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Preface to the Second Edition

The first edition of this book was published in September 1999. With much
delight I realized that I had finally written a book that would never need
revising! This was in stark contrast to my first book, which was about
programming applications for Microsoft Windows. That one had already
gone through five editions in just ten years. My second book on the OS/2
Presentation Manager (the what?) became obsolete much more quickly. But
Code, I was certain, would last forever.

My original idea with Code was to start with very simple concepts but
slowly build to a very deep understanding of the workings of digital
computers. Through this steady progression up the hill of knowledge, I
would employ a minimum of metaphors, analogies, and silly illustrations,
and instead use the language and symbols of the actual engineers who
design and build computers. I also had a very clever trick up my sleeve: I
would use ancient technologies to demonstrate universal principles under
the assumption that these ancient technologies were already quite old and
would never get older. It was as if I were writing a book about the internal
combustion engine but based on the Ford Model T.

I still think that my approach was sound, but I was wrong in some of the
details. As the years went by, the book started to show its age. Some of the
cultural references became stale. Phones and fingers supplemented
keyboards and mice. The internet certainly existed in 1999, but it was
nothing like what it eventually became. Unicode—the text encoding that
allows a uniform representation of all the world’s languages as well as
emojis—got less than a page in the first edition. And JavaScript, the
programming language that has become pervasive on the web, wasn’t
mentioned at all.

Those problems would probably have been easy to fix, but there existed
another aspect of the first edition that continued to bother me. I wanted to



show the workings of an actual CPU—the central processing unit that forms
the brain, heart, and soul of a computer—but the first edition didn’t quite
make it. I felt that I had gotten close to this crucial breakthrough but then I
had given up. Readers didn’t seem to complain, but to me it was a glaring
flaw.

That deficiency has been corrected in this second edition. That’s why it’s
some 70 pages longer. Yes, it’s a longer journey, but if you come along with
me through the pages of this second edition, we shall dive much deeper into
the internals of the CPU. Whether this will be a more pleasurable
experience for you or not, I do not know. If you feel like you’re going to
drown, please come up for air. But if you make it through Chapter 24, you
should feel quite proud, and you’ll be pleased to know that the remainder of
the book is a breeze.

The Companion Website



The first edition of Code used the color red in circuit diagrams to indicate
the flow of electricity. The second edition does that as well, but the
workings of these circuits are now also illustrated in a more graphically
interactive way on a new website called CodeHiddenLanguage.com.

You’ll be reminded of this website occasionally throughout the pages of
this book, but we’re also using a special icon, which you’ll see in the
margin of this paragraph. Hereafter, whenever you see that icon—usually
accompanying a circuit diagram—you can explore the workings of the
circuit on the website. (For those who crave the technical background, I
programmed these web graphics in JavaScript using the HTML5 canvas
element.)

The CodeHiddenLanguage.com website is entirely free to use. There is
no paywall, and the only advertisement you’ll see is for the book itself. In a
few of the examples, the website uses cookies, but only to allow you to
store some information on your computer. The website doesn’t track you or
do anything evil.

I will also be using the website for clarifications or corrections of
material in the book.

The People Responsible
The name of one of the people responsible for this book is on the cover;
some others are no less indispensable but appear inside on the copyright
and colophon pages.

In particular, I want to call out Executive Editor Haze Humbert, who
approached me about the possibility of a second edition uncannily at
precisely the right moment that I was ready to do it. I commenced work in
January 2021, and she skillfully guided us through the ordeal, even as the
book went several months past its deadline and when I needed some
reassurance that I hadn’t completely jumped the shark.

The project editor for the first edition was Kathleen Atkins, who also
understood what I was trying to do and provided many pleasant hours of

http://codehiddenlanguage.com/
http://codehiddenlanguage.com/


collaboration. My agent at that time was Claudette Moore, who also saw the
value of such a book and convinced Microsoft Press to publish it.

The technical editor for the first edition was Jim Fuchs, who I remember
catching a lot of embarrassing errors. For the second edition, technical
reviewers Mark Seemann and Larry O’Brien also caught a few flubs and
helped me make these pages better than they would have been otherwise.

I thought that I had figured out the difference between “compose” and
“comprise” decades ago, but apparently I have not. Correcting errors like
that was the invaluable contribution of copy editor Scout Festa. I have
always relied on the kindness of copyeditors, who too often remain
anonymous strangers but who battle indefatigably against imprecision and
abuse of language.

Any errors that remain in this book are solely my responsibility.
I want to again thank my beta readers of the first edition: Sheryl Canter,

Jan Eastlund, the late Peter Goldeman, Lynn Magalska, and Deirdre Sinnott
(who later became my wife).

The numerous illustrations in the first edition were the work of the late
Joel Panchot, who I understand was deservedly proud of his work on this
book. Many of his illustrations remain, but the need for additional circuit
diagrams inclined me to redo all the circuits for the sake of consistency.
(More technical background: These illustrations were generated by a
program I wrote in C# using the SkiaSharp graphics library to generate
Scalable Vector Graphics files. Under the direction of Senior Content
Producer Tracey Croom, the SVG files were converted into Encapsulated
PostScript for setting up the pages using Adobe InDesign.)

And Finally
I want to dedicate this book to the two most important women in my life.

My mother battled adversities that would have destroyed a lesser person.
She provided a strong direction to my life without ever holding me back.
We celebrated her 95th (and final) birthday during the writing of this book.

My wife, Deirdre Sinnott, has been essential and continues to make me
proud of her achievements, her support, and her love.

And to the readers of the first edition, whose kind feedback has been
extraordinarily gratifying.



Charles Petzold
May 9, 2022
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Chapter One

Best Friends

You’re 10 years old. Your best friend lives across the street. The windows
of your bedrooms actually face each other. Every night, after your parents
have declared bedtime at the usual indecently early hour, you still need to
exchange thoughts, observations, secrets, gossip, jokes, and dreams. No one
can blame you. The impulse to communicate is, after all, one of the most
human of traits.

While the lights are still on in your bedrooms, you and your best friend
can wave to each other from the windows and, using broad gestures and
rudimentary body language, convey a thought or two. But more
sophisticated exchanges seem difficult, and once the parents have decreed
“Lights out!” stealthier solutions are necessary.

How to communicate? If you’re lucky enough to have a cell phone at the
age of 10, perhaps a secret call or silent texting might work. But what if
your parents have a habit of confiscating cell phones at bedtime, and even
shutting down the Wi-Fi? A bedroom without electronic communication is
a very isolated room indeed.

What you and your best friend do own, however, are flashlights.
Everyone knows that flashlights were invented to let kids read books under
the bed covers; flashlights also seem perfect for the job of communicating
after dark. They’re certainly quiet enough, and the light is highly directional
and probably won’t seep out under the bedroom door to alert your
suspicious folks.



Can flashlights be made to speak? It’s certainly worth a try. You learned
how to write letters and words on paper in first grade, so transferring that
knowledge to the flashlight seems reasonable. All you have to do is stand at
your window and draw the letters with light. For an O, you turn on the
flashlight, sweep a circle in the air, and turn off the switch. For an I, you
make a vertical stroke. But, as you quickly discover, this method is a
disaster. As you watch your friend’s flashlight making swoops and lines in
the air, you find that it’s too hard to assemble the multiple strokes together
in your head. These swirls and slashes of light are just not precise enough.

Perhaps you once saw a movie in which a couple of sailors signaled to
each other across the sea with blinking lights. In another movie, a spy
wiggled a mirror to reflect the sunlight into a room where another spy lay
captive. Maybe that’s the solution. So you first devise a simple technique:
Each letter of the alphabet corresponds to a series of flashlight blinks. An A
is 1 blink, a B is 2 blinks, a C is 3 blinks, and so on to 26 blinks for Z. The
word BAD is 2 blinks, 1 blink, and 4 blinks with little pauses between the
letters so you won’t mistake the 7 blinks for a G. You’ll pause a bit longer
between words.

This seems promising. The good news is that you no longer have to
wave the flashlight in the air; all you need do is point and click. The bad
news is that one of the first messages you try to send (“How are you?”)
turns out to require a grand total of 131 blinks of light! Moreover, you
forgot about punctuation, so you don’t know how many blinks correspond
to a question mark.

But you’re close. Surely, you think, somebody must have faced this
problem before, and you’re absolutely right. With a trip to the library or an
internet search, you discover a marvelous invention known as Morse code.
It’s exactly what you’ve been looking for, even though you must now
relearn how to “write” all the letters of the alphabet.

Here’s the difference: In the system you invented, every letter of the
alphabet is a certain number of blinks, from 1 blink for A to 26 blinks for Z.
In Morse code, you have two kinds of blinks—short blinks and long blinks.
This makes Morse code more complicated, of course, but in actual use it
turns out to be much more efficient. The sentence “How are you?” now
requires only 32 blinks (some short, some long) rather than 131, and that’s
including a code for the question mark.



When discussing how Morse code works, people don’t talk about “short
blinks” and “long blinks.” Instead, they refer to “dots” and “dashes”
because that’s a convenient way of showing the codes on the printed page.
In Morse code, every letter of the alphabet corresponds to a short series of
dots and dashes, as you can see in the following table.

Although Morse code has absolutely nothing to do with computers,
becoming familiar with the nature of codes is an essential preliminary to
achieving a deep understanding of the hidden languages and inner
structures of computer hardware and software.

In this book, the word code usually means a system for transferring
information among people, between people and computers, or within
computers themselves.

A code lets you communicate. Sometimes codes are secret, but most
codes are not. Indeed, most codes must be well understood because they’re
the basis of human communication.

The sounds we make with our mouths to form words constitute a code
that is intelligible to anyone who can hear our voices and understands the
language that we speak. We call this code “the spoken word” or “speech.”

Within deaf communities, various sign languages employ the hands and
arms to form movements and gestures that convey individual letters of
words or whole words and concepts. The two systems most common in
North America are American Sign Language (ASL), which was developed



in the early 19th century at the American School for the Deaf, and Langue
des signes Québécoise (LSQ), which is a variation of French sign language.

We use another code for words on paper or other media, called “the
written word” or “text.” Text can be written or keyed by hand and then
printed in newspapers, magazines, and books or displayed digitally on a
range of devices. In many languages, a strong correspondence exists
between speech and text. In English, for example, letters and groups of
letters correspond (more or less) to spoken sounds.

For people who are visually impaired, the written word can be replaced
with Braille, which uses a system of raised dots that correspond to letters,
groups of letters, and whole words. (I discuss Braille in more detail in
Chapter 3.)

When spoken words must be transcribed into text very quickly,
stenography or shorthand is useful. In courts of law or for generating real-
time closed captioning for televised news or sports programs, stenographers
use a stenotype machine with a simplified keyboard incorporating its own
codes corresponding to text.

We use a variety of different codes for communicating among ourselves
because some codes are more convenient than others. The code of the
spoken word can’t be stored on paper, so the code of the written word is
used instead. Silently exchanging information across a distance in the dark
isn’t possible with speech or paper. Hence, Morse code is a convenient
alternative. A code is useful if it serves a purpose that no other code can.

As we shall see, various types of codes are also used in computers to
store and communicate text, numbers, sounds, music, pictures, and movies,
as well as instructions within the computer itself. Computers can’t easily
deal with human codes because computers can’t precisely duplicate the
ways in which human beings use their eyes, ears, mouths, and fingers.
Teaching computers to speak is hard, and persuading them to understand
speech is even harder.

But much progress has been made. Computers have now been enabled to
capture, store, manipulate, and render many types of information used in
human communication, including the visual (text and pictures), the aural
(spoken words, sounds, and music), or a combination of both (animations
and movies). All of these types of information require their own codes.



Even the table of Morse code you just saw is itself a code of sorts. The
table shows that each letter is represented by a series of dots and dashes. Yet
we can’t actually send dots and dashes. When sending Morse code with a
flashlight, the dots and dashes correspond to blinks.

Sending Morse code with a flashlight requires turning the flashlight
switch on and off quickly for a dot, and somewhat longer for a dash. To
send an A, for example, you turn the flashlight on and off quickly and then
on and off not quite as quickly, followed by a pause before the next
character. By convention, the length of a dash should be about three times
that of a dot. The person on the receiving end sees the short blink and the
long blink and knows that it’s an A.

Pauses between the dots and dashes of Morse code are crucial. When
you send an A, for example, the flashlight should be off between the dot
and the dash for a period of time equal to about one dot. Letters in the same
word are separated by longer pauses equal to about the length of one dash.
For example, here’s the Morse code for “hello,” illustrating the pauses
between the letters:

Words are separated by an off period of about two dashes. Here’s the
code for “hi there”:

The lengths of time that the flashlight remains on and off aren’t fixed.
They’re all relative to the length of a dot, which depends on how fast the
flashlight switch can be triggered and also how quickly a Morse code
sender can remember the code for a particular letter. A fast sender’s dash
might be the same length as a slow sender’s dot. This little problem could
make reading a Morse code message tough, but after a letter or two, the
person on the receiving end can usually figure out what’s a dot and what’s a
dash.

At first, the definition of Morse code—and by definition I mean the
correspondence of various sequences of dots and dashes to the letters of the
alphabet—appears as random as the layout of a computer keyboard. On
closer inspection, however, this is not entirely so. The simpler and shorter



codes are assigned to the more frequently used letters of the alphabet, such
as E and T. Scrabble players and Wheel of Fortune fans might notice this
right away. The less common letters, such as Q and Z (which get you 10
points in Scrabble and rarely appear in Wheel of Fortune puzzles), have
longer codes.

Almost everyone knows a little Morse code. Three dots, three dashes,
and three dots represent SOS, the international distress signal. SOS isn’t an
abbreviation for anything—it’s simply an easy-to-remember Morse code
sequence. During the Second World War, the British Broadcasting
Corporation prefaced some radio broadcasts with the beginning of
Beethoven’s Fifth Symphony—BAH, BAH, BAH, BAHMMMMM—
which Beethoven didn’t know at the time he composed the music would
someday be the Morse code for V, for Victory.

One drawback of Morse code is that it doesn’t differentiate between
uppercase and lowercase letters. But in addition to representing letters,
Morse code also includes codes for numbers by using a series of five dots
and dashes:

These number codes, at least, are a little more orderly than the letter codes.
Most punctuation marks use five, six, or seven dots and dashes:



Additional codes are defined for accented letters of some European
languages and as shorthand sequences for special purposes. The SOS code
is one such shorthand sequence: It’s supposed to be sent continuously with
only a one-dot pause between the three letters.

You’ll find that it’s much easier for you and your friend to send Morse
code if you have a flashlight made specially for this purpose. In addition to
the normal on-off slider switch, these flashlights also include a pushbutton
switch that you simply press and release to turn the flashlight on and off.
With some practice, you might be able to achieve a sending and receiving
speed of 5 or 10 words per minute—still much slower than speech (which is
somewhere in the 100-words-per-minute range), but surely adequate.

When finally you and your best friend memorize Morse code (for that’s
the only way you can become proficient at sending and receiving it), you
can also use it vocally as a substitute for normal speech. For maximum
speed, you pronounce a dot as dih (or dit for the last dot of a letter) and a
dash as dah, for example dih-dih-dih-dah for V. In the same way that Morse
code reduces written language to dots and dashes, the spoken version of the
code reduces speech to just two vowel sounds.

The key word here is two. Two types of blinks, two vowel sounds, two
different anything, really, can with suitable combinations convey all types
of information.



Chapter Two

Codes and Combinations

Morse code was invented around 1837 by Samuel Finley Breese Morse
(1791–1872), whom we shall meet more properly later in this book. It was
further developed by others, most notably Alfred Vail (1807–1859), and it
evolved into a couple of different versions. The system described in this
book is more formally known as International Morse code.

The invention of Morse code goes hand in hand with the invention of the
telegraph, which I’ll also examine in more detail later in this book. Just as
Morse code provides a good introduction to the nature of codes, the
telegraph includes hardware that can mimic the workings of a computer.

Most people find Morse code easier to send than to receive. Even if you
don’t have Morse code memorized, you can simply use this table, which
you saw in the previous chapter, conveniently arranged in alphabetical
order:



Receiving Morse code and translating it back into words is considerably
harder and more time consuming than sending because you must work
backward to figure out the letter that corresponds to a particular coded
sequence of dots and dashes. If you don’t have the codes memorized and
you receive a dash-dot-dash-dash, you have to scan through the table letter
by letter before you finally discover that it’s the letter Y.

The problem is that we have a table that provides this translation:

Alphabetical letter → Morse code dots and dashes

But we don’t have a table that lets us go backward:

Morse code dots and dashes → Letter of the alphabet

In the early stages of learning Morse code, such a table would certainly
be convenient. But it’s not at all obvious how we could construct it. There’s
nothing in those dots and dashes that we can put into alphabetical order.

So let’s forget about alphabetical order. Perhaps a better approach to
organizing the codes might be to group them based on how many dots and
dashes they have. For example, a Morse code sequence that contains just
one dot or one dash can represent only two letters, which are E and T:



A combination of exactly two dots or dashes provides four more letters
—I, A, N, and M:

A pattern of three dots or dashes gives us eight more letters:

And finally (if we want to stop this exercise before dealing with
numbers and punctuation marks), sequences of four dots and dashes allow
16 more characters:



Taken together, these four tables contain 2 plus 4 plus 8 plus 16 codes
for a total of 30 letters, 4 more than are needed for the 26 letters of the Latin
alphabet. For this reason, you’ll notice that 4 of the codes in the last table
are for accented letters: three with umlauts and one with a cedilla.

These four tables can certainly help when someone is sending you
Morse code. After you receive a code for a particular letter, you know how
many dots and dashes it has, and you can at least go to the right table to
look it up. Each table is organized methodically starting with the all-dots
code in the upper left and ending with the all-dashes code in the lower right.

Can you see a pattern in the size of the four tables? Each table has twice
as many codes as the table before it. This makes sense: Each table has all
the codes in the previous table followed by a dot, and all the codes in the
previous table followed by a dash.

We can summarize this interesting trend this way:

Each of the four tables has twice as many codes as the table before it, so
if the first table has 2 codes, the second table has 2 × 2 codes, and the third
table has 2 × 2 × 2 codes. Here’s another way to show that:

Once we’re dealing with a number multiplied by itself, we can start
using exponents to show powers. For example, 2 × 2 × 2 × 2 can be written
as 24 (2 to the 4th power). The numbers 2, 4, 8, and 16 are all powers of 2



because you can calculate them by multiplying 2 by itself. The summary
can also be shown like this:

This table has become very simple. The number of codes is simply 2 to
the power of the number of dots and dashes:

number of codes = 2
number of dots and dashes

Powers of 2 tend to show up a lot in codes, and particularly in this book.
You’ll see another example in the next chapter.

To make the process of decoding Morse code even easier, you might
want to draw something like this big treelike diagram shown here.



This diagram shows the letters that result from each particular
consecutive sequence of dots and dashes. To decode a particular sequence,
follow the arrows from left to right. For example, suppose you want to
know which letter corresponds to the code dot-dash-dot. Begin at the left
and choose the dot; then continue moving right along the arrows and choose
the dash and then another dot. The letter is R, shown next to the third dot.

If you think about it, constructing such a table was probably necessary
for defining Morse code in the first place. First, it ensures that you don’t
make the silly mistake of using the same code for two different letters!
Second, you’re assured of using all the possible codes without making the
sequences of dots and dashes unnecessarily long.

At the risk of extending this table beyond the limits of the printed page,
we could continue it for codes of five dots and dashes. A sequence of
exactly five dots and dashes gives us 32 (2 × 2 × 2 × 2 × 2, or 25) additional



codes. Normally that would be enough for the ten numbers and 16
punctuation symbols defined in Morse code, and indeed, the numbers are
encoded with five dots and dashes. But many of the other codes that use a
sequence of five dots and dashes represent accented letters rather than
punctuation marks.

To include all the punctuation marks, the system must be expanded to
six dots and dashes, which gives us 64 (2 × 2 × 2 × 2 × 2 × 2, or 26)
additional codes for a grand total of 2 + 4 + 8 + 16 + 32 + 64, or 126,
characters. That’s overkill for Morse code, which leaves many of these
longer codes undefined, which used in this context refers to a code that
doesn’t stand for anything. If you were receiving Morse code and you got
an undefined code, you could be pretty sure that somebody made a mistake.

Because we were clever enough to develop this little formula,

number of codes = 2
number of dots and dashes

we could continue figuring out how many codes we get from using longer
sequences:

Fortunately, we don’t have to actually write out all the possible codes to
determine how many there would be. All we have to do is multiply 2 by
itself over and over again.



Morse code is said to be binary (literally meaning two by two) because
the components of the code consist of only two things—a dot and a dash.
That’s similar to a coin, which can land only on the head side or the tail
side. Coins that are flipped ten times can have 1024 different sequences of
heads and tails.

Combinations of binary objects (such as coins) and binary codes (such
as Morse code) are always described by powers of two. Two is a very
important number in this book.



Chapter Three

Braille and Binary Codes

Samuel Morse wasn’t the first person to successfully translate the letters of
written language into an interpretable code. Nor was he the first person to
be remembered more for the name of his code than for himself. That honor
must go to a blind French teenager born some 18 years after Morse but who
made his mark much more precociously. Little is known of his life, but
what is known makes a compelling story.

Louis Braille was born in 1809 in Coupvray, France, just 25 miles east
of Paris. His father was a harness maker. At the age of three—an age when
young boys shouldn’t be playing in their fathers’ workshops—he
accidentally stuck a pointed tool in his eye. The wound became infected,
and the infection spread to his other eye, leaving him totally blind. Most
people suffering such a fate in those days would have been doomed to a life
of ignorance and poverty, but young Louis’s intelligence and desire to learn
were soon recognized. Through the intervention of the village priest and a
schoolteacher, he first attended school in the village with the other children
and then at the age of 10 was sent to the Royal Institution for Blind Youth
in Paris.
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The major obstacle in the education of blind children is their inability to
read printed books. Valentin Haüy (1745–1822), the founder of the Paris
school, had invented a system of embossing letters on paper in a large
rounded font that could be read by touch. But this system was very difficult
to use, and only a few books had been produced using this method.

The sighted Haüy was stuck in a paradigm. To him, an A was an A was
an A, and the letter A must look (or feel) like an A. (If given a flashlight to
communicate, he might have tried drawing letters in the air, as we did
before we discovered it didn’t work very well.) Haüy probably didn’t
realize that a type of code quite different from embossed letters might be
more appropriate for sightless people.

The origins of an alternative type of code came from an unexpected
source. Charles Barbier, a captain of the French army, had by 1815 devised
a system of writing later called écriture nocturne, or “night writing.” This
system used a pattern of raised dots on heavy paper and was intended for
use by soldiers in passing notes to each other in the dark when quiet was
necessary. The soldiers could poke these dots into the back of the paper
using an awl-like stylus. The raised dots could then be read with the fingers.

Louis Braille became familiar with Barbier’s system at the age of 12. He
liked the use of raised dots, not only for the ease in reading with the fingers
but also because it was easy to write. A student in the classroom equipped



with paper and a stylus could actually take notes and read them back.
Braille diligently worked to improve the system and within three years (at
the age of 15) had come up with his own, the basics of which are still used
today. For many years, the system was known only within the school, but it
gradually made its way to the rest of the world. In 1835, Louis Braille
contracted tuberculosis, which would eventually kill him shortly after his
43rd birthday, in 1852.

Today, various versions of the Braille system compete with audiobooks
for providing blind people with access to the written word, but Braille
remains an invaluable system and the only way to read for people who are
both blind and deaf. In recent decades, Braille has become more familiar to
the general public as elevators and automatic teller machines have used
Braille to become more accessible.

What I’ll do in this chapter is dissect the Braille code and show you how
it works. You don’t have to actually learn Braille or memorize anything.
The sole purpose of this exercise is to get some additional insight into the
nature of codes.

In Braille, every symbol used in normal written language—specifically,
letters, numbers, and punctuation marks—is encoded as one or more raised
dots within a two-by-three cell. The dots of the cell are commonly
numbered 1 through 6:

Special typewriters were developed to emboss the Braille dots into the
paper, and these days, computer-driven embossers do the job.

Because embossing in Braille just a couple of pages of this book would
be prohibitively expensive, I’ve used a notation common for showing
Braille on the printed page. In this notation, all six dots in the cell are
shown. Large dots indicate the parts of the cell where the paper is raised.
Small dots indicate the parts of the cell that are flat. For example, in the
Braille character



dots 1, 3, and 5 are raised and dots 2, 4, and 6 are not.
What should be interesting to us at this point is that the dots are binary.

A particular dot is either flat or raised. That means we can apply what
we’ve learned about Morse code and binary combinations to Braille. We
know that there are six dots and that each dot can be either flat or raised, so
the total number of combinations of six flat and raised dots is 2 × 2 × 2 × 2
× 2 × 2, or 26, or 64.

Thus, the system of Braille is capable of representing 64 unique codes.
Here they are—all 64 of them:

It’s not necessary for all 64 codes to be used in Braille, but 64 is
definitely the upper limit imposed by the six-dot pattern.

To begin dissecting the code of Braille, let’s look at the basic lowercase
alphabet:



For example, the phrase “you and me” in Braille looks like this:

Notice that the cells for each letter within a word are separated by a little
bit of space; a larger space (essentially a cell with no raised dots) is used
between words.

This is the basis of Braille as Louis Braille devised it, or at least as it
applies to the letters of the Latin alphabet. Louis Braille also devised codes
for letters with accent marks, common in French. Notice that there’s no
code for w, which isn’t used in classical French. (Don’t worry. The letter
will show up eventually.) At this point, only 25 of the 64 possible codes
have been accounted for.

Upon close examination, you’ll discover a pattern in the Braille codes
for the 25 lowercase letters. The first row (letters a through j) uses only the
top four spots in the cell—dots 1, 2, 4, and 5. The second row (letters k
through t) duplicates the first row except that dot 3 is also raised. The third
row (u through z) is the same except that dots 3 and 6 are raised.

Louis Braille originally designed his system to be punched by hand. He
knew this would likely not be very precise, so he cleverly defined the 25
lowercase letters in a way that reduces ambiguity. For example, of the 64
possible Braille codes, six have one raised dot. But only one of these is used
for lowercase letters, specifically for the letter a. Four of the 64 codes have



two adjacent vertical dots, but again only one is used, for the letter b. Three
codes have two adjacent horizontal dots, but only one is used, for c.

What Louis Braille really defined is a collection of unique shapes that
could be shifted a little on the page and still mean the same thing. An a is
one raised dot, a b is two vertically adjacent dots, a c is two horizontally
adjacent dots, and so on.

Codes are often susceptible to errors. An error that occurs as a code is
written (for example, when a student of Braille marks dots in paper) is
called an encoding error. An error made reading the code is called a
decoding error. In addition, there can also be transmission errors—for
example, when a page containing Braille is damaged in some way.

More sophisticated codes often incorporate various types of built-in
error correction. In this sense, Braille as originally defined by Louis Braille
is a sophisticated coding system: It uses redundancy to allow a little
imprecision in the punching and reading of the dots.

Since the days of Louis Braille, the Braille code has been expanded in
various ways, including systems to notate mathematics and music.
Currently the system used most often in published English text is called
Grade 2 Braille. Grade 2 Braille uses many contractions in order to use less
paper and to speed reading. For example, if letter codes appear by
themselves, they stand for common words. The following three rows
(including a “completed” third row) show these word codes:

Thus, the phrase “you and me” can be written in Grade 2 Braille as this:



So far, I’ve described 31 codes—the no-raised-dots space between
words and the three rows of ten codes for letters and words. We’re still not
close to the 64 codes that are theoretically available. In Grade 2 Braille, as
we shall see, nothing is wasted.

The codes for letters a through j can be combined with a raised dot 6.
These are used mostly for contractions of letters within words and also
include w and another word abbreviation:

For example, the word “about” can be written in Grade 2 Braille this
way:

The next step introduces some potential ambiguity absent in Louis
Braille’s original formulation. The codes for letters a through j can also be
effectively lowered to use only dots 2, 3, 5, and 6. These codes represent
some punctuation marks and contractions, depending on context:

The first four of these codes are the comma, semicolon, colon, and
period. Notice that the same code is used for both left and right parentheses
but that two different codes are used for open and closed quotation marks.
Because these codes might be mistaken for the letters a through j, they only
make sense in a larger context amidst other letters.

We’re up to 51 codes so far. The following six codes use various unused
combinations of dots 3, 4, 5, and 6 to represent contractions and some



additional punctuation:

The code for “ble” is very important because when it’s not part of a
word, it means that the codes that follow should be interpreted as numbers.
These number codes are the same as those for letters a through j:

Thus, this sequence of codes

means the number 256.
If you’ve been keeping track, we need seven more codes to reach the

maximum of 64. Here they are:

The first (a raised dot 4) is used as an accent indicator. The others are
used as prefixes for some contractions and also for some other purposes:
When dots 4 and 6 are raised (the fifth code in this row), the code is a
numeric decimal point or an emphasis indicator, depending on context.
When dots 5 and 6 are raised (the sixth code), it’s a letter indicator that
counterbalances a number indicator.

And finally (if you’ve been wondering how Braille encodes capital
letters) we have dot 6—the capital indicator. This indicates that the letter
that follows is uppercase. For example, we can write the name of the
original creator of this system as



This sequence begins with a capital indicator, followed by the letter l,
the contraction ou, the letters i and s, a space, another capital indicator, and
the letters b, r, a, i, l, l, and e. (In actual use, the name might be abbreviated
even more by eliminating the last two letters, which aren’t pronounced, or
by spelling it “brl.”)

In summary, we’ve seen how six binary elements (the dots) yield 64
possible codes and no more. It just so happens that many of these 64 codes
perform double duty depending on their context. Of particular interest is the
number indicator along with the letter indicator that undoes the number
indicator. These codes alter the meaning of the codes that follow them—
from letters to numbers and from numbers back to letters. Codes such as
these are often called precedence, or shift, codes. They alter the meaning of
all subsequent codes until the shift is undone.

A shift code is similar to holding down the Shift key on a computer
keyboard, and it’s so named because the equivalent key on old typewriters
mechanically shifted the mechanism to type uppercase letters.

The Braille capital indicator means that the following letter (and only
the following letter) should be uppercase rather than lowercase. A code
such as this is known as an escape code. Escape codes let you “escape”
from the normal interpretation of a code and interpret it differently. Shift
codes and escape codes are common when written languages are
represented by binary codes, but they can introduce complexities because
individual codes can’t be interpreted on their own without knowing what
codes came before.

As early as 1855, some advocates of Braille began expanding the system
with another row of two dots. Eight-dot Braille has been used for some
special purposes, such as music, stenography, and Japanese kanji characters.
Because it increases the number of unique codes to 28, or 256, it’s also been
convenient in some computer applications, allowing lowercase and
uppercase letters, numbers, and punctuation to all have their own unique
codes without the annoyances of shift and escape codes.



Chapter Four

Anatomy of a Flashlight

Flashlights are useful for numerous tasks, of which reading under the
covers and sending coded messages are only the two most obvious. The
common household flashlight can also take center stage in an educational
show-and-tell of the ubiquitous stuff known as electricity.

Electricity is an amazing phenomenon, managing to be pervasively
useful while remaining largely mysterious, even to people who pretend to
know how it works. Fortunately, we need to understand only a few basic
concepts to comprehend how electricity is used inside computers.

The flashlight is certainly one of the simpler electrical appliances found
in most homes. Disassemble a typical flashlight and you’ll find that it
consists of one or more batteries, a lightbulb, a switch, some metal pieces,
and a case to hold everything together.

These days, most flashlights use light-emitting diodes (LEDs), but one
advantage of more retro lightbulbs is that you can see inside the glass bulb:



This is known as an incandescent lightbulb. Most Americans believe
that the incandescent lightbulb was invented by Thomas Edison, while the
British are quite certain that Joseph Swan was responsible. In truth, many
other scientists and inventors made crucial strides before either Edison or
Swan got involved.

Inside the bulb is a filament made of tungsten, which glows when
electricity is applied. The bulb is filled with an inert gas to prevent the
tungsten from burning up when it gets hot. The two ends of that filament
are connected to thin wires that are attached to the tubular base of the
lightbulb and to the tip at the bottom.

You can make your own no-frills flashlight by disposing of everything
except the batteries and the lightbulb. You’ll also need some short pieces of
insulated wire (with the insulation stripped from the ends) and enough
hands to hold everything together:

Notice the two loose ends of the wires at the right of the diagram. That’s
our switch. Assuming that the batteries are good and the bulb isn’t burned
out, touching these loose ends together will turn on the light:



This book uses the color red to indicate that electricity is flowing
through the wires and lighting up the lightbulb.

What we’ve constructed here is a simple electrical circuit, and the first
thing to notice is that a circuit is a circle. The lightbulb will light up only if
the path from the batteries to the wire to the bulb to the switch and back to
the batteries is continuous. Any break in this circuit will cause the bulb to
go out. The purpose of the switch is to control this process.

The circular nature of the electrical circuit suggests that something is
moving around the circuit, perhaps like water flowing through pipes. The
“water and pipes” analogy is quite common in explanations of how
electricity works, but eventually it breaks down, as all analogies must.
Electricity is like nothing else in this universe, and we must confront it on
its own terms.

One approach to understanding the workings of electricity is called the
electron theory, which explains electricity as the movement of electrons.

As we know, all matter—the stuff that we can see and feel (usually)—is
made up of extremely small things called atoms. Every atom is composed
of three types of particles; these are called neutrons, protons, and electrons.
Sometimes an atom is depicted as a little solar system, with the neutrons



and protons bound into a nucleus and the electrons spinning around the
nucleus like planets around a sun, but that’s an obsolete model.

The number of electrons in an atom is usually the same as the number of
protons. But in certain circumstances, electrons can be dislodged from
atoms. That’s how electricity happens.

The words electron and electricity both derive from the ancient Greek
word ηλεκτρον (elektron), which oddly is the Greek word for “amber,” the
glasslike hardened sap of trees. The reason for this unlikely derivation is
that the ancient Greeks experimented with rubbing amber with wool, which
produces something we now call static electricity. Rubbing wool on amber
causes the wool to pick up electrons from the amber. The wool winds up
with more electrons than protons, and the amber ends up with fewer
electrons than protons. In more modern experiments, carpeting picks up
electrons from the soles of our shoes.

Protons and electrons have a characteristic called charge. Protons are
said to have a positive (+) charge and electrons are said to have a negative
(−) charge, but the symbols don’t mean plus and minus in the arithmetical
sense, or that protons have something that electrons don’t. The + and −
symbols indicate simply that protons and electrons are opposite in some
way. This opposite characteristic manifests itself in how protons and
electrons relate to each other.

Protons and electrons are happiest and most stable when they exist
together in equal numbers. An imbalance of protons and electrons will
attempt to correct itself. When the carpet picks up electrons from your
shoes, eventually everything gets evened out when you touch something
and feel a spark. That spark of static electricity is the movement of
electrons by a rather circuitous route from the carpet through your body and
back to your shoes.

Static electricity isn’t limited to the little sparks produced by fingers
touching doorknobs. During storms, the bottoms of clouds accumulate
electrons while the tops of clouds lose electrons; eventually, the imbalance
is evened out with a bolt of lightning. Lightning is a lot of electrons moving
very quickly from one spot to another.

The electricity in the flashlight circuit is obviously much better
mannered than a spark or a lightning bolt. The light burns steadily and
continuously because the electrons aren’t just jumping from one place to
another. As one atom in the circuit loses an electron to another atom nearby,



it grabs another electron from an adjacent atom, which grabs an electron
from another adjacent atom, and so on. The electricity in the circuit is the
passage of electrons from atom to atom.

This doesn’t happen all by itself. We can’t just wire up any old bunch of
stuff and expect some electricity to happen. We need something to
precipitate the movement of electrons around the circuit. Looking back at
our diagram of the no-frills flashlight, we can safely assume that the thing
that begins the movement of electricity is not the wires and not the
lightbulb, so it’s probably the batteries.

The batteries used in flashlights are usually cylindrical and labeled D, C,
A, AA, or AAA depending on the size. The flat end of the battery is labeled
with a minus sign (−); the other end has a little protrusion labeled with a
plus sign (+).

Batteries generate electricity through a chemical reaction. The chemicals
in batteries are chosen so that the reactions between them generate spare
electrons on the side of the battery marked with a minus sign (called the
negative terminal, or anode) and demand extra electrons on the other side of
the battery (the positive terminal, or cathode). In this way, chemical energy
is converted to electrical energy.

The batteries used in flashlights generate about 1.5 volts of electricity.
I’ll discuss what this means shortly.

The chemical reaction can’t proceed unless there’s some way that the
extra electrons can be taken away from the negative terminal of the battery
and delivered back to the positive terminal. This occurs with an electrical
circuit that connects the two terminals. The electrons travel around this
circuit in a counterclockwise direction:



Electrons from the chemicals in the batteries might not so freely mingle
with the electrons in the copper wires if not for a simple fact: All electrons,
wherever they’re found, are identical. There’s nothing that distinguishes a
copper electron from any other electron.

Notice that both batteries are facing the same direction. The positive end
of the bottom battery takes electrons from the negative end of the top
battery. It’s as if the two batteries have been combined into one larger
battery with a positive terminal at one end and a negative terminal at the
other end. The combined battery is 3 volts rather than 1.5 volts.

If we turn one of the batteries upside down, the circuit won’t work:



The two positive ends of the battery need electrons for the chemical
reactions, but there’s no way electrons can get to them because they’re
attached to each other. If the two positive ends of the battery are connected,
the two negative ends should be also:

This works. The batteries are said to be connected in parallel rather than
in series as shown earlier. The combined voltage is 1.5 volts, which is the
same as the voltage of each of the batteries. The light will probably still
glow, but not as brightly as with two batteries in series. But the batteries
will last twice as long.



We normally like to think of a battery as providing electricity to a
circuit. But we’ve seen that we can also think of a circuit as providing a
way for a battery’s chemical reactions to take place. The circuit takes
electrons away from the negative end of the battery and delivers them to the
positive end of the battery. The reactions in the battery proceed until all the
chemicals are exhausted, at which time you properly dispose of the battery
or recharge it.

From the negative end of the battery to the positive end of the battery,
the electrons flow through the wires and the lightbulb. But why do we need
the wires? Can’t the electricity just flow through the air? Well, yes and no.
Yes, electricity can flow through air (particularly wet air), or else we
wouldn’t see lightning. But electricity doesn’t flow through air very readily.

Some substances are significantly better than others for carrying
electricity. The ability of an element to carry electricity is related to its
subatomic structure. Electrons surround the nucleus in various levels, called
shells. An atom that has just one electron in its outer shell can readily give
up that electron, which is what’s necessary to carry electricity. These
substances are conducive to carrying electricity and thus are said to be
conductors. The best conductors are copper, silver, and gold. It’s no
coincidence that these three elements are found in the same column of the
periodic table. Copper is the most common substance for making wires.

The opposite of conductance is resistance. Some substances are more
resistant to the passage of electricity than others, and these are known as
resistors. If a substance has a very high resistance—meaning that it doesn’t
conduct electricity much at all—it’s known as an insulator. Rubber and
plastic are good insulators, which is why these substances are often used to
coat wires. Cloth and wood are also good insulators, as is dry air. Just about
anything will conduct electricity, however, if the voltage is high enough.

Copper has a very low resistance, but it still has some resistance. The
longer a wire, the higher its resistance. If you tried wiring a flashlight with
wires that were miles long, the resistance in the wires would be so high that
the flashlight wouldn’t work.

The thicker a wire, the lower its resistance. This may be somewhat
counterintuitive. You might imagine that a thick wire requires much more
electricity to “fill it up.” But actually the thickness of the wire makes
available many more electrons to move through the wire.



I’ve mentioned voltage but haven’t defined it. What does it mean when a
battery has 1.5 volts? Actually, voltage—named after Count Alessandro
Volta (1745–1827), who invented the first battery in 1800—is one of the
more difficult concepts of elementary electricity. Voltage refers to a
potential for doing work. Voltage exists whether or not something is hooked
up to a battery.

Consider a brick. Sitting on the floor, the brick has very little potential.
Held in your hand four feet above the floor, the brick has more potential.
All you need do to realize this potential is drop the brick. Held in your hand
at the top of a tall building, the brick has much more potential. In all three
cases, you’re holding the brick and it’s not doing anything, but the potential
is different.

A much easier concept in electricity is the notion of current. Current is
related to the number of electrons actually zipping around the circuit.
Current is measured in amperes, named after André-Marie Ampère (1775–
1836), but often called just amps, as in “a 10-amp fuse.” To get one amp of
current, you need over 6 quintillion electrons flowing past a particular point
per second. That’s 6 followed by 18 zeros, or 6 billion billions.

The water-and-pipes analogy helps out here: Current is similar to the
amount of water flowing through a pipe. Voltage is similar to the water
pressure. Resistance is similar to the width of a pipe—the smaller the pipe,
the greater the resistance. So the more water pressure you have, the more
water that flows through the pipe. The smaller the pipe, the less water that
flows through it. The amount of water flowing through a pipe (the current)
is directly proportional to the water pressure (the voltage) and inversely
proportional to the skinniness of the pipe (the resistance).

In electricity, you can calculate how much current is flowing through a
circuit if you know the voltage and the resistance. Resistance—the tendency
of a substance to impede the flow of electrons—is measured in ohms,
named after Georg Simon Ohm (1789–1854), who also proposed the
famous Ohm’s law. The law states

I = E/R

where I is traditionally used to represent current in amperes, E is used to
represent voltage (it stands for electromotive force), and R is resistance.



For example, let’s look at a battery that’s just sitting around not
connected to anything:

The voltage, E, is 1.5. That’s a potential for doing work. But because the
positive and negative terminals are connected solely by air, the resistance
(the symbol R) is very, very, very high, which means the current (I) equals
1.5 volts divided by a large number. This means that the current is just
about zero.

Now let’s connect the positive and negative terminals with a short piece
of copper wire (and from here on, the insulation on the wires won’t be
shown):

This is known as a short circuit. The voltage is still 1.5, but the
resistance is now very, very low. The current is 1.5 volts divided by a very
small number. This means that the current will be very, very high. Lots and
lots of electrons will be flowing through the wire. In reality, the actual
current will be limited by the physical size of the battery. The battery will
probably not be able to deliver such a high current, and the voltage will
drop below 1.5 volts. If the battery is big enough, the wire will get hot
because the electrical energy is being converted to heat. If the wire gets
very hot, it will actually glow and might even melt.

Most circuits are somewhere between these two extremes. We can
symbolize them like so:



The squiggly line is recognizable to electrical engineers as the symbol
for a resistor. Here it means that the circuit has a resistance that is neither
very low nor very high.

If a wire has a low resistance, it can get hot and start to glow. This is
how an incandescent lightbulb works.

The filament commonly found in the incandescent bulbs in flashlights
has a resistance of about 4 ohms. If the flashlight requires two batteries
connected end to end, the current is 3 volts divided by 4 ohms, or 0.75
ampere, which can also be expressed as 750 milliamperes. This means that
over 4.5 quintillion electrons are flowing through the lightbulb every
second. The resistance of the filament causes the electrical energy to be
converted into light and heat.

Another common measurement of electricity is the watt, named after
James Watt (1736–1819), who is best known for his work on the steam
engine. The watt is a measurement of power (P) and can be calculated as

P = E × I

The 3 volts and 0.75 amp of our flashlight indicate that we’re dealing
with a 2.25-watt lightbulb. LEDs are generally replacing incandescent bulbs
because they can deliver the same quantity of light with less heat and lower
wattage. Electricity bills are based on watts, so lowering the wattage of
lightbulbs saves both money and the environment.

We have now seemingly analyzed everything about the flashlight—the
batteries, the wires, and the lightbulb. But we’ve forgotten the most
important part!

Yes, the switch. The switch controls whether electricity is flowing in the
circuit or not. When a switch allows electricity to flow, it is said to be on, or
closed. An off, or open, switch doesn’t allow electricity to flow. (The way



we use the words closed and open for switches is opposite to the way we
use them for a door. A closed door prevents anything from passing through
it; a closed switch allows electricity to flow.)

Either the switch is closed or it’s open. Either current flows or it doesn’t.
Either the lightbulb lights up or it doesn’t.

Like the binary codes invented by Morse and Braille, this simple
flashlight is either on or off. There’s no in-between. This similarity between
binary codes and simple electrical circuits is going to prove very useful in
the chapters ahead.



Chapter Five

Communicating Around Corners

You’re 12 years old. One horrible day your best friend’s family moves to
another town. You email and text your friend now and then, but it’s just not
quite as thrilling as those late-night sessions with the flashlights blinking
out Morse code. Your second-best friend, who lives in the house next door
to yours, eventually becomes your new best friend. It’s time to teach your
new best friend some Morse code and get the late-night flashlights blinking
again.

The problem is, your new best friend’s bedroom window doesn’t face
your bedroom window. The houses are side by side, but the bedroom
windows face the same direction. Unless you figure out a way to rig up a
few mirrors outside, the flashlights are now inadequate for after-dark
communication.

Or are they?
Maybe you have learned something about electricity by this time, so you

decide to make your own flashlights out of batteries, lightbulbs, switches,
and wires. In the first experiment, you wire up the batteries and switch in
your bedroom. Two wires go out your window, hop across a fence, and go
into your friend’s bedroom, where they’re connected to a lightbulb:



From here on, the circuits will be portrayed more symbolically than
realistically. Although I’m showing only one battery, you might actually be
using two. In this and future diagrams, this will be an off (or open) switch:

And this will be the switch when it’s on (or closed):

The flashlight in this chapter works the same way as the one illustrated
in the previous chapter, except that the wires connecting the components are
now a bit longer. When you close the switch at your end, the light goes on
at your friend’s house:



Now you can send messages using Morse code.
Once you have one flashlight working, you can wire another long-

distance flashlight so that your friend can send messages to you:

Congratulations! You have just rigged up a bidirectional telegraph
system. You’ll notice that these are two identical circuits that are entirely
independent of each other. In theory, you can be sending a message to your
friend while your friend is sending a message to you, although it might be
hard for your brain to read and send messages at the same time.

You also might be clever enough to discover that you don’t need as
many wires spanning the distance between the two houses. You can
eliminate one of the four wires by wiring the configuration this way:



In this book, wires that are connected to each other are symbolized by a
little dot at the connection. This diagram has two such connections, one
below the battery at your house and the other below the lightbulb at your
friend’s house.

Notice that the negative terminals of the two batteries are now
connected. The two circular circuits (battery to switch to bulb to battery)
still operate independently, even though they’re now conjoined.

This connection between the two circuits is called a common. In this
circuit the common extends between the two wire-connection dots, from the
point where the leftmost lightbulb and battery are connected to the point
where the rightmost lightbulb and battery are connected.

Let’s take a closer look to assure ourselves that nothing funny is going
on. First, when you close the switch on your side, the bulb in your friend’s
house lights up. The red wires show the flow of electricity in the circuit:



No electricity flows in the other part of the circuit because there’s no
place for the electrons to go to complete a circuit.

When you’re not sending but your friend is sending, the switch in your
friend’s house controls the lightbulb in your house. Once again, the red
wires show how electricity flows in the circuit:

When you and your friend both try to send at the same time, sometimes
both switches are open, sometimes one switch is closed but the other is
open, and sometimes both switches are closed. When both switches are
closed, the flow of electricity in the circuit looks like this:

Interestingly, no current flows through the common part of the circuit
when both lightbulbs are lit.

By using a common to join two separate circuits into one circuit, we’ve
reduced the electrical connection between the two houses from four wires to



three wires and reduced our wire expenses by 25 percent.
If we had to string the wires for a very long distance, we might be

tempted to reduce our wiring expenses even more by eliminating another
wire. Unfortunately, this isn’t feasible with 1.5-volt D cells and small
lightbulbs. But if we were dealing with 100-volt batteries and much larger
lightbulbs, it could certainly be done.

Here’s the trick: Once you have established a common part of the
circuit, you don’t have to use wire for it. You can replace the wire with
something else. And what you can replace it with is a giant sphere
approximately 7900 miles in diameter made up of metal, rock, water, and
organic material, most of which is dead. This giant sphere is known to us as
Earth.

When I described good conductors in the previous chapter, I mentioned
silver, copper, and gold, but not gravel and mulch. In truth, the earth isn’t
such a great conductor, although some kinds of earth (damp soil, for
example) are better than others (such as dry sand). But one thing we learned
about conductors is this: the larger the better. A very thick wire conducts
much better than a very thin wire. That’s where the earth excels. It’s really,
really, really big.

To use the earth as a conductor, you can’t merely stick a little wire into
the ground next to the tomato plants. You have to use something that
maintains a substantial contact with the earth, and by that I mean a
conductor with a large surface area. One good solution is a copper pole at
least 8 feet long and ½ inch in diameter. That provides 150 square inches of
contact with the earth. You can bury the pole into the ground with a
sledgehammer and then connect a wire to it. Or, if the cold-water pipes in
your home are made of copper and originate in the ground outside the
house, you can connect a wire to the pipe.

An electrical contact with the earth is called an earth in England and a
ground in America. A bit of confusion surrounds the word ground because
it’s also often used to refer to a part of a circuit we’ve been calling the
common. In this chapter, and until I indicate otherwise, a ground is a
physical connection with the earth.

When people draw electrical circuits, they use this symbol to represent a
ground:



Electricians use this symbol because they don’t like to take the time to
draw an 8-foot copper pole buried in the ground. A circuit connected to this
is said to be “connected to ground” or “grounded” rather than the more
verbose “connected to the ground.”

Let’s see how this works. We began this chapter by looking at a one-way
configuration like this:

If you were using high-voltage batteries and lightbulbs, you would need
only one wire between your house and your friend’s house because you
could use the earth as one of the connectors:



When you turn the switch on, electricity flows like this:

The electrons come out of the earth at your friend’s house, go through
the lightbulb and wire, pass through the switch at your house, and then go
into the positive terminal of the battery. Electrons from the negative
terminal of the battery go into the earth.

You might also want to visualize electrons leaping from the 8-foot
copper pole buried in the backyard of your house into the earth and then
scurrying through the earth to get to the 8-foot copper pole buried in the
backyard of your friend’s house. But if you consider that the earth is
performing this same function for many thousands of electrical circuits
around the world, you might ask: How do the electrons know where to go?
Well, obviously they don’t. A different image of the earth seems much more
appropriate.

Yes, the earth is a massive conductor of electricity, but it can also be
viewed as both a source of electrons and a repository for electrons. The
earth is to electrons as an ocean is to drops of water. The earth is a virtually
limitless source of electrons and also a giant sea of electrons.

The earth, however, does have some resistance. That’s why we can’t use
the earth ground to reduce our wiring needs if we’re playing around with
1.5-volt D cells and flashlight bulbs. The earth simply has too much
resistance for low-voltage batteries.

You’ll notice that the previous two diagrams include a battery with the
negative terminal connected to the ground:



I’m not going to draw this battery connected to the ground anymore.
Instead, I’m going to use a shape like a capital letter V, which stands for
voltage. A wire extending from a capital V is the same as a wire connected
to the positive terminal of a battery whose negative terminal is connected to
ground. The one-way lightbulb telegraph now looks like this:

The V stands for voltage, but in a sense, it could also stand for vacuum.
You can think of the V as an electron vacuum cleaner and think of the
ground as an ocean of electrons. The electron vacuum pulls the electrons
from the earth through the circuit, doing work along the way (such as
lighting a lightbulb).

The ground is sometimes also known as the point of zero potential. This
means that no voltage is present. A voltage—as I explained earlier—is a
potential for doing work, much as a brick suspended in the air is a potential
source of energy. Zero potential is like a brick sitting on the ground—
there’s no place left for it to fall.



In Chapter 4, one of the first things we noticed was that circuits are
circles. Our new circuit doesn’t look like a circle at all. It still is one,
however. You could replace the V with a battery with the negative terminal
connected to ground, and then you could draw a wire connecting all the
places you see a ground symbol. You’d end up with the same diagram that
we started with in this chapter.

So with the help of a couple of copper poles (or cold-water pipes), we
can construct a two-way Morse code system with just two wires crossing
the fence between your house and your friend’s:

This circuit is functionally the same as the configuration shown on pages
33 to 34, in which three wires crossed the fence between the houses, but it
would only work with high-voltage batteries and lightbulbs.

In this chapter, we’ve taken an important step in the evolution of
communications. Previously we had been able to communicate with Morse
code but only in a straight line of sight and only as far as the beam from a
flashlight would travel.

By using wires, not only have we constructed a system to communicate
around corners beyond the line of sight, but we’ve freed ourselves of the
limitation of distance. We can communicate over hundreds and thousands
of miles just by stringing longer and longer wires.

Well, not exactly. Although copper is a very good conductor of
electricity, it’s not perfect. The longer the wires, the more resistance they
have. The more resistance, the less current that flows. The less current, the
dimmer the lightbulbs.



So how long exactly can we make the wires? That depends. Let’s
suppose you’re using the original four-wire, bidirectional hookup without
grounds and commons, and you’re using flashlight batteries and lightbulbs.
To keep your costs down, you may have initially purchased a roll of 100
feet of speaker wire, commonly used to connect speakers to high-end audio
amplifiers. Speaker wire consists of a pair of two insulated wires
conveniently stuck together, so it’s a good choice for our telegraph system.
If your bedroom and your friend’s bedroom are less than 50 feet apart, this
one roll of wire is all you need.

The thickness of wire is measured in American Wire Gauge, or AWG.
The smaller the AWG number, the thicker the wire and also the less
resistance it has. If you purchased 20-gauge speaker wire, the wire itself
would have a diameter of about 0.032 inches and a resistance of about 10
ohms per 1000 feet, or 1 ohm for the 100-foot round-trip distance between
the bedrooms.

That’s not bad at all, but what if we strung the wire out for a mile? The
total resistance of the wire would be more than 100 ohms. Recall from the
last chapter that our lightbulb was only 4 ohms. From Ohm’s law, we can
easily calculate that the current through the circuit will no longer be 0.75
amp (3 volts divided by 4 ohms), but will now be less than 0.03 amp (3
volts divided by more than 100 ohms). Almost certainly, that won’t be
enough current to light the bulb.

Using thicker wire is a good solution, but that can be expensive. Ten-
gauge wire is about 0.1 inch thick and has a resistance of only 1 ohm per
1000 feet, or 5 ohms per mile.

Another solution is to increase the voltage and use lightbulbs with a
much higher resistance, such as the lightbulbs you use to light your home.
The resistance of the wires will then affect the overall circuitry much less.

These are problems faced in the mid-19th century by the people who
strung up the first telegraph systems across America and Europe.
Regardless of the thickness of the wires and the high levels of voltage,
telegraph wires simply couldn’t be continued indefinitely. At most, the limit
for a working system according to this scheme was a couple of hundred
miles. That’s nowhere close to spanning the thousands of miles between
New York and California.

The solution to this problem—not for flashlights but for the clicking and
clacking telegraphs of yesteryear—turns out to be a simple and humble



device, but one from which entire computers can be built.



Chapter Six

Logic with Switches

What is truth? Aristotle thought that logic had something to do with it. The
collection of his teachings known as the Organon (which dates from the
fourth century BCE) is the earliest extensive writing on the subject of logic.
To the ancient Greeks, logic was a means of analyzing language in the
search for truth and thus was considered a form of philosophy. The basis of
Aristotle’s logic was the syllogism. The most famous syllogism (which isn’t
actually found in the works of Aristotle) is

All men are mortal;
Socrates is a man;

Hence, Socrates is mortal.

In a syllogism, two premises are assumed to be correct, and from these a
conclusion is deduced.

The mortality of Socrates might seem straightforward enough, but there
are many varieties of syllogisms. For example, consider the following two
premises, proposed by the 19th-century mathematician Charles Dodgson
(also known as Lewis Carroll):

All philosophers are logical;
An illogical man is always obstinate.



The conclusion—Some obstinate persons are not philosophers—isn’t
obvious at all. Notice the unexpected and disturbing appearance of the word
some.

For over two thousand years, mathematicians wrestled with Aristotle’s
logic, attempting to corral it using mathematical symbols and operators.
Prior to the 19th century, the only person to come close was Gottfried
Wilhelm von Leibniz (1648–1716), who dabbled with logic early in life but
then went on to other interests (such as independently inventing calculus at
the same time as Isaac Newton).

And then came George Boole.
George Boole was born in England in 1815 into a world where the odds

were certainly stacked against him. Because he was the son of a shoemaker
and a former maid, Britain’s rigid class structure would normally have
prevented Boole from achieving anything much different from his
ancestors. But aided by an inquisitive mind and his helpful father (who had
strong interests in science, mathematics, and literature), young George gave
himself the type of education that was normally the privilege of upper-class
boys; his studies included Latin, Greek, and mathematics. As a result of his
early papers on mathematics, in 1849 Boole was appointed the first
Professor of Mathematics at Queen’s College, Cork, in Ireland.
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Several mathematicians in the mid-1800s had been working on a
mathematical definition of logic (most notably Augustus De Morgan), but it
was Boole who had the real conceptual breakthrough, first in the short book
The Mathematical Analysis of Logic, Being an Essay Towards a Calculus of
Deductive Reasoning (1847) and then in a much longer and more ambitious
text, An Investigation of the Laws of Thought on Which Are Founded the
Mathematical Theories of Logic and Probabilities (1854), more
conveniently referred to as The Laws of Thought. Boole died in 1864, at the
age of 49, after hurrying to class in the rain and contracting pneumonia.

The title of Boole’s 1854 book suggests an ambitious motivation: Boole
believed that the human brain uses logic to think, so if we were to find a
way to represent logic with mathematics, we would also have a
mathematical description of how the brain works. But Boole’s mathematics
can be studied without necessarily buying in to his neuropsychology.

Boole invented a whole different kind of algebra that was eventually
called Boolean algebra to distinguish it from conventional algebra.

In conventional algebra, letters are often used to stand for numbers.
These are called operands, and they are combined in various ways with
operators, most often + and ×. For example:

A = 3 × (B + 5)

When we do conventional algebra, we follow certain rules. These rules
have probably become so ingrained in our practice that we no longer think
of them as rules and might even forget their names. But rules indeed
underlie all the workings of any form of mathematics.

The first rule is that addition and multiplication are commutative. That
means we can switch around the symbols on each side of the operators:

A + B = B + A

A × B = B × A

By contrast, subtraction and division are not commutative.
Addition and multiplication are also associative, that is



A + (B + C) = (A + B) + C

A × (B × C) = (A × B) × C

And finally, multiplication is said to be distributive over addition:

A × (B + C) = (A × B) + (A × C)

Another characteristic of conventional algebra is that it always deals
with numbers, such as pounds of tofu or numbers of ducks or distances that
a train travels or the seconds of a day.

It was Boole’s genius to make algebra more abstract by divorcing it from
concepts of number. In Boolean algebra, the operands refer not to numbers
but instead to classes. A class is simply a group of things, similar to what in
later times came to be known as a set.

Let’s talk about cats. Cats can be either male or female. For
convenience, we can use the letter M to refer to the class of male cats and F
to refer to the class of female cats. Keep in mind that these two symbols do
not represent numbers of cats. The number of male and female cats can
change by the minute as new cats are born and old cats (regrettably) pass
away. The letters stand for classes of cats—cats with specific
characteristics. Instead of referring to male cats, we can just say “M.”

We can also use other letters to represent the color of the cats. For
example, T can refer to the class of tan cats, B can be the class of black
cats, W the class of white cats, and O the class of cats of all “other” colors
—all cats not in the class T, B, or W.

Finally (at least as far as this example goes), cats can be either neutered
or unneutered. Let’s use the letter N to refer to the class of neutered cats and
U for the class of unneutered cats.

In conventional (numeric) algebra, the operators + and × are used to
indicate addition and multiplication. In Boolean algebra, the same + and ×
symbols are used, and here’s where things might get confusing. Everybody
knows how to add and multiply numbers in conventional algebra, but how
do we add and multiply classes?

Well, we don’t actually add and multiply in Boolean algebra. Instead, the
+ and × symbols mean something else entirely.



The + symbol in Boolean algebra means a union of two classes. A union
of two classes is everything in the first class combined with everything in
the second class. For example, B + W represents the class of all cats that are
either black or white.

The × symbol in Boolean algebra means an intersection of two classes.
An intersection of two classes is everything that is in both the first class and
the second class. For example, F × T represents the class of all cats that are
both female and tan. As in conventional algebra, we can write F × T as F·T
or simply FT (which is what Boole preferred). You can think of the two
letters as two adjectives strung together: “female tan” cats.

To avoid confusion between conventional algebra and Boolean algebra,
sometimes the symbols ∪ and ∩ are used for union and intersection instead
of + and ×. But part of Boole’s liberating influence on mathematics was to
make the use of familiar operators more abstract, so I’ve decided to stick
with his decision not to introduce new symbols into his algebra.

The commutative, associative, and distributive rules all hold for Boolean
algebra. What’s more, in Boolean algebra the + operator is distributive over
the × operator. This isn’t true of conventional algebra:

W + (B × F) = (W + B) × (W + F)

The union of white cats and black female cats is the same as the intersection
of two unions: the union of white cats and black cats, and the union of
white cats and female cats. This is somewhat difficult to grasp, but it works.

Three more symbols are necessary to complete Boolean algebra. Two of
these symbols might look like numbers, but they’re really not because
they’re treated a little differently than numbers. The symbol 1 in Boolean
algebra means “the universe”—that is, everything we’re talking about. In
this example, the symbol 1 means “the class of all cats.” Thus,

M + F = 1

This means that the union of male cats and female cats is the class of all
cats. Similarly, the union of tan cats and black cats and white cats and other
colored cats is also the class of all cats:

T + B + W + O = 1



And you achieve the class of all cats this way, too:

N + U = 1

The 1 symbol can be used with a minus sign to indicate the universe
excluding something. For example,

1 − M

is the class of all cats except the male cats. The universe excluding all male
cats is the same as the class of female cats:

1 − M = F

The third symbol that we need is the 0 (zero), and in Boolean algebra the
0 means an empty class—a class of nothing. The empty class results when
we take an intersection of two mutually exclusive classes—for example,
cats that are both male and female:

F × M = 0

Notice that the 1 and 0 symbols sometimes work the same way in
Boolean algebra as in conventional algebra. For example, the intersection of
all cats and female cats is the class of female cats:

1 × F = F

The intersection of no cats and female cats is the class of no cats:

0 × F = 0

The union of no cats and all female cats is the class of female cats:

0 + F = F

But sometimes the result doesn’t look the same as in conventional
algebra. For example, the union of all cats and female cats is the class of all
cats:



1 + F = 1

This doesn’t make much sense in conventional algebra.
Because F is the class of all female cats, and (1 − F) is the class of all

cats that aren’t female, the union of these two classes is 1:

F + (1 − F) = 1

And the intersection of the two classes is 0:

F × (1 − F) = 0

Historically, this formulation represents an important concept in logic:
It’s called the law of contradiction, and it indicates that something can’t be
both itself and the opposite of itself.

Where Boolean algebra really looks different from conventional algebra
is in a statement like this:

F × F = F

The statement makes perfect sense in Boolean algebra: The intersection
of female cats and female cats is still the class of female cats. But it sure
wouldn’t look quite right if F referred to a number. Boole considered

X2 = X

to be the single statement that differentiates his algebra from conventional
algebra. Another Boolean statement that looks funny in terms of
conventional algebra is this:

F + F = F

The union of female cats and female cats is still the class of female cats.
Boolean algebra provides a mathematical method for solving the

syllogisms of Aristotle. Let’s look at the first two-thirds of that famous
syllogism again, but now using gender-neutral language:

All persons are mortal;



Socrates is a person.

We’ll use P to represent the class of all persons, M to represent the class
of mortal things, and S to represent the class of Socrates. What does it mean
to say that “all persons are mortal”? It means that the intersection of the
class of all persons and the class of all mortal things is the class of all
persons:

P × M = P

It would be wrong to say that P × M = M, because the class of all mortal
things includes cats, dogs, and elm trees.

Saying, “Socrates is a person” means that the intersection of the class
containing Socrates (a very small class) and the class of all persons (a much
larger class) is the class containing Socrates:

S × P = S

Because we know from the first equation that P equals (P × M), we can
substitute that into the second equation:

S × (P × M) = S

By the associative law, this is the same as

(S × P) × M = S

But we already know that (S × P) equals S, so we can simplify by using
this substitution:

S × M = S

And now we’re finished. This formula tells us that the intersection of
Socrates and the class of all mortal things is S, which means that Socrates is
mortal. If we found instead that (S × M) equaled 0, we’d conclude that
Socrates wasn’t mortal. If we found that (S × M) equaled M, the conclusion
would have to be that all mortals were Socrates!



Using Boolean algebra might seem like overkill for proving this obvious
fact (particularly considering that Socrates demonstrated his mortality 2400
years ago), but Boolean algebra can also be used to determine whether
something satisfies a certain set of criteria.

Perhaps one day you walk into a pet shop and say to the salesperson, “I
want a male cat, neutered, either white or tan; or a female cat, neutered, any
color but white; or I’ll take any cat you have as long as it’s black.” And the
salesperson says to you, “So you want a cat from the class of cats
represented by the following expression:

(M × N × (W + T)) + (F × N × (1 − W)) + B

Right?” And you say, “Yes! Exactly!”
In verifying that the salesperson is correct, you might want to represent

the concepts of union and intersection using the words OR and AND. I’m
capitalizing these words because the words normally represent concepts in
English, but they can also represent operations in Boolean algebra. When
you form a union of two classes, you’re actually accepting things from the
first class OR the second class. And when you form an intersection, you’re
accepting only those things in both the first class AND the second class. In
addition, you can use the word NOT wherever you see a 1 followed by a
minus sign. In summary,

+ (a union) can also mean OR.
× (an intersection) can also mean AND.
1 − (the universe without something) means NOT.

So the expression can also be written like this:

(M AND N AND (W OR T))  OR (F AND N AND (NOT W)) ORB

This is very nearly what you said. Notice how the parentheses clarify
your intentions. You want a cat from one of three classes:



(M AND N AND (W OR T))

OR

(F AND N AND (NOT W))

OR

B

With this formula written down, the salesperson can perform something
called a Boolean test. This involves another variation of Boolean algebra,
where the letters refer to properties or characteristics or attributes of cats,
and they can be assigned the numbers 0 or 1. The numeral 1 means Yes,
True, this particular cat satisfies these criteria, while the numeral 0 means
No, False, this cat doesn’t satisfy these criteria.

First the salesperson brings out an unneutered tan male. Here’s the
expression of acceptable cats:

(M × N × (W × T)) + (F × N × (1 − W)) + B

And here’s how it looks with 0s and 1s substituted:

(1 × 0 × (0 + 1)) + (0 × 0 × (1 − 0)) + 0

Notice that the only symbols assigned 1s are M and T because the cat is
male and tan.

What we must do now is simplify this expression. If it simplifies to 1,
the cat satisfies your criteria; if it simplifies to 0, the cat doesn’t. While
we’re simplifying the expression, keep in mind that we’re not really adding
and multiplying, although generally we can pretend that we are. Most of the
same rules apply when + means OR and × means AND. (Sometimes in
modern texts the symbols ∧ and ∨ are used for AND and OR instead of ×
and +. But here’s where the + and × signs perhaps ease the job, because the
rules are similar to conventional algebra.)

When the × sign means AND, the possible results are



0 × 0 = 0

0 × 1 = 0

1 × 0 = 0

1 × 1 = 1

In other words, the result is 1 only if both the left operand AND the right
operand are 1. This operation works exactly the same way as regular
multiplication, and it can be summarized in a little table. The operation is
shown in the upper-left corner, and the possible combinations of operators
are shown in the top row and the left column:

When the + sign means OR, the possible results are

0 + 0 = 0

0 + 1 = 1

1 + 0 = 1

1 + 1 = 1

The result is 1 if either the left operand OR the right operand is 1. This
operation produces results very similar to those of regular addition, except
that in this case 1 + 1 equals 1. (If a cat is tan or if a cat is tan means that it’s
tan.) The OR operation can be summarized in another little table:

We’re ready to use these tables to calculate the result of the expression



(1 × 0 × 1) + (0 × 0 × 1) + 0 = 0 + 0 + 0 = 0

The result 0 means No, False, this kitty won’t do.
Next the salesperson brings out a neutered white female. The original

expression was

(M × N × (W + T)) + (F × N × (1 − W)) + B

Substitute the 0s and 1s again:

(0 × 1 × (1 + 0)) + (1 × 1 × (1 − 1)) + 0

And simplify it:

(0 × 1 × 1) + (1 × 1 × 0) + 0 = 0 + 0 + 0 = 0

And another poor kitten must be rejected.
Next the salesperson brings out a neutered gray female. (Gray qualifies

as an “other” color—not white or black or tan.) Here’s the expression:

(0 × 1 × (0 + 0)) + (1 × 1 × (1 − 0)) + 0

Now simplify it:

(0 × 1 × 0) + (1 × 1 × 1) + 0 = 0 + 1 + 0 = 1

The final result 1 means Yes, True, a kitten has found a home. (And it was
the cutest one too!)

Later that evening, when the kitten is curled up sleeping in your lap, you
wonder whether you could have wired some switches and a lightbulb to
help you determine whether particular kittens satisfied your criteria. (Yes,
you are a strange kid.) Little do you realize that you’re about to make a
crucial conceptual breakthrough. You’re about to perform some
experiments that will unite the algebra of George Boole with electrical
circuitry and thus make possible the design and construction of digital
computers. But don’t let that intimidate you.

To begin your experiment, you connect a lightbulb and battery as you
would normally, but you use two switches instead of one:



The world icon in the outer margin indicates that an interactive version
of the circuit is available on the website CodeHiddenLanguage.com.

Switches connected in this way—one right after the other—are said to
be wired in series. If you close the left switch, nothing happens:

Similarly, if you leave the left switch open and close the right switch,
nothing happens. The lightbulb lights up only if both the left switch and the
right switch are closed, as shown here:

http://codehiddenlanguage.com/


The key word here is and. Both the left switch and the right switch must
be closed for the current to flow through the circuit.

This circuit is performing a little exercise in logic. In effect, the
lightbulb is answering the question “Are both switches closed?” We can
summarize the workings of this circuit in the following table:

If you think of the switches and the lightbulb as Boolean operators, then
these states can be assigned numbers of 0 and 1. A 0 can mean “switch is
open” and a 1 can mean “switch is closed.” A lightbulb has two states; a 0
can mean “lightbulb is not lit” and a 1 can mean “lightbulb is lit.” Now let’s
simply rewrite the table:



Notice that if we swap the left switch and the right switch, the results are
the same. We really don’t have to identify which switch is which. So the
table can be rewritten to resemble the AND and OR tables that were shown
earlier:

And indeed, this is the same as the AND table. Check it out:

This simple circuit is actually performing an AND operation in Boolean
algebra.

Now try connecting the two switches a little differently:



These switches are said to be connected in parallel. The difference
between this and the preceding connection is that this lightbulb will light if
you close the top switch:

or close the bottom switch:



or close both switches:

The lightbulb lights if the top switch or the bottom switch is closed. The
key word here is or.

Again, the circuit is performing an exercise in logic. The lightbulb
answers the question “Is either switch closed?” The following table
summarizes how this circuit works:



Again, using 0 to mean an open switch or an unlit lightbulb and 1 to
mean a closed switch or a lit lightbulb, this table can be rewritten this way:

Again, it doesn’t matter if the two switches are swapped, so the table can
also be rewritten like this:

And you’ve already guessed that this is the same as the Boolean OR:

This means that two switches in parallel are performing the equivalent of a
Boolean OR operation.



