
ds Rπ (s),

(11.107)

with

R�(s) := 1

T
〈 �̂(0) , �̂(s) 〉, (11.108)

RJ (s) := − 1

3 T 2
〈 Ĵμ(0) , Ĵμ(s) 〉, (11.109)

Rπ (s) := 1

10 T
〈 π̂μν(0) , π̂μν(s) 〉, (11.110)

which are called the relaxation functions in the linear response theory [54, 55, 115,
138, 209].

Finally, the dissipative currents δ Jμα are obtained from η
μανβ

1 in Eqs. (11.95)–
(11.97) and ∇νXβ in Eq. (11.81), as follows:

δ Jμα =
⎧⎨
⎩

ζ �μν ∇ · u + 2 η �μνρσ ∇ρuσ , α = ν,

λ

(
n T

e + P

)2

∇μ μ

T
, α = 4.

(11.111)

Here, the following relations have been used: uμ ∇μ = 0 and uν ∇μuν = 0.
Thus, combining Eqs. (11.87) and (11.111), we arrive at the explicit form of the

energy-momentum tensor T μν and particle-number current Nμ as
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T μν = e uμ uν − (P − ζ ∇ · u)�μν + 2 η �μνρσ ∇ρuσ , (11.112)

Nμ = n uμ + λ

(
n T

e + P

)2

∇μ μ

T
, (11.113)

which are in accordance with the identification as

T μν
0 = e uμ uν − P �μν, (11.114)

δT μν = ζ �μν ∇ · u + 2 η �μνρσ ∇ρuσ , (11.115)

Nμ
0 = n uμ, (11.116)

δNμ = λ

(
n T

e + P

)2

∇μ μ

T
. (11.117)

A few comments are in order here:

1. As will be discussed in the next section, the energy-momentum tensor (11.112)
and the particle current (11.113) are those for the first-order relativistic fluid
dynamic equation in the energy frame proposed by Landau and Lifshitz [62].

2. We have obtained the microscopic expressions of the thermodynamic quantities
and transport coefficients together with the energy-momentum tensor and the
particle number current using single microscopic equation, i.e., the relativistic
Boltzmann equation. Then our resultant fluid dynamic equation in the energy
frame has an inherent restriction and also amerit absent in the phenomenological
theory.

3. The explicit forms of them are for the relativistic rarefied gas, inherently. We
would like to remind the reader, however, that the main purpose of the present
work is to determine the form of the relativistic fluid dynamic equations for
a viscous fluid, and expect that the forms of the macroscopic fluid dynamic
equations which contain the thermodynamic quantities and transport coefficients
only parametrically, and hence the forms are independent of the microscopic
expressions of these quantities.

11.6 Properties of First-Order Fluid Dynamic Equation

In this section, we examine some properties of the resultant first-order fluid dynamic
equation, concerning the uniqueness of the local rest frame and the stability of the
equilibrium state.
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11.6.1 Uniqueness of Landau-Lifshitz Energy Frame

We discuss the form of δT μν and δNμ in Eqs. (11.115) and (11.117).
First, as has been mentioned in the last section, these formulae completely agree

with those proposed by Landau and Lifshitz [62]. Indeed, the respective dissipative
parts δT μν and δNμ in Eqs. (11.115) and (11.117) meet Landau and Lifshitz’s ansatz

uμ δT μν uν = 0, (11.118)

uμ δNμ = 0, (11.119)

�μν δT νρ uρ = 0, (11.120)

which are nothing but the constrains imposed in a heuristic way by Landau and
Lifshitz in their phenomenological derivation [62, 67].

Next, we shall discus the underlying meaning of Eqs. (11.118)–(11.120) in the
level of the kinetic equation using the distribution function on the basis of the previous
results [204, 205]. Aswasmentioned above, these equations are usually just imposed
[67] to the higher-order terms of the distribution function as the conditions of fit
without any foundation to select the fluid dynamic equation in the energy frame. We
shall clarify that these conditions are equivalent to the orthogonality condition for
the excited modes expressed in terms of the inner product [204, 205] and hence an
inevitable consequence for the relativistic fluid dynamics in our analysis which is
free from any ansatz.

A manipulation shows [204, 205] that Eqs. (11.79) and (11.78) can be rewritten
as

δT μν = −
∫
dp pμ pν f eqp f̄ eqp

[
L̂−1 Q F

]
p, (11.121)

δNμ = −
∫
dp pμ f eqp f̄ eqp

[
L̂−1 Q F

]
p. (11.122)

It should be emphasized that
[
L̂−1 Q F

]
p belongs to the Q space and thus orthogonal

to the zero modes,

〈ϕα
0 , L̂−1 Q F 〉 = 0, α = 0, 1, 2, 3, 4. (11.123)

Recalling the definition Eq. (11.31) of the inner product, we see that Eq. (11.123)
with α = μ = 0, 1, 2, 3 can be recast into the following form,

0 =
∫
dp (p · u) f eqp f̄ eqp pμ

[
L̂−1 Q F

]
p = −uν δT μν, (11.124)

which readily leads to Eqs. (11.118) and (11.120). Quite similarly, Eq. (11.123) with
α = 4 is reduced to
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0 =
∫
dp (p · u) f eqp f̄ eqp

[
L̂−1 Q F

]
p = −uν δN ν, (11.125)

which is nothing but Eq. (11.119).
A few remarks are in order here:

(i) Our proof of the uniqueness of the energy frame [210] can be traced back to the
identification of the macroscopic frame vector aμ

F with the flow velocity uμ and
the physical assumption that the dissipative effects can be solely attributed to
the spatial inhomogeneity, apart from the Gibbs relation in the local equilibrium
state which leads to the local equilibrium distribution function (11.20), as was
mentioned in Sect. 10.2; see Sect. 2.7 of [68]. Conversely, if one of these condi-
tions were not satisfied, the uniqueness of the energy frame could be violated,
as is argued in [174]; see also [173]. Nevertheless, we shall further show below
that if the macroscopic frame vector aμ

F in Eq. (11.25) retains the space-like term
δwμ, the resulting terms turn out to be of third-order in the derivatives, which is
of higher order than that in the Landau-Lifshitz energy frame.

(ii) In [211], the authors showed, on the basis of the projection operator method
[100, 158, 212], that only the energy frame is natural one for the relativistic
fluid dynamics, at least in the linear regime, if the fluid dynamics is an effective
dynamics described solely by the genuine slow variables of microscopic Hamil-
tonian dynamics at all. In a relatively recent paper [213], Hayata et al. derived
relativistic dissipative fluid dynamic equations in the energy and particle-frame
from quantum field theory on the basis of the nonequilibrium statistical operator
method [209, 214–216], and they showed that if the frame vector (in our ter-
minology) is in the lowest order of the derivative expansion, then the resultant
fluid dynamics becomes uniquely that in the energy frame given by Landau and
Lifshitz, which is in accordance with the present analysis.

(iii) There might be fundamental principles which lead to the unique choice of the
energy frame for the dissipative relativistic fluid dynamic equation as the infrared
effective theory ofmany body systems. The exploration of such principles should
be interesting.

In the rest of this section,we shall show that althoughwe startwith the generic form
of the macroscopic frame vector aμ

F = Ct (T, μ) uμ + δwμ given in Eq. (11.25), the
leading term of the fluid dynamic equation with respect to δwμ is found to become
a third-order in derivatives, and accordingly of higher order than that in the Landau-
Lifshitz energy frame derived by setting aμ

F = uμ from the outset.
By replacing uμ by aμ

F in all of the quantities except for that originated from
f eqp , we can derive straightforwardly the fluid dynamic equation with aμ

F not being
specified. For instance, by this replacement, L̂ pq , ϕ̃

μα
1p , and the inner product are

converted into
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L̂ pq = 1

p · u L pq → 1

p · aF L pq =: L̂ pq (aF), (11.126)

ϕ̃
μα
1p = 1

p · u pμ ϕα
0p → 1

p · aF pμ ϕα
0p =: ϕ̃

μα
1p (aF), (11.127)

〈ψ , χ 〉 =
∫
dp f eqp f̄ eqp (p · u) ψp χp →

∫
dp f eqp f̄ eqp (p · aF) ψp χp, (11.128)

for arbitrary vectors ψp and χp. We note that owing the modification of the inner
product the projection operators P and Q are also modified into

[
P(aF) ψ

]
p = ϕα

0p η−1
0αβ(aF) 〈ϕ

β

0 , ψ 〉, (11.129)

Q(aF) = 1 − P(aF), (11.130)

respectively, where η−1
0αβ(aF) is the inverse matrix of

η
αβ

0 (aF) := 〈ϕα
0 , ϕ

β

0 〉 =
∫
dp f eqp f̄ eqp (p · aF) ϕα

0p ϕ
β

0p. (11.131)

Using these modifications, we obtain the fluid dynamic equation as ∂μNμ(aF) =
∂μT μν(aF) = 0 with

Nμ(aF) = Nμ
0 (aF) + δNμ(aF), (11.132)

T μν(aF) = T μν
0 (aF) + δT μν(aF), (11.133)

where

Nμ
0 (aF) =

∫
dp pμ f eqp , (11.134)

δNμ(aF) = −
∫
dp pμ f eqp f̄ eqp (p · aF)

[
L̂−1(aF) ϕ

νβ

1 (aF)
]
p

× �Fνρ ∂ρXβ, (11.135)

T μν
0 (aF) =

∫
dp pμ pν f eqp , (11.136)

δT μν(aF) = −
∫
dp pμ pν f eqp f̄ eqp (p · aF)

[
L̂−1(aF) ϕ

νβ

1 (aF)
]
p

× �Fνρ ∂ρXβ, (11.137)

where Xα has been defined in Eq. (11.81), �μν
F denotes the projection matrix intro-

duced in Eq. (11.3), L̂−1(aF) is the inverse matrix of L̂(aF), and ϕ
μα
1 (aF) is given

by
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ϕ
μα
1p (aF) =: [

Q(aF) ϕ̃
μα
1 (aF)

]
p

= ϕ̃
μα
1p (aF) − ϕ

β

0p η−1
0βγ (aF) 〈ϕ

γ

0 , ϕ̃
μα
1 (aF) 〉. (11.138)

It is important to note that the zeroth terms Nμ
0 (aF) and T μν

0 (aF) are independent of
aμ
F , and agreewith the particle current and energy-momentum tensor in the relativistic
Euler equation as

Nμ
0 (aF) = n uμ = Nμ

0 , (11.139)

T μν
0 (aF) = e uμ uν − P �μν = T μν

0 , (11.140)

respectively. It is apparent that Nμ
0 (aF) and T μν

0 (aF) contain no differential opera-
tor ∂μ. On the other hand, δNμ(aF) and δT μν(aF) have a dependence on aμ

F , and
manifestly contain terms of the first order of ∂μ.

Here, we shall count the number of ∂μ in δNμ(aF) and δT μν(aF). For this purpose,
we first expand δNμ(aF) and δT μν(aF) with respect to δwμ as

δNμ(aF) = δNμ(u) + ∂

∂aν
F

δNμ(aF)

∣∣∣∣
aF=u

δwν + · · · , (11.141)

δT μν(aF) = δT μν(u) + ∂

∂aρ
F

δT μν(aF)

∣∣∣∣
aF=u

δwρ + · · · , (11.142)

where δNμ(u) and δT μν(u) are nothing but those in the energy frame, i.e., δNμ(u) =
δNμ and δT μν(u) = δT μν .

Then, let us count the number of ∂μ in each terms of Nμ(aF). We find that

Nμ
0 ∼ O(∂0), (11.143)

δNμ(u) ∼ O(∂1), (11.144)

∂

∂aν
F

δNμ(aF)

∣∣∣∣
aF=u

∼ O(∂1), (11.145)

δwν ∼ O(∂1), (11.146)

wherewe note that the counting in Eq. (11.145) has been derived from the fact that the
partial derivative with respect to aμ

F does not change the number of ∂μ that manifestly
exists in δNμ(aF). Thus, we have

∂

∂aν
F

δNμ(aF)

∣∣∣∣
aF=u

δwν ∼ O(∂2). (11.147)

Finally, by combining Eqs. (11.143), (11.144), and (11.147), we have

Nμ(aF) = Nμ(u) + O(∂2). (11.148)
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The same argument can be given for T μν(aF), and we obtain

T μν(aF) = T μν(u) + O(∂2). (11.149)

Thus, the fluid dynamic equation with aμ
F = Ctuμ + δwμ reads

0 = ∂μN
μ(aF) = ∂μN

μ(u) + O(∂3), (11.150)

0 = ∂μT
μν(aF) = ∂μT

μν(u) + O(∂3). (11.151)

The above equations tell us that even if δwμ is left, the resultant fluid dynamic
equation is consistent with one in the energy frame in the fluid dynamic regime.

11.6.2 Generic Stability

In this Appendix, we prove that when the fluid dynamic equation in the energy
frame thus derived is applied with the microscopic representations of the transport
coefficients (11.98)–(11.100) and the thermodynamic quantities, the generic constant
solutions is stable against a small perturbation on account of the positive definiteness
of the inner product Eq. (11.32) [205, 217]. Here the generic constant solutionmeans
a finite homogeneous flow with a constant temperature and a constant chemical
potential, as given by

T (σ ; τ) = T0, μ(σ ; τ) = μ0, uμ(σ ; τ) = u0μ, (11.152)

where T0, μ0, and u0μ are constant. Note that these states include the thermal equi-
librium state, given by u0μ = (1, 0, 0, 0), as a special case.

We shallmake a linear stability analysis for the situationwhere T (σ ; τ),μ(σ ; τ),
and uμ(σ ; τ) are close to the respective constant solutions, and represent them as

T (σ ; τ) = T0 + δT (σ ; τ), (11.153)

μ(σ ; τ) = μ0 + δμ(σ ; τ), (11.154)

uμ(σ ; τ) = u0μ + δuμ(σ ; τ), (11.155)

where the deviations δT , δμ, and δuμ are assumed so small that we only have to
retain the first-order terms of them.

Since these six variables which are not independent of each other because of the
constraint δuμ uμ

0 = 0, we use instead the following five independent variables in
accordance with Eq. (11.81),

δXα =:
{−δ(uμ/T ) = −δuμ/T0 + δT u0μ/T 2

0 , α = μ,

δ(μ/T ) = δμ/T0 − δT μ0/T
2
0 , α = 4.

(11.156)
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Inserting Eq. (11.156) into Eq. (11.86), we obtain the linearized equation governing
δXα , after some manipulations, as

(
〈ϕα

0 , ϕ
β

0 〉 + 〈ϕα
0 , L̂−1 ϕ

νβ

1 〉 ∇ν

) ∂

∂τ
δXβ

+
(
〈 ϕ̃

μα
1 , ϕ

β

0 〉 ∇μ + 〈 ϕ̃
μα
1 , L̂−1 ϕ

νβ

1 〉 ∇μ ∇ν

)
δXβ = 0. (11.157)

Here, we have used the following simple relation

δ( f eqp ) = f eqp f̄ eqp ϕα
0p δXα. (11.158)

We note that all the coefficients in Eq. (11.157) take constant values because they
are solely given by the constant solution (T, μ, uμ) = (T0, μ0, u0μ). Owing to the
orthogonality between the P and Q spaces, Eq. (11.157) is reduced to

η
αβ

0

∂

∂τ
δXβ + Dαβ δXβ = 0. (11.159)

Here η
αβ

0 is the metric tensor defined in (11.39) and Dαβ is defined by

Dαβ =: 〈 ϕ̃
μα
1 , ϕ

β

0 〉 ∇μ + η
μανβ

1 ∇μ ∇ν, (11.160)

with η
μανβ

1 = 〈ϕ
μα
1 , L̂−1 ϕ

νβ

1 〉 given by Eqs. (11.95)–(11.97). Both of η
αβ

0 and Dαβ

are symmetric tensors.
Inserting the ansatz

δXα(σ ; τ) = δ X̃α(k ; �) eik·σ−�τ , (11.161)

into Eq. (11.159), we have the following linear equation,

(� η
αβ

0 − D̃αβ) δ X̃β(k ; �) = 0, (11.162)

with

D̃αβ := i 〈 ϕ̃
μα
1 , ϕ

β

0 〉 kμ − η
μανβ

1 kμ kν . (11.163)

Since δ X̃β(k ; �) �≡ 0, we have the eigenvalue equation

det(� η0 − D̃) = 0, (11.164)

which leads to the dispersion relation

� = �(k). (11.165)
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Now the stability of the generic constant solution (11.152) against a small pertur-
bation is assured when the real part of �(k) is non-negative for any kμ, i.e.,

Re�(k) ≥ 0, ∀kμ, (11.166)

which is shown to be the case below.
First of all, we note that the matrix η0 is a real symmetric and positive-definite

matrix:

wα η
αβ

0 wβ = 〈wα ϕα
0 , wβ ϕ

β

0 〉
= 〈ϕ , ϕ 〉 > 0, wα �= 0, (11.167)

where wα is a component of an arbitrary vector w and ϕp := wα ϕα
0p. Here, we have

used the positive definiteness of the inner product (11.32). Equation (11.167) means
that the inverse matrix η−1

0 exists, and η−1
0 is also a real symmetric positive-definite

matrix. Therefore, using the Cholesky decomposition [218], we can represent η−1
0

as

η−1
0 = tU U, (11.168)

where U denotes a real matrix and tU a transposed matrix of U . Then, Eq. (11.164)
is converted to

det(� I −U D̃ tU ) = 0, (11.169)

where I denotes the unit matrix. Equation (11.169) tells us that�(k) is an eigenvalue
of U D̃ tU .

Next, we prove the following theorem for a complex matrix C :
If Re(C) := (C + C†)/2, which is hermitian, is semi-positive definite, then the

real part of the eigenvalue of C is nonnegative.
[Proof] Let χ be a normalized eigenvector of C belonging to its eigenvalue λ;

C χ = λ χ , (11.170)

with χ† χ = 1. If Re(C) is semi-positive definite, we can suppose that

ψ† Re(C)ψ ≥ 0, ∀ψ . (11.171)

By settingψ = χ in Eq. (11.171) and using Eq. (11.170) and its hermitian conjugate,
we have

(λ + λ∗)/2 ≥ 0, (11.172)
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which means that the real part of the eigenvalue of C is nonnegative. This completes
the proof.

Applying this theorem to the present case, we find that the real part of �(k)
becomes nonnegative for any kμ whenRe(U D̃ tU ) is a semi-positive definitematrix,
which is shown to be the case, as follows;

wα[Re(U D̃tU )]αβwβ = wα[URe(D̃)tU ]αβwβ

= [wU ]α[Re(D̃)]αβ[wU ]β
= −[wU ]α η

μανβ

1 kμ kν [wU ]β
= −〈 kμ [wU ]α ϕ

μα
1 , L̂−1 kν [wU ]β ϕ

νβ

1 〉
= −〈ψ , L̂−1 ψ 〉 ≥ 0, wα �= 0, (11.173)

where

ψp := kμ [wU ]α ϕ
μα
1p . (11.174)

This completes the proof that the generic constant solution in Eq. (11.152) is stable
against a small perturbation.



Chapter 12
RG/E Derivation of Relativistic
Second-Order Fluid Dynamics

12.1 Introduction

In Chap. 11, we have derived the relativistic first-order fluid dynamic equation to
describe macroscopic dynamics of the underlying microscopic kinetic theory given
by the Boltzmann equation on the basis of the RGmethod [1, 38, 39, 48–52, 92–96]
as formulated in [3, 5, 6, 46, 57, 58] and presented in Chap. 5; in the derivation,
the zero modes of the unperturbed operator are utilized.1 The derived equation has
a desirable properties that the microscopic expressions of the transport coefficients
are of the same forms as those given in the established Chapman-Enskog expansion
method [67, 68, 113], and it admits stable constant equilibrium states.2 However, this
equation has a serious short comings as a relativistic theory that it formally violates
the causality, which is actually a common drawbacks inherent in the first-order fluid
dynamic equations.

The causal dissipative fluid dynamic equation needs to be a second-order one in
which some additional, say, excited modes beyond the zero modes are incorporated
to make an extended closed ‘slow’ dynamics. It means that the second-order fluid
dynamic equation can be characterized as the mesoscopic dynamics [64, 144–154],
i.e., the dynamics in the intermediate scales between the macroscopic and micro-
scopic ones as described by the first-order fluid dynamic equation and the Boltzmann
equation or a kinetic equation, respectively.

As is fully accounted for in Chap. 9, the doublet scheme [69, 217] is a general
framework for the construction of the mesoscopic dynamics from the microscopic
dynamics based on the RG method. In fact, the doublet scheme has been applied to
the non-relativistic Boltzmann equation [69, 217], and has successfully led to the
second-order non-relativistic fluid dynamic equation which happens to be a natural

1 As for some historical development of the RG method, see Sect. 1.3.
2 As for the stability problem of dissipative relativistic fluids, see the pioneering work by Hiscock
and Lindblom [63, 219] and subsequent extensive analyses [174, 191, 220–225], and the references
therein.
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extension of the first-order equation, i.e., the Navier-Stokes equation with the micro-
scopic expressions of the transport coefficients as given by the Chapman-Enskog
method [67, 68, 113].

Thus, it is intriguing to apply the doublet scheme in the RG method to the deriva-
tion of relativistic second-order fluid dynamic equations from the relativistic Boltz-
mann equation [67, 68], as the relativistic extension of the non-relativistic case [69,
217]. In this chapter, we derive the relativistic second-order fluid dynamic equation
and the microscopic formulae of the relaxation times as well as the transport coef-
ficients in a systematic way on the basis of the doublet scheme from the relativistic
Boltzmann equation with quantum statistics.

The task to be performed in this chapter is a kind of combination of those in
Chaps. 11 and 9. Thus the next Sect. 12.2 starts from a recapitulation of Chap. 11 and
then the doublet scheme is applied in Sect. 12.3 to construct themesoscopic dynamics
of the relativistic Boltzmann equation and thereby derive the second-order relativistic
fluid dynamic equations with the microscopic expressions of the relaxation times as
well as the transport coefficients. In reproducing some of equations that appeared in
Chap. 11, we shall dare to reproduce the equations in this chapter for convenience
and self-containedness.

In accordance with the first-order one presented in Chap. 11, the resultant fluid
dynamic equation is defined uniquely in the energy frame proposed by Landau and
Lifshitz, and the microscopic representations of the transport coefficients take the
same forms as those given by the Chapman-Enskog expansion method. However,
the resultant microscopic expressions of the relaxation times are different from those
by the Israel-Stewart fourteen moment method, which fails in giving the transport
coefficients given by the Chapman-Enskog method.

It is proved in Sect. 12.7, that the derived second-order fluid dynamic equation
satisfies the causality in the sense that the propagating velocities of the fluctuations
of the fluid dynamic variables do not exceed the speed of light. It is also confirmed
that the equilibrium state is stable for any perturbation described by our equation.

12.2 Preliminaries

As preliminaries, we first recapitulate the first part of Chap. 11 for notational conve-
nience.

To extract the fluid dynamic equation from the relativistic Boltzmann equation

pμ ∂

∂xμ
f p(x) = C[ f ]p(x), (12.1)

in the asymptotic limit, it is best to use a coarse-grained coordinates with the Lorentz
covariance retained, and we introduce the macroscopic frame vector

aμ
F , (aFμa

μ
F = 1, a0F > 0). (12.2)
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to define the local frame [204, 205]. Then the derivative ∂
∂xμ

=: ∂μ is decomposed
into time-like and space-like ones as

∂μ = aμ
F (x) aν

F(x) ∂ν + �
μν
F (x) ∂ν = aμ

F (x)
∂

∂τ
+ ∂

∂σμ

, (12.3)

where �
μν
F (x) = gμν − aμ

F (x) aν
F(x),

∂
∂τ

= aμ
F ∂μ, and ∂

∂σμ
= �

μν
F ∂ν .

Wit the novel coordinate system (τ , σμ), the Boltzmann equation (12.1) is
expressed as

p · aF(τ , σ )
∂

∂τ
f p(τ , σ ) + pμ ∂

∂σμ
f p(τ , σ ) = C[ f ]p(τ , σ ), (12.4)

with aμ
F (τ , σ ) =: aμ

F (x), f p(τ , σ ) =: f p(x) and p · aF(τ , σ ) > 0.
Using a small parameter ε that may be identified with the Knudsen number K ,

i.e., the ratio of the mean free path to the representative macroscopic length scale
of the system, a coarse-grained spatial coordinate is introduced σ̄ μ = ε σμ → σμ.
Then, Eq. (12.4) is converted into the form given by

∂

∂τ
f p(τ , σ ) = 1

p · aF(τ , σ )
C[ f ]p(τ , σ )

−ε
1

p · aF(τ , σ )
pμ ∂

∂σμ
f p(τ , σ ). (12.5)

We apply the doublet scheme in the RGmethod to the Boltzmann equation (12.5)
on the basis of the perturbation theory to obtain the second-order fluid dynamic
equation in the asymptotic region; The parameter ε will be eventually set back to
unity in the end of the calculation.

Let f p(τ, σ ) be an exact solution to (12.5), which is assumed to be expanded
with respect to ε as f p(τ , σ ) = f (0)

p (τ , σ ) + ε f (1)
p (τ , σ ) + ε2 f (2)

p (τ , σ ) + · · · .
We write the perturbative solution to Eq. (12.5) around an arbitrary time τ = τ0 in
the asymptotic region as f̃ p, with the ‘initial’ value at τ = τ0 set to the exact value
as

f̃ p(τ = τ0 , σ ; τ0) = f p(τ0 , σ ). (12.6)

Now, we are interested in a local solution to Eq. (12.5) that only has to be valid
around τ � τ0 in the RG method, and the time scales of the change of aμ

F (τ , σ ) is
supposed to be much larger than the typical time scales of the microscopic processes
as described by the Boltzmann equation. Thus, it is legitimate to neglect the time
dependence of aμ

F (τ , σ ) in Eq. (12.5) and set to the value aμ
F (τ0 , σ ) as aμ

F (τ , σ ) →
aμ
F (τ0 , σ ) =: aμ

F (σ ; τ0) for the purpose of obtaining a local solution around τ � τ0,
and hence we only have to solve the following equation
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∂

∂τ
f p(τ , σ ) = 1

p · aF(σ ; τ0)
C[ f ]p(τ , σ ) − ε

1

p · aF(σ ; τ0)
pμ ∂

∂σμ
f p(τ , σ ),

(12.7)

the solution to which is expanded with respect to ε as follows; f̃ p(τ , σ ; τ0) =
f̃ (0)
p (τ , σ ; τ0) + ε f̃ (1)

p (τ , σ ; τ0) + ε2 f̃ (2)
p (τ , σ ; τ0) + · · · with the ‘initial’ con-

dition posed on each term to coincide with the corresponding exact value at τ = τ0
as

f̃ (l)
p (τ0 , σ ; τ0) = f (l)

p (τ0 , σ ), l = 0, 1, 2, · · · . (12.8)

Inserting the above expansions into Eq. (12.7), we obtain the equation for
f̃ (n)
p (τ0 , σ ; τ0). The zeroth-order equation reads

∂

∂τ
f̃ (0)
p (τ , σ ; τ0) = 1

p · aF(σ ; τ0)
C[ f̃ (0)]p(τ , σ ; τ0). (12.9)

As the solution to describe the slow motion in the asymptotic region we can take the
stationary solution, ∂

∂τ
f̃ (0)
p (τ , σ ; τ0) = 0, or

1

p · aF(σ ; τ0)
C[ f̃ (0)]p(τ , σ ; τ0) = 0, ∀σ, (12.10)

which implies that the zero-th order solution is given by a local equilibrium distri-
bution function as

f̃ (0)
p (τ , σ ; τ0) = 1

e{p·u(σ ; τ0)−μ(σ ; τ0)}/T (σ ; τ0) − a
=: f eqp (σ ; τ0), (12.11)

where uμ can be identified with the flow velocity on the basis of the Gibbs rela-
tion [68], as is mentioned in Sect. 11.4.1, where the following equality is also shown,

aμ
F (σ ; τ0) = uμ(τ0 , σ ), (12.12)

which leads to the following identities

∂

∂τ
= uμ∂μ,

∂

∂σμ

= �μν∂μ =: ∇μ. (12.13)

Note that ∂/∂τ and ∇μ are the Lorentz-covariant temporal and spacial derivatives,
respectively.

It is to be noted that the five integral constants T (σ ; τ0),μ(σ ; τ0), and uμ(σ ; τ0)

equally depend on the ‘initial’ time τ0 as well as the space coordinate σ . To simplify
the expressions, we introduce the following quantity with the equality (12.12) being
taken for granted,
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f̄ eqp (σ ; τ0) := 1 + a f eqp (σ ; τ0) = e[p·u(σ ; τ0)−μ(σ ; τ0)]/T (σ ; τ0)

e[p·u(σ ; τ0)−μ(σ ; τ0)]/T (σ ; τ0) − a
. (12.14)

In the following, we shall suppress the coordinate arguments (σ ; τ0) and the
momentum subscript p, when no misunderstanding is expected.

Now, the first-order equation reads

∂

∂τ
f̃ (1)
p (τ ) =

∫
dq ( f eqp f̄ eqp ) L̂ pq ( f eqq f̄ eqq )−1 f̃ (1)

q (τ ) + ( f eqp f̄ eqp ) F0p, (12.15)

where the linear evolution operator L̂ = (1/p · u)L pq and the inhomogeneous term
F0p are given by3

L̂ pq = − 1

p · u
1

2!
∫
dp1

∫
dp2

∫
dp3 ω(p , p1|p2 , p3)

× f eqp1 f̄ eqp2 f̄ eqp3
f̄ eqp

(δpq + δp1q − δp2q − δp3q), (12.16)

F0p = −( f eqp f̄ eqp )−1 1

p · u p · ∇ f eqp , (12.17)

respectively. Here the operator L is the linearized collision integral introduced in Eq.
(10.56).

In order to present the spectral properties of the linear operator L̂ , it is found
convenient to define the inner product for arbitrary two vectors ϕp and ψp by

〈ϕ , ψ 〉 :=
∫
dp (p · u) f eqp f̄ eqp ϕp ψp. (12.18)

We first remark that the norm defined through this inner product is positive definite

〈ϕ , ϕ 〉 =
∫
dp (p · u) f eqp f̄ eqp (ϕp)

2 ≥ 0, for ϕp 	= 0. (12.19)

Then, as is shown in Sect. 11.4.1.1, we finds the following remarkable properties of
L̂:

(1) L̂ is self-adjoint with respect to this inner product:

〈ϕ , L̂ ψ 〉 = 〈 L̂ ϕ , ψ 〉. (12.20)

(2) L̂ is semi-negative definite:

〈ϕ , L ϕ 〉 ≤ 0, (12.21)

3 F0p here is the same as Fp defined by (11.30) in Chap.11. We have added the subscript 0 to
distinguish it from a similar quantity to appear which is denoted by F1p .
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which inequality implies that the eigenvalues of L̂ are zero or negative. In fact,
the eigenvectors belonging to the zero eigenvalue are given by

ϕ
μ
0p = pμ (μ = 0, 1, 2, 3) and ϕ4

0p = 1, (12.22)

which span the kernel of L̂ and are the zero modes of L̂ as

[
L̂ ϕα

0

]
p

:=
∫
dq L̂ pq ϕα

0q = 0. (α = 0, 1 . . . 4). (12.23)

12.3 First-Order Solution in the Doublet Scheme

To present the solution to the first-order equation (12.15) in a comprehensive way, we
introduce the projection operator P0 onto the kernel of L̂ which is called the P0 space
and the projection operator Q0 onto the Q0 space complement to the P0 space4:

Q0 = 1 − P0. (12.24)

For that, we first define the metric matrix η
αβ

0 for the P0 space as

η
αβ

0 := 〈ϕα
0 , ϕ

β

0 〉. (12.25)

Then the projection operator P0 is defined by

[
P0 ψ

]
p

:= ϕα
0p η−1

0αβ 〈ϕ
β

0 , ψ 〉. (12.26)

where η−1
0αβ is the inverse matrix of η

αβ

0 . As is shown in Chap. 11, we have

P2
0 = P0, Q2

0 = Q0,
[
P0ϕ

α
0

]
p = ϕα

0p,
[
Q0ϕ

α
0

]
p = 0. (12.27)

It is also found that P0 and Q0 are self-adjoint;

〈ψ1 , P0 ψ2〉 = 〈P0 ψ1 , ψ2〉, 〈ψ1 , Q0 ψ2〉 = 〈Q0 ψ1 , ψ2〉, (12.28)

for arbitrary ψ1p and ψ2p.
Now the solution to (12.15) is found to be given in terms of the projection operators

P0 and Q0 as

4 The projection operator P0 (Q0) onto the kernel of L̂ was denoted simply by P (Q) in Chap.11,
so do the subspace P0 (Q0). We have changed the notations for notational convenience in the
subsequent discussions in the present chapter.
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f̃ (1)(τ ) = f eq f̄ eq
[
eL̂(τ−τ0) � + (τ − τ0) P0 F0

+ (eL̂(τ−τ0) − 1) L̂−1 Q0 F0

]
, (12.29)

where

f (1)(τ0, σ ) = f̃ (1)(τ = τ0, σ ; τ0) = f eq f̄ eq �, (12.30)

with � = �(σ ; τ0) being an integral constant.
We can impose the following condition to the ‘initial’ value at τ = τ0 without a

loss of generality,

P0 � = 0, (12.31)

implying that the ‘initial’ value at τ = τ0 contains no zero modes, in accordance with
the basic prescription of the RG method. Indeed, if � were to contain zero modes

pμ αμ + β =: δ�, (12.32)

the ‘initial’ value (12.30) contains in part

f eqp f̄ eqp δ� = f eqp f̄ eqp (pμ αμ + β), (12.33)

which can be nicely written as the derivative of f eqp

δ f eqp = − f eqp f̄ eqp (pμ δ(uμ/T ) − δ(μ/T )). (12.34)

with the identification

− αμ = δ(uμ/T ) = δuμ/T + uμ δ(1/T ), (12.35)

−β = −δ(μ/T ) = −δμ/T − μδ(1/T ). (12.36)

Here we remark that the transverse component of αμ is proportional to δuμ. Thus,
we see that the possible zero modes in � can be renormalized into the local tem-
perature T (τ0, σ ), chemical potential μ(τ0, σ ), and flow velocity uμ(τ0, σ ), which
is tantamount to the redefinition of the ‘initial’ distribution function that is yet to be
determined eventually.

We note the appearance of the secular term proportional to τ − τ0 in Eq. (12.29),
which apparently invalidate the perturbative solution as |τ − τ0| becomes large,
although we only utilize the local properties of the perturbative solutions in the
RG method.

For making the discussions simple and transparent, let us expand e(τ−τ0)L̂ with
respect to τ − τ0 and retain the terms up to the first order,
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Fig. 12.1 Decomposition of the solution space of the Boltzmann equation. (a) The P0 space is
the kernel of the linearized collision operator, while the Q0 space, spanned by excited modes,
is the complement of the P0 space. (b) The Q0 space is further decomposed into the P1 and Q1
spaces:Q0 = P1 + Q1

f̃ (1)(τ ) � f eq f̄ eq
[
� + (τ − τ0) P0 F0 + (τ − τ0) (L̂ � + Q0 F0)

]
. (12.37)

Here the neglected terms of O((τ − τ0)
2) play no role in the RG method.

We are now in a position to discuss one of the central issues in deriving the
second-order fluid dynamic equation in the doublet scheme of the RG method. The
problem is how to extend the vector space beyond that spanned by the zero modes to
accommodate the excited modes that are responsible for the mesoscopic dynamics.

Let us call the vector space to which the excited modes belong the P1 space.
Needless to say, the P1 space is a subspace of theQ0 space; see Fig. 12.1. According to
the general prescription of the doublet scheme given in Chap.9, the only requirement
we have to make is the following:

[R] The tangent space of the perturbative solution at τ = τ0 is as small as possible
to simplify the obtained equation.5

Here, it is to be noted that L̂� and Q0F0 are included in the tangent space because
they are multiplied by τ − τ0 in Eq. (12.37). Thus we should impose the condition
that

(I) The vectors � and L̂−1 Q0 F0 belong to a common vector space,

to meet the requirement [R]. Furthermore the P1 space should accommodate all the
terms except for the zero modes in Eq. (12.37). Thus, we should also impose the
additional requirement:

(II) The P1 space is spanned by L̂� and �.

One sees now that the key ingredient is L̂−1 Q0 F0 for revealing the structure of
the vector space to which it belongs. In fact the following faithful explicit calculation

5 Incidentally one may recall that simplicity of the obtained equation is one of the basic principles
in the reduction theory of dynamical systems [32].
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of the deformation of the distribution function constitutes one of the essential ingre-
dients in the derivation of the second-order fluid dynamic equation in the RGmethod,
which is in contrast to the moment method in which some seemingly plausible ansatz
is adopted without faithfully solving the Boltzmann equation.

The quantity L̂−1 Q0 F0 is computed 6 to be

[
L̂−1 Q0 F0

]
p = [

L̂−1 �̂
]
p

−∇ · u
T

− [
L̂−1 Ĵμ

]
p

1

h
∇μ

μ

T

+ [
L̂−1 π̂μν

]
p

�μνρσ ∇ρuσ

T
, (12.38)

where

�̂p := 1

p · u
{
(p · u)2

[
1

3
− ∂P

∂e

∣∣∣∣
n

]
− (p · u)

∂P

∂n

∣∣∣∣
e

− m2

3

}
, (12.39)

Ĵμ
p := −�μν pν

p · u ((p · u) − h), (12.40)

π̂μν
p := �μνρσ pρ pσ

p · u , (12.41)

which are found to be the microscopic representations of the dissipative currents.
Here, h denotes the enthalpy per particle

h := (e + P)/n, (12.42)

and �μνρσ is the projection matrix given by

�μνρσ := 1

2

[
�μρ �νσ + �μσ �νρ − 2

3
�μν �ρσ

]
. (12.43)

From Eq. (12.38), one can read off the following nine vectors

[
L̂−1 �̂

]
p,

[
L̂−1 Ĵμ

]
p,

[
L̂−1 π̂μν

]
p, (12.44)

as a natural set of the bases of the vector space that
[
L̂−1 Q0 F0

]
p and hence� belong

to. Here, we note that the nine Lorentz vectors and the tensor are transverse to the
frame vector;

[
L̂−1 Ĵμ

]
p = �μν

[
L̂−1 Ĵν

]
p, (12.45)[

L̂−1 π̂μν
]
p = �μνρσ

[
L̂−1 π̂ρσ

]
p. (12.46)

6 See Sect. 13.4 for the details of the computation.
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We now see that � can be written as a linear combination of these basis vectors
as,

�p =
[
L̂−1 �̂

]
p

〈 �̂ , L̂−1 �̂ 〉 � +
3 h

[
L̂−1 Ĵμ

]
p

〈 Ĵ ν , L̂−1 Ĵν 〉 Jμ +
5
[
L̂−1 π̂μν

]
p

〈 π̂ρσ , L̂−1 π̂ρσ 〉 πμν.(12.47)

Here, we have introduced the following nine integral constants as coefficients of the
basis vectors:

�(σ ; τ0), Jμ(σ ; τ0), πμν(σ ; τ0). (12.48)

We note that the factors 1/〈 �̂ , L̂−1 �̂ 〉, 3 h/〈 Ĵ ν , L̂−1 Ĵν 〉, and 5/〈 π̂ρσ , L̂−1 π̂ρσ 〉
in � are mere coefficients which can be scaled by the redefinitions of �, Jμ, and
πμν , respectively. It is worth emphasizing that the form of � given in Eq. (12.47) is
the most general expression that makes L̂ � and Q0 F0 belong to the common space.

