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Preface

Why an Analyst’s Companion? Millions of analyses are carried out every day in
laboratories for all sectors of industry and science. Many people are willing to pay
for these analyses because they are considered effective in making a scientifically
sound decision. Though few publications address the economics of analytical sci-
ences, nonetheless, a report by the European Commission concluded in 2002 that
“for every euro devoted to measurement activity, nearly three euros are generated”
[1]. But is it easy and simple to use an analytical result, and does it always allow you
to make the right decision? Some questions illustrate the risks involved in relying on
a result:

– How do you know that the laboratory used the method that gave the exact result?
– Like any measurement, analysis is subject to error. How can you estimate them?
– How can a spurious measurement be used effectively?

This is the right time to explain why and how the concept of measurement uncer-
tainty (MU) can be used to better manage these risks. This also means that a new
challenge for analysts is to develop an appropriate method for estimating MU more
explicitly applicable to analytical sciences. In this perspective, a tool based on the sta-
tistical dispersion intervals called method accuracy profile (MAP) is proposed as the
backbone of the book. The theoretical aspects of the MAP procedure and MU esti-
mation are presented in several examples and template worksheets to help analysts
quickly grasp this tool.

At the turn of the 1970s, three analytical chemists, Bruce Kowalski, Luc Mas-
sart and Svante Wold, conceptualized a discipline they called Chemometrics [2].
Unfortunately, they all have passed away since, but their work is still vivid. Many
chemometrics books have been published, proving the added value of statistics to
analytical sciences. Some are globally addressing chemometrics [3–5] other are more
focused on statistics [6, 7], and others on method validation [8, 9].

This book contributes to the application of chemometrics, but the obvious aim is
not to repeat what is available in many valuable publications. Only a few books pre-
cisely address measurement uncertainty in analytical sciences [10–12]. They present
limited facets and do not propose a more comprehensive approach. The aim of this
book is to describe a global procedure for MU estimation, easily applicable in analyt-
ical laboratories. In a recent publication, we have exposed in a condensed manner
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our view of the link between validation and measurement uncertainty [13]. This
book develops more extensively and practically our viewpoint.

However, it is not satisfactory to simply propose a modus operandi (even if it is
claimed to be universal) for estimating MU when this parameter is still new in
analytical sciences and not always well identified by end-users. Therefore, several
chapters are dedicated to its practical use in decision-making, demonstrating
its advantages. These remarks indicate that this book is primarily intended for
professional analysts, although researchers and students may find it of interest.

In order to reach this goal, the book is organized around practical responses cov-
ering three major questions daily put to analysts when they develop a new method
or routinely apply it to unknown samples:

– How to quantify the analyte?
– How to validate the method?
– How to estimate the measurement uncertainty?

How does this book give answers these questions? We use as a roadmap a tool
based on the application of statistical dispersion intervals called MAP. The latter was
initially conceived for method validation, but it can easily be used for MU estima-
tion. While method validation is often reduced to computing a set of disconnected
parameters to be estimated, the MAP approach is more global. It consists in defin-
ing the interval where the method is able to produce a given proportion of acceptable
results. This perspective is in harmony with the uncertainty approach proposed by
metrologists some decades ago that consists in computing the so-called coverage
interval of the result.

The chapters of the book can be read independently. This may explain some redun-
dancies in the quoted publications. But they are structured according to a read-
ing thread illustrated in Figure 1. The thick grey arrow is the backbone. Six main
chapters are characterized as rounded angle boxes. Three of them are devoted to
measurement uncertainty, as it is a key issue of the book.

Chapter 3

Precision
Chapter 4

Trueness

Chapter 1

Quantification

Chapter 2

Calibration

Chapter 5

Validation

Chapter 11

Conclusions

Chapter 6

Principles
Chapter 9

Limits

Chapter 10

Applications

Chapter 12

Annexes

Measurement

uncertainty

Chapter 7
For

analytics

Chapter 8
Decision-
making

Figure 1 How to read this book.
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Additional chapters appear as ellipses. They bring two kinds of information. On
the one hand, theoretical background, such as precision and trueness parameter esti-
mation and how to compute them, may be useful to better understand statistical
developments involved in the method accuracy profile. On the other hand, specific
examples of MU applications. One is devoted to the limits of quantification and the
challenging question of controlling samples with low analyte concentration, another
to method comparison.

Several data sets provide the link between the different chapters. They are used
throughout for practical data handling and real software application. The aim of this
data-oriented presentation is to help the analyst apply the proposed techniques in the
laboratory, in keeping with the title “Companion.” This also practicality means that
numerical applications for all topics covered are presented and illustrated along-
side the theoretical considerations. These are based on detailed Microsoft Excel®
worksheets or free equivalent, such as OpenOffice® Calc, included with the book.
This software is user-friendly and does not require much explanation, and proba-
bly everyone in the laboratory knows how to use it. Although criticized by profes-
sional statisticians (for good reasons), this software is extremely helpful for quick
and simple statistical computation in a laboratory, and several pitfalls can easily
be avoided:

– Worksheet cell content is easily modified without any warning. Thus, once created
and validated, the best initiative is to protect the worksheet or whole workbook.

– The formula inside cell is not visible unless the option to show formulas is on. To
help the understanding of the template worksheets developed for this book, all
formulas are made visible in the cell next to the resulting. The built-in function
FORMULATEXT is used for this aim. It is only available in the most recent Excel
releases.

– Confusion may exist between a worksheet and a text editor. Fancy presentation
must be avoided, and it is better to embed a worksheet within a text editor rather
than trying to do everything with a single software.

The basic use of worksheet software does not allow complex statistical calcula-
tion though it contains many built-in functions, which are used in the following
examples. It is possible to use the development environment called Visual Basic for
Applications coming with Excel to build more complex programs, but it requires
some practice. For the most sophisticated applications, we preferred to provide
Python program examples. This software is increasingly popular, and the accuracy
of statistical functions is widely recognized. For instance, complex techniques, such
as non-linear or weighted regression techniques, are easily implemented. Python is
simpler than professional statistical software. It is developed under a free license,
and there is an exceptionally large community of users who can help. The drawback
is that it is a patchwork, and many additional modules must be imported to apply
some methods. The simplest way to install Python is to download a free package
called Anaconda [14] and select the Spyder development environment. Presented
examples were programmed in this environment.
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Quantification

1.1 Define the Measurand (Analyte)

The initial question for the analyst is to define what is expected to be measured.
According to the International Vocabulary of Metrology [1], the “quantity intended
to be measured”1 is called the measurand, or more specifically, the analyte,
when considering measurement methods applied to chemical and biochemical
substances. But this simple definition may be misleading while an analyte may
have variable forms during the analytical process. It is not always certain that
the substance finally measured is initially intended to be measured. For example,
during sample preparation, the initial organic form of the analyte may change to
inorganic, and what was intended to be measured is finally modified. For instance,
in living organisms, heavy metal is present combined with proteins, such as mercury
to metallothionein. Still, when analyzed after mineralization, it can be transformed
into sulfate, perchlorate, or nitrate.

A well-known catastrophic example is the Minamata disease; when looking for
mercury in food samples, the oldest methods were based on the complete sample
mineralization to obtain mercury nitrate. Soon after, it was realized that the toxic
forms of mercury were organic derivates. Hence, so-called total mercury had no
great toxicological interest compared to the different organic forms. Speciation tech-
niques in mineral analysis or chiral chromatographic methods are good examples
of innovative approaches devoted to better maintaining the analyte in its expected
form. Therefore, quantification in analytical sciences is often less straightforward
than claimed. From the metrological point of view, the difficult traceability of chem-
ical substances to international standards is one of these obstacles.

This is detailed in Section 6.3 as an introduction to the estimation of measure-
ment uncertainty (MU) among many other sources of uncertainty. The encapsu-
lated conception of modern and highly computerized instruments may also prevent
the analyst from assessing what is measured. Digits displayed on the instrument
screen represent what is “intended to be measured.” The paradoxical consequence
is that discussing the true nature of the analyte is often avoided, while more attention

1 Definitions or quotations extracted from standards or official documents are between double
quotes.

Quantification, Validation and Uncertainty in Analytical Sciences: An Analyst’s Companion,
First Edition. Max Feinberg and Serge Rudaz.
© 2024 WILEY-VCH GmbH. Published 2024 by WILEY-VCH



2 1 Quantification

should be paid to this question. The goal of this chapter is to propose things to con-
sider on this topic. Many examples are based on mass spectrometry (MS) hyphenated
methods because several are now considered highly compliant from a metrological
point of view.

1.1.1 Quantification and Calibration

The metrology motto could be measuring is comparing. Therefore, when quan-
tifying an analyte, the comparison principle must be previously defined. This
preliminary step is usually called calibration. In modern analytical sciences, most
methods use measuring instruments ranging from simple, specific electrodes
to sophisticated devices; therefore, calibration procedure may enormously vary
according to the nature of the instrumentation. This chapter attempts to classify
the different quantification/calibration strategies applied in analytical laboratories.
Because this subject is not harmonized, the employed vocabulary may vary from
one domain of analysis to another and be confusing. For each term, we tried to give
a definition, but it may be incomplete due to the considerable number of analytical
techniques. Many suggested definitions are listed in the glossary at the end of
the book.

Whatever the measuring domain, classic differences are made between direct and
indirect measurement techniques. Direct method can usually refer to a measure-
ment standard, for instance, when measuring the weight of an object on a two-pan
balance with standard weights. Indirect measurements are performed using a trans-
ducer, a “device, used in measurement, which provides an output quantity with a
specified relation to the input quantity.”

Reversely, with a one-pan balance, measurements are indirect. At the same time,
result is obtained by means of a mathematical model linking the calibrated piezo-
electrical effect on the beam to the weight. In analytical sciences, methods are usu-
ally indirect. Some exceptions are set apart, classified as direct primary operating
procedures by BIPM (Section 4.2.1). For most chemical or biological analytical tech-
niques, the measuring instrument must be calibrated with known reference items
before use. Finally, quantification involves three elements, as outlined in Figure 1.1:

Sample
Analyte + Matrix Quantification

Calibration
function

Calibrator

X

XC

Z = f –1(Y)

Y = f (XC)

Figure 1.1 Schematic representation of the quantification principle.
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– The analyte is in the working sample. Its concentration is denoted X . The searched
compound (chemical or biological) is embedded within the sample matrix. It is
only before any treatment that the analyte is present in the intended form. The role
of sample preparation is to eliminate a large part of the matrix and concentrate on
the analyte. But it may change the analyte chemical form; for instance, with the
speciation of organic forms of heavy metals, sample preparation is quite different
from classic mineralization.

– The calibration items are also called calibration standards or calibrators. They are
prepared by the analyst to contain a known amount of a calibrant as similar as
possible to the analyte. To underline this difference, it is denoted Xc. The selection
of the adequate calibrant is a key-issue of quantification extensively addressed in
the rest of this chapter.

– The calibration function that links the instrumental response Y to the known
quantity Xc, denoted Y = f (Xc).

Figure 1.1 is an attempt to recapitulate a generic quantification procedure. Most
of the time, calibrators are artificially prepared and used to build the calibration
function f which generally is inverted when analyzing an unknown sample. The
three elements may be subjected to variations. Mathematical notation underlines
the dissimilar roles they play for the statistical modeling of calibration and possible
relationships that link the instrumental signal to the calibrant concentration.
Denoting Z the predicted concentration of a sample emphasizes the role of invers-
ing calibration function as discussed in Section 2.1. Finally, considering a given
calibration dataset, distinct functions f can be fitted. A principal issue will be to
select the best one because it deeply affects the global method performance. The
goal of the present chapter is to describe some classical or new quantification
procedures.

1.1.2 Authentic versus Surrogate

To be explicit, it is convenient to define some terms. If the chemical substance sought
in the sample is called authentic, obviously, for many methods it is possible to prepare
the calibrators with the authentic analyte. But other quantification methods exist
based on a different calibration compound, which will be called surrogate standard
or calibrant. It would be paradoxical to call it surrogate analyte, whereas the analyte
can only be authentic. Therefore, when the analyte and the calibrant are different,
it is necessary for the analyst to cautiously verify if they have equivalent analytical
behavior and define an eventual adjustment method, such as a correction factor.

The measuring instrument is a transducer that converts the amount or the con-
centration of a chemical substance into a signal – usually electrical – according to a
physical or chemical principle. How quantitative analyses are achieved varies from
simple color tests for detecting anions and cations through complex and expensive
instrumentation for determination of trace amounts of a compound or substance in
a complex matrix. Increasingly, such instrumentation is a hybrid of techniques for
separation and detection that requires extensive data processing.
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The subject of analytical sciences has become so wide that complete coverage,
providing clear information to an interested scientist, can only be achieved in a
multi-volume encyclopedia. For instance, Elsevier published in 2022 the volume
n∘98 of the Comprehensive Analytical Chemistry handbook started in the 1980s.

The major obstacle in analytical sciences is the structural or chemical differences
that exist between the analyte present in the working sample and the substance
used as a calibrant. The instrument signal may depend on the authentic or surro-
gate structure of the analyzed substance: this dependence is marked with modern
instrumentation such as mass spectrometers. On the other hand, the analyte present
in a working sample is embedded with other chemicals, customarily called a matrix
by the analysts. It is not always possible or easy to use the sample matrix when
preparing the calibrators. These remarks lead to the definitions of four different
quantification elements that can be combined to prepare or selecting calibrators and
consequently obtain the calibration curve:

Authentic
analyte

The same molecule or substance present in the working sample
may be available for calibrator preparation, considering a high
degree of purity.

Surrogate
standard or
calibrant

This is a reference substance that is assessed and used as a
reasonable substitute for the authentic analyte. For instance, in
bioanalysis, it is frequent to have metabolites or derivates of the
analyte that must be quantified without the reference molecule.
Labeled molecules used in many methods involving isotopic
dilution have recently been considered appropriate
calibrants.

Authentic
matrix

The simplest situation for using an authentic matrix is to prepare
calibrants by spiking test portions of the working sample. For
some applications, such as drug control, it is also possible to
prepare synthetic calibrants with the same ingredients as the
products to be controlled.

Surrogate
matrix

This medium is considered and used as a substitute for the
sample matrix. For instance, bovine serum is used in place of
human serum. Then, it is assumed its behavior should be similar
to the authentic matrix throughout the analytical process,
including sample preparation and instrumental response.

When the surrogate matrix does not behave as the authentic or when calibration
is achieved without the sample matrix, matrix effects may produce bias of trueness,
as explained in Section 4.1.3. More precisely, calibration standards can be prepared
with several classes of matrices. Matrix classification is widely based on analyst
expertise and depending on the application domain, matrix grouping is extremely
variable. For instance, broad definitions applicable to biological analysis can be as
follows:
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Authentic matrix
(or real)

For biological analysts, serum, urine, saliva, or stool are
different classes of matrices. In food chemistry, when
determining the total protein, fatty and starchy foods are
classified as different, or drinking water and surface water is
different for water controllers.

Surrogate matrix Matrix used as a substitute for authentic matrix.
Neat solution Water, reagents used for extraction or

elution, etc.
Artificial matrix Pooled and homogenized samples,

material prepared by weighting when the
composition of the authentic matrix is
fully known, etc.

Stripped matrix Specially prepared materials are free of
impurities or endogenous chemicals.
They are mainly used for biomedical
analysis.

It can be assumed that the combined use of surrogate standard and/or surrogate
matrix may induce bias. It is necessary to cautiously verify if their analytical behavior
is comparable to authentic ones. At least four combinations of the above-defined
quantification elements are possible, each having pros and cons as explained later.
It is possible to categorize different quantification modes depending on the selected
combination:
Quantitative Calibrators are prepared with authentic analytes and an

authentic matrix. The amount or concentration of the
analyte may be determined and expressed as a numerical
value in appropriate units. The final expression of the result
can be absolute, as a single concentration value;
non-absolute, as a range or above or below a threshold.

Semi-quantitative Surrogate standards and matrix are used. Some authors
consider semi-quantitative analyses the ones performed
when reference standards or the blank matrix are not
readily available.

Relative Sample is analyzed before and after an alteration or
compared to a control situation. The relative analyte
concentration is expressed as a signal intensity fold change.
It is ratioed to another sample used as a reference and
expressed as a signal/concentration.

It must be clearly stated that it is impossible to strictly separate quantification
from calibration since they are interdependent. According to the nature of the
calibration standard used, which can be authentic or surrogate, and the matrix,
which can be authentic, surrogate, neat, etc., different quantification strategies were
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Figure 1.2 Schematic representation of absolute, semi, and relative quantification modes.

developed to obtain the effective calibration function. A schematic overview of the
differences between principal quantification modes is summarized in Figure 1.2
and more extensively explained in the rest of the chapter.

1.1.3 Signal Pretreatment and Normalization

Nowadays, it is quite uncommon to use the analogic electrical signal output from the
measuring instrument to build a calibration model. Digitalizing signals in modern
instruments opened the way to many pretreatments, such as filtering, background
correction, and smoothing. It is sometimes invisible to the analyst, although this can
modify the method’s performance. The outcome of many methods can be complex
signals such as absorption bands or peaks in spectrophotometry or elution peaks in
chromatography.

This raw information is not directly used as Y variable to build the calibration
model; it is preprocessed. When dealing with absorption peaks, it is classic to select
one or several wavelengths considered to be most informative. For instance, in bio-
chemistry, protein concentration can be quickly estimated by measuring the UV
absorbance at 280 nm; proteins show a strong peak here due to tryptophan and tyro-
sine residue absorbance. This can readily be converted into the protein concentration
using Beer’s law.
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When obtaining poorly resolved absorption bands, as in near infrared spec-
troscopy (NIRS), the selection of one specific wavelength is difficult, and the use of
a multivariate approach has been promoted. Many publications in chemometrics
literature are addressing this issue. The multivariate calibration based on partial
least-squares regression (PLS) has now become a routine procedure.

If the output signal is time-resolved, such as liquid or gas chromatographic peaks,
they are always pretreated by an integrator. Initially, it was a separate device, but
now it is included in the monitoring software. It can determine several parameters
characterizing the elution peak, such as retention time at the highest point, skew-
ness, peak height, but mainly peak area. The peak area is in the favor with analysts.
But several publications demonstrated that for some methods, peak height is prefer-
able to peak area and that when standardizing a method, the integration conditions
must be carefully harmonized [2].

For some methods, such as MS-coupled methods, the measured response Y can
strongly vary according to the detector performance, such as mass analyzer type, ion-
ization modes, ion source parameters, system contamination, ionization enhance-
ment or suppression due to the sample matrix effect, along with other operational
variables related to the analytical workflow.

Thus, the analyte relative response is standardized to compare performance over
time. A common operation is adding an internal standard (IS) to the study and cali-
bration samples at fixed concentrations. For instance, two official inspection bodies
advise evaluating the matrix effects when a complex surrogate matrix is used [3, 4].
For the latter, the Food and Drug Administration (FDA) suggests investigating the
matrix effect by performing parallelism testing between linear calibration curves
computed with the authentic and surrogate matrices. This method is not always
effective, while parallelism statistical testing is conservative, i.e. depending on the
data configuration significant difference may be considered nonsignificant and only
applicable to linear models.

Conversely, the European Medicines Agency (EMA) provides full instructions
on how to do it and recommends comparing the extraction recovery between
the spiked authentic matrix and surrogate matrix used for the calibration, along
with the inclusion of IS as an easy and effective method to correct biases between
these two matrices. When the analyte and the IS are affected similarly during the
analytical process, instrument signals can be correctly standardized. A comprehen-
sive approach is proposed further using the method accuracy profile (MAP); it is
also an effective approach to detect and control matrix effects.

CH3
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Two main categories of IS, namely structural analogs and stable SIL, can be iden-
tified. The molecule of pregnenolone is used to exemplify this. The first category,
visible on the molecule on the left, is related to compounds that generally share
structural or physicochemical properties similar to the authentic analyte.

The second category, exemplified by the molecule on the right, includes stable iso-
topic forms of the analyte, usually by replacing hydrogen 1H, carbon 12C, or nitrogen
14N with deuterium 2H, 13C, or 15N, respectively. Obviously, using labeled IS requires
the coupling to a mass spectrometer. Deuterated IS are widely used due to their
lower cost. Still, their lipophilicity increases with the number of substituted 2H, lead-
ing to differences in their chromatographic retention times with the corresponding
authentic analyte. This phenomenon, known as deuterium effect, can also impact the
instrumental response or behavior (e.g. the electrospray ionization process in MS)
compared to unlabeled compounds.

Even if an increasing number of high-quality SIL are commercially available, they
are limited to the most commonly used chemical compounds. When many ana-
lytes must be simultaneously quantified, the possibility of using one IS for multiple
analytes should be carefully evaluated. For quantification purposes, using one IS
per target compound is generally recommended when available because they are
assumed to compensate for specific differences in matrix effect and extraction recov-
ery between the calibration methodology and working samples.

To complete this rapid overview, when compatible with the analytical method,
the use of standards linked to the International System of Units (SI) is a convenient
means of standardizing the instrumental response and correcting the overall varia-
tion in the measurement process resulting from diverse sources of uncertainty, such
as sample preparation or interfering compounds, also known as the matrix effects.
The absolute instrumental response is then normalized as a response ratio:

Normalized response ratio

Y =
YA

YIS
(1.1)

In this formula, Y A and Y IS are the responses obtained with the analyte and the
IS, respectively. This formula gives a relative instrumental response but does not
consider the respective concentrations. To be more in harmony with Figure 1.1, Y IS
is equivalent to Y c. This new notation is used because the IS is a particular example
of a compound used for calibration.

The influence of signal preprocessing, such as peak integration, was experimen-
tally demonstrated during an interlaboratory study on determining fructose, mal-
tose, glucose, lactose, and sucrose in several foods by liquid chromatography [5]. A
specific experimental design was developed to achieve this demonstration. Partici-
pants were requested to send their results calibrated as both peak heights and areas.
Considering the mean values obtained with the two approaches, differences ranged
from −18% up to+5%. This indicates that trueness may be affected by the quantifica-
tion mode. Precision, expressed as the reproducibility variance, was computed using
both sets of results.

More details about this common parameter of precision are given in Section 3.2.1.
In Figure 1.3, a subset of interlaboratory results is reported. Food types are indicated
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Figure 1.3 Contribution to the reproducibility of two quantification methods in liquid
chromatography of saccharides.

by an uppercase letter ranging from A to L; they are saccharide-containing processed
foods, such as soft drinks, baked foods, or candies. Precision for peak area appears as
vertical red bars and peak height as light green bars. The role of the signal process-
ing method is expressed as a relative contribution to the reproducibility variance.
The contributions and their differences are sometimes ridiculously small, such as
fructose in food C where it is below 10%. But sometimes very impressive, such as
glucose in food I. If some food is not present on the diagram, the analyte was not
detected. For instance, L is a chocolate bar that contains no fructose. Peak area is
not always the best way to quantify the analyte. In the publication, an explanation is
given why the discrepancies exist. It mainly depends on the resolution of peaks and
their relative values.

Detecting a peak beginning and end is a contingent subject and a source of uncer-
tainty for the surface integration, as explained in Section 4.1.2. Finally, integrator
settings can be used to optimize the integration algorithm and accordingly influence
the global performance of the method.

1.2 Calibration Modes

Two major calibration modes are used in laboratories, namely:

External calibration (EC) A calibration curve is established independently
from the working samples, whatever the calibrant
nature and preparation. A single calibration
function is used to quantify many samples. This is
the most classical procedure, and several variants
exist.
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Internal calibration (IC) The term is applied to diverse procedures. The
calibration is achieved with a calibrant under
different forms in the working samples.
Conversely, one calibration function is obtained for
each working sample to be quantified. Recently
novel procedures have been developed for
MS-based analysis and are detailed in Section 1.5.

As briefly mentioned before, the analyte nature, the availability of the working
sample material and the calibration material influence the selected type of calibra-
tion. This can be summarized by this simple table leading to at least four different
basic configurations.

Matrix

Authentic Surrogate

Analyte Authentic Yes Yes
Surrogate Yes Yes

Table 1.1 attempts to classify different calibration modes, external versus internal,
commonly used in the laboratory, including the advantages (pros) and limitations
(cons) for each. As illustrated, external calibration (EC) methodologies depend on
the availability of both analyte and matrix. For the procedure called in-sample cali-
bration (ISC) there is no need to select a particular calibration matrix as the working
sample matrix is used. Still remains the question of the analyte’s availability. The
abbreviation ISC is introduced to make the difference with internal calibration.

1.3 External Calibration (EC)

1.3.1 Authentic Analyte in Authentic Matrix: MMEC

External calibration (EC) corresponds to the most often-used operating procedure
because it allows the rational determination of several routine samples with one
pre-determined calibration function Y = f (X). The first situation, sometimes called
matrix-matched external calibration (MMEC), represents a good metrological quan-
tification approach and is extensively discussed in the major international guidelines
to validate bioanalytical methods [6].

With exogenous substances, such as rare pollutant chemicals, a blank matrix is
generally available and permits EC with authentic analyte in a representative matrix.
On the other hand, with endogenous compounds at endogenous concentration, such
as vitamins in foods, other approaches should be explored to overcome the absence
of an analyte-free matrix. In this complicated context, alternative procedures have
been proposed, such as background subtraction or the use of surrogate matrices
and/or analytes as described below.
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Table 1.1 Proposals for a classification of calibration procedures.

External calibration (EC)

Ref. Authentic analyte Surrogate standarda)

Matrix Authentic Surrogate Authentic Surrogate

Method Matrix-matched
(MMEC)b)

Surrogate matrix Surrogate analyte Surrogate
analyte and
matrix

Pros Matrix effect
and selectivity
close to sample.

Suitable for low
concentration
compounds.

LOQ Lower than
the background
subtraction.

When authentic
analyte difficult
to obtain.

Cons LOQ define by
endogenous
concentration.

Production of
analyte free matrix.
Possible differences
in extraction
recovery and matrix
effect.

Accuracy depends
on surrogate
specificity.
Additional
experiment for
linearity and LOQ.

Accuracy
depends on
surrogate
specificity.
High differences
for recovery
yield to be
expected.

In-sample calibration (ISC)

Ref. Authentic analyte Surrogate standard (calibrant)

Partially labelled
isotope analogue

Fully labelled isotope or structural
analogue

Matrix Authentic Authentic Authentic
Method Standard

addition method
(SAM)

Isotopic pattern
deconvolution
(IPD)

Internal calibration (IC)

Pros Same matrix
effect and
selectivity as the
sample.

High potential for
accuracy

High potential for accuracy (SIL)

Relying on isotopic
distribution
alteration.

Reduced numbers of calibrators.

Cons Need for large
initial specimen
volume.

Depends on
analogue
concentration and
stability.

Depends on analogue concentration
and stability.

Not easy
implemented for
high
throughput.

Additional
experiment for
linearity and LOQ.

Structural analogues cannot
compensate for differences in
ionization.
Additional experiment for linearity
and LOQ.

a) Isotope labelled or structural analogue.
b) With or without background subtraction.
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The use of authentic matrix for multipoint EC provides an extraction recovery
yield that is close to the specimen and is commonly performed to quantify exoge-
nous substances when a large amount of the matrix is available. In the presence
of endogenous compounds, a representative pooled matrix fortified with authentic
calibration standards can be prepared to estimate and remove the endogenous back-
ground signal. This approach, known as background subtraction, uses the pooled
matrix-matched EC to interpolate the concentration in the working samples.

As described in Section 2.2, Z is the inverse-predicted concentration. It is obtained
by inversing the equation of the calibration curve. Equation (2.24) illustrates the
rationale in the case of a linear calibration curve where the slope a1 and intercept
a0 refer to the regression parameters of the added authentic standards in the pooled
authentic matrix.

However, the upper limit of quantification (ULOQ) as defined by several regula-
tory documents may be impaired by the blank response a0, because detector satu-
ration may occur. Similarly, endogenous metabolite concentrations may vary due to
intra- and inter-sample variation, leading to highly variable results when a pooled
matrix is used. To overcome these drawbacks, several calibration curves using differ-
ent representative pooled matrices can be prepared to select the calibration model
that best covers the concentration to be analyzed. MMEC cannot always correct the
matrix effect when it differs between working samples, emphasizing the importance
of using an IS to correct this bias.

1.3.2 Authentic Analyte in Surrogate Matrix

As stated, a surrogate matrix could be used as a substitute to prepare calibrants with
the authentic analyte or a mixture of analytes. It can be of various complexity. For
instance, in bioanalysis, several matrices are proposed as surrogates, namely neat
solutions, synthetic or stripped matrices.

– Neat solutions: it can be the mobile-phase solvent mixture, extraction reagents or
pure water.

– Synthetic matrices: they are composed of salt, sugar and simulate authentic matrix
properties, such as analyte solubility, extraction recovery and matrix effect. When
the working sample matrix is comparable to water, saliva, urine, tears and cere-
brospinal fluid, neat and artificial solutions can be used as surrogate matrix.

– Stripped matrices: they can be in-house made or commercially available, such as
depleted human or bovine serum. Charcoal stripping removes nonpolar mate-
rial such as lipid-related materials, mainly hormones and cytokines, leading to
an analyte-free matrix that can be used as a blank for the preparation of calibra-
tors. It is important to emphasize that charcoal depletion is nonselective and may
result in approximate matrix similarity.

Whatever the chosen solution, it must be shown it has the same, or comparable,
extraction properties as the authentic matrix.

Hence, surrogate matrices may not perfectly simulate the original matrix. To cor-
rect those matrix biases, a proper evaluation should be performed as recommended
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by both FDA and EMA guidelines. To assess the applicability of any surrogate matrix
the classic requirement is to compare the slopes of the calibration curves calculated
with the surrogate matrix and authentic matrix. Diverse statistical treatments are
available, such as analysis of variance.

But only EMA specifies how to assess the matrix similarity by using the concept of
acceptance. This consists in ratioing the slope between authentic analyte in authen-
tic matrix versus authentic analyte in surrogate matrix. The obtained value should be
within ±15% of the nominal value. Example of possible procedures is fully described
in Section 2.4.3 and illustrated in the worksheet named Resource D. The standard
addition method (SAM) is one other dedicated tool to achieve this goal.

1.3.3 Surrogate Calibrant in Authentic Matrix

In situations where calibration is performed using a surrogate standard, it is
assumed that the physicochemical properties of both authentic analyte and the
surrogate calibrant are equivalent. For instance, the extraction recovery, the chro-
matographic retention behavior, and the instrument response should be either
identical or have acceptable differences to be fully exploited. The choice of surrogate
calibrant is essential to accurately quantify the authentic analyte.

For example, ICH guidelines [7] suggest using SIL molecule as surrogate calibrant
in authentic matrix, while FDA guidelines [3] do not endorse this methodology.
Because the calibration reference compound does not correspond to the authentic
analyte, the ratio of responses between surrogate and analyte should be investigated
over the desired dynamic range. Before routinely using the surrogate calibrant, the
response factor RF must be evaluated as an analyte-to-calibrant ratio where XAA and
XSS are the concentrations of authentic analyte and surrogate standard, respectively,
and corresponding instrument responses:

Response factor (analyte versus surrogate)

RF =
YAA

XAA
×

XSS

YSS
(1.2)

To achieve the appropriate RF estimation, different proportions of ana-
lyte/surrogate must be investigated. For MS methods, this step is compulsory
to evaluate the ionization efficiency whereas the RF must be constant over the
method working domain. Another way to investigate the RF is to check if both lines
are parallel. It consists in comparing the slopes of the authentic analyte line and the
surrogate, both performed in the same pooled matrix.

Additionally, if the RF is not constant over the validation domain corrections, such
as LC gradient or MS/MS transitions (de)-optimization, can be investigated to obtain
a balanced response. If SIL is used as surrogate calibrant, the analyst should explore
the potential presence of crosstalk interferences such as isotopic pattern overlap or
impurities coming from SIL standards [8]. In MS, crosstalk occurs when ions from
one scan event are still present in the collision cell when a second transition is taking
place. This leads to signal artifacts in the next transition’s chromatogram.
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The RF can diverge from unit value when SILs containing enriched hydrogen
atoms are used, but as long as the unit value slope remains within the ±15% accep-
tance interval compared to the authentic analyte slope, investigated SILs can be
selected as surrogate calibrants. For example, tryptophan was successfully quantified
in plasma with a relative bias between−2.0 and−8.0% using its deuterated analogue,
even if the response factor was 0.67 [9]. Once the RF has been established, a multi-
point calibration is performed in a pooled authentic matrix and the concentration of
the authentic analyte is computed as follows:

Corrected concentration of authentic analyte

Z =

(
Y
Yc

)
− a0

RF × a1
(1.3)

where:

– Y and Y c refer to the measured signal Y of the authentic analyte and the IS,
respectively.

– Coefficients a1 and a0 characterize the slope and intercept of the calibration line
performed with the surrogate standard.

Likewise, MMEC’s use of an IS remains strongly recommended to correct for
sample preparation and matrix effect variation between working samples and cali-
brators, thus improving trueness and precision when dealing with routine sample
determination. Because the endogenous concentration of the authentic analyte in
a pooled matrix is stable, an exciting possibility to implement this quantification
method is to use this signal as an IS to normalize the instrument response of the
surrogate standard calibration.

This approach, called Isotope Inversion, provides the same quantitative results
for steroid determination as using the authentic analyte in a surrogate matrix such
as active-charcoal stripped serum in this application [10]. When no signal from
endogenous analyte interferes with the surrogate signal, the surrogate calibrant
in authentic matrix can be a suitable alternative to the matrix-matched external
calibration, especially when high endogenous concentration is present and/or intra-
and inter-sample variations are observed.

1.3.4 Surrogate Calibrant in Surrogate Matrix

The increased commercial availability of SILs has raised interest in their use as surro-
gate calibrants in surrogate matrices to reduce calibration preparation time. Numer-
ous publications have demonstrated their benefit, especially when MS detection is
considered. This semi-targeted quantitation approach could be used to determine
the amount of target analytes without needing authentic chemical standards. For
instance, exogenous compounds were selected as potential surrogate calibrants in
several biological matrices such as blood, plasma, urine, cerebrospinal fluid, and
tissue homogenate [11]. In some cases, the combination of the surrogate calibrant
in surrogate matrix allows extending the number of analytes that can be quantified
in a single analysis.
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1.4 In-sample Calibration (ISC)

In contrast to EC, in-sample approach calibration (ISC) is characterized by an analyt-
ical calibration function obtained directly in each working sample. The SAM is prob-
ably the most established ISC procedure and popular in many fields, such as foods,
environment, or forensic toxicology, where matrices are extremely variable, when
the authentic analyte is available. Two other approaches also aim to simplify the
quantification condition, depending on the chemical purity and the physicochemi-
cal proprieties of surrogate calibrant such as SIL. The former predicts the authentic
analyte concentration by altering its natural isotopic pattern with a labeled analog
standard. The latter is applicable when no significant interferences between the ana-
lyte and SIL are observed. In this case the authentic analyte concentration is directly
determined.

1.4.1 Authentic Analyte: Standard Addition Method

As an operating procedure for absolute quantification, SAM consists in collect-
ing the responses of authentic analyte additions in a series of aliquots obtained
from the working sample. The simplest experimental design of SAM comprises
a minimum of two runs described in Table 1.2. Notations are the same as in
Figure 1.1:

– Level 0, or X0, is the no-addition level and consists in recording the response Y 0
in the working sample without any addition of the authentic analyte.

– Level 1, the working sample is spiked with a known amount of the authentic
analyte.

By combining the two couples of data, the corrected concentration of the working
sample is given by Equation (1.4).

Corrected concentration

Z = Y0 ×
X1 − X0

Y1 − Y0
(1.4)

The short worksheet below gives an example of computation. The formula applied
in cell B5 is shown in cell C5. Figure 1.4 illustrates the data and shows that the
corrected concentration corresponds to the extrapolation where Y -value is zero, and
the line cuts the X-axis.
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Table 1.2 Two-run experimental design of standard addition method.

Concentration X Response Y

Level 0 (no addition) X0 = 0 Y 0

Level 1 (spiked) X1 Y 1
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Figure 1.4 Two-run standard addition method.

This simplified experimental design can be routinely applied when each sample
may have a specific matrix effect. For instance, when analyzing surface waters, it is
classic to use simple SAM for each sample because the composition is recognized as
highly variable. In this case, the result is obtained by combining two measurement
values that are not replicated. A discussion about the role of replication in reducing
MU is presented in Section 8.4.3.

Even simplified SAM is time-consuming with preparing and measuring two test
portions per working sample. The benefit is to consider interindividual differences
in matrix composition, to overcome matrix effects, and avoid building an EC curve.
In that respect, it can be asserted as an absolute quantification method, as far as the
response is exactly proportional to the concentration, in other words, linear.

As mentioned before, the FDA suggests applying SAM in a more complex experi-
mental design to verify if using a surrogate matrix or analyte is justified. It calculates
two calibration lines: one prepared by spiking several test portions of the working
sample, the other by preparing calibrators with the surrogate matrix, which can
be neat.

In the classic operating procedure, the working sample is divided into four
and six identical aliquots, and a fortified calibration curve is obtained by spiking
increasing known amounts of the authentic analyte, e.g. 50, 100, and 200% of the
expected endogenous concentration. Only the first aliquot remains nonspiked, and
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Figure 1.5 Calibration modes in analytical sciences. Source: Adapted from Visconti
et al. [13].

its concentration is obtained by extrapolation where Y -value is equal to 0. This other
protocol is illustrated with the example of Section 2.4.3. When the number of spikes
is significant, SAM can also be applied when the calibration curve is polynomial,
particularly when high endogenous signals affect the linearity of the response due
to detector saturation.

When multiple signal-based detectors, such as MS or DAD, can record several
physicochemical properties of the target analyte, more than one SAM calibra-
tion curve can be simultaneously acquired for the same working sample. This
multiple-response monitoring leads to the possibility of dealing with the H-point
standard addition method (HPSAM).

This new procedure is effective to control both proportional and additive biases
(defined in Chapter 4), such as matrix interferences and/or detector saturation,
when all calibration lines are converging at almost the same X-intercept. A com-
prehensive example is presented in Section 10.1. If the calibration lines are not
correctly converging, a revised HPSAM was proposed including chemical modifiers
[12]. Figure 1.5 is an attempt to propose a schematic overview of the diverse
quantification/calibration strategies described in this chapter.

1.5 Some New Quantification Techniques

As stated, this chapter does not aim to give an exhaustive description of all possi-
ble quantification modes. However, it is valuable to describe some new insight on
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a class of analytical techniques involving MS detection hyphenation, while many
novel quantification modes were recently developed thanks to the improvement
of modern MS instrumentation. More details are available in a recent review [13].
MS-coupled methods have progressively emerged as a one of the key instrumental
components for numerous applications in laboratories, thanks to the development
of new instruments and the reduction of costs.

The latter has become possible due to the advent of atmospheric pressure ion-
ization interfaces, allowing to produce gas-phase ions that can be further analyzed.
Compared to traditional spectroscopic detectors, such as UV absorbance, mass spec-
trometers offer additional selectivity by determining the mass/charge ratio of ion(s)
or transition. An increasing number of articles reporting new MS-coupled methods
for quantification are submitted each year [14].

In the field of MS-coupled methods, the greater availability of SILs opens the
possibility of novel calibration procedures. They can mainly be employed as
ideal surrogate calibrants to directly perform the calibration in the study matrix.
Obviously, if they are used for this purpose, the analyst must first investigate the
potential presence of interferences with the authentic analyte. When a contribution
coming from the SIL is significant and modifies the signal, the application of isotope
pattern deconvolution (IPD) was proposed as a corrective approach. In the absence
of significant interference, internal calibration represents one of the most promising
methodologies for modern absolute quantification.

1.5.1 Isotopic Pattern Deconvolution (IPD)

Isotope dilution mass spectrometry (IDMS) is a well-known technique applicable
both to organic as inorganic analysis. It is because all isotopes of one element show
almost the same chemical properties but mass differences between isotopes that
IDMS allows quantifying the analyte by mass spectrometry. There are different
IDMS operating procedures offering also various levels of precision. In many routine
applications simple and fast operating procedures can be applied. The IPD is one of
these high precision procedures based on the natural isotopic pattern alteration of a
standard using a minor isotope labeled analog. In contrast to traditional analytical
methods that rely on signal intensity, IPD is established by ratioing the signals
between the isotopes of the molecule of interest and an analog with an enriched
isotopic composition (i.e. SIL).

The IPD is sometimes claimed to be one of the most reliable and highest-quality
metrological methods and is commonly used by chemical manufacturers to calcu-
late SIL isotopic enrichment and purity. The isotopic abundance and concentration
of the isotope labeled analog can be obtained by reverse isotope dilution mass spec-
trometry, i.e. a calibration against a high purity solution of the natural analyte pre-
pared from a gravimetric solution of a suitable reference material.

First, the isotopic distributions for unlabeled standard and SIL as well as their
combinations are computed using dedicated software: this is the convoluted isotope
distribution. Free-access software is available coded with R to achieve the deconvo-
lution. The labeled compound is then added to the reference material, resulting in
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isotopic dilution. Then, the comparison between theoretical and experimental iso-
tope overlap allows us to determine the SIL isotopic enrichment, chemical purity,
and concentration.

Finally, once the SIL solution has been characterized by isotope dilution mass
spectrometry it can be used as a calibrant for IPD quantification [15]. The more
detailed procedural aspect is as follows, where variable A is the measured isotopic
abundance, subscript nat comes for natural, lab for labeled and mix for mixed.

– Step 1. The natural isotopologue distributions of the analyte X and its isotope
labeled analog XSIL are measured. Let us remember that isotopologues only differ
in their isotopic composition and have the same chemical formula. Superscripts
M0, M1, etc. used in following formulas to indicate isotopologues.

– Step 2. Authentic analyte and SIL are mixed, and the resulting isotope pattern
are determined. The basic concept is to say that the pattern of mixed solution is a
linear combination of natural and labeled patterns weighted by the molar fractions
qnat and qlab, respectively:

Deconvolution model for IPD

Amix = qnatAnat + qlabAlab + E (1.5)

The vector of random error E is added to account for the errors in the isotopic
determinations. It is called a deconvolution model because it is slightly different
of the classic calibration model, such as Equation (2.6), where there is only one
predictive variable, the calibrant concentration usually noted X as explained in
Sector 2.2. In this case there are two predictive variables Anat and Alab. Once the
isotopic abundances are measured, we have a set of equations:

Isotopic patterns

AM0
mix = qnatAM0

nat + qlabAM0
lab + EM0

AM1
mix = qnatAM1

nat + qlabAM1
lab + EM1

AM2
mix = qnatAM2

nat + qlabAM2
lab + EM2

…

AMn
mix = qnatAMn

nat + qlabAMn
lab + EMn

They can be rewritten in a more condensed matrix form (the term matrix is used
with its mathematical meaning) clearly showing this a multiple regression model
with two variables and no intercept:

Multiple regression model

Amix = [AnatAlab]q−1 + E (1.6)

– Step 3. Apply least-squares multiple linear regression to get the solutions of
model 1.6; i.e. the estimates of the molar fractions q. With Excel this can be
achieved using the LINEST built-in function. This function usage is described in
Section 2.3.1. In this chapter, LINEST is applied to estimate the three coefficients
of a quadratic model. Model in equation 1.6 is also a 3-coefficient model, with
one coefficient equal to 0.
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– Step 4. Knowing the SIL concentration, noted XSIL or equivalently Xc, used for
spiking the working sample, direct quantification of the analyte Z can be provided
without the need for a calibration curve as shown in Equation (1.7).

Estimated sample concentration

Z = XSIL ×
qnat

qlab
(1.7)

To correctly achieve this procedure and be able to perform the deconvolution, it is
essential to have a crosstalk or isotopic overlap. This is possible when SIL chemical
purity and/or isotopic enrichment is less than 100% or when there is only a small
mass-unit difference between the isotope labeled standard and its analogous com-
pound. IPD reproducibility was estimated based on an interlaboratory study, includ-
ing four different World Anti-Doping Agency (WADA) accredited laboratories, and
compared to a more traditional EC calibration method using surrogate standards.
More details on interlaboratory precision parameters are available in Section 3.1.

The IPD shows the same accuracy and demonstrates improved reproducibility
at low concentrations (2 ng/ml) with a relative standard deviation of reproducibil-
ity ranging approximately from 10 to 16%, respectively [16]. This result shows that
isotope dilution mass spectrometry determination analytical methods are of high
metrological quality. To confirm the high metrological reliability of the IPD, MU
was estimated the same manner it is presented in Section 6.4 for LEAD example.

Uncertainty budget shows that MU is mainly dependent on the experimental
determination of isotopic abundance (78.0%) and SIL concentration measurement
(21.3%). Reducing these two sources of uncertainty involves some additional work
during method development, but the IPD procedure then benefits from a better
performing and faster analysis because calibration is performed within the working
sample, and no traditional EC curve is required.

1.5.2 Direct Internal Calibration with Labeled Calibrant (IC-SIL)

When possible, the simplest quantification procedure is probably achieved when
an in-sample single amount of surrogate calibrant is used to compute the work-
ing sample concentration. With this procedure, authentic and surrogate standards
are simultaneously measured. The estimated analyte concentration, Z, is directly
obtained via the peak area ratio of the sample versus the surrogate calibrant. Because
only one concentration level is introduced in the working sample, a response fac-
tor relationship must be first established to confirm the absence of ionization com-
petition between surrogate and authentic analyte, independent of the concentra-
tion. Thus, equimolar mixtures of surrogate and authentic analyte in neat, artifi-
cial and/or depleted matrices are first analyzed over the investigated calibration
range. Additionally, ionization competition at nonequimolar concentrations should
be investigated. Thus, several multipoint calibrations using the authentic analyte
with surrogate standard at different concentration levels can be analyzed to study
the authentic analyte response function alteration. Once the RF has been empiri-
cally determined, the working sample concentration is calculated as follows:
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Working sample concentration

Z = Y
YSIL

×
XSIL

RF
(1.8)

This equation is a reorganization of Equation (1.3), where the intercept is zero,
and the slope a1 corresponds to the RF. When SIL is spiked at low concentration,
such as 12.5 or 25% of the ULOQ, marked competitive ion suppression occurs due
to the concomitant presence of the analyte at higher concentrations in ionization
source. Conversely, when the SIL concentration is fixed in the highest bound of the
response function, the influence of the surrogate signal on a low concentrated ana-
lyte can be detrimental and generate a significant bias. A correction procedure was
proposed by determining the SIL concentration equivalent, noted X∗

SIL obtained with
the following formula:

SIL concentration equivalent

X∗
SIL = XSIL × PSIL × ESIL ×

MWA

MWSIL

where MW is the molecular mass of authentic analyte and SIL surrogate, P the chem-
ical purity as percentage, and E the isotopic enrichment, expressed as the probability
of finding a labeled atom at any single site [17]. New reagents and improved instru-
mentation give opportunities to develop novel and faster quantification procedures
exhibiting high metrological quality parameters. For instance, the one-point calibra-
tion method using SIL as calibrant and their isotopes was introduced to extend the
lower limit of quantification (LLOQ).

To perform this analysis, a triple quadrupole instrument was used and a particu-
lar acquisition method named multiple isotopologue reaction monitoring (MIRM)
was developed. By monitoring the SIL isotopic fragmentation abundances, a regres-
sion model was constructed by plotting the surrogate standard concentration equiv-
alent on the abscissa and the instrument response (peak areas) of the corresponding
MIRM channel on the ordinate. Then, the authentic analyte concentration can be
calculated using the regression parameters [18]. This is just an example of regularly
active literature.

Overall, internal calibration with SIL as calibrant is conceptually straightforward
for absolute quantification with modern MS instrumentation, but requires addi-
tional steps during method development, such as the experimental determination
of the RF and, with the MIRM procedure, isotopic abundance determination. How-
ever, once the method is developed, it is markedly faster in routine analysis because
a daily repeated calibration curve is no longer required, and comparable results to
EC can be obtained. Currently, the IC is raising interest due to the increased number
of high-quality SILs commercially available, even if they remain limited to the most
classic compounds. To overcome this limitation, isotope standards can be generated
in-house by derivatizing authentic analytes with labeled 13C2-dansylchloride and
13C2-dansylhydrazine.

As an illustration of the selection of quantification procedure, Figure 1.6 presents
a flowchart applicable to LC-MS methods. Some parts of this flowchart are trans-
ferable to other methods of analysis and/or detection modes. Possible strategies are
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Figure 1.6 LC-MS on endogenous metabolites: proposed workflow for selecting a
calibration operating procedure. Source: Adapted from Visconti et al. [13].

identified by square corner grey boxes, namely, authentic analyte/authentic matrix,
authentic analyte/surrogate matrix, and ISC with SIL. For each case, different
calibration procedures are appropriate, depending on complementary information
about the analyte, the sample matrix availability, or the presence of endogenous
analyte in the matrix.

More details are given in [13] and the rest of the chapter. In recent decades,
advances in analytical calibration methodologies, instrument technology and
enlarged SIL availability have contributed to improving the accuracy and through-
put of quantitative analysis. However, the gap in knowledge between published
official guidelines and strategies used by the analytical community prevents
consensus about exactly how validation should be performed.
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The introduction of innovative calibration approaches allowed the analyst to per-
form the calibration in the authentic working sample matrix, overcoming different
bottlenecks such as the lack of blank matrices, the extraction efficiency, and matrix
effect between the external calibration curve and unknown samples. Scientific inter-
est is growing around direct internal calibration with SIL due to its analytical process
simplicity and quickness to provide quantitative results from a few samples or even
a single sample. With these unique advantages, internal calibration strategies have
enormous potential to be widely applied for various quantitative applications and
may even change the landscape of quantitative analysis, although these methodolo-
gies are still not officially endorsed by international guidelines for analytical method
validation.
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2

Calibration

2.1 Direct and Inverse Calibration

Analytical methods are based on well-known physicochemical or biochemical phe-
nomena which can be described by various equations. To illustrate the practical
problems when calibrating a method of analysis, we can refer to techniques widely
used in laboratories. In conventional ultraviolet–visible (UV–Vis) spectrophotome-
try, the ratio of the emitted flux Φ0 to the transmitted flux Φ after passing through
the solution being measured, or transmittance, is used for instrumental response.
Depending on the type of spectroscopic method, the logarithm of the transmittance
is called the absorbance, transmittance, or optical density (OD). According to Beer’s
law, this ratio depends on the concentration X of the solution, the length L of the
measuring cell, and a molar extinction coefficient 𝜀T which depends on the temper-
ature T and, of course, the nature of the analyte giving the well-known Beer’s law
theoretical model:

log
(Φ0

Φ

)
= 𝜀T × X × L

In all cases, the logarithmic transformation of the flux ratio aims to linearize the
response function. As explained in Section 1.1.3, this pretreatment is universal and
invisible to the analyst. Obviously, it would be sufficient to know the value of 𝜀T to
predict the responses depending on the values of X . Unfortunately, this coefficient
varies greatly when the emitted radiation is not purely monochromatic or when the
temperature is not constant. In practice, Beer’s law cannot be directly used for cali-
bration, since the measuring system is not isolated and is subject to random distur-
bances due to environmental variations, such as temperature, atmospheric pressure,
instability of the electrical voltage, sound vibrations, aging of the equipment com-
ponents, etc. All these disturbances together form the background noise, which can
be estimated, measured, and subtracted.

This simple example shows how calibration must rely on a more complex model
than initially imagined from the fundamental equations of physics or chemistry.
To illustrate the statistical issues of calibration, we are taking a method of analysis
more complex than spectrophotometry, involving mass spectrometry. This chapter is
limited to external calibration as it represents the most commonly used calibration
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mode. Concerning internal calibration or in-sample calibration, several modeling
approaches were already presented in Chapter 1.

Theophylline

H3C

CH3

O

O

H
N

NN

N

The same example will be used in different
chapters as a roadmap to illustrate the proposed
strategy for method validation and measurement
uncertainty (MU) estimation. This is a method of
analysis of theophylline in human plasma. More
details about the complete THEOPHYLLINE
method and dataset are given in Table 5.1 and in
Section 5.2.2, introducing the method accuracy
profile (MAP) procedure.

Theophylline is a molecule used to manage the symptoms of asthma and other
lung ill-conditions caused by reversible airflow obstruction. It works by relaxing the
smooth muscles in the bronchial airways and pulmonary blood vessels. The aim
of the study used for this example was to develop and validate a method for the
quantitative determination of different xanthines, including theophylline, caffeine,
theobromine, and paraxanthine, in human plasma. This was achieved within the
framework of a sports medicine project interested in the effect of these molecules on
athletes’ performance. These analytes are determined by ultra-high performance liq-
uid chromatography (UHPLC), coupled with a tandem mass spectrometer detection
UHPLC-MS/MS [1].

Five calibrators were prepared and contained the analytical grade theophylline
(99% purity) at 0.02, 0.1, 0.5, 2.5, and 10.0 μg/l. For each calibrator, two replicates
were prepared. As explained in Section 5.2.2, this calibration experimental design
was repeated over six different days giving six series of similar calibration datasets.
Table 2.1 presents only one of these series or days, called series 1. Other series are
comparable and give the same conclusions. The graphical illustration of these data
is straightforward when using a worksheet.

The observed points seem to be correctly fitted to a straight line. With this software,
it is easy to quickly add on the same graphics several trendlines, such as straight-line,
second-order, or quadratic polynomial. When looking at the r2 values reported in

Table 2.1 THEOPHYLLINE – raw calibration of series 1 dataset,
measurement values are expressed in arbitrary units (AU).

Concentration
(𝛍g/l) Replicate 1 Replicate 2

0.02 0.293 0.443
0.10 1.874 1.810
0.50 8.904 8.306
2.50 23.411 37.832

10.00 124.84 129.605
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Figure 2.1 THEOPHYLLINE – illustration of the calibration data of series 1. Solid line:
linear model. Dashed line: quadratic model.

Figure 2.1, both models seem equivalent and well-matched. But this simple visual
evaluation is misleading, as shown further in Section 8.1. The general statistical
model that is used to establish the calibration curve can be described by Eq. (2.1):

Generic direct calibration curve

Y = f (Xc) (2.1)

– Xc the known concentration of the calibration compound (authentic or surrogate,
as explained in Section 1.1.2).

– Y the measured instrumental response.
– f the deterministic model chosen for the response function.

As a reminder, the aim of calibration is not to prove that some relationship
between the concentration and the instrumental response exists. All quantitative
analysis methods are founded on well-known physicochemical or biological mech-
anisms, and it is well established that such a relationship exists. In that context,
calibration is a two-step procedure:

– Step 1: Direct calibration. It consists of collecting instrumental responses of
calibrators and calculating the calibration curve coefficients that most accurately
relate the (known) calibrant concentration to the instrumental response.

– Step 2: Inverse calibration. It uses the inverse function of the calibration
model to predict the concentration of unknown samples based on the instru-
mental response they provide. The values obtained by this operation are
called inverse-predicted concentrations. Sometimes they can also be called
back-calculated, but this may be confusing as the back-calculation procedure is
employed in various fields of technology, such as real-time process monitoring, to
restore previous situations from historical data. The mathematical interpretation
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Figure 2.2 Direct calibration and inverse calibration.

of this step is summarized by Eq. (2.2), which gives its name to the inverse
calibration:

Inverse calibration function

Z = f −1(Y ) (2.2)

The two-step quantification procedure is illustrated in Figure 2.2 in the case of
a linear calibration model. With theophylline series 1 calibration data, two mod-
els, graphically close, can be adjusted, namely linear and quadratic. The question of
selecting the best model is raised.

A viable way to answer is to collect new data from samples with known contents,
estimate their inverse predicted concentrations and verify which model gives the
best inverse predictions. It remains to define what means the best calibration model.
The role of inverse calibration is quite specific to analytical sciences, and several
authors proposed to organize calibration in one stage to avoid this inversion of the
calibration curve. The calibration would be named reverse calibration as discussed
in Section 2.5.

2.2 Least-squares Regression Method

2.2.1 Straight-line Computation

In the case of multipoint (external) calibration, it is necessary to prepare several cali-
brators and estimate the calibration model. For simplicity, let us denote Xi the known
calibrant concentration of the ith calibrator. To fully establish the statistical model
of the calibration curve, it is necessary to include the background noise noted E in
Eq. (2.1). As stated before, it results from various sources of disturbances, such as
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instrument instability or calibrator preparation. If Ei is the random variable account-
ing for the background noise of the instrumental response Y i measured on calibrator
Xi, the observed model is given by Eq. (2.3).

Number of calibration measurements

1 ≤ i ≤ I

Measured instrumental response

Yi = f (Xi) + Ei (2.3)

Predicted instrumental response

Ŷi = f (Xi) (2.4)

Residual

Ei = Yi − Ŷi (2.5)

A part of the model is deterministic and corresponds to f (X) the other is random.
The determinism is related to the physicochemical or biological phenomena used to
explain that Y is modified when X varies. To make clear this dual structure of the
model, statisticians introduced the notation Ŷi (hat) corresponding to a predicted
value of Y once f is known. The difference between measured and predicted instru-
mental responses corresponds to the random part, i.e. unpredictable, of the model
and is called the residual. It is defined by Eq. (2.5).

In Figure 2.3 the linear model is used to illustrate these concepts and explain how
the least-squares algorithm works for estimating the coefficients of the f function
but it can be transposed to any other model. The observed linear model is given by
Eq. (2.6). In this case, the intercept a0 is interpreted as the blank, and the slope a1 as
the sensitivity of the method. Knowledge of these coefficients is essential to perform
the inverse calibration stage.

Observed linear calibration curve

Yi = a0 + a1Xi + Ei (2.6)

Theoretical linear calibration curve

Ŷ i = a0 + a1Xi (2.7)

The ordinary least-squares (OLS) method is the most widespread algorithm for
estimating a0 and a1. A major assumption so that OLS can satisfactorily apply is
that the two variables Y and X must play different roles. Y is explained or depen-
dent, while X is said to be explanatory or independent. This means there is a causal
relationship between the two variables. Because the instrumental response Y is fully
explained by the variations of the concentration X, calibration is a typical example
for least-squares application. This remark impacts the nature of the residual random
variable Ei. In practice, it is realistic to suppose it is formed of two components: EY
linked to the instrumental background and EX linked to the errors of preparation of
the calibration solutions.

Ei = EX + EY
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Figure 2.3 Principles of ordinary least-squares (OLS) method.

But, to apply the OLS method, it must be assumed that EX is negligible compared
to EY and explicitly set to zero (EX = 0). In other words, it is assumed that calibrators
are prepared with no error. As explained in Section 6.6.2, it is manageable to esti-
mate the MU for each calibrator and verify if it is null or negligible. Given the way
calibrators are usually prepared, this assumption seems reasonable as a first approx-
imation. The major downside is that it is always possible to apply OLS whenever the
basic assumption is wrong, but the interpretation of the obtained coefficients may
be erroneous.

The principle of the OLS method is to estimate the coefficients a0 and a1 by
minimizing the sum of the squared differences between observed and predicted
values, called residuals, or also deviates, and expressed by Eq. (2.5). Such a dif-
ference can be geometrically interpreted as a distance symbolized by a double
green arrow in Figure 2.3. The first idea could be to calculate the average of
residuals and try to make it as small as possible. Intuitively, it is easy to understand
that any line shall pass by the mean point reported as a red diamond on the
graphics.

Unfortunately, if the selected line regularly passes through all points, the simple
average distance shall always be zero because the sum of negative residuals shall be
exactly balanced by that of positive residuals. To avoid this inconvenience, the resid-
uals are generally squared. This numerical solution gave its name to the method:
least-squares regression. Other solutions exist, such as summing the absolute differ-
ences, but are not as common as the least-squares algorithm. It can be summarized
by the following equations:

Residual

Ei = Yi − Ŷi (2.5)
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Condition on the sum of squared residuals

S =
I∑

i=1
E2

i → Minimum (2.8)

In the case of a straight-line, Eqs. (2.6) and (2.7) are combined to obtain the resid-
ual, and Eq. (2.8) is modified as follows:

The sum of squared residuals (for the straight line)

S =
I∑

i=1
(Yi − a0 − a1Xi)2 → Minimum (2.9)

Equation (2.9) is a function with two unknowns a0 and a1 since all values Xi and
Y i are known. A function passes through minimum at the point where the first
derivative is zero. The first two derivatives, one with respect to a0 and the other with
respect to a1 are calculated and set to 0. A set of simultaneous equations with two
unknowns is obtained and solved. After simplification, the calculation comes down
to the following set of formulas directly applicable while all elements are known.
Notation SS for sum of squares and SP for sum of crossed products are used for
simplicity.

Mean point

X =
∑I

i=1 Xi

I
Y =

∑I
i=1 Yi

I
(2.10)

Sum of crossed products of deviates

SP(X ,Y ) =
I∑

i=1
(Xi − X)(Yi − Y ) (2.11)

Sum of squared deviates for X

SS(X) =
I∑

i=1
(Xi − X)2 (2.12)

Slope or sensitivity

a1 = SP(X ,Y )
SS(X)

(2.13)

Intercept or blank

a0 = Y − a1X (2.14)

Variance of the residuals or residual variance
⎧
⎪⎪⎨⎪⎪⎩

s2
E =

∑I
i=1 (Yi − Ŷi)2

I − 2

s2
E =

SS(Y ) − a1SP(X ,Y )
I − 2

(2.15)

Residual standard deviation

sE =
√

SS(Y ) − a1SP(X ,Y )
I − 2

(2.16)
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2.2.2 Assumptions and Complements

These results are established under the following set of assumptions:

– Variables Ei are randomly distributed according to Normal laws  (0, 𝜎2) with
zero means and theoretical variances 𝜎2. All laws associated with Ei are identical
throughout the calibration domain. This means all response variances for all cal-
ibrators (or standard solutions) are constant and equal to 𝜎

2. The best estimate of
𝜎

2 is equal to s2
E (Eq. 2.15). If this assumption is not acceptable, a modified method

called weighed least-squares (WLS) must be used, as explained in Section 2.3.2.
– Variables Ei are independent, which means that they are not correlated. To com-

ply with this assumption, it is recommended to separately prepare the calibrators.
The common incorrect practice of making successive dilutions can exacerbate this
dependence and must be discouraged. Despite this well-known tip, many com-
mercial kit manuals still advise making successive dilutions.

– Outliers must be eliminated beforehand. The OLS method, far from pointing out
model errors or nonconforming values, will force the model to pass through all
points. Moreover, the use of a sum of squares as a minimization criterion gives
much greater weight, or leverage, to any point which is far from the others and
can thus very easily introduce a bias; it is not a robust method.

When these assumptions are considered acceptable (although rarely veri-
fied), it is then possible to calculate various additional parameters described
by Eqs. (2.17)–(2.22). The residual standard deviation sE allows to obtain other
standard deviations, such as the blank, the sensitivity, or a predicted value Ŷ and
the associated confidence intervals. Ultimately, sE gives a global indication of the
fitting closeness between the predicted line and the experimental points.

Standard deviation of sensitivity

sa1
=

sE√
SS(X)

(2.17)

Standard deviation of analytical blank

sa0
= sE

√√√√
(

1
I
+ X

2

SS(X)

)
(2.18)

Confidence interval of sensitivity
[

a1 ± t1− 𝛼

2
;I−2 × sa1

]
(2.19)

Confidence interval of blank[
a0 ± t1− 𝛼

2
;I−2 × sa0

]
(2.20)

Quantile of Student’s t for a confidence level of 1− 𝛼, I − 2 degrees of freedom

t1− 𝛼

2
;I−2

Predicted response for a given X value

Ŷ = a0 + a1X (2.21)
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Standard deviation of a predicted response

sŶ = sE

√√√√
(

I + 1
I

+
(Xk − X)2

SS(X)

)
(2.22)

The confidence intervals as given by Eqs. (2.19) and (2.20) are applied in
Section 2.4.3 to present a simplified method for verifying the parallelism of two
straight lines. Confidence intervals and tests of hypothesis are procedures for mak-
ing so-called statistical inferences, i.e. the domain of statistics devoted to making
global decisions, or inferring a conclusion, from limited information obtained on
a sample. It is considered that hypothesis tests are seldom needed if confidence
intervals are available because they are similarly effective and can be graphically
interpreted. When two confidence intervals are overlapping, this means that the
statistical parameters are not significantly different, or when a confidence interval
contains a given value, such as 0, the related parameter is not significantly different
from this value.

Up to now, least-squares algorithm is described for the straight-line case, i.e. the
model containing one first-order explicative variable denoted X . Multiple regression
models can also be handled by OLS and similar formulas obtained. To demonstrate
how the OLS algorithm works in the case of more complicated multivariate models,
it requires using mathematical matrix notation and calculus. An example is pre-
sented in Section 1.5.1, even if this is out of the scope of this book. Full description
is available in many statistical textbooks, e.g. the excellent reference book of Draper
and Smith about regression [2].

In the next chapter, an example of the quadratic model is presented, and it
shows how the coefficients can easily be computed with Excel. Once the coeffi-
cients are estimated, the inverse calibration function can be used to obtain the
inverse-predicted concentration of unknown samples. Let us denote Y k the instru-
mental response recorded with an unknown sample k and Zk its inverse-predicted
concentration given by Eq. (2.24) in the case of a straight-line:

Inverse – predicted concentration (general model)

Z = f −1(Y ) (2.23)

Inverse – predicted concentration (linear model)

Zk =
Yk − a0

a1
(2.24)

As explained in Section 1.1.1, to simplify notation but emphasize the difference
between Xc the concentration in the calibrator is controlled by the experimenter
and X̂ the concentration of the authentic analyte predicted for an unknown sample,
the inverse-predicted concentration is denoted Z in the following chapters. How-
ever, a more straightforward model for Z could be Z = g(Y ). This model defines
what can be called reverse calibration. It would mean that calibration is no longer a
two-step procedure. The inverse calibration function becomes useless to predict the
concentration of unknown samples, whereas reverse prediction model could directly
accomplish this.
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The pros and cons of the reverse model are explained in Section 2.5. Depending
on the quantification procedure, the principal benefit of this notation is to empha-
size the idea that it is not always obvious that g = f −1. It must also be noted that
the standard deviation of a predicted response sYk

given by Eq. (2.22) must not be
confounded with the standard deviation sZ of the inverse-predicted concentration.
The basic reason is that sYk

is related to Y and expressed in the same units as the
instrumental response, while sZ is related to the concentration X and in the analyte
unit. The possible estimation of this important standard deviation is addressed in
Section 2.5.1 as well as the diverse problems raised.

2.3 Software Implementation

2.3.1 Ordinary Least-squares (OLS) Regression

With any worksheet, the coefficients of the model described by the Eq. (2.6) can be
estimated by using the built-in function LINEST. An example of application to the
data of Table 2.1 is presented in the worksheet named Resource A.

Some explanation will help in understanding this worksheet. Beforehand, calibra-
tion data of Table 2.1 must be unfolded into two columns and stored in cellsA5:B14.
In cell A16, the built-in function =LINEST (B5:B14; A5:A14;TRUE;TRUE)
is typed. Results returned by LINEST are illustrated below in the case of a simple
straight-line regression with two coefficients. To make the worksheet easily recycled
by any analyst, formulas are visible in the column on the right of the cell, giving the
result. For instance, the formula applied in cell A22 is visible in cell C22. The inter-
pretation of the results appearing in range A16:B20 is more complex, as explained
below.

Following Excel nomenclature, LINEST is a matrix (or tabular) function, i.e. it
requires one or more matrices as arguments and returns several results as a matrix
(in the mathematical meaning of the word). To exactly understand the way argu-
ments are entered and results returned, it is necessary to look at the user’s manual.

a1 a0

Coefficients 12.634 0.580
sa1

0.332 1.530 sa0

r2 0.995 3.981 sE

F-value 1452.238 8 Degrees of freedom
Regression SS 23011.141 126.762 Residual SS

According to the Excel version, the procedure to apply matrix functions could dif-
fer. In recent releases, typing the function in one cell allows us to obtain the results
automatically distributed in a set of cells. If there is no place for this operation, an
error is emitted. In older versions, it was necessary to first select the destination
range and simultaneously type three keystrokes Shift, Ctrl, and Enter. Whatever the
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method, in cells A15:B19, results are arranged as follows (SS stands for Sum of
Squares):

Resource A Linear and quadratic calibration (Excel).

 

1

2
3
4
5
6
7
8
9

10
11
12
13
14
15

16
17
18
19
20

21
22
23
24
25
26
27
28
29

A B C D E F

Resource A : Linear and quadratic calibration using OLS
Theophylline Series 1 (μg/l)
Linear model Quadratic model
X Y (AU) X X2 Y(AU)

0.02 0.293 0.02 0.0004 0.293
0.02 0.443 0.02 0.0004 0.443
0.10 1.874 0.10 0.0100 1.874
0.10 1.810 0.10 0.0100 1.810
0.50 8.904 0.50 0.2500 8.904
0.50 8.306 0.50 0.2500 8.306
2.50 23.411 2.50 6.2500 23.411
2.50 37.832 2.50 6.2500 37.832

10.00 124.835 10.00 100.0000 124.835
10.00 129.605 10.00 100.0000 129.605

12.634 0.580 =LINEST(B5:B14;A5:A14;TRUE;TRUE) 0.084 11.779 1.040
0.332 1.530 0.188 1.949 1.915
0.995 3.9806 0.995 4.1963 #N/A

1452.238 8 653.499 7 #N/A
23011.141 126.762 23014.642 123.2614 #N/A

Coeffcient a0 0.580 Coeffcient a0 1.040
Coeffcient a1 12.634 Coeffcient a1 11.779
Residual std dev 3.98061 Coeffcient a2 0.084
sa0 1.530 Residual std dev 4.1963
sa1 0.332 sa0 1.915
r2 0.9945 sa1 1.949

sa2 0.188
r2 0.9947

When looking at the returned parameters, the straight-line model seems satisfac-
tory, while the coefficient of determination r2 is extremely high. This parameter,
expressed as a percentage, can be interpreted as the percent of the variation of Y
explained by the regression model (see Section 2.4.2). The difference with a perfect
model corresponds to the amount of unexplained variation. In the example, about
99.5% of Y can be explained by the selected regression model, and 0.5% is unex-
plained. The opposite would have been surprising because the analytical method
was purposedly developed on this physicochemical property.

In the second line of the result matrix, the standard deviations of coefficients are
also returned and can be used for further calculations. More details about r2 are
available in Section 2.4.2.

On the same worksheet, a second-order polynomial model is adjusted to the
same data. Equation (2.25) specifies the quadratic model used in this example
and the corresponding inverse calibration function. The three coefficients
are also estimated by using built-in function LINEST with the arguments
=LINEST(F5:F14;D5:E14;TRUE;TRUE).

Quadratic calibration model

Yi = a0 + a1Xi + a2X2
i + Ei (2.25)

Inverse quadratic calibration model

Zk =
−a1 +

√
a2

1 − 4a2(a0 − Yk)

2a2
(2.26)
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It is well-known that the second-order equation has two workable solutions, sim-
ilarly, the inverse calibration quadratic model may come down to two values. The
solution presented in Eq. (2.26) assumes that the calibration curve is concave. This
is the usual situation when Y is regularly increasing when X is increasing. Hence,
to apply LINEST to this model with three parameters, a new column containing the
squared values of X , called “X2” must first be added. The built-in function LINEST
is very flexible and can also be used for many applications. For instance, it can cope
with multiple linear regression models such as employed for the isotopic pattern
deconvolution method described in Section 1.5.

