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PREFACE

What	 do	 adults	 choose	 to	 learn?	 Interests	 are	 personal,	 but	 many	 learn
languages,	 or	 read	 about	 science,	 history,	 politics,	 economics,	 philosophy,	 or
psychology.	And	many	enjoy	both	classic	and	contemporary	art,	literature,	plays,
and	films.	Not	everyone	values	these	things	equally,	but	many	are	proud	to	know
at	 least	 a	 little	 about	 each.	 I’ve	written	 this	 book	 because	 I	would	 like	 to	 see
mathematics	 added	 to	 the	 list.	 Not	 because	 mathematics	 is	 a	 standard	 school
subject,	but	because	it	is	a	cumulative	intellectual	endeavour	with	a	long	history
and	 a	wealth	 of	 clever	 and	 interesting	 ideas.	 I	wouldn’t	 expect	 a	 layperson	 to
know	many	details	or	to	have	any	idea	about	the	cutting	edge,	but	I’d	like	more
people	 to	 feel	 that	 they	 could	 speak	 confidently	 about	 key	 mathematical
concepts	and	approaches	to	reasoning.
I	 got	 into	 a	 position	 to	 write	 this	 book	 by	 studying	 mathematics	 then

mathematics	 education.	 Mathematics	 education	 as	 an	 academic	 discipline
overlaps	 with	 mathematical	 cognition	 as	 a	 branch	 of	 psychology:	 both	 study
ways	in	which	people	learn	and	think	about	mathematics.	And	research	in	these
areas	 has	 revealed	 a	 lot.	 We	 know	 quite	 a	 bit	 about	 typical	 errors,
misconceptions,	 and	 sources	 of	 confusion	 in	 children	 and	 in	 adults.	We	 have
good	 theories	 about	 how	 some	 of	 these	 arise,	 and	 we’re	 testing	 them	 with
intervention	 studies	 designed	 to	 improve	 teaching	 and	 learning.	 Education	 is
complicated,	of	course—anyone	who	has	been	in	a	class	of	30	teenagers	knows
that	intellectual	development	requires	more	than	good	lesson	plans.	But	teachers
and	 researchers	 know	 about	 numerous	 stumbling	 blocks	 in	 mathematical
thinking,	and	they	will	recognize	much	of	the	content	in	this	book.
That	said,	this	is	not	a	book	about	research—I	use	my	knowledge	about	both

mathematics	 and	 education	 in	 a	more	 cavalier	 way	 than	 I	 would	 in	 academic
writing.	 I	 explain	 why	 some	 ideas	 are	 naturally	 confusing,	 but	 this	 book	 is
essentially	an	account	of	how	I	think	about	the	subject.	Like	every	teacher,	my
thinking	is	heavily	influenced	by	my	early	experiences,	and	I	do	not	try	to	hide
that—I	 point	 out	 places	 in	 which	 I	 suspect	 that	 my	 way	 of	 understanding	 is
idiosyncratic.	But	I	don’t	include	jokes,	puns,	or	attempts	to	make	mathematics
interesting.	In	my	view,	there	is	no	need	to	make	mathematics	interesting—it	is
fascinating	all	by	itself.
This	 book	 has	 multiple	 intended	 audiences,	 so	 readers	 with	 mathematical

backgrounds	will	notice	that	sometimes,	when	I	 introduce	an	idea,	I	skate	over
the	 subtleties.	 That’s	 deliberate:	 I	 think	 it	 can	 be	 important	 to	 consolidate	 a



simple	 version	 first.	 Sometimes	 the	 subtleties	 don’t	 appear	 until	 considerably
later	in	the	book,	so	I	hope	that	such	readers	will	be	patient.	In	particular,	people
who	 have	 studied	 higher	 level	mathematics	will	 have	 been	 told	 to	 be	wary	 of
intuition	 based	 on	 visual	 representations.	 That	 is	 sensible	 advice,	 and
mathematicians	offer	 it	when	 they	want	 students	 to	question	 their	 assumptions
and	 to	 justify	 their	 ideas	 within	 an	 established	 theory.	 Teaching	 disciplined
reasoning	 within	 established	 theories	 is	 a	 valid	 aim,	 but	 it’s	 not	 mine	 in	 this
book.	My	 aim	here	 is	 to	 communicate	with	 nonspecialists	 about	mathematical
ideas.	 And	 I	 really	 like	 pictures,	 so	 I	 use	 them	 a	 lot,	 albeit	 discussing	 their
limitations.	Similarly,	I	start	each	main	chapter	with	basic	ideas,	but	I	mean	basic
in	an	everyday	rather	than	mathematically	foundational	sense.	In	my	experience,
learners	need	to	work	down	to	foundational	ideas	just	as	they	need	to	work	up	to
advanced	ones.	So	 the	more	 foundational	 discussions	 appear	 at	 the	 end	 of	 the
book,	not	the	beginning.
To	conclude	 this	Preface,	 I	would	 like	 to	 thank	many	friends	and	colleagues

for	 their	 help	 and	 feedback.	 For	 carrying	 this	 book	 through	 the	 practicalities
from	proposal	to	finished	product,	thank	you	to	Dan	Taber	of	Oxford	University
Press.	 For	 the	 usual	 extraordinarily	 patient	 and	 attentive	 copyediting	 and
typesetting,	thank	you	to	Charles	Lauder	Jr.,	and	to	Karen	Moore	and	her	team.
For	 extremely	 valuable	 feedback	 on	 drafts	 of	 the	 content,	 thank	 you	 to	 the
reviewers	 of	 the	 original	 proposal,	 and	 to	 Nina	 Attridge,	 Sophie	 Batchelor,
Louisa	 Butt,	 Jane	 Coleman,	 Lucy	 Cragg,	 Jo	 Eaves,	 Ant	 Edwards,	 Cameron
Howat,	Hazel	Howat,	Matthew	Inglis,	Jayne	Pickering,	Artie	Prendergast-Smith,
and	David	Sirl.	Their	 input	 taught	me	that	educated	nonspecialists	find	algebra
and	 logic	 easier	 than	 I	 expected,	 but	 diagrams	 harder.	 This,	 together	 with
numerous	detailed	comments,	improved	my	writing	in	ways	that	I	hope	will	help
all	readers.
Finally,	I’d	like	to	dedicate	this	book	to	my	parents,	Angela	and	Eric	Alcock,

who	 always	 supported	 me	 but	 never	 pushed.	 That	 allowed	 me	 to	 develop	 a
genuine	love	for	mathematics,	and	I’m	grateful	for	it.
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INTRODUCTION

Mathematics—ordinary,	 school-level	 mathematics—is	 elegant	 and	 interesting.
Many	people	 suspect	 this	 but	were	not	 able	 to	 appreciate	 it	 at	 the	 time.	Some
were	put	 off	 by	 repetitive	 exercises.	Others	missed	 a	 key	 idea	 and	 found	 later
work	meaningless.	Most,	 however,	 did	 learn	 something,	 and	 this	 book	aims	 to
build	 on	 that.	 It	 revisits	 basic	 ideas,	 avoiding	 repetition	 and	 focusing	 on
meaning.	 It	 explores	 these	 ideas	 in	 depth,	 uses	 them	 to	 explain	 what
mathematicians	care	about	and	how	they	think,	and	builds	gradual	links	to	more
advanced	material.	In	 this	brief	Introduction	I	explain	how	this	might	work	for
people	with	different	backgrounds,	and	what	you	should	therefore	expect.



Is	this	book	for	me?

This	book	is	for	several	sets	of	people.	It	is	for	you	if	you	liked	mathematics	up
to	a	point	but	 later	 lost	 track	of	 it	because	you	didn’t	understand	a	key	idea	or
you	 didn’t	 like	 your	 teacher	 or	 you’d	 just	 discovered	 the	 attractions	 of	 life
outside	school.	It	is	for	you	if	you	liked	mathematics	but	didn’t	pursue	it	beyond
compulsory	education	because	it	wasn’t	your	main	interest—perhaps	your	thing
was	music	 or	 languages	 or	 psychology	 or	 design.	 Finally,	 it	 is	 for	 you	 if	 you
liked	mathematics	 and	 did	 pursue	 it,	 perhaps	 even	 to	 undergraduate	 level,	 but
you’ve	now	forgotten	much	of	what	you	once	knew.	Whether	you	find	it	an	easy
read	 will	 depend	 upon	 which	 group	 you	 fall	 into,	 but	 I’m	 pretty	 sure	 that
everyone	will	get	further	than	they’d	think.	I	asked	nonexperts	for	feedback	on
all	of	 the	chapters,	and	 those	who	gave	up	mathematics	at	age	16	 told	me	 that
they	did	struggle	a	bit,	but	only	 in	 the	 later	sections,	and	 that	by	 then	 it	didn’t
matter	 because	 they’d	 built	 up	 their	 confidence	 and	 were	 feeling	 good	 about
themselves.	Also,	this	Introduction	will	offer	advice	about	reading	mathematics
effectively.
First,	 though,	 some	 comments	 on	 how	 the	 book	 might	 interest	 specific

readers.	 It	 might	 help	 teachers	 who	 are	 not	 mathematics	 specialists	 but	 who
would	like	to	feel	more	confident	about	relationships	between	basic	mathematics
and	more	advanced	concepts.	It	might	help	adults	who	are	learning	mathematics
for	 qualifications,	 though	 for	 that	 audience	 it	 will	 do	 only	 part	 of	 the	 job.	 Its
focus	 on	 mathematical	 ideas	 and	 their	 inter-relationships	 will,	 I	 hope,	 make
anyone’s	 learning	 easier	 and	 more	 interesting.	 But	 people	 studying	 for
qualifications	will	also	need	to	become	fluent	in	certain	types	of	calculation,	and
they	will	need	another	resource	for	that.
It	 might	 be	 useful	 for	 parents	 and	 carers	 who	 want	 to	 help	 their	 children

understand	 mathematics.	 I	 hope	 that	 it	 is,	 but	 I	 would	 counsel	 caution	 and
patience.	 If	 this	 book	 allows	 you	 to	 see	 mathematical	 links	 that	 you	 never
noticed	before,	and	at	some	point	you	experience	an	epiphany,	that’s	great—it’s
exactly	what	 I’m	aiming	for.	But	epiphanies	are	personal—they	depend	on	 the
structure	of	 an	 individual’s	knowledge.	Someone	who	knows	 less	 than	you	do
might	 not	 see	 the	 value	 of	 an	 insight.	 He	 or	 she	 might	 need	 to	 acquire	 new
knowledge	 by	 increments	 and,	 depending	 on	 the	 order	 in	 which	 this	 is	 done,
might	eventually	consider	the	key	link	unremarkable.	I	would	like	adults	to	talk
with	 children	 about	 mathematics;	 I	 would	 not	 like	 children	 to	 be	 put	 off	 the



subject	by	demands	for	enthusiasm.	Personally,	I	enjoyed	mathematics	because
people	gave	me	interesting	things	to	think	about,	then	left	me	to	it.	I	knew	where
to	 go	when	 I	 had	 questions	 or	 something	 to	 say,	 but	 there	was	 no	 immediate
pressure	 to	 resolve	 everything.	 That’s	 the	 approach	 I’d	 advocate,	 especially	 if
you	have	a	smart	kid.
Finally,	 this	 book	 might	 interest	 precisely	 those	 smart	 kids—young	 people

who	 enjoy	 mathematics	 and	 think	 that	 they	 might	 want	 to	 study	 it	 at	 higher
levels.	If	that	describes	you,	I’m	glad	you’re	here.

What	if	I’m	not	very	good	at	mathematics?

I’m	 aware	 that	 some	 readers	will	 be	 nervous.	 Perhaps	 you	 reached	 a	 point	 at
which	mathematics	made	you	feel	inadequate,	and	you	have	no	desire	to	revisit
that	 feeling.	 Perhaps	 you	 believe	 that	 you	 lack	 mathematical	 talent	 and	 are
therefore	 doomed	 to	 failure.	 Perhaps	 you	 were	 given	 this	 book	 by	 well-
intentioned	 friends	 and	 have	 only	 begun	 reading	 it	 so	 as	 not	 to	 appear	 rude.
Whatever	 the	 case,	 I	 hope	 to	 convince	 you	 to	 read	 on,	 because	mathematical
thinking	is	not	magical.	It	is	often	thought	of	that	way	in	our	culture,	where	it	is
common	to	have	a	demanding	career	or	to	run	a	happy	and	successful	household,
yet	to	say,	‘Oh,	I	am	terrible	at	maths.’	I	hear	this	a	lot,	and	every	time	it	is	clear
to	me	that	it	cannot	really	be	true:	this	person	is	obviously	a	capable	thinker.	So,
while	 I	 believe	 that	 many	 people	 didn’t	 master	 all	 the	 mathematics	 they
encountered	in	school,	I	also	believe	that	the	majority	can	understand	more,	and
that,	when	learning	without	the	pressure	of	exercises	and	tests,	they	are	likely	to
enjoy	it.
By	 way	 of	 analogy,	 I	 am	 terrible	 at	 tennis,	 and	 at	 any	 sport	 that	 involves

hitting	an	object	with	another	object.	Some	people	are	not	like	this—they	can	hit
a	 tennis	 ball	 with	 power	 and	 control.	 I	 find	 this	 both	 admirable	 and	 utterly
mysterious,	and	no	amount	of	practice	would	make	me	that	good.	But	that	does
not	mean	 that	 I	could	not	 improve.	 I	could	get	better	at	 tennis—probably	a	 lot
better,	especially	if	I	had	expert	guidance.	I	expect	that	you	agree	about	that,	but
people	 routinely	 say	 ‘I	 can’t’	 in	 the	 face	 of	mathematics.	 I	 think	 this	 is	 partly
because	self-deprecation	is	expected:	it	doesn’t	do	to	show	off.	But	I	think	that
we	do	ourselves	a	disservice	 if	we	are	swayed	by	an	‘I	can’t’	attitude,	because
there	 is	 no	 real	 reason	 to	 think	 of	mathematics	 as	 qualitatively	 different	 from
other	 endeavours.	 Indeed,	 the	 great	 thing	 about	 proper	 mathematical
understanding	 is	 that	 it	 requires	 a	 lot	 less	 work	 than	 learning	 a	 physical	 skill.



Although	many	people	experience	mathematics	as	a	bunch	of	procedures	to	be
learned	through	repetition,	experts	do	not	see	it	that	way.	They	see	well-defined
concepts	 that	 fit	 together	 with	 a	 logic	 and	 elegance	 that	 makes	 mathematics
inherently	 memorable.	 I	 hope	 to	 convey	 some	 of	 that	 logic,	 elegance	 and
memorability	in	this	book.

What	should	I	expect?

This	book	explains	and	links	mathematical	ideas	in	an	order	that	differs	from	a
typical	 school	 curriculum.	 School	 mathematics	 tends	 to	 come	 in	 horizontal
slices:	 children	 learn	basic	 ideas	about	 several	 topics,	 then,	 the	next	year,	 they
learn	slightly	more	advanced	ideas	about	those	topics,	and	so	on.

This	 is	 entirely	 sensible.	 But	 it	 means	 that	 the	 vertical	 links	 are	 not	 very
salient,	 which	 is	 important	 because	 mathematics	 can	 be	 seen	 as	 a	 highly
interconnected	network	in	which	more	sophisticated	ideas	build	upon	more	basic
ones.	So	 this	book’s	 approach	 is	 to	 focus	explicitly	on	 the	vertical	 links.	Each
chapter	 starts	with	an	 idea	 that	 is	bang	 in	 the	middle	of	 school	mathematics—
primary	school	mathematics	 in	many	cases—then	 takes	a	 tour	upward	 through
related	 concepts,	 arriving	 eventually	 at	 ideas	 that	 people	 encounter	 in	 more
advanced	study	(see	the	next	diagram).
If	 that	 endpoint	 sounds	 daunting,	 don’t	 worry—each	 chapter	 builds	 up

gradually,	drawing	on	research	in	education	and	psychology	to	explain	common
causes	of	confusion,	and	introducing	representations	that	clarify	what	is	going	on
and	facilitate	valid	reasoning.	I	explain	ideas	where	they	are	first	introduced,	and



there	is	an	extensive	index	so	that	you	can	locate	such	information	if	you	forget
it	later.	Also,	 the	 text	contains	numerous	questions	 that	you	could	follow	up	to
explore	the	ideas	in	more	depth.	If	that	sounds	good,	maybe	read	with	a	pencil
and	paper	to	hand.	If	it	doesn’t,	 that’s	fine—I	intend	this	to	be	a	book	that	you
can	read	on	a	sun-lounger	or	the	train	to	work,	so	do	ponder	or	read	on	as	you
like.
Also,	 it’s	 not	 like	 you	 have	 to	 read	 everything.	 If	 you	 lost	 track	 of

mathematics	 at	 some	 point,	 you	might	want	 to	 read	 just	 the	 first	 half	 of	 each
chapter.	It’s	fine	to	enjoy	what	is	digestible	and	let	it	settle,	then	decide	whether
to	 have	 another	 go.	 If	 you	gave	up	mathematics	 to	 pursue	 a	 different	 passion,
you	might	enjoy	the	later	sections	in	each	chapter	because	they	introduce	ideas
that	you	haven’t	seen	before.	If	you	studied	mathematics	to	a	higher	level,	there
might	 be	 nothing	 truly	 new.	 But	 the	 daily	 grind	 of	 a	 pressured,	 test-focused
environment	 can	 easily	 swamp	 the	most	 beautiful	 ideas.	 In	 a	 book	 like	 this,	 I
have	the	luxury	of	drawing	out	the	things	that	I	think	are	most	interesting,	and	I
hope	that	you	too	will	gain	some	new	insight.



And	that’s	why	I’m	writing—because	I	love	mathematics	and	I	want	as	many
people	as	possible	to	see	why.	To	achieve	that,	though,	I’d	like	you	to	understand
something	about	mathematical	reading.

How	can	I	read	mathematics	effectively?



Good	mathematical	 reading	does	not	 look	 like	ordinary	 reading.	This	 becomes
obvious	when	inspecting	scanpaths	 that	trace	human	eye	movements.	Below	is
the	 scanpath	 generated	 by	 a	 mathematician	 reading	 the	 instructions	 for	 a
research	study.	This	reading	is	fairly	linear:	the	person	reads	a	line	from	left	to
right,	then	moves	to	the	next	line	and	reads	that,	and	so	on.

Expert	mathematical	reading	is	not	like	this.	Below	is	a	scanpath1	for	the	same
mathematician	 reading	 a	 piece	 of	 mathematical	 text.	 Look	 at	 all	 those	 extra
movements	 back	 and	 forth.	These	 do	 not	 reflect	 poor	 reading	 ability—for	 this
person,	the	text	was	pretty	straightforward.	Rather,	they	reflect	an	expert’s	search
for	logical	relationships	among	all	the	concepts	and	claims.	When	reading	about
mathematics,	everyone	should	feel	the	need	to	read	back	and	forth	considerably
more	 than	 when	 reading	 ordinary	 text.	 This	 does	 not	 indicate	 mathematical
incompetence—on	the	contrary,	it	indicates	a	mature	search	for	understanding.2



So,	while	you	read	this	book,	pause	whenever	you	feel	the	need,	read	each	line
several	 times	 if	 that	helps,	 review	whole	 sections	when	 that	 seems	useful,	 and
think	about	how	you	would	explain	it	all	 to	someone	else.	If	you	do	that,	your
reading	will	be	a	bit	slower	but	your	understanding	will	grow	a	lot	faster.

1	Both	scanpaths	were	generated	by	the	eye	tracker	in	the	Mathematics	Education	Centre	at
Loughborough	University,	where	I	work.	An	eye	tracker	is	like	a	normal	computer	except	that	the	screen
records	where	the	viewer	is	looking.	It	monitors	this	using	infrared	cameras,	which	is	completely
noninvasive—the	viewer	can’t	tell	that	it’s	happening	(of	course,	we	do	tell	research	participants	what	we’re
up	to).	The	image	has	dots	and	lines	because	vision	is	not	‘smooth’	in	the	way	it	appears	to	subjective
experience—when	a	person	reads	static	images,	their	eyes	perform	short	stops	called	fixations	and	shift
between	these	in	rapid	movements	called	saccades.

2	Our	research	team	is	pretty	sure	about	this	because	undergraduate	mathematics	students	read	in	a
similar	way,	but	less	so—they	are	not	yet	as	careful	as	experts.	When	we	gave	undergraduates	research-
based	self-explanation	training,	their	eye	movements	became	more	expert-like,	and	they	generated	better
explanations	and	performed	better	on	a	comprehension	test.	It	was	important	that	they	deliberately	think
about	the	links	across	the	mathematical	text.	If	this	research	interests	you,	you	can	read	about	it	in	the



Notices	of	the	American	Mathematical	Society	at	doi.org/10.1090/noti1263,	and	there’s	more
information	at	http://www.lboro.ac.uk/departments/mec/research/.

http://www.lboro.ac.uk/departments/mec/research/


CHAPTER	1

Multiplying

1.1	Famous	theorems

Have	 you	 heard	 of	 Pythagoras’	 theorem?	How	 about	 Fermat’s	 Last	 Theorem?
Many	 people	 have,	 because	 these	 theorems	 appear	 frequently	 in	 popular
accounts	 of	 mathematics—they	 have	 captivated	 mathematicians	 for	 centuries
and	are	considered	accessible	 for	 lay	audiences.	That	does	not	mean,	however,
that	 everyone	knows	what	 they	 say	or	understands	why	mathematicians	are	 so
keen	on	them.
In	 this	 chapter	 I’ll	 explain	 both	 the	 subtleties	 of	 these	 theorems	 and	 the

reasons	why	 they	 are	 considered	 impressive.	 Some	 readers	might	 be	 sceptical
about	 whether	 I’ll	 manage	 that,	 and	 some	 might	 be	 right	 to	 feel	 that	 way—
anyone	who	skipped	the	Introduction1	will	have	missed	my	saying	that	I	expect
different	 people	 to	 read	 different	 amounts	 of	 each	 chapter.	 Maybe	 you’ll	 get
halfway	 through	 and	 decide	 that	 you’ve	 had	 enough.	 That’s	 fine,	 but	 many
people	will	get	further	than	they’d	think.	Your	mathematical	knowledge	might	be
rusty	 and	 full	 of	 holes,	 but	 people	 who	 can	 function	 well	 in	 our	 complicated
world	must	be	good	general	 thinkers,	and	mathematics	 is	 just	general	 thinking
about	abstract	concepts.
At	this	stage,	though,	many	readers	won’t	know	what	a	theorem	is,	and	that’s

easy	 to	 fix:	 a	 theorem	 is	 a	 true	 mathematical	 statement,	 often	 one	 that	 says
something	about	every	case	of	a	certain	type.	Here	are	some	examples.

Theorem: 	The	sum	of	two	even	numbers	is	always	even.

Theorem: 	A	number	is	divisible	by	9	if	and	only	if	the	sum	of	its	digits	is
divisible	by	9.



Did	 you	 know	 these	 things	 already?	 Do	 you	 know	 why	 they	 are	 true?	We’ll
revisit	the	second	in	Chapter	5,	examining	the	reasons	carefully.	For	now	I	just
want	to	make	clear	that	theorems	do	not	have	to	be	about	esoteric	concepts	that
no	one	understands.	Some	are	 easy	 to	understand,	 even	 if	 it	 is	not	 easy	 to	 see
why	 they	 are	 true.	Both	Pythagoras’	Theorem	 and	Fermat’s	Last	Theorem	 are
harder,	 but	 this	 chapter	will	work	 up	 to	 them,	 taking	 in	 numerous	 elementary
ideas.	We’ll	start	right	at	the	beginning,	with	straightforward	multiplication.

1.2	Multiplication	made	easy

When	 I	 was	 little	 I	 had	 a	 Ladybird	 book	 called	Multiplication	Made	 Easy.	 I
loved	 that	 book.	 It	 wasn’t	 remarkable	 or	 complicated—all	 it	 did	 was	 provide
pictures	 of	 objects	 laid	 out	 in	 arrays	 so	 that	 you	 could	 see	 and	 count,	 for
instance,	four	rows	of	six	things	(six	buttons,	or	six	apples	or	feathers	or	stars).

What	I	liked	about	this	was	not	the	counting	or	even	the	pleasing	arrangements
of	objects.	What	I	liked	was	that	by	turning	the	page	around,	you	could	instead
see	six	rows	of	 four.	And	the	same	thing	worked	for	five	rows	of	seven	(seven
rows	of	five),	and	for	 two	rows	of	 ten	(ten	rows	of	 two),	and	for	every	pair	of
numbers	in	the	book.	This,	I	thought,	was	brilliant.	At	the	time	I	couldn’t	have
told	 you	 why,	 but	 I	 still	 think	 it’s	 brilliant,	 and	 now	 I	 can:	 the	 swapping
relationship	is	tremendously	labour-saving,	and	the	array	representation	provides
insight	about	why	it	works.
The	saving	arises	because	the	fact	that	 	is	the	same	as	 	(and	so	on)

means	that	only	55	of	the	first	100	multiplication	facts	are	really	different.	The
memory	 work	 is	 not	 quite	 halved	 because	 swapping	 buys	 us	 nothing	 for
calculations	like	 ,	but	still	that’s	an	impressive	reduction.



Indeed,	 it	 is	 possible	 to	 do	 better.	 The	 1s	 are	 straightforward,	 and	 the	 10s
probably	don’t	need	memorizing	either.	So	we’re	down	to	36	facts,	which	is	far
fewer	than	100.

This	appeals	to	my	lazy	side.	And	laziness,	I	think,	is	a	characteristic	shared	by
many	 mathematicians,	 who	 do	 not	 like	 to	 work	 harder	 than	 necessary.	 In
particular,	 they	 do	 not	 like	 to	 memorize	 factual	 information—they	 prefer	 to
reconstruct	it	using	general	relationships.
Such	 general	 relationships	 form	 one	 main	 theme	 of	 this	 book,	 which	 will

highlight	ways	 in	which	 they	 can	 be	 captured	 by	 good	 representations.	 In	my
opinion,	the	dot	array	is	a	good	representation	for	at	least	three	reasons.	First,	in



an	array	showing	four	rows	of	six	objects,	the	four	sixes	are	clearly	visible.	That
might	not	seem	remarkable,	but	it	is:	try	seeing	four	sixes	in	a	single	line	of	dots,

or	in	a	random	jumble	of	them.

It	can	be	done,	but	it’s	much	harder.
Second,	and	more	 importantly,	 the	array	shows	not	only	 four	 sixes,	but	also

six	 fours.	 Seeing	 both	 requires	 the	 right	 kind	 of	 looking,	 but	 this	 can	 be
facilitated	by	turning	the	page	around	or	by	bracketing	the	dots	in	different	ways.
Turning	 or	 bracketing	 does	 not	 change	 the	 number	 of	 dots;	 a	 mathematician
would	say	that	the	number	is	invariant	under	this	change.

Third,	 the	 array	 can	 be	 treated	 as	generic	 in	 the	 sense	 that	 there	 is	 nothing
special	about	the	4	and	the	6—an	array	will	have	the	same	properties	for	other
pairs	 of	 numbers.	Without	 needing	 dots	 on	 a	 page,	 I	 am	 confident	 that	
must	equal	 ,	and	that	 	must	equal	 .	I	can’t	‘see’	a	row	of	129



dots,	and	 I	neither	know	nor	care	what	 	 is,	but	 I	 can	 imagine	 the	array
and	 I’m	 confident	 that	whatever	 it	 is,	 it’s	 equal	 to	 .	 For	me,	 the	 array
makes	the	swapping	relationship	obvious	and	therefore	easy	to	remember.
I	do	not	 claim,	of	 course,	 that	 this	or	 any	other	 representation	has	 the	 same

effect	 for	everyone.	A	representation	on	a	page	 is	 inert.	The	dots	 just	sit	 there,
and	the	action	takes	place	in	the	viewer’s	mind—you	have	to	look	at	the	diagram
in	a	certain	way.	Some	representations	in	this	book	are	more	abstract	and	require
more	 effortful	 thought.	But	 I	will	 argue	 that	 it’s	worth	 learning	 to	 look	 in	 the
right	way	because	doing	so	can	reduce	memory	load	and	provide	a	big	payoff	in
insight.

1.3	Properties	of	multiplication

As	you	will	have	gathered,	I	think	that	the	‘answer’	to	 	is	less	interesting
than	 the	 fact	 that	 for	any	 two	numbers	n	and	m,	 it	 is	 true	 that	 .
This	sort	of	higher-level	regularity	appeals	to	mathematicians,	and	the	swapping
property	 has	 a	 mathematical	 name:	 commutativity	 (‘com-mute-a-tivity’).
Mathematicians	 say	 ‘multiplication	 is	 commutative’,	 and	mathematics	 students
learn	words	like	‘commutative’	when	they	arrive	at	university.	Well,	they	should,
but	many	don’t,	at	least	for	a	while—you	don’t	need	to	know	this	fancy	name	in
order	to	use	the	property	in	calculations	or	problem	solving.
But	naming	is	useful	because	it	highlights	commonalities	across	concepts.	For

instance,	addition	 is	commutative	 too:	 for	any	 two	numbers	n	and	m,	 it	 is	 true
that	 .	Addition	 doesn’t	 lend	 itself	 to	 an	 array	 representation,	 but
we	can	still	illustrate	this	by	arranging	and	bracketing	dots.	Here	is	a	diagram	for

.	To	see	 ,	just	turn	the	page	upside	down.

Again	 the	number	of	dots	 is	 invariant,	 so	 the	 resulting	 sum	must	be	 the	 same.
And	again	the	diagram	can	be	seen	as	generic.	Thinking	about	similar	diagrams
convinces	me	that	 	must	equal	 ,	whatever	that	is.
So	multiplication	 and	 addition	 are	 both	 commutative.	 In	 fact,	 they	 are	 both

commutative	binary	operations.	They	are	called	binary	operations	because	they
each	take	 two	numbers	(hence	‘binary’)	and	operate	with	 them	to	give	another



(hence	‘operation’).	Subtraction	is	a	binary	operation	too,	but	it	is	not	true	that	
	 equals	 	 or,	 in	 general,	 that	 .	 Subtraction	 is	 not

commutative.
Here	 we	will	 stick	 with	multiplication	 and	 addition,	 which	 are	 linked	 by	 a

further	general	property	called	distributivity	(‘distrib-ute-ivity’).	Mathematicians
say	 that	 ‘multiplication	 distributes	 over	 addition’,	 meaning	 that,	 for	 instance,	

I	find	it	helpful	to	‘read’	the	brackets2	in	expressions	like	this	by	slowing	down
in	some	places	and	speeding	up	in	others,	saying3

‘four	times	three-plus-five	equals
four-times-three	plus	four-times-five.’

Distributivity,	 like	 commutativity,	 can	 be	 represented	 with	 an	 appropriate
array.

Those	 who	 remember	 working	 on	 brackets	 will	 also	 know	 that	 	 is
often	 written	 as	 	 (juxtaposition	 denotes	 multiplication).	 And,	 by
convention,	multiplication	takes	priority	over	addition,	so	 	could
be	 written	 without	 brackets	 as	 .	 Using	 brackets	 might	 therefore
make	you	uncomfortable—you	might	feel	that	 	is	‘better’	because	it
uses	 fewer	 symbols	 and	 because	 a	mathematician	would	 know	what	 it	meant,
meaning	that	 	is	inferior	or	less	grown	up.
I’d	 encourage	 common	 sense	 in	 such	 matters,	 though.	 Some	 notations	 are

good	 for	 some	 things,	 and	 some	are	good	 for	others.	Some	are	 very	brief,	 but
their	 brevity	 obscures	 key	 structures.	 I	 think	 that	 this	 is	 true	 of	 ,
which	 is	horrible	on	 the	 eye	because	 the	 symbols	 ‘×’	 and	 ‘+’	 look	 similar	 and
because	 English	 is	 read	 from	 left	 to	 right—both	 of	 these	 things	 invite



interpretation	 errors.	 For	 me,	 the	 brackets	 in	 ,	 while	 not
mathematically	 necessary,	 make	 it	 easier	 to	 focus	 on	 the	 meaning	 of	 the
expression.	Similarly,	 if	you	prefer	 	 to	 ,	 by	 all	means	 use	 it.
It’s	 useful	 to	 learn	 notational	 conventions;	 it’s	 also	 useful	 to	 know	 that
mathematicians,	while	 respecting	 correctness,	 select	 representations	 depending
on	what	they	want	to	see	or	achieve.
With	 that	 in	 mind,	 distributivity	 can	 be	 extended	 further.	 For	 instance,	

At	 this	 point	 the	 dots	 get	 a	 bit	 cumbersome,	 and	 it	 helps	 to	move	 to	 an	 area
representation	 with	 squares.	 This	 doesn’t	 change	 anything,	 really,4	 but	 it
generalizes	better.	Here	is	an	area	diagram	for	 .



And	here	is	one	for	 .

Again,	using	areas	 to	 think	about	multiplication	might	seem	counter	 to	what
you	 learned	 in	 school.	 Probably	 you	 learned	 first	 to	 multiply,	 then	 to	 use
multiplication	 to	calculate	areas.	But	 this	 link	 can	be	 reversed	 to	 gain	 insights
about	multiplication.	To	facilitate	that,	I	will	label	the	rows	and	columns	as	axes
are	 labelled	 in	graphs,	with	( )	 in	 the	bottom	 left	corner	 (more	on	graphs	 in
Chapter	4).	You	can	imagine	starting	at	0	and	moving	to	the	right	or	up,	counting
at	 every	 full	 square.	 This	 will	 help	 when	 thinking	 further	 about	 properties	 of
multiplication.



1.4	‘Multiplication	makes	things	bigger’

You	 probably	 learned	 as	 a	 child	 that	 multiplication	 makes	 things	 bigger.
Hopefully	 no	 one	 in	 authority	 actually	 said	 this,	 but	 you	 will	 have	 learned	 it
anyway,	 just	 by	 exposure.	 For	 most	 early	 multiplication	 tasks,	 the	 answer	 is
bigger	than	both	original	numbers,	sometimes	by	a	lot.
To	 say	 ‘multiplication	 makes	 things	 bigger’	 is,	 of	 course,	 inaccurate.

Multiplication	 doesn’t	 change	 the	 original	 numbers,	 it	 just	 combines	 them	 to
give	another	(it’s	a	binary	operation).	A	person	who	says	‘multiplication	makes
things	 bigger’	 really	means	 ‘the	 result	 of	multiplying	 together	 two	 numbers	 is
another	 number	 that’s	 bigger	 than	 either	 of	 those	 you	 started	 with.’	 That’s	 a
mouthful,	 though,	 so	 we	 can	 probably	 be	 charitable	 about	 the	 abbreviation.
Unfortunately,	 the	claim	 is	not	only	 inaccurate	but	 also	untrue.	 It	 doesn’t	 hold
even	 for	 the	 tasks	 given	 to	 children.	 For	 instance,	 ,	 and	 in	 general
multiplying	by	1	does	not	 ‘change’	a	number	at	 all.	But	 people	 tend	 to	 ignore
such	 cases—which	 are	 sometimes	 called	 degenerate—because	 everyone	 feels
that	multiplying	by	1	isn’t	really	doing	anything.
So	 the	 idea	 that	 multiplication	 makes	 things	 bigger	 is	 reasonable	 in	 early

arithmetic.	In	that	restricted	context,	it	is	a	useful	heuristic.	And	such	heuristics
are	 learned	 naturally.	 Human	 beings	 take	 numerous	 varied	 experiences	 and
notice	what	 is	 common	 among	 them:	we	 infer	 generalizations	 that	will	 render
life	predictable.	We	can’t	switch	off	this	tendency	and	it	would	be	mad	to	want



to.	But	the	fact	 that	 it	works	well	and	largely	unconsciously	means	that	we	are
vulnerable	to	learning	‘facts’	that	aren’t	really	true.	If	an	early	pattern	does	not
extend	as	we	expect,	the	heuristic	can	become	a	cognitive	obstacle	that	interferes
with	 later	 thinking.	 The	 idea	 that	 ‘multiplication	 makes	 things	 bigger’	 is	 one
such	heuristic,	because	it	does	not	hold	for	numbers	that	are	less	than	1.
Consider,	for	instance,	 .	To	represent	this	using	area	requires	a	rectangle

with	one	side	of	length	 	and	one	of	length	6,	as	shown	in	the	following	image.
I’ve	made	the	squares	bigger	so	that	the	number	 	fits	between	0	and	1,	and	the
result	 is	 the	 shaded	area	 comprising	 six	half-squares.	Rearranged,	 these	would
give	three	whole	squares,	so	 .	 In	 relation	 to	 the	‘multiplication	makes
things	 bigger’	 heuristic,	 this	 is	 a	 bit	 of	 a	mess:	 the	 result	 is	 bigger	 than	 	but
smaller	than	6.

Note,	 though,	 that	 the	 other	 properties	 discussed	 earlier	 do	 not	 change.
Commutativity	 and	 distributivity	 are	 more	 than	 useful	 heuristics;	 they	 are
fundamental	properties	of	multiplication	and	addition.	This	 is	 illustrated	 in	 the
following	 diagrams.	 Can	 you	 see	 these	 diagrams	 as	 generic?	 How	 would	 the
same	things	work	for	other	numbers?



Note	 also	 that	 the	 area	 representation	 holds	 up	 well—it	 is	 useful	 for
multiplying	 whole	 numbers	 by	 fractions.	 And	 it	 comes	 into	 its	 own	 for
multiplying	fractions	by	fractions.	The	obvious	place	 to	start	 is	with	 ,	but
people	routinely	get	confused	by	that	because	it	evokes	two	unhelpful	intuitions.
The	 first	 is	 the	 faulty	 heuristic	 that	 multiplication	 makes	 things	 bigger.	 The
second	 is	 the	 feeling	 that	 when	 two	 halves	 are	 kicking	 around,	 the	 ‘answer’
should	be	1.	But	that	is	not	right	either.	Certainly	 	is	equal	to	1,	but	that	tells
us	nothing	about	 .
In	actual	 fact,	 .	 I	 don’t	 recall	when	 I	 first	 learned	 this,	 but	 I	 know

that	I	wasn’t	happy	about	it.	It	felt	wrong,	probably	for	the	reasons	I	just	stated.	I
didn’t	give	up	easily,	though,	and	at	some	point	I	sorted	it	out	with	alternative,
more	simplistic,	phrasing.	When	I	 first	encountered	multiplication,	no	one	said
‘multiplied	by’	or	even	‘times’.	Instead	they	said	‘lots	of’,	where	‘three	 lots	of
five’	meant	 .	I	found	it	helpful	to	apply	this	to	 .	If	I	said	‘a	half	lots	of
a	 half’,	 that	 was	 very	 like	 saying	 ‘a	 half	 of	 a	 half’,	 which	 did	 seem	 to	 be	 a



quarter.
Now,	though,	I’d	think	about	 	using	area.	In	the	following	diagram,	the

area	of	the	big	square	is	 .	The	area	of	the	smaller	shaded	square	is	
.	Exactly	four	copies	of	it	fit	into	the	big	square,	so	the	shaded	area	must	be	 .	If
you	never	quite	understood	why	 ,	I	hope	that	sorts	it	out	for	you.

We’re	not	stopping	there,	though,	because	there’s	more	mileage	in	this	way	of
thinking	 about	 fraction	 multiplication.	 Suppose	 we’re	 interested	 in	 ,	 for
which	an	area	diagram	appears	below.	The	left	vertical	side	is	divided	into	five
equal	parts	(fifths),	so	we	can	set	up	one	side	of	length	 .	The	bottom	is	divided
into	four	equal	parts	(quarters),	so	we	can	set	up	another	side	of	length	 .	Again,
the	result	is	shaded.	What	fraction	of	the	 	square	is	that?



Dividing	one	side	of	the	square	into	five	equal	parts	and	the	other	into	four	gives
	equal	parts	in	total,	each	of	which	must	have	area	 .	The	multiplying

results	 in	 	 of	 the	20	 equal	 parts	 being	 shaded.	So	 .	 This	 is
smaller	than	both	of	the	original	numbers—multiplication	makes	nothing	bigger
here.
It	is,	however,	worth	thinking	about	how	this	relates	to	numerical	calculations.

When	multiplying	fractions,	we	multiply	the	two	denominators	(the	numbers	on
the	 bottom)	 to	 get	 the	 resulting	 denominator—that’s	 how	many	 pieces	 a	
square	is	divided	into.	And	we	multiply	the	numerators	(the	numbers	on	top)	to
get	the	resulting	numerator—that’s	how	many	pieces	end	up	shaded.

If	 you	 learned	 ‘denominator’	 and	 ‘numerator’	 as	 fancy-sounding	 words	 that
didn’t	mean	much,	you	might	like	to	note	that	denominator	is	like	denomination,
which	is	appropriate	because	it’s	about	how	big	the	underlying	fractional	‘pieces’
are.	Numerator	 is	 like	enumerate,	which	 is	about	counting	how	many	of	 those
pieces	we	have.	In	this	case,	six	pieces,	each	of	‘denomination’	 .
Now,	 the	 fractions	 so	 far	 have	 all	 been	 smaller	 than	 1.	 But	 the	 area

representation	 copes	 just	 fine	with	 fractions	 bigger	 than	 1.	 People	 tend	 not	 to
think	 about	 those,	 because	 they	 think	 of	 fractions	 as	 ‘small’.	 But	 	 (‘nine



quarters’)	 is	 a	 perfectly	 reasonable	 fraction.	 It	 feels	 different,	 though,	 and
mathematicians	 respect	 the	 distinction	 by	 calling	 a	 number	 of	 the	 form	 	 a
fraction—or,	as	discussed	in	Chapter	5,	a	rational	number—and	such	a	number
that	 is	 also	 less	 than	1	a	proper	 fraction.	The	 following	 calculation	 involves	 a
proper	fraction	and	an	improper	fraction.	In	this	case,	the	resulting	denominator
is	 ;	 each	 	 square	 is	 divided	 into	 12	 equal	 pieces.	 The	 resulting
numerator	is	 ;	the	number	of	shaded	pieces	is	18.	So	the	result	 is	 ,
which	is	equivalent	to	 .	There	is	more	on	fraction	equivalence	in	Chapter	3.	In
the	meantime,	can	you	imagine	shunting	around	the	shaded	pieces	so	 that	 they
clearly	occupy	one-and-a-half	of	the	 	squares?

Next,	consider	 .	In	this	case,	the	resulting	denominator	is	 ,	and
the	resulting	numerator	is	 ,	which	is	also	20.	The	result,	 ,	is	equal	to	1.	In
the	diagram	below,	can	you	imagine	shunting	around	the	shaded	pieces	so	 that
they	clearly	occupy	a	single	 	square?



When	two	numbers	multiplied	together	give	1,	we	say	that	they	are	reciprocals
of	 one	 another	 ( 	 is	 the	 reciprocal	 of	 	 and	 vice	 versa).	 What	 other	 pairs	 of
numbers	are	reciprocals?	What	would	area	diagrams	look	like	for	some	of	those
pairs?
To	conclude	this	section,	I	want	 to	comment	on	the	way	that	mathematics	 is

sometimes	 explained	 in	 relation	 to	 ‘real	 world’	 problems.	 Fractions	 are	 often
represented	using	round	things,	which	are	supposed	to	be	cakes	or	pizzas.

There’s	nothing	wrong	with	this	and,	if	you	happen	to	have	two	adults	and	five
children	in	the	room,	it	is	useful	to	be	able	to	cut	a	cake	into	sevenths	(I	once	cut
a	cake	into	respectably	fair	seventeenths—I	was	very	proud	of	that).	Fractions	of
round	things	are	also	handy	for	clocks.	Knowing	what	a	quarter-circle	looks	like



means	that	I	can	‘see’	a	quarter	of	an	hour	in	various	positions	on	a	clock	face.

And	circles	can	represent	improper	fractions;	we	just	might	need	more	than	one
cake.

But	 circles	 have	 some	 limitations	 when	 compared	 with	 rectangular	 areas.
Circles	don’t	combine	well	with	fractions	as	represented	on	number	lines—there
is	 no	 obvious	 ‘zero’	 point	 and,	 even	 if	we	 assign	 one	 (at	 12	 o’clock,	 say),	 an
increase	corresponds	to	sweeping	out	a	greater	area	by	traveling	around	a	circle,
not	along	a	line.	And	circles	don’t	work	well	for	multiplying	fractions—it	is	not
clear	 how	 to	 use	 them	 for	 that.	 Different	 representations,	 as	 I’ve	 commented
before,	highlight	different	things.	I	think	it’s	useful	to	be	aware	of	their	value	not
only	for	representing	single	items,	but	also	for	supporting	valid	reasoning	about
multiple	items.

1.5	Squares



We’ll	return	now	to	rectangles,	and	in	particular	to	squares	(a	square	is	a	special
case	 of	 a	 rectangle—more	 on	 that	 in	 Chapter	 2).	 We’ll	 also	 work	 less	 with
specific	numbers	and	more	with	general	notation.
First,	 think	about	areas	of	squares.	A	square	with	sides	of	 length	3	has	area	

.	We	can	write	 	as	32	(‘three	squared’—not	a	coincidence),	so	a	square
with	sides	of	length	3	has	area	32.	Similarly,	a	square	with	sides	of	length	8	has
area	82,	a	square	with	sides	of	 length	a	has	area	a2,	and	a	square	with	sides	of
length	b	has	area	b2.

Now,	what	 is	 the	 area	 of	 a	 square	with	 sides	 of	 length	 ?	 The	 diagram
below	 helps.	 The	 big	 square’s	 sides	 have	 length	 ,	 so	 its	 area	 is	



If	you	haven’t	seen	this	for	a	long	time	(or	ever),	make	sure	you	can	see	how	the
algebra	 corresponds	 to	 the	 diagram—doing	 so	 is	 important	 for	 the	 rest	 of	 this
chapter.	 Then	 note	 that	 I	 have	 stopped	 using	 the	 ‘×’	 symbol—I	 wrote	 ‘ab’
instead	 of	 ‘ ’.	 I	 think	 that’s	 reasonable	 when	 using	 letters	 because,
depending	on	your	handwriting,	an	‘×’	can	easily	look	like	an	‘x’,	which	might
be	confusing.	Also,	I	used	commutativity	without	comment,	turning	a	ba	into	an
ab	 and	 adding	 it	 to	 the	 other	 one.	 People	 who	 are	 comfortable	 with	 algebra
might	not	have	noticed	that—when	commutativity	is	ingrained,	it	can	be	hard	to
see	it	in	action.
Now,	 did	 you	 initially	 answer	 incorrectly,	 saying	 automatically	 that	

?	 Many	 people	 do,	 and	 it’s	 not	 their	 fault.	 The	 equation	
	just	looks	like	it	ought	to	be	valid,	doesn’t	it?	It’s	nice	and	tidy,

and	very	similar	to	 .	But	 	is	not	valid,	because
squaring	 is	 structurally	 different	 from	 multiplying	 by	 2.	 A	 straightforward
numerical	check	can	highlight	the	problem.	For	instance,	setting	 	and	
gives	
but

Obviously	that’s	different.



I	 like	 the	 area	 representation	 better,	 though.	 It	 shows	 not	 only	 that	
does	 not	 equal	 ,	 but	 also	 why	 it	 does	 not	 and	 how	 to	 fix	 it.	 In	 the
following	diagram,	 	counts	only	the	white	areas,	missing	out	the	two	grey
rectangles.

