
International Series in
Operations Research & Management Science

Zhi-Long Chen
Nicholas G. Hall

Supply
Chain
Scheduling

International Series in Operations Research &
Management Science

Volume 323

Series Editor

Camille C. Price
Department of Computer Science, Stephen F. Austin State University,
Nacogdoches, TX, USA

Associate Editor

Joe Zhu
Foisie Business School, Worcester Polytechnic Institute, Worcester, MA, USA

Founding Editor

Frederick S. Hillier
Stanford University, Stanford, CA, USA

More information about this series at https://link.springer.com/bookseries/6161

https://link.springer.com/bookseries/6161

Zhi-Long Chen • Nicholas G. Hall

Supply Chain Scheduling

Zhi-Long Chen
Department of Decision,
Operations & Information Technologies
Robert H. Smith School of Business
University of Maryland
College Park, MD, USA

Nicholas G. Hall
Department of Operations
and Business Analytics
Fisher College of Business
Ohio State University
Columbus, OH, USA

ISSN 0884-8289 ISSN 2214-7934 (electronic)
International Series in Operations Research & Management Science
ISBN 978-3-030-90372-5 ISBN 978-3-030-90374-9 (eBook)
https://doi.org/10.1007/978-3-030-90374-9

© Springer Nature Switzerland AG 2022
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, expressed or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-030-90374-9

This book is dedicated to our
families and friends.

Foreword

Scheduling of activities are ubiquitous processes. Scheduling takes place on a
regular basis in many application areas at multiple levels, at operational levels as
well as at strategic levels. I have been interested in the general area of scheduling
for more than four decades and have been continuously amazed by the variety of
application domains in which these processes play a critical role. One of the more
important application areas is the scheduling that takes place in supply chains, which
is the topic that is being covered in this book. The importance of this application area
has become even more to the forefront in the pandemic period of 2020–2021, during
which many global supply chains have been hurt considerably, requiring significant
amounts of rescheduling.

I have known both Zhi-Long Chen and Nick Hall for more than three decades,
and at every conference that we attend, either in the USA, in China, or anywhere
else, we have been looking forward to our discussions on the topics we are working
on. Zhi-Long and Nick have been working on the area of supply chain scheduling
already for quite a while, and this monograph is the culmination of their and other
people’s work in this area.

While classical scheduling has been studied since the mid-1950s, the integration
of scheduling with the coordination and competition issues that arise ubiquitously
in supply chains dates back about 20 years. Some of the foundational works on this
topic were written by the two authors of this book. This work has become highly
influential within the operations research community. At the time of writing, an
online search on the book title reveals 3300 published works. To my knowledge,
however, this book represents the first attempt to synthesize the main research
directions within supply chain scheduling into a single source.

Supply Chain Scheduling addresses the coordination and competition of schedul-
ing and other operational decisions in supply chains from two perspectives. The
first perspective is that of a single decision maker faced with multiple types of
operational decisions—for example, production and distribution, or production and
pricing. The second perspective is that of multiple self-interested decision makers
whose decisions collectively determine the performance of a supply chain—for
example, a supplier and a manufacturer, or multiple suppliers in an assembly system.

vii

viii Foreword

The problems studied are identified as centralized under the first perspective, and
decentralized under the second one. Each perspective addresses a wide variety of
applications and theoretical issues. A consistent focus of the book is the value added
by the coordinated decision-making of scheduling and other functions, relative to
local or even decentralized decision-making for different parts of a problem.

The book consists of two parts. Part I consists of Chaps. 3 through 6. These
chapters study centralized problems in supply chain scheduling. Chapters 3 and 4
address the integration of production scheduling and outbound distribution decisions
in both offline and online settings. Chapter 5 studies the coordination of production
and pricing decisions, and Chap. 6 discusses the joint consideration of subcontract-
ing and scheduling decisions. A wide variety of optimization methodologies are
employed in Part I, including dynamic programming, integer optimization, branch-
and-bound, heuristic design, and worst-case and asymptotic performance analysis.

Part II consists of Chaps. 7 through 9. Chapter 7 uses classical scheduling
techniques and dynamic programming to identify the cost of conflict when individ-
ual players make self-interested decisions in supply chains. The works discussed
in this chapter have been strongly motivational for the development of supply
chain scheduling research. Chapter 8 views supply chain scheduling problems as
cooperative games, and within that context studies application to sequencing and
scheduling games, as well as capacity allocation and subcontracting problems.
Chapter 9 uses the perspective of noncooperative games, and studies applications
with complete information as well as others where some information is private.

This monograph will undoubtedly serve as a solid basis for future research on
this important topic. I feel privileged to be allowed to write a foreword to this book
and put this area in a proper perspective. I am confident that this text will become
an indispensable foundation on which many researchers in academia and industry
will rely.

New York University, New York, NY, USA Michael L. Pinedo
August 2021

Preface

The topic of this book is decision-making at the interface of supply chain manage-
ment and production scheduling. These are both very active research areas with
profound practical impact through diverse applications. An essential component
of such decision processes is coordination. In this book, coordination is studied in
two different environments. We first study the coordination of multiple operational
functions by a single centralized decision maker. This work generalizes the classical
scheduling environment that typically addresses a single operation. We also study
the coordination of the decisions of multiple decentralized decision makers who are
self-interested but may be either cooperative or noncooperative. This work translates
classical supply chain research into more detailed operational planning. The study
of these topics within the book ranges broadly through the research areas of clas-
sical scheduling, combinatorial optimization, computational complexity, algorithm
design, heuristic performance analysis, and cooperative and noncooperative game
theory.

The book begins with two introductory chapters. Chapter 1 provides historical
background on the research areas that support this work and identifies numerous
applications that fall within our scope. Chapter 2 provides a concise overview of
essential concepts and mathematical tools that are applied in the main body of the
book.

The remainder of the book has two parts. Part I consists of Chaps. 3 through 6 on
centralized supply chain scheduling problems, that is, those with a single decision
maker who controls multiple operational functions. Chapter 3 studies offline
versions of various integrated production and outbound distribution scheduling
problems, whereas Chap. 4 is focused on online versions of such problems.
Chapter 5 considers problems in which product pricing and production scheduling
decisions are made together. Chapter 6 discusses situations where subcontracting
and scheduling decisions are made jointly in order to optimize the overall system
performance. In each chapter, we present solution algorithms and heuristics, analyze
their performance, and evaluate the benefit of joint optimization.

Part II of this book consists of Chaps. 7 through 9. These chapters study
decentralized problems, that is, those with multiple entirely or predominantly self-

ix

x Preface

interested players, in supply chain scheduling. Chapter 7 uses optimization models
to study the cost of conflict that arises from unequal supply chain power and the ben-
efit that results when players coordinate their schedules. Chapter 8 uses cooperative
games to study the stability of coalitions between supply chain members and various
schemes for compensating them using the gains from cooperation. Chapter 9 uses
noncooperative games to study equilibrium solutions, their system performance, and
possible ways to enhance that performance including by incentivizing the truthful
reporting of private information.

Our motivation for writing this book arises in part from our consistent research
interest in scheduling and related problems over more than 20 years. A second
motivating factor is the influence of supply chain management which focuses on the
coordination issue mentioned above, but typically does not relate it to the level of
detailed scheduling decisions. We believe that the integration of these two research
areas has both theoretical interest and practical value. In addition, because many
scheduling problems have a simple structure that offers easily obtained insights, we
have observed that such problems are used in numerous works to develop results
within cooperative and noncooperative game theory. Those works naturally fall
within the scope of our book.

Our writing process for the book has been an evolutionary one. It began with a
broad concept of a supply chain, which includes, for example, a traditional vertical
supply chain such as a supplier and a manufacturer, where a single decision maker
coordinates multiple operational functions, and a horizontal supply chain such as
multiple suppliers competing for the capacity of a manufacturer, where there are
multiple decision makers at the same level. Additional generality was provided by
the flexibility to model decision makers as either jobs that require scheduling or
machines that schedule the jobs. The focus on intensified competition, which has
been a major motivation for the development of supply chain management, has also
motivated the many supply chain scheduling applications we discuss. We have been
inspired by the growing variety of applications enabled by e-commerce that can
be modeled as supply chain scheduling problems. A challenge that we have faced
during our 4-year development of the book has been keeping up with the rapid pace
of new research.

Scheduling research, which began more than 65 years ago, remains very active
with many theoretical developments and innovative new applications appearing each
year. Some trends that support increasing interest in this work in the future include
the ever more important role scheduling plays in a supply chain, the widespread
implementation of computer-based scheduling systems, and the increasing use of
online platforms to schedule work among decentralized decision makers. Indeed, it
is the potential growth of such applications that convinces us of the timeliness of
our book project.

The intended audience of this book is researchers and graduate students who
are interested in supply chain planning, extensions of classical scheduling, com-
binatorial optimization generally, and emerging applications of cooperative and
noncooperative game theory. The book does not provide a comprehensive exposure
to supply chain management, classical scheduling, combinatorial optimization, or

Preface xi

cooperative or noncooperative game theory. All these research topics are well
supported by many excellent existing books, which can effectively prepare readers
without previous background in these five topics. For students who are in possession
of such background, this book could provide an extensive tour of those topics
centered around the simple but highly intuitive paradigm of scheduling. We cite
more than 400 references, which can be used as assigned readings in support of the
content of the book. The book also contains more than 100 fully worked numerical
examples that illustrate the broad range of mathematical techniques that model and
solve supply chain scheduling applications.

Much of this book is based on work which we have done together or with other
co-authors. For example, most of the content of Chap. 7 is based on four works
which we originally wrote and which (based on the number of citations received) are
viewed as foundational to the topic of supply chain scheduling. We have rewritten
these works to make them more accessible and present the results in a unified
way. However, we have also used parts of various works by other authors from
the published open literature. In each case, we introduced some reorganization and
rewriting, and of course appropriately referenced the work and where necessary (as
advised by our publisher) obtained copyright permission. Under these guidelines,
we have reproduced a number of proofs, especially mathematical proofs, without
substantial changes. We have also contacted the most frequently cited authors to
ensure that they believe that their work has been appropriately attributed. In several
cases, they also suggested improvements to the presentation, which we appreciate.

This book has also benefited greatly from reading by several expert colleagues,
including Alessandro Agnetis (Università di Siena), Zhixin Liu (University of
Michigan-Dearborn), Daniel Ng (The Hong Kong Polytechnic University), Xiang-
tong Qi (The Hong Kong University of Science and Technology), Bingling She
(Imperial College London), George Vairaktarakis (Case Western Reserve Univer-
sity), Shuling Xu (Jiangnan University), and Zijin Zhang (University of Michigan).
Their detailed and helpful comments are much appreciated, as are more general
conversations with our many co-authors referenced within the book. We also thank
our helpful and efficient editor at Springer, Jialin Yan. Finally, we thank our
respective academic institutions for providing support for several summers, during
which much of the writing of the book was completed.

College Park, MD, USA Zhi-Long Chen

Columbus, OH, USA Nicholas G. Hall
August 2021

Contents

1 Introduction . 1
1.1 Supply Chain Scheduling . 1
1.2 Applications . 5

1.2.1 Centralized Applications and Models . 7
1.2.2 Decentralized Applications and Models. 14

1.3 Limitations to Scope . 20
1.4 Overview of the Book. 21

2 Solution Methods for Supply Chain Scheduling Problems 23
2.1 Common Elements in Scheduling Problems. 23
2.2 Computational Complexity . 25
2.3 Solution Methods . 28

2.3.1 Dynamic Programming Algorithms . 28
2.3.2 Branch-and-Bound Algorithms . 31
2.3.3 Integer Programming Based Algorithms . 33
2.3.4 Approximate Solution Methods . 39
2.3.5 Cooperative Game Theory . 43
2.3.6 Noncooperative Game Theory . 46

Part I Centralized Supply Chain Scheduling

3 Integrated Production and Outbound Distribution
Scheduling: Offline Problems . 53
3.1 Introduction . 53
3.2 Problem Definition and Classification . 55

3.2.1 Model Parameters and Notation . 55
3.3 Problems with Individual and Immediate Delivery. 60

3.3.1 Maximum Delivery Time Problems with a
Sufficient Number of Vehicles . 61

3.3.2 Maximum Delivery Time Problems with a Limited
Number of Vehicles . 66

3.3.3 Multi-Machine Problems. 70

xiii

xiv Contents

3.4 Problems with Batch Delivery to a Single Customer. 72
3.4.1 Optimality Properties . 73
3.4.2 Single-Machine Maximum Lateness and

Transportation Cost Problem . 75
3.4.3 Single-Machine Total Weighted Delivery Time and

Transportation Cost Problem . 77
3.4.4 Parallel-Machine Total Delivery Time and

Transportation Cost Problem . 79
3.4.5 Problems with a Limited Number of Vehicles 85

3.5 Problems with Batch Delivery to Multiple Customers 88
3.5.1 Single-Machine Maximum Lateness and

Transportation Cost Problems with Direct Shipping 89
3.5.2 Parallel-Machine Total Delivery Time and

Transportation Cost Problem with Routing 96
3.5.3 Problems with a Limited Number of Vehicles and

Direct Shipping . 99
3.6 Problems with Fixed Delivery Departure Dates . 102

3.6.1 Problems with Homogeneous Vehicles. 103
3.6.2 Problems with Heterogeneous Vehicles . 106

3.7 Problems with Multiple Plants . 117
3.7.1 Minimizing Total Delivery Time and

Transportation Cost . 119
3.7.2 Minimizing Maximum Delivery Time and

Transportation Cost . 122
3.8 Problems with Two Stages of Delivery . 125

3.8.1 Optimality Properties . 127
3.8.2 Solving the Total Delivery Time Problem. 129
3.8.3 Solving the Maximum Delivery Time Problem 131

3.9 Future Research . 134

4 Integrated Production and Outbound Distribution
Scheduling: Online Problems . 137
4.1 Introduction . 137
4.2 Online Problems with Individual and Immediate Delivery 139

4.2.1 Single-Machine Maximum Delivery Time Problem
and Some Variants . 140

4.2.2 Parallel-Machine Maximum Delivery Time Problem 145
4.3 Online Problems with Batch Delivery to a Single Customer 147

4.3.1 Maximum Delivery Time Problems . 147
4.3.2 Maximum Delivery Time and Transportation Cost

Problems . 156
4.3.3 Total Delivery Time and Transportation Cost Problems. 160

Contents xv

4.4 Online Problems with Batch Delivery to Multiple Customers 168
4.4.1 Maximum Delivery Time and Transportation Cost

Problems . 168
4.4.2 Total Delivery Time and Transportation Cost Problems. 173

4.5 Online Problems with Two Stages of Delivery . 175
4.6 Online or Offline Algorithms?. 181
4.7 Future Research . 183

5 Coordinated Product Pricing and Scheduling Decisions 185
5.1 Introduction . 185
5.2 Single-Period Product Based Problems . 187

5.2.1 Exact Algorithms . 190
5.2.2 NP -Hardness Proofs . 194
5.2.3 Fully Polynomial Time Approximation Schemes. 197
5.2.4 Heuristics . 203
5.2.5 Computational Results and Managerial Insights 207

5.3 Single-Period Order Based Problems . 210
5.3.1 Discrete Allowable Prices. 211
5.3.2 Continuous Allowable Prices . 214

5.4 Multi-Period Problems. 220
5.4.1 Exact Algorithms . 225
5.4.2 NP -Hardness Proofs . 228
5.4.3 Approximation Algorithm . 233
5.4.4 Computational Results and Managerial Insights 236

5.5 Future Research . 239

6 Joint Subcontracting and Scheduling Decisions . 241
6.1 Introduction . 241
6.2 Problem with a Lead Time Performance Guarantee. 243

6.2.1 Problem Definition . 244
6.2.2 Complexity and Heuristic Analysis . 245
6.2.3 Computational Results . 256
6.2.4 A Related Problem . 258

6.3 Value of Subcontracting . 260
6.3.1 Value of Subcontracting in the Total Cost Problem. 261
6.3.2 Value of Subcontracting in the Weighted Sum of

Makespan and Total Cost Problem . 262
6.4 Problems with a Subcontracting Budget Constraint 269

6.4.1 The Total Completion Time Problem. 270
6.4.2 The Maximum Tardiness Problem. 273
6.4.3 The Total Tardiness Problem . 274

6.5 Problems with a Flowshop Environment. 276
6.5.1 NP -Hardness Proof . 278
6.5.2 Polynomially Solvable Cases . 281
6.5.3 Proportionate Flowshop . 282

xvi Contents

6.6 Problems Requiring Delivery of Subcontracted Jobs 284
6.6.1 Single In-House Machine and Single

Subcontractor’s Machine . 284
6.6.2 Two-Stage Flowshop . 289

6.7 Problems with a More Complex Subcontracting Cost Structure. 292
6.7.1 Problem Description . 292
6.7.2 Analysis of Problems with Incremental Discount 294

6.8 Future Research . 298

Part II Decentralized Supply Chain Scheduling

7 Optimization and Conflict . 303
7.1 Introduction . 303
7.2 Scheduling and Batching in a Supply Chain . 307

7.2.1 Preliminaries . 309
7.2.2 The Supplier’s Problem . 316
7.2.3 The Manufacturer’s Problem . 319
7.2.4 The Combined Problem . 324
7.2.5 Cooperation . 331

7.3 Sequencing in an Assembly System . 335
7.3.1 Notation and Assumptions . 336
7.3.2 Conflicts Between Suppliers and Manufacturer 338
7.3.3 Suppliers Dominate and Manufacturer Negotiates 354
7.3.4 Manufacturer Dominates and Suppliers Negotiate 360
7.3.5 Manufacturer Dominates and Suppliers Adjust 362
7.3.6 Suppliers and Manufacturer Cooperate . 367
7.3.7 Cost Saving from Cooperation. 370
7.3.8 Extensions . 376

7.4 Manufacturer and Distributor. 377
7.4.1 Problem Descriptions . 378
7.4.2 Cost of Conflict . 381
7.4.3 Supply Chain Dominance . 389
7.4.4 Benefit of Cooperation . 397

7.5 Resequencing in a Supply Chain . 404
7.5.1 Notation and Classification . 405
7.5.2 Manufacturer’s Problems . 407
7.5.3 Supplier’s Problems . 420
7.5.4 Combined Problems . 424

7.6 Future Research . 427

8 Cooperative Supply Chain Scheduling . 431
8.1 Introduction . 431
8.2 Cooperative Game Solutions . 434
8.3 Sequencing Games . 442

8.3.1 General Related Games . 443
8.3.2 Linear Costs . 446

Contents xvii

8.3.3 Regular Costs . 453
8.3.4 Rescheduling Games . 456
8.3.5 Relaxed Sequencing Games . 463
8.3.6 Batch Sequencing Games . 467
8.3.7 Proportionate Flowshops . 471
8.3.8 Openshops . 476
8.3.9 Multi-Stage Sequencing Games . 480
8.3.10 Balancedness in Generalized Games . 485

8.4 Scheduling Games . 489
8.4.1 Artificial Initial Sequence: Tail Game . 490
8.4.2 Artificial Initial Sequence: Probabilistic Game 493
8.4.3 No Initial Sequence: Penalty . 497
8.4.4 No Initial Sequence: Penalty and Subsidy 499

8.5 Project Games . 503
8.5.1 Project Planning Games . 504
8.5.2 Project Execution Games . 513

8.6 Capacity Allocation Games. 520
8.6.1 Supply Chain Scheduling Problems . 521
8.6.2 Uncoordinated Supply Chain . 522
8.6.3 Coordinated Supply Chain . 534

8.7 Outsourcing Games . 537
8.7.1 Common Third-Party Facility . 537
8.7.2 Concurrent Outsourcing. 541

8.8 Future Research . 545

9 Noncooperative Supply Chain Scheduling . 549
9.1 Introduction . 549
9.2 Complete Information Games . 552

9.2.1 Noncooperative Game Concepts. 552
9.2.2 Finding and Evaluating an Equilibrium . 563

9.3 Enhanced Complete Information Games . 589
9.3.1 Sequential Games . 589
9.3.2 Leader–Follower Games . 597
9.3.3 Altruistic Games. 606
9.3.4 Central Authority Manipulation . 614

9.4 Private Information: Mechanisms Without Payments 616
9.4.1 Design Concepts. 617
9.4.2 Deterministic Truthfulness . 620
9.4.3 Randomized Mechanisms . 623

9.5 Private Information: Mechanisms with Payments . 630
9.5.1 Design Concepts. 630
9.5.2 Deterministic Truthfulness . 641

xviii Contents

9.5.3 Universal Truthfulness . 645
9.5.4 Truthfulness in Expectation . 647
9.5.5 Bayes–Nash Incentive Compatibility. 650

9.6 Future Research . 655

References . 661

Index . 679

Chapter 1
Introduction

Abstract This chapter introduces supply chain scheduling, the topic of this book.
Our study of supply chain scheduling contains two main parts. In the first part,
we consider decision making by a single centralized agent who evaluates tradeoffs
between different operational decisions and their related profits or costs within a
supply chain. In the second part, we consider decision making by two or more
decentralized agents and study the combined effect of their self-interested decisions
on the quality of overall supply chain solutions. A common theme throughout both
these environments is how to achieve coordination among the various operational
functions and decisions within the supply chain, in order to improve its overall
performance. In this chapter, we first position supply chain scheduling relative to
the literature of classical scheduling and that of supply chain management. For
both centralized and decentralized supply chains, we then discuss a wide variety
of applications that motivate the modeling and methodological developments which
are studied in later chapters. Limitations to our scope are also discussed. Finally, we
provide an overview of the book.

1.1 Supply Chain Scheduling

Scheduling is a natural and everyday economic activity. It organizes the fulfillment
and completion of work. In many applications discussed in this book, work is
defined as consisting of a given set of discrete jobs. However, in other applications,
it consists of a single given workload or workflow that needs to be divided between
available resources for processing. This work may arise in a manufacturing, service,
logistical, or general business context, and we discuss a wide variety of such supply
chain applications where it does. The focus of our book is on scheduling decisions
about how the work is processed, rather than details of its actual execution or
implementation. The success of scheduling decisions is measured by the quality
of overall supply chain performance. However, the connection between decisions
and performance is not always direct. For example, in decentralized scheduling, the
decisions of an individual agent are subject to reactions by other agents. Even in

© Springer Nature Switzerland AG 2022
Z.-L. Chen, N. G. Hall, Supply Chain Scheduling, International Series
in Operations Research & Management Science 323,
https://doi.org/10.1007/978-3-030-90374-9_1

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-90374-9_1&domain=pdf
https://doi.org/10.1007/978-3-030-90374-9_1

2 1 Introduction

centralized scheduling, finding the best combination of scheduling decisions is a
problem that is difficult to solve in many applications.

Scheduling involves the making and implementing of decisions that affect the
efficiency of operating systems. Scheduling decisions focus on detailed planning
at the individual job or workload level. Typically, higher level decisions such as
production planning, capacity planning, and materials requirements planning have
already taken place before scheduling decisions are made. Pinedo (2016) provides
an overview of the planning context within which scheduling takes place. Input to
scheduling decisions includes job data, such as processing time, release date (i.e.,
the time when a job is first available for processing), due date (i.e., the time when the
customer expects completion), and a weight or value representing job importance.
The other main input is the set of resources for processing the work, for example,
the number and configuration of available machines. Typical scheduling decisions
include the allocation of the jobs to available resources, the sequencing of the jobs,
and the timing of their processing.

We provide a brief overview of the history of scheduling. The representation of
scheduling decisions can be formalized by a Gantt chart, as developed in 1917 by
Henry L. Gantt, which shows the progress of work and resource usage over time.
The Gantt chart is still used extensively today and incorporated into scheduling and
project management software. It is an important visualization tool for monitoring
schedule progress, although it does not directly make scheduling decisions.

The challenge of making effective scheduling decisions is addressed through
the mathematical analysis of scheduling which began in the 1950s. Initially, work
was focused on simple problems with a single resource. This resource is modeled
as a single machine that is continuously available over time. Jackson (1955) and
Smith (1956), for example, develop scheduling rules that find optimal solutions for
simple scheduling problems in this environment. In these early works, the objective
of minimizing cost is viewed from the perspective of a single centralized decision
maker. This perspective is natural when all scheduling decisions are being made
over a single operation and within a single organization. This perspective also
defines much of the work within classical scheduling, which has been an extremely
active research area in the following decades.

Besides work on optimal algorithms, this research area includes the docu-
mentation of numerous high value applications, the development of heuristic or
approximate solution methods along with their performance analysis, and the
development of results that define limits to problem tractability. Within this work,
the study of the single-machine environment has been extended to include a variety
of more general and more practical production systems with multiple resources
for processing, including parallel machines, flowshops, jobshops, and openshops.
In addition, a wide variety of cost functions, motivated by incentives in delivery
contracts or by internal costs incurred by manufacturers, has been considered.
Pinedo (2016) provides a highly readable introduction to the classical scheduling
literature. Other useful references on scheduling theory and applications include
Leung and Anderson (2004), Brucker (2013), Project Management Institute (2019),

1.1 Supply Chain Scheduling 3

and Sokolov et al. (2020). The research impact of the scheduling field has been vast.
A bibliometric study by Calma et al. (2021) identifies scheduling as the second most
studied problem within the journal Operations Research over the period 1952–2019,
with almost twice as many published articles as any other problem except inventory
management.

In the past four decades, concurrently with the growth of the scheduling
literature, a substantial body of research literature has developed around various
coordination and competition issues faced either by a centralized decision maker
across multiple functional areas or by multiple decentralized decision makers within
a supply chain. This research area is supply chain management. Topics studied
within this area include the coordination of network design and allocation decisions,
coordination of production, inventory and distribution, coordination of pricing and
inventory, multi-echelon inventory management, information sharing in the supply
chain, and the development of contracts that coordinate the decisions of different
decision makers. However, most of this existing research focuses on coordination
and competition issues at the strategic and tactical planning levels, rather than at the
operational level where most scheduling decisions are needed. Many books (e.g., de
Kok & Graves, 2003; Simchi-Levi et al., 2004; Tayur et al., 1999) and survey papers
(e.g., Chen & Simchi-Levi, 2012; Erengüç et al., 1999; Goetschalckx et al., 2002;
Sahin & Robinson, 2002) describe the extensive research on issues which arise at
these levels of production planning.

By contrast, research on supply chain coordination and competition issues at
the detailed scheduling level is more recent; most of the research in this area was
performed within the last 15 years. Our study considers both vertical and horizontal
supply chains. A vertical supply chain includes more than one level, for example,
a supplier which sends parts to a manufacturer which sends finished products to
retailers. In a horizontal supply chain, the supply chain includes functions or agents
at the same level, for example, multiple suppliers to the same manufacturer. The
field of supply chain scheduling approaches these problems from a global system
perspective, while considering (a) the tradeoffs faced by the decision maker in the
centralized case and (b) the motivations and incentives faced by individual agents in
the decentralized case. In doing so, supply chain scheduling connects and integrates
multiple traditional topics that have been studied independently for decades, such as
production scheduling, vehicle routing, outsourcing, and capacity planning, among
others.

Our work is apparently the first book that focuses specifically on scheduling
within a supply chain context. We apply the following definition for the topic of
this book.

Definition 1.1 Supply chain scheduling unifies the topics of scheduling and supply
chain management, by developing and solving coordinated scheduling models that
include scheduling and other related decisions made by either a single centralized
decision maker or by multiple decentralized decision makers.

4 1 Introduction

Fig. 1.1 Positioning of
supply chain scheduling

Supply

Chain

Scheduling

Supply

Chain

Management

Scheduling

In doing so, supply chain scheduling:

1. Integrates centralized scheduling decisions with issues that affect overall supply
chain performance, for example, batching of jobs, inbound and outbound
delivery, coordinated delivery of components, management of inventory buffers,
pricing, and subcontracting

2. Integrates decentralized scheduling decisions with issues that influence supply
chain performance, for example, cooperation between manufacturers to negotiate
access to outside resources, partial central control of a scheduling system,
coordination of production sequences, and mechanisms to encourage cooperation
and to ensure truthful reporting of private information.

Our integrated perspective on supply chain scheduling is a relatively new one.
Among the earliest works is Hall and Potts (2003), which discusses optimal
scheduling and batching decisions for jobs in a three-stage supply chain. Since
that time, research on supply chain scheduling has been growing rapidly within the
operations research, operations management, industrial engineering, and computer
science communities. As of August 2021, the academic literature contains more than
3300 works that study supply chain scheduling. Figure 1.1 provides an overview of
the positioning of supply chain scheduling within the related literature.

As shown in Fig. 1.1, supply chain scheduling stands at the intersection of supply
chain management and scheduling. Most supply chain management models do
not contain a scheduling component, typically due to their focus on higher level
planning issues. Conversely, classical scheduling research has focused predomi-
nantly on narrower optimization models without the consideration of supply chain
coordination issues.

A more detailed perspective on the components of supply chain scheduling
appears in Fig. 1.2, which shows examples of several application areas and method-
ologies that support supply chain scheduling. As described in more detail in Sect. 1.2
below, these applications fall naturally into two categories: centralized applications
where a single decision maker or organization needs to evaluate tradeoffs between
conflicting costs or other performance metrics and decentralized applications where

1.2 Applications 5

Supply Chain Scheduling

Part I: Centralized Applications:
short shelf-life products

make-to-order products

scheduling and pricing

subcontracting and scheduling

Methodology:
optimization

heuristics

cooperative games

noncooperative games

Part II: Decentralized Applications:
scheduling and batching

assembly systems

sequencing and scheduling games

project management games

capacity allocation and outsourcing games

sequential and altruistic games

Fig. 1.2 Supply chain scheduling applications and methodology

multiple, typically self-interested, decision makers make decisions that affect each
other’s outcomes as well as the performance of the overall supply chain. On the
methodology side, supply chain scheduling is strongly influenced by several central
methodologies within operations research and mathematical economics, especially
discrete optimization, computational complexity analysis, heuristic analysis, and
cooperative and noncooperative game theory. The interaction of these important
applications and strong methodologies presents many interesting research develop-
ments and future research opportunities that are the topic of this book.

1.2 Applications

In this section, we first discuss applications with only a single decision maker,
i.e., centralized supply chain scheduling problems. Even here, there are multiple
and potentially conflicting definitions of what constitutes a successful schedule.
This occurs under various scenarios. For example, it may be necessary to trade
off production scheduling and distribution costs. An efficient schedule may process
many short jobs first, which minimizes work in process at a manufacturing plant.
However, if the short jobs are for many different customers, then the delivery of

6 1 Introduction

those jobs is likely to require multiple batches and be expensive. Alternatively, in
order to control distribution costs, it may be efficient to produce a batch of jobs that
can all be delivered at once to the same customer. However, doing so may lead to
inefficiencies in production scheduling, for example, if the jobs are of dissimilar
types and require substantial production setups between their processing. The
centralized supply chain scheduling problem involves optimization of the overall
system cost. In many cases, the optimal supply chain scheduling solution is very
different from the optimal solution for any subset of the supply chain’s revenue or
cost components. Moreover, finding it may require the solution of a more complex
planning problem that is potentially less computationally tractable.

An alternative scenario that also defines supply chain scheduling problems is
that more than one decision maker is involved in scheduling decisions, which
defines decentralized supply chain scheduling problems. Typically, the interests of
the decision makers are not well aligned. Even if the decision makers belong to the
same organization, they may be incentivized differently. For example, a production
manager may be compensated based on the efficiency of the production schedule.
Whereas, a distribution manager may be compensated based on the ontime service
rate. Problematically, the production manager’s preferred schedule may provide a
poor service rate for the distribution manager. Similarly, following the distribution
manager’s preferred delivery schedule may impose major inefficiencies on the
production schedule. This is an example of a typical conflict in decentralized supply
chain scheduling.

These conflicts are often exacerbated when two or more decision makers belong
to different organizations. For example, a supplier and a manufacturer within the
same supply chain may have different objectives that create conflicts. The supplier
may wish to batch similar orders, to reduce setup time and cost. However, the
manufacturer may need to receive a diverse collection of products at the same time,
to meet the ongoing needs of its customers. In numerous practical supply chains,
some parties have more commercial or other bargaining power than others, for
example, in the case of large national retailers when dealing with their suppliers.
This power asymmetry may enable one decision maker to influence another to
modify its planning decisions. These typical conflicts require analysis within supply
chain scheduling that goes beyond the boundaries of classical scheduling.

Several reasons explain the increasing importance of supply chain scheduling
in both practice and research. The first is an increased understanding of the losses
that can arise from poor scheduling coordination within the supply chain. A second
reason is changes in the marketplace. These include greater pressure on time-
to-market performance and increased demand for customized products in highly
competitive industries such as consumer electronics. These developments place
more emphasis on the scheduling function which is fundamentally concerned with
improving efficiency with respect to time. Another change within this context is
greater complexity of supply chains, for example, due to globalization of markets,
increased product variety, and increased subcontracting of specialized work. A
third reason is increased availability of data and of high speed computing power.

1.2 Applications 7

These reasons motivate and enable the modeling and solution of typically complex
and even formally intractable supply chain scheduling problems. A final reason
is methodological advances in cooperative and noncooperative game theory that
enable the modeling of decisions by parties with incentives that are not necessarily
well aligned. All these reasons strongly motivate our writing of this book.

The remainder of this chapter begins with a review of the literature of supply
chain scheduling applications, classified into centralized ones with a single decision
maker and decentralized ones with multiple decision makers. Then, we discuss the
limitations to scope of supply chain scheduling for the purposes of our work. Finally,
we provide an overview of the content of our book.

1.2.1 Centralized Applications and Models

Single decision maker, or centralized, applications of supply chain scheduling
typically involve multiple functions within a centralized supply chain that may have
locally optimal solutions that are contradictory. A common application involves the
production and outbound distribution functions. The linkage between those two
functions is provided by inventory of finished products, which may be expensive
to carry, limited by storage capacity, or even impossible to carry in the case of
perishable products. Because of these issues, finished goods inventory cannot be
used as a flexible buffer between production and distribution; instead, scheduling
decisions that affect the performance of those two functions need to be tightly
coordinated. This creates complex issues that define supply chain scheduling
problems which are in many cases financially significant.

1.2.1.1 Production–Distribution Scheduling for Short Shelf-Life Products

Several products have a short shelf-life, due to their rapid physical deterioration.
Most obviously, these include fresh food and beverage products. They also include
blood, plasma, and various other medical supplies. Some chemicals also fall within
this definition. Other products have a short shelf-life because of their rapidly
deteriorating market value due to timing or competitive issues or seasonal variations
in demand. These include newspapers, mail, and specifically seasonal items such as
Christmas cards. For all such products, delivery to customers must be accomplished
within a strictly limited time after production. As a result, the production and
distribution schedules need to be closely coordinated. This defines a fundamental
supply chain scheduling problem.

An example of the coordination of production and outbound transportation arises
in ready-mix concrete operations. Since the product being mixed in the vehicle
has a life of about two hours, it can only be delivered within a limited area. An
unusual feature of this problem is that the vehicle is both a production resource and

8 1 Introduction

a transportation resource. Also, deliveries are subject to precise time-of-day due
dates imposed from the customer side. A natural objective is to maximize the value
of orders served, a problem that can be solved using classical techniques from fixed
interval scheduling (Arkin & Silverberg, 1987; Kroon et al., 1995). An alternative
objective is to maximize the number of orders served using the minimum number
of vehicles. For this problem, a heuristic based on swapping orders in and out of the
current solution performs well on problem instances with up to 100 orders (Garcia
& Lozano, 2004b). Also for this problem, Naso et al. (2007) use a metaheuristic
approach to minimize the cost of meeting all orders and apply their methodology to
an industry problem with 49 trucks in the Netherlands.

In a typical direct computer order system, there are many product configurations
available for a customer to choose from when ordering. It is thus impractical to carry
sufficient inventory based on forecasts of each configuration. As a result, assembly
and packaging operations occur only after customer orders arrive. However, in
highly competitive markets such as the one described, it is necessary to deliver to
customers within a short lead time, such as two or three business days. Motivated
by such applications in the computer and food processing industries, Chen and
Vairaktarakis (2005) study an integrated model of production and distribution
operations. They provide exact algorithms where possible and in other cases
heuristic methods supported by computational experiments. Similar characteristics
are also observed in a typical direct order system for food catering services.

Similar problems arise in the manufacture of industrial chemicals. In particular,
an adhesive that is used for making plywood panels has a lifespan of only 7 days.
The delivery process is complicated by the presence of two types of customers. One-
time customers typically specify a short delivery time. Regular order, or periodic,
customers require frequent delivery of partial orders. Geismar et al. (2008) consider
the problem of determining the minimum time needed to produce and deliver a given
set of orders to the regular order customers, subject to a given product lifespan, a
given production rate, and the capacity of a single truck, while also meeting the
expectations of one-time customers. This problem requires coordinated planning of
product sequencing and vehicle routing issues. The specific decisions to be made
include production quantities at different points in time, vehicle trip origination and
delivery times to various customers, and vehicle routes. Because of the intractability
of this complex problem, a heuristic solution procedure is developed. The heuristic
uses a genetic algorithm to find feasible solutions and is capable of solving problems
with up to 50 customers. The solutions delivered by the heuristic typically have cost
that is within a small percentage of a lower bound. However, instances with a larger
production capacity or faster production rate are more difficult to solve accurately.
Even with a fixed customer sequence, this problem is challenging, as discussed
by Armstrong et al. (2008). They develop a computationally efficient enumerative
algorithm. They also describe a similar supply chain scheduling application for a
manufacturer of home textile products such as linens, bedding, bathroom furniture,
and window treatments. As in the other examples they discuss, there is no inventory
of customized products.

1.2 Applications 9

The production and distribution of perishable food products is another important
application for short shelf-life products. The main tradeoff in the problem is that
frequent delivery not only improves the freshness of the products for customers
but also increases delivery costs. This is an example of a fundamental supply
chain scheduling problem. Farahani et al. (2012) study this problem, as faced by
a catering company in Denmark. This highly intractable problem is first simplified
by batching the fixed orders according to similar cooking temperature requirements.
Once the batches are created, a solution procedure is developed, iterating between
distribution schedules and production schedules. This procedure continues until it
fails to deliver improved results. The results of the iterative procedure are compared
with those from a benchmark approach used at the company, which involves a single
pass through production and then distribution planning steps. For problem instances
with 200 customers, a 40.9% reduction in product decay is achieved relative to
the benchmark, but at an increased cost of 18.7%. For items that are more quickly
perishable, the relative reduction in decay is even greater.

Another example of a short shelf-life product that naturally imposes coordina-
tion constraints between production and distribution is injectable chemotherapy
medications, which are packaged into pouches and delivered to patient locations.
These medications are only stable for a short amount of time. Beyond this time, the
drug becomes ineffective or even dangerous. Hence, the time between the start of
production and administration of the medication to the patient is strictly limited. On
the other hand, the patient’s treatment schedule cannot be changed to suit the stable
period of a pouch of medication. Because of these constraints, production and out-
bound distribution of the pouches of medication need to be closely coordinated. This
is another example of a fundamental supply chain scheduling problem. Kergosien
et al. (2017) develop an optimization model for this problem, with the objective of
minimizing the maximum tardiness of any delivery to the patient’s location. They
develop heuristics and lower bounds based on Benders decomposition. They are able
to solve instances with up to 40 jobs and three machines that produce the medication,
which is larger than problems that are solvable using standard software. However,
the gap between upper and lower bounds remains large for some instances.

1.2.1.2 Production–Distribution Scheduling for Make-to-Order Products

Due to increased consumer demand for customization, an increasing number of
products are made to order. Under a make-to-order business model, final products
are not processed until customer orders arrive. This typically means that customers
need to wait to receive the products which they ordered. However, in order to be
competitive, companies often promise a very short delivery lead time, e.g., three to
five business days. This means that orders have to be delivered right after they are
processed, which requires that the order processing and order delivery systems are
closely coordinated. Furthermore, some products are inherently difficult to store in
inventory because of their physical characteristics. For example, they may be large
or difficult to handle. Alternatively, they may require expensive maintenance while

10 1 Introduction

in inventory, for example, strict temperature, humidity, bacteria-free or dust-free
control. For these products, while their time in inventory is not strictly limited like
those described in Sect. 1.2.1.1, the expense and inconvenience involved in storing
them or the physical space required to do so implies a high priority for inventory
reduction. This is only achievable if the production and transportation schedules are
closely coordinated.

A problem of this type arises in the production and delivery of computer
assemblies. These products are customized for the make-to-order requirements of
customers and shipped all over the world by air. At the time of order acceptance,
based on order quantity and agreed due date, components are transferred from
inventory to the assembly line. Air transport capacity is limited and has two
types. First, normal capacity is reserved in advance, consistent with the company’s
production plan. Second, special capacity is available for immediate transportation;
however, this is substantially more expensive than normal capacity. Delivery is
time-sensitive, due to penalty costs for delivery either before or after the due date
agreed for the order. Also, storage of the large computer assemblies is expensive.
The two main decision problems are allocating accepted orders to flight capacities
and scheduling assembly to match detailed schedules with minimum inventory.
For these problems, Li et al. (2005b) develop heuristic procedures that outperform
standard scheduling heuristics for planning periods up to 48 days. Li et al. (2006)
report several performance statistics that show an improvement over industry
benchmark procedures for problem instances with up to 100 orders and 20 flights.

Consider a make-to-order manufacturer that agrees to pay shipping cost when
it accepts orders and delivery dates. In order to meet those due dates, multiple
shipping modes—for example, overnight, 1-day, 2-day, and so on—are available.
Shipping cost is typically more expensive for faster shipping. Orders have different
processing times and may, in various situations, be processed either preemptively
or nonpreemptively. An important question, addressed by Stecke and Zhao (2007),
is how to schedule production so as to minimize shipping cost, while meeting
agreed delivery dates. A significant characteristic of this problem is whether partial
delivery of an order is allowed. If so, and shipping cost is a convex decreasing
function of shipping time, then scheduling production in earliest due date order is
optimal. However, if partial delivery of an order is not allowed, then the problem
is intractable. For this case, a heuristic procedure is designed and shown to provide
solutions that average within 6% of optimal shipping cost for problem instances
with up to 500 orders. Many major online retailers face similar problems; see, for
example, Schubert et al. (2018) and Zhang et al. (2018).

Appliance manufacturers face similar issues, when serving a mixture of domestic
and international customers. Delivery to those customers is performed by several
third-party logistics providers. Whereas domestic orders can be consolidated or
split for shipping purposes, the same is not true for international customers.
Companies may use a predetermined replenishment policy for many materials.
As a result, trucks that are used for inbound delivery are available for reuse for
outbound delivery at predictable times, although with additional cost in the event
of a holding delay for the truck. Additional trucks may need to be obtained

1.2 Applications 11

from a third-party logistics provider. In this case, the company faces a supply
chain scheduling problem that requires coordination on three levels, insofar as
both inbound and outbound deliveries need to be coordinated with the production
process. Considering the objective of minimizing the total cost, Toptal et al. (2014)
study myopic, hierarchical, and coordinated solutions. Using a numerical study,
they compare these three approaches to quantify the benefit of coordination. They
conclude that this benefit is significant, especially in situations where holding costs
for inventory and vehicles are relatively small compared to other costs. A tabu search
implementation of the coordinated approach finds solutions with costs that routinely
come within 1% of a lower bound.

As a major worldwide industry, steel manufacturing presents similar problems,
for example, in the shipment of make-to-order steel coils to customers. Each order
has a specified time window that may vary between 1 and 5 days in length and
is agreed at the time of order acceptance. Given a set of orders that need to be
processed and delivered, the problem is to find a schedule for processing the orders,
managing finished goods inventory when necessary, and delivering to customers
within the time window. The objective is to minimize the total inventory and delivery
cost. Li et al. (2017) study various cases of the problem, depending, for example,
on whether orders are splittable or non-splittable and whether idle time is needed
between the production of orders. The solvability of the different problems varies
substantially, depending on those problem characteristics. They provide optimal
algorithms or intractability results for the various cases.

When both offline and online scheduling of products are required, meaning
that new orders are constantly being introduced, this problem becomes even more
challenging. In this context, Tang et al. (2019) extend the work of Li et al. (2017)
to consider both offline and online scheduling of products that require two stages
of shipping, for example, from the manufacturing plant to a pool point such as a
distributor and then from there to a customer site. For these intractable problems,
they propose efficient heuristics and analyze their asymptotic performance. They
use data from a Baosteel plant to validate the quality of their heuristic results for an
offline version of the problem. Their results also provide managerial insights that
are of value to the company and to other manufacturers.

1.2.1.3 Scheduling and Pricing

The coordination of scheduling decisions (which are typically made by an opera-
tions department) and pricing decisions (which are typically made by a marketing
department) is central to supply chain scheduling. In studying this problem in a
make-to-order environment, Chen and Hall (2010) cite several papers that discuss
applications of joint production planning, inventory, and pricing models for catalog
sales (Kunreuther & Schrage, 1973), multiple constant-priced goods (Gilbert,
2000), and multiple customers with price discrimination (Charnsirisakskul et al.,
2006). An objective of the work of Chen and Hall (2010) is to motivate the
consideration of decisions for these applications at the scheduling level, rather

12 1 Introduction

than at the production planning level. Thus, the applications are similar, but the
decisions modeled are more detailed. They consider three alternative scheduling
costs and the maximization of net profit which is defined as revenue less scheduling
cost. They develop computationally efficient optimal algorithms for these three
problems, accompanied where available by intractability results. This analysis
enables estimation of the value of coordinating the pricing and scheduling decisions
to various degrees, including a partially coordinated approach using information
typically known to a marketing department, as well as an optimal algorithm and a
simple heuristic for the fully coordinated problem. The main insight obtained is that
the benefit of coordination is significant even if the pricing and scheduling decisions
are only partially coordinated.

Consider a situation where a manufacturer quotes prices for a set of order
inquiries. Each inquiry is either canceled or confirmed by its owner following a
certain probability distribution that depends on the quoted price. The manufacturer
then incurs a production scheduling cost for processing each firm order. Two types
of price quotation schemes, simultaneous and sequential quotations, are investigated
in Liu et al. (2012). Lu et al. (2013) discuss a fundamental tradeoff that arises in
many organizations, where pricing decisions are made by the marketing department
for the purpose of maximizing sales, whereas manufacturing cost issues that can
be addressed by effective scheduling are made by the production department, a
classic conflict within supply chain scheduling. A related case study by Respício
and Captivo (2008) develops a decision support system for Portucel, a major
Portuguese paper producer, for coordinating order acceptance, capacity planning,
and scheduling decisions.

Finally, consider the coordination of pricing and production scheduling decisions
in the context of a make-to-order environment. At the beginning of each period in a
planning horizon, the manufacturer sets the price of the base product, which in turn
sets the prices for the customized products accordingly. Given the chosen prices,
orders for the products arrive. In each period, together with the pricing decision,
the manufacturer needs to make a production scheduling decision for processing
accepted orders on a single production line. Yue et al. (2019) provide a detailed
description of this operation at Kuyin, a make-to-order manufacturer in China.

1.2.1.4 Subcontracting and Scheduling

Retail products with a short selling season present issues related to subcontracting.
Such products include toys, fashion apparel, computer games, and other electronics.
Because of the significant markdowns that are often taken on unsold products, retail-
ers strongly prefer to delay placing orders until as much information is available as
possible, which is typically right before the start of the selling season. This creates
substantial problems due to limited production capacity. This in turn motivates
the use of subcontracting, an alternative that is often substantially more expensive
than in-house production. Chen and Li (2008) study this fundamental supply
chain scheduling problem, where scheduling decisions need to be coordinated with

1.2 Applications 13

subcontracting decisions. They develop an analytical model to study this type of
coordinated decision making. The objective is to minimize total production and
subcontracting cost, subject to a constraint on the maximum completion time of
the orders. They provide both worst-case and asymptotic analyses of a heuristic
for the problem and study the value of the subcontracting option. A computational
study reveals that subcontracting provides the manufacturer with a significant cost
reduction.

A related problem arises in the manufacture of liquid crystal displays. LCD
panels are purchased from subcontractors when production capacity or inventory
level is insufficient. Lee and Choi (2011) address this problem. Similarly, in the steel
industry, slabs are frequently purchased from subcontractors. These applications can
be modeled as a two-stage production process, where the first stage is highly capital-
intensive, and the second stage is an assembly process where there is an option to
produce the needed components in-house or to outsource them. The decision maker
needs to decide which operations to subcontract out and which to process in-house
and also to determine a production schedule for the in-house items. The authors
apply the natural objective of minimizing the sum of an internal scheduling cost
and an outsourcing cost. They discuss the solvability of various special cases of the
problems and describe and analyze a heuristic solution procedure.

1.2.1.5 Other Applications

The coordination of scheduling and transportation in the steel industry is an
important application. Steel ingots are transported by a crane to a heating machine
that operates in batch mode and then transported by a vehicle to a rolling mill.
The objective is to minimize the total of makespan and setup cost of the batches.
This work differs from most of the related literature in that it considers the
transportation of semi-finished jobs and finished jobs as well as the scheduling
of the batching machine. The key tradeoff here is as follows. Batching more jobs
together reduces the setup cost incurred, but the delays that result from the batching
process may increase the makespan of the schedule. The problem of minimizing
the above combined objective is intractable. Tang and Gong (2008) develop a
heuristic that makes extensive use of the rule of filling all batches except the
first to a predetermined capacity, which permits a theoretical worst-case analysis.
This heuristic also performs well on randomly generated problem instances. For
problems with 50 jobs, relative errors can be more than 10%, but for problems with
1000 jobs they are typically less than 1%. However, performance degrades when the
capacity of the batch processing machine is larger, apparently because the vehicle
becomes the bottleneck resource which is not efficiently utilized.

The need for coordination of decisions at the tactical, operational, and trans-
portation levels generates interesting problems. The design and implementation of a
planning system for supply chain scheduling at Carlsberg Denmark, a high volume
beer brewer, are described by Kreipl and Pinedo (2004). The overall challenge issue
here is coordination of decisions for (a) medium term planning with a strong focus

14 1 Introduction

on production costs and capacities, (b) complex scheduling issues in supply chain
operations, and (c) transportation decisions to provide a good customer service level.
Viewed at a high level, the system generates its decisions hierarchically. First, the
medium term planning system generates its results. Then, these are used as input
to the short-term scheduling system. Finally, the results of the short-term planning
system are used for transportation planning. Besides delivering a fully implemented
solution to the company, this work illustrates how scheduling decisions fit within
multi-functional centralized supply chains.

1.2.2 Decentralized Applications and Models

Multiple decision maker, or decentralized, planning problems arise everywhere in
supply chains. The substantial body of supply chain management addresses many
coordination issues in this environment. However, our focus here is on decisions
which, at least in part, involve scheduling. One example is a manufacturer which
works with a distributor. The manufacturer may face what it views as a production
scheduling problem, whereas from the distributor’s perspective the main issues are
batching and vehicle routing. A second example would be a group of manufacturers
who, either individually or in coalitions, are working with outsourced resources
owned by one or more self-interested third parties. One distinction between the
supply chain scheduling environments discussed in Sect. 1.2.1 and those discussed
here is that, in the present case, administratively enforced coordination is not
possible across different organizations. As a result, the design of incentives and
the use of modeling with cooperative and noncooperative game theory are more
prevalent for decentralized supply chain scheduling applications than for centralized
ones.

1.2.2.1 Scheduling and Batching

A central supply chain scheduling problem is the coordination of scheduling,
batching, and delivery decisions. Hall and Potts (2003) consider a variety of such
problems that arise in an arborescent supply chain where a manufacturer delivers to
several customers. They use the assumption of batch availability, under which a job
only becomes available for subsequent processing or delivery to a customer when
the entire batch that includes it has been processed. The need to coordinate schedul-
ing, batching, and delivery decisions defines a fundamental supply chain scheduling
problem. The objective considered is minimization of the total of scheduling and
delivery cost, where the scheduling cost is measured in various practical ways. Each
problem is either solved by the development of a computationally efficient dynamic
programming algorithm or shown to be formally intractable. A computational study
shows that cooperation between a supplier and a manufacturer has the potential
to reduce the overall supply chain cost by 20% or more, depending on how the

1.2 Applications 15

scheduling cost is measured. Incentive mechanisms that show how these cost
savings can be distributed in order to encourage cooperation are also described.

Similar issues arise in just-in-time production lines with two products, as used,
for example, in automobile manufacturing at Toyota, Nissan, and Chrysler. Here,
the distributor batches the manufacturer’s finished goods and delivers them to
the retailers. Manoj et al. (2008) develop mathematical models for individual
optimization of the manufacturer’s problem and of the distributor’s problem and for
optimization of the overall supply chain problem. A computational study shows that
substantial savings can be achieved by optimization at the supply chain level. They
also study the cost of conflict, which is the additional cost incurred by one party
when the other party imposes its optimal solution. From a computational study, the
cost of conflict is found to be significant. However, coordinated decision making
generates sufficient additional profit to encourage the cooperation of the parties.

1.2.2.2 Capacity Allocation

In industries that are capital-intensive and facing volatile demand for their products,
several supply chain scheduling issues arise. These issues include vulnerability
to capacity shortfalls (Durango-Cohen & Yano, 2006). Iyer et al. (2003) identify
several practical examples in the fashion goods, telecommunications, and electricity
supply industries. When faced with orders which they cannot meet, manufacturers
apply capacity allocation mechanisms. However, these mechanisms need to be
coordinated with scheduling decisions. This topic is studied by Hall and Liu (2010).
This is a fundamental supply chain scheduling problem, in that it extends across
multiple functions that include scheduling. Analysis of this problem requires the
use of cooperative game theory to study the stability of coalitions of distributors
that combine their orders. Hall and Liu (2010) consider a multiple product supply
chain where a manufacturer receives orders from several distributors. If the orders
cannot all be met from available production capacity, then the manufacturer
allocates capacity and provides a set of resubmittable orders to the distributors.
The distributors may then share their allocated capacity before submitting their
orders. The distributors’ problem is modeled as a cooperative game, and optimal
algorithms are developed for all the models described. This work studies the benefit
to the manufacturer from taking into account scheduling costs in capacity allocation
decisions, the benefit to the distributor from sharing their capacity, and the value
to the supply chain of coordination between the manufacturer and the distributors.
The exact evaluation of decisions about the appropriate coordination level improves
managers’ ability to make those decisions.

Third-party reservation systems for outsourced capacity define another important
supply chain scheduling problem. One example is SPADE, which provides a
group of specialized support facilities to semiconductor companies. Capacity can
be booked by those companies at rates which depend on the time when the
capacity is needed. A second example, UMC, is Taiwan’s leading semiconductor
foundry, which provides information sharing and real-time capacity reservation to

16 1 Introduction

its customers. This process is supported by a full-service information portal. Cai
and Vairaktarakis (2012) model this situation for a group of manufacturers which
outsource their work to a third party that owns a specialized production facility.
Manufacturers reserve capacity on a first-come first-served basis. Overtime capacity
can be reserved, but it is substantially more expensive. There is a lateness cost
penalty for jobs that are not delivered on time. The objective of each manufacturer
is to minimize the total of booking, overtime, and lateness costs. A cooperative
game model is developed for the problem, where the third party designs a savings
scheme under which it is better for the manufacturers to cooperate than to reserve
capacity individually. A mechanism that incentivizes the manufacturers to report
their data truthfully is also designed. A computational study shows that the savings
from cooperation increase with the number of manufacturers.

1.2.2.3 Sequencing and Scheduling Games

Cooperative games defined over sequencing problems have application to numerous
service systems. Consider a situation where several customers need to be served
by a single server. Each customer has a cost function that depends on his or her
completion time, i.e., the waiting time before service begins plus the service time.
The cost is a nondecreasing function of the completion time. In these situations, it is
important to consider two problems. The first problem is how to find a sequence of
the customers that minimizes the total cost. The second problem is how to allocate
the total cost among the customers in a way that is stable, meaning that no pair of
customers will agree to interchange their positions within the sequence. Within this
class of problems, we discuss several variations of sequencing games.

In most sequencing games (Curiel et al., 1989), each customer may have a
different service time. An assumption that is common but not universal is that the
customer’s cost is a linear function of the completion time. Under this assumption,
it is easy to derive an indexing rule that minimizes the total cost, equivalently with
a result in classical scheduling theory (Smith, 1956). Curiel et al. (1989) also derive
a rule to divide the cost savings from changing the sequence to reduce the overall
system cost and characterize this rule axiomatically. It is also shown that simple
sequencing games are a proper subset of convex games and therefore have a stable
allocation of savings. Scheduling games are an extension of sequencing games
where the jobs do not have an initial sequence. Examples include passengers who
arrive on the same flight at an immigration process and arriving mail orders.

1.2.2.4 Manufacturing and Distribution

An interesting everyday application that requires the coordination of manufacturing
and distribution arises in the production of newspapers, a highly perishable product.
A complication that arises with many major city newspapers is that several different
editions are published, with content that includes locally relevant information

1.2 Applications 17

and advertising for each of several “zones,” for example, suburbs of a city.
The distribution process involves transportation from the print facility to a few
distribution centers, then to many drop-off points, and finally to customers’ homes.
Hurter and van Buer (1996) take the perspective that the printer and distributor are
both parts of the same organization.

However, Dawande et al. (2006) discuss a similar problem in an equally
natural decentralized context where the printer and the distributor are independent
organizations. Complications and tradeoffs arise in the sequencing of different
editions and varying travel times between locations. The manufacturer and the
distributor each has an ideal schedule, which is determined by cost and capacity
considerations. Lack of coordination between these two schedules results in poor
overall system performance. The authors study two problems where the manufac-
turer focuses on minimizing unproductive time, while the distributor minimizes
customer cost measures in the first problem and minimizes inventory holding cost
in the second problem. Several practical scenarios about the level of cooperation
between the manufacturer and the distributor are studied, leading to the development
of algorithms for solving the related scheduling problems. The cost saving provided
by cooperation between the decision makers is usually significant. This work has
implications for how manufacturers and distributors negotiate, coordinate, and
implement their supply chain schedules in practice.

1.2.2.5 Subcontracting Games

An important application of outsourcing is eHub, which is used by Cisco Systems
as a private trading e-marketplace. This portal provides planning and execution
functions for tasks across a company’s extended supply chain, as described by
Grosvenor and Austin (2001). Orders from Cisco’s customers are communicated to
its related manufacturing partners over a private network. The production schedules
of all parties are visible to everyone with access to the portal. As a result,
opportunities for coordinated capacity planning and scheduling abound within this
network. Aydinliyim and Vairaktarakis (2010) consider a set of manufacturers that
outsource their operations to a third party, based on published prices that vary with
production times. The manufacturers minimize the total of reservation and work-
in-process costs. After all reservations have been made, the third party finds a
schedule that minimizes the total cost for the manufacturers as a whole, but not
necessarily for all subsets of manufacturers. The third party then designs a savings
sharing scheme to coordinate the manufacturers. Aydinliyim and Vairaktarakis
(2010) develop an algorithm for the manufacturers and a savings scheme for the
third party. A computational study shows that the overall supply chain cost can be
reduced by an average of 32% if the third party agrees to cover a share of the work-
in-process cost.

A well publicized and heavily subcontracted project is the design and con-
struction of the Boeing 787 Dreamliner aircraft. Most of the top level component
suppliers selected for this product are long-standing suppliers of Boeing. Because of

18 1 Introduction

short lead times for delivery, many of those suppliers subcontract part of their work
to smaller companies, some of which then became overloaded due to the size of the
overall project. As a result, each supplier needs to decide the amount of workload
to be subcontracted, so as to minimize the completion time of the in-house and
subcontracted workloads. Vairaktarakis (2013) considers a set of manufacturers that
can outsource their jobs to a third party with production resources. The third party
gives priority to manufacturers whose subcontracted workload is relatively small.
This encourages manufacturers to compete for position in the processing sequence
of the third party. Under various possible assumptions about what production
sequences are feasible, equilibrium schedules are described. In an equilibrium
solution, no decision maker has an incentive to change its decisions unless another
decision maker does so first.

1.2.2.6 Multi-Stage Production with Setups

During the manufacture of kitchen furniture, a large number of different slabs of
wood are cut, painted, and assembled to build the furniture. In different departments
of the plant, items are grouped according to different attributes. In the cutting
department, parts are grouped according to their shape and material; whereas, in
the subsequent painting department, parts are grouped according to their color, and
finally the assembly of the furniture is organized on the basis of kitchen models.
In both departments, a setup occurs when the attribute of a new part changes. If a
part must be cut with a different shape from the previous one, cutting blades and
machinery must be reconfigured. Similarly, in the painting station, when a new
color is used, the equipment as well as the pallets must be thoroughly cleaned in
order to eliminate all the residue of the previous color. Hence, in both cases, costs
in time and manpower are incurred. The limited availability of interstage buffering
between the two stages forces the sequences in which the items are processed in
the two stages to be coordinated. Agnetis et al. (2001) study this problem. Each
department aims to minimize its own total setup cost, but the objectives of the two
departments fundamentally conflict because their ideal schedules conflict. Relevant
objectives include minimizing the total number of setups and the maximum number
of setups by either of the two departments. While these problems are intractable, it
is possible to design an efficient heuristic that finds an optimal solution in 887 out
of 900 instances of the problem.

In many sequencing problems, a variety of products in various stages of
development pass through multiple workstations, as occurs in automobile plants.
Boysen et al. (2012) provide a survey of research on mixed-model assembly lines
and a particular example of physical resequencing where trucks may violate efficient
sequencing rules due to their different sizes which impact the limited available
physical space. As a result, an automated storage and retrieval system with a buffer
capacity of 118 places is used for resequencing. As a second example, they mention

1.2 Applications 19

virtual resequencing, where in order to maintain production efficiency the model
sequence is unchanged, but the assignment of completed products to customer
orders may be changed in order to satisfy just-in-time delivery constraints.

1.2.2.7 Other Applications

Consider a multiple decision maker system for terminal management at a container
port. The financial impact of this problem is considerable: an average cargo liner
spends 60% of its time in port and incurs a cost of about $1000 per hour while
it does so. There are five classes of decision makers: ship agents who schedule
loading and unloading, stevedore agents who manage the loading and unloading
of all the ships, service agents who distribute the containers within the terminal,
transtainer agents who optimize the use of loading and unloading machines, and
gate agents who interact with incoming and outgoing land transport. Rebollo et al.
(2000) design a communication system under which the decision makers initiate
requests and queries and receive information. The entire system is supported by a
platform that is accessible to all.

Another important supply chain scheduling problem involves the operations of
a supply chain consisting of a textile company that supplies fabrics to an apparel
company. Retail buyers are typically located in a different country, and they impose
due date requirements for orders. Meeting these due dates may require the fashion
company to use expensive delivery methods. The short selling season for the
fashionable apparel products imposes a time window for the production of materials,
for example, yarn, by the supplier, and production and delivery time windows
for the apparel company. The observed supply chain performance is suboptimal,
due to double marginalization. For this problem, Yeung et al. (2011) develop a
computationally efficient procedure to optimize the overall supply chain. They also
describe two simple and practical profit sharing schemes that coordinate the supply
chain.

Another important high value scheduling problem is the allocation of scarce
radio spectrum among customers who submit bids for channels. Centralized auction
mechanisms for this problem are known to have drawbacks, due to a lack of
reliability and computational ability at the central planner. They are also vulnerable
to problems with communication issues. As a potentially more robust alternative,
Yang et al. (2019) focus on the design of distributed mechanisms. They design two
such auction mechanisms, both of which are truthful, in the sense that it is in the
interest of the bidding customers to bid their true value for the open channels. One
of these mechanisms results in an overall optimal allocation, whereas the other is
heuristic but computationally more efficient.

For many of the applications discussed above, additional details are provided in
later chapters. For example, Sect. 3.5 provides more information about the work of
Chen and Vairaktarakis (2005) on the production and distribution of short shelf-life
products.

20 1 Introduction

1.3 Limitations to Scope

We discuss various limitations to the scope of this book and provide some examples
of valuable and interesting work that falls outside that scope. Our main focus
is on the benefit that arises from coordinated decision making, either between
production scheduling and other functions under the control of a single decision
maker or between the decisions of multiple self-interested decision makers. There-
fore, problems that involve some related issues but are reducible to a classical
single decision maker scheduling problem, for example, by the addition of some
constraints, fall outside our scope. The main reason for this is typically that the
reduced problem is mathematically similar to the classical scheduling problem. This
makes such problems of less interest within the context of our work. We now provide
five examples of research that makes valuable and interesting contributions to the
scheduling or supply chain literature, but nonetheless falls outside the scope of this
book.

Sarmiento and Nagi (1999) provide an extensive review of the literature of inte-
grated analysis of production–distribution systems. They describe numerous appli-
cations where coordinated decision making across functions provides improved
performance relative to sequential decision making. However, the production
problems considered are at the level of aggregate planning and therefore do not
fit within our definition of scheduling. As a result, many of the works cited in their
review are not within the scope of supply chain scheduling for the purposes of our
book.

Wang et al. (2005) study the problem of how to process incoming mail in order to
match a fixed outbound delivery schedule. Arriving mail has various destinations in
different proportions and is delivered by trucks with limited capacity. The problem
involves finding a processing sequence for the mail that maximizes the unused truck
capacity. Since the outbound delivery schedule merely imposes due date constraints
on the processing schedule and classical scheduling allows modeling of such issues,
this problem does not fall within the scope of supply chain scheduling for the
purposes of this book. Indeed, the authors model and solve the problem using
classical scheduling methodology.

Lejeune (2008) studies the maintenance of cycle service levels in a multi-stage
supply chain. The problem requires the development of integrated replenishment
plans that satisfy various performance measures related to stockouts across multiple
periods over a planning horizon. He derives a deterministic reformulation of the
stochastic planning problem. Based on the results of a computational study for
a chemical supply chain, practical problems can be solved using this approach.
However, since this work does not consider scheduling decisions at the individual
job level, it falls outside the scope of our book.

A comprehensive treatment of multi-agent scheduling can be found in Agnetis
et al. (2014b). In a multi-agent environment, there is a single decision maker.
However, multiple agents or customers each owns a (not necessarily disjoint) subset
of the jobs. The reward or cost of each agent depends only on the performance of
the jobs which it owns. The decision problem is substantially complicated by the

1.4 Overview of the Book 21

fact that the jobs share common resources. Agnetis et al. (2014b) describe several
applications. This work focuses on the development of Pareto-optimal solutions for
the agents, within classical scheduling environments. However, this topic contains
no issues that arise directly from supply chains, and hence it does not fall within our
scope.

Ivanov et al. (2014) consider an integrated multi-stage scheduling and job
routing problem with nonpreemptive operations, which has application to process
industries. They perform a dynamic decomposition of the problem and propose an
integrated solution. Again, because the decisions considered, including the routing
of jobs within flexible production environments, all fall within the range of classical
scheduling problems, this work is outside the scope of supply chain scheduling for
our purposes.

1.4 Overview of the Book

We provide an overview of the remainder of this book. Chapter 2 describes common
elements shared by the scheduling problems to be discussed. It also contains
some useful mathematical background including a discussion of computational
tractability and an overview of a variety of optimization and game theory techniques
that are applied in modeling and solving supply chain scheduling problems. Our
main focus throughout the book is on the value added by the coordinated decision
making of scheduling and other functions, relative to local or even decentralized
decision making for different parts of a problem.

After the two introductory chapters, the book is divided into two parts. Part I
consists of Chaps. 3 through 6. These chapters study centralized problems, i.e., those
with a single decision maker, in supply chain scheduling. Chapter 3 considers inte-
grated production scheduling and outbound distribution problems where decision
making is offline, i.e., all the necessary data is available at the start of the planning
horizon, including both single and multiple machine problems. The topics covered
include delivery with a limited number of vehicles, batch delivery to single and also
to multiple customers, problems with fixed delivery dates, problems with multiple
manufacturing plants, and those with two stages of delivery.

Chapter 4 considers a similar set of problems to those studied in Chap. 3, but in
an online environment, i.e., one where new information arrives after some decisions
have already been made. This new information is typically about a new job or
order, the parameters of which only become known when it becomes ready for
processing. An interesting and practical issue that is also discussed here is when
should a planning problem be modeled as offline, possibly with a rolling horizon
approach, and when should it alternatively be modeled as an online problem.

Chapter 5 considers problems where production scheduling decisions are coor-
dinated with pricing decisions. The topics covered include product- and order-
based problems within a single period and also multi-period pricing and scheduling

22 1 Introduction

problems. Several of these problems are intractable, as we discuss. In some cases,
the intractability of the problems considered motivates the design and performance
analysis of approximation algorithms.

Chapter 6 concludes Part I with a discussion of joint subcontracting and schedul-
ing decisions. One topic is the study of problems with a lead time performance
guarantee. We also study the value of subcontracting and how to make scheduling
decisions subject to a budget for subcontracting. The more general production
environment of scheduling in a flowshop is also discussed, as well as problems
that involve delivery of subcontracted jobs. Finally, we consider problems with
generalized subcontracting structures such as volume discounts.

Part II consists of Chaps. 7 through 9. These chapters study decentralized prob-
lems in supply chain scheduling, i.e., those with multiple entirely or predominantly
self-interested decision makers. Chapter 7 considers four foundational problems
in the supply chain scheduling literature, where conflict and cooperation issues
are addressed through optimization. These are (a) the coordination of schedule
formation with the quantity and timing of batch deliveries, (b) the coordination
of the delivery schedules of parts suppliers with a manufacturer’s final assembly
schedule, (c) the coordination of a manufacturer’s production schedule with a
downstream distributor’s delivery schedule, and (d) the coordination of sequences
involving setup costs between consecutive stages of a supply chain. In all cases, the
benefit of coordinated vs. separate optimization is discussed and analyzed.

In Chap. 8, we consider various problems that require cooperative supply chain
scheduling solutions. The first topic is cooperative sequencing games which, given
an initial arrival order, model the priority system of a typical service process and
include many practical variations. The second topic, scheduling games, assumes no
initial order and allows us to study mechanisms for enabling cooperation between
the agents when it does not occur spontaneously. Achieving cooperation within the
globally important business process of project management is also discussed. In
addition, the coordination of scheduling and capacity allocation decisions, and of
scheduling and outsourcing decisions, is considered.

Chapter 9 concludes our work with a study of problems that require non-
cooperative supply chain scheduling solutions. For noncooperative games with
complete information, we study a variety of methods for finding and evaluating
an equilibrium solution. We discuss enhanced complete information games where
sequential decision making improves the quality of an equilibrium, games with
leaders and followers, and games with partially altruistic behavior by the agents. For
situations where the agents have private information, we first consider mechanisms
without payments that can be used to achieve truthful reporting and either optimal or
approximately optimal supply chain performance. Finally, under algorithmic mech-
anism design, we consider several important supply chain scheduling applications
which motivate a wide variety of algorithms and payment scheme specifications to
achieve truthful reporting.

Each chapter in Parts I and II concludes with a section on future research topics
of importance. These topics are motivated by applications that arise from changing
marketplaces and also define challenging theoretical problems.

Chapter 2
Solution Methods for Supply Chain
Scheduling Problems

Abstract In this chapter we describe some common elements shared by all
scheduling problems, introduce some basic concepts related to computational
tractability of a problem, and summarize several commonly used solution methods
for solving supply chain scheduling problems. These solution methods include
dynamic programming, branch-and-bound, integer programming, and approxima-
tion procedures. We also provide a brief introduction to both cooperative game
theory and noncooperative game theory, which are often used to model decentralized
supply chain scheduling problems. Several classical scheduling problems and
supply chain scheduling problems are used as examples to illustrate the concepts
and solution methods presented.

2.1 Common Elements in Scheduling Problems

Both classical and supply chain scheduling problems share some common charac-
teristics. Most scheduling problems share four basic elements: (1) a set of jobs or
orders N = {1, . . . , n}, (2) a set of machines or production lines M = {1, . . . , m}
where the jobs are processed, (3) a set of rules or constraints that must be followed
or satisfied, and (4) one or more objective functions representing the performance
criterion or criteria of the decision maker(s). Most studies on classical scheduling
use the terms jobs and machines, whereas some studies on centralized supply
chain scheduling use the terms orders and production lines, and some studies on
decentralized supply chain scheduling use the terms agents and resources. While
different terms are used to reflect the diverse application settings studied, for
consistency, we use the terms jobs and machines throughout this chapter.

There are several commonly used machine environments or configurations where
jobs are processed. Three most common machine environments are:

• Single Machine: all the jobs are processed on a single machine.
• Parallel Machines: all the machines perform the same function such that each

job only needs to be processed on one of the machines. The machines can be
identical if they have the same processing speed, uniform if they have different

© Springer Nature Switzerland AG 2022
Z.-L. Chen, N. G. Hall, Supply Chain Scheduling, International Series
in Operations Research & Management Science 323,
https://doi.org/10.1007/978-3-030-90374-9_2

23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-90374-9_2&domain=pdf
https://doi.org/10.1007/978-3-030-90374-9_2

24 2 Solution Methods for Supply Chain Scheduling Problems

speeds which are job independent, and unrelated if they have different speeds
which are both job and machine dependent.

• Flowshop: the processing of each job consists of m operations, one on each
machine, performed in a pre-specified sequence which is identical for different
jobs. If the sequence of operations is job dependent, the resulting more general
machine environment is called a jobshop. If the different operations of each job
can be performed in any sequence, then the resulting machine environment is
called an openshop.

It is assumed in almost all scheduling problems that the machine environment is
known precisely in advance. However, the jobs and their parameters may or may
not be known in advance depending on the nature of the application. In an offline
scheduling problem where every parameter of the problem is known in advance, the
job set N as well as all the parameters about each job are given before scheduling
decisions are made. In an online or stochastic scheduling problem, however, not
all the parameters of the problem are known in advance. Typically, in a stochastic
scheduling problem, the job set N and some parameters of the jobs are known with
certainty, but only probability distributions of some other parameters of the jobs are
known. In an online scheduling problem, even the job set may not be known, and
little or nothing may be known about the parameters of a job until it arrives.

Typical parameters of a job j and the commonly used notation include:

• Weight (wj): the importance weight or priority factor of job j , or cost of job j .
• Processing time (pj or pij): the time needed for processing job j on a single

machine or one of the multiple identical parallel machines (pj), or that on a
specific machine i in other machine environments (pij).

• Release time (rj): the nonnegative time when job j arrives at the system, i.e., the
earliest time the job can start processing.

• Due date (dj): the time when job j should complete processing, or be delivered
to its destination. If the due date must be met, then it is referred to as the deadline
of the job. Otherwise, there is typically a cost for not meeting it.

Two of the most fundamental decisions involved in a scheduling problem are
assigning jobs to machines and sequencing the jobs on each machine. Most classical
scheduling problems involve these two decisions only. However, besides these
decisions, supply chain scheduling problems usually involve other decisions, such as
capacity allocation, delivery, subcontracting, and pricing. There are many different
objective functions that are motivated by practice and have been studied in the
literature. Some commonly used objective functions include:

• Makespan, Cmax = maxj∈N {Cj } or Dmax = maxj∈N {Dj }, where Cj denotes
the completion time for processing job j , and Dj the delivery time of job j . The
makespan represents the elapsed time during which work is being completed.

• Total (weighted) completion time of the jobs,
∑

j∈N Cj (
∑

j∈N wjCj). This
represents the total work-in-process inventory holding cost of the jobs.

2.2 Computational Complexity 25

• Total (weighted) delivery time of the jobs,
∑

j∈N Dj (
∑

j∈N wjDj). This
measure, if divided by n, represents the average (weighted) delivery lead time
of the jobs.

• Maximum lateness, Lmax = maxj∈N Lj , where Lj = Cj − dj , or Dj − dj
(depending on whether Cj or Dj is used as the time when the work for job j is
completed), denotes the lateness of job j . This measures the worst-case lateness
of the jobs.