When you originally entered the pet shop, you told the salesperson, “I
want a male cat, neutered, either white or tan; or a female cat, neutered, any
color but white; or I’ll take any cat you have as long as it’s black,” and the
salesperson developed this expression:

(M × N × (W + T)) + (F × N × (1 − W))+B

Now that you know that two switches wired in series perform a logical
AND (which is represented by a × sign) and two switches in parallel
perform a logical OR (which is represented by the + sign), you can wire up
eight switches like so:

Each switch in this circuit is labeled with a letter—the same letters as in
the Boolean expression. W means NOT W and is an alternative way to
write 1 − W. Indeed, if you go through the wiring diagram from left to right
starting at the top and moving from top to bottom, you’ll encounter the
letters in the same order in which they appear in the expression. Each × sign
in the expression corresponds to a point in the circuit where two switches
(or groups of switches) are connected in series. Each + sign in the



expression corresponds to a place in the circuit where two switches (or
groups of switches) are connected in parallel.

As you’ll recall, the salesperson first brought out an unneutered tan
male. Close the appropriate switches:

Although the M, T, and NOT W switches are closed, we don’t have a
complete circuit to light up the lightbulb. Next the salesperson brought out a
neutered white female:



Again, the right switches aren’t closed to complete a circuit. But finally,
the salesperson brought out a neutered gray female:

And that’s enough to complete the circuit, light up the lightbulb, and
indicate that the kitten satisfies all your criteria.

George Boole never wired such a circuit. He never had the thrill of
seeing a Boolean expression realized in switches, wires, and lightbulbs. One
obstacle, of course, was that the incandescent lightbulb wasn’t invented
until 15 years after Boole’s death. But the telegraph had been invented ten
years before the publication of Boole’s The Laws of Thought, and an
important part of the telegraph system was a simple device that could
perform operations of logic with much more agility than mere switches
could.



Chapter Seven

Telegraphs and Relays

Samuel Finley Breese Morse was born in 1791 in Charlestown,
Massachusetts, the town where the Battle of Bunker Hill was fought and
which is now the northeast part of Boston. In the year of Morse’s birth, the
United States Constitution had been in effect just two years and George
Washington was serving his first term as president. Catherine the Great
ruled Russia. In France, the Revolution was still in progress, and Louis XVI
and Marie Antoinette would be marched to the guillotine two years later. In
1791, Mozart completed The Magic Flute, his last opera, and died later that
year at the age of 35, but the 20-year-old Beethoven was already being
noticed.

Morse was educated at Yale and studied art in London. He became a
successful portrait artist. His painting General Lafayette (1825) hangs in
New York’s City Hall. Much more personal is his final painting: a portrait
of his daughter Susan entitled The Muse, on display at the Metropolitan
Museum of Art.

Morse was also an early photography buff. He learned how to make
daguerreotype photographs from Louis Daguerre himself and created some
of the first daguerreotypes in America. In 1840, he taught the process to the
17-year-old Mathew Brady, who with his colleagues would be responsible
for creating the most memorable photographs of the Civil War, Abraham
Lincoln, and Samuel Morse himself.
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But these are just footnotes to an eclectic career. Samuel Morse is best
remembered these days for his invention of the telegraph and the code that
bears his name.

The instantaneous worldwide communication we’ve become
accustomed to is a relatively recent development. In the early 1800s, you
could communicate instantly and you could communicate over long
distances, but you couldn’t do both at the same time. Instantaneous
communication was limited to as far as your voice could carry (no
amplification available) or as far as the eye could see, aided perhaps by a
telescope. Communication by letter over longer distances took time and
involved horses, trains, or ships.

For decades prior to Morse’s invention, many attempts were made to
speed long-distance communication. Technically simple methods employed
a relay system of men standing on hills waving flags in coded patterns
known as semaphore. More complex solutions used large structures with
movable arms but which did basically the same thing as men waving flags.

The idea of the telegraph (literally meaning “far writing”) was certainly
in the air in the early 1800s, and other inventors had taken a stab at it before
Samuel Morse began experimenting in 1832. In principle, the idea behind
an electrical telegraph was simple: You do something at one end of a wire
that causes something to happen at the other end of the wire. This is exactly



what we did in Chapter 5 when we made a long-distance flashlight.
However, Morse couldn’t use a lightbulb as his signaling device because a
practical one wouldn’t be invented until 1879. Instead, Morse relied upon
the phenomenon of electromagnetism.

The Danish physicist Hans Christian Ørsted is credited with the first
systematic exploration of the relationship between electricity and
magnetism. A paper he published in 1820 showed how an electrical current
could deflect the magnetized needle of a compass. Thereafter, the
phenomenon engaged the best minds of 19th century science, including
Michael Faraday and James Clerk Maxwell, whose 1873 Treatise on
Electricity and Magnetism remains a classic of mathematical physics. But
by that time, ingenious innovators such as Samuel Morse had long been
using electromagnetism in their clever inventions. If you take an iron bar,
wrap it with a couple of hundred turns of thin insulated wire, and then run a
current through the wire, the iron bar becomes a magnet. It then attracts
other pieces of iron and steel. Remove the current, and the iron bar loses its
magnetism:

This might look like a short circuit, but the wire wrapped around the iron
bar is usually very thin, and there’s enough of it to constitute sufficient
electrical resistance.

The electromagnet is the foundation of the telegraph. Turning the switch
on and off at one end causes the electromagnet to do something at the other
end.

Morse’s first telegraphs were actually more complex than the ones that
later evolved. Morse felt that a telegraph system should actually write
something on paper, or as computer users would later phrase it, “produce a
hard copy.” This wouldn’t necessarily be words, of course, because that



would be too complex. But something should be written on paper, whether
it be squiggles or dots and dashes. Notice that Morse was stuck in a
paradigm that required paper and reading, much like Valentin Haüy’s notion
that books for blind people should use raised letters of the alphabet.

Although Samuel Morse notified the patent office in 1836 that he had
invented a successful telegraph, it wasn’t until 1843 that he was able to
persuade Congress to fund a public demonstration of the device. The
historic day was May 24, 1844, when a telegraph line rigged between
Washington, D.C., and Baltimore, Maryland, successfully carried a biblical
message from Numbers 23:23: “What hath God wrought!”—not a question
but meaning “Look what God has done!”

The traditional telegraph “key” used for sending messages looks like
this:

Despite the fancy appearance, this is just a switch designed for
maximum speed. The most comfortable way to use the key for long periods
of time is to hold the handle between thumb, forefinger, and middle finger
and tap it up and down. A short tap produces a Morse code dot, and a
longer tap a Morse code dash.

At the other end of the wire was a receiver that was basically an
electromagnet pulling a metal lever. Originally, the electromagnet
controlled a pen. As the pen bounced up and down, it drew dots and dashes
on paper from a roll that was slowly pulled by a wound-up spring. A person
who could read Morse code would then transcribe the dots and dashes into
letters and words.

Of course, we humans are a lazy species as well as an ingenious one,
and telegraph operators soon discovered that they could transcribe the code
simply by listening to the pen bounce up and down. The pen mechanism
was eventually eliminated in favor of the traditional telegraph “sounder,”
which looked something like this:



That bar at the top was normally held in the horizontal position by a
weight or spring inside the vertical part at the left, but it could also pivot.
When the telegraph key was pressed, the electromagnet pulled the pivotable
bar down and it made a “click” noise. When the key was released, the bar
sprang back to its normal position, making a “clack” noise. A fast “click-
clack” was a dot; a slower “click…clack” was a dash.

The key, the sounder, a battery, and some wires can be connected just
like the lightbulb telegraph in the preceding chapter:

As we discovered, you don’t need two wires connecting the two
telegraph stations. One wire will suffice if the voltage is high enough and
the earth provides the other half of the circuit.

As we did in Chapter 5, we can replace the battery connected to the
ground with a capital V. So the complete one-way setup looks something
like this:



Two-way communication simply requires another key and sounder. This
is similar to what we did earlier.

The invention of the telegraph truly marks the beginning of modern
communication. For the first time, people were able to communicate farther
than the eye could see or the ear could hear and faster than a horse could
gallop. That this invention used a binary code is all the more intriguing. In
later forms of electrical and wireless communication, including the
telephone, radio, and television, binary codes were abandoned, only to later
make an appearance in computers, followed by many other binary codes in
virtually all kinds of electronic media.

Morse’s telegraph triumphed over other designs in part because it was
tolerant of bad line conditions. If you strung a wire between a key and a
sounder, it usually worked. Other telegraph systems were not quite as
forgiving. But as I discussed in Chapter 5, the longer a length of wire
becomes, the more resistance it has to the flow of electricity. This was a
major impediment to long-distance telegraphy. Although some telegraph
lines used up to 300 volts and could work over a 300-mile length, wires
couldn’t be extended indefinitely.

One obvious solution is to have a relay system. Every couple of hundred
miles or so, a person equipped with a sounder and a key could receive a
message and resend it.

Now imagine that you have been hired by the telegraph company to be
part of this relay system. They have put you in a little hut with a table and a
chair somewhere between New York and California. A wire coming
through the east window is connected to a sounder. Your telegraph key is
connected to a battery and wire going out the west window. Your job is to
receive messages originating in New York and to resend them, eventually to



reach California. An identical configuration relays messages from
California to New York.

At first, you prefer to receive an entire message before resending it. You
write down the letters that correspond to the clicks of the sounder, and when
the message is finished, you start sending it using your key. Eventually you
get the knack of sending the message as you’re hearing it without having to
write the whole thing down. This saves time.

One day while resending a message, you look at the bar on the sounder
bouncing up and down, and you look at your fingers bouncing the key up
and down. You look at the sounder again, and at the key again, realize that
the sounder is bouncing up and down the same way the key is bouncing up
and down. So you go outside and pick up a little piece of wood and you use
the wood and some string to physically connect the sounder and the key:

Now it works by itself, and you can take the rest of the afternoon off and
go fishing.

It’s an interesting fantasy, but in reality Samuel Morse had understood
the concept of this device early on. The device we’ve invented is called a
repeater, or a relay. A relay is like a sounder in that an incoming current is
used to power an electromagnet that pulls down a metal lever. The lever,
however, is used as part of a switch connecting a battery to an outgoing
wire. In this way, a weak incoming current is “amplified” to make a
stronger outgoing current.

Drawn rather schematically, the relay looks like this:



When an incoming current triggers the electromagnet, it pulls down a
pivoting or flexible metal bar that acts like a switch to turn on an outgoing
current:

The words In and Out are descriptive of the way that the telegraph line
comes through one window of your hut and leaves through the opposite
window, but they can also serve as convenient abbreviations for input and
output. These are electrical signals. The signal labeled In causes a change in
the signal labeled Out. It’s a cause and effect.

The relay is a remarkable device. It’s a switch, surely, but a switch that’s
turned on and off not by human hands but by an electrical current. You



could do amazing things with such devices. You could actually assemble
much of a computer with them.

Yes, this relay thing is much too sweet an invention to leave sitting
around the telegraphy museum. Let’s grab one and stash it inside our jacket
and walk quickly past the guards. An idea is brewing in our minds.



Chapter Eight

Relays and Gates

Reduced to its essentials, a computer is a synthesis of Boolean algebra and
electricity. The crucial components that embody this melding of math and
hardware are known as logic gates. These gates are not unlike the familiar
gates through which water or people pass. Logic gates perform simple
operations in Boolean logic by blocking or letting through the flow of
electrical current.

You’ll recall that in Chapter 6 you entered a pet shop and boldly
announced, “I want a male cat, neutered, either white or tan; or a female
cat, neutered, any color but white; or I’ll take any cat you have as long as
it’s black.” These criteria are summarized by the following Boolean
expression:

(M × N × (W + T)) + (F × N × (1 − W))+B

This expression can be interactively realized in a circuit made up of
switches, a battery, and a lightbulb:



Such a circuit is sometimes called a network, except that nowadays that
word is used much more often to refer to connected computers rather than
to an assemblage of mere switches.

The circuit contains a combination of switches, some wired in series and
some wired in parallel. Switches wired in series perform logical AND
operations, symbolized in the Boolean expression with a × sign. Switches
wired in parallel perform a logical OR operation corresponding to the +
sign. Because this circuit is equivalent to a Boolean expression, if the
Boolean expression can be simplified, the circuit can be as well.

Here’s the expression that indicates the characteristics you want in a cat:

(M × N × (W + T)) + (F × N × (1 − W))+B

Let’s try to simplify it. Using the commutative law, you can reorder the
variables that are combined with the AND (×) signs and rewrite the
expression this way:

(N × M × (W + T)) + (N × F × (1 − W))+B

In an attempt to clarify what I’m going to do here, I’ll define two new
symbols named X and Y:



X = M × (W + T)

Y = F × (1 − W)

Now the expression for the cat that you want can be written like this:

(N × X) + (N × Y) + B

After we’re finished, we can put the X and Y expressions back in.
Notice that the N variable appears twice in the expression. Using the

distributive law, the expression can be rewritten like this, with only one N:

(N × (X + Y)) + B

Now let’s put the X and Y expressions back in:

(N × ((M × (W + T)) + (F × (1 − W)))) + B

Due to the plethora of parentheses, this expression hardly looks simplified.
But it has one less variable, which means one switch can be eliminated.
Here’s the revised version:

Indeed, it’s probably easier to see that this network is equivalent to the
earlier one than to verify that the expressions are the same!



But there are still too many switches in this network. There are separate
switches for Male and Female, and only one should be required, perhaps on
(or closed) for Female and off (or open) for Male. Similarly, there are
separate switches for White and Not White.

Let’s make a control panel right now for choosing a cat. The control
panel is simply five switches (much like the on/off switches you have on
your walls for controlling your lights) and a lightbulb mounted in a panel:

The switches are on (closed) when they’re up, and off (open) when
they’re down. The first switch lets you select Female or Male; the second is
Neutered or Unneutered. There are three switches for selecting color:
Black, White, and Tan. Only one of these should be on at any time, or none
of them to select an Other-colored cat.

In computer terminology, the panel of switches constitutes an input
device. Input is information that controls how a circuit behaves, in this case
describing the characteristics of an ideal kitty. The output device is the
lightbulb. This bulb lights up if the switches describe a satisfactory cat. The
switches shown in the control panel are set for a female unneutered black
cat. This satisfies your criteria, so the lightbulb is lit.

Now all we have to do is design a circuit that makes this control panel
work.

In the previous chapter, you saw how devices called relays were crucial
to the workings of the telegraph system. Over long distances, the wires
connecting telegraph stations had a very high resistance. Some method was
needed to receive a weak signal and resend an identical strong signal. The



relay did this by using an electromagnet to control a switch, in effect,
amplifying a weak signal to create a strong signal.

At this moment, we’re not interested in using the relay to amplify a
weak signal. We’re interested only in the idea of a relay being a switch that
can be controlled by electricity rather than by fingers. Although relays were
originally designed for telegraphs, they eventually became part of the
switching circuits used in the vast network of the telephone system, and this
is how their versatility became more apparent to imaginative electrical
engineers.

Like switches, relays can be connected in series and in parallel as logic
gates to perform simple tasks in logic. When I say that these logic gates
perform simple tasks in logic, I mean as simple as possible. Relays have an
advantage over switches in that relays can be switched on and off by other
relays rather than by fingers. This means that logic gates can be combined
to perform more complex tasks, such as simple functions in arithmetic and,
eventually, the workings of entire computers.

The discovery that relays could be used for performing Boolean
operations is generally credited to computer pioneer Claude Elwood
Shannon (1916–2001), whose famous 1938 M.I.T. master’s thesis was
entitled “A Symbolic Analysis of Relay and Switching Circuits,” but a
similar equivalence had been described a couple of years earlier by
Japanese electrical engineer Akira Nakashima.

You can wire a relay with a switch, a lightbulb, and a couple of batteries
like this:



The switch at the left is open, and the lightbulb is off. When you close
the switch, the battery at the left causes current to flow through the many
turns of wire around the iron bar. The iron bar becomes magnetic and pulls
down a flexible or pivoting metal contact that connects the circuit to turn on
the lightbulb:

When the electromagnet pulls the metal contact, the relay is said to be
triggered. When the switch is turned off, the iron bar stops being magnetic,
and the metal contact returns to its normal position.



This seems like a rather indirect route to light the bulb, and indeed it is.
If we were interested only in lighting the bulb, we could dispense with the
relay entirely. But we’re not interested in lighting bulbs. We have a much
more ambitious goal.

I’ll be using relays a lot in this chapter (and then hardly at all after the
logic gates have been built), so I want to simplify the diagram. We can
eliminate some of the wires by using a ground and a capital V (for voltage)
to represent the battery, as was done in Chapters 5 and 7. In this case, the
grounds simply represent a common connection; they don’t need to be
connected to the physical earth. Now the relay looks like this:

When the switch is closed, a current flows between V and ground
through the coils of the electromagnet. This causes the electromagnet to
pull the flexible metal contact. That connects the circuit between V, the
lightbulb, and ground. The bulb lights up:



These diagrams of the relay show two voltage sources and two grounds,
but in all the diagrams in this chapter, all the V’s can be connected to one
another, and all the grounds can be connected to one another.

More abstractly, the relay can be shown without the switch and lightbulb
but labeled with inputs and outputs:

If a current is flowing through the input (for example, if a switch
connects the input to V), the electromagnet is triggered, and the output has a
voltage.



The input of a relay need not be a switch, and the output of a relay need
not be a lightbulb. The output of one relay can be connected to the input of
another relay, for example, like this:

These relays are said to be cascaded. When you turn the switch on, the
first relay is triggered, which then provides a voltage to the second relay.
The second relay is triggered, and the light goes on:



Connecting relays is the key to building logic gates.
Just as two switches can be connected in series, two relays can be

connected in series:

Now there are two switches on two relays. The output of the top relay
supplies a voltage to the second relay. As you can see, when both switches
are open, the lightbulb isn’t lit. We can try closing the top switch:



Still the lightbulb doesn’t light, because the bottom switch is still open
and that relay isn’t triggered. We can try opening the top switch and closing
the bottom switch:



The lightbulb is still not lit. The current can’t reach the lightbulb because
the first relay isn’t triggered. The only way to get the bulb to light up is to
close both switches:



Now both relays are triggered, and current can flow between V, the
lightbulb, and ground.

Like the two switches wired in series that you saw in Chapter 6, these
two relays are performing a little exercise in logic. The bulb lights up only
if both relays are triggered. These two relays wired in series are known as
an AND gate because it is performing a Boolean AND operation.

To avoid excessive drawing, electrical engineers have a special symbol
for an AND gate. That symbol looks like this:

This is the first of six basic logic gates. The AND gate has two inputs
and one output. You’ll often see the AND gate drawn with the inputs at the
left and the output at the right. That’s because people who are accustomed
to reading from left to right prefer reading electrical diagrams from left to



right. But the AND gate can just as well be drawn with the inputs at the top,
the right, or the bottom.

The previous diagram with two relays connected in series is symbolized
more succinctly like this:

Notice that this symbol for the AND gate not only takes the place of two
relays wired in series, but it also implies that the top relay is connected to a
voltage and that both relays are connected to ground. Again, the lightbulb
lights up only if both the top switch and the bottom switch are closed.
That’s why it’s called an AND gate.

If we think of the absence of a voltage as a 0, and the presence of a
voltage as a 1, the output of the AND gate is dependent on inputs like this:

As with the two switches wired in series, the AND gate can also be
described in this little table:



The inputs of the AND gate don’t necessarily have to be connected to
switches, and the output doesn’t necessarily have to be connected to a
lightbulb. The output of one AND gate can be an input to a second AND
gate, like this:

This bulb will light up only if all three switches are closed. Only if the
top two switches are closed will the output of the first AND gate output a
voltage, and only if the third switch is also closed will the second AND gate
output a voltage.

This configuration can also be expressed by this symbol:

It’s called a 3-input AND gate. The output is 1 only if all the inputs are 1.
You can also create AND gates with many more inputs.

The next logic gate requires two relays that are wired in parallel, like
this:



Notice that the outputs of the two relays are connected to each other.
This connected output then provides power for the lightbulb. Either one of
the two relays is enough to light the bulb. For example, if we close the top
switch, the bulb lights up. The bulb is getting power from the top relay:



Similarly, if we leave the top switch open but close the bottom switch,
the bulb lights up:



The bulb also lights if both switches are closed:



We’ve made a circuit in which the bulb lights up if the top switch or the
bottom switch is closed. The key word here is or, so this is called the OR
gate. Electrical engineers use a symbol for the OR gate that looks like this:

It’s somewhat similar to the symbol for the AND gate except that the
input side is rounded, much like the O in OR. (That might help you to
remember which is which.)

The output of the OR gate supplies a voltage if either of the two inputs
has a voltage. Again, if we say that the absence of a voltage is 0 and the
presence of a voltage is 1, the OR gate has four possible states:



The output of the OR gate can be summarized the same way as the AND
gate:

OR gates can also have more than two inputs. The output of such a gate
is 1 if any of the inputs are 1; the output is 0 only if all the outputs are 0.

The relays that I’ve been showing you here are called double-throw
relays. At rest, the pivoting metal bar at the top is touching one contact, and
when the electromagnet pulls it, it hits another contact. The lower contact is
called the normally open output. That’s the one we’ve been using, but we
could just as well use the upper contact, called normally closed. When we
use this upper contact, the output of the relay is reversed. The lightbulb is
on when the input switch is open:



When the input switch is closed, the bulb goes out:

A single relay wired in this way is called an inverter. It’s represented by
a special symbol that looks like this:



It’s called an inverter because it inverts 0 (no voltage) to 1 (voltage) and
vice versa:

This is a realization of the Boolean NOT operator.
Sometimes when people see the top inverter here, they ask, “How can

there be a voltage at the output if there’s no voltage at the input? Where
does that voltage come from?” Keep in mind that the inverter is actually a
relay that is connected to a voltage.

With the inverter, the AND gate, and the OR gate, we can start wiring
the control panel to automate a choice of the ideal kitty. Here it is again:

Let’s begin with the switches. The first switch is closed for female and
open for male. Thus we can generate two signals that we’ll call F and M,
like this:



When F is 1, M will be 0, and vice versa. Similarly, the second switch is
closed for a neutered cat and open for an unneutered cat:

The other three switches select the color: black, white, or tan. Here are
all three wired to a voltage:

Some simple rules govern how you can connect gates and inverters: The
output of one gate (or inverter) can be the input to one or more other gates
(or inverters). But do not connect the outputs of two or more gates (or
inverters) to one another.

The simplified version of the cat-selection expression was

(N × ((M × (W + T)) + (F × (1 − W)))) + B

For every + sign in this expression, there must be an OR gate in the
circuit. For every × sign, there must be an AND gate.



The symbols down the left side of the circuit diagram are in the same
order as they appear in the expression. These signals come from the
previous three illustrations. Notice the use of another inverter for the (1 −
W) part of the expression.

Now you might say, “That’s a heck of a lot of relays,” and yes, that’s
true. There are two relays in every AND gate and OR gate, and one relay
for each inverter. But I’m afraid you’ll be seeing a lot more relays in the
chapters ahead. Just be thankful you don’t actually have to buy them and
wire them at home. (Unless you want to.)

I mentioned earlier that there are six standard logic gates. You’ve
already seen three, and now it’s time for the others. The first two use the
normally closed output of the relay that is used for the inverter. This output
has a voltage present when the relay is untriggered. For example, in this
configuration the output from one relay supplies power to a second relay.
With both inputs off, the lightbulb is on:



If the top switch is closed, the bulb goes off:



The light goes off because power is no longer being supplied to the
second relay. Similarly, if the top switch is open but the bottom switch is
closed, the light is also off:



And if both switches are closed, the lightbulb is off:



This behavior is precisely the opposite of what happens with the OR
gate. It’s called NOT OR or, more concisely, NOR. This is the symbol for
the NOR gate:

It’s the same as the symbol for the OR except with a little circle at the
output. The circle means invert. The NOR is the same as an OR gate
followed by an inverter.



The output of the NOR gate is shown in the following table:

This table shows results opposite those of the OR gate, which are 1 if
either of the two inputs is 1 and 0 only if both inputs are 0.

Yet another way to wire two relays is shown here:



In this case, the two outputs are connected, which is similar to the OR
configuration but using the other contacts. The lightbulb is on when both
switches are open.

The lightbulb remains on when only the top switch is closed because the
bulb can get power from the bottom relay:

Similarly, the lightbulb remains on when only the bottom switch is
closed because it gets power from the top relay:



Only when both switches are closed does the lightbulb go off:



This behavior is exactly opposite that of the AND gate. This is called
NOT AND or, more concisely, NAND. Unlike NOR, the word NAND was
coined specifically to describe this type of logic. The word dates from 1958.

The NAND gate is drawn just like the AND gate but with a circle at the
output, meaning the output is the inverse of the AND gate:

The NAND gate has the following behavior:



You’ll recall that the output of the AND gate is 1 only if both inputs are
1; otherwise, the output is 0. The output of the NAND gate is opposite that.

At this point, we’ve looked at four different ways of wiring relays that
have two inputs and one output. Each configuration behaves in a slightly
different way. To avoid drawing and redrawing the relays, we’ve called
them logic gates and decided to use the same symbols to represent them that
are used by electrical engineers. The output of the particular logic gate
depends on the input, which is summarized here:



The inverter looks like this:

It inverts a signal from 0 to 1 or from 1 to 0.
Completing this array of tools is just a regular old relay:



This is called a buffer, and this is the symbol for it:

It’s the same symbol as the inverter but without the little circle. The
buffer is remarkable for not doing much. The output of the buffer is the
same as the input:

But you can use a buffer when an input signal is weak. You’ll recall that
this was the reason relays were invented for the telegraph many years ago.
In real-life logic circuits, sometimes one output must serve as many inputs.
This is known as fan out, and it can result in a lessening of the power
available to each output. Buffers can help boost that power. Or a buffer can
be used to slightly delay a signal. This works because the relay requires a
little time—some fraction of a second—to be triggered.

From here on in this book, you’ll see very few drawings of relays.
Instead, the circuits that follow will be built from buffers, inverters, the four



basic two-input logic gates, and more sophisticated circuits built from these
logic gates. All these other components are made from relays, of course, but
we don’t actually have to look at the relays anymore.

Toward the beginning of this chapter, a little control panel was shown
that let you select an ideal kitten. It had switches for black, white, and tan
cats, but it omitted a switch for other colors—any cat that is not black or
white or tan. But that’s a signal that can be created using three inverters and
a three-input AND gate:

Three inputs are inverted and become inputs to an AND gate. Only when B,
W, and T are all 0 will all the inputs to the AND gate be 1, causing the
output to be 1.

Sometimes a configuration like that is drawn without the inverters:

Notice the little circles at the input to the AND gate. Those little circles
mean that the signals are inverted at that point—a 0 (no voltage) becomes a
1 (voltage) and vice versa.

If you had to choose just one logic gate from the six that I’ve shown
you, make it either a NAND or a NOR. You can use a NAND or a NOR to
create all the other logic gates. For example, here’s how to combine the
inputs of a NAND gate to create an inverter:



You can use that inverter on the output of another NAND gate to make
an AND gate. At first, it doesn’t seem possible that you can make an OR
gate from a NAND gate, but you can. That’s because an AND gate with all
its inputs inverted does exactly the same thing as a NOR gate:

The output is 1 only if both inputs are 0.
Similarly, an OR gate with the two inputs inverted is equivalent to a

NAND gate:

The output is 0 only if both inputs are 1.
These two pairs of equivalent circuits represent an electrical

implementation of De Morgan’s laws. Augustus De Morgan was another
Victorian mathematician, nine years older than George Boole, whose book
Formal Logic was published in 1847, the very same day (the story goes) as
Boole’s The Mathematical Analysis of Logic. Indeed, Boole had been
inspired to investigate logic by a very public feud that was being waged
between De Morgan and another British mathematician involving
accusations of plagiarism. (De Morgan has been exonerated by history.)
Very early on, De Morgan recognized the importance of Boole’s insights.
He unselfishly encouraged Boole and helped him along the way and is
today sadly almost forgotten except for his famous laws.

De Morgan’s laws are most concisely expressed this way:



¯̄̄A × ¯̄̄B = ¯̄¯̄¯̄¯̄¯̄A + B
¯̄̄A + ¯̄̄B = ¯̄¯̄¯̄¯̄¯̄A × B

A and B are two Boolean operands. The bars on top indicate an
inversion. In the first expression, A and B are inverted and then combined
with the Boolean AND operator. This is the same as combining the two
operands with the Boolean OR operator and then inverting the result (which
is the NOR). It also works in English: If it’s not raining and it’s not
snowing, then it’s not raining or snowing.

In the second expression, the two operands are inverted and then
combined with the Boolean OR operator. This is the same as combining the
operands with the Boolean AND operator and then inverting (which is the
NAND). If I’m not big or I’m not strong, then I’m not big and strong. De
Morgan’s laws are an important tool for simplifying Boolean expressions
and, hence, for simplifying circuits. Historically, this was what Claude
Shannon’s paper really meant for electrical engineers. But obsessively
simplifying circuits won’t be a major concern in this book. It’s preferable to
get things working rather than to get things working as simply as possible.

The next major project is nothing less than a digital adding machine
implemented entirely with logic gates. But that project will need to be
deferred for several chapters while we go back to elementary school and
learn to count.



Chapter Nine

Our Ten Digits

The idea that language is merely a code seems readily acceptable. Many of
us at least attempted to learn a foreign language in high school, so we’re
willing to acknowledge that the animal we call a cat in English can also be a
gato, chat, Katze, кошка, or γάτα.

Numbers, however, seem less culturally malleable. Regardless of the
language we speak and the way we pronounce the numbers, just about
everybody we’re likely to come in contact with on this planet writes them
the same way:

1   2   3   4   5   6   7   8   9   10
Isn’t mathematics called “the universal language” for a reason?
Numbers are certainly the most abstract codes we deal with on a regular

basis. When we see the number

3
we don’t immediately need to relate it to anything. We might visualize 3
apples or 3 of something else, but we’d be just as comfortable learning from
context that the number refers to a child’s birthday, a television channel, a



hockey score, the number of cups of flour in a cake recipe, or the month of
March. Because our numbers are so abstract to begin with, it’s more
difficult for us to understand that this number of apples

doesn’t necessarily have to be denoted by the symbol

3
Much of this chapter and the next will be devoted to persuading

ourselves that this many apples

can also be indicated by writing

11
Once we’ve reached that point, it will be possible to begin representing

numbers in electrical circuits and eventually in computers. But the better we
understand how our familiar numbers work, the more prepared we’ll be to
make that leap.

From the time our species first began counting, we’ve used our fingers
to help. Most civilizations have consequently based their number systems
around ten. The only significant exceptions are a few number systems built
around five, or 20, or 60, which are all closely related to ten. (The ancient
Babylonian number system based on 60 persists in our reckoning of the
time in seconds and minutes.) There is nothing inherently special about our
number system apart from its relationship to the physiology of the human



hand. Had our species developed with eight or twelve fingers, our ways of
counting would be a little different. It’s no coincidence that the word digit
can refer to fingers or toes as well as to numbers or that the words five and
fist have similar roots.

In that sense, using a base-ten, or decimal (from the Latin for ten),
number system is completely arbitrary. Yet we endow numbers based on ten
with an almost magical significance and give them special names. Ten years
is a decade; ten decades is a century; ten centuries is a millennium. A
thousand thousands is a million; a thousand millions is a billion. These
numbers are all powers of ten:

101 = 10

102 = 100

103 = 1000 (thousand)

104 = 10, 000

105 = 100, 000

106 = 1, 000, 000 (million)

107 = 10, 000, 000

108 = 100, 000, 000

109 = 1, 000, 000, 000 (billion)

Most historians believe that numbers were originally invented to count
things, such as people, possessions, and transactions in commerce. For
example, if someone owned four ducks, that might be recorded with
drawings of four ducks:

Eventually the person whose job it was to draw the ducks thought, “Why
do I have to draw four ducks? Why can’t I draw one duck and indicate that
there are four of them with, I don’t know, a scratch mark or something?”



And then there came the day when someone had 27 ducks, and the
scratch marks got ridiculous:

Someone said, “There’s got to be a better way,” and a number system
was born.

Of all the early number systems, only Roman numerals are still in
common use. You find them on the faces of clocks and watches, used for
dates on monuments and statues, for some chapter and page numbering in
books, for some items in an outline, and—most annoyingly—for the
copyright notice in movies: The question “What year was this picture
made?” can often be answered only if one is quick enough to decipher
MCMLIII as the tail end of the credits goes by.

Twenty-seven ducks in Roman numerals is:

The concept here is easy enough: The X stands for ten scratch marks and
the V stands for five scratch marks.

The symbols of Roman numerals that survive today are:

I  V  X  L  C  D  M
The I is a one. This could be derived from a scratch mark or a single

raised finger. The V, which is possibly a symbol for a hand, stands for five.
Two V’s make an X, which stands for ten. The L is a fifty. The letter C



comes from the word centum, which is Latin for a hundred. D is five
hundred. Finally, M comes from the Latin word mille, or a thousand. With a
thousand left-right paces, you’ll walk about a mile.

Although we might not agree, for a long time Roman numerals were
considered to be easy to add and subtract, and that’s why they survived so
long in Europe for bookkeeping. Indeed, when adding two Roman
numerals, you simply combine all the symbols from both numbers and then
simplify the result using just a few rules: Five I’s make a V, two V’s make
an X, five X’s make an L, and so forth.

But multiplying and dividing Roman numerals is difficult. Many other
early number systems (such as that of the ancient Greeks) are similarly
inadequate for working with numbers in a sophisticated manner. The
ancient Greeks developed an extraordinary geometry that is still taught
virtually unchanged in high schools today, but they aren’t known for their
algebra.

The number system we use today is known as the Hindu-Arabic or Indo-
Arabic. It is of Indian origin but was brought to Europe by Arab
mathematicians. Of particular renown is the Persian mathematician
Muhammed ibn Musa al-Khwarizmi (from whose name we have derived
the word algorithm) who wrote a book on algebra around 820 CE that used
the Hindu system of counting. A Latin translation dates from about 1145
CE and was influential in hastening the transition throughout Europe from
Roman numerals to our present Hindu-Arabic system.

The Hindu-Arabic number system differs from previous number systems
in three ways:

The Hindu-Arabic number system is said to be positional, which
means that a particular digit represents a different quantity depending
on where it is found in the number. Where digits appear in a number is
actually more significant than the digits themselves! Both 100 and
1,000,000 have only a single 1 in them, yet we all know that a million
is much larger than a hundred.
Virtually all early number systems have something that the Hindu-
Arabic system does not have, and that’s a special symbol for the
number ten. In our number system, there’s no special symbol for ten.
On the other hand, virtually all of the early number systems are
missing something that the Hindu-Arabic system has, and which turns



out to be much more important than a symbol for ten. And that’s the
zero.

Yes, the zero. The lowly zero is without a doubt one of the most
important inventions in the history of numbers and mathematics. It supports
positional notation because it allows us to immediately see the difference
between 25 and 205 and 250. The zero also eases many mathematical
operations that are awkward in nonpositional systems, particularly
multiplication and division.

The whole structure of Hindu-Arabic numbers is revealed in the way we
pronounce them. Take 4825, for instance. We say “four thousand, eight
hundred, twenty-five.” That means

four thousands
eight hundreds
two tens and
five.

Or we can write the components like this:

4825 = 4000 + 800 + 20 + 5

Or breaking it down even further, we can write the number this way:

4825 = 4 × 1000+

8 × 100+

2 × 10+

5 × 1

Or, using powers of ten, the number can be written like this:

4825 = 4 × 103+

8 × 102+

2 × 101+

5 × 100



Remember that any number to the 0 power equals 1.
Each position in a multidigit number has a particular meaning. The

seven boxes shown here let us represent any number from 0 through
9,999,999:

Since each position corresponds to a power of ten, a special symbol for
ten isn’t required, because ten is represented by setting the 1 in a different
position and using 0 as a placeholder.

What’s also really nice is that fractional quantities shown as digits to the
right of a decimal point follow this same pattern. The number 42,705.684 is

4 × 10, 000+

2 × 1000+

7 × 100+

0 × 10+

5 × 1+

6 ÷ 10+

8 ÷ 100+

4 ÷ 1000

Notice that the last three lines use division rather than multiplication.
This number can also be written without any division, like this:



4 × 10, 000+

2 × 1000+

7 × 100+

0 × 10+

5 × 1+

6 × 0.1+

8 × 0.01+

4 × 0.001

Or, using powers of ten, the number is

4 × 104+

2 × 103+

7 × 102+

0 × 101+

5 × 100+

6 × 10−1+

8 × 10−2+

4 × 10−3

Notice that the exponents go down to zero and then become negative
numbers. Our number system is so familiar to us that we don’t often
recognize the elegance of its underlying structure.

We know that 3 plus 4 equals 7. Similarly, 30 plus 40 equals 70, 300
plus 400 equals 700, and 3000 plus 4000 equals 7000. This is the beauty of
the Hindu-Arabic system. When you add decimal numbers of any length,
you follow a procedure that breaks down the problem into steps. Each step
involves nothing more complicated than adding pairs of single-digit
numbers. That’s why a long time ago someone forced you to memorize an
addition table:



Find the two numbers you wish to add in the top row and the left
column. Follow down and across to get the sum. For example, 4 plus 6
equals 10.

Similarly, when you need to multiply two decimal numbers, you follow
a somewhat more complicated procedure but still one that breaks down the
problem so that you need do nothing more complex than adding or
multiplying single-digit decimal numbers. Your early schooling probably
also entailed memorizing a multiplication table:



What’s best about the positional system of notation is not how well it
works, but how well it works for counting systems not based on ten. Our
number system isn’t necessarily appropriate for everyone. One big problem
with our base-ten system of numbers is that it doesn’t have any relevance
for cartoon characters. Most cartoon characters have only four fingers on
each hand (or paw), so they prefer a number system that’s based on eight.

Interestingly enough, much of what we know about decimal numbering
can be applied to a number system more appropriate for our friends in
cartoons.



Chapter Ten

Alternative 10s

Ten is an exceptionally important number to us humans. Ten is the number
of fingers and toes most of us have, and we certainly prefer to have all ten
of each. Because our fingers are convenient for counting, we humans have
developed an entire number system that’s based on the number ten.

As I discussed in the previous chapter, our conventional number system
is called base ten, or decimal. Decimal numbers seem so natural to us that
it’s difficult at first to conceive of alternatives. Indeed, when we see 10, we
can’t help but think that it refers to this many ducks:



But the only reason that the numeral 10 refers to this many ducks is that
this many ducks is the same as the number of fingers we have. If human
beings had a different number of fingers, the way we counted would be
different, and 10 would mean something else. That same numeral 10 could
refer to this many ducks:

Or this many ducks:

Or even this many ducks:

When we get to the point where 10 means just two ducks, we’ll be ready
to examine how switches, wires, and lightbulbs can represent numbers, and
how relays and logic gates (and by extension, computers) can manipulate
numbers.

What if human beings had only four fingers on each hand, like cartoon
characters? We probably never would have thought to develop a number
system based on ten. Instead, we would have considered it normal and
natural and sensible and inevitable and incontrovertible and undeniably
proper to base our number system on eight. This is called an octal number
system, or base eight.

If our number system were organized around eight rather than ten, we
wouldn’t need the symbol that looks like this:



9
Show this symbol to any cartoon character and you’ll get the response,

“What’s that? What’s it for?” And if you think about it a moment, we also
wouldn’t need the symbol that looks like this:

8
In the decimal number system, there’s no special symbol for ten, so in the
octal number system there’s no special symbol for eight.

The way we count in the decimal number system is 0, 1, 2, 3, 4, 5, 6, 7,
8, 9, and then 10. The way we count in the octal number system is 0, 1, 2, 3,
4, 5, 6, 7, and then what? We’ve run out of symbols. The only thing that
makes sense is 10, and that’s correct. In octal, the next number after 7 is 10.
But this 10 doesn’t mean the number of fingers that humans have. In octal,
10 refers to the number of fingers that cartoon characters have.

We can continue counting on our four-toed feet:



When you’re working with number systems other than decimal, you can
avoid some confusion if you pronounce a numeral like 10 as one zero.
Similarly, 13 is pronounced one three, and 20 is pronounced two zero. To be
more precise and really avoid ambiguity, you can say one three base eight
or two zero octal.

Even though we’ve run out of fingers and toes, we can still continue
counting in octal. It’s basically the same as counting in decimal except that
we skip every number that has an 8 or a 9 in it:

0, 1, 2, 3, 4, 5, 6, 7, 10, 11, 12, 13, 14, 15, 16, 17, 20, 21, 22, 23,
24, 25, 26, 27, 30, 31, 32, 33, 34, 35, 36, 37, 40, 41, 42, 43, 44,
45, 46, 47, 50, 51, 52, 53, 54, 55, 56, 57, 60, 61, 62, 63, 64, 65,

66, 67, 70, 71, 72, 73, 74, 75, 76, 77, 100…

That last number is pronounced one zero zero. It’s the number of fingers
that cartoon characters have, multiplied by itself.

Nearly a lifetime of familiarity with decimal numbers has conditioned us
to expect that certain sequences of digits correspond to specific quantities in
the real world. Counting in a different number system is like entering a
whole different world. Here are some examples of octal numbers:

The number of dwarfs that Snow White meets is 7, as in decimal.
The number of fingers that cartoon characters have is 10.
The number of symphonies that Beethoven wrote is 11.



The number of fingers that humans have is 12.
The number of months in a year is 14.

If you find yourself mentally converting these octal numbers into decimal,
that’s great. It’s a good exercise. For a two-digit octal number that begins
with 1, the decimal equivalent is 8 plus the second digit. The number of
months in octal is 14, so in decimal it’s 8 plus 4, or 12. Let’s continue:

A baker’s dozen is 15.
The number of days in a fortnight is 16.
The “sweet” birthday celebration is 20.
The number of hours in a day is 30.
The number of letters in the Latin alphabet is 32.

When a two-digit octal number begins with something other than 1, then the
conversion to decimal is a little different: You need to multiply the first
digit by 8 and then add the second digit. The number of letters in the
alphabet is 32 in octal, so in decimal it’s 3 times 8 (or 24) plus 2, which
equals 26.

The number of fluid ounces in a quart is 40.
The number of cards in a deck is 4 times 15, or 64.
The number of squares on a chessboard is 10 times 10, or 100.

In decimal, the number of squares on a chessboard is 8 times 8, or 64.

The number of yards in an American football field is 144.
The number of starting women singles players at Wimbledon is 200.
The number of characters in 8-dot Braille is 400.

This list contains several nice round octal numbers such as 100 and 200
and 400. The term nice round number commonly means a number that has
some zeros at the end. Two zeros on the end of a decimal number means
that the number is a multiple of 100, which is 10 times 10. With octal
numbers, two zeros on the end means that the number is also a multiple of
100, but that’s 100 in octal, which is 64 in decimal. The number of starting



women singles players at Wimbledon is 128 in decimal, and the number of
characters in 8-dot Braille is 256.

The first three chapters of this book explored how binary codes involve
powers of two. The number of Morse codes possible with four dots and
dashes is 2 to the 4th power, or 16. The number of codes in 6-dot Braille is
2 to the 6th power, or 64. Eight-dot Braille increases the number to 2 to the
8th power, or 256. Anytime we multiply a power of two by another power
of two, the result is also a power of two.

The following table shows the first 12 powers of two with the decimal
and octal representations:

Because eight is a power of two, the Octal column shows a lot of nice
round numbers and therefore suggests a closer relationship to binary codes
than is possible with decimal numbers.

The octal system isn’t different from the decimal system in any
structural way. It just differs in details. For example, each position in an
octal number is a digit that’s multiplied by a power of eight:



Thus, an octal number such as 3725 can be broken down like so:

3725 = 3000 + 700 + 20 + 5

This number can also be expressed as the individual digits multiplied by
octal powers of eight:

3725 = 3 × 1000+

7 × 100+

2 × 10+

5 × 1

Here’s another way of showing it:

3725 = 3 × 8
3
+

7 × 8
2
+

2 × 8
1
+

5 × 8
0

If you work out this calculation in decimal, you’ll get 2005. This is how
you can convert octal numbers to decimal numbers.

You can add and multiply octal numbers the same way you add and
multiply decimal numbers. The only real difference is that you use different
tables for adding and multiplying the individual digits. Here’s the addition
table for octal numbers:



For example, 5 + 7 = 14. Longer octal numbers can be added the same
way as decimal numbers. Here’s a little exercise that looks just like a
decimal addition except the numbers are octal. Use the table above to add
each column of digits:

135

+643
¯̄¯̄¯̄¯̄¯̄

Each column of digits adds up to a number greater than octal 7, so each
column has a carry to the next column. The result is 1000.

Similarly, 2 times 2 is still 4 in octal. But 3 times 3 isn’t 9. How could it
be? Instead, 3 times 3 is 11. You can see the entire octal multiplication table
here:



This table shows that 4 × 6 equals 30, which is 24 in decimal.
Octal is as valid a number system as decimal. But let’s go further. Now

that we’ve developed a numbering system for cartoon characters, let’s
develop something that’s appropriate for lobsters. Lobsters don’t have
fingers exactly, but lobsters of the Homarus americanus species do have
pincers at the ends of their two long front legs. An appropriate number
system for lobsters is the quaternary system, or base four:

Counting in quaternary goes like this: 0, 1, 2, 3, 10, 11, 12, 13, 20, 21,
22, 23, 30, 31, 32, 33, 100, 101, 102, 103, 110, 111, 112, 113, 120, and so
forth.



I’m not going to spend much time with the quaternary system, because
we’ll be moving on shortly to something much more important. But you can
see here how each position in a quaternary number corresponds this time to
a power of four:

The quaternary number 31232 can be written like this:

31232 = 3 × 10000+

1 × 1000+

2 × 100+

3 × 10+

2 × 1

Each digit is multiplied by a power of four:

31232 = 3 × 4
4
+

1 × 4
3
+

2 × 4
2
+

3 × 4
1
+

2 × 4
0

If you do the calculations in decimal, you’ll find that 31232 in octal is
the same as 878 in decimal.

Now we’re going to make another leap, and this one is extreme. Suppose
we were dolphins and must resort to using our two flippers for counting.



This is the number system known as base two, or binary (from the Latin for
two by two). It seems likely that we’d have only two digits, and these two
digits would be 0 and 1.

You’ve already seen how 1 and 0 can be used in Boolean algebra to
represent True or False, Yes or No, Good Kitty or Not-Quite-Good-Enough
Kitty. You can also use these same two digits for counting.

Now, 0 and 1 aren’t a whole lot to work with, and it takes some practice
to get accustomed to binary numbers. The big problem is that you run out of
digits very quickly. For example, here’s how a dolphin counts using its
flippers:

Yes, in binary the next number after 1 is 10. This is startling, but it
shouldn’t really be a surprise. No matter what number system we use,
whenever we run out of single digits, the first two-digit number is always
10. In binary we count like this:

0, 1, 10, 11, 100, 101, 110, 111, 1000, 1001, 1010, 1011, 1100,
1101, 1110, 1111, 10000, 10001…

These numbers might look large, but they’re really not. It’s more
accurate to say that binary numbers get long very quickly rather than large:

The number of heads that humans have is 1.
The number of flippers on a dolphin is 10.
The number of teaspoons in a tablespoon is 11.
The number of sides to a square is 100.



The number of fingers on one human hand is 101.
The number of legs on an insect is 110.
The number of days in a week is 111.
The number of musicians in an octet is 1000.
The number of innings in a baseball game is 1001.
The number of gallons in a cowboy hat is 1010.

and so forth.
In a multidigit binary number, the positions of the digits correspond to

powers of two:

So anytime we have a binary number composed of a 1 followed by all
zeros, that number is a power of two, and the power is the same as the
number of zeros. Here’s our expanded table of the powers of two
demonstrating this rule:



Suppose we encounter the binary number 101101011010. This can be
written as:

101101011010 = 1 × 100000000000+

0 × 10000000000+

1 × 1000000000+

1 × 100000000+

0 × 10000000+

1 × 1000000+

0 × 100000+

1 × 10000+

1 × 1000+

0 × 100+

1 × 10+

0 × 1



The same number can be written in this simpler way using powers of
two:

101101011010 = 1 × 2
11

+

0 × 2
10

+

1 × 2
9
+

1 × 2
8
+

0 × 2
7
+

1 × 2
6
+

0 × 2
5
+

1 × 2
4
+

1 × 2
3
+

0 × 2
2
+

1 × 2
1
+

0 × 2
0

If you just add up the parts in decimal, you get 2048 + 512 + 256 + 64 + 16
+ 8 + 2, which is 2906, and that’s the decimal equivalent of the binary
number.

To convert binary numbers to decimal more concisely, you might prefer
to use a template I’ve prepared:

This template allows you to convert numbers up to eight binary digits in
length, but it could easily be extended. To use it, put the binary digits in the
eight boxes at the top, one digit to a box. Perform the eight multiplications
and put the products in the eight lower boxes. Add these eight boxes for the



final result. This example shows how to find the decimal equivalent of
10010110:

Converting from decimal to binary isn’t quite as straightforward, but
here’s a template that lets you convert decimal numbers from 0 through 255
to binary:

The conversion is trickier than it might appear. First, put the entire
decimal number (less than or equal to 255) in the box in the upper-left
corner:

Divide that number by 128 but only to the point where you get a
quotient and a remainder: 150 divided by 128 is 1 with a remainder of 22.
Put the quotient in the first box on the bottom and the remainder in the next
box on top:



Now divide 22 by 64, but again, only the first step: Because 22 is less
than 64, the quotient is 0 with a remainder of 22. Put the 0 in the second
box on the bottom and move the remainder to the next box on the top:

Proceed through the template in the same way. Each quotient will be
either 0 or 1, so when you’re finished, the boxes at the bottom display a
sequence of binary digits:

The binary equivalent of 150 is 10010110.
These conversions between decimal and binary numbers are certainly

awkward, so if you ever need to perform them for real, you’ll be pleased to
know that both the Windows and the macOS calculator apps have
Programmer modes that can do them for you.

The use of binary numbers was not universal in early digital computers.
Some of the very first computers were designed and built to use familiar
decimal numbers. The Analytical Engine that English mathematician
Charles Babbage (1791–1871) designed beginning in the 1830s stored
decimal numbers using the positioning of geared wheels. (Unfortunately, he
wasn’t able to actually build this machine.) Some of the early working
digital computers, such as the Harvard Mark I (first operational in 1944)
and the ENIAC (1946), were also built to work with decimal numbers.
Some IBM computers manufactured into the 1960s also had architectures
based on decimal numbers.

But more than anything else, it’s been binary encodings that have
characterized the digital revolution. The simplicity of binary numbers is
perhaps most clearly evident in the basic operations of addition and



multiplication. This is the part you’re really going to like. Imagine how
quickly you could have mastered addition if the only thing you had to
memorize was this:

Let’s use this table to add two binary numbers:

Starting at the rightmost column: 1 plus 0 equals 1. Second column from
right: 0 plus 1 equals 1. Third column: 1 plus 1 equals 0, carry the 1. Fourth
column: the carried 1 plus 0 plus 0 equals 1. Fifth column: 0 plus 1 equals
1. Sixth column: 1 plus 1 equals 0, carry the 1. Seventh column: The carried
1 plus 1 plus 0 equals 10.

The multiplication table is even simpler than the addition table because
it can be entirely derived by using two of the very basic rules of
multiplication: Multiplying anything by 0 is 0, and multiplying any number
by 1 has no effect on the number.

Here’s a multiplication of decimal thirteen (1101 in binary) by decimal
eleven (1011 in binary). I’m not going to show all the steps, but it’s the
same process as decimal multiplication:

1100101

+0110110

10011011



The result in decimal is 143.
People who work with binary numbers often write them with leading

zeros (that is, zeros to the left of the first 1)—for example, 0011 rather than
just 11. This doesn’t change the value of the number at all; it’s just for
cosmetic purposes. For example, here are the first 16 binary numbers with
their decimal equivalents:

Let’s pause to study this list of binary numbers for a moment. Consider
each of the four vertical columns of zeros and ones, and notice how the
digits alternate going down the column:

1101

×1011

1101

1101

0000

1101

10001111



The rightmost digit alternates between 0 and 1.
The next digit from the right alternates between two 0s and two 1s.
The next digit alternates between four 0s and four 1s.
The next digit alternates between eight 0s and eight 1s.

This is very methodical, wouldn’t you say? Indeed, this is so methodical
that it’s possible to create a circuit that can generate sequences of binary
numbers automatically. That’s coming up in Chapter 17.

Moreover, you can easily write the next 16 binary numbers by just
repeating the first 16 and putting a 1 in front:

Here’s another way of looking at it: When you count in binary, the
rightmost digit (also called the least significant digit) alternates between 0
and 1. Every time it changes from a 1 to a 0, the digit second to the left (that
is, the next most significant digit) also changes, either from 0 to 1 or from 1
to 0. More generally, every time a binary digit changes from a 1 to a 0, the



next most significant digit also changes, either from a 0 to a 1 or from a 1 to
a 0.

Binary numbers can get very long very quickly. For example, twelve
million in binary is 101101110001101100000000. One way to express
binary numbers more concisely is to show them in octal. This works well
because every three binary digits corresponds to one octal digit:

Take that long binary number for twelve million, for example, and
separate it into groups of three starting at the right:

101 101 110 001 101 100 000 000

Each group of three binary digits corresponds to an octal digit:

101


101


110


001


101


100


000


000


5 5 6 1 5 4 0 0

Twelve million in decimal is 55615400 in octal. In Chapter 12, you’ll
see an even more concise way of expressing binary numbers.

By reducing our number system to just the binary digits 0 and 1, we’ve
gone as far as we can go. We can’t get any simpler without resorting to
primitive scratch marks. But what’s most important is that binary numbers
allow arithmetic and electricity to be united. Switches, wires, and lightbulbs
can all represent the binary digits 0 and 1, and with the addition of logic



gates, these numbers can be manipulated. This is why binary numbers have
a whole lot to do with computers.

You’ve just seen a little table that shows the correspondence between
three-digit binary numbers and their octal equivalents. Using switches,
lightbulbs, and logic gates, you can build a circuit that performs this
conversion for you:

This circuit undoubtedly looks terribly forbidding at first glance, rather
like a nightmare assemblage of intersecting highways in a foreign city



where all the traffic signs are unreadable. But it’s actually quite methodical.
Little dots indicate when wires are connected to each other. Otherwise, the
wires are not connected and just overlap.

The circuit begins at the top with three switches to represent a three-digit
binary numbers. These switches are closed for 1 and open for 0. This
example shows how the binary number 100 is represented. At the bottom
are eight lightbulbs labeled 0 through 7. Just one of them lights up
depending on what switches are closed:.

It’s probably easier to understand the circuit from the bottom up: Each of
the eight lightbulbs at the bottom is powered by a three-input AND gate.
The output of the AND gate is 1 only if all three inputs are 1. The three
inputs to each of the AND gates correspond to the three switches,
sometimes directly and sometimes with the signal inverted by the three
inverters directly under the switches. Recall that if the input to an inverter is
0, the output is 1, and if the input is 1, the output is 0.

The three switches at the top are shown closed, open, and open, which
denotes the binary number 100. If you trace through the red lines, the most
significant digit of 1 is one of the inputs to the AND gate associated with
octal number 4. The next digit (the switch in the center) is inverted before it
becomes an input to that same AND gate. The least significant digit (the
switch at the right) is also inverted before it becomes the third input to that
AND gate. Thus, the AND gate associated with the octal digit 4 has all
three inputs set to 1, and that’s why the output is 1.

Similarly, each of the other seven AND gates has as input a different
combination of the signals from the switches or the inverted signals.

This little device is called a 3-to-8 decoder. The name implies that a
three-digit binary number is a code that represents one of eight possibilities.

Another circuit, called an 8-to-3 encoder, performs the opposite task.
For this job, let’s create a different type of switch that allows selecting one
of eight positions. In real life, you could make something like this switch
with thumb tacks or nails and a piece of metal cut from a can:



Each of the binary digits at the bottom is displayed using a lightbulb
driven by a four-input OR gate. The output of the OR gate is 1 if any of the
four inputs is 1. When the switch at top selects the octal digit 6, the first and
second OR gates have an input of 1, which sets the output of these OR gates
to 1, showing the binary digits 110. Notice that the 0 position of the switch
at the top left is not connected to anything. That’s because the octal number
0 is the binary number 000, so no lightbulb needs to be lit.

Sometime around 1947, the American mathematician John Wilder
Tukey (1915–2000) realized that the phrase binary digit was likely to
assume a much greater importance in the years ahead as computers became
more prevalent. He decided to coin a new, shorter word to replace the



unwieldy five syllables of binary digit. He considered bigit and binit but
settled instead on the short, simple, elegant, and perfectly lovely word bit.



Chapter Eleven

Bit by Bit by Bit

A story dating from at least the 1950s tells of a man traveling home after a
stint in a distant prison. He doesn’t know if he’ll be welcomed back, so he
requests a sign in the form of some cloth tied around a branch of a tree. In
one version of the story, the man is traveling by train to his family, and he
hopes to see a white ribbon on an apple tree. In another, he’s traveling by
bus to his wife, and he’s looking for a yellow handkerchief on an oak tree.
In both versions of the story, the man arrives to see the tree covered with
hundreds of these banners, leaving no doubt of his welcome.

The story was popularized in 1973 with the hit song “Tie a Yellow
Ribbon Round the Ole Oak Tree,” and since then, displaying a yellow
ribbon has also become a custom when family members or loved ones are
away at war.

The man who requested that yellow ribbon wasn’t asking for elaborate
explanations or extended discussion. He didn’t want any ifs, ands, or buts.
Despite the complex feelings and emotional histories that would have been
at play, all the man really wanted was a simple yes or no. He wanted a
yellow ribbon to mean “Yes, even though you messed up big time and
you’ve been in prison for three years, I still want you back with me under
my roof.” And he wanted the absence of a yellow ribbon to mean “Don’t
even think about stopping here.”

These are two clear-cut, mutually exclusive alternatives. Equally
effective as the yellow ribbon (but perhaps more awkward to put into song



lyrics) would be a traffic sign in the front yard: perhaps “Merge” or “Wrong
Way.”

Or a sign hung on the door: “Open” or “Closed.”
Or a flashlight in the window, turned on or off.
You can choose from lots of ways to say yes or no if that’s all you need

to say. You don’t need a sentence to say yes or no; you don’t need a word,
and you don’t even need a letter. All you need is a bit, and by that I mean all
you need is a 0 or a 1.

As you discovered in the two previous chapters, there’s nothing all that
special about the decimal number system that we normally use for counting.
It’s pretty clear that we base our number system on ten because that’s the
number of fingers we have. We could just as reasonably base our number
system on eight (if we were cartoon characters) or four (if we were lobsters)
or even two (if we were dolphins).

There’s nothing special about the decimal number system, but there is
something special about binary, because binary is the simplest number
system possible. There are only two binary digits—0 and 1. If we want
something simpler than binary, we’ll have to get rid of the 1, and then we’ll
be left with just a 0, and we can’t do much of anything with just that.

The word bit, coined to mean binary digit, is surely one of the loveliest
words invented in connection with computers. Of course, the word has the
normal meaning, “a small portion, degree, or amount,” and that normal
meaning is perfect because one binary digit is a very small quantity indeed.

Sometimes when a word is invented, it also assumes a new meaning.
That’s certainly true in this case. Beyond the binary digits used by dolphins
for counting, the bit has come to be regarded in the computer age as the
basic building block of information.

Now that’s a bold statement, and of course, bits aren’t the only things
that convey information. Letters and words and Morse code and Braille and
decimal digits convey information as well. The thing about the bit is that it
conveys very little information. A bit of information is the tiniest amount of
information possible, even if that information is as important as the yellow
ribbon. Anything less than a bit is no information at all. But because a bit
represents the smallest amount of information possible, more complex
information can be conveyed with multiple bits.



“Listen, my children, and you shall hear / Of the midnight ride of Paul
Revere,” wrote Henry Wadsworth Longfellow, and while he might not have
been historically accurate when describing how Paul Revere alerted the
American colonies that the British had invaded, he did provide a thought-
provoking example of the use of bits to communicate important
information:

He said to his friend “If the British march
By land or sea from the town to-night,
Hang a lantern aloft in the belfry arch

Of the North Church tower as a signal light—
One, if by land, and two, if by sea…”

To summarize, Paul Revere’s friend has two lanterns. If the British are
invading by land, he will put just one lantern in the church tower. If the
British are coming by sea, he will put both lanterns in the church tower.

However, Longfellow isn’t explicitly mentioning all the possibilities. He
left unspoken a third possibility, which is that the British aren’t invading
just yet. Longfellow implies that this circumstance will be conveyed by the
absence of lanterns in the church tower.

Let’s assume that the two lanterns are actually permanent fixtures in the
church tower. Normally they aren’t lit:

This means that the British aren’t yet invading. If one of the lanterns is lit,



or

the British are coming by land. If both lanterns are lit,



the British are coming by sea.
Each lantern is a bit and can be represented by a 0 or 1. The story of the

yellow ribbon demonstrates that only one bit is necessary to convey one of
two possibilities. If Paul Revere needed only to be alerted that the British
were invading and not where they were coming from, one lantern would
have sufficed. The lantern would have been lit for an invasion and unlit for
another evening of peace.

Conveying one of three possibilities requires another lantern. Once that
second lantern is present, however, the two bits allow communicating one
of four possibilities:

00 = The British aren’t invading tonight.
01 = They’re coming by land.
10 = They’re coming by land.
11 = They’re coming by sea.

What Paul Revere did by sticking to just three possibilities was actually
quite sophisticated. In the lingo of communication theory, he used
redundancy to offset the effect of noise. The word noise is used in
communication theory to refer to anything that interferes with
communication. A bad mobile connection is an obvious example of noise
that interferes with a phone communication. Communication over the
phone is usually successful even in the presence of noise because spoken
language is heavily redundant. We don’t need to hear every syllable of
every word in order to understand what’s being said.

In the case of the lanterns in the church tower, noise can refer to the
darkness of the night and the distance of Paul Revere from the tower, both
of which might prevent him from distinguishing one lantern from the other.
Here’s the crucial passage in Longfellow’s poem:

And lo! As he looks, on the belfry’s height
A glimmer, and then a gleam of light!

He springs to the saddle, the bridle he turns,
But lingers and gazes, till full on his sight

A second lamp in the belfry burns!



It certainly doesn’t sound as if Paul Revere was in a position to figure out
exactly which one of the two lanterns was first lit.

The essential concept here is that information represents a choice among
two or more possibilities. When we talk to another person, every word we
speak is a choice among all the words in the dictionary. If we numbered all
the words in the dictionary from 1 through 351,482, we could just as
accurately carry on conversations using the numbers rather than words. (Of
course, both participants would need dictionaries in which the words are
numbered identically, as well as plenty of patience.)

The flip side of this is that any information that can be reduced to a
choice among two or more possibilities can be expressed using bits.
Needless to say, there are plenty of forms of human communication that do
not represent choices among discrete possibilities and that are also vital to
our existence. This is why people don’t form romantic relationships with
computers. (Let’s hope not, anyway.) If you can’t express something in
words, pictures, or sounds, you’re not going to be able to encode the
information in bits. Nor would you want to.

For over a decade toward the end of the 20th century, the film critics
Gene Siskel and Robert Ebert demonstrated a use of bits in the TV program
they hosted, called At the Movies. After delivering their more detailed
movie reviews they would issue a final verdict with a thumbs-up or a
thumbs-down.

If those two thumbs are bits, they can represent four possibilities:

00 = They both hated it.
01 = Siskel hated it; Ebert loved it.
10 = Siskel loved it; Ebert hated it.
11 = They both loved it.

The first bit is the Siskel bit, which is 0 if Siskel hated the movie and 1 if
he liked it. Similarly, the second bit is the Ebert bit.

So back in the day of At the Movies, if your friend asked you, “What
was the verdict from Siskel and Ebert about that new movie Impolite
Encounter?” instead of answering, “Siskel gave it a thumbs-up and Ebert
gave it a thumbs-down” or even “Siskel liked it; Ebert didn’t,” you could
have simply said, “One zero,” or if you converted to quaternary, “Two.” As
long as your friend knew which was the Siskel bit and which was the Ebert



bit, and that a 1 bit meant thumbs-up and a 0 bit meant thumbs-down, your
answer would be perfectly understandable. But you and your friend have to
know the code.

We could have declared initially that a 1 bit meant a thumbs-down and a
0 bit meant a thumbs-up. That might seem counterintuitive. Naturally, we
like to think of a 1 bit as representing something affirmative and a 0 bit as
the opposite, but it’s really just an arbitrary assignment. The only
requirement is that everyone who uses the code must know what the 0 and 1
bits mean.

The meaning of a particular bit or collection of bits is always understood
contextually. The meaning of a yellow ribbon around a particular oak tree is
probably known only to the person who put it there and the person who’s
supposed to see it. Change the color, the tree, or the date, and it’s just a
meaningless scrap of cloth. Similarly, to get some useful information out of
Siskel and Ebert’s hand gestures, at the very least we need to know what
movie is under discussion.

If while watching At the Movies you maintained a list of the films and
how Siskel and Ebert voted with their thumbs, you could have added
another bit to the mix to include your own opinion. Adding this third bit
increases the number of different possibilities to eight:

000 = Siskel hated it; Ebert hated it; I hated it.
001 = Siskel hated it; Ebert hated it; I loved it.
010 = Siskel hated it; Ebert loved it; I hated it.
011 = Siskel hated it; Ebert loved it; I loved it.
100 = Siskel loved it; Ebert hated it; I hated it.
101 = Siskel loved it; Ebert hated it; I loved it.
110 = Siskel loved it; Ebert loved it; I hated it.
111 = Siskel loved it; Ebert loved it; I loved it.

One bonus of using bits to represent this information is that we know
that we’ve accounted for all the possibilities. We know there can be eight
and only eight possibilities and no more or fewer. With 3 bits, we can count
only from zero to seven. There are no more three-digit binary numbers. As
you discovered toward the end of the previous chapter, these three-digit
binary numbers can also be expressed as octal numbers 0 through 7.



Whenever we talk about bits, we often talk about a certain number of
bits. The more bits we have, the greater the number of different possibilities
we can convey.

It’s the same situation with decimal numbers, of course. For example,
how many telephone area codes are there? The area code is three decimal
digits long, and if all the combinations of three digits are used (which they
aren’t, but we’ll ignore that), there are 103, or 1000, codes, ranging from
000 through 999. How many seven-digit phone numbers are possible within
the 212 area code? That’s 107, or 10,000,000. How many phone numbers
can you have with a 212 area code and a 260 prefix? That’s 104, or 10,000.

Similarly, in binary the number of possible codes is always equal to 2 to
the power of the number of bits:

Every additional bit doubles the number of codes.
If you know how many codes you need, how can you calculate how

many bits you need? In other words, how do you go backward in the
preceding table?

The math you need is the base-two logarithm. The logarithm is the
opposite of the power. We know that 2 to the 7th power equals 128. The
base-two logarithm of 128 equals 7. To use more mathematical notation,
this statement

27 = 128



is equivalent to this statement:

log2128 = 7

So if the base-two logarithm of 128 is 7 and the base-two logarithm of
256 is 8, then what’s the base-two logarithm of numbers in between 128
and 256—for example, 200? It’s actually about 7.64, but we really don’t
have to know that. If we needed to represent 200 different things with bits,
we’d need 8 bits, just as when Paul Revere needed two lanterns to convey
one of three possibilities. Going strictly by the mathematics, the number of
bits required for Paul Revere’s three possibilities is the base-two logarithm
of 3, or about 1.6, but in a practical sense, he needed 2.

Bits are often hidden from casual observation deep within our electronic
appliances. We can’t see the bits encoded inside our computers, or
streaming through the wires of our networks, or in the electromagnetic
waves surrounding Wi-Fi hubs and cell towers. But sometimes the bits are
in clear view.

Such was the case on February 18, 2021, when the Perseverance rover
landed on Mars. The parachute seen in a photograph from the rover was
assembled from 320 orange and white strips of fabric arranged in four
concentric circles:



It didn’t take long for Twitter users to decode the pattern. The key is to
divide the strips of fabric into groups of seven containing both orange and
white. These groups of seven strips are always separated by three white
strips. The areas consisting of consecutive orange strips are ignored. In this
diagram, each group of seven strips is surrounded by a heavy black line:



Each of these groups is a binary number with a white strip representing
0 and an orange strip representing 1. Right above the inner circle is the first
group. Going clockwise, these seven strips encode the binary number
0000100, or decimal 4. The 4th letter of the alphabet is D. The next one
going clockwise is 0000001, or decimal 1. That’s an A. Next is 0010010, or
decimal 18. The 18th letter of the alphabet is R. Next is 00000101, or
decimal 5, which is an E. The first word is DARE.



Now jump to the next outer level. The bits are 0001101, or decimal 13,
the letter M. When you finish, you’ll spell out three words, a phrase that
originated with Teddy Roosevelt and that has become the unofficial motto
of the NASA Jet Propulsion Laboratory.

Around the outer circle are some encoded numbers as well, revealing the
latitude and longitude of the Jet Propulsion Laboratory: 34°11′58″N
118°10′31″W. With the simple coding system used here, there’s nothing that
distinguishes letters and numbers. The numbers 10 and 11 that are part of



the geographic coordinates could be the letters J and K. Only the context
tells us that they’re numbers.

Perhaps the most common visual display of binary digits is the
ubiquitous Universal Product Code (UPC), that little barcode symbol that
appears on virtually every packaged item that we purchase. The UPC is one
of dozens of barcodes used for various purposes. If you have the printed
version of this book, you’ll see on the back cover another type of barcode
that encodes the book’s International Standard Book Number, or ISBN.

Although the UPC inspired some paranoia when it was first introduced,
it’s really an innocent little thing, invented for the purpose of automating
retail checkout and inventory, which it does fairly successfully. Prior to the
UPC, it wasn’t possible for supermarket registers to provide an itemized
sales receipt. Now it’s commonplace.

Of interest to us here is that the UPC is a binary code, although it might
not seem like one at first. It might be interesting to decode the UPC and
examine how it works.

In its most common form, the UPC is a collection of 30 vertical black
bars of various widths, divided by gaps of various widths, along with some
digits. For example, this is the UPC that appears on the 10¾-ounce can of
Campbell’s Chicken Noodle Soup:

That same UPC appeared in the first edition of this book. It hasn’t
changed in over 20 years!

We’re tempted to try to visually interpret the UPC in terms of thin bars
and black bars, narrow gaps and wide gaps, and indeed, that’s one way to
look at it. The black bars in the UPC can have four different widths, with
the thicker bars being two, three, or four times the width of the thinnest bar.



Similarly, the wider gaps between the bars are two, three, or four times the
width of the thinnest gap.

But another way to look at the UPC is as a series of bits. Keep in mind
that the whole barcode symbol isn’t exactly what the scanner “sees” at the
checkout counter. The scanner doesn’t try to interpret the numbers printed
at the bottom, for example, because that would require a more sophisticated
computing technique, known as optical character recognition, or OCR.
Instead, the scanner sees just a thin slice of this whole block. The UPC is as
large as it is to give the checkout person something to aim the scanner at.
The slice that the scanner sees can be represented like this:

This looks almost like Morse code, doesn’t it? In fact, the original
invention of scannable barcodes was partially inspired by Morse code.