Similar	 representations	 can	 be	 used	 to	 think	 about	 more	 variables	 or	 more
dimensions.	Below	is	a	diagram	for	 .



And	here,	adding	a	dimension,	is	a	picture	for	 	(‘a-plus-b	cubed’).



The	‘pieces’	are	now	three-dimensional,	and	some	of	them	are	‘round	the	back’
in	this	two-dimensional	drawing.	Can	you	imagine	holding	the	cube	and	pointing
to	each	of	the	pieces?	If	you	find	that	difficult,	maybe	make	a	physical	version
out	 of	 a	 box.	 If	 you	 find	 it	 easy,	work	 out	what	 the	 box	would	 look	 like	 for	

.
This	 section	 has	 introduced	 three	 equations:	

All	 three	 are	 known	 in	 mathematics	 as	 identities,	 meaning	 that	 they	 hold	 for
every	 possible	 combination	 of	 numbers.	 This	 distinguishes	 them	 from	 more
general	 equations,	 which	 might	 hold	 for	 some	 numbers	 but	 not	 others.	 For
instance,	you	might	have	been	asked	to	solve	equations	like	
Such	 an	 exercise	 is	 meaningful	 only	 because	 this	 equation	 does	 not	 hold	 for
every	possible	combination	of	numbers.	If	it	did,	there	would	be	nothing	to	do—
we	could	just	say	‘x	is	any	number	you	like’.	But	this	equation	does	not	hold	for	

,	 for	 instance	 (it	would	 give	 ,	 which	 isn’t	 right),	 or	 for	 	 (it
would	give	 ).	Solving	it	means	finding	the	single	value	of	x	for	which	the
equality	is	valid.	In	this	case,	that	value	is	 .



In	Chapter	4	there	will	be	more	on	equations	like	 .	Here	I	want
to	observe	that	an	identity,	which	does	hold	for	all	numbers,	is	a	special	kind	of
equation.	To	 indicate	 this,	mathematicians	 sometimes	write	 identities	 using	 an
extra	bar	on	the	equals	sign.	The	first	of	the	equations	below	could	be	read	aloud
as	 ‘a-plus-b	 squared	 is	 identically	 equal	 to	 a-squared	 plus	 two-a-b	 plus	 b-
squared.’

I’ll	end	this	section	by	introducing	one	more	identity	that	we’ll	use	later.	Here
it	is:	
This	is	sometimes	referred	to	as	‘the	difference	of	two	squares’,	because	of	the	

	on	the	left.	If	you	like	algebra,	you	can	check	its	validity	by	multiplying
out,	again	using	commutativity.

If,	 like	me,	you	 like	diagrams,	 it’s	possible	 to	construct	one	 for	 this,	 though	 it
takes	 some	dynamic	 imagination.	Here’s	 one	way	 to	 do	 it.	 Start	with	 a	 square
with	side	length	x,	and	imagine	cutting	out	a	smaller	square	with	side	length	y.
The	 remaining	 L-shaped	 bit	 has	 area	 :	



Now	split	 the	L-shape	 into	 two	 rectangles	 as	 shown	 in	 the	 following	diagram.
Imagine	 rotating	 and	moving	 the	 smaller	 rectangle	 to	 line	 up	 with	 the	 bigger
one;	 this	works	 perfectly	 because	 they	 both	 have	 short	 side	 .	Moving	 the
small	 rectangle	does	not	change	 the	 total	shaded	area,	and	 the	 long	side	of	 the
resulting	rectangle	is	 .	Hence	 	is	equal	to	 .

I’m	abusing	the	diagrams	now,	though,	so	it	is	time	to	draw	attention	to	their
limitations.	 The	 diagrams	 for	 	 assume	 that	 y	 is	 smaller
than	x.	But	 the	 identity	still	holds	 if	y	 is	bigger	 than	x,	and	 the	diagrams	don’t
represent	such	cases.	More	seriously,	 like	all	 the	diagrams	 in	 this	chapter,	 they
assume	that	all	the	numbers	are	positive.	But	the	identities	we’ve	looked	at—and
commutativity	 and	distributivity—hold	 for	 all	 numbers,	 not	 just	 positive	 ones.
This	means	that	the	diagrams	provide	insight,	but	only	up	to	a	point.	When	a	is
negative,	 it’s	 hard	 to	 represent	 	 with	 an	 area	 diagram.
This	makes	 some	 people	 uncomfortable,	 because	 they	 think	 that	we	 shouldn’t
use	 a	 diagram	 that	 is	 not	 really	 ‘good	 enough’.	 Certainly,	 they	 think,	 we



shouldn’t	give	the	impression	that	these	diagrams	‘prove’	that	an	identity	holds
for	 all	 numbers.	 Clearly	 that	 is	 true.	 But	 I	 find	 the	 diagrams	 useful	 anyway
because	 they	 provide	 insight.	 That	 insight	might	 be	 imperfect,	 but	 I	 think	 it’s
fine	to	use	diagrams	providing	we	keep	an	eye	on	their	limitations.	Throughout
this	book	I’ll	point	out	similar	issues.

1.6	Triangles

Most	 areas	 we’ve	 looked	 at	 so	 far	 have	 been	 rectangular.	 But	 we	 can	 get
information	about	areas	of	other	shapes	by	splitting	up	rectangles	in	new	ways.
Here	is	a	diagram	showing	one	way	to	do	that,	cutting	a	rectangle	in	half	along	a
diagonal.	 This	 gives	 two	 triangles,	 each	 of	 which	 has	 half	 the	 area	 of	 the
rectangle.

To	focus	 instead	on	a	given	triangle	and	to	find	its	area,	people	often	label	 the
base	 b	 and	 the	 height	 h,	 then	 imagine	 the	 ‘other	 half’	 of	 the	 corresponding
rectangle.	This	shows	that	 the	 triangle’s	area	 is	 	 (‘half	 times	 the	base	 times
the	height’).

This	 diagram	 is	 simple	 because	 the	 triangle	 is	 right-angled	 so	 one	 corner	 fits



neatly	into	the	rectangle.	What	 if	 that	were	not	 the	case?	You	might	 remember
that	the	same	formula	still	gives	the	area.	Do	you	remember	why?
It	 is	 possible	 to	 see	why	by	 taking	 the	 base	 of	 the	 triangle	 as	 one	 side	 of	 a

rectangle,	drawing	the	rest	of	the	rectangle	so	that	it	‘fits’	perfectly,	then	drawing
a	 line	from	the	 top	point	of	 the	 triangle	straight	down	to	 the	base	(‘dropping	a
perpendicular’).	 This	 splits	 the	 diagram	 into	 two	 smaller	 rectangles,	 each	 of
which	 contains	 its	 own	 triangle.	 Each	 mini-triangle	 takes	 up	 half	 of	 its
corresponding	mini-rectangle.	So,	adding	 the	areas	 together,	 the	whole	 triangle
must	take	up	half	of	the	whole	rectangle.

Dropping	the	perpendicular	helps	to	focus	attention	on	a	useful	split,	and	such
focusing	 is	 important	because	 sometimes	 it	 is	hard	 to	notice	 the	 right	 things.	 I
have	a	vivid	memory	of	a	primary	school	teacher	holding	up	some	big	cards	with
shapes	on	them.	First,	she	held	up	a	triangle	like	this.

Then	she	turned	the	card	around	so	that	the	triangle	looked	like	this.



Then	she	asked	whether	it	was	still	a	triangle.	I	said	yes,	but	I	was	pretty	much
alone	in	this	view—most	of	the	other	kids	said	it	wasn’t	a	triangle	any	more.	My
point	 is	 that	when	 you	 are	 little,	 it	 is	 not	 obvious	what	 is	 a	 key	property	of	 a
mathematical	 object	 and	 what	 is	 incidental.	 If	 every	 triangle	 you	 see	 has	 a
horizontal	base—and	we	all	tend	to	draw	them	that	way	because	they	look	like
they’ll	fall	over	if	we	don’t—you	might	infer	 that	a	shape	without	a	horizontal
base	 is	 not	 a	 triangle.	 It’s	 important	 to	 remember	 this	when	dealing	with	 little
kids,	 and	 it’s	 important	 to	 recognize	 that	 no	one	grows	out	 of	 the	 tendency	 to
overgeneralize.	 For	 some	 mathematical	 concepts,	 you	 might	 retain	 slightly
misguided	 ideas	 or	 fail	 to	 think	 about	 atypical	 cases.	 For	 instance,	 I	 just
presented	a	diagram	like	this	and	invited	you	to	agree	that	the	area	of	a	triangle
will	always	be	 .

But	 is	 that	 true?	Does	 the	 reasoning	work	 for	a	 triangle	 like	 the	one	below?
Putting	a	rectangle	around	this	gives	a	picture	that	is	qualitatively	different:	the
area	of	the	triangle	is	less	than	half	that	of	the	rectangle.



This	 seems	 to	 be	 a	 problem,	 though	perhaps	 not	 a	 terrible	 one—we	 could	 get
around	it	by	treating	a	different	side	as	the	base.

But	is	that	necessary?	In	a	given	triangle,	are	there	some	sides	that	can	act	as	the
base	and	some	that	can’t?	Does	choosing	the	‘wrong’	base	mess	up	the	formula
so	that	area	can’t	be	calculated	in	the	same	way?	It	feels	to	me	like	it	shouldn’t—
there’s	no	obvious	reason	to	think	that	some	sides	of	a	triangle	are	‘special’.	I’d
like	to	be	able	to	treat	any	side	as	the	base,	define	the	height	as	usual,	and	still
find	the	area	using	the	formula	 .	Can	I	do	that?
The	 answer	 is	 yes,	 but	 it	 takes	 more	 thought	 to	 see	 why.	 First,	 it	 helps	 to

distinguish	the	base	of	the	triangle	from	the	corresponding	side	of	the	rectangle,
perhaps	by	labelling	both	the	base	b	and	the	remaining	bit	of	horizontal	length—
I’ll	 call	 that	 a.	 Then	 we	 can	 follow	 the	 chain	 of	 reasoning	 captured	 in	 the
diagrams	 that	 follow.	 The	 top	 two	 diagrams	 involve	 the	 areas	 of	 right-angled
triangles.	 The	 third	 finds	 the	 area	 of	 the	 ‘wonky’	 triangle	 by	 subtracting	 the
second	area	from	the	first.



All	 the	 diagrams	 require	 care	 in	 labelling	 the	 height—the	 direction	 of
measurement	must	 be	 perpendicular	 to	 the	 base,	whether	 or	 not	 that	 coincides
with	 another	 side	 of	 the	 triangle.	 But	 the	 general	 result	 is	 even	 better	 than	 it
looks.	It	means	that	if	we	fix	a	base	and	a	height,	then	slide	the	top	point	along	at
that	height,	the	triangles	generated	all	have	the	same	area.



I	don’t	think	I’d	have	known	that	just	by	looking.	The	skinny	triangle	on	the	left
is	a	 lot	 longer	 than	 the	squat	one	on	 the	right,	so	 I	could	have	been	convinced
that	its	area	is	bigger.	On	the	other	hand,	it	is	a	lot	skinnier,	so	I	could	have	been
convinced	that	its	area	is	smaller.	The	fact	that	these	things	balance	out	perfectly,
so	that	the	areas	are	the	same,	is	sort	of	thrilling	for	me.
And	mathematics	is	full	of	similarly	elegant	results	about	invariance.	But	it’s

not	 just	 the	 results	 that	 have	 value.	 It	 would	 be	 a	 mistake	 to	 memorize	 the
formula	and	forget	the	reasoning	that	led	to	it:	the	reasoning	has	power	because
it	shows	why	the	formula	always	works.	Even	better,	it	can	be	adapted	to	related
situations.	 For	 instance,	 does	 the	 same	 kind	 of	 thing	 hold	 for	 quadrilaterals?
Suppose	we	fix	a	base	and	height,	then	draw	in	a	quadrilateral.	What	choices	do
we	have?	Obviously	changing	the	length	of	the	‘top’	could	change	the	area.

But	what	if	we	fix	the	top	length—call	it	t,	say—and	just	slide	it	along?	Is	the
area	of	the	quadrilateral	 invariant	under	this	transformation?	Can	you	convince
yourself	 that	 it	 is,	 perhaps	 by	 dividing	 the	 shapes	 into	 simpler	 ‘pieces’	 like
rectangles	or	triangles?	Are	there	multiple	cases	to	consider,	or	can	you	construct
an	argument	that	covers	all	possibilities?



1.7	Pythagoras’	theorem

Having	 discussed	 areas	 and	 triangles,	 we’re	 finally	 ready	 for	 Pythagoras’
theorem.	Most	people	have	hard	of	this,	and	many,	when	asked	what	it	says,	say
something	like	
That’s	fair	enough	in	a	nonexpert.	But	even	mathematics	undergraduates	do	it,

I	 think	 because	 school	 mathematics	 involves	 lots	 of	 exercises,	 which	 can
encourage	 a	 focus	 on	 using	 formulas	 rather	 than	 on	 understanding	 what	 they
mean.	Pythagoras’	theorem	is	about	right-angled	triangles,	and	specifically	about
a	relationship	between	the	lengths	of	their	sides.	The	equation	above	should	be
related	to	a	triangle	labelled	like	this,5	where	the	long	side,	of	length	c,	is	called
the	hypotenuse.

Then	the	theorem	can	be	stated	like	this.

Pythagoras’	theorem:	A	triangle	is	right-angled	if	and	only	if	the	square	of
its	hypotenuse	is	equal	to	the	sum	of	the	squares	of	its	remaining	two	sides.

To	 understand	 this,	 think	 about	 the	 relationship	 between	 the	 theorem,	 the
formula,	and	the	following	diagram.



To	check	your	understanding,	ask	yourself	whether	we	could	swap	a	and	b	in
the	formula.	Could	we?	How	about	b	and	c?	More	 importantly,	do	you	believe
Pythagoras’	theorem?	Does	the	area	of	the	square	on	the	hypotenuse	seem	to	be
about	the	same	as	the	combined	areas	of	the	other	two	squares?	I	ask	this	not	to
make	you	doubt	the	theorem—I’m	not	about	to	tell	you	that	there’s	a	weird	case
for	 which	 it’s	 not	 true.	 But	 people	 often	 learn	 mathematics	 without	 really
thinking	about	how	amazing	it	 is,	and	I	want	to	make	sure	that	doesn’t	happen
here.
Note	that	 the	areas	do	look	about	right—it’s	fairly	easy	to	convince	yourself

that	 	 (the	 symbol	 ‘ ’	means	 ‘is	 approximately	 equal	 to’).	 But	 the
theorem	 doesn’t	 say	 that	 ,	 it	 says	 that	 ;	 the	 equality	 is
exact.	And	it	says	that	this	works	for	every	right-angled	triangle—no	matter	how
skinny	or	squat.	I	don’t	think	I’d	have	noticed	that.	I	reckon	I	could	have	looked
at	 thousands	 of	 right-angled	 triangles	 without	 once	 thinking	 about	 a	 general
relationship	between	the	squares	of	their	sides.
So	Pythagoras’	theorem	is	pretty	amazing.	And,	as	with	any	theorem,	our	next



question	 should	 be,	 ‘Why	 is	 it	 true,	 then?’	Mathematical	 relationships	 are	 not
arbitrary:	 they	 exist	 for	 good	 reasons.	 Here	 is	 an	 explanation	 for	 Pythagoras’
theorem,	building	on	the	ideas	from	previous	sections.
We’ll	start	with	a	‘big’	square	with	side	length	 ,	and	divide	it	up	as	before

so	that	one	smaller	white	square	has	area	a2	and	one	has	area	b2.	This	time	we’ll
also	 divide	 the	 two	 rectangles	 into	 triangles.	 Note	 that	 all	 four	 triangles	 are
exactly	like	that	shown	to	the	right.	Each	is	right-angled	and	each	has	one	side	of
length	a	and	one	of	length	b;	again	we’ll	call	the	hypotenuse	c.	You	can	calculate
the	areas	of	 the	 triangles	 if	you	like	but,	 for	 the	purpose	of	understanding	why
Pythagoras’	theorem	is	true,	their	actual	area	doesn’t	matter.

Now	 take	 another	 big	 square	with	 side	 length	 ,	 and	 four	 triangles	 like
those	 above.	Arrange	 the	 triangles	within	 the	 square	 in	 this	 different	way	 (the
lengths	add	up	correctly:	we	still	have	one	a	and	one	b	along	each	side).	Now,
what	 is	 the	 area	 of	 the	 wonky	 square	 in	 the	 middle?	 And	 can	 you	 see	 why
Pythagoras’	theorem	must	be	true?



Below,	for	comparison,	are	both	diagrams	together.	The	argument	is	that	the	big
squares	are	the	same	size	so	they	have	the	same	area.	And	the	four	triangles	are
the	same	size	 in	both	diagrams,	 so	 they	have	 the	same	 total	area.	So	 the	 areas
that	 remain	when	 the	 triangles	 are	 removed	 from	 the	 big	 squares	must	 be	 the
same.	On	the	left,	the	remaining	area	is	 ;	on	the	right	it	is	c2.	So	we	must
have	 .

That’s	why	Pythagoras’	 theorem	is	 true.	And	 that’s	 the	 longest	mathematical
argument	 so	 far,	 so	 don’t	 hesitate	 to	 re-read	 it	 if	 you	want	 to.	Also,	 as	 usual,
there	is	more	to	think	about.	First,	in	the	diagrams	above,	a	and	b	are	different.
What	 if	 they	 were	 the	 same?	What	 would	 the	 diagrams	 look	 like	 then?	 Is	 it
easier	to	see	that	the	theorem	is	true	in	that	special	case?	Second,	I	didn’t	make	a
big	 deal	 of	 the	 fact	 that	 the	 triangles	 are	 right-angled.	But	 right-angledness	 is
essential,	 because	 Pythagoras’	 theorem	 is	 an	 if-and-only-if	 theorem.	 With	 the
notation	 as	 above,	 both	 of	 these	 are	 true6:	



This	 means	 that	 Pythagoras’	 theorem	 provides	 a	 way	 of	 identifying	 right-
angled	 triangles.	We	can	 tell	whether	 a	 triangle	 is	 right-angled	by	 labelling	 its
longest	side	c	and	its	other	sides	a	and	b,	and	checking	whether	 .	If	a
triangle	has	side	lengths	3,	4,	and	5,	for	instance,	then	Pythagoras’	theorem	tells
us	that	it	is	right-angled	because	
If	a	triangle	has	sides	of	lengths	4,5,	and	6,	then	Pythagoras’	theorem	tells	us	that
it	is	not	right-angled	because	
(the	symbol	‘≠’	means	‘is	not	equal	to’7).	Because	Pythagoras’	theorem	is	valid,
there	 is	 no	 need	 to	 draw	 triangles	 to	 check.	Nevertheless,	 you	might	 find	 that
doing	 so	helps	 to	develop	 intuition.	For	 the	 (3,	4,	 5)	 triangle,	 drawing	 is	 easy.
Get	hold	of	some	squared	or	dotty	paper8	and	draw	one	side	of	length	3	units	and
another	at	right-angle	to	it	of	length	4	units.	The	length	of	the	hypotenuse	will	be
5	units.

For	the	(4,	5,	6)	triangle	it’s	harder	because	a	non-right-angled	triangle	can’t	be
lined	up	with	pre-packaged	squares.	Some	geometry	helps,	though.	If	you	have	a
pair	 of	 compasses,	 here	 is	 one	 way	 to	 do	 it.	 First,	 pick	 your	 units	 (maybe
centimetres)	and	draw	one	side.	I’ll	do	the	side	of	length	6,	making	it	horizontal.
Then	set	the	compasses	to	draw	a	circle	of	radius	4.	Put	the	point	at	one	end	of
the	6-line,	and	draw	the	circle.	Note	that	every	point	on	the	circle	is	at	distance	4



from	its	centre.	So,	wherever	the	third	corner	of	the	triangle	is,	it	must	lie	on	the
circle.

Next	draw	a	circle	of	radius	5	centred	at	the	other	end	of	the	6-line.	Because	the
third	 corner	 of	 the	 triangle	must	 be	 on	 this	 circle	 too,	 it	 lies	where	 the	 circles
intersect.



This	shows	 that	 the	angle	between	 the	sides	of	 lengths	4	and	5	 is	not	 far	off	a
right	angle,	which	is	unsurprising	because	 	is	not	far	off	62	(62	is	‘a	bit	too
small’,	 if	you	 like).	And	 this	 is	 the	great	 thing	about	precise	mathematics.	We
don’t	need	to	eyeball	things	and	guess,	we	can	check.

1.8	Pythagorean	triples

The	 preceding	 arguments	 allow	 us	 to	 distinguish	 right-angled	 from	 non-right-
angled	 triangles	 by	 squaring	 and	 adding	 their	 side	 lengths.	 In	 particular,	

,	 so	 the	 triple	 (3,	 4,	 5)	 corresponds	 to	 a	 right-angled	 triangle,	 and
mathematicians	 call	 it	 a	Pythagorean	 triple.	 Clearly,	 there	 are	 many	 different
right-angled	triangles	and	thus	many	different	Pythagorean	triples.	But	are	there
more	whole-number	Pythagorean	 triples,	do	you	 think?	 If	 there	are	more,	how
many?	Just	a	few,	or	a	lot,	or	perhaps	infinitely	many?	And	is	there	a	way	to	find
them	all?	Answers	to	these	questions	are	fairly	accessible,	and	you	might	want	to
put	the	book	down	and	investigate	for	yourself.	Can	you	find	more	Pythagorean
triples,	or	convince	yourself	that	none	exist?	If	you	have	a	computer,	you	might
want	 to	 get	 a	 spreadsheet	 to	 do	 some	 of	 the	 work	 by	 calculating	 and	 adding
combinations	of	square	numbers.	Do	consider	trying	this	before	you	read	on.
One	way	to	generate	a	new	Pythagorean	triple	is	to	start	with	a	known	one	and

double	the	lengths.	Because	 	(check:	 ),	 (6,	8,	10)	 is	a
Pythagorean	triple.

We	 could	 also	 triple	 the	 lengths,	 or	 quadruple	 them,	 and	 so	 on.	 So	 there	 are
infinitely	 many	 Pythagorean	 triples.	 To	 mathematicians,	 though,	 this	 way	 of
finding	 them	 is	 not	 very	 exciting.	 The	 resulting	 triangles	 all	 have	 the	 same
proportions,	 so	 the	 bigger	 ones	 differ	 only	 in	 scale	 and	 not	 in	 a	 way	 that	 is



mathematically	interesting.	Do	there	exist	Pythagorean	triples	that	correspond	to
differently	proportioned	right-angled	triangles?	To	longer,	skinnier	ones?
People	 who’ve	 learned	 more	 mathematics	 sometimes	 know	 at	 least	 one:	

Is	 that	 it?	 If	 you	 investigated	 you	might	 have	 found	more,	 and	 if	 you	 used	 a
spreadsheet	you	might	have	found	lots.	But	you’ll	also	have	realized	that	this	is
not	very	satisfying.	Experimenting	on	paper	is	hard	work.	Using	a	computer	it	is
not	hard	work,	but	 it	does	not	provide	much	insight.	 If	you	used	a	spreadsheet
and	 found	100	 interestingly	different	Pythagorean	 triples,	would	you	know	 for
certain	 whether	 there	 are	 100	 more?	 Are	 there	 always	 more,	 and	 is	 there	 an
efficient	way	to	find	them?
Here	 is	 one	 approach,	 using	 the	 difference	 of	 two	 squares	 identity	 from

Section	1.5.	We’re	interested	in	the	equation	
I’d	like	to	‘solve’	this	equation,	but	it	is	one	equation	in	three	unknowns	so	that
is	not	directly	possible.	Also,	I’m	not	keen	on	having	all	the	variables	tied	up	in
squared	 terms.	 I	 can,	however,	get	 rid	of	 some	squares	by	 subtracting	b2	 from
both	sides	and	rewriting	 	as	
then,	 using	 the	 difference	 of	 two	 squares	 identity,	 rewriting	 again:	

To	make	further	progress,	it	helps	to	specialize.	Instead	of	trying	to	find	all	the
Pythagorean	triples,	I’ll	try	to	find	just	some	by	temporarily	making	the	problem
simpler.	One	way	to	do	this	is	to	impose	the	restriction	that	 ;	that	is,	that
b	 and	 c	 are	 adjacent	 whole	 numbers.	 Then	 the	 equation	 reduces	 to	

This	looks	more	tractable.	We	can	pick	a	square	number	and	work	out	which	(if
any)	adjacent	numbers	add	up	to	it.	For	instance,	49	is	a	square	number	( ,
so	this	corresponds	to	 ).	Are	 there	adjacent	whole	numbers	 that	add	up	 to
49?	Yes.	Because	they	are	adjacent,	one	must	be	a	little	less	than	half	of	49,	and



one	must	 be	 a	 little	 greater,	 so	 	 and	 	will	work.	This	 gives	 a	 new
Pythagorean	triple.

Running	 through	 the	 same	 reasoning	 for	 other	 square	 numbers	 leads	 to	 other
Pythagorean	 triples.	 The	 following	 table	 shows	 results	 for	 the	 first	 ten	 square

numbers:	
Note	that	only	the	odd	rows	of	the	table	are	filled	in.	Why	is	that?	Note	also

that	 this	method	 ‘finds’	 the	 two	known	 triples	 (3,	4,	5)	and	 (5,	12,	13).	 It	also
finds	 two	 new,	 ‘bigger’	 ones,	 (7,	 24,	 25)	 as	 shown	 already,	 and	 (9,	 40,	 41):	

By	the	way,	 I	do	not	 intend	 these	checks	as	checks	 that	 the	numbers	come	out
right.	I	am	totally	confident	that	they	will,	because	the	reasoning	is	valid.	I	just
quite	 like	 to	see	 the	actual	numbers.	 If	you	 feel	 the	need	 for	evidence	because
you’re	uncertain	about	the	reasoning,	try	working	through	the	paragraph	about	

	with	some	other	square	numbers.
Finally,	note	that	the	table	also	contains	the	Pythagorean	triple	(1,	0,	1).	This

satisfies	the	requirements,	because	it	is	certainly	true	that	
But	what	has	happened	to	the	triangles?	We	can’t	have	a	triangle	with	a	side	of
length	0,	can	we?	Well,	in	one	sense	no,	but	in	an	other	sense	we	could	think	of
the	triple	(1,	0,	1)	as	corresponding	to	a	sort	of	extreme	or	degenerate	 triangle.



Imagine	 taking	 a	 triangle	 with	 two	 sides	 of	 length	 1,	 and	 making	 the	 angle
between	 them	smaller	 and	 smaller.	 In	 the	 limiting	case	 in	which	 the	 ‘angle’	 is
zero,	the	sides	of	the	‘triangle’	are	1,0,	and	1.

Some	readers,	quite	reasonably,	will	think	that’s	bonkers.	Clearly,	the	degenerate
triangle	 is	 not	 a	 triangle	 in	 the	 familiar	 sense.	 However,	 mathematicians	 are
interested	not	only	in	‘typical’	cases,	but	in	general	results	about	whole	classes
of	 cases.	 Sometimes	 a	 general	 result	 holds	 for	 typical	 cases	 and	 a	 degenerate
one,	so	it	can	make	sense	to	consider	both	together.
Whether	or	not	you	are	up	for	 that,	I	hope	you	are	convinced	that	 the	above

reasoning	 would	 generate	 infinitely	 many	 interestingly	 different	 Pythagorean
triples.	 But	 does	 it	 generate	 them	 all?	 Probably	 not.	 Recall	 that	 I	 made	 the
equation	 	 more	 tractable	 by	 introducing	 the	 restriction	 that	

.	That	restriction	is	quite	hefty;	there	might	well	be	Pythagorean	triples
for	which	 .	We	can	use	similar	reasoning	again,	though.	What	if	
,	for	instance?	Then	the	equation	
becomes

So	this	time	we	want	to	take	a	square	number	a2	and	identify	numbers	b	and	c
that	differ	by	2	and	for	which	 .	For	instance,	64	is	a	square	number	(

,	so	this	corresponds	to	 ).	Appropriate	numbers	b	and	c	must	add	up
to	half	of	64,	which	is	32.	For	them	to	differ	by	2,	one	must	be	a	bit	less	than	half
of	32	and	one	must	be	a	bit	greater—this	time,	 	and	 	will	work.	This
gives	 the	 new	 Pythagorean	 triple	

Again,	 similar	 reasoning	 can	 be	 applied	 with	 other	 square	 numbers:	



And	again	there	are	various	things	to	note.	Which	rows	do	not	get	filled	in	this
time,	and	why?	Is	 there	another	degenerate	case?	Which	 triples	are	 really	new,
and	 which	 are	 multiples	 of	 ones	 we	 already	 knew	 about?	 If	 the	 table	 were
extended,	 could	 you	 predict	which	 rows	would	 contain	 new	 triples	 and	which
would	contain	multiples?
Finally,	 there	 is	 no	 need	 to	 stop	 there.	 We	 could	 let	 	 in	

.	 Or	 let	 it	 equal	 4,	 or	 5,	 or	 some	 other	 number.	 What
happens	 in	 those	cases?	Which	 rows	of	 the	 tables	get	 filled	 in?	Which	contain
familiar	 triples	 or	 multiples	 of	 familiar	 triples?	 If	 we	 carried	 on	 in	 this	 way,
would	we	find	all	possible	Pythagorean	triples,	or	would	this	method	miss	some?
The	 marvels	 of	 the	 internet	 mean	 that	 you	 can	 easily	 locate	 a	 lot	 more
information	 about	 this.	 Probably	 more	 satisfying	 to	 give	 it	 some	 thought
yourself,	though.

1.9	Fermat’s	Last	Theorem

Having	 explored	 Pythagoras’	 theorem	 and	 Pythagorean	 triples,	 we	 are	 finally
ready	for	Fermat’s	Last	Theorem.	I	hope	you	are	now	convinced	that	 there	are
infinitely	many	Pythagorean	triples,	meaning—to	draw	together	ideas	from	this
chapter—that	 there	 are	 infinitely	 many	 interestingly	 different	 nondegenerate
whole-number	solutions	to	the	equation	



For	mathematicians,	who	 like	 to	generalize,	 this	 raises	 the	question	of	whether
there	 are	 also	 infinitely	 many	 interestingly	 different	 nondegenerate	 whole-
number	solutions	to	the	equation	
The	answer,	I	think,	could	easily	be	‘yes’.	This	equation	involves	cubing	instead
of	squaring,	so	maybe	finding	appropriate	triples	 	would	take	more	work.
But	I’d	have	been	quite	prepared	to	believe	that	there	are	lots	of	them	out	there.
In	fact,	however,	there	are	not.	There	is	not	even	a	single	nondegenerate	whole-
number	solution.	If	you	think	about	that	properly,	you’ll	see	why	mathematicians
find	 it	 striking.	 The	 two	 equations	 look	 very	 similar	 but	 have	 dramatically
different	 properties:	 	 has	 infinitely	many	 solutions;	 	 has
none.
Still	more	 impressively,	 there	 are	 no	nondegenerate	whole-number	 solutions

to	
for	any	bigger	whole	number	n,	either.	 It’s	 this	 result—that	an	equation	of	 this
form	has	no	nondegenerate	whole-number	 solutions	 for	 any	n	 bigger	 than	2—
that’s	known	as	Fermat’s	Last	Theorem.
Fermat’s	 Last	 Theorem	 is	 a	 favourite	 of	mathematical	 expositors	 because	 it

has	a	fascinating	history.	I	will	not	describe	that	history	here	because	the	basic
information	 is	 readily	 available	 and	 others	 have	 provided	 excellent	 detailed
accounts.	 But	 I	 do	 want	 to	 round	 off	 this	 chapter	 by	 discussing	 the	 logical
structure	 of	 Fermat’s	 Last	 Theorem	 and	 the	 demands	 this	 makes	 on
mathematical	reasoning.
It	can	be	quite	straightforward	to	show	that	something	can	be	done—we	just

need	 to	 give	 an	 example	 (‘Look,	 here’s	 a	 way	 to	 do	 it.’).	 But	 Fermat’s	 Last
Theorem	is	a	claim	that	something	cannot	be	done.	An	argument	that	something
cannot	be	done	must	demonstrate	that	no	matter	which	numbers	are	chosen,	the
equation	of	interest	is	not	satisfied.	Now,	it	is	reasonable	to	wonder	how	that	is
possible.	How	could	we	ever	know	without	checking?	And	how	could	we	check
infinitely	many	possibilities?
But	 the	 requirement	 can	 be	 formulated	 differently:	 the	 argument	 must

demonstrate	 that	 whichever	 two	 whole	 numbers	 are	 chosen,	 their	 cubes	 (for
instance)	add	up	 to	a	number	 that,	 for	some	reason,	cannot	be	another	cube.	 If
you	understand	that,	you	understand	the	logical	shape	of	Fermat’s	Last	Theorem.
You	 almost	 certainly	wouldn’t	 understand	 the	 accepted	 proof—the	 ‘reason’	 in
‘for	 some	 reason’—because	 it	 took	 350	 years	 of	mathematical	 work	 and	 was
only	 completed	 at	 the	 end	 of	 the	 20th	 century.	Although	 the	 theorem	 is	 fairly
simple,	 the	 (current)	 proof	 is	 not.	 There’s	 no	 reason	 to	 find	 that	 depressing,
though,	 because	 most	 working	 mathematicians	 wouldn’t	 understand	 it	 either.
This	surprises	many	people	because,	in	school,	they	experienced	mathematics	as



a	 set	 of	 procedures	 that	 appeared	 fixed	 and	 finished.	 They	 therefore	 tend	 to
imagine	that	experts	must	know	all	the	mathematics	there	is	to	know.	They	find
it	hard	to	imagine	that	there	is	so	much	that	this	is	simply	impossible,	and	even
harder	to	imagine	that	new	mathematics	is	still	being	created.
But	mathematics,	like	other	areas	of	human	endeavour,	is	an	evolving	subject.

And	 it	 is	 perhaps	 easier	 to	 think	 about	 this	 in	 historical	 context.	At	 one	 time,
people	 lived	 in	 primitive	 dwellings	 and	 had	 not	 invented	 systems	 for	 writing
numbers,	let	alone	procedures	for	multiplying	fractions	or	for	identifying	right-
angled	triangles.	These	systems	and	procedures	had	to	be	developed,	and	when
first	developed	they	would	have	been	cutting-edge	mathematics	accessible	only
to	the	privileged	few—most	people	would	have	lacked	the	education	to	imagine
their	existence,	never	mind	to	understand	their	meanings.	The	equivalent	is	true
today:	 fractions	 and	 Pythagoras’	 theorem	 are	 now	 taught	 in	 schools,	 but	 the
frontiers	of	the	subject	continually	move	outward,	and	most	of	us	find	it	hard	to
imagine	what	they	must	be	like.
This	 book	will	 not	 attempt	 to	 explain	 how	 today’s	 creative	mathematicians

spend	their	time—we	will	get	nowhere	near	the	frontiers,	as	my	aim	is	simply	to
explore	 and	 extend	 more	 basic	 relationships.	 But	 I	 will	 continue	 to	 highlight
things	that	mathematicians	attend	to,	things	that	they	find	interesting,	and	ways
in	which	they	think	about	concepts	and	formulate	arguments.	For	that	reason,	I’ll
conclude	 each	 chapter	 with	 a	 brief	 review,	 drawing	 together	 its	 main	 points
about	conceptual	understanding	and	mathematical	thinking.

1.10	Review

This	chapter	took	a	speedy	tour	upward	from	basic	multiplication,	through	areas,
multiplying	 by	 fractions,	 algebraic	 identities,	 areas	 of	 triangles,	 Pythagoras’
theorem,	 and	 Pythagorean	 triples,	 arriving	 finally	 at	 Fermat’s	 Last	 Theorem.
Throughout,	I	highlighted	links	between	mathematical	ideas	and	raised	questions
that	readers	might	pursue.
This	 chapter	 also	 discussed	 broader	 mathematical	 ideas.	 It	 started	 with

fundamental	properties	of	the	number	system—commutativity	and	distributivity
—and	contrasted	 these	with	heuristics	 that	 are	useful	 in	 some	contexts	but	not
universally	 valid	 (multiplication	 does	 not	 always	 make	 things	 bigger).	 I
discussed	 identities	 like	 ,	 common	 related	 errors	 and
ways	 to	 avoid	 these,	 and	 differences	 between	 identities	 and	 other	 equations.	 I
discussed	properties	that	are	invariant	under	transformations	like	turning	arrays



around	 or	 sliding	 points	 along,	 or	 just	 ‘looking’	 in	 different	 ways.	 I	 also
discussed	 degenerate	 cases:	 atypically	 extreme	 versions	 of	 concepts.	 Finally,	 I
talked	about	mathematically	interesting	differences.	There	are	no	absolutes	here
—different	 people	 find	 different	 things	 interesting—but	 some	 differences	 are
more	mathematically	significant.	I	will	continue	to	point	these	out.
In	terms	of	mathematical	thinking,	this	chapter	discussed	ways	in	which	good

representations	can	support	insight.	In	particular,	I’m	a	big	fan	of	diagrams,	and	I
used	 these	 to	 represent	 algebraic	 identities.	 But	 I	 also	 highlighted	 their
limitations,	which	could	encourage	people	to	think	only	about	simple	or	obvious
cases.	Some	limitations	can	be	overcome:	adapting	an	existing	argument	showed
that	the	area	of	a	triangle	can	be	calculated	using	the	same	formula	regardless	of
its	specific	shape.	But	some	can’t:	 lengths	are	positive	so	they	do	not	naturally
represent	 negative	 numbers.	 Even	 serious	 limitations	 can	 sometimes	 be
conquered	 using	 extra	 knowledge	 and	 imagination,	 but	 stretching	 the
imagination	will	often	 sacrifice	 intuitive	 immediacy.	 It’s	 useful	 to	 be	 aware	 of
what	representations	do	and	do	not	do	well.
Finally,	 I	 talked	 about	 mathematicians’	 habits	 of	 asking	 why,	 of	 finding

representations	 that	make	mathematical	 relationships	 clear,	 and	 of	 building	 on
useful	 reasoning.	 In	particular,	 in	a	couple	of	places	 I	 said	something	 like	 ‘but
we’re	 not	 stopping	 there’.	 I	 think	 this	 is	 important	 because	 it’s	 easy	 to	 be	 so
taken	with	 an	 interesting	 finding	 that	 you	 just	 stop,	 when	 there	 is	 a	 lot	 to	 be
learned	by	extending	the	reasoning.	These	themes	will	recur	in	the	remainder	of
the	book.

1	I’m	not	offended	if	you	did—I	often	skip	introductions	myself.
2	British	people	tend	to	say	‘brackets’	regardless	of	their	shapes:	()	or	[	]	or	{	}.	North	Americans	tend	to

say	‘parentheses’	for	the	round	ones,	but	I’m	British	so	I’ll	stick	with	what	I’m	used	to.
3	When	I	do	this	in	lectures,	students	laugh	at	me	but	then	start	doing	it	themselves.
4	I	exaggerate—it	changes	something	rather	subtle,	but	I’ll	discuss	that	later.
5	What	does	the	little	square	in	the	corner	of	the	triangle	mean?
6	Mathematically	experienced	readers	might	notice	that	the	argument	above	only	proves	one	of	these.

Which	one?	And	everyone	might	like	to	know	that	Pythagoras’	theorem	can	be	proved	in	many	different
ways—try	a	simple	internet	search.

7	I	really	like	the	symbols	‘ ’	and	‘≠’;	I	think	they	are	just	the	ones	that	any	sensible	person	would
invent.



8	When	I	was	a	kid	this	was	a	bit	of	a	luxury.	In	the	internet	age	you	can	download	it.



CHAPTER	2

Shapes

2.1	Tessellations

Here	is	a	tessellation	or	tiling.

Many	people	find	patterns	like	this	beautiful	due	to	their	symmetry.	How	many
different	 types	of	 symmetry	does	 this	 tessellation	have?	Pause	now	and	count.
You	 might	 want	 to	 consider	 reflections,	 rotations,	 and	 translations,	 and	 you
might	find	this	harder	than	you’d	think—as	in	Chapter	1,	 there	are	decisions	to



make	about	which	symmetries	are	really	distinct.
Symmetry	 will	 be	 a	 central	 topic	 in	 this	 chapter,	 but	 we	 will	 begin	 by

exploring	four	simpler	properties	of	this	tessellation	and	others	like	it.	First,	this
tessellation	 is	 composed	 using	 regular	polygons:	 equilateral	 triangles,	 squares,
and	regular	hexagons.	Such	polygons	are	called	regular	because	both	their	edge
lengths	 and	 their	 interior	angles	 are	 all	 the	 same	 (mathematicians	 say	 ‘edges’
where	 people	 more	 informally	 say	 ‘sides’).	 Second,	 all	 the	 edges	 of	 all	 the
polygons	are	the	same	length.	Third,	 the	polygons’	edges	are	perfectly	aligned.
Fourth,	at	each	vertex—vertex	is	the	mathematical	word	for	‘corner’—the	same
shapes	are	arranged	in	the	same	order.	This	is	less	obvious,	but	you	can	check	by
picking	 a	 vertex,	 finding	 the	 hexagon,	 and	 tracing	 around	 the	 vertex	 in	 a
clockwise	direction.	The	order	in	which	the	other	polygons	appear	is	always	the
same:	hexagon,	square,	triangle,	square.

A	tessellation	with	these	properties	is	called	semi-regular,	and	in	this	chapter
we’ll	ask	how	many	semi-regular	tessellations	exist.	Think	about	this	before	you
read	on.	Can	you	 find	more?	Do	you	 think	 there	 are	 lots	more,	 or	 just	 a	 few?
Might	there	be	infinitely	many,	or	do	the	conditions	restrict	the	total	number?	If
you’ve	read	Chapter	1,	you’ll	notice	that	these	questions	are	like	those	we	asked



about	 Pythagorean	 triples:	 how	many	 things	 are	 there	 with	 certain	 properties,
which	ones	are	meaningfully	different,	and	can	we	describe	them	all?
For	semi-regular	tessellations	these	are	not	trivial	questions	because	there	are

lots	of	regular	polygons:	pentagons,	heptagons,	octagons,	and	so	on.	Maybe	any
and	all	of	these	can	be	used	in	semi-regular	tessellations.	But	maybe	not.	Could
we	 construct	 a	 semi-regular	 tessellation	 involving	 regular	 dodecagons,	 for
instance	(dodecagons	are	12-sided)?	Or	one	involving	regular	hectagons1	 (100-
sided)?	 We	 will	 explore	 these	 questions,	 reviewing	 ideas	 about	 shapes	 and
angles	 and	 developing	 an	 argument	 that	 we	 know	 how	 to	 generate	 all	 the
possibilities.	After	 that	we’ll	 look	in	more	detail	at	symmetries.	Before	reading
on,	 though,	you	might	want	 to	 engage	with	 the	obvious	 challenge.	How	many
semi-regular	tessellations	can	you	find?

2.2	Regular	polygons

To	 think	 systematically	 about	 tessellations,	 it	 will	 help	 to	 review	 some	 ideas
about	regular	polygons.	First,	we’ll	clarify	the	meaning	of	regular.	I	stated	in	the
previous	 section	 that	polygons	 are	 called	 regular	when	both	 their	 edge	 lengths
and	 interior	 angles	 are	 all	 the	 same.	But	 do	we	 need	 both	 requirements?	 This
depends	upon	the	number	of	edges.
If	 a	 triangle’s	 edges	 are	 all	 the	 same	 length,	 then	 its	 angles	must	 all	 be	 the

same.	You	might	be	able	to	‘feel’	this	by	thinking	about	the	equilateral	 triangle
in	the	diagram	below.	Imagine	grabbing	one	vertex	and	moving	it	so	that	an	edge
changes	length.	You’ll	find	that	you	can’t	do	that	without	changing	some	angles
(how	many	angles	must	change?).	Similarly,	you	can’t	change	an	angle	without
changing	an	edge	length.	Triangles	are	rigid:	for	triangles,	saying	‘the	edges	are
all	the	same	length’	or	‘the	angles	are	all	the	same’	amounts	to	the	same	thing.



For	a	four-sided	polygon—a	quadrilateral—this	is	not	true.	If	a	quadrilateral’s
edges	are	all	the	same	length,	its	angles	might	all	be	the	same,	as	in	a	square.	But
they	might	not.	Squares	are	not	rigid:	we	could	squash	a	square	by	pushing	on
one	of	its	corners.	This	would	not	change	the	edge	lengths,	but	would	transform
it	 into	 a	 parallelogram,	 so	 called	 due	 to	 its	 pairs	 of	 parallel	 sides.	 In
parallelograms	 like	 those	 shown	 below,2	 the	 angles	 are	 not	 all	 the	 same.
Similarly,	we	could	stretch	a	square	to	give	a	rectangle	in	which	the	angles	are
all	 the	 same	 but	 the	 edge	 lengths	 are	 not.	 So	 quadrilaterals	 can	 have	 four
identical	edge	lengths	without	 identical	angles,	or	four	identical	angles	without
identical	edge	lengths.



Something	else	to	notice	is	that	most	people,	looking	at	a	square,	would	say,
‘That’s	 a	 square.’	 They	 wouldn’t	 say,	 ‘That’s	 a	 rectangle’	 or	 ‘That’s	 a
parallelogram.’	 But	 both	 statements	 would	 be	 true.	 A	 square	 is	 a	 rectangle
because	 it	 is	 a	 quadrilateral	 with	 four	 right	 angles.	 It	 happens	 also	 to	 have
identical	edges,	but	that’s	an	extra	property—it	doesn’t	stop	it	having	four	right
angles	 so	 it	 doesn’t	 stop	 it	 being	 a	 rectangle.	 Similarly,	 a	 square	 is	 a
parallelogram	 because	 it	 is	 a	 quadrilateral	 with	 two	 pairs	 of	 parallel	 edges.	 It
happens	 that	 those	 pairs	 are	 mutually	 perpendicular,	 but	 again	 that’s	 an	 extra
property.	Think	about	this	and	you’ll	see	that	every	rectangle	is	a	parallelogram
too,	so	squares	sit	within	nested	categories	of	quadrilaterals.

Children	 often	 have	 trouble	 with	 this	 nesting	 notion.	 They	 might	 feel	 quite
strongly	 that	a	square	 isn’t	a	 rectangle.	Adults	often	feel	 that	 too,	but	 they	can
usually	over-ride	it	because	they	are	accustomed	to	everyday	categorization.	For
instance,	I’m	typing	this	on	a	MacBook,	which	I	could	accurately	describe	as	a
MacBook,	 or	 as	 a	 laptop,	 or	 as	 a	 computer.	 Earlier	 I	 ate	 a	 Conference	 pear,
which	 I	 could	 accurately	 describe	 as	 a	 Conference	 pear,	 or	 as	 a	 pear,	 or	 as	 a
piece	 of	 fruit,	 or	 just	 as	 food.	 Similarly,	 a	 square	 is	 a	 rectangle,	 which	 is	 a
parallelogram,	which	is	a	quadrilateral.
That	 said,	 calling	 a	 square	 a	 rectangle	would	 be	 a	 bit	 rude,	 and	 calling	 it	 a

parallelogram	probably	ruder.	It	wouldn’t	be	a	lie,	but	anyone	doing	that	would



be	 failing	 to	 give	 full	 information	when	 they	 could	 do	 so	 in	 a	 simple	way,	 so
they’d	be	violating	normal	 communicative	conventions.	These	conventions	are
complex,	 though.	Not	 long	 before	 eating	 the	 pear	 I	 said,	 ‘I’m	 hungry,	 I	 need
some	 food.’	 That	 didn’t	 seem	 strange.	 But	 ‘I’m	 hungry,	 I	 need	 a	 Conference
pear’	 would	 have	 sounded	 pretty	 weird.	 In	 everyday	 life,	 categorization	 is	 a
subtle	 business.	 In	 mathematics,	 systems	 of	 categorization	 are	 important,	 and
concepts	are	often	defined	by	starting	with	a	pre-existing	category	and	adding	a
restriction:	 ‘a	 rectangle	 is	 a	 quadrilateral	 with	 four	 equal	 angles’	 is	 a	 perfect
example.
The	issue	of	defining	becomes	more	salient	when	looking	at	hexagons,	which

are	even	more	variable	 than	quadrilaterals.	A	hexagon	with	 six	 identical	edges
can	 be	 squashed	 in	 various	 ways,	 some	 of	 which	 have	 more	 symmetry	 than
others.