• Total (weighted) tardiness of the jobs,
∑

j∈N Tj (
∑

j∈N wjTj), where Tj =
max{0, Lj } denotes the tardiness of job j . This measure, if divided by n,
represents the average (weighted) tardiness of the jobs.

• Total (weighted) number of tardy jobs,
∑

j∈N Uj (
∑

j∈N wjUj), where Uj = 1
if Lj > 0 (i.e., job j is late), and 0 otherwise. This is similar to, but easier to
measure than, the total (weighted) tardiness objective function.

In addition to the terms and notation defined above, in later chapters of this book
where specific supply chain scheduling problems are discussed, new parameters and
new objective functions are introduced whenever necessary. A three-field notation
α|β|γ proposed by Graham et al. (1979) is commonly used to represent a classical
scheduling problem, where the α field describes the machine environment such that
single-machine, parallel-machine, and flowshop are represented as “1”, “Pm”, and
“F ”, respectively. The β field describes constraints of the problem. For example,
if jobs arrive over time (i.e., have non-zero release times), then “rj” is entered in
this field. The γ field describes the objective function to be minimized. Using this
notation, for example, the problem of scheduling jobs on a single machine with the
objective of minimizing total weighted tardiness can be represented as 1||∑wjTj ,
and the problem of scheduling jobs on m parallel machines with the objective of
minimizing the makespan can be represented as Pm||Cmax.

To represent a class of supply chain scheduling problems involving both job
processing and outbound delivery of completed jobs, Chen (2010) proposes a five-
field notation, extended from the above three-field notation. This is described in
Chap. 3.

2.2 Computational Complexity

The theory of computational complexity (Garey & Johnson, 1979) is a useful frame-
work for understanding the tractability of combinatorial optimization problems,
including scheduling problems. Generally speaking, the complexity or tractability
of a problem is determined by the time complexity of the fastest possible (or
most efficient) algorithm for finding an optimal solution to any instance of the
problem. The time complexity of an algorithm for a given problem is the worst-
case computational time of the algorithm for the problem, measured by the required
number of basic operations as a function of the problem input length. The problem
input length is the number of symbols, strings, or bites needed to describe an

26 2 Solution Methods for Supply Chain Scheduling Problems

instance of the problem under a concise encoding scheme such as binary encoding
which uses log2 X bits to represent an integer number X. For example, consider
the classical single-machine scheduling problem of minimizing the total tardiness
1||∑ Tj (Koulamas, 2010). Any instance of this problem consists of n jobs, a
processing time pj and a due date dj for each job j , and a threshold Y for the
total tardiness. The problem input length (or input size) under a binary encoding is
thus

∑n
j=1(�log2 pj � + �log2 dj �) + �log2 Y �.

There are three types of algorithms as classified by time complexity: polynomial-
time algorithms, exponential-time algorithms, and pseudo-polynomial time algo-
rithms. They are defined as follows.

Definition 2.1 Given an algorithm for a problem, it is said to be a polynomial-time
algorithm if the worst-case computational time of the algorithm is bounded by a
polynomial function of the problem input length. Otherwise (i.e., if the worst-case
computational time is in the scale of an exponential function of the problem input
length), the algorithm is said to be an exponential-time algorithm. A polynomial-
time algorithm can further be called a strongly polynomial-time algorithm if its
worst-case computational time depends on the number of items in the input data
(e.g., number of jobs and machines), but not on the input lengths of items (e.g., input
lengths of job processing times and weights). A special class of exponential-time
algorithms is called pseudo-polynomial time algorithms, which have worst-case
computational time that is polynomial in both the problem input length and the
largest number in the problem input data.

For example, a simple algorithm that schedules the jobs in earliest due date first
(EDD) sequence has a time complexity of O(n log n) for the above cited problem
1||∑ Tj . Since this computation time is a polynomial function of the problem input
length, this algorithm is a polynomial-time algorithm for the problem involved.
However, this algorithm does not always find an optimal solution for the problem.

The set of all problems that can be solved by polynomial-time algorithms is
denoted as set P . There is another set of problems, denoted as NP , which includes
every problem such that given any solution, it takes polynomial time to check
whether this solution is feasible or not for the decision version of the problem.
It is known that P ⊆ NP , but it is a long-standing open question in computer
science whether P = NP (e.g., Kleinberg & Tardos, 2006). The general belief is
that P ⊂ NP .

Based on complexity theory, we can divide scheduling problems into several
categories:

• Polynomially solvable problems (or tractable problems), which can be solved by
polynomial-time algorithms

• NP -hard problems, which are intractable in theory, i.e., cannot be solved by
any polynomial-time algorithm unless P = NP . Such problems can further be
divided into two classes:

2.2 Computational Complexity 27

– Ordinarily NP -hard problems (or NP -hard problems in the ordinary sense),
which are NP -hard but can be solved by pseudo-polynomial time algorithms
which are quite efficient computationally in many cases

– Strongly NP -hard problems (or NP -hard problems in the strong sense),
which are intractable and cannot be solved by any pseudo-polynomial time
algorithm unless P = NP

The above problem classification is based on the assumption that a concise encoding
scheme such as binary encoding is used to represent problem input data. Hence,
NP -hard problems are also known as binary NP -hard because they are NP -hard
under a binary encoding scheme. If a unary encoding scheme is used to describe the
input data, an ordinarily NP -hard problem would become polynomially solvable
because the pseudo-polynomial time algorithm that solves the problem would
become polynomial under a unary encoding scheme. However, strongly NP -hard
problems would remain NP -hard even when a unary encoding scheme is used.
Thus, strongly NP -hard problems are also called unary NP -hard.

The above discussed problem 1||∑ Tj is ordinarily NP -hard because it is
intractable (Du & Leung, 1990), i.e., there is no polynomial-time algorithm that
can solve this problem unless P = NP , but there is a pseudo-polynomial time
O(n4P) algorithm that can solve the problem to optimality (Lawler, 1977), where
P = ∑n

j=1 pj .
If 1 day it is shown that P = NP , then all NP -hard problems will become

solvable in polynomial time. However, if P ⊂ NP , as commonly believed, then it
becomes mathematically valid to say that no polynomial-time algorithms can solve
NP -hard problems.

To clarify the complexity of a given problem, the concept of polynomial
reducibility can be very useful. It is defined as follows.

Definition 2.2 Given a problem A. Suppose that some algorithm solves problem
A. Another problem B is said to be polynomially reducible or simply reduces to
problem A if problem B can be solved by transforming it to inputs for problem A

in polynomial time and calling the algorithm that solves problem A a polynomial
number of times.

If problem B is polynomially reducible or reduces to problem A, then problem B

is no harder than problem A, and hence the following hold: (1) if A is polynomially
solvable, then B is also polynomially solvable; (2) if B is ordinarily (or strongly)
NP -hard, then A is at least ordinarily (or strongly) NP -hard.

To show a problem to be polynomially solvable, one needs to find a polynomial-
time algorithm that can solve the problem to optimality, or show that the problem
reduces to another problem that can be solved in polynomial time. To show a
problem to be strongly NP -hard, a commonly used approach is to show that a
known strongly NP -hard problem reduces to the problem under study. Intuitively,
to show problem B reduces to problem A, one needs to show that problem B is
a special case of or equivalent to problem A. Finally, to show a problem to be
ordinarily NP -hard, one can first show that a known ordinarily NP -hard problem

28 2 Solution Methods for Supply Chain Scheduling Problems

reduces to the given problem, and then find a pseudo-polynomial time algorithm that
solves the given problem to optimality. Readers are referred to the classical books by
Garey and Johnson (1979) and Papadimitriou and Steiglitz (1998) to learn a variety
of techniques for proving NP -hardness of combinatorial optimization problems.

Supply chain scheduling problems are in general less tractable (i.e., more difficult
to solve) than the corresponding classical scheduling problems. If a classical
machine scheduling problem is ordinarily (strongly) NP -hard, then a corresponding
supply chain scheduling problem is at least ordinarily (also strongly) NP -hard.
In many cases, a corresponding supply chain scheduling problem becomes NP -
hard even if the underlying classical machine scheduling problem is polynomially
solvable. For example, the classical scheduling problem 1|rj |Cmax is polynomially
solvable; it is optimal to schedule the jobs by nondecreasing order of their arrival
times. However, consider the corresponding supply chain scheduling problem
where each job is delivered to its customer individually and immediately after its
completion and the objective is to minimize the makespan Dmax, which is defined
as the time when all the jobs are delivered to their destinations. This problem is
strongly NP -hard (Chen, 2010, and discussed in Sect. 3.3.1). For another example,
the classical machine scheduling problem 1||∑wjCj is polynomially solvable; it
is optimal to schedule the jobs in nondecreasing order of pj/wj . Now consider
the following corresponding supply chain scheduling problem: there are pricing
decisions that need to be made jointly with scheduling decisions such that the
number of incoming jobs for each product type is determined by the price set for
this product, and the objective is to maximize the total revenue of the jobs minus
the total weighted completion time of the jobs. This problem is ordinarily NP -hard
(Chen & Hall, 2010, and discussed in Sect. 5.2).

2.3 Solution Methods

We discuss several generally applicable solution methods for supply chain schedul-
ing problems. Figure 2.1 provides an overview of the various solution methods
discussed in this section.

2.3.1 Dynamic Programming Algorithms

Dynamic programming (DP) plays an important role in solving many scheduling
problems including many supply chain scheduling problems. Most scheduling
problems that are tractable can be solved either by a simple rule or by a polynomial-
time DP algorithm. Many ordinarily NP -hard scheduling problems can be solved
by a pseudo-polynomial time DP algorithm.

DP solves an optimization problem by breaking it down into a collection of
simpler subproblems based on some optimality properties, solving each of those

2.3 Solution Methods 29

Solution Methods for
Supply Chain Scheduling Problems

Section 2.3.5: Cooperative game theory

Section 2.3.4: Approximate solution methods

Section 2.3.3: Integer programming based algorithms

Section 2.3.1: Dynamic programming algorithms

Section 2.3.2: Branch-and-bound algorithms

Section 2.3.6: Noncooperative game theory

Fig. 2.1 Solution methods for supply chain scheduling problems

subproblems just once, and storing the solutions of the subproblems solved. When a
previously solved subproblem occurs later as a part of another subproblem, instead
of recomputing its solution, one simply looks up the previously computed solution.
This saves computation time at the expense of some storage space that is needed to
keep the solutions of the solved subproblems.

While some optimization problems cannot be decomposed in this way, many
scheduling problems satisfy certain optimality properties which can be used to
break the problems into smaller subproblems that are nested recursively inside
larger subproblems. Consequently, there is a relation between the objective value
of a larger subproblem and the objective values of the smaller subproblems. In DP,
this relationship is called a recurrence relation. In addition to a recurrence relation,
each DP algorithm is characterized by states, each corresponding to a subproblem,
a value function, which maps a given state to a value, and initial conditions, which
define the values of some initial states of the DP. Recurrence relations define how
the value of a state is calculated based on the values of other states.

We illustrate below a DP algorithm for a classical machine scheduling problem
and a DP algorithm for the associated distribution scheduling problem for delivering
the completed jobs to their destinations, given the production schedule for the earlier
machine scheduling problem.

We first consider the classical two-parallel-machine scheduling problem
P2||∑wjCj . This problem is ordinarily NP -hard (Bruno et al., 1974) and can
be solved by the following pseudo-polynomial time DP algorithm.

Example 2.1 (DP Algorithm for P2||∑wjCj)

Initialization Reindex the jobs in nondecreasing order of pj/wj (called SWPT

order). Define Pj = ∑j

k=1 pk .

30 2 Solution Methods for Supply Chain Scheduling Problems

Value Function Define f (P 1, j) as the minimum total weighted completion time
of a partial schedule containing the first j jobs where the completion time of the last
job on the first machine is P 1 (and hence that on the second machine is Pj − P 1).

Boundary Conditions f (0, 0) = 0.

Recurrence Relation For j = 1, . . . , n, and P 1 = p1, . . . , Pj :

f (P 1, j) = min{f (P 1 − pj , j − 1) + wjP
1, f (P 1, j − 1) + wj(Pj − P 1)}.

Optimal Solution min{f (P 1, n) | P 1 = p1, . . . , Pn}.
The idea of the DP algorithm given in Example 2.1 is that in an optimal

schedule, the jobs processed on each machine follow a SWPT order, which enables
us to compute the value of the state (P 1, j) based on the values of the states
(P 1 − pj , j − 1), if job j is scheduled on machine 1, and (P 1, j − 1), if job j

is scheduled on machine 2. Since the recurrence relation compares these two state
transition possibilities and always chooses the least-cost possibility, it ensures that
the solution generated by the algorithm is optimal. There are O(nPn) states in the
DP, and the value function for each state is calculated in constant time. Therefore,
the time complexity of this DP algorithm is O(nPn).

Now, consider the problem of scheduling the delivery of completed jobs to a
single destination, given the production schedule generated by the DP algorithm in
Example 2.1, with the objective of minimizing the sum of the total delivery time and
total distribution cost, i.e.,

∑
wjDj + T C, where Dj is the delivery time of job j

and T C is the total distribution cost. Let τ denote the transportation time from the
plant to the destination. Each delivery shipment can carry up to b jobs, and costs Π .
This problem can be solved by the following polynomial-time DP algorithm.

Example 2.2 (DP Algorithm for Delivery Scheduling, Given the Production Sched-
ule from Example 2.1)

Initialization Reindex the jobs in the order they are completed under the schedule
generated by the algorithm given in Example 2.1. Let their completion times be
C1, . . . , Cn, respectively.

Value Function Define g(j, k) as the minimum objective value of a partial schedule
containing the first j jobs which are delivered in k shipments.

Boundary Conditions g(0, 0) = 0.

Recurrence Relation For j = 1, . . . , n, and k = 1, . . . , j :

g(j, k) = min
u=1,...,min(j,b)

{
g(j − u, k − 1) + u(Cj + τ)

}+ Π.

Optimal Solution mink=�n/b�,...,n{g(n, k)}.

2.3 Solution Methods 31

The idea of the DP algorithm in the above example is that the value of the
state (j, k) can be computed based on the values of the states (j − u, k − 1), for
u = 1, . . . ,min{j, b}, and the contribution by the last delivery shipment containing
u jobs. Since the recurrence relation compares all feasible state transitions and
always chooses the least-cost possibility, it ensures that the solution generated by
the algorithm is optimal. There are O(n2) states in the DP, and the value function
for each state is calculated in O(b) time. Thus, the time complexity of this DP
algorithm is O(n2b).

Remark 2.1 We observe that to prove the optimality of a DP algorithm, one usually
needs to show that the recurrence relation of the DP compares all feasible state
transitions and always chooses the transition that yields the minimum (maximum)
objective value for the state being considered for a minimization (maximization)
problem. In addition, to make a DP algorithm work, there are often some initial and
boundary conditions that need to be set properly.

Now, we discuss the overall supply chain scheduling problem that combines the
problems in Examples 2.1 and 2.2 with the same objective function as that in the
latter problem. This supply chain scheduling problem is known to be strongly NP -
hard even with a single machine (Hall & Potts, 2005, also discussed in Sect. 3.4.3).
This means that the combined problem is more difficult to solve optimally than the
production scheduling problem or the delivery scheduling problem involved alone.
Similar results hold for many supply chain scheduling problems.

2.3.2 Branch-and-Bound Algorithms

Branch-and-bound (B&B) is a widely used solution framework for finding optimal
solutions for NP -hard combinatorial optimization problems, including scheduling
problems. B&B solves a problem by implicitly searching the entire feasible solution
space of the problem in a divide-and-conquer fashion through its branching and
bounding procedures. One often needs to exploit special structures of the under-
lying problem in order to develop efficient branching and bounding procedures.
Nemhauser and Wolsey (1988) provides detailed descriptions of various branching
and bounding techniques for a variety of problems. We briefly discuss how branch-
and-bound can be used for solving scheduling problems to optimality.

A good B&B algorithm should only explicitly search a small fraction of
the feasible solution space by eliminating the vast majority of the space from
consideration using structural results of the problem. A B&B algorithm is usually
implemented using a search (or branching) tree which starts from a single node as
the root node of the tree and grows as the algorithm progresses. The root node
represents the original problem, and every other node in the tree represents a
subproblem. Suppose we are solving a minimization problem. At each iteration, first
an active node in the tree, say node A, is chosen. Then two procedures, branching
and bounding, are performed on this node. Branching is the process of partitioning

32 2 Solution Methods for Supply Chain Scheduling Problems

the problem associated with node A into several subproblems. For example, if the
problem of node A is the original problem with the constraint that job 1 is sequenced
as the first job on machine k, then one possible way of branching on node A is
to divide the problem of this node into n − 1 subproblems, each being the same
problem as that of node A with an additional constraint that job j is sequenced as
the second job on machine k, for j = 2, . . . , n, where n is the total number of jobs
in the problem. A new node is added to the search tree corresponding to each such
problem and is linked to node A by a new branch.

Bounding is the process of deriving a lower bound on the minimum objective
value of each subproblem generated in the branching process. One possible
approach to compute a lower bound of a problem is to use an integer programming
based algorithm described in Sect. 2.3.3. There are four possible outcomes after
bounding is performed on a node, as follows.

• The first possible outcome is that the problem associated with the node is shown
to be infeasible. For example, if the LP relaxation of the IP formulation for the
problem associated with a node is infeasible, then this problem is infeasible. In
this case, this node is eliminated.

• The second possible outcome is that the problem associated with the node is
solved to optimality. For example, if the solution of the LP relaxation of the
IP formulation for the problem associated with this node is integer, then this
problem is solved to optimality. In this case, this node is also eliminated and the
incumbent solution of the original problem is replaced by the solution of this
node if the optimal objective value of this node is less than that of the incumbent
solution.

• The third possible outcome is that the lower bound on the objective value of
the problem of this node is greater than or equal to the objective value of the
incumbent solution of the original problem. In this case, none of the subproblems
generated by branching down this node contains an optimal solution of the
original problem, and hence this node is eliminated.

• The last possible outcome is that the lower bound on the objective value of the
problem of this node is less than the objective value of the incumbent solution
of the original problem. In this case, subproblems generated by branching down
this node can contain an optimal solution of the original problem, and hence this
node is kept as an active node to be considered in future iterations. The algorithm
repeats the above steps until there is no active node in the search tree.

All three activities at each iteration of a B&B algorithm, namely node selection,
branching, and bounding, can influence the performance of the algorithm in a
significant way. There are several different node selection strategies (Nemhauser
& Wolsey, 1988), including depth-first-search (selecting a node at the deepest
level of the tree), and best-lower-bound (selecting a node with the lowest lower
bound). Branching and bounding strategies are highly problem dependent. Special
structures and optimality properties associated with a problem need to be fully
exploited in order to derive effective branching and bounding strategies that make
the underlying B&B algorithm efficient. For example, as described in Sect. 2.3.3,

2.3 Solution Methods 33

some scheduling problems have a certain structure that enables us to formulate them
as set partitioning type of problems, possibly with additional constraints. Solving
the LP relaxation of this type of formulation may provide a very tight lower bound
within a B&B framework.

2.3.3 Integer Programming Based Algorithms

Integer programming (IP) is another useful tool commonly used for solving
scheduling problems. IP is particularly useful to find tight lower bounds for
NP -hard scheduling problems. Lower bounding is a necessary part of exact
branch-and-bound algorithms (see Sect. 2.3.2), which are often used to solve
NP -hard scheduling problems for which no faster exact algorithms, such as pseudo-
polynomial time dynamic programming algorithms, exist. Lower bounding is also
necessary in evaluating the performance of an approximate solution algorithm (see
Sect. 2.3.4).

There are several different ways of formulating a scheduling problem into
an integer programming formulation and computing a lower bound based on
this formulation. We discuss two promising integer programming approaches for
scheduling problems: (1) time-indexed formulations, and (2) column generation.
They are discussed in Sects. 2.3.3.1 and 2.3.3.2, respectively.

2.3.3.1 Time-Indexed Formulations

Time-indexed formulations have been widely adopted for formulating and solving
classical machine scheduling problems (e.g., Berghman & Spieksma, 2015; Sousa
& Wolsey, 1992). To create a time-indexed formulation for a given scheduling
problem, one needs to first discretize the time horizon of the problem, and then
introduce time-indexed decision variables, and define the constraints and the
objective function accordingly. A major advantage of time-indexed formulations
is that the LP relaxation of such formulations tends to generate tighter bounds
than other commonly used formulations. However, a clear disadvantage of such
formulations is that they involve a large number of variables, especially when the
total processing times of the jobs are large.

We give two examples below to illustrate how a classical scheduling problem and
a supply chain scheduling problem can be formulated using time-indexed variables,
respectively. We first consider problem 1|rj |∑Cj . In this problem, there are n jobs
N = {1, . . . , n} to be processed on a single machine. Each job j ∈ N is associated
with a release time rj and a processing time pj . The objective is to minimize the
total completion time of the jobs. This problem is known to be strongly NP -hard
(Lenstra et al., 1977).

34 2 Solution Methods for Supply Chain Scheduling Problems

Example 2.3 (Time-Indexed Formulation for Classical Scheduling Problem
1|rj |∑Cj) Let T = maxj∈N {rj } +∑

j∈N pj . Clearly, in an optimal schedule, all
the jobs are processed within the time horizon [0, T]. Define xjt = 1 if job j starts
processing at time t , for t = rj , . . . , T − pj , and 0 otherwise. The problem can be
formulated as the following integer program:

min
∑

j∈N

T−pj∑

t=rj

(t + pj)xjt (2.1)

subject to

T−pj∑

t=rj

xjt = 1, ∀j ∈ N (2.2)

∑

j∈N

t∑

s=max{rj ,t−pj+1}
xjs ≤ 1, ∀t = 0, . . . , T − 1 (2.3)

xjt ∈ {0, 1}, ∀j ∈ N; t = 0, . . . , T − 1. (2.4)

In this formulation, the objective (2.1) is to minimize the total completion time of
the jobs, where t + pj is the completion time of job j if it starts processing at time
t . Constraint (2.2) ensures that each job is processed once. Constraint (2.3) ensures
that each time interval [t, t+1) is occupied by at most one job, for t = 0, . . . , T −1.

We observe that the formulation in Example 2.3 involves a pseudo-polynomial
number of variables and a pseudo-polynomial number of constraints because both
these numbers depend on the length of the time horizon. Thus, the size of the
formulation grows with both the number of jobs and the average processing time
of a job.

Now, we consider an extension of problem 1|rj |∑Cj where completed jobs are
delivered to a single customer site in batches. Each delivery shipment can carry up
to b jobs. The transportation time and cost of a delivery shipment from the plant to
the customer site are τ and Π , respectively. Let Dj be the delivery time of job j .
The objective of the problem is to minimize the sum of the total delivery time of the
jobs,

∑
j∈N Dj , and the total transportation cost.

Example 2.4 (Time-Indexed Formulation for Supply Chain Scheduling Problem that
Combines 1|rj |∑Cj and Delivery of Completed Jobs) In addition to the parameter
T and variables xjt defined in Example 2.3 above, we define two additional sets of
variables, for t = 0, . . . , T , and j ∈ N : zt = 1 if there is a shipment that departs
at time t , and 0 otherwise; yjt = 1 if job j is assigned to the shipment that departs
at time t , and 0 otherwise. The problem can be formulated as the following integer
program:

2.3 Solution Methods 35

min
∑

j∈N

⎛

⎝τ +
T∑

t=rj+pj

tyjt

⎞

⎠+
T∑

t=1

Πzt (2.5)

subject to

T−pj∑

t=rj

xjt = 1, ∀j ∈ N (2.6)

∑

j∈N

t∑

s=max{rj ,t−pj+1}
xjs ≤ 1, ∀t = 0, . . . , T − 1 (2.7)

∑

j∈N
yjt ≤ b, ∀t = 1, . . . , T (2.8)

T∑

t=rj+pj

yjt = 1, ∀j ∈ N (2.9)

t−pj∑

s=rj

xjs ≥ yjt , ∀t = rj + pj , . . . , T , j ∈ N (2.10)

xjt ∈ {0, 1}, ∀j ∈ N; t = 0, . . . , T − 1. (2.11)

yjt , zt ∈ {0, 1}, ∀j ∈ N; t = 1, . . . , T . (2.12)

In this formulation, the objective (2.1) minimizes the total delivery time of the
jobs and the total transportation cost. Constraints (2.6) and (2.7) are exactly the
same as (2.2) and (2.3), respectively. Constraint (2.8) ensures that each shipment
carries at most b jobs. Constraint (2.9) ensures that each job is assigned to exactly
one shipment. Finally, constraint (2.10) represents the relationship between x and
y variables, ensuring that a job assigned to a shipment with a departure time t is
completed no later than t .

To solve time-indexed formulations, valid inequalities and other solution tech-
niques such as column generation (discussed in Sect. 2.3.3.2) are often used
(Berghman et al., 2021; Van den Akker et al., 2000). We refer the reader to
Sect. 4.3.3.3 for a discussion of the online version of the problem illustrated in
Example 2.4.

2.3.3.2 Column Generation

Column generation based algorithms have been widely applied to tackle diffi-
cult NP -hard combinatorial optimization problems (e.g., Barnhart et al., 1998;
Desaulniers et al., 2010). Column generation is a decomposition approach where

36 2 Solution Methods for Supply Chain Scheduling Problems

a given problem is decomposed into subproblems which are less difficult to solve
than the entire problem. The idea of this method for an optimization problem can be
described as follows. The given problem is first formulated as a set packing or set
partitioning type of binary IP formulation, where each column represents a feasible
solution to a part of the problem (or a subproblem) which involves a number of
decisions, instead of a single decision. In this formulation, the decision variable
corresponding to a column is 1 if the solution to the subproblem corresponding to
the column is adopted, and 0 otherwise.

The optimal objective value of the linear programming (LP) relaxation of this
formulation is a valid lower bound on the optimal objective value of the original
problem. However, it is not efficient to solve the LP relaxation problem directly even
using the fastest commercial LP solver available, since it typically contains a very
large number of columns. Instead, the LP relaxation is solved using the Dantzig-
Wolfe decomposition approach (Dantzig & Wolfe, 1960) in which the LP relaxation
is decomposed into a master problem consisting of only a much smaller subset of
columns and one or more subproblems. An iterative procedure can then be used
where in each iteration, the master problem is first solved by a commercial LP solver
directly. Based on the dual variable values of the master problem, the subproblems
are solved next to generate new columns with a minimum reduced cost. One or
more new columns with a negative reduced cost are added to the master problem for
the next iteration. The LP relation problem is solved when, in an iteration, no new
columns with a negative reduced cost can be found.

Below, we apply the column generation lower bounding technique to a classical
scheduling problem and a supply chain scheduling problem, respectively. We first
consider problem Pm||∑wjCj . The column generation approach is first applied to
this and other parallel-machine scheduling problems by Chen and Powell (1999a,b)
and Van den Akker et al. (1999).

Example 2.5 (Column Generation for Classical Scheduling Problem Pm||∑wjCj)
Let Ω denote the set of all feasible partial schedules on a single machine. For any
s ∈ Ω , define fs to be the total weighted completion time of the jobs in s, and ajs
to be 1 if job j is in s and 0 otherwise. Define variable ys = 1 if schedule s ∈ Ω

is used and 0 otherwise. Then, the problem Pm||∑wjCj can be formulated as the
following set partitioning problem with a side constraint:

min
∑

s∈Ω
fsys (2.13)

subject to

∑

s∈Ω
ajsys = 1, ∀j ∈ N (2.14)

∑

s∈Ω
ys = m (2.15)

ys ∈ {0, 1}, ∀s ∈ Ω, (2.16)

2.3 Solution Methods 37

where the objective (2.13) is to minimize the total weighted completion time of
the jobs in the chosen single-machine schedules, constraint (2.14) ensures that
each job is included in one of the single-machine schedules chosen, and the side
constraint (2.15) means that exactly m single-machine schedules are chosen.

This formulation contains an extremely large number of columns because the
set Ω is exponentially large. Applying the column generation technique to solve
the LP relaxation of this formulation, the LP relaxation problem is decomposed
into a master problem which has the same form as the LP relaxation problem
but with only a small subset of the columns, and a single-machine subproblem.
Let πj denote the dual variable value corresponding to job j , for each j ∈ N ,
in constraint (2.14) of the master problem, and σ denote the dual variable value
corresponding to constraint (2.15) of the master problem. The subproblem is to find
a single-machine schedule s ∈ Ω with the minimum reduced cost rs defined as:

rs = fs −
∑

j∈N
ajsπj − σ. (2.17)

The subproblem is shown to be ordinarily NP -hard, but it can be solved by a
pseudo-polynomial time DP algorithm (Chen & Powell, 1999b). It is shown that
the lower bound generated by the above column generation method is extremely
tight; it is within 0.001% of the optimal objective value of the original problem for
all the problems tested by Chen and Powell (1999b).

Next, we consider a problem that integrates the classical scheduling problem
1||∑wjDj and delivery scheduling of completed jobs to a single customer site.
The objective is to minimize the total weighted delivery time of jobs and the total
transportation cost, i.e.,

∑
wjDj +T C, as in the problem of Example 2.2 discussed

in Sect. 2.3.1. Following the notation defined above, we assume that each delivery
shipment can carry up to b jobs and is associated with a transportation time τ and a
transportation cost Π for delivery to the customer site.

This problem is known to be strongly NP -hard (Hall & Potts, 2005, and
discussed in Sect. 3.4.3). We are not aware of any existing integer programming
based algorithm or lower bounding scheme for this problem.

Example 2.6 (Column Generation for Supply Chain Scheduling Problem that Com-
bines 1||∑wjDj and Delivery of Completed Jobs) To apply the column genera-
tion approach to compute a lower bound for this problem, we formulate the problem
based on the fact that every solution of the problem consists of some individual
delivery batches, where each batch of jobs is processed consecutively in arbitrary
order with delivery departure time equal to the completion time of the last job in it.
Let Ω denote the set of all feasible production and delivery schedules of a single
batch of jobs. Given a single-batch schedule s ∈ Ω , the following parameters are
all specified:

(i) The starting time of the first job in it, denoted as L(s)
(ii) The completion time of the last job in it, denoted as R(s)

38 2 Solution Methods for Supply Chain Scheduling Problems

(iii) Whether each job j is in s, which is represented by parameter ajs with its value
being 1 if job j is in s and 0 otherwise, for all j ∈ N

(iv) Whether a specific time slot [t − 1, t) is occupied by s, which is represented
by parameter bts being 1 if L(s) + 1 ≤ t ≤ R(s), and 0 otherwise, for all
t = 1, . . . , P , where P = ∑

j∈N pj

The total cost of a schedule s ∈ Ω is then fs = (
∑

j∈N ajswj)(R(s) + τ) + Π ,
where Π is the delivery cost per batch, and τ is the delivery time from the plant to
the customer.

Define variable ys = 1 if schedule s ∈ Ω is used, and 0 otherwise. Then, the
problem can be formulated as the following set partitioning problem:

min
∑

s∈Ω
fsys (2.18)

subject to

∑

s∈Ω
ajsys = 1, ∀ j ∈ N (2.19)

∑

s∈Ω
btsys = 1,∀ t = 1, . . . , P (2.20)

ys ∈ {0, 1}, ∀ s ∈ Ω, (2.21)

where the objective (2.18) minimizes the total cost of the jobs in the chosen single-
batch schedules, constraint (2.19) ensures that each job is included in one of the
single-batch schedules chosen, and constraint (2.20) means that each time slot
between 1 and P is occupied exactly once.

Following the column generation scheme, the LP relaxation of this formulation
is decomposed into a master problem which has the same form as the LP relaxation
formulation but with a small subset of the columns, and a single-batch subproblem.
Let πj denote the dual variable value corresponding to job j , for each j ∈ N , in
constraint (2.19), and σt denote the dual variable value corresponding to time t in
constraint (2.20). The subproblem is to find a single-batch schedule s ∈ Ω with the
minimum reduced cost rs given by:

rs = fs −
∑

j∈N
ajsπj −

R(s)∑

t=L(s)+1

σt . (2.22)

This subproblem is more general than the subproblem involved in Example 2.5 and
hence is at least ordinarily NP -hard. We observe that, given a single-batch schedule
s ∈ Ω , for given dual variable values πj and σt , the reduced cost rs given in (2.22)
is determined by the specific jobs contained in the batch, and L(s) and R(s). The
reduced cost rs is independent of the processing sequence of the jobs. Thus, we can

2.3 Solution Methods 39

assume without loss of generality that the jobs in a batch are always processed in
shortest processing time first (SPT) order.

The subproblem can be solved by a pseudo-polynomial DP algorithm as follows.

Initialization Reindex the jobs in non-increasing order of pj .

Value Function Define g(L,R, k, j) as the minimum total cost of a partial schedule
containing k of the first j jobs {1, . . . , j}, where the completion time of the last job
is R, and the starting time of the first job is L.

Boundary Conditions g(R,R, 0, 0) = 0, for R = 1, . . . , P .

Recurrence Relation For j = 1, . . . , n, k = 1, . . . , b, L = 0, . . . , R − 1, R =
1, . . . , P :

g(L,R, k, j) = min

{
g(L,R, k, j − 1),

g(L + pj , R, k − 1, j − 1) + wj (R + τ) − πj −∑L+pj

t=L+1 σt .

Optimal Solution First, for fixed R = 1, . . . , P , compute

G(R) = min{g(L,R, k, n) + Π | 1 ≤ k ≤ b, L = 0, . . . R − 1}.

Then, compute min{G(R) | 1 ≤ R ≤ P }.

In the recurrence relation, two possible cases are considered: (1) job j is either
not included in the batch (in this case, g(L,R, k, j) = g(L,R, k, j − 1)), or (2) it
is included in the batch (in this case, job j is scheduled in the time slot [L,L+ pj)

and hence g(L,R, k, j) is equal to g(L+pj , R, k− 1, j − 1)+wj(R+ τ)−πj −
∑L+pj

t=L+1 σt . The time complexity of this DP algorithm is O(bnP 2).

2.3.4 Approximate Solution Methods

Most supply chain scheduling problems are strongly NP -hard. To solve a strongly
NP -hard problem to optimality, one has to resort to exponential-time algorithms
such as branch-and-bound and integer programming. One may be able to construct
such algorithms to find optimal solutions for small instances of strongly NP -hard
supply chain scheduling problems in a reasonable amount of computational time.
However, for large instances of such problems, any exact algorithm is likely to be
very time-consuming. Consequently, practitioners and academic researchers have a
strong interest in developing approximate solution methods, also known as heuristic
algorithms, for such problems. A heuristic algorithm or approximation algorithm
(or simply called heuristic) for a problem does not guarantee an optimal solution
but is much simpler and easier to implement in practice and typically requires much
less computational time than an optimal algorithm.

40 2 Solution Methods for Supply Chain Scheduling Problems

Aarts and Lenstra (2003) and Voss et al. (1999) describe several types of
heuristics for a variety of combinatorial optimization problems, including some
scheduling problems. We summarize below some commonly used heuristics in the
literature for solving supply chain scheduling problems.

• Rule based heuristics that generate a solution using simple rules (e.g., scheduling
jobs in nondecreasing order of their processing times), or more sophisticated
rules (e.g., a schedule is constructed iteratively based on multiple problem
parameters).

• Local search heuristics such as Tabu Search, Simulated Annealing, and Genetic
Algorithms (Aarts & Lenstra, 2003) which start with one or more initial solutions
and then iteratively generate new solutions by searching the neighborhoods of
existing solutions.

• Dynamic programming based heuristics which use DP algorithms to solve a
problem approximately by searching only part of the solution space.

• Integer programming based heuristics which formulate a problem as an integer
program and solve the formulation approximately by applying an incomplete
branch-and-bound procedure or a decomposition technique such as Lagrangian
relaxation or column generation (described in Sect. 2.3.3) to find a good, but
generally not optimal, feasible solution.

The performance of a heuristic can be evaluated through computational tests
using real or randomly generated data sets (Hall & Posner, 2001). The solutions
generated by a heuristic are typically compared to either true optimal solutions or
bounds (a lower bound in the case of a minimization problem or an upper bound
in the case of a maximization problem). Simple (but often loose) bounds can be
derived following some optimality properties. However, to obtain tighter bounds,
one may have to resort to sophisticated methods such as integer programming, as
described in Sect. 2.3.3.

2.3.4.1 Worst-Case and Average-Case Analysis

The performance of a heuristic can also be evaluated theoretically (e.g., Hochbaum,
1996). Two types of theoretical analysis are commonly conducted, worst-case
performance analysis and asymptotic performance analysis. Given an optimization
problem, let I be the set of all feasible instances of the problem, and I ∈ I any
instance of the problem. Given a heuristic H for a minimization problem, let ZH(I)

be the objective value of the solution obtained by the heuristic for the instance, and
Z∗(I) the optimal objective value of the instance. Then, we can define the following.

Definition 2.3 The worst-case performance ratio of heuristic H for the given
problem is defined as

RH = sup
I∈I

{ZH(I)/Z∗(I)}. (2.23)

2.3 Solution Methods 41

Definition 2.4 The asymptotic performance ratio of heuristic H for the given
problem is defined as

RH∞ = inf{r ≥ 1 | there exists Y such that ZH(I)/Z∗(I) ≤ r,

for all instances I ∈ I with Z∗(I) ≥ Y }. (2.24)

For scheduling problems, asymptotic performance ratio may also be defined in terms
of a threshold on the problem size, instead of a threshold on the objective value (e.g.,
Chou et al., 2006), as follows:

RH∞ = inf{r ≥ 1 | there exists a positive integer n0 such that ZH(I)/Z∗(I) ≤ r,

for all instances I ∈ I with number of jobs n ≥ n0}. (2.25)

Clearly, for a minimization problem, the performance ratios RH and RH∞ of any
heuristic H must be at least 1. The closer to 1 these ratios are, the better a given
heuristic is. In conducting worst-case or asymptotic performance analysis, a lower
bound is often used to replace Z∗(I). The performance ratio obtained this way is
then an upper bound on the true performance ratio. In this case, if an instance I0
can be found such that RH = ZH(I0)/Z

∗(I0), then it is said that the worst-case
performance bound is tight, meaning that RH is exactly equal to the bound obtained.

Definition 2.5 If RH∞ = 1, the heuristic is then said to be asymptotically optimal,
meaning the heuristic solution converges to an optimal solution when the objective
value (or size) of the problem instance becomes infinitely large.

However, both RH and RH∞ represent performance of a heuristic in the worst
case; they typically do not represent the average-case performance of the heuristic.
Unfortunately, it is very difficult to conduct average-case performance analysis (also
known as probabilistic analysis) of even simple heuristics theoretically (Coffman
and Lueker, 1991). There are few existing average-case performance analysis results
for scheduling problems, and to our knowledge, most such existing results are
asymptotic (e.g., Kaminsky, 2003; Kaminsky & Simchi-Levi, 1998). That is, most
existing average-case analysis results for scheduling problems that we are aware
of are derived when the problem size goes to infinity. Such analysis is also known
as asymptotic probabilistic analysis, which is often conducted under the assumption
that some of the problem data follows a certain probability distribution (Simchi-Levi
et al., 2013).

Definition 2.6 If we let Ξ be a probability measure on the set of instances I (i.e.,
the problem instances are generated randomly from Ξ), a heuristic H is said to
be asymptotically optimal for the problem defined on Ξ if the ratio ZH(I)/Z∗(I)
converges to 1 (or equivalently, the ratio [ZH(I) − Z∗(I)]/Z∗(I) converges to 0)
with probability one (or equivalently, almost surely), when the problem size goes to
infinity.

42 2 Solution Methods for Supply Chain Scheduling Problems

Remark 2.2 The strong law of large numbers (e.g., Ross, 1998) is often used to
prove almost sure convergence of a random sequence. The strong law of large
numbers states that given a sequence of n independently and identically distributed
random variables, X1, X2, . . . , Xn, with mean μ, (X1+X2+· · ·+Xn)/n converges
to the mean μ almost surely, when n goes to infinity.

2.3.4.2 Fully Polynomial Time Approximation Schemes

For many ordinarily NP -hard problems, there are heuristics called polynomial time
approximation schemes or fully polynomial time approximation schemes.

Definition 2.7 For a given minimization problem, a heuristic is called a polynomial
time approximation scheme (PTAS) if for any fixed accuracy requirement ε > 0,
the heuristic is a polynomial-time algorithm with worst-case performance ratio
bounded by 1+ε. A heuristic is called a fully polynomial time approximation scheme
(FPTAS) if (i) it is a PTAS, and (ii) its time complexity is bounded by a polynomial-
time function of both the problem input length and 1/ε.

We observe that a PTAS is required to have a polynomial-time complexity for any
fixed ε, but its time complexity may be exponential in 1/ε. Thus, there is a major
difference in running time between an FPTAS and a PTAS, especially when ε is
close to 0. For example, if we compare an FPTAS with a running time O(n2(1/ε)3)

and a PTAS with a running time O(n21/ε), when ε is relatively large, the FPTAS
can be slower than the PTAS. However, when ε approaches 0, the PTAS becomes
exponentially slower than the FPTAS.

An FPTAS is the strongest possible result one can achieve for a NP -hard
problem unless P = NP (e.g., Vazirani, 2001, p. 68). An FPTAS can be constructed
for many ordinarily NP -hard scheduling problems. For such problems, there
are usually pseudo-polynomial time dynamic programming algorithms, and such
algorithms can in most cases be used to construct FPTAS (Woeginger, 2000).
However, for strongly NP -hard scheduling problems, there is no FPTAS unless
P = NP , but there can exist a PTAS.

2.3.4.3 Competitive Analysis

For online problems including online supply chain scheduling problems where jobs
arrive over time and the parameters associated with a job are unknown until it
arrives, online algorithms may have to be used to derive a solution. An online
algorithm is one that can only process its input piece-by-piece in a serial fashion,
i.e., in the order that the input is fed to the algorithm, without having the entire
input available from the beginning. In contrast, an offline algorithm is given the
whole problem data from the beginning and is required to output an answer which
solves the problem at hand. Competitive analysis is often used to analyze the
performance of an online algorithm. In such an analysis, the performance of an

2.3 Solution Methods 43

online algorithm is compared to the performance of an optimal offline algorithm that
knows the sequence of job arrivals and their data in advance. The competitive ratio
and asymptotic competitive ratio of an online algorithm H for an online problem are
defined the same as in (2.23) and (2.24) or (2.25) for the worst-case performance
ratio and asymptotic performance ratio of an offline algorithm, respectively, except
that I is a specific realization of the problem input data, and Z∗(I) is the optimal
objective value of the offline problem corresponding to I . In competitive analysis,
one typically imagines that there is an “adversary” who deliberately chooses difficult
problem input data to maximize the ratio of the objective value generated by the
online algorithm being studied and the optimal objective value of the offline problem
which has the entire input data known from the beginning. For a given online
problem, any online algorithm with the smallest possible competitive ratio is called
a best possible algorithm, or an optimal online algorithm.

Online classical scheduling problems have been quite extensively studied in the
past 20 years (Pruhs et al., 2004; Tan & Zhang, 2013). However, there are relatively
few existing results on online supply chain scheduling problems.

2.3.5 Cooperative Game Theory

In a centralized scheduling environment, there is a single decision maker whose
objective is to schedule jobs in a way that optimizes a system-wide criterion.
The optimal solution generated this way is optimal collectively over all the jobs
and all the supply chain stages or functional areas involved. However, in many
supply chain environments, the jobs to be processed may come from different
clients, and different stages or functions that serve the jobs may belong to different
companies or decision makers. Different clients and functional areas may have
conflicting objectives and may be interested only in a solution that optimizes their
own objective. A solution that is optimal to one party in the supply chain is unlikely
to be optimal for another party or for the overall system, and vice versa.

Game theory is often used to model and analyze problems involving multiple
decision makers (or agents, or players). There are generally two types of games,
cooperative games and noncooperative games, that can be used to model problems
with multiple players with conflicting objectives. There are many comprehensive
books on game theory (e.g., Myerson, 1997; Peleg & Sudhölter, 2007) that provide
detailed descriptions of various aspects of these types of games. In this and the
following section, we briefly describe some key concepts associated with these
types of games using scheduling problems as examples. We describe other necessary
concepts and provide further discussion about the games defined here in Chaps. 8
and 9.

When players cooperate and agree to adopt some solution π∗ of the problem
(e.g., a global or system-wide optimal solution), they may collectively achieve
a higher cost saving (or a higher value, a lower cost, etc.), as compared to the
case when the players act independently and use their own solutions π1, π2,

44 2 Solution Methods for Supply Chain Scheduling Problems

However, some individual players may be worse off by using such a solution π∗.
Such players must be compensated in a fair way in order for them to agree to the
solution π∗. Cooperative game theory provides essential concepts and tools for
designing compensation schemes that allocate the cost saving (or value, benefit,
etc.) among the individual players.

We use a one-machine sequencing game (Curiel et al., 1989; Hamers et al.,
1996) as an example to describe the concept of a cooperative game. There are n

players, denoted by N = {1, . . . , n}, each having one job to be processed on a given
machine. Player j ’s job has a processing time requirement of pj units, and player
j ’s cost is a linear function fj (t) = wj t of its completion time t on the machine.
There is an initial processing sequence σ0, which is the sequence the players use
if they do not cooperate. This sequence can be given by the owner of the machine
based on some rules, or it may result from the random arrival process of the jobs,
and is typically not globally optimal. That is, the total cost of all the players under
σ0 may not be the minimum possible.

A cooperative game is defined by specifying a characteristic function v that maps
any subset of players, also known as a coalition, to a real number, v : 2N → R

satisfying v(∅) = 0. The characteristic function v(S) represents the total cost saving
(or the total value) the players in coalition S ⊂ N can achieve if they cooperate by
rearranging the positions of their jobs in the initial sequence σ0, under the constraint
that these players must use an admissible processing sequence for their jobs if they
want to rearrange them. Admissible sequences can be defined in different ways.
One example (Curiel et al., 1989) is to define any rearrangement of the jobs in σ0
as an admissible sequence if only the jobs of the players in coalition S that are
consecutively sequenced in σ0 are rearranged among themselves.

Let A(S) denote the set of all admissible sequences for the jobs of players in
coalition S. The characteristic function v(S) can be defined as

v(S) = max
σ∈A(S)

∑

i∈S
[fi(Ci(σ0)) − fi(Ci(σ))] , (2.26)

where Ci(π) is the completion time of player i’s job under schedule π .
When all the players cooperate to form a grand coalition, they together achieve

a total cost saving or value v(N), which is defined as

v(N) =
∑

i∈N

[
fi(Ci(σ0)) − fi(Ci(σ

∗)),
]
, (2.27)

where σ ∗ is the sequence among all admissible sequences A(N) with the lowest
possible total cost of the jobs.

One of the main questions studied in cooperative game theory is: how to allocate
the total cost saving or value v(N) among the players such that no subset of players
can be better off by separating themselves from the grand coalition and acting on
their own behalf. Mathematically, this is equivalent to finding an allocation scheme,
represented by (x1, . . . , xn), where xi is the cost saving or value allocated to player
i, such that

2.3 Solution Methods 45

∑

j∈N
xj = v(N) (2.28)

∑

j∈S
xj ≥ v(S), for all S ⊂ N. (2.29)

Equation (2.28) ensures that the total allocation to all the players is equal to v(N),
and inequalities (2.29) require that for any subset of players, the total allocation
they receive is greater than or equal to the total cost saving or value if they form
a coalition, which guarantees that no players have an incentive to leave the grand
coalition.

One of the most fundamental concepts in cooperative game theory is the core.
This, along with some related concepts, is defined below.

Definition 2.8 Any feasible solution x to (2.28)–(2.29) is stable or a core alloca-
tion. The collection of all feasible solutions to (2.28)–(2.29) is called the core of the
game. Not every cooperative game has a nonempty core. A game with a nonempty
core for all instances is balanced. A nonempty core often contains an infinite number
of solutions.

A cooperative game as defined above is sometimes known as a cost savings game,
a value game, or a profit game. Alternatively, if the characteristic function v(S)

represents the minimum total cost that can incur for the players in coalition S if they
cooperate, then the game is known as a cost game. In this case, if an allocation
scheme (x1, . . . , xn), where xi is the cost allocated to player i, satisfies (2.28)
and the opposite relation of (2.29) (i.e., the “≥” in (2.29) becomes “≤”), then this
allocation is a core allocation.

Another fundamental concept in cooperative game theory is a convex game,
which is defined below.

Definition 2.9 A cost savings game (N, v) is called a convex game if its characteris-
tic function v is supermodular, i.e., v(S∪T)+v(S∩T) ≥ v(S)+v(T), ∀ S, T ⊆ N .
Conversely, a cost game (N, v) is called a convex game if its characteristic function
v is submodular, i.e., v(S ∪ T) + v(S ∩ T) ≤ v(S) + v(T), ∀ S, T ⊆ N .

The supermodularity of v is equivalent to

v(S ∪ {i}) − v(S) ≤ v(T ∪ {i}) − v(T), ∀ S ⊆ T ⊆ N \ {i},∀ i ∈ N,

and the submodularity of v is equivalent to

v(S ∪ {i}) − v(S) ≥ v(T ∪ {i}) − v(T), ∀ S ⊆ T ⊆ N \ {i},∀ i ∈ N.

This implies that the incentive for joining a coalition increases as the coalition
grows (Shapley, 1971), leading to a so-called snowball effect. Convex cooperative

46 2 Solution Methods for Supply Chain Scheduling Problems

games have many useful properties including the property that any convex game is
balanced. However, a game does not have to be convex in order to be balanced.

Curiel et al. (1989) show that the one-machine sequencing game discussed above
is a convex game. They propose an allocation rule called Equal Gain Splitting (EGS)
which divides the cost saving obtained in an interchange of two neighboring jobs
equally between the two players involved, and show that EGS is a core allocation.
Curiel et al. (1994) consider a more general version of the sequencing game where
each player j ’s cost is a weakly monotonic function of its completion time t . This
is more general than the version discussed above where the cost function is linear in
t . More details are provided in Sect. 8.3.3.

In addition to the concepts introduced above, there are several other commonly
used concepts in cooperative game theory. One such concept is the Shapley value
(Shapley, 1953). The Shapley value is a unique allocation solution that satisfies
some valuable properties. Chapter 8 introduces this concept, along with some other
single-point solution concepts. We refer the reader to Chap. 8 for those concepts and
their applications in supply chain scheduling.

The sequencing game and variants discussed above use some assumptions that
may be overly simplifying from a practical point of view. In these and many other
scheduling related games studied in the literature, it is assumed that an initial
schedule σ0 of the jobs is predetermined (e.g., jobs are scheduled in first-come first-
served order), and a characteristic function is defined as the cost saving or value
improvement relative to this initial schedule if the members of a coalition work
together. In practice, however, an initial schedule may not exist. There are several
studies that consider games related to scheduling without an initial sequence (e.g.,
Hall & Liu, 2016).

There are also other practical issues that may need to be considered. For example,
there can be more than one machine, a player may have more than one job, there can
be a cost for using a particular period of the machine time, more general admissible
sequences may be allowed when rearranging the job positions, the players may
hide some information about their jobs, and in addition to being processed, the jobs
may need to be delivered to their destinations after processing. Chapter 8 discusses
models with some of these and other practical issues.

2.3.6 Noncooperative Game Theory

In large and complex decision making environments, especially those conducted
online through commercial platforms, achieving cooperation is unrealistic. Difficul-
ties in doing so arise from the competition of the players, lack of trust between them,
and lack of information. In such situations, a more realistic model of the decision
process is a noncooperative game.

In noncooperative game theory, individual players are typically assumed to
maximize their own utility after considering how other players may react to their
strategy. Based on the availability of information about the players, noncooperative

2.3 Solution Methods 47

games can be classified into games with complete information, where individual
players do not have private information, and games with private information, where
individual players have private information that is not known to other players.

Different research questions are studied in the literature for different types
of noncooperative games. For games with private information, major research
issues include the design of truthful algorithms and the design of mechanisms that
guarantee that no player has an incentive to report false information, regardless of
what is shared by other players. These, along with some other issues, are discussed
in detail in Chap. 9 of the book. For this reason, we do not elaborate on these topics
here.

In the following, we briefly discuss some of the key concepts and issues for
noncooperative games with complete information. A key concept for noncooper-
ative games with complete information is a Nash equilibrium (NE) in which no
player in the game has anything to gain by changing only his or her own strategy.
If each player has chosen a strategy and no player can benefit by changing his or
her strategy while the other players keep theirs unchanged, then the current set of
strategy choices and the corresponding payoffs constitute a Nash equilibrium.

We use a parallel-machine scheduling model (Heydenreich et al., 2007; Immor-
lica et al., 2005) as an example to describe the concept of noncooperative games
and Nash equilibrium. There are n players, denoted as N = {1, . . . , n}, with each
player j having one job with a processing time of pj . There are m identical parallel
machines, M = {1, . . . , m}. Each player needs to choose a machine to process its
job. Let xi denote the strategy or solution that player i chooses (i.e., the machine
to process its job). Let Xi be the set of all feasible strategies associated with player
i. Hence, Xi = M for all i ∈ N . Each player i has a utility or payoff function
ui(x) which is generally a function of the specific strategies used by all the players
together, x = (x1, . . . , xn), as well as the underlying game rule or policy. Suppose
the game rule is that the jobs assigned to a machine are processed in shortest
processing time first (SPT) order where ties between any two jobs are broken in
favor of the job with a smaller index. Consider the following utility function:

ui(x) = −pi −
∑

j :xj=xi ,pj<pi

pj −
∑

j :xj=xi ,pj=pi,j<i

pj , xi ∈ Xi , and i ∈ N.

(2.30)

With the utility function defined this way, the utility of strategy xi for player i is the
negative completion time of his or her job.

Definition 2.10 A strategy vector of profile x = (x1, . . . , xn), where each xj ∈ Xj ,
is called a pure strategy Nash equilibrium if, for every player j ∈ N ,

uj (x) ≥ uj (x1, . . . , xj−1, x
′
j , xj+1, . . . , xn), for all x′

j ∈ Xj . (2.31)

In addition to using one specific strategy (which is also called a pure strategy), a
player j can sometimes also use a mixed strategy, which is a probability distribution

48 2 Solution Methods for Supply Chain Scheduling Problems

over the set of pure strategies Xj . Under a mixed strategy, a player uses one of its
pure strategies chosen randomly following the given probability distribution. Denote
the set of all feasible mixed strategies of player j as Δ(Xj). Each element δj ∈
Δ(Xj) is a specific probability distribution that player j can follow. Given a mixed
strategy vector of profile δ = (δ1, . . . , δn), where each δj ∈ Δ(Xj), let uj (δ) be the
expected utility of player j .

Definition 2.11 A given mixed strategy vector of profile δ is called a mixed strategy
Nash equilibrium if, for every player j ∈ N ,

Euj (δ) ≥ Euj (δ1, . . . , δj−1, δ
′
j , δj+1, . . . , δn), for all δ′

j ∈ Δ(Xj). (2.32)

Not every game has a pure strategy Nash equilibrium. However, every game with
a finite number of players in which each player can choose from finitely many pure
strategies has at least one mixed strategy Nash equilibrium (Nash, 1951). Even a
mixed strategy Nash equilibrium may not exist if the set of choices is infinite and
non-compact. Given a noncooperative game, an interesting question is the existence
of pure strategy Nash equilibria, and if they exist, then one needs to design efficient
algorithms to compute pure or mixed strategy Nash equilibria.

For the above discussed noncooperative game defined on a parallel-machine
scheduling model, there exist pure strategy Nash equilibria. Immorlica et al. (2005)
prove that the set of pure strategy Nash equilibria is precisely the set of solutions
found by the Ibarra-Kim algorithm (Ibarra & Kim, 1977).

Another commonly investigated question in dealing with noncooperative games
is the price of anarchy (Koutsoupias & Papadimitriou, 1999).

Definition 2.12 Given a noncooperative game, the price of anarchy is the worst-
case ratio of the value of a given objective function at a Nash equilibrium solution
over the value of the same objective function at the system-wide optimal solution
which can be obtained by a central agent who makes decisions for all the players.

The price of anarchy measures the worst-case performance deterioration due to
the lack of coordination among independent self-interested players. Heydenreich
et al. (2007) show that for the objective of minimizing the makespan in the parallel-
machine scheduling model discussed above, the price of anarchy of pure strategy
Nash equilibria is 2 − 2/(m + 1).

In the definitions and concepts described above, it is implicitly assumed that
the underlying noncooperative game is a simultaneous game (also known as static
game), where all the players make their decisions simultaneously without any
knowledge of other players’ decisions. However, in many practical settings, players
make their decisions sequentially rather than simultaneously. A game where players
make their decisions at different times or in turn is called sequential game. Players
who move later in such a game have additional information about the actions of
other players or states of the world. For sequential games, there is an important
concept that extends from a Nash equilibrium.

2.3 Solution Methods 49

Definition 2.13 For a sequential game, a set of strategies is called a subgame
perfect equilibrium if the strategies constitute a Nash equilibrium for all subgames
of the original game.

Chapter 9 provides more detailed discussions of the concepts and issues covered
here, as well as other related topics motivated by several supply chain scheduling
applications.

Part I
Centralized Supply Chain Scheduling

Part I consists of Chaps. 3 though 6 on centralized supply chain scheduling
problems. Chapters 3 and 4 study various integrated production and outbound
distribution scheduling problems that arise in supply chains for make-to-order or
time-sensitive products. Chapter 3 is focused on offline problems where all the
input data to a problem are known in advance. In this chapter, we discuss problem
tractability, present optimal algorithms and heuristics, and analyze the performance
of those heuristics. Chapter 4 is dedicated to online problems where information
about a job is not known until it arrives. In this chapter, we present online algorithms
for the problems studied and analyze their worst-case performance. Chapter 5
considers problems where product pricing and production scheduling decisions
are made together in a coordinated way. We present optimal and approximation
algorithms and heuristics and discuss their performance and related managerial
insights. Chapter 6 discusses situations where there are subcontractors available
that can be used to process some jobs, and the decision maker needs to make
subcontracting and scheduling decisions jointly in order to optimize the overall
system performance. We present solution algorithms for a variety of problems and
investigate the value of subcontracting in various settings.

Chapter 3
Integrated Production and Outbound
Distribution Scheduling: Offline
Problems

Abstract In this chapter, we discuss various integrated production and outbound
distribution scheduling problems that arise frequently in supply chains for make-to-
order or time-sensitive products. We first briefly discuss background, motivations,
and the current status of research on these problems. We then classify such problems
into several different classes based on some of their major characteristics. We
next focus on several representative problems in each class by discussing their
tractability, algorithms for solving them, and some other related results.

3.1 Introduction

Production and distribution operations are the two most fundamental functions in a
supply chain. In order to maximize customer service at the lowest cost, it is critical
to integrate these two functions, and plan and schedule them jointly, in a coordinated
manner. In the past three decades, many research studies have been conducted on
various integrated production-distribution models at all levels—strategic planning,
tactical planning, and operational scheduling. Many survey articles on such models
have appeared, see, e.g., Sarmiento and Nagi (1999), Erengüç et al. (1999),
Goetschalckx et al. (2002), Bilgen and Ozkarahan (2004), Chen (2004, 2010),
and Wang et al. (2015). At a strategic or tactical planning level, production and
distribution decisions are typically made based on estimated aggregate production
and distribution capacity and customer demand over a relatively long period of
time (e.g., 6 months, 1 year, or longer) as input. These decisions are often made
jointly with location, network design, capacity, and inventory decisions. By contrast,
at a scheduling level, production and distribution decisions are often made with
actual machine availability and actual customer orders over a much shorter period
of time (e.g., several hours, 1 day, or 1 week) as input. Such decisions are usually
made jointly with customer service decisions such as order acceptance and on-time
delivery performance.

Detailed scheduling level integration of production and distribution operations
is necessary in many practical situations. Increased competition in today’s global

© Springer Nature Switzerland AG 2022
Z.-L. Chen, N. G. Hall, Supply Chain Scheduling, International Series
in Operations Research & Management Science 323,
https://doi.org/10.1007/978-3-030-90374-9_3

53

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-90374-9_3&domain=pdf
https://doi.org/10.1007/978-3-030-90374-9_3

54 3 Integrated Production and Outbound Distribution Scheduling: Offline Problems

marketplace, and heightened expectations of customers, have forced companies to
invest aggressively to reduce inventory levels across the supply chain on one hand
and be more responsive to customers on the other. Reduced inventory results in
closer linkage between production and distribution operations, which makes the
joint scheduling of these operations both necessary and possible. Joint scheduling
of multiple operations enables firms to optimize the tradeoffs between various costs,
total revenue, and delivery timeliness. It is especially critical to integrate production
and outbound delivery schedules in the supply chain of many short-shelf-life or
make-to-order products. Chapter 1 provides several examples of such products for
which production scheduling and delivery scheduling need to be considered jointly.

In this book, we dedicate two chapters—this one and the next—to integrated
production and outbound distribution scheduling (IPODS) models. This chapter is
focused on offline problems where all parameters associated with jobs are known
in advance, whereas Chap. 4 considers online problems where some or all of the
parameters associated with jobs are not known until they arrive.

To the best of our knowledge, Potts (1980) is the first paper on an IPODS
problem. The problem studied by Potts involves processing jobs on a single machine
and delivering them to multiple customer sites individually and immediately after
their completion, with the objective of minimizing the maximum delivery time of
the jobs. Most of the work on IPODS models has been performed in the past 20
years. A detailed review on IPODS models is given in the survey paper by Chen
(2010). Most of the IPODS papers with the individual and immediate delivery
method are inspired by Potts (1980). Cheng and Kahlbacher (1993) is the first paper
that considers batch delivery (i.e., multiple jobs are delivered together, as opposed
to the case of individual delivery) and transportation costs. Almost all the IPODS
problems studied prior to 2001 assume that there are always sufficient number
of delivery vehicles such that whenever there is a delivery need, there is always
a vehicle available. Lee and Chen (2001), which considers a variety of IPODS
problems with batch delivery, is apparently the first paper that addresses problems
where the number of delivery vehicles is limited. Their paper has motivated the
study of a variety of such models. Although a large body of literature on IPODS
problems has appeared, research interest in this area is still growing. We believe
that the strong interest in this area is mainly motivated by the following facts: (1)
historically, supply chain management (SCM) research has been almost exclusively
focused on planning level decisions; (2) an increasing number of applications (as
described in Chap. 1) require coordinated decision making at a detailed scheduling
level; and (3) IPODS models fill the gap between traditional SCM research and new
applications.

This chapter is organized as follows. Section 3.2 introduces necessary notation,
defines IPODS problems, classifies them into several classes based on the character-
istics of job delivery, and presents a representational notation scheme for describing
most IPODS problems. Most existing problems involve a single production plant
and a single stage of delivery of completed jobs from the plant to the customer
sites. Such problems can be classified into problems with individual and immediate
delivery, problems with batch delivery to a single customer, problems with batch
delivery to multiple customers, and problems with fixed delivery departure times.

3.2 Problem Definition and Classification 55

Chapter 3:
Integrated Production and Outbound

Distribution Scheduling: Offline Problems

Section 3.2: Problem Definition and Classification:
model parameters and notation;

five-field model representation;

model classification by delivery method.

Section 3.3: Problems with Individual and Immediate Delivery:
single-machine problems with a sufficient number of vehicles;

single-machine problems with a limited number of vehicles;

multi-machine problems.

Section 3.4: Problems with Batch
Deliver to a Single Customer:
optimality properties;

single-machine problems;

parallel-machine problems;

problems with a limited number of vehicles.

Section 3.5: Problems with Batch
Delivery to Multiple Customers:
single-machine problems with direct shipping;

parallel-machine problems with routing;

problems with a limited number of vehicles

and direct shipping.

Section 3.6: Problems with Fixed
Delivery Departure Dates:
problems with homogeneous vehicles;

problems with heterogeneous vehicles.Section 3.8: Problems with Two Stages of Delivery:
optimality properties;

minimizing the sum of total delivery time and total cost;

minimizing the sum of maximum delivery time and total cost. Section 3.7: Problems with Multiple Plants:
minimizing the sum of total lead time and total cost;

minimizing the sum of maximum lead time and total cost.

Fig. 3.1 Overview of the topics covered in Chap. 3.

Several representative problems from each of these classes are discussed in detail
in Sects. 3.3 through 3.6, respectively. A few problems with multiple plants are
discussed in Sect. 3.7, and a few problems with two stages of delivery are discussed
in Sect. 3.8. Finally, Sect. 3.9 discusses some possible topics for future research.

Figure 3.1 provides an overview of the topics discussed in this chapter.

3.2 Problem Definition and Classification

Most existing IPODS problems involve a single production plant where all the job
processing activities take place, and a single stage of delivery of completed jobs
from the plant to the customer sites. In this section, we use the notation, definitions,
and classification scheme given in the survey paper of Chen (2010) to describe and
classify such IPODS problems.

3.2.1 Model Parameters and Notation

We first describe a general IPODS problem with a single plant and single stage of
delivery. At the beginning of a planning horizon, a manufacturer receives a set of
orders for n jobs N = {1, 2, . . . , n} from k customers K = {1, 2, . . . , k}, which may

56 3 Integrated Production and Outbound Distribution Scheduling: Offline Problems

be at different locations. Let Ni ⊂ N be the subset of the jobs ordered by customer
i, and ni = |Ni | for i ∈ K , where N = N1 ∪ · · · ∪ Nk , and n = n1 + · · · + nk .
The manufacturer needs first to process these jobs and then to deliver the processed
jobs to the customers by v ≥ 1 delivery vehicles (e.g., vans, trucks, air flights). Each
job j ∈ N needs to be processed by one or multiple machines, depending on the
specific machine environment involved (see Sect. 2.1), and may be associated with
a number of parameters, including:

• A processing time pj if only one machine is needed, or a processing times phj

on the hth machine if multiple machines are needed.
• An importance weight wj .
• A release date (a.k.a. release time, ready time, and arrival time) rj , which is the

time when job j arrives and is ready for processing.
• A delivery due date dj , such that a penalty may apply if the order is not delivered

to its customer by this time.
• A delivery deadline d̄j , by which the order must be delivered to its customer.
• A size qj , which is the units of capacity needed to carry job j by a delivery

vehicle.
• A revenue Rj if job j is processed and delivered to its customer at a desired time

(e.g., before or at the deadline, or within a specific time window).

The delivery vehicles may be homogeneous (i.e., they can go to the same
customer destinations, and have the same delivery capacity, travel speed, and cost
rate) or heterogeneous (i.e., one or more parameters are vehicle dependent). The
number of available vehicles may be limited or infinite, and vehicle capacity may
be limited (i.e., can only carry a subset of orders in a shipment) or infinite (i.e.,
can carry any number of orders in one shipment). There are generally nonzero
transportation times and nonzero variable transportation costs for traveling between
different locations. There may also be a fixed transportation cost associated with
each shipment or each vehicle. Specific notation related to transportation times and
costs is defined later where necessary.

A schedule (i.e., solution) of a given IPODS problem consists of a production
schedule which specifies when and where each order is processed and a delivery
schedule which specifies how many shipments (or batches) are used, the departure
time and traveling route of each shipment, which jobs are in each shipment, and
when each job is delivered to its customer. Using the same notation and definitions
given in Sect. 2.1, we let Cj , Dj , and Tj denote the completion time, delivery time,
and tardiness of order j , and Uj be a binary indicator for whether order j is tardy
or not.

The objective of the manufacturer is to optimize one or a combination of the
time-based, cost-based, and revenue-based performance measures defined below.
The time-based measures have the same functional forms as the ones used in the
production scheduling literature, except that they are functions of job delivery
times Dj instead of completion times Cj used in the production scheduling liter-
ature. Commonly used time-based performance measures are defined in Sect. 2.1,
including makespan or maximum delivery timeDmax, total (weighted) delivery time

3.2 Problem Definition and Classification 57

of the jobs
∑

Dj (or
∑

wjDj), total (weighted) tardiness of the jobs
∑

Tj (or∑
wjTj), maximum lateness Lmax, and total (weighted) number of late jobs

∑
Uj

(or
∑

wjUj).
The most commonly studied cost-based performance measure is total trans-

portation cost, denoted as T C, which includes all the fixed and variable total
transportation costs incurred for delivering all the jobs. Since the total production
cost for processing a given set of jobs is typically fixed independently of the job
processing schedule used, total production cost is rarely considered in making
scheduling decisions.

When not every job can be accepted for processing, e.g., when jobs have
deadlines, but not every job can be processed and delivered by its deadline due
to limited production and transportation capacity, a revenue-based performance
measure is relevant. In this case, we denote the total revenue of accepted jobs to be∑

Rj (which is
∑

j∈A Rj , where A is the set of accepted and successfully delivered
jobs).

3.2.1.1 Five-Field Model Representation

We use the five-field notation α|β|π |δ|γ proposed in Chen (2010) to represent
an IPODS problem with a single plant and single distribution stage. The α, β,
and γ fields describe the same components of a problem as are used in the well-
known three-field α|β|γ notation for production scheduling problems (e.g., Graham
et al., 1979, also discussed in Sect. 2.1). The reader is referred to Sect. 2.1 for com-
monly considered machine environments (field α) and commonly used time-based
objective functions (field γ). Other commonly used objective functions, including
cost-based and revenue-based performance measures, are discussed above. The
other two fields π and δ specify the characteristics of the delivery process and the
number of customers, respectively. Below, we describe some commonly studied
constraints and restrictions (field β), number of customers (field δ), and delivery
characteristics (field π), associated with IPODS problems.

Restrictions and Constraints (β) Below are the symbols used in field β for some
commonly used restrictions and constraints in IPODS problems.

• rj : Jobs have unequal release dates (without this, it is assumed that all the jobs
arrive and are ready for processing at time 0).

• dj = d: Jobs have a common due date d.
• d̄j : Each job j has a deadline, before or at which job j must be delivered to its

customer.
• f dj : Each job j has a fixed delivery time f dj such that if the job is accepted,

it then must be delivered to its customer exactly at this point of time (i.e., Dj =
f dj for j ∈ N).

• pmtn: Job processing can be preempted and resumed later.
• no-wait: Each job needs to be processed without idle time from one machine to

the next in a flowshop environment.

58 3 Integrated Production and Outbound Distribution Scheduling: Offline Problems

Number of Customers (δ) There are three possible cases for the number of
customers:

• A single customer (use symbol “1” in field δ).
• Multiple customers (use symbol “k” in field δ).
• n customers, such that each order belongs to a different customer (use symbol

“n” in field δ).

It is assumed without loss of generality that each customer has a distinct location so
that under certain circumstances (e.g., under a direct shipping strategy) only orders
destined for the same customer can be consolidated for delivery.

Delivery Characteristics (π) Field π consists of two parts: vehicle characteristics
(the number and capacity of delivery vehicles), and the delivery or shipping method
used. Vehicle characteristics are represented by symbol V (x, y) if all vehicles are
homogeneous, or Vhet (x, y) if vehicles are heterogeneous, where x represents the
number of delivery vehicles available, and y represents the capacity of each vehicle.
The commonly studied cases of x and y are as follows:

• x = 1: There is a single delivery vehicle available.
• x = v: There are v vehicles available, where v < n and is finite.
• x = ∞: There is a sufficient number of vehicles available, such that vehicle

availability is not a constraint. This is applicable when the delivery is handled by
a third-party logistics provider which typically owns a large number of vehicles.

• y = 1: Each vehicle can only deliver one job at a time.
• y = c: Each vehicle can deliver up to c jobs at a time, where c < n and is finite.

This is applicable when each job occupies an equal amount of vehicle capacity,
such that vehicle capacity can be represented by the maximum number of jobs
that a vehicle can carry.

• y = ∞: Each vehicle can deliver any number of jobs at a time. This is applicable
when the jobs are all small in weight or volume, such that there is no vehicle
capacity issue.

• y = Q: Each vehicle can deliver at most Q capacity units (weight or volume)
at a time (in this case, each job j occupies a generally different size of qj units
of the vehicle capacity). This is the most general way of modeling the vehicle
capacity constraint.

Commonly studied delivery or shipping methods and the corresponding representa-
tion symbols include the following:

• Individual and immediate delivery (symbol “iid”): Each job is picked up for
shipping individually and immediately after it completes processing (i.e., Dj =
Cj + tj for j ∈ N , where tj is the transportation time from the plant to
job j ’s destination). This delivery method is often used for products with an
extremely short life span such that a job, once it has completed processing, must
be delivered immediately.

• Batch delivery by direct shipping (symbol “direct”): Only jobs going to the
same customer can be delivered together in the same shipment. This shipping

3.2 Problem Definition and Classification 59

method is often used for products with a short life span and for situations where
customers do not want to share shipments with other customers, for example due
to commercial confidentiality or possible contamination risk.

• Batch delivery with routing (symbol “routing”): Jobs going to different cus-
tomers can be delivered together in the same shipment (where vehicle routing
is a part of the decision).

• Shipping with fixed delivery departure dates (symbol “fdep”): Each vehicle has a
fixed delivery departure date at which time exactly the vehicle must depart from
the plant, which is pre-specified as a given parameter. This delivery method is
applicable when delivery is performed by a third-party logistics service provider
that picks up customer orders at fixed times in a day (e.g., 10:00 am, 3:00 pm),
which cannot be changed by the user of the service.

• Splittable delivery (symbol “split”): A job is allowed to be split and delivered
in multiple batches. This delivery method may be used in situations where
customers do not require their jobs to be delivered in one shipment.

Below we give three examples to illustrate how the five-field representation
scheme α|β|π |δ|γ can be used to describe an IPODS problem precisely.

Example 3.1 (Problem 1|rj |V (v, c), direct |1|∑Dj + T C) In this problem, there
is a single machine available for processing all the jobs, which belong to a single
customer. The jobs have different release times and are delivered by v vehicles,
each capable of carrying up to c jobs at a time. The direct shipping method is used.
The objective is to minimize the sum of total delivery time of the jobs and total
transportation cost.

Example 3.2 (Problem Pm||V (∞,Q), routing|k|T C) There are m identical par-
allel machines for processing the jobs, which belong to k different customers. Jobs
have generally different sizes. There is a sufficient number of vehicles, each capable
of carrying up to Q units total job size. Jobs destined for different customers can
be delivered together; vehicle routing is part of the decision. The objective is to
minimize the total transportation cost.

Example 3.3 (Problem Fm|f dj |V (v, 1), iid|n|∑Rj −T C) There are m flowshop
machines for processing the jobs. Each job belongs to a different customer and has a
fixed delivery time at which the job must be delivered to its customer if it is accepted.
Not every job needs to be accepted for processing and delivery. Accepted jobs are
delivered individually and immediately after processing to the respective customers
by v vehicles. The objective is to maximize the total revenue of the accepted jobs
minus the total transportation cost.

3.2.1.2 Model Classification

The IPODS problems with a single plant and a single delivery stage can be classified
into the following five classes by the delivery method used.

60 3 Integrated Production and Outbound Distribution Scheduling: Offline Problems

• Models with individual and immediate delivery. In these models, each job has
to be delivered individually and immediately upon its completion. This class of
models includes all the models with the “iid” delivery method.

• Models with batch delivery to a single customer by direct shipping method. The
jobs come from a single customer and can be batched together for delivery.
This class of models includes all the single-customer models with the “direct”
shipping method.

• Models with batch delivery to multiple customers by the direct shipping method.
This class of models is similar to the second class described above except for
one major difference; that is, there are multiple customers such that batching is
confined to the jobs from the same customer. This class of models includes all
the multi-customer models with the “direct” shipping method.

• Models with batch delivery to multiple customers by the routing method. There
are multiple customers, and the jobs destined to different customers can be
delivered together by the routing method. This class of models includes all the
multi-customer models with the “routing” shipping method.

• Models with fixed delivery departure dates. In these models, each delivery vehicle
has a fixed delivery departure date that is pre-specified and not a part of the
decision. This class of models includes all the models with the “fdep” shipping
method.