As is clear now, we see that the P1 space is identifiedwith the vector space spanned
by

�̂p, Ĵμ
p , π̂μν

p ,
[
L̂−1 �̂

]
p,

[
L̂−1 Ĵμ

]
p, and

[
L̂−1 π̂μν

]
p. (12.49)

The three pairs (�̂, L̂−1 �̂), ( Ĵμ, L̂−1 Ĵμ), and (π̂μν, L̂−1 π̂μν) are called the dou-
blet modes [72]; see Chap.9. The Q0 space is now decomposed into the P1 space
spanned by the doublet modes and the Q1 space which is the complement to the P0
and P1 spaces:

1 = P0 + Q0, Q0 = P1 + Q1. (12.50)

The corresponding projection operators are denoted as P1 and Q1, respectively.
It is to be noted that because of Eqs. (12.45) and (12.46), the coefficients Jμ and

πμν in Eq. (12.47) are taken to be transverse without loss of generality, i.e.,

Jμ = �μν Jν, πμν = �μνρσ πρσ , (12.51)

which lead to the following identities:

uμ Jμ = uμ πμν = �μν πμν = 0, πμν = πνμ. (12.52)

It will be shown later that �, Jμ, and πμν can be identified with the bulk pressure,
thermal flux, and stress pressure, respectively.
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12.4 Second-Order Solution in the Doublet Scheme

Let us proceed to the second-order equation, for which it is found convenient to
introduce the symbol

[
B[ϕ , ψ]]p for arbitrary two vector ϕp and ψp by

[
B[ϕ , ψ]]

p
=

∫
dq

∫
dr Bpqr ϕq ψr . (12.53)

Then the second-order equation reads

∂

∂τ
f̃ (2)(τ ) = f eq f̄ eq L̂( f eq f̄ eq)−1 f̃ (2)(τ ) + f eq f̄ eq K (τ − τ0), (12.54)

where

K (τ − τ0) := F1 f̃ (1)(τ ) + 1

2
B[( f eq f̄ eq)−1 f̃ (1)(τ )) , ( f eq f̄ eq)−1 f̃ (1)(τ ))]

= F1 f eq f̄ eq
[
eL̂(τ−τ0) � + (τ − τ0) P0 F0 + (eL̂(τ−τ0) − 1) L̂−1 Q0 F0

]

+ 1

2
B[eL̂(τ−τ0) � + (τ − τ0) P0 F0 + (eL̂(τ−τ0) − 1) L̂−1 Q0 F0 ,

eL̂(τ−τ0) � + (τ − τ0) P0 F0 + (eL̂(τ−τ0) − 1) L̂−1 Q0 F0], (12.55)

with F1 and B being matrices the components of which are given by

F1pq := −( f eqp f̄ eqp )−1 1

p · u p · ∇ δpq , (12.56)

Bpqr := ( f eqp f̄ eqp )−1 1

p · u
δ2

δ fq δ fr
C[ f ]p

∣∣∣∣
f = f eq

f eqq f̄ eqq f eqr f̄ eqr , (12.57)

respectively.
By multiplying ( f eq f̄ eq)−1 on the both side, Eq. (12.54) is converted to

∂

∂τ
X (τ ) = L̂ X (τ ) + K (τ − τ0), (12.58)

with

X (τ ) := ( f eq f̄ eq)−1 f̃ (2)(τ ). (12.59)

Then, the solution is readily given by
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X (τ ) = eL̂(τ−τ0) X (τ0) +
∫ τ

τ0

dτ ′ eL̂(τ−τ ′) K (τ ′ − τ0)

= eL̂(τ−τ0) X (τ0) +
∫ τ

τ0

dτ ′ P0 K (τ ′ − τ0)

+
∫ τ

τ0

dτ ′ eL̂(τ−τ ′) Q0 K (τ ′ − τ0), (12.60)

where we have inserted 1 = P0 + Q0 in front of K (τ ′ − τ0) in the first line.
Now using the compact form of the Taylor expansion as

K (τ ′ − τ0) = e(τ ′−τ0)∂/∂s K (s)
∣∣∣
s=0

, (12.61)

and carrying out integration with respect to τ ′, Eq. (12.60) can be reduced to

X (τ ) = eL̂(τ−τ0) X (τ0) +
[
(1 − e(τ−τ0)∂/∂s) (−∂/∂s)−1 P0

+ (eL̂(τ−τ0) − e(τ−τ0)∂/∂s) (L̂ − ∂/∂s)−1 Q0

]
K (s)

∣∣∣
s=0

= eL̂(τ−τ0)
[
X (τ0) + Q1 (L̂ − ∂/∂s)−1 Q0 K (s)

∣∣∣
s=0

]

+
[
(1 − e(τ−τ0)∂/∂s) (−∂/∂s)−1 P0

+ (eL̂(τ−τ0) − e(τ−τ0)∂/∂s) P1 (L̂ − ∂/∂s)−1 Q0

− e(τ−τ0)∂/∂s Q1 (L̂ − ∂/∂s)−1 Q0

]
K (s)

∣∣∣
s=0

, (12.62)

where 1 = P0 + P1 + Q1 has been inserted in front of (L̂ − ∂/∂s)−1 Q0 K (s) in the
second equality of Eq. (12.62).

We note that Eq. (12.62) has a quite similar structure with Eq. (9.67) derived for a
generic equation, and one sees that the inhomogeneous term K (τ − τ0) is composed
of the modes belonging to the Q1 space described by eL̂(τ−τ0) and the mesoscopic
modes contained in e(τ−τ0)∂/∂s . As was done for (9.67), the former mode that should
not be included in the mesococpic dynamics is nicely eliminated with the following
choice of the ‘initial’ value X (τ0)

X (τ0) = −Q1 (L̂ − ∂/∂s)−1 Q0 K (s)
∣∣∣
s=0

, (12.63)

with which Eq. (12.62) is reduced to

X (τ ) =
[
(1 − e(τ−τ0)∂/∂s) (−∂/∂s)−1 P0

+ (eL̂(τ−τ0) − e(τ−τ0)∂/∂s) P1 (L̂ − ∂/∂s)−1 Q0

− e(τ−τ0)∂/∂s Q1 (L̂ − ∂/∂s)−1 Q0

]
K (s)

∣∣∣
s=0

. (12.64)
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With the use of the formula (12.59) for X (τ ) and X (τ0) = ( f eq f̄ eq)−1 f (2), we see
that Eqs. (12.64) and (12.63) imply

f̃ (2)(τ ) = f eq f̄ eq
[
(1 − e(τ−τ0)∂/∂s)G(s) P0

+ (eL̂(τ−τ0) − e(τ−τ0)∂/∂s) P1 G(s) Q0

− e(τ−τ0)∂/∂s Q1 G(s) Q0

]
K (s)

∣∣∣
s=0

, (12.65)

f (2) = f̃ (2)(τ = τ0)

= − f eq f̄ eq Q1 G(s) Q0 K (s)
∣∣∣
s=0

, (12.66)

respectively. In Eqs. (12.65) and (12.66), we have introduced a propagator defined
by

G(s) := (L̂ − ∂/∂s)−1. (12.67)

We remark again that Eq. (12.65) contains secular terms.
Thus we have the approximate solution up to the second order as

f̃ (τ ) = f eq + ε f eq f̄ eq
[
eL̂(τ−τ0) � + (τ − τ0) P0 F0

+ (eL̂(τ−τ0) − 1) L̂−1 Q0 F0

]

+ ε2 f eq f̄ eq
[
(1 − e(τ−τ0)∂/∂s)G(s) P0

+ (eL̂(τ−τ0) − e(τ−τ0)∂/∂s) P1 G(s) Q0

− e(τ−τ0)∂/∂s Q1 G(s) Q0

]
K (s)

∣∣∣
s=0

, (12.68)

with the ‘initial’ value at τ = τ0

f = f eq + ε f eq f̄ eq � − ε2 f eq f̄ eq Q1 G(s) Q0 K (s)
∣∣∣
s=0

. (12.69)

Two remarks are in order here:

(i) The distribution function (12.69) contains terms of order higher than p2.
which are not included in the ansatz (10.103) adopted in the fourteen-moment
method [66] (see Sect. 10.3.2 for the details). In view that (12.69) is obtained
by faithfully solving the Boltzmann equation (12.1) without restricting the func-
tional space though within the perturbation theory, the fourteen moment is not
likely to cover the proper solution space of the Boltzmann equation.

(ii) Expanding G(s) Q0 in terms of L̂−1∂/∂s, the term G(s) Q0 K (s)|s=0 in
Eqs. (12.68) and (12.69) is reduced to the form of infinite series as
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G(s) Q0 K (s)
∣∣∣
s=0

=
∞∑
n=0

L̂−1−n Q0
∂n

∂sn
K (s)

∣∣∣
s=0

, (12.70)

because ∂nK (s)/∂sn|s=0 does not vanish for anyn; seeEq. (12.55). The existence
of such an infinite number of terms would be undesirable for the construction of
the (closed) mesoscopic dynamics. It will be found, however, that an averaging
procedure for obtaining the mesoscopic dynamics nicely leads to a cancellation
of all the terms but single term in the resultant equation of motion thanks to the
self-adjoint nature of L̂ and the structure of the P1 space spanned by the doublet
modes; see Eq. (12.78) below.

12.5 Construction of the Distribution Function Valid in a
Global Domain in the Asymptotic Regime By the RG
Method

In this section, we shall construct a distribution function valid in a global domain
by applying the RG method to the perturbative solution (12.68) of the relativistic
Boltzmann equation (12.1).

12.5.1 RG/E Equation

Although the solution (12.68) apparently loose its validity for τ away from the
‘initial’ time τ0 owing to the secular terms, we can take the following geometrical
point of view and construct a distribution function that is valid in a global domain
in the asymptotic regime, as has been shown in this monograph: The perturbative
solution f̃ p(τ , σ ; τ0) in Eq. (12.68) provides a family of curves parameterized with
the ‘initial’ time τ0, each of which is on the exact solution f p(τ , σ ) given by Eq.
(12.69) at τ = τ0 up to O(ε2), but only valid locally for τ close to τ0. Thus, it is
natural that the envelope of the family of curves, which is in contact with each local
solution at τ = τ0, certainly give a global solution in our asymptotic situation [3, 5,
6]; see Chaps. 4 and 5.

As is shown in Chaps. 4 and 5, the envelope that is in contact with any curve in
the family at τ = τ0 is obtained by the envelope equation given by [3, 5]

d

dτ0
f̃ p(τ , σ ; τ0)

∣∣∣∣
τ0=τ

= 0, (12.71)

where the subscript p and (σ ; τ0) have been restored for later convenience. We call
Eq. (12.71) the RG/E equation following [5], because a similar equation was first
introduced in the name of the renormalization group equation [1].
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The RG/E equation (12.71) is reduced to

∂

∂τ

[
f eq (1 + ε f̄ eq �)

]
− ε f eq f̄ eq

[
L̂ � + P0 F0 + Q0 F0

]

− ε2 f eq f̄ eq
[
P0 + (L̂ − ∂/∂s) P1 G(s) Q0

− (∂/∂s) Q1 G(s) Q0

]
K (s)

∣∣∣
s=0

= 0, (12.72)

up to O(ε2). Note that Eq. (12.72) is actually the equation of motion governing the
dynamics of the fourteen integral constants T (σ ; τ),μ(σ ; τ), uμ(σ ; τ),�(σ ; τ),
Jμ(σ ; τ), and πμν(σ ; τ).

The envelope function as the approximate but globally valid solution is given by
the ‘initial’ value (12.69) with τ0 = τ :

f Ep (τ , σ ) := f p(τ0 = τ , σ ) = f̃ p(τ , σ ; τ0 = τ)

= f eq (1 + ε f̄ eq �) − ε2 f eq f̄ eq Q1 G(s) Q0 K (s)
∣∣∣
s=0

∣∣∣∣
τ0=τ

+ O(ε3),

(12.73)

where the solution to the RG/E equation (12.72) is to be substituted.
We show that the envelope function f Ep (τ , σ ) solves the Boltzmann equa-

tion (12.7) in a global domain up to O(ε2) in the asymptotic regime: Indeed, for
an arbitrary τ(= τ0) in the asymptotic regime, we have

∂

∂τ
f Ep (τ , σ ) = ∂

∂τ
f̃ p(τ , σ ; τ0)

∣∣∣∣
τ0=τ

+ d

dτ0
f̃ p(τ , σ ; τ0)

∣∣∣∣
τ0=τ

= ∂

∂τ
f̃ p(τ , σ ; τ0)

∣∣∣∣
τ0=τ

, (12.74)

where the fact that f̃ p(τ , σ ; τ0) satisfies the RG/E equation (12.71) has been used.
Furthermore, since f̃ p(τ , σ ; τ0) solves Eq. (12.7) with aμ

F (σ ) = uμ(σ ; τ0) up to
O(ε2), the right-hand side of Eq. (12.74) is written as

∂

∂τ
f̃ p(τ , σ ; τ0)

∣∣∣∣
τ0=τ

= 1

p · u(σ ; τ)
C[ f̃ ]p(τ , σ ; τ)

− ε
1

p · u(σ ; τ)
pμ ∂

∂σμ
f̃ p(τ , σ ; τ), (12.75)

up to O(ε2). Then inserting the definition f̃ p(τ , σ ; τ) = f Ep (τ , σ ) of the envelope
function, we see that Eq. (12.74) becomes
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∂

∂τ
f Ep (τ , σ ) = 1

p · u(σ ; τ)
C[ f E]p(τ , σ )

− ε
1

p · u(σ ; τ)
pμ ∂

∂σμ
f Ep (τ , σ ), (12.76)

up to O(ε2). This shows that the envelope function f Ep (τ , σ ) satisfies the Boltzmann
equation (12.7) up to O(ε2) in a global domain in the asymptotic region, because τ0
is an arbitrary time in the asymptotic region.

What we have done is a derivation of the mesoscopic dynamics of the relativistic
Boltzmann equation (12.7) as the pair of equations, (12.72) and (12.73). It is also
noteworthy that an infinite number of terms produced by G(s) are included both in
the dynamical equation governing the mesoscopic variables as given by the RG/E
equation and the functional from of the solution as given by the envelope function.

12.5.2 Reduction of RG/E Equation to a Simpler Form

It should be noted that the RG/E equation (12.72) still contains fast modes belonging
to the Q1 space that is complement to the space spanned by the fluid dynamic modes
even in the second order. Although these modes may be incorporated to make a
Langevinized fluid dynamic equation, we average them out to have the genuine fluid
dynamic equation in the second order. This averaging can be achieved by taking the
inner product of Eq. (12.72) both with the zero modes ϕα

0p and the excited modes[
L̂−1 (�̂, Ĵμ, π̂μν)

]
p; we remark that they are all orthogonal to the Q1 space.

The averaging of Eq. (12.72) with the zero modes leads to

∫
dp ϕα

0p

[
(p · u)

∂

∂τ
+ ε p · ∇

][
f eqp (1 + ε f̄ eqp �p)

]
= 0, (12.77)

up to O(ε2. The reduction of the averaging with the excited modes in the P1 space
is quite involved: We first note the following equality,

〈 L̂−1 (�̂, Ĵμ, π̂μν) , (L̂ − ∂/∂s) P1G(s) Q0 K (s)
∣∣∣
s=0

〉
= 〈 (L̂ − ∂/∂s) L̂−1 (�̂, Ĵμ, π̂μν) , P1 G(s) Q0 K (s)

∣∣∣
s=0

〉
= 〈 (L̂ − ∂/∂s) L̂−1 (�̂, Ĵμ, π̂μν) , G(s) Q0 K (s)

∣∣∣
s=0

〉
= 〈 L̂−1 (�̂, Ĵμ, π̂μν) , (L̂ − ∂/∂s)G(s) Q0 K (s)

∣∣∣
s=0

〉
= 〈 L̂−1 (�̂, Ĵμ, π̂μν) , Q0 K (s)

∣∣∣
s=0

〉
= 〈 L̂−1 (�̂, Ĵμ, π̂μν) , K (0) 〉, (12.78)
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where we have utilized the self-adjoint nature of L̂ pq shown in Eq. (12.20) and
the structure of the P1 space spanned by the doublet modes, i.e., the three pairs of
(�̂p,

[
L̂−1 �̂

]
p), ( Ĵ

μ
p ,

[
L̂−1 Ĵμ

]
p), and (π̂

μν
p ,

[
L̂−1 π̂μν

]
p). Thenusing the equality

K (0) = F1 f
eq f̄ eq � + B[� , �]/2, (12.79)

derived from Eq. (12.55), we have

(12.78) = 〈 L̂−1 (�̂, Ĵμ, π̂μν) , F1 f eq f̄ eq � 〉
+ 1

2
〈 L̂−1 (�̂, Ĵμ, π̂μν) , B[� , �] 〉. (12.80)

Then we find that the averaging of Eq. (12.72) with the excited modes in the P1 space
is reduced to

∫
dp

[
L̂−1 (�̂, Ĵμ, π̂μν)

]
p

[
(p · u)

∂

∂τ
+ ε p · ∇

][
f eqp (1 + ε f̄ eqp �p)

]

= ε 〈 L̂−1(�̂, Ĵμ, π̂μν) , L̂ � 〉 + ε2
1

2
〈 L̂−1 (�̂, Ĵμ, π̂μν) , B[� , �] 〉, (12.81)

up to O(ε2). The pair of Eqs. (12.77) and (12.81) constitutes the fluid dynamic
equation in the second order, which gives the equation of motion governing T , μ,
uμ, �, Jμ, and πμν . We emphasize that this pair of equations is composed of a finite
number of terms in contrast to the RG/E equation (12.72) and much simpler than it:
Note that this simplification through the averaging by L̂−1 (�̂, Ĵμ, π̂μν) is due to
the self-adjoint nature of L̂ and the structure of the P1 space spanned by the doublet
modes (�̂, Ĵμ, π̂μν) and L̂−1(�̂, Ĵμ, π̂μν).

12.6 Derivation of the Second-Order Fluid Dynamic
Equation

In this section, we reduce the RG equation given by Eqs. (12.77) and (12.81) to the
second-order fluid dynamic equation as the set of balance equations and relaxation
equations.

12.6.1 Balance Equations and Local Rest Frame of Flow
Velocity

Fromnowon,we put back ε = 1. Then since (p · u) ∂
∂τ

+ p · ∇ = pμ ∂μ, Eq. (12.77)
now takes the form
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∂μ J
μα = 0, (12.82)

with

Jμα :=
∫
dp pμ ϕα

0p f eqp (1 + f̄ eqp �p), (12.83)

We remark that Eq. (12.82) is nothing but the balance equations; Jμν and Jμ4 are
identified with the energy-momentum tensor T μν and particle current Nμ, respec-
tively. As a consistency check, we note that one can derive the same expression as
Jμα by inserting the distribution function f Ep (τ , σ ) in Eq. (12.73) into the formulae

T μν =
∫

dp pμ pν f p, Nμ =
∫

dp pμ f p, (12.84)

given in Eqs. (10.29) and (10.28), respectively.
We decompose Jμα into two parts as

Jμα = Jμα
0 + δ Jμα, (12.85)

where

Jμα
0 :=

∫
dp pμ ϕα

0p f eqp , (12.86)

δ Jμα :=
∫
dp pμ ϕα

0p f eqp f̄ eqp �p = 〈 ϕ̃
μα
1 , � 〉. (12.87)

Herewe have used the definition of the inner product (12.18) and the formula (11.76),
which reads

ϕ̃
μα
1p = pμ ϕα

0p
1

p · u . (12.88)

One should readily find that Jμα
0 are identical to the energy-momentum tensor

and particle current for an ideal fluid, whose explicit forms are given by

Jμα
0 =

{
e uμ uν − P �μν, α = ν,

n uμ, α = 4.
(12.89)

Here n, e, and P denote the particle-number density, internal energy, and pressure,
respectively;
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n =
∫
dp f eqp (p · u), e =

∫
dp f eqp (p · u)2, (12.90)

P =
∫
dp f eqp (−pμ pν �μν/3). (12.91)

We note that these equations are the same as Eqs. (10.38)–(10.40).
Next, we calculate the dissipative part δ Jμα . First, we recall the following expres-

sion derived in Sect. 13.3,

[
Q0 ϕ̃

μα
1

]
p =

⎧⎨
⎩

−�μν �̂p + π̂μν
p , α = μ,

1

h
Ĵμ
p , α = 4,

(12.92)

and the identity

〈 ϕ̃
μα
1 , � 〉 = 〈 Q0 ϕ̃

μα
1 , � 〉. (12.93)

Then with the use of Eq. (12.47), we have

δ Jμα =
{−��μν + πμν =: δT μν, α = ν,

Jμ =: δNμ, α = 4.
, (12.94)

where we have used the following symmetry properties:

〈 �̂ , L̂−1 Ĵμ 〉 = 0, 〈 �̂ , L̂−1 π̂μν 〉 = 0, 〈 Ĵμ , L̂−1 π̂ νρ 〉 = 0. (12.95)

Here we remark that�,πμν , and Jμ were the would-be integral constants introduced
in Eq. (12.47), and have been now lifted to dynamical variables through the RG/E
equation.

It is noteworthy that δ Jμα = {δT μν, δNμ} automatically satisfy the relations that
the dissipative parts of the Landau-Lifshitz equation do7 [62]:

uμ δT μν uν = 0, uμ δNμν = 0, �μν δT νρ = 0. (12.96)

We stress that the local rest frame of the flow velocity described by the balance
equations is actually the energy frame by Landau and Lifshitz [62], as expected
when the macroscopic frame vector aμ

F has been set equal to uμ in Eq. (12.12).
Collecting Eqs. (12.89) and (12.94), we find that the currents Jμα finally takes

the form

Jμα =
{
e uμ uν − (P + �)�μν + πμν, α = ν,

n uμ + Jμ, α = 4.
(12.97)

7 See also Sect. 10.1.
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12.6.2 Relaxation Equations and Microscopic
Representations of Transport Coefficients and
Relaxation Times

The relaxation equations are derived fromEq. (12.81). Since its derivation is straight-
forward but rather lengthy, we leave an account of the detailed derivation to the
following subsection, and here we just write down the explicit expressions of them:

� = −ζ θ

− τ�

∂

∂τ
� − h ��J ∇ · J

+ κ�� �θ

+ κ
(1)
�J Jρ ∇ρT + κ

(2)
�J Jρ ∇ρ μ

T
+ κ�π πρσ σ ρσ

+ b��� �2 + b�J J J
ρ Jρ + b�ππ πρσ πρσ , (12.98)

Jμ = λ
T 2

h2
∇μ μ

T

− τJ �μρ ∂

∂τ
Jρ − h−1 �J� ∇μ� − h−1 �Jπ �μρ ∇σ πρσ

+ κ
(1)
J� �∇μT + κ

(2)
J� �∇μ μ

T
+ κ

(1)
J J Jμ θ + κ

(2)
J J Jρ σμρ + κ

(3)
J J Jρ ωμρ

+ κ
(1)
Jπ πμρ ∇ρT + κ

(2)
Jπ πμρ ∇ρ

μ

T
+ bJ�J � Jμ + bJ Jπ Jρ πρμ, (12.99)

πμν = 2 η σμν

− τπ �μνρσ ∂

∂τ
πρσ − h �π J ∇〈μ J ν〉

+ κπ� �σμν

+ κ
(1)
π J J

〈μ ∇ν〉T + κ
(2)
π J J

〈μ ∇ν〉 μ
T

+ κ(1)
ππ πμν θ + κ(2)

ππ πρ
〈μ σ ν〉ρ + κ(3)

ππ πρ
〈μ ων〉ρ

+ bπ�π �πμν + bπ J J J
〈μ J ν〉 + bπππ πρ

〈μ πν〉ρ, (12.100)

where the scalar expansion, the shear tensor, and the vorticity are denoted by
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θ := ∇ · u, (12.101)

σμν := �μνρσ ∇ρuσ , (12.102)

ωμν := 1

2
(∇μuν − ∇νuμ), (12.103)

respectively. We have also used the notation

A〈μν〉 := �μνρσ Aρσ , (12.104)

for an arbitrary space-like tensor Aμν . Here the transport coefficients, i.e., the bulk
viscosity, the heat conductivity λ, and the shear viscosity η have the followingmicro-
scopic expressions:

ζ := − 1

T
〈�̂, L̂−1�̂〉, (12.105)

λ := 1

3T 2
〈 Ĵμ, L̂−1 Ĵμ〉, (12.106)

η := − 1

10T
〈π̂μν, L̂−1π̂μν〉, (12.107)

while the corresponding relaxation times:

τ� := 〈 L̂−1 �̂ , L̂−1 �̂ 〉
T ζ

= −〈 �̂ , L̂−2 �̂ 〉
〈 �̂ , L̂−1 �̂ 〉 , (12.108)

τJ := −〈 L̂−1 Ĵμ , L̂−1 Ĵμ 〉
3 T 2 λ

= −〈 Ĵμ , L̂−2 Ĵμ 〉
〈 Ĵ ρ , L̂−1 Ĵρ 〉 , (12.109)

τπ := 〈 L̂−1 π̂μν , L̂−1 π̂μν 〉
10 T η

= −〈 π̂μν , L̂−2 π̂μν 〉
〈 π̂ρσ , L̂−1 π̂ρσ 〉 . (12.110)

Here we have used the self-adjointness of L̂ and the formula of the transport coeffi-
cient to obtain the respective second equality.

Our approach is based on a kind of statistical physics, and thus has success-
fully given the microscopic expressions of all the coefficients of the relaxation
Eqs. (12.98)–(12.100), as seen above. Here we focus on the transport coefficients
and relaxation times given by Eqs. (12.105)–(12.107) and (12.108)–(12.110), which
are also written as ζRG, λRG, ηRG, τRG

� , τRG
J , and τRG

π , respectively, for convenience
in the comparison with those by other methods.

As a check of the reliability of our derivation, we first compare the microscopic
formulae of the transoport coefficients and the relaxation times with those given by
other typical methods. First of all, as is shown for the first-order equation in Chap. 11,
ζRG, λRG, and ηRG are perfectly in agreement with those of the Chapman-Enskog
(CE) expansion method [67], which are calculated and denoted as ζCE, λCE, and
ηCE in Sect. 10.3.1. Furthermore, our expressions of the transport coefficients can be
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nicely rewritten in the form of Green-Kubo formula [226–228] in the linear response
theory, as is also shown for the first-order equation in Sect. 11.5 in Chap. 11. For
self-containedness, we recapitulate the derivation here.

First, the “time-evolved” dissipative currents are defined in terms of the linearized
collision operator L̂ interpreted as the time-evolution operator by;

⎛
⎝ �̂p(s)

Ĵμ
p (s)

π̂
μν
p (s)

⎞
⎠ :=

⎡
⎣es L̂

⎛
⎝ �̂

Ĵμ

π̂μν

⎞
⎠

⎤
⎦

p

=
⎡
⎣es L̂ Q0

⎛
⎝ �̂

Ĵμ

π̂μν

⎞
⎠

⎤
⎦

p

, (12.111)

where the projection operator Q0 can be inserted without loss of generality because
all the dissipative currents belong to the Q0 space. Then, we have

ζRG = 1

T

∫ ∞

0
ds 〈 �̂(0) , �̂(s) 〉, (12.112)

λRG = − 1

3 T 2

∫ ∞

0
ds 〈 Ĵμ(0) , Ĵμ(s) 〉, (12.113)

ηRG = 1

10 T

∫ ∞

0
ds 〈 π̂μν(0) , π̂μν(s) 〉. (12.114)

We note that the integrands in the formulae have the meanings of the relaxation
functions or time-correlation functions of the dissipative currents:

R�(s) := 1

T
〈 �̂(0) , �̂(s) 〉, (12.115)

RJ (s) := − 1

3 T 2
〈 Ĵμ(0) , Ĵμ(s) 〉, (12.116)

Rπ (s) := 1

10 T
〈 π̂μν(0) , π̂μν(s) 〉. (12.117)

We stress that the results of the transport coefficients all show the reliability of
our approach based on the doublet scheme in the RG method. Here we recall that
the naïve version of the moment method by Israel and Stewart does not give the
Chapman-Enskog formulae [66], as is also shown in Sect. 10.3.

Then it is rather natural that the microscopic expressions of the relaxation
times (12.108)–(12.110) given above also differ from those (10.174)–(10.176) given
by the simplest Israel-Stewart method [66].

We shall now argue that our formulae (12.108)–(12.110) are quite in accordance
with the physical meaning of the relaxation times. To see this, we first note the
expressions (12.108)–(12.110) can be rewritten as integrals of a product of ‘time’
and the ‘time-correlation’ functions of the dissipative currents (12.115)–(12.117):



12.6 Derivation of the Second-Order Fluid Dynamic Equation 349

τRG
� =

∫ ∞
0 ds s R�(s)∫ ∞
0 ds R�(s)

, (12.118)

τRG
J =

∫ ∞
0 ds s RJ (s)∫ ∞
0 ds RJ (s)

, (12.119)

τRG
π =

∫ ∞
0 ds s Rπ (s)∫ ∞
0 ds Rπ (s)

. (12.120)

This is for the first time that the relaxation times are expressed in terms of the
relaxation functions in the context of the derivation of the relativistic second-order
fluid dynamic equation from the relativistic Boltzmann equation [155]; see also [69].
Furthermore the expressions (12.118)–(12.120) have nice forms that allow the natural
interpretation that the respective relaxation times are effective or averaged correlation
times in the respective relaxation functions.

Next let us discuss the physical meaning of each term in the relaxation Eqs.
(12.98)–(12.100). The first lines in Eqs. (12.98)–(12.100) are nothing but the so-
called constitutive equations, which give the relations between the dissipative vari-
ables �, Jμ, and πμν and the thermodynamic forces given by the gradients of T , μ,
and uμ. If we were to insert only these constitutive equations, i.e., the expressions
in the first lines, into the conserved currents Jμα in Eq. (12.97), we have the first-
order fluid dynamic equation in the Landau-Lifshitz frame, which was discussed in
Chap. 11.

The terms in the other lines are the new ones appearing in the second-order fluid
dynamic equation. The second lines represent the relaxation terms given by the tem-
poral and spatial derivatives of the dissipative variables, which describe the relaxation
processes of the dissipative variables in response to the thermodynamic forces. The
third, fourth, and fifth lines are composed of the products of the thermodynamic
forces and dissipative variables, among which we emphasize that the vorticity term
ωμν appears. The final lines give the non-linear terms of the dissipative variables.

A couple of comments are in order here:

(i) Temporal and spatial derivatives in the relaxation equations (12.98)–(12.100)
are at most first order and hence our fluid dynamic equation is hyperbolic not
parabolic, as expected. Accordingly our fluid dynamic equation satisfies the
necessary condition for the causality. In Sect. 12.7, we will prove that the set of
the balance equations for the currents (12.97) and the relaxation Eqs. (12.98)–
(12.100) is actually causal.

(ii) The relaxation Eqs. (12.98)–(12.100) do not contain the nonlinear vortex term
ωλ〈μων〉

λ, which has been seen in the literatures [198]. In fact, our relaxation
equations contain the nonlinear vortex terms in a implicit way, which could be
made explicit by an iterative solutionof the relaxation equations butwith a serious
problem encountered. To make the discussion clearer, let us set � = Jμ = 0 in
Eq. (12.100) to treat the relaxation equation for onlyπμν and consider the leading
terms of ε:
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πμν = 2 η σμν − τπ �μνρσ ∂

∂τ
πρσ . (12.121)

First, we solve this equation with respect to πμν formally as

πμν = �μνρσ

[
1 + τπ

∂

∂τ

]−1

2 η σρσ

= �μνρσ

[
1 − τπ

∂

∂τ
+ τπ

∂

∂τ
τπ

∂

∂τ
− · · ·

]
2 η σρσ

= 2 η σμν − 2 η τπ �μνρσ ∂

∂τ
σρσ + · · · . (12.122)

Then, using the identity

�μνρσ ∂

∂τ
σρσ = �μνρσ

{
−

[
∂

∂τ
uρ

] [
∂

∂τ
uσ

]
+ ∇ρ

[
∂

∂τ
uσ

]}
− 2

3
θ σμν

− σλ〈μ σ ν〉
λ − ωλ〈μ ων〉

λ − 2 σλ〈μ ων〉
λ, (12.123)

and the balance Eq. (12.178), we convert Eq. (12.122) into

πμν = 2 η σμν

+ 2 η τπ

{
σλ〈μ σ ν〉

λ + 2 σλ〈μ ων〉
λ + ωλ〈μ ων〉

λ + 2

3
θ σμν

+ �μνρσ

[
1

T 2
(∇ρT ) (∇σT ) + 2

h
(∇ρT ) (∇σ

μ

T
) + T 2

h2
(∇ρ

μ

T
) (∇σ

μ

T
)

]

− �μνρσ ∇ρ

[
1

T
∇σT

]
− �μνρσ ∇ρ

[
T

h
∇σ

μ

T

]}
+ · · · . (12.124)

We note that the above equation apparently has the term of ωλ〈μων〉
λ. Notice,

however, that the last two terms of Eq. (12.124) have a form of the second-order
spatial derivatives of fluid dynamic variables, which make the fluid dynamic
equation parabolic and accordingly acausal. Hence we have an important obser-
vation that the iterative construction of the solution may spoil the causal prop-
erty of the original fluid dynamic equation, and thus we must use the original
form of the relaxation Eqs. (12.121) or (12.98)–(12.100). Furthermore, since
the appearance of ωλ〈μων〉

λ seems to be inevitably associated with that of the
second-order spatial derivative terms, the explicit appearance of such a nonlin-
ear vortex term should be avoided in the relaxation equations although its effect
should be included in Eq. (12.121) implicitly.
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12.6.3 Derivation of Relaxation Equations

In this subsection, we shall show how the relaxation equations (12.98)-(12.100) are
derived from Eq. (12.81). If we define

vα
pq :=

⎧⎨
⎩

vμ
pq := 1

p · u �μν pνδpq , α = μ,

δpq , α = 4,
(12.125)

Dα :=
⎧⎨
⎩

ε ∇μ, α = μ,

∂

∂τ
, α = 4,

(12.126)

the differential operator in (12.81) are expressed in a compact form as

[
(p · u)

∂

∂τ
+ ε p · ∇

]
δpq = (p · u) vα

pq Dα. (12.127)

Then Eq. (12.81) is converted into the following form with the use of the inner
products:

〈 L̂−1 ψ̂ i , ( f eq f̄ eq)−1 vα Dα

[
f eq (1 + ε f̄ eq L̂−1 χ̂ j ψ j )

]
〉

= ε 〈 L̂−1 ψ̂ i , χ̂ j ψ j 〉
+ ε2

1

2
〈 L̂−1 ψ̂ i , B

[
L̂−1 χ̂ j ψ j , L̂−1 χ̂ k ψk

]
〉, (12.128)

up to O(ε2), where we have introduced the following three “vectors”:

ψ̂ p :=
⎛
⎝ �̂p

Ĵμ
p /h
π̂

μν
p

⎞
⎠ , ψ :=

⎛
⎝ �

Jμ

πμν

⎞
⎠ , χ̂ p :=

⎛
⎝ �̂p/〈 �̂ , L̂−1 �̂ 〉

3 h Ĵμ
p /〈 Ĵ ρ , L̂−1 Ĵρ 〉

5 π̂
μν
p /〈 π̂ρσ , L̂−1 π̂ρσ 〉

⎞
⎠ .

(12.129)

For instance, ψ̂1
p = �̂p, ψ2 = Jμ and so on.

We expand the left-hand sides of Eq. (12.128) as

〈 L̂−1 ψ̂ i , ( f eq f̄ eq)−1 vα Dα

[
f eq (1 + ε f̄ eq L̂−1 χ̂ j ψ j )

]
〉

= 〈 L̂−1 ψ̂ i , ( f eq f̄ eq)−1 vα Dα f eq 〉
+ ε 〈 L̂−1 ψ̂ i , ( f eq f̄ eq)−1 vα Dα

[
f eq f̄ eq L̂−1 χ̂ j

]
〉ψ j

+ ε 〈 L̂−1 ψ̂ i , vα L̂−1 χ̂ j 〉 Dαψ j . (12.130)

The first term of Eq. (12.130) is calculated to be
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〈 L̂−1 ψ̂ i , ( f eq f̄ eq)−1 vα Dα f eq 〉 = ε 〈 L̂−1 ψ̂ i , ( f eq f̄ eq)−1 va ∇a f
eq 〉

= −ε 〈 L̂−1 ψ̂ i , F0 〉
= −ε 〈 L̂−1 ψ̂ i , Q0 F0 〉
= −ε 〈 ψ̂ i , L̂−1 Q0 F0 〉. (12.131)

In the first equality, we have used the fact that

( f eq f̄ eq)−1 ∂

∂τ
f eq = ∂

∂τ
(μ/T ) − pμ ∂

∂τ
(uμ/T ), (12.132)

belongs to the P0 space, and hence the inner product with the vector L̂−1 ψ̂ i in the
Q0-space vanishes, whereas in the second equality, we have used the expression of
F0 given by Eq. (12.17), and the self-adjointness of L̂ in the last equality. Next,
substituting L̂−1 Q0 F0 in Eq. (12.38) into Eq. (12.131), we have

〈 L̂−1 ψ̂ i , ( f eq f̄ eq)−1 vα Dα f eq 〉 = ε 〈 L̂−1 ψ̂ i , χ̂ j 〉 X ′
j , (12.133)

with

X ′
i := (−ζ θ, λ T 2 h−2 ∇μ(μ/T ), 2 η σμν). (12.134)

Here, ζ , λ, and η are the bulk viscosity, heat conductivity, and shear viscosity.
The third term of Eq. (12.130) is rewritten as

ε 〈 L̂−1 ψ̂ i , vα L̂−1 χ̂ j 〉 Dαψ j = ε 〈 L̂−1 ψ̂ i , L̂−1 χ̂ j 〉 ∂

∂τ
ψ j

+ ε2 〈 L̂−1 ψ̂ i , va L̂−1 χ̂ j 〉 ∇aψ j . (12.135)

Inserting Eq. (12.130) into Eq. (12.128) with the replacement of Eqs. (12.133)
and (12.135), we have the relaxation equation as follows,

ε 〈 L̂−1 ψ̂ i , χ̂ j 〉ψ j = ε 〈 L̂−1 ψ̂ i , χ̂ j 〉 X ′
j + ε 〈 L̂−1 ψ̂ i , L̂−1 χ̂ j 〉 ∂

∂τ
ψ j

+ ε2 〈 L̂−1 ψ̂ i , va L̂−1 χ̂ j 〉 ∇aψ j

+ ε2
1

2
Mi, j,k ψ j ψk + ε Ni, j ψ j , (12.136)

up to O(ε2), where

Mi, j,k := −〈 L̂−1 ψ̂ i , B[L̂−1 χ̂ j , L̂−1 χ̂ k]〉, (12.137)

Ni, j := 〈 L̂−1 ψ̂ i , ( f eq f̄ eq)−1 vα Dα

[
f eq f̄ eq L̂−1 χ̂ j

]
〉. (12.138)
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Equation (12.136) can be made further simpler, if we note the following useful
formulae for space-like tensors A:

〈 Aμν 〉 = 1

3
�μν 〈 Aρ

ρ 〉, (12.139)

〈 A〈μν〉ρσ 〉 = 1

5
�μνρσ 〈 A〈αβ〉〈αβ〉 〉, (12.140)

〈 Aμνρσ 〉 = 1

3
�μν 〈 Aα

α
ρσ 〉 + 〈 A〈μν〉ρσ 〉 + 〈 A(μν)ρσ 〉

= 1

9
�μν �ρσ 〈 Aα

α
β

β 〉 + 1

5
�μνρσ 〈 A〈αβ〉〈αβ〉 〉

+ 1

3
�μνρσ 〈 A(αβ)

(αβ) 〉, (12.141)

〈 A〈μν〉〈ρσ 〉〈αβ〉 〉 = 12

35
�μνγ δ �ρσλ

γ �αβ
λδ 〈 A〈τη〉〈τ

κ〉
〈κη〉 〉, (12.142)

〈 A〈μν〉〈ρσ 〉αβ 〉 = 1

3
�αβ 〈 A〈μν〉〈ρσ 〉λ

λ 〉 + 〈 A〈μν〉〈ρσ 〉〈αβ〉 〉 + 〈 A〈μν〉〈ρσ 〉(αβ) 〉

= 1

15
�μνρσ �αβ 〈 A〈γ δ〉〈γ δ〉

λ

λ
〉

+ 12

35
�μνγ δ �ρσλ

γ �αβ
λδ 〈 A〈τη〉〈τ

κ〉
〈κη〉 〉

+ 4

15
�μνγ δ �ρσλ

γ �αβ
λδ 〈 A〈τη〉〈τ

κ〉
(κη)

〉, (12.143)

where we have defined the notations,

〈 A 〉 := 〈 1 , A 〉 =
∫
dp (p · u) f eq f̄ eq Ap. (12.144)

and

A(μν) := �μνρσ Aρσ , (12.145)

with

�μνρσ := 1

2
(�μρ �νσ − �μσ �νρ). (12.146)

In the first equality of Eq. (12.141) and the first equality of Eq. (12.143), we have
used the fact that a space-like rank-two tensor Bμν , which satisfies both uμBμν = 0
and uνBμν = 0, is decomposed to be

Bμν = 1

3
�μν Bρ

ρ + B〈μν〉 + B(μν). (12.147)
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The numerical factors may be verified by contracting both sides of equations. To see
how to use these formulae, let us consider 〈 A〈ρσ 〉αβ 〉ψ〈ρσ 〉 χαβ , which is found in
the fifth line after the first equality of Eq. (12.179),

〈 A〈ρσ 〉αβ 〉ψ〈ρσ 〉 χαβ = 1

5
�ρσαβ 〈 A〈γ δ〉〈γ δ〉 〉ψ〈ρσ 〉 χαβ

= 1

5
〈 A〈γ δ〉〈γ δ〉 〉ψ 〈ρσ 〉 χ〈ρσ 〉, (12.148)

where we have used Eq. (12.140) in the second equality. With the use of the formu-
lae (12.139) and (12.140), some coefficients in Eq. (12.136) are reduced to be

〈L̂−1 ψ̂ i , χ̂ j 〉

=

⎛
⎜⎜⎜⎜⎜⎝

〈 L̂−1 �̂ , �̂ 〉
−T ζ

h 〈 L̂−1 �̂ , Ĵρ 〉
T 2 λ

〈 L̂−1 �̂ , π̂ρσ 〉
−2 T η

〈 L̂−1 Ĵμ , �̂ 〉
−T ζ h

〈 L̂−1 Ĵμ , Ĵρ 〉
T 2 λ

〈 L̂−1 Ĵμ , π̂ρσ 〉
−2 T η h

〈 L̂−1 π̂μν , �̂ 〉
−T ζ

h 〈 L̂−1 π̂μν , Ĵρ 〉
T 2 λ

〈 L̂−1 π̂μν , π̂ρσ 〉
−2 T η

⎞
⎟⎟⎟⎟⎟⎠

=
⎛
⎝ 1 0 0
0 �μρ 0
0 0 �μνρσ

⎞
⎠ , (12.149)

〈 L̂−1 ψ̂ i , L̂−1 χ̂ j 〉

=

⎛
⎜⎜⎜⎜⎜⎜⎝

〈 L̂−1 �̂ , L̂−1 �̂ 〉
−T ζ

h 〈 L̂−1 �̂ , L̂−1 Ĵρ 〉
T 2 λ

〈 L̂−1 �̂ , L̂−1 π̂ρσ 〉
−2 T η

〈L̂−1 Ĵμ , L̂−1 �̂ 〉
−T ζ h

〈 L̂−1 Ĵμ , L̂−1 Ĵρ 〉
T 2 λ

〈 L̂−1 Ĵμ , L̂−1 π̂ρσ 〉
−2 T η h

〈 L̂−1 π̂μν , L̂−1 �̂ 〉
−T ζ

h 〈 L̂−1 π̂μν , L̂−1 Ĵρ 〉
T 2 λ

〈 L̂−1 π̂μν , L̂−1 π̂ρσ 〉
−2 T η

⎞
⎟⎟⎟⎟⎟⎟⎠

=
⎛
⎝ −τ� 0 0

0 −τJ �μρ 0
0 0 −τπ �μνρσ

⎞
⎠ , (12.150)

