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Preface

Fixed point theory and fractional calculus emerged as two indispensable and inter-
related tools in the mathematical modelling of various experiments in nonlinear
sciences and engineering over the last few decades. This book will present the most
recent developments in these two fields through contributions from eminent scientists
and mathematicians worldwide.

Readers will find several useful tools and techniques to develop their skills and
expertise in these areas. New research directions are also indicated in chapters. This
book is meant for graduate students, faculty and researchers willing to expand their
knowledge in fixed point theory and fractional calculus. The readers of this book
will require minimum prerequisites of analysis, topology and functional analysis.

This book is an effort towards presenting the two very important topics in modern
mathematics and their applications in science and engineering. It consists of 18
chapters. The first half of the book will deal with applications of fixed point theory,
whereas the second half will discuss fractional calculus. “Best Proximity Points
for Some Multivalued Contractive Mappings” and “Best Proximity Point Theorems
via SomeGeneralized Notions” investigate best proximity theorems under some new
contractive conditions. “New Fixed-Figure Results on Metric Spaces” deals with
fixed-figure results and discontinuity at fixed points, and “Some Fixed Point Results
for SuzukiW-Contractions Involving Quadratic Terms in Modular b-Metric Spaces”
is about some fixed point results for the Suzuki–Wardowski contractions. Common
fixedpoint results for JS-contraction-typemappings are discussed in “SomeCommon
Fixed Point Results via α-Series for a Family of J S-Contraction-type Mappings”.
“Solution of Nonlinear First-Order Hybrid Integro-Differential Equations via Fixed
Point Theorem” presents an algorithm for the solution of nonlinear first-order hybrid
integro-differential equations by using the fixed point theorem. In “Application
of Darbo’s Fixed Point Theorem for Existence Result of Generalized 2D Functional
Integral Equations”, an application of Darbo’s fixed point theorem for the solu-
tion of two-dimensional functional integral equations has been explored. “Results
on Generalized Tripled Fuzzy b-Metric Spaces” and “A Novel Controlled Picture
Fuzzy Metric Space and Some Related Fixed Point Results” elucidate some new
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vi Preface

fixed point results in fuzzy metric spaces. From “Theoretical Analysis for a Gener-
alized Fractional-Order Boundary Value Problem” onwards, the studies in fractional
calculus have been listed. “Theoretical Analysis for a Generalized Fractional-Order
Boundary Value Problem” presents a theoretical analysis for a generalized fractional
order boundaryvalueproblem,while “OnWell-posedVariational Problems Involving
Multidimensional Integral Functionals ” describes well-posed variational problems
involving multidimensional integral functionals. The coupled system of tempered
fractional differential equations with anti-periodic boundary conditions is the subject
of study in “On the Coupled System of Tempered Fractional Differential Equations
withAnti-periodic Boundary Conditions”. “Application ofMeasure of Noncompact-
ness on the Infinite System ofHadamard Fractional Integral Equations” and “Observ-
ability, Reachability, Trajectory Reachability and Optimal Reachability of Frac-
tional Dynamical Systems using Riemann–Liouville Fractional Derivative” deal
with the measure of noncompactness on the infinite system of Hadamard frac-
tional integral equations and optimal reachability of fractional dynamical systems
using theReimann–Liouville fractional derivative, respectively. “Fractional Calculus
Approach to Logistic Equation and its Applications” is devoted to the study of
the fractional calculus approach to the logistic equation, and “Hermite–Hadamard
Type Inequalities for Coordinated Quasi-Convex Functions via Generalized Frac-
tional Integrals” studies the Hermite–Hadamard type inequalities via fractional inte-
grals. The Leray–Schauder theorem for the implicit fractional differential equation is
investigated in “Leray–Schauder Theorem for Implicit Fractional Differential Equa-
tion and Nonlocal Multi-Point Conditions”. Finally, “The q-Deformed Hamiltonian,
Lagrangian, Entropy and Fisher Information” explores the q-deformed Hamiltonian,
Lagrangian, entropy and Fisher information.

Fixed point theory and fractional calculus consist of a diverse collection of topics.
The main sources of information on these topics are scattered among a variety of
journals and proceedings. As such, consulting all the information by amateur learners
is seldom possible. Our book is an attempt in this direction of providing a simple
interface for learners and researchers in the theory and applications of fixed points
and fractional calculus.

This bookmaybeused as a reference book for a broad range of readers interested in
studying fixed point theory and fractional calculus. In each chapter, the preliminaries
have been listed first and then the advanced discussion takes place.

Silchar, India
Victoria, Canada
Bangkok, Thailand
Guwahati, India

Pradip Debnath
H. M. Srivastava
Poom Kumam
Bipan Hazarika
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Best Proximity Point Theorems via Some Generalized Notions . . . . . . . . . 11
Somayya Komal and Poom Kumam

New Fixed-Figure Results on Metric Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . 33
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Best Proximity Points for Some
Multivalued Contractive Mappings

Pradip Debnath and Boško Damjanović

Abstract Best proximity point theorems provide assurance to the existence of
approximate solutions to some particular equations of the type f (x) = x , when exact
solution of such equations do not exist. As such, these theorems are of paramount
importance in the theory of optimization and approximation. In this chapter, we
present some common best proximity point (CBPP) results for multivalued map-
pings using F-contractions.

1 Introduction

The prime objective of fixed point theory is to establish methodologies those lead to
solutions of nonlinear equations of the type f (x) = x such that f is a self-mapping
defined on a subset of a topological space or metric space or normed linear space.
However, this equation not necessarily admits a solution when it fails to be a self-
map. Thus, a method of approximation turns out to be more feasible and appropriate
which attempts to find an element x which is in close vicinity of f (x) instead of being
exactly equal to f (x). Such problems motivate the study of best proximity theorems
and best approximation theorems. Even though best approximation theorems can
provide approximate solution to the equations of the type f (x) = x , such a solution
need not be optimal. Alternately, an approximate solution produced by the best
proximity theorem happens to be optimal. The aim of this chapter is to address a
more general problem of similar context on the existence of CBPP in the framework
of metric spaces.
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2 P. Debnath and B. Damjanović

Nadler [13] commenced the investigation of fixed points formultivaluedmappings
with the help of Pompeiu-Hausdorff metric H as follows.

Let (X,�) be a complete metric space (MS) and let CB(X) denote the collection
of all non-empty bounded and closed subsets of the non-empty set X. Then for
P,Q ∈ CB(X), define the map H : CB(X) × CB(X) → [0,∞) by

H(P,Q) = max{sup
ξ∈Q

Δ(ξ,P), sup
δ∈P

Δ(δ,Q)},

where Δ(δ,Q) = infξ∈Q �(δ, ξ). Then (CB(X),H) is a complete MS.
For any two non-empty subsetsP,Q of theMS (X,�), we shall use the following

notations:

P0 = {x ∈ P : �(x, y) = �(P,Q) for some y ∈ Q},

Q0 = {y ∈ Q : �(x, y) = �(P,Q) for some x ∈ P},

where �(P,Q) = inf{�(x, y) : x ∈ P, y ∈ Q}.
For P,Q ∈ CB(X), we have

�(P,Q) ≤ H(P,Q).

μ ∈ X is said to be a BPP of the multivalued map S : X → CB(X) ifΔ(x, Sx) =
�(P,Q). u ∈ X is a fixed point of the multivalued map S : X → CB(X) if u ∈ Su.

Remark 1 1. In the MS (CB(X),H), υ ∈ X is a fixed point of S if and only if
Δ(υ, Sυ) = 0.

2. If �(P,Q) = 0, then a fixed point and a BPP coincide.
3. The metric function � : X × X → [0,∞) is continuous in the sense that if

{un}, {vn} are two sequences in X with (un, vn) → (u, v) for some u, v ∈ X,
as n → ∞, then �(un, vn) → �(u, v) as n → ∞. Thus, we obtain that the
function Δ is continuous considering the fact that if un → u as n → ∞, then
Δ(un,P) → Δ(u,P) as n → ∞ for any P ⊆ X.

The following results are useful in the present context.

Lemma 1 ([3, 5]) Let (X,�) be a MS and P,Q,C ∈ CB(X). Then

1. Δ(x,Q) ≤ �(x, y) for any y ∈ Q and x ∈ X;
2. Δ(x,Q) ≤ H(P,Q) for any x ∈ P .

Lemma 2 ([13]) Let P,Q ∈ CB(X) and let x ∈ P , then for any r > 0, there exists
y ∈ Q such that

�(x, y) ≤ H(P,Q) + r.



Best Proximity Points for Some Multivalued Contractive Mappings 3

However, a point y ∈ Q such that

�(x, y) ≤ H(P,Q),

may not exist.
If Q is compact, then such a point y exists, i.e., �(x, y) ≤ H(P,Q).

The concept of H-continuity for multivalued mapping is defined below.

Definition 1 ([9]) Let (X,�) be a MS. A multivalued map S : X → CB(X) is
said to be H-continuous at a point x0, if for each sequence {xn} ⊂ X, such that
limn→∞ �(xn, x0) = 0, we have limn→∞ H(Sxn, Sx0) = 0 (i.e., if xn → x0, then
Sxn → Sx0 as n → ∞).

Definition 2 ([13]) Let S : X → CB(X) be a multivalued map. S is said to be a
multivalued contraction ifH(Sx, Sy) ≤ λ�(x, y) for all x, y ∈ X, where λ ∈ [0, 1).
Remark 2 1. S is H-continuous on a subset P of X if it is continuous on every

point of P .
2. If S is a multivalued contraction, then it is H-continuous.

In 2012, Wardowski [17] defined the concept of F-contraction as follows.

Definition 3 Let F : (0,+∞) → (−∞,+∞) be a mapping satisfying:
(F1) F is strictly increasing;

(F2) For each sequence {un}n∈N ⊂ (0,+∞), limn→+∞ un = 0 if and only if
limn→+∞ F (un) = −∞;

(F3) There exists t ∈ (0, 1) such that limu→0+ utF (u) = 0.
Let F denote the class of all such functions F. If (X,�) is a metric space, then a

self-map S : X → X is said to be an F−contraction if there exist λ > 0, F ∈ F, such
that for all x, y ∈ X,

�(Sx, Sy) > 0 ⇒ λ + F(�(Sx, Sy)) ≤ F(�(x, y)).

Multivalued F-contractions were defined by Altun et al. [2] as follows.

Definition 4 ([2]) Let (X,�) be a MS. A multivalued map S : 	 → CB(X) is said
to be a multivalued F-contraction (MVFC, in short) if there exist λ > 0 and F ∈ F
such that

λ + F(H(Sx, Sy)) ≤ F(�(x, y)) (1)

for all x, y ∈ 	 with Sx 
= Sy.

Remark 3 An MVFC is H-continuous.
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The concept of P-property was introduced by Sankar Raj [16]. The notion weak
P property was put forward by Zhang et al. [18] to improve the results of Caballero
et al. [4] on Geraghty-contractions.

Definition 5 ([16]) Let (X,�) be a MS and P,Q be two non-empty subsets
of X such that P0 
= φ. The pair (P,Q) satisfies the P-property if and only if
�(x1, y1) = �(P,Q) = �(x2, y2) implies �(x1, x2) = �(y1, y2), where x1, x2 ∈
P0 and y1, y2 ∈ Q0.

Definition 6 ([18]) Let (X,�) be a MS and P,Q be two non-empty subsets of
X such that P0 
= φ. The pair (P,Q) satisfies the weak P-property if and only if
�(x1, y1) = �(P,Q) = �(x2, y2) implies �(x1, y2) ≤ �(y1, y2), where x1, x2 ∈
P0 and y1, y2 ∈ Q0.

For some significant research related to P-property, we refer to the works of
Omidvari et al. [15] and Nazari [14]. Some interesting results in the present context
were recently established by Debnath [7, 8] and Debnath and Srivastava [10, 11].
For more relevant literature, we refer to [1, 6].

Using the concepts of the weak P property and F-contraction, in the current
chapter, we establish a CBPP result for multivalued mappings. An example has also
been provided in which the P property is not satisfied although the weak P property
holds true.

2 Best Proximity Point for MVFC

In this section, we establish our main results.
First we define a multivalued F-contractive pair of mappings.

Definition 7 Let (X,�) be a MS and P,Q be two non-empty subsets of X. The
pair of mappings S, T : P → CB(Q) is said to be a multivalued F-contraction pair
(MVFCP) if there exist τ > 0 and F ∈ F such that

τ + F(H(Sx, T y)) ≤ F(�(x, y)) (2)

for all x, y ∈ 	 with Sx 
= T y.

Theorem 1 Let (X,�) be a completeMS andP,Q be two non-empty closed subsets
ofX such thatP0 
= φand that the pair (P,Q) satisfies theweak P-property. Suppose
S, T : P → CB(Q) be a MVFCP such that Sx and T x are compact for each x ∈ P
and Sx, T x ⊆ Q0 for all x ∈ P0. Further, assume that S, T are H-continuous. Then
S, T have a CBPP.

Proof Fix x0 ∈ P0 and choose y0 ∈ T x0 ⊆ Q0. By the definition of Q0, we choose
x1 ∈ P0 such that

�(x1, y0) = �(P,Q). (3)
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If y0 ∈ T x1 ∩ Sx1, then

�(P,Q) ≤ Δ(x1, Sx1) ≤ �(x1, y0) = �(P,Q) (since y0 ∈ Sx1),

and
�(P,Q) ≤ Δ(x1, T x1) ≤ �(x1, y0) = �(P,Q) (since y0 ∈ T x1).

Thus �(P,Q) = Δ(x1, Sx1) = Δ(x1, T x1), i.e., x1 is a CBPP of S and T . So,
assume that y0 /∈ T x1 ∩ Sx1.

First we consider the case y0 /∈ Sx1.
Since Sx1 is compact, by Lemma2 and Definition7 there exists y1 ∈ Sx1 ⊆ Q0

and λ ∈ [0, 1) such that

0 < Δ(y0, Sx1) < �(y0, y1) ≤ H(T x0, Sx1). (4)

Since F is strictly increasing, from (4), we have

F(�(y0, y1)) ≤ F(H(T x0, Sx1))

≤ F(�(x0, x1)) − λ. (5)

Since y1 ∈ Q0, there exists x2 ∈ P0 such that

�(x2, y1) = �(P,Q). (6)

From (3) and (6) and using weak P−property, we have that

�(x1, x2) ≤ �(y0, y1). (7)

From (5) and (7), we have

F(�(x1, x2)) ≤ F(�(y0, y1)) ≤ F(�(x0, x1)) − λ. (8)

If y1 ∈ T x2 ∩ Sx2, like earlier we can show that x2 is a CBPP of T and S. So,
assume that y1 /∈ T x2 ∩ Sx2.

Consider the case y1 /∈ T x2.
Since T x2 is compact, by Lemma2, there exists y2 ∈ T x2 such that

0 < Δ(y1, T x2) < �(y1, y2) ≤ H(T x2, Sx1).

Using the fact that F is strictly increasing, we have that
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F(�(y1, y2)) ≤ F(H(T x2, Sx1))

≤ F(�(x2, x1)) − λ

≤ F(�(x0, x1)) − 2λ (using 8). (9)

Since y2 ∈ T x2 ⊆ Q0, there exists x3 ∈ P0 such that

�(x3, y2) = �(P,Q). (10)

From (8) and (10) and using weak property P , we have that

�(x2, x3) ≤ �(y1, y2). (11)

From (10) and (11), we have

F(�(x2, x3)) ≤ F(�(y1, y2)) ≤ F(�(x0, x1)) − 2λ. (12)

Continuing in this way, we obtain two sequences {xn} and {yn} in P0 and Q0

respectively, satisfying
(A) y2n ∈ T x2n ⊆ Q0 and y2n+1 ∈ Sx2n+1 ⊆ Q0

(B) �(xn+1, yn) = �(P,Q),
(C) F(�(xn, xn+1)) ≤ F(�(yn−1, yn)) ≤ F(�(x0, x1)) − nλ,
for each n = 0, 1, 2, . . ..
Put αn = �(xn, xn+1) for each n = 0, 1, 2, . . .. Taking limit on both sides of (C)

as n → ∞, we have
lim
n→∞F(αn) = −∞.

Using (F2), we obtain
lim
n→∞ αn = 0. (13)

Using (F3), there exists k ∈ (0, 1) such that

αk
nF(αn) → 0 as n → ∞. (14)

From (C), for each n ∈ N, we have that

F(αn) − F(α0) ≤ −nλ.

This implies
αk
nF(αn) − αk

nF(α0) ≤ −nαk
nλ ≤ 0. (15)

Letting n → ∞ in (15) and using (13), (14), we obtain

lim
n→∞ nαk

n = 0.
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Thus there exists n0 ∈ N such that nαk
n ≤ 1 for all n ≥ n0, i.e., αn ≤ 1

n
1
k
for all

n ≥ n0.
Let m, n ∈ N with m > n ≥ n0. Then

�(xm, xn) ≤
m−1∑

i=n

�(xi , xi+1) =
m−1∑

i=n

αi

≤
∞∑

i=n

αi ≤
∞∑

i=n

1

i
1
k

.

Since the series
∑∞

i=n
1

i
1
k
is convergent for k ∈ (0, 1), we have �(xm, xn) → 0 as

m, n → ∞. Hence, {xn} is Cauchy in P0 ⊆ P . Since (X,�) is complete and P is
closed, we have limn→∞ xn = u for some u ∈ P .

Since T is H-continuous (for it is an MVFCP), we have

lim
n→∞H(T xn, Tu) = 0. (16)

Exactly in the similar manner as above, using (C), we can prove that {yn} is
Cauchy in Q and since Q is closed, there exists v ∈ Q such that limn→∞ yn = v.

From (B), �(xn+1, yn) = �(P,Q) for all n ∈ N and thus we have

lim
n→∞ �(xn+1, yn) = �(u, v) = �(P,Q). (17)

We claim that v ∈ Tu ∩ Su. Indeed, since y2n ∈ T x2n for all n ∈ N, we have

lim
n→∞ Δ(y2n, Tu) ≤ lim

n→∞H(T x2n, Tu) = 0.

Therefore, Δ(v, Tu) = 0. Since Tu is closed, we have v ∈ Tu.
Also, since y2n+1 ∈ Sx2n+1, we have

lim
n→∞ Δ(y2n+1, Su) ≤ lim

n→∞H(Sx2n+1, Su) = 0.

Thus, we have Δ(v, Su) = 0 and so v ∈ Su. Therefore, we have that

v ∈ Tu ∩ Su. (18)

Using (17) and (18), we have

�(P,Q) ≤ Δ(u, Su) ≤ �(u, v) = �(P,Q).

Thus
Δ(u, Su) = �(P,Q), (19)
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and
�(P,Q) ≤ Δ(u, Tu) ≤ �(u, v) = �(P,Q).

Thus
Δ(u, Tu) = �(P,Q). (20)

From (19) and (20), we conclude that u is a CBPP of S and T .

Our previous theorem produces a Geraghty-type result as a consequence. Let G be
the collection of functions g : [0,∞) → [0, 1) those fulfill the condition: g(tn) →
1 implies tn → 0. A well-known example of this type of function is g(t) = (1 +
t)−1 for all t > 0 and g(0) ∈ [0, 1). Geraghty [12] generalized Banach’s contraction
principle using the class G.
Definition 8 Let P,Q be two non-empty subsets of the MS (X,�). The pair of
multivalued mappings S, T : P → CB(Q) is said to be a multivalued Geraghty-
type F-contraction pair (MVGFCP) if there exist λ > 0, F ∈ F and g ∈ G such that

λ + F(H(Sx, T y)) ≤ g(�(x, y)) · F(�(x, y)) (21)

for all x, y ∈ X with Sx 
= T y.

Corollary 1 Let (X,�) be a complete MS and P,Q be two non-empty closed sub-
sets of X such that P0 
= φ and that the pair (P,Q) satisfies the weak P-property.
Suppose S, T : P → CB(Q) be a MVGFCP such that Sx, T y are compact for each
x, y ∈ P and Sx, T y ⊆ Q0 for all x, y ∈ P0. Also, S, T are H-continuous. Then
S, T have a CBPP.

Proof For g(t) ∈ [0, 1) for all t ∈ [0,∞), from (21), we obtain

λ + F(H(Sx, T y)) ≤ F(�(x, y)) (22)

for all x, y ∈ P with Sx 
= T y. Thus, S, T is an MVFCP, and therefore, from
Theorem1 it follows that S, T have a CBPP.

Next, we present an example in which the pair (P,Q) satisfies only the weak
P-property but not the P-property.

Example 1 Consider X = R
2 with usual metric �(x, y) = |x − y| for all x, y ∈

X. Let P = {(−7, 0), (0, 2), (7, 0)} and Q = {(x, y) : y = 3 + √
3 − x2, x ∈

[−√
3,

√
3]}. Then �(P,Q) = 2 and P0 = {(0, 2)}, Q0 = {(√3, 3), (−√

3, 3)}.
Figure1 illustrates the graph of the setQ (i.e., the function y = 3 + √

3 − x2, x ∈
[−√

3,
√
3]).

Define two multivalued mappings S, T : P → CB(Q) by

S(−7, 0) = {(−√
3, 3), (−√

2, 4)}, S(0, 2) = {(√3, 3)}, S(7, 0) = {(√3, 3), (
√
2, 4)}
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(7,0)(-7,0) (1.732,0)(-1.732,0)

(0,2)

(1.732,3)(-1.732,3)

(0,4.732)

Fig. 1 Plot of the function y = 3 + √
3 − x2, x ∈ [−√

3,
√
3]

and

T (−7, 0) = {(0, 3 + √
3)}, T (0, 2) = {(√3, 3), (−√

3, 3)}, S(7, 0) = {(√2, 4), (
√
2, 4)}.

It can be verified that S, T is a MVFCP with F(t) = ln t, t > 0 and λ = ln 2 and
also S, T are H-continuous.

Finally, we have that�((0, 2), (
√
3, 3)) = �((0, 2), (−√

3, 3)) = 2 = �(P,Q)

but �((0, 2), (0, 2)) = 0 < �((
√
3, 3), (−√

3, 3)) = 2
√
3.

Thus, (P,Q) has weak P-property but the P-property and all conditions of
Theorem1 are satisfied. Also, we have

Δ((0, 2), T (0, 2)) = Δ((0, 2), S(0, 2)) = �(P,Q) = 2.

Hence (0, 2) is a CBPP of S, T .

3 Conclusion

We have established some new CBPP results for multivalued mappings using F-
contraction. The main result has been illustrated graphically with an example. Our
results provide extensions of some renowned theorems in literature such as [4, 8,
18]. The results of these articles may be considered as particular cases of our work
when both the mappings in the pair are identical or when single-valued mappings
are considered.
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Acknowledgements The authors are thankful to the learned referees for their constructive com-
ments which resulted in the improvement of the manuscript.

References
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Best Proximity Point Theorems via Some
Generalized Notions

Somayya Komal and Poom Kumam

Abstract In this chapter, we have obtained interesting results regarding best prox-
imity points with the help of different routes in analysis. By using Z-contraction,
we defined a useful approach for finding best proximity points. Also, described
some useful notions related to the existence of optimal approximate solutions with
uniqueness. Furthermore, these results are extended to some existing results in the
literature.

1 Introduction

During the last thirty years, the research in fixed points theory has attained a lot of
importance in the system of nonlinear functional analysis. Especially, the ways, as
well as the notions in functional analysis, have been applied in other areas of applied
mathematics as well as the rest of the categories in science and engineering. The very
fundamental theorem Banach Contraction Mapping Principle (BCMP) is introduced
by Banach [1] in 1922.

However, in case of non-self mapping, the theorems in the field of fixed points
are not specified to assure valid solutions for the equation Fg = g, where F is not a
self mapping. Research in the era of fixed points for non-self mappings on various
abstract spaces got a lot of attention of many mathematicians.

Accurately, for a provided closed subsets G �= φ and H �= φ in complete metric
space (Y, d), it is not necessary that a contraction mapping F : G → H has a fixed
point, that is, d(Fg, g) �= 0. In this situation, it is simple to find a point g ∈ Y such
that d(g, Fg) is least. Let G and H be closed subsets of a metric space (Y, d) and a
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mapping F : G → H . An element g ∈ G for which d(g, Fg) = d(G, H) is called
best proximity point of F . If G ∩ H �= φ then a best proximity point becomes a
fixed point of F . One can say that the best proximity point is used to find a fixed
point if the mapping under discussion is supposed to be self mapping. Best proximity
point theorems are simple and easy generalizations of the BCMP. In corresponding
approach, the first result was given by Fan [3] in 1969.

Now, by studying some historical literature review deeply, we came to know the
following facts:
In 1968, Kannan [2] mentioned some results on fixed points.
In 1972, Chatterjea [4] also worked out for fixed point theorems.
In 2003, [5] Kirk, Srinivasan, and Veeramani discussed fixed points for mappings
satisfying cyclical contractive conditions.
In 2008, Suzuki [6] introduced generalized Banach contraction principle which char-
acteristics in metric spaces.
In 2011, Sadiq Basha [7, 8] described best proximity point theorems.
In 2012, Raj [9] and Wardowski [10] demonstrated nice best proximity point theo-
rems in metric spaces.
In 2013, Basha, Shahzad and Jeyaraj [11] discussed about best proximity points
briefly.
In 2015, Roldn-Lpez-de-Hierro et al. [12] constructed Coincidence point theorems
on metric spaces by using simulation functions.
In 2015, Nastasi and Vetro [14] investigated Fixed point results.
In 2015, Argoubi, Samet and Vetro in [15] discussed nonlinear contractions involv-
ing simulation functions.
In 2016, Olgun [16] described nice expression regarding to Picard operators via sim-
ulation functions.
In 2016, Kasamsuk Ungchittrakool [17] introduced new contractions. In the same
year, we developed some useful best proximity point theorems, see [18].
In 2019, Neog et al. [19] did wonderful work on common fixed point theorems.
In 2020, Debnath and Sirivastava [20, 21] proved fixed point results with different
approach.
Debnath [22–24] has a number of quality workpieces in the area of fixed points and
best proximity points. They proposed their results with the help of examples as well.
Giving reference of researches above, it seems useful to study [17, 18].

2 Preliminaries

Now, let’s discuss a few common, as well as useful, notations which are useful tools
to study about optimal approximate solutions in this chapter. Let G �= φ and H �= φ
are subsets of a metric space (Y, d).

G0 = {g ∈ G : d(g, h) = d(G, H) for some h ∈ H},
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H0 = {h ∈ H : d(g, h) = d(G, H) for some g ∈ G},

d(G, H) = inf{d(g, h) : g ∈ G, h ∈ H}.

Definition 1 ([18]) Let (Y, d) be a metric space and G �= φ, H �= φ be subsets of
Y . An element g ∈ Y is said to be best proximity point for F : G → H if

d(g, Fg) = d(G, H).

Obviously, if d(G, H) = 0, then a best proximity point coincides a fixed point.More-
over, for all g ∈ G then d(g, Fg) ≥ d(G, H), the function g �→ d(g, Fg) attains its
global minimum at a best proximity point.

Definition 2 ([17]) Given G �= φ and H �= φ be subsets of a metric space (Y, d).
Let mappings C : G → H and S : G → H , the pair (S,C) is called K−cyclic con-
traction if there exists a constant 0 ≤ k < 1

2 such that

d(Cg, Sh) ≤ k(d(g,Cg) + d(h, Sh)) + (1 − 2k)d(G, H) (1)

for all g ∈ G and h ∈ H .

Definition 3 ([13]) Let a mapping ζ : [0,∞) × [0,∞) → R, then ζ is said to be
simulation function if:

1. ζ(0, 0) = 0;
2. ζ(q, p) < p − q for q, p > 0;
3. if {qn}, {pn} are sequences in (0,∞) such that

lim
n→∞ qn = lim

n→∞ pn > 0,

then
lim sup
n→∞

ζ(qn, pn) < 0.

We denote the set of all simulation functions by Z.

Definition 4 ([9]) Let (G, H) be a pair of non-empty subsets of ametric space (Y, d)
with G0 �= φ. Then the pair (G, H) is said to have the P-property if and only if

d(g1, h1) = d(G, H) and d(g2, h2) = d(G, H) ⇒ d(g1, g2) = d(h1, h2),

where g1, g2 ∈ G0 and h1, h2 ∈ H0.



14 S. Komal and P. Kumam

Theorem 1 ([18]) Let (G, H) be the pair of closed subsets of a complete metric
space (Y, d) �= φ such that G0 �= φ. Define a mapping R : G → H satisfying:

1. R is Z-contraction with R(G0) ⊆ H0;
2. the pair (G, H) has weak P-property.

Then there exists unique best proximity point in G and the iteration sequence {g2n}
defined by

d(g2n+2, g2n+1) = d(G, H), n = 0, 1, 2, . . .

converges, to g∗, for every g0 ∈ G0.

Definition 5 ([17]) Let G �= φ and H �= φ be subsets of a metric space (Y, d) and
let S : H → G be a mapping. A mapping C : G → H is called generalized non-self
Kannan and Chatterjea mapping w.r.t the mapping S if

d(Cg,Ch) ≤ k1d(g, h) + k2(d(g, SCg) + d(h, SCh)) + k3(d(g, SCh) + d(h, SCg))

for all g, h ∈ G where k1, k2, k3 non-negative constants such that k1 + 2k2 + 2k3
< 1.

Theorem 2 ([17]) Let G �= φ and H �= φ be closed subset of a complete metric
space (Y, d) and assume S : H → G and C : G → H be two mappings such that
S is Lipschitzian mapping with Lipschitz constant L ≥ 1. The pair (S,C) forms a
weak K -cyclic contraction. Also, C is generalized non-self Kannan and Chatterjea
mapping w.r.t the mapping S. Then there exist elements g ∈ G and h ∈ H such that

d(g,Cg) = d(G, H)

d(h, Sh) = d(G, H)

d(g, h) = d(G, H)

If g0 is any fixed element in G with g2n+1 = Cg2n and g2n = Sg2n−1, then the
sequences {g2n} and {g2n+1} converge to some best proximity points of C and S.
Furthermore, if g∗ is another best proximity point of C, then

d(g, g∗) ≤ 2(1 + 2(k2 + k3))

1 − (k1 + 2k3)
d(G, H).

3 Best Proximity Results for Z-Contraction and Its
Generalizations

Now, here we try to attempt the best proximity theorems with beautiful conditions
and nice proof patterns. Also, the idea of non-self Z-contraction defined in [18] can
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be used here to extend the results of [17]. After recalling some notions of [18], we
express our results in this section.

Definition 6 ([18]) Let (Y, d) be a metric space, R : G → H is a mapping and
ζ ∈ Z . Then R is called a Z-contraction with respect to ζ if

ζ(d(Rg, Rh), d(g, h)) ≥ 0 (2)

where G, H ⊆ X and g, h ∈ G, with g �= h.

Definition 7 ([18]) Let (Y, d) be a metric space, R : G → H is a mapping and
ζ ∈ Z . Then R is called a Suzuki typeZ-contractionwith respect to ζ if the following
condition holds:

1

2
d(g, Rg) < d(g, h) ⇒ ζ(d(Rg, Rh), d(g, h)) ≥ 0 (3)

where G, H ⊆ Y and g, h ∈ G, with g �= h.

Remark 1 ([18]) Since

1

2
d(g, Rg) < d(g, h) ⇒ d(Rg, Rh) < d(g, h)

for some different g, h ∈ G.

Remark 2 ([18]) Each Suzuki type Z-contraction is also a Z-contraction.

With the interpretation of some above mentioned known notions, we are able to
define our results

Theorem 3 Let G �= φ and H �= φ be closed subsets of a complete metric space
(Y, d). Define R : G → H and Q : H → G with Q(H0) ⊆ G0, where R is Z-
contraction with R(G0) ⊆ H0 and Q is contraction mapping with Lipschitz constant
L that is, 0 ≤ L < 1 and the pair (G, H) has P-property such that G0 is non-empty.
Then there exists unique best proximity point g of R inG and h of Q in H, respectively,
with d(g, h) = d(G, H).

Proof Since G0 is non-empty, so pick up an element g0 in G0 be fixed. Then there
exists h0 in H such that d(g0, h0) = d(G, H). Then for g1 in G0, we get h1 in H0

such that d(g1, h1) = d(G, H). In a similar fashion, we able to construct a sequence
{gn} in G0 and {hn} in H0. Since H is closed. For this, let us take {hn} ⊆ H0 a
sequence such that hn → h ∈ H. Since the pair (G, H) has P-property, it clears
from the P-property that

d(hn, hm) → 0 ⇒ d(gn, gm) → 0,

as m, n → ∞, and gn, gm ∈ G0 and d(gn, hn) = d(gm, hm) = d(G, H).
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Thus, {gn} is a Cauchy sequence in G0 and converges strongly to a point g ∈ G0

and {hn} is a Cauchy sequence in H0 and converges strongly to a point h ∈ H0. By the
continuity of the metric d, we have d(g, h) = d(G, H), that is h ∈ H0 and g ∈ G0.
Hence, G0 and H0 are closed.

Since R is Z-contraction, it shows that

0 ≤ ζ(d(Rg1, Rg2), d(g1, g2))

< d(g1, g2) − d(Rg1, Rg2),

implies that
d(Rg1, Rg2) < d(g1, g2). (4)

Furthermore, it can be seen that

d(QRg2n, QRg) ≤ Ld(Rg2n, Rg) < d(g2n, g)

By taking limit n → ∞, with the fact that 0 ≤ L < 1, we can calculate as

lim
n→∞ d(Rg2n, Rg) → 0,

which means that d(h, Rg) = 0, where R(G0) ⊆ H0, then Rg2n = h ∈ H0 that is,
Cg = h.

Furthermore, we also observed that

d(RQh2n, RQh) < d(Qh2n, Qh) ≤ Ld(h2n, h).

By taking limit n → ∞, with the fact that 0 ≤ L < 1, we can calculate as

lim
n→∞ d(Qh2n, Qh) → 0,

which means that d(g, Qh) = 0, where Q(H0) ⊆ G0, implies that Qh2n = g ∈ G0

that is, Qh = g. Since the pair (G, H) has the P-property, then from d(gn, hn) =
d(gm, hm) = d(G, H) and after taking limit n → ∞, we have d(g, h) = d(G, H).

Since Rg = h and Qh = g, thus, from d(g, h) = d(G, H),we got unique best prox-
imity points of R and Q, respectively, as d(g, Rg) = d(G, H) and d(h, Rh) =
d(G, H). This completes the proof.

Theorem 4 Let G �= φ and H �= φ be closed subsets of a complete metric space
(Y, d). Define R : G → H and Q : H → G with Q(H0) ⊆ H0, where R is Suzuki
TypeZ-contraction with R(G0) ⊆ H0 and Q is a non-self contraction mapping with
Lipschitz constant L that is, 0 ≤ L < 1 and the pair (G, H) has P-property such
that G0 is non-empty. Then there exists unique best proximity points xg of R in G
and h of Q in H, respectively, with d(g, h) = d(G, H).
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Proof Let g0 be a fixed element G0. Then there exists h0 in H0 such that d(g0, h0) =
d(G, H). Since G0 is non-empty, so for g1 in G0, we get h1 in H0 such that
d(g1, h1) = d(G, H). In a similar fashion, we are able to construct a sequence {gn}
in G and {hn} in H. Since H is closed. For this, let us take {hn} ⊆ H0 a sequence
such that hn → h ∈ H. Since the pair (G, H) has P-property, it is clear from the
P-property that

d(hn, hm) → 0 ⇒ d(gn, gm) → 0,

as m, n → ∞, and gn, gm ∈ G0 and d(gn, hn) = d(gm, hm) = d(G, H).

Thus, {gn} is a Cauchy sequence in G0 and converges strongly to a point g ∈ G0

and {hn} is a Cauchy sequence in H0 and converges strongly to a point h ∈ H0. By the
continuity of the metric d, we have d(g, h) = d(G, H), that is h ∈ H0 and g ∈ G0.
Hence, G0 and H0 are closed.

Since R is Suzuki TypeZ-contraction, such that for 1
2d(g1, Rg1) < d(g1, h1), we

have

0 ≤ ζ(d(Rg1, Rg2), d(g1, g2))

< d(g1, g2) − d(Rg1, Rg2),

implies that
d(Rg1, Rg2) < d(g1, g2). (5)

Since every Suzuki type Z-contraction is a Z-contraction, following this note, we
proceed with the proof in a similar way as for Z-contraction. Furthermore, it can be
seen that

d(QRg2n, QRg) ≤ Ld(Rg2n, Rg) < d(g2n, g)

By taking limit n → ∞, with the fact that 0 ≤ L < 1, we can calculate

lim
n→∞ d(Rg2n, Rg) → 0,

which means that d(h, Rg) = 0, where R(G0) ⊆ H0, so Rg2n = h ∈ H0, that is,
T g = h.

On the other hand, we also observed that

d(RQh2n, RQh) < d(Qh2n, Qh) ≤ Ld(h2n, h).

By taking limit n → ∞, with the fact that 0 ≤ L < 1, we can calculate

lim
n→∞ d(Qh2n, Qh) → 0,

which means that d(g, Qh) = 0, where Q(H0) ⊆ G0, then Qh2n = g ∈ G0, that
is, Qh = g. Since the pair (G, H) has the P-property, then from d(gn, hn) =
d(gm, hm) = d(G, H) after taking limit n → ∞, we have d(g, h) = d(G, H). Since
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Rg = h and Qh = g. Thus, from d(g, h) = d(G, H), we got unique best proximity
point of R and Q, respectively, as d(g, Rg) = d(G, H) and d(h, Rh) = d(G, H).

This completes the proof.

4 Best Proximity Results in Some Other Generalized
Contractions

The extensionof the results of [18] is not finishedyet by the onlywayofZ-contraction
and Suzuki Type Z-contraction. Next, in this chapter, with the help of [18], we
introduce some new and generalized contractions and notions which will further
mention the proof lines for best proximity points.

Definition 8 Let G and H be non-empty subsets of a metric space (Y, d) and let
S : H → G be a mapping. A mapping C : G → H is said to be K -generalized non-
self Kannan and Chatterjea mapping w.r.t the mapping S if

d(Cg,Ch) ≤ k1d(g, h) + k2(d(g, SCg) + d(h, SCh)) + k3(d(g, SCh)

+d(h, SCg)) + k4d(SCg, SCh)

for every g, h ∈ G, where k1, k2, k3, k4 are non-negative constants such that k1 +
2k2 + 2k3 + k4 < 1 and d(Sg, Sh) ≤ λd(g, h), where 0 ≤ λ = k

1−k < 1 and k =
k1 + k2 + k3 + k4.

Definition 9 Let G �= φ and H �= φ be subsets of a metric space (Y, d) and let
C : G → H and S : H → G be two mappings. Then the pair (S,C) is said to form
a generalized K -cyclic contraction if there exists a non-negative real number k < 1

3
such that

d(Cg, Sh) ≤ k[d(g, h) + d(g,Cg) + d(h, Sh)] + (1 − 3k)d(G, H)

for all g ∈ G and h ∈ H.

Theorem 5 Let G and H be non void closed subset of a complete metric space
(Y, d) and assume S : H → G and C : G → H be two mappings such that C is
K -generalized non-self Kannan and Chatterjea mapping w.r.t mapping S and the
pair (S,C) constructs a generalized K -cyclic contraction. Then there exist elements
g ∈ G and h ∈ H such that

d(g,Cg) = d(G, H)

d(h, Sh) = d(G, H)

d(g, h) = d(G, H).
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If g0 is any fixed element in G with g2n+1 = Cg2n and g2n = Sg2n−1, then the
sequences {g2n} and {g2n+1} converge to some best proximity points of C and S.
Furthermore, if g∗ is another best proximity point of T , then

d(g, g∗) ≤ 2(1 + 2(k2 + k3 + k4))

1 − (k1 + 2k3 + k4)
d(G, H).

Proof Let us choose an element g0 ∈ G and then generate a sequence {g2n} in G and
{g2n+1} in H by g2n = Sg2n−1 and g2n+1 = T g2n for all n ≥ 1 and n ≥ 0, respectively.
It is seen that

d(g2n, g2n+2) = d(Sg2n−1, Sg2n+1)

≤ λd(g2n−1, g2n+1)

= λd(Cg2n−2,Cg2n)

≤ λ(k1d(g2n−2, g2n)

+ k2(d(g2n−2, SCg2n−2) + d(g2n, SCg2n))

+ k3(d(g2n−2, SCg2n) + d(g2n, SCg2n−2))

+ k4(d(SCg2n−2, SCg2n)))

= λ(k1d(g2n−2, g2n)

+ k2(d(g2n−2, g2n)) + d(g2n, g2n+2))

+ k3(d(g2n−2, g2n+2) + d(g2n, g2n))

+ k4(d(g2n+2, g2n)))

≤ λ(k1d(g2n−2, g2n)

+ k2(d(g2n−2, g2n) + d(g2n, g2n+2))

+ k3(d(g2n−2, g2n) + d(g2n, g2n+2))

+ k4(d(g2n+2, g2n)))

= λ(k1 + k2 + k3)d(g2n−2, g2n)

+ λ(k2 + k3 + k4)d(g2n, g2n+2)

From the above calculations we obtain

d(g2n, g2n+2) ≤ λ(k1 + k2 + k3)

1 − λ(k2 + k3 + k4)
d(g2n−2, g2n) (6)

By using mathematical induction, we get

d(g2n, g2n+2) ≤ λ(k1 + k2 + k3)

1 − λ(k2 + k3 + k4)

n

d(g0, g2) (7)

Since 0 ≤ λ < 1, it is clear that {g2n} is a Cauchy sequence in G and so converges
to some element g in G. In the same fashion, it is seen that
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d(g2n+1, g2n+3) = d(Cg2n,Cg2n+2)

≤ k1d(g2n, g2n+2)

+ k2(d(g2n, SCg2n) + d(g2n+2, SCg2n+2))

+ k3(d(g2n, SCg2n+2) + d(g2n+2, SCg2n))

+ k4d(SCg2n, SCg2n+2)

= k1d(Sg2n−1, Sg2n+1)

+ k2(d(Sg2n−1, Sg2n+1) + d(Sg2n+1, Sg2n+3))

+ k3(d(Sg2n−1, Sg2n+3) + d(Sg2n+1, Sg2n+1))

+ k4d(Sg2n+1, Sg2n+3)

≤ λk1d(g2n−1, g2n+1)

+ k2λ(d(g2n−1, g2n+1) + d(g2n+1, g2n+3))

+ k3λ(d(g2n−1, g2n+3)

+ k4λd(g2n+1, g2n+3)

≤ λk1d(g2n−1, g2n+1)

+ k2λ(d(g2n−1, g2n+1)) + d(g2n+1, g2n+3))

+ k3λ(d(g2n−1, g2n+1) + d(g2n+1, g2n+3))

+ k4λd(g2n+1, g2n+3)

= λ(k1 + k2 + k3)d(g2n−1, g2n+1)

+ λ(k2 + k3 + k4)d(g2n+1, g2n+3)

It follow that

d(g2n+1, g2n+3) ≤ λ(k1 + k2 + k3)

1 − λ(k2 + k3 + k4)
d(g2n−1, g2n+1) (8)

Thus, from the mathematical induction, we can write

d(g2n+1, g2n+3) ≤ λ(k1 + k2 + k3)

1 − λ(k2 + k3 + k4)

n

d(g1, g3) (9)

Thus, we obtain {g2n+1}, which is a Cauchy sequence in H and hence converges to
some element h ∈ H. Also, we can see that
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d(g2n+2, SCg) = d(SCg2n, SCg) ≤ λd(Cg2n,Cg)

= λd(g2n+1,Cg) ≤ λ(k1d(g2n, g)

+ k2(d(g2n, SCg2n) + d(g, SCg))

+ k3(d(g2n, SCg) + d(g, SCg2n))

+ k4d(SCg, SCg2n))

= λk1d(g2n, g)

+ k2(d(g2n, g2n+2) + d(g, SCg))

+ k3(d(g2n, SCg) + d(g, g2n+2))

+ k4d(SCg, g2n+2)

Let us take limit n → ∞, it calculates as follows:

d(g, SCg) ≤ λd(h,Cg) ≤ λ(k2 + k3 + k4)d(g, SCg). (10)

Since 0 ≤ λ(k2 + k3 + k4) < 1, which shows that d(h, T g) = 0 and hence T g = h.
Similarly, we also investigate that

d(g2n+3,CSh) = d(CSg2n+1,CSh)

≤ k1d(Sg2n+1, Sh)

+ k2(d(Sg2n+1, SCSg2n+1) + d(Sh, SCSh))

+ k3(d(Sg2n+1, SCSh) + d(Sh, SCSg2n+1))

+ k4d(SCSg2n+1, SCSh))

≤ k1λd(g2n+1, h)

+ k2d(Sg2n+1, g2n+4) + k2λd(h,CSh))

+ k3λ(d(g2n+1,CSh) + d(h, g2n+3))

+ k4d(g2n+3,CSh)

= k1λd(g2n+1, h)

+ k2d(Sg2n+1, Sg2n+3) + k2λd(h,CSh))

+ k3λ(d(g2n+1,CSh) + d(h, g2n+3))

+ k4d(g2n+3,CSh)

≤ k1λd(g2n+1, h)

+ k2λ(d(g2n+1, g2n+3) + d(h,CSh))

+ k3λ(d(g2n+1,CSh) + d(h, g2n+3))

+ k4d(g2n+3,CSh)

Letting n → ∞, it gives us as
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d(h,CSh) ≤ k2d(Sh, g) + λ(k2 + k3 + k4)d(h,CSh)

≤ λ(k2 + k3 + k4)d(h,CSh).

This concludes that d(Sh, g) = 0 and so Sh = g. Since the pair (S,C) forms a
generalized K -cyclic contraction, it follows that there exists k ∈ [0, 1

3 ) such that

d(g, h) = d(Cg, Sh)

≤ k[d(g,Cg) + d(h, Sh) + d(g, h)] + (1 − 3k)d(G, H)

= 3kd(g, h) + (1 − 3k)d(G, H).

It guarantees that
(1 − 3k)d(g, h) ≤ (1 − 3k)d(G, H)

hence we obtain
d(g, h) = d(G, H),

d(g,Cg) = d(G, H),

and
d(h, Sh) = d(G, H).

We can conclude that g and h are best proximity points of C and S, respectively. If
we consider that g∗ is one more best proximity point of C , then

d(G, H) = d(g∗,Cg∗) = d(Cg∗, SCg∗)

In this manner, observations are as follows:

d(g, g∗) ≤ d(g,Cg) + d(Cg,Cg∗) + d(g∗,Cg∗)
≤ 2d(G, H) + k1d(g, g

∗) + k2d(g, SCg)

+ d(g∗, SCg∗) + k3(d(g, SCg∗) + d(g∗, SCg))

+ k4d(SCg, SCg∗))
≤ 2d(G, H) + k1d(g, g

∗) + k2(d(g,Cg)

+ d(Cg, SCg) + d(g∗,Cg∗) + d(Cg∗, SCg∗))
+ k3(d(g, g

∗) + d(g∗,Cg∗) + d(Cg∗, SCg∗)
+ d(g∗, g) + d(g,Cg) + d(Cg, SCg))

+ k4d(SCg,Cg) + k4d(SCg∗,Cg∗) + d(Cg,Cg∗)
≤ 2d(G, H) + k1d(g, g

∗) + k2(d(g,Cg)

+ d(Cg, SCg) + d(g∗,Cg∗) + d(Cg∗, SCg∗))
+ k3(d(g, g

∗) + d(g∗,Cg∗) + d(Cg∗, SCg∗)
+ d(g∗, g) + d(g,Cg) + d(Cg, SCg))

+ k4d(SCg,Cg) + k4d(SCg∗,Cg∗) + k4d(g,Cg) + k4d(g
∗,Cg∗) + k4d(g, g

∗)
≤ 2d(G, H) + (k1 + 2k3 + k4)d(g, g

∗)
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+ (k2 + k3 + k4)[d(g, T g) + d(Cg, SCg) + d(g∗,Cg∗) + d(Cg∗, SCg∗)]
= 2d(G, H) + (k1 + 2k3 + k4)(d(g, g

∗)
+ 4(k2 + k3 + k4)d(G, H)

= 2(1 + 2(k2 + k3 + k4))d(G, H) + (k1 + 2k3 + k4)d(g, g
∗)

Thus, d(g, g∗) ≤ 2(1+2(k2+k3+k4))
1−(k1+2k3+k4)

d(G, H). Hence, proved the theorem.

5 Example

Next, an example is proposed in the favor of our proposed work.

Example 1 Let C[0,π] = {[0,π] → R | f is continuous} with supermum norm.
Let us construct

G = { fα := 1 − α cos(·)‖ α ∈ [0, 1]}, H = {gβ := β cos(·) − 1 | β ∈ [0, 1]}.
(11)

It seems not difficult to prove that G, H ⊆ C[0,π] and G ∩ H = ∅ then d(G, H) =
2.

Define the mappings C : G → H and S : H → G by

C( fα) = − f0.1√α = g0.1
√

α = 0.1
√

α cos(·) − 1,

S(gβ) = −g0.25+0.55β2 = f0.25+0.55β2 = 1 − (0.25 + 0.55β2) cos(·) (12)

for all α,β ∈ [0, 1] as appeared in Fig. 1.
All conditions of Theorem (5) are satisfied here.

Solution: First, we consider

d(C( fα1),C( fα2)) = ‖C( fα1) − C( fα2)‖
= ‖0.1√α1 cos(·) − 1 − (0.1

√
α2 cos(·) − 1)‖

= 0.1|√α1 − √
α2|‖ cos(·)‖

= 0.1|√α1 − √
α2|.

So

d(C( fα1),C( fα2)) = 0.1|√α1 − √
α2|. (13)

On the other hand, let us assume
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Fig. 1 G and H in the function space (C[0,π], ‖ · ‖)

d( fα1 , SC( fα1)) = ‖ fα1 − SC( fα1)‖
= ‖1 − α1 cos(·) − SC(1 − α1 cos(·))‖
= ‖1 − α1 cos(·) − S(0.1

√
α1 cos(·) − 1)‖

= ‖1 − α1 cos(·) − (1 − (0.25 + 0.55(0.01α1)) cos(·))‖
= ‖1 − α1 cos(·) − (1 − (0.25 + 0.0055α1) cos(·))‖
= |0.25 + 0.0055α1 − α1|‖ cos(·)‖
= |0.25 − 0.9945α1|‖ cos(·)‖
= |0.25 − 0.9945α1|.

Hence

d( fα1 , SC( fα1)) = |0.25 − 0.9945α1|. (14)

d( fα2 , SC( fα2)) = ‖ fα2 − SC( fα2)‖
= ‖1 − α2 cos(·) − SC(1 − α2 cos(·))‖
= ‖1 − α2 cos(·) − S(0.1

√
α2 cos(·) − 1)‖

= ‖1 − α2 cos(·) − (1 − (0.25 + 0.55(0.01α2)) cos(·))‖
= ‖1 − α2 cos(·) − (1 − (0.25 + 0.0055α2) cos(·))‖
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= |0.25 + 0.0055α2 − α2|‖ cos(·)‖
= |0.25 − 0.9945α2|‖ cos(·)‖
= |0.25 − 0.9945α2|.

So

d( fα2 , SC( fα2)) = |0.25 − 0.9945α2|. (15)

d( fα1 , SC( fα2)) = ‖ fα1 − SC( fα2)‖
= ‖1 − α1 cos(·) − SC(1 − α2 cos(·))‖
= ‖1 − α1 cos(·) − S(0.1

√
α2 cos(·) − 1)‖

= ‖1 − α1 cos(·) − (1 − (0.25 + 0.55(0.01α2)) cos(·))‖
= ‖1 − α1 cos(·) − (1 − (0.25 + 0.0055α2) cos(·))‖
= |0.25 + 0.0055α2 − α1|‖ cos(·)‖
= |0.25 + 0.0055α2 − α1|.

Thus

d( fα1 , SC( fα2)) = |0.25 + 0.0055α2 − α1|. (16)

d( fα2 , SC( fα1)) = ‖ fα1 − SC( fα1)‖
= ‖1 − α2 cos(·) − SC(1 − α1 cos(·))‖
= ‖1 − α2 cos(·) − S(0.1

√
α1 cos(·) − 1)‖

= ‖1 − α2 cos(·) − (1 − (0.25 + 0.55(0.01α1)) cos(·))‖
= ‖1 − α2 cos(·) − (1 − (0.25 + 0.0055α1) cos(·))‖
= |0.25 + 0.0055α1 − α2|‖ cos(·)‖
= |0.25 + 0.0055α1 − α2|,

Thus

d( fα2 , SC( fα1)) = |0.25 + 0.0055α1 − α2|, (17)

d(SC( fα1), SC( fα2)) = ‖SC( fα1) − SC( fα2)‖
= ‖SC(1 − α1 cos(·))
− SC(1 − α2 cos(·))‖
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= ‖S(0.1√α1 cos(·) − 1)

− S(0.1
√

α2 cos(·) − 1)‖
= ‖(1 − (0.25 + 0.55(0.01α1)) cos(·))
− (1 − (0.25 + 0.55(0.01α2)) cos(·))‖
= 0.0055|α1 − α2|‖ cos(·)‖
= 0.0055|α1 − α2|.

d(SC( fα1), SC( fα2)) = 0.0055|α1 − α2|. (18)

For convenience of writing, let s = α1 and t = α2. Now, it is sufficient to show that
from (14), (15), (16), (17), and (18)

0.1|√s − √
t | ≤ 0.3445|s − t | + 0.15|0.25 − 0.9945s| + 0.15|0.25 − 0.9945t |

+0.15|0.25 + 0.0055y − s| + 0.15|0.25 + 0.0055s − t |
+0.0055|s − t |.

or equivalently,

0.1|√s − √
t | ≤ 0.3|s − t | + 0.15|0.25 − 0.9945s| + 0.15|0.25 − 0.9945t |

+0.15|0.25 + 0.0055t − s| + 0.15|0.25 + 0.0055s − t |
+0.15|s − t |.

We can write it as follows:

0.1|√s − √
t | ≤ 0.45|s − t | + 0.15|0.25 − 0.9945s| + 0.15|0.25 − 0.9945t |

+0.15|0.25 + 0.0055t − s| + 0.15|0.25 + 0.0055s − t |.

for all s, t ∈ [0, 1]. Next, we have

U (s, t) = 0.1|√s − √
t |

V (s, t) = 0.45|s − t | + 0.15|0.25 − 0.9945s| + 0.15|0.25 − 0.9945t |
+0.15|0.25 + 0.0055t − s| + 0.15|0.25 + 0.0055s − t |

for all s, t ∈ [0, 1].
The two surfaces U (s, t) and V (s, t) can be illustrated as two-dimensional and

three-dimensional in Fig. 2 and B, respectively.
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Fig. 2 Two surfaces U (s, t)) ≤ V (s, t) in 2-D, Two surfaces U (s, t)) ≤ V (s, t)

Two surfaces U(s, t)) ≤ V (s, t).

To show the validity of (19), it is required to divide the unit square [0, 1] × [0, 1]
of st−plane into six parts, for reference see Fig. 3.

Next, we will show that (19) is true on area G1,G2,G3,G4,G5, and G6.
(1) The area G1 = {(s, t) ∈ [0, 1]2 | t ≤ s ≤ 0.25 + 0.0055t}.
Then we get |√s − √

t | = (
√
s − √

t), |s − t | = (s − t) and |0.25 + 0.0055t −
s| = (0.25 + 0.0055t − s) for all (s, t) ∈ G1.

Since (s, t) ∈ G1 then t ≤ s ≤ 0.25 + 0.0055t ≤ 0.25 + 0.0055s which implies
that 0.9945s ≤ 0.25, 0.9945t ≤ 0.25 and t ≤ 0.25 + 0.0055s.
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Fig. 3 G1 = A1,G2 =
A2,G3 = A3,G4 =
A4,G5 = A5 and G6 = A7
on the unit square

We obtain |0.25 − 0.9945s|=(0.25 − 0.9945s), |0.25 − 0.9945t |=(0.25 −
0.9945t), and |0.25 + 0.0055s − t | = (0.25 + 0.0055s − t).

Thus, we consider

0.45|s − t | + 0.15|0.25 − 0.9945s|
+0.15|0.25 − 0.9945t |

+0.15|0.25 + 0.0055t − s|
+0.15|0.25 + 0.0055s − t | = 0.45(s − t) + 0.15(0.25 − 0.9945s)

+0.15(0.25 − 0.9945t) + 0.15(0.25 + 0.0055t − s)

+0.15(0.25 + 0.0055s − t)

= 0.45s − 0.45t + 0.0375 − 0.149175s

+0.0375 − 0.149175t + 0.0375 + 0.000825t − 0.15s

+0.0375 + 0.000825s − 0.15t

= s(0.45 − 0.149175 − 0.15 + 0.000825)

+t (−0.45 − 0.149175 + 0.000825 − 0.15)

+(0.0375 + 0.0375 + 0.0375 + 0.375)

= 0.15165s − 0.74835t + 0.15.

Thus, it is sufficient to show that

0.1(
√
s − √

t) ≤ 0.15165s − 0.74835t + 0.15

or equivalently to prove

0.1
√
s − 0.15165s ≤ 0.1

√
t − 0.74835t + 0.15 (19)
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Let us define

ϕ(s) = 0.1
√
s − 0.15165s (20)

ψ(t) = 0.1
√
t − 0.74835t + 0.15 (21)

for all s, t ∈ [
0, 500

1989

]
. It is easy to prove that

ϕ
′
(s) = 0.05√

s
− 0.15165 > 0 (22)

for all s ∈ (0, 500
1989 ). Hence, ϕ is an increasing function on

[
0, 500

1989

]
which is implies

that

0.1
√
s − 0.15165s ≤ ϕ

(
500

1989

)

= 0.1

√
500

1989
− 0.15165

(
500

1989

)

≈ 0.012016

for all s ∈ [
0, 500

1989

]
. On the other hand

ψ
′
(t) = 0.05√

t
− 0.74835 (23)

for all t ∈ (0, 500
1989 ). It is found that t = ( 0.05

0.74835 )
2 ≈ 0.004464 ∈ (0, 500

1989 ) is the crit-
ical point of ψ providing the absolute maximum value

ψ

((
0.05

0.74835

)2)
= 0.1

(
0.05

0.74835

)
− 0.74835

(
0.05

0.74835

)2

+ 0.15

≈ 0.153340

on
[
0, 500

1989

]
. We can see that ψ is an increasing function on

[
0, ( 0.05

0.74835 )
2
]
and ψ is

decreasing function on
[
( 0.05
0.74835 )

2, 500
1989

]
.Notice that the function starting point t = 0

provides the value ψ(0) = 0.15
(
> ϕ

(
500
1989

) ≈ 0.049728
)
and so t = 500

1989 provides
the absolute minimum value

ψ

(
500

1989

)
= 0.1

(√
500

1989

)
− 0.74835

(
500

1989

)
+ 0.15

≈ 0.012016

= ϕ

(
500

1989

)

on
[
0, 500

1989

]
. Therefore ψ

(
500
1989

) ≤ 0.1
√
t − 0.74835t + 0.15 for all t ∈ [

0, 500
1989

]
.
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Thus, we have

0.1
√
s − 0.15165s ≤ ϕ

(
500

1989

)

= ψ

(
500

1989

)

≤ 0.1
√
t − 0.74835t + 0.15

for all (s, t) ∈ G1.

(2) For the area G2 = {(s, t) ∈ [0, 1]2 | x ≥ 0.25 + 0.0055t and t ≤ 0.25 +
0.0055s}, we can examine from G1 to show that (19) satisfies for all (s, t) ∈ G2.

(3) For the area G3 = {(s, t) ∈ [0, 1]2 | 0.25 + 0.0055s ≤ t ≤ s}, from G1 we
see that (19) holds for every (s, t) ∈ G3.

It is being observed that the graph ofU (s, t) and V (s, t) has symmetry. Therefore,
(19) is also true for the areas

G4 = {(s, t) ∈ [0, 1]2 | s ≤ t ≤ 0.25 + 0.0055s}, (24)

G5 = {(s, t) ∈ [0, 1]2 | s ≤ 0.25 + 0.0055t, t ≥ 0.25 + 0.0055s}, (25)

G6 = {(s, t) ∈ [0, 1]2 | 0.25 + 0.0055t ≤ s ≤ t}. (26)

So, we can say that (19) is true for every s, t ∈ [0, 1]. It proves that non-self K -
generalized Kannan and Chatterjea mappings w.r.t the mapping S and constant k1 =
0.3, k2 = k3 = k4 = 0.15. As well as, we proved that

λ = k1 + k2 + k3 + k4
1 − (k1 + k2 + k3 + k4)

= 1 − (0.3 + 0.15 + 0.15 + 0.15)

0.3 + 0.15 + 0.15 + 0.15
≈ 0.333 < 1.

(27)
Now, it is being proved that the pair (S,C) is a generalized K − cyclic contraction.
Thus, we assume

d(C fα, Sgβ) = ‖C fα − Sgβ‖
= ‖C(1 − α cos(·)) − S(β cos(·)) − 1‖
= ‖(0.1√α cos(·) − 1) − (1 − (0.25 + 0.55(β2) cos(·))‖
= ‖(0.1√α + 0.25 + 0.55β2) cos(·) − 2‖
= 2

and then

d( fα,C fα) + d(gβ, Sgβ) + d( fα, gβ) = ‖ fα − C fα‖ + ‖gβ − Sgβ‖ + ‖ fα − gβ‖
= ‖1 − α cos(·) − C(1 − α cos(·))‖
+ ‖β cos(·) − 1 − S(β cos(·) − 1)‖
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+ ‖1 − α cos(·) − β cos(·) + 1‖
= ‖1 − α cos(·) − (0.1

√
α cos(·) − 1)‖

+ ‖β cos(·) − 2 + (0.25 + 0.55β2) cos(·)‖
+ ‖2 − (α + β) cos(·)‖
= ‖2 − (α + 0.1

√
0.1) cos(·)‖ + 2 + 2

= 6.

Thus, for some k ∈ [0, 1
3 ), we obtain

d(C fα, Sgβ) = 2

≤ 6k + 2(1 − 3k)

= k(d( fα,C fα) + d(gβ, Sgβ) + d( fα, gβ)) + (1 − 3k)d(A, B).

Therefore, the pair (S,C) is a generalized K − cyclic contraction. Hence proved.
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New Fixed-Figure Results on Metric
Spaces

Nihal Taş and Nihal Özgür

Abstract Geometric properties of the non-unique fixed points of a self-mapping
F are investigated on a metric space in the framework of the fixed-figure problem.
Mainly, we introduce new types of self-mappings of which fixed point set contains a
certain geometric figure (e.g. an Apollonius circle, a Cassini curve, a circle, an ellipse
or a hyperbola). This geometric figure is called a fixed figure (a fixed Apollonius
circle, a fixed Cassini curve and so on) of the corresponding self-mapping. Then,
using the classical techniques offixedpoint theory and appropriate auxiliary numbers,
we give new fixed-figure results. These kind geometric results are important in terms
of applications in the cases of non-unique fixed points.

1 Introduction

Non-unique fixed points have been appeared in both theoretical and applied studies
(see, for instance, [1, 3, 7–9, 14, 20, 31, 34, 38] and the references therein). Then,
the determination of the geometric properties of non-unique fixed points appears as
a natural problem in the non-unique fixed point theory and its applications. To this
direction, a new approach called the fixed-figure problem has been studied via the
known fixed point techniques in recent times. Briefly, this problem can be defined
as the determination of new contractive conditions to assure a geometric figure is
included in the fixed point set of a given self-mapping. Let (A,m) be a metric
space, F : A → A a self-mapping onA. Let us consider the fixed point set Fix(F) =
{a ∈ A : Fa = a} ofF. First, we recall that the circleCa0,r = {a ∈ A : m (a, a0) = r}
(resp. the disc Da0,r = {a ∈ A : m (a, a0) ≤ r}) is a fixed circle (resp. a fixed disc)
of F if Fa = a for all a ∈ Ca0,r (resp. for all a ∈ Da0,r ) (see [19, 24, 25]). More

N. Taş (B) · N. Özgür
Department of Mathematics, Balıkesir University, 10145 Balıkesir, Turkey
e-mail: nihaltas@balikesir.edu.tr

N. Özgür
e-mail: nihal@balikesir.edu.tr

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2022
P. Debnath et al. (eds.), Fixed Point Theory and Fractional Calculus, Forum for Interdis-
ciplinary
Mathematics, https://doi.org/10.1007/978-981-19-0668-8_3

33

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-19-0668-8_3&domain=pdf
mailto:nihaltas@balikesir.edu.tr
mailto:nihal@balikesir.edu.tr
https://doi.org/10.1007/978-981-19-0668-8_3
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generally, for a geometric figure F , if we have F ⊂Fix (F) then F is called a fixed
figure of F [27]. Using the Caristi’s inequality, the first solution of the fixed-figure
problem was given for the fixed circle case on metric spaces in [24]. Then, several
results have been investigated using appropriate auxiliary functions and approaches
such as Wardowski type, Khan type, Meir-Keeler type contractions on metric and
some generalizedmetric spaces (for instance, see [2, 5, 12, 17–19, 22, 23, 25, 28–30,
32, 33] and the references therein).

Theoretic results of the fixed point theory and geometric interpretations have
found important applications in the study of neural networks. For example, in [11],
by using fixed point theory, the stability of a stochastic neutral cellular neural net-
work was considered and a new criteria for exponential stability in mean square of
the considered stochastic neutral cellular neural network was obtained. Especially,
Krasnoselskii fixed point theoremwas used for the stability analysis. In [26], by using
of a special activation function whose fixed point set is an ellipse, an application to a
complex-valued Hopfield neural network (CVHNN) was given. For further studies
see [1, 6, 16, 21, 31, 36, 38] and the references therein.

In some recent studies, the fixed-figure problemwas considered for various special
cases. The interested reader can refer to [10, 12, 13, 25, 27, 37]. In [25], some fixed-
disc results were presented providing a new technique using the theory of simulation
functions defined in [15] (see [4] and [15] for more details on the theory of simulation
functions). In [37], new solutions were given to the fixed-circle problem (resp. fixed-
disc problem) using the bilateral type contractions and the numbers

RF(a, b) = max

{
m(a, b),

m(a,Fa)m(b,Fb)

m(a, b)

}
(1)

and

QF(a, b) = max

{
m(a, b),

(1 + m(a,Fa))m(b,Fb)

1 + m(a, b)

}
. (2)

In [27], some fixed-ellipse theorems have been studied via the help of the numbers
M(a, b) and ρ defined by

M(a, b) = max

{
αm(a,Fa) + (1 − α)m(b,Fb),

(1 − α)m(a,Fa) + αm(b,Fb), m(a,Fb)+m(b,Fa)

2

}
, 0 ≤ α < 1,

(3)
and

ρ = inf {m(a,Fa) : a ∈ A and a /∈ Fix(F)} . (4)

Motivated by the above studies on the set Fix(F) obtained by a geometric perspec-
tive, in this chapter, we define new types of contractions to obtain some fixed-figure
results on metric spaces. For this, mainly, we take inspiration from the bilateral
type contractions and use appropriate auxiliary numbers. Under the five subsections,
we investigate new fixed-circle, fixed-ellipse, fixed-hyperbola, fixed-Cassini curve



New Fixed-Figure Results on Metric Spaces 35

and fixed-Apollonius circle results using different techniques. Also, we mention
some related consequences of the obtained geometric theorems. Theoretical results
obtained in the paper are verified by illustrative examples.

2 Main Results

In this section, our main idea is to use some combined conditions and an auxiliary
number. Let φ : A → [0,∞) and ψ : A × A → [0,∞) be two functions. We define
new types of contractive conditions of the form

m (Fa, a) ≤ [φ(a) − φ(Fa)]ψ (a, b)

or
m (Fa, a)m (Fa, b) ≤ [φ(a) − φ(Fa)]ψ (a, b)

and we use the number r ∈ [0,∞) defined by

r := inf

{
m(a,Fa)

φ(a)
: a ∈ A and a /∈ Fix(F)

}
, (5)

with the assumption φ (a) > 0 for all a ∈ A such that a /∈ Fix(F).

2.1 Fixed-Circle Theorems and Related Consequences

In this subsection, we present some fixed-circle results.

Theorem 1 Let (A,m) be a metric space, F : A → A and r as defined in (5) such
that there exist a function φ : A → [0,∞) and a point a0 ∈ A satisfying conditions

m(Fa, a)m(Fa, a0) ≤ [φ(a) − φ(Fa)] (m (a, a0))
2 (6)

and
m(Fa, a0) ≥ r (7)

for all a ∈ A with m(Fa, a) > 0. Then, we have Fa0 = a0 and Ca0,r ⊂ Fix(F).

Proof If m(Fa0, a0) > 0, then by (6), we get

m(Fa0, a0)m(Fa0, a0) ≤ [φ(a0) − φ(Fa0)] (m (a0, a0))
2
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and so
(m(Fa0, a0))

2 ≤ 0.

This implies Fa0 = a0.
If r = 0, then we have Ca0,r = {a0} and clearly, Ca0,r ⊂ Fix(F).
Let r > 0 and a ∈ Ca0,r be any point such that m(Fa, a) > 0. By condition (6)

and the definition of the number r , we obtain

m(Fa, a)m(Fa, a0) ≤ [φ(a) − φ(Fa)] (m (a, a0))
2

= [φ(a) − φ(Fa)] r2

≤ [φ(a) − φ(Fa)]
m(a,Fa)

φ(a)
r

< m(a,Fa)r

and hence m(Fa, a0) < r , a contradiction by the hypothesis (7). This contradiction
leads us Fa = a and so, Ca0,r is a fixed circle of F.

It is clear that the disc Du0,r is also fixed by F in Theorem 1.
Throughout the paper, unless otherwise stated, we present our illustrative exam-

ples for self-mappings of the usual metric spaces (R,m) or (C,m). The following
example illustrates Theorem 1.

Example 1 For any number α ∈ (0,∞), define a self-mapping Fa on R by

Fαa =
{

α ; a > α

a ; a ≤ α
.

Considering the function φ : R −→ [0,∞) defined by

φ(a) = 1

α
|a − α| ,

we see that Fα satisfies all conditions of Theorem 1 with a0 = 0. Indeed, for all
a ∈ (α,∞), we obtain a �= Fαa and

m (Fαa, 0) = |α − 0| = α,

m(Fαa, a)m(Fαa, a0) = |α − a| |α − 0| = α |a − α|
≤

[
1

α
|a − α| − 0

]
|a − 0|2

= [φ(a) − φ(Fαa)] (m (a, a0))
2 .
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Also we find

r = inf

{
m(a,Fαa)

φ(a)
: a �= Fαa, a ∈ A

}
= inf

{
|a − α|

|a−α|
α

= α : a > α

}
= a.

Clearly, we have D0,α = [−α, α] ⊂ Fix (Fα) = (−∞, α].

Example 2 Let C be the set of complex numbers and (C,m) the usual metric space
with the usual metric m defined by m(z, w) = |z − w| for all z, w ∈ C. Define a
self-mapping F : C → C by

Fz =
{ 9

z
; |z| ≥ 3

z ; |z| < 3

and a function φ : C −→ [0,∞) by

φ(z) =
{

|z|2−9
3|z| ; |z| > 3
0 ; |z| ≤ 3

,

where z = a − ib is the complex conjugate of the complex number z = a + ib. For
the complex numbers z with |z| > 3, we have Fz �= z and hence we get

r = inf

{
m(z,Fz)

φ(z)
: |z| > 3

}
= inf

⎧⎨
⎩

∣∣∣ 9z − z
∣∣∣

|z|2−9
3|z|

: |z| > 3

⎫⎬
⎭ = 3

and

∣∣∣∣9z − z

∣∣∣∣
∣∣∣∣9z − 0

∣∣∣∣ = 9
|z|2 − 9

|z|2

≤
[ |z|2 − 9

3 |z| − 0

]
|z − 0|2 .

This last inequality shows that F satisfies condition (6) for the point z0 = 0 (notice

that
∣∣∣ 9z

∣∣∣ < 3 when |z| > 3). Clearly, we have

Fix (F) = D0,3 = {z ∈ C : |z| ≤ 3} ,

that is, F fixes the disc D0,3. But, F does not satisfy condition (7) of Theorem 1.
Indeed, we have

|Fz − 0| =
∣∣∣∣9z − 0

∣∣∣∣ = 9

|z| = 9

|z| < 3

for all |z| > 3.
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This example shows that the converse statement of Theorem 1 does not hold in
general.

Theorem 2 Let (A,m) be a metric space, F : A → A and r as defined in (5) such
that there exist a function φ : A → [0,∞) and a point a0 ∈ A satisfying

m(Fa, a) ≤ [φ(a) − φ(Fa)]m (Fa, a0) (8)

and
m(Fa, a0) ≤ m (a, a0) (9)

for all a ∈ A with m(Fa, a) > 0. Then, all of the circles Ca0,μ with μ ≤ r are fixed
circles of F, that is, we have Da0,r ⊂ Fix(F).

Proof Let a ∈ Da0,r be any point such thatm(Fa, a) > 0. By conditions (8) and (9),
we get

m(Fa, a) ≤ [φ(a) − φ(Fa)]m (Fa, a0)

≤ [φ(a) − φ(Fa)]m (a, a0)

= [φ(a) − φ(Fa)] r

≤ [φ(a) − φ(Fa)]
m(a,Fa)

φ(a)

< m(a,Fa),

which is a contradiction. This contradiction leads us Fa = a and so, the disc Da0,r

is contained in the set Fix(F).

Example 3 Define a self-mapping F : R → R by

Fa =
{
ka ; a ≤ 0
a ; a > 0

and a function φ : R −→ [0,∞) by

φ(a) = |a| ,

where k ∈ [0, 1]. Then, F satisfies all hypotheses of Theorem 2 with a0 = 1. Indeed,
we have

r = inf

{ |ka − a|
|a| : a < 0

}

= 1 − k.
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Since we have Fa �= a for all a < 0, we get

|ka − a| = (1 − k) |a| ≤ (1 − k) |a| |ka − 1| = [|a| − |ka|] |ka − 1|
= [φ(a) − φ(Fa)] |ka − 1|

and
|ka − 1| ≤ |a − 1| .

Thus, both of conditions (8) and (9) are satisfied by F. Clearly, the set Fix (F)

contains the disc D1,1−k = [k, 2 − k].

We note that if a self-mapping f satisfies conditions (8) and (9) then it also satisfies
condition (6). However, the converse is not true in general. We present an example
of this situation.

Example 4 Define a self-mapping F : R → R by

Fa =
{

1
2a ; a > 1
a ; a ≤ 1

and a function φ : R −→ [0,∞) by

φ(a) = |a| .

Then we have r = 1
2 and F satisfies all hypothesis of Theorem 1with a0 = 0. Indeed,

we have ∣∣∣∣12a − a

∣∣∣∣
∣∣∣∣12a − 0

∣∣∣∣ ≤
[
|a| −

∣∣∣∣12a
∣∣∣∣
]

|a − 0|2

and ∣∣∣∣12a − 0

∣∣∣∣ ≥ 1

2

for all a ∈ (1,∞). However, F does not satisfy condition (8) of Theorem 2.

In the following, we define a self-mapping that satisfies all hypotheses of Theo-
rem 2 but does not satisfy all conditions of Theorem 1.

Example 5 Define a self-mapping F : R → R by

Fa =
⎧⎨
⎩

− 1
2a ; a < −3
a ; −3 ≤ a ≤ 3
0 ; a > 3

and a function φ : R −→ [0,∞) by

φ(a) = 2 |a| .
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Then, we have r = min
{
3
4 ,

1
2

} = 1
2 and F satisfies all hypothesis of Theorem 2

for the point a0 = 0. Therefore, F satisfies condition (6). But, F does not satisfy
condition (7) of Theorem 1.

Remark 1 (1) We note that the self-mapping defined in Example 1 satisfies condi-
tions of Theorem 2 and the self-mapping defined in Example 3 satisfies all hypothesis
of Theorem 1.

(2) The self-mapping defined in Example 2 satisfies condition (9) but does not
satisfy condition (8) of Theorem 2. Hence, we conclude that the converse statement
of Theorem 2 does not hold in general.

2.2 Fixed-Ellipse Theorems and Related Consequences

In this subsection, we consider the ellipse Er (a1, a2) defined by

Er (a1, a2) = {a ∈ A : m (a, a1) + m (a, a2) = r}

and the set
Er (a1, a2) = {a ∈ A : m (a, a1) + m (a, a2) ≤ r} .

Clearly, we have

r = 0 ⇒ a1 = a2 and Er (a1, a2) = Ca1,r = {a1} .

Theorem 3 Let (A,m) be a metric space, F : A → A and r as defined in (5) such
that there exist a function φ : A → [0,∞) and the points a1, a2 ∈ A satisfying the
conditions

m(Fa, a) (m(Fa, a1) + m(Fa, a2)) ≤ [φ(a) − φ(Fa)] (m (a, a1) + m (a, a2))
2

(10)
and

m(Fa, a1) + m(Fa, a2) ≥ r (11)

for all a ∈ A with m(Fa, a) > 0. Then the ellipse Er (a1, a2) is a fixed ellipse of F.
Furthermore, we have Er (a1, a2) ⊂ Fix(F).

Proof Let a ∈ Er (a1, a2) be any point such that m(Fa, a) > 0. Considering condi-
tion (10) and the definition of the number r , we get
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m(Fa, a) (m(Fa, a1) + m(Fa, a2)) ≤ [φ(a) − φ(Fa)] (m (a, a1) + m (a, a2))
2

= [φ(a) − φ(Fa)] r2

≤ [φ(a) − φ(Fa)]
m(a,Fa)

φ(a)
r

< m(a,Fa)r

and hencem(Fa, a1) + m(Fa, a2) < r , a contradiction by the hypothesis (11). Then,
we have a ∈ Fix(F). Since a ∈ Er (a1, a2) is arbitrary, the ellipse Er (a1, a2) is a fixed
ellipse of F.

Furthermore, for any a ∈ Er (a1, a2), the above arguments are also true. Conse-
quently, we have Er (a1, a2) ⊂ Fix(F).

Theorem 4 Let (A,m) be a metric space, F : A → A and r as defined in (5) such
that there exist a function φ : A → [0,∞) and the points a1, a2 ∈ A satisfying the
conditions

m(Fa, a) ≤ [φ(a) − φ(Fa)] (m(Fa, a1) + m(Fa, a2)) (12)

and
m(Fa, a1) + m(Fa, a2) ≤ m (a, a1) + m (a, a2) (13)

for all a ∈ A with m(Fa, a) > 0. Then the ellipse Er (a1, a2) is a fixed ellipse of F.
Furthermore, we have Er (a1, a2) ⊂ Fix(F).

Proof For a point a ∈ Er (a1, a2) such thatm(Fa, a) > 0, using conditions (12), (13)
and the definition of the number r , we get

m(Fa, a) ≤ [φ(a) − φ(Fa)] (m(Fa, a1) + m(Fa, a2))

≤ [φ(a) − φ(Fa)] (m (a, a1) + m (a, a2))

= [φ(a) − φ(Fa)] r

≤ [φ(a) − φ(Fa)]
m(a,Fa)

ϕ(a)

< m(a,Fa)

this is a contradiction. Then, we have a ∈ Fix(F) and so, the ellipse Er (a1, a2) is a
fixed ellipse of F.

Furthermore, for any a ∈ Er (a1, a2), the above arguments are also true. Conse-
quently, we have Er (a1, a2) ⊂ Fix(F).

Now, we obtain new fixed-ellipse results using different bilateral type contractive
conditions via the numbers RF(a, b) and QF(a, b) defined in (1) and (2), respectively.



42 N. Taş and N. Özgür

Theorem 5 Let (A,m) be a metric space, F : A → A a self-mapping and r defined
as in (5). If there exist a1, a2 ∈ Fix(F) and a function φ : A → [0,∞) such that

Fa �= a =⇒ m(a,Fa) ≤ [φ(a) − φ(Fa)]
(
RF(a, a1

) + RF(a, a2)),

for all a ∈ A − {a1, a2}, then the ellipse Er (a1, a2) is a fixed ellipse ofF. Additionally,
we have Er (a1, a2) ⊂ Fix(F).

Proof Let r = 0. Thenwe have a1 = a2 and Er (a1, a2) = {a1}. From the hypothesis,
we have Fa1 = a1.

Now, assume that r > 0 and a ∈ Er (a1, a2) is an arbitrary point with a �= Fa, that
is,m(a,Fa) > 0. Using the hypothesis and the definition of the number r , we obtain

m(a,Fa) ≤ [φ(a) − φ(Fa)]
(
RF(a, a1

) + RF(a, a2))

= [φ(a) − φ(Fa)] (m(a, a1) + m(a, a2))

= [φ(a) − φ(Fa)] r ≤ [φ(a) − φ(Fa)]
m(a,Fa)

φ(a)
< m(a,Fa),

a contradiction. Thereby, we have a ∈ Fix(F) and hence, Er (a1, a2) is a fixed ellipse
of F since a ∈ Er (a1, a2) is an arbitrary point.

Similar arguments are valid for any a ∈ Er (a1, a2) and we deduce that
Er (a1, a2) ⊂ Fix(F).

Theorem 6 Let (A,m) be a metric space, F : A → A a self-mapping and r defined
as in (5). If there exist a1, a2 ∈ Fix(F) and a function φ : A → [0,∞) such that

Fa �= a =⇒ m(a,Fa) ≤ [φ(a) − φ(Fa)]
(
QF(a, a1

) + QF(a, a2)),

for all a ∈ A − {a1, a2} , then Er (a1, a2) is a fixed ellipse of F. Additionally, we have
Er (a1, a2) ⊂ Fix(F).

Proof The proof is similar to that of Theorem 5 and is omitted.

As the consequences of Theorems 5 and 6, we give the following corollaries.

Corollary 1 Let (A,m) be a metric space, F : A → A a self-mapping and r defined
as in (5). If there exist a1, a2 ∈ Fix(F) and a function φ : A → [0,∞) such that

Fa �= a =⇒ m(a,Fa) ≤ [φ(a) − φ(Fa)]

(
α1 (m(a, a1) + m(a, a2))

+α2

(
m(a,Fa)m(a1,Fa1)

m(a,a1)
+ m(a,Fa)m(a2,Fa2)

m(a,a2)

)
)
,

for all a ∈ A − {a1, a2} , where α1, α2 are two nonnegative real numbers with a sum
1, then Er (a1, a2) is a fixed ellipse of F and Er (a1, a2) ⊂ Fix(F).
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Proof Considering the inequality

α1 (m(a, a1) + m(a, a2)) + α2

(
m(a,Fa)m(a1,Fa1)

m(a, a1)
+ m(a,Fa)m(a2,Fa2)

m(a, a2)

)

≤ RF(a, a1) + RF(a, a2),

the proof follows easily.

Corollary 2 Let (A,m) be a metric space, F : A → A a self-mapping and r defined
as in (5). If there exist a1, a2 ∈ Fix(F) and a function φ : A → [0,∞) such that

Fa �= a =⇒ m(a,Fa) ≤ [φ(a) − φ(Fa)]

(
α1 (m(a,a1) + m(a,a2))

+α2

(
(1+m(a,Fa))m(a1,Fa1)

1+m(a,a1)
+ (1+m(a,Fa))m(a2,Fa2)

1+m(a,a2)

)
)
,

for all a ∈ A − {a1, a2} , where α1, α2 are two nonnegative real numbers with a sum
1, then Er (a1, a2) is a fixed ellipse of F and Er (a1, a2) ⊂ Fix(F).

Proof Using the inequality

α1 (m(a, a1) + m(a, a2)) + α2

(
(1 + m(a,Fa))m(a1,Fa1)

1 + m(a, a1)
+ (1 + m(a,Fa))m(a2,Fa2)

1 + m(a, a2)

)

≤ QF(a, a1) + QF(a, a2),

the proof follows easily.

Corollary 3 Let (A,m) be a metric space, F : A → A a self-mapping and r defined
as in (5). If there exist a1, a2 ∈ Fix(F) and a function φ : A → [0,∞) such that

Fa �= a =⇒ m(a,Fa) ≤ [φ(a) − φ(Fa)] (m(a, a1) + m(a, a2)),

for all a ∈ A − {a1, a2} , then Er (a1, a2) is a fixed ellipse of F and Er (a1, a2) ⊂
Fix(F).

Proof Using the inequalities,

m(a, a1) + m(a, a2) ≤ RF(a, a1) + RF(a, a2)

and
m(a, a1) + m(a, a2) ≤ QF(a, a1) + QF(a, a2),

we can easily derive this corollary.
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2.3 Fixed-Hyperbola Theorems and Related Consequences

In this subsection, we study the fixed hyperbola case of the fixed-figure problemwith
the assumption r > 0. We consider the hyperbola Hr (a1, a2) defined by

Hr (a1, a2) = {a ∈ A : |m (a, a1) − m (a, a2)| = r}

and the set
Hr (a1, a2) = {a ∈ A : |m (a, a1) − m (a, a2)| ≤ r} .

Theorem 7 Let (A,m) be a metric space, F : A → A and r as defined in (5) such
that there exist a function φ : A → [0,∞) and the points a1, a2 ∈ A satisfying the
conditions

m(Fa, a) |m(Fa, a1) − m(Fa, a2)| ≤ [φ(a) − φ(Fa)] |m (a, a1) − m (a, a2)|2
(14)

and
|m(Fa, a1) − m(Fa, a2)| ≥ r (15)

for all a ∈ A withm(Fa, a) > 0. Then the hyperbola Hr (a1, a2) is a fixed hyperbola
of F. Furthermore, we have Hr (a1, a2) ⊂ Fix(F).

Proof Let r > 0 and a ∈ Hr (a1, a2) be any point such that m(Fa, a) > 0. By con-
dition (14) and the definition of the number r , we obtain

m(Fa, a) |m(Fa, a1) − m(Fa, a2)| ≤ [φ(a) − φ(Fa)] |m (a, a1) − m (a, a2)|2
= [φ(a) − φ(Fa)] r2

≤ [φ(a) − φ(Fa)]
m(a,Fa)

φ(a)
r

< m(a,Fa)r

and hence |m(Fa, a1) − m(Fa, a2)| < r . This is a contradiction by the hypothesis
(15). Then, we have Fa = a and hence, the hyperbola Hr (a1, a2) is a fixed hyperbola
of F.

Clearly, the above arguments are also true for any a ∈ Hr (a1, a2). Consequently,
we have Hr (a1, a2) ⊂ Fix(F).

Theorem 8 Let (A,m) be a metric space, F : A → A and r as defined in (5) such
that there exist a function φ : A → [0,∞) and the points a1, a2 ∈ A satisfying the
conditions

m(Fa, a) ≤ [φ(a) − φ(Fa)] |m(Fa, a1) − d(Fa, a2)| (16)

and
|m(Fa, a1) − m(Fa, a2)| ≤ |m (a, a1) − m (a, a2)| (17)
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for all a ∈ A withm(Fa, a) > 0. Then the hyperbola Hr (a1, a2) is a fixed hyperbola
of F. Furthermore, we have Hr (a1, a2) ⊂ Fix(F).

Proof Let r > 0 and a ∈ Hr (a1, a2) be any point such that m(Fa, a) > 0. Then by
the definition of the number r and using conditions (16), (17), we get

m(Fa, a) ≤ [φ(a) − ϕ(Fa)] |m(Fa, a1) − m(Fa, a2)|
≤ [φ(a) − φ(Fa)] |m (a, a1) − m (a, a2)|
= [φ(a) − φ(Fa)] r

≤ [φ(a) − φ(Fa)]
m(a,Fa)

φ(a)

< m(a,Fa),

which is a contradiction. Then, we have a ∈ Fix(F) and so, the hyperbola Hr (a1, a2)
is a fixed hyperbola of F.

Furthermore, for any a ∈ Hr (a1, a2), the above arguments are also true. Conse-
quently, we have Hr (a1, a2) ⊂ Fix(F).

Now, we obtain fixed-hyperbola results bymeans of new bilateral type contractive
conditions.

Theorem 9 Let (A,m) be a metric space, F : A → A a self-mapping and the num-
ber r defined as in (5). If there exist a1, a2 ∈ Fix(F) and a function φ : A → [0,∞)

such that

Fa �= a =⇒ m(a,Fa) ≤ [φ(a) − φ(Fa)]
∣∣RF(a, a1) − RF(a, a2)

∣∣ ,
for all a ∈ A − {a1, a2} , then Hr (a1, a2) is a fixed hyperbola of F. Furthermore, we
have Hr (a1, a2) ⊂ Fix(F).

Proof Let r > 0 and a ∈ Hr (a1, a2) be any point such thatm(a,Fa) > 0. Using the
hypothesis and the definition of the number r , we obtain

m(a,Fa) ≤ [φ(a) − φ(Fa)]
∣∣RF(a, a1) − RF(a, a2)

∣∣
= [φ(a) − φ(Fa)] |m(a, a1) − m(a, a2)|
= [φ(a) − φ(Fa)] r ≤ [φ(a) − φ(Fa)]

m(a,Fa)

φ(a)
< m(a,Fa),

a contradiction. This contradiction implies Fa = a and so, Hr (a1, a2) is a fixed
hyperbola of F. Clearly, similar arguments are also valid for any a ∈ Hr (a1, a2) and
hence we have Hr (a1, a2) ⊂ Fix(F) .

Theorem 10 Let (A,m) be ametric space,F : A → A a self-mapping and r defined
as in (5). If there exist a1, a2 ∈ Fix( f ) and a function φ : A → [0,∞) such that

Fa �= a =⇒ m(a,Fa) ≤ [φ(a) − φ(Fa)]
∣∣QF(a, a1) − QF(a, a2)

∣∣ ,
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for all a ∈ A − {a1, a2} , then Hr (a1, a2) is a fixed hyperbola of F. Furthermore, we
have Hr (a1, a2) ⊂ Fix(F).

Proof The proof is omitted.

Corollary 4 Let (A,m) be a metric space, F : A → A a self-mapping and r defined
as in (5). If there exist a1, a2 ∈ Fix(F) and a function φ : A → [0,∞) such that (i)

Fa �= a =⇒ m(a,Fa) ≤ [φ(a) − φ(Fa)]

(
α1 |m(a, a1) − m(a, a2)|

+α2

∣∣∣m(a,Fa)m(a1,Fa1)
m(a,a1)

− m(a,Fa)m(a2,Fa2)
m(a,a2)

∣∣∣
)
,

for all a ∈ A − {a1, a2} , where α1, α2 are two nonnegative real numbers with a sum
1, or (i i)

Fa �= a =⇒ m(a,Fa) ≤ [φ(a) − φ(Fa)]

(
α1 |m(a, a1) − m(a, a2)|

+α2

∣∣∣ (1+m(a,Fa))m(a1,Fa1)
1+m(a,a1)

− (1+m(a,Fa))m(a2,Fa2)
1+m(a,a2)

∣∣∣
)
,

for all a ∈ A − {a1, a2} , where α1, α2 are two nonnegative real numbers with a sum
1, or (i i i)

Fa �= a =⇒ m(a,Fa) ≤ [φ(a) − φ(Fa)] |m(a, a1) − m(a, a2)| ,

for all a ∈ A − {a1, a2},
then Hr (a1, a2) is a fixed hyperbola of F and Hr (a1, a2) ⊂ Fix(F).

Proof Using the definitions of the numbers RF(a, b) and QF(a, b), the proof follows
easily.

Remark 2 Let us examine the two cases below:
1. First, we consider the case r = 0 in detail. We have

Hr (a1, a2) =
{ {a ∈ A : m (a, a1) = m (a, a2)} if a1 �= a2

A if a1 = a2
.

The hyperbola Hr (a1, a2) does not have to consist of a single element. For
example, let us consider the discrete metric on R. Hence we get the followings:
• If m(a, a1) = m(a, a2) = 0 implies a1 = a2.
• If m(a, a1) = m(a, a2) = 1 implies a �= a1 and a �= a2.
Hence, we find

Hr (a1, a2) =
{
R − {a1, a2} if a1 �= a2

R if a1 = a2
.
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2. If the conditions of Theorems7–10 are satisfied in the case r = 0, thenwe deduce
that the hyperbola Hr (u1, u2) is fixed by F.