We note that some models with fixed delivery departure dates allow batch delivery
of orders from the same customer and hence could also be viewed as models with
batch delivery with the direct shipping method.

In addition to the above five classes of models, which all involve a single
production plant and a single delivery stage, there are two other classes of IPODS
problems that have also been studied in the literature (e.g., Chen & Pundoor, 2006;
Tang et al., 2019):

• Models with multiple plants located at different locations. These problems may
involve decisions of assigning jobs to plants, which do not exist in other classes
of problems.

• Models with two stages of job delivery, e.g., from a plant to a distribution
center, and from the distribution center to customer sites. These problems may
involve different transportation modes and different delivery methods in different
delivery stages.

3.3 Problems with Individual and Immediate Delivery

As defined in Sect. 3.2, the class of problems with individual and immediate delivery
share a common constraint, that is, each job, once it has completed processing, must
be delivered immediately to its customer by a vehicle, and the delivery cannot be
shared with any other jobs. For all the problems discussed in this section, we use tj
to denote the transportation time from the plant to job j ’s destination, for j ∈ N .

3.3 Problems with Individual and Immediate Delivery 61

In Sects. 3.3.1 and 3.3.2 below, we consider, respectively, two representa-
tive problems with a sufficient number of vehicles 1||V (∞, 1), iid|n|Dmax and
1|rj |V (∞, 1), iid|n|Dmax, and two representative problems with a limited number
of vehicles 1||V (1, 1), iid|n|Dmax and 1||V (v, 1), iid|n|Dmax. Several related
problems involving multiple machines, including Pm|f dj |V (v, 1), iid|n|∑Rj , are
discussed in Sect. 3.3.3.

3.3.1 Maximum Delivery Time Problems with a Sufficient
Number of Vehicles

In this section, we consider two related single-machine Dmax problems
with a sufficient number of delivery vehicles, 1||V (∞, 1), iid|n|Dmax and
1|rj |V (∞, 1), iid|n|Dmax. The classical scheduling problems without delivery
corresponding to these two problems are 1||Cmax and 1|rj |Cmax, respectively. These
two classical problems are quite easy to solve. Any schedule without inserted
idle time is optimal for 1||Cmax, whereas scheduling the orders in nondecreasing
sequence of their release dates is optimal for 1|rj |Cmax.

In the following, we first show that any problem α|β|V (∞, 1), iid|n|Dmax
is equivalent to the classical scheduling problem α|β|Lmax, for any machine
environment α ∈ {1, Pm, F }, and any restrictions and constraints on the jobs, β.
Based on this, we show that problem 1||V (∞, 1), iid|n|Dmax can be solved easily
following a simple rule, but problem 1|rj |V (∞, 1), iid|n|Dmax is strongly NP -
hard. All these results are described in Chen (2010).

Theorem 3.1 For any machine configuration α ∈ {1, Pm, F }, and any restrictions
and constraints β, the problem α|β|V (∞, 1), iid|n|Dmax is equivalent to the
classical problem α|β|Lmax.

Proof Given problem α|β|V (∞, 1), iid|n|Dmax, we define a corresponding classi-
cal problem α|β|Lmax involving the same set of jobs, where each job j has a due
date d ′

j = M − tj , where M is a sufficiently large constant, e.g., M = max{tj |j ∈
N}. In any feasible schedule π for problem α|β|V (∞, 1), iid|n|Dmax, since Dj =
Cj + tj = Cj +M −d ′

j , we have Dmax = M + max{Cj −d ′
j |j ∈ N} = M +L′

max,
where L′

max = max{Cj − d ′
j |j ∈ N} is the maximum lateness of jobs for the

classical problem α|β|Lmax. Therefore, minimizing Dmax in the earlier problem is
equivalent to minimizing the maximum lateness in the latter problem. ��
Corollary 3.1

(i) Problem 1||V (∞, 1), iid|n|Dmax is solved optimally in O(n log n) time by
scheduling the jobs in a nonincreasing order of transportation times tj .

(ii) Problem 1|rj |V (∞, 1), iid|n|Dmax is strongly NP -hard.

62 3 Integrated Production and Outbound Distribution Scheduling: Offline Problems

Proof

(i) By Theorem 3.1, problem 1||V (∞, 1), iid|n|Dmax is equivalent to the classical
problem 1||Lmax when the due date of job j is defined as d ′

j = M − tj , where
M is a sufficiently large constant. It is known (Jackson, 1955) that for 1||Lmax,
scheduling the jobs in nondecreasing sequence of their due dates is optimal. By
the definition of d ′

j , a nondecreasing order of the due dates for problem 1||Lmax
is equivalent to a nonincreasing order of transportation times tj for problem
1||V (∞, 1), iid|n|Dmax. This shows result (i).

(ii) Similarly, by Theorem 3.1, problem 1|rj |V (∞, 1), iid|n|Dmax is equivalent
to the classical problem 1|rj |Lmax, which is known to be strongly NP -hard
(Lenstra et al., 1977). Thus, problem 1|rj |V (∞, 1), iid|n|Dmax is also strongly
NP -hard.

��
There are heuristics for problem 1|rj |V (∞, 1), iid|n|Dmax with a constant

worst-case performance bound. In the remainder of this subsection, we describe
the heuristic proposed by Potts (1980) and analyze its worst-case performance. The
proofs are adapted from Potts (1980) and Hall and Shmoys (1992).

We first define some terms. In any given schedule π for the problem, suppose
that the jobs are processed in the following sequence: j1, j2, . . . , jn, and that job jc
is delivered to its destination last in the schedule. Let ja be the earliest-processed
job such that no idle time exists between the processing of jobs ja and jc. Clearly,
the maximum delivery time in this schedule, denoted as Dmax(π), is given as

Dmax(π) = rja +
c∑

h=a

pjh + tjc . (3.1)

We call the sequence of jobs ja, . . . , jc a critical sequence for the given schedule
π , and job jc the critical job of this sequence. Among the jobs in this critical
sequence, let job jb, where a ≤ b < c, be the latest-processed job satisfying
tjb < tjc . If such a job jb exists, we call it an interference job.

The heuristic of Potts (1980) utilizes a simple scheduling rule and applies it
multiple times. We first state this simple rule, denoted as Rule S, below and show
some properties of any schedule generated by this rule.

Rule S Whenever the machine is free and one or more jobs are available for
processing, schedule an available job with the largest transportation time.

Let π(S) be a schedule generated by applying this rule to the given job set N .
Suppose that ja, . . . , jc is one of the critical sequences in schedule π(S). Hence, job
jc is the critical job of this sequence. We observe the following facts: (i) rja ≤ rjh ,
for h = a + 1, . . . , c; (ii) if there is an interference job jb, then tjb < tjh and
rjb < rjh , for h = b+1, . . . , c; and (iii) if there is no interference job in this critical
sequence, then schedule π(S) is optimal. Facts (i) and (ii) follow immediately from
the definitions of a critical sequence and an interference job and the fact that π(S)

3.3 Problems with Individual and Immediate Delivery 63

is generated by Rule S. Fact (iii) can be proved as follows. By Fact (i), the optimal
maximum delivery time, denoted as D∗

max, is at least rja +∑c
h=a pjh +min{tjh | h =

a, . . . , c}. If there is no interference job in this critical sequence, then tjh ≥ tjc , for
h = a, . . . , c. This implies that min{tjh | h = a, . . . , c} = tjc , and hence D∗

max
is greater than or equal to the right-hand side of (3.1). This implies that D∗

max =
Dmax(π(S)).

There are some other useful properties associated with the schedule π(S). We
state them in the following lemma.

Lemma 3.1 Let ja, . . . , jc be a critical sequence for the schedule π(S) generated
by Rule S, and suppose that jb is the interference job for this critical sequence.
Then, Dmax(π(S)) − D∗

max < pjb and Dmax(π(S)) − D∗
max ≤ tjc .

Proof Let Sjb be the time at which job jb is started processing in schedule π(S).
Then, from (3.1) and the fact that there is no idle time between the jobs ja, . . . , jc,
we have

Dmax(π(S)) = Sjb +
c∑

h=b

pjh + tjc . (3.2)

Since π(S) is generated by Rule S, by Fact (ii) discussed above, at time Sjb , none of
the jobs jb+1, . . . , jc is available. Thus, in any optimal schedule, jobs jb+1, . . . , jc
are all started after time Sjb . This implies that

D∗
max > Sjb +

c∑

h=b+1

pjh + tjc . (3.3)

Comparing (3.2) and (3.3), we have Dmax(π(S)) − D∗
max < pjb . From Fact (i),

D∗
max ≥ rja +∑c

h=a pjh . This, along with (3.1), implies that Dmax(π(S))−D∗
max ≤

tjc . ��
The heuristic of Potts (1980) applies Rule S repeatedly. Every time this rule is

applied, a critical sequence is identified; if an interference job exists, then the release
time of this job is reset to that of the critical job, such that in the next iteration this
interference job will be processed after the critical job, which may improve the
schedule.

We now present the heuristic formally.

Algorithm H3.1
Repeat Steps 1 and 2 n times or until there is no interference job in Step 2. The
schedule with the minimum Dmax is adopted.

Step 1: Apply Rule S to the given n jobs.
Step 2: Find a critical sequence in the schedule created in Step 1. Let job jc be the

critical job of this sequence. If an interference job jb exists, then reset rjb to be
rjc and go to Step 1. Otherwise, stop.

64 3 Integrated Production and Outbound Distribution Scheduling: Offline Problems

We illustrate the steps of this algorithm by the following numerical example.

Example 3.4 (Application of Algorithm H3.1) Consider the following instance of
problem 1|rj |V (∞, 1), iid|n|Dmax shown in the following table.

j 1 2 3 4 5

rj 3 3 10 11 13

pj 6 1 5 3 2

tj 6 7 1 5 7

Step 1: Applying Rule S, we get job schedule σ1 = (2, 1, 3, 5, 4), with the starting
time Sj , completion time Cj , and delivery time Dj shown in Table 3.1.

Step 2: The entire sequence of σ1 is a critical sequence. Job 4 is the critical job. Job
3 is the interference job. Reset r3 = r4 = 11.

Step 1: Applying Rule S to the revised instance, we get job schedule σ2 =
(2, 1, 4, 5, 3), with Sj , Cj , and Dj shown in Table 3.1.

Step 2: In σ2, (4, 5) is a critical sequence. Job 5 is the critical job and job 4 is the
interference job. Reset r4 = r5 = 13.

Step 1: Applying Rule S to the revised instance, we get job schedule σ3 =
(2, 1, 3, 5, 4), with Sj , Cj , and Dj shown in Table 3.1.

Step 2: In σ3, (3, 5, 4) is a critical sequence. Job 4 is the critical job and job 3 is the
interference job. Reset r3 = r4 = 13.

Step 1: Applying Rule S to the revised instance, we get job schedule σ4 =
(2, 1, 5, 4, 3), with Sj , Cj , and Dj shown in Table 3.1.

Step 2: In σ4, (5, 4, 3) is a critical sequence. Job 3 is the critical job. There is no
interference job. Stop.

Among the four schedules generated, schedule σ2 has the minimum Dmax, which
is 23. Thus, the final solution generated by the heuristic is σ2 with Dmax = 23. It
can easily be verified that σ2 is in fact an optimal schedule for the given instance.

The following theorem provides the worst-case performance ratio of Algorithm
H3.1.

Theorem 3.2 For problem 1|rj |V (∞, 1), iid|n|Dmax, Algorithm H3.1 generates a
schedule π with Dmax(π) ≤ (3/2)D∗

max.

Proof We establish the theorem by comparing the schedule π generated by
Algorithm H3.1 with an optimal schedule, denoted as π∗. There are two cases to
consider.

Case 1: All precedence constraints introduced due to the resetting of release times
of some jobs in the algorithm are consistent with the optimal schedule π∗. If
the algorithm stops because no interference job exists, then by Fact (iii), the
schedule generated in the last iteration is optimal. Otherwise, the algorithm runs
for n iterations. In this case, we prove the theorem by contradiction. Suppose that

3.3 Problems with Individual and Immediate Delivery 65

Table 3.1 Schedules generated

σ1 2 1 3 5 4

Sj 3 4 10 15 17

Cj 4 10 15 17 20

Dj 11 16 16 24 25
σ2 2 1 4 5 3

Sj 3 4 11 14 16

Cj 4 10 14 16 21

Dj 11 16 19 23 22
σ3 2 1 3 5 4

Sj 3 4 11 16 18

Cj 4 10 16 18 21

Dj 11 16 17 25 26
σ4 2 1 5 4 3

Sj 3 4 13 15 18

Cj 4 10 15 18 23

Dj 11 16 22 23 24

the schedule generated in every iteration has a maximum delivery time greater
than 3D∗

max/2, and hence the theorem does not hold. It can then be shown by
Lemma 3.1 that the processing time of the interference job in every iteration is
greater than D∗

max/2. Since the same job can be the interference job in at most
n − 1 of the n iterations, there are at least 2 jobs with a processing time greater
than D∗

max/2, which is a contradiction.
Case 2: At some iteration, an incorrect precedence constraint is introduced. Consider

the first iteration when a precedence constraint that violates the sequence in
π∗ is introduced. Let jb and jc be the interference job and critical job found
in this iteration, respectively. Suppose that the maximum delivery time of the
schedule generated in this iteration is greater than 3D∗

max/2. Then by Lemma 3.1,
pjb ≥ D∗

max/2, and pjc ≥ D∗
max/2. The fact that the precedence constraint is

inconsistent implies that job jb precedes job jc in the optimal schedule π∗. Thus
in schedule π∗, D∗

max > rjb + pjb + pjc + tjc > D∗
max, which is a contradiction.

This implies that the maximum delivery time of the schedule generated in this
iteration is less than (3/2)D∗

max.
��

There are other heuristics for problem 1|rj |V (∞, 1), iid|n|Dmax. Hall and
Shmoys (1992) propose a modified heuristic based on Algorithm A with a tighter
worst-case performance ratio of 4/3. Hall and Shmoys (1992) and Mastrolilli (2003)
propose polynomial time approximation schemes for this problem.

66 3 Integrated Production and Outbound Distribution Scheduling: Offline Problems

3.3.2 Maximum Delivery Time Problems with a Limited
Number of Vehicles

In this section, we consider two single-machine Dmax problems with a limited
number of vehicles, 1||V (1, 1), iid|n|Dmax and 1||V (v, 1), iid|n|Dmax. We first
observe that the individual and immediate delivery (iid) method, together with a
limited number of delivery vehicles, means that in these problems, (1) each vehicle
may have to make multiple trips, and (2) the processing of a job cannot begin if there
is no vehicle available to pick it up immediately after it has completed processing.
For ease of presentation, we assume that in these problems the transportation time
from a job’s destination back to the plant is the same as that from the plant to this
job’s destination. Thus, the round-trip transportation time between the plant and job
j ’s destination is 2tj , for j ∈ N . All the results in this section still apply without
this assumption.

Before we analyze these problems, we first show that several problems with the
“iid” delivery method and a limited number of delivery vehicles are identical to
some two-stage no-wait flexible flowshop problems.

Theorem 3.3 Problem 1||V (v, 1), iid|n|f (D) is equivalent to the two-stage no-
wait flexible flowshop scheduling problem F(1, v)|no−wait |f (C), for any f (D) ∈
{∑wjDj ,

∑
wjTj ,

∑
wjUj , Lmax}, defined based on the job delivery times D =

(D1, . . . , Dn), where in the latter problem there are one machine at the first stage
and v parallel machines at the second stage, and C = (C1, . . . , Cn) is the vector of
job completion times.

Proof This equivalence is established when we view the v delivery vehicles in the
earlier problem as the v parallel machines in the second stage in the latter problem.
The iid constraint in the former problem is then equivalent to the no − wait

constraint in the latter problem. If we view the round-trip transportation time for
each job j , i.e., 2tj , in the earlier problem as the processing time of the job in
the second stage in the latter problem, then any schedule for the latter problem that
satisfies the no-wait constraint corresponds to a schedule for the earlier problem that
satisfies the iid constraint, and vice versa. For each job j , its delivery time Dj in
the schedule for the earlier problem and its completion time Cj in the corresponding
schedule for the latter problem satisfy Dj = Cj − tj . This implies that when
f (D) ∈ {∑wjDj ,

∑
wjTj ,

∑
wjUj , Lmax}, our problem 1||V (v, 1), iid|n|f (D)

is equivalent to the corresponding problem F(1, v)|no − wait |f (C). For the
case with f (D) = ∑

wjDj , the equivalence of the two problems follows
directly because

∑
wjDj = ∑

wjCj − ∑
wj tj , which means that minimizing∑

wjDj is equivalent to minimizing
∑

wjCj . For the other objective functions,
the equivalence is established when given the due date of job j , dj in the former
problem, we specify the due date of job j for the latter problem to be dj + tj . ��

For results on no-wait flowshop and flexible flowshop problems, see the survey
articles by Hall and Sriskandarajah (1996) and Bagchi et al. (2006).

3.3 Problems with Individual and Immediate Delivery 67

Remark 3.1 Although 1||V (v, 1), iid|n|Dmax and F(1, v)|no − wait |Cmax are
closely related, they are not equivalent because the fact that Dj = Cj − tj and
the tj ’s are generally different implies that minimizing Dmax is not equivalent to
minimizing Cmax.

We first focus on problem 1||V (1, 1), iid|n|Dmax. For this problem, it is easy to
see that in an optimal schedule for this problem, jobs processed earlier are picked
up earlier. This means that once a schedule for job processing is given, the delivery
schedule of the only vehicle involved is specified accordingly. Consequently, we
only need to find an optimal schedule for job processing. Below, we give an optimal
polynomial time algorithm for this problem. The algorithm considers n cases of the
problem, where the kth case of the problem is to find an optimal schedule where job
k is processed and picked up last, for k = 1, . . . , n. For each case, the problem is
formulated as a special case of the traveling salesman problem (TSP) solvable by the
algorithm of Gilmore and Gomory (1964). The best among the n optimal sequences
for the n cases of the problem is then optimal.

Algorithm A3.1
Step 0: Let k = 1.
Step 1: Reindex the jobs in N \ {k} as [1], . . . , [n− 1]. Formulate the problem with

k being the last job in the schedule as a TSP in the following complete graph:
there are n nodes 0, 1, . . . , n − 1 in the network, where node 0 corresponds to
job k, and nodes 1, . . . , n − 1 correspond to jobs [1], . . . , [n − 1], respectively;
the distance matrix (τij) is defined as τij = max{2t[i], p[j]} if i �= 0 and j �= 0;
τi0 = max{2t[i], pk} if i �= 0; and τ0j = p[j] if j �= 0.

Step 2: Solve the TSP by the Gilmore–Gomory algorithm. Let the optimal TSP tour
be denoted as πk = (0, hk1, hk2, . . . , hk,n−1, 0), where (hk1, hk2, . . . , hk,n−1) is
a permutation of nodes 1, . . . , n − 1. Let zk denote the total distance of πk .

Step 3: If k < n, let k = k + 1 and repeat Steps 1 and 2. Otherwise, stop.
Find j such that zj + tj = min{zk + tk | k = 1, . . . , n}. The job sequence
([hj1], . . . , [hj,n−1], j) corresponding to the TSP tour πj is optimal.

We use the following numerical example to illustrate the central idea of
Algorithm A3.1.

Example 3.5 (Application of Algorithm A3.1) Apply Algorithm A3.1 to the fol-
lowing instance of problem 1||V (1, 1), iid|n|Dmax. There are 4 jobs with the
parameters shown in the table below.

j 1 2 3 4

pj 3 4 5 6

tj 2 3 1 4

Applying Algorithm A3.1 to this instance, four solution cases are considered,
each with one of the jobs scheduled last (i.e., both processed and delivered last).

68 3 Integrated Production and Outbound Distribution Scheduling: Offline Problems

As an illustration, we consider one of the cases, where job 3 is scheduled last. For
this case, Step 1 of the algorithm creates a complete graph with nodes 0, 1, 2, and 3
corresponding to jobs 3, [1], [2], and [3], respectively, where reindexed jobs [1], [2],
and [3] correspond to the original jobs 1, 2, and 4, respectively. The distance matrix
(τij) is shown in the following table, where for ease of reference, the corresponding
job with its original index for each node is also shown. Each entry in the table
τij is the distance from node i to node j , as defined in Step 1 of the algorithm,
where τ0j = p[j] for j = 1, 2, 3, τij = max{2t[i], p[j]} for i, j = 1, 2, 3, and
τi0 = max{2t[i], p3} for i = 1, 2, 3.

Job 3 Job 1 Job 2 Job 4

Node 0 Node 1 Node 2 Node 3

Job 3 Node 0 – 3 4 6

Job 1 Node 1 5 – 4 6

Job 2 Node 2 6 6 – 6

Job 4 Node 3 8 8 8 –

Step 2 solves the TSP problem in the constructed network. The optimal TSP tour
for the given network is π = (0, 1, 2, 3, 0) with total distance z = τ01 + τ12 + τ23 +
τ30 = 21. Tour π corresponds to job schedule (1, 2, 4, 3) with Dmax = z + t3 =
21 + 1 = 22.

Theorem 3.4 Algorithm A3.1 solves the problem 1||V (1, 1), iid|n|Dmax optimally
in O(n2 log n) time.

Proof For a fixed k ∈ N , reindex the jobs in N\{k} as [1], . . . , [n−1], as in Step 1 of
the algorithm. Given a sequence of jobs ([u1], . . . , [un−1], k) for the problem, where
([u1], . . . , [un−1]) is a permutation of {1, . . . , n − 1}. Define Δ([ui], [ui+1]) to be
the difference between the pickup times of the neighboring jobs [ui] and [ui+1]. It
can easily be shown that Δ([ui], [ui+1]) = max{2t[ui], p[ui+1]} for i = 1, . . . , n−1,
and that

Dmax = Dk = p[u1] +
n−1∑

i=1

Δ([ui], [ui+1]) + tk. (3.4)

See Fig. 3.2 for an illustration, where a directed line represents either a delivery or
a return trip of the vehicle.

Now consider a TSP tour (0, u1, . . . , un−1, 0) for the TSP problem defined in
Step 1, where node 0 corresponds to job k and nodes u1, . . . , un−1 correspond to
jobs [u1], . . . , [un−1], respectively. By definition of the distance matrix in Step 1, it
can be seen that τ0,u1 = p[u1], τui ,ui+1 = Δ([ui], [ui+1]), for i = 1, . . . , n − 2, and
τun−1,0 = Δ([un−1], [un]). Therefore, the total distance of this TSP tour, denoted as
qk , is given by

3.3 Problems with Individual and Immediate Delivery 69

[u1] [u2] [u3] [un-1] k……
1[]up �([u1, u2]) �([u2, u3]) �([un-2], [un-1]) �([un-2], k)

Dmax

1[]ut 1[]ut 2[]ut 2[]ut kt

Fig. 3.2 Schedule ([u1], . . . , [un−1], k)

qk = τ0,u1+
n−2∑

i=1

τui ,ui+1+τun−1,un = p[u1]+
n−1∑

i=1

Δ([ui], [ui+1]) = Dk−tk. (3.5)

Thus, any solution π to the problem 1||V (1, 1), iid|n|Dmax with job k scheduled
last corresponds to a solution σ to the TSP defined in Step 1. Also, (3.4) and (3.5)
imply that the objective values of the solutions π and σ differ by a constant
tk . Therefore, the problem 1||V (1, 1), iid|n|Dmax with job k scheduled last can
be solved by solving the corresponding TSP. This shows the optimality of the
algorithm.

For fixed k ∈ N , the TSP defined in Step 1 has a special structure. The distance
parameters can be expressed as τij = max{λi, μj } for all i, j = 0, 1, . . . , n − 1
with i �= j , where λ0 = 0, μ0 = pk , and λj = 2t[j] and μj = p[j], for j ≥
1. A distance matrix with this characteristic is called a large matrix, and the TSP
with such a distance matrix can be solved by the Gilmore–Gomory algorithm in
O(n log n) time (Van Dal et al., 1993). Because the algorithm solves n such TSP
problems, the overall complexity is O(n2 log n). ��

Next, we show that problem 1||V (v, 1), iid|n|Dmax is more difficult to solve.

Theorem 3.5 Problem 1||V (v, 1), iid|n|Dmax is strongly NP -hard even when
there are two delivery vehicles.

Proof As discussed above, this problem is closely related, but not equivalent, to the
two-stage flexible flowshop problem F(1, v)|no−wait |Cmax. We prove the theorem
for problem 1||V (2, 1), iid|n|Dmax by a reduction from F(1, 2)|no − wait |Cmax,
which is known to be strongly NP -hard (Sriskandarajah & Ladet, 1986). The
recognition version of F(1, 2)|no − wait |Cmax can be described as follows: Given
h jobs 1, . . . , h with processing times a1, . . . , ah in the first stage and b1, . . . , bh
in the second stage, and a threshold value C0, does there exist a feasible schedule
with the makespan Cmax ≤ C0? We assume without loss of generality that all the
parameters are even numbers.

Given an instance of F(1, 2)|no − wait |Cmax, we construct an instance of
1||V (2, 1), iid|n|Dmax as follows. There are n = h + 2 jobs, N = {1, . . . , h + 2},
with processing times and transportation times: pj = aj and tj = bj /2, for j =

70 3 Integrated Production and Outbound Distribution Scheduling: Offline Problems

1, . . . , h, and ph+1 = ph+2 = 0, and th+1 = th+2 = M , where M ≥ C0 + 1. The
threshold value for Dmax is D0 = C0+M . We show below that there exists a feasible
schedule to the constructed instance of 1||V (2, 1), iid|n|Dmax with Dmax ≤ D0 if
and only if there exists a feasible schedule to the instance of F(1, 2)|no−wait |Cmax
with Cmax ≤ C0.
(⇒) Given a feasible schedule π = (π1, π21, π22) for F(1, 2)|no−wait |Cmax with
makespan Cmax(π) ≤ C0, where π1 is the schedule at the first stage and π21 and π22
are the schedules on the first and second machine at the second stage, respectively,
we construct a schedule σ for 1||V (2, 1), iid|n|Dmax as follows. Process the jobs
1, . . . , h using the same schedule as π1, and process jobs h + 1 and h + 2 last
starting at time Cmax(π). Deliver the jobs in π21 and π22 by the two vehicles,
respectively, with the pickup time of a job equal to the starting time of the job in
π21 or π22. Deliver jobs h + 1 and h + 2 by the two vehicles, respectively, with the
same pickup time at Cmax(π1). Clearly, the constructed schedule σ is feasible for
1||V (2, 1), iid|n|Dmax with Dmax = Cmax(π) + M ≤ C0 + M = D0.
(⇐) Given a feasible schedule σ for 1||V (2, 1), iid|n|Dmax with makespan
Dmax(σ) ≤ D0, we can conclude that jobs h + 1 and h + 2 respectively must
be delivered last by the two vehicles. This is because if a vehicle delivers some
job j ∈ {1, . . . , h} after delivering one of these two jobs, then the vehicle has to
spend 2M units of time delivering j and returning to the plant, which will result in
a makespan larger than D0. Furthermore, since th+1 = th+2 = M , the pickup times
of h + 1 and h + 2 must be Dmax(σ) − M . Therefore, by time Dmax(σ) − M ,
all the jobs 1, . . . , h have been delivered and the vehicles have returned to the
plant after the last jobs among 1, . . . , h are delivered. Now, consider the part of
schedule σ that spans from time 0 to Dmax(σ) − M . Denote this partial schedule
as σ0. Evidently, σ0 covers jobs 1, . . . , h. Based on σ0, we construct a schedule for
F(1, 2)|no − wait |Cmax as follows. Process the jobs in the first stage following
the schedule in the processing part of σ0. Process the jobs that are delivered in
the two vehicles in σ0 by the two machines in the second stage, respectively, with
the starting time of a job equal to the pickup time of the job in σ0. Clearly, this
schedule is feasible for F(1, 2)|no − wait |Cmax with makespan no larger than
Dmax(σ) − M ≤ C0. ��

3.3.3 Multi-Machine Problems

All the problems discussed in Sects. 3.3.1 and 3.3.2 involve a single machine
only. When there are multiple machines, these problems become more difficult
to solve. Since the classical problem Pm||Cmax is ordinarily NP -hard (Karp,
1972), any problem Pm||V (x, 1), iid|n|Dmax, for x ∈ {1, v,∞}, is at least
ordinarily NP -hard. Since 1|rj |Cmax is strongly NP -hard (Lenstra et al., 1977),
any problem Pm|rj |V (x, 1), iid|n|Dmax and Fm|rj |V (x, 1), iid|n|Dmax, for x ∈
{1, v,∞}, is also strongly NP -hard. It can also be shown that any problem
Fm||V (x, 1), iid|n|Dmax, for x ∈ {1, v,∞} is strongly NP -hard. Woeginger

3.3 Problems with Individual and Immediate Delivery 71

(1994) proposes a heuristic for Pm||V (∞, 1), iid|n|Dmax. Hall and Shmoys
(1989) and Mastrolilli (2003) give a PTAS and Gharbi and Haouari (2002) give
a branch-and-bound exact algorithm for Pm|rj |V (∞, 1), iid|n|Dmax. Kaminsky
(2003) provides asymptotically optimal heuristics for Fm||V (∞, 1), iid|n|Dmax
and Fm|rj |V (∞, 1), iid|n|Dmax.

Some “iid” problems studied in the literature have a delivery time window for
each job. Either each job j has a fixed delivery time f dj at which time exactly the
job must be delivered to its customer, or each job j has a time window [aj , bj]
during which the job must be delivered. With such a constraint, it may not be
possible to accept all the jobs. Therefore, all such problems involve job acceptance
decisions and the objective function typically involves maximization of the total
revenue of the accepted jobs. In a problem with a fixed delivery time for each job, if a
job is accepted, both the processing starting time and the pickup time are then fixed.
Thus, no sequencing decision is involved, and the only decisions are determining
which jobs to accept, and which machine to process and which vehicles to deliver
the accepted jobs. It is then easy to see that problem Pm|f dj |V (∞, 1), iid|n|∑Rj ,
where the delivery part is not a bottleneck, reduces to a fixed interval scheduling
problem (without the delivery), which can be solved as a min-cost network flow
problem (Garcia & Lozano, 2004a).

For problem Pm|f dj |V (v, 1), iid|n|∑Rj , where the delivery part can be a
bottleneck, Chen (2010) provides a dynamic programming algorithm with a poly-
nomial running time when m and v are fixed constants. However, the complexity of
this problem with arbitrary m and v is unknown (Chen, 2010). We present Chen’s
algorithm in the following. His algorithm utilizes the following optimality property
of the problem. The property is straightforward and hence we do not give a proof.

Lemma 3.2 In an optimal schedule for problem Pm|f dj |V (v, 1), iid|n|∑Rj ,
accepted jobs assigned to each machine are processed in nondecreasing sequence
of their required completion times f dj − tj , and accepted jobs assigned to each
vehicle are delivered in the same sequence.

Chen’s dynamic programming algorithm for problem Pm|f dj |V (v, 1),
iid|n|∑Rj considers jobs in nondecreasing sequence of f dj − tj , and in each
iteration determines whether to accept or reject a job, and assigns the job to one of
the machines and one of the vehicles if the job is accepted.

Algorithm A3.2
Reindex the jobs such that f d1 − t1 ≤ · · · ≤ f dn − tn.

Value Function F(j ; x1, . . . , xm; y1, . . . , yv) = the maximum total revenue of the
jobs scheduled so far, given that jobs 1, . . . , j have been considered, and among
these jobs, xi is the last job processed by machine i, for i = 1, . . . , m, and yk is the
last job delivered by vehicle k, for k = 1, . . . , v.

Initial Condition F(0; 0, . . . , 0; 0, . . . , 0) = 0.

Recurrence Relation For j = 1, . . . , n; xi = 0, . . . , j , for i = 1, . . . , m; and
yk = 0, . . . , j , for k = 1, . . . , v:

72 3 Integrated Production and Outbound Distribution Scheduling: Offline Problems

F(j ; x1, . . . , xm; y1, . . . , yv)

=
⎧
⎨

⎩

G1, if j > max{x1, . . . , xm} and j > max{y1, . . . , yv}
G2, if j = xi = yk for some 1 ≤ i ≤ m and 1 ≤ k ≤ v

0, otherwise

where

G1 = F(j ; x1, . . . , xm; y1, . . . , yv)

G2 = Rj + max{F(j − 1; x1, . . . , xm; y1, . . . , yv) |
0 ≤ h ≤ j − 1 with f dh − th + pj ≤ f dj − tj

and 0 ≤ e ≤ j − 1 with f de + te + tj ≤ f dj }.

Optimal Solution Value
max{F(n; x1, . . . , xm; y1, . . . , yv) | xi = 0, . . . , n, for i = 1, . . . , m, yk =
0, . . . , n, for k = 1, . . . , v}.

Chen (2010) shows the following result about Algorithm A3.2.

Theorem 3.6 Algorithm A3.2 solves problem Pm|f dj |V (v, 1), iid|n|∑Rj opti-
mally in O(nm+v+3) time.

Proof The recurrence relation considers all three possible cases associated with
each state (j ; x1, . . . , xm; y1, . . . , yv):

(i) If job j is not accepted (and hence j > max{x1, . . . , xm}), then the value
function is equal to G1.

(ii) If job j is accepted (and hence it must be scheduled last among all the jobs
scheduled so far, i.e., j = xi = yk for some i and k), then the value function
is equal to G2. The equation for G2 maximizes the revenue over all possible h

and e such that the resulting schedule is feasible. Feasibility is ensured by the
two conditions involved: f dh − th + pj ≤ f dj − tj and f de + te + tj ≤ f dj .

(iii) If the state is not feasible, then the value function is set to 0.

This shows the optimality of the algorithm. There are at most O(nm+v+1) states
in the dynamic program, and for each state the recurrence relation spends at most
O(n2) time considering all possible values of h and e. Therefore, the overall time
complexity of the algorithm is O(nm+v+3). ��

3.4 Problems with Batch Delivery to a Single Customer

We first provide, in Sect. 3.4.1, some optimality properties shared by many
problems with batch delivery to a single customer. We then discuss in
Sects. 3.4.2, 3.4.3, 3.4.4, and 3.4.5, respectively, several representative problems

3.4 Problems with Batch Delivery to a Single Customer 73

1||V (∞, c), direct |1|Lmax + T C, 1||V (∞,∞), direct |1|∑wjDj + T C,
Pm||V (∞, c), direct |1|∑Dj + T C, 1||V (v, c), direct |1|Dmax, and
1||V (v, c), direct |1|∑Dj .

In all the problems, we use t to denote the one-way transportation time between
the plant and the customer site, and f the transportation cost of a shipment from the
plant to the customer site, which includes both fixed and variable costs.

3.4.1 Optimality Properties

There are a number of structural properties shared by many problems with batch
delivery to a single customer. Below we state some key properties that are needed in
order to develop the solution algorithms provided below. The proofs for these results
are quite straightforward and hence are not shown here. The reader is referred to Lee
and Chen (2001) and Hall and Potts (2003, 2005) for proofs of Lemmas 3.3, 3.4
and 3.6, and Chen (2010) for a proof of Lemma 3.5.

Lemma 3.3 For problems α||V (v, c), direct |1|γ and α||V (∞, c), direct |1|γ ,
where α ∈ {1, Pm} and γ ∈ {f (D), f (D) + T C} with f (D) being any nonde-
creasing function of D = (D1, . . . , Dn) (including Dmax,

∑
(wj)Dj ,

∑
(wj)Tj ,∑

(wj)Uj , and Lmax), there exists an optimal schedule that satisfies all of the
following properties:

(i) There is no idle time between the jobs processed on any machine.
(ii) For each delivery batch, all the jobs in the batch that are processed on the same

machine are processed consecutively on that machine.
(iii) For each machine, jobs that are processed earlier on the machine are delivered

no later than those processed later on the same machine.
(iv) For problem α||V (∞, c), direct |1|γ , for each delivery batch, its departure

time is equal to the completion time of the last job in it. For problem
α||V (v, c), direct |1|γ , for each delivery batch, its departure time is equal to
the maximum of the following two times: the completion time of the last job in
it, and the time when the vehicle for this delivery becomes available.

Lemma 3.4 Problem α||V (∞, c), direct |1|γ with a nonzero transportation time
from the plant to the customer is equivalent to the same problem with a zero
transportation time, for α ∈ {1, Pm, Fm} and γ ∈ {f (D), f (D) + T C} with
f (D) ∈ {Dmax,

∑
(wj)Dj ,

∑
(wj)Tj ,

∑
(wj)Uj , Lmax}.

Lemma 3.4 implies that for problems with a sufficient number of vehi-
cles, we can assume without loss of generality that delivery can be performed
instantaneously. We further observe that in an optimal solution to the problem
α||V (∞, c), direct |1|f (D) where no transportation cost is considered, each job
is delivered individually and immediately upon its completion. Thus, problem
α||V (∞, c), direct |1|f (D) reduces to the classical problem α||f (C).

74 3 Integrated Production and Outbound Distribution Scheduling: Offline Problems

By Lemma 3.4, problem 1||V (∞, c), direct |1|Lmax reduces to the classical
problem 1||Lmax, for which an EDD sequence is optimal. However, for the same
problem but with transportation cost included in the objective function, i.e., problem
1||V (∞, c), direct |1|Lmax + T C, Pundoor and Chen (2005) give the following
example to show that EDD sequence is not optimal.

Example 3.6 (EDD Is Not Optimal for 1||V (∞, c), direct |1|Lmax +T C) Consider
four jobs 1, 2, 3, 4 with p1 = 1, p2 = 5, p3 = 1, p4 = 5; d1 = 2, d2 = 12, d3 =
13, d4 = 14. There is a sufficient number of vehicles, each with capacity c = 2, and
the travel time and travel cost of a shipment are t = 0 and f = 10, respectively.
Clearly, in any schedule at least two shipments are needed. Thus, the objective value
cannot be less than 20. The following schedule has an objective value of 20, and
hence is optimal: process the jobs in sequence (1, 3, 2, 4) and deliver jobs 1 and
3 in one shipment at time 2, and jobs 2 and 4 in another shipment at time 12. Any
schedule where the EDD sequence is used for processing jobs has an objective value
greater than 20 because it has either a positive Lmax and at least two shipments, or a
zero Lmax but more than two shipments.

The following lemma shows that a problem with a limited number of vehicles is
in general more difficult to solve than the corresponding problem with a sufficient
number of vehicles. The polynomial reducibility concept is defined in Sect. 2.2 of
the book.

Lemma 3.5 Problem α||V (∞, c), direct |1|γ is polynomially reducible to
α||V (1, c), direct |1|γ , which is polynomially reducible to α||V (v, c), direct |1|γ ;
and problem α||V (v,∞), direct |1|γ is polynomially reducible to
α||V (v, c), direct |1|γ , where α ∈ {1, Pm, Fm} and γ ∈ {f (D), f (D) + T C} with
f (D) ∈ {Dmax,

∑
(wj)Dj ,

∑
(wj)Tj ,

∑
(wj)Uj , Lmax}.

Lemma 3.6

(i) For problem 1||V (x, y), direct |1|f (D)+T C with x ∈ {1, v,∞}, y ∈ {c,∞},
and f (D) ∈ {Dmax,

∑
Dj }, there exists an optimal solution where jobs are

processed in nondecreasing sequence of their processing times (also called
SPT sequence).

(ii) For problem 1||V (x,∞), direct |1|Lmax +T C with x ∈ {1, v,∞}, there exists
an optimal solution where jobs are processed in nondecreasing sequence of
their due dates (also called EDD sequence).

(iii) For problem 1||V (x,∞), direct |1|f (D) + T C with x ∈ {1, v,∞} and
f (D) ∈ {∑Uj ,

∑
wjUj }, there exists an optimal solution where on-time

jobs are processed earlier than late jobs and are processed in nondecreasing
sequence of their due dates.

We note that for problems with a limited number of vehicles and a due-date
related objective, including problems 1||V (x, c), direct |1|γ with x ∈ {1, v} and
γ ∈ {Lmax, Lmax + T C,

∑
Uj ,

∑
Uj + T C}, scheduling jobs (or early jobs in

cases with
∑

Uj in the objective function) in EDD sequence may not be optimal.

3.4 Problems with Batch Delivery to a Single Customer 75

Chen (2010) gives the following example of problem 1||V (v, c), direct |1|Lmax, for
which EDD sequence is not optimal.

Example 3.7 (EDD Is Not Optimal for 1||V (v, c), direct |1|Lmax) Consider two
jobs 1 and 2 with p1 = 4, d1 = 7, p2 = 1, d2 = 8, one vehicle with capacity
c = 1, and one-way travel time between the plant and the customer t = 2. It can
be seen that sequence (2, 1) has Lmax = 0, whereas the EDD sequence (1, 2) has
Lmax = 2.

3.4.2 Single-Machine Maximum Lateness and Transportation
Cost Problem

In this section, we consider problem 1||V (∞, c), direct |1|Lmax + T C. As shown
in Example 3.6, scheduling jobs in EDD order may not be optimal for this problem.
Fortunately, this problem can still be solved in polynomial time. Before we present
the polynomial-time algorithm proposed by Pundoor and Chen (2005) for this
problem, we first discuss two related problems that can be solved more easily.

First, for the problem with no vehicle capacity constraint, i.e., problem
1||V (∞,∞), direct |1|Lmax + T C, it can easily be shown that processing jobs in
EDD sequence is optimal. For this problem, Hall and Potts (2003) give an O(n3)

dynamic programming algorithm for finding an optimal solution. The idea of their
algorithm is based on the following observation: If the number of delivery batches to
the customer in the final schedule is given, then the total transportation cost is fixed,
and an optimal schedule can be found by comparing all possible ways of splitting
the jobs (sequenced in their EDD order) into a desired number of batches.

Second, for the special case of problem 1||V (∞, c), direct |1|Lmax + T C with
agreeable job processing times and due dates, i.e., if pu ≤ pv , then du ≤ dv for
all jobs u, v ∈ N , processing the jobs in EDD order is also optimal, as shown by
Pundoor and Chen (2005). The above-mentioned DP algorithm of Hall and Potts
(2003) can be modified by incorporating the vehicle capacity constraint to solve this
problem to optimality.

Now, we describe the algorithm of Pundoor and Chen (2005) for the problem
1||V (∞, c), direct |1|Lmax + T C with a general vehicle capacity constraint and a
general relationship between job processing times and due dates. Their algorithm
utilizes two auxiliary problems, AP1 and AP2. Suppose that each job j ∈ N has a
deadline ej , which is defined below as the due date dj plus some allowed lateness.
Problem AP1 schedules the production and distribution of the jobs such that a
minimum number of delivery shipments are used and all the jobs are delivered to
the customer before or at their deadlines. Problem AP2 schedules the production
and distribution of the jobs to minimize their maximum lateness Lmax, subject to
the constraint that no more than a certain number of delivery shipments is used.

We solve our problem 1||V (∞, c), direct |1|Lmax+T C by solving AP2 multiple
times, where each application of AP2 is solved by solving AP1 multiple times. We

76 3 Integrated Production and Outbound Distribution Scheduling: Offline Problems

focus on AP1 first. The following algorithm solves this problem. The algorithm
schedules jobs backwards and forms the delivery shipments from last to first.

Algorithm A3.3
Step 0: Let the set of unscheduled jobs be U = N . Set the departure time of the

current last shipment to be Q = ∑
j∈N pj . Let k = 1.

Step 1: Find the subset of the jobs that can be delivered in the kth last shipment
without violating their deadlines, S = {j ∈ U |Q + t ≤ ej }. If S is empty but U
is not, then stop, and the problem is infeasible.

Step 2: If |S| > c, select the c jobs with the largest processing times from S.
Otherwise, select all the jobs from S. Let X and P be the set of the selected jobs
and the total processing time of these jobs, respectively. Process the selected
jobs consecutively without idle time in the time period [Q−P,Q]. Deliver them
together in the kth last shipment with departure time Q. Update Q = Q − P ,
and U = U \ X. If U is empty, then stop, and we have a feasible schedule that
uses exactly k batches. Otherwise, let k = k + 1, and go to Step 1.

To illustrate Algorithm A3.3, we apply it to an instance of problem AP1
generated based on the instance given in Example 3.6, as follows.

Example 3.8 (Application of Algorithm A3.3) Consider four jobs 1, 2, 3, 4 with
p1 = 1, p2 = 5, p3 = 1, p4 = 5; d1 = 2, d2 = 12, d3 = 13, d4 = 14. There
is a sufficient number of vehicles, each with capacity c = 2. The travel time of a
shipment is t = 0. Suppose that the allowed lateness is 2 units. This implies that the
deadlines of the jobs are: e1 = 4, e2 = 14, e3 = 15, e4 = 16. Thus, problem AP1 is
to find a production and distribution schedule with a minimum number of shipments
that deliver all the jobs by their deadlines.

We apply Algorithm A3.3 to this instance. Initially, U = {1, 2, 3, 4}, and Q =
p1 +p2 +p3 +p4 = 12. Let k = 1. Step 1 finds S = {2, 3, 4}. Step 2 selects jobs 2
and 4 because they have the larger processing times than job 3. The total processing
time of the selected jobs P = 10. Jobs 2 and 4 are processed from time 2 to 12.
Update Q = 12 − 10 = 2 and U = {1, 3}.

Let k = 2. Step 1 finds S = {1, 3}. Step 2 selects all the jobs in S. The total
processing time of the selected jobs P = 2. Jobs 1 and 3 are processed from time 0
to 2. U becomes empty. Stop. In the solution generated, k = 2, i.e., two shipments
are used.

Pundoor and Chen (2005) show that Algorithm A3.3 finds an optimal solution to
problem AP1 in O(n2 log n) time. Next, we consider the second auxiliary problem
AP2 which schedules the production and distribution of the jobs to minimize Lmax,
subject to the constraint that no more than h delivery shipments are used, for a
given integer h, where �n/c� ≤ h ≤ n. It can be seen that the value of Lmax is
nonincreasing in the value of h in the optimal solution of this problem. Based on this
observation, Pundoor and Chen (2005) propose the following line search algorithm
to find the optimal value of Lmax, given h.

3.4 Problems with Batch Delivery to a Single Customer 77

Algorithm A3.4
Step 0: Let LB and UB denote a lower bound and an upper bound on the maximum

delivery lateness of jobs, Lmax, respectively. Initially, let LB be the maximum
lateness of jobs if they are processed in EDD order and each job is delivered
separately, and let UB be the maximum lateness of jobs if they are processed
in EDD order and all are delivered in full shipments, except possibly the last
several jobs which may be delivered in a partial shipment. Clearly, LB ≥ 0 and
UB ≤ t + P , where P = ∑

j∈N pj .

Step 1: Let L0 = (LB + UB)/2. Define auxiliary problem AP1 by imposing a
deadline on each job j ∈ N , ej = dj + L0. Solve this problem by Algorithm
A3.3, and let k be the optimal number of shipments used.

Step 2: If k > h, let LB = L0. Otherwise, let UB = L0. If UB − LB < 1, stop.
The only integer in the interval [LB,UB] is adopted as the solution value of
Lmax. Otherwise, go to Step 1.

Pundoor and Chen (2005) show that Algorithm A3.4 finds an optimal solution to
problem AP2 in O(n2(log n)(log(P + t))) time, where P = ∑

j∈N pj .
Based on Algorithm A3.4, Pundoor and Chen (2005) propose the following

algorithm for solving problem 1||V (∞, c), direct |1|Lmax + T C.

Algorithm A3.5
Step 1: For h = �n/c�, . . . , n, do the following: Define an auxiliary problem AP2

with the number of delivery shipments no more than h. Solve the problem by
applying Algorithm A3.4. Let πh and Lmax(πh) be the optimal schedule and its
maximum lateness found by the algorithm.

Step 2: Find u ∈ {�n/c�, . . . , n} that minimizes the total cost Lmax(πu) + uf .
Then schedule πu is optimal for problem 1||V (∞, c), direct |1|Lmax + T C with
objective value Lmax(πu) + uf .

Pundoor and Chen (2005) show that Algorithm A3.5 finds an optimal solution to
problem 1||V (∞, c), direct |1|Lmax +T C in O(n3(log n)(log(P + t))) time, where
P = ∑

j∈N pj . Since the input size of the problem is at least
∑

j∈N(�logpj � +
�log dj �) + �log t� ≥ n + log(P + t), this means that Algorithm A3.5 runs in
polynomial time.

3.4.3 Single-Machine Total Weighted Delivery Time and
Transportation Cost Problem

Hall and Potts (2005) show that the single-machine problem
1||V (∞,∞), direct |1|∑wjDj + T C is strongly NP -hard. However, when the
jobs have identical weights, i.e., w1 = · · · = wn, the corresponding problem even
with a limited vehicle capacity, i.e., problem 1||V (∞, c), direct |1|∑Dj + T C

can be solved in polynomial time (Chen & Vairaktarakis, 2005).

78 3 Integrated Production and Outbound Distribution Scheduling: Offline Problems

We first present the NP -hardness proof from Hall and Potts (2005) for problem
1||V (∞,∞), direct |1|∑wjDj + T C.

Theorem 3.7 Problem 1||V (∞,∞), direct |1|∑wjDj + T C is strongly NP -
hard.

Proof We use a reduction from 3-Partition, a known strongly NP -hard problem
(Garey & Johnson, 1978). This problem can be described as follows.
3-Partition: Given 3u elements, S = {1, . . . , 3u}, each with an integer size aj , where∑

j∈S aj = uz and z/4 < aj < z/2 for some integer z, for j ∈ U , does there exist a
partition of S1, . . . , Su of S such that |Si | = 3 and

∑
j∈Si aj = z for j = 1, . . . , u?

Construct an instance of 1||V (∞,∞), direct |1|∑wjDj +T C as follows: n =
3u, N = S, pj = wj = aj for j ∈ S, t = 0, f = z2/2, and a threshold value
F = u(u + 2)z2/2. We prove that there exists a schedule to this instance of our
problem with the objective value no greater than F if and only if there exists a
solution to 3-Partition.
(⇒) Given a solution S1, . . . , Su to 3-Partition, we assume without loss of generality
that Si = {3i − 2, 3i − 1, 3i} for i = 1, . . . , u. Consider the following schedule for
the instance of our problem: Process the jobs in sequence (1, . . . , n) and deliver the
three jobs in Si together in one shipment at the completion time of job 3i, which is
iz, for i = 1, . . . , u. This yields

∑
wjDj + T C =

u∑

i=1

z(iz) + uf = z2u(u + 1)/2 + uz2/2 = F.

(⇐) We first show that for the instance of our problem, the objective value of any
schedule with h delivery shipments is minimized only when the total processing
time of the jobs in each shipment is equal to uz/h. Suppose that xi is the total
processing time of the jobs in shipment i, for i = 1, . . . , h. Finding the minimum
possible objective value of a schedule with h shipments can be formulated as the
following optimization problem with x1, . . . , xh as decision variables:

minimize x2
1 + (x1 + x2)x2 + · · · + (x1 + · · · + xh)xh + hz2/2 (3.6)

subject to: x1 + · · · xh = uz. (3.7)

The objective function (3.6) can be rewritten as

(
h∑

i=1

xi

)2 /

2 +
h∑

i=1

x2
i

/
2 + hz2/2 = u2z2/2 +

h∑

i=1

x2
i

/
2 + hz2/2,

where the first term is a constant and the second term is minimized under the
constraint (3.7) only when x1 = · · · = xh = uz/h. Thus, the objective value of any
schedule with h shipments is greater than or equal to u2z2/2+∑h

i=1 x
2
i

/
2+hz2/2.

This expression is minimized with respect to h ≥ 1 only at h = u, and this minimum

3.4 Problems with Batch Delivery to a Single Customer 79

value is equal to F . This implies that in any schedule for the instance of our problem
with the objective value less than or equal to F , there must be u shipments with
the total processing time of the jobs in each shipment equal to z. This shows the
existence of a solution to 3-Partition. ��

Clearly, a more general problem with limited vehicle capacity,
1||V (∞, c), direct |1|∑wjDj + T C, is also strongly NP -hard. Next, we
consider a special case of this problem where the jobs have identical weights, i.e.,
problem 1||V (∞, c), direct |1|∑Dj + T C. By Lemma 3.3, processing the jobs
in SPT order is optimal for this problem. The problem is thus reduced to finding
an optimal delivery schedule given the SPT job processing sequence. Chen and
Vairaktarakis (2005) provide the following dynamic programming algorithm to
solve this problem.

Algorithm A3.6
Reindex the jobs in SPT order so that p1 ≤ p2 ≤ · · · ≤ pn. The completion time of
each job j ∈ N on the machine is thus Cj = p1 + · · · + pj .

Value Function F(j) = the minimum total cost contribution of a schedule for the
first j jobs {1, . . . , j}.
Initial Condition F(0) = 0.

Recurrence Relation For j = 1, . . . , n,

F (j) = min{F(j − h) + h(Cj + t) + f |h = 1, . . . ,min(c, j)}.

Optimal Solution Value F(n).

Chen and Vairaktarakis (2005) show that Algorithm A3.6 finds an optimal
schedule for problem 1||V (∞, c), direct |1|∑Dj + T C in O(n log n + nc) time.

In addition to the two problems discussed above, several special cases of these
problems are also studied in the literature. For example, Ji et al. (2007) show that
problem 1||V (∞,∞), direct |1|∑wjDj + T C with a constraint that the number
of shipments cannot exceed a given constant is ordinarily NP -hard, and provide a
pseudo-polynomial time dynamic programming algorithm for their problem.

3.4.4 Parallel-Machine Total Delivery Time and
Transportation Cost Problem

In this section, we consider problem Pm||V (∞, c), direct |1|∑Dj+T C. Chen and
Vairaktarakis (2005) show that this problem is ordinarily NP -hard even if there are
only two machines (i.e., m = 2), give a polynomial-time heuristic algorithm, and
show that this heuristic has a worst-case bound of 2 − 1/m and it is asymptotically
optimal under certain conditions.

80 3 Integrated Production and Outbound Distribution Scheduling: Offline Problems

We describe Chen and Vairaktarakis’ heuristic in the following. Their heuristic is
developed based on the idea that a feasible schedule for the problem (which has m
parallel machines) can be constructed from a feasible schedule for a closely related
problem with a single machine (m = 1). They call this single-machine problem
the auxiliary problem and denote it as AUX. This auxiliary problem can be solved
by a modified version of Algorithm A3.6 given in Sect. 3.4.3. The optimal solution
of the auxiliary problem is then transformed into a feasible solution for problem
Pm||V (∞, c), direct |1|∑Dj + T C. Problem AUX is defined as follows: Find a
way to partition the job set N into subsets S1, S2, . . . such that the number of jobs in
each subset Sq is no more than c, and deliver each subset of jobs Sq in one shipment
with the departure time dq equal to the maximum of the following two terms: (i)
and (ii), so as to minimize the objective function

∑
Dj + T C.

(i) The maximum processing time of the jobs delivered in all the shipments so far
(i.e., max{pj |j ∈ S1 ∪ . . . ∪ Sq})

(ii) The sum of the processing times of all the jobs delivered in the shipments so far
divided by m (i.e.,

∑
j∈S1∪...∪Sq pj /m)

It can be seen that AUX is the same as the single-machine problem
1||V (∞, c), direct |1|∑Dj + T C, except that the departure time of a shipment
is calculated differently. Problem AUX uses the maximum of (i), (ii) while the latter
problem uses the completion time of the job completed last in a shipment. Chen
and Vairaktarakis (2005) show that AUX can be solved by a modified version of
Algorithm A3.6 given in Sect. 3.4.3, where the recurrence relation is replaced by
the following:

F(j) = min

⎧
⎨

⎩
F(j − h) + h

(
max

{
pj ,

j∑

l=1

pl/m
}

+ t
)

+f | h = 1, . . . ,min{c, j}
⎫
⎬

⎭
.

Building on this result, Chen and Vairaktarakis (2005) provide the following
heuristic for problem Pm||V (∞, c), direct |1|∑Dj + T C. In this heuristic, an
LPT (largest-processing-time-first) order of a given set of jobs denotes that the jobs
are sequenced in nonincreasing order of their processing times pj . Also, the first
available machine (FAM) rule is used, where the first unscheduled job is scheduled
to the earliest available machine of the processing facility until all the jobs are
scheduled.

Heuristic H3.2
Step 1: Solve the auxiliary problem AUX using Algorithm A3.6 with the modified

recurrence relation described above. Let πAUX be the solution obtained, L be the
number of shipments in this solution, and S1, . . . , SL be the set of jobs in these
shipments.

3.4 Problems with Batch Delivery to a Single Customer 81

Step 2: Sort the jobs in every shipment Sq in LPT order for q = 1, . . . , L. Assign
the jobs to the machines for processing by applying the FAM rule to the jobs in
S1, . . . , SL in this order. Let C[q] be the completion time of the last job in Sq and
deliver the jobs in Sq in one shipment (the qth shipment) departing at time C[q],
for q = 1, . . . , L.

It is easy to see that Step 1 of the heuristic is more time-consuming than Step
2. Hence, the overall time complexity of Heuristic H3.2 is the same as that of
Algorithm A3.6, which is O(n log n + nc).

Example 3.9 (Application of Heuristic H3.2) We apply Heuristic H3.2 to the
following instance of problem Pm||V (∞, c), direct |1|∑Dj + T C: There are 6
jobs and 2 parallel machines with vehicle capacity c = 3, transportation time t = 0,
transportation cost per batch f = 10, and the processing time pj and the parameter

max{pj ,
∑j

l=1 pl/m} (denoted as δj) for each job j are shown in the following
table, where the jobs are indexed in SPT order.

j 1 2 3 4 5 6

pj 2 6 8 10 11 13

δj 2 6 8 13 18.5 25

Step 1: By the definition of the auxiliary problem AUX, if a shipment contains job j

as the last job, then its departure time is δj . Solve this problem and find an optimal
solution as follows: There are 3 shipments with S1 = {1, 2, 3}, S2 = {4, 5}, S3 =
{6} with departure times 8, 18.5, and 25, respectively. The corresponding total
cost of the solution is (3(8) + 10) + (2(18.5) + 10) + (25 + 10) = 116.

Step 2: Sort the jobs in each shipment Si in LPT order, and assign these jobs to the
machines by the FAM rule, for i = 1, 2, 3. We obtain the following solution: job
sequence on machine 1: (3, 5) with completion times C3 = 8, C5 = 19, and job
sequence on machine 2: (2, 1, 4, 6) with C2 = 6, C1 = 8, C4 = 18, C6 = 31. Use
the same shipment formations as before, i.e., S1, S2, S3. Their departure times are
now 8, 19, and 31, respectively. The total cost of this solution is (3(8) + 10) +
(2(19) + 10) + (31 + 10) = 123.

It can be verified that an optimal solution for this instance is as follows: job
sequence on machine 1: (1, 4, 6) and job sequence on machine 2: (2, 3, 5); form
three shipments, S1 = {1, 2}, S2 = {3, 4}, S3 = {5, 6} with departure times 6, 14,
and 25, respectively. The total cost is (2(6)+10)+(2(14)+10)+(2(25)+10) = 120.

We note that as shown above, for the instance given here, the optimal objective
value of problem AUX is a lower bound on the optimal objective value of problem
Pm||V (∞, c), direct |1|∑Dj+T C. This is true for every instance, as shown below
in Lemma 3.7.

82 3 Integrated Production and Outbound Distribution Scheduling: Offline Problems

Next, we analyze the worst-case and asymptotic performance of Heuristic
H3.2. Given a solution π to the auxiliary problem AUX, we denote the total
delivery time of jobs, total delivery cost, and the sum of these two by DAUX(π),
T CAUX(π), and ZAUX(π), respectively. Similarly, given a solution π to the
problem Pm||V (∞, c), direct |1|∑Dj + T C, these three values are denoted as
D(π), T C(π), and Z(π), respectively. Let π∗ be an optimal solution of the problem
with the optimal objective value Z∗. Then, ZAUX(π) = DAUX(π) + T CAUX(π),
Z(π) = D(π) + T C(π), and Z∗ = Z(π∗) = D(π∗) + T C(π∗).

Lemma 3.7 ZAUX(πAUX) ≤ Z∗.

Proof Given an optimal solution π∗ to problem Pm||V (∞, c), direct |1|∑Dj +
T C, suppose that there are V shipments, B1, . . . , BV , where Bv also represents the
subset of jobs in the vth shipment, for v = 1, . . . , V . Let Ev be the processing
completion time of the last job in Bv , for v = 1, . . . , V . Without loss of generality,
we assume that the shipments B1, . . . , BV are indexed in nondecreasing order of
Ev . Then,

Ev ≥ max
{

max{pj |j ∈ B1 ∪ · · · ∪ Bv},
∑

j∈B1∪···∪Bv

pj/m
}

(3.8)

and the total delivery time of the jobs is

D(π∗) =
V∑

v=1

|Bv|(Ev + t). (3.9)

The solution π∗ is feasible for the auxiliary problem AUX if we set the departure
time of each shipment Bv , for v = 1, . . . , V , to be

ev = max
{

max{pj |j ∈ B1 ∪ · · · ∪ Bv},
∑

j∈B1∪···∪Bv

pj /m
}

instead of Ev . By (3.8), Ev ≥ ev , for v = 1, . . . , V . By (3.9), the total delivery time
of the jobs in π∗ for AUX satisfies

DAUX(π
∗) =

V∑

v=1

|Bv|(ev + t) ≤ D(π∗). (3.10)

Clearly, solution π∗ incurs the same transportation cost for problem
Pm||V (∞, c), direct |1|∑Dj + T C and AUX, i.e., T C(π∗) = T CAUX(π

∗).
Together with (3.10), this implies that Z∗ ≥ ZAUX(π

∗). Since πAUX is an optimal
solution for AUX, ZAUX(π

∗) ≥ ZAUX(πAUX). Thus, Z∗ ≥ ZAUX(πAUX). ��
Lemma 3.7 is quite intuitive. The way the departure time of a shipment in

problem AUX is defined guarantees that each shipment in a solution to problem

3.4 Problems with Batch Delivery to a Single Customer 83

AUX always departs earlier than or at the same time as this same shipment if it is in
a solution to problem Pm||V (∞, c), direct |1|∑Dj + T C.

Lemma 3.7 enables us to prove the following result about Heuristic H3.2.

Theorem 3.8 The worst-case performance ratio of Heuristic H3.2 for problem
Pm||V (∞, c), direct |1|∑Dj + T C satisfies Z(π)/Z∗ ≤ 2 − 1/m, where π is
the solution generated by H3.2 for problem Pm||V (∞, c), direct |1|∑Dj + T C.

Proof The solution π constructed for Pm||V (∞, c), direct |1|∑Dj + T C in Step
2 of Heuristic H3.2 has the same shipments S1, . . . , SL but with different shipment
departure times from the solution πAUX for the auxiliary problem. Therefore,

T C(π) = T CAUX(πAUX). (3.11)

The total delivery time of jobs in πAUX for the auxiliary problem is

DAUX(πAUX) =
L∑

l=1

|Sl |
(

max
{

max
j∈S1∪···∪Sl

pj ,
∑

j∈S1∪···∪Sl
pj /m

}
+ t

)
, (3.12)

and the total delivery time of the jobs in π for problem
Pm||V (∞, c), direct |1|∑Dj + T C is

D(π) =
L∑

l=1

|Sl |(C[l] + t), (3.13)

where C[l] is the processing completion time of the jobs in shipment Sl , for l =
1, . . . , L. For l = 1, . . . , L, let vl be the job that is completed last among all the
jobs in S1 ∪ · · · ∪ Sl in Step 2 of H3.2. Due to the FAM rule in Step 2, we have, for
l = 1, . . . , L,

C[l] ≤
⎛

⎝
∑

j∈S1∪···∪Sl
pj − pvl

⎞

⎠ /m + pvl

=
⎛

⎝
∑

j∈S1∪···∪Sl
pj

⎞

⎠ /m + m − 1

m
pvl

≤
⎛

⎝
∑

j∈S1∪···∪Sl
pj

⎞

⎠ /m + m − 1

m
max

j∈S1∪···∪Sl
pj . (3.14)

From (3.12), (3.13), and (3.14), we have

84 3 Integrated Production and Outbound Distribution Scheduling: Offline Problems

D(π) ≤
L∑

l=1

|Sl |
⎡

⎣

⎛

⎝
∑

j∈S1∪···∪Sl
pj

⎞

⎠ /m + m − 1

m
max

j∈S1∪···∪Sl
pj + t

⎤

⎦ (3.15)

≤ DAUX(πAUX) + m − 1

m
DAUX(πAUX) =

(
2 − 1

m

)
DAUX(πAUX).

(3.16)

This, together with (3.11) and Lemma 3.7, implies that

Z(π) = D(π) + T C(π) ≤
(

2 − 1

m

)
DAUX(πAUX) + T CAUX(πAUX)

≤
(

2 − 1

m

)
ZAUX(πAUX) ≤

(
2 − 1

m

)
Z∗.

��
Chen and Vairaktarakis (2005) also show that Heuristic H3.2 is asymptotically

optimal under some mild conditions. Their result, along with a proof, is described
below.

Theorem 3.9 The schedule π generated by Heuristic H3.2 is asymptotically
optimal for problem Pm||V (∞, c), direct |1|∑Dj + T C, as n approaches ∞, i.e.,

limn→∞ Z(π)−Z∗
Z∗ = 0, under the assumption thatm is fixed, and the processing time

pj of each job j ∈ N is within a finite interval [X, Y], where 0 < X < Y < ∞.

Proof From (3.12), we have

DAUX(πAUX) ≥
L∑

l=1

|Sl |
(∑

j∈S1∪···∪Sl
pj /m

)

≥ X

m

L∑

l=1

[

|Sl |
(l∑

i=1

|Si |
)
]

= X

m

⎧
⎨

⎩

(
L∑

l=1

|Sl |
)2

−
L∑

l=1

[

|Sl |
(l−1∑

i=1

|Si |
)
]⎫
⎬

⎭

≥ X

m

⎧
⎨

⎩

(
L∑

l=1

|Sl |
)2

− 1

2

(
L∑

l=1

|Sl |
)2
⎫
⎬

⎭

= X

2m

(
L∑

l=1

|Sl |
)2

= n2X

2m
. (3.17)

3.4 Problems with Batch Delivery to a Single Customer 85

Furthermore, from (3.12) and (3.15), we have

D(π) − DAUX(πAUX) ≤ m − 1

m

L∑

l=1

[

|Sl |
(

max
j∈S1∪···∪Sl

pj

)]

≤ (m − 1)n

m
Y,

which, together with (3.17), implies

lim
n→∞

D(π) − DAUX(πAUX)

DAUX(πAUX)
= 0. (3.18)

Since ZAUX(πAUX) = DAUX(πAUX) + T CAUX(πAUX) and Z(π) = D(π) +
T C(π), from (3.11) and (3.18), we have

lim
n→∞

Z(π) − ZAUX(πAUX)

ZAUX(πAUX)
= lim

n→∞
D(π) − DAUX(πAUX)

ZAUX(πAUX)
= 0.

This, along with Lemma 3.7 and the fact that Z(π) ≥ Z∗, implies that
limn→∞ Z(π)−Z∗

Z∗ = 0. ��
Chen and Vairaktarakis (2005) conduct computational tests on the perfor-

mance of Heuristic H3.2 based on randomly generated test instances of problem
Pm||V (∞, c), direct |1|∑Dj + T C and show that the heuristic is capable of
generating near-optimal solutions quickly.

In addition, Chen and Vairaktarakis (2005) study several other related problems,
including the extension of the problem discussed above to a multi-customer setting
with vehicle routing, i.e., Pm||V (∞, c), routing|k|∑Dj +T C. This more general
problem is discussed below in Sect. 3.5.2.

3.4.5 Problems with a Limited Number of Vehicles

In this section, we consider two problems with a limited number of delivery
vehicles, 1||V (v, c), direct |1|Dmax and 1||V (v, c), direct |1|∑Dj , and present
the algorithms proposed by Lee and Chen (2001) for solving these problems.
There are two major differences between these problems and the corresponding
problems with a sufficient number of vehicles. In problems with a limited number
of vehicles, (i) each vehicle may have to make multiple delivery trips, each carrying
one shipment; and (ii) after all the jobs to be delivered together in a shipment have
completed processing, they have to wait if there is no available vehicle.

We first note that the corresponding problems with a sufficient number of
vehicles, 1||V (∞, c), direct |1|Dmax and 1||V (∞, c), direct |1|∑Dj , are trivial.
For the first problem, it is optimal to process the jobs in any order and deliver
each job individually and immediately after it completes processing. For the second
problem, it is optimal to process the jobs in SPT order and deliver each job

86 3 Integrated Production and Outbound Distribution Scheduling: Offline Problems

individually and immediately after it completes processing. Even with a more
general objective function that includes the total transportation cost, these problems
are still relatively easy to solve. For problem 1||V (∞, c), direct |1|Dmax + T C,
Chen and Vairaktarakis (2005) show that the following O(n) time algorithm finds
an optimal solution: Process the jobs in an arbitrary sequence, and deliver the jobs
in �n/c� shipments, where all the shipments but at most one are full. For problem
1||V (∞, c), direct |1|∑Dj + T C, Algorithm A3.6 described in Sect. 3.4.4 finds
an optimal solution.

We now consider problem 1||V (v, c), direct |1|Dmax. By Lemma 3.6, we only
need to consider the SPT job processing sequence. Suppose that the jobs are
reindexed in nondecreasing order of their processing times. For this problem, Lee
and Chen (2001) show the following property.

Lemma 3.8 There exists an optimal schedule for problem
1||V (v, c), direct |1|Dmax that satisfies the following: (i) there are q = �n/c�
delivery shipments; and (ii) If n is not an integer multiple of c (i.e., n < qc), then
the first shipment contains n− (q − 1)c jobs, and each of the other q − 1 shipments
contains c jobs. Otherwise, all the q shipments contain c jobs.

By this property and Lemma 3.6, we know exactly the jobs contained in
each shipment and the time by which the jobs in each shipment have completed
processing. Let B1, . . . , Bq denote the q shipments and rh denote the completion
time of the last job in shipment Bh on the machine, for h = 1, . . . , q. Let
P(j) = ∑j

k=1 pk . Then, there are two cases.

• Case 1: If n < qc, then B1 = {1, . . . , u}, where u = n − (q − 1)c, r1 = P(u);
and Bh = {u + (h − 2)c + 1, . . . , u + (h − 1)c}, rh = P(u + (h − 1)c), for
h = 2, . . . , q.

• Case 2: If n = qc, then Bh = {(h − 1)c + 1, . . . , hc}, and rh = P(hc), for
h = 1, . . . , q.

With the delivery shipments B1, . . . , Bq and their completion times on the
machine as described above, problem 1||V (v, c), direct |1|Dmax reduces to the
problem of dispatching v vehicles to deliver these batches so that the time when
the last shipment gets to the customer is minimum. It is not difficult to see that, if
we view a vehicle as a machine and delivering a shipment as a job, then this vehicle
dispatching problem is similar to the classical parallel-machine makespan problem
with generally different job arrival times and identical job processing times, i.e.,
Pv|rj , pj ≡ p|Cmax, where there are q jobs and v identical parallel machines, the
arrival time of job j is rj , for j = 1, . . . , q, and the processing times of jobs are all
equal to 2t , which is the round-trip travel time between the plant and the customer
site. Clearly, for problem Pv|rj , pj ≡ p|Cmax, the following solution is optimal:
Sorting the jobs in nondecreasing order of their arrival times and assigning available
jobs in this order to the earliest available machines. This implies that our problem
1||V (v, c), direct |1|Dmax can be solved by assigning the shipments to the earliest
available vehicles in the order of their completion times on the machine.

3.4 Problems with Batch Delivery to a Single Customer 87

Based on the above discussions, we can see that problem
1||V (v, c), direct |1|Dmax can be solved by the following algorithm.

Algorithm A3.7
Step 1: Reindex the jobs in nondecreasing order of their processing times. Process

the jobs on the machine in this order without any idle time.
Step 2: Let q = �n/c�. For q shipments B1, . . . , Bq and calculate the completion

time rh of the last job in each shipment Bh, for h = 1, . . . , q, following the two
cases described above.

Step 3: Consider the shipments B1, . . . , Bq one by one in this order. Whenever a
shipment Bh is considered, assign it to the earliest vehicle that returns to the
plant. The departure time of Bh is max{rh, τ }, where τ is the time when the
earliest vehicle returns to the plant.
It can be seen that the time complexity of Algorithm A3.7 for solving problem

1||V (v, c), direct |1|Dmax is O(n log n).
Next, we consider problem 1||V (v, c), direct |1|∑Dj . Utilizing the properties

stated in Lemmas 3.3 and 3.5, Lee and Chen (2001) develop a dynamic pro-
gramming algorithm for this problem. Since the jobs should be processed in SPT
order, the problem reduces to finding an optimal delivery schedule, given the SPT
processing schedule. Lee and Chen (2001) show that all possible departure times for
a shipment can be calculated in advance by the following procedure.

Procedure DepTime
Step 1: Reindex the jobs in nondecreasing order of their processing times. Process

the jobs on the machine in this order without idle time. Denote the completion
time of job j on the machine by Cj , for j ∈ N .

Step 2: Possible departure times of a shipment are Cj + kt , for k = 0, 1, . . . , n− 1,
and j ∈ N . Index the distinct time points among all these possible departure
times by 1, 2, . . . , T , where T ≤ n2, such that an earlier time point has a smaller
index. Let τ(h) denote the hth time point, for h = 1, 2, . . . , T and let τ(0) = 0.

Lee and Chen’s dynamic programming algorithm for solving
1||V (v, c), direct |1|∑Dj is given below.

Algorithm A3.8

Initialization Calculate possible departure times for shipments using Procedure
DepTime. Define G(k; j ; s1, . . . , sv) to be the minimum total delivery time of jobs
j, . . . , k, provided that these jobs are delivered in v shipments that depart at times
τ(s1), . . . , τ (sv) from the plant, respectively. The value of G(k; j ; s1, . . . , sv) can
be calculated in O(v) time as follows:

Let A = {j, . . . , k}. Repeat the following procedure with h = 1, . . . , v. Let Ah

be the subset of jobs in A that complete processing before or at time τ(sh). If there
are more than c jobs in Ah, then assign the first c jobs of Ah to the shipment that
departs at time τ(sh). Otherwise, assign all the jobs in Ah to this shipment. The total
delivery time of the jobs in this shipment can be calculated accordingly. Update A

by removing the jobs delivered in this shipment.

88 3 Integrated Production and Outbound Distribution Scheduling: Offline Problems

Value Function F(k; j ; s1, s2, . . . , sv) is the minimum total delivery time of a
partial schedule containing the first k jobs 1, . . . , k, provided that the current last
v shipments contain jobs j, j + 1, . . . , k and depart at times τ(s1), . . . , τ (sv) from
the plant, where {s1, . . . , sv} ⊆ {0, 1, . . . , T } and 0 ≤ s1 < · · · < sv ≤ T .

Boundary Conditions F(0; 0; 0, . . . , 0) = 0.

Recurrence Relation
For k = 1, . . . , n; j = max(1, k− vc),max(1, k− vc)+ 1, . . . ,max(1, k− v); and
0 ≤ s1 < · · · < sv ≤ T ,

F(k; j ; s1, . . . , sv)

= min{F(j − 1; i; b1, . . . , bv) + G(k; j ; s1, . . . , sv) | i, b1, . . . , bv

satisfy the following conditions (i) and (ii)}

(i) 0 ≤ j − i ≤ vc.
(ii) 0 ≤ b1 < · · · < bv , and τ(sh) − τ(bh) ≥ 2t , for all h = 1, . . . , v.

Optimal Solution min{F(n; j ; s1, . . . , sv)} over all possible states (j ; s1, . . . sv).