It appears in the range E5:E14. In cell D16, the formula which generates the
results is typed. It is not displayed on the worksheet for lack of space, but it is easy
to see that both columns D and E containing X and X2, respectively, are input as the
second argument. The coefficient of determination r2 of the quadratic model equals
0.995 and is identical to the linear model. Therefore, this criterion is not sufficient
to select the best calibration model, and another approach is needed, as explained in
many statistical handbooks [2].

To attempt to define a procedure suitable for the selection of the best model that
can be estimated from the calibration data of Table 2.1 collected on one single day,
replicate measurements were done on six samples spiked with known amounts of
theophylline. Instrumental responses expressed in arbitrary units (AU) are reported
in Table 2.2. No measurement is out of the calibration range as the lowest concen-
tration here is 0.05 μg/l, and the lowest calibrator was 0.02 μg/l.

Table 2.2 THEOPHYLLINE series 1 – validation data.

Inverse-predicted concentrations (𝛍g/l)

Spike
(𝛍g/l)

Response
(AU) Linear Bias (%) Quadratic Bias (%)

0.05 1.307 0.058 15.1 0.023 −55
0.05 1.259 0.054 7.5 0.019 −63
0.10 1.909 0.105 5.2 0.074 −26
0.10 1.883 0.103 3.1 0.072 −28
0.50 8.638 0.638 27.6 0.642 28
0.50 8.786 0.650 29.9 0.655 31
1.00 18.154 1.391 39.1 1.438 44
1.00 17.672 1.353 35.3 1.398 40
2.50 39.004 3.041 21.7 3.152 26
2.50 37.949 2.958 18.3 3.067 23

10.00 123.565 9.735 −2.7 9.729 −3
10.00 126.487 9.966 −0.3 9.947 −1

Instrumental responses and inverse-predicted concentrations for six spiked samples.
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This comment is made because it is always dangerous to extrapolate. With these
new responses, inverse-predicted concentrations were calculated with both inverse
models using the estimated model coefficients reported in Resource A and put
together in the same table. It is additionally possible to compute the individual bias
for each result as described in Section 4.1.1. Obtained bias values are hugely varying
and disappointing, while both models seem remarkably similar when looking at
Figure 2.1. These results are very unsatisfactory.

The reason for this behavior is that the calibration data do not respect one of the
mandatory assumptions for applying the OLS regression: the variance of response Y
must be constant over all the calibration range, and it is not the case here. Another
algorithm must be applied, known as Weighted Least-Squares or WLS.

2.3.2 Weighted Least-squares (WLS) Regression

As explained, the implicit assumption for applying OLS method is that all random
variables Ei have the same theoretical variances, denoted 𝜎

2. As explained before,
the best estimate of this variance is the residual variance denoted s2

E and given by
Eq. (2.15). This property, called homoscedasticity, means that the variances of the
Y -values are homogeneous over all the calibration range. When the calibration range
is large, it is not unusual that repeated instrumental responses be more spread out
at high concentrations than at low concentrations.

Calibrator measurement dispersion often increases when the concentra-
tion increases and response variances are no longer identical throughout the
calibration domain. When dealing with MU the relationship between concen-
tration and response dispersion is a key issue. For instance, most LC-coupled
methods (e.g., inductively coupled plasma-mass spectrometer [ICP-MS], liquid
chromatography-mass spectrometer [LC-MS], etc.) cover a large calibration range,
and Y -value variances significantly increase with analyte concentration. Because
low concentrations have smaller variances, precision at the lower end of the range
may therefore be compromised and impair the limits of quantification (LOQ).

The practical answer of statisticians was to develop the theory of WLS regression.
The basic idea is to compensate for the variation in dispersion of the response Y ,
by weighting the residuals in the opposite manner to the increase in variability. The
most logical weighting is to use the inverse of local variances of Y for each calibrator:

Wi =
1

s2
Yi

This means it is necessary to make replicate measurements to have pertinent
estimates of the variances. This may become rather cumbersome. In the context
of calibration, simpler weighting schemes can be implemented to correct this het-
eroscedasticity issue and ensure a reliable estimation of the regression parameters.
More empirical weighting factors are based either on the concentration of the
calibrant or the measured response, providing a simpler means of approximation.
In this case, several weights W i are applicable, such as:

Wi =
1

X2 or 1√
X

or 1
Y 2 or 1√

Y
, etc.
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It is not always easy to select the best-adapted weights W i but a practical approach
is possible by making several trials. To present some details of the method, we have
chosen a classic approach by using the inverse of the squared concentration 1/X2. A
major criticism can be made of this choice:

– When the calibration range is large, the ratio between the weights applied to the
smallest calibrator and the highest is enormous. In the example of Table 2.2, the
smallest weight is 1/0.022 = 2500, and the highest 1/102 = 0.01. This 25,000-fold
ratio may emphasize the importance of smallest concentration at the expense of
the highest, which may become meaningless. It can also be assumed it may be of
some consequence on the accuracy of inverse-predicted values.

Analysts must be aware of this possible issue because this weighting is often
chosen and implicitly implemented in instrument monitoring software. Reasons
are easy to understand. Whatever the calibration experimental design, without
replicates, the computation is straightforward. The following example is given to
illustrate the efficiency of the WLS despite this questionable weighting choice.
Unfortunately, the built-in function LINEST does not present the weighted variant
of the LS method. It is possible, with some programming effort, to build template
sheets that provide the expected results, as illustrated in a publication [3]. The
following formulas can be used to develop such a template, but it is limited to the
straight-line model.

Classic weights

Wi =
1

X2
1

(2.27)

Weighted average of X

X =
∑

iWiXi∑
iWi

(2.28)

Weighted average of Y

Y =
∑

iWiYi∑
iWi

(2.29)

Sum of squares for X

SS(X) =
∑

i
WiX2

i −
(∑

iWiXi
)2

∑
iXi

(2.30)

Sum of squares for Y

SS(Y ) =
∑

i
WiY 2

i −
(∑

iWiYi
)2

∑
iYi

(2.31)

Sum of cross-products

SP(X ,Y ) =
∑

i
WiXiYi −

∑
iWiY

∑
iWiYi∑

i
Wi

(2.32)
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Slope or sensitivity

a1 = SP(X ,Y )
SS(X)

(2.13)

Intercept or blank

a0 = Y − a1X (2.14)

Another opportunity that we recommend to apply WLS to any model is to pro-
gram a short Python script, such as Resource B. Likewise, in other Python programs,
comments are added in plain text to explain how it works.

Resource B Calibration using OLS and WLS (Python).

It is necessary to import the complementary packages, mainly statsmodels.
formula.api, that contains all linear regression functions.
import pandas as pd
import statsmodels.formula.api as sm

For this example, the THEOPHYLLINE series 1 data are used. If a more general
program must be developed, Python allows many possibilities to read external
data in many formats.
X = [0.02, 0.02,0.10,0.10,0.50,0.50,2.50,2.50,10.00,

10.00]
Y = [0.293,0.443,1.874,1.810,8.904,8.306,23.411,37.832,

124.835,129.605]

Complementary variables are added for the quadratic model or the weighting
of data.
X2 = [i*i for i in X] # squares of X

Select the weighting. This underlines the simplicity of this choice, while using
another weight may be more cumbersome.
W = [1/i**2 for i in X] # weights

All variables are organized in a data frame. This step is necessary to apply the
regression function of Python.
df_data = pd.DataFrame

({
"x":X, "x2": X2, "y":Y

})

The calibration function is declared in a straightforward way, as a text using the
variable text names: formula = ’y ∼ x’. Thereafter, it is combined with the
data frame into a model by applying sm.ols function. The fitting is achieved by
the attribute fit(). Results are stored in a structure that contains all necessary
information. The attribute params extract a lot of data, such as the coefficients
of the model and many others.
formula = ’y ∼ x’
model = sm.ols(formula, df_data)

(Continued)
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results = model.fit()
print("Linear OLS ", results.params)

The application of the WLS algorithm is straightforward. The sm.wls function
is used instead of sm.ols. It is necessary to pass the variable w containing the
weights.
model = sm.wls(formula, df_data, weights=W)
results = model.fit()
print("Linear WLS ", results.params)

The computation of the quadratic calibration curve is linear except for the for-
mula that becomes formula = ’y ∼ x + x2’. The subsequent steps are
the same.
formula = ’y ∼ x + x2’
model = sm.ols(formula, df_data) # apply OLS algorithm
results = model.fit()
print("Polynomial OLS ", results.params)
model = sm.wls(formula, df_data, weights=W) # apply WLS
algorithm
results = model.fit()
print("Polynomial WLS ", results.params)

Table 2.3 summarizes the statistics returned by these few lines of code. The last
column, called for Akaike information criterion (AIC) is explained further.

The differences between the coefficients calculated using the OLS or WLS algo-
rithm appear small, except for the quadratic model. As previously stated, the coeffi-
cient of determination r2 does not bring much information. If the coefficients of the
WLS quadratic model are applied to compute the inverse-predicted concentration of
the samples of Table 2.2, the following results are obtained: 0.077, 0.074, 0.114, 0.113,
0.534, 0.543, 1.144, 1.113, 2.560, 2.486, 10.424, 10.829. The average bias remains at
+15%. It is not very substantial to decide which model is the best. Another method is
needed to select the best model, and a proposal based on MU is made in Section 8.1.

Table 2.3 THEOPHYLLINE series 1 – comparison of results obtained with OLS and WLS
methods on the data of the first series.

Model Method a0 a1 a2 r2 AIC

Linear OLS 0.5801 12.634 0.995 57.776
WLS 0.0863 14.722 0.942 40.036

Quadratic OLS 1.0403 11.779 0.0837 0.995 59.496
WLS 0.0489 16.312 −0.4281 0.955 39.463
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2.4 Calibration: Special Topics

2.4.1 Nonlinear Calibration Curve

For statisticians, the linearity of a model is not defined the same way as in other fields
of mathematics. A model is “linear in the parameters” when it is an additive poly-
nomial or can be transformed into such a polynomial, whatever the highest power
of any explicative variable. For example, the quadratic model Y = a0 + a1X + a2X2

used before is linear because the second order X2 variable can be transformed into a
new first-order dummy variable X2, containing the squared values of X . The model
becomes Y = a0 + a1X + a2X2, and the three coefficients can be favorably estimated
using LINEST.

The straight-line model is remarkably successful in analytical sciences because
the coefficients are easily interpretable. If the sensitivity of a method is “the increase
in response relative to the increase in concentration,” the coefficient a1 can be inter-
preted as the sensitivity.

Sensitivity

lim
𝛿X→0

𝛿Y
𝛿X

= a1 (2.33)

On the other hand, the coefficient a0 can be assimilated into a blank. Depending
on the quantification technique, the blank can combine one or several following
elements:

– The eventual response of the reagents used for the sample preparation.
– The endogenous analyte concentration of the sample when the matrix is present.
– The background instrumental response.

For many laboratory instruments, there is also an electrical blank (or auto zero)
which allows the display to be reset to zero. When the matrix or the calibrant are
absent and when the instrument is stable or does not present any drift, it is possible to
confuse the calibration blank and the electrical blank. However, they do not have the
same origin. The electrical zero is purely related to the electronics of the instrument,
while the calibration blank may be produced by the reagents.

The situation is more complex if calibration is achieved in the presence of matrix
containing an endogenous concentration of the analyte, the coefficient a0 is a mix-
ture of instrumental, reagent, and sample responses as explained in Section 1.4. For
some analytical techniques, it is also established that it is impossible to have a lin-
ear calibration model. In fact, it happens for numerous detection modes when the
calibration extends over a wide concentration range.

For example, ICP emission spectrophotometry allows for very wide calibration
ranges (three to four orders of magnitude) and often does not have a straight line for
calibration curve. In this case, the interpretation of the coefficients is more delicate
since the concept of sensitivity, as defined by the Eq. (2.33), is no longer meaningful:
the sensitivity varies with the concentration.

For a given method, it is sometimes possible to modify the measured response
and concentration to linearize the calibration model, but this modifies the statistical



42 2 Calibration

properties of X and Y variables. For instance, an old practice was to linearize by using
variable X and Y transformations, such as probit or log-probit transformation. This
procedure is misleading and has major downsides, whereas it modifies the proba-
bility function of variables X and Y, which greatly degrades the inverse prediction
accuracy and increases the MU. It is better to select a nonlinear model and keep it in
its original form. This means it is necessary to apply a nonlinear regression method
to estimate the coefficients, even if it seems more complicated.

The chemical mechanisms involved in several methods, such as radioimmunoas-
say or enzyme-linked immunosorbent assay (ELISA) assay, are relatively complex
and not always fully clarified. More elaborate calibration models must be selected
to obtain accurate result quantification. For example, Robison–Cox proposed early
the 4-parameter logistic model (4PL) [4]. The 5-parameter logistic model also exists.
Both models can be used to predict the OD of Y of the antigen-bound fraction as a
function of the ligand concentration X for several ligand binding methods. But they
can also be inverted to predict the concentration of an unknown sample from its
instrumental response.

4-Parameter logistic model (4PL)

Y = a2 +
a1 − a2

1 +
(

X
a3

)a4
+ E (2.34)

Inverse 4PL

Z = a3

(
a1 − a2

Y − a2

) 1
a4

(2.35)

Although the 4PL model is empirical, the parameters can be interpreted in a way
that is satisfactory to an analyst:

– a1 the smallest response of Y when X tends to 0 and corresponds to the lower
asymptote of the curve.

– a2 the highest response of Y when X tends to infinity and corresponds to the
plateau of the curve.

– a3 the concentration of X when Y is halfway between its maximum and minimum.
– a4 the curvature intensity.

The major difference between this model and the linear models is that it cannot
be transformed into an additive polynomial as defined before. It is strictly nonlin-
ear “in the parameters.” The theory of least-squares nonlinear regression will not
be presented here but is well-documented and illustrated in several books [5]. The
nonlinear regression algorithms, both unweighted and weighted, are mostly iterative
and quite different from OLS and WLS applicable to the linear case. To demonstrate
the feasibility of nonlinear regression is now straightforward and accessible using
modern computing facilities.

A practical application to the 4-parameter logistic calibration function of Eq. (2.34)
is presented. This is an example applied to a dataset collected with an ELISA method
developed to determine an interleukin in blood. Because the number of coefficients
to be estimated is substantial (4) and the model is more complex, it is recommended
to collect more data than for a simple linear model. Data are gathered in Table 2.4,
with the concentration X in pg/ml and the
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Table 2.4 ELISAa) – calibration for the determination of interleukin 6 using nonlinear
regression.

Concentration X (pg/ml) Yi1 Yi2 Yi3

3.91 0.326 0.348 0.331
7.81 0.361 0.387 0.366

15.63 0.430 0.458 0.442
31.25 0.571 0.593 0.582
62.50 0.873 0.911 0.874

125.00 1.380 1.402 1.419
250.00 2.167 2.174 2.143
500.00 2.756 2.820 2.732

Response unit is optical density.
a) Unpublished personal data.

calibrators is large I = 8, as well as the number of replicates J = 3 per calibrator, i.e.
altogether 24 calibration measurements are necessary.

The built-in functionLINEST is not able to handle such a model. It could be possi-
ble to set up a template worksheet using the Excel add-in called Solver, but it requires
some expertise. The simplest solution consists in developing a short Python script
like Resource C. Returned results are stored in two structures, one called pop that
contains the values of the coefficients: in this example a1 = 0.33166, a2 = 3.51081,
a3 = 202.923, a4 = 1.33290. The other called cov contains the covariance matrix.
The interpretation of nonlinear regression parameters is quite different from OLS or
WLS. It is important to check if the different coefficients are not correlated. A strong
correlation between two coefficients would indicate that they are redundant and the
model is overfitted. In this example all covariances indicate that the coefficients are
independent.
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Figure 2.4 ELISA – determination of interleukin 6. Nonlinear calibration curve and
observed measurements.



44 2 Calibration

Figure 2.4 illustrates the ELISA dataset and the continuous line the estimated
calibration function. To draw this line, it is necessary to separately compute the pre-
dicted response for each concentration using Eq. (2.34). The following short work-
sheet is a possible application; the column headline “Ŷ” stands for Ŷ and contains
some predicted response values.

1

2
3
4
5

6
7
8
9
10
11

A B C D E F

Nonlinear regression for Interleukin (pg/ml)
Coefficients a1 0.33166

a2 3.51081
a3 202.923

Optical density a4 1.3329
Concentration

X (pg/mL)
Yi1 Yi2 Yi3 Y^

3.91 0.326 0.348 0.331 0.348 =$E$3+(($E$2-$E$3)/(1+(A7/$E$4)^$E$5))
7.81 0.361 0.387 0.366 0.372 =$E$3+(($E$2-$E$3)/(1+(A8/$E$4)^$E$5))

15.63 0.430 0.458 0.442 0.433 =$E$3+(($E$2-$E$3)/(1+(A9/$E$4)^$E$5))
31.25 0.571 0.593 0.582 0.574 =$E$3+(($E$2-$E$3)/(1+(A10/$E$4)^$E$5))
62.5 0.873 0.911 0.874 0.879 =$E$3+(($E$2-$E$3)/(1+(A11/$E$4)^$E$5))

Resource C Nonlinear calibration (Python).

For this script, it is necessary to import the curve_fit function from the
scipy.optimize package that performs the nonlinear regression.
from scipy.optimize import curve_fit

Create a subroutine called LogisticModel to declare the 4-parameter of the
logistic model. It must be input before any other command line. Beware, the
calibration formula is no longer described as a text variable as it was for OLS
regression with Python.
def LogisticModel(x, a1, a2, a3, a4):
return(a2 + ((a1 - a2)/(1 + (x / a3)**a4)))

Calibration data are stored in local variables but can be input from an exter-
nal file.
X = [3.91,3.91,3.91,7.81,7.81,7.81,15.63,15.63,15.63,
31.25,31.25,31.25,62.5,62.5,62.5,125,125,125,250,250,250,
500,500,500]
Y = [0.326,0.348,0.331,0.361,0.387,0.366,0.43,0.458,
0.442,0.571,0.593,0.582,0.873,0.911,0.874,1.38,1.402,
1.419,2.167,2.174,2.143,2.756,2.82,2.732]

The application of the curve_fit function is direct. Other arguments can be
added, such as initial values of the coefficients when the function may have sev-
eral optimums. In this example, it is not useful.
pop, cov = curve_fit(LogisticModel, X, Y)

Print results
print(pop) # coefficients
print(cov) # covariance matrix



2.4 Calibration: Special Topics 45

2.4.2 Misuses of Regression for Calibration

2.4.2.1 Coefficients of Correlation and Determination
Some comments about the use or abuse of the coefficient of determination
r2 or its square root, the coefficient of correlation r, are imperative. They are
often alleged to be efficient criteria to decide whether a calibration model is
satisfactory or not. Using proposed notations, calculation formulas are given by
Eqs. (2.36) and (2.37):

Coefficient of determination

r2 = SP2(X ,Y )
SS(X) × SS(Y )

(2.36)

Coefficient of correlation

r = SP(X ,Y )√
SS(X) × SS(Y )

(2.37)

In this case, SS(Y ) represents the sum of the squared deviates of Y to the mean and
is calculated as in Eq. (2.12) by replacing the X values by Y . The confidence interval
of r is not symmetrical and two formulas are necessary to obtain lower rL and upper
limits rU . A prior transformation using the natural logarithm is required.

Initial transformation

D = 1
2
× ln

(1 + r
1 − r

)

Confidence interval in natural logarithm

L = D −
z1−𝛼∕2√

I − 3

U = D +
z1−𝛼∕2√

I − 3
Lower limit

rL = e2L − 1
e2L + 1

Upper limit

rU = e2U − 1
e2U + 1

To obtain the confidence interval, the following lines should be added after the
last line 29 of the worksheet Resource A.

30

31

32

33

34

35

36

37

38

39

A B C D E
Coefficent of correlation: Confidence interval 
Alpha (risk) 5% Alpha (risk) 5%

Coeff r 0.997257 =SQRT(B27) Coeff r 0.9973

Transformation 3.295231 =0.5*LN((1+B32)/(1-B32)) Transformation 3.309273
Coverage factor 1.960 =NORM.S.INV(1-B31/2) Coverage factor 1.960

Number of points 10 =COUNT(A5:A14) Number of points 10

L 2.5544 =B33-B34/SQRT(B35-3) L 2.5685

U 4.0360 =B33+B34/SQRT(B35-3) U 4.0501

Lower limit 0.9880 =(EXP(2*B36)-1)/(EXP(2*B36)+1) Lower limit 0.9883

Upper limit 0.9994 =(EXP(2*B37)-1)/(EXP(2*B37)+1) Upper limit 0.9994
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The coefficient of determination of the linear model is r2 = 0.9945 and appears
in cell B27 of the Resource A worksheet, delivered by LINEST, and r2 = 0.9947
for the quadratic model in cell E29. To obtain the coefficients of correlation, the
square roots of the coefficients of determination are extracted in cells B32 and E32,
respectively. In this case, they are positive because X and Y variables are always
positively correlated. When the correlation is negative, it is compulsory to force to
the negative square root. Finally, it appears that the 95% confidence intervals of the
coefficient of correlation r of both models are remarkably close, almost overlapping,
and equal to [0.9880; 0.9994] and [0.9883; 0.9994], respectively. As already stated, it
is impossible to decide which model is the best. For this, some fundamental reasons
are helpful.

Historically, r was introduced to measure the correlation, i.e. the proper relation-
ship between two variables. By construction, r value is always between −1 and +1.
When it is positive, it means that the two variables tend to increase simultaneously
and are claimed “positively correlated,” and in the opposite way, they are “nega-
tively correlated”; when r is close to 0, this means the two variables are “uncorre-
lated.”

A test to check whether r is statistically different from 0 can be assessed or its
confidence interval can be used. If the null hypothesis, i.e. r ≠ 0, is accepted, it is
concluded that the two variables are correlated as in calibration. The coefficient
of determination r2 is always positive, and varies between 0 and 1. Expressed
as a percentage, it was demonstrated it can be construed as the percentage of
the variation of Y explained by the regression model. The complement 1− r2

can also be used to account for what is not explained by the model. An adjusted
coefficient of determination also exists weighed by the number of points used for
computing.

In the case of calibration, the correlation between the response and the concen-
tration cannot be questioned since it is the mechanism that originates the analytical
method principle. Therefore, both coefficients r and r2 must be extremely high and
(fortunately) always statistically different of zero. A set of arguments show that the
use of r or r2 is not relevant to assess the adequacy of the calibration model as under-
lined some years ago in analytical literature [6, 7].

Cited papers and others also explain why these coefficients are not suitable for
selecting the best calibration model and must be avoided. They can be used for
quality control (QC) purposes and to check that no calibration measurement is sus-
ceptible to be outlier. To summarize, there is no test to substantiate the hypothe-
sis r = 1 and, by construction, the confidence interval of r can never include the
value 1.

Therefore, it cannot be concluded that slight variations around the r value are
representative of the adequacy of the calibration model. The same conclusions are
applicable to r2. For instance, the results compiled in Table 2.3 indicate that the coef-
ficient of determination. r2 cannot be used to decide whether the best calibration
model is linear or quadratic.

The AIC “Akaike Information Criterion (AIC)” is less well known, but it is
a statistical parameter specially developed for model selection, i.e. to compare
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different possible models and decide which one best fits the data. The best-fit
model, according to AIC is the one that explains the greatest amount of variation
using the fewest possible independent variables:

Akaike information criterion

AIC = 2K − 2 ln(L)

where:

– K the number of independent variables used to build the model.
– ln(L) the estimate of the logarithm of the maximum likelihood of the model (how

well the model reproduces the data).

The default value of K is always 2, so if the model uses one independent variable
K will be 3, if it uses two independent variables, K will be 4, and so on. To compare
models, it requires calculating the AIC of each model. If a model is more than
2 AIC-units lower than another, it is considered significantly more appropriate.
Referring to Table 2.3, the best calibration model would be the second-order
polynomial estimated by WLS regression. In the Section 8.1 devoted to the accu-
racy profile, a more empirical strategy to select the best calibration model is
developed.

2.4.2.2 Definitions of Linearity
There is also some confusion about the linearity often associated with method vali-
dation. In fact, linearity can receive two different definitions:

– The ability to obtain an instrumental response Y strictly related to the concentra-
tion X by a calibration curve which is a straight line.

– The ability of inverse-predicted concentrations Zi to be proportional to the corre-
sponding theoretical concentration Xi.

The first definition is applicable to calibration but has no great interest for
validation as far as it is possible to accurately quantify an analyte with a non-
linear calibration curve and many novel methods are using such models. The
second definition is rather a question of trueness (see Section 4.1.3). It is the
more interesting definition applicable to the validation of a method. However,
many guides still insist on checking the linearity of the calibration model. In
other words, numerous guidelines consider that the function applicable to all the
relations between the analytical responses and the concentrations to be used for
the calibration must be able to follow a linear relationship. This is wrong, and
the absence of calibration curve linearity does not mean that the method cannot
accurately quantify, as demonstrated by the ELISA example in the previous chapter.
If a linear calibration curve is strictly required, but a curvature is observable, there
are two solutions:

– Limit the calibration range to the strictly linear part. This limit will become a
boundary beyond which quantification is forbidden. If an instrumental response
is obtained for a sample that exceeds the bounds of the calibration range, it is
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mandatory to dilute the preparation to remain within the prescribed zone. This is
very restrictive, whereas the calculation of a quadratic model is quite simple.

– The second solution is to estimate the impact of this curvature on the predicted
concentrations. If the bias on calculated concentration is limited, the calibration
model, even if not perfectly adjusted, could be further considered.

Curvature is frequent at high concentrations, but it can also be observed in the
vicinity of the blank. According to our experience, this second type of curvature is
mostly found in chromatography or with various detectors, including mass spec-
trometers. The exact positioning of the linearity limit is tricky although there is an
iterative method of finding it. The simplest procedure described in the literature is
to proceed empirically using a lack-of-fit test [8]. This implies a preliminary visual
examination of the calibration curve. Therefore, the proposed method requires a
critical mind for its interpretation. In any case, it is essential, as a prerequisite, to
carry out a graphic presentation of the results to evaluate whether a test is necessary
or not.

2.4.3 Statistical Aspects of Standard Addition Method (SAM)

In Section 1.4.1, the principles of the simple standard addition method (SAM) were
presented, and the accompanying calculation was explained. Another method con-
sists of extrapolating the with-matrix straight line to a null response, as illustrated
on Figure 2.5, using unpublished personal data. At the crossing point, it is possi-
ble to compute the extrapolated concentration, noted Z* and equal to 439 ng/ml.
The Resource D worksheet called SAM (Excel) illustrates the procedure when there
are several standard additions.
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Figure 2.5 SAM – multiple point standard addition method.
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This more complex design with six standard additions is recommended by some
official bodies when it is necessary to demonstrate that there is no matrix effect
or when using a surrogate matrix [9]. In this example, six points are measured
with and without the matrix, making altogether 12 measurements. It is possible
to compute with a worksheet the coefficients of the two straight lines by using the
LINEST built-in function. Some complementary notations will help understand the
rationale.

Calibration line without matrix

Y = a0 + a1X + e

Calibration line with authentic matrix

Y = b0 + b1X + e

Extrapolated concentration

Z∗ =
b0

b1

Uncorrected concentration

Z =
b0 − a0

a1

Recovery yield

RY% = Z∗

Z
× 100

One goal of SAM is to obtain the recovery yield relevant to correcting the result
of the unknown sample in presence of matrix effect, or in absence of blank matrix
that can be spiked to build a representative external calibration curve. However, the
procedure is also useful during the method development to check the method true-
ness. For this reason, some guidelines recommend checking if both straight lines are
parallel, as explained in Section 1.3, in other words if the difference between slopes
is statistically equal to zero. In this specific context, an easy procedure to compare
slope coefficients consists in simply comparing the confidence intervals of the slopes
as explained in Section 2.2.

This simplified method is acceptable because both lines are assumed to have com-
parable statistical properties; otherwise, more classic statistical tests must be applied.
If the confidence intervals overlap, this means that the difference is statistically not
significant. In the example of Resource D, the 95% confidence intervals of a1 and b1
are:

Presence of an authentic matrix 95% slope confidence interval

No [0.0100; 0.0116]
Yes [0.0137; 0.0151]

Because intervals are not overlapping, it can be concluded that the two slopes are
significantly different, with a risk of 5%, and the lines of Figure 2.5 are not parallel.
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This sample shows a matrix effect. It is also possible to propose a graphical applica-
tion of the method. An alternative confirmation consists in verifying if relative dif-
ference between slope coefficients is included in an acceptance interval, for instance,
of ±15% as defined by the European Medicines Agency [10]. If we consider that the
line without matrix to be the reference, the relative difference between the two slopes
is 33.7%:

|a1 − b1|
a1

= |0.0108 − 0.0144|
0.0108

= 0.337 or 33.7%

This value is far from 15% but not surprising because the two lines are obviously
non-parallel and it can be concluded that the matrix effect is significant. Conse-
quently, the result must be corrected using the recovery yield to define a correc-
tion factor. For this example, the recovery yield is 82.7% and the correction factor
is 0.832. For instance, it can be applied to the uncorrected concentration that gives
527 × 0.832 = 439. This correction factor can be applied to any unknown sample as
far as the matrix is analogous. Result correction is of some consequence on the MU
and a full example is presented in Section 8.4.2 showing how to take account of the
correction factor in estimating MU.

Resource D Standard addition method (Excel).

1

2

3

4

5

6
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8

9
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29

30

31

32

A B C D

Resource D: Standard addition method
Response

Concentration (ng/ml) Without matrix With matrix

0 0.37 6.54

100 1.99 7.64

250 2.95 10.16

500 6.43 13.03

1000 11.60 20.85

1500 16.59 27.99

Results
Slope Intercept

Without matrix

0.0108 0.6382 =LINEST(B4:B9;A4:A9;TRUE;TRUE)

2.805E-04 0.2165

0.997 0.366

1476 4

198 0.536

With matrix

0.0144 6.3250 =LINEST(C4:C9;A4:A9;TRUE;TRUE)

2.368E-04 0.182734888

0.999 0.308959382

3700 4

353 0.382

Uncorrected concentration 527.7 =(B19-B13)/A13

Extrapolated concentration 439.1 =B19/A19

Recovery yield 83.2% =B26/B25

Confidence intervals of slopes
Risk of error 0.05

Student ' s t 2.776 =T.INV(1-B29/2;B16)

Without matrix 0.0100 0.0116 =A13-B30*A14

With matrix 0.0137 0.0151 =A19-B30*A20
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The spiking sample matrix is sometimes misunderstood by analysts, and the main
criticism is that the analyte, added as a surrogate calibrant, is not in the same chem-
ical form as the authentic analyte present in the sample. We already have shown in
Chapter 1 that in many situations, the compound used for calibration is identical but
many solutions exist to get around this problem. May this criticism be valid? Experi-
ence shows that, generally, the recovery yield thus obtained is operational and does
not impede a good decision.

As already explained, the use of stable isotope labeled (SIL) calibrant or spiking
compound may prevent this bias and bring the method closer to a primary method of
analysis. This is the recommendation made by official guidelines for the validation
of analytical methods for chemical pollutants, such as pesticides, dioxins, polycyclic
aromatic hydrocarbon (PAH), or acrylamide. It can be noted that in recent years,
the catalogs of commercial reagents have been greatly enriched with this type of
molecule.

It has been suggested that when using a single spiked sample, it should have a
concentration at least five times that of the test sample, but linearity must be checked
before. If the response of the system is nonlinear, the extrapolation involved in the
SAM approach becomes more problematic.

There is another extension of SAM in a multidimensional way, called H-point
standard addition method (HPSAM), illustrated with an example of drug control
in Section 10.1.

2.5 Metrological Approach to Calibration

From a metrological perspective, calibration is defined in International Vocabulary
of Metrology (VIM) as:

“An operation that, under specified conditions, in a first step, establishes
a relation between the quantity values with measurement uncertainties
provided by measurement standards and corresponding indications with
associated measurement uncertainties and, in a second step, uses this infor-
mation to establish a relation for obtaining a measurement result from an
indication” [11].

This definition of this operation is clearly a two-step procedure as already under-
lined. If the so-called “relation” is noted as already proposed Y = f (X)+E, X is the
“measurement standard” value and Y is the “indication”. The f function establishes
the relationship between X and Y . As discussed in Chapter 1, Y may be diverse: a
simple electrical signal, a peak area, a peak height, a ratio between two peaks, etc.
This dual nature of calibration may be more precisely established with the mathe-
matical notation:

Step 1. Calibration

Y = 𝛼0 + 𝛼1X + E (2.38)

Predicted response for known X

Y = a0 + a1X (2.39)
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Step 2. Inverse predicted concentration

Z =
Y − a0

a1
(2.40)

The use of Greek letters in Eq. (2.38) and Latin in Eq. (2.39), is aiming to highlight
that coefficients a0 and a1 are simply estimates of 𝛼0 and 𝛼1, and may vary accord-
ing to the number of calibrators, their distribution across the calibration range, the
number of replicates, the estimation technique, etc. as discussed further. Several
approaches are available in the literature to calculate these coefficients, but the most
common is OLS regression presented in Section 2.3.1. Because the VIM definition of
calibration does not make the difference between the authentic analyte and the cal-
ibration compound, which can be authentic or surrogate, some decades ago, several
authors proposed to directly fit the reverse function that links X to Y , giving for the
linear case:

Step 1. Reverse calibration

X = 𝛽
′
0 + 𝛽

′
1Y + E′ (2.41)

Step 2. Predicted concentration

Z = a′
0 + a′

1Y (2.42)

This approach raises different questions. Originally, the major assumption when
using OLS regression is that X is the independent predictive variable known to be
without any error and Y is the dependent predicted random variable. In Eq. (2.3),
E is the error in Y while the error in X is assumed to be zero or, at least, negligible.
Contrarily, in Eq. (2.41), E′ is the error in X while there is no error in Y .

Because X and Y do not play the same role in the OLS, as it aims to minimize the
sum of squared residuals in the Y -dimension, on the other hand, reverse calibration
uses the same criterion, but on X-dimension. Thus, the impact of calibration on the
MU is different. There is also a direct link between the values of coefficients a and
reverse coefficient a′ depending on the coefficient of determination r2 exhibited by
the following equations:

Inverse and reverse calibration links between a and a’coefficients

⎧
⎪⎪⎨⎪⎪⎩

a′
0 =

(1 − r2)Y − a0

b1

a′
1 = r2

a1

(2.43)

Equation (2.43) show that both approaches give close results if r2 is close to 1.
This condition is always justified for calibration. A review published some years ago
explained the statistical problems raised by both possible approaches [12]. The major
drawback is that reverse calibration is relatively easy to apply when the model is a
straight line and more difficult for others. While more recent methods use nonlinear
calibration models or even require weighed algorithms, reverse calibration did not
become popular among analysts except for a few analytical techniques.
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The most famous multidimensional application of reverse calibration is
near-infrared spectrometry (NIRS), which is widely used to determine proximate
components in foods or monitor certain pharmaceutical molecules. In this context,
since it is impossible to prepare standard solutions containing pure analytes,
calibration is obtained by fitting near-infrared spectra to measurements obtained on
the same sample by another reference method. As calibration is performed using
full spectra containing many wavelengths it is called multivariate calibration. The
model becomes:

z = g(Y) + E

z is the vector of measurements obtained by the reference method, Y and E
are matrices – in the mathematical sense – i.e. sets of instrumental responses
and errors, traditionally denoted in bold type. This calibration procedure requires
specific statistical processing. The best known is the partial least-squares regression
(PLS) described in specialized books and out of the scope of this book [13, 14].

2.5.1 Errors in Inverse-predicted Values

As explained in Section 6.6, second step in MU estimation procedure consists in
obtaining estimates of the standard deviations of the different identified uncertainty
sources. When inverse predicting Z the sample concentration, several sources of
uncertainty are included within the instrumental response, such as sample prepa-
ration or instrument instability. Whereas Z is a random variable, it is appealing to
compute the standard deviation sZ and use it for MU estimation.

There is some paradox in doing that, while it must be reminded that Z is compa-
rable to X , which is supposed to be error-free to comply with the assumptions of the
OLS algorithm. Consequently, Z should also be error-free. Despite this contradic-
tion, an estimate of the standard deviation sZ of the inverse-predicted concentration
was developed and given in Eq. (2.44) [8].

Standard deviation of inverse-predicted concentration Z

sZ =
sE

a1

√√√√1
J
+ 1

I
+

(Yk − Y )2

a2
1
∑

i(Xi − X)2
(2.44)

where:

– sE is the residual standard deviation of calibration given by Eq. (2.16).
– I is the number of calibrators 1≤ i≤ I.
– J is the number of replicate measurements of the study sample. If no replicate is

present, the resulting quotient is 1/J = 1.
– Xi is the calibrant concentration.
– Y k is instrument signal of study sample.
– X and Y are the mean values of concentrations and responses of calibrators,

respectively.

This equation is uneasy to use as it requires knowing, in advance, how many repli-
cates will be done. When SAM is used, it is also possible to derive standard deviation
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sZ* of the extrapolated concentration Z* from Eq. (2.45). This formula will be used
for the examples of Section 10.1.

Standard deviation of extrapolated concentration Z*

sZ∗ =
sE

a1

√√√√√1
I
+ Y

2

a2
1
∑

i(Xi − X)2
(2.45)

The use of these standard deviations is not suitable for practical MU estimation
and we will propose a more global and comprehensive approach in Section 7.2.
But these equations can provide valuable information regarding the optimization
of external calibration performances. The following rules inferred from Eq. (2.44)
can be applied to better plan the calibration experiment and define some “best cali-
bration practices”:

– Rule 1. The first equation term includes the residual standard deviation sE which
is an estimate of the random errors of instrumental responses. The possibility of
minimizing this parameter is provided by using an appropriate internal standard,
as recommended in Section 1.3.

– Rule 2. The second term a1 matches with the slope of the calibration curve. The
higher the slope is, the lower the errors in the inverse-computed concentration
Z. As explained in [15], a1 is understandable as the sensitivity of the analytical
method, the latter being defined as the ratio between the response variation of the
analytical calibration and the analyte quantity variation. An analytical method
can thus be considered sensitive when a small variation in the calibrant concen-
tration induces a large variation in the response. This definition differs from inter-
national guidelines such Food and Drug Administration (FDA) and European
Medicines Agency (EMA), where sensitivity is described as the “lowest measure-
ment range with acceptable accuracy and precision.” It must be noted that when
the analytical response is corrected by an internal standard, it represents the slope
of the ratio and not the authentic analyte response.

− Rule 3. At least two strategies for calibrator selection and distribution can be con-
sidered to reduce the size of the Z standard deviation and consequently its con-
fidence interval. First, the number I of calibration standards can be increased.
According to some guidelines, approximately six calibration points are adequate
in many experiments. This point is open to discussion in an integrated approach.
The second strategy relies on increasing the number of replicates J, which also
reduces the width of the confidence interval.

– Rule 4. When the working sample instrumental response Y k is close to the
average point of the calibration range, i.e. approaches mean Y , the third term
inside the square root converges to zero, thus reducing the sZ value. In the
conventional OLS approach, the most precise results are obtained when the
measured signal corresponds to a point near the average point (centroid) of
the regression line. Obviously, prediction errors are not equal for all points and
are smaller when the response is close to the centroid rather than at the edges.
This drawback is enhanced when the calibration range is large and response Y
becomes heteroscedastic as explained in Section 2.3.2 about WLS regression.
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– Rule 5. When looking at the quantity
∑

i(Xi − X)2 it can be deduced that dis-
tributing calibrators at the ends of the calibration range is more valuable since
it is maximized. One of the well-known properties of least-squares technique
is that better estimations of the regression coefficients are obtained when
two levels of concentration are set far apart in the calibration interval. For
instance, international guidelines to analytical validation, such as FDA and
EMA recommend performing a calibration with at least six calibrators, two of
them located at expected upper and lower limits of quantification (ULOQ and
LLOQ) in the calibration design. However, no other calibrator locations are
indicated.

Official guidelines have usually recommended most of the rules listed above. This
leads to satisfactory inverse-prediction when dealing with External Calibration (EC)
in the linear case. While only a few formal expectations are provided for other types
or models of analytical calibration and the multipoint matrix-matched external cal-
ibration (MMEC) is recommended by international guidelines for the validation of
bioanalytical methods [9]. This mention of official guidelines suggests a growing
interest in the need for new analytical calibration practices. Currently, the possibil-
ity of cross validating the results obtained with an alternative analytical method to
a reference one allows the analyst to investigate alternative quantification method-
ologies without sacrificing performance.

“Obligations of result” and “obligations of means” have a longstanding history in
private law. The obligation of result is simply the obligation of the debtor to attain a
predetermined result. These legal concepts could be transposed to the organization
of the method validation. For instance, official recommendations are often based on
an “obligation of means” such as a minimal number of calibrators or replicates for
calibration conditions. If an “obligation of results” were prescribed, such as partic-
ipating in systematic proficiency testing (Section 4.3), the analyst would be able to
select the calibration organization most appropriate to the laboratory.

The implementation of this other approach may promote renewed criteria to eval-
uate the calibration performance, including a focus on the observed results and their
respective uncertainties. The comprehensive validation approach is probably the
better way to establish innovative quantification methodologies for modern instru-
mentation. It also means that calibration is a fully integrated part of the analytical
process.

2.5.2 Calibration as a Source of Uncertainty

When considering MU estimation of a quantitative result, the calibration step
remains one of the key stages to reliably assess its quantification. Unfortunately, it
seems impossible to estimate the specific role of calibration in MU. Only a compar-
ative approach is applicable using different calibration models or algorithms. Since
the 1990s, metrologists have developed what is called the Uncertainty Approach
in opposition to the more traditional Error Approach. To estimate the MU of
any reported measurement value, an effective solution consists of applying the
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uncertainty approach and considering calibration as one of the many sources of
uncertainty participating in the combined MU of an analytical result, noted uc(Z)
with subscript c stands for combined.

As recalled above, many studies have investigated the influence of different exper-
imental designs and strategies applicable to calibration, such as WLS regression,
replication of measurements or optimized distribution of calibrators within the cali-
bration interval. If they are beneficial, they should be evaluated due to the reduction
of uc(Z).

The estimation of MU in analytical sciences is still at its beginnings, and no abso-
lute procedure is recognized by analysts. Examples applicable to a specific operating
procedure or field of analysis have been published. However, the role of calibration
in MU must be scrutinized. The general procedure to estimate MU, is described
in Chapter 6. It is relatively straightforward and consists of four steps: specify the
measurand; identify the uncertainty sources; simplify and quantify the uncertainty
components; and calculate the combined uncertainty. Calibration is one of the many
sources of uncertainty in analytical sciences which can be identified in the second
step. Whatever the calibration procedure, at least three major sources are present:

– The chosen calibration model.
– Applied algorithm to estimate model coefficients.
– In some cases, calibrant uncertainty in the reference material used for calibrator

can also be accounted for.

However, it is difficult to define an experimental design to separately estimate
the uncertainty linked to calibration. Therefore, the role of calibration in MU can
only be indirectly estimated as already underlined. In some statistical textbooks,
strategies to select the best calibration model and minimize the importance of cali-
bration as an uncertainty source are proposed. Unfortunately, in analytical sciences
the X concentration and Y response are naturally highly correlated and classical
statistical criteria, such as the r2 or AIC, are inefficient for selecting the most
appropriate calibration model. Several other techniques exist, such as the visual
inspection of residuals or dedicated statistical testing to verify the lack-of-fit or the
homoscedasticity.

But experience shows that all these techniques are not very efficient because of the
extremely strong causal relationship between X and Y . The Guide to the expression
of Uncertainty in Measurement (GUM) general procedure recommends regrouping
sources of uncertainty, and a more empirical approach consists of making several
estimations of the combined MU using different calibration models and regression
techniques. For example, using QC values or the method accuracy profile are pos-
sible alternatives to reach this goal. To obtain reliable quantification in terms of
trueness and precision, the analytical calibration function must take the response
relationships for all relevant analytes and interferences into account. From a practi-
cal perspective, two primary prerequisites must be fulfilled:

– Physicochemical properties of surrogate standard must be as close as possible to
the authentic analyte in terms of solvent and nature.
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– Calibration standards and working samples must have comparable behavior in
the measurement system.

Finally, many MU guidelines explain how to estimate MU for one working
sample. In many contract laboratories, the composition of received sample may be
highly variable. The application of the proposed procedures to each working sample
would be tedious and difficult. In Section 7.6.3 we promote the concept of Uncer-
tainty Function which represents another approach more suitable to analyst’s daily
practice.
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3

Precision

3.1 Outputs of Interlaboratory Studies

3.1.1 Diverse Precision Parameters

Precision is one of the major characteristics of any measurement method and is
defined in clause 2.5 of the VIM [1]:

Precision is the “closeness of agreement between measured quantity values
obtained by replicate measurements on the same or similar objects under
specified conditions.”

The definition of precision conveys the idea that replicate measurements, when
made on the same sample with the same method, are dispersed in a specific way.
An early challenge for the official control bodies, which needed to compare data of
different origins, was to understand how precision may vary from one laboratory to
another and how they could rely on analytical data to monitor different tasks such
as people’s health or environmental pollution. While trade became more global, the
concern of economic agents was similar for product exchanges. It was concluded that
it was essential to have a common procedure for comparing measurement values
obtained by different laboratories and to ascertain if the discrepancies were caused
by the method or the laboratory.

Therefore, it was decided to assess precision within the framework of interlabora-
tory studies. Early studies were organized in the 1940s. In the 1990s, ISO published
a set of five international standards under the global reference ISO 5725 [2–6]. Sev-
eral parts of this major standard are under revision. The general scope was to define
a harmonized procedure for the statistical interpretation of interlaboratory studies
and the computation of precision parameters. The principal role was to underline
that the estimation of precision depends on the condition where replicates are con-
ducted, i.e. which sources of variations are accounted for:

– When replicates are made in the same laboratory without modifying anything
between two measurements, only random effects are counted, and the precision
is estimated under repeatability condition.

Quantification, Validation and Uncertainty in Analytical Sciences: An Analyst’s Companion,
First Edition. Max Feinberg and Serge Rudaz.
© 2024 WILEY-VCH GmbH. Published 2024 by WILEY-VCH
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Figure 3.1 Graphical representation of diverse total variance decomposition, affording
diverse sources of variation. Repeatability is always present and represented by a red arrow.

– When replicates are performed in the same laboratory, but varying one or more
operating conditions (also called factors), such as day, reagent batches, operator,
instrument settings, or any other factor, the precision is estimated under inter-
mediate precision condition, thus-called because it is in between repeatability (the
smallest variation) and reproducibility (largest variation).

– When replicates are performed in different laboratories on the same sample with
supposedly the same operating procedure, the precision is estimated under repro-
ducibility condition. This means that different test portions of the working sample
are analyzed by different operators on different days using almost identical stan-
dard operating procedures but adapted within different laboratories.

Though this book deals with in-house validation, the interlaboratory approach
to precision is interesting because concepts and computation techniques are
transposable from interlaboratory to in-house validation. For statisticians, the
parameter used to estimate data dispersion is the variance or its square root, the
standard deviation. Therefore, when speaking about precision, it means speaking
about variances or standard deviations. Figure 3.1 is an attempt to illustrate the
complexification of the precision variance from the repeatability condition, where
only random effect plays a role, to the reproducibility condition, where sources of
variation are numerous.

3.1.2 Role of Series for Data Collection

The term “series” was introduced in Chapter 2 and appears several times in all
following chapters. It is critical and extensively used because it is a basic element
of laboratory management and in-house validation. It can be defined as a set of
measurements, repeated or not, run under repeatability condition. A series puts
together all the measurements performed under the same conditions, for example,
same method, same laboratory, same day, same operator, same calibration curve,
etc. It is the basic planning of laboratory work that consists of grouping samples
intended to be analyzed using the same analytical method. The main goal of the
management of samples in series is to reduce the fixed costs of the method, as
explained in Section 4.4.

When replicates are performed in a single laboratory and planned in different
series, we are under intermediate precision
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variation are introduced, such as days (D), operators (O), instrument settings
I, and reagents. There is a full spectrum of possible combinations and possible
intermediate precision standard deviations. Intermediate precision condition is
recommended (or required) for in-house validation and measurement uncertainty
(MU) estimation, as explained in Section 6.5.

Figure 3.1 illustrates an important idea that is developed in ISO 5725 standards.
Precision variance can be decomposed into several components, each characterizing
the effect of a factor of variation and a global replication condition. Finally, preci-
sion is quantified by different variances, which are combined. Depending on the
organization of measurements, the intermediate precision variance s2

IP may contain
a variable number of components.

Repeatability variance (or within-series)

s2
r

Between-series variance

s2
B

Intermediate precision variance

s2
IP = s2

r + s2
B (3.1)

Between-laboratories variance (or laboratory effect)

s2
L

Reproducibility variance

s2
R = s2

r + s2
L (3.2)

An example of an interlaboratory study is used to illustrate how precision
parameters can be computed and interpreted. It consists of a panel of 11 laborato-
ries that were requested to make three replicate measurements of Pb on a sample
of homogenized freeze-dried mussel tissue. The resulting dataset, called LEAD, is
also used in Section 7.4 to illustrate a possible procedure for evaluating MU from
the results of an interlaboratory analysis.

This dataset is described in Table 3.1. Strictly speaking, the definition of
the reproducibility condition is not exactly satisfied because participants used
their own analytical technique. Results for each participant are collected in
Table 3.2.

Table 3.1 LEAD – description of the dataset.

Title of the dataset LEAD

Reference [7]
Number of laboratories 11 participants (I = 11)
Replicates/laboratory (J = 3)
Measurand Lead concentration in mollusk tissue, in mg/kg
Methods ICP-MS spectrophotometry
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Table 3.2 LEAD – original dataset.

Replicates (mg/kg)

Laboratories 1 2 3 Average

Lab 01 2.08 2.00 2.01 2.03
Lab 02 2.00 1.93 1.89 1.94
Lab 03 2.10 2.44 1.96 2.17
Lab 04 2.45 2.34 2.49 2.43
Lab 05 1.95 1.89 1.93 1.92
Lab 06 1.85 1.91 1.89 1.88
Lab 07 2.01 2.00 2.06 2.02
Lab 08 2.00 2.09 1.98 2.02
Lab 09 2.11 2.03 2.14 2.09
Lab 10 2.02 1.98 1.97 1.99
Lab 11 2.02 2.00 2.04 2.02

Precision parameters calculated following ISO 5725-2 recommendations are:

Parameters Symbol Value

Number of laboratories I 11
Number of replicates J 3
Grand mean Z 2.047
Repeatability variance s2

r 0.00751
Interlaboratory variance s2

L 0.01945
Reproducibility variance s2

R 0.02696
Repeatability std. dev. sr 0.0867
Reproducibility std. dev. sR 0.1642

As stated before, the scope of ISO 5725 standards was to define common rules
for comparing results issued from several laboratories and solving eventual trade
disagreements. Therefore, the maximum acceptable difference between two mea-
surements from two different laboratories is a classic acceptance criterion. It is called
the Reproducibility Limit and conventionally denoted R. It is derived from the stan-
dard deviation of reproducibility and is equal to:

R = 2.83 × sR

The coefficient 2.83 is obtained by considering the 95% confidence interval of
the difference between two measurements having the same variance s2

R. The origin
of this coefficient is linked to the variance of the difference between two random



3.1 Outputs of Interlaboratory Studies 63

variables with the same variance. The limit of reproducibility is obtained using the
following computational rules:

Difference between lab A and lab B

D = |ZA − ZB|
Variance of the difference

s2
D = 2 × s2

R

Standard deviation of the difference

sD =
√

2 × sR

Limit of reproducibility: 95% confidence interval of the difference

2.0 × sD = 2.0 ×
√

2sR = 2.83 × sR

The coefficient 2.0 used in the last formula is called the “coverage factor.” This is
standardized and explained in Section 6.2. This gives, for the LEAD example:

R = 2.83 × 0.1642 ≃ 0.465 mg∕kg

A decision rule can be derived from this criterion as follows: if two lead mea-
surements performed in two different laboratories on a sample around 2 mg/kg dif-
fer by less than 0.465 mg/kg, they are considered equivalent; both laboratories give
the same result. Figure 3.2 illustrates the LEAD dataset. Measurements are spread
around the grand mean, and some results from laboratories 3 and 4 are not highly
consistent with the results from the others; several of them do not comply with
the limit of reproducibility. The question of abnormal results will be addressed in
Section 3.4.2 about outliers.
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Figure 3.2 LEAD – illustration of interlaboratory study. The grand mean is a dotted line,
small horizontal bars are laboratory means.
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3.2 Analysis of Variance (ANOVA)

3.2.1 Computation of Precision Parameters

The idea behind interlaboratory data interpretation is that each measurement value
is a combination of a common repeatability precision that characterizes the method
and the effect of the laboratory bias. In an interlaboratory study, the effect of the
laboratory factor is the influence of each participant on the determination of the
contents X of the material sent to participants. The corresponding model is:

Zij = X + Li + Eij

– Zij is the measurement value of replicate j with (1≤ j≤ J) for laboratory i with
(1≤ i≤ I).

– X is the “true value” of the study material (a discussion about this concept is
proposed in Section 4.1.2). It is constant.

– Li is the effect of the ith laboratory on the global result. It is not constant and may
take random values.

– Eij is the random residual error of each replicate.

Therefore, total precision, i.e. total variance of Zij must be decomposed into two
main components: the laboratory effects and the residual errors. The classic statisti-
cal tool used to decompose the variance is the analysis of variance (ANOVA). It was
first described in the 1920s by Fisher. Its principle is to distribute the total variance
of a dataset into several pieces, each corresponding to a source of variation. This
operation is possible if the dataset has a predefined structure.

For instance, the LEAD dataset structure is simple: each data is a replicate, hierar-
chically linked to one laboratory. The laboratory entity is called a factor. Many types
of ANOVA may exist, depending on the structure of the dataset and the number of
factors. According to the nomenclature adopted by statisticians, the ANOVA used for
interpreting interlaboratory study is a one-way random effects ANOVA as opposed to
a one-way fixed effects ANOVA.

The effects Li of the laboratory factor are said to be random because they are not
controlled by the organizer, who randomly selects a group of laboratories among
all existing ones [8, 9]. On the contrary, fixed factor levels are controlled, like tem-
perature, volume, or pH. Random and fixed factors can be mixed into more complex
designs that require specialized software to be processed. An example of a more com-
plex variance decomposition model is available in [10].

Any participating laboratory must perform replicates because the goal is to
measure variances. For each laboratory, it is essential that replicates be performed
under repeatability conditions, i.e. within the same series. Measurement replication
is no longer required if the laboratory takes part in proficiency testing. This is
another type of collaborative study devoted to estimating trueness but not precision.
The statistical modeling of proficiency testing is different, as will be explained in
Section 7.4.

In the context of in-house validation, the factor used to do the ANOVA is no longer
the laboratory but the series, which often corresponds to the date when the assays
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were completed, but also when instrument settings were revised, or new reagents
were prepared, etc. The mathematical model is the same, except that the effect for
series is denoted Bi instead of Li:

Zij = X + Bi + Eij

Though the most classic application of this modeling is described in ISO 5725 stan-
dards for an interlaboratory study, the same mathematical approach is fully valid
when applied to measures done in-house and under intermediate precision condi-
tions. In both cases, data are structured according to a single factor, giving the name
one-way ANOVA. As stated, the total variance is decomposed into two variances,
one corresponding to the factor effects and the other to the errors, respectively. With
more complex data structures, the decomposition must consider this complexity.

The starting point of the decomposition is quite simple, as illustrated by the basic
equation (3.3). The total mean Z is computed with the whole dataset and conven-
tionally named the “grand mean.”

Basic equation

Zij − Z = (Zij − Zi) + (Zi − Z) (3.3)

ith laboratory mean

Zi =
∑J

j=1 Zij

I
(3.4)

Grand mean

Z =
∑I

i=1 Zi

I
(3.5)

Squared basic equation

(Zij − Z)2 = [(Zij − Zi) + (Zi − Z)]2

Developed squared basic equation
∑

i

∑
j
(Zij − Z)2 =

∑
i

∑
j
(Zij − Zi)2 +

∑
i
(Zi − Z)22

∑
i

∑
j
(Zij − Zi) × (Zi − Z)

(3.6)

The basic equation is a simple set of additions and subtractions of different devi-
ations. It may be surprising to square this equation, but if we try to compute the
mean value of each difference, it is easy to see that all sums are equal to 0. More-
over, it can be demonstrated that the double cross-product of Eq. (3.6) is always
equal to 0.

2
∑

i

∑
j
(Zij − Zi) × (Zi − Z) = 0

The final Eq. (3.7) consists of three sums of squared deviations that can be related
to the elements of the model, namely the total sum of squares, the repeatability or
residual sum of squares, and the interlaboratory sum of squares.
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Simplification
∑

i

∑
j
(Zij − Z)2 =

∑
i

∑
j
(Zij − Zi)2 +

∑
i
(Zi − Z)2 (3.7)

Total sum of squares = Repeatability sum of squares +
Interlaboratory sum of squares

Simplified notation for in − house validation SSt = SSW + SSB
Simplified notation for interlaboratory study SSt = SSr + SSL

(3.8)

Equation (3.7) can be written in an equivalent abridged notation, which will be
used below. The following conventions are used:

– Subscript W means Within
– Subscript B means Between-series in the context of in-house validation, and L

means Between-laboratories in the context of interlaboratory.
– The notation SS for sum of squares will be very useful when developing an Excel

worksheet, as explained in Section 3.4.

Finally, SSW matches with repeatability. In the rest of the text, both notations are
applied, and the same algorithm is used to compute precision parameters, either
in the context of interlaboratory or in-house validation. ANOVA is nothing more
than the application of Pythagoras’s Theorem, where the square of the hypotenuse
of a right-angled triangle equals the sum of squares of the other two sides. In other
words, the total sum of squares is equal to the sum of squares due to repeatability
and the sum of squares due to factor effects.

Figure 3.3 proposes a geometric illustration of this decomposition. Finally, the
total sum of the squares of the deviations from the grand mean is decomposed into
a sum of squares of deviations due to the laboratory (or series) effect and a residual
sum of squares due to the repeatability error. More complete notation is required
to accomplish the full calculation. Let us note SSi the sum of the squares of the
deviations of laboratory i from its own mean Zi.

Sum of squares of laboratory i

SSi =
∑

j
(Zij − Zi)2 (3.9)

Within (series or laboratory) sum of squares or Repeatability sum of squares

SSr = SSW =
∑

i
SSi (3.10)

SSW = (Zij – Zi)
2

i j
Within

ΣΣ

Between

Total

SSt = (Zij – Z)2

i j
ΣΣ

SSB = (Zi – Z)2

i
Σ

Figure 3.3 Geometric
interpretation of the general
ANOVA.
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Total sum of squares

SSt =
∑

i

∑
j
(Zij − Z)2 (3.11)

SSt = SSW + SSB (3.12)

Between-series sum of squares or Between-laboratories

SSB = SSL = SSt − SSW (3.13)

The calculation by difference of the between-series (or -laboratories) sum of
squares, denoted SSB or SSL is the simplest way to avoid any further calculation. It
was proposed when modern computational means were not available. Therefore,
in the first publication of ISO 5725 standards in 1994, this was presented as the
standardized computation method.

There is a major downside when the effects of the factor (series or laboratories) are
not significantly different, i.e. when the interlaboratory or between-series variance
is close to 0. By calculation, the sum of squares and the corresponding variance may
be negative, which is nonsense since, by construction, a variance must always be
positive! As explained below, the recommendation is to set SSL to 0. But other algo-
rithms exist (Section 4.3.4).

Next, to calculate the variances, the SS are divided by the appropriate numbers
of degrees of freedom. The degrees of freedom rely on an assumption about the dis-
tribution of residual errors Eij. They are assumed to be all distributed according to
identical Normal laws 𝒩 (0, 𝜎2). This requirement is the same as for the residuals
for the ordinary least-squares (OLS) method described in Section 2.3.1. If there is a
way to circumvent this requirement by using weighted least-squares (WLS), there is
not such a possibility with ANOVA. For instance, in Figure 3.2, most variances are
identical and fulfill the basic assumption, except in Lab 03. Several statistical tests
are proposed to verify this hypothesis in ISO 5725 standard. In the framework of
in-house validation, we consider these tests to be useless.

The observed model in Figure 3.4a shows that the data from each labora-
tory are diversely scattered. This means they correspond to diverse distribution
laws, each with a specific mean Zi and standard deviation si. The size of the
dotted circle illustrates the magnitude of the dispersion. When moving to
the theoretical model developed by Fisher, it is assumed that all laboratories
have the same standard deviation, corresponding to the repeatability standard
deviation.

Figure 3.4b, illustrates the consequences of this assumption about variances in the
modeling of data. In some way, the standard deviation of repeatability represents an
average residual error standard deviation. At first glance, it may seem astonishing
to enforce a single standard deviation and no longer consider the observed stan-
dard deviation of each laboratory. Behind this assumption stands the idea that the
measuring procedure can be characterized by unique precision parameters, whoever
applies it.

The differences between each laboratory mean Zi and the reference value
X assigned to the test sample are called the laboratory effects and are visually
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(a)

Laboratory 1

or series 1

Laboratory 2

or series 2

Laboratory 3

or series 3

Z
1

Z
2

Z
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(b)

Laboratory 1

or series 1

L
1

or B
1

L
2

or B
2

L
3

or B
3

Laboratory 2

or series 2

Laboratory 3

or series 3

Z
1

Z
2

Z
3X XX

Figure 3.4 (a) ANOVA – observed model. (b) ANOVA – theoretical model.

illustrated by double horizontal arrows. They correspond to the random variables Li
(or Bi for the series) of the model. For one laboratory, it is essential to understand
that the laboratory effect is not constant and will also randomly vary from one
replicate to another.

Finally, the formulas applicable to obtain the precision variances and stan-
dard deviations are the following. They are presented in different equivalent
notations. The same formulas are valid when data are obtained under repro-
ducibility conditions or intermediate precision conditions, although trials are
not done in the same experimental framework, several laboratories, or a single
laboratory.

For clarity, the same notation I is used for different quantities (and names): for
interlaboratory studies, it is the number of laboratories, while for in-house studies,
it is the number of series.
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Within-series variance or Repeatability variance

⎧
⎪⎪⎨⎪⎪⎩

s2
r = s2

W = SSW
N−I

s2
r = SSW

I(J−1)

s2
r =

∑I
i=1

∑J
j=1 (Zij−Zi)2

I(J−1)

(3.14)

(3.15)

Between-series variance or Between-laboratories variance (equivalent notations)

⎧
⎪⎪⎨⎪⎪⎩

s2
L = s2

B =
(

SSB
I−1

−s2
r

)

J

s2
B = (s2

F−s2
r )

J

s2
B =

∑I
i=1 (Zi−Z)2

I−1
−s2

r

J

(3.16)

Reproducibility variance

s2
R = s2

r + s2
L (3.17)

Intermediate precision variance

s2
IP = s2

r + s2
B (3.18)

Reproducibility standard deviation

sR =
√

s2
r + s2

L (3.19)

Intermediate precision standard deviation

sIP =
√

s2
r + s2

B (3.20)

3.2.2 Additional Parameters

3.2.2.1 Relative Standard Deviation of Parameters
A long-established parameter used for precision notation, proposed in many
regulatory documents and analytical standards, consists in computing the relative
standard deviation (RSD). This parameter, sometimes called the “coefficient of
variation” or CV , is easily obtained as the ratio of a standard deviation and the
corresponding average value. For instance, for one laboratory, the RSD is

RSDi =
si

Zi

× 100

This is a dimensionless parameter, generally expressed as a percentage. When
estimating the precision, different RSD can be computed using the corresponding
standard deviation, e.g. repeatability or intermediate precision, and the grand mean.
According to our notations, the RSD of precision may be expressed at least in three
different forms.

RSD of repeatability

RSDr =
sr

Z
× 100
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RSD of intermediate precision

RSDIP =
sIP

Z
× 100

RSD of reproducibility

RSDR =
sR

Z
× 100

For instance, the RSD of repeatability and reproducibility obtained from the LEAD
dataset are:

RSDr = 100 ×
sr

Z
= 100 × 0.0867

2.047
= 4.23%

RSDR = 100 ×
sR

Z
= 100 × 0.1642

2.047
= 8.02%

All these notations are not equivalent but are considered convenient to
characterize the precision of a method because they can be used to compare
different methods, whatever the concentration range. Therefore, they are inten-
sively used to establish regulatory validation criteria, as explained in Section 7.5.1.
For example, an acceptance criterion for reproducibility is based on Horwitz’s
model, which was developed to decide whether an observed RSDR value is
acceptable or not.

It must be noted that computed RSD results from the ratio of two random variables,
giving a new parameter with high uncertainty. In the case of method validation
procedures, measurements are preferably done on special validation material, the
assigned or reference value of which is known. It is then possible that the RSD
denominator should be replaced by this value. The new ratios computed in this way
are no more RSD, in the classical definition. They are sometimes considered as esti-
mates of precision, regardless of the estimated trueness [11].

3.2.2.2 Variance of the Grand Mean
The method accuracy profile (MAP) is a method validation procedure presented in
Chapter 5. All calculations are based on data collected under intermediate precision
conditions and the former equations are adequate to compute the grand mean, stan-
dard deviations of repeatability, and intermediate precision. But it also requires an
estimate of the variance of the grand mean. This additional parameter is given by
Eq. (3.21). It depends on the variance ratio, noted A (see Eq. 3.24), which plays a
fundamental role in the MAP procedure, as explained further.

Variance of the grand mean

s2
Z
= s2

IP × 1
IJQ

(3.21)

Standard deviation of the grand mean

sZ = sIP

√
1

IJQ
(3.22)

Coefficient Q

Q = A + 1
J × A + 1

(3.23)
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Variance ratio

A =
s2

B

s2
r

(3.24)

In Section 7.2, a procedure is also proposed to derive the MU from data collected
under intermediate precision condition. This is recognized as a very promising
solution to obtain MU.

3.3 Balanced and Unbalanced Experimental Design

According to the ANOVA vocabulary, the experimental design is said to be balanced
when the number of replicates is the same at all levels of the factor (i.e. laborato-
ries or series). For instance, the LEAD experimental design is balanced because all
participants did the same number of replicates J = 3. The Figure 3.5 provides a con-
venient graphical representation of balanced and unbalanced experimental designs.
The main rectangle represents the whole dataset, and small rectangles represent
laboratories or measurement series. The height is proportional to the number of lab-
oratories I and the width to the maximum number of replicates J. If the design is
balanced, all gray rectangles are the same length. If the design is unbalanced, the
length varies with the number of replicates ni.

The statistical data processing described in Section 3.2 is only applicable to a
balanced design. For unbalanced design, when all levels do not contain the same
number of replicates, it is necessary to introduce ni the number of replicates of
laboratory/series i. The indexing of replicates is as follows: for the balanced design,
it is 1≤ j≤ J, and for the unbalanced design, it is 1≤ j≤ni. Previous equations are
consequently modified and become:

Replicates (1 to J)

A B

Replicates (1 to ni)

L
a

b
o

ra
to

ri
e

s
 (

1
 t

o
 I)

L
a

b
o

ra
to

ri
e

s
 (

1
 t

o
 I)

ZijZij

Figure 3.5 Graphical representation of the experimental design. (a) Balanced and (b)
unbalanced.
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Total number of measurements

N =
∑

i
ni (3.25)

Corrected number of measurements

N′ = N −

∑
i

n2
i

N
(3.26)

General ANOVA equation
∑

i

∑
j
(Zij − Z)2 =

∑
i

∑
j
(Zij − Zi)2 +

∑
i

ni(Zi − Z)2 (3.27)

SSt = SSW + SSB

Repeatability variance

s2
r =

SSW

N − 1
(3.28)

Between-series variance or interlaboratory variance

s2
B =

(I − 1)
(

SSB
i−1

− s2
r

)

N′ (3.29)

These modifications are not of utmost importance, but interesting for software
development. Obviously, when RSD are computed, they are modified in the same
way as the standard deviation and grand mean are. Finally, the estimation of the
precision parameters is more sophisticated than sometimes presented. Quite often,
analysts claim they have obtained “a repeatability” by simply computing the average
value Z and standard deviation s of 10 or 20 replicates performed on the same sample
on the same day.

Although the measures are made under repeatability condition, this is a misun-
derstanding of the concept of repeatability as defined in the ISO 5725 standard.
When replicates are simply performed on the same day, the total standard deviation
may erroneously overestimate or underestimate the method’s precision. When the
same experiment is repeated, it is frequent to obtain a different value. Therefore, it
is compulsory to distribute replicates over several days under intermediate precision
conditions, and extract the components of the total variance by applying the ANOVA
algorithm to obtain a pertinent estimate of repeatability. Section 3.4 explains how to
do this easily with classical worksheet software.

3.4 Software Implementation

3.4.1 ANOVA Classic Algorithm

Some care must be taken because most statistical software includes an ANOVA
procedure. For example, the Excel “Analysis Toolpak” is an add-in containing the
option “ANOVA: Single Factor.” This can be misleading because there are several
ways to perform an ANOVA. In the Excel toolbox, it is assumed that the data is
structured with a fixed effect factor.
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Whereas for measurement method precision assessment, the model is assumed
to be a random effect factor, as explained above. The algorithm for fixed effects
is different and not adapted to the precision parameter estimation. Fixed effect
ANOVA is devoted to making multiple comparisons of means as the factor values
are controlled by the experimenter, such as different temperatures. While random
factor ANOVA is used to extract the variance components of the dataset. The results
obtained with the fixed effect model cannot be used to estimate the between-series
or between-laboratory variance, and therefore the precision parameters. But it can
be applied to verify if all laboratory means are statistically equal.

If there is a single mean that does not conform with the others, it is said to be
an outlier, and the laboratory must be discarded. This is not the procedure imple-
mented in the ISO 5725 standard, and a short presentation of outlier and straggler
detection standardized methods is presented at the end of this chapter. Therefore, the
Excel statistical add-in cannot be used for computing precision, and it is necessary
to develop a specific tool to obtain useful results.

An example using the LEAD dataset is given in the Resource E worksheet. It is
designed to manage 11 laboratories or series and 3 replicates/laboratories. It must
be adapted to diverse situations where the numbers of participants (or series) and
of replicates are larger. Some explanations may help in the implementation of this
worksheet. As was the case for Resource A, the formulas are visible in column C and
column B contains the expected result.

Raw data is input in area B4:E14, one line par laboratory. The laboratory sum
of squares is computed in column E with header “SSi.” The built-in statistical
function DEVSQ allows one to directly obtain any sum of squared deviations.
Fortunately, if cells are empty, they are considered absent and not put to 0. This
means the same worksheet can be used when the number of series or replicates is
smaller.

Due to the lack of space, corresponding formulas are not visible, but, for instance,
in cell F4, this formula was input =DEVSQ(B4:D4), and the result was 0.003800.
All SSi are summed in cell B19 to give the SSW . This is the direct application of the
Eqs. (3.9) and (3.10) for the within-laboratories (or series) sum of squares. The total
sum of squares SSt is obtained in cell B20 by using the same function but applied to
the whole data area =DEVSQ(B4:D14).