Example 6 Define the self-mapping F by

Fa =
{
1 ; a > 1
a ; a ≤ 1

.

Considering the function φ defined by

φ (a) = |a| ,

we have

r = inf

{
m(a,Fa)

φ(a)
: a ∈ A and a /∈ Fix(F)

}

= inf

{ |a − 1|
|a| : a > 1

}
= 0.

Now we consider the hyperbola

Hr (−1, 1) = {a ∈ R : |u + 1| = |u − 1|} = {0} .

Clearly,we have Hr (−1, 1) ⊂ Fix( f ) = (−∞, 1]. It is easy to check that conditions
of Theorems7–10 are satisfied by F.

2.4 Fixed-Cassini Curve Theorems and Related
Consequences

In this subsection, we consider the Cassini curve Cr (a1, a2) defined by

Cr (a1, a2) = {a ∈ A : m (a, a1)m (a, a2) = r}

and the set
Cr (a1, a2) = {a ∈ A : m (a, a1)m (a, a2) ≤ r} .

We present new fixed-figure results for the cases in which the set Fix(F) contains
a Cassini curve.

Theorem 11 Let (A,m) be a metric space, F : A → A and r as defined in (5) such
that there exist a function φ : A → [0,∞) and the points a1, a2 ∈ A satisfying the
conditions

m(Fa, a)m(Fa, a1)m(Fa, a2) ≤ [φ(a) − φ(Fa)] (m (a, a1)m (a, a2))
2 (18)
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and
m(Fa, a1)m(Fa, a2) ≥ r (19)

for all a ∈ A with m(Fa, a) > 0. Then we have Cr (a1, a2) ⊂ Fix(F).

Proof Let a ∈ Cr (a1, a2) be any point such that m(Fa, a) > 0. By condition (18)
and the definition of the number r , we obtain

m(Fa, a)m(Fa, a1)m(Fa, a2) ≤ [φ(a) − φ(Fa)] (m (a, a1)m (a, a2))
2

≤ [φ(a) − φ(Fa)] r2

≤ [φ(a) − φ(Fa)]
m(a,Fa)

φ(a)
r

< d(a,Fa)r

and hence m(Fa, a1)m(Fa, a2) < r , a contradiction by the hypothesis (19). Then,
we have a ∈ Fix(F) and this implies Cr (a1, a2) ⊂ Fix(F) since a is an arbitrary
point of Cr (a1, a2).

Theorem 12 Let (A,m) be a metric space, F : A → A and r as defined in (5) such
that there exist a function φ : A → [0,∞) and the points a1, a2 ∈ A satisfying the
conditions

m(Fa, a) ≤ [φ(a) − φ(Fa)]m(Fa, a1)m(Fa, a2) (20)

and
m(Fa, a1)m(Fa, a2) ≤ m (a, a1)m (a, a2) (21)

for all a ∈ A with m(Fa, a) > 0. Then we have Cr (a1, a2) ⊂ Fix(F).

Proof For a point a ∈ Cr (a1, a2) such thatm(Fa, a) > 0, using conditions (20), (21)
and the definition of the number r , we get

m(Fa, a) ≤ [φ(a) − φ(Fa)]m(Fa, a1)m(Fa, a2)

≤ [φ(a) − φ(Fa)]m (a, a1)m (a, a2)

= [φ(a) − φ(Fa)] r

≤ [φ(a) − φ(Fa)]
m(a,Fa)

φ(a)

< m(a,Fa),

a contradiction. This contradiction implies Fa = a and so, the set Cr (a1, a2) con-
tained in the set Fix (F).

Now, using newbilateral type contractive conditions,we obtainmore fixedCassini
curve results.
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Theorem 13 Let (A,m) be ametric space,F : A → A a self-mapping and r defined
as in (5). If there exist a1, a2 ∈ Fix(F) and a function φ : A → [0,∞) such that

Fa �= a =⇒ m(a,Fa) ≤ [φ(a) − φ(Fa)]
(
RF(a, a1

)
RF(a, a2)),

for alla ∈ A − {a1, a2}, thenCr (a1, a2) is a fixedCassini curve ofFandCr (a1, a2) ⊂
Fix(F).

Proof Let r = 0. Then we have

Cr (a1, a2) =
{ {a1, a2} if a1 �= a2

{a1} if a1 = a2
,

that is,Cr (a1, a2) ⊆ {a1, a2}. From the hypothesis, we knowFa1 = a1 andFa2 = a2.
Let r > 0 and a ∈ Cr (a1, a2) be any point with a �= Fa. Using the hypothesis and

the definition of the number r , we get

m(a,Fa) ≤ [φ(a) − φ(Fa)]
(
RF(a, a1

)
RF(a, a2))

= [φ(a) − φ(Fa)] (m(a, a1)m(a, a2))

= [φ(a) − φ(Fa)] r ≤ [φ(a) − φ(Fa)]
m(a,Fa)

φ(a)
< m(a,Fa),

a contradiction. So, we have a ∈ Fix(F) and consequently, Cr (a1, a2) is a fixed
Cassini curve of F. Clearly, by similar arguments, we get Cr (a1, a2) ⊂ Fix(F).

Theorem 14 Let (A,m) be ametric space,F : A → A a self-mapping and r defined
as in (5). If there exist a1, a2 ∈ Fix(F) and a function φ : A → [0,∞) such that

Fa �= a =⇒ m(a,Fa) ≤ [φ(a) − φ(Fa)]
(
QF(a, a1

)
QF(a, a2)),

for alla ∈ A − {a1, a2}, thenCr (a1, a2) is a fixedCassini curve ofFandCr (a1, a2) ⊂
Fix(F).

Proof The proof is omitted.

Corollary 5 Let (A,m) be a metric space, F : A → A a self-mapping and r defined
as in (5). If there exist a1, a2 ∈ Fix(F) and a function φ : A → [0,∞) such that (i)

Fa �= a =⇒ m(a,Fa) ≤ [ϕ(a) − ϕ(Fa)]

(
α1m(a, a1)m(a, a2)

+α2
m(a,Fa)m(a1,Fa1)

m(a,a1)

m(a,Fa)m(a2Fa2)

m(a,a2)

)
,

for all a ∈ A − {a1, a2} , where α1, α2 are two nonnegative real numbers with a sum
1, or (i i)

Fa �= a =⇒ m(a,Fa) ≤ [ϕ(a) − ϕ(Fa)]

(
α1m(a, a1)m(a, a2)

+α2
(1+m(a,Fa))m(a1,Fa1)

1+m(a,a1)
(1+m(a,Fa))m(a2,Fa2)

1+m(a,a2)

)
,
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for all a ∈ A − {a1, a2}, where α1, α2 are two nonnegative real numbers with a sum
1, or (i i i)

Fa �= a =⇒ m(a,Fa) ≤ [φ(a) − φ(Fa)] (m(a, a1)m(a, a2)),

for all a ∈ A − {a1, a2} with Fa1 = a1, Fa2 = a2,
then Cr (a1, a2) is a fixed Cassini curve of F and Cr (a1, a2) ⊂ Fix(F).

Proof We can easily prove this corollary using the definitions of the numbers
RF(a, b) and QF(a, b).

2.5 Fixed-Apollonius Circle Theorems and Related
Consequences

In this subsection, we consider the Apollonius circle Ar (a1, a2) defined by

Ar (a1, a2) =
{
a ∈ A − {a2} : m (a, a1)

m (a, a2)
= r

}

and the set

Ar (a1, a2) =
{
a ∈ A − {a2} : m (a, a1)

m (a, a2)
≤ r

}
.

Theorem 15 Let (A,m) be a metric space, F : A → A and r as defined in (5) such
that there exist a function φ : A → [0,∞) and the points a1, a2 ∈ A satisfying the
conditions

m(Fa, a)
m(Fa, a1)

m(Fa, a2)
≤ [φ(a) − φ(Fa)]

(
m (a, a1)

m (a, a2)

)2

(22)

and
m(Fa, a1)

m(Fa, a2)
≥ r (23)

for all a ∈ A − {a2} with m(Fa, a) > 0. If Fa �= a2 for all a ∈ Aμ(a1, a2), then, F
fixes the Apollonius circle Aμ(a1, a2) with μ ≤ r .

Proof Let a ∈ Aμ(a1, a2) be any point such that m(Fa, a) > 0. By condition (22)
and the definition of the number r , we obtain
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m(Fa, a)
m(Fa, a1)

m(Fa, a2)
≤ [φ(a) − φ(Fa)]

(
m (a, a1)

m (a, a2)

)2

= [φ(a) − φ(Fa)] r2

≤ [φ(a) − φ(Fa)]
m(a,Fa)

φ(a)
r

< d(a,Fa)r

and hence m(Fa,a1)

m(Fa,a2)
< r , a contradiction by the hypothesis (23). This shows that

Fa = a and hence, the Apollonius circle Aμ(a1, a2) is fixed by F.

We note that the set Ar (a1, a2) is also fixed by F in Theorem 15.

Theorem 16 Let (A,m) be a metric space, F : A → A and r as defined in (5) such
that there exist a function φ : A → [0,∞) and the points a1, a2 ∈ A satisfying the
conditions

m(Fa, a) ≤ [φ(a) − φ(Fa)]
m(Fa, a1)

m(Fa, a2)
(24)

and
m(Fa, a1)

m(Fa, a2)
≤ m (a, a1)

m (a, a2)
(25)

for all a ∈ A − {a2} with m(Fa, a) > 0. If Fa �= a2 for all a ∈ Aμ(a1, a2), then, F
fixes the Apollonius circle Aμ(a1, a2) with μ ≤ r .

Proof Let a ∈ Aμ(a1, a2) be any point such that m(Fa, a) > 0. By conditions (24)
and (25), we get

m(Fa, a) ≤ [φ(a) − φ(Fa)]
m(Fa, a1)

m(Fa, a2)

≤ [φ(a) − φ(Fa)]
m (a, a1)

m (a, a2)

= [φ(a) − φ(Fa)] r

≤ [φ(a) − φ(Fa)]
m(a,Fa)

φ(a)

< m(a,Fa),

which is a contradiction. This contradiction implies a ∈ Fix(F) and therefore, F
fixes the Apollonius circle Aμ(a1, a2).

It is clear from the proof of Theorem 16 that the set Ar (a1, a2) is also fixed by F
in Theorem 16.

Now, we investigate some fixed-Apollonius circle results by means of new bilat-
eral type contractive conditions.
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Theorem 17 Let (A,m) be a metric space, F : A → A self-mapping and r defined
as in (5). If there exist a1, a2 ∈ Fix(F) and a function φ : A → [0,∞) such that

Fa �= a =⇒ m(a,Fa) ≤ [φ(a) − φ(Fa)]
RF(a, a1)

RF(a, a2)
,

for all a ∈ A − {a1, a2}, then Ar (a1, a2) is a fixed Apollonius circle of F and
Ar (a1, a2) ⊂ Fix(F).

Proof Let r = 0. Then we have Ar (a1, a2) = {a1} and so using the hypothesis, we
have Fa1 = a1.

Let r > 0 and a ∈ Ar (a1, a2) be an arbitrary point with a �= Fa. Using the hypoth-
esis, we get

m(a,Fa) ≤ [φ(a) − φ(Fa)]
RF(a, a1)

RF(a, a2)
= [φ(a) − φ(Fa)]

m (a, a1)

m (a, a2)

= [φ(a) − φ(Fa)] r ≤ [φ(a) − φ(Fa)]
m(a,Fa)

φ(a)
< m(a,Fa),

a contradiction. This contradiction implies that a = Fa and consequently, Ar (a1, a2)
is a fixed Apollonius circle of F. By similar arguments, we deduce that Ar (a1, a2) ⊂
Fix(F).

Theorem 18 Let (A,m) be ametric space,F : A → A a self-mapping and r defined
as in (5). If there exist a1, a2 ∈ Fix(F) and a function φ : A → [0,∞) such that

Fa �= a =⇒ m(a,Fa) ≤ [φ(a) − φ(Fa)]
QF(a, a1)

QF(a, a2)
,

for all a ∈ A − {a1, a2}, then Ar (a1, a2) is a fixed Apollonius circle of F and
Ar (a1, a2) ⊂ Fix(F).

Proof The proof is omitted.

As a consequence of Theorems 17 and 18, we give the following corollary.

Corollary 6 Let (A,m) be a metric space, F : A → A a self-mapping and r defined
as in (5). If there exist a1, a2 ∈ Fix(F) and a function φ : A → [0,∞) such that

Fa �= a =⇒ m(a,Fa) ≤ [φ(a) − φ(Fa)]
m (a, a1)

m (a, a2)
,

for all a ∈ A − {a1, a2}, then Ar (a1, a2) is a fixed Apollonius circle of F and
Ar (a1, a2) ⊂ Fix(F).
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Proof Using the following inequalities

m (a, a1)

m (a, a2)
≤ RF(a, a1)

RF(a, a2)

and
m (a, a1)

m (a, a2)
≤ QF(a, a1)

QF(a, a2)
,

we can easily prove this result.

2.6 Some Illustrative Examples

We emphasize the validity and importance of the main results obtained in the paper
by presenting some illustrative examples. First, in the following example, we define
a self-mapping that satisfies all conditions of Theorems3, 4, 11 and 12.

Example 7 Define a self-mapping F : C −→ C by

Fz =
{
z ; y > 2
z ; y ≤ 2

, (26)

for all z = x + iy ∈ C. Considering the function φ : C −→ [0,∞) defined by

φ(z) =
{

2
5 |y| ; y > 2
0 ; y ≤ 2

,

for all z = x + iy, we see that F satisfies conditions (12) and (13) for the points
z1 = −2 and z2 = 2. Indeed, for all z = x + iy ∈ Cwith y > 2, we have z �= Fz and

|z + 2| + |z − 2| = |z + 2| + |z − 2| > 5,

|z − z| = 2 |y| ≤ 2

5
|y| (|z + 2| + |z − 2|)

=
[
2

5
|y| − 0

]
(|z + 2| + |z − 2|)

= [φ(z) − φ( f z)] (|z + 2| + |z − 2|) .

Hence, F also satisfies conditions (10) and (11). Also, we find
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r = inf

{
|z − z|
2
5 |y| : y > 2

}

= inf

{
2 |y|
2
5 |y| : y > 2

}
= 5.

Obviously, the set Fix(F) contains the ellipse E = E5 (−2, 2) with the equation

E : |z + 2| + |z − 2| = 5.

Clearly, F satisfies all conditions of Theorems11 and 12 since we have

|z + 2| . |z − 2| = |z + 2| . |z − 2| > 5,

for all z = x + iy ∈ C with y > 2. The set Fix(F) contains also the Cassini curve
C = C5 (−2, 2) with the equation

C : |z + 2| |z − 2| = 5.

In Fig. 1, which is drawn using Mathematica [39], the sets {z ∈ C : |z + 2| + |z − 2|
≤ 5} and {z ∈ C : |z + 2| |z − 2| ≤ 5} contained in Fix(F) can be seen.

In the following example, we define a self-mapping that satisfying all conditions
of Theorems7 and 8.

| | |

Fig. 1 The set Fix(F) of the self-mapping F defined in (26)
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Example 8 Define the self-mapping F : R −→ R by

Fa =
{

a ; a ≥ −1
−a ; a < −1

(27)

and a function φ : R −→ [0,∞) by

φ(a) =
{
2 |a| ; a < −1
0 ; a ≥ −1

.

We find

r = inf

{ |−a − a|
2 |a| : a < −1

}

= inf {1 : a < −1} = 1.

For all a ∈ R with a < −1, we have a �= Fa and

||−a + 1| + |−a − 1|| = ||a + 1| + |a − 1|| = 2 > 1,

|−a − a| = 2 |a| ≤ 4 |a|
= [2 |a| − 0] 2

= [φ(a) − φ( f a)] ||−a + 1| + |−a − 1|| .

Then, F satisfies the conditions (16) and (17) for the points a1 = −1 and a2 =
1. Hence, F also satisfies the conditions (14) and (15). Clearly, the set Fix(F) =
[−1,∞) contains the hyperbola H with the equation

H1 (−1, 1) = {a ∈ R : ||a + 1| − |a − 1|| = 1} =
{
−1

2
,
1

2

}

and the set

H 1 (−1, 1) = {a ∈ R : ||a + 1| − |a − 1|| ≤ 1} =
{
a ∈ R : |a| ≤ 1

2

}
.

Example 9 Define a self-mapping F : C −→ C by

Fz =
{
z ; ∣∣z − 2+9i

3

∣∣ < 4
3

z ; ∣∣z − 2+9i
3

∣∣ ≥ 4
3

, (28)

and a function φ : C −→ [0,∞) by
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φ(z) =
{ |y| ; ∣∣z − 2+9i

3

∣∣ < 4
3

0 ; ∣∣z − 2+9i
3

∣∣ ≥ 4
3

,

for all z = x + iy ∈ C. We find

r = inf

{ |z − z|
|y| :

∣∣∣∣z − 2 + 9i

3

∣∣∣∣ <
4

3

}

= inf

{
2 |y|
|y| :

∣∣∣∣z − 2 + 9i

3

∣∣∣∣ <
4

3

}
= 2.

Observe that the conditions of Theorems15 and 16 are not satisfied by F for the
points z1 = −2 + 3i and z2 = 3i . However, the set Fix(F) contains the Apollonius
circle A with the equation

A : |z + 2 − 3i |
|z − 3i | = 2. (29)

We note that the Apollonius circle A with the Eq. (29) is the Euclidean circle with
equation

∣∣z − 2+9i
3

∣∣ = 4
3 and we have

Fix(F) =
{
z ∈ C : |z + 2 − 3i |

|z − 3i | ≤ 2

}
=

{
z ∈ C :

∣∣∣∣z − 2 + 9i

3

∣∣∣∣ ≥ 4

3

}
.

The set Fix(F) can be seen in Fig. 2.

The above example indicates that the converses of Theorems 15 and 16 do not hold
in general. Now, we present an example of a self-mapping satisfying all hypotheses
of Theorems15 and 16.

Example 10 Let a1 = −1, a2 = 1 and define a self-mapping F : R −→ R by

Fa =
{
3 ; a ∈ (

1
3 , 3

)
a ; a ∈ (−∞, 1

3

] ∪ [3,∞)
(30)

and a function φ : R −→ [0,∞) by

φ(a) =
{ |a−3|

2 ; a ∈ (
1
3 , 3

)
0 ; a ∈ (−∞, 1

3

] ∪ [3,∞)
.

We find

r = inf

{
|a − 3|

|a−3|
2

: a ∈
(
1

3
, 3

)}

= inf

{
2 : a ∈

(
1

3
, 3

)}
= 2.
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Fig. 2 The set Fix(F) of the self-mapping F defined in (28)

For all a ∈ (
1
3 , 3

)
, we have a �= Fa and

|a − 3| =
[ |a − 3|

2
− 0

]
.2

= [φ(a) − φ(3)]
|3 + 2|
|3 − 1| ,

2 = |3 + 2|
|3 − 1| <

|a + 1|
|a − 1| .

Then the conditions (24) and (25) are satisfied by F for the points a1 = −1 and
a2 = 1. Hence, F also satisfies conditions (22) and (23).

Clearly, the set Fix(F) = (−∞, 1
3

] ∪ [3,∞) contains the Apollonius circle
A2 (−1, 1) with the equation

A2 (−1, 1) =
{
a ∈ R : |a + 1|

|a − 1| = 2

}
=

{
1

3
, 3

}

and the set

A2 (−1, 1) =
{
a ∈ R : |a + 1|

|a − 1| ≤ 2

}
=

(
−∞,

1

3

]
∪ [3,∞) .
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We present a self-mapping satisfying conditions of Theorem5 (resp. Theorems6,
9, 10, 13, 14, 17 and 18) as follows:

Example 11 Define a self-mapping F : R −→ R by

Fa =
{
a ; a ∈ [−2, 2]
0 ; a ∈ (−∞, 2) ∪ (2,∞)

,

for all a ∈ R, and a function φ : A −→ [0,∞) defined by

φ(a) =
{

1 ; a ∈ [−2, 2]
4 |a| ; a ∈ (−∞, 2) ∪ (2,∞)

,

for all a ∈ R. Then,
� F satisfies all hypotheses of Theorem 5 with the points a1 = − 1

10 and a2 = 1
10 .

Indeed, we obtain
m(a,Fa) = |a| > 0

and

m(a,Fa) = |a| ≤ [4 |a| − 1]

(∣∣∣∣a + 1

10

∣∣∣∣ +
∣∣∣∣a − 1

10

∣∣∣∣
)

= [φ(a) − φ(Fa)]

(
RF

(
a,− 1

10

)
+ RF

(
a,

1

10

))
,

for all a ∈ (−∞, 2) ∪ (2,∞). Also,we have

F

(
− 1

10

)
= − 1

10
, F

(
1

10

)
= 1

10

and we get

r = inf

{
m(a,Fa)

φ(a)
: a �= Fa, a ∈ R

}

= inf

{ |a|
4 |a| : a ∈ (−∞, 2) ∪ (2,∞)

}
= 1

4
.

Similarly, F satisfies all conditions of Theorem 6 with the points a1 = − 1
10 , a2 = 1

10 .
Consequently, E 1

4

(− 1
10 ,

1
10

) = {− 1
8 ,

1
8

}
is a fixed ellipse of F.

� F satisfies all conditions of Theorem 9 with the points a1 = −1 and a2 = 1.
Indeed, we obtain

m(a,Fa) = |a| > 0
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and

m(a,Fa) = |a| ≤ [4 |a| − 1] ||a + 1| − |a − 1||
= [φ(a) − φ(Fa)]

∣∣RF (a,−1) − RF (a, 1)
∣∣ ,

for all a ∈ (−∞, 2) ∪ (2,∞). Also,we have

F (−1) = −1, F (1) = 1

and

r = 1

4
.

Similarly, F satisfies conditions of Theorem 10 with the points a1 = −1, a2 = 1.
Consequently, H 1

4
(−1, 1) = {− 1

8 ,
1
8

}
is a fixed hyperbola of F.

� F satisfies all conditions of Theorem 13 with the points a1 = −1 and a2 = 1.
Indeed, we have

m(a,Fa) = |a| > 0

and

m(a,Fa) = |a| ≤ [4 |a| − 1] (|a + 1| |a − 1|)
= [φ(a) − φ(Fa)]

(
RF (a,−1) RF (a, 1)

)
,

for all a ∈ (−∞, 2) ∪ (2,∞). Also,we have

F (−1) = −1, F (1) = 1

and

r = 1

4
.

Similarly, F satisfies all conditions of Theorem 14 with the points a1 = −1, a2 = 1.

Consequently, C 1
4
(−1, 1) =

{
−

√
5
2 ,−

√
3
2 ,

√
3
2 ,

√
5
2

}
is a fixed Cassini curve of F.

� F satisfies all conditions of Theorem 17 with the points a1 = −1 and a2 = 1.
Indeed, we have

m(a,Fa) = |a| > 0

and

m(a,Fa) = |a| ≤ [4 |a| − 1]
|a + 1|
|a − 1|

= [φ(a) − φ(Fa)]
RF (a,−1)

RF (a, 1)
,
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for all a ∈ (−∞, 2) ∪ (2,∞). Also, we obtain

F (−1) = −1, F (1) = 1

and

r = 1

4
.

Similarly, F satisfies all conditions of Theorem 18 with the points a1 = −1, a2 = 1.
Consequently, A 1

4
(−1, 1) = {− 5

3 ,− 3
5

}
is a fixed Apollonius circle of F.

Remark 3 The self-mapping F defined in Example 11 also fixes the circle C0,2 =
{−2, 2} and the disc D0,2 = [−2, 2]. Thereby, we say that F fixes at least six figures
such as an Apollonius circle, a circle, a disc, an ellipse, a hyperbola and a Cassini
curve.

Example 12 Let A =
{
−3,−√

5,−2,−1, 0, 3
5 , 1,

5
3 , 2,

√
5, 3, 4

}
and (A,m) be a

metric space with the usual metric m. If we consider the self-mapping F defined as

Fa =
{
a ; a ∈

{
−√

5,−2, 3
5 ,

5
3 , 2,

√
5
}

0 ; a ∈ {−3,−1, 0, 1, 3, 4} ,

for all a ∈ A. Then F fixes the ellipse E4(−1, 1) = {−2, 2}, the hyperbola
H4(−3, 3) = {−2, 2}, the Cassini curve C4(−1, 1) = {−√

5,
√
5} and the Apollo-

nius circle A4(−1, 1) = {
3
5 ,

5
3

}
, but f does not satisfies the conditions of Theorem

5 (resp. Theorems6, 9, 10, 13, 14, 17 and 18).

Remark 4 If we consider Example 12, we see that the converse statement of
Theorem 5 (resp. Theorems6, 9, 10, 13, 14, 17 and 18) is not always true in general.

3 Conclusion

We have investigated the fixed-figure problem for some special cases. Non-unique
fixed point results and geometric methods are important for both theoretical and
applied studies. For example, in [1], it was stated that the number of fixed points of a
Boolean network is a key feature of its dynamical behaviour. In [31], the notion of an
Apollonius circle was used to present a geometric method in data point analysis. It
was noted that the proposed method using Apollonius geometric and subtended arc
methods have higher efficiency than the new algorithms on the majority of real data
sets (see [31] for more details). Such studies show the efficiency of the non-unique
fixed point results and geometric methods.
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23. N.Y. Özgür, N. Taş, Fixed-circle problem on S-metric spaces with a geometric viewpoint. Facta
Univ. Ser. Math. Inf. 34(3), 459–472 (2019)
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Some Fixed Point Results for Suzuki
W−Contractions Involving Quadratic
Terms in Modular b−Metric Spaces

Mahpeyker Öztürk and Abdurrahman Büyükkaya

Abstract In this study, we established some common fixed point theorems for two
self-mappings and obtained some results for a self-mapping in the frame of modular
b−metric space, which includes the W−contractive type condition introduced by
Wardowski [15]. Also, some examples are given to illustrate the usability of the
acquired consequences.

1 Introduction and Preliminaries

Throughout the study, the following illustrations are used:

• N : the set of all positive natural numbers,
• R+ : the set of all non-negative real numbers.

Let � be a non-void set and Q,Λ : � → � be self-mappings. For an element ξ

of �, it is defined as a fixed point of the mapping Q and the common fixed point of
the mappings Q and Λ, if the following expressions are provided, respectively.

• Qξ = ξ ,
• Qξ = Λξ = ξ .

Banach contraction principle (BCP) or Banach fixed point theorem provided a
basis for metric fixed point theory and using this theorem to prove the existence
and the uniqueness of a fixed point of operators or mappings has been a useful and
valuable way. Up to now, several generalizations of the theorem have been made in
various ways.

Banach in 1922 [1] proved that “When (�,m) is a complete metric space and
Q : (�,m) → (�,m) is a mapping which obeys the following inequality for all
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ξ, ι ∈ �
m (Qξ, Qι) ≤ cm (ξ, ι) , where c ∈ (0, 1) , (1)

the mapping Q possesses a unique fixed point in �. Moreover, the iterative sequence
{Qnξ0} is convergent to this fixed point for each element ξ0 ∈ �.”

In 2010, Chistyakov [2] introduced a new generalized metric space called a mod-
ular metric space.

Let � be a non-empty set and σ : (0,∞) × � × � → [0,∞] be a function. For
simplicity, we will write:

σ� (ξ, ι) = σ (�, ξ, ι)

for all � > 0 and ξ, ι ∈ �.
Definition 1 ([2]) Let � be a non-empty set. A function σ : (0,∞) × � × � →
[0,∞] is said to be a metric modular on � if the following condition holds: for all
ξ, ι, ν ∈ �

(σ1) σ� (ξ, ι) = 0 for all � > 0 if and only if ξ = ι,
(σ2) σ� (ξ, ι) = σ� (ι, ξ) for all � > 0,
(σ3) σ�+μ (ξ, ι) ≤ σ� (ξ, ν) + σμ (ν, ι) for all �, μ > 0.

If (σ1) is replaced by the following condition
(
σ1

′) σ� (ξ, ξ) = 0 for all � > 0, then σ is labelled as a (metric) pseudomodular
on �.

Also, to understand more detail, see [2–8].
Firstly, in 1989, Bakhtin [9] reintroduced the concept of b-metric (also known

as quasi-metric) and, Czerwik [10, 11] used this in metric fixed point theory. Like-
wise, several researchers have achieved numerous fixed point results, including some
contractive mappings using this concept.

Definition 2 ([10]) Let � be a non-void set and ρ ≥ 1 (ρ ∈ R). A function η : � ×
� → R+ is named as b−metric on � provided to the following circumstances hold:

(η1) η (ξ, ι) = 0 ⇔ ξ = ι,

(η2) η (ξ, ι) = η (ι, ξ) ,

(η3) η (ξ, ι) ≤ ρ [η (ξ, ν) + η (ν, ι)] ,

for all ξ, ι, ν ∈ �. Also, the pair (�, η) is a b−metric space.

Even if a standard metric is a continuous map, a b−metric is not all the time. Besides,
apparently, for ρ = 1, it is clear that b−metric degrade to ordinary metric.

In general, the following lemma is required when the b−metric function is not
continuous.

Lemma 1 ([12]) Let (�, η) be a b−metric space with ρ ≥ 1 and {ξn} and {ιn} be
convergent to ξ and ι, respectively. Then,
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1

ρ2
η (ξ, ι) ≤ lim inf

n→∞ η (ξn, ιn) ≤ lim sup
n→∞

η (ξn, ιn) ≤ ρ2η (ξ, ι) .

Especially, if ξ = ι, then lim
n→∞ η (ξn, ιn) = 0. Further, for z ∈ �, the following

inequality is provided,

1

ρ
η (ξ, z) ≤ lim inf

n→∞ η (ξn, z) ≤ lim sup
n→∞

η (ξn, z) ≤ ρη (ξ, z) .

In 2018 Ege and Alaca [13] introduced a new concept by inspiring the above
descriptions and named as the modular b−metric space. Moreover, some fixed point
theorems, including new notions, are proved in the new space that expressed as
follows.

Definition 3 ([13]) Let � be a non-empty set and let ρ ≥ 1 (ρ ∈ R). Then, a map

 : (0,∞) × � × � → [0,∞] is entitled as modular b−metric, provided that the
following circumstances satisfies,

(
1) 
� (ξ, ι) = 0 for all � > 0 if and only if ξ = ι,
(
2) 
� (ξ, ι) = 
� (ι, ξ) for all � > 0,
(
3) 
�+μ (ξ, ι) ≤ ρ

[

� (ξ, ν) + 
μ (ν, ι)

]
for all �, μ > 0,

for all ξ, ι, ν ∈ �. So, (�,
) is a modular b−metric space, which denotes asMbMS.

In the definition of modular b−metric, if we choose ρ = 1, then it is abbreviated as
a natural extension of modular metric.

Example 1 ([13]) Consider the space

l p =
{

(ξn) ⊂ R :
∞∑

n=1

|ξn|p < ∞
}

0 < p < 1,

� ∈ (0,∞) and 
� (ξ, ι) = m(ξ,ι)

�
such that

m (ξ, ι) =
( ∞∑

n=1

|ξn − ιn|p
) 1

p

, ξ = ξn, ι = ιn ∈ l p.

It could be easily seen that (�,
) is an MbMS.

Example 2 ([14]) Let (�, σ ) be a modular metric space and let p ≥ 1 be a real
number. Take υ� (ξ, ι) = (σ� (ξ, ι))p. Using the convexity of the function Q (t) = t p

for t ≥ 0 and also using Jensen inequality, we obtain

(α + β)p ≤ 2p−1 (α p + β p
)

for α, β ≥ 0. Thus, (�, υ) is a MbMS with ρ = 2p−1.
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Definition 4 Let 
 be a modular b−metric on a set �. For ξ, ι ∈ �, the binary
relation


∼ on � defined by

ξ ∼ ι ⇔ lim
�→∞ 
� (ξ, ι) = 0

is an equivalence relation. A modular set is defined by

�
 =
{
ι ∈ � : ι


∼ ξ
}

.

Note that the set

�∗

 = {ξ ∈ � : ∃� = � (ξ) > 0 such that 
� (ξ, ξ0) < ∞} (ξ0 ∈ �)

are said to be modular metric spaces (around ξ0).

Now, in the following,we express some essential topological properties ofMbMS.

Definition 5 Let (�,
) be an MbMS.

(i) The sequence (ξn)n∈N in �∗

 is said to be 
−convergent to ξ ∈ �∗


 , if for
every ε > 0 there exists n0 ∈ N such that 
� (ξn, ξ) < ε for all n ≥ n0, that is,

� (ξn, ξ) → 0, as n → ∞ for all ξ > 0.

(ii) The sequence (ξn)n∈N in �∗

 is said to be 
−Cauchy if for every ε > 0

there exists n0 ∈ N such that 
� (ξn, ξm) < ε for all n,m ≥ n0, namely if
lim
n→∞ 
� (ξn, ξm) = 0 for all ξ > 0.

(iii) A modular b−metric space �∗

 is 
−complete if each 
−Cauchy sequence

in �∗

 is 
−convergent and the limit of the sequence belongs to �∗


 .

On the other hand, in 2012, Wardowski [15] put forth a new notion called
W−contraction. So, this notion has been a useful tool to get new type contractive
mappings and fixed point results.

Definition 6 ([15]) Let (�,m) be ametric space. Themapping Q : � → � is entitled
as W−contraction on (�,m) provided that there exists W ∈ W and κ > 0 such that
for all ξ, ι ∈ �,

m (Qξ, Qι) > 0 ⇒ κ + W (m (Qξ, Qι)) ≤ W (m (ξ, ι)) ,

where W is the set of functions W : (0,∞) → R satisfying the following ones:

(W1) W is strictly increasing, that is, for all ς, ω ∈ (0,∞) such that W (ς) <

W (ω) whenever ς < ω,
(W2)] For each sequence {an}n∈N of positive numbers lim

n→∞ an = 0 ⇔ lim
n→∞ W

(an) = −∞,
(W3) There exists c ∈ (0, 1) such that lim

a→0+
acW (a) = 0.



Some Fixed Point Results for Suzuki W−Contractions … 67

Next, Wardowski proved in [15] that any W−contraction mapping on a complete
metric space (�,m) possesses a unique fixed point.

Example 3 ([15]) The following functions W : (0,∞) → R belong to W .

(i) W1 (ς) = ln ς ,
(ii) W2 (ς) = ln ς + ς ,
(iii) W3 (ς) = − 1√

ς
,

(iv) W4 (ς) = ln
(
ς2 + ς

)
.

Hussain and Salimi [16] presented a new family of functions as indicated below.
Let �Σ denotes the set of all functions Σ : R4+ → R satisfying:

(Σ) If ζ1.ζ2.ζ3.ζ4 = 0 for all ζ1, ζ2, ζ3, ζ4 ∈ R+, then, there exists κ > 0 such
that Σ (ζ1, ζ2, ζ3, ζ4) = κ.

Next, considering the function Σ , they identified the α − η − ΣW−contraction
and also achieved new fixed point results in the sense of complete metric space, as
declared follows.

Definition 7 ([16]) Let (�,m) be a metric space and α, η : � × � → [0,∞) be two
functions. A self-mapping Q on � is called an α − η − ΣW−contraction if

Σ (m (ξ, Qξ) ,m (ι, Qι) ,m (ξ, Qι) ,m (ι, Qξ)) + W (m (Qξ, Qι)) ≤ W (m (ξ, ι))

is provided for ξ, ι ∈ � with η (ξ, Qξ) ≤ α (ξ, ι) and m (Qξ, Qι) > 0, where
Σ ∈ �Σ and W ∈ W .

Theorem 1 ([16]) Let (�,m) be a complete metric space. Let Q : � → � be a
self-mapping satisfying the following assertions:

(i) Q is an α−admissible mapping with respect to η;
(ii) Q is an α − η − ΣW−contraction;
(iii) there exists ξ0 ∈ � such that α (ξ0, Qξ0) ≥ η (ξ0, Qξ0);
(iv) Q is an α − η−continuous mapping.

Then Q admits a fixed point in �. Moreover, Q has a unique fixed point when
α (ξ, ι) ≥ η (ξ, ξ) for all ξ, ι ∈ Fix (Q).

For more detail about the W−contraction mappings, refer to [17–26].
Lastly, the following fixed point results, mentioned as Suzuki contraction in liter-

ature, is one of the most interesting and efficient generalizations of the Banach fixed
point theorem, which is given by Suzuki [27].

Theorem 2 ([27]) Let (�,m) be a compact metric space and Q : � → � be a self-
mapping. Then, Q admits a unique fixed point in � provided that the following
inequality is satisfied.
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1

2
m (ξ, Qξ) < m (ξ, ι) ⇒ m (Qξ, Qι) < m (ξ, ι)

for all ξ, ι ∈ � with ξ �= ι.

2 Main Results

Primarily, owing to the fact that the concept of metric modular does not have to
be finite, the following circumstances are essential to guarantee the existence and
uniqueness of fixed points of contractive mappings in the setting of a modular metric
space and a modular b−metric space. In the sequel, the following two conditions
will be needed to prove the theorems and corollaries:

(S1) 
� (ξ, Qξ) < ∞ for all ξ > 0 where ξ ∈ �∗

 .

(S2) 
� (ξ, ι) < ∞ for all ξ > 0 where ξ, ι ∈ �∗

 .

In the continuation of this section, we demonstrate some common fixed point
theorems using Suzuki contraction andW−contraction in modular b−metric spaces.

Theorem 3 Let �∗

 be a
−complete MbMS with ρ ≥ 1 and Q,Λ : �∗


 → �∗

 be

two self-mappings. Presume that the following conditions are satisfied:

i. there exist W ∈ W and Σ ∈ �Σ such that

1

2ρ
min {
� (ξ, Qξ) ,
� (Qι,ΛQι)} ≤ 
� (ξ, Qι)

implies

Σ (
� (ξ, Qξ) ,
� (Qι,ΛQι) ,
� (ξ,ΛQι) ,
� (Qι, Qξ)) + W
(
ρ2
� (Qξ,ΛQι)

) ≤

W
(
γ (
� (ξ, Qι))max

{

� (ξ, Qι) ,
� (ξ, Qξ) ,
� (Qι,ΛQι) ,


2�(ξ,ΛQι)+
2�(Qι,Qξ)
2ρ

})

(2)
for all ξ, ι ∈ �∗


 and all � > 0 with 
� (Qξ,ΛQι) > 0, where γ : P̄ → [0, 1)
is an upper semi-continuous function on P̄ := {
� (ξ, ι) : ξ, ι ∈ �∗




}
,

ii. one of the mappings Q or W is continuous.

If the condition (S1) is satisfied, then Q andΛ hold a common fixed point. Moreover,
if (S2) is provided, the common fixed point of the mappings Q and Λ is unique.

Proof Let ξ0 ∈ �∗

 . Then, there exists ξ1 ∈ �∗


 such that ξ1 = Qξ0. Likewise, there
exists ξ2 ∈ �∗


 such that ξ2 = Λξ1. By proceeding in this line, we constitute a
sequence

{
ξ j
}
j∈N in �∗


 featured

ξ2 j+1 = Qξ2 j and ξ2 j+2 = Λξ2 j+1.
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Assume that 
�

(
ξ j , ξ j+1

) = 0 for some j ∈ N and for all � > 0. Without loss of
generality if we select j = 2k for some k ∈ N, then we attain
� (ξ2k, ξ2k+1) = 0 for
all � > 0. Now, we suppose 
� (ξ2k+1, ξ2k+2) > 0. Since

1

2ρ
min {
� (ξ2k, Qξ2k) ,
� (Qξ2k,ΛQξ2k)} ≤ 
� (ξ2k, Qξ2k) ,

by (2), we achieve

Σ (
� (ξ2k, Qξ2k) ,
� (Qξ2k,ΛQξ2k) ,
� (ξ2k,ΛQξ2k) ,
� (Qξ2k, Qξ2k))+

W
(
ρ2
� (Qξ2k,ΛQξ2k)

) ≤ W (γ (
� (ξ2k, Qξ2k))max {
� (ξ2k, Qξ2k) ,


� (ξ2k, Qξ2k) ,
� (Qξ2k,ΛQξ2k) ,

2�(ξ2k ,ΛQξ2k )+
2�(Qξ2k ,Qξ2k )

2ρ

})
.

Because


� (ξ2k, ξ2k+1) .
� (ξ2k+1, ξ2k+2) .
� (ξ2k, ξ2k+2) .
� (ξ2k+1, ξ2k+1) = 0,

from the definition of the function (Σ), there exists κ > 0 such that

Σ (
� (ξ2k, ξ2k+1) ,
� (ξ2k+1, ξ2k+2) ,
� (ξ2k, ξ2k+2) , 0) = κ.

Besides, by denoting ηk = 
� (ξ2k, ξ2k+1) , the following precise expression can
be written;

κ + W
(
ρ2ηk+1

) ≤ W

(
γ (ηk)max

{
ηk , ηk+1,


2� (ξ2k , ξ2k+2) + 
2� (ξ2k+1, ξ2k+1)

2ρ

})
.

Note that 
2� (ξ2k, ξ2k+2) ≤ ρ (ηk + ηk+1) and since ηk = 
� (ξ2k, ξ2k+1) = 0,

we get max
{
0, ηk+1,

0+ηk+1

2

}
= ηk+1. Hence we conclude that

κ + W
(
ρ2ηk+1

) ≤ W (γ (0) ηk+1) .

Using the strictly increasing property of the W function, the following result is
obtained from the above expression, but a contradictory situation arises due to the
fact that γ (0) < 1

ηk+1 ≤ ρ2ηk+1 < γ (0) ηk+1.

Then,we achieve thatηk+1 = 0, i.e., ξ2k+1 = ξ2k+2.Therefore, the equalities ξ2k =
ξ2k+1 = ξ2k+2, and ξ2k = Qξ2k = Λξ2k hold, whichmeans that ξ2k is a common fixed
point of Q and Λ. For this reason, in the rest of the proof, we also assume that
ξ j �= ξ j+1.
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Applying the considered condition (2) and keeping in mind what we obtain in the
above, we get

κ + W
(
ρ2η j+1

) ≤ W
(
γ
(
η j
)
max

{
η j , η j , η j+1,

η j+η j+1

2

})

= W
(
γ
(
η j
)
max

{
η j , η j+1

})
.

(3)

Presume thatmax
{
η j , η j+1

} = η j+1.Thereby, (3) reduced to the expressiongiven
below;

κ + W
(
ρ2η j+1

) ≤ W
(
γ
(
η j
)
η j+1

)
.

Once more, if we use the strictly increasing property of W , we come to the
conclusion that

η j+1 ≤ ρ2η j+1 < γ
(
η j
)
η j+1 < η j+1,

and this causes a contradiction. max
{
η j , η j+1

}
must be equal to η j . Hence

κ + W
(
ρ2η j+1

) ≤ W
(
γ
(
η j
)
η j
)

< W
(
η j
)
, (4)

for all j ∈ N. Similarly, we attest that

κ + W
(
ρ2η j

)
< W

(
η j−1

)
, (5)

for all j ∈ N. By the expressions (4) and (5), we have

W
(
ρ2
�

(
ξ j , ξ j+1

))
< W

(

�

(
ξ j−1, ξ j

))− κ

< W
(

�

(
ξ j−2, ξ j−1

))− 2κ

< · · ·

< W (
� (ξ0, ξ1)) − jκ

(6)

for all j ∈ N. It follows that lim
j→+∞ W

(
ρ2
�

(
ξ j , ξ j+1

)) = −∞. By the property

(W2), we get lim
j→+∞ ρ2
�

(
ξ j , ξ j+1

) = 0. Since ρ ≥ 1,

lim
j→+∞ 
�

(
ξ j , ξ j+1

) = 0, (7)

is procured. Now, from (W3), there exists τ ∈ (0, 1) such that

lim
j→+∞ 
�

(
ξ j , ξ j+1

)τ
W
(

�

(
ξ j , ξ j+1

)) = 0. (8)
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By (6), the following holds, for all j ∈ N and for all � > 0:

(

�

(
ξ j , ξ j+1

))τ (
W
(

�

(
ξ j , ξ j+1

))− W (
� (ξ0, ξ01))
) ≤ −(
�

(
ξ j , ξ j+1

))τ
jκ ≤ 0.

If we take the limit in the above, we have

lim
j→+∞ j

(

�

(
ξ j , ξ j+1

))τ = 0.

So, there exists j1 ∈ N such that j
(

�

(
ξ j , ξ j+1

))τ ≤ 1 for all j ≥ j1. Thus, we
have for all j ≥ j1


�

(
ξ j , ξ j+1

) ≤ 1

j
1
τ

. (9)

Subsequently, in order to show that
{
ξ j
}
j∈N is a 
−Cauchy sequence, consider

g, j ∈ N such that g > j ≥ j1. By using (
3) and from (9), we deduce that


�

(
ξ j , ξg

) ≤ ρ
 �
2

(
ξ j , ξ j+1

)+ ρ2
 �
4

(
ξ j+1, ξ j+2

)+ · · · + ρg− j
 �

2g− j

(
ξg−1, ξg

)
.

Without loss of generality, we have


�

(
ξ j , ξg

) ≤
g−1∑

r= j
ρr− j+1
� (ξr , ξr+1)

≤
g−1∑

r= j
ρr− j+1

(
1

r
1
τ

)
≤

∞∑

r= j
ρr− j+1

(
1

r
1
τ

)
.

By the convergence of the series
∞∑

r= j

1

r
1
τ
as r → ∞ and since multiplying a scalar

number in a convergent series gives a convergent series, passing to limit j → ∞, we
have
�

(
ξ j , ξg

)→ 0 for all � > 0, which yields that
{
ξ j
}
is a
−Cauchy sequence

in �∗

 . By the completeness of the space, we obtain that ξ ∗ ∈ �∗


 such that


�

(
ξ j , ξ

∗)→ 0, (10)

as j → ∞. Now, if Q is a continuous mapping, then we have


�

(
ξ ∗, Qξ ∗) = lim

j→∞ 
�

(
ξ2 j , Qξ2 j

) = lim
j→∞ 
�

(
ξ2 j , ξ2 j+1

) = 0.

This last equation displays that ξ ∗ is the fixed point of Q. Assume that ξ ∗ �= Λξ ∗,
i.e., 
� (ξ ∗,Λξ ∗) > 0. Then, since
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1

2ρ
min

{

�

(
ξ ∗, Qξ ∗) ,
�

(
Qξ ∗,ΛQξ ∗)} ≤ 
�

(
ξ ∗, Qξ ∗) ,

from (2), we get

Σ (
� (ξ ∗, Qξ ∗) ,
� (Qξ ∗,ΛQξ ∗) ,
� (ξ ∗,ΛQξ ∗) ,
� (Qξ ∗, Qξ ∗)) +

W
(
ρ2
� (Qξ ∗,ΛQξ ∗)

) ≤ W (γ (
� (ξ ∗, Qξ ∗))max {
� (ξ ∗, Qξ ∗) ,


� (ξ ∗, Qξ ∗) ,
� (Qξ ∗,ΛQξ ∗) ,

2�(ξ

∗,ΛQξ∗)+
2�(Qξ∗,Qξ∗)
2ρ

})
.

Because of the definition of (Σ), we conclude that

Σ
(
0,
�

(
ξ ∗,Λξ ∗) ,
�

(
ξ ∗,Λξ ∗) , 0

) = κ.

Therefore, the following expression is obtained, but it signifies a contradiction;

κ + W
(
ρ2
� (ξ ∗,Λξ ∗)

) ≤ W
(
γ (0)max

{
0, 0,
� (ξ ∗,Λξ ∗) ,


2�(ξ
∗,Λξ∗)
2ρ

})

≤ W (γ (0)
� (ξ ∗,Λξ ∗))

< W (
� (ξ ∗,Λξ ∗)) ,

that is, ξ ∗ = Λξ ∗. Hence, ξ ∗ is a common fixed point of the mappings Q and Λ in
case of Q is a continuous mapping.

Now, let’s assume that the functionW be continuous. In this case, if Qξ2 j = Qξ ∗
for infinite values of j ∈ N, then we have

ξ ∗ = lim
j→∞ ξ2 j+1 = lim

j→∞ Qξ2 j = Qξ ∗.

This proves that ξ ∗ is a fixed point of Q.
Since Qξ2 j = Qξ ∗ = ξ ∗, we conclude thatΛQξ2 j = Λξ2 j+1 = Λξ ∗ and also get

ξ ∗ = lim
j→∞ ξ2 j+2 = lim

j→∞ Λξ2 j+1 = Λξ ∗,

which means that ξ ∗ is a fixed point of the mapping Λ.
Then suppose that ξ2 j+2 �= Qξ ∗ for all j ∈ N. First of all, we shall prove that

ξ ∗ = Qξ ∗.
To show this, we put forth for all j ≥ 0, at least one of the following inequalities

is true:
1

2ρ

�

(
ξ2 j+1, ξ2 j+2

) ≤ 
�

(
ξ ∗, ξ2 j+1

)
, (11)

or
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1

2ρ

�

(
ξ2 j+2, ξ2 j+3

) ≤ 
�

(
ξ ∗, ξ2 j+1

)
. (12)

Unlike, if for some j0 ≥ 0, both of them are not provided. Hence, using (11) and
(12), we say


�

(
ξ2 j0+1, ξ2 j0+2

) ≤ ρ
�

(
ξ2 j0+1, ξ

∗)+ ρ
�

(
ξ∗, ξ2 j0+2

)

< 1
2
�

(
ξ2 j0+1, ξ2 j0+2

)+ 1
2
�

(
ξ2 j0+2, ξ2 j0+3

)

< 1
2
�

(
ξ2 j0+1, ξ2 j0+2

)+ 1
2
�

(
ξ2 j0+1, ξ2 j0+2

) = 
�

(
ξ2 j0+1, ξ2 j0+2

)
,

which causes a contradiction. Therefore, our assertion is true. From this point, one
can discuss the following two subcases.

Subcase (i): The inequality (11) holds for infinitely many j ≥ 0. In this case, for
infinitely many j ≥ 0, we have

1
2ρ min

{

� (ξ∗, Qξ∗) ,
�

(
Qξ2 j ,ΛQξ2 j

)} = 1
2ρ min

{

� (ξ∗, Qξ∗) ,
�

(
ξ2 j+1, ξ2 j+2

)}

≤ 
�

(
ξ∗, ξ2 j+1

)
.

Then, by (2), we get

Σ
(

� (ξ ∗, Qξ ∗) ,
�

(
Qξ2 j ,ΛQξ2 j

)
,
�

(
ξ ∗,ΛQξ2 j

)
,
�

(
Qξ2 j , Qξ ∗))+

W
(
ρ2
�

(
Qξ ∗,ΛQξ2 j

)) ≤ W
(
γ
(

�

(
ξ ∗, Qξ2 j

))
max

{

�

(
ξ ∗, Qξ2 j

)
,


� (ξ ∗, Qξ ∗) ,
�

(
Qξ2 j ,ΛQξ2 j

)
,


2�(ξ∗,ΛQξ2 j)+
2�(Qξ2 j ,Qξ∗)
2ρ

})

and so, it implies that

W
(
ρ2
�

(
Qξ ∗, ξ2 j+2

)) ≤ W
(
γ
(

�

(
ξ ∗, ξ2 j+1

))
max

{

�

(
ξ ∗, ξ2 j+1

)
,


� (ξ ∗, Qξ ∗) ,
�

(
ξ2 j+1, ξ2 j+2

)
,


2�(ξ∗,ξ2 j+2)+
2�(ξ2 j+1,Qξ∗)
2ρ

})
.

(13)

Then, by the upper semi-continuity of γ , we have

lim
j→∞ sup γ

(

�

(
ξ ∗, ξ2 j+1

)) ≤ γ (0) .

Hence, taking the upper limit as j → ∞ in (13),
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W
(
ρ2
� (Qξ∗, ξ∗)

) ≤ W

(
lim
j→∞ sup

[
γ
(

�

(
ξ∗, ξ2 j+1

))
max

{

�

(
ξ∗, ξ2 j+1

)
,


� (ξ∗, Qξ∗) ,
�

(
ξ2 j+1, ξ2 j+2

)
,


2�(ξ∗,ξ2 j+2)+ρ[
�(ξ2 j+1,ξ2 j+2)+
�(ξ2 j+1,Qξ∗)]
2ρ

}])

≤ W (γ (0)
� (ξ∗, Qξ∗)) ,

is obtained. Since W is strictly increasing, we get


�

(
Qξ ∗, ξ ∗) ≤ ρ2
�

(
Qξ ∗, ξ ∗) ≤ γ (0)
�

(
ξ ∗, Qξ ∗) ,

which yields ξ ∗ = Qξ ∗.
Similarly, taking ξ2 j+1 �= Λξ ∗ for all j ∈ N, we also procure Λξ ∗ = ξ ∗.

Subcase (ii): The inequality (11) merely satisfies for finitely many j ≥ 0. In this
case, there exists j0 ≥ 0 such that (12) holds for any j ≥ j0. Like in
Subcase (i), one can prove that (12) also leads to a contradiction unless
ξ ∗ is a common fixed point of the mappings Q or Λ.

Consequently, in both subcases, ξ ∗ is considered as the common fixed point of Q
and Λ.

Finally, for uniqueness, let ξ ∗ and ξ ∗
1 be two distinct common fixed points of Q

and Λ. Hence, 
�

(
Qξ ∗,ΛQξ ∗

1

) = 
�

(
ξ ∗, ξ ∗

1

)
> 0 and also,

0 = 1

2ρ
min{
�

(
ξ ∗, Qξ ∗) ,
�

(
Qξ ∗

1 ,ΛQξ ∗
1

)} ≤ 
�

(
ξ ∗, Qξ ∗

1

) = 
�

(
ξ ∗, ξ ∗

1

)
,

which implies by (2) that

Σ
(

�

(
ξ ∗, Qξ ∗

1

)
,
�

(
Qξ ∗

1 ,ΛQξ ∗
1

)
,
�

(
ξ ∗,ΛQξ ∗

1

)
,
�

(
Qξ ∗

1 , Qξ ∗))+

W
(
ρ2
�

(
Qξ ∗,ΛQξ ∗

1

)) ≤ W
(
γ
(

�

(
ξ ∗, Qξ ∗

1

))
max

{

�

(
ξ ∗, Qξ ∗

1

)
,


� (ξ ∗, Qξ ∗) ,
�

(
Qξ ∗

1 ,ΛQξ ∗
1

)
,


2�(ξ∗,ΛQξ∗
1 )+
2�(Qξ∗

1 ,Qξ∗)
2ρ

})
.

From (Σ), we obtain

Σ
(
0, 0,
�

(
ξ ∗, ξ ∗

1

)
,
�

(
ξ ∗
1 , ξ ∗)) = κ,

and so, we conclude that

κ + W
(
ρ2
�

(
ξ ∗, ξ ∗

1

)) ≤ W
(
γ
(

�

(
ξ ∗, ξ ∗

1

))
max

{

�

(
ξ ∗, ξ ∗

1

)
, 0, 0,


2�(ξ∗,ξ∗
1 )

ρ

})

≤ W
(
γ
(

�

(
ξ ∗, ξ ∗

1

))

�

(
ξ ∗, ξ ∗

1

))

< W
(

�

(
ξ ∗, ξ ∗

1

))
,
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which is a contradiction, that is, ξ ∗ = ξ ∗
1 . This shows that the common fixed point

of Q and Λ is unique. So this finishes the proof. �

Taking Q = Λ in Theorem 3, then we achieve the following consequence.

Corollary 1 Let �∗

 be a 
−complete MbMS with ρ ≥ 1 and Q : �∗


 → �∗

 be a

self-mapping. Presume that there exist W ∈ W and Σ ∈ �Σ such that

1

2ρ

� (ξ, Qξ) ≤ 
� (ξ, Qι)

implies

Σ
(

� (ξ, Qξ) , 
�

(
Qι, Q2ι

)
, 
�

(
ξ, Q2ι

)
, 
� (Qι, Qξ)

)+ W
(
ρ2
�

(
Qξ, Q2ι

)) ≤

W

(
γ (
� (ξ, Qι))max

{

� (ξ, Qι) , 
� (ξ, Qξ) , 
�

(
Qι, Q2ι

)
,


2�
(
ξ,Q2ι

)+
2�(Qι,Qξ)

2ρ

})
,

(14)
for all ξ, ι ∈ �∗


 and all � > 0 with 
�

(
Qξ, Q2ι

)
> 0, where γ : P̄ → [0, 1) is

an upper semi-continuous function on P̄ := {
� (ξ, ι) : ξ, ι ∈ �∗



}
. If Q or W is

continuous, then under the conditions (S1) and (S2), Q holds a unique fixed point in
�∗


 .

The following theorem is proved with the same lines applied in the proof of
Theorem 3.

Theorem 4 Let �∗

 be a
−complete MbMS with ρ ≥ 1 and Q,Λ : �∗


 → �∗

 be

two self-mappings. Assume that the following statements are satisfied:

i. there exist W ∈ W and Σ ∈ �Σ such that

1

2ρ
min {
� (ξ, Qξ) ,
� (Qι,ΛQι)} ≤ 
� (ξ, Qι)

implies

Σ (
� (ξ, Qξ) , 
� (Qι, ΛQι) , 
� (ξ, ΛQι) , 
� (Qι, Qξ)) + W
(
ρ2
� (Qξ, ΛQι)

) ≤

W
(
αmax

{

� (ξ, Qι) ,


�(ξ,Qξ)+
�(Qι,ΛQι)
2 ,


2�(ξ,ΛQι)+
2�(Qι,Qξ)
2ρ

})

(15)
for all ξ, ι ∈ �∗


 and all � > 0 with 
� (Qξ,ΛQι) > 0, where α ∈ [0, 1),
ii. one of the mappings Q or W is continuous,
iii. (S1) and (S2) are provided.

Then the mappings Q and Λ hold a unique common fixed point in �∗

 .

Similarly, by taking Q = Λ in Theorem 4, we acquire the below consequence.

Corollary 2 Let �∗

 be a 
−complete MbMS with ρ ≥ 1 and Q : �∗


 → �∗

 be a

self-mapping. Suppose that there exist W ∈ W and Σ ∈ �Σ such that
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1

2ρ

� (ξ, Qξ) ≤ 
� (ξ, Qι)

implies

Σ
(

� (ξ, Qξ) , 
�

(
Qι, Q2ι

)
, 
�

(
ξ, Q2ι

)
, 
� (Qι, Qξ)

)+ W
(
ρ2
�

(
Qξ, Q2ι

)) ≤

W

(
αmax

{

� (ξ, Qι) ,


�(ξ,Qξ)+
�

(
Qι,Q2ι

)

2 ,

2�

(
ξ,Q2ι

)+
2�(Qι,Qξ)

2ρ

}) (16)

for all ξ, ι ∈ �∗

 and all � > 0 with 
�

(
Qξ, Q2ι

)
> 0, where α ∈ [0, 1). If Q or W

is a continuous mapping, as well as the conditions (S1) and (S2) are provided, then
Q holds a unique fixed point in �∗


 .

In the rest of this article, it will be considered that τ ∈ (0, 1
2

)
and we establish

some fixed point theorems and their results for W−contractions involving product
expressions.

Theorem 5 Let �∗

 be a
−complete MbMS with ρ ≥ 1 and Q,Λ : �∗


 → �∗

 be

two self-mappings. Suppose that the following statements hold:

i. there exist W ∈ W and Σ ∈ �Σ such that

1

2ρ
min {
� (ξ, Qξ) ,
� (ι,Λι)} ≤ 
� (ξ, ι)

implies

Σ (
� (ξ, Qξ) ,
� (ι,Λι) ,
� (ξ,Λι) ,
� (ι, Qξ)) +

W
(
ρ2
 2

�
(Qξ,Λι)

) ≤ W

⎛

⎜⎜
⎝

α
[

� (ξ, Qξ)
� (ι,Λι) + 1

ρ

2� (ξ,Λι) 
2� (ι, Qξ)

]
+

β
[

� (ξ, Qξ) 
2� (ι, Qξ) + 1

ρ

2� (ξ,Λι) 
� (ι,Λι)

]

⎞

⎟⎟
⎠

(17)
for all ξ, ι ∈ �∗


 and all � > 0 with 
� (Qξ,Λι) > 0, where α, β ≥ 0, α +
β < 1

ρ
.

ii. Q or W is a continuous mapping.
iii. the conditions (S1) and (S2) are satisfied.

Then Q and Λ possess a unique common fixed point in �∗

 .

Proof Specify ξ0 ∈ �∗

 as an arbitrary element. Then there exists ξ1 ∈ �∗


 such that
ξ1 = Qξ0. Likewise, there exists ξ2 ∈ �∗


 such that ξ2 = Λξ1. If we carry over this
way, we compose a sequence

{
ξ j
}
j∈N in �∗


 featured

ξ2 j+1 = Qξ2 j and ξ2 j+2 = Λξ2 j+1.

Presume that 
�

(
ξ j , ξ j+1

) = 0 for all � > 0. Next, if we take j = 2i for some
i ∈ N, then this yields that 
� (ξ2i , ξ2i+1) = 0 for all � > 0. So, we suppose
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� (ξ2i+1, ξ2i+2) > 0. Due to the fact that

1

2ρ
min {
� (ξ2i , Qξ2i ) ,
� (ξ2i+1,Λξ2i+1)} ≤ 
� (ξ2i , ξ2i+1) ,

from (17), it implies

Σ
(

� (ξ2i , Qξ2i ) , 
�

(
ξ2i+1, Λξ2i+1

)
, 
�

(
ξ2i , Λξ2i+1

)
,
�

(
ξ2i+1, Qξ2i

))+

W
(
ρ2
 2

�

(
Qξ2i , Λξ2i+1

)) ≤

W
(
α
[

� (ξ2i , Qξ2i ) 
�

(
ξ2i+1,Λξ2i+1

)+ 1
ρ 
2�

(
ξ2i , Λξ2i+1

)

2�

(
ξ2i+1, Qξ2i

)] +

β
[

� (ξ2i , Qξ2i ) 
2�

(
ξ2i+1, Qξ2i

)+ 1
ρ 
2�

(
ξ2i , Λξ2i+1

)

�

(
ξ2i+1, Λξ2i+1

)])
.

Now, as


� (ξ2i , ξ2i+1) .
� (ξ2i+1, ξ2i+2) .
� (ξ2i , ξ2i+2) .
� (ξ2i+1, ξ2i+1) = 0,

so, from (Σ), there exists κ > 0 such that

Σ (
� (ξ2i , ξ2i+1) ,
� (ξ2i+1, ξ2i+2) ,
� (ξ2i , ξ2i+2) , 0) = κ.

Also, let ηi = 
� (ξ2i , ξ2i+1). Then, we conclude that

κ + W
(
ρ2ηi+1

2
) ≤ W

(
α
[
ηiηi+1

]+ β

[
1

ρ

2� (ξ2i , ξ2i+2) ηi+1

])
.

Note that 
2� (ξ2i , ξ2i+2) ≤ ρ (ηi + ηi+1) and because ηi = 
� (ξ2i , ξ2i+1) = 0,
we obtain

κ + W
(
ρ2ηi+1

2
) ≤ W

(
βηi+1

2
)
.

Because of strictly increasing property of W , we determine ρ2ηi+1
2 < βηi+1

2,
which is a contradiction. So, ηi+1 = 0, that is, ξ2i+1 = ξ2i+2. Consequently, we
achieve ξ2i = Qξ2i = Λξ2i ; namely, ξ2i is a common fixed point of Q and Λ. In
the rest of the proof, we also assume that ξ j �= ξ j+1.

Applying the considered condition (17) and by keeping in mind what we obtain
in the above, we get

κ + W
(
ρ2η j+1

2
) ≤ W

(
α
[
η jη j+1

]+ β
[(

η j + η j+1
)
η j+1

])

= W
(
(α + β) η jη j+1 + βη j+1

2
)
.

By using the feature of W , we deduce that
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ρ2η j+1
2 < (α + β) η jη j+1 + βη j+1

2

and, hence (
ρ2 − β

)
η j+1 < (α + β) η j ,

for all j ∈ N. From α + β < 1
ρ
, where ρ ≥ 1, we obtain ρ2 − β > 0 and so,


�

(
ξ2 j+1, ξ2 j+2

)
<

(
α + β

ρ2 − β

)

�

(
ξ2 j , ξ2 j+1

)
< 
�

(
ξ2 j , ξ2 j+1

)
.

Therefore, we have

κ + W
(
ρ2
 2

�

(
ξ2 j+1, ξ2 j+2

)) ≤ W
(

 2

�

(
ξ2 j , ξ2 j+1

))

for all j ∈ N and, similarly, we can show

κ + W
(
ρ2
 2

�

(
ξ2 j , ξ2 j+1

)) ≤ W
(

 2

�

(
ξ2 j−1, ξ2 j

))

for all j ∈ N. From the above inequalities, we gain

W
(
ρ2
 2

�

(
ξ j , ξ j+1

))
< W

(

 2

�

(
ξ j−1, ξ j

))− κ < ... < W
(

 2

�
(ξ0, ξ1)

)− jκ

for all j ∈ N and for all � > 0.
Now, step by step, if we continue as in the proof of Theorem 3, then it is easy to

show that
{
ξ j
}
j∈N is a 
−Cauchy sequence in �∗


 . Owing to the completeness of
the space, we obtain that ξ ∗ ∈ �∗


 such that


�

(
ξ j , ξ

∗)→ 0, (18)

as j → ∞. Now, if Q is continuous, then we have


�

(
ξ ∗, Qξ ∗) = lim

j→∞ 
�

(
ξ2 j , Qξ2 j

) = lim
j→∞ 
�

(
ξ2 j , ξ2 j+1

) = 0.

It implies that ξ ∗ is a fixed point of Q. Assume that ξ ∗ �= Λξ ∗, i.e.,
� (ξ ∗,Λξ ∗) >

0. Then, since

1

2ρ
min

{

�

(
ξ ∗, Qξ ∗) ,
�

(
ξ ∗,Λξ ∗)} ≤ 
�

(
ξ ∗, ξ ∗) ,

from (17), we get
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Σ (
� (ξ ∗, Qξ ∗) ,
� (ξ ∗,Λξ ∗) ,
� (ξ ∗,Λξ ∗) ,
� (ξ ∗, Qξ ∗))

+W
(
ρ2
 2

�
(Qξ ∗,Λξ ∗)

) ≤

W

⎛

⎜⎜
⎝

α
[

� (ξ ∗, Qξ ∗)
� (ξ ∗,Λξ ∗) + 1

ρ

2� (ξ ∗,Λξ ∗)
2� (ξ ∗, Qξ ∗)

]
+

β
[

� (ξ ∗, Qξ ∗) 
2� (ξ ∗, Qξ ∗) + 1

ρ

2� (ξ ∗,Λξ ∗) 
� (ξ ∗,Λξ ∗)

]

⎞

⎟⎟
⎠ .

Due to the definition of (Σ), we decide on

Σ
(
0,
�

(
ξ ∗,Λξ ∗) ,
�

(
ξ ∗,Λξ ∗) , 0

) = κ,

thus, we come by

κ + W
(
ρ2
 2

�
(ξ ∗,Λξ ∗)

) ≤ W
(
β
[
1
ρ

2� (ξ ∗,Λξ ∗)
� (ξ ∗,Λξ ∗)

])

≤ W
(
β
 2

�
(ξ ∗,Λξ ∗)

)

< W (
� (ξ ∗,Λξ ∗)) ,

so this conclusion causes a contradiction, i.e., ξ ∗ = Λξ ∗. On the other hand, assume
that W is continuous. In this case, if Qξ2 j = Qξ ∗ for infinite values of j ∈ N, then
we have

ξ ∗ = lim
j→∞ ξ2 j+1 = lim

j→∞ Qξ2 j = Qξ ∗.

This proves that ξ ∗ is a fixed point of Q.
Since Qξ2 j = Qξ ∗ = ξ ∗, we conclude that ΛQξ2 j = Λξ2 j+1 = Λξ ∗. Then, we

get
ξ ∗ = lim

j→∞ ξ2 j+2 = lim
j→∞ Λξ2 j+1 = Λξ ∗.

This shows that ξ ∗ is a fixed point of Λ.
Then, we suppose that ξ2 j+2 �= Qξ ∗ for all n ∈ N. Again, as in Theorem 3, we

have
1

2ρ
min

{

�

(
ξ ∗, Qξ ∗) ,
�

(
Qξ2 j ,ΛQξ2 j

)} ≤ 
�

(
ξ ∗, Qξ2 j

)
.

Hence, by (17), we get
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Σ
(

� (ξ∗, Qξ∗) , 
�

(
ξ2 j+1, Λξ2 j+1

)
, 
�

(
ξ∗, Λξ2 j+1

)
, 
�

(
ξ2 j+1, Qξ∗))

+W
(
ρ2
 2

�

(
Qξ∗, Λξ2 j+1

)) ≤

W

⎛

⎜
⎜
⎝

α
[

� (ξ∗, Qξ∗) 
�

(
ξ2 j+1, Λξ2 j+1

)+ 1
ρ

2�

(
ξ∗, Λξ2 j+1

)

2�

(
ξ2 j+1, Qξ∗)

]
+

β
[

� (ξ∗, Qξ∗) 
2�

(
ξ2 j+1, Qξ∗)+ 1

ρ

2�

(
ξ∗, Λξ2 j+1

)

�

(
ξ2 j+1, Λξ2 j+1

)]

⎞

⎟
⎟
⎠

and so, it implies that

W
(
ρ2
 2

�

(
Qξ∗, ξ2 j+2

)) ≤

W

⎛

⎜⎜
⎝

α
[

� (ξ∗, Qξ∗) 
�

(
ξ2 j+1, ξ2 j+2

)+ 1
ρ

2�

(
ξ∗, ξ2 j+2

)

2�

(
ξ2 j+1, Qξ∗)

]
+

β
[

� (ξ∗, Qξ∗) 
2�

(
ξ2 j+1, Qξ∗)+ 1

ρ

2�

(
ξ∗, ξ2 j+2

)

�

(
ξ2 j+1, ξ2 j+2

)]

⎞

⎟⎟
⎠ .

(19)

Then, taking the limit as j → ∞ in (19) and using the continuity of W , the
following expression is acquired;

W
(
ρ2
 2

�
(Qξ∗, ξ∗)

) ≤ W

(
lim
j→∞ β

[

 2

�
(ξ∗, Qξ∗)

(
ρ
�

(
ξ2 j+1, ξ2 j+2

)+ ρ
�

(
ξ2 j+2, Qξ∗))]

)

≤ W
(
βρ
 2

�
(Qξ∗, ξ∗)

)
.

As W is a strictly increasing mapping, we derive

ρ
 2
�

(
Qξ ∗, ξ ∗) < β
 2

�

(
Qξ ∗, ξ ∗) .

This means that Qξ ∗ = ξ ∗. Similarly, taking ξ2 j+1 �= Λξ ∗ for all j ∈ N, we also
attain Λξ ∗ = ξ ∗.

Consequently, ξ ∗ is a common fixed point of Q and Λ.
Finally, for uniqueness, let ξ ∗ and ξ ∗

1 be two distinct common fixed points of Q
and Λ. Hence 
�

(
Qξ ∗,Λξ ∗

1

) = 
�

(
ξ ∗, ξ ∗

1

)
> 0 and the expression

0 = 1

2ρ
min

{

�

(
ξ ∗, Qξ ∗) ,
�

(
ξ ∗
1 ,Λξ ∗

1

)} ≤ 
�

(
ξ ∗, ξ ∗

1

)

implies from the inequality (17)

Σ
(

� (ξ∗, Qξ∗) ,
�

(
ξ∗
1 ,Λξ∗

1

)
,
�

(
ξ∗,Λξ∗

1

)
,
�

(
ξ∗
1 , Qξ∗))+ W

(
ρ2
 2

�

(
Qξ∗,Λξ∗

1

))

≤ W

⎛

⎜⎜
⎝

α
[

� (ξ∗, Qξ∗) 
�

(
ξ∗
1 ,Λξ∗

1

)+ 1
ρ

2�

(
ξ∗,Λξ∗

1

)

2�

(
ξ∗
1 , Qξ∗)

]
+

β
[

� (ξ∗, Qξ∗) 
2�

(
ξ∗
1 , Qξ∗)+ 1

ρ

2�

(
ξ∗,Λξ∗

1

)

�

(
ξ∗
1 ,Λξ∗

1

)]

⎞

⎟⎟
⎠ .
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From the definition of (Σ),
Σ
(
0, 0,
�

(
ξ ∗, ξ ∗

1

)
,
�

(
ξ ∗
1 , ξ ∗)) = κ holds and, we obtain

κ + W
(
ρ2
 2

�

(
ξ ∗, ξ ∗

1

)) ≤ W
(
α
[
1
ρ

 2

2�

(
ξ ∗, ξ ∗

1

)])

≤ W
(

 2

�

(
ξ ∗, ξ ∗

1

))
.

This is a contradiction, i.e., ξ ∗ = ξ ∗
1 . Therefore, we say that the common fixed

point of Q and Λ is unique and the proof ends. �

In the case of Q = Λ in Theorem 5, the following result is procured.

Corollary 3 Let �∗

 be a 
−complete MbMS with ρ ≥ 1 and Q : �∗


 → �∗

 be a

self-mapping. Assume that there exist W ∈ W and Σ ∈ �Σ such that

1

2ρ

� (ξ, Qξ) ≤ 
� (ξ, ι)

implies

Σ (
� (ξ, Qξ) , 
� (ι, Qι) , 
� (ξ, Qι) , 
� (ι, Qξ))+

W
(
ρ2
 2

�
(Qξ, Qι)

) ≤ W

⎛

⎜
⎜
⎝

α
[

� (ξ, Qξ)
� (ι, Qι) + 1

ρ

2� (ξ, Qι) 
2� (ι, Qξ)

]
+

β
[

� (ξ, Qξ)
2� (ι, Qξ) + 1

ρ

2� (ξ, Qι) 
� (ι, Qι)

]

⎞

⎟
⎟
⎠

(20)
for all ξ, ι ∈ �∗


 and all � > 0with
� (Qξ, Qι) > 0, where α, β ≥ 0, α + β < 1
ρ
.

If Q or W is continuous and by adding the conditions (S1) and (S2), then Q holds a
unique fixed point in �∗


 .

Also, we establish the following common fixed point theorem.

Theorem 6 Let �∗

 be a
−complete MbMS with ρ ≥ 1 and Q,Λ : �∗


 → �∗

 be

two self-mappings. Suppose that the following circumstances hold:

i. there exist W ∈ W and Σ ∈ �Σ such that

1

2ρ
min {
� (ξ, Qξ) ,
� (Qι,ΛQι)} ≤ 
� (ξ, Qι)

implies



82 M. Öztürk and A. Büyükkaya

Σ (
� (ξ, Qξ) ,
� (Qι,ΛQι) ,
� (ξ,ΛQι) ,
� (Qι, Qξ)) + W
(
ρ2
 2

�
(Qξ,ΛQι)

) ≤

W

⎛

⎜
⎝γ (
� (ξ, Qι))max

⎧
⎪⎨

⎪⎩


� (ξ, Qξ) 
� (Qι,ΛQι) , 1
2ρ2 
2� (ξ,ΛQι)
2� (Qι, Qξ) ,

1
2ρ 
� (ξ, Qξ) 
2� (Qι, Qξ) , 1

2ρ 
� (Qι,ΛQι) 
2� (ξ,ΛQι)

⎫
⎪⎬

⎪⎭

⎞

⎟
⎠

(21)
for all ξ, ι ∈ �∗


 and for all � > 0 with 
� (Qξ,ΛQι) > 0, where

γ : P̄ →
[
0,

1

2ρ

)

is an upper semi-continuous function on P̄ := {
� (ξ, ι) : ξ, ι ∈ �∗



}
,

ii. if Q or W is a continuous mapping,
iii. the statements (S1) and (S2) are satisfied.

Then the common fixed point of Q and Λ is unique in �∗

 .

Proof Choose ξ0 ∈ �∗

 as an arbitrary point. Then, one can find ξ1 ∈ �∗


 such that
ξ1 = Qξ0. Similarly, there exists ξ2 ∈ �∗


 such that ξ2 = Λξ1. If we carry on this
way, we obtain a sequence

{
ξ j
}
j∈N in �∗


 such that

ξ2 j+1 = Qξ2 j and ξ2 j+2 = Λξ2 j+1.

Assume that 
�

(
ξ j , ξ j+1

) = 0 for all � > 0. Next, if we select j = 2r for some
r ∈ N, then we acquire that 
� (ξ2r , ξ2r+1) = 0 for all � > 0. Now, we suppose

� (ξ2r+1, ξ2r+2) > 0. Since

1

2ρ
min {
� (ξ2r , Qξ2r ) ,
� (Qξ2r ,ΛQξ2r )} ≤ 
� (ξ2r , Qξ2r ) ,

by (21), we obtain

Σ (
� (ξ2r , Qξ2r ) ,
� (Qξ2r ,ΛQξ2r ) ,
� (ξ2r ,ΛQξ2r ) ,
� (Qξ2r , Qξ2r ))+

W
(
ρ2
� (Qξ2r ,ΛQξ2r )

) ≤ W (γ (
� (ξ2r , Qξ2r ))

max

{

� (ξ2r , Qξ2r ) 
� (Qξ2r ,ΛQξ2r ) , 1

2ρ2 
2� (ξ2r ,ΛQξ2r ) 
2� (Qξ2r , Qξ2r ) ,
1
2ρ 
� (ξ2r , Qξ2r ) 
2� (Qξ2r , Qξ2r ) , 1

2ρ 
� (Qξ2r ,ΛQξ2r )
2� (ξ2r ,ΛQξ2r )

})

.

As


� (ξ2r , ξ2r+1) .
� (ξ2r+1, ξ2r+2) .
� (ξ2r , ξ2r+2) .
� (ξ2r+1, ξ2r+1) = 0,

by the property of (Σ), there exists κ > 0 such that

Σ (
� (ξ2r , ξ2r+1) ,
� (ξ2r+1, ξ2r+2) ,
� (ξ2r , ξ2r+2) , 0) = κ.
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On the other hand, to simplify, let ηr = 
� (ξ2r , ξ2r+1) . Thus, we obtain

κ + W
(
ρ2ηr+1

2) ≤ W

(
γ (ηr )max

{
ηrηr+1, 0, 0,

1

2ρ
ηr+1
2� (ξ2r , ξ2r+2)

})
.

Note that 
2� (ξ2r , ξ2r+2) ≤ ρ (ηr + ηr+1) and in view of ηr = 
� (ξ2r , ξ2r+1) =
0, we get

κ + W
(
ρ2ηr+1

2
) ≤ W

(
γ (0) ηr+1

2
)
.

As W is strictly increasing, we deduce that

ρ2ηr+1
2 < γ (0) ηr+1

2

is contradiction inasmuch as γ (0) < 1. Then ηr+1 is equal to 0, i.e., ξ2r+1 = ξ2r+2.

Thus we have ξ2r = ξ2r+1 = ξ2r+2. Therefore, ξ2r = Qξ2r = Λξ2r , which yields ξ2r
is a common fixed point of Q and Λ. So, in rest of the proof, we also assume that
ξ j �= ξ j+1.

Applying the considered condition (21) and keeping in mind what we obtain in
the above, we get

κ + W
(
ρ2η j+1

2
) ≤ W

(
γ
(
η j
)
max

{
η jη j+1, 0, 0, 1

2ρ η j+1
2�
(
ξ2 j ,ΛQξ2 j

)})

≤ W
(
γ
(
η j
)
max

{
η jη j+1, 0, 0, 1

2η j+1
(
η j + η j+1

)})
.

(22)
By simple calculations, it is clear that

max

{
η jη j+1, 0, 0,

1

2
η j+1

(
η j + η j+1

)} = η jη j+1 + η j+1
2

2
.

So, by (22),

κ + W
(
ρ2η j+1

2
) ≤ W

(
γ
(
η j
) η jη j+1 + η j+1

2

2

)
< W

(
η jη j+1 + η j+1

2

2

)
.

By using the properties of W , we deduce that

η j+1
2 ≤ ρ2η j+1

2 <
η jη j+1 + η j+1

2

2
,

and the inequality η j+1 < η j is obtained, that is,

κ + W
(
ρ2
 2

�

(
ξ2 j+1, ξ2 j+2

)) ≤ W
(

 2

�

(
ξ2 j , ξ2 j+1

))
,

for all j ∈ N and, similarly, we can show that
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κ + W
(
ρ2
 2

�

(
ξ2 j , ξ2 j+1

)) ≤ W
(

 2

�

(
ξ2 j−1, ξ2 j

))
,

for all j ∈ N. From the above inequalities, we procure that

W
(
ρ2
 2

�

(
ξ j , ξ j+1

))
< W

(

 2

�

(
ξ j−1, ξ j

))− κ < ... < W
(

 2

�
(ξ0, ξ1)

)− jκ,

for all j ∈ N and for all � > 0.
If we continue as in the proof of Theorem3 (also, similar expression as in Theorem

5), then it is easy to show that
{
ξ j
}
j∈N is a 
−Cauchy sequence in �∗


 . Because the
space is 
−complete, we obtain ξ ∗ ∈ �∗


 such that


�

(
ξ j , ξ

∗)→ 0. (23)

Now, if Q is continuous, then ξ ∗ is a fixed point of Q. Assume that ξ ∗ �= Λξ ∗,
i.e., 
� (ξ ∗,Λξ ∗) > 0. Since

1

2ρ
min

{

�

(
ξ ∗, Qξ ∗) ,
�

(
Qξ ∗,ΛQξ ∗)} ≤ 
�

(
ξ ∗, Qξ ∗) ,

from (21), we derive

Σ (
� (ξ∗, Qξ∗) ,
� (Qξ∗,ΛQξ∗) ,
� (ξ∗,ΛQξ∗) ,
� (Qξ∗, Qξ∗))+

W
(
ρ2
 2

�
(Qξ∗,ΛQξ∗)

) ≤ W (γ (
� (ξ∗, Qξ∗))

max

{

� (ξ∗, Qξ∗) 
� (Qξ∗,ΛQξ∗) , 1

2ρ2 
2� (ξ∗,ΛQξ∗)
2� (Qξ∗, Qξ∗) ,
1
2ρ 
� (ξ∗, Qξ∗) 
2� (Qξ∗, Qξ∗) , 1

2ρ 
� (Qξ∗,ΛQξ∗) 
2� (ξ∗,ΛQξ∗)

})

.

Because of the definition of (Σ), we decide on

Σ
(
0,
�

(
ξ ∗,Λξ ∗) ,
�

(
ξ ∗,Λξ ∗) , 0

) = κ.

Hence

κ + W
(
ρ2
 2

�
(ξ∗, Λξ∗)

) ≤ W
(
γ (0)max

{
0, 0, 0, 1

2ρ 
� (ξ∗, Λξ∗) 
2� (ξ∗, Λξ∗)
})

≤ W
( 1
2γ (0)
 2

�
(ξ∗, Λξ∗)

)

< W
(

 2

�
(ξ∗, Λξ∗)

)
,

is a contradiction, that is, ξ ∗ = Λξ ∗. Therefore, ξ ∗ is a common fixed point of Q and
Λ in case of the continuity of Q.

On the other hand, assume that W is continuous. In this case, if Qξ2 j = Qξ ∗ for
infinite values of j ∈ N, then we have
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ξ ∗ = lim
j→∞ ξ2 j+1 = lim

j→∞ Qξ2 j = Qξ ∗.

This proves that ξ ∗ is a fixed point of Q.
Since Qξ2 j = Qξ ∗ = ξ ∗, we conclude that ΛQξ2 j = Λξ2 j+1 = Λξ ∗. Then, the

following equality is true;

ξ ∗ = lim
j→∞ ξ2 j+2 = lim

j→∞ Λξ2 j+1 = Λξ ∗.

This shows that ξ ∗ is a fixed point of Λ.
Then, we assume that ξ2 j+2 �= Qξ ∗ for all n ∈ N. Again, as in Theorem 3, since

1

2ρ
min

{

�

(
ξ ∗, Qξ ∗) ,
�

(
Qξ2 j ,ΛQξ2 j

)} ≤ 
�

(
ξ ∗, Qξ2 j

)
,

by (21), we get

Σ
(

� (ξ∗, Qξ∗) , 
�

(
Qξ2 j , ΛQξ2 j

)
, 
�

(
ξ∗, ΛQξ2 j

)
, 
�

(
Qξ2 j , Qξ∗))+

W
(
ρ2
 2

�

(
Qξ∗, ΛQξ2 j

)) ≤ W
(
γ
(

�

(
ξ∗, Qξ2 j

))

max

{

� (ξ∗, Qξ∗) 
�

(
Qξ2 j , ΛQξ2 j

)
, 1
2ρ2 
2�

(
ξ∗, ΛQξ2 j

)

2�

(
Qξ2 j , Qξ∗) ,

1
2ρ 
� (ξ∗, Qξ∗) 
2�

(
Qξ2 j , Qξ∗) , 1

2ρ 
�

(
Qξ2 j , ΛQξ2 j

)

2�

(
ξ∗, ΛQξ2 j

)

})

and so, it implies that

W
(
ρ2
 2

�

(
Qξ∗, ξ2 j+2

)) ≤ W
(
γ
(

�

(
ξ∗, ξ2 j+1

))

max

{

� (ξ∗, Qξ∗) 
�

(
ξ2 j+1, ξ2 j+2

)
, 1
2ρ2 
2�

(
ξ∗, ξ2 j+2

)

2�

(
ξ2 j+1, Qξ∗) ,

1
2ρ 
� (ξ∗, Qξ∗)
2�

(
ξ2 j+1, Qξ∗) , 1

2ρ 
�

(
ξ2 j+1, ξ2 j+2

)

2�

(
ξ∗, ξ2 j+2

)

})

.

(24)

Then, by the upper semi-continuity of γ , we have

lim
j→∞ sup γ

(

�

(
ξ ∗, ξ2 j+1

)) ≤ γ (0) .

Hence, taking upper limit as j → ∞ in (24), we obtain

W
(
ρ2
 2

�

(
Qξ ∗, ξ ∗)) ≤ W

(
1

2
γ (0) 
 2

�

(
ξ ∗, Qξ ∗)

)
.

Then, as in the proof of Theorem 3, we have a contradiction. This means that
ξ ∗ = Qξ ∗.

Similarly, taking ξ2 j+1 �= Λξ ∗ for all j ∈ N, we also obtain Λξ ∗ = ξ ∗.
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Consequently, ξ ∗ is a common fixed point of Q and Λ.
Finally, for the uniqueness, let ξ ∗ and ξ ∗

1 be two distinct common fixed points of
Q and Λ. Hence 
�

(
Qξ ∗,ΛQξ ∗

1

) = 
�

(
ξ ∗, ξ ∗

1

)
> 0 and also,

0 = 1

2ρ
min

{

�

(
ξ ∗, Qξ ∗) ,
�

(
Qξ ∗

1 ,ΛQξ ∗
1

)} ≤ 
�

(
ξ ∗, Qξ ∗

1

) = 
�

(
ξ ∗, ξ ∗

1

)

which implies by (21)

Σ
(

� (ξ∗, Qξ∗) , 
�

(
Qξ∗

1 , ΛQξ∗
1

)
, 
�

(
ξ∗, ΛQξ∗

1

)
, 
�

(
Qξ∗

1 , Qξ∗))+

W
(
ρ2
 2

�

(
Qξ∗, ΛQξ∗

1

)) ≤ W
(
γ
(

�

(
ξ∗, Qξ∗

1

))

max

{

� (ξ∗, Qξ∗)
�

(
Qξ∗

1 , ΛQξ∗
1

)
, 1
2ρ2 
2�

(
ξ∗, ΛQξ∗

1

)

2�

(
Qξ∗

1 , Qξ∗) ,
1
2ρ 
� (ξ∗, Qξ∗)
2�

(
Qξ∗

1 , Qξ∗) , 1
2ρ 
�

(
Qξ∗

1 , ΛQξ∗
1

)

2�

(
ξ∗, ΛQξ∗

1

)

})

.

From (Σ), we obtain

Σ
(
0, 0,
�

(
ξ ∗, ξ ∗

1

)
,
�

(
ξ ∗
1 , ξ ∗)) = κ.

So, we conclude that

κ + W
(
ρ2
 2

�

(
ξ ∗, ξ ∗

1

)) ≤ W
(
γ
(

�

(
ξ ∗, ξ ∗

1

))

 2

�

(
ξ ∗, ξ ∗

1

))

< W
(

 2

�

(
ξ ∗, ξ ∗

1

))

which is a contradiction, that is, ξ ∗ = ξ ∗
1 . This shows that the common fixed point

of Q and Λ is unique. �

We see that if we take Q is equal toΛ in Theorem 6, the following corollary becomes
a direct result.

Corollary 4 Let �∗

 be a 
−complete MbMS with ρ ≥ 1 and Q : �∗


 → �∗

 be a

self-mapping. Suppose that there exist W ∈ W and Σ ∈ �Σ such that

1

2ρ

� (ξ, Qξ) ≤ 
� (ξ, Qι)

implies

Σ
(

� (ξ, Qξ) , 
�

(
Qι, Q2ι

)
, 
�

(
ξ, Q2ι

)
, 
� (Qι, Qξ)

)+ W
(
ρ2
 2

�

(
Qξ, Q2ι

)) ≤

W

⎛

⎜
⎝γ (
� (ξ, Qι))max

⎧
⎪⎨

⎪⎩


� (ξ, Qξ) 
�

(
Qι, Q2ι

)
, 1
2ρ2 
2�

(
ξ, Q2ι

)

2� (Qι, Qξ) ,

1
2ρ 
� (ξ, Qξ) 
2� (Qι, Qξ) , 1

2ρ 
�

(
Qι, Q2ι

)

2�

(
ξ, Q2ι

)

⎫
⎪⎬

⎪⎭

⎞

⎟
⎠

(25)
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for all ξ, ι ∈ �∗

 and all � > 0 with 
�

(
Qξ, Q2ι

)
> 0, where γ : P̄ →

[
0, 1

2ρ

)
is

an upper semi-continuous function on P̄ := {
� (ξ, ι) : ξ, ι ∈ �∗



}
. If Q or W is

continuous and the statements (S1) and (S2) are provided, then Q holds a unique
fixed point in �∗


 .

The following theorem can be proved by using the same lines as in the proof of
Theorem 5.

Theorem 7 Let �∗

 be a
−complete MbMS with ρ ≥ 1 and Q,Λ : �∗


 → �∗

 be

two self-mappings. Presume that there exist W ∈ W and Σ ∈ �Σ such that

1

2ρ
min {
� (ξ, Qξ) ,
� (ι,Λι)} ≤ 
� (ξ, ι)

implies

Σ (
� (ξ, Qξ) ,
� (ι,Λι) ,
� (ξ,Λι) ,
� (ι, Qξ)) + W
(
ρ2
 2

�
(Qξ,Λι)

)

≤ W

⎛

⎜
⎝αmax

⎧
⎪⎨

⎪⎩


� (ξ, Qξ) 
� (ι,Λι) ,
� (ξ, ι) 
� (ξ, Qξ) ,
� (ξ, ι) 
� (ι,Λι)

c
(

1
ρ2 
2� (ξ,Λι) 
2� (ι, Qξ)

)

⎫
⎪⎬

⎪⎭

⎞

⎟
⎠

(26)

for all ξ, ι ∈ �∗

 and all � > 0 with 
� (Qξ,Λι) > 0, where 0 < α < 1, 0 < c < 1

ve αc < 1
2ρ , and besides one of the mappings Q or W is continuous. Then, together

with the conditions (S1) and (S2), Q and Λ possess a unique common fixed point in
�∗

�.

Putting Q = Λ in Theorem 7, we obtain the following result.