Lee and Chen (2001) show that Algorithm A3.8 has time complexity
O(cv+2vv+3n2v+1), which is polynomial when v is fixed. When there is only one
vehicle, i.e., v = 1, the complexity of this algorithm is O(n3). The complexity of
problem 1||V (v, c), direct |1|∑Dj with arbitrary v apparently remains open (Lee
& Chen, 2001).

3.5 Problems with Batch Delivery to Multiple Customers

As discussed in Sect. 3.2, to deliver jobs to multiple customers in batches, there
are two possible delivery methods, i.e., batch delivery by direct shipping, under
which only jobs from the same customer can share a shipment, and batch delivery
with routing, under which jobs from different customers can share a shipment
and hence vehicle routing becomes a part of the decision. In this section, we
discuss multi-customer extensions of some of the problems considered in Sect. 3.4,
i.e., problems 1||V (∞, c), direct |k|Lmax +T C, Pm||V (∞, c), routing|k|∑Dj +
T C, 1||V (v, c), direct |k|Dmax and 1||V (v, c), direct |k|∑Dj . Section 7.2 studies
several other problems with batch delivery by direct shipping.

We recall that, as defined in Sect. 3.2.1, in a problem with multiple customers,
the set of customers is denoted as K = {1, . . . , k}, and the number of jobs and set of
jobs from customer i are denoted as ni and Ni , respectively, where n = n1+· · ·+nk
and N = N1 ∪ · · ·Nk . We introduce some additional notation and define some
new terms relevant to the problems discussed in this section. We denote the j th job
from customer i ∈ K as (i, j) and its processing time and due date as pij and dij ,
respectively. Hence, Ni = {(i, 1), · · · , (i, ni)}, for i ∈ K . If direct shipping is used,
the delivery time and cost of a shipment from the plant to customer i are denoted

3.5 Problems with Batch Delivery to Multiple Customers 89

as ti and fi , respectively. If vehicle routing is involved, the delivery time and cost
of a shipment depend on the specific route used, and are defined below wherever
necessary.

3.5.1 Single-Machine Maximum Lateness and Transportation
Cost Problems with Direct Shipping

We consider problem 1||V (∞, c), direct |k|Lmax + T C and the special case of this
problem with no vehicle capacity limit, i.e., 1||V (∞,∞), direct |k|Lmax + T C.
Pundoor and Chen (2005) show that when the number of customers k is arbitrary,
both problems are at least ordinarily NP -hard (Pundoor & Chen, 2005). Hall and
Potts (2003) give an O(n2k+1) dynamic programming algorithm for solving the
latter problem with a fixed k. However, the complexity of the former problem
with a fixed k apparently remains open. Pundoor and Chen (2005) propose an
asymptotically optimal polynomial time heuristic algorithm for the former problem.
In the following, we discuss these results in detail.

3.5.1.1 NP -Hardness Proof

We first present the NP -hardness proof given by Pundoor and Chen (2005) for
problem 1||V (∞, c), direct |k|Lmax + T C with an arbitrary k.

Theorem 3.10 Problem 1||V (∞, c), direct |k|Lmax + T C with an arbitrary num-
ber of customers is at least ordinarily NP -hard.

Proof We prove the theorem by a reduction from the Subset Sum problem, a
known ordinarily NP -hard problem (Garey & Johnson, 1979). The Subset Sum
problem, denoted as SS, can be stated as follows:

SS: Given a set of q + 1 positive integers {a1, . . . , aq} and B, does there exist a
subset U ⊆ Q = {1, . . . , q} such that

∑
i∈U ai = B?

Define A = ∑
i∈Q ai and H = 3q + B. We construct a corresponding instance

of our problem as follows:

• Number of customers: k = q.
• Number of jobs from each customer i: ni = 3, and the jobs are (i, 1), (i, 2), (i, 3),

for i = 1, . . . , k.
• Processing times: pi1 = 1, pi2 = ai, pi3 = Hai , for i = 1, . . . , k.
• Due dates: di1 ≡ d1 = q + B, di2 ≡ d2 = q + B + (H + 1)(A − B), and

di3 ≡ d3 = q + (H + 1)A, for i = 1, . . . , k.
• Vehicle capacity: c = 3.
• Transportation times and costs: ti = 0, and fi = 1, for i = 1, . . . , k.
• Threshold cost: Z = 2q.

90 3 Integrated Production and Outbound Distribution Scheduling: Offline Problems

For ease of presentation, we call the jobs {(i, 1) | i = 1, . . . , k} type-1 jobs,
{(i, 2) | i = 1, . . . , k} type-2 jobs, and {(i, 3) | i = 1, . . . , k} type-3 jobs. We first
prove the following properties. In any schedule π to the constructed instance of our
problem with objective value no greater than Z,

(i) No shipment contains both a type-1 job and a type-3 job.
(ii) There are exactly 2k shipments.

(iii) There are no late jobs.
(iv) Any type-3 job is processed later than any type-1 job.
(v) Any type-2 job is in a shipment of size 2.

The proof for each property is given below.

(i) If a type-1 job is shipped together with a type-3 job, then the lateness of the
type-1 job is at least 1+H −d1 = 2q+1, which means that π has an objective
value greater than Z, a contradiction.

(ii) If there are more than 2k batches, the objective value would be greater than
Z. Property (i) implies that at least 2k shipments are needed. Thus, there are
exactly 2k shipments.

(iii) Property (ii) means that the contribution from the total shipment cost to the
objective value is already equal to Z. Thus, Lmax = 0, and there is no late job.

(iv) If a type-3 job is processed before a type-1 job, then the completion time of the
type-1 job is at least H + 1 > d1, implying that the type-1 job is late, leading
to a contradiction with Property (iii).

(v) This follows directly from Properties (i) and (ii).

To complete the proof, we show that there is a solution to the constructed instance
of our problem with total cost less than or equal to Z if and only if there is a solution
to SS.
(⇒) Given a subset U ⊆ Q such that

∑
i∈U ai = B, we construct a schedule for the

instance of our problem as follows: First, process all the type-1 jobs from customers
in Q \ U in any order and deliver each of these jobs in a separate shipment; next,
process the type-1 and type-2 jobs from each customer i ∈ U consecutively and
deliver the two jobs from each customer i ∈ U together; next, process the type-2
and type-3 jobs from each customer i ∈ Q \ U consecutively and deliver the two
jobs from each customer i ∈ Q \ U together; finally, process the type-3 jobs from
the customers in U and deliver each of the jobs separately. Let the cardinality of set
U be u. The cardinality of Q \ U is thus q − u.

In the above constructed schedule, the delivery time of the last shipment
containing type-1 and type-2 jobs is

T1 = q +
∑

i∈U
ai = q + B = d1.

Hence, all the type-1 jobs are delivered before or at their due date. Similarly, the
delivery time of the last shipment containing type-2 and type-3 jobs is

3.5 Problems with Batch Delivery to Multiple Customers 91

T2 = T1 + (H + 1)
∑

i∈Q\U
ai = q + B + (H + 1)(A − B) = d2.

Thus, all the type-2 jobs are delivered before or at their due date. Similarly, the
delivery time of the last type-3 job in the schedule is

T3 = T2 + H
∑

i∈U
ai = q + B + (H + 1)(A − B) + HB = q + (H + 1)A = d3

Thus, all the jobs are delivered on time. The number of shipments in this schedule
is (q − u)+ u+ (q − u)+ u = 2q = Z. Hence, the objective value of the schedule
is equal to Z.
(⇐) In a given schedule for the instance of our problem with an objective value less
than or equal to Z, let u be the number of shipments that contain type-1 and type-2
jobs, and U be the set of the corresponding type-2 jobs in these shipments. Since
no late jobs exist in the schedule (from Property (iii) proved above), all these jobs
should be delivered no later than d1 = q + B. Since the delivery time for the last
type-1 job is at least X1 = q +∑

i∈U ai , we have X1 ≤ d1 = q +B, which implies
that

∑

i∈U
ai ≤ B. (3.19)

Similarly, the delivery time of the last shipment containing type-2 and type-3
jobs should not be greater than d2. By Property (iv) proved above, the completion
time of the last shipment containing type-2 and type-3 jobs is at least X1 + (H +
1)
∑

i∈Q\U ai . Thus,

X1 + (H + 1)
∑

i∈Q\U
ai ≤ d2,

which implies that

q +
∑

i∈U
ai + (H + 1)

∑

i∈Q\U
ai = q + A + H

∑

i∈Q\U
ai

≤ q + B + (H + 1)(A − B).

Thus,
∑

i∈Q\U ai ≤ A − B, i.e.,

∑

i∈U
ai ≥ B. (3.20)

From (3.19) and (3.20), we have
∑

i∈U ai = B, and hence U is a solution to SS. ��

92 3 Integrated Production and Outbound Distribution Scheduling: Offline Problems

Remark 3.2 Since in the proof of Theorem 3.10, the constructed instance of
problem 1||V (∞, c), direct |k|Lmax + T C involves three jobs for each cus-
tomer, this proof still works if in this instance the vehicle capacity c is
changed to any number greater than 3. Thus the proof also works for problem
1||V (∞,∞), direct |k|Lmax+T C, and hence this problem is also at least ordinarily
NP -hard.

3.5.1.2 DP Algorithm

We describe the dynamic programming algorithm of Hall and Potts (2003) for
problem 1||V (∞,∞), direct |k|Lmax +T C. Their algorithm is based on a straight-
forward property of this problem: There is an optimal schedule where (i) the jobs
from each customer are processed in EDD order, and (ii) the jobs delivered in a
shipment are processed consecutively, and the departure time of the shipment is
equal to the completion time of the last job in this shipment.

Algorithm A3.9

Initialization Reindex the jobs of each customer in EDD order.

Value Function
F(j1, . . . , jk;h1, . . . , hk) = the minimum value of the maximum lateness in a
partial schedule that processes the first ji jobs of each customer i, i.e., jobs
(i, 1), . . . , (i, ji), and delivers them using hi shipments, for i = 1, . . . , k.

Boundary Condition
F(0, . . . , 0; 0, . . . , 0) = −∞.

Optimal Solution Value

minh1,··· ,hk
{
F(n1, . . . , nk;h1, . . . , hk) +∑k

i=1 fihi

}
, where the minimization is

over 1 ≤ hi ≤ ni for i = 1, . . . , k.

Recurrence Relation
For ji = 0, 1, . . . , ni and hi = 0, 1, . . . , ji , i = 1, . . . , k:

F(j1, . . . , jk;h1, . . . , hk) = min
i=1,...,k; min{ji ,1}≤li≤ji
⎧
⎨

⎩
max

⎧
⎨

⎩
Gi(li),

k∑

i=1

ji∑

u=1

piu + ti − di,li

⎫
⎬

⎭

⎫
⎬

⎭
,

where Gi(li) = F(j1, . . . , ji−1, li − 1, ji+1, . . . , jk;h1, . . . , hi−1, hi −
1, hi+1, . . . , hk).

The recurrence relation in the above algorithm compares the cost of having the
current last ji − li + 1 jobs from customer i, i.e., (i, li), . . . , (i, ji), as the last

3.5 Problems with Batch Delivery to Multiple Customers 93

shipment, for i = 1, . . . , k. Hall and Potts (2003) show that this algorithm solves
problem 1||V (∞,∞), direct |k|Lmax + T C to optimality in O(n2k+1) time.

3.5.1.3 Heuristic

Finally, we discuss the heuristic by Pundoor and Chen (2005) for problem
1||V (∞, c), direct |k|Lmax+T C. We first define some new terms. The shipping due
date of job (i, j), denoted as d ′

ij , is defined as d ′
ij = dij − ti , which is the latest time

that the shipment containing this job must leave the plant in order for the shipment
to arrive at its destination by this job’s due date. We define the SEDD sequence for
a given set of jobs as the nondecreasing order of their shipping due dates, where in
defining SEDD, in case of a tie, we arrange the jobs in nondecreasing order of their
processing times. If both the shipping due dates and the processing times are the
same, we then arrange them by their customer index, followed by their job index.
Clearly, the above tie-breaking rule defines a unique SEDD sequence for a given set
of jobs. Also, in the SEDD sequence, jobs from the same customer are sequenced
in EDD order.

The heuristic of Pundoor and Chen (2005) is based on an optimality property of
the problem, which is described below.

Lemma 3.9 There exists an optimal schedule for problem
1||V (∞, c), direct |k|Lmax + T C where

(i) The jobs that are delivered in the same shipment are processed consecutively
in EDD sequence.

(ii) The first job from each shipment together forms an SEDD sequence.
(iii) For any given shipment, let u denote the first job processed in this batch. All the

jobs that come before u in the SEDD sequence for all the jobs are processed
before this batch of jobs.

The heuristic generates a schedule that satisfies the properties in Lemma 3.9 by
(i) first solving a single-customer auxiliary problem for each customer indepen-
dently in such a way that the contribution due to the other customers is taken care of
indirectly, and (ii) then combining the schedules for individual customers to obtain
a single schedule.

The single-customer auxiliary problem for customer i ∈ K , denoted as AUXi , is
defined as follows: Schedule the processing and delivery of the jobs from Ni subject
to the following two constraints:

(i) The jobs are processed in EDD order on the machine.
(ii) The departure time of each delivery shipment B containing (i, j) as the first

job is required to be the sum of CSEDD
ij and the total processing time of the

remaining jobs in the batch, i.e.,
∑

(i,u)∈B piu − pij , where CSEDD
ij is the

completion time of job (i, j) when all the jobs in N are processed in SEDD
sequence.

94 3 Integrated Production and Outbound Distribution Scheduling: Offline Problems

The objective of problem AUXi is to minimize the maximum delivery lateness of
the jobs given that the jobs are delivered in a pre-specified number of batches. Due
to constraint (ii), a feasible schedule to AUXi may contain idle time between the
processing of the last job in one batch and the first job in the next batch.

Each auxiliary problem AUXi can be solved to optimality by the following
dynamic programming algorithm.

Algorithm A3.10

Value Function F(j,m) is the minimum maximum delivery lateness for the first j
jobs {(i, 1), (i, 2), . . . , (i, j)} when they are delivered in m shipments.

Boundary Condition F(0, 0) = 0.

Recurrence Relation For j = 1, . . . , ni , and m = �j/c�, . . . , j ,

F(j,m) = min
1≤q≤min{c,j}

⎧
⎨

⎩
max

⎧
⎨

⎩
F(j − q,m − 1) ,

max

⎛

⎝0, CSEDD
i,j−q+1 +

j∑

u=j−q+2

piu + ti − di,j−q+1

⎞

⎠

⎫
⎬

⎭

⎫
⎬

⎭
.

Optimal Solutions For any m = �ni/c�, . . . , ni , F(ni,m) is the minimum maxi-
mum lateness for AUXi when the jobs of customer i are delivered in m shipments.

In the recurrence relation of the above algorithm, the current last delivery
shipment contains q jobs (i, j − q + 1), . . . , (i, j), and all possible values of
q, 1 ≤ q ≤ min{c, j}, are considered. The second max operator calculates the
maximum lateness of the jobs in the current last shipment.

Let Li
max(m) be the optimal maximum lateness and Λi(m) denote the corre-

sponding batch configurations in the optimal solution of AUXi with m delivery
shipments. Let Γi = {Li

max(m)|m = �ni/c�, . . . , ni}, and Γ = Γ1 ∪ Γ2 ∪ · · · ∪ Γk .
Then, |Γ | ≤ ∑k

i=1(ni − �ni/c� + 1).
Next, we present the heuristic of Pundoor and Chen (2005) for problem

1||V (∞, c), direct |k|Lmax + T C.

Heuristic H3.3
Step 1: Create an auxiliary problem AUXi , as described above, for each customer

i ∈ K . Solve AUXi by the above Algorithm A3.10, for all i ∈ K .
Step 2: For each value x ∈ Γ , and each customer i ∈ K , define mi(x) to be the

minimum number of shipments m ∈ {�ni/c�, . . . , ni} that satisfies Li
max(m) ≤

x. If such an m does not exist, then define mi(x) = ∞. Find x∗ ∈ Γ such that

x∗ +
∑

i∈K
fimi(x

∗) = min
x∈Γ

{

x +
∑

i∈K
fimi(x)

}

. (3.21)

3.5 Problems with Batch Delivery to Multiple Customers 95

With x∗ thus identified, for each customer i ∈ K , the corresponding num-
ber of delivery shipments mi(x

∗) and the corresponding batch configurations
Λi(mi(x

∗)) in the optimal solution of AUXi with mi(x
∗) delivery shipments are

all known.
Step 3: Sequence all the batches of jobs determined by the batch configurations

{Λi(mi(x∗))|i ∈ K} obtained in Step 2 such that the first job from each of these
batches together forms an SEDD sequence. This gives a feasible schedule π for
the original problem. Calculate the objective value of π .

We note that in Step 2, the selected value of maximum lateness x∗ optimizes
the overall objective when each customer is considered separately. The schedule π

generated in Step 3 satisfies the properties of Lemma 3.9.
Pundoor and Chen (2005) show that the overall complexity of Heuristic H3.3

is O(n2c + nk log n), and that the heuristic is asymptotically optimal for problem
1||V (∞, c), direct |k|Lmax + T C as n goes to infinity, with k and c fixed.

They also conduct computational tests by comparing the solutions generated
by the heuristic and lower bounds generated by solving the LP relaxation of an
integer programming formulation of the problem. They use randomly generated test
instances with a relatively small size involving 20, 30, or 40 jobs, 2 or 4 customers,
and a vehicle capacity 2 or 4. The heuristic solves every test problem within 1 CPU
second. The average gap between the objective value generated by the heuristic and
the lower bound is less than 5%.

We give a numerical example below to illustrate the steps of Heuristic H3.3.

Example 3.10 (Application of Heuristic H3.3) Consider an instance of problem
1||V (∞, c), direct |k|Lmax + T C with 5 jobs and 2 customers. The problem
parameters are given as n1 = 3, n2 = 2, c = 2, t1 = 3, t2 = 5, f1 = 1, f2 = 1.5,
and the processing times pij , due dates dij , and shipping due dates d ′

ij shown in the
following table, where the jobs from each customer are indexed in EDD order. The
SEDD sequence of all the jobs together is ((1, 1), (2, 1), (1, 2), (2, 2), (1, 3)) with
CSEDD

11 = 4, CSEDD
21 = 7, CSEDD

12 = 8, CSEDD
22 = 10, CSEDD

13 = 12.

Job (i, j) (1, 1) (1, 2) (1, 3) (2, 1) (2, 2)

pij 4 1 2 3 2

dij 3 6 12 7 9

d ′
ij 0 3 9 2 4

Step 1: For each customer i = 1, 2, solve the auxiliary problem AUXi using
Algorithm A3.7 as follows. Since it is a small instance, we can simply enumerate
all possible delivery batches that can be involved in AUXi .
For AUX1, there can be either 2 or 3 batches (i.e., m ∈ {2, 3}). When m = 2,
there are two possible batch formations, B1 = {(1, 1), (1, 2)}, B2 = {(1, 3)} or
B1 = {(1, 1)}, B2 = {(1, 2), (1, 3)}. Let Lmax(B) denote the maximum lateness
of the jobs in a given batch B. Based on how the departure time of a batch is

96 3 Integrated Production and Outbound Distribution Scheduling: Offline Problems

defined for the auxiliary problem, it can be calculated that in the first case of batch
formation, Lmax(B1) = max(0, CSEDD

11 +p12 + t1 − d11) = 5, and Lmax(B2) =
max(0, CSEDD

13 +t1−d13) = 3, which means that the maximum lateness of all the
jobs together is 5. Similarly, in the second case of batch formation, Lmax(B1) =
max(0, CSEDD

11 + t1 − d11) = 4, and Lmax(B2) = max(0, CSEDD
12 + p13 + t1 −

d12) = 7, which means that the maximum lateness of all the jobs together is 7.
Thus, the first case of batch formation is optimal for AUX1 with m = 2, and the
associated maximum lateness is 5.
For AUX1, when m = 3, there is only one possible batch formation, B1 =
{(1, 1)}, B2 = {(1, 2)}, B3 = {(1, 3)}. It can be calculated that Lmax(B1) = 4,
Lmax(B2) = 5, and Lmax(B3) = 3, which means that the maximum lateness of
all the jobs together is 5.
For AUX2, there can be 1 or 2 batches, i.e., m ∈ {1, 2}. When m = 1,
the only possible batch formation is B = {(2, 1), (2, 2)} with Lmax(B) =
max{0, CSEDD

21 + p22 + t2 − d21} = 7. When m = 2, the only possible batch
formation is B1 = {(2, 1)}, B2 = {(2, 2)} with Lmax(B1) = 5 and Lmax(B2) = 6,
which means that the maximum lateness of all the jobs together is 6.

Step 2: Γ = {5, 6, 7}. It can be seen from the results derived above that for x = 5,
m1(x) = 2 and m2(x) = ∞; for x = 6, m1(x) = 2 and m2(x) = 2; and
for x = 7, m1(x) = 2 and m2(x) = 1. By (3.21), we find that x∗ = 7 with
x∗ +∑2

i=1 fimi(x
∗) = 10.5, and the corresponding batch formation consisting

of {(1, 1), (1, 2)}, {(2, 1), (2, 2)}, {(1, 3)} is used.
Step 3: Schedule the batches generated in Step 2 so that the first jobs in them follow

an SEDD sequence. This gives the final sequence of the jobs on the machine:
(1, 1), (1, 2), (2, 1), (2, 2), (1, 3), which are delivered in batches as specified in
Step 2. This is the final solution generated by the heuristic for the given instance.
This solution has Lmax = 8 and a total cost of 8 + 2f1 + f2 = 11.5.

It can be verified that an optimal solution for this example is the following:
Use the same sequence to process the jobs as in Step 3, but use four delivery
batches instead as follows: {(1, 1), (1, 2)}, {(2, 1)}, {(2, 2)}, {(1, 3)}. This solution
gives Lmax = 6 and a total cost of 6 + 2f1 + 2f2 = 11.

3.5.2 Parallel-Machine Total Delivery Time and
Transportation Cost Problem with Routing

In this section, we consider problem Pm||V (∞, c), routing|k|∑Dj + T C, where
because the delivery method of “routing” is used, jobs from different customers can
be delivered together in a shipment. This problem with a fixed number of customers
k is at least ordinarily NP -hard because when k = 1, it is already ordinarily NP -
hard, as discussed in Sect. 3.4.4. When the number of customers k is arbitrary,
however, this problem becomes strongly NP -hard because it contains the strongly
NP -hard traveling salesman problem as a special case. Whether this problem with
a fixed k is strongly NP -hard or not is apparently an open question.

3.5 Problems with Batch Delivery to Multiple Customers 97

Chen and Vairaktarakis (2005) propose a heuristic for this problem with a
running time that is exponential in k and worst-case performance ratio of 2 − 1/m.
The idea of the heuristic is similar to Heuristic H3.2 presented in Sect. 3.4.4 for the
special case of the problem with one customer, i.e., Pm||V (∞, c), direct |1|∑Dj+
T C. The heuristic starts with an auxiliary single-machine problem, solves it by a
dynamic programming algorithm, and transforms the solution for this problem into
a feasible solution for the parallel-machine problem under study. Below, we discuss
how the auxiliary problem is defined and solved. The rest of the heuristic is exactly
the same as H3.2 described in Sect. 3.4.4 and hence is not discussed.

We first consider the single-machine case of the problem, i.e.,
1||V (∞, c), routing|k|∑Dj + T C. It can be shown that there exists an
optimal schedule for the problem where the jobs from each customer are processed
in SPT order on the machine. However, on each machine, the jobs of different
customers do not necessarily form an SPT order.

Algorithm A3.11

Initialization Reindex the jobs in Ni from each customer i ∈ K as (i, 1), . . . , (i, ni)
such that pi,1 ≤ · · · ≤ pi,ni . Define set Qih = {(i, 1), . . . , (i, h)}, and Riuv = Qiv \
Qi,v−u = {(i, v−u+ 1), (i, v −u+ 2), . . . , (i, v)}, and parameter Pih = ∑h

l=1 pil

for h = 1, . . . , ni , v = u, . . . , ni , u = 1, . . . , c, and i ∈ K .

Value Function F(j1, . . . , jk) is the minimum objective value of a schedule for the
j1 + · · · + jk jobs from ∪k

i=1Qi,ji . In addition, define
ti (τ,X) = the time needed to reach customer i from the plant in a given route τ

covering all the customers associated with the jobs in the set X.
g(τ, q1, . . . , qk) = the total transportation cost of a given route τ , which delivers qu
jobs to customer u for u = 1, . . . , k [hence route τ visits all the customers u with
qu ≥ 1].

Initial Condition F(0, . . . , 0) = 0.

Recurrence Relation For ji = 0, 1, . . . , ni; i = 1, 2, . . . , k.

F (j1, . . . , jk) = min
q1,...,qk;τ

{

F(j1 − q1, . . . , jk − qk)

+
∑

i∈K
qi

(
∑

l∈K
Pl,jl + ti (τ,∪l∈KRl,ql ,jl)

)

+ g(τ, q1, . . . , qk)

| qi ≤ ji for i ∈ K and 1 ≤ ∑
i∈K qi ≤ c; τ ∈ T (∪l∈KRl,ql ,jl)

}

,

where T (∪l∈KRl,ql ,jl) is the set of all possible routes covering all the customers
associated with the jobs in ∪l∈KRl,ql ,jl .

Optimal Solution Value F(n1, . . . , vk).

98 3 Integrated Production and Outbound Distribution Scheduling: Offline Problems

Chen and Vairaktarakis (2005) show that Algorithm A3.11 finds an optimal
schedule for problem 1||V (∞, c), routing|k|∑Dj + T C in O(nkckkk−1) time.
When k is fixed, this algorithm has a polynomial time complexity.

The auxiliary problem used in the heuristic given in Chen and Vairaktarakis
(2005) for problem Pm||V (∞, c), routing|k|∑Dj + T C is defined in exactly the
same way as the auxiliary problem used in Heuristic H3.2 described in Sect. 3.4.4:
Find a way to partition the job set N into subsets S1, S2, . . . such that the number
of jobs in each subset Sq is no more than c, and deliver each subset of jobs
Sq in one shipment with departure time dq equal to the maximum between (i)
max{pj |j ∈ S1 ∪ . . . ∪ Sq}, and (ii)

∑
j∈S1∪...∪Sq pj /m, so as to minimize the

objective function
∑

Dj + T C.

Remark 3.3 It can be seen that this auxiliary problem is the same as the single-
machine problem 1||V (∞, c), direct |k|∑Dj +T C, except that the departure time
of a shipment is calculated as the maximum of (i) and (ii) in the earlier problem,
whereas it is the completion time of the job completed last in a shipment in the
latter problem.

Chen and Vairaktarakis (2005) show that the auxiliary problem can be solved by
a modified version of Algorithm A3.11, where the recurrence relation is replaced by
the recurrence relation below:

F(j1, . . . , jk) = min
q1,...,qk;τ

{

F(j1 − q1, . . . , jk − qk)

+
∑

i∈K
qi

[
max

{
max{pl,jl |l = 1, . . . , k},

∑

l∈K
Pl,jl /m

}

+ti (τ,∪k
l=1Rl,ql ,jl)

]

+g(τ, q1, . . . , qk)

| qi ≤ ji for i ∈ K and 1 ≤ ∑
i∈K qi ≤ c; τ ∈ T (∪l∈KRl,ql ,jl)

}

.

The computational tests conducted by Chen and Vairaktarakis (2005) show that
their heuristic can generate near-optimal solutions. However, the computational time
taken by the heuristic is quite sensitive to the number of customers k. When k ≤ 3,
the heuristic can solve instances with up to 160 jobs quickly. When k = 4 or 5,
the heuristic can generate solutions for instances with up to 80 jobs in a reasonable
amount of time.

Chen and Vairaktarakis (2005) also study the value of production-
distribution integration by comparing the integrated approach reflected in problem
Pm||V (∞, c), direct |k|∑Dj + T C where production and distribution scheduling
are considered jointly, with a typical sequential approach that considers production
and distribution scheduling sequentially. The value of integration is defined as the
relative improvement of the objective value from the sequential approach to the inte-

3.5 Problems with Batch Delivery to Multiple Customers 99

grated approach. In a typical sequential approach (SA), the production part assumes
that each job j ∈ Ni once completed is delivered to its customer immediately, i.e.,
Dj = Cj+ti , and minimizes the total delivery time

∑
Dj (equivalently, minimizing∑

Cj) without considering how jobs are actually delivered. The distribution part
in this approach minimizes the total transportation cost T C given the production
schedule generated from the production part. This is a vehicle routing problem
which can be solved by a modified version of Algorithm A3.11 described above,
where the value function V (j1, · · · , jk) is redefined as the total transportation cost
of the jobs involved, and the recurrence relation is revised as

F(j1, . . . , jk) = min
q1,...,qk;τ

{
F(j1 − q1, . . . , jk − qk) + g(τ, q1, . . . , qk)

| qi ≤ ji for i ∈ K and 1 ≤ ∑
i∈K qi ≤ c; τ ∈ T (∪l∈KRl,ql ,jl)

}
.

The computational results in Chen and Vairaktarakis (2005) show that (i) the
value of integration is more than 5% for most of the test instances and more than
10% for many test instances with k ≥ 4, and (ii) the value of integration increases
with the number of customers k and vehicle capacity c.

3.5.3 Problems with a Limited Number of Vehicles and Direct
Shipping

In this section, we consider problems 1||V (v, c), direct |k|Dmax and
1||V (v, c), direct |k|∑Dj . We first describe some optimality properties of
these problems in the following lemma. Some of the properties are proved by Chen
(2010) and the rest are straightforward. Hence, we do not give proofs.

Lemma 3.10

(i) For problems 1||V (v, c), direct |k|Dmax and 1||V (v, c), direct |k|∑Dj , there
exists an optimal schedule where (1) the jobs from each customer are processed
in nondecreasing sequence of their processing times (call such a sequence a
customer-SPT sequence), (2) jobs delivered in the same shipment are processed
consecutively, and (3) a shipment containing jobs completed earlier departs no
later than a shipment containing jobs completed later.

(ii) For problem 1||V (v, c), direct |k|Dmax, the jobs from each customer i ∈ K are
delivered in ei = �ni/c� shipments, where if ni/c is not an integer, then the first
shipment contains ui = ni − (ei − 1)c jobs and every other shipment contains
c jobs, and otherwise, every shipment contains c jobs.

We first focus on problem 1||V (v, c), direct |k|Dmax. Different cases of the
problem 1||V (v, c), direct |k|Dmax may have different tractability. As shown in
Sect. 3.4.5, the problem with a single customer (i.e., k = 1) is solvable in O(n log n)
time. Chen (2010) shows that (i) the problem with a single vehicle and an arbitrary

100 3 Integrated Production and Outbound Distribution Scheduling: Offline Problems

number of customers, i.e., 1||V (1, c), direct |k|Dmax is solvable in polynomial time,
and (ii) the problem with at least two vehicles v ≥ 2 and an arbitrary number of
customers is strongly NP -hard. Below, we show that this problem with an arbitrary
number of vehicles and a fixed number of customers can be solved in polynomial
time.

We briefly describe how the problem 1||V (v, c), direct |k|Dmax with a fixed
k can be solved in polynomial time. By Lemma 3.10, we can batch the n jobs
into e shipments, where e = e1 + · · · + ek , and by treating each of the e

batches as a single combined job, the problem can then be viewed as equivalent to
1||V (v, 1), direct |k|Dmax. In this equivalent problem 1||V (v, 1), direct |k|Dmax,
there are ei combined jobs from each customer i ∈ K , where the processing time
of a combined job (i, j) is equal to the total processing time of the corresponding
individual jobs, and is denoted as Pij . Thus, in the following, we focus on solving
problem 1||V (v, 1), direct |k|Dmax, where there are ei jobs from each customer
i ∈ K , and the total number of jobs is e = e1 + · · · + ek .

Applying Lemma 3.10 to problem 1||V (v, 1), direct |k|Dmax, we can see that
in an optimal solution the jobs are processed in customer-SPT sequence. Reindex
the jobs of each customer in SPT order. We observe that there are at most ek

different schedules for processing the e jobs in the problem that are customer-
SPT sequences. By Lemma 3.10, we observe that to find an optimal solution for
problem 1||V (v, 1), direct |k|Dmax, we can enumerate all possible customer-SPT
sequences for processing jobs, and for the job processing schedule corresponding
to each such sequence, use a delivery schedule that satisfies Property (i)(3) of
the lemma. Furthermore, we observe that given any job processing sequence, the
following delivery schedule is optimal among those that satisfy Property (i)(3) of
the lemma: Whenever a job completes processing, if there is at least one vehicle
waiting at the plant, assign it to any such vehicle; if there is no vehicle available at
the plant, assign it to the next returning vehicle. For any given processing schedule,
it takes O(ev) time to create such a delivery schedule.

The overall procedure provided above for solving problem
1||V (v, c), direct |k|Dmax has a time complexity O(ek + ev) = O((n/c)k +nv/c),
which is polynomial in v, but exponential in k.

Next, we consider problem 1||V (v, c), direct |k|∑Dj . The complexity spec-
trum of the various cases of this problem is as follows. As shown in Sect. 3.4.5,
when there is a single customer (k = 1), the problem with a fixed number of
vehicles is solvable in polynomial time, and the problem with an arbitrary v is
open. When there are multiple customers (k ≥ 2), the problem with a single
vehicle (i.e., 1||V (1, c), direct |k|∑Dj) is polynomially solvable if k is fixed (Li
et al., 2005a), and strongly NP -hard if k is arbitrary (Chen, 2010). For problem
1||V (v, c), direct |k|∑Dj , we show below that when both k and v are fixed, a
polynomial time algorithm can be constructed for the problem by applying the ideas
of Li et al. (2005a) for their problem 1||V (1, c), direct |k|∑Dj , and Algorithm
A3.8 given in Sect. 3.4.5 for problem 1||V (v, c), direct |1|∑Dj . However, to our
knowledge, the complexity of this problem remains open when either k or v or both
are arbitrary.

3.5 Problems with Batch Delivery to Multiple Customers 101

By Lemma 3.10, for problem 1||V (v, c), direct |k|∑Dj , we only consider
processing schedules that are customer-SPT sequences. In any schedule that is
a customer-SPT sequence, the completion time of any job can be expressed as∑k

i=1
∑xi

j=1 pij , for some (x1, . . . , xk) with 0 ≤ xi ≤ ni for i = 1, . . . , k. Thus,

there are at most
∏k

i=1(ni+1) ≤ nk different values of job completion times. Let the
set of these different values of job completion times be Γ . Following the discussion
in Sect. 3.4.5 and the idea of Procedure DepTime given there, we observe that a
vehicle can depart at any possible job completion time Cij ∈ Γ and any possible
return time after it completes consecutive round-trips without any idle time, i.e.,
Cij +∑k

l=1 2yltl , for some y1, . . . , yk with y1 +· · ·+ yk ≤ n. Then, corresponding
to each Cij ∈ Γ , there are at most nk possible departure times. Thus, the total
number of possible departure times of a shipment is no more than n2k . Let Ω be the
set of all possible departure times of a shipment.

By a similar idea to Algorithm A3.8, which is given in Sect. 3.4.5 for problem
1||V (v, c), direct |1|∑Dj , problem 1||V (v, c), direct |k|∑Dj can be solved by
the following dynamic programming algorithm.

Algorithm A3.12

Initialization Reindex the jobs of each customer in SPT order. Calculate possible
departure times as discussed above.

Value Function Define F(j1, . . . , jk; s1, . . . , sv; r1, . . . , rv) to be the minimum
total delivery time of a partial schedule containing the first ji jobs of each customer
i, i.e., jobs (i, 1), . . . , (i, ji) for i = 1, . . . , k, provided that the v vehicles last depart
from the plant at times τ1, . . . , τv , and going to customers r1, . . . , rv , respectively,
where τl ∈ Ω and rl ∈ K , for l = 1, . . . , v.

Boundary Conditions
F(0, . . . , 0; 0, . . . , 0; 0, . . . , 0) = 0;

F(j1, . . . , jk; τ1, . . . , τv; r1, . . . , rv) = ∞ for any state satisfying one of the
following:

(a) max1≤l≤v{τl} <∑
i∈K

∑ji
x=1 pix .

(b) for every 1 ≤ l ≤ v with sl = max1≤u≤v{su}, jrl = 0.

Recurrence Relation
For ji = 0, . . . , ni for i = 1, . . . , k, and τl ∈ Ω and rl ∈ K for l = 1, . . . , v:

F(j1, . . . , jk; τ1, . . . , τv; r1, . . . , rv)

= min
i∈I ; 1≤hi≤min{c,ji }

{
F(j1, . . . , ji−1, ji − hi, ji+1, jk;

τ ′
1, . . . , τ

′
v; r ′

1, . . . , r
′
v) + hi(ti + τδi)

| τ ′
1, . . . , τ

′
v and r ′

1, . . . , r
′
v satisfy the conditions (i) and (ii) described below

}
,

102 3 Integrated Production and Outbound Distribution Scheduling: Offline Problems

where I is the set consisting of every customer i ∈ K that satisfies the following:
There is a vehicle, denoted as δi ∈ {1, . . . , v}, such that rδi = i, sδi =
max1≤u≤v{su}, and sδi ≥ ∑

i∈K
∑ji

x=1 pix . [i.e., vehicle δi departs at the latest time
currently, its departure time is no earlier than the completion time of the current
last job, and is going to customer i]. The two conditions (i) and (ii) involved in the
recurrence relation are

(i) τ ′
l = τl and r ′

l = rl for l = 1, . . . , δi − 1, δi + 1, . . . , v,
(ii) τ ′

δi
∈ Ω with τ ′

δi
+ 2tr ′

δi
≤ τδi , and r ′

δi
∈ {1, . . . , k}.

Optimal Solution Value min{F(n1, . . . , nk; τ1, . . . , τv; r1, . . . , rv)} over all possi-
ble τ1, . . . , τv and r1, . . . , rv with τl ∈ Ω and rl ∈ K .

Theorem 3.11 Algorithm A3.12 solves problem 1||V (v, c), direct |k|∑Dj to
optimality in O(ckv+2n(2v+3)k) time.

Proof We provide a sketch of the proof. The optimality of the above algorithm
is quite straightforward. The recurrence relation considers every possible configu-
ration of the last shipment in the current partial schedule. The last shipment can
be for jobs from any customer i ∈ I with a size varying from 1 to min{c, ji}.
The two conditions (i) and (ii) ensure the feasibility of the vehicle departure times
and their destinations when transitioning from state (τ ′

1, . . . , τ
′
v; r ′

1, . . . , r
′
v) to state

(τ1, . . . , τv; r1, . . . , rv).
In the algorithm, there are O(nk) combinations of (j1, . . . , jk), O(n2kv) com-

binations of (τ1, . . . , τv), and O(kv) combinations of (r1, . . . , rv). Thus, there are
a total of O(nkn2kvkv) = O(n(2v+1)kkv) possible states. To calculate the value of
each state, the recurrence relation is run over O(kc) possible combinations of i and
hi , and for each such combination, O(|Ω|k) possibilities of (τ ′

δi
, r ′

δi
) are considered.

Thus, the computation time for each state is O(kcn2kk) = O(ck2n2k). Therefore,
the overall time complexity of the algorithm is O(ckv+2n(2v+3)k). ��

3.6 Problems with Fixed Delivery Departure Dates

Problems with fixed delivery departure dates arise in applications where delivery
vehicles have fixed departure times such as trains, liner ships, and air flights,
and in applications where delivery is carried out by logistics service providers
that pick up orders at preannounced times, e.g., 10:00 a.m. and 3:00 p.m. every
weekday (e.g., Hall et al., 2001; Leung & Chen, 2013; Stecke & Zhao, 2007).
Problems with fixed delivery departure dates can be classified generally into two
classes: (1) problems with homogeneous vehicles where to reach a given customer
destination, all the vehicles have the same travel time and incur the same cost,
and (2) problems with heterogeneous vehicles where to reach a given customer
destination, different vehicles may have different travel times and travel costs.
We discuss several representative problems in each class in Sects. 3.6.1 and 3.6.2,
respectively.

3.6 Problems with Fixed Delivery Departure Dates 103

3.6.1 Problems with Homogeneous Vehicles

We consider several problems with a single machine, a single customer, and
a finite number of homogeneous vehicles. They can all be represented as
1||V (v, c), f dep|1|γ , where γ ∈ {f (D), f (D)+T C} and f (D) is a nondecreasing
function of D = (D1, . . . , Dn).

Before we discuss any specific problem, we first define some additional notation
unique to this class of problems. In these problems, we let h (h ≤ v) denote the
number of distinct fixed vehicle departure times, let T1, . . . , Th be these departure
times with T1 < · · · < Th, and let v1, . . . , vh be the number of vehicles that
depart at these departure times, respectively, where v = v1 + · · · + vh is the
total number of vehicles available. Each vehicle can deliver up to c jobs. All the
vehicles are homogeneous in terms of their travel time and cost. We use t and
f to denote the transportation time and cost of a delivery shipment between the
plant and the customer, respectively. Without loss of generality, we assume that
Th ≥ P = ∑

j∈N pj . Without this assumption, not all jobs can be delivered and
hence the problem is infeasible. However, the problem could still be infeasible even
if Th ≥ P . The following simple two-step procedure can be used to check the
feasibility of these problems:

Feasibility Check for Problems 1||V (v, c), f dep|1|γ
Step 1: Process the jobs on the single machine in SPT sequence.
Step 2: For i = 1, . . . , h, do the following: Let xi be the number of jobs that

have completed processing by time Ti but have not been delivered. Deliver
yi = min{cvi, xi} of the xi jobs by the available vehicles that are to depart at
time Ti . If yh = xh, then the problem is feasible; otherwise, the problem is
infeasible.

It is easy to see that under the SPT processing sequence in Step 1, a maximum
number of jobs is completed by any point in time. In Step 2, as many jobs as possible
are delivered by each departure time. Therefore, this procedure maximizes the total
number of jobs that are delivered.

Without loss of generality, we henceforth assume that all the problems considered
in this section are feasible. We first present some optimality properties for the class
of problems 1||V (v, c), f dep|1|γ , which are given in Chen (2010).

Lemma 3.11 For any problem 1||V (v, c), f dep|1|γ that is feasible, where γ ∈
{f (D), f (D)+ T C} and f (D) is a nondecreasing function of D = (D1, . . . , Dn),
there exists an optimal schedule satisfying all of the following:

(i) There is no idle time between the jobs on the machine;
(ii) For each delivery batch, all the jobs in the batch are processed consecutively

on the machine;
(iii) Jobs that are processed earlier on the machine are delivered no later than those

processed later on the machine;

104 3 Integrated Production and Outbound Distribution Scheduling: Offline Problems

(iv) At each departure time Ti , for i = 1, . . . , h, all the delivery batches, except
possibly one batch, are full; and if a partial batch is delivered at time Ti , then
all the jobs completed by Ti are delivered by Ti;

(v) For each i = 1, . . . , h, if not all the vi delivery vehicles with the departure
time Ti are used, then there are less than c jobs that complete processing by Ti
but are delivered at a later departure time.

3.6.1.1 Problem 1||V (v, c), f dep|1|∑Dj + TC

We first consider problem 1||V (v, c), f dep|1|∑Dj + T C. By a pairwise inter-
change argument, we can show that processing jobs in SPT sequence is optimal.
Based on this and the properties in Lemma 3.11, we use the SPT sequence for
job processing, and given this sequence, optimally form batches of jobs and assign
vehicles to these batches for delivery. Chen (2010) gives the following dynamic
programming algorithm.

Algorithm A3.13

Initialization Reindex the jobs such that p1 ≤ · · · ≤ pn. Process the jobs in the
order 1, . . . , n. For i = 1, . . . , h, let bi be the number of jobs that have completed
processing by time Ti under this processing sequence.

Value Function F(i, u) = the minimum total contribution of the first u jobs
{1, . . . , u} to the objective value in a solution satisfying the following two condi-
tions: (1) All these jobs are delivered by vehicles with a departure time no later
than Ti , and (2) all the other jobs {u + 1, . . . , n} are delivered by a vehicle with a
departure time later than Ti .

Boundary Condition F(0, 0) = 0.

Recurrence Relation For i = 1, . . . , h, and u = 0, . . . , bi :

F(i, u) = min
y

{
F(i − 1, y) + (u − y)(Ti + t) + �(u − y)/c�f

| max(0, u − cvi) ≤ y ≤ u, and Cy ≤ Ti−1

}

Optimal Solution Value F(h, n).

Chen (2010) proves the following theorem.

Theorem 3.12 If problem 1||V (v, c), f dep|1|∑Dj + T C is feasible, then Algo-
rithm A3.13 solves it optimally in O(n2h) time.

Proof For a given state (i, u), let x be the total number of jobs delivered at Ti .
Clearly, 0 ≤ x ≤ min{u, cvi}. Let y = u − x. Then by Lemma 3.11, the x jobs
delivered at Ti are jobs u, u − 1, . . . , y + 1, and the jobs 1, 2, . . . , y are delivered
no later than Ti−1. The recurrence relation of the algorithm considers all possible

3.6 Problems with Fixed Delivery Departure Dates 105

values of y (ranging from max(0, u − cvi) to u), or equivalently all possible values
of x (= 0, . . . ,min{u, cvi}). Therefore, all possible cases of x are considered by
the recurrence relation. By Lemma 3.11, the number of batches delivered at Ti is
�x/c� = �(u−y)/c�. The term (u−y)(Ti + t) in the recurrence relation is the total
contribution to

∑
Dj by the x jobs delivered at Ti , and the term �(u − y)/c�f is

the total transportation cost contributed by these jobs. This shows the correctness of
the recurrence relation and hence the optimality of the algorithm. Since the number
of states in the DP is bounded by hn, and for each state the computational time is
bounded by O(n), the overall complexity of the algorithm is O(n2h). ��

3.6.1.2 Problem 1||V (v, c), f dep|1|Lmax

Next, we consider problem 1||V (v, c), f dep|1|Lmax. We describe the polynomial-
time algorithm developed by Leung and Chen (2013) for this problem.

We first consider a related problem, which is to decide whether there is a feasible
schedule such that the maximum lateness is less than or equal to a given value g.
For a given g, each job j ∈ N must be completed and delivered by time dj − t + g.
Thus, we can convert the due date of each job j to the departure deadline d̄j , where
d̄j is defined to be the latest departure time Tk that is less than or equal to dj − t +g.
For a given g, the following procedure decides whether there is a feasible schedule
where all the jobs are delivered by their departure deadlines.

Procedure LF(g)

1. For each job j ∈ N , define its departure deadline d̄i as the latest departure time
Tk that is less than or equal to dj − t + g.

2. For i = 1 to h, let J (i) = {j ∈ N | d̄j = Ti} be the subset of jobs with a
deadline equal to Ti .

3. Let T0 = 0; J (0) = ∅; A = ∅; T = ∑
j∈N pj .

4. For i = h, h − 1, . . . , 1, do the following:

(a) Let A be all the jobs in J (i), arranged in nondecreasing order of their
processing times.

(b) If vic < |A|, then take the first |A| − vic jobs from A and merge them into
J (i − 1). Update J (i − 1) and A accordingly. Update J (i) = A.

(c) Let τ = ∑
j∈J (i) pj .

(d) Schedule the jobs in J (i) from time T − τ to T , and deliver these jobs by
the vehicles available at time Ti .

(e) Let T = T − τ .
(f) If T > Ti−1, then stop; the problem is not feasible.

We briefly describe how the main steps of Procedure LF(g) work. In Step 4,
we schedule the jobs backwards, starting at time T = ∑

j∈N pj . We schedule the
jobs in J (i), J (i − 1), . . . , J (1) in this order. Suppose we are scheduling the
jobs in J (i). We sort the jobs in J (i) in nondecreasing order of their processing
times and assign them to the set A. If there are more than vic jobs in A, then the

106 3 Integrated Production and Outbound Distribution Scheduling: Offline Problems

vi vehicles with the departure time Ti cannot deliver all the jobs in A. In this case,
we take the first |A| − vic jobs out of A and merge them into J (i − 1); these jobs
will be delivered by the vehicles at Ti−1 or earlier. The remaining jobs in A will be
scheduled from time T − τ until T , and delivered by the vehicles at Ti . In Step 4(e),
we decrease T by τ , and in Step 4(f), we check if T is larger that Ti−1. If T is larger
than Ti−1, then there is a job in J (i − 1) that must complete processing after Ti−1.
This job cannot be delivered by any vehicles at Ti−1. Hence, there is no feasible
schedule. On the other hand, if T is less than or equal to Ti−1, then we proceed to
schedule the jobs in J (i − 1).

We repeatedly call Procedure LF(g) with different values of g until we obtain
the minimum Lmax. There are only a limited number of different values of g that
we need to consider. Since there are only h possible delivery departure times,
T1, . . . , Th, the lateness of each job j has at most h possible values, T1 + t −
di, . . . , Th + t − di . Therefore, the n jobs together have at most hn possible values
of Lmax.

The following algorithm solves problem 1||V (v, c), f dep|1|Lmax.

Algorithm ML
1. Let k ≤ hn be the number of possible values of Lmax, and let these values be al ,

for l = 1, . . . , k. Let the al’s be sorted in increasing order; i.e., a1 < a2 < · · · <
ak .

2. For l = 1 to k do the following:

(a) Call Procedure LF(g) with g = al .
(b) If the procedure returns a feasible solution, then stop and the optimal Lmax

is al .

Leung and Chen (2013) show that Algorithm ML finds an optimal solution for
problem 1||V (v, c), f dep|1|Lmax in O(h2n2 log n) time.

Leung and Chen (2013) further consider two related problems: (1) The problem
of minimizing the total transportation cost (or equivalently the number of vehicles
used) subject to the constraint that Lmax is minimized, and (2) the problem of
minimizing the weighted sum of Lmax and the total transportation cost. They provide
polynomial-time algorithms for both problems.

3.6.2 Problems with Heterogeneous Vehicles

In this section, we consider several problems with fixed delivery departure times and
heterogeneous vehicles. The first problem, discussed in Sect. 3.6.2.1, is commonly
faced by make-to-order companies with a so-called commit-to-deliver business
model and has been studied by several authors (Stecke & Zhao, 2007; Zhong et al.,
2010, and Melo & Wolsey, 2010). Several other problems, discussed in Sect. 3.6.2.2,
are motivated by applications where each customer order has a delivery time
window within which the order needs to be delivered to the customer and have
been studied by Li et al. (2017).

3.6 Problems with Fixed Delivery Departure Dates 107

3.6.2.1 Problem 1|d̄j |Vhet (∞, 1), f dep|1|TC

We first briefly describe the business environment where such a scheduling problem
arises. There are two business models that a make-to-order company uses, namely,
commit-to-ship and commit-to-deliver (Stecke & Zhao, 2007). Under the commit-to-
ship business model, the company commits to a shipping date for each order, which
is the date by which the order has completed processing and shipped out. In this case,
the company only needs to determine a production schedule based on the committed
shipping dates, and the customer of each order needs to choose a shipping mode
for order delivery and pay the shipping cost. Under the commit-to-deliver business
mode, the company commits to a delivery date for each order, which is the date when
the order is delivered to its customer. In this case, the company needs to determine
both a production schedule and a shipping plan, and pay the shipping cost. In the
commit-to-deliver case, if an order is completed early, a slow shipping mode should
be chosen to deliver the order in order to minimize the shipping cost. On the other
hand, if an order is completed late, a fast shipping mode may have to be used in
order to meet the committed delivery due date. Therefore, in a commit-to-deliver
situation, it is necessary to schedule production and delivery operations jointly.

In practice, companies often use third-party logistics (3PL) providers to deliver
completed orders to customers. A 3PL provider typically offers multiple shipping
modes with different shipping time guarantees (e.g., 1 day, 2 days, etc.) and
charges a shipping cost for an order that is typically increasing with the order
size and decreasing with the shipping time guaranteed. There are usually one or
more fixed order pickup time points on each business day. The order pickup time
points over a given planning horizon can be viewed as the fixed vehicle departure
times, and each available shipping mode at an order pickup time can be viewed
as a heterogeneous vehicle which has a distinct shipping time and a shipping cost.
In many practical situations, production costs are independent of how orders are
scheduled. Also, because completed orders are delivered shortly, inventory holding
costs are negligible. Thus, transportation cost is the primary concern. Therefore, by
the five-field notation given in Sect. 3.2, the joint production and delivery scheduling
problem can be represented as 1|d̄j |Vhet (∞, 1), f dep|1|T C.

We now define the problem in a way that is consistent with the application
background described above. At the beginning of a planning horizon consisting of
m days, a manufacturer has accepted n orders N = {1, 2, . . . , n} to be scheduled on
a single production line. Each order i ∈ N requires Qi units of some products and
has a delivery deadline di (2 ≤ di ≤ m) promised by the manufacturer. Without loss
of generality, we assume that m = max{di | i ∈ N}. All the products have the same
unit weight and the same unit production capacity requirement. The production
line can produce up to c units of products daily. We assume that Qi ≤ c, for
i = 1, 2, . . . , n, and

∑n
i=1 Qi > c.

A 3PL provider picks up the finished orders for shipping at the end of each day
in the planning horizon. The manufacturer needs to choose a shipping time for each
order to be shipped and pay a corresponding shipping cost to the 3PL. The shipping

108 3 Integrated Production and Outbound Distribution Scheduling: Offline Problems

time that can be chosen varies from 1 day, 2 days, . . ., to m − 1 days. The cost for
shipping an order i with a shipping time of x days is calculated as the following
function G(x,Qi) = Qig(x), where g(x) is either a linear decreasing function of
x, i.e., g(x) = α−βx with α, β > 0 and α−β(m− 1) > 0, or a convex decreasing
function with g(m − 1) > 0. The conditions α − β(m − 1) > 0 and g(m − 1) > 0
ensure that the unit shipping cost of each order is always positive even with the
slowest shipping mode possible (i.e., m − 1 days of shipping time).

Define Sj = {i ∈ N | di ≤ j + 1}, which is the subset of orders that must
complete processing by the end of day j in order for them to be delivered no later
than their deadlines. To ensure that a feasible schedule exists, we assume that there
is enough production capacity, i.e.,

∑

i∈Sj
Qi ≤ c · j, for j = 1, 2, . . . , m − 1. (3.22)

Partial delivery may or may not be allowed. If partial delivery is not allowed,
then all the units of any order i have to be delivered on the same day when the last
unit of the order finishes processing. Otherwise, not all units of an order need to be
delivered on the same day.

For ease of presentation, we use the term shipping mode and shipping time
interchangeably. For example, we may say that the shipping mode for order i is
ri days, which is equivalent to saying that the shipping time for the order is ri days.

Remark 3.4 Given that the shipping cost of an order decreases as the shipping time
increases, it is optimal for the manufacturer to ship an order or a partial order as
soon as possible using the slowest shipping mode possible without violating the
promised delivery due date. Thus, if partial delivery is allowed, then if a fraction of
order i completes processing on day ti , this partial order should be shipped out at
the end of that day using a shipping mode with the shipping time ri = di − ti days.
If partial delivery is not allowed, then an order should be shipped out at the end
of the day when the last unit of the order completes processing, using the slowest
possible shipping mode. This means that once a processing sequence of the orders
is given, the shipping mode for each order or partial order and the total shipping
cost are known, and hence a unique delivery schedule is known. Therefore, the only
decision to make is to determine a processing sequence for the orders.

There are four cases of this problem, based on whether the cost function is linear
or convex in shipping time and whether partial delivery is allowed. Stecke and Zhao
(2007) are the first to study this problem. They show that the problem with partial
delivery allowed and convex cost function in shipping time can be solved optimally
by processing the orders in earliest due-date first (EDD) sequence and shipping the
orders and partial orders that are finished in a day at the end of the day. However, for
the problem with no partial delivery allowed, they show that the problem is strongly
NP -hard even if the cost function is linear in shipping time. They also propose a
heuristic for the problem with convex cost function in shipping time and no partial

3.6 Problems with Fixed Delivery Departure Dates 109

delivery allowed. Melo and Wolsey (2010) study the same problem by proposing
an integer programming formulation that enables them to solve large size instances
to optimality. Zhong et al. (2010) propose a heuristic for the problem with linear
cost function in shipping time and no partial delivery allowed and show that their
heuristic has a worst-case performance ratio of 2, and this bound is tight.

In the remainder of this section, we describe the heuristic by Stecke and Zhao
(2007) for the problem with a convex cost function in shipping time and no partial
delivery allowed, and the heuristic by Zhong et al. (2010) for the problem with a
linear cost function in shipping time and no partial delivery allowed.

For ease of presentation, we introduce some additional definitions and nota-
tion:

• k = �∑i∈N Qi/c�, the day when all the orders complete processing.
• N1 = {i ∈ N |di = 2}, the set of orders with delivery due date 2.
• N2 = {i ∈ N |di = 3}, the set of orders with delivery due date 3.
• f (σ) = the total shipping cost of a given schedule σ .
• f ∗ = the optimal total shipping cost.
• σ [j] = the order that is started in day j but completed in day j + 1 in a given

schedule σ , for j = 1, . . . , k − 1.
• Pσ

jl = the quantity of order σ [j] that is completed in day j in a given schedule
σ , for j = 1, . . . , k − 1.

• Pσ
jr = the quantity of order σ [j] that is completed in day j+1 in a given schedule

σ , for j = 1, . . . , k − 1.

In a given schedule σ , order σ [j] may not exist, and in this case, Pσ
jl , P

σ
jr , and

dσ [j] are all defined to be 0. If order σ [j] exists, we call it a split order. In this case,
Qσ [j] = Pσ

jl + Pσ
jr , and the part completed in day j (with quantity Pσ

jl) must be
delivered in day j + 1 together with the rest of the order.

We call a sequence of orders an EDD-LPT sequence if they are sequenced
according to the earliest delivery due date first rule, breaking ties by the longest
processing time first rule. Let σ1 denote the schedule where the orders are processed
in EDD-LPT sequence and finished orders are delivered as soon as possible with no
partial delivery allowed.

The idea of Stecke and Zhao’s (2007) heuristic, denoted as Heuristic SZ, for the
problem with a convex cost function is to start with schedule σ1 and construct a new
schedule by re-positioning some of the jobs in σ1.

Heuristic SZ
Step 1: Generate schedule σ1 as described above. Let σ = σ1 and j = k − 1.
Step 2: Consider the following two cases:

• If in σ , order σ [j] does not exist, then let j = j − 1. If j = 0, then stop.
Otherwise, repeat Step 2.

• Otherwise, go to Step 3.

110 3 Integrated Production and Outbound Distribution Scheduling: Offline Problems

Step 3: Consider the following two cases.

• If in σ , every order started and finished in day j + 1 has a quantity larger than
Pσ
jl , then let j = j − 1. If j = 0, then stop. Otherwise, go to Step 2.

• Otherwise, in σ , among all the orders started and finished in day j + 1 with a
quantity less than or equal to Pσ

jl , find the order i with the largest quantity and
move order i to the position right before order σ [j], and update the value of
Pσ
jl accordingly. Repeat this until every order started and finished in day j +1

has a quantity larger than Pσ
jl . Let j = j − 1. If j = 0, then stop. Otherwise,

go to Step 2.

Example 3.11 (Application of Heuristic SZ) Apply Heuristic SZ to the following
instance of the problem with convex cost function in shipping time: planning
horizon m = 5 days, daily production capacity c = 100, number of orders n = 6,
number of days needed to complete all the orders k = 3. The order processing time
and deadline information and the unit-weight cost function g(x) in shipping time
x are given in the following two tables, respectively. Observe that g(x) is a convex
decreasing function of shipping time x.

Step 1: Generate schedule σ1 = (1, 2, 3, 4, 5, 6). Let σ = σ1. In σ , order 3 is started
in day 1 but completed in day 2, i.e., σ [1] = 3 with 15 units of it completed in
day 1, i.e., Pσ

1l = 15. Similarly, order 5 is started in day 2 but completed in
day 3, i.e., σ [2] = 5 with 50 units of it completed in day 2, i.e., Pσ

2l = 50. Let
j = k − 1 = 2.

Step 2: Since order σ [2] exists, go to Step 3.
Step 3: Order 6 is found and moved to the position right before order σ [2] (i.e.,

order 5). After this, Pσ
2l becomes 45. Next consider j = 1. Go to Step 2.

Step 2: Since order σ [1] exists, go to Step 3.
Step 3: Order 6 is found and moved to the position right before order σ [1] (i.e.,

order 3). As a result, Pσ
1l becomes 10. Every order started and finished in day 2

has a quantity larger than 10. Let j = 0. Stop.

Order j 1 2 3 4 5 6

Qj 60 25 25 40 60 5

dj 2 3 3 4 5 5

Shipping time x 1 2 3 4

Cost for shipping one unit, g(x) 2 1 0.25 0.2

The schedule generated by this heuristic is (1, 2, 6, 3, 4, 5). The corresponding
shipping time of each order is (x1, . . . , x6) = (1, 2, 1, 2, 2, 4) days. The total cost of
this schedule is

∑6
j=1 Qjg(xj) = 60(2)+25(1)+25(2)+40(1)+60(1)+5(0.2) =

296. We note that this is not an optimal schedule because the following schedule
(1, 4, 2, 6, 3, 5) with shipping time of each order (x1, . . . , x6) = (1, 1, 1, 3, 2, 3)

3.6 Problems with Fixed Delivery Departure Dates 111

days has a lower total cost 60(2) + 25(2) + 25(2) + 40(0.25) + 60(1) + 5(0.25) =
291.25.

Next, we discuss Zhong et al.’s (2010) heuristic for the problem with a linear
cost function. Similar to Stecke and Zhao’s (2007) heuristic, Zhong et al.’s heuristic
uses σ1 as the starting point and modifies σ1 in different ways for many different
cases involved. In some cases, schedule σ1 is not modified at all, whereas in other
cases, schedule σ1 is modified multiple times, resulting in different schedules for
the different subcases involved.

For ease of presentation, we introduce the following additional definitions that
are all related to schedule σ1:

• N3 = {i ∈ N |di ≤ dσ1[1] − 1}.
• N4 = {i ∈ N |di = dσ1[1]} \ {σ1[1]}, defined for the case if 2c <

∑
i∈N Qi < 3c.

• N5 = the set of the orders processed after order σ1[1] in σ1, defined for the case
if c <

∑
i∈N Qi ≤ 2c and P

σ1
1l >

∑
i∈N Qi − c +∑

i∈N3
Qi .

Note that if σ1[1] does not exist, then N3 and N4 are both empty. If σ1[1] exists,
then N1 ⊆ N3, and in schedule σ1 the orders in N3 are all completed in day 1 before
σ1[1]. In addition, recall that by the notation introduced earlier, in a given schedule
σ , if σ [j] does not exist, then Pσ

jl , P
σ
jr , and dσ [j] are all defined to be 0.

We are ready to describe Zhong et al.’s (2010) heuristic, denoted as Heuristic
ZCC, for the problem with a linear cost function.

Heuristic ZCC
Step 1: Generate schedule σ1 as described above. If one of the following conditions

is satisfied:

(1) α − βdσ1[1] ≥ 0
(2) P

σ1
1l ≤ ∑

i∈N3
Qi

(3)
∑

i∈N Qi ≥ 3c
(4) 2c <

∑
i∈N Qi < 3c and P

σ1
1l ≤ ∑

i∈N Qi − c − P
σ1
2l

(5) c <
∑

i∈N Qi ≤ 2c and P
σ1
1l ≤ ∑

i∈N Qi − c +∑
i∈N3

Qi

then output schedule σ1, and stop.
Step 2: If 2c <

∑
i∈N Qi < 3c and P

σ1
1l >

∑
i∈N Qi − c − P

σ1
2l , then adjust

schedule σ1 by moving the orders between σ1[1] and σ1[2] and the orders after
σ1[2] to the position right before σ1[1]. Let the resulting schedule be σ2. In σ2,
orders σ1[1] and σ1[2] are still split, and hence σ2[1] = σ1[1] and σ2[2] = σ1[2],
respectively. Consider the following cases:

• Case 1: If Pσ2
1l ≤ max{∑i∈N3

Qi, P
σ2
1r +∑

i∈N Qi − 2c}, output schedule σ2,
and stop.

• Case 2: If Pσ2
1l > max{∑i∈N3

Qi, P
σ2
1r +∑

i∈N Qi −2c}, consider two further
cases:

– (i) If
∑

i∈N1
Qi + Qσ1[1] + Qσ1[2] + ∑

i∈N2
Qi ≤ 2c, then consider the

following two schedules:

112 3 Integrated Production and Outbound Distribution Scheduling: Offline Problems

π1 = (N1, σ1[1], σ1[2], N2, N \ (N1 ∪ N2 ∪ {σ1[1], σ1[2]})),
π2 = (N1, σ1[2], σ1[1], N2, N \ (N1 ∪ N2 ∪ {σ1[1], σ1[2]})).

Let σ3 denote whichever of these two schedules has a lower total shipping
cost incurred by orders σ1[1] and σ1[2].

– (ii) If
∑

i∈N1
Qi + Qσ1[1] + Qσ1[2] + ∑

i∈N2
Qi > 2c, then consider the

following two schedules:

π3 = (N1, σ1[1], N2, N \ (N1 ∪ N2 ∪ {σ1[1], σ1[2]}), σ1[2]),
π4 = (N1, σ1[2], N2, N \ (N1 ∪ N2 ∪ {σ1[1], σ1[2]}), σ1[1]).

Let σ3 denote whichever of these two schedules has a lower total shipping
cost incurred by orders σ1[1] and σ1[2].

Output schedule σ3, and stop.

Step 3: If c <
∑

i∈N Qi ≤ 2c and P
σ1
1l >

∑
i∈N Qi − c +∑

i∈N3
Qi , adjust σ1 by

moving all the orders in N5 to the position right before σ1[1]. Let the resulting
schedule be σ4. In σ4, order σ1[1] is still split. Hence, σ4[1] = σ1[1]. Consider
the following cases:

• Case 1: If one of the following two conditions is satisfied: (a) P
σ4
1l ≤∑

i∈N Qi − c + ∑
i∈N3

Qi , (b) P
σ4
1l >

∑
i∈N Qi − c + ∑

i∈N3
Qi and

∑
i∈N3\N1

Qi +∑
i∈N5

Qi < P
σ4
1r , then output schedule σ4, and stop.

• Case 2: If Pσ4
1l >

∑
i∈N Qi −c+∑

i∈N3
Qi and

∑
i∈N3\N1

Qi +∑
i∈N5

Qi ≥
P

σ4
1r , adjust schedule σ4 by moving all the orders in (N3 \ N1) ∪ N5 to the

end of the schedule. Let the resulting schedule be σ5. Output schedule σ5, and
stop.

This heuristic generates one of the five possible schedules σ1, σ2, . . . , σ5 defined
above, depending on particular cases, as the solution to our problem. Zhong et al.
(2010) show that whichever schedule is output from this heuristic, its objective value
is at most twice the optimal objective value, and hence the worst-case performance
ratio of the heuristic is bounded by 2.

Example 3.12 (Application of Heuristic ZCC) If we apply Heuristic ZCC to the
instance given in Example 3.11 with any linear cost function, then N3 = {1} and
both conditions (2) and (4) in Step 1 are satisfied. This means that σ1 is the output
from this heuristic.

Example 3.13 (Application of Heuristic ZCC) Apply Heuristic ZCC to the follow-
ing instance: planning horizon m = 5 days, daily production capacity c = 100,
number of orders n = 5, number of days needed to complete all the orders k = 3.
The unit-weight cost function in shipping time x is defined as g(x) = 7 − 2x. The
order processing time and deadline information are given in the following table:

3.6 Problems with Fixed Delivery Departure Dates 113

Order j 1 2 3 4 5

Qj 25 85 40 60 5

dj 3 4 4 5 5

Step 1: Generate schedule σ1 = (1, 2, 3, 4, 5). We have σ1[1] = 2 with P
σ1
1l = 75,

and σ [2] = 4 with P
σ1
2l = 50. It can be seen that none of the 5 conditions in Step

1 is satisfied.
Step 2: The condition for Step 2 is satisfied. Adjust σ1 by moving orders 3 and 5

to the position right before order 2. The resulting schedule σ2 = (1, 3, 5, 2, 4).
In σ2, σ2[1] = 2 with P

σ2
1l = 30 and P

σ2
1r = 55. The condition for Case 1 is

satisfied. Thus σ2 is the output from this heuristic.

3.6.2.2 Problems 1|[aj , bj]|Vhet (v, 1), f dep|k|IC + TC

In this subsection, we consider problems with fixed delivery departure times with the
following main characteristics: (1) There are a single machine, multiple customers,
and a limited number of heterogeneous vehicles available at each given departure
time, each with an unlimited delivery capacity, (2) each job has a delivery time
window within which the job must be delivered to its customer (denoted as
“[aj , bj]” in the five-field problem representation), (3) there is an inventory cost for
keeping a job at the plant after it has completed processing but before it is delivered
(denoted as “IC” in the five-field problem representation), and (4) the objective is
to minimize the total inventory cost and total transportation cost.

Li et al. (2017) describe a business environment where such supply chain
scheduling problems arise. Fierce competition in the steel industry worldwide is
motivating many iron and steel enterprises to produce a significant portion of steel
products in a make-to-order (MTO) fashion, under which steel coils are made
according to specific customer orders. Compared to a traditional make-to-stock
(MTS) production strategy, under which steel coils are made according to projected
market demand, the MTO strategy has several advantages. These advantages include
reducing warehousing and inventory costs, providing a larger variety of products,
and achieving better customer service. Consider production and delivery decisions
which a medium to small steel manufacturer has to make for the MTO steel coils
ordered by large customers such as automobile manufacturers and shipbuilders.
Since the customers often have more bargaining power than the steel supplier,
the customers often negotiate with the steel supplier to specify when and how
their orders should be delivered. In such situations, customers may set a delivery
time window within which a finished order should be delivered for the following
reasons. First, a steel coil is heavy and hence it incurs a large inventory handling
and holding cost if the coil is not used soon after it is delivered and has to be
put in temporary storage at the customer site. Second, temporary storage space at
a customer site may be limited, particularly if the customer adopts a just-in-time

114 3 Integrated Production and Outbound Distribution Scheduling: Offline Problems

materials supply strategy. Therefore, an MTO order is associated with a delivery
time window. Typically, a time window for an order varies from one to five days
depending on the customer’s bargaining power relative to the supplier.

Each order may consist of multiple coils. Usually different coils in an order can
be delivered separately, as long as they are all delivered to the customer within the
time window specified by the customer. This is referred to as splittable delivery.
However, in some cases, to reduce handling cost, customers may require that all the
coils within their order be delivered together in one shipment. This is referred as
non-splittable delivery.

Delivery of finished steel coils to customer sites is often carried out by third-
party logistics companies that use ships and freight trains to deliver heavy goods
such as steel products. Ships and freight trains usually follow a fixed daily or weekly
schedule with a fixed route and a fixed departure time at each stop on the route. To
deliver a coil from the manufacturer’s site to the destination of the order within its
time window, an eligible set of ships and trains with specific departure times can
be identified. When an order completes processing at the plant, if none of the ships
and trains going to the destination of the order departs at the completion time of the
order, the order must be kept in temporary storage first, which incurs an inventory
cost, and delivered later when a ship or train becomes available. Given a set of orders
to be processed and delivered, the manufacturer needs to find an integrated schedule
for processing the orders, keeping finished orders in inventory if necessary, and
delivering them to the customers within their time windows using available ships
and trains, such that the total inventory and delivery cost is minimum. We note that
during job processing, idle times between jobs may or may not be allowed. In steel
production, due to the fact that it can be very expensive to resume production if it is
stopped even temporarily, production runs continuously without any idle time until
all the jobs are completed. However, in some other situations, idle times between
jobs may be allowed if necessary.

As discussed in Li et al. (2017), similar decision problems exist in other
industries where products are made-to-order and need to be delivered to customers
in a timely manner. Automobile manufacturers such as Toyota, which use a just-in-
time production model, often require their suppliers to deliver ordered parts within
a narrow time window. Consequently, the suppliers have to carry inventory of the
finished parts at their own sites if orders are produced some time prior to their
delivery time window. Delivery of expensive parts in the automobile industries is
often carried out by air flights which obviously have fixed schedules. The suppliers
in these settings face the same issues as the steel manufacturer discussed earlier.

Motivated by these applications, Li et al. (2017) study a number of problems that
can be represented as 1|[aj , bj]|Vhet (v, 1), f dep|k|IC + T C using the five-field
notation in Sect. 3.2. To be consistent with the application environment described
above, we apply the notation and problem definitions used by Li et al. (2017) to
describe these scheduling problems more precisely.

At the beginning of the planning horizon, a manufacturer has received a set of m
orders M = {1, . . . , m}, where each order consists of ni jobs, and each job j from
order i is denoted as (i, j). Let Ni = {(i, 1), . . . , (i, ni)} denote the set of jobs that

3.6 Problems with Fixed Delivery Departure Dates 115

form order i, and let n = n1 + · · · + nm be the total number of jobs of all the orders
together, and N = ∪m

i=1Ni be the set of all the jobs. Each job (i, j) has a weight of
wij units and requires a processing time of pij time units. The processing time of a
job is generally proportional to the weight of the job, i.e., pij = rijwij , where the rij
are all equal to a constant r if all the jobs are homogeneous (e.g., all steel coils have
the same grade and same thickness). The processing of the jobs is completed on a
single production line from the beginning of the planning horizon (time 0) without
interruption. Motivated by the application in steel coil production, we assume that
no idle times between jobs are allowed during job processing. A completed job is
kept in a temporary warehouse if it is not delivered to its customer immediately. If a
job (i, j) is kept in the warehouse, it incurs an inventory cost of hij per unit weight
unit per unit time.

Each order i has a delivery time window [ai, bi] within which all of its jobs must
be delivered. Order delivery is performed by a given number of transporters that are
available within the planning horizon. Each transporter has a known departure time,
arrival time at each stop of its route, and cost rate for each stop. For each order, we
can identify all the transporters that can deliver the order to its customer within its
time window. Without loss of generality, we can assume that no two transporters that
are eligible to deliver a given order have the same departure time. This is because
for any order, among all the eligible transporters with the same departure time, the
one with the lowest cost rate is always chosen over the others. Therefore, we can
associate each order i with a set of ei distinct eligible departure times, denoted as
Ei = {Ti1, · · · , Tiei }, where each departure time Tit is associated with a unique
transporter, which has a departure time Tit and can deliver order i to its destination
within the order’s time window at the cost rate cit per unit weight.

The manufacturer needs to find a production schedule for the jobs, and decide
how long each job is kept in the warehouse, and when the delivery departure time
should be for each job, so that the total inventory and delivery cost is minimized.
We consider problems with both splittable delivery (denoted as SD problems) and
non-splittable delivery (denoted as NSD problems).

Remark 3.5 We note that, given a production schedule of the orders, the inventory
and departure time decisions for each job can be made accordingly. For an SD
problem, given a production schedule, it is optimal for each job (i, j) of an order i
to use some departure time Tit ∈ Ei such that Tit ≥ Cij , where Cij is the processing
completion time of job (i, j), and the total inventory and delivery cost is minimum
possible, i.e.,

hijwij (Tit − Cij) + citwij = min
Til∈Ei ; Til≥Cij

{
hijwij (Til − Cij) + cilwij

}
.

Similarly, for an NSD problem, given a production schedule, it is optimal for all the
jobs of an order i to use some departure time Tit ∈ Ei such that Tit ≥ Ci , where Ci

is the processing completion time of order i (i.e., Ci = max{Cij | (i, j) ∈ Ni}), and
the total inventory and delivery cost is minimum possible, i.e.,

116 3 Integrated Production and Outbound Distribution Scheduling: Offline Problems

∑

(i,j)∈Ni

hijwij (Tit − Cij) + cit
∑

(i,j)∈Ni

wij = min
Til∈Ei ; Til≥Ci

⎧
⎨

⎩

∑

(i,j)∈Ni

hijwij (Til − Cij)

+cil
∑

(i,j)∈Ni

wij

⎫
⎬

⎭
.