As the computer scans this information from left to right, it assigns a 1
bit to the first black bar it encounters and a 0 bit to the next white gap. The
subsequent gaps and bars are read as a series of 1, 2, 3, or 4 bits in a row,
depending on the width of the gap or the bar. The correspondence of the
scanned barcode to bits is simply:

So the entire UPC is simply a series of 95 bits. In this particular
example, the bits can be grouped as follows:



The first 3 bits are always 101. This is known as the left-hand guard
pattern, and it allows the computer-scanning device to get oriented. From
the guard pattern, the scanner can determine the width of the bars and gaps
that correspond to single bits. Otherwise, the UPC would have to be a
specific size on all packages.

The left-hand guard pattern is followed by six groups of 7 bits each.
You’ll see shortly how each of these is a code for a numeric digit 0 through
9. A 5-bit center guard pattern follows. The presence of this fixed pattern
(always 01010) is a form of built-in error checking. If the computer scanner
doesn’t find the center guard pattern where it’s supposed to be, it won’t
acknowledge that it has interpreted the UPC. This center guard pattern is
one of several precautions against a code that has been tampered with or
badly printed.

The center guard pattern is followed by another six groups of 7 bits
each, which are then followed by a right-hand guard pattern, which is
always 101. This guard pattern at the end allows the UPC code to be
scanned backward (that is, right to left) as well as forward.



So the entire UPC encodes 12 numeric digits. The left side of the UPC
encodes six digits, each requiring 7 bits. You can use the following table to
decode these bits:

Notice that each 7-bit code begins with a 0 and ends with a 1. If the
scanner encounters a 7-bit code on the left side that begins with a 1 or ends
with a 0, it knows either that it hasn’t correctly read the UPC code or that
the code has been tampered with. Notice also that each code has only two
groups of consecutive 1 bits. This implies that each digit corresponds to two
vertical bars in the UPC code.

Examine these codes more closely, and you’ll discover that they all have
an odd number of 1 bits. This is another form of error and consistency
checking, known as parity. A group of bits has even parity if it has an even
number of 1 bits and odd parity if it has an odd number of 1 bits. Thus, all
of these codes have odd parity.

To interpret the six 7-bit codes on the right side of the UPC, use the
following table:

These codes are the opposites or complements of the earlier codes:
Wherever a 0 appeared is now a 1, and vice versa. These codes always
begin with a 1 and end with a 0. In addition, they have an even number of 1
bits, which is even parity.



So now we’re equipped to decipher the UPC. Using the two preceding
tables, we can determine that the 12 decimal digits encoded in the 10¾-
ounce can of Campbell’s Chicken Noodle Soup are

0 51000 01251 7

This is very disappointing. As you can see, these are precisely the same
numbers that are conveniently printed at the bottom of the UPC. (This
makes a lot of sense: If the scanner can’t read the code for some reason, the
person at the register can manually enter the numbers. Indeed, you’ve
undoubtedly seen this happen.) We didn’t have to go through all that work
to decode the numbers, and moreover, we haven’t come close to revealing
any secret information. Yet there isn’t anything left in the UPC to decode.
Those 30 vertical lines resolve to just 12 digits.

Of the 12 decimal digits, the first (a 0 in this case) is known as the
number system character. A 0 means that this is a regular UPC code. If the
UPC appeared on variable-weight grocery items such as meat or produce,
the code would be a 2. Coupons are coded with a 5.

The next five digits make up the manufacturer code. In this case, 51000
is the code for the Campbell Soup Company. All Campbell products have
this code. The five digits that follow (01251) are the code for a particular
product of that company—in this case, the code for a 10 ¾-ounce can of
Chicken Noodle Soup. This product code has meaning only when combined
with the manufacturer’s code. Another company’s chicken noodle soup
might have a different product code, and a product code of 01251 might
mean something totally different from another manufacturer.

Contrary to popular belief, the UPC doesn’t include the price of the
item. That information has to be retrieved from the computer that the store
uses in conjunction with the checkout scanners.

The final digit (a 7 in this case) is called the modulo check character.
This character enables yet another form of error checking. You can try it
out: Assign each of the first 11 digits (0 51000 01251 in our example) a
letter:

A BCDEF GHIJK

Now calculate the following:



3 × (A + C + E + G + I + K) + (B + D + F + H + J)

and subtract that from the next highest multiple of 10. In the case of
Campbell’s Chicken Noodle Soup, we have

3 × (0 + 1 + 0 + 0 + 2 + 1) + (5 + 0 + 0 + 1 + 5) = 3 × 4 + 11 = 23

The next highest multiple of 10 is 30, so

30 − 23 = 7

and that’s the modulo check character printed and encoded in the UPC. This
is a form of redundancy. If the computer controlling the scanner doesn’t
calculate the same modulo check character as the one encoded in the UPC,
the computer won’t accept the UPC as valid.

Normally, only 4 bits would be required to specify a decimal digit from
0 through 9. The UPC uses 7 bits per digit. Overall, the UPC uses 95 bits to
encode only 11 useful decimal digits. Actually, the UPC includes blank
space (equivalent to nine 0 bits) at both the left and right sides of the guard
pattern. That means the entire UPC requires 113 bits to encode 11 decimal
digits, or over 10 bits per decimal digit!

Part of this overkill is necessary for error checking, as we’ve seen. A
product code such as this wouldn’t be very useful if it could be easily
altered by a customer wielding a felt-tip pen.

The UPC also benefits by being readable in both directions. If the first
digits that the scanning device decodes have even parity (that is, an even
number of 1 bits in each 7-bit code), the scanner knows that it’s interpreting
the UPC code from right to left. The computer system then uses this table to
decode the right-side digits:



And this table for the left-side digits:

These 7-bit codes are all different from the codes read when the UPC is
scanned from left to right. There’s no ambiguity.

One way to cram more information in a scannable code is to move to
two dimensions. Instead of a string of thick and thin bars and spaces, create
a grid of black and white squares.

The most common two-dimensional barcode is probably the Quick
Response (QR) code, first developed in Japan in 1994 and now used for a
variety of purposes.

Creating your own QR code is free and easy. Several websites exist for
that very purpose. Software is also readily available that can scan and
decode QR codes through a camera on a mobile device. Dedicated QR
scanners are available for industrial purposes, such as tracking shipments or
taking inventory in warehouses.

Here’s a QR code that encodes the URL of the website for this book,
CodeHiddenLanguage.com:

http://codehiddenlanguage.com/


If you have an app on your mobile device that can read QR codes, you
can point it at that image and go to the website.

QR codes consist of a grid of squares that are called modules in the
official QR specification. This particular QR code has 25 modules
horizontally and vertically, which is a size called Version 2. Forty different
sizes of QR codes are supported; Version 40 has 177 modules horizontally
and vertically.

If each little block is interpreted as a bit—0 for white and 1 for black—a
grid of this size potentially encodes 25 times 25, or 625 bits. But the real
storage capability is about a third of that. Much of the information is
devoted to a mathematically complex and sophisticated scheme of error
correction. This protects the QR code from tampering and can also aid in
recovering data that might be missing from a damaged code. I will not be
discussing QR code error correction.

Mostly obviously, the QR code also contains several fixed patterns that
assist the QR scanner in properly orienting the grid. In the following image,
the fixed patterns are shown in black and white, and everything else is
shown in gray:



The three large squares at the corners are known as finder patterns; the
smaller square toward the lower right is known as an alignment pattern.
These assist the QR code reader in properly orienting the code and
compensating for any distortion. The horizontal and vertical sequences of
alternating black and white cells near the top and at the left are called
timing patterns and are used for determining the number of cells in the QR
code. In addition, the QR code must be entirely surrounded by a quiet zone,
which is a white border four times as wide as a cell.

Programs that create a QR code have several options, including different
systems of error correction. Information required for a QR code reader to
perform this error correction (and other tasks) is encoded in 15 bits called
format information. These 15 bits appear twice in the QR code. Here are
those 15 bits labeled 0 through 14 on the right and bottom of the upper-left
finder pattern, and repeated below the upper-right finder pattern and to the
right of the lower-left finder pattern:



Bits are sometimes labeled with numbers like this to indicate how they
constitute a longer value. The bit labeled 0 is the least significant bit and
appears at the far right of the number. The bit labeled 14 is the most
significant bit and appears at the left. If white cells are 0 bits and black cells
are 1 bits, here is that complete 15-bit number:

111001011110011

Why is bit 0 the least significant bit? Because it occupies the position in
the full number corresponding to 2 to the zero power. (See the top of page
109 if you need a reminder of how bits compose a number.)

The actual numeric value of this 15-bit number is not important, because
it consolidates three pieces of information. The two most significant bits
indicate one of four error-correction levels. The ten least significant bits
specify a 10-bit BCH code used for error correction. (BCH stands for the
inventors of this type of code: Bose, Chaudhuri, and Hocquenghem. But I
promised I wouldn’t discuss the QR code error correction!)

In between the 2-bit error-correction level and the 10-bit BCH code are
three bits that are not used for error correction. I’ve highlighted those three
bits in bold:



111001011110011

It turns out that QR code readers work best when there are
approximately an equal number of black and white squares. With some
encoded information, this will not be the case. The program that creates the
QR code is responsible for selecting a mask pattern that evens out the
number of black and white squares. This mask pattern is applied to the QR
code to flip selected cells from white or black, or black to white, and hence
the bits that they represent from 0 to 1 and from 1 to 0.

The documentation of the QR code defines eight different mask patterns
that can be specified by the eight 3-bit sequences 000, 001, 010, 011, 100,
101, 110, and 111. The value in the QR code that we’re examining is 100,
and that corresponds to a mask pattern consisting of a series of horizontal
lines alternating every other row:

Every cell in the original QR code that corresponds to a white area in
this mask remains unchanged. Every cell that corresponds to a black area
must be flipped from white to black, or from black to white. Notice that the
mask avoids altering the fixed areas and the QR information area. Here’s
what happens when this mask is applied to the original QR code:



The mask doesn’t change the fixed and information areas. Otherwise, if
you compare this image with the original QR code, you’ll see that the top
row is reversed in color, the second row is the same, the third row is
reversed, and so on.

Now we’re ready to start digging into the actual data. Begin with the
four bits in the lower-right corner. In the following image, those cells are
numbered 0 through 3, where 3 is the most significant bit and 0 is the least
significant bit:



These four bits are known as the data type indicator, and they indicate
what kind of data is encoded in the QR code. Here are a few of the possible
values:

The value for this QR code is 0100, meaning that the data consists of 8-
bit values that encode text.

The next item is stored in the eight cells above the data type indicator.
These eight bits are numbered 0 through 7 in this illustration:



This value is 00011010, which is 26 in decimal. That’s the number of
characters encoded in the QR code.

The order of these characters is systematic but weird. The characters
begin right above the character count. Each character usually—though not
always—occupies an area that is two cells wide and four cells tall, and the
characters wind through the grid like this:



Not all characters occupy areas that are two cells wide and four cells tall.
Fortunately, the official QR specification is quite precise about how the bits
are oriented when the area is not rectangular. In this next image, the cells
for each of the 26 characters are outlined in red, and the cells are numbered
0 through 7, where 0 denotes the least significant bit and 7 the most
significant bit:



The QR specification indicates that text is encoded in the QR code using
8-bit values defined in a standard known as ISO/IEC 8859. That’s a fancy
term for a variation of the American Standard Code for Information
Interchange (ASCII), which I’ll be discussing in more detail in Chapter 13.

The first character is 01110111, which is the ASCII code for w. The next
character up is the same. The next character extends to the left, but it is also
another w. Now proceed down the next two pairs of columns. The next
character is 00101110, which is the period, then 01000011, the uppercase C
followed by 01101111, o. The next character straddles the next pair of rows.
It’s 01100100: d. The next character begins below the alignment pattern and
continues above it. The ASCII code is 01100101, which is e. Continue in
this way to spell out www.CodeHiddenLanguage.com.

That’s it. Most of what’s left in the QR code is devoted to error
correction.

Codes such as the UPC and QR certainly look forbidding at first glance,
and people might be forgiven for assuming that they encode secret (and
perhaps devious) information. But in order for these codes to be widely
used, they must be well documented and publicly available. The more that
they’re used, the more potentially valuable they become as another
extension of our vast array of communication media.

http://www.codehiddenlanguage.com/


Bits are everywhere, but toward the end of my discussion of the QR
code, I referred to “8-bit values.” There’s a special word for 8-bit values.
You may have heard of it.



Chapter Twelve

Bytes and Hexadecimal

Individual bits can make big statements: yes or no, true or false, pass or fail. But most
commonly, multiple bits are grouped together to represent numbers and, from there, all kinds of
data, including text, sound, music, pictures, and movies. A circuit that adds two bits together is
interesting, but a circuit that adds multiple bits is on its way to becoming part of an actual
computer.

For convenience in moving and manipulating bits, computer systems often group a certain
number of bits into a quantity called a word. The length or size of this word—meaning the
number of bits that compose the word—becomes crucial to the architecture of the computer
because all the computer’s data moves in groups of either one word or multiple words.

Some early computer systems used word lengths that were multiples of 6 bits, such as 12, 18,
or 24 bits. These word lengths have a very special appeal for the simple reason that the values
are easily represented with octal numbers. As you’ll recall, the octal digits are 0, 1, 2, 3, 4, 5, 6,
and 7, which correspond to 3-bit values, as shown in this table:

A 6-bit word can be represented by precisely two octal digits, and the other word sizes of 12,
18, and 24 bits are just multiples of that. A 24-bit word requires eight octal digits.

But the computer industry went in a slightly different direction. Once the importance of
binary numbers was recognized, it must have seemed almost perverse to work with word sizes,
such as 6, 12, 18, or 24, that are not powers of two and are instead multiples of three.

Enter the byte.



The word byte originated at IBM, probably around 1956. It had its origins in the word bite but
was spelled with a y so that nobody would mistake the word for bit. Initially, a byte meant simply
the number of bits in a particular data path. But by the mid-1960s, in connection with the
development of IBM’s large complex of business computers called the System/360, the word
byte came to mean a group of 8 bits.

That stuck; 8 bits to a byte is now a universal measurement of digital data.
As an 8-bit quantity, a byte can take on values from 00000000 through 11111111, which can

represent decimal numbers from 0 through 255, or one of 28, or 256, different things. It turns out
that 8 is quite a nice bite size of bits, not too small and not too large. The byte is right, in more
ways than one. As you’ll see in the chapters ahead, a byte is ideal for storing text because many
written languages around the world can be represented with fewer than 256 characters. And
where 1 byte is inadequate (for representing, for example, the ideographs of Chinese, Japanese,
and Korean), 2 bytes—which allow the representation of 216, or 65,536, things—usually works
just fine. A byte is also ideal for representing gray shades in black-and-white photographs
because the human eye can differentiate approximately 256 shades of gray. For color on video
displays, 3 bytes work well to represent the color’s red, green, and blue components.

The personal computer revolution began in the late 1970s and early 1980s with 8-bit
computers. Subsequent technical advances doubled the number of bits used within the computer:
from 16-bit to 32-bit to 64-bit—2 bytes, 4 bytes, and 8 bytes, respectively. For some special
purposes, 128-bit and 256-bit computers also exist.

Half a byte—that is, 4 bits—is sometimes referred to as a nibble (and is sometimes spelled
nybble), but this word doesn’t come up in conversation nearly as often as byte.

Because bytes show up a lot in the internals of computers, it’s convenient to be able to refer to
their values more succinctly than as a string of binary digits. You can certainly use octal for this
purpose: For the byte 10110110, for example, you can divide the bits into groups of three starting
at the right and then convert each of these groups to octal using the table shown above:

The octal number 266 is more succinct than 10110110, but there’s a basic incompatibility
between bytes and octal: Eight doesn’t divide equally by three, which means that the octal
representation of a 16-bit number

isn’t the same as the octal representations of the 2 bytes that compose the 16-bit number:

In order for the representations of multibyte values to be consistent with the representations
of the individual bytes, we need a number system in which each byte is divided into an equal
number of bits.



We could divide each byte into four values of 2 bits each. That would be the base four, or
quaternary, system described in Chapter 10. But that’s probably not as succinct as we’d like.

Or we could divide the byte into two values of 4 bits each. This would require using the
number system known as base 16.

Base 16. Now that’s something we haven’t looked at yet, and for good reason. The base 16
number system is called hexadecimal, and even the word itself is a mess. Most words that begin
with the hexa prefix (such as hexagon or hexapod or hexameter) refer to six of something.
Hexadecimal is supposed to mean sixteen, or six plus decimal. And even though I have been
instructed to make the text of this book conform to the online Microsoft Style Guide, which
clearly states, “Don’t abbreviate as hex,” everyone always does and I might sometimes also.

The name of the number system isn’t hexadecimal’s only peculiarity. In decimal, we count
like this:

0 1 2 3 4 5 6 7 8 9 10 11 12 …

In octal, we no longer need digits 8 and 9:

0 1 2 3 4 5 6 7 10 11 12 …

But hexadecimal is different because it requires more digits than does decimal. Counting in
hexadecimal goes something like this:

0 1 2 3 4 5 6 7 8 9 need some more number symbols here 10 11 12

where 10 (pronounced one-zero) is actually 16 in decimal. But what do we use for those six
missing symbols? Where do they come from? They weren’t handed down to us in tradition like
the rest of our number symbols, so the rational thing to do is make up six new symbols, for
example:

Unlike the symbols used for most of our numbers, these have the benefit of being easy to
remember and identify with the actual quantities they represent. There’s a 10-gallon cowboy hat,
an American football (11 players on a team), a dozen donuts, a black cat (associated with
unlucky 13), a full moon that occurs about a fortnight (14 days) after the new moon, and a
dagger that reminds us of the assassination of Julius Caesar on the ides (the 15th day) of March.

But no. Unfortunately (or perhaps, much to your relief), we really aren’t going to be using
footballs and donuts to write hexadecimal numbers. It could have been done that way, but it
wasn’t. Instead, the hexadecimal notation in common use ensures that everybody gets really
confused and stays that way. Those six missing hexadecimal digits are instead represented by the
first six letters of the Latin alphabet, like this:

0 1 2 3 4 5 6 7 8 9 A B C D E F 10 11 12 …



The following table shows the conversion between binary, hexadecimal, and decimal:

It’s not pleasant using letters to represent numbers (and the confusion increases when
numbers are used to represent letters), but hexadecimal is here to stay. It exists for one reason
and one reason only: to represent the values of bytes as succinctly as reasonably possible, and
that it does quite well.

Each byte is 8 bits, or two hexadecimal digits ranging from 00 to FF. The byte 10110110 is
the hexadecimal number B6, and the byte 01010111 is the hexadecimal number 57.

Now B6 is obviously hexadecimal because of the letter, but 57 could be a decimal number. To
avoid confusion, we need some way to easily differentiate decimal and hexadecimal numbers.
Such a way exists. In fact, there are about 20 different ways to denote hexadecimal numbers in
different programming languages and environments. In this book, I’ll be using a lowercase h
following the number, like B6h or 57h.

Here’s a table of a few representative 1-byte hexadecimal numbers and their decimal
equivalents:



Like binary numbers, hexadecimal numbers are often written with leading zeros to make clear
that we’re working with a specific number of digits. For longer binary numbers, every four
binary digits correspond to a hexadecimal digit. A 16-bit value is 2 bytes and four hexadecimal
digits. A 32-bit value is 4 bytes and eight hexadecimal digits.

With the widespread use of hexadecimal, it has become common to write long binary
numbers with dashes or spaces every four digits. For example, the binary number
0010010001101000101011001110 is a little less frightening when written as 0010 0100 0110
1000 1010 1100 1110 or 0010-0100-0110-1000-1010-1100-1110, and the correspondence with
hexadecimal digits becomes clearer:

0010


0100


0110


1000


1010


1100


1110


2 4 6 8 A C E

That’s the seven-digit hexadecimal number 2468ACE, which is all the even hexadecimal
digits in a row. (When cheerleaders chant “2 4 6 8 A C E! Work for that Comp Sci degree!” you
know your college is perhaps a little too nerdy.)

If you’ve done any work with HTML, the Hypertext Markup Language used in webpages on
the internet, you might already be familiar with one common use of hexadecimal. Each colored
dot (or pixel) on your computer screen is a combination of three additive primary colors: red,
green, and blue, referred to as an RGB color. The intensity or brightness of each of those three
components is given by a byte value, which means that 3 bytes are required to specify a
particular color. Often on HTML pages, the color of something is indicated with a six-digit
hexadecimal value preceded by a pound sign. For example, the red shade used in the illustrations
in this book is the color value #E74536, which means a red value of E7h, a green value of 45h,
and a blue value of 36h. This color can alternatively be specified on HTML pages with the
equivalent decimal values, like this: rgb (231, 69, 54).

Knowing that 3 bytes are required to specify the color of each pixel on the computer screen,
it’s possible to do a little arithmetic and derive some other information: If your computer screen
contains 1920 pixels horizontally and 1080 pixels vertically (the standard high-definition



television dimensions), then the total number of bytes required to store the image for that display
is 1920 times 1080 times 3 bytes, or 6,220,800 bytes.

Each primary color can range from 0 to 255, which means that the total number of
combinations can result in 256 times 256 times 256 unique colors, or 16,777,216. In
hexadecimal that number is 100h times 100h times 100h, or 1000000h.

In a hexadecimal number, the positions of each digit correspond to powers of 16:

The hexadecimal number 9A48Ch is

9A48Ch = 9 × 10000h+

A × 1000h+

4 × 100h+

8 × 10h+

C × 1h

This can be written using powers of 16:

9A48Ch = 9 × 164+

A × 163+

4 × 162+

8 × 161+

C × 160

Or using the decimal equivalents of those powers:

9A48Ch = 9 × 65, 536+

A × 4096+

4 × 256+

8 × 16+

C × 1

Notice that there’s no ambiguity in writing the single digits of the number (9, A, 4, 8, and C)
without indicating the number base. A 9 by itself is a 9 whether it’s decimal or hexadecimal. And
an A is obviously hexadecimal—equivalent to 10 in decimal.

Converting all the digits to decimal lets us actually do the calculation:



9A48Ch = 9 × 65, 536+

10 × 4096+

4 × 256+

8 × 16+

12 × 1

And the answer is 631,948. This is how hexadecimal numbers are converted to decimal.
Here’s a template for converting any four-digit hexadecimal number to decimal:

For example, here’s the conversion of 79ACh. Keep in mind that the hexadecimal digits A
and C are decimal 10 and 12, respectively:

Converting decimal numbers to hexadecimal generally requires divisions. If the number is
255 or smaller, you know that it can be represented by 1 byte, which is two hexadecimal digits.
To calculate those two digits, divide the number by 16 to get the quotient and the remainder. For
example, for the decimal number 182, divide it by 16 to get 11 (which is a B in hexadecimal)
with a remainder of 6. The hexadecimal equivalent is B6h.

If the decimal number you want to convert is smaller than 65,536, the hexadecimal equivalent
will have four digits or fewer. Here’s a template for converting such a number to hexadecimal:

You start by putting the entire decimal number in the box in the upper-left corner:

Divide that number by 4096, but only to get a quotient and remainder. The quotient goes in
the first box on the bottom, and the remainder goes in the next box on top:



Now divide that remainder by 256, but only to get a quotient of 9 and a new remainder of
172. Continue the process:

The decimal numbers 10 and 12 correspond to hexadecimal A and C, so the result is 79ACh.
Another approach to converting decimal numbers through 65,535 to hexadecimal involves

first separating the number into 2 bytes by dividing by 256. Then for each byte, divide by 16.
Here’s a template for doing it:

Start at the top. With each division, the quotient goes in the box to the left, and the remainder
goes in the box to the right. For example, here’s the conversion of 51,966:

The hexadecimal digits are 12, 10, 15, and 14, or CAFE, which looks more like a word than a
number! (And if you go there, you may prefer to order your coffee 56,495.)

As for every other number base, there’s an addition table associated with hexadecimal:



You can use the table and normal carry rules to add hexadecimal numbers:

If you prefer not to do these calculations by hand, both the Windows and macOS calculator
apps have a Programmer mode that lets you do arithmetic in binary, octal, and hexadecimal, and
convert between these number systems.

Or you can build the 8-bit binary adder in Chapter 14.

4A3378E2

+877AB982

D1AE3264



Chapter Thirteen

From ASCII to Unicode

Every time we tap on a tablet or poke on our phones or sit down at a laptop or
desktop computer, we’re dealing with text. We’re either reading text, typing text, or
cutting and pasting text from one place to another—from webpages to word
processors, from email to social networks, from quips we see online to friends that
we message.

None of this would be possible without a standardized way to represent text
characters in computer bits and bytes. Character encoding is easily the most vital
computer standard. This standard is crucial for the ability of modern communication
to transcend the differences between computer systems and applications, between
hardware and software manufacturers, and even between national boundaries.

Yet the representation of text on computers can still sometimes fail. In early 2021
as I began revising this chapter, I received an email from a web-hosting provider
with the subject line

Weâ€™ve received your payment, thanks.

You’ve undoubtedly seen such oddities yourself, and they seem bizarre, but by the
end of this chapter, you’ll know exactly how such a thing can happen.

This book began with a discussion of two systems for representing text with
binary codes. Morse code might not seem like a pure binary code at first because it
involves short dots and longer dashes with various lengths of pauses between the
dots and dashes. But recall that everything in Morse code is a multiple of the length
of a dot: A dash is three times the length of a dot, pauses between letters are the
length of a dash, and pauses between words are the length of two dashes. If a dot is a
single 1 bit, then a dash is three 1 bits in a row, while pauses are strings of 0 bits.
Here are the words “HI THERE” in Morse code with the equivalent binary digits:



Morse code is categorized as a variable bit-length code because different
characters require a different number of bits.

Braille is much simpler in this regard. Each character is represented by an array
of six dots, and each dot can be either raised or not raised. Braille is unmistakably a
6-bit code, which means that each character can be represented by a 6-bit value. One
little catch is that additional Braille characters are necessary to represent numbers
and uppercase letters. You might recall that numbers in Braille require a shift code—
a Braille character that changes the meaning of subsequent characters.

Shift codes also show up in another early binary code, invented in connection
with a printing telegraph in the 1870s. This was the work of Émile Baudot, an officer
in the French Telegraph Service, and the code is still known by his name. Baudot
code was used into the 1960s—for example, by Western Union for sending and
receiving text messages called telegrams. You might even today hear a computer
old-timer refer to transmission speeds of binary data as baud rates.

The Baudot code was often used in the teletypewriter, a device that has a
keyboard that looks something like a typewriter, except that it has only 30 keys and a
spacebar. The keys are switches that cause a binary code to be generated and sent
down the teletypewriter’s output cable, one bit after the other. Teletypewriters also
contain a printing mechanism. Codes coming through the teletypewriter’s input cable
trigger electromagnets that print characters on paper.

Baudot is a 5-bit code, so there are only 32 possible codes, in hexadecimal
ranging from 00h through 1Fh. Here’s how these 32 available codes correspond to
the letters of the alphabet:



Code 00h isn’t assigned to anything. Of the remaining 31 codes, 26 are assigned
to letters of the alphabet, and the other five are indicated by italicized words or
phrases in the table.

Code 04h is the Space code, which is used for the space separating words. Codes
02h and 08h are labeled Carriage Return and Line Feed. This terminology comes
from typewriters: When you’re typing on a typewriter and you reach the end of a
line, you push a lever or button that does two things. First, it causes the carriage with
the paper to be moved to the right (or the printing mechanism to be moved to the
left) so that the next line begins at the left side of the paper. That’s a carriage return.
Second, the typewriter rolls the carriage so that the next line is underneath the line
you just finished. That’s the line feed. In Baudot, separate codes represent these two
actions, and a Baudot teletypewriter printer responds to them when printing.

Where are the numbers and punctuation marks in the Baudot system? That’s the
purpose of code 1Bh, identified in the table as Figure Shift. After the Figure Shift
code, all subsequent codes are interpreted as numbers or punctuation marks until the
Letter Shift code (1Fh) causes them to revert to the letters. Here are the codes for the
numbers and punctuation:



That table shows how these codes were used in the United States. Outside the US,
codes 05h, 0Bh, and 16h were often used for the accented letters of some European
languages. The Bell code is supposed to ring an audible bell on the teletypewriter.
The “Who Are You?” code activates a mechanism for a teletypewriter to identify
itself.

Like Morse code, Baudot doesn’t differentiate between uppercase and lowercase.
The sentence

I SPENT $25 TODAY.

is represented by the following stream of hexadecimal data:

I      S  P  E  N  T       $  2  5       T  O  D  A  Y     .

0C 04 14 0D 10 06 01 04 1B 16 19 01 1F 04 01 03 12 18 15 1B 07 02 08

Notice the three shift codes: 1Bh right before the dollar sign, 1Fh after the number,
and 1Bh again before the final period. The line concludes with codes for the carriage
return and line feed.

Unfortunately, if you sent this stream of data to a teletypewriter printer twice in a
row, it would come out like this:



I SPENT $25 TODAY. 
8 '03,5 $25 TODAY.

What happened? The last shift code the printer received before the second line
was a Figure Shift code, so the codes at the beginning of the second line are
interpreted as numbers until the next Letter Shift code.

Problems like this are the typically nasty results of using shift codes. When the
time came to replace Baudot with something more modern and versatile, it was
considered preferable to avoid shift codes and to define separate codes for lowercase
and uppercase letters.

How many bits do you need for such a code? If you focus just on English and
begin adding up the characters, you’ll need 52 codes just for the uppercase and
lowercase letters in the Latin alphabet, and ten codes for the digits 0 through 9.
You’re up to 62 already. Throw in a few punctuation marks, and that’s more than 64,
which is the limit for 6 bits. But there’s now some leeway before exceeding 128
characters, which would then require 8 bits.

So the answer is: 7. You need 7 bits to represent all the characters that normally
occur in English text without shift codes.

What replaced Baudot was a 7-bit code called the American Standard Code for
Information Interchange, abbreviated ASCII, and referred to with the unlikely
pronunciation of ['askē]. It was formalized in 1967 and remains the single most
important standard in the entire computer industry. With one big exception (which
I’ll describe soon), whenever you encounter text on a computer, you can be sure that
ASCII is involved in some way.

As a 7-bit code, ASCII uses binary codes 0000000 through 1111111, which are
hexadecimal codes 00h through 7Fh. You’re going to see all 128 ASCII codes
shortly, but I want to divide the codes into four groups of 32 each and then skip the
first 32 codes initially because these codes are conceptually a bit more difficult than
the others. The second group of 32 codes includes punctuation and the ten numeric
digits. This table shows the hexadecimal codes from 20h to 3Fh, and the characters
that correspond to those codes:



Notice that 20h is the space character that divides words and sentences.
The next 32 codes include the uppercase letters and some additional punctuation.

Aside from the @ sign and the underscore, these punctuation symbols aren’t
normally found on typewriters, but they’ve come to be standard on computer
keyboards.



The next 32 characters include all the lowercase letters and some additional
punctuation, again not often found on typewriters but standard on computer
keyboards:



Notice that this table is missing the last character corresponding to code 7Fh.
You’ll see it shortly.

The text string

Hello, you!

can be represented in ASCII using the hexadecimal codes

H e l l o , y o u !

48 65 6C 6C 6F 2C 20 79 6F 75 21

Notice the comma (code 2Ch), the space (code 20h), and the exclamation point
(code 21h), as well as the codes for the letters. Here’s another short sentence:

I am 12 years old.

And its ASCII representation:

I a m 1 2 y e a r s o l d .

49 20 61 6D 20 31 32 20 79 65 61 72 73 20 6F 6C 64 2E



Notice that the number 12 in this sentence is represented by the hexadecimal
numbers 31h and 32h, which are the ASCII codes for the digits 1 and 2. When the
number 12 is part of a text stream, it should not be represented by the hexadecimal
codes 01h and 02h, or the hexadecimal code 0Ch. These codes all mean something
else in ASCII.

A particular uppercase letter in ASCII differs from its lowercase counterpart by
20h. This fact makes it quite easy for computer programs to convert between
uppercase and lowercase letters: Just add 20h to the code for an uppercase letter to
convert to lowercase, and subtract 20h to convert lowercase to uppercase. (But you
don’t even need to add. Only a single bit needs be changed to convert between
uppercase and lowercase. You’ll see techniques to do jobs like that later in this
book.)

The 95 ASCII codes you’ve just seen are said to refer to graphic characters
because they have a visual representation. ASCII also includes 33 control characters
that have no visual representation but instead perform certain functions. For the sake
of completeness, here are the 33 ASCII control characters, but don’t worry if they
seem mostly incomprehensible. At the time that ASCII was developed, it was
intended mostly for teletypewriters, and many of these codes are currently quite
obscure.





The idea here is that control characters can be intermixed with graphic characters
to do some rudimentary formatting of the text. This is easiest to understand if you
think of a device—such as a teletypewriter or a simple printer—that types characters
on a page in response to a stream of ASCII codes. The device’s printing head
normally responds to character codes by printing a character and moving one space
to the right. The most important control characters alter this behavior.

For example, consider the hexadecimal character string

41 09 42 09 43 09

The 09 character is a Horizontal Tabulation code, or Tab for short. If you think of
all the horizontal character positions on the printer page as being numbered starting
with 0, the Tab code usually means to print the next character at the next horizontal
position that’s a multiple of 8, like this:

A       B       C

This is a handy way to keep text lined up in columns.
Even today, some computer printers respond to a Form Feed code (OCh) by

ejecting the current page and starting a new page.
The Backspace code can be used for printing composite characters on some old

printers. For example, suppose the computer controlling the teletypewriter wanted to
display a lowercase e with a grave accent mark, like so: è. This could be achieved by
using the hexadecimal codes 65 08 60.

By far the most important control codes are Carriage Return and Line Feed,
which have the same meaning as the similar Baudot codes. On some older computer
printers, the Carriage Return code moved the printing head to the left side of the
page on the same line, and the Line Feed code moved the printing head one line
down. Both codes were generally required to go to a new line. A Carriage Return
could be used by itself to print over an existing line, and a Line Feed could be used
by itself to skip to the next line without moving to the left margin.

Text, pictures, music, and video can all be stored on the computer in the form of
files, which are collections of bytes identified by a name. These filenames often
consist of a descriptive name indicating the contents of the file, and an extension,
usually three or four letters indicating the type of the file. Files consisting of ASCII
characters often have the filename extension txt for “text.” ASCII doesn’t include
codes for italicized text, or boldface, or various fonts and font sizes. All that fancy
stuff is characteristic of what’s called formatted text or rich text. ASCII is for plain
text. On a Windows desktop computer, the Notepad program can create plain-text
files; under macOS, the TextEdit program does the same (although that is not its
default behavior). Both these programs allow you to choose a font and font size, but
that’s only for viewing the text. That information is not stored with the text itself.



Both Notepad and TextEdit respond to the Enter or Return key by ending the
current line and moving to the beginning of the next line. But these programs also
perform word wrapping: As you type and come to the rightmost edge of the window,
the program will automatically continue your typing on the next line, and the
continued text really becomes part of a paragraph rather than individual lines. You
press the Enter or Return key to mark the end of that paragraph and begin a new
paragraph.

When you press the Enter or Return key, the Windows Notepad inserts
hexadecimal code 0Dh and 0Ah into the file—the Carriage Return and Line Feed
characters. The macOS TextEdit inserts just a 0Ah, the Line Feed. What’s now
called the Classic Mac OS (which existed from 1984 to 2001) inserted just 0Dh, the
Carriage Return. This inconsistency continues to cause problems when a file created
on one system is read on another system. In recent years, programmers have worked
to reduce those problems, but it’s still quite shocking—shameful, even—that there is
still no computer industry standard for denoting the end of lines or paragraphs in a
plain-text file.

Soon after its introduction, ASCII became the dominant standard for text in the
computing world, but not within IBM. In connection with the System/360, IBM
developed its own character code, known as the Extended BCD Interchange Code, or
EBCDIC, which was an 8-bit extension of an earlier 6-bit code known as BCDIC,
which was derived from codes used on IBM punch cards. This style of punch card—
capable of storing 80 characters of text—was introduced by IBM in 1928 and used
for over 50 years.

The black rectangles are holes punched in the card. Punch cards have a practical
problem that affects how they are used to represent characters: If too many holes are



punched in the card, it can lose its structural integrity, tear apart, and jam up a
machine.

A character is encoded on a punch card by a combination of one or more
rectangular holes punched in a single column. The character itself is often printed
near the top of the card. The lower ten rows are called digit rows and identified by
number: the 0-row, the 1-row, and so on through the 9-row. These are remnants of
computer systems that worked directly with decimal numbers. The two unnumbered
rows near the top are zone rows and are called the 11-row and 12-row, which is the
one at the very top. There is no 10-row.

EBCDIC character codes are combinations of the zone punches and digit
punches. The EBCDIC codes for the ten digits are F0h through F9h. The EBCDIC
codes for the uppercase letters are in three groups, from C1h to C9h, from D1h to
D9h, and from E2h to E9h. EBCDIC codes for lowercase letters are also in three
groups, from 81h to 89h, from 91h to 99h, and from A2h to A9h.

In ASCII, all the uppercase and lowercase letters are in continuous sequences.
This makes it convenient to alphabetically sort ASCII data. EBCDIC, however, has
gaps in the sequences of the letters, making sorting more complex. Fortunately, at
this time EBCDIC is mostly a historical curiosity rather than something you’ll likely
encounter in your personal or professional life.

At the time that ASCII was being developed, memory was very expensive. Some
people felt that to conserve memory, ASCII should be a 6-bit code using a shift
character to differentiate between lowercase and uppercase letters. Once that idea
was rejected, others believed that ASCII should be an 8-bit code because it was
considered more likely that computers would have 8-bit architectures than they
would 7-bit architectures. Of course, 8-bit bytes are now the standard, and although
ASCII is technically a 7-bit code, it’s almost universally stored as 8-bit values.

The equivalence of bytes and ASCII characters is certainly convenient because
we can get a rough sense of how much computer memory a particular text document
requires simply by counting the characters. For example, Herman Melville’s Moby-
Dick; or, The Whale is about 1.25 million characters and therefore occupies 1.25
million bytes of computer storage. From this information, an approximate word
count can also be derived: The average word is considered to be five characters in
length, and counting the space that appears between words, Moby-Dick is therefore
about 200 thousand words in length.

A plain-text file of Moby-Dick can be downloaded from the Project Gutenberg
website (gutenberg.org) along with many other works of classic literature in the
public domain. Although Project Gutenberg pioneered the availability of books in
plain text, it also makes available these same books in a couple of e-book formats as
well as in HTML (Hypertext Markup Language).

As the format used for webpages throughout the internet, HTML is definitely the
most popular rich-text format. HTML adds fancy formatting to plain text by using



snippets of markup or tags. But what’s interesting is that HTML uses normal ASCII
characters for markup, so an HTML file is also a normal plain-text file. When
viewed as plain text, HTML looks like this:

This is some <b>bold</b> text, and this is some <i>italic</i> text.

The angle brackets are just ASCII codes 3Ch and 3Eh. But when interpreted as
HTML, a web browser can display that text like this:

This is some bold text, and this is some italic text.

It’s the same text but just rendered in different ways.
ASCII is certainly the most important standard in the computer industry, but even

from the beginning the deficiencies were obvious. The big problem is that the
American Standard Code for Information Interchange is just too darn American!
Indeed, ASCII is hardly suitable even for other nations whose principal language is
English. ASCII includes a dollar sign, but where is the British pound sign? Where it
fails badly is in dealing with the accented letters used in many Western European
languages, to say nothing of the non-Latin alphabets used in Europe, including
Greek, Arabic, Hebrew, and Cyrillic, or the Brahmi scripts of India and Southeast
Asia, including Devanagari, Bengali, Thai, and Tibetan. And how can a 7-bit code
possibly handle the tens of thousands of ideographs of Chinese, Japanese, and
Korean and the ten thousand–odd Hangul syllables of Korean?

Including all the world’s languages in ASCII would have been much too
ambitious a goal in the 1960s, but the needs of some other nations were kept in
mind, although only with rudimentary solutions. According to the published ASCII
standard, ten ASCII codes (40h, 5Bh, 5Ch, 5Dh, 5Eh, 60h, 7Bh, 7Ch, 7Dh, and 7Eh)
are available to be redefined for national uses. In addition, the number sign (#) can
be replaced by the British pound sign (£), and the dollar sign ($) can be replaced by a
generalized currency sign ($). Obviously, replacing symbols makes sense only when
everyone involved in using a particular text document containing these redefined
codes knows about the change.

Because many computer systems store characters as 8-bit values, it’s possible to
devise something called an extended ASCII character set that contains 256
characters rather than just 128. In such a character set, the first 128 codes, with
hexadecimal values 00h through 7Fh, are defined just as they are in ASCII, but the
next 128 codes (80h through FFh) can be whatever you want. This technique was
used to define additional character codes to accommodate accented letters and non-
Latin alphabets. Unfortunately, ASCII was extended many times in many different
ways.

When Microsoft Windows was first released, it supported an extension of ASCII
that Microsoft called the ANSI character set, although it had not actually been



approved by the American National Standards Institute. The additional characters for
codes A0h through FFh are mostly useful symbols and accented letters commonly
found in European languages. In this table, the high-order nibble of the hexadecimal
character code is shown in the top row; the low-order nibble is shown in the left
column:

The character for code A0h is defined as a no-break space. Usually when a
computer program formats text into lines and paragraphs, it breaks each line at a
space character, which is ASCII code 20h. Code A0h is supposed to be displayed as
a space but can’t be used for breaking a line. A no-break space might be used in a
date such as February 2 so that February doesn’t appear on one line and 2 on the next
line.

Code ADh is defined as a soft hyphen. This is a hyphen used to separate syllables
in the middle of words. It appears on the printed page only when it’s necessary to
break a word between two lines.

The ANSI character set became popular because it was part of Windows, but it
was just one of many different extensions of ASCII defined over the decades. To



keep them straight, they accumulated numbers and other identifiers. The Windows
ANSI character set became an International Standards Organization standard known
as ISO-8859-1, or Latin Alphabet No. 1. When this character set was itself extended
to include characters for codes 80h through 9Fh, it became known as Windows-
1252:

The number 1252 is called a code page identifier, a term that originated at IBM to
differentiate different versions of EBCDIC. Various code pages were associated with
countries requiring their own accented characters and even entire alphabets, such as
Greek, Cyrillic, and Arabic. To properly render character data, it was necessary to
know what code page was involved. This became most crucial on the internet, where
information at the top of an HTML file (known as the header) indicates the code
page used to create the webpage.

ASCII was also extended in more radical ways to encode the ideographs of
Chinese, Japanese, and Korean. In one popular encoding—called Shift-JIS (Japanese
Industrial Standard)—codes 81h through 9Fh actually represent the initial byte of a
2-byte character code. In this way, Shift-JIS allows for the encoding of about 6000



additional characters. Unfortunately, Shift-JIS isn’t the only system that uses this
technique. Three other standard double-byte character sets (DBCS) became popular
in Asia.

The existence of multiple incompatible double-byte character sets is only one of
their problems. Another problem is that some characters—specifically, the normal
ASCII characters—are represented by 1-byte codes, while the thousands of
ideographs are represented by 2-byte codes. This makes it difficult to work with such
character sets.

If you think this sounds like a mess, you’re not alone, so can somebody please
come up with a solution?

Under the assumption that it’s preferable to have just one unambiguous character
encoding system that’s suitable for all the world’s languages, several major computer
companies got together in 1988 and began developing an alternative to ASCII
known as Unicode. Whereas ASCII is a 7-bit code, Unicode is a 16-bit code. (Or at
least that was the original idea.) In its original conception, each and every character
in Unicode would require 2 bytes, with character codes ranging from 0000h through
FFFFh to represent 65,536 different characters. That was considered sufficient for all
the world’s languages that are likely to be used in computer communication, with
room for expansion.

Unicode didn’t start from scratch. The first 128 characters of Unicode—codes
0000h through 007Fh—are the same as the ASCII characters. Also, Unicode codes
00A0h through 00FFh are the same as the Latin Alphabet No. 1 extension of ASCII
that I described earlier. Other worldwide standards are also incorporated into
Unicode.

Although a Unicode code is just a hexadecimal value, the standard way of
indicating it is by prefacing the value with a capital U and a plus sign. Here are a few
representative Unicode characters:



Many more can be found on the website run by the Unicode Consortium,
unicode.org, which offers a fascinating tour of the richness of the world’s written
languages and symbology. Scroll down to the bottom of the home page and click
Code Charts for a portal into images of more characters than you ever believed
possible.

But moving from an 8-bit character code to a 16-bit code raises problems of its
own: Different computers read 16-bit values in different ways. For example,
consider these two bytes:

20h ACh

Some computers would read that sequence as the 16-bit value 20ACh, the Unicode
code for the Euro sign. These computers are referred to as big-endian machines,
meaning that the most significant byte (the big end) is first. Other computers are
little-endian machines. (The terminology comes from Gulliver’s Travels, wherein
Jonathan Swift describes a conflict about which side of a soft-boiled egg to break.)
Little-endian machines read that value as AC20h, which in Unicode is the character

 in the Korean Hangul alphabet.
To get around this problem, Unicode defines a special character called the byte

order mark, or BOM, which is U+FEFF. This is supposed to be placed at the
beginning of a file of 16-bit Unicode values. If the first two bytes in the file are FEh
and FFh, the file is in big-endian order. If they’re FFh and FEh, the file is in little-
endian order.

By the mid-1990s, just as Unicode was starting to catch on, it became necessary
to go beyond 16 bits to include scripts that have become extinct but are still
necessary to represent for historic reasons and to include numerous new symbols.
Some of these new symbols were those popular and delightful characters known as
emojis.

At the time of this writing (the year 2021), Unicode has been expanded to
become a 21-bit code with values ranging through U+10FFFF, potentially supporting
over 1 million different characters. Here are a just a few of the characters that
couldn’t be accommodated with a 16-bit code:



Including emojis in Unicode might seem frivolous, but only if you believe that
it’s acceptable for an emoji entered in a text message to show up as something
completely different on the recipient’s phone. Misunderstandings could result, and
relationships could suffer!

Of course, people’s needs regarding Unicode are different. Particularly when
rendering ideographs of Asian languages, it’s necessary to make extensive use of
Unicode. Other documents and webpages have more modest needs. Many can do
just fine with plain old ASCII. For that reason, several different methods have been
defined for storing and transmitting Unicode text. These are called Unicode
transformation formats, or UTFs.

The most straightforward of the Unicode transformation formats is UTF-32. All
Unicode characters are defined as 32-bit values. The 4 bytes required for each
character can be specified in either little-endian order or big-endian order.

The drawback of UTF-32 is that it uses lots of space. A plain-text file containing
the text of Moby-Dick would increase in size from 1.25 million bytes in ASCII to 5
million bytes in Unicode. And considering that Unicode uses only 21 of the 32 bits,
11 bits are wasted for each character.

One compromise is UTF-16. With this format, most Unicode characters are
defined with 2 bytes, but characters with codes above U+FFFF are defined with 4
bytes. An area in the original Unicode specification from U+D800 through U+DFFF
was left unassigned for this purpose.

The most important Unicode transformation format is UTF-8, which is now used
extensively throughout the internet. A recent statistic indicates that 97% of all
webpages now use UTF-8. That’s about as much of a universal standard as you can
want. Project Gutenberg’s plain-text files are all UTF-8. Windows Notepad and
macOS TextEdit save files in UTF-8 by default.

UTF-8 is a compromise between flexibility and concision. The biggest advantage
of UTF-8 is that it’s backward compatible with ASCII. This means that a file
consisting solely of 7-bit ASCII codes stored as bytes is automatically a UTF-8 file.

To make this compatibility possible, all other Unicode characters are stored with
2, 3, or 4 bytes, depending upon their value. The following table summarizes how
UTF-8 works:



For the ranges of codes shown in the first column, each character is uniquely
identified with a number of bits shown in the second column. These bits are then
prefaced with 1s and 0s, as shown in the third column, to form a sequence of bytes.
The numbers of x’s in the third column is the same as the count in the second
column.

The first row of the table indicates that if the character is from the original
collection of 7-bit ASCII codes, the UTF-8 encoding of that character is a 0 bit
followed by those 7 bits, which is the same as the ASCII code itself.

Characters with Unicode values of U+0080 and greater require 2 or more bytes.
For example, the British pound sign (£) is Unicode U+00A3. Because this value is
between U+0080 and U+07FF, the second row of the table indicates that it’s encoded
in UTF-8 with 2 bytes. For values in this range, only the least significant 11 bits need
to be used to derive the 2-byte encoding, as shown here:

The Unicode value of 00A3 is shown at the top of this diagram. Each of the four
hex digits corresponds to the 4-bit value shown directly under the digit. We know
that the value is 07FFh or less, which means that the most significant 5 bits will be 0
and they can be ignored. The next 5 bits are prefaced with 110 (as shown at the
bottom of the illustration) to form the byte C2h. The least significant 6 bits are
prefaced with 10 to form the byte A3h.

Thus, in UTF-8 the two bytes C2h and A3h represent the British £ sign. It seems
a shame to require 2 bytes to encode what is essentially just 1 byte of information,
but it’s necessary for the rest of UTF-8 to work.

Here’s another example. The Hebrew letter א (alef) is U+05D0 in Unicode.
Again, that value is between U+0080 and U+07FF, so the second row of the table is
used. It’s the same process as the £ character:



The first 5 bits of the value 05D0h can be ignored; the next 5 bits are prefaced
with 110, and the least significant 6 bits are prefaced with 10 to form the UTF-8
bytes D7h and 90h.

Regardless of how unlikely the image might be, the Cat Face with Tears of Joy
emoji is represented by Unicode U+1F639, which means that UTF-8 represents it as
a sequence of 4 bytes. This diagram shows how those 4 bytes are assembled from the
21 bits of the original code:

By representing characters using a varying number of bytes, UTF-8 spoils some
of the purity and beauty of Unicode. In the past, schemes like this used in connection
with ASCII caused problems and confusion. UTF-8 isn’t entirely immune from
problems, but it has been defined very intelligently. When a UTF-8 file is decoded,
every byte can be identified quite precisely:

If the byte begins with a zero, that’s simply a 7-bit ASCII character code.
If the byte begins with 10, it’s part of a sequence of bytes representing a
multibyte character code, but it’s not the first byte in that sequence.
Otherwise, the byte begins with at least two 1 bits, and it’s the first byte of a
multibyte character code. The total number of bytes for this character code is
indicated by the number of 1 bits that this first byte begins with before the first
0 bit. This can be two, three, or four.

Let’s try one more UTF-8 conversion: The Right Single Quotation Mark
character is U+2019. This requires consulting the third row of the table because the
value is between U+0800 and U+FFFF. The UTF-8 representation is 3 bytes:



All the bits of the original Unicode number are necessary to form the 3 bytes. The
first 4 bits are prefaced with 1110, the next 6 bits with 10, and the least significant 6
bits also with 10. The result is the 3-byte sequence of E2h, 80h, and 99h.

Now it’s possible to see the problem with the email that I mentioned at the
beginning of this chapter with the subject line

Weâ¯™ve received your payment, thanks.

The first word is obviously “We’ve” but the contraction uses not the old-
fashioned ASCII apostrophe (ASCII 27h or Unicode U+0027) but the fancier
Unicode Right Single Quotation Mark, which as we’ve just seen is encoded in UTF-
8 with the three bytes E2h, 80h, and 99h.

So far, no problem. But the HTML file in this email indicated that it was using
the character set “windows-1252.” It should have said “utf-8” because that’s how the
text was encoded. But because this HTML file indicated “windows-1252,” my email
program used the Windows-1252 character set to interpret these three bytes. Check
back in the table of the Windows-1252 codes on page 162 to confirm for yourself
that the three bytes E2h, 80h, and 99h do indeed map to the characters â, ¯, and ™,
precisely the characters in the email.

Mystery solved.
By extending computing to become a universal and multicultural experience,

Unicode has been an enormously important standard. But like anything else, it
doesn’t work unless it’s used correctly.



Chapter Fourteen

Adding with Logic Gates

Addition is the most basic of arithmetic operations, so if we want to build a
computer (and that is my not-so-hidden agenda in this book), we must first
know how to build something that adds two numbers together. When you
come right down to it, addition is just about the only thing that computers
do. If we can build something that adds, we’re well on our way to building
something that uses addition to also subtract, multiply, divide, calculate
mortgage payments, guide rockets to Mars, play chess, and use social media
to share our latest dance moves, kitchen feats, or pet antics.

The adding machine that we’ll build in this chapter will be big, clunky,
slow, and noisy, at least compared to the calculators and computers of
modern life. What’s most interesting is that we’re going to build this adding
machine entirely out of simple electrical devices that we’ve learned about in
previous chapters—switches, lightbulbs, wires, a battery, and relays that
have been prewired into various logic gates. These components were all
available prior to the 20th century. And what’s really nice is that we don’t
have to actually build anything in our living rooms; instead, we can build
this adding machine on paper and in our minds.

This adding machine will work entirely with binary numbers and will
lack some modern amenities. You won’t be able to use a keyboard to type in
the numbers you want to add; instead you’ll use a row of switches. Rather
than a numeric display to show the results, this adding machine will have a
row of lightbulbs.



But this machine will definitely add two numbers together, and it will do
so in a way that’s very much like the way that computers add numbers.

Adding binary numbers is a lot like adding decimal numbers. When you
want to add two decimal numbers such as 245 and 673, you break the
problem into simpler steps. Each step requires only that you add a pair of
decimal digits. In this example, you begin with 5 plus 3. The problem goes
a lot faster if you memorized an addition table sometime during your life.

The big advantage of binary numbers over decimal is the simplicity of
the addition table:

If you actually grew up with a community of dolphins and memorized
this table in dolphin school, you might have squeaked and whistled aloud:

0 plus 0 equals 0.
0 plus 1 equals 1.
1 plus 0 equals 1.

1 plus 1 equals 0, carry the 1.

You can rewrite the addition table with leading zeros so that each result
is a 2-bit value:

Viewed like this, adding a pair of binary numbers results in two bits,
which are called the sum bit and the carry bit (as in “1 plus 1 equals 0,
carry the 1”). Now we can divide the binary addition table into two tables,
the first one for the sum bit:



And the second one for the carry bit:

It’s convenient to look at binary addition in this way because our adding
machine will do sums and carries separately. Building a binary adding
machine requires that we design a circuit that performs these operations.
Working solely in binary simplifies the problem immensely because all the
parts of a circuit—switches, lightbulbs, and wires—can be binary digits.

As in decimal addition, we add two binary numbers column by column,
beginning with the least significant bit in the rightmost column:

Notice that when we add the third column from the right, a 1 is carried
over to the next column. This happens again in the sixth, seventh, and
eighth columns from the right.

What size binary numbers do we want to add? Since we’re building our
adding machine only in our minds, we could build one to add very long
numbers. But let’s be reasonable and decide to add binary numbers up to 8
bits long, or 1 byte. That is, we want to add binary numbers that can range
from 00000000 to 11111111. Those values range from hexadecimal 00h to
FFh, or decimal 0 to 255. The sum of two 8-bit numbers can be as high as
510 in decimal, or 1FEh in hexadecimal, or 111111110 in binary.

The control panel for our binary adding machine can look like this:

01100101

+10110110

100011011



This panel has two rows of eight switches. This collection of switches is
the input device, and we’ll use it to “key in” the two 8-bit numbers. In this
input device, a switch is off (down) for 0 and on (up) for 1, just like the wall
switches in your home. As usual, the least significant bit is on the right, and
the most significant bit is on the left. The output device at the bottom is a
row of nine lightbulbs. These bulbs will indicate the answer. An unlit bulb
is a 0, and a lit bulb is a 1. Nine bulbs are needed because the sum of the
two 8-bit numbers can be a 9-bit number. That bulb on the far left will light
up only if the sum is greater than decimal 255.

The rest of the adding machine will consist of logic gates wired together
in various ways. The switches will trigger the relays in the logic gates,
which will then turn on the correct lights. For example, if we want to add
01100101 and 10110110 (the two numbers shown in the preceding
example), we throw the appropriate switches as shown here:

The bulbs light up to indicate the answer of 100011011. (Well, let’s hope
so, anyway. We haven’t built it yet!)



I mentioned in a previous chapter that I’ll be using lots of relays in this
book. The 8-bit adding machine we’re building in this chapter requires no
fewer than 144 relays—18 for each of the eight pairs of bits we’re adding
together. If I showed you the completed circuit in its entirety, you’d
definitely freak. There’s no way that anyone could make sense of 144 relays
wired together in strange ways. Instead, I’ll approach this problem in
simpler incremental steps.

Maybe you saw right away a connection between logic gates and binary
addition when you looked at the table of the carry bit that results from
adding two 1-bit numbers together:

You might have realized that this was identical to the logical operation
known as AND, and the output of an AND gate shown in Chapter 8:

Or like this if the two inputs are labeled:



Rather than draw a bunch of relays, electrical engineers symbolize an
AND gate like this:

The inputs at the left are labeled A and B for the two bits being added.
The AND gate output at the right is the carry bit for the addition of these
two binary digits.

Aha! We’re definitely making progress. A somewhat more difficult task
is persuading some relays to behave like this:

This is the other half of the problem in adding a pair of binary digits.
The sum bit turns out to be not quite as straightforward as the carry bit, but
we’ll get there.

The first thing to realize is that the OR logical operation is close to what
we want except for the case in the lower-right corner:

You might recall from Chapter 8 that the OR gate is symbolized like
this:



Also similar to what we want is the NAND (or Not AND) logical
operation, which has an output the opposite of the AND gate. This is the
same as the sum of two one-bit numbers except for the case in the upper-left
corner:

Here’s how the NAND gate is represented:

It’s the same as an AND gate except with a little circle on the right
symbolizing that the output is the opposite of the AND.

Let’s connect both an OR gate and a NAND gate to the same inputs. As
usual, the small dots show where wires are connected; otherwise, they just
overlap:

The following table summarizes the outputs of these OR and NAND
gates and compares that to what we want for the adding machine:



Notice that what we want is 1 only if the output from the OR gate and
the NAND gate are both 1. This suggests that these two outputs can be an
input to an AND gate:

Notice that there are still only two inputs and one output in this entire
circuit. The two inputs go into both the OR gate and the NAND gate. The
outputs from the OR and NAND gates go into the AND gate, and that gives
us exactly what we want:



There’s actually a name for what this circuit does. It’s called the
Exclusive OR gate or, more briefly, the XOR gate. Some people pronounce
it “eks or” and others spell it out: X O R. It’s called the Exclusive OR gate
because the output is 1 if the A input is 1 or the B input is 1, but not both.
So instead of drawing an OR gate, a NAND gate, and an AND gate as
shown earlier, we can use the symbol that electrical engineers use for the
XOR gate:

It looks very much like the OR gate except that it has another curved
line at the input side. The behavior of the XOR gate is shown here:

The XOR gate is the final logic gate I’ll describe in detail in this book.
(Yet another gate sometimes shows up in electrical engineering. It’s called
the coincidence gate or equivalence gate because the output is 1 only if the
two inputs are the same. The coincidence gate has an output opposite the
XOR gate, so its symbol is the same as that of the XOR gate but with a little
circle at the output end.)

Let’s review what we know so far. Adding two binary numbers produces
a sum bit and a carry bit:



You can use the following two logic gates to get these results:

The sum of two binary numbers is given by the output of an XOR gate,
and the carry bit is given by the output of an AND gate. So we can combine
an AND gate and an XOR gate to add two binary digits called A and B:



Keep in mind that this is more complex than it looks! The XOR gate is
actually a combination of an OR gate, a NAND gate, and an AND gate, and
each of those gates consists of two relays. But it becomes easier to
understand if a lot of the details are hidden. This process is sometimes
called encapsulation: A complex assemblage of stuff is hidden away in a
simpler package. At any time we can unwrap that package if we want to see
all the details, but it’s not necessary.

Here’s another encapsulation: Instead of drawing and redrawing an
AND gate and an XOR gate, you can simply represent the entire circuit
with a box like this, called a half adder:

The S and CO labels stand for Sum and Carry Out. Sometimes a box
like this is called a black box. A particular combination of inputs results in
particular outputs, but the implementation is hidden. But since we know
what goes on inside the half adder, it’s more correctly termed a clear box.

This box is labeled Half Adder for a reason. Certainly it adds two binary
digits and gives you a sum bit and a carry bit. But for binary numbers
greater than 1 bit, the half adder is inadequate for anything except adding
the two least significant bits. It fails to add in a possible carry bit from a
previous 1-bit addition. For example, suppose we’re adding two binary
numbers like these:



We can use the half adder only for the addition of the rightmost column:
1 plus 1 equals 0, carry the 1. For the second column from the right, we
really need to add three binary numbers because of the carry. And that goes
for all subsequent columns. Each subsequent addition of two binary
numbers must include the carry bit from the previous column.

To add three binary numbers, we need two half adders and an OR gate,
wired this way:

It might not be quite clear why this works. Begin with the A and B
inputs to the first half adder at the left. The output is a sum and a carry. That
sum must be added to the carry from the previous column, called a Carry
In. That Carry In and the Sum from the first half adder are inputs to the
second half adder. The sum from the second half adder is the final sum. The
two Carry Outs from the half adders are inputs to an OR gate. You might
think another half adder is called for here, and that would certainly work.
But if you go through all the possibilities, you’ll find that the Carry Outs
from the two half adders are never both equal to 1. The OR gate is sufficient
for adding them because the OR gate is the same as the XOR gate if the
inputs are never both 1.

Instead of drawing and redrawing that diagram, we can just call it a full
adder:

1111

+1111

11110



The following table summarizes all the possible combinations of inputs
to the full adder and the resultant outputs:

I said early on in this chapter that we would need 144 relays for our
binary adder. Here’s how I figured that out: Each AND, OR, and NAND
gate requires two relays. So an XOR gate comprises six relays. A half adder
is an XOR gate and an AND gate, so a half adder requires eight relays.
Each full adder is two half adders and an OR gate, or 18 relays. We need
eight full adders for our 8-bit adding machine. That’s 144 relays.

Recall our original control panel with the switches and lightbulbs:



We can now start wiring these switches and lightbulbs to eight full
adders.

Start with the least significant bit: First connect the two rightmost
switches and the rightmost lightbulb to a full adder:

When you begin adding two binary numbers, the first rightmost column
of digits that you add is different. It’s different because every subsequent
column might include a carry bit from the previous column. The first
column doesn’t include a carry bit, which is why the carry input to the full
adder is connected to ground. That means a 0 bit. The addition of the first
pair of binary digits could, of course, result in a carry bit. That carry output
is an input to the next column.

For the next two digits and the next lightbulb, you use a full adder wired
this way:



The carry output from the first full adder is an input to this second full
adder. Each subsequent column of digits is wired the same way. Each carry
output from one column is a carry input to the next column.

Finally the eighth and last pair of switches (those at the far left of the
control panel) are wired to the last full adder:

Here the final carry output goes to the ninth lightbulb.
We’re done.
Here’s another way to look at this assemblage of eight full adders, with

each Carry Out serving as input to the next Carry In:



The order of these full adders is the same as the order of the switches
and lightbulbs on the control panel: The least significant bit is on the right,
and the most significant bit is on the left, just as numbers are normally
written. Notice how each Carry Out circles around to become the Carry In
for the next significant bit. The first Carry In is set to ground (to mean a 0
bit), while the final Carry Out lights up a ninth bulb.

Here’s the complete 8-bit adder encapsulated in one box. The inputs are
labeled A0 through A7 and B0 through B7. The outputs are labeled S0
through S7 (for sum):



This is a common way to label the separate bits of a multibit number.
The bits A0, B0, and S0 are the least significant, or rightmost, bits. The bits
A7, B7, and S7 are the most significant, or leftmost, bits. For example,
here’s how these subscripted letters would apply to the binary number
01101001:

The subscripts start at 0 and get higher for more significant digits
because they correspond to the exponents of powers of two:

If you multiply each power of two by the digit below it and add them all
up, you’ll get the decimal equivalent of 01101001, which is 64 + 32 + 8 + 1,
or 105.

Another way an 8-bit adder might be drawn is like this:



The double-line arrows have an 8 inside to indicate that each represents
a group of eight separate signals. These are 1-byte data paths. They are also
labeled A7 ...A0, B7 ...B0, and S7 ...S0 to indicate 8-bit numbers.

Once you build one 8-bit adder, you can build another. It then becomes
easy to cascade them to add two 16-bit numbers:

The two 16-bit input values are separated into two bytes, called low byte
and high byte. The Carry Out of the adder on the right is connected to the
Carry In of the adder on the left. The adder on the left has as input the most
significant eight digits of the two numbers to be added and creates as output
the most significant eight digits of the result.



And now you might ask, “Is this really the way that computers add
numbers together?”

Excellent question!



Chapter Fifteen

Is This for Real?

In the previous chapter, you saw how you can wire relays together to make
a 1-bit adder and then combine eight of them to add two bytes together. You
even saw how those 8-bit adders could be cascaded to add even larger
numbers, and you may have wondered, Is this really how computers add
numbers?

Well, yes and no. One big difference is that computers today are no
longer made from relays. But they were at one time.

In November 1937, a researcher at Bell Labs named George Stibitz
(1904–1995) took home a couple of relays used in telephone switching
circuits. On his kitchen table, he combined these relays with batteries, two
lightbulbs, and two switches he made from strips of metal cut from tin cans.
It was a 1-bit adder, just as you saw in the previous chapter. Stibitz later
called it the “Model K” because he constructed it on his kitchen table.

The Model K adder was what would later be called a “proof of concept”
that demonstrated that relays could perform arithmetic. Bell Labs
authorized a project to continue this work, and by 1940, the Complex
Number Computer was in operation. It consisted of somewhat over 400
relays and was dedicated to multiplying complex numbers, which are
numbers consisting of both a real and an imaginary part. (Imaginary
numbers are square roots of negative numbers and are useful in scientific
and engineering applications.) Multiplying two complex numbers requires
four separate multiplications and two additions. The Complex Number



Computer could handle complex numbers with real and imaginary parts of
up to eight decimal digits. It took about a minute to perform this
multiplication.

This was not the first relay-based computer. Chronologically, the first
one was constructed by Conrad Zuse (1910–1995), who as an engineering
student in 1935 began building a machine in his parents’ apartment in
Berlin. His first machine, called the Z1, didn’t use relays but simulated the
function of relays entirely mechanically. His Z2 machine did use relays and
could be programmed with holes punched in old 35mm movie film.

Meanwhile, around 1937, Harvard graduate student Howard Aiken
(1900–1973) needed some way to perform lots of repetitive calculations.
This led to a collaboration between Harvard and IBM that resulted in the
Automated Sequence Controlled Calculator (ASCC), eventually known as
the Harvard Mark I, completed in 1943. In operation, the clicking of the
relays in this machine produced a very distinctive sound that to one person
sounded “like a roomful of ladies knitting.” The Mark II was the largest
relay-based machine, using 13,000 relays. The Harvard Computation
Laboratory, headed by Aiken, taught the first classes in computer science.

These relay-based computers—also called electromechanical computers
because they combined electricity and mechanical devices—were the first
working digital computers.

The word digital to describe these computers was coined by George
Stibitz in 1942 to distinguish them from analog computers, which had been
in common use for several decades.

One of the great analog computers was the Differential Analyzer
constructed by MIT professor Vannevar Bush (1890–1974) and his students
between 1927 and 1932. This machine used rotating disks, axles, and gears
to solve differential equations, which are equations involving calculus. The
solution to a differential equation is not a number but a function, and the
Differential Analyzer would print a graph of this function on paper.

Analog computers can be traced back further into history with the Tide-
Predicting Machine designed by physicist William Thomson (1824–1907),
later known as Lord Kelvin. In the 1860s, Thomson conceived a way to
analyze the rise and fall of tides, and to break down the patterns into a
series of sine curves of various frequencies and amplitudes. In Thomson’s
words, the object of his Tide-Predicting Machine was “to substitute brass
for brain in the great mechanical labour of calculating the elementary



constituents of the whole tidal rise and fall.” In other words, it used wheels,
gears, and pullies to add the component sine curves and print the result on a
roll of paper, showing the rise and fall of tides in the future.

Both the Differential Analyzer and Tide-Predicting Machine were
capable of printing graphs, but what’s interesting is that they did this
without calculating the numbers that define the graph! This is a
characteristic of analog computers.

At least as early as 1879, William Thomson knew the difference
between analog and digital computers, but he used different terms.
Instruments like his tide predictor he called “continuous calculating
machines” to differentiate them from “purely arithmetical” machines such
as “the grand but partially realized conceptions of calculating machines by
Babbage.”

Thomson is referring to the famous work of English mathematician
Charles Babbage (1791–1871). In retrospect, Babbage is historically
anomalous in that he attempted to build a digital computer long before even
analog computers were common!

At the time of Babbage (and for long afterward) a computer was a
person who calculated numbers for hire. Tables of logarithms were
frequently used to simplify multiplication, and tables of trigonometric
functions were essential for nautical navigation and other purposes. If you
wanted to publish a new set of mathematical tables, you would hire a bunch
of computers, set them working, and then assemble the results. Errors could
creep in at any stage of this process, of course, from the initial calculation
to setting up the type to print the final pages.
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Charles Babbage was a very meticulous person who experienced much
distress upon encountering errors in mathematical tables. Beginning about
1820 he had an idea that he could build an engine that would construct
these tables automatically, even to the point of setting up the type for
printing.

Babbage’s first machine was called the Difference Engine, so named
because it would perform a specific job related to the creation of
mathematical tables. It was well known that constructing a table of
logarithms doesn’t require calculating the logarithm for each and every
value. Instead, logarithms could be calculated for select values, and then
numbers in between could be calculated by interpolation, using what were
called differences in relatively simple calculations.

Babbage designed his Difference Engine to calculate these differences. It
used gears to represent decimal digits, and would have been capable of
addition and subtraction. But despite some funding from the British
government, it was never completed, and Babbage abandoned the
Difference Engine in 1833.

By that time, Babbage had an even better idea, for a machine that he
called the Analytical Engine. Through repeated design and redesign (with a
few small models and parts actually built), it consumed Babbage off and on
until his death. The Analytical Engine is the closest thing to a digital



computer that the 19th century has to offer. In Babbage’s design, it has a
store (comparable to our concept of memory) and a mill, which performs
the arithmetic. Multiplication could be handled by repeated addition, and
division by repeated subtraction.

What’s most intriguing about the Analytical Engine is that it could be
programmed using cards punched with holes. Babbage got this idea from
the innovative automated looms developed by Joseph Marie Jacquard
(1752–1834). The Jacquard loom (circa 1801) used cardboard sheets with
punched holes to control the weaving of patterns in silk. Jacquard’s own
tour de force was a self-portrait in black and white silk that required about
10,000 cards.

Babbage never left us with a comprehensive, coherent description of
what he was trying to do with his Analytical Engine. He was much more
eloquent when writing a mathematical justification of miracles or
composing a diatribe condemning street musicians.

It was up to Augusta Ada Byron, Countess of Lovelace (1815–1852), to
compensate for Babbage’s lapse. She was the only legitimate daughter of
the poet Lord Byron but was steered into mathematics by her mother to
counteract what was perceived as a dangerous poetical temperament that
Ada might have inherited from her father. Lady Lovelace studied with
logician Augustus de Morgan (who has previously made an appearance in
Chapters 6 and 8 of this book) and was fascinated by Babbage’s machine.