〈 L̂−1 ψ̂ i , va L̂−1 χ̂ j 〉

=

⎛
⎜⎜⎜⎜⎜⎜⎝

〈 L̂−1 �̂ , va L̂−1 �̂ 〉
−T ζ

h 〈 L̂−1 �̂ , va L̂−1 Ĵρ 〉
T 2 λ

〈 L̂−1 �̂ , va L̂−1 π̂ρσ 〉
−2 T η

〈 L̂−1 Ĵμ , va L̂−1 �̂ 〉
−T ζ h

〈 L̂−1 Ĵμ , va L̂−1 Ĵρ 〉
T 2 λ

〈 L̂−1 Ĵμ , va L̂−1 π̂ρσ 〉
−2 T η h

〈 L̂−1 π̂μν , va L̂−1 �̂ 〉
−T ζ

h 〈 L̂−1 π̂μν , va L̂−1 Ĵρ 〉
T 2 λ

〈 L̂−1 π̂μν , va L̂−1 π̂ρσ 〉
−2 T η

⎞
⎟⎟⎟⎟⎟⎟⎠

=
⎛
⎝ 0 −h ��J �aρ 0

−h−1 �J� �μa 0 −h−1 �Jπ �μaρσ

0 −h �π J �μνaρ 0

⎞
⎠ , (12.151)

Here, we have introduced the relaxation times τ�, τJ , and τπ and the relaxation
lengths ��J , �J�, �Jπ , and �π J , whose definitions are given by
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τ� := 〈 L̂−1 �̂ , L̂−1 �̂ 〉
T ζ

, (12.152)

τJ := −〈 L̂−1 Ĵμ , L̂−1 Ĵμ 〉
3 T 2 λ

, (12.153)

τπ := 〈 L̂−1 π̂μν , L̂−1 π̂μν 〉
10 T η

, (12.154)

��J := −〈 L̂−1 �̂ , vμ L̂−1 Ĵμ 〉
3 T 2 λ

, (12.155)

�J� := 〈 L̂−1 Ĵμ , vμ L̂−1 �̂ 〉
3 T ζ

, (12.156)

�Jπ := 〈 L̂−1 Ĵμ , vν L̂−1 π̂μν 〉
10 T η

, (12.157)

�π J := −〈 L̂−1 π̂μν , vμ L̂−1 Ĵν 〉
5 T 2 λ

. (12.158)

Thus, we find that some terms in Eq. (12.136) are obtained as follows:

ε 〈 L̂−1 ψ̂ i , χ̂ j 〉ψ j = ε (�, Jμ, πμν), (12.159)

ε 〈 L̂−1 ψ̂ i , χ̂ j 〉 X ′
j = ε (−ζ θ, λ T 2 h−2 ∇μ(μ/T ), 2 η σμν),

(12.160)

ε 〈 L̂−1 ψ̂ i , L̂−1 χ̂ j 〉 ∂

∂τ
ψ j = ε (−τ�

∂

∂τ
�, −τJ �μρ ∂

∂τ
Jρ,

− τπ �μνρσ ∂

∂τ
πρσ ), (12.161)

ε2 〈 L̂−1 ψ̂ i , va L̂−1 χ̂ j 〉 ∇aψ j = ε2 (−h ��J ∇ · J,
− h−1 �J� ∇μ� − h−1 �Jπ �μaρσ ∇aπρσ ,

− h �π J �μνaρ ∇a Jρ). (12.162)

From now on, we examine the rest of the terms in Eq. (12.136). Using the
formulae (12.139), (12.140), and (12.142), we can reduce ε2 1

2 M
i, j,k ψ j ψk for

ψ̂ i = �̂, Ĵμ/h, π̂μν to the following forms:
For ψ̂ i = �̂,

− ε2

2
〈 L−1 �̂ , B[L−1 χ̂ j , L−1 χ̂k ] 〉ψ j ψk

= −ε2
[ 〈 L−1 �̂ , B[L−1 �̂ , L−1 �̂] 〉

2 (T ζ )2
�2 + 〈 L−1 �̂ , B[L−1 Ĵρ , L−1 Ĵσ ] 〉

2 (T 2 λ/h)2
Jρ Jσ

+ 〈 L−1 �̂ , B[L−1 π̂ρσ , L−1 π̂αβ ] 〉
2 (2 T η)2

πρσ παβ

]
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= −ε2
[ 〈 L−1 �̂ , B[L−1 �̂ , L−1 �̂] 〉

2 (T ζ )2
�2 + 〈 L−1 �̂ , B[L−1 Ĵμ , L−1 Ĵμ] 〉

6 (T 2 λ/h)2
Jρ Jρ

+ 〈 L−1 �̂ , B[L−1 π̂μν , L−1 π̂μν ] 〉
10 (2 T η)2

πρσ πρσ

]
, (12.163)

for ψ̂ i = Ĵμ/h,

− ε2

2
〈 L−1 Ĵμ/h , B[L−1 ψ̂ j , L−1 ψ̂k] 〉χ j χk

= ε2
[ 〈 L−1 Ĵμ , B[L−1 �̂ , L−1 Ĵ ρ] 〉

(T ζ )(T 2 λ/h) h
� Jρ

+ 〈 L−1 Ĵμ , B[L−1 Ĵ ρ , L−1 π̂αβ] 〉
(T 2 λ/h)(2 T η) h

Jρ παβ

= ε2
[ 〈 L−1 Ĵμ , B[L−1 �̂ , L−1 Ĵμ] 〉

3 (T ζ ) (T 2 λ/h) h
� Jμ

+ 〈 L−1 Ĵμ , B[L−1 Ĵ ν , L−1 π̂μν] 〉
5 (T 2 λ/h) (2 T η) h

J ρ πρ
μ

]
, (12.164)

and, for ψ̂ i = π̂μν ,

− ε2

2
〈 L−1 π̂μν , B[L−1 ψ̂ j , L−1 ψ̂k] 〉χ j χk

= −ε2
[ 〈 L−1 π̂μν , B[L−1 �̂ , L−1 π̂ρσ ] 〉

(T ζ ) (2 T η)
�πρσ

+ 〈 L−1 π̂μν , B[L−1 Ĵ ρ , L−1 Ĵ σ ] 〉
2 (T 2 λ/h)2

Jρ Jσ

+ 〈 L−1 π̂μν , B[L−1 π̂ρσ , L−1 π̂αβ] 〉
2 (2 T η)2

πρσ παβ

= −ε2
[ 〈 L−1 π̂μν , B[L−1 �̂ , L−1 π̂μν] 〉

5 (T ζ )(2 T η)
�πμν

+ 〈 L−1 π̂μν , B[L−1 Ĵμ , L−1 Ĵν] 〉
10 (T 2 λ/h)2

J 〈μ J ν〉

+ 〈 L−1 π̂μν , B[L−1 π̂λ
μ , L−1 π̂λν] 〉

(35/6) (2 T η)2
πρ〈μ πν〉

ρ

]
, (12.165)

which are summarized as

ε2
1

2
Mi, j,k ψ j ψk = ε2 (b��� �2 + b�J J Jρ Jρ + b�ππ πρσ πρσ ,

bJ�J � Jμ + bJ Jπ Jρ πρ
μ,

bπ�π �πμν + bπ J J J 〈μ J ν〉 + bπππ πρ〈μ πν〉
ρ). (12.166)
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Here, the coefficients b���, b�J J , b�ππ , bJ�J , bJ Jπ , bπ�π , bπ J J , and bπππ are
given by

b��� := −〈 L̂−1 �̂ , B[L̂−1 �̂ , L̂−1 �̂] 〉
2 T 2 (ζ )2

, (12.167)

b�J J := − h2 〈 L̂−1 �̂ , B[L̂−1 Ĵμ , L̂−1 Ĵμ] 〉
6 T 4 (λ)2

, (12.168)

b�ππ := −〈 L̂−1 �̂ , B[L̂−1 π̂μν , L̂−1 π̂μν ] 〉
40 T 2 (η)2

, (12.169)

bJ�J := 〈 L̂−1 Ĵμ , B[L̂−1 �̂ , L̂−1 Ĵμ] 〉
3 T 3 ζ λ

, (12.170)

bJ Jπ := 〈 L̂−1 Ĵμ , B[L̂−1 Ĵ ν , L̂−1 π̂μν ] 〉
10 T 3 λ η

, (12.171)

bπ�π := −〈 L̂−1 π̂μν , B[L̂−1 �̂ , L̂−1 π̂μν ] 〉
10 T 2 ζ η

, (12.172)

bπ J J := − h2 〈 L̂−1 π̂μν , B[L̂−1 Ĵμ , L̂−1 Ĵν ] 〉
10 T 4 (λ)2

, (12.173)

bπππ := − 3 〈 L̂−1 π̂μν , B[L̂−1 π̂ λ
μ , L̂−1 π̂λν ] 〉

70 T 2 (η)2
. (12.174)

Next, we rewrite ε Ni, j ψ j as follows:

ε 〈 L−1 ψ̂ i , ( f eq f̄ eq)−1
[

∂

∂τ
+ ε v · ∇

]
f eq f̄ eq L−1 χ̂ j 〉ψ j

= ε 〈 L−1 ψ̂ i , ( f eq f̄ eq)−1 ∂

∂T
[ f eq f̄ eq L−1 χ̂ j ] 〉 ψ j

∂

∂τ
T

+ ε2 〈 L−1 ψ̂ i , ( f eq f̄ eq)−1 vβ ∂

∂T
[ f eq f̄ eq L−1 χ̂ j ] 〉ψ j ∇βT

+ ε 〈 L−1 ψ̂ i , ( f eq f̄ eq)−1 ∂

∂
μ
T

[ f eq f̄ eq L−1 χ̂ j ] 〉 ψ j
∂

∂τ

μ

T

+ ε2 〈 L−1 ψ̂ i , ( f eq f̄ eq)−1 vβ ∂

∂
μ
T

[ f eq f̄ eq L−1 χ̂ j ] 〉 ψ j ∇β
μ

T

+ ε 〈 L−1 ψ̂ i , ( f eq f̄ eq)−1 ∂

∂uβ
[ f eq f̄ eq L−1 χ̂ j ] 〉 ψ j

∂

∂τ
uβ

+ ε2 〈 L−1 ψ̂ i , ( f eq f̄ eq)−1 vβ ∂

∂uα
[ f eq f̄ eq L−1 χ̂ j ] 〉 ψ j ∇βu

α. (12.175)

The temporal derivative of T , μ/T , and uμ are rewritten by using the balance equa-
tions up to the first order with respect to ε, which correspond to the relativistic Euler
equation:
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∂

∂τ
T = −T

∂P

∂e

∣∣∣∣
n

ε θ + O(ε2), (12.176)

∂

∂τ

μ

T
= − 1

T

∂P

∂n

∣∣∣∣
e

ε θ + O(ε2), (12.177)

∂

∂τ
uμ = 1

T
ε ∇μT + T

h
ε ∇μ μ

T
+ O(ε2). (12.178)

Using the formulae (12.139)–(12.143) and the Euler equations (12.176)–(12.178),
we convert Eq. (12.175) into the following forms: For ψ̂ i = �̂,

ε 〈 L−1 �̂ , ( f eq f̄ eq)−1
[

∂

∂τ
+ ε v · ∇

]
f eq f̄ eq L−1 χ̂ j 〉 ψ j

= ε2
{
〈 L−1 �̂ , ( f eq f̄ eq)−1

[
− T

∂P

∂e

∣∣∣∣
n

∂

∂T
− 1

T

∂P

∂n

∣∣∣∣
e

∂

∂
μ
T

]
f eq f̄ eq L−1 �̂

−T ζ
〉� θ

+ 〈 L−1 �̂ , ( f eq f̄ eq)−1
[
vβ ∂

∂T
+ 1

T

∂

∂uβ

]
f eq f̄ eq L−1 Ĵρ

T 2 λ/h
〉 Jρ ∇βT

+ 〈 L−1 �̂ , ( f eq f̄ eq)−1
[
vβ ∂

∂
μ
T

+ T

h

∂

∂uβ

]
f eq f̄ eq L−1 Ĵρ

T 2 λ/h
〉 Jρ ∇β

μ

T

+ 〈 L−1 �̂ , ( f eq f̄ eq)−1 vβ ∂

∂uα

f eq f̄ eq L−1 �̂

−T ζ
〉 � ∇βu

α

+ 〈 L−1 �̂ , ( f eq f̄ eq)−1 vβ ∂

∂uα

f eq f̄ eq L−1 π̂ρσ

−2 T η
〉 πρσ ∇βu

α

}
+ O(ε3)

= ε2
{

〈 L−1 �̂ , ( f eq f̄ eq)−1
[

− T
∂P

∂e

∣∣∣∣
n

∂

∂T
− 1

T

∂P

∂n

∣∣∣∣
e

∂

∂
μ
T

]
f eq f̄ eq L−1 �̂

−T ζ
〉 �θ

+ �αβ

3
〈 L−1 �̂ , ( f eq f̄ eq)−1

[
vα

∂

∂T
+ 1

T

∂

∂uα

]
f eq f̄ eq L−1 Ĵβ

T 2 λ/h
〉 Jρ ∇ρT

+ �αβ

3
〈 L−1 �̂ , ( f eq f̄ eq)−1

[
vα

∂

∂
μ
T

+ T

h

∂

∂uα

]
f eq f̄ eq L−1 Ĵβ

T 2 λ/h
〉 Jρ ∇ρ

μ

T

+ �αβ

3
〈 L−1 �̂ , ( f eq f̄ eq)−1 vα

∂

∂uβ

f eq f̄ eq L−1 �̂

−T ζ
〉 � θ

+ �αβγ δ

5
〈 L−1 �̂ , ( f eq f̄ eq)−1 vα

∂

∂uβ

f eq f̄ eq L−1 π̂γ δ

−2 T η
〉 πρσ σρσ

}

+ O(ε3), (12.179)

for ψ̂ i = Ĵμ/h,
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ε 〈 L−1 Ĵμ/h , ( f eq f̄ eq)−1
[

∂

∂τ
+ ε v · ∇

]
f eq f̄ eq L−1 ψ̂ j 〉 χ j

= ε2
{
〈 L−1 Ĵμ/h , ( f eq f̄ eq)−1

×
[

− T
∂P

∂e

∣∣∣∣
n

∂

∂T
− 1

T

∂P

∂n

∣∣∣∣
e

∂

∂
μ
T

]
f eq f̄ eq L−1 Ĵ ν

T 2 λ/h
〉 Jν θ

+ 〈 L−1 Ĵμ/h , ( f eq f̄ eq)−1
[
vβ ∂

∂T
+ 1

T

∂

∂uβ

]
f eq f̄ eq L−1 �̂

−T ζ
〉 �∇βT

+ 〈 L−1 Ĵμ/h , ( f eq f̄ eq)−1
[
vβ ∂

∂T
+ 1

T

∂

∂uβ

]
f eq f̄ eq L−1 π̂ρσ

−2 T η
〉 πρσ ∇βT

+ 〈 L−1 Ĵμ/h , ( f eq f̄ eq)−1
[
vβ ∂

∂
μ
T

+ T

h

∂

∂uβ

]
f eq f̄ eq L−1 �̂

−T ζ
〉 �∇β

μ

T

+ 〈 L−1 Ĵμ/h , ( f eq f̄ eq)−1
[
vβ ∂

∂
μ
T

+ T

h

∂

∂uβ

]
f eq f̄ eq L−1 π̂ρσ

−2 T η
〉 πρσ ∇β

μ

T

+ 〈 L−1 Ĵμ/h , ( f eq f̄ eq)−1 vβ ∂

∂uα

f eq f̄ eq L−1 Ĵρ

T 2 λ/h
〉 Jρ ∇βu

α

}
+ O(ε3)

= ε2
{

�ρσ

3 h
〈 L−1 Ĵρ , ( f eq f̄ eq)−1

×
[

− T
∂P

∂e

∣∣∣∣
n

∂

∂T
− 1

T

∂P

∂n

∣∣∣∣
e

∂

∂
μ
T

]
f eq f̄ eq L−1 Ĵσ

T 2 λ/h
〉 Jμ θ

+ �ρσ

3 h
〈 L−1 Ĵρ , ( f eq f̄ eq)−1

[
vσ

∂

∂T
+ 1

T

∂

∂uσ

]
f eq f̄ eq L−1 �̂

−T ζ
〉 �∇μT

+ �αβγ δ

5 h
〈 L−1 Ĵα , ( f eq f̄ eq)−1

[
vβ

∂

∂T
+ 1

T

∂

∂uβ

]
f eq f̄ eq L−1 π̂γ δ

−2 T η
〉 πμρ ∇ρT

+ �ρσ

3 h
〈 L−1 Ĵρ , ( f eq f̄ eq)−1

[
vσ

∂

∂
μ
T

+ T

h

∂

∂uσ

]
f eq f̄ eq L−1 �̂

−T ζ
〉 �∇μ μ

T

+ �αβγ δ

5 h
〈 L−1 Ĵα , ( f eq f̄ eq)−1

[
vβ

∂

∂
μ
T

+ T

h

∂

∂uβ

]
f eq f̄ eq L−1 π̂γ δ

−2 T η
〉 πμρ ∇ρ

μ

T

+ �ρσ �αβ

9 h
〈 L−1 Ĵρ , ( f eq f̄ eq)−1 vα

∂

∂uβ

f eq f̄ eq L−1 Ĵσ
T 2 λ/h

〉 Jμ θ

+ �αβγ δ

5 h
〈 L−1 Ĵα , ( f eq f̄ eq)−1 vγ

∂

∂uδ

f eq f̄ eq L−1 Ĵβ
T 2 λ/h

〉 Jρ σμ
ρ

+ �αβγ δ

3 h
〈 L−1 Ĵα , ( f eq f̄ eq)−1 vγ

∂

∂uδ

f eq f̄ eq L−1 Ĵβ
T 2 λ/h

〉 Jρ ωμ
ρ

}

+ O(ε3), (12.180)

and, for ψ̂ i = π̂μν ,
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ε 〈 L−1 π̂μν , ( f eq f̄ eq)−1
[

∂

∂τ
+ ε v · ∇

]
f eq f̄ eq L−1 ψ̂ j 〉 χ j

= ε2
{
〈 L−1 π̂μν , ( f eq f̄ eq)−1

×
[

− T
∂P

∂e

∣∣∣∣
n

∂

∂T
− 1

T

∂P

∂n

∣∣∣∣
e

∂

∂
μ
T

]
f eq f̄ eq L−1 π̂ρσ

−2 T η
] 〉 πρσ θ

+ 〈 L−1 π̂μν , ( f eq f̄ eq)−1
[
vβ ∂

∂T
+ 1

T

∂

∂uβ

]
f eq f̄ eq L−1 Ĵρ

T 2 λ/h
〉 Jρ ∇βT

+ 〈 L−1 π̂μν , ( f eq f̄ eq)−1
[
vβ ∂

∂
μ
T

+ T

h

∂

∂uβ

]
f eq f̄ eq L−1 Ĵρ

T 2 λ/h
〉 Jρ ∇β

μ

T

+ 〈 L−1 π̂μν , ( f eq f̄ eq)−1 vβ ∂

∂uα

f eq f̄ eq L−1 �̂

−T ζ
〉 �∇βu

α

+ 〈 L−1 π̂μν , ( f eq f̄ eq)−1 vβ ∂

∂uα

f eq f̄ eq L−1 π̂ρσ

−2 T η
〉 πρσ ∇βu

α

}
+ O(ε3)

= ε2
{

�ρσαβ

5
〈 L−1 π̂ρσ , ( f eq f̄ eq)−1

×
[

− T
∂P

∂e

∣∣∣∣
n

∂

∂T
− 1

T

∂P

∂n

∣∣∣∣
e

∂

∂
μ
T

]
f eq f̄ eq L−1 π̂αβ

−2 T η
〉 πμν θ

+ �ρσαβ

5
〈 L−1 π̂ρσ , ( f eq f̄ eq)−1 vα

∂

∂uβ

f eq f̄ eq L−1 �̂

−T ζ
〉 �σμν

+ �ρσαβ

5
〈 L−1 π̂ρσ , ( f eq f̄ eq)−1

[
vα

∂

∂T
+ 1

T

∂

∂uα

]
f eq f̄ eq L−1 Ĵβ

T 2 λ/h
〉 J 〈μ ∇ν〉T

+ �ρσαβ

5
〈 L−1 π̂ρσ , ( f eq f̄ eq)−1

[
vα

∂

∂
μ
T

+ T

h

∂

∂uα

]
f eq f̄ eq L−1 Ĵβ

T 2 λ/h
〉 J 〈μ ∇ν〉 μ

T

+ �ρσαβ

5
〈 L−1 π̂ρσ , ( f eq f̄ eq)−1 vα

∂

∂uβ

f eq f̄ eq L−1 �̂

−T ζ
〉 �σμν

+ �ρσαβ �γδ

15
〈 L−1 π̂ρσ , ( f eq f̄ eq)−1 vγ

∂

∂uδ

f eq f̄ eq L−1 π̂αβ

−2 T η
〉 πμν θ

+ 12�τηγ δ �κσλ
γ �αβ

λδ

35
〈 L−1 π̂τη , ( f eq f̄ eq)−1

× vα

∂

∂uβ

f eq f̄ eq L−1 π̂κσ

−2 T η
〉 πρ〈μ σν〉

ρ

+ 4�τηγ δ �κσλ
γ �αβ

λδ

15
〈 L−1 π̂τη , ( f eq f̄ eq)−1

× vα

∂

∂uβ

f eq f̄ eq L−1 π̂κσ

−2 T η
〉 πρ〈μ ων〉

ρ

}
+ O(ε3), (12.181)

with the vorticity ωμν = �μνρσ ∇ρuσ . Thus, ε Ni, j ψ j finally takes the form
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ε Ni, j ψ j = ε2 (κ�� �θ

+ κ
(1)
�J J

ρ ∇ρT + κ
(2)
�J J

ρ ∇ρ

μ

T
+ κ�π πρσ σρσ ,

κ
(1)
J� �∇μT + κ

(2)
J� �∇μ μ

T
+ κ

(1)
J J Jμ θ + κ

(2)
J J J ρ σμ

ρ + κ
(3)
J J J ρ ωμ

ρ

+ κ
(1)
Jπ πμρ ∇ρT + κ

(2)
Jπ πμρ ∇ρ

μ

T
,

κπ� �σμν

+ κ
(1)
π J J

〈μ ∇ν〉T + κ
(2)
π J J

〈μ ∇ν〉 μ
T

+ κ(1)
ππ πμν θ + κ(2)

ππ πρ〈μ σ ν〉
ρ + κ(3)

ππ πρ〈μ ων〉
ρ), (12.182)

where we have omitted terms of O(ε3).
The coefficients κ��, κ

(1)
�J , κ

(2)
�J , κ�π , κ

(1)
J�, κ

(2)
J�, κ

(1)
J J , κ

(2)
J J , κ

(3)
J J , κ

(1)
Jπ , κ

(2)
Jπ , κπ�,

κ
(1)
π J , κ

(2)
π J , κ

(1)
ππ , κ

(2)
ππ , and κ(3)

ππ are defined by

κ�� := 〈 L−1 �̂ , ( f eq f̄ eq)−1

×
[

− T
∂P

∂e

∣∣∣∣
n

∂

∂T
− 1

T

∂P

∂n

∣∣∣∣
e

∂

∂
μ
T

+ 1

3
vμ ∂

∂uμ

]
f eq f̄ eq L−1 �̂

−T ζ
〉, (12.183)

κ
(1)
�J := �μν

3
〈 L−1 �̂ , ( f eq f̄ eq)−1

[
vμ

∂

∂T
+ 1

T

∂

∂uμ

]
f eq f̄ eq L−1 Ĵν

T 2 λ/h
〉, (12.184)

κ
(2)
�J := �μν

3
〈 L−1 �̂ , ( f eq f̄ eq)−1

[
vμ

∂

∂
μ
T

+ T

h

∂

∂uμ

]
f eq f̄ eq L−1 Ĵν

T 2 λ/h
〉, (12.185)

κ�π := �μνρσ

5
〈 L−1 �̂ , ( f eq f̄ eq)−1 vμ

∂

∂uν

f eq f̄ eq L−1 π̂ρσ

−2 T η
〉, (12.186)

κ
(1)
J�

:= 1

3 h
〈 L−1 Ĵμ , ( f eq f̄ eq)−1

[
vμ

∂

∂T
+ 1

T

∂

∂uμ

]
f eq f̄ eq L−1 �̂

−T ζ
〉, (12.187)

κ
(2)
J�

:= 1

3 h
〈 L−1 Ĵμ , ( f eq f̄ eq)−1

[
vμ

∂

∂
μ
T

+ T

h

∂

∂uμ

]
f eq f̄ eq L−1 �̂

−T ζ
〉, (12.188)

κ
(1)
J J := �μν

3 h
〈 L−1 Ĵμ , ( f eq f̄ eq)−1

×
[

− T
∂P

∂e

∣∣∣∣
n

∂

∂T
− 1

T

∂P

∂n

∣∣∣∣
e

∂

∂
μ
T

+ 1

3
vρ ∂

∂uρ

]
f eq f̄ eq L−1 Ĵν

T 2 λ/h
〉, (12.189)

κ
(2)
J J := �μνρσ

5 h
〈 L−1 Ĵμ , ( f eq f̄ eq)−1 vρ

∂

∂uσ

f eq f̄ eq L−1 Ĵν
T 2 λ/h

〉, (12.190)

κ
(3)
J J := �μνρσ

3 h
〈 L−1 Ĵμ , ( f eq f̄ eq)−1 vρ

∂

∂uσ

f eq f̄ eq L−1 Ĵν
T 2 λ/h

〉, (12.191)

κ
(1)
Jπ

:= �μνρσ

5 h
〈 L−1 Ĵμ , ( f eq f̄ eq)−1

[
vν

∂

∂T
+ 1

T

∂

∂uν

]
f eq f̄ eq L−1 π̂ρσ

−2 T η
〉, (12.192)

κ
(2)
Jπ

:= �μνρσ

5 h
〈 L−1 Ĵμ , ( f eq f̄ eq)−1

[
vν

∂

∂
μ
T

+ T

h

∂

∂uν

]
f eq f̄ eq L−1 π̂ρσ

−2 T η
〉, (12.193)

κπ� := �μνρσ

5
〈 L−1 π̂μν , ( f eq f̄ eq)−1 vρ

∂

∂uσ

f eq f̄ eq L−1 �̂

−T ζ
〉, (12.194)
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κ
(1)
π J := �μνρσ

5
〈 L−1 π̂μν , ( f eq f̄ eq)−1

[
vρ

∂

∂T
+ 1

T

∂

∂uρ

]
f eq f̄ eq L−1 Ĵσ

T 2 λ/h
〉, (12.195)

κ
(2)
π J := �μνρσ

5
〈 L−1 π̂μν , ( f eq f̄ eq)−1

[
vρ

∂

∂
μ
T

+ T

h

∂

∂uρ

]
f eq f̄ eq L−1 Ĵσ

T 2 λ/h
〉, (12.196)

κ
(1)
ππ := �μνρσ

5
〈 L−1 π̂μν , ( f eq f̄ eq)−1

×
[

− T
∂P

∂e

∣∣∣∣
n

∂

∂T
− 1

T

∂P

∂n

∣∣∣∣
e

∂

∂
μ
T

+ 1

3
vμ ∂

∂uμ

]
f eq f̄ eq L−1 π̂ρσ

−2 T η
〉, (12.197)

κ
(2)
ππ := 12�μνγ δ �ρσλ

γ �αβ
λδ

35
〈 L−1 π̂μν , ( f eq f̄ eq)−1 vα

∂

∂uβ

f eq f̄ eq L−1 π̂ρσ

−2 T η
〉, (12.198)

κ
(3)
ππ := 4�μνγ δ �ρσλ

γ �αβ
λδ

15
〈 L−1 π̂μν , ( f eq f̄ eq)−1 vα

∂

∂uβ

f eq f̄ eq L−1 π̂ρσ

−2 T η
〉. (12.199)

Inserting the above equations into Eqs. (12.136) and setting ε equal to 1, we finally
get the explicit form of the relaxation equations as presented in (12.98)–(12.100).

12.7 Properties of Second-Order Fluid Dynamic Equation

In this section, we examine the basic properties of the resultant second-order fluid
dynamic equation. First, we show that our equation respects the stability of the static
solution containing the equilibrium. Then, we prove that our equation is really causal
in the sense that the speed of any fluctuations around the equilibrium is less than the
speed of light.

12.7.1 Stability

We first prove that the static solution to the relativistic second-order fluid dynamic
equation, i.e., the pair of Eqs. (12.77) and (12.81), is stable against a small pertur-
bation. The strategy of the proof in this subsection is the same as the one adopted in
the case of the first-order equation in Sect. 11.6.2.

A generic constant solution is written as

T (σ ; τ) = T0, μ(σ ; τ) = μ0, uμ(σ ; τ) = uμ
0 , (12.200)

�(σ ; τ) = 0, Jμ(σ ; τ) = 0, πμν(σ ; τ) = 0, (12.201)

where T0, μ0, and u
μ
0 are constant. We remark that the equilibrium state is a constant

solution in the special case of uμ
0 = (1, 0, 0, 0).

To show the stability of the constant solution, we apply the linear stability analysis
to the relativistic second-order fluid dynamic equation (12.77) and (12.81). Thus we
consider the case where T , μ, uμ, �, Jμ, and πμν are all expressed as a sum of the
constant solution and a small correction as
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T (σ ; τ) = T0 + δT (σ ; τ), μ(σ ; τ) = μ0 + δμ(σ ; τ), (12.202)

uμ(σ ; τ) = uμ
0 + δuμ(σ ; τ), �(σ ; τ) = δ�(σ ; τ), (12.203)

Jμ(σ ; τ) = δ Jμ(σ ; τ), πμν(σ ; τ) = δπμν(σ ; τ), (12.204)

where δT , δμ, δuμ, δ�, δ Jμ, and δπμν are assumed to be so small that the second
or higher-orders can be neglected.

Since δT , δμ, and δuμ are not independent variables because of the constraint
δuμ uμ

0 = 0, we define the following variables composed of linear combinations of
δT , δμ, and δuμ as mutually independent ones,

δX4μ := −δ(uμ/T ) = − 1

T0
δuμ + u0μ

T 2
0

δT, (12.205)

δX44 := δ(μ/T ) = 1

T0
δμ − μ0

T 2
0

δT, (12.206)

From now on, we suppress the subscript “0" in T0, μ0, and uμ
0 .

To describe fluctuations of fluid dynamic variables governed by the second-order
fluid dynamics, we need to incorporate the fluctuations of the dissipative currents;
δ�, δ Jμ, and δπμν . Instead of them, however, we define the following variables
composed of linear combinations of them as the mutually independent ones,

δXμν := − 1
3 �μν δ�

〈 �̂ , L̂−1 �̂ 〉 + δπμν

1
5 〈 π̂ρσ , L̂−1 π̂ρσ 〉 , (12.207)

δXμ4 := h2 δ Jμ

1
3 〈 Ĵ ρ , L̂−1 Ĵρ 〉 . (12.208)

We treat

δXαβ = (δXμν, δXμ4, δX4ν, δX44), (12.209)

as the fundamental variables.
Inserting Eqs. (12.202)–(12.204) into the relativistic second-order fluid dynamic

equation (12.77) and (12.81), we obtain the equation governing the time evolution
of δXαβ as

〈ϕα
0 , ϕ

β

0 〉 ∂

∂τ
δX4β + 〈ϕα

0 , L̂−1 ϕ
νβ

1 〉 ∂

∂τ
δXνβ

= −〈ϕα
0 , vρ ϕ

β

0 〉 ∇ρδX4β − 〈ϕα
0 , vρ L̂−1 ϕ

νβ

1 〉 ∇ρδXνβ, (12.210)

〈 L̂−1 ϕ
μα
1 , ϕ

β

0 〉 ∂

∂τ
δX4β + 〈 L̂−1 ϕ

μα
1 , L̂−1 ϕ

νβ

1 〉 ∂

∂τ
δXνβ

= −〈 L̂−1 ϕ
μα
1 , vρ ϕ

β

0 〉 ∇ρδX4β − 〈 L̂−1 ϕ
μα
1 , vρ L̂−1 ϕ

νβ

1 〉 ∇ρδXνβ

− 〈 L̂−1 ϕ
μα
1 , L̂ L̂−1 ϕ

νβ

1 〉 δXνβ . (12.211)
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In deriving Eqs. (12.210) and (12.211), we have used the following formulae

δ( f eqp ) = f eqp f̄ eqp ϕα
0p δX4α, δ(�p) = [

L̂−1 ϕ
μα
1

]
p δXμα, (12.212)

with the relation ϕ
μα
1p = [

Q0 ϕ̃
μα
1

]
p, the explicit formula of which is given in

Eq. (12.92).
Equations (12.210) and (12.211) are combined and expressed in single formula

as

Aαβ,γ δ ∂

∂τ
δXγ δ + Bαβ,γ δ δXγ δ = 0, (12.213)

where Aαβ,γ δ and Bαβ,γ δ are given by

Aμβ,νδ := 〈 L̂−1 ϕ
μβ

1 , L̂−1 ϕνδ
1 〉, (12.214)

Aμβ,4δ := 〈 L̂−1 ϕ
μβ

1 , ϕδ
0 〉, (12.215)

A4β,νδ := 〈ϕ
β

0 , L̂−1 ϕνδ
1 〉, (12.216)

A4β,4δ := 〈ϕ
β

0 , ϕδ
0 〉, (12.217)

Bμβ,νδ := −〈ϕ
μβ

1 , L̂−1 ϕνδ
1 〉 + 〈 L̂−1 ϕ

μβ

1 , vρ L̂−1 ϕνδ
1 〉 ∇ρ, (12.218)

Bμβ,4δ := 〈 L̂−1 ϕ
μβ

1 , vρ ϕδ
0 〉 ∇ρ, (12.219)

B4β,νδ := 〈ϕ
β

0 , vρ L̂−1 ϕνδ
1 〉 ∇ρ, (12.220)

B4β,4δ := 〈ϕ
β

0 , vρ ϕδ
0 〉 ∇ρ. (12.221)

Let us obtain the normal modes given by the linear equation (12.213). Inserting

δXαβ(σ ; τ) = δ X̃αβ(k ; �) eik·σ−�τ , (12.222)

with kμ being a space-like vector (kμ = �μν kν) into Eq. (12.213), we have

(� Aαβ,γ δ − B̃αβ,γ δ) δ X̃γ δ = 0, (12.223)

where B̃αβ,γ δ are given by

B̃μβ,νδ := −〈ϕ
μβ

1 , L̂−1 ϕνδ
1 〉 + 〈 L̂−1 ϕ

μβ

1 , vρ L̂−1 ϕνδ
1 〉 i kρ, (12.224)

B̃μβ,4δ := 〈 L̂−1 ϕ
μβ

1 , vρ ϕδ
0 〉 i kρ, (12.225)

B̃4β,νδ := 〈ϕ
β

0 , vρ L̂−1 ϕνδ
1 〉 i kρ, (12.226)

B̃4β,4δ := 〈ϕ
β

0 , vρ ϕδ
0 〉 i kρ. (12.227)
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In the rest of this section, we use the matrix representation when no misunder-
standing is expected. In order to get a nontrivial solution, we impose

det(� A − B̃) = 0, (12.228)

which leads to the dispersion relation

� = �(k). (12.229)

The stability of the constant solution given by Eqs. (12.200)–(12.201) against a small
perturbation is assured if the real part of �(k) is positive for any kμ, which implies
that δX tends to decay along with the time evolution.

We first show that A is a real symmetric positive-definite matrix. In fact, for an
arbitrary non-vanishing ‘vector’ (w)αβ := wαβ

wαβ Aαβ,γ δ wγ δ = 〈wμβ L̂−1 ϕ
μβ

1 + w4β ϕ
β

0 , wνδ L̂
−1 ϕνδ

1 + w4δ ϕδ
0〉

= 〈χ , χ〉 > 0, wαβ 	= 0, (12.230)

with

χp := wμα

[
L̂−1 ϕ

μα
1

]
p + w4α ϕα

0p. (12.231)

In Eq. (12.230), we have used the positive-definite property (12.19) of the inner
product.

Equation (12.230) means that the inverse matrix A−1 exists, and A−1 is also a real
symmetric positive-definitematrix. Thenwith the use of the Cholesky decomposition
[218], A−1 is factorized into a real upper triangular matrix U and its transpose tU
as

A−1 = tU U. (12.232)

Now substituting Eq. (12.232) into Eq. (12.228), we have

det(� I −U B̃ tU ) = 0, (12.233)

where I stands for the unit matrix, which shows that�(k) is an eigenvalue ofU B̃ tU .
One can see that the real part of �(k) is positive for any kμ when

Re(U B̃ tU ) := 1

2

[
(U B̃ tU ) + (U B̃ tU )†

]
, (12.234)

is a positive definite matrix, which we now show is the case. In fact, for a real-number
‘vector’ w ((w)αβ =: wαβ)
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wαβ [Re(U B̃ tU )]αβ,γ δ wγ δ = wαβ [U Re(B̃) tU ]αβ,γ δ wγ δ

= [wU ]αβ [Re(B̃)]αβ,γ δ [wU ]γ δ

= −[wU ]μβ 〈ϕ
μβ

1 , L̂−1 ϕνδ
1 〉 [wU ]νδ

= −〈ψ , L̂−1 ψ〉, (12.235)

with ψp := [wU ]μα ϕ
μα
1p . However, since the vector ψp belongs to the Q0 space

spanned by the eigenvectors with the negative eigenvalues of L̂ pq , we have
−〈ψ , L̂−1 ψ〉,> 0. Thus,

wαβ [Re(U B̃ tU )]αβ,γ δ wγ δ > 0, (12.236)

which proves that the constant solution given by Eqs. (12.200)–(12.201) is stable
against a small perturbation around the general constant solution.

12.7.2 Causality

We show that the speed at which the fluctuation δXαβ propagates does not exceed
that of light, i.e., unity in the present unit system.

We suppose that the propagation speed of δXαβ is given by the group velocity.
Here we call the maximum value of the group velocity the characteristic speed. To
define the characteristic speed, let us introduce a space-like vector v

μ
ch, which is

defined in terms of the eigenvalue �(k) given by (12.229) as

v
μ
ch := lim

−k2→∞

[
− i

∂

∂kμ

�(k)

]
. (12.237)

Then the Lorentz-invariant characteristic speed is given by

vch :=
√

−�μν v
μ
ch vν

ch. (12.238)

By a differentiation of Eq. (12.233) with respect to ikμ, v
μ
ch is found to be given

as an eigenvalue of U Cμ tU ,

det
[
v

μ
ch I −U Cμ tU

]
= 0, (12.239)

where

[
Cρ

]αβ,γ δ := lim
−k2→∞

[
− i

∂

∂kρ

B̃αβ,γ δ

]
. (12.240)
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With the use of Eqs. (12.224)–(12.227) for B̃αβ,γ δ , the components of
[
Cρ

]αβ,γ δ
are

found to be

[
Cρ

]μβ,νδ = 〈 L̂−1 ϕ
μβ

1 , vρ L̂−1 ϕνδ
1 〉, (12.241)[

Cρ
]μβ,4δ = 〈 L̂−1 ϕ

μβ

1 , vρ ϕδ
0〉, (12.242)[

Cρ
]4β,νδ = 〈ϕ

β

0 , vρ L̂−1 ϕνδ
1 〉, (12.243)[

Cρ
]4β,4δ = 〈ϕ

β

0 , vρ ϕδ
0〉. (12.244)

Then the expectation value of U Cμ tU with respect to an arbitrary vector w′ :=
t (U−1) w can be written as

[
wU−1

]
αβ

[
U Cμ tU

]αβ,γ δ [
t (U−1) w

]
γ δ

wα′β ′
[
U−1 t (U−1)

]α′β ′,γ ′δ′
wγ ′δ′

= wαβ

[
Cμ

]αβ,γ δ
wγ δ

wα′β ′ Aα′β ′,γ ′δ′
wγ ′δ′

= 〈χ , vμ χ〉
〈χ , χ〉 = 〈 vμ 〉χ , (12.245)

with

χp := wμα

[
L̂−1 ϕ

μα
1

]
p + w4α ϕα

0p, (12.246)

where we have introduced the notation

〈 O 〉χ := 〈χ , O χ〉
〈χ , χ〉 , (12.247)

for an arbitrary operator O .
We will show the inequality

√
−�μν 〈 vμ 〉χ 〈 vν 〉χ ≤ 1, (12.248)

holds for any χp, which proves the inequality

vch =
√

−�μν v
μ
ch vν

ch ≤ 1. (12.249)

The proof of (12.248) is given as follows: First, with the use of the identities

− �μν vμ
p vν

p = (p · u)2 − m2

(p · u)2
≤ 1, (12.250)

〈 1 〉χ = 1, (12.251)

we obtain
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〈−�μν vμ vν 〉χ ≤ 1. (12.252)

We also find

〈−�μν vμ vν 〉χ = −�μν 〈 vμ 〉χ 〈 vν 〉χ + 〈−�μν δvμ δvν 〉χ
≥ −�μν 〈 vμ 〉χ 〈 vν 〉χ , (12.253)

where δv
μ
pq := δv

μ
p δpq with δv

μ
p := v

μ
p − 〈 vμ 〉χ . We have used

− �μν δvμ
p δvν

p ≥ 0, (12.254)

due to the fact that δv
μ
p is also a space-like vector. By combing Eq. (12.253) with

Eq. (12.252), the proof is completed.
In short, the relativistic second-order fluid dynamic equation given byEqs. (12.77)

and (12.81) respects the causality in the linear analysis around the homogeneous
steady state (12.200)–(12.201), in addition to the stability around the static solution.



Chapter 13
Appendices for Chaps. 10, 11, and 12

13.1 Foundation of the Symmetrized Inner Product defined
by Eqs. (11.31) and (12.18)

In this section, by applying the general theory of asymmetric linear operators given in
Sect. 3.6.2, we shall prove that the inner product defined by Eqs. (11.31) and (12.18)
is the unique one which satisfies manifestly the self-adjointness of the linearized
evolution operator L̂ .