Corollary 5 Let �∗

 be a 
−complete MbMS with ρ ≥ 1 and Q : �∗


 → �∗

 be a

self-mapping. Presume that the following statements hold:

i. there exists W ∈ W and Σ ∈ �Σ such that

1

2ρ

� (ξ, Qξ) ≤ 
� (ξ, ι)

implies

Σ (
� (ξ, Qξ) , 
� (ι, Qι) , 
� (ξ, Qι) , 
� (ι, Qξ)) + W
(
ρ2
 2

�
(Qξ, Qι)

)

≤ W

⎛

⎜
⎝αmax

⎧
⎪⎨

⎪⎩


� (ξ, Qξ) 
� (ι, Qι) , 
� (ξ, ι)
� (ξ, Qξ) , 
� (ξ, ι)
� (ι, Qι)

c
(

1
ρ2 
2� (ξ, Qι) 
2� (ι, Qξ)

)

⎫
⎪⎬

⎪⎭

⎞

⎟
⎠

(27)
for all ξ, ι ∈ �∗


 and all � > 0 with 
� (Qξ, Qι) > 0, where 0 < α < 1, 0 <

c < 1 and αc < 1
2ρ ,
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ii. Q or W is a continuous mapping,
iii. the statements (S1) and (S2) are satisfied.

Then Q holds a unique fixed point in �∗
�.

3 Examples

In this section, we furnish some examples illustrating the usability of the obtained
results.

The following example demonstrates the validity of Theorem 3.

Example 4 Let �∗

 = [0, 1]. Adopt the modular b−metric


� (ξ, ι) = |ξ − ι|k
�

, k ≥ 1

for all ξ, ι ∈ �∗

 and for all � > 0. Note that �∗


 is a 
−complete modular b-metric
space with ρ = 2k−1. Identify Q,Λ : � → �, Σ : R4+ → R, W : (0,∞) → R and
γ : P̄ → [0, 1) where P̄ as defined in Theorem 3, by

Qξ = ξ

16
, for all ξ ∈ [0, 1] and Λξ =

{
0 , if ξ ∈ [0, 1] − {1/2}
2 , if ξ = 1/2

Σ (a1, a2, a3, a4) = κ, where κ > 0, W (α) = ln α and γ (ξ) = ( 4
15

)k
, k ≥ 1,

respectively. Here, without loss of generality, we may assume that ξ ≥ ι ≥ 0.
We have the following possible cases.

Case (i): ξ = ι = 1
2 .

In this case, Qξ = Qι = 1
32 and ΛQι = 0. Next, we write the Suzuki condition

given in Theorem 3.

1

2.2k−1 min

{

�

(
1

2
,
1

32

)
,
�

(
1

32
, 0

)}
≤ 
�

(
1

2
,
1

32

)
.

By simple calculations, we get

1

2k
min

{
15k

25k�
,

1

25k�

}

= 1

26k�
≤ 15k

25k�
.

Thus, this implies that
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κ + W

(
22k−2
�

(
1

32
, 0

))
≤ W

⎛

⎜
⎜⎜
⎜
⎝

γ
(

�

(
1
2 , 1

32

))
max

{

�

(
1
2 , 1

32

)
, 
�

(
1
2 , 1

32

)
,


�

(
1
32 , 0

)
,


2�

(
1
2 ,0
)
+
2�

(
1
32 , 1

32

)

2.2k−1

}

⎞

⎟
⎟⎟
⎟
⎠

.

Again, with similar calculations, we have

κ + W

(
1

23k+2�

)
≤ W

(
4k

15k
.
15k

25k�

)

,

which yields that κ − ln 23k+2� ≤ ln 4k − ln 25k�. So, for κ = ln 4, all conditions of
Theorem 3 are provided.

Case (ii): ξ �= 1
2 , ι = 1

2 .

In this case, Qξ = ξ

16 , Qι = 1
32 and ΛQι = 0 such that

1

2.2k−1 min

{

�

(
ξ,

ξ

16

)
,
�

(
1

32
, 0

)}
≤ 
�

(
ξ,

1

32

)

that is,
1

2k
min

{
15k

24k�
,

1

25k�

}

= 1

26k�
≤ (32ξ − 1)k

25k�

is satisfied. So, this implies that

κ + W

(
22k−2
�

(
ξ

16
, 0

))
≤ W

⎛

⎜⎜⎜
⎜
⎝

γ
(

�

(
ξ, 1

32

))
max

{

�

(
ξ, 1

32

)
,
�

(
ξ,

ξ
16

)
,


�

( 1
32 , 0

)
,


2�(ξ,0)+
2�

(
1
32 ,

ξ
16

)

2.2k−1

}

⎞

⎟⎟⎟
⎟
⎠

.

Then we decide on

κ + W

(
ξ

22k+2�

)
≤ W

(
4k

15k
.
(32ξ − 1)p

25k�

)

and by using W (α) = ln α, we get

κ ≤ ln
4k

15k
+ ln

(32ξ − 1)k

ξ k
+ ln

22k+2�

25k�
≤ ln

(
16

15

)k

4.

For κ = ln 4, this case holds, too.

Case (iii): ξ �= 1
2 , ι �= 1

2 .
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We have Qξ = ξ

16 , Qι = ι
16 and ΛQι = 0 such that

1

2.2k−1 min

{

�

(
ξ,

ξ

16

)
,
�

( ι

16
, 0
)}

≤ 
�

(
ξ,

ι

16

)
.

Thus, the following expression holds true,

1

2k
min

{
15k

24k�
,

ιk

24k�

}

= ιk

25k�
≤ (16ξ − ι)k

24k�
,

since ξ > 1
2 and ι < 1

2 . Therefore, we gain that

κ + W

(
22k−2
�

(
ξ

16
, 0

))
≤ W

⎛

⎜⎜
⎜⎜
⎝

γ
(

�

(
ξ, ι

16

))
max

{

�

(
ξ, ι

16

)
,
�

(
ξ,

ξ
16

)
,


�

(
ι
16 , 0

)
,


2�(ξ,0)+
2�

(
ι
16 ,

ξ
16

)

2.2k−1

}

⎞

⎟⎟
⎟⎟
⎠

and, with some calculations, the following inequality emerged

κ + W

(
ξ

22k+2�

)
≤ W

(
4k

15k
.
(16ξ − 1)k

24k�

)
.

This signifies that

κ ≤ ln
4k

15k
+ ln

(16ξ − ι)k

ξ k
+ ln

22k+2�

24k�
≤ ln

(
16

15

)k

4,

and for κ = ln 4, this case holds, too.

Case (iv): ξ = 1
2 , ι �= 1

2 .

We write Qξ = 1
32 , Qι = ι

16 and ΛQι = 0, hence

1

2.2k−1 min

{

�

(
1

2
,
1

32

)
,
�

( ι

16
, 0
)}

≤ 
�

(
1

2
,

ι

16

)

that is,
1

2k
min

{
15k

25k�
,

ιk

24k�

}

= ιk

25k�
≤ (16 − 2ι)k

25k�
.

This connotes that
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κ + W

(
22k−2
�

(
1

32
, 0

))
≤ W

⎛

⎜⎜
⎜
⎝

γ
(

�

( 1
2 , ι

16

))
max

{

�

( 1
2 , ι

16

)
,
�

( 1
2 , 1

32

)
,


�

(
ι
16 , 0

)
,


2�

(
1
2 ,0
)
+
2�

(
ι
16 , 1

32

)

2.2k−1

}

⎞

⎟⎟
⎟
⎠

.

Next, we reason out

κ + W

(
1

23k+2�

)
≤ W

(
4k

15k
.
(8 − ι)k

24k�

)
,

and

κ ≤ ln
4k

15k
+ ln (8 − ι)k + ln

23k+2�

24k�
≤ ln

(
16

15

)k

.4

with κ = ln 4.
Accordingly, in all cases, all the conditions of Theorem 3 are fulfilled and hence

Q and Λ have a unique common fixed point. ξ = 0 is a unique common fixed point
of the mappings Q and Λ.

Example 5 In the previous example, if we prefer k = 1, then we get


� (ξ, ι) = |ξ − ι|
�

,

obviously (�,
) is a complete modular metric space. As well as all of the conditions
of Theorem 3 hold. So, our example is valid in the setting of modular metric space
provided to consider W (α) = ln α, γ (ξ) = 4

5 and κ = ln 2.

Remark 1 Under the same conditions, Example 4 is still valid for Theorem 4, too.
Moreover, this example remains valid within the results obtained from Theorem 4.

4 Conclusion

Consequently, we extend the result of Wardowski [15] by using some auxiliary
functions and involving quadratic terms under the Suzuki type contractive condition
in the sense of modular b−metric spaces. Finally, we also provide some examples
to illustrate the usability of the acquired consequences.
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Some Common Fixed Point Results via
α-Series for a Family of J S-Contraction
Type Mappings

Samira Hadi Bonab, Vahid Parvaneh, Hasan Hosseinzadeh,
Abdollah Dinmohammadi, and Babak Mohammadi

Abstract In this chapter, we tend to prove some common fixed point theorems
for families of J S-contractive type mappings using an α-series in complete metric
spaces. In addition, we provide an example and an application to confirm the relevant
results.

1 Introduction

The metric spaces (MS) and the principle of Banach contraction are two of the basic
concepts of mathematical analysis. Most studies have been done on contraction
mappings. For example, the contractions of Wardowski [20], Ćirić [5], Chatterjea
[4], Kannan [13], Reich [18], Meir-Keeler [15], Jleli-Samet [11], Hardy-Rogers [9],
etc., are of this type. In general, different contractive conditions have been considered
for single and multi-valued maps (see [1, 3, 6, 12, 14]).
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Fixed point theory has attracted many researchers since 1922 when Banach’s
famous fixed point theorem has been introduced. There is a lot of materials in this
field and it is currently a very active research field in mathematical analysis. A fixed
point theorem is a theorem which states that if some conditions are met, it can be
said that the function f has a fixed point such as x , that is, f (x) = x .

Also, the Banach fixed point theorem has many applications in many disciplines
and branches of mathematics. Many authors generalized this classic result in non-
linear analysis (see [7, 8, 16, 19] for more details).

In [10], sufficient conditions to the existence of a fixed point for a generalized
contractive mapping were presented through a function θ ∈ �, as a control function,
in the field of complete metric spaces and b-metric spaces.

In this chapter, we present the concept of J S-contractive type mappings [11],
using a sequence of self-mappings via an α-series, which has been introduced in
[19]. First, we provide the following basic definitions.

In 2014, the notion of an α-series was introduced by Sihag et al., which is given
as follows:

Definition 1 ([19]) Let {σν} be a sequence of non-negative real numbers. We say
that a series

∑+∞
ν=1 σν is an α-series, if there exist 0 < α < 1 and να ∈ N such that∑κ

j=1 σj ≤ ακ for each κ ≥ να.

Example 1 Series
∑+∞

ν=1
1

2ν−1 and
∑+∞

ν=1
1
2ν are α-series. Note that all convergent

series with non-negative real sentences are α-series. Moreover, there exists a series
like

∑+∞
ν=1

1
ν
which is an α-series.

Definition 2 ([17]) The set of functions θ : (0,∞) → (1,∞) represented by �, if
θ satisfies the following assertions:

(θ1) θ is increasing;
(θ2) for any sequence {σν} ⊆ (0,∞)

lim
ν→∞ θ(σν) = 1 ⇔ lim

ν→∞ σν = 0;

(θ3) there exists α ∈ (0, 1) and ı ∈ (0,∞] such that

lim
υ→0+

θ(υ) − 1

υα
= ı;

(θ4) θ(j + j) ≤ θ(j)θ( j) for all j, j > 0.

We denote the class of functions θ ∈ � with 	, without the condition (θ4).

Definition 3 Let (X, ρ) be a MS and mapping ϒ : X → X be given. Then

(i) ϒ is a Banach contraction (see [2]) if there is a ∈ [0, 1) such that for each
ι, ς ∈ X

ρ(ϒι,ϒς) ≤ aρ(ι, ς).
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(ii) ϒ is a P-contraction (see [17]) If there exists θ ∈ 	 and ı1, ı2, ı3, ı4 ≥ 0 with
ı1 + ı2 + ı3 + ı4 < 1 such that the following holds:

θ(ρ(ϒι,ϒς) ≤ (θ(ρ(ι, ς)))ı1(θ(ρ(ι, ϒι)))ı2(θ(ρ(ς,ϒς)))ı3

(

θ(
ρ(ι, ϒ jς) + ρ(ς,ϒj ι)

2
)

)]ı4

,

for all ι, ς ∈ X .

In this chapter, we limit the conditions on θ as a control function. For this, the set of
functions θ : (0,∞) → (1,∞) is represented by 	, so that

(θ1) θ is strictly increasing and continuous;
(θ2) for every sequence {σν} ⊆ (0,∞)

lim
ν→∞ θ(σν) = 1 ⇔ lim

ν→∞ σν = 0.

The following theorem states the result of Jleli and Samet:

Theorem 1 ([11]) Let (X, ρ) be aMS. Let a mappingϒ : X → X be given. Suppose
that there exists θ ∈ 	 and μ ∈ (0, 1) such that for all ι, ς ∈ X,

ρ(ϒι,ϒς) 
= 0 ⇒ θ(ρ(ϒι,ϒς)) ≤ (θ(ρ(ι, ς)))μ.

Then ϒ has a unique fixed point.

The purpose of this chapter is to investigate the existence and uniqueness of com-
mon fixed point via an α-series for J S-contraction type mappings using a sequence
of self-mappings ϒj on X, where (X, ρ) is a MS.

2 Main Results

In this section, we first provide the following definition.

Definition 4 Let {ϒj }j∈N be a sequence of self-mappings on CMS (X, ρ). We call
{ϒj }j∈N a family of multiplicative H -contractions, if there is θ ∈ 	 such that for all
ι, ς ∈ X,

θ(ρ(ϒj ι, ϒ jς) ≤
[

θ(ρ(ι, ϒj ι))θ(ρ(ς,ϒ jς))

(

θ(
ρ(ι, ϒ jς) + ρ(ς,ϒj ι)

2
)

)]πj, j

(θ(ρ(ι, ς)))�j, j , (1)

where 0 ≤ πj, j ,�j, j < 1 for all j, j ∈ N; πj,j+1 + �j,j+1 < 1, 2πn−1,j < 1 and
∑+∞

j=1

(
2πj,j+1+�j,j+1

1−πj,j+1

)
is an α-series.
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Now, we state the main result.

Theorem 2 Each H-contractive mapping on a CMS has a unique common fixed
point ι∗ ∈ X.

Proof Let ι0 ∈ X be an arbitrary point. We make sequence {ιn} as follows:

ιn = ϒn−1ιn−1, ∀n ≥ 1.

We assume that ιn 
= ιn+1 for each n ≥ 0. We assert that

lim
n→∞ ρ(ιn, ιn+1) = 0.

Let hn := ρ(ιn, ιn+1). By the hypothesis, we have

θ(hn) = θ(ρ(ιn, ιn+1))

= θ(ρ(ϒn−1ιn−1, ϒnιn))

≤ [θ(ρ(ιn−1, ϒn−1ιn−1))θ(ρ(ιn, ϒnιn))

θ(
ρ(ιn−1, ϒnιn) + ρ(ιn, ϒn−1ιn−1)

2
)]πn−1,n

(θ(ρ(ιn−1, ιn)))
�n−1,n

= [θ(ρ(ιn−1, ιn))θ(ρ(ιn, ιn+1))θ(
ρ(ιn−1, ιn+1) + ρ(ιn, ιn)

2
)]πn−1,n

(θ(ρ(ιn−1, ιn)))
�n−1,n

= [θ(ρ(ιn−1, ιn))θ(ρ(ιn, ιn+1))

(θ(max{ρ(ιn−1, ιn), ρ(ιn, ιn+1)}]πn−1,n (θ(ρ(ιn−1, ιn)))
�n−1,n . (2)

If for some L , one has
ρ(ιL−1, ιL) < ρ(ιL , ιL+1),

then according to (θ1), we obtain

θ(ρ(ιL−1, ιL)) < θ(ρ(ιL , ιL+1)). (3)

Using (2), we have

θ(hn) ≤ [θ(hn−1)θ(hn)
2]πn−1,n (θ(hn−1))

�n−1,n

= (θ(hn−1))
(πn−1,n+�n−1,n)(θ(hn))

2πn−1,n .

Therefore

θ(hn) ≤ (θ(hn−1))

(
πn−1,n+�n−1,n

1−2πn−1,n

)

≤ (θ(hn−1)),
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which contradicts (3). As a result, for all n ≥ 1,

max{ρ(ιn−1, ιn), ρ(ιn, ιn+1)} = ρ(ιn−1, ιn).

Hence, if α and να be as in Definition 1, then, for all n ≥ να , according to the fact
that the non-negative numbers geometric mean is less than or equal to the arithmetic
mean, it follows that

θ(hn) ≤ (θ(hn−1))

(
2πn−1,n+�n−1,n

1−πn−1,n

)

≤ (θ(hn−2))

(
2πn−1,n+�n−1,n

1−πn−1,n

)(
2πn−2,n−1+�n−2,n−1

1−πn−2,n−1

)

...

≤ (θ(h0))
∏n

j=1

(
2πj,j+1+�j,j+1

1−πj,j+1

)

≤ (θ(h0))

(
1
n

∑n
j=1

(
2πj,j+1+�j,j+1

1−πj,j+1

))n

≤ (θ(h0))
αn

. (4)

By (θ2), we have
lim
n→∞ hn = 0. (5)

Now, to show that {ιn} is a Cauchy sequence, suppose that there exist ε > 0 so that
for all mj and nj with j < mj < nj , one has

ρ(ιmj
, ιnj

) ≥ ε, (6)

and
ρ(ιmj

, ιnj −1) < ε. (7)

By (6), we have

ρ(ιmj −1, ιnj −1) ≤ ρ(ιmj −1, ιmj
) + ρ(ιmj

, ιnj −1).

From (5) and (7), we have

lim sup
j→∞

ρ(ιmj −1, ιnj −1) ≤ ε. (8)

As a result
lim sup

j→∞
ρ(ιmj −1, ιnj

) ≤ ε.

On the other hand, one has
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θ(ρ(ιmj
, ιnj

)) = θ(ρ(ϒmj −1ιmj −1, ϒnj −1ιnj −1))

≤ [θ(ρ(ιmj −1, ϒmj −1ιmj −1))θ(ρ(ιnj −1, ϒnj −1ιnj −1))

θ(
ρ(ιmj −1, ϒnj −1ιnj −1) + ρ(ιnj −1, ϒmj −1ιmj −1)

2
)]πmj −1,nj −1

(θ(ρ(ιmj −1, ιnj −1)))
�mj −1,nj −1

= [θ(ρ(ιmj −1, ιmj
))θ(ρ(ιnj −1, ιnj

))

θ(
ρ(ιmj −1, ιnj

) + ρ(ιnj −1, ιmj
)

2
)]πmj −1,nj −1

(θ(ρ(ιmj −1, ιnj −1)))
�mj −1,nj −1 . (9)

Now using (θ1) and (5)–(8), one has

θ(ε) ≤ θ(lim sup
j→∞

ρ(ιmj
, ιnj

))

≤ [θ(lim sup
j→∞

ρ(ιmj −1, ιmj
))θ(lim sup

j→∞
ρ(ιnj −1, ιnj

))

θ(lim sup
j→∞

(
ρ(ιmj −1, ιnj

) + ρ(ιnj −1, ιmj
)

2
)]πmj −1,nj −1

(θ(lim sup
j→∞

ρ(ιmj −1, ιnj −1)))
�mj −1,nj −1

≤ (θ(ε))πmj −1,nj −1(θ(ε))�mj −1,nj −1 . (10)

This gives the result that

1 < (θ(ε)) ≤ (θ(ε))πmj −1,nj −1+�mj −1,nj −1 ,

which is a contradiction. So, we have shown that {ιn} is a Cauchy sequence in X.
Since (X, ρ) is compelet, ιn → ι as n → ∞, that is, limn→∞ ιn = ι. On the other

hand

θ(ρ(ιn, ϒj ι)) = θ(ρ(ϒn−1ιn−1, ϒj ι))

≤ [θ(ρ(ιn−1, ϒn−1ιn−1))θ(ρ(ι, ϒj ι))

θ(
ρ(ιn−1, ϒj ι) + ρ(ι, ϒn−1ιn−1)

2
)]πn−1,j

(θ(ρ(ιn−1, ι)))
�n−1,j . (11)

Using (θ1) and condition (5) as n → ∞, one has
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θ(ρ(ι, ϒj ι)) ≤ [θ(ρ(ι, ι))θ(ρ(ι, ϒj ι))θ(
ρ(ι, ϒj ι) + ρ(ι, ι)

2
)]πn−1,j

(θ(ρ(ι, ι)))�n−1,j

≤ (θ(ρ(ι, ϒj ι)))
2πn−1,j . (12)

We deduce that ι = ϒj ι, as 2πn−1,j < 1. So, ι is a common fixed point.
Now, to prove that the common fixed point is unique, suppose that ϒm� = � 
=

�′ = ϒm ′�′. Hence

θ(ρ(ϒm�,ϒm ′�′)) ≤ [θ(ρ(�,ϒm�))θ(ρ(�′, ϒm ′�′))

θ(
ρ(�,ϒm ′�′) + ρ(�′, ϒm�)

2
)]πm,m′

(θ(ρ(�, �′)))�m,m′

= (θ(ρ(�, �′)))πm,m′ (θ(ρ(�, �′)))�m,m′

= (θ(ρ(�, �′)))πm,m′ +�m,m′ , (13)

since πm,m ′ + �m,m ′ < 1 then � = �′, so � is the unique common fixed point of ϒj .

We have the following corollary as a special case of Theorem 2.

Corollary 1 Let {ϒj }j∈N be a sequence of self-mappings on a CMS (X, ρ). Let there
exists θ ∈ 	 so that for all ι, ς ∈ X,

θ(ρ(ϒj ι, ϒ jς)) ≤ [θ(ρ(ι, ϒj ι))θ(ρ(ς,ϒ jς))θ(
ρ(ι, ϒ jς) + ρ(ς,ϒj ι)

2
)]πj, j ,

where 0 ≤ πj, j < 1 for all j, j ∈ N and 2πn−1,j < 1. If
∑+∞

j=1

(
2πj,j+1

1−πj,j+1

)
is an α-

series, then {ϒj }j∈N has a unique common fixed point in X.

Now, by taking πj,j+1 = 0 in Theorem 2 and inspired by the Jelly-Samet result,
we get the following result.

Corollary 2 Let {ϒj }j∈N be a sequence of self-mappings on a CMS (X, ρ). Let there
exists θ ∈ 	 so that for all ι, ς ∈ X,

θ(ρ(ϒj ι, ϒ jς)) ≤ (θ(ρ(ι, ς)))�j, j ,

where 0 ≤ �j, j < 1 for all j, j ∈ N. If
∑+∞

j=1 �j,j+1 is an α-series, then {ϒj }j∈N
has a unique common fixed point ι∗ ∈ X.

Following similar concepts to prove the Theorem 2, we have the following theo-
rem.

Theorem 3 Let {ϒj }j∈N be a sequence of self-mappings on a CMS (X, ρ). Let there
exists θ ∈ 	 so that for all ι, ς ∈ X,
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θ(ρ(ϒ p
j ι, ϒ

p
j ς)) ≤ [θ(ρ(ι, ϒ p

j ι))θ(ρ(ς,ϒ
p
j ς))θ(

ρ(ι, ϒ
p
j ς) + ρ(ς,ϒ

p
j ι)

2
)]πj, j

(θ(ρ(ι, ς)))�j, j , (14)

where p is a positive integer, 0 ≤ πj, j ,�j, j < 1 for all j, j ∈ N and πj,j+1 +
�j,j+1 < 1 and 2πn−1,j < 1. If

∑+∞
j=1

(
2πj,j+1+�j,j+1

1−πj,j+1

)
is an α-series, then {ϒj }j∈N

has a unique common fixed point ι∗ ∈ X.

Proof Using Theorem 2 on the self-mapping U := ϒ
p
j , we deduce that U has a

unique fixed point, such as ι∗, such that ϒ
p
j (ι∗) = U (ι∗) = ι∗. Since ϒ

p+1
j (ι∗) =

ϒj(ι
∗),

UPj (ι
∗) = ϒ p

j (ϒj (ι
∗)) = ϒ p+1

j (ι∗) = ϒj(ι
∗).

So, ϒj(ι
∗) is a fixed point of U . Due to the uniqueness of the fixed point of U , we

obtain that ϒj(ι
∗) = ι∗.

In Theorem 2, the continuity of θ can be replaced by the continuity of {ϒj }.
Putting θ(t) = e

√
t , one has

Corollary 3 Let {ϒj }j∈N be a sequence of self-mappings on a CMS (X, ρ). Assume
that for all ι, ς ∈ X,

√
ρ(ϒj ι, ϒ jς) ≤ πj, j

√

ρ(ι, ϒj ι) + ρ(ς,ϒ jς) + ρ(ι, ϒ jς) + ρ(ς,ϒj ι)

2

+ �j, j

√
ρ(ι, ς), (15)

where 0 ≤ πj, j ,�j, j < 1 for all j, j ∈ N, πj,j+1 + �j,j+1 < 1 and 2πn−1,j < 1.

If
∑+∞

j=1

(
2πj,j+1+�j,j+1

1−πj,j+1

)
is anα-series, then {ϒj }j∈N has a unique common fixed point

in X.

Remark 1 Notice that condition (15) is equivalent to

ρ(ϒj ι, ϒ jς)

≤ πj, j
2

[

ρ(ι, ϒj ι) + ρ(ς,ϒ jς) + ρ(ι, ϒ jς) + ρ(ς,ϒj ι)

2

]

+ � 2
j, jρ(ι, ς)

+ 2πj, j�j, j

√

ρ(ι, ς)

[

ρ(ι, ϒj ι) + ρ(ς,ϒ jς) + ρ(ι, ϒ jς) + ρ(ς,ϒj ι)

2

]

.

(16)

Next, according to Remark 1, by taking πj, j = 0 in Corollary 3, we get the following
extension of Banach’s result.

Corollary 4 Let {ϒj }j∈N be a sequence of self-mappings on a CMS (X, ρ). Assume
that for all ι, ς ∈ X,
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ρ(ϒj ι, ϒ jς) ≤ � 2
j, jρ(ι, ς),

where 0 ≤ �j, j < 1 for all j, j ∈ N. If
∑+∞

j=1 �j,j+1 is an α-series, then {ϒj }j∈N
has a unique common fixed point in X.

On the other hand, by taking �j,j+1 = 0 in Corollary 3, we get the following
result.

Corollary 5 Let {ϒj }j∈N be a sequence of self-mappings on a CMS (X, ρ). Assume
that for all ι, ς ∈ X,

ρ(ϒj ι, ϒ jς) ≤ πj, j
2

[

ρ(ι, ϒj ι) + ρ(ς,ϒ jς) + ρ(ι, ϒ jς) + ρ(ς,ϒj ι)

2

]

,

where 0 ≤ πj, j < 1 for all j, j ∈ N and 2πn−1,j < 1. If
∑+∞

j=1

(
2πj,j+1

1−πj,j+1

)
is an α-

series, then {ϒj }j∈N has a unique common fixed point in X.

lastly, taking θ(t) = e
n√t in (1), we have the following corollary.

Corollary 6 Let {ϒj }j∈N be a sequence of self-mappings on a CMS (X, ρ). Assume
that for all ι, ς ∈ X,

n
√

ρ(ϒj ι, ϒ jς) ≤ πj, j
n

√

ρ(ι, ϒj ι) + ρ(ς,ϒ jς) + ρ(ι, ϒ jς) + ρ(ς,ϒj ι)

2

+ �j, j
n
√

ρ(ι, ς), (17)

where 0 ≤ πj, j ,�j, j < 1 for all j, j ∈ N, πj,j+1 + �j,j+1 < 1 and 2πn−1,j < 1. If
∑+∞

j=1

(
2πj,j+1+�j,j+1

1−πj,j+1

)
is an α-series, then {ϒj }j∈N has a unique common fixed point

in X.

Example 2 LetX = [0, 1], and letρ : X2 → R+ withρ(ι, ς) = |ι − ς | for all ι, ς ∈
X. Then (X, ρ) is a CMS. Let ϒj : X → X be defined by

ϒj(ι) =
√

ι

2j
,

for all ι ∈ X and for all j = 1, 2, . . . . Define πj, j = 1
2j+2 and �j, j = 1

22i+1 for all
j, j = 1, 2, . . .. Consider θ : [0,∞) → [1,∞) be such that θ(ρ) = eρ . Then all
conditions of Theorem 2 are satisfied.

Using mathematical induction, we show that ϒj satisfies the condition (1). If
ι > ς and j < j , then we have

θ(ρ(

√
ι

2j
,

√
ς

2 j
) ≤ [θ(ρ(ι,

√
ι

2j
))θ(ρ(ς,

√
ς

2 j
))θ(

ρ(ι,
√

ς

2 j ) + ρ(ς,
√

ι

2j )

2
)] 1

2j+2

(θ(ρ(ι, ς)))
1

22i+1 .
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We know that the greatest value of the first side in (1) is when j = 1, j → ∞.
Suppose that for j = 1 and j = k. So, we have

e(
√

ι

2 −
√

ς

2k
) ≤ [e(ι−

√
ι

2 )e(ς−
√

ς

2k
)e

(ι−
√

ς

2k
)+(ς−

√
ι

2 )

2 ] 1
23 (e(ι−ς))

1
23

= e
1
8 [(ι−

√
ι

2 )+(ς−
√

ς

2k
)+ (ι−

√
ς

2k
)+(ς−

√
ι

2 )

2 ]+ 1
8 (ι−ς)

.

For j = k + 1, we obtain

A : = e(
√

ι

2 − 1
2

√
ς

2k
)

≤ [e(ι−
√

ι

2 )e(
ς

2 − 1
2

√
ς

2k
)e

(ι− 1
2

√
ς

2k
)+(

ς
2 −

√
ι

2 )

2 ] 1
23 (e(ι− ς

2 ))
1
23

= e
1
8 [(ι−

√
ι

2 )+(
ς

2 − 1
2

√
ς

2k
)+ (ι− 1

2

√
ς

2k
)+(

ς
2 −

√
ι

2 )

2 ]+ 1
8 (ι− ς

2 )) := B,

so

A ≤ e
1
2 (

√
ι

2 −
√

ς

2k
)+ 1

2 (
√

ι

2 )

≤ e
1
2 [ 18 [(ι−

√
ι

2 )+(ς−
√

ς

2k
)+ (ι−

√
ς

2k
)+(ς−

√
ι

2 )

2 ]+ 1
8 (ι−ς)]+

√
ι

4

≤ B.

Since ρ(ι, ς) is symmetric, the role of j, j can be changed together and a similar
result can be reached. Then, the condition (1) is satisfied for all j, j . Moreover, the
series

∑+∞
j=1

2j+1+2
22i+2−2j is an α-series with α = 1

2 . Therefore, all conditions of Theorem
2 are hold and ϒj has unique common fixed point 0 in X.

3 Application

Integral equations are equations that involve a function f (x) and the integral of that
function is solved for f (x). When the integral’s bounds are constant, the integral
equation is known as the Fredholm integral equation. A Volterra integral equation is
one in which one of the limits is variable. If the unknown function is solely beneath
the integral sign, the equation is said to be of the first kind. If the function is both inside
and outside, the equation is called of the second type. When the outside unknown
function is equal to 0, it is said to be homogenous.

We consider a systemof Fredholm integral equations of the second type as follows:

ι(t) =
∫ �

0
( fj (t, ι(v))dv, t ∈ [0, �], � > 0, (18)
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where fj : [0, �] × R → R is integrable. Let X = C([0, �], R) be the set of real
continuous functions defined on [0, �], and the sequence of mappings ϒj : X → X
be defined by

ϒj(ι)(t) =
∫ �

0
( fj (t, ι(v))dv, t ∈ [0, �].

Theorem 4 Let X = C([0, �], R) and ρ : X2 → [0,∞) be defined by ρ(ι, ς) =
supt∈[0,�] |ι(t) − ς(t)| for every ι, ς ∈ X. Suppose that there exsits a function θ ∈ 	
so that θ(

∫ �

0 | fj (t, ι(v)) − f j (t, ς(v))|dv) ≤ ∫ �

0 θ(| fj (t, ι(v)) − f j (t, ς(v))|)dv for
arbitrary functions fj and suppose that

θ | fj (t, ι(v)) − f j (t, ς(v))| ≤ 1

�
[(θ(|ι(v) − ϒj ι(v)|)θ(|ς(v) − ϒ jς(v)|)

θ(
|ι(v) − ϒ jς(v)| + |ς(v) − ϒj ι(v)|

2
)πj, j

(θ(|ι(v) − ς(v)|))�j, j ],

for all ι, ς ∈ R, whereπj, j = 1
2j+2 , and�j, j = 1

22i+1 . Then, the integral equation (18)
has a unique solution in X.

Proof Clearly, (X, ρ) is a CMS. We have

θ(|ϒj (ι)(t) − ϒ j (ς)(t)|) = θ(|
∫ �

0
fj (t, ι(v))dv −

∫ �

0
f j (t, ς(v))dv|)

≤
∫ �

0
θ(| fj (t, ι(v)) − f j (t, ς(v))|)dv

≤ 1

�

∫ �

0

([
θ(|ι(t) −

∫ �

0
fj (t, ι(v))dv|)θ(|ς(t) −

∫ �

0
f j (t, ς(v))dv|)

θ(
|ι(t) − ∫ �

0 f j (t, ς(v)dv| + |ς(t) − ∫ �
0 fj (t, ι(v))dv|

2

]πj, j

(θ(|ι(t) − ς(t)|))�j, j dv
)
,

≤ 1

�

∫ �

0
[θ(ρ(ι, ϒj ι)θ(ρ(ς,ϒ jς))θ(

ρ(ι, ϒ jς) + ρ(ς,ϒj ι)

2
)]πj, j (θ(ρ(ι, ς)))�j, j dv

≤ 1

�
[θ(ρ(ι, ϒj ι))θ(ρ(ς,ϒ jς))θ(

ρ(ι, ϒ jς) + ρ(ς,ϒj ι)

2
)]πj, j (θ(ρ(ι, ς)))�j, j

∫ �

0
dv

= [θ(ρ(ι, ϒj ι)θ(ρ(ς,ϒ jς))θ(
ρ(ι, ϒ jς) + ρ(ς,ϒj ι)

2
)]πj, j (θ(ρ(ι, ς)))�j, j .

So, the system of integral equations (18) has a unique solution in X. In other words,
ϒj has a unique common fixed point.
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Solution of Nonlinear First-Order
Hybrid Integro-Differential Equations
via Fixed Point Theorem

Hemant Kumar Nashine, Reena Jain, and Vahid Parvaneh

Abstract The idea of a (F , β, ψ)-contractive condition for a pair of maps is intro-
duced in this chapter, and several commonfixed-point findings forα − η−admissible
mappings in a Banach space are based on it. We give two good examples to back up
the fixed-point result. We use this proven fixed-point finding to a pair of first-order
ordinary nonlinear hybrid integro-differential equations of the type to get a shared
solution of the form

{
u′(t) + λu(t) = f j

(
t, u(t),

∫ t
θ0

g j (s, u(s))ds
)

, t ∈ I = [θ0, θ0 + �] ⊂ R, θ0 ≥ 0, � > 0, j=1,2

u(θ0) = μ0 ∈ R,

for some λ ∈ R, λ > 0, where g j : I × R → R and f j : I × R × R → R are con-
tinuous functions.

1 Introduction

Anatural extension of fixed-point findings for various forms of contractions inmetric
spaces may be obtained by adding a (partial) ordering structure to the metric space
(X, d). This is accomplished by adding an ordering structure to the metric space
(X, d). Turinici [12, 13] published articles in 1986 that established some of the
first results in this approach. It should be noted that their beginning points were the
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“amorphous” contributions to the field made by Matkowski [3, 4] and other authors.
These findings have been rediscovered by Ran and Reurings [8]; also see Nieto and
Rodriguez-Lopez [6] and Nieto and R’odriguez-Lopez [6] for further information.
The findings of Turinici were further developed and enhanced in articles [6, 7].
Nashine and Samet [5], as well as many others, went on to expand the results of
[8] and offer applications to ordinary differential equations and integral equations,
respectively.

Similar to this, Samet et al. [10] developed the notion of α-admissible mappings
and established a number of fixed-point theorems for (α, ψ)-contractive mappings
fulfilling the α-admissibility condition in full metric spaces, among other things. In
the context of fixed-point findings, this idea (or other versions of it, such as [1, 9,
11]) has been used by several writers to prove various variants.

In this work, we derive some common fixed-point results under (F , β, ψ)-
contractive conditions with an α − η−admissible mapping for a pair of mappings in
the setting of normed spaces. We extend and generalize the results of Mohammadi et
al. [2] for a pair of maps and generalize admissible mappings. We provide two justify
examples to validate themainfixed-point result. Further,wedrive someconsequences
of themain results and apply this established fixed-point result to get a common solu-
tion for a pair of first-order ordinary nonlinear hybrid integro-differential equations
of the form

{
u′(t) + λu(t) = f j

(
t, u(t),

∫ t
θ0
g j (s, u(s))ds

)
, t ∈ I = [θ0, θ0 + �] ⊂ R, θ0 ≥ 0, � > 0, j = 1,2

u(θ0) = μ0 ∈ R,

for some λ ∈ R, λ > 0, where g j : I × R → R and f j : I × R × R → R are con-
tinuous functions.

2 Preliminaries

Denote R := the set of real numbers, R+ := [0,+∞), N := the set of natural num-
bers, and N

∗ := N ∪ {0}.
Definition 1 LetZ be a nonempty set. Let α, η : Z × Z → R+ andP,Q : Z → Z
be given mappings. Then

• Reference [10] P is said to be α-admissible if for all p, q ∈ Z with α(p, q) ≥ 1
implies α(Pp,Pq) ≥ 1.

• Reference [9] P is said to be an α-admissible mapping with respect to η if for all
p, q ∈ Z with α(p, q) ≥ η(p, q) implies α(Pp,Pq) ≥ η(Pp,Pq).

• Reference [1] The pair (P,Q) is said to be a generalized α-admissible pair if for
all p, q ∈ Z, α(p, q) ≥ 1 implies α(Pp,Qq) ≥ 1 and α(QPp,PQq) ≥ 1.

Next, we define an α − η−admissible mapping for a pair of maps as a general-
ization of all above given concepts.
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Definition 2 ([11]) Let Z be a nonempty set. Let α, η : Z × Z → R+ be given
mappings. We say that the pair P,Q : Z → Z is a generalized α − η-admissible
pair if for all p, q ∈ Z, α(p, q) ≥ η(p, q) implies α(Pp,Qq) ≥ η(Pp,Qq) and
α(QPp,PQq) ≥ η(QPp,PQq).

Remark 1 • Ifwe takeη(p, q) = 1, thenwe say that the pair (P,Q) is a generalized
α-admissible map. Also, if we take α(p, q) = 1, then we say that the pair (P,Q)

is an η-subadmissible mapping.
• If P = P−1 with Q = P, then we get the α-admissible with respect to η notion.
Thus, the class of mappings (P,Q) 
= ∅.

• If P is α-admissible with respect to η, it is obvious that (P,P) is a generalized
α − η-admissible pair.

Next, we define triangular α − η-admissible property for a pair (P,Q).

Definition 3 ([11]) Let P,Q be two self-mappings onZ. Let α, η : Z × Z → R+
be mappings. A pair (P,Q) is called triangular α − η-admissible if

(i) the pair (P,Q) be a generalized α − η-admissible pair; and
(ii) for any p, q, r ∈ Z, α(p, q) ≥ η(p, q), α(q, r) ≥ η(q, r) ⇒ α(p, r) ≥ η(p, r).

We denote by �(P,Q, α, η), the collection of all triangular α − η-admissible pairs
(P,Q).

For sake of completion, we proof the following lemma.

Lemma 1 ([11]) Let (P,Q) ∈ �(P,Q, α, η). Assume that there exists θ0 ∈ Z such
that α(θ0,Pθ0) ≥ η(θ0,Pθ0). Define a sequence {θn} by θ2n+1 = Pθ2n and θ2n+2 =
Qθ2n+1 where n ∈ N

∗. Then α(θn, θm) ≥ η(θn, θm) for all m, n ∈ N with m > n.

Proof Given θ0 ∈ Z satisfying α(θ0, θ1) = α(θ0,Pθ0) ≥ η(θ0,Pθ0) = η(θ0, θ1).

Since the pair (P,Q) is a generalized α − η-admissible pair, we choose θ2, θ3 ∈ Z
such that

α(Pθ0,Qθ1) ≥ η(Pθ0,Qθ1) and α(QPθ0,PQθ1) ≥ η(QPθ0,PQθ1),

that is,
α(θ1, θ2) ≥ η(θ1, θ2) and α(θ2, θ3) ≥ η(θ2, θ3).

Repeating this process, we have α(θn, θn+1) ≥ η(θn, θn+1) for all n ∈ N
∗. Suppose

that α(θn, θm) ≥ η(θn, θm). We will prove that α(θn, θm+1) ≥ η(θn, θm+1), where
m > n. Since α(θm, θm+1) ≥ η(θm, θm+1), (P,Q) ∈ �(P,Q, α, η) implies that
α(θn, θm+1) ≥ η(θn, θm+1) for all m, n ∈ N

∗ with m > n.
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3 Main Results

We start with defining some control functions discussed in [2].
Denote F := {F : R

+ → R} satisfying (F1) F is strictly increasing and continu-
ous; (F2) F (r) = 0 ⇔ r = 1.

Examples of F for r ∈ R
+ are (i) F1(r) = ln(r), (i i) F3(r) = − 1√

r
+ 1.

Denote 	 := {β : (0,∞) −→ [0, 1) | lim sup
ω−→t+

β(ω) < 1, for any t ≥ 0}.
Denote � := {ψ : R

+ −→ R
+} satisfying (ψ1) ψ(r) = 0 ⇔ r = 0; (ψ2) ψ is

nondecreasing and continuous.

We now introduce the notion of an (F , β, ψ)-contractive mapping in a normed
space.

Definition 4 Let (Z, ‖.‖) be a normed space andP,Q : Z → Z be givenmappings.
We say that (P,Q) is a (F , β, ψ)-contractive pair if there existF ∈ F,β ∈ 	,ψ ∈ �

such that for all p, q ∈ Z,

α(p, q) ≥ η(p, q) ⇒ F (ψ(‖Pp − Qq‖)) ≤ F (β(ψ(�(p, q)))) + F (ψ(�(p, q))), (1)

where
�(p, q) = max{‖p − q‖, ‖p − Pp‖, ‖q − Qq‖}.

The set of all fixed (common) points of a self-mapping P (and self-mapping Q)
on a setZ 
= ∅ is denoted by Fix(P) (CFP(P,Q)).

Theorem 1 LetZ be a closed subset of Banach spaceX, and let P,Q : Z → Z be
(F , β, ψ)-contractive mappings. The following hypotheses are assumed:

(H1) there exists υ0 ∈ Z such that α(υ0,Pυ0) ≥ η(υ0,Pυ0);
(H2) (P,Q) ∈ �(P,Q, α, η);
(H3) α(QPp,Pp) ≥ η(QPp,Pp) for all p ∈ Z;
(H4) P and Q are continuous, or
(H ′

4) if {υn} be a sequence inZ such that α(υn, υn+1) ≥ η(υn, υn+1) and α(υn+1,

υn) ≥ η(υn+1, υn) for all n and υn → ω ∈ Z as n → ∞, then there exists a sub-
sequence {υnk }of {υn} such thatα(υnk , ω) ≥ η(υnk , ω)andα(ω, υnk ) ≥ η(ω, υnk )

for all k.

Then P and Q have a common fixed point. If

(H5) for all ζ, ξ ∈ CFP(Q,P), we have α(ζ, ξ) ≥ η(ζ, ξ)

hold, then P and Q have a unique common fixed point.

Proof Start with υ0 ∈ Z, an arbitrarily element, we construct a sequence {υm} inZ
as:

υ2m+1 = Pυ2m and υ2m+2 = Qυ2m+1 where m ∈ N
∗.
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For υ0 ∈ Z, using (H1), we haveα(υ0,Pν0) ≥ η(υ0,Pυ0). Also from (H2), we have
(P,Q) ∈ �(P,Q, α, η). Therefore, for υ2n 
= υ2n+1 for all n ∈ N

∗, by Lemma 1,

α(υ2n, υ2n+1) ≥ η(υ2n, υ2n+1) for all n ∈ N
∗. (2)

Also, (H3) implies that

α(υ2, υ1) = α(QPυ0,Pυ0) ≥ η(QPυ0,Pυ0) = η(υ2, υ1)

and

α(υ4, υ3) = α(QPυ2,Pυ2) ≥ η(QPυ2,Pυ2) = η(υ4, υ3).

Continuing this process, we get

α(υ2n, υ2n−1) ≥ η(υ2n, υ2n−1), f or all n ∈ N. (3)

Keeping generality in mind, we consider υm 
= υm+1 for each m ∈ N
∗. Indeed, if

υm0 = υm0+1 for some m0 ∈ N
∗, then ϑ∗ = υm0 will be in CFP(P,Q) which is

complete the proof. More precisely, to see that ϑ∗ ∈ CFP(P,Q), we can discuss
two cases. First, we assume that m0 is even, that is, m0 = 2r . In this case, we have
υ2r = υ2r+1 = Pυ2r , that is, υ2r is a fixed point of P. Now, we shall prove that
υ2r = υ2r+1 = Pυ2r = Qυ2r+1. Suppose on the contrary that ‖Pυ2r − Qυ2r+1‖ > 0.
Using (2), we can apply (1) for p = υ2r and q = υ2r+1 which imples

F (ψ(‖υ2r+1 − υ2r+2‖)) = F (ψ(‖Pυ2r − Qυ2r+1‖))
≤ F (β(ψ(�(υ2r , υ2r+1)))) + F (ψ(�(υ2r , υ2r+1))),

where

�(υ2r , υ2r+1) = max{‖υ2r − υ2r+1‖, ‖υ2r − Pυ2r‖, ‖υ2r+1 − Qυ2r+1‖}
= max{‖υ2r − υ2r+1‖, ‖υ2r − υ2r+1‖, ‖υ2r+1 − υ2r+2‖}
= ‖υ2r+1 − υ2r+2‖.

Therefore,

F (ψ(‖υ2r+1 − υ2r+2‖)) ≤ F (β(ψ(‖υ2r+1 − υ2r+2‖))) + F (ψ(‖υ2r+1 − υ2r+2‖)).

Sinceβ(ψ(‖υ2r+1 − υ2r+2‖)) < 1andF is strictly increasing,wegetF (β(ψ(‖υ2r+1

− υ2r+2‖)) < F (1) = 0. Therefore,

F (ψ(‖υ2r+1 − υ2r+2‖)) ≤ F (β(ψ(‖υ2r+1 − υ2r+2‖))) + F (ψ(‖υ2r+1 − υ2r+2‖))
< F (ψ(‖υ2r+1 − υ2r+2‖)),

a contradiction, and hence ‖Pυ2r − Qυ2r+1‖ = 0, υ2r = υ2r+1 = Pυ2r = Qυ2r+1,
that is, υ2r = υ2r+1 = ϑ∗ ∈ CFP(P,Q). Similarly, it can be shown when m0 is
odd, say, m0 = 2r − 1.
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Thus, we assume υm 
= υm+1 for each m ∈ N
∗ and let �m = ψ(‖υm − υm+1‖) =

ψ(σm) form ∈ N
∗. Then �m > 0 for allm ∈ N

∗. We will prove that limn→∞ σm = 0.
Following (2), we can apply (1) for p = υ2n−1 and q = υ2n

F (�2n) = F (ψ(‖Pυ2n−1 − Qυ2n‖)) ≤ F (β(ψ(�(υ2n−1, υ2n)) + F (ψ(�(υ2n−1, υ2n)))

where

�(υ2n−1, υ2n) = max{‖υ2n−1 − υ2n‖, ‖υ2n−1 − Pυ2n−1‖, ‖υ2n − Qυ2n‖}
= max{‖υ2n−1 − υ2n‖, ‖υ2n−1 − υ2n‖, ‖υ2n − υ2n+1‖}
= max{‖υ2n−1 − υ2n‖, ‖υ2n − υ2n+1‖}
= max{σ2n−1, σ2n}.

Therefore,

F (�2n) ≤ F (β(ψ(max{σ2n−1, σ2n}))) + F (ψ(max{σ2n−1, σ2n})). (4)

We shall show that {�n} is a nonincreasing sequence. Indeed, if �2n−1 < �2n for some
n ∈ N, then (4) implies that

F (�2n) ≤ F (β(�2n)) + F (�2n).

Sinceβ(�2n) < 1 andF is strictly increasing,we getF (β(�2n)) < F (1) = 0. There-
fore, we have

F (�2n) ≤ F (β(�2n)) + F (�2n) < F (�2n),

a contradiction. Hence, �2n ≤ �2n−1 for all n ∈ N. Similarly, using (1) and (3), we
have �2n+1 ≤ �2n for all n ∈ N0. Therefore, for all n ∈ N, �n ≤ �n−1 and thus the
sequence {�n} = ψ(σn) is a nonincreasing sequence of positive real numbers, and
as ψ is increasing, so {σn} is decreasing. Then there is ω ≥ 0 so that {σn} converges
to ω. Since ψ is continuous,

ψ(ω) = lim
n−→∞ ψ(σn) = 0. (5)

Therefore, ω = 0. Hence, limn→∞ σn = limn→∞ ‖υn − υn+1‖ = 0. Similarly, it can
be shown that

lim
n→∞ ‖υn+1 − υn‖ = 0. (6)

Following that, we shall demonstrate that {υn} is a Cauchy sequence in the closed
subsetZ of the Banach spaceX. It is sufficient to demonstrate that {υ2n} is a Cauchy
sequence in the closed subsetZ of Banach spaceX using (6).We begin with negation
and assume that {υ2n} is not Cauchy. Then, for any even integer 2k, we can discover
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a η > 0 such that there are even integers 2mk > 2nk > 2k such that

‖υ2nk − υ2mk‖ ≥ η for k ∈ {1, 2, . . . }. (7)

We may also assume
‖υ2mk−2 − υ2nk‖ < η (8)

by choosing 2mk to be the smallest number exceeding 2nk for which (7) holds. Now
(6)–(8) imply

0 < η ≤ ‖υ2nk − υ2mk‖
≤ ‖υ2nk − υ2mk−2‖ + ‖υ2mk−2 − υ2mk−1‖ + ‖υ2mk−1 − υ2mk‖
≤ η + ‖υ2mk−2 − υ2mk−1‖ + ‖υ2mk−1 − υ2mk‖

and so
lim
k→∞ ‖υ2nk − υ2mk‖ = η. (9)

Also, by the triangular inequality,

∣∣‖υ2nk − υ2mk−1‖ − ‖υ2nk − υ2mk‖
∣∣ ≤ ‖υ2mk−1 − υ2mk‖

and

∣∣‖υ2nk+1 − υ2mk−1‖ − ‖υ2nk − υ2mk‖
∣∣ ≤ ‖υ2mk−1 − υ2mk‖ + ‖υ2nk − υ2nk+1‖.

Therefore, we get
lim
k→∞ ‖υ2nk − υ2mk−1‖ = η (10)

and
lim
k→∞ ‖υ2nk+1 − υ2mk−1‖ = η. (11)

Applying condition (1) to the pair v = 2mk + 1 and u = 2nk + 1

F (ψ(‖υ2nk+1 − υ2mk+1‖) ≤ F (ψ(‖υ2nk+1 − υ2mk+1‖))
≤ F (β(ψ(�(υ2nk , υ2mk )) + F (ψ(�(υ2nk , υ2mk )), (12)

where

�(υ2nk , υ2mk ) = max
{‖υ2nk − υ2mk‖, ‖υ2nk − υ2nk+1‖, ‖υ2mk − υ2mk+1‖

}
,

implying that
lim
k→∞ �(υ2nk , υ2mk ) = max{0, η} = η.
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Taking the limit in (12), and using properties of the control functions,

F (ψ(η)) ≤ lim inf
k→∞ F (ψ(‖υ2nk+1 − υ2mk+1‖)) ≤ lim sup

k→∞
F (ψ(‖υ2nk+1 − υ2mk+1‖))

≤ lim sup
k→∞

[F (β(ψ(�1(υ2nk , υ2mk )))) + F (ψ(�1(υ2nk , υ2mk )))]
≤ F (lim sup

k→∞
β(ψ(‖υ2nk − υ2mk‖))) + F (ψ(η)). (13)

Since ‖υ2nk − υ2mk‖ → η+ and ψ is increasing, thus ψ(‖υ2nk − υ2mk‖) → ψ(η)+.
So, lim supk→∞ β(ψ(‖υ2nk − υ2mk‖)) < 1. Therefore, F (lim supk→∞ β(ψ(‖υ2nk −
υ2mk‖))) < 0. Thus, inequality (13) implies that F (ψ(η)) < F (ψ(η)), a contradic-
tion. Hence, η = 0. Thus, {υ2n} is a Cauchy sequence in the closed subset Z of the
Banach space X and so convergent to some ϑ∗ ∈ Z with limn→∞ υn = ϑ∗. There-
fore, the two subsequences {υ2n} and {υ2n+1} converge to ϑ∗.

Assume (H4) holds. The continuity of P and Q imply that

υ2n+1 = P(υ2n) →n→∞ P(ϑ∗) and υ2n+2 = Q(υ2n+1) →n→∞ Q(ϑ∗).

Uniqueness of limit of the sequence {υn} implies the result.
Assume (H4)’ hold. As limn→∞ υn = ϑ∗, (H4)’ implies that there exists a

subsequence {υnk } of {υn} such that α(υ2nk , ϑ
∗) ≥ (υ2nk , ϑ

∗) and α(ϑ∗, υ2nk−1) ≥
(ϑ∗, υ2nk−1) for all k. Making use of (1) for p = υ2nk and q = ϑ∗ with α(υ2nk , ϑ

∗) ≥
(υ2nk , ϑ

∗),

F (ψ(‖υ2nk+1 − Qϑ∗‖)) = F (ψ(‖Pυ2nk − Qϑ∗‖))
≤ F (β(ψ(max{‖υ2nk − ϑ∗‖, ‖υ2nk − Pυ2nk ‖, ‖ϑ∗ − Qϑ∗‖})))

+ F (ψ(max{‖υ2nk − ϑ∗‖, ‖υ2nk − Pυ2nk ‖, ‖ϑ∗ − Qϑ∗‖}))
= F (β(ψ(max{‖υ2nk − ϑ∗‖, ‖υ2nk − υ2nk+1‖, ‖ϑ∗ − Qϑ∗‖})))

+ F (ψ(max{‖υ2nk − ϑ∗‖, ‖υ2nk − υ2nk+1‖, ‖ϑ∗ − Qϑ∗‖})).

Taking the limit as n → ∞ in the above inequality, we infer

F (ψ(ϑ∗ − Qϑ∗‖)) ≤ F (β(ψ(‖ϑ∗ − Qϑ∗‖)))
+ F (ψ(‖ϑ∗ − Qϑ∗‖)). (14)

Since ψ(‖ϑ∗ − Qϑ∗‖) > 0, we have β(ψ(‖ϑ∗ − Qϑ∗‖)) < 1 ⇒ F (β(ψ(‖ϑ∗ −
Qϑ∗‖))) < 0.Thus, inequality (14) implies thatF (ψ(‖ϑ∗ − Qϑ∗‖)) < F (ψ(‖ϑ∗ −
Qϑ∗‖)), a contradiction. Hence, the Fix(Q) = {ϑ∗}.

On the similar arguments, using (1) for q = υ2nk−1 and p = ϑ∗ with α(ϑ∗,
υ2nk−1) ≥ (ϑ∗, υ2nk−1), we get Fix(P) = {ϑ∗}.

Assume (H5) hold. To check singleness of theCFP(P,Q) = {ϑ∗}, letμ 
= ϑ∗ be
such that μ = Pμ = Qμ. Using α(ϑ∗, μ) ≥ η(ϑ∗, μ) with (1) for p = ϑ∗, q = μ,
we have
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F (ψ(‖ϑ∗ − μ‖)) = F (ψ(‖Pϑ∗ − Qμ‖))
≤ F (β(ψ(max{‖ϑ∗ − μ‖, ‖ϑ∗ − Pϑ∗‖, ‖μ − Qμ‖})))

+ F (ψ(max{‖ϑ∗ − μ‖, ‖ϑ∗ − Pϑ∗‖, ‖μ − Qμ‖})) (15)

= F (β(ψ(‖ϑ∗ − μ‖))) + F (ψ(‖ϑ∗ − μ‖)). (16)

Sinceψ(‖ϑ∗ − μ‖) > 0,wehaveβ(ψ(‖ϑ∗ − μ‖)) < 1 ⇒ F (β(ψ(‖ϑ∗ − μ‖))) <

0. Thus, inequality (15) implies that F (ψ(‖ϑ∗ − μ‖)) < F (ψ(‖ϑ∗ − μ‖)), a con-
tradiction. Hence, the CFP(P,Q) = {ϑ∗} is unique.

Taking Q = P in Theorem 1, we can state the following result.

Corollary 1 LetZ be a closed subset of Banach space X, and let P : Z → Z be a
mapping. The following hypotheses are assumed:

(H1) there exists υ0 ∈ Z such that α(υ0,Pυ0) ≥ η(υ0,Pυ0);
(H ′

2) P is an α-admissible mapping and F ∈ F, β ∈ 	, ψ ∈ � such that for all
p, q ∈ Z,

α(p, q) ≥ η(p, q) ⇒ F (ψ(‖Pp − Pq‖)) ≤ F (β(ψ(�′(p, q)))) + F (ψ(�′(p, q))),

where
�′(p, q) = max{‖p − q‖, ‖p − Pp‖, ‖q − Pq‖}

(H ′
3) P is continuous, or

(H ′
4) if {υn} is a sequence in Z such that if α(υn, υn+1) ≥ η(υn, υn+1) for all n
and υn → ω ∈ Z as n → ∞, then there exists a subsequence {υnk } of {υn} such
that α(υnk , ω) ≥ η(υnk , ω) for all k.

Then P possesses a fixed point. If

(H ′
5) for all ζ, ξ ∈ Fix(P), we have α(ζ, ξ) ≥ η(ζ, ξ)

hold, then P possesses a unique fixed point.

Let Z be a nonempty set. As has became standard, (Z, d,�) will be called an
ordered normed space if

(i) (X, d) is a normed space, and,
(ii) (X,�) is a partially ordered set.

Theorem 2 Let Z be a closed subset of ordered Banach space X, and let P,Q :
Z → Z be mappings. The following hypotheses are assumed:

(B1) there exists υ0 ∈ Z such that υ0 � Pυ0;
(B2) p � q implies Pp � Qq and QPp � PQq for all p, q ∈ Z,
(B3) there exist F ∈ F, β ∈ 	, ψ ∈ � such that for all p, q ∈ Z with p � q

F (ψ(‖Pp − Qq‖)) ≤ F (β(ψ(�(p, q)))) + F (ψ(�(p, q))), (17)
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(B4) QPp � Pp for all p ∈ Z;
(B5) P and Q are continuous, or
(B′

5) if {υn} is a sequence in Z such that if υn � υn+1 and υn+1 � υn for all n
and υn → ω ∈ Z as n → ∞, then there exists a subsequence {υnk } of {υn} such
that υnk � ω and ω � υnk for all k.

Then P and Q have a common fixed point. If

(B6) for all ζ, ξ ∈ CFP(Q,P), we have ζ � ξ

hold, then P and Q have a unique common fixed point.

Proof Define functions α, η : Z × Z → [0,+∞) by

α(u, v) ≥
{

η(u, v), if u � v,

−η(u, v), otherwise,

for all u, v ∈ Z.

Then, all hypotheses of Theorem 1 are satisfied and hence the pair (P,Q) has a
common fixed point inZ.

We demonstrate the Theorem 1 by following modified example [11].

Example 1 LetZ = [−2, 2]with usual distance d(p, q) = ‖p − q‖ = |p − q| for
all p, q ∈ Z. Define the mappings P,Q : Z → Z by

Pp =
{ p

9 , p ∈ [0, 1]
4p
3 , otherwise

, Qp =
{ p

3 , p ∈ [0, 1]
3p
2 , otherwise.

Also, we define the functions α, η : Z2 → [0,+∞) by

α(p, q) =
{
3, p, y ∈ [0, 1]
1
4 , otherwise

, η(p, q) =
{
1, p ∈ [0, 1]
4, otherwise.

Obviously, Z is a Banach metric space, and P and Q are continuous mappings on
Z.

Consider F(t) = log(t), t > 0, β(t) = k ∈ (0, 1) and ψ(t) = t ≥ 0. To check
(H2), we consider two cases:

• When p, q ∈ [0, 1], condition (H2) would be

∣∣∣ p
9

− q

3

∣∣∣ ≤ k max

{
|p − q|, 8p

9
,
2q

3

}

which is true for k = 9/10 for all p, q ∈ [0, 1]. Also, in this case α(p, q) = 3 ≥
1 = η(p, q).
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• When p, q ∈ D := [−2, 0) ∪ (1, 2], condition (H2) would be

∣∣∣∣4p3 − 3q

2

∣∣∣∣ ≤ k max
{
|p − q|,

∣∣∣ p
3

∣∣∣ , ∣∣∣q
2

∣∣∣}

which is not true for any k ∈ (0, 1) in general in D; in particular at p = 2, q = −2.
Also, in this case α(p, q) = 1/4 � 4 = η(p, q).

From the above discussion, it is clear that (P,Q) is a (F , β, ψ)-contractive mapping.
Here, υ0 = 0 so that α(υ0,Pυ0) = α(0, 0) = 3 ≥ 1 = η(0, 0) = η(υ0,Pυ0).

Also, it is easy to check that (P,Q) is a generalized α − η-admissible pair and
satisfy condition (H3) in [0, 1]. Thus, all assumptions of Theorem 1 are satisfied.
Hence, the pair (P,Q) has a unique common fixed point ϑ∗ = 0.

Example 2 LetZ = [0,∞) with usual distance d(p, q) = ‖p − q‖ = |p − q| for
all p, q ∈ Z. Define the mappings P,Q : Z → Z by

Pp =
{

p2

2 , p ∈ [0, 1]
2p, p ∈ (1,∞)

, Qp =
{

p3

3 , p ∈ [0, 1]
3p, p ∈ (1,∞).

Also, we define the functions α, η : Z × Z → [0,+∞) by

α(p, q) =
{
2, p, q ∈ [0, 1]
1
2 , otherwise

, η(p, q) =
{

5
4 , p ∈ [0, 1]
3, otherwise.

Obviously, Z is a Banach metric space.
Consider F(t) = log(t), t > 0, β(t) = k ∈ (0, 1) and ψ(t) = t ≥ 0. To check

(H2), we consider two cases:

• When p, q ∈ [0, 1], condition (H2) would be

∣∣∣∣ p22 − q3

3

∣∣∣∣ ≤ k max

{
|p − q|,

∣∣∣∣p − p2

2

∣∣∣∣ ,
∣∣∣∣q − q3

3

∣∣∣∣
}

which is true for k = 9/10 for all p, q ∈ [0, 1]. Also, in this case α(p, q) = 2 ≥
5/4 = η(p, q).

• When p ∈ [0, 1], q ∈ (1,∞), condition (H2) would be

∣∣∣∣ p22 − 3q

∣∣∣∣ ≤ k max

{
|p − q|,

∣∣∣∣p − p2

2

∣∣∣∣ , 2q
}

which is not true for any k ∈ (0, 1). For instance at p = 0, q = 2,

|Pp − Qq| = 6 � 4k = kmax{|p − q|, |p − Pp|, |q − Qq|}.

Also, in this case α(p, q) = 2 � 3 = η(p, q).
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• When q ∈ [0, 1], p ∈ (1,∞), condition (H2) would be

∣∣∣∣2p − q3

3

∣∣∣∣ ≤ k max

{
|p − q|, p,

∣∣∣∣q − q3

3

∣∣∣∣
}

which is not true for any k ∈ (0, 1). For instance at p = 3, q = 1,

|Pp − Qq| = 17

3
� 3k = kmax{|p − q|, |p − Pp|, |q − Qq|}.

Also, in this case α(p, q) = 1/2 � 5/4 = η(p, q).

From the above discussion, it is clear that (P,Q) is a (F , β, ψ)-contractive mapping.
Here, υ0 = 0 so that α(υ0,Pυ0) = α(0, 0) = 2 ≥ 5/4 = η(0, 0) = η(υ0,Pυ0).

To check that (P,Q) is a generalized α − η-admissible pair, we take α(p, q) = 2 ≥
5/4 = η(p, q) in p, q ∈ [0, 1], then

α(Pp,Qq) = α

(
p2

2
,
q3

3

)
= 2 ≥ 5

4
= η

(
p2

2
,
q3

3

)
= η(Pp,Qq)

and

α(QPp,PQq) = α

(
p6

24
,
q6

16

)
= 2 ≥ 5

4
= η

(
p6

24
,
q6

16

)
= η(QPp,PQq).

Thus, (P,Q) is a generalized α − η-admissible pair in [0, 1]. But if take p, q ∈
(1,∞), then it will not satisfy in general; for instance, p = 2 and q = 3. Simi-
larly, it is easy to check condition (H3) and (H ′

4) in [0, 1]. Thus, all assumptions of
Theorem 1 are satisfied. Hence, the pair (P,Q) has a unique common fixed point
ϑ∗ = 0.

4 Application to a Nonlinear First-Order Hybrid
Integro-Differential Equations

Consider a pair of first-order ordinary nonlinear hybrid integro-differential equations

{
u′(t) + λu(t) = f j

(
t, u(t),

∫ t
θ0
g j (s, u(s))ds

)
, t ∈ I = [θ0, θ0 + �] ⊂ R, θ0 ≥ 0, � > 0, j = 1, 2

u(θ0) = μ0 ∈ R,

(18)
for some λ ∈ R, λ > 0, where g j : I × R → R and f j : I × R × R → R are con-
tinuous functions. This challenge is the same as the integral equation

u(t) = ce−λt + e−λt
∫ t

θ0

eλs f j

(
s, u(s),

∫ s

θ0

g j (τ, u(τ ))dτ

)
ds, t ∈ I, j = 1, 2

(19)
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where c = μ0eλθ0 is a constant.
Let Z = C(I, R) be the usual Banach space (with the supremum norm). Define

a distance on Z by d(x, y) = ‖x − y‖∞ for all x, y ∈ Z.
Define the mappings S,T : Z → Z by

Su(t) = ce−λt + e−λt
∫ t

θ0

eλs f1

(
s, u(s),

∫ s

θ0

g1(τ, u(τ ))dτ

)
ds, for all u ∈ Z, t ∈ I.

(20)
and

T u(t) = ce−λt + e−λt
∫ t

θ0

eλs f2

(
s, u(s),

∫ s

θ0

g2(τ, u(τ ))dτ

)
ds, for all u ∈ Z, t ∈ I.

(21)

Note that by a solution of the problem (18), we mean a function u ∈ C1(I, R)

that satisfies the conditions (18), where C1(I, R) is the space of continuously differ-
entiable real-valued functions defined on I . Also, u ∈ C1(I, R) is a common fixed
point of the pair (S,T ) iff u ∈ C1(I, R) is a solution of the problem (18).

Theorem 3 Consider the problem (18) and let ξ : R × R → R be a given function.
Assume the following statements are hold:

(A1) For all t ∈ I , the function f (t, ·, ·) is nondecreasing in second and third
variables;

(A2) For all t ∈ I , the function g(t, ·) is nondecreasing in second variable;
(A3) there exists an x0 ∈ Z2 such that (x0,Sx0) ∈ Z2 and ξ(x0(t),Sx0(t)) ≥ 0

for all t ∈ I ;
(A4) for each t ∈ I and (x, y) ∈ Z2, ξ(x(t), y(t)) ≥ 0 implies that ξ(Sx(t),T y(t))

≥ 0 and ξ(TSx(t),ST y(t)) ≥ 0;
(A5) for each t ∈ I and x ∈ Z, ξ(TSx(t),Sx(t)) ≥ 0;
(A6) for each t ∈ I , if {xn} is a sequence inZ such that xn → x inZ and ξ(xn(t),

xn+1(t)) ≥ 0 and ξ(xn+1(t), xn(t)) ≥ 0 for all n ∈ N, then ξ(xn(t), x(t)) ≥ 0
and ξ(x(t), xn(t)) ≥ 0 for all n ∈ N;

(A7) for all u1, u2, v1, v2 ∈ R and t ∈ I with (u1, v1) ∈ Z2 and (u2, v2) ∈ Z2 with
ξ(u1, v1) ≥ 0 and ξ(u2, v2) ≥ 0, the functions f and g satisfy

0 ≤ | f1(t, u1, u2) − f2(t, v1, v2)| ≤ |u1 − v1| + |u2 − v2|

and

0 ≤ |g1(t, u1) − g2(t, v1)| ≤ |u1 − v1|;

(A8) there exists k ∈ (0, 1) such that supt∈I
∫ t
θ0
eλsds ≤ k

1+�
.

Then the problem (18) has a unique solution.
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Proof Define functions α, η : Z × Z → [0,+∞) by

α(u, v) ≥
{

η(u, v), if ξ(u(t), v(t)) ≥ 0, for all u, v ∈ Z, and for all t ∈ I

−η(u, v), otherwise.
(22)

Let u, v ∈ Z such that ξ(u(t), v(t)) ≥ 0 for all t ∈ [0, 1]. Then by (22), we have
α(u, v) ≥ η(u, v) which implies from (A7) that

‖Su − T v‖∞
= sup

t∈I
|Su(t) − T v(t)|

≤ sup
t∈I

∣∣∣∣∣∣
e−λt

∫ t
θ0
eλs f1

(
s, u(s),

∫ s
θ0
g1(τ, u(τ )) dτ

)
ds

−e−λt
∫ t
θ0
eλs f2

(
s, v(s),

∫ s
θ0
g2(τ, v(τ )) dτ

)
ds

∣∣∣∣∣∣
≤ sup

t∈I
|e−λt |

[ ∫ t
θ0
eλs

∣∣∣ f1 (
s, u(s),

∫ s
θ0
g1(τ, u(τ )) dτ

)
− f2

(
s, v(s),

∫ s
θ0
g2(τ, v(τ )) dτ

)∣∣∣ ds ]

≤ sup
t∈I

∫ t
θ0
eλs

[
(|u(s) − v(s)|) +

∣∣∣∫ s
θ0
g1(τ, u(τ )) dτ − ∫ s

θ0
g2(τ, v(τ )) dτ

∣∣∣] ds
≤ sup

t∈I
∫ t
θ0
eλs

[
(|u(s) − v(s)|) + ∫ s

θ0
|g1(τ, u(τ )) − g2(τ, v(τ ))| dτ

]
ds

≤ sup
t∈I

∫ t
θ0
eλs

[
(|u(s) − v(s)|) + ∫ s

θ0
|u(τ ) − v(τ)| dτ

]
ds

≤ sup
t∈I

∫ t

θ0

eλs [(1 + �)(‖u − v‖∞)] ds

≤ k(‖u − v‖∞)

≤ kmax {‖u − v‖∞, ‖u − Su‖∞, ‖v − T v‖∞} .

This implies that

‖Su − T v‖∞ ≤ kmax {‖u − v‖∞, ‖u − Su‖∞, ‖v − T v‖∞} .

Now, by considering the control functions F ∈ F, β ∈ 	, ψ ∈ � described by

F (t) = log(t), t > 0, β(t) = k ∈ (0, 1), ψ(t) = t ≥ 0,

we get

F (ψ(‖Su − T v‖)) ≤ F (β(ψ (max {‖u − v‖∞, ‖u − Su‖∞, ‖v − T v‖∞})))
+ F (ψ (max {‖u − v‖∞, ‖u − Su‖∞, ‖v − T v‖∞})).

This implies that for each (u, v) ∈ Z2 with α(u, v) ≥ η(u, v), we have
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F (ψ(‖Su − T v‖)) ≤ F (β(ψ (max {‖u − v‖∞, ‖u − Su‖∞, ‖v − T v‖∞})))
+ F (ψ (max {‖u − v‖∞, ‖u − Su‖∞, ‖v − T v‖∞})).

Using (22) and conditions (A3)-(A5), the following assertions hold for all x, y ∈
Z:

ξ(x(t),Sx(t)) ≥ 0 for all t ∈ I =⇒ α(x0,Sx0) ≥ η(x0,Sx0) for x0 ∈ Z,

α(x, y) ≥ η(x, y) =⇒ ξ(x(t), y(t)) ≥ 0 for all t ∈ I

=⇒ ξ(Sx(t),T y(t)) ≥ 0 and ξ(TSx(t),ST y(t)) ≥ 0; for all t ∈ I

=⇒ α(Sx,T y) ≥ η(Sx,T y) and α(TSx,ST y) ≥ η(TSx,ST y)

for all x, y ∈ Z

and

ξ(TSx(t),Sx(t)) ≥ 0; for all t ∈ I ⇒ α(TSx,Sx) ≥ η(TSx,Sx) for x ∈ Z.

Next, from (22) and condition (A6), it easily follows that

⎧⎨
⎩

for any sequence {xn} inZ if α(xn, xn+1) ≥ η(xn, xn+1)

and α(xn+1, xn) ≥ η(xn+1, xn) for all n ∈ N and xn → x ∈ Z
as n → ∞, then α(xn, x) ≥ η(xn, x) and α(xn+1, x) ≥ η(xn+1, x) for all n ∈ N.

Therefore, from Theorem 1, the pair (S,T ) has a unique common fixed point, that
is, the problem (18) has a unique solution.
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Application of Darbo’s Fixed Point
Theorem for Existence Result of
Generalized 2D Functional Integral
Equations

Satish Kumar, Deepak Dhiman, Beenu Singh, and K. S. Nisar

Abstract In this chapter, we establish some existence of solutions for 2D functional
integral equations concerning Darbo’s fixed point theorem in Banach algebra. This
existence of solutions involves various obtained from earlier studies. Some examples
are introduced to confirm the applicability of our results.

1 Introduction

Many non-linear problems that rising from the fields of the real world, such as basic
sciences, can be described with operator equations. Mainly, FIEs perform a very
powerful and important part of the non-linear analysis andhave several applications in
real-world problems. For illustration, some problems in biology, economics, physics
and different fields can be specified with the help of integral and integro-differential
equations (see [4, 14, 17, 20]). Recently, there have been many successful efforts to
use the theory of MNC and different fixed point theorems in the study of solvability
of FIEs (see [6–13, 15, 16, 18, 19, 24–27]). Here, we study the solvability of 2D
FIE of the form:
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z(s, ϕ) = P

(
s, ϕ,

∫ s

0

∫ ϕ

0
u(s, ϕ, g, ζ, z(g, ζ ))dζdg,

∫ c

0

∫ d

0
f (s, ϕ, g, ζ, z(g, ζ ))dζdg, z(s, ϕ)

)

×F

(
s, ϕ,

∫ s

0

∫ ϕ

0
p(s, ϕ, g, ζ, z(g, ζ ))dζdg,

∫ c

0

∫ d

0
q(s, ϕ, g, ζ, z(g, ζ ))dζdg, z(s, ϕ)

)
, (1)

for (s, ϕ) ∈ I = [0, c] × [0, d].
Das et al. [5] studied the existence result for 2D FIE

z(s, ϕ) = h(s, ϕ) + P

(
s, ϕ, z(s, ϕ),

∫ s

0

∫ ϕ

0
u(s, ϕ, g, ζ, z(g, ζ ))dζdg

)
(2)

for (s, ϕ) ∈ [0, 1] × [0, 1].
Mishra et al. [22] studied the existence of solutions for 2D FIE

z(ϕ, t) = P

(
s, ϕ,

∫ s

0

∫ ϕ

0
u(s, ϕ, g, ζ, z(g, ζ ))dζdg

)
× F

(
s, ϕ,

∫ c

0

∫ d

0
q(s, ϕ, g, ζ, z(g, ζ ))dζdg

)
.

for (s, ϕ) ∈ I.
Further, a famous 2D FIE of Hammerstein type [23] has the form

z(s, ϕ) = h(s, ϕ) +
∫ s

0

∫ ϕ

0
u1(s, ϕ, g, ζ )u2(s, ϕ, z(g, ζ ))dζdg.

The 2D FIE (1) cover various special type of FIEs. The aim of this work is to
investigate the method to prove the solvability of equation (1) with the help of MNC
in [0, c] × [0, d]. The main advantage of Darbo’s fixed point theorem is that the
compactness of the domain of operator which is required in Schauder’s fixed point
theorem has been rested.

2 Preliminaries

In this study, the following symbols are used:

• S : Banach space;
• B(z, r): Closed ball at centre z with radius r;
• coĒ : Closed convex hull of a set S;
• coE : Convex hull of a set S;
• NS: Set of all relatively compact subsets of S
• MS: Set of all bounded subsets of S.

Definition 1 ([21]) Let E ∈ MS and

ψ(E) = inf

{
σ > 0 : E =

n⋃
i=1

Ei with diamEi ≤ σ, i = 1, 2, ..., n

}
.
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where,
diam E = sup{‖z − ẑ‖ : z, ẑ ∈ E}.

Hence, 0 ≤ ψ(E) < ∞. ψ(E) is called the Kuratowski MNC.

Theorem 1 ([2]) Suppose that E, Ê ∈ MS and λ ∈ R. Then

(i) ψ(E) = 0 if and only if E ∈ NS;
(ii) E ⊆ Ê =⇒ ψ(E) ≤ ψ(Ê);
(iii) ψ(ConvE) = ψ(E);
(iv) ψ(E ∪ Ê) = max{ψ(E), ψ(Ê)};
(v) ψ(λE) = |λ|ψ(E);
(vi) ψ(E + Ê) ≤ ψ(E) + ψ(Ê);

Definition 2 ([2]) Let D be a non-empty, closed, convex andbounded subset of S and
let T : D → D be continuous mapping such that there exists a constant k ∈ [0, 1),
with

ψ(T E) ≤ kψ(E)

for any subset of E of D. Then T has a fixed point in D.

Theorem 2 ([3]) Assume that � is a non-empty, convex, bounded and close subset
of S and the operators U and V , which transform continuously the set � into S
such that U (�) and V (�) are bounded. Again, let operator T = U.V transform �
into itself. If U and V fulfils Darbo’s condition on � with the constant k1 and k2,
respectively, then T fulfils Darbo’s condition on � with the constant

||U (�)||k2 + ||V�)||k1 < 1.

If T is a contraction with respect to ψ and has at least one fixed point in �.

Let C(I,R) be Banach algebra consisting of real valued continuous functions on the
set I with usual norm

||z|| = sup{|z(s, ϕ)| : (s, ϕ) ∈ I }.
Let E ⊂ S = C(I,R) and for z ∈ E , σ > 0, denoted by ω(z, σ ) modulus of con-
tinuity of z

ω(z, σ ) = sup{|z(s, ϕ) − z(w, ŵ)| : s, w ∈ [0, c]; ϕ, ŵ ∈ [0, d]; |s − w| ≤ σ, |ϕ − ŵ| ≤ σ },

ω(E, σ ) = sup{ω(z, σ ) : z ∈ E}, ω0(E) = lim
σ→0

ω(E, σ ).

In [2], ω0(E) is a regular MNC in C(I,R).

3 Main Results

Now, we study the solvability of the FIE (1) for z ∈ C[0, c] × [0, d] under the fol-
lowing assumptions.
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(1) P, F : I × R × R × R → R are continuous functions and there exists N ≥ 0,
such that

|P(s, ϕ, 0, 0, 0)| ≤ N and |F(s, ϕ, 0, 0, 0)| ≤ N .

(2) Let Ki : I → R+ (i = 1, ..., 6) be continuous functions such that

|P(s, ϕ, z1, x1, y1) − P(s, ϕ, z2, x2, y2)| ≤ K1(s, ϕ)|z1 − z2| + K2(s, ϕ)|x1 − x2|
+K3(s, ϕ)|y1 − y2|,

|F(s, ϕ, z1, x1, y1) − F(s, ϕ, z2, x2, y2)| ≤ K4(s, ϕ)|z1 − z2| + K5(s, ϕ)|x1 − x2|
+K6(s, ϕ)|y1 − y2|,

for all (s, ϕ) ∈ I and z1, z2, x1, x2, y1, y2 ∈ R and,

K = max
{
Ki (s, ϕ) : i = 1, ..., 6; (s, ϕ) ∈ I

}
.

(3) u, f, p, and q : I × I × R → R. are continuous functions and there exist non-
negative constants β1 and β2 such that

|u(s, ϕ, g, ζ, z(g, ζ ))| ≤ β1 + β2|z|,
| f (u(s, ϕ, g, ζ, z(g, ζ ))| ≤ β1 + β2|z|,

|p(s, ϕ, g, ζ, z(g, ζ ))| ≤ β1 + β2|z|,
|q(u(s, ϕ, g, ζ, z(g, ζ ))| ≤ β1 + β2|z|,

for all (s, ϕ) ∈ I, z ∈ R.

Furthermore,
4h1h2 < 1 for h1 = 2Kcdβ2, h2 = 2Kcdβ1 + N .

Theorem 3 From Assumptions (1)–(3), Eq. (1) has at least one solution in I .

Proof Putting operators U and V defined on I such that

(Uz)(s, ϕ) = P
(
s, ϕ,

∫ s

0

∫ ϕ

0
u(s, ϕ, g, ζ, z(g, ζ ))dζdg,

∫ c

0

∫ d

0
f (s, ϕ, g, ζ, z(g, ζ ))dζdg, z(s, ϕ)

)
,

(V z)(s, ϕ) = F

(
s, ϕ,

∫ s

0

∫ ϕ

0
p(s, ϕ, g, ζ, z(g, ζ ))dζdg,

∫ c

0

∫ d

0
q(s, ϕ, g, ζ, z(g, ζ ))dζdg, z(s, ϕ)

)
,

for (s, ϕ) ∈ I.
By (1) and (3), we get U and V transform I into itself.

Step-I Now, we put
T z = (Uz)(V z).

Clearly, T transform I into itself. Now, fix z ∈ I . Then,
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|(T z)(s, ϕ)|
= |(Uz)(s, ϕ)|.|(V z)(s, ϕ)|
=

(∣∣∣P(
s, ϕ,

∫ s

0

∫ ϕ

0
u(s, ϕ, g, ζ, z(g, ζ ))dζdg,

∫ c

0

∫ d

0
f (s, ϕ, g, ζ, z(g, ζ ))dζdg, z(s, ϕ)

)∣∣∣

×
∣∣∣F

(
s, ϕ,

∫ s

0

∫ ϕ

0
p(s, ϕ, g, ζ, z(g, ζ ))dζdg,

∫ c

0

∫ d

0
q(s, ϕ, g, ζ, z(g, ζ ))dζdg, z(s, ϕ)

)∣∣∣
)

,

≤
(∣∣∣P(

s, ϕ,

∫ s

0

∫ ϕ

0
u(s, ϕ, g, ζ, z(g, ζ ))dζdg,

∫ c

0

∫ d

0
f (s, ϕ, g, ζ, z(g, ζ ))dζdg, z(s, ϕ)

)

−P(s, ϕ, 0, 0, 0)
∣∣∣ + |P(s, ϕ, 0, 0, 0)|

)

×
(∣∣∣F

(
s, ϕ,

∫ s

0

∫ ϕ

0
p(s, ϕ, g, ζ, z(g, ζ ))dζdg,

∫ c

0

∫ d

0
q(s, ϕ, g, ζ, z(g, ζ ))dζdg, z(s, ϕ)

)

−F(s, ϕ, 0, 0, 0)
∣∣∣ + |F(s, ϕ, 0, 0, 0)|

)
,

≤
(
K1(s, ϕ)

∫ s

0

∫ ϕ

0
|u(s, ϕ, g, ζ, z(g, ζ ))|dζdg + K2(s, ϕ)

∫ c

0

∫ d

0
| f (s, ϕ, g, ζ, z(g, ζ ))|dζdg

+K3|(z(s, ϕ))| + N

)

×
(
K4(s, ϕ)

∫ s

0

∫ ϕ

0
|p(s, ϕ, g, ζ, z(g, ζ ))|dζdg + K5(s, ϕ)

∫ c

0

∫ d

0
|q(s, ϕ, g, ζ, z(g, ζ ))|dζdg

+K6|(z(s, ϕ))| + N

)

≤
(
2Kcd(β1 + β2||z||) + N

)
×

(
2Kcd(β1 + β2||z||) + N

)

≤
(
2Kcdβ2||z|| + 2Kcdβ1 + N

)2

Taking h1 = 2Kcdβ2 and h2 = 2Kcdβ1 + N then,

||Uz|| ≤ h1||z|| + h2, (3)
||V z|| ≤ h2||z|| + h2, (4)
||T z|| ≤ (h1||z|| + h2)

2, (5)

for z ∈ I. From Eq. (5), the operator T maps the ball Br ⊂ I into itself forr1 ≤ r ≤ r2,
where

r1 = (1 − 2h1h2) − √
1 − 4h1h2

2h21
.

r2 = (1 − 2h1h2) + √
1 − 4h1h2

2h21
.
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Using Eqs. (3) and (4),

||UBr || ≤ h1 r + h2, (6)
||V Br || ≤ h1 r + h2. (7)

Step-2 We prove that T is continuous on Br . For this, fixed σ > 0 and arbitrary
z, x ∈ Br such that ||z − x || ≤ σ. Then for (s, ϕ) ∈ I ,

|(Uz)(s, ϕ) − (Ux)(s, ϕ)|
=

∣∣∣∣P
(
s, ϕ,

∫ s

0

∫ ϕ

0
u(s, ϕ, g, ζ, z(g, ζ ))dζdg,

∫ c

0

∫ d

0
f (s, ϕ, g, ζ, z(g, ζ ))dζdg, z(s, ϕ)

)

−P
(
s, ϕ,

∫ s

0

∫ ϕ

0
u(s, ϕ, g, ζ, x(g, ζ ))dζdg,

∫ c

0

∫ d

0
f (s, ϕ, g, ζ, x(g, ζ ))dζdg, x(s, ϕ)

)∣∣∣∣
≤ K1(s, ϕ)

∫ s

0

∫ ϕ

0
|u(s, ϕ, g, ζ, z(g, ζ )) − u(s, ϕ, g, ζ, x(g, ζ ))|dζdg

+K2(s, ϕ)

∫ c

0

∫ d

0
| f (s, ϕ, g, ζ, z(g, ζ )) − f (s, ϕ, g, ζ, x(g, ζ ))|dζdg

+K3(s, ϕ)|z(s, ϕ) − x(s, ϕ)|
≤ Kcdω(u, σ ) + Kcdω( f, σ ) + K ||z − x ||,
≤ Kcdω(u, σ ) + Kcdω( f, σ ) + Kσ,

�

where

ω(u, σ ) = sup

{
|u(s, ϕ, g, ζ, z) − u(s, ϕ, g, ζ, x)| : (s, ϕ) ∈ I,

z, x ∈ [−r, r ], ||z − x || ≤ σ

}
,

ω( f, σ ) = sup

{
| f (s, ϕ, g, ζ, z) − f (s, ϕ, g, ζ, x)| : (s, ϕ) ∈ I,

z, x ∈ [−r, r ], ||z − x || ≤ σ

}
,

The functions u = u(s, ϕ, g, ζ, z) and f = f (s, ϕ, g, ζ, z) are uniform continuous
on the bounded subset I × I × [−r, r ], then ω(u, σ ) and ω( f, σ ) → 0 as σ → 0.
Thus, U is continuous operator on Br . Similarly,
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|(V z)(s, ϕ) − (V x)(s, ϕ)|
=

∣∣∣∣F
(
s, ϕ,

∫ s

0

∫ ϕ

0
p(s, ϕ, g, ζ, z(g, ζ ))dζdg,

∫ c

0

∫ d

0
q(s, ϕ, g, ζ, z(g, ζ ))dζdg, z(s, ϕ)

)

−F
(
s, ϕ,

∫ s

0

∫ ϕ

0
p(s, ϕ, g, ζ, x(g, ζ ))dζdg,

∫ c

0

∫ d

0
q(s, ϕ, g, ζ, x(g, ζ ))dζdg, x(s, ϕ)

)∣∣∣∣
≤ K4(s, ϕ)

∫ s

0

∫ ϕ

0
|p(s, ϕ, g, ζ, z(g, ζ )) − p(s, ϕ, g, ζ, x(g, ζ ))|dζdg

+K5(s, ϕ)

∫ c

0

∫ d

0
|q(s, ϕ, g, ζ, z(g, ζ )) − q(s, ϕ, g, ζ, x(g, ζ ))|dζdg

+K6(s, ϕ)|z(s, ϕ) − x(s, ϕ)|
≤ Kcdω(p, σ ) + Kcdω(q, σ ) + K ||z − x ||,
≤ Kcdω(p, σ ) + Kcdω(q, σ ) + Kσ,

where

ω(p, σ ) = sup

{
|p(s, ϕ, g, ζ, z) − p(s, ϕ, g, ζ, x)| : (s, ϕ) ∈ I,

z, x ∈ [−r, r ], ||z − x || ≤ σ

}
,

ω(q, σ ) = sup

{
|q(s, ϕ, g, ζ, z) − q(s, ϕ, g, ζ, x)| : (s, ϕ) ∈ I,

z, x ∈ [−r, r ], ||z − x || ≤ σ

}
,

The function p = p(s, ϕ, g, ζ, z) and q = q(s, ϕ, g, ζ, z) are uniform continuous
on the bounded subset I × I × [−r, r ], then ω(p, σ ) and ω(q, σ ) → 0 as σ → 0.
Thus, V is continuous operator on Br . Hence, T is a continuous operator on Br .