When the opportunity came to translate an Italian article about the
Analytical Engine, Ada Lovelace took on the job. Her translation was
published in 1843, but she added a series of notes that expanded the article
to three times its original length. One of these notes contained a sample set
of instructions for Babbage’s machine, therefore positioning Lovelace not
quite as the first computer programmer (that would be Babbage himself),
but as the first person who published a computer program.
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Those of us who have subsequently published tutorial computer
programs in magazines and books can consider ourselves children of Ada.

To Ada Lovelace we owe perhaps the most poetical of descriptions of
Babbage’s machine when she wrote “We may say that the Analytical
Engine weaves algebraical patterns just as the Jacquard-loom weaves
flowers and leaves.”

Lovelace also had a precociously visionary view of computing going
beyond the mere calculation of numbers. Anything that could be expressed
in numbers was a possible subject for the Analytical Engine:

Supposing, for instance, that the fundamental relations of pitched sounds
in the science of harmony and of musical composition were susceptible of
such expression and adaptations, the engine might compose elaborate and
scientific pieces of music of any degree of complexity or extent.

Considering that Babbage and Samuel Morse were almost exact
contemporaries, and that Babbage also knew the work of George Boole, it’s
unfortunate that he didn’t make the crucial connection between telegraph
relays and mathematical logic. It was only in the 1930s that clever
engineers began building computers from relays. The Harvard Mark I was
the first computer to print mathematical tables, finally realizing Babbage’s
dream over a hundred years later.



From the first digital computers in the 1930s to the present day, the
entire history of computing can be summed up with three trends: smaller,
faster, cheaper.

Relays are not the best devices for constructing a computer. Because
relays are mechanical and work by bending pieces of metal, they can break
after an extended workout. A relay can also fail because of a piece of dirt or
stray paper stuck between the contacts. In one famous incident in 1947, a
moth was extracted from a relay in the Harvard Mark II computer. Grace
Murray Hopper (1906–1992), who had joined Aiken’s staff in 1944 and
who would later become quite renowned in the field of computer
programming languages, taped the moth to the computer logbook with the
note “First actual case of bug being found.”

A possible replacement for the relay is the vacuum tube (called a
“valve” by the British), which was developed by John Ambrose Fleming
(1849–1945) and Lee de Forest (1873–1961) in connection with radio. By
the 1940s, vacuum tubes had long been used to amplify telephones, and
virtually every home had a console radio set filled with glowing tubes that
amplified radio signals to make them audible. Vacuum tubes can also be
wired—much like relays—into AND, OR, NAND, and NOR gates.

It doesn’t matter whether logic gates are built from relays or vacuum
tubes. Logic gates can always be assembled into adders and other complex
components.

Vacuum tubes had their own problems, though. They were expensive,
required a lot of electricity, and generated a lot of heat. The bigger
drawback was that they eventually burned out. This was a fact of life that
people lived with. Those who owned tube radios were accustomed to
replacing tubes periodically. The telephone system was designed with a lot
of redundancy, so the loss of a tube now and then was no big deal. (No one
expects the telephone system to work flawlessly anyway.) When a tube
burns out in a computer, however, it might not be immediately detected.
Moreover, a computer uses so many vacuum tubes that statistically they
might be burning out every few minutes.

The big advantage of using vacuum tubes over relays was speed. At its
very best, a relay only manages to switch in about a thousandth of a second,
or 1 millisecond. A tube can switch in about a millionth of a second—one
microsecond. Interestingly, the speed issue wasn’t a major consideration in
early computer development, because overall computing speed was linked



to the speed that the machine could read a program from a paper or film
tape. As long as computers were built in this way, it didn’t matter how
much faster vacuum tubes were than relays.

Beginning in the early 1940s, vacuum tubes began supplanting relays in
new computers. By 1945, the transition was complete. While relay
machines were known as electromechanical computers, vacuum tubes were
the basis of the first electronic computers.

At the Moore School of Electrical Engineering (University of
Pennsylvania), J. Presper Eckert (1919–1995) and John Mauchly (1907–
1980) designed the ENIAC (Electronic Numerical Integrator and
Computer). It used 18,000 vacuum tubes and was completed in late 1945. In
sheer tonnage (about 30), the ENIAC was the largest computer that was
ever (and probably will ever be) made. Eckert and Mauchly’s attempt to
patent the computer was, however, thwarted by a competing claim by John
V. Atanasoff (1903–1995), who earlier designed an electronic computer that
never worked quite right.

The ENIAC attracted the interest of mathematician John von Neumann
(1903–1957). Since 1930, the Hungarian-born von Neumann (whose last
name is pronounced noy mahn) had been living in the United States. A
flamboyant man who had a reputation for doing complex arithmetic in his
head, von Neumann was a mathematics professor at the Princeton Institute
for Advanced Study, and he did research in everything from quantum
mechanics to the application of game theory to economics.
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Von Neumann helped design the successor to the ENIAC, the EDVAC
(Electronic Discrete Variable Automatic Computer). Particularly in the
1946 paper “Preliminary Discussion of the Logical Design of an Electronic
Computing Instrument,” coauthored with Arthur W. Burks and Herman H.
Goldstine, he described several features of a computer that made the
EDVAC a considerable advance over the ENIAC. The ENIAC used decimal
numbers, but the designers of the EDVAC felt that the computer should use
binary numbers internally. The computer should also have as much memory
as possible, and this memory should be used for storing both program code
and data as the program was being executed. (Again, this wasn’t the case
with the ENIAC. Programming the ENIAC was a matter of throwing
switches and plugging in cables.) This design came to be known as the
stored-program concept. These design decisions were such an important
evolutionary step that today we speak of von Neumann architecture in
computers.

In 1948, the Eckert-Mauchly Computer Corporation (later part of
Remington Rand) began work on what would become the first
commercially available computer—the Universal Automatic Computer, or
UNIVAC. It was completed in 1951, and the first one was delivered to the
Bureau of the Census. The UNIVAC made its prime-time network debut on
CBS, when it was used to predict the results of the 1952 presidential
election. Anchorman Walter Cronkite referred to it as an “electronic brain.”
Also in 1952, IBM announced the company’s first commercial computer
system, the 701.

And thus began a long history of corporate and governmental
computing. However interesting that history might be, we’re going to
pursue another historical track—a track that shrank the cost and size of
computers and brought them into the home, and which began with an
almost unnoticed electronics breakthrough in 1947.

Bell Telephone Laboratories came about when American Telephone and
Telegraph officially separated their scientific and technical research
divisions from the rest of their business, creating the subsidiary on January
1, 1925. The primary purpose of Bell Labs was to develop technologies for
improving the telephone system. That mandate was fortunately vague
enough to encompass all sorts of things, but one obvious perennial goal



within the telephone system was the undistorted amplification of voice
signals transmitted over wires.

A considerable amount of research and engineering went into improving
vacuum tubes, but on December 16, 1947, two physicists at Bell Labs, John
Bardeen (1908–1991) and Walter Brattain (1902–1987), wired a different
type of amplifier. This new amplifier was constructed from a slab of
germanium—an element known as a semiconductor—and a strip of gold
foil. They demonstrated it to their boss, William Shockley (1910–1989), a
week later. It was the first transistor, a device that some people have called
the most important invention of the twentieth century.

The transistor didn’t come out of the blue. Eight years earlier, on
December 29, 1939, Shockley had written in his notebook, “It has today
occurred to me that an amplifier using semiconductors rather than vacuum
is in principle possible.” And after that first transistor was demonstrated,
many years followed in perfecting it. It wasn’t until 1956 that Shockley,
Bardeen, and Brattain were awarded the Nobel Prize in physics “for their
researches on semiconductors and their discovery of the transistor effect.”

Earlier in this book, I talked about conductors and insulators.
Conductors are so called because they’re very conducive to the passage of
electricity. Copper, silver, and gold are the best conductors, and it’s no
coincidence that all three are found in the same column of the periodic table
of the elements.

The elements germanium and silicon (as well as some compounds) are
called semiconductors, not because they conduct half as well as conductors,
but because their conductance can be manipulated in various ways.
Semiconductors have four electrons in the outermost shell, which is half the
maximum number that the outer shell can have. In a pure semiconductor,
the atoms form very stable bonds with each other and have a crystalline
structure similar to the diamond. Such materials aren’t good conductors.

But semiconductors can be doped, which means that they’re combined
with certain impurities. One type of impurity adds extra electrons to those
needed for the bond between the atoms. These are called N-type
semiconductors (N for negative). Another type of impurity results in a P-
type semiconductor.

Semiconductors can be made into amplifiers by sandwiching a P-type
semiconductor between two N-type semiconductors. This is known as an



NPN transistor, and the three pieces are known as the collector, the base,
and the emitter.

Here’s a schematic diagram of an NPN transistor:

A small voltage on the base can control a much larger voltage passing
from the collector to the emitter. If there’s no voltage on the base, it
effectively turns off the transistor.

Transistors are usually packaged in little metal cans about a quarter-inch
in diameter with three wires poking out:

The transistor inaugurated solid-state electronics, which means that
transistors don’t require vacuums and are built from solids, specifically
semiconductors and most commonly silicon. Besides being much smaller
than vacuum tubes, transistors require much less power, generate much less
heat, and last longer. Carrying around a tube radio in your pocket was
inconceivable. But a transistor radio could be powered by a small battery,
and unlike tubes, it wouldn’t get hot. Carrying a transistor radio in your
pocket became possible for some lucky people opening presents on
Christmas morning in 1954. Those first pocket radios used transistors made
by Texas Instruments, an important company of the semiconductor
revolution.

However, the very first commercial applications of the transistor were
hearing aids. In commemorating the heritage of Alexander Graham Bell in



his lifelong work with deaf people, AT&T allowed hearing aid
manufacturers to use transistor technology without paying any royalties.

The first transistor television debuted in 1960, and today tube appliances
have almost disappeared. (Not entirely, however. Some audiophiles and
electric guitarists continue to prefer the sound of tube amplifiers to their
transistor counterparts.)

In 1956, Shockley left Bell Labs to form Shockley Semiconductor
Laboratories. He moved to Palo Alto, California, where he had grown up.
His was the first such company to locate in that area. In time, other
semiconductor and computer companies set up business there, and the area
south of San Francisco is now informally known as Silicon Valley.

Vacuum tubes were originally developed for amplification, but they
could also be used for switches in logic gates. The same goes for the
transistor. Here’s a transistor-based AND gate structured much like the
relay version:

Only when both the A input and the B input are voltages will both
transistors conduct current and hence make the output a voltage. The
resistor prevents a short circuit when this happens.

Wiring two transistors as you see here creates an OR gate. The collectors
of both transistors are connected to the voltage supply and the emitters are



connected:

Everything we learned about constructing logic gates and other
components from relays is valid for transistors. Relays, tubes, and
transistors were all initially developed primarily for purposes of
amplification but can be connected in similar ways to make logic gates out
of which computers can be built. The first transistor computers were built in
1956, and within a few years tubes had been abandoned for the design of
new computers.

Transistors certainly make computers more reliable, smaller, and less
power hungry, but they don’t necessarily make computers any simpler to
construct. The transistor lets you fit more logic gates in a smaller space, but
you still have to worry about all the interconnections of these components.
It’s just as difficult wiring transistors to make logic gates as it is wiring
relays and vacuum tubes.

As you’ve already discovered, however, certain combinations of
transistors show up repeatedly. Pairs of transistors are almost always wired
as gates. Gates are often wired into adders, or into decoders or encoders
such as you saw at the end of Chapter 10. In Chapter 17, you’ll soon see a



crucially important configuration of logic gates called the flip-flop, which
has the ability to store bits, and a counter that counts in binary numbers.
Assembling these circuits would be much easier if the transistors were
prewired in common configurations.

This idea seems to have been proposed first by British physicist
Geoffrey Dummer (1909–2002) in a speech in May 1952. “I would like to
take a peep into the future,” he said.

With the advent of the transistor and the work in semiconductors
generally, it seems now possible to envisage electronic equipment in a
solid block with no connecting wires. The block may consist of layers of
insulating, conducting, rectifying and amplifying materials, the electrical
functions being connected directly by cutting out areas of the various
layers.

A working product, however, would have to wait a few years.
Without knowing about the Dummer prediction, in July 1958 it occurred

to Jack Kilby (1923–2005) of Texas Instruments that multiple transistors as
well as resistors and other electrical components could be made from a
single piece of silicon. Six months later, in January 1959, basically the same
idea occurred to Robert Noyce (1927–1990). Noyce had originally worked
for Shockley Semiconductor Laboratories, but in 1957 he and seven other
scientists had left and started Fairchild Semiconductor Corporation.

In the history of technology, simultaneous invention is more common
than one might suspect. Although Kilby had invented the device six months
before Noyce, and Texas Instruments had applied for a patent before
Fairchild, Noyce was issued a patent first. Legal battles ensued, and only
after a decade were they finally settled to everyone’s satisfaction. Although
they never worked together, Kilby and Noyce are today regarded as the
coinventors of the integrated circuit, or IC, commonly called the chip.

Integrated circuits are manufactured through a complex process that
involves layering thin wafers of silicon that are precisely doped and etched
in different areas to form microscopic components. Although it’s expensive
to develop a new integrated circuit, they benefit from mass production—the
more you make, the cheaper they become.

The actual silicon chip is thin and delicate, so it must be securely
packaged, both to protect the chip and to provide some way for the



components in the chip to be connected to other chips. Early integrated
circuits were packaged in a couple of different ways, but the most common
is the rectangular plastic dual inline package (or DIP), with 14, 16, or as
many as 40 pins protruding from the side:

This is a 16-pin chip. If you hold the chip so the little indentation is at
the left (as shown), the pins are numbered 1 through 16 beginning at the
lower left and circling around the right side to end with pin 16 at the upper
left. The pins on each side are exactly  inch apart.

Throughout the 1960s, the space program and the arms race fueled the
early integrated circuits market. On the civilian side, the first commercial
product that contained an integrated circuit was a hearing aid sold by Zenith
in 1964. In 1971, Texas Instruments began selling the first pocket
calculator, and Pulsar the first digital watch. (Obviously the IC in a digital
watch is packaged much differently from the example just shown.) Many
other products that incorporated integrated circuits in their design followed.

In 1965, Gordon E. Moore (then at Fairchild and later a cofounder of
Intel Corporation) noticed that technology was improving in such a way
that the number of transistors that could fit on a single chip had doubled
every year since 1959. He predicted that this trend would continue. The
actual trend was a little slower, so Moore’s law (as it was eventually called)
was modified to predict a doubling of transistors on a chip every 18 months.
This is still an astonishingly fast rate of progress and reveals why home
computers always seem to become outdated in just a few short years.
Moore’s law seems to have broken down in the second decade of the 21st
century, but reality is still coming close to the prediction.

Several different technologies were used to fabricate the components
that make up integrated circuits. Each of these technologies is sometimes
called a family of ICs. By the mid-1970s, two families were prevalent: TTL
(pronounced tee tee ell) and CMOS (see moss).



TTL stands for transistor-transistor logic. These chips were preferred by
those for whom speed was a primary consideration. CMOS (complementary
metal-oxide-semiconductor) chips used less power and were more tolerant
of variations in voltages, but they weren’t as fast as TTL.

If in the mid-1970s you were a digital design engineer (which meant that
you designed larger circuits from ICs), a permanent fixture on your desk
would be a 1¼-inch-thick book first published in 1973 by Texas
Instruments called The TTL Data Book for Design Engineers. This is a
complete reference to the 7400 (seventy-four hundred) series of TTL
integrated circuits sold by Texas Instruments and several other companies,
so called because each IC in this family is identified by a number beginning
with the digits 74.

Every integrated circuit in the 7400 series consists of logic gates that are
prewired in a particular configuration. Some chips provide simple prewired
gates that you can use to create larger components; other chips provide
common components.

The first IC in the 7400 series is number 7400 itself, which is described
in the TTL Data Book as “Quadruple 2-Input Positive-NAND Gates.” What
this means is that this particular integrated circuit contains four 2-input
NAND gates. They’re called positive NAND gates because a 5-volt input
(or thereabouts) corresponds to logical 1 and a zero voltage corresponds to
0. This is a 14-pin chip, and a little diagram in the data book shows how the
pins correspond to the inputs and outputs:



This diagram is a top view of the chip (pins on the bottom) with the little
indentation (shown on page 193) at the left.

Pin 14 is labeled VCC and is equivalent to the V symbol that I’ve been
using to indicate a voltage. Pin 7 is labeled GND for ground. Every
integrated circuit that you use in a particular circuit must be connected to a
common 5-volt power supply and a common ground. Each of the four
NAND gates in the 7400 chip has two inputs and one output. They work
independently of each other.

One important fact to know about a particular integrated circuit is the
propagation time—the time it takes for a change in the inputs to be
reflected in the output.

Propagation times for chips are generally measured in nanoseconds,
abbreviated nsec. A nanosecond is a very short period of time. One
thousandth of a second is a millisecond. One millionth of a second is a
microsecond. One billionth of a second is a nanosecond. The propagation
time for the NAND gates in the 7400 chip is guaranteed to be less than 22
nanoseconds. That’s 0.000000022 seconds, or 22 billionths of a second.

If you can’t get the feel of a nanosecond, you’re not alone. But if you’re
holding this book 1 foot away from your face, a nanosecond is the time it
takes the light to travel from the page to your eyes.

Yet the nanosecond is what makes computers possible. Each step the
computer takes is a very simple basic operation, and the only reason
anything substantial gets done in a computer is that these operations occur
very quickly. To quote Robert Noyce, “After you become reconciled to the
nanosecond, computer operations are conceptually fairly simple.”

Let’s continue perusing the TTL Data Book for Design Engineers. You
will see a lot of familiar little items in this book: The 7402 chip contains
four 2-input NOR gates, the 7404 has six inverters, the 7408 has four 2-
input AND gates, the 7432 has four 2-input OR gates, and the 7430 is an 8-
input NAND gate:



The abbreviation NC means no connection.
Moving right along in the TTL Data Book, you’ll discover that the 7483

chip is a 4-bit binary full adder, 74151 is an 8-line-to-1-line data selector,
and the 74154 is a 4-line-to-16-line decoder.

So now you know how I came up with all the various components I’ve
been showing you in this book. I stole them from the TTL Data Book for
Design Engineers.

One of the interesting chips you’ll encounter in that book is the 74182,
called a look-ahead carry generator. This is intended to be used with another
chip, the 74181, that performs addition and other arithmetic operations. As
you saw when an 8-bit adder was built in Chapter 14, each bit of the binary
adder depends on the carry from the previous bit. This is known as a ripple
carry. The bigger the numbers you want to add, the slower you’ll get the
result.

A look-ahead carry generator is designed to ameliorate this trend by
providing circuitry specifically for calculating a carry bit in less time than
the adder itself could. This special circuitry requires more logic gates, of
course, but it speeds up the total addition time. Sometimes a circuit can be
improved by redesigning it so that logic gates can be removed, but it is very
often the case that a circuit can be speeded up by adding more logic gates to
handle specific problems.

Logic gates aren’t metaphors or imaginary objects. They are very real.
Logic gates and adders were once built out of relays, and then relays were
replaced by vacuum tubes, and vacuum tubes were replaced by transistors,



and transistors were replaced by integrated circuits. But the underlying
concepts remained exactly the same.



Chapter Sixteen

But What About Subtraction?

After you’ve convinced yourself that relays, tubes, or transistors can indeed be wired together to
add binary numbers, you might ask, “But what about subtraction?” Rest assured that you’re not
making a nuisance of yourself by asking questions like this; you’re actually being quite
perceptive. Addition and subtraction complement each other in some ways, but the mechanics of
the two operations are quite different. An addition marches consistently from the rightmost
column of digits to the leftmost column. Each carry from one column is added to the next column.
But we don’t carry in subtraction; instead, we borrow, and that involves an intrinsically different
mechanism—a messy back-and-forth kind of thing.

For example, let’s look at a typical borrow-laden subtraction problem:

If you’re like me, as soon as you look at that rightmost column and see that 6 is greater than 3,
you say Yuck. You need to borrow from the next column to the left, and that column needs a
borrow as well. I won’t go through the gory details, but if you do it correctly (or you’ve made the
same mistakes I have), you’ll get an answer of 77:

Now how are we ever going to persuade a bunch of logic gates to go through the perverse logic
necessary to get that result?

Well, we’re not going to try. Instead, we’re going to use a little technique that lets us subtract
without borrowing. This might look like a trick at first, but it is a crucial first step for
understanding how negative numbers are stored in computers.

You were probably told early on in your education that subtraction is the same as the addition
of a negative number. In one sense, this is useless information because it doesn’t make subtraction
any easier. But it does mean that we can rewrite that subtraction as a positive number added to a
negative number:

−176 + 253 =

253

−176

???

253

−176

77



Now I want to throw another couple of numbers in there—one positive and one negative—so
that we’re adding a series of four numbers:

1000 − 176 + 253 − 1000 =

We’re adding 1000 and then subtracting 1000, so it shouldn’t make any difference to the result.
We know that 1000 is 999 plus 1, so instead of starting with 1000, we can start with 999 and then
add 1 in later. The string of numbers gets even longer, but it’s still equivalent:

999 − 176 + 253 + 1 − 1000 =

This is certainly a lot of clutter, but let’s start working on this from left to right. The first step is
a subtraction: 999 minus 176. Amazingly enough, you don’t need to borrow! It’s easy to calculate
that 999 minus 176 is 823:

823 + 253 + 1 − 1000 =

Subtracting a number from a string of 9s results in a number called the nines’ complement. The
nines’ complement of 176 is 823. And it works in reverse: The nines’ complement of 823 is 176.
What’s nice is this: No matter what the number is, calculating the nines’ complement never
requires a borrow.

The next two steps just involve addition. First add 253 to 823 to get the result 1076:

1076 + 1 − 1000 =

Then add 1 and subtract 1000:

1077 − 1000 = 77

And it’s the same answer as before but accomplished without a single nasty borrow.
Now this is important: When using the nines’ complement to simplify subtraction, you need to

know how many digits you’re dealing with. If one or both numbers had four digits, you’ll need to
calculate the nines’ complement using 9999 and then subtract 10000 at the end.

But what if you’re subtracting a bigger number from a smaller number? For example, the
subtraction problem could be

Normally, you would look at this and say, “Hmmm. I see that a bigger number is subtracted
from a smaller number, so I have to switch the two numbers around, perform the subtraction, and
remember that the result is really a negative number.” You might be able to switch them around in
your head and write the answer this way:

Doing this calculation without borrowing is a little different from the earlier example, but
begin by switching the two numbers around, adding 999 at the beginning, and subtracting 999 at

176

−253

???

176

−253

−77



the end:

999 − 253 + 176 − 999 =

You begin as you did before, by subtracting the 253 from 999 to get the nines’ complement:

746 + 176 − 999 =

Now add the nines’ complement to 176:

922 − 999 =

At this point in the earlier problem, you were able to add 1 and subtract 1000 to get the final
result, but that strategy isn’t going to work well here. Instead, we are left with a positive 922 and a
negative 999. If that were a negative 922 and a positive 999, you could just take the nines’
complement of 922. That would be 77. But because we switched the signs to perform this nines’
complement, the answer is really –77. It’s not quite as straightforward as the first example, but
again, no borrowing was required.

This same technique can also be used with binary numbers, and it’s actually simpler than with
decimal numbers. Let’s see how it works.

The original subtraction problem was

When these numbers are converted to binary, the problem becomes

I’m going to first switch these numbers so the problem becomes a positive number added to a
negative number. The decimal equivalents are shown underneath the binary numbers:

−10110000 + 11111101 =

−176 + 253 =

Now let’s add 11111111 (which equals 255 in decimal) at the beginning and later add
00000001 (just 1 in decimal) and subtract 100000000 (which equals 256):

11111111 − 10110000 + 11111101 + 00000001 − 100000000 =

255 − 176 + 253 + 1 − 256 =

In binary, that first subtraction requires no carries because the number is being subtracted from
11111111:

11111111 − 10110000


+ 11111101 + 00000001 − 100000000 =

01001111 + 11111101 + 00000001 − 100000000 =

253

−176

???

11111101

− 10110000

????????



When a decimal number is subtracted from a string of nines, the result is called the nines’
complement. With binary numbers, subtracting something from a string of ones is called the ones’
complement. But notice that we don’t really have to do a subtraction to calculate the ones’
complement. Look at these two numbers. The ones’ complement of 10110000 is 01001111, and
the ones’ complement of 01001111 is 10110000:

1 0 1 1 0 0 0 0

0 1 0 0 1 1 1 1

The bits are just inverted: Every 0 bit in a number becomes a 1 bit in the ones’ complement,
and every 1 bit becomes a 0 bit. That’s why the ones’ complement is often called the inverse. (At
this point, you might recall from Chapter 8 that we built a logic gate called an inverter that
changed a 0 to a 1 and a 1 to a 0.)

The problem is now:

01001111 + 11111101 + 00000001 − 100000000 =

79 + 253 + 1 − 256 =

Now add the first two numbers:

01001111 + 11111101


+ 00000001 − 100000000 =

101001100 + 00000001 − 100000000 =

The result is a 9-bit number, but that’s OK. Now the problem has been reduced to this:

101001100 + 000000001 − 100000000 =

332 + 1 − 256 =

Adding the 1 is trivial:

101001101 − 100000000 =

333 − 256 =

And now all that’s left is to subtract the binary equivalent of 256, which merely gets rid of the
leftmost bit:

01001101

77

And that final result, you’ll be pleased to know, is the same answer that we got when doing the
problem in decimal.

Let’s try it again with the two numbers reversed. In decimal, the subtraction problem is

176

− 253

???



In binary it looks like this:

Similarly to how this was done with the decimal numbers, let’s switch the order of those
numbers. We’ll add 11111111 at the beginning and subtract 11111111 at the end:

11111111 − 11111101 + 10110000 − 11111111 =

255 − 253 + 176 − 255 =

The first step is to find the ones’ complement of 11111101:

11111111 − 11111101


+ 10110000 − 11111111 =

00000010 + 10110000 − 11111111 =

Add that to the next number:

10110010 − 11111111 =

178 − 255 =

Now 11111111 must be subtracted from that result in some way. When subtracting a smaller
number from a larger number, you accomplish this task by adding 1 and subtracting 100000000.
But you can’t subtract this way without borrowing. So instead, let’s subtract this result from
11111111:

11111111 − 10110010 = 01001101

255 − 178 = 77

Again, this strategy really means that we’re just inverting all the bits to get the result. The
answer again is the binary equivalent 77, but for this problem, the answer is really −77.

This little quirk that we encounter when subtracting a larger number from a smaller number is
a whisper to us that we’re not quite there. We haven’t quite solved this problem.

Regardless, we now have all the knowledge we need to modify the adding machine developed
in Chapter 14 so that it can perform subtraction as well as addition. So that this doesn’t become
too complex, this new adding and subtracting machine will perform subtractions only when the
result is a positive number.

The core of the adding machine was an 8-bit adder assembled from logic gates:

10110000

− 11111101

????????



As you probably recall, the inputs A0 through A7 and B0 through B7 were connected to
switches that indicated two 8-bit values to be added. The Carry In input was connected to ground,
equivalent to a 0 bit. The S0 through S7 outputs were connected to eight lightbulbs that displayed
the result of the addition. Because the addition could result in a 9-bit value, the Carry Out output
was also connected to a ninth lightbulb.

The control panel looked like this:

In this diagram, the switches are set to add 183 (or 10110111) and 22 (00010110), producing
the result of 205, or 11001101 as shown in the row of lightbulbs.

The new control panel for adding and subtracting two 8-bit numbers is just slightly modified.
Instead of the big plus sign, it includes an extra switch to indicate whether we want to add or
subtract.



You turn this switch off for addition and on for subtraction, as labeled.
Another difference is that only the rightmost eight lightbulbs are used to display results. The

ninth lightbulb is now labeled “Overflow.” This is a term encountered in computer programming
in several different contexts, and it almost always indicates a problem. We’ve set up this control
panel to add two 8-bit numbers, and in many cases the result will be 8 bits as well. But if the result
is 9 bits in length, that’s an overflow. The result is flowing over what we’ve allocated to display it.
The overflow can also occur in subtraction if we happen to subtract a larger number from a
smaller number. The Overflow light means that the result is negative, but we haven’t adequately
accommodated the display of that negative result.

The major addition to the adding machine is some circuitry that calculates a ones’ complement
of an 8-bit number. Recall that the ones’ complement is equivalent to inverting bits, so a circuit to
calculate the ones’ complement of an 8-bit number might look as simple as eight inverters:

The problem with this circuit is that it always inverts the bits that enter into it. We’re trying to
create a machine that does both addition and subtraction, so the circuitry needs to invert the bits
only if a subtraction is being performed. A better circuit looks like this:



A single signal, labeled Invert, is input to each of eight XOR (exclusive OR) gates. Recall that
the XOR exhibits the following behavior:

If the Invert signal is 0, the eight outputs of the XOR gates are the same as the eight inputs. For
example, if 01100001 is input, then 01100001 is output. If the Invert signal is 1, the eight input
signals are inverted. If 01100001 is input, 10011110 is output.

Let’s package these eight XOR gates in a box labeled Ones’ Complement:

The Ones’ Complement box, the 8-Bit Adder box, and a final exclusive OR gate can now be
wired together like this:



Notice the wire labeled Subtract at the upper-right corner. This comes from the Add/Subtract
switch. This signal is 0 if an addition is to be performed and 1 for subtraction. For an addition, the
Invert signal to the Ones’ Complement circuit is 0, and the circuit has no effect. The CI input is
also 0. It’s the same as a simple addition circuit.

But for a subtraction, the B inputs (the second row of switches in the control panel) are all
inverted by the Ones’ Complement circuit before entering the adder. Also for a subtraction, you
add 1 to the result of the addition by setting the CI (Carry In) input of the adder to 1.

The Subtract signal and the CO (Carry Out) output of the adder also go into an XOR gate that’s
used to light up the Overflow lamp. If the Subtract signal is 0 (which means an addition is being
performed), the lightbulb will be lit if the CO output of the adder is 1. This means that the result of
the addition is greater than 255.

If a subtraction is being performed and if the B number is smaller than the A number, it’s
normal that the CO output from the adder is 1. This represents the 100000000 that must be
subtracted in the final step. For subtractions, the Overflow lamp is lit only if the CO output from
the adder is 0. This means that we’re trying to subtract a larger number from a smaller number.
The machine shown earlier isn’t designed to display negative numbers.

By now you must surely be glad you asked, “But what about subtraction?”
I’ve been talking about negative numbers in this chapter, but I haven’t yet indicated what

negative binary numbers look like. You might assume that the traditional negative sign is used
with binary just as it is in decimal. For example, −77 is written in binary as −1001101. You can
certainly do that, but one of the goals in using binary numbers is to represent everything using 0s
and 1s—even tiny symbols such as the negative sign.

Of course, you could simply use another bit for the negative sign. You could make that extra
bit a 1 for a negative number and a 0 for a positive number, and let everything else be the same.



This would work, but it doesn’t go quite far enough. There’s actually another solution that has
become standard for representing negative numbers in computers. The major reason it’s become
standard is that it provides a hassle-free method for adding negative and positive numbers
together. The biggest drawback is that you must decide ahead of time how many digits are
required for all the numbers you might encounter.

Think about this for a moment: The advantage of writing positive and negative numbers the
way we normally do is that they can go on forever. We imagine 0 as the middle of an infinite
stream of positive numbers going off in one direction and an infinite stream of negative numbers
going off in another:

⋅ ⋅ ⋅ −1, 000, 000 − 999, 999 ⋅ ⋅ ⋅ −3 − 2 − 1 0 1 2 3 ⋅ ⋅ ⋅ 999, 999 1, 000, 000 ⋅ ⋅⋅

But suppose we don’t need an infinite number of numbers. Suppose we know at the outset that
every number we come across will be within a particular range.

Let’s consider a checking account, which is one place people sometimes see negative numbers.
Assume that you never have as much as $500 in the checking account and that the bank has given
you a no-bounce checking limit of $500. This means that the balance in your checking account is
always a number somewhere between $499 and −$500. Also assume that you never deposit as
much as $500, you never write a check for more than $500, and you deal only in dollars and don’t
care about cents.

This set of conditions means that the range of numbers you deal with in using your checking
account is −500 through 499. That’s a total of 1000 numbers. This restriction implies that you can
use just three decimal digits and no negative sign to represent all the numbers you need. The trick
is that you really don’t need positive numbers ranging from 500 through 999. That’s because
you’ve already established that the maximum positive number you need is 499. So the three-digit
numbers from 500 through 999 can actually represent negative numbers. Here’s how it works:

To mean –500, use 500.
To mean –499, use 501.
To mean –498, use 502.

(and so forth)
To mean –2, use 998.
To mean –1, use 999.
To mean 0, use 000.
To mean 1, use 001.
To mean 2, use 002.

(and so forth)
To mean 497, use 497.
To mean 498, use 498.
To mean 499, use 499.

In other words, every three-digit number that begins with a 5, 6, 7, 8, or 9 is actually a negative
number. Instead of negative and positive numbers extending in two directions from zero, like this:

−500 −499 −498 ⋅ ⋅ ⋅ −4 − 3 − 2 − 1 0 1 2 3 4 ⋅ ⋅ ⋅ 497 498 499



They can be written this way:

500 501 502 ⋅ ⋅ ⋅ 996 997 998 999 000 001 002 003 004 ⋅ ⋅ ⋅ 497 498 499

Notice that this forms a circle of sorts. The lowest negative number (500) looks as if it
continues from the highest positive number (499). And the number 999 (which is actually −1) is
one less than zero. Adding 1 to 999, you’d normally get 1000. But since we’re only dealing with
three digits, it’s actually 000.

This type of notation is called ten’s complement. To convert a three-digit negative number to
ten’s complement, subtract it from 999 and add 1. In other words, the ten’s complement is the
nines’ complement plus one. For example, to write −255 in ten’s complement, subtract it from 999
to get 744 and then add 1 to get 745.

When using ten’s complement, you don’t subtract numbers at all. Everything is addition.
Suppose you have a checking account balance of $143. You write a check for $78. Normally

you do the calculation of your new balance like this:

It’s a subtraction involving two carries. But in ten’s complement, −78 is written as 999 − 078 +
1, or 922, so it’s just:

Ignore the overflow and the result is again $65. If you then write a check for $150, you have to
add −150, which in ten’s complement equals 850:

The result begins with a 9, so it’s a negative number equal to –$85.
The equivalent system in binary is called two’s complement, and it’s the standard way of

representing positive and negative numbers in computers.
Let’s assume that we’re working with bytes, so everything is represented by 8-bit numbers.

These range from 00000000 to 11111111. Up until now we’ve thought of these numbers as
corresponding to decimal numbers 0 through 255. But if you also want to express negative
numbers, every 8-bit number that begins with a 1 will actually represent a negative number, as
shown in the following table:

143

− 78

65

143

+ 922

1065

65

+ 850

915



The range of numbers that you can represent is now limited to −128 through +127. The most
significant (leftmost) bit is known as the sign bit. The sign bit is 1 for negative numbers and 0 for
positive numbers.

To calculate the two’s complement, first calculate the ones’ complement and then add 1. This is
equivalent to inverting all the digits and adding 1. For example, the decimal number 125 is
01111101. To express −125 in two’s complement, first invert the digits of 01111101 to get
10000010, and then add 1 to get 10000011. You can verify the result using the preceding table. To
go backward, do the same thing—invert all the bits and add 1.

The big advantage of this system is that positive and negative numbers can be expressed
without using negative signs. Perhaps an even bigger advantage is that it lets us freely add positive
and negative numbers using only the rules of addition. For example, let’s add the binary
equivalents of −127 and 124. Using the preceding table as a cheat sheet, this is simply

The result is equivalent to −3 in decimal.
What you need to watch out for here is overflow. That’s when the result of an addition is

greater than 127. For example, suppose you add 125 to itself:

Because the high bit of the sum is set to 1, the result must be interpreted as a negative number,
specifically the binary equivalent of −6. Obviously adding two positive numbers cannot make a
negative number, but this is exactly what happens. It’s peculiar and obviously incorrect.

Something similar happens when −125 is added to itself:

10000001

+ 01111100

11111101

01111101

+ 01111101

11111010



This also indicates a problem: We decided at the outset that we’re restricting ourselves to 8-bit
numbers, so the leftmost digit of the result must be ignored. The rightmost 8 bits are equivalent to
6, which is a positive number.

In general, the result of an addition involving positive and negative two’s complement numbers
is invalid if the sign bits of the two operands are the same, but the sign bit of the result is different.
The result is always valid when adding a positive number and a negative number, because the
result is always in the range –128 to 127.

Here’s a modified adding machine for adding two 8-bit two’s complement numbers:

The 8-bit adder is familiar by now. A few gates have been added to detect overflow. Keep in
mind that the most significant bits represent the sign of the number: 1 if negative and 0 if positive.
On the input side, these sign bits are A7 and B7. The sign bit on the sum is S7. Notice that the sign
bit of the sum is inverted before it’s used in the AND gate and the NOR gate.

The AND gate detects an overflow condition for negative numbers. If the sign bits of the A and
B inputs are both 1 (indicating two negative numbers) and the sign bit of the Sum is 0 (indicating
a positive result), obviously something’s gone wrong. The sum of the two negative numbers is so
negative it can’t fit in the 8 bits that we’ve allocated for it.

The NOR gate detects overflow for positive numbers. If the A and B sign bits are both 0 and
the sign bit of the Sum is 1, that means that two positive numbers totaled to something so big that

10000011

+ 10000011

100000110



it’s represented as a negative number! The three inputs to the NOR gate will all be 0, and the
output of the NOR gate will be 1, indicating overflow.

At the outset of this chapter, binary numbers were fairly simple. They corresponded in a very
direct way to decimal numbers. An 8-bit binary number could range from 0 to 255. Such binary
numbers are called unsigned because they’re always positive.

Two’s complement allows us to work with signed binary numbers. These can be positive or
negative. For 8-bit values, they can range from –128 to 127. It’s the same number of numbers
(256) but a different range.

The formal mathematical term for what we’ve been working with here is integer—a number
that can be positive or negative, but which has no fractional parts. In real life, 8-bit integers are
often inadequate for many jobs, and programmers instead use 16-bit integers (which require 2
bytes per number) or 32-bit integers (4 bytes), or even 64-bit integers (8 bytes).

In each case, these can be either signed or unsigned. The following table summarizes the range
of decimal values that are possible with these integer sizes:

The ranges are based on powers of 2. For example, 16 bits allow representing 2 to the 16th
power, or 65,536, different numbers. Those numbers can range from 0 through 65,535, or from –
32,768 through 32,767.

Nothing about the numbers themselves will tell you whether they’re signed or unsigned. For
example, suppose someone says, “I have an 8-bit binary number, and the value is 10110110.
What’s the decimal equivalent?” You must first inquire, “Is that a signed or an unsigned number?
It could be −74 or 182.”

Bits are just 0s and 1s. They don’t tell you anything about themselves. That information must
come from the context in which they’re used.



Chapter Seventeen

Feedback and Flip-Flops

Everybody knows that electricity can make things move. A brief glance
around the average home reveals electric motors in appliances as diverse as
clocks, fans, food processors, and anything that spins a disk. Electricity also
controls the vibrations of loudspeakers, headphones, and earbuds, bringing
forth music and speech from our many devices. And even if that’s not an
electric car sitting outside, an electric motor is still responsible for starting
up antique fossil-fuel engines.

But perhaps the simplest and most elegant way that electricity makes
things move is illustrated by a class of devices that are quickly disappearing
as electronic counterparts replace them. I refer to those marvelously retro
electric buzzers and bells.

Consider a relay wired like this with a switch and battery:



If this looks a little odd to you, you’re not imagining things. We haven’t
seen a relay wired quite like this yet. Usually a relay is wired so that the
input is separate from the output. Here it’s all one big circle.

If you close the switch, a circuit is completed:

The completed circuit causes the electromagnet to pull down the flexible
contact:



But when the contact changes position, the circuit is no longer complete,
so the electromagnet loses its magnetism, and the flexible contact flips back
up:

But that completes the circuit again. As long as the switch is closed, the
metal contact goes back and forth—alternately closing the circuit and
opening it—most likely making a repetitive (and possibly annoying) sound.
If the contact makes a rasping sound, it’s a buzzer. If you attach a hammer
to it and provide a metal gong, you’ll have the makings of an electric bell.

You can choose from a couple of ways to wire this relay to make a
buzzer. Here’s another way to do it using the conventional voltage and
ground symbols:



Drawn this way, you might recognize the inverter from Chapter 8 on
page 79. The circuit can be drawn more simply this way:

As you’ll recall, the output of an inverter is 1 if the input is 0, and 0 if the
input is 1. Closing the switch on this circuit causes the relay or transistor in
the inverter to alternately open and close. You can also wire the inverter
without a switch so that it goes continuously:

This drawing might seem to be illustrating a logical contradiction
because the output of an inverter is supposed to be opposite the input, but
here the output is the input! Keep in mind, however, that regardless if the
inverter is built from a relay, a vacuum tube, or a transistor, it always
requires a little bit of time to change from one state to another. Even if the
input is the same as the output, the output will soon change, becoming the
inverse of the input, which, of course, changes the input, and so forth and so
on.



What is the output of this circuit? Well, the output quickly alternates
between providing a voltage and not providing a voltage. Or, we can say,
the output quickly alternates between 0 and 1.

This circuit is called an oscillator. It is intrinsically different from
anything else you’ve seen so far. All the previous circuits have changed
their state only with the intervention of a human being who closes or opens
a switch. The oscillator doesn’t require a human being; it basically runs by
itself.

Of course, the oscillator in isolation doesn’t seem to be very useful. But
we’ll see later in this chapter and in the next few chapters that such a circuit
connected to other circuits is an essential part of automation. All computers
have some kind of oscillator that makes everything else move in
synchronicity. (The oscillators in real computers are somewhat more
sophisticated, however, consisting of quartz crystals wired in such a way
that they vibrate very consistently and very quickly.)

The output of the oscillator alternates between 0 and 1. A common way
to symbolize that fact is with a diagram that looks like this:

This is understood to be a type of graph. The horizontal axis represents
time, and the vertical axis indicates whether the output is 0 or 1:

All this is really saying that as time passes, the output of the oscillator
alternates between 0 and 1 on a regular basis. For that reason, an oscillator
is sometimes referred to as a clock because by counting the number of
oscillations you can tell time (kind of).

How fast will the oscillator run? How many times a second will the
output alternate between 0 and 1? That obviously depends on how the
oscillator is built. One can easily imagine a big, sturdy relay that clunks



back and forth slowly and a small, light relay that buzzes rapidly. A
transistor oscillator can vibrate millions or billions of times per second.

One cycle of an oscillator is defined as the interval during which the
output of the oscillator changes and then comes back again to where it
started:

The time required for one cycle is called the period of the oscillator.
Let’s assume that we’re looking at a particular oscillator that has a period of
0.02 seconds. The horizontal axis can be labeled in seconds beginning from
some arbitrary time denoted as 0:

The frequency of the oscillator is 1 divided by the period. In this
example, if the period of the oscillator is 0.02 second, the frequency of the
oscillator is 1 ÷ 0.02, or 50 cycles per second. Fifty times per second, the
output of the oscillator changes and changes back.

Cycles per second is a fairly self-explanatory term, much like miles per
hour or pounds per square inch or calories per serving. But cycles per
second isn’t used much anymore. In commemoration of Heinrich Rudolph
Hertz (1857–1894), who was the first person to transmit and receive radio
waves, the word hertz is now used instead. This usage started first in
Germany in the 1920s and then expanded into other countries over the
decades.



Thus, we can say that our oscillator has a frequency of 50 hertz, or (to
abbreviate) 50 Hz.

Of course, we just guessed at the actual speed of one particular
oscillator. By the end of this chapter, we’ll be able to build something that
lets us actually measure the oscillator’s speed.

To begin this endeavor, let’s look at a pair of NOR gates wired in a
particular way. You’ll recall that the output of a NOR gate is a voltage only
if both inputs aren’t voltages:

Here’s a circuit with two NOR gates, two switches, and a lightbulb:

Notice the oddly contorted wiring: The output of the NOR gate on the
left is an input to the NOR gate on the right, and the output of that NOR
gate is an input to the first NOR gate. This is a type of feedback. Indeed,
just as in the oscillator, an output circles back to become an input. This
idiosyncrasy will be characteristic of most of the circuits in this chapter.

There’s a simple rule in using this circuit: You can close either the top
switch or the bottom switch, but not both switches at the same time. The
following discussion is dependent on that rule.



At the outset, the only current flowing in this circuit is from the output
of the left NOR gate. That’s because both inputs to that gate are 0. Now
close the upper switch. The output from the left NOR gate becomes 0,
which means the output from the right NOR gate becomes 1 and the
lightbulb goes on:

The magic occurs when you now open the upper switch. Because the
output of a NOR gate is 0 if either input is 1, the output of the left NOR
gate remains the same and the light remains lit:

Now this is odd, wouldn’t you say? Both switches are open—the same
as in the first drawing—yet now the lightbulb is on. This situation is
certainly different from anything we’ve seen before. Usually the output of a
circuit is dependent solely upon the inputs. That doesn’t seem to be the case
here. Moreover, at this point you can close and open that upper switch and



the light remains lit. That switch has no further effect on the circuit because
the output of the left NOR gate remains 0.

Now close the lower switch. Because one of the inputs to the right NOR
gate is now 1, the output becomes 0 and the lightbulb goes out. The output
of the left NOR gate becomes 1:

Now you can open the bottom switch and the lightbulb stays off:

We’re back where we started. At this time, you can close and open the
bottom switch with no further effect on the lightbulb. In summary:

Closing the top switch causes the lightbulb to go on, and it stays on
when the top switch is opened.
Closing the bottom switch causes the lightbulb to go off, and it stays
off when the bottom switch is opened.

The strangeness of this circuit is that sometimes when both switches are
open, the light is on, and sometimes when both switches are open, the light
is off. We can say that this circuit has two stable states when both switches



are open. Such a circuit is called a flip-flop, a word also used for beach
sandals and the tactics of politicians. The flip-flop dates from 1918 with the
work of English radio physicists William Henry Eccles (1875–1966) and
F.W. Jordan (1881–1941). A flip-flop circuit retains information. It
“remembers.” It only remembers what switch was most recently closed, but
that is significant. If you happen to come upon such a flip-flop in your
travels and you see that the light is on, you can surmise that it was the upper
switch that was most recently closed; if the light is off, the lower switch
was most recently closed.

A flip-flop is very much like a seesaw. A seesaw has two stable states,
never staying long in that precarious middle position. You can always tell
from looking at a seesaw which side was pushed down most recently.

Although it might not be apparent yet, flip-flops are essential tools. They
add memory to a circuit to give it a history of what’s gone on before.
Imagine trying to count if you couldn’t remember anything. You wouldn’t
know what number you were up to and what number comes next! Similarly,
a circuit that counts (which I’ll show you later in this chapter) needs flip-
flops.

Flip-flops are found in a couple of different varieties. What you’ve just
seen is the simplest and is called an R-S (or Reset-Set) flip-flop. The two
NOR gates are more commonly drawn and labeled as in the following
diagram to give it a symmetrical look:

The output that we used for the lightbulb is traditionally called Q. In
addition, there’s a second output called Q (pronounced Q bar) that’s the



opposite of Q. If Q is 0, then Q is 1, and vice versa. The two inputs are
called S for set and R for reset. You can think of these verbs as meaning
“set Q to 1” and “reset Q to 0.” When S is 1 (which corresponds to closing
the top switch in the earlier diagram), Q becomes 1, and Q becomes 0.
When R is 1 (corresponding to closing the bottom switch in the earlier
diagram), Q becomes 0, and Q becomes 1. When both inputs are 0, the
output indicates whether Q was last set or reset. These results are summed
up in the following table:

This is called a function table or a logic table or a truth table. It shows
the outputs that result from particular combinations of inputs. Because there
are only two inputs to the R-S flip-flop, the number of combinations of
inputs is four. These correspond to the four rows of the table under the
headings.

Notice the row second from the bottom when S and R are both 0: The
outputs are indicated as Q and Q. This means that the Q and Q outputs
remain what they were before both the S and R inputs became 0. The final
row of the table indicates that making both the S and R inputs 1 is
disallowed or illegal. This doesn’t mean you’ll get arrested for doing it, but
if both inputs are 1 in this circuit, both outputs are 0, which violates the
notion of Q being the opposite of Q. If you’re designing circuitry that uses
the R-S flip-flop, you’ll want to avoid situations in which the S and R
inputs are both 1.

The R-S flip-flop is often drawn as a little box with the two inputs and
two outputs labeled like this:



The R-S flip-flop is certainly interesting as a first example of a circuit
that seems to “remember” which of two inputs was last a voltage. What
turns out to be much more useful, however, is a circuit that remembers
whether a particular signal was 0 or 1 at a particular point in time.

Let’s think about how such a circuit should behave before we actually
try to build it. It would have two inputs. Let’s call one of them Data. Like
all digital signals, the Data input can be 0 or 1. Let’s call the other input
Hold That Bit, which is the digital equivalent of a person saying “Hold that
thought.” Normally the Hold That Bit signal is 0, in which case the Data
signal has no effect on the circuit. When Hold That Bit is 1, the circuit
reflects the value of the Data signal. The Hold That Bit signal can then go
back to being 0, at which time the circuit remembers the last value of the
Data signal. Any changes in the Data signal have no further effect.

In other words, we want something that has the following function table:

In the first two cases, when the Hold That Bit signal is 1, the Q output is
the same as the Data input. In the second two cases, when the Hold That Bit
signal is 0, the Q output is the same as it was before regardless of what the
Data input is. The function table can be simplified a little, like this:



The X means “don’t care.” It doesn’t matter what the Data input is
because if the Hold That Bit input is 0, the Q output is the same as it was
before.

Implementing a Hold That Bit signal based on the existing R-S flip-flop
requires that we add two AND gates at the input end, as in the following
diagram:

I know this doesn’t include a Data input, but I’ll fix that shortly.
Recall that the output of an AND gate is 1 only if both inputs are 1,

which means that the Reset and Set inputs have no effect on the rest of the
circuit unless Hold That Bit is 1.

The circuit starts out with a value of Q and an opposite value of Q. In
this diagram, the Q output is 0, and the Q output is 1. As long as the Hold
That Bit signal is 0, the Set signal has no effect on the outputs:



Similarly, the Reset signal has no effect:

Only when the Hold That Bit signal is 1 will this circuit function the
same way as the normal R-S flip-flop shown earlier:

It behaves like a normal R-S flip-flop because now the output of the
upper AND gate is the same as the Reset signal, and the output of the lower
AND gate is the same as the Set signal.



But we haven’t yet achieved our goal. We want only two inputs, not
three. How is this done?

If you recall the original function table of the R-S flip-flop, the case in
which Set and Reset were both 1 was disallowed, so we want to avoid that.
And it also doesn’t make much sense for the Set and Reset signals to both
be 0 because that’s simply the case in which the output doesn’t change. We
can accomplish the same thing in this circuit by setting Hold That Bit to 0.
This implies that it only makes sense for Set and Reset to be opposite each
other: If Set is 1, Reset is 0; and if Set is 0, Reset is 1.

Let’s make two changes to the circuit. The Set and Reset inputs can be
replaced with a single Data input. This is equivalent to the previous Set
input. That Data signal can be inverted to replace the Reset signal.

The second change is to give the Hold That Bit signal a more traditional
name, which is Clock. This might seem a little odd because it’s not a real
clock, but you’ll see shortly that it might sometimes have clocklike
attributes, which means that it might tick back and forth between 0 and 1 on
a regular basis. But for now, the Clock input simply indicates when the Data
input is to be saved.

Here’s the revised circuit. The Data input replaces the Set input on the
bottom AND gate, while an inverter inverts that signal to replace the Reset
input on the top AND gate:

Again, we begin with both inputs set to 0. The Q output is 0, which
means that Q is 1. As long as the Clock input is 0, the Data input has no



effect on the circuit:

But when Clock becomes 1, the circuit reflects the value of the Data
input:

The Q output is now the same as the Data input, and Q is the opposite.
Now Clock can go back to being 0:



The circuit now remembers the value of Data when Clock was last 1,
regardless of how Data changes. The Data signal could, for example, go
back to 0 with no effect on the output:

This circuit is called a level-triggered D-type flip-flop. The D stands for
Data. Level-triggered means that the flip-flop saves the value of the Data
input when the Clock input is at a particular level, in this case 1. (We’ll look
at an alternative to level-triggered flip-flops shortly.)

In the function table, Data can be abbreviated as D and Clock as Clk:

This circuit is also known as a level-triggered D-type latch, and that
term simply means that the circuit latches onto one bit of data and keeps it
around for further use. The circuit can also be referred to as a 1-bit memory.
I’ll demonstrate in Chapter 19 how very many of these flip-flops can be
wired together to provide many bits and bytes of memory.

For now, let’s try saving just 1 byte of data. You can assemble eight
level-triggered D-type flip-flops with all the Clock inputs consolidated into
one signal. Here’s the resultant package:



This latch is capable of saving a whole byte at once. The eight inputs on
the top are labeled D0 through D7 , and the eight outputs on the bottom are
labeled Q0 through Q7. The input at the right is the Clock. The Clock signal
is normally 0. When the Clock signal is 1, the entire 8-bit value on the D
inputs is transferred to the Q outputs. When the Clock signal goes back to 0,
that 8-bit value stays there until the next time the Clock signal is 1. The Q
outputs from each latch are ignored.

The 8-bit latch can also be drawn with the eight Data inputs and eight Q
outputs grouped together in a data path, as shown here:

Or simplified even more with the inputs labeled simply D and Q:



Toward the end of Chapter 14, eight 1-bit adders were also collected and
wired together to add entire bytes:

In that chapter, the eight A inputs and eight B inputs were connected to
switches, the CI (Carry In) input was connected to ground, and the eight S
(Sum) outputs and CO (Carry Out) outputs were wired to lightbulbs.

The latch and adder can be used as modular building blocks in
assembling more complex circuitry. For example, it’s possible to save the
output of the 8-bit adder in an 8-bit latch. It’s also possible to replace one of
the rows of eight switches with an 8-bit latch so that the output of the latch
is an input to the adder. Here’s something that combines those two concepts
to make what might be called an “accumulating adder” that keeps a running
total of multiple numbers:



Notice that the switch labeled Add controls the Clock input of the latch.
Besides reducing the number of switches by half, this configuration

allows you to add more than just two numbers without re-entering
intermediate results. The output of the latch begins with an output of all
zeros, which is also the A input to the adder. You key in the first number
and toggle the Add button—close the switch and then open it. That number
is stored by the latch and appears on the lights. You then key in the second
number and again toggle the Add button. The number set up by the
switches is added to the previous total, and it appears on the lights. Just
continue keying in more numbers and toggling the Add switch.

Unfortunately, it doesn’t quite work how you would hope. It might work
if you built the adder from slow relays and you were able to flip the Add
switch very quickly to store the result of the adder in the latch. But when
that Add switch is closed, any change to the Data inputs of the latch will go
right through to the Q outputs and then back up to the adder, where the



value will be added to the switches, and the sum will go back into the latch
and circle around again.

This is what’s called an “infinite loop.” It occurs because the D-type
flip-flop we designed was level-triggered. The Clock input must change its
level from 0 to 1 in order for the value of the Data input to be stored in the
latch. But during the time that the Clock input is 1, the Data input can
change, and those changes will be reflected in the values of the outputs.

For some applications, a level-triggered Clock input is quite sufficient.
But for the accumulating adder, it just doesn’t work. For the accumulating
adder, we don’t want a latch that allows the data to flow through whenever
the Clock input is 1. Much preferred would be a latch that saves the data at
the very instant the Clock changes from 0 to 1 (or alternatively from 1 to 0).
This transition is called an edge because that’s what it looks like
graphically:

The transition from 0 to 1 is sometimes called a positive transition or a
positive edge, and the transition from 1 to 0 is a negative transition or
negative edge.

The level-triggered flip-flop shown earlier latched the data when the
Clock input is 1. In contrast, a positive edge-triggered flip-flop latches the
data only when the Clock makes a transition from 0 to 1. As with the level-
triggered flip-flop, when the Clock input is 0, any changes to the Data input
don’t affect the outputs. The difference in a positive edge-triggered flip-flop
is that changes to the Data input also don’t affect the outputs when the
Clock input is 1. The Data input affects the outputs only at the instant that
the Clock changes from 0 to 1.

This concept is unlike anything encountered so far, so it might seem
difficult to implement. But there’s a trick involved: An edge-triggered D-
type flip-flop is constructed from two stages of level-triggered D-type flip-
flops, wired together this way:



The idea here is that the Clock input controls both the first stage and the
second stage. But notice that the clock is inverted in the first stage. This
means that the first stage works exactly like a D-type flip-flop except that
the Data input is stored when the Clock is 0. The outputs of the first stage
are inputs to the second stage, and these are saved when the Clock is 1. The
overall result is that the Data input is saved only when the Clock changes
from 0 to 1.

Let’s take a closer look. Here’s the flip-flop at rest with both the Data
and Clock inputs at 0 and the Q output at 0:

Now change the Data input to 1:



This changes the first flip-flop stage because the inverted Clock input is
1. But the second stage remains unchanged because the uninverted Clock
input is 0. Now change the Clock input to 1:

This causes the second stage to change, and the Q output goes to 1. The
difference is that the Data input can now change (for example, back to 0)
without affecting the Q output:



The Q and Q outputs can change only at the instant that the Clock input
changes from 0 to 1.

The function table of the edge-triggered D-type flip-flop requires a new
symbol, which is an arrow pointing up (↑). This symbol indicates a signal
making a transition from a 0 to a 1:

The arrow pointing up indicates that the Q output becomes the same as
the Data input when the Clock makes a positive transition, which is a
transition from 0 to 1. The flip-flop has a diagram like this:

The little angle bracket on the Clk input indicates that the flip-flop is
edge triggered. Similarly, a new assemblage of eight edge-triggered flip-



flops can be symbolized with a little bracket on the Clock input:

This edge-triggered latch is ideal for the accumulating adder:



This accumulating adder is not handling the Carry Out signal very well.
If the addition of two numbers exceeds 255, the Carry Out is just ignored,
and the lightbulbs will show a sum less than what it should be. One possible
solution is to make the adder and latch all 16 bits wide, or at least wider
than the largest sum you’ll encounter. But let’s hold off on solving that
problem.

Another issue is that there’s no way to clear this adder to begin a new
running total. But there is an indirect way to do it. In the previous chapter
you learned about ones’ complement and two’s complement, and you can
use those concepts: If the running total is 10110001, for example, enter the
ones’ complement (01001110) on the switches and add. That total will be
11111111. Now enter just 00000001 on the switches and add again. Now all
the lightbulbs will be off, and the adder is cleared.

Let’s now explore another type of circuit using the edge-triggered D-
type flip-flop. You’ll recall the oscillator constructed at the beginning of
this chapter. The output of the oscillator alternates between 0 and 1:

Let’s connect the output of the oscillator to the Clock input of the edge-
triggered D-type flip-flop. And let’s connect the Q output to the D input:

The output of the flip-flop is itself an input to the flip-flop. It’s feedback
upon feedback! (In practice, this could present a problem. The oscillator is
constructed out of a relay or other switching component that’s flipping back
and forth as fast as it can. The output of the oscillator is connected to the
components that make up the flip-flop. These other components might not
be able to keep up with the speed of the oscillator. To avoid these problems,



let’s assume that the oscillator is much slower than the flip-flops used
elsewhere in these circuits.)

To see what happens in this circuit, let’s look at a function table that
illustrates the various changes. It’s a little tricky, so let’s take it step by step.
Begin with the Clock input at 0 and the Q output at 0. That means that the
Q output is 1, which is connected to the D input:

When the Clock input changes from 0 to 1, the Q output will become the
same as the D input:

The Clock input is now 1. But because the Q output changes to 0, the D
input will also change to 0:

The Clock input changes back to 0 without affecting the outputs:



Now the Clock input changes to 1 again. Because the D input is 0, the Q
output becomes 0, and the Q output becomes 1:

So the D input also becomes 1:



What’s happening here can be summed up very simply: Every time the
Clock input changes from 0 to 1, the Q output changes, either from 0 to 1 or
from 1 to 0. The situation is clearer if we look at the timing diagram:

When the Clock input goes from 0 to 1, the value of D (which is the
same as Q) is transferred to Q, thus also changing Q and D for the next
transition of the Clock input from 0 to 1.

Earlier I mentioned that the rate at which a signal oscillates between 0
and 1 is called the frequency and is measured in Hertz (and abbreviated
Hz), which is equivalent to cycles per second. If the frequency of the
oscillator is 20 Hz (which means 20 cycles per second), the frequency of
the Q output is half that, or 10 Hz. For this reason, such a circuit—in which
the Q output is routed back to the Data input of a flip-flop—is also known
as a frequency divider.



Of course, the output from the frequency divider can be the Clock input
of another frequency divider to divide the frequency once again. Here’s an
arrangement of just three of these cascading flip-flops, but the row could be
extended:

Let’s look at the four signals I’ve labeled at the top of that diagram:

I’ll admit that I’ve started and ended this diagram at an opportune spot,
but there’s nothing dishonest about it: The circuit will repeat this pattern
over and over again. But do you recognize anything familiar about it?

I’ll give you a hint. Let’s label these signals with 0s and 1s:



Do you see it yet? Try turning the diagram 90 degrees clockwise, and
read the 4-bit numbers going across. Each of them corresponds to a decimal
number from 0 through 15:



Thus, this circuit is doing nothing less than counting in binary numbers,
and the more flip-flops we add to the circuit, the higher it will count. I
pointed out in Chapter 10 that in a sequence of increasing binary numbers,
each column of digits alternates between 0 and 1 at half the frequency of
the column to the right. The counter mimics this. At each positive transition
of the Clock signal, the outputs of the counter are said to increment—that
is, to increase by 1.

Let’s string eight flip-flops together and put them in a box:

This is called a ripple counter because the output of each flip-flop
becomes the Clock input of the next flip-flop. Changes ripple through the
stages sequentially, and the flip-flops at the end might be delayed a little in
changing. More sophisticated counters are synchronous, which means that
all the outputs change at the same time.

I’ve labeled the outputs Q0 through Q7. These are arranged so that the
output from the first flip-flop in the chain (Q0) is at the far right. Thus, if
you connected lightbulbs to these outputs, you could read an 8-bit number.

I mentioned earlier in this chapter that we’d discover some way to
determine the frequency of an oscillator. This is it. If you connect an
oscillator to the Clock input of the 8-bit counter, the counter will show you
how many cycles the oscillator has gone through. When the total reaches
11111111 (255 in decimal), it goes back to 00000000. (This is sometimes
known as rollover or wraparound.) Probably the easiest way to determine
the frequency of an oscillator is to connect eight lightbulbs to the outputs of
this 8-bit counter. Now wait until all the outputs are 0 (that is, when none of
the lightbulbs are lit) and start a stopwatch. Stop the stopwatch when all the
lights go out again. That’s the time required for 256 cycles of the oscillator.
Say it’s 10 seconds. The frequency of the oscillator is thus 256 ÷ 10, or 25.6
Hz.



In real life, oscillators built from vibrating crystals are much faster than
this, starting on the low end at 32,000 Hz (or 32 kilohertz or kHz), up to a
million cycles per second (a megahertz or MHz) and beyond, and even
reaching a billion cycles per second (a gigahertz or GHz).

One common type of crystal oscillator has a frequency of 32,768 Hz.
This is not an arbitrary number! When that is an input to a series of
frequency dividers, it becomes 16,384 Hz, then 8192 Hz, 4096 Hz, 2048
Hz, 1024 Hz, 512 Hz, 256 Hz, 128 Hz, 64 Hz, 32 Hz, 16 Hz, 8 Hz, 4 Hz, 2
Hz, and 1 Hz, at which point it can count seconds in a digital clock.

One practical problem with ripple counters is that they don’t always start
at zero. When power comes on, the Q outputs of some of the individual
flip-flops might be 1 or might be 0. One common enhancement to flip-flops
is a Clear signal to set the Q output to 0 regardless of the Clock and Data
inputs.

For the simpler level-triggered D-type flip-flop, adding a Clear input is
fairly easy and requires only the addition of an OR gate. The Clear input is
normally 0. But when it’s 1, the Q output becomes 0, as shown here:

This signal forces Q to be 0 regardless of the other input signals, in
effect clearing the flip-flop.

For the edge-triggered flip-flop, the Clear signal is more complex, and if
we’re going to add a Clear signal, we might also consider adding a Preset
signal as well. While the Clear signal sets the Q output to 0 regardless of



the Clock and Data inputs, the Preset sets Q to 1. If you were building a
digital clock, these Clear and Preset signals would be useful for setting the
clock to an initial time.

Here’s the edge-triggered D-type flip-flop with preset and clear built
entirely from six 3-input NOR gates and an inverter. What it lacks in
simplicity it makes up in symmetry:

The Preset and Clear inputs override the Clock and Data inputs.
Normally these Preset and Clear inputs are both 0. When the Preset input is
1, Q becomes 1, and Q becomes 0. When the Clear input is 1, Q becomes 0,
and Q becomes 1. (Like the Set and Reset inputs of an R-S flip-flop, Preset
and Clear shouldn’t be 1 at the same time.) Otherwise, this behaves like a
normal edge-triggered D-type flip-flop:



The diagram for the edge-triggered D-type flip-flop with preset and clear
looks like this:

In Chapter 15, I described some examples of integrated circuits in the
family known as TTL (transistor-transistor logic). If you were working with
TTL and you needed one of these flip-flops, you don’t need to build it from
gates. The 7474 chip is described as a “Dual D-Type Positive-Edge-
Triggered Flip-Flop with Preset and Clear,” and here’s how it’s shown in
the TTL Data Book for Design Engineers:



We have now persuaded telegraph relays and transistors to add, subtract,
and count in binary numbers. We’ve also seen how flip-flops can store bits
and bytes. This is the first step to constructing an essential component of
computers known as memory.

But let’s first have some fun.



Chapter Eighteen

Let’s Build a Clock!

What a fun project it might be to build a clock! Imagine a big old-fashioned
grandfather clock, with an intricately carved wood case and a glass door
through which you can see the ponderous swinging pendulum. Behind the
ornate metal dial is a complex of gears that keep time using a clever little
mechanism called an escapement, the ticking and tocking of which
reverberates throughout your home and triggers solemn chimes every hour.

But no. That’s not the kind of clock we’ll be building. The clocks in this
chapter are instead digital clocks that display the hours, minutes, and
seconds with numbers rather than rotating arms on a dial. In fact, the first
version of this clock won’t even display conventional decimal digits but
instead use flashing lights to show the time in binary.

I know, I know: A time display in binary seems awful! But that’s a
necessary first step to representing the time with familiar decimal numerals.
Moreover, the binary numbers that we’ll be using are actually a cross
between pure binary and decimal.

Let’s first examine the numbers that make up the time. If we include
seconds as well as minutes, a time display requires six decimal digits—for
example:

12 : 30 : 47



That’s 12 hours, 30 minutes, and 47 seconds, about a half-hour past
midnight or noon. An indicator for AM or PM would clarify that
information.

In binary, this time could be represented with the binary equivalents of
the numbers 12, 30, and 47:

1100 : 11110 : 101111

I don’t know about you, but I’d prefer not to see the time in that form.
After I finished converting those binary numbers into decimal, the time
might well be a minute later.

So let’s not do it that way. Let’s instead represent each decimal digit
separately in binary so that the time of 12:30:47 is instead displayed using
the binary numbers for 1, 2, 3, 0, 4, and 7, or:

0001 0010 : 0011 0000 : 0100 0111

Now you have six four-digit binary numbers to convert in your head to
decimal, but the decimal values are all between 0 and 9, so the conversions
are much easier. Moreover, just by watching the seconds tick by on such a
clock, you’d be able to quickly learn to read and interpret these binary
numbers.

There’s a name for this type of representation. It’s called binary-coded
decimal, or BCD. With BCD, each digit of a decimal number is encoded as
a four-digit binary number, as shown in the following table:



You’ve seen tables like this before, but they’ve usually continued past
1001 (decimal 9) to show 1010, 1011, 1100, 1101, 1110, and 1111—the
binary equivalents of 10 through 15. With BCD, these additional binary
numbers are invalid. BCD only goes up to 1001, and those other
combinations of bits are not used.

This is yet another example of bits not telling you anything about
themselves. If you encountered the number 10011001, you can’t tell what
that is without some context. As an unsigned integer, it’s decimal 153, but
as a two’s complement signed integer (which you learned about in Chapter
16), it’s –103. If it’s BCD, it’s 99.

BCD is not used much in the internals of computers because it
complicates basic arithmetical operations such as addition and subtraction.
But when it comes time to display decimal numbers, BCD is often an
intermediary step.

The first clock that I’ll show you in this chapter will not necessarily
display the correct time, but it will show seconds increasing from 00
through 59, and then minutes 00 through 59, and then hours. The decision
to display the time in BCD implies that each of the six decimal digits of the
time can be calculated individually, beginning with the seconds. Here are
the six digits that compose the time, with the valid ranges of values:

Seconds, low digit, ranging from 0 through 9.
Seconds, high digit, ranging from 0 through 5.



Minutes, low digit, ranging from 0 through 9.
Minutes, high digit, ranging from 0 through 5.
Hours, low digit, ranging from 0 through 9.
Hours, high digit, either 0 or 1.

The low digit of the seconds increases steadily from 0 through 9. Every
time that low digit reaches 9, it rolls over (or resets) to 0, and the high
seconds digit is incremented (that is, increases) by 1: from 0 to 1, then to 2,
to 3, to 4, and finally to 5. When the seconds reach 59, the next value is 00,
and the minute increases by 1.

Each of the six digits in the time requires a separate circuit, which then
affects the next circuit.

Let’s begin with the low digit of the seconds. You might begin by wiring
up four edge-triggered flip-flops in a row, similar to the way that flip-flops
were wired on page 235 of Chapter 17 to create a ripple counter. Each of
the Q outputs of the flip-flops is connected to a light:

In Chapter 17, the flip-flops were wired from left to right; here they’re
wired from right to left. As you’ll see shortly, this arrangement allows the
lights to display readable binary numbers.

The input at the far right is an oscillator of some sort with a frequency of
1 Hertz, or one cycle per second. The period of this oscillator—the time
required for one cycle—is 1 divided by the frequency, or 1 second. Every
second that one-second oscillator goes from 0 to 1 and then back to 0.

The outputs of each flip-flop are Q and Q, which are opposite values. If
Q is 0, then Q is 1. Each of the flip-flops has its Q output connected to its D
(or Data) input. When the Clock input transitions from 0 to 1, that D input
becomes the Q output. When that Q output transitions from 0 to 1, it also
changes the state of the next leftmost flip-flop.



For the first flip-flop at the right, the Q output will be 0 for one second
and 1 for the next second, turning the light off for a second and then on for
a second. The period is two seconds, and the frequency has been divided in
half. The second flip-flop from the right halves that frequency again,
turning its light on for two seconds and then off for two seconds. And so
forth.