In cell B21, the calculation of SSB by difference may pose a problem because the
resulting value can be negative, which sometimes happens when all the means are
almost equivalent. As explained, the ISO 5725 standard recommends forcing the
value of s2

L (or s2
B) to 0, otherwise, an error occurs when calculating the square root

(a negative value having no real square root). The decision rule is simple:

If s2
L < 0 → s2

L = 0

It is coded in two steps: first, compute s2
L in cell B21 by applying formula

(3.13); then check if this value is strictly smaller than 0 with the Excel formula
=IF(B23<0;0;B23). As explained later in this chapter, specialized statistical
software offers another algorithm called restricted maximum likelihood (REML),
which avoids this problem. As this worksheet is devoted to work on a balanced
design, it is necessary to verify if this condition is satisfied.
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The Excel built-in function COUNT, which returns the number of not empty
cells, is used to make the control. The total number of non-null data is computed in
cell B17 with =COUNT(B4:D14). The number of laboratories or series is reported
in cell B16 with =COUNT(B4:B14) and the number of replicates in cell F4 with
=COUNT(B4:E4). The experimental design must be balanced, and the verification
is done in cell B18 with the formula =IF(F4*B16<>B17;"Error";F4). This
is a rather simplistic method of checking, as it may fail if the data layout is not
correctly set up, but it is just to show what needs to be done to secure the template.

Resource E Precision parameters for a balanced design (Excel).
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38
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Resource E: Precision parameters for a balanced design
Lead mg/kg in mussel tissue

Laboratories Replicate. 1 Replicate. 2 Replicate. 3 ni SSi

Lab 01 2.08 2.00 2.01 3 0.00380

Lab 02 2.00 1.93 1.89 3 0.00620

Lab 03 2.10 2.44 1.96 3 0.12187

Lab 04 2.45 2.34 2.49 3 0.01207

Lab 05 1.95 1.89 1.93 3 0.00187

Lab 06 1.85 1.91 1.89 3 0.00187

Lab 07 2.01 2.00 2.06 3 0.00207

Lab 08 2.00 2.09 1.98 3 0.00687

Lab 09 2.11 2.03 2.14 3 0.00647

Lab 10 2.02 1.98 1.97 3 0.00140

Lab 11 2.02 2.00 2.04 3 0.00080

Main parameters
Number of laboratories (I) 11 =COUNT(B4:B14)

Number of measurements (IJ) 33 =COUNT(B4:D14)

Number of replicates (J) 3 =IF(E4*B16<>B17;"Error";E4)

SSW 0.16527 =SUM(F4:F14)

SSt 0.82385 =DEVSQ(B4:D14)

SSB 0.65859 =B20-B19

Repeatability variance (s2r) 0.00751 =B19/(B17-B16)

Temporary between lab variance 0.01945 =((B21/(B16-1))-B22)/B18

Between laboratory variance (s2L) 0.01945 =IF(B23<0;0;B23)

Reproducibility variance (s2R) 0.02696 =B22+B24

Precision
Grand mean 2.047 =AVERAGE(B4:D14)

Repeatability std. dev. 0.0867 =SQRT(B22)

Between laboratory std. dev. 0.1395 =SQRT(B24)

Reproducibility std. dev. 0.1642 =SQRT(B25)

Limit of repeatability 0.2453 =2.83*B28

Limit of reproducibility 0.4647 =2.83*B30

Relative Std. Dev. Reproducibility (RSDR) 8.02% =B30/B27

Grand mean variance (s2Z)
Variance ratio A 2.59 =B24/B22

Coefficient Q 0.409 =(B35+1)/(B18*B35+1)

Grand mean variance (s2Z) 0.0073 =B25*SQRT(1/(B17*B36))

Grand mean std. dev. (sZ) 0.0856 =SQRT(B37)

Finally, it is advisable to protect this worksheet against any unintentional
changes. It should be remembered that the number of significant figures in a cell
depends on its display format and not on the rounding of the data. If data rounding
is necessary, use the ROUND function but always at the end of the computation.
The case of an unbalanced dataset is addressed in the Section 3.4.2, and a modified
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worksheet is presented. But it does not offer much difficulty as the application of
Eqs. (3.26)–(3.29) requires no other built-in function.

3.4.2 Detect Outliers and Stragglers

The initial application of the precision model developed in ISO 5725 standards
was for commercial purposes. At present, many regulatory bodies are using it as
a prerequisite to accept any analytical method for official control. For example,
when a new ISO standard operating procedure is developed, it is mandatory to
conduct an interlaboratory study and publish the precision values obtained in an
informative annex. As explained, the other application of this standard algorithm is
the computation of intermediate precision parameters. It is less promoted, although
it is fully presented in standard ISO 5725 and especially useful for Chapters 5 and 6.

The official exploitation of reproducibility has many practical consequences.
Unfortunately, exceptionally distant data values may be present and alter the results,
and a large part of the ISO standards is devoted to the detection of non-normal
values, called outliers and stragglers. This issue is less important when the computa-
tion is applied to intermediate precision. When considering Figure 3.2 , three kinds
of outliers may be suspected, which are displayed in Figure 3.6. A full collection of
statistical tests is proposed to verify several types of rejection hypotheses. They are
applied at two values of 𝛼 error risk:

– If 𝛼 > 5% (or 𝛼 > 2.5% in some guidelines) the data is a straggler.
– If 1% > 𝛼 > 5% (or 0.5% > 𝛼 > 2.5%) it is an outlier.

The decision rule varies depending on the 𝛼-value. Given the cost of recruiting a
laboratory and the fact that interlaboratory study parameters are only publishable
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Figure 3.6 Diverse types of outliers in an interlaboratory study.
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when at least eight laboratories obtain acceptable results, it was interesting to con-
sider the possible rejection of one outlying replicate to keep a laboratory. Statistical
literature is very abundant on the question of outlier significance testing. Several
dozen authors have described tests for rejecting outliers from a dataset.

A limited set of rejection tests was selected by the group of experts in charge of
preparing the ISO 5725 standard. Because many outlier rejection tests exist but may
not always identify the same data as an outlier, it seemed important to the experts to
clearly put a well-identified list in the standard. The complete operating procedure
for each particular test is not presented here but is described in the standard for the
interested reader. Anyway, the specific task of data polishing is left to the statistician
in charge of the study. Apart from Dixon’s test, when a laboratory is identified as an
outlier, all its data are usually eliminated. The diverse outliers are listed here with
their corresponding official tests.

Hypothesis Overestimated Official test

One outlying variance Repeatability Cochran’s
One or two outlying averages Reproducibility Grubbs’ single or double
One outlying replicate in a lab Lab variance Dixon’s

Because outlier rejection is an overly sensitive subject for analysts, many criticisms
were issued once the proposed tests were published. Some of these objections are
relevant. For example, with Dixon’s test, it is possible to declare that one data out
of four is an outlier and the distribution is non-Gaussian. This consequence seems
strange when it may take more than 1000 measurements to prove that a variable is
distributed according to a normal distribution. Depending on the sequence of appli-
cation of the tests, it is not always the same laboratories that are eliminated, resulting
in different estimates of precision.

To reduce this risk of inconsistency, it was also decided to define a standardized
testing sequence for eliminating data. The best known is the ISO protocol that
defines, on the one hand, a sequence of application of the tests and, on the other
hand, an acceptance criterion for the whole study. The criterion consists of calcu-
lating the ratio of excluded laboratories to the total number of participants. When
more than 2/9 laboratories have been eliminated after the following sequence of
tests, the method is not validated, i.e. it is not publishable as a standard or used for
commercial purposes. The ISO protocol is as follows:

(a) Cochran’s test at 5% risk.
(b) Grubbs’ test to cell replicates having a suspect variance; then eliminate

outliers.
(c) Go back to (a) if only one replicate is eliminated, otherwise, go to (d).
(d) Cochran’s test at 1% risk to all variances and eliminate cells with outliers.
(e) Go back to (a) if only one cell is eliminated, otherwise, go to (f).
(f) Apply simple Grubbs’ test at 1% risk to all remaining cell means.
(g) If a mean is eliminated, return to (f), otherwise, go to (h).
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(h) Apply double Grubbs test at 1% risk to all remaining cell means.
(i) Calculate the proportion of eliminated laboratories and verify that it <2/9.

The alternative protocol promoted by the International Union of Pure and
Applied Chemistry (IUPAC) is similar to the ISO protocol but does not include
the Grubbs’ test for the elimination of outliers in a laboratory. This sequence of
rejection tests is extraordinarily complex and, even when automated, requires
manual decision-making. We have presented in some detail this very touchy topic of
outliers because it is a repeated concern for analysts. It shows that even a consensus
solution among expert statisticians does not result in a very satisfactory answer.
The conclusion can be drawn that much attention must be paid to outlier rejection
and statistical testing must be applied cautiously.

To illustrate the consequence of the rejection of non-normal data, outliers were
eliminated from the LEAD dataset: the complete subset of laboratory 04 and one
extreme measure of laboratory 03, as illustrated in Figure 3.7. When doing this
operation, the experimental design is no longer balanced. Modification of the
initial Resource E worksheet is necessary to manage the new dataset. Modified
formulas are presented in Section 3.3 and coded in the new worksheet named
Resource F, at the end of the chapter. It is mainly the formula used to compute the
between-laboratory variance, which is modified in cell B25 as reported in Eq. (3.29).

The consequence of the outlier elimination is striking. The reproducibility stan-
dard deviation sR is divided by 30, coming from 0.1642 down to 0.00540 mg/kg, as
well as the limit of reproducibility R. Now, the largest acceptable difference between
the two laboratories is no longer 0.47 mg/kg but only 0.07 mg/kg. It is easy to
understand the economic consequences on international trade when the analytical
method is used for the official control of Pb in foods. The control laboratories must
be more efficient, and consumer health must be better preserved.
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Figure 3.7 LEAD – interlaboratory study after outlier deletion.
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Resource F Precision parameters for an unbalanced design (Excel).
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Resource F: Precision parameters for an unbalanced design
Lead mg/kg in mussel tissue

Laboratories Rep. 1 Rep. 2 Rep. 3 SSi ni2

Lab 01 2.08 2.00 2.01 0.003800 9

Lab 02 2.00 1.93 1.89 0.006200 9

Lab 03 2.10 1.96 0.009800 4

Lab 04

Lab 05 1.95 1.89 1.93 0.001867 9

Lab 06 1.85 1.91 1.89 0.001867 9

Lab 07 2.01 2.00 2.06 0.002067 9

Lab 08 2.00 2.09 1.98 0.006867 9

Lab 09 2.11 2.03 2.14 0.006467 9

Lab 10 2.02 1.98 1.97 0.001400 9

Lab 11 2.02 2.00 2.04 0.000800 9

Main parameters
Number of laboratories (I) 10 =COUNT(B4:B14)

Number of measurements (IJ) 29 =COUNT(B4:D14)

Number of replicates (J) 2.9 =B17/B16

Sum of squared numbers 85 =SUM(F4:F14)

Correct measurements number 26.1 =B17-(B19 / B17)

SSW 0.04113 =SUM(E4:E14)

SSt 0.14492 =DEVSQ(B4:D14)

SSB 0.10378 =B22-B21

Repeatability variance (s2r) 0.00216 =B21/(B17-B16)

Temporary between lab variance 0.00323 =(B16-1)*((B23/(B16-1))-B24)/B20

Between laboratory variance (s2L) 0.0032337 =IF(B25<0;0;B25)

Reproducibility variance (s2R) 0.00540 =B24+B26

Precision
Grand mean 1.994 =AVERAGE(B4:D14)

Repeatability std. dev. 0.0465 =SQRT(B24)

Interlaboratory std. dev. 0.0569 =SQRT(B26)

Reproducibility std. dev. 0.0735 =SQRT(B27)

Relative std. dev. Reproducibility (RSDR) 3.68% =B32/B29

Grand mean variance (s2Z)
Variance ratio A 1.49 =B26/B24

Coefficient Q 0.468 =(B35+1)/(B18*B35+1)

Grand mean variance (s2Z) 0.0015 =B27*SQRT(1/(B17*B36))

Grand mean std. dev. (sZ) 0.0383 =SQRT(B37)

3.4.2.1 Other Algorithms
As shortly explained, it is common to encounter several problems when eliminating
outliers. For example, if an obvious outlier (for the analyst) is not detected, too
many laboratories are excluded, the study cannot be published, the precision is
underestimated, etc. Finally, the estimates of repeatability and reproducibility
are not satisfactory. For all these reasons, the ISO 5725 standard includes a set of
robust estimators that have the advantage of being weakly affected by the presence
of outlying data. The median is the typical example of a robust parameter for
statisticians. In this context, the meaning of the word robustness is slightly different
from that used in evaluating the analytical method’s robustness. Finally, when
robust estimators are used, it is pointless to eliminate suspect data.

The principle of the robust algorithms proposed by ISO is to iteratively transform
the data by using robust location and dispersion estimators. Thus, it is possible
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to calculate robust versions of the precision parameters, namely Z, sr , and sR. The
application of these algorithms to interlaboratory studies is not developed here. It is
mainly of interest to professional interlaboratory study organizers. For the details,
it is possible to refer to Part 5 of the ISO 5725 standard or to the brief published by
the Analytical Methods Committee of the Royal Society of Chemistry [6, 12, 13].

However, an example of a robust parameter applied to proficiency testing schemes
is described in Section 4.3.4 and Resource G; it is officially recognized as Algorithm
A. It gives an insight into the principle of this more recent statistical method. This
evolution is pointed out here because it marked the introduction of new statisti-
cal methods based on iterative calculation in standards. Experience shows that it
is interesting to compare the precision values obtained by the classic calculation
method, before and after eliminating outliers, with those of the robust algorithm.
In general, obtained values are in-between, which probably better reflects reality.
However, the standardized robust methods are not fully satisfactory because they
opaquely replace problematic data with other values closer to the rest of the dataset
in such a manner that data traceability is lost.
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4

Trueness

4.1 Trueness and True Value

The Bureau International des Poids et Mesures (BIPM) oversees developing and
promoting metrology, which is “the set of techniques and know-how that allow
measurements to be made and to have sufficient confidence in their results.” It is
therefore one of the keys to assessing trueness. Analytical chemists often stay away
from metrology, which represents a considerable challenge in terms of science, eco-
nomics, and societal demands. This can be explained by the fact that analyst con-
cerns were only recently addressed by metrologists. Several tools developed by the
BIPM to assess trueness in analytical sciences are presented in Section 4.2 but for
many decades, the question of measuring the “amount-of-matter” was neglected
by the BIPM. Recently, a strong effort has been made, and many solutions are now
proposed.

While there is a continuum of parameters for expressing precision, ranging from
repeatability to reproducibility through intermediate precision standard deviations,
the estimation of trueness is much simpler, in theory. Whatever the parameter used,
they all represent the same idea:

“the closeness of agreement between the average of an infinite number of
replicate measures of a quantity values and a reference value.”

Although the International Vocabulary of Metrology (VIM) is very explicit, the
term trueness is sometimes confounded with accuracy. Accuracy is the “closeness of
agreement between a measured value and a true value of a measurand.” According
to the VIM philosophy, accuracy is a concept and is not quantifiable, while trueness
is more practical and measurable. This difference is better explained in Section 5.1.1
about the vocabulary used in method validation.

The challenge in assessing trueness is to obtain the adequate reference value or
true value, which is denoted X throughout this book. For some analysts, this is such
a tricky issue that they may think it is impossible, for instance, when the analyte is
defined by the method itself, as it is in food microbiology.

Quantification, Validation and Uncertainty in Analytical Sciences: An Analyst’s Companion,
First Edition. Max Feinberg and Serge Rudaz.
© 2024 WILEY-VCH GmbH. Published 2024 by WILEY-VCH



82 4 Trueness

4.1.1 Bias and Recovery Yield

Trueness raises the question of the definition of the analyte. It was partly discussed
in Chapter 1 about quantification. To introduce trueness parameters, let us keep the
notations already used, namely:

– X the target (or reference or assigned) value of a sample.
– Z the average of replicates Zi obtained for this sample.

The three parameters listed here are common to express trueness, They do not
really measure the trueness but rather the lack trueness. This is why they are called
as bias, except the recovery yield
Bias

𝛿 = Z − X (4.1)

Relative bias

𝛿% =
(

Z − X
X

)
× 100 (4.2)

Recovery yield

RY% = Z
X

× 100 = 100 − 𝛿% (4.3)

They are roughly equivalent. If the value of the bias or relative bias is negative, it
means that the method underestimates the target concentration, but if it is positive,
the method overestimates. For the recovery rate, a comparison must be made with
respect to 100%. For analysts who are pleased to utilize percentages, the recovery rate
is the most meaningful. The relative bias is the complement of the recovery yield and
can be interpreted as a correction factor that measures the proportion of what was
measured compared to what was expected to be measured.

Most regulatory documents also propose percentages as acceptance criteria.
Similarly, precision can be expressed as a percentage by estimating relative standard
deviations, as explained in Section 3.2.1; they define trueness by means of the
recovery yield. An example is given in Section 7.5.1.

Below, the worksheet excerpt illustrates these parameters and data in cells B5 and
B6, showing that in the worksheet it is not useful to multiply results by 100 to obtain
a percentage. The editing format “Percent” directly gives the expected value and adds
the “%” symbol. This mode of expression is preferable because the parameter may
be used later, for instance, to correct a measurement value. It is easier as it is not
necessary to multiply or divide the data by 100.

1

2
3
4
5
6

A B C

Trueness
Reference value 14
Measurement value 13.6
Absolute bias –0.4 =B3 - B2
Relative bias –2.86% =(B3 - B2)/B2
Recovery yield 97.14% =B3/B2

For some methods it is conventional to transform measurements into decimal log-
arithms, for instance, the microbiological counting methods. In this case, absolute
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bias is equivalent to the recovery yield since the logarithm of a ratio is equal to the
difference of the logarithms.
Recovery yield in log

log
(

Z
X

)
= log(Z) − log(X) (4.4)

4.1.2 Evolution of the Concept of True Value

In the 1980s, BIPM decided to address the question of measurement error and pro-
ceeded from what is called the traditional “error approach” to the new uncertainty
approach, and to reconsider some extensively used concepts.

The rationale behind the error approach was to determine an estimate of the true
value that was as close as possible to the theoretical true value. This was based on the
previous definition of accuracy. In this context, the true value was considered unique
and, in practice, unknowable. It was assumed that the deviation from the true value
was a combination of different sources of error. To differentiate the sources of error,
the concepts of fixed error and random systematic error were introduced as always
distinguishable and to be treated differently. For example, systematic error may be
due to the use of poorly graduated glassware, while random error is caused by a
drifting measuring device that does not always give the same value.

In fact, it is often recognized a systematic error can be claimed as fixed when its
variations in amplitude are small when compared to the measurement value, but
it becomes random when they are large enough to introduce measurable fluctua-
tions. It is traditional to say that the categories of systematic error vary according
to the principles of the method. Controlling them is part of the analyst’s expertise:
the development of the method must make it possible to highlight and correct them.
Thus, a bias can have various origins, such as:

– Evolution of the sample over time.
– Degradation of calibration solutions.
– Modifications of equipment settings.
– Miscalculations.
– Human errors.

Figure 4.1 illustrates a source of systematic error frequently encountered in chro-
matography. It could be related to the integration method used to calculate the areas
of poorly resolved peaks. In the graph, two peaks are represented, centered on reten-
tion times of 2.0 and 3.1 min, respectively, with a drift of the baseline. The peak of
interest is the second, smaller peak.

The method used is the drop-line algorithm, symbolized by the dashed lines. It
consists in locating the beginning and end of each peak, considering the drift, and
then assigning to each one a part of the common triangular overlapping area, by
drawing the perpendicular to the point of separation of the peaks. In the graph on
the left, since the surfaces of the two peaks are quite close to each other, the error
remains negligible. However, it becomes significant when the area of the peak of
interest decreases, as in the graph on the right.
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Figure 4.1 Example of systematic error generated by the integration mode of poorly
resolved chromatographic peaks.

Furthermore, if the major peak is very asymmetric, the situation becomes worse.
The uncertainty approach is to recognize that, owing to the inherently incomplete
amount of detail in the definition of a quantity:

“there is not a single true value but rather a set of true values consistent with
the definition.”

However, the complete set of values is, in principle and in practice, unknowable.
However, it is possible to estimate an interval containing a given proportion of these
true values. The change in the paradigm of the single, unique true value to the
bounds of an interval is an especially important fact for experimenters. More details
on the consequences are described in Sections 4.3.2 and 6.3.

4.1.3 Specificity and Sources of Bias

In the context of analytical sciences, specificity is “the capability of a measuring
system or operating procedure to measure the concentration of a given analyte.”
The main problem when addressing specificity is the potential presence of inter-
fering compounds that alter the analyte’s detection integrity. Analytical literature
is extensively dedicated to the topic of the various chemical, physical, or biological
mechanisms that are the source of interference and specific to each method. For
example, in atomic absorption spectrophotometry, spectral interferences can be due
to the lack of resolution of monochromators, or the broadening of the absorption
bands caused by the earth’s magnetic field and matrix interferences to various ele-
ments absorbing at the same wavelength as the searched analyte.

Figure 4.2 is a classic representation of bias, which is made possible when
considering how the inverse-predicted concentration is computed (Section
2.2). First, let us define the first bisecting line (dotted line) as the trueness
line where measurements are not biased, i.e. the inverse-predicted concen-
tration is exactly equal to the known reference concentration. Then consider
a collection of materials whose reference values are known. Once they are
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Figure 4.2 Geometric
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analyzed, the inverse-predicted concentrations are reported on the graph
for each material. For instance, such a diagram can be obtained with a sin-
gle material receiving different spikes as explained in Chapter 1 about the
standard addition method (SAM). Figure 4.2 illustrates three hypothetical
situations:

– Measurement values are systematically upwards shifted in concentration, and the
recovery line is shifted by an additive bias (it can be negative, but it still is an
additive bias).

– Measurement values are proportionally diverging from the concentration, and the
slope of recovery line is modified by a multiplicative bias.

– Both additive and multiplicative biases are combined.

Keeping the same notation, i.e. X the reference value and Z the inverse predicted
concentration, these three hypothetical situations can be modeled as follows:

Trueness line (no interferences) Z = X
Multiplicative bias Z = b1 X
Additive bias Z = b0 +X
Combined bias Z = b0 + b1 X

Unfortunately, it is impossible to experimentally isolate each type of bias, as they
are usually combined. But if we assume that the model connecting X and Z is a
straight line, the recovery line can be used.

– To check if the trueness is linear or varies in a more complex way with the con-
centration.

– To estimate the coefficients of the model Z = b0 + b1 X and define an eventual
correction factor. Examples of correction factors are presented in Sections 8.4.2
and 10.2, with consequences for measurement uncertainty (MU).

When it is not possible to globally evaluate the matrix interferences, the SAM rep-
resents a convenient technique to highlight and monitor the interferences; possible
procedures are presented in Chapter 1.
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Because trueness is defined by reference to a true value, it will be assumed in the
rest of this chapter that there is one true value.

4.2 Assessment of Trueness

4.2.1 Primary Operating Procedures

To bring some enlightenment, it is interesting to consider how official metrology
bodies and BIPM establish reference values. The BIPM covers nine metrological
areas, among them chemistry and biology, i.e. the analytical sciences in general.
The other areas are acoustics, ultrasound and vibration, electricity and magnetism,
length, mass and related quantities, photometry and radiometry, ionizing radiation,
time and frequency, and thermometry. There are related specialized consultative
committees that elaborate the way in which the units and the related standards are
defined. For the analytical sciences, this is the Consultative Committee for Amount
of Substance, or Consultative Committee for the Quantity of Matter (CCQM), one of
the latest committees to be created since it was only established in 1993 while other
committees already existed.

The difficulty of defining international standards in this area can explain its post-
poned creation. The task was easier for other committees, while concrete standards,
such as the meter or the kilogram, have existed for a long time. To overcome these
shortcomings, during the first CCQM meeting in 1993, when chemistry was rec-
ognized as a separate field of metrology, it was decided to introduce the primary
methods of measurement, defined as a “reference measurement procedure used to
obtain a measurement result without relation to a measurement standard for a quan-
tity of the same kind.”

In other words, a primary method of measurement allows a quantity to be mea-
sured in terms of a particular International System SI unit without reference to a
standard or measure already expressed in that unit. In principle, it is completely
independent of the measurements of the same quantity but calls upon measure-
ments expressed in other units of the SI.

Unfortunately, only a few methods of analysis meet that definition. It is mainly
coulometry, gravimetry, titrimetric, freezing point depression, and isotope dilution
with mass spectrometry (ID-MS). Considering that chromatographic equipment rep-
resents more than 80% of the world’s instrumental fleet, there is still a long way to
go before routine methods are linked to primary methods. As examples of primary
standards, VIM cites:

– A primary standard prepared by dissolving a known quantity of a chemical sub-
stance in a known volume of solution; typically, a calibration solution.

– A standard for isotope molar ratio measurements, prepared by mixing known
amounts of specified isotopes, as a reference material (RM) used for isotopic
dilution.

Recently, numerous studies have been launched to validate other methods as
primary.
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4.2.2 Reference Materials

The difficulty of tracing chemical measurements to SI units, linked to the absence
of a unique international material standard for the mole, has been highlighted by
CCQM. To overcome this problem, it was decided to develop different RMs. The
number of RMs is theoretically infinite, because they are supposed to be available
for any molecule in any matrix at various concentrations!

In recent decades, however, there has been a huge increase in their number and
interest. Therefore, the increasing number of RMs in analytical chemistry would
make an exhaustive list of them obsolete at the time of writing. Nevertheless, sev-
eral types can be distinguished, depending on their intended use. The strengths and
weaknesses of each are summarized in the following list.

4.2.2.1 Certified Reference Materials (CRM)
The reference value is established by a specialized collaborative study involving
metrology reference laboratories. The sources of error are carefully controlled and
reduced, but despite this, the MU can still be remarkably high compared to the spec-
ifications sought. As they are limited in number, their most typical disadvantages are
that the matrix used may differ from the one in the scope of the method; they are not
available at the desired concentration level; and their price is high and prohibits any
daily use.

4.2.2.2 External Reference Materials (ERM)
They have recently appeared on the market. The multiplication of proficiency tests
makes it possible to propose the use of surplus samples for trueness verification or
calibration purposes. Their reference value and the corresponding uncertainty are
obtained at the end of the test, and their traceability can, depending on the case,
be traced back to certified reference materials (CRMs). They have the advantage of
being more readily available, less expensive than CRMs, and better adapted to the
various needs of laboratories.

4.2.2.3 Internal Reference Materials (IRM)
The user determines the reference value. This may be done in collaboration with
other laboratories or by combining methods. The matrix used is well suited to the
laboratory’s field of application, and it is generally cheaper. The sources of error can
still be important and their traceability to SI can be insufficient. On the other hand,
they are perfectly adapted to control charts.

4.2.2.4 Verification Standard Solutions
They are prepared independently of the calibration solutions. They do not allow
the detection of matrix effects. They are independent of the analytical method and
inexpensive. They can also be certified either by a metrology organization or by the
reagent supplier.
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4.2.2.5 Standard Addition Method (SAM) and Surrogate Samples
Both of these methods are described in more detail in Chapter 1 and come with the
different available protocols. Surrogate samples can only be considered correct sub-
stitutes for internal validation when the nature of the matrix is perfectly known, as
in the case of excipients for drugs. They are cheap, but their traceability is often poor.

ISO 17025 requires for an accredited laboratory that, wherever possible, the
traceability of RMs to SI units or CRMs be established. Internal reference mate-
rials (IRMs) shall be verified to the extent technically and economically feasible.
Although CRMs are the most elaborate form of RM, there are several problems
associated with their use.

A few years ago, RMs were a rare commodity. Now, many organizations produce
or distribute RMs. Around 1995, the Code of Reference Materials or COMAR
database was developed by the French National Bureau of Metrology (BNM);
today the German BAM, or Bundesanstalt für Materialforschung und -prüfung is
managing https://www.comar.bam.de. It contains tens of thousands of RM refer-
ences, manufactured in 27 countries by over 200 producers. The European research
program called Virtual Institute for Reference Materials (VIRM) also developed a
database of approximately 20,000 CRMs. For a long time, the certification procedure
for a CRM was conducted in a non-transparent manner.

The allegation “certified” was therefore used somewhat abusively and had not
much to do with the third-party certification process defined in the ISO 9000 stan-
dards. However, there is no single approach to setting a certified reference value.
Often, one or more collaborative studies are performed, but by crossing analytical
techniques and selecting a few expert laboratories, to identify major biases. How-
ever, some organizations believe that it is preferable to entrust this task to a single
highly specialized laboratory that will perform the certification alone.

Of course, the economic aspect is mostly considered when making the choice.
Sometimes the recommendations of the ISO 5725 or ISO 13528 standards are far
from being followed, even if the statistical exploitation is in agreement with them.
Great attention must be paid to the preparation of a CRM, the control of its homo-
geneity (Section 4.3.5) and its shelf-life. In the case of perishable products, dried or
freeze-dried materials are used. For powdered materials, the packaging is made with
grain-to-grain filling systems. Sometimes modified-atmosphere packaging is used to
stabilize the analytes. An RM must have the following qualities:

– Stability over time.
– Homogeneity of the analyte to be determined.
– Concentration in accordance with the usual applications.
– Availability in sufficient quantity.
– Contain several analytes of interest.

These qualities are particularly critical in the case of biological materials, such as
foods or biological fluids. Biological matrices are essentially perishable, and their
shelf-life is strictly related to their water content. Unstable analytes such as vitamin
D in a plant, since it is photosensitive, has not the same shelf life as traces of cadmium
in an alloy. CRMs are intended for use by a single laboratory to conduct an in-house

https://www.comar.bam.de
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validation study to verify that their results agree with the certified reference value.
Unfortunately, compared to the wide variety of matrices processed by analysts, only
a limited number of CRMs are available.

Paradoxically, there is no real recommendation on how to compare the result
obtained by the laboratory on a CRM with its certified value. As all these materials
are now distributed with the MU on their reference value, a simple method could
consist in checking if the result obtained is contained in the coverage interval,
including the laboratory’s own MU. Section 8.2 on sample conformity assessment
gives a detailed explanation of such a comparison procedure.

A preliminary precaution is to check the mode of expression of CRM uncertainty,
as standard uncertainty u or an expanded uncertainty U, knowing that, unless oth-
erwise indicated, U = 2u. If X is the reference value, U(X) its expanded uncertainty,
Z the result obtained by the laboratory, and U(Z) its uncertainty, the following test
is a simple decision rule.

Decision rule for CRMs
|Z − X|√

U2(Z) + U2(X)
≤ 1.96 (4.5)

When possible, a more efficient method consists of including CRMs as valida-
tion materials for building a method accuracy profile (MAP) and directly checking
if the bias and tolerance intervals lie in the acceptance interval (Section 5.1). For
accreditation bodies, the value of CRMs is unquestionable, so their use is widely
recommended. However, in addition to the difficulties inherent in their conserva-
tion, many more fundamental analytical problems persist. For example, there are no
CRMs for some official methods, such as the Kjeldahl nitrogen method, because its
reproducibility is unsuitable for certification. In addition, very often for such direct
methods where the analyte is defined by the method, there is no exact molecular
equivalence between what is sought and what is measured.

4.3 Proficiency Testing

Fortunately, for those fields of application that do not have CRMs, or do not yet
benefit from the work of official metrology organizations nor primary methods, pro-
ficiency testing is a possible method for assessing trueness. The classic experimental
approach consists of interlaboratory comparison defined as the “organization, per-
formance and evaluation of measurements or tests on the same or similar items by
two or more laboratories in accordance with predetermined conditions.” Traceabil-
ity is achieved to a lesser extent than with CRMS but is quite satisfactory, given the
shortcomings. The organization and design of collaborative studies vary according
to the objectives. These differences do not always appear clearly in the literature.
Two major types of collaborative studies can be distinguished.

4.3.1 Interlaboratory Comparison or Proficiency Testing Scheme (PTS)

It involves many participants (up to several thousand) who do not repeat their mea-
surements. The objective is to rank the laboratories using different scores and verify
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their competence for a given analyte or method, in terms of trueness. They are rou-
tinely used by accredited laboratories, which are summoned to participate at several
proficiency testing scheme (PTS) per year to remain accredited. More details are
available in this chapter.

It is quite different of the classic interlaboratory ring study described in Section
3.1 about precision. It brings together only some laboratories which must perform
replicates. It is mainly devoted to estimating the repeatability and reproducibility of
a method, but ISO 5725 standards also describe several extensions and parameters
relating to trueness. The major disadvantage is the cost in such a way that inter-
laboratory studies are not routinely used for this specific purpose. This topic is not
addressed here.

4.3.2 Organization of Proficiency Testing Schemes

While ISO 5725 interlaboratory analyses are organized at the initiative of a limited
group of laboratories that want to standardize an operating procedure according
to standard recommendations, PTSs are managed by specialized organizations that
follow the rules available in ISO standards and guides:

Reference Topics covered

ISO/IEC Guide 43-1 Implementation and organization of PTS
ISO/IEC Guide 43-2 Relationship between PTS and certification bodies
ISO 13528 Statistical methods for the interpretation of PTS
ISO 17043 Requirements for PTS organizers

Usually, the legal status of the managing organization is nonprofit and issued by
a professional association, such as cereal products or clinical biology. But it can also
be a governmental body if regulatory purposes are involved. In some cases, par-
ticipation in a PTS is a regulatory requirement. For example, biomedical analysis
laboratories must participate in quality control (QC) programs to keep their right to
make analyses on humans. To the extent that organizers can obtain certification, it
is essential that they have no conflict of interest with participants.

There are many PTS organizers around the world. At the European level, the Euro-
pean Proficiency Testing Schemes (EPTIS) is managing a database available on the
site http://www.eptis.bam.de that lists several hundred PTSs in all fields of analysis.
Similarly, the US National Association for Proficiency Testing (https://proficiency
.org/) and Proficiency Testing Canada (https://ptcanada.org/) play the role of PTS
providers in their own countries. The participants can be several hundred or thou-
sands, usually contributors to the nonprofit managing organization. In that context
they participate in PTS items selection and interpretation procedures. Each year they
receive one or several test samples that they measure with their own routine method.
One single measurement value is required but it is not a general rule.

http://www.eptis.bam.de
https://proficiency.org/
https://proficiency.org/
https://ptcanada.org/
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One PTS often covers several analytes. The results are sent back to the organizer,
who will calculate a reference value with acceptance limits. The participating labo-
ratory must be within these limits to be declared competent, as required by several
accreditation bodies. Finally, a PTS can be summarized in four steps:

1. Select and prepare a homogenized test material packaged in adapted containers.
It is usual that they only have the quantity sufficient for the expected number of
measurements.

2. Send one item to each member of a panel of subscribing laboratories.
3. Estimate the assigned reference value with its acceptance limits according to one

of the consensus calculation methods described in the next section.
4. Compute a score for each participating laboratory and decide whether it is accept-

able; the agreement depends on the value of the score.

The principle is therefore quite simple but the organizational and logistical
aspects are crucial, justifying the implementation of a quality system for PTS
organizers. Especially since they are service providers for accredited laboratories.
The organizer’s competence mainly lies in the ability to produce homogeneous
test materials. Although this is an obvious technical problem, it is impossible to
give general rules here, given the variety of matrix types available and the types of
analytes. Some materials combined with certain analytes can be very unstable, such
as microorganisms in water or foods, while others, such as lead isotopes in rocks,
are very stable.

Therefore, any conceivable preservation technology can be used: drying,
freeze-drying, canning, pasteurization, or other as well as all types of packaging:
inactinic, vacuum, controlled atmosphere, and so on. Most materials are shipped
in such quantities so as to avoid the laboratory making additional replicates and
no longer remaining in routine conditions. Often, once the package is opened, the
contents can change, and the material should not be reused. In addition to the
planning aspects, the interpretation of proficiency tests raises statistical problems
at three levels:

1. Select an algorithm to estimate the reference value that will be assigned to the
material at the end of the PTS. This question of defining the central value of sam-
pled data is as old as statistical science itself. Since this material can eventually
be used as an external RM, it is also important to know how to express the MU.

2. Check material homogeneity and stability. If the material is not homogeneous,
there is a risk that a laboratory’s result will be interpreted as being due to its
incompetence. The recommended method is to achieve homogeneity checking at
the beginning, but it can be complemented by using the results the laboratories
sent back.

3. Define a score of competence for a laboratory. The aim is to establish a certificate
that can be provided to an inspector in charge of auditing the laboratory.

4.3.3 Reference Value of the Test Material

Some years ago, the influence of various estimators used by different organizers
on laboratory scoring was demonstrated [1]. The situation has changed since
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Table 4.1 Terms used in ISO 13528.

Assigned value X Value attributed to a particular property of a
proficiency test item. It is also referred to as the
reference value.

Standard deviation for proficiency
assessment

sA The measure of dispersion used in the evaluation
of the results of proficiency testing based on the
available information. It is comparable to a
standard deviation interpreted as a target
dispersion value for a population of laboratories.

already-quoted international standards were established. Statistical data processing
is no longer left to the free choice of the test organizers, although the proposed
estimators are flexible. Two new concepts were introduced in the standards, as
defined in Table 4.1.

Whereas ISO 13528 is applied in many fields of measuring sciences, the defini-
tions are confusing as they try to merge different methodological frameworks. Five
estimators can be used for assigning the reference value X to the test material. Each
method comes with an estimate of the standard-uncertainty u(X).

The Table 4.2 summarizes these methods. It is assumed that I laboratories are
participating in the PTS with 1< i< I.

The robust estimates obtained by algorithm A are described in Section 4.3.4. The
reason for robust estimators in PTS to be proposed can be explained as no laboratory
can be rejected as an outlier, since it is compulsory to give a score to every participant,

Table 4.2 Estimators of the assigned value and their standard-uncertainty.

Method Nature of the test material Standard-uncertainty

Formulation Surrogate matrix or standard
addition

Law of propagation of
uncertainty (Section 6.6)

Certified value Certified reference material u(X) = u(XCRM)
Require simultaneous measures of Xi and Ci on the test
material and CRM, respectively. Calculate the average difference.

Calibration by
CRM

D =
∑

i(Xi − Ci)
I

X = XCRM + D u(X) =
√

u2(XCRM) + u2(D)

Expert
laboratories

A group of I ′ expert
laboratories provide X and
their uncertainty u(Xi) with
1< i< I ′

u(X) = 1.23
I′
√∑

iu2(Xi)

All laboratories Algorithm A: X robust
average and s∗A robust
standard deviation
(Section 4.3.5)

u(X) =
1.23 × s∗A√

I
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Table 4.3 Estimators of the standard deviation for proficiency assessment.

Method Principle Formula

Prescribed value Regulatory requirement Not applicable
From a model e.g. the Horwitz’s model sA = 0.02X−0.849

By perception Prerequisite performance level sA = X
3

Interlaboratory study Based on sr , sR sA =
√

2.25
(

s2
R − s2

r
)
+

s2
r

I
Proficiency testing Algorithm A (Section 4.3.5) s∗A

even when it is an obvious outlier. Moreover, statistical testing for outlier rejection
always assumes a simple distribution function behind the dataset, usually Normal or
unimodal. Experience shows that the situation is more complex as bimodal or more
distributions may occur.

For the standard deviation sA, five methods are also available and reviewed in
Table 4.3, including the robust calculation with algorithm A described below. The
organizer must choose among these methods, in consultation with the members of
the PTS, an eventual accreditation body, or the regulatory requirements.

4.3.4 Performance Scores

A performance score is applied to measure the extent to which a given laboratory
diverges from the others and to judge whether it has the same competence as the
rest of the group of laboratories that participated in the test. Therefore, a score must
be accompanied by an acceptance interval to allow this judgment. Table 4.4 com-
bines the five calculation methods proposed by the ISO standards, with their accep-
tance limits. The first two scores are just usual measures of bias. The z-score is the
best-known and most widely used. It consists of centering the result obtained (by

Table 4.4 The different scores available for PTS.

Designation Formula Acceptance

Absolute bias Di = Zi −X ±3 sA

Relative bias D%i =
Zi − X

X
× 100 ±3 X

sA

z-score zi =
Zi − X

sA
±3.0

Standardized deviation EN ENi =
Zi − X√

U2(Zi) + U2(X)
±1.0

z′’-score z′i =
Zi − X√

s2
A + u2(X)

±3.0
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subtracting the mean) and reducing it (by dividing it by the standard deviation) to
find a centered and reduced Normal distribution. The advantage of this operation
called standardization is to avoid scale effects that exist with absolute bias and allows
comparison of the laboratory’s performance for various tests, regardless of the units
used or the concentration level.

Understanding the principles used to determine the acceptance interval does not
require many comments. For example, for the z-score, it is referring to the standard
Normal distribution law, and ±3 limits correspond to a probability interval of 99.7%.
Proposed score must be interpreted separately, in the framework of a given PTS.
When a laboratory participates in several PTS, it would be an error to compute some
average value because each score is linked to a specific set of values.

4.3.5 Algorithm A

The existence of robust statistics, as defined by statisticians, was already introduced
in Section 3.4.2 about the possible presence of outliers. The theory of this new part
of statistics was developed in the 1980s, and many robust parameters have been pub-
lished since. They are good reference books, but this is not the right place to review
possible proposals [2]. The aim is to only give an insight into a robust estimation
method, introduced by ISO, in relation to the assessment of the PTS performance.
The results of a proficiency test that involved determining moisture in alfalfa are
used to illustrate the interest in so-called algorithm A, which simultaneously gives
robust estimates of mean and standard deviation. Thirty-six laboratories, labeled L01
to L36, participated and their results are listed in Table 4.5.

Algorithm A is a full part the of ISO 13528 standard. Resource G explains how the
algorithm works and how robust parameters are iteratively computed until a con-
vergence criterion is reached. Because it is an iterative algorithm, it is simpler to use
a Python script but it is programmable in Excel with Visual Basic for Applications.

Table 4.5 ALFALFAa) – proficiency testing of moisture determination (g/100 g).

Lab Zi Lab Zi Lab Zi Lab Zi

L01 7.59 L10 8.06 L19 8.17 L28 8.27
L02 7.79 L11 8.07 L20 8.18 L29 8.28
L03 7.81 L12 8.07 L21 8.19 L30 8.29
L04 7.81 L13 8.10 L22 8.20 L31 8.29
L05 7.84 L14 8.11 L23 8.21 L32 8.30
L06 7.86 L15 8.15 L24 8.22 L33 8.31
L07 7.92 L16 8.15 L25 8.23 L34 8.31
L08 7.96 L17 8.15 L26 8.27 L35 8.36
L09 7.99 L18 8.16 L27 8.27 L36 8.57

a) Unpublished personal data.
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Resource G Algorithm A (Python).

Import packagenumpy (for numerical Python) which contains useful mathemat-
ical functions.
import numpy as np

Moisture in alfalfa data is stored in a numerical array. This conversion is useful
for applying numpy functions.
Z = np.array([7.59, 7.79, 7.81, 7.81, 7.84, 7.86, 7.92,
7.96, 7.99, 8.06, 8.07, 8.07, 8.1, 8.11, 8.15, 8.15,
8.15, 8.16, 8.17, 8.18, 8.19, 8.2, 8.21, 8.22, 8.23,
8.27, 8.27, 8.27, 8.28, 8.29, 8.29, 8.3, 8.31, 8.31,
8.36, 8.57])

Compute the classic parameters for comparison with robust.
print("Classic")
print(np.mean(Z), np.std(Z))

The median of the observed values Zi is used to obtain the value max_dist that
is used to detect outliers. It is the median of the absolute deviates to the median
multiplied by the correction factor 1.483. This intensive use of the median is
frequent for robust estimators. The correction factors were determined by simu-
lation [3, 4].
Z_median = np.median(Z)
max_dist = 1.483*np.median(abs(Z − Z_median))

Select the convergence criterion. This choice is important whereas, another value
may modify the convergence speed.
tol = 1e-5

The initial value of X, s∗A and the number of iterations is setup to 0
X_robust = 0
sA_rob = 0
temp_val = 0
nb_iterations = 0

Start iteration loop. If the difference between the old median of the Zi and the
new one is above the convergence criterion the loop is pursued.
while (abs(Z_median − temp_val) > tol):

Update correction criterion. It is used to compute the lower or upper distance
from the median that is acceptable. Once more, by simulation it was demon-
strated that it must be multiplied by 1.5.
phi = 1.5*max_dist

(Continued)
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At each step, each Zi value is checked. If it too far above or below the median it
is replaced by the acceptable extremum. In that way a new set of Zi is generated.
For I in range(len(Z)):

The values that are too low or too high are not deleted but replaced by new ones.
if Z[i] < Z_median − phi:

Z[i] = Z_median − phi
elif Z[i] > Z_median + phi:

Z[i] = Z_median + phi

Update the robust reference value with the mean of modified dataset.
X_robust = np.mean(Z)

Update the robust standard deviation with the standard deviation of the modified
dataset
sA_rob = 1.134* np.std(Z)

Swap old values with new and increment the number of iterations.
Temp_val = Z_median
Z_median = X_robust
max_dist = sA_rob
nb_iterations = nb_iterations + 1

Exit of the loop with printing the robust parameters
print("Robust")
X_uncertainty = 1.23*sA_star/np.sqrt(len(Z))
print(X_robust, sA_rob, X_uncertainty)

Table 4.6 presents the values obtained for the assigned value X , its standard-
uncertainty, and the standard-deviation of the test sA. Given the type of material
analyzed, prepared from a natural sample of unknown content, the most suitable
mode of expression for the assigned value, its uncertainty and the standard deviation
of the test is given by Algorithm A. For comparison, the values obtained by the
classic calculation method are also shown. Table 4.6 shows the role of Algorithm A
in modifying the reference value and the standard deviation of the PTS. The major
consequence is the reduction of the standard deviation. Both these statistics are
used to obtain the scores of the participants and to evaluate their competence. Using
the data in Table 4.5, two z-scores are computed, one with the classic parameters,
the other with the parameters provided by algorithm A.

Figure 4.3 illustrates the results. The legend gives the meaning of each symbol.
Individually measured moisture values appear as circles with the axis on the left.
Mean values are reported as assigned references. They are slightly different because
they are computed by two methods, classic and robust. The score values are read
on the right axis. The red diamonds are used for the classic z-scores, and the green
squares for the robust ones. For ease of interpretation of the scores, two horizontal
acceptance limits are added at±3.0 units (right axis). Classic scores are more tolerant
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Table 4.6 Assigned value, standard deviation and uncertainty calculated by different
methods.

Method
Reference
value X

Standard
uncertainty u(X)

Standard
deviation sA

Classic 8.12528 Not applicable 0.19622
Algorithm A 8.14512 0.03271 0.15956
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Figure 4.3 ALFALFA – z-scores are reported on the right axis and computed with classic
(red diamonds) or robust (green squares) methods. Gray circles are moisture results
(left axis).

than robust ones, as no laboratory would be marked as unacceptable, while it is not
for one participant with the robust score. The use of PTS results to estimate test sam-
ple MU is explained in Section 7.4.1 after the presentation of the general procedure
recommended in the GUM.

4.3.6 Check Material Homogeneity or Stability

It is obvious that the material selected for a PTS must be homogenous. Consider-
ing the regulatory importance of the latter, a laboratory must not get a bad score
because it received an imperfect sample. It may therefore seem paradoxical that ISO
13528 proposes to perform homogeneity checking after the completion of the test
rather than before. The reason given is that it is first necessary to have the reference
value of the material X and the standard deviation of the test sA to apply the recom-
mended statistical control method for homogeneity checking. Homogeneity can be a
difficult goal to achieve. Thus, depending on the type of matrix and the nature of the
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analyte, it can be difficult to prepare and maintain an homogeneous test material.
Homogeneity checking is often achieved at the end of the manufacturing process,
while all test samples are ready to be sent. Considering the overall cost of a PTS, test
material manufacturing is the most expensive step. For the organizer, finding out
afterwards that the test material is not homogeneous remains the worst situation.
On the other hand, for the participants, the lack of homogeneity is a real nuisance
because the score they obtained may be unacceptable to an auditor. It is therefore
understandable how much care the organizer must take in preparing the material
and how crucial it is to check it. To do so, ISO 13528 [5] describes a standardized
procedure summarized as follows:

1. Choose a laboratory to conduct the homogeneity check measures and the analyt-
ical method to use. If it is acceptable not to perform homogeneity check for each
required measurand, select the characteristic or characteristics of the material
that are most sensitive to heterogeneity, such as moisture in a food.

2. Prepare and package the proficiency test items for a round of the proficiency test-
ing scheme, ensuring that there are sufficient items for the participants in the
scheme and for the homogeneity check.

3. Randomly select I test samples, with I ≥ 10, in their final packaged form.
4. Prepare J test portions, with J ≥ 2 from each test item using appropriate tech-

niques to minimize between-test-portion differences.
5. Taking the IJ test portions in a random order, obtain a measurement result

Zij (with 1≤ i≤ I and 1≤ j≤ J) on each, completing the whole series of
measurements under repeatability conditions.

6. Apply a one-way random analysis of variance (ANOVA) as shown in Section 3.2
and Resource E to calculate the grand mean Z, within-samples standard deviation
sW , and between-samples standard deviation sB.

The interpretation of the standard deviation depends on the organization of the
PTS. But one simple rule is to compare the between-samples standard deviation sB
to the test standard deviation sA obtained at the end of the PTS. It can be concluded
that the test material is homogeneous if:
Acceptance criterion for the test standard deviation

sB ≤ 0.3 × sA (4.6)

Acceptance criterion for the test variance

s2
B ≤ 0.09 × s2

A (4.7)

If the variance is considered rather than the standard deviation, this means that
the between-samples variance must be less than 9% of the test variance. This is a rule
of thumb, and more accurate statistical tests could be applied. In Section 8.3.2, about
sampling uncertainty, it is also proposed to use the same experimental design, rec-
ommended in an international standard. Computation is simple to obtain for both
variances involved in this criterion, as it can easily be achieved with the statisti-
cal tools described in Section 3.2.1. Homogeneity checking is a costly requirement
since it relies on many measurements. A less expensive method has been proposed
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that is based on a non-destructive analytical technique, identified as rapid such as
near infrared spectrometry (NIRS). NIRS allows a multidimensional approach to
homogeneity control, and its ability to highlight small changes in composition that
can take place during the manufacturing process is remarkably effective. For this
purpose, the entire NIRS spectrum is directly used without having to go through a
prediction stage for the constituents [6, 7]. It is also possible to use other statisti-
cal techniques based on time series studies, where samples are collected along the
manufacturing process. One method of choice is a time series analysis technique
called auto-regressive moving average (ARIMA), described by Box and Jenkins [8].
The calculation involved in this method is cumbersome which explains why it was
not chosen, although it is extremely sensitive to the smallest variations and allows
the detection of slight changes in the spatial distribution of the analyte during the
production process.

4.4 Control Charts

Another method used to verify the trueness of measurement results is the implemen-
tation of control charts. A very convenient way is to use an RM, certified or not, to
develop the control chart. Section 7.3 gives more detail on the distinct types of control
charts applicable to controlling a production process. The need for a QC system, such
as a control chart, can be simple if the analytical method is accurately developed. As
stated in ISO 9000 standards, it is not enough to achieve quality, it is also necessary
to have procedures to maintain quality over time. Control charts are adequate tools
for the purpose. They are conceptually simple: an RM of known concentration T (for
Target) is regularly analyzed. Analyzed test portions are often called quality controls
or QCs. The measurement values obtained are plotted, in the chronological order of
their collection, on a graph called control chart. If non-random variations around
the reference value are visually detected, it is assumed that the measurement sys-
tem is disturbed, and a corrective action must be taken. To simplify detection, two
control limits are drawn on each side of the reference value. It is expected that the
responses will remain within these limits. In addition, several rules are defined to
decide whether the distribution is no longer random and what corrective action is to
be implemented to return to a normal situation. Figure 4.4 provides an example of a
control chart for Kjeldahl nitrogen determination in wheat flour. The center line rep-
resents the reference target value T of the IRM used for this chart. The outer dashed
lines symbolize lower and upper control limits LCL and UCL, and two other dashed
lines symbolize lower and upper warning limits LWL and UWL. Warning lines are
not always added to the chart.

This example illustrates how an analytical method can diverge from the statisti-
cal process control (SPC) required in quality standards. Three typical nonconform-
ing situations are identified. They illustrate the need to take predefined corrective
actions, such as recalibration of the measurement system, which is symbolized by
the breaks in the curve in the graph:
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Figure 4.4 NITROGEN – examples of anomalies in a wheat flour control chart.

1© One QC is outside one control limit.
2© Seven successive QC are systematically above or below the target value, and as

it is expected, they are randomly spread on both sides.
3© Eight successive QCs indicate a systematic upward or downward trend.

Moreover, if any other QC distribution suggests nonrandom behavior, the quality
controller is free to take corrective action. The assumption underlying the control
charts is that measurements made under statistical control should be distributed
according to the Normal law. Control limits can be compared to outlier rejection
limits, and it is assumed that any exceeding data corresponds to a malfunction in
the measurement process. From a practical point of view, the control chart set up
in a laboratory may be different from the industrial context. The easiest way is to
use a CRM or an ERM, but their availability or their cost may make this strategy
inapplicable. If the laboratory decides to use an IRM, the control chart set up consists
of two phases.

4.4.1 First Phase Assessment of the Reference Value

1. Prepare homogenized material, in sufficient quantity to complete several tens of
test portions. It is best to package each test sample in a sealed bag so that the
composition of the material remains stable over time.

2. Analyze at least 30 test portions (I ≥ 30) with the method to be controlled. When
a QC is subsequently planned to involve an average of J replicates, all 30 analyses
must be done under the same conditions.

3. Calculate the mean Z, the standard deviation �̂�, and the warning (WL) and con-
trol (CL) limits, as described in Eqs. (4.8) and (4.9). Then draw the control chart.
The notation �̂� is used in this context rather than s because it is the traditional
notation for control chart.
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4.4.2 Second Phase Routine Use

1. Define a control frequency (one per day, for example) and analyze a different QC
at each control, the answer is denoted Xi. If several test portions are analyzed for
each QC, individual values are reported unless a result is expressed as the average
of replicates. Section 8.4.3 gives more explanation.

2. When about 20 test portions remain, prepare another internal standard mate-
rial, measure its contents to define its new reference value and its new standard
deviation, and ensure continuity and traceability between old and new control
charts.

The standard deviation �̂� and the mean T are obtained with the classic following
formulas:
Target value

T = Z =
∑

iZi

I
Standard deviation

�̂� =

√∑
i(Zi − Z)2

I − 1
Control limits

LCL = T − 3�̂� UCL = T + 3�̂� (4.8)

Warning limits

LWL = T − 2�̂� UWL = T + 2�̂� (4.9)

If each QC corresponds to the average of J replicates, as usually recommended, WL
and CL must be differently calculated. New formulas consider this improvement of
the control:
Control limits

LCL = T − 3�̂�√
J

UCL = T + 3�̂�√
J

Warning limits

LWL = T − 2�̂�√
J

UWL = T + 2�̂�√
J

For instance, the ISO 7870-2 standard proposes a set of tables that allow the
calculation of the limits where measures are expected to lie for Shewhart control
charts [9]. Control charts with other distribution laws than the Normal law remain
applicable when dealing with counts, such as microbiological methods. It is obvious
that a control based based on replicates is more efficient but also more expensive.
It is reasonable when measurements are quick and simple, such as physical
measurements, temperature, or weighting.

In Section 7.3, a method is proposed to directly derive control charts from the sta-
tistical tolerance intervals used to build the MAP. The different limits are obtained
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Figure 4.5 Possible location of different Qcontrol charts in a routine laboratory. Legend:
QT, qualification test; BL, blank; SS, standard solution; QC1, QC2, quality controls.

using different values of the probabilities applied to define these intervals. Finally,
control charts are a direct application of the principles of theoretical distribution
laws. They are increasingly required by auditors of accreditation bodies, as well as
participation in proficiency testing. Figure 4.5 shows a possible organization of dif-
ferent control charts for QC in a routine laboratory. The samples sent by the clients
to the laboratory are grouped into series and surrounded by diverse types of controls,
such as standard solutions, noted SE, blanks BL and, of course, RMs of known con-
tent, noted QC1, QC2, etc. Separate control charts can be established for each type
of control. At the start of the production line, qualification tests (QT) are applied to
the instruments. These tests can also include measurements on commercial refer-
ence solutions, as is recommended for many methods, for example, mass spectrom-
etry. The fixed costs for such an organization are not negligible and substantiate the
grouping of analyses as series. The remaining question is to define the frequency of
the QC.
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5

Method Validation

5.1 Review of Validation Procedures

For many decades, analysts applied analytical methods developed in their laborato-
ries. They rarely fully documented the operating procedure, as well as the tips and
tricks related to their own experience, and often preferred an oral transmission of
their knowledge. Obviously, they knew that random and systematic errors due to
matrix interferences or incorrect manipulations might occur, but they also believed
that their expertise was good enough to detect them and guarantee the correct inter-
pretation of the result. This state of mind ended in the fifties for the Pharmaceutical
community with the tragic problem of Thalidomide and the mid-1970s when various
industrial accidents occurred (Minamata, Bhopal, Seveso, etc.).

It led end-users, especially control authorities in charge of public health or the
environment, comparing laboratory results with others, to surprisingly realize that
extremely high differences could be observed. For instance, in the 1980s, differences
as high as to 1/1000 could be observed when analyzing chlorinated pesticides in
foods. Motivated by the expectations of their customers, analysts set about two com-
plementary tasks: harmonize the operating procedures and validate the methods.

For the first goal, working groups were established within national and
international standardization organizations, such as ISO, or professional structures,
such as AOAC. This resulted in many documents being presented in various forms.
It is beyond our scope to describe the work that has been done. However, the
fundamental role of standardization and harmonization efforts in improving the
metrological quality of methods must be underlined and encouraged.

Here again, it is often through collaborative work that the second objective was
achieved. Two complementary tasks can be distinguished:

− Develop the vocabulary with definitions of various performance characteristics
or figures of merit.

− Develop the validation procedures with respect to expected performance criteria.

Despite the generic aspect of this program – since all analytical methods require
validation regardless of their field of application – it has been implemented by a wide
variety of organizations, resulting in various proposals and sometimes confusion.

Quantification, Validation and Uncertainty in Analytical Sciences: An Analyst’s Companion,
First Edition. Max Feinberg and Serge Rudaz.
© 2024 WILEY-VCH GmbH. Published 2024 by WILEY-VCH
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The emergence of the need for validation of analytical methods can be dated back
to the late 1980s.

This period overlaps with the publication by ISO of the first international
standards on quality assurance: the ISO 9000 series. In these documents, many
concepts related to “quality and all operations that contribute to it” are defined.
Validation can be considered as a procedure to reach the adequate quality level for
an analytical measurement. In the meantime, it was classically claimed that the
quality of products or services must be designed to “satisfying customer needs.”
This is also known as a “consumer-driven quality,” which was summarized in a
five-point list when applicable to the laboratory:

− Meet a well-defined need, use, or objective.
− Fulfill consumer expectations.
− Comply with standards, specifications, regulations, and other requirements.
− Have at a competitive price.
− Provide data at a cost that generates a profit.

Considering a more recent context, new requirements should be added:

− Reduce the environmental impact of laboratories.
− Avoid reagents and substances unsafe for personnel and the environment.

From the beginning, the application of quality assurance principles in the
laboratory has been perceived as a specific objective that required as such, specific
texts. Today, the list is long of guides, recommendations, and guidelines published
by various regulatory or professional structures on the application of quality
assurance in the laboratory and on method validation. For example, a large set of
official documents available on the Internet describes all operations required to
fulfill quality objectives [1–6]. Different comparative reviews of these documents
have been published [7, 8].

Validation per se of methods often fills a short section of these documents, but it
is always addressed. In most guides, the principle to conduct the validation consists
in collecting experimental data that are processed to assess performance character-
istics, such as accuracy, precision, limit of detection and limit of quantification, or
sensitivity. Sometimes, schemes are also prescribed for the practical organization of
the experiments.

But, except for some guidances, little or no advice is given on the number of mea-
surements to be collected for a correct estimation of the performance characteris-
tic nor on the experimental design to be applied. The next Sections 5.4.2 and 5.4.3
explain how the appropriate number of replicates is rarely used and may impact the
reliability of obtained results and how a correct design of experiment can be crucial.
Consequently, the decision rule for concluding whether a method is valid or not is
not always very conclusive.

Over the last decades, validation has become an important concern for many ana-
lysts, and many of them have acquired obvious expertise. However, it may be use-
ful to clarify some incoherent points, such as the vocabulary and the structure of
the experimental design, where ambiguities persist. The imprecision of the classic
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validation guides led us to develop a more structured approach. A statistical and
graphical tool for method validation, called method accuracy profile (MAP), resulted
from this observation.

A clear interpretation strategy is also in the pipeline. Over the past two decades,
numerous papers using the accuracy profile have been published, as explained in
this chapter. For several official standardization bodies, validation is synonymous
with interlaboratory study. But, in many situations, method validation is internally
conducted in a single laboratory and is sometimes called in-house validation. For
example, if the method is:

– Developed for a time limited research topic.
– Applied to a small series of samples.
– Used to control the manufacture of a single product by a single producer.
– Transferred from another laboratory and its reliability needs to be verified.
– Restarted after a period of inactivity.
– The property of a laboratory that does not wish to transmit it to others.
– Multianalyte and multimatrix, for which an interlaboratory study is difficult to

organize.

For most of these cases, it is not necessary or possible to involve a number of lab-
oratories to validate a method. More generally, interlaboratory validation applies to
a method in a pre-competitive context, such as health or official control, whereas an
in-house validation applied to a method used in a competitive context, such as drug
control.

5.1.1 Inconsistencies of Validation Vocabulary

While validation is a common requirement for all analysts for all methods, it is
paradoxical that the documents related to this topic are generally presented as spe-
cific to an application sector such as drugs, foods, metals, medical biology, oenology,
water, or mining. It is even more surprising because laboratories, whatever they work
on, use the same analytical instruments and have the same validation needs. Among
them, the main differences are:

– In the pre-analytical sampling step and sample preparation,
– In the final validation criterion.

As detailed in Section 8.4.3 about the definition of a replicate, only the instrumen-
tal step is purely analytical as it requires measuring principles based on chemistry or
biology. The economic evolution of laboratories over the last few decades has pushed
them to get together within larger industrial organizations and to be much more
flexible than in the past.

For example, some years ago, soil and water analyses were conducted in special-
ized and independent laboratories. Today, it is common for these types of activities
to be associated within a single legal structure and, sometimes, even in the same
location. Because of the classic sectorial or vertical organization of many applica-
tion fields, a diverse list of definitions has been independently issued, raising several
communication problems.
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To avoid some of these ambiguities, the reference proposed in this book is the Inter-
national Vocabulary of Metrology or VIM, published by the Bureau International des
Poids et Mesures or BIPM [9]. It is a well-accepted thesaurus applied in various fields
of measurement. The definitions of many terms, when they exist, apply to analyti-
cal sciences, although some are missing or unsuitable. Most of the definitions are
quoted in the text and written between double quotes. As a remainder, in VIM, two
major vocabulary elements can be identified: characteristics and parameters.

Characteristics They are concepts not “directly measurable” such as trueness,
precision, or accuracy. For example, note 1, coming with the definition
of measurement accuracy (VIM clause 2.13), states that:
“measurement accuracy is not a quantity and is not expressed
numerically. A measurement is sometimes said to be more accurate if
it provides a smaller measurement error.”

Parameters They are estimated from experimental data using a computational
algorithm and called estimators by statisticians, i.e. a rule for
calculating an estimate of a given quantity based on observed data.
They are the coefficients of mathematical or statistical models.

For example note 1 on measurement precision (VIM clause 2.15) states that:
“precision is usually expressed numerically by parameters such as standard devia-
tion, variance or the coefficient of variation under the specified conditions.” If one
parameter gives a numerical evaluation of a characteristic, then one characteristic
can have several parameters alone or in combination. The numerical values of the
parameters are sometimes referred to as performance scores or figures-of-merit.

A third category of vocabulary elements must be added, absent from the VIM, but
essential to validate a method.

Criteria They are technical specifications expressed as a minimum, maximum, acceptance
interval, etc. They are often quantitative but sometimes qualitative, such as
practicability or robustness. The procedural manual of the Codex Alimentarius
Commission (CAC) [10] by means of the Codex Committee on Methods of
Analysis and Sampling (CCMAS), proposes a Criteria Approach for selecting
methods of analysis for food trade that is based on a set of criteria.

A “Glossary of Used Terms” is proposed as an attempt to sum up some the usual
definitions. It results from the compilation of various documents, including the VIM.
It is not intended to be exhaustive or referential, as several instrumental methods
or sectors of activity have developed their own vocabulary, but only to collate the
definitions of the main terms used in this book.

Given the inconsistency of glossaries, it is not surprising that several authors
underlined the divergences in published documents. The same term can have
different definitions and meanings, sometimes difficult to relate to. The term
“method validation” illustrates these discripancies, as it can mean:

– “Verification, where the specified requirements are adequate for an intended use”
(VIM), but also.

– Interlaboratory comparison that leads to precision parameters, such as
reproducibility.
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– Demonstration that the method measures the analyte it is supposed to. This
definition is used in the title of many publications as a synonym for specificity.

The term “linearity” also has different meanings:

– Proportionality between the known contents of reference material and the
inverse-predicted concentration, i.e. linearity of trueness.

– Existence of a linear relationship between instrumental response and analyte
concentration, i.e. linearity of the calibration.

For the limit of quantification (LOQ), dozens of definitions are available, and even
more calculation methods. Yet it is the most widely used parameter by analysts or
equipment manufacturers to advertise the performance of an analytical technique.
This topic is discussed in more detail in Section 9.1.

Another critical issue is the eventual confusion between the terms applicable to
quantitative methods with those used for qualitative tests, as their concepts are
different. A compilation of nearly forty validation guides, published mainly by
international organizations, identified various inconsistencies. Five benchmarks
were selected to conduct this textual analysis [8]. They are concerned with the type
of analysis, chemical or biological, the national or international scope of the guide,
the sector or discipline of origin, the analytical technique, and the compounds
analyzed.

The various validation guides share a common set of terms, despite variable
definitions, as shown in Figure 5.1. Perhaps it is this appearance of similarity that
currently prevents a global standardization effort from taking shape.

5.1.2 Validation Plans

When scrutinizing literature, it is possible to identify a classic validation procedure
that is widely published. IUPAC directive or ICH Q2(R2) guidelines are typical
examples of such a procedure [11, 12]. The content of a classic validation procedure
is as follows:
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Figure 5.1 Frequency of terms used in validation guides. Source: Adapted from Raposo
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110 5 Method Validation

– A list of characteristics to be addressed in the validation experiment, such
as precision, accuracy, applicability, very often including selectivity, response
function and calibration, etc.

– One or more parameters for each of these characteristics are aimed for providing
quantitative estimates, such as standard deviation, recovery rate, and percentages.

If no acceptance criteria are explicitly set for evaluating the estimated values
of the parameters, the analyst only performs a characterization of the method,
which is not a full validation. To be complete, the values of the parameters must
be checked as conforming to performance criteria values. In practice, the statistical
approach proposed to estimate parameters is simple numeric calculations, such as
average, standard deviation, or the coefficient estimators of a function obtained by
using the least-squares regression method. For qualitative methods, it is a matter
of proportions, with confidence intervals obtained by referring, most often, to a
binomial distribution. Therefore, all these calculations can easily be done with
simple software, such as Microsoft Excel or Open Office Calc.

A more recent trend is to apply more elaborate algorithms, such as the weighted
least-squares (WLS) method or partial least-squares (PLS) regression (Section 2.3).
These methods require computation procedures unavailable in worksheets. In many
analytical devices, such as mass spectrometers or near infra-red spectrometers,
manufacturers have included them directly in the monitoring software. But, the
Python language can help the analysts needing to develop their solutions.

The diverse estimators proposed in different validation guides to estimate the
same parameter is another confusing issue for analysts, such as robust algorithms
to estimate reproducibility [13]. Other computational methods requiring intensive
calculation, such as Monte Carlo simulation, remain in the domain of specialized
scientific publications in analytical sciences but are usual in other measurement
fields. This specific topic is not addressed in this book.

Sometimes statistical tests, known as significance tests, are recommended to
assess the conformity of a parameter to a criterion [14]. Unfortunately, only the first
type of risk of error, denoted α risk, is usually considered. This is also known as the
producer’s risk or the risk for an analyst who used a valid method but concludes that
it was not. In contrast, the customer’s risk, denoted β-risk, i.e. the risk to the client
that the method is not valid but regarded as valid by the analyst, is not assessed.

It is exceptional that the validation procedure indicates how to organize the exper-
imental design. This is left to the experimenter’s initiative, who may proceed ran-
domly and intuitively. This topic is discussed in more detail in Section 5.4.2. While a
list of characteristics and/or parameters to be experimentally estimated is required,
the analyst remains free to choose the experimental design that is considered the
most appropriate to achieve this goal.

The classic validation procedure can be called a multicriteria method because it
consists of evaluating several characteristics separately compared to a set of crite-
ria and making individual decisions on each. Therefore, contradictory conclusions
may occur, such as conforming precision but non-conforming trueness. The final
decision is difficult to make. While a list of characteristics and/or parameters to be
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Figure 5.2 Example of a multicriteria validation procedure.

experimentally estimated is required, the analyst is free to choose the experimental
design that is considered the most appropriate to achieve this goal.

As illustrated in Figure 5.2, based on the characteristics and parameters required
in ISO 17025 standard, the classical validation strategy can be described as a
multicriteria method because it consists of evaluating the different characteristics
sequentially and separately against a set of criteria and making an individual
decision on each one [15].

This strategy may provide a lot of interesting information to the analyst, but
practice shows that it has the disadvantage of leading to a set of conclusions that
may be contradictory. For example, precision is conforming, while trueness is
not. How to conclude? The final decision may quickly become subjective. But the
major downside is that it is not evident that this knowledge is the proper answer to
“satisfying customer needs” as claimed in quality assurance standards.

For instance, US-FDA has set up a list of acceptance criteria to define a validated
method called standard method performance requirement or SMPR [16]. This
document has a set of criteria values for precision and recovery yield. These values
are included in several other official documents issued by different institutions,
such as the European Commission or the Codex Alimentarius [1, 10].

But, when comparing several guides applicable at the international level for
regulatory or health purposes, it is surprising that in many cases, no acceptance
criteria nor verification procedures are proposed. The number of degrees of freedom
available for decision-making is generally ignored. However, it is crucial when
statistical testing is required, as underlined in many statistical handbooks.

Alternatively to the classic strategy, it is possible to propose a validation procedure
based on a unique criterion. The latter amounts to choosing a unique comprehensive
characteristic which may be a combination of several parameters. Then by compar-
ing this parameter combination to a single criterion, it is possible to obtain more
easily a final decision. Such single-criterion validation procedure are less often used.
A possible example is using the total analytical error (TAE) described below.

But it is also appropriate to select accuracy as a unique validation characteristic,
which is defined as the “closeness of agreement between a measured value and a true
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Figure 5.3 Example of a single-criterion validation procedure.

value of a measurand” and aims to verify if this closeness is satisfactory. A detailed
discussion about the concept of accuracy in this context is given in Section 6.10.