Step-3 We prove that theU and V fulfil Darbo’s condition with respect ω0, in Br .
Assume that a subset E of Br and z ∈ E , let σ > 0 be fixed and s1, ϕ1, s2, ϕ2 ∈ I
such that |s1 − s2| ≤ σ, and |ϕ1 − ϕ2| ≤ σ. We have
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|(Uz)(s2, ϕ2) − (Uz)(s1, ϕ1)|
=

∣∣∣∣P
(
s2, ϕ2,

∫ s2

0

∫ ϕ2

0
u(s2, ϕ2, g, ζ, z(g, ζ ))dζdg,

∫ c

0

∫ d

0
f (s2, ϕ2, g, ζ, z(g, ζ ))dζdg, z(s2, ϕ2)

)

−P
(
s1, ϕ1,

∫ s1

0

∫ ϕ1

0
u(s1, ϕ1, g, ζ, z(g, ζ ))dζdg,

∫ c

0

∫ d

0
f (s1, ϕ1, g, ζ, z(g, ζ ))dζdg, z(s1, ϕ1)

)∣∣∣∣
≤

∣∣∣∣P
(
s2, ϕ2,

∫ s2

0

∫ ϕ2

0
u(s2, ϕ2, g, ζ, z(g, ζ ))dζdg,

∫ c

0

∫ d

0
f (s2, ϕ2, g, ζ, z(g, ζ ))dζdg, z(s2, ϕ2)

)

−P
(
s2, ϕ2,

∫ s2

0

∫ ϕ2

0
u(s2, ϕ2, g, ζ, z(g, ζ ))dζdg,

∫ c

0

∫ d

0
f (s2, ϕ2, g, ζ, z(g, ζ ))dζdg, z(s1, ϕ1)

)∣∣∣∣
+

∣∣∣∣P
(
s2, ϕ2,

∫ s2

0

∫ ϕ2

0
u(s2, ϕ2, g, ζ, z(g, ζ ))dζdg,

∫ c

0

∫ d

0
f (s2, ϕ2, g, ζ, z(g, ζ ))dζdg, z(s1, ϕ1)

)

−P
(
s2, ϕ2,

∫ s2

0

∫ ϕ2

0
u(s2, ϕ2, g, ζ, z(g, ζ ))dζdg,

∫ c

0

∫ d

0
f (s1, ϕ1, g, ζ, z(g, ζ ))dζdg, z(s1, ϕ1)

))∣∣∣∣
+

∣∣∣∣P
(
s2, ϕ2,

∫ s2

0

∫ ϕ2

0
u(s2, ϕ2, g, ζ, z(g, ζ ))dζdg,

∫ c

0

∫ d

0
f (s1, ϕ1, g, ζ, z(g, ζ ))dζdg, z(s1, ϕ1)

)

−P
(
s2, ϕ2,

∫ s1

0

∫ ϕ1

0
u(s1, ϕ1, g, ζ, z(g, ζ ))dζdg,

∫ c

0

∫ d

0
f (s1, ϕ1, g, ζ, z(g, ζ ))dζdg, z(s1, ϕ1)

))∣∣∣∣
+

∣∣∣∣P
(
s2, ϕ2,

∫ s1

0

∫ ϕ1

0
u(s1, ϕ1, g, ζ, z(g, ζ ))dζdg,

∫ c

0

∫ d

0
f (s1, ϕ1, g, ζ, z(g, ζ ))dζdg, z(s1, ϕ1)

)

−P
(
s1, ϕ1,

∫ s1

0

∫ ϕ1

0
u(s1, ϕ1, g, ζ, z(g, ζ ))dζdg,

∫ c

0

∫ d

0
f (s1, ϕ1, g, ζ, z(g, ζ ))dζdg, z(s1, ϕ1)

))∣∣∣∣
≤ K3(s, ϕ)|z(s2, ϕ2) − z(s1, ϕ1)|

+K2(s, ϕ)

∣∣∣∣
∫ c

0

∫ d

0
f (s2, ϕ2, g, ζ, z(g, ζ ))dζdg −

∫ c

0

∫ d

0
f (s1, ϕ1, g, ζ, z(g, ζ ))dζdg

∣∣∣∣
+K1(s, ϕ)

∣∣∣∣
∫ s2

0

∫ ϕ2

0
u(s2, ϕ2, g, ζ, z(g, ζ ))dζdg −

∫ s1

0

∫ ϕ1

0
u(s1, ϕ1, g, ζ, z(g, ζ ))dζdg

∣∣∣∣ + ωP (I, σ )

≤ K |z(s2, ϕ2) − z(s1, ϕ1)| + K
∫ c

0

∫ d

0
| f (s2, ϕ2, g, ζ, z(g, ζ )) − f (s1, ϕ1, g, ζ, z(g, ζ ))|dζdg

+K
∫ s1

0

∫ ϕ1

0
|u(s2, ϕ2, g, ζ, z(g, ζ )) − u(s1, ϕ1, g, ζ, z(g, ζ ))|dζdg

+K
∫ s2

s1

∫ ϕ2

ϕ1

|u(s2, ϕ2, g, ζ, z(g, ζ ))|dζdg + K
∫ s2

s1

∫ ϕ1

0
|u(s2, ϕ2, g, ζ, z(g, ζ ))|dζdg

+K
∫ s1

0

∫ ϕ2

ϕ1

|u(s2, ϕ2, g, ζ, z(g, ζ ))|dζdg,

where
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ωu(I, σ ) = sup

{
|u(s2, ϕ2, g, ζ, z) − u(s1, ϕ1, g, ζ, z)| : s1, s2 ∈ [0, c], ϕ1, ϕ2 ∈ [0, d],

z ∈ [−r, r ], |s2 − s1| ≤ σ, |ϕ2 − ϕ1| ≤ σ

}
,

ω f (I, σ ) = sup

{
| f (s2, ϕ2, g, ζ, z) − f (s1, ϕ1, g, ζ, z)| : s1, s2 ∈ [0, c], ϕ1, ϕ2 ∈ [0, d],

z ∈ [−r, r ], |s2 − s1| ≤ σ, |ϕ2 − ϕ1| ≤ σ

}
,

L = sup

{
|u(s, ϕ, g, ζ, z)| : (s, ϕ), (g, ζ ) ∈ I, z ∈ [−r, r ]

}
,

and

ωP (I, σ ) = sup

{
|P(s2, ϕ2, z, x, y) − P(s1, ϕ1, z, x, y)| : s1, s2 ∈ [0, c], ϕ1, ϕ2 ∈ [0, d],

y ∈ [−r, r ], |s2 − s1| ≤ σ, |ϕ2 − ϕ1| ≤ σ, z, x ∈ [−Lcd, Lcd]
}
.

Then using above relation, we obtain

|(Uz)(s2, ϕ2) − (Uz)(s1, ϕ1)| ≤ K |z(s2, ϕ2) − z(s1, ϕ1)| + K (cdωu(I, σ ) + Lσ 2 + Lσd + Lσc)

+ωP (I, σ ) + Kcdω f (I, σ ).

From the assumptions, P, u and f are uniformly continuous on I × R × R × R, I ×
I × R and I × I × R. Hence, deduce that

ωP (I, σ ) → 0 ωu(I, σ ) → 0 and ω f (I, σ ) → 0 as σ → 0.

Thus

ω0(UH) ≤ Kω0(H). (8)

Similarly, we write
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|(V z)(s2, ϕ2) − (V z)(s1, ϕ1)|
=

∣∣∣∣F
(
s2, ϕ2,

∫ s2

0

∫ ϕ2

0
p(s2, ϕ2, g, ζ, z(g, ζ ))dζdg,

∫ c

0

∫ d

0
q(s2, ϕ2, g, ζ, z(g, ζ ))dζdg, z(s2, ϕ2)

)

−F
(
s1, ϕ1,

∫ s1

0

∫ ϕ1

0
p(s1, ϕ1, g, ζ, z(g, ζ ))dζdg,

∫ c

0

∫ d

0
q(s1, ϕ1, g, ζ, z(g, ζ ))dζdg, z(s1, ϕ1)

)∣∣∣∣
≤

∣∣∣∣F
(
s2, ϕ2,

∫ s2

0

∫ ϕ2

0
p(s2, ϕ2, g, ζ, z(g, ζ ))dζdg,

∫ c

0

∫ d

0
q(s2, ϕ2, g, ζ, z(g, ζ ))dζdg, z(s2, ϕ2)

)

−F
(
s2, ϕ2,

∫ s2

0

∫ ϕ2

0
p(s2, ϕ2, g, ζ, z(g, ζ ))dζdg,

∫ c

0

∫ d

0
q(s2, ϕ2, g, ζ, z(g, ζ ))dζdg, z(s1, ϕ1)

)∣∣∣∣
+

∣∣∣∣F
(
s2, ϕ2,

∫ s2

0

∫ ϕ2

0
p(s2, ϕ2, g, ζ, z(g, ζ ))dζdg,

∫ c

0

∫ d

0
q(s2, ϕ2, g, ζ, z(g, ζ ))dζdg, z(s1, ϕ1)

)

−F
(
s2, ϕ2,

∫ s2

0

∫ ϕ2

0
p(s2, ϕ2, g, ζ, z(g, ζ ))dζdg,

∫ c

0

∫ d

0
q(s1, ϕ1, g, ζ, z(g, ζ ))dζdg, z(s1, ϕ1)

))∣∣∣∣
+

∣∣∣∣F
(
s2, ϕ2,

∫ s2

0

∫ ϕ2

0
p(s2, ϕ2, g, ζ, z(g, ζ ))dζdg,

∫ c

0

∫ d

0
q(s1, ϕ1, g, ζ, z(g, ζ ))dζdg, z(s1, ϕ1)

)

−F
(
s2, ϕ2,

∫ s1

0

∫ ϕ1

0
p(s1, ϕ1, g, ζ, z(g, ζ ))dζdg,

∫ c

0

∫ d

0
q(s1, ϕ1, g, ζ, z(g, ζ ))dζdg, z(s1, ϕ1)

))∣∣∣∣
+

∣∣∣∣F
(
s2, ϕ2,

∫ s1

0

∫ ϕ1

0
p(s1, ϕ1, g, ζ, z(g, ζ ))dζdg,

∫ c

0

∫ d

0
q(s1, ϕ1, g, ζ, z(g, ζ ))dζdg, z(s1, ϕ1)

)

−F
(
s1, ϕ1,

∫ s1

0

∫ ϕ1

0
p(s1, ϕ1, g, ζ, z(g, ζ ))dζdg,

∫ c

0

∫ d

0
q(s1, ϕ1, g, ζ, z(g, ζ ))dζdg, z(s1, ϕ1)

))∣∣∣∣
≤ K6(s, ϕ)|z(s2, ϕ2) − z(s1, ϕ1)|

+K5(s, ϕ)

∣∣∣∣
∫ c

0

∫ d

0
q(s2, ϕ2, g, ζ, z(g, ζ ))dζdg −

∫ c

0

∫ d

0
q(s1, ϕ1, g, ζ, z(g, ζ ))dζdg

∣∣∣∣
+K4(s, ϕ)

∣∣∣∣
∫ s2

0

∫ ϕ2

0
p(s2, ϕ2, g, ζ, z(g, ζ ))dζdg −

∫ s1

0

∫ ϕ1

0
p(s1, ϕ1, g, ζ, z(g, ζ ))dζdg

∣∣∣∣ + ωF (I, σ )

≤ K |z(s2, ϕ2) − z(s1, ϕ1)| + K
∫ c

0

∫ d

0
|q(s2, ϕ2, g, ζ, z(g, ζ )) − q(s1, ϕ1, g, ζ, z(g, ζ ))|dζdg

+K
∫ s1

0

∫ ϕ1

0
|p(s2, ϕ2, g, ζ, z(g, ζ )) − p(s1, ϕ1, g, ζ, z(g, ζ ))|dζdg

+K
∫ s2

s1

∫ ϕ2

ϕ1

|p(s2, ϕ2, g, ζ, z(g, ζ ))|dζdg + K
∫ s2

s1

∫ ϕ1

0
|p(s2, ϕ2, g, ζ, z(g, ζ ))|dζdg

+K
∫ s1

0

∫ ϕ2

ϕ1

|p(s2, ϕ2, g, ζ, z(g, ζ ))|dζdg,

where
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ωp(I, σ ) = sup

{
|p(s2, ϕ2, g, ζ, z) − p(s1, ϕ1, g, ζ, z)| : s1, s2 ∈ [0, c], ϕ1, ϕ2 ∈ [0, d],

z ∈ [−r, r ], |s2 − s1| ≤ σ, |ϕ2 − ϕ1| ≤ σ

}
,

ωq (I, σ ) = sup

{
|q(s2, ϕ2, g, ζ, z) − q(s1, ϕ1, g, ζ, z)| : s1, s2 ∈ [0, c], ϕ1, ϕ2 ∈ [0, d],

z ∈ [−r, r ], |s2 − s1| ≤ σ, |ϕ2 − ϕ1| ≤ σ

}
,

L = sup

{
|p(s, ϕ, g, ζ, z)| : (s, ϕ), (g, ζ ) ∈ I, z ∈ [−r, r ]

}
,

and

ωF (I, σ ) = sup

{
|F(s2, ϕ2, z, x, y) − F(s1, ϕ1, z, x, y)| : s1, s2 ∈ [0, c], ϕ1, ϕ2 ∈ [0, d],

y ∈ [−r, r ], |s2 − s1| ≤ σ, |ϕ2 − ϕ1| ≤ σ, z, x ∈ [−Lcd, Lcd]
}
.

Then using above relation, we obtain

|(V z)(s2, ϕ2) − (V z)(s1, ϕ1)| ≤ K |z(s2, ϕ2) − z(s1, ϕ1)| + K (cdωp(I, σ ) + Lσ 2 + Lσd + Lσc)

+ωF (I, σ ) + Kcdωq (I, σ ).

From the assumptions, functions F, p and q are uniformly continuous on I × R ×
R × R, I × I × R and I × I × R. Hence, deduce that

ωF (I, σ ) → 0 ωp(I, σ ) → 0 and ωq (I, σ ) → 0 as σ → 0.

Thus

ω0(V H) ≤ Kω0(H). (9)

From Eqs. (8)–(9) and Theorem 3, T satisfies Darbo’s condition on Br with respect to ω0 with the
following constant:

(h1r + h2) K + (h1r + h2) K = 2K (h1r + h2)

= 2K (h1r1 + h2)

= 2K

(
h1

(
(1 − 2h1h2) − √

1 − 4h1h2
2h21

)
+ h2

)

= 2K

(
1 − √

1 − 4h1h2
h1

)

< 1.

Hence, T is a contraction on Br with respect to ω0. So, by Theorem 3, Eq. (1) has at least one
solution in Br .
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Corollary 1 Putting P(s, ϕ, z, x, y) = P(s, ϕ, z, y), and F(s, ϕ, z, x, y) = F(s, ϕ, z, y).

Then Eq. (1) can be reduced into the following FIE

z(s, ϕ) = P

(
s, ϕ,

∫ s

0

∫ ϕ

0
u(s, ϕ, g, ζ, z(g, ζ ))dζdg, z(s, ϕ)

)

×F

(
s, ϕ,

∫ s

0

∫ ϕ

0
p(s, ϕ, g, ζ, z(g, ζ ))dζdg, z(s, ϕ)

)
, (10)

has at least one solution in I = [0, c] × [0, d].
Proof The proof is linked to Theorem 3 and leaves these details. �

Corollary 2 Putting P(s, ϕ, z, x, y) = P(s, ϕ, x, y), and F(s, ϕ, z, x, y) = F(s, ϕ, x, y).

Then Eq. (1) can be reduced into the following FIE

z(s, ϕ) = P

(
s, ϕ,

∫ c

0

∫ d

0
u(s, ϕ, g, ζ, z(g, ζ ))dζdg, z(s, ϕ)

)

×F

(
s, ϕ,

∫ c

0

∫ d

0
p(s, ϕ, g, ζ, z(g, ζ ))dζdvg, z(s, ϕ)

)
, (11)

has at least one solution in I = [0, c] × [0, d].
Proof The proof is linked to Theorem 3 and leaves these details. �

4 Applications

In this part, we give some examples of FIEs to explain the applications of our results.

Example 1

z(s, ϕ) = g(s, ϕ) +
∫ s

0

∫ ϕ

0
u1(s, ϕ, g, ζ )u2(g, ζ, u(g, ζ ))dζdg,

for u(s, ϕ, g, ζ, z) = u1(s, ϕ, g, ζ )u2(g, ζ, u(g, v)), F(s, ϕ, z, x, y) = 1, and P(s, ϕ, z, x, y) =
g(s, ϕ) + z, which may be viewed like a two independent variables generalization of the famous
Hammerstein type integral equation [23]

z(s, ϕ) = g(s, ϕ) +
∫ 1

0

∫ 1

0
q(s, ϕ, g, ζ, z(g, ζ ))dζdg,

which is the famous two-dimensional Fredholm integral equation analysed by various authors in
history [1].

Example 2 Putting P(s, ϕ, z, x, y) = g(s, ϕ) + z + x, and F(s, ϕ, z, x, y) = 1 and then Eq. (1)
converts to the following equation

z(s, ϕ) = g(s, ϕ) +
∫ s

0

∫ ϕ

0
p(s, ϕ, g, ζ, z(g, ζ ))dζdg +

∫ 1

0

∫ 1

0
q(s, ϕ, g, ζ, z(g, ζ ))dζdg.

(12)
Eq. (12) is studied by many authors, one can see [4, 23].
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Example 3 Let the following non-linear FIE:

z(s, ϕ) =
[
1

13

∫ s

0

∫ ϕ

0

(
sϕ

3 + s2ϕ
sin(1 + z(g, ζ )) + (1 + sϕ)arctan

|z(g, ζ )|
2 + |z(g, ζ )|

)
dtdv

+ 1

15

∫ 1

0

∫ 1

0

(
sϕ

2(1 + sϕ2)
sin

z(g, v)

4 + z(g, ζ )
+ 3 ln(1 + |z(g, ζ )|)

)
dζdg

]

×
[
1

18

∫ s

0

∫ ϕ

0

(
1

2(1 + s2ϕ3)
cos

z2(g, ζ )

1 + z2(g, ζ )
+ 3s3ϕ arctan|z2(g, ζ )|

)
dζdg

+ 1

17

∫ 1

0

∫ 1

0

(
s2ϕ

3 + sϕ2 sin(1 + z(g2, ζ 2)) + (2 + sϕ)arctan
g2ζ |z(g2, ζ 2|
1 + |z(g2, ζ 2|

)
dζdg

]
, (13)

where (s, ϕ) ∈ [0, 1] × [0, 1]. Eq. (13) is a particular form of Eq. (1).

P(s, ϕ, z1, x1, y1) = 1

13
z1 + 1

15
x1, F(s, ϕ, z1, x1, y1) = 1

18
z1 + 1

17
x1,

u(s, ϕ, g, ζ, z) = sϕ

3 + s2ϕ
sin(1 + z(g, ζ )) + (1 + sϕ)arctan

|z(g, ζ )|
2 + |z(g, ζ )| ,

f (s, ϕ, g, ζ, z) = sϕ

2(1 + sϕ2)
sin

z(g, ζ )

4 + z(g, ζ )
+ 3 ln(1 + |z(g, ζ )|),

p(s, ϕ, g, ζ, z) = 1

2(1 + s2ϕ3)
cos

z2(g, ζ )

1 + z2(g, ζ )
+ 3s3ϕ arctan|z2(g, ζ )|,

q(s, ϕ, g, ζ, z) = s2ϕ

3 + sϕ2 sin(1 + z(g2, ζ 2)) + (2 + sϕ)arctan
g2ζ |z(g2, ζ 2|
1 + |z(g2, ζ 2| .

Now, we prove that all assumptions (1)–(3) for Theorem 3 are satisfied. Here K1 = 1
13 , K2 =

1
15 , K3 = 0, K4 = 1

18 , K5 = 1
17 , and K6 = 0. Then K = max{ 1

13 , 1
15 , 1

18 , 1
17 } = 1

13 .

Moreover,

|P(s, ϕ, 0, 0, 0)| = 0, |F(s, ϕ, 0, 0, 0)| = 0, |u(s, ϕ, g, ζ, z)| = 1

4
+ 3|z|, | f (s, ϕ, g, ζ, z)| = 1

4
+ 3|z|,

|p(s, ϕ, g, ζ, z)| = 1

4
+ 3|z|, |q(s, ϕ, g, ζ, z)| = 1

4
+ 3|z|.

We also have N = 0, β1 = 1
4 , β2 = 3 and c, d = 1.

Finally, we have

4h1h2 < 1.

Hence, all assumptions (1) to (3) are satisfied. Eq. (13) has at least one solution in [0, 1] × [0, 1].

5 Conclusion

We explained the existence result of Eq. (1) in the composition form of the FIE in the Banach
algebra using Darbo’s fixed point theorem associated with MNC. The interested researchers can
obtain the existence of solution of Eq. (1) for different methods as well as different spaces, e.g.
Sobolev space, Hölder space, Orlicz space, etc.
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Results on Generalized Tripled Fuzzy
b-Metric Spaces

Nabanita Konwar

Abstract The aim of this chapter is to introduce the concept of tripled fuzzy b-
metric space (TFbMS) and establish some new results on TFbMS. We put forward
the concept of tripled fuzzy ψ − b-contraction mapping and tripled fuzzy ψ − b-
contraction sequence. We also investigate the uniqueness of fixed point on TFbMS.
In order to validate the non-triviality of results, some examples are provided.

1 Introduction

In analytical mathematics, the notion of metric space performs an important role to
explain the existence of fixed point and common fixed point of mappings. In analysis,
the existence of the fixed point of a mapping often implies the existence of a solution
of that mapping within that metric space. Hence, the study of fixed point theory in
several generalized metric spaces is of paramount importance for the development
and modeling of different areas of science and engineering. In certain situations, the
construction of a modeling system becomes difficult due to the inadequate measure
of distance between two elements or points. For such situations, fuzzy sets or fuzzy
logic contribute a consequential platform to construct and improve the modeling and
designing systems.

The notion of generalized b-metric space also plays an important role to the inves-
tigation of fixed point theory. Such types of generalization can control more complex
situations efficiently and also reduce the complexity of modeling systems for higher
order sets. They also extend a feasible platform for scientificmodeling and designing.
The flexible nature of such type of models helps to improve the applications of fixed
point theory in the areas of science, engineering, and mathematics and also motives
several future work.

In order to elaborate the situations where data or elements are imprecise or vague
and to represent a mathematical structure for such types of situations, a new con-
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cept of set theory called fuzzy set theory was established by Zadeh [24] in 1965.
Simultaneously, Kaleva and Seikkala [16] initiated the notion of fuzzy metric space.
Consequently, the notion of fuzzy metric space was modified by several mathemati-
cians like-Kramosil and Michalek [17], George and Veeramani [9], etc. Jungck and
Rhoads [15] established the concept of weakly compatible maps of metric spaces.
Development of metric space in various ways is the overriding concern of the math-
ematician. Due to this concern Huang and Zhang [13] established the idea of cone
metric space. After this Abbas and Jungck [1] introduced some results on non-
commuting mapping in cone metric spaces. By considering a weaker condition, in
place of triangular inequality, Bakhtin [5] and Czerwike [8] introduced the notion of
b metric space.

Initially, Heilpern [12] introduced the notion of fixed point theory and established
an extended version of Banach’s contraction principle in the setting of fuzzy metric
space. The concept of fuzzy cone metric space was initiated by Oner et al. [19].
They also established Banach contraction principle and some basic properties for
fixed point. This famous work has been further generalized and extended by many
mathematicians in the settings of fuzzy set [2, 4, 6, 7, 11, 18, 20–23].

The primary aim of this current chapter is to explain and extend the notion of
tripled fuzzy b-metric space (TFbMS) and to introduce some new results which are
useful for further generalization of this work.We also establish the concept of tripled
fuzzy ψ − b-contraction mapping and tripled fuzzy ψ − b-contraction sequence.
Main motive of this chapter is to develop the generalized metric space in order to
establish some analytic results and explain the properties with some examples.

2 Some Definition

Below we discuss a few preliminary definitions which are essential for our main
result.

Definition 1 Consider a binary operation ∗ : [0, 1] × [0, 1] → [0, 1]. Then ∗ is
known as a continuous t-norm if it satisfies the condition:

(i) ∗ is associative and commutative,
(i i) ∗ is continuous,

(i i i) α ∗ 1 = α for all α ∈ [0, 1],
(iv) α ∗ b ≤ β ∗ d whenever α ≤ β and b ≤ d and α, β, c, d ∈ [0, 1].
Definition 2 Consider a functiond : S × S −→ R,where S �= φ. Then∀ s1, s2, s3 ∈
S, (S, d) is called a metric space if it satisfies the following condition:

(i) d(s1, s2) ≥ 0 and d(s1, s2) = 0 iff s1 = s2.
(i i) d(s1, s2) = d(s2, s1).

(i i i) d(s1, s3) ≤ d(s1, s2) + d(s2, s3).
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Definition 3 Suppose X is a classical set of data, called the universe and A ∈ X .
Then membership of A is considered as a characteristic functionμA from X to {0, 1}
such that

μA(x) =
{
1 iff x ∈ A
0 iff x /∈ A.

{0, 1} is called a valuation set. If {0, 1} is allowed to be [0, 1], A is said to be a fuzzy
set.

Kramosil and Michalek [17] defined fuzzy metric space as follows:

Definition 4 ([17]) Consider a set X �= φ and a continuous t-norm ∗. Suppose M is
a fuzzy set on X2 × R. Then ∀ a1, a2, a3 ∈ X and t, s ∈ R, (X, M, ∗) is called fuzzy
metric space if it satisfies the following axioms:

(i) M(a1, a2, t) = 0 ∀ t ≤ 0.
(i i) M(a1, a2, t) = 1 ∀ t > 0 iff a1 = a2.

(i i i) M(a1, a2, t) = M(a2, a1, t).
(iv) M(a1, a2, t) ∗ M(a2, a3, s) ≤ M(a1, a3, t + s).
(v) M(a1, a2, t) : (0,∞) → [0, 1] is left continuous.

(vi) limt→∞ M(a1, a2, t) = 1.

George andVeeramani [9, 10]made an appealingmodification of fuzzymetric spaces
in the following way:

Definition 5 ([9]) Consider a set X �= φ and a continuous t-norm ∗. Suppose M is
a fuzzy set on X2 × (0,∞). Then ∀ a1, a2, a3 ∈ X and t, s ∈ R, (X, M, ∗) is called
fuzzy metric space if it satisfies the following axioms:

(i) M(a1, a2, t) > 0.
(i i) M(a1, a2, t) = 1 ∀ t > 0 iff a1 = a2.

(i i i) M(a1, a2, t) = M(a2, a1, t).
(iv) M(a1, a2, t) ∗ M(a2, a3, s) ≤ M(a1, a3, t + s).
(v) M(a1, a2, t) : (0,∞) → [0, 1] is continuous.
Definition 6 ([14]) Consider a non-empty set S and a continuous t-norm ∗. Suppose
P is a fuzzy set on S × S × ×(0,∞) such that ∀ u, v, w ∈ S and α, β > 0 following
conditions hold:

(i) P(�1, �2, α) > 0,
(ii) P(�1, �2, α) = 1 iff �1 = �2,
(iii) P(�1, �2, α) = P(�2, �1, α),
(iv) P(�1, �2, ·) : (0,∞) → (0, 1] is continuous,
(v) P(�1, �3, α + β) ≥ ∗(P(�1, �2,

α
b ), P(�2, �3,

β

b ))

Then (S, P, ∗) is called a FbMS.
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Definition 7 ([3]) Consider a metric space (Y, d) and a function T : Y → Y . Then
T is called a contraction mapping or contraction if ∃ a constant α (called constant of
contraction), with 0 ≤ α < 1, such that

d(T (y1), T (y2)) ≤ αd(y1, y2),∀y1, y2 ∈ Y.

Definition 8 Suppose S and f are two self-maps of a set X . Then, a point v ∈ X
is said to be a coincidence point of S and f if we have v = S(v) = f (v). The
self-mappings S and f are said to be weakly compatible if they commute at their
coincidence point, i.e., for some v ∈ X S(v) = f (v) we have S f (v) = f S(v).

Proposition 1 Suppose that S and f are two weakly compatible self-maps of a set
X. If S and f have a unique point of coincidence v = S(v) = f (v), then v is the
unique common fixed point of S and f .

Next we elaborate on the results of the chapter.

3 Major Work of the Chapter

In this section, we put forward the definition of Tripled fuzzy b-metric space(shortly,
TFbMS). After defining the main concept, we provide some propositions and exam-
ples. We also establish the fixed point theorem in TFbMS.

3.1 Definition and Example of TFbMS

Definition 9 Consider an arbitrary set S, a fuzzy set T on S × S × S × (0,∞) and
a continuous t-norm ∗. Then ∀ �1, �2, �3, �4 ∈ S, (S, T, ∗) is said to be TFbMS if
the following properties holds:

(i) T�1,�2,�3(α) > 0;
(ii) T�1,�2,�3(α) = 1 if and only if �1 = �2 = �3;
(iii) T�1,�1,�2(α) ≥ T�1,�2,�3(α) for �3 �= �2;
(iv) T�1,�2,�3(α) = T�1,�3,�2(α) = T�2,�1,�3(α) = · · · ;
(v) T�1,�2,�3(·) : (0,∞) → (0, 1] is continuous;
(vi) T�1,�2,�3(α + β) ≥ ∗(T�1,�4,�4(

α
b ), T�4,�2,�3(

β

b ))

Example 1 Consider the set of real number R. For all �1, �2, �3 ∈ R and α > 0
construct the function T : R × R × R × (0, 1] such that

T�1,�2,�3(α) = [e(
|�1−�2 |+|�2−�3 |+|�3−�1 |

α
)]−1

then (R, T, ∗) is a TFbMS.
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Proof Since e(
|�1−�2 |+|�2−�3 |+|�3−�1 |

α
) > 0 therefore T�1,�2,�3(α) > 0.

Condition (i) satisfied.
If we consider �1 = �2 = �3 then e(

|�1−�2 |+|�2−�3 |+|�3−�1 |
α

) = 1 and hence T�1,�2,�3

(α) = 1.
Condition (i i) is satisfied.

In similar manner we can see that conditions (i i i), (iv), and (v) are also satisfied.
Finally, we need to verify the condition:

T�1,�2,�3(β + α) ≥ ∗
(
T�1,�4,�4

(
β

b

)
, T�4,�2,�3

(α

b

))

for all �1, �2, �3, �4 ∈ R and β, α > 0.
Now, we have

|�1 − �2| + |�2 − �3| + |�3 − �1|
β+α

b

≤ |�1 − �4| + |�4 − �2| + |�2 − �3| + |�3 − �4| + |�4 − �1|
β+α

b

= 2|�1 − �4|
β+α

b

+ |�4 − �2| + |�2 − �3| + |�3 − �4|
β+α

b

<
2|�1 − �4|

β

b

+ |�4 − �2| + |�2 − �3| + |�3 − �4|
α
b

Hence, for some b > 0 ∈ R, we have

T�1,�2,�3(β + α) = e−(
|�1−�2 |+|�2−�3 |+|�3−�1 |

β+α
)

≥ e
−(

|�1−�2 |+|�2−�3 |+|�3−�1 |
β+α
b

)

≥ e
2|�1−�4 |

β
b

+ |�4−�2 |+|�2−�3 |+|�3−�4 |
α
b

= T�1,�4,�4

(
β

b

)
T�4,�2,�3

(α

b

)

= ∗
(
T�1,�4,�4

(
β

b

)
, T�4,�2,�3

(α

b

))

Therefore, (R, T, ∗) is a TFbMS.
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3.2 Some Results in TFbMS

Proposition 2 Consider a FbMS (S, P, ∗). For some �1, �2, �3 ∈ S and
α > 0 a function is constructed as T : S × S × S × (0,∞) → (0, 1] and defined by

T�1,�2,�3(α) = ∗
(
∗

(
P

(
�1, �2,

α

b

)
, P

(
�2, �3,

α

b

))
, P

(
�1, �3,

α

b

))

Then (S, T, ∗) is a TFbMS.

Proof Since the triple (S, P, ∗) is a FbMS therefore it satisfies the properties of
Definition9 from (i) to (v). Hence, we have to verify the property (vi) of Definition9
for the proof, i.e., for all �1, �2, �3 ∈ S and α, β > 0 we have to verify:

T�1,�2,�3(β + α) ≥ ∗
(
T�1,�4,�4

(
β

b

)
, T�4,�2,�3

(α

b

))

This implies

∗
(

∗
(
P

(
�1, �2,

β + α

b

)
, P

(
�2, �3,

β + α

b

))
, P

(
�1, �3,

β + α

b

))

≥ ∗
(

∗
(

∗
(
P

(
�1, �4,

β

b2

)
, P

(
�4, �4,

β

b2

))
, P

(
�4, �1

β

b2

))
,

∗
(

∗
(
P

(
�4, �2,

α

b2

)
, P

(
�2, �3,

α

b2

))
, P

(
�3, �4,

α

b2

)))

= ∗
(

∗
(
P

(
�1, �4,

β

b2

)
, P

(
�4, �1,

β

b2

))
, ∗

(
∗

(
P

(
�4, �2,

α

b2

)
,

P

(
�2, �3,

α

b2

))
, P

(
�3, �4,

α

b2

)))

Next applying the property of FbMS, we have

P

(
�1, �2,

β + α

b

)
≥ ∗

(
P

(
�1, �4,

β

b2

)
, P

(
�4, �2,

α

b2

))

≥ ∗
(
min

{
P

(
�1, �4,

β

b2

)
, P

(
�4, �1,

β

b2

)}
,

min

{
min

{
P

(
�4, �2,

α

b2

)
, P

(
�2, �3,

α

b2

)}
, P

(
�4, �3,

α

b2

)})

≥ ∗
(

∗
(
P

(
�1, �4,

β

b2

)
, P

(
�4, �1,

β

b2

))
,

∗
(

∗
(
P

(
�4, �2,

α

b2

)
, P

(
�2, �3,

α

b2

))
, P

(
�4, �3,

α

b2

)))
(1)
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P

(
�2, �3,

β + α

b

)
≥ P

(
�2, �3,

α

b2

)

≥ min

{
P

(
�4, �2,

α

b2

)
, P

(
�2, �3,

α

b2

)
, P

(
�4, �3,

β

b2

)}

≥ ∗
(
P

(
�1, �1,

β

b2

)
,min

{
P

(
�4, �2,

α

b2

)
, P

(
�2, �3,

α

b2

)
, P

(
�4, �3,

β

b2

)})

≥ ∗
(

∗
(
P

(
�1, �4,

β

b2

)
, P

(
�4, �1,

β

b2

))
,

min

{
min

{
P

(
�4, �2,

α

b2

)
, P

(
�4, �3,

β

b2

)}
, P

(
�2, �3,

α

b2

)})

≥ ∗
(

∗
(
P

(
�1, �4,

β

b2

)
, P

(
�4, �1,

β

b2

))
,

∗
(

∗
(
P

(
�4, �2,

α

b2

)
, P

(
�4, �3,

β

b2

))
, P

(
�2, �3,

α

b2

)))
(2)

and

P

(
�1, �3,

β + α

b

)
≥ ∗

(
P

(
�1, �4,

β

b2

)
, P

(
�4, �3,

α

b2

))

≥ ∗
(
min

{
P

(
�1, �4,

β

b2

)
, P

(
�4, �1,

β

b2

)}
,

min

{
min

{
P

(
�4, �2,

α

b2

)
, P

(
�2, �3,

α

b2

)}
, P

(
�4, �3,

α

b2

)})

≥ ∗
(

∗
(
P

(
�1, �4,

β

b2

)
, P

(
�4, �1,

β

b2

))
,

∗
(

∗
(
P

(
�4, �2,

α

b2

)
, P

(
�2, �3,

α

b2

))
, P

(
�4, �3,

α

b2

)))
(3)

Therefore, we have from (1) to (3)

∗
(

∗
(
P

(
�1, �2,

β + α

b

)
,P

(
�2, �3,

β + α

b

))
, P

(
�1, �3,

β + α

b

))

≥ ∗
(

∗
(
P

(
�1, �4,

β

b2

)
, P

(
�4, �1,

β

b2

))
,

∗
(

∗
(
P

(
�4, �2,

α

b2

)
, P

(
�2, �3,

α

b2

))
, P

(
�3, �4,

α

b2

)))

Hence

T�1,�2,�3(β + α) ≥ ∗
(
T�1,�4,�4

(
β

b

)
, T�4,�2,�3

(
α

b

))

Thus (S, T, ∗) is a TFbMS.
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Proposition 3 Consider a TFbMS (S, T, ∗). For some �1, �2, �3 ∈ S and α > 0, a
function P is constructed as P : S × S × (0,∞) → (0, 1] such that

P(�1, �2, α) = ∗
(
T�1,�2,�2

(
α

b

)
, T�2,�1,�1

(
α

b

))

Then P is a FbM.

Proof From the Definition6 it is seen that P satisfies the properties of Definition6
from (i) to (iv) very easily. Hence, we have to verify the property (v) for the proof,
i.e, for some �1, �2, �4 ∈ S and β, α > 0 we have to show that

P(�1, �2, β + α) ≥
(
P

(
�1, �3,

β

b

)
, P

(
�3, �2,

α

b

))

Now from the given condition we have for some �1, �2, �4 ∈ S and β, α > 0,

P(�1, �2, β + α) = ∗
(
T�1,�2,�2

(
β + α

b

)
, T�2,�1,�1

(
β + α

b

))

From the definition of TFbMS, we have

∗
(
T�1,�2,�2

(
β + α

b

)
, T�2,�1,�1

(
β + α

b

))
≥ ∗

(
∗

(
T�1,�3,�3

(
β

b2

)
, T�3,�2,�2

(
α

b2

))
,

∗
(
T�2,�3,�3

(
α

b2
), T�3,�1,�1

(
β

b2

)))

Next we have

T�1,�3,�3

(
β

b2

)
≥ min

{
T�1,�3,�3

(
β

b2

)
, T�3,�1,�1

(
β

b2

)}

≥ ∗
(
T�1,�3,�3

(
β

b2

)
, T�3,�1,�1

(
β

b2

))

T�3,�2,�2

(
α

b2

)
≥ min

{
T�3,�2,�2

(
α

b2

)
, T�2,�3,�3

(
α

b2

)}

≥ ∗
(
T�3,�2,�2

(
α

b2

)
, T�2,�3,�3

(
α

b2

))
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T�2,�3,�3

(
β

b2

)
≥ min

{
T�3,�2,�2

(
α

b2

)
, T�2,�3,�3

(
α

b2

)}

≥ ∗
(
T�3,�2,�2

(
α

b2

)
, T�2,�3,�3

(
α

b2

))

and

T�3,�1,�1

(
β

b2

)
≥ min

{
T�1,�3,�3

(
β

b2

)
, T�3,�1,�1

(
β

b2

)}

≥ ∗
(
T�1,�3,�3

(
β

b2

)
, T�3,�1,�1

(
β

b2

))

Again from the property of Definition9, we have

T�1,�2,�2

(
β + α

b

)
≥ ∗

(
T�1,�3,�3

(
β

b2

)
, T�3,�2,�2

(
α

b2

))

≥ ∗
(

∗
(
T�1,�3,�3

(
β

b2

)
, T�3,�1,�1

(
β

b2

))
,

∗
(
T�3,�2,�2

(
α

b2

)
, T�2,�3,�3

(
α

b2

)))

= ∗
(
P

(
�1, �3,

β

b

)
, P

(
�3, �2,

α

b

))

and

T�2,�1,�1

(
β + α

b

)
≥ ∗

(
T�2,�3,�3

(
α

b2

)
, T�3,�1,�1

(
β

b2

))

≥ ∗
(

∗ (T�3,�2,�2

(
α

b2

)
, T�2,�3,�3

(
α

b2

))
,

∗
(
T�1,�3,�3

(
β

b2

)
, T�3,�1,�1

(
β

b2

)))

= ∗
(
P

(
�3, �2,

α

b

)
, P

(
�1, �3,

β

b

))

Therefore, we have
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P(�1, �2, β + α) = ∗
(
T�1,�2,�2

(
β + α

b

)
, T�2,�1,�1

(
β + α

b

))

≥
(
P

(
�1, �3,

β

b

)
, P

(
�3, �2,

α

b

))

This implies that P satisfies the (v) property of Definition6.
Thus P is a FbM.

Remark 1 Suppose (S, T, ∗) is a TFbMS. Then T�1,�2,�2(·) is nondecreasing for all
�1, �2 ∈ S.

3.3 Fixed Point and Related Proposition in TFbMS

Next we are going to define the concept of generalized tripled fuzzy ψ − b-
contraction mapping (shortly, T Fψ − b-C mapping) and generalized tripled fuzzy
ψ-contraction sequence(shortly, Fψ-C sequence) in TFbMS. With the help of this
newly defined contraction mapping, we are going to establish unique fixed point in
TFbMS.

Throughout the section, we consider that � is the set of all mappings ψ such that
ψ : (0, 1] → (0, 1] is continuous, nondecreasing and ψ(α) > α for any α ∈ (0, 1).

Definition 10 Consider a TFbMS (S, T, ∗) and suppose ψ ∈ �. For some α > 0
and ∀�1, �2, �3 ∈ S the mapping f : S → S is defined by T f (�1), f (�2), f (�3)(α) ≥
ψ(T�1,�2,�3(

α
b )). Then f is called a generalized T Fψ − b − C mapping.

Definition 11 Consider a TFbMS (S, T, ∗) and suppose ψ ∈ �. For some α > 0
and ∀n ∈ N the sequence {�n} in S defined as

T�n+1,�n+2,�n+3(α) ≥ ψ

(
T�n ,�n+1,�n+2

(
α

b

))
.

Then {�n} is called a generalized T Fψ − b − C sequence.

Definition 12 Asequence {�n} in a TFbMS (S, T, ∗) is called a generalized T Fψ −
b − C sequence if ∀ n ∈ N and α > 0 it satisfies

T�n+1,�n+2,�n+2(α) ≥ ψ

(
T�n ,�n+1,�n+1

(
α

b

))
.

With the help of the above definition, we are going to establish some proposition
and lemma on T FbMS. Proof of the below proposition and theorem can be easily
obtained using the above results.
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Lemma 1 If ψ ∈ �, then for each α ∈ (0, 1], limn ψn(α) = 1.

Proposition 4 Consider a TFbMS (S, T, ∗) and a generalized Fψ − b-C sequence
{�n} in S. Then {�n} is a convergent sequence if ∧α>0T�0,�1,�1(α) > 0 and ∧α>0

T�1,�0,�0(α) > 0.

Theorem 1 Consider a TFbMS (S, T, ∗) and a generalized Fψ − b-C mapping
f : S → S. Then the mapping f has a unique fixed point if and only if there is a
� ∈ S satisfying ∧α>0T�, f (�), f (�)(α) > 0 and ∧α>0T f (�),�,�(α) > 0.

Proof Suppose f has a unique fixed point, then ∃ a � ∈ S such that f (�) = �.
For each α > 0,

T�, f (�), f (�)(α) = T�,�,�(α) = 1

and

T f (�),�,�(α) = T�,�,�(α) = 1

Therefore

∧α>0T�, f (�), f (�)(α) = 1 > 0 and ∧α>0 T f (�),�,�(α) = 1 > 0

Conversely, suppose that ∃ a � ∈ S satisfying the condition

∧α>0T�, f (�), f (�)(α) > 0 and ∧α>0 T f (�),�,�(α) > 0

Consider �0 = � and for each n ≥ 1, �n = f n(�). Then, we have

T�n+1,�n+2,�n+3(α) = T f n+1(�), f n+2(�), f n+3(�)(α)

= T f. f n(�), f. f n+1(�), f. f n+2(�)(α)

= T f (�n), f (�n+1), f (�n+2)(α)

≥ ψ

(
T�n ,�n+1,�n+2

(
α

b

))

Therefore, {�n} is a generalized Fψ − b-C sequence.
Next

∧α>0T�0,�1,�1(α) = ∧α>0T�, f (�), f (�)(α) > 0

and
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∧α>0T�1,�0,�0(α) = ∧α>0T f (�),�,�(α) > 0

Then from the Proposition4 �n is a convergence sequence.
Since (S, T, ∗) is complete, therefore ∃ � ∈ S satisfying

lim
n

T
�n ,�,�(α) = 1,

for each α > 0.
Again for each n ∈ N and each α > 0 we have

T f (�),�n+1,�n+1
(α) ≥ ψ

(
T

�,�n ,�n

(
α

b

))

Therefore, for each α > 0

T f (�),�,�(α) = lim
n

T f (�),�n+1,�n+1
(α)

≥ lim
n

ψ(T
�,�n ,�n

(
α

b

)

= 1

Hence � is a fixed point of f .
Next we have to verify that � is unique.
If possible suppose �1 is another fixed point of f , then for any α > 0.

T
�,�,�1

(α) = T f (�), f (�), f (�1)
(α)

≥ ψ(T
�,�,�1

(
α

b

)

If � �= �1, then for some β > 0

T
�,�,�1

(β) < 1 ⇒ 0 < T
�,�,�1

(β) < 1

This implies

T
�,�,�1

(β) = T f (�), f (�), f (�1)
(β)

≥ ψ(T
�,�,�1

(
β

b

)

> T
�,�,�1

(β),
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which is a contradiction.
Therefore, � = �1.
Hence, f has a unique fixed point in (S, T, ∗).

4 Conclusion

Throughout the chapter, we have generalized and introduced the notion of TFbMS.
Some related properties have been studied in this area. A new generalized form
of contraction mapping and sequence have also been developed in the settings of
TFbMS. With the help of this new generalized form of contraction mapping, we
have also developed the unique fixed point in TFbMS. The work of this chapter
gives researchers an incentive to improve and develop the research area of b-metric
space in a new manner. Eventual outcome of this work will help the researcher to
develop a new way to establish the fixed point theory and analytical properties of
fuzzy b-metric space. One can also improve the fuzzy iteration schemes with the
help of fuzzy integral and differential equations. Since TFbMS is a generalized form
of fuzzy b-metric space, one can introduce and establish the extension version of
Pythagorean fuzzy sets in a new manner. In the area of decision-making and bio-
informatics, a huge application of this work will be established in future.

Appendix

φ The empty set
N The set of natural numbers
R The set of real numbers
R

+ The set of positive real numbers
i.e. That is
⇒ Implies
⇔ Implies and implied by
∀ For all
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A Novel Controlled Picture Fuzzy Metric
Space and Some Related Fixed Point
Results

Khalil Javed, Muhammad Naeem, Fahim Uddin, Vahid Parvaneh,
and Muhammad Arshad

Abstract In this manuscript, we establish the novel notion of controlled picture
fuzzymetric spaces as a generalization of picture fuzzymetric spaces by using a con-
trol function in triangle inequalities and establish fixed point theorems related to them
in the setting of controlled picture fuzzy metric space. Our results are improvement
of many well-known results existing in the literature. An extensive set of non-trivial
examples are imparted to validate the feasibility of our results.

Keywords Fuzzy sets · Picture fuzzy sets · Controlled picture fuzzy metric space

1 Introduction

Since the introduction of fuzzy sets (FSs) by Zadeh [1], several scientists have looked
into this concept more closely. Kramosil and Michalek [2] initiated the concept of
fuzzymetric spaces by generalizing the notion of probabilistic metric spaces to fuzzy
metric spaces. Cuong [3] introduced the concept of picture fuzzy sets (PFS), which
are direct extensions of the fuzzy sets and the intuitionistic fuzzy sets. In addition,
Mlaiki [4] introduced the controlled metric type spaces, by employing a control
function α(x, y) of the right-hand side of the b-triangle inequality. Recently, Sezen
[5] introduced a new extension in the subject of fuzzy metric, called controlled fuzzy
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metric space (CFMS). This notion is a generalization of fuzzy b-metric spaces. For
details, please check the most interesting generalizations can be found in [6–11, 14,
15].

Integrating the notions of PFMS and controlled function, in this paper, we investi-
gate the discussion of a new generalization, the CPFMS. The topological properties,
i.e., Hausdorff picture fuzzy boundedness, open sets, completeness, compactness,
and nowhere dense sets are defined accordingly. Most importantly, the Uniform
Convergence Theorem and Baire’s Category Theorem are established in CPFMSs.
We provide some non-trivial examples to validate the superiority of our results to
those in the existing literature.We also give some fixed point (FP) results and provide
an application.

2 Preliminaries

First, we provide some basic definitions and related concepts, which would be essen-
tial for our discussion in this article.

Definition 1 ([12]) A binary operation ∗ : [0, 1] × [0, 1] → [0, 1] is called a con-
tinuous triangle norm (briefly CTN) if:

(1) π ∗ μ = μ ∗ π,∀π,μ ∈ [0, 1] ;
(2) ∗ is continuous;
(3) π ∗ 1 = π,∀ π ∈ [0, 1] ;
(4) (π ∗ μ) ∗ κ = π ∗ (μ ∗ κ) ,∀ π,μ, κ ∈ [0, 1] ;
(5) If π ≤ κ and μ ≤ d, with π,μ, κ, d ∈ [0, 1] , then π ∗ μ ≤ κ ∗ d.

Example 1 ([12]) Some fundamental examples of t-norms are: π ∗ μ = π · μ,π ∗
μ = min{π,μ} and π ∗ μ = max {π + μ − 1, 0} .

Definition 2 ([12]) A binary operation ◦ : [0, 1] × [0, 1] → [0, 1] is called a con-
tinuous triangle conorm (briefly CTCN) if it meets the below assertions:

(1) π ◦ μ = μ ◦ π, for all π,μ ∈ [0, 1] ;
(2) ◦ is continuous;
(3) π ◦ 0 = 0, for all π ∈ [0, 1] ;
(4) (π ◦ μ) ◦ κ = π ◦ (μ ◦ κ) , for all π,μ, κ ∈ [0, 1] ;
(5) If π ≤ κ and μ ≤ d, with π,μ, κ, d ∈ [0, 1] , then π ◦ μ ≤ κ ◦ d.

Example 2 ([12]) π ◦ μ = max {π,μ} and π ◦ μ = min {π + μ, 1} are examples
of CTCMs.

Definition 3 ([13]) Take � �= ∅. Let ∗ be a CTN, ◦ be a CTCN, b ≥ 1 and ℵb,

�b be FSs on � × � × (0,∞). If (�,ℵb,�b, ∗, ◦) verifies the following for all
α, β ∈ � and S, T > 0 :

(1) ℵb (α, β, T ) + �b (α, β, T ) ≤ 1;
(2) ℵb (α, β, T ) > 0;
(3) ℵb (α, β, T ) = 1 ⇐⇒ α = β;
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(4) ℵb (α, β, T ) = ℵb (β, α, T ) ;
(5) ℵb (α, λ, b (T + S)) ≥ ℵb (α, β, T ) ∗ ℵb (β, λ,S) ;
(6) ℵb (α, β, ·) is a non decreasing (ND) function ofR

+ and limT →∞ ℵb (α, β, T )

= 1;
(7) �b (α, β, T ) > 0;
(8) �b (α, β, T ) = 0 ⇐⇒ α = β;
(9) �b (α, β, T ) = �b (β, α, T ) ;
(10) �b (α, λ, b (T + S)) ≤ �b (α, β, T ) ◦ �b (β, λ,S) ;
(11) �b (α, β, ·) is a non increasing (NI) function of R

+ and limT →∞
�b (α, β, T ) = 0, then (�,ℵb,�b, ∗, ◦) is an intuitionistic fuzzy b-metric space
(IFBMS).

We generalize the intuitionistic fuzzy metric space with the help of picture fuzzy
theory.

Definition 4 Let� �= ∅ and ∗ is a CTN, ◦ be a CTCN and L,�, S are picture fuzzy
sets (PFSs) on � × � × (0,∞). If for all α, β, λ ∈ �, the below circumstances
fulfil:

(1) L (α, β, T ) + � (α, β, T ) + S (α, β, T ) ≤ 1;
(2) L (α, β, T ) > 0;
(3) L (α, β, T ) = 1 for all T > 0, iff α = β;
(4) L (α, β, T ) = L (β, α, T ) ;
(5) L (α, λ, T + S) ≥ L (α, β, T ) ∗ L (β, λ,S) ;
(6) L (α, β, ·) : (0,∞) → [0, 1] is continuous and limT →∞ L(α, β, T ) = 1;
(7) � (α, β, T ) < 1;
(8) � (α, β, T ) = 0 for all T > 0, iff α = β;
(9) � (α, β, T ) = � (β, α, T ) ;
(10) � (α, λ, T + S) ≤ � (α, β, T ) ◦ � (β, λ,S) ;
(11) � (α, β, ·) : (0,∞) → [0, 1] is continuous and limT →∞ �(α, β, T ) = 0;
(12) S (α, β, T ) < 1;
(13) S (α, β, T ) = 0 for all T > 0 iff α = β;
(14) S (α, β, T ) = S (β, α, T ) ;
(15) S (α, λ, T + S) ≤ S (α, β, T ) ◦ S (β, λ,S) ;
(16) S (α, β, ·) : (0,∞) → [0, 1] is continuous and limT →∞ S (α, β, T ) = 0;
(17) If T ≤ 0, then L (α, β, T ) = 0,� (α, β, T ) = 1 and S (α, β, T ) = 1,
then (�,L,�, S, ∗, ◦) is called picture fuzzy metric space (PFMS).

3 Main Results

In this section, we introduce the concept of Controlled Picture fuzzy metric spaces
and prove the existence and uniqueness of fixed point results in this framework.
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Definition 5 Suppose that � �= ∅, and we have a six tuple (�,ℵφ,�φ,�φ, ∗, ◦)

where ∗ is a CTN, ◦ is a CTCN, φ : � × � → [1,∞) and ℵ φ,�φ,�φ are picture
fuzzy sets (PFSs) on � × � × (0,∞). If (�,ℵφ,�φ,�φ, ∗, ◦) meet the below cir-
cumstances for all α, β, λ ∈ � and S, T > 0 :

(1) ℵφ (α, β, T ) + �φ (α, β, T ) + �φ (α, β, T ) ≤ 1,
(2) ℵφ (α, β, T ) > 0,
(3) ℵφ (α, β, T ) = 1 ⇐⇒ α = β,

(4) ℵφ (α, β, T ) = ℵφ (β, α, T ) ,

(5) ℵφ (α, λ, (T + S)) ≥ ℵφ

(
α, β, T

φ(α,β)

)
∗ ℵφ

(
β, λ, S

φ(β,λ)

)
,

(6) ℵφ (α, β, ·) is a function of R
+ and limT →∞ ℵφ(α, β, T ) = 1,

(7) �φ (α, β, T ) > 0,
(8) �φ (α, β, T ) = 0 ⇐⇒ α = β,

(9) �φ (α, β, T ) = �φ (β, α, T ) ,

(10) �φ (α, λ, (T + S)) ≤ �φ

(
α, β, T

φ(α,β)

)
◦ �φ

(
β, λ, S

φ(β,λ)

)
,

(11) �φ (α, β, ◦) is a function of R
+ and limT →∞ �φ (α, β, T ) = 0,

(12) �φ (α, β, T ) > 0,
(13) �φ (α, β, T ) = 0 ⇐⇒ α = β,

(14) �φ (α, β, T ) = �φ (β, α, T ) ,

(15) �φ (α, λ, (T + S)) ≤ �φ

(
α, β, T

φ(α,β)

)
◦ �φ

(
β, λ, S

φ(β,λ)

)
,

(16) �φ (α, β, ·) is a function of R
+ and limT →∞ �φ (α, β, T ) = 0,

(17) If T ≤ 0, then ℵφ (α, β, T ) = 0,�φ (α, β, T ) = 1 and �φ (α, β, T ) = 1,
then (�,ℵφ,�φ,�φ, ∗, ◦) is a CPFMS.

Remark 1 If we take φ (α, β) = φ (β, λ) = 1, for all α, β, λ ∈ �, then (�,ℵφ,�φ,

�φ, ∗, ◦) is an PFMS.

Example 3 Let � = (0,∞) . Define ℵφ,�φ,�φ : � × � × (0,∞) → [0, 1] by

ℵφ (α, β,T ) = T
T + |α − β|2 ,�φ (α, β,T ) = |α − β|2

T + |α − β|2 ,�φ (α, β,T ) = |α − β|2
T

for all α, β ∈ � and T > 0. Define CTN “∗” by π ∗ μ = π · μ and CTCN ◦ by
π ◦ μ = max {π,μ} and define φ by

φ (α, β) =
{

1, i f α = β,
1+max{α,β}
min{α,β} , i f α �= β.

Then
(
�,ℵφ,�φ,�φ, ∗, ◦)

is a CPFMS.

Proof (1)−(4), (6)−(9), (9)−(14), (16) and (17) are obvious. Here, we prove
(5) , (10) and (15) . We have

|α − λ|2 ≤ φ (α, β)
[|α − β|2 + φ (β, λ) |β − λ|2] .
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Therefore,

T S|α − λ|2 ≤ φ (α, β)
(
T S + S2) |α − β|2 + φ (β, λ)

(
T S + T 2) |β − λ|2

⇒ T S|α − λ|2 ≤ φ (α, β) (T + S)S|α − β|2 + φ (β, λ) (T + S)T |β − λ|2
⇒ T S (T + S) + T S|α − λ|2 ≤ T S (T + S) + φ (α, β) (T + S)S|α − β|2 + φ (β, λ) (T + S)T |β − λ|2.

That is,

T S [
(T + S) + |α − λ|2] ≤ (T + S)

[T S + φ (α, β)S|α − β|2 + φ (β, λ)T |β − λ|2]

⇒ T S
[
(T + S) + |α − λ|2

]
≤ (T + S)

[ T S + φ (α, β)S|α − β|2
+φ (β, λ)T |β − λ|2 + φ (α, β) φ (β, λ) |α − β|2|β − λ|2

]

⇒ T S [
(T + S) + |α − λ|2] ≤ (T + S)

[T + φ (α, β) |α − β|2][S + φ (β, λ) |β − λ|2] .

Then,

(T + S)

(T + S) + |α − λ|2 ≥ T S[T + φ (α, β) |α − β|2][S + φ (β, λ) |β − λ|2]

⇒ (T + S)

(T + S) + |α − λ|2 ≥ T
T + φ (α, β) |α − β|2 .

S
S + φ (β, λ) |β − λ|2

⇒ (T + S)

(T + S) + |α − λ|2 ≥
T

φ(α,β)

T
φ(α,β)

+ |α − β|2 .

S
φ(β,λ)

S
φ(β,λ)

+ |β − λ|2 .

Hence,

ℵφ (α, λ, (T + S)) ≥ ℵφ

(
α, β,

T
φ (α, β)

)
∗ ℵφ

(
β, λ,

S
φ (β, λ)

)
.

So, (v) is satisfied. Also,

|α − λ|2 = |α − λ|2 max {1, 1}.
Therefore,

|α − λ|2 = |α − λ|2 max

{
|α − β|2
|α − β|2 ,

|β − λ|2
|β − λ|2

}

⇒|α − λ|2 ≤
[
(T + S) + |α − λ|2

]
max

{
|α − β|2
|α − β|2 ,

|β − λ|2
|β − λ|2

}

⇒|α − λ|2 ≤
[
(T + S) + |α − λ|2

]
max

{
φ (α, β) |α − β|2
φ (α, β) |α − β|2 ,

φ (β, λ) |β − λ|2
φ (β, λ) |β − λ|2

}
.
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Then,

|α − λ|2
(T + S) + |α − λ|2 ≤ max

{
φ (α, β) |α − β|2

T + φ (α, β) |α − β|2 ,
φ (β, λ) |β − λ|2

S + φ (β, λ) |β − λ|2
}

.

That is,

|α − λ|2
(T + S) + |α − λ|2 ≤ max

{
|α − β|2

T
φ(α,β)

+ |α − β|2 ,
|β − λ|2

S
φ(β,λ)

+ |β − λ|2
}

.

Hence,

�φ (α, λ, (T + S)) ≤ �φ

(
α, β,

T
φ (α, β)

)
∗ �φ

(
β, λ,

S
φ (β, λ)

)
.

That is, (10) is satisfied.
It is easy to see that

|α − λ|2
T + S ≤ max

{
φ (α, β) |α − β|2

T ,
φ (β, λ) |β − λ|2

S

}
.

That is,
|α − λ|2
(T + S)

≤ max

{
|α − β|2

T
φ(α,β)

,
|β − λ|2

S
φ(β,λ)

}
.

Hence,

�φ (α, λ, (T + S)) ≤ �φ

(
α, β,

T
φ (α, β)

)
∗ �φ

(
β, λ,

S
φ (β, λ)

)
.

So, (15) is satisfied.

Remark 2 The above example also satisfied for CTN π ∗ μ = min {π,μ} and
CTCN π ◦ μ = max {π,μ}.
Example 4 Let � = (0,∞) . Define ℵφ,�φ,�φ : � × � × (0,∞) → [0, 1] by

ℵφ (α, β, T ) =
{

1, i f α = β
T

T +max {α,β} , if otherwise ,

�φ (α, β, T ) =
{

0, i f α = β
max {α,β}

T +max {α,β} , if otherwise
,

and
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�φ (α, β, T ) =
{

0, i f α = β
max {α,β}

T , if otherwise
,

for allα, β ∈ � andT > 0.DefineCTN∗ byπ ∗ μ = π · μ andCTCN ◦ byπ ◦ μ =
max {π,μ} and define φ by

φ (α, β) = 1 + α + β.

Then
(
�,ℵφ,�φ,�φ, ∗, ◦)

is a CPFMS.

Definition 6 Let
(
�,ℵφ,�φ,�φ, ∗, ◦)

be a CPFMS. We define an open ball B
(α, r, T ) with centre α, radius 0 < r < 1 as follows:

B (α, r, T ) = {β ∈ � : L (α, β, T ) > 1 − r,� (α, β, T ) < r,� (α, β, T ) < r} .

Definition 7 Let
(
�,ℵφ,�φ,�φ, ∗, ◦) be a CPFMS.

(1) A sequence {αn} in � is named to be CPF-Cauchy sequence (CPFCS) if and
only if for all q > 0 and T > 0,

lim
n→∞ ℵφ

(
αn, αn+q ,T

) = 1, lim
n→∞ �φ

(
αn, αn+q ,T

) = 0 and lim
n→∞ �φ

(
αn, αn+q ,T

) = 0.

(2) A sequence {αn} in � is named to be CPF-convergent (CPFC) to α in �, if
and only if for all T > 0,

lim
n→∞ ℵφ(αn, α, T ) = 1, lim

n→∞ �φ (αn, α, T ) = 0 and lim
n→∞ �φ (αn, α, T ) = 0.

(3) A CPFMS is named to be complete iff each CPFCS is CPF-convergent.

At this time we prove the CPF-Banach contraction result.

Theorem 1 Suppose that
(
�,ℵφ,�φ,�φ, ∗, ◦) is a Complete CPFMS and φ : � ×

� → [1,∞). Suppose that

lim
T →∞

ℵφ(α, β, T ) = 1, lim
T →∞

�φ (α, β, T ) = 0 and lim
T →∞

�φ (α, β, T ) = 0 (1)

for all α, β ∈ � and T > 0. Let ξ : � → � be a mapping satisfying

ℵφ (ξα, ξβ,ℵT ) ≥ ℵφ (α, β, T ) , (2)

�φ (ξα, ξβ,ℵT ) ≤ �φ (α, β, T ) , (3)

and �φ (ξα, ξβ,ℵT ) ≤ �φ (α, β, T ) , (4)

for all α, β ∈ �, T > 0 and for some 0 < ℵ < 1. Also, assume that for every α ∈ Z ,

lim
n→∞ φ (αn, β)= lim

n→∞ φ (β, αn) (5)
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exist and finite. Then ζ has a unique fixed point in Z .

Proof Let α0 be a random element of� and describe a sequence αn by αn = ξ nα0 =
ξαn−1 , n ∈ N. By using (2) for all T > 0, we have

ℵφ (αn, αn+1,ℵT ) = ℵφ

(
ξαn−1, ξαn,ℵT

) ≥ ℵφ (αn−1, αn, T ) ≥ ℵφ

(
αn−2, αn−1,

T
ℵ

)

≥ ℵφ

(
αn−3, αn−2,

T
ℵ2

)
≥ · · · ≥ ℵφ

(
α0, α1,

T
ℵn−1

)
,

�φ (αn, αn+1,ℵT ) = �φ

(
ξαn−1, ξαn,ℵT

) ≤ �φ (αn−1, αn, T ) ≤ �φ

(
αn−2, αn−1,

T
ℵ

)

≤ �φ

(
αn−3, αn−2,

T
ℵ2

)
≤ · · · ≤ �φ

(
α0, α1,

T
ℵn−1

)

and

�φ (αn, αn+1,ℵT ) = �φ

(
ξαn−1, ξαn,ℵT

) ≤ �φ (αn−1, αn, T ) ≤ �φ

(
αn−2, αn−1,

T
ℵ

)

≤ �φ

(
αn−3, αn−2,

T
ℵ2

)
≤ · · · ≤ �φ

(
α0, α1,

T
ℵn−1

)
.

Hence, we obtain that

ℵφ (αn, αn+1,ℵT ) ≥ ℵφ

(
α0, α1,

T
ℵn−1

)
, (6)

�φ (αn, αn+1,ℵT ) ≤ �φ

(
α0, α1,

T
ℵn−1

)
,

�φ (αn, αn+1,ℵT ) ≤ �φ

(
α0, α1,

T
ℵn−1

)
.

For any q ∈ N, using (v) , (x) and (xv), we deduce that

ℵφ

(
αn , αn+q ,T

)

≥ ℵφ

(
αn , αn+1,

T
2 (φ (αn , αn+1))

)
∗ ℵφ

(
αn+1, αn+q ,

T
2

(
φ

(
αn+1, αn+q

))
)

≥ ℵφ

(
αn , αn+1,

T
2 (φ (αn , αn+1))

)
∗ ℵφ

(
αn+1, αn+2,

T
(2)2

(
φ

(
αn+1, αn+q

)
φ (αn+1, αn+2)

)
)

∗ ℵφ

(
αn+2, αn+q ,

T
(2)2

(
φ (αn+1, αn+�) φ

(
αn+2, αn+q

))
)

≥ ℵφ

(
αn , αn+1,

T
2 (φ (αn , αn+1))

)
∗ ℵφ

(
αn+1, αn+2,

T
(2)2

(
φ

(
αn+1, αn+q

)
φ (αn+1, αn+2)

)
)

∗ ℵφ

(
αn+2, αn+3,

T
(2)3

(
φ

(
αn+1, αn+q

)
φ

(
αn+2, αn+q

)
φ (αn+2, αn+3)

)
)
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∗ ℵφ

(
αn+3, αn+�,

T
(2)3

(
φ

(
αn+1, αn+q

)
φ

(
αn+2, αn+q

)
φ

(
αn+3, αn+q

))
)

≥ ℵφ

(
αn , αn+1,

T
2 (φ (αn , αn+1))

)
∗ ℵφ

(
αn+1, αn+2,

T
(2)2

(
φ

(
αn+1, αn+q

)
φ (αn+1, αn+2)

)
)

∗ ℵφ

(
αn+2, αn+3,

T
(2)3

(
φ

(
αn+1, αn+q

)
φ (αn+2, αn+�) φ (αn+2, αn+3)

)
)

∗ ℵφ

(
αn+3, αn+4,

T
(2)4

(
φ

(
αn+1, αn+q

)
φ

(
αn+2, αn+q

)
φ

(
αn+3, αn+q

)
φ (αn+3, αn+4)

)
)

∗ · · · ∗

ℵφ

(
αn+q−2, αn+q−1,

T
(2)q−1 (

φ
(
αn+1, αn+q

)
φ

(
αn+2, αn+q

)
φ

(
αn+3, αn+q

) · · ·φ (
αn+q−2, αn+q−1

))
)

∗ ℵφ

(
αn+q−1, αn+q ,

T
(2)q−1 (

φ
(
αn+1, αn+q

)
φ

(
αn+2, αn+q

)
φ

(
αn+3, αn+q

) · · · φ (
αn+q−1, αn+q

))
)

,

�φ

(
αn , αn+q ,T )

≤ �φ

(
αn , αn+1,

T
2

(
φ

(
αn , αn+1

))
)

◦ �φ

(
αn+1, αn+q ,

T
2

(
φ

(
αn+1, αn+q

))
)

≤ �φ

(
αn , αn+1,

T
2

(
φ

(
αn , αn+1

))
)

◦ �φ

(
αn+1, αn+2,

T
(2)2

(
φ

(
αn+1, αn+q

)
φ

(
αn+1, αn+2

))
)

◦ �φ

(
αn+2, αn+q ,

T
(2)2

(
φ

(
αn+1, αn+q

)
φ

(
αn+2, αn+q

))
)

≤ �φ

(
αn , αn+1,

T
2

(
φ

(
αn , αn+1

))
)

◦ �φ

(
αn+1, αn+2,

T
(2)2

(
φ

(
αn+1, αn+q

)
φ

(
αn+1, αn+2

))
)

◦ �φ

(
αn+2, αn+3,

T
(2)3

(
φ

(
αn+1, αn+q

)
φ

(
αn+2, αn+q

)
φ

(
αn+2, αn+3

))
)

◦ �φ

(
αn+3, αn+q ,

T
(2)3

(
φ

(
αn+1, αn+q

)
φ

(
αn+2, αn+q

)
φ

(
αn+3, αn+q

))
)

≤ �φ

(
αn , αn+1,

T
2 (φ (αn , αn+1))

)
◦ �φ

(
αn+1, αn+2,

T
(2)2

(
φ

(
αn+1, αn+q

)
φ (αn+1, αn+2)

)
)

◦ �φ

(
αn+2, αn+3,

T
(2)3

(
φ

(
αn+1, αn+q

)
φ

(
αn+2, αn+q

)
φ (αn+2, αn+3)

)
)

◦ �φ

(
αn+3, αn+4,

T
(2)4

(
φ

(
αn+1, αn+q

)
φ

(
αn+2, αn+q

)
φ

(
αn+3, αn+q

)
φ (αn+3, αn+4)

)
)

◦ · · · ◦

�φ

(
αn+q−2, αn+q−1,

T
(2)q−1 (

φ
(
αn+1, αn+q

)
φ

(
αn+2, αn+q

)
φ

(
αn+3, αn+q

) · · · φ (
αn+q−2, αn+q−1

))
)

◦ �φ

(
αn+q−1, αn+q ,

T
(2)q−1 (

φ
(
αn+1, αn+q

)
φ

(
αn+2, αn+q

)
φ

(
αn+3, αn+q

) · · · φ (
αn+q−1, αn+q

))
)
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and

�φ

(
αn, αn+q ,T

)

≤ �φ

(
αn, αn+1,

T
2 (φ (αn, αn+1))

)
◦ �φ

(
αn+1, αn+q ,

T
2

(
φ

(
αn+1, αn+q

))
)

≤ �φ

(
αn, αn+1,

T
2 (φ (αn, αn+1))

)
◦ �φ

(
αn+1, αn+2,

T
(2)2

(
φ

(
αn+1, αn+q

)
φ (αn+1, αn+2)

)
)

◦ �φ

(
αn+2, αn+q ,

T
(2)2

(
φ

(
αn+1, αn+q

)
φ

(
αn+2, αn+q

))
)

≤ �φ

(
αn, αn+1,

T
2 (φ (αn, αn+1))

)
◦ �φ

(
αn+1, αn+2,

T
(2)2

(
φ

(
αn+1, αn+q

)
φ (αn+1, αn+2)

)
)

◦ �φ

(
αn+2, αn+3,

T
(2)3

(
φ

(
αn+1, αn+q

)
φ

(
αn+2, αn+q

)
φ (αn+2, αn+3)

)
)

◦ �φ

(
αn+3, αn+q ,

T
(2)3

(
φ

(
αn+1, αn+q

)
φ

(
αn+2, αn+q

)
φ

(
αn+3, αn+q

))
)

≤ �φ

(
αn, αn+1,

T
2 (φ (αn, αn+1))

)
◦ �φ

(
αn+1, αn+2,

T
(2)2

(
φ

(
αn+1, αn+q

)
φ (αn+1, αn+2)

)
)

◦ �φ

(
αn+2, αn+3,

T
(2)3

(
φ

(
αn+1, αn+q

)
φ

(
αn+2, αn+q

)
φ (αn+2, αn+3)

)
)

◦ �φ

(
αn+3, αn+4,

T
(2)4

(
φ

(
αn+1, αn+q

)
φ

(
αn+2, αn+q

)
φ

(
αn+3, αn+q

)
φ (αn+3, αn+4)

)
)

◦ · · · ◦

�φ

(
αn+q−2, αn+q−1,

T
(2)q−1 (

φ
(
αn+1, αn+q

)
φ

(
αn+2, αn+q

)
φ

(
αn+3, αn+q

) · · · φ (
αn+q−2, αn+q−1

))
)

◦ �φ

(
αn+q−1, αn+q ,

T
(2)q−1 (

φ
(
αn+1, αn+q

)
φ

(
αn+2, αn+q

)
φ

(
αn+3, αn+q

) · · · φ (
αn+q−1, αn+q

))
)

.

Using (4) in the above inequalities, we deduce

ℵφ

(
αn, αn+q ,T

)

≥ ℵφ

(
α0, α1,

T
2(£)n−1 (φ (αn, αn+1))

)
∗ ℵφ

(
α0, α1,

T
(2)2(£)n

(
φ

(
αn+1, αn+q

)
φ (αn+1, αn+2)

)
)

∗ ℵφ

(
α0, α1,

T
(2)3(£)n+1 (

φ
(
αn+1, αn+q

)
φ

(
αn+2, αn+q

)
φ (αn+2, αn+3)

)
)

∗ ℵφ

(
α0, α1,

T
(2)4(£)n+2 (

φ
(
αn+1, αn+q

)
φ

(
αn+2, αn+q

)
φ

(
αn+3, αn+q

)
φ (αn+3, αn+4)

)
)

∗ · · · ∗

ℵφ

(
α0, α1,

T
(2)q−1(£)n+q−2 (

φ
(
αn+1, αn+q

)
φ

(
αn+2, αn+q

)
φ (αn+3, αq) · · · φ (

αn+q−2, αn+q−1
))

)

∗ ℵφ

(
α0, α1,

T
(2)q−1(£)n+q−1 (

φ
(
αn+1, αn+q

)
φ

(
αn+2, αn+q

)
φ

(
αn+3, αn+q

) · · · φ (
αn+q−1, αn+q

))
)

,
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�φ

(
αn, αn+q ,T

)

≤ �φ

(
α0, α1,

T
2(£)n−1 (φ (αn, αn+1))

)
◦ �φ

(
α0, α1,

T
(2)2(£)n

(
φ

(
αn+1, αn+q

)
φ (αn+1, αn+2)

)
)

◦ �φ

(
α0, α1,

T
(2)3(£)n+1 (

φ
(
αn+1, αn+q

)
φ

(
αn+2, αn+q

)
φ (αn+2, αn+3)

)
)

◦ �φ

(
α0, α1,

T
(2)4(£)n+2 (

φ
(
αn+1, αn+q

)
φ

(
αn+2, αn+q

)
φ

(
αn+3, αn+q

)
φ (αn+3, αn+4)

)
)

◦ · · · ◦

�φ

(
α0, α1,

T
(2)q−1(£)n+q−2 (

φ
(
αn+1, αn+q

)
φ

(
αn+2, αn+q

)
φ

(
αn+3, αn+q

) · · ·φ (
αn+q−2, αn+q−1

))
)

◦ �φ

(
α0, α1,

T
(2)q−1(£)n+q−1 (

φ
(
αn+1, αn+q

)
φ

(
αn+2, αn+q

)
φ

(
αn+3, αn+q

) · · · φ (
αn+q−1, αn+q

))
)

and

�φ

(
αn, αn+q ,T

)

≤ �φ

(
α0, α1,

T
2(£)n−1 (φ (αn, αn+1))

)
◦ �φ

(
α0, α1,

T
(2)2(£)n

(
φ

(
αn+1, αn+q

)
φ (αn+1, αn+2)

)
)

◦ �φ

(
α0, α1,

T
(2)3(£)n+1 (

φ
(
αn+1, αn+q

)
φ

(
αn+2, αn+q

)
φ (αn+2, αn+3)

)
)

◦ �φ

(
α0, α1,

T
(2)4(£)n+2 (

φ
(
αn+1, αn+q

)
φ

(
αn+2, αn+q

)
φ

(
αn+3, αn+q

)
φ (αn+3, αn+4)

)
)

◦ · · · ◦

�φ

(
α0, α1,

T
(2)q−1(£)n+q−2 (

φ
(
αn+1, αn+q

)
φ

(
αn+2, αn+q

)
φ

(
αn+3, αn+q

) · · · φ (
αn+q−2, αn+q−1

))
)

◦ �φ

(
α0, α1,

T
(2)q−1(£)n+q−1 (

φ
(
αn+1, αn+q

)
φ

(
αn+2, αn+q

)
φ

(
αn+3, αn+q

) · · · φ (
αn+q−1, αn+q

))
)

.

Using (1), for n → ∞, we deduce

lim
n→∞ ℵφ

(
αn, αn+q , T

)= 1 ∗ 1 ∗ · · · ∗ 1 = 1,

lim
n→∞

(�φαn, αn+q , T
)= 0 ◦ 0 ◦ · · · ◦ 0 = 0,

and
lim
n→∞ �φ

(
αn, αn+q , T

) = 0 ◦ 0 ◦ · · · ◦ 0 = 0.
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That is, {αn} is a CPFCS. Since
(
�,ℵφ,�φ,�φ, ∗, ◦)

is a CPF-complete CPFMS,
there exists

lim
n→∞ αn = α.

Now investigate that α is an FP of ξ . Using (5) , (10) , (15) and (1) we obtain

ℵφ (α, ξα, T ) ≥ ℵφ

(
α, αn+1,

T
2 (φ (α, αn+1))

)
∗ ℵφ

(
αn+1, ξα,

T
2 (φ (αn+1, ξα))

)

ℵφ (α, ξα, T ) ≥ ℵφ

(
α, αn+1,

T
2 (φ (α, αn+1))

)
∗ ℵφ

(
ξαn, ξα,

T
2 (φ (αn+1, ξα))

)

ℵφ (α, ξα, T ) ≥ ℵφ

(
α, αn+1,

T
2 (φ (α, αn+1))

)
∗ ℵφ

(
αn, α,

T
2£ (φ (αn+1, ξα))

)
→ 1 ∗ 1 = 1

as n → ∞,

�φ (α, ξα, T ) ≤ �φ

(
α, αn+1,

T
2 (φ (α, αn+1))

)
◦ �φ

(
αn+1, ξα,

T
2 (φ (αn+1, ξα))

)

�φ (α, ξα, T ) ≤ �φ

(
α, αn+1,

T
2 (φ (α, αn+1))

)
◦ �φ

(
ξαn, ξα,

T
2 (φ (αn+1, ξα))

)

�φ (α, ξα, T ) ≤ �φ

(
α, αn+1,

T
2 (φ (α, αn+1))

)
◦ �φ

(
αn, α,

T
2£ (φ (αn+1, ξα))

)
→ 0 ◦ 0 = 0

as n → ∞, and

�φ (α, ξα, T ) ≤ �φ

(
α, αn+1,

T
2 (φ (α, αn+1))

)
◦ �φ

(
αn+1, ξα,

T
2 (φ (αn+1, ξα))

)

�φ (α, ξα, T ) ≤ �φ

(
α, αn+1,

T
2 (φ (α, αn+1))

)
◦ �φ

(
ξαn, ξα,

T
2 (φ (αn+1, ξα))

)

�φ (α, ξα, T ) ≤ �φ

(
α, αn+1,

T
2 (φ (α, αn+1))

)
◦ �φ

(
αn, α,

T
2£ (φ (αn+1, ξα))

)
→ 0 ◦ 0 = 0

as n → ∞.This implies that ξα = α is an FP.Now,we show the uniqueness. Suppose
that ξc = c for some c ∈ �. Then

1 ≥ ℵφ (c, α, T ) = ℵφ (ξc, ξα, T ) ≥ ℵφ

(
c, α,

T
£

)
= ℵφ

(
ξc, ξα,

T
£

)

≥ ℵφ

(
c, α,

T
£2

)
≥ · · · ≥ ℵφ

(
c, α,

T
£n

)
→ 1 as n → ∞,

0 ≤ �φ (c, α, T ) = �φ (ξc, ξα, T ) ≤ �φ

(
c, α,

T
£

)
= �φ

(
ξc, ξα,

T
£

)

≤ �φ

(
c, α,

T
£2

)
≤ · · · ≤ �φ

(
c, α,

T
£n

)
→ 0 as n → ∞

and
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0 ≤ �φ (c, α, T ) = �φ (ξc, ξα, T ) ≤ �φ

(
c, α,

T
£

)
= �φ

(
ξc, ξα,

T
£

)

≤ �φ

(
c, α,

T
£2

)
≤ · · · ≤ �φ

(
c, α,

T
£n

)
→ 0 as n → ∞.

Using (3) , (8) and (12) , we conclude that α = c.

Definition 8 Let
(
�,ℵφ,�φ,�φ, ∗, ◦)

be a CPFMS. A map ξ : � → � is a CPF-
contraction if there exists 0 < £ < 1, such that

1

ℵφ (ξα, ξβ, T )
− 1 ≤ £

[
1

ℵφ (α, β, T )
− 1

]
, (7)

�φ (ξα, ξβ, T ) ≤ £�φ (α, β, T ) (8)

and
�φ (ξα, ξβ, T ) ≤ £�φ (α, β, T ) , (9)

for all α, β ∈ � and T > 0.

Now we prove the following theorem for CPF contractions.

Theorem 2 Let
(
�,ℵφ,�φ,�φ, ∗, ◦)

be a CPF-complete CPFMS with φ : � ×
� → [1,∞) and suppose that

lim
T →∞

ℵφ(α, β, T ) = 1, lim
T →∞

�φ (α, β, T ) = 0 and lim
T →∞

�φ (α, β, T ) = 0 (10)

for all α, β ∈ � and T > 0. Let ξ : � → � be a CPF contraction. Further, suppose
that for anarbitraryα0 ∈ �,andn ∈ N,where αn = ξ nα0=ξαn−1 limn→∞ φ (αn, β)

and limn→∞ φ (β, αn) exists and finite. Then ξ has a unique FP.

Proof Let α0 be a random element of� and describe a sequence αn by αn = ξ nα0 =
ξαn−1, n ∈ N. Using (5) and (6) for all T > 0, and for all n, we have

1

ℵφ (αn, αn+1, T )
− 1 = 1

ℵφ

(
ξαn−1, αn, T

) − 1

≤ £

[
1

ℵφ (αn−1, αn, T )
− 1

]
= £

ℵφ (αn−1, αn, T )
− £

⇒ 1

ℵφ (αn, αn+1, T )
≤ £

ℵφ (αn−1, αn, T )
+ (1 − £)

≤ £2

ℵφ (αn−2, αn−1, T )
+ £ (1 − £) + (1 − £) .

Continuing in this way, we get
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1

ℵφ (αn, αn+1, T )
≤ £n

ℵφ (α0, α1, T )
+ £n−1 (1 − £)

+£n−2 (1 − £) + · · · + £ (1 − £) + (1 − £)

≤ £n

ℵφ (α0, α1, T )
+ (

£n−1 + £n−2 + · · · + 1
)
(1 − £)

≤ £n

ℵφ (α0, α1, T )
+ (

1 − £n
)
.

We obtain that
1

£n
ℵφ(α0,α1,T )

+ (1 − £n)
≤ ℵφ (αn, αn+1, T ) (11)

and

�φ (αn, αn+1, T ) = �φ (ξαn−1, αn, T )

≤ £�φ (αn−1, αn, T )

= �φ (ξαn−2, αn−1, T )

≤ £2�φ (αn−2, αn−1, T )

≤ · · ·
≤ £n�φ (α0, α1, T )

and

�φ (αn, αn+1, T ) = �φ (ξαn−1, αn, T ) (12)

≤ £�φ (αn−1, αn, T )

= �φ (ξαn−2, αn−1, T )

≤ £2�φ (αn−2, αn−1, T )

≤ · · · ≤ £n�φ (α0, α1, T ) .

So, for any q ∈ N, using (5) , (10) and (15), we deduce that

ℵφ

(
αn, αn+q ,T

)

≥ ℵφ

(
αn, αn+1,

T
2 (φ (αn, αn+1))

)
∗ ℵφ

(
αn+1, αn+q ,

T
2

(
φ

(
αn+1, αn+q

))
)

≥ ℵφ

(
αn, αn+1,

T
2 (φ (αn, αn+1))

)
∗ ℵφ

(
αn+1, αn+2,

T
(2)2

(
φ

(
αn+1, αn+q

)
φ (αn+1, αn+2)

)
)

∗ℵφ

(
αn+2, αn+q ,

T
(2)2

(
φ

(
αn+1, αn+q

)
φ

(
αn+2, αn+q

))
)

≥ ℵφ

(
αn, αn+1,

T
2 (φ (αn, αn+1))

)
∗ ℵφ

(
αn+1, αn+2,

T
(2)2

(
φ

(
αn+1, αn+q

)
φ (αn+1, αn+2)

)
)
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∗ℵφ

(
αn+2, αn+3,

T
(2)3

(
φ

(
αn+1, αn+q

)
φ

(
αn+2, αn+q

)
φ (αn+2, αn+3)

)
)

∗ℵφ

(
αn+3, αn+q ,

T
(2)3

(
φ

(
αn+1, αn+q

)
φ

(
αn+2, αn+q

)
φ

(
αn+3, αn+q

))
)

≥ ℵφ

(
αn , αn+1,

T
2 (φ (αn , αn+1))

)
∗ ℵφ

(
αn+1, αn+2,

T
(2)2

(
φ

(
αn+1, αn+q

)
φ (αn+1, αn+2)

)
)

∗ ℵφ

(
αn+2, αn+3,

T
(2)3

(
φ

(
αn+1, αn+q

)
φ

(
αn+2, αn+q

)
φ (αn+2, αn+3)

)
)

∗ ℵφ

(
αn+3, αn+4,

T
(2)4

(
φ

(
αn+1, αn+q

)
φ

(
αn+2, αn+q

)
φ

(
αn+3, αn+q

)
φ (αn+3, αn+4)

)
)

∗ · · · ∗

ℵφ

(
αn+q−2, αn+q−1,

T
(2)q−1 (

φ
(
αn+1, αn+q

)
φ

(
αn+2, αn+q

)
φ

(
αn+3, αn+q

) · · · φ (
αn+q−2, αn+q−1

))
)

∗ ℵφ

(
αn+q−1, αn+q ,

T
(2)q−1 (

φ
(
αn+1, αn+q

)
φ

(
αn+2, αn+q

)
φ

(
αn+3, αn+q

) · · · φ (
αn+q−1, αn+q

))
)

,

�φ

(
αn , αn+q ,T

)

≤ �φ

(
αn , αn+1,

T
2 (φ (αn , αn+1))

)
◦ �φ

(
αn+1, αn+q ,

T
2

(
φ

(
αn+1, αn+q

))
)

≤ �φ

(
αn , αn+1,

T
2 (φ (αn , αn+1))

)
◦ �φ

(
αn+1, αn+2,

T
(2)2

(
φ

(
αn+1, αn+q

)
φ (αn+1, αn+2)

)
)

◦ �φ

(
αn+2, αn+q ,

T
(2)2

(
φ

(
αn+1, αn+q

)
φ

(
αn+2, αn+q

))
)

≤ �φ

(
αn , αn+1,

T
2 (φ (αn , αn+1))

)
◦ �φ

(
αn+1, αn+2,

T
(2)2

(
φ

(
αn+1, αn+q

)
φ (αn+1, αn+2)

)
)

◦ �φ

(
αn+2, αn+3,

T
(2)3

(
φ

(
αn+1, αn+q

)
φ

(
αn+2, αn+q

)
φ (αn+2, αn+3)

)
)

◦ �φ

(
αn+3, αn+q ,

T
(2)3

(
φ

(
αn+1, αn+q

)
φ

(
αn+2, αn+q

)
φ

(
αn+3, αn+q

))
)

≤ �φ

(
αn, αn+1,

T
2 (φ (αn, αn+1))

)
◦ �φ

(
αn+1, αn+2,

T
(2)2

(
φ

(
αn+1, αn+q

)
φ (αn+1, αn+2)

)
)

◦ �φ

(
αn+2, αn+3,

T
(2)3

(
φ

(
αn+1, αn+q

)
φ

(
αn+2, αn+q

)
φ (αn+2, αn+3)

)
)

◦ �φ

(
αn+3, αn+4,

T
(2)4

(
φ

(
αn+1, αn+q

)
φ

(
αn+2, αn+q

)
φ

(
αn+3, αn+q

)
φ (αn+3, αn+4)

)
)

◦ · · · ◦

�φ

(
αn+q−2, αn+q−1,

T
(2)q−1 (

φ
(
αn+1, αn+q

)
φ

(
αn+2, αn+q

)
φ

(
αn+3, αn+q

) · · · φ (
αn+q−2, αn+q−1

))
)
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◦ �φ

(
αn+q−1, αn+q ,

T
(2)q−1 (

φ
(
αn+1, αn+q

)
φ

(
αn+2, αn+q

)
φ

(
αn+3, αn+q

) · · · φ (
αn+q−1, αn+q

))
)

and

�φ

(
αn, αn+q ,T

)

≤ �φ

(
αn, αn+1,

T
2 (φ (αn, αn+1))

)
◦ �φ

(
αn+1, αn+q ,

T
2

(
φ

(
αn+1, αn+q

))
)

≤ �φ

(
αn, αn+1,

T
2 (φ (αn, αn+1))

)
◦ �φ

(
αn+1, αn+2,

T
(2)2

(
φ

(
αn+1, αn+q

)
φ (αn+1, αn+2)

)
)

◦ �φ

(
αn+2, αn+q ,

T
(2)2

(
φ

(
αn+1, αn+q

)
φ

(
αn+2, αn+q

))
)

≤ �φ

(
αn, αn+1,

T
2 (φ (αn, αn+1))

)
◦ �φ

(
αn+1, αn+2,

T
(2)2

(
φ

(
αn+1, αn+q

)
φ (αn+1, αn+2)

)
)

◦ �φ

(
αn+2, αn+3,

T
(2)3

(
φ

(
αn+1, αn+q

)
φ

(
αn+2, αn+q

)
φ (αn+2, αn+3)

)
)

◦ �φ

(
αn+3, αn+q ,

T
(2)3

(
φ

(
αn+1, αn+q

)
φ

(
αn+2, αn+q

)
φ

(
αn+3, αn+q

))
)

≤ �φ

(
αn, αn+1,

T
2 (φ (αn, αn+1))

)
◦ �φ

(
αn+1, αn+2,

T
(2)2

(
φ

(
αn+1, αn+q

)
φ (αn+1, αn+2)

)
)

◦ �φ

(
αn+2, αn+3,

T
(2)3

(
φ

(
αn+1, αn+q

)
φ

(
αn+2, αn+q

)
φ (αn+2, αn+3)

)
)

◦ �φ

(
αn+3, αn+4,

T
(2)4

(
φ

(
αn+1, αn+q

)
φ

(
αn+2, αn+q

)
φ

(
αn+3, αn+q

)
φ (αn+3, αn+4)

)
)

◦ · · · ◦

�φ

(
αn+q−2, αn+q−1,

T
(2)q−1 (

φ
(
αn+1, αn+q

)
φ

(
αn+2, αn+q

)
φ

(
αn+3, αn+q

) · · · φ (
αn+q−2, αn+q−1

))
)

◦ �φ

(
αn+q−1, αn+q ,

T
(2)q−1 (

φ
(
αn+1, αn+q

)
φ

(
αn+2, αn+q

)
φ

(
αn+3, αn+q

) · · · φ (
αn+q−1, αn+q

))
)

.

So,ℵφ

(
αn, αn+q , T

)

≥ 1
£n

ℵφ

(
α0,α1,

T
2(φ(αn ,αn+1))

) + (1 − £n)
∗ 1

£n+1

ℵφ

(
α0,α1,

T
(2)2(φ(αn+1,αn+q)φ(αn+1,αn+2))

) + (
1 − £n+1

)

∗ 1
£n+2

ℵφ

(
α0,α1,

T
(2)3(φ(αn+1,αn+q)φ(αn+2 ,αn+q)φ(αn+2 ,αn+3))

) + (
1 − £n+2

) ∗ · · · ∗

1
£n+q−2

ℵφ

(
α0,α1,

T
(2)q−1(φ(αn+1,αn+q)φ(αn+2 ,αn+q)φ(αn+3,αn+q)···φ(αn+q−2 ,αn+q−1))

) + (
1 − £n+q−2

)
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∗ 1
£n+q−1

ℵφ

(
α0,α1,

T
(2)q−1(φ(αn+1,αn+q)φ(αn+2 ,αn+q)φ(αn+3,αn+q)···φ(αn+q−1,αn+q))

) + (
1 − £n+q−1

) ,

�φ

(
αn, αn+q ,T

)

≤ £n�φ

(
α0, α1,

T
2 (φ (αn , αn+1))

)
◦ £n+1�φ

(
α0, α1,

T
(2)2

(
φ

(
αn+1, αn+q

)
φ (αn+1, αn+2)

)
)

◦ £n+2�φ

(
α0, α1,

T
(2)3

(
φ

(
αn+1, αn+q

)
φ

(
αn+2, αn+q

)
φ (αn+2, αn+3)

)
)

◦ · · · ◦

£n+q−2�φ

(
α0, α1,

T
(2)q−1 (

φ
(
αn+1, αn+q

)
φ

(
αn+2, αn+q

)
φ

(
αn+3, αn+q

) · · · φ (
αn+q−2, αn+q−1

))
)

◦ £n+q−1�φ

(
α0, α1,

T
(2)q−1 (

φ
(
αn+1, αn+q

)
φ

(
αn+2, αn+q

)
φ

(
αn+3, αn+q

) · · · φ (
αn+q−1, αn+q

))
)

,

and

�φ

(
αn, αn+q ,T

)

≤ £n�φ

(
α0, α1,

T
2 (φ (αn, αn+1))

)
◦ £n+1�φ

(
α0, α1,

T
(2)2

(
φ

(
αn+1, αn+q

)
φ (αn+1, αn+2)

)
)

◦ £n+2�φ

(
α0, α1,

T
(2)3

(
φ

(
αn+1, αn+q

)
φ

(
αn+2, αn+q

)
φ (αn+2, αn+3)

)
)

◦ · · · ◦

£n+q−2�φ

(
α0, α1,

T
(2)q−1 (

φ
(
αn+1, αn+q

)
φ

(
αn+2, αn+q

)
φ

(
αn+3, αn+q

) · · · φ (
αn+q−2, αn+q−1

))
)

◦ £n+q−1�φ

(
α0, α1,

T
(2)q−1 (

φ
(
αn+1, αn+q

)
φ

(
αn+2, αn+q

)
φ

(
αn+3, αn+q

) · · · φ (
αn+q−1, αn+q

))
)

.