The result is that the four blinking lights count the seconds in binary:

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

⋅ ⋅ ⋅

1 1 1 0

1 1 1 1

0 0 0 0

⋅ ⋅ ⋅

The lights will count 0000 to 1111 and then back to 0000, completing a
cycle every 16 seconds.

But this is not what we want! We want the lights to count from 0000 to
1001 every 10 seconds. After it gets to 1001 (decimal 9) we want it to go
back to 0.

Fortunately, we have used flip-flops that have a Clear input labeled Clr
at the bottom of the flip-flop. When this Clear input is set to 1, the Q output
of the flip-flop becomes 0 regardless of the other inputs. Moreover, all those
Clear inputs can be set to 1 at the same time, causing the displayed number
to go back to 0000.

When should these Clear inputs be set to 1? A displayed value of 1001
(decimal 9) is valid, but the next value 1010 (decimal 10) is not valid. So
when the output of the four flip-flops is 1010—which is 10 in decimal—we
want all the flip-flops cleared to zero.



This can be accomplished with an AND gate connected to two of the
flip-flop Q outputs:

In real life, the transistors that make up the flip-flops will be so fast that
you won’t see the transition from 1010 to 0000. As soon as the Q outputs of
the four flip-flops become 1010, the output of the AND gate is 1, the flip-
flops are cleared, and they go back to all zeros. Visually, it will be a smooth
transition from 1001 to 0000:

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0

1 0 0 1

0 0 0 0

⋅ ⋅ ⋅

If you’re a little uncomfortable about using the flip-flop outputs to clear
the flip-flops, your worries are not completely unjustified. There exist better
ways to do this type of thing, but they are rather more complicated. If you



were building a binary clock in real life, you should also be aware that there
exist integrated circuits called decade counters that count from 0000
through 1001 and then gracefully transition back to 0000.

Now we’re counting seconds from 0 through 9, and very shortly you’ll
see another circuit for the high digit of the second that counts from 0
through 5. When the four lights of the low digit go from 1001 back to 0000,
the high digit should increase by 1, which means that we need a signal that
goes from 0 to 1 at that time.

The output of the AND gate could be used for that purpose, but let’s take
a little different approach by adding a NAND gate to this circuit:

Recall that the output of a NAND gate is opposite an AND gate. The
output is normally 1 except when the two inputs are 1, in which case the
output is 0. This NAND gate is wired so that the two inputs are 1 when the
displayed number is 1001, or decimal 9. The output of the NAND gate will
become 0 when the displayed number is 1001 and then go back to 1. This
will happen every 10 seconds, and that transition from 0 to 1 can be an
input to another edge-triggered flip-flop.

This timing diagram shows the 1-second period signal, the Q outputs
from each of the four flip-flops (from right to left), and the 10-second
period signal:



If you turn the diagram 90 degrees clockwise, you can see that the four
flip-flops count from 0000 to 1001 and then go back to the beginning.

The output of that NAND gate is the input to the next stage of the binary
clock, which counts the upper digit of seconds: 0, 1, 2, 3, 4, and 5. This
stage only needs three flip-flops, but when it reaches 110 (decimal 6), all
the flip-flops need to be cleared:

The output of the NAND gate in this circuit becomes 0 when the
displayed number is 101, or decimal 5. In combination with the previous
four flip-flops, the clock is now counting from 000 0000 to 101 1001, or
decimal 59, at which time all seven flip-flops go back to 0. Here’s the
timing diagram for these three flip-flops:



Again, turn the diagram 90 degrees clockwise to see how the flip-flops
count from 000 to 101, and then go back to the beginning.

Now we have a signal with a period of 1 minute. We can begin counting
minutes. Four more flip-flops are configured just like the earlier four to
count minutes from 0 through 9:

That 10-minute period output can now be an input to another
assemblage of three flip-flops for the high digit of the minutes, which is just
like the high digit of the seconds:



And now, just when it seems that you’re in the home stretch of
constructing an entire binary clock, you might begin to experience some
forebodings of dismay.

With a 24-hour clock, the hour begins at 0 and goes to 23, but English-
speaking countries generally use a 12-hour clock, and that introduces a
problem. The hour has two digits, like seconds and minutes, but the hours
don’t start at zero. By convention, noon or midnight is an hour of 12, and
then the next hour is 1.

Let’s ignore that problem for a moment. Let’s assume that with a 12-
hour clock, the hours go 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, and then back to 0,
and that the time 00:00:00 is what we call midnight or noon.

But there’s still another idiosyncrasy with the hours: With seconds and
minutes, clearing the low digits and clearing the high digits are independent
of each other. The low digit must be cleared when it reaches 1010 (decimal
10), and the high digit must be cleared when it reaches 110 (decimal 6).

With the hours, the low digit must also be cleared when it reaches 1010.
That’s the transition from 9:59:59 to 10:00:00. But both digits must be
cleared when the high digit is 1 and the low digit is 0010. That’s the
transition from 11:59:59 to midnight or noon, which we’ll be temporarily
representing as 00:00:00.

This means that the low and high digits of the hour must be considered
together. The five flip-flops here show how the two digits can be cleared
under two different conditions:



The four flip-flops at the right are wired very similarly to the low digit
of the seconds and minutes. An AND gate clears the flip-flops when the
number becomes 1010, and a NAND gate outputs a signal that transitions
from 0 to 1 at the same time.

But another three-input AND gate on the far left near the top determines
when the high digit of the hour is 1 and the low digits are 0010 (decimal 2),
for a combined BCD value of 12. You might think you want to display 12 at
this time, but then you’d be stuck with the problem of displaying the next
value as 1. Instead, this three-input AND gate clears all five flip-flops so the
displayed hour is 0.

This circuit successfully displays hours in sequence from 0 through 11.
Now we only need to fix one problem: When the Q outputs of all the flip-
flops are 0, we want the displayed hour to instead be 12, or 1 0010.

This can be accomplished with a five-input NOR gate, shown here at the
far right:



Recall that the output of a NOR gate is opposite an OR gate. The output
of this NOR gate is 1 only when all five inputs are 0. The output of that
NOR gate is then an input to two OR gates on two of the digits. Hence,
when the output of the five flip-flops is 0 0000, the lights display 1 0010, or
decimal 12.

I haven’t yet mentioned the NAND gate at the far left. The output of this
gate is normally 1 except when the hour is 1 0001, or decimal 11. Then the
output of the NAND gate becomes 0. When the hour is no longer 11, the
output goes to 1 again. This output can be used as input to another flip-flop
that serves as an AM/PM indicator:

The complete binary clock combining all the components you’ve seen is
available on the website CodeHiddenLanguage.com.

http://codehiddenlanguage.com/


As you’ve seen, each of the six digits of this clock uses a NAND gate to
generate a clock signal for the next digit. The output of this NAND gate is
normally 1 unless the two inputs are both 0. This results in a peculiarity
when the clock first starts up. At that time, each NAND gate will have an
output of 1, which triggers the Clock input of the first flip-flop of the next
stage. When the clock starts up, the initial time will be set to:

1 : 11 : 10

That’s great if that’s the exact time you start up the clock, but otherwise you
might want to be able to set the clock to the current time.

Some digital clocks get the time over the internet or from GPS satellites
or from radio signals designed for that purpose. But for those that require
the time to be manually set, you might have encountered clocks with
multiple buttons that must be variously manipulated, perhaps in so complex
a sequence that detailed instructions are required.

Interfacing with human beings is always a challenge, so let’s implement
something very simple.

The seconds, hours, and minutes of the binary clock are connected right
to left, as shown in this block diagram:

Let’s add two switches to this circuit. Pressing the first of these switches
will manually increment the minutes, and pressing the second switch will
manually increment the hours. This approach is not an optimum solution: If
the displayed time is 2:55 and you need to set it to a time of 1:50, you’ll
need to press the minutes button 55 times and the hours button 11 times.
But this approach has the advantage of simplicity. You won’t need detailed
instructions to set the time.

The minutes normally increase when the seconds reach 59 and then go
back to 00. That signal, labeled “1 minute period,” is normally 1, but it’s 0



when the high digit of the seconds is 5. Similarly, the signal labeled “1 hour
period” is also normally 1, but it’s 0 when the high digit of the minutes is 5.

We want to alter those two signals when the switches to set the time are
pressed. For example, if the “1 minute period” signal is 1 (which it is most
of the time), then pressing the switch should make it 0, and releasing the
switch should let it go back to 1. Similarly, if the signal is 0 (which it will
be if the seconds are between 50 and 59), then pressing this switch should
make the signal go to 1, and releasing the switch should allow it to go back
to 0.

In other words, the switches to set the time manually should make those
“1 minute period” and “1 hour period” signals the opposite of what they are
normally.

This is one of the applications of the Exclusive OR, or XOR, gate, which
was used in Chapter 14 to add two numbers together. The output of the
XOR is the same as the OR gate except when both inputs are 1:

Aside from its vital role in addition, the XOR gate can also invert a
signal. When one input is 0, then the output of the XOR gate is the same as
the other input. But when one of the inputs is 1, the output is the opposite of
the other input.

Using XOR gates, adding switches to set the time manually then
becomes quite simple:



As the seconds and minutes tick by on a binary clock, the effect can be
quite hypnotic. Beginning in the 1970s, binary clocks with flashing lights
were manufactured and sold as novelty items, often with prices that didn’t
reflect the simplicity of the underlying circuitry. But for people who wish to
learn binary numbers—or at least binary-coded decimal numbers—they do
have some educational value.

For those who prefer the display of conventional decimal digits, there
are alternatives. One of the most beautiful (in a technologically retro sense)
is called a code cathode display, which is a glass tube filled with mostly
neon. Inside are overlapping wires shaped into numbers, each of which is
connected to one of the ten pins at the bottom, starting with 0 at the far left:

Not shown is another pin for the ground. Also not shown is a wire mesh
connected to that ground that surrounds all these wires.

When a voltage is applied to one of the pins, the neon surrounding that
number glows:



The Burroughs Corporation introduced this type of display tube in 1955
and gave it the name of a mythological water sprite. They called it a Nixie
tube.

You’ll need one of these tubes for each of the six digits of the time
display. Conceptually, using a Nixie tube is fairly easy: You just need to
design circuitry that applies power to one of the ten pins to light up that
number. In actual use, it’s a little more difficult because more power is
required than is generally available from the transistors in integrated
circuits. Special circuits called drivers for Nixie tubes are available to
supply the necessary current.

The digital circuitry for a Nixie tube must convert the binary-coded
decimal numbers coming from the flip-flops into separate signals for each
of the ten pins. When the number is 0000, you want a signal for the first pin
representing 0. When the number is 0001, that’s the pin for the number 1,
and when the number is 1001, that’s the last pin for the number 9.

You saw a circuit similar to this toward the end of Chapter 10 on page
114. An octal number was converted into signals to light one of eight lights.
Such a circuit is called a decoder, and here it is expanded just a bit to
accommodate BCD numbers. This circuitry is therefore called a BCD
decoder:



I know that this circuitry looks insane, but it’s extremely methodical.
The BCD number coming from four flip-flops is at the bottom. The red
wires in the figure indicate that this number is currently 0101, the binary



number for 5. Each of those four signals is inverted with an inverter, and
various combinations of the original signals and the inverted signals all go
into the ten four-input AND gates. For the AND gate corresponding to 5—
the AND gate just to the right of center—the four inputs are:

The least significant (rightmost) BCD bit
The next-most significant BCD bit, inverted
The next-most significant BCD bit
The most significant (leftmost) BCD bit, inverted

These four inputs are all 1 only for the BCD number 0101.
A more common approach to displaying decimal numbers is a seven-

segment display. This consists of seven elongated lights arranged in a
simple pattern:

When these displays are manufactured, generally there are seven pins on
the back, one for each of the seven segments. An eighth pin is for the
ground. Voltages applied to combinations of those seven pins light up the
appropriate segments to show a particular decimal digit:



For the ease of wiring up the seven-segment display, each of the
segments is assigned an identifying letter:

The following table shows what segments must be lit for each decimal
digit 0 through 9:



Signals corresponding to the decimal digits are already available. They
are the outputs of the AND gates in the BCD decoder that was just used to
light up the Nixie tube.

Let’s look at the “a” segment first. This segment must be lit when the
decimal number is 0, 2, 3, 5, 6, 7, 8, or 9. This means that the outputs of the
eight AND gates corresponding to those numbers can be inputs to an eight-
input OR gate:

You can do something similar for the segments “b” through “g.”
Or you might seek something a little simpler.



The “a” segment is lit up for numbers 0, 2, 3, 5, 6, 7, 8, or 9, which
means that it’s not lit up for numbers 1 and 4. Therefore, you can use the
outputs of the two AND gates corresponding to 1 and 4 as inputs to a
normal two-input NOR gate:

The output of this NOR gate is 1 except when the inputs are the 1 or 4
signals. For these two numbers, the top segment is not illuminated.

These two approaches aren’t exactly the same. There might be times
when you want the seven-segment display to be entirely blank rather than
displaying a decimal digit. This can be achieved if none of the ten signals
from the AND gates in a BCD decoder are 1. The eight-input OR gate
would work correctly in that situation, but the two-input NOR gate would
continue to illuminate the top segment.

If your seven-segment display will always be displaying a digit, then a
seven-segment decoder can be built from a BCD decoder as shown here:



Notice that NOR gates are used for five of the segments, but an OR gate
and an inverter can be used for the other two.

Notice also that the AND gate at the far right isn’t connected to
anything! This AND gate is associated with the display of digit 9, and all
the segments for that digit are illuminated by the NOR gates and the
inverter.

Seven-segment displays can also be wired to display the additional digits
of hexadecimal numbers, but you’ll need some way to distinguish the
hexadecimal B from an 8, and a hexadecimal D from a 0. One solution
requires mixing uppercase and lowercase. Here are the letters A, b, C, d, E,
and F:



To represent all 26 letters, you’d need a few more segments, including
diagonal segments. Common solutions are 14-segment displays and 16-
segment displays.

You might wonder if you’ll need decoding circuitry for every digit that
you need to display. You can do that if you want to, but to reduce the
amount of circuitry, there are alternatives. A technique called multiplexing
allows the decoding circuitry to be shared among multiple digits. The inputs
to the decoder can be quickly shifted among different sources, and the
outputs of the decoder can go to all the displays simultaneously. However,
in synchronization with the shifting of the decoder among various sources,
only one display is grounded. At any one time, only one digit is illuminated,
but the shifting among the displays happens so fast that it’s usually not
noticeable.

Still another approach to displaying numbers and letters is called a dot
matrix, which is a collection of round lights arranged horizontally and
vertically in a grid. The smallest grid that can handle all the numbers,
punctuation, and unaccented letters of the Latin alphabet is five dots wide
and seven dots tall, called a 5-by-7 dot matrix, shown here displaying the
number 3:



You might think that these little lights can be independently controlled
using the technique shown earlier for the seven-segment display. But that
wouldn’t work well. There are 35 of these little lights, and turning them off
and on individually would require quite a lot of circuitry. Instead, a different
approach is used.

Those 35 lights are light-emitting diodes, or LEDS. Diodes are small
electrical components that are symbolized like this:

Diodes allow electrical current to flow in only one direction—in this
case, from left to right. The vertical line at the right symbolizes how the
diode blocks current that would otherwise flow from right to left.

A light-emitting diode is a diode that shoots out photons as the current is
flowing through. These photons register in our eyes as light. LEDs are
commonly symbolized just like diodes but with little arrows representing
rays of light:

Over recent decades, as LEDs have become brighter and cheaper, they
now commonly light up our homes with less electricity and less heat than
other types of bulbs.

The 35 LEDs that make up a 5-by-7 dot matrix display are wired like
this:



Each LED is at the intersection of a row and column. In each row of
LEDs, the diode inputs are connected, and in each column the outputs are
connected. (An alternative scheme is for the inputs to be connected in
columns and the outputs connected in rows, but there’s no substantial
difference in how it works overall.)

This organization reduces the number of connections from 35 to only 12
for the 7 rows and 5 columns.

The downside is that you can illuminate only one row or one column of
lights at a time. At first this seems horribly restrictive, but there’s a trick: If
the rows and columns of the dot matrix are displayed in sequence very
quickly, it will seem as if the entire display is lit up at once.

Look back at how the number 3 is displayed by the dot matrix. In the
leftmost column, two lights are lit up: the top light, and the second to
bottom. This can be accomplished by supplying a voltage to those two
rows, and supplying a ground to the first column, like so:



If you trace through all the possible connections from the voltages to the
ground, you’ll see that the diodes prohibit all other paths except those for
the two illuminated lights.

For the second column of lights for the number 3, the top and bottom
lights are lit up. To accomplish that, apply voltages to those two rows and
supply a ground for the second column:



The other columns work similarly. For the rightmost column of the
number 3, three lights must be lit up. Apply voltages to those rows, and
supply a ground on that column:



Now we need to find a way to automate the process of supplying
voltages to the rows of the dot matrix and supplying a ground to one of the
columns.

Coming to the rescue again are diodes—but just regular diodes, not
those of the light-emitting variety. Here’s how to wire up some diodes to
resemble the number 3:



Can you see the number 3 here? The diodes correspond exactly to the
illuminated lights shown earlier that display the number 3. But again, these
are not LEDs. They’re just regular diodes. The number 3 is essentially
encoded in this collection of connected diodes.

This configuration of diodes is called a diode matrix. It’s storing
information, specifically the position of the lights that must be illuminated
to display the number 3. For that reason, this diode matrix is also
considered to be a type of memory. Because the contents of this diode
matrix cannot be changed without rewiring the diodes, it’s more precisely
referred to as a type of read-only memory, or ROM.

This diode matrix ROM can help display the number 3 on a dot matrix
LED display. Notice the wires corresponding to each column across the top.
These correspond to the five columns of the dot-matrix display. The
following diagram shows a voltage supplied to the first vertical wire on the
left:



Because of the arrangement of the diodes, two voltages are available at
the right. These correspond to the lights that must be lit in the first column
of the LED for the number 3.

By applying voltages successively (and quickly) to the remaining
columns, all the combinations of voltages for the LED dot matrix display
can be generated.

The following diagram shows the diode matrix ROM and the dot matrix
display wired together with some support circuitry. The diode matrix ROM
is slightly reoriented from the one you’ve just seen, but it’s functionally the
same:



Begin examining this circuit in the lower-left corner: We need a very fast
oscillator, fast enough to switch lights on and off so quickly that the human
visual system doesn’t even notice. This oscillator is an input to a counter
built from three flip-flops. You’ve seen circuits like this before:



This is similar to the counters used in the clock except that it only counts
from 0 to 4, or in binary, 000, 001, 010, 011, and 100. Once it reaches 101,
the AND gate clears the three flip-flops back to 0.

Those binary numbers are input to the 3-to-5 decoder shown at the left.
This is a stripped-down version of the 3-to-8 decoder shown on page 114 in
Chapter 10 and the BCD decoder shown earlier in this chapter. It’s stripped
down because it only needs to decode three-digit binary numbers from 000
through 100 into one of five signals:



As the three-digit binary number counts from 000 to 100, the decoder
outputs are successively 0, 1, 2, 3, 4, and then back to 0 for the next cycle.
Notice that the output labeled “4” does not require an AND gate, because
Q2 is 1 only when the binary number is 100 or 4.

These five outputs, 0 through 4, correspond to the five columns of the
diode matrix ROM at the left of the large diagram, which then supply
voltages to the seven rows of the dot matrix display at the right. In real life,
resisters would be inserted between the diode matrix and the dot matrix
display to limit the current and avoid burning out the LEDs.

The voltages then go down into a box mysteriously labeled “3-to-5
Sinker,” which is the only new component of this circuit.

We need something in this circuit that’s a little unusual. In
synchronization with the five signals going up through the diode matrix, we
need some way to connect one of the five columns of the dot matrix display
to ground. All through this book we’ve built circuits and logic gates that
supply a voltage. Such a circuit can be described as a current source. But
now we need the opposite. We need something that sinks a current—
something that connects it to ground in an automated manner.

Let’s use those transistors that we learned about in Chapter 15. Here is
one (at least in its symbolic form):

The three letters stand for base, collector, and emitter. A current applied
to the base will allow current to flow from the collector to the emitter,
which means that we can connect the emitter to ground.

The 3-to-5 sinker at the bottom of the large diagram is extremely similar
to the 3-to-5 decoder. In fact, the same circuitry can be used for both. The



only difference is that the outputs of the AND gates at the top (and the Q2
input) are connected to the base inputs of five transistors:

The currents coming down through the five columns of the dot matrix
display are then successively connected to ground by these transistors.

And now we have a complete circuit that will show the number 3 on a
dot matrix display. Of course, this isn’t quite what we want. Just as with the
Nixie tube and the seven-segment display, we want this circuit to display
digits 0 through 9 coming from the clock. This requires expanding the diode
matrix with the other nine digits and then implementing another level of
selection using the BCD decoder.

An animated version of this circuit displaying digits 0 through 9 is
available on the website CodeHiddenLanguage.com.

http://codehiddenlanguage.com/


But however much fun we might be having in displaying animated digits
corresponding to binary numbers, the goal of this book is not to build a
clock.



Chapter Nineteen

An Assemblage of Memory

As we rouse ourselves from sleep every morning, memory fills in the
blanks. We remember where we are, what we did the day before, and what
we plan to do today. These memories might come in a rush or a dribble, and
maybe after some minutes a few lapses might persist (“Funny, I don’t
remember wearing my socks to bed”), but all in all we can usually
reassemble our lives and achieve enough continuity to commence another
day.

Of course, human memory isn’t very orderly. Try to remember
something about high school geometry and you’re likely to start thinking
about the day there was a fire drill just as the teacher was about to explain
what QED meant.

Nor is human memory foolproof. Indeed, writing was probably invented
specifically to compensate for the failings of our memory.

We write and we later read. We save and we later retrieve. We store and
we later access. The function of memory is to keep the information intact
between those two events. Anytime we store information, we’re making use
of different types of memory. Just within the previous century, media for
storing information has included paper, plastic discs, and magnetic tape, as
well as various types of computer memory.

Even telegraph relays—when assembled into logic gates and then flip-
flops—can store information. As we’ve seen, a flip-flop is capable of



storing 1 bit. This isn’t a whole lot of information, but it’s a start. For once
we know how to store 1 bit, we can easily store 2, or 3, or more.

On page 224 of Chapter 17, you encountered the level-triggered D-type
flip-flop, which is made from an inverter, two AND gates, and two NOR
gates:

When the Clock input is 1, the Q output is the same as the Data input.
But when the Clock input goes to 0, the Q output holds the last value of the
Data input. Further changes to the Data input don’t affect the outputs until
the Clock input goes to 1 again.

In Chapter 17, this flip-flop was featured in a couple of different circuits,
but in this chapter it will generally be used in only one way—to store 1 bit
of information. For that reason, I’m going to rename the inputs and outputs
so that they’ll be more in accordance with that purpose:



This is the same flip-flop, but now the Q output is named Data Out, and
the Clock input (which started out in Chapter 17 as Hold That Bit) is named
Write. Just as we might write down some information on paper, the Write
signal causes the Data In signal to be written into, or stored, in the circuit.
Normally, the Write input is 0, and the Data In signal has no effect on the
output. But whenever we want to store 1 bit of data in the flip-flop, we
make the Write input 1 and then 0 again, as shown in this logic table with
the inputs and outputs abbreviated as DI, W, and DO:

As I mentioned in Chapter 17, this type of circuit is also called a latch
because it latches onto data, but in this chapter we’ll call it memory. Here’s
how we might represent 1 bit of memory without drawing all of the
individual components:

Or it can be oriented like this if you prefer:



The positioning of the inputs and outputs doesn’t matter.
Of course, 1 bit of memory isn’t much at all, but it’s fairly easy to

assemble an entire byte of memory by wiring together 8 bits of memory. All
you have to do is connect the eight Write signals:

This 8-bit memory has eight inputs and eight outputs as well as a single
input named Write that’s normally 0. To save a byte in memory, make the
Write input 1 and then 0 again. This circuit can also be drawn as a single
box, like so:



As usual, the subscripts differentiate the 8 bits. A subscript of 0 indicates
the least significant bit, and a subscript of 7 is the most significant bit.

To be more consistent with the 1-bit memory, the 8-bit memory can be
represented using 8-bit data paths for the input and output:

There’s another way of assembling eight flip-flops that isn’t quite as
straightforward as this. Suppose we want only one Data In signal and one
Data Out signal. But we want the ability to save the value of the Data In
signal at eight different times during the day, or maybe eight different times
during the next minute. And we also want the ability to later read those
eight values by looking at just one Data Out signal.

In other words, rather than saving one 8-bit value, we want to save eight
separate 1-bit values.

Storing eight separate 1-bit values involves more complex circuitry, but
it simplifies the memory in other ways: If you count up the connections
required for the 8-bit memory, you’ll find a total of 17. When eight separate
1-bit values are stored, the connections are reduced to just 6.

Let’s see how this works.
When storing eight 1-bit values, eight flip-flops are still required, but

unlike the earlier configuration, the Data inputs are all connected while the
Write signals are separate:



Although all the Data In signals are connected, this does not imply that
all the flip-flops will be storing the same Data In value. The Write signals
are separate, so a particular flip-flop will store the Data In value only when
the corresponding Write signal becomes 1. The value that the flip-flop
stores is the Data In value at that time.

Rather than manipulate eight separate Write signals, we can instead have
one Write signal and govern which flip-flop it controls using a 3-to-8
decoder:



You’ve seen circuits similar to this before: On page 114 toward the end
of Chapter 10, you saw a circuit that allowed you to specify an octal
number using three switches where each of the eight AND gates was
connected to a lightbulb. Depending on what octal number you specified,
one (and only one) of the eight lightbulbs would light up. Similar circuits in
Chapter 18 were instrumental in displaying clock digits.

The S0, S1, and S2 signals stand for Select. The inputs to each AND gate
include one each of these Select signals or their inverses. This 3-to-8
decoder is a little more versatile than the one in Chapter 10 because a Write
signal is combined with the S0, S1, and S2 inputs. If the Write signal is 0, all
the AND gates will have an output of 0. If the Write Signal is 1, one and
only one AND gate will have an output of 1 depending on the S0, S1, and S2
signals.

The Data Out signals from the eight flip-flops can be inputs to a circuit
called an 8-to-1 selector that effectively selects one of the eight Data Out
signals from the flip-flops:



Again, three Select signals and their inverses are input to eight AND
gates. Based on the S0, S1, and S2 signals, one and only one AND gate can
have an output of 1. But the Data Out signals from the flip-flops are also
input to the eight AND gates. The output of the selected AND gate will be
the corresponding Data Out signal from the flip-flops. An eight-input OR
gate provides the final Data Out signal selected from among the eight.

The 3-to-8 decoder and 8-to-1 selector can be combined with the eight
flip-flops like this:



Notice that the three Select signals to the decoder and the selector are
the same. I’ve also made an important change in the labeling of the Select
signals. They are now labeled Address, because it’s a number that specifies
where the bit resides in memory. It’s like a post office address except that
there are only eight possible 3-bit address values: 000, 001, 010, 011, 100,
101, 110, and 111.

On the input side, the Address input determines which flip-flop the
Write signal will trigger to store the Data input. On the output side (at the
bottom of the figure), the Address input controls the 8-to-1 selector to select
the output of one of the eight latches.

For example, set the three Address signals to 010, set Data In to either 0
or 1, and set Write to 1 and then 0. That’s called writing to memory, and the



value of Data In is said to be stored in memory at the address 010.
Change the three Address signals to something else. Now come back the

next day. If the power is still on, you can set the three Address signals to
010 again, and you’ll see that the Data Out is whatever you set Data In to
when you wrote it into memory. That’s called reading from memory or
accessing memory. You can then write something else into that memory
address by making the Write signal 1 and then 0.

At any time, you can set the Address signals to one of eight different
values, and thus you can store eight different 1-bit values. This
configuration of flip-flops, decoder, and selector is sometimes known as
read/write memory because you can store values (that is, write them) and
later determine what those values are (that is, read them). Because you can
change the Address signals to any one of the eight values at will, this type
of memory is more commonly known as random access memory, or RAM
(pronounced the same as the animal).

Not all memory is random-access memory! In the late 1940s, before it
became feasible to build memory from vacuum tubes and before the
transistor was invented, other forms of memory were used. One odd
technology used long tubes of mercury to store bits of information. Pulses
at one end of the tube propagated to the other end like waves in a pond, but
these pulses had to be read sequentially rather than randomly. Other types
of delay-line memory were used up into the 1960s.

The particular RAM configuration that we’ve now built stores eight
separate 1-bit values. It can be represented like this:



A particular configuration of RAM is often referred to as a RAM array.
This particular RAM array is organized in a manner abbreviated as 8×1
(pronounced eight by one). Each of the eight values in the array is 1 bit. You
can determine the total number of bits that can be stored in the RAM array
by multiplying the two values, in this case 8 times 1, or 8 bits.

It’s possible to make larger arrays of memory by connecting smaller
arrays together. For example, if you have eight 8×1 RAM arrays and you
connect all the Address signals together and all the Write signals together,
you can make an 8×8 RAM array:

Notice that the Data In and Data Out signals are now both 8 bits wide.
This RAM array stores eight separate bytes, each of which is referenced by
a 3-bit address.

However, if we were to assemble this RAM array from eight 8×1 RAM
arrays, all the decoding logic and selection logic would be duplicated.
Moreover, you may have noticed earlier that the 3-to-8 decoder and the 8-
to-1 selector are similar in many ways. Both use eight four-input AND
gates, which are selected based on three Select or Address signals. In a real-
life configuration of memory, the decoder and selector would share these
AND gates.

Let’s see if we can assemble a RAM array in a somewhat more efficient
manner. Instead of an 8×8 RAM array that stores 8 bytes, let’s double the
memory and make a 16×8 RAM array that stores 16 bytes. Eventually, we
should have something that can be represented like this:



The address needs to be 4 bits wide to address 16 bytes of memory. The
total number of bits that can be stored in this RAM array is 16 times 8, or
64, which means that 64 separate flip-flops will be required. Obviously it
will be difficult to show the complete 16×8 RAM array within the pages of
this book, so I’ll show it in several parts.

Earlier in this chapter you saw how a flip-flop used to store 1 bit can be
symbolized by a box with Data In and Write inputs and a Data Out output:

One bit of memory is sometimes known as a memory cell. Let’s arrange
64 of these cells in a grid with 8 columns and 16 rows. Each row of 8 cells
is a byte of memory. The 16 rows (only three of which are shown here) are
for the 16 bytes:



Let’s ignore the Data Out part for now. As you can see, for each byte,
the Write signals are connected because an entire byte will be written into
memory at once. These connected Write signals are labeled at the left as W0
through W15. These correspond to the 16 possible addresses.

The Data In signals are connected in a different way. For each row, the
most significant bit of the byte is at the left, and the least significant bit is at
the right. The corresponding bits of each byte are connected together. It
doesn’t matter that all the bytes have the same Data In signals, because that
byte will only be written into memory when the Write signal is 1.

To write to one of 16 bytes, we need an address that is 4 bits wide
because with 4 bits we can make 16 different values and select one of 16
things—those things being the bytes that are stored in memory. As pictured
earlier, the Address input of the 16×8 RAM array is indeed 4 bits wide, but
we need a way to convert that address into the appropriate Write signal.
That’s the purpose of the 4-to-16 decoder:



This is the most complex decoder that you’ll see in this book! Each of
the 16 AND gates has four inputs, which correspond to the four Address
signals and their inverses. I’ve identified the output of these AND gates
with numbers corresponding to the values of the four address bits.

This decoder helps generate the Write signals for the 16 bytes of the
16×8 RAM array: Each of the outputs of the AND gates in the decoder is an
input to another AND gate that includes the single Write signal:



These are the signals to write the Data In byte into memory in the
illustration on page 276.

We are done with the inputs, and all that’s left are the Data Out signals
from each of the 64 memory cells. This one is hard because each of the
eight columns of bits must be handled separately. For example, here’s an
abbreviated circuit that handles the leftmost column of the 16×8 RAM array
on page 276. It shows how the Data Out signals of the 16 memory cells can
be combined with the 16 outputs of the 4-to-16 decoder to select only one
of those memory cells:

The 16 outputs from the 4-to-16 decoder are shown at the left. Each of
these is an input to an AND gate. The other input to the AND gate is a Data
Out from one of the 16 memory cells from the first column of the figure on
page 276. The outputs of those 16 AND gates go into a giant 16-input OR
gate. The result is DO7, which is the most significant bit of the Data Out
byte.



The worst part about this circuit is that it needs to be duplicated for each
of the 8 bits in the byte!

Fortunately, there’s a better way.
At any time, only one of the 16 outputs of the 4-to-16 decoder will have

an output of 1, which in reality is a voltage. The rest will have an output of
0, indicating ground. Consequently, only one of the AND gates will have an
output of 1—and only then if the Data Out of that particular memory cell is
1—and the rest will have an output of 0. The only reason for the giant OR
gate is to detect whether any of its inputs is 1.

We could get rid of the giant OR gate if we could just connect all the
outputs of the AND gates together. But in general, directly connecting
outputs of logic gates is not allowed because voltages might be connected
directly to grounds, and that’s a short circuit. But there is a way to do this
using a transistor, like this:

If the signal from the 4-to-16 decoder is 1, then the Data Out signal from
the transistor emitter will be the same as the DO (Data Out) signal from the
memory cell—either a voltage or a ground. But if the signal from the 4-to-
16 decoder is 0, then the transistor doesn’t let anything pass through, and
the Data Out signal from the transistor emitter will be nothing—neither a
voltage nor a ground. This means that all the Data Out signals from a row
of these transistors can be connected without creating a short circuit.

Here’s the abbreviated memory array again just showing the Data Out
connections. The outputs of the 4-to-16 decoder are at the left, and the
complete Data Out signals are at the bottom. Not shown are little resistors
at those Data Out signals to ensure that they are either 1 or 0:



The complete 16×8 RAM array is on CodeHiddenLanguage.com.

These transistors are the basis of a circuit called a tri-state buffer. A tri-
state buffer can have one of three outputs: ground, indicating logical 0; a
voltage, indicating logical 1; or nothing at all—neither ground nor voltage,
just as if it’s not connected to anything.

A single tri-state buffer is symbolized like this:

http://codehiddenlanguage.com/


It looks like a buffer but with an additional Enable signal. If that Enable
signal is 1, then the Output is the same as the Input. Otherwise, the Output
is said to “float” as if it’s not connected to anything.

The tri-state buffer allows us to break the rule that prohibits connecting
the outputs of logic gates. The outputs of multiple tri-state buffers can be
connected without creating a short circuit—just as long as only one of them
is enabled at any time.

Generally tri-state buffers are more useful when packaged to handle an
entire byte with a single Enable signal:

That configuration of tri-state buffers I’ll symbolize with a box like this:



In future diagrams, if I don’t have room to label the box with its full
name, I’ll use just “Tri-State” or “TRI.”

You’ve seen how tri-state buffers can help select 1 of 16 bytes within the
16×8 memory array. I also want the 16×8 memory array to have its own
Enable input:

If that Enable signal is 1, then the Data Out signals represent the byte stored
at the specified address. If the Enable signal is 0, the Data Out is nothing.

Now that we’ve built a circuit that stores 16 bytes, let’s double it. No,
let’s quadruple it. No, no, let’s octuple it. No, no, no, let’s increase the
amount of memory by a factor of 16!

To do this, you’ll need 16 of these 16×8 memory arrays, wired up like
this:



Only three of the 16 RAM arrays are shown. They share the Data In
inputs. The Data Outs of the 16 RAM arrays are safely connected together
because the outputs use tri-state buffers. Notice two sets of 4-bit address:
The address bits labeled A0 through A3 address all 16 of the RAM arrays
while the address bits labeled A4 through A7 provide a Select input for a 4-
to-16 decoder. This is used to control which of the 16 RAM arrays gets a
Write signal and which gets an Enable signal.

The total memory capacity has been increased by a factor of 16, which
means that we can store 256 bytes, and we can put this circuit in another
box labeled like so:



Notice that the address is now 8 bits wide. A RAM array that stores 256
bytes is like a post office with 256 post office boxes. Each one has a
different 1-byte value inside (which may or may not be better than junk
mail).

Let’s do it again! Let’s take 16 of these 256×8 RAM arrays and use
another 4-to-16 decoder to select them with another four address bits. The
memory capacity increases by a factor of 16, for a total of 4096 bytes.
Here’s the result:

The address is now 12 bits wide.
Let’s do it once more. We’ll need 16 of these 4096×8 RAM arrays and

another 4-to-16 decoder. The address grows to 16 bits, and the memory
capacity is now 65,536 bytes:



You can keep going, but I’m going to stop here.
You might have noticed that the number of values that a RAM array

stores is directly related to the number of address bits. With no Address
inputs, only one value can be stored. With four address bits, 16 values are
stored, and with 16 address bits, we get 65,536. The relationship is summed
up by this equation:

Number of values in RAM array = 2Number of Address inputs

RAM that stores 65,536 bytes is also said to store 64 kilobytes, or 64K,
or 64KB, which on first encounter might seem puzzling. By what weird
arithmetic does 65,536 become 64 kilobytes?

The value 210 is 1024, which is the value commonly known as one
kilobyte. The prefix kilo (from the Greek khilioi, meaning a thousand) is
most often used in the metric system. For example, a kilogram is 1000
grams, and a kilometer is 1000 meters. But here I’m saying that a kilobyte
is 1024 bytes—not 1000 bytes.

The problem is that the metric system is based on powers of 10, and
binary numbers are based on powers of 2, and never the twain shall meet.
Powers of 10 are 10, 100, 1000, 10000, 100000, and so on. Powers of 2 are
2, 4, 8, 16, 32, 64, and so on. There is no integral power of 10 that equals
some integral power of 2.

But every once in a while, they do come close. Yes, 1000 is fairly close
to 1024, or to put it more mathematically using an “approximately equal to”
sign:



210 ≅103

There is nothing magical about this relationship. All it implies is that a
particular power of 2 is approximately equal to a particular power of 10.
This little quirk allows people to conveniently refer to a kilobyte of memory
when they really mean 1024 bytes.

What you don’t say is that a 64K RAM array stores 64 thousand bytes.
It’s more than 64 thousand—it’s 65,536. To sound like you know what
you’re talking about, you say either “64K” or “64 kilobytes” or “sixty-five
thousand five hundred and thirty-six.”

Each additional address bit doubles the amount of memory. Each line of
the following sequence represents that doubling:

1 kilobyte = 1024bytes = 210bytes ≅103bytes

2 kilobytes = 2048 bytes = 211bytes

4 kilobytes = 4096bytes = 212bytes

8 kilobytes = 8192bytes = 213bytes

16 kilobytes = 16, 384bytes = 214bytes

32 kilobytes = 32, 768bytes = 215bytes

64 kilobytes = 65, 536bytes = 216bytes

128 kilobytes = 131, 072bytes = 217bytes

256 kilobytes = 262, 144bytes = 218bytes

512 kilobytes = 524, 288bytes = 219bytes

1, 024 kilobytes = 1, 048, 576bytes = 220bytes ≅106bytes

Note that the numbers of kilobytes shown on the left are also powers of 2.
With the same logic that lets us call 1024 bytes a kilobyte, we can also

refer to 1024 kilobytes as a megabyte. (The Greek word megas means
great.) Megabyte is abbreviated MB. And the memory doubling continues:



1 megabyte = 1, 048, 576 bytes = 220 bytes ≅106 bytes

2 megabytes = 2, 097, 152 bytes = 221 bytes

4 megabytes = 4, 194, 304 bytes = 222 bytes

8 megabytes = 8, 388, 608 bytes = 223 bytes

16 megabytes = 16, 777, 216 bytes = 224 bytes

32 megabytes = 33, 554, 432 bytes = 225 bytes

64 megabytes = 67, 108, 864 bytes = 226 bytes

128 megabytes = 134, 217, 728 bytes = 227 bytes

256 megabytes = 268, 435, 456 bytes = 228 bytes

512 megabytes = 536, 870, 912 bytes = 229 bytes

1, 024 megabytes = 1, 073, 741, 824 bytes = 230 bytes ≅109 bytes

The Greek work gigas means giant, so 1024 megabytes are called a
gigabyte, which is abbreviated GB.

Similarly, a terabyte (teras means monster) equals 240 bytes
(approximately 1012), or 1,099,511,627,776 bytes. Terabyte is abbreviated
TB.

A kilobyte is approximately a thousand bytes, a megabyte is
approximately a million bytes, a gigabyte is approximately a billion bytes,
and a terabyte is approximately a trillion bytes.

Ascending into regions that few have traveled, a petabyte equals 250

bytes, or 1,125,899,906,842,624 bytes, which is approximately 1015, or a
quadrillion. An exabyte equals 260 bytes, or 1,152,921,504,606,846,976
bytes, approximately 1018, or a quintillion.

Just to provide you with a little grounding, desktop computers purchased
at the time that the first edition of this book was written, in 1999,
commonly had 32 MB or 64 MB or sometimes 128 MB of random-access
memory. At the time this second edition is being written, in 2021, desktop
computers commonly have 4, 8, or 16 GB of RAM. (And don’t get too
confused just yet—I haven’t mentioned anything about storage that is
retained when the power is shut off, including hard drives and solid-state
drives [SSD]; I’m only talking about RAM here.)



People, of course, speak in shorthand. Somebody who has 65,536 bytes
of memory will say, “I have 64K (and I’m a visitor from the year 1980).”
Somebody who has 33,554,432 bytes will say, “I have 32 megs.” And those
that have 8,589,934,592 bytes of memory will say, “I’ve got 8 gigs (and I’m
not talking music).”

Sometimes people will refer to kilobits or megabits (notice bits rather
than bytes), but this is rare when speaking about memory. Almost always
when people talk about memory, they’re talking number of bytes, not bits.
Usually when kilobits or megabits come up in conversation, it will be in
connection with data being transmitted over a wire or through the air,
generally in connection with high-speed internet connections called
“broadband,” and will occur in such phrases as “kilobits per second” or
“megabits per second.”

You now know how to construct RAM in any array size you want (at
least in your head), but I’ve stopped at 65,536 bytes of memory.

Why 64 KB? Why not 32 KB or 128 KB? Because 65,536 is a nice
round number. It’s 216. This RAM array has a 16-bit address—2 bytes
exactly. In hexadecimal, the address ranges from 0000h through FFFFh.

As I implied earlier, 64 KB was a common amount of memory in
personal computers purchased around 1980, but it wasn’t quite like I’ve
shown you here. Memory constructed from flip-flops is more precisely
called static read-only memory. By 1980, dynamic RAM, or DRAM, was
taking over and soon became dominant. DRAM requires only one transistor
and one capacitor for each memory cell. A capacitor is a device used in
electronics that contains two separated electrical conductors. A capacitor
can store an electric charge, but not indefinitely. The key to making DRAM
work is that these charges are refreshed thousands of times per second.

Both static RAM and dynamic RAM are called volatile memory. A
constant source of electricity is required to hold the data. When the power
goes off, volatile memory forgets everything it once knew.

It will be advantageous for us to have a control panel that lets us manage
these 64KB of memory—to write values into memory or examine them.
Such a control panel has 16 switches to indicate an address, eight switches
to define an 8-bit value that we want to write into memory, another switch
for the Write signal itself, and eight lightbulbs to display a particular 8-bit
value:



All the switches are shown in their off (0) positions. I’ve also included a
switch labeled Takeover. The purpose of this switch is to let other circuits
use the same memory that the control panel is connected to. When the
switch is set to 0 (as shown), the rest of the switches on the control panel
don’t do anything. When the Takeover switch is set to 1, however, the
control panel has exclusive control over the memory.

Implementing that Takeover switch is a job for a bunch of 2-to-1
selectors, which are quite simple in comparison with the larger decoders
and selectors in this chapter:

When the Select signal is 0, the output of the OR gate is the same as the
A input. When the Select signal is 1, the B input is selected.

We need 26 of these 2-to-1 selectors—16 for the Address signals, eight
for the Data input switches, and two more for the Write switch and the
Enable signal. Here’s the circuit:



When the Takeover switch is open, the Address, Data input, Write, and
Enable inputs to the 64K × 8 RAM array come from external signals shown
at the top left of the 2-to-1 selectors. When the Takeover switch is closed,
the Address, Data input, and Write signals to the RAM array come from
switches on the control panel, and Enable is set to 1. In either case, the Data
Out signals from the RAM array go back to the eight lightbulbs in the
control panel and possibly someplace else.

When the Takeover switch is closed, you can use the 16 Address
switches to select any of 65,536 addresses. The lightbulbs show you the 8-
bit value currently stored in memory at that address. You can use the eight
Data switches to define a new value, and you can write that value into
memory using the Write switch.



The 64K × 8 RAM array and control panel can certainly help you keep
track of any 65,536 8-bit values you may need to have handy. But we have
also left open the opportunity for something else—some other circuitry
perhaps—to use the values that are stored in memory and to write other
ones in as well.

If you think this scenario is improbable, you might want to look at the
cover of the famous January 1975 issue of Popular Electronics, which
featured a story about the first home computer, the Altair 8800:
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The front of this computer is a control panel with nothing but switches
and lights, and if you count the long row of switches toward the bottom,
you’ll discover that there are 16 of them.

A coincidence? I don’t think so.



Chapter Twenty

Automating Arithmetic

The human species is often amazingly inventive and industrious but at the
same time profoundly lazy. It’s very clear that we humans don’t like to
work. This aversion to work is so extreme—and our ingenuity so acute—
that we’re eager to devote countless hours designing and building clever
devices that might shave a few minutes off our workday. Few fantasies
tickle the human pleasure center more than a vision of relaxing in a
hammock watching some newfangled contraption we just built mow the
lawn.

I’m afraid I won’t be showing plans for an automatic lawn-mowing
machine in these pages. But in this chapter, I’ll begin taking you through a
progression of ever more sophisticated machines that will automate the
process of adding and subtracting numbers. This hardly sounds earth-
shattering, I know. But these machines will gradually become so versatile
that they will be able to solve virtually any problem that makes use of
addition and subtraction, as well as Boolean logic, and that includes a great
many problems indeed.

Of course, with sophistication comes complexity, so some of this might
be rough going. No one will blame you if you skim over the excruciating
details. At times, you might rebel and promise that you’ll not seek
electronic assistance for a math problem ever again. But stick with me,
because eventually we’ll have invented a machine that can legitimately be
called a computer.



The last adder we looked at was in Chapter 17 on page 231. That version
included an 8-bit edge-triggered latch that accumulated a running total of
numbers entered on one set of eight switches:

As you’ll recall, an 8-bit latch uses flip-flops to store an 8-bit value.
Initially, the content of the latch is all zeros and so is the output. You use the
switches to enter your first number. The adder simply adds this number to
the zero output of the latch, so the result is the same number that you
entered. Pressing the Add switch stores that number in the latch and turns
on some lightbulbs to display it. Because this is an edge-triggered latch, the
latch does not store a new value until the Add switch is released and
pressed again.

Now you set up the second number on the switches. The adder adds this
one to the number stored in the latch. Pressing the Add button again stores
the total in the latch and displays it using the lightbulbs. In this way, you
can add a whole series of numbers and display the running total. The



limitation, of course, is that the eight lightbulbs can’t display a total greater
than 255.

A latch that is used to accumulate a running total of numbers is often
called an accumulator. But you’ll see later that an accumulator need not
simply accumulate. An accumulator is often a latch that holds first one
number and then that number combined arithmetically or logically with
another number.

The big problem with the adding machine shown above is fairly
obvious: Perhaps you have a list of 100 bytes that you want to add together.
You sit down at the adding machine and doggedly enter each and every
number and accumulate the sum. But when you’re finished, you discover
that a couple of the numbers on the list were incorrect. And then you begin
wondering if perhaps you made additional mistakes typing them all in. Now
you have to do the whole thing over again.

But maybe there’s a solution. In the preceding chapter, you saw how to
use flip-flops to build a RAM array containing 64 KB of memory. You also
saw a control panel containing switches and lightbulbs:

Flipping the switch labeled Takeover literally allows us to take over all
the writing and reading of this RAM array, as shown here:



If you had typed all 100 bytes into this RAM array rather than directly
into the adding machine, checking the values and making a few corrections
would be a lot easier.

To simplify future diagrams in this book, the 64K × 8 RAM array will
be shown by itself rather than accompanied by the control panel and the 26
selectors that are necessary to take over the reading and writing:



The existence of the control panel—or something equivalent that allows
us humans to write bytes into the memory array and read them back—is
implied by this simpler diagram. Sometimes I won’t show the Enable signal
either. You can assume that the tri-state buffers for Data Out are enabled if
this signal is not shown.

Suppose we want to add 8 bytes—for example, the hexadecimal values
35h, 1Bh, 09h, 31h, 1Eh, 12h, 23h, and 0Ch. If you use the Windows or
macOS calculator app in Programmer mode, you’ll discover that the sum is
E9h, but let’s challenge ourselves to build some hardware that adds these
numbers for us.

Using the control panel, you can enter these 8 bytes into the RAM array
beginning at the address 0000h. When you’re finished, the contents of the
RAM array can be symbolized like this:



This is how I’ll be showing a section of memory from now on. The
boxes represent the contents of the memory. Each byte of memory is in a
box. The address of that box is at the left. Not every address needs to be
indicated, because the addresses are sequential and you can always figure
out what address applies to a particular box. At the right are some
comments about this memory. This particular comment suggests that we
want to build something that adds up the first 8 bytes and then writes the
sum to the first memory location that contains a byte of 00h, which in this
case is at address 0008h.

Of course, you’re not limited to storing just eight numbers. If you have
100 numbers, you’ll store these numbers at addresses 0000h through 0063h.
Now we face the challenge of connecting the RAM array to the
accumulating adder from Chapter 17, which once again looks like this:



Those switches and lightbulbs are no longer needed because we have
switches and lightbulbs on the control panel that is connected to the
memory array. We can replace the switches to the adder with the Data Out
signals from the RAM array. And instead of the output from the latch
lighting up lightbulbs, we can route that output to the Data In inputs of the
RAM:



Of course, this is missing a few pieces. It doesn’t show you what’s
connected to the Clock signal on the latch, which is essential for storing the
accumulated sum. It also doesn’t show what’s connected to a Write signal
on the RAM, which is essential for storing the final result. The RAM is also
missing a 16-bit address necessary for accessing the contents.

The Address input to the RAM must increase sequentially, beginning at
0000h, then 0001h, 0002h, 0003, and so forth. This is a job for a counter
built from a row of cascading flip-flops, such as the one you saw on page
237 of Chapter 17:



Notice that the data path from the counter output is a little wider to
symbolize 16 bits rather than just 8.

This counter provides the Address input for the RAM:



I call this machine the Automated Accumulating Adder.
Of course, by adding a counter to provide the address for the RAM,

we’ve introduced another missing Clock signal that’s necessary to increase
the value of the counter. But we’re on our way. All the main 8-bit and 16-bit
data paths have been defined. Now all we need are three signals:

The Clock input for the counter
The Clock input for the latch
The Write input for the random-access memory



Signals of this sort are sometimes known collectively as control signals,
and they often turn out to be the most complex part of a circuit such as this.
These three signals must be coordinated and synchronized.

The Clock input for the counter causes the counter to increment to the
next address, from 0000h to 0001h, and then from 0001h to 0002h, and so
on. That address accesses a particular byte of memory, which goes into the
adder along with the output of the latch. The Clock input on the latch must
then store that new sum. In real life, the memory access and the addition
take a little bit of time, which means that the Clock input on the latch must
occur sometime after the Clock signal on the counter, and similarly, the next
Clock signal on the counter must occur sometime after the Clock signal on
the latch.

To accomplish this, let’s wire up two flip-flops like this:

The oscillator at the far left is just something that alternates between 0
and 1. It can be very fast, such as a crystal oscillator used in clocks and
computers, or it could be as simple as a switch or button that you press with
your finger.

The first flip-flop is wired to divide that frequency in half, such as you
saw toward the end of Chapter 17. The Q output of that flip-flop becomes
the Clock input to the counter, which increments the counter’s value on



every transition from 0 to 1. Here’s the timing diagram for the first flip-
flop:

The bottom row of the timing diagram symbolizes how the counter output
changes.

The Clock input to the second flip-flop is opposite that of the first flip-
flop, and the D input is the Q output from the first flip-flop, which means
that the Q output from the second flip-flop is offset one cycle from the Q
output of the first one. For purposes of comparison, the following diagram
includes the counter output from the previous diagram:

The AND gate combines the Q output from the first flip-flop and the Q
output from the second flip-flop. I will be calling that output from the AND
gate the Pulse.

This Pulse signal becomes the Clock input of the latch:

The 8-bit latch in the Automated Accumulating Adder is clocked by
the Pulse signal from the flip-flops.



We want to make sure that enough time is available for the value from
the counter to address the memory, and for the data from the memory to be
added to the previous sum before it is saved in the latch. The objective is to
ensure that everything is stable before the latch saves the new sum. In other
words, we want to avoid glitches. This has been accomplished: The counter
output remains constant when the Pulse signal is 1.

The other signal that’s required in the Automated Accumulating Adder
is the memory Write signal. I mentioned earlier that we want to write the
accumulated sum to the first memory location that has a value of 00h. That
memory location can be detected by tapping into the Data Out signals from
the RAM and running them into an 8-bit NOR gate. The output of this NOR
gate is 1 if all the individual Data Out values are 0. That output can then be
combined with the Pulse output from the flip-flop configuration:

An interactive version of the complete Automated Accumulating Adder
is available on the website CodeHiddenLanguage.com.

No provision has been made for stopping the Automated Accumulating
Adder from continuing forever. As long as the oscillator keeps generating a
signal that alternates between 0 and 1, the counter will continue to access
the memory. If the other bytes in the memory are equal to 00h, the circuitry
will write the completed sum into those locations.

Eventually, if the oscillator keeps going, the counter will reach FFFFh,
and then it will roll over to the value 0000h and start the accumulated
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addition again. But this time, it will add all the values in memory to the sum
already calculated.

To have some control over this process, you’ll probably want to add a
button or switch labeled Clear. The counter providing the memory address
is built from edge-triggered flip-flops, so it probably has a Clear input. The
latch is built from edge-triggered flip-flops as well, and edge-triggered flip-
flops have been used for generating the control signals. This Clear button
can clear the counter and the latch and stop the pair of flip-flops from
working. You can then enter new values into memory and start the addition
process again.

But the biggest problem with the Automated Accumulating Adder is that
it’s limited to adding mere bytes, and bytes can only range in value from
00h to FFh, or 255 in decimal.

The example job that I described for this Automated Accumulating
Adder was an addition of the 8 bytes 35h, 1Bh, 09h, 31h, 1Eh, 12h, 23h,
and 0Ch, which sum up to E9h, or 233 in decimal. But suppose there were a
ninth byte of 20h. The sum would then have been 109h. But that’s no longer
a 1-byte value. The output of the 8-bit adder would be just 09h, and that’s
what would be stored in memory. The Carry Out signal of the adder would
indicate that the sum exceeds FFh, but the Automated Accumulating Adder
isn’t doing anything with that signal.

Suppose you want to use the Automated Accumulating Adder to verify
deposits in your checking account. In the United States, money is reckoned
using dollars and cents—for example, $1.25—and many other countries
have similar systems. To store that value in a byte, you’ll need to convert it
to a whole number by multiplying by 100 to get 125 cents, which is 7Dh in
hexadecimal.

That means that if you want to use bytes for storing money amounts, you
are limited to values up to FFh, or 255 in decimal, or a mere $2.55.

You’ll need to use more bytes for larger amounts. How about two bytes?
Two-byte values can range from 0000h to FFFFh, or 65,535 in decimal, or
$655.35.

That’s much better, but you’ll probably also want to represent negative
amounts of money as well as positive amounts—for example, when your
checking account is overdrawn. That means using two’s complement, which
I discussed in Chapter 16. With two’s complement, the maximum positive



16-bit value is 7FFFh, or 32,767 in decimal, and the minimum negative
value is 8000h, which is –32,768. That would allow money values between
–$327.68 and $327.67.

Let’s try 3 bytes. Using two’s complement, 3-byte values can range from
800000h to 7FFFFFh, or from –8,388,608 to 8,388,607 in decimal, which
translates into money values from –$83,886.08 to $83,886.07. I suspect that
is a much safer range for most people’s checking accounts, so let’s go with
it.

How can the automated adder be enhanced to add 3-byte values rather
than just 1-byte values?

The easy answer is to expand the memory to store 24-bit values, and to
build 24-bit adders and latches.

But maybe that’s not practical. Maybe you’ve already invested in
creating a 64K × 8 RAM array, and you already have an 8-bit adder, and
these can’t be easily replaced.

If we stick with 8-bit memory, 24-bit values can be stored by splitting
them into three consecutive memory locations. But the crucial question is:
What direction?

And what do I mean by that?
Suppose you want to store the value $10,000.00. That’s 1,000,000 cents

or 0F4240h in hexadecimal, which is the 3 bytes 0Fh, 42h, and 40h. These
3 bytes can be referred to as the “high,” “middle,” and “low” bytes. But
they can be stored in memory in one of two ways. Do we store the 3 bytes
in this order?

Or in this order?



You might ask: What’s the customary way of doing it? Or: What’s the
time-honored industry-standard way of doing it? Unfortunately, the answer
to those questions is: Both. Some computers do it one way; others do it the
other way.

These two methods for storing multibyte values are known as big-endian
and little-endian. I mentioned this difference in Chapter 13 when discussing
Unicode. The terms come from Jonathan Swift’s satirical novel Gulliver’s
Travels (Part I, Chapters 4 and later), which describes how the people of
Lilliput had been embroiled in a long controversy over whether to break an
egg at the smaller or larger end. In the computer industry, it is not so much a
controversy as a basic difference that everyone has learned to live with.

At first glance, the big-endian approach seems more sensible because
it’s the same order in which we would normally write the bytes. The little-
endian approach looks backwards because it begins with the least
significant byte.

And yet, if you were reading multibyte values from memory for
purposes of addition, you’d want to begin with the least significant byte.
The addition of the least significant byte might generate a carry that is used
in the addition of the next more significant byte.

For that reason, I will store bytes in the little-endian format—least
significant byte first. But that only applies to the order when stored in
memory. When showing hexadecimal values otherwise, I’ll continue to
show the most significant byte first.

In describing what this new machine does, I’ll be speaking in terms of
“deposits” and “withdrawals” as if it were calculating a balance for a bank
account. But it could just as well apply to expenses and income when
running a small business, or assets and liabilities.

Let’s begin with two deposits of $450.00 and $350.00. In hexadecimal
these are added like so:



As each pair of bytes is added starting at the right, a carry is generated
that affects the next pair of bytes.

Now let’s withdraw $500.00 from that sum, which is 00C350h in
hexadecimal:

In Chapter 16 I described how binary numbers are subtracted. You first
convert the number being subtracted to two’s complement and then add. To
find the two’s complement of 00C350h, invert all the bits (0 bits become 1
and 1 bits become 0) to get FF3CAFh, and then add 1 to get FF3CB0h.
Now add that:

In decimal, that sum is 30,000, or $300. Now let’s withdraw another
$500:

The result is a negative number. Our balance has dropped below zero!
To determine that negative value, again invert all the bits to get 004E1Fh
and add 1 to get 004E20h, or 20,000 in decimal. The balance is –$200.00.

Fortunately, we have more money coming in. This time the deposit is a
whopping $2000.00, or 030D40h. Add that to the previous negative result:

And that, I’m pleased to say, is 180,000 in decimal, or $1800.00.

00 AF C8

+ 00 88 B8

01 38 80

01 38 80

+ 00 C3 50

01 38 80

+ FF 3C B0

00 75 30

00 75 30

+ FF 3C B0

FF B1 E0

FF B1 E0

+ 03 0D 40

02 BF 20



That’s the type of job I want this new machine to do. I want it to add and
subtract 3-byte values that are stored in memory, and I want it to write the
result back into memory.

And I do want it to subtract. I want a withdrawal of $500 to be stored as
the 3 bytes 00, C3, and 50, and not in two’s complement. I want the
machine to do the work for us in calculating the two’s complement.

But if all the numbers are stored in memory as positive values, then
deposits and withdrawals look the same. How can they be distinguished?

We need something to accompany the numbers in memory to identify
what we want to do with them. After considering this problem—perhaps
overnight if you need to—you might have the brilliant idea of preceding
each number in memory with a code of some sort. One code could mean
“add the following 3-byte value,” and another code could mean “subtract
the following 3-byte value.” Here’s how it might look in memory for the
example problem I just discussed:



I chose a code of 02h to indicate that the next 3-byte value is to be added
to the running total, and a code of 03h to indicate subtraction. These codes
are somewhat arbitrary, but not entirely. (You’ll soon see what I mean.)

Codes such as these are sometimes called instruction codes or operation
codes or opcodes. They instruct a machine reading the memory what to do,
and the machine responds by performing certain operations such as addition
or subtraction.

The contents of the memory can now be differentiated as code and data.
In this example, each code byte precedes 3 data bytes.



Now that we have codes to add and subtract values, let’s devise another
code to store the running total in memory immediately following the code,
and another code to halt the machine so it doesn’t continue running with
nothing to do:

Let’s call the machine that performs this wondrous feat the Triple-Byte
Accumulator. Like the Automated Accumulating Adder, it will continue to
access a 64K × 8 memory array, and it will accumulate the running total
using an 8-bit adder. But the number of latches must be increased to four—
one to store the instruction code and the other three to store the running
total. Here are all the major components and data paths:



To avoid overwhelming the diagram, none of the numerous control
signals is shown. I’ll spend much of the rest of the chapter showing you
these control signals. Also not shown in this already complex diagram are
the inputs to these various boxes that the control signals are attached to—
for example, the Clock inputs to the counter and the latches, the Enable
signals for the tri-state buffers, and the Write signal for the RAM.

Just as with the Automated Accumulating Adder, the Triple-Byte
Accumulator has a 16-bit counter that provides an address for the random-
access memory. The Clock input for this counter comes from the same
configuration of two flip-flops shown earlier.



The Triple-Byte Accumulator has four latches: The first is labeled “Inst.
Latch,” which stands for “instruction latch.” This is used to hold the
instruction code from memory addresses 0000h, 0004h, 0008h, and so
forth.

The other three latches are labeled “High,” “Mid,” and “Low.” These are
used to store the 3 bytes of the running total. The input to these three
latches is the Sum output of the adder. The outputs go into three boxes
labeled “Tri-State,” which are tri-state buffers, described in the previous
chapter. These boxes have Enable signals not shown in the illustration. As
with any tri-state buffer, if the Enable signal is 1, then the Outputs are the
same as the Inputs—0 if the input is 0, and 1 if the input is 1. But if the
Enable signal is 0, then the Outputs are neither 0 nor 1—neither a voltage
nor a ground, but instead nothing. That’s the third state.

Each of the three tri-state buffers shown in the Triple-Byte Accumulator
has its own Enable signal. At any time, only one of these three Enable
signals is set to 1. This allows the outputs of the three tri-state buffers to be
connected to each other without conflicts between voltages and grounds.
The Enable signals control which of the three latch outputs goes to the
RAM Data In and to the B input to the adder.

These three Enable signals depend on the two least significant bits of the
memory address generated by the counter. The bytes in memory have been
stored in a very methodical manner: First an instruction byte and then the
low, middle, and high bytes of a 3-byte number. The roles of these 4 bytes
correspond to the two least significant bits of the memory address. These 2
bits increase from 00 to 01 to 10 to 11 over and over again so that each
value corresponds to a particular type of byte in memory:

If the lower 2 bits of the address are 00, then the byte at that address is
an instruction code.
If the lower 2 bits of the address are 01, then the byte at that address is
the least significant byte (the low byte) of the number to be added or
subtracted.
Similarly, if the lower 2 bits are 10, then it’s the middle byte.
If the lower 2 bits are 11, then it’s the high byte.

The three Enable signals for the tri-state buffers can be generated by a 2-
to-4 decoder using the two least significant bits of the memory address,



identified here as A0 and A1:

Also shown is the Clock input for the instruction latch. This occurs
when the lowest 2 bits of the address are 00 and the Pulse signal from the
dual flip-flops configuration is 1. The instruction remains in that latch while
the next 3 bytes are accessed. The Clock signals for the other three latches
are a little more complicated, but I’ll show them shortly.

Here’s how the Triple-Byte Accumulator works. Let’s assume that all
the latches are initially cleared and hold no values: The counter outputs a
RAM address of 0000h. The byte at that address (02h in this example) is
latched in the instruction latch.

The counter outputs a RAM address of 0001h. That’s the location in
memory of the low byte of the first number. That byte goes into the adder.
(Ignore the box labeled “1s’ Comp.” for now; assume it does nothing,
which is true when an addition is occurring.) The lower 2 bits of the address
are 01, so the low-byte tri-state buffer is selected. But because the low-byte
latch has been cleared, the B input of the adder is 00h. The Sum output of
the adder is the low byte of the first number. That value is latched in the
low-byte latch.

The counter outputs a RAM address of 0002h. That’s the middle byte of
the first number. That goes into the adder along with the value in the middle



latch, which is 00h. The Sum output is the same as the middle byte from
memory, and that’s latched in the middle-byte latch.

The counter outputs a RAM address of 0003h. That’s the high byte, and
it goes through the adder and is latched in the high-byte latch.

The counter outputs a RAM address of 0004h. That’s an instruction code
of 02h, which means to add.

The counter outputs a RAM address of 0005h. That’s the low byte of the
second number. It goes into the A input of the adder. The low-byte tri-state
buffer is enabled. Because the latch contains the low byte of the first
number, that becomes the B input of the adder. Those two bytes are added
and then latched in the low-byte latch.

This process continues with the middle and high bytes and then the next
number.

When designing the Triple-Byte Accumulator, I defined four instruction
codes:

02h for adding the following 3-byte number
03h for subtracting the following 3-byte number
04h for writing the 3-byte running total into memory
08h for halting the machine

Only 4 bits need to be stored in the instruction latch. Here’s how those
bits correspond to the four instructions:



The instruction code remains in the latch while the next 3 bytes are read
into the machine. The bits in the instruction code are used to control other
parts of the Triple-Byte Accumulator.

For example, the Q1 bit is 1 if the next 3 bytes are to be either added or
subtracted from the running total. This means that this bit can be used to
help determine the Clock inputs on the latches for the 3 data bytes. Here’s
the 2-to-4 decoder again to show how those outputs are combined with the
Q1 instruction bit and the Pulse signal from the flip-flops:

As you saw earlier, when the lower 2 bits of the address are 00, the
instruction byte is latched. That instruction byte can then be used when
these 2 address bits are 01, 10, and 11, as the 3 data bytes are accessed. If
the instruction is an Add or Subtract, then the Q1 output of the instruction
latch will be 1, and these three AND gates generate Clock signals to
successively latch the 3 bytes.

It may have seemed odd that I originally defined the Add instruction to
be 02h and the Subtract instruction to be 03h. Why not 01h and 02h? Or
23h and 7Ch? I did it this way so that the Add and Subtract instruction
codes shared a bit that could be used to control the Clock signals for the
latches.



The Q0 bit of the instruction is 1 only if the number in the next 3 bytes is
being subtracted. If that is the case, then the two’s complement of the
number must be taken. The two’s complement is calculated by first finding
the ones’ complement and then adding 1. The ones’ complement is simply
all the bits inverted from 0 to 1 and from 1 to 0. You saw a circuit to do this
in Chapter 16:

The inputs come from the RAM Data Out. The outputs go to the A input
of the 8-bit adder. The Invert signal can come directly from the Q0 output of
the instruction latch. That’s the bit that indicates that a number is being
subtracted rather than added.

The two’s complement is the ones’ complement plus 1. The addition of
1 can be accomplished by setting the Carry In input to the adder to 1, but
only for the first of the 3 bytes:



Whenever the lowest bit from the instruction latch is 1, a subtraction is
taking place. All the data bytes coming from the RAM must be inverted.
That’s the purpose of the box labeled “Ones’ Comp.” Also, the Carry In
input of the adder must be set to 1, but only for the first byte. That’s the
purpose of the AND gate. The 01 output of the decoder will be 1 only for
the first data byte.

The OR gate is present because the Carry In to the adder might also need
to be set when adding or subtracting the second and third data bytes. To
keep the diagrams simple, I have totally ignored the carry problem, but now
we must be brave and confront it directly.

The Triple-Byte Accumulator contains three latches and three tri-state
buffers to store and access the 3 bytes of the running total:



But not exactly. To accommodate the carry bit, two of these latches need
to store 9 bits: the 8 bits of the sum as well as the Carry Out from the adder.
Two of the tri-state buffers also need to handle nine bits so that a carry from
the low-byte addition can be used in the middle-byte addition, and a carry
from the middle-byte addition can be used when adding the high byte:



Notice that the Carry Out signal from the adder is stored in the low-byte
and mid-byte latches, but these values then go into the mid-byte and high-
byte tri-state buffers, which I know looks very odd. Here’s why it’s like
that:

When the low bytes are added, the Carry In input of the adder is 0 for an
addition and 1 for a subtraction. (That’s the other input to the OR gate.)
That addition might result in a carry. The Carry Out output of the adder is
saved by the low-byte latch. However, that carry bit must be used when
adding the middle byte. That’s why the value of the carry bit in the low
latch is another input to the tri-state buffer of the middle byte. Similarly, a
carry resulting from the addition of the middle bytes must be used when
adding the high bytes.

We’re in the home stretch now. All the addition and subtraction are now
being handled. What hasn’t been handled yet is the instruction code 04h.



That’s for writing the 3 bytes into memory. This circuit uses the Q2 bit
stored in the instruction latch:

The RAM Write signal is generated only when the lower 2 bits of the
RAM address are 01, 10, or 11, corresponding to the 3 data bytes. That’s the
purpose of the inverter. When those address bits are 01, 10, or 11, the three
successive tri-state buffers are enabled. If the Q2 bit is 1 (indicating a Write
instruction) and the Pulse signal from the flip-flop configuration is 1, then
the 3 bytes are successively written into memory.

The final instruction is 08h, meaning Halt. This is an easy one. When the
Q3 bit from the instruction latch is 1, we essentially want the oscillator that
has been running the whole show to stop working:



It would also be convenient to add a Clear button, which clears the
contents of the flip-flops, the counter, and all the latches in preparation for
accumulating another running total.

An interactive version of the complete Triple-Byte Accumulator is
available on the website CodeHiddenLanguage.com.

By now it should be obvious why I defined the four instruction codes the
way I did. I wanted to use the bits directly in the circuit. I wanted one bit to
indicate an addition or subtraction, another bit to indicate subtraction,
another for writing the result into memory, and another to halt. If I had just
used the numbers 01h, 02h, 03h, and 04h, additional circuitry would have
been necessary to decode those values into separate signals.

It should also be obvious why I decided to use 3 bytes for storing each
number rather than 4. This allowed using the A0 and A1 bits of the memory
address to control the various latches in a very direct manner. If I had used
4 bytes for each number, then the operation codes would have been stored
at memory address 0000h, 0005h, 000Ah, 000Fh, 0012h, and so forth,
which would have made it more difficult to store everything in the correct
latches.

I am now ready to define two words that appear in the title of this book:
hardware and software. The Triple-Byte Accumulator clearly illustrates the
distinction: The hardware is all the circuitry, while the software consists of
the codes and data stored in memory. They are called “soft” because they
are easy to change. If you mistype one of the numbers, or mix up the codes
for addition and subtraction, you can easily change the values. Meanwhile,
the circuitry is much harder to change. That is true even if the circuitry is
only simulated, as on the CodeHiddenLanguage.com website, rather than
consisting of real-world wires and transistors.