When	you	think	about	hexagons,	probably	you	don’t	 think	about	shapes	like
the	 three	 on	 the	 right.	 Probably	 you	 always	 think	 about	 regular	 hexagons,	 not
these	 squashed	kinds,	which	might	 therefore	make	you	 feel	 a	 bit	 twitchy.	You
might	feel	that	although	the	middle	two	are	hexagons,	they	are	not	very	‘good’
ones.	 They	 do	 at	 least	 stick	 out	 at	 all	 the	 corners,	 though—in	 mathematical
terms,	they	are	convex.	The	last	is	both	squashed	and	‘dented’—you	might	think,
is	 that	a	hexagon	at	all?	The	answer,	according	 to	mathematical	convention,	 is
yes.	 That	 shape	 is	 almost	 certainly	 not	 like	 your	 image	 of	 a	 prototypical
hexagon,	but	 it	nevertheless	satisfies	 the	mathematical	definition:	 it	 is	a	closed
plane	 figure	with	six	straight	edges.	Note,	 though,	 that	 if	you	still	 feel	 that	 the
squashed	 hexagons	 are	 inferior,	 you’re	 behaving	 quite	 mathematically.
Mathematicians	 distinguish	 regular	 hexagons	 from	 other	 types	 because	 they
have	special	properties.
Mathematicians	 also	 value	 clear	 communication,	 though,	 which	 is	 why

definitions	are	needed.	Mathematics	 involves	deductive	arguments,	so	we	need
to	 agree	 about	which	 objects	we’re	 discussing—it	 is	 not	 practical	 to	 construct
arguments	 about	 hexagons	 without	 deciding	 which	 things	 are	 hexagons	 and



which	things	are	not.	And	people	don’t	always	agree.	Even	if	you	wouldn’t	want
to	call	the	nonconvex	shape	a	hexagon,	you	can	probably	see	that	someone	else
might	(‘Well,	look,	it	has	six	straight	edges’).	In	this	case,	the	collective	decision
is	 essentially	 to	 say,	 ‘Yes,	 things	 like	 that	will	 count	 as	hexagons,	 but	we	will
also	 define	 a	 subcategory	 called	 convex	 hexagons	 so	 that	 we	 can	 distinguish
weirder	 hexagons	 from	 nicer	 ones;	 and	we’ll	 further	 distinguish	 our	 favourite
ones	by	calling	them	regular.’

2.3	Regular	tessellations

Some	 regular	 polygons	 can	 form	 regular	 tessellations	 involving	 polygons	 of
only	one	type.	Here	is	a	regular	tessellation	using	equilateral	triangles.

This	has	all	the	properties	of	a	semi-regular	tessellation.	Here	they	are	again.

•	It	is	composed	of	regular	polygons;
•	All	the	polygons	have	edges	of	the	same	length;
•	All	the	edges	are	aligned;	and
•	Around	each	vertex,	the	same	polygons	are	arranged	in	the	same	order.

This	 means	 that	 a	 regular	 tessellation	 is	 a	 special	 case	 of	 a	 semi-regular
tessellation:	it	has	all	the	required	properties	so	it	is	definitely	semi-regular,	and
it	has	the	extra	property	that	it	is	composed	using	only	one	shape.



Squares,	too,	tesselate	perfectly.

In	both	cases	this	occurs	because	the	polygons	have	suitable	interior	angles.	As
you	might	recall,	the	angle	‘around	a	point’	is	 .	Equilateral	triangles	form	a
regular	 tessellation	because	 their	 interior	 angles	are	 ,	 and	60	 is	 a	divisor	of
360.	Squares	form	a	regular	tessellation	because	their	interior	angles	are	 ,	and
90	is	a	divisor	of	360	too.3

How	about	regular	pentagons?	Do	they	form	a	regular	tessellation?	No,	because
regular	 pentagons	 don’t	 fit	 nicely	 around	 a	 vertex.	 In	 a	 regular	 pentagon,	 the
interior	angle	is	 ,	and	108	is	not	a	divisor	of	360.	Three	pentagons	fit	around
a	 vertex	 (total	 angle	 )	 but	 leave	 a	 wedge-shaped	 gap	 of	

.



Regular	 hexagons	 do	 tessellate.	 Their	 interior	 angles	 are	 ,	 so	 three	 fit
together	perfectly.

How	about	 regular	 polygons	with	 larger	 numbers	 of	 edges?	Visual	 intuition
might	convince	you	that	no	others	form	regular	 tessellations.	For	instance,	two
regular	octagons	 take	up	 ,	which	 leaves	a	gap	of	only	 —we
can’t	fit	another	octagon	in	there.	And	for	regular	polygons	with	more	edges,	the



gap	is	even	smaller.	So	that’s	it—there	are	exactly	three	regular	tessellations.

This	thinking	provides	hints,	though,	about	semi-regular	tessellations	using	more
than	 one	 type	 of	 polygon.	Did	 you	 notice	 that	 between	 the	 two	 octagons,	 we
couldn’t	fit	another	octagon	but	we	could	fit	a	square?

Starting	with	 that	 and	 ensuring	 that	 the	 same	 shapes	 appear	 in	 the	 same	order
around	every	vertex	leads	to	another	semi-regular	tessellation.



Hexagons	 and	 equilateral	 triangles	 also	 have	 potential,	 because	 removing	 a
hexagon	 makes	 room	 for	 two	 triangles.	 This	 time,	 though,	 there	 are	 several
possibilities	for	constructing	a	tessellation	and	it’s	easy	to	lose	track	of	the	list	of
conditions.	Check	for	yourself—are	these	tessellations	semi-regular?



No,	they’re	not.	They’re	both	tessellations	and	I	think	the	bottom	one	especially
is	 rather	 attractive—it	 has	 lots	 of	 symmetry,	 and	 I	 like	 the	 fact	 that	 I	 can	 see
hexagons	in	it	of	three	different	sizes.	But	it	is	not	semi-regular	because	it	does
not	have	the	same	shapes	in	the	same	order	around	every	vertex.	Around	some
vertices,	 the	 order	 is	 hexagon-hexagon-hexagon,	 around	 some	 it’s	 hexagon-
hexagon-triangle-triangle,	 and	 around	 the	 rest	 it’s	 triangle-triangle-triangle-
triangle-triangle-triangle.	What	are	the	equivalent	lists	for	the	top	tessellation?
At	this	point	we’re	up	to	five	semi-regular	tessellations:	the	three	regular	ones,

the	one	with	octagons	and	squares,	and	the	one	at	the	beginning	of	this	chapter.
Do	you	now	want	to	change	any	of	your	answers	to	the	questions	in	Section	2.1?
How	 many	 semi-regular	 tessellations	 do	 you	 think	 there	 are?	 Do	 there	 exist
semi-regular	 tessellations	 involving	any	regular	polygon,	or	are	some	polygons
no	good	for	this	purpose?	Has	the	exploration	so	far	changed	your	mind?
To	generate	more	 semi-regular	 tessellations,	we	 could	 continue	working	out

what	shapes	will	fit	around	a	vertex.	But	there	are	many	possible	combinations,
so	 it’s	worth	being	systematic,	and	 it	would	be	useful	 to	know	all	 the	 relevant
interior	angles.	So	the	next	thing	we’ll	do	is	calculate	those.

2.4	Interior	angles

One	way	to	find	interior	angles	is	to	imagine	walking	around	a	polygon.	Imagine
you	 are	 standing	 at	 the	 bottom-left	 vertex	 of	 the	 equilateral	 triangle	 in	 the
following	 diagram	 and	 you	walk	 along	 its	 bottom	 edge.	When	 you	 get	 to	 the
next	vertex	you	are	facing	directly	along	the	dotted	line	in	the	middle	diagram.



To	walk	along	 the	next	edge,	you	have	 to	 turn	 through	 the	angle	shown.	Then
you	repeat	this	process	until	you	get	back	to	the	beginning	and	turn	once	more	to
face	in	the	original	direction.	Now,	you	have	turned	all	the	way	around,	so	your
total	turn	must	have	been	 .	You	did	it	in	three	equal	turns,	so	each	turn	must
have	 been	 .	 The	 turn	 is	 not	 the	 interior	 angle,	 though,	 it	 is	 its
supplementary	 angle.	 Because	 	 is	 ‘the	 angle	 along	 a	 straight	 line’,	 each
interior	angle	must	be	 .

Having	 established	 that,	 there	 are	 two	ways	 to	 find	 interior	 angles	 of	 other
regular	polygons.	One	is	to	generalize	the	argument,	the	other	is	to	amend	it	then
apply	 the	 amended	 result	 in	 a	 new	argument.	We’ll	 do	 them	 in	 that	 order	 and
compare	the	results.
To	 generalize,	 we’ll	 start	 by	 applying	 the	 walk-and-turn	 idea	 to	 a	 regular

pentagon.	Walking	around	a	regular	pentagon	still	involves	turning	through	 .
But	this	time	there	are	five	turns,	so	each	turn	must	be	 .	So	each
interior	 angle	must	 be	 .	 Draw	 a	 sketch	 if	 you	 like,	 but	 don’t
worry	about	precision—it’s	quite	hard	to	sketch	a	regular	pentagon.
Then	we	can	generalize	fully.	Suppose	we	have	a	regular	n-gon	(a	regular	n-

sided	polygon).	I	can’t	provide	a	picture	of	one	of	those	and	you	can’t	draw	one,
because	 n	 is	 not	 a	 prespecified	 number.	 That	 doesn’t	 matter	 for	 the	 written
argument,	though.	For	a	regular	n-gon,	there	are	n	turns.	So	each	turn	must	be	

,	meaning	that	each	interior	angle	must	be	 .	I	think	that
the	expression	 	looks	a	bit	ugly,	so	I’d	prefer	to	reformat	it	and

write	

This	 generalization	 gives	 a	 formula	 for	 calculating	 the	 interior	 angle	 for	 any



given	 value	 of	 n.	 For	 instance,	

Mathematicians	like	formulas,	which	save	labour.	Once	we’re	convinced	that	the
walking-and-turning	argument	always	works,	we	don’t	need	to	keep	rehearsing	it
—we	can	just	stick	a	number	n	 into	 the	formula	and	do	 the	calculation.	 If	you
like,	take	a	moment	to	do	that	and	confirm	that	the	formula	gives	the	expected
answers	for	some	familiar	regular	polygons.	But	don’t	substitute	evidence	from
calculations	for	understanding	why	the	argument	works—if	you’re	unsure,	apply
the	walking-and-turning	 directly	 to	 other	 regular	 polygons	 too.	Here	 are	 some
results	in	a	table.

Not	 all	 regular	 n-gons	 have	 interior	 angles	 that	 can	 be	 measured	 in	 whole
numbers	 of	 degrees;	 for	 those	 that	 do	 not,	 I’ve	 rounded	 to	 2	 decimal	 places.
Note,	 though,	 that	 a	 lot	 of	 the	 simple	 ones	 do.	 That’s	 because	 	 is	 a	 good
number	 to	 choose	 for	 the	 ‘all	 the	way	 around’	 angle:	 360	has	 a	 lot	 of	 factors,
meaning	a	lot	of	whole-number	divisors.	If	you’ve	ever	wondered	why	we	don’t
have	100	degrees	in	a	circle,	what	do	you	think	now?	If	it	never	occurred	to	you
to	wonder	about	such	a	thing,	then	note	that	this	is	a	measurement	question,	and
it	did	require	a	decision.	Just	as	people	eventually	had	to	agree	on	standard	units
for	 measuring	 distance	 (miles,	 metres,	 and	 so	 on),	 they	 also	 had	 to	 agree	 on
standard	units	for	measuring	angles.
Having	generalized	the	walking-and-turning	argument,	we	will	now	amend	it

and	 apply	 the	 amended	 result	 in	 a	 new	 argument.	 The	 amendment	 involves
walking	and	turning	for	nonequilateral	triangles.	This	is	a	bit	harder	because	the
turns	are	no	longer	identical.	Some	things	don’t	change,	though.	The	angle	along
a	straight	 line	is	still	 .	So	 the	 total	of	 the	 turns	 (call	 them	 )	plus	 the
total	of	the	interior	angles	(call	them	 )	must	add	up	to	 .



Also,	 because	 we	 still	 turn	 all	 the	 way	 around,	 the	 total	 of	 the	 turns	
	 is	 still	 .	 So	 we	 must	 have	

Have	you	seen	the	‘⇒’	arrow	before?	It	means	‘implies’	or	(where	it	makes	more
sense)	 ‘which	 implies	 that’.	 Try	 using	 that	 to	 read	 aloud	 the	 sentence	 that
includes	 the	equation	array,	 from	‘So	we	must	have	…’	to	 the	full	stop.	You’ll
find	that	you	can	do	this	in	a	grammatical	way.	This	sometimes	surprises	people,
because	 they	 think	 of	mathematical	 symbols	 as	 separate	 from	written	English.
But	 mathematicians	 write	 in	 full	 sentences—any	 well-written	 mathematical
argument	can	be	read	aloud.
This	argument	shows	that	the	interior	angles	of	every	triangle	sum	to	 .	If

you	 vaguely	 remembered	 that	 from	 school,	 do	 you	 now	 understand	 why,	 and
could	you	explain	it	to	someone	else?	If	you	remembered	it	well,	have	you	also
seen	it	demonstrated	in	one	or	more	other	ways,	and	can	you	reconstruct	them?
And	have	you	seen	it	used	to	work	with	other	polygons?	We	can	take	any	convex
polygon	 and	 divide	 it	 into	 triangles	 by	 joining	 vertices	 with	 straight	 line
segments.	The	number	of	triangles	required	depends	upon	the	number	of	edges
of	the	polygon.	A	convex	pentagon—regular	or	not—requires	three	(make	sure
you	 believe	 that	 it	 doesn’t	 matter	 which	 vertices	 we	 join).	 The	 total	 of	 the
interior	angles	of	all	three	triangles	is	 .	So	the	total	of	the	interior
angles	 of	 every	 convex	 pentagon	must	 be	 .	 For	 me,	 this	 is	 a	 nonobvious
invariant.	Convex	pentagons	can	vary	quite	a	bit,	and	I	would	not	have	known
just	 by	 looking	 that	 they	 all	 have	 the	 same	 total	 interior	 angle.	 But,	 having
established	this,	I’m	confident	to	specialize:	if	a	pentagon	is	regular,	each	of	its
interior	angles	must	be	 .



Similarly,	 a	 convex	octagon—regular	or	not—can	be	 split	 into	 six	 triangles.
The	total	of	the	interior	angles	of	all	six	is	 .	So	the	total	of	the
interior	angles	of	every	octagon	must	be	 .	If	an	octagon	is	regular,	each	of
its	interior	angles	must	therefore	be	 .

How	many	triangles	do	we	need	for	an	n-gon,	and	what	does	this	tell	us	about
the	total	of	the	n-gon’s	interior	angles?	If	the	n-gon	is	regular,	what	must	each	of
its	 interior	 angles	 be?	 Can	 you	 convince	 yourself	 that	 the	 answer	 is	

?	 As	 a	 nicer	 looking	 formula,	 this	 could	 be	 written	

Now,	one	 thing	 to	note	 is	 that	 the	 two	approaches—generalize-the-argument
and	amend-and-use-the-result—lead	to	different	formulas	for	finding	the	interior
angles	of	a	regular	n-gon.	At	least,	the	formulas	look	different—are	they	really?
We’d	better	hope	not.	The	interior	angles	of	regular	polygons	are	what	they	are,
so	the	two	formulas	should	give	the	same	answer	for	every	value	of	n.	You	could
use	calculations	to	convince	yourself	that	they	do	for	a	lot	of	numbers,	but	there
is	no	need:	another	great	thing	about	general	formulas	is	that	we	can	use	algebra
to	work	with	 all	 cases	 at	 once.	Here	 is	 a	 chain	 of	 equations	 showing	 that	 the
second	 formula	 is,	 in	 fact,	 the	 same	 as	 the	 first:	



If	you	hesitated	when	reading	the	top	line,	try	reading	across	the	first	equals	sign
from	right	to	left	instead	of	left	to	right.	If	you’re	still	confused,	note	that	this	is
a	calculation	involving	nths:	n	nths	minus	2	nths	is	 	nths,	in	the	same	way
that	n	carrots	minus	2	carrots	is	 	carrots.	If	you’re	still	unsure,	don’t	worry
—we’ll	look	at	fraction	addition	in	Chapter	3.

2.5	Mathematical	theory	building

I	think	it’s	worth	a	short	interlude	here	to	consider	the	two	approaches	taken	in
the	previous	section,	because	doing	so	illustrates	ways	to	build	up	mathematical
theory.
In	 the	 first	 approach,	 we	 began	 by	 generalizing	 the	 walking-and-turning

argument	 from	 an	 equilateral	 triangle	 to	 a	 regular	 pentagon.	 That’s	 not	 really
generalization	 in	 the	 mathematical	 sense,	 though.	 It	 would	 better	 be	 called
application	because	 it	 involves	applying	a	known	argument	 to	a	new	object	 (a
new	 polygon,	 in	 this	 case).	 When	 mathematicians	 say	 ‘generalization’,	 they
usually	mean	it	in	a	more	stringent	sense.	Ideally	they’d	like	to	demonstrate	that
an	 argument	 always	 works,	 so	 that	 there	 is	 no	 need	 to	 check	 individual
applications.	 That’s	 what	 we	 did	 next.	 By	 considering	 a	 regular	 n-gon,	 we
generalized	the	argument	to	regular	polygons	with	any	number	of	edges.
To	amend	the	argument	we	generalized	in	a	different	‘direction’.	We	fixed	the

number	of	edges	at	three	but	allowed	the	angles	to	vary,	and	thereby	generalized
to	nonequilateral	 triangles.	The	 result,	 that	 the	 interior	angles	of	every	 triangle
sum	to	 ,	was	then	available	for	use	as	an	ingredient	in	a	new	argument.	We
used	it	to	find	the	interior	angles	of	polygons	with	more	edges	by	splitting	these



into	triangles,	working	out	how	many	triangles	are	needed,	and	adding	up	their
interior	 angles.	 Again,	 we	 first	 did	 a	 couple	 of	 applications,	 considering
pentagons	and	octagons.	Then	we	generalized	 to	n-gons,	 this	 time	without	 the
requirement	 that	 these	 be	 regular.	 Having	 done	 that,	 we	 specialized	 back	 to
regular	 polygons.	 We	 also	 checked	 that	 the	 formulas	 yielded	 by	 the	 two
approaches	are,	in	fact,	the	same.
I	 think	 informally	 about	 theory	 building	 in	 terms	 of	 ‘levels’,	 where	 going

down	a	level	is	specializing,	and	going	up	a	level	is	either	generalizing	or	using
an	 established	 result	 in	 a	 higher	 level	 argument.	 The	 theory	 developed	 so	 far
used	lots	of	simpler	established	ideas,	 too,	such	as	 information	about	 the	angle
along	a	 straight	 line.	Such	 links	between	more	basic	and	more	advanced	 ideas
lead	 successful	 reasoners	 to	 think	 of	 mathematics	 as	 a	 giant	 network	 of
interconnected	concepts.

2.6	Semi-regular	tessellations

We	 can	 now	 list	 the	 interior	 angles	 of	 regular	 polygons.	 Here	 is	 an	 extended
table	to	help	in	the	quest	to	find	semi-regular	tessellations:

How	might	 we	 approach	 that	 quest,	 though?	 Can	 you	 think	 of	 ways	 to	 work
systematically?	While	 drafting	 this	 chapter,	 I	 played	 around	 with	 a	 couple	 of



strategies,	 and	 decided	 that	 the	 easiest4	 is	 to	 start	 with	 shapes	 with	 small
numbers	 of	 edges,	 searching	 systematically	 for	 tessellations	 involving:	 •
Triangles	only;

•	Then	squares	and	triangles;
•	Then	pentagons	and	squares	and	triangles;
•	Then	hexagons	and	pentagons	and	squares	and	triangles;	and	so	on.

If	 there	are	 infinitely	many	semi-regular	 tessellations,	 this	 search	will	go	on
forever	 but	 it	won’t	miss	 anything.	 If	 there	 are	 finitely	many	 possibilities,	we
will	presumably	realize	that	there	is	an	inherent	constraint—that	it’s	possible	for
polygons	 to	 be	 ‘too	 big’	 or	 similar.	Which	 do	 you	 think	will	 happen?	What’s
your	 reason	 for	 that?	 And	 do	 you	 want	 to	 have	 a	 go	 before	 you	 read	 my
reasoning?
Triangles-only	 we	 know	 about—that’s	 a	 regular	 tessellation.	 So	 is	 squares-

only.	Squares	and	triangles	we	haven’t	yet	explored.	Starting	with	four	squares	at
a	vertex	and	removing	one	leaves	a	gap	that	can’t	be	filled	with	triangles—one	is
too	 small	 and	 two	won’t	 fit.	But	 removing	 two	 squares	makes	 room	 for	 three
triangles,	yielding	a	new	semi-regular	tessellation	(check).

Does	 that	 cover	 it?	 In	 fact,	 no.	Around	 each	 vertex	 above	we	 have	 square-
square-triangle-triangle-triangle.	 If	 instead	we	 separate	 the	 two	 squares	 so	 that
around	each	vertex	we	have	square-triangle-square-triangle-triangle,	 that	yields
something	different.	I	really	like	this	new	tessellation	because	I	find	it	surprising



—I	wouldn’t	have	thought	that	these	shapes	could	make	a	tessellation	so	wibbly.

But	 there	 are	 no	 more	 tessellations	 with	 triangles	 and	 squares	 (check).	 So
we’re	now	up	to	seven	semi-regular	tessellations,	and	next	on	the	search	list	 is
pentagons	 and	 squares	 and	 triangles.	 Do	 you	 feel	 optimistic	 about	 including
pentagons?	Probably	 not—they	 just	 don’t	 feel	 like	 the	 right	 kind	 of	 shape,	 do
they?	(If	you	agree	but	you	began	 this	book	without	much	confidence	 in	your
mathematical	 intuition,	you	might	start	 to	 rethink	 that.)	 I	wouldn’t	 rule	out	 the
possibility	that	there’s	a	tessellation	using	a	pentagon	plus	polygons	with	a	larger
numbers	of	edges—maybe	 ten.	But	 it	doesn’t	 seem	 likely	 that	we’ll	be	able	 to
combine	pentagons	with	squares	and	triangles.
We	can	demonstrate	this	by	trying	all	possible	combinations.	Three	pentagons

around	a	vertex	is	no	good	because	the	gap	is	too	small	even	for	a	triangle.	How
about	two	pentagons?	Pentagons	have	interior	angles	of	 ,	so	the	gap	is	now	

.	 In	 that	 gap,	 one	 square	 will	 fit	 but	 without	 room	 for	 a
triangle,	 two	triangles	will	 fit	but	with	a	gap,	and	all	other	possibilities	are	 too
small	or	too	large.



What	if	we	have	just	one	pentagon	at	a	vertex?	What	angle	remains	then,	and
what	combinations	of	squares	and	triangles	might	fit?	Do	any	of	them	work?	If
you	like	drawing,	 try	it.	 If	you’re	 less	 into	diagrams,	you	might	notice	 that	we
don’t	really	need	them—a	numerical	argument	will	do	the	job.	Every	vertex	has
total	angle	 ,	and	 	is	a	multiple	of	 .	Triangles	and	squares	have	interior
angles	 of	 	 and	 ,	 which	 are	 also	 multiples	 of	 .	 So,	 however	 many
pentagons	we	use,	those	that	meet	at	the	vertex	must	have	angles	that	add	up	to	a
multiple	of	10.	This	isn’t	possible	with	one,	two	or	three	pentagons	( ,
and	 ),	and	four	won’t	fit.	So	no	tessellations	involve	pentagons	with	squares,
triangles,	or	both.	I	like	diagrams	a	lot,	but	in	this	case	we	can	search	efficiently
without	them.
For	 hexagons	 we	 already	 have	 the	 hexagons-only	 tessellation	 and	 the

hexagon-square-triangle-square	 one	 from	 the	 start	 of	 this	 chapter.	 But	 we	 can
search	 as	 before.	 The	 previous	 observation	 again	 rules	 out	 pentagons	 because
triangles,	squares,	and	hexagons	all	have	interior	angles	that	are	multiples	of	 .
So	we	can	start	with	three	hexagons	at	a	vertex,	systematically	remove	one	at	a
time,	and	fill	the	gap	with	squares	and	triangles.	For	some	combinations	there	is
more	than	one	possible	order,	and	remember	that	‘≠’	means	‘is	not	equal	to’.

three	hexagons
hexagon-hexagon-hexagon 	

two	hexagons
hexagon-hexagon-square 	



hexagon-hexagon-triangle-triangle 	
hexagon-triangle-hexagon-triangle 	

one	hexagon
hexagon-square-square-triangle 	
hexagon-square-triangle-square 	
hexagon-square-triangle-triangle 	
hexagon-triangle-triangle-triangle-
triangle

	

Which	 rows	of	 this	 table	correspond	 to	semi-regular	 tessellations	 that	we’ve
already	 seen?	And	which	 correspond	 to	 the	 two	 new	 ones	 below?	 I	 think	 the
second	of	these	has	the	quality	of	surprise	again—it	has	a	bit	less	symmetry	than
I	would	have	expected.
Finally,	which	 row	 of	 the	 table	 looks	 promising	 but	 does	 not	 yield	 a	 semi-

regular	 tessellation?	 The	 table	 lists	 hexagon-square-square-triangle,	 for	 which
the	angles	add	up	to	 ,	so	there	is	no	problem	there.	Sketch	this	configuration
around	a	single	vertex,	though,	and	you’ll	find	that	there	is	a	problem	when	we
try	to	extend	it:	it’s	impossible	to	keep	the	same	shapes	in	the	same	order	around
each	vertex.



To	conclude	this	section,	what	happens	when	we	introduce	regular	heptagons
(7-gons)?	That’s	 right—we	can’t	use	 those.	Their	 interior	angles	are	not	whole
numbers	of	degrees,	so	they	can’t	combine	with	polygons	with	lower	numbers	of
edges—not	even	the	pentagon.	And	they	don’t	work	on	their	own.	For	octagons
we’ve	 already	made	 a	 start:	 octagon-octagon-square	 is	 a	 possibility.	Are	 there
others?	What	 if	we	 start	with	one	octagon	at	 a	vertex?	What	 else,	 if	 anything,
will	 fit?	 If	 there	 are	 promising	 configurations,	 do	 they	 yield	 semi-regular
tessellations?
I’m	 going	 to	 pause	 here.	 If	 you’re	 engaged	 by	 the	 investigation,	 you	might

want	to	try	some	more	‘starting’	shapes.	If	you’ve	got	the	gist	now	and	you	want
to	 know	 the	 full	 answer,	 read	 on,	 but	 be	 aware	 that	 the	 spoiler	 appears	 at	 the
beginning	of	the	next	section.

2.7	More	semi-regular	tessellations

If	you	explored	thoroughly,	or	perhaps	strategically,	you	might	have	found	two
semi-regular	 tessellations	 involving	 dodecagons	 (12-gons).	 Both	 of	 these	 are
shown	below.	Pretty,	no?	I	 still	prefer	 the	surprising	squares-and-triangles	one,
but	these	are	certainly	pleasing.



And	that’s	it.	You	won’t	have	found	more	semi-regular	 tessellations	because
there	aren’t	any.	There	are	 just	11,	 including	 the	 three	 regular	ones.	How	does
that	compare	with	your	intuitive	response	at	beginning	of	this	chapter?	Was	your



guess	 pretty	 close?	 Or	 were	 you	 a	 bit	 off,	 or	 perhaps	 miles	 off?	 More
importantly,	 how	 do	 you	 feel	 now	 that	 you	 know	 the	 answer?	 If	 you	 feel
satisfied,	 good.	 If,	 though,	 you	 feel	 a	 bit	 unsatisfied	 or	 deflated	 or	 let	 down,
that’s	even	better.	If	you’ve	followed	the	arguments	without	too	much	difficulty,
you	should	want	to	know	not	just	what	 the	answer	is,	but	why.	What	 renders	 it
impossible	to	find	more	such	tessellations?
If	 you	 read	 to	 the	 end	of	Chapter	1,	 you’ll	 recognize	 this	 as	 a	 nonexistence

question:	it’s	about	why	there	is	no	way	to	do	something.	In	Chapter	1,	I	couldn’t
have	explained	why	Fermat’s	Last	Theorem	is	valid	because	the	mathematics	is
too	 advanced.	Here,	 a	 nonexistence	 argument	 still	 sounds	 difficult—what’s	 to
say	that	there	isn’t	a	semi-regular	tessellation	involving	1000-gons?	But	this	time
an	 argument	 is	 fairly	 accessible,	 and	 in	 this	 section	 and	 the	 next	 we’ll
demonstrate	that	polygons	with	more	than	12	edges	cannot	be	included	in	semi-
regular	 tessellations.	As	 usual,	 you	might	 like	 to	 think	 before	 you	 read.	What
makes	this	impossible?
The	 key	 is	 to	 think	 about	what	 goes	wrong	 for	 regular	 polygons	with	 large

numbers	 of	 edges.	 As	 the	 number	 of	 edges	 increases,	 the	 interior	 angle	 gets
closer	 to	 	 (it	 can’t	 go	 over	 	 because	 all	 regular	 polygons	 are	 convex).
Let’s	call	the	number	of	edges	big	N	to	emphasize	the	bigness,	and	say	we	start
with	an	N-gon	where	N	is	13	or	more.	The	interior	angles	of	this	N-gon	must	be
bigger	 than	 the	 interior	angles	of	a	12-gon,	meaning	 that	 they	are	bigger	 than	

.	 That	 might	 not	 appear	 to	 constrain	 things	 much,	 but	 it	 does.	 Polygons
sharing	 a	 vertex	 with	 the	 N-gon	 must	 have	 angles	 that	 sum	 to	 less	 than	

.	What	possibilities	are	there?	The	smallest	wedge	we	can	put
in	 the	 gap	 is	 an	 equilateral	 triangle.	 That	 knocks	 off	 another	 ,	 leaving	 a
remaining	gap	of	less	than	 .

But	this	means	that	the	‘biggest’	regular	polygon	that	can	go	with	the	N-gon	is	an



11-gon.	 So	 we	 only	 have	 to	 consider	 combinations	 from	 triangles	 ‘up	 to’	 11-
gons.	Here	are	the	possibilities.	Check	that	you	believe	I’ve	not	missed	any.

	 11-gon-triangle
	 decagon-triangle
	 nonagon-triangle
	 octagon-triangle
	 heptagon-triangle
	 pentagon-square

This	 list	 is	not	overwhelming:	 just	 six	possible	 combinations	of	 ‘other’	 shapes
could	go	with	our	N-gon.	If	none	of	these	works,	then	there	are	no	a	semi-regular
tessellation	with	N-gons	where	N	is	13	or	more.	So	we	just	need	to	ask,	for	each
of	these	possibilities,	is	there	an	N-gon	with	the	right	interior	angles?
Although	the	11-gon	case	appears	first,	I	don’t	fancy	tackling	that	because	I’m

worried	about	 the	nonwhole-number	angle.	So	I’ll	 start	with	 the	easier	 looking
decagon-triangle	 combination.	 To	 fit	 with	 that,	 an	N-gon	 would	 need	 interior
angle	 .	By	 reference	 to	 the	 table	of	 interior	angles,	 a	15-gon
works.	So	we	do	have	another	possible	combination.	This	doesn’t	yield	a	semi-
regular	tessellation,	though.	It	might	be	hard	to	convince	yourself	by	sketching
—I	can	draw	pretty	accurate	regular	pentagons,	but	I’m	totally	defeated	by	a	15-
gon.	So	 I	made	 a	 diagram	 as	 I	 did	 a	 lot	 of	 the	 others	 in	 this	 chapter,	 using	 a
package	called	GeoGebra.5	The	15-gon	 is	 really	big,	 look.6	Why	exactly	can’t
we	extend	this	configuration?



Similar	reasoning	about	all	four	simple	cases	gives	the	following	information
about	the	angles	needed	for	the	N-gons	and	the	corresponding	values	of	N.

So	 there	 are	more	 possible	 combinations,	 and	 they	 have	 a	 pleasing	 numerical
elegance—nine-sided	polygons	with	eighteen-sided	ones	and	so	forth	(why	does
that	happen?).	The	fact	 that	 the	20-gon	yields	a	possible	combination	surprises
but	 satisfies	me	because	 it	 shows	 that	 I	was	 right	 to	 suggest	 that	 the	pentagon
might	have	potential.	My	guess	that	it	might	go	with	a	decagon	was	wrong,	but
20	 is	also	a	multiple	of	5.	Again,	 though,	none	of	 these	combinations	yields	a
semi-regular	tessellation—think	about	why.
What	about	the	messier	possibilities?

11-gon-triangle
heptagon-triangle

As	 someone	who’s	 into	pure	mathematics,	 these	make	me	nervous.	 I	 could	do
the	 same	 calculations	 but,	 because	 the	 tabulated	 angles	 are	 rounded	 to	 two
decimal	places,	we’ve	already	lost	precision.	I’d	be	worried	that	rounding	makes
the	calculations	dodgy,	so	it	might	look	like	things	don’t	match	up	when	in	fact
they	do.	 I’m	not	 that	worried—heptagons	 and	 11-gons	 don’t	 seem	 like	 they’ll
combine	well	with	other	polygons.	But	I’ve	a	mathematician’s	sense	of	tidiness
(although	 I’m	 not	 actually	 a	 mathematician—more	 on	 that	 in	 the	 book’s
Conclusion)	and	I’d	prefer	to	avoid	thinking	about	rounding	errors.	Fortunately,
this	is	another	place	where	algebra	is	useful.

2.8	Algebra	and	rounding

We	can	work	with	awkwardly	angled	polygons	without	using	the	tabulated	angle
list.	 Instead,	 we	 can	 go	 back	 to	 the	 angle	 formula,	 keep	 all	 the	 numbers	 in



fractional	form,	and	put	off	calculating	until	the	end.	Here	is	the	formula.

And	here’s	what	I	mean.	For	an	11-gon	and	a	triangle,	the	total	interior	angle	at

the	shared	vertex	is	(in	degrees)	

This	 means	 that	 the	 interior	 angle	 of	 an	 N-gon	 to	 go	 in	 the	 gap	 must	 be	

Equating	 this	 with	 N-gon’s	 interior	 angle	 gives	

Now,	that	equation	is	a	bit	of	a	mess.	Solving	it	won’t	be	fun	or	satisfying,	but
there	will	be	at	most	one	solution	because	the	equation	combines	one	variable	N
with	numbers.	There	are	various	ways	to	start,	and	pursued	correctly	any	of	them
will	 lead	 to	 the	same	answer.	But	 this	 is	an	opportunity	 to	 think	before	acting,
checking	first	whether	anything	can	be	done	to	simplify	the	manipulations.	For
instance,	the	left-hand	side	has	180	as	a	factor,	and	180	is	also	a	factor	of	both
360	and	 	on	the	right.	It’s	not	a	factor	of	60,	though—that’s	a	shame.
But	60	is	a	factor	of	180	and	360	and	itself,	and	dividing	through	by	60	gives	

That’s	no	simpler	structurally,	but	much	simpler	arithmetically.	Next	I’d	tidy	up
the	right-hand	side	so	that	it	is	just	one	fraction	(if	you’re	nervous	about	adding
fractions,	do	read	this	bit	but	don’t	worry	too	much,	and	maybe	come	back	to	it
after	 Chapter	 3).	 The	 denominator	 11	 that	 appears	 on	 the	 right	 is	 not	 going
anywhere	because	it	has	no	factors	in	common	with	 .	So	we’ll	make	11	the
common	 denominator	 on	 that	 side.	 Observing	 that	

	 gives	



Then	solving	the	equation	gives

Whether	or	not	you	are	confident	about	solving	equations,	I	would	encourage
using	words	like	those	in	the	brackets.	That’s	because	it	is	tempting	to	think	that
letters	can	slide	around	in	a	magical	way	captured	in	slogans	like	‘change	sides,
change	signs’.	In	my	opinion,	such	slogans	should	absolutely	not	be	used.	I’m	in
favour	 of	 mnemonics	 for	 arbitrary	 connections.	 But	 I’m	 against	 them	 when
connections	 are	 not	 arbitrary	 and	 when	 there	 is	 a	 simple,	 meaningful
mathematical	explanation.	Here,	what	happens	in	all	steps	is	that	we	do	the	same
to	both	sides	of	the	equation.	We	add	the	same	thing	to	both	sides,	or	subtract	the
same	thing	from	both	sides,	or	multiply	both	sides	by	the	same	thing,	or	divide
both	sides	by	the	same	thing.	Because	both	sides	are	equal	before,	and	we	do	the



same	to	both,	they	remain	equal.	That’s	the	main	idea	for	solving	equations	of	all
types.
What	 does	 the	 result	 tell	 us,	 in	 this	 case?	We	 started	with	 the	 angles	 for	 a

regular	 11-gon	 and	 an	 equilateral	 triangle,	 and	 solved	 to	 find	 the	 number	 of
edges	N	of	a	regular	N-gon	 that	will	 fit	 in	 their	gap.	But	we	don’t	get	a	whole
number,	meaning	that	this	combination—11-gon	and	triangle	and	mystery	N-gon
—doesn’t	yield	a	possible	tessellation.	Try	this	for	the	final	possible	combination
—heptagon,	 triangle,	 and	 mystery	 N-gon—and	 you’ll	 find	 that	 doesn’t	 work
either.	 So	 we’ve	 now	 checked	 all	 the	 possible	 combinations	 of	 polygons	 that
could	go	with	 a	N-gon	where	N	 is	 greater	 than	 12.	None	 of	 these	 yield	 semi-
regular	 tessellations,	 so	 we’ve	 established	 that	 there	 are	 no	 semi-regular
tessellations	involving	polygons	‘bigger’	than	dodecagons.

2.9	Symmetry:	Translations	and	rotations

Another	question	at	the	opening	of	this	chapter	was	about	symmetry.	Even	those
who	don’t	find	symmetry	beautiful	do	tend	to	find	it	arresting,	I	think.	We	notice
symmetry	in	the	world,	and	we	deliberately	make	things	symmetrical	for	reasons
of	 aesthetics	 as	 well	 as	 engineering.	 At	 the	 beginning	 of	 this	 chapter	 I	 asked
about	symmetries	of	the	first	semi-regular	tessellation.	How	many	did	you	find?
You	 might	 have	 found	 symmetries	 of	 all	 three	 types.	 The	 diagram	 below

shows	 a	 dashed	 line	 of	 reflection	 symmetry,	 meaning	 (informally)	 that	 if	 you
stick	a	mirror	along	the	line	and	look	into	it	from	one	side,	you	can	again	see	the
whole	tessellation.	If	you	haven’t	done	 this	since	you	were	 little,	 I	 recommend
trying	it—interacting	physically	with	mathematical	concepts	can	be	surprisingly
engaging.	The	marked	point	with	 three	arrows	around	 it	 is	a	centre	of	rotation
symmetry.	To	 think	about	 this,	you	might	want	 some	 tracing	paper.	Trace	over
the	whole	tessellation	then	stick	a	pin	in	it	at	the	centre	of	rotation	symmetry	and
rotate	 your	 tracing	 around.	 Rotate	 it	 through	 	 and	 everything	will	 line	 up
perfectly.	Three	such	rotations	return	it	to	its	original	position,	so	this	is	a	centre
of	threefold	rotation	symmetry.	Finally,	the	straight	arrow	indicates	a	translation
symmetry.	Line	up	your	 tracing	with	 the	 tessellation	 then	shift	 the	whole	 thing
up	and	left	according	to	the	arrow;	again	it	will	match.



This	section	will	consider	questions	about	symmetries	from	a	more	advanced
mathematical	 perspective,	 so	we’ll	 start	 not	with	 this	 tessellation	 but	with	 the
simpler	one	involving	octagons	and	squares.	Also,	although	reflection	symmetry
is	 in	some	sense	 the	most	natural—it’s	what	people	often	mean	when	 they	say
that	 something	 is	 symmetrical—it’s	 not	 the	 easiest	 to	 relate	 to	 an	 advanced
perspective.	Translations	are	simpler,	so	we’ll	start	with	those.
The	 octagons-and-squares	 tessellation	 has	 an	 obvious	 translation	 symmetry:

slide	everything	one	octagon	to	the	right.	And	there	are	infinitely	many	similar
symmetries:	slide	two	octagons	to	the	right,	slide	three	octagons	to	the	right,	and
so	on.	The	original	translation	is	said	to	generate	all	of	these	symmetries.	Also,
one	 could	 speak	 about	 the	 inverse	 of	 the	 translation	 as	 sliding	 everything	 one
octagon	to	the	left,	and	repeat	this	to	generate	others.



Then,	 of	 course,	 there	 are	 vertical	 translations.	 No	 amount	 of	 horizontal
sliding	will	generate	these.	But	again	just	one	and	its	inverse	will	generate	all	the
others.	How	about	diagonal	 translations?	Those	 too	can	be	built	 from	one-step
horizontal	 and	 vertical	 translations.	 To	 get	 the	 diagonal	 translation	 below,	 for
instance,	we	could	perform	two	horizontal	steps	and	one	vertical	one.	In	this	way
we	can	think	of	the	horizontal	and	vertical	one-octagon	translations	as	‘building
blocks’:	together	they	generate	all	translation	symmetries	for	this	tessellation.



Such	 building-block	 or	 generator	 notions	 are	 common	 in	 mathematics.
Mathematicians	 like	 to	 understand	 what	 is	 fundamental	 about	 mathematical
situations,	to	strip	them	back	to	their	most	basic	structures.	Often	 that	 involves
noticing	that	some	objects	or	processes	can	be	built	by	combining	simpler	ones,
so	 that	 an	 entire	 structure	 can	 be	 understood	 in	 terms	 of	 a	 small	 number	 of
components.	 Here	 we	 are	 building	 translations	 from	 simpler	 translations,	 but
similarly	we	could	build	numbers	from	simpler	numbers.	For	instance,	numbers
can	be	built	from	their	prime	factors,	where	 ,	and	 ,	and
so	 on	 (more	 on	 that	 in	Chapter	 5).	 Stripping	 back	 to	 building	 blocks	 requires
abstract	thought,	so	it’s	not	always	easy.	Here,	for	instance,	we	have	shifted	our
attention	 from	 the	 shapes	 that	make	 up	 the	 tessellation	 to	 the	 translations	 that
return	 it	 to	 itself.	 Translations	 are	 more	 abstract	 than	 shapes—we	 can’t	 ‘see’
them	in	such	a	direct	way—so	they	are	harder	to	think	about.	If	you	want	more
practice,	 it	might	be	worth	playing	around	with	 the	 idea	for	other	semi-regular
tessellations.	What	 are	 their	 translation	 symmetries?	Do	 any	 of	 them	 have	 the
same	symmetries	as	this	one,	despite	involving	different	shapes?
If	 you’re	 ready	 to	 move	 on,	 we’ll	 next	 ask	 how	 similar	 ideas	 apply	 to

rotations.	The	centre	of	any	octagon	is	a	centre	of	fourfold	rotation	symmetry,	as
indicated	below.	Rotating	 through	 	about	 such	a	point	 returns	 the	pattern	 to
itself,	 as	does	 rotating	 through	 	or	 through	 ;	 repeating	 the	 	 rotation
generates	 these	 others.	 Rotating	 four	 times	 through	 	 takes	 the	 tessellation
back	 to	where	 it	 started.	 That’s	 interestingly	 different	 from	 translating,	 notice.
We	could	repeat	the	horizontal	translation	any	number	of	times	and	never	come
back	to	the	start.	How	do	inverses	work	for	rotations?



And	 how	many	 rotation	 symmetries	 are	 there?	 Each	 octagon	 holds	 one,	 so
there	 are	 infinitely	 many.	 But	 it	 turns	 out	 that	 we	 can	 build	 all	 of	 those	 by
combining	just	this	one	rotation	with	translations.	For	instance,	suppose	that	we
want	 to	 rotate	 through	 	 about	 the	 octagon	 marked	 with	 the	 cross	 in	 the
following	diagram.	We	can	do	that	by	translating	according	 to	 the	arrow	in	 the
top-left	diagram	to	move	the	cross	octagon	to	the	centre	of	our	existing	rotation.
That	results	in	the	configuration	in	the	top	right.	Then	we	can	rotate	through	
about	 the	 dot,	 resulting	 in	 the	 configuration	 in	 the	 bottom	 left.	 Then	 we	 can
translate	back	according	to	the	arrow	in	the	bottom	right.	The	configuration	we
end	up	with	is	exactly	what	we	would	get	by	performing	a	 	rotation	about	the
cross.	 In	 the	 diagram	 I’ve	 labelled	 some	 octagons	 to	 clarify	where	 everything
goes.	But	if	the	static	diagrams	don’t	convince	you,	get	out	some	tracing	paper,
label	or	colour	some	more	octagons,	and	try	it	for	yourself.



Similar	 processes	 will	 generate	 any	 octagon-centred	 rotation.	 But	 there	 are
other	 rotation	 symmetries	 too.	 A	 	 rotation	 centred	 in	 a	 square	 is	 different
because	it	moves	the	surrounding	octagons	to	their	immediate	neighbours,	which
the	octagon-centred	rotation	does	not.	But	again	we	could	get	any	square-centred
rotation	by	combining	a	single	one	with	translations.	Will	just	two	rotations	plus
the	translations	generate	all	possible	symmetries	not	involving	reflections?



2.10	Symmetry:	Reflections	and	groups

For	 the	octagons-and-squares	 tessellation,	one	axis	of	 reflection	symmetry	cuts
the	 tessellation	 between	 two	 rows	 of	 octagons.	But	 it’s	worth	 pausing	 here	 to
consider	 the	 meaning	 of	 the	 word	 symmetry.	 When	 thinking	 about	 reflection
symmetry,	we	tend	to	make	observations,	as	in,	‘The	pattern	is	symmetrical.’	But
in	 the	 preceding	 section	 I	wrote	 about	 symmetries	 as	 transformations—not	 as
things	we	observe,	but	as	things	we	perform.	For	translations	and	rotations	this	is
pretty	natural:	we	can	imagine	sliding	or	rotating	the	pattern	(or	the	tracing	paper
over	 the	 pattern).	 For	 reflections	 it’s	 less	 natural	 but	 still	 possible.	 We	 can
imagine	flipping	the	tracing	paper	over	so	that	everything	not	on	the	axis	swaps
places	with	its	mirror	image.