Therefore,
lim
n→∞ ℵφ

(
αn, αn+q , T

) = 1 ∗ 1 ∗ · · · ∗ 1 = 1,

and
lim
n→∞ �φ

(
αn, αn+q , T

) = 0 ◦ 0 ◦ · · · ◦ 0 = 0,

lim
n→∞ �φ

(
αn, αn+q , T

) = 0 ◦ 0 ◦ · · · ◦ 0 = 0.

That is, {αn} is a CPFCS. Since
(
�,ℵφ,�φ,�φ, ∗, ◦)

is a CPF-complete CPFMS,
there exists

lim
n→∞

αn = α.

Now, investigate that α is a FP of ξ . Using (v) , (x) and (xv) , we obtain
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1

ℵφ

(
ξαn, ξα, T

) − 1 ≤ £

[
1

ℵφ (αn, α, T )
− 1

]
= £

ℵφ (αn, α, T )
− £.

So,
1

£
ℵφ(αn ,α,T )

+ (1 − £)
≤ ℵφ

(
ξαn, ξα, T

)
.

Using the above inequality, we obtain

ℵφ (α, ξα, T ) ≥ ℵφ

(
α, αn+1,

T
2φ (α, αn+1)

)
∗ ℵφ

(
αn+1, ξα,

T
2φ (αn+1, ξα)

)

≥ ℵφ

(
α, αn+1,

T
2φ (α, αn+1)

)
∗ ℵφ

(
ξαn, ξα,

T
2φ (αn+1, ξα)

)

≥ ℵφ

(
αn, αn+1,

T
2φ (2φ (α, αn+1))

)
∗ 1

£

ℵφ

(
αn ,α, T

2φ(αn+1,ξα)

)
+(1−£)

→ 1 ∗ 1 = 1

as n → ∞,

�φ (α, ξα, T ) ≤ ℵφ

(
α, αn+1,

T
2φ (α, αn+1)

)
◦ �φ

(
αn+1, ξα,

T
2φ (αn+1, ξα)

)

≤ �φ

(
α, αn+1,

T
2φ (α, αn+1)

)
◦ �φ

(
ξαn, ξα,

T
2φ (αn+1, ξα)

)

≤ �φ

(
αn, αn+1,

T
2φ (α, αn+1)

)
◦ £�φ

(
αn, α,

T
2φ (αn+1, ξα)

)
→ 0 ◦ 0 = 0

as n → ∞,

�φ (α, ξα,T ) ≤ �φ

(
α, αn+1,

T
2φ (α, αn+1)

)
◦ �φ

(
αn+1, ξα,

T
2φ (αn+1, ξα)

)

≤ �φ

(
α, αn+1,

T
2φ (α, αn+1)

)
◦ �φ

(
ξαn, ξα,

T
2φ (αn+1, ξα)

)

≤ �φ

(
αn, αn+1,

T
2φ (α, αn+1)

)
◦ £�φ

(
αn, α,

T
2φ (αn+1, ξα)

)
→ 0 ◦ 0 = 0 as n → ∞.

This implies that ξα = α. Now, we show the uniqueness. Suppose that ξc = c for
some c ∈ �. Then

1

ℵφ (α, c, T )
− 1 = 1

ℵφ (ξα, ξc, T )
− 1

≤ £

[
1

ℵφ (α, c, T )
− 1

]
<

1

ℵφ (α, c, T )
− 1

a contradiction. Also,

�φ (α, c, T ) = �φ (ξα, ξc, T ) ≤ £�φ (α, c, T ) < �φ (α, c, T ) ,
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and
�φ (α, c, T ) = �φ (ξα, ξc, T ) ≤ £�φ (α, c, T ) < �φ (α, c, T )

which are contradictions.
Therefore, we must have ℵφ (α, c, T ) = 1,�φ (α, c, T ) = 0 and �φ (α, c, T ) =

0, hence α = c.

Example 5 Let � = [0, 1]. Define φ by

φ (α, β) =
{

1, if α = β,
1+max{α,β}
min{α,β} , if α �= β �= 0.

Also, take

ℵφ (α, β, T ) =
{

1, if α = β
T

T +max {α,β} , if otherwise ,

�φ (α, β, T ) =
{

0, if α = β
max {α,β}

T +max {α,β} , if otherwise
,

and

�φ (α, β, T ) =
{

0, if α = β
max{α,β}

T , if otherwise

with π ∗ μ = π · μ and π ◦ μ = max {π,μ}. Then (
�,ℵφ,�φ,�φ, ∗, ◦)

is a CPF-
completeCPFMS.Observe that limT →∞ ℵφ (α, β, T ) = 1, limT →∞�φ (α, β, T ) = 0
and limT →∞�φ (α, β, T ) = 0, satisfied. Define ξ : � → � by

ξ (α) =
{
0, if α ∈ [

0, 1
2

]
,

α
4 , if α ∈ (

1
2 , 1

]
.

Then we have four cases:
(1) If α, β ∈ [

0, 1
2

]
, then ξα = ξβ = 0;

(2) If α ∈ [
0, 1

2

]
and β ∈ (

1
2 , 1

]
, then ξα = 0 and ξβ = β

4 ;
(3) If β ∈ [

0, 1
2

]
and α ∈ (

1
2 , 1

]
, then ξβ = 0 and ξα = β

4 ;
(4) If α, β ∈ (

1
2 , 1

]
, then ξα = β

4 and ξβ = β

4 ;
In all above (1 − 4) cases,

ℵφ (ξα, ξβ, £T ) ≥ ℵφ (α, β, T ) ,

�φ (ξα, ξβ, £T ) ≤ �φ (α, β, T ) and �φ (ξα, ξβ, £T ) ≤ �φ (α, β, T )

are satisfied for £ ∈ [
1
2 , 1

)
, and also
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1

ℵφ (ξα, ξβ, T )
− 1 ≤ £

[
1

ℵφ (α, β, T )
− 1

]
,

�φ (ξα, ξβ, T ) ≤ £�φ (α, β, T ) ,�φ (ξα, ξβ, T ) ≤ £�φ (α, β, T )

satisfied for £ ∈ [
1
2 , 1

)
.

We can easily see that limn→∞ φ (αn, β) and limn→∞ φ (β, αn) exist and finite.
Observe that all circumstances of Theorems1 and 2 are fulfilled, and 0 is a unique
FP of ξ .

4 Application to Fuzzy Fredholm Integral Equation

Let � = C([e, g] , R) be the set of the entire continuous functions with domain of
real values and defined on [e, g].

Now, we let the fuzzy integral equation:

α (l) = f ( j) + β

∫ g

e
F (l, j) α (l) d j for all l, j ∈ [e, g] (1)

Note that β > 0 and f ( j) is a fuzzy function of j where j ∈ [e, g] and F ∈ �.

Define ℵφ and �φ by

ℵφ (α (l) , β (l) , T ) = sup
l∈[e,g]

T
T + ∣∣á (l) − â (l)

∣∣2 for all α, β ∈ � and T > 0,

�φ (α (l) , β (l) , T ) = 1 − sup
l∈[e,g]

T
T + ∣∣á (l) − â (l)

∣∣2 for all α, β ∈ � and T > 0,

and

�φ (α (l) , β (l) , T ) = sup
l∈[e,g]

∣∣á (l) − â (l)
∣∣2

T for all α, β ∈ � and T > 0

with CTN and CTCN define by π ∗ μ = π · μ and π ◦ μ = max {π,μ}. Define
φ : � × � → [1,∞) as

φ (α, β) =
{

1, if α = β;
1+max {α,β}
min {α,β} if α �= β �= 0.

Then (�,ℵφ,�φ,�φ, ∗, ◦) is a complete CPFMS. Assume that |F (l, j) α (l) −
F (l, j) β (l)| = |α (l) − β (l)| for all α, β ∈ �, £ ∈ (0, 1) and ∀l, j ∈ [e, g]. Con-
sider

(
β

∫ g
e d j

)2 ≤ £ < 1.
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Theorem 3 The fuzzy integral equation in (1) has a unique solution.

Proof Define ξ : � → � by
ξα (l) = f ( j) + β

∫ g
e F (l, j) e (l) d j for all l, j ∈ [e, g].

Note that the survival of an FP of the operator ξ is equivalent to that of a solution
of the fuzzy integral equation.

Now, for all α, β ∈ �, we obtain

ℵφ

(
ξα (l) , ı̂β (l) , £T

)

= sup
l∈[e,g]

£T
£T + ∣∣ı̂ á (l) − ı̂ â (l)

∣∣2

= sup
l∈[e,g]

£T
£T + ∣∣ f ( j) + β

∫ g
e F (l, j) e (l) d j − f ( j) − β

∫ g
e F (l, j) e (l) d j

∣∣2

= sup
l∈[e,g]

£T
£T + ∣∣β ∫ g

e F (l, j) e (l) d j − β
∫ g
e F (l, j) e (l) d j

∣∣2

= sup
l∈[e,g]

£T
£T + |F (l, j) α (l) − F (l, j) β (l)|2(β ∫ g

e d j
)2

≥ sup
l∈[e,g]

T
T + |α (l) − β (l)|2

≥ ℵφ (α (l) , β (l) , T ) ,

�φ

(
ξα (l) , ı̂β (l) , £ T

)

= 1 − sup
l∈[e,g]

£T
£T + ∣∣ı̂ á (l) − ı̂ â (l)

∣∣2

= 1 − sup
l∈[e,g]

£T
£T + ∣∣ f ( j) + β

∫ g
e F (l, j) e (l) d j − f ( j) − β

∫ g
e F (l, j) e (l) d j

∣∣2

= 1 − sup
l∈[e,g]

£T
£T + ∣∣β ∫ g

e F (l, j) e (l) d j − β
∫ g
e F (l, j) e (l) d j

∣∣2

= 1 − sup
l∈[e,g]

£T
£T + |F (l, j) α (l) − F (l, j) β (l)|2(β ∫ g

e d j
)2

≤ 1 − sup
l∈[e,g]

T
T + |α (l) − β (l)|2

≤ �φ (α (l) , β (l) , T )

and
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�φ

(
ξα (l) , ı̂β (l) , £T

)

= sup
l∈[e,g]

∣∣ı̂ á (l) − ı̂ â (l)
∣∣2

£T

= sup
l∈[e,g]

∣∣ f ( j) + β
∫ g
e F (l, j) e (l) d j − f ( j) − β

∫ g
e F (l, j) e (l) d j

∣∣2
£T

= sup
l∈[e,g]

∣∣β ∫ g
e F (l, j) e (l) d j − β

∫ g
e F (l, j) e (l) d j

∣∣2
£T

= sup
l∈[e,g]

|F (l, j) α (l) − F (l, j) β (l)|2(β ∫ g
e d j

)2
£T

≤ sup
l∈[e,g]

|α (l) − β (l)|2
T

≤ �φ (α (l) , β (l) , T ) .

Therefore, all circumstances of Theorem1 are fulfilled. Hence, operator ξ has a
single FP. This implies that the fuzzy integral equation (1) has a single solution.

Conclusion

Herein, we introduced the notion of controlled picture fuzzy metric space and some
new types of fixed point theorems in this new setting. Moreover, we provided a
non-trivial example to demonstrate the viability of the proposed methods. We have
supplemented this work with an application that demonstrates how the built method
outperforms those found in the literature. Since our structure is more general than
the class of fuzzy and controlled fuzzy spaces, our results and notions expand and
generalize a number of previously published results.
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Theoretical Analysis for a Generalized
Fractional-Order Boundary Value
Problem

Idris Ahmed, Poom Kumam, Jessada Tariboon, and Abdullahi Yusuf

Abstract Fixed point theorems are effective and reliable tools for investigating
and analyzing several nonlinear problems. In this chapter, we formulate a fractional
differential equation with a more general integral boundary condition in the setting
of ψ-Caputo fractional derivatives. Based on the techniques of Green’s function, an
equivalent integral equationwas established.Moreover, the existence and uniqueness
of solutions of generalized boundary value problems have been investigated using
Schaefer’s and Banach’s fixed point theorems.

1 Introduction

The main advantage of fractional-order models over the classical integer-order mod-
els is the description of memory and hereditary properties. Fractional differential
equations emerge in many engineering and scientific disciplines because the math-
ematical modeling of systems and processes in physics, chemistry, and complex
media electrodynamics required fractional-order derivatives. As a result, the subject
of fractional differential equations is receiving a lot of attention; for further details,
see [2, 6, 14, 16, 18]. However, the theory of boundary value problems for nonlinear
fractional differential equations is still in its early stages, with many topics needing
to be addressed.
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Researchers have become interested in boundary value problems because they
exist in a variety of phenomena. In the previous two decades, similar problems have
been applied to a wide range of scientific and engineering applications, including
underground water flow, population dynamics, and blood flow, and many more, we
refer readers to see [1, 17, 19–21]. Fixed point theorems are effective and reliable
tools for investigating and analyzing several nonlinear problems; see [7–10, 15].

Ahmad andNieto, in [13], studied a nonlinear fractional integro-differential equa-
tions of the form:{

C Dr
0+ z(t) = f (t, z(t), (χ z)(t)), t ∈ (0, 1), 1 < r ≤ 2,

az(0) + βz′(0) = ∫ 1
0 q1(z(s))ds, az(1) + βz′(1) = ∫ 1

0 q2(z(s))ds,
(1)

where C Dρ

0+(·) is the Caputo fractional derivative, f : [0, 1] × E × E → E , for γ :
[0, 1] × [0, 1] → [0,∞),

(χ z(t)) =
∫ 1

0
γ (t, s)z(s)ds, q1, q2 : E → E,

andα > 0, β ≥ 0 are positive real numbers. The existence and uniqueness of solution
were investigated via Schaefer’s and Banach’s fixed point theorems. Moreover, Idris
et al. [3] examined a ψ-Caputo fractional derivative given by

⎧⎪⎨
⎪⎩

C Dp;ψ
0+ z(t) = f (t, z(t), z(χ t),C Dp;ψ

0+ z(t)), t ∈ [0, b], 0 < χ < 1, b > 0,

a1z(0) = −a2z(b), a1C D
q;ψ
0+ z(0) = −a2C D

q;ψ
0+ z(b),

a1C D
r;ψ
0+ z(0) = −a2C D

r;ψ
0+ z(b),

(2)
where C Dp;ψ

0+ (·), C Dq;ψ
0+ (·), and C Dr;ψ

0+ (·) are ψ-Caputo fractional derivative of
order (2 < p ≤ 3), (0 < q ≤ 1), and (1 < r ≤ 2), respectively, with respect to
ψ ∈ C[0, b] such that ψ ′(t) > 0, for all t ∈ [0, b]. Besides, the authors studied the
nonlinear implicit fractional pantograph boundary value

{
C Dp;ψ

0+ z(t) = f (t, z(t), z(χ t),C Dp;ψ
0+ z(t)), t ∈ [0, b], 0 < χ < 1, b > 0,

a1z(0) + a2z(b) = 0, a1δψ z(0) + a2δψ z(b) = 0,
(3)

where C Dp;ψ
0+ (·) is aψ-Caputo fractional derivative of order (1 < p ≤ 2)with respect

to another function ψ ∈ C[0, b] such that ψ ′(t) > 0, for all t ∈ [0, b], a1 ≥ a2 >

0, δψ =
(

1
ψ ′(t)

d
dt

)
z(t), and f : [0, b] × R

3 → R is a continuous function. Existence

and uniqueness of solutions using Schaefer’s and Banach’s fixed point theorem were
proved.
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Ali et al. [4] investigated the existence, uniqueness, and stability of the following
fractional-order boundary value problem:

{
C Dα

0+ z(t) = f (t, z(t), z(χ t),C Dα
0+ z(t)), t ∈ [0, T ], 2 < α ≤ 3, 0 < ζ < 1

z(0) = −z(T ), C Dp
0+ z(0) = −C Dp

0+ z(T ), C Dq
0+ z(0) = −C Dq

0+ z(T ),

(4)
where C Dα

0+(·), C Dp
0+(·), C Dq

0+(·) are, respectively, Caputo fractional derivatives of
order (2 < α ≤ 3), (0 < p ≤ 1) and (1 < q ≤ 2), and f ∈ C([0, T ],R3,R).

Motivated by the above recent development, we aim to investigate the existence
and uniqueness of solutions of the following nonlinear fractional-order differential
equation of the form:

{
C
D

γ ;ψ
a+ u(t) = f (t, u(t)), t ∈ J = [a, b], 1 < γ ≤ 2, 0 ≤ a < b,

αu(a) + βδψu(a) = I
σ ;ψ
a+ z1(θ1, u(θ1)), αu(b) + βδψu(b) = I

ρ;ψ
a+ z2(θ2, u(θ2)),

(5)
where C

D
γ ;ψ
a+ is the generalized Caputo fractional derivative of order γ , Iσ ;ψ

a+ , I
ρ;ψ
a+

are generalized fractional integral of order σ and ρ, respectively, with respect to
another function ψ such that ψ(t) ≥ 0 and ψ ′(t) > 0 for all t ∈ [a, b], f, z1, z2 :
J × R → R are given continuous functions, θ1, θ2 ∈ R satisfying θ1, θ2 ∈ (a, b) and
δψu(t) = 1

ψ ′(t)
d
dt u(t).

2 Preliminaries and Theoretical Results

This part reviewed various fundamental definitions and lemmas related to fractional
operators.

Let X = C([J,R]) be a Banach space equipped with the norm defined by

‖u‖X = sup{|u(t)| : t ∈ J }.

The space of all absolutely continuous real valued function on J is denoted by
AC([J,R]). So, we define the space ACn

ψ([J ,R]) by

ACn
�([J,R]) =

{
z : J → R; (δn−1

ψ z)(t) ∈ AC([J,R]), δψ = 1

ψ ′(t)
d

dt

}
,

with the norm defined by

‖z‖ACn
�

=
n−1∑
k=0

‖δkψ z‖X ,

where ψ ∈ Cn([J,R]), ψ ′(t) > 0 on J and δkψ = δψδψ · · · δψ︸ ︷︷ ︸
k-times

.
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Definition 1 ([12]) Let z ∈ L1[a, b] be a function. The Riemann–Liouville frac-
tional integral of order r is given by

I
γ
a z(t) = 1

Γ (γ )

∫ t

a
(t − s)γ−1z(s)ds, γ > 0, t > a ≥ 0, (6)

provided the right-hand side of (6) exists.

Definition 2 ([12]) Let n ∈ N, r, t, a ∈ R+ and the function z ∈ Cn[a, b]. The
Caputo’s fractional derivative of order r is defined by

C
D

γ
a z(t) =

{
1

Γ (n−γ )

∫ t
a (t − s)n−γ−1zn(s)ds, γ > 0, t > a ≥ 0,

dn

dtn z(t), γ = n,
(7)

where the right-hand side of (2) is point-wise defined on (a,∞).

Definition 3 ([12]) Suppose (a, b] ⊂ R+ be a finite or infinite interval. Let f ∈
L1[a, b] and ψ(t) > 0 be monotone function on (a, b] such that ψ ′(t) ∈ C([(a, b),
R]). The ψ-Riemann–Liouville fractional integral is defined by

(I
γ ;ψ
0+ z)(t) = 1

Γ (γ )

∫ t

0
ψ ′(s)(ψ(t) − ψ(s))γ−1z(s)ds, γ > 0, t > 0. (8)

Definition 4 ([5, 11]) Let z, ψ be two functions such that z ∈ ACn
ψ([J,R]), ψ ∈

Cn([J,R]), ψ(t) > 0, and ψ ′(t) 
= 0 for all t ∈ J . The fractional operator

C
D

γ ;ψ
a+ z(t) =

{
I
(n−γ );ψ
a+ (δnψ z)(t), γ > 0, n = [γ ] + 1, n ∈ N,

(δnψ z)(t), γ = n ∈ N,
(9)

is referred to left-sidedψ-Caputo fractional derivative of a function z of order γ with
respect to another function ψ .

Lemma 1 ([5]) Given z(t) = (ψ(t) − ψ(a))k and γ > 0. Thus,

C
D

γ ;ψ
a+ z(t) =

⎧⎪⎨
⎪⎩

Γ (k)
Γ (k−γ )

(ψ(t) − ψ(a))k−γ−1, k ∈ R, k > n,
k!

Γ (k+1−γ )
(ψ(t) − ψ(a))k−γ , n ≤ k ∈ N,

0, n > k ∈ N ∪ {0}.
(10)

Lemma 2 ([11]) Suppose z ∈ ACn
ψ([J,R]) and γ > 0. Then

I
γ ;ψ
a+

C
D

γ ;ψ
a+ z(t) = z(t) −

n−1∑
k=0

(ψ(t) − ψ(a))k

k! (δnψ z)(0),

for all t ∈ J . Also, for 2 < γ ≤ 3 gives
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I
γ ;ψ
a+

C
D

γ ;ψ
a+ z(t) = z(t) − c0 − c1(ψ(t) − ψ(a)) − c2(ψ(t) − ψ(a))2,

where c0, c1, c2 are constants on R.

3 Main Results

In this part, we use the Green function to convert the proposed problem (5) into an
analogous integral equation. Moreover, utilizing the techniques of Schaefer’s and
Banach’s fixed point theorems, the existence and uniqueness of solutions to problem
(5) were established.

The following lemma establishes the relationship between problem (5) and the
mixed-type Volterra integral equation.

Lemma 3 Let 1 < γ ≤ 2 and σ, ρ ≥ 0. Suppose g, h1, h2 : J → R then the equiv-
alent integral equation of the following problem:

{
C
D

γ ;ψ
a+ u(t) = g(t), t ∈ I = [a, b], b > a ≥ 0,

αu(a) + βδψu(a) = I
σ ;ψ
a+ h1(θ1), αu(b) + βδψu(b) = I

ρ;ψ
a+ h2(θ2),

(11)

is given by

u(t) =
∫ b

a
G(t, s)ψ ′(s)g(s)ds

+ 1

α2(ψ(b) − ψ(a))

[(
β + α((ψ(b) − ψ(a)) − (ψ(t) − ψ(a)))

)
I
σ ;ψ
a+ h1(θ1)

+ (α(ψ(t) − ψ(a)) + β)I
ρ;ψ
a+ h2(θ2)

]
,

(12)
where

G(t, s) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

α(ψ(t)−ψ(s))γ−1+(β−α(ψ(b)−ψ(a)))(ψ(b)−ψ(s))γ−1

α(ψ(b)−ψ(a))Γ (γ )

+ β(β−α(ψ(t)−ψ(a)))(ψ(b)−ψ(s))γ−2

α2(ψ(b)−ψ(a))Γ (γ−1) , a ≤ s ≤ t ≤ b;
(β−α(ψ(b)−ψ(a)))(ψ(b)−ψ(s))γ−1

α(ψ(b)−ψ(a))Γ (γ )
+ β(β−α(ψ(t)−ψ(a)))(ψ(b)−ψ(s))γ−2

α2(ψ(b)−ψ(a))Γ (γ−1) ,

a ≤ t ≤ s ≤ b.

(13)

Proof Applying the operator I
γ ;ψ
a+ to both sides of Eq. (11) and making use of

Lemma2 yield
u(t) = I

γ ;ψ
a+ g(t) − c0 − c1(ψ(t) − ψ(a)), (14)

such that c1, c1 ∈ R are constants. Taking the δψ -derivative of (14) gives

δψu(t) = I
γ−1;ψ
a+ g(t) − c1. (15)
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Substituting the boundary conditions αu(a) + βδψu(a) = I
σ ;ψ
a+ h1(θ1) and

αu(b) + βδψu(b) = I
ρ;ψ
a+ h2(θ2), in Eqs. (14) and (15), yields

αc0 + βc1 = −I
σ ;ψ
a+ h1(θ1) (16)

and

αc0 + c1(α(ψ(b) − ψ(a)) + β) = αI
γ ;ψ
a+ g(b) + I

γ−1;ψ
a+ g(b) − I

ρ;ψ
a+ h2(θ2). (17)

Upon simplification of Eqs. (16) and (17), we get

c0 = 1

α2(ψ(b) − ψ(a))

[
βI

ρ;ψ
a+ h2(θ2) − (β + α(ψ(b) − ψ(a)))I

σ ;ψ
a+ h1(θ1)

]

− β

α(ψ(b) − ψ(a))
I
γ ;ψ
a+ g(b) − β2

α2(ψ(b) − ψ(a))
I
γ−1;ψ
a+ g(b),

(18)

and

c1 = 1

α(ψ(b) − ψ(a))

[
I
σ ;ψ
a+ h1(θ1) − I

ρ;ψ
a+ h2(θ2)

]
+ 1

(ψ(b) − ψ(a))
I
γ ;ψ
a+ g(b)

+ β

α(ψ(b) − ψ(a))
I
γ−1;ψ
a+ g(b).

(19)
Inserting Eqs. (18) and (19), in Eq. (14), we obtain

u(t) =
∫ t

a

[
α(ψ(t) − ψ(s))γ−1 + (β − α(ψ(t) − ψ(a)))(ψ(b) − ψ(s))γ−1

α(ψ(b) − ψ(a))Γ (γ )

+ (β − α(ψ(t) − ψ(a)))(ψ(b) − ψ(s))γ−2

α2(ψ(b) − ψ(a))Γ (γ − 1)

]
ψ ′(s)g(s)ds

+
∫ b

t

[
(β − α(ψ(t) − ψ(a)))(ψ(b) − ψ(s))γ−1

α(ψ(b) − ψ(a))Γ (γ )

+ (β − α(ψ(t) − ψ(a)))(ψ(b) − ψ(s))γ−2

α2(ψ(b) − ψ(a))Γ (γ − 1)

]
ψ ′(s)g(s)ds

+ 1

α2(ψ(b) − ψ(a))

[(
β + α((ψ(b) − ψ(a)) − (ψ(t) − ψ(a)))

)
I
σ ;ψ
a+ h1(θ1)

+ (α(ψ(t) − ψ(a)) − β)I
ρ;ψ
a+ h2(θ2)

]

=
∫ b

a
G(t, s)ψ ′(s)g(s)ds

+ 1

α2(ψ(b) − ψ(a))

[(
β + α((ψ(b) − ψ(a)) − (ψ(t) − ψ(a)))

)
I
σ ;ψ
a+ h1(θ1)

+ (α(ψ(t) − ψ(a)) − β)I
ρ;ψ
a+ h2(θ2)

]
.

(20)

Hence, the proof is completed.

Lemma 4 The function G(t, s) in (13) satisfies the following relations:
(C1) G(t, s) is continuous over J ;
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(C2) sup
t∈J

∫ b

a
|G(t, s)|ψ ′(s)ds ≤ Δ,

where

Δ = [(α + β) + α(ψ(b) − ψ(a))]
α(ψ(b) − ψ(a))Γ (γ + 1)

(ψ(b) − ψ(a))γ + [β2 + αβ(ψ(b) − ψ(a))]
α2(ψ(b) − ψ(a))2Γ (γ )

× (ψ(b) − ψ(a))γ .

(21)

Proof (C1) follows trivially. Thus, to prove (C2), we have

sup
t∈J

∫ b

a
|G(t, s)|ψ ′(s)ds =

sup
t∈J

(
1

(ψ(b) − ψ(a))Γ (γ )

∫ t

a
ψ ′(s)(ψ(t) − ψ(s))γ−1ds

+ |β − α(ψ(b) − ψ(a))|
α(ψ(b) − ψ(a))Γ (γ )

∫ b

a
ψ ′(s)(ψ(b) − ψ(s))γ−1ds

+ |(β − (ψ(t) − ψ(a)))|
α2(ψ(T ) − ψ(0))Γ (γ − 1)

∫ b

a
ψ ′(s)(ψ(b) − ψ(s))γ−2ds

≤ max
t∈J

(
(ψ(t) − ψ(a))γ

(ψ(b) − ψ(a))Γ (γ + 1)
+ |β − α(ψ(b) − ψ(a))|

α(ψ(b) − ψ(a))Γ (γ + 1)
(ψ(b) − ψ(a))γ

+ |(β − (ψ(t) − ψ(a)))|
α2(ψ(b) − ψ(a))Γ (γ )

(ψ(b) − ψ(a))γ−1
)

≤ [(α + β) + α(ψ(b) − ψ(a))]
α(ψ(b) − ψ(a))Γ (γ + 1)

(ψ(b) − ψ(a))γ + [β2 + αβ(ψ(b) − ψ(a))]
α2(ψ(b) − ψ(a))2Γ (γ )

× (ψ(b) − ψ(a))γ .

Hence,

sup
t∈[a,b]

∫ b

a
G(t, s)ψ ′(s)ds ≤ Δ.

We denote the following notations:

Δ1 = β

α2Γ (σ + 1)(ψ(b) − ψ(a))
(ψ(θ1) − ψ(a))σ , (22)

and

Δ2 = (α(ψ(b) − ψ(a)) − β)

α2Γ (ρ + 1)(ψ(b) − ψ(a))
(ψ(θ2) − ψ(a))ρ, (23)

for the sake of simplicity.
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3.1 Existence Result

We state and prove the existence of at least one solution of problem (5) via the con-
cepts of Schaefer’s fixed point theorem. Beforewe proceed, the following hypotheses
are needed.
(C3) Suppose there exist constants K1, K2, K3, M1, M2 > 0 such that
‖ f (t, w) − f (t, w̄)‖ ≤ K1‖w − w̄‖ for all t ∈ J, w, w̄ ∈ X .
(C4) ‖z1(t, w) − z1(t, w̄)‖ ≤ K2‖w − w̄‖, ‖z2(t, w) − z2(t, w̄)‖ ≤ K3‖w − w̄‖
with ‖z1(t, w)‖ ≤ M1, ‖z2(t, w)‖ ≤ M2 for all t ∈ J, w, w̄ ∈ X .

Theorem 1 Suppose that (C3) − (C4) holds and there exists m ∈ L∞([a, b],R+)

such that
‖ f (t, u(t))‖ ≤ m(t), for all (t, u) ∈ [a, b] × X.

Then, problem (5) has at least one solution on [a, b] provided that

β + α (ψ(b) − ψ(a))

α2 (ψ(b) − ψ(a))

(
K2

(ψ(b) − ψ(a))σ

Γ (σ + 1)
+ K3

(ψ(b) − ψ(a))ρ

Γ (ρ + 1)

)

+ K1

( β + α (ψ(b) − ψ(a))

α (ψ(b) − ψ(a)) Γ (γ + 1)
(ψ(b) − ψ(a))γ

+ β2 + αβ (ψ(b) − ψ(a))

α2 (ψ(b) − ψ(a)) Γ (γ )
(ψ(b) − ψ(a))γ−1

)
< 1.

Proof For any R > 0, we let

BR = {u ∈ C([a, b], X) : ‖u‖ ≤ R}

with R ≥ (β + α (ψ(b) − ψ(a)))

α2 (ψ(b) − ψ(a))
(M1 + M2) +M

( β + 2α (ψ(b) − ψ(a))

α (ψ(b) − ψ(a)) Γ (γ + 1)

(ψ(b) − ψ(a))γ + β2 + αβ (ψ(b) − ψ(a))

α2 (ψ(b) − ψ(a)) Γ (γ )
(ψ(b) − ψ(a))γ−1

)
.

We define the operators � and � on BR as

(�u) (t) = 1

Γ (γ )

∫ t

a
(ψ(t) − ψ(s))γ−1 ψ ′(s) f (s, u(s))ds

(�u) (t) = 1

α2 (ψ(b) − ψ(a))

[
(β + α (ψ(b) − ψ(t))) Iσ ;ψ

a+ z1(θ1, u(θ1))

+ (α (ψ(t) − ψ(a)) + β) I
ρ;ψ
a+ z2(θ2, u(θ2))

]
+

∫ b

a

[ (β − α (ψ(t) − ψ(a))) (ψ(b) − ψ(s))γ−1

α (ψ(b) − ψ(a)) Γ (γ )

+ β (β − α (ψ(t) − ψ(a))) (ψ(b) − ψ(s))γ−2

α2 (ψ(b) − ψ(a)) Γ (γ − 1)

]
ψ ′(s) f (s, u(s))ds.
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For u, v ∈ BR , we can find that

‖�u + �v‖ ≤ (β + α (ψ(b) − ψ(a)))

α2 (ψ(b) − ψ(a))
(M1 + M2)

+ M
( β + 2α (ψ(b) − ψ(a))

α (ψ(b) − ψ(a)) Γ (γ + 1)
(ψ(b) − ψ(a))γ

+ β2 + αβ (ψ(b) − ψ(a))

α2 (ψ(b) − ψ(a)) Γ (γ )
(ψ(b) − ψ(a))γ−1

)
≤ R

where M = ‖m‖∞. Then, we obtain �u + �v ∈ BR .
Next, we will show that � is a contraction mapping. For any u, v ∈ BR and for

each t ∈ [a, b], we have
‖(�u)(t) − (�v)(t)‖
≤ 1

α2 (ψ(b) − ψ(a))

[
(β + α (ψ(b) − ψ(t))) ‖Iσ ;ψ

a+ z1(θ1, u(θ1)) − I
σ ;ψ
a+ z1(θ1, v(θ1))‖

+ (α (ψ(t) − ψ(a)) + β) ‖Iρ;ψ
a+ z2(θ2, u(θ2)) − I

ρ;ψ
a+ z2(θ2, v(θ2))‖

]

+
∫ b

a

[ (β + α (ψ(t) − ψ(a))) (ψ(b) − ψ(s))γ−1

α (ψ(b) − ψ(a)) Γ (γ )

+ β (β + α (ψ(t) − ψ(a))) (ψ(b) − ψ(s))γ−2

α2 (ψ(b) − ψ(a)) Γ (γ − 1)

]
ψ ′(s)‖ f (s, u(s)) − f (s, v(s))‖ds

≤ β + α (ψ(b) − ψ(a))

α2 (ψ(b) − ψ(a))

(
K2

(
I
σ ;ψ
a+ ‖u − v‖

)
+ K3

(
I
ρ;ψ
a+ ‖u − v‖

) )

+ K1

( β + α (ψ(b) − ψ(a))

α (ψ(b) − ψ(a)) Γ (γ + 1)
(ψ(b) − ψ(a))γ

+ β2 + αβ (ψ(b) − ψ(a))

α2 (ψ(b) − ψ(a)) Γ (γ )
(ψ(b) − ψ(a))γ−1

)
‖u − v‖

≤ β + α (ψ(b) − ψ(a))

α2 (ψ(b) − ψ(a))

(
K2

(ψ(b) − ψ(a))σ

Γ (σ + 1)
+ K3

(ψ(b) − ψ(a))ρ

Γ (ρ + 1)

)
‖u − v‖

+ K1

( β + α (ψ(b) − ψ(a))

α (ψ(b) − ψ(a)) Γ (γ + 1)
(ψ(b) − ψ(a))γ

+ β2 + αβ (ψ(b) − ψ(a))

α2 (ψ(b) − ψ(a)) Γ (γ )
(ψ(b) − ψ(a))γ−1

)
‖u − v‖

= �α,β,γ,ρ,K1,K2,K3‖u − v‖,

where

�α,β,γ,ρ,K1,K2,K3

= β + α (ψ(b) − ψ(a))

α2 (ψ(b) − ψ(a))

(
K2

(ψ(b) − ψ(a))σ

Γ (σ + 1)
+ K3

(ψ(b) − ψ(a))ρ

Γ (ρ + 1)

)

+ K1

( β + α (ψ(b) − ψ(a))

α (ψ(b) − ψ(a)) Γ (γ + 1)
(ψ(b) − ψ(a))γ

+ β2 + αβ (ψ(b) − ψ(a))

α2 (ψ(b) − ψ(a)) Γ (γ )
(ψ(b) − ψ(a))γ−1

)
.



184 I. Ahmed et al.

By the continuity of f , we obtain that the operator � is also continuous. Moreover,
the operator � is uniformly bounded on Br with

‖�u‖ ≤ M (ψ(b) − ψ(a))γ

Γ (γ + 1)
.

Now, we prove the compactness of the operator �. For each a ≤ t1 ≤ t2 ≤ b, we
have

‖(�u)(t2) − (�u)(t1)‖ ≤ 1

Γ (γ )

∣∣∣∣
∣∣∣∣
∫ t2

a
(ψ(t2) − ψ(s))γ−1 ψ ′(s) f (s, u(s))ds

−
∫ t1

a
(ψ(t1) − ψ(s))γ−1 ψ ′(s) f (s, u(s))ds

∣∣∣∣
∣∣∣∣

≤ 1

Γ (γ )

∣∣∣∣
∣∣∣∣
∫ t1

a

[
(ψ(t2) − ψ(s))γ−1 − (ψ(t1) − ψ(s))γ−1] ψ ′(s) f (s, u(s))ds

+
∫ t2

t1

(ψ(t2) − ψ(s))γ−1 ψ ′(s) f (s, u(s))ds

∣∣∣∣
∣∣∣∣

≤ M

Γ (γ )

∣∣∣∣
∫ t1

a

[
(ψ(t2) − ψ(s))γ−1 − (ψ(t1) − ψ(s))γ−1] ψ ′(s)ds

+
∫ t2

t1

(ψ(t2) − ψ(s))γ−1 ψ ′(s)ds
∣∣∣∣

≤ M

Γ (γ + 1)
(|(ψ(t2) − ψ(a))γ − (ψ(t2) − ψ(t1))

γ − (ψ(t1) − ψ(a))γ |
+ |(ψ(t2) − ψ(t1))

γ |)
≤ M

Γ (γ + 1)
((ψ(t2) − ψ(a))γ − (ψ(t1) − ψ(a))γ + 2 (ψ(t2) − ψ(t1))

γ )

which is independent ofu. Thus,� is relatively compact on BR .Hence, by theArzela–
Ascoli Theorem, � is compact on BR . Thus, as a consequences of Schaefer’s fixed
point theorem, there exists at least one solution of problem (5) on [a, b]

3.2 Uniqueness Result

In this subsection, we state and prove the uniqueness results of the problem (5) via
the concepts of the Banach contraction principle.

Theorem 2 Suppose that f : J × X → X is jointly continuous and maps bounded
subsets of J × X into relatively compact subsets of X and z1, z1 : X → X are con-
tinuous functions. Then, problem (5) has a unique solution on J provided that



Theoretical Analysis for a Generalized Fractional … 185

K1Δ + K2Δ1 + K3Δ3 < 1,

where Δ, Δ1, and Δ2 are defined in (22), (23), and (21), respectively.

Proof Reformulate problem (5) into a fixed point problem defined by

(Pu)(t) =
∫ b

a
G(t, s)ψ ′(s) f (s, u(s))ds

+ 1

α2(ψ(b) − ψ(a))

[(
β + α((ψ(b) − ψ(a)) − (ψ(t) − ψ(a)))

)
× I

σ ;ψ
a+ z1(θ1, u(θ1)) + (α(ψ(t) − ψ(a)) − β)I

ρ;ψ
a+ z2(θ2, u(θ2))

]
,

(24)

where the operatorP : X −→ X . It is well-known that the fixed points of the operator
P are just the solution of the proposed problem (5).

Now, let sup
t∈[a,b]

‖ f (t, 0)‖ = M3 and choosing r ≥ M3Δ + M1Δ1 + M2Δ2.

It is enough to show that PBk ⊂ Bk, where Bk = {u ∈ C : ‖u‖ ≤ k}. For u ∈ Bk

gives

‖(Pu)(t)‖ ≤
∫ b

a
G(t, s)ψ ′(s)‖ f (s, u(s))‖ds

+ 1

α2(ψ(b) − ψ(a))

[(
β + α((ψ(b) − ψ(a)) − (ψ(t) − ψ(a)))

)
+ ×I

σ ;ψ
a+ ‖z1(θ1, u(θ1))‖(α(ψ(t) − ψ(a)) − β)I

ρ;ψ
a+ ‖z2(θ2, u(θ2))‖

]
≤

∫ b

a
G(t, s)ψ ′(s)[‖ f (s, u(s)) − f (s, 0)‖ + ‖ f (s, 0)‖]ds

+ 1

α2(ψ(b) − ψ(a))

[
βM1

Γ (σ)

∫ θ1

a
(ψ(θ1) − ψ(s))σ−1ψ ′(s)ds

+ (α(ψ(b) − ψ(a)) − β)M2

Γ (ρ)

∫ θ2

a
(ψ(θ2) − ψ(s))ρ−1ψ ′(s)ds

]
≤ (K1k + M3)Δ + M1Δ1 + M2Δ2

≤ k.
(25)

Moreover, for each t ∈ [a, b] and any u1, u2 ∈ Bk yields
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‖(Pu1)(t) − (Pu2)(t)‖ ≤
∫ b

a
G(t, s)ψ ′(s)‖ f (s, u1(s)) − f (s, u2(s))‖ds

+ 1

α2(ψ(b) − ψ(a))

[(
β + α((ψ(b) − ψ(a)) − (ψ(t) − ψ(a)))

)
×I

σ ;ψ
a+ ‖z1(θ1, u1(θ1)) − z1(θ1, u2(θ1))‖

+ (α(ψ(t) − ψ(a)) − β)I
ρ;ψ
a+ ‖z2(θ2, u1(θ2)) − z2(θ2, u2(θ2))‖

]
≤ K1

∫ b

a
G(t, s)ψ ′(s)ds‖u1 − u2‖

+ βK2

α2(ψ(b) − ψ(a))

1

Γ (σ)

∫ θ1

a
(ψ(θ1) − ψ(s))σ−1ψ ′(s)ds‖u1 − u2‖

+ (α(ψ(b) − ψ(a)) − β)K3

α2(ψ(b) − ψ(a))Γ (ρ)

∫ θ2

a
(ψ(θ2) − ψ(s))ρ−1ψ ′(s)ds‖u1 − u2‖

≤ (K1Δ + K2Δ1 + K3Δ2)‖u1 − u2‖.

(26)

Thus, it follows that the operator P is a contraction, and hence, there exists a unique
solution of the proposed problem (5).

4 Concluding Remarks

Nonlinear analysis is one of the most effective methodologies for analyzing applied
problems. In this chapter, we develop nonlinear fractional differential equations with
more general integral boundary conditions in the context of ψ-Caputo fractional
derivatives. By constructing Green’s functions, we derive an equivalent mixed-type
Volterra integral equation for the proposed problem. Using Schaefer’s and Banach’s
fixed point theorems, the existence and uniqueness of solutions to the proposed
problems were examined. Moreover,

• If �(t) = t, ψ(t) = ln t , and ψ(t) = tσ

σ
, the proposed problem (5) reduces to

Riemann–Liouville, Caputo,Caputo–Hadamard, andCaputo–Erdélyi–Kober frac-
tional differential equations, respectively.

Therefore, the results obtained are new and generalized some of the existing results
in the literature.
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On Well-posed Variational Problems
Involving Multidimensional Integral
Functionals

Savin Treanţă

Abstract In this chapter, based on the notions ofmonotonicity, pseudomonotonicity,
and hemicontinuity associatedwith the considered path-independent curvilinear inte-
gral functional, we study thewell-posedness andwell-posedness in generalized sense
for a new class of controlled variational inequality problems governed by second-
order partial derivatives. To this aim, we introduce the approximating solution set
and the concept of approximating sequence for the considered controlled variational
inequality problem. Further, by using the aforementioned new mathematical tools,
we formulate and prove some characterization results on well-posedness and well-
posedness in generalized sense. Also, the theoretical elements included in the chapter
are accompanied by some illustrative examples.

1 Introduction

As it is well-known, sometimes, it is very difficult to find out the solution asso-
ciated with some optimization problems by using certain methods which may or
may not ensure the exactness of the solutions. In this regard, the well-posedness
of an optimization problem becomes important because this condition ensures the
convergence of the sequence of approximate solutions obtained through iterative
techniques. Over time, many researchers have studied this concept for unconstrained
optimization problems (see Tykhonov [23]) and, moreover, they introduced various
kinds of well-posedness, such as Levitin-Polyak well-posedness [10], and extended
well-posedness (see Chen et al. [3]). The concept of Tykhonov well-posedness has
also been extended to variational inequalities (see Huang et al. [6], Fang et al. [4],
Virmani and Srivastava [25], Hu et al. [5]), and thereafter, to some other problems
like fixed point problems, hemivariational inequality problems (see Ceng et al. [2],
Wang et al. [26], Shu et al. [15]), equilibrium problems, complementary problems,
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and Nash equilibrium problems (see Lignola andMorgan [11]). Lin and Chuang [12]
proposed the generalized well-posedness for variational disclusion problems, inclu-
sion problems and the minimization problems involving variational disclusion prob-
lems, inclusion problems as constraints. Moreover, Lalita and Bhatia [9] studied the
well-posedness and generalizedwell-posedness for parametric type quasi-variational
inequality problems and minimization problems. Recently, Jayswal and Shalini [7]
introduced the well-posedness for generalized mixed vector variational-like inequal-
ity and optimization problems including this inequality as a constraint. In the last
few years, the multi-time variational inequality problem appeared as an interesting
generalization of variational inequality (see Treanţă [19, 21, 22]). Also, the multi-
dimensional optimization problems have been investigated, with remarkable results,
by Treanţă [16–18, 20]. For other different but connected ideas on well-posedness,
the reader is directed to Antonelli et al. [1], Sawano [14], and Lakzian andMunn [8].

In this chapter, motivated by the aforementioned research works, we study the
well-posedness associated with a class of controlled variational inequality problems.
More specifically, by considering the concepts of monotonicity, pseudomonotonic-
ity and hemicontinuity for path-independent curvilinear integral functionals, and
by defining the approximating solution set of the considered controlled variational
inequality problem, we establish some characterization results on well-posedness.
The main novelty elements of this chapter are given by the presence of the curvi-
linear integral functionals governed by second-order partial derivatives, and of the
mathematical framework determined by infinite-dimensional function spaces (the
former works are studied in the classical finite-dimensional spaces). Besides totally
new elements mentioned above and thanks to the physical significance of the inte-
gral functionals (the path-independent curvilinear integrals represent the mechanical
work performed by a variable force to move its point of application along a given
piecewise smooth curve), this chapter represents a reference work for researchers in
the field of abstract and applied mathematics.

The present chapter is structured as follows. In Sect. 2, we introduce the prelimi-
nary mathematical tools, namely, the notions of monotonicity, pseudomonotonicity,
and hemicontinuity associated with a curvilinear integral functional, and an auxil-
iary lemma. The well-posedness of the problem under study is investigated in Sect. 3
by considering the approximating solution set of the considered class of controlled
variational inequality problems. Concretely, we establish that well-posedness is char-
acterized in the terms of existence and uniqueness of the solution. Also, in order to
validate the theoretical developments included in this chapter, we also provide some
illustrative examples. In Sect. 4, we conclude the chapter.

2 Preliminaries

In this chapter, we consider the following notations and mathematical tools: Ω

is a compact domain in R
m , Ω � s = (sμ), μ = 1,m, is a multi-parameter of

evolution, and Ω ⊃ Ξ is a piecewise smooth curve joining two different points
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s1 = (s11 , . . . , s
m
1 ), s2 = (s12 , . . . , s

m
2 ) in Ω . ConsiderA is the space of all C4-class

state functions a : Ω → R
n and aκ := ∂a

∂tκ
, aαβ := ∂2a

∂tα∂tβ
denote the partial speed

and partial acceleration, respectively. Also, let U be the space of C1-class control
functions u : Ω → R

k . Assume that A ×U is a nonempty, closed and convex subset
of A × U , equipped with the inner product

〈(a, u), (b,w)〉 =
∫

Ξ

[a(s) · b(s) + u(s) · w(s)]dsμ

=
∫

Ξ

[
n∑

i=1

ai (s)bi (s) +
k∑
j=1

u j (s)w j (s)]dsμ

=
∫

Ξ

[
n∑

i=1

ai (s)bi (s) +
k∑
j=1

u j (s)w j (s)]ds1 + · · · + [
n∑

i=1

ai (s)bi (s) +
k∑
j=1

u j (s)w j (s)]dsm ,

∀(a, u), (b,w) ∈ A × U

and the induced norm.
Let J 2(Rm, R

n) be the jet bundle of second-order associated with R
m and

R
n . Assume that the following multi-time controlled second-order Lagrangians

fμ : J 2(Rm, R
n) × R

k → R, μ = 1,m, determine a controlled closed (complete
integrable) Lagrange 1-form (see summation over the repeated indices, Einstein
summation)

fμ(s, a(s), aκ(s), aαβ(s), u(s))dsμ,

which generates the following controlled path-independent curvilinear integral func-
tional

F : A × U → R, F(a, u) =
∫
Ξ

fμ
(
s, a(s), aκ (s), aαβ(s), u(s)

)
dsμ

=
∫
Ξ

f1
(
s, a(s), aκ (s), aαβ(s), u(s)

)
ds1 + · · · + fm

(
s, a(s), aκ (s), aαβ(s), u(s)

)
dsm .

To formulate the problem under study, we shall introduce Saunders’s multi-index
notation (see Saunders [13]). A multi-index is an m-tuple I of natural numbers. The
components of I are denoted I (α), where α is an ordinary index, 1 ≤ α ≤ m. The
multi-index 1α is defined by 1α(α) = 1, 1α(β) = 0 for α 
= β. The addition and the
substraction of the multi-indexes are defined componentwise (although the result of
a substraction might not be a multi-index): (I ± V )(α) = I (α) ± V (α). The length
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of a multi-index is | I |=
m∑

α=1

I (α), and its factorial is I ! =
m∏

α=1

(I (α))!. The number

of distinct indices represented by {α1, α2, . . . , αk}, α j ∈ {1, 2, . . . ,m}, j = 1, k, is

n(α1, α2, . . . , αk) = | 1α1 + 1α2 + · · · + 1αk |!
(1α1 + 1α2 + · · · + 1αk )!

.

By using the above mathematical tools, we introduce the following controlled
variational inequality problem (for short, CVIP), formulated as find (a, u) ∈ A ×U
such that

∫
Ξ

[
∂ fμ
∂a

(χa,u(s))(b(s) − a(s)) + ∂ fμ
∂aκ

(χa,u(s))Dκ(b(s) − a(s))

]
dsμ (CV I P)

+
∫

Ξ

[
1

n(α, β)

∂ fμ
∂aαβ

(χa,u(s))D
2
αβ(b(s) − a(s))

]
dsμ

+
∫

Ξ

[
∂ fμ
∂u

(χa,u(s))(w(s) − u(s))

]
dsμ ≥ 0, ∀(b,w) ∈ A ×U,

where Dκ := ∂

∂sκ
is the total derivative operator, D2

αβ := Dα(Dβ), and (χa,u(s)) :=
(s, a(s), aκ(s), aαβ(s), u(s)).

Let Π be the set of all feasible solutions of (CVIP), that is,

Π =
{
(a, u) ∈ A ×U :

∫
Ξ

[(b(s) − a(s))
∂ fμ
∂a

(χa,u(s))

+ Dκ(b(s) − a(s))
∂ fμ
∂aκ

(χa,u(s))

+ 1

n(α, β)
D2

αβ(b(s) − a(s))
∂ fμ
∂aαβ

(χa,u(s))

+ (w(s) − u(s))
∂ fμ
∂u

(χa,u(s))]dsμ ≥ 0,

∀(b,w) ∈ A ×U
}
.

Assumption 1 In this chapter, we assume the following working hypothesis:

dG := Dκ

[
∂ fμ
∂aκ

(a − b)

]
dsμ (H)

is an exact total differential satisfying G(s1) = G(s2).
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Further, in accordance to assumption (H) and by considering the notion of mono-
tonicity associated with variational inequality problems, we introduce the concepts
of monotonicity and pseudomonotonicity of the aforementioned curvilinear integral
functional F.

Definition 1 The curvilinear integral functional F is called monotone on A ×U if
the following inequality holds:

∫
Ξ

[
(a(s) − b(s))

(
∂ fμ
∂a

(χa,u(s)) − ∂ fμ
∂a

(χb,w(s))

)

+ (u(s) − w(s))

(
∂ fμ
∂u

(χa,u(s)) − ∂ fμ
∂u

(χb,w(s))

)

+ Dκ(a(s) − b(s))

(
∂ fμ
∂aκ

(χa,u(s)) − ∂ fμ
∂aκ

(χb,w(s))

)

+ 1

n(α, β)
D2

αβ(a(s) − b(s))

(
∂ fμ
∂aαβ

(χa,u(s)) − ∂ fμ
∂aαβ

(χb,w(s))

)]
dsμ ≥ 0,

∀(a, u), (b,w) ∈ A ×U.

Example 1 Let μ ∈ {1, 2},Ω = [0, 1]2 and Ω ⊃ Ξ be a piecewise smooth curve
joining the points (0, 0), (1, 1) in Ω . Consider

fμ(χa,u(s))ds
μ = f1(χa,u(s))ds

1 + f2(χa,u(s))ds
2

=
[

∂a

∂s1
+ u(s)

]
ds1 + (ea(s) − 1)ds2.

Now,we show that the curvilinear integral functional
∫

Ξ

fμ(χa,u(s))ds
μ ismonotone

on A ×U = C4(Ω, R) × C1(Ω, R). Indeed, we have

∫
Ξ

[
(a(s) − b(s))

(
∂ fμ
∂a

(χa,u(s)) − ∂ fμ
∂a

(χb,w(s))

)

+ (u(s) − w(s))

(
∂ fμ
∂u

(χa,u(s)) − ∂ fμ
∂u

(χb,w(s))

)

+ Dκ(a(s) − b(s))

(
∂ fμ
∂aκ

(χa,u(s)) − ∂ fμ
∂aκ

(χb,w(s))

)

+ 1

n(α, β)
D2

αβ(a(s) − b(s))

(
∂ fμ
∂aαβ

(χa,u(s)) − ∂ fμ
∂aαβ

(χb,w(s))

)]
dsμ

=
∫

Ξ

(a(s) − b(s))(ea(s) − eb(s))ds2 ≥ 0, ∀(a, u), (b,w) ∈ A ×U.
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Definition 2 The curvilinear integral functionalF is called pseudomonotone on A ×
U if the following implication holds:

∫
Ξ

[(a(s) − b(s))
∂ fμ
∂a

(χb,w(s)) + (u(s) − w(s))
∂ fμ
∂u

(χb,w(s))

+Dκ(a(s) − b(s))
∂ fμ
∂aκ

(χb,w(s))]dsμ

+ 1

n(α, β)
D2

αβ(a(s) − b(s))
∂ fμ
∂aαβ

(χb,w(s))]dsμ ≥ 0

⇒
∫

Ξ

[(a(s) − b(s))
∂ fμ
∂a

(χa,u(s)) + (u(s) − w(s))
∂ fμ
∂u

(χa,u(s))

+Dκ(a(s) − b(s))
∂ fμ
∂aκ

(χa,u(s))]dsμ

+ 1

n(α, β)
D2

αβ(a(s) − b(s))
∂ fμ
∂aαβ

(χa,u(s))]dsμ ≥ 0,

∀(a, u), (b,w) ∈ A ×U.

In the following, we present an example of curvilinear integral functional which
is pseudomonotone but not monotone.

Example 2 Let μ ∈ {1, 2},Ω = [0, 1]2 and Ω ⊃ Ξ be a piecewise smooth curve
joining the points (0, 0), (1, 1) in Ω . Consider

fμ(χa,u(s))ds
μ = f1(χa,u(s))ds

1 + f2(χa,u(s))ds
2

=
[

∂a

∂s1
+ sin u(s)

]
ds1 + a(s)ea(s)ds2.

Now, we show that the curvilinear integral functional
∫

Ξ

fμ(χa,u(s))ds
μ is pseu-

domonotone on A ×U = C4(Ω, [−1, 1]) × C1(Ω, [−1, 1]). Indeed, we have
∫

Ξ

[(a(s) − b(s))
∂ fμ
∂a

(χb,w(s)) + (u(s) − w(s))
∂ fμ
∂u

(χb,w(s))

+Dκ(a(s) − b(s))
∂ fμ
∂aκ

(χb,w(s))

+ 1

n(α, β)
D2

αβ(a(s) − b(s))
∂ fμ
∂aαβ

(χb,w(s))]dsμ
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=
∫

Ξ

[(u(s) − w(s)) cosw(s) + D1(a(s) − b(s))] ds1

+ (a(s) − b(s))(eb(s) + b(s)eb(s))ds2 ≥ 0, ∀(a, u), (b,w) ∈ A ×U

⇒
∫

Ξ

[(a(s) − b(s))
∂ fμ
∂a

(χa,u(s)) + (u(s) − w(s))
∂ fμ
∂u

(χa,u(s))

+Dκ(a(s) − b(s))
∂ fμ
∂aκ

(χa,u(s))

+ 1

n(α, β)
D2

αβ(a(s) − b(s))
∂ fμ
∂aαβ

(χa,u(s))]dsμ

=
∫

Ξ

[(u(s) − w(s)) cos u(s) + D1(a(s) − b(s))] ds1

+ (a(s) − b(s))(ea(s) + a(s)ea(s))ds2 ≥ 0, ∀(a, u), (b,w) ∈ A ×U.

But it is not monotone on A ×U , because

∫
Ξ

[
(a(s) − b(s))

(
∂ fμ
∂a

(χa,u(s)) − ∂ fμ
∂a

(χb,w(s))

)

+ (u(s) − w(s))

(
∂ fμ
∂u

(χa,u(s)) − ∂ fμ
∂u

(χb,w(s))

)

+ Dκ(a(s) − b(s))

(
∂ fμ
∂aκ

(χa,u(s)) − ∂ fμ
∂aκ

(χb,w(s))

)

+ 1

n(α, β)
D2

αβ(a(s) − b(s))

(
∂ fμ
∂aαβ

(χa,u(s)) − ∂ fμ
∂aαβ

(χb,w(s))

)]
dsμ

=
∫

Ξ

(u(s) − w(s))(cos u(s) − cosw(s))ds1

+ (a(s) − b(s))(a(s)ea(s) + ea(s) − b(s)eb(s) − eb(s))ds2 � 0,

∀(a, u), (b,w) ∈ A ×U.

Inspired by Usman and Khan [24], we introduce the following definition of hemi-
continuity for the aforementioned curvilinear integral functional F.

Definition 3 The curvilinear integral functional F is said to be hemicontinuous on
A ×U if, for ∀(a, u), (b,w) ∈ A ×U , the application

λ →
〈
((a(s), u(s)) − (b(s),w(s)) ,

(
δμF

δaλ

,
δμF

δuλ

)〉
, 0 ≤ λ ≤ 1

is continuous at 0+, where
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δμF

δaλ

:= ∂ fμ
∂a

(χaλ,uλ
(s)) − Dκ

∂ fμ
∂aκ

(χaλ,uλ
(s)) + 1

n(α, β)
D2

αβ

∂ fμ
∂aαβ

(χaλ,uλ
(s)) ∈ A,

δμF

δuλ

:= ∂ fμ
∂u

(χaλ,uλ
(s)) ∈ U,

aλ := λa + (1 − λ)b, uλ := λu + (1 − λ)w.

The following lemma is an auxiliary result for proving the main results derived
in the present chapter.

Lemma 1 Consider the curvilinear integral functional F is pseudomonotone and
hemicontinuous on A ×U. A pair (a, u) ∈ A ×U is solution of (CVIP) if and only
if it is solution for

∫
Ξ

[(b(s) − a(s))
∂ fμ
∂a

(χb,w(s)) + (w(s) − u(s))
∂ fμ
∂u

(χb,w(s))

+Dκ(b(s) − a(s))
∂ fμ
∂aκ

(χb,w(s))

+ 1

n(α, β)
D2

αβ(b(s) − a(s))
∂ fμ
∂aαβ

(χb,w(s))]dsμ ≥ 0, ∀(b,w) ∈ A ×U.

Proof Firstly, we consider the pair (a, u) ∈ A ×U solves (CVIP), that is,

∫
Ξ

[(b(s) − a(s))
∂ fμ
∂a

(χa,u(s)) + (w(s) − u(s))
∂ fμ
∂u

(χa,u(s))

+Dκ(b(s) − a(s))
∂ fμ
∂aκ

(χa,u(s))

+ 1

n(α, β)
D2

αβ(b(s) − a(s))
∂ fμ
∂aαβ

(χa,u(s))]dsμ ≥ 0, ∀(b,w) ∈ A ×U.

By using the definition of pseudomonotonicity, the above inequality implies

∫
Ξ

[(b(s) − a(s))
∂ fμ
∂a

(χb,w(s)) + (w(s) − u(s))
∂ fμ
∂u

(χb,w(s))

+Dκ(b(s) − a(s))
∂ fμ
∂aκ

(χb,w(s))

+ 1

n(α, β)
D2

αβ(b(s) − a(s))
∂ fμ
∂aαβ

(χb,w(s))]dsμ ≥ 0, ∀(b,w) ∈ A ×U.
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Conversely, assume that

∫
Ξ

[(b(s) − a(s))
∂ fμ
∂a

(χb,w(s)) + (w(s) − u(s))
∂ fμ
∂u

(χb,w(s))

+Dκ(b(s) − a(s))
∂ fμ
∂aκ

(χb,w(s))

+ 1

n(α, β)
D2

αβ(b(s) − a(s))
∂ fμ
∂aαβ

(χb,w(s))]dsμ ≥ 0, ∀(b,w) ∈ A ×U.

Now, for (b,w) ∈ A ×U and λ ∈ (0, 1], we define

(bλ,wλ) = ((1 − λ)a + λb, (1 − λ)u + λw) ∈ A ×U.

Thus, the above inequality can be rewritten as

∫
Ξ

[(bλ(s) − a(s))
∂ fμ
∂a

(χbλ,wλ
(s)) + (wλ(s) − u(s))

∂ fμ
∂u

(χbλ,wλ
(s))

+Dκ(bλ(s) − a(s))
∂ fμ
∂aκ

(χbλ,wλ
(s))

+ 1

n(α, β)
D2

αβ(bλ(s) − a(s))
∂ fμ
∂aαβ

(χbλ,wλ
(s))]dsμ ≥ 0, (b,w) ∈ A ×U.

Taking λ → 0 and using the hemicontinuity property associated with the considered
curvilinear integral functional, we have

∫
Ξ

[(b(s) − a(s))
∂ fμ
∂a

(χa,u(s)) + (w(s) − u(s))
∂ fμ
∂u

(χa,u(s))

+Dκ(b(s) − a(s))
∂ fμ
∂aκ

(χa,u(s))

+ 1

n(α, β)
D2

αβ(b(s) − a(s))
∂ fμ
∂aαβ

(χa,u(s))]dsμ ≥ 0, ∀(b,w) ∈ A ×U,

which shows that (a, u) solves (CVIP). �
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3 Well-Posedness Associated with (CVIP)

In this section, by using the notions of monotonicity and hemicontinuity introduced
in Sect. 2, we investigate the well-posedness of the considered class of controlled
variational inequality problems involving second-order PDEs. In this regard, we
introduce the following definitions.

Definition 4 The sequence {(an, un)} ∈ A ×U is called an approximating sequence
of (CVIP) if there exists a sequence of positive real numbers ιn → 0 as n → ∞, such
that the following inequality holds:

∫
Ξ

[(b(s) − an(s))
∂ fμ
∂a

(χan ,un (s)) + (w(s) − un(s))
∂ fμ
∂u

(χan ,un (s))

+Dκ(b(s) − an(s))
∂ fμ
∂aκ

(χan ,un (s))

+ 1

n(α, β)
D2

αβ(b(s) − an(s))
∂ fμ
∂aαβ

(χan ,un (s))]dsμ + ιn ≥ 0, ∀(b,w) ∈ A ×U.

Definition 5 The problem (CVIP) is called well-posed if the following two condi-
tions hold:
(i) the problem (CVIP) possesses a single solution (a0, u0);
(ii) each approximating sequence of (CVIP) will converge to this single solution
(a0, u0).

In order to investigate the well-posedness of (CVIP), we introduce the definition
of approximating solution set of (CVIP) as follows:

Πι =
{
(a, u) ∈ A ×U :

∫
Ξ

[(b(s) − a(s))
∂ fμ
∂a

(χa,u(s)) + (w(s) − u(s))
∂ fμ
∂u

(χa,u(s))

+ Dκ (b(s) − a(s))
∂ fμ
∂aκ

(χa,u(s))

+ 1

n(α, β)
D2

αβ(b(s) − a(s))
∂ fμ
∂aαβ

(χa,u(s))]dsμ + ι ≥ 0, ∀(b,w) ∈ A ×U
}
.

Remark 1 Clearly, Π = Πι, when ι = 0 and Π ⊆ Πι, ∀ι > 0.

Further, for a set B, the symbol “diam B” stands for the diameter of B, and it is
defined as follows:

diam B = sup
ξ,η∈B

‖ξ − η‖.

Now, we are able to formulate and prove a first characterization result on the
well-posedness of (CVIP).
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Theorem 1 Assume the curvilinear integral functional F is monotone and hemicon-
tinuous on A ×U. Then, the problem (CVIP) is well-posed if and only if

Πι 
= ∅,∀ι > 0 and diam Πι → 0 as ι → 0.

Proof Suppose the problem (CVIP) iswell-posed. Then, byDefinition5, it possesses
a single solution (ā, ū) ∈ Π . Since Π ⊆ Πι, ∀ι > 0, therefore, Πι 
= ∅, ∀ι > 0.
Contrary to the result, we consider that diam Πι � 0 as ι → 0. Then there exist
r > 0, a positive integer m, a sequence of real numbers ιn > 0 with ιn → 0, and two
elements (an, un) and (a′

n, u
′
n) ∈ Πιn such that

‖(an(s), un(s)) − (a′
n(s), u

′
n(s))‖ > r, ∀n ≥ m. (1)

Since (an, un), (a′
n, u

′
n) ∈ Πιn , we get

∫
Ξ

[(b(s) − an(s))
∂ fμ
∂a

(χan ,un (s)) + (w(s) − un(s))
∂ fμ
∂u

(χan ,un (s))

+Dκ(b(s) − an(s))
∂ fμ
∂aκ

(χan ,un (s))

+ 1

n(α, β)
D2

αβ(b(s) − an(s))
∂ fμ
∂aαβ

(χan ,un (s))]dsμ + ιn ≥ 0, ∀(b,w) ∈ A ×U

and ∫
Ξ

[(b(s) − a′
n(s))

∂ fμ
∂a

(χa′
n ,u

′
n
(s)) + (w(s) − u′

n(s))
∂ fμ
∂u

(χa′
n ,u

′
n
(s))

+Dκ(b(s) − a′
n(s))

∂ fμ
∂aκ

(χa′
n ,u

′
n
(s))

+ 1

n(α, β)
D2

αβ(b(s) − a′
n(s))

∂ fμ
∂aαβ

(χa′
n ,u

′
n
(s))]dsμ + ιn ≥ 0, ∀(b,w) ∈ A ×U.

Clearly, it follows that {(an, un)} and {(a′
n, u

′
n)} are approximating sequences of

(CVIP) which converge to (ā, ū) since, by hypothesis, the problem (CVIP) is well-
posed. By direct computation, we get

‖(an(s), un(s)) − (a′
n(s), u

′
n(s))‖

= ‖(an(s), un(s)) − (ā(s), ū(s)) + (ā(s), ū(s)) − (a′
n(s), u

′
n(s))‖

≤ ‖(an(s), un(s)) − (ā(s), ū(s))‖ + ‖(ā(s), ū(s)) − (a′
n(s), u

′
n(s))‖ ≤ ι,

which contradicts (1), for some ι = r .
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Conversely, consider {(an, un)} is an approximating sequence of (CVIP). Then
there exists a sequence of positive real numbers ιn → 0 as n → ∞ such that

∫
Ξ

[(b(s) − an(s))
∂ fμ
∂a

(χan ,un (s)) + (w(s) − un(s))
∂ fμ
∂u

(χan ,un (s))

+Dκ(b(s) − an(s))
∂ fμ
∂aκ

(χan ,un (s))

+ 1

n(α, β)
D2

αβ((b(s) − an(s))
∂ fμ
∂aαβ

(χan ,un (s))]dsμ + ιn ≥ 0, ∀(b,w) ∈ A ×U

(2)
holds, involving that (an, un) ∈ Πιn . Since diam Πιn → 0 as ιn → 0, therefore
{(an, un)} is a Cauchy sequence which converges to some (ā, ū) ∈ A ×U as A ×U
is a closed set.

By hypothesis, the curvilinear integral functional
∫

Ξ

fμ(χa,u(s))ds
μ is monotone

on A ×U . Therefore, by Definition1, for (ā, ū), (b,w) ∈ A ×U , we have

∫
Ξ

[
(ā(s) − b(s))

(
∂ fμ
∂a

(χā,ū(s)) − ∂ fμ
∂a

(χb,w(s))

)

+(ū(s) − w(s))

(
∂ fμ
∂u

(χā,ū(s)) − ∂ fμ
∂a

(χb,w(s))

)

+Dκ(ā(s) − b(s))

(
∂ fμ
∂aκ

(χā,ū(s)) − ∂ fμ
∂aκ

(χb,w(s))

)

+ 1

n(α, β)
D2

αβ(ā(s) − b(s))

(
∂ fμ
∂aαβ

(χā,ū(s)) − ∂ fμ
∂aαβ

(χb,w(s))

) ]
dsμ ≥ 0

or, equivalently,

∫
Ξ

[
(ā(s) − b(s))

∂ fμ
∂a

(χā,ū(s)) + (ū(s) − w(s))
∂ fμ
∂u

(χā,ū(s))

+Dκ(ā(s) − b(s))
∂ fμ
∂aκ

(χā,ū(s))

+ 1

n(α, β)
D2

αβ(ā(s) − b(s))
∂ fμ
∂aαβ

(χā,ū(s))
]
dsμ

≥
∫

Ξ

[
(ā(s) − b(s))

∂ fμ
∂a

(χb,w(s)) + (ū(s) − w(s))
∂ fμ
∂u

(χb,w(s))
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+Dκ(ā(s) − b(s))
∂ fμ
∂aκ

(χb,w(s))

+ 1

n(α, β)
D2

αβ(ā(s) − b(s))
∂ fμ
∂aαβ

(χb,w(s))
]
dsμ. (3)

Taking limit in inequality (2), we have

∫
Ξ

[
(ā(s) − b(s))

∂ fμ
∂a

(χā,ū(s)) + (ū(s) − w(s))
∂ fμ
∂u

(χā,ū(s))

+Dκ(ā(s) − b(s))
∂ fμ
∂aκ

(χā,ū(s))

+ 1

n(α, β)
D2

αβ(ā(s) − b(s))
∂ fμ
∂aαβ

(χā,ū(s))
]
dsμ ≤ 0, ∀(b,w) ∈ A ×U. (4)

On combining (3) and (4), we obtain

∫
Ξ

[
(b(s) − ā(s))

∂ fμ
∂a

(χb,w(s)) + (w(s) − ū(s))
∂ fμ
∂u

(χb,w(s))

+Dκ(b(s) − ā(s))
∂ fμ
∂aκ

(χb,w(s))

+ 1

n(α, β)
D2

αβ(b(s) − ā(s))
∂ fμ
∂aαβ

(χb,w(s))
]
dsμ ≥ 0, ∀(b,w) ∈ A ×U.

Further, taking into account Lemma1, it follows

∫
Ξ

[
(b(s) − ā(s))

∂ fμ
∂a

(χā,ū(s)) + (w(s) − ū(s))
∂ fμ
∂u

(χā,ū(s))

+Dκ(b(s) − ā(s))
∂ fμ
∂aκ

(χā,ū(s))

+ 1

n(α, β)
D2

αβ(b(s) − ā(s))
∂ fμ
∂aαβ

(χā,ū(s))
]
dsμ ≥ 0, ∀(b,w) ∈ A ×U,

which implies that (ā, ū) ∈ Π . It remains to prove that (ā, ū) is a single solution
of (CVIP). Contrarily, we suppose (a1, u1), (a2, u2) are two distinct solutions of
(CVIP). Then

0 < ‖(a1(s), u1(s)) − (a2(s), u2(s))‖ ≤ diam Πι → 0 as ι → 0,

which is not possible, and the proof is now complete. �
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In the next theorem, we establish that the well-posedness of (CVIP) is equivalent
to the existence and uniqueness of solution.

Theorem 2 Assume the curvilinear integral functional F is monotone and hemicon-
tinuous on A ×U. Then, (CVIP) is well-posed if and only if it possesses a single
solution.

Proof Assume that the problem (CVIP) is well-posed. In consequence, by Defini-
tion5, it possesses a single solution (a0, u0). Conversely, suppose that (CVIP) has a
single solution (a0, u0) but it is not well-posed. Then, there exists an approximating
sequence {(an, un)} of (CVIP) which does not converge to (a0, u0). Since {(an, un)}
is an approximating sequence of (CVIP), there must exist a sequence of positive real
numbers ιn → 0 as n → ∞ such that

∫
Ξ

[(b(s) − an(s))
∂ fμ
∂a

(χan ,un (s)) + (w(s) − un(s))
∂ fμ
∂u

(χan ,un (s))

+Dκ(b(s) − an(s))
∂ fμ
∂aκ

(χan ,un (s))

+ 1

n(α, β)
D2

αβ(b(s) − an(s))
∂ fμ
∂aαβ

(χan ,un (s))]dsμ + ιn ≥ 0, ∀(b,w) ∈ A ×U.

(5)
Further, in order to prove the boundedness of {(an, un)}, we start by reductio ad
absurdum. Suppose {(an, un)} is not bounded, that is, ‖(an(s), un(s))‖ → +∞
as n → +∞. Consider δn(s) = 1

‖(an(s), un(s)) − (a0(s), u0(s))‖ and (an,un) =
(a0, u0) + δn[(an, un) − (a0, u0)].

We can see that {(an,un)} is bounded in A ×U . So, passing to a subsequence if
necessary, we may assume that

(an,un) → (a,u) weakly in A ×U 
= (a0, u0).

It is not difficult to verify that (a,u) 
= (a0, u0), thanks to

‖δn(s)[(an(s), un(s)) − (a0(s), u0(s))]‖ = 1,

for all n ∈ N. Since (a0, u0) is solution of (CVIP), therefore

∫
Ξ

[
(b(s) − a0(s))

∂ fμ
∂a

(χa0,u0(s)) + (w(s) − u0(s))
∂ fμ
∂u

(χa0,u0(s))

+Dκ(b(s) − a0(s))
∂ fμ
∂aκ

(χa0,u0(s))

+ 1

n(α, β)
D2

αβ(b(s) − a0(s))
∂ fμ
∂aαβ

(χa0,u0(s))
]
dsμ ≥ 0, ∀(b,w) ∈ A ×U.
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Thus, by Lemma1, the above inequality implies that

∫
Ξ

[
(b(s) − a0(s))

∂ fμ
∂a

(χb,w(s)) + (w(s) − u0(s))
∂ fμ
∂u

(χb,w(s))

+Dκ(b(s) − a0(s))
∂ fμ
∂aκ

(χb,w(s))

+ 1

n(α, β)
D2

αβ(b(s) − a0(s))
∂ fμ
∂aαβ

(χb,w(s))
]
dsμ ≥ 0, ∀(b,w) ∈ A ×U. (6)

By hypothesis, the curvilinear integral functionalF ismonotone on A ×U , therefore,
for (an, un), (b,w) ∈ A ×U , we have

∫
Ξ

[
(an(s) − b(s))

(
∂ fμ
∂a

(χan ,un (s)) − ∂ fμ
∂a

(χb,w(s))

)

+(un(s) − w(s))

(
∂ fμ
∂u

(χan ,un (s)) − ∂ fμ
∂a

(χb,w(s))

)

+Dκ(an(s) − b(s))

(
∂ fμ
∂aκ

(χan ,un (s)) − ∂ fμ
∂aκ

(χb,w(s))

)

+ 1

n(α, β)
D2

αβ(an(s) − b(s))

(
∂ fμ
∂aαβ

(χan ,un (s)) − ∂ fμ
∂aαβ

(χb,w(s))

) ]
dsμ ≥ 0,

or, equivalently,

∫
Ξ

[
(b(s) − an(s))

∂ fμ
∂a

(χan ,un (s)) + (w(s) − un(s))
∂ fμ
∂u

(χan ,un (s))

+Dκ(b(s) − an(s))
∂ fμ
∂aκ

(χan ,un (s))

+ 1

n(α, β)
D2

αβ(b(s) − an(s))
∂ fμ
∂aαβ

(χan ,un (s))
]
dsμ

≤
∫

Ξ

[
(b(s) − an(s))

∂ fμ
∂a

(χb,w(s)) + (w(s) − un(s))
∂ fμ
∂u

(χb,w(s))

+Dκ(b(s) − an(s))
∂ fμ
∂aκ

(χb,w(s))

+ 1

n(α, β)
D2

αβ(b(s) − an(s))
∂ fμ
∂aαβ

(χb,w(s))
]
dsμ. (7)
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Combining with (5) and (7), we have

∫
Ξ

[
(b(s) − an(s))

∂ fμ
∂a

(χb,w(s)) + (w(s) − un(s))
∂ fμ
∂u

(χb,w(s))

+Dκ(b(s) − an(s))
∂ fμ
∂aκ

(χb,w(s))

+ 1

n(α, β)
D2

αβ(b(s) − an(s))
∂ fμ
∂aαβ

(χb,w(s))
]
dsμ ≥ −ιn, ∀(b,w) ∈ A ×U.

Because of δn → 0 as n → ∞ (by the assumption that {(an, un)} is not bounded),
so, we can take n0 ∈ N be large enough such that δn < 1 for all n ≥ n0. Multiplying
the above inequality and (6) by δn > 0 and 1 − δn > 0, respectively, we sum the
resulting inequalities to get

∫
Ξ

[
(b(s) − an(s))

∂ fμ
∂a

(χb,w(s)) + (w(s) − un(s))
∂ fμ
∂u

(χb,w(s))

+Dκ(b(s) − an(s))
∂ fμ
∂aκ

(χb,w(s))

+ 1

n(α, β)
D2

αβ(b(s) − an(s))
∂ fμ
∂aαβ

(χb,w(s))
]
dsμ ≥ −ιn, ∀(b,w) ∈ A ×U, ∀n ≥ n0.

Since (an,un) → (a,u) 
= (a0, u0) and (an,un) = (a0, u0) + δn[(an, un) −
(a0, u0)], we have

∫
Ξ

[
(b(s) − a(s))

∂ fμ
∂a

(χb,w(s)) + (w(s) − u(s))
∂ fμ
∂u

(χb,w(s))

+Dκ(b(s) − a(s))
∂ fμ
∂aκ

(χb,w(s))

+ 1

n(α, β)
D2

αβ(b(s) − a(s))
∂ fμ
∂aαβ

(χb,w(s))
]
dsμ

= lim
n→∞

∫
Ξ

[
(b(s) − an(s))

∂ fμ
∂a

(χb,w(s)) + (w(s) − un(s))
∂ fμ
∂u

(χb,w(s))

+Dκ(b(s) − an(s))
∂ fμ
∂aκ

(χb,w(s))

+ 1

n(α, β)
D2

αβ(b(s) − an(s))
∂ fμ
∂aαβ

(χb,w(s))
]
dsμ
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≥ − lim
n→∞ ιn = 0, ∀(b,w) ∈ A ×U.

Thus, by Lemma1, we have

∫
Ξ

[
(b(s) − a(s))

∂ fμ
∂a

(χa,u(s)) + (w(s) − u(s))
∂ fμ
∂u

(χa,u(s))

+Dκ(b(s) − a(s))
∂ fμ
∂aκ

(χa,u(s))

+ 1

n(α, β)
D2

αβ(b(s) − a(s))
∂ fμ
∂aαβ

(χa,u(s))
]
dsμ ≥ 0, ∀(b,w) ∈ A ×U. (8)

This implies that (a,u) is solution of (CVIP), which contradicts the uniqueness
of (a0, u0). Therefore, {(an, un)} is a bounded sequence having convergent subse-
quence {(ank , unk )}, which converges to (ā, ū) ∈ A ×U as k → ∞. Again, from the
definition of monotonicity, for (ank , unk ), (b,w) ∈ A ×U , we have (see (7))

∫
Ξ

[
(b(s) − ank (s))

∂ fμ
∂a

(χank ,unk
(s)) + (w(s) − unk (s))

∂ fμ
∂u

(χank ,unk
(s))

+Dκ(b(s) − ank (s))
∂ fμ
∂aκ

(χank ,unk
(s))

+ 1

n(α, β)
D2

αβ(b(s) − ank (s))
∂ fμ
∂aαβ

(χank ,unk
(s))

]
dsμ

≤
∫

Ξ

[
(b(s) − ank (s))

∂ fμ
∂a

(χb,w(s)) + (w(s) − unk (s))
∂ fμ
∂u

(χb,w(s))

+Dκ(b(s) − ank (s))
∂ fμ
∂aκ

(χb,w(s))

+ 1

n(α, β)
D2

αβ(b(s) − ank (s))
∂ fμ
∂aαβ

(χb,w(s))
]
dsμ. (9)

Also, on behalf of (5), we can write

lim
k→∞

∫
Ξ

[
(b(s) − ank (s))

∂ fμ
∂a

(χank ,unk
(s)) + (w(s) − unk (s))

∂ fμ
∂u

(χank ,unk
(s))

+Dκ(b(s) − ank (s))
∂ fμ
∂aκ

(χank ,unk
(s))
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+ 1

n(α, β)
D2

αβ(b(s) − ank (s))
∂ fμ
∂aαβ

(χank ,unk
(s))

]
dsμ ≥ 0. (10)

Combining (9) and (10), we have

lim
k→∞

∫
Ξ

[
(b(s) − ank (s))

∂ fμ
∂a

(χb,w(s)) + (w(s) − unk (s))
∂ fμ
∂u

(χb,w(s))

+Dκ(b(s) − ank (s))
∂ fμ
∂aκ

(χb,w(s))

+ 1

n(α, β)
D2

αβ(b(s) − ank (s))
∂ fμ
∂aαβ

(χb,w(s))
]
dsμ ≥ 0

⇒
∫

Ξ

[
(b(s) − ā(s))

∂ fμ
∂a

(χb,w(s)) + (w(s) − ū(s))
∂ fμ
∂u

(χb,w(s))

+Dκ(b(s) − ā(s))
∂ fμ
∂aκ

(χb,w(s))

+ 1

n(α, β)
D2

αβ(b(s) − ā(s))
∂ fμ
∂aαβ

(χb,w(s))
]
dsμ ≥ 0

Thus, by Lemma1, the above inequality implies that

∫
Ξ

[
(b(s) − ā(s))

∂ fμ
∂a

(χā,ū(s)) + (w(s) − ū(s))
∂ fμ
∂u

(χā,ū(s))

+Dκ(b(s) − ā(s))
∂ fμ
∂aκ

(χā,ū(s))

+ 1

n(α, β)
D2

αβ(b(s) − ā(s))
∂ fμ
∂aαβ

(χā,ū(s))
]
dsμ ≥ 0,

which shows that (ā, ū) is solution of (CVIP). Hence, (ank , unk ) → (ā, ū), that is,
(ank , unk ) → (a0, u0), involving (an, un) → (a0, u0) and the proof is complete. �

Further, we provide an illustrative application of the previous theoretical results.

Example 3 As in the previous section, let μ ∈ {1, 2},Ω = [0, 1]2 and Ω ⊃ Ξ be
a piecewise smooth curve joining the points (0, 0), (1, 1) in Ω . Consider

fμ(χa,u(s))dsμ = f1(χa,u(s))ds1 + f2(χa,u(s))ds2 = u2(s)ds1 + (ea(s) − a(s))ds2.

(CVIP-1): Find (a, u) ∈ A ×U = C4(Ω, [−10, 10]) × C1(Ω, [−10, 10]) so that
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∫
Ξ

2(w(s) − u(s))u(s)ds1 + (b(s) − a(s))(ea(s) − 1)ds2 ≥ 0, ∀(b,w) ∈ A ×U.

Clearly,Π = {(0, 0)}. It can be easily verified that the functional
∫

Ξ

fμ(χa,u(s))ds
μ

is monotone and hemicontinuous on the nonempty, closed and convex set A ×U =
C4(Ω, [−10, 10]) × C1(Ω, [−10, 10]). Since all the hypotheses of Theorem2 hold,
the problem (CVIP-1) is well-posed. Further, Πι = {(0, 0)} and consequently, Πι 
=
∅ and diam Πι → 0 as ι → 0. Thus, by Theorem1, the problem (CVIP-1) is well-
posed.

4 Well-Posedness in Generalized Sense Associated with
(CVIP)

In this section, we extend the notion of well-posedness to well-posedness in general-
ized sense associatedwith (CVIP). To this aim, we introduce the following definition.

Definition 6 The problem (CVIP) is called well-posed in generalized sense if the
following two conditions are satisfied:
(i) Π 
= ∅;
(ii) each approximating sequence of (CVIP) possesses a subsequence that will con-
verge to some pair of Π .

The next result establishes that the well-posedness in generalized sense of (CVIP)
is equivalent to the non-emptiness of its solution set.

Theorem 3 Suppose the curvilinear integral functional F is monotone and hemi-
continuous on the nonempty compact set A ×U. Then (CVIP) is well-posed in gen-
eralized sense if and only if the solution set Π is nonempty.

Proof Consider the problem (CVIP) is well-posed in generalized sense. Conse-
quently, its solution set Π is nonempty. Conversely, let {(an, un)} be an approxi-
mating sequence of (CVIP). Then, there exists a sequence of positive real numbers
ιn → 0 such that

∫
Ξ

[(b(s) − an(s))
∂ fμ
∂a

(χan ,un (s)) + (w(s) − un(s))
∂ fμ
∂u

(χan ,un (s))

+Dκ(b(s) − an(s))
∂ fμ
∂aκ

(χan ,un (s))

+ 1

n(α, β)
D2

αβ(b(s) − an(s))
∂ fμ
∂aαβ

(χan ,un (s))]dsμ + ιn ≥ 0, ∀(b,w) ∈ A ×U.

(11)
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By hypothesis, A ×U is a compact set and, therefore, {(an, un)} has a subsequence
{(ank , unk )}which converges to some pair (a0, u0) ∈ A ×U . Since the integral func-
tional F is monotone on A ×U , for (ank , unk ), (b,w) ∈ A ×U , we have

∫
Ξ

[
(b(s) − ank (s))

∂ fμ
∂a

(χank ,unk
(s)) + (w(s) − unk (s))

∂ fμ
∂u

(χank ,unk
(s))

+Dκ(b(s) − ank (s))
∂ fμ
∂aκ

(χank ,unk
(s))

+ 1

n(α, β)
D2

αβ(b(s) − ank (s))
∂ fμ
∂aαβ

(χank ,unk
(s))

]
dsμ

≤
∫

Ξ

[
(b(s) − ank (s))

∂ fμ
∂a

(χb,w(s)) + (w(s) − unk (s))
∂ fμ
∂u

(χb,w(s))

+Dκ(b(s) − ank (s))
∂ fμ
∂aκ

(χb,w(s))

+ 1

n(α, β)
D2

αβ(b(s) − ank (s))
∂ fμ
∂aαβ

(χb,w(s))
]
dsμ.

Taking limit k → ∞ in the above inequality, we have

lim
k→∞

∫
Ξ

[
(b(s) − ank (s))

∂ fμ
∂a

(χank ,unk
(s)) + (w(s) − unk (s))

∂ fμ
∂u

(χank ,unk
(s))

+Dκ(b(s) − ank (s))
∂ fμ
∂aκ

(χank ,unk
(s))

+ 1

n(α, β)
D2

αβ(b(s) − ank (s))
∂ fμ
∂aαβ

(χank ,unk
(s))

]
dsμ

≤ lim
k→∞

∫
Ξ

[
(b(s) − ank (s))

∂ fμ
∂a

(χb,w(s)) + (w(s) − unk (s))
∂ fμ
∂u

(χb,w(s))

+Dκ(b(s) − ank (s))
∂ fμ
∂aκ

(χb,w(s))

+ 1

n(α, β)
D2

αβ(b(s) − ank (s))
∂ fμ
∂aαβ

(χb,w(s))
]
dsμ. (12)
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Since {(ank , unk )} is an approximating subsequence in A ×U , therefore, on behalf
of (11), we have

lim
k→∞

∫
Ξ

[
(b(s) − ank (s))

∂ fμ
∂a

(χank ,unk
(s)) + (w(s) − unk (s))

∂ fμ
∂u

(χank ,unk
(s))

+Dκ(b(s) − ank (s))
∂ fμ
∂aκ

(χank ,unk
(s))

+ 1

n(α, β)
D2

αβ(b(s) − ank (s))
∂ fμ
∂aαβ

(χank ,unk
(s))

]
dsμ ≥ 0, ∀(b,w) ∈ A ×U.

(13)
Combining (12) and (13), we get

lim
k→∞

∫
Ξ

[
(b(s) − ank (s))

∂ fμ
∂a

(χb,w(s)) + (w(s) − unk (s))
∂ fμ
∂u

(χb,w(s))

+Dκ(b(s) − ank (s))
∂ fμ
∂aκ

(χb,w(s))

+ 1

n(α, β)
D2

αβ(b(s) − ank (s))
∂ fμ
∂aαβ

(χb,w(s))
]
dsμ ≥ 0, ∀(b,w) ∈ A ×U

⇒
∫

Ξ

[
(b(s) − a0(s))

∂ fμ
∂a

(χb,w(s)) + (w(s) − u0(s))
∂ fμ
∂u

(χb,w(s))

+Dκ(b(s) − a0(s))
∂ fμ
∂aκ

(χb,w(s))

+ 1

n(α, β)
D2

αβ(b(s) − a0(s))
∂ fμ
∂aαβ

(χb,w(s))
]
dsμ ≥ 0, ∀(b,w) ∈ A ×U.

Thus, by considering Lemma1, we can also write

∫
Ξ

[
(b(s) − a0(s))

∂ fμ
∂a

(χa0,u0(s)) + (w(s) − u0(s))
∂ fμ
∂u

(χa0,u0(s))

+Dκ(b(s) − a0(s))
∂ fμ
∂aκ

(χa0,u0(s))

+ 1

n(α, β)
D2

αβ(b(s) − a0(s))
∂ fμ
∂aαβ

(χa0,u0(s))
]
dsμ ≥ 0, ∀(b,w) ∈ A ×U,

which shows that (a0, u0) ∈ Π and the proof is complete. �
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In the following, we present the sufficiency ofwell-posedness in generalized sense
of (CVIP).

Theorem 4 Suppose the curvilinear integral functional F is monotone and hemi-
continuous on the nonempty compact set A ×U. Then (CVIP) is well-posed in gen-
eralized sense if there exists ι > 0 such that Πι is a nonempty bounded set.