To mathematically express accuracy, it is promising to combine several parameters
into one statistical parameter, for instance, one so-called “statistical dispersion
interval.” This lesser-known family of statistical intervals is described in
Section 5.3. The latter is compared to an acceptance interval, resulting in a
unique parameter versus a unique criterion.

The MAP is a validation procedure described in Section 5.2 that is an example of a
single-criterion strategy based on accuracy, slightly different from TAE. It was devel-
oped in the late 1990s, in the framework of a commission of the Société française
des sciences et techniques pharmaceutiques (SFSTP). It was published in a series of
papers [17–20]. Figure 5.3 illustrates schematically this single-criterion validation
procedure.

This method, applied for nearly 20 years in many laboratories, on a wide range
of methods, and in varied scientific contexts (Section 5.1), was adopted by several
international standards addressing method validation, such as ISO-16140 or ISO
22116.

MAP was chosen to describe this procedure and accuracy as a unique charac-
teristic because it is often identified as the combination of trueness and precision
(even the correct “combination” to be used is undefined). For example the ISO 5725
standards have the general title: “Accuracy (trueness and precision) of measure-
ment results and methods.” It seemed logical to estimate accuracy by combining two
parameters, the first for trueness, such as a bias or a recovery rate, and the second
for precision, such as a standard deviation of precision.

A comparable combination was already proposed in the 1970s to introduce the
concept of total analytical error, or TAE, thoroughly described in the first Section 6.1.
of Chapter 6 [21]. The recently revised definition of accuracy [22] explains that it is
a “non-numerical” concept. The initial choice seems inconsistent. Nevertheless, for
convenience and because it is now well-known, the term method accuracy profile is
retained here. There is also a possible confusion with the use of accuracy in some
documents: accuracy is not trueness as explained in Chapter 4, although both def-
initions seem relatively close, as visible in the glossary at the end of the book (see
Glossary of Used Terms).

The estimation of the precision is achieved by means of a standard deviation. As
explained in Section 2.4.3, ISO 5725 standards define at least three experimental
conditions for computing a precision standard deviation, namely reproducibil-
ity, repeatability, and in-between intermediate precision. The reproducibility
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condition is considered well-adapted to interlaboratory validation studies. But the
intermediate precision condition is most adequate for in-house validation because
it allows accounting for various sources of laboratory-specific variation.

As described in Section 7.2, intermediate precision is best adapted to a simple and
direct estimation of a large part of measurement uncertainty (MU). It is recognized
that this goal is out of reach under repeatability conditions. With hindsight and expe-
rience, when comparing classic procedure and MAP, some major advantages can be
stressed, as MAP permits:

– To compute statistical dispersion intervals (Section 5.3) that give an insight into
the measurement value scattering and to verify that it complies with the method
acceptance performance.

– To yield a comprehensive procedure in estimating MU as justified in Section 7.2.
– To apply a consistent experimental design which helps verify if the number of

trials is optimized as discussed in Section 8.4.3.
– Finally generate the method uncertainty function applicable to any future sample

analyzed at the laboratory as explained in Section 7.5.

For these reasons, the MAP is used as a roadmap throughout the whole book and
presented as an adequate solution to many problems the laboratory faces for validat-
ing a method and finally to have access to a relatively simple estimation procedure
of MU.

5.2 Method Accuracy Profile (MAP)

5.2.1 Principles

Because incorrect measurements can lead to wrong decisions and, therefore, to
significant additional costs or even risks, MAP is a validation procedure founded
on the following reasoning: to validate a method means to demonstrate that it
can produce an important, even prerequisite, proportion of measurement values
serviceable for a correct decision, for example at least 80% or 90% of possible
measures are distributed within an acceptance interval around the true value of
a sample. Whereas accuracy is defined as the “closeness of agreement between
a measured value and a true value of a measurand” this parameter can generate
confidence in the analytical result, once estimated.

The acceptance interval is specified as [AL; AU ], preferably pre-defined by the
analysis end-user. The subscript L of AL stands for lower bound, and U for upper
bound. In other words, the analyst can claim the method as validated, with a known
confidence level, when it is able to produce at least the required proportion of data
lying within the acceptance interval bounds. The major innovation of the suggested
method is to use statistical dispersion intervals to compute how much acceptable
measures are scattered. These lesser known statistics are estimators of the probable
dispersion of results and are expressed as intervals.

Ultimately, this approach is more straightforward than computing separate
statistical parameters, such as means or variances, and independently checking
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whether they conform. Consequently, in statistical terms, to demonstrate valid-
ity and check whether the method fulfills defined requirements, the proposed
approach is to calculate the statistical dispersion interval within which lies the
required proportion of measurements and verify it is included within the acceptance
interval. As explained below, several types of statistical dispersion intervals exist
and can be applied to this goal. Starting from this reasoning, the MAP harmonized
procedure was established and published between 2004 and 2008 in the Journal of
Pharmaceutical and Biomedical Analysis [17–20].

A mnemonic presentation of MAP consists of the 10-step list registered in The
10-step MAP procedure provided at the end of the book. The importance of the con-
cept of series indicated at step 4, was already underlined in Section 3.1 about inter-
laboratory studies. A series includes all measurements performed under identical
conditions, for example, the same method, the same day, the same operator, the same
calibration curve, etc. This reflects the usual laboratory management where samples
submitted to the same analysis are grouped before getting started. This organization
aims to reduce the fixed costs of an analytical operating procedure as explained in
Section 4.4 about control charts. Because a method must be validated the way it
will be used in the future, the practical layout of the series should reflect as closely
as possible the sources of uncertainty likely to occur during routine application of
the method. If the measurements are not organized into series, it is impossible to
complete the calculations and construct the MAP. The requisite of the experimental
design is explained in Section 5.4.2.

In the 1990s, some guidelines were proposed to validate a method for a single
concentration level. But it was quickly realized that the figures of merit of a
method – precision and trueness – vary with the concentration. Therefore, it is
now considered mandatory to perform validation measurements on at least three
validation materials of different concentrations spreading over the validation range.

Once measurements are collected and inverse-predicted concentrations are
obtained for each material, the bounds of β-expectation tolerance intervals (β-ETI)
are calculated by combining the different validation parameters. Statistical disper-
sion intervals consist of a family of statistical parameters less well-known than
confidence intervals, thus extensively explained in Section 5.3.1. They are designed
to contain a certain proportion, denoted 𝛽, of future outcomes or sometimes a single
future outcome.

The letter 𝛽 is the coverage probability of the interval and corresponds to this pro-
portion. In the text, it is denoted 𝛽 when expressed between 0 and 1, such as 0.80, or
𝛽% as a percentage, such as 80%. These two equivalent notations are a reminder that
in worksheets, it must be distinguished between the number, as stored in computer
memory, and its display format, as visible in a worksheet cell.

Finally, for a given validation material, the β-ETI corresponds to an interval where
it can be predicted that a proportion 𝛽% of future measurement values may fall. By
convention, the coverage probability is denoted 𝛽 and should not be confused with
the risk of error 𝛽 of hypothesis testing. It can be expressed as:

Generic expression of the statistical dispersion interval

[Z ± kTI × sTI] (5.1)



5.2 Method Accuracy Profile (MAP) 115

60
“accuracy profile”

% all validation50

40

7.0%

6.0%

5.0%

4.0%

3.0%

%
 a

ll 
v
a
lid

a
ti
o
n

2.0%

1.0%

0.0%

30

20

P
u
b
lic

a
ti
o
n
 n

u
m

b
e
r

10

0

1
9
9
7

1
9
9
9

2
0
0
1

2
0
0
3

2
0
0
5

2
0
0
7

2
0
0
9

Year

2
0
11

2
0
1
3

2
0
1
5

2
0
1
7

2
0
1
9

2
0
2
1

2
0
2
3

Figure 5.4 Number of publications with “accuracy profile” in the title ratioed to all
“validation” published papers.

where Z is the average inverse-predicted concentration of replicates of the validation
material, kTI the coverage factor of the interval depending on the chosen probabil-
ity 𝛽, and sTI the standard deviation, which will be defined further. At each con-
centration level, i.e. for each validation material, the β-ETI bounds are separately
computed and are graphically connected to draw a profile, giving its name to the
procedure.

It has been recognized that the performance of a method is greatly dependent on
the concentration in a nonlinear way (see Section 7.5). Therefore, the linear interpo-
lation between interval bounds is incorrect, but it is a simple and convenient solution
to illustrate and graphically interpret a MAP. But the use of straight-line segments
when profiles are expressed as percentages to the reference concentration can be
misleading for some complementary calculations as explained in the next section
about the limit of quantification.

Since the first publication in 1996, the number of validation examples based on
the MAP has increased. Figure 5.4 illustrates the results of a simple query of the
document database Science Direct, run by Elsevier. Searched papers must contain
the term “accuracy profile” in the title. About 815 publications were found, but it can
be assumed that this number is an underestimation since this validation procedure
was standardized and may have been used but not cited in the title, or unpublished
analytical methods were validated using an accuracy profile.

Over the same period, the terms “method validation” and “analytical method”
appeared in approximately 21,000 publications in chemistry journals. Thus, 2% and
5% of the publications were based on the MAP procedure. This significant difference
is due to semantic ambiguity. Many analysts use the term “validation” when devel-
oping or characterizing a new method and just checking the specificity, i.e. verifying
the method is correctly determining the analyte it is supposed to.
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Table 5.1 THEOPHYLLINE – description of the dataset.

Title of the dataset THEOPHYLLINE

Reference publication [23]
Measurand Theophylline concentration in plasma, expressed in μg/l
Measurement method Ultra-High Pressure Liquid Chromatography (UHPLC) coupled

with a tandem mass spectrometer detection UHPLC-MS/MS
Validation range [0.05, 10] μg/l
Acceptance interval ±25%. Classic value for biological analysis
Validation materials Six validation materials containing 0.05, 0.1, 0.5, 1.0, 2.5, and

10.0 μg/l respectively, prepared by SAM from a batch of
homogenized plasma

Validation design Series (I = 6), replicates/series (J = 2), levels (K = 6)
Calibration design Series (I = 6), replicates/series (J ′ = 2), levels (K ′ = 5)

containing 0.02, 0.1, 0.5, 2.5, and 10.0 μg/l respectively
Total number of
measures

60 measurements on calibration solutions. 72 measurements on
spiked materials.

Predicted
concentrations

Table 5.2

Statistics Table 5.3

5.2.2 Method Accuracy Profile by Example

The THEOPHYLLINE dataset already used in Section 2.2 will illustrate the steps
described above in building the MAP and explain the final interpretation. Details
on instrumental conditions and sample preparation are described in the original
publication [23]. The dataset features are summarized in Table 5.1. Calibration
data are not presented, except for the series 1 data already put together in Table 1.3
to illustrate the different applicable algorithms to estimate a calibration curve.
As explained, different calibration models and regression methods apply to the
same dataset to obtain different calibration curves and, therefore, inverse-predicted
concentrations. For all series, the latter expressed in μg/l, are gathered in Table 5.2.
They were calculated using second-order polynomials fitted by WLS regression.
In Section 8.1, the role of the different regression techniques will be illustrated to
demonstrate how the accuracy profile is a very efficient tool for selecting the best
calibration function.

All details on the formulas used to obtain inverse-predicted concentrations are
already described in Section 5.3.1. Compared to the original publication [23], the
results in Table 5.2 are rounded to facilitate a possible use as benchmark. This
remark is intended to explain slight differences between the calculated data and
those originally published. Because many formulas use sums of squares, an even
small difference may result in an even more important difference in the final result.
In Table 5.3, we gather the basic statistical parameters that are necessary to draw
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Table 5.2 THEOPHYLLINE – inverse-predicted concentrations of the validation materials
obtained by WLS quadratic regression (μg/l).

Series

Calibrator (𝛍g/l) Replicate 1 2 3 4 5 6

0.05 1 0.077 0.052 0.055 0.049 0.051 0.076
2 0.074 0.058 0.056 0.049 0.052 0.055

0.1 1 0.114 0.112 0.104 0.100 0.113 0.147
2 0.113 0.110 0.101 0.105 0.107 0.112

0.5 1 0.534 0.509 0.479 0.593 0.538 0.506
2 0.543 0.494 0.478 0.535 0.512 0.514

1.0 1 1.144 1.028 0.902 0.988 0.977 0.975
2 1.113 0.996 0.892 1.074 0.957 0.970

2.5 1 2.560 2.372 3.127 2.888 2.380 2.420
2 2.486 2.233 2.280 2.585 2.394 2.472

10 1 10.424 10.164 9.928 10.037 10.134 10.470
2 10.829 10.606 9.286 10.832 10.518 10.998

a MAP. In this example, 𝛽% is set equal to 80%, which means that each 𝛽-ETI will
contain, on average, 80% of the future measurements that could be obtained on
these validation materials. For example at the concentration level of 0.5 μg/l, 80%
of possible measurement values are expected to lie between [0.470, 0.569] μg/l.
Explanation and computation details are given further in Section 5.3.1.

The results summarized in Table 5.3 were obtained using the worksheet program
called Resource H β-ETI (Excel) This remark is intended to explain that they can
easily be reproduced by any analyst. The interval bounds are not directly used to
represent the MAP graphically. Beforehand, they are ratioed to the reference value
X assigned to each validation material. This convenient mode of expression is a
percentage that can be interpreted as a recovery yield bounded with its dispersion
interval β-ETI.

The relative values of TI limits must not be confused with the relative standard
deviation (RSD) classically used by analysts to express method performances
as described in Section 3.2.1. For instance, at level X = 0.050 μg/l, the average
inverse-predicted concentration is Z = 0.059 μg/l, and the standard deviation
of repeatability sr = 0.0064 μg/l. Thus, the RSD of repeatability for this level is
RSDr = 100 × 0.00064

0.059
= 10.8%. While the recovery yield interval at the same concen-

tration is completely different [84%; 150%]. RSD is not interesting for the present
objective of validation because it is not compared to an acceptance criterion. If
Z was used instead of X to compute the relative TI bounds, the biases would be
included and may modify the resulting values. Ratioing the intervals is also a way
to illustrate the method profile in a familiar manner for analysts.
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Table 5.3 THEOPHYLLINE – main validation parameters and β-expectation tolerance
interval bounds.

Parameters Levels

Concentration (μg/l) X 0.050 0.10 0.50 1.0 2.5 10.0
Lower acceptance limit AL 0.038 0.075 0.375 0.750 1.875 7.500
Upper acceptance limit AU 0.063 0.125 0.625 1.250 3.125 12.500

Precision parameters
Number of series I 6 6 6 6 6 6
Number of measures I ⨯ J 12 12 12 12 12 12
Number of replicates J 2 2 2 2 2 2
Predicted concentration Z 0.059 0.112 0.520 1.001 2.516 10.352
Recovery yield % 117 112 104 100 101 104
Repeatability std. dev. sr 0.0064 0.0104 0.0192 0.0287 0.2641 0.3905
Between-series std. dev. sB 0.0089 0.0067 0.0266 0.0748 0.0000 0.2841
Intermediate Precision sIP 0.0110 0.0124 0.0328 0.0802 0.2641 0.4829

β-Expectation Tolerance Intervals (β-ETI)
Tolerance interval std. dev. sTI 0.0117 0.0130 0.0350 0.0862 0.2749 0.5093
Degrees of freedom NE 7.01 9.59 7.02 5.69 10.91 9.22
Coverage factor kTI 1.41 1.38 1.41 1.45 1.36 1.38
Proportion 𝛽% 80% 80% 80% 80% 80% 80%
Lower bounds 0.042 0.094 0.470 0.876 2.141 9.649
Upper bounds 0.075 0.129 0.569 1.126 2.891 11.055

Notations are explained in Section 5.3.1.

Figure 5.5 is based on Table 5.4 data and provides a typical example of an accuracy
profile. Since the validation range is widely scattered, covering six concentration lev-
els and three orders of magnitude between 0.05 and 10.0 μg/l, the funnel shape of the
profile is visible. For the above-explained reasons, relative TIs are not symmetrical in
respect to the 100% recovery line. The elements used to draw the MAP are as follows:

On the horizontal axis:

– The theoretical concentration of the analyte, denoted X , assigned to the validation
materials and obtained, in this example, by standard additions.

On the vertical axis:

– The average recovery yield is the gray dots.
– The two bounds of the β-ETI of inverse-predicted concentrations Z, expressed as

recovery yields and connected by interpolation solid lines.
– The limits of the acceptance intervals are two horizontal dashed lines, defined

according to the objective of the method, also expressed in %, like the β-ETI
bounds.
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Figure 5.5 THEOPHYLLINE – MAP with six validation materials. Inverse-predicted
concentrations are obtained with WLS quadratic model. Dots: average recovery yields. Solid
lines: β-ETI for 𝛽% = 80%. Dashed lines: acceptance intervals (±25%).

Table 5.4 THEOPHYLLINE – β-expectation tolerance intervals relative to the reference
values of the corresponding level.

Levels (𝛍g/l)
0.050

(%)
0.10
(%)

0.50
(%)

1.0
(%)

2.5
(%)

10.0
(%)

Recovery yield (%) 117 112 104 100 101 104
Expectation tolerance interval 𝛽 = 0.80 84 94 94 88 86 96

150 129 114 113 116 111
Acceptance interval 75 75 75 75 75 75

125 125 125 125 125 125

The graphical interpretation rules are simple and summarized in Figure 5.6:

1. When the bounds of the β-ETIs are within the acceptance interval, the method is
said to be valid at this level of concentration because it can be predicted that at
least 𝛽% of future measures will lie inside the acceptance interval, for instance at
±25% around the analyte assigned true value in this study.

2. When a single bound is outside the acceptance interval, the method is no longer
considered capable of providing the expected proportion of accurate measure-
ments.

It is possible to define the validated range of the method in more statistical terms.
It is the concentration range where at least 80% of the measurements the method
provides are considered acceptable. In Section 5.4.6, it is explained how to compute
the proportion of results exceeding the bounds of the β-ETIs and defined as nonac-
ceptable.
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Figure 5.6 THEOPHYLLINE – validation and validated ranges (𝛽% = 80%).

Finally, the concentration where the method is no longer valid is determined by
any intersection between one of the β-ETI interpolation segments and the accep-
tance interval limits. In this example, the crossing happens around 0.1–0.2 μg/l.
More exactly, it is at 0.129 μg/l, and the rationale for accurately calculating this
point is explained below. Two concentration ranges can then be defined:

– The validation range a priori set by the analyst, i.e. [0.020, 10.00] μg/l.
– The validated range is calculated by considering the intersection point between

β-ETI and the acceptance interval, when it exists. For this example, the validated
range spreads between [0.129, 10.00] μg/l. Some FDA regulatory documents also
propose to define the two bounds of the validated range as the lower limit of quan-
tification (LLOQ) and the upper limit of quantification (ULOQ), respectively.

An important point when calculating the intersection point to establish the LLOQ
is to use the absolute inverse-predicted concentrations, as collected in Table 5.3, and
no longer the recovery yields, as in Table 5.4. This precaution is compulsory to avoid
a bias of the artifact due to the linear interpolation between TI bounds. Proper inter-
polation curves should be hyperbolas.

Figure 5.7 illustrates the lower part of the accuracy profile, between 0.02 and
0.6 μg/l. It shows how to calculate the intersection point. In mathematical terms,
it consists in computing the intersection of two straight lines related to absolute
inverse-predicted concentrations. This means finding the roots of a system of
two equations with two unknowns. This is a typical algebraic problem easily
solved with any worksheet. Obviously, when 𝛽 probability or acceptance interval
changes, so is the intersection point modified as well as the bounds of the validated
domain.



5.2 Method Accuracy Profile (MAP) 121

Figure 5.7 THEOPHYLLINE –
lower part of the MAP
expressed as absolute
inverse-predicted concentration
(𝛽% = 80%). The arrow
indicates the lower limit of the
validated range that can be
used as LOQ (0.129 μg/l).
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To illustrate the method, let us consider the data recorded in Table 5.3 for the
THEOPHYLLINE example at levels A = 0.1 μg/l and B = 0.5 μg/l, since it is between
these two levels that one segment of the tolerance interval profile crosses of the upper
limit of acceptability. As stated, it is compulsory to use absolute values. The following
notations reported in Figure 5.8 will help to understand the computation:

– Z recovered concentration values on the Y -axis.
– X known concentration values on the X-axis
– XA and XB concentrations of the selected levels A and B, respectively.
– ZAT and ZBT tolerance interval upper bounds at selected levels.
– ZAA and ZBA acceptance interval upper bounds at selected levels.
– XLOQ concentration at the crossing point defined as the LOQ.

These two straight lines can be represented by a system of two equations, the first
describes the acceptance limit, which varies with the concentration as it is defined
as a percentage, and the second the tolerance interval interpolation segment. Since,
by construction, the acceptance interval always passes through zero, we must find
A0 = 0.

Equation (1.1) for the acceptance interval Z = A0 +A1X
Equation (1.2) for the tolerance interval Z = T0 +T1X

The slope and intercept of Eq. (1.1) are calculated as follows:

Slope of Eq. (1.1) A1 = ZBA−ZAA

XB−XA

Intercept of Eq. (1.1) A0 = ZAA −A1XA

Symmetrically for Eq. (1.2):
Slope of Eq. (1.2) T1 = ZBT−ZAT

XB−XA

Intercept of Eq. (1.2) T0 = ZAT −T1XA
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Figure 5.8 Schematic representation for LOQ calculation.

Finally, the abscissa of the crossing point is given by:

XLOQ =
A0 − T0

T1 − A1

To illustrate the calculation, a worksheet can easily be implemented as illustrated.
Finally, XLOQ = 0.129 μg/l. It must also be noted that A0 = 0 as expected. When the
proportion 𝛽 is modified, so is the LOQ. For instance, when 𝛽% = 67%, it becomes
XLOQ = 0.099 μg/l. This remark confirms the usefulness of this proposal to define
the LOQ, but harmonization is necessary to make it acceptable. Chapter 9 suggests
a more extensive discussion about this fundamental validation parameter.

5.3 Statistical Dispersion Intervals

An interval for Z is a set of real numbers for which a≤Z ≤ b, where a and b are real
numbers called the bounds or the limits of the interval. It is used together with the
symbol [a, b]. Globally there are two categories of statistical intervals, one is used to
describe, the other to predict.
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For instance, confidence intervals (CI) are the best-known, widely explained and
used in the statistical literature. It is a descriptive interval around the computed value
of a parameter, such as a mean or a standard deviation. It is assumed to contain the
theoretical true value of the corresponding parameter with a certain probability of
error conventionally denoted 𝛼. True value is likely to lie in this interval; the adjective
“likely” relates to the confidence level of the confidence interval, classically denoted
1− 𝛼. The practical definition of the CI is available in ISO 23833:2013: “range of ana-
lytical error expected to contain the true value with a stated uncertainty as estimated
from a statistical model of the measurement process.” Any true statistical parameter
of a population is assumed to be bounded by the confidence interval.

In contrast, there are at least two other categories of statistical dispersion inter-
vals that are less well known but extensively discussed here, namely the prediction
intervals and the tolerance intervals (TI). In the prospect of method validation and
measurement uncertainty, they are particularly interesting. Unfortunately, the defi-
nitions are confusing.

In statistical literature, there are references to both tolerance intervals, sometimes
referred to as:

– β-γ-content tolerance interval (β-γ-CTI).
– β-expectation tolerance interval (β-ETI).

TIs were introduced by the end of the 1940s when quality assurance and statisti-
cal process control principles became widespread in industry. Table 5.5 proposes a
classification of different statistical intervals noted from A to D, depending on the
study’s goal. It is compiled and adapted from [24].

The prediction interval is an interval that will “contain a future randomly selected
observation from a distribution.” With a specified degree of confidence. It is gener-
ally useful to predict the result of one, or a small number, of future measurements.
Prediction intervals for all future observations are of interest only if a small num-
ber of measurements are produced because they are often very wide. Also, the exact
number of future measurements is sometimes not known or may conceptually be
infinite. Moreover, rather than requiring that the calculated interval contain a spec-
ified number of units, it is generally sufficient to construct an interval to contain a
substantial proportion of such units.

Table 5.5 Examples of some statistical intervals.

Goal Description Prediction

Range A. Tolerance interval to contain
(or cover) at least a specified
proportion of a distribution

B. Prediction interval to contain
the observations from a future
sample

Probability C. Confidence interval for the
probability of an observation
being less than (or greater than)
some specified value

D. Prediction interval to contain
the proportion of observations in
a future sample that exceed a
specified limit

Source: Adapted from Meeker et al. [24].
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Figure 5.9 Comparison tolerance and confidence intervals calculated for 18 replicates
assumed to be normally distributed.

Specifically, the TI is an interval that one can claim to “contain at least a speci-
fied proportion, 𝛽, of the distribution” with a specified degree of confidence usually
denoted 𝛾 in this context but corresponding to the classic level of confidence used for
CI. Such an interval is of particular interest in limiting the process capability for mea-
surements produced in massive quantities. This contrasts with a prediction interval
which is, as defined, of greatest interest in predicting a small number of future units.

Thus, it was demonstrated that a 𝛽-expectation tolerance interval (𝛽-ETI) can also
be defined as a prediction interval for a single future observation.

To illustrate how these distinct types of statistical intervals may apply, Figure 5.9
compares the intervals obtained with 18 replicates performed on a single sample
and assumed to be normally distributed1. This is the simplest situation and formulas
used for this example are not presented but can be found in many publications, such
as [25]. The major difference between tolerance and confidence intervals appears:
the TI is applied to describe the whole data distribution, while the CI is used to char-
acterize a statistical parameter (the mean for this example) which is a combination
of data.

Apparently, there is some confusion among the definitions of the term tolerance
as used in standards or guidelines. In ISO 16269-6 standard, a TI is “statistical dis-
persion interval,” and in ISO 12669-8 standard, it is a “prediction interval.” More-
over, tolerance can also be defined as a complement to acceptance. For instance, in
ISO/IEC Guide 98-4, the following definition is proposed for the tolerance interval
“the interval of permissible values of a property” and, at the opposite, the rejection
interval is “the interval of non-permissible measured values.” In the same document,
the acceptance interval is “the interval of permissible measured quantity values”
[26]. The concepts are reviewed in Section 8.2 on the conformity assessment of a

1 Unpublished personal data
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sample. In the following Sections 5.3.1 and 5.3.2, the concept of tolerance interval,
abridged as TI, is used the same way as it is classically presented in the statistical liter-
ature. For the validation of analytical methods, two kinds of TI have been proposed:

β-Expectation
tolerance interval
(β-ETI)

It contains the value of a future observation, with a coverage
probability 𝛽. As already mentioned, this is the type of
statistical interval chosen by the SFSTP commission for the
calculation of a MAP and the validation of analytical methods
(see Tables 5.3 and 5.4). It corresponds to the letter A in
Table 5.5. As explained in Section 7.2, its great advantage is to
be suitable for estimating MU since it corresponds to an
interval containing a given proportion of the possible
measurements of a measurand. This property fits the definition
of the coverage interval introduced in Section 7.6.

β-γ Content
tolerance interval
(β-γ-CTI)

It is also known as the guaranteed coverage tolerance interval
with a confidence level of 𝛾 [27]. In this case, 𝛽 is the proportion
as in β-ETI, while 𝛾 is a confidence level. As specified in ISO
3534-1:2006, in this context, the confidence level is the
“long-term proportion of intervals” constructed in this manner
that will include at least the expected proportion. This type of
statistical dispersion interval is more difficult to relate to the
estimation of MU. On the other hand, it is adequately adapted
to setting up a quality control or a control chart, as illustrated in
Section 7.3.

Tolerance interval estimators generally assume specific data distributions, such
as Normal distribution exemplified by Figure 5.9, or Poisson distribution. The data
collected to build a MAP has a more complex hierarchical structure due to the fact
that measurements are completed in several series. The series is interpreted as a
random effect factor, similar to the laboratory effect during an interlaboratory study
(see Section 3.2). Therefore, the calculation of the TIs must take this structure into
account. Each measurement value is considered as the combination of several dis-
tribution laws. The method for computing β-ETI described in the following chapters
applies to this type of structured data and has been specifically developed by several
authors for balanced and unbalanced experimental designs [27, 28].

5.3.1 𝛃-Expectation Tolerance Interval (𝛃-ETI)

Following our previous convention, X represents the known concentration of a
validation material, Y the instrumental response, and Z the inverse-predicted
concentration, directly obtained or by inverting the calibration function. The β-ETI
for a population of measurement values Z is then expressed as follows:

[Z ± kTI × sTI]

with
Z: Grand mean or global average of all data (I × J).
kTI : Coverage factor of β-ETI depending on the coverage probability 𝛽%.
sTI : (Combined) standard deviation of the β-ETI.
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The following formulas are applicable for calculating the parameters of β-ETI:
Grand mean of inverse-predicted concentrations

Z =
∑I

i=1
∑J

j=1 Zij

I × J
(5.2)

Number of series

1 ≤ i ≤ I (5.3)

Number of replicates per series

1 ≤ j ≤ J (5.4)

Variance ratio

A =
s2

B

s2
r

(5.5)

Weighting coefficient Q

Q = A + 1
J × A + 1

Q = IJ
⎛
⎜⎜⎜⎝

s2
B

s2
r
+ 1

J × s2
B

s2
r
+ 1

⎞
⎟⎟⎟⎠

(5.6)

Variance of intermediate precision (see note 1)

s2
IP = s2

r + s2
B

Variance of the β-ETI

s2
TI = s2

IP

(
1 + 1

I × J × Q

)2

(5.7)

Standard deviation of the β-ETI (see note 2)

STI = sIP

√
1 + 1

I × J × Q
(5.8)

Number of degrees of freedom (df ) or Number of effective measures

NE = (A + 1)2

(
A+ 1

J

)2

I−1
+

1− 1
J

IJ

(5.9)

Coverage factor (quantile of Student’s law) kTI = tNE ,
1+𝛽

2
(5.10)

Note 1: Formulas of variances s2
IP, s2

r and s2
B are available in Section 3.4.1 and

obtained with the classic standard ANOVA algorithm of ISO 5725.
Note 2: The standard deviation of the β-ETI is introduced here for convenience to

simplify further computation but does not appear in the literature.
The parameter NE is considered as a number of effective measures because it can

be used to check whether the total number of data I × J collected to build the inter-
val is appropriate, as explained in Section 5.4.3. This number depends on many
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intermediate parameters, mainly the variance ratio A. On the other hand, from a
statistical viewpoint, it corresponds to the number of degrees of freedom after esti-
mating the TI standard deviation. By definition, it can be interpreted as the number
of independent values that remain after all the relationships that link data have been
established. It plays a key role in computing the coverage factor kTI .

Because the starting point is to compute the repeatability and intermediate
precision variances, Resource E worksheet should be used to compute the β-ETI.
The simplest solution is to add new lines and new formulas, leading to another
resulting worksheet called Resource H. It is applied to the THEOPHYLLINE dataset
on the subset of measurements obtained for the second validation material and
listed in Table 5.2. In this example, the assigned reference value is identified as
the known concentration of the validation material, that is 0.100 μg/l. For each
validation material (or level), the same worksheet must be copied and updated with
corresponding measurements.

The value in cell B2 (yellow highlighted) containing the assigned value must be
consequently modified, as well as the measurement values in cells B5:D10. Follow-
ing the principle already explained, formulas are made visible in column C to allow
the reader to adapt their own worksheet. They are on the right of column B, which
contains the expected result. This worksheet is an example that can be improved
or adapted. For instance, if there are more than six series of two replicates or if the
design is unbalanced. Until row 30, all formulas are the same as in Resource E work-
sheet. The lines after row 42 will be explained in Section 7.2.4 about MU.

The clumsiest part of this worksheet is between rows 35 and 38, where the cover-
age factor is computed. Because the formula for obtaining the number of degrees of
freedom (df ) NE is complex, it is recommended to split it into several lines to better
control possible typing errors.

After all, this number of df is usually non-integer; for this example, it is 9.59.
Equation (5.10) shows how the df is used to calculate the quantile of the Student’s
t distribution law which corresponds to the interval coverage factor. Unfortunately,
the Excel built-in function TINV which gives the quantile of the Student’s t, only
accepts integer numbers of df . However, it is essential to know this quantile to obtain
the coverage factor.

In the absence of a suitable function, an approximate value should be obtained by
linear interpolation between the quantiles given by the upper and lower-rounded
integers of NE. In Section 5.4.3, Figure 5.15 illustrates the differences between exact
and approximate Student’s t value obtained by linear interpolation. Obviously, this
approximation may generate an error that is significant if NE < 4.

We will see that the minimal requirement for building a MAP is to collect at least
I × J = 9 measures by level, and it is exceedingly rare to cope with this downside.
In such situations, it is recommended to use the t.ppf Python function available
after importing the scipy.stats package that gives exact values for non-integer
numbers of df . Lines 42–45 include formulas to calculate the MU. Details about
this new quantity are available in Section 7.2, where all equations are explained and
commented.
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Resource H β-Expectation Tolerance Interval (Excel).
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Resource H: β-Expectation Tolerance Interval
Assigned Reference Value (µg/L) 0.100

  Recovered concentration

  Replicate 1 Replicate 2 n(i) SS(i)

Series 1 0.114 0.113 2 5.00E-07

Series 2 0.112 0.110 2 2.00E-06

Series 3 0.104 0.101 2 4.50E-06

Series 4 0.100 0.105 2 1.25E-05

Series 5 0.113 0.107 2 1.80E-05

Series 6 0.147 0.112 2 6.13E-04

General parameters
Number of series (I) 6 =COUNT(B5:B10)

Number of measures (IJ) 12 =COUNT(B5:C10)

Number of replicates (J) 2 =IF(D5*B12<>B13;"Error";D5)

Residual sum of squares (SSW) 0.00065000 =SUM(E5:E10)

Total sum of squares (SSt) 0.00163500 =DEVSQ(B5:C10)

Inter-series sum of squares (SSB) 0.00098500 =B16-B15

Repeatability variance (s2r) 0.00010833 =B15/(B13-B12)

Temporary between-variance 0.00004433 =((B17/(B12-1))-B18)/B14

Between-series variance (s2B) 0.00004433 =IF(B19<0;0;B19)

Reproducibility variance (s2R) 0.00015267 =B18+B20

Precision
Recovered concentration 0.112

Repeatability std. dev. (sr) 0.0104083 =SQRT(B18)

Between-series std. dev. (sB) 0.0066583 =SQRT(B20)

Intermediate Precision std. dev.. (sFI) 0.0123558 =SQRT(B21)

Trueness
Relative bias (%) 11.5% =(B23/B2)-1

Recovery yield (%) 111.5% =B23/B2

beta-Expectation Tolerance Interval
Tolerance (beta) 80%

Variance Ratio (A) 0.409 =B20/B18

Coefficient Q 0.7750 =(B32+1)/(B14*B32+1)

Weighing factor W 1.0524 =SQRT(1+1/(B13*B33))

Number of degrees of freedom (NE) 9.59

t Student lower 1.38 =TINV(1-B31;ROUNDDOWN(B35;0))

t Student upper 1.37 =TINV(1-B31;ROUNDUP(B35;0))

Coverage factor (kTI) 1.38 =B36-(B36-B37)*(B35-ROUNDDOWN(B35;0))

b-ETI standard deviation (sTI) 0.013003 =B26*B34

Lower bond expectation interval 0.094 =B23-B38*B39

Upper bond expectation interval 0.129 =B23+B38*B39

Uncertainty
Composed standard uncertainty (uc(Z)) 0.013 =B39

Extended uncertainty (U(Z)) 0.026 =2*B43

Relative uncertainty (UR%) 26.0% =B44/B2

=(B32+1)^2/((B32+1/B14)^2/(B12-1)+(1-

1/B14)/B13)

=AVERAGE(B5:C10)

5.3.2 𝛃-𝛄 Content Tolerance Interval (𝛃-𝛄-CTI)

Another type of statistical dispersion interval is called β-γ-CTI and is considered
by several authors to be well-suited to validate analytical methods [27]. The benefit
of β-γ-CTI is to allow an easy computation of the warning and control limits of a
control chart, as explained in Section 4.4, but the downside is that it is not suitable
for estimating MU. The formulas for the β-γ-CTI are combined below, using the same
notations as β-ETI.
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Table 5.6 THEOPHYLLINE – parameters of β-γ-CTI (𝛽% = 80%, 𝛾% = 95%).

Reference value (μg/l) 0.05 0.10 0.50 1.00 2.50 10.00
Std. dev. of the interval sIC 0.0214 0.0227 0.0642 0.1634 0.4555 0.8940
Weighting coefficient W 7.22 9.30 7.23 6.41 12.93 8.91
Coverage factor kIC 1.37 1.35 1.37 1.38 1.33 1.35
Content interval bounds 0.03 0.08 0.43 0.78 1.91 9.14

0.09 0.14 0.61 1.23 3.12 11.56

General formula Z ± kIC × sIC (5.11)

Coverage factor of the interval kIC = z( 1+𝛽
2

) ×
√

1 + 1
W

(5.12)

Quantile of Normal law z( 1+𝛽
2

) (5.13)

Standard deviation of the interval

sIC =

√√√√s2
FI +

√(
H1 × sB

J

)2

+
(

H2 × (J − 1) × sr

J

)2

(5.14)

Weighting coefficient W =
I ×

{(
SCEB
IJ−1

)
+ (J − 1)

(
SCEr
I−1

)}

(
SCEB
IJ−1

) (5.15)

Coefficient H1 H1 = I − 1
𝜒

2
1−𝛾,I−1

− 1 (5.16)

Coefficient H2 H2 = I(J − 1)
𝜒

2
1−𝛾,I(J−1)

− 1 (5.17)

The notation 𝜒
2
1−𝛾,I(J−1) represents the quantile of the 𝜒2 distribution (chi-square)

for the probability 1− 𝛾 and the number of degrees of freedom equal to I(J − 1). This
value is directly obtained with the Excel built-in function CHIINV. Table 5.6 groups
the parameters obtained from the THEOPHYLLINE data provided in Table 5.2. Like-
wise, the β-ETI, before plotting these new intervals on the accuracy profile, the values
relative to the reference concentration value X must be calculated. In Table 5.7 table,
the relative limits of the β-γ-CTI as well as those of β-ETI and the acceptance limits,
are collected for comparison.

The complete MAP for theophylline is illustrated in Figure 5.10. The bounds of
the β-γ-CTI are larger as they bring in a confidence level. They can be interpreted
as intervals where the true β-ETI may probably lie with a risk of error of 5%.
The worksheet about precision parameters referenced Resource E was extended
to give a new worksheet applicable to the computation of the β-ETI and called
Resource H. Likewise, the worksheet called Resource I β-γ Content Tolerance
Interval (Excel) for the β-γ-CTI is an extension of Resource H and uses the
same layout.
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Table 5.7 THEOPHYLLINE – summary of relative tolerance intervals bounds.

Reference value (μg/l) 0.05 0.10 0.50 1.00 2.50 10.00
Recovery (%) 117% 112% 104% 100% 101% 104%
β-ETI 𝛽% = 80%. 84% 94% 94% 88% 86% 96%

150% 129% 114% 113% 116% 111%
β-γ-CTI with 𝛽% = 80%; 𝛾% = 95%. 59% 81% 86% 78% 76% 91%

176% 142% 121% 123% 125% 116%
Acceptance limit ± 25% 75% 75% 75% 75% 75% 75%

125% 125% 125% 125% 125% 125%

Resource I β-γ Content tolerance interval (Excel).
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Figure 5.10 THEOPHYLLINE – accuracy profile with the two tolerance intervals
(𝛽% = 80%, 𝛾% = 95%). Inverse-predicted concentrations are obtained with WLS quadratic
models.

In Resource I worksheet, the calculation of the standard deviation of the interval,
denoted sIC. is a little bit complicated. It requires two weighting coefficients, H1 and
H2, which contain the quantiles of the 𝜒

2 law that are calculated as follows:

Coefficient Degrees of freedom Excel formulas Value

H1 I − 1 = 6 − 1 = 5 =CHIINV(0.95;5) 3.36
H2 I × (J − 1) = 6 × 1 = 6 =CHIINV(0.95;6) 2.67

Up to row 30, all formulas are the same for both TIs. Therefore, it is possible to
combine them into one single worksheet. In rows 31 and 32, the two probability
values associated with this type of interval are entered. Some formulas are quite
long and made visible in column C. The worksheet could be improved by reorga-
nizing Eqs. (5.14)–(5.17). It is also possible to put together in a single worksheet
the three programs Resource E, Resource H, and Resource I. To present the details
of the calculation and facilitate the adaptation and verification by any laboratory,
they are kept separate. In Section 5.4.4, the influence of the choice of probabili-
ties 𝛽 and 𝛾 is discussed in more detail, especially in view of the various official
validation guides.

5.4 Accuracy Profile: Special Topics

Besides its application for method validation, MAP can also be of some help in
optimizing some final steps of the operating procedure or checking if the planning
of the validation study was correct or may be improved.
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Table 5.8 THEOPHYLLINE – coefficients of all quadratic models adjusted to the series of
calibration data.

Series Algorithm a0 a2 a3 r2 (%) AIC

1 OLS 1.0403 11.779 0.0837 99.5 59.50
1 WLS 0.0489 16.312 −0.4281 95.5 39.46
2 OLS 0.5482 15.258 −0.1924 100.0 23.87
2 WLS 0.0375 17.828 −0.485 99.4 20.94
3 OLS 0.1614 17.506 −0.4985 99.9 39.04
3 WLS 0.1866 17.697 −0.5232 99.0 25.05
4 OLS 0.3039 6.5998 −0.0847 99.9 30.69
4 WLS 0.1408 7.2525 −0.1574 99.4 3.67
5 OLS 0.1874 8.5221 −0.118 100.0 −1.09
5 WLS 0.0391 9.2555 −0.2014 99.7 0.86
6 OLS 0.3315 6.4809 −0.0855 100.0 11.69
6 WLS 0.0398 7.7705 −0.2306 99.3 5.56

5.4.1 Choose the Best Calibration Model

In Section 2.1, it was mentioned that various calibration models can be adjusted
to the same dataset, using either OLS or WLS estimators. The first question was
to select the best calibration model. In statistical literature, different parameters
are proposed, such as the coefficient of determination r2 or the Akaike informa-
tion coefficient (AIC). Regarding the example in Table 2.2, no decision could be
made because these parameters are too close. In other words, they are not sensitive
enough. Table 5.8 summarizes the coefficients for all quadratic models separately
adjusted to the six-calibration series of the THEOPHYLLINE dataset. These values
were obtained using the short Python script of Resource B applied to the five other
series of calibration data (not provided).

The situation seems even more confusing as the calibration model coefficients
are highly variable. It is even surprising to have consistent inverse predicted con-
centrations when the coefficients seem to change so much. This confirms two basic
proposals:

– Validation study should be organized into several series of measurements to verify
that the quantification capacity of the method is not affected over time by various
sources of variation.

– Calibration model is a critical issue but not the key issue. Using calibration param-
eters, such as sensitivity or linearity, is not pertinent to assess method validated
range.

It is possible to construct several MAPs with different inverse-predicted con-
centrations obtained either by OLS or WLS calibration models. When differences
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Figure 5.11 THEOPHYLLINE – accuracy profile (MAP) with the two tolerance intervals
obtained for OLS quadratic models (𝛽% = 80%, 𝛾% = 95%).

appear among these profiles, it may help to make the final decision about the best
calibration model. The profile based on OLS models is illustrated in Figure 5.11
and must be compared to Figure 5.5 obtained with WLS models. The decision
is evident: the new MAP is much less favorable than the previous one as the
validated range is clearly diminished; the OLS model is unsatisfactory. Moreover,
a proposal was to define the LOQ as the lowest limit of the validated range. It was
0.129 μg/l with WLS curves, while it is at 2.698 μg/l with the new MAP. This example
illustrates the possible use of MAP as an ultimate optimization tool. For future
routine application of the theophylline method of analysis, for each series,
the calibration curve must be a second-order polynomial calculated by weighted
least-squares
regression.

In Section 2.3.2 about WLS, it was underlined that the choice of the weighting may
have some consequences on the performance of the inverse prediction. All presented
computations were done using the questionable 1/X2 weighting factor. Even better
results may be obtained with another more adapted choice.

5.4.2 Apply Consistent Experimental Design

Since the 1930s, many published books focused on the theory of experimental
design. The early contribution of R.A. Fisher (1890–1962), called The design of
experiments is the keystone of the theory. In the introduction, it is explained why,
in any experimental work, it is fundamental to organize the trials according to
well-established rules:
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Figure 5.12 Schematic representation of the experimental design to be used to build a
relevant accuracy profile. Material means reference material of known concentration.

…a criticism frequently levelled at test results is that the experiment was
poorly designed and, therefore, poorly conducted. Assuming that the experi-
menter did what he intended to do, this point comes down to the question of
the design and logical structure of the experiment.

Since this work, there has been much evidence that the relevance of experimen-
tal data fundamentally depends on the conditions it was collected. A consequent
number of publications propose optimal experimental designs adapted to different
contexts [29]. Therefore, to obtain a relevant accuracy profile, it is logical also to use
a relevant experimental design based on perquisite rules. Figure 5.12 exemplifies
these rules.

Four rules are proposed to design a consistent validation experiment.

Rule 1. Select at least three validation materials (K ≥ 3) with known (or known with a
defined uncertainty) concentration levels covering the validation range. They can
combine different matrices as far as they have comparable effects. The number of three is
minima as it is used to verify the trueness is linear, i.e. the proportionality exists between
the known contents of reference material and the recovered contents after application of
the whole analytical procedure. A greater number of validation materials would be
preferable, as only three may lead to disappointment.

Rule 2. Perform under intermediate precision conditions at least three series of
measurements (I ≥ 3) for each validation material, i.e. so that several sources of
uncertainty, as representative as possible of the routine condition, come into play from
one series to another.

Rule 3. Provide a minimum of two replicates per series (J ≥ 2) on the same validation
material, performed under repeatability conditions. A number of official guides have a
higher requirement (J = 3 to 6).

Rule 4 (optional but allows for simplified calculations later). Ensure all series have the
same number of replicates to have a balanced experimental design.
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For example these rules align with the experimental design requirements for drug
development studies advocated in ISO or FDA standards, but not the ICH Q2(R2)
guidelines [3] that recommend a minimum number of replicates J = 3. The THEO-
PHYLLINE study is a good example of such a balanced design that can be summa-
rized in a condensed form as follows:

I = 6 Number of measurement series for each material, performed over six days.
J = 2 Number of replicates per series.
K = 6 Number of validation materials with known target concentration levels, set

between 0.20 and 10.0 μg/l.

We propose the concise notation 6s/2r/6l for this design, where s stands for the
series, r for replicates, and l for levels. In this example, the choice results from a
compromise between the elution time for each run and the need to establish the
MAP over a very wide concentration range.

5.4.3 Check the Number of Efficient Measurements

When the experimental design is in harmony with the above-stated rules, it is pos-
sible to compute the number of effective measurements denoted NE with formula
(5.9) presented above and recalled here.

NE = (A + 1)2

(
A+ 1

J

)2

I−1
+

1− 1
J

IJ

With A =
s2

B

s2
r

NE, corresponds to the estimated number of df , according to the well-established
Satterthwaite’s approximation procedure [30]. The probability 𝛽 and this number of
df are used to obtain the quantile of the Student’s t distribution law which appears
in the formula of the coverage factor of the β-ETI (Eq. 5.10). Finally, NE depends on
three parameters: two are chosen a priori by the experimenter, i.e. I is the number of
series, and J is the number of replicates per series; the third is the variance ratio A of
the between-series variance to the repeatability variance (or within-series variance)
and is only known a posteriori at the end of the experiment.

Being the number of df , NE is the number of independent quantities which can
be assigned to a parameter estimate and be statistically interpreted as the number of
measures that efficiently contribute to the β-ETI. The higher this number, the more
reliable the estimate and, in this case, the smaller the coverage factor. It is, there-
fore, an important indicator of what can be called to as the “quality of the study.”
Most importantly, in terms of scientific or financial optimality, NE allows us to check
whether the parameters of the experimental design have been correctly chosen and
whether the explanation of the β-ETI intervals is satisfactory.

In addition, NE also lets us complete the experimental design at the best cost by
calculating the optimal number of runs that would eventually have to be added to
obtain narrower intervals. In view of its role, it is interesting to simulate the values
that NE takes as a function of the three parameters on which it depends, I, J, and A.
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Figure 5.13 Influence of the experimental design parameters on the number of effective
measurements. A design is identifiable by s the number of series and r the number of
replicates per series, i.e. Is/Jr.

Figure 5.13 illustrates these variations as a function of the variance ratio for different
combinations of I and J marked by s, the number of series and r, the number of
replicates, in the form Is/Jr.

It is obvious that when the variance ratio A→ 0, the number of efficient
measurements tends towards (IJ − 1), while A plays a fundamental role and
underlines significant differences between the number of trials and the number of
values finally carrying information, whatever the various combinations of I and J.

In several official guides, the classically recommended minimum configuration is
labeled 3r/3s. In Figure 5.13, it appears as a thick solid line. As soon as the variance
ratio A> 3, NE falls very quickly from 8 to 3, meaning that almost two-thirds of the
data do not participate in the estimation of TIs. It is remarkable that the addition of 1
replicate per series (3s/4r) to this design does not drastically improve the situation. In
conclusion, when the between-series variance is high compared to the repeatability,
this “official” design is unfavorable. It is possible to define the most effective design
for a given budget.

For instance, if it is decided to pay for 12 analyses per level, the optimal configura-
tion is 6s/2r, or 6 series of 2 replicates/series, since NE always remains higher than 5.
In reverse the 2s/6r combination appears as the least interesting since NE falls below
2 when A is increasing. In other words, less than 20% (2/12) of data are informative.
The abacus of all other 12-trial designs, listed from bottom to top, 2s/6r, 4s/3r, 3s/4r,
and 6s/2r, confirms this trend.

The conclusion is clear: for a fixed budget, the most often successful strategy is
to make as many series as possible at the expense of the number of replicates. It is
also possible to check the limits of variation of the coefficient Q, whose calculation
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Table 5.9 Asymptotic values of the number of efficient measures for special values of the
variance ratio A.

Variance ratio A→ 0 A = 1 A→ +∞
Number of efficient measures NE NE → (IJ − 1) NE → I − 1
Coefficient Q Q → 1 Q = 2

J+1
Q → 1

J

Table 5.10 THEOPHYLLINE – efficiency rates of the experimental design.

Concentration (μg/l) 0.05 0.1 0.5 1 2.5 10
Number of measures IJ 12 12 12 12 12 12
Optimal number of df 11 11 11 11 11 11
Observed number of df NE 7.01 9.59 7.02 5.69 10.91 9.22
Efficiency rate RE 64% 87% 64% 52% 99% 84%
Variance Ratio A 1.95 0.41 1.93 6.78 0.00 0.53

is provided by the formula (5.18).

Coefficient Q Q = A + 1
J × A + 1

(5.18)

When A varies from 0 to +∞, Table 5.9 gathers the extrema of NE and Q as a
function of some special values of A. Recall that if A→ 0, the between-series vari-
ance s2

B also tends to 0, s2
B → 0. It means that there is no between-series effect, the

intermediate precision standard deviation is equal to the repeatability standard devi-
ation, and the conditions of quantification remain constant from one series to the
next; this is the most favorable situation. The opposite conclusion is reached when
A→ +∞.

It is then possible to propose a method to verify whether the observed dataset will
result in a satisfactory accuracy profile, by calculating the efficiency rate RE of the
experiment. It is obtained by ratioing the optimal number of efficient measurements,
i.e. (IJ − 1) when A→0 and the number of efficient measurements NE estimated from
the data. It can be expressed as percent:

Efficiency rate RE =
NE

IJ − 1
× 100 (5.19)

Table 5.10 summarizes the various parameters calculated from the data of the
THEOPHYLLINE study and extracted from Table 5.3. It confirms former remarks:

– At level 2.5 μg/l, A = 0 and NE = 10.91 close to (IJ − 1) = 11, study efficiency is
almost 100%.

– At level 1.0 μg/l, A = 6.78, and NE = 5.69 is close to I − 1 = 5 and the efficiency
falls to 52%.

Unfortunately, the variance ratio A is only known at the end of the experiment,
whereas its influence is important. To overcome this drawback, the organization of
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Figure 5.14 Influence of the experimental design on the coverage factor with 𝛽% = 80%.

the experimental design can be considered as an evolutionary process. Initially, a
favorable configuration is chosen, for example, 5s/2r, and the trials are conducted.
Then, the number of series can eventually be increased according to the values of the
ratio A and by taking, as an optimality criterion, the coverage factor of the interval,
which is given by the following formula:

Coverage factor (quantile of the Student’s law) kIT = tNE ,
1+𝛽

2
(5.20)

This parameter depends on NE, and consequently, on the A ratio. Using observed
data, it is possible to predict how many additional series it would be interesting to add
to the previous ones to reduce the coverage factor as much as possible and remain
within the budget. The only constraint is to keep J the number of replicates/series
constant so that the design remains balanced.

Figure 5.14 uses the same design labeling convention as Figure 5.13 to illustrate
the consequences of the coverage factor reduction when the number of series is
increased rather than the number of replicates. Once the design contains six series,
the variance ratio has almost no influence. Once the variance ratio A is estimated, it
is possible to simulate the consequences of adding new measurement series to the
existing ones and check whether the coverage is reduced.

Such simulations using the parameters obtained at the issue of the THEO-
PHYLLINE study are compiled in Table 5.11. Initially, the design included six
series; two were added, and the new coverage factors were computed, supposing
that the variance ratio remained constant. The reduction of the β-ETI width is
small, about 2–4%, and it is not interesting to add more measurements. It can be
explained by the small values of the ratio A and the good experiment efficiency
rates RE, which confirms that this validation is satisfactory.

The publication on theophylline also presents the results obtained with the same
method applied to caffeine quantification [23]. The experimental design 6s/2r is
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Table 5.11 Simulation of the addition of 2 series of measurements to the initial
experimental design.

Theophylline
Concentration (μg/l) 0.05 0.1 0.5 1 2.5 10
Number of series (I) 6 6 6 6 6 6
Number of replicates (J) 2 2 2 2 2 2
Variance ratio 1.95 0.41 1.93 6.78 0.00 0.53
Initial coverage factor 80% 1.41 1.38 1.41 1.45 1.36 1.38
Added series 2 2 2 2 2 2
Updated NE 9.79 13.30 9.81 7.96 14.93 12.81
Updated coverage factor 80% 1.37 1.35 1.37 1.40 1.34 1.35
Decrease in β-ETI width −3% −2% −3% −4% −2% −2%
Caffeine
Concentration (μg/l) 0.02 0.15 0.5 1 2.5 10
Variance Ratio 25.20 1.14 1.17 6.81 0.79 0.00
Initial NE 5.20 7.90 7.80 5.70 8.60 10.90
Initial coverage factors 80% 2.55 2.31 2.32 2.49 2.28 2.20
Updated NE 7.3 11.0 11.0 8.0 11.9 14.9
Updated coverage factor 80% 1.41 1.36 1.36 1.40 1.36 1.34
Decrease in β-ETI −45% −41% −41% −44% −40% −39%

the same, but only validation material reference values vary. For theophylline, the
addition of two new series is not especially useful, while for caffeine, it is much more
profitable because variance ratios are much higher. In this case, the β-ETI could is
reduced up to 45% at a low cost, as illustrated in the second part of Table 5.11.

The variation in the coverage factor kIT as a function of the number of efficient
measurements, i.e. the number of df is illustrated in Figure 5.15 for three classic
values of the 𝛽. It corresponds to the quantile of the Student’s t distribution law for
noninteger numbers of df . As explained in Section 5.3.1 about Resource H, it can
be obtained by two methods: an approximate value using the built-in Excel function
called TINV; or an exact value using Python t.ppf function.

Both results are reported in Figure 5.15, with the exact value as a continuous line
and the interpolate as a broken dashed line. When the number of df is below 4, the
differences between both values can be significant. To summarize, some recommen-
dations can be extracted from this figure to check if the validation study went well,
but they must be balanced according to the application being treated:

– Is the number of effective measures NE ≥ 5 ?
– Is the variance ratio A≤ 2 ?

The variance ratio A can also be interpreted as a robustness parameter over time as
it measures the between-series variability over the total variability. The performance
of the method can be assumed as stable if A is small when shifting from one series to
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Figure 5.15 Coverage factor as a function of the number of efficient measurements.

another or over time if series are scattered on different days. That is, the quantifica-
tion procedure is not sensitive to slight variations between series. In the example of
caffeine reported in Table 5.11, the A ratio varies from one validation material (level)
to another, while it is more stable for theophylline. The analytical technique used,
namely UHPLC-MS-MS, is known to be delicate to use, which probably explains
these variations.

5.4.4 Select Probability Values

Whether β-ETI or β-γ-CTI is used, three values must be selected to construct and
interpret the accuracy profile:

– 𝛽: The coverage probability, i.e. the content proportion of future measurements of
the tolerance interval, may be bound.

– 𝛾 : The confidence level for the β-γ-CTI, which represents the probability of a con-
fidence interval. In statistical literature, the confidence level is usually denoted
1− 𝛼 where 𝛼 is the risk of error. When using 𝛾 instead, we are just conforming to
the classic literature on statistical dispersion intervals.

– [AL; AU ]: The acceptance interval, also expressed as a percentage and defined by
a probability of success.

The acceptance interval is centered on the nominal value of the validation
material but is not always equal on both sides as some regulations may require
asymmetric values, such as a recovery yield ranging between 80% and 110%, as
detailed in Table 5.16. Regarding tolerance intervals, they are centered on the
average inverse-predicted concentration.

This means they are generally symmetrical. But for some analytical methods,
where the results are previously transformed into logarithms, the antilog-intervals
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are no longer symmetrical. This situation is observable for polymerase chain
reaction (PCR) methods applied to the detection of genetically modified
organisms (GMO).

The choice of the three values listed above is application domain-specific and may
not be the same for the methods applicable to the environment, consumer health,
pharmaceutical industry, etc. For example, consider the values published by the FDA
in the guidance on Bioanalytical Method Validation [6]. Two categories of analyt-
ical methods frequently employed in bioanalysis are considered: chromatographic
assays (CC) and ligand binding assays (LBAs). The requirements of the section called
“In study analysis” may help to define the three probability values in this case.

The FDA requirements are expressible in the compact form 4/6/15% for chromato-
graphic assays and 4/6/20% for immuno-analyses. They are decoded as follows: four
out of six quality controls (QC), or 67%, must be within ±15% (or ±20%) acceptance
interval around the nominal contents of the material used for the quality control. In
other words, it is acceptable that a proportion of 67% of measurements made on a
QC lie in the interval ±15% (or ±20%) around the nominal value. β-γ-CTI can also
be used to establish some acceptance rules for the analysis quality control required
by the US-FDA in the context of biological analysis.

Summary of Table 1 of FDA Guidance Bioanalytical Method Validation.

Quality Controls (QC)
Elements:

– ≥4 QC levels (LLOQ, low, medium, and high) and ≥2 replicates per QC level in each
analytical run.

– Total QCs should be 5% of unknown samples or ≥6, whichever number is greater.
– If the analytical runs consist of distinct processing batches, the QC acceptance criteria

should be applied for the whole run and each distinct batch within the runs.

Acceptance criteria:
– CC: ≥67% (4/6) of QCs should be ±15% of the nominal, and ≥50% of QCs per level

should be ±15% of their nominal.
– LBA: ≥67% (4/6) of QCs should be ±20% of the nominal, and ≥50% of QCs per level

should be ±20% of their nominal.

Truenessa) and precision
Trueness: between runs:

– CC: ±15% of nominal concentrations
– LBA: ±20% of nominal concentrations

Precision: between runs:

– CC: ±15% CV
– LBA: ±20% CV

a) Beware: in the original document the term “accuracy” is used instead of “trueness,” conversely
to the VIM definitions.

Source: Adapted from FDA [6].
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Table 5.12 THEOPHYLLINE – half tolerance intervals for different probability values.

Concentration (𝛍g/l)

Parameters 0.05 0.1 0.5 1 2.5 10

Acceptance probability 20% 20% 20% 20% 20% 20%
ITE-β (80%) 33.1% 17.9% 9.9% 12.5% 15.0% 7.0%
ITC-β-γ (80–95%) 58.6% 30.6% 17.6% 22.5% 24.2% 12.1%
ITC-β-γ (67–95%) 44.6% 23.2% 13.3% 17.1% 18.4% 9.2%

The names of the intervals are abbreviated as in the text and the associated probabilities appear in
brackets.

Official FDA requirement is that at least 4 out of 6, i.e. 67% of measurements made
on QC samples, fall within the acceptance interval [AL; AU ], which is, depend-
ing on the type of method, either ±15% or ±20% of the reference (or nominal)
value.

To have a margin of safety and to be sure of achieving this objective, it may be
recommended to choose a probability of 80% per level so that at least 4 out of 5 or
80% (instead of more than 4 out of 6) measurements are included in the chosen
acceptance interval. Finally, according to FDA rules, the probability values asso-
ciated with the statistical dispersion intervals, which are used to verify whether a
validated method is suitable for QC, come down to the following:

– Content proportion 𝛽%: 80% or 67%.
– Confidence level 𝛾%: 95%.
– Acceptance: ±15% or ±20%

Table 5.12 combines the half-intervals, expressed in % and calculated from
the THEOPHYLLINE dataset, for various combinations of probability and
interval types. To restore the coverage of one of the intervals in measure-
ment units, simply apply the percentage to the concentration in the top row.
For example, the half β-ETI (80%) is 33.1% for a concentration of 0.05 μg/l,
which gives the following bonds for the coverage interval for 80% of future
measurements:

[0.05 × (1 − 0.331); 0.05 × (1 + 0.331)] = [0.033; 0.067]

Figure 5.16 shows this set of values in graphical form, which shows the respec-
tive roles of the coverage probability 𝛽 and the confidence level 𝛾 . If the three con-
centration levels of the QCs are correctly chosen, then this method of determining
theophylline perfectly satisfies the FDA requirements for quality control. Indeed,
between 0.13 and 10 μg/l, the half intervals are below the acceptance limit symbol-
ized by the dashed line at ±20%. From this example, it is also clear that changing
𝛽% from 67% to 80% has a significative influence on the width of the interval at all
concentrations.
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Figure 5.16 THEOPHYLLINE – half tolerance intervals for different probability values.
Probabilities are in brackets after interval name abbreviations.

5.4.5 Select the Type of Tolerance Interval

Referring to the literature, both types of intervals-β-ETI and β-γ-CTI-have been pro-
posed to conduct method validation. The following table summarizes the main argu-
ments and literature now attached to either type of interval. In the last row appears
the type of TI recommended in this book.

𝛃-Expectation interval (𝛃-ETI) 𝛃-𝛄-Content interval (𝛃-𝛄-CTI)

Objective Predict the interval that
contains a known proportion
of future observations.

Define the limits of a
specified proportion of a
distribution with a guarantee.

References [17–20] [27]
Applications Method validation and/or

estimation of MU
Control charts and/or routine
quality control

As previously mentioned, the β-ETI is thus particularly suited to predicting an
interval computed from a set of observations that contains a given proportion of
future measurements. It therefore, predicts whether the method can produce,
for a given sample, a high proportion of acceptable measurements, i.e. within
the limits of a predefined acceptance interval. In practice, a recommended value
of β% = 80% was adopted because it allows compliance with the requirement
formulated by the FDA, as explained in the previous chapter. In the Section
7.3, which deals with control charts, it is also shown that this proportion allows
us to follow the typical requirements encountered for standardized control
charts.
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5.4.6 Proportion of Nonacceptable Measures

A classic misunderstanding about the 𝛽 proportion is to believe that only 𝛽% accept-
able measurements values are produced by the method. This is an incorrect inter-
pretation of this probability. The correct interpretation is that, at least, 𝛽% results
are within the tolerance interval if the β-ETI remains within the acceptance interval
bounds. While this condition is true, much more than 𝛽% produced measurement
values are acceptable.

To illustrate this point, it is possible to predict the proportion of acceptable mea-
surement values that will be inside the acceptance interval [AL, AU ]. Consider the
parameters listed in Table 5.3 page 118 for the THEOPHYLLINE study. The second
validation material contains 0.5 μg/l, and the acceptance interval is ±25%, giving:

Inverse-predicted grand mean Z = 0.520
Limits of the acceptance interval [AL, AU ] = [0.5− 25% ; 0.5+ 25%]

[AL, AU ] = [0.375, 0.625]
Standard deviation of β-ETI sIT = 0.0350
Number of degrees of freedom NE = 7.02

The method consists in calculating the differences between the inverse-predicted
grand mean and the two limits of the acceptance interval. If they are divided by the
standard deviation of the β-ETI, these two quantities denoted tinf and tsup can be
considered as approximate quantiles of a Student’s law with NE degrees of freedom.
In this example, NE = 7.02, and allows to obtain the probability associated with each
quantile.

Quantile of the Student’s t law Associated probability

tsup = |Z−AU |
sIT

= 0.1458
0.0350

= 4.1292 0.22%

tinf =
|AL−Z|

sIT
= 0.1054

0.0350
= 3.0106 0.98%

When the theophylline concentration is around 0.5 μg/l, the global risk of pro-
ducing non-acceptable measures is 0.98 % + 0.22 % = 1.2% which is much below the
traditional value of 5% used for statistical testing. It also means that, at this concen-
tration, the method can produce about 98.8% of acceptable measures.

Table 5.13 generalizes this calculation for the different concentration levels.
The global risk of nonacceptable results very rapidly decreases while concentration
increases. The breakpoint of more than 25% of nonacceptable measures lies between
0.05 and 0.1 μg/l where the LOQ is located. To achieve this calculation, Student’s law
table that provides the probability associated with noninteger number of degrees of
freedom is necessary.

As explained for Resource H worksheet it is possible to obtain an approximate
value by interpolation using the built-in function TDIST that gives this probability.
TINV is the inverse function of TDIST. To obtain the percentage of non-acceptable
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Table 5.13 THEOPHYLLINE: - probabilities of non-acceptable measurement values
(Acceptance interval ± 25%).

Concentration (𝛍g/l)

Parameters 0.05 0.10 0.50 1.00 2.50 10.00

Lower quantity 1.8110 2.8070 4.1292 2.9164 2.3335 5.6003
Higher quantity 0.3280 1.0382 3.0106 2.8854 2.2141 4.2173
Interval std. dev. 0.0117 0.0130 0.0350 0.0862 0.2749 0.5093
Number of df 7.01 9.59 7.02 5.69 10.91 9.22
Below lower bounds 5.65% 0.97% 0.22% 1.44% 1.99% 0.02%
Above upper bounds 37.63% 16.23% 0.98% 1.49% 2.45% 0.11%
Global risk 43.28% 17.20% 1.20% 2.93% 4.45% 0.12%

measurements, the simplest method consists in adding the following lines and for-
mulas to the end of the Resource H worksheet as shown in Resource J. It is applied
to the theophylline level of 0.1 μg/l as the rest of the program. 0.97% of measure-
ments that are below the limit of 0.075 μg/l, i.e. the lower limit of acceptance, and
16.23% exceed 0.125 μg/l. These results can be interpreted as an assessment of the
risk taken by the analyst to produce results that would not meet the requirements of
the end-user, bearing in mind that this is a probability and not a certainty!

Resource J Probability of nonacceptable measurements (Excel).

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

A B C D E F

Resource J: Probability of non acceptable results
Assigned Reference Value (µg/L) 0.100 =B2

Recovered concentration 0.1115 =B23

b-ETI standard deviation (sTI) 0.013003 =B39

Number of degrees of freedom (NE) 9.59 =B35

Acceptance proportion 25%

Acceptance lower bound 0.075 =B48*(1-B52)

Acceptance upper bound 0.125 =B48*(1+B52)

Lower quantile 2.807 =(B49-B53)/B50

Upper quantile 1.038 =(B54-B49)/B50

Probability Student L 1.0% =TDIST(B$55;ROUNDDOWN($B$51;0);1)

Probability Student U 0.9% =TDIST(B$55;ROUNDUP($B$51;0);1)

Percentage of too low values 0.97%

Probability Student L 16.3% =TDIST(B$56;ROUNDDOWN($B$51;0);1)

Probability Student U 16.2% =TDIST(B$56;ROUNDUP($B$51;0);1)

Percentage of too high values 16.23%

=B$57-((B$57-B$58)*($B$51-

ROUNDDOWN($B$51;0)))

=B$60-((B$60-B$61)*($B$51-

ROUNDDOWN($B$51;0)))

To conclude, the question of the choice of the type of tolerance interval.

– To conduct the validation of a method, we recommend using the β-ETI because
it allows to highlight a set of parameters, such as the number of effective
measurements or the variance ratio, which are especially useful at optimizing
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the experimental design. A method for estimating MU can also be easily derived
from this type of TI by modifying the probability 𝛽% as explained in Section 7.2.

– The advantage of the β-γ-CTI is that it includes a confidence level, which is useful
for knowing the bounds of the entire population of measurements for the same
sample. This is the situation encountered with control charts where the same
reference material is going to be analyzed several times in a row in the context
of quality control. With a coverage probability of 𝛽% = 80% and a confidence level
𝛾% = 95%, it is possible to define, for a given concentration level, the bounds of an
interval where, for 95% of 4 QC out of 5 would lie. According to FDA recommen-
dations, it is even acceptable to take 𝛽% = 67% and 𝛾% = 95% so that 2 QC out of 3
will fall within the acceptance interval [6]. But the algebraic form of β-γ-CTI does
not allow to define a strategy for optimizing the experimental design.
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6

Measurement Uncertainty (MU)

6.1 Principle of Measurement Uncertainty

Metrology is “the science of measurement.” Its modern history goes back to 1875,
with the signature of the Metre Convention and the creation of the Bureau Inter-
national des Poids et Mesures (BIPM). The Metre Convention is an international
treaty, currently signed by about 64 countries which establishes the BIPM as the
world authority for action in the field of metrology. The practical role of BIPM is
to develop and control international measurement standards. They are required to
cover an ever-expanding range of applications and to provide proof of equivalence
between the national standards of different countries.

BIPM is also in charge of developing and managing the International System (SI)
of units. Unfortunately for analysts, it was not until 1971 that, during the 14th BIPM
meeting, it was finally decided to address the chemical measurement issue and intro-
duce a new unit, the mole, about 100 years after other existing units. This delay
illustrates the current challenges of chemical metrology.

In 1977, several scientists pointed out in a note that there was no consensus
among measurers on the expression of the error of measurement. It was then asked
by the BIPM to address this problem with other national metrology institutes and to
issue a recommendation. A detailed questionnaire was prepared covering the topics
involved and circulated to 32 national metrology institutes recognized as having an
interest in the subject, supplemented by five international organizations.

The importance of having an internationally accepted procedure for expressing
a new concept called measurement uncertainty (MU) was recognized by all partici-
pants. It then remained to construct the appropriate method to achieve this objective.
A working group was created dedicated to this purpose and it prepared a recom-
mendation that led to the Guide to the expression of uncertainty in measurement,
abbreviated GUM, published in 1995. The emergence of MU is thus the result of
a conceptual evolution that spans almost two decades. The current version of the
GUM dates from 2020 but is currently under revision [1].