As a result, we can focus on production scheduling decisions only.

Definition 3.1 We define an Earliest Latest Eligible-Departure-Time first (ELEDT)
schedule of the orders as follows: The m orders are processed in nondecreasing order
of their latest eligible departure times di = max{Tit | Tit ∈ Ei}, and the jobs of each
order are processed consecutively in any sequence.

It can be shown that both SD and NSD problems are feasible if and only if an
ELEDT schedule is feasible.

In the following, we summarize some known results for various cases of the SD
and NSD problems from the literature. We first consider these problems where each
order consists of a single job, i.e., ni = 1.

Problems with ni = 1
We note that when there is only one job per order (i.e., ni = 1 for i ∈ M) or
each order is associated with a unique delivery vehicle that can deliver this order
(i.e., ei = 1 for i ∈ M), the SD problems and NSD problems are identical. Thus,
every solvability result for a SD problem with ni = 1 (or ei = 1) applies to the
same NSD problem with ni = 1 (or ei = 1) as well. When ni = 1, for notational
convenience, we use index i to represent the job of order i, and replace the symbols
pij , wij , rij , hij by pi,wi, ri , hi , respectively.

We first summarize known complexity results for some special cases of SD and
NSD problems with ni = 1 and ei = 1. The classical single-machine scheduling
problem (denoted as TWE) of minimizing the total weighted earliness

∑
i∈M uiGi

subject to no tardy jobs, where ui is the penalty per unit of earliness for order i and
Gi , defined as max{0, di −Ci}, is the earliness of order i, can be viewed as a special
case of SD and NSD problems with ni = 1 and ei = 1 and hiwi = ui . Chand
and Schneeberger (1988) show that several special cases of TWE are solvable by
a simple rule in polynomial time. One of the special cases is when the pi/ui (i.e.,
hi/ri) values are identical, for which any EDD schedule is optimal. This means that
any ELEDT schedule is optimal for SD and NSD problems with ni = 1, ei = 1,
hi = h, and ri = r . Boysen et al. (2013) show that the unweighted version of
TWE (i.e., all ui’s are identical) is strongly NP -hard. This means that SD and NSD
problems with ni = 1, ei = 1, hi = h, and identical wi values and problems with
ni = 1, ei = 1, ri = r , and identical hiwi values are also all strongly NP -hard.

Yang (2000) considers another unweighted version of the TWE problem where
there are multiple departure dates for the jobs (i.e., ei ≥ 1). In Yang’s problem, all
the jobs have the same possible departure dates and no delivery costs are considered,
whereas in our problems, each job may have a different set of possible departure

3.7 Problems with Multiple Plants 117

dates and there are delivery costs. Yang’s problem thus can be viewed as a special
case of SD and NSD problems with ni = 1, ei ≥ 1, cit = 0, identical Ei , and
identical hiwi . Yang shows that his problem is strongly NP -hard. Thus, SD and
NSD problems with ni = 1, ei ≥ 1, hi = h, cit = 0, identical wi , and identical Ei

are also strongly NP -hard. Li et al. (2017) show that SD and NSD problems with
ni = 1, ei ≥ 1, hi = h, ri = r are also strongly NP -hard.

We now consider more general problems where each order may have more than
one job, i.e., ni ≥ 1.

Problems with ni ≥ 1
Li et al. (2017) clarify the computational complexity of many different cases of SD
and NSD problems with ni ≥ 1 and ei = 1, or ni ≥ 1 and ei ≥ 1. We summarize
below several main results from Li et al. (2017).

• When n1 ≥ 1 and ei = 1,

– Both SD and NSD problems with an arbitrary m, and hij = h and rij = r , for
all i, j , are polynomially solvable. Any ELEDT schedule is optimal.

– Both SD and NSD problems with a fixed m are ordinarily NP -hard even if
ci1 = 0, for all i.

– Both SD and NSD problems with an arbitrary m are strongly NP -hard even
if hij = h or rij = r , for all i, j .

• When n1 ≥ 1 and ei ≥ 1,

– SD problem is strongly NP -hard even with a fixed m, and hij = 0 and rij = r ,
for all i, j .

– NSD problem with a fixed m is ordinarily NP -hard even if cit = 0, for all i, t .
– NSD problem with an arbitrary m is strongly NP -hard even if pij = p, rij =

r and hij = 0, for all i, j .
– Both SD problem with an arbitrary m and pij = p, for all i, j , and NSD

problem with a fixed m and pij = p, for all i, j , or a fixed m and hij = 0, for
all i, j , or a fixed m and both hij = h and rij = r , for all i, j , are polynomially
solvable.

3.7 Problems with Multiple Plants

In this section, we discuss several IPODS problems studied by Chen and Pundoor
(2006) where there are multiple production plants located at different locations
that can process the jobs, and the jobs, after completion of processing, need to be
delivered to a central distribution center (DC). Given a set of jobs, the decision
maker needs to determine (1) which jobs to be assigned to which plants, (2) how to
schedule the production of the assigned jobs at each plant, and (3) how to schedule
the delivery of the completed jobs from each plant to the DC, so as to optimize a

118 3 Integrated Production and Outbound Distribution Scheduling: Offline Problems

certain performance measure involving production and transportation costs and the
total or maximum lead time of the jobs.

Such IPODS problems are often encountered by companies with an international
supply chain. The following application is described in Chen and Pundoor (2006).
A make-to-order manufacturer owns several plants located in foreign countries and
a central DC in the USA located close to the retailers that this manufacturer serves.
Shortly before a selling season, the manufacturer receives orders from the retailers
and needs to assign the orders to the plants for processing and deliver them to the
DC after they are processed for distribution to the retailers. In this supply chain,
production costs and production rates may vary significantly from plant to plant,
due to variations in labor costs and productivity in the different countries involved.
Furthermore, since the DC is close to the retailers, the delivery time and cost
between the DC and the retailers are negligible, compared to the delivery time and
cost between the plants and the DC. Therefore, the manufacturer is faced with the
job assignment and production and delivery scheduling decisions discussed above.

We now introduce necessary notation and precisely define the problems con-
sidered by Chen and Pundoor (2006). We are given n jobs, N = {1, . . . , n}, at
time 0, each of which is to be processed at one of the m given plants in a supply
chain, M = {1, . . . , m}. Each plant has a single machine (i.e., a single dedicated
production line) and is capable of producing all the jobs. Each job needs to be
processed by only one of the plants once without interruption. If job j ∈ N is
assigned to plant i ∈ M for processing, it takes pij units of processing time and
cij units of production cost. Completed jobs are delivered to a distribution center
in the supply chain. The delivery time and delivery cost of a shipment from plant
i ∈ M to the DC are ti and fi , respectively. Each delivery shipment can carry up to
b jobs. The problem is to assign each job to a plant, schedule the processing of the
jobs assigned to each plant, and schedule the delivery of the completed jobs from
each plant to the DC, so as to optimize a given objective function that takes into
account delivery lead time of the jobs as well as the total cost of the jobs including
total production cost and total shipping cost. For a given schedule of the problem,
we define:

• T C = the total cost of the jobs including total production cost and total shipping
cost.

• Cj = the completion time of job j ∈ N , which is the time when job j completes
processing at the plant to which it is assigned.

• Dj = the delivery time of job j ∈ N , which is the time when job j is delivered
to the DC.

Chen and Pundoor (2006) consider four problems, each with a different objective
function as follows:

• Problem 1: Minimizing the sum of the total lead time of the jobs and the total
cost, i.e.,

∑
j∈N Dj + T C.

3.7 Problems with Multiple Plants 119

• Problem 2: Minimizing the total cost T C, subject to the constraint that the total
lead time of the jobs is no more than a given threshold, i.e.,

∑
j∈N Dj ≤ D,

where D is a given constant.
• Problem 3: Minimizing the sum of the maximum lead time of the jobs and the

total cost, i.e., Dmax + T C, where Dmax = max{Dj |j ∈ N}.
• Problem 4: Minimizing the total cost T C subject to the constraint that the

maximum lead time Dmax is no more than a given threshold, i.e., Dmax ≤ D,
where D is a given constant.

These problems differ from the other classes of problems discussed in this
chapter in the following two aspects: (1) There are multiple plants in these problems
such that job assignment is one of the decisions to make, whereas in all other
problems there is a single plant and hence there is no job assignment decision,
(2) production costs are part of the objective function in these problems, whereas
production costs are fixed and hence not considered in other problems.

Chen and Pundoor (2006) show the following optimality properties for these four
problems.

Lemma 3.12 There exists an optimal solution for Problems 1–4 in which all of the
following hold:

(1) The jobs assigned to each plant are scheduled in the Shortest Processing Time
(SPT) first order.

(2) There is no inserted idle time between jobs processed at each plant.
(3) The departure time of each shipment is the time when all the jobs in it complete

processing.
(4) All the jobs that are delivered in the same shipment are processed consecutively

at a plant.
(5) The number of jobs delivered in an earlier shipment from a plant is greater than

or equal to the number of jobs delivered in a later shipment from the same plant.

In the following Sects. 3.7.1 and 3.7.2, we discuss how Problem 1 and Problem
3 can be solved, respectively. Most of the algorithms and results given below are
from Chen and Pundoor (2006). We do not discuss how the other two problems can
be solved since, as discussed in Chen and Pundoor (2006), these problems can be
solved by algorithms similar to those for solving Problems 1 and 3.

3.7.1 Minimizing Total Delivery Time and Transportation Cost

Chen and Pundoor (2006) show that Problem 1 with an arbitrary number of plants
is strongly NP -hard and mention that when the number of plants is fixed, the
complexity of this problem is unknown. They propose a heuristic for solving
Problem 1. The heuristic consists of an initialization step, where some parameters
used in later steps are calculated, followed by a two-phase procedure, where the jobs
are assigned to the plants in the first phase, and then the delivery schedule of the

120 3 Integrated Production and Outbound Distribution Scheduling: Offline Problems

jobs assigned to each plant is determined in the second phase. The job assignment
problem in the first phase is solved as a standard assignment problem where the cost
of assigning a job to a particular position of a plant is heuristically derived, based
on relevant parameters of the job and the parameters calculated in the initialization
step. The delivery scheduling problem in the second phase is solved by a dynamic
programming algorithm.

One of the key parameters involved in the heuristic is the maximum possible size
of a shipment containing job j at plant i in an optimal schedule, which is denoted
as bmax,i,j . If all the jobs are processed at plant i, denote the resulting SPT order
of the jobs as ([i1], . . . , [in]). Suppose that the size of a shipment B containing
order j at plant i is x, and B consists of orders (< i1 >, . . . , < ix >), where
(< i1 >, . . . , < ix >) is in SPT order and a subset of {[i1], . . . , [in]}. Clearly,
pi,<iu> ≥ pi,[iu], for u = 1, . . . , x. The following computational procedure finds
an upper bound on x, and this upper bound is defined as bmax,i,j .

Procedure MAXSIZE
Step 0: Initially, let x = b.
Step 1: Given x, check if the total cost of the jobs in any shipment B with x jobs,

denoted as B = {< i1 >, . . . , < ix >}, where (< i1 >, . . . , < ix >) is in SPT
order, can be reduced by splitting it into two shipments. There are x − 1 different
ways of splitting this shipment into two separate shipments, denoted as E1 and
E2, with E1 consisting of the first y jobs, i.e., E1 = {< i1 >, . . . , < iy >)},
and E2 the last x − y jobs, i.e., E2 = {< i, y + 1 >, . . . , < ix >}, for y =
1, . . . , x − 1.
For each y = 1, . . . , x − 1, compute a lower bound on the cost reduction due to
the splitting, denoted as Ry , as follows:

Ry ≥ y(pi,[i,y+1] + pi,[i,y+2] + · · · + pi,[i,x−1] + max{pi,[ix], pij }) − fi,

where y(pi,[i,y+1] + pi,[i,y+2] + · · · + pi,[i,x−1] + max{pi,[ix], pij }) is a lower
bound on the decrease in total lead time of the jobs in E1 and fi is the increase
in delivery cost, after B splits into E1 and E2.

Step 2: Find z ∈ {1, . . . , x − 1} such that Rz = max{Ry | y = 1, . . . , x − 1}. If
Rz ≥ 0, then the shipment size x should be reduced; update x = x − 1 and go to
Step 1. If Rz < 0, then stop, and the current x is the maximum size of a shipment
containing job j at plant i.

We now describe the heuristic for Problem 1 given by Chen and Pundoor (2006).

Heuristic CP-H1

Initialization Run procedure MAXSIZE to derive the maximum shipment size
bmax,i,j of any shipment that contains job j at plant i, for i ∈ M and j ∈ N .
Define parameters Δih and eui , for i ∈ M , h = 1, . . . , n − 1, and u = 1, . . . , b, as
follows:

3.7 Problems with Multiple Plants 121

Δih = min{pi,[i,q+h] − pi,[iq]|q = 1, . . . , n − h},which is the minimum difference of

the processing times of any two jobs [iq] and [i, q + h] in the SPT order of

the jobs [i1], . . . , [in] at plant i [Δih is always nonnegative],

eui =
{

1
2u [Δi1 + 3Δi3 + 5Δi5 + · · · + (u − 1)Δi,u−1], if u is even,
1

2u [2Δi2 + 4Δi4 + 6Δi6 + · · · + (u − 1)Δi,u−1], if u is odd.

Phase 1 For k = 1, . . . , n, i = 1, . . . , m, and j = 1, . . . , n, define parameter
a(k,i)j as the cost for scheduling job j as the kth last job at plant i, which is given as

a(k,i)j = (kpij + ti) + cij + min
1≤u≤bmax,i,j

{pij (u − 1)/2 + fi/u + eui}. (3.23)

Define a binary variable x(k,i)j to be 1 if job j is scheduled as the kth last job at
plant i, and 0 otherwise. Solve the following assignment problem:

Minimize G =
∑

k∈N

∑

i∈M

∑

j∈N
a(k,i)j x(k,i)j

subject to:
∑

k∈N

∑

i∈M
x(k,i)j = 1, for j ∈ N,

∑

j∈N
x(k,i)j ≤ 1, for k ∈ N, i ∈ M,

x(k,i)j = 0 or 1, for k ∈ N, i ∈ M, j ∈ N .

Phase 2 In the solution generated in Phase 1 (which specifies how jobs are assigned
and scheduled at each plant), suppose that there are ni jobs processed by plant i, and
they are reindexed in their SPT order as [i1], . . . , [ini]. Let C[ij] denote the time
when job [ij] completes processing at plant i. Given this solution, find an optimal
delivery schedule for the jobs processed at each plant i with respect to the objective
function of the problem using the following dynamic programming algorithm:

• Value Function: V (j) = the minimum total cost of a schedule for the first j jobs
{[i1], . . . , [ij]}.

• Initial Condition: V (0) = 0.
• Recurrence Relation: For j = 1, . . . , ni ,

V (j) = min{V (j − h) + h(C[ij] + ti) + fi | h = 1, . . . ,min{b, j}}.

• Optimal Solution: V (ni).

In Phase 1 of the heuristic, the cost coefficient a(k,i)j defined in (3.23) and used in
the assignment problem formulation is an approximation to the actual cost of job j

if it is scheduled as the kth last job at plant i. The actual cost is (k+r)pij + ti +cij +
fi/q if we know that there are a total of q jobs in the shipment containing job j , and

122 3 Integrated Production and Outbound Distribution Scheduling: Offline Problems

a total of r jobs scheduled before job j in this shipment. Since we do not know the
values of q and r , the term rpij + fi/q is approximated by min1≤u≤bmax,i,j {pij (u −
1)/2 + fi/u + eui}. In Phase 2, the optimality of the DP algorithm for finding an
optimal delivery schedule for the ni jobs processed at plant i follows from the fact
that the recurrence relation compares the cost of every possible configuration of the
last delivery shipment. This algorithm has a time complexity of O(nib).

Chen and Pundoor (2006) show that the optimal objective value of the assignment
problem solved in Phase 1 of Heuristic CP-H1 is a lower bound on the optimal
objective value of Problem 1. Based on this result, they show that the worst-
case performance ratio of the heuristic is bounded by bmax, where bmax =
max{bmax,i,j | i ∈ M, j ∈ N}, and this bound is tight. Furthermore, they show
that this heuristic is asymptotically optimal for Problem 1 when n goes to infinity
but m and b are fixed. Finally, to improve the quality of the solutions generated by
this heuristic, they modify the heuristic by lowering the maximum shipment size
bmax,i,j for each j ∈ N and i ∈ M and re-running the heuristic with the revised
bmax,i,j . Their computational tests based on a large number of test instances with
up to 200 orders, 8 plants, and shipment capacity of 12 show that this modified
heuristic is capable of generating solutions with an average gap of 1.05% compared
to the lower bound defined by the optimal objective value of the assignment problem
in Phase 1.

3.7.2 Minimizing Maximum Delivery Time and Transportation
Cost

Chen and Pundoor (2006) show that Problem 3 is at least ordinarily NP -hard, even
with a fixed number of plants. They show that in addition to the properties stated in
Lemma 3.12, Problem 3 also satisfies the following property.

Lemma 3.13 There exists an optimal solution for Problem 3 in which all the
delivery shipments from each plant to the DC, except possibly one shipment, are
full. More specifically, if there are ni jobs scheduled at plant i ∈ M , then ub jobs
are delivered in u full shipments and v jobs are delivered in a partial shipment,
where u = �ni/b� and v = ni − ub.

Chen and Pundoor (2006) propose a linear programming based heuristic for
Problem 3. The idea of the heuristic is as follows. Since Problem 3 cannot be
formulated precisely as an integer program because it is not known exactly how
many jobs are in each shipment, a slightly different problem whose objective
function is a lower bound on that of Problem 3 is instead considered and formulated
as a binary integer program. We denote this slightly different problem as Problem
3′. In this problem the subset of plants Q ⊆ M that are used is specified explicitly. It
is shown that there exists a subset of plants U ⊆ M such that the optimal objective
value of the LP relaxation of Problem 3′ with U as the subset of the plants used

3.7 Problems with Multiple Plants 123

is a lower bound on the optimal objective value of Problem 3. Consequently, the
solution of the LP relaxation of Problem 3′ with U as the subset of the plants used
is applied to construct a feasible solution to Problem 3.

Now we describe Problem 3′ and the corresponding IP formulation in detail.
Everything else in Problem 3′ is the same as in Problem 3 except that (i) the jobs are
processed in a subset of plants Q ⊆ M , and (ii) each job is required to be delivered
individually in a separate shipment and the transportation cost of a shipment from
plant i ∈ M to the DC is defined to be fi/b. This problem can be formulated as the
following binary integer program IP (Q), where each binary variable xij is defined
to be 1 if job j is assigned to plant i ∈ Q and 0 otherwise, and the continuous
variable Dmax is the maximum delivery time of the jobs.

IP(Q) : Z(Q) = Minimize Dmax +
∑

i∈Q

∑

j∈N
(cij + fi/b)xij (3.24)

s.t. Dmax ≥
∑

j∈N
pij xij + ti , for i ∈ Q, (3.25)

∑

i∈Q
xij = 1, for j ∈ N, (3.26)

xij ∈ {0, 1}, for i ∈ Q, j ∈ N. (3.27)

In this formulation, constraint (3.25) defines Dmax and constraint (3.26) ensures
that each job is assigned to one of the plants in Q. It should be noted that
constraint (3.25) implies that there is at least one job scheduled at each plant in
Q, because otherwise Dmax does not have to be greater than or equal to ti . This
means that Problem 3′ is not equivalent to formulation IP (M). Instead, Problem 3′
is equivalent to the problem of finding a subset Q ⊆ M with a minimum possible
objective value Z(Q).

Given any subset of plants Q ⊆ M , let the LP relaxation problem of IP (Q)

be denoted as LP(Q), and let the optimal objective value of problem LP(Q) be
denoted as ZLP (Q). By the fact that for any given Q, the objective function of
problem LP(Q) is a lower bound on the optimal objective value of Problem 3 with
the restriction that only the plants in Q can be used to process the jobs, we can see
that ZLP (U) = min{ZLP (Q)|Q ⊆ M} is a lower bound of the optimal objective
value of Problem 3. Chen and Pundoor (2006) show that there is no need to solve
LP(Q) for every possible subset Q of M in order to find the subset U that provides
a lower bound ZLP (U) on the optimal objective value of Problem 3. They propose
the following algorithm, which solves the LP relaxation problem LP(Q) m times,
each time with a different set Q, and show that the subset of plants U found by this
algorithm satisfies ZLP (U) = min{ZLP (Q)|Q ⊆ M} and hence ZLP (U) is a valid
lower bound on the optimal objective value of Problem 3.

124 3 Integrated Production and Outbound Distribution Scheduling: Offline Problems

Algorithm LB
Step 0: Reindex the plants in the nonincreasing order of the transportation times ti

between them and the DC. Let Qi = {i, . . . , m} be the subset of the m − i + 1
plants with the shortest transportation times to the DC.

Step 1: For i = 1, . . . , m, solve the LP relaxation problem LP(Qi) and obtain the
optimal objective value ZLP (Qi).

Step 2: Let U = Ql for some l ∈ {1, . . . , m} such that ZLP (Ql) =
min{ZLP (Qi)|1 ≤ i ≤ m}, and let u = |U |.
Furthermore, Chen and Pundoor (2006) show that the solution of LP(U) satisfies

the following property.

Lemma 3.14 If n ≥ u − 1, then in an optimal basic solution of LP(U), there are
at least (n − u + 1) xij variables that take the value 1, where U is the subset of the
plants found by Algorithm LB and u is the number of plants in U .

Now, we present the heuristic for Problem 3 proposed by Chen and Pundoor
(2006).

Heuristic CP-H2

Step 1: Run Algorithm LB to obtain a subset of plants U and an optimal basic
solution x∗ of LP(U). Define a subset of jobs J = {j ∈ N | x∗

ij = 1 for some i ∈
U}. [Lemma 3.14 implies that there are at least n − u + 1 jobs in J and hence at
most u − 1 jobs in N \ J].

Step 2: (Create a solution for the jobs in J) Assign each job j ∈ J to plant i ∈ U

with xij = 1. Schedule the jobs assigned to each plant in an arbitrary sequence.
Schedule order delivery such that it satisfies Lemma 3.13. Denote the resulting
partial solution (containing the jobs from J only) by σ1.

Step 3: (Create a separate solution for the jobs in N \ J) Enumerate all possible
assignments of the at most u−1 jobs in N\J to the plants in U until the following
termination condition is satisfied:

• For each such assignment, schedule the jobs at each plant in an arbitrary
sequence. Schedule job delivery such that it satisfies Lemma 3.13. If in the
resulting solution (containing the jobs from N \J only), the total contribution
of the jobs to the objective value of Problem 3 is less than or equal to ZLP (U),
then stop. Denote the resulting partial solution by σ2.

If no solution satisfies the termination condition, then take the solution with the
lowest total contribution to the objective value of Problem 3, and denote this
partial solution by σ2.

Step 4: Concatenate solutions σ1 and σ2 at each plant. Reschedule job delivery in
the concatenated solution at each plant such that it satisfies Lemma 3.13. Denote
the final solution by σ .

We note that the enumeration procedure in Step 3 may generate a maximum of
uu−1 possible solutions for the jobs in N \ J . Thus the worst-case time complexity
of this heuristic is polynomial in n but exponential in m. However, if m is fixed, this

3.8 Problems with Two Stages of Delivery 125

heuristic has polynomial running time. We also note that the termination condition
in Step 3 may not always be satisfied. However, for a problem with a large number
of jobs, ZLP (U) is sufficiently large such that the termination condition may be
satisfied at an early stage, and hence only a small number of solutions may be
generated in Step 3.

Chen and Pundoor (2006) show that for Problem 3, the worst-case performance
ratio of Heuristic CP-H2 is bounded by b + 1, and this heuristic is asymptotically
optimal when n goes to infinity with m and b fixed. Furthermore, their computa-
tional experiments based on a large number of randomly generated test instances
show that the average gap of the solution generated by the heuristic compared to the
lower bound ZLP (U) is 5.23%, 3.11%, and 1.96%, respectively, for test problems
with 50, 100, and 200 jobs.

3.8 Problems with Two Stages of Delivery

All the problems discussed in the previous sections involve a single stage of job
delivery. However, as discussed in Tang et al. (2019), there are practical settings
where the delivery of completed jobs may involve two stages. One example is the
delivery of make-to-order steel coils by Baosteel, the third largest steel company in
the world. Baosteel delivers MTO steel coils first from its plant to a port by trailers,
and then from the port to customer destinations by ships. Other examples involving
two stages of delivery include some custom-made high-tech electronics (e.g., PCs)
and picked-to-order organic vegetables. After PCs are assembled in a plant, they
are first delivered to a consolidation center by vans, and from the consolidation
center, PCs heading to different regions are shipped by trucks, trains, or air flights.
Similarly, after being picked and collected from a farm, picked-to-order vegetables
are first delivered from the farm by trucks or vans to a distribution center in a city,
and then sent from the distribution center to customer homes by cars or bicycles. In
all these examples, the underlying integrated production and distribution scheduling
problem has a common structure as depicted in Fig. 3.3, where the pool point (e.g.,
port, consolidation center) represents the destination of the first-stage delivery and
the origin of the second-stage delivery.

In this section, we focus on the two IPODS problems with two stages of delivery
studied in Tang et al. (2019). These problems share the same production and delivery
characteristics but with different objective functions. They are defined as follows.
There are n jobs from k customers, K = {1, . . . , k}, to be processed in a plant with
a single machine or m (m > 1) identical parallel machine. Let ni be the number of
jobs from customer i ∈ K such that n = ∑

i∈K ni , and Ni = {(i, 1), . . . , (i, ni)} be
the set of jobs from customer i ∈ K , where (i, j) denotes the j th job of customer
i. Let N = ∪i∈KNi be the set of all the jobs together. Each job (i, j) ∈ N has
a required processing time of p(i,j). After jobs are processed in the plant, they are
delivered to their respective customers through two stages of delivery: (1) First from
the plant to a pool point (e.g., a port, a distribution, or a consolidation center) by

126 3 Integrated Production and Outbound Distribution Scheduling: Offline Problems

Plant Pool Point

Customer 1

Customer 2

Customer k

Job
Processing First-Stage

Delivery

Second-Stage
Delivery

Fig. 3.3 A supply chain with two stages of delivery

homogeneous transporters (e.g., trailers, vans, or trucks), which we call vehicles
to distinguish them from transporters used in the second stage of delivery, and (2)
then from the pool point to the customers by transporters (e.g., ships, trucks, or
vans) which we call ships to distinguish them from the transporters used in the
first stage of delivery. In the first stage of delivery, there are sufficient homogeneous
vehicles available whenever needed and each vehicle can deliver up to c0 jobs in
each shipment. Jobs from different customers can be delivered together in a vehicle
shipment from the plant to the pool point. The transportation time and transportation
cost of each vehicle shipment from the plant to the pool point are denoted as t0 and
f0, respectively. In the second stage of delivery, jobs from different customers are
not allowed to share a shipment because each ship only goes to one customer site.
There are sufficient homogeneous ships available for each customer site whenever
needed, but ships for different customer sites are generally heterogeneous. Each ship
going to customer i can carry up to ci jobs in each shipment. The transportation time
and transportation cost from a shipment from the pool point to customer i are ti and
fi , respectively.

For ease of presentation, the shipments by vehicles from the plant to the pool
point and the shipments by ships from the pool point to the customers are denoted
below as v-shipments and s-shipments, respectively. We need to determine (1) how
to schedule jobs for processing in the plant; (2) how to batch jobs to form v-
shipments and schedule the delivery of v-shipments from the plant to the pool
point; and (3) how to batch jobs to form s-shipments and schedule the delivery
of s-shipments from the pool point to the customers, so that a certain objective is
optimized. In a given solution, we define:

• D(i,j) = the delivery time of job (i, j), which is the time when job (i, j) arrives
at its customer.

• C(i,j) = the completion time of job (i, j) processed in the plant.
• T C = the total transportation cost.
• Dtotal = ∑

(i,j)∈N D(i,j), the total delivery time of all the jobs.
• Dmax = max(i,j)∈N D(i,j), the maximum delivery time of all the jobs.

3.8 Problems with Two Stages of Delivery 127

We consider the following two problems in this section.

• Problem P1: Minimizing the sum of the total delivery time and the total
transportation cost, i.e., Dtotal + T C.

• Problem P2: Minimizing the sum of the maximum delivery time and the total
transportation cost, i.e., Dmax + T C.

Tang et al. (2019) show that problem P1 is strongly NP -hard even if there is
a single machine or a single customer. Problem P2 with a single machine can
be solved in polynomial time when the number of customers k is fixed, whereas
problem P2 with parallel machines is NP -hard because it contains the NP -hard
classical parallel-machine makespan problem Pm||Cmax as a special case.

In the remainder of this section, we first present some optimality properties
in Sect. 3.8.1, and then present solution algorithms for these two problems in
Sects. 3.8.2 and 3.8.3, respectively. All these results are from Tang et al. (2019).

3.8.1 Optimality Properties

There are five optimality properties derived by Tang et al. (2019). The first four
apply to both problems, whereas the last one applies to problem 2 only. Since they
are all straightforward, we do not show the proofs.

Property 3.1 For both problems, there exists an optimal solution that satisfies all of
the following:

(i) There is no idle time between the jobs processed on any machine.
(ii) The jobs from the same customer and processed on the same machine

are processed in the shortest processing time first (SPT) sequence. (In the
remainder of the chapter, we call this property group-SPT property.)

(iii) The jobs in each v-shipment that are processed on the same machine are
processed consecutively on the machine.

(iv) For each v-shipment, its departure time from the plant to the pool point is equal
to the completion time of the last job in this shipment.

(v) For each s-shipment, its departure time from the pool point to its customer is
equal to the arrival time of the last job in this shipment at the pool point.

(vi) Jobs from each customer that arrive earlier at the pool point are delivered by
ships no later than jobs from the same customer that arrive later at the pool
point.

Property 3.2 For both problems, there exists an optimal solution that satisfies the
following: For each customer i ∈ K , at any time point t , if there are at least xi ≥ ci
jobs from this customer waiting at the pool point, then there are ui = �xi/ci� full
s-shipments carrying a total of uici jobs, or ui full s-shipments and 1 partial s-
shipment carrying a total of xi jobs that will depart immediately (i.e., at time t)
from the pool point to the customer.

128 3 Integrated Production and Outbound Distribution Scheduling: Offline Problems

Based on Properties 3.1 and 3.2, Property 3.3 below characterizes all possible
cases of the relationship between the number of jobs from each customer waiting at
the pool point before a new v-shipment arrives at the pool point and the number of
jobs from the same customer shipped away from the pool point after the v-shipment
arrives at the pool point. For ease of presentation, we define the following three
parameters for each i ∈ K:

• Let hi denote the number of jobs from customer i waiting at the pool point
immediately before a v-shipment arrives at the pool point.

• Let qi denote the number of jobs from customer i in this v-shipment.
• Let ei denote the number of jobs from customer i that are shipped away by s-

shipments from the pool point to customer i immediately after this v-shipment
arrives at the pool point.

Property 3.3 For both problems, there exists an optimal solution which satisfies one
of the following cases, for each i ∈ K:

(i) Immediately after the arrival of the v-shipment, ei = �(hi + qi)/ci�ci of the
hi + qi jobs from customer i are shipped away from the pool point in �(hi +
qi)/ci� s-shipments, and the remaining li = hi + qi − ei jobs from customer i
are waiting at the pool point.

(ii) Immediately after the arrival of the v-shipment, all the ei = hi + qi jobs from
customer i are shipped away from the pool point in �(hi + qi)/ci� s-shipments,
and there is no job from customer i waiting at the pool point.

Property 3.4 For both problems, if there is only a single machine in the problems,
then there exists an optimal solution in which jobs completed earlier in the plant are
delivered by vehicles no later than those completed later in the plant.

Property 3.5 For problem P2, there exists an optimal solution in which the jobs
from customer i ∈ K are delivered by �ni/ci� s-shipments and all the s-shipments
except possibly the last one are full.

While Properties 3.1, 3.2, and 3.3 all hold for both problems under both the case
with a single machine and the case with parallel machines, it can be shown that
Property 3.5 does not hold for problem P1, and Property 3.4 does not hold for the
case with parallel machines.

Based on these properties, we assume throughout the remainder of this section
that the jobs from each customer i ∈ K are indexed in SPT order such that p(i,1) ≤
p(i,2) ≤ · · · ≤ p(i,ni).

In the following sections, we apply these properties to solve problems P1 and P2,
respectively.

3.8 Problems with Two Stages of Delivery 129

3.8.2 Solving the Total Delivery Time Problem

We first consider problem P1 with a single machine, denoted as P1-S, and solve it
by a dynamic programming algorithm. This algorithm considers one v-shipment at
each iteration and updates the state based on the time moment when the v-shipment
arrives at the pool point. The formation and scheduling of each v-shipment follow
from Properties 3.1 and 3.4. By Property 3.2, when a v-shipment arrives at the pool
point, there are most ci − 1 jobs waiting for delivery to each customer.

Algorithm TLC-DP1

Value Function F(j1, . . . , jk; l1, . . . , lk) is the minimum objective value of a
partial schedule where for each customer i ∈ K , the first ji jobs, (i, 1), . . . , (i, ji),
have been processed on the machine and delivered from the plant to the pool point;
the first ji − li jobs, (i, 1), . . . , (i, ji − li), have been delivered from the pool point
to customer i, and the remaining li jobs, (i, ji − li + 1), . . . , (i, ji), are kept at the
pool point to be delivered to customer i later.

Initial Condition F(0, . . . , 0; 0, . . . , 0) = 0.

Recurrence Relation For i = 1, . . . , k; ji = 0, . . . , ni ; li = 0, . . . ,min{ji, ci − 1}:

F(j1, . . . , jk; l1, . . . , lk)

= min
(q1,...,qk;h1,...,hk)

{

F(j1 − q1, . . . , jk − qk;h1, . . . , hk)

+
∑

i∈K

⎛

⎝(hi + qi − li)

⎛

⎝
∑

u∈K

ju∑

r=1

p(u,r) + t0 + ti

⎞

⎠

⎞

⎠

+ f0 +
∑

i∈K
�(hi + qi − li)/ci�fi

| 0 <
∑

i∈K
qi ≤ c0; 0 ≤ qi ≤ min{ji, c0}, for i ∈ K;

hi ∈ Hi ∩ {0, . . . , ji − qi}, for i ∈ K

}

,

where Hi is defined as follows:

Hi =

⎧
⎪⎪⎨

⎪⎪⎩

{li − qi}, if li ≥ qi;
{0, . . . , ci − 1}, if li < qi, li = 0;
{li + ci − qi}, if li < qi, li �= 0, c0 ≤ ci;
{uci + li − qi , for u = 1, . . . , �(qi − li − 1)/ci� + 1}, if li < qi, li �= 0, c0 > ci.

Optimal Solution Value F(n1, . . . , nk; 0, . . . , 0).

130 3 Integrated Production and Outbound Distribution Scheduling: Offline Problems

Tang et al. (2019) show that this algorithm solves problem P1-S to optimality in
O(nk(cmax)

2k) time, where cmax = max{ci |i ∈ K}.
Next, we consider the general version of problem P1 where there are m parallel

machines. We describe below the heuristic algorithm developed by Tang et al.
(2019) for this problem. The heuristic consists of two phases. In the first phase,
a variant of problem P1-S is solved by a modified version of Algorithm TLC-DP1.
In the second phase, the solution of this problem is converted to a feasible solution
for problem P1.

Define a variant of problem P1-S, denoted as P1-S′, which is the same as problem
P1-S except that the departure time of each v-shipment is calculated differently. In
problem P1-S, the departure time of a v-shipment is equal to the completion time
of the last job contained in it. However, in problem P1-S′, the departure time of a
v-shipment is instead defined as follows. Suppose that jobs are delivered from the
plant to the pool point by u v-shipments, denoted as A1, . . . , Au, in increasing order
of the completion times of their last jobs. For each v-shipment Al , for l = 1, . . . , u,
its departure time δl from the plant is defined to be

δl = 1

m

l∑

r=1

∑

(i,j)∈Ar

p(i,j) + m − 1

m
max{p(i,j)|(i, j) ∈ A1 ∪ · · · ∪ Al}. (3.28)

As will become clear in the following, the quantity defined in (3.28) is an upper
bound on the completion time of the last job among the jobs in A1 ∪ · · · ∪ Al when
these jobs are assigned to the m parallel machines in a certain way. This then ensures
that the optimal objective value of problem P1-S′ is an upper bound on the objective
value of the solution generated by the heuristic for problem P1 described below.

The following algorithm solves problem P1-S′ to optimality in O(nk(cmax)
2k)

time.

Algorithm TLC-DP1′
Apply Algorithm TLC-DP1 except that the departure time of each v-shipment
from the plant involved in the recursion of TLC-DP1, i.e.,

∑
u∈K

∑ju
r=1 p(u,r),

is replaced by the redefined departure time for problem P1-S′ as in (3.28), i.e.,
1
m

∑
u∈K

∑ju
r=1 p(u,r) + m−1

m
max{p(u,r) | u ∈ K, r = 1, . . . , ju}.

Now, we describe the heuristic algorithm developed by Tang et al. (2019) for
problem P1. The heuristic first solves problem P1-S′ and then transforms the
solution of this problem into a feasible solution for problem P1.

Heuristic TLC-H1
Step 1. Solve problem P1-S′ by Algorithm TLC-DP′. Denote the solution by σ .

Suppose that in σ , there are a v-shipments, denoted as A1, . . . , Aa , in increasing
order of the completion times of their last jobs at the plant, and b s-shipments,
denoted as B1, . . . , Bb, in increasing order of the arrival times of their last jobs
at the pool point.

Step 2. Convert solution σ to a solution π for problem P1 as follows. Solution
π consists of the same v-shipments A1, . . . , Aa and the same s-shipments,

3.8 Problems with Two Stages of Delivery 131

B1, . . . , Bb as in solution σ , except that the jobs have a different processing
schedule as described below in Step 2.1, which uniquely determines the departure
time of each of these shipments as described below in Step 2.2.

Step 2.1. For l = 1, . . . , a, sort the jobs of Al in nondecreasing order of their
processing times (i.e., SPT order), and then process them on the m parallel
machines using the following earliest-available-machine (EAM) rule: Schedule
the first unscheduled job to the earliest available machine until all the jobs in Al

are scheduled.
Step 2.2. For l = 1, . . . , a, deliver the jobs of Al in one v-shipment from the plant

to the pool point when the last job in Al completes processing at the plant. For
l = 1, . . . , b, deliver the jobs of Bl in one s-shipment from the pool point to the
corresponding customer when the last job in Bl arrives at the pool point.

Tang et al. (2019) show that the worst-case performance ratio of Heuristic TLC-
H1 for problem P1 is bounded by 2 − 1

m
, and the heuristic is asymptotically optimal

for the problem when the number of jobs n goes to infinity but the number of
machines m is fixed.

They also consider a variant of problem P1 where jobs from different customers
are not allowed to share v-shipments. They explain that there are practical settings
where, for reasons such as possible contamination, insurance liability, and compe-
tition, jobs from different customers may have to be delivered separately in every
stage of delivery. Consequently, both v-shipments and s-shipments can deliver jobs
from a single customer only. They modify Heuristic TLC-H1 for this variant of
problem P1 and show that the modified heuristic has a worst-case performance ratio
of 2 or max{2 − 1

m
,maxi∈K {ci}}, depending on certain conditions on some problem

parameters.

3.8.3 Solving the Maximum Delivery Time Problem

By Property 5 in Sect. 3.8.1, in an optimal solution of problem P2, the jobs from each
customer i ∈ K are delivered by �ni/ci� s-shipments and among these shipments
at most one is not full. This means that the total transportation cost of the jobs from
the pool point to the customer sites is fixed in an optimal solution. Furthermore,
by Properties 1(v), 1(vi), and 5, the formation and schedule of each s-shipment to
each customer is known once the arrival times of jobs to the pool point are known.
Thus, to solve problem P2, we can focus on production scheduling, and formation
and scheduling of the v-shipments from the plant to the pool point.

For problem P2 with a single machine, Tang et al. (2019) propose the following
DP algorithm that can find an optimal solution in O(nk+1ck0/k

k−1) time.

Algorithm TLC-DP2

Value Function F(r; j1, . . . , jk) as the minimum maximum delivery time of the
jobs in a partial schedule where for each customer i ∈ K , the first ji jobs

132 3 Integrated Production and Outbound Distribution Scheduling: Offline Problems

(i, 1), . . . , (i, ji) have been processed and delivered to the pool point, and a total
of r v-shipments are used to deliver all these j1 + · · · + jk jobs.

Initialization F(0; 0, . . . , 0) = 0.

Recurrence Relation For i ∈ K; ji = 0, . . . , ni ; and r =
�∑i∈K ji/c0�, . . . ,∑i∈K ji :

F(r; j1, . . . , jk)

= min
(q1,...,qk)

{

max
{
F(r − 1; j1 − q1, . . . , jk − qk),

G(r; j1, . . . , jk; q1, . . . , qk)
}

| (q1, . . . , qk) satisfying: 0 <
∑

u∈K
qi ≤ c0, and

0 ≤ qi ≤ min{ji, c0}, for i ∈ K

}

,

where

G(r; j1, . . . , jk; q1, . . . , qk) = max
{∑

u∈K

ju∑

w=1

p(u,w) + t0 + tl |

for l ∈ K that satisfyjl = nl or jl − � jl−ql
cl

�cl ≥ cl

}

Optimal Solution The optimal solution value of the problem is determined as

min
{
F(r; n1, . . . , nk) + rf0|r = �n/c0�, . . . , n

}
+
∑

i∈K
�ni/ci�fi.

In the above algorithm, G(r; j1, . . . , jk; q1, . . . , qk) is the maximum delivery
time of the jobs in ∪k

i=1{(i, ji−q1+1), . . . , (i, ji)}. The algorithm works as follows.
At each iteration, for any feasible values of (q1, . . . , qk), the algorithm considers a
v-shipment consisting of qi jobs {(i, ji − qi + 1), . . . , (i, ji)} from each customer
i ∈ K . This v-shipment arrives at the pool point at time τ = ∑

u∈K
∑ju

w=1 p(u,w) +
t0. Since the number of jobs from customer i waiting immediately before this v-
shipment arrives at the pool point is hi = ji − qi − � ji−qi

ci
�ci , there is a total of

qi + hi jobs from customer i at the pool point when this v-shipment arrives at the
pool point.

If hi +qi ≥ ci (i.e., ji −� ji−qi
ci

�ci ≥ ci) and ji �= ni , then, by Property 3.5, there
are �(hi + qi)/ci�ci jobs departing from the pool point to customer i at time τ and
hi + qi − �(hi + qi)/ci�ci jobs waiting to be delivered to customer i at a later time.

3.8 Problems with Two Stages of Delivery 133

If ji = ni , then all the qi + hi jobs depart from the pool point to customer i

at time τ . This implies that if ji − � ji−qi
ci

�ci ≥ ci or ji = ni , then there are jobs
departing to customer i at time τ , and their arrival time at customer i is τ + ti .

Otherwise, by Property 3.5, there is no job of customer i departing from the pool
point at time τ . The first maximization in the recurrence relation of the DP calculates
the maximum delivery time of the jobs by comparing the maximum delivery time of
the earlier jobs, which is F(r − 1; j1 − q1, . . . , jk − qk), and the maximum delivery
time of the jobs departing at time τ , which is G(r; j1, . . . , jk; q1, . . . , qk).

Tang et al. (2019) propose a heuristic for problem P2 with a general number of
parallel machines. The idea of the heuristic can be described as follows. Customers
are sequenced in nonincreasing order of the shipping times from the pool point to
their sites, i.e., ti . For each customer, jobs from this customer are first sorted in
LPT order and then processed on the m machines in the plant using the EAM rule
(defined in Step 2.1 of Heuristic TLC-H1). Given the production schedule, a delivery
schedule is generated by forming v-shipments using a dynamic programming
algorithm, and forming s-shipments following Property 3.5, as described below.

Heuristic TLC-H2
Step 1. Reindex the customers such that t1 ≥ · · · ≥ tk . Reindex the jobs from

customer i ∈ K such that p(i,1) ≥ · · · ≥ p(i,ni).
Step 2. Process the jobs from customer 1, . . . , k in this order on the m machines

by the EAM rule. Based on the completion times of the jobs C(i,j) in the
resulting production schedule, reindex the jobs from customer i ∈ K such that
C(i,1) ≤ · · · ≤ C(i,ni). Further reindex job (i, j) as [∑i−1

l=1 nl + j] for j =
1, . . . , ni , and i ∈ K , so that the jobs are now reindexed as [1], . . . , [n]. Their
corresponding customers are denoted as, e[1], . . . , e[n], and their completion
times as C[1], . . . , C[n], respectively.

Step 3. Given the production schedule and new indices of the jobs as defined in the
above steps, the formation and scheduling of v-shipments are obtained by the
following dynamic programming algorithm.

• Value Function: F(r, j) is the minimum maximum delivery time of the jobs
[1], . . . , [j] in a partial schedule where these jobs have been processed and
delivered to the pool point by r v-shipments. Define δi(x, y) as the number of
jobs from customer i in the job set {[x], . . . , [y]}.

• Initialization: F(0, 0) = 0.
• Recurrence Relation: For r = �j/c0�, . . . , j , and j = 1, . . . , n,

F(r, j1) = min
q

{
max

{
F(r − 1, j − q),G(r, j, q)

}| 0 < q ≤ min{j, c0}
}
,

where

G(r, j, q) = max
l

{
max
w

{
C[w]|w = j − q + 1, . . . , j

}+ t0 + te[l]

| for l ∈ {j − q + 1, . . . , j} and satisfy:

134 3 Integrated Production and Outbound Distribution Scheduling: Offline Problems

δe[l](1, j) = ne[l] or

δe[l](1, j) − �δe[l](1, j − q)

ce[l]
�ce[l] ≥ ce[l]

}
.

• Output: The optimal value is determined as min{F(r, n) + rf0|r =
�n/c0�, . . . , n}.

Suppose that the optimal solution generated by this DP algorithm contains a v-
shipments, denoted as A1, . . . , Aa . Each of these v-shipments is delivered from
the plant to the pool point at the time when the last job in it has completed
processing in the plant.

Step 4. The formation and schedule of s-shipments follow Property 5. For each
i ∈ K , whenever there are at least ci customer-i jobs waiting at the pool point or
the last job of customer i arrives at the pool point, deliver all the customer-i jobs
at the pool point to customer i using a minimal number of s-shipments.

We note that in the DP algorithm in Step 3 for finding the optimal formation and
schedule of v-shipments given the production schedule of the jobs, each iteration
considers a v-shipment consisting of q jobs [j − q + 1], . . . , [j]. The departure
time of this v-shipment from the plant is max{C[w] | w = j − q + 1, . . . , j}. This
algorithm is similar to Algorithm TLC-DP2 for problem P2 with a single machine.

Tang et al. (2019) show that for problem P2, Heuristic TLC-H2 has a worst-
case performance ratio of 2 or 3 − 1/m, depending on whether a certain condition
is satisfied in the solution obtained by the heuristic. They further show that this
heuristic is asymptotically optimal for problem P2 when n goes to infinity but m is
fixed.

Tang et al. (2019) also study online versions of some of the problems discussed
here. In Chap. 4, we discuss these online problems, together with the online versions
of some other problems covered in this chapter.

3.9 Future Research

Although a wide variety of IPODS problems have received a significant amount
of research attention in the last two decades, there are still many gaps to be
filled, including clarifying the complexity of many open problems, relaxing some
commonly adopted assumptions to make the models studied more practical, and
paying more attention to some problem classes that have been under-studied. We
elaborate on each of these directions for future research.

• Within the problem class with the individual and immediate delivery
method, problem Pm|f dj |V (v, 1), iid|n|∑Rj is solved by Algorithm A3.2 in
Sect. 3.3.3. This algorithm has a time complexity that is exponential in m and v.
Whether this problem with arbitrary m and v can be solved in polynomial time

3.9 Future Research 135

remains open. Hence, this problem should be studied further. In addition, one can
study problems within this class with an objective function other than Dmax and∑

Rj . Such problems have received little attention.
• A large number of problems with a single customer and the batch delivery

method have been investigated in the literature. The ones discussed in Sect. 3.4
are only a small representative subset of problems in this class. There are many
interesting open problems left in the literature that can be studied further. Below
we highlight several such problems.

– Several problems with multiple delivery vehicles can be solved in polynomial
time when the number of vehicles v is fixed, but their complexity remains open
when v becomes arbitrary. They include problem 1||V (v, c), direct |1|∑Dj

discussed in Sect. 3.4.5, and problem 1||V (v,∞), direct |1|Lmax+T C (Chen,
2010).

– Several problems with an unlimited vehicle capacity (i.e., c = ∞), including
1||V (∞,∞), direct |1|∑Uj + T C and 1||V (1,∞), direct |1|∑Uj + T C

can be solved in polynomial time (Hall & Potts, 2003, 2005, and Section 7.2),
but the complexity of these problems with a limited vehicle capacity remains
unknown.

– Several problems are known to be at least ordinarily NP -hard, including
problem Pm||V (∞, c), direct |1|∑Dj + T C with an arbitrary m, studied in
Sect. 3.4.4, problem P2||V (1,∞), direct |1|∑Dj+T C (Hall & Potts, 2005),
and problem P2||V (1, c), direct |1|∑Dj (Lee & Chen, 2001). However, to
our knowledge, it remains unknown whether these problems are strongly NP -
hard.

• Problems discussed in Sect. 3.5 involve batch delivery to multiple customers.
This class of problems has received much less attention than problems with
batch delivery to a single customer. It would be useful to investigate several open
problems left from the literature, as discussed below.

– As shown in Sect. 3.5.1, problem 1||V (∞, c), direct |k|Lmax + T C with an
arbitrary number of customers k is at least ordinarily NP -hard. However, it is
unknown whether this problem is strongly NP -hard. Also, it is open whether
this problem is still at least ordinarily NP -hard when k is fixed.

– As discussed in Sect. 3.5.2, problem Pm||V (∞, c), routing|k|∑Dj +T C is
strongly NP -hard when k is arbitrary, and at least ordinarily NP -hard when
k is fixed. But whether the latter case is strongly NP -hard remains unknown.

– As shown in Sect. 3.5.3, problem 1||V (v, c), direct |k|∑Dj +T C with both
k and v fixed is solvable in polynomial time. However, when one or both of k
and v are arbitrary, the complexity of this problem remains unknown.

• Another valuable direction is to investigate problems that involve the routing
delivery method for multiple customers. Only a handful of such problems have
been studied in the literature (e.g., Chen & Vairaktarakis, 2005; Geismar et al.,
2008; Li et al., 2005a). Such problems involve both production scheduling and
vehicle routing and are generally more challenging than most other IPODS

136 3 Integrated Production and Outbound Distribution Scheduling: Offline Problems

problems. It would be useful to develop algorithms that build on some existing
methods from the vehicle routing literature.

• The problems with fixed delivery departure dates discussed in Sect. 3.6 and
other problems within this class studied in the literature all involve a production
environment where there is a single machine. It would also be valuable to
consider this class of problems with a different production environment, e.g.,
parallel machines.

• Apparently, Chen and Pundoor (2006) is the only study on IPODS problems with
multiple plants. As supply chains become more global, and more companies rely
on overseas plants for production, an increasing number of applications give rise
to scheduling and delivery problems that can be modeled as IPODS problems
with multiple plants. Thus, more research in this area is needed.

• Problems with two or more stages of delivery have also received little attention.
As most supply chains in practice involve multiple stages of distribution, it is
clear that more research on IPODS problems with multiple delivery stages is
also needed.

• Finally, in most existing IPODS problems, the capacity of a delivery vehicle is
measured in terms of the number of jobs the vehicle can carry in a shipment by
implicitly assuming that each job has an identical size such that they require an
identical amount of vehicle capacity. Only a few papers (Chang & Lee, 2004;
Chen & Pundoor, 2009; He et al., 2006; Zhong et al., 2007) have considered
problems where each job may have a different size and the capacity of a vehicle
is measured as the total size of jobs that it can carry. Clearly, modeling the job
size and vehicle capacity in this way is more practical, but it also makes the
underlying problems more challenging because the vehicle capacity constraint
alone involves the strongly NP -hard bin packing problem. More research on
such IPODS problems would be highly valuable.

Chapter 4
Integrated Production and Outbound
Distribution Scheduling: Online
Problems

Abstract In this chapter we discuss online integrated production and outbound
distribution scheduling (O-IPODS) problems, which are extensions of the offline
IPODS problems discussed in Chap. 3 to an online environment. In such problems,
jobs arrive over time and the parameters associated with each job are not known
until it arrives. Following the classification scheme described in Chap. 3 for offline
IPODS problems, O-IPODS problems can also be classified into several different
classes in a similar way, and most of them can also be represented by the five-field
notation described in Chap. 3. For each class of O-IPODS problems, we discuss
several representative problems, present the corresponding online algorithms for
solving these problems, and describe the theoretical performance of these algo-
rithms.

4.1 Introduction

One of the basic assumptions made in deterministic scheduling, including deter-
ministic supply chain scheduling covered in other chapters of this book, is that all
the jobs to be considered in a problem, along with their parameters, are known
with certainty before scheduling decisions are made. However, this assumption is
often not valid in practice. For example, manufacturers and retailers usually receive
customer orders over time and do not have precise knowledge of future orders
until they arrive (e.g., Chen & Chen, 2015; Fisher, 1997). One could use stochastic
scheduling models to study scheduling problems that arise in such an environment.
However, stochastic scheduling models assume that probability distributions of job
parameters are known in advance. Such an assumption is not valid either in many
practical settings, especially in settings where products are customized or have a
short selling season; hence, there is little market information that can be used even
to characterize future demand probabilistically (e.g., Daniels & Kouvelis, 1995;
Perakis & Roels, 2008). In such cases, the underlying scheduling decisions may
need to be made in an online fashion without assuming any knowledge of future
orders or their parameters.

© Springer Nature Switzerland AG 2022
Z.-L. Chen, N. G. Hall, Supply Chain Scheduling, International Series
in Operations Research & Management Science 323,
https://doi.org/10.1007/978-3-030-90374-9_4

137

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-90374-9_4&domain=pdf
https://doi.org/10.1007/978-3-030-90374-9_4

138 4 Integrated Production and Outbound Distribution Scheduling: Online Problems

In online scheduling problems, at any time instant, no information about a future
job’s arrival time, processing time, and other parameters is assumed to be known
with certainty or even in a probabilistic sense until this job arrives. Therefore,
compared to deterministic and stochastic scheduling problems, online scheduling
problems involve the least information about problem parameters. Online schedul-
ing algorithms, which are used to solve online scheduling problems, construct
a schedule piece-by-piece in a serial fashion based on the known information
about the jobs that have arrived. The performance of an online algorithm is often
represented by its competitive ratio. Readers are referred to Sect. 2.3.4 for the
definition of competitive ratio and a discussion of some related concepts.

There is an extensive literature on online scheduling (e.g., Pruhs et al., 2004;
Tan & Zhang, 2013). However, most online scheduling problems studied in the
literature are online classical scheduling problems, which involve only scheduling
decisions for processing jobs on machines without involving other decisions such
as job delivery that arise in supply chains. As e-commerce is becoming ever more
popular around the world, we are witnessing an increasing number of applications
where the underlying scheduling problems can be modeled as online integrated
production and outbound distribution scheduling (O-IPODS) problems. Below we
describe two such applications.

Direct-sell consumer electronics manufacturers such as Dell operate in make-
to-order fashion where assembly operations for an order only begin after the order
arrives. Once an order is processed, it needs to be delivered to the customer soon.
To achieve a system-wide optimal solution, assembly and delivery operations must
be considered together (Li et al., 2008; Stecke & Zhao, 2007). The underlying
scheduling decisions about the assembly and delivery operations can be made in
two ways: (1) on a rolling horizon basis where decisions are made periodically
(e.g., once a day) such that all the orders that have arrived are considered together
in the underlying decision problem, and (2) in an online fashion such that a decision
is made whenever a new order arrives. The first approach involves an offline
integrated production and delivery scheduling problem, which belongs to the class
of problems studied in Chap. 3, whenever the problem is solved under a rolling
horizon framework. However, the second approach involves an online integrated
production and delivery scheduling problem. Either approach has advantages and
disadvantages. Considering multiple orders together can potentially result in a
solution that is less myopic, but waiting for more orders to arrive may lower
capacity utilization and delay the delivery of orders, which can result in an inferior
solution. Hence, in situations where processing or/and delivery capacity is/are
tightly constrained, and customers expect short delivery lead time, online decision
making may be preferable. Such situations occur during busy holiday shopping
seasons, such as Thanksgiving, Christmas, and Labor Day, when a much higher
than average demand occurs. In addition, during such time periods, there tends to
be more competition among the companies selling similar products, and hence, fast
delivery of orders becomes even more important.

Another example is the order fulfillment and delivery operations faced by online
retailers such as Amazon and JD. In this case, order delivery lead time is often

4.2 Online Problems with Individual and Immediate Delivery 139

very short (e.g., 1 day or 2 days), and both fulfillment and delivery capacities
are tightly constrained, particularly during busy shopping seasons. Similar to the
above example, decision makers need to consider fulfillment and delivery operations
jointly and should make scheduling decisions in an online fashion in order to utilize
capacity fully and respond to online orders as quickly as possible (Zhang et al.,
2018, 2019).

In this chapter, we focus on online integrated production and outbound distribu-
tion scheduling (O-IPODS) problems, which are the online versions of the IPODS
problems discussed in Chap. 3. In Chap. 3, offline IPODS problems are classified
into several different classes based on the number of plants, the number of delivery
stages, and delivery method. Most IPODS problems involve a single plant and
a single delivery stage. Such problems are represented in Chap. 3 by a five-field
notation scheme. For ease of presentation, we extend the five-field representation
scheme of Chap. 3 to represent online counterparts of IPODS problems with a single
plant and a single delivery stage as follows. Given an offline problem α|rj , β|π |δ|γ ,
we use α|online, rj , β|π |δ|γ to represent the corresponding O-IPODS problem
with the same characteristics except that now jobs arrive over time (as represented
by “rj ”) and the parameters of a job, including its arrival time, are unknown until
after its arrival.

There has been a growing research interest in O-IPODS problems in the last
decade or so. However, the existing studies in this area have focused primarily on
a small subset of problems where (i) certain delivery methods, such as individual
and immediate delivery and direct delivery to a single customer, are used and (ii)
specific objective functions, such as Dmax, Dmax +T C,

∑
Dj , and

∑
Dj +T C are

considered.
This chapter is organized as follows. We consider some representative O-IPODS

problems with a single stage of delivery with the delivery method of individual
and immediate delivery, direct shipping to a single customer, and direct shipping
to multiple customers, in Sects. 4.2, 4.3, and 4.4, respectively. In Sect. 4.5, several
problems with two stages of delivery are discussed. In Sect. 4.6, we illustrate
the importance of choosing a suitable algorithm by comparing the computational
performance of some online and offline algorithms. Finally, we discuss some
possible future research directions in Sect. 4.7.

Figure 4.1 provides an overview of the topics covered in the remaining sections
of this chapter.

4.2 Online Problems with Individual and Immediate Delivery

In this section, we focus on two online IPODS problems with the individual
and immediate delivery methods: 1|online, rj |V (∞, 1), iid|n|Dmax and
P2|online, rj |V (∞, 1), iid|n|Dmax. They are discussed in Sects. 4.2.1 and 4.2.2,
respectively.

140 4 Integrated Production and Outbound Distribution Scheduling: Online Problems

Chapter 4:
Integrated Production and Outbound

Distribution Scheduling: Online Problems

Section 4.2: Online Problems with Individual
and Immediate Delivery:
single machine Dmax problem;

parallel machine Dmax problem;

some variants.

Section 4.3: Online Problems with Batch
Delivery to a Single Customer:
Dmax problems with one delivery vehicle

Dmax + TC problems;

�Dj + TC problems;

offline counterparts;

preemptive problem; non-preemptive problem.

Section 4.4: Online Problems with Batch
Delivery to Multiple Customers:
Dmax + TC problems;

�Dj + TC problems.

Section 4.5: Online Problems with Two Stages of Delivery:
�Dj + TC problem with one machine and one customer;

�Dj + TC problem with multiple machines and multiple customers;

Dmax + TC problem with multiple machines and one customer;

Dmax + TC problem with multiple machines and multiple customers.

Section 4.6: Online or Offline Algorithms?
online algorithms;

rolling horizon based offline algorithms.

Fig. 4.1 Overview of the topics covered in Chap. 4

4.2.1 Single-Machine Maximum Delivery Time Problem and
Some Variants

In this section, we consider problem 1|online, rj |V (∞, 1), iid|n|Dmax and some
related problems. As shown in Sect. 3.3.1, problem 1|rj |V (∞, 1), iid|n|Dmax, the
offline counterpart of 1|online, rj |V (∞, 1), iid|n|Dmax, is strongly NP -hard. For
this offline problem, the heuristic Algorithm H3.1 given in Sect. 3.3.1 finds a
solution with a worst-case performance ratio of 3/2 (see Theorem 3.2). However,
by definition of online algorithms (see Sect. 2.3.4), this heuristic is not an online
algorithm because it relies on the information about all the jobs when constructing
a schedule.

There are several online algorithms for problem 1|online, rj |V (∞, 1),
iid|n|Dmax. The simplest online algorithm is Rule S described in Sect. 3.3.1.
This algorithm has a competitive ratio of 2 (Hoogeveen & Vestjens, 2000; Kise
et al., 1979). Hoogeveen and Vestjens (2000) show that for this problem any online
algorithm has a competitive ratio of at least (

√
5 + 1)/2 ≈ 1.61803. Since their

proof provides some useful insights about online scheduling, below we briefly
summarize their proof, along with the insights that can be derived.

To show that for a given online problem, any online algorithm has a competitive
ratio of at least α, a common approach is to construct a specific instance of the
problem from an adversarial point of view such that for this instance, the competitive
ratio of any online algorithm is at least α. Hoogeveen and Vestjens (2000) construct
the following instance for any given online algorithm H :

• There are either one or two jobs that will arrive. Job 1 arrives at time 0 with
p1 = 1 and t1 = 0. Depending on when the online algorithm H starts processing
job 1, either no more jobs will arrive or a second job will arrive. If the starting

4.2 Online Problems with Individual and Immediate Delivery 141

time of job 1 is S > (
√

5 − 1)/2, then no other jobs will arrive. Otherwise, job
2 with p2 = 0 and t2 = 1 will arrive at time S + ε, where ε is positive but very
close to 0.

• In the first case where S > (
√

5 − 1)/2, the optimal schedule is to start job 1
at time 0, which gives optimal objective value D∗

max = 1, whereas the online
algorithm H gives a solution with objective value Dmax(H) = S + 1. Thus, for
this case of the instance, the competitive ratio of H is Dmax(H)/D∗

max = S+1 ≥
(
√

5 + 1)/2.
• In the second case where S ≤ (

√
5−1)/2, the optimal schedule is to schedule job

2 before job 1 with both starting at time S + ε, which gives D∗
max = S + 1 + ε,

whereas H schedules job 1 before job 2 with their starting time S and S + 1,
respectively, which gives Dmax(H) = S + 2. Thus, the competitive ratio of H
for this case of the instance is (S + 2)/(S + 1 + ε), which is at least (

√
5 + 1)/2

over the domain of S ≤ (
√

5 − 1)/2, when ε approaches 0.
• The two cases together show that the competitive ratio of H is at least (

√
5+1)/2.

It can be seen from the above proof of Hoogeveen and Vestjens (2000) that
for any online algorithm that does not wait intentionally, i.e., starts to process an
available job as soon as the machine is available and there is at least one available
job (that has arrived but has not been processed), the competitive ratio is at least
2. This is because under such an algorithm, the starting time of job 1 is S = 0,
and hence, the second case in the above discussion applies. This means that Rule
S given in Sect. 3.3.1 achieves the best possible competitive ratio (which is 2)
among all online algorithms that do not wait intentionally. It also means that to
have a competitive ratio strictly less than 2, an online algorithm needs a strategy
for intentional waiting. The intuition is that while waiting, new jobs may arrive,
which can then give additional information to the algorithm and enable it to generate
better solutions. Clearly, there is a tradeoff: if the intentional waiting is too long,
then the machine capacity is wasted, which can lead to inferior solutions. So, it is
important to find a good waiting strategy that balances machine capacity waste and
new information gained. Every online algorithm discussed in this chapter employs
some waiting strategy for processing jobs and/or delivering jobs. The critical ratio
of an online algorithm strongly depends on the specific waiting strategy used.

Hoogeveen and Vestjens (2000) give an online algorithm with the smallest possi-
ble competitive ratio, which is (

√
5 + 1)/2, for problem 1|online, rj |V (∞, 1), iid

|n|Dmax. Hence, their algorithm is an optimal (i.e., best possible) online algorithm
for the problem. Their algorithm is a modified version of Rule S given in Sect. 3.3.1
with added intentional waiting whenever a certain condition is satisfied. The basic
idea of the algorithm is the following: At any time when the machine is available
and there is at least one available job (that has arrived but has not been processed), if
none of the available jobs is big (i.e., has a long processing time, as defined below),
then the job with the longest transportation time is scheduled, just as in Rule S;
otherwise, various conditions are checked to determine whether to schedule the
biggest job, schedule the job with the longest transportation time, or intentionally
wait without scheduling any job.

142 4 Integrated Production and Outbound Distribution Scheduling: Online Problems

We now describe their algorithm. First, we define some necessary terms and
notations used in the algorithm:

• P(X) denotes the total processing time of all jobs in set X.
• Aτ is the set of the jobs that have arrived at or before time τ but have not been

started by time τ .
• Bτ is the set of the jobs that have arrived at or before time τ but have not been

completed before the last idle time period before time τ ; if there is no idle time
before time τ , then Bτ contains all the jobs that have arrived at or before time τ .

• gτ is the job with the largest processing time in Aτ .
• qτ is the job with the largest transportation time in Aτ .

The job sets Aτ and Bτ are determined by the algorithm, where Bτ is the set of
jobs in Aτ plus the jobs continuously scheduled between the last idle time period

before time τ and time τ . We call a job j ∈ Aτ big at time τ if pj >
√

5−1
2 P(Bτ).

We note that since
√

5−1
2 > 1/2, and Aτ ⊂ Bτ , there is at most one big job at any

time.
The following is the online algorithm given by Hoogeveen and Vestjens (2000)

for problem 1|online, rj |V (∞, 1), iid|n|Dmax.

Algorithm A4.1
Whenever the machine is idle and a job is available, let this time be τ and do the
following. Otherwise, wait until the machine is idle and a job is available:

Step 0: Determine job sets Aτ and Bτ , job gτ , and job qτ .

Step 1: If gτ is not a big job, i.e., pgτ ≤
√

5−1
2 P(Bτ), then start processing job qτ

from time τ , let τ = τ + pqτ , and go to Step 0. If gτ is a big job, then check the
condition of Step 2: if the condition of Step 2 is satisfied, go to Step 2; otherwise,
go to Step 3.

Step 2: If τ + P(Aτ) > rgτ +
√

5+1
2 pgτ , then consider two cases as follows:

• Case (i): If tqτ >
√

5−1
2 pgτ , then start processing job qτ from time τ , and let

τ = τ + pqτ . Go to Step 0.

• Case (ii): If tqτ ≤
√

5−1
2 pgτ , then start processing job gτ from time τ , and let

τ = τ + pgτ . Go to Step 0.

Step 3: If τ + P(Aτ) ≤ rgτ +
√

5+1
2 pgτ , then consider two cases as follows:

• Case (i): If qτ �= gτ , then start processing job qτ from time τ , and let τ =
τ + pqτ . Go to Step 0.

• Case (ii): If qτ = gτ , then consider two further cases: if job gτ is not the
only job in Aτ , then start processing any job j in Aτ but gτ from time τ , let
τ = τ + pj , and go to Step 0; otherwise, do not start any job, let τ = τ + 1,
and go to Step 0.

By this algorithm, at any time point τ , if none of the available jobs is big, then
the job with the longest transportation time is scheduled. Otherwise, it is checked

4.2 Online Problems with Individual and Immediate Delivery 143

whether the available jobs can keep the machine busy until time rgτ +
√

5+1
2 pgτ . If

this is the case, then either the job with the longest transportation time or the big
job is scheduled, depending on whether the job with the longest transportation time
has a transportation time above some threshold or not. If the available jobs cannot

keep the machine busy until time rgτ +
√

5+1
2 pgτ , then the job with the longest

transportation time is always scheduled unless this job is also the big job. In the case
when the job with the longest transportation time is also the big job, then any other
job is scheduled if there exists another job, or the machine waits if there are no other

jobs. In the latter case, the machine waits intentionally until time rgτ +
√

5−1
2 pgτ or

until a new job arrives if sooner.
Hoogeveen and Vestjens (2000) show that the competitive ratio of this algorithm

is (
√

5 + 1)/2 by contradiction where the concept of a smallest counterexample is
used. A smallest counterexample is an instance of the problem with a minimum
number of jobs, for which the algorithm generates a solution with the objective
value more than (

√
5 + 1)/2 times the optimal objective value of the corresponding

offline instance. They show that if such a counterexample exists, then the solution
generated by the algorithm for this instance satisfies some properties, which are then
used to show that there is a contradiction and, hence, such a counterexample cannot
exist.

To understand this algorithm better, we illustrate the steps of the algorithm when
it is applied to the following numerical example.

Example 4.1 (Application of Algorithm 4.1) Consider a situation where four jobs
arrive over time with the parameters given in the following table.

j 1 2 3 4

rj 1 4 10 10

pj 5 9 2 1

tj 10 7 3 12

Applying the algorithm, the first time point to consider is τ = 1 when job 1 arrives.
At τ = 1, the algorithm runs the following steps:

Step 0: Aτ = Bτ = {1}, gτ = qτ = 1.
Step 1: Job 1 is a big job; the condition of Step 2 is not satisfied, and go to Step 3.
Step 3: Case (ii); since job 1 is the only job in Aτ , do not start any job, let τ = 2,

and go to Step 0.
At τ = 2 and τ = 3, the algorithm yields the same results as above and hence no
job is started.
At τ = 4, the algorithm runs the following steps:

Step 0: Aτ = Bτ = {1, 2}, gτ = 2, qτ = 1.
Step 1: Job 2 is a big job; the condition of Step 2 is not satisfied, and go to Step 3.
Step 3: Case (i); start processing job 1 from time 4; let τ = 4 + p1 = 9, and go to

Step 0.

144 4 Integrated Production and Outbound Distribution Scheduling: Online Problems

At τ = 9, the algorithm runs the following steps:
Step 0: Aτ = {2}, Bτ = {1, 2}, gτ = qτ = 2.
Step 1: Job 2 is a big job; the condition of Step 2 is not satisfied, and go to Step 3.
Step 3: Case (ii); since job 2 is the only job in Aτ , do not start any job, let τ = 10,

and go to Step 0.
At τ = 10, the algorithm runs the following steps:

Step 0: Aτ = {2, 3, 4}, Bτ = {2, 3, 4}, gτ = qτ = 2.
Step 1: Job 2 is a big job; the condition of Step 2 is satisfied, and go to Step 2.
Step 2: Case (i); start processing job 4 from time 10; let τ = 10 + p4 = 11, and go

to Step 0.
At τ = 11, the algorithm runs the following steps:

Step 0: Aτ = {2, 3}, Bτ = {2, 3, 4}, gτ = 2, qτ = 4.
Step 1: Job 2 is a big job; the condition of Step 2 is satisfied, and go to Step 2.
Step 2: Case (i); start processing job 2 from time 11; let τ = 10 + p2 = 20, and go

to Step 0.
At τ = 20, the algorithm runs the following steps:

Step 0: Aτ = {3}, Bτ = {2, 3, 4}, gτ = qτ = 3.
Step 1: Job 3 is not a big job; start processing job 3 from time 20; let τ = 20+p3 =

22. Go to Step 0. No new jobs arrive. Stop.

The schedule generated by this algorithm in this example is (1, 4, 2, 3) with
starting times of the jobs 4, 10, 11, 20, respectively. This gives D1 = 19,D2 =
27,D3 = 25,D4 = 23. Thus, Dmax = 27. It can easily be checked that this solution
happens to be an optimal solution for the offline problem of the given instance.

Several variants of problem 1|online, rj |V (∞, 1), iid|n|Dmax have been studied
in the literature. Tian et al. (2008) and Liu et al. (2010) consider the same
problem, except that each job’s transportation time is bounded. When each job’s
transportation time tj is assumed to be no more than its processing time pj , Tian
et al. (2008) give an online algorithm with a competitive ratio of

√
2 and show that

this ratio is the best possible. When each job’s transportation time tj satisfies the
condition: βtj ≤ pj , where β ≥ 1/2 is a given constant, Liu et al. (2010) give an
online algorithm with a competitive ratio of 1

2 (
√

5 + β2 + 2β + 1 − β) and show
that this ratio is the best possible. It can be seen that when β = 1, the problem of
Liu et al. (2010) reduces to that of Tian et al. (2008), and the competitive ratio of
Liu et al.’s algorithm becomes the same as that of Tian et al.’s algorithm. Both their
algorithms essentially follow the idea of Algorithm A4.1.

Some other variants of the problem where the machine is a so-called parallel
batching machine have also been studied. A parallel batching machine is one that
can process multiple jobs as a batch simultaneously, and the processing requirement
of the batch is determined by the job with the longest processing time. A well-
known application involving parallel batching machines is the scheduling of burn-in
operations in semiconductor manufacturing (Lee & Uzsoy, 1999; Lee et al., 1992).
Tian et al. (2012) study problem 1|online, rj |V (∞, 1), iid|n|Dmax with a parallel
batching machine with an unbounded batch size and give an online algorithm with

4.2 Online Problems with Individual and Immediate Delivery 145

a competitive ratio of 2
√

2 − 1. Yuan et al. (2009) and Tian et al. (2011) consider
similar problems where there are lower or upper bounds on the transportation times
of the jobs.

4.2.2 Parallel-Machine Maximum Delivery Time Problem

We consider problem P2|online, rj |V (∞, 1), iid|n|Dmax in this section. Some
offline problems related to this online problem are discussed in Sect. 3.3.3. For this
online problem, Vestjens (1997) shows that any online algorithm has a competitive
ratio of at least 3/2. Liu and Lu (2015) give the following algorithm for this online
problem and show that its competitive ratio is (

√
5 + 1)/2 and this bound is tight.

Algorithm A4.2
Let α = (

√
5 − 1)/2. Set τ = 0.

Step 0: If there is no available job at time τ , then wait until a new job arrives, and
reset τ to be this time.

Step 1: If both machines are idle at time τ , then select an available job with the
largest transportation time, and start to process the job at time τ on one of the
machines. Go to Step 0.

Step 2: If only one machine is idle at time τ , let j be the job being processed by the
other machines at time τ and Cj be the completion time of this job, and consider
the following two cases:
Case (i): If τ ≥ α2Cj , then select an available job with the largest transportation
time and start to process the job at time τ on the idle machine. Go to Step 0.
Case (ii): If τ < α2Cj , then reset τ to be α2Cj . Go to Step 0.

Step 3: If both machines are busy at time τ , reset τ to be the earliest time instant
after τ at which at least one machine becomes idle. Go to Step 0.

We give a numerical example in the following to illustrate the steps of this
algorithm.

Example 4.2 (Application of Algorithm A4.2) Consider an instance where five jobs
arrive over time with the parameters given in the following table.

j 1 2 3 4 5

rj 1 4 7 7 10

pj 5 16 12 6 8

tj 10 7 3 12 9

Applying Algorithm A4.2, at τ = 0, the algorithm runs the following steps:

Step 0: Since there is no available job at τ , wait until job 1 arrives, and reset τ = 1.