Proof Let ι > 0 such that Πι is a nonempty and bounded set. Let {(an, un)} be an
approximating sequence of (CVIP). Then, there exists a sequence of positive real
numbers ιn → 0 such that the following inequality

∫
Ξ

[(b(s) − an(s))
∂ fμ
∂a

(χan ,un (s)) + (w(s) − un(s))
∂ fμ
∂u

(χan ,un (s))

+Dκ(b(s) − an(s))
∂ fμ
∂aκ

(χan ,un (s))

+ 1

n(α, β)
D2

αβ(b(s) − an(s))
∂ fμ
∂aαβ

(χan ,un (s))]dsμ + ιn ≥ 0, ∀(b,w) ∈ A ×U

holds, which implies that (an, un) ∈ Πι, ∀n > m (seem as a positive integer depend-
ing on ι). Therefore, {(an, un)} is a bounded sequence having a convergent subse-
quence {(ank , unk )} which weakly converges to (a0, u0) as k → ∞. Proceeding in
the similar lines of the proof of Theorem3, we get (a0, u0) ∈ Π and the proof is
complete. �

5 Conclusions

In this chapter, by considering the concepts of monotonicity, pseudomonotonicity,
and hemicontinuity associatedwith path-independent curvilinear integral functionals
governed by second-order partial derivatives, we have analyzed the well-posedness
and well-posedness in generalized sense for a new class of controlled variational
inequality problems, named (CVIP). We have proved that, under suitable conditions,
the well-posedness of (CVIP) is characterized in terms of existence and uniqueness
of solution, and the well-posedness in generalized sense is insured by assuming the
boundedness of approximating solution set. Moreover, in order to support the math-
ematical development, some illustrative examples have been formulated throughout
the chapter.
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16. S. Treanţă, A necessary and sufficient condition of optimality for a class of multidimensional
control problems. Optim. Control Appl. Meth. 41, 2137–2148 (2020)
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19. S. Treanţă, Some results on (ρ, b, d)-variational inequalities. J.Math. Ineq. 14, 805–818 (2020)
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On the Coupled System of Tempered
Fractional Differential Equations with
Anti-periodic Boundary Conditions

Mohamed I. Abbas

Abstract In this chapter, we are concerned with the existence and uniqueness of
solutions for a coupled system of tempered fractional differential equations (TFDEs)
with anti-periodic boundary conditions. The main tools in this investigation are the
Leray-Schauder alternative and the Banach fixed point theorem. Two examples are
given to illustrate the main results.

1 Introduction

Fractional calculus has been strongly employed to model a huge variety of problems
in physics, biology, chemistry, finance, and other dynamical processes in complex
systems, e.g., [18, 19] and the references therein.

Tempered fractional calculus (TFC) is a generalization of classical fractional
calculus by multiplying the initial kernel by the term exp−λt for a real number
λ ≥ 0. The associated model of the TFC has been qualified clearly in [17, 22]. At the
same time, much of the survey has concentrated on numerical techniques to study
tempered fractional models, e.g., [2, 10, 11, 14, 26] and several authors have been
exposed to many different models of TFC, e.g., [1, 16, 24].

In [12], Fernandez et al. studied some useful analytic features of TFC. In [25],
Zaky discussed the existence, uniqueness, and stability analysis of the solutions of
nonlinear TFDEs, then the author improved and analyzed a singularity preserving
spectral collocation technique for the numerical solutions of the proposed equations.
On the other hand, by using fixed point theorems, the existence and uniqueness of
solutions to differential/integral equations involving fractional operatorswere studied
by a huge number of researchers. For instance, see [3–9, 20].
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So as to enrich the research of the TFC field, in this chapter, we consider the
following coupled system of TFDEs accompanied by anti-periodic boundary condi-
tions: ⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

C
0D

(α,λ)
ς ζ(ς) = Φ(ς, ζ(ς), ξ(ς)), ς ∈ [0, b],

C
0D

(β,ν)
ς ξ(ς) = 
(ς, ζ(ς), ξ(ς)), ς ∈ [0, b],

ζ(0) + ζ(b) = 0,

ξ(0) + ξ(b) = 0,

(1)

where λ, ν ≥ 0 are real numbers,Φ,
 : [0, b] × R
2 → R are continuous functions,

and C
0D

(α,λ)
ς , C

0D
(β,ν)
ς are the Caputo tempered fractional derivative of order α, β ∈

(0, 1) given in the following definition:

Definition 1 ([17, 23]) For n − 1 < α < 1, n ∈ N
+, λ ≥ 0. The Caputo tempered

fractional derivative is defined as

C
0D

(α,λ)
ς y(ς) = e−λς C

0D
α
ς (eλς y(ς)) = e−λς

Γ (n − α)

ς∫

0

1

(ς − s)α−n+1
dn(eλs y(s))

dsn
ds,

(2)
where C

0D
α
ς (eλς y(ς)) is the Caputo fractional derivative [15, 21]

C
0D

α
ς (eλς y(ς)) = 1

Γ (n − α)

ς∫

0

1

(ς − s)α−n+1

dn(eλs y(s))

dsn
ds. (3)

2 An Auxiliary Lemma

In this section, we shall provide a helpful lemma of the coupled system (1).

Lemma 1 (Lemma 3.2 [17]) Let h(ς, ζ ) be a continuous function. The function
ζ(ς) is a solution of the Cauchy problem

{
C
0D

(α,λ)
ς ζ(ς) = h(ς, ζ(ς)), ς ∈ [0, b], α ∈ (0, 1), λ ≥ 0,

ζ(0) = ζ0,
(4)

if and only if it satisfies the integral equation

ζ(ς) = ζ0 e
−λς + 1

Γ (α)

∫ ς

0
e−λ(ς−s)(ς − s)α−1h(s, ζ(s)) ds. (5)

Lemma 2 Let φ,ψ ∈ C([0, b],R). Then, the unique solution of the coupled system
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⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

C
0D

(α,λ)
ς ζ(ς) = φ(ς), ς ∈ [0, b], α ∈ (0, 1), λ ≥ 0,

C
0D

(β,ν)
ς ξ(t) = ψ(ς), ς ∈ [0, b], β ∈ (0, 1), ν ≥ 0,

ζ(0) + ζ(b) = 0,

ξ(0) + ξ(b) = 0,

(6)

is equivalent to the integral equations

ζ(ς) = 1

Γ (α)

∫ ς

0
e−λ(ς−s)(ς − s)α−1φ(s)ds − e−λς

(1 + e−λb)Γ (α)

∫ b

0
e−λ(b−s)(b − s)α−1φ(s)ds,

(7)
and

ξ(ς) = 1

Γ (β)

∫ ς

0
e−ν(ς−s)(ς − s)β−1ψ(s)ds − e−νς

(1 + e−νb)Γ (β)

∫ b

0
e−ν(b−s)(b − s)β−1ψ(s)ds.

(8)

Proof If ζ(ς) is a solution of (7), then from (7), one has

ζ(0) = −1

(1 + e−λb)Γ (α)

∫ b

0
e−λ(b−s)(b − s)α−1φ(s)ds, (9)

and

ζ(b) = 1

(1 + e−λb)Γ (α)

∫ b

0
e−λ(b−s)(b − s)α−1φ(s)ds, (10)

which prove that ζ(0) + ζ(b) = 0. Applying the Caputo tempered fractional deriva-
tive C

0D
(α,λ)
ς on both sides of Eq. (7) yields the first equation of (6). Therefore, ζ is

a solution of the first equation of (6) with the boundary condition ζ(0) + ζ(b) = 0.
Conversely, if ζ is a solution of the first equation of (6), then by Lemma 1, we

obtain

ζ(ς) = ζ(0)e−λς + 1

Γ (α)

∫ ς

0
e−λ(ς−s)(ς − s)α−1φ(s)ds. (11)

Taking ς = b in the Eq. (11), we get

ζ(b) = ζ(0)e−λb + 1

Γ (α)

∫ b

0
e−λ(b−s)(b − s)α−1φ(s)ds. (12)

Thus, the boundary condition ζ(0) + ζ(b) = 0 gives

ζ(0) = e−λb + −1

(1 + e−λb)Γ (α)

∫ b

0
e−λ(b−s)(b − s)α−1φ(s)ds. (13)

Hence, by the substitution the value of ζ(0) in Eq. (11), we get the integral equation
(7). The proof is finished.
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3 Main Results

Consider the space U = {ζ(ς) : ζ(ς) ∈ C([0, b],R)} with the norm ‖ζ‖U =
maxς∈[0,b] |u(ς)|. It is clear that (U, ‖ · ‖U) is a Banach space. Also let V = {ξ(ς) :
ξ(ς) ∈ C([0, b],R)} endowed with the norm ‖ξ‖V = maxt∈[0,b] |ξ(t)|. The product
space (U × V, ‖(ζ, ξ)‖U×V) is also a Banach space with the norm ‖(ζ, ξ)‖U×V =
‖ζ‖U + ‖ξ‖V.

Define the operator T : U × V → U × V by

T (ζ, ξ)(ς) =
(
T1(ζ, ξ)(ς)

T2(ζ, ξ)(ς),

)

where

T1(ζ, ξ)(ς) = 1

Γ (α)

∫ ς

0
e−λ(ς−s)(ς − s)α−1Φ(s, ζ(s), ξ(s))ds

− e−λς

(1 + e−λb)Γ (α)

∫ b

0
e−λ(b−s)(b − s)α−1Φ(s, ζ(s), ξ(s))ds,

(14)

and

T2(ζ, ξ)(ς) = 1

Γ (β)

∫ ς

0
e−ν(ς−s)(ς − s)β−1
(s, ζ(s), ξ(s)) ds

− e−νt

(1 + e−νb)Γ (β)

∫ b

0
e−ν(b−s)(b − s)β−1
(s, ζ(s), ξ(s)) ds.

(15)

Lemma 3 (Leray-Schauder alternative [13]) Let T : E → E be a completely con-
tinuous operator, i.e., T is continuous and maps any bounded subset of D ⊂ E into
a relatively compact subset. Consider the set

V (T ) = {x ∈ E : x = μT (x), for some 0 < μ < 1}.

Then, either the set V (T ) is unbounded or T has at least one fixed point.

Theorem 1 Assume that

(H1) Φ,
 : [0, b] × R
2 → R are continuous functions and there exist real con-

stants ki , li ≥ 0, i = 1, 2 and k0 > 0, l0 > 0 such that ∀ζi , ξi ∈ R, i = 1, 2,

|Φ(s, ζ, ξ)| ≤ k0 + k1|ζ | + k2|ξ |, |
(s, u, v)| ≤ l0 + l1|ζ | + l2|ξ |.

Then, the coupled system (1) possesses at least one solution on [0, b].
Proof First we show that the operator T : U × V → U × V is completely contin-
uous. By the continuity of functions Φ and 
, the operator T is continuous.
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Let K ∈ U × V be bounded. Then, there exist constants L1 > 0, L2 > 0 such
that |Φ(t, ζ(ς), ξ(ς))| ≤ L1 and |
(t, ζ(ς), ξ(ς))| ≤ L2. Then, for any (ζ, ξ) ∈
K , one has

|T1(ζ, ξ)(ς)| ≤
∣
∣
∣
∣

1

Γ (α)

∫ ς

0
e−λ(ς−s)(ς − s)α−1Φ(s, ζ(s), ξ(s)) ds

∣
∣
∣
∣

+
∣
∣
∣
∣

e−λς

(1 + e−λb)Γ (α)

∫ b

0
e−λ(b−s)(b − s)α−1Φ(s, ζ(s), ξ(s)) ds

∣
∣
∣
∣

≤ 1

Γ (α)

∫ ς

0
eλs(ς − s)α−1|Φ(s, ζ(s), ξ(s))| ds

+
∣
∣
∣
∣

e−λb

1 + e−λb

∣
∣
∣
∣

1

Γ (α)

∫ b

0
eλs(b − s)α−1|Φ(s, ζ(s), ξ(s))| ds

≤ 2eλbbαL1

Γ (α + 1)
.

Thus,

‖T1(ζ, ξ)(ς)‖U ≤ 2eλbbαL1

Γ (α + 1)
. (16)

Similarly, we get

‖T2(ζ, ξ)(ς)‖V ≤ 2eνbbβL2

Γ (β + 1)
. (17)

From inequalities (16), (17), we conclude that the operatorT is uniformly bounded.
Next, we show that the operator T is equicontinuous. For ς1, ς2 ∈ [0, b] with ς1 <

ς2, one has

|T1(ζ, ξ)(ς2) − T1(ζ, ξ)(ς1)| ≤
∣
∣
∣
∣

1

Γ (α)

∫ ς2

0
e−λ(ς2−s)(ς2 − s)α−1Φ(s, ζ(s), ξ(s)) ds

− e−λς2

(1 + e−λb)Γ (α)

∫ b

0
e−λ(b−s)(b − s)α−1Φ(s, ζ(s), ξ(s)) ds

− 1

Γ (α)

∫ ς1

0
e−λ(ς1−s)(ς1 − s)α−1Φ(s, ζ(s), ξ(s)) ds

+ e−λς1

(1 + e−λb)Γ (α)

∫ b

0
e−λ(b−s)(b − s)α−1Φ(s, ζ(s), ξ(s)) ds

∣
∣
∣
∣
∣
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≤
∣
∣
∣
∣

1

Γ (α)

∫ ς1

0

(
e−λ(ς2−s)(ς2 − s)α−1 − e−λ(ς1−s)(ς1 − s)α−1

)
Φ(s, ζ(s), ξ(s)) ds

+ 1

Γ (α)

∫ ς2

ς1

e−λ(ς2−s)(ς2 − s)α−1Φ(s, ζ(s), ξ(s)) ds

∣
∣
∣
∣

+
∣
∣
∣
∣
e−λς1 − e−λς2

(1 + e−λb)Γ (α)

∫ b

0
e−λ(b−s)(b − s)α−1Φ(s, ζ(s), ξ(s)) ds

∣
∣
∣
∣

≤ eλbL1

Γ (α)

∫ ς1

0

(
(ς2 − s)α−1 − (ς1 − s)α−1) ds

+ eλbL1

Γ (α)

∫ ς2

ς1

(ς2 − s)α−1ds + eλbL1

Γ (α)
(e−λς1 − e−λς2)

∫ b

0
(b − s)α−1ds

= eλbL1

Γ (α + 1)

(
(ςα

1 − ςα
2 ) − (e−λς1 − e−λς2)bα

) → 0,

independent of (ζ, ξ) ∈ K as ς2 − ς1 → 0. Also

|T2(ζ, ξ)(ς2) − T2(ζ, ξ)(ς1)| ≤ eνbL2
Γ (β + 1)

(
(ς

β
1 − ς

β
2 ) − (e−νς1 − e−νς2 )bβ

)
→ 0,

independent of (ζ, ξ) ∈ K as ς2 − ς1 → 0. Analogously, we get

|T1(ζ, ξ)(ς2) − T1(ζ, ξ)(ς1)| → 0, |T2(ζ, ξ)(ς2) − T2(ζ, ξ)(ς1)| → 0,

independent of (ζ, ξ) ∈ K as ς2 − ς1 → 0. This shows that the operator T is
equicontinuous. By Arzelà-Ascoli’s theorem, we infer that T is completely con-
tinuous.

Finally, we show that the set

V = {(ζ, ξ) ∈ U × V : (ζ, ξ) = μT (ζ, ξ), 0 < μ < 1}

is bounded.
Let (ζ, ξ) ∈ V , then (ζ, ξ) = μT (ζ, ξ). For any ς ∈ [0, b], one has

ζ(ς) = μT1(ζ, ξ)(ς), ξ(ς) = μT2(ζ, ξ)(ς).

Then we have

|ζ(ς)| = |μT1(ζ, ξ)(ς)| ≤ |T1(ζ, ξ)(ς)|
≤ 2eλbbα

Γ (α + 1)
(k0 + k1|ζ | + k2|ξ |),

and



On the Coupled System of Tempered Fractional Differential … 219

|ξ(ς)| = |μT2(ζ, ξ)(ς)| ≤ |T2(ζ, ξ)(ς)|
≤ 2eνbbβ

Γ (β + 1)
(l0 + l1|ζ | + l2|ξ |).

Hence, we get

‖ζ‖U ≤ 2eλbbα

Γ (α + 1)
(k0 + k1‖ζ‖U + k2‖ξ‖V),

‖ξ‖V ≤ 2eνbbβ

Γ (β + 1)
(l0 + l1‖ζ‖U + l2‖ξ‖V),

which imply that

‖ζ‖U + ‖ξ‖V ≤ (Λ0 + Λ1‖ζ‖U + Λ2‖ξ‖V),

where

Λ0 = 2eλbbα

Γ (α + 1)
k0 + 2eνbbβ

Γ (β + 1)
l0,

Λ1 = 2eλbbα

Γ (α + 1)
k1 + 2eνbbβ

Γ (β + 1)
l1,

Λ2 = 2eλbbα

Γ (α + 1)
k2 + 2eνbbβ

Γ (β + 1)
l2. (18)

Consequently, we get

‖(ζ, ξ)‖U×V ≤ Λ0

Λ
, Λ = min{1 − Λ1, 1 − Λ2}. (19)

Therefore, the set V is bounded. Hence, by Lemma 3, the operator T possesses
at least one fixed point which is a solution of the coupled system (1). The proof is
finished.

Theorem 2 Let Φ,
 : [0, b] × R
2 → R be continuous functions satisfying the fol-

lowing Lipschitz condition:

(H2) |Φ(ς, ζ1, ξ1) − Φ(ς, ζ2, ξ2)| ≤ LΦ(|ζ1 − ζ2| + |ξ1 − ξ2|),

|
(ς, ζ1, ξ1) − 
(ς, ζ2, ξ2)| ≤ L
(|ζ1 − ζ2| + |ξ1 − ξ2|),

LΦ, L
 > 0, ∀ς ∈ [0, b], ζi , ξi ∈ R, i = 1, 2.

Then, the coupled system (1) has a unique solution on [0, b] provided that

(
2eλbbαLΦ

Γ (α + 1)
+ 2eνbbβL


Γ (β + 1)

)

< 1. (20)



220 M. I. Abbas

Proof Let us set MΦ = maxς∈[0,b] |Φ(ς, 0, 0)| < ∞ and M
 =
maxς∈[0,b] |
(ς, 0, 0)| < ∞ and define

r ≥ max

⎧
⎨

⎩

2eλbbαMΦ

Γ (α+1)

1
2 − 2eλbbαLΦ

Γ (α+1)

,

2eνbbβ M


Γ (β+1)

1
2 − 2eνbbβ L


Γ (β+1)

⎫
⎬

⎭
,

with
2eλbbαLΦ

Γ (α + 1)
<

1

2
,

2eνbbβL


Γ (β + 1)
<

1

2
.

We first show that T Br ⊂ Br , where

Br = {(ζ, ξ) ∈ U × V : ‖(ζ, ξ)‖U×V ≤ r}.

For (ζ, ξ) ∈ Br , ς ∈ [0, b], we get

|T1(ζ, ξ)(ς)| ≤
∣
∣
∣
∣

1

Γ (α)

∫ ς

0
e−λ(ς−s)(ς − s)α−1Φ(s, ζ(s), ξ(s)) ds

∣
∣
∣
∣

+
∣
∣
∣
∣

e−λς

(1 + e−λb)Γ (α)

∫ b

0
e−λ(b−s)(b − s)α−1Φ(s, ζ(s), ξ(s))ds

∣
∣
∣
∣

≤ 1

Γ (α)

∫ ς

0
eλs(ς − s)α−1(|Φ(s, ζ(s), ξ(s)) − Φ(s, 0, 0)| + |Φ(s, 0, 0)|)ds

+
∣
∣
∣
∣

e−λb

1 + e−λb

∣
∣
∣
∣

1

Γ (α)

∫ b

0
eλs(b − s)α−1(|Φ(s, ζ(s), ξ(s)) − Φ(s, 0, 0)| + |Φ(s, 0, 0)|)ds

≤ 2eλbbα

Γ (α + 1)
(LΦ(‖ζ‖U + ‖ξ‖V) + MΦ)

≤ 2eλbbα

Γ (α + 1)
(LΦ‖(ζ, ξ)‖U×V + MΦ)

≤ 2eλbbα

Γ (α + 1)
(LΦ r + MΦ).

Thus,

‖T1(ζ, ξ)‖U ≤ 2eλbbα

Γ (α + 1)
(LΦ r + MΦ) ≤ r

2
. (21)

Similarly, we get

‖T2(ζ, ξ)‖V ≤ 2eνbbβ

Γ (β + 1)
(L
 r + M
) ≤ r

2
. (22)

From (21) to (22), it follows that ‖T (ζ, ξ)‖U×V ≤ r , which proves thatT Br ⊂ Br .
For ζi , ξi ∈ Br , i = 1, 2 and for each ς ∈ [0, b], one has
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|T1(ζ1, ξ1)(ς) − T1(ζ2, ξ2)(ς)|

≤
∣
∣
∣
∣

1

Γ (α)

∫ ς

0
e−λ(ς−s)(ς − s)α−1(Φ(s, ζ1(s), ξ1(s) − Φ(s, ζ2(s), ξ2(s))ds

∣
∣
∣
∣

+
∣
∣
∣
∣

e−λς

(1 + e−λb)Γ (α)

∫ b

0
e−λ(b−s)(b − s)α−1(Φ(s, ζ1(s), ξ1(s) − Φ(s, ζ2(s), ξ2(s))ds

∣
∣
∣
∣

≤ 2eλbbαLΦ

Γ (α + 1)
(‖ζ1 − ζ2‖ + ‖ξ1 − ξ2‖).

This gives

‖T1(ζ1, ξ1) − T1(ζ2, ξ2)‖U ≤ 2eλbbαLΦ

Γ (α + 1)
(‖ζ1 − η2‖U + ‖ξ1 − ξ2‖V).

Also, in a similar way, we get

‖T2(ζ1, ξ1) − T2(ζ2, ξ2)‖V ≤ 2eνbbβL


Γ (β + 1)
(‖ζ1 − ζ2‖U + ‖ξ1 − ξ2‖V).

Consequently, we get

‖T (ζ1, ξ1) − T (ζ2, ξ2)‖U×V ≤
(
2eλbbαLΦ

Γ (α + 1)
+ 2eνbbβ L


Γ (β + 1)

)

(‖ζ1 − ζ2‖U + ‖ξ1 − ξ2‖V).

In view of the condition (20), we deduce that the operatorT is a contraction. Hence,
by virtue of Banach’s fixed point theorem, the operator T has a unique fixed point
which corresponds to the unique solution of the coupled system (1). This completes
the proof.

4 Examples

Example 1 Consider the following coupled system of TFDEs

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

C D( 1
3 ,1)ζ(ς) = e−3ς

75+ς
(sin(ζ(ς)) + |ξ(ς)|) + e−ς

1+ς2 , ς ∈ [0, 1],
C D( 1

4 ,2)ξ(ς) = 1
2ς2+100

(
|ζ(ς)|

1+|ζ(ς)| + sin(ξ(ς))
)

+ sin ς + 1,

ζ(0) + ζ(1) = 0,

ξ(0) + ξ(1) = 0.

(23)

Here,α= 1
3 , β = 1

4 , λ = 1, ν = 2, b = 1,Φ(ς, ζ, ξ) = e−3ς

75+ς
(sin(ζ(ς)) + |ξ(ς)|) +

e−ς

1+ς2 and 
(ς, ζ, ξ) = 1
2ς2+100

(
|ζ(ς)|

1+|ζ(ς)| + sin(ξ(ς))
)

+ sin ς + 1.

We have
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|Φ(ς, ζ1, ξ1) − Φ(ς, ζ2, ξ2)| ≤ 1

75
(|ζ1(ς) − ζ2(ς)| + |ξ1(ς) − ξ2(ς)|),

|
(ς, ζ1, ξ1) − 
(ς, ζ2, ξ2)| ≤ 1

100
(|ζ1(ς) − ζ2(ς)| + |ξ1(ς) − ξ2(ς)|),

from which, we get LΦ = 1
75 and L
 = 1

100 .
Using the given data, the condition (20) becomes

(
2eλbbαLΦ

Γ (α + 1)
+ 2eνbbβL


Γ (β + 1)

)

= 2e

75Γ
(
4
3

) + 2e2

100Γ
(
5
4

) ≈ 0.244216 < 1.

Further,

(
2eλbbαLΦ

Γ (α + 1)

)

≈ 0.0811748 <
1

2
,

(
2eνbbβL |psi
Γ (β + 1)

)

≈ 0.163041 <
1

2
.

Thus, all the conditions of Theorem 2 hold true. Hence, it follows by the conclusion
of Theorem 2 that there exists a unique solution for the coupled system (23) on [0, 1].
Example 2 Consider the following coupled system

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

C D( 1
3 ,1)ζ(ς) = 1√

625+ς
cos ς + e−ς

200 sin(ζ(ς)) + 1
300

ξ(ς)|ζ(ς)|
1+|ζ(ς)| , ς ∈ [0, 1],

C D( 1
4 ,2)ξ(ς) = e−2ς

2
√
1600+ς

+ 1
270 sin(ζ(ς)) + 1

3(60+ς)
sin(ξ(ς)),

ζ(0) + ζ(1) = 0,

ξ(0) + ξ(1) = 0.
(24)

Obviously,

|Φ(ς, ζ(ς), ξ(ς))| ≤ 1

25
+ 1

200
‖ζ‖ + 1

300
‖ξ‖,

|
(ς, ζ(ς), ξ(ς))| ≤ 1

80
+ 1

270
‖ζ‖ + 1

180
‖ξ‖.

Thus k0 = 1
25 , k1 = 1

200 , k2 = 1
300 , l0 = 1

80 , l1 = 1
270 , l2 = 1

180 .
Using (18) and (19), we find that

Λ0 = 2e

25Γ (4/3)
+ 2e2

80Γ (5/4)
= 0.4473264167,

Λ1 = 2e

200Γ (4/3)
+ 2e2

270Γ (5/4)
= 0.09082628542,

Λ2 = 2e

300Γ (4/3)
+ 2e2

180Γ (5/4)
= 0.2935157814,
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and Λ = min{0.9091737146, 0.7064842186} = 0.7064842186.
Therefore, ‖(u, v)‖U×V ≤ Λ0

Λ
= 0.6331725535. Thus, the assumptions of

Theorem 1 hold true. Hence, there exists a solution for the system (24) on [0, 1].

Conclusions

A coupled system of nonlinear TFDEs with anti-periodic boundary conditions is
investigated. The existence and uniqueness theorems for the proposed system are
established by using Leray-Schauder alternative and Banach’s fixed point theorem.
At the end of this work, we present two examples in order to verify the obtained
theoretical results.
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8. P. Debnath, Z. Mitrović, S.Y. Cho, Common fixed points of Kannan, Chatterjea and Reich type
pairs of self-maps in a complete metric space, Paulo. J. Math. Sci. 15, 383–391 (2021)

9. P. Debnath, Optimization through best proximity points for multivalued F-contractions.
Miskolc Math. Notes 22(1), 143–151 (2021)

10. W.H. Deng, Z.J. Zhang, Numerical schemes of the time tempered fractional Feynman-Kac
equation. Comput. Math. with Appl. 73, 1063–1076 (2017)

11. H. Ding, C. Li, A high-order algorithm for time-caputo-tempered partial differential equation
with Riesz derivatives in two spatial dimensions. J. Sci. Comput. 80, 81–109 (2019)
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Application of Measure
of Noncompactness on the Infinite
System of Hadamard Fractional Integral
Equations

Anupam Das and Bipan Hazarika

Abstract In this chapter, Darbo’s fixed point theorem (DFPT) is applied to check
the existence of solution of infinite system of Hadamard fractional integral equations
in C (Z , c0) , C (Z , �1) and C (Z , �α

p), where Z = [1, τ ]. Also justify the results
with the help of an example.

Keywords Fractional integral equation (FIE) · Measure of noncompactness
(MNC) · Darbo’s fixed point theorem
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1 Introduction

Fractional calculus play a vital role to study the applications of integral and differen-
tial equations in the field of mathematical analysis. The different types of fractional
integral equations were studied with the help of fixed point theorems. For solving
different types of integral and differential equations for overcoming of different real
life problems, numerous researchers have applied fixed point theorem connecting
measure of noncompactness (see [2, 8, 9, 13–17, 19, 23]). Schauder and Darbo’s
fixed point theorems play a significant role for solving functional integral equations.

In this chapter, we use the concept of MNC to check the existence of solutions of
infinite system Hadamard fractional integral equations. Also, verify our main results
with the help of examples. Throughout the chapter, we consider

• (T, ‖ . ‖) is a real Banach space.
• B(γ, δ) is a closed ball in T with radius δ and centered at γ.
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• ¯A and ConvA is the closure and convex closure ofA , respectively, whereA ( �=
∅) ⊂ T.

• KT is the family of all nonempty and bounded subsets of T.

• LT is the subfamily consisting of all relatively compact sets.

Definition 1 [3] A function ϕ : KT → [0,∞) is called a MNC in T if the following
conditions hold:

(i) ϕ(H ) = 0 =⇒ H is precompact, for allH ∈ KT.

(ii) the family ker ϕ = {H ∈ KT : ϕ (H ) = 0} is nonempty and ker ϕ ⊂ LT.

(iii) H ⊆ J =⇒ ϕ (H ) ≤ ϕ
(
J
)
.

(iv) ϕ
(
H̄
) = ϕ (H ) .

(v) ϕ (ConvH ) = ϕ (H ) .

(vi) ϕ
(
βH + (1 − β)J

) ≤ βϕ (H ) + (1 − β) ϕ
(
J
)
for β ∈ [0, 1] .

(vii) if Hn ∈ KT, Hn = H̄n, Hn+1 ⊂ Hn for n = 1, 2, 3, . . . and lim
n→∞ ϕ (Hn) =

0 then
⋂∞

n=1 Hn �= φ.

The family kerϕ is said to be the kernel of measure ϕ. It is clear that the intersection
setH∞ from (vii) is a member of the family kerϕ. In fact, ϕ(H∞) ≤ ϕ(Hn) for any
n, we infer that ϕ(H∞) = 0. This gives H∞ ∈ kerϕ.

For a bounded subset S of a metric space X, the Kuratowski measure of non-
compactness is defined as [10]

ξ (S ) = inf

{

δ > 0 : S =
n⋃

i=1

Si , diam (Si ) ≤ δ f or 1 ≤ i ≤ n ≤ ∞
}

,

where diam (Si ) denotes the diameter of the set Si , that is,

diam (Si ) = sup {d(x, y) : x, y ∈ Si } .

The Hausdorff measure of noncompactness for a bounded set S is defined as

ζ (S ) = inf {ε > 0 : S has finite ε − net in X} .

The Hausdorff measure of noncompactness ζ for the Banach space
(
c0, ‖ . ‖c0

)

is defined as (see [3]):

ζc0

(
D̂
)

= lim
n→∞

[

sup
u∈D̂

(
max
k≥n

| uk |
)]

, (1)

where u = (ui )
∞
i=1 ∈ c0 and D̂ ∈ Mc0 .

The Hausdorff measure of noncompactness ζ , in the Banach space
(
�1, ‖ . ‖�1

)
is

defined as (see [3])
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ζ�1

(
D̂
)

= lim
n→∞

[

sup
u∈D̂

( ∞∑

k=n

| uk |
)]

, (2)

where u = (ui )
∞
i=1 ∈ �1 and D̂ ∈ M�1 .

Denote C (Z , c0), Z = [a, τ ], a ≥ 0, τ > 0 is the space of all continuous func-
tions on Z with values in c0. Also, C (Z , c0) becomes a Banach space with norm
‖ x(t) ‖C (Z ,c0)= sup

{‖ x(t) ‖c0 : t ∈ Z
}
, where x(t) ∈ C (Z , c0).

If F̂ is any nonempty bounded subset of C (Z , c0) and t ∈ Z , let F̂ (t) ={
x(t) : x ∈ F̂

}
. Now, using (1), we conclude that the Housdorff measure of non-

compactness for F̂ ⊂ C (Z , c0) can be defined by

ζC (Z ,c0)(F̂ ) = sup
{
ζc0(F̂ (t)) : t ∈ Z

}
.

Similarly, C (Z , �1) denotes the space of all continuous functions defined on Z
with values in �1. Also, C (Z , �1) is a Banach space with the norm

‖ x(t) ‖C (Z ,�1)= sup
{‖ x(t) ‖�1 : t ∈ Z

}
,

where x(t) ∈ C (Z , �1).

Now, using (2), we conclude that the Housdorff measure of noncompactness for
F̂ ⊂ C (Z , �1) can be defined by

ζC (Z ,�1)(F̂ ) = sup
{
ζ�1(F̂ (t)) : t ∈ Z

}
.

Banaś andKrajewska [4] introduced tempered sequence spaces considering afixed
positive nonincreasing real sequence α = (αi )

∞
i=1 called the tempering sequence.

Recently, Rebbani et al. [21] introduced the set B which consists of all real or

complex sequences y = (yi )∞i=1 such that the sequence
∞∑

i=1
α
p
i |yi |p < ∞, (1 ≤ p <

∞). Clearly, B is a linear space over the field of real (or complex) numbers and to
denote this space by B :≡ �α

p for 1 ≤ p < ∞.

It is easy to observe that �α
p for 1 ≤ p < ∞ is a Banach space with the norm

‖ y ‖�α
p
=
( ∞∑

i=1

α
p
i |yi |p

) 1
p

.

If we choose αi = 1 for all i ∈ N then �α
p = �p for 1 ≤ p < ∞.

The Hausdorff MNC ζ�α
p
for a nonempty bounded set Bα is given by (see [21])
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ζ�α
p
(Bα) = lim

n→∞

⎡

⎣ sup
y∈Bα

(
∑

k≥n

α
p
k | yk |p

) 1
p

⎤

⎦ . (3)

Let us denote C (Z , �α
p) be the space of all continuous functions on Z = [a, τ ], a ≥

0, τ > 0 with the value on �α
p(1 ≤ p < ∞) and it is also a Banach space with the

norm
‖ y ‖C (Z ,�α

p)
= sup

t∈I
‖ y(t) ‖�α

p
,

where y(t) = (yi (t))
∞
i=1 ∈ C (Z , �α

p).

Let Eα be any nonempty bounded subset of C (Z , �α
p) and for t ∈ Z , Eα(t) =

{y(t) : y(t) ∈ Eα} . Thus, the measure of noncompactness for Eα ⊂ C (Z , �α
p) can

be defined by
ζC (Z ,�α

p)
(Eα) = sup

t∈Z
ζ�α

p
(Eα(t)) .

Definition 2 [3] Let X be a nonempty subset of a Banach space T and T : X → T
is a continuous operator transforming bounded subset of X to bounded ones. We
say that T satisfies the Darbo condition with a constant k with respect to measure ϕ

provided ϕ(TY) ≤ kϕ(H ) for each H ∈ KT such that H ⊂ X.

The following important theorems are used in our discussions:

Theorem 1 ([1, Schauder]) Let D be a nonempty, closed, and convex subset of a
Banach space T̄. Then every compact, continuous map T : D → D has at least one
fixed point.

Theorem 2 ([11, Darbo]) LetJ be a nonempty, bounded, closed and convex subset
of a Banach space T̄. Let T : J → J be a continuous mapping. Assume that there
is a constant k ∈ [0, 1) such that

ϕ(SM) ≤ kϕ(K), K ⊆ J .

Then, T has a fixed point.

2 Application of MNC on Infinite System of Hadamard
Fractional Integral Equations

Let t ∈ [0,∞) and Re(η) > 0. The Hadamard fractional integral of order η,

applied to the function f ∈ L p[a, b], 1 ≤ p < ∞, 0 < a < b < ∞, for t ∈ [a, b],
is defined by [12],

J η f (t) = 1

Γ (η)

∫ t

a

(
ln

(
t

ν

))η−1

f (ν)
dν

ν
.
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Therefore, we have

J η f (t) = 1

Γ (η)

∫ t

1

(
ln

(
t

ν

))η−1

f (ν)
dν

ν
, η > 0, t > 1.

In this part, the existence of the solution of the following system of fractional
integral equations are studied:

yn(t) = Θn

(

t, y(t),
∫ t

1

(
ln

(
t

ν

))η−1

βn(t, ν, y(ν))
dν

ν

)

, n ∈ N, (4)

where 0 < η < 1, t ∈ Z = [1, τ ], τ > 1, y(t) = (yn(t))
∞
n=1 ∈ E and E is aBanach

sequence space.

3 Existence of Solution on C (Z, c0)

Consider the following assumptions

(1) The functions Θn : Z × C (Z , c0) × R → R is continuous and satisfies

|Θn(t, y(t), l) − Θn(t, ȳ(t),m)| ≤ An(t) |yn(t) − ȳn(t)| + Bn(t) |l − m|

for y(t) = (yn(t))
∞
n=1 , ȳ(t) = (ȳn(t))

∞
n=1 ∈ C (Z , c0) and An, Bn : Z →

[0,∞) (n ∈ N) are continuous functions. Also,

Θ̄n = sup
{∣∣Θn

(
t, y0, 0

)∣∣ : t ∈ Z
}
,

where y0 = (y0n (t)
)∞
n=1 ∈ C (Z , c0) such that y0n (t) = 0 for all t ∈ Z , n ∈ N and

supn∈N Θ̄n = Θ̄, lim
n→∞ Θ̄n = 0.

(2) The functions βn : Z × Z × C (Z , c0) → R(n ∈ N) are continuous and there
exists

β̂ = sup {|βn(t, ν, y(ν))| : t, ν ∈ Z; n ∈ N; y(ν) ∈ C (Z , c0)} .

(3) Define an operator T from Z × C (Z , c0) × R to C (Z , c0) as follows:

(t, y(t)) → (T y)(t),

where

(T y)(t) =
(

Θn

(

t, y(t),
∫ t

1

(
ln

(
t

ν

))η−1

βn(t, ν, y(ν))
dν

ν

))∞

n=1

.
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(4) Let
sup
t∈Z

An(t) = Ân,

sup
t∈Z

Bn(t) = B̂n,

sup
n∈N

Ân = Â,

sup
n∈N

B̂n = B̂.

Also,
lim
n→∞ B̂n = 0

and
0 < Â < 1.

Let B = {y ∈ C (Z , c0) :‖ y ‖C (Z ,c0)≤ r
}
.

Theorem 3 If the conditions (1)–(4) are satisfied, then Eq. (4) has at least one
solution in C (Z , c0).

Proof For arbitrary fixed t ∈ Z ,

‖ y(t) ‖c0
= sup

n≥1

∣∣∣∣∣
Θn

(

t, y(t),
∫ t

1

(
ln

(
t

ν

))η−1

βn(t, ν, y(ν))
dν

ν

)∣∣∣∣∣

≤ sup
n≥1

∣∣
∣∣∣
Θn

(

t, y(t),
∫ t

1

(
ln

(
t

ν

))η−1

βn(t, ν, y(ν))
dν

ν

)

− Θn(t, y
0(t), 0)

∣∣
∣∣∣

+ sup
n≥1

∣∣Θn(t, y
0(t), 0)

∣∣

≤ sup
n≥1

[

An(t) |yn(t)| + Bn(t)

∣∣∣∣∣

∫ t

1

(
ln

(
t

ν

))η−1

βn(t, ν, y(ν))
dν

ν

∣∣∣∣∣

]

+ +Θ̄

≤ Â ‖ y(t) ‖c0 +B̂β̂

∫ t

1

(
ln

(
t

ν

))η−1 dν

ν
+ Θ̄

≤ Â ‖ y(t) ‖c0 + B̂β̂

η
(ln(T ) − ln(1))η + Θ̄.

Therefore,

(1 − Â) ‖ y(t) ‖c0≤
B̂β̂

α
(ln(T ))η + Θ̄
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implies

‖ y(t) ‖c0≤
ηΘ + B̂β̂ (ln(T ))η

η(1 − Â)
= r(say).

Hence, ‖ y ‖C (Z ,c0)≤ r.
Consider T : Z × B → B be a operator given by

(T y)(t) =
(

Θn

(

t, y(t),
∫ t

1

(
ln

(
t

ν

))η−1

βn(t, ν, y(ν))
dν

ν

))∞

n=1

= ((Tn y) (t))∞n=1 ,

where y(t) ∈ B, t ∈ Z .

By assumption (3),
lim
n→∞ (Tn y) (t) = 0

hence (T y) (t) ∈ C (Z , c0).
Again,

‖ T y ‖C (Z ,c0)≤ r

so T is self mapping on B.

Let ȳ(t) = (ȳn(t))
∞
n=1 ∈ B and ε > 0 such that ‖ y − ȳ ‖C (Z ,c0)<

ε

2 Â
= δ.Again

for arbitrary fixed t ∈ Z ,

|(Tn y) (t) − (Tn ȳ) (t)|

=
∣
∣∣
∣∣
Θn

(

t, y(t),
∫ t

1

(
ln

(
t

ν

))η−1

βn(t, ν, y(ν))
dν

ν

)

− Θn

(

t, ȳ(t),
∫ t

1

(
ln

(
t

ν

))η−1

βn(t, ν, ȳ(ν))
dν

ν

)∣∣∣
∣∣

≤ An(x) |yn(t) − ȳn(t)| + Bn(t)
∫ t

1

(
ln

(
t

ν

))η−1

|βn(t, ν, y(ν)) − βn(t, ν, ȳ(ν))| dν

ν
.

As functions βn are continuous for all n ∈ N so for ‖ y − ȳ ‖C (Z ,c0)<
ε

2 Â
= δ we

have for all n ∈ N,

|βn(x,w, z(w)) − βn(x,w, z̄(w))| <
ηε

2B̂(ln(T ))η
.

Therefore,

|(Tn y) (t) − (Tn ȳ) (t)|

≤ Â ‖ y − ȳ ‖C (Z ,c0) + B̂εη

2B̂(ln(T ))η
.
(ln(T ))η

η

< ε.

Therefore, ‖ T y − T ȳ ‖C (Z ,c0)< ε when ‖ y − ȳ ‖C (Z ,c0)< δ hence T is contin-
uous on B. Finally,
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ζc0 (T B)

= lim
n→∞ sup

y∈B
max
k≥n

∣
∣∣∣∣
Θn

(

t, y(t),
∫ t

1

(
ln

(
t

ν

))η−1

βn(t, ν, y(ν))
dν

ν

)∣∣∣∣∣

≤ lim
n→∞ sup

y∈B
max
k≥n

[

Â |yk(x)| + B̂k β̂ (ln(T ))η

η
+ Θ̄k

]

.

i.e.,
ζc0 (T B) ≤ Âζc0(B).

Therefore
ζC (Z ,c0) (T B) ≤ ÂζC (Z ,c0)(B).

Thus, by assumption (4) and Theorem 2, T has at least one fixed point in B ⊆
C (Z , c0). Hence, Eq. (4) has at least one solution in C (Z , c0). This completes the
proof.

Example 1

yn(t) = yn(t)

2 + n + t
+ 1

n2
(
1 + n2

)
∫ t

1

{
ln

(
t

ν

)}− 1
2

(1 + sin(yn(ν)))
dν

ν
, (5)

where t ∈ Z = [1, 2], n ∈ N.

Here,Θn(t, y(t), l) = yn(t)
2+n+t + l

1+n2 , βn(t, ν, y(ν)) = 1+sin(yn(ν)

n2 , η = 1
2 and τ =

2. It is obvious that Θn is continuous for all n ∈ N and

|Θn (t, y(t), l) − Θn (t, ȳ(t),m)|
≤ 1

2 + n + t
|yn(t) − ȳn(t)| + 1

1 + n2
|l − m| .

Also,

An(t) = 1

2 + n + t
, Ân = 1

3 + n
, Â = 1

4
,

Bn(t) = 1

1 + n2
, B̂n = 1

1 + n2
, lim
n→∞ B̂n = 0, B̂ = 1

2
,

Θ̂n = 0, Θ̂ = 0, lim
n→∞ Θ̂n = 0.

Again, the functions βn are continuous for all n ∈ N.

If y ∈ C (Z , c0) then as n → ∞ and for all t ∈ Z , we get

yn(t) → 0,
1

n2
(
1 + n2

)
∫ t

1

{
ln

(
t

ν

)}− 1
2

(1 + sin(yn(ν)))
dν

ν
→ 0.
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Therefore, assumption (3) is satisfied.
Thus, all the assumptions of Theorem 3 are satisfied. Hence, Eq. (5) has a solution

in C (Z , c0).

4 Existence of Solution on C (Z, �1)

We consider the following assumptions

(1) The function Θn : Z × C (Z , �1) × R → R is continuous and satisfies

|Θn(t, y(t), l) − Θn(t, ȳ(t),m)| ≤ Cn(t) |yn(t) − ȳn(t)| + Dn(t) |l − m|

for y(t) = (yn(t))
∞
n=1 , ȳ(t) = (ȳn(t))

∞
n=1 ∈ C (Z , �1) and Cn, Dn : Z →

[0,∞) (n ∈ N) are continuous functions. Also,

∞∑

n=1

∣
∣Θn

(
t, y0, 0

)∣∣

converges to zero for all t ∈ Z , where y0 = (y0n (t)
)∞
n=1 ∈ C (Z , �1) such that

y0n (t) = 0 for all t ∈ Z , n ∈ N.

(2) The functions βn : Z × Z × C (Z , �1) → R(n ∈ N) are continuous and there
exists

β̄k = sup

{
∑

n≥k

|βn(t, ν, y(ν))| t, ν ∈ Z; y(ν) ∈ C (Z , �1)

}

where n, k ∈ N. Also supk∈N β̄k = β̄ and lim
k→∞ β̄k = 0.

(3) Define an operator T from Z × C (Z , �1) × R to C (Z , �1) as follows:

(t, y(t)) → (T y)(t),

where

(T y)(t) =
(

Θn

(

t, y(t),
∫ t

1

(
ln

(
t

ν

))η−1

βn(t, ν, y(ν))
dν

ν

))∞

n=1

.

(4) Let
sup
t∈Z

Cn(t) = Ĉn,

sup
n∈N

Ĉn = Ĉ, 0 < Ĉ < 1.

Also, for all t ∈ Z ,
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∑

n≥1

Dn(t) ≤ D̂.

Let B1 = {y ∈ C (Z , �1) :‖ y ‖C (Z ,�1)≤ r̂
}
.

Theorem 4 Under the hypothesis (1)–(4), Eq. (4) has at least one solution in
C (Z , �1).

Proof For arbitrary t ∈ Z ,

‖ y(t) ‖�1

=
∑

n≥1

∣∣∣
∣∣
Θn

(

t, y(t),
∫ t

1

(
ln

(
t

ν

))η−1

βn(t, ν, y(ν))
dν

ν

)∣∣∣
∣∣

≤
∑

n≥1

∣
∣∣∣∣
Θn

(

t, y(t),
∫ t

1

(
ln

(
t

ν

))η−1

βn(t, ν, y(ν))
dν

ν

)

− Θn(t, y
0, 0)

∣
∣∣∣∣

+
∑

n≥1

∣∣Θn(t, y
0, 0)

∣∣

≤
∑

n≥1

[

Cn(t) |yn(t)| + Dn(t)

∣∣
∣∣∣

∫ t

1

(
ln

(
t

ν

))η−1

βn(t, ν, y(ν))
dν

τ

∣∣
∣∣∣

]

≤ Ĉ ‖ y(t) ‖�1 +D̂
∫ t

1

(
ln

(
t

ν

))η−1∑

n≥1

|βn(t, ν, y(ν))| dν

ν

≤ Ĉ ‖ y(t) ‖�1 +D̂β̄

∫ t

1

(
ln

(
t

ν

))η−1 dτ

ν

≤ Ĉ ‖ y(t) ‖�1 + D̂β̄

η
(ln(T ))η .

Therefore,

(1 − Ĉ) ‖ y(t) ‖�1≤
D̂β̄

η
(ln(T ))η

implies

‖ y(t) ‖�1≤
D̂β̄ (ln(T ))η

η(1 − Ĉ)
= r̂(say).

Hence, ‖ y ‖C (Z ,�1)≤ r̂ .
Consider T : Z × B1 → B1 be a operator given by

(T y)(t) =
(

Θn

(

t, y(t),
∫ t

1

(
ln

(
t

ν

))η−1

βn(t, ν, y(ν))
dν

ν

))∞

n=1

= ((Tn y) (t))∞n=1 ,

where y(t) ∈ B1, y ∈ I.
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By assumption (3), ∑

n≥1

|(Tn y) (t)|

is finite and unique hence (T y) (t) ∈ C (Z , �1). Again,

‖ T y ‖C (Z ,�1)≤ r̂

so T is self-mapping on B1.

Let ȳ(t) = (ȳn(t))
∞
n=1 ∈ B1 and ε > 0 such that ‖ y − ȳ ‖C (Z ,�1)<

ε

2Ĉ
= δ.Again

for arbitrary fixed x ∈ I,

|(Tn y) (t) − (Tn ȳ) (t)|

=
∣∣∣∣
∣
Θn

(

t, y(t),
∫ t

1

(
ln

(
t

ν

))η−1

βn(t, ν, y(ν))
dν

ν

)

− Θn

(

t, ȳ(t),
∫ t

1

(
ln

(
t

ν

))η−1

βn(t, ν, ȳ(ν))
dν

ν

)∣∣∣∣
∣

≤ Cn(t) |yn(t) − ȳn(t)| + Dn(t)
∫ t

1

(
ln

(
t

ν

))η−1

|βn(t, ν, y(ν)) − βn(t, ν, ȳ(ν))| dν

ν
.

As functions βn are continuous for all n ∈ N so for ‖ y − ȳ ‖C (Z ,�1)<
ε

2Ĉ
, we

have for all n ∈ N,

|βn(t, ν, y(ν)) − βn(t, ν, ȳ(ν))| <
ηε

2D̂(ln(T ))η
.

Therefore,

∑

n≥1

|(Tn y) (t) − (Tn ȳ) (t)|

≤ Ĉ
∑

n≥1

|yn(t) − ȳn(t)| + εη

2D̂(ln(T ))η
.
(ln(T ))η

η

∑

n≥1

Dn(t)

≤ Ĉ ‖ y − ȳ ‖C (Z ,�1) + ε

2D̂
.D̂

< ε.

Therefore, ‖ T y − T ȳ ‖C (Z ,�1)< ε when ‖ y − ȳ ‖C (Z ,�1)<
ε

2Ĉ
hence T is con-

tinuous on B1. Finally,

ζ�1 (T B1)

= lim
n→∞ sup

y∈B1

∑

k≥n

∣∣∣
∣∣
Θn

(

t, y(t),
∫ t

1

(
ln

(
t

ν

))η−1

βn(t, ν, y(τ ))
dν

ν

)∣∣∣
∣∣

≤ lim
n→∞ sup

y∈B1

∑

k≥n

[

Ĉ
∑

k≥n

|yk(t)| + β̄k D̂ (ln(T ))η

η

]

.
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i.e.,
ζ�1 (T B1) ≤ Ĉζ�1(B1).

Therefore,
ζC (Z ,�1) (T B1) ≤ ĈζC (Z ,�1)(B1).

Byassumption (4) andTheorem2, T has at least one fixed point in B1 ⊆ C (Z , �1).

Hence, Eq. (4) has at least one solution in C (Z , �1). This completes the proof.

Example 2

yn(t) = yn(t)

n3 + 3t
+ 1

n4

∫ t

1

(ln( t
ν
))− 1

2 cos (yn(ν))

νn4
dν

ν
, (6)

where t ∈ Z = [1, 2], n ∈ N.

Here, Θn(t, y(t), l) = yn(t)
n3+3t + l

n4 , βn(t, ν, y(ν)) = cos(yn(ν))

νn4 , η = 1
2 and τ = 2.

It is clear that Θn is continuous for all n ∈ N and

|Θn (t, y(t), l) − Θn (t, ȳ(t),m)|
≤ 1

n3 + 3t
|yn(t) − ȳn(t)| + 1

n4
|l − m| .

Also,

Cn(t) = 1

n3 + 3t
, Ĉn = 1

n3 + 3
, Ĉ = 1

4
< 1,

Dn(t) = 1

n4
,

∞∑

n=1

Dn(t) =
∞∑

n=1

1

n4
= π4

90
,

and ∞∑

n=1

∣∣Θn(t, y
0, 0)

∣∣ = 0.

Again, the functions βn are continuous for all n ∈ N and

∑

n≥k

|βn(t, τ, y(ν))| ≤
∑

n≥k

1

n4
≤ π4

90

which gives β̄ = π4

90 and lim
k→∞ β̄k = 0.

If z ∈ C (Z , �1) then
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∞∑

n=1

∣∣∣∣∣
yn(t)

n3 + 3t
+ 1

n4

∫ t

1

(ln( t
ν
))− 1

2 cos (yn(ν))

νn4
dν

ν

∣∣∣∣∣

≤ 1

n3 + 3t

∞∑

n=1

|yn(t)| +
∞∑

n=1

1

n8

∫ t

1
(ln(

t

τ
))−

1
2
dτ

τ

≤ 1

4
‖y‖C (Z ,�1)

+ 2(ln(T ))
1
2

∞∑

n=1

1

n8
.

Since
∑∞

n=1
1
n8 is convergent and ‖ y ‖C (Z ,�1) is finite and unique therefore

∞∑

n=1

∣∣∣∣∣
yn(t)

n3 + 3t
+ 1

n4

∫ t

1

(ln( t
τ
))− 1

2 cos (yn(ν))

νn4
dν

ν

∣∣∣∣∣

is convergent, hence assumption (3) is satisfied.
Thus, all the assumptions of Theorem 4 are satisfied. Hence, Eq. (6) has a solution

in C (Z , �1).

5 Existence of Solution in C (Z, �α
p)

We consider the following assumptions

(1) The function Θn : Z × C (Z , �α
p)) × R → R is continuous and satisfies

|Θn(t, y(t), l) − Θn(t, ȳ(t),m)|p ≤ Un(t) |yn(t) − ȳn(t)|p + Vn(t) |l − m|p

for y(t) = (yn(t))
∞
n=1 , ȳ(t) = (ȳn(t))

∞
n=1 ∈ C (Z , �α

p) and Un, Vn : Z →
[0,∞) (n ∈ N) are continuous functions. Also,

∞∑

n=1

α p
n

∣∣Θn
(
t, y0, 0

)∣∣p

converges to zero for all t ∈ Z , where y0 = (y0n (t)
)∞
n=1 ∈ C (Z , �α

p) such that
y0n (t) = 0 for all t ∈ Z , n ∈ N.

(2) The functions βn : Z × Z × C (Z , �α
p) → R(n ∈ N) are continuous and there

exists
Pn = sup

{|βn(t, ν, y(ν))| t, ν ∈ Z; y(ν) ∈ C (Z , �α
p)
}
,

for n ∈ N. Also supn∈N Pn = P̂ and lim
n→∞ Pn = 0.

(3) Define an operator T from Z × C (Z , �α
p)) to C (Z , �α

p)) as follows:
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(t, y(t)) → (T y)(t),

where

(T y)(t) =
(

Θn

(

t, y(t),
∫ t

1

(
ln

(
t

ν

))η−1

βn(t, ν, y(ν))
dν

ν

))∞

n=1

.

(4) Let
sup
t∈I

Un(t) = Ûn,

sup
n∈N

Ûn = Û , 0 < 21−
1
p Û

1
p < 1.

Also, for all t ∈ Z , ∑

n≥1

α p
n Vn(t) ≤ V̂ .

Let Bp,α =
{
y ∈ C (Z , �α

p) :‖ y ‖C (Z ,�α
p)
≤ r̂
}

.

Theorem 5 Under the hypothesis (1)–(4), Eq. (4) has at least one solution in
C (Z , �α

p).

Proof For arbitrary t ∈ Z ,

‖ y(t) ‖p
�α
p

=
∑

n≥1

α p
n

∣∣∣∣
∣
Θn

(

t, y(t),
∫ t

1

(
ln

(
t

ν

))η−1

βn(t, ν, y(ν))
dν

ν

)∣∣∣∣
∣

p

≤ 2p−1
∑

n≥1

α p
n

∣∣∣∣∣
Θn

(

t, y(t),
∫ t

1

(
ln

(
t

ν

))η−1

βn(t, ν, y(ν))
dν

ν

)

− Θn(t, y
0, 0)

∣∣∣∣∣

p

+ 2p−1
∑

n≥1

α p
n

∣
∣Θn(t, y

0, 0)
∣
∣p

≤ 2p−1
∑

n≥1

α p
n

[

Un(t) |yn(t)|p + Vn(t)

∣∣∣
∣∣

∫ t

1

(
ln

(
t

ν

))η−1

βn(t, ν, y(ν))
dν

ν

∣∣∣
∣∣

p]

≤ 2p−1Û ‖ y(t) ‖p
�α
p
+2p−1

∑

n≥1

α p
n Vn(t)

{∫ t

1

(
ln

(
t

ν

))η−1

|βn(t, ν, y(ν))| dν

ν

}p

≤ 2p−1Û ‖ y(t) ‖p
�α
p
+2p−1 P̂ p

∑

n≥1

[
α p
n Vn(t)

{
(ln(T ))η

η

}p]

≤ 2p−1Û ‖ y(t) ‖p
�α
p
+2p−1 P̂ p V̂

{
(ln(T ))η

η

}p

.
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Therefore,

(1 − 2p−1Û ) ‖ y(t) ‖p
�α
p
≤ 2p−1 P̂ p V̂

{
(ln(T ))η

η

}p

implies

‖ y(t) ‖p
�α
p
≤ 2p−1 P̂ p V̂ (ln(T ))pη

ηp(1 − 2p−1Û )
= r̂ p(say).

Hence, ‖ y ‖C (Z ,�α
p)
≤ r̂ .

Consider T : Z × Bp,α → Bp,α be a operator given by

(T y)(t) =
(

Θn

(

t, y(t),
∫ t

1

(
ln

(
t

ν

))η−1

βn(t, ν, y(ν))
dν

ν

))∞

n=1

= ((Tn y) (t))∞n=1 ,

where y(t) ∈ Bp,α, t ∈ Z .

By assumption (3), ∑

n≥1

α p
n |(Tn y) (t)|p

is finite and unique hence (T y) (t) ∈ C (Z , �α
p).

Again,
‖ T y ‖C (Z ,�α

p)
≤ r̂

so T is self-mapping on Bp,α.

Let ȳ(t) = (ȳn(t))
∞
n=1 ∈ Bp,α and ε > 0 such that ‖ y − ȳ ‖C (Z ,�α

p)
< ε

2
1
p Û

1
p

= δ.

For arbitrary t ∈ Z ,

|(Tnz) (t) − (Tn ȳ) (t)|p

=
∣∣∣∣∣
Θn

(

t, y(t),
∫ t

1

(
ln

(
t

ν

))η−1

βn(t, ν, y(ν))
dν

ν

)

− Θn

(

t, ȳ(t),
∫ t

1

(
ln

(
t

ν

))α−1

βn(t, ν, ȳ(ν))
dν

ν

)∣∣∣∣∣

p

≤ Un(t) |yn(t) − ȳn(t)|p + Vn(t)

{∫ t

1

(
ln

(
t

ν

))η−1

|βn(t, ν, y(ν)) − βn(t, ν, ȳ(ν))| dν

ν

}p

.

As functions βn are continuous for all n ∈ N so for ‖ y − ȳ ‖p
C (Z ,�α

p)
< δ we have

for all n ∈ N,

|βn(t, ν, y(ν)) − βn(t, ν, ȳ(ν))| <
ηε

2
1
p V̂

1
p (ln(T ))η

.

Therefore,
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∑

n≥1

α p
n |(Tn y) (t) − (Tn ȳ) (t)|p

≤ Û
∑

n≥1

α p
n |yn(t) − ȳn(t)|p +

∑

n≥1

α p
n Vn(t)

{
(ln(T ))η

η
.

ηε

2
1
p V̂

1
p (ln(T ))η

}p

≤ Û ‖ y − ȳ ‖p
C (Z ,�α

p)
+ε p

2
≤ ε p.

Therefore, ‖ T y − T ȳ ‖p
C (Z ,�α

p)
< ε p when ‖ y − ȳ ‖p

C (Z ,�α
p)
< ε p

2Û
hence T is con-

tinuous on Bp,α. Finally,

ζ�α
p

(
T Bp,α

)

= lim
n→∞ sup

y∈Bp,α

{
∑

k≥n

α
p
k

∣∣
∣∣∣
Θk

(

t, y(t),
∫ t

1

(
ln

(
t

ν

))η−1

βk(t, ν, y(ν))
dν

ν

)∣∣
∣∣∣

p} 1
p

≤ lim
n→∞ sup

y∈Bp,η

{

2p−1
∑

k≥n

α
p
k

[
Û |yk(t)|p + Vk(t)P

p
k .

(ln(T ))pα

α p

]} 1
p

.

i.e.,
ζ�α

p

(
T Bp,α

) ≤ 21−
1
p Û

1
p ζ�α

p

(
Bp,α

)
.

Therefore
ζC (Z ,�α

p)

(
TBp,α

) ≤ 21−
1
p Û

1
p ζC (Z ,�α

p)

(
Bp,α

)
.

Thus, by assumption (4) and Theorem 2, T has at least one fixed point in Bp,α ⊆
C (Z , �α

p). Hence, Eq. (4) has at least one solution in C (Z , �α
p). This completes the

proof.

Example 3

yn(t) = yn(t)

6n2t
+ 1

n2

∫ t

1

(
ln( t

ν
)
)− 1

2 cos2 (yn(ν))

τ + n2
.
dν

ν
, (7)

where t ∈ Z = [1, 2], n ∈ N. Here,

Θn(t, y(t), l) = yn(t)

6n2t
+ l

n2
,

βn(t, ν, y(τ )) = cos2 (yn(ν))

ν + n2
,
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η = 1

2
,

αn = 1

n

and
τ = 2.

Let y(t) ∈ C
(
Z , �α

p

)
for some fixed t ∈ Z , then

∑

n≥1

α p
n

∣∣∣
∣∣∣

yn(t)

6n2t
+ 1

n2

∫ t

1

(
ln( t

ν
)
)− 1

2 cos2 (yn(ν))

ν + n2
.
dν

ν

∣∣∣
∣∣∣

p

=
∑

n≥1

1

np

∣
∣∣∣∣∣

yn(t)

6n2t
+ 1

n2

∫ t

1

(
ln( t

ν
)
)− 1

2 cos2 (yn(ν))

ν + n2
.
dν

ν

∣
∣∣∣∣∣

p

≤ 2p−1
∑

n≥1

1

6np
|yn(t)|p + 2p−1

∑

n≥1

1

n2p

⎧
⎨

⎩

∫ t

1

(
ln
(
t
ν

))− 1
2

ν + n2
.
dν

ν

⎫
⎬

⎭

p

≤ 2p−1

6
‖ y(t) ‖p

�
η
p
+2p−1

∑

n≥1

1

n2p
.

{
2(ln 2)

1
2 .
1

2

}p

= 2p−1

6
‖ y ‖p

C (Z ,�α
p)

+2p−1(ln 2)
p
2

∑

n≥1

1

n2p
.

is finite and unique as both
∑

n≥1
1
n2p are convergent for p ≥ 1.

Therefore for t ∈ Z ,

⎧
⎨

⎩
yn(t)

6n2t
+ 1

n2

∫ t

1

(
ln( t

ν
)
)− 1

2 cos2 (yn(ν))

ν + n2
.
dν

ν

⎫
⎬

⎭

∞

n=1

∈ �α
p.

i.e., ⎧
⎨

⎩
yn(t)

6n2t
+ 1

n2

∫ t

1

(
ln( t

ν
)
)− 1

2 cos2 (yn(ν))

ν + n2
.
dν

ν

⎫
⎬

⎭

∞

n=1

∈ C (Z , �α
p).

It is obvious that Θn is continuous for all n ∈ N and
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|Θn (t, y(t), l)) − Θn (t, ȳ(t),m)|p

=
∣∣∣∣

1

6n2t
(yn(t) − ȳn(t)) + 1

n2
(l − m)

∣∣∣∣

p

≤ 2p−1

6pn2p
|yn(t) − ȳn(t)|p + 2p−1

n2p
|l − m|p .

Here both Un and Vn are continuous functions for all n ∈ N and

Un(t) = 2p−1

6pn2p
, Ûn = 2p−1

6pn2p
, Û = 2p−1

6p
,

Vn(t) = 2p−1

n2p
,

∞∑

n=1

αnVn(t) =
∞∑

n=1

2p−1

n3p
= 2p−1

∞∑

n=1

1

n3p

is convergent for p ≥ 1. Also,

∞∑

n=1

α p
n

∣∣Θn(t, y
0, 0)

∣∣p = 0

and 21−
1
p Û

1
p = 21−

1
p .21−

1
p .6−1 < 1, i.e., 0 < 21−

1
p Û

1
p < 1.

Again, each Hn is continuous for all n ∈ N and

|βn(t, ν, y(ν))| = 1

ν + n2
,

Pn = 1

1 + n2

which gives P̂ = 1
2 and lim

n→∞ Pn = 0.

Thus, all the assumptions (1)–(4) of Theorem 5 are satisfied. Hence, Eq. (7) has
a solution in C (Z , �α

p).

References

1. R.P. Agarwal, D. O’Regan, Fixed point theory and applications (Cambridge University Press,
2004)

2. R.Arab,H.K.Nashine,N.H.Can, TranThanhBinh, Solvability of functional-integral equations
(fractional order) using measure of noncompactness. Adv. Differ. Equ. 2020(12) (2020)
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Observability, Reachability, Trajectory
Reachability and Optimal Reachability
of Fractional Dynamical Systems using
Riemann–Liouville Fractional Derivative

Madasamy Vellappandi and Venkatesan Govindaraj

Abstract The objective of this paper is to investigate the qualitative properties of
the fractional dynamical system in terms of the Riemann–Liouville fractional deriva-
tive. The observability, reachability, trajectory—reachability and optimal reachabil-
ity problems are discussed for the linear fractional-order dynamical systems char-
acterised by the Riemann–Liouville fractional derivative using Grammian matrix
technique, set-valued functions and the concepts of functional analysis.

1 Introduction

Fixed point theory is one of the most active areas of research in the last 50years,
with applications in nonlinear analysis, differential and integral equations, dynamic
systems theory, fractal mathematics, game theory, optimisation problems andmathe-
matical modelling. Also, it is a useful tool for investigating the qualitative properties
of nonlinear systems. Fractional-order calculus (FOC) is a non-integer order devel-
opment of classical calculus, and it is a powerful tool for many researchers working
in various disciplines of engineering and science in recent decades. Various real-
world systems are better characterised by FOC differential equations, which are an
excellent tool for analysing problems of fractal dimension, long-term memory and
chaotic behaviour. Fixed point theory and fractional calculus have recently received a
lot of attention, attracting a lot of researchers to work in this field. Several noteworthy
findings have recently been published in [1–8].

Observability is one of the specific concepts in control theory and it is based on the
ability to infer the system’s initial state from its input-output behaviour. This means
that the behaviour of the entire systemmay be predicted based on the system’s output.
Bettayeb and Djennoune [9], Matignon and d’Andréa-Novel [10] and Shamardan
and Moubarak [11] have analysed the results for observability of continuous-time
linear non-integer order systems in a Caputo sense using observability Grammian
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matrix and rank condition. Above all, one can refer to the monograph [12] for the
observability of both discrete- and continuous-time linear fractional-order systems
via rank condition.

Controllability refers to the ability of a dynamical system to steer from any initial
state to any random final state using the set of acceptable input functions. However,
reachability means that the dynamical system is possible to lead from a zero initial
state to any random final state by taking the set of favourable input functions. This
implies reachability implies controllability. The necessary and sufficient conditions
for the positivity, controllability and reachability to zero for fractional positive lin-
ear discrete-time system with single delay in state were studied by Trzasko in [13].
Recently, Kaczorek explored the connection between the reachability of positive
standard system and positive continuous-time linear system in [14] and he analysed
the reachability of positive fractional-order system in [15]. The necessary and suf-
ficient conditions for the observability, reachability and minimum energy control
problems for the positive linear fractional continuous-time systems with two various
non-integer orders are investigated by Sajewski in [16]. He derived the solution to
the minimum energy control problem and mentioned an electrical circuits’ example.
For more study, the interested learner can look into [17–23] and references there in.

In case of trajectory reachability, we aim for an input function that guides the
system along with a specified trajectory rather than one that leads the system from a
starting state to a demanded final state. Like, while launching a rocket into orbit, it
may be advantageous to have an exact path that leads to the target location in order
to save money and avoid collisions. Trajectory reachability is a stronger notion of
reachability. Information on trajectory controllability can be searched in [24–26] and
references there in.

Optimal reachability and its implications have applications in a variety of indus-
tries, including bioengineering, process control, finance, robotics, economics,
aerospace and management science, and it is still hot topic in control theory. The
optimal reachability problem is the cost functionminimisation problemwith an input
constraint r(t) given by dynamical system and a zero initial state. For more infor-
mation on optimal reachability, the interested readers can refer to [27–31].

It is observed from the above theory, the qualitative properties of the fractional
dynamical systems in the form of Riemann–Liouville derivative are still in the devel-
opment process. Motivated by this fact, the observability, reachability, trajectory—
reachability and optimal reachability problems are discussed for the linear frac-
tional dynamical systems in the form of Riemann–Liouville derivative by applying
Grammian matrix technique, set-valued functions and the concepts of functional
analysis.
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2 Preliminaries

In this portion, we provide some general definitions and properties which are needed
to construct our results.

Definition 1 Let [t0, t1] be a finite interval on the real lineR. TheRiemann–Liouville
(R-L)-type fractional-order integrals I β

t0+g (left sided) and I β
t1−g (right sided) of order

β > 0, n − 1 < β ≤ n and n ∈ N are given by

I β
t0+g(t) = 1

Γ (β)

∫ t

t0

(t − ζ)β−1g(ζ)dζ, t > t0

I β
t1−g(t) = 1

Γ (β)

∫ t1

t
(ζ − t)β−1g(ζ)dζ, t < t1,

where the function g(t) is a suitable function.

Definition 2 The R-L fractional derivative operators RL Dβ
t0+g (left sided) and

RL Dβ
t1−g (right sided) of order β > 0, n − 1 < β ≤ n and n ∈ N are given by

RL Dβ
t0+g(t) = dn

dtn
(I n−β

t0+ g)(t), t > t0

RL Dβ
t1−g(t) = (−1)n

dn

dtn
(I n−β

t1− g)(t), t < t1,

where the function g(t) is a suitable function.

Definition 3 For any arbitrary square matrix A, the Mittag-Leffler matrix function
is given by

Eβ,γ(A) =
∞∑
k=0

Ak

Γ (βk + γ)
, β, γ > 0,

Eβ,1(A) = Eβ(A) with γ = 1.

3 Observability

Let us take the time-invariant fractional dynamical system

RL Dβ
t0+h(t) = Ah(t), 0 < β ≤ 1, t ∈ [t0, t1]. (1)

Here h ∈ R
n and A is a matrix of dimension n × n. In addition to (1), we also

have a linear observation
y(t) = Hh(t), (2)
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where y ∈ R
m and H is a matrix of order m × n.

Definition 4 (Observable) The system (1) with a linear observation (2) is called
to be observable on a time span [t0, t1] if it is doable to find a unique initial state
I 1−β
t0+ h(t)

∣∣
t=t0

= h0 from the idea of the output y(t) on [t0, t1], i.e. the total state of
the system is observable if initial state h0 is observable.

Theorem 1 (Observablility Grammian) The linear system (1) and (2) is observable
on [t0, t1] iff the observability Grammian matrix

M[t0, t1] =
∫ t1

t0

(t − t0)
2β−2Eβ,β(A∗(t − t0)

β)H∗HEβ,β(A(t − t0)
β)dt

is positive definite.

Proof The solution representation of (1) with the initial constraint I 1−β
t0+ h(t)

∣∣
t=t0

=
h0 is given by

h(t) = (t − t0)
β−1Eβ,β(A(t − t0)

β)h0.

and we have y(t) = Hh(t) = (t − t0)β−1HEβ,β(A(t − t0)β)h0.

‖y‖2 =
∫ t1

t0

y∗(t)y(t)dt

= h∗
0

∫ t1

t0

(t − t0)
2β−2Eβ,β(A∗(t − t0)

β)H∗HEβ,β(A(t − t0)
β)dt h0

= h∗
0 M[t0, t1] h0

a quadratic form in h0. It is clear that matrixM[t0, t1] is n × n symmetric. IfM[t0, t1]
is positive definite, then y = 0 gives h∗

0 M[t0, t1] h0 = 0. Therefore, it means h0 = 0.
Hence, systems (1) and (2) are observable on [t0, t1]. If M[t0, t1] is not positive
definite, then there is some h0 �= 0 such that h∗

0 M[t0, t1] h0 = 0. Then h(t) = (t −
t0)β−1Eβ,β(A(t − t0)β)h0 �= 0, for t ∈ [t0, t1], but ‖y‖2 = 0, so y = 0 and we get
that systems (1) and (2) are not observable on [t0, t1]. So, we receive the necessary
result.

If the linear systems (1) and (2) are observable on the range [t0, t1], then h0 is re-
simulated straightly from the observation y(t).

Definition 5 The n × n matrix function Rk(t) defined on [t0, t1] is a reconstruction
kernel iff

∫ t1

t0

(t − t0)
β−1Rk(t)HEβ,β(A(t − t0)

β)dt = I.

Theorem 2 There exists a reconstruction kernel Rk(t) on [t0, t1] iff systems (1) and
(2) are observable on [t0, t1].
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Proof If a reconstruction kernel exists and follows

∫ t1

t0

Rk(t)y(t)dt =
∫ t1

t0

(t − t0)
β−1Rk(t)HEβ,β(A(t − t0)

β)dt h0 = h0

and y(t) = 0, then h0 = 0. So h(t) = 0,∀t ∈ [t0, t1] and we find that systems (1)
and (2) are observable on [t0, t1].

Another side, if systems (1) and (2) are observable on [t0, t1], then from
Theorem 1

M[t0, t1] =
∫ t1

t0

(t − t0)
2β−2Eβ,β(A∗(t − t0)

β)H∗HEβ,β(A(t − t0)
β)dt

is positive definite. Let

R0
k (t) = (t − t0)

β−1M−1[t0, t1]Eβ,β(A∗(t − t0)
β)H∗, ∀t ∈ [t0, t1]. (3)

Then we have

∫ t1

t0

R0
k (t)HEβ,β(A(t − t0)

β)dt

= M−1[t0, t1]
∫ t1

t0

(t − t0)
2β−2Eβ,β(A∗(t − t0)

β)H∗HEβ,β(A(t − t0)
β)dt = I,

so that (3) is a reconstruction kernel on [t0, t1].

4 Reachability

Let us take the dynamical system

RL Dβ
t0+h(t) = Ah(t) + Br(t), 0 < β ≤ 1, t ∈ [t0, t1] (4)

I 1−β
t0+ h(t)

∣∣
t=t0

= 0,

where the state vector h ∈ R
n , the input vector r ∈ R

m and A and B are the constant
matrices having n × n and n × m dimensions, respectively. The solution represen-
tation of (4) is

h(t) =
∫ t

t0

(t − ζ)β−1Eβ,β(A(t − ζ)β)Br(ζ)dζ. (5)

Clearly, h(t0) = 0.
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Definition 6 (Reachable) The linear system (4) is said to be reachable in time t1 if
for each vector h1 ∈ R

n there exists an input function r(t) ∈ L2 ([t0, t1];Rn), which
leads the system state (4) from the zero starting state h(t0) = 0 to the final state
h(t1) = h1.

Theorem 3 (Reachability Grammian) System (4) is reachable in time t ∈ [t0, t1] iff
the Reachability Grammian

R[t0, t1] =
∫ t1

t0

Eβ,β(A(t1 − ζ)β)BB∗Eβ,β(A∗(t1 − ζ)β)dζ (6)

is positive definite.

Proof Let us assume that the reachability Grammian R[t0, t1] is invertible, then
define the input function

r(t) = (t1 − t)β−1B∗Eβ,β(A∗(t1 − t)β)R−1[t0, t1]h1. (7)

Using (5), (6) and (7), we obtain

h(t1) =
∫ t1

t0

(t1 − ζ)β−1Eβ,β(A(t1 − ζ)β)Br(ζ)dζ

=
∫ t1

t0

Eβ,β(A(t1 − ζ)β)BB∗Eβ,β(A∗(t1 − t)β)dζ × R−1[t0, t1]h1
= R[t0, t1]R−1[t0, t1]h1
= h1.

Therefore, the input function (7) leads the state of system (4) from 0 to h1.
Let the reachability Grammian R[t0, t1] is not positive definite, in that case, there

exists a non-zero z such that z∗R[t0, t1]z = 0. It means that

z∗
∫ t1

t0

Eβ,β(A(t1 − ζ)β)BB∗Eβ,β(A∗(t1 − ζ)β)dζ z = 0.

This means

z∗Eβ,β(A(t1 − t)β)B = 0 on [t0, t1].

From the assumptions, there exist an input function r(t) such that the system state
leads from origin to z in [t0, t1]. It follows that

h(t1) = z =
∫ t1

t0

(t1 − ζ)β−1Eβ,β(A(t1 − ζ)β)Br(ζ)dζ.

Then
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z∗z = z∗
∫ t1

t0

(t1 − ζ)β−1Eβ,β(A(t1 − ζ)β)Br(ζ)dζ.

We receive that z∗z = 0, since the term given in right side is zero. This gives a
contradiction that z �= 0. Thus R[t0, t1] is positive definite.

5 Trajectory—Reachability

In this section, we study about the trajectory—reachability analysis for the given
dynamical system

RLDβ
t0+h(t) = ah(t) + b(t, r(t)), 0 < β ≤ 1, t ∈ [t0, t1] (8)

I 1−β
t0+ h(t)

∣∣
t=t0

= 0,

where the state h ∈ R, the input r ∈ R, a ∈ R and b : [t0, t1] × R → R.

Remark 1 The term “reachability” refers to the ability to direct the system’s state
from zero to any specific final state h1. However, it does not follow the path that we
desire. In practise, it may be desired to direct the system along a predetermined path
from its initial state of zero to its final state of h1. Depending on the path chosen, it
may reduce some of the costs associated with steering the system.

Let TR be the collection of all continuous functions z(·) given on [t0, t1] such that
z(t0) = 0 and z(t1) = x1 and let the fractional operator RLDβ

t0+z exist almost every-

where in [t0, t1] and I 1−β
t0+ z(t)

∣∣
t=t0

= 0. We denote TR, the set of all trajectories of
system (8).

Definition 7 System (8) is called to be trajectory—reachability on [t0, t1] if, for any
z ∈ TR, there exists an input r ∈ L2([t0, t1];R) such that the respective solution h(·)
of (8) agrees to h(t) = z(t) on [t0, t1].
Clearly trajectory—reachability implies reachability. First, let us explore trajectory—
reachability of system (8), where the input r(t) presents linearly:

RLDβ
t0+h(t) = ah(t) + b(t)r(t), 0 < β ≤ 1, t ∈ [t0, t1] (9)

I 1−β
t0+ h(t)

∣∣
t=t0

= 0.

Theorem 4 Suppose that the function b(t) is continuous and b(t) �= 0,∀t ∈ [t0, t1],
then system (9) is trajectory—reachability.

Proof Assume that z(t) be a proposed trajectory in TR. We derive an input function
r(t) by



252 M. Vellappandi and V. Govindaraj

r(t) =
RLDβ

t0+z(t) − az(t)

b(t)
(10)

with this input function, (9) becomes

RLDβ
t0+h(t) = ah(t) + RLDβ

t0+z(t) − az(t)

I 1−β
t0+ h(t)

∣∣
t=t0

= 0.

Fixing w(t) = h(t) − z(t), we have

RLDβ
t0+w(t) = aw(t) (11)

I 1−β
t0+ w(t)

∣∣
t=t0

= 0.

The solution of (11) is w(t) = 0,∀t ∈ [t0, t1]. This proves the trajectory—
reachability of system (9).

Let us now consider the case in which the input function r(t) appears nonlinearly in
(8). To prove the trajectory—reachability of (8), we will need to make the following
assumptions:

[A1] b(t, r(t)) is continuous on [t0, t1] × R.
[A2] b(t, r(t)) is coercive in the second variable, that is,

b(t, r(t)) → ±∞ as r(t) → ±∞, t ∈ [t0, t1].

Theorem 5 Let assumptions [A1] and [A2] are fulfilled, then the nonlinear system
(8) is trajectory—reachability.

Proof The solution of (8) is

h(t) =
∫ t

t0

(t − ζ)β−1Eβ,β(a(t − ζ)β)b(ζ, r(ζ))dζ. (12)

Let z ∈ TR be the derived trajectory with z(t0) = 0. We need to find an input
function r(t) satisfying

z(t) =
∫ t

t0

(t − s)β−1Eβ,β(a(t − s)β)b(s, r(s))ds.

TakingRiemann–Liouville derivative operator of orderβ ∈ (0, 1] versus t on both
sides, we have
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RLDβ
t0+z(t) = RLDβ

t0+
(∫ t

t0
(t − ζ)β−1Eβ,β(a(t − ζ)β)b(ζ, r(ζ))dζ

)
(t)

= 1

Γ (1 − β)

d

dt

[∫ t

t0
(t − ζ)−βds

∫ ζ

t0
(ζ − η)β−1Eβ,β(a(ζ − η)β)b(η, r(η))dη

]

= 1

Γ (1 − β)

d

dt

[∫ t

t0
b(η, r(η))dη

∫ ζ

η
(t − ζ)−β(ζ − η)β−1Eβ,β(a(ζ − η)β)dζ

]

= d

dt

∫ t

t0
Eβ(a(t − η)β)b(η, r(η))dη

= b(t, r(t)) + a
∫ t

t0
(t − η)β−1Eβ,β(a(t − η)β)b(η, r(η))dη. (13)

Equation (13) becomes

w(t) =
∫ t

t0

k(t, η)w(η)d + w0(t). (14)

Here w(t) = b(t, r(t)), k(t, ζ) = −a(t − ζ)β−1Eβ,β(a(t − ζ)β) and w0(t) =RL

Dβz(t).
Equation (14) is a second kind of linear Volterra integral equation and it has a

unique solution w(t) for each given w0(t)(refer [32]). Since from the solution of
w(t), it suffices to extract r(t) by using the way of Deimling [33, 34].

Let K : [t0, t1] → 2R be the multi-valued function given by K(t) = {r ∈ R :
b(t, r) = w(t)}. Since w(·) and b(·, ·) are continuous, by assumption [A2], K(t) is
non-empty and upper semicontinuous for all t . That is, tn → 0 givesK(tn) ⊂ K(0) +
B̄ε(0), for each n ≥ n(ε, 0). FurtherK has compact values. So,K is Lebesgue mea-
surable and then has a measurable selection r(·). This function r(t) is the desired
input function which leads the nonlinear system along with the given trajectory z(·)
and hence the system is trajectory—reachability.

Wenowextend the trajectory—reachability results of fractional dynamical systems in
one dimension to n-dimensional non-integer order dynamical systems characterised
by the differential equation of following texture:

RLDβ
t0+h(t) = Ah(t) + B(t, r(t)), 0 < β ≤ 1, t0 < t ≤ t1 < ∞, (15)

I 1−β
t0+ h(t)

∣∣
t=t0

= 0,

where the state vector h ∈ R
n, n > 1, the input vector r ∈ L2([t0, t1]) := U and the

matrix A ∈ R
n×n , B : [0, T ] ×U → R

n .

[C1] Assume that B(t, r(t)) is continuous with respect to r(t) for almost all t ∈
[t0, t1] and it is measurable with respect to t for all r ∈ U and it follows the
growth condition

‖B(t, r)‖Rn ≤ b0(t) + b1‖r‖U ,∀r ∈ U, t ∈ [t0, t1].
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The solution h(t) of the system (15) is

h(t) =
∫ t

t0

(t − ζ)β−1Eβ,β(A(t − ζ)β)B(ζ, r(ζ))dζ. (16)

Let TR be the set of all continuous functions z(·) given on [t0, t1] such that z(t0) =
0 and z(t1) = h1 and let RLD

β
t0+z exist almost everywhere and I 1−β

t0+ z(t)
∣∣
t=t0

= 0. We
say TR the set of all trajectories of system (15).

Definition 8 System (15) is called to be trajectory—reachability if, for any z ∈ G,
there exists an L2-function r : [t0, t1] → R

n such that the respective solution h(·) of
(15) follows h(t) = z(t) on [t0, t1].
Now we are intended to show the trajectory—reachability results for system (15).

Theorem 6 Let B(t, u) satisfy coercivity and monotonicity conditions. That is,

〈B(t, r) − B(t, ζ), r − ζ〉 ≥ 0, for all r, ζ ∈ U, t ∈ [t0, t1]

and

lim‖r‖→∞
〈B(t, r), r〉

‖r‖ = ∞.

Then system (15) is trajectory—reachability by a measurable input function r :
[t0, t1] → Rn.

Proof Suppose z be any trajectory in G. From Theorem 5, we look for an input
function r(t) satisfying

z(t) =
∫ t

t0

(t − ζ)β−1Eβ,β(A(t − ζ)β)B(ζ, r(ζ))dζ.

Taking R-L derivative of order 0 < β ≤ 1 versus t on both sides of the above
equation, we receive

RLDβ
t0+z(t) = B(t, r(t)) + A

∫ t

t0

(t − η)β−1Eβ,β(A(t − η)β)B(η, r(η))dη.

The above equation becomes

y(t) =
∫ t

t0

k(t, η)y(η)d + y0(t), (17)

where y(t) = B(t, r(t)), k(t, η) = −A(t − η)β−1Eβ,β(A(t − η)β) and y0(t) =RL

Dβz(t). Define an operator K : L2([t0, t1],Rn) → L2([t0, t1],Rn) by
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(Ky)(t) =
∫ t

t0

k(t, ζ)y(ζ)dζ.

Definition 3 gives that K is a bounded linear operator. Also this can be shown
that Kn is a contraction for sufficiently big n [33]. As a result of generalised Banach
contraction principle, there exists a unique solution y for (17) for proposed y0 ∈
C([0, T ],Rn). Therefore trajectory—reachability follows if we can quote r(t) from
the equation

B(t, r(t)) = y(t), t ∈ [t0, t1]. (18)

For checking it, derive an operator N : L2([t0, t1],Rn) → L2([t0, t1],Rn) by
(Nr)(t) = B(t, r(t)). Assumption [C1] implies that N is well defined, bounded
and continuous operator. Given hypothesis shows that N is coercive and monotone.
A hemi-continuous monotone mapping is of type(M) [35]. Therefore, the nonlinear
map N is onto by Theorem 3.6.9 of [35]. Hence there exists an input r satisfying
(18). The measurability of r(t) follows as r is in L2([t0, t1],Rn). This proves the
trajectory—reachability of system (15).

6 Optimal Reachability

In this part, we research some functional analysis concepts to investigate the optimal
reachability of the fractional dynamical system (4). Throughout this section, we
assume that X and Y are reflexive Banach spaces and U be a weakly compact subset
of Y.

Consider the cost functional to be minimised over the class of inputs r(t) which
is given by

J (r) = φ(r, h) =
∫ t1

t0

g(ζ, h(ζ), r(ζ))dζ.

For a given r, the solution representation of (4) can be expressed as

h(t) =
∫ t

t0

(t − ζ)β−1Eβ,β(A(t − ζ)β)Br(ζ)dζ.

Let us define the space X = L2([t0, t1], Rn), Y = AC([t0, t1],U ) and the opera-
tors L : X∗ → X and T : Y → X as follows:

(Lh)(t) =
∫ t

t0

(t − ζ)β−1Eβ,β(A(t − ζ)β)h(ζ)dζ

(Tr)(t) =
∫ t

t0

(t − ζ)β−1Eβ,β(A(t − ζ)β)Br(ζ)dζ.



256 M. Vellappandi and V. Govindaraj

By using the above definition, we can reduce equation (4) into an equivalent
operator equation of the form

h = Tr, (19)

where h ∈ X for a fixed input r in Y.
Assumption [I]:

(i). The operator T is completely continuous.
(ii). The operator T is Gateaux differentiable with derivative δT (r) = T for all

r ∈ Y .
(iii). For a fixed h, J (r) = φ(r, h) is convex for all r ∈ Y .
(iv). The input set U is closed, convex and bounded.

Theorem 7 Under Assumption [I], there exist an optimal pair (r∗, h∗) ∈ U × X for
the abstract system (19).

Proof Since the operator T is Gateaux differentiable, we can easily show that the
cost functional J(r) is Gateaux differentiable on U.

Next, we have to prove that J(r) is weakly sequentially lower semicontinuous. Let
r, r∗ ∈ U . By the convexity of J, we can write

β J (r) + (1 − β)J (r∗) ≥ J (βr + (1 − βr∗))

J (r) − J (r∗) ≥ 1

β
[J (r∗ + β(r − r∗)) − J (r∗)] ∀r, r∗ ∈ U.

This implies that

J (r) − J (r∗) ≥ 〈
δJ (r∗), r − r∗〉

X∗×X ∀r, r∗ ∈ U

J (r∗
n ) − J (r∗) ≥ 〈

δJ (r∗), rn − r∗〉
X∗×X ∀r∗ ∈ U, ∀n ∈ N .

Then we can write

lim
n→∞ in f (J (r∗

n ) − J (r∗)) ≥ lim
n→∞

〈
δJ (r∗), r∗

n − r∗〉 = 0.

Since the operator T is completely continuous which implies that Trn → Tr∗
strongly in X.

lim
n

in f (φ(r∗
n , Tr

∗
n ) − φ(r∗, Tr∗)) ≥ 0

which implies

φ(r∗, Tr∗) ≤ lim
n

in f φ(r∗
n , Tr

∗
n ).

As φ(r, h) is convex, weakly sequentially lower semicontinuous and U is closed,
convex and bounded, then there exists an optimal pair (r∗, h∗) ∈ U × X such that
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J (r∗) = φ(r∗, h∗) ≤ inf
r∈U φ(r, h) = inf

r∈U J (r).

Hence, (r∗, h∗) is an optimal pair of the abstract system (19).

To derive an optimality system for the abstract system (19), we consider the quadratic
cost functional of the form

J (r) = 〈r, Rr〉 + 〈h, Qh〉 (20)

where R is symmetric bounded linear strictly monotone and coercive operator and
Q is symmetric bounded linear monotone operator.

Lemma 1 If T is Gateaux differentiable, then the cost functional (20) is Gateaux
differentiable and δJ (r) is given by

δJ (r)x = 2 〈δT (r)x, QT (r)〉 + 2 〈x, Rr〉 r ∈ Y.

Proof Let us take cost functional of the form

J (r) = 〈r, Rr〉 + 〈h, Qh〉 .

Since R and Q are symmetric bounded linear operators, we get

J (r + βx) − J (r) = 〈r + βx, R(r + βx)〉 + 〈T (r + βx), QT (r + βx)〉 − 〈r, Rr〉 − 〈Tr, QTr〉
= 2β 〈x, Rr〉 + β2 〈x, Rx〉 + 〈T (r + βx) − T (r), QT (r)〉 + β2 〈T (x), QT (x)〉

+β 〈T (r), QT (r)〉
J (r + βx) − J (r)

β
= 2 〈x, Rr〉 + β 〈x, Rx〉 + 2

〈
T (r + βx) − T (r)

β
, QT (r)

〉
+ β 〈T (x), QT (x)〉 .

As β → 0, the above equation becomes

δJ (r)x = 2 〈x, Rr〉 + 2 〈δT (r)x, QT (r)〉 .

Theorem 8 Under Assumption [I], the optimality system for the abstract system
(19) is given by

h∗ = Tr∗

r∗ = −R−1T ∗Qh∗.

Proof The necessary condition for r∗ is an optimal input which is δJ (r∗) = 0. By
using Lemma 1, we have

δJ (r∗)x = 0 =⇒ 2
〈
δT (r∗)x, QTr∗〉 + 2

〈
x, Rr∗〉 = 0 ∀h ∈ Y.

Taking adjoint of the derivative of the operator T, we get
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〈
x, Rr∗〉 + 〈

x, [δT (r∗)]∗Qh∗〉 = 0 ∀x ∈ Y.

This implies that

[δT (r∗)]∗Qh∗ = −Rr∗

which gives

r∗ = −R−1T ∗Qh∗.