To make the discussion clear, we suppose that the dimension of the vector space
operated by L̂ is n. For this n × n matrix L̂ , we define right eigenvectors Ui and left
eigenvectors Ũ †

i with i = 1, . . . , n as

L̂ Ui = λi Ui , (13.1)

Ũ †
i L̂ = λi Ũ

†
i , (13.2)

respectively. Here, λi with i = 1, . . . , n are corresponding eigenvalues. A Hermitian
conjugate of Eq. (13.2) is

A† Ũi = λ∗
i Ũi , (13.3)

with λ∗
i being a complex conjugate of λi . Without loss of generality, we can impose

the orthogonality and completeness as follows:

Ũ †
i U j = δi j , (13.4)

n∑

i=1

Ui Ũ
†
i = 1, (13.5)

respectively.
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We define an inner product for ϕ and ψ in terms of the right eigenvectorsUi with
i = 1, · · · , n as

〈ϕ , ψ 〉 := ϕ† gψ, (13.6)

where g is a metric tensor

g =
n∑

i=1

Ũi Ũ
†
i . (13.7)

We note that the following symmetry property with respect to Ui with i = 1, · · · , n
holds:

〈Ui , Uj 〉 = δi j , (13.8)

which can be derived from Eq. (13.4).
Using this symmetrized inner product, we obtain

〈ϕ , L̂ ψ 〉 = ϕ† g L̂ ψ =
n∑

i=1

ϕ† Ũi Ũ
†
i L̂ ψ

=
n∑

i=1

λi ϕ
† Ũi Ũ

†
i ψ, (13.9)

and

〈 L̂ ϕ , ψ 〉 = (L̂ ϕ)† gψ = ϕ† L̂† gψ =
n∑

i=1

ϕ† L̂† Ũi Ũ
†
i ψ

=
n∑

i=1

λ∗
i ϕ† Ũi Ũ

†
i ψ. (13.10)

We find that, when all the eigenvalues are real number as λ∗
i = λi with i = 1, · · · , n,

the self-adjoint nature of L̂ is apparent,

〈ϕ , L̂ ψ 〉 = 〈 L̂ ϕ , ψ 〉. (13.11)

Let us construct an explicit form of the metric tensor g. First we shall show that
there exisits a hermitian matrix G so that L̂ and L̂† satisfy

L̂† = G L̂ G−1, (13.12)

with
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G† = G. (13.13)

In fact, using the definition of L̂ in Eq. (11.29), we have

(p · u) f eqp f̄ eqp L̂ pq = − 1

2!
∫
dp1

∫
dp2

∫
dp3 ω(p , p1|p2 , p3)

× f eqp f eqp1 f̄ eqp2 f̄ eqp3 (δpq + δp1q − δp2q − δp3q)

= − 1

2! (δpq ap + bpq − cpq − dpq), (13.14)

with

ap :=
∫
dp1

∫
dp2

∫
dp3 ω(p , p1|p2 , p3) f eqp f eqp1 f̄ eqp2 f̄ eqp3 , (13.15)

bpq :=
∫
dp2

∫
dp3 ω(p , q|p2 , p3) f eqp f eqq f̄ eqp2 f̄ eqp3 , (13.16)

cpq :=
∫
dp1

∫
dp3 ω(p , p1|q , p3) f eqp f eqp1 f̄ eqq f̄ eqp3 , (13.17)

dpq :=
∫
dp1

∫
dp2 ω(p , p1|p2 , q) f eqp f eqp1 f̄ eqp2 f̄ eqq . (13.18)

Here, it can be readily shown that

bpq = bqp, cpq = cqp, dpq = dqp. (13.19)

For instance,

dpq =
∫
dp1

∫
dp2 ω(p , p1|p2 , q) f eqp f eqp1 f̄ eqp2 f̄ eqq

=
∫
dp1

∫
dp2 ω(q , p2|p1 , p) f eqp f eqp1 f̄ eqp2 f̄ eqq

=
∫
dp1

∫
dp2 ω(q , p2|p1 , p) f̄ eqp f̄ eqp1 f eqp2 f eqq

=
∫
dp1

∫
dp2 ω(q , p1|p2 , p) f eqq f eqp1 f̄ eqp2 f̄ eqp = dqp, (13.20)

where the symmetry property of the transition probability (10.20) given by

ω(p , p1|p2 , q) = ω(p2 , q|p , p1) = ω(q , p2|p1 , p), (13.21)

and the detailed balance (10.35) given by

ω(q , p2|p1 , p) ( f eqp f eqp1 f̄ eqp2 f̄ eqq − f̄ eqp f̄ eqp1 f eqp2 f eqq ) = 0, (13.22)
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have been used in the second and third lines, respectively, and the dummyvariables p1
and p2 have been interchanged in the final line. Thus we find that (p · u) f eqp f̄ eqp L̂ pq

is a symmetric matrix, that is,

(p · u) f eqp f̄ eqp L̂ pq = (q · u) f eqq f̄ eqq L̂qp. (13.23)

Noticing that L̂qp is real as

L̂qp = L̂∗
qp = L̂†

pq , (13.24)

we rewrite Eq. (13.23) as

L̂†
pq = (p · u) f eqp f̄ eqp L̂ pq [(q · u) f eqq f̄ eqq ]−1. (13.25)

Since (p · u) f eqp f̄ eqp is real, we can identify the Hermite matrix G with

Gpq = (p · u) f eqp f̄ eqp δpq . (13.26)

Substituting Eq. (13.12) into Eq. (13.3), we have

G L̂ G−1 Ũi = λ∗
i Ũi , (13.27)

which can be converted to

L̂ G−1 Ũi = λ∗
i G

−1 Ũi . (13.28)

By comparing this equation with Eq. (13.1), one finds

λ∗
i = λi , (13.29)

G−1 Ũi = Ui . (13.30)

Using Eq. (13.30) and the completeness (13.5), we find that the metric tensor g is
identical to G:

g =
n∑

i=1

GUi Ũ
†
i = G. (13.31)

It is noted that, as shown in Eq. (13.29), all eigenvalues of L̂ are real and hence the
inner product constructed by G shows in an apparent way the self-adjoint nature of
L̂ .

Substituting Eq. (13.31) combined with Eq. (13.26) into Eq. (13.6), we have the
inner product
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〈ϕ , ψ 〉 =
∫
dp

∫
dq ϕp G pq ψq

=
∫
dp

∫
dq ϕp (p · u) f eqp f̄ eqp δpq ψq

=
∫
dp (p · u) f eqp f̄ eqp ϕp ψp. (13.32)

We note that the symmetrized inner product constructed in Eq. (13.32), which is a
unique one that ensures the self-adjoint nature of L̂ , is nothing but the inner product
introduced by Eqs. (11.31) and (12.18).

13.2 Derivation of Eqs. (10.65)–(10.67)

In this section, we present a detailed derivation of Eqs. (10.65)–(10.67).
Some manipulations of Eq. (10.64) with the use of the orthogonality relations

between the zero modes give

∂

∂τ (1)
T = −T

[
1

3
+ m2(a2a0 − a21)

3(a3a1 − a22)

]
∇ · u, (13.33)

∂

∂τ (1)

μ

T
= 1

T

m2(a3a0 − a2a1)

3(a3a1 − a22)
∇ · u, (13.34)

∂

∂τ (1)
uμ = 1

T
∇μT + T

m2a0 − a2
m2a1 − a3

∇μ μ

T
, (13.35)

where

a	 :=
∫
dp f eqp f̄ eqp (p · u)	, 	 = 0, 1, 2, · · · , (13.36)

some of which are expressed in terms of the thermodynamic quantities T , μ, n, e,
P , and their derivatives as

∂n

∂T
= 1

T 2
a2 − μ

T 2
a1,

∂n

∂μ
= 1

T
a1, (13.37)

∂e

∂T
= 1

T 2
a3 − μ

T 2
a2,

∂e

∂μ
= 1

T
a2, (13.38)

∂P

∂T
= 1

3T 2
(a3 − μa2 − m2a1 + m2μa0), (13.39)

∂P

∂μ
= 1

3T
(a2 − m2a0). (13.40)
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We note that the explicit forms of n, e, and P given by Eqs. (10.38)–(10.40) have
been used.

Combinations of these relations further lead to the following equalities:

− m2(a2a0 − a21)

3(a3a1 − a22)
= 1

3
−

∂P
∂T

∂n
∂μ

− ∂P
∂μ

∂n
∂T

∂e
∂T

∂n
∂μ

− ∂e
∂μ

∂n
∂T

= 1

3
− ∂P

∂e

∣∣∣∣
n

, (13.41)

m2(a3a0 − a2a1)

3(a3a1 − a22)
= −

∂P
∂T

∂e
∂μ

− ∂P
∂μ

∂e
∂T

∂n
∂T

∂e
∂μ

− ∂n
∂μ

∂e
∂T

= − ∂P

∂n

∣∣∣∣
e

, (13.42)

m2a1 − a3
m2a0 − a2

= T
∂P
∂T
∂P
∂μ

+ μ = e + P

n
. (13.43)

In Eq. (13.43), we have used the following relations derived from the Gibbs-Duhem
equation dP = sdT + ndμ,

∂P

∂T
= s = e + P − μn

T
, (13.44)

∂P

∂μ
= n, (13.45)

with s being the entropy density. We note that the relations (13.44) and (13.45)
can be shown not only by the Gibbs-Duhem equation but also by a straightforward
manipulation based on the explicit forms of n, e, and P .

With use of Eqs. (13.41)–(13.43), Eqs. (13.33)–(13.35) are nicely simplified as
Eqs. (10.65)–(10.67).

13.3 Detailed Derivation of Explicit Form of ϕ
μα
1

We derive the expression of ϕ
μα
1p in Eq. (11.88) whose calculation can be done as

follows,

ϕ
μα
1p = [

Q0 ϕ̃
μα
1

]
p = ϕ̃

μα
1p − [

P0 ϕ̃
μα
1

]
p

= 1

p · u
(
pμ ϕα

0p − (p · u) ϕ
β

0p η−1
0βγ 〈ϕ

γ

0 , ϕ̃
μα
1 〉

)
, (13.46)

Using a	 with 	 = 0, 1, · · · defined in Eq. (13.36), then we express the metric
η

αβ

0 = 〈ϕα
0 , ϕ

β

0 〉 as
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η
μν
0 = a3u

μuν + (m2a1 − a3)
1

3
�μν, (13.47)

η
μ4
0 = η

4μ
0 = a2u

μ, (13.48)

η44
0 = a1, (13.49)

while the inverse metric η−1
0αβ read

η−1
0μν = a1uμuν

a3a1 − a22
+ 3�μν

m2a1 − a3
, (13.50)

η−1
0μ4 = η−1

04μ = −a2uμ

a3a1 − a22
, (13.51)

η−1
044 = a3

a3a1 − a22
. (13.52)

The inner products 〈ϕα
0 , ϕ̃

μβ

1 〉 are evaluated as follows:

〈 ϕa
0 , ϕ̃

μb
1 〉 = a3 u

a uμ ub + (m2 a1 − a3)
1

3
(ua �μb + uμ �ba + ub �aμ), (13.53)

〈 ϕa
0 , ϕ̃

μ4
1 〉 = a2 u

a uμ + (m2 a0 − a2)
1

3
�aμ, (13.54)

〈 ϕ4
0 , ϕ̃

μb
1 〉 = a2 u

μ ub + (m2 a0 − a2)
1

3
�μb, (13.55)

〈 ϕ4
0 , ϕ̃

μ4
1 〉 = a1 u

μ. (13.56)

Inserting the inverse metric η−1
0αβ in Eqs. (13.50)–(13.52) and the inner products

〈ϕα
0 , ϕ̃

μβ

1 〉 in Eqs. (13.53)–(13.56) into Eq. (13.46), we have

ϕ
μα
1p =

⎧
⎪⎪⎨

⎪⎪⎩

1

p · u (−�μν �p + πμν
p ), α = μ,

1

p · u
m2 a0 − a2
m2 a1 − a3

Jμ
p , α = 4.

(13.57)

Here, we have introduced the following quantities

�p := −m2(a2a0 − a21)

3(a3a1 − a22)
(p · u)2 + m2(a3a0 − a2a1)

3(a3a1 − a22)
(p · u) − m2

3
, (13.58)

Jμ
p := −�μν pν

[
(p · u) − m2a1 − a3

m2a0 − a2

]
, (13.59)

πμν
p := �μνρσ pρ pσ , (13.60)

with
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�μνρσ = 1

2

[
�μρ �νσ + �μσ �νρ − 2

3
�μν �ρσ

]
. (13.61)

Using Eqs. (13.41)–(13.43), which are derived from the explicit forms of a	 with
	 = 0, 1, 2, 3, we can convert Eqs. (13.57)–(13.60) into

ϕ
μα
1p =

⎧
⎪⎨

⎪⎩

1

p · u (−�μν �p + πμν
p ) = −�μν �̂p + π̂μν

p , α = μ,

1

p · u
n

e + P
Jμ
p = n

e + P
Ĵμ
p , α = 4,

(13.62)

where (�̂p, Ĵμ
p , π̂

μν
p ) := 1

p·u (�p, Jμ
p , π

μν
p ) as given in (11.89) with

�p = (p · u)2
[
1

3
− ∂P

∂e

∣∣∣∣
n

]
− (p · u)

∂P

∂n

∣∣∣∣
e

− 1

3
m2, (13.63)

Jμ
p = −�μν pν

[
(p · u) − e + P

n

]
. (13.64)

One sees that the expression of ϕ
μα
1 in Eq. (13.62) agrees with that given in Eq.

(11.88), i.e., we have derived Eq. (11.88), as promised.

13.4 Computation of L̂ Q0 F0 in Eq. (12.38)

We derive the expression of L̂−1 Q0 F0 given by Eq. (12.38).
Noticing that F0 in Eq. (12.17) is expressed as

F0p = ϕ̃
μν
1p ∇μ

uν

T
− ϕ̃

μ4
1p ∇μ

μ

T
, (13.65)

with ϕ̃
μα
1p = pμ ϕα

0p
1
p·u , we have

[
Q0 F0

]
p = ϕ

μν
1p ∇μ

uν

T
− ϕ

μ4
1p ∇μ

μ

T
, (13.66)

with ϕ
μα
1p := [

Q0 ϕ̃
μα
1

]
p. Substituting the expressions of ϕ

μα
1p given by Eq. (13.62)

into Eq. (13.66), we have

[
Q0 F0

]
p

= �̂p
−∇ · u

T
− Ĵμ

p

1

h
∇μ

μ

T
+ π̂μν

p

�μνρσ ∇ρuσ

T
. (13.67)

In the above equation, we have introduced the enthalpy per particle h given by
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h := e + P

n
. (13.68)

By operating L̂−1 on Eq. (13.67) from the left, we obtain Eq. (12.38).

13.5 Proof of Vanishing of Inner Product Between Collision
Invariants and B

In this section, we present a proof for the identity given by Eq. (11.67). This proof is
a relativistic extension of the proof in the non-relativistic dissipative fluid dynamics,
which is presented in Sect. 8.5.

We begin from the definition of the collision invariants,

∫
dp ϕα

0p C[ f ]p = 0. (13.69)

This identity is satisfied for an arbitrary distribution function f p, and hence we can
take the functional derivatives with respect to f p. The second derivative reads

∫
dp ϕα

0p
δ2

δ fqδ fr
C[ f ]p = 0. (13.70)

We take the value of Eq. (13.70) at f p = f eqp to obtain the following relation:

∫
dp ϕα

0p f eqp f̄ eqp Bpqr ( f eqq f̄ eqq )−1 ( f eqr f̄ eqr )−1 = 0, (13.71)

where the definition of B given by Eq. (11.56) has been used.
Multiplying Eq. (13.71) by arbitrary two vectors f eqq f̄ eqq ψq and f eqr f̄ eqr χr and

then taking the integration with respect to q and r , we have

0 =
∫
dp ϕα

0p f eqp f̄ eqp

∫
dq

∫
dr Bpqr ψq χr

=
∫
dp ϕα

0p f eqp f̄ eqp B[ψ , χ ]
= 〈ϕα

0 , B[ψ , χ ] 〉, (13.72)

where the notation (11.55) has been used. The putting ofψ = χ = L̂−1 Q F reduces
Eq. (13.72) into Eq. (11.67), and hence the proof of Eq. (11.67) is completed.



Chapter 14
Demonstration of Numerical
Calculations of Transport Coefficients
and Relaxation Times: Typical Three
Models

14.1 Introduction

In this chapter, as a direct continuation of Chap. 12, we demonstrate how numerically
calculated are themicroscopic expressions of the transport coefficients and relaxation
times derived in Chap. 12 from the relativistic Boltzmann equation [67, 68], and
discuss the properties of them thus obtained for three systems of some physical
interest. The derivation of these expressions is based on [155] where the doublet
scheme in the RG method [69] is applied, which is an extension of the RG method
[1, 38, 39, 48–52, 92–96] as formulated in [3, 5, 6, 46, 57, 58] so as to incorporate
the appropriate excited modes in addition to the zero modes to make a reduced
dynamics from a microscopic theory.

According to the formulae derived in Chap. 12, a main task in the calculation of
the transport coefficients and relaxation times is to evaluate the following quantities:

⎛
⎝

φ�p

φ
μ

J p

φ
μν
πp

⎞
⎠ :=

⎡
⎣L̂−1

⎛
⎝

�̂

Ĵμ

π̂μν

⎞
⎠

⎤
⎦

p

, (14.1)

where L̂ pq is the linear evolution operator (linearized collision operator) (12.16), and
�̂p, Ĵ

μ
p , and π̂

μν
p are the microscopic representations of dissipative currents given

by (12.39)–(12.41), respectively. Indeed, with the use of φ�p, φ
μ

J p, and φ
μν
πp , we have

given themicroscopic expressions of the transport coefficients and relaxation times in
(12.105)–(12.107) and (12.108)–(12.110), respectively, which are reproduced below
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ζRG = − 1

T
〈�̂ , φ�〉, λRG = 1

3T 2
〈 Ĵμ , φJμ〉, (14.2)

ηRG = − 1

10T
〈π̂μν , φπμν〉, τRG

� = −〈φ� , φ�〉
〈�̂ , φ�〉 , (14.3)

τRG
J = −〈φμ

J , φJμ〉
〈 Ĵ ρ , φJρ〉

, τRG
π = −〈φμν

π , φπμν〉
〈π̂ρσ , φπρσ 〉 , (14.4)

with the inner product 〈ϕ , ψ〉 = ∫
dp (p · u) f eqp f̄ eqp ϕp ψp.

Let us convert Eq. (14.1) into the following linear equations

⎡
⎣L̂

⎛
⎝

φ�

φ
μ

J
φμν

π

⎞
⎠

⎤
⎦

p

=
⎛
⎝

�̂p

Ĵμ
p

π̂
μν
p

⎞
⎠ . (14.5)

These equations are linear integral equations,1 and called linearized transport equa-
tions [67]. We note that a solution to the linearized transport equations gives explicit
forms of φ�p, φ

μ

J p, and φ
μν
πp . Our main task in this chapter is thus reduced to solving

the linear integral equations (14.5), which will be achieved in a numerical method.
This chapter is organized as follows: In Sect. 14.2, we reduce the linearized

transport equations (14.5) and also the microscopic expressions of the transport
coefficients and relaxation times to simpler forms that are suitable for the numerical
calculation, and then provide amethod to numerically solve the integral equations. In
Sect. 14.3, we compute the transport coefficients and relaxation times numerically
using the linear evolution operator L̂ pq for three physical models with the cross
section given, and briefly discuss the properties of the results thus obtained.

14.2 Linearized Transport Equations and Solution Method

In this section, following the calculational procedure given in [67] for the transport
coefficients in the case of classical statistics, we start with the linearized trans-
port equations (14.5) in the case of quantum statistics and convert the microscopic
expressions of the transport coefficients and relaxation times to simpler forms that
are tractable numerically. First we reduce the linear calculus in the left-hand side of
the linearized transport equations (14.5) to that of a system of three linear integral
equations with some kernel functions, each of which is given as a multiple integral
of sixth order. Then, the kernel functions are obtained by carrying out multiple inte-
grals of fourth and sixth orders. Next, the three-dimensional momentum integrals
are reduced to one-dimensional integrals. The final part of this section is devoted to
an account of a not only accurate but also efficient numerical method for solving the
integral equations.

1 More precisely, Fredholm integral equations of the first kind [80].
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14.2.1 Reduction of the Integrals in the Linearized Transport
Equations in Terms of the Differential Cross Section

We consider a generic form of the integral operation of the left-hand side of the
linearized transport equations (14.5) as

[L̂ φ]p = − 1

p · u
1

2!
∫
dp1

∫
dp2

∫
dp3 ω(p, p1|p2, p3)

× f eqp1 f̄ eqp2 f̄ eqp3
f̄ eqp

(φp + φp1 − φp2 − φp3), (14.6)

for an arbitrary vector φp with the integral measure

dp = d3 p
(2π)3 p0

. (14.7)

For a reduction of the formula, we exploit the fact that the transition probability
ω(p, p1|p2, p3) is expressed in terms of the differential cross section σ(q, �) as
[67],

ω(p, p1|p2, p3) = (2π)6 P2 σ(q, �) δ4(p + p1 − p2 − p3), (14.8)

where the following Lorentz invariant quantities have been introduced:

P2 := (p + p1)
2, (14.9)

q2 := −(p − p1)
2, (14.10)

cos� := −(p − p1) · (p2 − p3)/q
2. (14.11)

In fact, one can confirm that the total cross section σtot is expressed in two equivalent
ways as

σtot =
∫
dp2

∫
dp3

1

F
ω(p, p1|p2, p3), (14.12)

= 2π

∫ π

0
d� sin�σ(q, �). (14.13)

with the invariant flux F := √
(p · p1)2 − m4.

Substituting Eq. (14.8) into Eq. (14.6), and using the integral measure (14.7), we
have
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[
L̂ φ

]
p = − 1

p · u
∫
d3 p1
p01

∫
d3 p2
p02

∫
d3 p3
p03

1

(2π)3
P2 1

2! σ(q, �)

× δ4(p + p1 − p2 − p3)
f eqp1 f̄ eqp2 f̄ eqp3

f̄ eqp
(φp + φp1 − φp2 − φp3 ). (14.14)

For convenience, we decompose this equation into four contributions as

[
L̂ φ

]
p

= I [φ]p + I1[φ]p + I2[φ]p + I3[φ]p, (14.15)

where
⎛
⎜⎜⎝

I [φ]p
I1[φ]p
I2[φ]p
I3[φ]p

⎞
⎟⎟⎠ := − 1

p · u
∫
d3 p1
p01

∫
d3 p2
p02

∫
d3 p3
p03

1

(2π)3
P2 1

2! σ(q, �)

× δ4(p + p1 − p2 − p3)
f eqp1 f̄ eqp2 f̄ eqp3

f̄ eqp

⎛
⎜⎜⎝

φp

φp1
−φp2
−φp3

⎞
⎟⎟⎠ . (14.16)

Let us convert the four contributions to more compact forms. We rewrite I [φ]p
and I1[φ]p as

I [φ]p = − 1

p · u
1

f̄ eqp
φp

∫
d3 p1

(2π)3 p01
f eqp1 K1(p, p1), (14.17)

I1[φ]p = − 1

p · u
1

f̄ eqp

∫
d3 p1

(2π)3 p01
f eqp1 φp1 K1(p, p1), (14.18)

where we have introduced a kernel function

K1(p, p1) :=
∫
d3 p2
p02

∫
d3 p3
p03

P2 1

2! σ(q, �) δ4(p + p1 − p2 − p3) f̄ eqp2 f̄ eqp3 . (14.19)

With the definition

k(p) := 1

T 2
0

∫
d3 p1

(2π)3 p01
f eqp1 K1(p, p1), (14.20)

I [φ]p is written as

I [φ]p = − 1

p · u
1

f̄ eqp
φp k(p) T

2
0 , (14.21)
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where T0 with the dimension of temperature is supposed to take a typical value of
the system and has been introduced to make k(p) dimensionless; T0 will be set to T
eventually, for notational convenience.

By switching the dummy variables in the definitions of I2[φ]p and I3[φ]p as
(p1, p2) → (p2, p1) and (p1, p2, p3) → (p2, p3, p1), respectively, we obtain

I2[φ]p = 1

p · u
1

f̄ eqp

∫
d3 p1

(2π)3 p01
f eqp1 φp1

1

2
K2(p, p1), (14.22)

I3[φ]p = 1

p · u
1

f̄ eqp

∫
d3 p1

(2π)3 p01
f eqp1 φp1

1

2
K3(p, p1), (14.23)

where the following kernel functions have been introduced:

1

2
K2(p, p1) := f̄ eqp1

f eqp1

∫
d3 p2
p02

∫
d3 p3
p03

P̄2 1

2! σ(q̄, �̄)

× δ4(p + p2 − p1 − p3) f eqp2 f̄ eqp3 , (14.24)

1

2
K3(p, p1) := f̄ eqp1

f eqp1

∫
d3 p2
p02

∫
d3 p3
p03

P̃2 1

2! σ(q̃, �̃)

× δ4(p + p2 − p3 − p1) f eqp2 f̄ eqp3 , (14.25)

with

P̄2 := (p + p2)
2, q̄2 := −(p − p2)

2, (14.26)

cos �̄ := −(p − p2) · (p1 − p3)/q̄
2, (14.27)

P̃2 := (p + p2)
2, q̃2 := −(p − p2)

2, (14.28)

cos �̃ := −(p − p2) · (p3 − p1)/q̃
2. (14.29)

Now we show that the following equality holds;

I3[φ]p = I2[φ]p. (14.30)

Indeed, we first note the following equalities are satisfied on account of their defini-
tions,

P̃2 = P̄2, q̃2 = q̄2, �̃ = π − �̄. (14.31)

Then we have

P̃2 σ(q̃, �̃) = P̄2 σ(q̄, π − �̄). (14.32)

However, for the system composed of identical particles, the following symmetry
property of the differential cross section holds
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σ(q, �) = σ(q, π − �). (14.33)

Thus we have

P̃2 σ(q̃, �̃) = P̄2 σ(q̄, �̄). (14.34)

Substituting the above equation into K3(p, p1) in Eq. (14.25) and comparing it with
K2(p, p1) in Eq. (14.24), we find the equality

K3(p, p1) = K2(p, p1), (14.35)

which implies the equality (14.30).
Collecting the four contributions, we obtain

[
L̂ φ

]
p = −T 2

0
1

p · u
1

f̄ eqp

[
k(p) φp

+ 1

T 2
0

∫
d3 p1

(2π)3 p01
f eqp1

(
K1(p, p1) − K2(p, p1)

)
φp1

]
. (14.36)

We remark that k(p), K1(p, p1), and K2(p, p1) are Lorentz invariant quantities.
This means that k(p) is a function of

p · u, (14.37)

although k(p) seemingly depends on pμ and uμ, separately. We note that p · p and
u · u are constants; p · p = m2 and u · u = 1. Similarly, K1(p, p1) and K2(p, p1)
are functions of

p · u, p1 · u, p · p1. (14.38)

Thus, we write the kernel functions as

k(p) = k(τ ), K1(p, p1) = K1(τ, τ1, χ), K2(p, p1) = K2(τ, τ1, χ), (14.39)

where the following independent Lorentz invariant quantities have been defined:

τ := p · u
T0

, (14.40)

τ1 := p1 · u
T0

, (14.41)

cosχ := (p · u) (p1 · u) − p · p1√
(p · u)2 − m2

√
(p1 · u)2 − m2

. (14.42)
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We note that χ in Eq. (14.42) denotes an angle between �μν pν and �μν p1ν and
reproduces a natural definition cosχ = p· p1

| p| | p1| in the rest frame by uμ = (1, 0, 0, 0),
which gives �μν = diag(0, −1, −1, −1).

The integral element based on these quantities reads

d3 p1
(2π)3 p01

= 1

(2π)3
T 2
0

√
τ 2
1 − z2 dτ1 sin χ dχ dψ, (14.43)

with

z := m

T0
. (14.44)

We note that ψ denotes a polar angle around �μν pν . Using this integral element,
we calculate k(p) in Eq. (14.20) to have

k(p) =
∫
dμ(τ1) 2π

∫ π

0
dχ sin χ K1(τ, τ1, χ). (14.45)

Here we have introduced another integral measure

∫
dμ(τ) := 1

(2π)3

∫ ∞

z
dτ f eq(τ )

√
τ 2 − z2, (14.46)

with

f eq(τ ) = 1

exp
[

τ−μ/T0
T/T0

]
− a

. (14.47)

With the Lorentz invariant quantities, the left-hand side of the linearized transport
equations (14.36) reads

− τ
1

T0
f̄ eq(τ )

[
L̂ φ

]
p = k(τ ) φp +

∫
dμ(τ1)

∫ π

0
dχ sin χ

× (K1(τ, τ1, χ) − K2(τ, τ1, χ))

∫ 2π

0
dψ φp1 . (14.48)

For
∫ 2π

0 dψ φp1 , we shall here write down the results in three cases which will be
used later:



386 14 Demonstration of Numerical Calculations of Transport Coefficients …

∫ 2π

0
dψ = 2π, (14.49)

∫ 2π

0
dψ �μν p1ν = 2π �μν pν cosχ

√
τ 2
1 − z2

τ 2 − z2
, (14.50)

∫ 2π

0
dψ �μνρσ p1ρ p1σ = 2π �μνρσ pρ pσ

3 cos2 χ − 1

2

τ 2
1 − z2

τ 2 − z2
. (14.51)

We note that Eqs. (14.50) and (14.51) can be checked by being multiplied by pμ and
pμ pν , respectively, and using Eqs. (14.40)–(14.42).

14.2.2 Explicit Forms of Kernel Functions

Let us simplify the kernel functions K1(p, p1) and K2(p, p1) by carrying out the
integration with respect to the momenta. To this end, we can choose a frame as
follows,

p = s = (0, 0, |s|), (14.52)

p1 = −s = −(0, 0, |s|), (14.53)

u = (u1, 0, u3), (14.54)

without loss of generality. This is the center-of-mass frame where two colliding par-
ticles moving along the z axis. In the present frame, K1(τ, τ1, χ) and K2(τ, τ1, χ)

are functions of (|s|, u1, u3). To make their Lorentz invariance manifest, we express
(|s|, u1, u3) with the Lorentz invariant variables (τ, τ1, cosχ). In this frame, the
variables (τ, τ1, cosχ) are expressed as

τ =
√

|s|2
T 2
0

+ z2
√
1 + (u1)2 + (u3)2 − |s|

T0
u3, (14.55)

τ1 =
√

|s|2
T 2
0

+ z2
√
1 + (u1)2 + (u3)2 + |s|

T0
u3, (14.56)

cosχ =
τ τ1 − 2 |s|2

T 2
0

− z2

√
τ 2 − z2

√
τ 2
1 − z2

, (14.57)

on account of Eqs. (14.40)–(14.42). The relations in turn lead to
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|s|
T0

= 1√
2

[
τ τ1 −

√
τ 2 − z2

√
τ 2
1 − z2 cosχ − z2

]1/2
, (14.58)

u1 =
√(τ + τ1

P/T0

)2 −
(τ − τ1

q/T0

)2 − 1, (14.59)

u3 = −τ − τ1

q/T0
, (14.60)

where P and q are given in Eqs. (14.9) and (14.10), respectively, and expressed in
terms of (τ, τ1, cosχ) as

P

T0
= √

2
[
τ τ1 −

√
τ 2 − z2

√
τ 2
1 − z2 cosχ + z2

]1/2
, (14.61)

q

T0
= √

2
[
τ τ1 −

√
τ 2 − z2

√
τ 2
1 − z2 cosχ − z2

]1/2
. (14.62)

For convenience we present alternative forms of P and q written by |s|,

P

T0
= 2

√
|s|2
T 2
0

+ z2,
q

T0
= 2

|s|
T0

. (14.63)

First, we shall obtain an explicit form of K1(τ, τ1, χ). By carrying out the inte-
gration with respect to p3 in the center-of-mass system, we have

K1(τ, τ1, χ) =
∫
d3 p2

1

| p2|2 + m2 (4 |s|2 + 4m2)
1

2! σ

(
2 |s|, cos−1 s · p2

|s|2
)

× δ(2
√

|s|2 + m2 − 2
√

| p2|2 + m2)

× f̄ eq
(√

| p2|2 + m2
√
1 + (u1)2 + (u3)2 − p12 u

1 − p32 u
3

T0

)

× f̄ eq
(√

| p2|2 + m2
√
1 + (u1)2 + (u3)2 + p12 u

1 + p32 u
3

T0

)
, (14.64)

with

f̄ eq(τ ) =
exp

[
τ−μ/T0
T/T0

]

exp
[

τ−μ/T0
T/T0

]
− a

. (14.65)

In Eq. (14.64), we have used the equality

cos� = s · p2
|s|2 , (14.66)

which is derived from Eq. (14.11).
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Next, we carry out the integration with respect to p2. After the integration over
| p2| in the polar coordinates p2 = | p2| (sin θ cosψ, sin θ sinψ, cos θ), we have

K1(τ, τ1, χ)

= 2 |s|
√

|s|2 + m2

∫ π

0
dθ

∫ 2π

0
dψ sin θ

1

2! σ(2 |s|, θ)

× f̄ eq
(√|s|2 + m2

√
1 + (u1)2 + (u3)2 − |s| sin θ cosψ u1 − |s| cos θ u3

T0

)

× f̄ eq
(√|s|2 + m2

√
1 + (u1)2 + (u3)2 + |s| sin θ cosψ u1 + |s| cos θ u3

T0

)
,

(14.67)

Using (|s|, u1, u3) given by Eqs. (14.58)–(14.60), we reduce the above equation to

K1(τ, τ1, χ) = π
q P

T 2
0

∫ π

0
dθ sin θ

[
1

2! σ(q, θ) T 2
0

]

×
∫ 2π

0

dψ

2π
f̄ eq

(1
2

(τ + τ1) + X
)
f̄ eq

(1
2

(τ + τ1) − X
)
. (14.68)

where X is defined by

X := 1

2
(τ − τ1) cos θ − 1

2

q

T0

√( τ + τ1

P/T0

)2 −
( τ − τ1

q/T0

)2 − 1 sin θ cosψ. (14.69)

Since X is a function of cosψ , we can simplify the ψ integration in Eq. (14.68) as

K1(τ, τ1, χ) = π
q P

T 2
0

∫ π

0
dθ sin θ

[
1

2! σ(q, θ) T 2
0

]

×
∫ π

0

dψ

π
f̄ eq

(1
2

(τ + τ1) + X
)
f̄ eq

(1
2

(τ + τ1) − X
)
. (14.70)

Next, we calculate K2(τ, τ1, χ) in the center-of-mass frame. The integration over
p3 results in

1

2
K2(τ, τ1, χ)

= f̄
eq
p1

f
eq
p1

∫
d3 p2

1√
| p2|2 + m2

1√
| p2 + 2 s|2 + m2

P̄2 1

2! σ(q̄, �̄)

× δ(

√
| p2|2 + m2 −

√
| p2 + 2 s|2 + m2)

× f eq
(√

| p2|2 + m2
√
1 + (u1)2 + (u3)2 − p12 u

1 − p32 u
3

T0

)

× f̄ eq
(√

| p2 + 2 s|2 + m2
√
1 + (u1)2 + (u3)2 − (p12 + 2 q1) u1 − (p32 + 2 q3) u3

T0

)
.

(14.71)
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We change p2 to p′
2 := p2 + s to obtain

1

2
K2(τ, τ1, χ)

= f̄
eq
p1

f
eq
p1

∫
d3 p′

2
1

| p′
2|2 + |s|2 + m2 P̄2 1

2! σ(q̄, �̄)

× 1

2

√
| p′

2|2 + |s|2 + m2 δ( p′
2 · s)

× f eq
(

√
| p′

2|2 + |s|2 + m2
√
1 + (u1)2 + (u3)2 − (p′1

2 − q1) u1 − (p′3
2 − q3) u3

T0

)

× f̄ eq
(

√
| p′

2|2 + |s|2 + m2
√
1 + (u1)2 + (u3)2 − (p′1

2 + q1) u1 − (p′3
2 + q3) u3

T0

)
,

(14.72)

where | p′
2 ± s|2 = | p′

2|2 + |s|2 holds due to δ( p′
2 · s). We note that q̄ , P̄2, and �̄

depend on | p′
2|, not p′

2, under the condition of p′
2 · s = 0. In fact, the following

relations hold from the definitions,

q̄ = q

sin �̄
2

, (14.73)

P̄2 = 4m2 + q2

sin2 �̄
2

, (14.74)

| p′
2| = q

P
cot

�̄

2

√
4m2 + q2

sin2 �̄
2

, (14.75)

where P and q are given by Eqs. (14.61) and (14.62). Since it is difficult to determine
the dependence of �̄ on | p′

2| by solving Eq. (14.75), we shall treat �̄ as an integral
variable instead of | p′

2|. Then, the integral measure is rewritten as

| p′
2| d| p′

2|√| p′
2|2 + |s|2 + m2

= q2

2 P

1

sin4 �̄
2

sin �̄ d�̄. (14.76)

Introducing polar coordinates p′
2 = | p′

2| (sin θ cosψ, sin θ sinψ, cos θ), carrying
out the integration with θ with the use of the formula δ( p′

2 · s) = δ(cos θ)/| p′
2||s|,

and finally rewriting �̄ as θ , we have

K2(τ, τ1, χ) = f̄ eq(τ1)

f eq(τ1)
2π

q

P

∫ π

0
dθ sin θ

1

sin4 θ
2

[
4 z2 + (q/T0)

2

sin2 θ
2

]

×
[
1

2! σ
( q

sin θ
2

, θ
)
T 2
0

] ∫ 2π

0

dψ

2π
f eq(τ1 + Y ) f̄ eq(τ + Y ), (14.77)

with
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Y := (τ + τ1)
q2

P2
cot2

θ

2

−
√(τ + τ1

P/T0

)2 −
(τ − τ1

q/T0

)2 − 1
q

P

√
4 z2 + (q/T0)2

sin2 θ
2

cot
θ

2
cosψ.

(14.78)

We have used Eqs. (14.73)–(14.75) and converted (|s|, u1, u3) into (τ, τ1, cosχ)

with the use of Eqs. (14.58)–(14.60). The ψ integration in Eq. (14.77) can be sim-
plified as

K2(τ, τ1, χ) = f̄ eq(τ1)

f eq(τ1)
2π

q

P

∫ π

0
dθ sin θ

1

sin4 θ
2

[
4 z2 + (q/T0)2

sin2 θ
2

]

×
[
1

2! σ
( q

sin θ
2

, θ
)
T 2
0

] ∫ π

0

dψ

π
f eq(τ1 + Y ) f̄ eq(τ + Y ).

(14.79)

14.2.3 Linearized Transport Equations as Integral Equations

Next we substitute φ in the left-hand side of (14.48) with φ�p, φ
μ

J p, and φ
μν
πp to obtain

the linearized transport equations given in Eq. (14.1). Without loss of generality, we
can parametrize them as [67]

φ�p = 1√
k(τ )

A(τ ), (14.80)

φ
μ

J p = 1√
k(τ )

B(τ )
1√

τ 2 − z2
�μν pν/T0, (14.81)

φμν
πp = 1√

k(τ )
C(τ )

1

τ 2 − z2
�μνρσ pρ pσ /T 2

0 . (14.82)

We note that A(τ ), B(τ ), and C(τ ) are the variables to be determined and their
coefficients have been introduced to avoid possible unessential computations .

Substituting the above expressions of φ�p, φ
μ

J p, and φ
μν
πp into φp in Eq. (14.48)

and using the equalities (14.49)–(14.51), we have

− f̄ eq(τ )
τ

T0
√
k(τ )

[
L̂ φ�

]
p = A(τ ) +

∫
dμ(τ1) L(τ, τ1) A(τ1), (14.83)

− f̄ eq(τ )
τ

√
τ 2 − z2

T0
√
k(τ )

[
L̂ φ

μ

J

]
p =

[
B(τ ) +

∫
dμ(τ1) M(τ, τ1) B(τ1)

]
�μν pν/T0,

(14.84)



14.2 Linearized Transport Equations and Solution Method 391

− f̄ eq(τ )
τ (τ 2 − z2)

T0
√
k(τ )

[
L̂ φμν

π

]
p =

[
C(τ ) +

∫
dμ(τ1) N (τ, τ1)C(τ1)

]

× �μνρσ pρ pσ /T 2
0 , (14.85)

with

L(τ, τ1) := 2π√
k(τ ) k(τ1)

∫ π

0
dχ sin χ (K1(τ, τ1, χ) − K2(τ, τ1, χ)),

(14.86)

M(τ, τ1) := 2π√
k(τ ) k(τ1)

∫ π

0
dχ sin χ cosχ (K1(τ, τ1, χ) − K2(τ, τ1, χ)),

(14.87)

N (τ, τ1) := 2π√
k(τ ) k(τ1)

∫ π

0
dχ sin χ

3 cos2 χ − 1

2
(K1(τ, τ1, χ) − K2(τ, τ1, χ)).

(14.88)

We prepare the right-hand side of the linearized transport equations (14.5) as
follows:

�̂p = −T0
√
k(τ )

τ
a(τ ), (14.89)

Ĵμ
p = −T0

√
k(τ )

τ
b(τ )

1√
τ 2 − z2

�μν pν/T0, (14.90)

π̂μν
p = −T0

√
k(τ )

τ
c(τ )

1

τ 2 − z2
�μνρσ pρ pσ /T 2

0 , (14.91)

with

a(τ ) := − 1√
k(τ )

z2

3

[
− a2a0 − a21

a3a1 − a22
τ 2 + a3a0 − a2a1

a3a1 − a22
τ − 1

]
, (14.92)

b(τ ) := − 1√
k(τ )

√
τ 2 − z2

[
− τ + z2a1 − a3

z2a0 − a2

]
, (14.93)

c(τ ) := − 1√
k(τ )

(τ 2 − z2). (14.94)
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Here, we have defined the parameters a0,1,2,3 as

a� = 4π

∫
dμ(τ) f̄ eq(τ ) τ �, (� = 0, 1, 2, 3). (14.95)

Combining Eqs. (14.83)–(14.85) and (14.89)–(14.91), we arrive at

A(τ ) +
∫
dμ(τ1) L(τ, τ1) A(τ1) = f̄ eq(τ ) a(τ ), (14.96)

B(τ ) +
∫
dμ(τ1) M(τ, τ1) B(τ1) = f̄ eq(τ ) b(τ ), (14.97)

C(τ ) +
∫
dμ(τ1) N (τ, τ1)C(τ1) = f̄ eq(τ ) c(τ ). (14.98)

It is worth emphasizing that the task to obtain A(τ ), B(τ ), andC(τ ) is nicely reduced
to separately solving these simple one-dimensional integral equations. It is also to
be noted that the integral equations (14.96)–(14.98) reproduce those of Ref. [67] in
the classical limit with a → 0 in f eqp and the setting of T0 = T .