Yet the Triple-Byte Accumulator demonstrates a very intimate
connection between hardware and software. The codes and numbers are
stored in flip-flops in memory, and the bits that make up these values
become signals that integrate with the rest of the hardware. On the most
basic level, both hardware and software are just electrical signals interacting
with logic gates.

http://codehiddenlanguage.com/
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If you were to build your own Triple-Byte Accumulator and use it to
keep track of your small-business finances, you might be justifiably nervous
if the business begins succeeding more than you anticipated. You might
easily encounter an income or expense that exceeds the machine’s 3-byte
capacity. This machine is not easily expandable. The 3-byte limit is built
into the hardware.

I’m afraid we must regard the Triple-Byte Accumulator as a dead end.
Fortunately, nothing that we’ve learned in building it will go to waste. We
have in fact discovered something very important.

We’ve made the amazing revelation that a machine can be built that
responds to codes stored in memory. The Triple-Byte Accumulator used just
four codes, but if instruction codes are stored as bytes, it’s possible to define
as many as 256 different codes for doing all sorts of tasks. These 256
different tasks might be quite simple, but conceivably they can be versatile
enough to be combined into more complex tasks.

The key here is that the simpler tasks are implemented in hardware,
while the more complex tasks are implemented in software as combinations
of instruction codes.

If you had decided to build such a versatile machine in the year 1970,
you would have had a big job ahead of you. But by the year 1980, you
wouldn’t need to build it at all! You could buy a chip called a
microprocessor that could access 64 KB of memory and interpret nearly
256 different instruction codes.

The first “computer on a chip” became available in November 1971. It
was built by Intel and called the 4004. This was a 4-bit processor that
contained 2,250 transistors and could access 4KB of memory. By mid-1972,
Intel had released their first 8-bit microprocessor, the 8008, which could
access 16 KB of memory.

These chips didn’t have quite enough versatility and memory capacity to
be fashioned into personal computers with keyboards and displays. They
were mostly designed for embedded systems, where they would work in
concert with other digital logic, perhaps to control some machinery or
perform dedicated tasks.

Then in April 1974 the Intel 8080 arrived. This was an 8-bit processor
with about 4,500 transistors that could access 64 KB of memory. The Intel
8080 was packaged in a 40-pin chip:



The Intel 8080 was ready for the big time. This is the microprocessor
used in the first home computer, the Altair 8800 shown on the cover of
Popular Electronics at the end of Chapter 19, and it was the granddaddy of
the Intel 16-bit microprocessors used in the first IBM Personal Computer
(PC), released in August 1981.

Meanwhile, Motorola was also making microprocessors. The Motorola
6800, also available in 1974, was another 8-bit microprocessor that could
access 64 KB of memory. A simplified version of the 6800 was released by
MOS Technology in 1975 and called the MOS 6502. This was the chip that
Steve Wozniak (born 1950) used in the influential Apple II computer,
released in June 1977.

Although the Intel 8080 and Motorola 6800 were similar in some ways
—they were both 8-bit microprocessors packaged in 40-pin chips that could
access 64 KB of memory—the instruction codes that they implemented
were completely different. They also differed in in another fundamental
way: Earlier I discussed the big-endian and little-endian approaches to
storing multibyte numbers. The Motorola 6800 was a big-endian
microprocessor, storing multibyte values with the most significant byte
first. The Intel 8080 was little-endian, storing the least significant byte first.

Beginning in the next chapter, I’m going to take you inside the Intel
8080 by attempting to build one. I won’t be using anything except basic
components that you’ve already seen, such as logic gates, flip-flops, adders,
latches, and tri-state buffers.

I won’t finish this ambitious project. My version of the Intel 8080 won’t
be as powerful as the real thing. But I’ll get far enough that by the time I’m
done, you’ll have an exceptionally deep understanding of what’s going on
inside a computer.



Chapter Twenty-One

The Arithmetic Logic Unit

The modern computer is a complex assemblage of myriad components, but
they can roughly be divided into three categories:

Memory
The central processing unit, or CPU
Input and output (I/O) devices, often called peripherals

You learned in Chapter 19 how random-access memory is constructed
and structured and how each byte in memory is accessed through an
address. In Chapter 20 you saw how the contents of memory can store
numbers and how codes stored in memory can control circuitry that
manipulates these numbers. In the more general case, the contents of
memory can also contain text, pictures, music, movies, and anything else
that can be represented digitally—that is, with 0s and 1s. The instruction
codes that are stored in memory are often referred to collectively as code,
and everything else as data. In other words, memory contains code and
data.

Computers also include several input and output (I/O) devices, often
called peripherals. Which peripherals a particular computer includes
depends greatly on whether the computer sits on a desk, folds up under an
arm, resides in a pocket or purse, or is hidden away in a microwave oven, a
robot vacuum cleaner, or a car.



The most visible I/O devices on a desktop computer are the video
display, keyboard, and mouse, and perhaps a printer sitting in the corner. A
laptop might have a touchpad rather than a mouse, while a phone performs
all those functions on a single screen. All these computers include a device
for mass storage, perhaps a hard drive on a desktop computer, a solid-state
drive (SSD) on a laptop, and flash storage on a phone, perhaps augmented
by external storage such as thumb drives.

Other I/O devices are less obvious, such as circuits to play sound and
music, circuits to connect to the internet via an ethernet connector or Wi-Fi,
circuits that pick up Global Positioning System (GPS) signals to tell you
where you are and where you’re going, and even devices that detect gravity
and motion to determine how your phone is oriented and moving relative to
the earth.

But the subject of this chapter (and the next three chapters) is the CPU,
which is sometimes called the “heart” or the “soul” or the “brain” of the
computer, depending on your metaphorical preference.

Chapter 20 described a Triple-Byte Accumulator that consisted of a
counter to access memory, an adder, and latches. Everything was controlled
by circuitry that used codes stored in memory to add and subtract numbers
and later to write a running total into memory.

A CPU is very much like that Triple-Byte Accumulator, except that it is
generalized to respond to many different codes. Consequently, a CPU is
much more versatile than that previous machine.

The CPU that I’ll begin building in the pages of this book will work with
bytes. That means it can be categorized as an 8-bit CPU or an 8-bit
processor. But it will be capable of addressing 64K of random-access
memory, which requires a 16-bit memory address, or 2 bytes. Although an
8-bit CPU primarily works with bytes, it must also be capable of working
with 16-bit values to a limited extent in connection with this memory
address.

Although this CPU won’t exist in the material world, it will (in theory, at
least) be capable of reading code and data from memory to perform many
different types of arithmetic and logical tasks. In terms of arithmetic and
logic processing capabilities, it will be equivalent to any other digital
computer, no matter how sophisticated.



Over the years as 8-bit CPUs gave way to 16-bit CPUs and then 32-bit
CPUs and 64-bit CPUs, these more advanced CPUs did not become capable
of different types of processing tasks. They instead perform the same tasks
faster. In some cases that speed makes all the difference—for example,
when the CPU is decoding a stream of data that encodes a movie. An 8-bit
CPU can do this same processing, but it would probably be too slow to
display the movie at the speed at which it was meant to be seen.

Although an 8-bit CPU performs mathematical and logical operations on
bytes, it will also be capable of working with numbers that require multiple
bytes. For example, suppose you want to add two 16-bit numbers together,
perhaps 1388h and 09C4h (the hexadecimal values for 5,000 and 2,500,
respectively). You would enter the following values in memory for the CPU
to process:



Of course, all those bytes probably don’t make very much sense because
they’re a mix of instruction codes and data, and you likely don’t know what
the instruction codes are. Here’s the annotated version:



A sequence of instructions such as these is called a computer program.
(But you probably guessed that!) This is a fairly straightforward program
that adds 1388h (which is decimal 5,000) and 09C4h (decimal 2,500). First,
the CPU adds the low bytes of the two 16-bit values (88h and C4h), and the
result is stored at memory address 0010h. Then the two high bytes (13h and
09h) are added with a possible carry from the first addition. That sum is
stored at address 0011h. Then the CPU halts. The 16-bit sum resides at
addresses 0010h and 0011h, where it can be examined.

Where did I get the particular codes of 3Eh, C6h, 32h, CEh, and 76h? At
this point I haven’t even started building the CPU, so I could have just
made them up. But I didn’t. Instead, I used actual instruction codes



implemented by the famous Intel 8080 microprocessor that was used in the
MITS Altair 8800, which is widely regarded as the first commercially
successful personal computer. The first IBM PC didn’t use the 8080
microprocessor, but it did use the Intel 8088, which (as the number
suggests) was the next generation of this family of processors.

In this chapter and the next few chapters, I use the Intel 8080 as a model
to design my own CPU. But only as a model. My CPU will implement only
a subset of the 8080. The Intel 8080 implemented 244 instruction codes, but
when my CPU is finished, it will implement just over half of those.
Regardless, you will still have an excellent idea of what goes on in the very
heart (or soul or brain) of a computer.

I’ve been referring to these codes as instruction codes or operation
codes or opcodes. They are also known as machine codes because they are
used directly by the machine—the circuitry that constitutes the central
processing unit. The little computer program shown earlier is an example of
a machine code program.

All the 8080 instruction codes are just 1 byte. However, some of them
require 1 or 2 additional bytes following the instruction byte. In the
example above, the instruction codes 3Eh, C6h, and CEh are always
followed by another byte. These are known as 2-byte instructions because
the byte that follows the operation code is really part of the same
instruction. The instruction code 32h is followed by 2 bytes that define a
memory address. This is one of several 3-byte instructions. Many
instructions don’t require any additional bytes, such as the code 76h, which
halts the CPU. This variation in the length of instructions will certainly
complicate the design of the CPU.

The particular sequence of codes and data in the previous example does
not represent the best way to add two 16-bit numbers together. The
instruction codes and the data are all jumbled together. Often it’s better to
keep the code and data in separate areas of memory. You’ll get a better idea
of how this works in the next chapter.

A central processing unit itself is composed of several components. The
remainder of this chapter focuses on the most fundamental part of the CPU,
which is known as the arithmetic logic unit, or ALU. This is the part of the
CPU that adds and subtracts, as well as performing a couple of other useful
tasks.



In an 8-bit CPU, the ALU is only capable of 8-bit addition and
subtraction. But very often, we need to work with numbers that are 16 bits
wide, or 24 bits, or 32 bits, and maybe even larger. As you’ve seen, these
large numbers must be added and subtracted in bytes, starting with the least
significant byte. Each subsequent 1-byte addition or subtraction must take
into account the carry from the previous operation.

This implies that our ALU must be capable of the following basic
operations:

Add one 8-bit number to another.
Add one 8-bit number to another with the possible carry from the
previous addition. This is known as addition with carry.
Subtract one 8-bit number from another.
Subtract one 8-bit number from another with the possible carry from
the previous subtraction. This is called subtraction with carry or, more
commonly, subtraction with borrow, which is just slightly different
terminology for the same thing.

For convenience, let’s shorten the descriptions of these four operations:

Add
Add with Carry
Subtract
Subtract with Borrow

Eventually I will be abbreviating these descriptions even more. Keep in
mind that the Add with Carry and the Subtract with Borrow operations use
the carry bit from the previous addition or subtraction. That bit could be 0
or 1, depending on whether the operation resulted in a carry or not. This
means that the ALU must save the carry bit from one operation to use in the
next operation.

As usual, handling the carry bit makes basic arithmetic considerably
more complex than it would be without carries.

For example, suppose you needed to add a pair of 32-bit numbers, which
are 4 bytes each. You’d first add the two least significant bytes. That
addition might result in a carry, or it might not. Let’s call that carry the
Carry flag, since it signifies that a carry resulted from the addition. That



Carry flag might be 0 or 1. You’d then add the two next more-significant
bytes with that Carry flag from the previous addition and continue with the
other bytes.

The addition of a pair of 32-bit numbers requires four operations for the
four pairs of bytes:

Add
Add with Carry
Add with Carry
Add with Carry

The process is similar for subtraction, except that the number being
subtracted is converted to two’s complement, as discussed in Chapter 16:
All the 0 bits become 1, and all the 1 bits become 0. For the first byte of a
multibyte number, a 1 is added by setting the carry input of the adder. A
subtraction of one 32-bit number from another thus also requires four
operations:

Subtract
Subtract with Borrow
Subtract with Borrow
Subtract with Borrow

I want to encapsulate the circuitry that performs these additions and
subtractions in a box that looks like this:



This shouldn’t look too unusual. Two 8-bit inputs are added or
subtracted for an 8-bit output. But this box does have a few differences
from similar boxes that you’ve seen.

Usually when labeling an 8-bit adder I’ve used CI for Carry In and CO
for Carry Out. But this box is labeled a little differently. I’m using the
abbreviation CY to represent the Carry flag. As you’ll see, the CY Out is
the same as the Carry Out from the adder, but CY In is the Carry flag from
the previous addition or subtraction, and that might not be the same as the
Carry In to the adder.

Also new in this diagram are the two inputs labeled F0 and F1. The F
stands for “function,” and these two inputs govern what goes on inside the
box:

Keep in mind that we are building something that works in conjunction
with instruction codes stored in memory. If we design these instruction
codes intelligently, then two bits of these codes might be used to provide
the function inputs for this Add/Subtract module, just like the bits for the
Add and Subtract codes in the previous chapter. Much of this Add/Subtract
module should look familiar:



The box labeled Ones’ Complement inverts the input when the Inv
(“invert”) signal is 1. This is necessary as a first step to convert to two’s
complement when performing subtraction.

The Carry Out from the adder becomes the CY Out from the
Add/Subtract module. But what this diagram is missing is the Inv signal for
the Ones’ Complement box and the CI signals for the adder. The Inv signal
must be 1 for subtraction, but CI is a little more complicated. Let’s see if it
can be clarified with a logic diagram:

This table shows that the Inv signal to the Ones’ Complement inverter is
the same as F1. That’s easy! But the CI input to the adder is a little messier.
It’s 1 for a Subtract operation. That’s the first byte of a multibyte



subtraction when it’s necessary to add one to the ones’ complement to get
the two’s complement. If F0 is 1, then CI is the CY flag from the previous
addition or subtraction. This can all be accomplished with the following
circuitry:

An interactive version of the complete Add/Subtract module is available
on the website CodeHiddenLanguage.com.

What else might you want an arithmetic logic unit to do besides addition
and subtraction? If your answer is “multiplication and division,” I’m afraid
you’re going to be disappointed. If you consider how difficult it is to
construct circuitry to add and subtract, just try to imagine the logical
complexity of multiplication and division! Although such circuitry is
possible, it is quite beyond the modest ambitions of this book. And since the
Intel 8080 didn’t implement multiplication or division, neither will my
CPU. If you’re patient, however, you’ll see by the end of Chapter 24 how
the CPU that we’re building will have the basic tools to perform
multiplication.

Instead of worrying about multiplication, let’s instead think about the
second word in the phrase arithmetic logic unit. In this book, the word logic
often refers to Boolean operations. How might these be useful?

Suppose you had the following ASCII codes stored in memory starting
at some arbitrary address:

http://codehiddenlanguage.com/


Perhaps you want to convert all that text to lowercase.
If you glance back to page 154 in Chapter 13, you’ll see that the ASCII

codes for the uppercase letters range from 41h to 5Ah, and the ASCII codes
for the lowercase letters range from 61h to 7Ah. The ASCII codes for
corresponding uppercase and lowercase letters differ by 20h. If you know
that a letter is uppercase, you can convert it to lowercase by adding 20h to
the ASCII code. For example, you can add 20h to 54h, which is the ASCII
code for uppercase T, to get 74h, which is the ASCII code for lowercase t.
Here’s the addition in binary:

But you can’t do that for all the letters. If you add 20h to 6Fh, which is
the ASCII code for the lowercase o, you’ll get 8Fh, which isn’t an ASCII
code at all:

But look closely at the bit patterns. Here’s the uppercase and lowercase
A, which are ASCII codes 41h and 61h:

0 1 0 1 0 1 0 0

+ 0 0 1 0 0 0 0 0

0 1 1 10 1 0 0

0 1 1 0 1 1 1 1

+ 0 0 1 0 0 0 0 0

1 0 0 0 1 1 1 1



A: 0 1 0 0 0 0 0 1

a: 0 1 1 0 0 0 0 1

And here’s uppercase and lowercase Z, which are ASCII codes 5Ah and
7Ah:

Z: 0 1 0 1 1 0 1 0

z: 0 1 1 1 1 0 1 0

For all the letters, the only difference between the uppercase and
lowercase letters is a single bit, which is the third bit from the left. You can
convert uppercase to lowercase by setting that bit to 1. It doesn’t matter if
the letter is already lowercase, because that bit would already be set.

So instead of adding 20h, it makes more sense to use a Boolean OR
operation on each pair of bits. Do you recall this table from Chapter 6?

The result of an OR operation is 1 if either of the two operands is 1.
Here’s the uppercase T again, but instead of adding 20h, let’s apply an

OR operation between the corresponding bits of 54h (the T) and 20h:

The result is a 1 bit if either of the corresponding bits is 1. The
advantage of this method is that lowercase letters remain unchanged. The
result of an OR operation with lowercase o and 20h:

0 1 0 1 0 1 0 0

OR 0 0 1 0 0 0 0 0

0 1 1 0 0 1 0 0

0 1 1 0 1 1 1 1

OR 0 0 1 0 0 0 0 0

0 1 1 0 1 1 1 1



If you apply an OR operation of 20h with each of the letters in memory,
you can convert all the letters to lowercase:

What we’ve been doing here has a name. It’s called a bitwise OR
operation, because it performs an OR operation between each pair of
corresponding bits. It turns out to be useful for other tasks besides
converting text to lowercase. For that reason, I want to add the following
circuitry to the arithmetic logic unit:

For the corresponding 8 bits of 2 bytes labeled A and B, the circuit
performs an OR operation. Let’s put that circuit in a box with a simple
label:



Now consider how you might convert a block of text to uppercase. It’s a
little different process because instead of setting a bit to 1, you want to set
that bit to 0. Instead of an OR operation, you’ll need an AND operation.
Here’s the table from Chapter 6:

Instead of using an OR operation with 20h, you use the AND operation
with DFh (11011111 in binary), which is the inverse of 20h. Here’s the
lowercase o converted to uppercase:

The ASCII code 6Fh becomes the code 4Fh, which is the ASCII code for
the uppercase O.

If the letter is already uppercase, an AND operation with DFh has no
effect. Here’s the uppercase T:

It remains uppercase after the AND operation with DFh. Over the entire
text, an AND operation converts every letter to uppercase:

0 1 1 0 1 1 1 1

AND 1 1 0 1 1 1 1 1

0 1 0 0 1 1 1 1

0 1 0 1 0 1 0 0

OR 1 1 0 1 1 1 1 1

0 1 0 1 0 1 0 0



It will be useful if the ALU contains a collection of eight AND gates to
perform a bitwise AND operation between 2 bytes:

Let’s put this in a little box for easy reference:



A bitwise AND operation is also useful for determining if particular bits
of a byte are 0 or 1. For example, suppose you have a byte with an ASCII
code for a letter, and you want to know if it’s lowercase or uppercase.
Perform a bitwise AND with 20h. If the result is 20h, then the letter was
lowercase. If the result is 00h, it was uppercase.

Another useful bitwise operation is exclusive OR, or XOR. The
following table appeared in Chapter 14 when it became evident that such an
operation was useful for addition:

Here’s a row of eight XOR gates wired to perform a bitwise XOR
operation between 2 bytes:

Once again, let’s put that circuit in a convenient box:



The XOR operation is useful for inverting bits. For example, if you were
to apply an XOR operation with the ASCII codes for “TomSawyer” and
20h, all the uppercase letters would be converted to lowercase, and all the
lowercase letters would become uppercase! Performing an XOR operation
with FFh would invert all the bits in a value.

Earlier I defined two function bits labeled F1 and F0 for the
Add/Subtract module. For the entire ALU, we’ll need three function bits:

I am not assigning these function codes arbitrarily. As you’ll see, these
codes are implied by the actual instruction codes implemented by the Intel
8080 microprocessor. Besides the bitwise AND, XOR, and OR, you’ll see
that another operation, called Compare, has been added to the table. I’ll
discuss that shortly.



Toward the beginning of this chapter I showed you a little program with
operation codes C6h and CEh, which performed an addition with the next
byte in memory. The C6h code is a regular addition, while CEh is an
addition with carry. These are called immediate instructions because they
use the next byte following the operation code. In the Intel 8080, those two
codes are part of a family of eight operation codes, shown here:

These opcodes have the following general form:

1 1 F2 F1 F0 1 1 0

where F2, F1, and F0 are the bits shown in the previous table. Those three
bits are used in the next circuit, which combines the bitwise AND, XOR,
and OR boxes:



The A and B inputs are routed to all three AND, XOR, and OR boxes.
They all simultaneously perform their assigned duties. But only one must
be selected as output. This is the purpose of the three boxes labeled TRI,
which are 8-bit tri-state buffers. The tri-state buffers allow selecting one of
them (or none of them) based on the three F0, F1, and F2 function signals. If
F2 is 0, or if F2, F1, and F0 are all 1, then none of the outputs is selected.

Let’s encapsulate that diagram in another box:



That’s the logic component of the arithmetic logic unit.
The table above shows that if F2, F1, and F0 are all 1, then a Compare

operation is performed. What does this mean?
Sometimes it’s useful to determine if one number is less than, greater

than, or equal to another. How do you do this? Basically, it’s a subtraction.
Subtract byte B from byte A. If the result is zero, you know that the two
numbers are equal. Otherwise, if the Carry flag is set, then byte B is larger
than byte A, and if the Carry flag is not set, byte A is larger.

The Compare operation is the same as the Subtract operation with the
important distinction that the result isn’t saved anywhere. Instead, the Carry
flag is saved.

But for a Compare operation, it’s also necessary to know if the result of
the operation was zero, which indicates that the two bytes are equal to each
other. This implies the need for another flag, called the Zero flag, which
must be saved along with the Carry flag.

While we’re at it, let’s add another flag, called the Sign flag. This flag is
set if the most significant bit of the result of an operation is 1. If the number
is in two’s complement, the Sign flag indicates whether the number is
negative or positive. The flag is 1 if the number is negative and 0 if the
number is positive.

(The Intel 8080 actually defines five flags. I won’t be implementing the
Auxiliary Carry flag, which indicates whether a carry results from the least
significant 4 bits of the adder to the most significant 4 bits. This is
necessary for implementing an Intel 8080 instruction called Decimal Adjust
Accumulator, which converts the value in the accumulator from binary to
binary-coded decimal, or BCD, which I discussed when building clocks in
Chapter 18. My CPU won’t implement that instruction. The other flag I
won’t be implementing is the Parity flag, which is 1 if the result of the
arithmetic or logical operation has an even number of 1 bits. This is fairly
easy to implement with seven XOR gates, but it’s much less useful than the
other flags.)

It turns out that for some programming tasks, the Compare operation is
more important than addition and subtract. For example, suppose you’re
writing a program that finds some text on a webpage. This involves
comparing the characters of the text on the webpage with the characters of
the text you want to find.



The entire arithmetic logic unit combines the Add/Subtract module and
the Logic module with some rather messy support circuity:

The two boxes labeled TRI are tri-state buffers. The Logic module
enables an output only for the three combinations of F0, F1, and F2 that
select AND, OR, and XOR operations. The tri-state buffer on the output of



the Add/Subtract module is enabled only if F2 is 0, which indicates addition
or subtraction.

Toward the bottom, two latches have their Clk inputs connected to a
Clock input at the bottom left that applies to the entire ALU. Another tri-
state buffer is controlled by an Enable signal at the bottom left that is also
an input to the ALU. The tri-state buffer on the bottom right is the
composite output from the Add/Subtract and Logic modules.

Most of the logic gates in the diagram are devoted to the Carry flag
(abbreviated as CY). The Carry flag should be set if the F2 signal is 0
(indicating an addition or subtraction operation) or F1 and F0 are 1, which
indicates a Compare operation.

The three flags are inputs to the latch in the center at the bottom. An
eight-input NOR gate determines if the result of an operation is all zeros.
That’s the Zero flag (abbreviated as Z). The high bit of the data output is the
Sign flag (abbreviated as S). Although there are only three flags, they are
treated as 3 bits of a byte as they are output from the ALU. The Carry flag
then circles back up to the top to provide the CY In input of the Add/Sub
module.

The next step is to hide all that messy logic in a simple box:

The arithmetic logic unit is complete!
Although the ALU is an extremely important component of the central

processing unit, the CPU needs more than a way to perform arithmetic and
logical operations on numbers. It needs a way to get numbers into the ALU,
and a way to store the results and move them around. That’s the next step.



Chapter Twenty-Two

Registers and Busses

Many of the routine operations of a computer involve moving stuff around,
and by “stuff” I mean bytes of course. We experience this movement of
bytes every time we load or save a file, when streaming music or movies, or
when videoconferencing. Sometimes if those bytes don’t move fast enough,
sound or video can freeze or become garbled. We’ve all been there.

On a more micro level, bytes also move within the central processing
unit (CPU) itself. Bytes move from memory into the CPU, and into the
arithmetic logic unit (ALU). Results from the ALU sometimes go back into
the ALU for additional arithmetic or logical operations before eventually
being moved into memory.

This movement of bytes within the CPU is not quite as glamorous as the
number crunching of the ALU, but it is just as essential.

As these bytes are moved within the CPU, they are stored in a collection
of latches. This is a concept that should be familiar from the Triple-Byte
Accumulator in Chapter 20. That machine contained four 8-bit latches, one
for storing an instruction code and the other three for storing data bytes.

The CPU that I’m building in these chapters is based on the Intel 8080
microprocessor, and it will require more than just four latches. I won’t show
you all of them right away. I first want to focus on seven very special 8-bit
latches that can be directly controlled by CPU instructions. These latches
are called registers, and a primary purpose of these registers is to store
bytes as they are processed by the ALU.



All seven of these registers are important, but one of them is especially
important, and that one is called the accumulator.

How special is the accumulator? As you’ll recall from the previous
chapter, the ALU has two inputs labeled A and B. In the Intel 8080 (and
hence, the CPU that I’m building), the first of these two inputs is always the
value stored in the accumulator, and the output of the ALU is always stored
back in the accumulator. From the accumulator, it can be moved to one of
the other registers or stored in memory.

The seven registers are identified by letters. The accumulator is also
known as register A. Four of the other registers are unimaginatively labeled
B, C, D, and E. But the final two registers are not F and G. As you’ll see,
these two registers are often used together to create a 16-bit address for
accessing memory. For that reason, they are called H and L, standing for
“high byte” and “low byte.”

In summary, the Intel 8080 (and my CPU) defines seven registers
referred to as A, B, C, D, E, H, and L.

On page 318 in the previous chapter, I identified the operation code 3Eh
as the “Code to move next byte into CPU.” More precisely, that is the code
to move the next byte in memory into the accumulator, also known as
register A. That code 3Eh is part of a family of similar codes implemented
by the 8080:

Code 3Eh is at the bottom of this table. Yes, it’s true that the numerical
order of these codes does not match the alphabetical order of the registers,
but that’s just the way it is.



Notice code 36h. This code is different from the others in the table. It
doesn’t move the byte following the operation code into one of the seven
latches. Instead, that byte is stored in memory at the 16-bit memory address
formed by the H and L registers, which is symbolized as [HL].

I haven’t yet completed building a CPU that understands these
instructions, but if we had such a CPU (or a computer using an Intel 8080),
we could run the following little computer program that uses three of these
instruction codes:

Three of these codes—26h, 2Eh, and 36h—are in the table I just showed
you. The first moves the next byte in memory (which is 00h) into register
H. The second moves the byte 08h into register L. The registers H and L
together now form the memory address 0008h. The third instruction code is
36h, which means to store the next byte (which is 55h) into memory at
[HL], which is the address formed by the H and L registers. Finally, the
code 76h is encountered, which halts the CPU.

The use of registers H and L to form a 16-bit memory address is known
as indirect addressing, and while it might not be obvious at the moment, it
turns out to be very useful.

If you examine the bits in the eight operation codes in the previous table,
you’ll discover a pattern. All these eight codes are made up of these bits:

0 0 D D D 1 1 0



where DDD is a 3-bit code for the destination of the byte, as shown in the
following table:

Code 110 in this table indicates a memory location addressed by the 16-
bit combination of registers H and L. I personally prefer to denote that
memory location as [HL], but Intel’s documentation of the 8080 refers to it
as M (standing for memory, of course) as if M were simply another register.

If all the operation codes supported by an 8-bit processor are 1 byte in
length, how many operation codes can there be? Obviously 256. It turns out
that the Intel 8080 only defines 244 instruction codes, leaving 12 8-bit
values undefined. So far, you’ve seen two tables of eight instruction codes
each, the first in Chapter 21 on page 329, and eight more in the table on
page 336. On page 318 in Chapter 21, you were also introduced to codes
32h, which stores a byte in a memory address that follows the instruction
code, and 76h, which halts the processor.

Hold on to your hat, because the next table contains 64 operation codes:



This table contains more than a quarter of all the operation codes
implemented by the Intel 8080. These operations constitute the core of the
arithmetical and logical functions supported by the CPU.

At the top of the eight columns of operation codes you’ll see three-letter
abbreviations for Add, Add with Carry, Subtract, and Subtract with Borrow;
the logical operations AND, XOR, and OR; and Compare. These are the
abbreviations that Intel uses in its documentation of the 8080
microprocessor. You can think of them as mnemonics—that is, simple
words to help you remember longer operations—but they also play an
important role when writing programs for the 8080.

Each of the eight arithmetic and logical operations can be combined
with a source shown in the leftmost column, which lists the seven registers
and memory accessed by [HL].

These abbreviations provide convenient ways to refer to the instruction
codes. For example, instead of saying “code to add the content of register E
to the accumulator” or “operation code 83h,” you can simply say:

ADD E



The sum of register E and the accumulator is stored back in the
accumulator.

Instead of saying “Perform an exclusive OR operation between the
accumulator and the memory byte stored at [HL]” or “operation code AEh,”
you can simply say:

XRA M

The result is stored back in the accumulator.
These abbreviations are formally known as assembly language

instructions. The term originated in the early 1950s and refers to the process
of assembling a computer program. The mnemonics are a very concise way
of referring to a particular instruction code implemented by the CPU. The
assembly language instruction XRA M is the same as the operation code AEh,
and vice versa.

All 64 instructions in the previous table have the following bit patterns:

1 0 F F F S S S

where FFF is the code for the arithmetic or logical function as implemented
in the ALU in Chapter 21. The code SSS refers to the source register or
memory, which are the same codes as in the table on page 337.

Earlier, on page 336, you saw a table of instruction codes that moved the
byte following the instruction code into one of the registers or memory.
These are referred to as move immediate instructions, which is abbreviated
MVI. Now it’s time to stop referring to them with English descriptions and
begin using the official assembly language instructions:



I’ve also moved the operation code to the last column to emphasize the
primacy of the assembly language instruction. The word data refers to the
byte following the operation code.

The code 32h introduced on page 318 of Chapter 21 stores the contents
of the accumulator to memory at the address location that follows the
instruction code. This is one of a pair of similar codes. The code 3Ah loads
the byte at that address into the accumulator:

The abbreviation STA means “store accumulator,” and LDA means “load
accumulator.” The abbreviation addr refers to a 16-byte address given in 2
bytes following the operation code.

The mnemonic HLT corresponds to the opcode 76h, which halts the CPU.
Here’s a little computer program that uses a few of these instructions,

showing how the operation codes correspond to the assembly language
instructions:



The LDA instruction loads the values at the address 2044h in the
accumulator. That value is 66h. The MVI instruction loads the value 33h into
register B. The ADD instruction adds the value in register B to the value in
the accumulator. Now the accumulator contains the value 99h. The STA
instruction then stores that sum to memory at the address 2044h,
overwriting the value 66h with the value 99h.

The eight operation codes in the table on page 329 in Chapter 21
perform arithmetic and logical operations using the byte following the
instruction code. Those instructions are shown here with their official Intel
8080 mnemonics:



I mentioned in Chapter 21 that these instructions are referred to as
immediate instructions because they perform an arithmetic or logical
operation using the byte immediately following the opcode. They can be
pronounced “add immediate,” “add with carry immediate,” “subtract
immediate,” and so forth. The operation always involves the accumulator,
and the result goes back into the accumulator.

The little program shown previously can be simplified like so:



Now instead of loading the value 33h into register B and adding that to the
accumulator, the value 33h is added to the accumulator with the ADI
instruction.

The Intel 8080 also defines 63 instructions that move bytes from one
register to another, from the memory address [HL] to a register, or from a
register to that memory address:

These are called move instructions, abbreviated with the 8080 mnemonic
MOV. These 63 instructions are written with both the destination register and
source register. The code 69h is

MOV L,C

The destination register appears first, and the source register is second.
Watch out! This convention can be confusing at first. This instruction
means to move the byte in register C to register L. Perhaps you can
visualize it like this, with a little arrow showing how the byte is moved:

Move L ← C



The previous content of register L is replaced with the value from register
C. The content of register C does not change, and afterwards C and L
contain the same value.

Notice that seven of these instructions don’t really do anything because
the source and destination registers are the same, for example:

MOV C,C

Moving the contents of a register to itself doesn’t do anything.
However, there is no MOV M,M instruction. That would be operation code

76h, which is instead used for the instruction that halts the computer,
abbreviated HLT.

Here’s another way to write the little program that adds a value to the
byte at memory location 2044h:

This version demonstrates the convenience of indirect addressing using
the H and L registers. They are set just once to values that form a memory
address of 2044h. The first MOV instruction moves the value at that address
into the accumulator. The accumulator then contains the value 66h. Then
the value 33h is added to that. The second MOV instruction moves the value



of the accumulator to the memory location 2044h without needing to
specify that address again.

If you examine the bits that make up these 63 MOV instructions, you’ll
discover the following pattern:

0 1 D D D S S S

where DDD is the destination register and SSS is the source register. This is
the same table you saw earlier:

One way to design a CPU is to first decide what instructions you want
the CPU to implement and then figure out what circuitry you need to do
that. That’s essentially what I’m doing here. I’m selecting a subset of the
Intel 8080 instructions and then building the circuitry.

To implement all the instruction codes that involve the seven registers,
the CPU needs a way to store bytes in seven latches and to retrieve those
bytes based on those 3-bit codes. For now, I will ignore the code 110
because it must be treated as a special case. The other seven codes can be
used as inputs to 3-to-8 decoders.

The following circuit contains seven latches and seven tri-state buffers.
One 3-to-8 decoder is used to latch the incoming value into one of the
registers, and another 3-to-8 decoder is used to enable one of the tri-state
buffers to select a value from one of the registers:



This is called a register array, and it is the most important circuit you’ll be
seeing in this chapter. I know it looks a bit complex at first, but it’s really
quite straightforward.

At the top of the circuit is an 8-bit data path labeled “In.” That’s a byte
to be saved in the register array. The seven boxes labeled with letters are 8-
bit latches. Although not explicitly labeled, each of these latches has a
Clock input on the left that saves a value in the latch.

At the top of the diagram on the left and right are two 3-to-8 decoders
with Select inputs labeled S2, S1, and S0. The values of these Select inputs
correspond with the codes for the seven latches as shown in the previous
table. That’s why the output labeled 6 is unused: That output corresponds to
a select value of 110, which refers to a memory location rather than a latch.

The 3-to-8 decoder on the top left controls the Clock inputs on these
latches. That Clock signal is routed to one of the seven latches depending



on the values of S0, S1, and S2. This process saves the input byte in one of
the latches.

Underneath each of the seven latches is a tri-state buffer. Although not
explicitly identified, each of these buffers has an Enable input. On the upper
right is another 3-to-8 decoder. This decoder enables one of the seven tri-
state buffers, and the byte stored in that latch appears at the Out data path at
the bottom.

Notice that the accumulator is treated somewhat specially here: The
value stored in the accumulator is always available as the Acc output shown
at the bottom.

The 8-bit values going into this register array can come from several
sources: They can come from memory, or from one of the other registers, or
from the ALU. The 8-bit values coming out of this register array can be
stored in memory, stored in one of the other registers, or go into the ALU.

Just so you don’t lose sight of the forest while wandering around the
trees, here’s a simplified block diagram that shows these data paths:



Much is missing from this diagram. Only shown are the major 8-bit data
paths. Besides the path from the Acc output of the register array to the A
input of the arithmetic logic unit, all the other inputs and outputs are
interconnected. Even the Data Output of the RAM is connected to the RAM
Data Input!

This is possible because all the outputs of these components go through
tri-state buffers, only one of which is enabled at any time. That enabled
value can then be stored in memory with the Write signal, or stored in one
of the seven registers in the register array, or a result of an arithmetic or
logical operation can be stored in the ALU.

The connection between all the inputs and outputs is called a data bus.
It’s a data path that is common to the inputs and outputs of all the
components. When a tri-state buffer connected to the data bus is enabled,
that byte is available all over the data bus, and it can be used by any other
component on the data bus.



This data bus is only for 8-bit data. There will be another bus for the 16-
bit memory address because that address can also come from a variety of
sources. That 16-bit bus is called the address bus, and you’ll see it shortly.

Now for some annoying details. I sincerely wish that the register array
were as simple as the circuit that I showed you on page 344, but it’s going
to need a couple of enhancements.

The register array that I’ve shown you is great for the MOV instructions
that involve moving a byte from one register to another. Indeed, the 3-to-8
decoders were implemented in the register array with the MOV instruction in
mind: The contents of one register can be enabled on the data bus, and that
value can be stored in another register.

But this register array doesn’t work for the STA and LDA instructions.
Those instructions store a value from the accumulator into memory and
load a value from memory into the accumulator. Other instructions also
involve the accumulator. All the arithmetic and logic instructions store the
result in the accumulator.

For that reason, the accumulator section of the register array must be
enhanced somewhat to allow a value to be stored in the accumulator and
later retrieved from the accumulator independently of the 3-to-8 decoders.
This can be accomplished with just a little additional logic in the register
array that involves only the accumulator latch and tri-state buffer:



Two additional signals at the left have been added that are inputs to two
OR gates. These signals allow a value from the data bus to be saved in the
accumulator (the latch labeled “A”) independently of the Input Select
decoder and to be enabled on the data bus independently of the Output
Select decoder.

Another enhancement to the register array is required for addressing
RAM with the combination of the H and L registers. But that enhancement
is much more severe, so let’s delay it as long as possible while focusing on
other necessities!

Three additional 8-bit latches must be connected to the data bus. These
are the latches that store the instruction bytes:



The operation code is always stored in Instruction Latch 1. After the
operation code is stored in the latch, it can be used to generate all the other
signals that control the CPU. You’ll see how this works in the next chapter.

Instruction Latch 2 is used for instructions that have an additional byte.
For example, the move immediate (MVI) operation codes are followed by a
byte that is then moved into one of the registers. The arithmetic and logical
immediate instructions, such as ADI, are also followed by a byte. In the case
of ADI, for example, that byte is added to the accumulator. The value in
Instruction Latch 2 must therefore be enabled on the data bus, which is the
purpose of the tri-state buffer.

Instruction Latches 2 and 3 are used together for those instructions that
are 3 bytes in length—for example, STA and LDA. For these instructions, the
second and third bytes constitute a 16-bit value used to address memory.

Aside from the 8-bit data bus, the CPU requires a 16-bit address bus to
access up to 64K of memory. From what you know so far, the address used
to access memory can come from three different sources:

A value called the program counter. This is the 16-bit value that
accesses instructions. It starts at 0000h and sequentially increases until
a HLT instruction.
The 2 bytes following the STA or LDA operation codes. Together these
form a 16-bit address.



The H and L registers form a 16-bit address—for example, in the MOV
A,M instruction. When used in this way, HL is called a register pair.

In the Triple-Byte Accumulator, memory was accessed sequentially
using a 16-bit counter. I’m not going to use a counter with the CPU that I’m
building. As you’ll see in Chapter 24, some instructions can set the program
counter to a different address. For that reason, the program counter will be a
16-bit latch whose value is generally increased by one after an instruction
byte is retrieved from memory.

Here’s the program counter in its entirety:

Notice that these data paths are visibly wider than those shown in earlier
diagrams because they represent 16-bit values. Both the input at the top and
the output at the bottom are connected on the address bus. Any value on the
address bus can be saved in the latch using the Clock input, and the value in
the latch can be put on the address bus using the Enable signal.

For an STA or LDA instruction, the 2 bytes following the operation code
are stored in Instruction Latches 2 and 3. This means that those latches must
also be connected to the address bus through a tri-state buffer.

For a MOV instruction that involves a memory address with the HL
register pair, the values from the H and L latches must also be connected to
the address bus. When building the register array, I gave no thought at all to
this requirement. In my design of the register array, the H and L registers
only come in contact with the data bus.

Moreover, I want to introduce two more instructions:



The INX instruction adds 1 to the 16-bit value in the register pair HL. The
DCX instruction performs a decrement by subtracting 1 from the value.

These instructions turn out to be very useful, particularly INX. For
example, suppose there are 5 bytes stored sequentially in memory starting
at address 1000h, and you want to add them up. You only need to set the H
and L registers once and then increment the value after accessing each byte:



You’ll recall that the ALU has some flags that indicate when the result is
zero, or if it’s negative or if a carry has resulted from an addition or
subtraction. No flags are affected by the INX and DCX instructions.

(The Intel 8080 also implements INX and DCX instructions for the register
pairs BC and DE, but those are less useful, and I won’t be implementing
them in my CPU. The Intel 8080 also implements 8-bit increment and
decrement operations, abbreviated INR and DCR, for all seven registers and
memory addressed by HL, but I won’t be implementing those instructions
either.)

The INX and DCX instructions imply that we need some additional
circuitry to perform a 16-bit increment and decrement.

I mentioned earlier that the program counter—the latch used to store the
16-bit value that accesses instructions from memory—must also be
incremented after each byte of an instruction is read from memory. A 16-bit
increment is needed here as well.

An increment and decrement circuit is somewhat simpler than an adder
and subtracter because it only has to add and subtract the number 1. Here’s
an 8-bit version just so you get an idea of what it looks like. The
subscripted I’s are inputs; the subscripted 0’s are outputs. The Dec input
signal is set to 0 for incrementing the value, and 1 for decrementing the
value:

Let’s put this assemblage of XOR and AND gates in a larger component
that includes a 16-bit latch to store a value that needs to be increased or



decreased by 1, and a tri-state buffer that provides the incremented or
decremented value:

Let’s call this component the incrementer-decrementer. As with the
program counter, the 16-bit input to the latch and the 16-bit output from the
tri-state buffer are both connected to the address bus. Either the Decrement
or Increment input signal can enable the tri-state buffer, but the Decrement
signal decrements the value in the latch, while the Increment signal
increments it.

The 16-bit address bus is primarily for providing an address to the
RAM, but it must also be capable of moving 16-bit values among
components of the CPU.

For example, the program counter is used to address RAM when
accessing instructions from memory. After the value in the program counter
accesses an instruction, the value must be moved into the incrementer-
decrementer to be incremented and then saved back in the program counter
latch.



Another example: A MOV A,M instruction uses the HL register pair to
access a byte from memory. But often this is followed by an INX HL
instruction that moves the value of HL into the incrementer-decrementer to
be increased by 1 and then saved back into the HL register pair.

Finally, the problem I’ve been avoiding can be avoided no longer. The
register array I showed you earlier is very neat and elegant and lovely, but it
doesn’t provide a way to put the values of the H and L on the 16-bit address
bus. Here’s a fix for that:

Notice the 16-bit inputs and outputs on the far right. Both of those will
be connected to the address bus to allow saving a 16-bit value in the H and
L registers and to retrieve it.



That diagram enhancing the H and L registers shows several new signals
and components that have been added to the register array:

The HL Select signal at the right controls the top row of new tri-state
buffers. The signal determines whether the inputs to the H and L
registers come from the normal input to the register array or from the
16-bit input.
The HL Clock signal at the right goes into two OR gates that have
been added to the Clock inputs of the latches to allow saving values
from the address bus.
The HL Enable signal at the right enables a new 16-bit tri-state buffer
so the composite output of the H and L latches can appear on the
address bus.

What a mess! But nobody ever claimed that building a computer was
easy.

An interactive version of the complete register array is available on the
website CodeHiddenLanguage.com.

Now let’s connect these 16-bit components to a 16-bit address bus. The
following block diagram shows part of the data bus at the top as input to
Instruction Latches 2 and 3, the outputs of which are combined in a tri-state
buffer connected to the address bus:

http://codehiddenlanguage.com/


The visibly wider 16-bit address bus itself circles around the
components at the bottom as both inputs and outputs, and it also supplies
the address to the RAM.

Like the earlier block diagram of the data bus, this block diagram of the
address bus is missing a few essential signals: signals to enable the tri-state
buffers, and signals to save the value on this bus in various latches.

It is these signals—properly coordinated and synchronized—that cause
instructions to be executed by the CPU. It is these signals that are the
pulsing life force of the computer, and they deserve their own chapter.
That’s up next.



Chapter Twenty-Three

CPU Control Signals

An old adage commonly heard in engineering circles contends that the last
10% of a project requires 90% of the work. Regardless how distressing this
idea might seem, it’s something to keep in mind. We’ve already made great
progress in constructing a computer, but we’re not yet finished. What’s left
isn’t quite 90% of the work, but the home stretch might be a little further
away than it seems.

The central processing unit (CPU) that I’ve been designing is based on
the Intel 8080 microprocessor. The arithmetic logic unit (ALU) and the
register array shown in the previous two chapters constitute major parts of
this CPU. The ALU performs arithmetic and logic operations on bytes. The
register array contains latches for seven registers identified by the letters A,
B, C, D, E, H, and L. You’ve also seen that three additional latches are
required for saving the instruction byte and the one or two additional bytes
that follow some instructions.

These components are connected to each other and to random access
memory (RAM) through two data busses: an 8-bit data bus that ferries bytes
among the components, and a 16-bit address bus used for a memory
address. In the previous chapter, you’ve also seen a program counter that
maintains an address for this RAM and an incrementer-decrementer that
increments and decrements a 16-bit memory address.

The two busses provide the main source of connection between these
components, but the components are also connected with a more complex



collection of control signals, so called because they control these
components to work together in executing instructions stored in memory.

Most of these control signals are of two general types:

Signals that put a value on one of the two busses
Signals that save a value from one of the two busses

This chapter is all about values getting on the bus and off the bus.
Signals that put a value on the bus are attached to the Enable inputs of

various tri-state buffers that connect the outputs of the components to the
bus. Signals that save a value from the bus usually control the Clock inputs
of the various latches that connect the busses to the components on the bus.
The only exception is when a value on the data bus is saved to memory
using the RAM Write signal.

The synchronization of these signals is what allows the CPU to execute
instructions stored in memory. This is how 8-bit and 16-bit values move
among the CPU components and memory. This is the fundamental way in
which codes stored in memory control the hardware of the computer. This is
how hardware and software are united, as alluded to in the title of this book.
You might visualize this process as a puppeteer controlling a troupe of
marionettes in an exquisitely choreographed dance of arithmetic and logic.
The CPU control signals are the strings.

Here are the six major components showing how they are connected to
the data bus and address bus, and the control signals that they require.

The Address input of memory is connected to the 16-bit address bus.
Memory is also connected to the 8-bit data bus through its Data In inputs
and Data Out outputs:



The two control signals are Write, which writes the value on the data bus
into memory, and Enable, which enables the tri-state buffer on the RAM
Data Out so that the contents appear on the data bus. A control panel might
be attached to this memory array to allow a human being to write bytes into
memory and examine them.

The most complex component is undoubtedly the register array from
Chapter 22, which you’ll sometimes see abbreviated as RA:

The register array has two sets of Select inputs shown at the top. The SI
signals determine which register saves the value on the data bus. The RA
Clock signal at the left determines when that value is saved. The SO signals
together with the RA Enable signal at the left put the value of one of
registers on the data bus.



As you saw in the previous chapter, this register array is complicated in
two ways. First, it must implement two additional control signals for the
accumulator, which will sometimes be abbreviated Acc: The Accumulator
Clock signal saves the value on the data bus in the accumulator, and the
Accumulator Enable signal enables a tri-state buffer to put the value of the
accumulator on the data bus.

Second, the H and L registers of the register array are also connected to
the address bus in accordance with the three control signals shown at the
right: HL Select selects the address bus as inputs to the H and L registers,
HL Clock saves the contents of the address bus in the H and L registers, and
HL Enable enables a tri-state buffer to put the contents of the H and L
registers on the address bus.

The ALU from Chapter 21 has F0, F1, and F2 inputs that control
whether the ALU performs an addition, subtraction, compare, or logical
function:

Notice that the B input and the Out output of the ALU are both
connected to the data bus, but the A input is connected directly to the Acc
output of the register array. The ALU is complicated somewhat by the
necessity of saving the Carry flag (CY), the Zero flag (Z), and the Sign flag
(S) that are set based on the arithmetic or logical operation being
performed.

The ALU also implements a Clock signal that saves the result of the
arithmetic or logic operation in a latch (and saves the flags in another latch),



and an Enable signal that enables the tri-state buffer to put the ALU result
on the data bus.

Another 16-bit latch holds the current value of the program counter,
which is used to address bytes in memory:

The program counter is sometimes abbreviated PC. It has three control
signals: The Clock signal saves the 16-bit value on the address bus in the
latch. The Enable signal enables a tri-state buffer to put the contents of the
latch on the address bus. The Reset signal at the left sets the contents of the
latch to all zeros to begin accessing bytes from memory at the address
0000h.

Three additional 8-bit latches save up to 3 bytes of an instruction. These
are packaged in the following box:



Some instructions simply consist of an operation code. Others are
followed by 1 or 2 additional bytes. The three Clock signals at the left save
up to 3 bytes that make up an instruction.

The first byte is also the operation code, often called the opcode. If the
instruction has a second byte, that byte can be enabled on the data bus with
the Latch 2 Enable signal at the right. If the operation code is followed by 2
bytes, those constitute a 16-bit memory address, and it can be put on the
address bus by the Latches 2 & 3 Enable signal at the right.

The final component is a circuit that can increment or decrement a 16-bit
value. This will sometimes be abbreviated Inc-Dec:



The Clock signal saves the value from the address bus in the
Incrementer-Decrementer latch. The two Enable signals at the right enable
either the incremented or decremented value on the address bus.

To give you a little feel for how these various control signals must be
coordinated, let’s consider a little 8080 program containing just six
instructions. Some of the instructions are just a single byte, while others
require 1 or 2 additional bytes following the operation code:

This program doesn’t do much. The first instruction moves the value
27h into register A, also known as the accumulator. The MOV instruction then
copies that value to register B. The value 61h is added to the accumulator,
which then contains the value 88h. The value in register B is then added to
that, bringing the value up to AFh. The STA instruction stores that value in
memory at the address 000Ah. The HLT instruction halts the CPU because
there’s nothing left to be done in this program.

Let’s ponder what the CPU needs to do to execute these instructions.
The CPU uses a value called the program counter to address memory and
move the instructions into the instruction latches. The program counter is
initialized to the value 0000h to access the first instruction from memory.
That instruction is MVI, or Move Immediate, which is intended to move the
value 27h into the accumulator.



A sequence of five steps is required to process that first instruction. Each
step involves putting something on the address bus and saving it elsewhere,
or putting something on the data bus and saving it elsewhere, or both.

The first step is to address RAM with the program counter value of
0000h and store the value 3Eh from memory in Instruction Latch 1. This
requires four control signals involving both the address bus and data bus:

Program Counter Enable: Puts the program counter on the address
bus. That value is 0000h.
RAM Data Out Enable: Puts the value of RAM at that address on the
data bus. That value is 3Eh.
Incrementer-Decrementer Clock: Saves the value on the address bus in
the incrementer-decrementer.
Instruction Latch 1 Clock: Saves the value on the data bus in
Instruction Latch 1.

The second step increments the program counter. This involves just the
address bus:

Increment Enable: Puts the incremented value of the incrementer-
decrementer on the address bus. That value is now 0001h.
Program Counter Clock: Saves that incremented value in the program
counter.

Now that the first instruction byte has been saved in Instruction Latch 1,
it can be used to control subsequent steps. In this case, the third and fourth
steps are the same as the first and second steps except that they access the
byte at memory address 0001h and save it in Instruction Latch 2.

These steps that read instruction bytes from memory are called the
instruction fetch. They have the purpose of accessing instruction bytes from
memory and storing them in the instruction latches. For the instruction MVI
27h, the value 27h is now in Instruction Latch 2. That value must be moved
into the accumulator. This is the fifth step, which is termed the execution of
the instruction:

Instruction Latch 2 Enable: Puts the value of that latch on the data bus.
Accumulator Clock: Saves the value on the data bus in the
accumulator.



Notice that all five of these steps involve at most just one value on the
address bus and one value on the data bus. Any value put on one of the two
busses is then saved elsewhere.

Now it’s on to the second instruction, which is MOV B,A. Because this
instruction is only 1 byte in length, only two steps are required for the
instruction fetch. The execution step is:

Register Array Enable: Puts the value in the register array on the data
bus.
Register Array Clock: Saves the value on the data bus in the register
array.

Wait a minute! The description of this execution step mentions only the
register array, and not registers A and B, which is what this step requires!
Why is that?

It’s simple: The bits that compose the 8080 MOV instructions are of the
form

0 1 D D D S S S

where DDD is the destination register and SSS is the source register. The
operation code has been saved in Instruction Latch 1. The register array has
two sets of 3-bit Select signals that determine which register is the source
and which is the destination. As you’ll see, these signals come from the
opcode stored in Instruction Latch 1, so it’s only necessary to enable the
register array and latch the register array to complete the execution.

An Add Immediate instruction comes next:

ADI 61h

This is one of eight similar instructions of the form

1 1 F F F 1 1 0

where FFF refers to the function that the instruction performs: Add, Add
with Carry, Subtract, Subtract with Borrow, AND, XOR, OR, or Compare.
You’ll recall that the ALU has a 3-bit Function input corresponding to these



values. This means that the three function bits from the opcode in
Instruction Latch 1 can be directly routed to the ALU.

After the 2 bytes of the ADI instruction are fetched, the execution of the
instruction requires two more steps. Here’s the first:

Instruction Latch 2 Enable: Puts the value 61h on the data bus.
ALU Clock: Saves the ALU result and flags in latches.

A second execution step is required to move that result into the
accumulator:

ALU Enable: Puts the ALU result on the data bus.
Accumulator Clock: Saves that value in the accumulator.

The ADD instruction that comes next similarly requires two execution
steps. The first is:

Register Array Enable: Puts register B on the data bus.
ALU Clock: Saves the result of the addition and the flags.

The second execution step is the same as the execution of the ADI
instruction.

The STA instruction requires six steps for the instruction fetch. The 2
bytes following the STA instruction are stored in Instruction Latches 2 and 3.
The execution step requires the following control signals:

Instruction Latches 2 & 3 Enable: Puts the second and third
instruction bytes on the address bus to address RAM.
Accumulator Enable: Puts the value of the accumulator on the data
bus.
RAM Write: Writes the value on the data bus into memory.

The HLT instruction does something unique, which is stop the CPU from
executing further instructions. I’ll save the implementation of that for later
in this chapter.

These steps that I’ve been describing are also called cycles, much like
the wash, rinse, and spin cycles of a washing machine. More technically,
they are referred to as machine cycles. In the CPU that I’m building,
instruction bytes are accessed from memory in one cycle that is always



followed by another cycle that increments the program counter. Thus,
depending on whether the instruction has 1, 2, or 3 bytes, the CPU must
execute two, four, or six cycles.

Instruction execution requires one or two machine cycles, depending on
the instruction being executed. Here’s a table showing what must occur
during the first execution cycle of all the instructions that I’ve introduced so
far:

First Execution Cycle



Notice the ellipses (…) in the first column of three rows. The rows with
the ADD instruction also include ADC, SUB, SBB, ANA, XRA, ORA, and CMP; the row
with ADI also includes ACI, SUI, SBI, ANI, XRI, ORI, and CPI.



The bottom four lines of that table are instructions that also require a
second execution cycle. The following table shows what must occur during
these second execution cycles:

Second Execution Cycle

To accomplish all this, the operation code must be decoded and turned
into control signals that manipulate all these components and the RAM.
These control signals enable the tri-state buffers, the Clock inputs of the
various latches, the Write input of the RAM, and a few other inputs.

The remainder of this chapter will show you how this is done. It’s a
process that requires several steps and a couple of different strategies.

Here’s a table of the operation codes for all these instructions:



You’ll recall that the SSS and DDD sequences in these operation codes
refer to a particular source or destination register, as shown in this table:

The bit sequence 110 is missing from this list because that sequence refers
to memory addressed by the HL registers.

For the arithmetic and logic instruction, the FFF bits stand for function
and refer to one of eight arithmetic or logical operations.



One easy part of the CPU control circuitry is a simple connection
between Instruction Latch 1 and the Input Select and Output Select of the
register array, and the Function Select of the ALU:

The C stands for “code.” The output bits C0, C1, and C2 of this latch go
directly to the Input Select of the register array, while bits C3, C4, and C5
go to the Output Select of the register array and the Function Select of the
ALU. This is one way to take advantage of the patterns in the operation
codes.

You might see some other patterns in the opcodes: All the operation
codes beginning with 01 are MOV instructions except for 76h, which is the
HLT instruction. All the arithmetic and logic instructions (except for the
immediate variations such as ADI, ACI, and so forth) begin with the bits 10.

A first step of decoding the opcode is to connect the output bits of
Instruction Latch 1 shown previously above to three decoders: one 2-to-4
decoder and two 3-to-8 decoders. These are used to generate additional
signals, some of which correspond directly to instructions, and some of
which correspond to groups of instructions:



The Move Group signal at the top right corresponds to instructions that
begin with the bits 01, while the Arithmetic/Logic Group signal
corresponds to instructions that begin with the bits 10.

It’s important to distinguish MOV instructions that involve moving bytes
between registers from those that move values between registers and
memory. These memory instructions are identified with source and
destination values of 110. The Memory Source and Memory Destination
signals in the previous circuit indicate when the source and destination bits
are 110. Finally, the Move Immediates are those instructions that begin with
00 and end with 110.

Those five signals at the top right of the circuit diagram are further
decoded here:



Now every instruction or group of similar instructions is represented by
a signal. These signals are available when the operation code is saved in
Instruction Latch 1, and they can be used in additional ways to govern the
processing of that instruction.

The opcode must next be used to determine how many additional
instruction bytes must be fetched from memory and how many machine
cycles are required for executing the instruction:



What happens if an opcode doesn’t correspond to any of these
instructions? For example, I haven’t yet mentioned a peculiar 8080
instruction called NOP, pronounced “no op” for “no operation,” and which
has an opcode of 00h.

You’ll notice that if none of these input signals at the left is 1, then the
outputs of the OR gates are all 0, and the signals at the right indicate a 1-
byte fetch and a one-cycle execute.

The basic timing of the CPU is established by an enhanced version of a
little circuit you first encountered on page 296 in Chapter 20:



The oscillator at the left is a device that outputs a signal that alternates
between 0 and 1, generally very quickly. This is what makes the CPU run.
It’s like the CPU’s heartbeat.

The Reset signal shown at the top comes from outside the CPU. It is
usually controlled by the person using the computer to start the CPU over
from the beginning. Normally, the Reset signal is 0, but when it’s 1 (for
example when a person presses a button labeled Reset), the CPU stops and
everything goes back to the beginning.

In this circuit, the Reset signal resets the three flip-flops so that all the Q
outputs are 0 and all the Q outputs are 1. When the Reset signal goes back
to 0, the flip-flops are allowed to work normally, and the CPU begins
running.

After the CPU is reset, the Q output of the flip-flop at the top is 1. It’s
one of two inputs to an AND gate that allows the oscillator to control the
Clock inputs of the two flip-flop toward the bottom of the diagram.



The Halt signal at the top indicates that a HLT instruction has been
executed. This causes the Q output of the flip-flop at the top to become 0,
which effectively stops the oscillator from controlling the CPU. The CPU
can be “unhalted” with a Reset signal.

If the CPU has not been halted, the two flip-flops at the bottom of the
diagram generate two signals labeled Cycle Clock and Pulse, which are
shown in this timing diagram:

Each cycle of the Cycle Clock corresponds to a machine cycle. Every
time the Cycle Clock goes from low to high (from 0 to 1), a new machine
cycle occurs.

For example, in the little example program shown earlier, the first
instruction is a Move Immediate, or MVI. This instruction requires five
machine cycles:

Fetch the opcode.
Increment the program counter.
Fetch the byte following the opcode.
Increment the program counter.
Execute the instruction.

Here are those five cycles, identified with somewhat abbreviated labels:



All these cycles are associated with different tri-state buffers being
enabled, which causes different values to be on the address bus and data
bus. During the Fetch 1 cycle, for example, the program counter is enabled
on the address bus, and the RAM Data Out is enabled on the data bus. The
Pulse signal is used to control the Clock input on the Instruction Byte 1
latch, and the Clock input on the incrementer-decrementer.

During the PC increment cycle, the incrementer-decrementer output is
on the address bus, and the Pulse signal is used to save that incremented
value in the program counter.

Earlier you saw a circuit that indicated whether an instruction consisted
of 1, 2, or 3 bytes, and whether an instruction requires just one cycle to
execute or two cycles.

The next step in decoding the opcode is to generate signals that indicate
the type of cycle currently in effect—whether it’s the first, second, or third
fetch cycle, a PC increment cycle, or the first or second execution cycle.

This job is handled by the following rather complex circuit:





The inputs are on the left, and the outputs are on the right. These inputs
and outputs sometimes have similar names, so this diagram might be a little
confusing at first! For example, the “2-Byte Fetch” input indicates that the
instruction is 2 bytes in length. The “Fetch Cycle 2” output indicates that
the second byte of the instruction is currently being fetched.

The Reset signal at the top is the same as the Reset signal in the previous
circuit; this is initiated by a person using the CPU to start it from the
beginning. In addition, the 4-Bit Counter can also be reset from a signal at
the bottom of the circuit.

The Cycle Clock advances the counter. Because this is a 4-bit counter, it
can count from binary 0000 to 1111, which is decimal 0 to 15. These
outputs go directly to a 4-to-16 decoder below the counter. The binary
number from the counter is decoded into potentially 16 different sequential
outputs, but this circuit uses only the first 9. Each of these outputs indicates
a new machine cycle, whether it be a fetch cycle, a program counter
increment cycle (which is abbreviated “PC Increment” in the diagram), or
an execution cycle.

As the decoder outputs advance through 0, 1, 2, 3, and so forth, the
following signals are generated:

0. Fetch Cycle 1
1. Program Counter Increment
2. Fetch Cycle 2 but only if the instruction is not a 1-byte fetch
3. Program Counter Increment for a 2-byte or 3-byte fetch
4. Fetch Cycle 3 but only if the 3-Byte Fetch signal is 1
5. Program Counter Increment for a 3-byte fetch

The Fetch Cycle 1 signal and the first Program Counter Increment signal
are always generated. After that, the opcode has been fetched, loaded into
Instruction Latch 1, and partially decoded, so all the input signals at the left
of the diagram are available.

At most, an instruction requires three fetch cycles, each of which is
followed by a PC increment cycle and two execution cycles, for a total of 8,
corresponding to the decoder outputs 0 through 7.

The logic is messy to account for combinations of multibyte fetches and
multiple execution cycles. For example, the Execution Cycle 1 signal at the



right can be the third cycle for instructions that require a 1-byte fetch, or the
fifth cycle for instructions that require a 2-byte fetch, or the seventh cycle
for instructions that require a 3-byte fetch.

The reset logic at the bottom is the most complex. It can occur as early
as the fourth cycle for an instruction that requires one fetch cycle and one
execution cycle, or the ninth cycle for an instruction that requires three
fetch cycles and two execution cycles.

During the three fetch cycles, the program counter is enabled on the 16-
bit bus, and the RAM Data Out is enabled on the 8-bit bus. The Pulse signal
stores the value on the address bus in the incrementer-decrementer and the
value on the data bus in one of the three instruction latches. This is the
purpose of the following circuit, which generates all the signals for
instruction fetch cycles (but not PC increment cycles):

Regardless whether it’s the first, second, or third fetch, the program
counter is enabled on the address bus and the RAM Data Out on the data
bus. In all three cases, the Pulse signal always controls the Clock input on
the Incrementer-Decrementer latch. For the three fetch cycles, the Pulse
signal also controls the clock on the corresponding instruction latch.



Notice the tri-state buffers on two of these signals. That’s because other
circuits (coming up) might also be controlling the Enable signal on the
RAM Data Out tri-state buffer, and the Clock signal on the Incrementer-
Decrementer latch. The signal at the left of the tri-state buffer is both the
input and the Enable signal.

The signals required for the PC increment cycle are handled entirely by
this circuit:

All the signals for the instruction fetch cycles, and the PC increment
cycles have now been created. All that’s left are the signals for the
execution cycles. These are more complex because they depend on the
particular instruction being executed.

The big circuit on page 370 has two output signals labeled Exec. Cycle 1
and Exec. Cycle 2. These two execute cycles can be abbreviated EC1 and
EC2, as shown in the following circuit:

These two signals are combined with the Pulse signal for two additional
Execute Pulse signals that are abbreviated EP1 and EP2.

One instruction is handled rather simply. This is the HLT instruction,
which halts the CPU:



The HLT signal at the left comes from the instruction decoder on page
367; the Halt signal at the right goes to the circuit with the oscillator on
page 368.

The relationship between the other instructions and the corresponding
signals that must be generated is rather complex, so it’s best to avoid a lot
of messy logic gates and instead handle them with a few diode ROM
matrices, such as those that you saw in Chapter 18.

This first diode ROM matrix handles all the Enable and Clock signals in
connection with the 16-bit address bus, for both the first and second
execution cycles:



Keep in mind that the signals at the bottom are for the address bus only.
You’ll see the signals for the 8-bit data bus shortly. This diagram
corresponds to the 16-Bit Address Bus heading in the tables on pages 363
and 364.

That tri-state buffer on the bottom left of the diagram is enabled by the
Execution Cycle 1 signal. This governs the value on the address bus during
the first execution cycle. For all the MOV, MVI, and arithmetic instructions
involving memory addressed with the HL registers, that’s the HL register.

In addition, the HL register is enabled for the INX and DCX instructions.
These are the instructions that increment and decrement the HL register. For
the LDA and STA instructions, however, the memory address for loading or
storing a byte is obtained from Instruction Latches 2 and 3.

In the case of the INX and DCX instructions, the Execution Pulse 1 signal
saves the value of the HL registers in the incrementer-decrementer latch.

The INX and DCX instructions are the only two instructions that involve
the address bus during the second execution cycle. These two instructions
cause the incremented or decremented value of the HL register to be on the
address bus. The Execution Pulse 2 signal then causes the new value of HL
to be saved in the H and L registers.

The diode ROM matrix for the 8-bit data bus is a little more
complicated. I’ve divided it into two diagrams corresponding to the two
instruction cycles. Here’s the first instruction cycle:



This circuit is the realization of the 8-Bit Data Bus column in the table
on page 363. The two tri-state buffers at the bottom are enabled by the
Execution Cycle 1 and Execution Pulse 1 signals. The first tri-state buffer
controls what’s on the data bus; the second tri-state buffer controls where
that value is stored.



The three types of MOV instructions at the top are followed by a
destination and a source. These destinations and sources can be any one of
the registers, or they can be memory addressed by the HL registers. When
the source is a register, the register array (abbreviated RA in the diagram) is
enabled on the data bus; when the source is memory, the Data Out of the
RAM is enabled. (Keep in mind that the RAM is addressed by the 16-bit
bus during this time, and the diode ROM matrix for the address bus sets that
value to the HL registers.) When the destination is a register, the second tri-
state buffer controls the Clock input for the register array. When the
destination is memory, the RAM Write signal saves that value in memory.

For the two types of MVI (“move immediate”) instructions, the contents
of Instruction Latch 2 are enabled on the data bus; that value is either stored
in the register array or saved in memory.

All the arithmetic and logic instructions are represented in this diagram
by the ADD and ADI (“add immediate”) instructions. The value enabled on
the data bus is either the register array, RAM Data Out, or Instruction Latch
2, depending on the instruction. In all cases, that value is latched in the
arithmetic logic unit. These instructions require additional work during the
second execution cycle, which you’ll see shortly.

For the LDA (“load accumulator”) and STA (“store accumulator”)
instructions, the diode ROM matrix for the address bus ensures that the
RAM is addressed by the contents of Instruction Latches 2 and 3. For LDA,
the RAM Data Out is enabled on the data bus, and that value is stored in the
accumulator. For the STA instruction, the accumulator is enabled on the data
bus, and that value is stored in memory.

The arithmetic and logic instructions require a second execution cycle
involving the data bus. The diode ROM matrix for these cases is much
simpler than the others:



For these instructions, the value from the ALU is enabled on the data
bus, and that value must be saved in the accumulator, as also shown in the
8-Bit Data Bus column in the table on page 364.

With that, the subset of the 8080 microprocessor that I’ve been
constructing over the past three chapters is complete, and a working
simulation is available on the CodeHiddenLanguage.com website.

Engineers who design computers often spend a great deal of time trying
to make those computers as fast as possible. Different designs of the digital
logic circuits might be faster or slower than others. It is very often the case
that making a digital circuit faster requires adding more logic gates.

If I wanted to speed up the CPU that I’ve been describing, I would first
focus on the instruction fetches. Each instruction fetch requires a second
machine cycle that has the sole purpose of incrementing the program
counter. I would try to incorporate that logic in the instruction fetch cycle
itself to do these two things simultaneously. It probably involves a
dedicated incrementer. This improvement would reduce the time required
for loading instructions from memory by half!

Even little changes have great benefits. If you were designing a CPU
that might be used in millions of computers, each of which is potentially
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executing millions of instructions every second, eliminating machine cycles
would be of enormous benefit to every user.

Let’s look at a simple program that might be executed by this CPU.
Suppose you have 5 bytes stored in memory beginning at address 1000h
and you want a program that adds them up. Here it is:

The first two instructions set the values of the H and L registers. Then
the program uses HL to access the bytes and accumulate the sum,
incrementing HL after each memory access.

As you can see, there’s some repetition here. An INX instruction is
followed by an ADD instruction four times. That’s not too bad for this



particular program, but what if you wanted to add up 20 values? Or a
hundred? And what if these weren’t bytes you wanted to add but 16-bit or
32-bit values requiring more instructions to accumulate the sum?

Can repetition like this be avoided? Can there be an instruction that
causes other sequences of instructions to be repeated? But what does that
look like? And how does it work?

This topic is so important that an entire chapter is devoted to it!



Chapter Twenty-Four

Loops, Jumps, and Calls

Our lives are full of repetition. We count the days through the natural
rhythms of the rotation of the earth, the revolution of the moon around the
earth, and of the earth around the sun. Each day is different, but our lives
are often structured by standard routines that are similar from day to day.

In a sense, repetition is also the essence of computing. Nobody needs a
computer to add two numbers together. (Let’s hope not, anyway!) But
adding a thousand or a million numbers together? That’s a job for a
computer.