146 4 Integrated Production and Outbound Distribution Scheduling: Online Problems

Step 1: Since both machines are idle at τ , the only available job, which is job 1, is
processed on machine 1 from time 1 to 6.
At τ = 1, the algorithm runs the following steps:

Step 0: Since there is no available job at τ , wait until job 2 arrives, and reset τ = 4.
Step 2: Since only machine 2 is idle at τ , the job being processed by machine 1

at time τ is identified, which is job 1 with C1 = 6. Case (i) holds and the only
available job, which is job 2, is processed on machine 2 from time 4 to 20.
At τ = 4, the algorithm runs the following steps:

Step 0: Since there is no available job at τ , wait until time 7 when jobs 3 and 4
arrive, and reset τ = 7.

Step 2: Since only machine 1 is idle at τ , the job being processed by machine 2
at time τ is identified, which is job 2 with C2 = 20. Case (ii) holds, and reset
τ = 20α2, which is greater than 7.
At τ = 20α2, the algorithm runs the following steps:

Step 0: Jobs 3 and 4 are available at τ .
Step 2: Since only machine 1 is idle at τ , the job being processed by machine 2 at

time τ is identified, which is job 2 with C2 = 20. Case (i) holds, and job 4 is
selected and processed on machine 1 from time 20α2 to 6 + 20α2.
At τ = 20α2, the algorithm runs the following steps:

Step 0: Job 3 is available at τ .
Step 3: Since both machines are busy at time τ , reset τ = 6 + 20α2 when machine

1 is available.
At τ = 6 + 20α2, the algorithm runs the following steps:

Step 0: Jobs 3 and 5 are available at τ .
Step 2: Since only machine 1 is idle at τ , the job being processed by machine 2 at

time τ is identified, which is job 2 with C2 = 20. Case (i) holds, and job 5 is
selected and processed on machine 1 from time 6 + 20α2 to 14 + 20α2.
At τ = 6 + 20α2, the algorithm runs the following steps:

Step 0: Job 3 is available at τ .
Step 3: Since both machines are busy at τ , reset τ = 20 when machine 2 is available.

At τ = 20, the algorithm runs the following steps:
Step 0: Job 3 is available at τ .
Step 2: Since only machine 2 is idle at τ , the job being processed by machine 1 at

time τ is identified, which is job 5 with C5 = 14 + 20α2. Case (i) holds, and job
3 is processed on machine 2 from time 20 to 32. Stop.

The schedule generated for this example is the following: machine 1 processed
jobs 1, 4, and 5 with starting time 1, 20α2 and 6 + 20α2, respectively, and machine
2 processed jobs 2 and 3 with the starting times 4 and 20, respectively. Thus, D1 =
16,D2 = 27,D3 = 35,D4 = 18 + 20α2,D5 = 23 + 20α2, and Dmax = 35.

Although Algorithm A4.2 is quite straightforward, the competitive analysis given
in Liu and Lu (2015) is not. We do not present their analysis here. They also conduct
computational experiments, which show that the performance of this algorithm
based on randomly generated instances is much better than the theoretical worst-
case bound.

4.3 Online Problems with Batch Delivery to a Single Customer 147

It would be interesting to see whether the idea of this algorithm can be extended
to the more general problem Pm|online, rj |V (∞, 1), iid|n|Dmax, where there are
more than two machines. To our knowledge, there are no existing online algorithms
for this problem.

4.3 Online Problems with Batch Delivery to a Single
Customer

All the problems considered in this section involve a single customer with the direct
shipping delivery method. We consider two representative problems each with the
objective functions Dmax, Dmax + T C, and

∑
Dj + T C in Sects. 4.3.1, 4.3.2,

and 4.3.3, respectively.

4.3.1 Maximum Delivery Time Problems

In this section, we consider two related problems 1|online, rj , pmtn|V (1, c),
direct |1|Dmax and 1|online, rj |V (1, c), direct |1|Dmax. They both involve a single
machine and a single capacitated vehicle delivering all the jobs in batches with
the objective of minimizing Dmax, the time when all the jobs are delivered to
the customer. The first problem allows preemption when processing jobs on the
machine, whereas the second problem does not. In these problems, the single
delivery vehicle can deliver at most c ≥ 1 jobs in each trip, and the travel time
from the plant to the customer site and that from the customer site back to the plant
are assumed to be identical and denoted as t .

We first discuss briefly the offline counterparts of these problems in Sect. 4.3.1.1
and then discuss each of the online problems in Sects. 4.3.1.2 and 4.3.1.3, respec-
tively.

4.3.1.1 Offline Counterparts

We are not aware of any existing papers that study the offline problems
1|rj , pmtn|V (1, c), direct |1|Dmax and 1|rj |V (1, c), direct |1|Dmax. However, Lu
et al. (2008) consider the closely related problems 1|rj , pmtn|V (1, c), direct |1|Fmax
and 1|rj |V (1, c), direct |1|Fmax, where the objective function Fmax = Dmax + t is
the time when the vehicle returns to the plant after delivering the last batch of jobs.
Since t is a given constant, the offline problems 1|rj , pmtn|V (1, c), direct |1|Dmax
and 1|rj |V (1, c), direct |1|Dmax are equivalent to the offline problems studied
by Lu et al. (2008), respectively, in the sense that optimal solutions to the
former problems are also optimal for the latter problems and vice versa.

148 4 Integrated Production and Outbound Distribution Scheduling: Online Problems

However, the optimal objective value of 1|rj , pmtn|V (1, c), direct |1|Fmax (resp.
1|rj |V (1, c), direct |1|Fmax) differs from that of 1|rj , pmtn|V (1, c), direct |1|Dmax
(resp. 1|rj |V (1, c), direct |1|Dmax) by a constant, t .

Several results derived by Lu et al. (2008) for 1|rj , pmtn|V (1, c), direct |1|Fmax
are also valid for problem 1|rj , pmtn|V (1, c), direct |1|Dmax and are hence stated
as properties for the latter problem in the following.

For problem 1|rj , pmtn|V (1, c), direct |1|Dmax, it is optimal to process the jobs
on the machine using the shortest remaining processing time (SRPT) rule, which,
together with a simple tie-breaking rule, can be stated formally as follows:

SRPT Rule At each time instant τ , process the job with the smallest remaining
processing time among all the jobs that have arrived but have not been completed,
with ties broken by giving priority to the job with the smallest index.

Example 4.3 (Application of SRPT Rule) Apply the SRPT rule to the following
instance where four jobs arrive over time with the following parameters.

j 1 2 3 4

rj 1 4 10 11

pj 9 5 3 1

Job 1 is started at time 1 but preempted at time 4 by job 2. Job 2 is processed from
time 4 without interruption until it is completed at time 9. Job 1 is resumed at time
9 but preempted at time 10 by job 3. Job 3 is processed for one time unit before it is
preempted at time 11 by job 4. Job 4 is processed from time 11 without interruption,
until it is completed at time 12. At time 12, job 1 has 5 units of processing time
remaining, and job 3 has 2 units of processing time remaining. Thus, at time 12, job
3 is selected for processing and is completed at time 14. Finally, job 1 is processed
from time 14 to time 19. In this solution, the job completion times are, in increasing
order, C2 = 9, C4 = 12, C3 = 14, C1 = 19.

Furthermore, for problem 1|rj , pmtn|V (1, c), direct |1|Dmax, there is an opti-
mal solution where (i) a job with an earlier completion time is delivered no later than
any job with a later completion time, and (ii) each delivery batch, except possibly
the first batch, contains exactly c jobs. Based on these properties, the following
polynomial-time algorithm solves problem 1|rj , pmtn|V (1, c), direct |1|Dmax to
optimality.

Algorithm A4.3
Step 1: Process the jobs following the SRPT rule. Reindex the jobs as [1], . . . , [n]

in nondecreasing order of their completion times resulting from the application
of SRPT rule.

Step 2: Form �n/c� delivery batches such that the first batch consists of the first
n − (�n/c� − 1)c consecutively completed jobs, and the ith batch consists
of the c consecutively completed jobs, [x + 1], [x + 2], . . . , [x + c], where
x = n − (�n/c� − 1)c + (i − 2)c, for i = 2, . . . , �n/c�. Deliver these batches

4.3 Online Problems with Batch Delivery to a Single Customer 149

one by one as soon as possible in the order of their completion times (which are
the completion times of the last jobs in the batches).

Lu et al. (2008) show that problem 1|rj |V (1, c), direct |1|Fmax is strongly NP -
hard, and give an approximation algorithm with a tight worst-case performance
bound of 5/3. Clearly, problem 1|rj |V (1, c), direct |1|Dmax has exactly the same
complexity as 1|rj |V (1, c), direct |1|Fmax and hence is also strongly NP -hard.
However, if Lu et al.’s approximation algorithm is applied to our problem, the
worst-case performance bound is not 5/3 because of the difference in the objective
function. Instead, we have the following result.

Remark 4.1 The worst-case performance bound of Lu et al.’s approximation algo-
rithm, when applied to problem 1|rj |V (1, c), direct |1|Dmax, is no more than 7/3.
This is because of the fact that Fmax(H) ≤ (5/3)F ∗

max, and Fmax(H) = Dmax(H)+t

and F ∗
max = D∗

max+t implies that Dmax(H) ≤ 5D∗
max/3+2t/3 ≤ (7/3)D∗

max, where
Dmax(H) and D∗

max (which is clearly at least t) are the maximum delivery times in
the solution generated by Lu et al.’s approximation algorithm and in the optimal
solution, respectively.

4.3.1.2 Algorithm for the Preemptive Problem

For the online problem 1|online, rj , pmtn|V (1, c), direct |1|Dmax, since the
SRPT rule described in Sect. 4.3.1.1 can be implemented online, applying this
rule for processing the jobs on the machine is optimal. Therefore, the SRPT
rule should be used for processing the jobs in any online algorithm for this
problem. When c = 1, each job is delivered individually. Thus, for problem
1|online, rj , pmtn|V (1, 1), direct |1|Dmax, it is optimal to process the jobs using
the SRPT rule and deliver the jobs one by one as soon as possible in the order of
their completion times.

However, when c ≥ 2, apparently a simple optimal solution cannot be identified
because when c ≥ 2, a vehicle may deliver one or two jobs in a trip, and hence,
a waiting strategy needs to be developed, which is not straightforward. In this
case, Algorithm 4.3 given in Sect. 4.3.1.1 for the offline counterpart of this problem
cannot be implemented online and hence cannot be used for the online problem.

Ng and Lu (2012) study a closely related online problem 1|online,
rj , pmtn|V (1, c), direct |1|Fmax, where the objective function Fmax = Dmax + t .
They show that any deterministic online algorithm H for this problem with c ≥ 2

has a competitive ratio of at least
√

5+1
2 , and develop an online algorithm with a

competitive ratio of
√

5+1
2 . Their online algorithm can be applied to our problem

1|online, rj , pmtn|V (1, c), direct |1|Dmax and generate exactly the same solution.
However, since our problem has a different objective function from their problem,
their algorithm also has a different competitive ratio when applied to our problem.

150 4 Integrated Production and Outbound Distribution Scheduling: Online Problems

While writing this chapter, we contacted Dr. Chi To Ng of Hong Kong Polytech-
nic University, the lead author of the paper Ng and Lu (2012), about applying their
online algorithm to our problem. In response to our inquiry, Ng and Lu (2020) show
that for our problem 1|online, rj , pmtn|V (1, c), direct |1|Dmax with c ≥ 2, any
online algorithm H has a competitive ratio of at least 2 by constructing an instance
of the problem. We modify their instance slightly to make it more straightforward
as follows:

• There are one or two jobs that will arrive, depending on what the algorithm does.
Job 1 arrives at time 0 with p1 = 0.

• If the vehicle delivers job 1 with departure time τ > t , then no other jobs arrive.
In this case, Dmax(H) > 2t . However, the optimal solution is to deliver job 1 at
time 0, resulting in D∗

max = t . Thus, Dmax(H)/D∗
max > 2.

• If the vehicle delivers job 1 with departure time τ ≤ t , then job 2 with p2 = 0
arrives at time τ + ε. In this case, Dmax(H) ≥ τ + 3t . However, the optimal
solution is to deliver both jobs at time τ +ε, resulting in D∗

max = τ +ε+ t . Thus,
Dmax(H)/D∗

max ≥ τ+3t
τ+ε+t

= 1 + 2t−ε
τ+ε+t

≥ 2 when ε goes to 0.

Ng and Lu (2020) propose the following online algorithm for solving prob-
lem 1|online, rj , pmtn|V (1, c), direct |1|Dmax with any c ≥ 2. It is a mod-
ified version of the online algorithm given in Ng and Lu (2012) for problem
1|online, rj , pmtn|V (1, c), direct |1|Fmax with c ≥ 2.

Algorithm A4.4
Step 1: At the production stage, process the jobs by the SRPT rule given in

Sect. 4.3.1.1.
Step 2: At the delivery stage, keep the vehicle idle until time t .
Step 3: At any time point τ ≥ t , if there is at least one job that has completed

processing but has not been delivered, then the vehicle carries as many completed
jobs as possible and departs at time τ , set τ = τ+2t , and go to Step 3. Otherwise,
set τ to be the earliest time after the current τ when a job completes processing,
let the vehicle wait until time τ , and go to Step 3.

Example 4.4 (Application of Algorithm A4.4) Apply Algorithm A4.4 to the
instance given in Example 4.3 with vehicle capacity c = 2 and one-way
transportation time t = 2. Given the SRPT schedule described in Example 4.3,
we can see that the earliest time point to be considered is τ = 9 when the
first job in the SRPT schedule is completed. At τ = 9, deliver job 2, and set
τ = 9 + 2t = 13. At time τ = 13, job 4 is available for delivery and hence is
delivered. Set τ = 13 + 2t = 17. At τ = 17, job 3 is available and is hence
delivered. Set τ = 17 + 2t = 21. At time τ = 21, job 1 is available and hence
delivered. This solution gives the delivery times of the jobs, in increasing order,
D2 = 11,D4 = 15,D3 = 19,D1 = 23, and hence Dmax = 23. An optimal offline
solution for this instance is to deliver jobs 2 and 4 together at time 12, and deliver
jobs 1 and 3 together at time 19, which yields Dmax = 21.

4.3 Online Problems with Batch Delivery to a Single Customer 151

Ng and Lu (2020) show that for problem 1|online, rj , pmtn|V (1, c),
direct |1|Dmax, Algorithm A4.4 satisfies Lemma 3.2 given in Ng and Lu (2012).
This lemma is stated and proved below.

Lemma 4.1 For any given instance I of problem 1|online, rj , pmtn|V (1, c),
direct |1|Dmax, DH

max(I) ≤ D∗
max(I) + 2t , where DH

max(I) is the maximum delivery
time in the solution generated by Algorithm A4.4 for the instance, and D∗

max(I) is
the maximum delivery time in the optimal offline solution for the instance.

Proof For any given instance of the problem, let π and π∗ be the solution generated
by Algorithm A4.4, and the optimal offline solution, respectively. Since processing
the jobs by the SRPT rule is optimal, we can assume that π and π∗ have the same
job processing schedule. Let [j] denote the j th completed job in the job processing
schedule of π and π∗, for j = 1, . . . , n. Suppose that there are b delivery batches
in π and they are denoted as B1, . . . , Bb, where a batch with a smaller index is
delivered earlier than a batch with a larger index. Let d(Bi) denote the departure
time of batch Bi . By Algorithm A4.4, d(B1) = max{t, r[1]}.

Let Bk be the earliest delivery batch such that Bk, . . . , Bb are delivered contin-
uously without any vehicle idle time. Thus, DH

max(I) = d(Bk) + 2t (b − k) + t . If
k = b, then the vehicle is idle between the time it returns to the plant after delivering
batch Bb−1 and the time it departs from the plant carrying batch Bb, which is time
d(Bb). By the algorithm, this means that d(Bb) is equal to the processing completion
time of the first job in it, denoted as time C0. Thus, DH

max(I) = C0 + t . Clearly,
D∗

max(I) ≥ C0 + t . This implies that DH
max(I) ≤ D∗

max(I).
If k < b, then there are two cases to consider as follows. First, if all the

batches Bk, . . . , Bb−1 contain c jobs, there are two further cases. If k = 1,
then b = �n/c� ≤ b∗. Thus, DH

max(I) = max{t, r[1]} + 2t (�n/c�) − t . Since
D∗

max(I) ≥ r[1] +2t (�n/c�)− t , we have DH
max(I) ≤ D∗

max(I)+ t . If k > 1, then the
vehicle is idle between the time it gets back to the plant after delivering batch Bk−1,
which is denoted as time E, and the time it departs from the plant carrying batch
Bk , which is time d(Bk). From the algorithm, this means that d(Bk) is equal to the
processing completion time of the first job in it, which further implies that c−1 jobs
in Bk have a zero processing time. Let the completion time of the first job in Bk be
denoted as C0. Thus DH

max(I) = C0 + 2t (b − k) + t . Furthermore, we can see that
in π∗, there are at least �(c(b − k) + 1)/c� = b − k + 1 batches with a departure
time greater than or equal to C0. Thus D∗

max(I) ≥ C0 + 2t (b − k) + t = DH
max(I).

Thus DH
max(I) ≤ D∗

max(I).
Second, suppose some batches Bk, . . . , Bb−1 contain less than c jobs. Let Bl

be the last batch among these batches containing less than c jobs. There are two
subcases. First, if l = b − 1, then all the jobs in Bb complete processing after time
d(Bb−1). This means that D∗

max(I) ≥ d(Bb−1) + t , and DH
max(I) = d(Bb−1) + 3t .

Thus, DH
max(I) ≤ D∗

max(I) + 2t . Second, if l < b − 1, then every batch
Bl+1, . . . , Bb−1 contains c jobs and all the jobs in these batches complete processing
after d(Bl). Thus, there are at least (b− l−1)c+1 jobs in the batches Bl+1, . . . , Bb.
This implies that in π∗ there are at least b − l delivery batches that depart after

152 4 Integrated Production and Outbound Distribution Scheduling: Online Problems

d(Bl). Thus, D∗
max(I) ≥ d(Bl) + 2t (b − l − 1) + t . On the other hand, we know

DH
max(I) = d(Bl) + 2t (b − l) + t . Thus, DH

max(I) ≤ D∗
max(I) + 2t .

As shown above, in every possible case, we have DH
max(I) ≤ D∗

max(I) + 2t ,
hereby establishing the lemma. ��

Based on this lemma, Ng and Lu (2020) show the following result.

Theorem 4.1 For problem 1|online, rj , pmtn|V (1, c), direct |1|Dmax, the com-
petitive ratio of Algorithm A4.4 is 2.

Proof If D∗
max(I) ≥ 2t , then by Lemma 4.1, DH

max(I) ≤ D∗
max(I) + 2t . Thus, we

have DH
max(I) ≤ 2D∗

max(I). If D∗
max(I) < 2t , then in the optimal offline solution,

all the jobs complete processing at or before time t and all the jobs are delivered
in one batch, which implies that c ≥ n. Since the SRPT schedule is optimal for
processing the jobs even for the offline problem, the processing schedule in the
solution generated by Algorithm A4.4 is the same as that in the optimal offline
solution. This means that all the jobs complete processing at or before time t in
the solution generated by Algorithm A4.4. Thus, from Step 3 of the algorithm, all
the jobs are delivered together at time t , which implies that DH

max(I) = 2t . Since
D∗

max(I) ≥ t , we have DH
max(I) ≤ 2D∗

max(I). ��

4.3.1.3 Algorithms for the Nonpreemptive Problem

Next, we consider the nonpreemptive problem 1|online, rj |V (1, c), direct |1|Dmax.
Ng and Lu (2012) consider a closely related problem, 1|online, rj |V (1, c), direct
|1|Fmax. They show that any deterministic online algorithm H for this problem

has a competitive ratio of at least
√

5+1
2 , and develop an online algorithm with a

competitive ratio of
√

5+1
2 when c = 1, and an asymptotic competitive ratio of

the same value when c ≥ 2. Their online algorithm can be applied to our problem
1|online, rj |V (1, c), direct |1|Dmax and generate the same solution with a different
objective value. However, since our problem has a different objective function, their
algorithm has a different competitive ratio when applied to our problem.

In the following, we first apply Ng and Lu’s (2012) algorithm directly to solve our
problem 1|online, rj |V (1, c), direct |1|Dmax and show that for our problem, this
algorithm has a competitive ratio of

√
5 when c = 1 and an asymptotic competitive

ratio of
√

5+1
2 when c ≥ 2. We then present another algorithm that has a competitive

ratio of 2.5 for our problem with any value of c.
We first describe the algorithm from Ng and Lu (2012). We introduce some

additional notation as follows:

• P(S) denotes the total processing time of all the jobs in set S.
• Aτ is the set of jobs that have arrived at or before time τ but have not started

processing by time τ .
• eτ is the earliest time such that the machine is always busy in time interval [eτ , τ].
• Bτ is the set of jobs that are processed on the machine in time interval [eτ , τ].

4.3 Online Problems with Batch Delivery to a Single Customer 153

• sτ is the job with the shortest processing time in Aτ .
• lτ is the job with the longest processing time in Aτ .

The algorithm consists of two phases: the first phase generates a production
schedule, and the second phase generates a delivery schedule based on the pro-
duction schedule from the first phase.

Algorithm A4.5
Phase 1: At the production stage, assign the jobs for processing on the machine as

follows. Set α =
√

5−1
2 , and τ = 0.

Step 1: If Aτ is empty, wait until the time a new job arrives and reset τ to be this
time. If |Aτ | ≥ 2, go to Step 2. If |Aτ | = 1, then we denote the only job in Aτ as
job sτ and consider two cases as follows.

Case (i): If τ < rsτ + α(psτ + 2t), then wait until either the time a new job arrives
or the time becomes rsτ + α(psτ + 2t), whichever is earlier. Reset τ to be this
time. Go to Step 1.

Case (ii): If τ ≥ rsτ + α(psτ + 2t), then start to process job sτ from time τ . Reset
τ = τ + psτ . Go to Step 1.

Step 2: If |Aτ | ≥ 2, consider two cases as follows:
Case (i): If at least one of the following three conditions holds: (1) psτ ≤ 2t/c, (2)

τ +psτ ≤ max{rlτ +α(plτ +2t), α(P (Aτ ∪Bτ)+2t)}, (3) plτ ≤ αP (Aτ ∪Bτ),
then start to process job sτ from time τ . Reset τ = τ + psτ . Go to Step 1.

Case (ii): Otherwise, start to process job lτ from time τ . Reset τ = τ + plτ . Go to
Step 1.

Phase 2: At the delivery stage, assign the finished jobs in Phase 1 for delivery by
the vehicle as follows. Set τ = 0.

Step 1: If there is at least one job that has completed processing but has not been
delivered by time τ , then the vehicle carries as many completed jobs as possible
and departs at time τ , set τ = τ + 2t , and go to Step 1. Otherwise, reset τ to be
the earliest future time when a job is completed processing, let the vehicle wait
until time τ , and go to Step 1.

Example 4.5 (Application of Algorithm A4.5) Apply Algorithm A4.5 to the
instance given in Example 4.3 with vehicle capacity c = 2 and one-way
transportation time t = 2. Applying Phase 1 of the algorithm, the first time point to
consider is τ = 1 when job 1 arrives. At τ = 1, the algorithm runs the following
steps of Phase 1:

Step 1: Aτ = {1}, Bτ is empty, sτ = lτ = 1; Case (i) is satisfied; wait until time
1 + α(9 + 4) = 1 + 13α or when the next job arrives, whichever is earlier. This
means wait until time 4 when job 2 arrives. Set τ = 4. At τ = 4, the algorithm
runs the following steps of Phase 1:

Step 1: Aτ = {1, 2}, Bτ is empty, sτ = 2, lτ = 1; since |Aτ | ≥ 2, go to Step 2.
Step 2: Since Condition (2) is satisfied, start to process job 2 at time 4. Set τ =

4 + 5 = 9. At τ = 9, the algorithm runs the following steps of Phase 1:

154 4 Integrated Production and Outbound Distribution Scheduling: Online Problems

Step 1: Aτ = {1}, Bτ = {2}, sτ = lτ = 1; Case (i) is satisfied; wait until time
1 + α(9 + 4) = 1 + 13α or time 10 when the next job arrives, whichever is
earlier. Since 1 + 13α < 10, wait until time 1 + 13α < 10. Set τ = 1 + 13α. At
τ = 1 + 13α, the algorithm runs the following steps of Phase 1:

Step 1: Aτ = {1}, Bτ is empty, sτ = lτ = 1; Case (ii) is satisfied; start to process
job 1 at time 1 + 13α. Set τ = 10 + 13α. At τ = 10 + 13α, the algorithm runs
the following steps of Phase 1:

Step 1: Aτ = {3, 4}, Bτ = {1}, sτ = 4, lτ = 3; since |Aτ | ≥ 2, go to Step 2.
Step 2: Since Condition (1) is satisfied; start to process job 4 at time 10 + 13α. Set

τ = 11 + 13α. At τ = 11 + 13α, the algorithm runs the following steps of Phase
1:

Step 1: Aτ = {3}, Bτ = {1, 4}, sτ = lτ = 3; Case (ii) is satisfied; start to process
job 3 at time 11 + 13α. Set τ = 14 + 13α. No new jobs arrive after that. Stop.
Applying Phase 2 of the algorithm, the first time point to consider is τ = 9 when
job 2 is completed. Deliver job 2 at time 9. Set τ = 9 + 2t = 13. Wait until job
1 is completed processing at time τ = 10 + 13α. Deliver job 1 at this time. Set
τ = 10 + 13α + 2t = 14 + 13α. At this time, jobs 3 and 4 are both available.
Deliver them together at this time. The solution generated has the objective value
Dmax = 16 + 13α ≈ 24.03.

An optimal offline solution is to schedule the jobs in the sequence (1, 3, 2, 4)
without inserted idle time such that their completion times are C1 = 10, C3 =
13, C2 = 18, C4 = 19, and deliver jobs 1 and 3 together at time 13, and jobs 2 and
4 together at time 19. The optimal objective value is 21.

Theorem 4.2 For problem 1|online, rj |V (1, c), direct |1|Dmax, Algorithm A4.5
has a competitive ratio of

√
5 when c = 1 and has an asymptotic competitive ratio

of
√

5+1
2 when c ≥ 2.

Proof Ng and Lu (2012) show that for any instance I of problem 1|online, rj |
V (1, c), direct |1|Fmax with c = 1, the solution from this algorithm satisfies:

FH
max(I) ≤

√
5+1
2 F ∗

max(I), i.e., the algorithm has a competitive ratio of
√

5+1
2 . This

means that DH
max(I) + t ≤

√
5+1
2 (D∗

max(I) + t). Thus, DH
max(I) ≤

√
5+1
2 D∗

max(I) +√
5−1
2 t . Since t ≤ D∗

max(I), we have: DH
max(I) ≤ (

√
5)D∗

max(I). This establishes
the first half of the theorem.

Ng and Lu (2012) also show that for any instance I of problem 1|online, rj |
V (1, c), direct |1|Fmax with c ≥ 2, the solution from this algorithm satisfies:

FH
max(I) ≤

√
5+1
2 F ∗

max(I) + (2t)(2c − 1)/c, i.e., the algorithm has an asymptotic

competitive ratio of
√

5+1
2 . This means that DH

max(I) + t ≤
√

5+1
2 (D∗

max(I) + t) +
(2t)(2c − 1)/c. Thus,

DH
max(I) ≤

(√
5 + 1

2

)

D∗
max(I) + β,

4.3 Online Problems with Batch Delivery to a Single Customer 155

where β =
√

5−1
2 t + (2t)(2c − 1)/c is a fixed constant. This establishes the second

half of the theorem. ��
Theorem 4.2 does not show if Algorithm A4.5 has a constant competitive ratio for

problem 1|online, rj |V (1, c), direct |1|Dmax with c ≥ 2. It is not known whether
this algorithm has a constant competitive ratio for our problem with c ≥ 2.

However, as we show next, there is another algorithm that can be proven to have a
constant competitive ratio for the same problem with any value of c. This algorithm
and the competitive ratio analysis presented below are from Ng (2021).

Algorithm A4.6
Step 1: In the production stage, at any moment when the machine is available,

process any job that has arrived.
Step 2: Same as in Algorithm A4.4.
Step 3: Same as in Algorithm A4.4.

Example 4.6 (Application of Algorithm A4.6) Apply Algorithm A4.6 to the
instance given in Example 4.3 with vehicle capacity c = 2 and one-way
transportation time t = 2.

Step 1: A production schedule (1, 2, 3, 4) is generated with C1 = 10, C2 = 15, C3 =
18, C4 = 19.

Step 2: Keep the vehicle idle until time 2.
Step 3: At time τ = 10, the first job, which is job 1, completes processing and

is delivered. Reset τ = 10 + 2t = 14. At this time, there is no job available
for delivery. Reset τ to be 15, the time when the next job, job 2, completes
processing. At τ = 15, job 2 is delivered. Reset τ = 15 + 2t = 19. At τ = 19,
both jobs 3 and 4 complete processing and hence are delivered together. This
gives Dmax = 19 + 2 = 21, which happens to be the same as the optimal offline
objective value, as calculated in Example 4.5.

Theorem 4.3 For problem 1|online, rj |V (1, c), direct |1|Dmax with any value of
vehicle capacity c, Algorithm A4.6 has a competitive ratio of 2.5.

Proof Given any instance of the problem, let π be the solution generated by this
algorithm, and π∗ be the optimal solution for the offline version of the instance. We
denote the maximum completion time of the jobs and the maximum delivery time
of the jobs in π as Cmax(π) and Dmax(π), respectively. Similarly, we denote these
measures in π∗ as Cmax(π

∗) and Dmax(π
∗), respectively.

We observe that Step 1 of the algorithm generates a production schedule with the
minimum possible completion time of the last job, i.e., Cmax(π) ≤ Cmax(π

∗). We
can also observe that

Dmax(π
∗) ≥ Cmax(π

∗) + t ≥ Cmax(π) + t, (4.1)

Dmax(π
∗) ≥ 2t (�n/c� − 1) + t. (4.2)

156 4 Integrated Production and Outbound Distribution Scheduling: Online Problems

Suppose that in π there are h delivery batches with a departure time greater than
or equal to Cmax(π). Denote these batches as B1, . . . , Bh. Since all the jobs have
completed processing by Cmax(π), each of the batches B1, . . . , Bh−1 must contain
c jobs, and batch Bh may contain c or fewer jobs. Thus, h ≤ �n/c�.

We consider two cases about the relationship between Cmax(π) and t as follows.

Case 1 If Cmax(π) ≤ t , then all the delivery batches in π have a departure time
greater than or equal to Cmax(π), which means h = �n/c�, and

Dmax(π) = t + 2t (h − 1) + t = 2t (�n/c� − 1) + 2t. (4.3)

From (4.2) and (4.3), we have

Dmax(π) ≤ 2Dmax(π
∗). (4.4)

Case 2 If Cmax(π) > t , then from (4.1), we have

Dmax(π
∗) ≥ Cmax(π

∗) + t ≥ 2t,

which implies that

t ≤ Dmax(π
∗)/2. (4.5)

Since in solution π there is at most one delivery batch for which the vehicle
departs before time Cmax(π) and returns to the production facility after time
Cmax(π), we have

Dmax(π) ≤ Cmax(π) + 2t + 2t (h − 1) + t,

which, along with (4.1) and (4.2), implies

Dmax(π) ≤ 2Dmax(π
∗) + t,

which, along with (4.5), further implies

Dmax(π) ≤ 2.5Dmax(π
∗). (4.6)

The theorem then follows from (4.4) and (4.6). ��

4.3.2 Maximum Delivery Time and Transportation Cost
Problems

In this section, we consider two related problems 1|online, rj |V (∞, c),
direct |1|Dmax + T C and Pm|online, rj |V (∞, c), direct |1|Dmax + T C. They
involve a single machine or multiple parallel machines and a sufficient number

4.3 Online Problems with Batch Delivery to a Single Customer 157

of capacitated delivery vehicles, with the objective of minimizing the sum of the
maximum delivery time of the jobs and the total delivery cost.

We first briefly discuss their offline counterparts. The offline problem
1|rj |V (∞, c), direct |1|Dmax + T C can be solved easily as follows: Process the
jobs in nondecreasing order of their release times, and deliver them at time Cmax
using �n/c� full batches if n is an integer multiple of c, or using �n/c� full batches
and one partial batch if n is not an integer multiple of c. However, the offline
parallel-machine problem Pm|rj |V (∞, c), direct |1|Dmax + T C is much more
difficult to solve; it is strongly NP -hard, since a special case of the problem, the
classical machine scheduling problem without job delivery, Pm|rj |Cmax, is itself
strongly NP -hard (Garey & Johnson, 1979).

For the online problem 1|online, rj |V (∞, c), direct |1|Dmax + T C, Han et al.
(2015) show that no online algorithm can have a competitive ratio less than

max{
√

5+1
2 , 2 − 1

c
}, and give an online algorithm with a competitive ratio of 2. We

present a modified version of their algorithm below and give a simpler proof than
theirs for the competitive ratio result.

Algorithm A4.7
Step 1: In the production stage, consider the jobs in the order of their arrival and

start to process the next job as soon as the machine is available.
Step 2: In the delivery stage, at any time point τ = lf where l = 1, 2, . . ., if there

is no job being processed, then deliver all the jobs that have been completed but
have not been delivered; otherwise, do not deliver any job.

Theorem 4.4 For problem 1|online, rj |V (∞, c), direct |1|Dmax +T C, Algorithm
A4.7 has a competitive ratio of 2.

Proof Given any instance, let π be the solution generated by this algorithm, and π∗
be the optimal solution for the offline version of the instance. Clearly, the way the
arriving jobs are processed in this algorithm yields the shortest possible completion
time of all the jobs. Thus, Cmax(π) = Cmax(π

∗).
Let Lf be the departure time of the last delivery batch in π , for some positive

integer L. Clearly, Lf ≤ Cmax(π)+f . Thus Dmax(π) = Lf +t ≤ Cmax(π)+t+f .
Let x and y be the total number of full batches and the total number of partial batches
delivered in π , respectively. Thus, T C(π) = (x + y)f . From the algorithm, it can
be seen that there is at most one partial batch at each time point lf , for l = 1, . . . , L.
Thus, y ≤ L, and hence yf ≤ Cmax(π) + f .

Now, consider the optimal solution π∗. Clearly, Dmax(π
∗) ≥ Cmax(π

∗) + t , and
T C(π∗) ≥ (x + 1)f if y > 0 and T C(π∗) ≥ xf if y = 0.

If y = 0, then x ≥ 1. We have

Z(π)

Z(π∗)
= Dmax(π) + T C(π)

Dmax(π∗) + T C(π∗)

≤ Cmax(π) + t + f + xf

Cmax(π∗) + t + xf

158 4 Integrated Production and Outbound Distribution Scheduling: Online Problems

≤ 1 + f

Cmax(π∗) + t + xf

≤ 2.

If y ≥ 1, we have

Z(π)

Z(π∗)
= Dmax(π) + T C(π)

Dmax(π∗) + T C(π∗)

≤ Cmax(π) + t + f + (x + y)f

Cmax(π∗) + t + (x + 1)f

≤ 1 + yf

Cmax(π∗) + t + (x + 1)f

≤ 1 + Cmax(π) + f

Cmax(π∗) + t + (x + 1)f

≤ 2.

��
For the online problem Pm|online, rj |V (∞, c), direct |1|Dmax +T C, Han et al.

(2015) also show that no online algorithm can have a competitive ratio less than

max{
√

5+1
2 , 2 − 1

c
}, and give an online algorithm with a competitive ratio of 2. We

present their algorithm, along with their competitive analysis of the algorithm.

Algorithm A4.8
Step 1: In the production stage, process the arriving jobs following the online

longest processing time (LPT) rule: whenever a machine becomes available, start
to process the available job with the longest processing time.

Step 2: In the delivery stage, at any time point τ = lf where l = 1, 2, . . ., if there is
no job being processed on any machine, then deliver all the jobs that have been
completed but have not been delivered using a minimum number of vehicles;
otherwise, do not deliver any job.

Example 4.7 (Application of Algorithm A4.8) Apply Algorithm A4.8 to the follow-
ing instance where m = 2, f = 5, c = 2, t = 2, and there are five jobs that arrive
over time with their parameters given in the following table.

j 1 2 3 4 5

rj 2 4 4 5 10

pj 8 3 5 20 4

Denote the two machines as M1 and M2. Step 1 schedules jobs 1, 5, 2 on M1 in
the time intervals [2, 10], [10, 14], and [14, 17], respectively, and jobs 3, 4 on M2
in the time intervals [4, 9], and [9, 29], respectively. This gives Cmax = 29. Step

4.3 Online Problems with Batch Delivery to a Single Customer 159

2 checks time points 5l for l = 1, 2, At time τ = 5l for l = 1, . . . , 5, since
there is always at least one job being processed, no job delivery takes place. At time
τ = 30, no job is being processed on any machine. Thus, at this time, all the jobs
are delivered by a total of 3 vehicles. This means that Dmax = 30 + 2 = 32 and the
total transportation cost is T C = 3f = 15. Thus, the objective value of the solution
generated is 32 + 15 = 47.

It can be easily verified that the following solution is optimal: Schedule jobs
1, 2, 3 and 5 on M1 in the time intervals [2, 10], [10, 13], [13, 18], and [18, 22],
respectively, and job 4 on M2 in the time interval [5, 25]; deliver all the jobs at time
25 using 3 vehicles. The optimal objective value is 25 + 2 + 15 = 42.

We note that for the classical online problem without the delivery part, i.e.,
problem Pm|online, rj |Cmax, Chen and Vestjens (1997) show that the online LPT
rule has a competitive ratio of 3/2. This result is used by Han et al. (2015) in their
competitive analysis of Algorithm A4.8, which we now discuss.

Theorem 4.5 For problem Pm|online, rj |V (∞, c), direct |1|Dmax + T C, Algo-
rithm A4.8 has a competitive ratio of 2.

Proof Given any instance, let π be the solution generated by this algorithm, and
π∗ be an optimal solution for the offline version of the instance. In π , let Lf be
the departure time of the last delivery batch in π , for some positive integer L, and
Hf be the latest departure time before Lf at which no job is being processed. If
there is no such departure time, then let H = 0. From the algorithm, it can be seen
that Lf ≤ Cmax(π) + f , and all the jobs processed after time Hf arrive after this
time and are all delivered at the departure time Lf . Thus, if we only consider the
jobs that arrive after Hf , by the result from Chen and Vestjens (1997), we obtain the
following result: Cmax(π)−Hf ≤ 3

2 (Cmax(π
∗)−Hf). This means that Cmax(π) ≤

3
2Cmax(π

∗) − Hf
2 . Thus,

Dmax(π) = Lf + t ≤ Cmax(π) + t + f ≤ 3

2
Cmax(π

∗) − Hf

2
+ t + f. (4.7)

In π , we further let x and y denote the total number of full batches and the
total number of partial batches delivered at time Hf or earlier, and let u denote the
total number of batches delivered at the departure time Lf . Clearly, y ≤ H , and
among the u batches that depart at Lf , at most one of them is a partial batch. Thus,
T C(π) = (x + y + u)f .

Based on the above definitions, we can see that in π∗, Cmax(π
∗) ≥ HF and

T C(π∗) ≥ (x + u)f . By (4.7), we have

Z(π)

Z(π∗)
= Dmax(π) + T C(π)

Dmax(π∗) + T C(π∗)

≤
3
2Cmax(π

∗) − Hf
2 + f + t + (x + y + u)f

Cmax(π∗) + t + (x + u)f

160 4 Integrated Production and Outbound Distribution Scheduling: Online Problems

≤ 1 +
1
2Cmax(π

∗) − Hf
2 + f + yf

Cmax(π∗) + t + (x + u)f

≤ 1 +
1
2Cmax(π

∗) + Hf
2 + f

Cmax(π∗) + t + (x + u)f

≤ 1 + Cmax(π
∗) + f

Cmax(π∗) + t + (x + u)f
≤ 2.

��
In addition to the two problems discussed above, Han et al. (2015)

also consider a number of other online problems with a closely related
objective function Fmax + T C, where Fmax = Dmax + t , including problems
1|online, rj |V (1, c), direct |1|Fmax + T C and Pm|online, rj |V (1, c), direct |1|
Fmax + T C where there is a single delivery vehicle only. They propose
online algorithms for these problems and conduct competitive analyses. As
discussed in Sect. 4.3.1.1, Fmax is the time when the vehicle returns to the
plant after delivering the last batch of jobs. By a similar argument to the
one in Sect. 4.3.1.3, the online algorithm given by Han et al. (2015) for
1|online, rj |V (1, c), direct |1|Fmax + T C (resp., Pm|online, rj |V (1, c), direct |1|
Fmax + T C) can be applied to 1|online, rj |V (1, c), direct |1|Dmax + T C (resp.,
Pm|online, rj |V (1, c), direct |1|Dmax + T C) and generates exactly the same solu-
tion. However, the competitive ratio result for 1|online, rj |V (1, c), direct |1|Fmax+
T C (resp., Pm|online, rj |V (1, c), direct |1|Fmax + T C) is not the same for
1|online, rj |V (1, c), direct |1|Dmax +T C (resp., Pm|online, rj |V (1, c), direct |1|
Dmax + T C) because of the difference in the objective value.

4.3.3 Total Delivery Time and Transportation Cost Problems

In this section, we consider two related problems 1|online, rj , pmtn|V (∞, c),
direct |1|∑Dj + T C and 1|online, rj |V (∞, c), direct |1|∑Dj + T C. Both
involve a single machine and the use of batch delivery to a single customer.
There are a sufficient number of capacitated delivery vehicles with the objective
of minimizing the sum of the total delivery time of the jobs and the total
delivery cost. The first problem allows preemption when processing jobs on
the machine, whereas the second problem does not. We first briefly discuss
some closely related offline and online problems in Sect. 4.3.3.1 and then
describe an algorithm for 1|online, rj , pmtn|V (∞, c), direct |1|∑Dj + T C

and 1|online, rj |V (∞, c), direct |1|∑Dj + T C, respectively, in Sects. 4.3.3.2
and 4.3.3.3.

4.3 Online Problems with Batch Delivery to a Single Customer 161

4.3.3.1 Closely Related Problems

We first note that the offline problems without delivery corresponding to these
online problems are the classical machine scheduling problems 1|rj , pmtn|∑Cj

and 1|rj |∑Cj , respectively. The latter problem is strongly NP -hard (Lenstra et al.,
1977), whereas the earlier problem is solved by applying the SRPT rule defined in
Sect. 4.3.1.1 (Schrage, 1968).

Clearly, the offline problem with delivery 1|rj |V (∞, c), direct |1|∑Dj +
T C is more general than that without delivery 1|rj |∑Cj and hence is also
strongly NP -hard. However, the offline problem with delivery and preemption
1|rj , pmtn|V (∞, c), direct |1|∑Dj + T C can be solved in polynomial time. It
can be seen that for this problem, the SRPT rule is optimal for processing the jobs.
Given the processing schedule, a dynamic programming algorithm can be designed
to find a delivery schedule to minimize the objective function. Averbakh (2010)
provides such an algorithm.

As can be seen, the SRPT rule can be implemented online and hence is
optimal for the online problem 1|online, rj , pmtn|∑Cj . For the nonpreemptive
online problem, 1|online, rj |∑Cj , Hoogeveen and Vestjens (1996) show that any
deterministic online algorithm has a competitive ratio of at least 2. Lu et al. (2003)
propose a so-called shifted shortest processing time (SSPT) rule for this problem
and show that it achieves a competitive ratio of 2. The SSPT rule can be formally
stated as follows:

SSPT Rule Whenever a job j arrives, shift its arrival time rj to a later time r ′
j ,

where r ′
j is an arbitrary number in the interval [max{rj , pj }, rj +pj]. At each time

instant τ when the machine becomes available, process the job with the shortest
processing time among all the jobs that are available (based on r ′

j), with ties broken
by giving priority to the job with the smallest index.

Example 4.8 (Application of the SSPT Rule) Apply the SSPT rule to the following
instance where there are four jobs that arrive over time with their parameters given
in the table below.

j 1 2 3 4

rj 2 4 6 8

pj 5 3 1 6

At time 2, job 1 arrives and its arrival time is shifted to 6 (∈ [5, 7]). At time 4, job
2 arrives, but its arrival time remains as 4 (∈ [4, 7]). Thus, job 2 is processed in time
interval [4, 7]. At time 6, job 3 arrives and its arrival time remains as 6 (∈ [6, 7]).
At time 7 when the machine becomes available next, there are two available jobs
{1, 3}. Job 3 is picked and processed in interval [7, 8]. At time 8, job 4 arrives and
its arrival time is shifted to 14 (∈ [8, 14]). At time 8, job 1 is picked and processed

162 4 Integrated Production and Outbound Distribution Scheduling: Online Problems

in interval [8, 13]. At time 13, no job is available. At time 14, job 4 is picked and
processed in interval [14, 20].

To analyze the competitive ratio of the SSPT rule for problem 1|online, rj |∑Cj ,
Lu et al. (2003) show some preliminary results. Since these results are also used
later in Sect. 4.3.3.3, we describe them here, but without providing proofs.

For any given instance I of the problem 1|online, rj |∑Cj , let σ be a solution
produced by the SSPT rule. We define another instance of the problem I (σ) as
follows.

Definition 4.1 Given an instance I and a solution σ generated by the SSPT rule, an
instance I (σ) is defined as consisting of the same n jobs, where each job j has the
same processing time pj as in I , but its ready time is shifted to r̄j = min{Sj , 2rj +
pj }, where Sj is the starting time of job j in solution σ .

Lemma 4.2 For any instance I of 1|online, rj |∑Cj , the corresponding solution
σ for instance I produced by the SSPT rule, and the corresponding instance I (σ)

that can be constructed based on I and σ , as described above, we have:

(i) Z∗(I (σ)) ≤ 2Z∗(I), where Z∗(I (σ)) and Z∗(I) are the optimal objective val-
ues of the instance I (σ) and I of the offline problem 1|rj |∑Cj , respectively.

(ii) The solution that can be generated by applying the SRPT rule to the instance
I (σ) is the same as solution σ .

Based on the results in this lemma, Lu et al. (2003) prove the following result.

Lemma 4.3 For problem 1|online, rj |∑Cj , the SSPT rule has a competitive ratio
of 2.

Proof Since SSPT does not allow preemption, there is no job preemption in solution
σ . Part (ii) of Lemma 4.2 means that although the SRPT rule allows preemption,
when applying the SRPT rule to the instance I (σ), no job is preempted. As
discussed earlier, the SRPT rule is optimal for both the offline and online problems
with preemption: 1|rj , pmtn|∑Cj and 1|online, rj , pmtn|∑Cj . Thus, from part
(ii) of Lemma 4.2, we can conclude that solution σ is optimal for instance I (σ) of
both the offline and online problems with preemption. Since there is no preemption
in solution σ , this solution is also optimal for instance I (σ) of both the offline
and online problems without preemption. Thus, the objective value of σ is equal
to Z∗(I (σ)). This, together with part (i) of Lemma 4.2, implies that for problem
1|online, rj |∑Cj , the SSPT rule has a competitive ratio of 2. ��

4.3.3.2 Algorithm for the Preemptive Problem

We consider problem 1|online, rj , pmtn|V (∞, c), direct |1|∑Dj + T C in this
section. Averbakh (2010) gives an online algorithm for this same problem but with
the objective of minimizing the sum of the total flow time of the jobs and the total
transportation cost. The flow time of a job j is defined as Dj − rj . Averbakh (2010)

4.3 Online Problems with Batch Delivery to a Single Customer 163

shows that his algorithm has a competitive ratio of 2 and that no online algorithm
can achieve a better competitive ratio. His algorithm as well as the competitive ratio
analysis given in his paper can be directly applied to the problem considered here.
However, the instance he uses to show that no algorithm can have a competitive
ratio lower than 2 cannot be applied to our problem.

The idea of Averbakh’s algorithm is the following. First, it can be shown that
the SRPT rule given in Sect. 4.3.1.1 is optimal for processing the jobs. Thus, the
problem is reduced to making delivery batching decisions. If there are already c

jobs that have completed processing but have not been delivered, then they need to
be delivered immediately as a full batch. But if there are fewer than c jobs available
for delivery, there are two options: (i) wait and do not deliver any job, and (ii) deliver
all the jobs together in a batch immediately. The algorithm uses a concept called
the total delay time of finished but undelivered jobs to determine which of the two
options to use. At any given time point τ , the delay time of a finished but undelivered
job j is equal to τ −Cj . If the total delay time is equal to the delivery cost of a batch
f , the algorithm chooses option (ii); otherwise, it chooses option (i).

We now describe Averbakh’s algorithm below.

Algorithm A4.9
Step 1: At the production stage, process the jobs by the SRPT rule given in

Sect. 4.3.1.1.
Step 2: At the delivery stage, at any time point, if at least one of the following

conditions is satisfied (a) there are c finished but undelivered jobs, (b) the total
delay time of the finished but undelivered jobs is equal to f , then deliver all the
jobs together in a batch.

Before we analyze the performance of this algorithm, we define some terms and
notations.

Definition 4.2 A delivery batch is called saturated if it is full, i.e., it contains c

jobs; otherwise, it is called unsaturated.

Given the solution σ generated by Algorithm A4.8, the last delivery batch in σ

is always considered unsaturated even if it contains c jobs. Let k ≥ 1 be the total
number of unsaturated batches in σ , and let τ1 < · · · < τk be the times when the
k unsaturated batches depart from the processing plant. Let τ0 = 0. Define k time
intervals Ω1 = [τ0, τ1], and Ωi = (τi−1, τi], for i = 2, . . . , k. Let Z(σ) be the
objective value of σ .

Theorem 4.6 For problem 1|online, rj , pmtn|V (∞, c), direct |1|∑Dj + T C,
the competitive ratio of Algorithm A4.9 is 2.

Proof Let σ ∗ be an optimal solution and Z(σ ∗) the optimal objective value for the
offline version of the problem, i.e., 1|rj , pmtn|V (∞, c), direct |1|∑Dj + T C.
For this problem, as discussed in Sect. 4.3.1.1, the SRPT schedule is optimal for
processing the jobs. Thus, we can assume that the job processing schedule in σ ∗ is
the same as that in σ .

164 4 Integrated Production and Outbound Distribution Scheduling: Online Problems

We first focus on the solution σ generated by the algorithm. Consider any time
interval Ωi , for i = 1, . . . , k. Let qi ≥ 0 be the number of saturated batches that
depart during Ωi in σ . Let τ̃i denote the time when the last saturated batch departs,
where τ̃i = τi−1 if qi = 0. Thus, there are a total of qi +1 batches that depart during
Ωi . Let φ(σ,Ωi) be the total contribution of the jobs that complete processing in
interval Ωi under solution σ , defined as the sum of the total delay time of the jobs
that complete processing in interval Ωi and the total delivery cost of the batches
that depart during interval Ωi . From Step 2 of the algorithm, the total delay time of
the jobs in each batch that departs during Ωi is no more than f . Thus, φ(σ,Ωi) ≤
2f (qi + 1).

Now, consider the optimal solution σ ∗ for the offline problem. Consider the same
time interval Ωi . Since qic jobs are completed during the interval (τi−1, τ̃i], in σ ∗,
there must be at least qi delivery batches that depart during this interval. If in σ ∗
there is no batch that departs during the interval (τ̃i , τi], then the total delay time of
the jobs completed in this interval is at least f . Therefore, the total contribution of
the jobs completed in interval Ωi in σ ∗, denoted as φ(σ ∗,Ωi), is at least f (qi + 1).

Let Cj be the completion time of job j in the SRPT schedule and t be the delivery
time from the processing plant to the customer location. The delivery time Dj of job
j is thus equal to the sum of Cj , its delay time, and t . Based on this, we have

Z(σ) =
n∑

j=1

(Cj + t) +
k∑

i=1

φ(σ,Ωi) ≤
n∑

j=1

(Cj + t) + 2f
k∑

i=1

(qi + 1) (4.8)

Z(σ ∗) =
n∑

j=1

(Cj + t) +
k∑

i=1

φ(σ ∗,Ωi) ≥
n∑

j=1

(Cj + t) + f

k∑

i=1

(qi + 1). (4.9)

From (4.8) and (4.9), we can see that Z(σ) ≤ 2Z(σ ∗). This shows that the
competitive ratio of the algorithm is bounded by 2. ��

It is apparently not known whether Algorithm A4.9 is optimal (i.e., best possible)
for problem 1|online, rj , pmtn|V (∞, c), direct |1|∑Dj + T C.

4.3.3.3 Algorithm for the Nonpreemptive Problem

Now, we consider problem 1|online, rj |V (∞, c), direct |1|∑Dj+T C. Feng et al.
(2016) give an online algorithm for this problem with a competitive ratio of 3. Their
algorithm combines the idea of Lu et al. (2003) for scheduling job processing and
the idea of Averbakh (2010) for scheduling job delivery. Their algorithm can be
described as follows.

Algorithm A4.10
Step 1: At the production stage, process the jobs by the SSPT rule given in

Sect. 4.3.3.1.

4.3 Online Problems with Batch Delivery to a Single Customer 165

Step 2: At the delivery stage, at any time point, if at least one of the following
conditions is satisfied (a) there are c finished but undelivered jobs, (b) the total
delay time of the finished but undelivered jobs is equal to 2f , then deliver all the
jobs together in a batch.

Example 4.9 (Application of Algorithm A4.10) Apply this algorithm to the instance
given in Example 4.8 with the additional parameters: t = 0, c = 2, f = 3. Given
the SSPT schedule shown in Example 4.8 for this instance, Step 2 of the algorithm
generates the following delivery schedule: at time 8, condition (a) is satisfied, and
hence, jobs 2 and 3 are delivered together at time 8; at time 19, the total delay time of
job 1 becomes 2f = 6 (i.e., condition (b) is satisfied), and hence, job 1 is delivered;
at time 26, the total delay time of job 4 becomes 2f , and hence, job 4 is delivered.
In this solution, D2 = D3 = 8, D1 = 19, and D4 = 26, and there are 3 delivery
batches. The objective value of this solution is 8 + 8 + 19 + 26 + 3f = 70.

It can be verified that the following solution is optimal for the offline version
of the instance: schedule the jobs on the machine in the order of 1, 3, 2, 4 without
inserted idle time, which yields D1 = 7,D3 = 8,D2 = 11,D4 = 17, and deliver
jobs 1 and 3 at time 8, deliver job 2 at time 11, and deliver job 4 at time 17. This
solution has an objective value of 8 + 8 + 11 + 17 + 3f = 53.

Before we analyze the performance of this algorithm, we introduce some new
notation. For any given instance I of the problem, let σ denote the solution generated
by Algorithm A4.10, and F(I) be the objective value of this solution. Let σp and
σd denote the production schedule and delivery schedule of solution σ , respectively.
Let σ ∗ be the optimal offline solution for instance I , and σ ∗

p and σ ∗
d the production

schedule and delivery schedule of σ ∗, respectively. Let F ∗(I) be the objective value
of σ ∗, and T Tσ ∗ and T Cσ ∗ be the total delivery time of the jobs and the total delivery
cost in this solution, respectively. Thus, F ∗(I) = T Tσ ∗ + T Cσ ∗ .

Given instance I and solution σ , we construct a corresponding instance I (σ)

in exactly the same way as in Definition 4.1 given in Sect. 4.3.3.1. For the
constructed instance I (σ), we construct a solution σ̄ that allows preemption during
job processing, as follows: (1) apply the SRPT rule in the production stage, and
let σ̄p denote the production schedule generated; (2) follow the same configuration
as in σ ∗

d to schedule the delivery, and denote the delivery schedule generated as
σ̄d . By Lemma 4.2(ii), production schedule σ̄p is the same as σp and hence does
not involve job preemption. Suppose that in σ ∗

d for instance I there are s delivery
batches and their departure times are at the completion times of the i1st, . . ., is th
completed jobs, respectively. Then in σ̄d for instance I (σ), there are also s delivery
batches with departure times at the completion times of the i1st, . . ., is th completed
jobs, respectively. Let F̄ be the objective value of solution σ̄ for instance I (σ), and
T Tσ̄ and T Cσ̄ be the total delivery time of the jobs and the total delivery cost in this
solution, respectively. Thus, F̄ = T Tσ̄ + T Cσ̄ .

Lemma 4.4 F̄ + T Cσ̄ ≤ 2F ∗(I).

Proof It is clear that T Cσ̄ = T Cσ ∗ . Thus, we can prove this lemma by showing that
T Tσ̄ ≤ 2T Tσ ∗ . To this end, we construct another solution π for instance I based on

166 4 Integrated Production and Outbound Distribution Scheduling: Online Problems

σ ∗ as follows: (1) let the starting time of each job j be S′
j = 2C∗

j − pj , where C∗
j

is the completion time of job j in schedule σ ∗
p ; (2) use the same delivery batches

as in σ ∗
d (i.e., use the same number of batches and deliver exactly the same jobs in

each batch), but with the departure time of each batch determined by the completion
time of the last job in the batch. It can easily be shown that π is a feasible solution
to instance I (σ) and that the departure time of each batch in π is twice that of the
same batch in σ ∗. Thus, the total delivery time of the jobs in π , T Tπ = 2T Tσ ∗ .

Since the production schedule in σ̄ is generated by the SRPT rule, it contains
the most jobs that have completed processing by any time t for the instance
I (σ), compared to any other schedule for the same instance (Pruhs et al., 2004).
Furthermore, the delivery configuration in σ̄ is the same as that in σ ∗ and π , which
implies that for instance I (σ), the departure time of the ith batch in σ̄ is no later
than that of the ith batch in π , for i = 1, . . . , s. Hence, T Tσ̄ ≤ T Tπ = 2T Tσ ∗ .
This, along with the result that T Cσ̄ = T Cσ ∗ , implies that F̄ +T Cσ̄ ≤ 2F ∗(I). ��

We are now ready to evaluate the performance of Algorithm A4.10. The
following result is proved by Feng et al. (2016).

Theorem 4.7 For problem 1|online, rj |V (∞, c), direct |1|∑Dj + T C, Algo-
rithm A4.9 is 3-competitive.

Proof We apply some terms and notations used in Sect. 4.3.3.2. Given any instance
I of problem 1|online, rj |V (∞, c), direct |1|∑Dj + T C, and the corresponding
solution σ generated by Algorithm A4.10, we define the concept of saturated and
unsaturated batches as in Definition 4.2 (see Sect. 4.3.3.2), as well as the following
terms and notations, as before. Let k ≥ 1 be the total number of unsaturated batches
in σ . The last batch in σ is always treated as unsaturated even if it contains c jobs.
Let the departure times of these batches in σ be τ1, . . . , τk , respectively. Let the
number of jobs in these batches in σ be v1, . . . , vk , respectively. Create k time
intervals, Ω1 = [τ0, τ1], where τ0 = 0, and Ωi = (τi−1, τi], for i = 2, . . . , k.
We say a job j is in Ωi if its completion time Cj is in this interval. Let qi ≥ 0 be
the number of saturated batches that depart during interval Ωi in solution σ . Define
the delay time of a job as in Sect. 4.3.3.2. Let g(Ωi) be the total delay time of the
jobs that complete processing in interval Ωi in solution σ .

In solution σ , for each i = 1, . . . , k, there are a total of qi +1 delivery batches—
qi saturated and 1 unsaturated—that depart during each interval Ωi . Thus, T Cσ =∑k

i=1(qi + 1)f . By the algorithm, the total delay time of the jobs in each batch is
no more than 2f . Hence, g(Ωi) ≤ 2f (qi + 1) for each interval Ωi . Therefore, we
have

F(I) = T Tσ + T Cσ (4.10)

=
k∑

i=1

⎛

⎝
∑

j∈Ωi

Cj + g(Ωi)

⎞

⎠+
k∑

i=1

(qi + 1)f

4.3 Online Problems with Batch Delivery to a Single Customer 167

=
k∑

i=1

∑

j∈Ωi

Cj +
k∑

i=1

g(Ωi) +
k∑

i=1

(qi + 1)f

≤
k∑

i=1

∑

j∈Ωi

Cj + 3
k∑

i=1

(qi + 1)f. (4.11)

Now, consider solution σ̄ , which is constructed for instance I (σ) in the paragraph
before Lemma 4.2. As discussed there, the production schedule in σ̄ (i.e., σ̄p) is
the same as the production schedule in σ (i.e., σp) and hence does not involve
job preemption. Thus, σ̄ is also a feasible solution to instance I of problem
1|online, rj |V (∞, c), direct |1|∑Dj + T C. For each job j , let C̄j and D̄j be
the completion time and delivery time of j in σ̄ . Thus, C̄j = Cj . Let T T i

σ̄ and T Ci
σ̄

denote the total delivery time and total delivery cost of the jobs in σ̄ that complete
processing in interval Ωi and have a departure time also in this interval.

Consider interval Ωi . Since qic + vi jobs complete processing in this interval,
there are at least qi delivery batches made in this interval in solution σ̄ . We consider
two cases as follows.
Case 1: There are at least qi + 1 delivery batches made in Ωi in solution σ̄ . In this
case, clearly, T T i

σ̄ ≥ ∑
j∈Ωi

C̄j = ∑
j∈Ωi

Cj , and T Ci
σ̄ ≥ (qi + 1)f .

Case 2: There are exactly qi batches delivered in Ωi in solution σ̄ . In this case, there
must be less than (qi + 1)c jobs that complete processing in Ωi in σ̄p. From the fact
that σ̄p = σp, we conclude that in σ the last batch that departs in Ωi , which has a
departure time τi , contains less than c jobs. Thus, by Algorithm A4.9, in solution
σ , at time τi , the total delay of the jobs in the batch that departs at time τi is equal
to 2f . Clearly, in solution σ̄ , the qi delivery batches made in interval Ωi contain a
total of no more than qic jobs. This means that all the jobs contained in the batch
that departs at τi in solution σ are delivered in batches that depart after time τi in
solution σ̄ . Thus, the total delay time of these jobs in solution σ̄ is greater than or
equal to that in solution σ (which is 2f). This means that T T i

σ̄ ≥ ∑
j∈Ωi

C̄j +2f =
∑

j∈Ωi
Cj + 2f , and T Ci

σ̄ ≥ qif .
From the above two cases, we have, for i = 1, . . . , k,

T T i
σ̄ + 2T Ci

σ̄ ≥
∑

j∈Ωi

Cj + 2(qi + 1)f.

This, along with (4.11), gives

F(I) ≤
k∑

i=1

∑

j∈Ωi

Cj + 3
k∑

i=1

(qi + 1)f <
3

2

k∑

i=1

⎛

⎝
∑

j∈Ωi

Cj + 2(qi + 1)f

⎞

⎠

≤ 3

2

k∑

i=1

(T T i
σ̄ + 2T Ci

σ̄) = 3

2
(F̄ + T Cσ̄). (4.12)

From (4.12) and Lemma 4.4, we have F(I) ≤ 3F ∗(I). ��

168 4 Integrated Production and Outbound Distribution Scheduling: Online Problems

Apparently, it is not known whether there are online algorithms with a competi-
tive ratio less than 3 for problem 1|online, rj |V (∞, c), direct |1|∑Dj + T C.

4.4 Online Problems with Batch Delivery to Multiple
Customers

Online IPODS problems with multiple customers are considerably more challenging
than those with a single customer. There are very few results in the existing literature
on online IPODS problems with multiple customers. We have derived some new
results for two problems with the objective function of Dmax +T C, which are given
in Sect. 4.4.1. We also present results from the literature on another two problems
with the objective function of

∑
Dj + T C in Sect. 4.4.2. Following the notation

defined in Sect. 3.5.1, in all the problems considered in this section, the set of
customers is denoted as K = {1, . . . , k}, where k ≥ 1 is the number of customers,
the set of jobs from customer i ∈ K is denoted as Ni = {(i, 1), . . . , (i, ni)}, where
(i, j) is the j th job from customer i, and ni is the number of jobs from customer i,
which is not known in advance in an online setting. The processing time of job (i, j)

is denoted as pij , and the transportation time and cost from the plant to customer
i ∈ K are denoted as ti and fi , respectively.

4.4.1 Maximum Delivery Time and Transportation Cost
Problems

We consider two related problems in this section: 1|online, rj , pmtn|V (∞, c),
direct |k|Dmax + T C and 1|online, rj |V (∞, c), direct |k|Dmax + T C. The corre-
sponding offline problem without preemption 1|rj |V (∞, c), direct |k|Dmax + T C

is strongly NP -hard because a special case of this problem, where there are
n customers each having one job and the transportation costs fi are all 0, is
equivalent to problem 1|rj |V (∞, 1), iid|n|Dmax, which is shown to be strongly
NP -hard in Sect. 3.3.1. However, the corresponding offline problem with pre-
emption 1|rj , pmtn|V (∞, c), direct |k|Dmax + T C can be solved in polynomial
time by the following simple procedures: (1) process the jobs using the longest
transportation time (LTT) rule, as described below, and (2) deliver all the jobs from
customer i ∈ K at the completion time of the last job from customer i.

LTT Rule At each time instant τ whenever a new job arrives, process the job with
the longest transportation time among all the jobs that have arrived but have not been
completed, including the jobs that have been partially processed, with ties broken
by giving priority to the job with the smallest customer index among the jobs from
different customers, and to the job with the smallest job index among the jobs from
the same customer.

4.4 Online Problems with Batch Delivery to Multiple Customers 169

The optimality of the LTT rule can be proved by a simple job exchange argument.
Clearly, the LTT rule can be implemented in an online fashion.

We first propose an online algorithm for problem 1|rj , pmtn|V (∞, c), direct |k|
Dmax + T C. The algorithm uses the LTT rule to process the jobs and allows
shipments of jobs to depart only at some pre-specified time points when a condition
described below is satisfied.

Algorithm A4.11
Step 1: At the production stage, process the arriving jobs by the LTT rule, as

described above.
Step 2: At the delivery stage, for each i ∈ K , at each time point τ il = l(

√
kfi),

for l = 1, 2, . . ., if all the jobs from customer i that arrived before this time
have completed processing, then deliver them all to customer i using a minimum
number of vehicles. Otherwise, do not deliver any jobs from customer i.

Example 4.10 (Application of Algorithm A4.11) We apply Algorithm A4.11 to the
instance with five jobs that arrive over time with their parameters shown in the table
below. The vehicle capacity is c = 2. It is also known in advance that there are 2
customers (i.e., k = 2) with t1 = f1 = 5 and t2 = f2 = 10.

Arrival index 1 2 3 4 5

From customer i 1 2 1 1 2

Job index (i, j) (1,1) (2, 1) (1, 2) (1, 3) (2, 2)

rij 2 4 10 12 15

pij 4 2 6 2 3

Step 1 creates the following schedule for processing the jobs. Job (1,1) is started
at time 2 but preempted at time 4 when job (2, 1) arrives because the latter has a
longer transportation time. Job (2, 1) is completed at time 6. Job 1 is then resumed
at time 6 and completed at time 8. No job is processed from time 8 to 10. Job 3
is started at time 10 but is preempted at time 15 by job (2, 2) because the latter
has a longer transportation time. Job (2, 2) is completed at time 18. Job 3 resumes
at time 18 and is completed at time 19. Finally, job 4 is started at time 19 and
completed at time 21. In this schedule, the job completion times, in increasing order,
are C21 = 6, C11 = 8, C22 = 18, C12 = 19, C13 = 21.

Step 2 checks the jobs from customer 1 at time points τ 1
l = 5l

√
2, for l =

1, 2, . . ., and checks the jobs from customer 2 at time points τ 2
l = 10l

√
2, for l =

1, 2, At τ 1
1 and τ 1

2 , not all jobs from customer 1 that have arrived have completed
processing. Hence, there is no delivery to customer 1 at these time points. At time τ 1

3 ,
all jobs from customer 1 that have arrived have been completed. Thus, all the jobs
(1, 1), (1, 2), (1, 3) are delivered at time τ 1

3 = 15
√

2 using two delivery batches.
For jobs from customer 2, at time τ 2

1 , the only job from customer 2 that has arrived,
i.e., job (2,1), has been completed and hence is delivered. At time τ 2

2 , the other job
from customer 2, i.e., job (2,2), has been completed and hence is delivered. This

170 4 Integrated Production and Outbound Distribution Scheduling: Online Problems

solution gives Dmax = τ 2
2 + 10 = 20

√
2 + 10 and the total transportation cost

T C = 2f1 + 2f2 = 30. Thus, the objective value of this solution is 20
√

2 + 40.
For the offline version of this instance, as discussed above, the job processing

schedule generated by the LTT rule is optimal. Given this schedule, an optimal
delivery schedule is as follows: deliver all the jobs from customer 1 at time 21,
when all of them have completed processing, and deliver all the jobs from customer
2 at time 18. This gives the optimal objective value 28 + 2f1 + f2 = 48.

We now evaluate the performance of Algorithm A4.11.

Theorem 4.8 For problem 1|online, rj , pmtn|V (∞, c), direct |k|Dmax + T C,
Algorithm A4.11 is (

√
k + 1)-competitive.

Proof For any given instance of the problem, let π be the solution generated by
this algorithm. Let Ci

max, Dmax(π), and T C(π) be the completion time of the last
job from customer i, the maximum delivery time, and the total transportation cost
in solution π , respectively. Similarly, let D∗

max and T C∗ be the maximum delivery
time and the total transportation cost in an optimal solution, respectively. Since LTT
gives an optimal production schedule for the problem, we can assume without loss
of generality that in an optimal solution, the completion time of the last job from
customer i is the same as that in π , i.e., Ci

max.
Let τ ihi be the departure time of the last shipment for customer i in solution π ,

for some integer hi ≥ 1. From the algorithm, τ ihi−1 ≤ Ci
max ≤ τ ihi

. Thus, Ci
max ≥

τ ihi
− √

kfi , and we have

Dmax(π) = max
i∈K {τ ihi + ti} ≤ max

i∈K {Ci
max + √

kfi + ti}, (4.13)

D∗
max = max

i∈K {Ci
max + ti}. (4.14)

Clearly, T C∗ ≥ maxi∈K {fi}. Thus, the above relations (4.13) and (4.14) imply that

Dmax(π) ≤ D∗
max + √

kT C∗. (4.15)

Now, let xi and yi be the number of full batches and the number of partial batches
delivered to customer i in solution π , respectively. Thus,

T C(π) =
∑

i∈K
(xi + yi)fi . (4.16)

Clearly, there is at most one partial batch at each departure time. Thus yi ≤ hi . The
total number of batches delivered to customer i in an optimal solution is at least
xi + δi , where δi = 0 if yi = 0 and δi = 1 if yi ≥ 1. Thus,

T C∗ ≥
∑

i∈K
(xi + δi)fi . (4.17)

4.4 Online Problems with Batch Delivery to Multiple Customers 171

Furthermore, we have yi − δi ≤ hi − 1, which implies that

∑

i∈K
(yi − δi)fi ≤

∑

i∈K
(hi − 1)fi = 1√

k

∑

i∈K
τ ihi−1 ≤ 1√

k

∑

i∈K
Ci

max ≤ √
kD∗

max.

(4.18)
From (4.15) - (4.18), we have

Dmax(π) + T C(π)

D∗
max + T C∗ ≤ D∗

max + √
kT C∗ +∑

i∈K(xi + yi)fi

D∗
max + T C∗

= 1 +
√
kT C∗ +∑

i∈K(xi + yi)fi − T C∗

D∗
max + T C∗

≤ 1 +
√
kT C∗ +∑

i∈K(xi + yi)fi −∑
i∈K(xi + δi)fi

D∗
max + T C∗

= 1 +
√
kT C∗ +∑

i∈K(yi − δi)fi

D∗
max + T C∗

≤ 1 +
√
kT C∗ + √

kD∗
max

D∗
max + T C∗ ≤ 1 + √

k.

��
We next propose an online algorithm for the nonpreemptive problem

1|online, rj |V (∞, c), direct |k|Dmax + T C. Since preemption is not allowed,
the LTT rule can no longer be used for processing the jobs. Instead, the algorithm
schedules any available job whenever the machine is available.

Algorithm A4.12
Let α = 1+√

1+4k
2 .

Step 1: At the production stage, process any available job whenever the machine
becomes available.

Step 2: At the delivery stage, for each i ∈ K , at each time point τ il = l(αfi),
for l = 1, 2, . . ., if all the jobs from customer i that arrived before this time
have completed processing, then deliver them all to customer i using a minimum
number of vehicles. Otherwise, do not deliver any jobs from customer i.

Example 4.11 (Application of Algorithm A4.12) Apply Algorithm A4.12 to the
instance given in Example 4.10. First of all, given k = 2, we have α = 2. We observe
that Step 1 provides a lot of flexibility. Suppose that it schedules the jobs in the order
of their arrival. This gives the following job completion times, in increasing order:
C11 = 6, C21 = 8, C12 = 16, C13 = 18, C22 = 21. Step 2 checks the jobs from
customer 1 at time points τ 1

l = 10l, for l = 1, 2, . . ., and checks the jobs from
customer 2 at time points τ 2

l = 20l, for l = 1, 2, For the jobs from customer 1,
at time 10, job (1,1) is delivered; and at time 20, jobs (1,2) and (1,3) are delivered

172 4 Integrated Production and Outbound Distribution Scheduling: Online Problems

together. Similarly, for the jobs from customer 2, at time 20, no job delivery takes
place, but at time 40, jobs (2,1) and (2,2) are delivered together. This solution gives
Dmax = 40 + t2 = 50 and the total transportation cost T C = 2f1 + f2 = 20. Thus,
the objective value of this solution is 70.

For the offline version of this instance, an optimal solution is to process the jobs
in the following order (1, 1), (2, 1), (1, 2), (2, 2), (1, 3). This gives C11 = 6, C21 =
8, C12 = 16, C22 = 19, C13 = 21. Given this schedule, an optimal delivery
schedule is as follows: deliver all the jobs from customer 1 at time 21, and deliver
all the jobs from customer 2 at time 19. This gives Dmax = 29, and the optimal
objective value 29 + 2f1 + f2 = 49.

Theorem 4.9 For problem 1|online, rj |V (∞, c), direct |k|Dmax +T C, Algorithm
A4.12 is (1 + α)-competitive.

Proof For any given instance of the problem, let π be the solution generated by
this algorithm. Let Ci

max(π) and Ci
max be the completion time of the last job from

customer i in solution π and in an optimal solution, respectively. In general, they
are not the same. We follow the same notation defined in the proof of Theorem 4.8
for all other parameters. In addition, we define Cmax to be the completion time of
the last job in solution π . Clearly, Cmax = maxi∈K {Ci

max}, and the completion time
of the last job in an optimal solution is also Cmax.

The relation between Dmax(π) and D∗
max given in (4.15) in the proof of

Theorem 4.8 no longer holds partly because the possible time points at which a
delivery can occur in Algorithm A4.12 differ from those in Algorithm A4.11. To
derive their relationship, first we observe that

Dmax(π) = max
i∈K {τ ihi + ti} ≤ max

i∈K {Ci
max(π) + αfi + ti}

≤ Cmax + α max
i∈K {fi} + max

i∈K {ti},
D∗

max ≥ max{Cmax,max
i∈K {ti}},

T C∗ ≥ max
i∈K {fi}.

The above relations imply that

Dmax(π) ≤ 2D∗
max + αT C∗. (4.19)

We still have the same relationship between yi and δi as in the proof of
Theorem 4.8, i.e., yi − δi ≤ hi − 1. Thus, we have the following result, which
is similar to (4.18).