As	 a	 transformation,	 this	 reflection	 is	 its	 own	 inverse:	 flipping	 twice	 in	 the
same	axis	returns	everything	to	where	it	started.	Is	that	true	for	every	reflection?
And	can	we	build	different	reflections	by	combining	this	one	with	translations,
or	with	rotations?	Can	you,	for	instance,	work	out	how	to	generate	a	reflection	in
a	 different	 horizontal	 line,	 or	 in	 a	 vertical	 or	 diagonal	 line?	 This	 is	 another
occasion	for	tracing	paper—you	might	want	to	experiment.
If	 you	 do	 that	 carefully,	 you	 should	 find	 that	 we	 can	 combine	 this	 one

reflection	 with	 translations	 and	 rotations	 to	 get	 numerous	 other	 reflections.
Suppose,	 for	 instance,	 that	we	want	 to	 reflect	 in	 the	vertical	 dotted	 line	 in	 the
top-left	 diagram	 that	 follows.	 We	 can	 do	 that	 by	 performing	 our	 horizontal
reflection	in	the	dashed	line	(top	right)	then	rotating	through	 	about	the	point
where	 the	 dotted	 and	 dashed	 lines	 meet	 (bottom	 left).	 That	 results	 in	 the
configuration	 in	 the	 bottom	 right,	 which	 is	 exactly	 what	 we	 would	 get	 by
performing	the	reflection	in	the	dotted	vertical	line.



I	 could	 also	 explain	 how	 to	 get	 diagonal	 reflections,	 but	 it	 would	 develop
more	intuition	if	you	experiment	for	yourself.	Try	it:	draw	an	axis	of	 reflection
symmetry	and	work	out	how	to	build	the	corresponding	reflection	by	combining
the	 horizontal	 reflection	 with	 translations	 and	 rotations.	 Then,	 to	 convince
yourself	 that	 this	 is	possible	 in	many	cases,	note	 that	whatever	combination	of
symmetries	 we	 perform,	 the	 pattern	 is	 either	 upside	 down	 or	 rightside	 up.	 If
you’re	using	tracing	paper	and	the	side	you	drew	on	ends	up	facing	down,	you
need	a	 reflection	 to	get	 it	 that	way.	Much	 else	 can	 be	 done	by	 translating	 and
rotating.
If	you	are	convinced	of	that	and	you	want	a	challenge,	you	could	investigate

alternative	 generator	 combinations.	 For	 instance,	what	 single	 symmetry	would
have	 the	same	effect	as	performing	 two	reflections	 in	distinct	horizontal	 lines?
What	 single	 symmetry	would	 have	 the	 same	 effect	 as	 performing	 a	 horizontal
reflection	 then	 a	 vertical	 one?	 If	 we	 had	 two	 nonparallel	 reflections	 and	 two
nonparallel	translations,	could	we	generate	all	possible	symmetries	without	using
rotations?
At	this	point	we	are	really	working	at	an	abstract	 level.	We	have	shifted	our



attention	 from	 obvious	 objects	 (octagons	 and	 squares)	 through	 more	 abstract
objects	 (symmetries	of	a	whole	 tessellation)	 to	 the	 relationships	between	 those
abstract	 objects.	 Effectively,	 we’re	 now	 doing	 arithmetic	 with	 symmetries,
considering	which	ones	we	get	by	combining	which	others.	If	this	is	all	new	to
you,	you	might	like	to	know	that	we’re	thinking	about	group	theory,	an	area	of
mathematics	concerned	with	abstract	structures.	A	mathematical	group	is	a	set	of
objects	of	some	kind	(in	this	case	symmetries),	together	with	a	binary	operation.
Binary	operations	were	discussed	in	Section	1.3,	where	I	noted	that	addition	is	a
binary	operation:	it	takes	two	numbers	(hence	‘binary’)	and	operates	on	them	to
give	another	 (hence	‘operation’).	The	operation	for	symmetries	 is	composition,
where	composing	two	symmetries	is	a	formal	way	of	saying	‘do	one,	then	do	the
other’.
To	 form	 a	 group,	 the	 set	 of	 objects	 together	with	 its	 binary	 operation	must

satisfy	four	axioms:	1.	The	group	must	be	closed:	using	the	binary	operation	to
combine	any	two	objects	in	the	set	must	give	another	object	in	the	set.	Adding
two	numbers	always	gives	another	number.	Composing	two	symmetries	always
gives	 another	 symmetry,	 because	 each	 replaces	 the	 tessellation	 perfectly	 on
itself.

2.	There	must	be	an	identity,	an	object	in	the	set	that	does	not	change	the
others.	When	adding	numbers,7	the	identity	is	0	because	n	+	0	always
equals	n.	When	composing	symmetries,	the	identity	is	do	nothing	(this
might	seem	weird,	but	‘do	nothing’	is	a	perfectly	good	symmetry,	just	as	0
is	a	perfectly	good	number).

3.	Every	element	must	have	an	inverse,	an	object	that	‘undoes’	its	effect.
When	adding	numbers,8	the	inverse	of	2	is	–2.	When	composing
symmetries,	the	inverse	of	rotate	through	 	is	rotate	through	 ,	and	so
on.

4.	The	operation	must	be	associative:	if	 ,	and	c	are	objects	in	the	set	and
the	binary	operation	is	 ,	we	must	have	 .	When
adding	numbers	it	is	always	true	that	 .	When
composing	symmetries	 ,	and	C,	it	is	always	true	that	 	has
the	same	effect	as	 	(the	symbol	‘∘’	is	often	used	for
composition).	This	axiom	is	often	the	hardest	to	think	about.9

Group	theory	is	part	of	an	area	of	mathematics	called	abstract	algebra,	which
is	an	appropriate	name	because	it	is	indeed	very	abstract.	These	axioms	are	not
about	 numbers,	 or	 about	 individual	 addition	 sums,	 or	 even	 really	 about
relationships	between	addition	sums.	They’re	about	properties	of	 the	whole	set



of	numbers	and	how	they	behave	under	addition.	Similarly,	 the	axioms	are	not
about	 tessellations,	 or	 about	 individual	 symmetries	 of	 tessellations,	 or	 even
really	 about	 the	 relationships	 between	 those	 symmetries.	 They’re	 about
properties	 of	 the	 whole	 set	 of	 symmetries	 and	 how	 they	 behave	 under
composition.	Nevertheless,	 in	both	cases,	 the	axioms	are	 the	same.	That’s	why
they	 are	 worth	 stating,	 and	 that’s	 why	 mathematicians	 study	 subjects	 like
abstract	algebra—they	are	drawn	to	cases	in	which	superficially	different	things
have	 the	 same	 underlying	 structures.	 Numbers	 and	 symmetries	 feel	 very
different,	but	behave	in	remarkably	similar	ways.

2.11	Symmetry	in	other	contexts

In	this	chapter	we	have	considered	symmetries	of	infinite	tessellations.	But	ideas
about	symmetries	and	groups	can	also	be	applied	to	other	objects.	Simpler	cases
involve	 symmetries	 of	 single	 shapes.	 What	 are	 the	 symmetries	 of	 a	 regular
pentagon?	 Translations	 are	 irrelevant—we	 can’t	 shift	 a	 pentagon	 to	 the	 right
while	 landing	 it	back	on	 itself.	But	 rotations	and	 reflections	are	possible.	How
many	symmetries	does	a	pentagon	have,	and	how	many	are	needed	to	generate
its	symmetry	group?
Symmetries	 can	 also	 be	 used	 to	 classify	 patterns.	 For	 instance,	 there	 are

exactly	 17	 distinct	wallpaper	 groups,	 meaning	 that	 every	 possible	 repeating-
pattern	wallpaper	has	one	of	 just	17	underlying	symmetry	groups.	The	designs
might	 look	 different—maybe	 your	 wallpaper	 has	 swirls	 and	 your	 child’s	 has
spaceships.	But	 there	are	only	17	fundamentally	distinct	ways	of	arranging	 the
swirls	or	spaceships	on	wallpaper.
We	can	also	generalize	to	objects	with	more	dimensions.	Can	you	list	all	the

symmetries	of	a	cube?	Again	translations	are	irrelevant,	but	the	extra	dimension
makes	reflections	and	rotations	more	complex.	For	instance,	we	could	reflect	a
cube	not	 in	a	 line	but	 in	a	plane	 as	 labelled	 in	 the	 following	 left	diagram.	Are
there	reflection	symmetries	for	which	the	plane	cuts	the	cube	in	different	ways?
Through	vertices,	for	instance,	rather	than	faces	and	edges?	Similarly,	we	could
rotate	 a	 cube	 not	 about	 a	 point	 but	 about	 an	axis	 dropped	 directly	 through	 its
centre,	as	in	the	diagram	on	the	right.	Through	what	angles	could	we	rotate	it	to
give	symmetries?	And	what	is	the	corresponding	answer	if	we	put	the	axis	from
one	vertex	to	its	diagonal	opposite?



Finally,	we	can	ask	about	symmetries	for	patterns	like	the	one	on	the	front	of
this	book.	That	picture	 shows	a	Penrose	 tiling,	 named	 after	 the	mathematician
Roger	Penrose.	Here	 is	a	version	 in	black	and	white	 so	 that	you	can	 inspect	 it
carefully.



Note	that	the	whole	pattern	is	composed	using	just	two	types	of	tile,	which	are
usually	called	kites	and	darts.	The	kites	are	convex	and	have	interior	angles	
(three	of	these)	and	 .	Darts,	like	the	dented	hexagon	in	Section	2.2,	are	not
convex;	their	interior	angles	are	 	(two	of	these),	and	 .



If	 the	 	 angle	 looks	 familiar,	 that’s	 because	 it	 appeared	 in	 this	 chapter	 in
relation	to	regular	pentagons.	And	that’s	not	a	coincidence—Penrose	tilings	are
intimately	 related	 to	 pentagonal	 symmetry.	 This	 particular	 tiling	 has	 fivefold
rotation	symmetry	about	its	central	point,	and	five	axes	of	reflection	symmetry.
Does	 it	 have	 translation	 symmetry?	 That’s	 less	 obvious.	 There’s	 no	 visible
repeating	pattern	in	the	diagram,	but	the	diagram	shows	only	a	finite	portion	of
an	 infinite	 tiling.	 Perhaps	 if	 we	 extended	 it,	 we	 would	 be	 able	 to	 identify	 a
translation	symmetry.
But	 you	 might	 have	 guessed	 that	 this	 is	 interesting	 because	 no	 such

translation	 exists.	 Penrose	 tilings	 are	 aperiodic,	 meaning	 that	 they	 have	 no
translation	symmetry.	The	 shapes	 fit	 together	perfectly	 and	 the	pattern	 extends
forever,	but	it	never	repeats.	Never.	I	think	this	is	brilliant,	and	we	are	privileged
to	 know	 about	 it:	 aperiodic	 tilings	 were	 first	 constructed	 in	 the	 1960s,	 and
Penrose	tilings	in	the	1970s.	There	are	kite-and-dart	tilings	with	different	central
configurations—you	might	like	to	experiment	with	other	ways	to	put	the	shapes
together.10	And	there	are	aperiodic	tilings	composed	using	different	shapes.	All
have	 extremely	 interesting	 properties,	 and	 you	 can	 learn	 more	 with	 a	 simple
internet	search.	Finally,	 if	you	agree	 that	 this	 is	brilliant	and	you	would	 like	 to
stand	 on	 some	 Penrose	 tiles,	 you	 can	 do	 so	 outdoors	 at	 the	 Mathematical
Institute	 at	 the	 University	 of	 Oxford,	 and	 indoors	 at	 the	 Department	 of
Mathematics	at	Texas	A&M	University.	I	hope	there	are	more	places	too.

2.12	Review

This	 chapter	 began	 with	 questions	 about	 a	 single	 semi-regular	 tessellation.	 It
then	 discussed	 polygons,	 regular	 tessellations,	 interior	 angles,	 searching
systematically	for	semi-regular	 tessellations,	symmetries,	groups,	and	aperiodic
Penrose	tilings.	As	in	Chapter	1,	I	highlighted	links	between	mathematical	ideas



and	 raised	 questions	 that	 readers	 might	 pursue.	 For	 those	 who	 are	 interested,
there	is	plenty	to	follow	up.
I	 also	 once	 again	 discussed	 broader	 mathematical	 ideas.	 These	 included

precise	 definitions	 and	 nested	 classifications.	 I	 highlighted	 both	 the	 labour-
saving	 value	 of	 general	 formulas	 and	 the	 utility	 of	 algebra	 for	 constructing
general	 arguments—for	 instance,	 for	 establishing	 the	 equivalence	 of	 two
differently	derived	formulas.	I	also	noted	that	mathematicians	write	in	sentences.
Mathematical	arguments	might	contain	both	symbols	and	words,	but	they	can	be
read	aloud	as	one	would	read	other	text.	As	you	continue	with	this	book,	I	would
encourage	 you	 to	 check	 that	 you	 are	 really	 reading	 the	 mathematics	 in	 this
meaningful	way.
This	 chapter	 also	 discussed	mathematical	 theory.	 Theory	 was	 central	 in	 the

later	 sections,	which	 discussed	 abstract	ways	 to	 examine	 tessellations,	 and	 the
fact	 that	 different	 structures	 might	 have	 the	 same	 underlying	 group	 theoretic
properties.	But	theory	building	also	operates	at	more	concrete	levels.	In	Section
2.5	 I	 commented	 that	 mathematicians	 are	 often	 less	 interested	 in	 applying
mathematical	arguments	than	in	generalizing	to	establish	that	they	always	work.
I	 think	 this	 contrasts	 interestingly	 with	 what	 many	 people	 experience	 during
their	 mathematical	 education.	 For	 many,	 doing	 mathematics	 means	 doing
applications—repeating	standard	calculations	for	different	numbers	or	angles	or
equations.	Applications	can	be	satisfying,	of	course—a	page	of	correct	answers
might	bring	pleasure,	even	if	many	people	later	decide	that	such	work	is	boring.
But,	 for	 me,	 the	 satisfaction	 of	 a	 job	 well	 done	 is	 quite	 different	 from	 the
satisfaction	 that	comes	 from	understanding	why	an	argument	works.	 I	 find	 the
latter	much	 deeper	 and	more	 gratifying.	 If	 you	 began	 this	 book	 believing	 that
mathematics	is	repetitive	and	dull,	are	you	starting	to	see	what	I	mean?

1	I	had	to	look	up	this	word.	For	numbers	of	edges	above	about	12,	mathematicians	tend	just	to	write	the
number	and	stick	‘-gon’	on	the	end,	as	in	‘an	18-gon’,	‘a	100-gon’.

2	As	a	child	I	learned	to	call	a	parallelogram	with	equal-length	edges	a	diamond,	but	you	don’t	really
hear	that	in	higher	level	mathematics.

3	I	have	omitted	the	degree	symbol	‘°’	in	the	diagrams	because	it	clutters	them	up.
4	There	might	be	a	better	way,	though,	or	you	might	prefer	another	one.
5	This	is	an	open-source	package	so	you	can	play	with	it	for	free—see	http://www.geogebra.org.

http://www.geogebra.org


6	Before	writing	this	chapter	I	had	a	vague	idea	that	I’d	make	the	polygon	edge	lengths	the	same	in	all
the	diagrams.	That	was	never	going	to	happen.

7	When	multiplying	numbers,	the	identity	is	1	because	 	always	equals	n.	The	identity	depends
upon	the	binary	operation.

8	What	is	the	multiplicative	inverse	of	2?
9	Not	all	binary	operations	are	associative,	just	as	not	all	binary	operations	are	commutative.	For

numbers,	it	is	not	always	true	that	 .
10	Searching	for	‘GeoGebra	Penrose’	yields	a	downloadable	worksheet	by	Anthony	Or	that	allows	you

to	do	this.



CHAPTER	3

Adding	up

3.1	Infinite	sums

Have	you	heard	the	argument	that	it	is	impossible	to	leave	a	room?	To	get	to	the
door	 you	 have	 to	 go	 halfway.	 Then	 you	 have	 to	 go	 half	 of	 the	 remaining
distance,	then	half	of	that,	and	so	on.	Some	distance	always	remains,	so	you	can
never	get	out	of	the	room.
Presentations	 of	 this	 apparent	 paradox	 sometimes	 make	 me	 irritated.	 Not

because	 the	 underlying	 issues	 are	 uninteresting—on	 the	 contrary,	 they
encompass	 some	 beautiful	mathematics.	What	 irks	 me	 is	 that	 they	 sometimes
encourage	 people	 to	 treat	 this	 argument	 as	 an	 isolated	 curiosity	 and,	 because
everyone	knows	that	they	can	get	out	of	the	room,	to	conclude	that	mathematics
is	nonsense.
Mathematics	isn’t	nonsense,	and	considered	carefully	this	is	not	a	paradox:	it

is	 a	 question	 about	 infinite	 sums.	 To	 see	 this,	 it	 helps	 to	 introduce	 numbers.
Suppose	that	the	door	is	two	metres	away.	To	get	to	it,	you	must	travel	half	of	the
distance	(one	metre),	then	half	of	what	is	left	(half	a	metre),	then	half	of	what	is
left	 (a	 quarter	 of	 a	 metre),	 and	 so	 on.	 In	 total	 you	 must	 travel	

metres,	where	the	ellipsis	‘…’	means	‘and	so	on	forever’.
For	some	people	the	apparent	paradox	arises	because	the	argument	implicitly

invites	us	 to	 think	 that	 each	 successive	 fraction	of	 the	distance	 takes	 the	 same
amount	of	time.	If	it	did	take,	say,	one	second	to	go	half	way,	and	another	to	go
half	of	what’s	left,	and	another	to	go	half	of	what’s	left,	then	it	would	indeed	take
forever	to	get	out	of	the	room.	It	doesn’t,	though,	so	that’s	not	really	a	problem.
And	 in	 fact	 there	 is	 no	 problem	 at	 all,	 because	 	 is
equal	 to	 2;	 the	 distances	 added	 together	 cover	 the	 two	 metres.	 This	 can	 be



represented	on	a	number	line.

You	 might	 not	 be	 happy	 with	 that,	 though.	 You	 might	 think,	 ‘Well,	 the
fractions	all	fit,	but	the	sum	isn’t	2	because	there’s	always	a	bit	left	over.’	If	so,
hold	that	thought—its	mathematical	resolution	will	be	discussed	in	this	chapter.
For	now,	note	that	 	is	an	infinite	sum—also	known	as
a	series—because	it	has	infinitely	many	terms	or	addends	(things	that	are	added
up).	But	its	total	is	nevertheless	finite.	There	are	infinitely	many	terms,	but	their
total	is	certainly	not	bigger	than	2.
To	 complete	 this	 introduction,	 I	 want	 to	 raise	 a	 question	 about	 a	 different

series:	

This	is	known	as	the	harmonic	series.	It	too	has	infinitely	many	terms	and,	as	for
the	 previous	 series,	 each	 term	 is	 smaller	 than	 its	 predecessor.	 The	 following
diagram	 represents	 the	 sum	of	 the	 first	 six	 terms	 (check	 that	 you	 believe	 I’ve
made	the	bars	the	right	lengths).

What	do	you	 think	 is	 the	 total	of	 this	 infinite	 sum?	 It	 is	certainly	more	 than	2
because	adding	the	first	four	terms	gives	 	(don’t	worry	if	your
fraction	addition	is	rusty—we’ll	review	that).	Is	the	total	bigger	than	3?	Bigger
than	4?	How	big	do	you	reckon	it	is	overall?	You	might	want	to	write	down	an
estimate	 so	 that	 later	 you	 can	 see	 how	 close	 you	 were.	 As	 in	 the	 preceding
chapters,	we	will	work	up	 to	 the	mathematics	 needed	 for	 this	 by	 starting	with
more	basic	material,	this	time	on	fractions	and	addition.



3.2	Fractions

How	do	 you	 think	 about	 fractions?	There	 are	 various	ways	 to	 do	 it,	 and	 they
highlight	different	aspects	of	this	type	of	number.	To	see	what	I	mean,	try	this.

Which	is	greater,	 ?
And	again,	which	is	greater,	 ?
And	again,	which	is	greater,	 ?

Did	you	find	the	second	question	harder	than	the	first?	And	the	third	harder	still?
Most	people	do.	In	the	first	question,	the	second	fraction	has	a	bigger	numerator
and	is	therefore	bigger.	In	the	second	question,	the	second	fraction	has	a	bigger
denominator,	and	is	therefore	smaller.	In	the	third	question,	both	numerator	and
denominator	 are	 bigger,	 so	 the	 components	 don’t	 lend	 themselves	 to
straightforward	 comparison	 and	 the	 question	 demands	 more	 sophisticated,
strategic	thought.	Mathematically	educated	adults	tend	to	know	all	of	this	and	to
get	 the	answers	 right,	but	 in	 the	 later	cases	 they	are	slower	and	more	prone	 to
error.	 It	 takes	 extra	 thinking	 to	 over-ride	 the	 instinct	 that	 fractions	 involving
‘bigger	 numbers’	will	 be	 bigger,	 and	 to	 invoke	 a	 reasoning	 strategy	 that	 takes
account	of	overall	magnitude	rather	than	component	sizes.	And	 this	 is	a	 robust
effect:	even	professional	mathematicians	 take	 longer	 to	 judge	 the	relative	sizes
of	 more	 difficult	 fraction	 pairs,	 and	 they	 make	 more	 mistakes	 when	 judging
under	time	constraints.
So,	 if	 you	 did	 find	 the	 second	 and	 third	 questions	 harder,	 you’re	 in	 good

company.	This	means	that	it	is	useful	to	represent	fractions	in	ways	that	clarify
their	 relative	 sizes.	One	 approach	 is	 to	 use	 diagrams	 like	 those	 in	 Chapter	 1,
perhaps	with	circles.



This	supports	comparison,	but	only	if	the	diagrams	are	accurate—it’s	not	much
use	if	you	can’t	draw	elevenths.
Another	 approach	 is	 to	 convert	 to	 decimals.	 For	 instance,	

This	 supports	 comparison	 because	 decimals	 use	 a	 standard	 scale	 of	 tenths,
hundredths,	and	so	on.	For	instance,	 	is	less	than	0.3	and	 	is	greater	than	0.3,	so
	 is	 bigger.	 Decimals	 raise	 other	 questions,	 though.	 Each	 of	 these	 decimal

expansions	 is	 infinite,	 so	 in	 decimal	 form	 we	 can’t	 write	 down	 the	 ‘whole’
number;	writing	 	is	more	economical	and	more	precise.	You	might	be	inclined
to	 observe	 that	 	 has	 a	 repeating	 pattern,	 meaning	 that	 it	 could	 be	 written
economically	as	 	or	 	(where	the	digits	between	the	dots	or	under	the	line
repeat	forever).	If	so,	though,	you	should	ask	yourself	a	question.	How	sure	are
you	that	the	pattern	repeats	forever?	How	do	you	know	that	it	doesn’t	change	at
the	tenth	digit,	or	the	hundredth?	Have	a	think	about	that—there’ll	be	more	on	it
in	Chapter	5.	For	now	we’ll	stick	to	fractions.
I	often	think	about	fractions	as	ratios	of	lengths.	For	 ,	I	see	in	my	mind’s	eye

a	bar	of	length	2	and	another	of	length	7.	The	2	is	two	sevenths	of	the	7,	so	I	can
‘see’	 	as	that	ratio.	To	think	of	 	more	explicitly	as	a	number	between	0	and	1,	I
can	mentally	rescale,	which	really	just	involves	relabelling.

Rescaling	 also	 helps	 for	 thinking	 about	 equivalent	 fractions.	 For	 instance,	

which	 all	 look	 the	 same	 in	 the	 following	diagrams	because	 each	has	 the	 same
numerator-to-denominator	 ratio.	 That’s	 what	 it	 means	 for	 fractions	 to	 be
equivalent.



You	might	like	to	know	that	some	languages	write	fractions	explicitly	as	ratios.	I
learned	 this	 only	 recently	 because	 people	 tend	 to	 translate	 for	 international
audiences.	 But	 Belgians,	 for	 instance,	 write	 	 instead	 of	 1/3.	 The	 English
notation	 1/3	 highlights	 a	 division	meaning	 for	 fractions,	 which	 I’ll	 discuss	 in
Chapter	5.	The	Belgian	notation	highlights	the	ratio	meaning.	Remember	that	in
Chapter	1	I	said	mathematicians	refer	to	fractions	as	rational	numbers?	Do	you
see	why?
Ratio	thinking	supports	my	strategy	for	fraction	comparison.	I	wouldn’t	want

to	convert	to	decimals	because	I	can’t	easily	do	that	in	my	head.	And	comparing	
	with	 	 is	 difficult	 because	 these	 fractions	 are	 similar	 sizes	 and	 because	my
mental	representation	of	sevenths	and	elevenths	isn’t	great.	The	representations
in	 this	 book	 are	 accurate,	 but	 that	 is	 because	 (for	 instance)	 I	made	 the	 circles
carefully	 using	 a	 computer	 package	 and	 properly	 calculated	 angles.	 My
imagination	 is	more	 like	 freehand	 drawing,	 and	 I	 wouldn’t	 need	 to	 be	 off	 by
much	 to	be	wrong.	But	my	mental	 approximations	are	good	enough	 for	me	 to
see	that	both	 	and	 	must	be	around	 .	Having	recognized	that,	I	can	do	easier
comparisons,	working	out	that

	is	a	bit	less	than	 ,	because	 ,
and	that

	is	a	bit	bigger	than	 ,	because	 .

So	 	 is	 bigger	 than	 .	 I	 like	 chains	 of	 equations	 and	 inequalities	 so	 I	 might



summarize	this	by	writing

which	would	 be	 read	 aloud	 as	 ‘two	 sevenths	 is	 less	 than	 two	 sixths,	which	 is
equal	 to	 one	 third,	 which	 is	 equal	 to	 four	 twelfths,	 which	 is	 less	 than	 four
elevenths’.
From	 representing	 ratios	 using	 bars,	 it	 is	 only	 a	 short	 step	 to	 number	 lines,

which	are	hard	to	beat	for	size	comparisons.	Here	is	a	number	line	equivalent	of
the	 	diagram.

And	 here	 are	 some	 number	 lines	 showing	 fractions	 between	 0	 and	 1	 with
different	denominators.



Number	 lines	 also	highlight	 other	ways	 in	which	 rational	 numbers	differ	 from
whole	numbers,	where	whole	numbers	are	properly	called	integers.	Consider	this
question.

How	many	numbers	are	there	between	 ?

The	 answer,	 of	 course,	 is	 infinitely	many—you	 can	 identify	 some	using	 the
number	 lines	 above.	 But	 can	 you	 guess	 what	 incorrect	 answer	 children
sometimes	give?	Yep,	three.	They	tend	to	think

‘three	eighths,	four	eighths,	five	eighths,	six	eighths,	seven	eighths.’
Effectively	they	treat	rational	numbers	as	though	they	behave	like	integers.	For
some	purposes	that’s	okay.	Like	integers,	rational	numbers	can	be	ordered	on	a



number	 line.	But,	unlike	 integers,	 rational	numbers	 can’t	be	 ‘counted’	 in	order
from	 left	 to	 right.	 For	 any	 given	 rational	 number	 there	 is	 no	 ‘next’	 number,
because	 for	 any	candidate	next	number,	 there’s	 a	number	 closer.	 If	 that	makes
you	hesitate,	try	starting	at	 .	The	number	 	is	pretty	close	to	this,	but	it’s	not	as
close	as	 ,	or	 ,	or	 .	However	close	we	get,	there	are	always	more	numbers
in	the	gap.

I	alluded	to	this	difference	in	a	footnote	in	Chapter	1.	The	natural	numbers—the
counting	numbers—can	be	thought	of	in	terms	of	discrete	objects,	or	in	terms	of
marks	or	distances	on	a	number	line.

The	 rational	 numbers	 can’t	 be	 thought	 of	 as	 discrete	 line-up-able	 quantities,
although	 they	 can	 be	 represented	 on	 a	 number	 line,	 at	 least	 with	 some
imagination.	We	can’t	draw	infinitely	many	marks,	but	we	can	imagine	zooming
in	to	see	more	and	more.



Taking	that	to	its	logical	conclusion,	we	can	think	about	the	number	line	as	a
continuum;	 shifting	 from	 integers	 to	 rational	 numbers	 shifts	 from	 discrete
towards	continuous	quantities.	The	rational	numbers	aren’t,	in	fact,	enough	to	fill
the	continuum,	which	I’ll	explain	in	Chapter	5.	But	the	number	line	is	useful	for
adding	fractions,	which	we’ll	do	next.

3.3	Adding	fractions

If	the	thought	of	adding	fractions	strikes	terror	into	your	heart,	you’re	not	alone.
For	many	people,	 this	marked	 the	point	 at	which	mathematics	 started	 to	 seem
like	meaningless	symbol-pushing.	One	problem	is	 that	everyone	has	a	sense	of

symbolic	tidiness,	so	we’re	all	a	bit	annoyed	that	

After	all,	as	discussed	in	Chapter	1,	it	is	true	that	

Unfortunately,	the	addition	version	doesn’t	work.	It	can’t,	because	the	sizes	are
all	wrong.	Completing	the	incorrect	addition,



which	 can’t	 be	 right.	Number	 lines	 indicate	 that	 the	 sum	 should	 be	 about	 3/4,
and	3/11	is	nowhere	near	that.

If	you	find	this	annoying,	I’m	right	there	with	you.	Mathematical	notation	 is
often	 designed	 to	 work	 conveniently	 with	 calculations,	 so	 it’s	 natural	 to	 feel
disgruntled	when	it	doesn’t.	It’s	particularly	natural	to	feel	disgruntled	when	the
correct	calculation	procedure	is	a	multistep	horror,	as	it	undeniably	is	for	adding
fractions.

If	you	learned	this	procedure	without	understanding	it,	and	consequently	became
confused,	 started	 getting	 things	 wrong,	 and	 decided	 that	 you	 didn’t	 like
mathematics	any	more,	you	have	my	sympathy,	and	we’ll	sort	it	out.	If	you	did
understand	 it,	 then	 before	 reading	 on	 you	might	want	 to	 see	whether	 you	 can
explain	why	 it	works.	Would	 your	 explanation	 satisfy	 a	 sceptic?	How	about	 a
sceptical	9	year-old?
As	you	might	expect,	I’m	going	to	forget	the	procedure	for	now	and	start	with

the	meaning.	What	 are	we	 trying	 to	 do?	When	 is	 it	 easy	 and	when	 is	 it	 hard?
Well,	it’s	easy	when	we’re	adding	fractions	with	the	same	denominator.	Adding
3/5	to	4/5	gives	7/5.	There’s	no	mystery	in	that:	the	‘pieces’—the	fifths—are	all
the	same	size,	so	we	can	just	line	them	up.	Three	fifths	plus	four	fifths	is	seven



fifths,	just	as	three	carrots	plus	four	carrots	is	seven	carrots.

Things	are	also	not	too	bad	if	the	fractions’	denominators	work	well	together.	To
add	1/2	and	1/4,	for	instance,	it’s	useful	to	split	the	half	into	two	quarters,	so	that
the	sum	is	two	quarters	plus	one	quarter,	totalling	three	quarters.	To	add	1/2	and
1/6,	 it’s	useful	 to	split	 the	half	 into	 three	sixths,	so	 that	 the	sum	is	 three	sixths
plus	one	sixth,	totalling	four	sixths.

And	 there	 is	 nothing	 special	 about	 these	 numbers.	 The	 same	 reasoning	works
whenever	 one	 fraction	 can	 be	 rewritten	 so	 that	 the	 two	 have	 a	 common
denominator.	Once	they	do,	we’re	back	in	the	carrots	situation—we	can	just	line
them	up.



If	 you	 understand	 that,	 you	 understand	 enough	 to	 make	 sense	 of	 the	 full
procedure.	The	remaining	problem	is	that	it’s	not	always	possible	to	rewrite	one
fraction	so	that	it	has	the	same	denominator	as	the	other.	For	instance,	we	can’t
add	1/2	and	1/3	in	this	way.	It’s	not	possible	to	split	the	half	into	thirds—thirds
don’t	‘fit’.	What	do	you	think	we	should	do	instead?	I	expect	that	most	readers
will	either	 remember	or	 invent	 the	sensible	solution:	 split	both	 fractions.	What
should	 we	 split	 them	 into?	 We	 need	 something	 that	 works	 for	 both,	 and	 a
sensible	 choice	 is	 sixths.	Splitting	 the	 half	 gives	 three	 sixths,	 and	 splitting	 the
third	gives	two	sixths.	Adding,	therefore,	gives	five	sixths.

Here	are	some	more	sums.	What	splitting	would	you	do	for	each	one,	and	what
are	the	totals?

And	here	are	some	accompanying	diagrams.	Did	you	choose	the	same	common
denominators?



In	all	of	these	cases	a	sensible	denominator	is	the	product	of	the	two	fractions’
denominators.	For	 the	 last	 example,	 for	 instance,	 it	makes	 sense	 to	 convert	 to

twenty-fourths	and	calculate	

We	 could,	 in	 fact,	 write	 out	 the	 multiplication	 at	 the	 first	 step:	

Then	 it	 is	 clearer	 that	 cross-multiplying	 as	 in	 the	 standard	 procedure	 has	 the

same	effect:	

As	usual,	though,	there’s	no	need	to	write	in	a	specific	way.	I	marginally	prefer
the	written-out	multiplication	 to	 the	 standard	 cross-multiplying.	 If	 you	 do	 too,
use	 it.	Or	 pick	 your	 own	 favourite.	 It’s	 not	worth	 sacrificing	 understanding	 to
save	a	tiny	bit	of	ink.
It	might	sometimes	be	worth	thinking	harder	about	the	denominator,	 though.

It’s	 always	 fine	 to	 use	 the	 product	 of	 the	 two	 denominators.	 But	 is	 it	 always
efficient?	What	if	we	want	to	do	this	sum?



We	could	convert	to	twenty-fourths	again.	But	do	we	need	to?	No—twelfths	will
do.	That’s	 because	 12	 is	 the	 lowest	 common	multiple	 of	 6	 and	 4,	 and	we	 get	

Under	 what	 conditions	 do	 we	 need	 to	 take	 the	 product,	 and	 under	 what
conditions	can	we	get	away	with	a	 lower	number?	 In	other	words,	under	what
conditions	is	the	least	common	multiple	less	than	the	product?	If	you	have	never
thought	about	this,	it’s	worth	exploring.
In	the	meantime,	having	had	some	practice,	we	can	confirm	the	claims	about

the	harmonic	series	from	the	beginning	of	this	chapter.

This	confirms	that	my	diagram	was	about	right.	The	fraction	 	is	a	tiny	bit	less
than	 ,	as	shown	below.	If	you	prefer	numerical	comparisons,	you	might	like	to
note	that	 	would	be	exactly	 	because	 .



How	many	more	fractions	would	you	want	to	add	to	confidently	predict	the	total
for	the	infinite	sum?

3.4	Adding	up	lots	of	numbers

To	work	toward	infinite	sums,	we	will	start	with	finite	sums	that	are	longer	than
those	 we’ve	 looked	 at	 so	 far.	 Consider,	 for	 instance,	 the	 sum	 of	 the	 numbers
from	1	to	100.	No	one	wants	 to	write	 this	out,	so	mathematicians	again	use	an
ellipsis,	writing	something	like	
Here	the	ellipsis	means	‘and	so	on	until’.	There’s	leeway	in	the	specifics,	though.
In	many	cases	a	mathematician	could	write	
and	 be	 confident	 that	 readers	would	 know	what	was	 intended.	 People	 tend	 to
think	that	mathematics	is	precise	and	should	be	written	in	only	one	way.	That	is
partly	 true—mathematicians	 care	 about	 precision—but	 what	 is	 written	 comes
down	 to	 clear	 communication	 and	 thus	varies	 according	 to	 audience.	And	 this
applies	to	words	as	well	as	symbols.	For	instance,	English	speakers	use	the	word
‘numbers’	with	considerable	ambiguity.	When	I	wrote	‘the	sum	of	the	numbers
from	 1	 to	 100’,	 I	 meant	 ‘the	 sum	 of	 the	 whole	 numbers	 from	 1	 to	 100’.	 I
definitely	didn’t	mean	the	sum	of	the	rational	numbers	(for	instance).	But	I	knew
that	 most	 readers	 would	 interpret	 as	 I	 intended,	 and	 that	 anyone	 who	 didn’t
would	quickly	resolve	this	by	looking	at	the	numerical	expression.
In	 any	 case,	 an	 expression	 like	 	 invites	 us	 to

imagine	 starting	with	1,	 then	adding	2,	 then	adding	3,	 and	so	on.	Most	people
conclude	that	this	would	keep	them	busy	for	a	long	time.	You	might	have	heard,
however,	that	the	young	Gauss	astounded	his	teacher	by	quickly	announcing	the
correct	answer.	The	story	might	well	be	apocryphal,	but	it’s	such	a	good	one	that
no	one	much	cares—we’re	all	quite	taken	with	the	idea	of	a	child	genius.	Genius
stories	concern	me,	 though,	because	 they	can	encourage	people	 to	believe	 that
mathematical	reasoning	requires	innate	talent	and	is	far	removed	from	what	most
of	us	can	do.	It’s	not,	and	I’d	like	to	replace	the	mystery	with	the	more	mundane
but	 empowering	 sense	 that	 even	 if	 most	 of	 us	 didn’t	 invent	 the	 relevant
reasoning,	we’re	perfectly	able	to	follow	and	appreciate	it.
For	instance,	there	are	several	straightforward	ways	to	calculate	the	sum	of	the

numbers	from	1	to	100.	First,	imagine	writing	the	numbers	from	1	to	50	in	a	row,
then	 turning	 around	 and	 writing	 the	 numbers	 from	 51	 to	 100	 in	 the	 other
direction	underneath.



Now	 the	 numbers	 are	 in	 columnnar	 pairs.	What	 does	 the	 first	 pair	 add	 up	 to?
And	the	second?	And	the	rest?	There	are	50	pairs	and	each	pair	adds	up	to	101.
So	the	total	is	 .	That	didn’t	take	long	at	all.
Did	you	notice,	 too,	 that	 this	argument	uses	properties	 from	Chapter	1?	 The

first	 step	 relies	 upon	 re-ordering	 the	 numbers.	 Instead	 of	

we	calculate

This	 involves	commutativity	 in	a	big	way:	many	swaps	are	 required	 to	get	 the
numbers	into	this	new,	more	convenient	order.
The	 second	 step,	 depending	on	how	you	 tackle	 it,	 uses	distributivity.	 If	you

checked	 the	multiplication,	you	might	have	split	101	 into	 	and	reasoned
that	

In	mental	calculations,	distributivity	is	very	handy.
Also,	the	whole	argument	is	generalizable	in	various	ways.	For	instance,	can

you	work	 out	 the	 sum	 of	 the	 numbers	 from	 1	 to	 200?	 From	1	 to	 1000?	How
about	from	11	to	100?	From	101	to	1000?	And,	in	the	original,	do	we	have	to	use
two	rows	of	50	numbers?	How	about	four	rows	of	25	instead?

Does	that	still	work?	If	so,	what	multiplication	do	we	end	up	doing?	If	not,	what
goes	wrong?	And	what	other	variations	are	possible?	Could	we	add	the	numbers
from	1	to	300	by	arranging	them	in	three	rows?	As	ever,	the	original	argument	is
cute	but	we	can	learn	more	by	generalizing.



An	alternative	way	 to	 think	about	 the	 sum	 is	 to	visualize.	An	 image	 for	 the
sum	from	1	to	100	would	occupy	too	much	space,	so	I’ll	do	1	to	7	and	invite	you
to	 see	 that	 as	 generic.	 Here	 are	 some	 dots	 representing	 the	 sum	

.

And	here’s	the	clever	bit:	adjoin	another	copy	of	this	sum	the	other	way	up.

Together	 these	make	 a	 rectangle,	 and	 in	 a	 rectangle	 it’s	 easy	 to	 find	 the	 total
number	 of	 dots.	 Here	 the	 total	 is	 	 (if	 you	 thought	 it	 would	 be	

,	 look	 carefully—this	 isn’t	 quite	 a	 square).	 The	 original	 sum	
	must	be	half	of	this,	so	it	is	 .



Now,	what	would	we	calculate	to	add	the	numbers	from	1	to	100?	In	that	case
there	would	be	100	rows,	so	 the	rectangle	would	have	 	dots.
For	the	sum	we’d	want	half	of	them,	once	again	giving	the	total	 .
To	 generalize	 fully,	 mathematicians	 might	 ask	 about	 the	 sum	

where	n	could	be	any	natural	number.	The	following	is	a	formula	for	that	sum.
Can	you	see	how	this	would	relate	to	a	triangle	with	n	rows?

As	you	will	know	if	you	read	Chapter	1,	I	really	like	visual	arguments.	I	find
them	wonderfully	compelling.	Not	everyone	does,	though,	and	opinions	tend	to
vary	with	mathematical	experience.	Nonexperts	often	find	diagrams	completely
convincing:	 they	see	them	as	generic	and	believe	that	whatever	 is	claimed	will
always	 work.	 People	 with	 more	 mathematical	 training,	 though,	 often	 mistrust
them.	At	some	point	they	are	told	that	‘a	picture	isn’t	a	proof’	because	it	shows
only	 one	 case,	 and	 they	 learn	 that	 mathematicians	 expect	 written,	 deductive
arguments,	 probably	 containing	 algebra.	 They’re	 right	 in	 a	 sense—
mathematicians	do	expect	students	 to	write	careful	algebraic	arguments.	That’s
only	 partly	 due	 to	 the	 one-case	 problem,	 however.	Mathematicians	 also	 value
theory	building,	and	algebraic	arguments	often	show	how	a	theory	fits	together.
The	 next	 section	 will	 consider	 some	 algebraic	 arguments.	 If	 you	 like

visualizing,	though,	you	might	like	to	know	that	there	are	entire	books	of	proofs
without	words	and	that	you	can	find	loads	on	the	internet.	Here	 is	another,	 this
time	 about	 adding	 odd	 numbers.	What	 is	n	 in	 the	 diagram,	 and	 how	 does	 the
diagram	correspond	to	the	formula?	Does	the	diagram	work	as	a	proof	without
words	for	you?



If	 not,	 some	 extra	 labels	 might	 help.	 In	 the	 following,	 the	 left	 diagram
highlights	 the	 grouping	 of	 dots	 into	 inverted	 L-shapes,	 and	 shows	 how	many
dots	 are	 in	 each.	 This	 diagram	 thus	 represents	 	 and,
relating	 this	 to	 the	 general	 sum	 ,	 we	 should	 have	

,	so	 .	The	sum	should	thus	be	72,	which	it	is—the	square	of	dots
has	 seven	 dots	 along	 each	 edge.	 Alternatively,	 the	 right	 diagram	 focuses
attention	 on	 the	 nth	 L-shape	 of	 an	 	 square.	 This	 L-shape	 comprises	 a
horizontal	set	of	n	dots	and	a	vertical	set	of	n	dots,	but	these	overlap	in	the	dot	in
the	 top	right	corner.	So	 the	nth	L-shape	has	 	dots,	 and	n2	 is	 equal	 to	 the
sum	of	odd	numbers	up	to	and	including	the	odd	number	 .



3.5	Adding	up	lots	of	odd	numbers

If	you’re	not	a	diagram	fan—if	you	prefer	orderly	logical	arguments—then	you
might	 like	 an	 alternative	 way	 of	 reasoning	 about	 the	 sum	

One	 thing	 to	note	 is	 that	 although	 this	 looks	 like	a	 single	equation,	 it	 captures
infinitely	many	sums,	one	for	each	natural	number	n.

Make	 sure	 you	believe	 that	 the	 list	 uses	n’s	 correctly.	For	 ,	 for	 instance,	
,	so	the	sum	on	the	left-hand	side	should	stop	at	7	(which	it	does)	and

the	number	on	the	right-hand	side	should	be	42	 (which	 it	 is,	and	which	checks
out:	 ).	 Check	 the	 others	 and,	 if	 you	 find	 the	 first	 one
peculiar,	 note	 that	 you’re	 bound	 to	 because	 it’s	 a	 degenerate	 case:	 it	 involves
‘adding	 up’	 just	 one	 thing,	 which	 doesn’t	 feel	 like	 adding	 up	 at	 all.	 But	 the
formula	nevertheless	works	in	the	same	way.
Another	 thing	to	consider	 is	 the	expression	 	as	 the	final	number	 in	 the

sum.	This	always	gives	an	odd	number:	whatever	n	is,	doubling	it	gives	an	even
number,	 so	 doubling	 it	 and	 subtracting	 1	 gives	 an	 odd	 number.	Note	 also	 that
whatever	n	 is,	 the	 next	 odd	 number	 after	 	 will	 be	 .	 For	 ,	 for
instance,	 .	 We	 could	 think	 about	 this	 on	 a	 number
line.	If	that	doesn’t	convince	you	that	it	always	works,	try	it	with	other	values	of
n.



Now,	we	could	keep	on	forever	writing	out	the	equation	for	different	values	of
n,	in	each	case	checking	that	the	sum	is	the	square	number	as	claimed.	But	that
wouldn’t	be	very	interesting,	and	it	wouldn’t	provide	much	insight	into	why	all
these	 equations	 should	 be	 valid.	 One	 way	 to	 improve	 on	 this	 is	 to	 use	 an
inductive	argument,	in	which	instead	of	considering	each	equation	separately,	we
consider	how	each	one	is	related	to	the	next.	For	example,	suppose	we	know	that
the	equation	is	valid	for	 .	For	 ,	so	this	means
that	
You	can	check	the	addition	if	you	like,	but	that’s	not	the	point	here.	The	point	is,
what	does	knowing	about	the	 	case	tell	us	about	the	 	case?	We	could
start	 from	scratch	 for	 ,	 but	we	don’t	need	 to.	All	we	need	do	 is	 take	 the	

	case	and	add	one	more	odd	number,	ensuring	that	we	do	the	same	to	both
sides	 of	 the	 equation:	

That	 gives	 	 as	 expected,	 which	 is	 good	 as	 far	 as	 it	 goes.	 But	 again	 it
doesn’t	provide	insight	into	why	 the	new	sum	must	be	the	next	square	number.
To	acquire	that	insight,	we	need	to	work	in	a	more	general	way.
Suppose	we	know	that	the	equation	is	valid	for	a	nonspecific	natural	number,

say	 .	That	means	we	know	that	
What	does	that	imply	about	the	‘next’	case,	where	 ?	To	find	out,	we	can
add	 the	 next	 odd	 number,	 ,	 to	 both	 sides:	

Now,	 that	 doesn’t	 look	 finished,	 because	 the	 thing	 on	 the	 right-hand	 side	 is
supposed	 to	be	 .	But	 	 (review	Section	1.5	 if	you’re
not	 sure	 why).	 So	 we	 do	 indeed	 have	 what	 we	 expect,	 that	

Reviewing	 this	 argument’s	 logical	 structure,	we’ve	established	 that	 if	 it	 is	 true
that	
then	it	is	true	that	
In	other	words,	we’ve	proved	that	if	the	equation	holds	for	 	then	it	also

holds	 for	 .	This	might	 not	 seem	 sufficient—you	might	 ask,	what	 if	 it
isn’t	 true	 for	 ?	 But	 that	 turns	 out	 to	 be	 irrelevant,	 because	 we	 can	 glue
together	 this	 if…	then…	 reasoning	with	what	we	know	about	 the	 ‘early’	cases.
We	 know	 the	 equation	 holds	 for	 ,	 for	 instance—we	 checked	 that	 by
calculating.	 But	 that	 means	 that	 the	 equation	 must	 hold	 for	 .	 And	 that
means	that	it	must	hold	for	 ,	and	that	means	that	it	must	hold	for	 ,	and
so	on	forever.	So	the	equation	holds	for	every	value	of	n.
I	 think	 this	 is	a	great	 structure	 for	an	argument.	We	want	 to	prove	 infinitely



many	 related	 claims	 that	 can	 be	 put	 in	 a	 numbered	 list.	We	 don’t	want	 to	 do
infinitely	many	calculations,	so	 instead	we	do	 just	 the	first	one	(or	some	early,
easy	one)	then	prove	that	if	any	claim	in	the	list	is	valid,	so	is	the	next	one.	This
proves	that	all	the	claims	are	true.	Elegant,	no?	Such	an	argument	is	known	as	a
proof	by	mathematical	induction.	And	you	might	find	a	proof	by	induction	easier
to	follow	if	it’s	written	more	concisely.	The	version	that	follows	uses	 	as	the
starting	case	but	is	otherwise	the	same	as	the	argument	described	above.	When
reading	concise	mathematics,	remember	what	I	said	in	the	introduction:	you	will
probably	need	 to	 read	back	and	forth,	checking	each	 link	 to	work	out	how	the
whole	thing	fits	together.