This relationship of computing and repetition was obvious early on. In
Ada Lovelace’s famous 1843 discussion of Charles Babbage’s Analytical
Engine, she wrote:

Both for brevity and for distinctness, a recurring group is called a cycle.
A cycle of operations, then, must be understood to signify any set of
operations which is repeated more than once. It is equally a cycle,
whether it be repeated twice only, or an indefinite number of times; for it
is the fact of a repetition occurring at all that constitutes it such. In many
cases of analysis there is a recurring group of one or more cycles; that is,
a cycle of a cycle, or a cycle of cycles.

In modern terminology, these cycles are often called loops. What she calls a
cycle of a cycle is now called a nested loop.



The CPU that I’ve been building over the past several chapters seems
deficient in that regard. At the end of the previous chapter, I showed you a
little program that adds 5 bytes together that are stored in memory
beginning at address 1000h:

The HL register pair is used to address memory. The first byte is read
from memory into the accumulator with the MOV instruction, and then
subsequent ADD instructions add the other 4 bytes to the accumulator. After
each byte is read from memory, the value in the HL register pair is
incremented with the INX instruction. Finally, the STA instruction stores the
result in memory.



How would this program be enhanced to add a hundred or a thousand
bytes together? Would you just keep adding INX and ADD instructions to
match the number of bytes you need to add? That doesn’t seem quite right.
It’s not a solution that would work well with other needs. It’s not a
generalized solution.

What might instead be handy is a new instruction that allows repeating
certain sequences of instructions, in this case the INX and ADD instructions.
But what would that look like?

At first, such an instruction seems so different from existing instructions
that you might fear it would require a complete overhaul of the CPU. But
don’t despair quite yet.

Normally the program counter is incremented after the CPU fetches each
instruction byte. This is how the CPU advances from one instruction to the
next. An instruction that performs a loop must also somehow alter the
program counter but in a different way.

You’ve seen how instructions such as LDA and STA are followed by 2
bytes that together form a 16-bit memory address. Consider an instruction
that is followed by two bytes much like LDA and STA, but the 2 bytes
following the instruction are not used to address memory. Instead, those 2
bytes are latched in the program counter. Such an instruction would change
the normal course of execution because it would cause the program counter
to effectively jump to a different address.

Let’s call this instruction JMP, for “jump.” That’s what it’s called in the
Intel 8080 microprocessor. (The Motorola 6809 named a similar instruction
BRA, for “branch.”)

The JMP instruction is followed by 2 bytes that form a 16-bit address. In
the following example, this address is 0005h. Here’s what it might look
like:



Every time the INX and ADD instructions are executed, this JMP instruction
then continues execution at address 0005h for another round of the INX and
ADD instructions. That’s the loop.

Adding this JMP instruction to the CPU is surprisingly easy. But let’s
hold off on that for a moment while we first acknowledge a problem: This
little program with the JMP instruction will continue forever. There’s no way
to stop the loop, and for that reason it’s called an infinite loop. The HL
value will continue to be incremented, and the byte at that address will
continue to be added to the sum in the accumulator. Eventually HL will
equal FFFFh at the very end of memory. After it’s incremented again, it will
roll over to become 0000h, and it will start adding instruction bytes to the
accumulator!

Loops are extremely important in programming, but just as important is
looping sometimes but not always.

Is there something already in the CPU that might be able to control
whether a jump occurs or not?

Yes, there is. You’ll recall that the arithmetic logic unit (ALU) built in
Chapter 21 saves several flags in a latch. These are the Carry flag, the Zero
flag, and the Sign flag, and they indicate, respectively, whether the ALU
operation caused a carry, whether the result was equal to zero, and whether



the high bit of the result was 1, indicating a negative two’s complement
number.

We might conceive of an instruction that only jumps if the Zero flag is
set, or if the Zero flag is not set. In fact, we might define a little collection
of jump instructions:

I am not inventing these instructions and operation codes! These are
instructions implemented by the Intel 8080 microprocessor that I’m using
as a guide in building my own subset of that CPU. The addr in the first
column is a 2-byte memory address that follows the opcode.

The JMP instruction is known as an unconditional jump. It causes the
CPU to alter its normal course of execution regardless of the settings of the
ALU flags. The others are known as conditional jumps. These instructions
alter the program counter only if certain flags are set or not set in the ALU.
(The 8080 CPU also implements two more conditional jumps that are based
on the Parity flag. I mentioned that flag in Chapter 21, but my CPU doesn’t
implement it.)

Let’s see how these conditional jumps might work in a program.
Suppose you want to add up 200 bytes that are stored in memory beginning
at address 1000h.

The trick here is to use one of the registers to store a value called a
counter. The counter begins at the value 200, which is the number of bytes
to add. Every time a byte is accessed and added, this counter is
decremented. At any time, the value of the counter indicates the number of
bytes left to add. When it reaches zero, the job is completed.



This means that the program needs to juggle two arithmetic operations.
It needs to maintain a running total of the bytes that it’s adding up, and it
needs to decrement the counter every time it adds a new byte.

This creates a bit of a problem: As you’ll recall, all the arithmetic and
logic operations use the accumulator, which means that the program has to
move bytes from registers into the accumulator to do some arithmetic; then
it needs to move the new bytes back into registers.

Let’s decide to store the running total of the bytes in register B, and the
counter in register C. These values must be moved to the accumulator for
any arithmetic operations and then moved back to B and C for the next
repetition of the instructions.

Because this program is a little longer than those you’ve seen previously,
I’ve divided it into three sections.

The first part of a computer program is commonly called the
initialization:

This section sets the 16-bit composite value of the HL register pair to
1000h, which is the location of the numbers to be added. Register C is set to
decimal 200 (hexadecimal C8h), which is how many numbers must be
added. Finally, register B is set to the first number in that list.

The second part of this program contains the instructions that are
repeated:



This section begins by copying the value of the counter to the
accumulator. The SUI instruction subtracts 1 from that number. The first
time through, the value 200 becomes 199. If that value is zero (which it
obviously isn’t yet), the JZ instruction jumps to the address 0015h, which is
the next address after this block. This kind of instruction is known as
breaking out of the loop.

Otherwise, the value in the accumulator (which is now 199 during the
first time through) is moved back to register C. Now HL can be
incremented with INX. The running total (stored in register B) is moved to
A. The value at memory address HL is added to that, and then the new total
is copied back to register B. Then an unconditional JMP instruction jumps
up to the top for the next time through.

Each of these times through the code is commonly called an iteration.
Eventually, the value in register C will be 1, and when 1 is subtracted from
that, it equals zero, and the JZ instruction jumps to address 0015h:



Register B contains the final sum of all 200 numbers. It’s moved into the
accumulator in preparation for the STA instruction, which stores the value in
memory. The program is then halted.

Notice that the program is very easy to modify if the numbers to be
added reside at a different memory location or if there are more or less than
200. All that information is set at the very top of the program and can easily
be changed. It’s always a good idea when writing a computer program to
think about how it might be changed in the future.

It is very rarely the case that computer programs can be written only one
way. There’s a slightly different way to write this program that involves
only one jump instruction. This version starts out almost like the first one:

The only difference is that the value in register C is set to 199 rather than
200. You’ll see the reason for this shortly.

The middle of the program has been rearranged. Now it begins by
incrementing HL and adding the next value on the list:



After the next value is added, the counter value in register C is moved to
A, decreased by 1, and the new value is moved back into register A. Then
the JNZ instruction jumps to the top of the loop if the result of the SUI
instruction is not zero.

If the result of the SUI instruction is zero, then the program continues
with the next instruction after JNZ. This is the conclusion of the program
that stores the accumulated sum in memory and halts:

By removing one of the jump instructions, the program has been
shortened by 3 bytes, but it might seem a little more complex. Do you see
why register C needs to be set to 199 rather than 200? It’s because that
value is being modified and examined after a value from memory has been



added. If there were only two numbers in the list to be added, both those
numbers would be accessed before the first iteration of the JNZ instruction.
Hence, C would have to be initialized to 1 rather than 2. This program
wouldn’t work at all for only one byte in the list. Do you see why?

It’s common to make mistakes when determining how many times a
loop must be iterated. Problems like these are so common in programming
that they were given a name. They are referred to as off-by-one errors.

Perhaps you don’t know how many numbers need to be added, but you
do know that the last number in the list is 00h. This 00h value signals to
your program that the list is complete. Such a value is sometimes called a
sentinel. In this case, you’d want to use a Compare instruction to compare
the value from memory with 00h to determine when to break out of the
loop.

Starting with this alternate program that uses a sentinel, I want to stop
showing you values in memory, and just show you the instructions. Instead
of showing you memory addresses, I’m going to use words that are called
labels. They may look like words, but they still represent locations in
memory. The labels are followed by colons:

Start:    MVI L,00h 
          MVI H,10h 
          MVI B,00h 
Loop:     MOV A,M 
          CPI 00h 
          JZ End 
          ADD B 
          MOV B,A 
          INX HL 
          JMP Loop 
End:      MOV A,B 
          STA Result 
          HLT 
Result:

After the next value in memory has been loaded into the accumulator
with the MOV A,M instruction, the CPI instruction compares it with 00h. If A
equals 00h, the Zero flag is set, and the JZ instruction jumps to the end.
Otherwise, the value is added to the running total in B, and HL is
incremented for the next iteration.



Using labels allows us to avoid figuring out the memory addresses of the
instructions, but it’s always possible to calculate the memory locations of
these labels. If the program starts at memory location 0000h, then the first
three instructions require 2 bytes each, so the label Loop represents memory
address 0006h. The next seven instructions occupy a total of 12 bytes, so
the label End is the memory address 0012h, and Result is 0017h.

If you haven’t surmised this already, the conditional jump is a very
important feature of a CPU, but it’s perhaps much more important than you
might realize. Let me tell you why.

In 1936, a 24-year-old graduate of Cambridge University named Alan
Turing set out to solve a problem in mathematical logic, posed by  German
mathematician David Hilbert, known as the Entscheidungsproblem, or
decision problem: Is there a process that could determine whether an
arbitrary statement in mathematical logic is decidable—that is, could it be
determined whether the statement were true or false?

In answering this question, Alan Turing took an extremely unusual
approach. He hypothesized the existence of a simple computing machine
that functioned by simple rules. He did not actually build this machine. It
was instead a computer of the mind. But besides proving the
Entscheidungsproblem false, he established some basic concepts of digital
computing that have had an impact far beyond this problem in mathematical
logic.
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The imaginary computing machine that Turing invented is now known
as a Turing machine, and in terms of computational ability, it is functionally
equivalent to all the digital computers that have been built since then. (If
you’re curious about exploring Turing’s original paper describing his
imaginary computer, my book The Annotated Turing: A Guided Tour
through Alan Turing’s Historic Paper on Computability and the Turing
Machine might be helpful.)

Different digital computers run at different speeds; they can access
different amounts of memory and storage; they have different types of
hardware attached to them. But in processing power, they are all
functionally equivalent. They can all do the same type of tasks because they
all have one very special feature: a conditional jump based on the result of
an arithmetic operation.

All programming languages that support a conditional jump (or
something equivalent to it) are fundamentally equivalent. These
programming languages are said to be Turing complete. Nearly all
programming languages satisfy this condition, but markup languages—such
as the HyperText Markup Language (HTML) used in webpages—are not
Turing complete.

Besides the jump instructions that I listed earlier in this chapter, another
instruction is useful for performing jumps. This one is based on the value in
HL:

The seven jump instructions and PCHL are fairly easily incorporated into
the timing circuitry shown in the previous chapter. In the circuit on page
366 in Chapter 23, recall that the three decoders have inputs corresponding
to the 8 bits of the operation code:



Various combinations of the outputs of these decoders are then used to
generate signals when the opcode corresponds to a jump instruction.

All the jump instructions except PCHL can be consolidated in a group
with a seven-input OR gate:



This can be used to integrate the jump instructions into the circuit on
page 367 in Chapter 23, which determines how many instruction bytes must
be fetched from memory and how many cycles are required to execute each
instruction. The Jump Group signal indicates that 3 bytes must be fetched
from memory: the operation code and a 2-byte address. The PCHL instruction
is only 1 byte in length. All these instructions require only one cycle to
execute, and only involve the address bus.

For the execution of the jump instructions, let’s create a signal that
indicates whether a conditional jump should occur. The signals for the
decoded instruction byte must be combined with flags from the ALU in
Chapter 21:

It’s then fairly straightforward to incorporate these signals into the diode
ROM matrix shown on page 374 in Chapter 23:



The JMP and conditional jump instructions enable Instruction Latches 2
and 3 on the address bus, while the PCHL instruction enables HL on the
address bus. In all cases, that address is stored in the program counter.

An interactive version of the enhanced CPU is available on the website
CodeHiddenLanguage.com.

Almost anything substantial that you need to do in a computer program
involves repetition and becomes an excellent candidate for a loop.
Multiplication is a good example. Back in Chapter 21 I promised to show
you how to persuade this CPU to multiply, and now it’s time to see how it’s
done.

Let’s look at the simplest case, which is a multiplication of 2 bytes—for
example, 132 times 209, or in hexadecimal, 84h times D1h. These two
numbers are called the multiplier and the multiplicand, and the result is the
product.

In general, multiplying one byte by another creates a product that is 2
bytes wide. For my example, it’s easy to calculate the product as 27,588 or
6BC4h, but let’s have the CPU do it.

In the past I’ve used registers H and L for a 16-bit memory address, but
you can alternatively use H and L as normal 8-bit registers, or you can use
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the register pair HL to store a 2-byte value. In this example, I’ll use HL to
store the product. The code to multiply two bytes begins by setting the B
register to the multiplicand and C to the multiplier, and the H and L
registers to zero:

Click here to view code image

Start:  MVI B,D1h   ; Set B to multiplicand 
        MVI C,84h   ; Set C to multiplier 
        MVI H,00h   ; Initialize HL to zero 
        MVI L,00h

I’ve added little descriptions of the instructions at the right following a
semicolon. These are known as comments, and the use of a semicolon to
preface a comment can be found in Intel’s original documentation of the
8080 CPU.

I’m first going to show you a simple way to multiply two numbers,
which is just repeated addition. I’ll be adding the multiplier to the HL
registers a number of times equal to the multiplicand.

The first step is to check whether the multiplicand (stored in register B)
is zero. If so, the multiplication is complete:

Click here to view code image

Loop:   MOV A,B      ; Check whether B is zero 
        CPI 00h 
        JZ Done      ; All finished if that’s the case

If that’s not the case, then the multiplier (stored in register C) is added to
the contents of registers H and L. Notice that this is essentially a 16-bit
addition: C is added to L by first moving the contents of L to the
accumulator, and then zero is added to H with a possible carry resulting
from the first addition:

       MOV A,L    ; Add C to HL 
       ADD C 
       MOV L,A 
       MOV A,H 
       ACI 00h 
       MOV H,A
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Now the multiplicand in register B is decremented, indicating one fewer
number to be added to HL, and the program jumps back up to Loop for
another iteration:

       MOV A,B      ; Decrement B 
       SBI 01h 
       MOV B,A 
       JMP Loop     ; Repeat calculation

When the earlier jump to the Done label occurs, the multiplication is
finished, and the HL registers contain the product:

Click here to view code image

Done:   HLT      ; HL contains result

This is not the best way to multiply two bytes, but it has the advantage
of being easy to understand. Solutions of this type are sometimes called
brute-force approaches. No consideration is being given to performing the
multiplication as quickly as possible. The code doesn’t even compare the
two numbers to use the smaller of these numbers for the loop. Adding just a
little more code to the program would allow performing 132 additions of
209 rather than 209 additions of 132.

Is there a better way to perform this multiplication? Consider how you
do a decimal multiplication on paper:

The two numbers under the first underline are 132 times 9, and then 132
times 2 shifted left two spaces, effectively 132 times 200. Notice that you
don’t even need to write down 132 times 0, because that’s just zero. Rather
than performing 209 additions or 132 additions, only two numbers need to
be added!

What does this multiplication look like in binary? The multiplier (which
is 132 in decimal) is 10000100 in binary, and the multiplicand (209 in
decimal) is 11010001 in binary:

132

× 209

1188

264

27588
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For each bit in the multiplicand (11010001) starting at the right, multiply
that bit by the multiplier (10000100). If the bit is 1, then the result is the
multiplier, shifted left for each bit. If the bit is 0, the result is 0 so it can be
ignored.

Under the first underline are just four instances of the multiplier
(10000100). There are only four because there are only four 1s in the
multiplicand (11010001).

This approach reduces the number of additions to a bare minimum.
Performing the multiplication like this becomes even more essential if you
are multiplying 16-bit or 32-bit numbers.

But it also seems more complicated in some ways. We’re going to need
to test which bits of the multiplicand are 1 and which bits are 0.

This testing of bits makes use of the 8080 ANA (AND with accumulator)
instruction. This instruction performs a bitwise AND operation between two
bytes. It’s called a bitwise AND because for each bit, the result is 1 if the
corresponding bits of two bytes are 1, but 0 otherwise.

Let’s put the multiplicand in register D. In this example, that’s the byte
D1h:

MVI D,D1h

How can you tell if the least significant bit of register D is 1? Perform an
ANA operation between D and the value 01h. You can first set register E to
this value:

MVI E,01h

Because the ALU works only with the accumulator, you’ll need to move
one of the numbers into the accumulator first:

MOV A,D 
ANA E

10000100

× 11010001

10000100

10000100

10000100

10000100

110101111000100



The result of this AND operation is 1 if the rightmost bit of D (the least
significant bit) is 1 and 0 otherwise. This means that the Zero flag is set if
the rightmost bit of D is 0. That flag allows a conditional jump to be
performed.

For the next bit, you’ll need to perform an AND operation not with 01h
but with 02h, and for the remaining bits you’ll be performing AND
operations with 04h, 08h, 10h, 20h, 40h, and 80h. Look at this sequence for
a moment and you might realize that each value is twice the previous value:
01h doubled is 02h, and that doubled is 04h, and that doubled is 08h, and so
forth. This is useful information!

Register E starts out at 01h. You can double it by adding it to itself:

MOV A,E 
ADD E 
MOV E,A

Now the value in E equals 02h. Execute those three instructions again, and
it equals 04h, then 08h, and so on. What this simple operation essentially
does is progressively shift a bit from the least significant position to the
most significant position, from 01h to 80h.

It will also be necessary to shift the multiplier to add to the result. That
means that the multiplier will no longer fit in an 8-bit register, and it must
somehow be treated as a 16-bit value. For that reason, the multiplier is first
stored in register C, but register B is set to 0. You can treat registers B and
C as a pair that stores this 16-bit multiplier, and it can be shifted for the 16-
bit additions. The combination of registers B and C can be referred to as
BC.

Here’s how the registers are initialized for this new and improved
multiplier:

Click here to view code image

Start:  MVI D,D1h   ; Multiplicand 
        MVI C,84h   ; Store multiplier in BC 
        MVI B,00h 
 
        MVI E,01h   ; Bit tester 
        MVI H,00h   ; Use HL for 2-byte result 
        MVI L,00h
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The Loop section begins by testing whether a bit in the multiplicand is a
1 or 0:

Click here to view code image

Loop:   MOV A,D 
        ANA E       ; Test whether bit is 0 or 1 
        JZ Skip

If the bit is 1, the result is not zero, and the following code is executed to
add the value of the BC register pair to the HL register pair. But the 8-bit
registers need to be handled individually. Notice that ADD is used for the low
bytes, while ADC is used for the high byte to take account of a carry:

         MOV A,L    ; Add BC to HL 
         ADD C 
         MOV L,A 
         MOV A,H 
         ADC B 
         MOV H,A

If you were using a real Intel 8080 rather than the subset that I’ve
constructed, you could replace those six instructions with DAD BC, which
very conveniently adds BC to HL. DAD is one of several 8080 instructions
that work with 16-bit values.

The next job is to double the value of BC, essentially shifting it leftward
for the next addition. This code is executed regardless of whether BC has
been added to HL or not:

Click here to view code image

Skip:    MOV A,C      ; Double BC, the multiplier 
         ADD C 
         MOV C,A 
         MOV A,B 
         ADC B 
         MOV B,A

The next step is to double the value of register E, which is the bit tester.
If the value is not zero, then it jumps back up to the Loop label for another
iteration.

Click here to view code image
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         MOV A,E   ; Double E, the bit tester 
         ADD E 
         MOV E,A 
         JNZ Loop

The code following the Loop label is executed exactly eight times. After
E has been doubled eight times, the 8-bit register overflows, and E now
equals zero. The multiplication is complete:

Click here to view code image
Done:   HLT   ; HL contains result

If you need to multiply two 16-bit values or two 32-bit values, the job
obviously gets rather more complicated, and you’ll need to use more
registers. When you run out of registers for storing intermediate values, you
can use an area of memory for temporary storage. A small block of memory
used in that way is commonly referred to as scratchpad memory.

The object of this exercise is not to frighten you. The object is not to
dissuade you from pursuing a career in computer programming. It is to
demonstrate that an assemblage of logic gates that respond to codes stored
in memory can indeed combine very simple operations to perform complex
tasks.

In real-life computer programming, multiplication is much easier using
high-level languages (as they are called), which I’ll discuss in Chapter 27.
It is the magic of software that other people have done the hard work so you
don’t have to.

Multiplication in machine code requires shifting bits, which was
accomplished earlier by adding a value to itself. If you were working with a
real Intel 8080 microprocessor rather than the subset I’ve built, you would
have a better way to shift bits. The Intel 8080 contains four instructions that
perform bit shifting without the nuisance of adding registers to themselves.
They are called rotate instructions:
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These instructions always perform the operation on the value in the
accumulator, and they affect the Carry flag.

The RLC instruction shifts the bits of the accumulator to the left.
However, the most significant bit is used to set both the Carry flag and the
least significant bit:

The RRC instruction is similar except that it shifts bits to the right. The
least significant bit is used to set both the Carry flag and the most
significant bit:

The RAL instruction is similar to doubling the accumulator, except that
the existing Carry flag is used to set the least significant bit. This is useful
when shifting a multibyte value:

The RAR instruction is similar to RAL but rotates the bits right:

While these rotate instructions are certainly useful in some
circumstances, they are not essential, and I won’t be adding them to the



CPU that I’ve been building.
You’ve seen how you can use jumps and loops to execute a group of

instructions over and over again. But there will often be times when you
want a more flexible way to execute a group of instructions. Perhaps you’ve
written a group of instructions that you need to execute from different parts
of a computer program. (Perhaps a versatile multiplication is one of them.)
These groups of instructions are often called functions or  procedures or
subroutines, or simply routines.

The Intel 8080 CPU implements subroutines with an instruction named
CALL. The syntax of the CALL instruction looks a lot like JMP in that it is
followed by a memory address:

CALL addr

Like the JMP instruction, the CALL statement jumps to that address to
continue execution. But CALL is different from JMP in that it first saves a
reminder of where it jumped from—specifically, the address of the
instruction that follows the CALL instruction. As you’ll see shortly, this
address is stored in a very special place.

Another instruction, called RET (meaning “return”), is also similar to JMP,
but the address that it jumps to is the address saved by the CALL instruction.
Subroutines often end with a RET statement.

Here are the 8080 instructions for CALL and RET:

The Intel 8080 also supports conditional calls and conditional returns, but
these are used much less frequently than are CALL and RET.

Let’s look at a practical example. Suppose you were writing a program
where you need to display the value of a byte—for example, the byte 5Bh.
You saw in Chapter 13 how you can use ASCII to display letters, numbers,
and symbols. But you can’t display the value of the byte 5Bh using the
ASCII code 5Bh. That’s the ASCII code for a left square bracket character!
Instead, a byte such as 5Bh would need to be converted into two ASCII
codes:



35h, which is the ASCII code for the character 5
42h, which is the ASCII code for the character B

This conversion displays the value of bytes in a way that people understand
(or at least people who know hexadecimal).

The strategy here is to first separate the byte into two parts: the top 4 bits
and the bottom 4 bits, sometimes called nibbles. In this example, the byte
5Bh is separated into 05h and 0Bh.

Then, each of these 4-bit values is converted into ASCII. For values
from 0h to 9h, the ASCII codes are 30h to 39h for the characters 0 through
9. (See the tables on pages 153 and 154 in Chapter 13 if you need an ASCII
refresher.) For values from Ah to Fh, the ASCII codes are 41h to 46h for the
characters.

Here’s a little subroutine that converts a 4-bit value in the accumulator
into ASCII:

I’ve reverted back to showing the memory locations because they’re
important to demonstrate what’s going on here. This subroutine happens to
begin at memory location 1532h, but there’s nothing special about that. It
just happens to be where I decided this subroutine resides in memory.

The subroutine assumes that the accumulator contains the value to be
converted. Such an assumed value is often called an argument or parameter



to the subroutine.
The subroutine begins with a Compare Immediate instruction, which

sets the ALU flags as if it had performed a subtraction. If the accumulator
contains 05h (for example), subtracting 0Ah from that number requires a
borrow, so the instruction sets the Carry flag. Because the Carry flag is set,
the JC instruction jumps to the instruction at the label Number, which adds
30h to the accumulator, making it 35h, the ASCII code for the number 5.

If instead the accumulator contains something like the value 0Bh, a
borrow is not required when 0Ah is subtracted. The CPI instruction does not
set the Carry flag, so no jump occurs. First, 07h is added to the accumulator
(making it 0Bh plus 07h, or 12h, in this example), and then the second ADI
instruction adds 30h, making it 42h, the ASCII code for the letter B. Adding
two values is a little trick to make use of the second ADI instruction for both
letters and numbers.

In either case, the next instruction is a RET, which ends the subroutine.
I said we’d be writing a subroutine that converted a whole byte into two

ASCII codes. This second subroutine has two CALL instructions to Digit,
once with the low nibble and then with the high nibble. At the beginning of
the subroutine, the byte to be converted is in the accumulator, and results
are stored in registers H and L. This subroutine, called ToAscii, happens to
reside beginning at memory address 14F8h:



This subroutine first saves the original byte in B, and then the ANI (AND
Immediate) instruction performs a bitwise AND operation with 0Fh to
preserve only the low four bits. Then it makes a CALL to the Digit
subroutine, located at address 1532h. That result is saved in L. The original
byte is retrieved from register B, and then four RRC instructions shift the
high nibble down to the low 4 bits. After another ANI instruction is another
call to Digit. That result is stored in register H, and the subroutine ends
with the RET instruction.

Let’s see how this works. Somewhere else might be a little snippet of
code that contains a CALL instruction for the ToAscii subroutine, located at



14F8h:

When the program continues at address 0628h, the values of H and L
contain ASCII codes for the two digits of 5Bh.

How do CALL and RET work?
I mentioned earlier that when a CALL instruction is executed, an address

is stored in a very special place that allows the code to resume after the
subroutine has completed. That very special place is called the stack. It’s an
area of memory that is located as far from everything else as possible. In an
8-bit CPU like the Intel 8080, the stack resides at the very end of memory.

The Intel 8080 contains a 16-bit register called the stack pointer. When
the 8080 is reset, the stack pointer is initialized to the address 0000h.
However, a program can change that address with the instructions SPHL (set
stack pointer from HL) or LXI SP (load stack pointer from immediate
address). But let’s leave it at the default value of 0000h.

When the Intel 8080 executes the CALL ToAscii instruction, several
things happen in sequence:

The stack pointer is decremented. Because it was initially set to the
value 0000h, decrementing causes it to become the value FFFFh,
which is the maximum 16-bit value, and which points to the last byte
of 16-bit memory.
The high byte of the address following the CALL instruction (which is
address 0628h, and is the current value of the program counter) is
saved in memory at the location addressed by the stack pointer. That
byte is 06h.
The stack pointer is decremented, now becoming the value FFFEh.



The low byte of the address following the CALL instruction is saved in
memory at the location addressed by the stack pointer. That byte is
28h.
The address in the CALL statement (14F8h) is loaded into the program
counter, in effect jumping to that address. This is the address of the
ToAscii routine.

The upper area of RAM now looks like this:

The CALL instruction has effectively left a little trail of breadcrumbs to
find its way back home.

The ToAscii routine is now being executed. It too has a CALL instruction
to the Digit routine. The memory location in the ToAscii routine following
that instruction is 14FEh, so when that CALL instruction occurs, that address
is stored on the stack, which now looks like this:

The value of the stack pointer is now FFFCh, and the Digit routine is
now in progress. When the RET instruction in the Digit routine is executed,
here’s what happens:

The byte at the memory location addressed by the stack pointer is
accessed. That byte is FEh.
The stack pointer is incremented.



The byte at the memory location addressed by the stack pointer is
accessed. That byte is 14h.
The stack pointer is incremented.
Those two bytes are loaded into the program counter, which
effectively jumps to memory location 14FEh in the ToAscii routine,
returning to the routine that called Digit.

The stack is now returned to the state it was in prior to the first call to
Digit:

The stack pointer is now FFFEh. The address 14FEh is still stored in
memory, but it has become irrelevant. The next call to Digit causes a new
return address to be stored on the stack:

That’s the address following the second call to Digit in the ToAscii
routine. When Digit executes the RET instruction again, it jumps to the
address 1509h in the ToAscii routine. The stack now looks like this again:



Now the RET instruction in the ToAscii routine can be executed. That
retrieves the address 0628h from the stack and branches to that address,
which is the address following the call to ToAscii.

And that’s how the stack works.
Formally, the stack is categorized as a Last-In-First-Out (or LIFO) form

of storage. The most recent value added to the stack becomes the next value
retrieved from the stack. Often the stack is visualized as a pile of cafeteria
plates held aloft by a springy support. Plates can be added to the pile and
then retrieved in the opposite order.

When something is added to the stack, it is said to be “pushed,” and
when something is removed from the stack, it is “popped.” The Intel 8080
also supports several PUSH and POP instructions to save registers on the stack
and later retrieve them:

The abbreviation PSW stands for Program Status Word, and it’s nothing new.
It’s just the accumulator in one byte and the ALU flags in another byte.

The PUSH and POP instructions are a convenient way to save the contents
of registers when making calls to subroutines. Sometimes code calling a
subroutine will push the contents of the registers before the CALL and pop
them afterwards. This allows the subroutine to use the registers without
worrying about how this will affect the code calling the subroutine. Or a
subroutine itself will push registers at the beginning and pop them before
the RET.

PUSH and POP instructions must be balanced, as must CALL and RET
instructions. If a subroutine calls PUSH twice and POP only once and then



executes a RET instruction, the code will jump to a location you probably
don’t want it to go!

It’s possible for errant code to pop the stack too many times, which
causes the stack pointer to begin addressing the beginning of memory rather
than the end! This problem is called stack underflow, and it can result in the
contents of the stack overwriting code. A related problem is when too much
is pushed on the stack and it grows in size, also probably overwriting code.
This is called stack overflow, a condition that has also provided the name
for a popular internet forum for programmers seeking answers to their
technical problems.

The CALL and RET instructions are not required for a CPU to be Turing
complete, but in practice they are quite convenient, and some would even
call them indispensable. Subroutines are the primary organizational
elements of assembly-language programs, and they also play important
roles in many other types of programming languages.

I’m afraid I won’t be adding CALL, RET, PUSH, and POP to the CPU I’ve
been designing over the past several chapters. I feel very bad about it, but
they would require a more versatile design than the one I’ve shown you.

But I’m sure you can easily imagine how they would be implemented: A
new 16-bit latch called the stack pointer would be added to the address bus.
This would look much like the latch that stores the program counter. That’s
the easy part. But it would also be necessary to push the program counter on
the stack during CALL instructions and pop it from the stack during RET
instructions, and that would require that the 2 bytes of the program counter
also be on the data bus. That is not the case in the present design.

Although I have not added the stack-related instructions to the CPU I’ve
been building, I have created a complete 8080 emulator on the website
CodeHiddenLanguage.com.

Over the past several chapters, you have seen how an 8-bit
microprocessor like the Intel 8080 executes instruction codes. Intel
introduced the 8080 in 1974, and it is now considered quite primitive in
comparison with everything that’s come since. As CPUs grew in size to
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accommodate 16-bit, 32-bit, and even 64-bit processing, they became much
more complex as well.

Still, however, all CPUs work in basically the same way: They execute
instructions to fetch bytes from memory, perform arithmetic and logic
operations on them, and store them back into memory.

It’s time to explore what else is required to make a real computer.



Chapter Twenty-Five

Peripherals

The central processing unit (CPU) is certainly the most important
component of a computer, but it must be supplemented with other hardware.
As you’ve seen, a computer also requires random access memory (RAM)
that contains both machine-code instructions for the processor to execute
and data for these instructions to access. As you’ll also recall, RAM is
volatile—it loses its contents when the power is turned off. So another
useful component of a computer is a long-term mass storage device that can
retain code and data in the absence of power.

The computer must also include some way for those instructions to get
into RAM, and some way for the results of the program to be examined.
Modern computers also have microphones, cameras, and speakers, as well
as radio transmitters and receivers that connect to Wi-Fi, Bluetooth devices,
and the satellites that make up the Global Positioning System (GPS).

These are known as input devices and output devices, commonly
referred to collectively by the abbreviation I/O and more generally as
peripherals.

The most obvious peripheral is likely the video display because that’s
what you’re often staring at regardless of whether you use a desktop
computer, a laptop, a tablet, or a cellphone. Perhaps you’re staring at a
video display while reading this very book!

All video displays in common use today create an image composed of
rows and columns of pixels, which are little colored dots that you can see if



you examine a display with a magnifying glass. The composite number of
rows and columns of pixels is often referred to as the display resolution.

For example, the standard high-definition television (HDTV) resolution
is denoted as 1920 × 1080, which means 1,920 pixels horizontally and
1,080 pixels vertically, for a total of about 2 million pixels, each of which
can be a different color. This has almost become the minimum resolution of
computer displays.

These pixels are not illuminated all at once. The contents of the display
are stored in a special block of memory, and the individual pixels of the
display are refreshed sequentially, starting left to right with the row at the
top, and continuing down the display. To prevent flickering, this process
occurs very quickly, and the entire display is generally refreshed at least 60
times per second. The circuitry that controls this process is known as a
video display adapter.

How much memory is required to store the contents of a 1920 × 1080
display?

Each of the 2 million pixels is a specific color that is a combination of
red, green, and blue primary colors, also known as an RGB color. (If you’re
an artist, you might be familiar with a different set of primary colors, but
these are the three used in video displays.) Varying the intensity of these
individual components creates all the colors possible on the video display.
The intensities are generally controlled by 1 byte for each primary, which is
set to 00h for no color and FFh for maximum intensity. This scheme allows
a video display to be capable of 256 different levels of red, 256 levels of
green, and 256 levels of blue, for a total of 256 × 256 × 256, or 16,777,216
different colors. (Under the philosophy that everything about computers can
be improved, some companies are forging ahead to increase color range and
resolution. Doing so requires more than 8 bits per primary.)

If you do any work with HTML in designing webpages, you might know
that colors can be specified with six-digit hexadecimal values preceded by a
pound sign. Here are the 16 standard colors established by the HTML 4.01
specification from 1999:



Other colors are defined with different values. Following the pound sign
are three pairs of hexadecimal digits: The first is the level of red from 00h
to FFh, the second is the level of green, and the third is the level of blue.
Black results when all three components are 00h, and white results when all
three components are FFh. Shades of gray are possible when all three
components are the same.

For a 1920 × 1080 display, each of the 2 million pixels requires 3 bytes
for the red, green, and blue components, for a total of 6 million bytes, or 6
megabytes.

In previous chapters, I treated the RAM that a CPU accesses as a
monolithic block of memory. In reality, memory containing code and data is
usually shared with memory devoted to the video display. This
configuration allows the computer to update the video display very quickly
just by writing bytes into RAM, allowing very high-speed graphical
animations.

The 8-bit CPU that I built over the past several chapters has a 16-bit
memory address that is capable of addressing 64 kilobytes of memory.
Obviously you cannot fit 6 megabytes of video memory into 64 kilobytes of
memory! (Actually, you might rig up something in which multiple chunks
of memory are swapped in and out of the CPU’s memory space, but it
would certainly slow things down.)

This is why high-resolution video displays became feasible only when
memory became cheap, and when more powerful CPUs could access this
memory with more agility. A 32-bit CPU can access memory in 32-bit data
chunks, and for that reason, video display memory is often arranged with 4
bytes per pixel rather than just the 3 required for the red, green, and blue



components. This means that video memory for a 1920 × 1080 display
requires 8 megabytes of memory rather than just 6 megabytes.

This video memory is generally arranged in the same order in which the
display is refreshed. First row first, starting with the leftmost pixel: 3 bytes
for the red, green, and blue components, and an unused byte. Drawing
anything on the screen—be it text or graphics—requires a program to
determine what pixels to set in the graphics memory.

Computer graphics often involves mathematical tools associated with
analytic geometry. The entire display—or a smaller rectangular area of the
display—can be treated as a simple coordinate system in which every pixel
is a point that is referenced with horizontal and vertical (x, y) coordinates.
For example, the pixel at position (10, 5) is ten pixels from the left and five
pixels down. Drawing a diagonal line from that point to the position (15,
10) involves coloring the pixels at points (10, 5), (11, 6), (12, 7), (13, 8),
(14, 9), and (15, 10). Other types of lines and curves are more complex, of
course, but there are plenty of software tools to help out.

Text is a subset of graphics. Each character of a particular font is defined
by a collection of straight lines and curves with additional information
(called “hints”) that allow text to be rendered for maximum readability.

Three-dimensional graphics get much more complex, involving various
types of shading to indicate the effect of light and shadows. Nowadays,
programs are often assisted by a graphics processing unit (GPU) that does
some of the heavy mathematics often required for 3D graphics.

When personal computers first became available, high-resolution
displays were just not feasible. The first graphics display available for the
IBM PC was called the Color Graphics Adapter (CGA), which was capable
of three graphics formats (or modes): 160 × 100 pixels with 16 colors (but
using 1 byte per pixel), 320 × 200 pixels with four colors (2 bits per pixel),
and 640 × 200 pixels with two colors (1 bit per pixel). Regardless of the
graphics mode, only 16,000 bytes of memory were required. For example,
320 pixels across times 200 pixels down times ¼ byte per pixel equals
16,000.

Some early computer displays were not capable of displaying graphics at
all and were limited to text. This is another way to reduce memory
requirements, and this was the rationale behind the Monochrome Display
Adapter (MDA), the other display available with early IBM PCs. The MDA
was capable only of displaying 25 lines of 80-character text in one color,



which was green on a black background. Each character was specified by
an 8-bit ASCII code and was accompanied by an “attribute” byte that could
be used for brightness, reverse video, underlining, or blinking. The number
of bytes required for storing the contents of the display was therefore 25 ×
80 × 2, or 4,000 bytes. The video adapter contained circuitry that used read-
only memory to convert each ASCII character to rows and columns of
pixels. Just as a CPU contains internal busses to move data between the
CPU components, the CPU itself is often connected to external busses that
move data between the CPU, memory, and peripherals.

Memory for the video display occupies the regular memory space of the
CPU. Other peripherals might do so also. This is called memory-mapped
I/O. But a CPU might define a separate bus for accessing peripherals, and it
might include special facilities for working with these input/output devices.

In the previous several chapters, I’ve been building a CPU based on the
Intel 8080 microprocessor. Among the 244 instructions implemented by the
8080 are two instructions named IN and OUT:

Both instructions are followed by an 8-bit port number, which is similar
to a memory address but is only 8 bits wide and intended specifically for
I/O devices. The IN instruction reads from that port and saves the result in
the accumulator. The OUT instruction writes the contents of the accumulator
to that port. A special signal from the 8080 indicates whether it is accessing
RAM (the normal case) or accessing an I/O port.

For example, consider the keyboard on a desktop or laptop computer.
Each key on the keyboard is a simple switch that is closed when the key is
pressed. Each key is identified by a unique code. This keyboard might be
set up to be accessed as port number 25h. A program could execute the
instruction:

IN 25h

The accumulator would then contain a code indicating what key has been
pressed.



It’s tempting to assume that this code is the ASCII code for the key. But
it’s neither practical nor desirable to design hardware that figures out the
ASCII code. For example, the A key on the keyboard could correspond to
the ASCII code 41h or 61h depending on whether a user also pressed the
Shift key, which is the key that determines whether a typed letter is
lowercase or uppercase. Also, computer keyboards have many keys (such
as function keys and arrow keys) that don’t correspond to ASCII characters
at all. A short computer program can figure out what ASCII code (if any)
corresponds to a particular key being pressed on the keyboard.

But how would the program know when a key has been pressed on the
keyboard? One approach is for the program to check the keyboard very
frequently. This approach is called polling. But a better approach is for the
keyboard to somehow inform the CPU when a key has been pressed. In the
general case, an I/O device can inform a CPU of such an event by issuing
an interrupt, which is just a special signal going to the CPU.

To assist with interrupts, the 8080 CPU implemented eight instructions
called restart instructions:

Each of these instructions causes the CPU to save the current program
counter on the stack and then jump to the memory address 0000h, 0008h,
0010h, and so forth. A RST 0 is essentially the same as a CPU reset, but the
others might contain jump or call instructions.

Here’s how this works: The 8080 CPU included an external interrupt
signal. When a peripheral device (such as a physical keyboard) sets this
interrupt signal, it also puts the byte for one of these reset instructions on



the data bus. That memory location contains code to handle that particular
I/O device.

This is called interrupt-driven I/O. The CPU doesn’t have to bother
polling the I/O devices. It can be doing other tasks until the I/O device uses
the interrupt signal to inform the CPU that something new has happened.
This is how a keyboard can inform the CPU that a key has been pressed.

It’s also desirable to use interrupts for the mouse on a desktop or laptop
computer, a touchpad on a laptop, or a touchscreen on a tablet or cellphone.

A mouse seems to be connected very directly to the video display. After
all, you move the mouse up, down, left, or right on your desk, and the
mouse pointer moves accordingly on the screen. But that connection is
really just an illusion. The mouse is delivering electrical pulses indicating
the direction it’s moved. It is the responsibility of software to redraw the
mouse pointer in different locations. Besides movement, the mouse also
signals the computer when a mouse button has been pressed and when it’s
released, or when a scroll button is turned.

A touchscreen is usually a layer on top of a video display that can detect
a change in electrical capacitance when touched by a finger. The
touchscreen can indicate the location of one or more fingers using the same
(x, y) coordinates that a program uses to display graphics to the screen.
Programs can be informed when a finger touches the screen, when it is
removed from the screen, and by how it moves when it’s touching the
screen. This information can then assist the program in performing various
tasks, such as scrolling the screen or dragging a graphical object across the
screen. A program can also interpret the movement of two-finger gestures
such as pinch and zoom.

Everything in the computer is digital. Everything is a number. Yet the
real world is often analog. Our perceptions of light and sound seem
continuous rather than being of discrete numeric values.

To assist in converting real-world analog data into numbers and back
again, two devices have been invented:

The analog-to-digital converter (ADC)
The digital-to-analog converter (DAC)

The input of an ADC is a voltage that can vary continuously between
two values, and the output is a binary number representing that voltage.



ADCs commonly have 8-bit or 16-bit outputs. For example, the output of
an 8-bit ADC might be 00h for an input voltage of zero volts, 80h for 2.5
volts, and FFh for 5 volts.

The DAC goes the other way. The input is a binary number, perhaps 8
bits or 16 bits in width, and the output is a voltage corresponding to that
number.

DACs are used in video displays to convert the digital values of the
pixels into voltages that govern the intensity of light emitted from the red,
green, and blue components of each pixel.

Digital cameras use an array of active-pixel sensors (APS) that respond
to light by emitting a voltage that is then converted to numbers with an
ADC. The result is an object called a bitmap, which is a rectangular array of
pixels, each of which is a particular color. Just as with the memory in a
video display, the pixels of a bitmap are stored sequentially, row by row
starting with the top row and ending with the bottom, and within each row
from left to right.

Bitmaps can be huge. The camera on my cellphone creates images that
are 4032 pixels wide and 3024 pixels high. But not all that data is necessary
to reproduce the image. For that reason, engineers and mathematicians have
devised several techniques to reduce the number of bytes required to store
bitmaps. This is called compression.

One simple form of bitmap compression is run-length encoding, or RLE.
For example, if there are ten pixels of the same color in a row, the bitmap
need only store that pixel and the number 10. But this works well only for
images that contain large swaths of the same color.

A more sophisticated file-compression scheme that’s still in common
use is the Graphics Interchange Format, or GIF, pronounced jif like the
brand of peanut butter (though not everyone agrees). It was developed in
1987 by the former online service CompuServe. GIF files use a
compression technique called LZW (standing for its creators, Lempel, Zif,
and Welch), which detects patterns of differently valued pixels rather than
just consecutive strings of same-value pixels. GIF files also incorporate a
rudimentary animation facility using multiple images.

More sophisticated than GIF is Portable Network Graphics (PNG),
dating from 1996. PNG effectively converts adjacent pixel values to



differences between the values, which are generally smaller numbers that
can be more efficiently compressed.

A GIF or PNG file is not necessarily smaller than the original
uncompressed bitmap! If some bitmaps are reduced in size by a particular
compression process, others must be increased in size. This can happen for
images with a great many colors or much detail.

In that case, other techniques become useful. Introduced in 1992, the
JPEG (pronounced jay-peg) file format has become enormously popular for
bitmap files of real-world images. Today’s cellphone cameras create JPEG
files ready to be shared or transferred to another computer.

JPEG stands for the Joint Photographic Experts Group, and unlike
previous compression techniques, it is based on psychovisual research to
exploit the way that the human eye perceives images. In particular, JPEG
compression can discard sharp transitions in colors, which reduces the
amount of data necessary to reproduce the image. Quite sophisticated
mathematics are employed!

The disadvantage of JPEG is that it’s not reversible: You can’t go back
to exactly the original image after it’s compressed. In contrast, GIF and
PNG are reversible; nothing is lost in the compression process. For this
reason, GIF and PNG are referred to as lossless compression techniques,
while JPEG is categorized as a form of lossy compression. Information is
lost, and in extreme cases, this can result in visual distortions.

Computers often have a microphone that detects sounds from the real
world, and a speaker that creates sounds.

Sound is vibration. Human vocal cords vibrate, a tuba vibrates, a tree
falling in a forest vibrates, and these objects cause air molecules to move.
The air alternately pushes and pulls, compresses and thins, back and forth
some hundreds or thousands of times a second. The air in turn vibrates our
eardrums, and we sense sound.

A microphone responds to these vibrations by producing an electrical
current whose voltage varies analogously to the sound waves. Also
analogous to these waves of sound are the little hills and valleys in the
surface of the tin foil cylinder that Thomas Edison used to record and play
back sound in the first phonograph in 1877, and the hills and valleys in the
grooves of vinyl records still beloved by modern audiophiles and
enthusiasts of retro technologies.



But for computers, this voltage needs to be digitized—that is, turned into
numbers—and that’s another job for the ADC.

Digitized sound made a big consumer splash in 1983 with the compact
disc (CD), which became the biggest consumer electronics success story
ever. The CD was developed by Philips and Sony to store 74 minutes of
digitized sound on one side of a disc 12 centimeters in diameter. The length
of 74 minutes was chosen so that Beethoven’s Ninth Symphony could fit on
one CD. (Or so the story goes.)

Sound is encoded on a CD using a technique called pulse code
modulation, or PCM. Despite the fancy name, PCM is conceptually a fairly
simple process: The voltage representing a sound wave is converted to
digital values at a constant rate and stored. During playback, the numbers
are converted to an electrical current again using a DAC.

The voltage of the sound wave is converted to numbers at a constant rate
known as the sampling rate. In 1928, Harry Nyquist of Bell Telephone
Laboratories showed that a sampling rate must be at least twice the
maximum frequency that needs to be recorded and played back. It’s
commonly assumed that humans hear sounds ranging from 20 Hz to 20,000
Hz. The sampling frequency used for CDs is a bit more than double that
maximum, specifically 44,100 samples per second.

The number of bits per sample determines the dynamic range of the CD,
which is the difference between the loudest and the softest sound that can
be recorded and played back. This is somewhat complicated: As the
electrical current varies back and forth as an analog of the sound waves, the
peaks that it hits represent the waveform’s amplitude. What we perceive as
the intensity of the sound is proportional to twice the amplitude. A bel
(which is three-quarters of Alexander Graham Bell’s last name) is a tenfold
increase in intensity; a decibel is one-tenth of a bel. One decibel represents
approximately the smallest increase in loudness that a person can perceive.

It turns out that the use of 16 bits per sample allows a dynamic range of
96 decibels, which is approximately the difference between the threshold of
hearing (below which we can’t hear anything) and the threshold of pain,
louder than which might prompt us to hold our hands over our ears. The
compact disc uses 16 bits per sample.

For each second of sound, a compact disc contains 44,100 samples of 2
bytes each. But you probably want stereo as well, so double that for a total
of 176,400 bytes per second. That’s 10,584,000 bytes per minute of sound.



(Now you know why digital recording of sound wasn’t common before the
1980s.) The full 74 minutes of stereo sound on the CD requires 783,216,000
bytes. Later CDs increased that capacity somewhat.

Although CDs have faded in importance in recent years, the concepts of
digital sound remain the same. Because you don’t always need CD quality
when recording and playing back sound on home computers, lower
sampling rates are often available, including 22,050 Hz, 11,025 Hz, and
8000 Hz. You can record using a smaller sample size of 8 bits, and you can
cut the data in half by recording monophonically.

Just as with bitmaps, it’s often useful to compress audio files to reduce
storage and decrease the amount of time required to transfer files between
computers. One popular compression technique for audio is MP3, which
originated as part of a compression technique for movies called MPEG
(standing for Moving Picture Experts Group). MP3 is lossy compression
but based on psychoacoustic analysis to reduce data that does not
appreciably contribute to the perception of the music.

Bitmaps compressed with GIF, PNG, or JPEG, and audio compressed
with MP3, can occupy memory, particularly while a program is working
with the information, but very often they’re stored as files on some kind of
storage device.

As you’ll recall, random access memory—whether constructed from
relays, tubes, or transistors—loses its contents when the electrical power is
shut off. For this reason, a complete computer also needs something for
long-term storage. One time-honored approach involves punching holes in
paper or cardboard, such as in IBM punch cards. In the early days of small
computers, rolls of paper tape were punched with holes to save programs
and data and to later reload them into memory. A step up from that was
using audio cassette tapes, which were also popular in the 1980s for
recording and playing music. These were just a smaller version of the
magnetic tapes used by large computers for mass storage of data.

Tape, however, isn’t an ideal medium for storage and retrieval because
it’s not possible to move quickly to an arbitrary spot on the tape. It can take
a lot of time to fast-forward or rewind.

A medium geometrically more conducive to fast access is the disk. The
disk itself is spun around its center, while one or more heads attached to
arms can be moved from the outside of the disk to the inside. Any area on
the disk can be accessed very quickly. Bits are recorded by magnetizing



small areas of the disk. The first disk drives used for computers were
invented at IBM in 1956. The Random Access Method of Accounting and
Control (RAMAC) contained 50 metal disks 2 feet in diameter and could
store 5 megabytes of data.

Popular on personal computers were smaller single sheets of coated
plastic inside a protective casing made of cardboard or plastic. These were
called floppy disks or diskettes and started out as 8 inches in diameter, then
5.25 inches, and then 3.5 inches. Floppy disks could be removed from the
disk drive, allowing them to be used for transferring data from one
computer to another. Diskettes were also an important distribution medium
of commercial software. Diskettes have all but disappeared except for a
little drawing of a 3.5-inch diskette, which survives as the Save icon in
many computer applications.

A hard disk still found inside some personal computers usually contains
multiple metal disks permanently built into the drive. Hard disks are
generally faster than floppy disks and can store more data, but the disks
themselves can’t easily be removed.

These days, storage is more often in the form of a solid-state drive
(SSD) built either inside the computer (or tablet or cellphone) or as flash
memory in a portable thumb drive.

Mass-storage devices must accommodate files of various sizes that
might originate from a variety of sources on the computer. To facilitate this,
the mass-storage device is divided into areas of a fixed size, called sectors.
Floppy disks and hard drives often had a sector size of 512 bytes. SSDs
often have sector sizes of 512 bytes and 4,096 bytes.

Every file is stored in one or more sectors. If the sector size is 512 bytes
and the file is less than 512 bytes, storing the file requires only one sector,
but any remaining space can’t be used for anything else. A file that is 513
bytes requires two sectors, and a file that is a megabyte in size requires
4,096 sectors.

The sectors associated with a particular file don’t have to be
consecutive. They can be spread out all over the drive. As files are deleted,
sectors are freed up for other files. As new files are created, available
sectors are used, but the sectors are not necessarily grouped together.

Keeping track of all this—including the whole process of storing files
and retrieving them—is the province of an extremely important piece of



software known as the operating system.



Chapter Twenty-Six

The Operating System

We have, at long last, assembled—at least in our imaginations—what seems
to be a complete computer. This computer has a central processing unit
(CPU), some random access memory (RAM), a keyboard, a video display
whose memory is part of RAM, and some kind of mass-storage device. All
the hardware is in place, and we eye with excitement the on/off switch that
will power it up and bring it to life. Perhaps this project has evoked in your
mind the labors of Victor Frankenstein as he assembled his monster, or
Geppetto as he built the wooden puppet that he will name Pinocchio.

But we’re still missing something, and it’s neither the power of a
lightning bolt nor the purity of a wish upon a star. Go ahead: Turn on this
new computer and tell us what you see.

As the screen blinks on, it displays pure random garbage. If you’ve
constructed a graphics adapter, there will be dots of many colors but
nothing coherent. For a text-only video adapter, you’ll see random
characters. This is as we expect. Semiconductor memory loses its contents
when the power is off and begins in a random and unpredictable state when
it first gets power. All the RAM that’s been constructed for the
microprocessor contains random bytes. The microprocessor begins
executing these random bytes as if they were machine code. This won’t
cause anything bad to happen—the computer won’t blow up, for instance—
but it won’t be very productive either.



What we’re missing here is software. When a microprocessor is first
turned on or is reset, it begins executing machine code at a particular
memory address. In the case of the Intel 8080, that address is 0000h. In a
properly designed computer, that memory address should contain a
machine-code instruction (most likely the first of many) that the CPU
executes when the computer is turned on.

How does that machine-code instruction get there? The process of
getting software into a newly designed computer is one of the more
confusing aspects of the project. One way to do it is with a control panel
similar to the one in Chapter 19 used for writing bytes into random access
memory and later reading them:

Unlike the earlier control panel, this one has a switch labeled Reset. The
Reset switch is connected to the Reset input of the CPU. As long as that
switch is on, the microprocessor doesn’t do anything. When you turn off the
switch, the microprocessor begins executing machine code at address
0000h.

To use this control panel, you turn the Reset switch on to reset the
microprocessor and to stop it from executing machine code. You turn on the
Takeover switch to take over the address bus and data bus. At this time, you
can use the switches labeled A0 through A15 to specify a 16-bit memory
address. The lightbulbs labeled D0 through D7 show you the 8-bit contents
of that memory address. To write a new byte into that address, you set up
the byte on switches D0 through D7 and flip the Write switch on and then



off again. After you’re finished inserting bytes into memory, turn the
Takeover switch off and the Reset switch off, and the microprocessor will
execute the program.

This is how you enter your first machine-code programs into a computer
that you’ve just built from scratch. Yes, it’s unbearably laborious. That goes
without saying. That you will make little mistakes now and then is a given.
That your fingers will get blisters and your brain will turn to mush is an
occupational hazard.

But what makes it all worthwhile is when you start to use the video
display to show the results of your little programs. One of the first pieces of
code you’ll write is a little subroutine that converts numbers to ASCII. For
example, if you’ve written a program that results in the value 4Bh, you
can’t simply write that value to the video display memory. What you’ll see
on the screen in that case is the letter K because that’s the letter that
corresponds to the ASCII code 4Bh. Instead, you need to display two ASCII
characters: 34h, which is the ASCII code for 4, and 42h, which is the ASCII
code for B. You’ve already seen some code that does just that: the ToAscii
routine on page 398 in Chapter 24.

One of your highest priorities is probably getting rid of that ridiculous
control panel, and that involves writing a keyboard handler: a program that
reads characters typed from the keyboard, stores them in memory, and also
writes them to the screen. Transferring characters from the keyboard to the
screen is sometimes called echoing, and it gives the illusion of a direct
connection between keyboard and display.

You might want to expand this keyboard handler into something that
executes simple commands—that is, something useful for the keyboard
handler to do. The code that you write to handle these commands is now
termed a command processor. To keep it simple at first, you decide on just
three commands. These three commands correspond to the first letter that is
typed on the line:

W for Write
D for Display
R for Run

Your keyboard handler executes these commands when you hit the Enter
key to signal that you’re finished typing the command.



If the line of text begins with a W, the command means to Write some
bytes into memory. The line you type on the screen looks something like
this:

W 1020 35 4F 78 23 9B AC 67

This command instructs the command processor to write the hexadecimal
bytes 35h, 4Fh, and so on into memory beginning at address 1020h. For this
job, the keyboard handler needs to convert ASCII codes to bytes—a
reversal of the ToAscii conversion that I demonstrated earlier.

If the line of text begins with a D, the command means Display some
bytes in memory. The line you type on the screen looks like this:

D 1030

The command processor responds by displaying bytes stored beginning at
location 1030h. You can use the Display command to examine the contents
of memory.

If the line of text begins with an R, the command means Run. Such a
command looks like this:

R 1000

This command means “Run the program that’s stored beginning at address
1000h.” The command processor can store 1000h in the register pair HL
and then execute the instruction PCHL, which loads the program counter
from register pair HL, effectively jumping to that address.

Getting this keyboard handler and command processor working is an
important milestone. Once you have it, you no longer need suffer the
indignity of the control panel. Entering data from the keyboard is easier,
faster, and classier.

Of course, you still have the problem that all the code you’ve entered
disappears when you turn off the power. For that reason, you’ll probably
want to store all this new code in read-only memory, or ROM. In the early
days of microprocessors such as the Intel 8080, it became possible to
program ROM chips in the privacy of your home. Programmable read-only
memory (PROM) chips are programmable only once. Erasable



programmable read-only memory (EPROM) chips can be programmed and
reprogrammed after being entirely erased by exposure to ultraviolet light.

This ROM containing your keyboard handler would then occupy the
address space beginning at 0000h formerly occupied by RAM. You’d still
keep the RAM, of course, but it would occupy a somewhat higher address
in the memory space.

The creation of the command processor is an important milestone not
only because it provides a faster means to enter bytes into memory but also
because the computer is now interactive.

Once you have the command processor in ROM, you can start
experimenting with writing data from memory to the disk drive and reading
the data back into memory. Storing programs and data on the disk is much
safer than storing them in RAM (where they’ll disappear if the power fails)
and much more flexible than storing them in ROM.

Eventually you might want to add some new commands to the command
processor. For example, an S command might mean to Store some memory
in a particular group of disk sectors, while the L command does a Load of
the contents of those disk sectors into memory.

Of course, you’ll have to keep track of what you’re storing in which disk
sectors. You’ll probably keep a pad and pencil handy for this purpose. And
be careful: You can’t just store some code located at one address and then
later load it back into memory at another address and expect it to work. All
the Jump and Call instructions will be wrong because they indicate the old
addresses. Also, you might have a program that’s longer than the sector size
of your disk, so you’ll need to store it in several sectors. Some sectors on
the disk will already be occupied by other programs or data, so the free
sectors available for storing a long program might not be consecutive on the
disk.

Eventually, you could decide that the manual clerical work involved in
keeping track of where everything is stored on the disk is just too much. At
this point, you’re ready for a file system.

A file system is software that organizes data into files. A file is simply a
collection of related data that occupies one or more sectors on the disk.
Most importantly, each file is identified by a name that helps you remember
what the file contains. You can think of the disk as resembling a file cabinet
in which each file has a little tab that indicates its name.



A file system is almost always part of a larger collection of software
known as an operating system. The keyboard handler and command
processor we’ve been building in this chapter could certainly evolve into an
operating system. But instead of trudging through that long evolutionary
process, let’s take a look instead at a real operating system and get a feel for
what it does and how it works.

Historically, the most important operating system for 8-bit
microprocessors was CP/M, originally standing for Control
Program/Monitor but later renamed Control Program for Microcomputers.
It was written in the mid-1970s for the Intel 8080 microprocessor by Gary
Kildall (1942–1994), who later founded Digital Research Incorporated
(DRI).

CP/M was stored on a disk, but most of the disk was available for
storing your own files. The CP/M file system is fairly simple, but it satisfies
two major requirements: First, each file on the disk is identified by a name
that is also stored on the disk. Second, files don’t have to occupy
consecutive sectors on a disk. It often happens that as files of various sizes
are created and deleted, free space on the disk becomes fragmented. The
ability of a file system to store a large file in nonconsecutive sectors is very
useful. The table that equates files with their disk sectors is also stored on
the disk.

Under CP/M, each file is identified with a two-part name. The first part
is known as the filename and can have up to eight characters, and the
second part is known as the file type or extension and can have up to three
characters. There are several standard file types. For example, TXT
indicates a text file (that is, a file containing only ASCII codes and readable
by us humans), and COM (which is short for command) indicates a file
containing 8080 machine-code instructions—a program.

This file-naming convention came to be known as 8.3 (pronounced eight
dot three), indicating the maximum eight letters before the period and the
three letters after. Although modern file systems have removed the
limitation of eight characters and three characters, this general convention
for naming files is still quite common.

Computers that used CP/M contained ROM with a small piece of code
known as a bootstrap loader, so called because that code effectively pulls
the rest of the operating system up by its bootstraps. The bootstrap loader
loads the very first sector from the diskette into memory and runs it. This



sector contains code to load the rest of CP/M into memory. The entire
process is called booting the operating system, a term that is still widely
used.

CP/M itself was organized in a hierarchy: At the lowest level was the
Basic Input/Output System, or BIOS (pronounced BY-ohss). This contained
code that directly accessed the hardware of the computer, including reading
and writing disk sectors. Every manufacturer of a computer that ran CP/M
would provide their own BIOS for their particular assemblage of hardware.

Next in the hierarchy was the Basic Disk Operating System, or BDOS
(pronounced BE-doss). The primary function of the BDOS is to organize
the disk sectors handled by the BIOS into files.

When CP/M finishes loading into memory, it runs a program called the
Console Command Processor (CCP) to display a prompt on the screen:

A>

In computers that have more than one disk drive, the A refers to the first
disk drive, the one from which CP/M was loaded. The prompt is your signal
to type something and press the Enter key. Most of the commands are for
working with files, such as listing them (DIR for directory), erasing them
(ERA), renaming them (REN), and displaying the contents (TYPE). A name that
CP/M doesn’t recognize is assumed to be a program stored somewhere on
disk.

CP/M also contained a collection of subroutines that programs could use
to read from the keyboard, write characters to the video display, save data in
a file on the disk, and load the contents of that file back into memory.

Programs running under CP/M did not need to access the hardware of
the computers directly because the BDOS portion of CP/M used the BIOS
portion to access the hardware. This means that a program written for CP/M
could run on any computer running CP/M without knowing about the
underlying hardware. This is a principle known as device independence,
and it was crucial to the development of commercial software. Later on,
such programs became known as applications or apps.

A collection of subroutines provided by an operating system is known as
an application programming interface, or API. In an ideal world, the
programmer of an application program needs to know only about the API



and not how an API is implemented or the hardware it accesses. In reality,
sometimes a little more knowledge is found to be helpful.

To a computer user, an operating system is the user interface, or UI. In
the case of CP/M, this was the command-line interface (CLI) implemented
by the CCP. To a programmer, an operating system is also the API—the
collection of subroutines available for an application program.

In the case of CP/M, these subroutines had a common entry point at
location 0005h in memory, and a program would use one of these
subroutines by making a call to that memory location:

CALL 0005h

Or simply:

CALL 5

This was known as the “Call 5” interface!
The specific routine was specified by the value of register C. Here are a

few examples:

Often one of these functions would require more information. For
example, when C is 09h, the register pair DE contains an address of ASCII
characters to write to the display. The dollar sign ($) is used to mark the end
of the string.

What does CALL 5 actually do? The memory location at 0005h is set up
by CP/M to contain a JMP instruction, which jumps to a location in the



BDOS part of CP/M, which then checks the value of the C register and
jumps to the appropriate subroutine.

CP/M was once a very popular operating system for the 8080 and
remains historically important. CP/M was the major influence behind a 16-
bit operating system named QDOS (Quick and Dirty Operating System)
written by Tim Paterson of Seattle Computer Products for Intel’s 16-bit
8086 and 8088 chips. QDOS was eventually renamed 86-DOS and licensed
by Microsoft Corporation. Under the name MS-DOS (Microsoft Disk
Operating System, pronounced em ess dahs, like the German article das),
the operating system was licensed to IBM for the first IBM Personal
Computer, introduced in 1981. Although a 16-bit version of CP/M (called
CP/M-86) was also available for the IBM PC, MS-DOS quickly became the
standard. MS-DOS (called PC-DOS on IBM’s computers) was also licensed
to other manufacturers that created computers compatible with the IBM PC.

As the name implies, MS-DOS is primarily a disk operating system, as
was Apple DOS, created in 1978 for the Apple II. Very little was provided
apart from the ability to write files to disks, and later read those files.

In theory, application programs are supposed to access the hardware of
the computer only through the interfaces provided by the operating system.
But many programmers of the 1970s and 1980s often bypassed the
operating system, particularly in dealing with the video display. Programs
that directly wrote bytes into video display memory ran faster than
programs that didn’t. Indeed, for some applications—such as those that
needed to display graphics on the video display—the operating system was
totally inadequate. What many programmers liked most about these early
operating system was that they “stayed out of the way” and let
programmers write programs that ran as fast as the hardware allowed.

The first indication that home computers were going to be much
different from their larger and more expensive cousins was probably the
application VisiCalc. Designed and programmed by Dan Bricklin (born
1951) and Bob Frankston (born 1949) and introduced in 1979 for the Apple
II, VisiCalc used the screen to give the user a two-dimensional view of a
spreadsheet. Prior to VisiCalc, a spreadsheet was a wide piece of paper with
rows and columns generally used for doing a series of calculations.
VisiCalc replaced the paper with the video display, allowing the user to
move around the spreadsheet, enter numbers and formulas, and recalculate
everything after a change.



What was amazing about VisiCalc is that it was an application that could
not be duplicated on larger computers. A program such as VisiCalc needs
to update the screen very quickly. For this reason, it wrote directly to the
random-access memory used for the Apple II’s video display. This memory
is part of the address space of the microprocessor. This was not how large
computers were designed or operated.

The faster a computer can respond to the keyboard and alter the video
display, the tighter the potential interaction between user and computer.
Most of the software written in the first decade of the personal computer
(through the 1980s) wrote directly to video display memory. Because IBM
set a hardware standard that other computer manufacturers adhered to,
software manufacturers could bypass the operating system and use the
hardware directly without fear that their programs wouldn’t run right (or at
all) on some machines. If all the PC clones had different hardware
interfaces to their video displays, it would have been too difficult for
software manufacturers to accommodate all the different designs.

But as applications proliferated, problems surfaced. The most successful
applications took over the whole screen and implemented a sophisticated UI
based around the keyboard. But each application had its own ideas about
the UI, which meant that skills learned in one application couldn’t be
leveraged into others. Programs also couldn’t coexist well. Moving from
one program to another generally required ending the running program and
starting up the next.

A much different vision of personal computing had been developing for
several years at the Palo Alto Research Center (PARC), which was founded
by Xerox in 1970 in part to help develop products that would allow the
company to enter the computer industry.

The first big project at PARC was the Alto, designed and built in 1972
and 1973. By the standards of those years, it was an impressive piece of
work. The floor-standing system unit had 16-bit processing, two 3 MB disk
drives, and 128 KB of memory (expandable to 512 KB). The Alto preceded
the availability of 16-bit single-chip microprocessors, so the processor had
to be build from about 200 integrated circuits.

The video display was one of several unusual aspects of the Alto. The
screen was approximately the size and shape of a sheet of paper—8 inches
wide and 10 inches high. It ran in a graphics mode with 606 pixels
horizontally by 808 pixels vertically, for a total of 489,648 pixels. One bit



of memory was devoted to each pixel, which meant that each pixel could be
either black or white. The total amount of memory devoted to the video
display was 64 KB, which was part of the address space of the processor.

By writing into this video display memory, software could draw pictures
on the screen or display text in different fonts and sizes. Rather than using
the video display simply to echo text typed by the keyboard, the screen
became a two-dimensional high-density array of information and a more
direct source of user input.

The Alto also included a little device called a mouse, which rolled on the
table and contained three buttons. This was an invention of engineer and
inventor Douglas Engelbart (1925–2013) while at the Sanford Research
Center. By rolling the mouse on the desk, the user of the Alto could position
a pointer on the screen and interact with onscreen objects.

Over the remainder of the 1970s, programs written for the Alto
developed some very interesting characteristics. Multiple programs were
put into windows and displayed on the same screen simultaneously. The
video graphics of the Alto allowed software to go beyond text and truly
mirror the user’s imagination. Graphical objects (such as buttons and menus
and little pictures called icons) became part of the user interface. The mouse
was used for selecting windows or triggering the graphical objects to
perform program functions.

This was software that went beyond the user interface into user intimacy,
software that facilitated the extension of the computer into realms beyond
those of simple number crunching, software that was designed—to quote
the title of a paper written by Douglas Engelbart in 1963—“for the
Augmentation of Man’s Intellect.”

The Alto was the beginning of the graphical user interface, or GUI,
often pronounced gooey, and much of the pioneering conceptual work is
attributed to Alan Kay (born 1940). But Xerox didn’t sell the Alto (one
would have cost over $30,000 if they had), and over a decade passed before
the ideas in the Alto would be embodied in a successful consumer product.

In 1979, Steve Jobs and a contingent from Apple Computer visited
PARC and were quite impressed with what they saw. But it took them over
three years to introduce a computer that had a graphical interface. This was
the ill-fated Apple Lisa in January 1983. A year later, however, Apple
introduced the much more successful Macintosh.



The original Macintosh had a Motorola 68000 microprocessor, 64 KB of
ROM containing the operating system, 128 KB of RAM, a 3.5-inch diskette
drive (storing 400 KB per diskette), a keyboard, a mouse, and a video
display capable of displaying 512 pixels horizontally by 342 pixels
vertically. (The display itself measured only 9 inches diagonally.) That’s a
total of 175,104 pixels. Each pixel was associated with 1 bit of memory and
could be colored either black or white, so about 22 KB were required for
the video display RAM.

The hardware of the original Macintosh was elegant but hardly
revolutionary. What made the Mac so different from other computers
available in 1984 was the Macintosh operating system, generally referred to
as the system software at the time and later known as Mac OS, and currently
as macOS.

A text-based single-user operating system such as CP/M or MS-DOS or
Apple DOS isn’t very large, and most of the API supports the file system. A
graphical operating system such as macOS, however, is much larger and has
hundreds of API functions. Each of them is identified by a name that
describes what the function does.

While a text-based operating system such as MS-DOS provides a couple
of simple API functions to let application programs display text on the
screen in a teletypewriter manner, a graphical operating system such as
macOS must provide a way for programs to display graphics on the screen.
In theory, this can be accomplished by implementing a single API function
that lets an application set the color of a pixel at a particular horizontal and
vertical coordinate. But it turns out that this is inefficient and results in very
slow graphics.

It makes more sense for the operating system to provide a complete
graphics programming system, which means that the operating system
includes API functions to draw lines, rectangles, and curves as well as text.
Lines can be either solid or composed of dashes or dots. Rectangles and
ellipses can be filled with various patterns. Text can be displayed in various
fonts and sizes and with effects such as boldfacing and underlining. The
graphics system is responsible for determining how to render these
graphical objects as a collection of dots on the display.