We now show that the transport coefficients and relaxation times can be expressed
in compact forms in terms of a(τ ), b(τ ), c(τ ), A(τ ), B(τ ), and C(τ ). Noticing that
the inner product 〈ϕ , ψ〉 = ∫

dp (p · u) f eqp f̄ eqp ϕp ψp is written as

〈ϕ , ψ 〉 = 4π T 3
0

∫
dμ(τ) τ f̄ eq(τ ) ϕ(τ) ψ(τ), (14.99)

for arbitrary Lorentz invariant vectors ϕp = ϕ(τ) and ψp = ψ(τ), we can convert
Eqs. (14.2)–(14.4) into

T ζRG/T 4
0 = 4π

∫
dμ(τ) f̄ eq(τ ) a(τ ) A(τ ), (14.100)

3 T 2 λRG/T 4
0 = 4π

∫
dμ(τ) f̄ eq(τ ) b(τ ) B(τ ), (14.101)

15 T ηRG/T 4
0 = 4π

∫
dμ(τ) f̄ eq(τ ) c(τ )C(τ ), (14.102)

τRG
� T0 =

∫
dμ(τ) τ f̄ eq(τ ) A(τ ) A(τ )/k(τ )∫

dμ(τ) f̄ eq(τ ) a(τ ) A(τ )
, (14.103)

τRG
J T0 =

∫
dμ(τ) τ f̄ eq(τ ) B(τ ) B(τ )/k(τ )∫

dμ(τ) f̄ eq(τ ) b(τ ) B(τ )
, (14.104)

τRG
π T0 =

∫
dμ(τ) τ f̄ eq(τ )C(τ )C(τ )/k(τ )∫

dμ(τ) f̄ eq(τ ) c(τ )C(τ )
. (14.105)

We note that all the transport coefficients and relaxation times are represented by the
τ integrations of bilinear forms with a(τ ), b(τ ), c(τ ), A(τ ), B(τ ), and C(τ ).
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14.2.4 Direct Matrix-Inversion Method Based on
Discretization

Since Eqs. (14.96)–(14.98) are difficult to solve in an analytical way for an arbi-
trary interaction, one has often recourse to approximations [67]. However, a natural
and direct way to numerically solve the integral equations (14.96)–(14.98) is the
discretization of Eqs. (14.96)–(14.98), which reduces A(τ ), B(τ ), and C(τ ) into
finite degrees of freedom. This discretization approach is free from any ansatz, but
might demand possibly heavy numerical work because the numerical convergence
of results for the discretization width must be carefully checked.

Since the integral measure dμ(τ) contains f eq(τ ) which takes the asymptotic
form e−τ/(T/T0) at τ → ∞, we can improve the convergence of the discretization
by adopting the double exponential formula [229]. In this formula, we first change
the integration valuable from τ to t by

τ = z + T

T0
et−e−t =: τ(t), (14.106)

which leads to
∫
dμ(τ) F(τ )

= 1

(2π)3
T

T0

∫ ∞
−∞

dt et−e−t
(1 + e−t ) f eq(τ (t))

√
τ2(t) − z2 F(τ (t)), (14.107)

with F(τ ) being an arbitrary function. One finds that a factor of the integrand in
Eq. (14.107) has the following asymptotic forms,

et−e−t
(1 + e−t ) f eq(τ (t)) ∝

{
e−et , t → ∞,

e−e−t
, t → −∞,

(14.108)

which converges to zero as |t | → ∞ with double-exponential forms. It implies that
the upper and lower bounds of the integration may be replaced with finite cutoff
parameters t+ and −t− with t+, t− > 0, respectively, without serious numerical
errors.

With the use of the rectangular formulae, we divide t between t+ and −t− into
N + 1 pieces as

tn = −t− + t+ + t−

N
n = −t− + �t n, (14.109)

where

�t := t+ + t−

N
(14.110)
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is supposed to be small enough and n is a non-negative integer,

n = 0, 1, . . . , N . (14.111)

Accordingly, the integration given by Eq. (14.107) is expressed as

∫
dμ(τ) F(τ ) =

N∑
n=0

�μn F(τ (tn)), (14.112)

where

�μn := �t

(2π)3

T

T0
etn−e−tn

(1 + e−tn ) f eqn

√
τ 2
n − z2, (14.113)

with

τn := τ(tn), f eqn := f eq(τn). (14.114)

Similarly, the other functions introduced in the previous sections are also discretized
as

f̄ eqn := f̄ eq(τn), kn := k(τn), (14.115)

Lmn := √
�μm L(τm, τn)

√
�μn, Mmn := √

�μm M(τm, τn)
√

�μn,

Nmn := √
�μm N (τm, τn)

√
�μn, (14.116)

an := √
�μn a(τn), bn := √

�μn b(τn), cn := √
�μn c(τn), (14.117)

An := √
�μn A(τn), Bn := √

�μn B(τn), Cn := √
�μn C(τn). (14.118)

Then the one-dimensional integral equations (14.96)–(14.98) are converted to linear
equations with finite dimensions as
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N∑
n=0

(δmn + Lmn) An = f̄ eqm am, (14.119)

N∑
n=0

(δmn + Mmn) Bn = f̄ eqm bm, (14.120)

N∑
n=0

(δmn + Nmn)Cn = f̄ eqm cm, (14.121)

respectively. We note that these equations can be solved by numerical methods, e.g.,
the LU decomposition method [218].

A remark is in order here: In constructing the linear equations (14.119) –(14.121),
the integrations with respect to the angles χ , θ , and ψ for kn , Lmn , Mmn , and Nmn

are performed numerically by applying the double exponential formula [229] as well
as the τ and τ1 integrations. For that, we convert χ , θ , and ψ into tχ , tθ , and tψ ,
respectively, as follows:

cosχ = tanh
(π

2
sinh tχ

)
, (14.122)

θ = π

2

[
tanh

(π

2
sinh tθ

)
+ 1

]
, ψ = π

2

[
tanh

(π

2
sinh tψ

)
+ 1

]
. (14.123)

Then we use the rectangular formulae to divide tχ , tθ , and tψ into Nχ , Nθ , and Nψ

pieces, respectively, as

tχn = −t−χ + t+χ + t−χ
Nχ

n, n = 0, 1, . . . , Nχ , (14.124)

tθn = −t−θ + t+θ + t−θ
Nθ

n, n = 0, 1, . . . , Nθ , (14.125)

tψn = −t−ψ + t+ψ + t−ψ
Nψ

n, n = 0, 1, . . . , Nψ, (14.126)

where t±χ , t±θ , and t±ψ denote cutoff parameters for the integrations.
We shall see in Sect. 14.3.1 that the following parameter values of N , Nχ , Nθ ,

Nψ , t±, t±χ , t±θ , and t±ψ are already sufficient for the convergence of the numerical
results:

t+ = 6, t− = t±χ = t±θ = t±ψ = 3, N = 200, and Nχ = Nθ = Nψ = 100.

(14.127)

Using the results for An ,Bn , and Cn thus obtained, the discretized versions of
the transport coefficients (12.105)–(12.107) and relaxation times (12.108)–(12.110)
derived with the use of the RG method in Chap. 12 are expressed as follows:
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T ζRG/T 4
0 = 4π

N∑
n=0

f̄ eqn an An, (14.128)

3 T 2 λRG/T 4
0 = 4π

N∑
n=0

f̄ eqn bn Bn, (14.129)

15 T ηRG/T 4
0 = 4π

N∑
n=0

f̄ eqn cn Cn, (14.130)

τRG
� T0 =

∑N
n=0 f̄ eqn τn An An/kn∑N

n=0 f̄ eqn an An

, (14.131)

τRG
J T0 =

∑N
n=0 f̄ eqn τn Bn Bn/kn∑N

n=0 f̄ eqn bn Bn

, (14.132)

τRG
π T0 =

∑N
n=0 f̄ eqn τn Cn Cn/kn∑N

n=0 f̄ eqn cn Cn

. (14.133)

14.3 Numerical Demonstration: Transport Coefficients and
Relaxation Times of Physical Systems

In this section, after demonstrating the accuracy and efficiency of the numerical
scheme developed in Sect. 14.2, we show the numerical results of the transport
coefficients and relaxation times using the microscopic representations derived by
the RG method as well as the Israel–Stewart fourteen-moment method [67] for a
comparison. We set T0 = T in this section.

14.3.1 Accuracy and Efficiency of the Numerical Method:
Discretization Errors and Convergence

We first check and demonstrate the accuracy and efficiency of our numerical method
presented in the last subsection. In the present approach based on the Boltzmann
equation, the model is solely characterized by the cross section. We take up the
following three models;

(A) the classical Boltzmann gas (a = 0)with the constant differential cross section

σ(q, �) = σtot

4π
. (14.134)

(B) the Fermi gas (a = −1)with a differential cross section induced by theYukawa
interaction, and
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(C) the bosonic gas (a = 1) with a differential cross section based on the chiral
Lagrangian [230, 231].

For the models (B) and (C), we present the explicit forms of the cross sections cal-
culated in the tree approximation in the quantum field theory for self-containedness.

In the quantum field theory, the cross section written as

σ(q, �) = |M|2
64π2 (q2 + 4m2)

, (14.135)

where M denotes the Lorentz-invariant scattering amplitude.
In the model (B), the Lagrangian density is given by

L = ψ̄(iγ μ∂μ − m)ψ − Gψ̄ψφ + 1

2

[
(∂μφ)(∂μφ) − M2φ2

]
, (14.136)

where the fermion and boson fields are denoted by ψ and φ, respectively. For
(14.136), the absolute square of the scattering amplitudes |M|2 in the lowest order
of the perturbative expansion is given by

|M|2 = G2

[
(4m2 − t)2

(M2 − t)2
+ (4m2 − u)2

(M2 − u)2

+ (4m2 − s)2 − (4m2 − t)2 − (4m2 − u)2

2 (M2 − t) (M2 − u)

]
, (14.137)

where s, t , and u the Mandelstum variables defined by

s := (p + p1)
2 = (p2 + p3)

2 = q2 + 4m2, (14.138)

t := (p − p2)
2 = (p1 − p3)

2 = −q2 sin2
�

2
, (14.139)

u := (p − p3)
2 = (p1 − p2)

2 = −q2 cos2
�

2
. (14.140)

Here we note that the averaging of the initial spins and summing up of the final spins
of the interacting two particles have been performed in Eq. (14.137).

On the other hand, the model (C) gives for the same spin and isospin averaged
scattering amplitude squared

|M|2 = 1

9 f 4π

[
21m4 + 9 s2 − 24m2 s + 3 (t − u)2

]
, (14.141)

where fπ denotes the pion decay constant.
In the following, we exclusively discuss the case with a vanishing chemical poten-

tial (μ = 0) for simplicity, for which the transport coefficients and relaxation times
depend only on the ratio z = m/T .
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The main ingredients in the numerical method developed in Sect. 14.2 are the
discretization of the integral equations and the use of the double exponential formula
for the numerical integration. Here we examine possible discretization errors and the
convergence of the numerical integrations by the double exponential formula.

To this end, we check the numerical convergence of the results by varying the
numbers of the mesh points, N , Nχ , Nθ , and Nψ , for the integrals by τ , τ1, χ , θ , and
ψ , respectively; we call N = 200 and Nχ = Nθ = Nψ = 100 the respective standard
values.

In Fig. 14.1, we show the transport coefficients and relaxation times for themodels
(A), (B), and (C) at z = 0.01 and μ = 0 obtained by the discretization method as a
function of the total number of the mesh points,

Nmp := N 2 × Nχ × Nθ × Nψ. (14.142)

From the figure, one finds that all the quantities quickly reach constants as Nmp

becomes large, and show a good convergence already at the standard number of
the mesh points, Nmp = 200 × 200 × 100 × 100 × 100 = 4 × 1010. Thus, we have
confirmed the excellent convergence properties of our numerical method.

Next let us see how efficient our numerical method is by comparing the results of
the transport coefficients and relaxation times with those obtained in other numerical
scheme. Figure 14.2 shows the numerical results with the use of the rectangular
formulae in the calculations of τ , τ1, χ , θ , and ψ with Nmp being varied. One sees
that the use of the rectangular formulae does not show convergent behavior at all,
except for the shear viscosity, even for Nmp = 4 × 1010 that is far large enough
for giving the convergent results with the use of the double exponential formulae.
Conversely speaking, one finds that our numerical scheme with the use of the double
exponential formulae is not only an accurate but also far more efficient numerical
method than conventional numerical methods.

A clear check of the accuracy of the numerical method is provided when the ana-
lytic formula is available. It is known [67] that the Israel–Stewart fourteen-moment
method gives analytic expressions of the transport coefficients ζ IS, λIS, and ηIS for a
classical system (a = 0 in f eq(τ )) with a constant differential cross section (14.134).
Here, as an independent check of the numerical method, we dare to compute the
transport coefficients derived with the Israel–Stewart fourteen-moment method for
the constant cross section by our numerical scheme2 and compare with the numerical
values given by the analytic formula.3

The black dots in Fig. 14.3 shows the temperature dependence of the transport
coefficients for the model (A) (14.134) calculated using the analytic formulae given
by the Israel–Stewart fourteen moment method [67]. The squares attached to the
bold lines in Fig. 14.3 shows the temperature dependence of the transport coefficients
calculatedbyour numericalmethodusing the formulae (14.161)–(14.163)witha = 0

2 See Sect. 14.3.2.
3 The numbers are taken from Table 1, 2, and 3 in CHAPTER XI of [67].
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Fig. 14.1 The Nmp dependence of the transport coefficients and relaxation times ζRG, λRG, ηRG,
τRG� , τRGJ , and τRGπ for the model (A), (B), and (C) with z = 0.01 and μ = 0, which are calculated
by the numerical method with the use of the double exponential method. The values are normalized
by ζRG∗, λRG∗, ηRG∗, τRG∗

� , τRG∗
J , and τRG∗

π , respectively, which are the transport coefficients and
relaxation times obtained with Nmp = 4 × 1010. In the model (B), we set M equal to 100m. All
the results are independent of σtot , G, and fπ in the models (A), (B), and (C), respectively, because
the parameters can be factorized in the transport coefficients and relaxation times and hence be
canceled out in the ratios
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Fig. 14.2 The Nmp dependence of the transport coefficients and relaxation times computed with
the use of the rectangular formulae for the models (A), (B), and (C) with z = 0.01 and μ = 0. The
values are normalized by those obtained by applying the double exponential formulae to the same
microscopic representations with Nmp = 4 × 1010, which are denoted by ζRG∗, λRG∗, ηRG∗, τRG∗

� ,
τRG∗
J , and τRG∗

π , respectively, The parameters in the models are the same as those in Fig. 14.1

in f eq(τ ) for the same model (A). One sees an excellent agreement between the two
results.

In summary, we have seen that our scheme provides an accurate and efficient
numerical method for evaluating not only the transport coefficients but also the
relaxation times.
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Fig. 14.3 A comparison of
the bulk viscosity ζ IS, heat
conductivity λIS, and shear
viscosity ηIS by the
numerical integration based
on the scheme developed in
Sect. 14.2 with their analytic
values reported in Ref. [67]

0.000

0.001

0.002

0.003

 0.01  0.1  1  10  100
ζIS

σ t
ot

 / 
T

z=m/T

Analytic
Numerical

  0.0

  0.1

  0.2

  0.3

  0.4

 0.01  0.1  1  10  100

λIS
σ t

ot

z=m/T

Analytic
Numerical

  0.0

  0.2

  0.4

  0.6

  0.8

  1.0

 0.01  0.1  1  10  100

ηIS
σ t

ot
 / 

T

z=m/T

Analytic
Numerical



402 14 Demonstration of Numerical Calculations of Transport Coefficients …

14.3.2 Numerical Results for Classical, Fermionic, and
Bosonic Systems: Comparison of RG and
Israel–Stewart Fourteen Moment Method

We show the numerical results of not only the transport coefficients but also the relax-
ation times using the formulae Eqs. (14.128)–(14.133) derived by the RGmethod and
also the formulae (14.161)–(14.166) derived by the Israel–Stewart moment method;
our focus in this subsection will be put on clarifying how different the numerical
results are in the two methods, but not on discussing possible physical significance
of them, which might be done elsewhere in future.

In Fig. 14.4, we show the ratios of the transport coefficients and relaxation times
by the RG method to those by the Israel–Stewart fourteen moment method [67]. All
the ratios in the model (A) are close to 1 for any z, while the ratios in the models
(B) and (C) are not the case but significantly deviate from unity, in particular, for
small z. For instance, the ratio of the bulk viscosity and its relaxation time in the
model (C) increase up to 1000 when z approaches the ultra relativistic region given
by z 
 0.01. Thus, one may conclude that the formulae based on the Israel–Stewart’s
fourteen moment method is not reliable in capturing the transport properties of the
relativistic system in a quantitative way.

Appendix: Formulae for the Numerical Calculation of the
Transport Coefficients and Relaxation Times by the
Israel–Stewart Fourteen Moment Method

In this Appendix, we present the formulae for the numerical calculation of the trans-
port coefficients and relaxation times with the microscopic expressions derived by
the Israel–Stewart fourteen moment method [67], for self-containedness. The micro-
scopic expressions given in Eqs. (10.171)–(10.176) are rewritten as

ζ IS = − 1

T

[
〈 �̂ , P 〉

]2

〈P , L̂ P 〉 , λIS = 1

3 T 2

[
〈 Ĵμ , Jμ 〉

]2

〈Jν , L̂ Jν 〉 , (14.143)

ηIS = − 1

10 T

[
〈 π̂μν , πμν 〉

]2

〈πρσ , L̂ πρσ 〉 , τ IS
� = − 〈P , P 〉

〈P , L̂ P 〉 , (14.144)
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Fig. 14.4 TheRatios of the transport coefficients and relaxation times by the RGmethod to those by
the Israel–Stewart fourteen moment method [67] for the three models: (A) the constant differential
cross section and the classical limit, (B) the differential cross section by the Yukawa interaction and
the Fermi statistics, and (C) the differential cross section by the chiral perturbation theory and the
Bose statistics. A treatment of the parameters in the models is the same as that in Fig. 14.1

τ IS
J = − 〈Jμ , Jμ 〉

〈Jν , L̂ Jν 〉 , τ IS
π = − 〈πμν , πμν 〉

〈πρσ , L̂ πρσ 〉 . (14.145)

Here Pp, Jμ
p , and π

μν
p are the following vectors:
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Pp = −T 2
0
z2 (a2 a0 − a21)

3 (a3 a1 − a22)

√
k(τ ) ã(τ ), (14.146)

Jμ
p = −T 2

0
1√

τ 2 − z2

√
k(τ ) b̃(τ )�μν pν/T0, (14.147)

πμν
p = T 2

0
1

τ 2 − z2
√
k(τ ) c̃(τ )�μνρσ pρ pσ /T 2

0 , (14.148)

where

ã(τ ) := 1√
k(τ )

[
τ 2 − a1 a4 − a2 a3

a1 a3 − a22
τ − a23 − a2 a4

a1 a3 − a22

]
, (14.149)

b̃(τ ) := 1√
k(τ )

√
τ 2 − z2

[
τ − a4 − a2 z2

a3 − a1 z2

]
, (14.150)

c̃(τ ) := 1√
k(τ )

(τ 2 − z2), (14.151)

with τ = (p · u)/T0.
Inserting the above expressions of Pp, Jμ

p , and π
μν
p into φp in Eq. (14.48) and

using the equalities (14.49)–(14.51), we calculate
[
L̂ P]

p,
[
L̂ Jμ

]
p, and

[
L̂ πμν

]
p

to be

− f̄ eq(τ )
τ

T0
√
k(τ )

[
L̂ P]

p

= −T 2
0
z2 (a2 a0 − a21)

3 (a3 a1 − a22)

[
k(τ ) ã(τ ) +

∫
dμ(τ1) L(τ, τ1) k(τ1) ã(τ1)

]
,

(14.152)

− f̄ eq(τ )
τ

√
τ 2 − z2

T0
√
k(τ )

[
L̂ Jμ

]
p

= −T 2
0

[
k(τ ) b̃(τ ) +

∫
dμ(τ1) M(τ, τ1) k(τ1) b̃(τ1)

]
�μν pν/T0,

(14.153)

− f̄ eq(τ )
τ (τ 2 − z2)

T0
√
k(τ )

[
L̂ πμν

]
p

= T 2
0

[
k(τ ) c̃(τ ) +

∫
dμ(τ1) N (τ, τ1) k(τ1) c̃(τ1)

]
�μνρσ pρ pσ /T 2

0 ,

(14.154)

respectively.
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Substituting these equations into Eqs. (14.143)–(14.145), we have

T ζ IS/T 4
0 =

4π
[ ∫

dμ(τ) k(τ ) ã(τ ) f̄ eq(τ ) a(τ )
]2

∫
dμ(τ) k(τ ) ã(τ )

[
k(τ ) ã(τ ) + ∫

dμ(τ1) L(τ, τ1) k(τ1) ã(τ1)
] ,

(14.155)

3 T 2 λIS/T 4
0 =

4π
[ ∫

dμ(τ) k(τ ) b̃(τ ) f̄ eq(τ ) b(τ )
]2

∫
dμ(τ) k(τ ) b̃(τ )

[
k(τ ) b̃(τ ) + ∫

dμ(τ1) M(τ, τ1) k(τ1) b̃(τ1)
] ,

(14.156)

15 T ηIS/T 4
0 =

4π
[ ∫

dμ(τ) k(τ ) c̃(τ ) f̄ eq(τ ) c(τ )
]2

∫
dμ(τ) k(τ ) c̃(τ )

[
k(τ ) c̃(τ ) + ∫

dμ(τ1) N (τ, τ1) k(τ1) c̃(τ1)
] ,

(14.157)

τ IS
� T0 =

∫
dμ(τ) k(τ ) ã(τ ) τ f̄ eq(τ ) ã(τ )

∫
dμ(τ) k(τ ) ã(τ )

[
k(τ ) ã(τ ) + ∫

dμ(τ1) L(τ, τ1) k(τ1) ã(τ1)
] ,

(14.158)

τ IS
J T0 =

∫
dμ(τ) k(τ ) b̃(τ ) τ f̄ eq(τ ) b̃2(τ )

∫
dμ(τ) k(τ ) b̃(τ )

[
k(τ ) b̃(τ ) + ∫

dμ(τ1) M(τ, τ1) k(τ1) b̃(τ1)
] ,

(14.159)

τ IS
π T0 =

∫
dμ(τ) k(τ ) c̃(τ ) τ f̄ eq(τ ) c̃(τ )

∫
dμ(τ) k(τ ) c̃(τ )

[
k(τ ) c̃(τ ) + ∫

dμ(τ1) N (τ, τ1) k(τ1) c̃(τ1)
] ,

(14.160)

whose discretized forms read

T ζ IS/T 4
0 = 4π

[ ∑N
n=0 f̄ eqn an ãn kn

]2
∑N

m=0

∑N
n=0 ãm km (δmn + Lmn) ãn kn

, (14.161)

3 T 2 λIS/T 4
0 = 4π

[∑N
n=0 f̄ eqn bn b̃n kn

]2
∑N

m=0

∑N
n=0 b̃m km (δmn + Mmn) b̃n kn

, (14.162)
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15 T ηIS/T 4
0 = 4π

[ ∑N
n=0 f̄ eqn cn c̃n kn

]2
∑N

m=0

∑N
n=0 c̃m km (δmn + Nmn) c̃n kn

, (14.163)

τ IS
� T0 =

∑N
n=0 f̄ eqn τn ãn ãn kn∑N

m=0

∑N
n=0 ãm km (δmn + Lmn) ãn kn

, (14.164)

τ IS
J T0 =

∑N
n=0 f̄ eqn τn b̃n b̃n kn∑N

m=0

∑N
n=0 b̃m km (δmn + Mmn) b̃n kn

, (14.165)

τ IS
π T0 =

∑N
n=0 f̄ eqn τn c̃n c̃n kn∑N

m=0

∑N
n=0 c̃m km (δmn + Nmn) c̃n kn

, (14.166)

with

ãn := √
�μn ã(τn), b̃n := √

�μn b̃(τn), c̃n := √
�μn c̃(τn). (14.167)

These discretized forms are used in the numerical calculation that is presented in the
text.



Chapter 15
RG/E Derivation of
Reactive-Multi-component Relativistic
Fluid Dynamics

15.1 Introduction

In this chapter, we deal with quantum relativistic gasses composed of multiple types
of particles, in which the collisions between the particles can be reactive, i.e., not
only elastic but also inelastic with a change of particle numbers accompanied; the
constituent particles are allowed to mix with each other under the constraints of
conservation laws to results in additional types of diffusions that would not exist in
single-component fluid. Such systems include molecular/ionic gasses in the universe
at high temperature, the primordial matter created in the birth of the universe, the
intermediate stages of nuclear collisions including relativistic heavy-ion collisions
which may be composed of various hadrons and/or even quarks and gluons leading
to a ‘soup’ of them, i.e., the quark-gluon plasma (QGP), and so on.

In particular, since the end of the last century or the beginning of the present cen-
tury, a tremendous amount of experimental and theoretical efforts have been devoted
to unravel the dynamics of quarks and gluons under highly extreme conditions [160,
161]. The problem has been experimentally addressed through the ultra-relativistic
heavy-ion collision experiments [162, 186, 188–190, 232–238], where high-energy
collisions of heavy ions at nearly the speed of light drive the system to a far-from-
equilibrium situation followed by thermalization, relaxation, hadronization, etc.

Fluid dynamics is one of the powerful tools to understand such nonequilibrium
phenomena of complex underlying theory, quantum chromodynamics (QCD) in the
case of the QGP, for instance. While the conventional second-order fluid dynamics
have been applied to describing the QGP, it is natural to add more expressibility by
exploiting the fact that the QGP is composed of distinct types of ingredients, that is,
quarks and gluons with flavor and color degrees of freedom.

For the purpose of incorporating the properties specific to multi-component sys-
tems in the context of the relativistic fluid dynamics, several attempts have been
made to derive multi-component fluid dynamics from microscopic theories [59, 66–
68, 239–245]. The efforts in this direction were initiated by [240] in order to study

© Springer Nature Singapore Pte Ltd. 2022
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the properties of hot hadronic matter. They derived the multi-component second
order fluid dynamics for relativistic gas by extending the seminal work by Israel and
Stewart [66]. After a while, [241] proposed an improved Israel–Stewart’s 14-moment
methods. They identified the functional form of the one-body distribution function
by requiring the positivity of the entropy-production rate and the Onsager’s recipro-
cal relation combined with careful order counting. However, some elaboration of the
previous attempts can be possible as is the case in the single-component dynamics,
as discussed in Chap. 10.

In the present Chapter, the renormalization group (RG)method [1, 3, 5, 6, 46, 57,
58] is applied to the derivation of multi-component fluid dynamic equations [156]
as an extension of the relativistic fluid dynamic equations derived in Chaps. 11 and
12 (see Chaps. 5 and 9 for the respective general framework of the RG/E method).
The characteristic features of multi-component fluid are naturally built in the fluid
dynamics that is carefully derived from the Boltzmann theory containing multiple
types of particles as microscopic ingredients. The properties of derived transport
coefficients will be discussed in detail. As it turns out along the detailed study of the
derived transport coefficients, the positive entropy production rate and the Onsager’s
reciprocal relations are readily confirmed as consequences of our derivation. These
are particularly promising aspects of our methodology because, in the conventional
derivations following [66], these properties are imposed in an ad hoc manner.

15.2 Boltzmann Equation in Relativistic
Reactive-Multi-component Systems

Throughout this chapter, we consider a system composed of N distinct types of
degrees of freedom (particles) and M conserved currents in addition to the energy
and momentum conservations [67]. Since the conservation laws are our central tools
to characterize and derive fluid dynamics, we first introduce conserved currents in the
context of the Boltzmann’s kinetic theory with quantum statistics. The kinetic theory
is the semiclassical theory that describes the nonequilibrium dynamics of systems in
terms of a one-body distribution function defined in phase space. The evolution of
distribution function is dictated by the Boltzmann equation (15.3).

In this framework, the energy-momentum tensor is given by,

T μν(x) =
N∑

k=1

∫
dpk p

μ

k p
ν
k fk,pk (x), (15.1)

with theLorentz indicesμ, ν. The one-particle distribution function of type k and four

momentum pk := (

√
m2

k + p2k, pk) is denoted by fk,pk (x). The integration measure

dpk stands for d3 pk/[(2π)3 p0k ]. By the assumption we have M conserved currents,
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Nμ

A (x) =
N∑

k=1

q A
k

∫
dpk p

μ

k fk,pk (x), (A = 1, . . . , M). (15.2)

Here, we have assigned a charge q A
k to a particle of type k (k = 1, . . . , N ) associated

to the Ath (A = 1, . . . , M) conservation law. The particle number current Nμ

A is
associated to the Ath conservation laws.We shall momentarily see that these currents
indeed obey conservation laws.

The relativistic Boltzmann equation governs the time evolution of the distribution
functions [67, 68],

pμ

k ∂μ fk,pk (x) =
N∑

l=1

Ckl[ f ]pk (x), (15.3)

with the collision integral,

Ckl[ f ]pk = 1

2

N∑

i, j=1

∫
dpldpidp j

× [
fi,pi f j,p j (1 + ak fk,pk )(1 + al fl,pl )Wi j |kl

− (1 + ai fi,pi )(1 + a j f j,p j ) fk,pk fl,plWkl|i j
]
. (15.4)

The quantum statistical effect is represented by ak , i.e., ak = +1 for bosons, ak = −1
for fermions, and ak = 0 for classical particles. The transition matrixWi j |kl , that is
responsible for two-particle interactions, takes the form of

Wi j |kl = (2π)4|M|2δ4(pi + p j − pk − pl)
M∏

A=1

δq A
i +q A

j ,q A
k +q A

l
, (15.5)

where M is a binary scattering amplitude. It is readily confirmed that the matrix
Wi j |kl satisfies the following symmetry properties,

0 = Wi j |kl − W j i |lk, (15.6)

0 =
N∑

i, j=1

∫
dpidp j

[Wi j |kl − Wkl|i j
]
. (15.7)

The second equation represents the detailed balance property of a multi-component
system.
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15.2.1 Collision Invariants and Conservation Laws

Let us discuss some properties of the Boltzmann equation (15.3). For an arbitrary
function ϕk,pk of pk , we find that the following identity holds,

N∑

k,l=1

∫
dpkϕk,pkCkl[ f ]pk

= 1

4

∑

i, j,k,l=1

∫
dpidp jdpkdpl(ϕk,pk + ϕl,pl − ϕi,pi − ϕ j,p j )

× Wi j |kl fi,pi f j,p j (1 + fk,pk )(1 + fl,pl ),

(15.8)

where we have used the symmetries of Wi j |kl (15.6) and (15.7). A function ϕ0
k,pk

is
called a collision invariant if it satisfies,

N∑

k,l=1

∫
dpkϕ

0
k,pkCkl[ f ]pk = 0. (15.9)

The existence of the collision invariant results in an important consequence. An
integral over the momentum pk and a sum over the components k of the Boltzmann
equation (15.3) convoluted with the collision invariant ϕ0

k,pk
leads to

∂μ

( N∑

k=1

∫
dpkϕ

0
k,pk p

μ

k fk,pk
)

=
N∑

k=1

∫
dpkϕ

0
k,pk p

μ

k ∂μ fk,pk

=
N∑

k,l=1

∫
dpkϕ

0
k,pkCkl[ f ]pk = 0.

(15.10)

Hence, one finds that a conserved quantity is given in the form,

N∑

k=1

∫
dpkϕ

0
k,pk p

μ

k fk,pk , (15.11)

for each collision invariant in the kinetic theory. In fact, the relation (15.8) and the
form of the transition matrix (15.5) imply that q A

k and pμ

k are collision invariants,
i.e.,

N∑

k,l=1

q A
k

∫
dpkCkl[ f ]pk = 0, (15.12)

N∑

k,l=1

∫
dpk p

μ

k Ckl[ f ]pk = 0. (15.13)
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Thus, one find that the particle currents (15.2) and (15.1) are indeed conserved
quantities,

∂μN
μ

A =
N∑

k=1

q A
k

∫
dpk p

μ

k ∂μ fk,pk =
N∑

k,l=1

q A
k

∫
dpkCkl[ f ]pk = 0,

∂μT
μν =

N∑

k=1

∫
dpk p

μ

k p
ν
k ∂μ fk,pk =

N∑

k,l=1

∫
dpk p

ν
kCkl[ f ]pk = 0.

(15.14)

Note that it is a pivotal step to identify the conserved quantities in the system under
consideration as the fluid dynamics consists of a set of conservation laws expressed
in terms of fluid dynamic variables.

15.2.2 Entropy Current

The relaxation of a non-equilibrium system is driven by dissipative processes, that
is accompanied by increase of entropy in the non-relativistic case. Its relativistic
counterpart is the entropy four current defined by,

sμ = −
N∑

k=1

∫
dpμ

k

[
fk,pk ln fk,pk −

(
1 + ak fk,pk

)
ln

(
1 + ak fk,pk

)

ak

]
. (15.15)

The dissipation of a relativistic system is then characterized by entropy-production
rate,

∂μs
μ = −

N∑

k=1

∫
dpk p

μ

k ∂μ fk,pk ln

(
fk,pk

1 + ak fk,pk

)

= −
N∑

k,l=1

∫
dpkCkl[ f ]k,pk ln

(
fk,pk

1 + ak fk,pk

)
,

(15.16)

where we have used the Boltzmann equation (15.3) in the second equality. Vanishing
entropy-production rate implies the non-dissipative dynamics, that is the case when
ln[ fk,pk/(1 + ak fk,pk )] is a collision invariant. It is amount to requiring the following,

ln

(
fk,pk

1 + ak fk,pk

)
=

M∑

A=1

q A
k cA(x) + pμ

k cμ(x), (15.17)

with coefficients, cA(x) and cμ(x), of the aforementioned collision invariants q A
k and

pμ

k . We can solve it to obtain the entropy-conserving distribution function,
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fk,pk (x) =
[
exp

(
pk · u(x)

T (x)
+

M∑

A=1

q A
k

μA(x)

T (x)

)
− ak

]−1

=: f eqk,pk (x), (15.18)

where we have reparametrized as cA(x) = μA(x)/T (x) and cμ(x) = uμ(x)/T (x)
with a constraint uμuμ = 1. We recognize it as the local equilibrium distribution
function by identifyingM + 4 parameters T (x),μA(x), and uμ(x)with local temper-
ature, chemical potentials conjugate to the M conserved charges, and flow velocities,
respectively.

15.3 Reduction of Boltzmann Equation to
Reactive-Multi-component Fluid Dynamics

The derivation of the fluid dynamics is accomplished by solving the Boltzmann
equation. Given a small spatial gradient, we carry out the perturbative expansion of a
distribution function around the local equilibrium one. After finding the perturbative
solution, which contains infrared divergence in the form of secular terms, we apply
the RG/Envelope method to remove the divergence and obtain the global solution [1,
3, 5, 6, 40, 46]. The fluid dynamic variables show up as a consequence of the
renormalization group analysis.

15.3.1 Solving Perturbative Equations

We begin with solving the Boltzmann equation perturbatively with respect to small
spatial gradients, characterized by the Knudsen number K ,

K = �

L
, � : mean free path, L : macroscopic length scale. (15.19)

For the purpose of performing coarse-graining, we introduce the macroscopic
frame vector aμ

F satisfying aFμa
μ
F = 1 and a0F > 0. The explicit form of aμ

F is yet to
be identified. Then, we employ (τ, σ )-coordinates, where the vector aμ

F is aligned to
the temporal (τ ) direction and perpendicular to the spatial (σ ) direction:

∂

∂τ
:= aμ

F ∂μ, ∇μ := ∂

∂σμ

:= (gμν − aμ
F a

ν
F)∂ν. (15.20)

Introducing a bookkeeping parameter ε, that keeps track of the small spatial gradient
and is identified with the Knudsen number K , we have the Boltzmann equation in
the new coordinate,



15.3 Reduction of Boltzmann Equation to Reactive-Multi-component Fluid Dynamics 413

∂

∂τ
fk,pk (x) = 1

pk · aF
N∑

l=1

Ckl[ f ]pk (x) − ε
1

pk · aF pk · ∇ fk,pk (x), (15.21)

where we used ∂μ = aμ
F ∂/∂τ + ∇μ. The perturbative computation proceeds by solv-

ing the Boltzmann equation (15.21) order by order with respect to ε,

f̃ (τ ; τ0) = f̃ (0)(τ ; τ0) + ε f̃ (1)(τ ; τ0) + ε2 f̃ (2)(τ ; τ0) + O(ε3), (15.22)

along with the ‘initial’ distribution function,

f̃ (τ0; τ0) = f (τ0) = f (0)(τ0) + ε f (1)(τ0) + ε2 f (2)(τ0) + O(ε3). (15.23)

The perturbative distribution function f̃ (τ ; τ0) is formally set to the exact one
f (τ ; τ0) at ‘initial’ time τ0.
We start with the zeroth order equation,

∂

∂τ
fk,pk = 1

pk · aF
N∑

l=1

Ckl[ f ]pk . (15.24)

The leading-order solution, representing τ → ∞ asymptotic steady solution of the
near-equilibrium dynamics, is obtained by requiring

∂

∂τ
fk,pk = 0, (15.25)

which, at the zeroth order, is amount to

1

pk · aF
N∑

l=1

Ckl[ f ]pk = 0. (15.26)

One can readily confirm that the equilibrium distribution function f eqk,pk (15.18) sat-
isfies,

Ckl[ f eq]pk = 1

2

N∑

i, j=1

∫
dpldpidp jWi j |kl

× [
f eqi,pi f

eq
j,p j

(1 + ak f
eq
k,pk

)(1 + al f
eq
l,pl

)

− (1 + ai f
eq
i,pi

)(1 + a j f
eq
j,p j

) f eqk,pk f
eq
l,pl

]

= 0,

(15.27)



414 15 RG/E Derivation of Reactive-Multi-component Relativistic Fluid Dynamics

and hence, is the zeroth order solution. We have used (15.6) in the first equality. In
what follows, we carry out the perturbative expansion around the local equilibrium
distribution function,

f̃ (0)(τ ; τ0) = f eq(τ0). (15.28)

Here, the thermodynamic variables are introduced as integral constants of the zeroth
order solution, i.e., uμ = uμ(τ0), T = T (τ0), and μA = μA(τ0). As discussed in
detail in Sect. 11.4.1, we can now identify the macroscopic vector with the flow
velocity,

aμ
F (τ0) = uμ(τ0). (15.29)

As discussed in Sect. 11.6.1, this identification of the frame vector automatically
leads to the fluid dynamic equation in the Landau–Lifshitz energy frame.

Next, we consider the equation of O(ε),

∂

∂τ
f̃ (1)
k,pk

=
∑

m

∫
dpm f̃ (1)

m,pm

δ

δ fm,pm

(
1

pk · u
N∑

l=1

Ckl[ f ]pk
)∣∣∣∣

f = f eq

− 1

pk · u pk · ∇ f eqk,pk

= f eqk,pk f̄
eq
k,pk

∑

m

∫
dqmLk,pk ;m,pm

(
f eqm,pm f̄ eqm,pm

)−1
f̃ (1)
m,pm

+ f eqk,pk f̄
eq
k,pk

F (0)
k,pk

, (15.30)

where we defined

f̄ eqk,pk := 1 + ak f
eq
k,pk

, (15.31)

F (i)
k,pk

:= −(
f eqk,pk f̄

eq
k,pk

)−1 1

pk · u pk · ∇ f (i)
k,pk

, (15.32)

and the linearized collision operator

Lk,pk ;m,pm

:= ( f eqk,pk f̄
eq
k,pk

)−1 δ

δ fm,pm

(
1

pk · u
N∑

l=1

Ckl[ f ]pk
)∣∣∣∣

f = f eq
f eqm,pm f̄ eqm,pm

= − 1

2pk · u
∑

i, j,l

∫
dpldpidp jWi j |kl

f̄ eql,pl f
eq
i,pi

f eqj,p j

f eqk,pk

× [
δkmδ(pk − pm) + δlmδ(pl − pm) − δimδ(pi − pm) − δ jmδ(p j − pm)

]
.

(15.33)
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For the notational simplicity, we suppress the subscripts for momenta and types
of particle in what follows by employing the matrix notation. Then, the first order
equation (15.30) is concisely written as

∂

∂τ
f̃ (1) = f eq f̄ eqL

(
f eq f̄ eq

)−1
f̃ (1) + f eq f̄ eqF (0), (15.34)

with

[
f eq f̄ eqL

(
f eq f̄ eq

)−1]
k,pk ;m,pm

:= f eqk,pk f̄
eq
k,pk

Lk,pk ;m,pm

(
f eqm,pm f̄ eqm,pm

)−1
, (15.35)

[
f eq f̄ eqF (0)

]
k,pk

:= f eqk,pk f̄
eq
k,pk

F (0)
k,pk

. (15.36)

Furthermore, we equip the vector space with the inner product defined by,

〈ψ, χ〉 =
N∑

k=1

∫
dpk(pk · u) f eqk,pk f̄

eq
k,pk

ψk,pkχk,pk . (15.37)

See Sect. 13.1 for the detailed discussion on the inner product.
We note three important properties of the linearized collision operator L . It is

self-adjoint and semi-negative definite, and possesses zero modes:

〈ψ, Lχ〉 = 〈Lψ, χ〉, (15.38)

〈ψ, Lψ〉 ≤ 0, (15.39)

Lϕα
k,pk = 0, (15.40)

where ψ and χ are arbitrary vectors, and the zero modes are given by

ϕα
k,pk =

{
pμ

k , α = μ = 0, 1, 2, 3,

q A
k , α = A + 3 = 4, . . . , M + 3.