Before MU was considered relevant to analytical sciences, the concept of total ana-
lytical error (TAE) had been introduced around 1974 [2]. The reasoning behind this
parameter is rather classical, as it is a perfect illustration of what is called the “error
approach” in GUM.

Quantification, Validation and Uncertainty in Analytical Sciences: An Analyst’s Companion,
First Edition. Max Feinberg and Serge Rudaz.
© 2024 WILEY-VCH GmbH. Published 2024 by WILEY-VCH
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To define TAE, it is assumed that the deviation of the measurement from the true
value of the sample – called total error – consists of two parts, one systematic and
the other random. In practical terms, the bias is considered as an estimate of the
systematic error, and the standard deviation of precision combined with a coverage
factor is an estimate of the random error dispersion. A more recent and practical
definition of TAE given by International Council for Harmonization (ICH) is “the
sum of the absolute value of the errors in accuracy (%) and precision (%),” where
accuracy must be identified as trueness according to International Vocabulary of
Metrology (VIM) definition [3].

From a mathematical point of view, the TAE is summarized by Eq. (6.1):
Total analytical error

TAE = 𝛿 + kTAE × sTAE (6.1)

– 𝛿 the estimate of the lack of trueness in the form of a bias, which is supposed to
be constant and systematic.

– sTAE the estimate of precision (classically the intermediate precision standard devi-
ation) assumed to cover the random part of measurement error.

– kTAE the coverage factor accounting for the probability of coverage.

This approach has been considered attractive for its simplicity in clinical biology,
as evidenced by guidelines in this domain of application [4]. But this attractiveness
is more intellectual than practical, and TAE has not only advantages. The separate
assessment of random and systematic errors is generally required by regulatory bod-
ies and raises many practical difficulties. If the separation were possible, these two
quantities would not have the same statistical property with respect to uncertainty.

If it seems understandable to regard the standard deviation of precision as related
to a random variable (or a combination of random variables). It is more difficult to
consider the bias of trueness as constant only because it is qualified as systematic. In
practice, the bias, as it can be estimated in the analytical sciences, is not constant and
varies from one replicate to another. These inconsistencies may explain the relatively
limited use of TAE in other fields of analysis than clinical biology. It also explains
why BIPM (and measurement’s specialists) abandoned the error approach, in favor
of the “uncertainty approach” as explained in Section 4.1.2.

6.2 General Procedure to Estimating MU

The principle of the GUM, a general procedure for estimating MU, is relatively sim-
ple, as we shall show [1]. It is called the GUM general procedure in the follow-
ing pages. Several organizations have published documents, through application
examples, to adapt them to the analytical sciences and the needs of laboratories [5].
Unfortunately, it became quickly evident that this adaptation is neither always flex-
ible nor practical.

The general GUM procedure for estimating the MU is shown in Figure 6.1. It
consists of four steps that will serve as a roadmap for the various examples of calcu-
lation explained in the following chapters. It is useful to introduce some notations.
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Figure 6.1 The 4-step GUM
general procedure for
measurement uncertainty
(MU) estimation.
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Let us keep Z to denote, as usual, the measured quantity of the analyte. MU can
be expressed as four compatible parameters. Following the GUM conventions the
following notations are used where kGUM is the coverage factor:
Composed standard uncertainty

uc(Z) (6.2)

Expanded uncertainty

U(Z) = kGUM × uc(Z) (6.3)

Relative uncertainty

UR%(Z) = U(Z)
Z

× 100 (6.4)

Coverage interval [IL; IU ]

Z ± kGUM × uc(Z)

Z ± U(Z) (6.5)

The traditional values taken by the coverage factor kGUM are defined in the GUM
and presented below. Because analysts are inclined to use percentages in expressing
MU (and many other parameters), the relative uncertainty is part of the list but not
always used in other measuring domains. The L and U subscripts of the coverage
interval are abbreviations of lower and upper, respectively.
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6.3 Traceability at the International System of Units

When estimating the MU of a result, an important preliminary issue is the attach-
ment of the measurand to the International System of Units (SI), i.e. how the trace-
ability of measurement values to official standards is ensured. For chemistry and
biology, as stated, the SI unit of measure is the mole, whose symbol has been mol
since 1970. Earlier, in the middle of the nineteenth century, the molar mass of the iso-
tope 12 of carbon, denoted M(12C) was fixed at exactly 12.00000 g/mol. From there,
by applying different methods of measurement, it was acknowledged by convention
that a mole contained about 6× 1023 elementary entities. This number was called
the Avogadro number at the beginning of the twentieth century. It is noted NA and
initially came with a limited number of significant figures and an uncertainty that
regularly decreased as measurement techniques improved. Until 2018, this reference
to 12C was the accepted definition of the mole. But at the 26th meeting of the General
Congress of Weights and Measures (CGPM), it was decided to completely overhaul
the SI system by defining seven constants from which all units of measurement were
to be derived. The crucial point is that these constants are considered to have no MU.
From then on, the Avogadro’s number became Avogadro’s constant which today is
exactly:

NA = 6.02214076 × 1023

Consequently, the molar mass of carbon 12 is no longer constant but has a standard
uncertainty:

M(12C) = 12.01074 ± 0.00047 g∕mol

The molar mass of a molecule is determined in relation to the molar masses
of each constitutive atom. For example, the empirical formula of theophylline is
C7H8N4O2. The following table shows how to calculate its molar mass and the
associated MU.

Element
Atomic
weight M u(Mi) ni ni ×Mi u2(Mi) n2

i
× u2(Mi)

C 12.0106 0.0006 7 84.0742 3.60 10−7 1.764 10−5

N 14.00686 0.00025 4 56.02744 6.25 10−8 1.000 10−6

O 15.9994 0.00021 2 31.9988 4.41 10−8 1.764 10−7

H 1.00798 0.00008 8 8.06384 6.40 10−9 4.096 10−7

Total (g/mol) 180.1643 19.226 10−6

The atomic weights and their standard uncertainties used for the calculation
come from the Internet site of the Commission on Isotopic Abundances and
Atomic Weights (CIAAW) managed by International Union for Pure and Applied
Chemistry (IUPAC) [6]. They are normalized atomic weights established by con-
sidering an average isotopic composition. This explains the difference between the
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carbon atomic weight used for calculation and the exact value given above because
normalized carbon is a mixture of several isotopes.

The final molar mass of the molecule can thus be modified when it is marked.
Since the total mass is an additive polynomial, the combined uncertainty is obtained
by going through the standard variances of each constituent atom as explained in
Section 6.7.1: this rationale is called the variance propagation law. If ni the number
of ith atom in a given molecule, finally:

Total molar mass g/mol
∑

ni ×Mi 180.1643
Standard variance u2 ∑

n2
i × u2(Mi) 19.226 10−6

Expanded uncertainty U g/mol 2 ×
√

u2 0.0088
Relative uncertainty UR% 0.0049%

In the case of a calibrator solution obtained by weighting, the contribution of the
molecule mass uncertainty to the overall MU is generally exceedingly modest com-
pared to the other input quantities involved. For the molecular mass of theophylline,
the relative uncertainty is only 0.0049%. But there are some special examples, such
as gas analysis, where the contribution of molecular mass MU can be more impor-
tant. However, the wider use of the mole as a unit in analytical science has two
drawbacks:

– Its creation is recent, whereas the analytical sciences have a much older history
and tradition to quantify a result.

– Unlike the meter or the kilogram when initially created, no concrete standards are
available allowing an easy attachment to the mole. To have such standards, thou-
sands or even millions of items would be needed, one for each chemical molecule.
In a way, certified reference materials (CRM) play this role, but for a limited num-
ber of applications, as explained in Section 6.4.

Today most standards are dematerialized. For instance, the meter is no longer
defined in reference to the prototype bar of platinum but as “the length of the path
travelled by light in a vacuum in 1/299792458 of a second.”

When the mole is defined in a comparable manner, many problems will be solved
for analysts. However, the mole is not that often used in the laboratories, and it is
frequent to express a concentration using other units, such as a mass (kg), a relative
mass or a mass fraction (kg/kg or kg/l) which allows a connection to another more
convenient SI unit, the kg. The downside of a relative concentration is that it is a
dimensionless quantity. A widespread practice then – although discouraged by the
BIPM – is to use a fraction to express a concentration, such as percent (or 10−2), ppm
(part per million or 10−6) or ppb (part per billion or 10−9).

In solution chemistry, when it is necessary to consider the ionized form of a
molecule, the Equivalent, noted Eq, is applied. It is a unit which integrates the
electric charge and the mole, but which is not part of the SI. Thus, for the ions
which carry a charge +1 or −1, like Na+, HCO−

3 or Cl−, 1 mol = 1 Eq. For the ions
of valence +2 or −2, as Ca2+, 1 mol = 2 Eq. and so on for the other valence values.
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From these units, various secondary units are derived, as well as fractions of units,
such as the nanogram (ng), the millimole (mmol) or the milliequivalent (mEq).
Finally, in some fields, such as biomedical analysis or microbiology, many analytes
are poorly defined in terms of molecular structure, such as macromolecules, or mix-
tures of molecules. The solution adopted is to use the International Unit (IU) system,
which is misnamed because it has nothing to do with the SI units. The definition of
the IU differs from one substance to another.

It is the World Health Organization (WHO) Biological Standardization Committee
that defines the IU of a substance based on the experimental measurement of its
biological effects. For example, a 1000 IU tablet of oxytetracycline contains 1.149 mg
of this antibiotic or 1.136 mg in its bi-hydrate form. A 1000 IU/ml preparation of
vitamin D (a mixture of molecules with a vitamin D effect) contains 0.025 mg/ml.

6.4 Stage 1. Specify the Measurand

The four stages of the GUM general procedure are described in Sections 6.4–6.8.
Stage 1 starts with the specification of the measurand which is the “quantity

intended to be measured” as explained in Chapter 1. In the analytical sciences, the
term analyte is usually preferred to measurand. It is a chemical or biochemical
species sought by the analyst and present in a matrix at known or unknown
quantity. A measurement value of this quantity is generally the combination of:

– An operating procedure (i.e. a sequence of operations) that allows to prepare the
sample by extracting the analyte from the rest of the matrix. It is done by playing
on selectivity so as to obtain the analyte in such a form that it can be introduced
into a measuring device without damaging it, or even to concentrate it to obtain a
higher and detectable instrumental signal.

– And several input quantities, which are according to VIM “quantity that must be
measured, or a quantity, the value of which can be otherwise obtained, to calculate
a measured value of a measurand.” They mainly represent an instrumental signal,
a weight, a volume, or adjustment and correction coefficients that enter in the
measurement model.

Situations are extremely diverse between non-destructive methods, indirect meth-
ods with calibration, primary methods, etc. The identification of the measurand
consists precisely in describing and considering all these elements. As a first estimate
of MU, the preanalytical operations of sampling will be neglected but fully addressed
in a specific Section 8.3. As generally proposed in the guides designed for analysts,
only analytical input quantities are taken into consideration.

The next chapter explains how to account for all the components of the MU in
the case of a measurement obtained in a chemical or biological laboratory. With
this simplified approach, the expression of a measurement is essentially based on
the mathematical formula used to calculate the result. This is called the Measure-
ment Model and consists of the mathematical relationship between the analyte
and the various input quantities, such as reagent purities, the coefficients of the
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calibration model, the volumes, and weights of the reagents, etc. Its general form is
as follows:

General measurement model

Z = f (G1,…Gn,…GN ) (6.6)

Z represents the output quantity and f () any mathematical relationship; it is the
analyte concentration which will be inferred from the information collected by the
N input quantities G1, …Gn, …GN with 1≤n≤N. From a statistical point of view,
the input quantities are the realizations of random variables with known probability
distribution laws.

The example of a naive simple measurement model is given by the formula applied
for calculating the concentration of the theophylline stock solution that was used to
perform standard additions, as described in Section 5.2.2. To prepare such a solution,
a known amount, m, of analytical grade theophylline is weighed on a laboratory
scale. The purity P of this reagent is provided by the manufacturer and is, in this case,
99%. This mass is diluted in a known volume V of water. The measurement model
which allows to obtain the concentration X0 of the theophylline stock solution, is:

Measurement model for the stock solution

X0 = m × P
V

(6.7)

This measurement model contains three input quantities, i.e. N = 3. It allows us to
establish clearly and without ambiguity what is going to be measured and represents
the quantitative expression which links the value of the measurand to the three input
quantities on which it depends.

At this stage, it is interesting to verify the consistency of the units. Thus, X0 will
evidently be expressed as mg/ml because m is measured in mg, V in ml, and quan-
tity P is dimensionless since it is a purity level. Later, for sample spiking, this stock
solution is diluted and introduced such as the taken volume V p and the final dilution
volume V f gives the expected final concentration as shown in this new model:

X1 =
X0 × Vp

Vf

But measurement models are often more complex and may combine many input
quantities that are themselves other measurands. For example, the determination
of lead by an ICP emission spectrophotometry with isotope dilution and coupling
with a mass spectrometer or inductively coupled plasma-isotopic dilution-mass
spectrometry (ICP-ID-MS) is an illustration of a complex measurement model [7].
In this case the model includes N = 12 input quantities:
Measurement model

Z =
(

Ms − Cs
Pp.Wa

)
×
(

K.As6 − As8
Ap8 − K.Ap6

)
(6.8)

Correction coefficient

K =

(
Ar8
Ar6

)

Rr
× Rp (6.9)
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Table 6.1 contains the list of all input quantities with their definitions and units.
It also provides an observed value Gn for each that is used to compute an example
lead concentration measurement value on a future CRM. It is important to keep all
significant digits to make such a calculation. The observed measurement value is
1.999982505 mg/kg.

For this type of complex model, a preliminary precaution consists in checking
what is called the dimensional equation. An error in the mathematical formulation
can thus be corrected. In the case of Eq. (6.8), it is easy to check that the result of the
dimensional equation is mg/kg, with most quantities being dimensionless ratios.

This approach to MU, based on the measurement model, is favoured by metrol-
ogists. However, the restriction to such measurement model is incomplete when
classical analytical operations have to be considered, such as sampling in medical
biology or sample preparation. Chapter 7 describes a more comprehensive method
which we consider as better suited to analytical sciences and derived from the
method accuracy profile (MAP).

Table 6.1 LEAD – input quantities for the lead measurement model by ICP-ID-MS (CRM:
certified reference material).

Description of the
input quantities Symbol Unit Gn

Mass of the spike Ms g 0.7806
Pb concentration in the
spike

Cs mg/kg 0.4149

Mass of the test portion Mp g 0.4944
Moisture (water activity) Wa % 0.9255
Isotopic abundance of
206Pb in the CRM

Ar6 % 40.0890

Isotopic abundance of
208Pb in the CRM

Ar8 % 40.0954

Ratio 208Pb/206Pb in the
CRM

Rr % 1.0189

Ratio 208Pb/206Pb in the
test portion

Rp % 0.8994

Isotopic abundance 206Pb
in the spike

As6 % 0.9997

Isotopic abundance 208Pb
in the spike

As8 % 0.0001

Isotopic abundance 206Pb
in the test portion

Ap6 % 0.2454

Isotopic abundance 208Pb
in the test portion

Ap8 % 0.5290

Output quantity
Pb concentration in the
test sample

Z mg/kg 1.999982505
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There are also operating procedures where the analyte is defined by the method
itself. This type of method is referred to as the “criteria method” by the Codex Ali-
mentarius Commission [8]. The analyte can also be said to be defined per se, such
as the determination of fiber or moisture in foods. Most often, the ultimate step con-
sists of a series of weighings. They are gravimetric methods, and the uncertainty of
the scales is used to calculate their combined MU.

It is frequent for traditional and long-standing standardized methods defined per
se to be used as a reference to validate a new alternative method. This is the case
when the so-called rapid microbiological counting method is used in food microbi-
ology as an alternative to substitute for a traditional method using Petri dishes. The
Association of Official Analytical Chemists (AOAC) has proposed to call this type of
traditional reference method a gold standard. A common surprise is that the MU of
the reference method may be higher than that of the alternative method. An example
of a comparison of an alternative method to a reference method using the MAP and
MU is presented in Section 10.2.2.

6.5 Stage 2. Identify Uncertainty Components

The second phase of the GUM procedure is crucial because it determines the rest
of the process. From a practical point of view, it is advisable to use a cause-effect
diagram or fishbone diagram to list the components (or sources) of the MU, iden-
tify their origin, and predict their influence on the overall uncertainty. It also avoids
counting the same source multiple times and provides a simple mnemonic frame-
work. This practical (and recommended) means is illustrated in Figure 6.2 for the
ICP-ID-MS method of lead determination. All input quantities and the output quan-
tities described in Table 6.1 appear in this diagram.

Each edge corresponds to an input quantity, considered as a potential source of
uncertainty. It would be possible to go into more details. For example, all quantities
involved in the preparation of Pb stock solution used for spikes at Cs concentration
could be added, such as volume, weights and lead purity corresponding to the model
(6.7). Similarly, double weighing is used to quantify the moisture contents W a.

However, in view of the considerable number of operations and quantities that
lead to a chemical or biochemical measurement value, it is necessary to limit it to a

Figure 6.2 LEAD – cause
and effect diagram of the
sources of uncertainty when
determining lead by
ICP-ID-MS.
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reasonable level of detail. It is therefore a rather delicate stage, the main aim of which
is to provide a perfectly clear and operational vision of what needs to be considered
later.

The main problem with this approach is that the analyst has limited the measure-
ment model to the reagents involved. Many other sources of uncertainty should be
considered, such as extraction time, temperature, the aging of the reagents, and the
skill level of the personnel. All these quantities are well known in the analytical
science to have a definite influence on the result.

But the sources of variability, if they were to be included in the model in the
same way as a volume or a weight, would pose serious modeling problems. At this
stage, it seems difficult to put the various operations of mineralization, dry-ashing,
or extraction into a mathematical equation! As claimed, in Chapter 7 a more empir-
ical, comprehensive approach, sometimes called holistic, is proposed that is adapted
to the practice of analysts and makes MU estimation simpler.

6.6 Stage 3. Quantify Uncertainty Sources

The third stage includes the following operations. For each previously identified
component, it is required to quantify its amplitude of variation. In statistical terms,
this means obtaining an estimate of the standard deviation that characterizes each
random variable associated to an input quantity. However, if it seems impractical or
cumbersome to quantify them experimentally one by one, the GUM recommends
grouping the sources of uncertainty together, “as far as possible.”

For example, if one identifies, on the one hand, variations in the setting of the
measuring instrument, and, on the other hand, the aging of the reagents, as com-
ponents to be evaluated, they can be grouped together by making measurements on
different days, modifying the instrumental settings and the reagents from one day
to another. GUM defines two ways to quantify component variability. This point is
fundamental.

Type A
evaluation

It is empirical since it is based on statistical analysis of series of
observations; some documents call it the top-down approach.

Type B
evaluation

It is more deterministic, since it does not use observations but
theoretical probability laws, chosen a priori; it is also called the
bottom-up approach.

From a practical point of view, and whatever the method of evaluation of each
source (or grouping of sources), the aim is to obtain a statistical parameter of dis-
persion. Under pressure from statisticians, metrologists have given up calling the
standard deviation this estimate of dispersion. Especially since, as explained in the
next chapter, these parameters can be recombined, sometimes in a rather uncon-
ventional way. The term standard uncertainty instead of standard deviation has thus
come into use.

By convention, the standard uncertainty of the input quantity G is denoted u(G).
First, for each input quantity, it is essential to choose the most appropriate method
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of evaluation of the standard uncertainty, either type A or type B. When several
quantities are included in a measurement model, the combination of both types of
evaluation is completely appropriate.

For example, in the case of lead determination by ICP-ID-MS, both modes of stan-
dard uncertainty evaluation were used. Thus, the u(Ms) was estimated by a type B
approach based on the probability law provided by the balance manufacturer, while
u(Wa) is the standard deviation of a series of repeated moisture measurements.

Next, at the fourth stage, the GUM describes how to combine the individual stan-
dard uncertainties of each source into an overall standard uncertainty called the
combined standard uncertainty denoted uc(Z). In the rest of this text, the terms stan-
dard uncertainty and standard deviation may be indifferently used, with standard
variance when it is a squared standard uncertainty.

6.6.1 Type A Approach

This approach starts by collecting observed measurement values purposefully
obtained or from archive. The data that can be used to estimate a standard uncer-
tainty are of various origins, and the following proposition list is not exhaustive.

6.6.1.1 Accuracy Profile
We consider that MAP is probably the most suitable data source for an initial esti-
mate of MU. Section 7.2 is entirely devoted to the details of the calculations from this
type of data. In this case, the combined standard uncertainty can directly be obtained
from the measurements made on the diverse validation materials.

An important constraint is that measurements must be collected according to a
properly structured experimental design and not randomly. The rules to correctly
organize the experimental design for collecting the suitable data to construct an
accuracy profile are thoroughly explained in Section 5.4.2. The purpose of this orga-
nization is to trigger as many sources of uncertainty as possible and run the trials in
separate series under intermediate precision conditions.

For example, if the replicates are scattered over several days, it is then possible to
change the operators, the settings of the measuring system, the reagents, the cali-
bration curve, etc. This strategy is only possible if the test material can be conserved
long enough without undergoing a change considered too important, or prepared at
will, for instance by weighing. If not, it will be necessary to resort to another orga-
nization of the replicates, which makes it possible to vary the sources of uncertainty
that normally occur in the framework of routine usage of the method.

6.6.1.2 Interlaboratory Study
If the laboratory takes part in an interlaboratory analysis, the collected measure-
ments allow to estimate the MU of the test sample analyzed by all participants.
It is recommended that the grand mean, estimated at the end of the study, be
used as a reference value. The situation is even better if the analyzed material is a
CRM. However, the standard deviation of reproducibility sR cannot be directly used
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by the laboratory because is not representative of its own expertise, but over all
laboratories.

The international standard ISO 21748 describes the safeguards to be taken in
order to consider the laboratory’s own performance. It explains how to deduce
from the reproducibility standard deviation the laboratory-specific intra-laboratory
standard deviation that approximates the intermediate precision standard deviation
for each laboratory. The measurement model proposed in this standard is detailed
in Section 7.2.1.

6.6.1.3 Control Chart
A common idea is that, among all the data collected day after day in a laboratory, it
should be possible to find a way to estimate the MU of the produced results. This may
seem obvious, but several precautions are necessary before being sure it is possible.
The main limiting factor is that repeated measurements must be performed on each
quality control (QC) sample. While it is common in the industry it is unusual in
laboratories.

Another challenge consists in grouping similar samples in terms of matrix,
cautiously considering that the concentrations are close enough for the MU to be
constant. In any case, this approach remains delicate and can easily lead to an
overestimation of the uncertainty. On the other hand, the measurements obtained
on the QCs that are used to establish control charts fulfill this constraint. This
possible procedure is presented in Section 7.3.

6.6.1.4 Proficiency Testing
For any accredited laboratory, proficiency testing is a compulsory interlaboratory
comparison devoted to the verification of its ability to produce accurate results over
time. In some cases, the proficiency testing organizer may use measurement values
to estimate the test material MU (see Section 7.4). However, if derived MU incor-
porates all measurements and laboratories, it is impossible to obtain the dispersion
interval characteristic of a given laboratory.

The material used in the proficiency testing can be converted into an internal ref-
erence material (IRM) applicable to a control chart. It is then possible to collect
replicates under intermediate precision condition and have a specific MU estimate
for the laboratory. This potential procedure goes back to the previous situation about
control charts.

6.6.2 Type B Approach

This can be labeled as a theoretical approach since it can be applied without any
experimental data. It is classically used for physical measurements but remains dif-
ficult for chemistry or biology. In its principle, it consists in associating to each uncer-
tainty component a probability distribution law, chosen a priori. Standard deviations
can easily be deduced from these theoretical distributions.

For example, the triangular distribution law is adapted for a measurand, such as
digitized instrumental display. In modern instruments, the measured response is
displayed as a set of digits on a screen, e.g. a spectrophotometer that measures the
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Figure 6.3 Triangular
distribution law applied to a
digitized reading rounded to
90. The standard uncertainty
is equal to 1/
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optical density between 0 and 2500 milli absorbances would display a measurement
value with four digits ranging from 0000 to 2500. The analog-to-digital converter
included in the device could easily give more digits, but it was decided that the
returned value is systematically rounded to the milli absorbance unit.

The model is simple: each reading corresponds to a continuous random variable
X bounded in the interval ±1 milli absorbance. The Normal distribution law varies
between ±∞ and is consequently unsuitable. It is then considered that the probabil-
ity of a reading linearly decreases when approaching the interval bounds. Classically,
the triangular probability law is applied in order to model such an input quantity.

The Figure 6.3 shows a reading at 90 milli absorbances. True value is assumed to
be located in the [89; 91] interval defined around the average which is thus worth
2 milli absorbances, traditionally denoted 2a. The standard deviation of X (or the
standard uncertainty) is then simply deduced by posing:

u(X) = a√
6
= 1√

6
= 0.4082

The a priori choice of the triangular distribution means that values far from the
central value are less and less probable, while the central value is the most likely.
Section 4.3 of GUM proposes several other types of theoretical distributions that can
frequently be applied to estimate a standard uncertainty, such as the Normal distri-
bution and the uniform distribution [1].

For the LEAD example introduced in Section 6.5 both types of approach are com-
bined, depending on the information available, as shown in Table 6.2. Most of the
time, information from manufacturers is used, such as the MU of the CRM or the
scales. The key point is that it is possible to mix the two types of evaluation and that
they are mutually combining.

6.7 Stage 4. Calculate Combined Uncertainty

6.7.1 Law of Propagation of Uncertainty

The combined uncertainty is a “standard MU that is obtained using the individ-
ual standard measurement uncertainties associated with the input quantities in a
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Table 6.2 LEAD – Approaches used in estimating standard uncertainty of input quantities
for lead determination.

Description of the
input quantity Symbol Dimension Approach

Mass of the spike Ms g B
Pb concentration in the
spike

Cs mg/kg A

Mass of the test portion Mp g B
Moisture (water activity) Wa No A
Isotopic abundance of
206Pb in the CRM

Ar6 No B

Isotopic abundance of
208Pb in the CRM

Ar8 No B

Ratio 208Pb/206Pb in the
CRM

Rr No A

Ratio 208Pb/206Pb in the
test portion

Rp No A

Isotopic abundance 206Pb
in the spike

As6 No B

Isotopic abundance 208Pb
in the spike

As8 No B

Isotopic abundance 206Pb
in the test portion

Ap6 No A

Isotopic abundance 208Pb
in the test portion

Ap8 No A

CRM, certified reference material RM982.
Source: Adapted from Feinberg et al. [7].

measurement model.” The starting point is the measurement model that can be
identified in the general form:

General form of a measurement model

Z = f (G1,…Gn,…GN ) (6.10)

The previous two examples of measurement models show that function f can take
quite different forms and the number N of input quantities G1, …Gn, …GN can also
be very variable. The goal of the fourth and final stage is to calculate the combined
standard uncertainty of Z, i.e. to combine the various standard uncertainties esti-
mated in stage 3 into a unique standard uncertainty. Three possible combination
procedures are applicable depending on the mathematical form of the model.

6.7.1.1 The Model Only Contains Additions and Subtractions
The classic property is applied: the variance of a random variable that is the sum of
other random variables is the sum of their variances. This can be written:
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Model

Z = G1 + G2 − G3 (6.11)

Standard variance

s2
Z = s2

G1
+ s2

G2
+ s2

G3
(6.12)

Standard uncertainty

uc(Z) =
√

u2(G1) + u2(G2) + u2(G3) (6.13)

The well-known application of model (6.11) is when the result is expressed as the
average of several replicates or as the sum of several intermediate measurements, e.g.
vitamin A activity is computed by summing retinol and β-carotene concentrations.
Since the standard uncertainty of each individual measurement is known, it is easy
to derive the MU from the mean or the sum. This model is also used in Chapter 7
presenting practical estimation of the MU in different experimental situations.

6.7.1.2 The Model Only Contains Products and Quotients
This situation is less frequent. In this case the squared coefficient of variation of the
measurand is the sum of squared coefficients of variation of input quantities.

Model

Z =
G1 × G2

G3
(6.14)

Standard deviation
( sZ

Z

)2
=
( sG1

G1

)2

+
( sG1

G2

)2

+
( sG1

G3

)2

(6.15)

Coefficient of variation

CV(Z) =
√

CV(G1)2 + CV(G2)2 + CV(G3)2 (6.16)

Relative standard uncertainty

uc(Z)
Z

=

√(
u(G1)

G1

)2

+
(

u(G2)
G2

)2

+
(u(G3)

G3

)2

(6.17)

6.7.1.3 The Model is a Complex Combination of Input Quantities
The measurement model for lead determination described by Eqs (6.8) and (6.9)
is the example of more complex situation. It is no longer possible to have a sim-
plified calculation formula. For this case, the GUM then proposes a very general
approach based on the “law of propagation of uncertainty” derived from the Taylor
series development.

At the end of stage 3, a set of standard uncertainties characterizing each input
quantity in the measurement model is available. They are denoted u(Gn). Starting
from the general model of Eq. (6.10) which can mix any type of estimation approach,
the combined standard variance of Z is obtained combining the standard uncertain-
ties of each input quantity according to the law of propagation of uncertainty. This
leads to Eq. (6.18).
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In the equation, 𝜕Z
𝜕Gn

denotes the partial derivative of Z with respect to Gn and is
named the sensitivity coefficient of the input quantity. On the other hand, u(Gn, Gm)
is the standard covariance between two input quantities.

u2
c (Z) =

N∑
n=1

(
𝜕Z
𝜕Gn

)2

u2(Gn) + 2 ×
N,M∑

n,m=1 n≠m

(
𝜕Z
𝜕Gn

)(
𝜕Z
𝜕Gm

)
u(Gn,Gm)

(6.18)

Sensitivity coefficient of

Gncn = 𝜕Z
𝜕Gn

(6.19)

u2
c (Z) =

N∑
n=1

c2
n × u2(Gn) + 2 ×

N,M∑
n,m=1 n≠m

cn × cm × u(Gn,Gm) (6.20)

The coefficient cn is called sensitivity coefficient because it indicates the relative
part of the input quantity in the whole combined uncertainty. Using the sensitivity
coefficients, it is possible to establish the uncertainty budget of the MU. It under-
lines the relative weight of each uncertainty component in the total uncertainty. The
method to calculate the elements of the uncertainty budget is explained in a later
section of this chapter. From a mathematical point of view, cn is a partial derivative of
Z with respect to Gn. Depending on the model, it may have no formal solution. In the
next chapter it is explained how to manage complex models when partial derivatives
are not computable or computed. A simplification of Eq. (6.18) consists in removing
the covariance terms, i.e. assuming that the input quantities are uncorrelated.

2 ×
N,M∑

n,m=1 n≠m
cn × cm × u(Gn,Gm) = 0

The adequacy of this assumption is based on the idea that input variables are per-
fectly independent. It is questionable but in practice the independence of random
variables is sometimes difficult to ascertain. Moreover, special precautions are rarely
established in the laboratory to ensure that measurements are perfectly indepen-
dent, which would result in zero correlations.

Indeed, there are often many interconnecting elements in the analytical operat-
ing procedures, such as a single stock solution used to prepare various daughter
solutions. This is a typical source of correlation between measurements which is
experimentally difficult to quantify. Because this evaluation is difficult, even impos-
sible, the proposed simplification is more based on a practical aspect than on scien-
tific evidence. On the other hand, with respect to the various intermediate measure-
ments that are used to calculate the end-result, this assumption seems quite correct.
This finally gives the simplified model of Eq. (6.21).

u2
c (Z) ≈

N∑
n=1

c2
n × u2(Gn) (6.21)
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6.7.2 Kragten Iterative Algorithm

Were Eq. (6.18) to be applied, it would be necessary to calculate the N partial deriva-
tives related to each input quantity. If the function which links the output and input
variables is complex, this becomes very problematic, if not impossible. All functions
do not have partial derivatives. GUM proposes different numerical methods to per-
form this operation without being obliged to go through the partial derivatives in an
explicit form. For example, the Monte Carlo method and the Bootstrap algorithm
are accepted alternatives [9].

The following proposed iterative algorithm is even simpler. The solution is based
on discretization of the partial derivatives and can be developed in a worksheet.
We will call it the Kragten’s algorithm since it was first published by that statis-
tician, member of the GUM committee [10]. In the original paper, the algorithm
was described and applied to quite a simple model, i.e. the linear inverse prediction
model, but it is adaptable to any measurement model.

However, if this is complex, it is better to use a somewhat more advanced program-
ming language such as Python. Resource K is the application of the Kragten iterative
algorithm to the complex LEAD measurement model described by Eqs. (6.8) and
(6.9). Like other Python programs here, measurement values are recorded in the
code but they could be read from an external file.

The starting point of the algorithm is to calculate the initial value of the output
quantity, denoted Z0using the measurement values of all input quantities. An itera-
tion loop going through the N input quantities is used to calculate N modified values
Z∗

n by adding to each input quantity Gn a slight specific variation Δ(Gn). To simplify
things, the Δ(Gn) values are equal to one standard uncertainty u(Gn) of each quan-
tity. This means that all u(Gn) are available as recommended at stage 3 of the GUM
procedure.

At each step of the iteration loop, the new lead concentration is computed Z∗
n with

the modified value of one Gn. The difference between the initial value Z0 and the
new value Z∗

n is calculated then squared. The sum of these N squared differences
approximately corresponds to the standard variance (Eq. 6.22).

u2
c (Z) ≈

N∑
n=1

(
Z0 − Z∗

n
)2 (6.22)

This algorithm is applied to the LEAD example and illustrated by Resource K.

Resource K Iterative algorithm applied to LEAD (Python).

import pandas as pd
import numpy as np

The Pb_Concentration function defines the measuring model of the LEAD
application and must be modified for any other measurement model. Each input
quantity is named and each corresponding observed values is transferred by the

(Continued)
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means of an array called measure. This is the simplest way to do so that each
input quantity can be iteratively modified.
def Pb_Concentration(measure):
Ms = measure[0]
Cs = measure[1]
Mp = measure[2]
Wa = measure[3]
Ar6 = measure[4]
Ar8 = measure[5]
Rr = measure[6]
Rp = measure[7]
As6 = measure[8]
As8 = measure[9]
Ap6 = measure[10]
Ap8 = measure[11]
K = (Ar8 / Ar6) / Rr*Rp
return(Ms*Cs / (Mp*Wa) * ((K*As6 − As8) / (Ap8 − (K*Ap6))))

A set of measured input quantities is used to illustrate the algorithm and
compute the initial value. It must be changed if another measurement of lead is
achieved.
Gn = np.array([0.7806,0.41495,0.4944,0.9255,40.089,
40.0954,1.0189,0.8994,0.99979,0.00013,0.2454,0.52903])
Gu = np.array([0.0002,0.0034,0.0002,0.00288675,0.0036,
0.00385,0.0041,0.0036,0.0000125,0.00001,0.001,0.0021])

The initial lead concentration is calculated by using the initial values and
displayed.
Z0 = Pb_Concentration(Gn)
print(Z0)
dev_sqrt =[]
The loop of iterations takes one by one input values stored in Gn and add one
standard uncertainty stored in Gu.
for n in range(len(Gn)):

The initial value of the input quantity Gn is saved in a temporary variable to be
restored after modification.
in_old = Gn[n]

One standard uncertainty is added to the measure.
In_new = Gn[n] + Gu[n]
Gn[n]=in_new
The modified concentration is calculated.
Z = Pb_Concentration(Gn)
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The squared difference between initial and modified concentration is saved in
an array.
Sqrt_dif = (Z -Z0)**2
dev_sqrt.append(sqrt_dif)

The initial value of the input quantity Gi is restored.
Gn[n] = in_old

The loop is closed, and the uncertainty budget assessed.
Budget=[]
total_squares = sum(dev_sqrt)
for i in range(len(dev_sqrt)):
budget.append(100*dev_sqrt[i]/total_squares)

Table 6.2 can thus be completed by the Table 6.3. The column Gn contains the
values used to calculate the initial value of Z0. The column u(Gn) lists the standard
uncertainties. The initial value is Z0 = 1.999982505 mg/kg. The modified results are
obtained by iteratively adding to each input quantity, taken one by one, one standard
uncertainty u(Gn) which gives Gn +u(Gn).

Table 6.3 LEAD – Calculation of the combined standard uncertainty with the iterative
algorithm.

Step Gn u(Gn)
Modified
value Z∗

n Squared difference
Contribution
(%)

0 Z0 = 1.999982505
1 Ms 0.7806 0.0002 2.00869 2.63× 10−7 0
2 Cs 0.41495 0.0034 2.02464 2.71× 10−4 30
3 Mp 0.4944 0.0002 2.00737 6.59× 10−7 0
4 Wa 0.9255 0.00288675 2.00194 3.90× 10−5 4
5 Ar6 40.089 0.0036 2.00788 9.33× 10−8 0
6 Ar8 40.0954 0.00385 2.00851 1.07× 10−7 0
7 Rr 1.0189 0.0041 1.99459 1.85× 10−4 21
8 Rp 0.8994 0.0036 2.02183 1.86× 10−4 21
9 As6 0.99979 0.0000125 2.00821 6.31× 10−10 0
10 As8 0.00013 0.00001 2.00816 5.18× 10−10 0
11 Ap6 0.2454 0.001 2.01387 3.24× 10−5 4
12 Ap8 0.52903 0.0021 1.99477 1.80× 10−4 20

Combined standard variance: u2
c (Z) 8.94× 10−4 100.00

Combined standard uncertainty: uc(Z) 0.02993

For abbreviations see Table 6.2.
Source: Adapted from Kragten [10].
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Ap6 3.62%

As6 0.000%

Rp 20.8%

Rr 20.7%

Cs 30.3%

Ap8 20.11%

Ms 0.03%

Uncertainty budget

Mp 0.07%

Wa 4.36%

Ar6 0.01%

Ar8 0.01%

As8 0.000%

Figure 6.4 LEAD – uncertainty budget.

The penultimate column contains the squared differences
(

Z0 − Z∗
n
)2. As these

differences can be ridiculously small numerically speaking, for these calculations it
is necessary to use double precision variables. From these data, it is also possible to
calculate the number of degrees of freedom associated with this estimate and use
it to compute the coverage factor. This extension of the algorithm is not presented
but available in the original publication. It was preferred to apply the standard GUM
coverage factor for this example.

Most importantly, it is now possible to establish the uncertainty budget, described
in the GUM as an indispensable complement to the MU estimate. The relative con-
tribution of each quantity to the total combined uncertainty – its relative sensitivity
coefficient – is obtained by calculating the ratio of the squared difference to the total
standard deviation, as illustrated in Figure 6.4 and reported in the last column of
Table 6.3. For example, the contribution of Cs (lead concentration in the spike) to
combined uncertainty is:

100 × 2.71 × 10−4

8.94 × 10−4 ≈ 30%

It can be concluded that the spiked concentration accounts for about 30% of the
total MU and that three other critical input quantities are the isotopic abundance
208Pb in the test sample (Ap8), the ratios 208Pb/206Pb in the CRM and in the test
sample (Rr and Rp). When possible, better control of these quantities could help to
reduce the lead MU. The graphical representation, e.g. in sectors, allows to better
highlight the quantities that are influential on the MU.

The example illustrates the MU estimation for a single lead measurement value. If
another sample is analyzed or the measure repeated, the whole calculation must be
repeated with the new values of Gn. This solution is uneasy for contract laboratories
where highly variable samples and matrices are seen daily. To avoid this limitation,
the proposed solution described in Section 7.5 is to establish an uncertainty function
applicable to any new sample and directly estimate MU of any inverse-predicted
concentration.



6.8 Calculate Expanded Uncertainty 169

There are dozens of commercially available uncertainty calculators that allow the
recurrent calculation of MU. Some are even under free license, but many are com-
mercial. The tricky point remains the input of the measurement model which may
require some programming knowledge.

6.8 Calculate Expanded Uncertainty

The expanded uncertainty U(Z) is simply “the product of a combined standard MU
and a factor larger than the number one.” This is then directly derived from standard
uncertainty uc(Z) as indicated by formula (6.3) where kGUM represents the GUM
standardized coverage factor, which depends on a coverage probability. Expanded
uncertainty is the most practical form of MU.

Combined uncertainty is not easily understood by end-users because it remains
theoretical like a standard deviation. To make it more understandable and practical
it is multiplied by a coverage factor and expressed as an interval. For instance, it is
well known that ±2 standard deviations include about 95% (precisely 97.7%) of the
data if they are exactly distributed according to a Normal law. The coverage factor
plays the same role and depends on the expected probability of the resulting coverage
interval.

This is the most interesting expression of MU while a coverage interval is an “inter-
val containing the set of true values of a measurand with a stated probability, based
on the information available.” Therefore, coverage interval can directly be used to
express the analytical result:

Expanded uncertainty

U(Z) = kGUM × uc(Z) (6.3)

Coverage interval

Z ± U(Z) (6.5)

When the number of degrees of freedom (df ) is accurately known at the end of the
estimation of the MU, it can be used to have an exact value for the coverage factor. In
most examples presented here, it is the quantile of the Student’s t law, for the given
probability and the number of df . This point is developed more in Section 7.2.

When the information is not available, the standardized GUM coverage factor
denoted kGUM is an interesting and easy solution. It can take simple conventional
values:

Value of
kGUM

Coverage
probability

Contents of the
coverage interval

kGUM = 2 95% 95% possible true values of Z
kGUM = 3 99% 99% possible true values of Z

For example, for the determination of lead by ICP-ID-MS, the test mate-
rial contains Cp = 1.99998 mg/kg, and the combined standard uncertainty
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uc(Cp)= 0.02993 mg/kg as indicated in the bottom line of Table 6.3. The expanded
95% uncertainty is obtained by multiplying it by 2, which gives:

U(Z)95% = 2 × 0.02993 = 0.05986 mg∕kg

And the relative uncertainty:

UR%(Z) = 0.05986
1.99998

× 100 = 2.99%

The result can then be expressed as:

Z = 1.99998 (±0.05986) mg∕kg

This means that 95% of the true values, or considered as true values of Cp, are
within the coverage interval [1.94012, 2.05984] mg/kg.

In most cases, the coverage probability is conventionally chosen to be 95%, i.e.
kGUM = 2. When the method of estimating the standard uncertainty makes it easy
to obtain the real number of df , it is preferable to take the exact coverage factor,
based on this number of df . In Section 7.2 the MU estimation based on the β-ETI
is explained and the parameter NE, called the number of effective measurements, is
used to obtain the exact coverage factor and compared to the standardized.

6.9 Round the Result

The rounding of results is a very classic practice yet required by regulatory bodies. It
is based on the concept of the number of significant figures. Above all, it is a simple
and intuitive way of indicating the level of uncertainty that the experimenter gives
to the measurements, and it is also a method to simplify their reading. Therefore,
rounding can be considered as a method to express uncertainty. To perform result
rounding it is thus possible to use its MU.

In some contexts, rounding is a regulatory requirement. For instance, the United
States Pharmacopeia (USP) defined a standard operating procedure (SOP) for
rounding analytical results. In this context, three different procedures are proposed
and considered in agreement with three types of measurements: dissolution results,
impurity and results close to limit of detection (LOD), and other results.

While using computers, it may seem superfluous to round results as far as
the internal machine representation of a data contains a considerable number of
figures. For example, an Excel worksheet uses a 64-bit floating-point internal format
and generally stores data in 32 bits or more, though it is converted into an internal
memory format, the number of significant digits can be extremely high. Above all,
the data, such as it appears on the screen is not rounded in the sense that it is
understood here but depends on the display format chosen by the user, whereas the
calculations are done on all 32 bits or more.

The main disadvantage of rounding is that it necessarily generates a bias. It is
therefore imperative to apply rounding only after all intermediate calculations have
been completed. Many theoretical approaches have been published [8] but, accord-
ing to ISO 17025 standard, the choice of the rounding method and the number of
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significant digits is left to the laboratory, which can thus define its own rules [11].
Two simple rounding rules are applicable:

– When the first significant digit is between 5 and 9, the result is rounded to this
decimal place and the MU will thus include one significant digit.

– When the first significant digit is <5, the result will be rounded to that next deci-
mal place and the MU will therefore include two significant digits.

These rules can be translated into a mathematical formula, shown in Eq. (6.23).
Let Dn be a decimal number with ns significant digits and int{ } the operator for
obtaining the integer part of a decimal number. The following formula allows to
determine ns by passing through the decimal logarithm of the number which is
used to isolate the number of significant figures. The rounding is then done by
considering ns.

ns = int{−Log10(Dn) + 1} (6.23)

Resource L Rounding a result (Excel).

1

2

3

4

5

6

7

8

9

10

11

A B C D E F

Resource L: Rounding a result
Raw data Rounded data Formula

Value 1.999982505 2.00                       =ROUND(B3;INT(-LOG10(B4))+1)

Uncertainty 0.059869686 0.06                       =ROUND(B4;INT(-LOG10(B4))+1)

Examples 
Z U(Z) Siginificant figures Z* U(Z)*

1.99998251 0.059869686 2 2.000 0.060

75.23678 0.0278 2 75.240 0.030

75.23678 0.00568 3 75.237 0.006

75.23678 12.3689 –1 80.000 10.000

The Resource L worksheet illustrates this formula in Excel and is applicable to data
such as the LEAD example. The raw result is in columnA, the expanded uncertainty
in column B, the rounded values in column C, and the Excel formula in column
D. First, two internal functions are used LOG10, which provides the decimal log-
arithm, and INT which retains only the integer part. Finally the built-in function,
ROUND completes the calculation using as argument the output of two functions.
Finally, the Lead result can be expressed in various equivalent forms:

Z = 2.00 ± 0.06 mg∕kg

Z = 2.00 ± 3% mg∕kg

Z = [1.94, 2.06] mg∕kg

6.10 Accuracy, Total Error, and Uncertainty

The introduction of the concepts of trueness, precision, and accuracy was mainly
aiming to characterize a measuring method. Analysts are now familiar with these
characteristics, although definitions may be fluctuating. On the other hand, MU is
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Error
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value Zi (replicate)
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Accuracy

Reference

value X

Result Z

Figure 6.5 Schematic
representation of the main
concepts used for method
validation.

no longer focuses on the measurment method but on the analytical result, which can
be described as the combination of the method, the laboratory, the type of matrix,
the operator on a given day, and so on. To be explicit, the purpose of an interlabo-
ratory analysis is to characterize the analytical method, using its standard deviation
of reproducibility; it is not directly aimed to qualify the analytical result issued by a
laboratory.

Figure 6.5 provides the schematic illustration of accuracy and the various charac-
teristics or parameters used for method validation. According to the VIM definitions,
trueness is the closeness of agreement between the average of an infinite number of
replicate measurements and the reference value; it is a distance. The term “closeness
of agreement” was preferred to the term “difference” to indicate this is a concept
while several parameters are applicable to estimate trueness. In the figure, trueness
is symbolized by a double-headed arrow.

Similarly, precision is defined as the closeness of agreement between replicate
measures; it characterizes a dispersion. It is represented as a circle containing
a known proportion of measurements (without going into the details of the
calculation).

The accuracy, on the other hand, characterizes the closeness of agreement of one
individual measurement to the reference value. Because these concepts are repre-
sented as vectors on the figure, it is easy to see that accuracy, as defined in the VIM,
is the combination of trueness and precision.

MU is also estimated with diverse standard deviations or standard uncertainties,
like the precision parameters. But the rationale is different and more complicated, as
multiple sources of variation are accounted for, like in a jigsaw puzzle. The solution
proposed by metrologists is to combine the various standard deviations correspond-
ing to these sources.

It can be tedious, and so we propose something slightly different. It is also possible
to use an intermediate precision standard deviation to cover most of the sources of
uncertainty. This last remark highlights the fundamental difference between a repro-
ducibility standard deviation and a combined standard uncertainty. Uncertainty can
contain a standard deviation of precision but not the opposite.

A classic confusion consists in thinking that repeatability or reproducibility
constitutes the uncertainty of measurement [12]. Some analysts believed that the
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relative standard deviation of repeatability (RSDr) is the appropriate estimate of
relative uncertainty UR%. However, RSDr presents several major failings:

– It does not consider all the sources of variation included in the MU; therefore, it
varies from day to day or from operator to operator.

– It does not consider the standard deviations of the measuring bias.
– It does not consider any coverage probability. This point is important as analysts

often use the RSDr to characterize a method. In its usual expression, it corresponds
to 1 standard deviation related to a given average value. At best, the coverage prob-
ability is 67% since the interval covers ±1 standard deviation. It would have to be
associated with a coverage factor of 2 for the proportion covered to be 95%. For
instance, when the RSDr is ±20% it means that 95% of the measurements are at
±40% around the announced result.

As already explained at the beginning of this chapter, in the field of clinical biol-
ogy, the TAE has had some success. Like accuracy, it is based on a combination
of trueness, using a bias, and precision introduced in the form of a standard devi-
ation multiplied by a coverage factor to account the dispersion of measurements
(formula 6.1) [13]. Figure 6.6 is a possible summarized comparison between TAE
and MU. In the right part of the figure, the statements 𝛿 = 0 and u(𝛿)≠ 0 are not
paradoxical but clearly underline two major principles of the GUM: the bias must
be corrected before any MU estimation; and the bias standard uncertainty, if any, is
included in the MU estimate.

In the conventional TAE model, for a given concentration level, the bias is con-
sidered as constant, this is the notion of systematic error, consequently its standard
uncertainty is 0. Whereas in the MU model, the bias must be corrected and, because
it is a random variable taking unpredictable values, it is possible to give an estimate
of its standard uncertainty u(𝛿).

Accuracy

Characteristic
Error

approach

δ ≠ 0

u(δ) = 0
δ = 0 (corrected)

u(δ) ≠ 0

Total analytical

error
Measurement

uncertainty

Uncertainty

approach

Intermediate

precision standard

deviation

Intermediate

precision standard

deviation

Trueness

Precision

Figure 6.6 Comparison between the total analytical error (TAE) model and the
measurement uncertainty (MU) model.
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6.11 Insights on Probability

Estimating the MU is an operation whose objective is to evaluate the probable dis-
persion of the true values of a measurand. Given that statistics is the science of
probability, estimating the MU requires a statistical approach. Indeed, modern statis-
tics appeared at the beginning of the nineteenth century, at the same time as the
scientific way of thinking was being established.

Initially, famous mathematicians such as Pierre de Fermat (1607–1665), Blaise
Pascal (1623–1662) or Thomas Bayes (1702–1761) elaborated the theory of probabil-
ity calculation because of the interest in games and the haphazard nature of winning.
And it is not a coincidence, if the Arabic word az-zhar indicates the game of dice,
while the origin of the word random is more confusing. The concept of probability
derives from the notion of randomness and is mentioned many times in this book
and is rather delicate to grasp because it is not always intuitive.

A classic starting point is to refer to the game of heads or tails and the experiment
conducted by the British mathematician John Edmund Kerrich while interned in
Nazi-occupied Denmark in the 1940s. It consisted of tossing a coin n = 10,000 times
and counting the number of times it landed on heads; this number being denoted
nH . In one experiment, the result was nH = 5067. From this experiment, the concept
of probability of having heads, denoted Prob(H) can be defined, in a first meaning, as
the relative frequency of the occurrence of heads: this leads to a possible definition
of probability named frequential. That is, the ratio of the number of times heads was
obtained to the total number of throws, denoted n, which gives:

nH

n
= 5057

10,000
= 0.5067 or 50.67%

This result is an observation of the real world. But intuitively it is easy to assume
that the correct result should be equal to 0.5000 or 50.00% since a nonrigged or per-
fectly symmetrical coin has theoretically as much chance of falling on heads as on
tails. By making this hypothesis, we unconsciously pass from the real world to an
idealized world, posed a priori. To check if this passage is correct, it would require
to be able to throw the coin an infinite number of times, which is of course unrealis-
tic on the practical level, but which allows to propose a mathematical model, in the
form:

Prob(H) = lim
n→∞

nH

n
= 0.5

It should also be noted that, when the experiment of 10,000-coin tosses is repeated,
another value of nH would be obtained different from the first one. The real world is
therefore not easily enclosed in a simple mathematical formula. When the number
of possible values taken by a measure is known in advance, as in the toss of a coin
where there are two possible values or the choice of a card in a deck of 52 cards, the
notion of probability defined as a relative frequency is simple to grasp.

Things become more complicated with measurements that can take an infinite (or
almost infinite) number of values, as a concentration measurement value obtained
with a quantitative analytical method. The contribution of mathematics to solve this
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Figure 6.7 Modeling: moving from the real world to idealized world.

problem has been to propose theoretical functions (or laws) that link a value to a
probability density. They are known as Normal law, Student’s law, binomial law,
Fisher’s law, etc. It is this additional level of abstraction that makes the notion of
probability difficult to grasp because it is far from intuitive.

Figure 6.7 attempts to outline the approach extensively used by analysts to design
an analytical procedure. As an example, consider the determination of fat in a food,
expressed in g/kg of dry weight. This example is deliberately simple and serves only
to illustrate the diagram. The first model consists in saying that lipids correspond to
all substances extracted by an organic solvent, such as petroleum ether or hexane.
This statement is often false, the model is more complicated and, depending on the
food, pretreatments may be necessary before lipid extraction. We finally obtain a
value of the lipid measurement denoted X1 in the figure.

The second model is used to describe the measurement of the amount of dry mat-
ter present in the test sample, denoted X2. Here again, various water elimination
procedures are applicable.

However, behind these two models, which can be considered as chemical, are two
statistical models which consist in declaring that each value X1 or X2 is made up of
two quantities: a true concentration and a measurement error. These new models
assume that in the sample to be analyzed, the lipids and dry matter are at constant
and uniform concentrations, denoted respectively V 1 and V 2. There are also the
errors made on each measurement, denoted here e1 and e2 which form the random
part of the model and are more or less probable.

In the simple case illustrated here, it would be classic to say that these errors fol-
low Normal probability distribution laws, with zero means. In the Section 8.3 which
deals with sampling uncertainty, it is demonstrated that this idea of constant con-
tents is also an ideal that never exists in the real world. Finally, the description of the
real world will be reduced to ratioing X1 and X2 values.

As already pointed out, experimenters are facing a fundamental problem. When a
measurement or an experiment is repeated, the obtained values or results are neither
predictable nor identical. Statisticians therefore use the term “random variables” to
describe this behavior of the measurement values.

The basic idea behind these few remarks is to remember that a value obtained at
the end of an experiment, or an analytical procedure, is only a possible value, “more
or less” probable. It is therefore important to keep in mind that the observed mea-
sures are only possible values and that repeating measurements would lead to other
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Figure 6.8 CORTISOL – accuracy profiles from four validation studies.

values that are just as probable. The frequential definition of probability implies the
idea of an infinite number of trials, so it is impossible to know exactly the probability
associated with a value, that would then no longer be random.

On the other hand, the probability density functions developed by statisticians
allow us to calculate, from a small number of observed values and for a given prob-
ability, a set of possible values contained, for example, in a prediction interval. To
illustrate these remarks, Figure 6.8 puts together four repeated accuracy profiles
obtained for the same method of analysis of CORTISOL by LC–MS–MS, over a sub-
stantial period, and without any modification of the analytical procedure [14].

The method for obtaining and interpreting accuracy profiles has been described
in Chapter 5. In this example each profile consisted of three series of three replicates
at seven concentration levels; thereafter, identical experimental design was repeated
four times for cortisol. The dashed horizontal lines delineate the acceptance interval
±20% and all profiles as thin dashed lines.

The conclusion is that the method is valid over the validation range, whatever the
chosen profile. On the same graphic, the β-γ-CTI of the obtained first profile is also
reported as two thick solid red lines. It is interesting to remark that almost all β-ETIs
are included within the β-γ-CTI obtained the first time. It brings some empirical
proof that β-ETIs correctly predicts future measurements.

The construction of the relative uncertainty function from an accuracy profile will
be described in Section 7.5.2. Figure 6.9 illustrates the relative uncertainty functions
of the method. These functions are clearly affected by the random variability of the
profile. For example, the relative uncertainty may vary from 5% to 12% at concen-
tration of 1 mg/ml. Below this concentration, the differences are even greater, but
at higher concentrations, the various functions converge. This observation of this
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Figure 6.9 CORTISOL – uncertainty functions of four replicated accuracy profiles, denoted
Rep 1 to Rep 4.

variability of experimental data must be kept in mind as it is an illustration of the
pending problems for the estimation of MU in analytical sciences.

Finally, since the beginning of the nineteenth century, the theoretical tools that
are the distribution laws of probability, allow us to predict the probable behavior of
the replicates of a measurement method. That is this approach, often called deter-
ministic, that is presented here.

Since the 1970s, several new techniques, based on the intensive computing capa-
bilities provided by computers, also allow the calculation of the probable dispersion
of experimental measurements without using a theoretical law. They are sometimes
called empirical or without-a-model. Unfortunately, they require different compu-
tational methods, such as the Bootstrap, which are not implemented in worksheets
and require a specific program for each application [15]. Moreover, the regulatory
authorities do not yet consider these innovative approaches as valid, for this reason
they are not presented here, without presuming their importance and contribution
to the field of analytical sciences in the coming years.
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7

Measurement Uncertainty in Analytical Sciences

7.1 Published Procedures: An Evaluation

The notion of measurement uncertainty (MU) has only recently emerged in
analytical sciences. The 2005 version of ISO 17025 noted that “testing laboratories
shall have and use procedures for estimating uncertainty of measurement. In certain
cases, the nature of the test method may preclude rigorous, metrologically, and
statistically valid, calculation of uncertainty of measurement” [1]. MU estimation is
now mandatory for accredited laboratories and increasing in numerous application
fields, such as environmental, toxicological, and clinical laboratories.

It quickly became apparent that the procedure classically used by other measure-
ment professionals, in particular the Type B approach, was particularly difficult to
apply to chemical or biochemical measurements. Since then, many proposals offer-
ing complementary, a priori better-adapted solutions have been published. Unfortu-
nately, these proposals are very theoretical; likewise, validation procedures are often
sectorial, linked to a specific field of application. It should be remembered, how-
ever, that Type A and Type B evaluations are not mutually exclusive and can even
be complementary.

Figure 7.1 provides a graphical representation of several published procedures,
and Table 7.1 associates the two-letter codes used at the bottom of the diagram with
bibliographic references. These documents were selected because they present esti-
mation procedures, official or consensus, specifically dedicated to the analytical sci-
ences. The code AA corresponds to the guide to the expression of uncertainty in
measurement (GUM) general procedure, already described in Section 6.2. The most
striking example of the various available procedures is provided by the network of
the European Directorate for the Quality of Medicines–Official Medicines Control
Laboratory (EDQM-OMCL), where five different procedures are proposed for the
so-called bottom-up approach only.

This list is not exhaustive, as new proposals are regularly published and/or
updated. This results in two main observations:
– It is recognized that different procedures may give different estimates of MU. For

instance, with the LEAD dataset, relative MU values ranging from 1 to 6 were
obtained depending on the sources of uncertainty considered and the calculation
method applied [7].

Quantification, Validation and Uncertainty in Analytical Sciences: An Analyst’s Companion,
First Edition. Max Feinberg and Serge Rudaz.
© 2024 WILEY-VCH GmbH. Published 2024 by WILEY-VCH
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Figure 7.1 Different MU estimation procedures proposed for the analytical sciences. The
two-letter codes refer to the list of documents in Table 7.1.

Table 7.1 Selected references of consensus methods for estimating measurement
uncertainty in analytical sciences.

Code Organization References Years

AA BIPM – GUM [2] 2012
AA EURACHEM-CITAC [3] 2012
MV SFSTP [4] 2017
MV AFNOR [5] 2010
MV EDQM-OMCL [6, 7] 2020
MV ISO [8] 2012
PT ISO [9] 2015
PT EDQM-OMCL [10] 2020
QC EDQM-OMCL [11] 2020
QC ISO [8] 2012
RS ISO [12] 2010
RS EDQM-OMCL [13] 2020

The organization acronyms are explained in Section 12.3.

– The direct consequence is that a harmonization effort promoted by ana-
lysts is crucial to propose the most judicious procedure or procedures, even
if several approaches have already been the subject of recommendation or
regulation.

Moreover, some specialized scientific publications describe dedicated applications.
The journal Accreditation and Quality Assurance has published a few hundred
examples for the analytical sciences. Even the vocabulary can be affected by these
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discrepancies in some fields of application, such as medicines control, where two
approaches are distinguished:

– Top-down to characterize the Type A evaluation based on data collected during
interlaboratory or inter-comparison studies (designated by the code RS).

– Bottom-up is often based on a deterministic model and is synonymous with Type
B evaluation.

The distinction between bottom-up and top-down does not shed much light
on eventual harmonization [14]. Nevertheless some publications conclude that
obtained values are nearly equivalent [15]. Several meaningful and suitable
approaches are presented in the remainder of this chapter. They were selected
because they allow reusing data that has already been collected for another purpose
and do not require any new experimental effort. In that respect, the data already
used for the method accuracy profile (MAP) is particularly appropriate. The main
reason to recommend this procedure is that data collection follows strict rules fully
compliant with MU estimation.

7.2 Use Method Accuracy Profile Data

7.2.1 Stage 1. Generic Measurement Model

To illustrate why we consider that MAP procedure can be an attractive approach to
estimate MU, the different steps of general GUM procedure presented in Section 6.2
are inspected in detail, keeping in mind this specific application. Some publica-
tions present this extension of the accuracy profile to estimate MU, for example
for a statin analytical method [16]. The first step is to formalize a measurement
model that applies to all methods and avoids overly specific applications. The ISO/TS
21748:2017 standard can serve as a guide. Its scope covers two topics:

– MU evaluation is based on data obtained from interlaboratory studies organized
in accordance with ISO 5725.

– The comparison of the MU, calculated from an interlaboratory study, with that
obtained by applying the principles of the law of propagation of uncertainty.

In this standard, the proposed measurement model is generic and applicable to
any field of measurement. According to the GUM recommendations, the calculation
procedure can combine the Type A and B approaches. Before going any further,
it should be remembered that MU characterizes a measurement made in a single
laboratory and not the method applied in different laboratories, as is the case
with reproducibility. It would therefore be nonsense to compare measurement
uncertainty with a standard deviation of reproducibility [17]. As it is inconsistent
to use the results of an interlaboratory analysis to estimate individual MU, several
precautions are taken in ISO/TS 21748:2017 standard to avoid this problem.

When data are collected in a laboratory under intermediate precision conditions,
there is no longer any contradiction in using the measurement model developed
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in this standard, even though it was developed for interlaboratory comparisons.
To obtain a MAP, it is mandatory to collect data under intermediate precision
conditions, as explained in Section 5.4.2.

The similarity between the computation of reproducibility and intermediate
precision variances was underlined in Section 3.2.1. In addition, since a full concen-
tration range is covered with the accuracy profile, it will be possible to obtain MU
values over the validation range at all concentration levels. Finally, an uncertainty
function to calculate the MU for any concentration could be obtained. This function
will be helpful in calculating the MU of any unknown sample result.

The ISO 21748:2017 measurement model principally considers a major part of
the analytical process, i.e. the analytical operating procedure, and includes some
pre-analytical steps. This applies to all analytical methods. It is presented in the form
of the Eq. (7.1).

Generic measurement model

Z = X + 𝛿 + B +
P∑

p=1
cpGp + E (7.1)

where:

Z Recovered (or inverse-predicted) concentration of the analyzed material.
X Reference value assigned to the analyzed material (it is a constant).
𝛿 Intrinsic bias of the measurement method.
B Random variation is produced by the series factor effect that combines many sources of

uncertainty.
Gp Other input quantities introduce a deviation from the nominal value of the reference X .
cp Sensitivity coefficient of the input quantity (see Eq. 6.18).
E Residual random error, under repeatability condition.

The quantity
∑P

p=1 cpGp represents the part of the measurement model that consid-
ers the slight deviations between the assigned value and the observed measurement
values, e.g. during the preparation of the calibrators. As before, the sensitivity coef-
ficient cp reflects the relative contribution of the quantity Gp in the MU.

7.2.2 Stage 2. Generic Cause-to-Effect Diagram

In practice, the recommended starting point for listing MU components is to draw
a cause-to-effect diagram, as described in Section 6.5. If approach B is applied,
this is restricted to the input quantities involved in the formula applied for result
expression. This limitation has been criticized, as it appears to ignore many sources
of uncertainty that play a fundamental role in the measurements, such as sample
preparation procedures or instrument settings. Table 7.2 presents a brief list of
sources conventionally described in the literature in relation to sampling or sample
preparation.

In the ISO 17025:2017 standard, there is an explicit list of critical points to be
controlled in a laboratory to reduce the “variability,” and the resulting uncertainty.
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Table 7.2 Sources of uncertainty in sampling and sample preparation.

Sampling Preparation of the sample

Heterogeneity (or inhomogeneity) Homogenization and subsampling
Influence of the sampling strategy
(random, stratified, proportional, etc.)

Drying
Grinding

Sedimentation effects of bulk material Dissolution
Extraction

Bulk physical state (solid, liquid, gas) Contamination
Effects of temperature and pressure Derivatization (chemical effects)
Influence of sampling on the composition Dilution errors

Preconcentration and concentration
Transport and storage of the sample Effects due to speciation

Source: Adapted from EURACHEM-EUROLAB [18].

Through the reading of the different chapters, a list of practical requirements can be
sorted out. It is the role of the inspector sent by the certification body, such as the
French accreditation committee Comité français d’accréditation (COFRAC) or the
American Association for Laboratory Accreditation (A2LA), to review this list and
decide whether they are correctly implemented and controlled in the audited labo-
ratory. Two main types of requirements can be identified corresponding to:

– The “commitment of results” where the laboratory is invited to participate in
proficiency testing and demonstrate that it is capable of achieving acceptable
results or scores.

– The “commitment of means” (or resources) where the laboratory must mobilize
all human and technical aspects to ensure the performance, prudence, and dili-
gence of its service at the declared level of quality.

These obligations give an insight into what must be considered as critical points
for controlling the sources of MU. Several chapters of ISO 17025:2017 can be seen as
participating in the catalog of MU components. It is adequate to organize them into
a generic cause-to-effect diagram applicable to any analytical method issued from
any laboratory, accredited or not.

Figure 7.2 represents a proposal summary to illustrate such a diagram. It differs
from Figure 6.2 in that it identifies eight sources of uncertainty corresponding to
eight chapters of ISO 17025:2017 [1]. It sometimes takes its name, Ishikawa diagram,
from the Japanese quality promoter who proposed it in 1943. In an industrial context,
the causes are categorized by the “5 M’s” for machine, method, material, man/mind
power, and measurement/medium. This diagram can also be called “5 M’s”.

As recommended, several sources of uncertainty can be clustered as one dotted
area labeled series effect on the figure. This also appears in the measurement model
of Eq. (7.1) as the B random variable affecting the impact of series changes. It is
intended to account for a majority of uncertainty sources that are present during the
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Figure 7.2 Generic cause-to-effect diagram with eight main classic sources of uncertainty,
according to [1]. The numbers in each box refer to the chapters of the standard. The dotted
area groups sources into one series factor effect.

analytical part of the measurement process. To identify the standard uncertainty of
this major part of MU, it is noted u(Zm) in the following, where subscript m stands
for method. This observation ignores two other components of MU:

– u(Zs) the sampling standard uncertainty, which mainly characterizes the
pre-analytical step and is discussed in Section 8.3.

– u(Zd) the so-called definitional uncertainty, which corresponds component of
measurement uncertainty “resulting from the finite amount of detail in the
definition of the measurand.”

The comprehensive generic measurement model then takes the following form:
Comprehensive generic measurement model

Z =

⎡
⎢⎢⎢⎢⎢⎢⎣

X + 𝛿 + B +
P∑

p=1
cpGp + E

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

Analytical process

⎤
⎥⎥⎥⎥⎥⎥⎦

+ S + D (7.2)

where S and D are random variables representing the random errors due to the
sampling and the definition of the reference value X , respectively. After applying
the law of propagation of uncertainty, the combined standard uncertainty of Z thus
becomes:

Combined uncertainty of Z

uc(Z) =
√

u2(Zm) + u2(Zs) + u2(Zd) (7.3)

In the first instance, the two standard uncertainties u(Zs) and u(Zd) are neglected
to focus only on the standard uncertainty related to the method. This is realistic
because, for many laboratories, the sampling (addressed in Section 8.3) is not part of
their mission. As explained in Section 6.3 about the traceability to the SI units, the
uncertainty on the reference value is negligible compared to the other sources.
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7.2.3 Main Sources of Uncertainty in the Laboratory

To fully explain how this approach can be useful to quickly estimate the MU, it is
necessary to review five major causes of Figure 7.2.

7.2.3.1 Manpower
This is a delicate point since the aim is to assess the competence of the personnel
responsible for the analyses. The ISO 17025 standard provides for the organization
of training programs for the personnel, a qualification procedure for any new person
entering the laboratory, and another for maintaining this competence. It is obvious
that the implementation of a school-type examination, such as the analysis of mate-
rial of known content, cannot be considered sufficient in a random context where
acceptable deviations are not yet defined.

Sources of variability commonly attributed to the operators include systematic bias
in the reading of a signal, weighting or volume error, and a different interpretation
of a result, but all are correctable.

7.2.3.2 Material and Handling of Items
These sources of uncertainty can generally be considered to be part of the
pre-analytical phase. But, when samples are stored for a certain period of time
prior to the analysis, the storage conditions may affect the results. The storage
time and conditions should therefore be considered part of the MU. If sampling
is the responsibility of the laboratory, the uncertainty associated with this oper-
ation must be evaluated. This is still currently under discussion, as it is difficult
to achieve.

Some elements are presented in Section 8.3, and others are available in [18]. As
soon as sampling is mentioned, many situations have to be considered, each of them
being specific and requiring a particular statistical formulation: sampling plants in a
field, blood in medical biology laboratories, or samples on a bulk lot of raw materials,
etc. are all different in terms of statistical modeling. In addition, heterogeneity within
a batch creates random variations between different samples that are not always easy
to model.

Finally, the sampling procedure itself can produce a bias. For example, a water
sampling device in a river creates a vortex that may displace some suspended
particles.

7.2.3.3 Method
This is probably where analysts best identify the sources of uncertainty. Most
analytical procedures are a combination of operations, especially if the assay
requires preparation. Without going into too much detail, it is necessary to sort
out parameters that can globalize these sources of uncertainty. For example, the
analyte recovery yield in a complex matrix can serve this purpose, even though the
instrumental response may be affected by matrix effects. Analyte speciation can
also increase these effects when a spike is used to estimate a recovery rate and the
surrogate substance is in a chemical form different from the analyte.
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Metrologists like to point out that often glassware material used at a different
ambient temperature than that at which it was calibrated is a source of uncertainty.
These effects are usually negligible, especially if the laboratory has air conditioners,
essential for many modern measuring instruments. On the other hand, sample mois-
ture can play a significant role if it is sensitive to possible hygrometric changes, which
happens with biological samples that dry-freeze. There are also diverse sources of
uncertainty due to calculations and signal processing. The selection of an approx-
imate calibration model, early truncation and rounding of raw measurements, and
incorrect settings of an integrator; all of these can lead to inaccuracies in the result.