∑

i∈K
(yi − δi)fi ≤

∑

i∈K
(hi − 1)fi = 1

α

∑

i∈K
τ ihi−1 ≤ 1

α

∑

i∈K
Ci

max(π) ≤ k

α
D∗

max.

(4.20)

4.4 Online Problems with Batch Delivery to Multiple Customers 173

From (4.19), (4.20), and the two results (4.16) and (4.17) shown in the proof of
Theorem 4.8, we have

Dmax(π) + T C(π)

D∗
max + T C∗ ≤ 2D∗

max + αT C∗ +∑
i∈K(xi + yi)fi

D∗
max + T C∗

= 1 + D∗
max + αT C∗ +∑

i∈K(xi + yi)fi − T C∗

D∗
max + T C∗

≤ 1 + D∗
max + αT C∗ +∑

i∈K(yi − δi)fi

D∗
max + T C∗

≤ 1 + D∗
max + k

α
D∗

max + αT C∗

D∗
max + T C∗ ≤ 1 + α.

The last inequality above is due to the fact that α = 1 + k
α

, which is implied by the
given value of α. ��

For problem 1|online, rj |V (∞, c), direct |k|Dmax +T C, from Theorem 4.9, the
competitive ratio of Algorithm A4.12 is 2.618 (respectively, 3) if k = 1 (resp.,
k = 2).

4.4.2 Total Delivery Time and Transportation Cost Problems

We consider two related problems in this section: 1|online, rj , pmtn|V (∞, c),
direct |k|∑Dj +T C and 1|online, rj |V (∞, c), direct |k|∑Dj +T C. The corre-
sponding offline problem without preemption 1|rj |V (∞, c), direct |k|∑Dj +T C

is strongly NP -hard because it contains a strongly NP -hard classical problem
without the delivery component, 1|rj |∑Cj (Lenstra et al., 1977), as a special
case. However, the complexity of the corresponding offline problem with preemp-
tion 1|rj , pmtn|V (∞, c), direct |k|∑Dj + T C remains open (Chen, 2010). The
corresponding online problems with a single customer are discussed in Sects. 4.3.3.2
and 4.3.3.3, where an online algorithm with a competitive ratio of 2 for the problem
with preemption and an online algorithm with a competitive ratio of 3 for the
problem without preemption are given, respectively.

Below, we first present the online algorithm given by Averbakh (2010) for prob-
lem 1|online, rj , pmtn|V (∞, c), direct |k|∑Dj + T C. This algorithm extends
directly from Algorithm A4.9 given in Sect. 4.3.3.2 for the corresponding problem
with a single customer. At any given time point, we define the delay time of a
finished but undelivered job exactly as in Sect. 4.3.3.2.

174 4 Integrated Production and Outbound Distribution Scheduling: Online Problems

Algorithm A4.13
Step 1: At the production stage, schedule the arriving jobs by the SRPT rule given

in Sect. 4.3.1.1.
Step 2: At the delivery stage, for each customer i ∈ K , as soon as one of the

following two conditions is satisfied: (i) there are c finished but undelivered jobs
from customer i; (ii) the total delay time of the finished but undelivered jobs
from customer i is equal to fi , deliver all the finished but undelivered jobs from
customer i together in one batch to customer i.

Theorem 4.10 For problem 1|online, rj , pmtn|V (∞, c), direct |k|∑Dj + T C,

Algorithm A4.13 is (2γ)-competitive, where γ = min{c, 1 + (1 − 1
c
)(

∑
i∈K fi
fmin

)} and
fmin = mini∈K fi .

Proof We provide a sketch of the proof given by Averbakh (2010). For any given
instance of the problem, let π be the solution generated by this algorithm and π∗ be
an optimal offline solution. Let τ1 < τ2 < · · · < τq be the consecutive departure
times of delivery batches in π∗. Note that at each of these time points there may be
multiple deliveries to the same or different customers.

Consider another solution π1 obtained as follows: jobs are scheduled by the
SRPT rule, as in Algorithm A4.12, and deliveries are scheduled at time points
τ1, . . . , τq . At each time point τj , use a minimum number of delivery batches to
deliver all the jobs that are finished in time interval (τj−1, τj] such that there is no
more than one partial delivery batch to any customer.

Let TD(σ), T C(σ), and Z(σ) = TD(σ)+T C(σ) be the total delivery time, the
total transportation cost, and the objective value of a given solution σ , respectively.

Averbakh (2010) proves the theorem by showing the following three results: (i)
Z(π) ≤ 2Z(π1), (ii) TD(π1) ≤ TD(π∗), and (iii) T C(π1) ≤ γ T C(π∗). Result (i)
can be proved by arguments similar to the proof of Theorem 4.6. Result (ii) can be
proved by the following fact: for any time point τ , the production schedule generated
by the SRPT rule yields at least as many completed jobs in the time interval [0, τ]
as in any other production schedule including the production schedule in solution
π∗.

To show result (iii), Averbakh (2010) first shows some results about the number
of delivery batches in π∗ and that in π1. Let xi be the number of delivery batches
to customer i in solution π∗, and yi1, y

i
2 be the number of full and partial delivery

batches to customer i in solution π1. Clearly, cyi1 + yi2 ≤ cxi , for i ∈ K . Also,
since

∑
i∈K xi ≥ q and in π1 there is at most one partial delivery to customer i at

each departure time τ1, . . . , τq , we have yi2 ≤ ∑
i∈K xi , for i ∈ K . Based on these

results, it can be shown that

yi1 + yi2 ≤ 1

c

⎛

⎝cxi + (c − 1)
∑

j∈K
xj

⎞

⎠ .

From this inequality, result (iii) can be proved. ��

4.5 Online Problems with Two Stages of Delivery 175

Next, we present the online algorithm given by Feng et al. (2016) for problem
1|online, rj |V (∞, c), direct |k|∑Dj +T C. This algorithm extends directly from
Algorithm A4.10 given in 4.3.3.3 for the corresponding problem with a single
customer.

Algorithm A4.14
Step 1: At the production stage, process the jobs by the SSPT rule given in

Sect. 4.3.3.1.
Step 2: At the delivery stage, for each customer i ∈ K , as soon as one of the

following two conditions is satisfied:

(i) There are c finished but undelivered jobs from customer i.
(ii) The total delay time of the finished but undelivered jobs from customer i

is equal to fi , deliver all the finished but undelivered jobs from customer i
together in one batch to customer i.

Theorem 4.11 For problem 1|online, rj |V (∞, c), direct |k|∑Dj + T C, Algo-
rithm A4.14 is (2γ)-competitive, where γ is defined in Theorem 4.10.

Proof We provide a sketch of the proof given by Feng et al. (2016). For any given
instance of the problem, let π be the solution generated by this algorithm and π∗
be the optimal offline solution. Let Z(π) and Z(π∗) be the objective values of π
and π∗, respectively. Let τ1 < τ2 < · · · < τq be the consecutive departure times of
delivery batches in π∗. Note that at each of these time points there may be multiple
deliveries to the same or to different customers.

Consider a solution π1 for the preemptive version of the problem as follows: jobs
are scheduled by the SRPT rule, as in Algorithm A4.12, and deliveries are scheduled
at time points 2τ1, . . . , 2τq . At each time point 2τj , use a minimum number of
delivery batches to deliver all the jobs that are finished in time interval (2τj−1, 2τj]
such that there is no more than one partial batch delivery to any customer. Let Z̃(π1)

be the objective value of solution π1 for the preemptive version of the problem
instance.

Feng et al. (2016) prove this theorem by showing the following two results: (1)
Z̃(π1) ≤ γZ(π∗) and (2) Z(π) ≤ 2Z̃(π1). These results can be proved using
similar arguments as in the proofs of Theorem 4.10, Lemma 4.3, and Theorem 4.7.

��

4.5 Online Problems with Two Stages of Delivery

In Sect. 3.8, we consider two offline integrated production and distribution schedul-
ing problems involving two stages of delivery, namely, problem P1 with the
objective of minimizing

∑
Dj + T C, and problem P2 with the objective of

minimizing Dmax + T C. In both problems, a given set of jobs is first processed
on a single machine or m parallel machines in a plant, and then delivered from the

176 4 Integrated Production and Outbound Distribution Scheduling: Online Problems

plant to a pool point and from the pool point to the corresponding customer sites.
It is shown in Sect. 3.8 that these problems are generally NP -hard, but they can be
solved in polynomial time when there are only a single machine and a fixed number
of customers.

In this section, we consider the online version of these two problems where
jobs arrive over time and are not known until they arrive. However, all necessary
information about the customers from whom the jobs originate, including the
number of customers and their locations, is known in advance. Since the difficulty
of a problem and the corresponding competitive analysis for the problem are mainly
determined by the number of machines (i.e., m) and the number of customers (i.e.,
k) involved in the problem, we consider four different cases of the online problems
as follows:

• Online problem P1 with a single machine and a single customer, which is denoted
as OP1 with m = 1 and k = 1.

• Online problem P1 with a general number of parallel machines and a general
number of customers, which is denoted as OP1 with m ≥ 1 and k ≥ 1.

• Online problem P2 with a general number of parallel machines and a single
customer, which is denoted as OP2 with m ≥ 1 and k = 1.

• Online problem P2 with a general number of parallel machines and a general
number of customers, which is denoted as OP2 with m ≥ 1 and k ≥ 1.

Tang et al. (2019) propose an online algorithm and conduct a competitive analysis
of the algorithm for each of these four problems. We present their algorithms and
competitive analysis results in the following without giving the proofs. We refer the
interested reader to Tang et al.’s paper for all the technical details.

We use the notation introduced in Sect. 3.8. Specifically, the following symbols
defined in Sect. 3.8 are explicitly used in this section: (i, j) denotes the j th job from
customer i, r(i,j) its arrival time, and p(i,j) its processing time. In a given schedule,
we use C(i,j) to denote the completion time of job (i, j) at the plant. The shipment
capacity, transportation time, and transportation cost from the plant to the pool point
are denoted as c0, t0, and f0, respectively, and those from the pool point to customer
i are denoted as ci , ti , and fi , respectively. Shipments from the plant to the pool
point are called v-shipments, and shipments from the pool point to the customers
are called s-shipments.

For problem OP1 with m = 1 and k = 1, Tang et al. (2019) propose the following
online algorithm and show that its competitive ratio is 4.

Algorithm A4.15
Step 1. At the production stage, schedule the arriving jobs by the SSPT rule given

in Sect. 4.3.3.1.
Step 2. At the first delivery stage, at any time point τ from 0 onward, do the

following. Let h be the number of completed jobs waiting at the plant and q

be the number of jobs waiting at the pool point.

• If the sum of the total delay time of the h jobs waiting at the plant, the total
delay time of the q jobs waiting at the pool point, and qt0 is equal to f0 + f1,

4.5 Online Problems with Two Stages of Delivery 177

then deliver all these h jobs to the pool point using �h/c0� v-shipments, where
the delay time of a job (i, j) waiting at the plant is defined as τ − C(i,j), and
that of a job (i, j) waiting at the pool point is defined as τ − C(i,j) − t0.

• Otherwise, deliver only the first �h/c0�c0 of these h jobs to the pool point
using �h/c0� v-shipments.

Step 3. At the second delivery stage, at any time point τ from 0 onward, let q be the
number of jobs waiting at the pool point.

• If the total delay time of the q jobs is equal to f0 + f1, then deliver all these q

jobs to the customer using �q/c1� s-shipments.
• Otherwise, deliver only the first �q/c1�c1 of the q jobs to the customer using

�q/c1� s-shipments.

Example 4.12 (Application of Algorithm A4.15) We apply Algorithm A4.15 to the
instance given in the table below, which also shows the jobs’ shifted arrival times
r ′
j ∈ [max{rj , pj }, rj +pj] following the SSPT rule in Step 1 of the algorithm. The

other parameters of the instance include m = 1, k = 1 and t0 = 1, t1 = 3, f0 =
2, f1 = 5, c0 = 2, c1 = 3.

j 1 2 3 4 5

rj 2 4 6 8 15

pj 5 3 1 6 2

r ′
j 6 4 6 14 15

In Step 1, the SSPT rule schedules the jobs in the order (2, 3, 1, 4, 5) with the
starting time Sj and completion time Cj of each job as follows: S2 = 4, C2 =
7, S3 = 7, C3 = 8, S1 = 8, C1 = 13, S4 = 14, C4 = 20, S5 = 20, C5 = 22.

Check any time τ from 0 onward. Steps 2 and 3 need to be considered
simultaneously because Step 2 involves jobs waiting at the plant as well as the jobs
waiting at the pool point. At time τ = 12, Step 2 finds that there are h = 2 jobs
(jobs 2 and 3) waiting at the plant and q = 0 jobs waiting at the pool point, and their
total delay time is 7, which is equal to f0 + f1. Thus, a v-shipment carrying jobs 2
and 3 departs at time 11 from the plant and arrives at the pool point at time 12. At
time τ = 12, Step 3 finds that there are q = 2 jobs (job 2 and 3) waiting at the pool
point and their total delay time is 7 (= f0 + f1). Thus, an s-shipment carrying these
jobs departs at time 12 and arrives at the customer site at time 15.

At time τ = 20, Step 2 finds that the total delay time of the two jobs (jobs 1 and
4) waiting at the plant is 7. Thus, they are delivered by a v-shipment with departure
time 20 and arrive at the pool point at time 21. At time τ = 21, Step 3 finds that
the total delay time of the two jobs (jobs 1 and 4) waiting at the pool point is 7.
Thus, they are delivered by an s-shipment with departure time 21 and arrive at the
customer site at time 24.

At time τ = 29, Step 2 finds that the total delay time of the job (job 5) waiting
at the plant is 7. Thus, it is delivered by a v-shipment with departure time 29 and

178 4 Integrated Production and Outbound Distribution Scheduling: Online Problems

arrives at the pool point at time 30. At time τ = 30, Step 3 finds that the total delay
time of the job (job 5) waiting at the pool point is 7. Thus, it is delivered by an
s-shipment with departure time 30 and arrives at the customer site at time 33.

It can be seen that in the above described schedule
∑

Dj = 2(15)+2(24)+33 =
111, and T C = 3f0 + 3f1 = 21. Thus, the total cost of this schedule is 132.

It can also be verified that the following solution is optimal for this instance:
schedule the jobs on the machine in the order (1, 3, 2, 4, 5) with the starting time
Sj and completion time Cj of each job as follows: S1 = 2, C1 = 7, S3 = 7, C3 =
8, S2 = 8, C2 = 11, S4 = 11, C4 = 17, S5 = 17, C5 = 19. Jobs 1 and 3 are
delivered in a v-shipment with departure time 8 from the plant; they arrive at the
pool point at time 9, and then are delivered in an s-shipment immediately with arrival
time 12 at the customer site, i.e., D1 = D3 = 12. Job 2 is delivered in a v-shipment
with departure time 11 and arrival time 12 at the pool point and is delivered in an s-
shipment immediately from the pool point with arrival time 15 at the customer site,
i.e., D2 = 15. Finally, jobs 4 and 5 are delivered in a v-shipment with departure time
19 from the plant and arrival time 20 at the pool point and then are delivered in an
s-shipment immediately with arrival time 23 at the customer site (i.e., D4 = D5 =
23). In this solution,

∑
Dj = 2(12)+15+2(23) = 85, and T C = 3f0 +3f1 = 21.

Thus, the total cost of this solution is 106.

We observe that problem 1|online, rj |V (∞, c), direct |1|∑Dj + T C consid-
ered in Sect. 4.3.3.3 is a special case of problem OP1 with m = 1 and k = 1 with
a single delivery stage. It is shown there that Algorithm A4.10 given there for this
problem has a competitive ratio of 3. We can see that the first two steps of Algorithm
A4.15 here are somewhat similar to Algorithm A4.10, in that both employ a delay
strategy.

For the more general problem OP1 with m ≥ 1 and k ≥ 1, Tang et al. (2019)
propose the following online algorithm and show that its competitive ratio is cmax +
1, where cmax = max{ci |0 ≤ i ≤ k}.
Algorithm A4.16
Step 1. At the production stage, reset the arrival time r(i,j) of each arriving job

(i, j) to be max{r(i,j), p(i,j)}. Whenever there is a machine available, schedule
an available job (based on the reset arrival times) with the shortest processing
time on this machine.

Step 2. At the first delivery stage, at any time point τ , do the following. For each
customer i ∈ K , let hi be the number of completed jobs from customer i waiting
at the plant. Check if the following condition is satisfied: the total delay time of
these hi jobs is equal to max{f0/c0, fi/ci}.
• If this condition is satisfied for customer i, then deliver all these hi jobs to the

pool point using �hi/c0� v-shipments.
• For the customers for which the above condition is not satisfied, let l be

the total number of completed jobs waiting at the plant that belong to these
customers. Deliver the first �l/c0�c0 of these l jobs from the plant to the pool
point using �l/c0� v-shipments.

4.5 Online Problems with Two Stages of Delivery 179

Step 3. At the second delivery stage, at any time point τ , for each customer i ∈ K ,
let qi be the number of jobs from customer i waiting at the pool point.

• If the total delay time of these qi jobs is greater than or equal to
max{f0/c0, fi/ci}, then deliver all these qi jobs to customer i using �qi/ci�
s-shipments.

• Otherwise, deliver only the first �qi/ci�ci of the qi jobs to customer i using
�qi/ci� s-shipments.

We observe that problem 1/online, rj |V (∞, c), direct |k|∑Dj + T C consid-
ered in Sect. 4.4.2 is a special case of problem OP2 with m = 1, k ≥ 1 and identical
ci and with a single delivery stage. It is shown there that Algorithm A4.14 given
there for 1/online, rj |V (∞, c), direct |k|∑Dj + T C has a competitive ratio that
depends on problem parameters.

For problem OP2 with m ≥ 1 and k = 1, Tang et al. (2019) propose an online
algorithm and show that the competitive ratio of their algorithm is 2 and that this
is the best possible competitive ratio that any online algorithm can achieve for this
problem. In the following, we provide a modified version of their algorithm, where
the procedure for the first stage of delivery is made more similar to Algorithm A4.7
and Algorithm A4.18 given below.

Algorithm A4.17
Step 1. At the production stage, whenever there is a machine available, schedule an

available job with the longest processing time on this machine.
Step 2. At the first delivery stage, at each time point τ = l(f0+f1), for l = 1, 2, . . .,

let h be the number of completed jobs waiting at the plant. If both of the following
two conditions are satisfied: (1) there are no new jobs arriving at the plant at this
time point and (2) the jobs that arrived before this time point have all completed
processing by this time point, then deliver all these h jobs to the pool point using
�h/c0� v-shipments.

Step 3. At the second delivery stage, at any time point τ , if there are any v-shipments
that arrive at the pool point, then let q be the number of jobs at the pool point
after the arrival of these v-shipments, and deliver all these q jobs to the customer
using �q/c1� s-shipments.

We note that problem Pm|online, rj |V (∞, c), direct |1|Dmax + T C considered
in Sect. 4.3.2 is a special case of problem OP2 with m ≥ 1, k = 1 and a single stage
of delivery. It is shown there that Algorithm A4.8 given there has a competitive ratio
of 2 for this problem.

Finally, for problem OP2 with m ≥ 1 and k ≥ 1, Tang et al. (2019) propose the
following online algorithm. They show that the competitive ratio of this algorithm
is k + 2.

Algorithm A4.18
Step 1. At the production stage, whenever there is a machine available, schedule an

available job with the longest processing time on this machine.

180 4 Integrated Production and Outbound Distribution Scheduling: Online Problems

Step 2. At the first delivery stage, at each time point τ = lf0, for l = 1, 2, . . ., let h
be the number of completed jobs waiting at the plant. If both of the following
two conditions are satisfied: (1) there are no new jobs arriving at the plant
at this time point and (2) the jobs that arrived before this time point have all
completed processing, then deliver all these h jobs to the pool point using �h/c0�
v-shipments. Otherwise, deliver only the first �h/c0�c0 of the h jobs to the pool
point using �h/c0� v-shipments.

Step 3. At the second delivery stage, at any time point τ , for each customer i ∈ K

at each time point τi = lfi for l = 1, 2, . . ., let qi be the number of jobs from this
customer waiting at the pool point. If both of the following two conditions are
satisfied: (1) there are no new jobs from this customer arriving at the plant at this
time point and (2) the jobs from this customer that arrived before this time point
have all been completed processing and delivered to the pool point, then deliver
all these qi jobs to the customer using �qi/ci� s-shipments.

Example 4.13 (Application of Algorithm A4.18) We apply Algorithm A4.18 to the
instance given in the table below, where there are m = 2 parallel machines and
k = 2 customers. The other parameters of the instance include t0 = 1, t1 = 2, t2 =
3, f0 = 4, f1 = 6, f2 = 9, c0 = 2, c1 = c2 = 3.

j 1 2 3 4 5

Customer 2 1 1 2 2

rj 4 5 6 13 15

pj 3 5 1 5 2

Step 1 generates the following schedule for processing the jobs on the two
machines: machine 1 processes jobs 1, 3, 4 in this order with their starting times and
completion times as follows: S1 = 4, C1 = 7, S3 = 7, C3 = 8, S4 = 13, C4 = 18;
machine 2 processes jobs 2 and 5 in this order with S2 = 5, C2 = 10, S5 = 15, C5 =
17.

Step 2 checks the jobs waiting at the plant at time points τ = 4l, for l = 1, 2, . . .,
and at each time point determines whether to deliver some jobs from the plant to the
pool point. At τ = 4, it does nothing because none of the jobs have been completed
(i.e., h = 0). At τ = 8, h = 2 (jobs 1 and 3), but neither of the two conditions
is satisfied. However, since c0 = h, these two jobs are delivered together in a v-
shipment with arrival time 9 at the pool point. At τ = 12, h = 1 (job 2), and the two
conditions are satisfied. Thus, job 2 is delivered to the pool point with arrival time
13. At τ = 16, h = 0. At τ = 20, h = 2 (jobs 4 and 5), and the two conditions are
satisfied. Thus, jobs 4 and 5 are delivered to the pool point with arrival time 21.

Step 3 checks the jobs from customer 1 waiting at the pool point at time points
τ = 6l, for l = 1, 2, . . ., and checks the jobs from customer 2 waiting at the pool
point at time points τ = 9l, for l = 1, 2, First, consider customer 1. At time
τ = 6, q1 = 0. At time τ = 12, q1 = 1 (job 3), but condition (2) is not satisfied for
customer 1 because job 2 has not been delivered to the pool point. At time τ = 18,

4.6 Online or Offline Algorithms? 181

q1 = 2 (jobs 2 and 3), and both conditions are satisfied for customer 1. Thus, jobs 2
and 3 are delivered to customer 1 with arrival time 20. Now consider customer 2. At
time τ = 9, q2 = 1 (job 1), and both conditions are satisfied for customer 2. Thus,
job 1 is delivered to customer 2 with arrival time 12. At time τ = 18, q2 = 0. At
time τ = 27, q2 = 2 (jobs 4 and 5), and both conditions are satisfied. Thus, jobs 4
and 5 are delivered to customer 2 with arrival time 30.

It can be seen that in the above described schedule, Dmax = 30 and T C =
3f0 + f1 + 2f2 = 36. Thus, the total cost of this schedule is 66. It can also be
verified that the following solution is optimal for this instance: schedule the jobs
on the two machines the same way as in the solution described above. At the first
stage of delivery, deliver jobs 1 and 3 at time 8 to the pool point with arrival time
9; deliver job 2 at time 10 to the pool point with arrival time 11; deliver jobs 4 and
5 at time 18 to the pool point with arrival time 19. At the second stage of delivery,
deliver jobs 2 and 3 at time 11 to customer 1 with arrival time 13; deliver jobs 1, 4,
and 5 at time 19 to customer 2 with arrival time 22. This solution has Dmax = 22
and T C = 3f0 + f1 + f2 = 27 and hence a total cost of 49.

We note that problem 1|online, rj |V (∞, c), direct |k|Dmax +T C considered in
Sect. 4.4.1 is a special case of problem OP2 with m = 1, k ≥ 1, and a single stage of
delivery. It is shown there that Algorithm A4.12 given there has a competitive ratio

of 3+√
1+4k
2 for this problem.

Comparing the four algorithms, Algorithms A4.15–A4.18, we observe the
following similarities and differences:

• The algorithms for the two cases of problem OP1, where the objective function
is
∑

Dj +T C, i.e., Algorithms A4.15 and A4.16 both use an SPT based strategy
to schedule the jobs in the production stage and use a strategy based on the total
delay time of the waiting jobs to schedule job delivery in both delivery stages.
Similar strategies are also used in Algorithms A4.9, A4.10, A4.13, and A4.14 for
similar problems but with a single stage of delivery.

• The algorithms for the two cases of problem OP2, where the objective function
is Dmax +T C, i.e., Algorithms A4.17 and A4.18 both use an LPT based strategy
to schedule the jobs in the production stage and use a strategy that periodically
checks the status of the system to schedule job delivery in both delivery stages.
Similar strategies are also used in Algorithms A4.8, A4.11, and A4.12 for similar
problems but with a single stage of delivery.

4.6 Online or Offline Algorithms?

As discussed in Sect. 4.1, to solve an online problem, the decision maker can
either follow a rolling horizon approach in which the underlying problem is treated
and solved as an offline problem within each planning horizon using an offline
algorithm, or treat and solve the problem in an online fashion using an online
algorithm.

182 4 Integrated Production and Outbound Distribution Scheduling: Online Problems

However, all the existing studies on online IPODS problems develop online
algorithms to solve the underlying online problems, and only one study, discussed
below, also uses rolling horizon based offline algorithms. Furthermore, the most
existing studies on online IPODS problems evaluate the performance of online
algorithms by performing competitive analysis, which compares the solutions
generated by the online algorithms with the optimal offline solutions in the worst
case. This is not necessarily the most reasonable way of evaluating online algorithms
because optimal offline solutions for a problem are obtained under the assumption
that one has the complete information of all the problem parameters in advance. A
fairer, or at least more practical, way of evaluating online algorithms is to compare
their solutions with the best possible solutions that can be generated by offline
algorithms that use the same amount of information as the online algorithms.

Tang et al. (2019) is the only paper on online IPODS problems that uses both
online and rolling horizon based offline algorithms to solve the underlying online
problems. They evaluate the performance of their online algorithms by doing
theoretical worst-case based competitive analysis, which is discussed in Sect. 4.5,
as well as comparing with rolling horizon based offline algorithms. For the two
online problems, OP1 with m ≥ 1 and k ≥ 1 and OP2 with m ≥ 1 and k ≥ 1,
described in Sect. 4.5, in addition to the online algorithms described in Sect. 4.5,
Tang et al. (2019) also propose two offline approaches, denoted as OFF4 and OFF1,
as follows. Suppose that in the online problems, jobs arrive over time in a given
planning horizon [0, T]:
• OFF4: The problem is solved four times at time point T/4, T /2, 3T/4, and

T , respectively, and at each time it is treated as an offline problem with all
the information available up to this time point. The heuristics for the offline
problems, described in Sect. 3.8, are used to solve these offline problems.

• OFF1: The problem is solved only once after all the jobs have arrived, i.e., at
time T , using the same heuristics of Sect. 3.8.

Clearly, online algorithms make real-time decisions and, hence, have the highest
decision frequency, whereas OFF1 makes decisions only once for all the jobs
together and has the lowest decision frequency. The decision frequency of OFF4
is somewhere in between. Their computational tests show that among the three
approaches (online algorithms, OFF1 and OFF4), OFF4 performs the best for most
test instances.

For the problems studied in Tang et al. (2019), because jobs do not have delivery
deadlines, and there are infinitely many delivery vehicles that can be used at any time
point, we can choose to solve the problem in any way we want. For example, we can
choose any number of time points within the planning horizon in any way and solve
the corresponding offline problem at each chosen time point with the information
available up to this time. However, in various applications, there are constraints on
delivery times (e.g., a job must be delivered to its customer site by a pre-specified
time) and/or constraints on vehicle availability (e.g., there are only a limited number
of vehicles available, and they are available only at certain time points). In these

4.7 Future Research 183

situations, we have to choose the time points in a way that guarantees problem
feasibility if we want to solve the problem by solving the corresponding offline
problem at the chosen time points.

4.7 Future Research

For future research directions, first there are several open questions from the
previous sections of this chapter that need to be clarified. They include:

• As discussed in Sect. 4.2.2, there is no existing online algorithm for problem
Pm|online, rj |V (∞, 1), iid|n|Dmax with a general number of machines. One
can try to extend Algorithm A4.2 to this problem and perform a competitive
analysis.

• As discussed in Sect. 4.3.1.3, for problem 1|online, rj |V (1, c), direct |1|Dmax
with c ≥ 2, Algorithm A4.5 is shown to have an asymptotic competitive ratio

of
√

5+1
2 , whereas Algorithm A4.6 is shown to have a competitive ratio of 2.5.

These two ratios differ significantly. Thus, there are two questions that can be
investigated. First, can we show tighter competitive ratios for these algorithms?

Second, is there another algorithm with a competitive ratio between
√

5+1
2 and

2.5?
• As discussed in Sect. 4.3.2, Han et al. (2015) give an online algo-

rithm (i.e., Algorithm A4.8) with a competitive ratio of 2 for problem
Pm|online, rj |V (∞, 1), direct |n|Dmax+T C, but show that no online algorithm

can have a competitive ratio less than max{
√

5+1
2 , 2 − 1

c
}. A question that

remains is whether there is another algorithm for this problem that has a smaller
competitive ratio than Algorithm A4.8.

• A similar question remains for problem 1|online, rj |V (∞, c), direct |1|∑Dj+
T C. Is there an alternative algorithm for this problem that has a smaller compet-
itive ratio than Algorithm A4.10? Similarly, for problem 1|online, rj |V (∞, c),
direct |k|Dmax +T C, is there another algorithm with a smaller competitive ratio
than Algorithm A4.12?

While a wide variety of offline IPODS problems have received a significant
amount of research attention in the last two decades, online IPODS problems have
received much less attention. As discussed in the previous sections of this chapter,
the existing research on O-IPODS problems has been mostly focused on a small
subset of problems only. We believe that more research is needed on the following
classes of O-IPODS problems:

• Problems with a limited number of delivery vehicles. Most O-IPODS problems
that have been studied involve a sufficient number of vehicles such that vehicle
availability is not a constraint. In such problems, each vehicle is used at most

184 4 Integrated Production and Outbound Distribution Scheduling: Online Problems

for one trip. However, in real-world situations, there is often limited vehicle
availability such that a vehicle may need to be used for multiple trips.

• Problems with fixed delivery departure dates. We are not aware of any existing
results on online problems where vehicle departure dates are fixed in advance.
We can consider the online versions of several such offline problems discussed
in Sect. 3.6.

• Problems with multiple customers. Section 4.4 has discussed several O-IPODS
problems with multiple customers. However, all these problems involve the direct
shipping method where each shipment goes to one customer only. Apparently,
no existing studies have considered online problems with a “routing” delivery
method where a shipment is allowed to cover multiple customers. Clearly, such
online problems will be more difficult to solve. We suggest that research should
start with the online version of the problem discussed in Sect. 3.5.2 with a single
machine, i.e., problem 1|online, rj |V (∞, c), routing|k|∑Dj + T C.

• Problems with objective functions other than Dmax,Dmax +T C,
∑

Dj,
∑

Dj +
T C. Almost all the existing O-IPODS problems involve one of these objective
functions. In reality, jobs may have different importance weights, due dates that
can be violated with a penalty, and deadlines that cannot be violated. This means
that objective functions such as the total weighted delivery time, maximum
lateness, the total tardiness, and a total number of tardy jobs may be relevant
and should also be studied.

• Semi-online problems. Unlike in a purely online environment where nothing
about the future (including the number of jobs to arrive in the future, and
any parameters about a future job) is known, in a semi-online setting, some
information about the future is known in advance. For example, in practice,
although we may not know everything about the jobs that will arrive in the
future, we may know some information about the jobs, e.g., specific time points
when new jobs may arrive (Hall et al., 2009), bounds of the job processing times,
bounds of the transportation times, etc. Another example is that we may know
everything about the jobs that will arrive in the near future, although we may
know nothing about the jobs that will arrive in the distant future. A handful of
existing studies (Averbakh & Baysan, 2012, 2013; Liu et al., 2010; Tian et al.,
2008) have considered some semi-online IPODS problems. More research is
certainly needed on such problems, especially given that real-world situations
are more likely to be semi-online than purely online.

• Alternative approaches for solving online problems. As discussed in Sect. 4.6,
for online problems, online algorithms may not be the best approaches. Instead,
rolling horizon based offline approaches could generate better solutions. It will
be valuable to investigate whether similar approaches can beat online algorithms
for the other online IPODS problems covered in this chapter.

Chapter 5
Coordinated Product Pricing and
Scheduling Decisions

Abstract In this chapter, we discuss various coordinated product pricing and
production scheduling problems that commonly arise in make-to-order environ-
ments. We first briefly discuss some practical situations where such problems arise,
followed by an investigation of two classes of such problems, namely problems with
a single time period and problems with multiple periods. For each class of problems,
various exact and approximation algorithms and heuristics, their performance, and
related managerial insights are discussed. For several problems, we also evaluate
the benefit of pricing–scheduling coordination.

5.1 Introduction

It has long been recognized in practice that operations issues such as capacity
management, production planning, and inventory policies often interplay closely
with marketing decisions such as demand management, pricing, and sales promotion
decisions. Therefore, marketing and production decisions should be made in a
coordinated manner in order to maximize system-wide efficiency and profitability
in the supply chain. Coordinated product pricing and production planning or/and
inventory decisions have received significant research attention in the past three
decades. Comprehensive literature surveys are provided by Eliashberg and Steinberg
(1993), Yano and Gilbert (2004), Tang (2010), and Chen and Simchi-Levi (2012).

A majority of the existing joint pricing–production models consider production
decisions from an aggregate planning point of view. That is, the detailed scheduling
of each individual order is not considered. Furthermore, these models consider
aggregate planning costs—setup, production, and finished product inventory hold-
ing costs. However, it is relevant to consider detailed order-by-order scheduling
decisions and individual order based costs in many practical environments. We
provide several examples, as follows:

• For perishable products and many make-to-order products, each order typically
has a short due date by which the order must be delivered. As a result, the total
cost and overall service level measures depend on how each individual order

© Springer Nature Switzerland AG 2022
Z.-L. Chen, N. G. Hall, Supply Chain Scheduling, International Series
in Operations Research & Management Science 323,
https://doi.org/10.1007/978-3-030-90374-9_5

185

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-90374-9_5&domain=pdf
https://doi.org/10.1007/978-3-030-90374-9_5

186 5 Coordinated Product Pricing and Scheduling Decisions

is scheduled. Costs and service level measures from aggregate planning models
are not accurate because they assume simultaneous delivery of all completed
orders at the end of a planning time period and fail to consider individual order
performance.

• In many make-to-order production systems for time-sensitive products, there
is little or no finished product inventory, and hence finished product inventory
cost is negligible when considering the total cost. However, in such systems, a
significant amount of components is kept as work-in-process (WIP) inventory
and the associated costs can be significant. Here, an aggregate planning approach
is not sufficiently precise, since the WIP inventory cost depends on when each
order is scheduled.

• In a production system involving multiple production lines or multiple stages,
such as a flowshop (Pinedo, 2016), capacity usage cannot be estimated accu-
rately without knowing a detailed order-by-order schedule. This is particularly
problematic in a joint pricing–production model, since in such a model available
capacity should be considered during the pricing decision. Therefore, an aggre-
gate planning approach cannot efficiently plan capacity usage.

• In some make-to-order systems, each arriving customer is quoted a price with
a certain delivery lead time guarantee, and based on the given quotation, the
customer decides whether to place an order or not (So & Song, 1998; Celik &
Maglaras, 2008). The lead time of an order is determined by the completion time
of the order and hence can only be calculated accurately when detailed order-by-
order scheduling is considered.

By considering scheduling costs and service performance at the individual order
(or item) level, more complete and more accurate measurements of production costs
and service levels are obtained. This in turn provides more accurate estimates of the
benefit from coordinated pricing and production decisions relative to uncoordinated
decision making.

Motivated by the practical relevance discussed above, a growing number of
studies (Charnsirisakskul et al., 2006; Chen & Hall, 2010; Liu et al., 2012, 2020; Lu
et al., 2013; Wang & Wang, 2019; Yue et al., 2019) have investigated coordinated
pricing and production scheduling (CPPS) decisions. This chapter is dedicated to
CPPS problems. Such problems extend traditional production scheduling problems,
as well as traditional pricing and price quotation problems. Traditional production
scheduling assumes that a set of available orders is given and needs to be processed
at minimum cost subject to capacity constraints without considering the revenue
from the orders, whereas coordinated product pricing and production scheduling
considers the impact of pricing decisions on available orders, the associated revenue,
and the required capacity. Traditional pricing and price quotation ignore production
capacity constraints or treat production decisions in an aggregate way without con-
sidering detailed order-by-order scheduling, whereas coordinated product pricing
and production scheduling considers the interdependence of pricing, capacity and
detailed scheduling decisions, and their impact on revenue and cost.

5.2 Single-Period Product Based Problems 187

The objective functions of CPPS problems involve costs or/and service levels that
can only be calculated by looking into the detailed schedule of the incoming orders.
Thus, making detailed scheduling decisions is a necessary part of these problems.

Existing CPPS problems can be divided into two classes: (1) problems with
a single period where the pricing decision is static (i.e., it is made once for the
entire planning horizon), and (2) problems with multiple periods where the pricing
decision is dynamic (i.e., it is made multiple times over the planning horizon). Most
of the problems studied by Chen and Hall (2010), Liu et al. (2012, 2020), Lu et al.
(2013), and Wang and Wang (2019) involve a single period, whereas the problems
considered by Charnsirisakskul et al. (2006) and Yue et al. (2019) involve multiple
periods.

Among the problems involving a single period, the problems of Chen and Hall
(2010) and Wang and Wang (2019) differ from those of Liu et al. (2010, 2012) and
Lu et al. (2013) mainly in their modeling of demand. Chen and Hall (2010) and
Wang and Wang (2019) assume that there are a number of known products and the
demand for a product is a deterministic function of the price set for the product. We
call such problems single-period product based problems. However, in the problems
considered by Liu et al. (2012, 2020) and Lu et al. (2013), it is assumed that there
are a number of known order inquiries and there is a probability that an order is
actually placed, where this probability of order placement is a function of the price
set for the order. We call such problems single-period order based problems.

In Sects. 5.2–5.4, we discuss the three single-period product based problems
studied by Chen and Hall (2010), some of the single-period order based problems
considered by Liu et al. (2012) and Lu et al. (2013), and the three multi-period
problems studied by Yue et al. (2019), respectively. Finally, in Sect. 5.5, we highlight
some future research topics.

Figure 5.1 provides an overview of the topics discussed in this chapter.

5.2 Single-Period Product Based Problems

We discuss the three single-period problems considered in Chen and Hall (2010).
All these problems share the same sequence of events as follows:

• The decision maker makes a pricing decision for each product at the beginning
of the period.

• The demand realizes, given the prices.
• The decision maker schedules the incoming orders for processing.

We apply the notation and problem definitions given in Chen and Hall (2010).
There are n available products, N = {1, . . . , n}. For each product j ∈ N , the
decision maker can set the price of the product using one of the mj allowable
prices for the product. Let q1j > · · · > qmj ,j denote these allowable prices. We
assume knowledge of a deterministic, nonincreasing discrete demand for product
j ∈ N as a function gj (qij) of the price qij set for this product, for i =

188 5 Coordinated Product Pricing and Scheduling Decisions

Chapter 5:
Coordinated Product Pricing

and Scheduling Decisions

Section 5.2: Single-Period Product Based Problems:
single-machine completion time problem;

single-machine lateness problem;

flowshop makespan problem;

exact algorithms; NP-hardness proofs;

fully polynomial time approximation schemes;

heuristics; computational results; managerial insights.

Section 5.3: Single-Period Order Based Problems:
problems with discrete allowable prices;

problems with continuous allowable prices;

simultaneous quotation; sequential quotation;

exact algorithms; heuristics;

computational results; managerial insights.

Section 5.4: Multi-Period Problems:
multiple products made from a base product; modular pricing;

problem with total weighted completion time;

problem with tardiness allowed;

problems with order rejection allowed;

exact algorithms; NP-hardness proofs;

fully polynomial time approximation schemes;

computational results; managerial insights.

Fig. 5.1 Overview of the topics covered in Chap. 5

1, . . . , mj , where gj (qij) denotes the number of orders (or items) of product j

that are demanded at price qij . We assume that q1j is a sufficiently high price that
gj (q1j) = 0. This is a reasonable assumption since in many practical situations,
setting the price high enough that there is no demand is an available option. We
let Qj = {q1j , . . . , qmj ,j }, mmax = max1≤j≤n{mj }, and M = ∑n

j=1 mj . We
also let ḡj = gj (qmj ,j) denote the maximum possible demand for product j , and
ḡmax = max1≤j≤n{ḡj }. It follows that the revenue for product j at price qij is
Rj (qij) = qij gj (qij).

The assumption that there are a finite number of allowable prices that can be
used for a product is commonly adopted in the dynamic pricing literature (e.g.,
Chen & Chen, 2015) and can be easily justified from a practical point of view,
as follows. Although in theory the price of a product can be any number within a
certain interval, there are some price points at which customers are more willing to
purchase, and hence companies often use a small set of popular prices for a product
(see, e.g., Anderson & Simester, 2003).

After setting the prices for the products, orders arrive and need to be scheduled
for processing in a given production environment. We consider a production envi-

5.2 Single-Period Product Based Problems 189

ronment with either a single-machine configuration, where all incoming orders are
processed, or a two-machine flowshop configuration, where all incoming orders are
first processed on the first machine M1 and then processed on the second machine
M2. In a single-machine environment, we let pj > 0 denote the processing time
of an order of product j . Alternatively, in a two-machine flowshop environment,
we let p1j > 0 and p2j > 0 denote the processing time of an order for product j
on machines M1 and M2, respectively. Some problems that we consider also have
a weight wj > 0 or a due date dj > 0, for each order of product j . We assume
throughout that all pj , dj , and wj are known integers. We further assume that all
the orders are available for processing at the start of the planning horizon.

Since price is a decision variable in our work, and the demand function is
deterministic, the decision maker effectively chooses the demand. Therefore, it is
reasonable to assume that the demand which is implied by the pricing decision for
each product must be satisfied in full. This assumption is particularly realistic where
the demand function has many discrete points, which enables the decision maker to
choose the demand precisely. The results in this section can be easily extended to
the case where part or all of incoming demand can be rejected.

A solution σ to a problem consists of a price xj ∈ Qj for each product j ∈ N and
a schedule π of all the incoming orders. Given a solution σ , we define the following
parameters:

R(σ) = ∑
j∈N Rj (xj), the total revenue of the incoming orders;

Cij (σ) = the completion time of the ith order of productj, for i = 1, . . . , gj (xj), j ∈ N;

Uij (σ) =
⎧
⎨

⎩

1, if Cij (σ) > dj

0, otherwise.
, for i = 1, . . . , gj (xj), j ∈ N.

where the solution being used is clear from the context, we simplify R(σ), Cij (σ),
and Uij (σ) to R, Cij , and Uij , respectively.

We consider three specific problems as follows:

• Single-machine completion time problem: single-machine production environ-
ment with the objective of maximizing the net profit, defined as the total revenue
minus the total weighted completion time of the orders, i.e.,

∑
j∈N Rj (xj) −

∑
j∈N

∑gj (xj)

i=1 wjCij , where xj ∈ Qj is the price for product j .
• Single-machine lateness problem: single-machine production environment with

the objective of maximizing the net profit, defined as the total revenue minus

the total weight of late orders, i.e.,
∑

j∈N Rj (xj)−∑
j∈N

∑gj (xj)

i=1 wjUij , where
xj ∈ Qj is the price for product j .

• Flowshop makespan problem: two-machine flowshop production environment
with the objective of maximizing the net profit, defined as the total revenue
minus the makespan Cmax (i.e., the completion time of the last order), i.e.,∑

j∈N Rj (xj) − Cmax, where xj ∈ Qj is the price for product j , and Cmax =
max1≤i≤gj (xj), 1≤j≤n{Cij }.

190 5 Coordinated Product Pricing and Scheduling Decisions

For ease of presentation, we may write the objective functions of these problems
simply as R − ∑∑

wjCij , R − ∑∑
wjUij , and R − Cmax, respectively. We

assume that the revenue function is normalized to match the time-based units of
the scheduling cost incurred in these problems. The total weighted completion time
represents the work-in-process inventory cost (Pinedo, 2016). Also, it is appropriate
to use the total weight of late orders as the scheduling cost in situations where orders
can be delivered late but with a reduction in the revenue, such as a late fee or
a required discount. Finally, the makespan of a schedule represents overhead and
capacity cost.

Although these problems do not consider production cost, a linear production
cost can easily be incorporated into the objective functions by redefining the price
qij to be qij − cj , where cj is the unit production cost for processing an order of
product j . The assumption of linearity for production costs is very common in the
operations management literature.

Chen and Hall (2010) show that all these problems can be solved by pseudo-
polynomial time dynamic programming algorithms and further show that these
problems are all ordinarily NP-hard, even when pj = 1 and wj = 1 for all j ∈ N

for the single-machine completion time problem and when both dj ’s and wj ’s are
identical for all j ∈ N for the single-machine lateness problem. They develop fast
heuristics and estimate the value of coordinating pricing and scheduling decisions.
Finally, they develop fully polynomial time approximation schemes (FPTASs) for
the problems.

We organize this section as follows, based on the work of Chen and Hall (2010).
Section 5.2.1 describes the pseudo-polynomial time algorithms for finding optimal
solutions for all these problems. Section 5.2.2 shows the NP -hardness proofs for
all these problems. Section 5.2.3 presents the FPTAS for two of the problems.
Section 5.2.4 describes the heuristics for all the problems. Finally, Sect. 5.2.5 reports
the computational results and related insights.

5.2.1 Exact Algorithms

The exact dynamic programming algorithms given by Chen and Hall (2010) are
all based on an optimality property that, for the underlying scheduling problems
without the pricing decisions, it is optimal to schedule the orders in a particular
pre-specified sequence. More specifically, for the single-machine completion time
problem, it is optimal to schedule the orders by the shortest weighted processing
time (SWPT) rule, in which the orders are sequenced by nonincreasing ratio of
weight to processing time (Smith, 1956). For the single-machine lateness problem,
it is optimal to schedule the orders by the earliest due date (EDD) rule, in which the
orders are sequenced by nondecreasing due date (Jackson, 1955). For the flowshop
makespan problem, it is optimal to schedule the orders by the sequencing rule of
Johnson (1954), which is elaborated below.

5.2 Single-Period Product Based Problems 191

The following algorithms SMCT, SML, and FSM solve the single-machine com-
pletion time problem, single-machine lateness problem, and flowshop makespan
problem, respectively. All these algorithms consider the products in the corre-
sponding sequence (SWPT, EDD, or the sequence specified by Johnson’s rule) and
enumerate all possible prices for a product.

Algorithm SMCT
Input
Given qij , gj (qij), i = 1, . . . , mj , j = 1, . . . , n; pj ,wj , j = 1, . . . , n.
Initialization
Index the products in SWPT order.
Value Function
fj (t) = maximum net profit from the orders of products 1, . . . , j , given that after
the orders of product j are scheduled, the makespan of the schedule is t .
Boundary Condition
f0(0) = 0; fj (t) = −∞, for t < 0, j = 1, . . . , n.
Optimal Solution Value

max
0≤t≤∑n

j=1 ḡj pj

{fn(t)}.
Recurrence Relation
fj (t) = max1≤i≤mj

{qij gj (qij)−wjgj (qij)[t −pjgj (qij)] −wjpjgj (qij)[gj (qij)
+ 1]/2 + fj−1(t − pjgj (qij))}.

Algorithm SMCT considers each product in turn in SWPT sequence and chooses
the optimal number of orders of that product for the demand and the schedule. The
second term in the recurrence relation is the increment to total cost that results from
starting gj (qij) orders of product j at time [t − pjgj (qij)]. The third term is the
additional cost of scheduling those orders individually.

Chen and Hall (2010) show that Algorithm SMCT finds an optimal schedule for
the single-machine completion time problem in O(M

∑n
j=1 ḡjpj) time.

We now describe the algorithm for the single-machine lateness problem.

Algorithm SML
Input
Given qij , gj (qij), i = 1, . . . , mj , j = 1, . . . , n; pj ,wj , dj , j = 1, . . . , n.
Initialization
Index the products in EDD order.
Value Function
fj (t) = maximum net profit from products 1, . . . , j , given that after product j is
scheduled, the makespan of the schedule of on-time orders is t .
Boundary Condition
f0(0) = 0; fj (t) = −∞, for t > dj or t < 0, j = 1, . . . , n.
Optimal Solution Value

max
0≤t≤∑n

j=1 ḡj pj

{fn(t)}.

192 5 Coordinated Product Pricing and Scheduling Decisions

Recurrence Relations
fj (t) = max

1≤i≤mj , 0≤X≤gj (qij)
{qijX + (qij − wi)(gj (qij) − X) + fj−1(t − Xpj)},

if t ≤ dj .

Algorithm SML considers each product in turn in EDD sequence and chooses
the optimal price and the optimal number of orders, X, to schedule on time. In the
recurrence relation, the first term is the revenue from scheduling orders on time, and
the second term is the revenue from scheduling orders late.

Chen and Hall (2010) show that Algorithm SML finds an optimal schedule for
the single-machine lateness problem in O((

∑n
j=1 mj ḡj)(

∑n
j=1 ḡjpj)) time.

Finally, we describe Chen and Hall’s algorithm for the flowshop makespan
problem. As discussed above, the products are scheduled in the sequence proposed
by Johnson (1954). That is, the products are first partitioned into two sets, S1 =
{j |p1j ≤ p2j } and S2 = {j |p1j > p2j }. The orders of the products in S1
are scheduled first in nondecreasing p1j sequence, followed by the orders of
the products in S2 in nonincreasing p2j sequence. To illustrate how Johnson’s
sequencing rule works, we provide a numerical example as follows.

Example 5.1 (Application of Johnson’s Rule) We apply Johnson’s rule to the
instance with 5 products shown in the table below:

j 1 2 3 4 5

p1j 3 4 5 8 7

p2j 6 4 3 5 2

The products are divided into two sets S1 = {1, 2} and S2 = {3, 4, 5}. Since p11 ≤
p12, the products in S1 are sequenced in the order (1, 2). Similarly, since p42 >

p32 > p52, the products in S2 are sequenced in the order (4, 3, 5). The overall
sequence of the products is (1, 2, 4, 3, 5) on both machines. All the orders of a
product are sequenced consecutively.

In the dynamic programming algorithm below, we also use the following concept.

Definition 5.1 The profile of a partial schedule is defined as the difference between
the completion time of the last order on machine M2 and that on machine M1.

Algorithm FSM
Input
Given qij , gj (qij), i = 1, . . . , mj , j = 1, . . . , n; p1j , p2j , j = 1, . . . , n.
Initialization
Index the products in the sequence proposed by Johnson (1954).
Value Function
fj (δ) = maximum net profit from products 1, . . . , j , given that after product j is
scheduled, the profile of the schedule is δ.

5.2 Single-Period Product Based Problems 193

Boundary Condition
f0(0) = 0; fj (δ) = −∞, for δ < p2j or δ >

∑j

i=1 p2i , j = 1, . . . , n.
Optimal Solution Value

max
0≤δ≤∑n

j=1 ḡj p2j

{fn(δ)}.
Recurrence Relations

(i) If δ > p2j

fj (δ)

=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

max
1≤i≤mj

{
qij gj (qij) − p2j gj (qij) + fj−1(δ + (p1j − p2j)gj (qij))

}
, if p1j ≤ p2j

max
1≤i≤mj | gj (qij)≤�[δ+gj (qij)(p1j−p2j)−p2j]/(p1j−p2j)�

{
qij gj (qij) − p2j gj (qij)

+ fj−1(δ + (p1j − p2j)gj (qij))
}
, if p1j > p2j .

(ii) If δ = p2j

fj (p2j)

=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

max
1≤i≤mj

{
qij gj (qij) − p2j gj (qij) + fj−1(δ + (p1j − p2j)gj (qij))

}
, if p1j ≤ p2j

max
0≤δ′≤∑j−1

k=1 ḡkp2k , 1≤i≤mj | gj (qij)>�(δ′−p2j)/(p1j−p2j)�

{
qij gj (qij) − p1j gj (qij) − p2j

+ δ′ + fj−1(δ
′)
}
, if p1j > p2j .

Algorithm FSM considers each product in the sequence proposed by Johnson
(1954) and chooses the optimal price for that product. There are two cases for the
profile δ. Consider the first case, where δ > p2j . If p1j ≤ p2j , then no additional
idle time is created on machine M2 by the scheduling of gj (qij) orders of product
j . Alternatively, if p1j > p2j , then the profile is reduced by scheduling gj (qij)

orders of product j ; however, this case only occurs if gj (qij) is small enough that
no additional idle time is created on machine M2. Now, consider the second case,
where δ = p2j . If p1j ≤ p2j , then the above argument for the same condition still
applies. Alternatively, if p1j > p2j , then the new profile of p2j can only be achieved
if gj (qij) is large enough that the completion time of the last order on machine M1
is no earlier than the completion time of the second last order on machine M2.

Chen and Hall (2010) show that Algorithm FSM finds an optimal schedule for
the flowshop makespan problem in O(M

∑n
j=1 ḡjp2j) time.

194 5 Coordinated Product Pricing and Scheduling Decisions

5.2.2 NP -Hardness Proofs

Chen and Hall (2010) prove that all the three problems discussed above are
ordinarily NP -hard. We present their proofs below.

Theorem 5.1 The single-machine completion time problem is ordinarily NP-hard,
even when p1 = · · · = pn and w1 = · · · = wn.

Proof We show below that this problem is at least ordinarily NP -hard, by a reduc-
tion from the Partition problem, which is known to be binary NP-complete. This,
together with the pseudo-polynomial time algorithm SMCT given in Sect. 5.2.1,
implies that this problem is exactly ordinarily NP -hard. The Partition problem can
be described as follows:
Partition (Garey & Johnson, 1979): given t elements with integer sizes a1, . . . , at ,
where

∑t
i=1 ai = 2A, does there exist a partition S1, S2 of the index set {1, . . . , t}

such that
∑

i∈S1
ai = ∑

i∈S2
ai = A?

Consider the following instance of the recognition version of the single-machine
completion time problem:

n = t,

pj =1, j = 1, . . . , n
wj =1, j = 1, . . . , n
mj =2, j = 1, . . . , n
q1j =2A, j = 1, . . . , n
q2j =A + 1/2, j = 1, . . . , n
gj (q1j)=0, j = 1, . . . , n
gj (q2j)=aj , j = 1, . . . , n
Z =A2/2,

where Z denotes the threshold net profit.
We prove that there exists a feasible schedule for this instance of the single-

machine completion time problem with R − ∑∑
wjCij ≥ Z if and only if there

exists a solution to Partition.
(⇒) Assume that there exists a solution S1, S2 to Partition. For each product j ∈ S1,
set the price equal to q2j , and schedule aj incoming orders consecutively. For the
other products, set the price equal to q1j , and hence there are no orders to schedule.
Therefore, the net profit is

R −
∑∑

wjCij = (A + 1/2)
∑

j∈S1

aj −
∑

j∈S1

⎡

⎣aj (aj + 1)/2 + aj
∑

i∈S1,i<j

ai

⎤

⎦

= A2 + A/2 −
∑

j∈S1

aj /2 −
⎡

⎣
∑

j∈S1

aj

⎤

⎦

2

/2

= Z.

5.2 Single-Period Product Based Problems 195

(⇐) Let S denote the set of products that are priced at A + 1/2. Thus, there are
aj incoming orders of each product j ∈ S. Then, R = (A + 1/2)

∑
j∈S aj . Since

pj = 1 and wj = 1 for j ∈ S, any sequence of the incoming orders yields the same
total weighted completion time. Therefore, we assume that the orders are scheduled
in the order of their product indices. This implies that

∑∑
wjCij = ∑

j∈S[aj (aj+
1)/2 + aj

∑
i∈S,i<j ai]. Therefore, the net profit is

R −
∑∑

wjCij = (A + 1/2)
∑

j∈S
aj −

∑

j∈S

⎡

⎣aj (aj + 1)/2 + aj
∑

i∈S,i<j

ai

⎤

⎦

= (A + 1/2)
∑

j∈S
aj −

∑

j∈S
aj /2 −

⎡

⎣
∑

j∈S
aj

⎤

⎦

2

/2

=
⎛

⎝
∑

j∈S
aj

⎞

⎠

⎛

⎝2A −
∑

j∈S
aj

⎞

⎠ /2. (5.1)

Now, (5.1) achieves its maximum over all possible sets S when
∑

j∈S aj = 2A −
∑

j∈S aj , where R−∑∑
wjCij = A2/2 = Z. Therefore, if R−∑∑

wjCij ≥ Z,
then (S,N \ S) is a solution to Partition. ��
Theorem 5.2 The single-machine lateness problem is ordinarily NP-hard, even
when w1 = · · · = wn and d1 = · · · = dn.

Proof We show below that this problem is at least ordinarily NP -hard, which,
together with the pseudo-polynomial time algorithm SML given in Sect. 5.2.1,
implies that this problem is exactly ordinarily NP -hard.

We use a reduction from Partition, as described in the proof of Theorem 5.1.
Consider the following instance of the recognition version of the single-machine
lateness problem, where w1 = · · · = wn and d1 = · · · = dn:

n = t,

pj =aj , j = 1, . . . , n
wj =2A, j = 1, . . . , n
dj =A, j = 1, . . . , n
mj =2, j = 1, . . . , n
q1j =2A, j = 1, . . . , n
q2j =aj , j = 1, . . . , n
gj (q1j)=0, j = 1, . . . , n
gj (q2j)=1, j = 1, . . . , n
Z =A,

where Z denotes the threshold net profit.

196 5 Coordinated Product Pricing and Scheduling Decisions

We prove that there exists a feasible schedule for this instance of the single-
machine lateness problem with R − ∑∑

wjUij ≥ Z if and only if there exists a
solution to Partition.
(⇒) Assume that there exists a solution S1, S2 to Partition. For each product j ∈ S1,
set the price equal to q2j , which generates one order. For the other products, set the
price equal to q1j , which generates no orders. Schedule all the orders in arbitrary
order. Since the total processing time of the orders is equal to

∑
j∈S1

aj = A = dk ,
for k = 1, . . . , n, no order is late, and hence

∑∑
wjUij = 0. Therefore, the net

profit is
∑

j∈S1
q2j = ∑

j∈S1
aj = A = Z.

(⇐) Let S denote the set of products with price q2j . Thus, there is one order of each
product j ∈ S, and there are no orders of any other product. Then, R = ∑

j∈S aj .
Since wj − q2j > Z, for j = 1, . . . , n, no order is scheduled late. It follows that
(i)
∑

j∈S pj ≤ dk for k ∈ S, which implies
∑

j∈S aj ≤ A and (ii) R ≥ Z, which
implies

∑
j∈S aj ≥ A. Therefore,

∑
j∈S aj = A and (S,N \ S) is a solution to

Partition. ��
Theorem 5.3 The flowshop makespan problem is ordinarily NP-hard.

Proof We show below that this problem is at least ordinarily NP -hard, which,
together with the pseudo-polynomial time algorithm FSM given in Sect. 5.2.1,
implies that this problem is exactly ordinarily NP -hard.

We use a reduction from Partition, as described in the proof of Theorem 5.1. We
consider the following instance of the flowshop makespan problem:

n = t + 1
p1j =0, j = 1, . . . , n − 1
p1n =A

p2j =aj , j = 1, . . . , n − 1
p2n =1
mj =2, j = 1, . . . , n
q1j =A, j = 1, . . . , n − 1
gj (q1j)=0, j = 1, . . . , n − 1
q1n =2A2

gn(q1n)=0
q2j =aj /2, j = 1, . . . , n − 1
gj (q2j)=1, j = 1, . . . , n − 1
q2n =A2

gn(q2n)=1
Z =A2 − A/2 − 1,

where Z denotes the threshold net profit.
We prove that there exists a feasible schedule for this instance of the flowshop

makespan problem with the net profit greater than or equal to Z if and only if there
exists a solution to Partition.

5.2 Single-Period Product Based Problems 197

(⇒) Suppose that there exists a solution S1, S2 to Partition. Price each product j ∈
S1 ∪ {n} at q2j , thereby creating a demand of one unit for that product. Price each
product j ∈ S2 at q1j , thereby creating no demand. Schedule the order of product
n in the interval [0, A] on machine M1 and the interval [A,A + 1] on machine
M2. Schedule one order of each product in S1 in the interval [0, A] on machine
M2. The revenue R from scheduling the order of product n and the orders of S1
is A2 + A/2. Also, by construction, Cmax = A + 1. Therefore, the net profit is
R − Cmax = (A2 + A/2) − (A + 1) = A2 − A/2 − 1 = Z.
(⇐) Since

∑n−1
j=1 q2j < Z, any solution to the pricing and scheduling problem

with R − Cmax ≥ Z must schedule an order of product n. Since Cn ≥ A + 1 in any
schedule that includes an order of product n, the net profit from all other orders must
be at least Z − [A2 − (A + 1)] = A/2. Let S denote the set of other orders which
are scheduled and thus priced at q2j . Since p2j = 2q2j , for j ∈ S, such orders
can only be scheduled if they do not increase Cmax, i.e., they must be scheduled
in the available idle time in [0, A] on machine M2. It follows that

∑
j∈S aj ≤ A.

However, if
∑

j∈S p2j < A, then the additional net revenue earned from the orders
of S is

∑
j∈S q2j = ∑

j∈S p2j /2 < A/2, hence R − Cmax < Z. Therefore, we
must have

∑
j∈S p2j = A, which implies that (S, {1, . . . , n} \ S) is a solution to

Partition. ��

5.2.3 Fully Polynomial Time Approximation Schemes

Chen and Hall (2010) develop a fully polynomial time approximation scheme
(FPTAS) for each problem. As defined in Sect. 2.3.4, an FPTAS is a family of
algorithms {Aε} such that, for any given ε > 0, Aε delivers a solution that is within
a relative error ε from optimality and has a running time that is polynomial in both
the size of the input data and 1/ε.

Chen and Hall’s approximation schemes for the three problems are based on
dynamic programming algorithms that are similar to Algorithms SMCT, SML, and
FSM given in Sect. 5.2.1, respectively, with a key difference: the value function
is treated as a state variable. Their approximation schemes start with a state
space trimming approach that is often used to design approximation schemes for
classical scheduling problems without pricing decisions (Schuurman & Woeginger,
2011). However, in a classical scheduling problem, the number of orders is given,
whereas in our problems the number of orders is controlled by pricing decisions.
Consequently, the techniques developed by Chen and Hall (2010) extend the
existing approach.

For the single-machine total completion time problem, their approximation
scheme requires partitioning the range of possible net profit values into intervals of
equal width Δ. However, for the single-machine lateness problem and the flowshop
makespan problem, it is necessary to use intervals of geometrically increasing width
Δ,Δ2, Within each interval, only one partial schedule is retained, and the others

198 5 Coordinated Product Pricing and Scheduling Decisions

are discarded. This enables the dynamic program to run in a polynomial number of
steps, while controlling the loss of accuracy by adjusting the value of Δ.

In Sects. 5.2.3.1 and 5.2.3.2, we describe Chen and Hall’s approximation
schemes for two of the three problems: the single-machine completion time problem
and the flowshop makespan problem, respectively. We refer the interested readers
to Chen and Hall (2010) for their approximation scheme for the single-machine
lateness problem.

5.2.3.1 FPTAS for the Single-Machine Completion Time Problem

We begin our analysis of the single-machine completion time problem with a
preliminary result from Chen and Hall (2010).

Lemma 5.1 The optimal objective value of the single-machine completion
time problem, denoted as R(σ ∗) − ∑∑

wjCij (σ
∗), satisfies F0 ≤ R(σ ∗) −∑∑

wjCij (σ
∗) ≤ nF0, where F0 = max1≤j≤n,1≤i≤mj

{qij gj (qij) −
wjpjgj (qij)[gj (qij) + 1]/2}.
Proof F0 is a lower bound on optimal net profit which is found by considering only
one product. Since this value is calculated as the maximum over all products, an
upper bound on optimal net profit is found by taking n times this value and ignoring
the interactive cost terms between products. ��

We now describe the FPTAS developed by Chen and Hall (2010) for the
single-machine completion time problem. This scheme is based on a dynamic
programming algorithm with states (j, t, v), indicating that products 1, . . . , j have
been considered, and the schedule has makespan t and net profit v. Given two
partial schedules (j, t ′, v′) and (j, t ′′, v′′), where the values of v′ and v′′ are similar,
we eliminate the second partial schedule if t ′ ≤ t ′′, and the first partial schedule
otherwise. For a value of x such that iΔ ≤ x < (i + 1)Δ, we define the label
Δ(x) = Δi.

Algorithm CASε
Initialization:
Index the products in SWPT order.
Define F0 = max1≤j≤n,1≤i≤mj

{qij gj (qij)−wjpjgj (qij)[gj (qij)+1]/2}. Set Δ =
εF0/n.
State Variables:
(j, t, v) corresponds to a partial schedule that has considered products 1, . . . , j ,
where the schedule has makespan t and net profit v.
Initial State:
(0, 0, 0).
Trial State Generation:
For each state (j, t, v), generate mj+1 trial states (j + 1, t ′, v′) by pricing product

5.2 Single-Period Product Based Problems 199

j + 1 at qi,j+1 and then scheduling the resulting demand of gj+1(qi,j+1) orders, for
i = 1, . . . , mj+1.
Trial State Labeling:
For each trial state (j + 1, t ′, v′), attach the label (j + 1,Δ(v′)).
Trial State Elimination:
For each pair of trial states (j + 1, t ′, v′) and (j + 1, t ′′, v′′) with identical labels,
eliminate the second state if t ′ ≤ t ′′, and eliminate the first state otherwise.
Termination Test:
If j + 1 < n, then set j = j + 1 and return to the Trial State Generation step.
Otherwise, select a state (n, t̃ , ṽ) for which ṽ is largest, and backtrack to find the
corresponding schedule σ̃ε .

At the Initialization step, the value of Δ is set such that nΔ/ε = F0, where from
Lemma 5.1, F0 is a lower bound on optimal net profit. The Trial State Generation
step chooses the price qi,j+1, where 1 ≤ i ≤ mj+1, for product j + 1 that generates
a demand gj+1(qi,j+1) for that product and then schedules those orders. The Trial
State Labeling step labels each trial state, based on the number of orders considered
and the net profit value. The Trial State Elimination step compares the profile of
all trial states with the same label, keeps only one with the smallest makespan, and
discards the others.

Theorem 5.4 The family of algorithms {CASε}, for ε > 0, is an FPTAS for the
single-machine completion time problem, with O(n3mmax/ε) running time.

Proof We start by analyzing the net profit of the solution delivered by Algorithm
CASε . The proof is by induction on the number of products that have been
considered for scheduling. The induction hypothesis is as follows:

• Given any state (j, t, v) that is obtained under the exact dynamic program,
Algorithm CASε generates a state (j, t̃ , ṽ), where t̃ ≤ t and ṽ ≥ v − jΔ.

The hypothesis clearly holds for j = 0. Suppose that the hypothesis holds for
j = 0, 1, . . . , k. Let (k, t, v) define a state in the exact dynamic program.

We assume that the exact dynamic program prices product k + 1 at qi,k+1, for
some 1 ≤ i ≤ mk+1, and therefore that gk+1(qi,k+1) orders of product k + 1
are scheduled. We further assume that, in the exact dynamic program, this yields
a state (k + 1, t ′, v′). From the induction hypothesis, we have a state (k, t̃ , ṽ) in
the approximate dynamic program where t̃ ≤ t and ṽ ≥ v − kΔ. The trial state,
S, that is generated from (k, t̃ , ṽ) by pricing product k + 1 at qi,k+1 and scheduling
gk+1(qi,k+1) orders of product k+1 in Algorithm CASε is denoted by (k+1, t̃ ′, ṽ′).
We prove the following two claims about this state:

(i) t̃ ′ ≤ t ′. From the induction hypothesis, t̃ ≤ t . Moreover, the same orders
are added in the approximate and exact dynamic programs, and therefore the
increase in makespan is the same, i.e., t̃ ′ − t̃ = t ′ − t . Combining these
inequalities establishes the claim.

200 5 Coordinated Product Pricing and Scheduling Decisions

(ii) ṽ′ ≥ v′ − (k+1)Δ. From the induction hypothesis, ṽ ≥ v−kΔ. Now, Rk+1 =
qi,k+1gk+1(qi,k+1) in both the exact and approximate dynamic programs. Since
state (k + 1, t ′, v′) is generated from state (k, t, v), we have

v′ = v + Rk+1 − tgk+1(qi,k+1)wk+1 − gk+1(qi,k+1)[gk+1(qi,k+1) + 1]pk+1wk+1/2.

(5.2)

Similarly, since state (k + 1, t̃ ′, ṽ′) is generated from state (k, t̃ , ṽ), we have

ṽ′ = ṽ + Rk+1 − t̃gk+1(qi,k+1)wk+1 − gk+1(qi,k+1)[gk+1(qi,k+1) + 1]pk+1wk+1/2.

(5.3)

Equations (5.2) and (5.3), together with the induction hypothesis, imply that
ṽ′ ≥ v′ − kδ > v′ − (k + 1)δ.

It follows from claims (i) and (ii) that if trial state S exists in Algorithm
CASε , then the induction argument is complete.

However, trial state S may be eliminated by another trial state S′ = (k+1, τ1, τ2),
where τ1 ≤ t̃ ′ and τ2 ≥ ṽ′ − Δ, where the last bound holds because S and S′ have
the same label. If this happens, then we have: (i) τ1 ≤ t̃ ′ ≤ t ′ and (ii) τ2 ≥ ṽ′ −Δ ≥
v′ − (k + 1)Δ for S′. Thus, the induction hypothesis holds.

We now show that Algorithm CASε delivers a solution with the required
performance guarantee. Let the state (n, t, v∗) correspond to an optimal solution
with value v∗. Then, the above induction argument shows that Algorithm CASε

generates a solution σ̃ and a corresponding final state (n, t̃ , ṽ) with value ṽ, where
ṽ ≥ v∗ − nΔ. Therefore,

(R(σ∗) −∑∑
wjCij (σ

∗)) − (R(σ̃) −∑∑
wjCij (σ̃))

R(σ∗) −∑∑
wjCij (σ

∗) ≤ nΔ

R(σ∗) −∑∑
wjCij (σ

∗)
≤ ε,

where the last inequality follows from the specification of Δ in the Initialization step
and from Lemma 5.1.

Finally, we analyze the time complexity of Algorithm CASε . We first evaluate the
number of different labels that are used in the Trial State Labeling step. There are
O(n) values of j + 1. From the specification of Δ in the Initialization step and from
Lemma 5.1, there are O(n2/ε) possible labels for Δ(v′). Thus, the total number of
labels is O(n3/ε). Each state generates at most O(mmax) trial states. It follows that
the overall time complexity of Algorithm CASε is O(n3mmax/ε). ��

5.2.3.2 FPTAS for the Flowshop Makespan Problem

Chen and Hall’s (2010) FPTAS for the flowshop makespan problem is based on
a dynamic programming algorithm with states (j, h, v), indicating that products

5.2 Single-Period Product Based Problems 201

1, . . . , j have been considered, and the schedule has profile h and net profit v. Given
two partial schedules for the orders of products 1, . . . , j , with similar net profit
values, the partial schedule with a smaller profile is eliminated.

This FPTAS requires partitioning the range of possible net profit values into
intervals of geometrically increasing width Δ,Δ2, . . ., where

Δ = 1 + ε/2n, (5.4)

which implies the inequality

Δn ≤ 1 + ε, for 0 ≤ ε ≤ 2. (5.5)

Within each interval, only one partial schedule is retained and the others are
discarded. This enables the dynamic program to run in a polynomial number of
steps, while controlling the loss of accuracy by adjusting the value of Δ.

For a value of x such that Δi ≤ x < Δi+1, we define the label Δ(x) = Δi .

Algorithm MASε
Initialization:
Index the products in the sequence according to Johnson’s rule (Johnson, 1954). Set
Δ = 1 + ε/2n.
State Variables:
(j, h, v) corresponds to a partial schedule that has considered products 1, . . . , j ,
where the schedule has profile h and net profit v.
Initial State:
(0, 0, 0).
Trial State Generation:
For each state (j, h, v), generate mj+1 trial states (j + 1, h′, v′) by pricing product
j + 1 at qi,j+1 and then scheduling the resulting demand of gj+1(qi,j+1) orders, for
i = 1, . . . , mj+1.
Trial State Labeling:
For each trial state (j + 1, h′, v′), attach the label (j + 1,Δ(v′)).
Trial State Elimination:
For each pair of trial states (j + 1, h′, v′) and (j + 1, h′′, v′′) with identical labels,
eliminate the second state if h′ ≥ h′′, and eliminate the first state otherwise.
Termination Test:
If j + 1 < n, then set j = j + 1 and return to the Trial State Generation step.
Otherwise, select a state (n, h̃, ṽ) for which ṽ is largest, and backtrack to find the
corresponding schedule σ̃ε .

Theorem 5.5 The family of algorithms {MASε}, for ε > 0, is an FPTAS for the
flowshop makespan problem, withO(n2mmax log(nmax1≤j≤n,1≤i≤mj

{qij gj (qij)})/
ε) running time.

Proof We start by analyzing the cost of the solution delivered by Algorithm MASε .
Our proof uses induction on j . The induction hypothesis is that, given any state

202 5 Coordinated Product Pricing and Scheduling Decisions

(j, h, v) that is obtained under the exact dynamic program, Algorithm MASε

generates a state (j, h̃, ṽ), where h̃ ≥ h and ṽ ≥ v/Δj . The hypothesis clearly
holds for j = 0. Suppose that the hypothesis holds for j = 0, 1, . . . , k. Let (k, h, v)
define a state in the exact dynamic program.

We assume that the exact dynamic program prices product k + 1 at qi,k+1, for
some 1 ≤ i ≤ mk+1, and therefore that gk+1(qi,k+1) orders of product k + 1
are scheduled. We further assume that, in the exact dynamic program, this yields
a state (k + 1, h′, v′). From the induction hypothesis, we have a state (k, h̃, ṽ) in
the approximate dynamic program, where h̃ ≥ h and ṽ ≥ v/Δk . The trial state, S,
that is generated from (k, h̃, ṽ) by pricing product k + 1 at qi,k+1 and scheduling
gk+1(qi,k+1) orders of product k+1 in Algorithm MASε is denoted by (k+1, h̃′, ṽ′).
We prove the following two claims about this state.

(i) h̃′ ≥ h′. From the induction hypothesis, h̃ ≥ h. The state (k + 1, h̃′, ṽ′) in the
approximate dynamic program is generated from (k, h̃, ṽ) by adding the same
set of orders as those that are added when (k + 1, h′, v′) is generated from
(k, h, v) in the exact dynamic program. The fact that h̃ ≥ h then implies that
h̃′ ≥ h′.

(ii) ṽ′ ≥ v′/Δk+1. From the induction hypothesis, ṽ ≥ v/Δk . Now, Rk+1 =
qi,k+1gk+1(qi,k+1) in both the exact and approximate dynamic programs. By
the same argument as in the proof of claim (i), it follows that the increase in
makespan that results from the scheduling of product k + 1 is no larger in the
approximate dynamic program than in the exact dynamic program. Combining
these facts, we have ṽ′ − ṽ ≥ v′ − v ≥ v′/Δk − v/Δk . This implies that
ṽ′ ≥ ṽ + v′/Δk − v/Δk ≥ v′/Δk ≥ v′/Δk+1, where the second inequality
follows from the induction hypothesis.