(15.41)

The self-adjointness can be shown as follows,

〈ψ, Lχ〉
= −1

8

∑

i, j,k,l

∫
dpidp jdpkdplWi j |kl f

eq
i,pi

f eqj,p j
f̄ eqk,pk f̄

eq
l,pl

× (
ψk,pk + ψl,pl − ψi,pi − ψ j,p j

)(
χk,pk + χl,pl − χi,pi − χ j,p j

)

= 〈Lψ, χ〉, (15.42)

where the symmetries of Wi j |kl (15.6) and (15.7) have been used. Then, the semi-
negative definiteness immediately follows,
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〈ψ, Lψ〉
= −1

8

∑

i, j,k,l

∫
dpidp jdpkdplWi j |kl f

eq
i,pi

f eqj,p j
f̄ eqk,pk f̄

eq
l,pl

× (
ψk,pk + ψl,pl − ψi,pi − ψ j,p j

)2

≤ 0. (15.43)

Note that the transition probabilityWi j |kl is always positive by the definition (15.5).
Finally, the zero modes arise due to the conservation laws,

k,pk = − 1

2pk · u
∑

i, j,l

∫
dpldpidp jWi j |kl

f̄ eql,pl f
eq
i,pi

f eqj,p j

f eqk,pk

× (
ϕα
k,pk + ϕα

l,pl − ϕα
i,pi − ϕα

j,p j

)
.

(15.44)

This expression vanishes when ϕα is the energy-momentum or the conserved charges
because they are invariant in the scattering processes.

The first-order equation is solved by introducing projection operator P0 on the
space spanned by the zeromodes and its complement Q0 such that P0 + Q0 = 1. The
associated spaces are denoted by P0 and Q0. The projection operator P0 is defined
by,

[P0ψ]k,pk = ϕα
k,pkη

−1
αβ 〈ϕβ,ψ〉, (15.45)

where ϕ is a zero mode and η−1
αβ is the inverse of ηαβ := 〈ϕα, ϕβ〉, that plays a role

of metric in the P0 space. With some ‘initial’ condition f̃ (1)(τ0) = f eq f̄ eq�(1) to be
specified later, the O(ε) Eq. (15.34) is solved as follows:

f̃ (1) = f eq f̄ eq
(
eL(τ−τ0)�(1) +

∫ τ

τ0

dτ ′eL(τ−τ ′)F (0)

)

= f eq f̄ eq
(
eL(τ−τ0)�(1) +

∫ τ

τ0

dτ ′(P0 + eL(τ−τ ′)Q0
)
F (0)

)

= f eq f̄ eq
(
eL(τ−τ0)�(1) + (τ − τ0)P0F

(0) + (eL(τ−τ0) − 1)L−1Q0F
(0)

)
.

(15.46)

The solution f̃ (1) contains secular terms which are responsible for the divergence
as |τ − τ0| → ∞. The divergence will be eliminated by the renormalization group
analysis as we will see later.

We turn to the equation of O(ε2),

∂

∂τ
f (2) = f eq f̄ eqL( f eq f̄ eq)−1 f̃ (2) + f eq f̄ eqK (τ − τ0), (15.47)
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where K (τ − τ0) is defined by,

K (τ − τ0) = F (1)(τ ) + 1

2
B[ f̃ (1), f̃ (1)](τ ), (15.48)

B[ψ, χ ]k,pk ;m,pm ;n,pn

=
∑

m,n

∫

pm ,pn

( f eqk,pk f̄
eq
k,pk

)−1 δ2

δ fm,pm δ fn,pn

(
1

pk · u
∑

l

Ckl[ f ]pk
)∣∣∣∣

f = f eq
ψm,pmχn,pn .

(15.49)

The definition of F (1)(τ ) is already given in (15.32).
Provided some initial condition f̃ (2)(τ0) = f eq f̄ eq�(2), the second-order equation

is solved as,

f̃ (2) = f eq f̄ eq
(
eL(τ−τ0)�(2) +

∫ τ

τ0

dτ ′eL(τ−τ ′)K (τ ′ − τ0)

)

= f eq f̄ eq
(
eL(τ−τ0)�(2) +

∫ τ

τ0

dτ ′eL(τ−τ ′)e(τ ′−τ0)
∂
∂s K (s)

∣∣∣
s=0

)

= f eq f̄ eq
(
eL(τ−τ0)�(2) + (

1 − e(τ−τ0)
∂
∂s

)(
− ∂

∂s

)−1
P0K (s)

∣∣∣
s=0

+ (
eL(τ−τ0) − e(τ−τ0)

∂
∂s

)(
L − ∂

∂s

)−1
Q0K (s)

∣∣∣
s=0

)
. (15.50)

We have solved the Boltzmann equation perturbatively up to O(ε2). We summa-
rize the perturbative solution:

f̃ (0) = f eq, (15.51)

f̃ (1) = f eq f̄ eq
(
eL(τ−τ0)�(1) + (τ − τ0)P0F

(0) + (eL(τ−τ0) − 1)L−1Q0F
(0)

)
,

(15.52)

f̃ (2) = f eq f̄ eq
(
eL(τ−τ0)�(2) + (

1 − e(τ−τ0)
∂
∂s

)(
− ∂

∂s

)−1
P0K (s)

∣∣∣
s=0

+ (
eL(τ−τ0) − e(τ−τ0)

∂
∂s

)(
L − ∂

∂s

)−1
Q0K (s)

∣∣∣
s=0

)
, (15.53)

under the initial condition,

f̃ (0)(τ0) = f eq, (15.54)

f̃ (1)(τ0) = f eq f̄ eq�(1), (15.55)

f̃ (2)(τ0) = f eq f̄ eq�(2). (15.56)
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Here we come to the crucial step, where the proper initial condition/integral con-
stants are identified. At the zeroth-order perturbation we introducedM + 4would-be
slow variables, T , μA, and uμ, which form the ordinary/first-order fluid dynamics
and accompany the modes belonging to the P0 space. To go beyond the description
of ordinary dissipative fluid, we need to specify relevant fast variables, which we call
quasi-slow variables. These variables are then used to identify the first-order initial
value�(1). We apply the doublet scheme [69] in order to specify the quasi-slow vari-
ables and associated vector space. See Chap. 9 for a detailed account of the doublet
scheme.

To this end, we expand the first-order perturbative solution around τ = τ0:

f̃ (1) = f eq f̄ eq�(1) + (τ − τ0) f
eq f̄ eq

(
P0F

(0) + L�(1) + Q0F
(0)

)

+ O
(
(τ − τ0)

2
)
.

(15.57)

As will be seen later, the O
(
(τ − τ0)

2
)
terms do not contribute to the RG/E equation.

We divide the Q0 space into P1 and Q1 spaces (Q0 = P1 + Q1), the former of which
consists of the quasi-slowmodes. In linewith the general idea of the reduction theory,
the doublet scheme requires that the tangent space of the perturbative solution at
τ = τ0 should be as small as for the resultant fluid dynamic equation to be simplified.
Here, we spell out the three criteria to identify �(1) and P1 space:

1. �(1) and L−1Q0F (0) belongs to a common vector space, which is orthogonal to
P0 space.

2. Define P1 space by a vector space spanned by �(1) and L�(1).

The first condition gives a prescription to minimally extend the vector space in order
to incorporate the quasi-slow modes on top of the zero modes. These conditions are
required in order to minimize the dimension of the tangent space of the perturbative
solution f̃ (1) at τ = τ0. This is indeed fulfilled by choosing �(1) so that L−1Q0F (0)

and�(1) belong to a commonvector space as seen from (15.57). The second condition
is also required so that the P1 space accommodates all the terms except for the zero
modes in (15.57).

As detailed in the next section L−1Q0F (0) is computed as,

[
L−1Q0F

(0)
]
k,pk

= [L−1�̂]k,pk
(

− θ

T

)
+

M∑

A=1

[L−1 Ĵμ

A ]k,pk
(

−1

h
∇μ

μA

T

)
+ [L−1π̂ ]μν

k,pk

σμν

T
,

(15.58)

with (�̂, Ĵμ, π̂μν)k,pk := (�, Jμ, πμν)k,pk/(pk · u) and �k,pk , J
μ

A,k,pk
, and π

μν

k,pk
are

given by
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�k,pk := (pk · u)2
(
A

N∑

l=1

m2
l M

l
1 − Ml

3

3

+
N∑

l=1

M∑

A=1

CAq
A
l

m2
l M

l
0 − Ml

2

3
+ 1

3

)

+ (pk · u)

( N∑

l=1

CAq
A
k

m2
l M

l
1 − Ml

3

3

+
N∑

l=1

M∑

A,B=1

DABq
A
k q

B
l

m2
l M

l
0 − Ml

2

3

)
− 1

3
m2

k, (15.59)

Jμ

A,k,pk
:=

(
q A
k h − nA

n
(pk · u)

)
�μν pkν (15.60)

π
μν

k,pk
:= �μνρσ pkρ pkσ . (15.61)

From (15.58), we see that L−1Q0F (0) is given by a linear combination of the
vectors

([L−1�̂]k,pk , [L−1 Ĵμ

A ]k,pk , [L−1π̂μν]k,pk
)
. Therefore, we set � as a linear

combination of these basis vectors,

�
(1)
k,pk

=
[[

L−1�̂
]
k,pk

〈�̂, L−1�̂〉
]
�

+
M∑

A,B=1

[
3h

[
L−1 Ĵμ

A

]
k,pk

〈 Ĵ ν, L−1 Ĵν〉−1
AB

]
JB,μ

+
[ 5

[
L−1π̂μν

]
k,pk

〈π̂ρσ , L−1π̂ρσ 〉
]
πμν. (15.62)

where (A, B)-component of a matrix 〈 Ĵ ν, L−1 Ĵν〉 is given by 〈 Ĵ ν
A, L

−1 ĴB,ν〉, and
〈 Ĵ ν, L−1 Ĵν〉−1

AB is (A, B)-component of the inverse of the matrix 〈 Ĵ ν, L−1 Ĵν〉. Being
a linear combination of the quasi-slow modes,�(1) belongs to the P1 space. We have
introduced the following nine integral constants as coefficients of the basis vectors:

�(σ ; τ0), Jμ

A (σ ; τ0), πμν(σ ; τ0), (15.63)

whichwill be additional fluid dynamic variables responsible for describing themeso-
scopic dynamics and be identified as the bulk pressure, the heat flow, and the stress
tensor, respectively.

Consequently, the fluid dynamics of our interest is capable of describing dynamics
in the P1 space in addition to the P0 space. Keeping that in mind we eliminate the
fast-decaying modes in the Q1 space from the second-order perturbative solution,
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f̃ (2) = f eq f̄ eq
(
eL(τ−τ0)�(2) + (

1 − e(τ−τ0)
∂
∂s

)(
− ∂

∂s

)−1
P0K (s)

∣∣∣
s=0

+ (
eL(τ−τ0) − e(τ−τ0)

∂
∂s

)
(P1 + Q1)G(s)Q0K (s)

∣∣∣
s=0

)
, (15.64)

by setting the initial value to

�(2) = −Q1G(s)Q0K (s)
∣∣∣
s=0

, (15.65)

with G(s) = (
L − ∂/∂s

)−1
. Hence, the second-order perturbative solution takes the

following form,

f̃ (2) = f eq f̄ eq
[
(τ − τ0)P0 + (τ − τ0)G(s)−1P1G(s)Q0

−
(
1 + (τ − τ0)

∂

∂s

)
Q1G(s)Q0

]
K (s)

∣∣∣
s=0

+ O
(
(τ − τ0)

2
)
. (15.66)

We expanded with respect to (τ − τ0) as the terms of O
(
(τ − τ0)

2
)
disappear in the

RG/E equation, and hence, do not contribute to the global solution.
Let us wrap up the discussion so far by writing down the perturbative solution

f̃ (τ ; τ0) and the initial value f̃ (τ0) up to O(ε2),

f̃ (τ ; τ0) = f eq(τ0) + ε f eq f̄ eq
([
1 + (τ − τ0)L

]
�(1) + (τ − τ0)F

(0)
)

+ ε2 f eq f̄ eq
[
(τ − τ0)P0 + (τ − τ0)G(s)−1P1G(s)Q0

−
(
1 + (τ − τ0)

∂

∂s

)
Q1G(s)Q0

]
K (s)

∣∣∣
s=0

, (15.67)

f̃ (τ0) = f eq + ε f eq f̄ eq�(1) − ε2 f eq f̄ eqQ1G(s)Q0K (s)
∣∣∣
s=0

. (15.68)

15.3.2 Computation of L−1Q0F(0)

To explicitly write down �(1) we need to compute L−1Q0F (0). Using the defini-
tion (15.45) of the projection operator P0 and Q0, we find,

[Q0F
(0)]k,pk = [F (0) − P0F

(0)]k,pk = F (0)
k,pk

− ϕα
k,pkη

−1
αβ 〈ϕβ, F (0)〉, (15.69)
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with

F (0)
k,pk

= 1

pk · u
[
pμ

k p
ν
k∇ν

uν

T
− pμ

k

M∑

A=1

q A
k ∇μ

μA

T

]
. (15.70)

In order to proceed the computation we introduce

Mk
� :=

∫
dpk f

eq
k,pk

f̄ eqk,pk (pk · u)�, � = 0, 1, . . . . (15.71)

Then, each component of the metric ηαβ = 〈ϕα, ϕβ〉 is expressed as,

ημν =
N∑

k=1

[
ak3u

μuν + m2
kM

k
1 − Mk

3

3
�μν

]
, (15.72)

ημ A+3 = ηA+3 μ =
N∑

k=1

q A
k M

k
2u

μ, (15.73)

ηA+3 B+3 =
N∑

k=1

q A
k q

B
k M

k
1 . (15.74)

The inverse metric η−1
αβ is given by,

η−1
μν = Auμuν + B�μν, (15.75)

η−1
μ A+3 = η−1

A+3 μ = CAu
μ, (15.76)

η−1
A+3 B+3 = DAB, (15.77)

where each coefficient satisfies,

B =
(

N∑

k=1

m2Mk
1 − Mk

3

3

)−1

, (15.78)

N∑

k=1

Mk
3A − 1 +

M∑

A=1

N∑

k=1

q A
k M

k
2CA = 0, (15.79)

N∑

k=1

q A
k M

k
2A +

M∑

B=1

N∑

k=1

q A
k q

B
k M

k
1CB = 0, (15.80)

N∑

k=1

q A
k M

k
2CB +

M∑

C=1

N∑

k=1

q A
k q

C
k M

k
1DCB = δAB . (15.81)
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The inner products are evaluated as follows:

〈ϕμ, F (0)〉

=
N∑

k=1

[
m2

kM
k
1 − Mk

3

3

(
− 1

T 2
∇μT + uμ 1

T
∇ · u

)
− m2Mk

0 − Mk
2

3

M∑

A=1

q A
k ∇μ μA

T

]
,

(15.82)

〈ϕA+3, F (0)〉 =
N∑

k=1

q A
k

m2
kM

k
0 − Mk

2

3

1

T
∇ · u. (15.83)

Inserting the inverse metric (15.75)–(15.77) and the inner products (15.82) and
(15.83) into (15.69), we find

[
Q0F

(0)
]
k,pk

= �̂k,pk

(
− θ

T

)
+

M∑

A=1

Ĵμ

A,k,pk

(
−1

h
∇μ

μA

T

)
+ π̂

μν

k,pk

σμν

T
. (15.84)

Applying L−1 yields (15.58).

15.3.3 RG Improvement by Envelope Equation

The obtained perturbative solution (15.67) breaks down due to the secular terms
exhibiting divergences as |τ − τ0| gets bigger. In order to circumvent the issue, we
promote the integral constant T (τ0), μA(τ0), uμ �(τ0), JB,μ(τ0), and πμν(τ0) to
dynamical variables in such a way that the divergences are eliminated. The require-
ment is fulfilled by imposing the RG/E equation on the perturbative solution,

d

dτ0
f̃ (τ ; τ0)

∣∣∣
τ0=τ

= 0. (15.85)

This equation can be viewed as a dynamical equation for T (τ0), μA(τ0), uμ, �(τ0),
JB,μ(τ0), and πμν(τ0), which is solved to specify their time evolution. Provided the
solution to the RG/E equation, we obtain the globally well-defined solution,

f global = f (τ0 = τ) = f eq + ε f eq f̄ eq�(1) − ε2 f eq f̄ eqQ1G(s)Q0K (s)
∣∣∣
s=0

,

(15.86)

with the solution of (15.85) inserted. In what follows, we attempt to convert the RG/E
equation (15.85) to the fluid dynamic equation.

We firstly project the RG/E equation onto the P0 space by taking the inner prod-
uct (15.37) with the zero modes,
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0 =
〈
( f eq f̄ eq)−1ϕα,

d

dτ0
f̃ (τ ; τ0)

∣∣∣
τ0=τ

〉

=
∑

k

∫
dpkϕ

α
k,pk

[
(pk · u)

∂

∂τ
+ εpk · ∇

][
f eq

(
1 + ε f̄ eq�(1)

)]

k,pk
+ O(ε3),

(15.87)

which forms the equation of continuity. It can indeed be written as follows,

∂μ J
μα = 0, (15.88)

where, with ε = 1, Jμα reads

Jμα =
N∑

k=1

∫
dpk p

μ

k ϕα
k,pk

[
f eq

(
1 + f̄ eq�(1)

)]

k,pk

=
{
T μν = euμuν − (P + �)�μν + πμν, α = ν,

NμA = nAuμ + Jμ

A , α = A + 3.
(15.89)

Let us go through the second equality in more detail. Non-dissipative contributions
come from the first term of Jμα . For α = ν,

T μν

(0) =
N∑

k=1

∫
dpk p

μ

k p
ν
k f

eq
k,pk

= euμuν − P�μν, (15.90)

where the subscript “0” indicates the leading-order contribution. The internal energy
e and pressure P are given by,

e := uμuνT
μν =

N∑

k=1

∫
dpk(pk · u)2 fk,pk , (15.91)

P := −1

3
�μνT

μν = −1

3

N∑

k=1

∫
dpk�μν p

μ

k p
ν
k fk,pk . (15.92)

For α = A + 3,

NμA
(0) =

N∑

k=1

q A
k

∫
dpk p

μ

k f eqk,pk = nAu
μ, (15.93)

with the microscopic expressions of particle-number density nA,

nA := uμN
μ

A =
N∑

k=1

q A
k

∫
dpk(pk · u) fk,pk . (15.94)
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Next, we compute the dissipative correction to the current Jμα . For α = ν,

δTμν =
N∑

k=1

∫
dpk p

μ
k pν

k

[
f eq f̄ eq�(1)]

k,pk

=
∑

k

∫
dpk(pk · u) f eqk,pk f̄

eq
k,pk

[
Q0

pμ
k pν

k

pk · u

]

×
([ [L−1�̂]k,pk

−T ζ

]
� +

M∑

A=1

[ [L−1 Ĵρ
A ]k,pk

T 2/h

] M∑

B=1

(λ−1)AB JB,ρ +
[ [L−1π̂ρσ ]k,pk

−2Tη

]
πρσ

)

=
∑

k

∫
dpk(pk · u) f eqk,pk f̄

eq
k,pk

( − �μν�̂k,pk + π̂
μν
k,pk

)

×
([ [L−1�̂]k,pk

−T ζ

]
� +

M∑

A=1

[ [L−1 Ĵρ
A ]k,pk

T 2/h

] M∑

B=1

(λ−1)AB JB,ρ +
[ [L−1π̂ρσ ]k,pk

−2Tη

]
πρσ

)

= −�μν

(
∑

k

∫
dpk(pk · u) f eqk,pk f̄

eq
k,pk

�̂k,pk [L−1�̂]k,pk
)

�

−T ζ

+
(

∑

k

∫
dpk(pk · u) f eqk,pk f̄

eq
k,pk

π̂
μν
k,pk

[L−1π̂ρσ ]k,pk
)

πρσ

−2Tη

= −�μν� + πμν. (15.95)

We have inserted the projection operator Q0 in the second equality by noting that�(1)

is in the Q0 space, i.e., Q0�
(1) = �(1). For α = A + 3, we compute the dissipative

correction to the Ath conserved current,

δNμA =
N∑

k=1

q A
k

∫
dpk p

μ
k

[
f eq f̄ eq�(1)]

k,pk

=
∑

k

∫
dpk(pk · u) f eqk,pk f̄

eq
k,pk

[
Q0

pμ
k q

A
k

pk · u

]

×
([ [L−1�̂]k,pk

−T ζ

]
� +

M∑

B=1

[ [L−1 Ĵρ
B ]k,pk

T 2/h

] M∑

C=1

(λ−1)BC JC,ρ +
[ [L−1π̂ρσ ]k,pk

−2Tη

]
πρσ

)

=
∑

k

∫
dpk(pk · u) f eqk,pk f̄

eq
k,pk

(
1

h
Ĵμ
A,k,pk

)

×
([ [L−1�̂]k,pk

−T ζ

]
� +

M∑

b=1

[ [L−1 Ĵρ
B ]k,pk

T 2/h

] M∑

C=1

(λ−1)BC JC,ρ +
[ [L−1π̂ρσ ]k,pk

−2Tη

]
πρσ

)

= Jμ
A . (15.96)

Thus, we have obtained (15.89).
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Next, we project the RG/E equation onto the P1 space by taking the inner product
with the quasi-slow modes [L−1�̂]k,pk , [L−1 Ĵμ

A ]k,pk , and [L−1π̂μν]k,pk ,

0 =
〈
( f eq f̄ eq)−1L−1

(
�̂, Ĵμ

A , π̂μν
)
,

d

dτ0
f̃ (τ ; τ0)

∣∣∣
τ0=τ

〉

=
N∑

k=1

∫
dpk

[
L−1

(
�̂, Ĵμ

A , π̂μν
)]

k,pk

×
[
(pk · u)

∂

∂τ
+ εpk · ∇

][
f eq

(
1 + ε f̄ eq�(1))]

k,pk

−
〈
L−1

(
�̂, Ĵμ

A , π̂μν
)
, L�(1)

〉
− 1

2

〈
L−1

(
�̂, Ĵμ

A , π̂μν
)
, B[�(1), �(1)]

〉
+ O(ε3).

(15.97)

A lengthy algebraic manipulation converts the above equations into the relaxation
equations, which, combinedwith the continuity equations, form the full second-order
fluid dynamic equation. The detailed derivation is delegated to the following section.
The relaxation dynamics of each dissipative current is governed by,

� = −ζθ − τ�

∂

∂τ
� −

M∑

a=1

�a�J∇ρ J
ρ

A

+ κ���θ +
M∑

A=1

κ
(1)A
�J JA,ρ∇ρT +

M∑

A,B=1

κ
(2)BA
�J JA,ρ∇ρ μB

T
+ κ�ππρσσ ρσ

+ b����2 +
M∑

A,B=1

bAB
�J J J

ρ

A JB,ρ + b�πππρσπρσ , (15.98)

Jμ

A =
M∑

B=1

λAB
T 2

h2
∇μ μB

T
−

M∑

B=1

τ AB
J �μρ ∂

∂τ
JB,ρ − �A

J�∇μ� − �A
Jπ�μρ∇νπ

ν
ρ

+ κ
(1)A
J� �∇μT +

M∑

B=1

κ
(2)AB
J� �∇μ μB

T

+
M∑

B=1

κ
(1)AB
J J Jμ

B θ +
M∑

B=1

κ
(2)AB
J J JB,ρσ

μρ + κ
(3)AB
J J JB,ρω

μρ

+ κ
(1)A
Jπ πμρ∇ρT +

M∑

B=1

κ
(2)AB
Jπ πμρ∇ρ

μB

T

+
M∑

B=1

bAB
J�J�Jμ

B +
M∑

B=1

bAB
J Jπ JB,ρπ

ρμ, (15.99)
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πμν = 2ησμν − τπ�μνρσ ∂

∂τ
πρσ −

M∑

A=1

�A
π J∇〈μ J ν〉

A

+ κπ��σμν +
M∑

A=1

κ
(1)A
π J J 〈μ

A ∇ν〉T +
M∑

A,B=1

κ
(2)BA
π J J 〈μ

A ∇ν〉 μB

T

+ κ(1)
πππμνθ + κ(2)

πππλ〈μσ ν〉
λ + κ(3)

πππλ〈μων〉
λ

+ bπ�π�πμν +
M∑

A,B=1

bAB
π J J J

〈μ
A J ν〉

B + bππππλ〈μπν〉
λ, (15.100)

where we have defined a traceless symmetric tensor A〈μν〉 := �μνρσ Aρσ for an
arbitrary rank-two tensor A, the scalar expansion θ := ∇ · u, the shear tensor
σμν := �μνρσ∇ρuσ , and the vorticity ωμν := 1

2 (∇μuν − ∇νuμ).
The microscopic expressions of derived transport coefficients, ζ , λAB , and η, are

ζ = − 1

T
〈�̂, L−1�̂〉, (15.101)

λAB = 1

3T 2
〈 Ĵμ

A , L−1 ĴB,μ〉, (15.102)

η = − 1

10T
〈π̂μν, L−1π̂μν〉. (15.103)

We also write down the relaxation times τ�, τ AB
J , and τπ ,

τ� = −〈�̂, L−2�̂〉
〈�̂, L−1�̂〉 , (15.104)

τ AB
J = −

M∑

C=1

〈 Ĵ ν, L−2 Ĵν〉AC 〈 Ĵμ, L−1 Ĵμ〉−1
CB, (15.105)

τπ = −〈π̂μν, L−2π̂μν〉
〈π̂ρσ , L−1π̂ρσ 〉 . (15.106)

These microscopic formulas allow us to derive crucial properties that the proper
fluid dynamics are expected to obey. This fact, in turn, supports the validity of our
derivation of the fluid dynamics. Those properties are discussed in Sect. 15.4.2.

15.3.4 Derivation of Relaxation Equations and Transport
Coefficients

We present the full derivation of the relaxation equations (15.98)–(15.100) as well as
microscopic expressions of all the transport coefficients that appeared in the equation.



15.3 Reduction of Boltzmann Equation to Reactive-Multi-component Fluid Dynamics 427

To this end, we carry out algebraic manipulation on Eq. (15.97), that is repeated here:

0 =
N∑

k=1

∫
dpk

[
L−1(�̂, Ĵμ

A , π̂μν
)]

k,pk

×
[
(pk · u)

∂

∂τ
+ εpk · ∇

][
f eq

(
1 + ε f̄ eq�(1)

)]

k,pk

−
〈
L−1

(
�̂, Ĵμ

A , π̂μν
)
, L�(1)

〉
− 1

2

〈
L−1

(
�̂, Ĵμ

A , π̂μν
)
, B[�(1), �(1)]

〉
+ O(ε3).

(15.107)

We introduce the following quantities for the sake of notational convenience:

ψ̂ i
k,pk := {

�̂k,pk , Ĵμ

A,k,pk
, π̂

μν

k,pk

}
, (15.108)

ψi := {
�, Jμ

A , πμν
}
, (15.109)

χ̂ i :=
{

�̂k,pk

−T ζ
,

∑
B Ĵμ

B,k,pk
(λ−1)BA

T 2/h
,

π̂
μν

k,pk

−2Tη

}
, (15.110)

Xi :=
{

−ζθ,
T 2

h2

M∑

B=1

λAB∇μ

μB

T
, 2ησμν

}
, (15.111)

v
μ

k,pk
:= 1

pk · u�μν pk,ν . (15.112)

Then, Eq. (15.107) is concisely written as

〈L̂−1ψ̂ i , ( f eq f̄ eq)−1[∂τ + εv · ∇][ f eq(1 + ε f̄ eq L̂−1ψ̂ jχ j )]〉
= ε〈L̂−1 ψ̂ i , ψ̂ jχ j 〉
+ ε2

1

2
〈L̂−1ψ̂ i , B[L̂−1ψ̂ jχ j , L̂

−1ψ̂kχk]〉 + O(ε3). (15.113)

Expanding the term on the left-hand side, we have

ε
〈
L−1ψ̂ i , χ̂ j

〉
X j

+ ε
〈
L−1ψ̂ i , ( f eq f̄ eq)−1

[
∂

∂τ
+ εv · ∇

]
f eq f̄ eqL−1χ̂ j

〉
ψ j

+ ε
〈
L−1ψ̂ i , L−1χ̂ j

〉 ∂

∂τ
ψ j + ε2

〈
L−1ψ̂ i , vαL−1ψ̂ j

〉∇αψ j

= ε
〈
L−1ψ̂ i , χ̂ j

〉
ψ j

+ ε2
1

2

〈
L−1ψ̂ i , B[L−1χ̂ j , L−1χ̂ k]〉ψ jψk + O(ε3). (15.114)
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The coefficients of the first term on the left-hand side and the first and second terms
on the right-hand side of Eq. (15.114) can be written as

〈L̂−1ψ̂ i , χ̂ j 〉

=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

〈L̂−1�̂, �̂〉
−T ζ

∑

C

〈L̂−1�̂, Ĵρ
C 〉

T 2/h
(λ−1)CB

〈L̂−1�̂, π̂ρσ 〉
−2Tη

〈L̂−1 Ĵμ
A , �̂〉

−T ζ

∑

C

〈L̂−1 Ĵμ
A , Ĵρ

C 〉
T 2/h

(λ−1)CB
〈L̂−1 Ĵμ

A , π̂ρσ 〉
−2Tη

〈L̂−1π̂μν, �̂〉
−T ζ

∑

C

〈L̂−1π̂μν, Ĵρ
B 〉

T 2/h
(λ−1)CB

〈L̂−1π̂μν, π̂ρσ 〉
−2Tη

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=
⎛

⎝
1 0 0
0 hδAB�μρ 0
0 0 �μνρσ

⎞

⎠ , (15.115)

〈L̂−1ψ̂ i , L̂−1 χ̂ j 〉

=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

〈L̂−1�̂, L̂−1�̂〉
−T ζ

∑

C

〈L̂−1�̂, L̂−1 Ĵρ
C 〉

T 2/h
(λ−1)CB

〈L̂−1�̂, L̂−1π̂ρσ 〉
−2Tη

〈L̂−1 Ĵμ
A , L̂−1�̂〉
−T ζ

∑

C

〈L̂−1 Ĵμ
A , L̂−1 Ĵρ

C 〉
T 2/h

(λ−1)CB
〈L̂−1 Ĵμ

A , L̂−1π̂ρσ 〉
−2Tη

〈L̂−1π̂μν, L̂−1�̂〉
−T ζ

∑

C

〈L̂−1π̂μν, L̂−1 Ĵρ
C 〉

T 2/h
(λ−1)CB

〈L̂−1π̂μν, L̂−1π̂ρσ 〉
−2Tη

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=
⎛

⎝
−τ� 0 0
0 −hτ AB

J �μρ 0
0 0 −τπ�μνρσ

⎞

⎠ , (15.116)

〈L̂−1ψ̂ i , vα L̂−1 χ̂ j 〉

=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

〈L̂−1�̂, vα L̂−1�̂〉
−T ζ

∑

C

〈L̂−1�̂, vα L̂−1 Ĵρ
C 〉

T 2/h
(λ−1)CB

〈L̂−1�̂, vα L̂−1π̂ρσ 〉
−2Tη

〈L̂−1 Ĵμ
A , vα L̂−1�̂〉
−T ζ

∑

C

〈L̂−1 Ĵμ
A , vα L̂−1 Ĵρ

C 〉
T 2/h

(λ−1)CB
〈L̂−1 Ĵμ

A , vα L̂−1π̂ρσ 〉
−2Tη

〈L̂−1π̂μν, vα L̂−1�̂〉
−T ζ

∑

C

〈L̂−1π̂μν, vα L̂−1 Ĵρ
C 〉

T 2/h
(λ−1)CB

〈L̂−1π̂μν, vα L̂−1π̂ρσ 〉
−2Tη

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=
⎛

⎝
0 −h�B

�J�αρ 0
−�AJ�

�μα 0 −�AJπ
�μαρσ

0 −�B
π J�μνρα 0

⎞

⎠ , (15.117)

respectively, where we have introduced the relaxation times

τ� := 1

T ζ

〈
L−1�̂, L−1�̂

〉
, (15.118)
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τ AB
J := − 1

3T 2

M∑

C=1

〈
L−1 Ĵμ

A , L−1 ĴC,μ

〉
(λ−1)CB, (15.119)

τπ := 1

10Tη

〈
L−1π̂μν, L−1π̂μν

〉
, (15.120)

and the relaxation lengths,

�A
�J := − 1

3T 2

M∑

B=1

(λ−1)AB
〈
L−1�̂, vμL−1 ĴB,μ

〉
, (15.121)

�A
J� := 1

T ζ

〈
L−1 Ĵμ

A , vμL
−1�̂

〉
, (15.122)

�A
Jπ := 1

10Tη

〈
L−1 Ĵμ

A , vνL−1π̂μν

〉
, (15.123)

�A
π J := − 1

5T 2

M∑

B=1

(λ−1)AB
〈
L−1π̂μν, vμL

−1 ĴB,ν

〉
. (15.124)

Then, the last term on the right-hand side of Eq. (15.114) is written as

− 1

2

〈
L−1�̂, B[L−1χ̂ j , L−1χ̂ k]〉ψ jψk

= b����2 +
M∑

A,B=1

bAB
�J J J

ρ

A JB,ρ + b�πππρσπρσ , (15.125)

− 1

2

〈
L−1 Ĵμ

A , B[L−1χ̂ j , L−1χ̂ k]〉ψ jψk

=
M∑

B=1

(bAB
J�J�Jμ

B + bAB
J Jπ JB,ρπρμ), (15.126)

− 1

2

〈
L−1π̂μν, B[L−1χ̂ j , L−1χ̂ k]〉ψ jψk

= bπ�π�πμν +
M∑

A,B=1

bAB
π J J�

μνρσ JA,ρ JB,σ

+ bππππρ
λπλσ , (15.127)

where the transport coefficients are defined by

b��� := −
〈
L−1�̂, B[L−1�̂, L−1�̂]〉

2(T ζ )2
, (15.128)
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bAB
�J J := −

M∑

C,D=1

〈
L−1�̂, B[L−1 Ĵμ

C , L−1 ĴD,μ]〉
6(T 2/h)2

× (λ−1)CA(λ
−1)DB, (15.129)

b�ππ := −
〈
L−1�̂, B[L−1π̂μν, L−1π̂μν]

〉

10(2Tη)2
, (15.130)

bAB
J�J :=

M∑

C=1

〈
L−1 Ĵμ

A , B[L−1�̂, L−1 ĴC,μ]〉
3(T ζ )(T 2/h)

(λ−1)CB, (15.131)

bJ Jπ :=
M∑

C,D=1

〈
L−1 Ĵμ

A , B[L−1 Ĵ ν
C , L−1π̂μν]

〉

5(T 2/h)(2Tη)
(λ−1)CB, (15.132)

bπ�π := −
〈
L−1π̂μν, B[L−1�̂, L−1π̂μν]

〉

5(T ζ )(Tη)
, (15.133)

bπ J J := −
M∑

C,D=1

〈
L−1π̂μν, B[L−1 ĴC,μ, L−1 ĴD,ν]

〉

10(T 2/h)2

× (λ−1)CA(λ
−1)DB, (15.134)

bπππ := −
〈
L−1π̂μν, B[L−1π̂λ

μ, L−1π̂λν]
〉

(35/6)(2Tη)2
. (15.135)

Let us rewrite the second term on the right-hand side of Eq. (15.114):

〈
L−1ψ̂ i , ( f eq f̄ eq)−1

[
∂

∂τ
+ εv · ∇

]
f eq f̄ eqL−1χ̂ j

〉
ψ j

=
〈
L−1ψ̂ i , ( f eq f̄ eq)−1 ∂

∂T
[ f eq f̄ eqL−1χ̂ j ]

〉
ψ j

∂

∂τ
T

+
M∑

A=1

〈
L−1ψ̂ i , ( f eq f̄ eq)−1 ∂

∂
μA

T

[ f eq f̄ eqL−1χ̂ j ]
〉
ψ j

∂

∂τ

μA

T

+
〈
L−1ψ̂ i , ( f eq f̄ eq)−1 ∂

∂uβ
[ f eq f̄ eqL−1χ̂ j ]

〉
ψ j

∂

∂τ
uβ

+ ε
〈
L−1ψ̂ i , ( f eq f̄ eq)−1vβ ∂

∂T
[ f eq f̄ eqL−1χ̂ j ]

〉
ψ j∇βT

+ ε

M∑

A=1

〈
L−1ψ̂ i , ( f eq f̄ eq)−1vβ ∂

∂
μA

T

[ f eq f̄ eqL−1χ̂ j ]
〉
ψ j∇β

μA

T

+ ε
〈
L−1ψ̂ i , ( f eq f̄ eq)−1vβ ∂

∂uα
[ f eq f̄ eqL−1χ̂ j ]

〉
ψ j∇βu

α. (15.136)
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The temporal derivatives of T , μA/T , and uμ are rewritten by using the balance
equations up to the first order with respect to ε, which correspond to the Euler
equations

∂

∂τ
nA = −εnA∇ · u + O(ε2), (15.137)

∂

∂τ
e = −εnh∇ · u + O(ε2), (15.138)

∂

∂τ
uμ = ε

1

nh
∇μP + O(ε2). (15.139)

These equations can be written as

N∑

k=1

q A
k a

k
2
1

T 2

∂

∂τ
T +

M∑

B=1

N∑

k=1

q A
k q

B
k a

k
1

∂

∂τ

μB

T

= −εnAθ + O(ε2), (15.140)
N∑

k=1

ak3
1

T 2

∂

∂τ
T +

M∑

B=1

N∑

k=1

qB
k a

k
2

∂

∂τ

μB

T

= −εnhθ + O(ε2), (15.141)

∂

∂τ
uμ = ε

1

T
∇μT + ε

T

h

M∑

A=1

N∑

k=1

xkq
A
k ∇μ μA

T
+ O(ε2), (15.142)

where the definitions of ak1 , a
k
2 , and a

k
3 are given by

ak� =
∫

dpk f
eq
k,pk

f̄ eqk,pk (pk · u)�. (15.143)

We define a matrix E by writing Eqs. (15.140) and (15.141) as

EA0
∂

∂τ
T +

M∑

B=1

EAB
∂

∂τ

μB

T
= εθ + O(ε2), (15.144)

E00
∂

∂τ
T +

M∑

B=1

E0B
∂

∂τ

μB

T
= εθ + O(ε2). (15.145)

Therefore, Eqs. (15.140)–(15.142) can be written as

∂

∂τ
T = εIθ + O(ε2), (15.146)

∂

∂τ

μA

T
= εIAθ + O(ε2), (15.147)
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∂

∂τ
uμ = ε

1

T
∇μT + ε

nAT

nh

M∑

A=1

∇μ μA

T
+ O(ε2), (15.148)

where we have defined the coefficients as I := ∑
B(E−1)0B and IA := ∑

B(E−1)AB
for notational simplicity. Then, Eq. (15.136) takes the form

〈
L−1�̂, ( f eq f̄ eq)−1

[
∂

∂τ
+ εv · ∇

]
f eq f̄ eqL−1χ̂ j

〉
ψ j

= ε
[
κ���θ +

M∑

A=1

κ
(1)A
�J J ρ

A∇ρT +
M∑

A,B=1

κ
(2)AB
�J J ρ

B∇ρ

μA

T
+ κ�ππρσ σρσ

]
,

(15.149)
〈
L−1 Ĵμ, ( f eq f̄ eq)−1

[
∂

∂τ
+ εv · ∇

]
f eq f̄ eqL−1ψ̂ j

〉
χ j

= ε
[
κ

(1)A
J� �∇μT +

M∑

B=1

κ
(2)AB
J� �∇μ μB

T
+

M∑

B=1

κ
(1)AB
J J Jμ

B θ +
M∑

B=1

κ
(2)AB
J J J ρ

Bσμ
ρ

+
M∑

B=1

κ
(3)AB
J J J ρ

Bωμ
ρ + κ

(1)A
Jπ πμρ∇ρT +

M∑

B=1

κ
(2)AB
Jπ πμρ∇ρ

μB

T

]
, (15.150)

〈
L−1π̂μν, ( f eq f̄ eq)−1

[
∂

∂τ
+ εv · ∇

]
f eq f̄ eqL−1ψ̂ j

〉
χ j

= ε
[
κπ��σμν +

M∑

A=1

κ
(1)A
π J J 〈μ

A ∇ν〉T +
M∑

A,B=1

κ
(2)AB
π J J 〈μ

A ∇ν〉 μB

T
+ κ(1)

πππμνθ

+ κ(2)
πππρ〈μσ ν〉

ρ + κ(3)
πππρ〈μων〉

ρ

]
, (15.151)

where we have used ∇μuν = σμν + �μνθ/3 + ωμν with the vorticity ωμν :=
(∇μuν − ∇νuμ)/2, and the transport coefficients are defined as follows:

κ�� =
〈
L−1�̂, ( f eq f̄ eq)−1

[
I ∂

∂T
+

M∑

A=1

IA
∂

∂
μA
T

+ 1

3
vμ ∂

∂uμ

]
f eq f̄ eqL−1�̂

−T ζ

〉
, (15.152)

κ
(1)A
�J = �μν

3

〈
L−1�̂, ( f eq f̄ eq)−1

[
vμ

∂

∂T
+ 1

T

∂

∂uμ

] M∑

B=1

f eq f̄ eqL−1 ĴB,ν

T 2/h
(λ−1)BA

〉
, (15.153)