The accuracy profile method can be used to detect these errors but not always to
correct them. In trace analysis, blank or inherent concentration subtraction is signif-
icant. Uncertainty affects both the result and the timeliness of the blank correction.
This problem is also encountered with the accuracy profile when standard additions
are used, and it has not been possible to find a validation material without inherent
content. Subtracting the so-called no-addition concentration also increases the MU
(Chapter 1).

Finally, ISO 17025 cites an extreme situation where the analytical process is
supposed to follow a certain stoichiometry, and the reaction proceeds in an incom-
plete way or with side reactions; then, it may be necessary to tolerate deviations
from the expected stoichiometry.

7.2.3.4 Machine/Equipment
Measurement equipment affects the MU, for example, the limited accuracy of the
laboratory scales, the difference between indicated settings and actual temperature
for a thermostat, the effects of contamination or memory for an automatic injection
device, and many other technical downsides. That is why the instruments of an
accredited laboratory must be regularly qualified and subject to regular maintenance
contracts and control charts, all monitoring designed to reduce the risks of malfunc-
tion or drift.

For reagents, the concentration of a calibration solution is not known exactly.
Many commercially available chemical compounds are not 100% pure and may con-
tain isomers and mineral salts. The purity of these substances is usually provided
by the manufacturer as a lower limit. Any assumption about the degree of purity
introduces an element of uncertainty.

7.2.3.5 Environment
The use of poorly designed spaces influences uncertainty. Some equipment requires
air-conditioned rooms or clean rooms with positive pressure. The most striking
example is that of microbiological methods, which require dedicated buildings
known as walk-in rooms designed to avoid any cross-contamination in such a way
that new samples never come in contact with already analyzed samples.

7.2.3.6 Measurement and Other Sources
First, any statistical model must consider that there are random, unlisted, or over-
looked effects, generally referred to as residuals, which contribute to uncertainty.
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They are inevitably included in the list. There remain two sources of uncertainty
that deserve special mention:

● Traceability of measurements. This issue is dealt with exhaustively by the Bureau
international des poids et mesures (BIPM).

● Sampling uncertainty needs special attention and is discussed in Section 8.3.

7.2.4 Stages 3 and 4. Calculation of Combined Uncertainty

Looking at the diagram of Figure 7.2 it should be possible to propose an experimental
method based on the multifactorial analysis of variance (n-way ANOVA) to estimate
the standard uncertainty of each MU component. The latter will extract the variance
component of each source in an equivalent way as between- and within-variances
calculated in Section 3.2.

This statistical procedure is the generalization of the one-factor ANOVA. But it
requires a substantial experimental effort, i.e. a large number of runs, as well as pro-
fessional statistical software capable of handling complex models that may combine
fixed-effect and random-effect factors. Therefore, only a limited number of publica-
tions are available to illustrate this procedure [19, 20].

However, at stage 3 of the GUM general procedure, it is judicious to aggregate the
standard deviations of several identified components before evaluating them, espe-
cially when numerous components are present or difficult to estimate. In Figure 7.2,
the dotted area exhibits together six of the eight sources of uncertainty. It is labeled as
a series effect because it combines the method of analysis and the practical conditions
of its application when the analysis is carried out.

Indeed, the same sample is reanalyzed over several days or in any other way
that represents the so-called intermediate precision condition. All the sources of
uncertainty grouped in the “series effect” will be brought into play simultaneously.
In Section 5.4.2, the need to use an experimental design establishing intermediate
precision conditions was pointed out for constructing the accuracy profile. Thus,
the simplest and most practical approach consists in calculating an accuracy profile
that can be used to estimate MU. It remains to be seen whether the estimation of
the standard uncertainties and, ultimately, the combined standard uncertainty can
be easily derived from these data.

This demonstration requires some simple mathematical operations. It starts with
the generic measurement model of Zm described by Eq. (7.1), which is a simple
additive polynomial relationship. After the law of propagation of uncertainty is
applied, as shown in the Eqs. (6.11–6.13), the standard uncertainty of u(Zm) is given
by the formula (7.4). For ease of calculation, the reference value X is considered
constant and known without uncertainty, in other words, u(X) = 0. Moreover, the
quantities

∑N
n=1 c2

n × u2(Gn) are assumed to be negligible compared to the other
sources of uncertainty. Because both assumptions are plausible, this leads to the
simplified formula of the Eq. (7.6).

Measurement model

Zm = X + 𝛿 + B +
N∑

n=1
cnGn + E (7.1)
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Standard uncertainty

u(Zm) =

√√√√s2
B + s2

r + u2(𝛿) +
N∑

n=1
c2

n × u2(Gn) (7.4)

There are two situations where these simplifications may lead to an underestima-
tion of MU:

● Case 1. When a reference material certified or external reference material (CRM
or ERM) is used. The standard uncertainty of the reference value u(X) is provided
by the manufacturer with the reference material when it is a CRM or by the pro-
ficiency testing organizer when it is an internal reference material (Section 7.4).
This uncertainty is equivalent to the definitional uncertainty defined in the Inter-
national Vocabulary of Metrology (VIM), u(X) = u(Zd).

● Case 2. When the standard addition method (SAM) is used. In this case, it is then
mandatory to include in the measurement model (6.7) the consequence of the
spiking process, which means keeping the quantity

∑N
n=1 c2

n × u2(Gn) and estimat-
ing it.

But in most cases, after simplification, it becomes:
Intermediate precision variance (reminder)

s2
IP = s2

B + s2
r (3.1)

Standard variance of Zm

u2(Zm) ≈ s2
B + s2

r + u2(𝛿)

u2(Zm) ≈ s2
IP + u2(𝛿) (7.5)

Standard uncertainty of Zm

u(Zm) ≈
√

s2
IP + u2(𝛿) (7.6)

To demonstrate that, in the most general case, the data collected for an accuracy
profile can also be used to estimate the analytical part of MU, it is satisfactory to
show that formula (7.5) is equivalent to formula (5.7), i.e. that the variance s2

TI used
to define the β-ETI around Z is equivalent to the standard variance u2(Zm). The quan-
tities already presented in Section 5.3.1, relative to the β-ETI are used.

In formula (7.5), the variance of intermediate precision s2
IP is an estimate of the

dispersion of the measurements under the influence of the “series effect” that
integrates the major sources of the MU, as illustrated in Figure 7.2. This parameter
can be estimated by an ANOVA and applying the formulas of (3.5) and (3.24). To
obtain the standard variance of the bias u2(𝛿) it is necessary to go back to pose the
model of the bias:

Bias

𝛿 = Z − X (7.7)

Then, comes quite naturally the standard variance of the bias while X is known
without uncertainty:
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Standard variance of the bias

u2(𝛿) = s2
Z
+ 0 = s2

Z
(7.8)

The standard variance of the bias is equal to the variance of the grand mean, whose
formula corresponds to the Eq. (3.21).

Variance of the grand mean

s2
Z
= s2

IP ×
(

1
IJQ

)
(3.21)

Standard variance of the bias

u2(𝛿) = s2
Z
= s2

IP ×
(

1
IJQ

)
(7.9)

with:

Q = A + 1
J × A + 1

A =
s2

B

s2
r

Finally:
Standard variance of Zm

u2(Zm) ≈ s2
IP + s2

IP ×
(

1
IJQ

)

u2(Zm) ≈ s2
IP ×

(
1 + 1

IJQ

)
(7.10)

Standard uncertainty of Zm

u(Zm) ≈ sIP ×
√

1 + 1
IJQ

Standard deviation of β-ETI

sTI = sIP

√
1 + 1

IJQ
(5.7)

Standard uncertainty of Zm

u(Zm) ≈ sTI

The conclusion is clear, and the standard uncertainty, calculated for the generic
measurement model, is approximately equal to the standard deviation used to
calculate the β-ETI. This result can be explained by the fact that most of the sources
of variation have been grouped into the “series effect.” Furthermore, to construct
the accuracy profile and calculate β-ETIs, it is mandatory to perform measurements
according to the design of the experiment, which aims to alter the series effect and
estimate the routine variability of the method. Then, to obtain a coverage interval,
the coverage factor is set, allowing to determine the expanded uncertainty U(Z).
Two solutions are available for the coverage factor:

– Use the kTI which participates in the β-ETI and puts the value of 𝛽% = 95%,
representing a 95% coverage probability. This is possible as the number of degrees
of freedom is equal to NE. This is the best solution and is recommended as the
first choice, among others, by the GUM.
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– If the actual number of degrees of freedom is unknown or difficult to compute, it
is possible to take the simple kGUM standardized value proposed by the GUM, i.e.
kGUM = 2 for a coverage probability of 95% or kGUM= 3 for a coverage probability
of 99%.

When NE number of effective measurements is higher than 10, the value of kTI is
remarkably close to 2, and the values of U(Z) obtained by both solutions are then
comparable. Therefore, in all cases where the number of degrees of freedom NE
less than 10, the first solution is advocated. The direct Excel application of these
equations is visible on lines 42–45 of the Resource H in Section 5.3.1. The calcula-
tion of the relative uncertainty UR% requires a few comments. By referring to Eq.
(6.4), the equation should be:

UR%(Zm) =
U(Zm)

Zm
× 100

where Zm is the grand mean of the inverse-predicted concentrations. Unless the
analytical method is perfect, it is a biased estimate of X . Therefore, in this context,
we recommend using the following formula where X is the assigned value of the
corresponding validation material:

UR% =
U(Zm)

X
× 100

Because Zm is biased, it means that the bias would be included in the relative
uncertainty and modify the estimation; a positive bias would diminish UR% and a
negative bias would increase it. This point is an important difference between the
total analytical error (TAE) concept and the MU, as underlined in Section 6.10 and
illustrated in Figure 6.6. Therefore, in the following, the relative uncertainty is noted
UR% to indicate it was calculated from the MAP.

A rapid example from THEOPHYlLLINE may illustrate the consequences of using
Zm instead of X . For the first level where X = 0.05, the recovered grand mean Z =
Zm = 0.0587; consequently, the relative bias of about+17%. If UR% is calculated with
Zm, it gives 39.8% but 46.8% with X .

Finally, it can be asserted that the relative uncertainty better characterizes X .
A short remark on this point is available in Section 3.2.2 and a more extended
discussion in [21]. To illustrate the diverse calculations presented above, the
THEOPHYLLINE dataset is used to give estimates for each validation material and
compare the two proposed solutions for the coverage factor. Results are gathered in
Table 7.3.

From this table, several conclusions can be drawn:

– For these examples, the GUM standardized coverage interval is always smaller
than the coverage interval obtained by the exact method because the number of
effective measurements is less than 10, except in one case; the standardized factor
kGUM therefore tends to underestimate the expanded uncertainty.

– When the number of effective measurements tends towards the optimum (i.e. 11
in this example), the coverage factor kIT is close to kGUM The two intervals are
almost identical because NE is optimal.
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Table 7.3 THEOPHYLLINE – estimates of expanded uncertainty using two methods of
calculating the coverage factor.

Concentration (μg/l) X 0.05 0.10 0.50 1.00 2.50 10.00
Grand mean Z 0.0587 0.1115 0.5196 1.0013 2.5164 10.352
Standard uncertainty u(Z) 0.0117 0.0130 0.0350 0.0862 0.2749 0.5093

Exact coverage factor
Effective measures NE 7.01 9.59 7.02 5.69 10.91 9.22
Probability β-ETI 𝛽 95% 95% 95% 95% 95% 95%
Coverage factor kIT 2.36 2.24 2.36 2.49 2.20 2.25
Expanded uncertainty U(Z) 0.028 0.029 0.083 0.214 0.606 1.148
Relative uncertainty UR% 55.3% 29.2% 16.6% 21.4% 24.2% 11.5%
Coverage interval 0.031 0.082 0.437 0.787 1.91 9.20

0.086 0.141 0.602 1.216 3.12 11.50

GUM Standardized coverage factor
Coverage factor kGUM 2 2 2 2 2 2
Expanded uncertainty U(Z) 0.023 0.026 0.070 0.172 0.550 1.019
Relative uncertainty UR% 46.8% 26.0% 14.0% 17.2% 22.0% 10.2%
Coverage interval 0.035 0.085 0.450 0.829 1.97 9.33

0.082 0.138 0.590 1.174 3.07 11.37

Figure 7.3 provides a graphical representation of the coverage intervals, which
ultimately appear close. An interesting assumption is that the standard deviation
of the β-ETI, sIT , estimates most, if not all, of the combined standard uncertainty
since it is limited to the analytical part of MU. The sources of uncertainty excluded
by this approach are related to the sampling part and/or the validation material MU.
The topic of sampling is discussed in Section 8.3.

Considering the reference values of the validation materials, other sources of
uncertainty can be integrated into the model, especially in the case where certified
reference materials are used. Sometimes the reference values are obtained through
another method of analysis. This is quite common when it is possible to use a
reference method, sometimes named gold standard method, as in the American
literature.

7.3 Use Control Charts Data

7.3.1 Principles of the Shewhart Control Chart

The emergence of control charts in industry dates back to 1924 when W. A.
Shewhart (1891–1967) introduced the first version of this quality control (QC)
tool in the Bell Telephone Company, where he was employed. Since then, various
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Figure 7.3 THEOPHYLLINE – 95% coverage intervals. Dotted lines: tolerance interval
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control charts have been designed, each one adapted to a particular production
context, as illustrated by the following (nonexhaustive) list, which consists of the
ISO 7870 series of standards relating to control charts:

Ref. Year Title

7870-1 2020 General guidelines
7870-2 2013 Shewhart control charts (replaces ISO 8258:1991)
7870-3 2012 Control cards for acceptance
7870-4 2011 Process adjustment control charts
7870-5 2014 Specific control cards
7870-6 2016 EWMA control charts (exponentially weighted moving average)
7870-7 2020 Multivariate control charts
7870-8 2017 Chart techniques for small series and small batches
7870-9 Project Autocorrelated process control charts

It is not our purpose to develop a complete theory about these various approaches,
since it is available in many specialized books [22]. Our purpose is to show how to
take advantage, a posteriori, of the data accumulated using a control chart to compile
an estimate of MU. But several compilation methods are possible according to the
type of chart.

This chapter is deliberately limited to the type most traditionally used in
laboratories, namely the Shewhart control chart on the mean. Its principle is to
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take a “sample of constant size at regular intervals.” Unfortunately, the term sample
remains highly ambiguous: for an analyst, a sample is a single object that must
be analyzed; for a statistician, it is a set of entities forming a sample whose main
characteristic is its size.

In other words, for the analyst, the principle of the Shewhart control chart implies,
at a given interval of time, taking several test portions of one reference material
and making replicates. In laboratories, such reference material is often referred to
as QC sample. Let us note J with 2≤ j≤ J the number of replicates. This notation
corresponds to the one used for the number of replicates per series of the accuracy
profile experimental design.

In an analytical laboratory, the most conventional organization of a control
chart consists in inserting at regular intervals QCs among routine samples form-
ing a series. QCs are analyzed by the method, and the measurement values are
graphically compared to a target value, denoted T (for Target). Knowledge of the
target value has, therefore, a major importance. As it is a question of trueness,
Section 4.4 explains how the assigned true value T of the QC reference material can
be established and the warning and control limits used to verify that any new QC
measure is not “out of specification” (OOS) and can be considered as acceptable.
Different rules are proposed to make this decision.

When at least one new measurement value deviates from one of these limits, it
is concluded that the analytical process presents unexpected conduct. In this case,
various corrective actions must be taken before using the method for the following
routine analysis. In the everyday vocabulary of the control chart, it is alleged that
the process must remain under “statistical process control” (SPC) [22].

In the industrial context of standardized product manufacturing, such as a drug
or a food, the target value T can be an expected technical specification, such as the
nominal contents of active ingredients, the packaging weight, and so on. For contract
laboratories with a wide variety of samples, an internal reference material (IRM or
ERM) can be used to set up a control chart because certified reference materials are
unavailable or too expansive.

The reference value T, as well as the uncertainty, must have been predetermined in
the same context of routine laboratory work. It is also popular to have simultaneously
several control charts, and Figure 4.5 illustrates such a framework.

The dataset chosen for illustration is called ALBUMIN. It is available in an offi-
cial document printed by the European Directorate for the Quality of Medicines and
Healthcare (EDQM) devoted to the European medical and clinical laboratory net-
work (OMCL Network of the Council of Europe [GEON]) [11]. It concerns the QC of
purified commercial albumin solutions. Albumin solution mainly contains a unique
monomer with a molecular weight of 66 kilodaltons (kDa), in addition, a variable
percentage of polymers may be present, which are by-products occurring during
fractionation, heating, and storage of the solution. Total polymer content (expressed
in g/100 ml) is a quality criterion of this impurity, and a low measured value allows
for good stability of the solution.

The high-performance liquid chromatography (HPLC) method for checking
the total polymer content is based on exclusion chromatography (SEC) [23]. The
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Figure 7.4 ALBUMIN – control chart and QC. Warning limits are in green and control limits
are in red.

impurity content of the reference material was determined exactly before starting.
QC measures are denoted Zij where 1≤ i≤ I is the number of times, generally the
number of days and/or each use of the method. From the number of replicates J
for each QC, three statistics are obtained: the mean, the range, and the standard
deviation (equal to the range if J = 2). This leads to three types of charts. The most
frequently encountered type, the Shewhart control chart, deals with the mean with
J small but greater than 1. If J = 1, another statistical processing must be applied,
which will not be explained here.

QC measurements are plotted on a graph, i.e. Figure 7.4, where the interval
between two QC is reported on the horizontal axis. On the vertical axis, the central
line represents the assigned target value T of the reference material. When using
an IRM, this is usually the grand mean Z of a set of replicates obtained during a
preliminary study with the method to be controlled or a comparable alternative
method. On the same axis, the following four limits, going from the top to the
bottom, are added, having the general formulas, where T is the target value:

Upper control limit

UCL = T + k1
�̂�√

J
(7.11)

Upper warning limit

UWL = T + k2
�̂�√

J
(7.12)
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Lower warning limit

LWL = T − k2
�̂�√

J
(7.13)

Lower control limit

LCL = T − k1
�̂�√

J
(7.14)

The limits depend on a dispersion parameter, traditionally denoted �̂� and two cov-
erage factors denoted k1 and k2. In Section 4.4, by convention, fixed factors were
applied k1 = 3 and k2 = 2. Different methods are used to define �̂� and consequently,
various control charts can be obtained:

Method �̂� values

Standard deviation of the preliminary study s
Standard deviation of repeatability of a preliminary study sr

The known standard uncertainty of T (applicable to CRM) u(T)
Predefined percentage c of the target value T × c

The ALBUMIN example is based on the standard deviation of repeatability. The
formula for calculating this standard deviation is presented in Section 3.2 and should
be referred to for notations. In addition, Resource E is an Excel worksheet for calcu-
lating it. It is summarized as follows:

Standard deviation of repeatability

sr =

√∑I
i=1

∑J
j=1 (Zij − Zi)2

I(J − 1)
=

√∑I
i=1 SCEi

I(J − 1)
(7.15)

Finally, the coverage factors can take on various values, but it is typically recom-
mended to take:

Type of limit Coverage factor Probability of coverage

Control k1 = 3 99%
Warning k2 = 2 95%

7.3.2 Statistical Dispersion Intervals and Control Charts

Using the same dataset, it is possible to calculate the β-ETI, and β-γ-CTI described
in Section 5.3 to quickly obtain a Shewhart control chart of the mean. The data may
have been collected as part of a validation study or independently in a preliminary
study with replicates. This allows us to get a MU estimate from QC measurement
values.

Everything below is only applicable if the data collection method for the
preliminary study is the same as it will be afterwards. This means that if the QC
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Table 7.4 ALBUMIN – simulated results of the preliminary study (total polymer contents
expressed in g/100 ml).

Series Replicate 1 Replicate 2

Series 1 4.18 3.51
Series 2 4.60 5.26
Series 3 4.68 4.40
Series 4 5.20 4.60
Series 5 3.99 5.25
Series 6 4.12 4.68
Series 7 4.75 4.25
Series 8 5.02 3.99
Series 9 3.85 5.00
Series 10 4.11 5.22

size is J = 2, the same number of replicates must be routinely collected. The control
procedure in place amounts to analyzing size QC J = 2 at each date for the control
of the method.

In the original document, the estimation of the target value is not presented.
For pedagogical reasons, the results of a preliminary study were simulated using
a normal law simulator available with Python. The study was supposed to last 10
days, I = 10 sets of J = 2 measurements whose values are collected in Table 7.4.
The estimate of the target value was taken as T = Z and the standard deviation of
repeatability �̂� = sr .

As discussed in Section 5.4.4, the β-γ-content tolerance interval (β-γ-CTI) is
considered as first choice to set the warning (LWL and UWL) and control (LCL
and UCL) limits of the future control chart. The next step is to define the coverage
probability 𝛽 and the confidence level 𝛾 . For this, the Food and Drug Administration
(FDA) recommendations for biological assays could be considered [24]:

− The trueness should be in the ±20% range, which allows 𝛽% = 80%.
− Then, 2/3 (67%) of the QCs (i.e. 4/6) must fall between the warning limits, which

gives 𝛾% = 67%.
− Finally, as it is traditional, the control limits not to be exceeded must correspond

to a confidence level γ% = 99%.

Finally, two β-γ-CTIs are computed having probabilities:

Content probability 𝜷 Confidence level 𝜸

Warning limits 0.80 0.67
Control limits 0.80 0.99
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Table 7.5 ALBUMIN – preliminary study.

Parameter Warning Control

Coverage probability 𝛽 0.80 0.80
Confidence level 𝛾 0.67 0.99
Grand mean Z = T 4.533
Std. dev. of repeatability sr 0.5954
Between-series standard deviation sB 0.0000
Standard deviation of β-γ-CTI sIC 0.6476
Coverage factor kIC 1.303
Lower limit L 3.69 3.26
Upper limit U 5.38 5.80

Parameters of the β-γ-CTI to define limits of the control chart (g/100 ml).

The data from Table 7.4 were copied into Resource I, which provides the limits
reported in Table 7.5. It is interesting to check whether the calculation of these lim-
its, carried out classically, i.e. described in the standards and summarized by the
Eqs. (7.11) and (7.14), give comparable results. For this purpose, the coverage factors
k1 = 3 and k2 = 2, the mean as target value T and, standard deviation of repeatability
provided by Table 7.5 as an estimator �̂�.

The standardized computation gives:

Formula Result

LCL = T − k1
�̂�√

J
LCL = 4.533 − 3 × 0.5954√

2
= 3.27

LWL = T − k2
�̂�√

J
LWL = 4.533 − 2 × 0.5954√

2
= 3.69

UWL = T + k2
�̂�√

J
UWL = 4.533 + 2 × 0.5954√

2
= 5.37

UCL = T + k1
�̂�√

J
UCL = 4.533 + 3 × 0.5954√

2
= 5.80

With these new limits and the old ones rounded to two decimals, it is easy to check
that similar values are obtained. They are plotted in Figure 7.4. This result is not sur-
prising since the FDA recommendations are based on the same statistical principles
as those that led to the development of the control charts. For the QC of commercial
albumin solutions, the reference solution was used for three and a half years on 34
batches of bovine albumin. Figure 7.4 shows the Shewhart control chart obtained
from these data with the limits previously calculated, while QC measurement
values, with their dates, are recorded in Table 7.6.

The purpose here is not to comment on the QC problems of the analytical
method exhibited by this chart but to explain how to use these 68 measurements
to infer the MU of the reference solution and, subsequently, any sample close to
that level.
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Table 7.6 ALBUMIN – QCs over two years expressed in g/100 ml.

Date Rep.1 Rep.2 Date Rep.1 Rep.2 Date Rep.1 Rep.2

10 February
2015

4.70 4.77 27 August
2015

4.11 4.21 19 October
2016

5.17 5.00

23 March
2015

4.62 4.80 14
September
2015

4.61 4.59 9 November
2016

4.98 5.12

13 April
2015

4.83 4.91 4 November
2015

4.95 4.91 12
December
2016

5.29 5.45

23 April
2015

5.43 5.58 24
November
2015

4.94 5.03 11 January
2017

5.49 5.46

19 May
2015

5.30 5.47 17
December
2015

4.89 4.99 17 January
2017

5.31 5.27

28 May
2015

5.51 5.53 2 February
2016

4.67 4.79 24 January
2017

5.31 5.33

1 June
2015

4.93 5.05 24 February
2016

4.58 4.41 2 February
2017

5.33 5.28

29 June
2015

5.06 5.02 23 May
2016

5.11 5.22 14 March
2017

4.88 4.91

8 July
2015

4.70 4.83 8 June 2016 5.11 5.26 3 May 2017 4.01 3.89

3 August
2015

4.17 4.24 8 August
2016

5.20 5.33 16 May
2017

3.63 3.50

25 August
2015

4.14 4.20 7
September
2016

5.17 5.34 21 June
2017

5.30 4.89

1 August
2017

4.92 4.85

Source: Adapted from EDQM-OMCL [11], Table 2.1.

7.3.3 Estimation of the Reference Value Uncertainty

To obtain the MU of the mean value of the reference albumin solution, the proposal
is to calculate the β-ETI with a coverage probability 𝛽% = 95% so that it conforms
with the GUM coverage factor. The Resource H Excel worksheet can do this compu-
tation after adapting it to the increased number of series. The question is to apply this
method to 10 duplicates collected during the preliminary study or to the 34 series of
routine QC.

Computed parameters for both datasets are summarised in Table 7.7. Some
measures show that the method can be out of control and, therefore, significantly
influence the MU estimate. Still, it is not a matter of eliminating them because they
also contribute in the MU of the reference solution.
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Table 7.7 ALBUMIN – different estimation approaches for the MU of the reference
albumin solution (g/100 ml).

Parameter Symbol Preliminary study Quality controls Approach B

Number of data I × J 20 68 68
Coverage probability 95% 95% 95%
Grand mean T 4.53 4.91 4.91
Std. dev. of repeatability sr 0.595 0.092
Between series std. dev. sB 0 0.462
Standard uncertainty uc(T) 0.610 0.478 0.467
Number of df NE 18.9 34.3
Coverage factor kIT 2.09 2.03 2
Coverage interval [3.26, 5.81] [3.94, 5.88] [3.97, 5.84]
Relative uncertainty UR % (T) 28.2% 19.8% 19.0%

It is interesting to compare these results with those obtained by applying approach
B and the law of propagation of uncertainty, as described in several guides reported
in Table 7.1. To account for the fact that the number of replicates is 2 for each control
and using the notations already employed, the combined standard uncertainty of the
measurand is then:

uc(T) =

√
s2

r

2
+ s2

B

uc(T) =
√

0.0922

2
+ 0.4622 = 0.467 g∕100 ml

The values obtained are presented in Table 7.7 and lead to close estimates, except
for the preliminary study. The total number of measures has a strong influence on
the MU estimation. It can be concluded that the relative uncertainty of the polymer
content of an albumin solution with a concentration of about 4.9 g/100 ml is between
±19% and ±20%.

The use of β-ETI and β-γ-CTI presents the clear advantage of being simple and
straightforward, on the one hand, to establish the parameters of a control chart, on
the other hand, to estimate the measurement uncertainty of the reference material
when the number of collected data is sufficient. After a certain number of QCs, it is
also necessary to recalculate and modify the target value of the reference material
and the limits of the control chart.

It is also possible to construct control charts at different concentration levels,
allowing the relationship between MU and concentration to be estimated. One
possible strategy for selecting the reference material is to exploit materials used
during the validation procedure. They can be turned into reference materials for
several control charts.
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The measurements collected during the validation study can then be used to
define the initial target values and control limits. Subsequently, regularly repeated
QC measurements can refine the initial MU estimate. It is now well-established
that MU tends to decrease as the method is used routinely and eventually stabilizes
around a convergence value, provided that the sources of variability are constant
over time.

7.4 Use Interlaboratory Comparison Data

The question of the different laboratory comparison procedures was already
addressed in Sections 3.1 and 4.3, discussing precision and trueness, respectively.
A proficiency testing scheme (PTS) is a procedure that consists of asking a large
group of laboratories to perform a measurement, usually without replicates on a
common sample, in most cases also without replicates. To verify their abilities in a
specific field of application, laboratories can use their method. This procedure is a
requirement for accreditation, and ISO 13528 international standard describes the
statistical methods that can be used by proficiency testing organizers to interpret
the results.

On the other hand, an interlaboratory study differs from a PTS because it is a study
that brings together a group, often limited, of laboratories that are asked to perform
replicates on the same sample using the same method. The aim is to evaluate the
reproducibility of this method. This type of study could be mandatory to document
the part of a standard related to the performance of a method. The ISO 5725 series
of standards describes the organization and operation of this kind of interlabora-
tory analysis. However, the two comparison approaches may overlap, and previous
descriptions may accept many extensions.

7.4.1 Proficiency Testing Scheme (PTS)

Because the participants do not perform replicates, it is impossible to estimate the
respective MU for each result provided in a PTS. However, at the end of the test,
the organizer can obtain an estimate of the value assigned to the test material, along
with its standard uncertainty. For this purpose, chapter 7 of ISO 13528 defines an
additive measurement model.

Unfortunately, there are also five ways to calculate the standard uncertainty
of each model component. The drafters have therefore maintained a rather loose
consensus, which illustrates the wide variety of areas in which proficiency testing
is organized. These different methods of calculating the MU are specific to the
activity of the PTS organizer. It may also be that some portions of the material used
for the test are still available, or the organizer may suggest that samples be taken. It
can then be used as an IRM for validation studies or the setting up control charts.
In Section 8.3.2, the procedure for checking test material homogeneity, which
described in Annex B of ISO 13528, is also used to assess the sampling uncertainty.
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7.4.2 Interlaboratory Studies

When laboratories are required to make replicates while participating in an
interlaboratory analysis, it seems logical to be able to calculate each result provided
an estimate of its MU. ISO 21748:2017 describes a solution for this situation.
This standard has already been mentioned in Section 7.2 to propose a generic
measurement model because applicable to any analytical method.

Measurement model

Z = X + 𝛿 + L +
P∑

p=1
cpGp + E (7.1)

The definition of the elements of this model is slightly modified in the case of an
interlaboratory analysis.

Z Output quantity.
X Average value assigned to the test material analyzed.
𝛿 Intrinsic bias to the measurement method.
L Random variable for the laboratory factor effects and no longer the series effects.
Gp Deviations from the nominal value of the assigned value X .
cp Sensitivity coefficient.
E Residual random error under repeatability conditions.

The law of propagation of uncertainty explained in Section 6.7 applies to this addi-
tive model and, at the cost of some simplifications, the standard uncertainty of the
measurand is equal:

Standard variance of Z

u2(Z) ≈ s2
L + s2

r + u2(𝛿) (7.5)

Variance of the bias

u2(𝛿) = s2

Z
(7.8)

Standard uncertainty of

Z u(Z) ≈
√

s2
L + s2

r + u2(𝛿)

u(Z) ≈
√

s2
R + u2(𝛿)

(7.6)

An interesting proposal of the ISO 21748 standard is to introduce a new
parameter called “intra-laboratory reproducibility.” This ambiguous name is not
only an oxymoron, but the idea behind it is interesting. It calculates an estimator of
individual laboratory intermediate precision derived from the interlaboratory study
data. The intra-laboratory reproducibility is denoted s2

Ri
, where i is the laboratory

number and s2
ri

the repeatability variance of the laboratory. Then it gives:
Laboratory repeatability variance

s2
ri
=

∑J
j (Zij − Zi)2

J − 1
(7.16)
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Table 7.8 LEAD – MU of the average of each laboratory.

Labs Zi s2
ri

s2
Ri

u(Zi) UR%(Zi) (%)

Lab 01 2.03 0.001900 0.021349 0.14611 14.4
Lab 02 1.94 0.003100 0.022549 0.15016 15.5
Lab 03 2.17 0.060933 0.080382 0.28352 26.2
Lab 04 2.43 0.006033 0.025482 0.15963 13.2
Lab 05 1.92 0.000933 0.020382 0.14277 14.8
Lab 06 1.88 0.000933 0.020382 0.14277 15.2
Lab 07 2.02 0.001033 0.020482 0.14312 14.1
Lab 08 2.02 0.003433 0.022882 0.15127 15.0
Lab 09 2.09 0.003233 0.022682 0.15061 14.4
Lab 10 1.99 0.000700 0.020149 0.14195 14.3
Lab 11 2.02 0.000400 0.019849 0.14089 13.9

Laboratory average result

Zi =

∑ni
j Zij

ni

Intra−laboratory reproducibility variance

s2
Ri
= s2

ri
+ s2

L (7.17)

Standard uncertainty of Zi

u(Zi) ≈
√

s2
Ri

(7.18)

The formulas are applied to the LEAD dataset and recorded in Table 7.8. To ver-
ify the calculation, it must be remembered that s2

L = 0.01945 for the balance design
when no outlying laboratory is removed.

The graphic illustration of this interlaboratory MU estimate is provided in
Figure 7.5a where the horizontal bars represent the laboratory mean, and the verti-
cal error bars the coverage interval of each mean. The individual MU is somewhat
important, while it was indicated in Section 3.4.2 that two laboratories were outliers.
This remark underlines the leading role of the interlaboratory variance s2

L in the
computation of the “intra-laboratory reproducibility variance” as it is occasionally
20 times higher than the individual repeatability variance.

When the outliers (data or laboratories) are removed, MU values are strongly
reduced, as shown in Figure 7.5b. The scale on the y-axis is the same on both figures
to show this dramatic modification. In this case, s2

L = 0.0003593.
For a laboratory participating in an interlaboratory study, this approach is inter-

esting as it is a good improvement of its work, but the MU obtained depends strongly
on the performance of the other laboratories and must be interpreted with caution.
It should be remembered that MU is specifically applicable to a measurement value
obtained in one laboratory applying its operating procedure, whereas in this case,
the estimation can be strongly influenced by other laboratories.
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Figure 7.5 (a) LEAD – laboratory coverage intervals including outliers, (b)
LEAD – individual coverage intervals after removing outliers.

7.5 Uncertainty Functions

7.5.1 Horwitz’s Model

It was previously explained that MU can vary depending on the instrument or mea-
surement method. In the case of chemical or biochemical measurements, MU also
varies, sometimes very strongly, depending on the concentration level. This varia-
tion is observable, regardless of the type of measurand or concentration, estimated
by inverse prediction or assigned to a validation material. In some instances, this
variation can be ignored if the sample is a product of a controlled industrial process
because the concentration range of the analyte may be very narrow, and the associ-
ated MU can then be taken as invariant (see Section
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Usually, once an MU estimate has been obtained for a given sample concentra-
tion, it is risky to extrapolate to another sample received by the laboratory unless the
concentration is close. A possible method to avoid this disadvantage is determining
the dominant relationship between MU and concentration, sometimes qualified as
“functional relationship.” Obviously, this requirement seems much less important
for physical measurements where the same uncertainty applies to a wider range of
measures.

Since the 1960s, interlaboratory studies and subsequent reproducibility calcula-
tions have been extensively used for quantitative method validation. By compiling
thousands of these interlaboratory analyses, W. Horwitz demonstrated that repro-
ducibility, i.e. precision, varies according to the concentration. The empirical model
he proposed linked the relative standard deviation of reproducibility (also called the
coefficient of variation of reproducibility), denoted RSDR, to the concentration X .
The basic rationale is that the RSDR could be multiplied by 2 every time the concen-
tration is divided by 10 [25].

Equation (7.19) presents the initial mathematical formulation of this model
published by Horwitz. The result is directly given as a percentage. RSDTR
stands for theoretical relative standard deviation of reproducibility computed
via the model while RSDR is the observed value. The empirical model relates
concentration and precision in general, whatever the method operating pro-
cedure. It is, therefore, not directly applicable to the MU of any laboratory for
any method; it is rather a very general model combining all types of analytical
methods.

After rearrangement, an equivalent form is given by the Eq. (7.21), which links the
theoretical standard deviation of reproducibility sTR to the concentration. It must be
highlighted that this relationship is a power function of the same type as f (Z) = aZb.
Moreover, it is a very convenient way to link these two quantities.

Horwitz model (theoretical relative standard deviation)

RSDTR =
sTR

X
× 100 = 21−0.5 log10(X) (7.19)

Alternative form of Horwitz model

RSDTR = 2 × X−0.155 (7.20)

Theoretical standard deviation of reproducibility

sTR = 0.02 × X0.845 (7.21)

Horwitz Ratio (HorRat)

HorRat =
RSDR

RSDTR
(7.22)

A simple example illustrates the calculation of the RSDTR. Consider a sample with
a measured content of approximately 1 g/100 g. First, this concentration must be
converted into International System units (SI), i.e. 1 g/100 g is equal to 10−2 kg/kg.
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This value introduced into the equation gives the theoretical value of the RSDTR. At
this concentration level, RSDTR must usually be close to 4% as:

RSDTR = 21−0.5log10(10−2) = 21−0.5×(−2) = 21+1 = 22 = 4%

The remarkable success of this proposal led the official control bodies to create
an acceptance criterion to check whether a standard deviation of reproducibility is
acceptable or not. This is the HorRat, defined by the formula (7.22). This is the ratio
of an observed relative standard deviation RSDR calculated at the end of an inter-
laboratory study, and the theoretical RSDTR predicted by the Horwitz model. The
proposed HorRat acceptance interval is [0.5, 2.0] [26].

Over time, this criterion and its acceptance have acquired a semi-official character
which seems to give a kind of award to a method or, on the contrary, reject it. For
example, the FDA, the Codex Alimentarius, and the European Union have adopted
Horwitz’s model to decide whether a method can be used for official control pur-
poses, as explained later in this chapter. It can be expected that this decision rule is
somewhat arbitrary. As remembered, the model is empirical and has no physical nor
physicochemical basis that could justify a formal relationship between concentra-
tion and measurement precision. From an analytical point of view, one given method
may be highly reproducible while another may not, but the main point is that both
can fulfill the objectives assigned and are suitable for a given purpose.

Figure 7.6 illustrates Horwitz’s model on a logarithmic scale ranging from 1 to
10−12 kg/kg or from 1 kg/kg to 1 ppt, as recommended by the author. A few values
have special meaning for the customary laboratory discussion: 10−2, which stands
for 1%, 10−6 for part per million or ppm, 10−9 for part per billion or ppb, and 10−14

for part per trillion or ppt.
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Figure 7.6 Horwitz (solid line) and Thompson (dashed line) models. Both axes have
logarithmic scales. Two thin dotted lines outline the HorRat.



206 7 Measurement Uncertainty in Analytical Sciences

A simple calculation shows that for 1.0 ppm, the theoretical standard deviation
of reproducibility should be 0.17 ppm. If, abusively, it was assimilated to a stan-
dard uncertainty, then it is necessary to apply a coverage factor of 2.0, as explained
in Section 6.10, and the expanded uncertainty would be 0.34 ppm or in a relative
form 34%. However, this reasoning is somewhat fallacious. The reproducibility of a
method is not the uncertainty of measurement [17].

It should also be noted that for concentrations below 10−10 kg/kg, or 0.01 ppm, the
RSDTR is 50% or more. This means a dispersion of ±100% if the coverage factor of 2.0
is applied. At this concentration level, the values provided by the Horwitz model
may become inapplicable for official control since they are between 0 and 2 ppm.

Let us consider a practical application. The Codex Alimentarius and FDA have set
a maximum residue limit (MRL) for aflatoxin M1 in dairy products at 0.5 μg/kg, or
5× 10−10 kg/kg [27]. For this concentration, the Horwitz model gives the theoretical
value RSDTR = 54%. In terms of dispersion of the measurements, this would be about
100%, and the sample acceptance range [0.0, 1.0] 10−10 kg/kg. However, this reason-
ing is somewhat fallacious but underlines some pratical application problems. The
reproducibility of a method is not the uncertainty of a measurement.

Another model has been proposed as a set of three equations depending on the
concentration [28]. The Horwitz-Thompson model is illustrated in Figure 7.6 by the
large, black line.

Concentration (kg/kg) Standard deviation of reproducibility

X < 1.2× 10−7 sTR = 0.22×X
1.2× 10−7 ≤X ≤ 0.138 sTR = 0.02×X0.845

X > 0.138 sTR = 0.01×X0.5

The main disadvantage of the Horwitz–Thompson model is to be obtained from
a wide variety of measurement methods. To have more specific method-oriented
model, the revised version of ISO 5725-2 for interlaboratory studies includes a set
of functional relationships between concentration and observed sR other than the
Horwitz–Thompson model. In other words, empirical relationships between these
two quantities. Four models, numbered from I to IV, are proposed to relate the
standard deviation of reproducibility sR to X , as summarized in Table 7.9.

These relationships allow more realistic models to be fitted and adapted to each
analytical technique. Similar models describe the standard deviation of repeatability.
Unfortunately, ISO 5725-2:2019 does not specify how to choose the best relationship;
there is no acceptance or quality criterion, as explained by HorRat. A major part of
regulatory guidelines uses percentages to define parameter acceptance limits. For
this reason, the Horwitz model was quickly adopted and became a suitable reference
for the FDA, the Codex Alimentarius or the European Union, and many others [24,
29, 30].

Besides the acceptance limits for precision, acceptance intervals for trueness were
added, as illustrated in Table 7.10. This is a composite outline of several documents,
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Table 7.9 Models relating sR to Z proposed in ISO 5725-2:2019.

Model Type Model

I Linear through 0 sR = bZ (7.23)
II Linear sR = a+ bZ (7.24)
III Quadratic s2

R = a2 + (bZ)2 (7.25)
IV Power sR = aZb (7.26)

Linearized form log(sR) = log(a)+ b. log(Z)

Table 7.10 Trueness and precision acceptance limits applied in several official regulatory
guidelines.

Recovery yield (%) Reproducibility RSD (%)

Concentration (kg/kg) Unit Lower (%) Upper (%) Expected (%) Horwitz (%)

1 100% 98 102 1.3 2
10−1 10% 98 102 1.9 3
10−2 1% 97 103 2.7 4
10−3 1‰ 95 105 3.7 6
10−4 100 ppm 90 107 5.3 8
10−5 10 ppm 80 110 7.3 11
10−6 1 ppm 80 110 11.0 16
10−7 100 ppb 80 110 15.0 22
10−8 10 ppb 60 115 21.0 32
10−9 1 ppb 40 120 30.0 45

and more precise values can be found in official documents. The variation range
of concentration is exceptionally large and expressed power of 10 for kg/kg, as in
Figure 7.6. The second column gives the informal name of the concentration units
often used in practice. Figure 7.7 is a graphical illustration of this table. The horizon-
tal axis is generally expressed in logarithms to cover a broad range of concentrations.
This indicates the leading role of concentration in the definition of relevant accep-
tance limits.

As explained in Section 4.1.1, the recovery yield is considered by regulators as the
most convenient parameter to express trueness. It is noteworthy that all acceptance
criteria are expressed as percentages. This practice is quite common in analytical
sciences, but is not without drawbacks. Just like any ratio, it is a combination of two
values. In the present context, both have the same units, resulting in a dimensionless
parameter. Consequently, the initial scaling is lost, e.g. one does not know if the value
is obtained at ppb or ppm level.
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Figure 7.7 Precision and trueness acceptance criteria proposed in various official
guidelines.

7.5.2 Fitting the Uncertainty Function

It was previously emphasized that the Horwitz and other models relating
reproducibility and concentration cannot be directly used to predict MU at any
concentration but only suggest that a functional relationship does exist between
measurement dispersion and concentration. This relationship is hereafter referred
to as the uncertainty function of measurement. Having such a function is interesting
for the routine use of the method because it will allow us to associate an MU with
any unknown sample. The only limitation is the concentration of the sample within
the range where this function has been determined.

For example, if one relies on the data of an accuracy profile, the uncertainty
function will only apply in the validated range. Table 7.11 brings together the
main uncertainty functions encountered in the literature. They are presented in
two forms deductible from each other, either the standard uncertainty u(Z) or
the relative uncertainty UR%, respectively; this link is logical as UR % = u(Z)/X .
Except, in the case of the constant function, only two parameters, noted a and b,
fully describ the uncertainty function of the method. This condensed form is very
convenient when several MU estimates are calculated.

Both MU estimates, standard uncertainty and relative uncertainty, are computed
from the THEOPHYLLINE dataset collected in Table 7.3. They are graphically illus-
trated for the standard uncertainty u(Z) and for the relative uncertainty UR % (Z)
in relation to the concentration Z in Figure 7.8a,b, respectively. They clearly illus-
trate the increase of variability of MU as the theophylline concentration decreases. In
this example, a power function gives a good fitness of this variation in the validated
domain.

To calculate the coefficients of a power function using Excel built-in functions,
such as LINEST, SLOPE, or INTERCEPT, the simplest method is to log-transform
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Table 7.11 Main uncertainty functions.

Type Standard uncertainty Relative uncertainty

Constant u(Z) = a UR% =
(

2a
Z

)
× 100 (7.27)

Proportional u(Z) = bZ UR % = 2b× 100 (7.28)
Linear u(Z) = a+ bZ UR% =

(
2b + 2a

Z

)
× 100 (7.29)

Powera) u(Z)=aZb UR % = (2aZb− 1)× 100 (7.30)
UR % = (2aZ1+ b) (7.31)

a) An explanation of these two equivalent formulas is given below.

concentration and uncertainty before the computation. This is possible with the LN,
LOG10, or LOG functions. As shown in rows 7–9 of the Resource M worksheet, the
most convenient transformation is the decimal logarithm LOG10. The antilog of the
slope is easy to obtain, as illustrated in rows 12 and 15 of the worksheet.

Resource M Calculation of the coefficients of a power function (Excel).

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

A B C D E F G H
Resource M: Calculation of the coefficients of a power function
Theophylline (µg/l)
Z 0.05 0.1 0.5 1 2.5 10
u(Z) 0.0117 0.0130 0.0350 0.0862 0.2749 0.5093
U(Z) 0.0234 0.0260 0.0700 0.1724 0.5497 1.0186
UR%(Z) 46.8% 26.0% 14.0% 17.2% 22.0% 10.2%
Log10(Z) –1.301 –1.000 –0.301 0.000 0.398 1.000 =LOG10(G3)
Log10(u(Z)) –1.932 –1.886 –1.456 –1.065 –0.561 –0.293 =LOG10(G4)
Log10(UR%) –0.330 –0.585 –0.854 –0.764 –0.658 –0.992 =LOG10(G6)

Standard uncertainty function coefficients
Constant 0.0907 =10^INTERCEPT(B8:G8;B7:G7)
Power 0.7780 =SLOPE(B8:G8;B7:G7)
Relative uncertainty function coefficients Verification
Constant 0.1813 =10^INTERCEPT(B9:G9;B7:G7) 0.1813 =B12*2
Power –0.2220 =SLOPE(B9:G9;B7:G7) –0.2220 =B13-1

With the THEOPHYLLINE data (inverse-predicted by the quadratic WLS regres-
sion models), the uncertainty function coefficients are:

Parameters u(Z) UR%

Constant: 0.0907 0.1813
Power: 0.7780 −0.2220

These values are the same as those in Figure 7.8a,b, directly obtained with
Microsoft Excel by adding a trendline with the option “Power” on the graphics.
When fitting the relative uncertainty power function in Excel, the UR% values are
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Figure 7.8 (a) THEOPHYLLINE – standard uncertainty function,
(b) THEOPHYLLINE – relative uncertainty function.

not necessarily true percentages as shown in Eqs. (7.30) and (7.31), and preliminary
precautions must be taken. In Excel worksheets, the data display may not reflect the
internal format. The same data worth 0.468, if the applied format is “Percentage”
will be displayed as 46.8%, if it is “Number,” it is 0.468. The coefficients calculated
with Resource M, especially the power coefficient, do not consider the display
format. If the model is used routinely, it will be necessary to ensure that the data are
input in the same format as used to estimate the coefficients of the function. The
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parameters of the different uncertainty functions can be connected, depending on
the display format, as follows:

u(Z) UR % (Z) UR % (Z)×100

Constant: a = 0.0907 2a = 0.1813 2a = 0.1813
Power: b = 0.7780 b− 1 = − 0.2220 1+ b = 1.7780

7.5.2.1 How to Interpret a Power Function?
From the previous results, the power coefficient b is positive regarding the standard
uncertainty but negative for the relative uncertainty. While the linear function, such
as the calibration straight line, is well known to analysts, the power function is less
commonly considered. The latter is parametrized by two coefficients, noted a and b.
To understand their respective roles, it is necessary to recall the classic properties of
power notation:

x0 = 1 x−b = 1
xb

x−1 = 1
x

2
√

x = x
1
2 = x0.5 1

2
√

x
= x

−
1
2 = x−0.5 1

3
√

x
= x

−
1
3 = x−0.333

Comparable to the Horwitz model, the power function is usually the most appro-
priate model to establish the relationship between MU parameters and concentra-
tion. The power coefficient b for the relative uncertainty function is always< 0 giving
a concave shape to the curve. This can be explained by the decrease of UR % (Z) when
the concentration Z is increasing. The curve concavity underlines this property.

Figure 7.9 illustrates various power functions when coefficient b varies between
[0, −0.6] and coefficient a = 0.2 remains constant. These values are classically
encountered, for instance, if b = − 1

2
it means that UR% = 1√

Z
. The more negative b

is, the more pronounced the incurvature, and the more b approaches 0, the more
the function flattens and becomes a horizontal line, indicating that the relative
uncertainty is constant and equal to a. The constant a of the function expressed in %
represents the relative uncertainty when the concentration is 1 unit. In this figure,
as a = 0.2 the relative uncertainty is always 20% when Z = 1. When considering the
standard uncertainty, the curve is convex. This illustrates the increase of the u(Z)
with concentration. The higher the coefficient b, the faster the increase. In practice,
typical b values are between 0 and 2.0. For example, b = 0.845 in the Horwitz model.

7.6 Concept of Coverage Interval

7.6.1 Origin of Coverage Interval

Although the initial concept of MU can be dated back to 1977, it was not until the
early 2010s that a practical document was published under the reference ISO/IEC
Guide 98-4 on The Role of Measurement Uncertainty in Conformity Assessment
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Figure 7.9 Different power functions when power coefficient b varies, and a = 0.2 remains
constant. Concentration in arbitrary units.

to explain how MU can be used in decision-making. Two other paradigm shifts
occurred during this period of slow maturation.

− The notion of a single true value for a measurand has been discarded in favor of
the coverage interval.

− The definition of accuracy has been modified, making the use of this term for the
MAP inconsistent with its metrological definition.

Of course, the notion of a single true value, introduced by statisticians many years
ago, has practical problems. Therefore, the concept of MU implies that, for a given
analyte and a given result, there is not a single true measurement value but an
infinite number of possible true values scattered around the observed result. These
possible true values are not equal and can be attributed to the analyte with vary-
ing degrees of reliability or probability. However, they are all compatible with the
observations and with the knowledge that the analyst may have about the analyte.

This explains why the term “true value” has disappeared from GUM in the 2012
release, whereas it was present in previous versions. Instead, an analytical result is
expressed as a coverage interval, defined as “the set of true values of a measurand
with a specified probability based on the available information.” This definition is
related to the notion of statistical dispersion interval, as explained in Section 5.3.

In view of the importance of this work on MU for the industry, in 1997, the
BIPM set up a specific committee to prepare and draft documents relating to the
estimation of MU. This is the Joint Committee for Guides in Metrology (JCGM)
which is responsible for the Guide to the Expression of Uncertainty (GUM) and the
VIM. For instance, next to developing these concepts, proposals such as replacing
the TAE with MU in expressing the results from medical laboratories have been
published [31].
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In practice, there is no contradiction between these two parameters. They are not
mutually exclusive because they do not consider the same objects of study. The TAE
qualifies the method’s performance, while the MU seeks to qualify the measurement
itself [32].

Given the ultimate goal of the analytical process, which is to provide a result
that allows an informed decision, MU is therefore preferable. The use of MU as a
single validation criterion for quantitative methods could be considered relevant if a
universally accepted estimation procedure could emerge for the analytical sciences,
which is not yet the case, as explained in Section 7.1.

MU was originally adopted for physical measurements but has only recently
become familiar to chemical analysts through the ISO 17025 standard for laboratory
accreditation. Uncertainty, “a parameter that characterizes the dispersion of values
attributed to a measurand, based on the information used,” appears more than
30 times in the 2005 version of ISO 17025 and with equal frequency in the 2017
version, while it was absent in previous versions.

Estimating MU consists in evaluating the dispersion of all the measurement values
that could be obtained from a given sample. With a quick reading of this defini-
tion, one might be tempted to propose, for an estimation procedure, the interval of
dispersion of measurements directly derived from the distribution function of a ran-
dom variable. For example, if measurements Zi are exactly distributed according to
a Normal distribution of theoretical mean 𝜇 and variance 𝜎2, denoted 𝒩 (Z, 𝜎2), it is
possible to confirm that 95% of the values are distributed in the following interval:

Dispersion interval

[𝜇 − 1.96 × 𝜎, 𝜇 + 1.96 × 𝜎]

This approach is a misinterpretation of the definition of MU because such an
interval assumes that 𝜇 and 𝜎 are known and does not consider all the “information
used” to obtain the measurement values. For instance, the variability of the con-
ditions under which the measurements are made nor the sources of error, such as
measurement bias, are not considered.

To circumvent this problem, it is possible to obtain a prediction interval based
on estimated values of 𝜇 and 𝜎. The prediction interval is discussed in more detail
Section 5.3. Moreover, from an economic point of view, the most serious drawback
is it would require systematic replication of measures to estimate coverage interval;
the prediction interval estimated on one day or one sample could not be transferable
to another as measuring conditions may have changed.

Given the relatively high cost of many analyses and the intense pressure on prices,
laboratories would find it impractical to provide this parameter. Therefore, a more
comprehensive approach to estimating MU that is transferable from one measure-
ment to another or one sample to another is needed. To reach this goal, it must
be remembered that MU is a parameter that characterizes the dispersion of mea-
surements “once all causes of variability are taken into account.” The procedure
proposed by the GUM for estimating MU consists, for each measurand, in mak-
ing an inventory as exhaustive as possible of all the components contributing to the
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variability, as explained in Section 6.2. At this point, three prominent issues should
be emphasized:

(1) The requirement in the ISO 17025 standard:

“5.4.7.2 Testing laboratories shall also have and apply procedures
for estimating measurement uncertainty, except where test methods
preclude such rigorous calculations. In some cases, it is not possible to
make a metrologically and statistically valid estimate of measurement
uncertainty. In such cases, the laboratory should at least attempt to
identify all components of uncertainty and make the best estimate
possible, while ensuring that the manner of reporting does not give an
exaggerated impression of accuracy”.

(2) MU characterizes a measurement or a result and not a method. It contrasts
with several classic validation parameters, such as the coefficient of variation
of repeatability or the recovery yield, even if these parameters participate in
the MU.

(3) When estimating MU, “all biases are assumed to be ignored or corrected for by
appropriate and validated factors.” In this case, the uncertainty of the correction
factors must be included in the final evaluation, as discussed in Section 8.4.2.

In Section 7.2, a global solution for estimating MU for analytical sciences is
described. It is global in that it considers all sources of uncertainty simultaneously.
Such an approach is sometimes referred to as “holistic” [33]. In Section 4.1.2, the
evolution of the ambiguous concept of single true value leading to the preferential
use of the coverage interval to express a measurement value is explained.

Figure 7.10 shows the different notions used to define the coverage interval. The
coverage factor is fixed here at 2, which implies that the coverage interval contains
about 95% of the possible true values of the measurand.
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In this figure, which comes from simulated data, the distribution of the
measurement values around the arithmetic mean is not symmetric, unlike a
normal distribution. Consequently, the arithmetic mean is not at the center of the
distribution on purpose and is shifted to the left. Indeed, it would be possible to
compute the standard deviation, but it is not an appropriate estimate of MU. As
explained before, the calculation principle of the standard uncertainty combines
various standard deviations and uncertainties. The resulting statistical distribution
of data is not necessarily Normal, as illustrated.

With the notations used so far, the coverage interval [IL; IU ] can be expressed in
the following forms:

Diverse possible forms of the coverage interval

Z ± kGUM × u(Z)

Z ± U(Z)

Z × (1 ± UR%) (7.32)

The uncertainty function can be used to calculate the coverage interval. It is satis-
factory to replace the form of expression of MU with its function. At least three types
of predictions can be made:
− The coverage interval of an unknown sample.
− The concentration that corresponds to a given MU.
− The concentration matches one of the bounds of coverage interval IL or IU .

7.6.2 Coverage Interval of Given Concentration

This first type of application is illustrated by the Resource N worksheet in the case
where the uncertainty function is a power function. The application to a different
kind of uncertainty function can easily be adapted. According to the convention,
the calculation formulas appear in columns C and F. This is an application from
THEOPHYLLINE data.

Resource N Coverage interval for a given concentration (Excel).

1

2

3

4

5

6

7

8

9

10

11

A B C D E F

Resource N: Coverage interval for a given concentration
Theophylline UR% function

Constant 0.1813

Power –0.222

Concentration

(μg/l)
UR%(X)

0.05 0.352554663 =$B$3*POWER(A7;$B$4) 0.03237227 0.06762773 =A7*(1+B7)

0.25 0.246635236 =$B$3*POWER(A8;$B$4) 0.18834119 0.31165881 =A8*(1+B8)

1.5 0.165693528 =$B$3*POWER(A9;$B$4) 1.25145971 1.74854029 =A9*(1+B9)

3 0.14206166 =$B$3*POWER(A10;$B$4) 2.57381502 3.42618498 =A10*(1+B10)

8 0.114264632 =$B$3*POWER(A11;$B$4) 7.08588294 8.91411706 =A11*(1+B11)

Coverage interval

7.6.3 Coverage Interval of Given Relative Uncertainty

This second application is illustrated by the Resource O worksheet. It also applies
to an uncertainty power function because it raises some programming issues with
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Excel. To predict the concentration corresponding to a given relative uncertainty,
it is necessary to go through the inverse of the power function, i.e. obtain the nth
root of a number. The Excel built-in function POWER takes number and power for
input arguments and returns the power raising of number. For example, the power
argument 0.5, it is possible to replace the function SQRT, which only returns the
square root of a number. But the inverse function is not available in Excel. The sim-
plest way to solve this problem is to use logarithms (decimal in this case), as shown
in the formulation of the inverse function below.

Power function

UR% = c × Zd

Inverse of the power function

Z = 10
Log(UR%)−Log(c)

d (7.33)

The following Resource O worksheet illustrates this calculation and how to
find the concentrations and their coverage intervals for various values of relative
uncertainty. This type of prediction will be used in the Section 9.2 about a possible
definition of the limit of quantification (LOQ). By comparing these results with
Resource N worksheet, some differences are observable:

− Inputting 0.050 μg/l in row 7 of Resource N, the relative uncertainty of 35%.
− Inputting 35%, in line 7 of Resource O, the predicted concentration is 0.0517 μg/l.

These differences are due to the rounding of the coefficients of the model and
results. If all the significant figures are kept, the results are identical.

Resource O Coverage interval for given relative uncertainty (Excel).

1
2
3
4
5

6
7
8
9

10
11
12

A B C D E F

Resource O: Coverage interval for given relative uncertainty
Theophylline UR% function

=10^((LOG(A7)-LOG($B$3))/$B$4) =$B7*(1+$A7)
=10^((LOG(A8)-LOG($B$3))/$B$4) =$B8*(1+$A8)
=10^((LOG(A9)-LOG($B$3))/$B$4) =$B9*(1+$A9)
=10^((LOG(A10)-LOG($B$3))/$B$4) =$B10*(1+$A10)
=10^((LOG(A11)-LOG($B$3))/$B$4) =$B11*(1+$A11)
=10^((LOG(A12)-LOG($B$3))/$B$4) =$B12*(1+$A12)

Constant 0.181
–0.222

0.0517
0.10
0.24

1
15

331

0.034
0.072

0.18
0.51

13
315

0.070
0.134
0.29
0.77

16
348

35%
30%
25%
20%
10%
5%

Power

UR%(X) Coverage interval

Predicted

concentration

(μg/l)

7.6.4 Obtain the Limits of the Coverage Interval

In Section 8.2, this last application of the uncertainty function is meaningful when
dealing with sample conformity assessment. It consists in predicting the measure-
ment value matching one of the two bounds of a pre-defined coverage interval. For
instance, the official threshold contents of a pollutant in a food product must be
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below a given value. It is necessary to know the MU at this threshold to verify if a
control method is adequate. Two situations must be tackled, whereas the predicted
measurement can be:

− The lower bound IL of the coverage interval.
− The upper bound IU of the coverage interval.

The two formulas below deal with these two cases.
Measurement at lower bound

Zmin =
IL

1 − UR%
(7.34)

Measurement at upper bound

Zmax =
IU

1 + UR%
(7.35)

The relative uncertainty UR % (Z) can be computed with the uncertainty function,
and the application of the formulas is direct, as the following calculations show:

UR % (%) Threshold (g/kg) Acceptable values must be

40 Maximum limit IU = 5.0 ≤3.57
10 ≤4.55
40 Minimum limit IL = 5.0 ≥8.33
10 ≥5.56

Let us assume:

− The threshold value is 5 g/kg, representing either a maximum or a minimum
bound.

− Two methods of analysis, one leading to 10% relative uncertainty for this content
and the other 40%. The same values are used in the next chapter on sample
conformity assessment and illustrated in Figure 8.4.

When using the previous formulas, it is now possible to define acceptable val-
ues when controlling a given threshold. For example, if the relative uncertainty is
constant and equal to 40%, the highest acceptable concentration is 3.57 g/kg to satisfy
the 5.0 g/kg threshold. This simple example with constant uncertainty is to illustrate
the procedure, but the use of a power uncertainty function is not problematic.
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8

Measurement Uncertainty and Decision

8.1 Framework for Decision-Making

8.1.1 Decision versus Uncertainty

The word “uncertainty” has been a major source of inspiration for philosophers, psy-
chologists, economists, and even poets. There is a long list of quotations that play
with the word. It originates from the Latin verb cernere, which can be translated as
discern, distinguish, and finally decide. The past participle of the Latin verb gave cer-
tus and its opposite incertus from which come certain and uncertain. A Latin proverb
plays on these words “amicus certus in re incerta cernitur,” a “reliable friend can be
recognized in unreliable times.” In its most classical sense, uncertainty means not
knowing what to do. Etymologically, it is the opposite of knowing how to decide.

On the other hand, the word “decision” is derived from the Latin verb caedere,
which means to strike, knock down, or cut. To decide is therefore to make a final cut
to a question, a controversy, or a situation. Therefore, it seems paradoxical to claim
that knowledge of uncertainty improves decision making.

Nevertheless, for a scientist, uncertainty is not synonymous with lack of knowl-
edge, and in Chapters 6 and 7, we have always been careful to speak of measurement
uncertainty (MU) rather than uncertainty in a narrow and strict sense. It is disap-
pointing that there is such an ambiguity to name what is, in any case, an intrinsic
property of a measurement value, namely the manifest dispersion of its replicates,
leading to the establishment of a set of possible values for a given result.

Any measurement process has its own variability, and it is essential to accept that
the analytical result is never the absolute truth, regardless of the technical improve-
ment that has made this measurement possible. Despite the ambiguity that sur-
rounds a single result, the latter remains fully useful, as demonstrated by the millions
of analyses carried out every day, and it allows us to approach this searched-for truth.
And the better the uncertainty of measurement is known, the closer the truth.

Chapters 6 and 7 have largely endorsed this affirmation, at least from a statistical
point of view. As pointed out in many textbooks, deciding means facing the possi-
bility of making a mistake and various pitfalls and dangers. For example, deciding
that a lot is compliant and can be released is exposing oneself to the probability that
it is, in fact, noncompliant. But a danger by itself is not the main issue, what really
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First Edition. Max Feinberg and Serge Rudaz.
© 2024 WILEY-VCH GmbH. Published 2024 by WILEY-VCH



222 8 Measurement Uncertainty and Decision

matters is the probability of its occurrence; this is called the risk. Thus, an avalanche
is a big danger with disastrous effects, but it only presents a risk in the mountains;
in lowland areas the risk is zero.

Similarly, when a batch is released, if only 1 out of 10,000 units is nonconforming,
the risk of receiving a bad unit is not the same as when the frequency is 1 out of 100
units. As explained in Section 6.11, the concept of risk consists of moving from the
notion of frequency to that of probability in the same way it is classically achieved
in risk analysis or evaluation for insurance companies.

A perfect model of decision-making would be that of the rational actor, who is
a pure calculating and optimizing decision-maker. He would integrate all existing
information and, on this basis, make the decision that is objectively considered the
best. This model is utopian because most of its assumptions are unrealistic. Among
other things, the idea that the decision-maker possesses all the information is never
true in practice. Decisions are usually based on a relatively small amount of infor-
mation; this is a context of limited rationality. In regard to risk analysis, there are at
least two classical conceptions of uncertainty:

– The first is referred to as fundamental uncertainty and supposes that the future
does not follow any predetermined laws of probability.

– The other one is called scientific uncertainty, and it has been our main subject up
to now under the name of measurement uncertainty.

When considering the use of analytical data, in many situations, both definitions
may coexist, especially when dealing with legal or regulatory issues. The main the-
ories about decision-making under uncertainty come from economists, and there is
a large body of literature in this area.

As far as analytical sciences are concerned, the question arose earlier in medical
biology laboratories, when the practice became widespread of legally engaging the
responsibility of decision-makers and prescribers suspected of having made a wrong
decision. But it would be an error to believe that only medical laboratories are con-
cerned. Today, any laboratory providing services can also be confronted with this
type of liability and be prosecuted. As an example, when talking about legal liabil-
ity, jurists distinguish between criminal liability, which is a source of sanctions, and
civil or administrative liability, which is a source of compensation.

To make a long story short, the mission of an analytical laboratory providing ser-
vices consists of carrying out analyses requested by a prescriber, who is generally
responsible for interpreting the results. However, it should be noted that in certain
specific areas of activity, such as forensic medicine, biomedical analysis, toxicology,
and so on, the interpretation of the result is the responsibility of the laboratory itself.

A laboratory is not protected against professional negligence, carelessness, or an
unforeseen event: loss of data, accidental disclosure of strategic and confidential
information, failure to meet contractual deadlines, etc. In this case, the victim(s)
must be compensated for the damage suffered, if it is proven. In concrete terms, this
means paying damages and bearing the loss of earnings resulting from the loss of
customer confidence. Civil liability insurance is designed to cover these risks and
allows the laboratory to be insured against damage caused to third parties during
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the laboratory’s activities, to property and equipment caused by employees, or to the
employees themselves.

8.1.2 Specification Limits and Reference Values

For industrial production lines, control of the process is essential for decision-
making, and the use of analytical methods is general. However, this does not mean
that all methods must be extremely efficient. The question is rather obtaining results
with a level of confidence adjusted to the needs; the notion of fitness-for-purpose
is consistent with this objective. In fact, it is just necessary to have a method that
allows us to control, with a known level of risk, if the technical limit of specification
or the regulatory tolerance threshold is exceeded or not.

Estimating the coverage interval of any result provides valuable information to
better control the capacity of the result to permit a decision to be taken by reducing
the risk of an incorrect decision. It is then easy to affirm that the uncertainty of
measurement is an interesting asset for decision-making. If the example of a batch
release is regarded, rational control of the risk can be performed in two steps.

– First, the decision maker uses a statistically sound sampling plan to take repre-
sentative sample units from the lot to be controlled. As explained in Section 8.3,
choosing a suitable plan is equivalent to calculating the probability of rejecting a
nonconforming lot, i.e. efficiency of the plan. It is calculated a priori, by selecting
a model that correctly describes the spatial distribution of the analyte in the lot
(very often assumed and not measured). Generally, it is recommended to choose
an efficiency of 95%, which means that the risk of accepting a not compliant lot
is 5%. The idea that 5% of the released batches may be noncompliant is often mis-
understood.

– Then, the decision is made on the basis of one or more measurement values
obtained from the sampling units collected according to the sampling plan. The
decision-maker applies the decision rule that has been chosen. For example, it
consists of comparing the measurement values to a specification limit. It is at this
stage that MU reduces the risk of accepting a nonconforming lot, especially if the
part of the uncertainty due to sampling is included in its calculation.

Finally, the 95% coverage interval of a result is a practical way to take into account
the MU.

Figure 8.1 gives a graphical illustration of this proposal. It shows that some results,
which would be considered conforming if the MU is not taken into account, are in
fact in the rejection interval, and vice-versa, as explained in more details in Section
8.2.2. When comparing a result to a given limit, a classical procedure consists in a
significance test, often called null hypothesis testing in statistical literature.

In Section 8.2, it is demonstrated that an alternative and simpler approach to such
test is just reporting the coverage interval of the result, without going through the
sometimes-delicate calculation of a statistical test. Depending on the field of appli-
cation there are different manners to set a threshold or limit of specification. For
example, it can be:
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Figure 8.1 Total circulating testosterone reference values for normal and pathological
states with associated MU. Logarithmic scale.

– Technical specifications required for the proper realization of industrial objects,
such as the nominal content of a drug.

– Environmental or food safety standards defined by official control authorities.
– Declarative values, such as for nutrition labelling.
– Normal and pathological limits used in medical biology.

Moreover, these limits and specifications can be unilateral or bilateral, or defined
as lower or upper thresholds. To establish normal or pathological reference values
in medicine, several cohorts will be recruited on a diagnostic basis: healthy patients,
patients with a certain pathology, others with a second type of pathology, etc.

To obtain acceptable reference values or intervals, it is generally considered that at
least 250 individuals per situation (or cohort) are appropriate. Once measurements
of the biological biomarker have been collected, the reference values, whether they
apply to healthy individuals or those with a pathology, are obtained by identifying
the intervals that delimit 95% of the observations of each cohort. The methodol-
ogy used to determine this interval is variable, and several approaches exist, either
empirical or deterministic. In the two-sided case, it is no longer a reference value
but a reference interval that contains 95% of the measurements, spreading from 2.5
to 97.5% percentiles.

Figure 8.1 illustrates reference intervals including [2.5%, 97.5%] quantiles for the
total circulating testosterone in males and females [1]. The limits between the two
groups of normal males and females (plain colors) do not overlap, as expected. Ref-
erence interval for each gender is [2.54, 8.90] μg/l for men, and [0.12, 0.58] μg/l
for women, respectively. A method of analysis was developed using a LC–MS–MS
technique and validated using the accuracy profile procedure [2]. It was possible to
compute the relative uncertainty function that is the following power function:

UR% = 0.352.X−0.125
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For each limit of the reference interval, the MU is calculated and added as a “guard
band” represented with horizontal red stripes. Consequently, the differentiation
zone between males and females is significantly reduced as illustrated by the dashed
rectangle.

This study was undertaken to detect the use of testosterone as a doping agent for
athletes. Therefore, the reference intervals for three groups of pathological individu-
als are added to the graphics as rectangles with crossed stripes, namely 5-α-reductase
deficiency type 2 (5ARD2), androgen insensitivity syndrome (AIS) and the polycystic
ovary syndrome (PCOS).

It is obvious that it is impossible to distinguish between healthy people who may
have used testosterone and a certain number of pathologic individuals. The testos-
terone test presents a real case that illustrates classic difficulties of decision-making,
either to determine the pathology of an individual, or, in this example, to control an
illicit substance intake. Many reference values are one-sided and should be consid-
ered as a lower or upper limit not to be exceeded. The reference values are not the
same in different countries making the decision even more difficult to make using a
given biological marker.