Claim: For	every	natural	number	 .

Proof: ,	so	the	claim	is	true	for	 .

Suppose	that	the	claim	is	true	for	 .

This	means	that	 .

Adding	the	next	odd	number,	 ,	to	both	sides	gives	

So	we	have	established	that	if	the	claim	is	true	for	 ,	then	it	is	also
true	for	 .

So,	because	the	claim	is	true	for	 ,	it	must	be	true	for	every	natural
number	n.

Do	you	like	the	concise	version?	Do	you	understand	it?	If	not,	don’t	give	up
too	 quickly—maybe	 read	 this	 section	 again	 then	 have	 another	 go.	 If	 you	 do
understand	 it,	 could	 you	 explain	 it	 to	 someone	 else,	 and	 would	 you	 have
understood	it	if	you	hadn’t	read	the	wordy	version?	I	think	this	is	an	interesting
question	about	presenting	mathematics.	On	the	one	hand,	I	can	write	as	I	would
talk,	 explaining	 in	 detail	with	 lots	 of	 examples	 that	 are	 hopefully	 illuminating
but	 not	 logically	 necessary.	 In	 doing	 this	 I’m	 aiming	 for	 accessibility,	 but	 the
explanation	 gets	 long.	 On	 the	 other	 hand,	 I	 can	 write	 as	 I	 would	 for	 a	 more
mathematically	 experienced	 audience,	 with	 a	 concise	 claim	 and	 proof.	 This
compresses	the	argument,	which	makes	its	overall	structure	more	salient.	But	it



places	 a	 higher	 burden	 on	 the	 reader	 to	 follow	 the	 thinking,	working	 out	why
each	 step	 works	 and	 how	 they	 all	 fit	 together.	 To	 understand	 how
mathematicians	think,	I	think	it	helps	to	appreciate	attempts	to	balance	concision
and	clarity.
To	 conclude	 this	 section,	 I’d	 like	 to	 return	 to	 the	 philosophical	 point	 about

representations.	Comparing	an	algebraic	argument	with	a	diagrammatic	‘proof’
does	 highlight	 obvious	 differences.	 An	 algebraic	 argument	 makes	 more	 steps
explicit;	 it	 lays	out	a	 linear	chain	of	 reasoning,	whereas	a	diagram	presents	all
the	information	at	once	so	that	the	reader	must	work	out	what	to	think	about	in
what	order.	Partly	because	of	this,	some	people	find	it	easier	to	be	confident	that
algebraic	arguments	‘work	for	everything’.	But	algebraic	arguments	still	require
interpretation:	we	must	believe	that	the	n	in	the	sum	and	the	formula	really	can
represent	 any	natural	number,	 checking	at	 every	 step	 if	 necessary.	People	who
get	used	to	algebra	become	confident	about	standard	manipulations,	so	they	can
offload	 the	 believing-it-always-works	 problem	 to	 those	manipulations.	But	 the
believing-it	 issue	 remains,	 it’s	 just	 pushed	 into	 the	 background.	 So	visual	 and
algebraic	arguments	are	less	different	in	this	respect	than	they	might	appear.

3.6	Powers	of	2

If	you	enjoyed	the	inductive	argument,	there	is	another	to	look	forward	to	in	this
section.	If	you	didn’t—if	you	got	a	bit	lost—then	in	the	next	section	you’ll	find	a
numerical	 argument	 that	 is,	 in	 my	 view,	 even	 more	 elegant.	 Both	 are	 about
adding	up	powers	of	2,	so	we’ll	start	with	information	on	those.
In	 some	 cases,	 the	 idea	 of	 powers	 is	 fairly	 straightforward:	

The	number	2-to-the-power-4,	for	instance,	is	‘2	multiplied	by	itself	four	times’
(I’m	not	keen	on	this	phrasing,	but	it	 is	used	a	lot).	Mathematicians	sometimes
capture	 this	 using	 ‘underbrace’	 notation:	



It	 will	 be	 useful	 to	 observe	 that	 ,	 because	

Also,	 	because,	when	multiplying	23	by	25,	we	end	up	with	eight	2s
multiplied	 together:	

The	 result	can	be	written	as	 ,	which	 is	a	 special	case	of	 the	general
rule	that	 .	If	you	tend	to	get	confused	by	this,	that’s	because	you’re
normal.	Remember	how	people	often	mistakenly	say	that	 ?	This
is	similar.	The	desire	for	tidy	notation	might	make	us	think	that	the	rule	should
be	 .	 But	 it	 isn’t.	 To	 remember	 the	 correct	 version,	 I	 tend	 to	 think
about	 a	 specific	 case	 like	 ,	 or	 to	 use	 underbrace	 notation	 for	 the

general	case:	

The	other	thing	that	often	baffles	people	is	what	happens	when	a	power	is	zero
or	negative.	How	do	we	‘multiply	2	by	itself’	zero	times	or	minus	3	times?	Do
you	 know	 or	 can	 you	 remember?	 I	 find	 that	 new	 undergraduate	 mathematics
students	do	know:	 they	can	confidently	say	 that	 ‘anything	 to	 the	power	zero	 is
1’,	for	instance.	But	when	I	ask	why,	they	often	have	no	idea.	In	fact,	they	look	a
little	confused	by	the	question,	and	these	thoughts	pass	across	their	faces:

‘Well,	because	my	teacher	said	so.’
‘Oh,	I	guess	that’s	not	a	very	mathematical	reason.’
‘Um…	and	I	don’t	know	a	better	one.’
‘Oh	dear,	that’s	embarrassing.’

But	 there’s	 no	 need	 for	 embarrassment—this	 is	 easier	 to	 fix	 than	 you	 might
think.	My	favourite	approach	is	to	think	about	powers	lined	up	as	follows.	Note
that	moving	one	step	to	the	right	involves	multiplying	by	2.



What	 about	moving	 to	 the	 left?	Moving	 left	 involves	 dividing	 by	 2.	 But	 that
means	that	if	we	keep	going	to	the	left,	we	discover	the	values	of	20	and	2–1	and
so	on.

Isn’t	that	nice?	When	I	show	this	 to	previously	embarrassed	undergraduates,
their	faces	go	all	open	as	if	to	say,	‘I	had	no	idea	it	was	that	simple!’	I	enjoy	this
a	 lot—it’s	 nice	 watching	 people	 gain	 insight.	 From	 a	 more	 sophisticated
perspective,	 this	 argument	 is	 a	way	 to	 think	 about	 consistency	within	 number
systems:	 it	 says	 that	 powers	 of	 2	 will	 be	 defined	 for	 non-obvious	 cases	 by
extending	existing	relationships.	There	are	more	formal	ways	to	think	about	such
consistency,	and	we’ll	revisit	this	idea	at	the	end	of	Chapter	5.
For	 now,	 let’s	 return	 to	 adding	 up.	 Here	 is	 a	 general	 claim	 about	 adding

powers	of	2:	
As	before,	this	is	really	infinitely	many	claims.



And	as	before,	these	ones	are	straightforward	to	check.	For	 ,	for	instance,	
,	so	the	sum	on	the	left-hand	side	should	stop	at	23	(which	it	does)	and

the	 number	 on	 the	 right	 should	 be	 	 (which	 it	 is,	 and	which	 checks	 out:	
).	 But,	 as	 before,	 we	 wouldn’t	 want	 to	 keep

checking,	 and	we	 can	 construct	 an	 inductive	 argument	 to	 prove	 the	whole	 lot.
This	time,	I’ll	straightaway	write	a	concise	claim	and	proof.	Even	if	you	weren’t
sure	 about	 the	 previous	 inductive	 argument,	 try	 reading	 this	 one—sometimes
more	exposure	does	the	trick.

Claim: For	every	natural	number	 .

Proof: ,	so	the	claim	is	true	for	 .

Suppose	that	the	claim	is	true	for	 .

This	means	that	 .

Adding	2k	to	both	sides	gives	

So	we	have	established	that	if	the	claim	is	true	for	 ,	then	it	is	also
true	for	 .

So,	because	the	claim	is	true	for	 ,	it	must	be	true	for	every	natural
number	n.

If	you	found	that	a	struggle,	try	some	specific	examples:	what	would	the	claim
say	for	 ,	and	how	would	that	relate	to	the	claim	for	 ?	If	you	found	it
easy,	 ask	 yourself	 whether	 something	 similar	 would	work	 for	 powers	 of	 3.	 If
you’re	really	getting	into	inductive	arguments,	try	constructing	one	to	prove	that

for	every	natural	number	n,	

If	none	of	that	sounds	appealing	and	you	wish	I	would	give	up	the	algebra	and
go	back	to	numbers,	read	on.



3.7	Adding	up	powers

To	 add	 powers	 of	 2,	 another	 approach	 is	 more	 numerical	 and	 particularly
elegant.	Suppose	we	want	to	add	up	the	first	ten	powers	of	2	(starting	at	 ).
It	helps	to	give	the	sum	a	name,	and	we’ll	call	it	S.

Now	double	every	number	in	the	sum,	so	that	the	new	sum	is	2S.

Next,	 change	 nothing	 but	 line	 up	 the	 two	 sums	 so	 that	 their	 similarities	 are
obvious.

Finally,	subtract	the	bottom	row	from	the	top.	On	the	left-hand	side,	 this	gives	
.	 On	 the	 right-hand	 side,	 most	 of	 the	 addends	 ‘cancel	 out’,	 leaving	

.	So	the	sum	is	 .
This	approach	works	because	this	sum	is	geometric—the	ratio	of	each	term	to

its	predecessor	 is	 the	 same.	Here	 the	 ratio	 is	 2,	 and	we	 could	make	 that	more
obvious	 and	 write	 the	 argument	 concisely	 as	 follows:	

There	is	nothing	special	about	the	common	ratio	2—similar	arguments	work	for
other	ratios.	And	we	don’t	have	to	start	at	the	number	1.	For	instance,	we	could
add	up	a	shorter	sum	of	powers	of	3.



I	used	my	calculator	for	the	last	few	lines—I’m	no	mental	arithmetic	genius.
That	being	 the	 case,	 do	you	 think	 this	method	 is	worth	 it	 for	 sums	 this	 short?
Would	 you,	 instead,	 use	 a	 calculator	 from	 the	 beginning?	 I	 tend	 to	 resist
calculator	temptation	because	working	intelligently	on	paper	feels	more	elegant,
and	because	I’m	liable	to	press	the	wrong	buttons.	What	I	tell	my	students	is	that
calculators	 are	 fast	 but	 stupid—they	 will	 give	 you	 the	 answer	 you	 asked	 for,
whether	 or	 not	 it	 is	 the	 one	 you	 want.	 It	 can	 be	 a	 good	 idea	 to	 minimize
calculator	work	by	first	doing	some	thoughtful	manipulations.	But	I	digress.
The	astute	reader	might	notice	 that	 in	arguments	 like	 this,	 the	common	ratio

does	not	have	 to	be	a	whole	number.	Suppose	 that	 instead	of	powers	of	2,	we
add	 powers	 of	 .	 Let’s	 take	 ten	 terms	 again	 and	 consider	 the	 corresponding
argument,	

How	is	this	argument	like	the	previous	ones	and	how	does	it	differ?	And	would
you	have	done	one	more	calculation	at	 the	end	 to	give	a	 single	 fraction	rather



than	 ?	You	could,	 but	 I	 think	 it’s	more	 informative	 to	 leave	 it	 as	
because	that	makes	clear	that	the	sum	is	a	tiny	bit	less	than	2.	And	that	sets	us	up
to	return	to	the	infinite	sum	that	began	this	chapter.

3.8	The	geometric	series	

This	chapter	opened	with	the	geometric	series	 	and	the
problem	of	reaching	the	door.	I	presented	the	following	diagram	and	invited	you
to	agree	 that	 the	 fractions	add	up	 to	2.	 I	also	acknowledged	 that	you	might	be
unhappy	about	that	because	you	might	think	that	the	sum	is	a	tiny	bit	less	than	2.

If	you	do	think	that,	you	need	to	know	that	this	is	partly	an	issue	of	notation.	The
ellipsis	in	 	invites	many	people	to	think	of	adding	as
a	process	that	happens	in	time.	You	imagine	starting	with	1,	then	adding	 ,	 then
adding	 ,	and	so	on.	Each	of	these	finite	sums	is,	indeed,	a	bit	less	than	2.

But	mathematicians	don’t	 interpret	 the	 ellipsis	 that	way.	When	 they	write	 ‘…’
without	any	‘ending’	number,	they	mean	‘and	so	on	forever’.	That	is,	they	think



of	 	 as	 representing	 not	 a	 process	 that	 happens	 in
time,	but	an	entire	sum	in	which	all	the	terms—all	infinitely	many	of	them—are
already	there.
This	 might	 seem	 weird,	 and	 there	 is	 some	 inherent	 ambiguity	 because

mathematical	 notations	 often	 do	 capture	 both	 process	 and	 object.	 For	 a	 small
child,	for	instance,	the	sum	 	might	be	very	much	a	process	that	happens	in
time.	This	process	might	be	quite	long:	counting	out	five	cubes	then	counting	out
another	three	then	counting	them	all	together.	Or	it	might	be	shorter:	starting	at	5
and	 counting	 on	 (‘6,	 7,	 8’).	 But	more	mathematically	 experienced	 people	 can
interpret	the	sum	 	not	as	a	process,	but	as	one	way	to	write	a	number	that
can	also	be	written	in	other	ways:	 	or	8	or	23,	for	instance.
The	 same	 applies	 to	 	 This	 might	 make	 you

imagine	 a	 process	 that	 happens	 in	 time.	And,	 because	 the	 sum	 is	 infinite,	 you
might	feel	that	it	has	to	be	imagined	this	way.	But	it	doesn’t.	I	bet	that	if	you	try,
you	can	imagine	that	the	whole	sum	is	already	written	down.
It’s	 worth	 thinking	 about	 this	 series	 in	 a	 couple	 of	 ways,	 because	 different

people	 find	different	 things	more	natural	 or	 convincing.	One	way	 is	 simply	 to
extend	 the	previous	 type	of	argument.	 In	 this	case	 there	 is	no	‘ending’	number
and,	because	the	list	is	infinite,	subtracting	cancels	every	number	except	1.

There	 is	nothing	 fishy	about	 that.	But,	 if	 the	 lack	of	 an	 ending	number	makes
you	 uncomfortable,	 you	might	 prefer	 a	more	 formal	 argument	 that	 starts	with
finitely	many	 terms	 then	 considers	 what	 happens	 in	 the	 limit.	 The	 finite	 case
works	in	the	familiar	way.



So	the	sum	of	these	terms	is	 .	As	n	gets	larger,	 	gets	smaller.	In
the	 limit,	 the	difference	between	S	and	2	 is	smaller	 than	 ,	and	smaller	 than	 ,
and	smaller	than	 	for	every	possible	n.	So	the	difference	must	be	0,	meaning
that	 .
If	that	leaves	you	feeling	weird,	it’s	likely	because	you	feel	that	the	difference

should	be	 infinitesimal:	 smaller	 than	 every	 positive	 number	 yet	 bigger	 than	 0.
This	idea	is	intuitively	appealing	and	there	are	ways	to	formalize	it,	but	they	are
not	straightforward.	If	infinitesimals	exist,	for	instance,	what	happens	if	we	add
together	two	of	them,	or	a	hundred,	or	infinitely	many?	Does	any	of	these	give	a
‘normal’	 number?	 Fortunately,	 the	 mathematics	 of	 the	 number	 line	 works
perfectly	under	the	‘standard’	interpretation	in	which	a	nonnegative	number	that
is	smaller	than	every	other	number	must	be	0.	So	we’ll	stick	to	that.
My	 favourite	 thing	 about	 geometric	 series	 is	 that	 some	 can	 be	 captured	 in

truly	lovely	diagrams.	For	instance,	an	argument	similar	to	the	one	we’ve	been
discussing	 but	 using	 powers	 of	 	 proves	 that	



Here	is	the	start	of	an	argument	of	the	‘no	ending	number’	style.	Can	you	finish
it?

And	 can	 you	 ‘see’	 that	 	 by	 thinking	 about	 the
black	and	white	square	below?	If	the	area	of	the	whole	square	is	1,	then	the	area
of	the	biggest	black	square	is	 ,	the	area	of	the	next	biggest	is	 ,	and	so
on.	What	proportion	of	the	whole	square	is	black?	If	you	think	squares	are	a	bit
clunky	and	 triangles	are	more	elegant	 (as	 I	do)	 this	can	be	done	with	 triangles
too.

3.9	The	harmonic	series	



The	 other	 series	 that	 began	 this	 chapter	 was	 the	 harmonic	 series	

Again	 this	 is	 an	 infinite	 sum—the	ellipsis	means	 that	all	 the	 terms	are	already
there.	 And	 it	 has	 much	 in	 common	 with	 the	 geometric	 series	 we’ve	 been
working	with:	it	starts	at	1	and	adds	progressively	smaller	fractions.	I’ve	asked	a
couple	of	times	what	you	think	the	sum	might	be.	What	do	you	think	now?

Most	 people	 expect	 the	 total	 to	 be	 quite	 small,	 maybe	 around	 4	 or	 5,	 and
certainly	less	than	10.	But	this	turns	out	to	be	very,	very	wrong.	In	fact,	the	total
is	infinite.	It’s	bigger	than	any	number	you	could	name.	You	might	be	sceptical
about	 that,	 because	 it’s	 very	 counterintuitive.	 Many	 people	 think,	 ‘But	 look,
what	 we’re	 adding	 gets	 smaller	 and	 smaller—eventually	 we’ll	 be	 adding
millionths	 of	 millionths,	 and	 those	 will	 make	 hardly	 any	 difference’.	 That’s
entirely	 reasonable	 and	 it’s	 definitely	what	 I	 thought	when	 I	 first	 encountered
this	series.	But	I	was	wrong.	And	that’s	why	I	think	series	are	so	interesting	now.
Bear	 with	 me	 and	 I’ll	 explain	 how	 this	 works,	 then	 discuss	 counterintuitive
results	in	general.
The	first	term	of	the	harmonic	series	is	1.	The	second	is	 .	After	that,	we’ll	do

some	clever	thinking.	The	third	term	and	the	fourth	together	add	up	to	something

greater	than	 .	Because	 ,	we	get	

The	exact	value	of	 	 isn’t	necessary	 for	 this	 argument.	But	here	 is	 another
use	for	underbrace	notation,	to	group	together	terms	of	the	series.



Similarly,	each	of	 the	next	four	 terms	is	greater	 than	or	equal	 to	 .	So	 the	four
together	again	add	up	to	something	greater	than	 .

And	this	can	be	represented	in	underbrace	notation.

How	many	 terms	 do	 you	 think	 we	 should	 consider	 next?	 Each	 of	 the	 next
eight	terms	is	greater	than	or	equal	to	 ,	so	together	they	add	up	to	more	than	 .

And	the	next	16	terms	add	another	half,	and	the	next	32	add	another,	and	so
on.	Eventually	we	need	many	thousands	of	terms	to	add	another	half.	But	that’s
not	 a	 problem	 because	 there	 are	 infinitely	 many—we	 never	 run	 out.	 So	 the
infinite	sum	is	bigger	than	any	number	of	halves	added	together.	It’s	bigger	than
100	halves,	and	bigger	than	1000	halves,	and	bigger	than	1	000	000	halves,	and
so	on.	So	the	total	must	be	infinite.
When	 I	 first	 saw	 this,	 I	was	 astonished	 by	 the	 result	 and	 captivated	 by	 the

argument,	so	much	so	that	I	remember	exactly	where	I	was:	with	my	supervisor
Jean	Flower	in	the	undergraduate	common	room	in	the	Mathematics	Institute	at
the	University	of	Warwick.	I	was	astonished	because	my	intuition	was	typical:	I
believed	that	because	the	addends	kept	getting	smaller,	eventually	the	sum	would
‘settle	 down’.	 I	 was	 captivated	 by	 the	 argument	 because	 it	 is	 so	 simple.	 It
convinced	me	beyond	doubt	 that	 the	 total	 is	 infinite	and	 that	my	 intuition	was



completely	wrong.
I	 found	 that	 thrilling,	 and	 I	 still	 do,	 for	 several	 reasons.	 First,	 I	 really	 like

arguments	 that	 I	 can	 grasp	 holistically,	 that	 I	 can	 understand	 as	 single	 ideas
rather	than	multiple	steps.	That’s	why	I	like	diagrams	and	proofs	without	words.
This	argument	has	that	quality	for	me,	though	it	might	not	for	you—I’ve	thought
about	 it	 a	 lot	 so	 I’ve	compressed	 it	 in	my	mind.	 If,	 to	you,	 it	 still	 seems	 long,
then	you	might	like	to	read	it	a	few	more	times	or	explain	it	to	someone	else—
see	if	that	brings	about	some	compression.
Second,	 I	 really	 like	 mathematical	 surprises.	 Some	 people	 don’t,	 because

surprises	make	them	nervous.	Perhaps	they	suspect	that	they’re	being	duped,	or
that	whole	 swathes	of	 their	understanding	might	be	 faulty.	 I	 think	 the	 reason	 I
don’t	feel	like	that	is	that	I’m	confident	about	the	mathematics	that	I	understand.
And	you	 should	 feel	 confident	 too.	 If	 you’re	 understanding	 this	 book—maybe
even	enjoying	it—that’s	because	mathematics	is	a	humanly	graspable	network	of
ideas	with	 enormous	 internal	 coherence.	 If	 you	 understand	 big	 chunks	 of	 that
network—if	you	are	developing	a	sense	of	how	it	fits	together—then	the	chunks
that	 you’ve	mastered	 will	 not	 fall	 apart.	 If	 you	 can	 be	 confident	 of	 that,	 you
might	 find	 that	 you	 can	 look	 at	 surprises	 not	 as	 threats	 but	 as	 fascinating
curiosities.	 To	 me,	 a	 surprise	 indicates	 not	 that	 my	 current	 understanding	 is
faulty,	 but	 that	 a	 smallish-looking	 area	 of	 the	 network	 that	 I’ve	 never	 really
thought	about	must	be	twisted	in	on	itself	in	a	way	that	accommodates	a	lot	of
weirdness.	And	that	makes	it	worth	a	closer	look.

3.10	Convergence	and	divergence

So	 what	 is	 going	 on	 here?	 How	 can	 we	 untangle	 the	 weirdness	 so	 that	 the
harmonic	series	no	longer	seems	so	counterintuitive?	Well,	one	issue	is	notation.
We	 write	 series	 so	 that	 most	 terms	 are	 squashed	 into	 an	 ‘and	 the	 rest’	 blob
denoted	by	the	ellipsis.	Attention	is	focused	on	the	first	few	terms,	which	makes
the	harmonic	and	geometric	series	look	pretty	similar.



But	 really	 they’re	 not.	 Extending	 even	 a	 little	 shows	 that	 the	 terms	 of	 the
geometric	series	shrink	much,	much	faster.

So	an	informal	way	to	think	about	the	counterintuitive	result	is	that	although	the
terms	of	the	harmonic	series	get	smaller,	they	don’t	get	smaller	fast	enough.	Of
course,	that	raises	a	question:	what	constitutes	fast	enough?	A	student	asked	me
this	 recently.	 She	 was	 very	 intelligent	 and	 really	 quite	 worried,	 because	 this
made	it	seem	to	her	that	the	results	were	arbitrary.	If	observing	that	the	terms	get
really	 small	 was	 not	 enough	 to	 decide	 that	 the	 sum	 of	 a	 series	 is	 finite,	 how
would	we	know?
In	mathematical	 terms	 this	 is	 a	 question	 about	 convergence.	We	 ask	 which

series	converge	 to	 some	 finite	number,	 and	which	diverge	 to	 infinity.	Answers
exist	for	many	different	series,	and	in	this	final	section	I’ll	cover	just	enough	to
give	you	a	taste	of	the	theory.
First,	 all	 geometric	 series	 with	 common	 ratio	 less	 than	 1	 converge,	 by

applications	 of	 the	 argument	 in	 Section	 3.7.	 That	 is,	 if	 ,	 we	 always
have	a	valid	argument	like	this.



You	might	like	to	replace	r	with	some	appropriate	numbers	and	think	about	what
the	 formula	 says.	 And	 you	 might	 like	 to	 know	 that	 this	 works	 for	 r	 with	

,	 too.	 If	 you’ve	 found	 these	 arguments	 fairly	 straightforward,	 work
through	one	with	 ,	then	ask	yourself	what	happens	for	 .
Second,	 the	 harmonic	 series	 invites	 comparison	 with	 similar	 series.	 For

instance,	consider	

What	do	you	think	happens	to	this	series?	Does	it	converge	to	a	finite	number,	or
is	the	total	infinite?	I	think	this	is	not	obvious.	On	the	one	hand,	this	is	‘like’	the
harmonic	series	except	that	the	denominators	are	of	the	form	n2	instead	of	n.	So
maybe	 it	 diverges	 to	 infinity.	 On	 the	 other	 hand,	 its	 terms	 get	 smaller
considerably	faster,	so	maybe	it	behaves	more	like	a	geometric	series.	What	do
you	reckon?	If	 you	 find	 that	 you	 really	 don’t	 know,	 that’s	 good.	 It	means	 that
you’ve	understood	well	enough	to	recognize	that	both	outcomes	are	plausible.
To	 get	 some	 traction,	 a	 sensible	 strategy	 is	 to	 compare	 with	 known	 series,

perhaps	using	the	following	lists.	Does	this	help?

If	 the	 terms	of	 the	new	series	were	bigger	 than	 the	corresponding	 terms	of	 the
harmonic	series,	we	could	say	that	the	new	one	would	diverge.	But	 they	are	 in
fact	 smaller,	 and	knowing	 that	 they	 are	 smaller	 doesn’t	 help	because	we	don’t
know	 where	 the	 cut-off	 for	 ‘gets	 smaller	 fast	 enough’	 is.	 Unfortunately,
comparing	with	 the	geometric	 series	doesn’t	help	 either.	The	 first	 six	 terms	of
the	new	series	are	 less	 than	or	equal	 to	 their	counterparts	 in	 the	geometric	one
with	common	ratio	 ,	which	looks	promising.	After	that,	though,	they’re	bigger,
so	we	still	don’t	know	whether	 they	get	smaller	fast	enough.	If	you	have	good
grasp	 of	what’s	 going	 on	 here,	 it	might	 occur	 to	 you	 to	 try	 comparing	with	 a
different	 geometric	 series	with	 a	 bigger	 common	 ratio,	 like	 	 or	 .	Write	 out
enough	 terms,	 though	 (maybe	 in	a	 spreadsheet	 if	you	don’t	 feel	 like	doing	 the



calculations),	 and	you’ll	 find	 that	doesn’t	work	either:	 eventually,	 the	 terms	of
the	geometric	series	will	be	smaller.
Nevertheless,	 it	 turns	 out	 that	 the	 new	 series	 does	 converge,	 and	 we	 will

establish	that	and	round	off	this	chapter	by	pulling	together	three	of	its	key	ideas:
comparing	fractions,	adding	fractions,	and	induction.
We	will	compare	the	new	series	with	another	one	that	looks	more	complicated

but	turns	out	to	be	easier	to	work	with.	In	the	following	comparison,	each	term
in	 the	 top	 series	 is	 less	 than	 its	 counterpart	 in	 the	bottom	one.	Check	 that	you
believe	this.

This	means	that	if	the	bottom	series	converges,	then	by	comparison	the	top	one
must	converge	too.	The	top	one	isn’t	quite	what	we	want	because	it’s	missing	the
first	 term	 .	But	 that’s	 okay.	 If	 the	 top	 series	 converges	 to	 a	 finite	 number,
then	that	finite	number	plus	 	 is	still	a	 finite	number.	So	 that	will	show	that

the	series	

converges.
That’s	 the	 outline,	 now	 the	 detail.	 The	 argument	 below	 uses	 ideas	 we’ve

already	explored,	so	if	you’ve	got	this	far	it	will	be	within	your	reach.	But	it	is
somewhat	 long,	 so	 you	might	want	 to	 read	 it	more	 than	 once.	 It	 starts	with	 a
proof	by	induction	about	the	comparator	series,	working	with	finite	sums	in	the
first	instance.	If	you	get	stuck	with	the	algebra	in	the	middle	of	the	induction,	try
working	through	it	from	bottom	to	top	instead	of	top	to	bottom.

Claim: For	every	natural	number	n,	

Proof:



	so	the	claim	is	true	for	 .

Suppose	that	the	claim	is	true	for	 .

This	means	that	 .

Adding	 	to	both	sides	gives

So	we	have	established	that	if	the	claim	is	true	for	 ,	then	it	is	also
true	for	 .

So,	because	the	claim	is	true	for	 ,	it	must	be	true	for	every	natural
number	n.



The	 induction	 thus	 establishes	 that	 for	 every	 n,	

And,	 as	 n	 gets	 bigger,	

So,	by	a	limiting	argument,	the	infinite	series

Then	we	can	bring	in	the	comparison.

This	establishes	that	the	series

converges	to	a	number	less	than	or	equal	to	2.	That’s	not	only	finite,	but	really
quite	 small.	 So	 this	 series	might	 look	 like	 the	 harmonic	 series,	 but	 it	 behaves
very	differently.	You	might	like	to	know	that	its	precise	sum	is	 .



3.11	Review

This	chapter	covered	fraction	representations,	adding	fractions,	adding	up	lots	of
numbers,	proofs	without	words,	powers,	adding	up	lots	of	numbers	that	happen
to	 be	 expressed	 as	 powers,	 infinite	 sums,	 the	 counterintuitive	 property	 of	 the
harmonic	series,	and	series	convergence	and	divergence.
It	began	with	ways	of	representing	and	comparing	fractions,	considering	ratios

(hence	 rational	 numbers),	 equivalent	 fractions,	 and	 fractions	 as	 points	 on	 a
number	line.	The	number	line	was	used	to	highlight	differences	between	rational
numbers	 and	 integers:	 rationals	 can	 be	 ordered,	 but	 there	 is	 no	 ‘next	 number’
after	 .	 The	 early	 sections	 also	 highlighted	 situations—like	 those	 raised	 in
Chapter	1—in	which	mathematical	notation	does	not	correspond	 in	an	obvious
way	to	meaningful	calculation:	we	can’t	add	fractions	by	adding	numerators	and
denominators,	 and	 	 does	 not	 equal	 xmn	 (usually).	 The	 later	 sections
highlighted	situations	in	which	the	ellipsis	notation	obscures	important	features
of	a	series.	Errors	can	occur	if	we’re	not	alert	to	such	things,	and	I	suggested	that
it	can	help	to	check	a	claim	against	examples	or	to	extend	a	series	and	examine
more	terms.	The	first	suggestion	might	seem	counter	to	the	mathematical	aim	of
constructing	 fully	general	 arguments.	But	 it	 isn’t.	General	 arguments	might	 be
the	desired	end,	but	mathematicians	will	use	whatever	is	to	hand	to	get	there.
That	 said,	 this	 chapter	 is	 full	 of	 clever	 arguments.	 The	 sections	 on	 adding

integers	 included	 reordering	 arguments	 and	 visual	 arguments—images	 that
represent	 just	 one	 case	 but	 can	 be	 seen	 as	 generic.	 The	 sections	 on	 geometric
sums	 used	 multiplying	 by	 the	 common	 ratio	 to	 ‘shift’	 a	 sum	 along,	 so	 that
subtracting	led	to	lots	of	cancellation.	We	also	used	inductive	arguments,	which
prove	 infinitely	 many	 claims	 by	 chaining	 them	 together.	 These	 highlight	 a
different	relationship	between	claims,	examples,	and	generality.	When	we	added
odd	integers,	examples	confirmed	that	the	relevant	formula	seemed	to	work.	But
they	 gave	 no	 real	 insight	 into	why—we	needed	 a	 diagram	or	 algebra	 for	 that.
The	 inductive	arguments	also	provided	occasion	 to	consider	 the	relative	merits
of	 long	explanations	and	concise	proofs.	If	you	read	back	now,	you	might	find
that	your	opinion	on	this	has	changed.	And	you	might	want	 to	reconsider	your
view	on	genius	stories	and	the	human	capacity	to	understand	mathematics.	You
didn’t	 invent	 the	 arguments	 in	 this	 chapter,	 and	neither	 did	 I.	But	 I	 really	 like
them,	and	I	hope	you	do	too.
A	final	thing	to	learn	from	this	chapter	is	that	human	intuitions	about	numbers

and	 sums	 are	 usually	 based	 on	 small	 ones	 with	 which	 we	 have	 lots	 of
experience.	 Sometimes	 these	 intuitions	 generalize	 to	 infinite	 sums.	 But



sometimes	they	don’t.	This	is	because,	as	a	mathematician	once	gleefully	said	to
me,	infinity	is	really	big.	It’s	so	big	that	it	can	break	our	intuitions.	And	I	argued
that	 this	 is	 not	 something	 to	worry	 about,	 but	 something	 to	welcome.	Broken
intuitions	 indicate	 not	 personal	 failure	 but	 theoretical	 depth,	 and	mathematical
surprises	indicate	that	there	is	a	lot	to	learn.



CHAPTER	4

Graphs

4.1	Optimization

Here	is	an	optimization	problem.

A	 small	 company	makes	 tables	of	 two	kinds,	 named	 the	Hazel	 and	 the
Douglas.	The	Hazel	takes	2	days	of	carpentry	time	and	1	day	of	finishing
time.	The	Douglas	takes	3	days	of	carpentry	time	and	1	day	of	finishing
time.	The	carpenter	works	for	24	days	per	month	and	the	finisher	works
for	10	days	per	month.	Local	showrooms	will	buy	a	maximum	of	8	Hazel
tables	and	6	Douglas	tables	each	month.	The	profit	on	each	Hazel	table	is
₤100	and	the	profit	on	each	Douglas	table	is	₤120.	How	can	the	company
maximize	monthly	profit?

I	see	numerous	problems	like	this	because	students	bring	them	to	my	university’s
mathematics	 support	 service.	 You	 know	 the	 phrase	 ‘deer	 in	 the	 headlights’?
That’s	what	 these	 students	 look	 like.	This	 is	 clearly	what	 teachers	 call	 a	word
problem,	but	it’s	a	long	way	from	‘If	Angela	has	two	marbles	and	Eric	has	five
marbles,	 how	 many	 marbles	 do	 they	 have	 altogether?’	 Many	 people	 find	 the
information	overwhelming—they	stop	thinking	and	go	into	a	sort	of	wide-eyed
panic.	If	that	happened	for	you,	try	this.	Don’t	think	about	solving	the	problem.
Just	 read	 it	 again,	 one	 sentence	 at	 a	 time,	 imagining	 the	 physical	 things
described.	Then	look	up	at	the	ceiling	and	ask	yourself,	if	you	were	running	the
company,	what	would	you	actually	need	to	decide?
The	 problem	 requires	 just	 one	 decision:	 how	 many	 tables	 of	 each	 kind	 to

make.	 It	 contains	 other	 information,	 but	 most	 of	 this	 is	 in	 the	 form	 of
constraints.	One	constraint,	for	instance,	is	that	there	are	24	carpentry	days	per
month.	The	company	doesn’t	need	to	decide	anything	about	that,	it’s	just	a	fact.



The	constraints	do	influence	the	solution,	though,	by	restricting	what	is	possible:
the	 company’s	 plan	must	 fit	within	 the	 available	 carpentry	 time.	 The	 problem
also	 contains	 information	 about	 profits.	 This	 will	 influence	 the	 solution	 too,
though	 not	 in	 a	 straightforward	way.	 For	 instance,	Douglas	 tables	make	more
profit.	Does	 that	mean	 that	 the	 company	 should	make	only	 those?	Maybe,	 but
maybe	not.	Douglas	tables	make	more	profit,	but	take	more	time.	If	the	company
made	only	Hazel	tables,	 it	could	make	more.	Would	that	be	better?	How	many
Hazel	tables	could	it	make	each	month?	Would	the	showrooms	buy	that	many?
You	might	be	able	 to	 reach	a	 full	 solution	by	 thinking	carefully	along	 these

lines.	It	won’t	be	easy,	though,	because	the	constraints	are	interdependent—what
we	really	need	is	a	way	to	work	out	how	they	interact.	Later	in	this	chapter	we’ll
solve	 the	 problem	 by	 formulating	 a	 set	 of	 inequalities	 and	 relating	 these	 to	 a
graph.	After	 that,	 we’ll	 look	 at	 other	 optimization	 problems	 and	 a	 variety	 of
different	graphing	systems.	This	structure	for	 the	chapter	means	 that	 if	you	get
bogged	down	in	the	middle,	it	would	definitely	be	worth	skipping	ahead	to	later
sections	(maybe	Section	4.7	or	 later).	But	none	of	 these	 ideas	will	make	much
sense	unless	you	understand	exactly	what	is	going	on	in	a	typical	graph.	So	we’ll
start	with	that.

4.2	Plotting	points

Graphs	are	usually	plotted	on	perpendicular	axes,	with	the	x-axis	horizontal	and
the	y-axis	vertical.	This	allows	any	point	to	be	specified	by	an	x-coordinate	and	a
y-coordinate.	Often	 these	coordinates	are	written	as	an	ordered	pair	 (x,	y).	For
instance,	(2,	3)	represents	the	point	with	x-coordinate	2	and	y-coordinate	3.	What
are	the	ordered	pairs	for	the	other	points	marked	in	the	following	graph?1



This	setup	permits	graphing	not	only	of	individual	points	but	also	of	points	that
are	meaningfully	related.	For	example,	consider	the	equation	 .	Do	any	of
the	points	above	satisfy	this	equation?	Which	points	do	satisfy	it?

If	 	then	 ,	so	(1,	2)	satisfies	the	equation;
if	 	then	 ,	so	(2,	4)	satisfies	the	equation,	and	so	on.

Then	there	are	points	with	zero	or	negative	coordinates.

If	 	then	 ,	so	(0,	0)	satisfies	the	equation;
if	 	then	 ,	so	 	satisfies	the	equation;
if	 	then	 ,	so	 	satisfies	the	equation.

In	fact,	 the	points	 that	satisfy	 the	equation	are	exactly	and	only	those	on	the
diagonal	line	plotted	below.	At	every	point	on	this	line,	the	y-coordinate	is	twice
the	x-coordinate.	This	holds	whether	or	not	 the	coordinates	 are	 integers	 (recall
that	integer	is	the	proper	mathematical	word	for	‘whole	number’).



That’s	what	it	means	to	say	that	this	line	 is	the	graph	of	 :	every	point	on
the	line	satisfies	the	equation,	and	every	point	that	satisfies	the	equation	is	on	the
line.	In	my	experience,	people	have	often	mastered	the	drawing	process	without
really	thinking	about	this,	and	we’ll	keep	it	in	mind	in	this	chapter.	First,	though,
a	word	about	conventions.
By	convention,	axes	usually	cross	at	 (0,	0).	 In	 the	previous	diagrams	 in	 this

chapter,	 the	axes	extend	 leftward	and	downward,	and	negative	numbers	appear
in	 these	 directions.	 It’s	 common,	 however,	 to	 see	 axes	 drawn	 without	 the
leftward	and	downward	extensions,	so	that—as	in	the	following	diagrams—just
an	L-shape	is	shown.	I	sometimes	adjust	L-shaped	axes	when	they	are	drawn	by
mathematics	undergraduates,	because	for	many	mathematical	situations	we	don’t
want	to	forget	the	negative	numbers.	But	in	some	contexts	they	are	reasonable.
For	 many	 real-world	 applications,	 including	 the	 tables	 problem,	 only	 positive
quantities	make	sense.	However,	the	axes	don’t	have	to	cross	at	(0,	0).	It	can	be
convenient	 to	 have	 them	 frame	 rather	 than	 cut	 through	 a	 graph,	 which	might
mean	that	they	cross	at	 ,	with	(0,	0)	somewhere	in	the	middle.



What	 doesn’t	 tend	 to	 change	 is	 the	 arrangement	 of	 perpendicular	 axes	with
positive	numbers	 to	 the	 right	 and	up.	 Indeed,	you	probably	 learned	 that	 this	 is
how	 it	 is—no	 argument,	 the	 x-axis	 is	 horizontal	 (‘x	 is	 a-cross’)	 with	 positive
numbers	to	the	right.	But	there	is	nothing	mathematically	essential	about	this,	or
about	 writing	 the	 x-coordinate	 first	 in	 the	 pair.	 Mathematicians	 could	 have
chosen	a	setup	with	any	or	all	of	these	things	reversed.	Or	they	could	have	gone
for	a	 libertarian	system	in	which	everyone	selects	an	arrangement	according	 to
their	 mood.	 Operating	 like	 that,	 though	 would	 cost	 the	 world	 an	 enormous
amount	 of	 intellectual	 energy.	Every	 time	 anyone	 constructed	 or	 read	 a	 graph,
they’d	have	to	stop	and	think	about	the	labelling	system.	People	would	be	slower
and	more	prone	to	error.
So,	 while	 exceptions	 are	 always	 possible,	 conventions	 are	 useful	 in

mathematics	as	in	everyday	life	(it’s	a	good	idea	to	decide	that	we’ll	all	drive	on
the	same	side	of	 the	road).	When	accustomed	 to	a	convention	we	can	more	or
less	 stop	 thinking	about	 it,	which	 frees	up	mental	 resources.	Bear	 this	 in	mind
when	 people	 say	 that	 mathematics	 is	 about	 ‘right	 and	 wrong	 answers’.	 Some
things	must	be	a	certain	way	for	mathematical	reasons:	once	we’ve	decided	what
we	 mean	 by	 ‘regular	 tessellation’,	 the	 only	 polygons	 that	 form	 regular
tessellations	are	triangles,	squares,	and	hexagons.	Some	things	don’t	have	to	be	a
certain	way,	but	 for	pragmatic	 reasons	 it’s	a	good	 idea	 to	make	a	decision	and
stick	to	it.

4.3	Plotting	graphs



Here	are	some	graphs,	along	with	sample	points,	for	 	(steeper	than	
),	and	for	 	and	 	(both	less	steep).

These	graphs	all	have	positive	gradients;	they	slope	upward	from	left	to	right.	In
American	 English	 one	would	 simply	 say	 that	 they	 have	 positive	 slopes.2	 The
gradient	or	slope	is	the	number	m	in	the	equation	 ,	and	it	can	be	read	as
the	ratio	of	vertical	change	 to	horizontal	change	on	 the	graph.	For	 ,	 that
ratio	is	3.



How	about	graphs	with	negative	gradients?	The	diagram	below	shows	graphs
for	 ,	and	 .	 If	you	are	 less	 familiar	with	graphing,	check
that	 they	 are	 drawn	 correctly,	 and	 compare	 them	 with	 their	 positive-gradient
counterparts.



An	 equation	 of	 the	 form	 	 is	 called	 a	 linear	 equation.	 Every	 linear
equation	 has	 a	 graph	 that	 passes	 through	 (0,	 0),	 because	 if	 	 then	

.	 It’s	 not	 immediately	 obvious	 how	 to	 write	 equations	 for	 all
possible	 lines	 through	 (0,	0),	 though,	because	 so	 far	we’ve	 seen	only	diagonal
ones.	What	about	the	axes	themselves?	Can	we	write	equations	for	those	in	the
same	way?
For	the	x-axis	the	answer	is	yes.	This	axis	could	be	written	as	 ,	because

for	 every	 value	 x,	 	 gives	 .	 Alternatively,	 mathematicians
might	use	the	symbol	‘∀’,	meaning	‘for	all’,	and	write

In	fact,	they	might	just	write



I	find	the	last	bit	counterintuitive,	because	it	feels	like	an	equation	describing	the
x-axis	ought	to	have	xs	in	it,	not	a	lone	y.	But	I	can	sort	this	out	by	noting	that
‘the	 line	 ’	 refers	 to	all	points	of	 the	 form	 ,	which	 together	constitute
the	x-axis.

How	about	the	vertical	axis?	Inspired	by	what	we’ve	just	discussed,	we	could
write	‘ 	 ’,	or	‘the	line	 ’.	Again	I	have	the	intuition	problem,	but	again
I	 can	 sort	 it	 out:	 the	 line	 	 comprises	 all	 points	 of	 the	 form	 ,	which
together	 constitute	 the	 y-axis.	 It’s	 worth	 thinking	 further,	 however,	 because	 it
would	be	nice	to	write	an	equation	for	the	y-axis	in	the	form	 .	Can	we	do
that?	People	with	good	graphical	intuition	often	want	to	say	 	(the	symbol
‘∞’	 means	 ‘infinity’).	 They	 arrive	 at	 this	 idea	 via	 a	 limiting	 argument.
Considering	 ,	and	so	on	makes	it	clear	that	for	larger	values
of	 m,	 equations	 of	 the	 form	 	 have	 steeper	 graphs.	 Thus,	 it	 seems
reasonable	to	say	 	will	have	‘infinite	gradient’,	making	it	vertical.
This	is	sensible	reasoning	but,	if	you’ve	read	Chapter	3,	you	should	hesitate.

As	discussed	there,	generalizing	from	the	finite	to	the	infinite	sometimes	works
but	sometimes	doesn’t.	In	this	case,	one	problem	is	that	a	similar	argument	about
negative	 gradients	 would	 lead	 to	 the	 conclusion	 that	 the	 y-axis	 can	 also	 be
written	 as	 .	Maybe	 that’s	 not	 a	 big	 concern	 if	we’re	 okay	with	 using
different	expressions	to	specify	the	same	line	(which	mathematicians	are—more
on	that	in	the	next	section).	A	bigger	problem	is	that	 	doesn’t	really	give
what	we	want.	For	 instance,	 at	 ,	 	would	give	 .	What	 is
that?	You	might	argue	 that	 it’s	0	because	anything	 times	0	 is	0.	But	you	might



argue	that	 it’s	 infinity	because	 infinity	 times	anything	is	 infinity.	Or	you	might
argue	that	it’s	1	because	0	and	infinity	in	some	sense	‘balance	out’.	Does	any	of
those	 arguments	 give	what	we	want	 in	 terms	of	 the	 graph?	Unfortunately	 not.
We’d	want	 	to	somehow	simultaneously	give	every	possible	number,
to	constitute	the	entire	y-axis.