Hence, the optimal pair (r∗, h∗) satisfies the operator equations

h∗ = Tr∗

r∗ = −R−1T ∗Qh∗.

This completes the proof.

Now we show that Hamiltonian system in Pontryagin’s minimum principle sat-
isfied by the optimal pair can be deduced from the optimality system derived in
Theorem 8.

The Hamiltonian H(h, r, p) of the system is specified by

H(h, r, p) = 1

2
〈h, Qh〉 + 1

2
〈r, Rr〉 + 〈Ah, p〉 + 〈Br, p〉

where p(t) denotes the costate of the system. From the definition of the operators,
we have T = LB and the optimality system in Theorem 8 can be written as

h∗ = Tr∗

r∗ = −R−1B∗ p∗,

where p∗ = L∗Qh∗.
Thus the optimal pair (r∗(t), h∗(t)) satisfies

h∗(t) =
∫ t

t0

(t − ζ)β−1Eβ,β(A(t − ζ)β)Br∗(ζ)dζ (21)

r∗(t) = −R−1B∗ p∗

and costate

p∗(t) =
∫ t1

t
(ζ − t)β−1Eβ,β(A(ζ − t)β)Qh∗(ζ)dζ. (22)

Taking left- and right-sided R-L derivative operators of order β on both sides of
(21) and (22), respectively, we get
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RLDβ
t0+h

∗(t) = Ah∗(t) + Br∗(t) ≡ ∂

∂ p
H(h∗(t), r∗(t), p∗(t))

RLDβ
t1− p∗(t) = −A∗ p∗(t) − Qh∗(t) ≡ − ∂

∂h
H(h∗(t), r∗(t), p∗(t))

I 1−β
t0+ h∗(t)|t=t0 = 0, p∗(t1) = 0. (23)

Hence the pair of Eq. (23) is the Hamiltonian system satisfied by the optimal
pair in Pontryagin’s minimum principle. If the Hamiltonian system satisfied by the
optimal pair is known, then it is also possible to derive the optimality system for the
fractional dynamical systems.
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Fractional Calculus Approach to Logistic
Equation and its Application

J. P. Chauhan, R. K. Jana, J. J. Nieto, P. V. Shah, and A. K. Shukla

Abstract In this study, we extend the properties of the Mittag-Leffler function that
occurs as the solution of a fractional differential equation. Also, we use the properties
to solve a fractional order mathematical model of epidemiology and offer a novel
technique for obtaining an approximate solution to a fractional logistic equation.

1 Background of Study

Themajority of real-world events may bemathematically represented using differen-
tial equations, which typically characterize the rate of change. Differential equations
are created with the use of two fundamental tools, the derivative and the integral.
Whenwe formulate a problem,we almost always end upwith a non-linear differential
equation. Mathematical modeling using non-linear ordinary differentials has a wide
variety of applications in fields such as fluid mechanics, biology, and engineering.
As a result, the researchers are interested in solving non-linear ordinary differential
equations and creating novel techniques for their practical applications. The majority
of non-linear ordinary differential equations have a disadvantage in that they lack
precise closed forms, necessitating the use of approximation techniques.
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However, a new typeof derivative, knownas a fractional derivative,was introduced
three centuries ago. Earlier in ordinary differential equations, the order is given by
whole numbers only whereas fractional differential equations attempt to promote
the use of any real number or fraction as the order of the integral or derivative.
Fractional calculus was studied mainly theoretically. After the theory of fractional
differential equations has been established, many researchers currently concentrate
on its application in solving practical problems. Since then, it has been investigated in
various studies that fractional differential equations, unlike conventional differential
equations, may successfully simulate various natural processes. In addition, in cases
where both the classical and fractional methods are suitable for solving the problem,
it is usually observed that the fractional method will minimize the error compared
to the classical method. Fractional differential equations play an important role in
analyzingmathematicalmodels. Problems in epidemiology andfinance can be solved
using fractional differential equations. It has recently been shown that integral and
fractional derivatives can be used to simulate numerous processes in viscoelasticity,
fluid mechanics, physics, and other branches of science and technology. Mathai et al.
[9] have reported various numerical and analytical techniques to obtain the solution
of differential and integral equationswith fractional order. Themost usedmethods are
theAdomain decompositionmethod (ADM), differential transformationmethod, and
homotopy perturbationmethod (HPM). There are also some classic solutions, such as
the Laplace transformmethod, fractional Green’s function method, Mellin transform
method, orthogonal polynomial method, and so on. Among these solving techniques,
the VIM and theADMare themost used techniques for solving fractional differential
equations, as they provide the immediately visible symbolic form of the analytical
solution, along with the linear and non-linear approximate numerical solutions.

The exponential function involved in the solution of differential equations plays
an important role in describing the growth and decay of many real-world problems.
In the fractional differential equation, the exponential function loses the property of
describing the solution and is replaced by the Mittag-Leffler function. The Mittag-
Leffler function appears as the solution of integral and differential equations with
arbitrary order, especially in the fractional extension of dynamic equations, random
walks, flight Levy, super diffusion transport research, and complex research system.
The Mittag-Leffler functions interpolate between the purely exponential law and the
power-law behavior, which is governed by ordinary dynamic equations and their
fractional counterparts.

The present chapter is an extension of properties of the Mittag-Leffler function,
and they are used to find the solution to non-linear logistic equations in arbitrary
order. Pierre-Francois Verhulst’s (1844–1845) pioneering research was the first to
propose the logistic equation. To characterize the self-limiting expansion of biologi-
cal populations, Verhulst [15] developed the logistic equation. Interestingly, Sweilam
et al. [14] assert that the logistic equation is described by a first-order ordinary differ-
ential equation. Since then, the logistic equation is used extensively inmany scientific
research fields of chemistry, physics, ecology, population dynamism, political sci-
ence, geoscience, economics, statistics, and sociology. In ecology, this equation is
often used to describe population increase, where the reproduction rate is directly
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proportional to both the existing population and the number of available resources
[15].

Verhulst [15] first published the population growth model in terms of non-linear
differential equation subsequently termed as logistic equation,

d

dt
u(t) = k u(t)(1 − u (t)), t ≥ 0, (1)

whose precise solution is given by

u (t) = u0
u0 + (1 − u0) exp(−kt)

, (2)

where the value of u at initial stage given by u0 is for time t = 0. Aforesaid equation
occurs while formulating epidemics, neural networks, ecology, sociology, and Fermi
distribution. In economics also, the equation plays an important role, which is a great
motivation to study logistic equation by generalizing (1) it to its arbitrary order.

In 2015, West [16] investigated the fractional form of the non-linear logistic
equation as follows:

Dα
t [u (t)] = kαu (t) [1 − u (t)] . (3)

He used Carleman embedding technique to get the solution of (3) as

u (t) =
∞∑

n=0

(
u0 − 1

u0

)n

Eα (−nkαtα), t ≥ 0. (4)

In 2016, Area et al. [2] proved that the solution in (3) is not an accurate solution of the
fractional logistic equation. Further, in 2017, Ortigueira et al. [3] also stated the exact
solution of the fractional logistic equation and represented it in form of fractional
Taylor series. In 2021, Area et al. [1] demonstrated the solution of fractional logistic
equation in terms of power series and Nieto [11] has used non-singular kernel for
fractional logistic equation. In this chapter, we propose a unique method for solving
fractional logistic equations based on the Jumarie [6] idea.

2 Preliminaries

2.1 Mittag-Leffler Function

It is an generalized form of exponential function named after mathematician Gösta
Mittag-Leffler [5] defined as follows:
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Eα (z) =
∞∑

k=0

zk

Γ (αk + 1)
, α > 0. (5)

2.2 Mittag-Leffler Function in Two Parameters

The two-parameter Mittag-Leffler function [5] is defined as

Eα,β (z) =
∞∑

n=0

zn

Γ (αn + β)
, (6)

where α, β ∈ C; Re (α) > 0 , Re(β) > 0.
TheMittag-Leffler function is applicable in many areas of science and technology

due to direct involvement in the solution of ordinary differential equation when
extended to its non-integer order.

2.3 Riemann–Liouville Fractional Derivative

A fractional derivative of order α is given using the Riemann–Liouville definition
[10] as

Dα [x (t)] = 1

Γ (1 − α)

d

dt

[∫ t

0

x (τ )

(t − τ)α
dτ

]
, (7)

where α ∈ R is order of fractional derivative, n − 1 < α ≤ n and n ∈ N =
{1, 2, 3, . . . }, and Γ (·) is the Euler Gamma function.

2.4 Caputo’s Fractional Derivative

Caputo’s [13] definition of fractional derivative is given by

C
0 D

α
t f (t) = 1

Γ (n − α)

∫ t

0

f n (τ )

(t − τ)α−n+1 dτ, (8)

where α ∈ R is order of fractional derivative, n − 1 < α ≤ n and n ∈ N =
{1, 2, 3, . . . }, f n (τ ) = dn

dtn f (τ ), and Γ (.) is the Euler Gamma function.
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3 Main Results

3.1 Mittag-Leffler Function (Eα) as the Base for Logarithm
Function

Consider a one-one and onto function Eα(x) (if exists) such that Eα : R → R+ has
its inverse Lα(logEα

), then for every Lα , (Re α > 0), we have

Eα [Lα (y)] = y, where y > 0
Lα [Eα (x)] = x, where x ∈ R

Eα (x) = y or Lα (y) = x
Eα (x) → +∞ when x → +∞
Eα (x) → 0 when x → −∞
Lα (x) → +∞ when x → +∞
Lα (x) → −∞ when x → 0

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

, where Re(α) > 0. (9)

Also, the Mittag-Leffler function Eα(x) is differentiable along with its inverse
Lα(logEα

) is also differentiable. Further, it is important to note that E ′
α(x) �= Eα(x).

However, many authors have proved some properties of the Mittag-Leffler function
by considering Eα

(
a(x1 + x2)

a
) = Eα

(
axa1

)
Eα

(
axa2

)
, where x1, x2 ≥ 0, a is real

constant, and α > 0. Various interesting results on the Mittag-Leffler function were
given by Nieto [12]. Jumarie [6] also gave various definitions of fractional calculus.
Gorenflo et al. [5] also reported many important results in their book. Chauhan et al.
[4] have also given interesting results on the Mittag-Leffler function.

In this chapter, we have established some new results on the Mittag-Leffler func-
tion in the form of the following proposition.
Proposition: Let ξ = Eα(k1) and η = Eα(k2) , where α > 0 with above conditions
(9). Then

(i) Eα(k1 ⊕ k2) = Eα(k1) 
 Eα(k2).
(ii) logEα

(ξ 
 η) = k1 ⊕ k2 = logEα
(ξ) ⊕ logEα

(η).
(iii) logEα

(ξ ÷© η) = k1 � k2 = logEα
(ξ) � logEα

(η).

Proof (i) Considering
k1 ⊕ k2 = Lα(ξ 
 η), (10)

with the conditions (9), then

Eα (k1 ⊕ k2) = ξ 
 η = Eα (k1) 
 Eα (k2) . (11)

Considering α → 1, then (11) reduces to

E1 (k1 ⊕ k2) = E1 (k1) 
 E1 (k2) , (12)

which is equivalent to
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exp (k1 + k2) = exp (k1) · exp (k2) . (13)

(ii) Now considering
ξ 
 η = Eα (k1 ⊕ k2) , (14)

taking logarithm with base Eα on both sides,

logEα
(ξ 
 η) = k1 ⊕ k2 = logEα

(ξ) ⊕ logEα
(η).

On applying the limit α → 1, then (3.1) reduces to

logE1
(ξ 
 η) = logE1

(ξ) ⊕ logE1
(η), (15)

which is equivalent to

loge(ξ · η) = loge(ξ) + loge(η). (16)

(iii) Similarly, we can easily show

logEα
(ξ ÷© η) = k1 � k2 = logEα

(ξ) � logEα
(η) . (17)

On applying the limit α → 1, then (17) reduces to

logE1
(ξ ÷© η) = k1 � k2 = logE1

(ξ) � logE1
(η) , (18)

or

loge

(
ξ

η

)
= loge(ξ) − loge(η). (19)

Note: For distinct values of α, k1 and k2, the introduced operators ⊕, 
, �, and ÷©
operate very similarly as classical addition, multiplication, subtraction, and division
operators. For distinct values ofα, 0 < α ≤ 1, the preceding argument can be verified
numerically from Tables1 and 2, where logEα

is logarithm function having base as
the Mittag-Leffler function. Some properties of logarithmic function with the base
Mittag-Leffler function Eα(= Eα(1)) are identical to logarithmic function having
base as ‘e’. For different choices of α, the graph of ‘logEα

’ is demonstrated in Fig. 1.

3.2 Fractional Logistic Equation and Its Solution

Extension of logistic equation (1) with arbitrary order α, α ∈ (0, 1] is given by

dαu(t)

dtα
= kαu [1 − u(t)] . (20)
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Table 1 Values of logEα
(x) for different values of x and α

α 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Eα(=
Eα(1))

23.1605 11.823 8.0407 6.1471 5.009 4.2486 3.7041 3.2946 2.9749 2.7183

logEα
(0.1) −0.7327 −0.9322 −1.1046 −1.2680 −1.4291 −1.5917 −1.7584 −1.9312 −2.1120 −2.3026

logEα
(0.2) −0.5122 −0.6516 −0.7721 −0.8863 −0.9989 −1.1126 −1.2291 −1.3499 −1.4763 −1.6094

logEα
(0.3) −0.3831 −0.4874 −0.5776 −0.6630 −0.7472 −0.8323 −0.9194 −1.0098 −1.1043 −1.2040

logEα
(0.4) −0.2916 −0.3710 −0.4396 −0.5046 −0.5687 −0.6334 −0.6998 −0.7685 −0.8405 −0.9163

logEα
(0.5) −0.2206 −0.2806 −0.3325 −0.3817 −0.4302 −0.4792 −0.5293 −0.5814 −0.6358 −0.6931

logEα
(0.6) −0.1626 −0.2068 −0.2451 −0.2813 −0.3170 −0.3531 −0.3901 −0.4284 −0.4686 −0.5108

logEα
(0.7) −0.1135 −0.1444 −0.1711 −0.1964 −0.2214 −0.2466 −0.2724 −0.2992 −0.3272 −0.3567

logEα
(0.8) −0.0710 −0.0903 −0.1070 −0.1229 −0.1385 −0.1542 −0.1704 −0.1872 −0.2047 −0.2231

logEα
(0.9) −0.03353 −0.0426 −0.0505 −0.05802 −0.0654 −0.0728 −0.0805 −0.0884 −0.0966 −0.1054

logEα
(1) 0 0 0 0 0 0 0 0 0 0

logEα
(2) 0.2206 0.2806 0.3325 0.38169 0.4302 0.4792 0.5293 0.5814 0.6358 0.6931

logEα
(3) 0.3496 0.4448 0.5270 0.6049 0.6818 0.7594 0.8390 0.9214 1.0077 1.0986

logEα
(4) 0.4412 0.5612 0.6650 0.7634 0.8604 0.9583 1.0587 1.1627 1.2716 1.3863

logEα
(5) 0.5122 0.6516 0.7721 0.8863 0.9989 1.1126 1.2291 1.3499 1.4763 1.6094

logEα
(6) 0.5702 0.7254 0.8596 0.9867 1.1120 1.2386 1.3683 1.5028 1.6435 1.7917

logEα
(7) 0.6192 0.7878 0.9335 1.0715 1.2077 1.3452 1.4861 1.6321 1.7849 1.9459

logEα
(8) 0.6617 0.8419 0.9976 1.1451 1.2906 1.4375 1.5880 1.7441 1.9074 2.0794

logEα
(9) 0.6992 0.8895 1.0541 1.2099 1.3637 1.5189 1.6780 1.8429 2.0154 2.1972

logEα
(10) 0.7327 0.9322 1.1046 1.2680 1.4291 1.5917 1.7584 1.9312 2.1120 2.3026

Table 2 Examples of Propositions 1 and 2
x1 x2 α logEα

(x1 ·
x2)

logEα

(
x1
x2

)
logEα

(x1) logEα
(x2) logEα

(x1) +
logEα

(x2)
logEα

(x1) −
logEα

(x2)

0.2 1 0.1 −0.5122 −0.5122 −0.5122 0.00 −0.5122 −0.5122

0.2 1 0.2 −0.6516 −0.6516 −0.6516 0.00 −0.6516 −0.6516

0.2 1 0.3 −0.7721 −0.7721 −0.7721 0.00 −0.7721 −0.7721

0.75 0.35 0.1 −0.4256 0.2426 −0.0915 −0.3341 −0.4256 0.2426

0.75 0.35 0.5 −0.8301 0.4731 −0.1785 −0.6516 −0.8301 0.4731

0.75 0.35 0.9 −1.2268 0.6991 −0.2639 −0.9630 −1.2269 0.6991

0.81 0.4 0.2 −0.4563 0.2857 −0.0853 −0.3709 −0.4562 0.2856

0.81 0.4 0.7 −0.8607 0.5388 −0.1609 −0.6998 −0.8607 0.5389

0.81 0.4 0.8 −0.9453 0.5918 −0.1767 −0.7685 −0.9453 0.5918

0.93 0.5 0.5 −0.4752 0.3852 −0.0450 −0.4302 −0.4752 0.3852

2 3 0.6 1.2386 −0.2802 0.4792 0.7594 1.2386 −0.2802

3 5 0.7 2.0681 −0.3901 0.8390 1.2291 2.0681 −0.3901

6 7 0.8 3.1349 −0.1293 1.5028 1.6321 3.1349 −0.1293

10 2 0.9 2.7478 1.4763 2.1121 0.6358 2.7479 1.4763
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Fig. 1 Results of LogEα for distinct values of x and α

On separating the variables, (20) can be written as

∫
dαu

u(t)
⊕

∫
dαu(t)

1 − u(t)
= kα

∫
dtα. (21)

Solving above equation using the proposed proposition (21), we have

logEα
u(t) � logEα

(1 − u(t)) = kα

Γ (2 − α)

∫
t1−αdtα ⊕ C, (22)

with constant of integration as C . On using (9) and (18), we get

u(t)

1 − u(t)
= CEα

[
kα

Γ (2 − α)

∫
t1−αdtα

]
. (23)

Forα = 1, we have logEα
x = logex . Here, we also show that the value of u(t) ÷© (1 −

u(t)) is approximately equivalent to u(t)
1−u(t) numerically.

Considering the initial state, i.e., when t = 0, we have u(0) = u0, and hence, the
value of C = u0

1−u0
. Substituting C in (23), we have

u(t)

1 − u(t)
= u0

1 − u0
Eα

[
kα

Γ (2 − α)

∫
t1−αdtα

]
, (24)

or

u(t) = 1

1 + 1−u0
u0

[
Eα{− kα

Γ (2−α)

∫
t1−αdtα}

] . (25)
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On setting α = 1, Eq. (25) reduces to (2).

4 Mathematical Modeling

Mathematical modeling is an integrated process of translating real-world problem
into the mathematical problem, which is based on mathematical concepts, i.e., func-
tions, variables, constants, inequalities, etc. taken from algebra, geometry, calculus,
and every other branch of mathematics (Fig. 2).

Fig. 2 Schematic diagram of mathematical modeling

With the help of mathematical modeling, one can describe the dynamical and
stochastic processes. Usually, differential equations are used to describe the physical
processes where the variables of the system change with time. The present section is
devoted to the application of fractional differential equation to epidemiology which
is described by generalizing logistic equation.
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5 Application in Epidemiology

Epidemiology is the scientific study of disease transmission and its human effects.
This encompasses a broad variety of disciplines, from biology to sociology and
philosophy, all ofwhich contribute to a thoroughknowledge of epidemic transmission
and control methods.

For gonorrhoea and encephalitis epidemics, standard epidemic transmissionmod-
els were employed to analyze the epidemic breakout after an infectious stage. Daniel
Bernoulli published the first report of mathematical modeling for epidemic spread in
1766whichwas used to explain howpart of the infected population requiringmedical
attention varies during an epidemic spread.Kermack andMcKendrick [8] contributed
to the mathematical theory of epidemics with their contribution. Epidemics can be
analytically modeled with certain mathematical assumptions in order to explore the
severity and preventative techniques by which diseases spread. This also aids in the
prediction of an outbreak’s future course and the evaluation of epidemic-control tac-
tics. We’re going to presume that the entire population given by N is partitioned
into three main categories viz. S, the susceptible ones; I , the infected; and R, recov-
ered patients during an epidemic. With closed demography, this model assumes that
the whole population remains constant, i.e., there are no births or natural deaths.
Any sickness that causes death, on the other hand, can be included in R. Many
researchers have recently investigated and constructed epidemic models utilizing
bifurcation approaches [8]. The ultimate goal is to simulate the problem of a sat-
urated susceptible population, the time it takes for infected individuals to become
infectious, and the stability of equilibrium solutions.

We identify the independent and dependent variables as the initial step in the
modeling procedure. Time t , measured in days, is the independent variable and we
focus on the two sets of dependent variables defined by S, I , and R as susceptible,
infected, and recovered people, respectively.

Considering total population during epidemic N , we have

N (t) = S (t) + I (t) + R (t) . (26)

Here we analyze three simple epidemic models with some plausible assumptions,
which are as follows.

5.1 SI Model

We assume that the entire population is made up of just susceptible and infected
people in our model. As a result, the total population is calculated as follows [7]:

N (t) = S(t) + I (t).
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Let the disease spread with I0 infected persons during initial state, i.e., t = 0. Then
the rate at which susceptible people gets infected with respect to time t is given by

dS

dt
= −β I S, (27)

where both S and I are functions of t, t > 0, and β is the positive constant and
initially at time t = 0, I (0) = I0. Also, the rate of change of infected is given by

d I

dt
= β I (t) (N − I ) , I (0) = I0 (28)

and

dS

dt
= −βS (t) (N − S) , S (0) = N − I0. (29)

5.1.1 Fractional SI Model for Epidemic Spread

Here, we will analyze the fractional differential equation model for epidemics while
considering only susceptible and infected persons and determine its solution.

On writing (28) with arbitrary order α, as

dα I

dtα
= β I (N − I ) , where 0 < α ≤ 1 (30)

⇒
∫

dα I

I
+

∫
dα I

N − I
= Nβ

∫
dtα. (31)

On using (18), the solution of (31) is given by

logEα
I � logEα

(N − I ) = Nβ

Γ (2 − α)

∫
t1−αdtα + c, (32)

⇒ I

N − I
= CEα

[
Nβ

Γ (2 − α)

∫
t1−αdtα

]
, (33)

where 0 < α < 1 and lim
α→1

logEα
x = logex .

Considering the initial condition, i.e., for time t = 0, we get I (0) = I0, which
gives C = I0

N−I0
, or

I

N − I
= I0

N − I0
Eα

[
Nβ

Γ (2 − α)

∫
t1−αdtα

]
(34)
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⇒ I = N

1 + N−I0
I0

[
Eα{− Nβ

Γ (2−α)

∫
t1−αdtα}

] , (35)

when α → 1 and t → ∞, it gives I = N .

5.2 SIS Model

The population in the SIS model is separated into two distinct classes: susceptible
class to infected class and infected class to susceptible class. The disease’s dynamics
distribution is defined by two major functions viz. the contact rate and the infective
period. People from the susceptible class enter to infective class after coming into
contact with infectious people. After an infective phase, infective individuals revert
to the susceptible class.

In this model, the infected person recovers and becomes vulnerable again deter-
mined by λI , where λ is a positive integer. As a result, we have differential equations
as follows:

d I

dt
= β I (N − I ) − λI

dS

dt
= −βS (N − S) + λI. (36)

5.2.1 Fractional SIS Model for Epidemic Spread

In this section, we propose the solution of the fractional ordered SIS model.
Rewriting Eq. (36),

d I

dt
= β I [A − I ] , I (0) = I0, A =

(
N − λ

β

)
. (37)

Generalizing (36) to its arbitrary order with α ∈ (0, 1],
dα I

dtα
= β I (A − I ) , I (0) = I0. (38)

The solution of (38) can also be obtained using the similar way as demonstrated in
the preceding section, i.e.,

logEα
I � logEα

(A − I ) = Aβ

Γ (2 − α)

∫
t1−αdtα + c (39)

or
I

A − I
= CEα

[
Aβ

Γ (2 − α)

∫
t1−αdtα

]
, (40)
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where 0 < α < 1 and lim
α→1

logEα
x = logex . During initial stage, i.e., at time t = 0,

we have I (0) = I0, due to which C = I0
A−I0

. Thus, (40) can be written as

I

A − I
= I0

A − I0
Eα

[
Aβ

Γ (2 − α)

∫
t1−αdtα

]
, (41)

or I = A

1 + A−I0
I0

[
Eα{− Aβ

Γ (2−α)

∫
t1−αdtα}

] . (42)

When α → 1 and t → ∞, the above equation reduces I = (N − λ/β) , as reported
by Kapur [7].

6 Conclusion

The novel method for solving logistic equations in an arbitrary order is simple and
may be useful in the future study for addressing a variety of issues in physics and
other branches ofmathematics involving fractional differential equations. This article
makes a significant addition to the theory of fractional calculus.
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Hermite–Hadamard Type Inequalities
for Coordinated Quasi-Convex Functions
via Generalized Fractional Integrals

Miguel Vivas-Cortez , Seth Kermausuor , and Juan E. Nápoles Valdés

Abstract In this research, we used a generalized fractional integral to create a new
Hermite–Hadamard-type integral inequality for functions of two independent vari-
ables that are quasi-convex on the coordinates. We also introduce additional inequal-
ities of the Hermite–Hadamard type for functions of two variables that are twice
partially differentiable andwhosemixed-order partial derivatives in absolute value to
specified powers are quasi-convex on the coordinates. Our findings are two-variable
expansions of previous findings.

1 Introduction

One of the most fruitful concepts in Mathematics is the Convex Function, not only
because of its theoretical impact in various areas but also because of the multiplicity
of applications that have been developed in recent times.

A function ψ : I → R, I := [a, b] is said to be convex if ψ
(
τξ + (1 − τ)ς

) ≤
τψ(ξ) + (1 − τ)ψ(ς) holds ∀ ξ, ς ∈ I ,τ ∈ [0, 1]. And they say that the function ψ

is concave on [a, b] if the inequality is the opposite.
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Readers interested in the aforementioned development, can consult [43], where a
panorama, practically complete, of these branches is presented.

The following double inequality is the well-known Hermite–Hadamard inequal-
ity:

Let f : [a, b] → R be a convex function. Then the following double inequalities
hold:

f

(
a + b

2

)
≤ 1

b − a

∫ b

a
f (x)dx ≤ f (a) + f (b)

2
.

Because of its many uses, the Hermite–Hadamard inequality has piqued the interest
of many authors in recent decades. In the literature, there have been several gener-
alizations, improvements and expansions of the Hermite–Hadamard inequality. We
recommend the interested reader to the following papers [8, 9, 17, 18, 24, 27, 32–34,
39, 44, 45, 47, 48, 53–57].

Definition 1 (See [35]) The left and right Katugampola fractional integrals of f are

ρ I β
a+ f (x) = ρ1−β

Γ (β)

∫ x

a
(xρ − tρ)β−1 tρ−1 f (t)dt

and

ρ I β

b− f (x) = ρ1−β

Γ (β)

∫ b

x
(tρ − xρ)

β−1 tρ−1 f (t)dt,

where β, ρ > 0, the function f is real valued and defined on the interval [a, b], with
a < b, and the Gamma function, Γ (·), is

Γ (x) =
∫ ∞

0
t x−1e−t dt.

We recommend the interested reader to the next references for some recent results
linked to the Katugampola fractional integral [18, 30–32, 34–36].

Recently, Chen and Katugampola [18] obtained the following generalizations of
the Hermite–Hadamard inequality via the Katugampola fractional integrals.

Theorem 1 Let β, ρ > 0 and f : [aρ, bρ] → R be a positive function with 0 ≤ a <

b. If f is a convex function on [aρ, bρ], then the following inequalities hold:

f

(
aρ + bρ

2

)
≤ ρβΓ (β + 1)

2(bρ − aρ)β
[ρ I β

a+ f (bρ) + ρ I β

b− f (aρ)]

≤ f (aρ) + f (bρ)

2
.
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Theorem 2 Let β, ρ > 0 and f : [aρ, bρ] → R be a differentiable function on
(aρ, bρ) with 0 ≤ a < b. If | f ′| is a convex function on [aρ, bρ], then the follow-
ing inequality holds:

∣∣∣
∣
f (aρ) + f (bρ)

2
− ρβΓ (β + 1)

2(bρ − aρ)β
[ρ I β

a+ f (bρ) + ρ I β

b− f (aρ)]
∣∣∣
∣

≤ bρ − aρ

2(bρ − aρ)β
[| f ′(aρ)| + | f ′(bρ)|].

The concept of quasi-convex functions defined below is a generalization of convex
functions.

Definition 2 (See [28]) A function f : [a, b] → R is said to be quasi-convex on
[a, b], if

f (t x + (1 − t)y) ≤ max{ f (x), f (y)},

for all x, y ∈ [a, b] and t ∈ [0, 1].
In [51], the authors established the following Hermite–Hadamard-type inequalities
for quasi-convex functions via the Katugampola fraction integrals.

Theorem 3 Let β, ρ > 0 and f : [aρ, bρ] → R be a positive function with 0 ≤ a <

b. If f is a quasi-convex function on [aρ, bρ], then the following inequality holds:

ρβΓ (β + 1)

2(bρ − aρ)β
[ρ I β

a+ f (bρ) + ρ I β

b− f (aρ)] ≤ max{ f (aρ), f (bρ)}.

Theorem 4 Let β, ρ > 0 and f : [aρ, bρ] → R be a differentiable function on
(aρ, bρ) with 0 ≤ a < b. If | f ′| is a quasi-convex function on [aρ, bρ], then the
following inequality holds:

∣∣∣∣
f (aρ) + f (bρ)

2
− ρβΓ (β + 1)

2(bρ − aρ)β
[ρ I β

a+ f (bρ) + ρ I β

b− f (aρ)]
∣∣∣∣

≤ bρ − aρ

ρ(β + 1)

(
1 − 1

2ρ(β+1)

)
max{| f ′(aρ)|, | f ′(bρ)|}.

Theorem 5 Let β, ρ > 0 and f : [aρ, bρ] → R be a differentiable function on
(aρ, bρ) with 0 ≤ a < b. If | f ′|q is a quasi-convex function on [aρ, bρ] and q ≥ 1,
then the following inequality holds:

∣∣
∣∣
f (aρ) + f (bρ)

2
− ρβΓ (β + 1)

2(bρ − aρ)β
[ρ I β

a+ f (bρ) + ρ I β

b− f (aρ)]
∣∣
∣∣

≤ bρ − aρ

ρ(β + 1)

(
1 − 1

2β

) (
max{| f ′(aρ)|q , | f ′(bρ)|q}) 1

q .
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Our goal in this study is to extend Theorem 3 for functions of two variables that
are quasi-convex on the coordinates, which is motivated by recent research on the
Hermite–Hadamard inequality. We also show additional expansions of Theorems
4 and 5 for two-variable functions whose second-order mixed partial derivatives in
absolute value at certain powers are quasi-convex on the coordinates.Wewill present
some early definitions that will be relevant in our work in the next sections.

The Katugampola fractional integrals in Definition 1 are natural expansions of the
following fractional integrals for functions of two independent variables (see [29]).

Definition 3 Let β1, β2, ρ1, ρ2 > 0 and f be a function of two independent vari-
ables. We define, the Katugampola fractional integrals of f on the coordinates as
follows:

ρ1 I β1
a+ f (x, y) := ρ

1−β1
1

Γ (β1)

∫ x

a
(xρ1 − uρ1)

β1−1 uρ1−1 f (u, y)du

ρ1 I β1
b− f (x, y) := ρ

1−β1
1

Γ (β1)

∫ b

x
(uρ1 − xρ1)

β1−1 uρ1−1 f (u, y)du

ρ2 I β2
c+ f (x, y) := ρ

1−β2
2

Γ (β2)

∫ y

c
(yρ2 − vρ2)

β2−1 vρ2−1 f (x, v)dv

ρ2 I β2
d− f (x, y) := ρ

1−β2
2

Γ (β2)

∫ d

y
(vρ2 − yρ2)

β2−1 vρ2−1 f (x, v)dv

TheKatugampola fractional integrals of f in the two variables are defined as follows:

ρ1,ρ2 I β1,β2
a+,c+ f (x, y) := ρ

1−β1
1 ρ

1−β2
2

Γ (β1)Γ (β2)

∫ x

a

∫ y

c
(xρ1 − uρ1)

β1−1
(yρ2 − vρ2)

β2−1 ×
uρ1−1vρ2−1 f (u, v)dvdu

ρ1,ρ2 I β1,β2
a+,d− f (x, y) := ρ

1−β1
1 ρ

1−β2
2

Γ (β1)Γ (β2)

∫ x

a

∫ d

y
(xρ1 − uρ1)

β1−1
(vρ2 − yρ2)

β2−1

uρ1−1vρ2−1 f (u, v)dvdu

ρ1,ρ2 I β1,β2
b−,c+ f (x, y) := ρ

1−β1
1 ρ

1−β2
2

Γ (β1)Γ (β2)

∫ b

x

∫ y

c
(uρ1 − xρ1)

β1−1
(xρ2 − vρ2)

β2−1

uρ1−1vρ2−1 f (u, v)dvdu
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ρ1,ρ2 I β1,β2
b−,d− f (x, y) := ρ

1−β1
1 ρ

1−β2
2

Γ (β1)Γ (β2)

∫ b

x

∫ d

y
(uρ1 − xρ1)

β1−1
(vρ2 − yρ2)

β2−1

uρ1−1vρ2−1 f (u, v)dvdu

Definition 4 (See [46]) A real-valued function f defined on the rectangle Λ :=
[a, b] × [c, d], with a < b and c < d, is called quasi-convex on Λ if the following
inequality:

f (t x + (1 − t)z, sy + (1 − t)w) ≤ max{ f (x, y), f (z,w)}

holds for all (x, y), (z,w) ∈ Λ and (s, t) ∈ [0, 1] × [0, 1].
A function f : Λ := [a, b] × [c, d] → R will be called quasi-convex on the coordi-
nates on Λ if the partial mappings

fy : [a, b] → R, fy(u) := f (u, y)

and

fx : [c, d] → R, fx (v) := f (x, v)

defined for all x ∈ [a, b] and y ∈ [c, d] are quasi-convex. We have the following
formal definition of quasi-convexity on the coordinates.

Definition 5 (See also [49]) A function f : Λ := [a, b] × [c, d] → R is said to be
quasi-convex on the coordinates on Λ, if the following inequality:

f (t x + (1 − t)z,sy + (1 − t)w)

≤ max{ f (x, y), f (x,w), f (z, y) f (z,w)}

holds for all (x, y), (x,w), (z, y), (z,w) ∈ Λ and (s, t) ∈ [0, 1] × [0, 1].
We suggest interested readers to the following papers for more information on

quasi-convex functions on coordinates [46, 49].

2 Main Results

The following identities will be very useful to our results.

Lemma 1 Let β1, β2, ρ1, ρ2 > 0, and f : [aρ1 , bρ1 ] × [cρ2 , dρ2 ] → R be a real-
valued function of two independent variables. The following identities hold:



280 M. Vivas-Cortez et al.

∫ 1

0
sβ2ρ2−1 f (xρ1 , sρ2dρ2 + (1 − sρ2)cρ2)ds = ρ

β2−1
2 Γ (β2)

(dρ2 − cρ2)β2

ρ2 I β2
d− f (xρ1 , cρ2),

(1)

∫ 1

0
sβ2ρ2−1 f (xρ1 , sρ2cρ2 + (1 − sρ2)dρ2)ds = ρ

β2−1
2 Γ (β2)

(dρ2 − cρ2)β2

ρ2 I β2
c+ f (xρ1 , dρ2),

(2)

∫ 1

0
tβ1ρ1−1 f (tρ1bρ1 + (1 − tρ1)aρ1 , yρ2)dt = ρ

β1−1
1 Γ (β1)

(bρ1 − aρ1)β1

ρ1 I β1
b− f (aρ1 , yρ2), (3)

∫ 1

0
tβ1ρ1−1 f (tρ1aρ1 + (1 − tρ1)bρ1 , yρ2)dt = ρ

β1−1
1 Γ (β1)

(bρ1 − aρ1)β1

ρ1 I β1
a+ f (bρ1 , yρ2), (4)

∫ 1

0

∫ 1

0
tβ1ρ1−1sβ2ρ2−1 f (tρ1xρ1 + (1 − tρ1)bρ1 , sρ2 yρ2 + (1 − sρ2)dρ2)dsdt

= ρ
β1−1
1 ρ

β2−1
2 Γ (β1)Γ (β2)

(bρ1 − xρ1)β1(dρ2 − yρ2)β2

ρ1,ρ2 I β1,β2
x+,y+ f (bρ1 , dρ2), (5)

∫ 1

0

∫ 1

0
tβ1ρ1−1sβ2ρ2−1 f (tρ1xρ1 + (1 − tρ1)bρ

1 , s
ρ2 yρ2 + (1 − sρ2)cρ2)dsdt

= ρ
β1−1
1 ρ

β2−1
2 Γ (β1)Γ (β2)

(bρ1 − xρ1)β1(yρ2 − cρ2)β2

ρ1,ρ2 I β1,β2
x+,y− f (bρ1 , cρ2), (6)

∫ 1

0

∫ 1

0
tβ1ρ1−1sβ2ρ2−1 f (tρ1xρ1 + (1 − tρ1)aρ1 , sρ2 yρ2 + (1 − sρ2)dρ2)dsdt

= ρ
β1−1
1 ρ

β2−1
2 Γ (β1)Γ (β2)

(xρ1 − aρ1)β1(dρ2 − yρ2)β2

ρ1,ρ2 I β1,β2
x−,y+ f (aρ1 , dρ2) (7)

and
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∫ 1

0

∫ 1

0
tβ1ρ1−1sβ2ρ2−1×

f (tρ1xρ1 + (1 − tρ1)aρ1 , sρ2 yρ2 + (1 − sρ2)cρ2)dsdt

= ρ
β1−1
1 ρ

β2−1
2 Γ (β1)Γ (β2)

(xρ1 − aρ1)β1(yρ2 − cρ2)β2

ρ1,ρ2 I β1,β2
x−,y− f (aρ1 , cρ2). (8)

Proof Using the change of variables andDefinition 3, the results follow directly.�

Theorem 6 Letβ1, β2, ρ1, ρ2 > 0, and f : [aρ1 , bρ1 ] × [cρ2 , dρ2 ] → Rbeaquasi-
convex function on the coordinates with 0 ≤ a < b and 0 ≤ c < d. Then the follow-
ing inequality holds:

ρ
β1
1 ρ

β2
2 Γ (β1 + 1)Γ (β2 + 1)

4(bρ1 − aρ1)β1(dρ2 − cρ2)β2

[
ρ1,ρ2 I β1,β2

a+,c+ f (bρ1 , dρ2) + ρ1,ρ2 I β1,β2
a+,d− f (bρ1 , cρ2) (9)

+ ρ1,ρ2 I β1,β2
b−,c+ f (aρ1 , dρ2) + ρ1,ρ2 I β1,β2

b−,d− f (aρ1 , cρ2)

]

≤ max
{
f (aρ1 , cρ2), f (aρ1 , dρ2), f (bρ1 , cρ2) , f (bρ1 , dρ2)

}
.

Proof By using the quasi-convexity on the coordinates of f , we have

∫ 1

0

∫ 1

0
tβ1ρ1−1sβ2ρ2−1 f (tρ1aρ1 + (1 − tρ1)bρ1 , sρ2cρ2 + (1 − sρ2)dρ2)dsdt

≤ max
{
f (aρ1 , cρ2), f (aρ1 , dρ2), f (bρ1 , cρ2) , f (bρ1 , dρ2)

}
×

∫ 1

0

∫ 1

0
tβ1ρ1−1sβ2ρ2−1dsdt. (10)

That is,

∫ 1

0

∫ 1

0
tβ1ρ1−1sβ2ρ2−1 f (tρ1aρ1 + (1 − tρ1)bρ

1 , s
ρ2cρ2 + (1 − sρ2)dρ2)dsdt

≤ 1

β1β2ρ1ρ2
max

{
f (aρ1 , cρ2), f (aρ1 , dρ2), f (bρ1 , cρ2) , f (bρ1 , dρ2)

}
. (11)

Similarly, we have

∫ 1

0

∫ 1

0
tβ1ρ1−1sβ2ρ2−1 f (tρ1aρ1 + (1 − tρ1)bρ1 , sρ2dρ2 + (1 − sρ2)cρ2) dsdt

≤ 1

β1β2ρ1ρ2
max

{
f (aρ1 , cρ2), f (aρ1 , dρ2), f (bρ1 , cρ2) , f (bρ1 , dρ2)

}
, (12)
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∫ 1

0

∫ 1

0
tβ1ρ1−1sβ2ρ2−1 f (tρ1bρ1 + (1 − tρ1)aρ1 , sρ2cρ2 + (1 − sρ2)dρ2) dsdt

≤ 1

β1β2ρ1ρ2
max

{
f (aρ1 , cρ2), f (aρ1 , dρ2), f (bρ1 , cρ2) , f (bρ1 , dρ2)

}
(13)

and

∫ 1

0

∫ 1

0
tβ1ρ1−1sβ2ρ2−1 f (tρ1bρ1 + (1 − tρ1)aρ1 , sρ2dρ2 + (1 − sρ2)cρ2) dsdt

≤ 1

β1β2ρ1ρ2
max

{
f (aρ1 , cρ2), f (aρ1 , dρ2), f (bρ1 , cρ2) , f (bρ1 , dρ2)

}
. (14)

By adding (11), (12), (13) and (14), and then applying Lemma 1, we get

ρ
β1−1
1 ρ

β2−1
2 Γ (β1)Γ (β2)

(bρ1 − aρ1)β1(dρ2 − cρ2)β2

ρ1,ρ2 I β1,β2
a+,c+ f (bρ1 , dρ2)

+ ρ
β1−1
1 ρ

β2−1
2 Γ (β1)Γ (β2)

(bρ1 − aρ1)β1(dρ2 − cρ2)β2

ρ1,ρ2 I β1,β2
a+,d− f (bρ1 , cρ2)

+ ρ
β1−1
1 ρ

β2−1
2 Γ (β1)Γ (β2)

(bρ1 − aρ1)β1(dρ2 − cρ2)β2

ρ1,ρ2 I β1,β2
b−,c+ f (aρ1 , dρ2)

+ ρ
β1−1
1 ρ

β2−1
2 Γ (β1)Γ (β2)

(bρ1 − aρ1)β1(dρ2 − cρ2)β2

ρ1,ρ2 I β1,β2
b−,d− f (aρ1 , cρ2)

≤ 4

β1β2ρ1ρ2
max

{
f (aρ1 , cρ2), f (aρ1 , dρ2), f (bρ1 , cρ2) , f (bρ1 , dρ2)

}
. (15)

The desired inequality follows from (15). �

Lemma 2 Let β1, β2, ρ1, ρ2 > 0 and f : [aρ1 , bρ1 ] × [cρ2 , dρ2 ] → R be a twice
partially differentiable mapping on (aρ1 , bρ1) × (cρ2 , dρ2) with 0 ≤ a < b, 0 ≤ c <

d and
∂2 f

∂t∂s
∈ L1 ([aρ1 , bρ1 ] × [cρ2 , dρ2 ]). Then the following equality holds:

f (aρ1 , cρ2) + f (aρ1 , dρ2) + f (bρ1 , cρ2) + f (bρ1 , dρ2)

4

− ρ
β2
2 Γ (β2 + 1)

4(dρ2 − cρ2)β2

[
ρ2 I β2

c+ f (aρ1 , dρ2) + ρ2 I β2
c+ f (bρ1 , dρ2)

+ ρ2 I β2
d− f (aρ1 , cρ2) + ρ2 I β2

d− f (bρ1 , cρ2)

]

− ρ
β1
1 Γ (β1 + 1)

4(bρ1 − aρ1)β1

[
ρ1 I β1

a+ f (bρ1 , cρ2) + ρ1 I β1
a+ f (bρ1 , dρ2)

+ ρ1 I β1
b− f (aρ1 , cρ2) + ρ1 I β1

b− f (aρ1 , dρ2)

]
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+ ρ
β1
1 ρ

β2
2 Γ (β1 + 1)Γ (β2 + 1)

4(bρ1 − aρ1)β1(dρ2 − cρ2)β2
×

[
ρ1,ρ2 I β1,β2

a+,c+ f (bρ1 , dρ2) + ρ1,ρ2 I β1,β2
a+,d− f (bρ1 , cρ2)

+ ρ1,ρ2 I β1,β2
b−,c+ f (cρ1 , dρ2) + ρ1,ρ2 I β1,β2

b−,d− f (aρ1 , cρ2)

]

= ρ1ρ2(bρ1 − aρ1)(dρ2 − cρ2)

4

(
I1 − I2 − I3 + I4

)
,

where

I1 =
∫ 1

0

∫ 1

0
s(β2+1)ρ2−1t (β1+1)ρ1−1×

∂2

∂t∂s
f (tρ1bρ1 + (1 − tρ1)aρ1 , sρ2dρ2 + (1 − sρ2)cρ2)dtds,

I2 =
∫ 1

0

∫ 1

0
s(β2+1)ρ2−1t (β1+1)ρ1−1×

∂2

∂t∂s
f (tρ1bρ1 + (1 − tρ1)aρ1 , sρ2cρ2 + (1 − sρ2)dρ2)dtds,

I3 =
∫ 1

0

∫ 1

0
s(β2+1)ρ2−1t (β1+1)ρ1−1×

∂2

∂t∂s
f (tρ1aρ1 + (1 − tρ1)bρ1 , sρ2dρ2 + (1 − sρ2)cρ2)dtds

and

I4 =
∫ 1

0

∫ 1

0
s(β2+1)ρ2−1t (β1+1)ρ1−1×

∂2

∂t∂s
f (tρ1aρ1 + (1 − tρ1)bρ1 , sρ2cρ2 + (1 − sρ2)dρ2)dtds.

Proof By using integration by parts, we have

I1 =
∫ 1

0
s(β2+1)ρ2−1

[∫ 1

0
tβ1ρ1 tρ1−1 ∂2

∂t∂s
f (tρ1bρ1 + (1 − tρ1 )aρ1 , sρ2dρ2 + (1 − sρ2 )cρ2 )dt

]
ds
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=
∫ 1

0
s(β2+1)ρ2−1

[
1

(bρ1 − aρ1 )ρ1
tβ1ρ1

∂

∂s
f (tρbρ1 + (1 − tρ1 )aρ1 , sρ2dρ2 + (1 − sρ2 )cρ2 )

∣∣
∣∣

1

0

− β1

(bρ1 − aρ1 )

∫ 1

0
tβ1ρ1−1 ∂

∂s
f (tρ1bρ1 + (1 − tρ1 )aρ1 , sρ2dρ2 + (1 − sρ2 )cρ2 )dt

]
ds

=
∫ 1

0
s(β2+1)ρ2−1

[
1

(bρ1 − aρ1)ρ1

∂

∂s
f (bρ1 , sρ2dρ2 + (1 − sρ2)cρ2)

− β1

(bρ1 − aρ1)

∫ 1

0
tβ1ρ1−1 ∂

∂s
f (tρ1bρ1 + (1 − tρ1)aρ1 , sρ2dρ2 + (1 − sρ2)cρ2)dt

]
ds

= 1

(bρ1 − aρ1 )ρ1

∫ 1

0
sβ2ρ2 sρ2−1 ∂

∂s
f (bρ1 , sρ2dρ2 + (1 − sρ2 )cρ2 )ds

− β1

(bρ1 − aρ1 )

∫ 1

0
tβ1ρ1−1

[ ∫ 1

0
sβ2ρ2 sρ2−1 ∂

∂s
f (tρ1bρ1 + (1 − tρ1 )aρ1 , sρ2dρ2 + (1 − sρ2 )cρ2 )ds

]
dt

= 1

(bρ1 − aρ1 )(yρ2 − cρ2 )ρ1ρ2
sβ2ρ2 f (bρ1 , sρ2dρ2 + (1 − sρ2 )cρ2 )

∣∣
∣
∣

s=1

s=0

− β2

(bρ1 − aρ1 )(dρ2 − cρ2 )ρ1

∫ 1

0
sβ2ρ2−1 f (bρ1 , sρ2dρ2 + (1 − sρ2 )cρ2 )ds

− β1

(bρ1 − aρ1 )

∫ 1

0
tβ1ρ1−1×

[
1

(dρ2 − cρ2 )ρ2
sβ2ρ2 f (tρ1bρ1 + (1 − tρ1 )aρ1 , sρ2dρ2 + (1 − sρ2 )cρ2 )

∣∣
∣
∣

s=1

s=0

− β2

(dρ2 − cρ2 )
×

∫ 1

0
sβ2ρ2−1 f (tρ1bρ1 + (1 − tρ1 )aρ1 , sρ2dρ2 + (1 − sρ2 )cρ2 )ds

]
dt

= 1

(bρ1 − aρ1 )(dρ2 − cρ2 )ρ1ρ2
f (bρ1 , dρ2 )

− β2

(bρ1 − aρ1 )(dρ2 − cρ2 )ρ1

∫ 1

0
sβ2ρ2−1 f (bρ1 , sρ2dρ2 + (1 − sρ2 )cρ2 )ds

− β1

(bρ1 − aρ1 )(dρ2 − cρ2 )ρ2

∫ 1

0
tβ1ρ1−1 f (tρ1bρ1 + (1 − tρ1 )aρ1 , dρ2 )dt

+ β1β2

(bρ1 − aρ1 )(bρ2 − cρ2 )
×

∫ 1

0

∫ 1

0
tβ1ρ1−1sβ2ρ2−1 f (tρ1bρ1 + (1 − tρ1 )aρ1 , sρ2dρ2 + (1 − sρ2 )cρ2 )dsdt.

That is,
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I1 = 1

(bρ1 − aρ1 )(dρ2 − cρ2 )ρ1ρ2
f (bρ1 , dρ2 )

− β2

(bρ1 − aρ1 )(dρ2 − cρ2 )ρ1

∫ 1

0
sβ2ρ2−1 f (bρ1 , sρ2dρ2 + (1 − sρ2 )cρ2 )ds

− β1

(bρ1 − aρ1 )(dρ2 − cρ2 )ρ2

∫ 1

0
tβ1ρ1−1 f (tρ1bρ1 + (1 − tρ1 )aρ1 , dρ2 )dt

+ β1β2

(bρ1 − aρ1 )(bρ2 − cρ2 )
×

∫ 1

0

∫ 1

0
tβ1ρ1−1sβ2ρ2−1 f (tρ1bρ1 + (1 − tρ1 )aρ1 , sρ2dρ2 + (1 − sρ2 )cρ2 )dsdt

By using Lemma 1, we have

I1 = 1

(bρ1 − aρ1)(dρ2 − cρ2)ρ1ρ2
f (bρ1 , dρ2)

− ρ
β2−1
2 Γ (β2 + 1)

(bρ1 − aρ1)(dρ2 − cρ2)β2+1ρ1

ρ2 I β2
d− f (bρ1 , cρ2)

− ρ
β1−1
1 Γ (β1 + 1)

(bρ1 − aρ1)β1+1(dρ2 − cρ2)ρ2

ρ1 I β1
b− f (aρ1 , dρ2)

+ ρ
β1−1
1 ρ

β2−1
2 Γ (β1 + 1)Γ (β2 + 1)

(bρ1 − aρ1)β1+1(dρ2 − cρ2)β2+1
ρ1,ρ2 I β1,β2

b−,d− f (aρ1 , cρ2).

So, it follows that

(bρ1 − aρ1 )(dρ2 − cρ2 )ρ1ρ2 I1 = f (bρ1 , dρ2 ) − ρ
β2
2 Γ (β2 + 1)

(dρ2 − cρ2 )β2
ρ2 I β2

d− f (bρ1 , cρ2 )

− ρ
β1
1 Γ (β1 + 1)

(bρ1 − aρ1 )β1
ρ1 I β1

b− f (aρ1 , dρ2 )

+ ρ
β1
1 ρ

β2
2 Γ (β1 + 1)Γ (β2 + 1)

(bρ1 − aρ1 )β1 (dρ2 − cρ2 )β2
ρ1,ρ2 I β1,β2

b−,d− f (aρ1 , cρ2 ). (16)

By using similar arguments as in the above, we obtained the following:

(bρ1 − aρ1 )(dρ2 − cρ2 )ρ1ρ2 I2 = − f (bρ1 , cρ2 ) + ρ
β2
2 Γ (β2 + 1)

(dρ2 − cρ2 )β2
ρ2 I β2

c+ f (bρ1 , dρ2 )

+ ρ
β1
1 Γ (β1 + 1)

(bρ1 − aρ1 )β1
ρ1 I β1

b− f (aρ1 , cρ2 ) − ρ
β1
1 ρ

β2
2 Γ (β1 + 1)Γ (β2 + 1)

(bρ1 − aρ1 )β1 (dρ2 − cρ2 )β2
ρ1,ρ2 I β1,β2

b−,c+ f (aρ1 , dρ2 ),

(17)

(bρ1 − aρ1 )(dρ2 − cρ2 )ρ1ρ2 I3 = − f (aρ1 , dρ2 ) + ρ
β2
2 Γ (β2 + 1)

(dρ2 − cρ2 )β2
ρ2 I β2

d− f (aρ1 , cρ2 )

+ ρ
β1
1 Γ (β1 + 1)

(bρ1 − aρ1 )β1
ρ1 I β1

a+ f (bρ1 , dρ2 ) − ρ
β1
1 ρ

β2
2 Γ (β1 + 1)Γ (β2 + 1)

(bρ1 − aρ1 )β1 (dρ2 − cρ2 )β2
ρ1,ρ2 I β1,β2

a+,d− f (bρ1 , cρ2 ),

(18)
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and

(bρ1 − aρ1 )(dρ2 − cρ2 )ρ1ρ2 I4 = f (aρ1 , cρ2 ) − ρ
β2
2 Γ (β2 + 1)

(dρ2 − cρ2 )β2
ρ2 I β2

c+ f (aρ1 , dρ2 )

− ρ
β1
1 Γ (β1 + 1)

(bρ1 − aρ1 )β1
ρ1 I β1

a+ f (bρ1 , cρ2 ) + ρ
β1
1 ρ

β2
2 Γ (β1 + 1)Γ (β2 + 1)

(bρ1 − aρ1 )β1 (dρ2 − cρ2 )β2
ρ1,ρ2 I β1,β2

a+,c+ f (bρ1 , dρ2 ).

(19)

The desired identity follows from adding (16), (17), (18) and (19).

Theorem 7 Let β1, β2, ρ1, ρ2 > 0, 0 ≤ a < b, 0 ≤ c < d and f : [aρ1 , bρ1 ] ×
[cρ2 , dρ2 ] → R be a twice partially differentiable mapping on (aρ1 , bρ1) × (cρ2 , dρ2)

and
∂2 f

∂t∂s
∈ L1 ([aρ1 , bρ1 ] × [cρ2 , dρ2 ]). If

∣
∣∣∣
∂2 f

∂t∂s

∣
∣∣∣ is quasi-convex on the coordinates

on (aρ1 , bρ1) × (cρ2 , dρ2), then the inequality

∣∣∣
∣
f (aρ1 , cρ2 ) + f (aρ1 , dρ2 ) + f (bρ1 , cρ2 ) + f (bρ1 , dρ2 )

4

− ρ
β2
2 Γ (β2 + 1)

4(dρ2 − cρ2 )β2

[
ρ2 I

β2
c+ f (aρ1 , dρ2 ) + ρ2 I

β2
c+ f (bρ1 , dρ2 )

+ ρ2 I
β2
d− f (aρ1 , cρ2 ) + ρ2 I

β2
d− f (bρ1 , cρ2 )

]

− ρ
β1
1 Γ (β1 + 1)

4(bρ1 − aρ1 )β1

[
ρ1 I

β1
a+ f (bρ1 , cρ2 ) + ρ1 I

β1
a+ f (bρ1 , dρ2 )

+ ρ1 I
β1
b− f (aρ1 , cρ2 ) + ρ1 I

β1
b− f (aρ1 , dρ2 )

]

+ ρ
β1
1 ρ

β2
2 Γ (β1 + 1)Γ (β2 + 1)

4(bρ1 − aρ1 )β1 (dρ2 − cρ2 )β2
×

[
ρ1,ρ2 I

β1,β2
a+,c+ f (bρ1 , dρ2 ) + ρ1,ρ2 I

β1,β2
a+,d− f (bρ1 , cρ2 )

+ ρ1,ρ2 I
β1,β2
b−,c+ f (cρ1 , dρ2 ) + ρ1,ρ2 I

β1,β2
b−,d− f (aρ1 , cρ2 )

]∣∣
∣∣

≤ (bρ1 − aρ1 )(dρ2 − cρ2 )

(β1 + 1)(β2 + 1)
×

max

{∣∣∣
∣

∂2

∂t∂s
f (bρ1 , dρ2 )

∣∣∣
∣,

∣∣∣
∣

∂2

∂t∂s
f
(
bρ1 , cρ2

)
∣∣∣
∣,

∣
∣∣∣

∂2

∂t∂s
f
(
aρ1 , dρ2

)
∣
∣∣∣,

∣
∣∣∣

∂2

∂t∂s
f
(
aρ1 , cρ2

)
∣
∣∣∣

}
.

holds.

Proof By using Lemma 2 and the properties of the absolute value, we obtain
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∣∣
∣∣
f (aρ1 , cρ2) + f (aρ1 , dρ2) + f (bρ1 , cρ2) + f (bρ1 , dρ2)

4

− ρ
β2
2 Γ (β2 + 1)

4(dρ2 − cρ2)β2

[
ρ2 I β2

c+ f (aρ1 , dρ2) + ρ2 I β2
c+ f (bρ1 , dρ2)

+ ρ2 I β2
d− f (aρ1 , cρ2) + ρ2 I β2

d− f (bρ1 , cρ2)

]

− ρ
β1
1 Γ (β1 + 1)

4(bρ1 − aρ1)β1

[
ρ1 I β1

a+ f (bρ1 , cρ2) + ρ1 I β1
a+ f (bρ1 , dρ2)

+ ρ1 I β1
b− f (aρ1 , cρ2) + ρ1 I β1

b− f (aρ1 , dρ2)

]

+ ρ
β1
1 ρ

β2
2 Γ (β1 + 1)Γ (β2 + 1)

4(bρ1 − aρ1)β1(dρ2 − cρ2)β2

[
ρ1,ρ2 I β1,β2

a+,c+ f (bρ1 , dρ2) + ρ1,ρ2 I β1,β2
a+,d− f (bρ1 , cρ2)

+ ρ1,ρ2 I β1,β2
b−,c+ f (cρ1 , dρ2) + ρ1,ρ2 I β1,β2

b−,d− f (aρ1 , cρ2)

]∣∣∣∣

≤ ρ1ρ2(bρ1 − aρ1)(dρ2 − cρ2)

4

(
|I1| + |I2| + |I3| + I4|

)
. (20)

By using the quasi-convexity of

∣
∣∣∣
∂2 f

∂t∂s

∣
∣∣∣ on the coordinates, we have

|I1| ≤
∫ 1

0

∫ 1

0
s(β2+1)ρ2−1t (β1+1)ρ1−1

∣∣∣
∣

∂2

∂t∂s
f (tρ1bρ1 + (1 − tρ1 )aρ1 , sρ2dρ2 + (1 − sρ2 )cρ2 )

∣∣∣
∣dtds

≤
∫ 1

0

∫ 1

0
s(β2+1)ρ2−1t (β1+1)ρ1−1dtdsmax

{∣∣∣∣
∂2

∂t∂s
f (bρ1 , dρ2 )

∣∣∣∣,
∣∣∣∣

∂2

∂t∂s
f
(
bρ1 , cρ2

)
∣∣∣∣,

∣∣∣∣
∂2

∂t∂s
f
(
aρ1 , dρ2

)
∣∣∣∣,

∣∣∣∣
∂2

∂t∂s
f
(
aρ1 , cρ2

)
∣∣∣∣

}
.

Thus,

|I1| ≤ 1

(β1 + 1)(β2 + 1)ρ1ρ2
max

{∣∣∣∣
∂2

∂t∂s
f (bρ1 , dρ2)

∣∣∣∣,
∣∣∣∣

∂2

∂t∂s
f (bρ1 , cρ2)

∣∣∣∣,
∣∣∣∣

∂2

∂t∂s
f (aρ1 , dρ2)

∣∣∣∣,
∣∣∣∣

∂2

∂t∂s
f (aρ1 , cρ2)

∣∣∣∣

}
. (21)

By using similarly arguments, we have

|I2| ≤ 1

(β1 + 1)(β2 + 1)ρ1ρ2
max

{∣∣
∣∣

∂2

∂t∂s
f (bρ1 , dρ2)

∣∣
∣∣,

∣∣
∣∣

∂2

∂t∂s
f (bρ1 , cρ2)

∣∣
∣∣,

∣
∣∣∣

∂2

∂t∂s
f (aρ1 , dρ2)

∣
∣∣∣,

∣
∣∣∣

∂2

∂t∂s
f (aρ1 , cρ2)

∣
∣∣∣

}
, (22)
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|I3| ≤ 1

(β1 + 1)(β2 + 1)ρ1ρ2
max

{∣∣∣∣
∂2

∂t∂s
f (bρ1 , dρ2)

∣∣∣∣,
∣∣∣∣

∂2

∂t∂s
f (bρ1 , cρ2)

∣∣∣∣,
∣∣∣
∣

∂2

∂t∂s
f (aρ1 , dρ2)

∣∣∣
∣,

∣∣∣
∣

∂2

∂t∂s
f (aρ1 , cρ2)

∣∣∣
∣

}
(23)

and

|I4| ≤ 1

(β1 + 1)(β2 + 1)ρ1ρ2
max

{∣
∣∣∣

∂2

∂t∂s
f (bρ1 , dρ2)

∣
∣∣∣,

∣
∣∣∣

∂2

∂t∂s
f (bρ1 , cρ2)

∣
∣∣∣,

∣
∣∣∣

∂2

∂t∂s
f (aρ1 , dρ2)

∣
∣∣∣,

∣
∣∣∣

∂2

∂t∂s
f (aρ1 , cρ2)

∣
∣∣∣

}
. (24)

The desired inequality is deduced from (20), (21), (22), (23) and (24).

Theorem 8 Let β1, β2, ρ1, ρ2 > 0, 0 ≤ a < b, 0 ≤ c < d and f : [aρ1 , bρ1 ] ×
[cρ2 , dρ2 ] → R be a twice partially differentiable mapping on (aρ1 , bρ1) × (cρ2 , dρ2)

and
∂2 f

∂t∂s
∈ L1 ([aρ1 , bρ1 ] × [cρ2 , dρ2 ]). If

∣
∣∣∣
∂2 f

∂t∂s

∣
∣∣∣

q

is quasi-convex on the coordi-

nates on (aρ1 , bρ1) × (cρ2 , dρ2), then the inequality

∣∣
∣∣
f (aρ1 , cρ2) + f (aρ1 , dρ2) + f (bρ1 , cρ2) + f (bρ1 , dρ2)

4

− ρ
β2
2 Γ (β2 + 1)

4(dρ2 − cρ2)β2

[
ρ2 I β2

c+ f (aρ1 , dρ2) + ρ2 I β2
c+ f (bρ1 , dρ2)

+ ρ2 I β2
d− f (aρ1 , cρ2) + ρ2 I β2

d− f (bρ1 , cρ2)

]

− ρ
β1
1 Γ (β1 + 1)

4(bρ1 − aρ1)β1

[
ρ1 I β1

a+ f (bρ1 , cρ2) + ρ1 I β1
a+ f (bρ1 , dρ2)

+ ρ1 I β1
b− f (aρ1 , cρ2) + ρ1 I β1

b− f (aρ1 , dρ2)

]

+ ρ
β1
1 ρ

β2
2 Γ (β1 + 1)Γ (β2 + 1)

4(bρ1 − aρ1)β1(dρ2 − cρ2)β2

[
ρ1,ρ2 I β1,β2

a+,c+ f (bρ1 , dρ2) + ρ1,ρ2 I β1,β2
a+,d− f (bρ1 , cρ2)

+ ρ1,ρ2 I β1,β2
b−,c+ f (cρ1 , dρ2) + ρ1,ρ2 I β1,β2

b−,d− f (aρ1 , cρ2)

]∣∣∣∣

≤ (bρ1 − aρ1)(dρ2 − cρ2)

(β1 + 1)(β2 + 1)

(
max

{∣∣∣∣
∂2

∂t∂s
f (bρ1 , dρ2)

∣∣∣∣

q

,

∣∣∣∣
∂2

∂t∂s
f (bρ1 , cρ2)

∣∣∣∣

q

,

∣∣∣∣
∂2

∂t∂s
f (aρ1 , dρ2)

∣∣∣∣

q

,

∣∣∣∣
∂2

∂t∂s
f (aρ1 , cρ2)

∣∣∣∣

q}) 1
q

. (25)

holds for q > 1.

Proof By an application of Lemma 2 and the absolute value properties, we obtain
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∣∣
∣∣
f (aρ1 , cρ2) + f (aρ1 , dρ2) + f (bρ1 , cρ2) + f (bρ1 , dρ2)

4

− ρ
β2
2 Γ (β2 + 1)

4(dρ2 − cρ2)β2

[
ρ2 I β2

c+ f (aρ1 , dρ2) + ρ2 I β2
c+ f (bρ1 , dρ2)

+ ρ2 I β2
d− f (aρ1 , cρ2) + ρ2 I β2

d− f (bρ1 , cρ2)

]

− ρ
β1
1 Γ (β1 + 1)

4(bρ1 − aρ1)β1

[
ρ1 I β1

a+ f (bρ1 , cρ2) + ρ1 I β1
a+ f (bρ1 , dρ2)

+ ρ1 I β1
b− f (aρ1 , cρ2) + ρ1 I β1

b− f (aρ1 , dρ2)

]

+ ρ
β1
1 ρ

β2
2 Γ (β1 + 1)Γ (β2 + 1)

4(bρ1 − aρ1)β1(dρ2 − cρ2)β2

[
ρ1,ρ2 I β1,β2

a+,c+ f (bρ1 , dρ2) + ρ1,ρ2 I β1,β2
a+,d− f (bρ1 , cρ2)

+ ρ1,ρ2 I β1,β2
b−,c+ f (cρ1 , dρ2) + ρ1,ρ2 I β1,β2

b−,d− f (aρ1 , cρ2)

]∣∣∣∣

≤ ρ1ρ2(bρ1 − aρ1)(dρ2 − cρ2)

4

(
|I1| + |I2| + |I3| + I4|

)
. (26)

By using theHölder’s inequality with
1

r
+ 1

q
= 1 and the quasi-convexity of

∣
∣∣∣
∂2 f

∂t∂s

∣
∣∣∣

q

on the coordinates, we have

|I1| ≤
(∫ 1

0

∫ 1

0
s(β2+1)ρ2−1t (β1+1)ρ1−1dsdt

) 1
r ×

(∫ 1

0

∫ 1

0
s(β2+1)ρ2−1t (β1+1)ρ1−1

∣
∣∣
∣

∂2

∂t∂s
f (tρ1bρ1 + (1 − tρ1 )aρ1 , sρ2dρ2 + (1 − sρ2 )cρ2 )

∣
∣∣
∣

q

dtds

) 1
q

≤
(

1

(β1 + 1)(β2 + 1)ρ1ρ2

) 1
r ×

(∫ 1

0

∫ 1

0
s(β2+1)ρ2−1t (β1+1)ρ1−1dtdsmax

{∣
∣∣
∣

∂2

∂t∂s
f (bρ1 , dρ2 )

∣
∣∣
∣

q

,

∣
∣∣
∣

∂2

∂t∂s
f
(
bρ1 , cρ2

)
∣
∣∣
∣

q

,

∣
∣
∣∣

∂2

∂t∂s
f
(
aρ1 , dρ2

)
∣
∣
∣∣

q

,

∣
∣
∣∣

∂2

∂t∂s
f
(
aρ1 , cρ2

)
∣
∣
∣∣

q}) 1
q

=
(

1

(β1 + 1)(β2 + 1)ρ1ρ2

) 1
r ×

(
1

(β1 + 1)(β2 + 1)ρ1ρ2
max

{∣
∣
∣∣

∂2

∂t∂s
f (bρ1 , dρ2 )

∣
∣
∣∣

q

,

∣
∣
∣∣

∂2

∂t∂s
f
(
bρ1 , cρ2

)
∣
∣
∣∣

q

,

∣
∣
∣
∣

∂2

∂t∂s
f
(
aρ1 , dρ2

)
∣
∣
∣
∣

q

,

∣
∣
∣
∣

∂2

∂t∂s
f
(
aρ1 , cρ2

)
∣
∣
∣
∣

q}) 1
q

.

That is,
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|I1| ≤ 1

(β1 + 1)(β2 + 1)ρ1ρ2

(
max

{∣∣∣∣
∂2

∂t∂s
f (bρ1 , dρ2)

∣∣∣∣

q

,

∣∣∣∣
∂2

∂t∂s
f (bρ1 , cρ2)

∣∣∣∣

q

,

∣∣∣∣
∂2

∂t∂s
f (aρ1 , dρ2)

∣∣∣∣

q

,

∣∣∣∣
∂2

∂t∂s
f (aρ1 , cρ2)

∣∣∣∣

q}) 1
q

.

(27)

Using similar argument, we have

|I2| ≤ 1

(β1 + 1)(β2 + 1)ρ1ρ2

(
max

{∣∣
∣∣

∂2

∂t∂s
f (bρ1 , dρ2)

∣∣
∣∣

q

,

∣∣
∣∣

∂2

∂t∂s
f (bρ1 , cρ2)

∣∣
∣∣

q

,

∣∣∣
∣

∂2

∂t∂s
f (aρ1 , dρ2)

∣∣∣
∣

q

,

∣∣∣
∣

∂2

∂t∂s
f (aρ1 , cρ2)

∣∣∣
∣

q}) 1
q

,

(28)

|I3| ≤ 1

(β1 + 1)(β2 + 1)ρ1ρ2

(
max

{∣∣∣∣
∂2

∂t∂s
f (bρ1 , dρ2)

∣∣∣∣

q

,

∣∣∣∣
∂2

∂t∂s
f (bρ1 , cρ2)

∣∣∣∣

q

,

∣∣∣∣
∂2

∂t∂s
f (aρ1 , dρ2)

∣∣∣∣

q

,

∣∣∣∣
∂2

∂t∂s
f (aρ1 , cρ2)

∣∣∣∣

q}) 1
q

(29)

and

|I4| ≤ 1

(β1 + 1)(β2 + 1)ρ1ρ2

(
max

{∣∣∣
∣

∂2

∂t∂s
f (bρ1 , dρ2)

∣∣∣
∣

q

,

∣∣∣
∣

∂2

∂t∂s
f (bρ1 , cρ2)

∣∣∣
∣

q

,

∣∣∣∣
∂2

∂t∂s
f (aρ1 , dρ2)

∣∣∣∣

q

,

∣∣∣∣
∂2

∂t∂s
f (aρ1 , cρ2)

∣∣∣∣

q}) 1
q

.

(30)

The desired inequality follows from (31) and using (32)–(35). �

Theorem 9 Let β1, β2, ρ1, ρ2 > 0, 0 ≤ a < b, 0 ≤ c < d and f : [aρ1 , bρ1 ] ×
[cρ2 , dρ2 ] → R be a twice partially differentiable mapping on (aρ1 , bρ1) × (cρ2 , dρ2)

and
∂2 f

∂t∂s
∈ L1 ([aρ1 , bρ1 ] × [cρ2 , dρ2 ]). If

∣∣∣∣
∂2 f

∂t∂s

∣∣∣∣

q

is quasi-convex on the coordi-

nates on (aρ1 , bρ1) × (cρ2 , dρ2), then the inequality
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∣∣
∣∣
f (aρ1 , cρ2) + f (aρ1 , dρ2) + f (bρ1 , cρ2) + f (bρ1 , dρ2)

4

− ρ
β2
2 Γ (β2 + 1)

4(dρ2 − cρ2)β2

[
ρ2 I β2

c+ f (aρ1 , dρ2) + ρ2 I β2
c+ f (bρ1 , dρ2)

+ ρ2 I β2
d− f (aρ1 , cρ2) + ρ2 I β2

d− f (bρ1 , cρ2)

]

− ρ
β1
1 Γ (β1 + 1)

4(bρ1 − aρ1)β1

[
ρ1 I β1

a+ f (bρ1 , cρ2) + ρ1 I β1
a+ f (bρ1 , dρ2)

+ ρ1 I β1
b− f (aρ1 , cρ2) + ρ1 I β1

b− f (aρ1 , dρ2)

]

+ ρ
β1
1 ρ

β2
2 Γ (β1 + 1)Γ (β2 + 1)

4(bρ1 − aρ1)β1(dρ2 − cρ2)β2

[
ρ1,ρ2 I β1,β2

a+,c+ f (bρ1 , dρ2) + ρ1,ρ2 I β1,β2
a+,d− f (bρ1 , cρ2)

+ ρ1,ρ2 I β1,β2
b−,c+ f (cρ1 , dρ2) + ρ1,ρ2 I β1,β2

b−,d− f (aρ1 , cρ2)

]∣∣∣∣

≤ (bρ1 − aρ1)(dρ2 − cρ2)

(
1

(β1r + 1)(β2r + 1)

) 1
r

×
(
max

{∣∣∣∣
∂2

∂t∂s
f (bρ1 , dρ2)

∣∣∣∣

q

,

∣∣∣∣
∂2

∂t∂s
f (bρ1 , cρ2)

∣∣∣∣

q

,

∣∣∣∣
∂2

∂t∂s
f (aρ1 , dρ2)

∣∣∣∣

q

,

∣∣∣∣
∂2

∂t∂s
f (aρ1 , cρ2)

∣∣∣∣

q}) 1
q

,

holds for q > 1, where
1

r
+ 1

q
= 1.

Proof By an application of Lemma 2 and the absolute value properties, we obtain

∣∣∣∣
f (aρ1 , cρ2) + f (aρ1 , dρ2) + f (bρ1 , cρ2) + f (bρ1 , dρ2)

4

− ρ
β2
2 Γ (β2 + 1)

4(dρ2 − cρ2)β2

[
ρ2 I β2

c+ f (aρ1 , dρ2) + ρ2 I β2
c+ f (bρ1 , dρ2)

+ ρ2 I β2
d− f (aρ1 , cρ2) + ρ2 I β2

d− f (bρ1 , cρ2)

]

− ρ
β1
1 Γ (β1 + 1)

4(bρ1 − aρ1)β1

[
ρ1 I β1

a+ f (bρ1 , cρ2) + ρ1 I β1
a+ f (bρ1 , dρ2)

+ ρ1 I β1
b− f (aρ1 , cρ2) + ρ1 I β1

b− f (aρ1 , dρ2)

]

+ ρ
β1
1 ρ

β2
2 Γ (β1 + 1)Γ (β2 + 1)

4(bρ1 − aρ1)β1(dρ2 − cρ2)β2

[
ρ1,ρ2 I β1,β2

a+,c+ f (bρ1 , dρ2) + ρ1,ρ2 I β1,β2
a+,d− f (bρ1 , cρ2)
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+ ρ1,ρ2 I β1,β2
b−,c+ f (cρ1 , dρ2) + ρ1,ρ2 I β1,β2

b−,d− f (aρ1 , cρ2)

]∣∣
∣∣

≤ ρ1ρ2(bρ1 − aρ1)(dρ2 − cρ2)

4

(
|I1| + |I2| + |I3| + I4|

)
. (31)

By using the Hölder’s inequality and the quasi-convexity of

∣∣∣∣
∂2 f

∂t∂s

∣∣∣∣

q

on the coordi-

nates, we have

|I1| ≤
( ∫ 1

0

∫ 1

0
sβ2rρ2 tβ1rρ1 sρ2−1tρ1−1dsdt

) 1
r

×
( ∫ 1

0

∫ 1

0
sρ2−1tρ1−1

∣
∣∣
∣

∂2

∂t∂s
f (tρ1bρ1 + (1 − tρ1 )aρ1 , sρ2dρ2 + (1 − sρ2 )cρ2 )

∣
∣∣
∣

q

dtds

) 1
q

≤
(

1

(β1r + 1)(β2r + 1)ρ1ρ2

) 1
r

×
(
max

{∣∣
∣∣

∂2

∂t∂s
f (bρ1 , dρ2 )

∣∣
∣∣

q

,

∣∣
∣∣

∂2

∂t∂s
f
(
bρ1 , cρ2

)
∣∣
∣∣

q

,

∣
∣∣
∣

∂2

∂t∂s
f
(
aρ1 , dρ2

)
∣
∣∣
∣

q

,

∣
∣∣
∣

∂2

∂t∂s
f
(
aρ1 , cρ2

)
∣
∣∣
∣

q}∫ 1

0

∫ 1

0
sρ2−1tρ1−1dtds

) 1
q

=
(

1

(β1r + 1)(β2r + 1)ρ1ρ2

) 1
r

×
(

1

ρ1ρ2
max

{∣
∣∣
∣

∂2

∂t∂s
f (bρ1 , dρ2 )

∣
∣∣
∣

q

,

∣
∣∣
∣

∂2

∂t∂s
f
(
bρ1 , cρ2

)
∣
∣∣
∣

q

,

∣∣
∣∣

∂2

∂t∂s
f
(
aρ1 , dρ2

)
∣∣
∣∣

q

,

∣∣
∣∣

∂2

∂t∂s
f
(
aρ1 , cρ2

)
∣∣
∣∣

q}) 1
q

.

That is,

|I1| ≤ 1

ρ1ρ2

(
1

(β1r + 1)(β2r + 1)

) 1
r

×
(
max

{∣
∣∣∣

∂2

∂t∂s
f (bρ1 , dρ2)

∣
∣∣∣

q

,

∣
∣∣∣

∂2

∂t∂s
f (bρ1 , cρ2)

∣
∣∣∣

q

,

∣∣
∣∣

∂2

∂t∂s
f (aρ1 , dρ2)

∣∣
∣∣

q

,

∣∣
∣∣

∂2

∂t∂s
f (aρ1 , cρ2)

∣∣
∣∣

q}) 1
q

. (32)

Using similar argument, we have
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|I2| ≤ 1

ρ1ρ2

(
1

(β1r + 1)(β2r + 1)

) 1
r

×
(
max

{∣∣∣∣
∂2

∂t∂s
f (bρ1 , dρ2)

∣∣∣∣

q

,

∣∣∣∣
∂2

∂t∂s
f (bρ1 , cρ2)

∣∣∣∣

q

,

∣∣∣∣
∂2

∂t∂s
f (aρ1 , dρ2)

∣∣∣∣

q

,

∣∣∣∣
∂2

∂t∂s
f (aρ1 , cρ2)

∣∣∣∣

q}) 1
q

, (33)

|I3| ≤ 1

ρ1ρ2

(
1

(β1r + 1)(β2r + 1)

) 1
r

×
(
max

{∣∣
∣∣

∂2

∂t∂s
f (bρ1 , dρ2)

∣∣
∣∣

q

,

∣∣
∣∣

∂2

∂t∂s
f (bρ1 , cρ2)

∣∣
∣∣

q

,

∣∣∣
∣

∂2

∂t∂s
f (aρ1 , dρ2)

∣∣∣
∣

q

,

∣∣∣
∣

∂2

∂t∂s
f (aρ1 , cρ2)

∣∣∣
∣

q}) 1
q

(34)

and

|I4| ≤ 1

ρ1ρ2

(
1

(β1r + 1)(β2r + 1)

) 1
r

×
(
max

{∣∣∣
∣

∂2

∂t∂s
f (bρ1 , dρ2)

∣∣∣
∣

q

,

∣∣∣
∣

∂2

∂t∂s
f (bρ1 , cρ2)

∣∣∣
∣

q

,

∣∣∣∣
∂2

∂t∂s
f (aρ1 , dρ2)

∣∣∣∣

q

,

∣∣∣∣
∂2

∂t∂s
f (aρ1 , cρ2)

∣∣∣∣

q}) 1
q

. (35)

The desired inequality follows from (31) and using (32)–(35). �

3 Conclusion

We used an extended Katugampola-type fractional integral to develop a two-
dimensional Hermite–Hadamard-type integral inequality for functions that are quasi-
convex on the coordinates. We also found three Hermite–Hadamard-type integral
inequalities for two-variable functions whose mixed-order partial derivatives in
absolute value at particular powers are quasi-convex on the coordinates. Using the
Riemann–Liouville fractional integrals, similar conclusions might be obtained by
setting ρ1 = ρ2 = 1.

The findings of this work, we feel, will add to the literature on fractional integral
inequalities using generalized concepts of convexity on the coordinates.
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Leray–Schauder Theorem for Implicit
Fractional Differential Equation and
Nonlocal Multi-Point Conditions

Piyachat Borisut and Thanatporn Bantaojai

Abstract The research work in this paper attempts to investigate and consider the
existence and uniqueness of solution for a family of implicit fractional differential
equations with nonlocal multi-point conditions of the form

C Dq
0+μ(τ ) = F(τ ,μ(τ ),C Dq

0+μ(τ )), τ ∈ [0, 1],

μ(k)(0) = ξk, u(1) =
m∑

i=1

αiμ(ηi ), 0 < ηi < 1,

where q ∈ (n − 1, n), n ≥ 2, k = 0, 1, . . . , n − 2, m, n ∈ N, ξk, αi ∈ R, C Dq
0+ is

Caputo fractional derivative of order q, F : [0, 1] × R
2 → R is a continuous func-

tion. The problem is solved using a specific type of generalized fractional derivative.
The Leray–Schauder degree and the Boyd–Wong nonlinear contraction fixed point
theorems are used to prove the existence and uniqueness of the problem. Finally, an
illustration of the results is provided.

1 Introduction

Fractional differential equations (FDEs) demonstrate a variety of interesting and
important results concerning existence and uniqueness of solutions. Implicit frac-
tional differential equations (IFDEs) are a type of FDE that is particularly important.
The significance of the implicit ordinary differential equation (IODE) of the form
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H

(
τ , y(τ ),

dy(τ )

dτ
. . . ,

dn−1y(τ )

dτ n−1

)
= 0

under different initial andboundary conditionsmotivates this study.This typeof equa-
tion is used in a variety of areas, including tools, engineering, chemistry, physics,
networking, dynamics, fluidmechanics, electromagnetic theory, viscoelasticity, elec-
trochemistry, control theory, movement through porous media etc. (see [1–7, 14] for
more details).

In 2017, Sathiyanathan andKrishnaveni [8] investigate the presence of the implicit
FDE and integral boundary condition

{
C Dq

0+μ(τ ) = −F(τ ,μ(τ ),C Dq
0+μ(τ )), 0 < τ < 1,

aμ(0) − bμ′(0) = 0, μ(1) = ∫ 1
0 k(s)g(τ , u(s))ds + u,

where 1 < q < 2, C Dq
0+ is the Caputo fraction derivative order q, (B, ‖·‖) be Banach

space, F : [0, 1] × C([0, 1],B) × B → B, k ∈ C([0, 1],B), k �= 0, a, b ∈ R
+, a +

b > 0 and a
a+b < q − 1.

In 2017, Tidke andMahajan [9] studied the existence and uniqueness of solutions
for the following implicit fractional differential equations with Riemann–Liouville
derivative:

{
RL D

q
0+μ(τ ) = F(τ ,μ(τ ),RL Dq

0+μ(τ )), 0 < τ < b,

RL D
q−1
0+ μ(0) = μ0 ∈ R,

where RL D
q
0+ , (0 < q < 1), b > 0 denotes Riemann–Liouville fractional derivative

operator and F is a continuous function on [0, b] × R
2 into R; R denotes the real

space.
In 2019, Borisut et al. [10] analyzed and did research on the ψ-Hilfer fractional

differential equation with nonlocal multi-point condition of the form

⎧
⎪⎨

⎪⎩

Dq,p;ψ
a+ μ(τ ) = F(τ ,μ(τ ), Dq,p;ψ

a+ μ(τ )),

I1−r;ψ
a+ μ(a) =

m∑

i=1

βiμ(ηi ),

where q ≤ r = q + p − qp < 1, τ ∈ [a, b], ηi ∈ [a, b], q ∈ (0, 1), p ∈ [0, 1], m
∈ N, βi ∈ R, i = 1, 2, . . . ,m, −∞ < a < b < ∞, Dq,p;ψ

a+ is the ψ-Hilfer frac-

tional derivative, F : [a, b] × R
2 → R is a continuous function and I1−r;ψ

a+ is the
ψ-Riemann–Liouville fractional integral of order 1 − r .

The purpose of this article is to deduce the existence and uniqueness solution of
a nonlinear fractional differential equation and a nonlocal multi-point condition, as
inspired by the paper in [8–11]
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⎧
⎪⎨

⎪⎩

C Dq
0+μ(τ ) = F(τ ,μ(τ ),C Dq

0+μ(τ )), τ ∈ [0, 1]
μ(k)(0) = ξk, μ(1) =

m∑

i=1

αiμ(ηi ), 0 < ηi < 1,
(1)

where q ∈ (n − 1, n), n ≥ 2, k = 0, 1, . . . , n − 2, m, n ∈ N, ξk, αi ∈ R, C Dq
0+ is

Caputo fractional derivative of order q, f : [0, 1] × R
2 → R.

The following is a summary of the paper. Section 2 covers the fundamentals of
fractional derivatives. In Sect. 3, we use the Leray–Schauder degree and the Boyd
and Wong fixed point theorem to illustrate our major findings. We also offer an
illustration of the major findings.

2 Background Materials

We will review some fundamental notations, definitions, lemmas and theorems that
will be used to establish the major result in this section.

Definition 1 ([12]) Let Γ (·) be a gamma function which is given by

Γ (q) =
∫ ∞

0
e−ssq−1ds.

The Riemann–Liouville fractional integral of order q > 0 for a function F : (0,∞)

→ R is defined by

RLIq
0+ F(τ ) = 1

Γ (q)

∫ τ

0
(τ − s)q−1F(s)ds.

Definition 2 ([13]) The Caputo fractional derivative of order q > 0 of a function
F : (0,∞) → R is defined by

(
C D

q
0+ F

)
(τ ) = 1

Γ (n − q)

∫ τ

0
(τ − s)n−q−1F (n)(s)ds,

where n ∈ N is the smallest number with n ≥ q.

Lemma 1 ([12]) Let n − 1 < q < n. If F ∈ Cn([a, b]), then

RLIq
0+(C Dq

0+μ)(τ ) = μ(τ ) + c0 + c1τ + c2τ
2 + · · · + cn−1τ

n−1,

where ci ∈ R, i = 1, 2, . . . , n, n ∈ N is the smallest number with n ≥ q.

Lemma 2 ([13] Arzela–Ascoli theorem) LetM ⊆ C[a, b].M is relatively compact
in C[a, b] if and only ifM is
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1. uniformly bounded (meaning that it is a bounded set in C[a, b]),
2. equicontinuous on [a, b], for any ε > 0 there exists δ > 0 such that |t2 − t1|< δ

implies |F(t2) − F(t1)|< ε for any F ∈ M.

Definition 3 ([13])LetX andY benormed spaces, E ⊂ X is bounded.Wecalled the
mapping A : X → Y is completely continuous if A(E) ⊂ Y is relatively compact.

Definition 4 ([13]) Let Δ ⊂ X . A continuous bounded mapping F : Δ → X is
called α-Lipschitz if there exists k ≥ 0 such that α(F(E)) ≤ kα(E), ∀E ⊂ Δ. If in
addition, k < 1 then we say thatF is a strictα-contraction. Let σ = {(I � F ,Δ, v) :
Δ ⊂ X open and bounded. F ∈ C∞(Δ), v ∈ X � (I � F)(∂Δ)} be the family of
admissible triplets.

Theorem 1 ([13]) The properties of degree functionD : σ → N0 are introduced as
the following.

1. Normalization: D(I,Δ, v) = 1 for every v ∈ Δ.
2. Additivity on domain: For every disjoint, open set Δ1,Δ2 ⊂ Δ and v does not

belong to (I � F)(Δ � (Δ1 ∪ Δ2))wehaveD(I � F ,Δ, v) = D(I � F ,Δ1, v)

+ D(I � F ,Δ2, v).

3. Invariance under homotopy: D(I � G(τ , ·),Δ, v(τ )) is G : [0, 1] × Δ → X
which satisfies α(G([0, 1] × E)) < α(E), ∀E ⊂ Δ with α(E) > 0 and every
continuous function v : [0, 1] → X which satisfies v(τ ) �= μ − G(τ ,μ) ∀τ ∈
[0, 1], ∀μ ∈ ∂Δ.

4. Existence: D(I � F ,Δ, v) �= 0 implies v ∈ (I � F)(Δ).
5. Excision: D(I � F ,Δ, v) = D(I � F ,Δ1, v) for every open set Δ1 ⊂ Δ and

every v does not belong to (I � F)(Δ � Δ1).

As a result of degree function defined on σ, we gather the usefulness of the
previous estimate method by virtue of this degree.

Theorem 2 ([13]) Suppose that A : Δ → B is a completely continuous operator
and thatAu �= λu, ∀u ∈ ∂Δ,λ ≥ 1. ThenD(I � A),Δ, θ) = 1 andA has at least
one fixed point in Δ.

Definition 5 ([12]) Let A : B → B be a mapping and B be a Banach space. A is
said to be a nonlinear contraction if there exists a nondecreasing continuous function
Π : (0,+∞) → (0,+∞) such that Π(0) = 0 and Π(ε) < ε for all ε > 0 with the
following property:

‖Aμ − Av‖≤ Π(‖μ − v‖), ∀μ, v ∈ B.

Theorem 3 ([12] Boyd and Wong fixed point theorem)
Let B be a Banach space and let A : B → B be a nonlinear contraction. Then A
has a unique fixed point in B.
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3 Main Results

In this section we consider the solutions of nonlinear fractional differential equation
(1).

Lemma 3 Let function h∗ ∈ C([0, 1],B), where B be a Banach space. Suppose that
the functionμ ∈ C([0, 1],B) is a solution of the following linear FDEand conditions

⎧
⎪⎨

⎪⎩

C Dq
0+μ(τ ) = h∗(τ ), τ ∈ [0, 1],

μ(k)(0) = ξk, μ(1) =
m∑

i=1

αi μ(ηi ),
(2)

where q ∈ (n − 1, n), n ≥ 2, k = 0, 1, . . . , n − 2, m, n ∈ N, ξk, αi ∈ R. Here
C Dq

0+ is the Caputo fractional derivative of order q and assume that

Λ := 1 −
m∑

i=1

αiη
n−1
i �= 0.

Then, the solution of (2) is unique and given by

μ(τ ) = RLIq
0+h∗(τ ) +

n−2∑

k=0

ξkτ
k

k! + τ n−1

Λ

[ m∑

i=1

αi RLIq
0+h∗(ηi ) +

m∑

i=1

n−2∑

k=0

αiξkη
k
i

k!

−RLIq
0+h∗(1) −

n−2∑

k=0

ξk

k!
]
.

Proof From Lemma1, we get constants c0, c1, . . . , cn−1 belong to B

μ(τ ) =RL Iq
0+h∗(τ ) + c0 + c1τ + c2τ

2 + · · · + cn−1τ
n−1.

We select from the first condition,

c0 = ξ0, c1 = ξ1, c2 = ξ2

2! . . . , cn−2 = ξn−2

(n − 2)! ,

and so

μ(τ ) =RL Iq
0+h∗(τ ) +

n−2∑

k=0

ξkτ
k

k! + cn−1τ
n−1. (3)

The substitution τ = 1 yield
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μ(1) =RL Iq
0+h∗(1) +

n−2∑

k=0

ξk

k! + cn−1.