In the area of food safety, the development of reference values, such as Maximum
Residue Limits (MRL) established by the European Commission [3] and illustrated
in Section 9.3 is somewhat more complex because it requires the combination of
three sources of data:

– Toxicological reference values (TRV). These are toxicological thresholds estab-
lished by international or national authorities such as the World Health Organi-
zation (WHO) that reflect a dose–response relationship or a point calculated from
such a relationship. In the dietary risk analysis, TRVs are specifically estimated
for oral ingestion in water and food, and most often for low level exposure over
extended periods, such as lifetime. Most classical naming of the TRV is acceptable
daily intake (ADI) or tolerable daily intake (TDI) when considering intentionally
added substances, such as additives.

– Food composition data for nutrients and contaminants. There are many databases
available online. However, there are two problems related to the collection of this
type of data. On the one hand, the very incomplete state of knowledge on the
composition of foods, since a food as simple as wine contains nearly 250 chem-
ical constituents, including alcohol and water. On the other hand, the notion of
“average” composition is very misleading since data significantly vary and are not
distributed according to a normal law. This last remark is even more exact for
contaminants and pollutants.

– Food consumption data. It is probably the most difficult information to obtain
because the collection cost is high and the representativity poorly guaranteed.
There are multiple strategies for investigating individual or family diet over vary-
ing periods of time. They all present biases, and it is by crossing different surveys
that it is possible to reach some accuracy.

The three types of data are combined to define exposure levels. As the data are not
normally distributed, such studies raise complex statistical issues which have been
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previously addressed by one of us [4]. Commonly applied methods allow to identify
the most probable sources of risk, i.e. main foods which are the key-sources of risk. It
is then up to the regulator to decide which specification limit should apply for which
analyte in which food.

It is a rather complex process based on much data, which explains why sanitary
limits can often be modified. Another body in charge of this mission is the Codex
Alimentarius, which also publishes internationally accepted MRLs [5]. Local regu-
lation may also put forward other thresholds. But if the country is a member of the
WTO, these local thresholds must be justified and not appear as technical barriers
to trade (TBT).

Like the European Union, Codex also defines performance requirements for the
methods that will be used to enforce the established specification limits. This task
is specifically assigned to the Codex Committee on Methods of Analysis and Sam-
pling or CCMAS. For example, for a method to be acceptable it must fulfill following
requirements:

If the MRL is, then the LOQ must be

≥0.1 mg/kg ≤
MRL

5
<0.1 mg/kg ≤

2 × MRL
5

The Codex Alimentarius approach is missing a guideline on the procedure to be
applied by laboratory in demonstrating that the proposed method meets required
criteria and properly proves its ability to perform an inspection.

8.1.3 Role of the Analytical Report

The analytical report is another essential element in the relationship between the
laboratory and its client facing a decision. It is a contractual document and therefore
has a formal aspect complementary to the technical work of the analyst. The content
is described in documents relating to accreditation or quality control.

For example, in the context of the accreditation of medical laboratories, ISO 15189
standard introduces the concepts of pre-analytical, analytical, and post-analytical
procedures. The reception of an analysis request sent by a prescriber or the sam-
pling form is the pre-analytical part. The analysis report or report of the result is the
post-analytical part. As addressed in the ISO 17025 and 15189 standards, elaborating
the analytical report appears to be a formal administrative task. In fact, it involves
the civil liability of the laboratory.

To ascertain this responsibility, a set of statements must appear in the report,
like the regulatory name of the analyte, the unit used, etc. This is perfectly detailed
in the regulatory texts, standards, or guides provided by the accreditation bodies.
Inspection bodies are very vigilant about this documentary and/or regulatory
aspect. The requirements may vary according to the accreditation program. In
general, it is required that the expression of results be unequivocal.
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For example, the method of analysis used must be mentioned, and even reagents,
whenever they may affect the expression of the result, as well as when required by
regulations. Many statements seem odd, such as: “For quantitative results, where
appropriate, the analytical performance of the method may be stated.” Does this
mean that for nonquantitative methods, such as identification assays or diagnostic
tests, the mention of sensitivity and specificity is superfluous? The analysis report
is printed on a laboratory-headed paper, including the regulatory references, and is
signed.

It can only be communicated after the procedure called analytical validation,
which is different from the method validation described in Chapter 5. Analytical
validation is carried out under the responsibility of the head of the analytical
service. It consists in checking if the conditions of execution of the analysis conform
with preestablished specifications. It can only be carried out after checking the indi-
cators of instrument qualification and the results of the internal quality control. A
complementary scientific validation can also be carried out under the responsibility
of a accreditated specialist in most of the laboratories. This involves ensuring the
consistency of the results of all the analyses performed.

Up to now, the indication of the MU in a significant part of the analytical report
is not required. While ISO 15189 does not mention it, ISO 17025 (clause 7.8.3)
states that:

“where appropriate, the measurement uncertainty expressed in the same unit
as the measurand or in a term related to the measurand (e.g. as a percentage),
where it is significant for the validity or application of the test results, where
required by customer instructions, or where the uncertainty affects confor-
mity with the limits of a specification.”

Similar remarks can be found in the documents written by various accreditation
authorities.

8.2 Sample Conformity Assessment

8.2.1 Define the Decision Rule

Conformity assessment refers to the “activity to determine whether specified
requirements relating to a product, process, system, person or body are filled.”
The issue of conformity assessment is formally addressed in the standard ISO
17025:2017 by means of a clearly stated decision rule defined as a (clause 3.7) “rule
describing how measurement uncertainty is accounted when stating conformity
with a specific requirement.”

The same standard describes the context of the application of this rule (clause
7.1.3) “when the customer requests a statement of conformity … the decision rule
must be communicated to and agreed with the customer, unless inherent in the
requested specification of standard.” Moreover, (clause 7.8.6.1) “when a statement
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of conformity … is provided, the laboratory must document the decision rule it
employs, taking into account the level of risk associated with the decision rule, and
apply the decision rule” but no further explanation is given on how to practically
apply the decision rule.

One of the most frequent examples of a decision is the verification of manufac-
tured lot conformity. In other words, the demonstration that the concentration of
a target analyte measured in a sample (that may contain several pooled sampling
units) complies with the value of a limit of specification, i.e. a threshold. According
to the situation, it can be a lower specification limit, denoted SL, an upper specifica-
tion limit SU , or, more rarely, a specification interval [SL, SU ]; the first two define a
unilateral interval, the last a bilateral interval.

Figure 8.2 illustrates these three types of intervals. For example, for the control
of pollutants or contaminants, the concentration must remain below an upper limit
SU , which classically the legislator has defined, such as the European regulation
470/2009 “laying down Community procedures for the establishment of residue lim-
its of pharmacologically active substances in foodstuffs of animal origin” [6].

Compliance is therefore declared in relation to the specification interval. Usually,
the decision rule is more complicated than simply looking at one reading. It is often
established in relation to the sampling plan, and several measurements may be
used. The sampling plan was previously established to compute what is called the
efficiency of the plan, i.e. the probability of detecting a nonconforming lot.

This efficiency may vary depending on the number of accepted defects. For
instance, it can be a zero-defect plan or where a certain number of results non-
conforming to the specification interval are acceptable. It is not the purpose here
to discuss further the theory of sampling plans, as many books and several series
of guidelines describing decision rules for measurement or attribute-based control
plans for different decisional contexts, such as industrial production of clinical
biology, exist.

In many laboratories, a common procedure is to proceed in steps. First, an initial
measurement is made. When the latter is not within the acceptability interval, so that
the sample should is declared nonconforming, it is accepted to obtain a confirmatory
replicate. If the first measurement is invalidated, a third one will be done.

From there, the decision rule can be fundamentally modified (and not always
reported). This iterative procedure raises various problems, including statistical,
that are rarely addressed. For example, when the decision rule is based on a
single result, it is a direct violation of the rule. Or, when the result is given as an
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average of replicates, the calculation of the associated MU must involve an adjusted
intermediate precision standard deviation because these replicates are generally
obtained in intermediate precision conditions. A discussion on the consequences of
measurement replication on uncertainty is presented in Section 8.4.3.

8.2.2 Guard Band Concept

In 2012, the BIPM published a document known as JCGM-106 on the role of MU in
conformity assessment [7]. Most of the concepts developed here have been taken up
in the general ISO guide 98-4:2012 or the EURACHEM guide specifically dedicated
to using MU for compliance assessment using chemical measurements [8, 9].

An important concept introduced in the this JCGM document is the “guard band”
that corresponds to the expanded uncertainty estimated for the concentration at the
limit of specification. It is added or subtracted to the limit of specification depending
on whether it is a lower or upper specification limit.

Figure 8.3 illustrates this concept and associated vocabulary in the case where
an upper limit of specification must be checked, for example, for pollution control.
To run a control, the main issue is calculating the guard band. In the example of
Figure 8.3, it is equal to the expanded uncertainty of the specification limit, which
should cover 95% of future measurements around this limit. If the uncertainty func-
tion of the method is available, this calculation is easy. This approach seems simple
but is not without problems in its application to the analytical sciences because the
uncertainty varies rapidly with the concentration. Even for a small range of concen-
trations, MU can differ significantly. This property of the MU can have important
consequences for the guard band calculation, as illustrated by the following simu-
lated data.

Let’s assume two different compliance objectives. In the case illustrated on the left,
Figure 8.4, the objective is an upper limit that should not be exceeded. The decision
rule is simple: if the analysis reveals that the concentration is too high, the batch
is rejected. On the right side of Figure 8.4, it is a minimum content that must be
reached, and the decision rule is reversed. In both cases, the limit of the specification
is 5.00 in arbitrary units. The interpretation of this figure is as follows:

– The specification limit appears as a thick vertical line.
– The limit of the guard band is marked by a dashed vertical line.

Figure 8.3 The guard band
concept introduced by the
JCGM.

Specification interval

Rejection interval

Guard band
U =

2u(SU)

AU SU

Acceptability interval

Acceptability limit

Specification limit
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Figure 8.4 Influence of MU on acceptability or rejection intervals. The coverage interval of
each measurement value is shown as vertical error bars. Three different situations are
represented for each case.

– The size of the guard bands (blue square) depends on the expanded uncertainty.
– The rejection interval is symbolized by a light red rectangle starting from the

largest guard band. The acceptability interval is a light green rectangle.

In Figure 8.4, the simulated results of two control methods are illustrated, a
well-performing one where the relative uncertainty is UR % = 10% and a less effi-
cient one with UR % = 40%. These percentages are reported below the 12 simulated
examples of the figure. Depending on whether the relative uncertainty is 40 or
10%, the guard band is equal to 2.00 or 0.50. It is added or subtracted depending
on whether it is a lower or upper specification limit. Corresponding examples are
labeled U for the “Upper” limit and L for “Lower.”

From there, three situations are considered.

– Cases U1 and U4, L1 and L4. They correspond to the decision rule proposed by the
BIPM: the measured content of a sample must be less or equal to the limit of the
rejection interval to be in conformity. If the uncertainty is 40% the rejection limit is
5.00− 2.00 = 3.00. Thus, case U1 of Figure 8.4 will be declared compliant since its
content is precisely 3.00. But when its coverage interval is calculated with the same
constant uncertainty of 40% – which is not always the case – it is between [1.80,
4.20]. The upper limit is, therefore, below the specification limit. This sample is
penalized.

– This means that a sample presenting a slightly higher value than U1 could give
a result less than or equal to 5.00 and therefore be compliant. Furthermore, it is
possible to predict what sample can have the upper limit of its coverage interval
reaching exactly 5.00.
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– Cases U2 and U5 were simulated using this calculation, as described in Section
7.6.4. The reasoning is reversed for cases L2 and L5 in Figure 8.4.

– This effect of relative uncertainty is much less pronounced when it is only 10%.
– Finally, cases U3 and U6 and L3 and L6 show that if the result is equal to the

specification limit, 100% of the values included in the coverage interval are in the
rejection zone.

According to these diagrams, the four samples numbered 2 and 5 are the most
problematic. These samples should be declared compliant since the limit (upper
or lower) of their coverage interval corresponds to the specification limit. In other
words, only 2.5% of the measurements that could be obtained would not respect the
objective. It seems that the principle of the guard band predicted from the expanded
uncertainty of the limit of specification applies rather poorly to the analytical sci-
ences for two reasons:

– The uncertainty can be quite high, mainly when close to the LOQ, while regulators
try to enforce limits in the vicinity of the LOQ.

– The MU can significantly vary even over a small concentration interval.

It would be more interesting to define the guard band by calculating, from the
uncertainty function, at which value the lower or upper bound of the coverage inter-
val is equal to the specification limit, as explained in Section 7.6.4.

This remark underlines the interest of being able to determine beforehand the
uncertainty function. In any case, the ISO guide 98-4, which addresses this topic,
is mainly oriented toward industrial production, where MU is usually reduced and
constant. Indeed, it proposes integrating the statistical characteristics of the produc-
tion process or other phenomena of interest.

For that, this information must be known a priori and described by a probability
law, normal, uniform, or other. To account for the variability of the manufacturing
process, the guide recommends applying a Bayesian approach which allows integra-
tion in the same model of the variability of the production and that of the measure-
ment. But for a service laboratory that receives samples of unknown origin from
very varied contexts, the notion of variability due to the manufacturing process is
inoperative.

The role of MU in decision-making cannot be discussed without pointing out the
reluctance of prescribers to use it. However, with the generalization of the coverage
interval, the end-user will be able to benefit from this additional information in a
decision-making process or to better interpret a laboratory result. Because the cov-
erage interval contains a probability, it is an indication of the level of confidence a
decision maker has to implement a decision rule.

For example, in the context of official food control, the European Commission
published a regulation in 2021 that describes how to use MU to enforce MRL legisla-
tion [10]. As explained in Section 9.3, it results in a new way of calculating two crite-
ria, namely CC𝛼 and CC𝛽, now based on MU that will replace the method proposed
in 2002.
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8.3 Sampling Uncertainty

8.3.1 Sampling and Heterogeneity

Sampling is a specific field of statistics. There are many textbooks or standards
addressing the selection and organization of sampling plans from various technical
or industrial perspectives. It is also suggested to refer to standards, regulatory texts,
or professional guides or recommendations for defining the best-adapted sampling
plan for a given situation. As already pointed out in Chapter 7, a semantic problem
should be clarified about the term “sample” widely used in analytical sciences:

– In the laboratory, the sample is the entity or the object on which an analysis is
performed. Unfortunately, it may refer to the proper object sent by a user as well
as the result of the preparation performed on this object before introduction into
the measuring device, such as dilution, solvent extraction, and mineralization.

– In sampling theory, the sample is a set of sampling units taken out of a batch or a
population according to some specific rules.

Figure 8.5 illustrates the various terms used in sampling theory to elaborate a sam-
pling plan. Finally, in the customary discussion, the term sample can be used instead
of sampling unit, test portion, or the result of its preparation. On the other hand, the
term sampling can refer to the operation of collecting a sample or the result of the
operation.

To avoid ambiguity, the term sample is used in this chapter to refer to the labo-
ratory meaning of “working sample”. According to sampling theory, the number of
sampling units depends on the mathematical model chosen to describe the repre-
sentativeness of the analyte in the situation under study.

In analytical sciences, it is mainly the spatial distribution of the analyte that mat-
ters. The general procedure is to produce a statistical model that best describes this
spatial distribution and derive the efficiency curve of the sampling plan, i.e. the curve
that gives the probability of identifying a nonconforming batch. A sampling plan is

Sample: set of
sampling units

Test portion:
aliquot used for
measurement

Pooling

Efficiency
curve

Criteria

Batch:
known

number of
units

Sampling unit: one or several pooled elementary units

Sampling plan: sample size + acceptability level

Figure 8.5 Basic sampling vocabulary.
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considered efficient when the probability is equal to or above 95%. Many laboratories
are not responsible for sampling. Their role is limited to the analytical part of the
analysis process, and sampling uncertainty is not under their responsibility. How-
ever, for some others, such as clinical laboratories, this is not the case.

When sampling uncertainty is required, the spatial distribution of the analyte is
the main source of uncertainty to be accounted for. For instance, sampling uncer-
tainty may be required for the official sanitary control of foods. The spatial distri-
bution relates to homogeneity defined by IUPAC, i.e. “the degree of regularity with
which a property or analyte is distributed in a quantity of the material being ana-
lyzed.” Except for unusual cases, the spatial distribution of the analyte is not regular,
either at the lot or sample level and even in liquid products.

Since the 1970s, four types of spatial distribution have been identified and illus-
trated in Figure 8.6. The so-called uniform distribution is mostly imaginary and does
not exist, even after homogenization. This is unfortunate because it is the only case
where the sampling uncertainty can be estimated as zero. If the most aggregated
distribution is called contagious, it is because it is used as a model in epidemiology
to describe the contamination clusters. These graphics show that homogeneity (or
heterogeneity) depends on two parameters:

– Spatial distribution of the analyte.
– The ability of the analyte to form aggregates.

Ideally, prior knowledge of these two properties would help optimize the sam-
pling strategy. A theory on sampling uncertainty was postulated by geochemists who
introduced the concept of a sampling constant to characterize the spatial distribution
of an analyte [11].

Random Uniform

Aggregate Contagious

Figure 8.6 Main types of spatial distribution of an analyte in a batch or population.
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Many papers were published on this topic because the profitability of the mining
industry largely depends on the laboratory’s ability to detect nuggets and the begin-
ning or end of a vein. Though the motivation was economic, it paved the way for an
essential reflection on sampling.

The proposed model assumes that a lot is formed by a population of N fragments
with 1≤n≤N. The analyte concentration in each fragment is Zn and contributes to
the heterogeneity of the lot by its deviation from the global mean Z. Each fragment
also has its mass mn and these parameters are related by the following equations:

The total mass of the lot

M =
∑

N
mn (8.1)

Individual contribution to heterogeneity

Hn =
Zn − Z

Z
×

N × mn

M
(8.2)

Global mean

Z =
∑

N (mn × Zn)
M

(8.3)

Weighting coefficient

Wn =
N × mn

M
(8.4)

Weighted variance

s2
H =

∑
N

(Zn − Z)2Wn

Z
2∑

N Wn

(8.5)

These parameters are interpreted as follows:

– When the analyte does not form aggregates, the mean of the Hn is zero, and the
variance s2

H is used to define a constitutional heterogeneity coefficient HC:

HC = s2
H

– When the analyte forms aggregates, the variance s2
Hcorresponds to a distributional

heterogeneity (HD), which is related to the constitutional heterogeneity by the
following relation, where FR is a positive aggregation coefficient.

HD = HC × 1 + FR × FS
1 + FR

If FR = 0, there is no aggregation, and HD = HC.
Parameter FS is a segregation factor, with 1≥FS≥ 0. If FS = 1, the segregation

is complete, and HD = HC. In all other cases, HD < HC and material mixing or
homogenizing can reduce its value. From these parameters, a sampling constant can
be defined. This is a very elaborate theory mainly inspired by geostatistics, a special
field of statistics [12].

The derivation of sampling uncertainty from this model is also complex. It is eas-
ily applicable to particulate solids but presents important difficulties for analyzing
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Figure 8.7 Cause to effect diagram of the sampling operation.

living materials, such as foods or biological tissues and fluids. In this case, the under-
lying assumptions concerning the sampling constant or the mode of aggregation of
the analyte are not easy to verify or even fulfilled. It involves a significant analytical
cost that is not always justified [11].

According to the general GUM procedure for MU estimation described in Section
6.2, the first step consists of listing the different sources of uncertainty specific to
the sampling and constructing a cause-to-effect diagram, like Figure 7.2. The dia-
gram adapted to sampling is reproduced in Figure 8.7. It implies that studying each
component would require a daunting number of measurements.

According to the GUM general procedure, the sources of uncertainty can be
grouped. In Section 7.2, it is stated that global analytical MU can generally be
expressed as the combination of three main standard uncertainties, namely:

The analytical process (analytical uncertainty) u(Zm)
The sampling process (sampling uncertainty) u(Zs)
The measurand definition (definitional uncertainty) u(Zd)

From this statement, the combined standard variance of any analytical measure-
ment can be described by Equation (8.6):

Combined standard variance

u2
c (Z) = u2(Zm) + u2(Zs) + u2(Zd) (8.6)

Leaving aside the definitional uncertainty, which depends very much on the trace-
ability of the measurand to the SI unit system as explained in Section 4.1.3, the
standard variance of a result can be written in a simplified form:

The simplified form of the standard variance

u2(Z) = u2(Zm) + u2(Zs) (8.7)
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If the part due to the analytical process u(Zm) has been estimated beforehand,
which is the case when the MAP and uncertainty function has already been estab-
lished, it is easy to extract the sampling uncertainty:

u2(Zs) = u2(Z) − u2(Zm)

u(Zs) =
√

u2(Z) − u2(Zm)

Recently, several procedures adapted to the analytical sciences have been pub-
lished. These propositions are diverse and often require sophisticated means to col-
lect the data and perform the calculation [8, 13].

8.3.2 Procedure of Homogeneity Check

In the assessment of sampling uncertainty, the estimation of homogeneity is one of
the key issues. Unfortunately, the deterministic modeling described above is not uni-
versal, but another can be proposed. It is rather easy as it is based on statistical tools
already developed in Chapters 3 and 5, such as ANOVA and tolerance intervals. The
starting point is Annex B of the ISO 13528 standard which describes an experimen-
tal design for evaluating the homogeneity of the test materials used in proficiency
testing schemes (PTS).

This Annex is entitled “Verification of homogeneity and stability of proficiency
test entities.” It describes an operating procedure for the verification of homogeneity
that can be adapted as follows:

– From the lot used for the study, select N samples, i.e. preferably called sampling
units, with N ≥ 10.

– For each sample, prepare two test portions using appropriate techniques to mini-
mize differences between them.

– Analyze the 2×N test portions in random order but under repeatability condi-
tions.

– Applying a one-way random effect ANOVA, compute the grand mean Z,
within-sample standard deviation sr and between-samples standard deviation sB
as described in Section 3.2.

To decide if the homogeneity of the lot is acceptable, the standard ISO 13528 pro-
poses to compare the inter-sample standard deviation sB to a reference standard
deviation σ called “standard deviation for proficiency assessment,” which is a “mea-
sure of dispersion used in the evaluation of results of proficiency testing, based on
the available information” and is supposed to allow an assessment of laboratory
proficiency. The acceptance criterion used to decide if the lot is sufficiently homo-
geneous is:

Acceptance criterion
sB

𝜎

≤ 0.3

Squared criterion
s2

B

𝜎2 ≤ 0.1
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The squared acceptance criterion can be interpreted as follows: the between-
samples variance must not exceed 10% of the reference variance. In practice, the
proposed acceptance criterion seemed rather strict, and in a more recent standard
applied to microbiology under revision (ISO 22117), it was set at 0.5 so that the
between-samples variance must not exceed 25% of the reference variance. To adapt
this procedure to sampling uncertainty, a simple suggestion is to replace this ratio
with the variance ratio A already described (Eq. 5.5, page 126). The acceptance
criterion becomes:

Possible acceptance criteria

A =
s2

B

s2
r
≤ 0.1 or 0.25 (8.8)

In numerous accuracy profile examples shown in Chapters 5 and 7, the variance
ratio A is much higher than one of these acceptance limits. However, these data are
collected on purpose under intermediate precision conditions and not repeatability.
Therefore, it is mandatory that the measurements made to check the homogeneity
be obtained under repeatability conditions to avoid any additional source of varia-
tion being interpreted as heterogeneity. The standard variance u2(Z) is described by
Equation (8.7), and the decision whether it is necessary to incorporate the sampling
uncertainty into combined uncertainty can be made on this acceptance criterion. If
the A ratio is higher than these limits of 0.1 or 0.25, sampling uncertainty is signif-
icant. The second proposal is to calculate the parameters of the β-expectation toler-
ance interval (β-ETI) from the data collected according to the experimental design
described in Annex B of ISO 13528 standard, as explained in Section 7.2. The stan-
dard deviation of this interval denoted sIT can be directly interpreted as an estimate
of the sampling uncertainty u(Zs).

8.3.3 Example of Copper in Wheat Flour

Within the framework of the official control of pesticides in wheat flour, the anal-
ysis of copper was used to check the homogeneity of a T65 wheat flour lot. Twenty
samples were taken from the batch of wheat flour at different randomly selected
locations for this check. No prior homogenization was applied to be consistent with
the future conditions of use. From each sample, two test portions were analyzed by
flame atomic absorption spectrophotometry. This method was selected as it is fast
and inexpensive with a well-established analytical uncertainty. Table 8.1 is a com-
pilation of 40 measures performed on separate test portions issued from 20 control
samples denoted S01 to S20.

The data are input into the Resource H worksheet after increasing the number of
series from 6 to 10. The best way is to add rows in the middle of an existing range
so that all formulas are automatically updated, except in columns D and E, where
formulas must be manually copied. From the computed parameters, several conclu-
sions can be drawn. Table 8.2 shows the β-ETI results using the notations of this
book. When verifying the acceptance criteria proposed by formula (8.8), it is possi-
ble to conclude that the batch is heterogeneous because the variance ratio A is much
above 0.1 or 0.25. Sample homogeneity needs to be evaluated.
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Table 8.1 COPPER – measurements in T65 wheat flour (mg/kg)a).

Control Measure 1 Measure 2 Control Measure 1 Measure 2

S01 4.2 4.3 S11 4.3 4.3
S02 4.5 4.3 S12 4.2 4.2
S03 4.1 4.5 S13 4.5 4.3
S04 4.1 4.2 S14 4.3 4.5
S05 4.1 4.3 S15 4.2 4.4
S06 4.2 4.2 S16 4.2 4.3
S07 4.3 4.1 S17 4.2 4.1
S08 4.1 4.5 S18 4.1 4.3
S09 4.6 4.7 S19 4.5 4.5
S10 4.5 4.6 S20 4.6 4.5

a) Unpublished personal data.

Table 8.2 COPPER – statistical homogeneity parameters.

Parameters Symbol Value Standard deviation Variance

Average content (mg/kg) Z 4.316
Within sample std. dev. sr 0.1291 0.0167
Between-samples std. dev. sB 0.1175 0.0138
Intermediate precision std. dev. sIP 0.1746 0.0305
β-ETI standard deviation sTI 0.1777 0.0316
Effective number of measures NE 31.7
Variance ratio A 0.828

Figure 8.8 illustrates this heterogeneity. At this level of concentration, the relative
uncertainty of the copper determination in wheat flour is 3.2% giving a coverage
interval of [4.18, 4.15] mg/kg. This interval is shown in Figure 8.8 as two dashed lines
around the average marked by a thick solid line and underlines the heterogeneity.

It was already demonstrated in Section 7.2.4 and Equation (7.5) and following,
that the standard variance of the β-ETI s2

TI can be regarded as a proper estimation of
standard variance u2(Z). This property is used to give an estimate of the left part of
Equation (8.7). On the other hand, the uncertainty function obtained from the cop-
per data gives 3.2% for the relative uncertainty of a measurement of 4.31 mg/kg. This
value will allow us to calculate the analytical standard uncertainty u2(Zm) without
forgetting the coverage factor of 2. The whole calculation is summarized below:
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Source Symbol Value Formula

Average content Z 4.316

Analytical process UR % (Zm) 3.20% 0.1069 = (4.316 × 0.032)
2

u(Zm) 0.06906
u2(Zm) 0.00477 0.06906× 0.06906

Simplified model u2(Z) = s2
TI 0.03158 Equation (8.7)

Sampling u2(Zs) 0.02681 u2(Zs) = u2(Z)−u2(Zm)
u(Zs) 0.16373 u(Zs) =

√
u2(Z) − u2(Zm)

UR % (Zs) 7.59% UR % (Zs) = 0.164/4.316

In conclusion, for this particular case, the sampling uncertainty represents a sig-
nificant contribution to the total combined uncertainty. Its relative contribution is
about 7.59%, and is higher than the relative uncertainty due to the analytical process,
i.e. 3.20%. The models developed for geochemical measurements, and briefly pre-
sented at the beginning of this chapter, introduced the concept that sampling uncer-
tainty depends on a sampling constant which is an invariant, independent of the
concentration level. This would mean that the 7.59% value can be used for any cop-
per content but also analytes other than copper. However, this statement needs to be
verified.
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8.4 Measurement Uncertainty: Special Issues

8.4.1 Influence of the Calibration Model

Paracetamol

H
N

HO
O

The use of a calibration model to predict concentrations
seems perfectly normal and expected for analysts. However,
the question remains whether the chosen calibration model
can be a significant source of uncertainty. A publication on
the validation of a paracetamol method for drug control may
help to answer this question [14]. The following table
summarizes the characteristics of the PARACETAMOL
dataset.

In the original publication [14], it is not stipulated if a replicate consists of apply-
ing the entire analytical operating procedure on unique test portions or whether
replicates are limited to repeated measures on a single, fully prepared test portion.
We will consider a replicate a “full replicate” as defined in Section 8.4.3. Complete
dataset description is reported in Table 8.3.

Using the calibration experimental data, it is possible to fit two types of mod-
els. The question of selecting the best calibration model has already been explained
in Section 8.1 and resolved using the MAP procedure. When X is the paracetamol
content of the calibration solutions expressed in mg/ml, and Y is the instrumental
response expressed in absorbance units, two models can be fitted:

Linear curve

Y = a0 + a1X + e

Table 8.3 PARACETAMOL – description of the dataset.

Title PARACETAMOL

Reference [14]
Measurer Paracetamol concentration in a drug, expressed in mg/ml.
Method UHPLC (ultrahigh-performance liquid chromatography)

coupled with UV detection
Validation area Between 25 and 150% of the nominal value of the finished

product of 3.25 mg/ml (0.8125 to 4.875 mg/ml)
Acceptance interval ±5%. Value often used for medicine quality control
Validation materials 4 synthetic validation materials containing 0.8125, 1.95, 3.25

and 4.875 mg/ml respectively prepared by weighting.
Validation design Series (I = 3), replicates/series (J = 5), levels (K = 4)
Calibration design Series (I′ = 3), replicates/series (J′ = 3), levels (K′ = 6)
Total number of measures 54 measurements on calibration solutions 60 measurements

on materials with known contents.
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Table 8.4 PARACETAMOL – calibration model coefficients.

Series Model a0 a1 a2 r2

Series 1 16.984 52.843 0.996
Series 2 Linear 16.562 53.075 0.996
Series 3 16.205 53.319 0.995
Series 1 0.712 67.862 −2.641 0.997
Series 2 Quadratic 1.550 66.932 −2.436 0.999
Series 3 0.826 67.514 −2.496 0.988

Quadratic curve

Y = a0 + a1X + a2X2 + e

Table 8.4 combines the coefficients for each serial (or daily) model. In this
example, coefficients are stable from one day to another. The opposite conclusion
was made with the THEOPHYLLINE study. However, selecting the best calibration
model is difficult just by looking at the coefficients of determination and is even
impossible in this case.

The MAPs obtained using the two models are plotted in Figure 8.9. Once more,
the decision is easy as it is obvious that the linear model is unsatisfactory while
the quadratic calibration model should be applied. The conclusion is evident, the
method accuracy profile can be successfully used to achieve the final optimization
of the method.
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Figure 8.9 PARACETAMOL – method accuracy profiles using two calibration models on
the same data.
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Figure 8.10 PARACETAMOL – uncertainty functions for the two calibration models. White
squares: linear, gray circles: quadratic model.

Considering MU, it is also possible to compute the corresponding values for each
model and concentration with the statistical parameters already used to build the
two profiles. These relative uncertainty values are illustrated in Figure 8.10 as a func-
tion of the paracetamol concentration. Since the validation range is narrow, relative
uncertainty does not significantly vary. The most appropriate way to fit the relative
uncertainty function is the straight line parallel to the concentration axis. Whatever
the calibration model, linear or quadratic, both uncertainty functions overlap. This
means that the relative MU is constant over the whole validated range and equal to
2.2% on average.

Finally, for the PARACETAMOL study, the calibration model has no influence on
the MU. Several reasons may explain this fact: the quite high concentrations of the
validation materials ranging from 1.0 to 5.0 mg/ml; by definition, MU only considers
the dispersion of results and not the bias that is assumed corrected, while a flawed
calibration model mainly impacts the bias.

This is not a general conclusion, and there are other situations where an inappro-
priate calibration model may alter the MU. The same comparison can be made with
the THEOPHYLLINE dataset, where several uncertainty functions can be built with
different calibration models.

Figure 8.11 compares the uncertainty functions derived from inverse-predicted
results when the quadratic model is calculated with the OLS or WLS regression
method. It seems logical to assume that the best model reduces the MU. This
assumption can be verified here as the WLS model produces smaller MU, mainly
at low concentrations. Several reasons can also be mentioned to explain this
difference: the low concentrations of the validation materials ranging from 0.05
to 10.0 μg/l (i.e. 106 times lower than paracetamol); the vicinity to LOQ; the daily
variability of the calibration model coefficients, and so on.
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Figure 8.11 THEOPHYLLINE – comparison of uncertainty functions obtained with two
calibration models.

8.4.2 Uncertainty of Corrected Results

To fully apply the GUM general procedure, before providing an estimate of MU, it is
stated in clause 3.2.4:

“… it is assumed that the result of a measurement has been corrected for
all systematic effects recognized as significant and that every effort has been
made to identify them…”

This clause implies that, in most cases, a correction is possible by modifying the
calibration function. However, if this is true for physical measurements, it is not
often the case in the analytical sciences. The method accuracy profile (MAP) can be
a tool for identifying the eventual bias of the method, and it is possible to graphically
check if the trueness of the method is satisfactory.

When the bias is considered a significant source of inaccuracy, it is necessary
to establish a correction factor applicable to the inverse-predicted concentrations.
In this case, the uncertainty function should be modified accordingly. When con-
sidering the theophylline MAP illustrated by Figure 5.5 it is possible to identify a
significant bias at low concentration. Table 5.4 reports the values of the relative bias
as a function of the concentration.

Let us remember that the relative bias is equal to 100% – recovery yield. For
instance, for a concentration of 0.1 μg/l the recovery yield is 88% and the relative
bias 12%. The latter diminishes very quickly and becomes negligible in regard to the
MU in the rest of the validation range.

THEOPHYLLINE: Relative bias as a function of concentration

Levels (μg/l) 0.05 0.1 0.5 1 2.5 10
Relative bias (%) 17 12 4 0 1 4
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For this example, because it is estimated that the LOQ is about 0.19 μg/l, it seems
unnecessary to correct the data for the relative bias. But, once the need to apply a
correction factor has been identified and validated, it becomes a part of the oper-
ating procedure and must be applied systematically to all new measurements. This
statement must be qualified by two remarks:

– The correction factor is specific to a given matrix.
– The correction factor may vary with the concentration level.

The correction factor is a new source of uncertainty that must be included in the
estimate of the MU for the corrected measurement value. It should be remembered
that correcting biased measurements is a perfectly acceptable practice within ISO
17025 accreditation. It must be scientifically justified and reported to the end-user.

Reviews of different methods applicable to the estimation of the MU of a corrected
measurement are available in [15, 16]. The solution presented below is developed in
agreement with the GUM recommendation described in Appendix F.2.4.5 of GUM
(2018 version). It is stated that “when corrections are not applied from a calibration
curve…” an approach described as “relatively simple for this problem, consistent
with GUM principles” can be applied. The GUM procedure consists of calculating
an average correction factor for a given measurand. Let us consider the data collected
for building a MAP.

The measurand is the assigned target concentration Xk of validation material. Fol-
lowing the proposed notation, Zijk is the inverse-predicted concentration of replicate
j (1≤ j≤ J) in series i (1≤ i≤ I) for the validation material k (1≤ k≤K). The absolute
individual bias 𝛿ijk is defined by Equation (8.9). The average correction factor for a
given value of Xk is defined by the arithmetic mean of all biases CFk. The corrected
predicted concentration Z∗

ijk is defined by Equation (8.11). It is essential to utilize an
additive correction factor, whereas a multiplicative one would increase or decrease
the measurement value and artificially modify the MU. The standard variance of the
average correction factor is defined by Equation (8.12).

The bias of an inverse-predicted concentration

𝛿ijk = Zijk − Xk (8.9)

Average correction factor for level k

CFk =
∑

i
∑

j𝛿ijk

IJ
(8.10)

Corrected measurement value

Z∗
ijk = Zijk − CFk (8.11)

The standard variance of the average correction factor

u2(CFk) =
∑

i
∑

j(𝛿ij − CFk)2

(IJ − 1)
(8.12)

Applying the law of propagation of uncertainty for a sum of input quantities, the
combined standard uncertainty of a corrected measurement is:
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The standard uncertainty of a corrected measurement

u
(

Z∗
ijk

)
=
√

u2(Zijk) + u2(CFk) (8.13)

The relative uncertainty of a corrected measurement

UR%
(

Z∗
ijk

)
=

u
(

Z∗
ijk

)

Z∗
ijk

(8.14)

As the standard uncertainty u(Zijk) is computed with the uncertainty func-
tion derived from the accuracy profile while the standard uncertainty of CFk
is given by formula (8.12), this procedure is easy to implement. New values of
standard and relative uncertainty are obtained to readjust the uncertainty function.
The latter will be applicable to any new sample analyzed and corrected by the
laboratory.

But an additional question remains when using this method routinely. How to
determine the correction factor to be applied to any new sample result? When the
GUM correction approach is applied to each distinct level of the accuracy profile, it
appears that the obtained correction factors and associated uncertainties vary with
the concentration. If a new unknown sample is not close to one of the Xk value, an
adjusted correction factor must be used.

The relationship between the concentration and the correction factor CF can be
established and used to interpolate for any concentration. This must be preferably
linear, since one of the validation requirements for analytical sciences, is that
the trueness is proportional to the concentration, as explained in Section 4.1.
Equation (8.15) is the mathematical interpretation of this requirement, where p is
the proportionality coefficient. This is the equation of a straight-line forced through
the origin because when the concentration is 0, no correction is required:

Proportionality relationship between the correction factors and the concentration

CF = p × X (8.15)

The coefficient p is the slope of the curve and can be positive or negative. In
Equation (8.15), the predicted correction factor is expressed in the same units as X
and can be applied directly to correct a value as in Equation (8.17). The next step is
redrawing the initial MAP and obtaining a corrected profile. If it is satisfactory and
the method validated, it can be considered as a verification of the relative correction
factor as in equation (8.16). Another way consists in expressing the global correction
factor as a percentage relative to the concentration. Then it applies to any recovery
yield and makes it possible to compute the corrected accuracy profile.

Relative correction factor
CF
X

× 100 = p% (8.16)

Corrected measurement value

Z∗ = Z × (1 − p) (8.17)
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Nicotinic acid

To illustrate this method, the NICOTINIC dataset described below
is used. It is recognized in the food industry to supplement foods
with diverse nutrients. The supplementation of cow milk with
vitamin B3 (nicotinamide) or nicotinic acid is widely applied.
Nicotinic acid is more stable and easily converted to nicotinamide
in vivo. Nicotinamide is the biological form; it is a derivative of
nicotinic acid and a water-soluble vitamin.

Although both have the same vitaminic activities, nicotinic acid is the preferred
form for industrial food supplementation. The NICOTINIC method consisted of the
determination of nicotinamide and nicotinic acid in cow’s milk. The correspond-
ing dataset is described in Table 8.5. Only the determination of nicotinic acid is
addressed because the determination of nicotinamide was not questionable. Orig-
inal inverse-predicted concentrations for the three validation materials are listed in
Table 8.6. In the same table individual and average biases are reported.

As described in Section 5.2.2, the MAP from this data can be established when
using the Resource H Excel worksheet, only considering β-ETIs. Results are illus-
trated in Figure 8.12 by the accuracy profile labeled “Before correction.” There is
an obvious and strong systematic relative bias close to –50% that requires being cor-
rected. The main parameters of the MAP that confirm this graphical interpretation
are listed below:

Concentration (mg/l) 0.2 2 4
Recovery yield (%) 53 54 52
Relative bias (%) −47 −46 −48

The starting point of the correction procedure proposed by the GUM consists
of calculating for each concentration level the average correction factor and its

Table 8.5 NICOTINIC – description of the dataset.

Title NICOTINIC

Reference Unpublished personal data
Measurand Concentration of nicotinic acid in milk, expressed in mg/l.
Method HPLC coupled to a fluorescence detector
Validation interval [0.2, 4.0] mg/l
Acceptance interval ± 10%
Validation materials 3 validation materials containing 0.2, 2.0 and 4.0 μg/l

respectively, prepared by SAM from a batch of homogenized
milk.

Validation plan Series (I = 3), replicates/series (J = 3), levels (K = 3)
Calibration plan Series (I′ = 2), replicates/series (J′ = 2), levels (K′ = 2)
Number of measures 12 measurements on calibration solutions

27 measurements on spiked materials.
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Table 8.6 NICOTINIC – original inverse-predicted concentrations and bias in mg/l.

Inverse predicted
concentrations Individual bias Correction factor

Level
Xk Series Zi1k Zi2k Zi3k 𝜹i1k 𝜹i2k 𝜹i3k CFk

u2(CFk)
×10−3

0.2 1 0.096 0.113 0.109 −0.104 −0.087 −0.091 −0.093 0.598
2 0.100 0.111 0.121 −0.100 −0.089 −0.079
3 0.100 0.105 0.105 −0.100 −0.095 −0.095

2 1 1.167 1.090 1.043 −0.833 −0.910 −0.957 −0.922 5.084
2 1.008 1.073 0.998 −0.992 −0.927 −1.002
3 1.141 1.004 1.181 −0.859 −0.996 −0.819

4 1 2.196 1.933 2.087 −1.804 −2.067 −1.913 −1.934 11.839
2 2.027 1.893 2.008 −1.973 −2.107 −1.992
3 2.171 2.178 2.102 −1.829 −1.822 −1.898
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Figure 8.12 NICOTINIC – accuracy profiles before and after correction.

standard variance following Equations (8.10) and (8.12). The values obtained are
reported in the last columns of Table 8.6. The most convenient way to compute
the proportionality coefficient p is to apply the LINEST built-in function forcing
the line to go through zero, i.e. setting the Const argument to FALSE. The value
obtained is p = − 0.479 expressed in mg/l; that gives p %= − 47.9% as a percentage.

While the initial accuracy profile is expressed as recovery yields, the corrected
accuracy profile is obtained by subtracting this global correction factor from each
value of the β-ETI bounds, themselves expressed in %. In Figure 8.12, the new
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Table 8.7 NICOTINIC – influence of the correction factor on the uncertainty and accuracy
profile.

Concentration (mg/l)

Parameters Symbol 0.2 2 4

Accuracy profile

Be
fo

re

Recovery yield 53% 54% 52%
Lower limit of β-ETI 47% 49% 47%
Upper limit of β-ETI 59% 59% 56%

A
fte

r

Correction factor p% −47.9%
Recovery yield 101% 102% 100%
Lower limit of β-ETI 95% 96% 95%
Upper limit of β-ETI 107% 107% 104%

Measurement uncertainty

Be
fo

re

Standard uncertainty u (Z) 0.0086 0.0767 0.1249
Relative uncertainty UR % (Z) 8.56% 7.67% 6.25%
Standard variance u2 (Z) 7.32⋅10−5 5.88⋅10−3 1.56⋅10−2

A
fte

r

Variance of the CF u2(CFk) 5.98⋅10−5 5.08⋅10−3 1.19⋅10−2

Standard uncertainty u(Z*) 0.01153 0.10472 0.16570
Relative uncertainty UR % (Z*) 11.53% 10.47% 8.29%

accuracy profile is labeled “After correction.” Table 8.7 table summarizes these
calculations. Figure 8.12 perfectly illustrates how the global relative correction
factor p% works, as the new corrected accuracy profile is now entirely within the
acceptance interval limits.

Figure 8.13a shows the relationship between the correction factor and the
concentration described by Equation (8.15). The linearity is established between the
trueness and the concentration. However, the dispersion of individual biases around
the average, symbolized by a small dashed line, increases when the concentration
increases, and the WLS regression technique would improve the estimation of the
slope of the straight-line. Figure 8.13a shows the relative uncertainty functions
before and after correction.

These are power functions, as described in Section 7.5.2.

UR%(Z) = 0.0753 × Z−0.091

UR%(Z∗) = 0.1015 × Z−0.093

The function of the corrected measurements is shifted upwards, indicating that
the uncertainty is positively impacted by the correction factor. This mainly affects
the constant of the function, which increases from 0.0753 to 0.1015, i.e. a difference
of about 0.025 that can be interpreted as 2.5% of increase in the relative uncertainty.
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Figure 8.13 (a) NICOTINIC – relationship between the average correction factor and the
concentration. (b) NICOTINIC –Relative uncertainty function before and after correction.

On the other hand, the power coefficients of both functions can be considered as
constant. The reporting of the correction factor uncertainty only generates a constant
shift. In conclusion, the correction of the measurement values increases the MU. In
this example, the global correction factor is constant and close to 50%.

For example, let us take a milk sample for which the observed raw concentration of
nicotinic acid Z=0.80 mg/l. After applying the correction factor p = −0.479, the cor-
rected concentration becomes Z*=0.80 × (1–(–0.479)) = 1.18 mg/l, and the relative
uncertainty is estimated at 9.8% with a coverage interval of [1.07, 1.31].
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8.4.3 Increase the Number of Replicates

In some cases, the obtained MU is higher than expected and makes it difficult to
decide with a sufficient level of confidence. A classic example is the compliance of
a sample containing traces when the specification limit is close to the limit of quan-
tification. A possible way to overcome this shortcoming is to work with replicates
and make the decision based on an average result. This approach impacts the MU
and implies some corrections for this way of expressing the result.

First of all, the term replicate needs to be defined. At what stage of the analyti-
cal operating procedure does the replication begin? When are different test portions
sampled, when the extract (or the reconstituted sample) is injected into the mea-
suring instrument, or at another moment? The replicates done at different starting
points do not have the same uncertainty, since diverse sources of uncertainty may
be triggered. The diagram presented in Figure 8.14 is an attempt to illustrate the
multiplicity of replicate definitions and formalize this concept of replicate.

It is now accepted to divide an analytical process into three complementary
parts: pre-analytical, analytical, and post-analytical. Replication itself is limited
to the analytical part. The US-Pharmacopeia (USP) document [17] proposes also
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Figure 8.14 Four possible replicate definitions according to the sample preparation
starting step among the sample preparation steps.
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to make a division, within the analytical part, between the analytical procedure,
which includes the sample preparation steps, and the analytical method, which
corresponds to the actual instrumental measurement, the calibration, and the result
calculation.

This partition is helpful to better define replication strategies intended to reduce
MU in drug monitoring [18]. In Figure 8.14 the vertical dashed arrows illustrate four
distinct types of replicates that can be performed starting at various stages of a sam-
ple preparation. The replication procedure, labeled “Full replicate” on the figure,
starts from a new test portion and consists of applying the complete analytical oper-
ating procedure. This is the most interesting because it represents the highest level of
independence that can be obtained between two replicates done on the same work-
ing sample.

Unfortunatly, the word “sample” is often indiscriminately and carelessly used to
refer either to the entity that is received (or collected) by the laboratory for analysis or
to the resulting preparation, such as an extract or reconstituted material after sample
preparation, which is introduced into the measuring instrument. In the previous
Section, 8.3, about sampling uncertainty, some definitions were proposed to avoid
this confusion. It is essential that all replicates be obtained on the same sample, i.e.
the same entity received by the laboratory.

Let us note Zn with 1≤n≤N the replicates used to calculate an aver-
age result. Two situations must be clearly distinguished while in each case,
the result MU is differently estimated when dealing with the average of the
replicates:

– Measures under repeatability condition. Replicates are performed on the same day
by the same operator in the same series. It can be assumed they have the same
standard uncertainty, denoted u(Zn).

– Measures under intermediate precision conditions. A common way to make repli-
cates when a sample is declared nonconforming to check the consistency of the
decision is to repeat one measurement (or several measurements) later during
another sequence or series.

8.4.4 Replication under Repeatability Condition

A reliable replicate should be performed from a new test portion, as described in
Figure 8.14 to include as many sources of uncertainty as possible under repeata-
bility conditions. It is also the simplest situation to compute the result MU. If the
uncertainty function of the method has been established as described in Section 7.5,
it is possible to estimate u(Zn) for any Zn. According to the GUM, two measurement
models should be considered for an average of replicates. They are denoted here ZA
and ZB.

Model A

ZA =
∑N

n=1 Zn

N
(8.18)
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Model B

ZB =
∑N

n=1 Zn

N
+ Er (8.19)

Model B includes the idea that measurements, although obtained under repeata-
bility conditions, are not all equal, and a residual random error accounts for the
differences. The random variable Er reflects these random variations between repli-
cates. When these models are developed according to the law of uncertainty propa-
gation, the following MU estimate is obtained for each model.

Standard variance of model A

u2(ZA) =
∑N

n=1 u2(Zn)
N

(8.20)

Standard uncertainty of model A

u(ZA) =
√

u2(ZA) (8.21)

Standard variance of Er

u2(Er) =
∑N

n=1 (Zn − ZA)2

N−1
N

(8.22)

Standard uncertainty of model B

u(ZB) =
√

u2(ZA) + u2(Er) (8.23)

A classic statistical property is used here, namely: if a random variable is the sum
of N random variables of the same standard deviation σ, its standard deviation is
𝜎√
N

. This property allows us to set the following table, which shows the possible
reduction gain on the MU when the number of replicates increases from one single
measure. For example, to reduce MU by one-half, it is necessary to do at least four
replicates.

N 1/
√

N Gain (%)

2 0.71 29
3 0.58 42
4 0.50 50
5 0.45 55
8 0.35 65
10 0.32 68

The results of the THEOPHYLLINE study will serve as an example. The values
obtained for eight replicates made on the same sample are reported in Table 8.8.
The column “Mean” corresponds to the provisional calculation of the average; for
example, 0.1515 corresponds to 2 replicates. The standard uncertainty function of
the method is provided in Section 7.5.2 and illustrated in Figure 7.8a. It is a power
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Table 8.8 THEOPHYLLINE – influence of the number of replicates.

Model A Model B

Measure
number Value Mean u2(ZA) u(ZA) ×103 u2(er ) u(ZB) ×103

1 0.154 21.150 21.150
2 0.149 0.1515 2.17⋅10−4 14.728 6.25⋅10−6 14.939
3 0.151 0.1513 1.45⋅10−4 12.025 2.11⋅10−6 12.113
4 0.155 0.1523 1.08⋅10−4 10.414 1.90⋅10−6 10.505
5 0.150 0.1518 8.68⋅10−5 9.315 1.34⋅10−6 9.387
6 0.148 0.1512 7.23⋅10−5 8.503 1.29⋅10−6 8.579
7 0.152 0.1513 6.20⋅10−5 7.873 9.39⋅10−7 7.932
8 0.151 0.1513 5.42⋅10−5 7.364 7.05⋅10−7 7.412

function with the following coefficients: constant a = 0.0907 and power b = 0.778.
Thus, the standard uncertainty of the first measure 0.154 μg/l is u(Z)=21.150.
10−3 μg/l.

All MU values are multiplied by 103 to be more readable. As expected, Table 8.8
shows that the MU of the average result regularly decreases from 21. 10−3 to 7.10−3,
when the number of replicates increases from 1 to 8, i.e. a final 67% reduction. Obvi-
ously, the cost of this procedure can be high, and a cost/benefit study may help to
decide the adequate replicate number. When comparing the estimates obtained with
model A or B, the correction introduced in model B only slightly modifies the MU
estimate.

Further refinement can be introduced in the measurement model of a result corre-
sponding to an average of replicates because replicates are made under repeatability
conditions and consequently correlated. The law of propagation of uncertainty can
consider this kind of correlation as illustrated by Equation (6.18) before it is simpli-
fied in Equation (6.21). The difficulty is to evaluate practically this correlation.

8.4.5 Replication under Intermediate Precision Condition

As previously explained, when a measurement value is not as satisfactory as
expected (e.g. when a whole production would not be marketable because of one
nonconforming result), it is quite common to do a replicate to infirm, confirm,
strengthen, or weaken the conclusion. Sometimes, this operation is repeated several
times to achieve a certain degree of confidence for the decision. If the new analysis
does not belong to the same series, the between-series effect must be added, which
implies that an estimate is available.

To explain the calculation, the usual notation is utilized. Let us assume that n
replicates are done; the uncertainty function is available, and an estimate u(Zn) is
available for each. This results in the following formulas.
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Mean (result)

Z =
∑N

n=1 Zn

I
(8.24)

Within-replicate variance

s2
r =

∑N
n=1 u2(Zn)

N
(8.25)

Between-replicates variance

s2
B =? (8.26)

Standard variance of the mean

u2(Z) =
s2

B + s2
r

N
(8.27)

This is an uncomfortable situation when no estimate of the between-replicates
variance is available, but it is common. Therefore, it is a risky practice to do repli-
cates under intermediate precision and compute an average to make a final decision.
Decision rules come with a sampling plan. If only one measurement is required to
decide whether a lot is conforming, this rule must be respected. It is always possi-
ble to perform confirmatory analyses, but it is not correct to use the average for the
decision unless special regulations exist.

References

1 Travison, T.G., Vesper, H.W., Orwoll, E. et al. (2017). Harmonized reference
ranges for circulating testosterone levels in men of four Cohort Studies in the
United States and Europe. Journal Clinical Endocrinology Metabolism 102 (4):
1161–1173.

2 Salamin, O., Ponzetto, F., Cauderay, M. et al. (2020). Development and validation
of an UHPLC–MS/MS method for extended serum steroid profiling in female
populations. Bioanalysis https://doi.org/10.4155/bio-2020-0046.

3 2000/657/EC: Commission Decision of 16 October 2000 adopting Community
import decisions for certain chemicals pursuant to Council Regulation (EEC) No
2455/92 concerning the export and import of certain dangerous chemicals.

4 Feinberg, M., Bertail, P., Tressou, J., and Verger, P. (2006). Analyse des risques
alimentaires. Cachan: Lavoisier (in French).

5 FAO/Codex Alimentarius. Codex Pesticides Residues in Food Online Database.
https://www.fao.org/fao-who-codexalimentarius/codex-texts/dbs/pestres/en/
(accessed 5 September 2023).

6 Regulation (EC) No 470/2009 of the European Parliament and of the Council of
6 May 2009 laying down Community procedures for the establishment of residue
limits of pharmacologically active substances in foodstuffs of animal origin.

https://doi.org/10.4155/bio-2020-0046
https://www.fao.org/fao-who-codexalimentarius/codex-texts/dbs/pestres/en/


References 255

7 BIPM, IEC, IFCC, ILAC, ISO, IUPAC, IUPAP and OIML (2012). Evaluation of
measurement data: the role of measurement uncertainty in conformity assess-
ment. JCGM 106. Sèvres, France. https://www.bipm.org (accessed 3 September
2023).

8 ISO/IEC Guide 98-4:2012. Uncertainty of measurement — Part 4: Role of mea-
surement uncertainty in conformity assessment. ISO, Genève.

9 Williams, A. and Magnusson, B. (ed.) (2021). ISBN 978-0-948926-38-9. www
.eurachem.org (accessed 3 September 2023). Eurachem/CITAC Guide: Use of
Uncertainty Information in Compliance Assessment, 2e. EURACHEM-CITAC.

10 Commission Implementing Regulation (EU). 2021/808 of 22 March 2021 on
the performance of analytical methods for residues of pharmacologically active
substances used in food-producing animals and on the interpretation of results
as well as on the methods to be used for sampling and repealing Decisions
2002/657/EC and 98/179/EC.

11 Heydorn, K. and Esbensen, K. (2004). Sampling and metrology. Accreditation
Quality Assurance 9: 391–396.

12 Gy, P.M. (1982). Sampling of Particulate Materials, Theory and Practice. New
York: Elsevier Scientific Publishing Company.

13 Grøn, C., Bjerre Hansen, J., Magnusson, B. et al. (2007). Uncertainty from Sam-
pling – A NORDTEST Handbook for Sampling Planners on Sampling Quality
Assurance and Uncertainty Estimation. Technical Report 604, NORDTEST.

14 Ibrahim, A.M., Hendawy, H.A.M., Hassan, W.S. et al. (2019). Data on validation
using accuracy profile of HPLC-UV method. Data in brief 24: 103877.

15 Maroto, A., Boqué, R., Riu, J., and Rius, F.X. (2001). Measurement uncertainty in
analytical methods in which trueness is assessed from recovery assays. Analytica
Chimica Acta 440: 171–184.

16 Vanatta, L.E. and Coleman, D.E. (2007). Calibration, uncertainty, and recovery in
the chromatographic sciences. Journal of Chromatography A 1158: 47–60.

17 Schofield, T., van den Heuvel, E., Weitzel, J. et al. (2020). Distinguishing the
Analytical Method from the Analytical Procedure to Support USP Analytical Life
Cycle Paradigm. USPF Online.

18 Borman, P., Schofield, T., and D. (2021). Lansky: reducing uncertainty of an ana-
lytical method through efficient use of replication. Pharmaceutical Technology
48–56.

https://www.bipm.org
http://www.eurachem.org
http://www.eurachem.org




257

9

MU and Quantification Limits

The ability of a method to quantify working samples at low analyte concentration
is an important topic of discussion because once a limit is established, it should
facilitate method selection. Very often, it is also used as a commercial argument.
Most commonly, the quantification capacity threshold is defined through two
parameters, the limit of detection (LOD) and the limit of quantification (LOQ),
even though many other parameters are also proposed in the analytical literature.

LOD is defined by metrologists as “the measured value, obtained by a given mea-
surement procedure, for which the probability of falsely claiming the absence of
a component in a material is, given a probability of falsely claiming its presence”
(International Vocabulary of Metrology [VIM]). It applies to any measuring method
and is not limited to analytical sciences.

This definition is compatible with statistical significance testing that involves two
risks of error, usually named 𝛼 and 𝛽 (in this context, 𝛽 must not be confused with
the 𝛽 probability of the β-expectation tolerance interval β-ETI). These error risks are
classically fixed in the statistical literature at 1% or 5%, respectively.

It should be recalled that detecting an analyte leads to a qualitative result expressed
by presence/absence, conforming/nonconforming, or yes/no. LOD theoretically
represents the starting point where the instrumental signal is perceptible but not
translated into a quantity of matter.

On the other hand, LOQ is specific to analytical sciences and quantitative
methods. Unfortunately, there is no single standardized definition, either in VIM
or in International Union of Pure and Applied Chemistry (IUPAC). It would
rather correspond to an observed parameter derived from various extrapolations or
interpolations. For quantitative methods, the real issue is the LOQ. It is therefore,
this performance limit that is discussed here.

For qualitative methods, one of the parameters introduced to evaluate a method’s
performance limit is the equivalency of the level of detection (LD) accompanied by
a probability (i.e. for example, LD50). Unfortunately, this abbreviation LD can lead
to confusion with the LOD.

Quantification, Validation and Uncertainty in Analytical Sciences: An Analyst’s Companion,
First Edition. Max Feinberg and Serge Rudaz.
© 2024 WILEY-VCH GmbH. Published 2024 by WILEY-VCH
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9.1 Definitions and Assessment of LOQ

For the LOQ, a definition and a calculation method were already proposed in Section
5.2.2, many other definitions exist and, consequently, many estimation methods.
An attempt at a rough general definition can be proposed, and several variations
are available in the guides, as explained in a recent review [1]. The most classical
definition is the following, and in square brackets, suggested details are added:

“The lowest concentration of an analyte that can be quantified [in a specific
matrix] with acceptable precision and accuracy [and under specified operat-
ing conditions].”

But also:

“The concentration for which the risks of error 𝛼 and 𝛽 are acceptable.”

This creates confusion with the LOD when the risk levels are not clearly specified.
Ultimately:

“The value for which the bias and relative standard deviation [or coefficient
of variation] of repeatability do not exceed a given acceptance threshold.”

From a methodological point of view, various calculation methods have been pro-
posed. A succinct description may help to understand the practical problems raised
by each procedure. Some decades ago, a well-documented historical review on the
LOQ parameter was published but, unfortunately, not recently updated [2].

9.1.1 Multiple Blank Standard Deviations

In the 1970s, blank standard deviation was the method recommended by the Envi-
ronmental Protection Agency (EPA). The simplest solution is to calculate the LOD
and LOQ as k-fold standard deviation of the intercept a0 of the calibration curve
(assumed being a straight line) denoted sa0

and given by Eq. (2.18). This parame-
ter is assumed to be sufficiently comparable to the standard deviation sbl of a blank
sample.

Whatever the k-fold value, the result is expressed in the same units as the instru-
mental signal. For instance, the peak area must be converted into a concentration
by dividing by the slope a1 (which corresponds to the sensitivity).

A classic methodological error is the use of a calibration curve that would neglect
the matrix effects, the influence of the selected calibration model, or the possible
heterogeneity of variances of the measurements at the different concentrations (or
heteroscedasticity). Inverse calibration is a well-known operation to convert an
instrumental response into a concentration.

Because the coefficient a1 is an estimation of the slope, it may vary from one series
to another, and computed LOD or LOQ may also vary. Moreover, if the intercept a0
is significantly different from zero (or even negative), another source of variability
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is present, which is not always easy to consider. For the LOD, a multiplicative
coefficient kD is applied to the standard deviation sa0

. It varies according to the
validation guide, for example kD = 3.0, 3.3, 6.0, etc. These values approach Normal
distribution law quantiles used in statistical significance tests but do not strictly
conform to the theory.

LOD = kD ×
sa0

a1

For LOQ, a similar principle remains, and by convention, the EPA proposed to
take a multiplicative coefficient kQ = 10, without any statistical justification, just
according to a general principle that implies that the LOQ must be “sufficiently dis-
tant” from the LOD. Finally, this approach often leads to unrealistic values but is
nevertheless accepted by control authorities.

LOQ = kQ ×
sa0

a1

9.1.2 Visual Examination

Accepted in the pharmaceutical industry [3] and in biomedical analysis, this method
relies on analyst’s expertise who knows the discrimination capability of the method
he applies to expect a correct quantification. The justification of the threshold is
provided by signal records, such as a chromatogram. In this case, the LOQ is directly
expressed in the unit of the analyte, i.e. in absolute or relative concentration. The
drawback is the subjective aspect of the procedure. If an obtained value is used for
commercial promotion, it may be uneasily arguable.

9.1.3 Signal-to-Noise Ratio

This approach is based on the physical theory of instrumental signals. It mainly
applies to spectroscopic methods, such as atomic emission, gamma-ray spectrome-
try, nuclear magnetic resonance, ultraviolet (UV)–Visible. The procedure often advo-
cated is to compare the signals obtained with low-concentration samples to those
from blanks and determine the minimum concentration for which the analyte can
be detected or quantified.

A signal-to-noise ratio S/N = 3 : 1 is generally considered acceptable for a LOD and
10:1 for a LOQ. The same values as previously assigned to kD and kQ. It should be
noted that in the context of separative methods, quantification is often carried out
based on integrated peak area. In this case, a LOQ obtained from the signal-to-noise
ratio does not make sense because the word “ratio” does not refer to the area but to
the signal height.

Therefore, this approach has serious drawbacks with modern instrumentation,
where the signal is digitized. The baseline signal is usually filtered and smoothed,
and it is difficult, if not impossible, to measure a true instrumental background.
Hence, the evolution of recent instruments, such as high-resolution mass spectrom-
eters, has resulted in extremely low background noise, and this approach has become
pointless. Some discussion about the inconsistency of the signal-to-noise ratio with
this kind of method is available in [4].
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9.1.4 Empirical Experimental Approach

This consists of repeated measurements on different test portions of a blank sample
(i.e. analyte-free) or as close as possible to the supposed LOQ. This approach has
the advantage of directly starting from measured data. Besides, it raises enormous
practical problems, such as: how to obtain such a sample; how to deal with the qual-
itative but non-quantifiable data that appear around the LOQ, etc.? In conclusion of
this rapid overview of the various assessments of the LOQ, it is obvious that there is
no consensus.

All these procedures provide values that could be quite different. Several studies
have demonstrated that LOQs obtained from identical data, but calculated according
to different procedures, can be highly divergent, as explained in [2]. Moreover, it is
common to obtain the value by extrapolation outside the validation domain. Indeed,
in the vicinity of the LOQ, it seems logical to obtain nonquantifiable instrumental
responses that cannot, by definition, be treated by classic statistical methods. Specific
tools applicable to this censored data, mixing qualitative and quantified data, exist
and are available.

This ambiguity around LOQ definitions and estimators may be surprising, consid-
ering the importance given by analysts to this parameter. It is undoubtedly impera-
tive to establish a consensus. In any case, the recommendation to validate the LOQ
rather than estimate it seems not only reasonable but mandatory. This confirma-
tion can be done by means of surrogate samples and/or samples spiked by standard
additions, then submitted to the whole analytical procedure.

All the above approaches are ultimately only estimates of the LOQ. Finally, it
should be noted that in some international regulatory texts, a lower limit of quan-
tification or LLOQ and, by symmetry, an upper limit of quantification or ULOQ are
defined and required [5]. It is more a way to define the practical bounds of the vali-
dated domain rather than the whole method performance itself.

9.2 LOQ as an Expected Relative Uncertainty

The previously reported LOQ definitions and the proposed calculation procedures
do not consider the measurement uncertainty (MU). Moreover, if the same exper-
imental design is applied several times in a row, different LOQ values would be
obtained. Based on this observation, another definition of LOQ that includes the
MU can be proposed:

“LOQ is the lowest concentration of an analyte that can be quantified in a
given matrix with a defined MU that could be absolute or relative (e.g., 50%)
under specified operating conditions.”

The great interest of the uncertainty function is to predict the MU for a given mea-
surement. When the inverse uncertainty function is taken, it can also be used to
predict a concentration for a given MU value, as shown in the following formulas
and explained in the Section 7.6.



9.2 LOQ as an Expected Relative Uncertainty 261

Table 9.1 Different LOQ values calculated by inverting the uncertainty function from the
THEOPHYLLINE study (μg/l).

Method accuracy profile Relative uncertainty values UR%

80% 60% 50% 30% 20%

LOQ (μg/l) 0.129 0.001 0.005 0.01 0.104 0.643

Power uncertainty function

UR% = c × Xd

Uncertainty function THEOPHYLLINE

UR% = 0.8968 × X−0.271

Inverse uncertainty function

X = 10
(

log(UR%)−log(c)
d

)
(9.1)

Inverse function for THEOPHYLLINE

X = 10
(

log(UR%)−0.0473
−0.271

)

Applying this method to the results of the THEOPHYLLINE study, it is easy to
construct Table 9.1, which brings together the predicted X concentrations for dif-
ferent values of UR%. According to the new definition, each example is a possible
LOQ value that can be compared to the value obtained from the accuracy profile as
proposed in Section 5.2.2.

In this case, the analyst was questioned about the most likely LOQ value and
answered for a relative uncertainty of 50% corresponding to a LOQ of 0.01 μg/l. This
value is obtained thanks to an extrapolation, as the lowest experimental X-value is
0.05 μg/l. Although unacceptable for certain guidelines, it means that within the cov-
erage interval [0.005, 0.015] μg/l would lie the 95% proportion of possible values of a
LOQ-sample. It can also be noted that the value obtained from the accuracy profile
is extremely far from this proposal since 0.129 μg/l corresponds to a relative MU of
about 29% and a coverage interval of [0.092, 0.141] μg/l.

Hence, the accuracy profile (MAP)-derived approach better reflects the actual per-
formance of the method because the LOQ is located inside the validated interval
while it can be outside when derived from the uncertainty function. Another strat-
egy is also possible, such as a priori defining the LOQ to be reached, computing
associated relative uncertainty and coverage interval, and deciding whether it is
appropriate or not.

While the MAP approach only provides an estimate of the LOQ, many regulatory
bodies or official guidelines sometimes strictly require both parameters, LOD and
LOQ. In this context, the question of estimating the LOD remains. Figure 9.1 is an
attempt to illustrate a viable alternative solution.

With the classic approach (i.e. bottom-up), the computation starts with a blank
standard deviation σ from which LOD and LOQ are deduced. As already stated, this
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Uncertainty can be estimated

LOQ = 10 × σ

LOD = 3.3 × σ

σ

LOD = LOQ /3.3

LOQ

Uncertainty unknown

Undetectable signal

σ = blank standard deviation or signal /noise ratio
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Figure 9.1 Plausible classic and alternative approaches to estimate LOD and LOQ.

parameter has some physical meaning only when working with spectrophotomet-
ric techniques. Thus, a viable alternative (i.e. top-down) is first to consider the LOQ
(derived from the MAP) and then deduce the LOD. When dealing with other tech-
niques where the signal is a peak area and/or the background noise is extremely
low, such as many chromatographic methods or MS quantification, the blank stan-
dard deviation is meaningless and nonmeasurable. The estimation of LOD based on
signal-to-noise ratio becomes pointless [4].

9.3 Decision Limit and Detection Capability

9.3.1 Concepts and Definitions

LOQ is often provided by equipment manufacturers or analysts to assess the
performance of analytical instrumentation or method. However, according to the
previous paragraphs, it is obvious that the reported values can significantly vary,
as a function of the calculation procedure. This raises a question of legitimacy and
applicability. If the goal is to estimate to what extent a method can quantify the
lowest possible concentration, the LOQ may be the appropriate parameter.

Paradoxically, it is probably not the most interesting objective from a practical
point of view since it is a question of confirming that a method is capable of quanti-
fying concentrations in accordance with the required specifications that have been
established beforehand. This goal is to verify the adequacy of the method to the
use that one wants to make of it, also called fitness-for-purpose. This property of
a method was introduced in the ISO 11843:2000 standard under the name Capabil-
ity of Detection. The latter plays a very practical role in selecting methods able to
perform the official control of foods or the environment and has been introduced in
several regulatory texts.

The evolution of European regulation on food hygiene can be used to illustrate
how the concept of capability of detection works and has changed over recent
decades. In 1996, the European Commission published a directive “on measures



9.3 Decision Limit and Detection Capability 263

to monitor certain substances and residues thereof in live animals and animal
products” [6]. But it was not until 2002 that the practical implementation of the
directive was published as a Decision [7].

For the latter, the traditional statistical approach based on null hypothesis testing
inspired by the LOD definition was considered. More recently, the official procedure
has moved to the use of the MU and is now comparable to the procedure described in
Section 8.2 about sample conformity assessment. In 2002, two parameters related to
the method detection ability were introduced, namely, CC𝛼 and CC𝛽, derived from
the concepts developed in the ISO 11843:2000 standard [8]. In 2002, the regulatory
definitions were:

Decision limit
CC𝛼

“The limit at which and beyond which it is permissible to conclude
with a probability of error 𝛼 that a sample is noncompliant.”

Detection
capability CC𝛽

“Smallest level of substance that can be detected, identified, and/or
quantified in a sample with a probability of error 𝛽.”

In practice, the detection capability is presented as a threshold of non-compliance,
with a risk of error fixed in advance. For its calculation, the official text distinguishes
between:

– The “substances for which no permitted limit has been set,” and the detection
capability is comparable to the LOQ since it is the lowest concentration at which
truly contaminated samples are detected.

– The “substances for which a permitted limit is set,” the detection capability is the
concentration at which the method can identify samples at the set limit.

The reference in the definition to the probability of error 𝛼 or 𝛽 shows that it is the
same logic as null hypothesis testing. The probability of error 𝛽 here-mentioned must
not be confused with the proportion 𝛽 used to construct the β-expectation tolerance
interval, abbreviated so far as β-ETI, and discussed in Chapter 5.