The	 problem	 is	 not	much	 better	 elsewhere.	Consider	 ,	 for	 instance.	 If	
	gives	anything	for	 ,	it	ought	to	be	 ,	giving	a	point	that	is	sort

of	‘off	the	top	of’	the	graph.	But	this	raises	questions	of	whether	 	is	also	∞
and	is	therefore	the	same	as	 ,	or	whether	it	is	somehow	‘twice	as	big’.	If
we	allow	it	to	be	the	same	we	get	into	trouble,	because	then	we	must	say	that

and	dividing	both	sides	by	∞	gives

When	people	 say	 that	∞	 is	not	a	number,	 this	 is	what	 they	mean—if	 it	were	a
number,	arithmetic	would	break.
If	 you	 don’t	 know	 how	 to	 resolve	 this,	 that’s	 not	 because	 your	 intuition	 is

inadequate.	 There	 is	 no	 obvious	 answer,	 and	 mathematicians	 only	 resolved	 it
satisfactorily	towards	the	end	of	the	19th	century	(I’ll	discuss	that	in	Chapter	5).
If	you	don’t	know	how	to	represent	the	y-axis	in	the	form	 ,	that’s	because



we	can’t.	But	that’s	okay	because	we	can	still	refer	to	it	as	the	y-axis	or	the	line	
.	 And	 we	 can	 apply	 the	 reasoning	 about	 horizontal	 and	 vertical	 axes	 to

other	horizontal	 and	vertical	 lines,	which	will	be	useful	when	we	 return	 to	 the
optimization	 problem.	 For	 instance,	 the	 line	 	 comprises	 all	 points	 of	 the
form	 ,	so	it	is	the	horizontal	line	with	y-intercept	3,	as	in	the	following	left
diagram.	Check	that	you	understand	the	labels	for	the	vertical	lines	on	the	right.

4.4	 	(or	b)

Those	 who	 remember	 graphing	 from	 school	 will	 know	 what’s	 coming	 next:
graphs	 for	 equations	 like	 .	We	 can	 think	 about	 this	 equation	 in	 the
familiar	way.

If	x	=	0	then	y	=	(2	×	0)	+	3	=	3,	so	(0,	3)	is	on	the	graph;
if	x	=	1	then	y	=	(2	×	1)	+	3	=	5,	so	(1,	5)	is	on	the	graph;
if	x	=	2	then	y	=	(2	×	2)	+	3	=	7,	so	(2,	7)	is	on	the	graph;	and	so	on.

It’s	easier,	though,	to	observe	that	for	every	value	of	x,	the	quantity	 	is
three	more	than	 ,	so	the	graph	of	 	can	be	thought	of	as	a	vertical
translation	of	the	graph	of	 .



In	 general,	 adding	 c	 shifts	 the	 graph	 up	 by	 c	 units.	Because	 the	 graph	 then
goes	 through	 the	point	 ,	 the	c	 is	 sometimes	 referred	 to	 as	 the	 y-intercept.
This	 works	 with	 negative	 values	 of	 c	 too—it	 sounds	 a	 bit	 weird,	 but	 when
mathematicians	write	a	standard	equation	like	 ,	they	usually	mean	that
c	could	be	positive	or	negative.	This	is	another	convention	that’s	different	in	the
United	States,	though.	There,	it’s	not	 ,	it’s	 .	I	have	no	idea
why.	 But	 this	 clarifies	 the	 arbitrary	 nature	 of	 conventions,	 because	 it	 clearly
doesn’t	matter	which	we	use.	I	prefer	c,	and	I’d	like	to	argue	that	this	is	because
it	 is	 a	 good	 abbreviation	 for	 ‘constant’	 (as	 in	 ‘plus	 a	 constant’).	 But,	 if	 I’m
honest,	my	preference	is	probably	based	on	familiarity:	I	like	the	c	because	I’m
used	to	it.	In	any	case,	here	are	some	 illustrative	graphs	for	 ,	
and	 .



While	on	the	subject	of	standard	forms,	I	want	to	discuss	rearranging,	because
an	 alternative	will	 help	with	 the	 optimization	 problem.	 The	 following	 algebra
shows	how	an	equation	of	the	form	 	can	be	rearranged	to	put	all	 the
variables	 on	 one	 side.	 The	 symbol	 ‘⇔’	 can	 be	 read	 aloud	 as	 ‘(which)	 is
equivalent	 to’,	 and	 the	 reordering	 is	 not	 mathematically	 necessary	 but
(unsurprisingly)	it	is	conventional	to	write	the	xs	first:

It’s	 usual	 to	 end	 up	 with	 integer	 coefficients	 for	 each	 variable,	 which	 might
require	rearranging	like	this:



Hence	we	can	rewrite	 	in	the	alternative	standard	form	 .
It	took	me	a	while	to	appreciate	this	because	the	curriculum	I	experienced	taught
me	first	about	the	form	 ,	from	which	you	can	‘read	off’	the	gradient	m
and	the	intercept	c.	I	got	used	to	this	and,	when	I	learned	about	the	alternative,	I
didn’t	find	it	so	intuitive.	But	now,	for	graphing,	I	like	it	better.	Here’s	why.
The	equation	 	is	a	rearrangement	of	 ,	so	it	represents

a	straight	line.	And	we	can	draw	a	straight	line	by	finding	two	points	on	it	and
joining	 them	 together.	 With	 the	 	 form	 this	 is	 particularly	 simple.
First,	suppose	that	 .	What	must	y	be?	When	x	is	0,	the	equation	
becomes	 ,	meaning	that	 .	So	the	point	(0,	10)	is	on	the	graph,	and
is	easy	to	draw	because	it	is	on	the	y-axis.	What	do	you	think	we	should	do	next?
Yep,	suppose	that	 .	What	must	x	be?	When	y	is	0,	the	equation	5x	+	3y	=	30
becomes	5x	=	30,	meaning	that	 .	So	the	point	(6,	0)	is	on	the	graph,	and	on
the	x-axis.	So	we	have	found	the	two	intercepts,	and	we	can	join	them	up.



That’s	 straightforward,	 and	 it	 will	 help	 with	 the	 optimization	 problem.	 But
before	going	on	I’d	like	to	point	out	something	fundamental.	We	just	rearranged
the	equation

then	 I	 confidently	 talked	 about	 graphing	 the	 second	 of	 these.	 I	 can	 do	 that
because	rearranging	an	equation	does	not	change	the	line	to	which	the	equation
refers.	This	 is	 not	 immediately	obvious,	 I	 think,	 and	 the	 first	 thing	 to	 do	 is	 to
check	that	you	believe	it	for	the	example	discussed	here.	The	graph	should	have
intercept	10	and	gradient	 .	The	intercept	is	easily	checked,	but	the	gradient	is
harder	(for	every	one	unit	to	the	right,	the	graph	should	go	five	thirds	of	a	unit
down;	 equivalently,	 for	 every	 three	 units	 to	 the	 right,	 it	 should	 go	 five	 units
down).
Why	is	this	valid?	After	all,	 the	equations	 	and	 	 look

different—the	numbers	in	the	second	are	all	three	times	bigger.	But	suppose	that



the	point	 (x,	 y)	 satisfies	 the	 first	 equation.	 Then	 it	 is	 true	 that	 	 so,
multiplying	 both	 sides	 by	 3,	 it	 is	 also	 true	 that	 .	 This	 means	 that
every	point	that	satisfies	 	also	satisfies	 .	And	the	converse
is	 true:	 every	point	 that	 satisfies	 	 also	 satisfies	 .	 So	 the
two	 equations	 have	 exactly	 the	 same	 solution	 set;	 the	 set	 of	 points	 (x,	 y)	 that
satisfies	the	first	is	exactly	the	same	as	the	set	that	satisfies	the	second.	And	 the
solution	 set	 is	 represented	 by	 the	 graph,	 so	 the	 two	 equations	 have	 identical
graphs.

4.5	More	or	less?

We’ve	established	that	for	an	equation	like	 ,	the	solution	set	is	a	line.
Next	we’ll	consider	two	related	inequalities.	First,	though,	a	bit	of	mathematical
pedantry.	 People	 tend	 to	 say	 ‘equation’	 for	 any	 mathematical	 expression
containing	xs.	But	that’s	often	inaccurate.	There	is	an	equals	sign	in	 ,
so	that	is	indeed	an	equation.	But	there	is	no	equals	sign	in	either

So	these	are	not	equations	but	inequalities.	And	 	doesn’t	have	a	relational
symbol	at	all—it	is	better	described	as	an	expression.
Which	 points	 satisfy	 the	 inequality	 	 and	 which	 satisfy	

?	One	way	to	find	out	is	to	pick	a	point	on	the	graph	of	 ,
then	think	about	changing	x	or	y.	The	point	 	marked	in	the	following	is	on
the	graph,	for	instance,	so	its	coordinates	must	satisfy	 .	Now	suppose
we	increase	x.	Then	the	value	of	 	must	go	up,	so	at	the	new	point	it	must
be	true	that	 .	The	same	is	true	if	we	increase	y.



From	any	point	on	the	line,	moving	up	and/or	right	yields	the	same	result.	So
all	 the	 points	 in	 the	 shaded	 area	 satisfy	 ,	 and	 all	 those	 in	 the
unshaded	area	satisfy	 .



How	 does	 this	 work	 for	 graphs	 that	 ‘lean	 the	 other	 way’?	 Consider	 again	
,	which	can	be	rewritten	as	 	 (check	 that	you	believe	 this).

How	does	the	sketching	process	give	the	following	graph,	and	can	you	convince
yourself	that	the	inequalities	are	on	the	correct	sides	of	the	line?	What	difference
does	the	negative	x-coefficient	make?



With	 this	 reasoning	 about	 inequalities	 in	 place,	 we’re	 ready	 to	 revisit	 the
opening	optimization	problem.	Here	it	is	again.

A	 small	 company	makes	 tables	of	 two	kinds,	 named	 the	Hazel	 and	 the
Douglas.	The	Hazel	takes	2	days	of	carpentry	time	and	1	day	of	finishing
time.	The	Douglas	takes	3	days	of	carpentry	time	and	1	day	of	finishing
time.	The	carpenter	works	for	24	days	per	month	and	the	finisher	works
for	10	days	per	month.	Local	showrooms	will	buy	a	maximum	of	8	Hazel
tables	and	6	Douglas	tables	each	month.	The	profit	on	each	Hazel	table	is
₤100	and	the	profit	on	each	Douglas	table	is	₤120.	How	can	the	company
maximize	monthly	profit?

Recall	that	the	company	needs	to	decide	how	many	tables	of	each	kind	to	make.
It’s	often	a	good	idea	to	assign	variable	names	to	things	we	want	to	investigate,
so	 let’s	 say	 that	 the	 company	makes	h	Hazel	 tables	 and	d	 Douglas	 tables.	As
noted	earlier,	one	constraint	is	the	amount	of	carpentry	time,	capped	at	24	days.
Each	Hazel	table	takes	two	carpentry	days,	and	each	Douglas	table	takes	three.
So	making	h	Hazel	tables	and	d	Douglas	tables	takes	 	days	in	total,	and
the	company	must	ensure	that



This	type	of	inequality	is	familiar.	The	letters	are	not	x	and	y,	but	that’s	not	a	big
problem.	We	could	change	h	and	d	to	x	and	y,	but	x	and	y	don’t	remind	me	of	the
table	types,	so	if	we	did	that	I’d	likely	get	mixed	up.	Instead,	I’d	prefer	to	relabel
the	axes	 in	a	standard	graph.	 If	we	do	 that,	we	can	represent	 this	 inequality	as
below.	 The	 shaded	 region	 contains	 all	 points	 ruled	 out	 by	 the	 constraint,	 the
white	region	and	the	boundary	show	solutions	that	are	feasible.

The	 next	 constraint,	 for	 finishing	 time,	 has	 inequality	 is	 	 (why?).
The	two	constraints	together	are	shown	in	the	following,	and	the	feasible	region
is	now	a	bit	smaller.



Finally,	the	showrooms	will	buy	only	8	Hazel	tables	and	6	Douglas	tables,	so	the
company	must	ensure	that

The	next	 graph	 adds	 these,	 together	with	 two	 final,	 real-world	 constraints:	 the
company	will	not	be	making	negative	numbers	of	tables,	so	both	h	and	d	must	be
greater	 than	 or	 equal	 to	 0.	 The	 feasible	 region	 is	 now	 quite	 small,	 and	 the
optimal	 solution—the	 one	 that	 maximizes	 profit—must	 be	 inside	 or	 on	 the
boundary	of	 the	white	 shape.	Before	you	 read	on,	where	you	do	 think	 it	 is?	 If
you	can’t	be	specific,	can	you	say	roughly	where	it	is	likely	to	be	and	why?



4.6	Intersecting	lines

More	tables	means	more	profit,	so	the	optimal	solution	will	be	where	h	and	d	are
large:	at	the	top	of	the	feasible	region	(where	d	is	maximal),	at	the	right	(where	h
is	 maximal),	 or	 in	 some	 top-right-ish	 position	 that	 balances	 both.	 For	 more
precision,	we	will	think	about	the	labelled	points	in	the	following	graph.	This	is
the	final	section	on	this	problem,	so	remember	what	I	said	at	the	beginning	of	the
chapter:	 if	you	get	bogged	down	here,	 skip	 to	 the	next	 section	 for	a	 restart	on
different	ideas.



To	 find	 the	 optimal	 solution,	 we	 need	 to	 know	 how	 to	 calculate	 profit.
Because	 the	profit	on	each	Hazel	 table	 is	₤100	and	 the	profit	on	each	Douglas
table	is	₤120,	making	h	Hazel	tables	and	d	Douglas	tables	yields

In	the	previous	graph,	the	point	(0,	6)	corresponds	to	making	no	Hazel	tables	and
6	Douglas	tables,	which	yields

Can	 that	 be	 optimal?	 No,	 because	 making	 6	 Douglas	 tables	 leaves	 spare
carpentry,	finishing,	and	showroom	capacity.	To	find	out	how	many	Hazel	tables
the	 company	 could	 make	 alongside	 the	 6	 Douglases,	 we’d	 like	 to	 know	 the
position	of	point	A.	Probably	you	can	just	read	this	because	I’ve	made	the	graph
accurate.	But	we	 can	 check	 algebraically.	 The	 point	A	 is	where	 the	 line	



intersects	 the	 line	 .	 That	 means	 that	 it	 satisfies	 both	 equations	 at
once.	 So	 ,	 and	 substituting	 this	 into	 2h	 +	 3d	 =	 24	 gives	 2h	 +18	 =	 24,
meaning	 that	 ,	 so	 .	 So	 the	 point	A	 is	 (3,	 6),	 which	 corresponds	 to
making	three	Hazel	tables	and	six	Douglas	tables	and	gives

Similar	reasoning	shows	that	point	C	has	coordinates	(8,	2),	with

That’s	slightly	better.	So,	of	these	options,	the	company	should	choose	to	make	8
Hazel	and	2	Douglas	tables.
How	 about	 the	 remaining	 top-right-ish	 points?	 The	 point	 B	 is	 at	 the

intersection	of	the	lines	2h	+	3d	=	24	and	h	+	d	=	10.	So	its	coordinates	satisfy
both	of:

(1)

(2)

Can	you	 solve	 these	 simultaneous	equations?	Can	 you	 do	 it	 in	more	 than	 one
way?	A	serviceable	but	 inelegant	approach	is	 to	rearrange	equation	(2)	 to	give	

,	 then	 replace	h	with	 10	−	d	 in	 equation	 (1).	Try	 this	 if	 you	 like.	A
more	elegant	approach	is	the	one	that	you	probably	learned	in	school,	for	which
I’d	write	something	like	this.	Can	you	explain	why	each	step	 is	both	valid	and
sensible?



This	 works	 because	 multiplying	 an	 equation	 by	 a	 nonzero	 number	 doesn’t
change	 its	 solution	 set,	 so	 equations	 (2)	 and	 (3)	 have	 the	 same	 solution	 sets.
Subtracting	(3)	from	(1)	subtracts	20	from	both	sides	(we	don’t	know	the	values
of	h	and	d	at	this	stage,	but	we	know	that	two	of	each	adds	up	to	20).	This	yields
the	coordinates	 ,	and

So	option	B	is	now	the	profit	winner.	But	what	about	the	other	boundary	points,
those	on	an	edge	of	the	feasible	region	but	not	at	a	corner?	Some	of	these	are	not
practically	possible:	 the	company	will	not	be	making	 four	and	half	 tables.	But
might	a	possible	edge	point	be	better?	Or	a	point	just	inside	the	region,	perhaps?
Maybe	try	out	some	calculations.
In	fact,	point	B	is	the	best	solution.	In	problems	of	this	type,	there	will	always

be	an	optimal	 solution	at	a	corner	point	of	 the	 feasible	 region	 (any	corner,	not
necessarily	a	right-angled	one).	We	can	think	about	why	like	this.	We	established
earlier	 that	 at	 the	 point	 (0,	 6),	 the	 profit	 is	 ₤720.	Which	 other	 points	 give	 the
same	profit?	To	answer	this,	we’d	like	to	find	out	where

That’s	a	familiar	type	of	equation	and	its	graph	will	be	a	straight	line.	We	already
know	one	point	on	this	line,	(0,	6),	so	we	can	draw	the	whole	line	by	finding	one
more.	 On	 the	 x-axis,	 for	 instance,	 ,	 so	 	 is	 on	 the	 graph,	 as
shown	in	the	following	graph.	Every	point	on	the	dotted	line	has	the	same	profit,
₤720.



Similarly,	point	A	is	(3,6),	and	we	established	earlier	that	the	profit	at	A	is	₤1020.
Other	 points	 giving	 the	 same	 profit	 will	 satisfy	 ,	 and	 this
graph	will	have	the	same	gradient	as	the	one	we	just	drew.	Why,	exactly?	Both
graphs	appear	next.



Now,	what	would	the	graphs	look	like	for	other	profit	lines?	Can	you	see	why
B	must	be	the	best	solution?	And	can	you	imagine	having	more	than	one	optimal
solution?	To	help	with	that,	here	is	another	problem.	If	you	fancy	it,	have	a	go	at
the	whole	solving	process	for	yourself.

A	 small	 company	 makes	 two	 kinds	 of	 decorated	 cake,	 named	 the
Cameron	and	the	Iona.	The	Cameron	takes	1	hour	of	baking	time	and	1
hour	of	icing	time.	The	Iona	takes	1	hour	of	baking	time	and	2	hours	of
icing	time.	The	baker	works	for	6	hours	per	day	and	the	person	who	does
the	decorative	icing	works	for	8	hours	per	day.	A	local	market	stall	will
buy	a	maximum	of	5	Cameron	cakes	and	3	Iona	cakes	per	day.	The	profit
on	each	cake	of	either	type	is	₤5.	How	can	the	company	maximize	daily
profit?

4.7	Areas	and	perimeters

The	next	part	of	this	chapter	will	look	at	different	types	of	optimization	problem.



We’ll	start	with	a	classic.

A	 farmer	has	20	metres	of	 fencing,	 and	he	plans	 to	build	 a	 rectangular
enclosure.	He	wants	the	area	of	the	enclosure	to	be	as	large	as	possible.
How	should	he	do	it?

In	 this	 problem	 20	 metres	 is	 the	 perimeter	 of	 the	 enclosure—the	 combined
length	of	its	edges.	One	appropriate	rectangle	would	have	two	4-metre	edges	and
two	6-metre	edges;	its	area	would	be	 	square	metres.

Cynics	 will	 note	 that	 this	 is	 one	 of	 those	 problems	 where	 the	 context	 is	 just
window	dressing.	What	it	really	says	is

Of	all	the	rectangles	with	perimeter	20,	which	has	the	largest	area?

Does	 the	 	 rectangle	have	 the	 largest	 area?	There’s	 thinking	 to	 do	here,
because	 for	 some	 people	 it’s	 not	 obvious	 that	 the	 question	makes	 sense.	 One
natural	 intuition	 is	 that	 shapes	with	 the	 same	perimeter	 are	 the	 same	 ‘size’,	 so
they	have	 the	 same	area.	But	 ‘size’	does	not	have	an	obvious	 interpretation	 in
two	dimensions;	perimeter	and	area	do	not	change	in	the	same	way.	For	instance,
doubling	the	edges	of	the	 	rectangle	doubles	its	perimeter	but	quadruples	its
area.



More	 importantly	 for	 the	farmer’s	problem,	fixing	a	 rectangle’s	perimeter	does
not	fix	its	area.	The	rectangles	below	all	have	perimeter	20,	but	their	areas	differ
—the	biggest	area	is	more	than	twice	that	of	the	smallest.

Based	 on	 these	 rectangles	 it	 appears	 that	 the	 farmer	 should	 build	 a	 square



enclosure.	But	how	sure	would	you	be?	Could	there	be	a	better	alternative	with
noninteger	edge	lengths?	If	you	think	that	the	square	is	optimal,	is	that	because
the	perimeter	is	20?	Or	would	a	square	be	best	for	every	perimeter?	You	might
want	to	play	around	to	get	a	feel	for	this—maybe	try	a	smaller	perimeter,	like	12,
and	a	bigger	one,	like	100.
In	 fact,	 the	 square	 is	 always	 the	 best	 option,	 and	 this	 can	 be	 understood	 at

various	levels	of	sophistication.	One	is	an	argument	based	on	symmetry.	Fixing
the	 perimeter	 means	 that	 as	 the	 width	 of	 the	 rectangle	 increases,	 its	 height
decreases.	Tabulating	some	values	shows	a	growing-then-shrinking	pattern	in	the
areas.

Width Height Area
1 9 9
2 8 16
3 7 21
4 6 24
5 5 25
6 4 24
7 3 21
8 2 16
9 1 9

Tabulated	 values	 don’t	 explain	why	 the	 biggest	 area	 occurs	when	 the	width
and	 height	 are	 equal,	 though.	 To	 think	 about	 that,	 visual	 representations	 help.
Suppose	 we	 start	 with	 the	 	 square.	 Shrinking	 the	 height	 by	 one	 and
extending	the	width	by	one	keeps	the	perimeter	constant.	How	does	it	affect	the
area?

This	 change	 slices	 off	 a	 row	 of	 five	 square	 units	 and	 replaces	 them	 with	 a
column	of	 four	square	units,	meaning	 that	 the	area	shrinks	by	one	square	unit.



What	happens	for	other	widths	and	heights	in	the	table?	What	would	happen	for
a	smaller	perimeter	like	12	or	a	larger	one	like	100?	What	if	we	start	with	the	

	square	and	change	the	height	and	width	by	 ,	or	by	 ?	Does	 this	explain
why	the	square	is	always	optimal?
Mathematically,	 I	 think	 the	 fact	 that	 the	 square	 is	 optimal	 is	 a	wonderfully

elegant	 result.	 A	 square	 is	 a	 special	 rectangle	 not	 only	 because	 it	 has	 extra
symmetry;	it	is	also,	for	a	given	perimeter,	the	rectangle	with	largest	area.	With
that	in	mind,	consider	this	related	problem.

A	 farmer	has	20	metres	of	 fencing,	 and	he	plans	 to	build	 a	 rectangular
enclosure	where	 one	 side	 of	 the	 enclosure	 is	 formed	 by	 his	 farmhouse
wall.	He	wants	the	area	of	the	enclosure	to	be	as	large	as	possible.	How
should	he	do	it?

What	 do	 you	 think?	 This	 time	 the	 farmer	 needs	 fencing	 for	 only	 three	 sides
(we’re	supposed	to	assume	that	his	wall	is	long	enough	to	form	one	entire	side	of
the	rectangle).	Does	that	make	a	difference?	Will	the	optimal	solution	still	be	a
square?	 Before	 reading	 on,	 you	 might	 want	 to	 experiment	 with	 some	 length
options,	find	the	areas,	and	see	whether	your	intuition	seems	to	be	correct.

4.8	Area	formulas	and	graphs

The	previous	section	might	have	seemed	to	wander	away	from	the	nominal	topic
of	 this	 chapter:	 graphs.	 But	 graphs	 remain	 useful	 and,	 although	 the	 shapes	 in
these	problems	are	 rectangular,	 the	 relevant	graphs	are	curved.	This	 is	because
the	enclosure	edge	lengths	are	not	independent.	In	the	first	problem,	for	instance,
if	one	edge	has	length	1,	its	neighbour	must	have	length	9.	That’s	because,	if	the
perimeter	is	20,	any	pair	of	adjacent	edges	must	add	up	to	10.	Algebraically,	 if
one	edge	has	length	x,	the	adjacent	one	must	have	length	 ,	meaning	that	the
area	is	 .



For	the	second	problem,	if	an	edge	perpendicular	to	the	wall	has	length	x,	then
the	edge	parallel	to	the	wall	must	have	length	 	(the	remaining	fencing	is
used	 for	 one	 edge,	 not	 two).	 So	 the	 area	 is	 .	 Now,	 do	 you	 want	 to
reconsider	your	answer	about	the	optimal	enclosure?	Is	it	still	a	square?

Tabulating	values	again	highlights	relevant	patterns.

x

1 9 9
2 8 16
3 7 21
4 6 24
5 5 25
6 4 24
7 3 21
8 2 16
9 1 9

x

1 18 18
2 16 32
3 14 42
4 12 48
5 10 50
6 8 48
7 6 42
8 4 32
9 2 18

All	the	area	entries	in	the	second	table	are	bigger.	This	isn’t	surprising:	using
the	fencing	for	three	sides	rather	than	four	should	enclose	more	area.	In	fact,	the
entries	in	the	second	table	are	double	their	counterparts	in	the	original.	We	can
see	why	by	rearranging	the	second	formula.



Finally,	is	the	optimal	solution	still	a	square?	No,	it’s	not—the	optimal	solution
still	has	 ,	but	the	corresponding	shape	is	now	a	rectangle	in	which	the	edge
parallel	 to	 the	 wall	 is	 double	 that	 length.	 You	 might	 want	 to	 develop	 your
intuition	 for	 this	by	 thinking	as	we	did	before	about	 increasing	and	decreasing
lengths	and	widths.	More	general	insight	is	then	available	by	plotting	graphs	to
show	how	area	varies	with	x.	The	areas,	represented	as	y-values	in	the	following
graphs,	 are	 considerably	 bigger	 than	 the	 x-values,	 so	 I’ve	 adjusted	 the	 axis
scales.	One	curved	graph	shows	 	and	the	other	shows	
.	Which	is	which?

These	graphs	go	beyond	both	our	reasoning	and	the	original	problem.	They	go
beyond	our	 reasoning	by	showing	 the	y-values	 for	noninteger	x-values	 and	 for



values	beyond	those	tabulated.	At	x	=	0	and	x	=	10,	for	instance,	the	y-value	is	0,
so	the	area	would	be	0.	Why	is	that,	in	relation	to	the	problem?	And	the	graphs
allow	x	<	0	and	x	>	10.	The	problem	makes	no	sense	if	x	is	negative	or	if	
is	negative—there	is	no	such	thing	as	a	negative-length	fence.	But	the	equation	

	 requires	 no	 such	 restriction.	 For	 instance,	 	 gives	
.	Where	is	this	on	the	graph?

People	who	have	 studied	quadratic	 functions	will	 recognize	 these	 graphs	 as
parabolas.	 We	 haven’t	 written	 their	 equations	 in	 the	 standard	 form,	 but	 we
could.	For	instance,

This	is	an	instance	of	the	standard	form	of	a	quadratic	equation

with	 ,	 and	 .	 Why	 do	 you	 think	 quadratic	 equations	 are	 so
called?
To	 conclude	 this	 section,	 how	 about	 inverting	 the	 problems?	 Suppose	 that

instead	of	maximizing	area	 for	a	 fixed	amount	of	 fencing,	 the	 farmer	wants	 to
minimize	the	amount	of	fencing	to	enclose	a	fixed	area.	Then	the	two	problems
might	read	like	this.

A	 farmer	 wants	 to	 build	 a	 rectangular	 enclosure	 with	 area	 100	 square
metres.	He	wants	to	use	the	minimal	amount	of	fencing.	How	should	he
do	it?

A	 farmer	 wants	 to	 build	 a	 rectangular	 enclosure	 with	 area	 100	 square
metres	where	one	side	of	the	enclosure	is	formed	by	his	farmhouse	wall.
He	wants	to	use	the	minimal	amount	of	fencing.	How	should	he	do	it?

The	 information	 so	 far	will	 allow	you	 to	 guess	 the	 correct	 enclosure	 ‘shapes’.
But	you	might	 like	 to	work	 through	 some	 tables,	 formulas,	 and	graphs	 to	 join
everything	up.



4.9	Circles

Quadratic	 equations	 give	 graphs	 with	 one	 type	 of	 curve:	 a	 parabola.	 Another
obvious	 curve	 to	 consider	 is	 a	 circle.	 Have	 you	 ever	 wondered	 about	 how	 to
write	an	equation	 for	a	circle?	 It	 is	not	possible	do	 this	 in	 the	 form	‘ 	some
function	of	x’,	in	part	because	a	circle	curves	back	on	itself:	points	such	as	x1	in
the	following	graph	have	no	corresponding	y-values.	That’s	not	mathematically
serious	because	we	could	restrict	the	domain,	defining	the	relevant	function	only
for	 certain	 x-values.	 More	 seriously,	 points	 such	 as	 x2	 have	 two	 distinct
corresponding	y-values.	So	we	can’t	write	y	as	a	function	of	x,	because	at	some
points	we’d	want	y	to	somehow	be	two	different	numbers.

That	probably	worries	mathematicians	more	than	it	worries	the	typical	reader
of	this	book—if	you	ruled	the	world	you	might	be	inclined	to	allow	multivalued
functions.	In	fact,	though,	it	is	possible	to	write	an	equation	for	a	circle,	just	in	a
different	 form.	 It’s	 easiest	 to	 centre	 the	 circle	 at	 the	 origin	 (0,	 0);	 this	makes
everything	symmetrical.	Then,	pleasingly,	an	equation	can	be	constructed	using
Pythagoras’	 theorem,	 as	 discussed	 in	 Chapter	 1.	 This	 might	 be	 surprising,
because	Pythagoras’	theorem	is	about	triangles,	not	circles.	But	judicious	use	of
triangles	helps	a	lot.
The	key	is	that	a	circle,	whatever	its	size,	has	a	fixed	radius:	the	distance	from

the	centre	to	a	point	on	the	circle	is	always	the	same.	Say	the	radius	is	r,	and	take
a	point	 (x,	y)	on	 the	circle.	Drop	a	perpendicular	 from	(x,	y)	 to	 the	x-axis,	and



note	that	doing	this	constructs	a	right-angled	triangle	with	one	edge	of	length	x,
one	of	length	y,	and	hypotenuse	r.	What	does	Pythagoras’	theorem	say	about	this
triangle?	It	says	that	 .	This	will	be	true	for	every	point	on	the	circle,
so	the	equation	of	the	circle	is	 .

If	 you’ve	 a	 mathematical	 turn	 of	 mind,	 this	 might	 worry	 you	 a	 bit.	 Not
because	 there’s	 anything	wrong	with	 it—there	 isn’t—but	 because	 the	 x	 and	 y
values	can	be	negative	or	0.	A	mathematically	alert	person	ought	to	worry	about
whether	everything	still	works	in	those	cases,	so	we’ll	check.	At	the	point	
in	the	following	graph,	for	instance,



How	about	the	point	 ?	That’s	okay	too.	This	time

If	 the	 fact	 that	 	 bothers	 you	 because	 you’ve	 never	 really	 understood
why	 ‘a	 minus	 times	 a	 minus	 is	 a	 plus’,	 trust	 me	 for	 now	 and	 you’ll	 find	 an
explanation	 in	 Chapter	 5.	 But	 it’s	 worth	 another	 word	 here	 about	 reading
mathematics	aloud.	Experienced	mathematicians	do	this	flexibly,	and	sometimes
use	 their	 knowledge	 to	 read	 beyond	 the	 literal.	 For	 instance,	 it	 would	 be
perfectly	accurate	to	read

But	a	mathematician	might	well	read

Expertise	is	an	interesting	thing.
Having	 established	 	 as	 a	 general	 equation	 for	 a	 circle,	 it’s

educative	to	vary	it.	First,	we	could	have	bigger	or	smaller	r.	Here	are	the	graphs



for	 	and	 .

Second,	what	shape	would	be	given	by	this	variant?

I’ll	give	you	a	clue:	it’s	one	of	the	following	ellipses.	Can	you	work	out	which?



It’s	 the	 one	 on	 the	 left,	 which	 I	 find	 counterintuitive	 because	 the	 equation	
	makes	me	think	that	the	ellipse	should	be	bigger	in	the	x	direction.

In	 fact,	 though,	 the	 coefficient	 of	x2	 being	 4	 has	 the	 opposite	 effect.	 I	haven’t
overcome	 the	 faulty	 intuition—for	me	 this	 is	 like	 ‘multiplication	makes	 things
bigger’	all	over	again.	But	I	have	developed	the	sense	to	stop	each	time	and	think
about	axis	crossings.	Where	 ,	 the	equation	 	becomes	 ,
so	 	 (the	 symbol	 ‘±’	 is	 read	 aloud	 as	 ‘plus	 or	 minus’).	 Where	 ,
however,	4x2	+	y2	=	16	becomes	4x2	=	16,	meaning	 that	 ,	 so	 .	So
the	crossings	on	the	x-axis	are	closer	to	0,	and	the	circle	is	squashed	into	a	tall
ellipse.
Finally,	how	about	a	circle	with	a	different	centre?	In	the	following	diagram,

the	radius	is	still	r	but	the	centre	of	the	circle	is	at	the	point	(5,	2).	This	means
that	the	horizontal	edge	of	the	labelled	triangle	has	length	 ,	and	the	vertical
edge	has	length	 .

Applying	Pythagoras’	theorem	as	before,	this	means	that	every	point	(x,	y)	on	the
circle	satisfies	the	equation

And	 a	 mathematician	 might	 well	 read	 this	 equation	 as	 ‘the	 circle	 of	 radius	 r
centred	at	 the	point	 (5,	2)’.	 If	 you	 find	 it	 hard	 to	 imagine	 ever	developing	 the



knowledge	 to	 just	 recognize	 that,	 think	 about	 your	 own	mathematical	 learning
over	time.	Probably	you	recognize	 	as	a	straight	line,	maybe	even	as	a
straight	 line	with	gradient	m	 and	y-intercept	c.	But	 the	 10-year-old	 you	would
have	found	that	amazing.

4.10	Polar	coordinates

I’ll	conclude	the	main	content	of	this	chapter	with	two	sections	on	representation
systems.	The	Cartesian	 coordinate	 system	 used	 so	 far	 is	 now	 ubiquitous.	 It	 is
named	 for	 the	 17th-century	 mathematician	 Descartes,	 though	 others	 used	 and
adapted	similar	systems.	This	might	give	some	readers	another	historical	shock.
The	 familiar	 coordinate	 system	was	 indeed	 invented.	Someone,	 at	 some	 point,
had	to	say	‘Hey,	you	know	how	we	keep	wanting	to	represent	the	way	in	which
values	of	one	quantity	are	 related	 to	values	of	 another?	Why	don’t	we	put	 the
quantities	on	perpendicular	axes	so	that	each	pair	of	values	gives	a	single	point?’
It’s	 hard	 to	 imagine	 this	 now	 because	 Cartesian	 coordinates	 are	 part	 of	 the
mathematical	 furniture—they’re	 so	 familiar	 that	 we	 don’t	 really	 think	 about
them.
It	 happens,	 though,	 that	 Cartesian	 coordinates	 are	 not	 the	 only	 way	 of

representing	points	in	two	dimensions.	Two	dimensions	require	two	coordinates,
but	these	do	not	have	to	be	x	and	y	coordinates	based	on	horizontal	and	vertical
axes.	One	alternative	is	polar	coordinates,	where	polar	refers	to	a	pole	or	central
point	from	which	we	measure,	as	in	‘north	pole’	(though	not	on	a	sphere).	Polar
coordinates	are	usually	notated	 ,	where	r	is	distance	from	the	origin,	and	θ
(the	Greek	letter	theta)	is	the	angle	measured	anticlockwise	from	what	would	be
the	x-axis.



This	system	has	a	key	feature	in	common	with	Cartesian	coordinates:	 it	allows
us	 to	 specify	 every	 point.	 But	 it	 differs	 in	 another	 key	 feature:	 the	 names	 of
points	are	no	longer	unique.	For	instance,	the	following	point	could	be	specified
in	either	of	the	two	given	ways.

This	can	be	bothersome	 in	practice,	 so	people	 tend	 to	adopt	a	convention	 in
which	all	stated	angles	are	between	either	 	and	 	or	−180∘	and	180∘.	But	it’s
not	 considered	 bothersome	 in	 principle,	 because	 multiple	 expressions	 for	 the
same	object	are	mathematically	common.	As	we’ve	seen,	 the	fractions	 	and	
both	 specify	 the	 same	 point	 on	 the	 number	 line,	 and	 the	 two	 equations	

	and	 	both	specify	 the	same	 line.	Here,	 the	 two	ordered



pairs	 	and	 	specify	the	same	point.
Polar	 coordinates	 are	 useful	 because	 Cartesian	 coordinates	 are	 untidy	 for

circles:	an	equation	like	 	isn’t	especially	elegant.	In	polar	coordinates
the	equation	is	much	nicer.	A	circle	is	all	the	points	at	distance	r	from	the	origin
or	pole,	so	the	polar	equation	for	a	circle	is	simply	 	or	 	or	similar.

This	equation	does	not	involve	θ	because	for	every	value	of	θ,	the	value	of	r	 is
the	same.	We	could	write	‘ 	 ’,	but	we	don’t	have	to.	In	polar	coordinates,
it’s	 fine	 to	write	 	 to	 represent	a	circle,	 just	as	 in	Cartesian	coordinates	 it’s
fine	to	write	 	to	represent	a	vertical	line.	And,	as	in	Cartesian	coordinates,
we	 can	 specify	 regions	 using	 inequalities.	 For	 instance,	 the	 region	 	 is
shaded	in	the	following	left	diagram.	What	does	the	region	 	look	like?	And
the	region	 ?	We	can	 specify	 an	annulus	with,	 for	 instance,	 one	 boundary
included	and	one	not,	by	the	double	inequality	 	(read	aloud	as	‘2	is	less
than	or	equal	to	r	is	less	than	4’	and	meaning	that	both	 	and	 ).



We	 can	 specify	 regions	 in	 terms	 of	 θ,	 too.	 For	 instance,	 the	 following	 left
region	is	specified	by	 .	And	the	right	region	is	specified	by	the	two
inequalities	 	and	 .	It	makes	sense	to	think	of	the	latter	as	a
sort	of	‘polar	rectangle’.	Can	you	see	why?

4.11	Coordinates	in	three	dimensions

To	conclude	this	chapter,	we’ll	consider	coordinate	systems	in	three	dimensions.
To	 extend	 Cartesian	 coordinates,	 we	 commonly	 imagine	 a	 third	 axis
perpendicular	to	both	the	x-	and	y-axes,	and	labelled	z.	Equations	 then	slice	up
three-dimensional	 space.	 But	 now,	 instead	 of	 a	 line,	 an	 equation	 like	



represents	a	plane.	That’s	because	 	refers	to	all	points	of	the	form	 ,
where	y	and	z	can	be	anything	you	like.

For	a	more	complicated	example,	consider	 the	equation	 .	We	can
work	out	what	this	looks	like	by	thinking	about	axis	crossings	(handy	approach,
that).	When	y	and	z	are	both	0,	x	must	be	2.	So	the	point	(2,0,0)	is	on	the	plane,
as	are	(0,2,0)	and	(0,0,2).	So	this	plane	passes	through	all	of	these	points.



And	three-dimensional	solids	can	be	specified	by	combining	inequalities.	The
region	that	satisfies	all	three	of	 ,	 ,	and	 	is	a	cuboid
or	rectangular	prism.	 In	 the	 left	 diagram	below,	 every	 point	 in	 the	 box	 has	x-
coordinate	between	0	and	3,	y-coordinate	between	0	and	2	(the	2	 isn’t	 labelled
because	 it’s	 ‘at	 the	 back	 of’	 the	 box),	 and	 z-coordinate	 between	 0	 and	 1.	 The
right	diagram	shows	the	solid	that	satisfies	all	four	of	 ,	 ,	 ,	and	

.	 This	 is	 a	 tetrahedron	 or	 triangular	 pyramid—can	 you	work	 out
how	it	corresponds	to	the	inequalities?

Now,	 how	 do	 you	 think	 we	 might	 extend	 polar	 coordinates?	 This	 is	 not
obvious	 and	 there	 are	 two	 commonly	 used	 systems,	 termed	 cylindrical	 polar
coordinates	 and	 spherical	 polar	 coordinates.	Cylindrical	 polars	 just	 insert	 a	 z-
axis	perpendicular	to	the	polar	plane,	so	that	 	is	r	units	from	the	origin,	an
angle	 of	 θ	 anticlockwise	 from	 the	 x-axis,	 and	 z	 units	 up.	 This	 system,
unsurprisingly,	 is	 good	 for	 representing	 cylinders.	 The	 equation	 ,	 for
instance,	 specifies	 an	 infinite	 cylinder	 of	 radius	 2.	 The	 inequalities	 	 and	

	together	specify	a	solid	cylinder	of	height	1.



Spherical	 polars	 are	 a	 bit	 harder	 to	 think	 about,	 at	 least	 for	me.	A	spherical
polar	point	is	usually	denoted	 ,	where	ϕ	is	the	Greek	letter	phi.	This	point
is	r	units	from	the	origin,	an	angle	θ	anticlockwise	from	the	x-axis,	and	an	angle
ϕ	 down	 from	 the	 vertical.	 If	 you	 don’t	 mind	 looking	 like	 a	 Dalek,3	 you	 can
generate	physical	 intuition	 for	 this	by	 thinking	of	one	of	your	shoulders	as	 the
origin	(0,0,0).	Stick	your	arm	straight	up	and	pretend	its	length	is	r.	Then	keep	it
straight	and	sweep	it	downwards—by	doing	that	you’re	increasing	ϕ.	Then	keep
your	shoulder	still	and	keep	your	hand	at	the	same	height	but	swing	it	around—
by	doing	that	you’re	changing	θ.



Spherical	 polars	 are,	 of	 course,	 good	 for	 representing	 spheres.	 In	 spherical
polars,	the	equation	 	specifies	a	hollow	sphere	of	radius	3.	If	you’re	not	sure
why,	fix	your	shoulder	in	place,	swing	your	straight	arm	around	and	think	about
all	 the	 points	 your	 fingertips	would	 reach.	The	 inequalities	 	 and	
together	specify	a	sort	of	fat	solid	ice-cream	cone.

To	 finish	 off,	 you	might	 like	 to	 test	 your	 understanding	 of	 both	 coordinate
systems	by	working	 out	what	 three-dimensional	 shapes	would	 be	 specified	 by
these	sets	of	inequalities:

(cylindrical)	 	and	 ;
(cylindrical)	 	and	 	and	 ;
(spherical)	 	and	 ;
(spherical)	 	and	 	and	 .

And	 you	 might	 like	 to	 note	 that	 different	 coordinate	 systems	 are	 not	 just	 an
exercise	in	pure	mathematics,	they	have	enormous	practical	utility.	We	live	on	a
sphere	 and,	while	we	 don’t	 notice	 this	 at	 the	 everyday	 human	 scale,	we	 have
technologies	for	which	it	is	very	relevant.	To	fly	jets	between	continents	or	track
satellites	in	orbit,	spherical	polar	coordinates	are	perfect.

4.12	Review



This	chapter	discussed	optimization,	graphs,	and	links	between	the	two.	It	began
with	plotting	individual	points,	then	progressed	to	graphing	linear	equations.	We
considered	representing	axes—highlighting	the	fact	that	∞	is	not	a	number—and
writing	 equations	 in	 different	 standard	 forms.	 We	 then	 related	 graphs	 to
inequalities.	 In	 the	 later	 sections,	 we	 considered	 classic	 areas-and-perimeters
problems,	relating	the	optimal	solutions	to	curved	graphs	of	quadratic	functions.
Finally,	we	looked	at	different	coordinate	systems	for	both	two-dimensional	and
three-dimensional	space,	and	at	regions	specified	by	inequalities.
One	 implicit	 theme	 was	 using	 graphs	 to	 facilitate	 problem	 solving	 by

representing	 lots	 of	 information	 at	 once.	 An	 equation	 like	 	 has	 an
infinite	 solution	 set,	 and	 the	 corresponding	 graph	 captures	 this	 set	 in	 a
convenient	form.	It	also	divides	the	plane	into	two	regions	where,	respectively,	

	 and	 .	 Interpreting	 such	 regions	 allowed	 us	 to	 solve	 the
opening	optimization	problem	by	representing	all	 the	relevant	information	on	a
single	graph.
A	 more	 explicit	 theme	 was	 conventions,	 which	 standardize	 communication

and	 minimize	 collective	 effort.	 I	 contrasted	 arbitrary	 (but	 useful)	 conventions
with	 necessary	 mathematical	 consequences.	 For	 instance,	 we	 can	 choose	 to
represent	 points	 using	 either	 Cartesian	 or	 polar	 coordinates.	 But	 once	 we’ve
decided,	 a	 circle	 centred	 at	 the	 origin	 must	 have	 equation	 	 in
Cartesian	 coordinates,	 and	 	 in	 polars.	 The	 communication	 benefit	 is
immediate	 because	 standard	 equation	 types	 have	 standard	 graphs.	 Sketching
might	take	a	while,	but	in	Cartesian	coordinates	I	know	that	 	will	be	a
straight	 line,	 	will	 be	 a	 parabola,	 and	 	will	 be	 a	 circle.
And	this	facilitates	spoken	communication.	Saying	‘the	circle	of	radius	3	centred
at	the	origin’	is	no	more	accurate	than	saying	‘x	squared	plus	y	squared	equals	9’,
but	for	listeners	it	probably	creates	a	more	vivid	mental	image.	And	imagery	can
help	in	all	kinds	of	problem	solving.	People	with	well-integrated	knowledge	of
different	representation	systems	can	translate	flexibly	between	them,	using	their
respective	advantages.	Fluent	translation	is	a	valuable	mathematical	skill.

1	Answers:	 ,	 	and	
2	I	learned	this	the	hard	way	when	teaching	in	the	USA.	I	used	the	word	‘gradient’	for	some	time	before

a	brave	student	politely	told	me	that	no	one	in	the	class	knew	what	I	was	talking	about.



3	Daleks	are	cyborg	aliens	from	the	UK	science-fiction	TV	show	Doctor	Who.



CHAPTER	5

Dividing

5.1	Number	systems

What	 is	 a	 number?	 This	 question	 is	 far	 from	 trivial—numbers	 are	 slippery
beasts.	For	instance,	the	numeral	‘5’	can	be	thought	of	as	a	number,	but	it’s	not
really.	It’s	fair	to	say	that	it’s	a	canonical	representation	of	the	number	five,	but
five	can	also	be	written	in	numerous	other	ways.