Programs running under a graphical operating system use the same APIs
to draw graphics on both the computer’s video display and the printer. A
word processing application can thus display a document on the screen so



that it looks very similar to the document later printed, a feature known as
WYSIWYG (pronounced wizzy wig). This is an acronym for “What you see
is what you get,” the contribution to computer lingo by the comedian Flip
Wilson in his Geraldine persona.

Part of the appeal of a graphical user interface is that different
applications have similar UIs and leverage a user’s experience. This means
that the operating system must also support API functions that let
applications implement various components of the user interface, such as
buttons and menus. Although the GUI is generally viewed as an easy
environment for users, it’s also just as importantly a better environment for
programmers. Programmers can implement a modern user interface without
reinventing the wheel.

Even before the introduction of the Macintosh, several companies had
begun to create a graphical operating system for the IBM PC and
compatibles. In one sense, the Apple developers had an easier job because
they were designing the hardware and software together. The Macintosh
system software had to support only one type of diskette drive, one type of
video display, and two printers. Implementing a graphical operating system
for the PC, however, required supporting many different pieces of
hardware.

Moreover, although the IBM PC had been introduced just a few years
earlier (in 1981), many people had grown accustomed to using their favorite
MS-DOS applications and weren’t ready to give them up. It was considered
very important for a graphical operating system for the PC to run MS-DOS
applications as well as applications designed expressly for the new
operating system. (The Macintosh didn’t run Apple II software, primarily
because it used a different microprocessor.)

In 1985, Digital Research (the company behind CP/M) introduced GEM
(the Graphical Environment Manager), VisiCorp (the company marketing
VisiCalc) introduced VisiOn, and Microsoft released Windows version 1.0,
which was quickly perceived as being the probable winner in the “windows
wars.” But it wasn’t until the May 1990 release of Windows 3.0 that
Windows began to attract a significant number of users, eventually to
become the dominant operating system for desktops and laptops. Despite
the superficially similar appearances of the Macintosh and Windows, the
APIs for the two systems are completely different.



Phones and tablets are another story, however. Although there are many
similarities in the graphical interfaces of phones, tablets, and larger personal
computers, these APIs are also different. Currently the phone and tablet
market is dominated by operating systems created by Android and Apple.

Although not quite visible to most users of computers, the legacy and
influence of the operating system UNIX remains a powerful presence.
UNIX was developed in the early 1970s at Bell Telephone Laboratories
largely by Ken Thompson (born 1943) and Dennis Ritchie (1941– 2011),
who also had some of the best beards in the computer industry. The funny
name of the operating system is a play on words: UNIX was originally
written as a less hardy version of an earlier operating system named Multics
(which stands for Multiplexed Information and Computing Services), which
Bell Labs had been codeveloping with MIT and GE.

Among hardcore computer programmers, UNIX is the most beloved
operating system of all time. While most operating systems are written for
specific computers, UNIX was designed to be portable, which means that it
can be adapted to run on a variety of computers.

Bell Labs was a subsidiary of American Telephone & Telegraph at the
time UNIX was developed and therefore subject to court decrees intended
to curb AT&T’s monopoly position in the telephone industry. Originally,
AT&T was prohibited from marketing UNIX; the company was obliged to
license it to others. So beginning in 1973, UNIX was extensively licensed
to universities, corporations, and the government. In 1983, AT&T was
allowed back into the computer business and released its own version of
UNIX.

The result is that there’s no single version of UNIX. There are, instead, a
variety of different versions known under different names running on
different computers sold by different vendors. Lots of people have put their
fingers into UNIX and left their fingerprints behind. Still, however, a
prevalent “UNIX philosophy” seems to guide people as they add pieces to
UNIX. Part of that philosophy is using text files as a common denominator.
Many little UNIX command-line programs (called utilities) read text files,
do something with them, and then write to another text file. UNIX utilities
can be strung together in chains that do different types of processing on
these text files.

The most interesting development for UNIX in recent years has been the
Free Software Foundation (FSF) and the GNU project, both founded by



Richard Stallman (born 1953). GNU (pronounced not like the animal but
instead with a distinct G at the beginning) stands for “GNU’s Not UNIX,”
which, of course, it’s not. Instead, GNU is intended to be compatible with
UNIX but distributed in a manner that prevents the software from becoming
proprietary. The GNU project has resulted in the creation of many UNIX-
compatible utilities and tools, and also Linux, which is the core (or kernel)
of a UNIX-compatible operating system.

Written largely by Finnish programmer Linus Torvalds (born 1969),
Linux has become quite popular in recent years. The Android operating
system is based on the Linux kernel, large supercomputers use Linux
exclusively, and Linux is also quite common on internet servers.

But the internet is a subject for the final chapter in this book.



Chapter Twenty-Seven

Coding

All computers execute machine code, but programming in machine code is like eating with a
toothpick. The bites are so small and the process so laborious that dinner takes forever.
Likewise, the bytes of machine code perform the tiniest and simplest imaginable computing
tasks—loading a number from memory into the processor, adding it to another, storing the
result back to memory—so that it’s difficult to imagine how they contribute to an entire meal.

We have at least progressed from that primitive era at the beginning of the previous
chapter, when we were using switches on a control panel to enter binary data into memory. In
that chapter, we discovered that we could write simple programs that let us use the keyboard
and the video display to enter and examine hexadecimal bytes of machine code. This was
certainly better, but it’s not the last word in improvements.

As you know, the bytes of machine code are associated with certain short mnemonics,
such as MOV, ADD, JMP, and HLT, that let us refer to the machine code in something vaguely
resembling English. These mnemonics are often written with operands that further indicate
what the machine-code instruction does. For example, the 8080 machine-code byte 46h
causes the microprocessor to move into register B the byte stored at the memory address
referenced by the 16-bit value in the register pair HL. This is more concisely written as

MOV B,M

where the M stands for “memory.” The total collection of these mnemonics (with some
additional features) is a programming language of a type called assembly language. It’s much
easier to write programs in assembly machine code. The only problem is that the CPU can’t
understand assembly language directly!

In the early days of working with such a primitive computer, you’d probably spend a lot of
time writing assembly-language programs on paper. Only when you were satisfied that you
had something that might work would you then hand-assemble it, which means that you’d
convert the assembly-language statements to machine-code bytes by hand using a chart or
other reference material, and then enter them into memory.

What makes hand assembling so hard are all the jumps and calls. To hand-assemble a JMP
or CALL instruction, you have to know the exact binary address of the destination, and that is



dependent on having all the other machine code instructions in place. It’s much better to have
the computer do this conversion for you. But how would this be done?

You might first write a text editor, which is a program that allows you to type lines of text
and save them as a file. (Unfortunately, you’d have to hand-assemble this program.) You
could then create text files containing assembly-language instructions. You would also need
to hand-assemble another program, called an assembler. This program would read a text file
containing assembly-language instructions and convert those instructions into machine code,
which would be saved in another file. The contents of that file could then be loaded into
memory for execution.

If you were running the CP/M operating system on your 8080 computer, much of this
work would already be done for you. You’d already have all the tools you need. The text
editor is named ED.COM and lets you create and modify text files. (Simple modern-day text
editors include Notepad in Windows, and TextEdit included in macOS on Apple computers.)
Let’s suppose you create a text file with the name PROGRAM1.ASM. The ASM file type
indicates that this file contains an assembly-language program. The file might look something
like this:

      ORG 0100h 
      LXI DE,Text 
      MVI C,9 
      CALL 5 
      RET 
Text: DB 'Hello!$' 
      END

This file has a couple of statements we haven’t seen before. The first one is an ORG (for
Origin) statement. This statement does not correspond to an 8080 instruction. Instead, it
indicates that the address of the next statement is to begin at address 0100h, which is the
address where CP/M loads programs into memory.

The next statement is an LXI (Load Extended Immediate) instruction, which loads a 16-bit
value into the register pair DE. This is one of several Intel 8080 instructions that my CPU
doesn’t implement. In this case, that 16-bit value is given as the label Text. That label is
located near the bottom of the program in front of a DB (Data Byte) statement, something else
we haven’t seen before. The DB statement can be followed by several bytes separated by
commas or (as I do here) by some text in single quotation marks.

The MVI (Move Immediate) statement moves the value 9 into register C. The CALL 5
statement makes a call into the CP/M operating system, which looks at the value in register C
and jumps to the appropriate function. That function displays a string of characters beginning
at the address given by the DE register pair and stopping when a dollar sign is encountered.
(You’ll notice that the text in the last line of the program ends with a dollar sign. The use of a
dollar sign to signify the end of a character string is quite odd, but that’s the way CP/M
happens to work.) The final RET statement ends the program and returns control to CP/M.
(That’s actually one of several ways to end a CP/M program.) The END statement indicates the
end of the assembly-language file.

So now you have a text file containing seven lines of text. The next step is to assemble it.
CP/M includes a program named ASM.COM, which is the CP/M assembler. You run
ASM.COM from the CP/M command line like this:

http://ed.com/
http://asm.com/
http://asm.com/


ASM PROGRAM1.ASM

The ASM program examines the file PROGRAM1.ASM and creates a new file, named
PROGRAM1.COM, that contains the machine code corresponding to the assembly-language
statements that we wrote. (Actually there’s another step in the process, but it’s not important
in this account of what happens.)

The PROGRAM1.COM file contains the following 16 bytes:

Click here to view code image

11 09 01 0E 09 CD 05 00 C9 48 65 6C 6C 6F 21 24

The first 3 bytes are the LXI instruction, the next 2 are the MVI instruction, the next 3 are
the CALL instruction, and the next is the RET instruction. The last 7 bytes are the ASCII
characters for the five letters of “Hello,” the exclamation point, and the dollar sign. You can
then run the PROGRAM1 program from the CP/M command line:

PROGRAM1

The operating system loads that program into memory and runs. Appearing on the screen
will be the greeting

Hello!

An assembler such as ASM.COM reads an assembly-language program (often called a
source-code file) and writes out to a file containing machine code—an executable file. In the
grand scheme of things, assemblers are fairly simple programs because there’s a one-to-one
correspondence between the assembly-language mnemonics and machine code. The
assembler works by separating each line of text into mnemonics and arguments and then
comparing these small words and letters with a list that the assembler maintains of all the
possible mnemonics and arguments. This is a process called parsing, and it involves a lot of
CMP instructions followed by conditional jumps. These comparisons reveal which machine-
code instructions correspond to each statement.

The string of bytes contained in the PROGRAM1.COM file begins with 11h, which is the
LXI instruction. This is followed by the bytes 09h and 01h, which constitute the 16-bit address
0109h. The assembler figures out this address for you: If the LXI instruction itself is located at
0100h (as it is when CP/M loads the program into memory to run), address 0109h is where
the text string begins. Generally a programmer using an assembler doesn’t need to worry
about the specific addresses associated with different parts of the program.

The first person to write the first assembler had to hand-assemble the program, of course.
A person who writes a new (perhaps improved) assembler for the same computer can write it
in assembly language and then use the first assembler to assemble it. Once the new assembler
is assembled, it can assemble itself.

Every time a new microprocessor is developed, a new assembler is needed. The new
assembler, however, can first be written on an existing computer using that computer’s
assembler. This is called a cross-assembler. The assembler runs on Computer A but creates
code that runs on Computer B.

http://program1.com/
http://program1.com/
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An assembler eliminates the less creative aspects of assembly-language program (the
hand-assembling part), but assembly language still has two major problems. You’ve probably
already surmised that the first problem is that programming in assembly language can be very
tedious. You’re working down on the level of the CPU, and you have to worry about every
little thing.

The second problem is that assembly language isn’t portable. If you were to write an
assembly-language program for the Intel 8080, it would not run on the Motorola 6800. You
must rewrite the program in 6800 assembly language. This probably won’t be as difficult as
writing the original program because you’ve already solved the major organizational and
algorithmic problems. But it’s still a lot of work.

Much of what computers do is mathematical calculation, but the way that math is carried
out in assembly language is clumsy and awkward. It would be much preferable to instead
express mathematical operations using a time-honored algebraic notation, for example:

Click here to view code image
Angle = 27.5 
Hypotenuse = 125.2 
Height = Hypotenuse × Sine(Angle)

If this text were actually part of a computer program, each of the three lines would be known
as a statement. In programming, as in algebra, names such as Angle, Hypotenuse, and Height
are called variables because they can be set to different values. The equals sign indicates an
assignment: The variable Angle is set to the value 27.5, and Hypotenuse is set to 125.2. Sine is
a function. Somewhere is some code that calculates the trigonometric sine of an angle and
returns that value.

Keep in mind also that these numbers are not the integers common in assembly language;
these are numbers with decimal points and fractional parts. In computing lingo, they are
known as floating-point numbers.

If such statements were in a text file, it should be possible to write an assembly-language
program that reads the text file and converts the algebraic expressions to machine code to
perform the calculation. Well, why not?

What you’re on the verge of creating here is known as a high-level programming
language. Assembly language is considered a low-level language because it’s very close to
the hardware of the computer. Although the term high-level is used to describe any
programming language other than assembly language, some languages are higher level than
others. If you were the president of a company and you could sit at your computer and type in
(or better yet, just prop your feet up on the desk and dictate) “Calculate all the profits and
losses for this year, write up an annual report, print off a couple of thousand copies, and send
them to all our stockholders,” you would be working with a very high-level language indeed!
In the real world, programming languages don’t come anywhere close to that ideal.

Human languages are the result of thousands of years of complex influences, random
changes, and adaptations. Even artificial languages such as Esperanto betray their origins in
real language. High-level computer languages, however, are more deliberate conceptions. The
challenge of inventing a programming language is quite appealing to some people because the
language defines how a person conveys instructions to the computer. When I wrote the first
edition of this book, I found a 1993 estimate that there had been over 1000 high-level
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languages invented and implemented since the beginning of the 1950s. At year-end 2021, a
website entitled the Online Historical Encyclopedia of Programming Languages (hopl.info)
puts the total at 8,945.

Of course, it’s not enough to simply define a high-level language, which involves
developing a syntax to express all the things you want to do with the language. You must also
write a compiler, which is the program that converts the statements of your high-level
language to machine code. Like an assembler, a compiler must read through a source-code
file character by character and break it down into short words and symbols and numbers. A
compiler, however, is much more complex than an assembler. An assembler is simplified
somewhat because of the one-to-one correspondence between assembly-language statements
and machine code. A compiler usually must translate a single statement of a high-level
language into many machine-code instructions. Compilers aren’t easy to write. Whole books
are devoted to their design and construction.

High-level languages have advantages and disadvantages. A primary advantage is that
high-level languages are usually easier to learn and to program in than assembly languages.
Programs written in high-level languages are often clearer and more concise. High-level
languages are often portable—that is, they aren’t dependent on a particular processor, as are
assembly languages. They allow programmers to work without knowing about the underlying
structure of the machine on which the program will be running. Of course, if you need to run
the program on more than one processor, you’ll need compilers that generate machine code
for those processors. The actual executable files are still specific to individual CPUs.

On the other hand, it’s very often the case that a good assembly-language programmer can
write faster and more efficient code than a compiler can. What this means is that an
executable produced from a program written in a high-level language will be larger and
slower than a functionally identical program written in assembly language. (In recent years,
however, this has become less obvious as microprocessors have become more complex and
compilers have also become more sophisticated in optimizing code.)

Although a high-level language generally makes a processor much easier to use, it doesn’t
make it any more powerful. Some high-level languages don’t support operations that are
common on CPUs, such as bit shifting and bit testing. These tasks might be more difficult
using a high-level language.

In the early days of home computers, most application programs were written in assembly
language. These days, however, assembly languages are rarely used except for special
purposes. As hardware has been added to processors that implements pipelining—the
progressive execution of several instruction codes simultaneously—assembly language has
become trickier and more difficult. At the same time, compilers have become more
sophisticated. The larger storage and memory capacity of today’s computers has also played a
role in this trend: Programmers no longer feel the need to create code that runs in a small
amount of memory and fits on a small diskette.
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Designers of early computers attempted to formulate problems for them in algebraic
notation, but the first real working compiler is generally considered to be Arithmetic
Language version 0 (or A-0), created for the UNIVAC by Grace Murray Hopper (1906–1992)
at Remington-Rand in 1952. Dr. Hopper also coined the term “compiler.” She got an early
start with computers when she worked for Howard Aiken on the Mark I in 1944. In her
eighties, she was still working in the computer industry doing public relations for Digital
Equipment Corporation (DEC).

The oldest high-level language still in use today (although extensively revised over the
years) is FORTRAN. Many early computer languages have made-up names that are written in
uppercase because they’re acronyms of sorts. FORTRAN is a combination of the first three
letters of FORmula and the first four letters of TRANslation. It was developed at IBM for the
704 series of computers in the mid-1950s. For many years, FORTRAN was considered the
language of choice for scientists and engineers. It has very extensive floating-point support
and even supports complex numbers, which are combinations of real and imaginary numbers.

COBOL—which stands for COmmon Business Oriented Language—is another old
programming language that is still in use, primarily in financial institutions. COBOL was
created by a committee of representatives from American industries and the US Department
of Defense beginning in 1959, but it was influenced by Grace Hopper’s early compilers. In
part, COBOL was designed so that managers, while probably not doing the actual coding,
could at least read the program code and check that it was doing what it was supposed to be
doing. (In real life, however, this rarely occurs.)

An extremely influential programming language that is not in use today (except possibly
by hobbyists) is ALGOL. ALGOL stands for ALGOrithmic Language, but ALGOL also
shares its name with the second brightest star in the constellation Perseus. Originally designed
by an international committee in 1957 and 1958, ALGOL is the direct ancestor of many
popular general-purpose languages of the past half century. It pioneered a concept eventually
known as structured programming. Even today, sometimes people refer to “ALGOL-like”
programming languages.

ALGOL established programming constructs that are now common to nearly all
programming language. These were associated with certain keywords, which are words



within the programming language to indicate particular operations. Multiple statements were
combined into blocks, which were executed under certain conditions or with a particular
number of iterations.

The if statement executes a statement or block of statement based on a logical condition
—for example, if the variable height is less than 55. The for statement executes a statement
or block of statements multiple times, usually based on incrementing a variable. An array is a
collection of values of the same type—for example, the names of cities. Programs were
organized into blocks and functions.

Although versions of FORTRAN, COBOL, and ALGOL were available for home
computers, none of them had quite the impact on small machines that BASIC did.

BASIC (Beginner’s All-purpose Symbolic Instruction Code) was developed in 1964 by
John Kemeny and Thomas Kurtz, of the Dartmouth Mathematics department, in connection
with Dartmouth’s time-sharing system. Most students at Dartmouth weren’t math or
engineering majors and hence couldn’t be expected to mess around with the complexity of
computers and difficult program syntax. A Dartmouth student sitting at a terminal could
create a BASIC program by simply typing BASIC statements preceded by numbers. The
numbers indicated the order of the statements in the program. The first BASIC program in the
first published BASIC instruction manual was

10 LET X = (7 + 8) / 3 
20 PRINT X 
30 END

Many subsequent implementations of BASIC have been in the form of interpreters rather
than compilers. While a compiler reads a source-code file and creates an executable file of
machine code, an interpreter reads source code and executes it directly without creating an
executable file. Interpreters are easier to write than compilers, but the execution time of the
interpreted program tends to be slower than that of a compiled program. On home computers,
BASIC got an early start when buddies Bill Gates (born 1955) and Paul Allen (born 1953)
wrote a BASIC interpreter for the Altair 8800 in 1975 and jump-started their company,
Microsoft Corporation.

The Pascal programming language inherited much of its structure from ALGOL but
included features from COBOL. Pascal was designed in the late 1960s by Swiss computer
science professor Niklaus Wirth (born 1934). It was quite popular with early IBM PC
programmers, but in a very specific form: the product Turbo Pascal, introduced by Borland
International in 1983 for the bargain price of $49.95. Turbo Pascal was written by Danish
student Anders Hejlsberg (born 1960) and came complete with an integrated development
environment (or IDE). The text editor and the compiler were combined in a single program
that facilitated very fast programming. Integrated development environments had been
popular on large mainframe computers, but Turbo Pascal heralded their arrival on small
machines.

Pascal was also a major influence on Ada, a language developed for use by the United
States Department of Defense. The language was named after Augusta Ada Byron, who
appeared in Chapter 15 as the chronicler of Charles Babbage’s Analytical Engine.

And then there’s C, a much-beloved programming language created between 1969 and
1973 largely by Dennis M. Ritchie at Bell Telephone Laboratories. People often ask why the



language is called C. The simple answer is that it was derived from an early language called
B, which was a simplified version of BCPL (Basic CPL), which was derived from CPL
(Combined Programming Language).

Most programming languages seek to eliminate remnants of assembly language such as
memory addresses. But C does not. C includes a feature called the pointer, which is basically
a memory address. Pointers were very convenient for programmers who knew how to use
them, but dangerous for nearly everyone else. By their ability to write over important areas of
memory, pointers were a common source of bugs. Programmer Alan I. Holub wrote a book
about C entitled Enough Rope to Shoot Yourself in the Foot.

C became the grandparent for a series of languages that were safer than C and added the
facility to work with objects, which are programming entities that combine code and data in a
very structured way. The most famous of these languages are C++, created by Danish
computer scientist Bjarne Stroustrup (born 1950) in 1985; Java, designed by James Gosling
(born 1955) at the Oracle Corporation in 1995; and C#, originally designed by Anders
Hejlsberg at Microsoft in 2000. At the time of this writing, one of the most used programming
languages is another C-influenced language called Python, originally designed by Dutch
programmer Guido von Rossum (born 1956) in 1991. But if you’re reading this book in the
2030s or 2040s, you might be familiar with languages that haven’t even been invented yet!

Different high-level programming languages compel the programmer to think in different
ways. For example, some newer programming languages focus on manipulating functions
rather than variables. These are referred to as functional programming languages, and for a
programmer accustomed to working with conventional procedural languages, they can
initially seem quite strange. Yet they offer alternative solutions that can inspire programmers
to entirely reorient their way of approaching problems. Regardless of the language, however,
the CPU still executes the same old machine code.

Yet there are ways in which software can smooth over the differences among various
CPUs and their native machine codes. Software can emulate various CPUs, allowing people
to run old software and ancient computer games on modern computers. (This is nothing new:
When Bill Gates and Paul Allen decided to write a BASIC interpreter for the Altair 8800,
they tested it on an Intel 8080 emulator program that they wrote on a DEC PDP-10
mainframe computer at Harvard University.) Java and C# can be compiled into machine-
code-like intermediate code that is then converted into machine code when the program is
executed. A project called LLVM is intended to provide a virtual link between any high-level
programming language and any set of instructions implemented by a CPU.

This is the magic of software. With sufficient memory and speed, any digital computer can
do anything that any other digital computer can do. This is the implication of Alan Turing’s
work on computability in the 1930s.

Yet what Turing also demonstrated is that there are certain algorithmic problems that will
forever be out of reach of the digital computer, and one of these problems has startling
implications: You can’t write a computer program that determines if another computer
program is working correctly! This means that we can never be assured that our programs are
working the way they should.

This is a sobering thought, and it’s why extensive testing and debugging are so important a
part of the process of developing software.



One of the most successful C-influenced languages is JavaScript, originally designed by
Brendan Eich (born 1961) at Netscape and first appearing in 1995. JavaScript is the language
that webpages use to provide interactive capabilities that go beyond the simple presentation of
text and bitmaps managed by HTML, the Hypertext Markup Language. As of this writing,
almost 98% of the top 10 million websites use at least some JavaScript.

All web browsers in common use today understand JavaScript, which means that you can
begin writing JavaScript programs on a desktop or laptop computer without downloading or
installing any additional programming tools.

So… would you like to experiment with some JavaScript yourself?
All you need do is create an HTML file that contains some JavaScript using the Windows

Notepad or macOS TextEdit program. You save it to a file and then load it into your favorite
web browser, such as Edge, Chrome, or Safari.

On Windows, run the Notepad program. (You might need to find it using the Search
facility on the Start menu.) It’s ready for you to type in some text.

On macOS, run the TextEdit program. (You might need to locate it using Spotlight
Search.) On the first screen that comes up, click the New Document button. TextEdit is
designed to create a rich-text file that contains text formatting information. You don’t want
that. You want a plain-text file, so in the Format menu, select Make Plain Text. Also, in the
Edit menu’s Spelling and Grammar section, deselect the options to check and correct your
spelling.

Now type in the following:

Click here to view code image
<html> 
    <head> 
        <title>My JavaScript</title> 
    </head> 
    <body> 
        <p id="result">Program results go here!</p> 
        <script> 
            // JavaScript programs go here 
        </script> 
    </body> 
</html>

This is HTML, which is based around tags that surround various sections of the file. The
whole file begins with an <html> tag and ends with the </html> tag that encloses everything
else. Within that, the <head> section encloses a <title> that will appear at the top of the
webpage. The <body> section encloses a <p> (“paragraph”) with the text “Program results go
here!”

The <body> section also encloses a <script> section. That’s where your JavaScript
programs will reside. There’s already a little program there that consists solely of a line that
begins with two slashes. Those two slashes indicate that this line is a comment. Everything
following the two slashes to the end of the line is for the benefit of humans reading the
program. It is ignored when the JavaScript is executed.

As you type these lines into Notepad or TextEdit, you don’t need to indent everything as
I’ve done. You can even put much of it on the same line. But for sanity’s sake, put the
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<script> and </script> tags on separate lines.
Now save that file someplace: In either Notepad or TextEdit, select Save from the File

menu. Select a location to save the file; the computer’s Desktop is convenient. Name the file
MyJavaScriptExperiment.html or something similar. The filename extension following the
period is very important. Make sure that it’s html. TextEdit will ask you to verify that’s what
you really want. You do!

After you save the file, don’t close Notepad or TextEdit just yet. Keep it open so you can
make additional changes to the file.

Now find that file you just saved and double-click it. Windows or macOS should load that
file into your default web browser. The title of the webpage should be “My JavaScript” and
the upper-left corner of the webpage should say “Program results go here!” If not, check that
everything has been typed into the file without errors.

Here’s the process for experimenting with JavaScript: In Notepad or TextEdit you enter
some JavaScript between the <script> and </script> tags and then save the file again. Now
go to the web browser and refresh the page, probably by clicking a circular arrow icon. In this
way, you can run a different JavaScript program or a variation of some program with two
steps: Save the new version of the file; then refresh the page in the web browser.

Here’s a reasonable first program that you can type in the area between the <script> and
</script> tags:

Click here to view code image
let message = "Hello from my JavaScript program!"; 
document.getElementById("result").innerHTML = message;

This program contains two statements, each occupying a different line and ending with a
semicolon.

In the first statement, the word let is a JavaScript keyword (meaning that it’s a special
word that has meaning within JavaScript), and message is a variable. You can use the let
keyword to set that variable to something, and you can later set it to something else. You
don’t need to use the word message. You can use msg or anything else that begins with a letter
and doesn’t contain spaces or punctuation. In this program, the variable message is set to a
string of characters that begin and end with quotation marks. You can put whatever message
you want between those quotation marks.

The second statement is definitely more obscure and complex, but it is required to allow
the JavaScript to interact with the HTML. The keyword document refers to the webpage.
Within the webpage, getElementById searches for an HTML element with the name “result.”
That’s the <p> tag, and innerHTML means to put the contents of the message variable between
the <p> and </p> tags as if you had originally typed it there.

This second statement is long and messy because JavaScript must be capable of accessing
or altering anything on the webpage, so it must be flexible enough to do that.

Compilers and interpreters are fussier about spelling than old-fashioned English teachers,
so be sure to type that second statement as shown! JavaScript is a case-sensitive language,
which means that it differentiates between uppercase and lowercase. Make sure you’ve typed
innerHTML correctly; the words InnerHTML or innerHtml won’t work! That’s why you want to
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turn off spelling correction in the macOS TextEdit program. Otherwise, TextEdit will change
let to Let, and that won’t work.

When you save this new version of the file and refresh the page in the web browser, you’ll
see that message in the upper-left corner. If you don’t, check your work!

Let’s try another simple program using the same file. If you don’t want to delete the
program that you already wrote, put it between these two special sequences of symbols:

Click here to view code image
/* 
let message = "Hello from my JavaScript program!"; 
document.getElementById("result").innerHTML = message; 
*/

To JavaScript, anything between /* and */ is treated as a comment and ignored. Like
many languages influenced by C, JavaScript has two kinds of comments: multiline comments
using /* and */, and single-line comments using //.

The next program does some arithmetic:

Click here to view code image
let a = 535.43; 
let b = 289.771; 
let c = a * b; 
document.getElementById("result").innerHTML = c;

As in many programming languages, multiplication is specified by an asterisk rather than a
times sign because the standard multiplication sign is not part of the ASCII character set.

Notice that the last statement is the same as the previous program except now the inner
HTML between the <p> tags is being set to the variable c, which is the product of the two
numbers. JavaScript doesn’t care if you set the inner HTML to a string of characters or to a
number. It’ll do what’s necessary to display the result.

One of the most important features in high-level languages is the loop. You’ve seen how
loops are done in assembly language with the JMP instruction and conditional jumps. Some
high-level languages include a statement called goto that is very similar to a jump. But goto
statements are discouraged except for special purposes. A program that requires many jumps
soon becomes very difficult to manage. The technical term is spaghetti code, because the
jumps seem to get all tangled up with each other. For this reason, JavaScript doesn’t even
implement a goto.

Modern high-level programming languages manage loops without jumping all over the
place. For example, suppose you want to add all the numbers between 1 and 100. Here’s one
way to write that program with a JavaScript loop:

Click here to view code image
let total = 0; 
let number = 1; 
 
while (number <= 100) 
{ 
    total = total + number; 
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    number = number + 1; 
} 
 
document.getElementById("result").innerHTML = total;

Don’t worry about the blank lines. I use those to separate various parts of the program for
clarity. It begins with an initialization section where two variables are set to initial values. The
loop consists of the while statement and the block of code between the curly braces. If the
number variable is less than or equal to 100, the block of code is executed. This adds number to
total and increases number by 1. When number becomes greater than 100, the program
continues with the statement following the right curly bracket. That statement displays the
result.

You might be puzzled if you encounter an algebra problem with these two statements:
total = total + number; 
number = number + 1;

How can total equal total plus number? Doesn’t that mean that number is zero? And how can
number equal number plus one?

In JavaScript, the equals sign doesn’t symbolize equality. It is instead an assignment
operator. The variable on the left of the equals sign is set to the value calculated on the right
of the equals sign. In other words, the value on the right of the equals sign “goes into” the
variable on the left. In JavaScript (as in C), testing whether two variables are equal involves
two equals signs (==).

For these two statements, JavaScript implements a couple of shortcuts that it has borrowed
from C. These two statements can be abbreviated like this:

total += number; 
number += 1;

The combination of the plus sign and the equals sign means to add what’s on the right to the
variable on the left.

It is very common for variables to be incremented by 1, such as number is here, so the
statement that increments number can be abbreviated like this:

number++;

Moreover, the two statements can be combined into one:

total += number++;

The value of number is added to total and then number is increased by 1! But that might be a
bit obscure and confusing to people who are not quite as skilled at programming as you are,
so you might want to avoid it.

Another common way to write this program is with a loop based on the keyword for:

Click here to view code image
let total = 0; 
 
for (let number = 1; number <= 100; number++) 
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{ 
    total += number; 
} 
document.getElementById("result").innerHTML = total;

The for statement contains three clauses separated by semicolons: The first initializes the
number variable to 1. The block of code within the curly brackets is executed only if the
second clause is true—that is, if number is less than or equal to 100. After that block of code is
executed, number is incremented. Moreover, because the block of code contains only one
statement, the curly braces can be removed.

Here’s a little program that loops through numbers from 1 to 100 and displays the square
roots of those numbers:

Click here to view code image
for (let number = 1; number <= 100; number++) 
{ 
    document.getElementById("result").innerHTML += 
        "The square root of " + number + " is " + 
            Math.sqrt(number) + "<br />"; 
}

The block of code executed within the loop is only one statement, but the statement is so
long that I’ve written it on three lines. Notice that the first of these three lines ends with +=,
meaning that what follows is added to the inner HTML of the <p> tag, creating more text with
each iteration of the loop. What’s added to the inner HTML is a combination of text and
numbers. Notice in particular Math.sqrt, which is a JavaScript function that calculates the
square root. It’s part of the JavaScript language. (Such a function is sometimes called a builtin
function.) Also notice the <br /> tag, which is an HTML line break.

When the program is finished, you’ll see a long list of text. You’ll probably need to scroll
the page to see all of it!

The next program that I’ll show you here implements a famous algorithm for finding
prime numbers, called the sieve of Eratosthenes. Eratosthenes (176–194 BCE) was the
librarian of the legendary library at Alexandria and is also remembered for accurately
calculating the circumference of the earth.

Prime numbers are those whole numbers that are equally divisible only by themselves and
1. The first prime number is 2 (the only even prime number), and the primes continue with 3,
5, 7, 11, 13, 17, 19, 23, 29, and so forth.

Eratosthenes’s technique begins with a list of the positive whole numbers beginning with
2. Because 2 is a prime number, cross out all the numbers that are multiples of 2. (That’s all
the even numbers except 2.) Those numbers aren’t primes. Because 3 is a prime number,
cross out all the numbers that are multiples of 3. We already know 4 isn’t a prime number
because it has been crossed out. The next prime is 5, so cross out all the multiples of 5.
Continue in this way. What you have left are the prime numbers.

This JavaScript program implementing this algorithm uses a common programming entity
called an array. An array is much like a variable in that it has a name, but the array stores
multiple items, each of which is referenced by an index enclosed in square brackets following
the array name.
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The array in this program is named primes, and it contains 10,000 Boolean values. In
JavaScript, Boolean values are either true or false, which are JavaScript keywords. (You’ve
been familiar with this concept since Chapter 6!)

Here’s how the program creates the array named primes and how it initially sets all the
values of that array to true:

Click here to view code image
let primes = []; 
 
for (let index = 0; index < 10000; index++) 
{ 
    primes.push(true); 
}

There’s a much shorter way to do this, but it’s a little more obscure:

Click here to view code image

let primes = new Array(10000).fill(true);

The main calculation involves two for loops, one inside the other. (The second for loop is
said to be nested in the first.) Two variables for indexing the array are required, and instead of
using variations of the word index, I’ve used the much shorter i1 and i2. Variables names can
include numbers, but the names must begin with letters:

Click here to view code image
for (let i1 = 2; i1 <= 100; i1++) 
{ 
    if (primes[i1]) 
    { 
        for (let i2 = 2; i2 < 10000 / i1; i2++) 
        { 
            primes[i1 * i2] = false; 
        } 
    } 
}

The first for loop increments the i1 variable from 2 to 100, which is the square root of
10,000. The if statement executes the next part only if that array element is true, indicating
that it’s a prime. That second loop begins increasing the i2 variable from 2. The product of i1
and i2 is therefore 2 times i1, 3 times i1, 4 times i1, and so forth, and those numbers are not
prime, so the array element is set to false.

It might seem odd to increase i1 only up to 100, and i2 only up to 10,000 divided by i1,
but that’s all that’s necessary to encompass all the primes up to 10,000.

The final part of the program displays the results:

Click here to view code image
for (let index = 2; index < 10000; index++) 
{ 
    if (primes[index]) 
    { 
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        document.getElementById("result").innerHTML += 
            index + " "; 
    } 
}

If programming in JavaScript interests you, please do not continue using Notepad or
TextEdit! There are much better tools available that will let you know when you’ve spelled
something incorrectly or blundered in some other way.

If you’d like to examine some simple JavaScript programs that have been heavily
commented to provide a type of tutorial, see this chapter section on
CodeHiddenLanguage.com.

Sometimes people squabble over whether programming is an art or a science. On the one
hand, college curricula are called Computer Science, but on the other hand, you have books
such as Donald Knuth’s famous The Art of Computer Programming series. Programming has
elements of both science and art, but it’s really something else. “Rather,” wrote physicist
Richard Feynman, “computer science is like engineering—it is all about getting something to
do something.”

Quite often, this is an uphill battle. As you might have discovered, it is very easy to make
errors in computer programs and to spend much time tracking down those errors. Debugging
is an art (or a science, or a feat of engineering) in itself.

What you’ve seen is just the proverbial tip of the iceberg in JavaScript programming. But
history tells us to be cautious around icebergs! Sometimes, the computer itself does
something unexpected. For example, try this little JavaScript program:

Click here to view code image
let a = 55.2; 
let b = 27.8; 
let c = a * b; 
document.getElementById("result").innerHTML = c;

What this program displays is 1534.5600000000002, which doesn’t look right, and it’s not
right. The correct result is simply 1534.56.

What happened?
Floating-point numbers are exceptionally important in computing, so a standard was

established in 1985 by the Institute of Electrical and Electronics Engineers (IEEE), and also
recognized by the American National Standards Institute (ANSI). ANSI/IEEE Std 754-1985
is called the IEEE Standard for Binary Floating-Point Arithmetic. It is not very lengthy as
standards go—just 18 pages—but it spells out the details of encoding floating-point numbers
in a convenient manner. It’s one of the most important standards in all computing and is used
by virtually all contemporary computers and computer programs that you’re likely to
encounter.

The IEEE floating-point standard defines two basic formats: single precision, which
requires 4 bytes per number, and double precision, which requires 8 bytes per number. Some
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programming languages give you a choice which to use; JavaScript uses double precision
exclusively.

The IEEE standard is based on the representation of numbers in scientific notation, where
a number is in two parts: a significand or mantissa is multiplied by 10 to an integer power
called the exponent:

42, 705.7846 = 4.27057846 × 104

This particular representation is referred to as a normalized format because the mantissa has
only one digit to the left of the decimal point.

The IEEE standard represents floating-point numbers in the same way, but in binary. All of
the binary numbers that you’ve seen in this book so far have been integers, but it’s also
possible to use binary notation for fractional numbers. For example, consider this binary
number:

101.1101

Don’t call that period a “decimal point”! Because this is a binary number, that period is more
properly called a binary point. The digits to the left of the binary point compose the integer
part, and the digits to the right of the binary point compose the fractional point.

When converting binary to decimal in Chapter 10, you saw how digits correspond to
powers of 2. Digits to the right of the binary point are similar except they correspond to
negative powers of 2. The binary number 101.1101 can be converted to decimal by
multiplying the bits by the corresponding positive and negative powers of 2 from left to right:

1 × 22+

0 × 21+

1 × 20+

1 × 2−1+

1 × 2−2+

0 × 2−3+

1 × 2−4

Those negative powers of two can be calculated by starting at 1 and repeatedly dividing by
2:



1 × 4+

0 × 2+

1 × 1+

1 × 0.5+

1 × 0.25+

0 × 0.125+

1 × 0.0625

By this calculation, the decimal equivalent of 101.1101 is 5.8125.
In the normalized form of decimal scientific notation, the significand has only one digit to

the left of the decimal point. Similarly, in binary scientific notation, the normalized
significand also has only one digit to the left of the binary point. The number 101.1101 is
expressed as

1.011101 × 22

One implication of this rule is that a normalized binary floating-point number always has a
1 and nothing else at the left of the binary point.

The IEEE standard for a double-precision floating-point number requires 8 bytes. The 64
bits are allocated like this:

Because the significand of a normalized binary floating-point number always has a 1 to the
left of the binary point, that bit is not included in the storage of floating-point numbers in the
IEEE format. The 52-bit fractional part of the significand is the only part stored. So even
though only 52 bits are used to store the significand, the precision is said to be 53 bits. You’ll
get a feel for what 53-bit precision means in a moment.

The 11-bit exponent part can range from 0 through 2047. This is called a biased exponent,
because a number called the bias must be subtracted from the exponent for the signed
exponent that actually applies. For double-precision floating-point numbers, this bias is 1023.

The number represented by these values of s (the sign bit), e (the exponent), and f (the
significand fraction) is

(−1)
s

× 1.f × 2e−1023

That negative 1 to the s power is a mathematician’s annoyingly clever way of saying, “If s
is 0, the number is positive (because anything to the 0 power equals 1); and if s is 1, the
number is negative (because −1 to the 1 power is −1).”

The next part of the expression is 1.f, which means a 1 followed by a binary point,
followed by the 52 bits of the significand fraction. This is multiplied by 2 to a power. The
exponent is the 11-bit biased exponent stored in memory minus 1023.



I’m glossing over a few details. For example, with what I’ve described, there’s no way to
represent zero! This is a special case, but the IEEE standard can also accommodate negative
zero (to represent very small negative numbers), positive and negative infinity, and a value
known as NaN, which stands for “Not a Number.” These special cases are an important part
of the floating-point standard.

The number 101.1101 that I used for an example earlier is stored with a 52-bit mantissa of

0111 0100 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000

I’ve put spaces every four digits to make it more readable. The biased exponent is 1025, so
the number is

1.011101 × 21025−1023 = 1.011101 × 22

Aside from zero, the smallest positive or negative double-precision floating-point number
is

1.0000000000000000000000000000000000000000000000000000 × 2−1022

That’s 52 zeros following the binary point. The largest is

1.1111111111111111111111111111111111111111111111111111 × 21023

The range in decimal is approximately 2.2250738585072014 × 10–308 to
1.7976931348623158 × 10308. Ten to the 308th power is a very big number. It’s 1 followed by
308 decimal zeros.

The 53 bits of the significand (including the 1 bit that’s not included) is a resolution
approximately equivalent to 16 decimal digits, but it does have limits. For example, the two
numbers 140,737,488,355,328.00 and 140,737,488,355,328.01 are stored exactly the same. In
your computer programs, these two numbers are identical.

Another problem is that the vast majority of decimal fractions are not stored exactly. For
example, consider the decimal number 1.1. This is stored with a 52-bit mantissa of

0001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1010

That’s the fractional part to the right of the binary point. The complete binary number for
decimal 1.1 is this:

1.0001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1010

If you start converting this number to decimal, you’ll start like this:

1 + 2−3 + 2−4 + 27 + 2−8 + 2−11 + ⋅ ⋅ ⋅

This is equivalent to

1 + 0.0625 + 0.03125 + 0.00390625 + 0.001953125 + 0.000244140625 + ⋅ ⋅ ⋅



And eventually you’ll find that it doesn’t equal decimal 1.1 but instead equals

1.10000000000000008881 …

And once you start performing arithmetic operations on numbers that are not represented
exactly, you’ll also get results that are not exact. And that’s why JavaScript indicates that
multiplying 55.2 and 27.8 results in 1534.5600000000002.

We are accustomed to thinking about numbers as existing in a continuum without any
gaps. By necessity, however, computers store discrete values. The study of discrete
mathematics provides some theoretical support to the mathematics of digital computers.

Another layer of complexity in floating-point arithmetic involves the calculation of fun
stuff such as roots and exponents and logarithms and trigonometric functions. But all these
jobs can be done with the four basic floating-point operations: addition, subtraction,
multiplication, and division.

For example, the trigonometric sine can be calculated with a series expansion, like this:

sin(x) = x − + − + …

The x argument must be in radians, of which there are 2π in 360 degrees. The exclamation
point is a factorial sign. It means to multiply together all the integers from 1 through the
indicated number. For example, 5! equals 1 × 2 × 3 × 4 × 5. That’s just a multiplication. The
exponent in each term is also a multiplication. The rest is just division, addition, and
subtraction. The only really scary part is the ellipsis at the end, which means to continue the
calculations forever. In reality, however, if you restrict yourself to the range 0 through π/2
(from which all other sine values can be derived), you don’t have to go anywhere close to
forever. After about a dozen terms, you’re accurate to the 53-bit resolution of double-
precision numbers.

Of course, computers are supposed to make things easy for people, so the chore of writing
a bunch of routines to do floating-point arithmetic seems at odds with that goal. That’s the
beauty of software, though. Once somebody writes the floating-point routines for a particular
machine, other people can use them. Floating-point arithmetic is so important to scientific and
engineering applications that it’s traditionally been given a very high priority. In the early
days of computers, writing floating-point routines was always one of the first software jobs
after building a new type of computer. Programming languages usually contain whole
libraries of math functions. You’ve already seen the Javascript Math.sqrt function.

It also makes sense to design special hardware that does floating-point calculations
directly. The first commercial computer that included optional floating-point hardware was
the IBM 704 in 1954. The 704 stored all numbers as 36-bit values. For floating-point
numbers, that broke down to a 27-bit significand, an 8-bit exponent, and a sign bit. The
floating-point hardware could do addition, subtraction, multiplication, and division. Other
floating-point functions had to be implemented in software.

Hardware floating-point arithmetic came to the desktop in 1980, when Intel released the
8087 Numeric Data Coprocessor chip, a type of integrated circuit usually referred to these
days as a math coprocessor or a floating-point unit (FPU). The 8087 is called a coprocessor
because it couldn’t be used by itself. It could be used only in conjunction with the 8086 and
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8088, Intel’s first 16-bit microprocessors. At the time, the 8087 was considered to be the most
sophisticated integrated circuit ever made, but eventually math coprocessors were included in
the CPU itself.

Today’s programmers use floating-point numbers as if they were simply part of the
computer, as they indeed are.



Chapter Twenty-Eight

The World Brain

In 1936 and 1937, English author Herbert George Wells gave a series of
public lectures on a rather peculiar topic. By this time, H. G. Wells was in
his early seventies. His famous science fictions novels—The Time Machine,
The Island of Doctor Moreau, The Invisible Man, and The War of the
Worlds—had been published in the 1890s and made him famous. But Wells
had evolved into a public intellectual who thought deeply about social and
political issues and shared these thoughts with the public.

The lectures that Wells delivered in 1936 and 1937 were published in
book form in 1938 under the title World Brain. In these talks, Wells
proposed a type of encyclopedia, but not one that would be created for
commercial purposes and sold door-to-door. This World Encyclopedia
would encapsulate global knowledge in a way that had not been done
before.

These were precarious times in Europe: Memories of the Great War just
two decades earlier were still fresh, and yet Europe seemed to be hurtling
toward another continent-engulfing conflict. As an optimist and utopianist,
Wells believed that science, rationality, and knowledge were the best tools
to guide the world to its future. The World Encyclopedia that he proposed
would contain

… the ruling concepts of our social order, the outlines and main
particulars in all fields of knowledge, an exact and reasonably detailed



picture of our universe, a general history of the world, and … a
trustworthy and complete system of reference to primary sources of
knowledge.

In short, it would present “a common interpretation of reality” and a
“mental unification.”

Such an encyclopedia would need to be continually updated with our
expanding knowledge of the world, but in the process of its development, it
would become

… a sort of mental clearing house for the mind, a depot where knowledge
and ideas are received, sorted, summarized, digested, clarified, and
compared… . It would constitute the material beginning of a real World
Brain.

The first embryonic digital computers were just being built in the 1930s,
and it is unlikely that Wells had any knowledge of them, so he really had no
choice but to conceive of this encyclopedia in the form of books: “twenty or
thirty or forty volumes.” But he was familiar with the emerging technology
of microfilm:

It seems possible that in the near future, we shall have microscopic
libraries of record, in which a photograph of every important book and
document in the world will be stowed away and made easily available for
the inspection of the student… . The time is close at hand when any
student, in any part of the world, will be able to sit with his projector in
his own study at his or her convenience to examine any book, any
document, in an exact replica.

What a vision of the future!
Less than a decade later, in 1945, the engineer and inventor Vannevar

Bush had a similar vision, but slightly more advanced.
Bush had already made his mark in the history of computing. Beginning

in 1927, Bush and his students in the department of electrical engineering at
the Massachusetts Institute of Technology constructed a differential
analyzer, a seminal analog computer that solved differential equations. By
the early 1930s, he was dean of engineering and a vice president at MIT.



Bush’s obituary in 1974 in the New York Times called him “the paradigm
of the engineer—a man who got things done,” whether that be solving
technical problems or cutting through government bureaucracy. During the
Second World War, Bush was in charge of coordinating over 30,000
scientists and engineers in the war effort, including overseeing the
Manhattan Project, which created the first atom bomb. For several decades,
Bush was a major advocate for the involvement of scientists and engineers
in public policy.

Toward the end of WWII, Bush wrote a now famous article for the July
1945 issue of the Atlantic Monthly. Entitled “As We May Think,” it in
retrospect seems quite prophetic. An abridged version of the article was
published in a September issue of Life magazine and accompanied by some
fanciful illustrations.

Like Wells, Bush focused on information and the difficulty of keeping
up with it:

There is a growing mountain of research. But there is increased evidence
that we are being bogged down today as specialization extends. The
investigator is staggered by the findings and conclusions of thousands of
other workers—conclusions which he cannot find time to grasp, much
less to remember, as they appear… . The difficulty seems to be, not so
much that we publish unduly in view of the extent and variety of present
day interests, but rather that publication has been extended far beyond our
present ability to make real use of the record. The summation of human
experience is being expanded at a prodigious rate, and the means we use
for threading through the consequent maze to the momentarily important
item is the same as was used in the days of square-rigged ships.

Bush was aware of rapidly evolving technology that might help the
scientist of the future. He conceives of a camera strapped to the forehead
that might be triggered whenever something needs to be recorded. He
speaks about microfilm, of “facsimile transmission” of documents, and of
machines that might record human speech directly and convert it to text.

But toward the end of the article, Bush identifies a remaining problem:
“… for we can enormously extend the record; yet even in its present bulk
we can hardly consult it.” Most information is organized and indexed
alphabetically, but that’s clearly inadequate:



The human mind does not work that way. It operates by association. With
one item in its grasp, it snaps instantly to the next that is suggested by the
association of thoughts, in accordance with some intricate web of trails
carried by the cells of the brain.

Bush conceives of a machine, a “mechanized private file and library,” an
elaborate desk that stores microfilm and makes it easily accessible. And he
gives it a name: “memex.”

Most of the memex contents are purchased on microfilm ready for
insertion. Books of all sorts, pictures, current periodicals, newspapers, are
thus obtained and dropped into place. Business correspondence takes the
same path. And there is provision for direct entry. On the top of the
memex is a transparent platen. On this are placed longhand notes,
photographs, memoranda, all sorts of things. When one is in place, the
depression of a lever causes it to be photographed onto the next blank
space in a section of the memex… .

But most importantly, marginal notes and comments can be added to
these documents and united by “associative indexing.”

This is the essential feature of the memex. The process of tying two items
together is the important thing… . Moreover, when numerous items have
been thus joined together to form a trail, they can be reviewed in turn,
rapidly or slowly, by deflecting a lever like that used for turning the pages
of a book. It is exactly as though the physical items had been gathered
together from widely separated sources and bound together to form a new
book… . Wholly new forms of encyclopedias will appear, ready made
with a mesh of associative trails running through them, ready to be
dropped into the memex and there amplified.

Bush even anticipated the lazy convenience of not being forced to
remember anything, because the user of this machine “can reacquire the
privilege of forgetting the manifold things he does not need to have
immediately at hand, with some assurance that he can find them again if
they prove important.”

In 1965, two decades after Bush wrote of the memex, the prospect of
realizing this dream in computer form was becoming possible. Computer



visionary Ted Nelson (born 1937) took up the challenge of modernizing the
memex in an article entitled “Complex Information Processing: A File
Structure for the Complex, the Changing and the Indeterminate,” published
in ACM ’65, the proceedings of a conference of the Association for
Computing Machinery. The abstract begins

The kinds of file structures required if we are to use the computer for
personal files and as an adjunct to creativity are wholly different in
character from those customary in business and scientific data processing.
They need to provide the capacity for intricate and idiosyncratic
arrangements, total modifiability, undecided alternatives, and thorough
internal documentation.

Referencing Bush’s article on memex, Nelson asserts “The hardware is
ready” for a computer realization. His proposed file structure is both
ambitious and enticing, and he needs to invent a new word to describe it:

Let me introduce the world “hypertext” to mean a body of written or
pictorial material interconnected in such a complex way that it could not
conveniently be presented or represented on paper. It may contain
summaries, or maps of its contents and their interrelations; it may contain
annotations, additions and footnotes from scholars who have examined it.
Let me suggest that such an object and system, properly designed and
administered, could have great potential for education, increasing the
student’s range of choices, his sense of freedom, his motivation, and his
intellectual grasp. Such a system could grow indefinitely, gradually
including more and more of the world’s written knowledge. However, its
internal file structure would have to be built to accept growth, change and
complex informational arrangements.

In these writings of H. G. Wells, Vannevar Bush, and Ted Nelson, it is
evident that at least some people were thinking about the internet long
before it became feasible.

Communicating among computers over long distances is a formidable
task. The internet itself originated from research by the United States
Department of Defense in the 1960s. The Advanced Research Projects
Agency Network (ARPANET) became operational in 1971 and established
many of the concepts of the internet. Perhaps the most crucial was packet



switching, which is the technique of separating data into smaller packets
that are accompanied by information known as a header.

For example, suppose Computer A contains a text file of 30,000 bytes in
size. Computer B is connected in some way to Computer A. It issues a
request for this text file from Computer A through signals sent through the
connection. Computer A responds by first dividing this text file into 20
parts of 1500 bytes each. Each of these packets contains a header section
that identifies the source (Computer A), the destination (Computer B), the
name of the file, and numbers identifying the packets—for example, part 7
out of 20. Computer B would acknowledge the receipt of each packet and
then reassemble the file. If it were missing a particular packet (perhaps lost
in transmission), it would request another copy of that packet.

The header might also contain a checksum, which is a number calculated
in some standard way from all the bytes of the file. Whenever Computer B
receives a packet, it performs this calculation and checks the result against
the checksum. If it doesn’t match, it must assume that the packet was
corrupted in transmission. It requests another copy of the packet.

Packet switching has several advantages over sending the file in its
entirety. First, the connection between the two computers would be
available for sharing with other computers exchanging their own packets.
No one computer could tie up the system with a large file request. Also, if
errors are detected in a packet, only that packet needs to be re-sent rather
than the entire file.

Throughout this book you’ve seen how digital information is conveyed
through wires. A current flowing through a wire is a binary 1, and the
absence of a current is a binary 0. But the wires in the circuits shown in this
book are quite short. Conveying digital information over longer distances
requires different strategies.

Telephone landlines became the earliest means of long-distance digital
communication, primarily because they already existed and were
conveniently available. But the telephone system was designed for people
talking and listening to each other. Technically, the telephone system
conveys audio waveforms in the range of 300 Hz to 3400 Hz, which is
considered sufficient for human speech.

One simple approach to converting binary 0s and 1s to an audio
waveform is through a process of modulation, which is altering an analog
audio signal in some way so that it encodes digital information.



For example, one early modulation device was the Bell 103, which was
manufactured by AT&T beginning in 1962, but which had a long lingering
influence extending into the 1990s. This device could operate in full duplex
mode, meaning that it could send and receive information at the same time.
At one end of the telephone line was an originating station, and at the other
end was the answering station. These two stations communicated at a rate
of 300 bits per second.

The Bell 103 used a technique called frequency-shift keying (FSK) to
encode 0s and 1s in an audio signal. The originating station encoded a
binary 0 as a frequency of 1,070 Hz, and a binary 1 as 1,270 Hz. Here’s the
8-bit ASCII code for W encoded as these two frequencies:

It may be hard to see in this diagram, but the space between the cycles
for the 0 bits is a little wider than for the 1 bits because the frequency is
lower. The answering station worked similarly except using frequencies of
2,025 Hz and 2,225 Hz. Often a parity bit was included as a simple form of
error checking.

The device that modulates this tone to encode binary data is also capable
of demodulating an incoming tone and converting it back into 0s and 1s.
These devices are therefore called modulator-demodulators, or modems.

The Bell 103 modem was able to transmit data at a rate of 300 bits per
second. It was also called a 300-baud device, a measurement named after
Émile Baudot, whom you met in Chapter 13. The baud rate is the symbol
rate, and it’s sometimes the same as the bits per second and sometimes not.
For example, suppose you devised an FSK scheme that used four different
frequencies to represent the bit sequences 00, 01, 10, and 11. If the
waveform representing these tones changed 1000 times per second, it would
be classified as 1000 baud, but it would convey 2000 bits per second.



A 300-baud modem makes quite a noisy racket when connecting two
computers. The sound is often used in TV shows and movies to evoke home
computing in the 1980s and 1990s.

Eventually modems working over digital telephone lines achieved
speeds of 56 kilobits per second. These are called 56K modems, and they
are still used in some areas. Faster connection speeds can be achieved with
a digital subscriber line (DSL), coaxial cable, and satellites. These carry
waveforms at radio frequencies, and very sophisticated modulation
techniques allow encoding more digital information within the waveforms
to achieve much greater rates of digital transmission.

A different communication medium is used for much of the
intercontinental internet cabling as well as for connections among coastal
areas. Buried under the sea are myriad fiber-optic cables. These are cables
made of thin fibers of glass or plastic that carry beams of infrared light.
Light normally doesn’t bend, of course, but the light bounces off the
internal surface of the fiber so the fibers can bend and still work well.

Several hundred of these fibers are generally bundled together in a cable,
allowing each fiber to carry a separate transmission. Some fibers can
themselves carry multiple signals. Digital information is encoded in fiber-
optic cables by pulsing the light: The light is effectively turned off and on
very quickly, where off is a 0 and on is a 1. This is what enables the high-
speed communication required of the modern internet.

Topology is also crucial: The internet could have been created by
constructing one massive computer somewhere in the world and connecting
every other computer to that one machine. In some ways, this would make
the internet a lot simpler. But this simple scheme clearly has disadvantages:
People who live a long distance from that central computer would suffer
greater delays, and if that giant computer ever crashed, it would bring down
the entire world’s internet.

Instead, the internet is decentralized, with much redundancy and no
single point of failure. There do exist very big computers that store lots of
data. These are called servers, while smaller computers that access this data
are sometimes called clients. But the client computers that we use don’t
connect to servers directly. Instead, you access the internet through an
internet service provider (ISP). You probably know who your ISP is
because you likely pay them a monthly fee. If you access the internet
through a cellphone, then your phone carrier is also your ISP.



Besides wires and cables and radio waves, everything on the internet is
interconnected through routers, so called because they provide a route
between client and server. You might have a router in your home as part of
the modem through which you access the internet, or as part of a Wi-Fi hub.
These routers contain jacks for Ethernet cables that can be used to
physically connect computers and perhaps a printer.

The routers that compose the interlocking parts of the internet are more
sophisticated than these home routers. Most of these routers are connected
to other routers, to which they convey packets, and these routers are in turn
connected to other routers, making up a complex mesh. Routers contain
their own CPUs because they store routing tables or an algorithmic routing
policy that describes the best route for a packet to reach its destination.

The other piece of ubiquitous hardware is the network interface
controller, or NIC. Every NIC has a unique identifier that is a permanent
part of the hardware. This identifier is the media access control, or MAC,
address. A MAC address consists of a total of 12 hexadecimal digits,
sometimes in six groups of two digits each.

Every piece of hardware connected to the internet has its own MAC
address. Desktop and laptop computers usually have multiple addresses for
the computer’s Ethernet connection, Wi-Fi, and Bluetooth, which can
connect to nearby devices through radio waves. You can discover these
MAC addresses through the Settings information on your computer. Your
modem and Wi-Fi hub also have MAC addresses that are probably printed
on labels on these devices. Your cellphone likely has Wi-Fi and Bluetooth
MAC addresses. The use of 12 hexadecimal digits for the MAC address
suggests that the world won’t run out of them soon. There are over 30,000
MAC addresses for every human on the planet.

Although the internet supports several distinct services, such as email
and file-sharing, most people interact with the internet through the World
Wide Web, which was largely invented by English scientist Tim Berners-
Lee (born 1955) in 1989. In creating the web, he adopted the word
“hypertext,” which had been coined by Ted Nelson when Berners-Lee was
10 years old.

The basic type of document on the web is called a page or a webpage
and consists of text using the Hypertext Markup Language (HTML). You
saw a little bit of HTML in the previous chapter. HTML documents contain



text tags such as <p> to denote a paragraph, <h1> for a top-level heading,
and <img> for a bitmap image.

One of the most important HTML tags is <a>, standing for anchor. The
anchor tag encloses a hyperlink, which is usually a short text string that is
formatted differently (often with an underline) and that when clicked or
tapped loads a different webpage. This is how multiple webpages are
linked. Sometimes links can be different parts of a bigger document—much
like a table of contents in a book—and sometimes links can provide
reference sources or additional information so that continuing to invoke
links digs deeper into a topic.

In the couple of decades of its existence, the web has grown enormously.
Neither H. G. Wells nor Vannevar Bush could possibly have envisioned the
potential for online research, for shopping, and for entertainment, nor
experience the joy of cat videos, and the perverse appeal of engaging in
vicious political disputes with strangers. Indeed, the computer revolution
prior to the internet now seems incomplete in retrospect. The internet has
become the pinnacle and culmination of the computer revolution, and the
success of this revolution must be judged on how well the internet has made
the world a better place. That is a subject for minds capable of much deeper
thinking than mine.

Pages on the web are identified with a Uniform Resource Locator, or
URL. One of the pages on the website that I built for this book has the URL

https://www.CodeHiddenLanguage.com/Chapter27/index.html

This URL consists of a domain name
(www.CodeHiddenLanguage.com), a directory (Chapter27), and an HTML
file (index.html). The URL begins with something called a protocol. The
http prefix stands for Hypertext Transfer Protocol, while https is the secure
variant of HTTP. These protocols describe how a program such as a web
browser obtains pages from a website.

(Somewhat confusingly, there is also something called a Uniform
Resource Identifier, or URI, which has much the same format as a URL but
which can be used as a unique identifier rather than referencing a webpage.)

Any application running on a modern computer can make a call to the
operating system for initiating what is called an HTTP request. The
program need do little more than specify a URL as a text string such as

https://www.codehiddenlanguage.com/Chapter27/index.html
http://www.codehiddenlanguage.com/


“https://www.CodeHiddenLanguage.com.” Sometime later (but not long, let
us hope), the application receives an HTTP response giving the application
the requested page. If the request fails, the response will be an error code.
For example, if the client requests a file that doesn’t exist (for example,
https://www.CodeHiddenLanguage.com/FakePage.html), the response will
be the familiar 404 code, which indicates that the webpage couldn’t be
found.

What happens between that request and response is a quite elaborate
communication between the client making the request and the server
responding to it.

The URL of the website is only the human-friendly pseudonym for the
real identifier of the website, which is an Internet Protocol (IP) address—
for example, 50.87.147.75. That’s a Version 4 IP address, which is a 32-bit
number. The Version 6 IP address uses 128 bits. To obtain the IP address of
the website, the web browser (or another application) accesses the Domain
Name System (DNS), which is like a large directory that maps URLs to IP
addresses.

The IP address of a website is fixed; the client computer also has an IP
address that is probably assigned to the computer by the ISP. Increasingly,
household appliances have IP addresses that are accessible locally through
your computer. The appliances are examples of the internet of things, or
IOT.

At any rate, when your web browser makes an HTTP request for a
webpage, the client communicates with the server through a set of protocols
known collectively as TCP/IP, meaning Transmission Control Protocol and
Internet Protocol. These are the protocols that divide a file into packets and
that preface the data with header information. The headers include source
and destination IP addresses, which remain the same throughout the
progress of the packets through the various routers that connect the client
and the server. The header also contains source and destination MAC
addresses. These change as the packet moves from router to router.

Most of these routers contain a routing table or a routing policy that
indicates the most efficient router to continue the trip of the request from
client to server, and the trip of the response from server to client. This
routing of packets through routers is certainly the most complex aspect of
the internet.

https://www.codehiddenlanguage.com/
https://www.codehiddenlanguage.com/FakePage.html


When you first access the CodeHiddenLanguage.com website, you
probably enter something like

CodeHiddenLanguage.com

into your web browser. You don’t need to selectively capitalize the domain
name as I’ve done. Domain names are case insensitive.

The browser itself will preface that domain name with https when
making the HTTP request. Notice that no file is specified. When the server
receives a request for the CodeHiddenLanguage.com website, information
associated with the website includes a list that indicates what file should be
returned. For this website, the file at the top of this list is default.html. It’s
the same as if you had typed

CodeHiddenLanguage.com/default.html

in the web browser. That’s the home page of the website. Web browsers
allow you to view the HTML file directly through an option such as View
Page Source.

When the web browser gets that default.html file, it begins the job of
parsing, which I described in Chapter 27. This involves going through the
text of the HTML file character by character, identifying all the tags, and
laying out the page. On the CPU level, parsing generally involves a lot of
CMP instructions followed by conditional jumps. This is a job usually
relegated to a chunk of software called an HTML engine, which is probably
written in C++. In displaying the page, the web browser uses the operating
system’s graphics facilities.

In the parsing of default.html, the web browser will discover that this
file refers to another file, named style.css. This is a text file with Cascading
Style Sheets (CSS) information that describes the details of how the page is
formatted. The web browser makes another HTTP request to obtain this
file. Farther down the default.html page, the web browser finds a reference
to a JPEG file named Code2Cover.jpg. That’s is an image of the cover of
this book. Another HTTP request retrieves that file.

Farther down the page is a list of some of the chapters in the book, with
links to other pages in the website. The browser does not load those other
pages quite yet but displays them as hyperlinks.

http://codehiddenlanguage.com/
http://codehiddenlanguage.com/
http://codehiddenlanguage.com/
http://codehiddenlanguage.com/default.html


When you click the link for Chapter 6, for example, the browser makes
an HTTP request for https://www.codehiddenlanguage.com/Chapter06.
Once again, no file is specified, but the server checks its list. The
default.html file is at the top, but that file doesn’t exist in the Chapter06
folder. Next on the list is index.html, and that’s the file that’s returned.

The browser then begins parsing that page. That page also refers to the
style.css file, but the web browser has cached that file, which means that it
has saved that file for future use and doesn’t need to download it again.

That index.html page has several <iframe> tags that refer to other HTML
files. Those files are downloaded as well. Those files have <script>
sections that list several JavaScript files. Those JavaScript files are now
downloaded so that the JavaScript code can be parsed and executed.

It used to be that JavaScript code was interpreted by the web browser as
it was parsed. These days, however, web browsers contain JavaScript
engines that compile the JavaScript—not all at once but only when it’s
needed. This is a technique called just-in-time (JIT) compiling.

Although the CodeHiddenLanguage.com website delivers interactive
graphics to your desktop, the HTML pages themselves are static. It is also
possible for a server to deliver dynamic web content. When a server
receives a particular URL, it can do whatever it wants with it, and the server
can create HTML files on the fly and deliver them back to the client.

Sometimes a series of query strings are attached to a URL. These
generally follow a question mark and are separated by ampersands. The
server can parse and interpret these as well. Servers also support a URL
style called REST (representational state transfer), which involves moving
data files from the server to the client. These facilities are known as server-
side because they involve programs running on the server, while JavaScript
is a client-side programming language. Client-side programs in JavaScript
can interact with server-side programs on the server.

Web programming offers a staggering wealth of options, as the myriad
varieties of websites prove. As more and more processing and data storage
moves to servers, these servers have become collectively known as the
cloud. As more and more of the personal data of users are stored on the
cloud, the actual computers that people use to create or access that data
become less important. The cloud makes the computing experience user-
centric rather than hardware-centric.

https://www.codehiddenlanguage.com/Chapter06
http://codehiddenlanguage.com/


Do you wonder what H. G. Wells or Vannevar Bush would have thought
about the internet?

Both Wells and Bush optimistically believed that it was essential to
improve our access to the knowledge and wisdom of the world. It’s hard to
argue with that. But equally obvious is that providing this access doesn’t
automatically propel civilization into a golden age. People tend now to be
more overwhelmed than ever by the quantity of information available rather
than feeling that they can manage it.

In the sense that the internet represents a sampling of many different
types of people and personalities and beliefs and interests, it is certainly
some sort of World Brain. But it is definitely not the “common
interpretation of reality” that Wells desired. Almost as prevalent as
authentic knowledge are unnerving manifestations of crank science and
conspiracy theories.

I think Wells would have loved the idea of Google Books
(books.google.com), which has been formed from scanning and digitizing
books and magazines from different libraries. Many of these books—those
not still under copyright—are fully accessible. Unfortunately, the creators
of Google Books apparently forgot about the catalog cards, and instead
force the user to rely entirely on search facilities, which are themselves
seriously flawed. This fundamental problem often makes it maddeningly
difficult to find something specific in Google Books.

Almost in complete contrast to Google Books is JSTOR (www.jstor.org),
short for Journal Storage, a collection of academic journals whose articles
have been organized and catalogued in a gloriously meticulous manner.
JSTOR started out as a restricted site, but after a shameful incident
involving the prosecution and tragic suicide of a programmer determined to
make the contents of JSTOR freely available, it has been made much more
accessible to the general public.

For those who can read traditional Western music notation, the
International Music Score Library Project (imslp.org) is to music scores
what Google Books is to books. IMSLP is an enormous repository of
digitized scores that are no longer in copyright, and they are fortunately
catalogued and indexed in a highly usable manner.

If you think about the ideas of Vannevar Bush and Ted Nelson in regard
to the ability to create our own web of documents, something seems to be
missing. Websites such as Google Books, JSTOR, and IMSLP are resistant

http://books.google.com/
http://www.jstor.org/


to the type of arbitrary linking that they envisioned. Modern word
processing and spreadsheet applications accept storing links to sources of
information, but not in a very flexible manner.

The website that comes closest to Wells’s concept of a World
Encyclopedia is obviously Wikipedia (wikipedia.org). The basic concept of
Wikipedia—an encyclopedia that can be edited by its users—could easily
have resulted in something that degenerated into chaos and consequent
uselessness. But under the studious and conscientious direction of Jimmy
Wales (born 1966), it has instead become the single most essential website
on the internet.

In World Brain, H. G. Wells wrote

An Encyclopedia appealing to all mankind can admit no narrowing
dogmas without at the same time admitting corrective criticism. It will
have to be guarded editorially and with the utmost jealousy against the
incessant invasion of narrowing propaganda. It will have a general
flavour of what many people will call scepticism. Myth, however
venerated, it must treat as myth and not as a symbolical rendering of some
higher truth or any such evasion. Visions and projects and theories it must
distinguish from bed-rock fact. It will necessarily press strongly against
national delusions of grandeur, and against all sectarian assumptions. It
will necessarily be for and not indifferent to that world community of
which it must become at last an essential part. If that is what you call bias,
bias the World Encyclopedia will certainly have. It will have, and it
cannot help but have, a bias for organization, comparison, construction
and creation. It is an essentially creative project. It has to be the dominant
factor in directing the growth of a new world.

Those are ambitious goals, and it is impressive how close Wikipedia has
come to meeting these requirements.

I suspect that most of us remain not quite as optimistic as Wells in
believing that the simple presence of a body of knowledge can help guide
the world to a better future. We are sometimes told that if we build it, they
will come, and however much we might want to believe that, it’s not a
guarantee. Human nature rarely conforms to expectations.

Yet we must all do what we can.

http://wikipedia.org/
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Code Snippets

Many titles include programming code or configuration examples. To
optimize the presentation of these elements, view the eBook in single-
column, landscape mode and adjust the font size to the smallest setting. In
addition to presenting code and configurations in the reflowable text format,
we have included images of the code that mimic the presentation found in
the print book; therefore, where the reflowable format may compromise the
presentation of the code listing, you will see a “Click here to view code
image” link. Click the link to view the print-fidelity code image. To return
to the previous page viewed, click the Back button on your device or app.
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