κ
(2)AB
�J = �μν

3

〈
L−1�̂, ( f eq f̄ eq)−1

[
vμ

∂

∂
μA
T

+ nAT

nh

∂

∂uμ

] M∑

C=1

f eq f̄ eqL−1 ĴC,ν

T 2λ/h
(λ−1)CB

〉
,

(15.154)

κ�π = �μνρσ

5

〈
L−1�̂, ( f eq f̄ eq)−1vμ

∂

∂uν

f eq f̄ eqL−1π̂ρσ

−2Tη

〉
, (15.155)

κ
(1)A
J� = 1

3

〈
L−1 Ĵμ

A , ( f eq f̄ eq)−1
[
vμ

∂

∂T
+ 1

T

∂

∂uμ

]
f eq f̄ eqL−1�̂

−T ζ

〉
, (15.156)
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κ
(2)AB
J� = 1

3

〈
L−1 Ĵμ

A , ( f eq f̄ eq)−1
[
vμ

∂

∂
μB
T

+ nBT

nh

∂

∂uμ

]
f eq f̄ eqL−1�̂

−T ζ

〉
, (15.157)

κ
(1)AB
J J = �μν

3

〈
L−1 ĴA,μ, ( f eq f̄ eq)−1

[
I ∂

∂T
+

M∑

D=1

ID
∂

∂
μD
T

+ 1

3
vρ ∂

∂uρ

]

×
M∑

C=1

f eq f̄ eqL−1 ĴC,ν

T 2λ/h
(λ−1)CB

〉
, (15.158)

κ
(2)AB
J J = �μνρσ

5

〈
L−1 ĴA,μ, ( f eq f̄ eq)−1vρ

∂

∂uσ

M∑

C=1

f eq f̄ eqL−1 ĴC,ν

T 2λ/h
(λ−1)CB

〉
, (15.159)

κ
(3)AB
J J = �μνρσ

3

〈
L−1 ĴA,μ, ( f eq f̄ eq)−1vρ

∂

∂uσ

M∑

C=1

f eq f̄ eqL−1 ĴC,ν

T 2λ/h
(λ−1)CB

〉
, (15.160)

κ
(1)A
Jπ = �μνρσ

5

〈
L−1 ĴA,μ, ( f eq f̄ eq)−1

[
vν

∂

∂T
+ 1

T

∂

∂uν

]
f eq f̄ eqL−1π̂ρσ

−2Tη

〉
, (15.161)

κ
(2)AB
Jπ = �μνρσ

5

〈
L−1 ĴA,μ, ( f eq f̄ eq)−1

[
vν

∂

∂
μB
T

+ nBT

nh

∂

∂uν

]
f eq f̄ eqL−1π̂ρσ

−2Tη

〉
, (15.162)

κπ� = �μνρσ

5

〈
L−1π̂μν , ( f

eq f̄ eq)−1vρ

∂

∂uσ

f eq f̄ eqL−1�̂

−T ζ

〉
, (15.163)

κ
(1)A
π J = �μνρσ

5

〈
L−1π̂μν , ( f

eq f̄ eq)−1
[
vρ

∂

∂T
+ 1

T

∂

∂uρ

] M∑

B=1

f eq f̄ eqL−1 ĴB,σ

T 2λ/h
(λ−1)BA

〉
,

(15.164)

κ
(2)
π J = �μνρσ

5

〈
L−1π̂μν , ( f

eq f̄ eq)−1
[
vρ

∂

∂
μ
T

+ T

h

∂

∂uρ

]
f eq f̄ eqL−1 Ĵσ

T 2λ/h

〉
, (15.165)

κ(1)
ππ = −�μνρσ

5

〈
L−1π̂μν , ( f

eq f̄ eq)−1

[
I ∂

∂T
+

M∑

A=1

IA
∂

∂
μA
T

+ 1

3
vμ ∂

∂uμ

]
f eq f̄ eqL−1π̂ρσ

−2Tη

〉
,

(15.166)

κ(2)
ππ = 12

35
�μνγ δ�ρσλ

γ �αβ
λδ

〈
L−1π̂μν , ( f

eq f̄ eq)−1vα

∂

∂uβ

f eq f̄ eqL−1π̂ρσ

−2Tη

〉
, (15.167)

κ(3)
ππ = 4

15
�μνγ δ�ρσλ

γ �αβ
λδ

〈
L−1π̂μν , ( f

eq f̄ eq)−1vα

∂

∂uβ

f eq f̄ eqL−1π̂ρσ

−2Tη

〉
. (15.168)

Substituting the above equations into Eq. (15.114), we arrive at the explicit form of
the relaxation equations:

ε� = −εζθ − ετ�

∂

∂τ
� + ε2

(
−

M∑

a=1

�a�J∇ρ J
ρ
A

+ κ���θ +
M∑

A=1

κ
(1)A
�J JA,ρ∇ρT +

M∑

A,B=1

κ
(2)BA
�J JA,ρ∇ρ μB

T
+ κ�ππρσ σρσ

+ b����2 +
M∑

A,B=1

bAB�J J J
ρ
A JB,ρ + b�πππρσ πρσ

)
, (15.169)
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ε Jμ
A = ε

M∑

B=1

λAB
T 2

h2
∇μ μB

T
− ε

M∑

B=1

τ AB
J �μρ ∂

∂τ
JB,ρ + ε2

(
− �AJ�∇μ�

− �AJπ�μρ∇νπ
ν
ρ + κ

(1)A
J� �∇μT +

M∑

B=1

κ
(2)AB
J� �∇μ μB

T
+

M∑

B=1

κ
(1)AB
J J Jμ

B θ

+
M∑

B=1

κ
(2)AB
J J JB,ρσμρ + κ

(3)AB
J J JB,ρωμρ + κ

(1)A
Jπ πμρ∇ρT +

M∑

B=1

κ
(2)AB
Jπ πμρ∇ρ

μB

T

+
M∑

B=1

bABJ�J�Jμ
B +

M∑

B=1

bABJ Jπ JB,ρπρμ

)
, (15.170)

επμν = ε2ησμν − ετπ�μνρσ ∂

∂τ
πρσ − ε2

( M∑

a=1

�aπ J∇〈μ J ν〉
a + κπ��σμν

+
M∑

A=1

κ
(1)A
π J J 〈μ

A ∇ν〉T +
M∑

A,B=1

κ
(2)BA
π J J 〈μ

A ∇ν〉 μB

T
+ κ(1)

πππμνθ + κ(2)
πππλ〈μσν〉

λ

+ κ(3)
πππλ〈μων〉

λ + bπ�π�πμν +
M∑

A,B=1

bABπ J J J
〈μ
A J ν〉

B + bππππλ〈μπν〉
λ

)
. (15.171)

After setting ε = 1, we find that these equations become Eqs. (15.169)–(15.171).

15.4 Properties of Derived Fluid Dynamic Equations

In the last section, we have derived the second-order fluid dynamic equation as well
as the microscopic expressions of all the transport coefficients. Here, we will derive
pivotal properties that the fluid dynamic equation is expected to satisfy: the positivity
of transport coefficients, the Onsager’s reciprocal relation [246], and the positivity
of the entropy production rate.

15.4.1 Positivity of Transport Coefficients

We first use the microscopic expression of bulk viscosity (15.101) to prove its pos-
itivity. To this end, we recall that the inverse of linearized collision operator L−1 is
symmetric and negative definite when restricted in the Q0 space. Note that �̂, Ĵμ

A ,
and π̂μν live in the P1(⊂ Q0) space. For such L−1, the Cholesky decomposition1

states the existence of a real lower triangular matrix U such that L−1 = tUU . With
use of the Cholesky decomposition the bulk viscosity ζ is shown to be positive,

1 See, for example, [218].
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ζ = 1

T
〈�̂, tUU�̂〉 = 1

T
〈U�̂,U�̂〉 ≥ 0. (15.172)

We prove the positive definiteness of λAB by showing its eigenvalues are all
positive. To prove the positive definiteness of λAB we write it as follows,

λAB = 1

3T 2
〈 ĴA,μ, L−1�μν ĴB,ν〉. (15.173)

Note the negative definiteness of �μν in Q0 space, that is most easily seen by going
to the local rest frame uμ = (1, 0, 0, 0)t , where �μν = gμν − uμuν = diag(0,−1,
−1,−1). Thus, the Cholesky decomposition can be applied to �μν , resulting in
�μν = −(dt )μρdρν with a real lower triangular matrix d in the Lorentz space. Let
V be a diagonalizing matrix of λAB . Then the eigenvalues are evaluated as,

(V tλV )AA = 1

3T 2
〈(V Ĵμ)A,

tUU (dtd)μν(V Ĵν)A〉

= 1

3T 2
〈U (V (d Ĵ )μ)A,U (V (d Ĵ )μ)A〉 ≥ 0.

(15.174)

Similarly, the shear viscosity is proved to be positive:

η = 1

10T
〈π̂μν,

tUU�μνρσ π̂ρσ 〉 = 1

10T
〈π̂μν,

tUU ( t DD)μνρσ π̂ρσ 〉

= 1

10T
〈U (Dπ̂)μν,U (Dπ̂ )μν〉 ≥ 0.

(15.175)

Noting that �μνρσ = �μρ�νσ /2 + �μσ�νρ/2 − �μν�ρσ /3 is a semipositive-
definite matrix, we again applied the Cholesky decomposition to have

�μνρσ = ( t D)μναβDαβρσ (15.176)

with a real lower triangular matrix D.
Next, we proceed to a proof of the positivity of the relaxation times (15.104)–

(15.106). The positivity of those associated with the bulk pressure and shear tensor

τ� = 1

T ζ

〈
L−1�̂, L−1�̂

〉
, (15.177)

τπ = 1

10Tη

〈
L−1π̂μν, L−1π̂μν

〉
, (15.178)

are immediate as ζ and η are positive.
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We finally prove the positivity of the relaxation time τ AB
J :

τ AB
J = − 1

3T 2

M∑

C=1

〈
L−1 ĴA,μ,�μνL−1 ĴC,ν

〉
(λ−1)CB

= − 1

3T 2

M∑

C=1

〈
L−1 ĴA,μ,�μνL−1 ĴC,ν

〉
(t��)CB,

(15.179)

where the Cholesky decomposition has been employed to have

λ−1 = t��. (15.180)

Then, we note that the following matrix,

τ̃ AB
J = − 1

3T 2

M∑

C,D=1

�AC
〈
L−1 ĴC,μ,�μνL−1 ĴD,ν

〉
(t�)DB, (15.181)

has the eigenvalues identical to τ AB
J . Now it is readily shown that τ̃ AB

J is positive
definite by the argument parallel to that of λAB . This in turn implies that τ AB

J is a
positive definite matrix.

15.4.2 Onsager’s Reciprocal Relation

Let us move on to another important consequence on the transport coefficients. One
of the prominent characteristics of multi-component fluid is the cross correlation
between different components. For instance, the dynamics associated with Ath con-
served current has an influence on the dissipation of Bth current through λAB and
other coefficients for A �= B.

More generally, let {Xi } be a set of external forces of any tensor structure in a near-
equilibrium system, then the induced current Ji is given, under linear approximation,
by a linear combination of the external forces,

Ji =
∑

j

γi j X j , (15.182)

with a set of scalar coefficients γi j . Note that X j participating in the sum is of the
same tensor structure as Ji . The Onsager’s reciprocal relation asserts the symmetry
of the coefficients,

γi j = γ j i . (15.183)
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Identifying Ji and X j in (15.182) with Jμ

A and ∇μ μB

T in the leading order
of (15.99),

Jμ

A =
M∑

B=1

λAB
T 2

h2
∇μ μB

T
+ O(ε), (15.184)

γi j is found to be λAB
T 2

h2 . It readily satisfies the desired relation (15.183), i.e.,

λAB = λBA (15.185)

as seen from its microscopic expression (15.102).

15.4.3 Positivity of Entropy Production Rate

The positivity of entropy production rate is normally regarded as one of the guid-
ing principles and imposed as an extra assumption to derive legitimate fluid dynam-
ics [66]. In contrast, we did not impose such an assumption, and indeed, the positivity
naturally follows the expression of entropy production rate (15.15) as we will see
here.

Let us recall the entropy production rate,

∂μs
μ = −

N∑

k=1

∫
dpk p

μ

k ∂μ fk,pk ln

(
fk,pk

1 + ak fk,pk

)
, (15.186)

and the distribution function that we obtained by solving the Boltzmann equation up
to O(ε),

f globalk,pk
= f eqk,pk

(
1 + ε f̄ eqk,pk�

(1)
k,pk

) + O(ε2)

=
[
exp

{
pk · u
T

−
M∑

A=1

q A
k

μA

T
− ε�

(1)
k,pk

}
− ak

]−1

+ O(ε2). (15.187)

The equilibrium distribution function does not contribute to the entropy production
rate,2 and thus, it starts with the term of order ε. Plugging it into (15.186) yields,

2 This is a way to define the equilibrium distribution function as discussed around (15.18).
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∂μs
μ = ε

N∑

k=1

∫
dpk f

eq
k,pk

f̄ eqk,pk�k,pk

×
(
pμ

k p
ν
k ∂μ

uν

T
− pμ

k ∂μ

M∑

A=1

q A
k

μA

T
− εpμ

k ∂μ�k,pk

)
+ O(ε3)

= ε2δT μν∇μ

uν

T
− ε2

M∑

A=1

δNμ

A∇μ

μA

T
− ε2

〈
�,

∂

∂τ
�

〉
+ O(ε3), (15.188)

where the decomposition of the derivative ∂μ = uμ∂/∂τ + ε∇μ and the orthogo-
nality between the fluid velocity uμ and the dissipative contributions to the energy
momentum tensor and the particle current, δT μν and δNμ

A , have been used. Each
term can be further rewritten by using the following transformations,

δT μν =
N∑

k=1

∫
dp pμ

k p
ν
k f

eq
k,pk

f̄ eqk,pk�k,pk = −�μν� + πμν, (15.189)

δNμ

A =
N∑

k=1

q A
k

∫
dp pμ

k f eqk,pk f̄
eq
k,pk

�k,pk = Jμ

A , (15.190)

and

〈
�,

∂

∂τ
�

〉
= �

1

T ζ

∂

∂τ
� + h2

T 2

∑

A,B,C

Jμ

A (λ−1)ABτ BC
J

∂

∂τ
JC,μ

+ πμν 1

2Tη

∂

∂τ
πμν + O(ε). (15.191)

Combining these yields a compact expression,

∂μs
μ = ε2

(
1

T ζ
�2 + 1

2Tη
πμνπμν − h2

T 2

M∑

A,B=1

(λ−1)AB J
μ

A JB,μ

)
+ O(ε3),

(15.192)

where we have also used the relaxation equations in the leading order,

� = −ζθ − τ�

∂

∂τ
� + O(ε), (15.193)

Jμ

A =
M∑

B=1

λAB
T 2

h2
∇μ μB

T
−

M∑

B=1

τ AB
J �μρ ∂

∂τ
JB,ρ + O(ε), (15.194)

πμν = 2ησμν − τπ�μνρσ ∂

∂τ
πρσ + O(ε). (15.195)
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It is now straightforward to see that Eq. (15.192) is positive. The viscosities ζ and η

are positive quantities, as shown in the last section. Positive definiteness of the third
term of Eq. (15.192) is proved as

− h2

T 2

M∑

A,B=1

(λ−1)AB J
μ

A JB,μ

= − h2

T 2

M∑

A,B=1

λAB(λ−1 Jμ)A(λ
−1 Jμ)B

= − h2

T 2

M∑

A,B=1

〈 Ĵ ν
A, L

−1 ĴB,ν〉(λ−1 Jμ)A(λ
−1 Jμ)B

= h2

T 2

〈
M∑

A=1

U Ĵ ν
A(λ

−1 Jμ)A,

M∑

B=1

U ĴB,ν(λ
−1 Jμ)B

〉

≥ 0, (15.196)

where the Cholesky decomposition L−1 = tUU has been used. Consequently, the
entropy production rate (15.192) is explicitly shown to exhibits the positivity.



Chapter 16
RG/E Derivation of Non-relativistic
Second-Order Fluid Dynamics and
Application to Fermionic Atomic Gases

16.1 Derivation of Second-Order Fluid Dynamics
in Non-relativistic Systems

So far we have focused on relativistic fluid, that is for instance expected to be real-
ized in the relativistic heavy ion collision experiments. The system is particularly
interesting due to its strong coupling nature. Even in such a complicated system the
fluid dynamics provides a powerful tool to investigate its long-distance and long-time
behavior. A conventional wisdom is that the naïve inclusion of viscous effects in the
relativistic fluid dynamic equation leads to the notorious causality issue, and thus,
the second-order fluid dynamics is required to circumvent the issue.

A cold atomic system is another intriguing platform, where precise controllability
of interactions allows us to simulate the formation and diffusion of strong-coupling
fluid and tremendous amount of efforts have been devoted to unravel strong-coupling
systems in non-relativistic context (see [247–252], for example).

From the viewpoint of fluid dynamics, one may expect that the analysis is much
simpler than the relativistic case as the causality problem does not show up. Indeed,
the Navier–Stokes equation suffices to deal with conventional non-relativistic fluid
if the dynamics is relatively close to local equilibrium. However, the validity of the
Navier–Stokes equationbecomesquestionablewhen the system is not close enough to
the local equilibrium. Let us consider an experimentally created cold atomic system.
Unsurprisingly, the peripheral region is dilute relative to its core. Therefore, it is not
hard to imagine that atoms on the edge of the trapped system have less chances to
interact with each other due to its sparsity than those in the central area. Accordingly,
the equilibration process takes place slower in the peripheral region. In particular,
some region is so sparse that it is not close enough to equilibrium and hence the
Navier–Stokes equation is not capable of capturing the essential dynamics. That is
the very situation where the mesoscopic dynamics of dissipative currents needs to
be incorporated in order to describe beyond-Navier–Stokes regime. This leads us to
the non-relativistic second-order fluid dynamic equations [35, 149, 152–154, 157].
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Besides the derivation of the fluid dynamic equations, the computations of trans-
port coefficients have attracted a lot of attentions across wide range of disciplines in
physics [253, 254] following the seminal papers proposing the universal lower bound
on the ratio of shear viscosity to entropy density [255, 256]. As already mentioned,
the cold atomic system provides an ideal platform to experimentally examine micro-
scopic properties of non-relativistic fluids through the measurements of transport
coefficients. Indeed, the small shear viscosity in the system implies that the strongly
correlated fluid is realized [257–262]. The Boltzmann’s kinetic theory offers a tool to
compute transport coefficients such as shear viscosity and bulk viscosity in strongly
correlated cold atomic systems [258, 263–266]. The second-order fluid dynamics
requires further transport coefficients. Among others, the viscous relaxation times
play prominent roles to dictate the relaxation processes of dissipative currents [258,
263, 267–270].

We apply the doublet scheme [69] in the RG method [1, 3, 5, 6, 46, 57, 58] to
derive the second-order fluid dynamic equation starting from the Boltzmann equa-
tion [69, 157]. The RG method allows us to solve the Boltzmann equation faithfully
by following the two steps:

1. Solve the Boltzmann equation based on the perturbative expansion with respect
to small spatial inhomogeneity. The perturbative solution typically suffers from
the infrared divergence.

2. Remove the infrared divergence to obtain the global solution by the
renormalization-group analysis. The renormalization-group/envelope (RG/E)
equation turns out to be the desired fluid dynamic equations.

The resultant fluid dynamic equations are accompanied by microscopic expressions
of transport coefficients. We carry out detailed numerical studies of the transport
coefficients and viscous relaxation times when the collision process is modeled by
the s-wave scattering [157]. Their dependence on temperature and scattering length
will be discussed in detail based on our numerical calculations. In particular, the
importance of quantum statistical effects is clearly observed at low temperatures.
Upon incorporating the fermionic statistical effects, the transport coefficients sharply
increase at low temperatures in contrast to those of classical Boltzmann gas.

16.1.1 Non-relativistic Boltzmann Equation

Our starting point is the Boltzmann equation,

(
∂

∂t
+ ∂x

∂t
· ∇ + ∂ p

∂t
· ∇ p

)
f p(t, x) = C[ f ]p(t, x),

∂x
∂t

= −∇ pEp =: v,

∂ p
∂t

= −∇Ep =: F,

(16.1)
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where ∇ = ∂/∂x, ∇ p = ∂/∂ p, and Ep = p2/(2m) + V (x). The collision integral
is given by

C[ f ]p(t, x) = 1

2

∫
dp1dp2dp3W(p, p1|p2, p3)( f̄ p f̄ p1 f p2 f p3 − f p f p1 f̄ p2 f̄ p3),

(16.2)

where dp := d3 p/(2π)3 and f̄ p := 1 + a f p with quantum statistics represented by
a = +1(−1) for boson (fermion) and a = 0 for the classical Boltzmann gas. The
transition matrix W accounts for binary collisions and is given by

W(p, p1|p2, p3) = |M|2(2π)2δ(E + E1 − E2 − E3)δ
3( p + p1 − p2 − p3),

(16.3)

which has the following symmetry,

W(p, p1|p2, p3) = W(p2, p3|p, p1) = W(p1, p|p3, p2) = W(p3, p2|p1, p).
(16.4)

M is a scattering amplitude associated with the details of collision process. For
instance, we shall later use a scattering amplitude for elastic binary collisions [253],

M = 4π

a−1
s − i|q| , (16.5)

in order to study the fluid of fermionic cold atoms. Here, as is the s-wave scattering
length and q is the relative momentum ( p − p1)/2.

On account of the symmetry (16.4), the convolution of the collision integral and
an arbitrary function of p, denoted by �p, is written as follows,

∫
dp�pC[ f ]p = 1

8

∫
dpdp1dp2dp3W(p, p1|p2, p3)

× (�p + �p1 − �p2 − �p3)( f̄ p f̄ p1 f p2 f p3 − f p f p1 f̄ p2 f̄ p3).
(16.6)

We say a function �p is a collision invariant if the convolution vanishes. From the
above expression, it is clear that energy Ep and momentum p are collision invariants
due to the energy and momentum conservation (16.3). Thus, the collision invariant
�inv

p is generally expressed as

�inv
p = α + β · p + γ Ep, (16.7)

for arbitrary constants α, β, and γ .
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16.1.2 Derivation of Navier–Stokes Equation

We have derived the first-order fluid dynamic equation, i.e., the Navier–Stokes equa-
tion, starting from the Boltzmann equation describing the classical Boltzmann gas
in Chap. 8. Here, we firstly repeat the derivation incorporating the quantum statis-
tical effect and external field. The derivation of first-order equation has been well
established by Chapman and Enskog [113]. Nevertheless, deriving the fluid dynam-
ics and reproducing all the transport coefficients with the RG method are important
consistency checks [57]. Later we shall extend it to derive the second-order equation.

16.1.2.1 Perturbative Analysis of the Boltzmann Equation

Our first task is to solve the Boltzmann equation (16.1) perturbatively with respect to
small spatial gradient. In order to keep track of the order of perturbation we introduce
a parameter ε,

(
∂

∂t
+ εv · ∇ + ε F · ∇ p

)
f p(t, x) = C[ f ]p(t, x). (16.8)

Notice thatwe also need ε for the third term in the left-hand side because F = −∇Ep.
Accordingly, we expand the distribution function in terms of ε,

f̃ (t; t0) = f̃ (0)(t; t0) + ε f̃ (1)(t; t0) + ε f̃ (2)(t; t0) + O(ε3). (16.9)

We solve the Boltzmann equation order by order provided the ‘initial’ condition,
which is also expanded as

f (t = t0; t0) = f̃ (t = t0; t0) = f̃ (0)(t0) + ε f̃ (1)(t0) + ε f̃ (2)(t0) + O(ε3). (16.10)

The perturbative solution f̃ (t; t0) is set to the unknown exact solution f (t; t0) at the
‘initial’ time t0.

The equation of O(ε0) reads

∂

∂t
f̃ (0)
p = C[ f̃ (0)]p. (16.11)

As we are carrying out the perturbative expansion around the equilibrium state, we
seek a solution satisfying

∂

∂t
f̃ (0)
p = 0, (16.12)

as a leading order solution. It implies
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C[ f̃ ](0)p = 0, (16.13)

which leads to the condition

¯̃f (0)
p

¯̃f (0)
p1 f̃ (0)

p2 f̃ (0)
p3 = f̃ (0)

p f̃ (0)
p1

¯̃f (0)
p2

¯̃f (0)
p3 . (16.14)

This is satisfied by requiring that ln( f̃ (0)
p /

¯̃f (0)
p ) is a conserved quantity, i.e., expressed

as a linear combination of {1, p, E}. Their coefficients are fixed by the initial condi-
tion and depend on the initial time t0 and spatial coordinate x. Then, the zeroth order
solution takes the following form,

f̃ (0)
p =

(
exp

[
(m/2)

(
v − u(t0, x)

)2 − μ̃(t0, x)

T (t0, x)

]
− a

)−1

, (16.15)

with μ̃(t0, x) := μ(t0, x) − V (x). Here, u(t0, x),μ(t0, x), and T (t0, x) are the inte-
gral constants fixed by the initial condition, and f̃ (0)

p is given by the t-independent
equilibrium distribution function. The five integration constants will be lifted to fluid
variables through the RG/E equation.

Let us drawan important observation from the fact that ln( f̃ (0)
p /

¯̃f (0)
p ) is a conserved

quantity, which implies that it is also a collision invariant (see the discussion below
(16.6)). From the definition of the collision invariant, we deduce that

0 =
∫

dp ln

(
f̃ (0)
p

¯̃f (0)
p

)
C[ f ]p =

∫
dp ln

(
f̃ (0)
p

¯̃f (0)
p

)(
∂

∂t
+ εv · ∇ + ε F · ∇ p

)
f̃ (0)
p .

(16.16)

Given that F is independent of p, the third term disappears,

∫
dp ln

(
f̃ (0)
p

¯̃f (0)
p

)
F · ∇ p f̃

(0)
p = −F ·

∫
dp

(∇ p f̃ (0)
p

f̃ (0)
p

− a∇ p f̃ (0)
p

¯̃f (0)
p

)
f̃ (0)
p

= F ·
∫

dpa f̃ (0)
p

∇ p f̃ (0)
p

¯̃f (0)
p

= F ·
∫

dp
∇ p f̃ (0)

p

¯̃f (0)
p

= 1

a
F ·

∫
dp∇ p ln

¯̃f
(0)

p = 0,

(16.17)

where the surface term has been dropped in the second equality. We find that (16.16)
amounts to,

0 = ∂s

∂t
+ ∇ · J s, (16.18)

with use of the definition of entropy density s and entropy current density J s defined
by
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{s, J s} := −
∫

dp{1, v}
(
f p ln f p − f̄ p ln f̄ p

a

)
, (16.19)

respectively. Thus, we have shown that f̃ (0)
p does not produce entropy, that is an

expected property as it represents the equilibrium state. The first-order solution cal-
culated belowgives a perturbative correction entailing dissipation to the leading order
equilibrium solution.

Next, we solve the O(ε) equation,

∂

∂t
f̃ (1)
p (t) = f eqp f̄ eqp L pq( f

eq
q f̄ eqq )−1 f̃ (1)

p (t) + f eqp f̄ eqp F (0)
p , (16.20)

under the initial condition

f̃ (1)
p (t0) = f eqp f̄ eqp 	(1)

p (t0). (16.21)

	(1)
p (t0) is to be fixed later. The linearized collision operator L pq and the inhomoge-

neous term F (0)
p are defined by

L pq := ( f eqp f̄ eqp )−1 δ

δ fq
C[ f ]p(t)

∣∣∣∣
f = f eq

f eqq f̄ eqq

= − 1

2 f̄ eqp

∫
dp1dp2dp3W(p, p1|p2, p3) f eqp1 f̄ eqp2 f̄ eqp3

× [
δ3( p − q) + δ3( p1 − q) − δ3( p2 − q) − δ3( p3 − q)

]
, (16.22)

F (i)
p := F[ f̃ (i)]p := −( f eqp f̄ eqp )−1 (v · ∇ + F · ∇ p

)
f̃ (i)
p . (16.23)

For arbitrary vectors ψp and χp, the linearized collision operator has the following
three properties:

〈ψ, Lχ〉 = 〈Lψ, χ〉 , 〈ψ, Lψ〉 ≤ 0, Lϕα = 0, (16.24)

with the definition of the inner product given by

〈ψ, χ〉 :=
∫

dp f eqp f̄ eqp ψpχp. (16.25)

The linearized collision operator has five zero modes,

ϕ0
0p = 1, ϕi

0p = δpi , ϕ4
0p = |δp|2

2m
− 3nT

2c0
. (16.26)

The zero modes satisfy the orthogonality relation

〈ϕα
0 , ϕ

β

0 〉 = cαδαβ, (16.27)
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with the following normalization factors

c0 =
∫
p
f eq f̄ eq, (16.28)

ci =
∫

dp f eq f̄ eqδpiδpi = mnT, (16.29)

c4 =
∫

dp f eq f̄ eq
( |δp|2

2m
− 3nT

2c0

)2

. (16.30)

The integral of c4 can be reduced to,

c4 = 1

2m

∫
dp f eq f̄ eq|δp|4 − 3nT

4mc0

∫
dp f eq f̄ eq|δp|2

= 1

2m

∫
dp f eq f̄ eq|δp|4 − (3nT )2

4c0
,

(16.31)∫
dp f eq f̄ eq|δp|4 = 3

∫
dp f eq f̄ eq|δp|2δp21 = −3mT

∫
dp|δp|2δp1 ∂ f eq

∂p1

= 5mT
∫

dp|δp|2 f eq = 15m2T P.

(16.32)

We have used the isotropy of f eq for the computations of ci and c4. The particle
number density n, energy density e, and pressure P are given by

n(t, x) :=
∫

dp f eqp (t, x), (16.33)

e(t, x) := 1

n

∫
dp f eqp (t, x)

( |δp|2
2m

+ V (x)

)
, (16.34)

P(t, x) := 1

3

∫
dp f eqp (t, x)δv · δp. (16.35)

We define P0 and Q0 spaces as the vector spaces spanned by the zero modes given
in Eq. (16.26) and its complementary space, respectively; we denote the respective
associated projection operators as P0 and Q0, whose operations are given by

[P0ψ]p :=
4∑

α=0

ϕα
0p

cα
〈ϕα

0 , ψ〉, (16.36)

Q0 := 1 − P0, (16.37)

for an arbitrary vector ψp, respectively.
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We are now ready to solve the O(ε) equation,

f̃ (1) = f eq f̄ eq
(
e(t−t0)L	(1) +

∫ t

t0

dt ′e(t−t ′)L F (0)

)

= f eq f̄ eq
(
e(t−t0)L	(1) +

∫ t

t0

dt ′
(
P0 + e(t−t ′)L Q0

)
F (0)

)

= f eq f̄ eq
[
e(t−t0)L

(
	(1) + L−1Q0F0

)+ (t − t0)P0F0 − L−1Q0F
(0)
]
,

(16.38)

where momentum indices are suppressed. Here we come to the point to fix the initial
condition 	(1) in such a way that the fast-decaying term containing e(t−t0)L goes
away, i.e.,

	(1) = −L−1Q0F0. (16.39)

This expression is further converted to a suggestive form as a dissipative correction.
From the definition (16.23), F (0) is written as follows

F (0)
p = −( f eqp f̄ eqp )−1(v · ∇ + F · ∇ p) f

eq
p

= −vi
∇ i T

T 2

(
δp2

2m
− μTF

)
− vi

δp j∇ i u j

T
− vi

∇ iμTF

T
+ Fi δpi

mT
. (16.40)

Its projection onto Q0 space is

[Q0F
(0)]p = [F (0) − P0F

(0)]p = F (0)
p −

4∑
α=0

ϕα
p

cα
〈ϕα, F (0)〉

= −σ i j

T
π̂ i j
p + ∇ i T

T 2
Ĵ ip, (16.41)

with

π̂ i j
p := δv〈iδp j〉, Ĵ ip :=

( |δp|2
2m

− h̃

)
δvi , (16.42)

where δv := v − u, δp := mδv, and A〈i j〉 := �i jkl Akl for an arbitrary rank-two tensor
A, with

�i jkl = 1

2
δikδ jl + 1

2
δilδ jk − 1

3
δi jδkl . (16.43)
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Then, the shear tensor σ i j is given by

σ i j = ∇〈i u j〉. (16.44)

The enthalpy density h̃ is defined by

h̃(t, x) := h(t, x) − V (x) := e(t, x) + P(t, x)

n(t, x)
− V (x), (16.45)

where h(t, x) is the standard enthalpy density while h̃(t, x) contains the contribution
of the external potential. Thus, we arrive at

−[L−1Q0F
(0)]p = σ i j

T
[L−1π̂ i j ]p + ∇ i T

T 2
[L−1 Ĵ i ]p. (16.46)

Next, we solve the O(ε2) equation,

∂

∂t
f̃ (2)(t; t0) = f eq f̄ eqL( f eq f̄ eq)−1 f̃ (2)(t; t0) + f eq f̄ eqK (t − t0), (16.47)

with the definitions,

K (t − t0) := F[ f̃ (1)(t)] + 1

2
B
[
( f eq f̄ eq)−1 f̃ (1)(t), ( f eq f̄ eq)−1 f̃ (1)(t)

]
, (16.48)

B[χ, ψ]p

:= −( f
eq
p f̄

eq
p )−1

∫
dp1dp2

δ2

δ f p1δ f p2
C[ f ]p

∣∣∣∣∣
f = f eq

f
eq
p1 f̄

eq
p1 χp1 f

eq
p2 f̄

eq
p2 ψp2 . (16.49)

The solution to this equation is calculated to be,

f̃ (2) = f eq f̄ eq
(
e(t−t0)L	(2) + (

1 − e(t−t0)
∂
∂s
)(− ∂

∂s

)−1
P0K (s)

∣∣∣
s=0

+ (
e(t−t0)L − e(t−t0)

∂
∂s
)G(s)Q0K (s)

∣∣∣
s=0

)
, (16.50)

with

G :=
(
L − ∂

∂s

)−1

. (16.51)

We choose 	(2) so that the fast-decaying term in the Q0 space is eliminated,

	(2) = −G(s)Q0K (s)
∣∣∣
s=0

. (16.52)
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Then, the O(ε2) solution is reduced to

f̃ (2) = f eq f̄ eq
[
(t − t0)P0 −

(
1 + (t − t0)

∂

∂s

)
G(s)Q0

]
K (s)

∣∣∣
s=0

+ O
(
(t − t0)

2
)
.

(16.53)

Let us collect the perturbative solution and initial condition up to O(ε2),

f̃ (t; t0) = f eq + ε f eq f̄ eq
[
(t − t0)P0F

(0) − L−1Q0F
(0)
]

+ ε2 f eq f̄ eq
[
(t − t0)P0 −

(
1 + (t − t0)

∂

∂s

)
G(s)Q0

]
K (s)

∣∣∣
s=0

+ O
(
(t − t0)

2),
(16.54)

f (t0) = f eq − ε f eq f̄ eqL−1Q0F
(0) − ε2 f eq f̄ eqG(s)Q0K (s)

∣∣∣
s=0

. (16.55)

This perturbative solution is not satisfactory because the infrared divergence breaks
its validity as |t − t0| grows. In other word, f (t; t0) is well approximated by f̃ (t; t0)
only around the ‘initial’ time t0.

16.1.2.2 Renormalization Group/Envelope Equation

To obtain the globally valid solution we impose the RG condition on the integral
constants via the RG/E equation,

0 = d

dt0
f̃ (t; t0)

∣∣∣∣
t0=t

, (16.56)

which promotes the integral constants u, μ, and T to dynamical variables. This
equation is indeed the seed of desired fluid dynamic equation. Plugging the solution
of the RG/E equation back into f (t0)|t0=t gives the global solution of the Boltzmann
equation.

We convert the RG/E equation (16.56) into the fluid dynamic equation. Projecting
it onto the P0 space by taking the inner product with the zero mode results in

∫
dp ϕα

p

[ ∂

∂t
+ ε

(
v · ∇ + F · ∇ p

)][
f eq − ε f eq f̄ eqL−1Q0F

(0)
]
p

= O(ε3).

(16.57)

We reduce Eq. (16.57) into the equation of continuity. We find

∫
dp ϕα

0p
D

Dt
f eqp =

〈
ϕα
0 ,

1

T 2

(
δp2

2m
− μ̃

)
DT

Dt
+ 1

T
δpi

Dui

Dt
+ 1

T

Dμ̃

Dt

〉
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=
〈
ϕα
0 ,

1

T 2

DT

Dt
ϕ4
0 + 1

c0

Dn

Dt
ϕ0
0 + 1

T

Dui

Dt
ϕi
0

〉

=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Dn

Dt
, α = 0,

mn
Dui

Dt
, α = i,

c4

T 2

DT

Dt
, α = 4,

(16.58)

with

D/Dt = ∂/∂t + εu · ∇. (16.59)

The spatial derivative and force term of the equilibrium distribution function:

∫
dp ϕα

0p

(
δv · ∇ + F · ∇ p

)
f eqp = −〈ϕα

0 , F (0)〉

=

⎧⎪⎨
⎪⎩
n∇ · u, α = 0,
∇i P − nFi , α = i,

c4
2

3T
∇ · u, α = 4.

(16.60)

The dissipative part of the distribution function:

∫
dp ϕα

0p

[
D

Dt
+ ε

(
δv · ∇ + F · ∇ p

)] [−ε f eq f̄ eqL−1Q0F
(0)]p

= −ε

∫
dpϕα

0p

[
D

Dt
+ ε

(
δv · ∇ + F · ∇ p

)] [
f eq f̄ eq

(
−σ i j

T
L−1π̂ i j − ∇ i T

T D2
L−1 Ĵ i

)]
p

α = 0

= −
[
ε
D

Dt
〈1, L−1Q0F

(0)〉 + ε2∇ j 〈δv j , L−1Q0F
(0)〉
]

= 0, (16.61)

α = i

= −
[
ε
D

Dt
〈δpi , L−1Q0F

(0)〉 + ε2∇ j 〈δv j δpi , L−1Q0F
(0)〉

−
〈(

D

Dt
+ εδv · ∇ + ε F · ∇ p

)
δvi , εL−1Q0F

(0)
〉 ]

= −ε2∇ j 〈δv j δpi , L−1Q0F
(0)〉 = −2ε2η∇ jσ i j , (16.62)

α = 4

= −
[
ε
D

Dt

〈 |δp|2
2m

− 3nT

2A
, L−1Q0F

(0)
〉
+ ε2∇ j

〈
δv j

( |δp|2
2m

− 3nT

2c0

)
, L−1Q0F

(0)
〉

−
〈(

D

Dt
+ εδv · ∇ + ε F · ∇ p

)( |δp|2
2m

− 3nT

2c0

)
, εL−1Q0F

(0)
〉 ]
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= −ε2
[
∇ j

〈
δv j

( |δp|2
2m

− 3nT

2c0

)
, L−1Q0F

(0)
〉

−
〈
δv · ∇

( |δp|2
2m

− 3nT

2c0

)
, L−1Q0F

(0)
〉 ]

= −ε2
[
∇ i (λ∇ i T ) + 2ησ i jσ i j

]
. (16.63)

In the third equality of Eq. (16.62), the following transformation has been made

〈δv jδpi , L−1Q0F
(0)〉 = −〈δv jδpi , L−1π̂ kl〉σ

i j

T
= −〈π̂ i j , L−1π̂ kl〉σ

i j

T

= −〈π̂ kl , L−1π̂ kl〉σ
i j

5T
= 2ησ i j , (16.64)

and in the third equality of Eq. (16.63), we have used the following computations,

〈
δv j

(
δp2

2m
− 3nT

2A

)
, L−1Q0F

(0)

〉
= −

〈
Ĵ j , L−1 Ĵ k

〉 ∇kT

T 2

= −
〈
Ĵ j , L−1 Ĵ j

〉 ∇ i T

3T 2
= λ∇ i T, (16.65)

〈
δv j∇ j

(
δp2

2m
− 3nT

2A

)
, L−1Q0F

(0)

〉
= ∇ j um〈δv jδpm, L−1π̂ kl〉σ

i j

T

= 〈π̂ kl, L−1π̂ kl〉σ
i jσ i j

5T
= −2ησ i jσ i j .

(16.66)

We substitute Eqs. (16.58)–(16.63) into Eq. (16.57) to obtain the equations of
continuity:

Dn

Dt
+ εn∇ · u = 0, (16.67)

mn
Dui

Dt
+ ε∇ i P − εnFi − 2ε2∇ jσ i j = 0, (16.68)

c4
T 2

DT

Dt
+ ε

2c4
3T

∇ · u − ε2
(∇ · (λ∇T ) + 2ησ jkσ jk

) = 0. (16.69)

These equations are further reduced into the well-known forms

Dn

Dt
= −nε∇ · u, (16.70)

mn
Dui

Dt
= −ε∇ i P + εnFi + 2ε2η∇ jσ i j , (16.71)

n
De

Dt
= −εP∇ · u + ε2∇ · (λ∇T ) + 2ε2ησ jkσ jk . (16.72)
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Equation (16.72) is derived as follows:

n
De

Dt
= D(ne)

Dt
− e

Dn

Dt
= c4

T 2

DT

Dt
+ 3nT

2c0
Dn

Dt
− e

Dn

Dt

= −ε

(
2c4

3T
+ 3n2T

2c0
+ ne

)
∇ · u + (σ jkσ jk + ∇ · (λ∇T ))

= −εP∇ · u + ε2σ jkσ jk + ε2∇ · (λ∇T ). (16.73)

We have used (16.31) to reach the final expression.
Microscopic expressions of the shear viscosity η and the heat conductivity λ are

given by,

η = − 1

10T
〈π̂ i j , L−1π̂ i j 〉, λ = − 1

3T 2
〈 Ĵ i , L−1 Ĵ i 〉. (16.74)

We note that the bulk viscosity is identically zero in contrast to the relativistic
case. This is attributed to the fact that L−1Q0F (0) (16.46) does not contain the
term proportional to the scalar expansion θ = ∇ · u which would be coupled to the
microscopic bulk pressure. Alternatively, the vanishing bulk pressure can be seen as
follows. In the kinetic theory, the bulk pressure is defined by,

� = 1

3m

∫
dpδp2( f p − f eqp ). (16.75)

We recall that our solution given by the RG method turns out to satisfy the matching
conditions in the energy frame as:

n =
∫

dp f p =
∫

dp f eqp , e =
∫

dpE p f p =
∫

dpE p f
eq
p . (16.76)

The latter condition implies that

0 =
∫

dp
δp2

2m
( f p − f eqp ), (16.77)

given E p = δp2/(2m), and thus the bulk pressure � identically vanishes. More
elaborated approaches to the computation of the bulk viscosity for non-relativistic
systems have been explored [265, 266, 271, 272]. There, the finite bulk viscosity is
induced by the interactions breaking scale invariance, which is not captured by the
standard Boltzmann equation (16.1). Thus, it is desirable and should be possible to
derive the fluid dynamic equation with such effects incorporated [265] with the RG
method but it is beyond the scope of the present book.
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16.1.3 Derivation of Second-Order Non-relativistic Fluid
Dynamic Equation

Having derived the Navier–Stokes equations, we now turn to the second-order fluid
dynamics. In case of the Navier–Stokes equations, the crucial step was to identify the
P0 space, spanned by the zero modes of linearized collision operator. For the higher-
order fluid dynamic equations, we need to take into account quasi-slow modes on
top of the slow/zero modes. Extraction of such modes are carried out by the doublet
scheme developed in [69] and described in Chap. 9, where some low-lying modes
of the linearized collision operator are properly picked up. They, in turn, govern the
relaxation dynamics of dissipative currents.