These	expressions	all	represent	the	same	abstract	object—if	they	refer	to	a	thing,
then	 five	 is	 that	 thing.	 But	 they	 represent	 it	 in	 different	 ways,	 in	 some	 cases
highlighting	links	to	broader	number	systems.	In	this	chapter,	those	systems	are	a
major	theme.
To	 see	 why	 that’s	 important,	 consider	 another	 question.	 Why	 do	 numbers

work	the	way	they	do?	In	a	limited	sense,	this	is	due	to	regularities	in	the	world.
If	 you	 have	 three	 sandwiches	 and	 I	 have	 two	 sandwiches,	 then	 altogether	 we
have	 five	 sandwiches.	 It’s	 worth	 having	 names	 for	 ‘two’,	 ‘three’,	 and	 ‘five’
because	 the	 same	 pattern	 would	 hold	 if	 instead	 we	 had	 toothbrushes	 or
candlesticks.	And	other	mathematical	concepts	are	grounded	in	other	perceptual
experiences.	You	know	what	a	straight	 line	 is,	and	what	symmetry	 is,	and	you



probably	feel	that	these	notions	are	natural	features	of	the	world,	rather	than	just
in	 your	 head.	 But	 mathematics	 climbs	 fast	 towards	 abstraction.	 Why,	 for
instance,	was	it	okay	in	Section	3.6	for	me	to	explain	that	20	can	be	defined	by
generalizing	 a	 relationship	 that	 makes	 sense	 for	 positive	 powers?	 There’s
nothing	 ‘in	 the	 world’	 that	 directly	 informs	 this.	 It’s	 less	 about	 numbers	 as
separate	things	and	more	about	number	systems.
This	 final	 main	 chapter	 will	 discuss	 logical	 consequences	 of	 mathematical

relationships	 and	 how	 these	 are	 represented	 in	 number	 systems.	 With	 that	 in
mind,	here	is	something	to	start	us	off.	Did	you	know	that	a	number	is	divisible
by	9	if	and	only	if	the	sum	of	its	digits	is	divisible	by	9?	For	example:

The	sum	of	the	digits	of	738	is	 ,	which	is	divisible	by	9.	So
738	is	divisible	by	9	(check:	 ).

The	 sum	 of	 the	 digits	 of	 	 is	 ,	 which	 is	 not
divisible	 by	 9.	 So	 	 is	 not	 divisible	 by	 9	 (check:	

	 or,	 if	 you	 prefer,	 	 remainder
1).

This	 is	 cute	 and	 it	 makes	 for	 a	 clever-looking	 party	 trick.	 But	 the	 interesting
question	is,	why	does	it	work?	Such	regularities	don’t	come	out	of	nowhere.	This
one	 arises	 because	we	 represent	 numbers	 in	base	10.	We’ll	 start	 by	 exploring
base-10	representation	in	relation	to	this	phenomenon.

5.2	Dividing	by	9	in	base	10

To	say	that	we	represent	numbers	in	base	10	means	that	the	places	in	our	place-
value	 number	 system	 correspond	 to	 powers	 of	 10.	You	might	 have	 learned	 to
describe	this	in	terms	of	hundreds,	tens,	and	units.	For	instance,	the	number	738
has	7	in	the	hundreds	place	(where	 ),	3	in	the	tens	place	( ),	and
8	 in	 the	 units	 place	 ( ;	 if	 you’re	 not	 sure	 why,	 see	 Section	 3.6):	

This	makes	 it	possible	 to	consider	what	changes	 from	one	multiple	of	9	 to	 the
next.	Adding	9	is	the	same	as	adding	10	and	subtracting	1.	So,	at	each	step	in	the
list	below,	the	tens	digit	goes	up	by	1	and	the	units	digit	goes	down	by	1.	This
keeps	the	digit	sum	constant	so,	because	the	first	number	is	9,	the	total	at	every
step	is	9.



Unfortunately,	this	works	only	until	90,	after	which	it	gets	more	complicated.
Adding	9	 to	90	gives	99,	 leaving	 the	 tens	digit	unchanged	and	adding	9	 to	 the
units	digit.	So	the	total	remains	divisible	by	9.	Adding	9	to	99	gives	108,	which
drops	the	tens	digit	by	9,	drops	the	units	digit	by	1,	and	increases	the	hundreds
digit	by	1—again	the	total	remains	divisible	by	9.	Then	it’s	back	to	adding	a	10
and	subtracting	a	unit.

Similar	 reasoning	might	convince	you	of	 the	general	 result	 that	 a	number	 is
divisible	by	9	if	and	only	if	the	sum	of	its	digits	is	divisible	by	9	(what	happens
at	the	next	hundred	or	thousand?).	But	greater	insight	is	possible	if	we	think	less
about	the	adding	process	and	more	about	the	number’s	structure.	Consider	again
738,	which	we	could	write	as	
This	helps	because	although	neither	100	nor	10	is	divisible	by	9,	both	are	very
close	to	something	that	is:	we	can	replace	100	with	 	and	10	with	 .



Then	 we	 can	 multiply	 out	 using	 distributivity,	 reorder	 the	 terms	 using
commutativity,	 collect	 all	 the	 ‘ ’	 bits	 together,	 and	 write	 them	more	 simply.
Make	sure	you	can	see	what	happens	in	each	new	equation	in	this	array.

Finally,	think	about	the	three	parts	of	the	last	expression.

This	shows	 that	738	 is	divisible	by	9	because	 it	 is	equal	 to	a	sum	in	which	all
addends	are	divisible	by	9.	The	first	and	second	addends	are	multiples	of	99	and
9,	respectively.	The	third	is	a	multiple	of	9	too,	which	is	easy	to	check	by	adding.
But	what	is	the	third	addend?	It’s	the	sum	of	the	digits.
Moreover,	 for	different	 three-digit	numbers,	 the	 third	addend	will	 always	be

the	sum	of	the	digits.	For	instance,	655	is	not	divisible	by	9.



Are	 you	 convinced,	 or	 would	 it	 help	 to	 write	 out	 the	 full	 argument	 for	 this
number?	 If	 you	 can	 see	 these	 arguments	 as	 generic,	 that’s	 good.	 But
mathematicians	especially	 like	 fully	general	 arguments,	 and	here	we	can	use	a
letter	to	stand	for	each	digit.	Suppose	that	the	number	is	 ,	where	the	letters
are	 not	 numbers	 multiplied	 together,	 but	 digits,	 meaning	

Then	the	argument	has	exactly	the	same	structure.

Thus,	 	can	be	expressed	as	a	bunch	of	stuff	that	is	definitely	divisible	by	9,
plus	the	sum	of	its	digits.	So	it	is	divisible	by	9	if	and	only	if	the	sum	of	its	digits
is	divisible	by	9.

Of	course,	 that	deals	only	with	numbers	 in	 the	hundreds.	But	we	could	extend
the	 argument	 to	 bigger	 numbers.	 For	 instance,	 what	 would	 you	 write	 for	 the
number	 ?	And	how	would	the	argument	go	for	the	general	5-digit	number	



Finally,	 why	 do	 you	 think	 I	 labelled	 the	 digits	 ,	 with	d0	 as	 the	 units
digit?	In	one	sense,	this	doesn’t	matter—notation	can	be	set	up	in	any	convenient
way.	 But	 calling	 the	 units	 digit	 d0	 permits	 consistent	 labelling	 for	 bigger
numbers:	 as	 just	 shown,	 	 can	 represent	 a	 number	 in	 the	 tens	 of
thousands.	Moreover,	 labelling	 the	 units	 digit	 d0	 links	 to	 powers	 of	 10	 in	 the

base-10	system:	

We	can	also	extend	to	negative	powers.	And,	because	we	are	working	in	base	10,
we	can	add	a	row	of	decimal	representations	(negative	powers	are	discussed	in
Section	 3.6):	

This	chapter	will	involve	decimals	in	association	with	division.	But,	for	now,	I
want	to	ask	whether	the	dividing-by-9	result	works	similarly	for	other	numbers.
Does	 it?	Or	 is	 there	 something	 special	 about	 9s?	What	 do	 you	 think?	Clearly
there	is	something	special	in	that	powers	of	10	are	‘nearly’	multiples	of	9.	But	it
is	also	true	that

Claim:	a	number	is	divisible	by	3	if	and	only	if	the	sum	of	its	digits	is	divisible
by	3.

Can	you	see	why?	It	works	in	some	cases	because	if	a	number	is	divisible	by	9,	it
is	 also	divisible	by	3.	But	many	 numbers	 are	 divisible	 by	 3	 but	 not	 by	 9.	 For
instance,	 	must	have	this	property.	Not	much	adjustment	is	needed,
though,	to	apply	a	similar	argument.	Because	99	and	9	are	both	divisible	by	3,	a
number	(in	the	hundreds)	is	divisible	by	3	if	and	only	if	the	sum	of	its	digits	is

divisible	by	3:	



In	general,

How	does	this	work	for	a	number	in	the	tens	of	thousands,	or	the	millions?	And
are	 there	more	divisors	with	similar	properties	 to	9	and	3?	What	would	be	 the
answers	if	we	worked	in	base	5	instead	of	base	10?	And	have	you	thought	much
about	the	phrase	if	and	only	if?

5.3	If	and	only	if

The	 phrase	 if	 and	 only	 if	 appeared	 several	 times	 in	 the	 previous	 section.	 You
probably	didn’t	notice,	 so	you	might	want	 to	 look	back	and	check.	But	maybe
you	 remember	 that	 I	 both	used	and	emphasized	 it	 in	Section	1.7	when	 talking
about	Pythagoras’	theorem.	The	phrase	if	and	only	if	is	heard	only	rarely	outside
mathematics,	but	in	mathematics	it	crops	up	all	 the	time	because	it	captures	an
important	type	of	logical	relationship.	In	this	case,	it	is	used	in	a	single	statement
capturing	two	claims:

Claim:	A	number	is	divisible	by	9	if	the	sum	of	its	digits	is	divisible	by	9.

Claim:	A	number	is	divisible	by	9	only	if	the	sum	of	its	digits	is	divisible	by	9.

This	sounds	simple,	but	it’s	not.	In	everyday	life,	the	word	if	is	bandied	about
with	all	sorts	of	ambiguity.	English	speakers	use	it	in	logically	inconsistent	ways,
but	nobody	notices	because	we	all	ignore	the	logic	and	interpret	what	people	say
according	 to	 what,	 in	 the	 circumstances,	 they	 probably	 mean.	 You	 might,
therefore,	wonder	what	 I’m	talking	about—maybe	 to	you	 these	 two	statements
seem	to	say	the	same	thing.	They	don’t	say	the	same	thing,	but	that	can	be	hard
to	 see	 when	 both	 are	 true.	 It’s	 easier	 when	 two	 statements	 have	 the	 same
structures	but	distinct	truth	values.	For	instance,	one	claim	below	is	true	and	one
is	false.	Which	is	which?

Claim:	A	number	is	divisible	by	5	if	its	last	digit	is	5.



Claim:	A	number	is	divisible	by	5	only	if	its	last	digit	is	5.

The	first	 is	 true:	a	number	 is	certainly	divisible	by	5	 if	 its	 last	digit	 is	5	(think
about	 5,	 25,	 1005,	 etc.).	 The	 second	 is	 false:	 a	 number	 can	 be	 divisible	 by	 5
without	having	last	digit	is	5.	It	could,	instead,	have	last	digit	0	(think	about	10,
30,	610,	 etc.).	So	 these	 two	 statements	 definitely	 don’t	 say	 the	 same	 thing—if
one	is	true	and	the	other	is	false,	there	must	be	an	important	difference.
I	find	it	helpful	to	think	about	this	using	Venn	diagrams.	Mathematicians	say

that	the	set	of	numbers	with	last	digit	5	is	a	proper	subset	of	the	set	of	numbers
that	are	divisible	by	5.	For	those	who	prefer	words,	mathematicians	also	say	that
having	last	digit	5	is	a	sufficient	condition	for	a	number	to	be	divisible	by	5,	but
not	a	necessary	condition.	How	does	that	relate	to	these	diagrams?

If	 you’re	 still	 wondering	 what	 I’m	 talking	 about—perhaps	 these	 examples
seem	straightforward—try	applying	the	same	thinking	to	this	statement:

You	can	have	ice	cream	if	you	finish	your	vegetables.
We’ve	 all	 heard	 this	 kind	 of	 thing—if	 you	 spend	 time	 around	 children,	 you
might	say	something	like	it	every	day.	What	is	its	Venn	diagram?

Now,	does	the	sentence	correspond	logically	to	what	the	person	means?	No,	it



does	not.	 It	 says	 something	 about	what	 happens	 if	 you	 finish	your	 vegetables,
but	nothing	about	what	happens	 if	you	don’t.	 If	you	don’t	 immediately	see	 the
problem,	consider	this	conversation.

ADULT:	You	can	have	ice	cream	if	you	finish	your	vegetables.
CHILD:	And	what	if	I	don’t?	Can	I	have	it	then	too?
ADULT:	Don’t	be	cheeky—you	know	what	I	meant.

The	 child’s	 response	 is	 cheeky	 precisely	 because	 it	 is	 logically	 astute—it’s	 a
literal	interpretation	of	what	was	said,	presumably	in	full	knowledge	that	this	is
not	what	was	meant.	Mathematically	speaking,	when	a	person	says

You	can	have	ice	cream	if	you	finish	your	vegetables,
what	they	actually	mean	is

You	can	have	ice	cream	only	if	you	finish	your	vegetables,

or	maybe

You	can	have	ice	cream	if	and	only	if	you	finish	your	vegetables.

But	no	one	talks	like	that.	And	I’m	not	about	to	suggest	that	we	start—people	are
not	 wrong	 to	 be	 sloppy	 with	 if,	 because	 everyday	 communication	 works
perfectly	well.	My	point	 is	not	 even	 that	mathematicians	are	 fussier	 than	most
people,	though	they	certainly	are,	at	least	about	issues	of	logic.	My	point	is	that
expected	levels	of	precision	can	vary	with	context.	Doubtless	you	use	language
differently	when	 talking	 to	your	boss,	 to	your	 friends,	 or	 to	people	who	 speak
English	 as	 a	 second	 language.	 Mathematics	 is	 just	 another	 context:
communicating	well	mathematically	involves	learning	about	when	to	get	fussy.

5.4	Division	and	decimals

The	material	on	dividing	by	9	focused	on	exact	divisibility.	What	happens	when
division	 is	not	exact?	We	can	handle	 that	 using	 remainders	 or	 decimals.	We’ll
start	with	the	latter,	but	both	ideas	will	appear	in	the	coming	sections.
Recall	 from	 Chapter	 3	 that	

Chapter	3	focused	on	fractions	as	ratios	and	as	numbers	that	can	be	represented



on	 a	 number	 line.	 Here	 we	 will	 focus	 on	 fractions	 as	 they	 relate	 to	 division,
where	we	could	read

When	 reading	 in	 this	 way,	 we	 tend	 to	 think	 of	 	 as	 the	 calculation,	 and	
	 as	 the	 answer.	 But	 mathematicians	 would	 tell	 you	 that	 while	
	 (with	 the	 ellipsis)	 could	 be	 thought	 of	 as	 the	 answer,	 any	 finite

portion	 of	 it,	 0.285714	 for	 instance,	 could	 not.	 The	 finite	 decimal	might	 be	 a
very	 good	 approximation.	 But,	 no	matter	 how	many	 digits	 we	write,	 it	 is	 not
exactly	equal	to	 .	Why	are	 they	so	confident	about	 that,	 though?	How	do
they	know	that	the	decimal	doesn’t	terminate	after,	say,	25	digits?
To	explore	this	we	will	start	with	 ,	which	is	simpler	because

its	decimal	form	has	a	repeating	pattern.	The	pattern	means	that	 	could	be
written	 as	 	 or	 	 (both	 indicate	 that	 the	 digits	 3,	 6	 repeat	 forever).	 But,
again,	 this	 claim	 is	 not	 obviously	 true.	 It	seems	 to	 be	 true,	 but	 six	 digits	 isn’t
many	in	a	potentially	infinite	decimal	expansion.	What	if	this	pattern	goes	on	for
a	while	and	then	changes?
In	 fact,	 the	 pattern	 does	 not	 change,	 and	 the	 way	 to	 see	 this	 is	 by	 long

division.	Yes,	you	read	that	correctly.	Long	division	is	good	for	something.	For
calculations	it’s	now	anachronistic—people	can	obtain	numerical	answers	in	as
few	 seconds	 as	 it	 takes	 to	 press	 the	 relevant	 calculator	 buttons.	 But	 pressing
buttons	provides	no	insight.	A	calculator	will	tell	you	that	the	decimal	form	of	

	has	a	repeating	pattern	in	its	first	few	digits,	but	it	won’t	confirm	that	this
pattern	goes	on	forever,	and	it	certainly	won’t	tell	you	why	the	pattern	exists.	For
that,	we	need	to	take	apart	the	process.
I	 will	 describe	 long	 division	 with	 a	 focus	 on	 meaning.	 I’ll	 also	 start	 with	

	 rather	 than	 ,	 because	 that	 will	 show	 the	 developing	 pattern
without	 involving	 decimals.	 Readers	 of	 different	 ages	 will	 have	 had	 different
experiences	 of	 long	 division.	 Do	 bear	 with	 me	 if	 my	 notation	 doesn’t	 quite
match	 what	 you	 learned	 in	 school,	 but	 you	 perhaps	 learned	 to	 say	 and	 write
something	like	the	following.	Eleven	into	4	doesn’t	go.	Eleven	into	40	goes	3,	so
we	put	the	3	over	the	0	of	the	40,	subtract	 	from	40,	and	calculate	the
remainder,	which	in	this	case	is	7.	Then	11	into	7	doesn’t	go,	so	we	‘bring	down’
another	0	to	make	70,	and	so	on.



This	can	look	a	bit	magical,	as	if	the	numerals	can	slide	around	in	a	way	that’s
detached	from	their	place-value	meanings.	That’s	not	what’s	happening,	but	this
approach	does	tend	to	obscure	the	reasoning,	and	I	think	it’s	easier	if	we	use	all
the	0s	and	track	place	value	explicitly.	With	that	in	mind,	we’ll	start	again.
We	 want	 to	 find	 out	 how	many	 11s	 there	 are	 in	 ,	 and	 we’ll	 start	 by

working	out	what	the	thousands	digit	of	the	answer	must	be.	Four-thousand	11s
is	 ,	which	is	too	big:	4000	11s	won’t	fit.	But	3000	11s	is	 	(three	11s
is	33,	and	1000	times	that	is	 ).	So	3000	11s	will	fit,	and	the	thousands	digit
of	 the	answer	 is	3.	This	 is	 recorded	 in	 the	 thousands	place	at	 the	 top.	There	 is
still	room	for	a	lot	more	11s,	of	course—to	find	out	how	much	room	we	subtract
the	 	 to	 see	 what’s	 left:	

We	 have	 7000	 left,	 and	 we’ll	 next	 work	 out	 what	 the	 hundreds	 digits	 of	 the
answer	must	be.	Seven	hundred	11s	 is	 7700,	which	 is	 too	 big.	But	 600	 11s	 is
6600	 (six	 11s	 is	 66,	 and	 100	 times	 that	 is	 6600).	 So	 600	 11s	will	 fit,	 and	 the
hundreds	digit	of	the	answer	is	6.	This	is	recorded	in	the	hundreds	place	at	the
top,	and	we	subtract	the	6600	to	see	what’s	left:



We	have	400	left,	and	we	can	get	down	to	units	in	two	more	steps.	Thirty	11s	is
330	(three	11s	is	33,	and	10	times	that	is	330).	So	the	tens	digit	of	the	answer	is
3,	and	we	subtract	330	and	have	70	left.	Finally,	six	11s	is	66,	so	the	units	digit
of	the	answer	is	6,	and	we	are	left	with	a	remainder	of	4.



We’ve	now	established	 that	 	 is	3636	 remainder	4.	But	why	were
we	 doing	 this,	 and	 what	 have	 we	 learned?	We	 were	 doing	 it	 to	 see	 why	 the
pattern	 in	 the	 answer	 repeats:	 3	 then	 6	 then	 3	 then	 6.	 Can	 you	 see	why?	 It’s
because	the	pattern	of	remainders	in	the	calculation	repeats:	7	then	4	then	7	then
4.	This	happens	because	the	nearest	we	can	get	to	40	with	elevens	is	 ,
which	puts	a	3	in	the	answer	and	a	remainder	of	7	in	the	calculation	(so	we	next
work	 with	 a	 7	 followed	 by	 0s).	 The	 nearest	 we	 can	 get	 to	 70	 with	 11s	 is	

,	which	puts	a	6	in	the	answer	and	a	remainder	of	4	in	the	calculation
(so	we	next	work	with	a	4	followed	by	0s).	You	might	want	to	pause	here,	read
back	a	bit,	and	make	sure	you’re	convinced	about	this.

Now,	how	about	 ?	Perhaps	you	can	see	that	if	 	plus	a
remainder,	 then	 	 plus	 a	 ‘remainder’	 in	 a	 sort	 of	 decimal	 sense.
Perhaps	 you	 are	 also	 convinced	 that	 the	 decimal	 repeats	 forever.	 It’s	 worth
nailing	down	how	this	works,	though.	To	calculate	 ,	we	ask	how	many	11s



there	are	in	4.	Not	even	one	will	fit.	But,	 in	 the	spirit	of	 long	division,	we	can
think	 of	 4	 as	 40	 tenths.	 Dividing	 40	 tenths	 by	 11	 gives	 11	 lots	 of	 3	 tenths,
totalling	33	tenths,	with	7	tenths	left	over.

In	the	written	calculation	this	means	that	we	need	a	3	in	the	tenths	place	of	the
answer,	then	to	subtract	33	tenths	or	3.3,	leaving	seven	tenths	or	0.7:

Now	we	can	treat	0.7	as	70	hundredths.	Dividing	 that	by	11	gives	11	 lots	of	6
hundredths,	 totalling	66	hundredths,	with	4	hundredths	left	over	(a	diagram	for
this	wouldn’t	 fit	 across	 the	page—can	you	 imagine	one?).	This	means	 that	we
need	a	6	in	the	hundredths	place	of	the	answer,	then	to	subtract	66	hundredths	or
0.66,	leaving	4	hundredths	or	0.04.	Then	we’re	back	to	asking	how	many	11s	go
into	a	number	with	a	leading	4	followed	by	0s.	So	the	pattern,	as	before,	repeats.
Here	are	a	couple	more	steps.	How	would	you	describe	them?



This	is	what	convinces	mathematicians	that	the	pattern	in	
goes	 on	 forever.	 It’s	 not	 seeing	 the	 first	 few	 digits	 on	 a	 calculator	 screen;	 it’s
understanding	the	process	that	leads	to	the	repetition.

5.5	Decimals	and	rational	numbers

The	argument	in	the	previous	section	did	not	use	a	calculator,	but	it	did	stick	to
the	 ‘calculate’	 direction:	we	 converted	 	 to	 an	 ‘answer’	 in	 decimal	 form.
How	about	the	other	direction,	converting	decimals	to	fractions?	Do	you	know
how	 to	 do	 that?	 Probably	 you	 know	 some	 specific	 conversions:	 ,	 and	

,	and	so	on.	But	perhaps	you	don’t	know	how	to	convert	decimals	to
fractions	 in	general—this	doesn’t	always	appear	 in	school	mathematics.	Rather
delightfully,	 though,	we	can	do	it	 in	some	cases	by	adapting	an	argument	from
Section	3.7.
First,	let’s	review	what	happens	when	we	multiply	by	10	or	a	power	of	10.	To

multiply	by	10	we	‘add	a	zero’.	For	instance,	 .	Alternatively,	and
more	correctly,	multiplying	by	10	moves	every	digit	one	place	to	 the	 left.	This
means	 that	 multiplying	 by	 100	 moves	 every	 digit	 two	 places	 to	 the	 left:	

,	 so	multiplying	by	100	 is	equivalent	 to	multiplying	by	10	 twice.



For	instance,	

How	many	places	do	the	digits	move	if	we	multiply	by	a	thousand?	And	 if	we
multiply	by	a	million?	And	why	do	 the	answers	 fit	 so	neatly	with	 the	fact	 that
one	thousand	 	and	one	million	 ?
For	a	decimal	example,	consider	0.2,	which	is	two	tenths.	Multiplying	0.2	by

10	gives	20	tenths,	which	is	2:	
For	 a	more	 complex	decimal	 example,	 consider	0.027.	This	 is	 two	 hundredths
and	seven	thousandths	or,	if	you	prefer,	27	thousandths.	Multiplying	by	10	gives
two	 tenths	 and	 seven	 hundredths,	 or	 27	 hundredths.	Multiplying	 by	 100	 gives
two	 units	 and	 seven	 tenths,	 or	 27	 tenths:	

In	 these	 examples,	 all	 the	 numbers	 have	 terminating	 decimal	 expansions,
meaning	that	they	can	be	written	with	a	finite	number	of	digits	after	the	decimal
point.	But	 the	 same	 applies	 to	 nonterminating	 expansions,	 and	we	 can	 exploit
that	to	convert	repeating	decimals	to	fractions.	Read	this	argument	carefully—I



think	you’ll	like	it:	

This	works	because	multiplying	by	100	moves	all	 the	digits	 two	places	 to	 the
left,	so	everything	lines	up	perfectly	and	subtracting	x	from	100x	gives	a	whole
number.	You	might	also	notice	that	in	the	last	line	I	rewrote	the	fraction	in	lowest
terms.	 This	 is	 an	 aesthetic	 choice.	 It	 is	 perfectly	 correct	 to	 conclude	 that	

.	 But	 27	 and	 99	 have	 common	 factor	 9.	 Dividing	 the
numerator	and	denominator	by	this	common	factor	gives	an	equivalent	fraction
that	is	‘nicer’	in	the	sense	that	its	components	are	smaller.
Now,	for	what	other	numbers	would	this	process	work?	Yep,	all	numbers	with

two-digit	repeating	decimal	expansions.	You	might	like	to	try	it	with	
,	reduce	your	answer	so	that	the	fraction	is	in	lowest	terms,	and	check	that	you
get	the	expected	familiar	number.
Next,	how	about	three-digit	repeating	blocks?

Is	 the	 result	 in	 lowest	 terms?	 No.	 As	 we	 know,	 738	 is	 divisible	 by	 9,	 so	

How	 about	 numbers	 that	 have	 repeating	 patterns	 but	 are	 not	 proper	 fractions



because	 they	 are	 greater	 than	 1?	 Here	 is	 an	 example:	

If	you’re	not	a	fan	of	improper	fractions—if	you’d	prefer	that	answer	written	as
a	whole	 number	 plus	 a	 proper	 fraction—we	 could	 lop	 12	 off	 at	 the	 beginning
then	add	it	back	on	at	the	end.

If	 you	 can	 see	 these	 arguments	 as	 generic,	 you	 might	 notice	 something
interesting.	 Every	 repeating	 decimal	 can	 be	 converted	 to	 a	 fraction.	 Did	 you
know	that?	If	not,	you	might	pause	for	a	moment	to	appreciate	it.
Then	ask	yourself,	is	the	converse	true?	Does	every	fraction	have	a	repeating

decimal	 expansion?	 To	 answer	 this,	 we	 first	 need	 to	 clarify	 the	 meaning	 of
‘repeating’.	 The	 arguments	 in	 this	 section	 have	 used	 only	 numbers	 where	 the
repeating	block	forms	the	entire	number.	But	 that’s	not	necessary:	 the	numbers
0.12343434	…	 and	 953.721111	…	 are	 also	 considered	 repeating.	 So	 are	 the



numbers	 	and	 .	Normally	we’d	write	 0.375	 and	 12
and	say	that	these	have	terminating	decimal	expansions.	But,	treated	as	infinite
decimals,	 they	end	 in	 repeating	0s.	So	 they	 are	 considered	 repeating	 (albeit	 as
degenerate	cases).
With	 that	 in	mind,	what	do	you	 think?	Does	every	fraction	have	a	 repeating

decimal	 expansion?	 We	 can	 think	 about	 this	 using	 Venn	 diagrams.	 We	 have
established	that	every	repeating	decimal	represents	a	fraction	or,	more	properly,
a	rational	number.	So	we	are	in	one	of	the	following	two	situations.	Maybe	 the
rationals	 and	 the	 repeating	 decimals	 are	 exactly	 the	 same	 numbers,	 so	 that	 a
number	is	rational	 if	and	only	if	 its	expansion	 is	 repeating.	Or	maybe	 there	are
extra	rationals	that	do	not	have	repeating	expansions,	so	that	a	number	is	rational
if	its	expansion	is	repeating,	but	not	only	if	 its	expansion	is	repeating.	What	do
you	think?	And,	whatever	your	intuition	says,	could	you	justify	it?

We’ll	explore	this	by	returning	to	 	and	long	division.	For	 long	division
with	 single-digit	 numbers,	 I	 favour	 a	 compact	 horizontal	 representation.	 The
reasoning	is	the	same	as	before	but,	because	the	remainders	are	single	digits,	we
can	squeeze	them	in	next	 to	 the	0s.	This	calculation	starts	with	 the	question	of
how	many	7s	there	are	in	2.	Not	even	one	will	fit,	but	we	can	think	of	2	as	20
tenths.	Twenty	tenths	is	seven	lots	of	two	tenths	with	six	tenths	left	over:

Then	we	can	treat	the	six	tenths	as	60	one-hundredths.	Sixty	one-hundredths	is
seven	 lots	 of	 eight	 one-hundredths	 with	 four	 one-hundredths	 left	 over.



Continuing	generates	the	first	six	digits,	0.285714:	
And	 the	next	 remainder	 is	2,	putting	us	 in	a	 familiar	 situation:	 the	number	we
want	 to	 divide	 by	 7	 is	 2	 followed	 by	 0s.	 So	 the	 pattern	 starts	 to	 repeat:	

For	the	question	about	rationals	and	decimals,	we	need	to	ask	whether	this	is	a
coincidence.	 Is	 	 special?	Or	does	something	similar	happen	 for	every	 rational
number?	The	 key,	 again,	 is	 to	 think	 about	 the	 process.	When	we	 divide	 by	 7,
how	many	 possible	 nonzero	 remainders	 are	 there?	 Just	 six:	 the	 remainder	 can
only	be	1,	2,	3,	4,	5,	or	6.	So,	after	at	most	six	steps	in	the	calculation,	there	must
be	a	remainder	that	has	come	up	before,	and	the	decimal	must	repeat.	The	 long
division	 for	 	 cycles	 through	 all	 six	 possible	 remainders,	 giving	 a	 decimal
expansion	with	repeating	blocks	of	six	digits,	or	period	six.	That	doesn’t	always
happen:	when	dividing	by	11,	there	are	ten	possible	remainders,	but	we	saw	that
only	 two	 pop	 up	 when	 calculating	 the	 decimal	 expansion	 ,
which	 therefore	 repeats	with	period	 two.	But	 arguments	 like	 this	 constrain	 the
period.	When	dividing	by	73,	only	72	remainders	are	possible,	so	 the	resulting
decimal	must	repeat	with	period	at	most	72.	And,	when	dividing	by	n,	only	
remainders	are	possible,	so	the	resulting	decimal	must	repeat	with	period	at	most

.
There	 is	 a	 subtlety	 to	 consider,	 because	 a	 calculation	 could	 give	 a	 zero

remainder.	But	 that	would	also	 lead	 to	a	 repeating	pattern	by	giving	a	decimal
expansion	that	ends	in	repeating	0s.	For	example,	calculating	 	gives

Thus,	 every	 rational	 number	 has	 a	 repeating	 decimal	 expansion,	 and	 it	 is	 true
that

Theorem:	A	number	is	rational	if	and	only	if	its	decimal	expansion	is	repeating.

You’ve	probably	looked	at	loads	of	decimals.	Did	you	know	this	about	them?	If
not,	you	might	want	a	bigger	pause	now.	Every	rational	number	has	a	repeating



decimal	 expansion,	 and	 every	 repeating	 decimal	 represents	 a	 rational	 number.
That’s	a	pretty	fundamental	thing	to	understand	about	number	representation.

5.6	Lowest	terms

How	 does	 the	 decimal-to-rational	 conversion	 work	 for	 a	 number	 with	 a	 long
period	like	 ,	which	we	know	is	equal	to	 ?	Let’s	do	it	and	see:

That	all	works.	But	it’s	not	obvious	that	the	final	number	is	equal	to	 .	It’s	about
the	right	sort	of	size,	but	I	can’t	see	the	equivalence,	immediately	or	even	with	a
bit	of	thought.	I	do	know,	though,	that	because	this	number	is	equal	to	 ,	it	must

be	true	that	

where	 the	 somethings	 are	 both	 the	 same.	 I’d	 like	 to	 convince	 myself	 of	 this,
preferably	 ‘by	 hand’	 rather	 than	 by	 using	 a	 calculator.	 One	 approach	 is	 to
consider	 the	 factors	 of	 the	 numerator	 and	 the	 denominator.	 The	 numerator	 is
even	so	it	has	2	as	a	factor.	But	factoring	 it—finding	all	of	its	factors—doesn’t
look	easy.	And	I’m	quite	lazy	so	I’m	not	inclined	to	start	there.	The	denominator,
on	the	other	hand,	clearly	has	9	as	a	factor,	and	dividing	it	by	9	will	be	easy.	That

gives	a	factor	tree	like	this:	
What	about	factoring	 ?	That	looks	harder,	until	you	notice	that	the	sum	of



its	digits	is	a	multiple	of	3,	so	 	must	be	a	multiple	of	3.	We	can	find	its
corresponding	 factor	 by	 long	 division:	

Now,	it’d	be	great	if	the	sum-of-digits	thing	worked	for	 ,	but	unfortunately
it	 doesn’t	 (check).	 So	 this	 calls	 for	 a	 bit	 of	 systematic	 thinking.	 The	 number	

	is	not	even	so	it	is	not	divisible	by	2	or	by	any	other	even	number.	It	is	not
divisible	by	3	because	the	sum	of	its	digits	is	not	divisible	by	3.	It	is	not	divisible
by	5	because	it	does	not	end	in	a	5	or	a	0.	Is	it	divisible	by	7?	We	don’t	have	any
shortcuts	 for	 that,	 but	 long	 division	 shows	 that	 it	 is:	

Now,	5291	 is	not	divisible	by	2	or	by	3	or	by	5,	by	similar	 reasoning.	 It’s	 not
divisible	 by	 7	 either—try	 the	 long	 division.	 What	 shall	 we	 try	 next?	 Not	 8
because	that	is	even.	And	not	9	because	a	number	can’t	be	divisible	by	9	without
being	divisible	by	3	(make	sure	you	understand	why).	And	not	10	because	5291
does	not	end	in	a	0	(or,	if	you	prefer,	because	5291	is	not	even	or	is	not	divisible
by	5).	Do	we	need	any	of	this	reasoning,	though?	In	fact,	no.	If	5291	had	any	of
these	factors,	then	 	would	too,	and	we	already	know	that	it	doesn’t.	Again,
make	sure	you	understand	that	argument.
How	about	dividing	5291	by	11?



And	what’s	the	first	potential	factor	for	481?	By	analogy	with	the	earlier	point,
481	 can’t	 have	 factors	 less	 than	 11.	 It	 could	 be	 divisible	 by	 11,	 because	 5291
might	have	11	as	a	repeated	factor.	Try	and	you’ll	see	that	it	doesn’t,	though.	It
can’t	have	12	as	a	factor	because	it	doesn’t	have	3	or	4.	So	the	next	thing	to	try	is

13:	
And	that’s	it.	We	can’t	factorize	further	because	all	the	numbers	at	the	bottoms

of	the	branches	are	prime,	meaning	that	their	only	factors	are	themselves	and	1.
Hence,	the	prime	factorization	of	 	is

This	helps	with	the	idea	that



because	 we	 can	 reorder	 the	 factors	 in	 	 and	 write	

Then,	 because	 we	 know	 that	 the	 fraction	 is	 equal	 to	 ,	 we	 must	 have	

However,	 I’m	 a	 bit	 nonplussed	 by	 that.	 I	 believe	 it—I’m	 confident	 of	 the
reasoning	 so	 I	 know	 it	 must	 be	 true.	 But	 I	 can’t	 ‘see’	 that	

.	 I	 could	 check	 with	 a	 calculator,	 but
that	seems	defeatist.	When	drafting	this	chapter	I	stared	at	this	for	a	while,	then
realized	 that	 I	 could	use	 information	 from	 the	 factor	 tree,	 at	 least	 for	 the	 three

most	‘difficult’	factors:	

Then,	 because	 ,	 it	 should	 be	 true	 that	
.	That’s	just	one	calculation,	and	those	who	are	comfortable

with	long	multiplication	might	like	to	see	it	written	like	this:	
If	 your	 long	 multiplication	 is	 rusty,	 you	 might	 like	 to	 relate	 that	 single
calculation	to	the	following	two,	which	separate	out	the	50	and	the	4	and	show
component	 calculations	on	different	 lines.	On	 the	 left,	 for	 instance,	 ,	

,	and	so	on.



Alternatively,	 you	might	 prefer	 a	 grid	 representation	 that	 explicitly	 uses	 place
value.	The	top	splits	5291	into	 ,	and	the	left	side	splits	54	into

.	 Each	 box	 contains	 the	 product	 of	 the	 numbers	 at	 the	 top	 and	 the	 left.
Adding	 these	 together	 gives	 the	 final	 total:	

In	any	case,	I’m	now	satisfied	that

Not	obvious,	but	true.
Here	we’ve	 considered	prime	 factorization,	 and	 you	might	 know	 that	 every

number	has	a	unique	prime	factorization.	When	I	began	writing,	 I	didn’t	know
the	prime	factorization	of	 ,	but	 I	knew	that	 it	would	have	one	and	only
one.	Why	is	that	true?	What	is	special	about	primes?	The	answer	is	perhaps	most
easily	 seen	by	 thinking	about	 factorizations	 for	 simpler	numbers.	For	 instance,
12	can	be	factored	in	different	ways:	



So	 general	 factorizations	 are	 not	 unique.	 But	 underlying	 both	 of	 these	 is	 the

same	prime	factorization:	

Bracketing	 differently	 is	 possible	 because	 natural	 number	 multiplication	 is
associative	(see	Section	2.10).	And	 this	can	happen	 in	more	ways	for	numbers
with	 more	 complex	 factor	 structures.	 For	 instance:	

We	 can	 shuffle	 everything	 around	 to	 give	 other	 factorizations	 too,	 because
multiplication	 is	 commutative.	 Here	 are	 a	 couple	 of	 examples:	

What	we	can’t	do	is	split	a	number	further	than	its	prime	factorization.	We	can’t
split	a	2	or	a	3	(or	a	5	or	a	7	or	an	11	or	a	13),	because	these	and	all	primes	are
already	split	as	far	as	they	will	go—they	have	no	smaller	integer	factors	(other
than	 1).	 This	means	 that	 factorization	 is	 related	 to	writing	 fractions	 in	 lowest
terms,	which	will	be	handy	in	the	next	section.	To	conclude	this	one,	you	might
like	 to	 work	 out	 how	many	 ways	 are	 there	 to	 write	 120	 as	 a	 product	 of	 two
positive	integers,	and	what	this	has	to	do	with	its	prime	factorization.

5.7	Irrational	numbers

We’ve	now	looked	at	various	ways	to	represent	numbers.	Some,	like	
,	highlight	magnitudes	but	are	imprecise.	Others,	like	 ,	are	precise	but	obscure
magnitudes.	 Still	 others,	 like	 ,	 are	 again	 precise	 but	 far	 from
simple.	They	are	nevertheless	perfectly	good	representations.
But	which	numbers	can	we	now	represent	in	which	forms?	This	returns	us	to

the	 opening	 question	 about	 what	 numbers	 are.	 For	 instance,	 it	 would	 be
reasonable	 to	 assume	 that	 every	 number	 can	 be	 represented	 as	 a	 fraction.
Certainly	 any	 particular	 number	 has	 rationals	 really	 close	 by.	 For	 a	 classic
example,	a	commonly	cited	rational	approximation	to	the	number	π	(pi)	is	22/7:



Note	that	to	read	this	aloud,	we	would	say

I	mention	this	because	I’ve	noticed	that	mathematics	students	are	accustomed	to
seeing	each	new	line	linked	by	an	‘=’.	This	makes	some	read	the	array	as	saying
that	 22/7	 is	 equal	 to	 π,	 which	 is	 incorrect.	 Because	 	 is	 only
approximately	 equal	 to	 ,	 22/7	 is	 only	 approximately	 equal	 to	 π.
That	 said,	 22/7	 is	 a	 good	 approximation—it’s	 off	 by	 less	 than	 two	 one-
thousandths.	A	 less	well-known	 but	 better	 approximation	 is	 355/113,	which	 is

off	by	less	than	three	ten-millionths:	

Indeed,	 we	 can	 use	 decimals	 to	 get	 as	 close	 as	 we	 like:	

None	 of	 these	 are	 exact	 either.	 But	 such	 thinking	makes	many	 people	 believe
that	 there	 will	 be	 a	 rational	 number	 exactly	 equal	 to	 π.	 After	 all,	 there	 are
infinitely	many	choices	of	numerator	and	denominator	so	there	are	many,	many
rational	numbers.
But	what	else	do	we	know	that’s	relevant?	Think	again	about	this:

Theorem:	A	number	is	rational	if	and	only	if	its	decimal	expansion	is	repeating.

What	 does	 that	 mean	 about	 representing	 numbers	 as	 rationals?	 Not	 every
number	has	a	repeating	expansion,	so



Claim:	Not	every	number	is	rational.

To	find	an	irrational	number,	we	just	have	to	think	up	a	nonrepeating	decimal.
As	 you	 might	 know,	 π	 is	 irrational,	 but	 it’s	 pretty	 useless	 for	 this	 purpose
because	 its	 lack	 of	 pattern	 means	 that	 I	 could	 present	 its	 first	 million	 digits
without	demonstrating	that	it	doesn’t	repeat.	Fortunately,	though,	it’s	not	hard	to
construct	a	number	that	does	have	a	clear	but	nonrepeating	pattern.	Here’s	one:	

Look	 carefully—what	 is	 the	 pattern?	 Are	 you	 convinced	 that	 this	 could	 be
extended	 forever	without	 repeating?	And	 could	 you	 vary	 it	 to	 construct	 more
nonrepeating	decimals?	The	 lack	 of	 repeat	means	 that	 this	 number	 and	 others
like	it	cannot	be	represented	in	rational	form—no	combination	of	numerator	and
denominator	 would	 work.	 If	 you’ve	 reached	 the	 ends	 of	 other	 chapters	 you
might	 recognize	 this	 as	 a	 nonexistence	 claim.	 We’ve	 demonstrated—
convincingly	 I	 hope,	 if	 not	 formally—that	 rationals	 have	 repeating	 decimal
expansions.	This	 number	does	not	 have	 a	 repeating	 expansion,	 so	 it	 cannot	 be
rational.
And	 this	 result—that	 some	 numbers	 are	 irrational—relates	 to	 Section	 3.2.

There,	I	observed	that	shifting	from	integers	to	rationals	shifts	our	attention	from
numbers	as	discrete	objects	towards	the	number	line	as	a	continuum.



Now,	 however,	 we	 can	 observe	 that	 the	 rationals	 do	 not	 fill	 the	 number	 line.
Although	 there	 are	 infinitely	 many,	 they	 leave	 lots	 and	 lots	 of	 ‘gaps’,	 one	 at
every	location	where	an	irrational	is	needed.
So	 decimal	 expansions	 teach	 us	 about	 numbers.	 But	 for	 me	 it	 feels	 a	 bit

unsatisfying	 to	write	 irrationals	only	as	decimals.	 I	 think	 it’s	nicer	 to	 represent
numbers	 with	 compact	 symbols,	 like	 ‘π’.	 I’d	 really	 like	 to	 explain	 how
mathematicians	 know	 that	π	 is	 irrational,	 but	 sadly	 that’s	 beyond	 the	 scope	 of
this	 book.	However,	 I	 can	 provide	 a	 classic	 proof	 that	 	 is	 irrational,	which
shows	that	some	irrationals	can	be	represented	in	compact	forms.1
First,	a	reminder	about	square	roots.	As	you	probably	know,	the	square	root	of

n	 is	 a	 number	 that,	 when	 squared,	 gives	 n.	 Some	 integer	 examples	 are	

The	number	 	will	 not	 be	 an	 integer—think	 about	where	 it	would	 fit	 in	 this
list.	To	prove	 that	 it	 is	 not	 only	not	whole	but	 also	not	 rational,	 it	 is	 useful	 to
observe	a	link	between	squaring	and	prime	factorization.	The	square	of	a	number
will	have	the	same	prime	factors	as	that	number,	just	twice	as	many	of	each.	For
instance,	

This	 means	 that	 squaring	 cannot	 generate	 prime	 factors	 that	 are	 not	 in	 the
original	number.	For	n2	 to	have	3	as	a	prime	 factor,	n	must	have	3	as	a	prime
factor.	And	that	is	key	to	a	proof	that	 	is	irrational,	which	appears	below.	This
proof	is	somewhat	long,	but	don’t	be	put	off.	Take	it	one	line	at	a	time,	asking
whether	 you	 understand	 each	 deduction.	 If	 you	 get	 stuck,	 read	 on	 anyway—
sometimes	things	make	more	sense	when	you	see	how	an	argument	fits	together.
It	 might	 also	 help	 to	 know	 that	 this	 is	 a	 proof	 by	 contradiction:	 it	 starts	 by
assuming	 the	 opposite	 of	 what	 we	 expect,	 establishes	 that	 this	 leads	 to	 an
impossible	 situation,	 and	 thereby	 concludes	 that	what	we	 expect	must	 be	 true.
Have	a	good	bash	at	this—it’s	a	classic	and,	if	you’ve	got	this	far,	it’s	worth	a	bit
of	your	time.

Claim: 	is	irrational.



Proof: Suppose	to	the	contrary	that	 	is	rational.

Then	we	can	write	 ,	where	p	and	q	are	integers.

In	fact,	by	appropriate	division,	we	can	write	 	where	the
fraction	is	in	lowest	terms,	so	p	and	q	have	no	common	factors.

Now	 	implies	that	 	so	 .

And	 	means	that	3	is	a	factor	of	p2.

Because	3	is	prime,	this	means	that	3	must	also	be	a	factor	of	p.

Say	 	where	k	is	an	integer.

Now	 	implies	that	 ,	so	 .

And	 	means	that	3	is	a	factor	of	q2.

But	then	3	must	also	be	a	factor	of	q.

So	p	and	q	have	common	factor	3.

But	this	contradicts	the	assumption	that	p	and	q	have	no	common
factors.

So	the	assumption	leads	to	a	contradiction:	if	 	is	rational,	p	and	q
have	common	factors	and	don’t	have	common	factors.

So	 	cannot	be	rational.

So	 	is	irrational.

If	 you	 understood	 that,	 great,	 and	 you	 might	 like	 to	 think	 about	 how	 you
would	explain	it	to	someone	who	didn’t.	If	you	didn’t	understand	it,	don’t	worry
—it’s	probably	the	most	challenging	argument	in	the	book,	and	you	might	find
that	you	do	understand	it	if	you	read	it	again	in	five	minutes,	or	a	month.	Read
on	for	now;	the	remaining	sections	draw	together	familiar	ideas.