Substitution of τ = ηi and applying
m∑

i=1

αiμ(ηi ) in (3), we get

m∑

i=1

αiμ(ηi ) =
m∑

i=1

αi RLIq
0+h∗(ηi ) +

m∑

i=1

n−2∑

k=0

αiξkη
k
i

k! + cn−1

m∑

i=1

αiη
n−1
i .

By the second condition, we have

cn−1 = 1

Λ

[ m∑

i=1

αi RLIq
0+h∗(ηi ) +

m∑

i=1

n−2∑

k=0

αiξkη
k
i

k! −RL Iq
0+h∗(1) −

n−2∑

k=0

ξk

k!
]
,

μ(τ ) = RLIq
0+h∗(τ ) +

n−2∑

k=0

ξkτ
k

k! + τ n−1

Λ

[ m∑

i=1

αi RLIq
0+h∗(ηi ) +

m∑

i=1

n−2∑

k=0

αiξkη
k
i

k!

−RLIq
0+h∗(1) −

n−2∑

k=0

ξk

k!
]
.

Let B be the space of all continuous functions defined on [0, 1], that is B =
C([0, 1], R) with the supremum norm ‖μ‖∞:= sup

τ∈[0,1]
|μ(τ )|, μ ∈ B and the space

B is a Banach space, let

Kμ(τ ) =C Dq
0+μ(τ ) = F(τ ,μ(τ ),C Dq

0+μ(τ )).

Define the nonlinear operator A : B → B as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(Aμ)(τ ) =RL Iq
0+ F(s,μ(s),Kμ(s))(τ )

+
n−2∑

k=0

ξkτ
k

k! + τ n−1

Λ

[ m∑

i=1

αi RLIq
0+ F(s,μ(s),Kμ(s))(ηi )

+
m∑

i=1

n−2∑

k=0

αiξkη
k
i

k! −RL Iq
0+ F(s,μ(s),Kμ(s))(1) −

n−2∑

k=0

ξk

k!
]
.

(4)

Then the operator A has fixed point if and only if (1) has a solution. Now we
prove and consider the existence and uniqueness of solution for problem (1) via
Leray–Schauder degree, Boyd and Wong fixed point theorems.
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3.1 Existence Result via Leray–Schauder Degree

Theorem 4 Let F : [0, 1] × R
2 → R be a continuous function. Assume that there

exist constants 0 ≤ κ1 ≤ κ2 ≤ ω−1 and M1 > 0 such that

|F(τ ,μ, v)|≤ κ1|μ|+κ2|v|+M1,

for all (τ ,μ, v) ∈ [0, 1] × R × R and

ω = 1

Γ (q + 1)
+ 1

|Λ|Γ (q + 1)
+ 1

|Λ|
m∑

i=1

|αi | η
q
i

Γ (q + 1)
.

Then the functional boundary value problem (1) has at least one solution on [0, 1].
Proof As the operator A : B → B is shown in (4), we next consider the fixed point
problem

μ = Aμ. (5)

We now show that there exists a fixed point μ ∈ B satisfying (5). It is sufficient to
show that A : BR → B satisfies

μ �= λAμ, ∀μ ∈ ∂BR,λ > 1, (6)

where BR = {μ ∈ B : max
τ∈[0,1]|μ(τ )|< R, R > 0}, we define H(λ,μ) = λAμ. We

show the operator A is continuous, uniformly bounded and equicontinuous.
Step 1.TheoperatorA is continuous.Let {μn}be a sequence such that lim

n→∞ μn = μ

in B. If τ ∈ [0, 1], we have

‖(Aμn)(τ ) − (Aμ)(τ )‖ = RLIq
0+ |F(s,μn(s),Kμn(s)) − F(s,μ(s),Kμ(s))|(τ )

+ 1

|Λ| RLI
q
0+ |F(s,μn(s),Kμn(s)) − F(s,μ(s),Kμ(s))|(1)

+ 1

|Λ|
m∑

i=1

|αi |RLIq
0+ |F(s,μn(s),Kμn(s))

−F(s,μ(s),Kμ(s))|(ηi )
≤ ‖F(s,μn(s),Kμn(s)) − F(s,μ(s),Kμ(s))‖

{

RL
Iq
0+ (τ )

+ 1

|Λ|
(

RL
Iq
0+ (1) +

m∑

i=1

|αi |RLIq
0+ (ηi )

)}

≤ ‖F(s,μn(s),Kμn(s)) − F(s,μ(s),Kμ(s))‖
{ 1

Γ (q + 1)

+ 1

|Λ|Γ (q + 1)
+ 1

|Λ|
m∑

i=1

|αi | η
q
i

Γ (q + 1)

}
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≤
{ 1

Γ (q + 1)
+ 1

|Λ|Γ (q + 1)

+ 1

|Λ|
m∑

i=1

|αi | η
q
i

Γ (q + 1)

}
‖Kμn(·) − Kμ(·)‖.

Since F is continuous implies that Kμ is continuous. Thus ‖Aμn − Aμ‖→ 0 as
n → ∞. Hence the operator A is continuous.

Step 2. Claim that A(BR) ⊂ BR . Define BR =
{
μ ∈ B : ‖μ‖≤ R

}
, where

R ≥

n−2∑

k=0

ξk

k!
(
1 + 1

Λ

)
(1 − κ1)Γ (q − 1) +

(
1 + 1

Λ

[
m∑

i=1

αiη
q
i + 1

])
M

(1 − κ2)Γ (q + 1) − κ1

(
1 + 1

Λ

[
m∑

i=1

αiη
q
i + 1

]) .

Letμ belong to BR . In order to prove thatAμ ∈ BR , it suffices to show that |Aμ(τ )|≤
R for τ ∈ [0, 1], we get |Kμ(τ )|≤ κ1|μ(τ )|+M1

1 − κ2
and

|Aμ(τ )| ≤ RLIq
0+ |Kμ(τ )|+ τn+1

Λ

[ m∑

i=1

αi RLIq
0+ |Kμ(ηi )| + RLIq

0+ |Kμ(1)|
]

+
n−2∑

k=0

ξk

k! |τ
k − τn−1

Λ
|

≤ RLIq
0+

κ1|μ(τ )|+M1

1 − κ2
+ τn+1

Λ

[ m∑

i=1

αi RLIq
0+

κ1|μ(ηi )|+M1

1 − κ2

+RLIq
0+

κ1|μ(1)|+M1

1 − κ2
|
]

+
n−2∑

k=0

ξk

k! |τ
k − τn−1

Λ
|

≤ 1

(1 − κ2)Γ (q + 1)

{
κ1‖μ‖+M1

}

+ τn−1

Λ

[ m∑

k=1

αiη
q
i

(1 − κ2)Γ (q + 1)

{
κ1‖μ‖+M1

}

+ 1

Γ (q + 1)

{
κ1‖μ‖+M1

}]
+

n−2∑

k=0

ξk

k! |τ
k + τn−1

Λ
|

≤
(
1 + 1

Λ

[ m∑

i=1

αiη
q
i + 1

]){ κ1R + M1

(1 − κ2)Γ (q + 1)

}

+
n−2∑

k=0

ξk

k!
(
1 + 1

Λ

)

≤ R.
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Hence A(BR) ⊂ BR .
Step 3. Show that A(BR) is uniformly bounded and equicontinuous.

By using step 2, we haveA(BR) = {Aμ : μ ∈ BR}. This gives us that ‖Aμ‖≤ R, for
each μ ∈ BR . We can now conclude that A(BR) is uniformly bounded. Let τ1, τ2 ∈
[0, 1]. Define

sup
(τ ,μ,Kμ)∈[0,1]×BR×BR

|F(τ ,μ,Kμ)|< C < ∞.

By choosing μ ∈ BR , we then obtain that

|Aμ(τ2) − Aμ(τ1)| ≤
∣∣∣

1

Γ (q)

∫ τ2

0
(τ2 − s)q−1F(s,μ(s),Kμ(s))ds

− 1

Γ (q)

∫ τ1

0
(τ1 − s)q−1F(s,μ(s),Kμ(s))ds

∣∣∣

+τ n−1
2 − τ n−1

1

Λ

[ m∑

i=1

αi RLIq
0+ F(s,μ(s),Kμ(s))(ηi )

−RLIq
0+ F(s,μ(s),Kμ(s))(1)

]

+
m∑

i=1

ξk

k!
[(

τ k
2 − τ n−1

2

Λ

)
−

(
τ k
1 − τ n−1

1

Λ

)]

|Aμ(τ2) − Aμ(τ1)| ≤ C

Γ (q + 1)

[
(τ

q
2 − τ

q
1 ) − (τ2 − τ1)

q
]

+ C

Γ (q + 1)
(τ2 − τ1)

q

+τ n−1
2 − τ n−1

1

|Λ|
[ m∑

i=1

αi RLIq
0+ F(s,μ(s),Kμ(s))(ηi )

−RLIq
0+ F(s,μ(s),Kμ(s))(1)

]

+
m∑

i=1

|ξk |
k!

[
(τ k

2 − τ k
1 ) − (τ n−1

2 − τ n−1
1 )

1

|Λ|
]
.

We see that the right-hand side converge to 0, as τ2 converge to τ1. Thus, A(BR)

is equicontinuous and uniformly bounded. Hence, from the Arzela–Ascoli theorem,
this implies that the set A(BR) is relatively compact in BR .

Step 4. Define gλ by gλ(μ) = μ − G(λ,μ) = μ − Aμ is completely continuous.
In order to prove (6), we assume that μ = λAμ for some λ ∈ [0, 1] and for all
τ ∈ [0, 1]. Then with ‖μ‖= sup

τ∈[0,1]
|μ(τ )|, we define an operator A : B → B by (4).

Consider
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(Aμ)(τ ) = RLIq
0+ F(s,μ(s),Kμ(s))(τ ) +

n−2∑

k=0

ξkτ
k

k!

+τ n−1

Λ

[ m∑

i=1

αi RLIq
0+ F(s,μ(s),Kμ(s))(ηi )

+
m∑

i=1

n−2∑

k=0

αiξkη
k
i

k! −RL Iq
0+ F(s,μ(s), Kμ(s))(1) −

n−2∑

k=0

ξk

k!
]
.

By applying step 2, we have |μ| = |λAμ|≤ ρwhich, on solving for ‖μ‖, yields ‖μ‖≤
ρ. If ρ = R + 1, inequality (6) holds. And we define G(λ,μ) = λAμ. A continuous
map gλ defined by gλ(μ) = μ − G(λ,μ) = μ − λA(μ) is completely continuous. If
(6) is true, then the following Laray–Schauder degree is well defined and by the
monotony invariance of topological degree, we consider

D(gλ, BR, 0) = D(I − λA, BR, 0)

= D(g1, BR, 0) = D(g0, BR, 0)

= D(I, BR, 0) = 1 �= 0, 0 ∈ BR,

where I stands for the identity operator. Because of the nonzero property of the
Leray–Schauder degree g1(μ) = μ − μA = 0, for at least fixed point μ ∈ BR .

3.2 Existence and Uniqueness Result via Boyd and Wong
Fixed Point Theorem

Theorem 5 Let F : [0, 1] × R
2 → R be a continuous function and ‖Kμ − Kv‖ ≤

M
1−N ‖μ − v‖ satisfying the assumption

|F(τ ,μ,Kμ) − F(τ , v,Kv)|≤ t (τ )|μ − v|
T ∗ + |μ − v| ,

where τ ∈ [0, 1], μ, v ≥ 0, M > 0, 0 < N < 1 and t (τ ) : [0, 1] → R
+ is continu-

ous. The constant T ∗ is defined by

T ∗ :=RL Iq
0+ t (1) + 1

|Λ|
[ m∑

i=1

|αi |RLIq
0+ t (ηi ) +RL Iq

0+ t (1)
]

�= 0.

Then the problem (1) has a unique solution on [0, 1].
Proof Consider the nondecreasing continuous function Π : R

+ → R
+ given by

Π(ε) = T ∗ε
T ∗+ε

, ∀ε > 0, such thatΠ(0) = 0 andΠ(ε) > ε, ∀ε > 0. For any μ, v ∈ B
and for each τ ∈ [0, 1], we have
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|Aμ(τ ) − Av(τ )| ≤ RLIq
0+

∣∣∣F(s, μ(s),Kμ(s)) − F(s, v(s),Kv(s))
∣∣∣(τ )

+ τn−1

|Λ|
[ m∑

i=1

|αi |RLIq
0+

∣∣∣F(s, μ(s),Kμ(s)) − F(s, v(s),Kv(s))
∣∣∣(ηi )

+RLIq
0+

∣∣∣F(s, μ(s),Kμ(s)) − F(s, v(s),Kv(s))
∣∣∣(1)

]

≤ Π(‖μ − v‖)
T ∗

{

RL
Iq
0+ t (τ ) + 1

|Λ|
[ m∑

i=1

|αi |RLIq
0+ t (ηi )

+RLIq
0+ t (1)

]}

≤ Π(‖μ − v‖).

This indicates that ‖Aμ − Av‖≤ Π(‖μ − v‖). By utilizing Boyd and Wong’s fixed
point theorem, we may conclude that the operator A is a nonlinear contraction and
has a unique solution to the problem (1).

4 Application

Consider the following FDE and nonlocal multi-point conditions

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

C D
9
2
0+μ(τ ) = 2τ

π(99+eτ )

( |μ(τ )|
|μ(τ )|+1

)
+ cos2 τ

99+10τ

( |C D
9
2
0+μ(τ )|

|C D
9
2
0+μ(τ )+1|

)
+ √

π,

μ(0) = π, μ′(0) = π
2 , μ′′(0) = π

3 , μ′′′(0) = π
4 ,

μ(1) = 1
3μ( 13 ) + 1

4μ( 14 ), τ ∈ [0, 1].
(7)

By comparing problem (1) and (7), we obtain the following parameters: q =
9/2, n = 5, ξ1 = π, ξ2 = π/2, ξ3 = π/4, α1 = 1/3, α2 = 1/4, η1 = 1/3, η2 =
1/4, F(τ ,μ(τ ),C D

9
2
0+μ(τ )) = 2τ

π(99+eτ )

( |μ(τ )|
|μ(τ )|+1

)
+ cos2 τ

99+10τ

( |C D
9
2
0+ μ(τ )|

|C D
9
2
0+ μ(τ )+1|

)
+ √

π.

From ω = 1
Γ (q+1) + 1

|Λ|Γ (q+1) + 1
|Λ| (α1η

q
1 + α2η

q
2 ), we now consider

∣∣∣F(τ ,μ(τ ), C D
9
2
0+μ(τ ))

∣∣∣ ≤
∣∣∣

2τ

π(99 + eτ )

( |μ(τ )|
|μ(τ )|+1

)

+ cos2 τ

99 + 10τ

( |C D 9
2
0+μ(τ )|

|C D 9
2
0+μ(τ ) + 1|

)
+ √

π
∣∣∣

≤ 1

100

∣∣∣μ(τ )

∣∣∣ + 1

100

∣∣∣C D
9
2
0+μ(τ )

∣∣∣ + √
π.

Therefore the condition of Theorem4 is satisfied with ω = 0.0412 and M1 = √
π.

Note that κ1 = κ2 = 1/100 < 1/ω = 24.27. By choosing t (τ ) = 1/50 = 0.02, we
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then obtain that T ∗ = 0.0003851. Next, we consider

∣∣∣F(τ ,μ(τ ),C D
9
2
0+μ(τ )) − F(τ , v(τ ),C D

9
2
0+v(τ ))

∣∣∣

≤ 1

100

⎛

⎜⎝

∣∣∣μ − v

∣∣∣

1 + |μ − v

∣∣∣
+

∣∣∣C D
9
2
0+μ(τ ) − C D

9
2
0+v(τ )

∣∣∣

1 +
∣∣∣C D

9
2
0+μ(τ ) − C D

9
2
0+v(τ )

∣∣∣

⎞

⎟⎠ .

By setting M, N = 1
100 and using ‖Kμ − Kv‖ ≤ M

1−N ‖μ − v‖. We now conclude
that

∣∣∣F(τ ,μ(τ ),C D
9
2
0+μ(τ )) − F(τ , v(τ ),C D

9
2
0+v(τ ))

∣∣∣

≤ 1

100

⎛

⎝

∣∣∣μ − v

∣∣∣

1 + |μ − v

∣∣∣
+

1
99

∣∣∣μ − v

∣∣∣

1 + 1
99 |μ − v

∣∣∣

⎞

⎠

≤ 1

100

⎛

⎝

∣∣∣μ − v

∣∣∣

1 + |μ − v

∣∣∣
+

∣∣∣μ − v

∣∣∣

99 + |μ − v

∣∣∣

⎞

⎠

≤ 1

50

( |μ − v|
0.0003851 + |μ − v|

)
.

As a result, according to Theorem5, the problem (7) has a unique solution on (0, 1).

5 Conclusions

In our study, first, we obtain the operator from Eq. (1). Secondly, Leray–Schauder
degree and Boyd–Wong nonlinear contraction fixed point theorems were used to
establish the existence and uniqueness solutions for implicit fractional differential
equation which involves Caputo fractional derivatives order q ∈ [n − 1, n), n ∈ N

with nonlocal multi-point conditions. In addition, an example was given to illustrate
our main results.
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The q-Deformed Hamiltonian,
Lagrangian, Entropy and Fisher
Information

Worachet Bukaew and Sikarin Yoo-Kong

Abstract The aim of this article is to give the first time how four separated sub-
jects, namely, Hamiltonian, Lagrangian, entropy and Fisher information, are possibly
connected through the method known as the q-deformation.

1 Introduction

In mathematical literature, the generalisation of the differentiation called the fractal
calculus (a.k.a. q-analog or q-deformed) can be dated back to the time of Leibniz.
Later, this subject has been seriously studied and has been expressed as a standard
language by many scholars [1–9]. The interesting point is that the application of
the fractional calculus has been recently discovered in many disciplines such as
engineering [10, 14], physics [11, 12] and biology [13, 14], see also [15, 16]. The
notion of entropy was first introduced by Clausius [17] in the thermodynamic con-
text. Later, Boltzmann [18] proposed another entropy in the context of statistical
mechanics. However, these two expressions of the entropy give the same description
of the system. In different context, Shannon proposed a quantity known as the Shan-
non entropy to measure the information in the communication theory [19]. In recent
years, the generalised concept of entropy, called the q-deformed entropy, has gained
a mammoth attention [20–23] as well as a wide range of applications [24–33]. In this
chapter, we would like to provide a big picture on how things, namely, Hamiltonian,
Lagrangian, entropy and Fisher information, are possibly connected based on a col-
lection of works [34–37]. This may sound questionable how these things would fit
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together. However, we hope every much that, after the reader completes the chapter,
things would make sense. We also would like to note that the q-deformation in our
context will come with only one parameter. However, things can be generalised more
than one parameter. Then it would be reasonable to call the objects in the study as
the n-parameter generalisation.

Let us here provide some basic mathematical concept of the q-analog and q-
derivative which will be recalled later throughout the text. First we introduce the
q-deformed logarithmic and exponential functions

lnq x = x1−q − 1

1 − q
, (x > 0),

exq = [1 + (1 − q)x]
1

1−q , (1 + (1 − q)x > 0). (1)

Here limq→1 lnq x = ln x and limq→1 exq = ex are the standard functions which are
recovered. Furthermore, we also give the definitions of the q-sum, q-difference,
q-product and q-ratio [38, 39]

x ⊕q y = x + y + (1 − q)xy ,

x �q y = x − y

1 + (1 − q)y
, 1 + (1 − q)y �= 0 ,

x ⊗q y = [
x1−q + y1−q − 1

] 1
1−q , x > 0, y > 0 and x1−q + y1−q − 1 > 0 ,

x �q y = [
x1−q − y1−q − 1

] 1
1−q , x > 0, y > 0 and x1−q − y1−q − 1 > 0 .

With these relations, one can find that

lnq(xy) = lnq x ⊗q lnq y , eq(x)eq(y) = eq(x ⊗ y) ,

lnq(x ⊗q y) = lnq x + lnq y , eq(x) ⊗q eq(y) = eq(x + y) ,

lnq(x/y) = lnq x �q lnq y , eq(x)/eq(y) = eq(x �q y) ,

lnq(x �q y) = lnq x − lnq y , eq(x) �q eq(y) = eq(x − y) .

Moreover, the two possible q-derivatives can be introduced as follows:

Dx F(x) = lim
y→x

F(x) − F(y)

x �q y
= [1 + (1 − q)x]dF

dx
,

D̃x F(x) = lim
y→x

F(x) �q F(y)

x − y
= 1

1 + (1 − q)F(x)

dF

dx
.

It is not difficult to find that

D̃x F(x) = 1

[1 + (1 − q)x][1 + (1 − q)F(x)]Dx F(x) .
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With these definitions of new derivatives, one can establish the multiplicative rule of
the derivative as follows:

Dx [F(x)G(x)] = Dx [F(x)]G(x) + F(x)Dx [G(x)] ,

D̃x [F(x)G(x)] = 1

1 + (1 − q)F(x)G(x)

(
[1 + (1 − q)F(x)]D̃x [F(x)]G(x)

+[1 + (1 − q)G(x)]F(x)Dx [G(x)]) .

The organisation of the paper follows . In Sect. 2, the one-parameter generalisation
of the Hamiltonian will be fully derived through the backward engineering to solv-
ing Hamilton’s equation in the case of the one degree of freedom. One interesting
point is that this one-parameter Hamiltonian is coincidentally in Tsallis’s form. The
one-parameter generalisation of the Lagrangian is immediately obtained by using the
Legendre transformation. However, one-parameter generalised Lagrangian can also
be directly obtained from the inverse problem of calculus of variation. The recipe for
constructing the two andmore parameters version of theHamiltonian andLagrangian
will be provided. In Sect. 3, many types of entropies will be briefly reviewed, starting
from the Boltzmann–Gibbs entropy which explained the uncertainty in the context of
statistical mechanics to the Shannon entropy which indicates the uncertainty in the
context of information theory. The Kullback–Leibler divergence or relative entropy
will be also mentioned. After that, the one-parameter generalisation of the Shannon
entropy called the Renyi entropy will be discussed. Also, the one-parameter gen-
eralisation of the Boltzmann–Gibbs entropy called the Tsallis entropy is discussed.
The two-parameter generalisation of the Boltzmann–Gibbs entropy and Kullback–
Leibler divergence will be immediately given right after. In Sect. 4, the basic Fisher
information will firstly be introduced together with the Cramer–Rao inequality. The
connection between the Fisher information and the action functional in the case of
one degree of freedom will be discussed. Later, employing the result in Sect. 2, the
one-parameter Fisher information will be derived as well as its properties. In Sect. 5,
the conclusion and outlook will be provided.

2 The n-Parameter Generalised Hamiltonian and
Lagrangian

In physics, Hamiltonian and Lagrangian are commonly used to study the dynamics of
the system. On one hand, the Hamiltonian mechanics gives a picture of the trajectory
on the cotangent bundle(phase space) constituted by a set of conjugate momentum
and generalised coordinates ( p, x). On the other hand, the Lagrangian mechanics
provides the dynamics of the system on the configuration space subject to the least
action principle.

With a set of generalised coordinates, one can construct the dual space of the
cotangent bundle called the tangent bundle by replacing the conjugate momentum
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p with the generalised velocities ẋ. However, these two approaches provide the
equivalent description to the system.

2.1 One-Parameter Hamiltonian

In this subsection,wewill provide a construction to obtain the one-parameter general-
isation of theHamiltonian.Here,we are interested only in the case of a systemofmass
mwith one degree of freedom.With the givenHamiltonian H(p, x) = T (p) + V (x),
where T (p) = p2/2m is the kinetic energy and V (x) is the potential energy, we have
a system of two coupled first-order equations

q̇ = ∂H

∂ p
, − ṗ = ∂H

∂x
. (2)

These two equations would give the Newton equation

ẍ = dV

dx
. (3)

However, (2) could be combined into a single equation

∂2H

∂x∂ p

∂H

∂ p
− ∂2H

∂2 p

∂H

∂x
+ 1

m

∂H

∂x
= 0 . (4)

It is not difficult to check that the Hamiltonian H(p, x) = T (p) + V (x) is a solution
of (4). What we are going to look for is whether there exist other Hamiltonians
satisfying (4) subject to the equation of the motion (3). Nowwe take the Hamiltonian
in the form H̃(p, x) = K (p)W (x), where K (p) andW (x) are to be determined [40].
Inserting H̃(p, x) into (4), one obtains

d2K

dp2
+ 1

m ṗW

dW

dx

(
p
dK

dp
+ K

)
= 0 . (5)

To solve (5), we set
1

m ṗW

dW

dx
= C ,

where C is a constant to be determined. Imposing the equation of motion (3), it is
easy to obtain the W given by

W (x) = β1e
−mCV (x) ,

where β1 is another constant to be determined. Now (5) becomes
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d2K

dp2
+ C

(
p
dK

dp
+ K

)
= 0

dK

dp
+ CpK = 0
∫

dK

K
= −W

∫
pdp

K (p) = β2e
− Cp2

2 ,

where β2 is also a constant to be determined. What we have now for the Hamiltonian
H̃(p, x)

H̃(p, x) = κe− Cp2

2 −mCV (x) , (6)

where κ = β1β2 is a new constant. We find that with the energy unit constraint the
suitable choice for constants are κ = −mλ2 and C = 1

m2λ2 , where λ has the velocity
unit. Then now the Hamiltonian (6) becomes

Hλ(p, x) ≡ H̃(p, x) = −mλ2e− H(p,x)
mλ2 . (7)

To see the choice of these constants consistence, we consider the limit on the param-
eter λ approaching to infinity such that

lim
λ→∞

Hλ(p, x) = H(p, x) + mλ2 .

We find that the standard Hamiltonian can be recovered. The extra constant mλ2

does not contribute to the dynamics of the system. It can also be seen that the Hamil-
tonian (7) gives the equation of motion (3) by substituting Hλ into (4). Here we can
treat the Hamiltonian Hλ(p, x) as the one-parameter generalisation of the standard
Hamiltonian H(p, x).

2.2 One-Parameter Lagrangian

In this subsection, we continue to construct the one-parameter generalisation of the
Lagrangian. We shall start by given the Euler–Lagrange equation

∂L

∂x
− d

dt

(
∂L

∂ ẋ

)
= 0 , (8)

where L(ẋ, x) = T (ẋ) − V (x) is the Lagrangian and T (ẋ) = mẋ2/2 is the kinetic
energy. Equation (8) can be rewritten as
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∂L

∂x
− ∂2L

∂ ẋ2
ẍ − ∂2L

∂ ẋ∂x
ẋ = 0 . (9)

Of course, the Lagrangian L(ẋ, x) is a solution of (9). We again ask the question
whether there exist other Lagrangians satisfying (9). We introduce the Lagrangian
L̃(ẋ, x) = F(ẋ)G(x), where F(ẋ) and G(x) have be to be determined. Substituting
L̃(ẋ, x) into (9), one obtains

1

ẍG

dG

dx

(
F − ẋ

dF

dẋ

)
− d2F

dẋ2
= 0 . (10)

Next, we set
1

ẍG

dG

dx
= A , (11)

where A is a constant to be determined. Equation (11) can be easily solved constrained
with the equation of motion (3) resulting in

G(x) = α1e
− AV (x)

m ,

where α1 is a constant to be determined. Now Eq. (10) becomes

A

(
F − ẋ

dF

dẋ

)
− d2F

dẋ2
= 0 . (12)

To solve Eq. (12), one can try a generating function technique. We find that F = ẋ is
a particular solution of (12). Then, we propose another solution F̃ = w(ẋ)ẋ , where
w(ẋ) is to be determined. Inserting F̃ into (12), we obtain

(2 + Aẋ2)w′ + ẋ
dw′

dẋ
= 0, where w′ = dw

dx
.

One can solve for w′ as

w′ = α2e− Aẋ2

2

ẋ2
,

and of course

w = α2

(
e− Aẋ2

2

ẋ
+ A

∫ ẋ

0
e− Av̇2

2 dv

)

+ α3 ,

where α2 and α3 are constants to be determined. Then the function F(ẋ) is

F(ẋ) = α3 ẋ + α2

(
e− Aẋ2

2 + Aẋ
∫ ẋ

0
e− Av̇2

2 dv

)
,
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and the Lagrangian L̃(ẋ, x) is

L̃(ẋ, x) =
[
k1 ẋ + k2

(
e− Aẋ2

2 + Aẋ
∫ ẋ

0
e− Av̇2

2 dv

)]
e

AV (x)
m ,

where k1 = α1α2 and k2 = α1α3 are constants to be determined. Again with the
energy unit constraint, one may choose A = λ−2, k1 and k2 = −mλ2 resulting in

Lλ(ẋ, x) ≡ L̃(ẋ, x) = mλ2

(
e− ẋ2

2λ2 + ẋ

λ2

∫ ẋ

0
e− v̇2

2λ2 dv

)
e

V (x)
mλ2 .

If we consider the limit on the parameter λ approaching to infinity such that

lim
λ→∞

= L(ẋ, x) + mλ2

the standard Lagrangian is recovered. The Lagrangian Lλ(ẋ, x) can be treated as the
one-parameter generalisation of the standard Lagrangian L(ẋ, x) and it is also not
difficult to see that this Lagrangian produces the equation of motion (3).

Now we introduce the momentum variable

pλ = ∂Lλ

∂ ẋ
= m

(∫ ẋ

0
e− v̇2

2λ2 dv

)
e

V (x)
mλ2 ,

where limλ→∞ pλ = p = mẋ . With this new momentum variable, we introduce the
Legendre transformation

Hλ(p, x) = pλ ẋ − Lλ(ẋ, x) ,

where Hλ(p, x) is the one-parameter Hamiltonian obtained in the previous section.

2.3 Lagrangian and Hamiltonian Hierarchies

In the previous subsections, we obtain the one-parameter generalisation of theHamil-
tonian and Lagrangian. With the appropriate limit on the parameter, the standard
Hamiltonian and Lagrangian can be recovered. Here in this section, we are going
to consider the expansion the Hλ(p, x) and Lλ(ẋ, x) with respect to the parameter
λ. In doing so, we first consider the expansion of the Lagrangian Lλ(ẋ, x) and we
obtain

Lλ(ẋ, x) =
∞∑

j=0

1

j !
( −1

mλ2

) j−1

L j (ẋ, x) ,

where
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L j (ẋ, x) =
j∑

k=0

(
j !T (ẋ) j−kV (x)k

( j − k)!k!(2 j − (2k + 1))

)
, where j = 0, 1, 2, 3, . . . (13)

The interesting point is that these Lagrangians all produce the equation of motion (3).
This can be seen by substituting (13) into (9). Thenwemight consider the Lagrangian
Lλ(ẋ, x) as the generating function for the Lagrangian hierarchy (13). Furthermore,
we also find that

L j−1 = 1

j

∂L j

∂V
, and L1 = 1

j !
∂ j−1L j

∂V j−1

which provide the connection between Lagrangian member in the hierarchy. Of
course, in the standard language, the Lagrangian is not unique up to addition of
the total derivative of the function F(x, t) with respect to time. Here we provide
alternative and systematic way to produce infinite Lagrangian producing the same
equation of motion.

Similarly, we can also generate the Hamiltonian hierarchy by employing the Leg-
endre transformation

Hj (p, x) = ẋ
∂L j

∂ ẋ
− L j (ẋ, x) = (T (p) + V (x)) j = H j (p, x)

and the Hamiltonian Hλ(p, x) can be expressed as

Hλ(p, x) =
∞∑

j=1

1

j !
( −1

mλ2

) j−1

Hj (p, x) .

In the same line of thought, one could treat the Hamiltonian Hλ(p, x) as a generating
function for the Hamiltonian hierarchy giving the equation of motion (3).

•> Remark 1

We see that when we consider the limit on the parameter approaching to infinity for
both Hamiltonian Hλ(p, x) and Lλ(ẋ, x), there will be a remaining extra constant
mλ2. This extra constant can be eliminated if we modify the Hλ(p, x) and Lλ(ẋ, x)
as follows:

Hλ(p, x) = −mλ2
(
e− H(p,x)

mλ2 − 1
)

,

Lλ(ẋ, x) = mλ2

(
e− E(ẋ,x)

mλ2 + ẋ

λ2

∫ ẋ

0
e− E(v̇,x)

mλ2 dv − 1

)
,

where E(ẋ, x) = mẋ2/2 − V (x).
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2.4 Two-Parameter Hamiltonian

In previous subsection, we show how to construct the one-parameter generalisation
of the Hamiltonian from solving Eq. (4) with the constraint (3). In this subsection, we
will push forward the idea of generalisation of the Hamiltonian to the two-parameter
case. We now introduce an ansatz Hamiltonian given by

Hκ(p, x) = 1

κ

(
eκF(p,x) − 1

)
, (14)

where κ is constant to be determined and F(p, x) is a function defined on the phase
space and has to be also determined. Substituting (14) into (4), we obtain

0 = 1

m

∂F

∂x
+ ṗ

∂2F

∂ p2
+ p

m

∂2F

∂ p∂x
+ κ1

[

ṗ

(
∂F

∂ p

)2

+ p

m

∂F

∂ p

∂F

∂x

]

. (15)

We find that if one takes F(p, x) = H(p, x) as the standard Hamiltonian, the first
three terms in (15) are identical to (4). The last bracket must vanish and gives an
extra relation

0 = ṗ
∂H

∂ p
+ p

m

∂H

∂x
�→ 0 = ṗ

∂H

∂x
+ ẋ

∂H

∂x
= dH

dt
, (16)

which is nothing but the conservation of the energy. Furthermore, (4) can be obtained
from (16) by considering the partial derivative with respect to the p-variable

∂

∂ p

(
ṗ
∂H

∂ p
+ p

m

∂H

∂x

)
= ∂2H

∂x∂ p

∂H

∂ p
− ∂2H

∂2 p

∂H

∂x
+ 1

m

∂H

∂x
= 0 .

This means that (4) is a consequence of (16) and, of course, (16) is simpler to solve
the Hamiltonian.

2.4.1 Case 1. Additive Case

If we take the function F(p, x) = T (p) + V (x) as the standard Hamiltonian and
substitute into (16), we obtain

0 = ṗ
dT

dp
+ p

m

dV

dx
.

Using (3), one can write

0 = ṗ

(
dT

dp
− p

m

)
.
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Since ṗ �= 0, the bracket must vanish resulting in

∫
dT =

∫
pdp

m
�→ T (p) = p2

2m
+ D ,

where D is a constant of integration which can be set to be zero for convenience.
Then the additive function F(p, x) is nothing but the standard Hamiltonian.

2.4.2 Case 2. Multiplicative Case

If we take the function F(p, x) = K (p)W (x) (as we did previously), we obtain

0 = W

[
ṗ

(
W

dK

dp

)
+ p

m

(
K
dB

dx

)]

m

Kp

dK

dp
= 1

B

dB

dV
. (17)

We see that both sides of (17) are independent. Then equation holds if both sides
equal to a constant δ. We first consider the left-hand side of (17)

m

Kp

dK

dp
= δ �→

∫
dK

K
= δ

∫
pdp

m
�→ K (p) = aeδT (p) ,

where a is a constant to be determined. Next, we consider the right-hand side of (17)

1

B

dB

dV
= δ �→

∫
dB

B
= δ

∫
dV �→ B(x) = beδV (x) ,

where b is a constant to be determined. Then the function F(p, x) is

F(p, x) = ceδH(p,x) , (18)

where c = ab is a new constant. In fact, the function F(p, x) is the one-parameter
Hamiltonian in (6) with the choice c = −mλ2 and δ = −1/mλ2 = 1/c.

•> Remark 2

Then we now could write

F(p, x) = Hδ(p, x) = 1

δ

(
eδH(p,x) − 1

)
. (19)

The extra −1 comes from the fact that we would like to eliminate the extra constant
when the parameter δ is approaching to zero as we mentioned in the Remark 1.
The interesting point is that if we set δ = 1 − q, where q is a new parameter. The
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Hamiltonian (19) becomes

Hq(p, x) = 1

1 − q

(
e(1−q)H(p,x) − 1

)
. (20)

One might recognise that actually this Hamiltonian (20) is in the same form with
the Tsallis entropy [52]. Hence the Hamiltonian (20) can be considered as the q-
deformation of the standard Hamiltonian. One more interesting fact is that, for two
separated systems, the Hamiltonian takes the additive form H 12(p1, p2, x1, x2) =
H 1(p1, x1) + H 2(p2, x2). However, with the Hamiltonian (20), one finds that

H 12
q (p1, p2, x1, x2) = H 1

q (p1, x1) + H 2
q (p2, x2) + (1 − q)H 1

q (p1, x1)H
2
q (p2, x2) ,

where the relations e(1−q)H j (p j ,x j ) = (1 − q)H j
q (p j , x j ) + 1, j = 1, 2 are applied.

Here is nothing but the non-additive analog of the Tsallis entropy. However, we are
going to discuss about the entropy in great detail later section.

Now we insert (19) into (14) and we obtain

Hδ1,δ2 = 1

δ1

(
e

δ1
δ2
(eδ2H(p,x)−1) − 1

)
= 1

δ1

(
eδ1Hδ2 − 1

)
, (21)

where κ = δ1 and δ = δ2. Furthermore, we find that

lim
δ2→∞

lim
δ1→∞

Hδ1,δ2(p, x) = H(p, x)

the standard Hamiltonian can be recovered. Then we succeed to construct the two-
parameter generalisation of theHamiltonian. Furthermore, onemay replace the expo-
nential with the q-exponential (1) in the Hamiltonian (19) resulting in

Hq,r (p, x) = 1

1 − r

(
e(1−r)H(p,x)
q − 1

) = 1

1 − r

[
(q + r − qr)H

1
1−q (p, x) − 1

]
.

Therefore, this Hamiltonian can also be treated as the two-parameter generalisation
of the standard Hamiltonian. For q → 1, the one-parameter Hamiltonian (19) is
recovered.

2.5 Two-Parameter Lagrangian

To obtain the two-parameter generalisation of the Lagrangian, we will employ the
Legendre transformation instead of solving it directly. In doing so, we introduce a
new momentum variable pδ1,δ2 which can be obtained from Hamilton’s equation
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− ṗδ1,δ2 = ∂Hδ1,δ2

∂x
= eδ1Hδ2 eδ2H

dV

dx
.

Using the equation of motion (3), we obtain

ṗδ1,δ2 = ṗeδ1Hδ2 eδ2H �→ pδ1,δ2 = m
∫ ẋ

0
eδ2E(v,x)e

δ1
δ2
(eδ2E(v,x)−1)dv . (22)

Next, we introduce the Legendre transformation

Lδ1,δ2(ẋ, x) = pδ1,δ2 ẋ − Hδ1,δ2(p, x) .

Using (21) and (22), one obtains

Lδ1,δ2(ẋ, x) = 1

δ1

[
e

δ1
δ2
(eδ2E(ẋ,x)−1)

+ mẋδ1

∫ ẋ

0
eδ2E(v,x)e

δ1
δ2
(eδ2E(v,x)−1)dv − 1

]
.

Again, we find that
lim

δ2→∞
lim

δ1→∞
Lδ1,δ2(ẋ, x) = L(ẋ, x) . (23)

Then the Lagrangian (1) can be treated as the two-parameter generalisation of the
standard Lagrangian L(ẋ, x).

2.6 n-Parameter Hamiltonian and Lagrangian

Up to this point, it might not be difficult to see how we could construct the three-
parameter generalisation of the Hamiltonian as well as the Lagrangian. Again we
start with the ansatz form of the Hamiltonian such that

Hδ1,δ2 = 1

δ1

(
e

δ1
δ2
(eδ2F(p,x)−1) − 1

)
, (24)

where F(p, x) is again the function defined on the phase space. Of course, we could
use (16) to solve for F(p, x). However, we could skip all the steps and the func-
tion F(p, x) could take the form of the standard Hamiltonian F(p, x) = H(p, x)
and (24) is nothing the two-parameter Hamiltonian. In the case that the function
F(p, x) = Hδ3 is one-parameter Hamiltonian, (24) could give
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Hδ1,δ2,δ3 = 1

δ1

⎛

⎝e
δ1
δ2

(

e
δ2
δ3

Hδ3
(p,x)−1

)

− 1

⎞

⎠

= 1

δ1

⎛

⎝e
δ1
δ2

(

e
δ2
δ3 (e

δ3H(p,x)−1)−1

)

− 1

⎞

⎠ , (25)

and with the suitable sequence of the limit

lim
δ3→∞

lim
δ2→∞

lim
δ1→∞

Hδ1,δ2,δ3(p, x) = H(p, x) (26)

the standard Hamiltonian is recovered.

Now we give the Legendre transformation

Lδ1,δ2,δ3(ẋ, x) = pδ1,δ2,δ3 ẋ − Hδ1,δ2,δ3(p, x) .

Themomentumvariable can be solvedwith the samemethod provided in the previous
subsection resulting in

pδ1,δ2,δ3 = m
∫ ẋ

0
eδ3E(v,x)e

δ3
δ2
eδ2E(v,x)

e
δ1
δ2
e

δ2
δ3

(δ3E(v,x)−1)

dv . (27)

Then the three-parameter Lagrangian is given by

Lδ1,δ2,δ3(ẋ, x) = 1

δ1

[
e

δ1
δ2
e

δ2
δ3

(δ3E(ẋ,x)−1)

+ mẋδ1

∫ ẋ

0
eδ3E(v,x)e

δ3
δ2
eδ2E(v,x)

× e
δ1
δ2
e

δ2
δ3

(δ3E(v,x)−1)

dv − 1

]

and
lim

δ3→∞
lim

δ2→∞
lim

δ1→∞
Lδ1,δ2,δ3(ẋ, x) = L(ẋ, x) (28)

the standard Lagrangian is recovered.
In order to construct the four-parameter generalisation of the Hamiltonian, one

could repeat the whole process again with the ansatz Hamiltonian

Hδ1,δ2,δ3 = 1

δ1

⎛

⎝e
δ1
δ2

(

e
δ2
δ3

eδ3F(p,x)

−1

)

− 1

⎞

⎠ (29)

and insert the function F(p, x) = 1
δ4
eδ4H(p,x). Of course the four-parameter

Lagrangian can be obtained by using the Legendre transformation
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Lδ1,δ2,δ3,δ4(ẋ, x) = pδ1,δ2,δ3,,δ4 ẋ − Hδ1,δ2,δ,,δ4(p, x) .

Then if we keep continuing this recursive process, the n-parameter generalisation of
the Hamiltonian and Lagrangian can be obtained.

•> Remark 3

We would like to point out that there are possible possibilities to construct the one-
parameter generalisation of the Hamiltonian. This can be seen if one takes the ansatz
Hamiltonian

Hσ(p, x) = F(p, x)
(
eσF(p,x) − 1

)
, (30)

where σ is a constant to be determined. Substituting (30) into (4), we obtain

0 = 1

m

∂F

∂x
+ ṗ

∂2F

∂ p2
+ p

m

∂2F

∂ p∂x
+ σ

2 + σF

1 + σF

(

ṗ

(
∂F

∂ p

)2

+ ∂F

∂ p

∂F

∂x

)

. (31)

Again, if we take F(p, x) = H(p, x) as the standard Hamiltonian, the first three
terms in (31) give (4) and consequently the bracket gives (16). Then (30) reads

Hσ(p, x) = H(p, x)
(
eσH(p,x) − 1

)
, (32)

where σ has an inverse energy unit. Obviously, the limit that the parameter σ is
approaching to zero gives the standard Hamiltonian.

3 Generalised Entropies

One of the most important quantities in physics known as the entropy had been
around since the dawn of the thermodynamics. In more specific, this entropy first
was introduced by Clausius [44] in order to capture the second law of thermody-
namics, which is the statement of the impossible process, measuring the amount
of energy in a system that cannot be used to deliver work. This notion of thermo-
dynamic entropy is a bit abstract involving heat getting in and going out between
system and environment with a given temperature. Later, Boltzmann [45, 46] and
Gibbs [47] provided intriguing insight for the system in the level of microscopic
realm, pioneered understanding the system emerging from the probabilistic feature
known as the statistical mechanics. The statistical entropy measures the variety of
the microscopic configuration of the system. Both thermodynamic entropy and sta-
tistical entropy provide an equivalent picture, but from different perspectives, how to
describe the system according to the second law of thermodynamics. Coming from
remote area, Shannon [19] accidentally found a quantity, which later is known as
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Shannon entropy, as a measure of surprisal or average information gained from the
system when he had built his theory of communication.

3.1 Boltzmann–Gibbs Entropy

Suppose a system is described by a large number of microstates called an ensemble
Ω in the phase space and the associated probability of the system being in microstate
k is pk given by

pk = e− Ek
kB T

Z
, with

∑

k

pk = 1 ,

where Ek is the energy of the microstate, kB is Boltzmann’s constant and Z is the
partition function. The Gibbs entropy is given by

SBG(p) = −kB
∑

i

pi ln pi . (33)

Here the summation is over all possible microstates available in the ensemble. In
the case that all microstates have the same probability distribution in the ensemble,
pi = 1/W , whereW is the statisticalweight or the number of all possiblemicrostates,
the entropy in (33) becomes

SB(W ) = kB lnW , (34)

which is the Boltzmann entropy. One can say that the Boltzmann entropy is the upper
bound of the Gibbs entropy SG ≤ SB . One could think that with only given a number
of microstates, no internal structure provided which in this sense is the probability
distribution, the Boltzmann entropy is the only available measure. On the other hand,
if the probability associated with each microstate is provided, the Gibbs entropy is a
suitable measure.

To make it clear, let us provide a simple example as illustrated in Fig. 1. There
is 2-d box that is divided into four small rooms containing a single atom of gas.
Obviously, there are four possible configurations of the atom that is located in the box,
i.e. {room1, room2, room3, room4}. Then Boltzmann’s entropy reads SB = kB ln 4.
Here we assume the probability that the atom will be in each room is the same or
uniform distribution. However, if we deal with the bias probability distribution, such
that {p1 = 1/2, p2 = 0, p3 = 1/2, p4 = 0}, Gibbs’ entropy is SG = kB ln 2 and of
course SG < SB .
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Fig. 1 Four possible
configurations of a single
atom

3.2 Shannon Entropy

Given a set of random variable X = {x1, x2, . . . , xW } with associated probability
distribution P = {p1, p2, . . . , pW } and∑

k pk = 1, the Shannon entropy is given by

H(p) = −
W∑

i=1

pi log2 pi . (35)

The unit of the Shannon entropy is “bit” as indicated by using the logarithm func-
tion base 2. Here if we define the surprisal or Shannon information for each of the
i th outcome as Ii = − log2 pi , what we have now is an ensemble of the surprisal
{I1, I2, . . . , IW }. Then the Shannon entropy is a linear average of the surprisal

H(p) = 〈IX 〉 =
W∑

i=1

pi Ii . (36)

Next, let us provide a nice example for understanding the role of the surprisal and
the Shannon entropy, namely, tossing a coin game. There are two outcomes resulting
in the set of random variable X = {Head,Tail}. If the coin is equally weighted both
sides, 50% chance for getting head and 50% chance for getting tail, the surprisal
for each outcomes is Ii = − log2 2, where i = Head,Tail. Then the average of the
Shannon information or surprisal over all possible outcomes is H = log2 2 = 1 bit.
This one bit of Shannon entropy is the maximum in this situation of the tossing
coin game and it means that you are likely to be surprised because you hardly guess
the outcome of the tossing coin. Next, we move to the situation with an unfair
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weighted coin saying 20% chance for getting head and 80% for getting tail. We
find that IHead = − log2 5 and ITail = −(4/5) log2(5/4) and the Shannon entropy is
H ≈ 0.721 bit. With this value of the Shannon entropy, it is telling that you are likely
to have a better chance to get a correct answer from guessing the outcome. In the
extreme case biased coin, i.e. 100% chance for getting Head, the Shannon entropy is
zero. This means that you learn noting from the outcome of tossing coin game since
you perfectly guess for the outcome.

The last thing that we would like to mention is some properties of the Shannon
entropy. It is not difficult to see that the Shannon entropy is a concave function of
the probabilities pi , where i = 1, 2, . . . ,W . To see this, we find

∂H

∂ pk
= − log2 pk − 1 , and

∂2H

∂ pl∂ pk
= − 1

pi
δi j .

Since pi ≥ 0,∀i , then the Shannon entropy is concave. One last interesting point is
that the second partial derivative of the Shannon with respect to p gives the Fisher–
Rao metric which will be greatly discussed later. Another interesting fact is that
the Shannon entropy can be generated from a given function Fα(p) ≡ ∑W

i=1 p
α
i as

follows:

H(p) = − d

dx

W∑

i=1

pxi

∣∣∣
x=1

. (37)

This kind of connection provides us a basic idea to extend the entropy later.

3.3 Kullback–Leibler Divergence

In this subsection, we will focus on how can we distinguish two probability dis-
tributions over the same set of random variable X? Given two set of probability
distributions P = (p1, p2, . . . , pW ) and Q = (q1, q2, . . . , qW ), the measure, called
the Kullback–Leibler divergence (KL), has been widely used in this context given
by

DKL(p(x)||q(x)) =
∑

x∈X
p(x) ln

p(x)

q(x)
. (38)

We can say that the KL divergence (38) of q(x) from p(x) is a measure of the infor-
mation lost when the probability distribution q is used to approximate the probability
distribution p(x). The important thing is that the KL divergence is not symmetric.
In the case of the continuous variables, the KL divergence is expressed by

DKL(p(x)||q(x)) =
∫

dxp(x) ln
p(x)

q(x)
. (39)
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Intuitively, the KL divergence can be viewed as the “how does far away” between
two distributions on the probability manifold. To see this, let’s look at (39) and put
q(x) = p(x) + dp(x), where dp(x) is small. Then KL divergence (39) reads

DKL(p||p + dp) =
∫

dxp(x) ln
p(x)

p(x) + dp(x)
. (40)

Expanding (40) with respect to dp and keeping only the first order, we obtain

DKL(p||p + dp) ≈ I (p) =
∫

dxp(x)

(
dp(x)

dx

)2

. (41)

Here I (p) is known as the Fisher information which will be discussed in the next
section. However, since KL divergence is not symmetric, the KL divergence is not a
distance measure, even though the lowest order in (41) does not affect. Nevertheless,
DKL(p(x)||q(x)) = 0 if P = Q and DKL(p(x)||q(x)) ≥ 0 for P �= Q.

3.4 Rényi Entropy: One-Parameter Generalisation of the
Shannon Entropy

In Sect. 3.2, one may see how we use the quantity called the Shannon entropy as
an information measure. However, the question is that are there any other types of
information measures? Before we go to the answer, it is better to introduce a set of
axioms [48] as the criterion for information measures to satisfy.
Axiom 1: The information measure E = E(p1, p2, . . . , pW ) depends only on the
probabilities pi of the events and nothing else.
Axiom 2: The information measure E takes on an absolute minimum for the uni-
form distribution (p1 = 1/W, p2 = 1/W, . . . , pW = 1/W ), and other probability
distribution has an information content that is larger or equal to that of the uniform
distribution

E(p1 = 1/W, p2 = 1/W, . . . , pW = 1/W ) ≥ E(p1, p2, . . . , pW ) .

Axiom 3: The information measure I should not change if the sample set of events
is enlarged by another event that has probability zero

E(p1, p2, . . . , pW ) ≤ E(p1, p2, . . . , pW , 0) .

Axiom 4: Suppose the system is composed of two subsystems x and y, not
necessarily independent. The probabilities of the system x are labelled by px =
{px1 , px2 , . . . , pxW }, those of the system y are py = {py

1 , p
y
2 , . . . , p

y
W }. The joint prob-

abilities pxyi j = pxi p
y( j |i), where py( j |i) is the conditional probability of event j
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in system y under the condition that event i has already happened in system x . The
quantity E({py( j |i)}) is the conditional information of the system y formed with
the conditional probabilities py( j |i)

E({pxyi j }) = E({pxi }) +
∑

i

pxi E({py( j |i)}) . (42)

This axiom points out that the informationmeasure should be independent of the way
the information is collected. To make it a bit more clear, let’s put it this way. We can
fist collect the information in the subsystem y, assuming a given event i in subsystem
x , and then sum the result over all possible events i in subsystem x weighting with
the probabilities pxi . In the case that subsystems x and y are independent the joint
probability can be factorised as pxyi j = pxi p

y
j and (42) can be simply reduced to the

addition of information for independent subsystems

E({pxyi j }) = E({pxi }) + E({py
j }) . (43)

Nonnegative functions I satisfying axioms 1–3 are called generalised entropies [49].
Now we look for the nonnegative function I follows the additive rule (this means
that the axiom 4 has been replaced with (43))

Eg(p1, p2, . . . , pW ) =
W∑

i=1

g(pi ) ,

where g : [0, 1] �→ R+ has to satisfy these conditions

• g is continuous,
• g is concave,
• g(0) = 0,

in order to be the generalised entropy. Obviously, the Shannon entropy H(x) =
−x log2 x , where 0 ≤ x ≤ 1 satisfies these conditions. Of course, the Shannon
entropy is just the linear average of the surprisal. Rényi went one more step further
providing another possible average [50]. According to the definition of the extended
average, we now write

E(p1, p2, . . . , pW ) = F−1

(
W∑

i=1

pi F(Ii )

)

, (44)

where F is a continuous monotonic function and invertible function known as the
Kolmogorov–Nagumo (KN) function. Demanding on preserving the additive rule,
there are only two possible solutions for the F-function. The first one is F(x) = x
which is just a common arithmetic mean. The second solution is

F(x) = c1b
(1−q)x + c2 , (45)
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where q is a real parameter. The c1 and c2 are constants to be determined. Equation
(45) is known as the exponential mean. Substituting (45) into (44), we obtain

Rq(p) = 1

1 − q
log2

W∑

i=1

pqi , (46)

where a parameter b is set to be 2 and c1 = −c2 = 1/(1 − q). The summation is over
all events i with pi �= 0. Then Rényi entropies follow the axioms 1–3 with additive
rule (43). For the limit limq→1 Rq(p) = H(p), the Shannon entropy is recovered.
Therefore, the Rényi entropy can be considered as one-parameter generalisation of
the Shannon entropy.

Now we will rewrite the Rényi entropy (46) as

Rq(p) = 1

1 − q
ln

(
W∑

i=1

pie
−(1−q) ln pi

)

= 1

1 − q
ln

(
W∑

i=1

pie
(1−q)Ii

)

= 1

1 − q
ln〈e(1−q)I 〉 . (47)

Equation (47) is identical to

Xα =
∞∑

j=1

κ j (X)

n! (α − 1)n−1 = 1

α − 1
ln〈e(α−1)X 〉 ,

where κ j (X) are called the cumulant. This implies that the negative Rényi entropies
are the effective values of the negative surprisal−I . Effectively, (47) can be expressed
as

− Rq(p) =
∞∑

j=1

κ j (−I )

n! (α − 1)n−1 = 1

α − 1
ln〈e(α−1)(−I )〉 . (48)

For n = 1, the cumulantκ1 = 〈−I 〉 = 〈ln pi 〉 = ∑W
i=1 pi ln pi is indeed the Shannon

entropy. Then (48) could be written as

− Rq(p) =
W∑

i=1

pi ln pi +
∞∑

j=2

κ j (−I )

n! (α − 1)n−1 . (49)

The second term in (49) represents the fluctuation in the uncertainty [51].
Alternatively, one can define ||p||αα = ∑W

j=1 p
α
j as the α-norm. Then Rényi

entropies become
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Rq(p) = 1

1 − q
ln ||p||αα .

The α-norm is a measure of the distance between the origin and any particular point
on the simplex space.

3.5 Tsallis Entropy: One-Parameter Generalisation of the
Boltzmann–Gibbs Entropy

In the previous subsection, the one-parameter generalisation of the Shannon entropy
was discussed. Here, in this subsection, we discuss the extension of the Boltzmann–
Gibbs entropy. First, we shall look at an important property of the Boltzmann–
Gibbs entropy, namely, the additivity. Suppose again there are two subsystems as we
introduced in the previous subsections x and y and they are independent. The joint
probability is given by pxyi j = pxi p

y
j . The Boltzmann–Gibbs entropy reads

SBG(pxy) = −kB

W∑

i, j=1

pxi p
y
j ln pxi p

y
j

= −kB

(
∑

i

py
j

∑

i

pxi ln pxi +
∑

i

pxi
∑

i

py
j ln py

j

)

= SBG(px ) + SBG(py) .

This is known as an extensive property of the Boltzmann–Gibbs entropy for the
equilibrium system. However, if the system is out of equilibrium, the Boltzmann–
Gibbs entropy is no longer applicable. Then one might need to look for a new type
of entropy. Tsallis [52] set out for this task and proposed a new form of the entropy1

Tq(p) = 1

1 − q

(
W∑

i=1

pqi − 1

)

,

where q ∈ R is called the Tsallis index. One thing that makes the Tsallis entropy
different from the Rényi entropy is the logarithm function. A relation between Rényi
entropy and Tsallis entropy can be easily seen by expressing2

W∑

i=1

pqi = 1 − (q − 1)Tq(p) = e(q−1)Rq (p) ,

1 Wechoose to ignore theBoltzmann constant kB andwe shall name theBoltzmann–Gibbs–Shannon
entropy.
2 Here at this point, we prefer to express the Rényi entropy in terms of the natural logarithm.
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resulting in

Tq(p) = 1

q − 1

(
1 − e(q−1)Rq (p)

)
.

Whatwe can see is that Tsallis entropy is amonotonous function of theRényi entropy.
Then any maximum of the Tsallis entropy will be the same maximum of the Rényi
entropy. However, the Tsallis entropy possesses many nice properties comparing
with the Rényi entropy. One of them is the concavity. This can be illustrated by
looking at the derivative the Tsallis entropy with respect to p

∂Tq(p)

∂ pi
= − q

q − 1
pq−1
i ,

∂2Tq(p)

∂ pi∂ p j
= −qpq−1

i δi j .

This is obvious that theTsallis entropy Tq(p) is concave for allq > 0,while theRényi
entropy does not possess such property since the second derivative with respect to
p can be positive or negative. Another thing is that the Boltzmann–Gibbs–Shannon
entropy is a special case as limq→1 Tq(p) = SBG(p) = H(p). Moreover, this limit
coincides with the Rényi entropy as limq→1 Tq(p) = limq→1 Rq(p) = SBG(p) =
H(p). The last point is that, as we mentioned at the beginning of this subsection
about the additive rule, the Tsallis entropy is not additive. To see this, let us recall
again the joint probability pxyi j = pxi p

y
j of the two independent subsystems x and y.

What we have now is the Tsallis entropy of the joint system

Tq({pxyi j }) = 1

1 − q

⎛

⎝
W∑

i, j=1

(pxyi j )q − 1

⎞

⎠ = 1

1 − q

⎛

⎝
W∑

i=1

(pxi )
q

W∑

j=1

(pxj )
q − 1

⎞

⎠ .

(50)
Using the fact that

∑W
i=1(p

x
i )

q = 1 − (q − 1)Tq({pxi }) and
∑W

i=1(p
y
i )

q = 1 − (q −
1)Tq({py

i }), then (50) becomes

Tq(p
xy) = Tq(p

x ) + Tq(p
y) − (q − 1)Tq(p

x )Tq(p
y) . (51)

This non-additive relation (52) will give the additive relation (43) when q = 1 as the
Tsallis entropy becomes the Boltzmann–Gibbs–Shannon entropy. The interesting
point is that (52) gives rise to a research field named the non-extensive statistical
mechanics [53].

Another point of view is that the Tsallis entropy can be considered as the q-
deformation of the Boltzmann–Gibbs–Shannon entropy as follows. Then if we
replace the logarithmwithq-logarithm (1) in theBoltzmann–Gibbs–Shannonentropy,
we obtain

Tq(p1, p2, . . . , pW ) = −
W∑

i=1

pi lnq pi = 1

1 − q

(
W∑

i=1

pqi − 1

)

, (52)
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which is nothing but the Tsallis entropy. One last thing is that the Tsallis entropy can
be generated from the function Fα(p) = ∑W

i=1 p
α
i as we do have in (37) with the

replacement of the q-derivative

Tq(p1, p2, . . . , pW ) = −Dq

W∑

i=1

pα
i

∣∣
∣
α=1

.

3.6 Sharma–Mittal Entropy: Two-Parameter Generalisation
of the Boltzmann–Gibbs Entropy

In this subsection, we provide further generalisation of the Tsallis–Rényi entropy
named two-parameter generalisation of the Boltzmann–Gibbs entropy known as the
Sharma–Mittal entropy [61]

Sqr (p) = 1

1 − r

⎡

⎣

(
∑

i

pqi

) 1−r
1−q

− 1

⎤

⎦ , (53)

where r ∈ R and q ∈ R. The derivation of the entropy (53) is the following. What
we have seen is that, for the Tsallis entropy, the KN function takes the form F(x) = x
and averages over the elementary information Ii = − lnq pi . Then the Tsallis entropy
is a linear average Tq(p) = 〈− lnq pi 〉. While, for the Rényi entropy, the KN func-
tion takes the form F(x) = lnq ex and averages over the Ii = − ln pi . Then the Rényi
entropy is an exponential average Rq(p) = 〈− ln pi 〉exp. These two entropies share
the same quantity F(Ii ) = − lnq pi . This suggests that a simplest further generali-
sation is to consider the KN function in the form

F(x) = lnq e
x
r ,

where exq is the generalisation q-exponential function given by (1). We also choose
to write Ii = − lnr pi . With these two requirements, one obtains

Sqr = lnr e
−∑

i pi lnq pi
q = 〈− lnr pi 〉q-exp .

We find that for r → 1, the Rényi entropy is recovered and for r → q, the Tsallis
entropy is obtained. Furthermore, we also find that, with joint probability pxyi j =
pxi p

y
j , the Sharma–Mittal entropy reads

Sqr (p
xy) = Sqr (p

x ) + Sqr (p
y) + (1 − r)Sqr (p

x )Sqr (p
y) .

This non-additive property tells that the Sharma–Mittal entropy can be considered
as the generalisation of the Rényi entropy to the non-extensive context. Here the
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parameter r plays a role of degree of non-extensivity, while the parameter q indicates
the deformation of the probability distribution.

3.7 Generalisation of the Kullback–Leibler Divergence

In this section,wewill provide one ofmany possibleways to generalise theKullback–
Leibler divergence. Before going for that we would like to introduce another type
of the one-parameter generalisation of the Boltzmann–Gibbs–Shannon entropy by
Wang [56] basedon the effective probability

∑W
i=1 p

q
i = 1 to take into account incom-

plete information

SBG(pq) = 〈− ln pi 〉q = −
W∑

i=1

pqi ln pi , (54)

where

〈O〉q =
W∑

i=1

pqi O (55)

is the q-expectation value. Next, we introduce the fractional entropy [59]

Sq(p) =
W∑

i=1

pi (− ln pi )
q .

With (54) and (55), the two-parameter generalisation of the Boltzmann–Gibbs–
Shannon entropy is introduced [60]

Sq,q ′(p) =
W∑

i=1

pqi (− ln pi )
q ′

, (56)

where q > 0 and q ′ > 0. The standard Boltzmann–Gibbs–Shannon entropy can be
recovered when both the parameters attain the value of unity limq→1 limq ′→1 Sq,q ′

(p)=SBGS(p). The two-parameter generalisation of the Boltzmann–Gibbs–Shannon
entropy (56) satisfies all the Axioms 1–4. Furthermore, the concavity can be studied
by extremising (56) with respect to pi = exp(−q ′/q) resulting in

∂2Sq,q ′

∂ p2i
= pq−2

i (− ln pi )
q ′−2

[
q(q − 1)(− ln pi )

2

− q ′(2q − 1)(− ln pi ) + q ′(q ′ − 1)

]
(57)
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and
∂2Sq,q ′

∂ p2i

∣∣∣
pi=e−q′/q

= −qe
q′(2−q)

q

(
q ′

q

)q ′−1

. (58)

We find that (58) is uniform throughout the range q > 0 and q ′ > 0 implying that
the two-parameter entropy (56) is concave for q ′, q ∈ R+.

Next, with the definition of the two-parameter generalisation of the Boltzmann–
Gibbs–Shannon entropy, we could introduce the two-parameter generalisation of the
Kullback–Leibler divergence as

Dq,q ′(p(x)||q(x)) =
∑

x∈X
pq(x)

(
ln

p(x)

q(x)

)q ′

.

It is not difficult to see that the standard Kullback–Leibler divergence is recovered
when one considers the limit limq→1 limq ′→1 Dq,q ′(p||q)) = DKL(p||q).

We will proceed as what we did in Sect. 3.3 for obtaining the metric. In the con-
tinuous case, the two-parameter generalisation of the Kullback–Leibler divergence
reads

Dq,q ′(p(x)||q(x)) =
∫

dxpq(x)

(
ln

p(x)

q(x)

)q ′

. (59)

In the case that q(x) = p(x) + dp(x) (60) becomes

Dq,q ′(p(x)||p(x) + dp(x)) =
∫

dxpq(x)

(
ln

p(x)

p(x) + dp(x)

)q ′

. (60)

Expanding (60) with respect to dp, the first order gives

Dq,q ′ ≈ Iq,q ′(p) ≡
∫

dx(p(x))q−q ′−1

(
dp(x)

dx

)q ′+1

, (61)

which is the two-parameter generalisation Fisher information.

4 Fisher Information and Its Generalisation

In this section, we will explain another type of the information measure called the
Fisher information. What we have learnt so far is that the entropy can be used to
predict the probabilistic behaviour of the system. Here, the Fisher information infers
howmuchwe know about the internal structure, what the system aremade of and how
the system compose, i.e. capacity to estimate the parameters that define the system.
Then with this two pieces of information, we would have a complete description of
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the system: their behaviour through the entropy and their architecture through the
Fisher information.

4.1 Likelihood Function

Recalling the random variable X , one defines

L(θ|X) = f (x1, x2, . . . , xW |θ) , (62)

where θ is arbitrary parameter in probability models. Equation (62) is known as the
likelihood function which measures how good the statistical model is comparing to
the sample of data x for a given value of unknown parameter θ.

Let us provide a concrete example.Wewill consider here a tossing coin experiment
to estimate the probability of the head-outcome pH . This implies that θ = pH . The
act of tossing coin n times gives 2n possible outcomes forming the sample space.
Basically, we can define a function known as a random variable, i.e. the number
of times heads appears. What we need for the likelihood estimation are three main
elements: (i) the data, (ii) a model describing the probability of measured data and
(iii) a criterion to estimate the parameter from data and the model provided.

Data:We are interested to toss the coin 10 times: n = 10.Weobserve a sequence of
head-outcomes and tail-outcomeswhich is supposedlyH, H, H, T, H, T, T, H, T, H .
If we label head-outcomes with 1 and tail-outcomes with 0, the data can be encoded
as X = {1, 1, 1, 0, 1, 0, 0, 1, 0, 1, 0}.

Model: We see that outcomes are independent to each other. Then the Bernoulli
distribution is an appropriate model to describe the probability of observing heads
for any single flip f (xi |pH ) = pxiH (1 − pH )1−xi .

Criterion: The condition that will be applied to estimate the probability pH is the
extremising likelihood function. The likelihood function is given by

L(pH |x1, x2, . . . , xn) =
n∏

i=1

f (xi |pH ) = p
∑n

i=1 xi
H (1 − pH )n−∑n

i=1 xi .

Then we compute
d

dpH
L(pH |x1, x2, . . . , xn) = 0 .

Before we proceed further, it is more convenient to express the likelihood function
in terms of the logarithm function. This change will not affect the critical point of
the likelihood function since the logarithm function is concave. Then we write

log L(pH |x1, x2, . . . , xn) =
(

n∑

i=1

)

log pH +
(

n −
n∑

i=1

xi

)

log(1 − pH )
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and the condition
d

dpH
log L(pH |x1, x2, . . . , xn) = 0

gives a critical value

p∗
H =

∑n
i=1 xi
n

which implies that the probability pH is just proportion of number of the head-
outcome. Then with the above setup, the probability pH = 6/10 = 0.6. The remain
question is that how good accurate the estimate is. This issue can be settled according
to the law of large number, a big bunch of data X .

Now we introduce the score function

Score = ∂

∂ pH
log L(pH |X) = x

pH
− n − x

1 − pH
,

where x = ∑n
i=1 xi . We find that

〈
∂

∂ pH
log L(pH |X)

〉
=

n∑

x=0

∂

∂ pH
log L(pH |θ)

(
n
x

)
pxH (1 − pH )1−x

=
n∑

x=0

(
x

pH
− n − x

1 − pH

)(
n
x

)
pxH (1 − pH )1−x

= npH
pH

− n(1 − pH )

1 − pH
= 0 .

Furthermore, we find that

〈(
∂

∂ pH
log L(pH |X)

)2
〉

=
n∑

x=0

(
∂

∂ pH
log L(pH |θ)

)2 (
n
x

)
pxH (1 − pH )1−x

=
n∑

x=0

(
x

pH
− n − x

1 − pH

)2 (
n
x

)
pxH (1 − pH )1−x

= n

pH (1 − pH )
= −

〈
∂2

∂ p2H
log L(pH |X)

〉

= Var

(
∂

∂ pH
log L(pH |X)

)
,

which is the variance of the score function. What we have here the variance is
proportional to the number n of tossing. This means that, for large n, the variance is
negatively large.
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4.2 Fisher Information

We now define

I (θ) =
〈(

∂

∂θ
log L(θ|X)

)2
〉

= −
〈

∂2

∂θ2
log L(θ|X)

〉

=
∫ (

∂

∂θ
log L(θ|X)

)2

L(θ|X)dX

as the Fisher information which measures amount of information expecting within
the data X on the parameter θ(continuous). One can try to interpret the meaning of
the Fisher information through the uncertainty of a parameter θ around the critical
value θ∗. To see this, we consider

log L(θ) = log L(θ∗) + ∂

∂θ
log L(θ)

∣∣∣
θ=θ∗

(θ − θ∗)

+ 1

2

∂2

∂θ2
log L(θ)

∣
∣∣
θ=θ∗

(θ − θ∗)2 + · · · .

The second term vanishes according to the critical condition. We obtain

log L(θ) ≈ log L(θ∗) + 1

2

∂2

∂θ2
log L(θ)

∣∣∣
θ=θ∗

(θ − θ∗)2 .

To look for the error range of the parameter, we demand

∂2

∂θ2
log L(θ)

∣∣∣
θ=θ∗

(θ − θ∗)2 = −1 ,

resulting in

Var(θ) = 〈(θ − θ∗)2〉 = 1

I (θ)
.

The error on a parameter can be obtained by varying its value around the maximum
until log L(θ) decreases by a factor of 1/2. This implies that small error range gives
big value of the Fisher information and vice versa. In general, we could deal with a
set of estimating parameters θ = (θ1, θ2, . . . , θn). The Fisher information becomes

I(θ) = [Ii j (θ)] ,

where
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Ii j (θ) =
〈(

∂

∂θi
log L(θ|X)

)(
∂

∂θ j
log L(θ|X)

)〉
= −

〈
∂2

∂θi∂θ j
log L(θ|X)

〉

which is called the Fisher–Rao matrix. The interesting point is that the Fisher matrix
can also be obtained by considering the relative entropy or Kullback–Leibler diver-
gence between two distributions p(X) and q(X) on the probability manifold

K L(p||q) =
∫

. . .

∫
p(X) log

(
p(X)

q(X)

)
dX .

Then the Kullback–Leibler divergence between two probability distributions L(θ|X)

and L(θ′|X), parametrised by θ, is given by

D(θ, θ′) ≡ K L(L(θ|X)||L(θ′|X)) =
∫

. . .

∫
L(θ|X) log

(
L(θ|X)

L(θ′|X)

)
dX .

For θ being fixed, the Kullback–Leibler divergence can be expanded around θ as

D(θ, θ′) = 1

2

(
θ′ − θ

)T
(

∂2

∂θ′
i∂θ′

j

D(θ, θ′)

) ∣∣
∣
θ=θ′

(
θ′ − θ

) + O
((

θ′ − θ
)2)

,

where the second-order derivative is
(

∂2

∂θ′
i∂θ′

j

D(θ, θ′)

) ∣∣∣
θ=θ′

= −
∫

. . .

∫ (
∂2

∂θ′
i∂θ′

j

L(θ′|X)

) ∣∣∣
θ′=θ

L(θ|X)dX

= [Ii j (θ)] .

With this connection, one may intuitively interpret the Fisher information as the
metric between two points on the probability manifold. However, the Kullback–
Leibler divergence is not symmetric and does not follow the triangle inequality [54].
Then the Fisher information cannot be treated as a true metric.

4.3 Cramér–Rao Inequality and Additivity

Fisher information also provides an information lower bound on the variance of
an unbiased estimator for a parameter. This relation is known as the Cramér–Rao
inequality. To obtain such relation, one can start to consider the unbiased estimator

B(Θ̂) ≡
〈
Θ̂ − θ

〉
=

∫

Ω

. . .

∫

Ω

(Θ̂ − θ)L(θ | X)dX = 0 , (63)
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where Θ̂ = h(x1, x2, . . . , xN ) is a point estimator. For now on, we might neglect
subscription Ω on integrating for our convenience. Next, we consider the derivative
of (63) with respect to the parameter θ resulting in

∂

∂θ

〈
Θ̂ − θ

〉
= −

∫
. . .

∫
L(θ | X)dX +

∫
. . .

∫
(Θ̂ − θ)

∂

∂θ
L(θ | X)dX .

Using the fact that
∫

. . .
∫
L(X | θ)dX = 1, we obtain

∫
. . .

∫ [
(Θ̂ − θ) · L1/2(θ | X)

] [( ∂

∂θ
log L(θ | X)

)
· L1/2(θ | X)

]
dX = 1 .

Applying Cauchy–Schwarz inequality, we obtain

1
∫

. . .
∫

(Θ̂ − θ)2L(θ | X)dX
≤

∫
. . .

∫ (
∂

∂θ
log L(x | θ)

)2

L(θ | X)dX

1

Var(Θ̂)
≤ I(θ) . (64)

What we have in (64) is that the variance of any such estimator is at least as much
as the inverse of the Fisher information.

Furthermore, there is also one more important feature of the Fisher information
known as the additive property. From the right-hand side of above inequality (64),
the Fisher information is given by

I(θ) =
N∑

i, j=1
i �= j

∫ ∫
∂ p(xi | θ)

∂θ

∂ p(x j | θ)

∂θ
dxidx j

+
N∑

j=1

∫
1

p(x j | θ)

(
∂ p(x j | θ)

∂θ

)2

dx j . (65)

Here we are dealing with identical and independent random variables. Then the
Fisher information (65) can be simplified as

I(θ) =
N∑

j=1

∫ (
∂

∂θ
log p(x j | θ)

)2

p(x j | θ)dx j =
N∑

j=1

Ii (θ) . (66)

With many, independent data, random variables, the Fisher information can be split-
ted as the summation of all Fisher information of each random variable. Therefore,
Fisher information possesses the additive property.
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4.4 Connection with the Action Functional

In the case of one random variable, the likelihood function becomes p(θ|x) which
is a probability distribution over x with respect to θ. The Fisher information reads

I [p] =
∫

p(x |θ)
(

∂

∂θ
log p(x |θ)

)2

dx .

Next we define y = θ − x and then p(x |θ) = p(x − θ) = p(y). The Fisher infor-
mation is simplified to

I [p(y)] =
∫

p(y)

(
∂

∂y
log p(y)

)2

dy =
∫

(∂ p(y)/∂y)2

p(y)
dy .

We further define q(y) = √
p(y), the Fisher information becomes

I [q(y)] = 4
∫

dyq ′2(y) , q ′(y) = dq(y)

dy
. (67)

At this present form of the Fisher information, the I [q(y)] can be treated as
an action functional S[q(y)] = I [q(y)] for a free particle with the Lagrangian
L(q ′(y), q(y); y) = 4q ′2(y) and q(y) is a solution of the second-order differential
equation −8q ′′(y) = 0 and, of course, in the absence of the interaction, the equa-
tion of motion in physics is a direct result of extremising the Fisher information:
δ I [q] = 0.

4.5 One-Parameter Generalisation of the Fisher Information

In this section, we will employ the connection between the action functional and the
Fisher information to derive a one-parameter generalisation of the Fisher information
[55]. Without the interaction, we now propose one-parameter generalisation of the
Lagrangian L(q ′(y), q(y); y) = 4q ′2(y), resulting in action functional

Iλ[q(y)] = 4

λ

∫
dy

[
eλq

′2(y) − 1
]

, where Lλ(q ′(y), q(y); y) = 4

λ

(
eλq

′2(y) − 1
)

, (68)

where λ is a parameter. One can see immediately that the critical value of the action
functional would give the same equation of motion of the free particle −8q ′′(y) =
0. By considering the limit λ → 0, one find that limλ→0 Lλ(q ′(y), q(y); y) =
L(q ′(y), q(y); y) = 4q ′2(y). Of course, this new Lagrangian is a direct result from
the extension of the standard Lagrangian in Sect. 2.2.

We shall call (68) as a one-parameter extended Fisher information. The reason
can be seen as follows. If we expand the functional (68) with respect to the parameter
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λ, we obtain

Iλ[q(y)] = 4
∫

q ′2(y)dy + 4
λ

2!
∫

q ′4(y)dy + 4
λ2

3!
∫

q ′6(y)dy + · · ·

= I1[q(y)] + λ

2! I2[q(y)] + λ2

3! I3[q(y)] + · · · . (69)

What we have in (69) is a hierarchy {I1, I2, I3, . . .}. The first term is nothing but the
standard Fisher information I1[q] = I [q] coinciding with the limit lim

λ→0
Iλ[q(y)] =

I [q(y)]. Next, we consider the second function in the hierarchy

I2[q(y)] = 4
∫

q ′4(y)dy → I2[p(y)] = 4
∫ (

p′(y)
2q(y)

)4

dy

= 4

24

∫
p′4(y)
p2(y)

dy . (70)

Now we introduce a new variable p1 ≡ p2 such that

I2[p1] = 4

44

∫
p′4
1 (y)

p41(y)
p1(y)dy

or

I2[θ] = 4

44

∫ [
∂

∂θ
ln p1(x |θ)

]4
p1(x |θ)dx . (71)

We shall call (71) as the second-order Fisher information. We can proceed the same
technique of transformation and obtain the nth-order Fisher information as

In[θ] = 4

(2n)2n

∫ [
∂

∂θ
ln pn−1(x |θ)

]2n
pn−1(x |θ)dx, (72)

where pn−1(y) = pn(y) and the extended Fisher information (69) can be expressed
in terms of infinite series as

Iλ[θ] =
∞∑

j=1

I j [θ] .

At this point, we may treat (69) as the generating function for the entire hierarchy
of the Fisher information by expanding with respect to the parameter λ. However,
recalling the two-parameter Fisher information in (61)

Ia,b[p] =
∫

pa(y)

(
dp(y)

dy

)b

dy , (73)
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Table 1 Extended Fisher informations are contained in generalised Fisher information Eq. (73)

Extended Fisher information Parameter a Parameter b

First Fisher information: I1 1 2

Second Fisher information: I2 2 4

Third Fisher information: I3 3 6

Fourth Fisher information: I4 4 8

where a = q − q ′ − 1 and b = q ′ + 1, we find that, with a suitable choice of parame-
ters, our whole hierarchy of Fisher information can be identified as shown in Table1.

4.6 Generalisation of the Cramer–Rao Inequality and
Additive Property

In the previous subsection, we introduce the one-parameter generalisation Fisher
information. Here, in this section, we would like to establish the lower bound of it
through the Cramer–Rao inequality. We first consider

〈
Θ̂ − θ

〉
=

∫
(Θ̂ − θ)pq(x | θ)dx = 0 ,

which is known as the q-expectation value, [56] . Taking the 1st derivative, we obtain

∂

∂θ

〈
Θ̂ − θ

〉
=

∫
∂

∂θ
(Θ̂ − θ)pq (x | θ)dx +

∫
(Θ̂ − θ)

∂

∂θ
pq (x | θ)dx

= −
∫

pq (x | θ)dx + q
∫

(Θ̂ − θ)pq−1(x | θ)
∂ p(x | θ)

∂θ
dx

= −
∫

pq (x | θ)dx + q
∫

(Θ̂ − θ)pq−1(x | θ)p(x | θ)
∂ ln p(x | θ)

∂θ
dx

= −Qq + q J = 0 , (74)

where

Qq =
∫

pq(x | θ)dx ,

J =
∫

(Θ̂ − θ)pq−1(x | θ)p(x | θ)
∂ ln p(x | θ)

∂θ
dx .

Normally, the term J is well known as information generating function [57], it is also
called incomplete normalisation [58], and pq is called effective probability. Next,
we rewrite the J in the form
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Table 2 Extended Cramer–Rao inequalities are identified with three parameters

Type of Cramer–Rao
inequality

Parameter q Parameter β Parameter α

First Fisher
information

1 2 2

Second Fisher
information

5/4 4/3 4

Third Fisher
information

4/3 6/5 6

Fourth Fisher
information

11/8 8/7 8

J =
∫ [

(Θ̂ − θ)
] [∂ ln p(x | θ)

∂θ
pq−1(x | θ)

]
p(x | θ)dx , (75)

and applying the Hölder inequality to (75), we obtain

J ≤
[∫

(Θ̂ − θ)β p(x | θ)dx

]1/β [∫ (
∂ ln p(x | θ)

∂θ

)α

(pq−1(x | θ))α p(x | θ)dx

]1/α

=
[∫

(Θ̂ − θ)β p(x | θ)dx

]1/β [∫ (
∂ ln p(x | θ)

∂θ

)α

pα(q−1)+1(x | θ)dx

]1/α
, (76)

where q ≥ 1 is the Tsallis entropy index [52], α and β are Hölder conjugates: 1/α +
1/β = 1 for α,β = [1,∞]. Finally, employing (74), inequality (76) becomes

Qq

q
=

∫
pq(x | θ)dx

q
≤

[∫
(Θ̂ − θ)β p(x | θ)dx

]1/β

×
[∫ (

∂ ln p(x | θ)

∂θ

)α

pα(q−1)+1(x | θ)dx

]1/α

, (77)

which is our extended Cramer–Rao inequality. It is not difficult to see that if one takes
q = 1, β = 2 and α = 2, the standard Cramer–Rao inequality can be recovered. For
α = 4, β = 4/3 and q = 5/4, we obtain

(4/5)4 Q5/4

43
〈
(Θ̂ − θ)4/3

〉3 ≤ I2 ,

which is the Cramer–Rao inequality for the second extended Fisher information.
Basically, inequality (77) provides the Cramer–Rao bound for thewhole Fisher infor-
mation hierarchy (Table2).

Next, we will investigate the additive property of the higher order Fisher infor-
mation. To make simple, we shall start with the second-order Fisher information.
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Consider a system composed of two independent identically subsystems which is
defined the random variable X = (x1, x2), where superscription denotes for subsys-
tems. The joint probability of the two subsystems is given by p12 ≡ p(x1, x2|θ) =
p(x1|θ)p(x2|θ) ≡ p1 p2. What we have for the second-order Fisher information is

I2[p12] = 4

24

∫ ∫ (
∂

∂θ
ln(p1 p2)

)4

p21 p
2
2dx1dx2

= 4

24

[ ∫ (
∂

∂θ
ln p1

)4

p21dx1

∫
p22dx2

+ 4
∫ (

∂

∂θ
ln p1

)3

p21dx1

∫ (
∂

∂θ
ln p2

)
p22dx2

+ 6
∫ (

∂

∂θ
ln p1

)2

p21dx
1
∫ (

∂

∂θ
ln p2

)2

p22dx2

+ 4
∫ (

∂

∂θ
ln p1

)
p21dx1

∫ (
∂

∂θ
ln p2

)3

p22dx2

+
∫

p21dx1

∫ (
∂

∂θ
ln p2

)4

p22dx2

]

= 4

24

[
Q2(p2)

∫ (
∂

∂θ
ln p1

)4

p21dx1

+ 6
∫ (

∂

∂θ
ln p1

)2

p21dx1

∫ (
∂

∂θ
ln p2

)2

p21dx2

+ Q2(p1)
∫ (

∂

∂θ
ln p2

)4

p22dx2

]

= 1

4

[
Q2(p2)I2(p1) + Q2(p1)I2(p2) + 6I (p1)I (p2)

]
. (78)

Here see that the second-order Fisher information does not follow the additive rule.
With the result in (78), it is not difficult now to see that the nth-order Fisher infor-
mation could give

In[p12] = 4

22n

[(
2n

0

)
Qn(p(x2|θ))

∫ (
∂

∂θ
ln p(x1|θ)

)2n

pn(x1|θ)dx1

+
n−2∑

k=2

(
2n

k

)∫ (
∂

∂θ
ln p(x1|θ)

)n−k

pn(x1|θ)dx1

×
∫ (

∂

∂θ
ln p(x2|θ)

)k

pn(x2|θ)dx2

+
(
2n

2n

)
Qn(p(x1|θ))

∫ (
∂

∂θ
ln p(x2|θ)

)2n

pn(x2|θ)dx2
]

,



346 W. Bukaew and S. Yoo-Kong

where the first and last terms refer to the Fisher information for each subsystem and
themiddle one is the crossing term. Therefore, our Fisher information hierarchy does
not follow the additive property, except for n = 1 the standard Fisher information.

4.7 Two-Parameter Generalised Fisher Information

In this section, we would like to give a preliminary result on two-parameter gener-
alised Fisher information.With all the ingredients we do have in the previous subsec-
tions, it is quite natural to extend the Fisher information to the case of two-parameter
generalisation. Before doing that, we would like to rewrite the one-parameter Fisher
information (68) as

Iq [q(y)] = 4

1 − q

∫
dy

[
e(1−q)q ′2(y) − 1

]
,

where the parameter λ is replaced by 1 − q. With this form, the limit one could
recover the standard Fisher information is that q → 1.

With the definition of the q-exponential given in (1), the two-parameter gener-
alised Fisher information reads

Iq,r [q(y)] = 4

1 − q

∫
dy

[
e(1−q)q ′2(y)
r − 1

]
.

Here we see that the limit r → 1, the one-parameter Fisher information is recovered
and, of course, if further limit on the parameter q is considered, the standard Fisher
information is obtained. We note here that what we obtain in this section for the
two-parameter Fisher information is totally different from (61).

5 Concluding Summary

In this review, we begin to ask a simple question: for a given equation of motion,
“Does there exist a corresponding Hamiltonian?” Degasperis and Ruijsenaars [40]
have shown that Eq. (4), in the case of one degree of freedom, admits a solution
attached with a parameter and an appropriate limit on the parameter, the standard
Hamiltonian is recovered.Here,we have shown that there exist other kinds of solution
attachedwith one andmore parameters. The interesting point is that in the case of one-
parameter generalised Hamiltonian, the form of the Hamiltonian (19) is accidentally
in the same form with the Tsallis entropy. This invites us to treat this Hamiltonian
as the q-deformation version of the standard Hamiltonian. At this point, it is hard to
express the direct connection in terms of the physical meaning of these two quantities
and we shall leave it as an open question. In the Lagrangian case, we impose the
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same question: for a given equation of motion, “Does there exist a corresponding
Lagrangian?” Sonin provided the proof that every function F and every ordinary
second-order differential equation

g(F − ẍ) = ∂L

∂x
− d

dt

∂L

∂ ẋ
, where g = ∂2L

∂ ẋ2
�= 0 (1)

admits a Lagrangian [41–43]. However, what we present here is that (1) admits a
special solution equipped with a parameter (or parameters). With this parameter, one
could generate infinite type of Lagrangians producing the same equation of motion.
Of course, thiswould point out that indeed theLagrangian is not unique, butwith a dif-
ferent perspective from what we had in the standard context, i.e. adding/multiplying
a constant or adding the total time derivative of the function F(x, t).

Later, the standard entropies and generalised entropies are presented. The sur-
prisal quantity is introduced and the linear average of the surprisal is called the
Shannon entropy. The second derivative of the Shannon entropy with respect to the
probabilities yields the Fisher–Raometric. Furthermore, with the generating function
Fα(p) = ∑W

i=1 p
α
i , one can obtain the Shannon entropy from the negative deriva-

tive of the generating function with respect to the parameter α and set α = 1. In
case that there are two probability distributions, one can distinguish them by means
of the Kullback–Leibler divergence or relative entropy. In case the two probabil-
ity distributions are very close to each other, one can approximate the Kullback–
Leibler divergence and obtain Fishermetric. This invites us to consider theKullback–
Leibler divergence as the distance measure between two distributions. However, the
Kullback–Leibler divergence is not symmetric under interchanging the argument.
Then Kullback–Leibler divergence cannot be treated as a true distance measure. If
we relax the linear average of the surprisal, the one-parameter extended version of
the Shannon entropy called the Renyi entropy is obtained as the exponential average
of the surprisal. Under an appropriate limit, the Shannon entropy can be recovered. In
the perspective of the statistical mechanics, the Boltzmann–Gibbs entropy is a mea-
sure of “howmuch we do know on the distribution of the available microstates”. The
one-parameter extended version of the Boltzmann–Gibbs entropy is known as the
Tsallis entropy. This entropy comes with many interesting features. First, with two
independent subsystems, the Tsallis entropy provides an extra term apart from the
standard addition of the entropy for individual subsystems. This feature is known as
the non-additive property. Second, one can connectwith theTsallis entropy andRenyi
entropy and, under an appropriate limit on the parameter, the standard Boltzmann–
Gibbs entropy is recovered. Third, with the generating function Fα(p), if we replace
the standard derivative with the q-derivative, the Tsallis entropy can be obtained.
Fourth, the Tsallis entropy can be viewed as the linear average of the q-logarithm
version of the surprisal. The two-parameter extended version of the Boltzmann–
Gibbs entropy can be directly obtained by considering the expectation value of the
q-exponential of the q-logarithmversion of the surprisal. This two-parameter entropy
is known as the Sharma–Mittal entropy. The two-parameter Kullback–Leibler diver-
gence is also discussed and the two-parameter Fisher information is direct result from
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considering two close probability distributions. In the past few years, the black hole
thermodynamics gains an enormous attention for physicists. An early interesting
feature of the classical black hole is that, according to Bekenstein’s view, the horizon
area is nothing but (proportional to) the entropy of the black hole itself [62]. Later,
Hawking came up with the idea that the static black hole can radiate and therefore
there must be temperature (later known as Hawking temperature) [63]. At this point,
the proportional constant is determined and the Bekenstein–Hawking entropy takes
a form S = A/4. This structure of the black hole entropy is not quite common in
the thermodynamical sense as it depends on the area rather than the volume. This
means that the black hole entropy is not extensive quantity. Then, this allows new
ideas on studying black hole statistic by replacing the Bekenstein–Hawking entropy
with Renyi and Tsallis entropies, please see [64] and references therein.

The Fisher information is properly discussed and together with the entropy, one
possesses a complete description of the system. The main features of the Fisher
information are the following. First, Fisher informationmust satisfy the Cramer–Rao
inequality. Second, Fisher information is additive with respect to two independent
subsystems. Third, with the one-parameter case, one can consider the Fisher infor-
mation as the action functional of the free particle. This suggests that, in the absence
of the interaction, all Lagrangians are schematically identical to the Fisher informa-
tion Lagrangian, and moreover the fundamental equations of motion in physics are
the direct result of extremising the Fisher information. With an available connection
between the Fisher information and action functional, one can immediately apply
the result on one-parameter extended Lagrangian provided in the first part of this
work to obtain the one-parameter extended Fisher information. We find that, under
the appropriate limit on the parameter, the standard Fisher information is recovered.
However, expanding the one-parameter Fisher informationwith respect to the param-
eter, the Fisher information hierarchy is obtained and the standard Fisher information
is the first one in the family. With appropriate choices on parameters, every single
Fisher information in the hierarchy can be identified with the two-parameter Fisher
information obtained from the two-parameter Kullback–Leibler divergence. At this
stage, the application of the Fisher information hierarchy is not so obvious and we
shall leave this as an open problem for further investigation.
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