Let us recall that in the Navier–Stokes equations, the fluid dynamic variables ini-
tially showup as integration constant, u(t0),μ(t0), and T (t0), in the O(ε0)-solution of
Boltzmann equation (16.15). Analogously, we introduce additional integration con-
stants in the O(ε)-solution, that, given an ‘initial’ condition	(1), takes the following
form,

f̃ (1) = f eq f̄ eq
[
e(t−t0)L

(
	(1) + L−1Q0F0

)+ (t − t0)P0F0 − L−1Q0F0

]
. (16.78)

To go beyond the description of ordinary dissipative fluid, namely, themesoscopic
regime, we need to specify the quasi-slow variables in the first-order ‘initial’ value
	(1). To this end, we expand the first-order perturbative solution around t = t0:

f̃ (1) = f eq f̄ eq	(1) + (t − t0) f
eq f̄ eq

(
P0F

(0) + L	(1) + Q0F
(0)
)

+ O
(
(t − t0)

2
)
.

(16.79)

The O
(
(t − t0)2

)
terms are not important here as they do not contribute to the RG/E

equation. We divide the Q0 space into P1 and Q1 spaces. The P1 space accommo-
dates the quasi-slow modes that play the crucial role in describing the mesoscopic
dynamics. Keeping these expansion in mind, we spell out the two criteria to identify
	(1) and P1 space:

1. 	(1) and L−1Q0F (0) belongs to a common vector space, which is orthogonal to
P0 space.

2. Define P1 space by a vector space spanned by 	(1) and L	(1).

The first criteria indeed makes the vector space to which d f̃ (1)/dτ |τ=τ0 belongs the
smallest. The second criteria defines the P1 space so that it accommodates all the
terms in (16.79) but the zero modes.

As computed in (16.46), L−1Q0F (0) is given by a linear combination of the
vectors

([L−1 Ĵμ]p, [L−1π̂μν]p
)
. Therefore, instead of (16.39)we impose the ‘initial’

condition for the first-order equation,
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f̃ (1)(t0) = f eq f̄ eq	(1)
p (t0),

	(1)
p (t0) = −5

[L−1π̂ i j ]p
〈π̂ i j , L−1π̂ i j 〉π

i j (t0) − 3
[L−1 Ĵ i ]p

〈 Ĵ i , L−1 Ĵ i 〉 J
i (t0),

(16.80)

where we have introduced π i j (t0) and J i (t0) as would-be fluid variables. Fur-
thermore, the P1 space are spanned by quasi-slow doublet modes

{
π̂
i j
p , Ĵ ip

}
and{[L−1π̂ i j ]p, [L−1 Ĵ i ]p

}
according to the second condition raised above.

TheO(ε2) equation and its solution are already given by (16.47) and (16.53) under
the ‘initial’ condition (16.52). Thus, the perturbative solution up to the second order
is summarized as

f̃ = f eq + ε f eq f̄ eq
[
(1 + (t − t0)L)	(1) + (t − t0)F0

]

+ ε2 f eq f̄ eq
[
(t − t0)P0 + (t − t0)G(s)−1P1G(s)Q0

−
(
1 + (t − t0)

∂

∂s

)
Q1G(s)Q0

]
K (s)

∣∣∣
s=0

+ O
(
(t − t0)

2
)
.

(16.81)

Applying the projection operator P0 onto the RG/E equation

d

dt0
f̃ (t; t0)

∣∣∣
t0=t

= 0, (16.82)

as we have done in the previous subsection, we have the following set of equations

Dn

Dt
= −n∇ · u, (16.83)

mn
Dui

Dt
= −∇ i P + nFi + ∇ jπ i j , (16.84)

n
De

Dt
= −P∇ · u + ∇ · J + σ jkπ jk . (16.85)

These are the same as the Navier–Stokes equations (16.70)–(16.72). Except that the
stress tensor π i j and the heat current J have their own dynamics, that are to be
dictated by the relaxation equations.

In order to obtain the relaxation equation, we perform the projection of the RG/E
equation onto the P1 space by using the quasi-slow modes

{[L−1π̂ i j ]p, [L−1 Ĵ i ]p
}
,

∫
dp
[
L−1

{
π̂ i j , Ĵ i

}]
p

[ ∂

∂t
+ ε

(
v · ∇ + F · ∇ p

)][
f eq + ε f eq f̄ eq	

]
p

= ε
〈
L−1

{
π̂ i j , Ĵ i

}
, L	(1)

〉
+ ε2

2

〈
L−1

{
π̂ i j , Ĵ i

}
, B
[
	(1), 	(1)

]〉+ O(ε3),

(16.86)
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where the definition of the symbol of B[φ,ψ] is given in (16.49). As wewill detail in
the next subsection, these equations are converted to the following set of equations,

π i j = 2ησ i j − τπ

D

Dt
π i j − �π J∇〈i J j〉

+ κ(1)
πππ i j∇ · u + κ(2)

πππ k〈iσ j〉k − 2τππ k〈iω j〉k

+ κ
(1)
π J J

〈i∇ j〉n + κ
(2)
π J J

〈i∇ j〉P + κ
(3)
π J J

〈i F j〉

+ bππππ k〈iπ j〉k + bπ J J J
〈i J j〉, (16.87)

J i = λ∇ i T − τJ
D

Dt
J i − �Jπ∇ jπ i j

+ κ
(1)
Jππ i j∇ j n + κ

(2)
Jππ i j∇ j P + κ

(3)
Jππ i j F j

+ κ
(1)
J J J

i∇ · u + κ
(2)
J J J

jσ i j + τJ J
jωi j

+ bJ Jπ J
jπ i j , (16.88)

after setting ε = 1. The vorticity ωi j is defined by

ωi j := (∇ i u j − ∇ j ui )/2. (16.89)

They are reduced to the Navier–Stokes equations if only the first term is kept in
the right-hand side of each equation. The shear viscosity η and heat conductivity λ

are given by (16.74). The other terms are the second-order corrections accompanied
by second-order transport coefficients. In particular, the dissipative currents π̂ i j and
Ĵ i have their own dynamics due to their time derivative terms, and their dynamical
time scales are characterized by the relaxation times τπ and τJ . Their microscopic
expressions are derived to be

τπ = 1

10Tη
〈π̂ i j , L−2π̂ i j 〉, τJ = 1

3T 3λ
〈 Ĵ i , L−2 Ĵ i 〉. (16.90)

16.1.3.1 Derivation of Relaxation Equations

We present the detailed derivation of relaxation equations (16.87), (16.88) starting
from (16.86),

∫
dp
[
L−1

{
π̂ i j , Ĵ i

}]
p

[ ∂

∂t
+ ε

(
v · ∇ + F · ∇ p

)][
f eq + ε f eq f̄ eq	

]
p

= ε
〈
L−1

{
π̂ i j , Ĵ i

}
, L	(1)

〉
+ ε2

2

〈
L−1

{
π̂ i j , Ĵ i

}
, B
[
	(1), 	(1)

]〉+ O(ε3).

(16.91)
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For the sake of notational simplicity, we introduce the following vectors,

ψ̂α
p = {π̂ i j

p , Ĵ ip}, (16.92)

χ̂α
p =

{
π̂
i j
p

2Tη
,

Ĵ ip
T 2λ

}
, (16.93)

ψα = {π i j , J i }, (16.94)

Xα = {
2ησ i j , λ∇ i T

}
, (16.95)

with which we can write as 	 = L−1χ̂αψα and Q0F0 = −χ̂α
1 X

α . Equation (16.86)
can be converted into the following form,

ε〈L−1ψ̂α, χ̂β〉ψβ

= ε〈L−1ψ̂α, χ̂β〉Xβ + 〈L−1ψ̂α, L−1χ̂β〉 D
Dt

ψβ + ε〈L−1ψ̂α, δK i L−1χ̂β〉∇ iψβ

+ ε
〈
L−1ψ̂α, f eq f̄ eq

(
D

Dt
+ εδK · ∇ + ε F · ∇K

)
f eq f̄ eqL−1χ̂β

〉
ψβ

− ε2
1

2
〈L−1ψ̂α, B[L−1χ̂

β

1 , L−1χ̂ γ ]〉ψβψγ , (16.96)

where we have defined [δK i ]p := δpi/m = δvi and [∇ i
K ]p := ∇ i

p.
The coefficients of the first, third, and fourth terms in the right-hand side of

Eq. (16.96) can be written as

〈
L−1ψ̂α, ψ̂β

〉 =
(−2Tη�i jkl 0

0 −T 2λ�i j

)
, (16.97)

〈
L−1ψ̂α, L−1ψ̂β

〉 =
(
2Tητπ�i jkl 0

0 T 2λτJ�
i j

)
, (16.98)

〈
L−1ψ̂α, δKmL−1ψ̂β

〉 =
(

0 T 2λ�π J�
i jkl

2Tη�Jπ�i jkl 0

)
, (16.99)

where transport coefficients introduced here are defined as follows:

τπ = 1

10Tη

〈
π̂ i j , L−2π̂ i j

〉
, (16.100)

τJ = 1

3T 2λ

〈
Ĵ i , L−2 Ĵ i

〉
, (16.101)

which are viscous relaxation times for the stress tensor and heat flow, respectively,
and
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�π J = 1

5T 2λ

〈
L−1π̂ i j , δK i L−1 Ĵ j

〉
, (16.102)

�Jπ = 1

10Tη

〈
L−1 Ĵ i , δK j L−1π̂ i j

〉
, (16.103)

which are so called viscous relaxation lengths.
Then, let us rewrite the last term in the right-hand side of Eq. (16.96) as

ε2

2

〈
L−1π̂ i j , B[L−1χ̂β][L−1χ̂ γ ]〉ψβψγ = bππππm〈kπ l〉m + bπ J J J

〈k J l〉, (16.104)

ε2

2

〈
L−1 Ĵ i , B[L−1χ̂β][L−1χ̂ γ ]〉ψβψγ = bJπ Jπ

i j J j , (16.105)

where the transport coefficients are defined by

bπππ = 3

70T 2η2

〈
L−1π̂ i j , B[L−1π̂ ik][L−1π̂ jk]〉, (16.106)

bπ J J = 1

10T 4λ2

〈
L−1π̂ i j , B[L−1 Ĵ i ][L−1 Ĵ j ]〉, (16.107)

bJ Jπ = 1

10T 3ηλ

〈
L−1 Ĵ i , B[L−1 Ĵ j ][L−1π̂ i j ]〉. (16.108)

We consider the forth term in the right-hand side of Eq. (16.96):

ε
〈
L−1ψ̂α, ( f eq f̄ eq)−1

[
D

Dt
+ εδK · ∇ + ε F · ∇K

]
f eq f̄ eqL−1χ̂β

〉
ψ̂β

= ε
〈
L−1ψ̂α, ( f eq f̄ eq)−1 ∂

∂T
[ f eq f̄ eqL−1χ̂β]

〉
ψ̂β DT

Dt

+ ε2
〈
L−1ψ̂α, ( f eq f̄ eq)−1δKa ∂

∂T
[ f eq f̄ eqL−1χ̂β]

〉
ψ̂β∇aT

+ ε
〈
L−1ψ̂α, ( f eq f̄ eq)−1 ∂

∂μ̃
[ f eq f̄ eqL−1χ̂β

〉
ψ̂β Dμ̃

Dt

+ ε2
〈
L−1ψ̂α, ( f eq f̄ eq)−1δKa ∂

∂μ̃
[ f eq f eqL−1χ̂β]

〉
ψ̂β∇aμ̃

+ ε
〈
L−1ψ̂α, ( f eq f̄ eq)−1 ∂

∂ub
[ f eq f eqL−1χ̂β]

〉
ψ̂β Du

b

Dt

+ ε2
〈
L−1ψ̂α, ( f eq f̄ eq)−1δKa ∂

∂ub
[ f eq f eqL−1χ̂β]

〉
ψ̂β∇aub

+ ε2
〈
L−1ψ̂α, ( f eq f̄ eq)−1∇a

K [ f eq f eqL−1χ̂β]
〉
ψ̂β F

a

m
. (16.109)

The Lagrange derivative of T , μ̃, and ub are rewritten by using the balance equation
up to the first order with respect to ε, which corresponds to the Euler’s equation:
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DT

Dt
= −ε

2T

3
∇ · u + O(ε2), (16.110)

Dμ̃

Dt
= −ε

2μ̃

3
∇ · u + O(ε2), (16.111)

Dub

Dt
= −ε∇ i P + εnFi + O(ε2), (16.112)

where we have used the relation dn = (∂n/∂T )dT + (∂n/∂μ̃)dμ̃ in the derivation
of Eq. (16.111). Then, Eq. (16.109) takes the following forms

ε
〈
L−1π̂ i j , ( f eq f̄ eq)−1

[
D

Dt
+ εδK · ∇ + ε F · ∇K

]
f eq f̄ eqχ̂β

〉
ψβ

= −ε2
(
κ(1)

πππ i j∇ · u + κ(2)
πππ k〈iσ j〉k + κ(3)

πππ k〈iω j〉k

+κ
(1)
π J J

〈i∇ j〉n + κ
(2)
π J J

〈i∇ j〉P + κ
(3)
π J J

〈i F j〉
)

, (16.113)

ε
〈
L−1 Ĵ k, ( f eq f̄ eq)−1

[
D

Dt
+ εδK · ∇ + ε F · ∇K

]
f eq f̄ eqL−1χ̂β

〉
ψβ

= −ε2
(
κ

(1)
Jππ i j∇ j n + κ

(2)
Jππ i j∇ j P + κ

(3)
Jππ i j F j

+κ
(1)
J J J

i∇ · u + κ
(2)
Jπ J

jσ i j + κ
(3)
Jπ J

jωi j
)

, (16.114)

where we have used the identity

∇ i u j = σ i j + ωi j + δi j∇ · u/3 (16.115)

with the vorticityωi j := (∇ i u j − ∇ j ui )/2, and the transport coefficients are defined
as follows:

κ(1)
ππ = − 1

10

〈
L−1π̂ i j , ( f eq f̄ eq)−1

[
−2T

3

∂

∂T
− 2μ̃

3

∂

∂μ̃
+ 1

3
δKa ∂

∂ua

]
f eq f̄ eqL−1π̂ i j

Tη

〉
,

(16.116)

κ(2)
ππ = − 6

35
�k jab

〈
L−1π̂ i j , ( f eq f̄ eq)−1δKa ∂

∂ub
f eq f̄ eqL−1π̂ ki

Tη

〉
, (16.117)

κ(3)
ππ = − 2

15
�k jab

〈
L−1π̂ i j , ( f eq f̄ eq)−1δKa ∂

∂ub
f eq f̄ eqL−1π̂ ki

Tη

〉
= −2τπ ,

(16.118)

κ
(1)
π J = −1

5

〈
L−1π̂ i j , ( f eq f̄ eq)−1δKi 2T 2

3nT − 2AhT F

[
∂

∂T
− s

∂

∂μ̃

]
f eq f̄ eqL−1 Ĵ j

T 2λ

〉
,

(16.119)
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κ
(2)
π J = −1

5

〈
L−1π̂ i j , ( f eq f̄ eq)−1

×
[
−δK i 2AT/n

3nT − 2AhT F

∂

∂T
+ δK i 1

n

∂

∂μ̃
− ∂

∂ui

]
f eq f̄ eqL−1 Ĵ j

T 2λ

〉
,

(16.120)

κ
(3)
π J = −1

5

〈
L−1π̂ i j , ( f eq f̄ eq)−1

[
n

∂

∂ui
+ ∇ i

K

]
f eq f̄ eqL−1 Ĵ j

T 2λ

〉
, (16.121)

κ
(1)
Jπ = − 1

10

〈
L−1 Ĵ i , ( f eq f̄ eq)−1δK j 2T 2

3nT − 2AhT F

[
∂

∂T
− s

∂

∂μ̃

]
f eq f̄ eqL−1π̂ i j

Tη

〉
,

(16.122)

κ
(2)
Jπ = − 1

10

〈
L−1 Ĵ i , ( f eq f̄ eq)−1

×
[
−δK j 2AT/n

3nT − 2AhT F

∂

∂T
+ δK j 1

n

∂

∂μ̃
− ∂

∂u j

]
f eq f̄ eqL−1π̂ i j

Tη

〉
,

(16.123)

κ
(3)
Jπ = − 1

10Tη

〈
L−1 Ĵ i , ( f eq f̄ eq)−1

[
n

∂

∂u j
+ ∇ j

K

]
f eq f̄ eqL−1π̂ i j

Tη

〉
, (16.124)

κ
(1)
J J = −1

3

〈
L−1 Ĵ i , ( f eq f̄ eq)−1

[
−2T

3

∂

∂T
− 2μ̃

3

∂

∂μ̃
+ 1

3
δKa ∂

∂ua

]
f eq f̄ eqL−1 Ĵ i

T 2λ

〉
,

(16.125)

κ
(2)
J J = − 1

5�
i jkl
〈
L−1 Ĵ i , ( f eq f̄ eq)−1δKk ∂

∂ul
f eq f̄ eqL−1 Ĵ j

T 2λ

〉
, (16.126)

κ
(3)
J J = − 1

3�
i jkl
〈
L−1 Ĵ i , ( f eq f̄ eq)−1δKk ∂

∂ul
f eq f̄ eqL−1 Ĵ j

T 2λ

〉
= τJ , (16.127)

where

�i jkl := (δikδ jl − δilδ jk)/2 (16.128)

is an antisymmetric projection operator, and A is defined by

A := T ∂n/∂μ̃. (16.129)
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Here, we show that

κ(3)
ππ = −2τπ , (16.130)

by analytically evaluating the inner product of Eq. (16.117). Without loss of gener-
ality, L−1π̂μν may be written as

L−1π̂ i j = C(|δK |)�i jklδKkδKl . (16.131)

We do not need the specific form of C(|δK |) in this computation. Then κ(3)
ππ can be

written as

κ
(3)
ππ = − 2

15
�k jab

〈
C(|δK |)�i jcdδKcδKd , ( f eq f̄ eq)−1δKa ∂

∂ub
f eq f̄ eqC(|δK |)�kie f δKeδK f

Tη

〉
.

(16.132)

Here we write down useful formulas for further conversion:

�k jabδKa ∂

∂ub
|δK | = �k jabδKa −δKb

|δK | = 0, (16.133)

�k jab�i jcdδKcδKdδKa�kie f [−δbeδK f − δb f δKe]
= 3

2
�i jklδK iδK jδKkδKl = 3

2
�i jklδKkδKl�i jabδKaδKb. (16.134)

By using these formulas, Eq. (16.132) is calculated to be

κ(3)
ππ = − 2

15
�k jab

〈
C(|δK |)�i jcdδKcδKd , δKa C(|δK |)�kie f (−δbeδK f − δb f δKe)

Tη

〉

= − 2

15

3/2

2Tη
〈L̂−1π̂μν, L̂−1π̂μν〉

= −2τπ . (16.135)

Similarly we can show that

κ
(3)
J J = τJ , (16.136)

by evaluating the inner product of Eq. (16.126).
Combining the formulas derived so far, we can rewrite the relaxation equa-

tion (16.96) in the following forms:

επ i j = ε2ησ i j − ε2τπ

D

Dt
π i j − ε2�π J∇〈i J j〉

+ ε2κ(1)
πππ i j∇ · u + ε2κ(2)

πππ k〈iσ j〉k − ε22τππ k〈ω j〉k
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+ ε2κ
(1)
π J J

〈i∇ j〉n + ε2κ
(2)
π J J

〈i∇ j〉P + ε2κ
(3)
π J J

〈i F j〉

+ ε2bππππ k〈iπ j〉k + ε2bπ J J J
〈i J j〉, (16.137)

ε J i = ελ∇ i T − ε2τJ
D

Dt
J i − ε2�Jπ∇ jπ i j

+ ε2κ
(1)
Jππ i j∇ j n + ε2κ

(2)
Jππ i j∇ j P + ε2κ

(3)
Jππ i j F j

+ ε2κ
(1)
J J J

i∇ · u + ε2κ
(2)
J J J

jσ i j + ε2τJ J
jωi j

+ ε2bJ Jπ J
jπ i j . (16.138)

Putting back ε = 1, we arrive at Eqs. (16.87) and (16.88).

16.2 Transport Coefficients and Relaxation Times
in Non-relativistic Fluid Dynamics

We have managed to derive the second-order fluid dynamics in the non-relativistic
system, and the form of equations are expected to be universal regardless of its under-
lying microscopic ingredients. Those details are, however, encoded in the transport
coefficients such as shear viscosity, viscous relaxation times, etc. Our derivation
did provide the microscopic expressions of all the transport coefficients based on
the underlying Boltzmann theory. In this section, we carry out numerical analyses
of these transport coefficients as well as viscous relaxation times in fermionic cold
atoms [157]. As discussed around (16.75) the bulk viscosity vanishes by construction
in our derivation of the fluid dynamics. The bulk viscosity can be finite when the
higher order effects are taken into account [265, 266, 271, 272].

To be specific, we assume that the collision process is dominated by s-wave
scattering, whose amplitude is given by [253]

M = 1

a−1
s − iq

, (16.139)

where as is the s-wave scattering length and q is relative momentum of two incoming
particles.

16.2.1 Analytic Reduction of Transport Coefficients
and Relaxation Times for Numerical Studies

For the purpose of evaluating the following quantities,

η = − 1

10T
〈π̂ i j , L−1π̂ i j 〉, λ = − 1

3T 2
〈 Ĵ i , L−1 Ĵ i 〉, (16.140)

τπ = 1

10Tη
〈π̂ i j , L−2π̂ i j 〉, τJ = 1

3T 3λ
〈 Ĵ i , L−2 Ĵ i 〉, (16.141)
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we reduce them to the formulas suitable for numerical computation. The major part
of the reduction lies in how to invert the linearized collision operator L , which in turn
allows us to numerically evaluate the transport coefficients and viscous relaxation
times.

For the purpose of numerical calculationwe introduce the dimensionless variables,

p′ := δp
pF

= δv
vF

, μ′ := μ̃

εF
, T ′ := T

εF
, n′ := n

p3F
= 1

3π2
, (16.142)

with the Fermi velocity and the Fermi energy,

pF = (3π2n)1/3, vF = pF
m

, εF = p2F
2m

. (16.143)

Here, the primed variables are defined to be dimensionless. In what follows, we
suppress the primes and p, μ, T, n are understood to be dimensionless.

Then, the dimensionless linearized collision operator L ′ is written as

L ′[φ]p := 1

4εF
L[φ]p

= − 1

2 f̄ eqp

∫
d3 p1d3 p2d3 p3

(2π)3
W′(p, p1|p2, p3) f eqε1

f̄ eqε2
f̄ eqε3

(φp + φp1 − φp2 − φp3),

(16.144)

with the equilibrium distribution function,

f eqεi
= 1

e(εi−μ)/T − a
. (16.145)

We again stress that p, μ, T are now all dimensionless and the dimensionless one-
particle energy is εi = p2i . The dimensionless temperature and chemical potential
are related by

n = 1

3π2
=
∫

d3 p

2π

1

e(ε−μ)/T − a
. (16.146)

The transition matrix is written as

W′(p, p1|p2, p3) = |M′|2(2π4)δ(p2 + p21 − p22 − p23)δ
3( p + p1 − p2 − p3),

(16.147)

with the dimensionless scattering amplitude

M′ := mpFM. (16.148)
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The scattering amplitude of our interest (16.139) is

|M′|2 = 16π2

(pFas)−2 + q2
. (16.149)

With these dimensionless quantities, the linearized collision operator is converted
to

L ′[φ]p = −k( p)φp −
∫

d3 p1
2π

f eqε1
[K1( p, p1) − K2( p, p1)]φp1 , (16.150)

where we have defined

k( p) =
∫

d3 p1
2π

f eqε1
K1( p, p1), (16.151)

K1( p, p1) = 1

2 f̄ eqε

∫
d3 p2d3 p3

(2π)2
|M′(| p − p1|/2)|2 f̄ eqε2

f̄ eqε3

× (2π)4δ(p2 + p21 − p22 − p23)δ
3( p + p1 − p2 − p3), (16.152)

K2( p, p1) = e(p21−μ)/T

f̄ eqε

∫
d3 p2d3 p3

(2π)2
|M′(| p − p2|/2)|2 f eqε2

f̄ eqε3

× (2π)4δ(p2 + p22 − p21 − p23)δ
3( p + p2 − p1 − p3). (16.153)

With the help of the following momentum variables,

P := p + p1, q := p − p1

2
, P ′ := p2 + p3, q ′ := p2 − p3

2
, (16.154)

the integral (16.152) can be computed as,

K1( p, p1) = 1

2 f̄ eqε

∫
d3P ′d3q ′

(2π)2
|M′(q)|2 f̄ eq|P ′+2q ′|2/4 f̄

eq
|P ′−2q ′|2/4

× (2π)4δ
( P2

2
+ 2q2 − P ′2

2
− 2q ′2

)
δ3(P − P ′)

= q

16π f̄ eqε

|M′(q)|2
∫

d cos θ f̄ eqP2/4+q2+Pq cos θ
f̄ eqP2/4+q2−Pq cos θ

= q

16π f̄ eqε

|mpFM(q)|2 T

(1 − a2e−(P2+4q2−4μ)/2T )Pq

×
[(

1 − ae−(P2/4+q2+4Pq−4μ)/4T
)(
e(P2/4+q2+4Pq−4μ)/4T − a

)
(
1 − ae−(P2/4+q2−4Pq−4μ)/4T

)(
e(P2/4+q2−4Pq−4μ)/4T − a

)
]

,

(16.155)
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where we have defined

P =
√
p2 + p21 + 2pp1 cosχ, cos θ = P · q ′

Pq ′ ,

q =
√
p2 + p21 − 2pp1 cosχ

2
, cosχ = p · p1

pp1
.

(16.156)

Accordingly, we may write K1( p, p1) = K1(p, p1, χ). This, in turn, allows us to
write k( p) (16.151) as follows,

k( p) = 1

(2π)2

∫
dp1 p

2
1 f

eq
ε1

∫
d cosχK1(p, p1, χ) =: k(p). (16.157)

The integral (16.153) is also partially carried out analytically to give

K2( p, p1) = e(p21−μ)/T

f̄ eqε

∫
d3P ′d3q ′

(2π)2
|M′(|P − P ′ + 2q − 2q ′|/4)|2 f eq|P ′+2q|2/4 f̄

eq
|P ′−2q|2/4

× (2π)4δ(2P · q + 2P ′ · q ′)δ3(2q + 2q ′)

= e(p21−μ)/T

64π2q f̄ eqε

∫
dP"P"dφ|M′(

√
q2 + P"2/16)|2

× f eq
p21+P"2/4+P"·P/2

f̄ eq
p2+P"2/4+P"·P/2

=: K2(p, p1, χ). (16.158)

The integration variable has been changed from P ′ to P" = P ′ − P . It is convenient
to introduce theCartesian coordinatewhere the vectors P , P", and q are parametrized
as

P = (P sin χ ′, 0, P cosχ ′)T , P" = (P" cosφ, P" sin φ, 0)T , q = (0, 0, q)T ,

(16.159)

where χ ′ is related to χ through

cosχ ′ = P · q
Pq

= p2 − p21√
p2 + 2pp1 cosχ + p21

√
p2 − 2pp1 cosχ + p21

. (16.160)

It is visualized in Fig. 16.1. In this coordinate, we have

P ′′ · P = P ′′P sin χ ′ cosφ. (16.161)

Let us move on to the reduction of [L−1π̂ i j ]p and [L−1 Ĵ i ]p. The stress tensor and
the heat flow are given by

π̂ i j
p = −pFvF

√
k(p)

p2
c(p)p〈i p j〉, Ĵ ip = −εFvF

√
k(p)

p
b(p)pi , (16.162)
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Fig. 16.1 The momentum
vectors in the Cartesian
coordinate (16.159)

with

c(p) = − p2√
k(p)

, b(p) = − p√
k(p)

(p2 − hTF), (16.163)

and the dimensionless enthalpy

h̃ = 5

2

∫
dpp4 f eqε . (16.164)

On account of the tensor structures, L ′−1π̂ i j and L ′−1 Ĵ i are expressed as

[L ′−1π̂ i j ]p = pFvF
p2

√
k(p)

C(p)p〈i p j〉, [L ′−1 Ĵ i ]p = εFvF
p
√
k(p)

B(p)pi , (16.165)

with functions C(p) and B(p) to be computed numerically. The equations to
be solved are π̂

i j
p = [L ′(L ′−1π̂ i j )]p and Ĵ ip = [L ′(L ′−1 Ĵ i )]p. Upon substituting

(16.150), (16.162), and (16.165) to the equations, we have

c(p) = C(p) + 1

(2π)2

∫
dp1 p

2
1 f

eq
ε1

1√
k(p)k(p1)

×
∫

d cosχ
3 cos2 χ − 1

2
[K1(p, p1, χ) − K2(p, p1, χ)]C(p1),

b(p) = B(p) + 1

(2π)2

∫
dp1 p

2
1 f

eq
ε1

1√
k(p)k(p1)

×
∫

d cosχ cosχ [K1(p, p1, χ) − K2(p, p1, χ)]B(p1).

(16.166)
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We obtain C(p) and B(p) by numerically solving them as detailed in Sect. 16.2.2.
Equation (16.165) then leads to L ′−1π̂ i j and L ′−1 Ĵ i .

We are finally in position to evaluate the transport coefficients,

η = − 1

10(εFT )
〈π̂ i j , L−1π̂ i j 〉 = n

10T

∫
dpp2 f eqε f̄ eqε c(p)C(p), (16.167)

λ = − 1

3(εFT )2
〈 Ĵ i , L−1 Ĵ i 〉 = n

m

1

4T 2

∫
dpp2 f eqε f̄ eqε b(p)B(p), (16.168)

and the viscous relaxation times,

τπ = 1

10(εFT )η
〈L−1π̂ i j , L−1π̂ i j 〉 = 1

εF

1

40T (η/n)

∫
dpp2 f eqε f̄ eqε

1

k(p)
C(p)C(p),

(16.169)

τJ = 1

3(εFT )2λ
〈L−1 Ĵ i , L−1 Ĵ i 〉 = 1

εF

1

16T 2(mλ/n)

∫
dpp2 f eqε f̄ eqε

1

k(p)
B(p)B(p).

(16.170)

16.2.2 Numerical Method

We present how to numerically solve (16.166) using the double exponential method
employed in the relativistic case in Sect. 14.2.4.

With a change of the integral variable by

p(t) = √
T et−e−t

, (16.171)

we introduce the integral measure dμ(t) as

dμ(t) := 1

(2π)3
f eqε(t) p(t)

2dp(t) = T 3/2

(2π)3
(1 + e−t )e3(t−e−t ) 1

exp(e2(t−e−t ) − μ/T ) + 1
dt,

(16.172)

which has a convenient asymptotic form,

dμ(t) →
{
e−e2tdt (t → +∞),

e−3e−t
dt (t → −∞).

(16.173)

Since the magnitude of the measure drops rapidly at large |t |, we can introduce
cutoffs, (tmin, tmax), to the t-integral with small systematic uncertainty. With the
change of variable applied, the equations (16.166) is converted to
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c(t) = C(t) +
∫ tmin

tmin

dμ(t1)N (t, t1)C(t1),

b(p) = B(p) +
∫ tmin

tmin

dμ(t1)M(t, t1)B(t1),

(16.174)

where N (t, t1) and M(t, t1) are defined by

N (t, t1) := 2π√
k(t)k(t1)

∫
d cosχ

3 cos2 χ − 1

2
[K1(p, p1, χ) − K2(p, p1, χ)],

M(t, t1) := 2π√
k(t)k(t1)

∫
d cosχ cosχ [K1(p, p1, χ) − K2(p, p1, χ)].

(16.175)

Similarly, the transport coefficients and viscous relaxation times are transformed
to

η

n
= 1

10T

∫ tmax

tmin

dμ(t) f̄ eqε c(t)C(t), (16.176)

mλ

n
= 1

4T 2

∫ tmax

tmin

dμ(t) f̄ eqε b(t)B(t), (16.177)

and

εFτπ = 1

40T (η/n)

∫ tmax

tmin

dμ(t) f̄ eqε

1

k(t)
C(t)C(t)

= 1

4

∫ tmax

tmin
dμ(t) f̄ eqε

1
k(t)C(t)C(t)∫ tmax

tmin
dμ(t) f̄ eqε c(t)C(t)

, (16.178)

εFτJ = 1

16T 2(mλ/n)

∫ tmax

tmin

dμ(t) f̄ eqε

1

k(t)
B(t)B(t)

= 1

4

∫ tmax

tmin
dμ(t) f̄ eqε

1
k(t) B(t)B(t)∫ tmax

tmin
dμ(t) f̄ eqε b(t)B(t)

. (16.179)

Next, we adopt the rectangular discretization,

ts = tmin + s�t, (16.180)

with�t = (tmax − tmin)/N and an integer s ∈ [1, N ] for some sufficiently large inte-
ger. We set N = 150 in the numerical simulation presented here. We apply the same
discretization to the angular (χ) integralswith N = 50.We confirmed that the numer-
ical integrals converge well. Accordingly, an integral of some function F(t) with the
measure dμ(t) is replaced by a sum over s,
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∫ tmax

tmin

dμ(t)F(t) ≈
N∑

s=1

�μs F(ts),

�μs :=
√
T

(2π)3

(1 + e−ts )ets−e−ts

exp(e2(ts−e−ts ) − μ/T ) + 1
�t.

(16.181)

It is found convenient to introduce the following quantities,

Ns,s1 := √
�μs N (ts, ts1)

√
�μs1 ,

Ms,s1 := √
�μsM(ts, ts1)

√
�μs1 ,

as := √
�μsa(ts), As := √

�μs A(ts),

bs := √
�μsb(ts), Bs := √

�μs B(ts).

(16.182)

Then, the discretized versions of (16.174) are concisely written as,

cs =
N∑

s=1

(δs,s1 + Ns,s1)Cs1 ,

bs =
N∑

s=1

(δs,s1 + Ms,s1)Bs1 ,

(16.183)

which are readily solved numerically.
Once the solutions Cs and Bs are obtained, we find the transport coefficients and

viscous relaxation times via,

η

n
= 1

10T

N∑
s=1

f̄ eqs csCs, (16.184)

mλ

n
= 1

4T 2

N∑
s=1

f̄ eqs bs Bs, (16.185)

εFτπ = 1

4

∑N
s=1 f̄ eqs 1

k(ts )
CsCs∑N

s=1 f̄ eqs csCs

, (16.186)

εFτJ = 1

4

∑N
s=1 f̄ eqs 1

k(ts )
Bs Bs∑N

s=1 f̄ eqs bs Bs

. (16.187)

16.2.3 Shear Viscosity and Heat Conductivity

We study temperature dependence of the shear viscosity and the heat conductivity
for the classical Boltzmann gas and the Fermi gas, where the quantum statistical
parameter a is set to 0 and−1, respectively. Accordingly, the equilibrium distribution
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function reads f eqp = e−(|δp|2/2m−μTF)/T for the classical Boltzmann gas and f eqp =[
e−(|δp|2/2m−μTF)/T + 1

]−1
for the Fermi gas. We will present the result of viscous

relaxation time in the following subsection along with the comparison to those under
the relaxation-time approximation.

The temperature dependences of the shear viscosity η and the heat conductivity λ

are shown in Fig. 16.2. The scattering length is pFas = 0.1, that is close to the unitary
limit pFas = 0. The computations at the unitarity have been worked out in [157].
The difference between the Boltzmann gas and the Fermi gas is manifest at low
temperatures, implying that the quantum statistical effect is significant there. One
can understand the difference as a consequence of the Pauli-blocking effect. At low
temperatures, a sharp Fermi surface is formed and most of the states are occupied
inside the surface. Then, the scattering rate is significantly suppressed as the phase
space for outgoing particles are limited after a scattering event. Allowed processes
are mostly forward scatterings, where two particles simply exchange their momenta.
Therefore, the momentum and energy transfers occur efficiently, resulting in larger
value of the shear viscosity and heat conductivity relative to those expected in the
Boltzmann gas.

We remark that there exists the pairing-formation temperature, below which our
formulation is not applicable because the pairing formation is not taken into account
in our microscopic theory. Even more importantly, the Boltzmann theory provides
a good description at weak-coupling regime while the Fermi gas around unitary
limit is a strong-coupling system. Hence, we do not expect that our result can be
directly compared with the experimental results. Our point is that the putative agree-
ment between the experimentally observed shear viscosity and that from the classical
Boltzmann theory is not convincing considering the fact that its temperature depen-
dence is largely modified once the Fermi statistics is incorporated.

Fig. 16.2 Temperature dependence of the shear viscosity and the heat conductivity at (pFas)−1 =
0.1. The red points and blue crosses correspond to the Boltzmann gas and the Fermi gas, respectively
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16.2.4 Viscous-Relaxation Time

Let us turn to the analyses of the viscous relaxation times. Their temperature depen-
dence is shown in Fig. 16.3. Their qualitative behaviors are similar to the transport
coefficients. At high temperatures, the Boltzmann gas and the Fermi gas take the
same value, while the deviations are clearly seen at low temperatures.

It is intriguing to ask how close the viscous relaxation time under the relaxation-
time approximation (RTA) is to our results because it is a widely used approximation
in fluid dynamic simulations. In RTA, the collision integral in the Boltzmann equa-
tion (16.1) is replaced by the following simple form,

C[ f ]p = − f p − f eq

τ
. (16.188)

It is designed so that the distribution function f p approaches the equilibrium one f eq

with single relaxation time τ , that is given as a free parameter.
In the derivation of fluid dynamics, the linearized collision operator L is simply

replaced by −τ−1 under the RTA. Then, the shear viscosity and the heat conductiv-
ity (16.74) are reduced to

ηRTA = − τ

10T

〈
π̂ i j , π̂ i j

〉 = − τ

10T

∫
dp f eqp f̄ eqp �i jklδviδp jδvkδpl

= τ

3

∫
dp f eqp δviδpi = τ P, (16.189)

λRTA = − τ

3T 2

〈
Ĵ i , Ĵ i

〉 = − τ

3T 2

∫
dp f eqp f̄ eqp

(
δp2

2m
− hTF

)
δv2

= τ

12mT

(
7Q − 75P2

n

)
, (16.190)

where the pressure P is given in (16.35) and Q is defined by

Fig. 16.3 Temperature dependence of the viscous relaxation times of stress tensor and heat flow
at (pFas)−1 = 0.1. The red points and blue crosses represent the relaxation times in the Boltzmann
gas and the Fermi gas, respectively. The green triangles and purple points are the relaxation times
in the Boltzmann gas and the Fermi gas with the RTA
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Fig. 16.4 Temperature dependence of the viscous relaxation times of stress tensor and heat flow
at (pFas)−1 = 0.1. The red points and blue crosses represent the relaxation times in the Boltzmann
gas and the Fermi gas, respectively. The green triangles and purple points are the relaxation times
in the Boltzmann gas and the Fermi gas with the RTA

Q =
∫

dp f eqp δv2δp2. (16.191)

Similarly, the viscous relaxation times (16.90) are simplified to,

τRTA
π = τRTA

J = τ. (16.192)

Although τπ and τJ generally take different values, they are fixed by a single param-
eter τ under the RTA.

For the purpose of comparison between our formulas for the viscous relaxation
times (16.90) and the ones with the RTA, based on the relation between transport
coefficients and relaxation time (16.189) and (16.190), we use the following expres-
sions for the latter,

τ̃RTA
π = η

P
, τ̃RTA

J = 12mTλ

7Q − 75P2/n
, (16.193)

where η and λ are evaluated based on our formulas (16.74).
Here, we test the reliability of the relations (16.189) and (16.190) derived under

RTA, by comparing the viscous-relaxation times calculated from (16.90) with
(16.193) provided η and λ via (16.74) at pFaa = 0.1. Detailed analyses at the unitar-
ity, pFaa = 0, have been presented in [157]. Note that these formulas (16.193) yield
different viscous-relaxation time in contrast to the standard RTA (16.192). This is
indeed thought of as an improvement over the standard RTA. In Fig. 16.3 the vis-
cous relaxation time from our formulas and those of the improved RTA (16.193)
are shown. The resultant data of τπ and τJ clearly show distinct temperature depen-
dences. The improved RTA (16.193) capture this behavior to some extent, although
τ̃RTA
J does show the deviation from τJ . From Fig. 16.4, we see that the temperature
dependences of improved RTA τ̃RTA

π and τ̃RTA
J reproduce those of τπ and τJ qual-

itatively. While the agreement of τ̃π is very good, τ̃J is not well approximated by
RTA.
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