According to European legislation, two situations must be distinguished:

– The substance is prohibited and, therefore, must be absent.
– The substance is authorized but must not exceed a limit which can be a maxi-

mum residue limit (MRL), maximum level (ML), or “other tolerance applicable to
substances” laid down in other Community legislation.

Figure 9.2 illustrates both officially defined parameters in the case of an authorized
substance for which an MRL of 100 mg/kg. In this case, the required error probabil-
ities are 𝛼 = 5% and 𝛽 = 5%, respectively [6].

From these probabilities, it is possible to define a coverage factor equal to 1.64
derived from the standardized normal distribution and applied to the standard
deviation measured at the MRL and denoted sMRL and the standard deviations
applicable to a sample ssample which is located “as close as possible to the MRL.”

The shortcomings of this approach are obvious to an analyst and have already been
pointed out above in relation to several LOQ definitions. They can be summarized
as follows:
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Figure 9.2 Definitions of decision limit and detection capability according EU regulation
[7] for a substance with a maximum residue limit (MRL) of 100 μg/kg.

– Experimental drawbacks. How can these standard deviations be estimated? How
many replicates are needed? Is it necessary to be under repeatability or interme-
diate precision conditions? To answer these questions globally and because these
data are unknown, it is classical to use, sMRL = ssample

– Response versus concentration. The starting point for the proposed definitions is
the instrumental response. The conversion to a concentration involves using a
calibration curve, as proposed by the EPA. However, the coefficients of the curve
vary from one series to another, and this variability is not considered.

For all these reasons, in 2021 the European Commission published a new regula-
tion on “the performance of methods of analysis for residues of pharmacologically
active substances used in food-producing animals and the interpretation of results
and the methods to be used for sampling and repealing Decisions 2002/657/EC
and 98/179/EC” [9]. In this text, the parameter names and definitions have slightly
changed. In particular, new calculation methods have been introduced even if, for
regulatory compatibility, the approach defined in 2002 remains applicable.

Decision limit for
confirmation CC𝛼

“The limit at which it is safe to conclude with a probability
of error 𝛼 that a sample is non-compliant, with the value
1 – 𝛼 denotes the statistical certainty in percent that the
allowable limit has been exceeded.”

Detection capability for
screening purposes CC𝛽

“The smallest analyte content that can be detected or
quantified in a sample with a probability of error 𝛽.” In the
case of prohibited or unauthorized pharmacologically active
substances, the CC𝛽 is the lowest concentration at which a
method can detect or quantify, with certainty 1− 𝛽, samples
containing residues of prohibited or unauthorized
substances. For permitted substances, the CC𝛽 is the
concentration at which the method detects concentrations
below the permitted limit with a statistical certainty of 1 – 𝛽.
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9.3.2 Initial Procedure (2002)

The first published estimator is based on the ISO 11843-2:2000 standard; it is known
as the calibration curve method. The following formulas apply to any specification
limit (SL) selected by the regulator. The parameter k

𝛼
= t1− 𝛼,𝜈 corresponds to

the quantile of Student’s t law for the probability 𝛼 and the number of degrees of
freedom ν. In an equivalent way k

𝛽
= t1− 𝛽,𝜈 is the quantile for the probability 𝛽.

Intermediate quantity

IQ =
se

a1
×

√
1
J
+ 1

IJ
+ (SL − X)2

SCEX
(9.2)

Decision limit

CC𝛼 = SL + k
𝛼
× IQ (9.3)

Detection capacity (approximation)

CC𝛽 = CC
𝛼
+ k

𝛽
× IQ (9.4)

The parameter SL refers to any official compliance specification and takes different
names depending on the regulatory text: MRL, maximum content (MC), reference
value, and so on. Parameters I and J represent the number of calibrators and the
number of replicates per calibrator, respectively. These notations differ from those
used so far for the accuracy profile.

The so-called “intermediate quantity” IQ was introduced to facilitate the verifi-
cation of a worksheet developed to calculate the parameters (see Chapter 10). In
addition, it is possible to calculate the previously defined Critical response value
denoted Y 0. It is the smallest response that allows for decision-making; it can be
compared to the LOD before it is converted into concentration.

Critical response value

Y0 = a0 + k
𝛼
× se

√
1
J
+ 1

IJ
+ X

2

SCEX
(9.5)

In these formulas, a0 and a1 represent the coefficients of the calibration curve
(which is assumed to be a simple linear regression model), the intercept or blank,
and slope or sensitivity, respectively and se the residual standard deviation (see
Section 2.2).

9.3.3 Modified Procedure (2021)

In the 2021 regulation update, a new and remarkably interesting calculation
procedure was introduced, comparable to the principles of ISO Guide 98-4 on the
declaration of conformity when considering the MU; this procedure is described in
Section 8.2.

It consists in calculating a rejection zone by combining the regulatory specification
limit SL and the MU of the method obtained by the laboratory at this concentration.
The main difference with the ISO 98-4 guide is that the latter introduces the idea of
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Table 9.2 Varied procedures of calculating CC𝛼 and CC𝛽 .

n∘ Principle of the procedure Equations

Limit of decision for the purpose of confirmation (CC𝛼)

Prohibited substances
1 Calibration curve method according

to ISO 11843-2
Equations (9.2) and (9.3) with
SL = VR or MC and 𝛼 = 0.01

2 20 blanks and calculation of the
signal-to-noise ratio S/N

CC𝛼 = 3.0 × S∕N

3 Measurement uncertainty method CC𝛼 = LCL+ k
𝛼 = 0.01 uc(LCL) (9.6)

Authorized substances
4 Calibration curve method according

to ISO 11843-2
Equations (9.2) and (9.3) with
SL = MRL or MC and 𝛼 = 0.05

5a Measurement uncertainty method CC𝛼 = LMR+ k
𝛼 = 0.05 uc(LMR) (9.7)

5b CC𝛼 = TM + k
𝛼 = 0.05 uc(TM) (9.8)

Detection capability for screening purposes (CC𝛽)

Prohibited substances
6 Calibration curve method according

to ISO 11843-2
Equation (9.4) with 𝛽 = 0.05

7 Measurement uncertainty method CC𝛽 = STC + k
𝛽 = 0.05 uc(STC) (9.9)

Authorized substances
8 Calibration curve method according

to ISO 11843-2
Equation (9.4) with 𝛽 = 0.05

9 Measurement uncertainty method CC𝛽 = LMR * 1.5+ k
𝛽 = 0.05 uc(STC) (9.10)

Source: Adapted from Commission Implementing Regulation [10].

a guard band calculated from the MU, subtracted or added as appropriate to penal-
ize the measurement. The higher the MU, the wider the guard band and the more
challenging it is to reach the specification limit.

In this chapter and Table 9.2, it is called the MU method. The nature of the
specification limit is the starting point of the calculation. As already mentioned,
European regulation recognizes three types of SL:

Regulatory specification limit Domain of application

MRL Maximum residue limit Many “pharmacologically active” substances
are authorized [11]

MC Maximum content Authorized coccidiostats that contaminate
other foods[12]

RV Reference value Prohibited substances defined in [9]

In practice, the regulatory specfication limits are established by expert groups
summoned by the European Commission. Other non-European expert groups
may sometimes set different limits, for
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the US-FDA [5]. For a molecule of interest, the specification limit depends on its
toxicity, the foodstuff in which it is found, and its consumption level. All these
factors condition the potential risks for consumer exposure and will make it possible
to establish health standards.

They are supposed to be scientifically based but can sometimes be commercially or
health-oriented. The reference value RV , defined here, is not obtained in the same
way as the reference value used for interpreting clinical biology analyses. Section
8.1.2 describes the elaboration methodology for each context: food hygiene and med-
ical diagnosis. In addition to the specification limits, other parameters are involved
in the calculation. They are summarized below:

Parameter Definition

STC Screening target
concentration

The concentration at or below the CC𝛽 at which a screening
action classifies the sample as potentially non-compliant
and “screen positive” triggers a confirmatory test. It occurs
only for prohibited substances.

LCL Lowest
calibration level

Defined by the analyst, this is the lowest concentration to
which the measurement system has been calibrated.

There is some confusion with these definitions because the official documents do
not always give explicit target values. For the analyst, choosing these concentration
values is a personal matter. For the screening target concentration (STC), it looks like
an expert LOD and the lowest calibration level (LCL) is experimentally set during
calibration.

Table 9.2 is an attempt to present in a condensed manner the various proce-
dures and formulas for calculating CC𝛼 and CC𝛽. A distinction is made between
substances that are permitted and those that are not. The numbering reported in the
first column of Table 9.2 is not part of the official document. It is added to better iden-
tify the diverse calculation procedures. Procedure n∘2, although questionable, has
been retained for compatibility between the old and new values, but it is intended to
disappear in the short term. It is important to emphasize that all procedures allow
us to calculate the results directly in the same units as the concentration.

9.3.4 Example of Calculation

An example of the application of the “calibration curve method according to ISO
11843-2” is provided by the Resource P worksheet. It is an application of procedures
numbered 4 and 8 in Table 9.2. The starting point is to run a set of data used to
construct a calibration line which must include I > 3 calibrator levels for which J > 2
replicates. These data occupy cells B3 to C10.

The application of the Excel built-in function LINEST allows us to easily obtain
the main statistics of the calibration line. In the example, the MRL is 200 mg/kg and
is shown in cell B11. Finally, the results are CC𝛼 = 215 and CC𝛽 = 231 mg/kg.

A drawback is that these criteria seem to be available only if the calibration model
is linear and the data are normally distributed. So, the ISO 11843 series of standards
has been expanded over the years to include other parts on various calibration mod-
els or probability distributions.
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Under the 2021 EU regulation, the coverage factors k1and k2 that appear in var-
ious formulas should depend on the number of measures. We are then facing two
situations.

– If the number of measurements is important, the quantile of the standardized nor-
mal distribution, denoted z, can be used instead of the Student’s t:

k1 = k
𝛼=0.01 = k

𝛽=0.01 = z(0.99) = 2.33 (unilateral at 99%)

k2 = k
𝛼=0.05 = k

𝛽=0.05 = z(0.95) = 1.64 (unilateral at 95%)

Using the built-in statistical functions of Excel, it gives:
k1=NORMAL.STANDARD.INVERSE(0.95)
k2=NORMAL.STANDARD.INVERSE(0.99)

– Otherwise, especially for authorized substances, the Student’s t distribution law
can be reasonably applied instead, taking into account the number of results col-
lected during the validation of the method. In this case, the number of degrees of
freedom or the number of effective measurements must be used NE.

Resource P Decision limit–calibration curve procedure of ISO 11843-2.
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Resource P: Calibration curve procedure of ISO 11843-2 
Concentration X Response Y

75 0.583

75 0.617

150 1.150

150 1.292

225 1.933

225 1.825

300 2.375

300 2.600

Maximum Residue Limit 200 mg/kg

Calibration curve a1 a0

Coefficients 0.0084 –0.0333 {=LINEST(C3:C10;B3:B10;TRUE;TRUE)}

Standard deviations 0.0004 0.0730 {=LINEST(C3:C10;B3:B10;TRUE;TRUE)}

Residual std. dev. 98.9% 0.08428 {=LINEST(C3:C10;B3:B10;TRUE;TRUE)}

Degreese of freedom 562.52 6 {=LINEST(C3:C10;B3:B10;TRUE;TRUE)}

4.00 0.0426 {=LINEST(C3:C10;B3:B10;TRUE;TRUE)}

Alpha risk 0.05

Beta risk 0.05

kalpha 1.943 =TINV(2*B20;C18)

kbêta 1.943 =TINV(2*B21;C18)

Average X 187.5 =AVERAGE(B3:B10)

SS(X) 56250 =DEVSQ(B3:B10)

Number of replicates (J) 2

Number of calibrants (I) 4

Intermediate quantity 7.923

=(C17/B15)*SQRT((1/B26)+(1/(B27*B26))

+((B12-B24)^2)/$B25)

Computation of CC alpha and CC Béta

Cca 215 =B12+B22*B28

CCb 231 =B12+2*B23*B28

Critical response 0.150

=C15+B22*C17*SQRT((1/B26)+(1/(B27*B26

))+($B24*$B24/$B25))

Figure 9.3 illustrates the data of example of the Resource P worksheet and the
calculation method used since 2002. It shows the relative positions of the MRL, CC𝛼
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Figure 9.3 Detection capacity for the calibration curve method according to ISO 11843-2.

and CC𝛽. As a supplement, the critical response value Y 0, as calculated in cell B31
of the worksheet, is also plotted on this graph.

To calculate the combined standard uncertainty uc of the different criteria
MRL, MC and STC, the European regulation recommends using the intermediate
precision, sometimes incorrectly called intra-laboratory reproducibility as already
indicated. This recommendation fully agrees with our recommendations developed
in the previous chapters about MAP and uncertainty functions.

These new proposals converge on the idea that the MAP, complemented by the
calculation of the uncertainty function, preferably in the form of the standard
uncertainty, is perfectly suited to estimating the detection capability of methods
as introduced by European legislation. In conclusion, the calculation of CC𝛼 and
CC𝛽 from an accuracy profile is a straightforward solution. No example is supplied
here but any application can easily be done when considéring examples in previous
chapters.
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10

Examples of MU Application

10.1 Standard Addition Method and Drug Quality

Access to appropriate, often patent-protected medecines, can be extremely diffi-
cult for low- and middle-income countries, and, in some cases, for high-income
countries. For the latter, vulnerable populations, such as prisoners, drug addicts,
or migrants, who have limited access to certain therapies, could be affected. In
addition to its ethical aspects, this issue raises public health problems for controlling
certain pandemics, such as acquired immuno deficiency syndrome (AIDS).

The price of original patented medicines appears to be a limiting factor for
widespread treatment. Indeed, many indigent patients are treated by public health
institutions whose resources are limited and which therefore have difficulty fulfill-
ing their missions. For this reason, in several countries, including the United States,
Canada, and European nations such as Switzerland, nonprofit organizations known
as buyers’ clubs have been set up to facilitate access to these essential medicines for
vulnerable populations.

These buyers’ clubs use a “right to import unlicensed ready-to-use medicines
from individuals” defined in international agreements [1]. Even if buyers’ clubs
select pre-qualified manufacturers for import, the possibility of receiving drug
products of insufficient quality cannot be excluded due to the high frequency of
falsified molecules coming from exporting countries.

Therefore, a quality control test upon arrival of the drug could help to ensure
patient safety. However, this control must be carried out, differently from the classi-
cal control established in the pharmaceutical industries, because there are two main
constraints to developing a satisfactory assay method:

– The first is the lack of knowledge of the exact nominal content of the drug and the
impossibility of having validation materials with guaranteed content.

– The second is the possible presence of matrix interferences that can bias the
measurements.

In addition, external calibration for quantification is made difficult by the small
number of samples available and the large potential differences in composition for
a drug containing the same active principal ingredient (API). To overcome these
obstacles, the control of various antiretroviral drugs received by buyers’ clubs could

Quantification, Validation and Uncertainty in Analytical Sciences: An Analyst’s Companion,
First Edition. Max Feinberg and Serge Rudaz.
© 2024 WILEY-VCH GmbH. Published 2024 by WILEY-VCH
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be based on standard addition method (SAM). The pros and cons of this quantifica-
tion mode are extensively described in Section 1.4.1.

It is to be remembered that SAM is generally said to avoid matrix effects and simul-
taneously corrects calibration biases due to diverse sources, such as medicine coat-
ing, excipients, or interfering matrix components. It is also extremely useful when it
is not possible to have surrogate validation materials with content which is exactly
known.

There are various SAM operating procedures, and the chosen one consists in
adding increasing amounts of a standard solution of the analyte to be determined
in constant aliquots of the sample. In this case, the concentrations of all the matrix
components are kept constant, except for the molecule to be determined, here
being the API. Nevertheless, since the sample predicted concentration is calculated
by extrapolating a response function, this method may induce a bias – generally
small – due to possible multiplicative effect interferences.

The procedure, although very efficient in many cases, is often criticized from a
statistical point of view because extrapolation is prone to increase prediction uncer-
tainty, especially when the amount of spike is not properly adjusted with respect to
the initial signal measured in the tested sample.

When it is possible to make several simultaneous measurements, typically at
different wavelengths, the technique called H-point standard addition method
(HPSAM) dramatically reduces the risk of not detecting interferences. In the
original version developed for a spectrophotometry_based method, it consisted of
multiple determinations of an analyte by SAM at several wavelengths corresponding
as much as possible to different signals varying with the analyte concentration
and constant for the interferent [2]. It is then possible to simultaneously compute
several in-sample calibration curves.

Although they have different slopes because the sensitivity may vary, in the
absence of important additive bias due to matrix effects, they must intersect with
the concentration axis at close points and give close extrapolated concentrations. If
the additive bias is critical, a modified HPSAM was proposed, including chemical
modifiers [3].

Tenofovir (TDF)

HO

HO P
O

O

N

N

N

N

NH
2

H
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The purpose of this example is to show how to
estimate the measurement uncertainty (MU)
when applying the H-point operating procedure.
It consists in the determination of two
antiretroviral active ingredients present in various
pharmaceutical formulations used for the
treatment of AIDS, namely tenofovir (TDF) and
emtricitabine (FTC).
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Two approaches have been used to estimate the
MU. The first one uses the classical statistical
information available from the extrapolated
concentration obtained by SAM, the second one is
based on a complete experimental design to build
an accuracy profile to demonstrate the continuity
between the MAP procedure and the estimation of
MU, whatever the quantification method.
It should be noted that in many similar cases,
complete validation is impractical or even
impossible. This type of procedure requires
relatively massive quantities of validation
materials of exactly known contents prepared on
purpose. Moreover, in the case of drugs imported
by buyers’ clubs, the diversity of formulations
would require specific validation for each
specialty.

Capillary zone electrophoresis (CZE) is an analytical technique recognized as per-
forming well for the control of adulterated pharmaceutical formulations and/or the
quality control of drugs, in general. This technique is, therefore, particularly well
suited to the case in hand: it is economical thanks to a reduced solvent consumption
of the order of 1 μl per analysis, and it avoids the use of expensive and environmen-
tally damaging organic solvents.

Quantification by CZE is relatively easy, and many studies have shown that its
performance is similar to conventional methods, such as liquid chromatography.
In addition, for this study, the instrument is coupled to a diode array UV detec-
tor (DAD), which allows the measurement of responses at different wavelengths,
as required for the HPSAM, in this case, 200, 210, and 254 nm.

The preparation of the sample is simple: it is ground, then suspended in a solvent,
which after dilution, forms the injected solution. For example for a drug advertised
at 240 mg of active ingredient per tablet, the dilution factor applied was 1 : 2500 so
that it to be around 0.1 mg/ml in the final solution and be in a range where the UV
signal is in the linear range of the detector used.

10.1.1 SAM Without Replication

According to the chosen SAM procedure, equal volumes of the sample solution are
taken, and known quantities of a standard solution are added separately. In this case,
in addition to the original sample, two spikes are done, which correspond to approx-
imately 50% and 100% of the expected signal for the likely nominal content. This is a
standard protocol. All these aliquots are then brought to the same final volume and
measured by CZE.

More details on this procedure, the reagents used, and the instrumental condi-
tions are available in [4]. In the absence of significant matrix effects, at the chosen
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Figure 10.1 Example of assay obtained by SAM on a pharmaceutical product containing
TDF. Three estimates of extrapolated concentration can be computed. For sake of clarity
only one value is shown.

wavelengths, the three calibration lines, although with different slopes, intersect
with the concentration axis for extrapolated concentrations remarkably close to each
other. This approach makes an optimized use of the effort required for sample prepa-
ration allowing several replicates to be obtained for the same sample.

Figure 10.1 shows an example of an assay performed under the described
conditions for a medicine containing TDF at the claimed nominal content of
250 mg/tablet. Measurements were made at three wavelengths, namely 200, 210,
and 254 nm, with standard additions at 0.049 and 0.098 mg/ml. As usual, the signal
is shown on the vertical axis, expressed in arbitrary units (AU), and the amounts of
analyte added on the horizontal axis.

The estimated content in the working sample denoted Z*(star) is obtained by
extrapolating the regression lines to the point where the response is 0. As shown
in the figure, it is in the negative part, around 0.1 mg/ml. Since a dilution factor
of 1 : 2500 was applied, the concentration per tablet is around 250 mg. For each
wavelength, three spiked samples are measured.

Let us note each wavelength with the index j, with 1≤ j≤ J since the measure-
ments, once converted into concentration, will be assimilated to replicates. Each
regression line connecting the measurement values is calculated using the same
equations and notations as in Section 2.3.1, except for subscripts.

Xn Spike concentration in mg/ml
1≤n≤N Number of spiked points, in the example N = 3
Y n Optical density measured in AU
Z* Extrapolated sample concentration
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Calibration model

Yn = a0 + a1Xn + En (10.1)

Extrapolated concentration

Z∗ =
a0

a1
(10.2)

Variance of the extrapolated concentration

s2(Z∗) =
(

sE

a1

)2

×

[
1
N

+ Y 2

a2
1
∑

n(Xn − X)2

]
(10.3)

Residual standard deviation of the regression

sE =

√∑
n(Yn − Ŷn)2

N − 2
(10.4)

The calculation is repeated at each wavelength, and finally, three extrapolated
measurement values, denoted Z∗

j with 1≤ j≤ J are collected. Each corresponds to
three measurements: one without spikes and two with different spikes. These mea-
surements will be assumed to be replicates under repeatability conditions, as they
cannot be considered as obtained under intermediate precision conditions since the
measuring techniques are not identical, since different wavelengths are used.

The regression line coefficients are estimated by OLS regression. The three extrap-
olated concentrations must be multiplied by the dilution factor of 1: 2500 to recover
the expected contents in the tablet. For each extrapolated concentration, it is also
possible to calculate a variance using the formula (10.3) proposed by [5]. The num-
ber of associated degrees of freedom is then ridiculously small and equal to 1. The
variance is used as an estimate of the standard variance of an extrapolated result
s2(Z*) = u2(Z*).

The implementation of the formulas in Excel® is simple when using the built-in
matrix function LINEST because it directly provides the residual standard deviation
sE as explained in Section 2.3.1 and shown on the Resource Q worksheet. To use
LINEST in its matrix form, please refer to the Excel® user’s manual.

For the illustrated application of Resource Q, the calculation for the SAM is done
for a single wavelength at 200 nm. The results returned by LINEST are surrounded

Table 10.1 TDF measurements in a drug declared at 245 mg/tablet, obtained by HPSAM at
different wavelengths (1≤ j≤ 3).

Wavelengths
(nm)

Extrapolated
content (mg/ml) Variance

Level found
(mg/tablet)

Recovery
rate (%)

200 0.0977 1.111× 10−5 244.1 99.6
210 0.0973 5.567× 10−5 243.2 99.3
240 0.0967 2.303× 10−6 241.8 98.7
Average Z 0.0972 99.2
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by a light line, and the residual standard deviation sE = 0.00777 by a thick border in
cell C13. The most complicated formula is the Intermediate quantity in cell B22. It
corresponds to the quantity between square brackets in Eq. (10.3).

Resource Q Calculation of the SAM extrapolated concentration (Excel).

1

2
3
4
5
6
7
8
9

10
11
12
13

14

15
16
17
18
19
20
21
22
23
24
25
26
27
28

A B C D

Resource Q: Calculation of the extrapolated concentration by SAM
Tenofovir disoproxil (TDF)
Dilution factor 2500
Nominal value (mg/tablet) 245

Optical density (OD)
Spike in mg/ml DO at 200 nm

0.000 0.50
0.049 0.76
0.098 1.00

SAM calibration line Slope a1 Intercept a0 Formulas
5.115 0.499 {=LINEST(C7:C9;B7:B9;1;1)}

0.1121 0.0071 {=LINEST(C7:C9;B7:B9;1;1)}

0.9995 0.00777 {=LINEST(C7:C9;B7:B9;1;1)}

2080.6 1.000 {=LINEST(C7:C9;B7:B9;1;1)}
1.26E-01 6.04E-05 {=LINEST(C7:C9;B7:B9;1;1)}

Extrapolated concentration (Z*) 0.0977 =C12/B12
Average Z 0.7501 =AVERAGE(C7:C9)
Number of spikes (N) 3 =COUNTA(B7:B9)
se/a1 0.001519 =C14/B12
1/N 0.3333 =1/B20
Intermediate quantity 4.8123 =B22+((B19*B19)/(B12*B12*DEVSQ(B7:B9)))
s(Z*) 3.3327E-03 =B21*SQRT(B23)
s2(Z*) 1.1107E-05 =B24^2
Recovered conc. (mg/tablet) 244.1 =B18*B3
Recovery yield 99.6% =B26/B4

The same worksheet is copied and updated for each wavelength. The final results
for the three wavelengths are gathered in Table 10.1. Recovery rates are obtained by
accounting for the dilution factor applied to the extrapolated contents compared to
the content announced by the manufacturer.

Finally, J = 3 replicate results are combined, each with an estimated standard
variance, i.e. squared standard uncertainty. The addition of covariances is probably
necessary, but it is impossible to calculate them, given the small number of degrees
of freedom. Since each measurement value is considered one replicate, the analyt-
ical result can be expressed as an average. By making this approximation, it is also
possible to estimate the repeatability variance by taking the average of the variances
of the replicates (formula 10.5).

The resulting situation is comparable to the one described in Section 8.4.3 about
calculating the MU of a result obtained by averaging replicates achieved under
repeatability conditions. This gives the following formulas:
Mean extrapolated concentration

Z =

∑J
j=1 Z∗

j

J
(10.5)

Repeatability variance of the mean

s2
r =

∑J
j=1 s2

(
Z∗

j

)

J
(10.6)



10.1 Standard Addition Method and Drug Quality 277

Standard variance of the mean content

u2(Z) =
s2

r

J
=

∑J
j=1 s2

(
Z∗

j

)

J
∕J (10.7)

Numerical application to the results for the TDF analysis gives:

Parameters Extrapolated value Predicted concentration Recovery yield

Unit mg/ml mg/tablet %
J 3
Z 0.0972 243.0 97.22
s2

r 2.303× 10−5

u2(Z) 7.676× 10−6

U(Z) 0.00554 13.9
UR%(Z) 5.7% 5.7%
Coverage interval 0.0917 229.2 91.68

0.1028 256.9 102.76

Assuming that the variance in formula (10.7) is the standard variance may be abu-
sive, insofar as it was obtained under repeatability conditions. But the small number
of degrees of freedom is a limitation that impairs the quality of this estimate. Never-
theless, it represents a first estimate of the MU that is easily computed. The relative
uncertainty thus obtained, close to 6%, is relatively high if one considers the ±5%
acceptance criterion classically adopted in pharmacy for active principles but it can
be considered operative in the present context.

Figure 10.2 shows a similar study performed on a drug containing FTC. In this
case, the standard additions are slightly different (0.040 and 0.080 mg/ml) to fit the
expected nominal content, declared at 200 mg/tablet.

The dilution factor is the same. The results obtained from these data are
as follows:

Symbol
Extrapolated FTC
content (mg/ml)

Level found
(mg/tablet)

Recovery
yield (%)

J 3
Z 0.0799 199.9 99.94
s2

r 3.612× 10−5

u2(Z) 1.204× 10−5

U(Z) 0.00694
UR%(Z) 8.7%
Coverage interval 0.0730 182.5 91.26

0.0869 217.2 108.61
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Figure 10.2 Determination of FTC, by standard additions to a pharmaceutical product
announced at 200 mg/tablet.

In this example for FTC, the analytical method achieves an inferior performance
since the estimated relative uncertainty is around 9%. The proposed H-point proce-
dure and calculation method were applied to six imported pharmaceutical prepara-
tions containing TDF and FTC. Estimated relative uncertainties range from 4 to 19%.
In each case, the inverse-predicted mean content is calculated from 9 absorbance
measurements, as well as its coverage interval.

Figure 10.3 summarizes these results. On the same graph, the ±5% acceptance
limits classically used in the pharmaceutical field for formulations are plotted in
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Figure 10.3 Average levels found (mg/tablet) with the coverage intervals for six medicines
noted from A to F. Expected nominal content is represented by broad red lines surrounded
by the acceptance interval of ±5% as green dotted lines.
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green dotted lines. It appears that for several controls, such as FTC-C2, the situation
is quite degraded.

10.1.2 SAM with Replication

In Figure 10.3, the full replication number of the analysis is indicated by the last digit
of the label. Finally, each of the six samples, three containing FTC and three with
TDF, were independently duplicated. Thus, the experimental design includes several
series of measurements. It is then possible to extract a between-series variance and
calculate the uncertainty of the inverse-predicted concentration in closer accordance
with the GUM recommendations.

As stated in Section 8.4.3, it is not an optimal experimental design since there
are only two series of three replicates, while it is recommended to make three
series of two replicates. The notations used for the experimental design are
as follows:

I Number of series I = 2
J Number of replicates per series J = 3
Z∗

i,j Extrapolated content (at a wavelength q) for a series I
Z∗

i The average content of series I (Eq. 10.5)
s2
(

Z∗
i,j

)
The variance of an extrapolated content (Eq. 10.6)

T Inverse-predicted concentration in a tablet,
T = Z × 1

Dilution Factor

This occurs to the following formulas:
Grand mean

Z =
∑I

i=1 Z∗
i

I
(10.8)

Repeatability variance

s2
r =

∑I
i=1

∑J
j=1 s2(Z)∗i,j
IJ

(10.9)

Between-series variance

s2
B =

∑I
i=1

(
Z∗

i − Z
)2

I − 1
(10.10)

Standard variance of the grand mean

u2(Z) =
s2

B

I
+

s2
r

IJ
(10.11)

Numerical application of these formulas to six batches of drugs labeled A to F from
two manufacturers gave the following results, grouped in Table 10.2.

Figure 10.4 illustrates these results. In general, the inverse-
predicted content is obtained with an almost acceptable uncertainty if one considers
the classic acceptance range of the pharmaceutical field for this determination.
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Table 10.2 Calculation of measurement uncertainty for different batches.

Sample
Average
Z∗

1

Average
Z∗

2

s2
r
×10−5

s2
B
×10−5

u2(Z)
×10−5

U(Z)
×10−3 UR % (%)

FTC-A 0.083 0.084 1.529 0.055 1.047 6.5 7.7
FTC-B 0.082 0.083 0.639 0.044 0.448 4.2 5.1
FTC-C 0.080 0.078 4.643 0.140 3.165 11.3 14.4
TDF-D 0.098 0.098 2.329 0.000 1.552 7.9 8.0
TDF-E 0.094 0.100 2.294 1.540 2.299 9.6 9.6
TDF-F 0.097 0.100 4.522 0.392 3.210 11.3 11.3

Sample
Predicted concentration

T (mg/tablet) U(T)
Coverage interval

of T

FTC-A 209.6 16.1 194 226
FTC-B 205.5 10.5 195 216
FTC-C 197.8 28.4 169 226
TDF-D 245.6 19.7 226 265
TDF-E 242.6 23.3 219 266
TDF-F 246.5 27.9 219 274
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Figure 10.4 MU estimates of six drug lots for two nominal strengths of 200 and
245 mg/tablet. The error bars represent the coverage intervals. On the same graph, the
accuracy profile results are plotted as a red solid squares. Same legend as Figure 10.3.
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The control of TDF (tenofovir disoproxil) thus appears to be somewhat more
effective than that of FTC (emtricitabine). Considering the measurements as two
series and taking into account the between-series variance appears to significantly
reduce the MU on the average predicted content. The new values are obtained
by combining 12 absorbance measurements (instead of 9), which is relatively
small. In Figure 10.4 the results obtained by applying the procedure derived from
the accuracy profile are also reported as a black square, labeled FTC-Profile and
TDF-Profile. The following chapter presents other possible data processings.

10.1.3 Estimation from Method Accuracy Profile

To confirm the usefulness of MU estimates obtained with HPSAM, it was decided to
implement an experimental design corresponding to that recommended for obtain-
ing a MAP using synthetic samples of known concentration. But such validation
materials with known assigned concentrations were not available; therefore, a vali-
dation material was prepared by crushing and mixing 20 tablets of the drug, said to
contain a mixture of 245 mg TDF and 200 mg FTC per tablet.

From the homogenized batch, independent determinations of the two APIs were
performed with the classical SAM procedure, i.e. by making two additions of the
same stock solution, as described above. In this case, the measurements were per-
formed at a single wavelength of 200 nm. The experimental design itself consisted
of three series of six replicates per series. Table 10.3 summarizes this dataset called
ARV for antiretroviral drugs, while Table 10.4 indicates the inverse-predicted con-
centrations of TDF and FTC.

Table 10.3 ARV – description of the ARV dataset.

Title ARV (antiretroviral drugs)

Reference article [4]
Measurand Percentage recovery of active ingredient, expressed as a

function of the expected nominal content
Method Zone capillary electrophoresis with UV detection at multiple

wavelengths.
Acceptance interval ±5%. Value classically used for fraudulent drug analysis
Validation materials Mixture of 20 crushed tablets
Validation plan Number of series (I = 3); number of replicates (J = 6/series);

number of levels or products (K = 2)
Calibration plan See the reference article.
Total number of
measures

18 measurements on each of the API present, tenofovir
(TDF) and emtricitabine (FTC) in a surrogate sample. Each
of these measurements is made at a single wavelength with
2 standard additions and a zero addition, for a total of 108
measurements.

Inverse-predicted
concentrations

Table 10.4
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Table 10.4 ARV – experimental design and levels found for the two molecules.

Tenofovir disoproxil (TDF)
245 mg/tablet

Emtricitabine (FTC)
200 mg/tablet

Replicates Series 1 Series 2 Series 3 Series 1 Series 2 Series 3

1 239.1 251.9 245.7 214.9 205.7 194.9
2 243.5 244.9 233.7 191.2 201.6 209.3
3 240.5 245.8 234.5 202.4 203.9 199.5
4 250.4 244.7 239.3 215.7 192.0 213.5
5 244.5 239.6 242.8 192.3 194.8 200.0
6 250.4 251.6 237.3 205.7 190.5 205.2

Table 10.5 ARV – estimated MU and coverage interval from MAP.

Parameter Symbol TDF FTC

Average predicted content T 243.3 201.8
Repeatability standard deviation of sr 4.7262 8.2027
Between-series standard deviation sB 3.4513 0.0
Intermediate precision std. dev. sFI 5.8522 8.2027
Effective measures NE 8.07 16.62
Coverage probability 𝛽 95% 95%
Coverage factor kIT 2.30 2.11
Coverage interval 228.9 184.0

257.8 219.7
Expanded uncertainty U(T) 12.6 16.9
Relative uncertainty UR % (T) 5.16% 8.35%

From these data, various validation parameters are calculated using the Resource
Q worksheet. The main results are reported in Table 10.5. Unlike other accuracy pro-
files in this book, results are not expressed as recovery yields referring to the assigned
nominal content. This mode of expression cannot be used because the tablet’s con-
tent is unknown; it is only assumed.

The proportion 𝛽 applied for these calculations is 95% since the goal is to evaluate
the 95% expanded uncertainty. This means that 95% of the probable values of
the inverse-predicted concentrations lie in the interval [229; 258] mg/tablet for
an assumed level of 245 mg of TDF and between [184; 220] at 200 mg/tablet of
FTC. Because the content announced by the manufacturer of the imported drug
is included within the estimated coverage interval, the product can be considered
conforming. The coverage intervals depend on the relative uncertainty, which is
about 5% for TDF and 8% for FTC at this concentration. The two values make it
impossible to reach an acceptance interval of ±5%.
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If the products are considered conform, the recovery yields apply to the nom-
inal content of the drug products. Thus, the coverage intervals of the recovery
yields are [93%; 105%] for TDF and [92%; 110%] for FTC, respectively. They can
be considered satisfactory since the value of 100% is included in the coverage
intervals.

This comment highlights that a decision based on a coverage interval is not exactly
a statistical null hypothesis test, although the conclusion is comparable. It should be
remembered that for the buyers’ club, it is impossible to have validation materials
with exactly known content. The value claimed by the manufacturer, is considered
here as a true value. However the potential bias of the method should be corrected
using the standard addition method. This does not pose any problem for estimat-
ing the MU; on the contrary, since the GUM recommends updating all significant
sources of bias before estimating the MU.

For FTC, the main source of uncertainty is entirely due to repeatability with a
value of 4.1%; the between-series effect (in this case, inter-day) is zero. In the case
of TDF, while the MU is smaller, the repeatability and the between-series effect are
approximately equivalent.

When graphically comparing the various approaches (Figures 10.3 and 10.4), the
HPSAM, repeated in two series, is adequate if it is required that the acceptance inter-
val must be within ±10%. This can easily be explained by a more significant number
of degrees of freedom than when only one measurement is used. In this case, the
risk of a false decision in releasing a batch of imported drugs is not negligible in the
context of the buyers’ clubs.

10.2 Method Comparison Using Uncertainty

10.2.1 Analyte Defined by the Operating Procedure

As previously discussed, some analytes are defined per se, i.e. by the analytical oper-
ating procedure. This usually means that their exact chemical formula, in terms of
clearly identified molecular composition, is not fully established. There are many
examples, such as blood cholesterol, moisture in various forms and matrices, dietary
fiber, protein, total organic carbon, and oil acidity. It could be considered that the
standard operating procedure defines the analyte.

These analytes were often introduced a long time ago with old methods and, over
time, have become references for medical diagnosis, technical control, or commer-
cial exchange. For example in Europe, the total fat content of raw milk is used for
payment for quality. The AOAC and FDA have taken to referring to these as gold
standard methods. It seems preferable to refer to them as official or reference meth-
ods, as gold has no longer been a monetary standard since 1971 under the presidency
of Richard Nixon.

The classic disadvantages of traditional methods are that they are time-consuming,
labor-intensive, and often require hazardous reagents; they are therefore expensive,
and many publications suggest replacing them with alternative methods that are
faster and cheaper.
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Figure 10.5 Accuracy profile of Dumas’s method applied to dairy products using Kjeldahl
method as reference. 𝛽-ETI with 𝛽 = 80%. Acceptability ±5%.

The so-called Kjeldahl nitrogen is one of the official methods for measuring total
proteins in foods and feedstuffs. The original procedure was developed at the end
of the nineteenth century by a Danish chemist. It consists of an acid attack of the
test portion by concentrated sulfuric acid, boiling at reflux for hours. This action is
supposed to destroy the molecules containing organic nitrogen (proteins and nucleic
acids) and mineralize them into ammonium sulfate.

Since its invention, even if there are many variants, the principle has remained the
same, and the damage due to acid-generated vapors is devastating for laboratories.
Finally, the conversion of Kjeldahl nitrogen into total proteins is done by multiplying
the result by a consensus factor that depends on the matrix type.

The Dumas method, on the other hand, is not much newer, but it has at least two
advantages: speed and the absence of strong acid. It consists of total oxidation of
nitrogen by combustion in the presence of excess oxygen. For a long time, it was
difficult to apply, but today it is combined with an efficient catharometric determi-
nation of nitrogen in gaseous form after the elimination of sulfur and carbon oxides
and a reduction of nitrogen oxides to gaseous nitrogen.

A few years ago, these two methods were automated by various manufacturers. For
various foodstuffs, such as dairy and cereal products, the question arose whether the
official Kjeldahl method could be replaced by the faster and less expensive Dumas’
method. Several validation studies were carried out. Figure 10.5 presents one of these
studies for dairy products using the MAP1.

1 Unpublished personal data.
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10.2.2 Kjeldahl and Dumas Method Comparison

The experimental design is classical, formed by I = 3 series with J = 3 replicates
per series. The number of validation materials is K = 7. These are commercial dairy
products such as yoghurt, fermented milk, or fresh cheese, except for the most con-
centrated material which is gelatin. These are, therefore, matrices without stan-
dard additions, which explains the absence of levels between 10 and 30 g of nitro-
gen/100 g, as dairy products do not naturally reach such concentrations.

The same experimental designs were applied for both Kjeldahl and Dumas
methods. Since the standardized Kjeldahl method is considered the reference
method capable of defining the reference value, the target content assigned to each
material was established by the average of I × J = 9 replicate measurement values
performed with the Kjeldahl method.

The acceptance interval is ±5%. This is narrow because manufacturers require the
results of the two methods to be remarkably close for regulatory labeling reasons.
To be converted into protein, the Kjeldahl nitrogen content is multiplied by 6.25: a
simple difference of 0.16 g of Kjeldahl nitrogen becomes 1 g of total protein. It can
create problems in the case of verification of the claimed nutrient composition.

According to the MAP of the Dumas method in Figure 10.5, a systematic overesti-
mation of the concentration is observable when compared to the Kjeldahl reference
method is observed. In absolute value, this bias varies between 0.14 and 0.25 g/100 g
depending on the matrix type.

With available data, it is possible to build the MAP of the two methods and obtain
their respective uncertainty functions. They are combined in Figure 10.6. They have
similar shapes, the Kjeldahl method having even slightly lower performance when
compared to Dumas’s method. At low concentrations, the bias is between 5 and 7%,
and the relative uncertainty is of the same magnitude.

Therefore, the bias becomes very bothersome when controlling low concentration
foods, such as milk or yoghurt. Because the Kjeldahl method is time-consuming and
polluting, a trend has been to reduce the time of mineralization in laboratories. In
addition, various toxic or polluting catalysts used in the past have been replaced by
others that do not have the same efficiency.

After this study, the Kjeldahl method has been suspected of not being as accurate
as its gold standard label would suggest. The various materials used to construct
the profile of the Dumas method were resampled and reanalyzed with the Kjeldahl
operating procedure, but extending the duration of mineralization.

The new profile obtained with these modified reference measures is presented in
Figure 10.7. The systematic bias has almost disappeared, and the method meets the
requirements of the end users over the whole validation range. In this case, it is not
mandatory to add to the MU the uncertainty of a correction factor: new reference
values were assigned to the validation materials, but Dumas’ measurements were
not modified.

This example demonstrates that, when validating an alternative method against a
reference method, the existence of a possible bias induced by the so-called reference
method is always possible and must be carefully evaluated. This is misleading when



286 10 Examples of MU Application

9%

8%

7%

6%

5%

4%

3%

2%

1%

0%

Kjeldahl

R
e
la

ti
v
e
 u

n
c
e
rt

a
in

ty
 (

U
R

%
)

Kjeldahl y = 0.0774×–0.406

y = 0.0785×–0.613

Dumas

Dumas

Comparison of methods

0 10 20
Concentration: g/100g

30 40
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Figure 10.7 Accuracy profile of Dumas’s method applied to dairy products compared to
improved Kjeldahl method.

it is a per se defined method. This drawback only appears when the analyte is defined
by the method. To detect this additive bias, it was necessary to focus on low concen-
trations because the trueness was expressed as a recovery rate.

Today the Dumas method is considered accurate and represents a credible alter-
native to the Kjeldahl method for analyzing the protein content of many foods. Even
international standards address this method, such as the standard ISO 16634-2:2016
for cereals, pulses, and milled cereal products.
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To conclude on the alternative Kjeldahl methods, there are other operating proce-
dures based on near-infrared spectrometry (NIRS), which has the advantage of being
non-destructive. The comparison with the Kjeldahl reference is done by a rather
special chemometric treatment, partial least-squares (PLS) regression [6]. It is not
exactly a validation but rather a calibration that allows to estimate a nitrogen con-
tent by referring to a database obtained by applying the Kjeldahl reference method to
a set of samples close to the one being measured. Using this approach, the eventual
bias of the Kjeldahl method is not detected and hence not corrected for.
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Conclusions

The role and interest of the measurements carried out and the results obtained,
year after year, in the analytical laboratories are not denied. Both continuous
improvement of analytical and bioanalytical methods and the importance of
regulatory authorities to protect the population support this dynamic. Although it
is difficult to put an exact figure on the number of results produced daily by the
various laboratories, it is clear that it has been rapidly growing for several decades.

In the first chapter of this book, we have tried to explain the reasons for this
growth, which are sometimes associated with a strong political and societal demand,
but the response to this demand must be consistent.

The recent public health crisis associated with the SARS-CoV-2 virus (COVID-19)
illustrates a fundamental requirement for the analytical sciences, namely the use
of validated protocols and methods. For the first time in history, the administrative
bodies in charge of public health have massively called upon laboratories to perform
daily measurement to manage the pandemic. The success of this new strategy is open
to question and should be evaluated.

The urgency of official demand has led analysts to a rush to use new methods
with the risk of neglecting what had made their reputation since the 1990s, namely
the standardization of procedures and inter-comparison of results and laboratories
which are efficient in reducing measurement dispersion and discrepancies. During
the first year of the crisis, numerous methods were developed and used without con-
cern for harmonization. Whether to detect the virus and its variants, for example, by
using reverse transcriptase polymerase chain reaction (RT-PCR) with several dozen
probes that were proposed by various companies, or to quantify and/or detect the
multiple antibodies produced by the virus, with the marketing of several dozen tech-
niques and technologies in kit form.

The wealth of data produced has also raised many questions. For example, because
of the lack of standardization, it was difficult after one year to use the first measure-
ments obtained to understand the initial dynamics of the pandemic. As a result, by
the end of 2020, several groups were already highlighting the risks resulting from the
high frequency of false positives, but also of false negatives. Some even denounced
part of the discourse about reinfections, which they explained precisely by measure-
ment errors [1].

Quantification, Validation and Uncertainty in Analytical Sciences: An Analyst’s Companion,
First Edition. Max Feinberg and Serge Rudaz.
© 2024 WILEY-VCH GmbH. Published 2024 by WILEY-VCH
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This example illustrates what we have been trying to explain throughout this book:
an analytical method must always undergo serious, documented, and careful vali-
dation before being used routinely, and even more so when it is used to compare
measurements made in different laboratories.

In addition, this validation must allow the analyst to explain clearly to the
decision-maker the risk of considering the result as a definitive element of verdict.
The concept of measurement uncertainty allows this risk to be identified and, more
importantly, quantified. But, for measurement uncertainty to be able to play an
effective role in decision-making based on an analytical result, a certain number of
questions need to be asked. But a quick review will show that many answers are not
too difficult to get.

11.1 Role of the Number of Replicates

It was pointed out in Section 8.4.3 that replication can reduce MU and facilitate
or enable decision-making when the coverage interval appears overly large for an
unambiguous decision. Making replicates is an effective approach to reduce uncer-
tainty and thus facilitate decision-making. But it is necessary to be rigorous in how
replication is designed to avoid any computational bias in estimating MU.

The role of replicates, in terms of number and mode of obtention, remains an open
question. This is due to the ambiguity of the definition of a replicate in terms of inde-
pendence from another replicate, but not only. Depending on the starting point of
the replication within the sequence of the analytical operating procedure, as chosen
by the analyst, the estimation of the MU is different.

When replication is conducted in the same series or done under repeatability con-
ditions, the calculation is relatively simple. But it can also be done in another series
(e.g. another day), and therefore acquired under intermediate precision conditions.
From a statistical point of view it is mandatory to consider the between-series effect,
which is often poorly known or estimated.

Another way to reduce an overly-large MU is to calculate the uncertainty budget.
This tool is briefly discussed in Section 6.6. It consists in quantifying the relative
importance of each source of uncertainty. This is straight-forward when applied to
a type B approach. However for a type A approach, it implies a significant experi-
mental effort and a complex statistical treatment, also mentioned in Section 7.2.4.
Once the uncertainty budget is available, the main source(s) of uncertainty can be
identified, and ways to reduce them can be explored.

11.2 Traceability to International Units

In Section 6.3, it was underlined that the attachment of chemical measurements to
the International System of Units (SI) is delicate. Indeed, the mole never had a fig-
urative standard, as exists for the meter or the kilogram. There has never been a
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simple method to ensure its traceability. To overcome this peculiarity of the analyt-
ical sciences, the Consultative Committee for the Quantity of Matter (CCQM) has
proposed two solutions: primary methods and certified reference materials.

To achieve traceability to SI units, primary analytical methods were recom-
mended; as an example, an approach based on isotopic dilution coupled with
high-resolution mass spectrometry (HR-MS). But there are also titrimetry and
gravimetry following very particular protocols, which are admitted to the exclusive
group of primary methods. For example analyzing pesticides by liquid chromatog-
raphy mass spectrometry (LC-MS) or liquid chromatography hyphenated to tandem
mass spectrometry (LC-MS/MS) using labeled molecules can lead to a primary
method.

Certified reference materials are the other less expensive alternative, as they do
not always require very sophisticated instrumentation; they are also promoted by the
CCQM. Various protocols for interlaboratory comparisons are proposed. The follow-
ing table (Table 11.1) is an attempt to classify these studies. The production of CRMs
is considered the most satisfactory from a metrological point of view.

It can be said that a CRM is a substitute for a primary standard comparable to what
the kilogram or the meter were in the past. Given the huge diversity of measurements
in the analytical sciences, this helps to understand why unambiguous traceability
will remain difficult.

Table 11.1 Tentative classification of three interlaboratory comparison procedures.

Characteristics
Collaborative
study

Interlaboratory
analysis

Proficiency
testing

Main goal Estimate the most
probable value

Estimate method
precision

Estimate
laboratory
competence

Context Certified material
production

Method standard
publication

Laboratory
accreditation

Main references BIPM Guide, ISO
17034, FD ISO
Guide 35

ISO 5725 series ISO 13528

ISO 17043
Organizer Official metrology

laboratory
ISO expert groups, etc. Certified

organization
Number of
participants

Less than 10 At least 10 Up to several
thousand

Number of samples 4 or 5 4 or 5 Several/year
Number of
measures/samples

Often 5 or 6 At least 2 1

Measurement
method(s)

Combine as many
methods as possible

Only one Each lab has
its own
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11.3 Education about Uncertainty

The practical problems that physicians, epidemiologists, researchers, analysts, engi-
neers, and technicians solve every day have not a single solution but, in most cases,
multiple solutions. The latter is documented by incomplete and uncertain data.

During high-school or university curriculum, to find the unique solution of an
exercise, all useful elements are present in its statement. Unfortunately, this is not
case in real life, and decisions must be made when only partial information is avail-
able. There is, therefore, a lack of training in measurement uncertainty in scientific
curricula.

The classical (old) calculation of the maximum error, which used to be required
of students after the sessions of practical work, can no longer be used anymore as
a basis, considering the current evolution of knowledge in analytical science. Some
initiatives exist to introduce this concept of MU at various levels of training, but it
remains very fragmented. It can also be pointed out that the word “uncertainty” is
inappropriate because it is confused with indecision, which is further emphasized
by the famous precautionary principle.

However, we have tried to show how this parameter, inherent to any measure-
ment, can reduce indecision. Will analysts soon report their results in the form, not
as a single value but as a range of possible values, of a coverage interval? Through-
out this book, we have presented this proposal as a necessary improvement for
better interpretation of laboratory results and for decision-making. Paradoxically,
end-users and prescribers may be reluctant and perceive this as inconvenient. It
will therefore be necessary to explain and demonstrate the benefits to them and
how they can integrate MU into their risk estimation.

11.4 Risk Analysis

Several times, we have argued that MU knowledge makes it easier to make decisions
because it gives an idea of the risk involved. The practicality of this proposal was
based on providing a result in the form of a coverage interval, defined as “containing
the set of true values of a measurand with a given probability, based on the available
information.”

In all the examples presented, the coverage intervals included 95% of the possible
true values of the measurand. In other words, this choice assumes that a percent-
age of possibly acceptable and good values are not considered as conforming. If the
interval is used unilaterally, at most 2.5% of the values are rejected. Finally, the risk
of a wrong decision would then be 2.5%. The question is to decide whether this risk
is acceptable.

The choice of the 5% risk probability is very traditional. For example, a sampling
plan is traditionally declared efficient when there is only a 5% chance of accepting
a non-conforming lot. It is, therefore, a well-established industrial practice. But the
use of analytical results is not limited to industrial batch release.
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Figure 11.1 Relationship between risk
consequences and measurement
uncertainty. Source: Adapted from
Yoe [3]. Extended
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For example, for official food control, sanitary limits are established with large
safety margins, and this probability could be increased to 10% (bilaterally) without
significant risk. But when it comes to a trial or a suspicion of doping and when the
life or the reputation of a suspect is at stake, can we accept the risk of being wrong
five times out of 100?

The starting point for considering consequences is risk analysis. It applies to many
areas, such as health safety, natural disasters, public health, or occupational acci-
dents, all areas where analytical sciences are involved. For example in the case of
food risk analysis, there are standardized or official documents outlining the proce-
dure to be followed [2]. In other fields, clear answers to this question must also be
the subject of a consensus specific to the analytical field.

A possible guide for this reflection can be drawn from Figure 11.1 adapted from a
book on decision-making under uncertainty [3]. As this reference is primarily con-
cerned with economic decision-making, this figure is concerned with uncertainty in
general, not just measurement uncertainty.

According to this scheme, if we take the example of the release of a batch based on
an analytical measurement, it is up to the decision-maker to know, according to the
MU provided by the laboratory – undoubtedly including the sampling uncertainty
– what type of risk analysis he must conduct. It is then a matter of identifying the
hazards and their effects and quantifying them in terms of probability.

11.5 Harmonization of MU Estimation Procedures

The last question that only analysts can answer is the reduction in the number of
approaches proposed in the literature for estimating MU in the analytical sciences.
It seems obvious that this plethora can introduce unfair commercial practices and
confuse users. Throughout the numerous examples presented, we have tended to
always relate to the method accuracy profile (MAP), developed in the 2000s. This
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approach is empirical, because the organization of data collection and the data pro-
cessing were initially intended for the method validation and finally turns out to be
extremely informative.

It allows us to answer a complete set of questions such as how to estimate the
analytical part of MU, which together with the sampling part, is often the major part
of the MU. It also makes it possible to predict the number of measurements needed
and so be able to budget for validation. Furthermore, we have also explained how,
historically, operation procedure standardization has led to a profound improvement
in confidence in analytical results. It seems obvious then that a similar approach can
also be applied to the calculation of MU.

Several documents, standards, guides, and directives already exist, as listed in
the bibliography. They should not be confused with the standards produced by
the metrology organizations alone, which often concern physical measurements.
However, unlike analytical method standards, which are always accompanied
by an experimental contribution in the form of an interlaboratory comparison,
standards describing MU estimation methods are not accompanied by a practical,
collaborative, and comparative application.

In conclusion, improving the interpretation of analytical results still requires a lot
of scientific and technical work. This book aims to make progress along this path, but
it certainly does not claim to have reached the end. Only collaborative work, in which
analysts know how to adopt these new concepts, has a chance of success. Moreover,
many papers proposing the use of MU in decision-making remain theoretical and
do not show the practical consequences of this approach. We have therefore tried to
provide examples of how MU can be used in practice.
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The 10-step MAP Procedure

Step 1. Prepare a fully written Standard Operating Procedure (SOP) and define the analyte
exactly, i.e. the quantity being measured.

Step 2. Select the bounds of the validation range and define the acceptance interval, which
can be variable with the concentration.

Step 3. Select at least three validation materials representative of the validation range and
the analyzed matrix. They are named levels and their exact contents must be known (they
are the reference values) with an eventual uncertainty. They can be certified materials,
surrogates, natural, or spiked matrices.

Step 4. Define the validation experimental design in terms of the number of series and
replicates/per series. This is a crucial step that may condition the success of the study (see
Section 5.4.2).

Step 5. If the method requires an external calibration, define the calibration experimental
design.

Step 6. Run assays, collect measurements according to planned designs, and make a note of
any discrepancies.

Step 7. If the method requires external calibration, estimate calibration curves for each series
and calculate inverse-predicted concentrations.

Step 8. For each level (or validation material), calculate validation parameters, i.e. intermedi-
ate precision standard deviation and bias, with inverse-predicted concentrations.

Step 9. For each level, calculate the statistical dispersion interval containing the expected pro-
portion of measurements as explained in Section 5.3.

Step 10. Interpret the results and define the validated range of the method, if any.

Glossary of Used Terms

The vocabulary relating to the performance or validation of analytical methods is
very abundant often confusing. For the purposes of this book, many definitions are
derived from the International Vocabulary of Metrology published by the BIPM [1],
where they exist. Some of the relevant definitions come from other documents and
are given succinctly. Supplementary information can be found in the normative doc-
uments cited at the end of each chapter.

Quantification, Validation and Uncertainty in Analytical Sciences: An Analyst’s Companion,
First Edition. Max Feinberg and Serge Rudaz.
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Term Definition

Acceptance interval Interval of permissible measured values. Unless
otherwise stated in the specification, the acceptance
limits belong to the acceptance interval

Acceptance limit Specified upper or lower bound of permissible measured
values

Accuracy Closeness of agreement between a measured value and a
true value of a measurand

Accuracy profile Combination, in graphical form, of one or more
statistical dispersion intervals calculated at different
concentration levels and one or more acceptance
intervals

Analyte Term used in analytical sciences instead of measurand
Between-series variance Refers to the influence on the outcome of the

organization of measures in the form of identifiable
groups (related to ANOVA)

Bias Estimate of a systematic error
Bound Limit of an interval
Calibrant Surrogate
Standard

Chemical compound used as a substitute for the
authentic analyte for preparing calibration standards or
calibrators

Calibration Operation that, under specified conditions, in the first
step, establishes a relation between the values with
measurement uncertainties provided by measurement
standards and corresponding indications with associated
measurement uncertainties and, in the second step, uses
this information to establish a relation for obtaining a
measurement result from an indication

Calibration curve Expression of the relation between indication and
corresponding measured value

Calibrator Calibration
Standard

Realization of the definition of a given quantity, with
stated value and associated measurement uncertainty,
used as a reference

Certified Reference
Material (CRM)

Reference material, accompanied by documentation
issued by an authoritative body and providing one or
more specified property values with associated
uncertainty and traceability, using valid procedures

Characteristic An entity or concept that is a distinctive or specific
feature of a method, such as robustness or accuracy

Combined standard
uncertainty

Standard measurement uncertainty that is obtained
using the individual standard measurement
uncertainties associated with the input quantities in a
measurement model

Conformance probability Probability that an item fulfills a specified requirement
Conformity assessment Activity to determine whether specified requirements

relating to a product, process, system, person, or body
are fulfilled
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Term Definition

Consumer’s risk Probability that a particular accepted item is
non-conforming

Conventional value Value attributed by agreement to a quantity for a given
purpose

Correction Compensation for an estimated systematic effect
Coverage factor Number larger than one by which a combined standard

measurement uncertainty is multiplied to obtain an
expanded measurement uncertainty

Coverage interval Interval containing the set of true values of a measurand
with a stated probability, based on the information
available

Coverage probability Probability that the set of true values of a measurand is
contained within a specified coverage interval

Decision rule Documented rule that describes how measurement
uncertainty will be accounted for about accepting or
rejecting an item, given a specified requirement and the
result of a measurement

Definitional uncertainty Component of measurement uncertainty resulting from
the finite amount of detail in the definition of a
measurand

Effect ANOVA: contribution of a specific factor level to the
output variable

Error Measured value minus a reference value
Estimator In statistics, it is a rule that creates an estimate from

observed data. For example, the sample mean is an
estimator for the theoretical mean

Evaluation/Characterization Study of the qualities of a process, technique, or
instrument to specify its characteristics and its
adaptation to the intended purpose

Expanded uncertainty Product of a combined standard measurement
uncertainty and a factor larger than the number one

Fitness-for-purpose Concept covering the level of appreciation of the ability
of the data obtained by a measurement process to enable
a user to make technically and administratively sound
decisions

Guard band Interval between a tolerance limit and a corresponding
acceptance limit

Input quantity Quantity that must be measured, or a quantity, the value
of which can be otherwise obtained, to calculate a
measured value of a measurand

Inspection Conformity assessment by observation and judgment
accompanied, as appropriate, by measurement, testing,
or gauging

Interlaboratory study Organization, execution, and evaluation of
measurements or tests on the same or similar entities by
two or more laboratories under predetermined
conditions
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Term Definition

Intermediate precision
condition

Condition of measurement, out of a set of conditions that
includes the same measurement procedure, same
location, and replicate measurements on the same or
similar objects over an extended period, but may include
other conditions involving changes

Intermediate precision
variance

Measurement precision under a set of intermediate
precision conditions of measurement

International System of
Units

System of units, based on the international system of
quantities, their names, and symbols, including a series
of prefixes and their names and symbols, together with
rules for their use, adopted by the General Conference
on Weights and Measures (CGPM)

Interval Interval is used together with the symbol [a, b] to denote
the set of real numbers x for which a ≤ x ≤ b, where a
and b are real numbers. The term is used here for closed
intervals. The symbols a and b denote the endpoints of
the interval [a, b]

Limit of detection Measured value, obtained by a given measurement
procedure, for which the probability of falsely claiming
the absence of a component in a material is, given a
probability of falsely claiming its presence

Limit of quantification
(1)

Smaller and/or greater concentration of the analyte that
can be quantified, under the experimental conditions
described in the method

Limit of quantification
(2)

Smaller and/or larger quantity of the analyte in a sample
that can be dosed under the experimental conditions
described with defined uncertainty. It corresponds to the
smallest and/or largest concentration of the validated
range

Limit of quantification
(3)

The lowest concentration of an analyte that can be
quantified in a sample with acceptable risk of error,
under indicated operating conditions

Limit of quantification
(4)

The lowest concentration for which a coefficient of
variation of repeatability equal to a given threshold is
obtained

Linearity Establishment that there is a linear relationship between
the quantities found (or quantified) in samples and their
reference values

Matrix A set of constituents forming the sample, other than the
researched analyte. Matrix effects (or matrix
interferences) reflect the possible influence the matrix
constituents may have on the measuring device response

Maximum permissible
error

For a measuring instrument, maximum difference,
permitted by specifications or regulations, between the
instrument indication and the quantity being measured
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Term Definition

Measurand Quantity intended to be measured (see Analyte)
Measured value Value representing a measurement result
Measurement Process of experimentally obtaining one or more values

that can reasonably be attributed to a quantity
Measurement capability
index

Tolerance divided by a multiple of the standard
measurement uncertainty associated with the measured
value of a property of an item. Generally taken to be four

Measurement procedure Detailed description of a measurement according to one
or more measurement principles and to a given
measurement method, based on a measurement model,
and including any calculation to obtain a measurement
result

Measurement
uncertainty (MU)

Non-negative parameter characterizing the dispersion of
the values being attributed to a measurand based on the
information used

Measurement method Generic description of a logical organization of
operations used in a measurement

Measurement model Mathematical relation among all quantities known to be
involved in a measurement

Measurement result Set of values being attributed to a measurand together
with any other available relevant information

Measuring interval or
working interval

Set of values of quantities of the same kind that can be
measured by a given measuring instrument or
measuring system with specified instrumental
uncertainty, under defined conditions

Measuring transducer Device, used in measurement, that provides an output
quantity having a specified relation to the input quantity

Nominal property Property of a phenomenon, body, or substance, where
the property has no magnitude

Output quantity The measured value of which is calculated using the
values of input quantities in a measurement model

Parameter Statistical model coefficients or combination of
coefficients are used to convey the performance of a
method. They are random variables

Precision Closeness of agreement between indications or
measured values obtained by replicating measurements
on the same or similar objects under specified conditions

Primary measurement
procedure

Reference measurement procedure used to obtain a
measurement result without relation to a measurement
standard for a quantity of the same kind

Procedure Operations to be carried out, precautions to be taken,
and measures to be applied are contained in documents
specific to each laboratory

Producer’s risk Probability that a conforming item will be rejected based
on a future measurement result
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Term Definition

Qualification Operation to demonstrate that an analytical system or
instrument is functioning properly and yielding the
expected results

Quality Control Sample adapted to the method used and intended to
assess the accuracy and precision of the results

Quantity Property of a phenomenon, body, or substance, where
the property has a magnitude that can be expressed as a
number and a reference

Random error Component of measurement error that, in replicate
measurements, varies in an unpredictable manner

Range Range of the interval [a, b] is the difference b – a, and is
denoted by r[a, b]

Recovery yield Percentage of the known or assigned concentration of an
analyte recovered thanks to the analytical procedure

Reference (or official)
measurement procedure

Measurement procedure accepted as providing
measurement results fit for their intended use in
assessing measurement trueness

Reference material (RM) Material, sufficiently homogeneous and stable with
reference to specified properties, that has been
established to be fit for its intended use in measurement
or in examination of nominal properties

Reference value Value used as a basis for comparison for values of the
same nature

Rejection interval Interval of non-permissible measured values
Relative standard
uncertainty

Standard measurement uncertainty divided by the
absolute value of the measured value

Repeatability Measurement precision under a set of repeatability
conditions of measurement

Repeatability condition Condition of measurement, out of a set of conditions that
includes the same measurement procedure, same
operators, same measuring system, same operating
conditions, and same location, and replicate
measurements on the same or similar objects over a brief
period

Reproducibility Measurement precision under a set of reproducibility
conditions of measurement

Reproducibility condition Out of a set of conditions that includes various locations,
operators, measuring systems, and replicate
measurements on the same or similar objects

Sampling Act permitting the obtaining of a biological sample or
entity taken or, by extension, the result of that act

Sensitivity Quotient of the change in an indication of a measuring
system and the corresponding change in a value being
measured

Series Set of measurements, replicated or not, performed under
repeatability condition
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Term Definition

Specification Specified
requirement

Need or expectation that is stated. Specified
requirements may be stated in normative documents
such as regulations, standards, and technical
specifications. A typical specified requirement takes the
form of a stated interval of permissible values of a
measurable property of an item

Specification limit Specified upper or lower bound of permissible values of a
property

Specificity Capability of a measuring system or operating procedure
to measure the concentration of a given analyte

Standard addition or
Spike

Addition to a material or standard of chemical
composition defined with uncertainty in a known
quantity. Conventionally, this operation is intended to
confirm the trueness of a method or to calibrate an
instrument

Standard uncertainty Measurement uncertainty expressed as a standard
deviation

Statistical dispersion
interval

Interval determined from a random sample so that there
is a specified level of confidence that the interval covers
at least a given proportion of the sampled population

Systematic error Component of measurement error that in replicate
measurements remains constant or varies in a
predictable manner

Target uncertainty Measurement uncertainty specified as an upper limit
and decided based on the intended use of measurement
results

Tolerance interval
(conformity assessment)

Interval of permissible values of a property. Unless
otherwise stated in a specification, the tolerance limits
belong to the tolerance interval. This term used in
conformity assessment has a different meaning than as
used in statistics

True value Value consistent with the definition of a quantity
Trueness Closeness of agreement between the average of an

infinite number of replicate measures of a value and a
reference value

Type A evaluation Evaluation of a component of measurement uncertainty
by a statistical analysis of measured values obtained
under defined measurement conditions

Type B evaluation Evaluation of a component of measurement uncertainty
determined by means other than type A evaluation

Uncertainty budget Statement of a measurement uncertainty, of the
components of that measurement uncertainty, and of
their calculation and combination

Validation Verification, where the specified requirements are
adequate for an intended use

Validation criterion Element to which one refers to judge, assess, or define
whether a method is valid
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Term Definition

Validation range Concentration range and matrix types covered by the
validation study

Validation standard Material selected as representative of the matrix to which
the validation study relates. It must be homogenized and
of known concentration. In the most favorable case, it is
a RM sometimes certified CRM

Verification Provision of objective evidence that a given item fulfills
specified requirements

Within-series variance Refers to the influence of replicate measures on
identifiable groups (related to ANOVA)

Working interval Set of values of quantities of the same kind that can be
measured by a given measuring instrument or
measuring system with specified instrumental
measurement uncertainty, under defined conditions

β-Expectation Tolerance
interval

Statistical dispersion interval, with an expected coverage
proportion 𝛽% of possible values

β-γ-Content Tolerance
interval

Statistical dispersion interval, with a coverage proportion
𝛽% of values, with a confidence level 𝛾%

Acronyms

Acronym Expanded name

A2LA American Association for Laboratory Accreditation
AFNOR Association Française de Normalisation
AIDS Acquired immunodeficiency syndrome
ANOVA Analysis of variance
AOAC Association of Official Analytical Chemists
API Active principal ingredient
BIPM Bureau International des Poids et Mesures
CAC Commission of the Codex Alimentarius
CCMAS Codex Committee on Methods of Analysis and Sampling
CCQM Consultative Committee on the Quantity of Matter
CI Confidence interval
CIPM Convention Internationale des Poids et Mesures
COFRAC Comité Français d’Accréditation
COMAR Code of reference materials
CRM Certified reference material
df Degrees of freedom
EC External calibration
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Acronym Expanded name

EDQM European Directorate for the Quality of Medicines
EMA European Medicines Agency
EPA U.S. Environmental Protection Agency
ERM External reference material
FDA Food and Drug Administration
GEON OMCL (official medicines control laboratory) network of the Council of

Europe
GUM Guide to the expression of uncertainty in measurement
HPSAM H-point standard addition method
HR-MS High-resolution mass spectrometry
IC Internal calibration
ICH Before 2015: International Conference on Harmonization of technical

requirements for registration of pharmaceuticals for human use
ICH International Council for Harmonization of technical requirements for

registration of pharmaceuticals for human use
ICP-ID-MS Isotope dilution inductively coupled plasma mass spectrometry
IEC International Electrotechnical Commission
IFCC International Federation of Clinical Chemistry and Laboratory Medicine
ILAC International Laboratory Accreditation Cooperation
IPD Isotopic pattern deconvolution
IRM Internal reference material
IS Internal standard
ISC In-sample calibration
ISO International Organization for Standardization
IUPAC International Union of Pure and Applied Chemistry
IUPAP International Union of Pure and Applied Physics
JCGM Joint Committee for Guides on Metrology
LC Liquid chromatography
LC-MS Liquid chromatography–mass spectrometry
LC-MS/MS Liquid chromatography coupled to tandem mass spectrometry
LD50 Level of detection at 50%
LIMS Laboratory information management system
LLOQ Lower limit of quantification
LOD Limit of detection
LOQ Limit of quantification
MAP Method accuracy profile
MIRM Multiple isotopologue reaction monitoring
MRL Maximum residue limit
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Acronym Expanded name

MS Mass spectrometry
MU Measurement uncertainty
NIRS Near-infrared spectrometry
OIML Organisation Internationale de Métrologie Légale
OLS Ordinary least-squares
OMCL Official medicines control laboratory
OOS Out of specification
QC Quality control
RF Response factor
RM Reference material
RSD Relative standard deviation or coefficient of variation
SAM Standard addition method
SEC Exclusion chromatography or molecular sieve chromatography
SFSTP Société Française des Sciences et Techniques Pharmaceutiques
SI International System (of units)
SIL Stable isotope labeled
SMPR Standard method performance requirement
SPC Statistical process control
std. dev. Standard deviation
TDI Total daily intake
TI Tolerance interval
TRV Toxicological reference value
ULOQ Upper limit of quantification
USP US pharmacopeia
UV Ultraviolet
VIM International Vocabulary of Metrology
WADA World Anti-doping Agency
WHO World Health Organization
WLS Weighted least-squares
β-ETI β-Expectation tolerance interval
β-γ-CTI β-γ-Content tolerance interval

Reference

1 BIPM, IEC, IFCC, ILAC, ISO, IUPAC, IUPAP, and OIML (2012). International
Vocabulary of Metrology — Basic and General Concepts and Associated Terms
(VIM3). Sèvres, France: JCGM 200, https://www.bipm.org/ (accessed 23 July
2023).

https://www.bipm.org/utils/common/documents/jcgm/JCGM_pack_2012-10.zip
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