5.8	How	many	rationals	and	irrationals?

How	many	 rational	 numbers	 are	 there?	 And	 how	many	 irrationals?	 Infinitely
many	of	each,	obviously,	so	in	one	sense	these	questions	are	silly.	But	they	also



encompass	some	profound	mathematics,	because	it	turns	out	to	be	meaningful	to
say	that	there	are	more	irrationals	than	rationals.	That	surprises	many	people,	for
two	 reasons.	First,	 because	 it’s	 easy	 to	 list	 rationals	 and	 harder	 to	 think	 about
irrationals.	 Second,	 because	 people	 have	 often	 thought	 of	 infinity	 as	 just	 one
thing—it	has	never	occurred	 to	 them	 that	 ‘infinities’	could	be	different	 ‘sizes’.
We’ll	work	up	to	that	idea.
I	 observed	 earlier	 that	 infinity,	 denoted	by	 the	 symbol	 ‘∞’,	 does	not	behave

like	 a	 number.	 If	 it	 did,	 we	 would	 want	 to	 say	 that	 ,	 so	 that
dividing	 by	 ∞	 would	 give	 	 and	 thus	 ‘break’	 arithmetic.	 It	 would	 break
arithmetic	 for	 addition	and	 subtraction,	 too.	For	 instance,	 if	we	 take	one	away
from	 a	 finite	 set	 of	 objects,	 we’re	 left	 with	 fewer.	 In	 the	 following	 diagram,	

,	and	 .

That’s	not	 true	 for	 infinite	 sets.	Subtracting	one	 from	an	 infinite	 set	of	objects
leaves	 infinitely	 many.	 So	 ;	 we	 don’t	 have	 :	

Similarly,	 ,	 and	 ,	 and	 .	 Indeed,	 we
could	take	away	fully	half	of	the	objects	and	still	have	infinitely	many.	So	we’d
want	 to	 write	 :	

And	 it	 gets	 worse.	 Infinite	 arithmetic	 is	 inconsistent	 not	 only	 with	 finite
arithmetic,	but	also	with	itself.	If	we	took	away	all	the	objects,	we’d	have	none
left,	 meaning	 that	 we’d	 want	 to	 write	 :	

So	treating	∞	as	if	it	were	a	number	leads	to	saying	that	 	and	that	
.	This	makes	the	whole	business	look	intractable.	But	mathematicians



are	 persistent—they	 don’t	 give	 up	 when	 faced	 with	 difficulties.	 And	 they	 are
flexible—they	 can	 accept	 that	 arithmetic	 doesn’t	 work	 in	 the	 usual	 way	 for
infinite	 sets,	 while	 maintaining	 interest	 in	 what	 would	 work.	 In	 this	 case,	 a
satisfactory	 way	 to	 resolve	 the	 problem	 is	 to	 extend	 the	 concept	 of	 counting.
Normally	we	 think	about	 counting	 finite	 sets.	We	point	 at	 the	objects	one	at	 a
time	while	reciting	the	count	sequence	‘ ’.	The	last	number	we	say	is	the
number	 of	 objects	 or	 the	 cardinality	 of	 the	 set.	 Formally,	 counting	 involves	 a
one-to-one	 correspondence	 between	 the	 objects	 and	 the	 first	 few	 natural
numbers	 (which	 are	 sometimes	 called	 the	 ‘counting	 numbers’):	

For	an	infinite	set	there	will	be	no	‘last’	number,	but	the	correspondence	idea
still	 works.	 For	 instance,	 we	 can	 ‘count’	 the	 positive	 even	 numbers	 using	 the
obvious	 correspondence	 with	 the	 natural	 numbers:	

We	 never	 run	 out	 of	 either	 natural	 or	 even	 numbers,	 and	 the	 correspondence
works	forever.	So	it	makes	sense	to	say	that	these	sets	have	the	same	cardinality,
although	 that	cardinality	 is	 infinite	and	 the	 lack	of	a	 last	number	means	 that	 it
doesn’t	 have	 a	 pre-existing	 name.	 To	 avoid	 the	 ambiguous	 symbol	 ‘∞’,
mathematicians	call	it	 	(‘aleph	nought’).
Now,	it’s	fine	if	you	don’t	like	this	idea.	Maybe	you’d	prefer	to	say	that	there

are	half	as	many	positive	even	numbers	as	natural	numbers.	But	then	you’d	be
back	 in	 the	 situation	 where	 infinite	 arithmetic	 creates	 inconsistencies.	 Those
inconsistencies	are	mitigated	by	the	correspondence	approach,	so	that’s	the	one
mathematicians	 use.2	 Specifically,	 if	 there	 is	 a	 one-to-one	 correspondence
between	the	natural	numbers	and	a	set,	that	set	is	said	to	be	countably	infinite	(or
sometimes	just	countable).
You	 can	 learn	more	 by	 looking	 up	 ‘cardinal	 arithmetic’.	But	 right	 now	you

might	 be	 wondering	 how	 there	 could	 ever	 fail	 to	 be	 correspondence,	 because
surely	 an	 infinite	 list	 is	 long	 enough	 to	 contain	 all	 possible	 objects.	 In	 fact,
though,	 it	 isn’t.	Understanding	why	 is	 a	 big	 conceptual	 challenge,	 because	 for
most	 people	 it	 involves	 loosening	 some	 previously	 unexamined	 but	 very
entrenched	 intuitions.	 But	 we’ll	 have	 a	 crack	 at	 it	 in	 the	 remainder	 of	 this



section.	 Even	 those	 who’ve	 got	 this	 far	 might	 find	 this	 mind-bending,	 so
remember	that	you	can	always	skip	to	the	next	(and	final)	section	and	come	back
later.
First,	 the	 set	of	 all	 integers	 is	 countable.	Although	 in	an	everyday	sense	we

might	 want	 to	 say	 that	 there	 are	 ‘more’	 integers	 than	 naturals,	 in	 the
correspondence	 sense	 the	 two	 sets	 have	 the	 same	 cardinality.	 We	 can
demonstrate	this	by	setting	up	a	correspondence,	which	must	go	on	forever	and
miss	 nothing	 out.	 Here	 is	 one	 way	 to	 do	 it:	

The	arrow	below	relates	this	to	the	integers’	usual	order.

Even	 better,	 the	 rationals	 are	 countable	 too.	 This	 is	 very	 far	 from	 obvious,	 I
think.	There	 really	are	a	 lot	of	 rationals,	 and	 the	choosing-an-order	problem	 is
much	worse.	As	 I	 observed	 in	Section	3.2,	 rationals	 can’t	 be	 counted	 in	 order
from	 left	 to	 right:	 there	 is	 no	 ‘next’	 rational	 number	 after	 .	 Nevertheless,	 a
lovely	visual	argument	provides	an	appropriate	one-to-one	correspondence.	The
first	 step	 is	 to	 imagine	 all	 the	 rationals	 in	 an	 infinite	 two-dimensional	 array
where	 the	 first	 row	 lists	each	 integer,	 the	second	row	lists	each	 integer	over	2,
and	so	on:

Then	follow	the	arrow	in	the	following	diagram.	Extended	forever,	 this	will	hit
every	 rational	 number,	 collecting	 them	 in	 an	 ordered	 list:	



The	 arrow	 does	 not	 quite	 give	 a	 one-to-one	 correspondence	 because,	 for
instance,	 ,	 and	we	 don’t	want	 to	 ‘count’	 this	 number	multiple	 times.
But	that’s	easily	dealt	with.	We	can	follow	the	arrow,	but	list	only	numbers	that
haven’t	come	up	before.	Doing	so	leads	to	a	correspondence	that	starts	as	in	the
following	 (check),	 and	 shows	 that	 the	 rationals	 are	 countable:	 they	 too	 have
cardinality	 .

For	 many	 people	 this	 idea	 causes	 serious	 intellectual	 wobbles.	 They	 feel
strongly	that	there	are	a	lot	more	rationals	than	naturals,	and	that	this	therefore
just	cannot	be	right.	If	that’s	happening	to	you,	it’s	perfectly	normal.	And	we’ve
been	here	before.	At	the	end	of	Chapter	3	I	observed	that	human	intuitions	tend
to	be	based	on	small	finite	numbers.	But	we’re	not	working	with	those	now,	so
the	intuitions	need	loosening.	What	mathematicians	do	is	loosen	them	in	favour
of	more	abstract	notions	about	systemic	consistency.	Instead	of	thinking

‘I	must	make	this	match	my	experience	of	everyday	objects,’
they	think



‘Okay,	 clearly	 this	 does	not	match	my	 experience	 of	 everyday	 objects,
but	 perhaps	 we	 can	 still	 think	 about	 it	 in	 a	 way	 that’s	 internally
consistent.’

That	 frees	 them	 to	 explore	 various	 options,	 and	 the	 option	 that	 won	 out	 for
dealing	with	 infinite	 sets	 is	 the	Cantorian	 one	 given	 here,	 named	 after	Georg
Cantor.	 It	 took	 a	 while,	 though—intuition	 loosening	 isn’t	 easy	 for	 anyone.	 If
your	brain	hurts,	try	putting	this	book	down	for	a	week.	Brains	are	amazing	self-
organizers,	 and	 I	 almost	 guarantee	 that	 by	 then	 you’ll	 find	 the	 idea	 more
palatable.
If,	 however,	 you’re	 still	 with	 me,	 here	 is	 the	 cool	 bit.	 The	 rationals	 are

countable	but	the	irrationals	are	not.	While	there	is	a	one-to-one	correspondence
between	the	naturals	and	the	rationals,	there	is	no	such	correspondence	between
the	naturals	and	the	irrationals:	there	are	so	many	irrationals	that	they	cannot	be
arranged	into	an	ordered	list,	even	an	infinite	one.	This	is	what	it	means	to	say
that	 there	 are	 ‘more’	 irrationals	 than	 rationals:	 the	 cardinality	 of	 the	 set	 of
irrationals	 is	 greater	 than	 ;	 it’s	 a	 ‘bigger’	 infinity.	This	 can	 be	 demonstrated
using	 another	 classic	 contradiction	 argument,	 which	 shows	 that	 any	 possible
correspondence	must	miss	out	some	irrationals.	Here	is	that	argument.
Consider	all	the	rational	and	irrational	numbers	together.	These	fill	the	number

line,	and	are	known	collectively	as	the	real	numbers.	Think	about	the	set	of	real
numbers	 between	 0	 and	 1	 (for	 now),	 and	 imagine	 these	 written	 as	 decimals.
Then	suppose	for	contradiction	that	this	set	is	countable,	so	there	exists	a	one-to-
one	correspondence	between	 this	 set	 and	 the	natural	numbers.	The	 start	of	 the
correspondence	would	look	like	the	following	list,	where	each	suffixed	letter	is	a
digit	 (we’d	 soon	 run	 out	 of	 letters,	 but	 you	 get	 the	 idea).	As	with	 other	 ideas
about	 infinity,	 you	 should	 not	 imagine	 constructing	 this	 list	 as	 a	 process	 that
happens	 in	 time.	 Instead,	 imagine	 that	 the	 entire	 infinite	 list	 already	 exists—
someone	claims	 to	 have	 a	 correspondence	 that	works,	 and	 that	 includes	 every
number	between	0	and	1.



We	 will	 derive	 the	 contradiction	 by	 constructing	 a	 new	 number	 x	 that	 is
between	 0	 and	 1	 but	 that	 is	 definitely	 not	 on	 the	 list	 (so	 the	 person	must	 be
wrong).	We	can	ensure	that	x	differs	from	the	first	listed	number	by	ensuring	that
its	first	digit	differs.	For	instance,	if	the	first	number	is	 ,	we	can	set	

	(switching	the	6	for	a	7).	How	can	we	ensure	that	x	differs	from
the	second	listed	number?	We	could	work	with	its	first	digit	again,	but	that’s	not
a	great	strategy	because	we	want	x	to	differ	from	all	the	listed	numbers,	and	we
only	 have	 ten	 digits	 to	 play	with.	 Instead,	 let’s	make	x	 differ	 from	 the	 second
listed	 number	 in	 the	 second	 digit.	 And	 we	 can	 make	 it	 differ	 from	 the	 third
number	in	the	third	digit,	from	the	fourth	number	in	the	fourth	digit,	and	so	on.
Continuing	 like	 this	 gives	 a	 diagonalization	 argument,	 as	 represented	 in	 the
following.	We	can	make	x	 differ	 from	every	 listed	number	by	making	 it	 differ
from	the	nth	number	in	the	nth	digit:3

And	 there	 is	 the	 contradiction.	 The	 person	 who	 claimed	 to	 know	 how	 to
construct	 this	 list	 was	 wrong.	 Although	 the	 list	 is	 infinitely	 long,	 it	 doesn’t
contain	all	 the	numbers	between	0	and	1	because	it	doesn’t	include	the	one	we
just	constructed.4	And	we	could	always	perform	that	construction.	So	the	set	of
real	numbers	between	0	and	1	is	not	countable;	its	cardinality	is	bigger	than	 .
This	means	 that	 the	set	of	all	 real	numbers	 is	not	countable.	Thus,	because	 the
rationals	 are	 countable,	 the	 irrationals	 must	 be	 uncountable.	 There	 are	 more
irrationals	than	rationals.

5.9	Number	systems

As	 promised,	 a	 main	 theme	 of	 this	 chapter	 has	 been	 number	 systems:	 we’ve
considered	 relationships	 between	 division,	 place	 value,	 rational	 numbers,	 and
decimals.	The	 preceding	 section	 explored	 the	 idea	 of	 systems	more	 explicitly,
considering	inconsistencies	that	can	arise	when	dealing	with	infinite	sets.	In	this
final	 section	we’ll	 pick	 up	 this	 consistency	 idea	 and	 relate	 it	 to	more	 familiar



finite	arithmetic,	tying	up	loose	ends	from	across	the	book.
First,	 let’s	 return	 to	 an	 idea	 from	 Section	 3.6.	 There,	 I	 used	 the	 following

diagram	to	explain	why	 ,	 ,	and	so	on.

I	also	promised	that	we	would	look	at	this	from	a	consistency	perspective,	which
we’ll	 do	 now.	 The	 expression	 20	 doesn’t	 have	 an	 obvious	 meaning:	 we	 can’t
‘multiply	 2	 by	 itself	 zero	 times’.	 That	 being	 the	 case,	 we	 could	 give	 up	 and
decide	 that	 20	 has	 no	 meaning.	 Or—and	 obviously	 this	 is	 the	 option	 that
mathematicians	 took—we	 could	 work	 out	 whether	 it’s	 possible	 to	 give	 it	 a
meaning	 without	 breaking	 the	 system.	 Can	 we	 define	 20	 so	 that	 the	 relevant
algebra	still	works?	One	algebraic	rule	is	that	 .	For	this	to	work	with
20,	it	should	be	true	that	
But	if	20	times	21	is	21,	then	20	must	be	1.	So	we	should	define	20	to	be	1.
Similarly	we	 can	 get	 to	 negative	 powers.	Given	 that	 ,	 we	 can	 deduce

that	
But	 if	2−1	 times	21	 is	1,	 then	2−1	must	be	 .	So	we	 should	define	2−1	 to	 be	 .
Similar	arguments	show	that	we	should	define	 	and	so	on.	Can	you	work
out	how?
We	can	generalize	further,	too,	to	fractional	powers.	For	instance,	what	is	 ?

This,	again,	is	not	obvious:	we	can’t	‘multiply	2	by	itself	half	a	time’.	But	if	the
algebraic	 rule	 	 is	 to	 hold,	 it	 must	 be	 true	 that	

And	if	squaring	 	gives	2,	then	 	must	be	 .	So	we	should	define	 	to	be	
.
Now,	it’s	possible	that	this	talk	about	defining	bothers	you.	Maybe	you	 think

that	 	 is	 just	a	fact,	of	 the	kind	 that	appears	 in	 textbooks.	But	 there	was	a
time	 before	 textbooks,	 and	 a	 time	 before	 people	 thought	 anything	 at	 all	 about
powers	of	2.	Historically,	mathematicians	did	have	to	make	a	decision	about	this.



Perhaps	 that’s	not	what	bothers	you,	 though.	Perhaps	you	 feel	 that	 	 in	 a
fundamental,	law-of-the-universe	sense.	In	that,	I’m	inclined	to	agree	with	you.
In	unreflective	moments	I’m	a	naive	Platonist—my	natural	feeling	is	that	20	just
is	1	and	that	 it’s	nice	that	mathematicians	have	been	clever	enough	to	discover
this.	But	 I	 can	 also	 think	 in	 a	more	 reflective	 and	 formal	way	 about	 systemic
consistency:	20	must	be	1	in	order	to	keep	the	systems	working.
Next,	a	question	about	explanations.	Which	explanation	do	you	like	better:	the

diagram	with	 the	arrows	or	 the	argument	about	algebraic	consistency?	 I	prefer
the	arrows—I	 like	 intuitive,	visual	 explanations.	But	 the	 algebraic	 argument	 is
better	articulated	and	more	mathematically	 formal.	The	 real	 trick,	 in	 fact,	 is	 to
see	 that	 both	 explanations	 capture	 the	 same	mathematical	 ideas.	 I	 could	 try	 to
explain	how,	but	doing	so	would	take	a	page	or	two	and	would	probably	be	less
effective	than	your	just	thinking	about	it.	Do	give	it	a	go.
Finally,	 we’ll	 link	 this	 right	 back	 to	 whole	 number	 arithmetic.	 Imagine

yourself	at	a	point	in	history	when	there	was	no	formal	education—no	questions
about	20	for	you.	But	maybe	you	owned	some	things,	and	maybe	you	sometimes
traded	 them.	 So,	 to	 keep	 track,	 you	 needed	 rudimentary	 counting.	 Now,	 how
would	 you	 have	 felt	 about	 negative	 numbers?	 Probably	 you’d	 have	 found	 the
idea	peculiar.	Perhaps	you’d	have	thought	it	preposterous—no	one,	after	all,	has
minus	3	sheep.	Living	in	 the	21st	century,	 though,	you	have	lots	of	experience
with	negative	numbers.	You	can	 speak	confidently	 about	 subzero	 temperatures
or	your	overdraft	or	a	sensible	way	of	numbering	a	building’s	basement	floors.5
The	 language	 can	 sound	 a	 bit	 unnatural—I	would	 say	 that	 I’m	 overdrawn	 by
₤50,	 not	 that	 I	 ‘have	minus	 ₤50’.	 But	 I	 can	 say	 ‘It	 was	minus	 5	 degrees	 last
night’	and	know	what	that	means,	and	I	can	relate	all	of	these	things	to	number-

line	scales:	
The	scales	don’t	do	arithmetic,	though.	They	leave	open	the	question	of	what,



for	instance,	 	should	be,	or	 .	But	we	can	fix	that.	Just	as	we
want	 operations	 with	 powers	 to	 maintain	 algebraic	 consistency,	 so	 we	 want
operations	with	negative	numbers	to	maintain	arithmetic	consistency.	And	again
we	can	think	about	this	using	diagrams	or	arithmetic	rules.	I’ll	use	some	of	each
—you	might	like	to	think	about	alternatives.
Adding	 and	 subtracting	 can	 be	 represented	 on	 a	 number	 line.	 Adding	 1	 is

moving	one	step	 right,	 subtracting	1	 is	moving	one	step	 left,	 and	we	can	keep
going	 to	 the	 left	of	0	 to	 label	 the	negative	numbers.	Adding	3	 is	moving	 three
steps	right,	and	subtracting	3	is	moving	three	steps	left;	addition	and	subtraction
are	 inverse	 operations.	 This	means	 that	 taking	 away	 −	 3	 is	 removing	 a	 three-
steps-left	 move,	 so	 subtracting	 −	 3	 is	 the	 same	 as	 adding	 3:	

How	about	multiplication?	Thinking	 informally,	 	 is	 adding	 three	 twice,
and	 	is	subtracting	three	twice.

To	 formalize	 the	 latter	 we	 can	 ensure	 consistency	 with	 the	 distributive	 law,	

This	law	means	that



For	 	 the	 argument	 uses	 this	 result	 and	 is	 basically	 the	 same:	

Again	 this	 is	 about	 consistency.	 The	 equation	 	 is	 valid	 not
because	some	authority	woke	up	one	day	and	decided	that	it	should	be.	It’s	valid
because	 multiplication	 of	 negative	 numbers	 must	 be	 this	 way	 to	 keep	 the
distributive	law	working.
This,	I	hope,	 ties	up	some	loose	ends	about	arithmetic.	But	 it	opens	up	a	 lot

more	questions.	For	instance,	 	and,	by	the	reasoning	we’ve	just	discussed,	
.	So	 4	 has	 two	 different	 square	 roots.	What	 about	 −	 4?

That	 doesn’t	 seem	 to	 have	 any	 square	 roots:	 there	 is	 no	 number	 which,
multiplied	 by	 itself,	 gives	−	 4.	But,	 just	 as	 it’s	 possible	 to	 extend	 the	 positive
number	system	to	accommodate	negative	numbers,	it’s	possible	to	extend	again
to	 accommodate	 square	 roots	 of	 negative	 numbers.	 Perhaps	 that’s	 an	 idea	 for
another	book.6

5.10	Review

This	chapter	took	a	tour	upward	from	base-10	representation	through	dividing	by
9,	 decimals,	 long	 division,	 converting	 repeating	 decimals	 to	 fractions,	 prime
factorization,	 irrational	 numbers,	 infinite	 sets,	 and	 countability;	 we	 arrived



eventually	at	consistency	within	number	systems.
On	the	way	we	thought	about	mathematical	processes	and	structures.	For	the

opening	material	 on	 dividing	 by	 9,	 considering	 the	 process	 of	 adding	 9s	 gave
some	insight,	but	considering	the	base-10	structure	of	a	number	gave	more.	For
the	 later	 material	 on	 decimal	 expansions,	 it	 was	 the	 other	 way	 around:	 the
structure	 of	 a	 repeating	 expansion	was	 visible	 immediately,	 but	 understanding
why	 it	 occurs	 required	 the	 process	 of	 division.	 In	 both	 cases,	 we	 used
mathematical	ideas	to	address	specific	questions.	We	considered	place	value	not
for	 its	 own	 sake,	 but	 to	 understand	 the	 division-by-9	 phenomenon.	 We
considered	 long	 division	 not	 for	 its	 own	 sake,	 but	 to	 understand	 why	 certain
decimal	 expansions	 repeat.	 We	 also,	 as	 everywhere	 in	 this	 book,	 focused	 on
meaning	rather	than	repetitive	calculation.	I	could	sit	around	for	ages	converting
repeating	 decimals	 to	 fractions,	 but	 I	 don’t	 want	 to.	 I’ve	 seen	 enough	 to	 be
convinced	 that	 it’s	 always	 possible,	 and	 that’s	 what’s	 interesting—the	 general
result	that	every	repeating	decimal	expansion	represents	a	rational	number.
This	chapter	also	contained	a	section	about	the	phrase	 if	and	only	if,	and	we

used	 its	 ideas	 when	 relating	 rational	 and	 irrational	 numbers	 to	 decimal
expansions.	 But	 the	 issues	 are	 ubiquitous	 in	mathematics:	 mathematicians	 are
very	 careful	 with	 the	 word	 if,	 and	 with	 broader	 logical	 reasoning.	 Logical
reasoning	 is	 intimately	 tied	 to	 mathematical	 proof,	 as	 seen	 here	 in	 proofs	 by
contradiction:	 in	 a	 proof	 by	 contradiction	 we	 say	 ‘if	 this	 were	 true,	 then	 a
contradiction	would	arise’.	And	it	guides	the	development	of	mathematics	in	the
sense	that	consistency	is	paramount.	The	frontiers	of	mathematics	are	a	long	way
from	what’s	considered	here,	but	mathematicians	want	every	new	abstract	 idea
to	fit	in	a	consistent	way	with	those	we	already	have.
And	 now	here	we	 are	 at	 the	 end	 of	 the	main	 content.	 I	 hope	 that	 you	 have

learned	a	lot	or	made	some	new	connections	or	perhaps	just	enjoyed	seeing	ideas
linked	 together.	 In	 the	Conclusion	 I	will	 offer	 a	 few	 broader	 comments	 about
mathematical	learning.

1	Those	with	mathematical	backgrounds	might	wonder	why	I’m	talking	about	 	rather	than	 .	The
reason	is	that	people	always	do	 	and	I	fancied	a	change.

2	I’m	simplifying	here.	There	are	other	ways	to	formalize	notions	of	infinity	while	maintaining
consistency,	and	these	constitute	active	areas	of	mathematical	research.	But	this	approach	is	considered
standard	and	is	taught	to	undergraduates.



3	We	should	avoid	introducing	0s	or	9s	because	that	might	introduce	duplicates:	for	instance,	
.	But	that’s	easy	because	there	are	plenty	of	digits	to	choose	from.

4	If	you’re	thinking	that	we	could	add	x	to	the	end	of	the	list,	we	couldn’t.	There	is	no	end,	and	every
natural	number	already	has	an	assigned	corresponding	decimal.

5	Societies	don’t	agree	about	the	overground	floors,	of	course—in	the	UK	the	first	floor	is	the	one	above
the	ground	floor,	but	that’s	not	true	everywhere.

6	Not	everyone	likes	cliffhangers.	If	you	want	to	learn	about	this,	look	up	‘complex	numbers’.



Conclusion

This	book	is	about	mathematics,	which	means	that	it’s	about	a	lot	of	things.
First,	 it’s	 about	 structure	 and	 pattern.	 In	 some	 places	 that’s	 obvious:	 the

chapter	 on	 shapes	 is	 all	 about	 patterns.	 But	 the	 content	 on	 numbers	 is	 about
patterns,	 too.	 There	 is	 very	 little	 on	 individual	 numbers,	 because	 individual
numbers	are	not	that	interesting.	What’s	interesting	is	their	collective	regularity,
their	organization	into	structured	number	systems.	Structure	and	pattern	are	the
essence	of	mathematics,	and	attention	to	them	is	a	real	mathematical	proclivity.
If	you	know	a	child	who	likes	to	sort	and	organize	things	by	their	properties	and
symmetries,	do	encourage	that.
Second,	 this	 book	 is	 about	 representations—about	 using	 representations	 to

develop	 insight,	 and	 about	 their	 strengths	 and	 limitations	 for	 conveying
mathematical	 ideas.	 I’m	 fond	of	diagrams—I	 like	 the	way	 they	capture	 lots	of
things	at	once.	But	I’ve	also	discussed	the	value	of	symbolic	notation	for	brevity
and	for	facilitating	calculation,	and	the	fact	that	mathematical	language	is	precise
but	 not	 rigid.	 Mathematicians	 combine	 symbols	 and	 words	 differently	 for
different	audiences.	It	is	really	only	logicians	who	insist	on	symbolic	grammar	in
the	 way	 that	 I	 might	 insist	 on	 where	 the	 apostrophes	 go.	 Mathematical
communication	is	‘formal’,	but	it	is	flexible	too.
Third,	the	book	is	about	arguments	and	evidence.	Mathematics	is	a	deductive

science:	it	operates	by	rigorous	logical	reasoning.	Mathematical	proofs	can	have
complex	logical	structures—proofs	by	induction	or	contradiction	are	only	the	tip
of	the	iceberg.	But	all	are	based	on	simple	deductive	 logic:	 if	A	 is	 true,	and	A
implies	B,	then	B	is	true.	Simple,	that	is,	but	not	easy.	The	word	‘if’	causes	no
end	of	 bother—it	 takes	 a	 lot	 of	 intellectual	 discipline	 to	 think	 about	 logic	 and
avoid	being	swayed	by	context.	And	that,	of	course,	is	why	evidence	in	the	form
of	examples	and	diagrams	is	valuable.	Reasoning	is	hard,	and	getting	good	ideas
is	 even	 harder.	 Experienced	mathematical	 thinkers	 use	whatever	 is	 to	 hand	 to
support	their	work.
Most	importantly,	this	book	is	about	the	capacity	of	ordinary	human	beings	to



understand	 and	 enjoy	mathematics.	 I	 didn’t	 invent	 these	mathematical	 ideas—
they	were	created	over	thousands	of	years	by	mathematicians	across	the	world.
But	I	really	like	them.	If	you	like	them	too,	then	I	hope	that	you	feel	good	about
that,	especially	if	you	initially	lacked	confidence.	The	mathematics	at	the	ends	of
the	chapters	would	typically	be	introduced	at	university	level.	If	you	made	good
progress	 toward	 that—even	 if	you	didn’t	get	 to	 the	end	or	digest	everything—
then	maybe	you’re	more	mathematically	capable	than	you	thought.
Nevertheless,	I	hope	that	this	book	has	left	you	with	questions.	Some	might	be

about	 mathematics	 that	 you’d	 like	 to	 learn.	 But	 some	 might	 be	 about
mathematics	as	an	enterprise,	and	in	the	rest	of	this	conclusion	I’ll	address	four
of	those:

•	Why	didn’t	my	teachers	explain	it	like	that?
•	What	is	it	all	for?
•	What	do	mathematicians	do?
•	What	shall	I	read	next?

Why	didn’t	my	teachers	explain	it	like	that?

If	 you	 enjoyed	 this	 book	 and	 gained	 some	 insight,	 you	 might	 now	 feel	 both
pleased	with	yourself	and	annoyed	with	your	teachers.	You	might	think,

Why	didn’t	my	teachers	explain	it	like	that?
and,	possibly,
If	they	had,	I’d	have	understood	mathematics	and	enjoyed	it!

These	 are	 natural	 reactions.	 But,	 before	 thinking	 too	 far	 along	 these	 lines,	 I
suggest	 asking	 yourself	 a	 couple	 of	 questions.	 First,	 is	 it	 possible	 that	 your
teachers	 did	 explain	 in	 these	 or	 closely	 related	 ways,	 but	 that	 you	 weren’t
listening?	That	you	were	distracted	that	week,	or	perhaps	that	year,	by	the	things
that	 routinely	distract	children	and	 teenagers?	Or	 that	you	expected	 teachers	 to
‘tell	 you	 what	 to	 do’,	 and	 were	 not	 open	 to	 understanding	 conceptual
relationships?	Second,	is	it	possible	that	you	are	now	a	better	thinker?	If	you	are
a	moderately	successful	adult	with	the	usual	array	of	responsibilities,	you’ll	have
developed	 considerable	 intellectual	 maturity.	 You	 have	 more	 knowledge	 to
which	you	can	attach	new	information.	And	probably	your	logical	reasoning	has
improved,	 so	 you	 are	 better	 able	 to	 do	 the	 attaching.	 So	maybe	 your	 teachers
were	 not	 at	 fault.	 It	 could	 be	 that	 I’m	 an	 unusually	 brilliant	 explainer.	 But	 it
could	be	that	I’m	not.	Maybe	you’re	just	a	better	learner.
My	view	is	that	the	vast	majority	of	teachers	are	extremely	dedicated	and	do



excellent	work	in	a	challenging	environment.	I	have	done	only	a	little	whole-day
teaching,	and	only	to	adults,	not	to	14-year-olds.	It	is	very,	very	demanding	to	be
switched	on	for	hours	at	a	time,	monitoring	a	room	of	individuals	with	disparate
levels	 of	 understanding	 and	 engagement,	 responding	 in	 a	 positive	 and
constructive	way	 to	unpredicted	questions,	 and	maintaining	a	 sense	of	 fairness
and	intellectual	safety.	And	that’s	before	you	consider	that	teachers	are	often	the
first	to	identify	and	support	children	with	serious	problems,	and	that	they	have	to
change	their	teaching	every	year	or	two	in	response	to	authority-imposed	policy
and	curriculum	changes.	I	don’t	 think	I’d	be	a	good	schoolteacher—I	think	I’d
be	 exhausted	 within	 a	 week—and	 it	 worries	 me	 that	 we	 can	 be	 so	 ready	 to
criticize	 the	 people	who	 are	 vital	 to	 our	 children’s	 intellectual	 development.	 I
think	 that	 can	 discourage	 people	 from	 becoming	 teachers	 when	 we	 need
outstanding	mathematical	thinkers	to	inspire	the	next	generation.
Of	course,	I	also	think	that	we	can	all	be	inspiring.	If	fewer	adults	said,	‘Oh,

I’m	no	good	at	maths’	and	more	said,	‘Oh	yeah,	maths	is	really	interesting—I’d
like	to	learn	more’,	I	think	that	would	be	great.	It	would	help	to	create	a	positive
buzz	 around	 the	 subject	 and	 to	 support	 those	 charged	 with	 our	 children’s
learning.

What	is	it	all	for?

If	 you	 are	 practically	 inclined,	 you	might	 be	willing	 to	 speak	 positively	 about
mathematics	but	struggling	to	see	the	point.	You	might	have	spent	much	of	the
book	thinking,

Okay,	that’s	all	very	nice,	but	what	is	it	for?
My	answer	 to	 that	would	be,	How	 long	have	you	got?	Mathematics	 underpins
the	contemporary	world.	 It	 runs	 internet	 searches	 and	 encrypts	 bank	details.	 It
forecasts	 the	 weather	 and	 the	 price	 of	 wheat.	 It	 designs	 train	 timetables	 and
schedules	 air	 crews.	 It	 processes	medical	 images	 and	 informs	 decisions	 about
how	to	spend	taxes	on	healthcare	in	a	way	that	maximizes	benefit	to	the	largest
number	of	people.	 It	prices	your	mortgage,	your	 loans,	your	pension,	your	bus
pass.	It	delivers	the	right	amount	of	milk	to	your	supermarket	and	to	all	the	other
supermarkets	in	the	country.	And	so	on.
If	 you’re	 inclined	 to	 think	 that	 mathematics	 does	 a	 lot	 of	 these	 things

imperfectly,	maybe	take	a	moment	to	think	about	that.	In	developed	countries,	it
takes	a	pretty	extraordinary	social	or	meteorological	event	for	the	supermarkets
to	run	out	of	milk.	And	they	don’t	do	it	by	having	lots	spare—no	one	wants	to



run	 massive	 refrigerated	 storage	 spaces	 or	 to	 lose	 money	 through	 waste.	 So
someone	must	decide	how	to	distribute	all	that	milk,	in	all	its	different	types	and
containers,	so	that	your	store	gets	the	milk	you	want	without	a	profligate	waste
of	 driver	 time	 and	 fuel.	 This	 is	 like	 the	 optimization	 problems	 in	 Chapter	 4,
except	 that	 it	makes	 those	 look	 laughably	 trivial.	 If	your	 immediate	 thought	 is
that	 computers	do	 all	 this	 stuff,	 think	 about	 that	 too.	What	 calculations	 do	 the
computers	do?	Who	programs	them	to	do	those	calculations,	and	how	do	those
people	 evaluate	 the	programs	and	 improve	 them?	 It	 certainly	 can	be	 annoying
when	we	don’t	get	these	things	perfectly	right.	But	really	it	is	astonishing	that	we
can	do	 them	at	all.	For	people	 interested	 in	what	mathematics	 is	 for,	 there	 are
many,	many	answers.
To	 be	 honest,	 though,	 I	 don’t	 care.	 I’m	 happy	 that	 mathematics	 is

extraordinarily	useful,	but	 that’s	not	why	I	 like	 it.	The	pleasure	 it	brings	me	 is
nothing	to	do	with	its	utility—it’s	more	akin	to	the	pleasure	I	get	from	listening
to	music	or	viewing	art	or	watching	a	great	play	or	movie	or	TV	show.	I	might
learn	 something	about	myself	or	 the	world	 through	 these	 things,	but	 that’s	not
why	I	engage	with	them.	I	 just	 love	 the	experience.	Maybe	mathematics	 is	not
your	thing	and	never	will	be,	but	I	hope	that	you	might	now	have	a	better	sense
of	why	some	people	think	it’s	so	great.

What	do	mathematicians	do?

I	definitely	think	that	mathematics	is	great,	but	I	also	remarked	in	Chapter	2	that
I’m	 not	 a	 mathematician.	 That	 probably	 sounded	 weird.	 I	 have	 both
undergraduate	and	master’s	degrees	in	pure	mathematics,	and	by	most	people’s
standards	that’s	a	lot.	But,	after	that,	I	stopped	learning	mathematics	and	started
studying	how	people	think	about	it—my	PhD	is	in	mathematics	education.	Well,
I	 say	 I	 stopped	 learning,	 but	 of	 course	 I	 didn’t.	 In	 studying	 how	people	 think
about	 something,	 you	 inevitably	 learn	more	 about	 it.	 I’ve	 also	 taught	 a	 lot	 of
undergraduate	mathematics,	and	there’s	nothing	like	teaching	something	to	make
you	understand	it	properly.
But,	while	I	 teach	mathematics,	I	don’t	create	 it—I	don’t	spend	my	working

life	 developing	 new	mathematical	 ideas.	 That’s	 what	mathematicians	 do:	 they
conduct	 research	 that	 extends	 our	 understanding	 of	 abstract	 mathematical
structures	 and	 research	 that	 has	 real-world	 applications.	 The	 mathematicians
down	the	corridor	from	me	at	Loughborough	University	do	 this	 in	a	variety	of
fields.	 Claudia	 Garetto	 studies	 hyperbolic	 equations,	 which	 is	 a	 subfield	 of



partial	differential	equations	with	connections	to	physics;	her	methods	combine
geometry	 with	 analysis,	 involving	 rigorous	 study	 of	 conditions	 under	 which
certain	 types	 of	 equation	 have	 unique	 solutions.	 Natalia	 Janson	 studies
spontaneously	 evolving	 systems	 with	 complex	 behaviour,	 including	 plasma
physics,	 electronic	 circuits,	 and	 the	 cardiovascular	 and	 nervous	 systems;	 her
work	 can	 predict	 the	 emergence	 of	 chaos	 or	 synchronization	 in	 man-made
devices	or	 living	systems.	Eugénie	Hunsicker	 researches	 the	statistical	analysis
of	 images,	 which	 improves	 our	 ability	 to	 monitor	 production	 of	 the	 high-
specification	materials	used	in	computing,	electronics,	and	the	space	and	nuclear
industries.	Diwei	Zhou	conducts	research	on	non-Euclidean	statistics,	which	can
be	applied	in	diffusion	magnetic	resonance	imaging	(MRI)	to	improve	our	ability
to	 visualize	 and	 analyse	 the	 microstructure	 of	 biological	 tissue.	 Like	 all
academics,	 these	 mathematicians	 communicate	 via	 conferences	 and	 academic
journals.	If	you	want	 to	 impress	yourself	with	some	cutting	edge	mathematical
terminology—and	 probably	 learn	 new	 symbols	 while	 you’re	 at	 it—you	 could
look	up	articles	 in	 journals	 like	Annals	of	Mathematics,	Acta	Mathematica,	 the
SIAM	Journal	on	Applied	Mathematics,	and	Physical	Review	Letters	(there	is	a
lot	of	crossover	at	the	border	of	applied	mathematics	and	physics).
Researchers	like	me,	in	contrast,	develop	new	knowledge	about	mathematical

thinking.	The	Mathematics	Education	Centre,	where	I	work,	houses	people	who
studied	 mathematics	 then	 shifted	 into	 education,	 and	 people	 who	 studied
psychology	 then	 focused	 on	 mathematical	 cognition.	 Some	 of	 us	 study
mathematical	thinking	for	its	own	sake,	and	some	use	mathematical	thinking	to
study	general	phenomena:	arithmetic	provides	an	unusually	tidy	set	of	logically
related	 things,	so	 it	 is	useful	 for	studying	working	memory,	anxiety,	 inhibition,
and	so	on.	I	study	students’	 learning	at	 the	 transition	 to	university,	 focusing	on
their	 logical	 reasoning	 and	 understanding	 of	 proofs;	 I	 recently	 worked	 on	 the
eye-movement	research	discussed	in	the	Introduction.	Nina	Attridge	investigates
the	 effects	 of	 physical	 pain	 on	 numerical	 thinking;	 her	 research	 shows	 that
people	in	pain	may	make	poorer	numerical	and	financial	decisions,	and	she	aims
to	develop	interventions	to	help	people	living	with	chronic	pain	to	overcome	this
effect.	Sophie	Batchelor	studies	skills	and	dispositions	that	help	children	in	early
stages	of	number	 learning;	 she	 is	currently	 running	an	 international	 study	with
colleagues	in	Northern	Ireland,	Belgium,	and	Finland	to	investigate	the	effects	of
formal	number	instruction	on	children’s	early	numerical	skills.	Camilla	Gilmore
investigates	 how	 individuals	 represent	 and	 process	 numbers	 and	mathematical
ideas,	which	 includes	uncovering	how	young	children	first	come	to	understand
the	meaning	of	numbers;	this	work	can	help	to	reveal	why	some	individuals	have
particular	 problems	 in	 learning	 mathematics	 and	 how	 we	 might	 help	 to



overcome	this.	Iro	Xenidou-Dervou	conducts	 research	on	cognitive	factors	 that
influence	 children’s	 early	 mathematics	 learning	 and	 achievement,	 such	 as
working	memory,	IQ,	language,	magnitude	processing,	estimation,	and	counting
skills;	 she	 is	also	examining	how	 language	affects	adults’	numerical	cognition.
To	see	the	cutting	edge	of	this	kind	of	work,	you	could	look	at	academic	journals
such	as	the	Journal	for	Research	in	Mathematics	Education,	Educational	Studies
in	 Mathematics,	 or	 the	 Journal	 of	 Numerical	 Cognition,	 or	 at	 articles	 on
mathematics	learning	in	more	generalist	journals	such	as	Cognition	or	Learning
and	Instruction.

What	shall	I	read	next?

I’m	 not	 about	 to	 suggest	 that	 you	 jump	 into	 reading	 journal	 articles,	 though.
Mathematics	 is	 brilliant	 but	 it’s	 unforgivingly	 hierarchical—if	 you	 haven’t
already	 done	 a	 degree,	 it	 could	 take	 several	 years	 of	 full-time	 study	 to
understand	 even	 the	 titles.	And	 articles	 in	mathematics	 education	 aren’t	much
easier—academics	write	for	other	academics,	so	they	tend	to	assume	knowledge
of	 existing	 theories	 and	methodological	 approaches.	 Fortunately,	 though,	 there
are	 numerous	 accessible	 books	 for	 the	mathematically	 interested.	 I	 hesitate	 to
provide	specific	suggestions,	because	 I	haven’t	 read	everything	and	 I	wouldn’t
want	 to	 restrict	 anyone.	 If	 you	 want	 to	 learn	 more,	 I’d	 recommend	 that	 you
spend	some	time	browsing	and	see	what	catches	your	interest.	But	here	are	some
comments	that	you	might	find	useful.
Some	 popular	 mathematics	 books	 are	more	 intellectual	 and	 some	 are	more

entertaining.	Some	present	curious	nuggets	of	mathematics,	and	some	give	more
extended	arguments.	Some	are	about	the	historical	development	of	mathematical
ideas,	or	about	their	applications.	And	some	authors	have	written	on	several	of
these	 topics	 across	 different	 books.	 Contemporary	 authors	 you	might	 want	 to
investigate	 include	 David	 Acheson,	 Alex	 Bellos,	 Keith	 Devlin,	 Marcus	 du
Sautoy,	Rob	Eastaway,	Martin	Gardner,	 Timothy	Gowers,	 Peter	Higgins,	Matt
Parker,	Chris	Sangwin,	Simon	Singh,	Ian	Stewart,	and	Steven	Strogatz.	Some	of
these	authors	are	prominent	professional	mathematicians,	so	you	can	learn	about
their	research,	too,	via	simple	internet	searches.
If	 you	 would	 like	 more	 experience	 of	 doing	 mathematics—maybe	 you

enjoyed	following	this	book’s	logical	reasoning	and	you	want	to	try	some	of	that
in	a	guided	but	more	independent	way—then	a	good	place	to	start	would	be	John
Mason,	Leone	Burton,	and	Kaye	Stacey’s	book	Thinking	Mathematically.	If	you



want	 to	 pursue	 similar	 ideas	 at	 a	more	 sophisticated	 level,	 I	 think	R.	 B.	 J.	 T.
Allenby’s	 Numbers	 and	 Proofs	 is	 very	 engaging.	 If	 you	 would	 like	 to	 see
mathematical	 reasoning	 applied	 to	 numerous	 problems,	 try	 Heinrich	 Dorrie’s
100	Great	Problems	of	Elementary	Mathematics:	Their	History	and	Solution.	If
you	want	 to	 read	about	mathematical	problem	solving	 in	general,	 then	George
Polyá’s	How	to	Solve	It	 is	 the	classic,	and	his	 two-part	book	Mathematics	 and
Plausible	 Reasoning	 expands	 on	 creative	 reasoning	 based	 on	 experience,
examples,	and	analogies.
If	you	want	to	consider	mathematics	in	relation	to	education—perhaps	you	are

a	 parent	 or	 carer	 or	 teacher—you	 might	 consider	 Rob	 Eastaway	 and	 Mike
Askew’s	Maths	for	Mums	and	Dads	books,	Anne	Watson,	Keith	Jones,	and	Dave
Pratt’s	Key	 Ideas	 in	Teaching	Mathematics,	 or	Colin	Foster’s	books,	 including
Questions	 Pupils	 Ask.	 Both	 are	 informed	 by	 research	 as	 well	 as	 by	 practical
classroom	experience.	And	there	are	many	more	books	for	teachers.	Those	that
focus	 on	 teaching	 about	 links	 between	 mathematical	 concepts	 include
Magdalene	 Lampert’s	 Teaching	 Problems	 and	 the	 Problems	 of	 Teaching	 and
Liping	 Ma’s	 Knowing	 and	 Teaching	 Elementary	 Mathematics.	 If	 you’re
interested	 in	 a	 cognitive	 psychology	 perspective,	 try	 Camilla	 Gilmore,	 Silke
Göbel,	and	Matthew	Inglis’	An	 Introduction	 to	Mathematical	Cognition.	Or,	 to
learn	 about	 the	 relationship	 between	 mathematics	 and	 logical	 reasoning,
Matthew	Inglis	and	Nina	Attridge’s	Does	Mathematical	Study	Develop	Logical
Thinking?
If	you’d	like	a	book	similar	to	this	one	in	style,	I	recommend	W.	W.	Sawyer’s

classics	Mathematician’s	 Delight	 and	 Prelude	 to	 Mathematics,	 and	 Cornelius
Lanczos’s	Numbers	Without	End,	which	is	hard	to	get	hold	of	but	which	inspired
me	as	a	teenager.	If	you’d	like	something	similar	in	style	but	different	in	content,
try	 Jordan	 Ellenberg’s	 How	 Not	 to	 Be	 Wrong:	 The	 Hidden	 Mathematics	 of
Everyday	 Life.	 Ellenberg’s	 very	 entertaining	 book	 is	 about	 applying	 careful
mathematical	 reasoning	 to	 everyday	 situations,	 particularly	 those	 that	 involve
making	 decisions	 under	 uncertainty.	 For	 something	 more	 applied,	 Paul
Lockhart’s	Measurement	 covers	 both	 size	 and	 shape	 and	 time	 and	 space,	 and
retains	its	conceptual	focus	and	informal	style	while	making	a	speedier	transition
to	 advanced	 ideas.	And	 if	 you’re	 a	 teenager	 or	 a	 returner	 to	 education	who	 is
planning	 to	 study	mathematics	 at	 university,	 I	 hope	 you’ll	 consider	my	 books
How	to	Study	for	a	Mathematics	Degree	(or	its	North	American	equivalent	How
to	Study	as	a	Mathematics	Major)	and	How	to	Think	about	Analysis.
Finally,	 if	 you’ve	had	enough	of	mathematics	 for	now	but	you’ve	 improved

your	 knowledge,	 your	 confidence,	 or	 both,	 then	 I’m	 delighted.	 Thank	you	 for
reading.
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