It follows from claims (i) and (ii) that if trial state S exists in Algorithm MASε , then
the induction argument is complete.

However, trial state S may be eliminated by another trial state S′ = (k+1, τ1, τ2),
where τ1 ≥ h̃′, and τ2 ≥ ṽ′/Δ, and where the second bound holds because S and S′
have the same label. Then, we have: (i) τ1 ≥ h̃′ ≥ h′ and (ii) τ2 ≥ ṽ′/Δ ≥ v′/Δk+1

for S′. Thus, the presence of trial state S′ in Algorithm MASε establishes that the
induction hypothesis holds.

We now show that Algorithm MASε delivers a solution with the required
performance guarantee. Let the state (n, h, v) correspond to an optimal solution
with value v∗. Then, the above induction argument shows that Algorithm MASε

generates a solution σ̃ and a corresponding final state (n, h̃, ṽ) with value ṽ, where
ṽ ≥ v∗/Δn. Therefore,

[(R(σ ∗)−Cmax(σ
∗))−(R(σ̃ −Cmax(σ̃))]/[R(σ ∗)−Cmax(σ

∗)] ≤ 1−1/Δn ≤ 1−1/(1+ε) ≤ ε,

where the second last inequality follows from (5.5).
Finally, we analyze the time complexity of Algorithm MASε . We first evaluate

the number of different labels that are used in the Trial State Labeling step. There
are O(n) values of j + 1. Since an upper bound on optimal net profit is given by

5.2 Single-Period Product Based Problems 203

nmax1≤j≤n,1≤i≤mj
{qij gj (qij)}, the number of possible values for the label Δ(v′)

is no more than

�logΔ(n max
1≤j≤n,1≤i≤mj

{qij gj (qij)})� = �log(n max
1≤j≤n,1≤i≤mj

{qij gj (qij)})/ logΔ�

≤ �(1 + 2n/ε) log(n max
1≤j≤n,1≤i≤mj

{qij gj (qij)})�,

where the last inequality follows from (5.4) and the inequality log x ≥ (x−1)/x for
all x > 1. Thus, the total number of labels is O(n2 log(nmax1≤j≤n,1≤i≤mj

{
qij gj

(qij)
}
)/ε). Each state generates at most O(mmax) trial states. Thus, the overall time

complexity of Algorithm MASε is O(n2mmax log(nmax1≤j≤n,1≤i≤mj
{qij gj (qij)})

/ε). ��

5.2.4 Heuristics

Chen and Hall (2010) develop three heuristics with an increasing level of coordina-
tion between pricing and scheduling decisions and use them to evaluate the value
of pricing–scheduling coordination through a computational experiment. The three
heuristics are:

• An uncoordinated Heuristic H1 where pricing and scheduling decisions are made
independently,

• A partially coordinated Heuristic H2 that uses only basic information about
scheduling that a marketing department typically knows,

• A simple Heuristic H3 for solving the coordinated problem.

They are described in this section. In Sect. 5.2.5, we describe the computational
experiments performed by Chen and Hall (2010) that compare the solutions
generated by these heuristics and the optimal solutions generated by the exact
algorithms given earlier and report the related managerial insights.

In the first Heuristic, H1, there is no coordination between pricing and scheduling
decisions. The pricing decision is made first by maximizing the total revenue with-
out considering its impact on scheduling costs. Since scheduling is not considered,
the pricing decision can be made separately for each product. Given the demand,
which is determined by the pricing decision, the scheduling decision is then made
by minimizing the total scheduling cost. A formal description follows.

Heuristic H1
Step 1: For j = 1, . . . , n, choose price qkj ,j for product j , where kj =

arg max1≤i≤mj
{qij gj (qij)}.

Step 2: Given gj (qkj ,j) orders of product j , for j = 1, . . . , n, schedule these orders
optimally to minimize the total scheduling cost. More specifically, for the single-
machine completion time problem, it is optimal to schedule the given orders in

204 5 Coordinated Product Pricing and Scheduling Decisions

SWPT order (Smith, 1956). Similarly for the flowshop makespan problem, it is
optimal to schedule the orders by Johnson’s rule (Johnson, 1954). However, the
single-machine lateness problem in Step 2 is NP -hard (Karp, 1972). Therefore,
we use the pseudo-polynomial time dynamic program of (Lawler & Moore,
1969) to solve this problem.

In the second Heuristic, H2, there is partial coordination between pricing and
scheduling decisions. The pricing decision is again made separately for each
product, but the cost of scheduling the demand for that product alone is considered
when the pricing decision is made. However, the contribution of that product to the
scheduling cost of the other products and the contribution of the other products to
the scheduling cost of that product are both ignored.

Heuristic H2
Step 1: For j = 1, . . . , n, choose price qkj ,j for product j , where kj =
arg max1≤i≤mj

{qij gj (qij) − zj (gj (qij))}, where zj (gj (qij)) is the cost of
scheduling gj (qij) orders of product j , starting from time 0. The scheduling
cost zj (gj (qij)) is calculated assuming that there are no other products on the
machine(s). For the single-machine completion time problem and the flowshop
makespan problem, the scheduling cost zj (gj (qij)) can easily be calculated because
all the orders of a product are identical. However, for the single-machine lateness
problem, we first schedule as many orders as possible on time subject to the due
date constraint and then compute the cost of scheduling the remaining orders after
the due date.
Step 2: The same as Step 2 of Heuristic H1.

In contrast to Heuristics H1 and H2 where there is either no coordination or
only partial coordination, the exact algorithms SMCT, SML, and FSM described
in Sect. 5.2.1 jointly optimize the pricing and scheduling decisions. However,
it may be difficult to implement these complex and relatively time-consuming
algorithms in practice. Therefore, Chen and Hall (2010) propose a third heuristic,
H3, that considers the pricing and scheduling decisions jointly but is much easier to
implement and runs much faster than the exact dynamic programming algorithms.
If the marketing and manufacturing departments fully coordinate their operations,
knowledge of the production sequence is available to the marketing department and
hence may be used in its pricing decisions. Thus in H3, the products are considered
in a sequence that is optimal with respect to the scheduling cost, and the heuristic
pricing decision for each product is made based on both revenue and scheduling
cost information.

Heuristic H3
Step 0: Index the products in SWPT order, EDD order, or the order prescribed by
Johnson’s rule (Johnson, 1954), for the single-machine completion time problem,
the single-machine lateness problem, and the flowshop makespan problem, respec-
tively.
Step 1: For j = 1, . . . , n, choose price qkj ,j for product j , where kj =
arg max1≤i≤mj

{qij gj (qij) − yj (gj (qij)}, where yj (gj (qij)) is the cost of schedul-
ing gj (qij) orders of product j , after the g1(qk11) orders of product 1, . . .,

5.2 Single-Period Product Based Problems 205

gj−1(qkj−1,j−1) orders of product j − 1, that have been scheduled earlier. The cost
function yj (gj (qij)) is computed similarly to zj (gj (qij)) in Heuristic H2. However,
whereas zj (gj (qij)) in H2 assumes that the orders start at time 0, yj (gj (qij)) in H3
considers the processing time of orders that have already been scheduled. Note that
the decisions about qij made in this way are locally optimal, in that the net profit of
the current product j , but not of the whole schedule, is being maximized.
Step 2: The same as Step 2 of Heuristic H1.

To illustrate how these heuristics work, we apply them to a simple instance of the
single-machine completion time problem below.

Example 5.2 (Application of Heuristics H1, H2, and H3) We apply Heuristics
H1, H2, and H3 to the following instance of the single-machine completion time
problem with 3 products.

Product j 1 2 3

pj 1 2 4

wj 2 1 1

Allowable prices Qj {5, 10, 20} {15, 25} {20, 35}
Corresponding demand gj {5, 2, 1} {3, 2} {3, 1}

First, we apply H1 to this instance. Step 1 chooses an allowable price for each
product that maximizes the revenue of this product. This means that for products
1, 2, and 3, allowable prices 5, 25, and 20 are chosen, respectively. This results in 5,
2, and 3 orders of products 1, 2, and 3, respectively. Step 2 schedules these orders
in the SWPT sequence of the products, which is (1, 2, 3). In this solution, the total
revenue is 5(5) + 25(2) + 20(3) = 135, and the total weighted completion time of
the orders is 2(1 + 2 + 3 + 4 + 5) + 1(7 + 9) + 1(13 + 17 + 21) = 97. Thus, the
net profit is 135 − 97 = 38.

Next, we apply H2. Step 1 chooses an allowable price for each product that
maximizes the revenue of this product minus the total weighted completion time
of the orders of this product, without considering the orders of other products.
For product 1, if allowable price 5 is chosen, then the net profit of this product
is 5(5) − 2(1 + 2 + 3 + 4 + 5) = −5; if allowable price 10 is chosen, then the net
profit is 10(2) − 2(1 + 2) = 14; and if allowable price 20 is chosen, then the net
profit is 20(1) − 2(1) = 18. Thus, allowable price 20 is used for product 1 with a
demand of 1 order. Similarly, we can find that for product 2 allowable price 25 is
chosen with a demand of 2 orders, and for product 3 allowable price 20 is chosen
with a demand of 3 orders. Step 2 schedules these orders in the SWPT sequence.
In this solution, the total revenue is 20(1) + 25(2) + 20(3) = 130, and the total
weighted completion time of the orders is 2(1) + 1(3 + 5) + 1(9 + 13 + 17) = 49.
Thus, the net profit is 130 − 49 = 81.

Finally, we apply H3. Step 1 chooses an allowable price for each product that
maximizes the revenue of this product minus the total weighted completion time

206 5 Coordinated Product Pricing and Scheduling Decisions

of the orders of this product, taking into account the orders of the other products
that have already been scheduled. For product 1, since no other products have been
considered, the same allowable price as in H2 is chosen, i.e., allowable price 20 is
used for product 1 with a demand of 1 order. For products 2 and 3, however, when
choosing the best allowable price, the cost contribution of the product is calculated
based on a starting time equal to the total processing time of the orders that have
already been scheduled. Thus, for product 2, the starting time for any order is 1, not
0, because 1 order of product 1 has been scheduled. If allowable price 15 is chosen,
then the net profit of this product is 15(3) − 1(3 + 5 + 7) = 30, and if allowable
price 25 is chosen, then the net profit is 25(2) − 1(3 + 5) = 42. Thus for product
2, allowable price 25 is chosen with a demand of 2. Now for product 3, the starting
time is 5. It can be easily verified that for product 3, allowable price 35 is chosen
with a demand of 1. This solution has a total revenue 20(1)+ 25(2)+ 35(1) = 105
and a total weighted completion time of the orders 2(1)+1(3+5)+1(9) = 19. Thus
the net profit of this solution is 105 − 19 = 86. This heuristically derived solution
happens to be an optimal one.

The computational results from Chen and Hall (2010) are reported in the next
subsection. These results show that for all the three problems, on average, H3
performs better than H2 which performs better than H1. In fact, Chen and Hall
(2010) prove more strongly that for the single-machine completion time problem,
the performance of H3 dominates that of H2 which dominates that of H1 for every
instance. This is shown in the theorem below. However, for the other two problems,
their computational results show that there exist problem instances for which H1
performs better than H2, and there exist problem instances for which H2 performs
better than H3.

Theorem 5.6 For any instance of the single-machine completion time problem,
the profit generated by Heuristic H3 is at least as large as the profit generated by
Heuristic H2, which is at least as large as the profit generated by Heuristic H1.

Proof Let kj1, kj2, kj3 ∈ {1, . . . , mj } denote the price level chosen for product
j ∈ N by Heuristics H1, H2, and H3, respectively. By comparing the ways in
which these heuristics choose prices for the products, it is evident that gj (qkj1,j) ≥
gj (qkj2,j) ≥ gj (qkj3,j), and hence kj1 ≤ kj2 ≤ kj3, for j ∈ N . Let zji denote the
cost of scheduling gj (qkji ,j) orders of product j , starting from time 0, for i = 1, 2, 3
and j ∈ N . Let Rji = qkji ,j gj (qkji ,j), for i = 1, 2, 3. Let F1, F2, and F3 denote
the net profit of the solution generated by H1, H2, and H3, respectively. We have

Fi =
∑

j∈N
Rji −

∑

j∈N
zji −

∑

j∈N

⎡

⎣wjgj (qkji ,j)

j−1∑

v=1

pvgv(qkvi ,v)

⎤

⎦ , for i = 1, 2, 3.

(5.6)
From Step 1 of Heuristic H2,

Rj2 − zj2 ≥ Rj1 − zj1, for j ∈ N. (5.7)

5.2 Single-Period Product Based Problems 207

The fact that gj (qkj1,j) ≥ gj (qkj2,j), for j ∈ N , implies that

wjgj (qkj1,j)

j−1∑

v=1

pvgv(qkv1,v)

≥ wjgj (qkj2,j)

j−1∑

v=1

pvgv(qkv2,v), for j ∈ N. (5.8)

Then, from (5.6), (5.7), and (5.8), we have F2 ≥ F1.
Furthermore, from Step 1 of Heuristic H3,

Rj3 − zj3 − wjgj (qkj3,j)

j−1∑

v=1

pvgv(qkv3,v)

≥ Rj2 − zj2 − wjgj (qkj2,j)

j−1∑

v=1

pvgv(qkv3,v), for j ∈ N. (5.9)

The fact that gj (qkj2,j) ≥ gj (qkj3,j), for j ∈ N , implies that

wjgj (qkj2,j)

j−1∑

v=1

pvgv(qkv2,v) ≥ wjgj (qkj2,j)

j−1∑

v=1

pvgv(qkv3,v), for j ∈ N.

(5.10)
Then, from (5.6), (5.9), and (5.10), we have F3 ≥ F2. ��

5.2.5 Computational Results and Managerial Insights

We summarize the computational experiments performed by Chen and Hall (2010)
and the associated results and insights. Their computational experiments are con-
ducted to address the following questions: (i) how much improvement in net profit
can be achieved between the uncoordinated Heuristic H1, the partially coordinated
Heuristic H2, the fully coordinated Heuristic H3, and the optimally coordinated
algorithm? (ii) how do these improvements vary with problem parameters? and (iii)
what other solution characteristics change as the level of coordination increases?

Following guidelines about the design of computational experiments from Hall
and Posner (2001), Chen and Hall (2010) generate a large set of test instances to
cover a wide variety of practical situations. The number of products varies from 10
to 50, the number of allowable prices for each product ranges from 2 to 12, a linear
demand function gj (qij) = max{0, �αj −βjqij �} is used with varying ranges for αj
and βj , and all other parameters such as order processing times, weights, and due
dates are generated from varying intervals. We show in Table 5.1 the overall average

208 5 Coordinated Product Pricing and Scheduling Decisions

Table 5.1 Comparison of heuristics and optimal solutions

Profit gap % Demand gap %

H1 H2 H3 H1 H2 H3

Problem Mean Stdev Mean Stdev Mean Stdev Mean Mean Mean

Single-machine
completion time
problem

32.32 15.66 25.94 12.30 4.44 2.38 32.29 28.89 11.45

Single-machine
lateness problem

7.35 3.75 5.38 3.07 2.02 1.66 16.53 13.53 0.03

Flowshop
makespan
problem

15.96 7.81 4.09 3.37 2.84 3.33 21.77 −7.84 −2.05

of each performance measure for each problem, as reported in Chen and Hall (2010).
Each row in Table 5.1 is based on thousands of instances tested. In this table, the
columns under “Profit gap” show the relative gap (expressed as a percentage) in
net profit between the solutions generated by Heuristics H1, H2, and H3 described
in Sect. 5.2.4 and the optimal coordinated solution generated by the corresponding
dynamic programming algorithm described in Sect. 5.2.1, respectively. The columns
under “Demand gap” show the relative gap (expressed as a percentage) in total
realized demand of all the products (i.e., the total number of orders) between the
solution of H1, H2, and H3 and the optimal coordinated solution. The columns
“Mean” and “Stdev” represent the mean and standard deviation of the results over a
large number of random instances, respectively. Chen and Hall (2010) find that each
heuristic takes less than 10 CPU seconds and each dynamic programming algorithm
takes less than 100 CPU seconds to solve any test problem on a 1 GHz personal
computer.

We first discuss the overall performance of the three heuristics. The value of
partial coordination in Heuristic H2 compared to no coordination in Heuristic
H1 can be seen in reduced mean profit gaps in all the three problems. Further
significant improvements are offered by full coordination in Heuristic H3 for the
three problems, respectively. Moreover, for all the three problems, the standard
deviations of the profit gaps associated with H3 are significantly smaller than those
associated with H2, which are smaller than those associated with H1. This implies
that the performance of H3 is more robust than that of H2, which is more robust than
that of H1. Since Heuristic H3 routinely delivers solutions that are close to optimal,
we recommend it as a faster and simpler alternative to the implementation of the
optimal dynamic programming algorithms described in Sect. 5.2.1.

Chen and Hall (2010) also report the following sensitivity analysis results
regarding total net profit:
1. For all the three problems, when demand is more sensitive to price, all three
heuristics show much larger profit gaps under every configuration of the other
parameters. This is because high sensitivity of demand to price magnifies heuristic
errors in price choices.

5.2 Single-Period Product Based Problems 209

2. For the single-machine completion time and lateness problems, when the order
weights (wj) are larger, all three heuristics show much larger profit gaps under
every configuration of the other parameters. Similarly, for the flowshop makespan
problem, when processing times (p1j , p2j) are larger, all three heuristics show
much larger profit gaps under every configuration of the other parameters. This is
because Heuristics H1 and H2 fail to fully consider the scheduling costs that are
more significant when wj in the first two problems and p1j and p2j in the last
problem are larger.
3. For the single-machine lateness problem, when due dates are tighter, Heuristics
H1 and H2 show much larger profit gaps under every configuration of the other
parameters. This is because difficulty in meeting the due dates magnifies the cost of
heuristic errors in scheduling choices. On the contrary, the performance of Heuristic
H3 does not vary much with the tightness of due dates and hence is more robust than
H1 and H2.

Chen and Hall (2010) also make the following observations about the total
demand scheduled by the three heuristics and the optimal algorithm. Since it does
not consider cost, Heuristic H1 receives substantially more orders than the optimal
algorithm. Since Heuristic H2 partially considers cost, the excess demand it receives
compared to the optimal algorithm is less than that in the case of H1 for the first two
problems, respectively. However, for the flowshop makespan problem, H2 results
in a demand shortfall compared to the optimal algorithm, due to overestimation
of the increase in flowshop makespan when an order is added. Since Heuristic H3
evaluates cost more accurately, it produces a much lower excess demand than the
other heuristics for the single-machine completion time problem and gets very close
to the same total demand as the optimal algorithm for the other two problems.

Based on the above discussions, Chen and Hall (2010) offer the following
insights that can be useful for practitioners:

1. In situations where demand is sensitive to price or where profit margins
are relatively small, the coordination of pricing and scheduling decisions is
particularly important. For managers who require a solution that is easier to
implement, we recommend using Heuristic H3, which routinely provides near-
optimal coordinated solutions for all the three problems studied here.

2. In situations where communication between marketing and production is poor
and full coordination is therefore impossible, it is still valuable to use the partially
coordinated Heuristic H2, since it provides a significant improvement in average
profit over the uncoordinated Heuristic H1.

3. While profit is in many cases the primary objective, an important secondary
objective is market share, as measured by the percentage of realized demand
enjoyed by the company. Here, the heuristics generally perform well; however,
Heuristic H2 does not typically achieve a good market share for the flowshop
makespan problem.

4. For consistent success, it is best to align the incentives of the marketing and
production departments. Therefore, performance incentives within the marketing
department should be based on net profit rather than revenue. Implementing such

210 5 Coordinated Product Pricing and Scheduling Decisions

incentives requires communication of detailed schedules and their costs between
the production and marketing departments.

5.3 Single-Period Order Based Problems

Liu et al. (2012) and Lu et al. (2013) study single-period coordinated price quotation
and scheduling problems involving the following sequence of events:

• a known set of order inquiries arrive simultaneously at the beginning of the time
period;

• the decision maker (DM) quotes a price to every order either simultaneously or
sequentially;

• each order is placed with a certain probability as a function of the quoted price;
• the decision maker schedules the placed orders for processing on a single

machine.

Two schemes for price quotation are studied. Under a simultaneous quotation
scheme, the DM quotes a price for every order inquiry simultaneously and waits for
a confirmation from the customer of each inquiry that the order is either placed or
not. Liu et al. (2012) explain that in practice, order inquiries arrive dynamically over
time, but the manufacturer often postpones the quotation decisions until a sufficient
number of order inquiries have arrived or the deadline for quotation is reached. This
enables the manufacturer to use a simultaneous quotation scheme for a set of order
inquiries that have arrived over a given period of time.

Under a sequential quotation scheme, the DM handles order inquiries that have
arrived one by one and quotes a price for an inquiry after knowing the customers’
decisions on all the inquiries that have been quoted before that. Clearly, sequential
quotation benefits the DM because more information is available when a price
quotation is made.

In the problem studied in Lu et al. (2013), there is a discrete set of allowable
prices that can be quoted for each order, whereas in the problem studied in Liu
et al. (2012) any price from a given interval can be quoted. There are two major
differences between these problems and those studied in Chen and Hall (2010) and
discussed in Sect. 5.2: (i) in the former problems, the size of an order is known
beforehand and independent of the price quoted for the order, whereas in the latter
problems the order size for a product is a function of the price set for this product
and (ii) in the former problems, whether an order is placed or not is uncertain, with
its probability as a function of the price quoted, whereas in the latter problems each
order is placed with certainty. As a result, the latter problems are stochastic and their
objective functions involve the expected total profit, whereas the former problems
are deterministic and their objective functions involve the total profit.

In Sects. 5.3.1 and 5.3.2 below, we discuss the problems considered in Lu et al.
(2013) and Liu et al. (2012), respectively.

5.3 Single-Period Order Based Problems 211

5.3.1 Discrete Allowable Prices

We use the notation given in Lu et al. (2013) to describe the problem they study. A
manufacturer receives a set of n order inquiries N = {1, . . . , n} at the beginning of
the planning horizon and needs to quote a price to every order simultaneously. There
are mj allowable prices that can be quoted for inquiry j ∈ N . Let q1j > · · · > qmj ,j

denote these allowable prices. The probability that inquiry j materializes as a firm
order (i.e., the order is actually placed), which we call the placement probability, is a
known decreasing function of the price quoted. Let πij be the placement probability
if the price quoted is qij . If inquiry j becomes a firm order after it is quoted a
price Rj ∈ {q1j , . . . , qmj ,j }, then the manufacturer needs to process it, which
takes the manufacturer pj time units to complete and earns a revenue of Rj . Each
order inquiry j is associated with a weight wj . If inquiry j materializes and its
order completes processing at time Cj , then the cost contribution of this inquiry is
its weighted completion time, i.e., wjCj . The manufacturer’s decision problem is
to make price quotations as discussed above to maximize its expected net profit,
which is the expected total revenue minus the expected total weighted completion
time of the given n order inquiries. We note that in this problem the order size, as
represented by its processing time pj , is not a function of the quoted price, unlike
in the problems of Chen and Hall (2010).

To solve this problem, we first make two observations. First, for each order
inquiry j ∈ N , given the one-to-one relationship between each allowable price
qij that can be quoted and the corresponding placement probability πij , for i =
1, . . . , mj , finding optimal price quotations for the given inquiries is equivalent
to finding the placement probabilities for these inquiries. Second, since the cost
contribution of each order inquiry is its weighted completion time, it is thus optimal
to schedule the placed orders in the shortest weighted processing time (SWPT) order
(Smith, 1956). Thus, without loss of generality, we assume that the order inquiries
are indexed such that p1/w1 ≤ p2/w2 ≤ · · · ≤ pn/wn.

Lu et al. (2013) provide the following results. Since these results are fairly
straightforward, we do not show their proofs.

Theorem 5.7 For any given placement probabilities for the n inquiries, π1, . . . , πn,
where πj ∈ {π1j , . . . , πmj ,j }, for j ∈ N , the expected total weighted completion is
equal to

n∑

j=1

πjwj

⎛

⎝
j−1∑

i=1

πipi + pj

⎞

⎠ (5.11)

and is also equal to

n∑

j=1

πjpj

⎛

⎝
n∑

i=j+1

πiwi + wj

⎞

⎠ . (5.12)

212 5 Coordinated Product Pricing and Scheduling Decisions

Lu et al. (2013) point out that this problem contains a known NP -hard
scheduling problem with rejection (Engels et al., 2003) as a special case and
hence is at least ordinarily NP -hard. They give a pseudo-polynomial time dynamic
programming algorithm for solving the problem. The pseudo-polynomial time
complexity of the algorithm relies on the following practical assumption:

Assumption: The placement probabilities of orders, πij , for i = 1, . . . , mj and
j ∈ N , can all be expressed as integer multiples of a small positive fractional
number δ.

This assumption holds automatically if all πij values are rational numbers. Under
this assumption, if the placement probabilities of the first j inquiries are π1, . . . , πj ,
respectively, then the total expected processing time incurred by these inquiries,
∑j

i=1 πipi , is an integer multiple of δ, which as shown below guarantees that the
computational time of the algorithm is pseudo-polynomial.

Now we describe the algorithm of Lu et al. (2013).

Algorithm TWCP
Input
Given mj , pj ,wj , qij , πij for i = 1, . . . , mj and j = 1, . . . , n.
Initialization
Index the order inquiries in the SWPT order.
Value Function
f (j, r) = maximum expected profit from order inquiries 1, . . . , j , given that the
expected total processing time of the orders corresponding to these inquiries is
r (i.e.,

∑j

i=1 πipi = r if the placement probabilities of these inquiries are
π1, . . . , πn).
Boundary Condition
f (0, r) = 0, if r = 0; and −∞, if r �= 0.
Optimal Solution Value

max
r∈{0,δ,2δ,...,P−δ,P } f (n, r), where P = ∑

j∈N pj .

Recurrence Relation
For j = 1, . . . , n and r = 0, δ, 2δ, . . . , P − δ, P :
f (j, r) = max

i=1,...,mj

{
f (j − 1, r − πijpj) + πij qij − πijwj (r − πijpj + pj)

}
.

In the recurrence equation of the algorithm, every allowable price for inquiry j is
compared to maximize the expected profit from the first j inquiries, given that the
expected total processing time resulting from these inquiries is r . The term πij qij
is the expected revenue from inquiry j , r − πijpj is the expected total processing
time from the first j − 1 inquiries, and πijwj (r − πijpj + pj) is the expected
weighted completion time contributed by inquiry j . Lu et al. (2013) show that the
time complexity of this algorithm is O(nmmaxP/δ), where mmax = max{mj |j ∈
N}.

5.3 Single-Period Order Based Problems 213

By Theorem 5.7, the expected total cost can also be written as (5.12). Based on
this, Lu et al. (2013) provide a second dynamic programming algorithm for solving
their problem. It is presented below. It uses the same input and initialization step as
Algorithm TWCP.

Algorithm TWCW
Value Function
f (j, r) = maximum expected profit from order inquiries 1, . . . , j , given that the
expected total weight of the orders corresponding to these inquiries is r (i.e.,
∑j

i=1 πiwi = r if the placement probabilities of these inquiries are π1, . . . , πn).
Boundary Condition
f (n + 1, r) = 0, if r = 0; and −∞, if r �= 0.
Optimal Solution Value

max
r∈{0,δ,2δ,...,W−δ,W } f (1, r), where W = ∑

j∈N wj .

Recurrence Relations
For j = n − 1, . . . , 1 and r = 0, δ, 2δ, . . . ,W − δ,W :
f (j, r) = max

i=1,...,mj

{
f (j + 1, r − πijwj) + πij qij − πijpj (r − πijwj + wj)

}
.

Lu et al. (2013) show that the time complexity of this algorithm is
O(nmmaxW/δ). Furthermore, for the special case of the problem where the weights
of the order inquiries wj are identical (i.e., the cost function in the problem becomes
the expected total completion time of the order inquiries), this algorithm has a
polynomial time complexity O(n2mmax/δ). This is because in this case, W = nw,
where w is the identical weight for all the order inquiries, and for any j = 1, . . . , n,
only the states (j, r) with r = 0, wδ, 2wδ, . . . ,W − wδ,W need to be considered
in the dynamic program.

We highlight some of the computational results and insights derived by Lu et al.
(2013).

• They show that both algorithms TWCP and TWCW are very efficient and can
solve large instances of the problem quickly.

• In their problem, it is assumed that there is a finite number of allowable prices
that can be quoted for each order inquiry. They investigate the potential profit
loss caused by a limit on the number of allowable prices (mj), by varying mj

from 2 to 50. In practice, a company may limit the number of allowable prices it
uses in order to simplify its decision process. They find that the expected profit
loss relative to the maximum possible expected profit that can be achieved when
mj = 50 decreases rapidly from more than 10% to less than 1% as mj increases
from 2 to 10. However, it approaches a constant level near 0 when mj ≥ 15. This
suggests that the benefit of considering more possible prices to quote diminishes
once mj ≥ 15.

• In their problem, the manufacturer can quote a distinct price for each order.
Although price discrimination may not be illegal, quoting different prices to
different customers could be perceived as unfair. They therefore investigate the
expected profit loss if an identical unit price scheme is used across different

214 5 Coordinated Product Pricing and Scheduling Decisions

orders. With an identical unit pricing scheme, the manufacturer can choose a
unit price R and quote price Rj = Rpj for each order inquiry j ∈ N . In
addition, the manufacturer also has the option to reject an order inquiry. In other
words, an inquiry j is either rejected or quoted a price Rj = Rpj , where the
unit price R is a decision to be made and can be chosen from a discrete set
of allowable prices. Their computational results show that the expected profit
loss from identical unit pricing increases as customers (or orders) become more
heterogeneous. Moreover, even when customers are quite similar, the profit loss
is quite significant, especially when the price probability function is nonlinear.

5.3.2 Continuous Allowable Prices

Liu et al. (2012) study two problems with continuous allowable prices, one with
simultaneous price quotation and the other with sequential quotation. For ease of
presentation, we denote these problems as SIMQ and SEQ, respectively. We discuss
these two problems in Sects. 5.3.2.1 and 5.3.2.2, respectively.

5.3.2.1 Simultaneous Quotation

Problem SIMQ is similar to the problem described in Sect. 5.3.1 with the following
two differences: (i) the price that can be quoted for inquiry j can be any value from
an interval, and (ii) the placement probability is a linear function of the quoted price
for every inquiry. For convenience of analysis, Liu et al. (2012) treat the placement
probability for each inquiry j , πj , as a decision to be made by the manufacturer,
and given this decision, the corresponding unit price that is quoted to inquiry j is a
function of πj , denoted as Rj (πj). This function is assumed to be linear, with the
inquiry independent coefficients:

Rj (πj) = aπj + b, (5.13)

where a and b are given coefficients with a < 0 and b ≥ |a| and 0 ≤ πj ≤ u for
a positive constant u ≤ 1. Liu et al. (2012) make the following assumption about
some of the problem parameters:

Assumption wmax < min{−2a, b}, where wmax = max{wj |j ∈ N}.
This is a reasonable assumption for the following reasons. By (5.13), the price

pj can vary from au + b to b, and hence the price range is −au ≤ −a. Thus, the
assumption that wmax < −2a means that the unit scheduling cost wj cannot be too
large relative to the price range. Similarly, the assumption that wmax < b ensures
that the unit scheduling cost is not too large relative to the order revenue.

The problem is to find placement probabilities π1, . . . , πn such that the expected
total profit, defined as the expected total revenue minus the expected total weighted

5.3 Single-Period Order Based Problems 215

completion time, is maximized subject to the constraint that 0 ≤ πj ≤ u for j ∈ N ,
where u ≤ 1 is the maximum placement probability possible and corresponds to the
minimum possible price that can be quoted.

Without loss of generality, the inquiries are indexed in SWPT order. We
can derive the total expected profit as a function of the placement probabilities
π1, . . . , πn as follows. Given π1, . . . , πn, the total expected revenue of the n

inquiries is

n∑

j=1

πjpjRj (πj),

and the total expected weighted completion time of the inquiries is

n∑

j=1

⎡

⎣wjπj

⎛

⎝
j−1∑

i=1

πipi + pj

⎞

⎠

⎤

⎦ .

With each quoted unit price Rj (πj) defined in (5.13), we have the expected total
profit, denoted as G(π1, . . . , πn), as follows:

G(π1, . . . , πn) =
n∑

j=1

⎡

⎣apjπ
2
j + bpjπj − wjπj

⎛

⎝
j−1∑

i=1

πipi + pj

⎞

⎠

⎤

⎦ .

Let H(π1, . . . , πn) = −G(π1, . . . , πn), then the problem is equivalent to

max{H(π1, . . . , πn) | 0 ≤ πj ≤ u, j ∈ N}. (5.14)

Liu et al. (2012) show the results stated in the following theorem.

Theorem 5.8 FunctionH(π1, . . . , πn) is strictly convex and the formulation (5.14)
can be solved as a convex quadratic program in polynomial time.

Proof We first prove that the Hessian matrix of function H is positive definite. The
first-order partial derivatives of H are as follows:

∂H

∂πj

= −(2apjπj + bpj) + wj

⎛

⎝
j−1∑

i=1

πipi + pj

⎞

⎠+ pj

n∑

i=j+1

wiπi,

and the second-order partial derivatives are

∂2H

∂πj∂πk

=
⎧
⎨

⎩

wkpj if j < k,

−2apj if j = k,

wjpk if j > k.

216 5 Coordinated Product Pricing and Scheduling Decisions

Let the Π denote the vector (π1, . . . , πn)
T . The function H can be rewritten as

H(Π) = 1
2Π

TAΠ + sΠ , where matrix A = (ajk)n×n and vector s = (s1, . . . , sn)

are given as follows: ajk = ∂2H
∂πj ∂πk

, and sj = (wj − b)pj , for j, k = 1, . . . , n.
Given the assumption wmax < −2a, we can see that matrix A is positive definite,

and hence function H is strictly convex. Consequently, the formulation (5.14) is a
convex quadratic program, which can be solved in polynomial time (Bazaraa et al.,
2013). ��

We use the following numerical instance to illustrate the formulation (5.14) and
Theorem 5.8.

Example 5.3 (Illustration of Function H) Consider an example with n = 2 order
inquiries with p1 = 5, p2 = 4, w1 = 2, w2 = 1, Rj(πj) = −2πj + 3, for 0 ≤
πj ≤ 1, for j = 1, 2. For this example, the total expected profit as a function of
placement probabilities, π1, π2, is

G(π1, π2) = p1π1R1(π1) + p2π2R2(π2) − [w1π1p1 + w2π2(p1π1 + p2)]
= 5π1(3 − 2π1) + 4π2(3 − 2π2) − (10π1 + π2(5π1 + 4))

= −10π2
1 + 5π1 − 8π2

2 + 8π2 − 5π1π2.

Thus, H(π1, π2) = −G(π1, π2) = 10π2
1 + 8π2

2 + 5π1π2 − 5π1 − 8π2. It can easily
be verified that the Hessian matrix of H is A and H(π1, π) = 1

2Π
TAΠ + sΠ ,

where Π = (π1, π2)
T , and A and s are as follows:

A =
(

20 5
5 16

)

, s = (−5,−8).

Clearly, A is a positive definite matrix, and hence H is a strictly convex function.

For the special case where all the order inquiries have an identical weight, i.e.,
wj = w for j ∈ N , Liu et al. (2012) show that the optimal unit prices to quote
satisfy R∗

1 ≥ · · · ≥ R∗
n, where the inquiries are indexed by the shortest processing

time (SPT) rule, i.e., p1 ≤ · · · ≤ pn. This means that when all of the customers
are equally important, as reflected by the identical weight, the manufacturer should
quote a lower price to an inquiry with a larger order, which is equivalent to giving a
discount that increases with the order size.

For the special case where the order weight is proportional to the order size, i.e.,
wj = wpj for some constant w, for j ∈ N , Liu et al. (2012) show that the optimal
unit prices to quote satisfy R∗

1 ≤ · · · ≤ R∗
n, where the inquiries are indexed by the

SPT rule. This means that when larger orders have larger cost weights, larger orders
are less attractive and should be priced higher.

5.3 Single-Period Order Based Problems 217

5.3.2.2 Sequential Quotation

With sequential quotation, order inquiries are handled one by one such that when
making the quotation decision for an order, the manufacturer knows the responses
from all the inquiries that have been quoted for earlier. Two sequences need to be
determined in a sequential quotation scheme: (i) what sequence to use for price
quotation of inquiries? and (ii) what sequence to use for processing confirmed
orders? Liu et al. (2012) consider two types of sequential quotation, namely,
consistent quotation and general quotation, defined as follows.

Definition 5.2 Consistent quotation requires that price quotation and order pro-
cessing follow the same sequence, whereas general quotation does not require these
two actions to follow the same sequence.

Consistent quotation has the following positive feature: during quotation it can
provide the customer the start and completion times of the order if the order
materializes. General quotation, however, provides the manufacturer the most
flexibility and hence the highest expected profit. For ease of presentation, we
use SEQC and SEQG to denote the sequential quotation problem with consistent
quotation and that with general quotation, respectively.

We observe that although inquiries are handled sequentially in both problems
SEQC and SEQG, all the order inquiries arrive simultaneously at the beginning of
the planning horizon, and no new inquiries arrive over time. Even though in these
problems the underlying decisions are made in a sequential multi-stage fashion,
these problems are still essentially single-period problems and hence differ from the
multi-period problems discussed in Sect. 5.4 where orders come in over time and
pricing decisions for the same products are made repeatedly over time.

Next, we discuss how the problem SEQC can be solved. Suppose that N1 is
the set of remaining order inquiries to be handled, and t is the total processing
time of the firm orders that have resulted from the inquiries that have already been
handled, i.e., the inquiries in N \ N1. By Definition 5.2 about consistent quotation,
the orders that result from the order inquiries of N1 can only be processed starting
from time t . Thus, the optimal quotation and scheduling decisions for the inquiries in
N1 depend on t and N1 only and do not depend on any other specific characteristics
of the inquiries in N \ N1 or the confirmed orders from these inquiries. Based on
this observation, Liu et al. (2012) develop the following dynamic programming
algorithm for solving the problem SEQC with general revenue functions Rj (πj)

and general cost functions fj (Cj). Since linear revenue functions and/or special
cost functions such as weighted completion time do not reduce the complexity of the
problem, this same algorithm is needed to solve the problem with a linear revenue
function and the total weighted completion time as the cost function.

218 5 Coordinated Product Pricing and Scheduling Decisions

Algorithm DP-SEQC
Input:
Given pj , fj (), Rj (), for j ∈ N .
Value Function:
F(t,N1) = maximum expected total profit from the inquiries in N1, given a start
time t .
Boundary Condition:
F(t, φ) = 0.
Maximum Expected Profit:
F(0, N).
Recurrence Relation:

F(t,N1) = max
j∈N1

{
max

0≤πj≤u

{
πj

[
pjRj (πj) − fj (t + pj) + F(t + pj ,N1 \ {j})]

+ [(1 − πj)F (t, N1 \ {j})]}
}
.

In the recurrence relation, any inquiry j from N1 and any possible placement
probability of this inquiry πj are considered. Given inquiry j , the recurrence relation
considers two possibilities: the order materializes with probability πJ , or the order
does not materialize with probability 1 − πj . Liu et al. (2012) show that this
algorithm solves problem SEQC to optimality in O(n22n) time, if an optimal πj

can be found via a constant number of computations for given j in the recurrence
equation. This algorithm is therefore computationally efficient for small values of
n.

Finally, we discuss how the more general problem SEQG can be solved. Suppose
that N1 is the set of remaining order inquiries to be handled, and among the inquiries
N \N1 that have been handled, J is the subset of inquiries that have resulted in firm
orders. By Definition 5.2 about general quotation, the order processing sequence
can be different from the price quotation sequence. This means that the orders in
J can be processed later than the orders arising from price quotation decisions for
the inquiries in N1. Thus, we cannot make scheduling decisions for the inquiries
in N1 alone without considering the orders in J . Therefore, the optimal quotation
decisions for the inquiries in N1 depend on which specific orders are in J . However,
which specific prices are quoted for the orders in J does not have an impact on
quotation decisions for the inquiries in N1. Based on these observations, Liu et al.
(2012) develop the following algorithm for solving the problem SEQG with general
revenue functions Rj (πj) and general cost functions fj (Cj).

Algorithm DP-SEQG
Input:
Given pj , fj (), Rj (), for j ∈ N .
Initialization:
For any subset of orders J ∈ N , find the minimum cost, denoted as g(J), of
processing the orders in J with a start time 0.

5.3 Single-Period Order Based Problems 219

Value Function:
F(J,N1) = maximum expected total profit of the problem, given that price quotation
decisions have already been made for the order inquiries in N \ N1, the orders in
J ⊆ N \ N1 have materialized, and the remaining order inquiries in N1 have not
been quoted for.
Boundary Condition:
F(J, φ) = g(J) for any J ⊆ N .
Maximum Expected Profit:
F(φ,N).
Recurrence Relation:
For any subset of firm orders J ⊆ N and any subset of inquiries N1 ⊆ N such
that J ∩ N1 = φ, considered in the following sequence: |J | = n, . . . , 1, 0, and
|N1| = 0, 1, . . . , n,

F(J,N1) = max
j∈N1

{
max

0≤πj≤u

{
πj

[
pjRj (πj) + F(J ∪ {j}, N1 \ {j})]

+ [(1 − πj)F (J,N1 \ {j})]}
}
.

In the recurrence equation, every inquiry j ∈ N1 and every possible order place-
ment probability πj are considered for price quotation decisions. The two possible
events, an order placed with probability πj and no order placed with probability
1 −πj , are considered in the expected revenue calculation. The recurrence equation
considers the expected revenue explicitly, whereas the scheduling cost is included
in the boundary condition.

Liu et al. (2012) show that algorithm DP-SEQG optimally solves the general
sequential quotation problem in O(n3n) time, if an optimal πj can be found via a
constant number of computations for given j in the recurrence equation.

Given the exponential time complexity of the algorithms DP-SEQC and DP-
SEQG, it is unlikely that they can solve large instances of problems SEQC and
SEQG, respectively. Liu et al. (2012) therefore propose a heuristic algorithm. The
heuristic first fixes a sequence for price quotation and order processing, and given
this sequence finds an optimal price quotation solution.

Heuristic SEQ-FIX
Input:
Given pj , fj (), Rj (), for j = 1, . . . , n, where inquiries are indexed according to a
pre-specified sequence.
Value Function:
F(t, j) = maximum expected total profit from the inquiries j, . . . , n with a start
time t .
Boundary Condition:
F(t, n + 1) = 0.
Maximum Expected Profit:
F(0, 1).

220 5 Coordinated Product Pricing and Scheduling Decisions

Recurrence Relation:
For t = P, . . . , 0, and j = n, . . . , 1:

F(t, j) = max
j∈N1

{
max

0≤πj≤u

{
πj

[
pjRj (πj) − fj (t + pj) + F(t + pj , j + 1)

]

+ [(1 − πj)F (t, j + 1)]}
}
.

It can be seen that the time complexity of this algorithm is O(n2P) if an optimal
πj can be found via a constant number of computations for given j in the recurrence
equation.

Liu et al. (2012) conduct computational experiments of the above discussed
algorithms for the corresponding problems where all the orders have the same
weights, i.e., w1 = · · · = wn = w. Their computational results show that the
expected profit of an optimal solution of problem SEQC is quite close to that of the
problem SEQG, based on a variety of test instances. This means that the advantage
of the general quotation scheme over the consistent quotation scheme is small.
However, the optimal expected profit of problem SIMQ often deviates a lot from
those of problems SEQC and SEQG. This means that there is a big advantage to
using sequential quotation over simultaneous quotation.

Liu et al. (2012) also test the performance of heuristic SEQ-FIX with shortest
processing time (SPT) or longest processing time (LPT) sequence of the orders as
the pre-specified sequence. The performance of the heuristic is mixed. Specifically,
when w is small, the heuristic with SPT as the pre-specified sequence performs very
well and can generate expected profit close to that of the optimal expected profit of
problem SEQC. However, when w gets larger, the performance of the heuristic with
SPT as the pre-specified sequence deteriorates. The performance of the heuristic
with LPT as the pre-specified sequence is the opposite: it performs very well when
w is large, but it performs poorly when w is small.

5.4 Multi-Period Problems

In this section, we discuss several CPPS problems with multiple periods studied
by Yue et al. (2019). We first discuss the practical setting where their problems
arise. Many manufacturers using a make-to-order strategy do not make customized
products from scratch. Instead, they make customized products after receiving
customer orders by customizing the last few steps of production based on a base
product that is already made beforehand (Simchi-Levi et al., 2008). Motivated by
this, Yue et al. (2019) assume that in their problems, a manufacturer makes multiple
customized products from a common base product. They further assume that the
price for each customized product is the price for the base product plus a given

5.4 Multi-Period Problems 221

differential for the specific customization involved, such that once the price for the
base product is set, the price for each customized product is also set accordingly. The
manufacturer uses dynamic pricing to match capacity with demand over a planning
horizon consisting of multiple time periods. It needs to determine simultaneously
a price for the base product and a production schedule for incoming orders at the
beginning of each period over a given planning horizon, with the goal of maximizing
its revenue while considering customer service.

Yue et al. (2019) give an example of the operations of a real company to justify
their model assumptions. This company makes and sells a variety of customized
canvas bags, mugs, T-shirts, and other consumer products and customizes its
products by adding features to what it calls basic products, e.g., basic canvas bags
and mugs without images printed on them. Customers can customize their orders at
the company’s website by choosing a basic product and specifying whether or not
to have an image printed on the product and whether the image should be printed on
one side or both sides of the product in case an image is needed. In order to achieve
timely delivery, the company keeps a sufficient inventory of basic products, based on
which customized products can be made quickly by adding customized features. The
company uses a modular pricing scheme for most of its products such that the price
for a customized product is equal to the price for the basic product plus the price
for the added customized feature(s). Each available customized feature has a price
that is often fixed and does not vary over time. For example, the price for having
an image printed on one side of a bag is 17 RMB, whereas the price for having an
image printed on both sides of a bag is 27 RMB. These prices remain unchanged
regardless of how the basic product is priced. Thus, if the company prices a basic
canvas bag at X, then it prices the same bag with an image printed on one side of
the bag and the same bag with an image printed on both sides of the bag at X + 17,
and X + 27, respectively. The company adjusts the prices for its products two to
three times in each season, based on their demand forecasts and available capacity.
To manage each product category, the company needs to adjust the price of the basic
product involved (based on which all products in the category are made) periodically
and create a production schedule so as to maximize its revenue subject to on-time
delivery of orders.

The modular pricing scheme used by this company is also common practice in
several other industries. For example, although automobile dealers may adjust the
prices of the cars that they sell from time to time, they often fix prices for additional
features that they sell, e.g., $750 for a sun roof and $2500 for a technology add-on.
This means that if a basic car model without any add-ons is priced at $X, then the
same car with a sun roof and technology add-on is priced at $X + 3250. Modular
pricing schemes are easy to implement and simple for customers to understand.
However, we are not aware of any existing models in the dynamic pricing literature
(e.g., Elmaghraby & Keskinocak, 2003, Talluri & van Ryzin, 2004, and Chen &
Chen, 2015) that study such pricing schemes.

To define the problems considered by Yue et al. (2019) precisely, we adopt
the notation used in their paper. A manufacturer produces n customized products,
1, . . . , n, based on a common base product over a planning horizon with T time

222 5 Coordinated Product Pricing and Scheduling Decisions

periods, 1, . . . , T , where the starting time of the horizon is zero and the length
of each period is L time units (e.g., days), for some positive integer L. At the
beginning of each period t , the manufacturer sets a price for the base product,
which in turn determines the price for each customized product. Given the prices
of the customized products, customers place orders at the beginning of the period.
Let p1 > · · · > pm denote the m allowable prices that can be set for the base
product in each period t . Suppose that Pt ∈ {p1, . . . , pm} is the price chosen by
the manufacturer for the base product in period t . For product j (j = 1, . . . , n), an
additional price vj is charged for the customization, where vj is fixed and is not a
decision variable. As a result, the actual price of product j in period t is Pt + vj .
Given the prices of the n products in period t , the demand for each product j in
this period is a function of these prices. Since Pt + vj is determined by Pt for all
products j = 1, . . . , n, the demand for each product j in period t is then simply a
function of the price of the base product Pt , denoted as dtj (Pt), which is assumed to
be a nonnegative integer. All the incoming orders in a period arrive at the beginning
of the period.

Each product j may be associated with an importance weight wj . Each incoming
order that arrives at time Z may be assigned a due date Z + kL, where kL

(i.e., k time periods) can be viewed as the delivery lead time promised for the
order. This represents a typical practice used by companies operating in a make-
to-order business mode, which often promise a common delivery lead time for all
incoming orders. The manufacturer may or may not accept all the incoming orders.
If an incoming order of product j is accepted, then each unit of the order must
be processed nonpreemptively for qj time units on a single machine. Following
common business practice, it is assumed that orders that arrive in an earlier period
are always processed before orders that arrive in a later period. Note that the
manufacturer makes the last pricing decision at the beginning of period T (i.e., at
time (T −1)L), whereas the production process continues until all accepted orders in
the last period are completed. The parameters defined here wj , k, qj are all positive
integers.

Yue et al. (2019) consider the following three specific coordinated production
pricing and scheduling problems with different order acceptance rules and objective
functions:

• Problem with total weighted completion time: the manufacturer accepts and
processes all incoming orders with the objective of maximizing the total revenue
minus the total weighted completion time of the orders.

• Problem with tardiness allowed: the manufacturer accepts all incoming orders,
but some incoming orders are allowed to be completed after their due dates with
tardiness penalties. If an order is completed after its due date, there is a penalty of
β units per unit of tardiness. The objective is to maximize the total profit, defined
as the total revenue less the total tardiness penalty.

• Problem with order rejection allowed: the manufacturer is allowed to reject some
incoming orders of each product, but all accepted orders must be completed no

5.4 Multi-Period Problems 223

later than their due dates. The objective is to maximize the total revenue from
accepted orders.

Example 5.4 (An Instance and a Feasible Solution for Each Problem) We provide
a numerical instance and a corresponding solution to illustrate each of the above
defined problems. Consider an instance with T = 3 periods, each with L = 24 time
units, n = 2 products, m = 3 allowable prices, which are p1 = 100, p2 = 80, and
p3 = 60. The demand for each product j is time-invariant and hence is written as
dj (Pt), where Pt is the price of the base product set for period t . The parameters
wj , vj , qj , and dj (pi) are given in the following table. Let k = 1, i.e., the common
delivery lead time is L time units, which means that orders arriving at the beginning
of period t (t = 1, 2, 3) have a due date equal to the end of the period. Let the unit
tardiness penalty be β = 10.

Product j vj wj qj dj (p1) dj (p2) dj (p3)

1 5 2 1 5 8 10

2 10 3 2 3 6 10

Given this instance, we construct a feasible solution to each of the three problems
as follows. For all the problems, we set the price for each period t = 1, 2, 3 as
P1 = p3 = 60, P2 = p2 = 80, and P3 = p1 = 100, respectively. Given these
prices, in each period t = 1, 2, 3, the demand realizations for the two products over
each period are as follows:

Product j dj (P1) dj (P2) dj (P3)

1 10 8 5

2 10 6 3

For the first two problems, for which all the incoming orders must be processed,
we use the following production schedule: in each period, after the remaining orders
from previous periods are completed, we process the incoming orders of product 1
first, followed by the incoming order of product 2.

In this solution, the total revenue is
∑2

j=1
∑3

t=1(Pt + vj)dj (Pt) = [(60 +
5)(10)+(80+5)(8)+(100+5)(5)]+[(60+10)(10)+(80+10)(6)+(100+10)(3)] =
1855 + 1570 = 3425.

For the first problem, the total weighted completion time of the orders can be
calculated as follows:

• In period 1, 10 incoming orders of product 1 are processed from time 0 to 10, and
10 incoming orders of product 2 are processed from time 10 to 30. Thus, the total
completion time of the 10 orders of product 1 is 1+2+· · ·+10 = 55. Similarly,
the total completion time of the 10 orders of product 2 is 12+14+· · ·+30 = 210.

224 5 Coordinated Product Pricing and Scheduling Decisions

Thus, the total weighted completion time of the orders that arrive in the first
period is 55w1 + 210w2 = 55(2) + 210(3) = 740.

• In period 2, eight incoming orders of product 1 are processed from time 30 to 38,
and six incoming orders of product 2 are processed from time 38 to 50. Thus, the
total completion time of the eight orders of product 1 is 31+32+· · ·+38 = 276
and that of the six orders of product 2 is 40 + 42 + · · · + 50 = 270. Thus, the
total weighted completion time of the orders that arrive in the second period is
276w1 + 270w2 = 276(2) + 270(3) = 1362.

• In period 3, five incoming orders of product 1 are processed from time 50 to 55,
and three incoming orders of product 2 are processed from time 55 to 61. Thus,
the total completion time of the five orders of product 1 is 51+52+· · ·+55 = 265
and that of the three orders of product 2 is 57 + 59 + 61 = 177. Thus, the
total weighted completion time of the orders that arrive in the third period is
265w1 + 177w2 = 265(2) + 177(3) = 1061.

Thus, the total weighted completion time of all the orders is 740 + 1362 + 1061 =
3163. Therefore, for the first problem, the total profit of this solution is 3425 −
3163 = 262.

For the second problem, the total tardiness penalty can be calculated as follows.
As calculated above, the completion time of the last order that arrives at the
beginning of period 1 is 30, which implies that the last three orders of product 2
that arrive in the first period are tardy, each with a tardiness of 2, 4, and 6 units,
respectively. Similarly, we can observe that the last order of product 2 that arrives in
the second period is tardy with a tardiness of 2. None of the orders that arrive in the
third period is tardy. Thus, the total tardiness penalty is β(2 + 4 + 6 + 2) = 140.
Thus, for the second problem, the total profit of this solution is 3425 − 140 = 3285.

For the third problem, we may have to reject some incoming orders so that all
accepted orders complete processing by their due dates. Given the prices and the
demand realizations as discussed above, some orders would be tardy if all the orders
were accepted, as shown above. We construct a feasible solution as follows. Reject
the last three orders of product 2 that arrive in the first period and accept all other
incoming orders and use the same scheduling policy as above, i.e., in each period,
accepted orders of product 1 are processed before those of product 2. This results
in a completion time of 24 for the last order that arrives in the first period and a
completion time of 44 for the last order that arrives in the second period. The orders
that arrive in the third period must be processed from time 48 to 59. We can observe
that this is a feasible solution. Thus, the total revenue of this solution for the third
problem is [(60 + 5)(10) + (80 + 5)(8) + (100 + 5)(5)] + [(60 + 10)(7) + (80 +
10)(6) + (100 + 10)(3)] = 1855 + 1360 = 3215.

Yue et al. (2019) provide pseudo-polynomial time algorithms for solving all these
problems and show that they are all NP -hard in the ordinary sense even with a single
product, i.e., n = 1. They further provide an FPTAS for each of these problems.
In Sects. 5.4.1, 5.4.2, and 5.4.3, we present the exact pseudo-polynomial time
algorithms for all the problems, the NP -hardness proofs for two of the problems,
and the FPTAS for one of the problems, respectively. In Sect. 5.4.4, we show some
computational results and related managerial insights derived by Yue et al. (2019).

5.4 Multi-Period Problems 225

5.4.1 Exact Algorithms

In this section, we describe some optimality properties derived by Yue et al.
(2019) for the three problems and the optimal pseudo-polynomial time dynamic
programming algorithms developed by them for these problems based on these
properties.

The following optimality properties for these problems are fairly straightforward
and hence are stated without proofs.

Lemma 5.2

(i) For the problem with total weighted completion time, the shortest weighted
processing time (SWPT) rule is optimal for processing all incoming orders in
each time period.

(ii) For the problem with tardiness allowed, it is optimal to process incoming
orders in each period by the shortest processing time (SPT) rule.

(iii) For the problem with order rejection allowed, accepted orders in each period
can be processed in an arbitrary sequence.

The problem with total weighted completion time can be solved by the following
dynamic programming algorithm.

Algorithm MP-DP1
Input: Given qj , vj , wj , for j = 1, . . . , n; and pi , for i = 1, . . . , m. Define St
as the latest possible starting time for processing incoming orders in period t for
t = 1, . . . , T . The value of St can be calculated recursively as follows:

S1 = 0, and
St = max{(t − 1)L, St−1 +∑n

j=1 dtj (pm)qj }, for t = 2, . . . , T .
Initialization: Reindex the products in SWPT order.
Value Function: ft (h) as the maximum total profit (i.e., the total revenue minus the
total weighted completion time) from period t through period T , given that h is the
starting time for processing incoming orders in period t .
Boundary Condition:

fT+1(h) = 0, for h > 0;
ft (h) = −∞, if h < (t − 1)L or h > St , for t = 1, . . . , T .

Optimal Solution Value: f1(0).
Recurrence Relation:

For t = 1, . . . , T , and (t − 1)L ≤ h ≤ St ,

ft (h) = max
1≤i≤m

⎧
⎨

⎩

n∑

j=1

dtj (pi)(pi + vj) − Whit + ft+1

⎛

⎝max

⎧
⎨

⎩
h +

n∑

j=1

dtj (pi)qj , tL

⎫
⎬

⎭

⎞

⎠

⎫
⎬

⎭
,

226 5 Coordinated Product Pricing and Scheduling Decisions

where Whit is the total weighted completion time of the orders that arrive in period
t if the price is set at pi in period t and the starting time for processing these orders
is h. The value of Whit is calculated as follows:

Whit =
n∑

j=1

wj

⎛

⎝
dtj (pi)∑

r=1

Chijrt

⎞

⎠ ,

where Chijrt denotes the completion time of the rth incoming order for product j
in period t if the price is set at pi and the starting time is h, for i = 1, . . . , m,
j = 1, . . . , n, r = 1, . . . , dtj (pi), and t = 1, . . . , T , and is calculated as Chijrt =
h +∑j−1

l=1 dtl(pi)ql + rqj .
The recurrence relation in Algorithm MP-DP1 compares all the m allow-

able prices for period t based on the total profit. Given price pi , the term∑n
j=1 dtj (pi)(pi + vj) is the total revenue from the incoming orders in period t ,

and the term max{h + ∑n
j=1 dtj (pi)qj , tL} is the starting time for processing the

incoming orders in period t + 1.
Yue et al. (2019) show that Algorithm MP-DP1 finds an optimal solution for the

problem with total weighted completion time in O(mT S2
T) time. This is therefore a

pseudo-polynomial time algorithm. In Sect. 5.4.2 below, we show that the problem
with the weighted completion time is NP -hard. This implies that Algorithm MP-
DP1 is the best type of result achievable for this problem, unless P = NP .

Next, we describe the dynamic programming algorithm for the problem with
tardiness allowed given in Yue et al. (2019).

Algorithm MP-DP2
Input: Given qj , vj , for j = 1, . . . , n; and pi , for i = 1, . . . , m. Define St as the
latest possible starting time for processing incoming orders in period t , for t =
1, . . . , T . The value of St can be calculated in exactly the same way as in Algorithm
MP-DP1.
Initialization: Reindex the products in SPT order.
Value Function: Define ft (h) as the maximum total revenue minus the total tardiness
penalty from period t through period T , given that the starting time for processing
the incoming orders in period t is h.
Boundary Condition:

fT+1(h) = 0, for h > 0;
ft (h) = −∞, if h < (t − 1)L or h > St , for t = 1, . . . , T .

Optimal Solution Value: f1(0).
Recurrence Relation:

For t = 1, . . . , T , and (t − 1)L ≤ h ≤ St ,

ft (h) = max
1≤i≤m

⎧
⎨

⎩

n∑

j=1

dtj (pi)(pi + vj) − βghit + ft+1

⎛

⎝max

⎧
⎨

⎩
(h +

n∑

j=1

dtj (pi)qj , tL

⎫
⎬

⎭

⎞

⎠

⎫
⎬

⎭
,

5.4 Multi-Period Problems 227

where ghit is the total tardiness of the orders that arrive in period t when the price
is set at pi and the starting time for processing the incoming orders is h. As in
Algorithm MP-DP1, define Chijrt = h + ∑j−1

l=1 dtl(pi)ql + rqj as the completion
time of the rth incoming order for product j in period t when the price is set at pi

and the starting time is h, for r = 1, . . . , dtj (pi), j = 1, . . . , n, t = 1, . . . , T , and
i = 1, . . . , m. Thus, based on the fact that the due date of incoming orders in period

t is (t − 1 + k)L, we have ghit = ∑n
j=1

∑dtj (pi)

r=1 max{0, Chijrt − (t − 1 + k)L}.
The recurrence relation of Algorithm MP-DP2 compares the net profits of all the

m allowable prices for period t based on the total profit. Given price pi , the term∑n
j=1 dtj (pi)(pi + vj) is the total revenue from the incoming orders in period t ,

and the term max{h + ∑n
j=1 dtj (pi)qj , tL} is the starting time for processing the

incoming orders in period t + 1.
Yue et al. (2019) show that Algorithm MP-DP2 finds an optimal solution for the

problem with tardiness allowed in O(mT S2
T) time. Below in Sect. 5.4.2, we show

that the problem with tardiness allowed is NP -hard. This implies that Algorithm
MP-DP2 is the best type of result achievable for this problem, unless P = NP .

In the following, we describe the dynamic programming algorithm given in Yue
et al. (2019) for finding an optimal solution to the problem with order rejection
allowed.

Algorithm MP-DP3
Input: Given qj , vj , for j = 1, . . . , n; and pi , for i = 1, . . . , m.
Initialization: Index the products in an arbitrary order.
Value Function: Define ft (h) = maximum total revenue from period t through period
T , given that the starting time for processing the accepted orders in period t is h.
Boundary Condition:

fT+1(h) = 0, for h > 0;
ft (h) = −∞, if h < (t − 1)L or h > (t − 2 + k)L, for t = 1, . . . , T .

Optimal Solution Value: f1(0).
Recurrence Relation:
For t = 1, . . . , T , and (t − 1)L ≤ h ≤ (t − 2 + k)L,

ft (h) = max
1≤i≤m

{

max
0≤τhit≤τ̄hit

{
g(τhit) + ft+1(max{h + τ ′

hit , tL})}
}

,

where the parameters τhit , τ̄hit , g(τhit), and τ ′
hit are defined as follows: τhit is the

maximum possible total processing time of accepted orders when the price set in
period t is pi and the processing starting time is h, τ̄hit is an upper bound of τhit ,
defined as τ̄hit = min{∑n

j=1 dtj (pi)qj , (t−1+k)L−h}, g(τhit) is the total revenue
from accepted orders in period t when the total processing time of accepted orders
is no greater than τhit , and τ ′

hit is the resulting total processing time of accepted
orders. Given τhit , the value of g(τhit) is the optimal objective value of the following

228 5 Coordinated Product Pricing and Scheduling Decisions

bounded knapsack problem, where decision variable xjt is the number of accepted
orders for product j in period t .

max
n∑

j=1

(pi + vj)xjt

s.t.
n∑

j=1

qjxjt ≤ τhit

0 ≤ xjt ≤ min{dtj (pi), �kL/qj �}, xjt integer, for j = 1, . . . , n.

This knapsack problem can be solved using the dynamic programming algorithm
given in (Kellerer et al., 2004, p. 190). Given the optimal solution of this knapsack
problem x∗

j t , τ
′
hit = ∑n

j=1 qjxjt .

The recurrence relation of Algorithm MP-DP3 compares all the m allowable
prices for period t based on the total revenue of accepted orders. Given price
pi , the algorithm selects an optimal maximum total processing time τhit for
accepted orders and determines the optimal number of accepted orders xjt for
each product by solving the above defined bounded knapsack problem. Finally, all
accepted orders are scheduled in arbitrary order. In the recurrence relation, the term
max{h + τ ′

hit , tL} is the starting time for processing the accepted orders in period
t + 1, where h + τ ′

hit is the completion time of the accepted orders in period t .

Define V = min
{

max1≤t≤T

{∑n
j=1 dtj (pm)qj

}
, kL

}
. It can be seen that V

is an upper bound on τ̄hit . To solve the bounded knapsack problem, the dynamic
programming algorithm given in Kellerer et al. (2004) has a running time of
O(nV logV).

Yue et al. (2019) show that Algorithm MP-DP3 finds an optimal solution for
the problem with order rejection allowed in O(mnkLT V 2 logV) time. As in the
case for Algorithms MP-DP1 and MP-DP2, this algorithm is the best type of result
achievable for this problem unless P = NP .

5.4.2 NP -Hardness Proofs

We show below the NP -hardness proofs given by Yue et al. (2019) for the first two
problems. The NP -hardness of the third problem can be proved similarly to the
second problem and hence is not provided.

Theorem 5.9 The problem with total weighted completion time is ordinarily NP -
hard, even if the manufacturer produces only a single product, i.e., n = 1.

5.4 Multi-Period Problems 229

Proof We show below that this problem is at least ordinarily NP -hard, which,
together with the pseudo-polynomial time algorithm MP-DP1 given in Sect. 5.4.1,
implies that this problem is exactly ordinarily NP -hard. We use a reduction from
the partition problem, a well-known NP -hard problem (Garey & Johnson, 1979).
Partition Problem: Given a set of u elements U = {1, . . . , u}, a positive integer aj
associated with each element j ∈ U , and

∑u
j=1 aj = A, do there exist two disjoint

subsets U1 and U2 of U such that
∑

j∈U1
aj = ∑

j∈U2
aj = 1

2A?
Construct an instance of the problem with a single product as follows:

• The number of time periods is T = u, with the length of each period L = A time
units.

• The number of allowable prices in each period is m = 2, with prices p1 =
A2 + 2A + 2 and p2 = A2 + 2A.

• Demand corresponding to each price pi in period t is denoted as Dti , for i = 1, 2
and t = 1, . . . , u. Let Dt1 = Aat and Dt2 = (A + 2)at , for t = 1, . . . , u.

• Each order of the product has a processing time q = 1.
• For the product, the additional charge is v = 1

2 , and the unit weight of completion
time is w = 1.

• Threshold value for the total profit is Z = 1
2A

4 + 2A3 + 5
2A

2.

We first formulate the objective function. Since there is only one product, all
incoming orders in each period can be processed in an arbitrary sequence. Also,
since the demand in each period under any price is greater than the length of the
period, all orders over the planning horizon are processed consecutively without any
idle time. Let Pt and dt (Pt) be the price and the demand in period t , respectively, and
let Cjt denote the completion time of the j th order in period t , for j = 1, . . . , dt (Pt)

and t = 1, . . . , u. The total weighted completion time over u time periods can be
written as

u∑

t=1

dt (Pt)∑

j=1

Cjt =
u∑

t=1

⎡

⎣dt (Pt)

t−1∑

j=1

dj (Pj) + 1

2
dt (Pt)(dt (Pt) + 1)

⎤

⎦

= 1

2

[
u∑

t=1

dt (Pt)

]2

+ 1

2

u∑

t=1

dt (Pt).

Thus, the objective function is

u∑

t=1

(Pt + v)dt (Pt) −
u∑

t=1

dt (Pt)∑

j=1

Cjt =
u∑

t=1

Ptdt (Pt) − 1

2

[
u∑

t=1

dt (Pt)

]2

. (5.15)

In the following, we prove that there is a solution to the above instance of our
problem with the objective value greater than or equal to Z if and only if there is a
solution to the instance of the Partition Problem.

230 5 Coordinated Product Pricing and Scheduling Decisions

(⇒) If there exist two disjoint subsets U1 and U2 of U such that
∑

j∈U1
aj =

∑
j∈U2

aj = 1
2A, we construct a solution to the instance of our problem as follows.

Set the price Pt for period t as Pt = p1 if t ∈ U1 and Pt = p2 if t ∈ U2, for
t = 1, . . . , u. Thus, by (5.15), the objective value of this solution is

∑

t∈U1

p1Dt1 +
∑

t∈U2

p2Dt2 − 1

2

⎡

⎣
∑

t∈U1

Dt1 +
∑

t∈U2

Dt2

⎤

⎦

2

=
∑

t∈U1

Aat (A
2 + 2A + 2) +

∑

t∈U2

(A + 2)at (A
2 + 2A) − 1

2

⎡

⎣
∑

t∈U1

Aat +
∑

t∈U2

(A + 2)at

⎤

⎦

2

= 1

2
A4 + 2A3 + 5

2
A2 = Z.

(⇐) In a solution to the instance of our problem with the total profit greater than or
equal to Z, let U1 denote the set of periods that are priced at p1 and U2 denote the set
of periods that are priced at p2. Thus, there are Aat incoming orders in each period
t ∈ U1 and (A + 2)at incoming orders in each period t ∈ U2. Let E = ∑

j∈U2
aj .

Then, by (5.15), the total profit in this solution is

∑

t∈U1

Aat (A
2 + 2A + 2) +

∑

t∈U2

(A + 2)at (A
2 + 2A) − 1

2

⎡

⎣
∑

t∈U1

Aat +
∑

t∈U2

(A + 2)at

⎤

⎦

2

= A4 + 2A3 + 2A2 + 2(A2 + A)E − 1

2
(A2 + 2E)2

= Z − 2

(
A

2
− E

)2
.

Since the total profit has to be greater than or equal to Z, we have −2(A2 −E)2 ≥
0, which implies that E = 1

2A and
∑

j∈U1
aj = ∑

j∈U2
aj = 1

2A. This completes
the proof. ��

Next, we provide a similar result for the problem with tardiness allowed, but with
a quite different proof technique.

Theorem 5.10 The problem with tardiness allowed is ordinarily NP -hard, even if
there is only a single customized product, i.e., n = 1.

Proof We show below that this problem is at least ordinarily NP -hard, which,
together with the pseudo-polynomial time algorithm MP-DP2 given in Sect. 5.4.1,
implies that this problem is exactly ordinarily NP -hard. We use a reduction from
the Subset Sum (SS) problem, another well-known NP -hard problem (Garey &
Johnson, 1979).

5.4 Multi-Period Problems 231

SS: Given a set of u elements, U = {1, . . . , u}, a positive integer aj associated with
each element j ∈ U , and a positive integer B, does there exist a subset S of U such
that

∑
j∈S aj = B?

Let A = ∑
j∈U aj and H = M1 +M2 +· · ·+Mu+B, where M is a sufficiently

large positive integer (e.g., M = Au) such that M > uA and Mi > M1 + 2M2 +
· · · + (i − 1)Mi−1 + B, for any i = 2, . . . , u. We construct an instance of our
problem with a single product based on the above instance of SS as follows:

• The number of time periods is T = u with the length of each period L = H time
units.

• The number of allowable prices in each period is m = 2u, with prices p2i−1 =
1

H+Mi + 1
2 and p2i = 1

H+Mi+ai
+ 1

2 , for i = 1, . . . , u.
• Demand corresponding to each allowable price is time-invariant and denoted as

Dj for price pj , j = 1, . . . , 2u, where D2i−1 = H+Mi and D2i = H+Mi+ai ,
for i = 1, . . . , u.

• Each order has a processing time of q = 1 time unit. The due date of an order
that arrives at the beginning of time period t is (t + 1)L, for t = 1, . . . , T , i.e.,
k = 2.

• The additional charge for the product is v = 1
2 .

• The penalty per time unit of tardiness is β = (u + 1)H + u.
• Threshold value for the total revenue minus the total tardiness penalty is Z =

(u + 1)H + u.

Clearly, the above instance can be constructed in polynomial time. In this
instance, by construction, the following hold: p1 > · · · > p2u, D1 < · · · < D2u,
and (p1 + v)D1 < · · · < (p2u + v)D2u.

In the following, we prove that there is a solution to the above instance of our
problem with the total profit greater than or equal to Z if and only if there is a
solution to the instance of SS.
(⇒) If there is a subset S of U such that

∑
j∈S aj = B, we construct a solution

to the instance of our problem as follows. Set the price in period i as Pi = p2i−1
if i /∈ S and Pi = p2i if i ∈ S, for i = 1, . . . , T . Process all the incoming orders
in an arbitrary sequence. It can be seen that in the constructed solution, none of the
orders that arrive in the first T − 1 periods are tardy. The total demand over T time
periods is

∑

i∈S
D2i +

∑

i∈U\S
D2i−1 =

∑

i∈S
(H + Mi + ai) +

∑

i∈U\S
(H + Mi)

= uH + (M1 + M2 + · · · + Mu) + B = (u + 1)H.

Thus, the completion time of the last order is equal to (T + 1)L, which is the due
date of the orders that arrive in the last period. Hence, none of these orders are tardy.

232 5 Coordinated Product Pricing and Scheduling Decisions

The total revenue of the orders processed is thus

∑

i∈S
(p2i + v)D2i +

∑

i∈U\S
(p2i−1 + v)D2i−1

=
∑

i∈S
(H + Mi + ai + 1) +

∑

i∈U\S
(H + Mi + 1)

= (u + 1)H + u = Z.

Since there is no tardiness penalty, the total profit of the constructed solution for
the instance of our problem is equal to the threshold value Z.
(⇐) If there is a solution to the instance of our problem with a total profit greater
than or equal to Z, we prove by induction that for each i = 1, . . . , u, there is
exactly one period where one of the two prices p2i−1 and p2i is used. We first
prove the result for i = u by contradiction. Suppose that none of the two prices
p2u−1 and p2u are used. In each period, the maximum revenue earned is at most
(p2u−2 + v)D2u−2 = H + Mu−1 + au−1 + 1. Thus, the total revenue is at most
uH +uMu−1 +uA+u < Z. This shows that at least one of these two prices is used
for some period. Now, suppose that there are at least two periods where one of these
prices is used. This results in a total demand of at least uH + 2Mu > (u + 1)H .
Since the due date of the last batch of orders (that arrive at the beginning of the last
period) is (u + 1)H , this implies that some orders are tardy. Given the large unit
tardiness penalty β, this means that the total profit is less than Z. By contradiction,
this shows that there is exactly one period where one of the two prices p2u−1 and
p2u is used.

Now, suppose that, for some 1 ≤ j ≤ u − 1, there is exactly one period where
one of the two prices p2i−1and p2i is used, for each i = u, . . . , j + 1. We prove
that the same result holds for i = j . The total demand over the u − j time periods
where one of the 2(u − j) prices p2u, p2u−1, . . . , p2j+2, p2j+1 is used is at least
e1 = H(u−j)+∑u

i=j+1 M
i , and the total revenue over these periods is at most e2 =

H(u − j) + ∑u
i=j+1 M

i + (u − j)(A + 1). Suppose that there is no period where
one of the two prices p2j−1 and p2j is used. The revenue earned in any of the j time
periods where a price pi with i < 2j−1 is used is less than H+Mj−1+A+1. Thus,
the total revenue across all time periods is at most e2+Hj+jMj−1+j (A+1) < Z.
Now suppose that there are at least two periods where one of the two prices p2j−1
and p2j is used. The total demand over the j time periods where a price other than
p2u, p2u−1, . . . , p2j+2, p2j+1 is used is at least jH + 2Mj . Thus, the total demand
across all the time periods is at least e1 + jH + 2Mj > (u+ 1)H . This implies that
some orders are tardy. Given the value of unit tardiness penalty β, this means that
the total profit is less than Z. This shows that there is exactly one period where one
of the two prices p2j−1 and p2j is used. Therefore, by induction, we have proved
that there is exactly one period where one of the two prices p2i−1 and p2i is used
for each i = 1, . . . , u.

5.4 Multi-Period Problems 233

Define a subset S ⊆ U such that for each i ∈ S, price p2i is used in some period
in the given solution for the instance of our problem. The subset U \ S includes
the indices i such that price p2i−1 is used in some period. The total revenue of the
solution is

∑

i∈S
(H +Mi +ai +1)+

∑

i∈U\S
(H + Mi + 1) = uH +(M1 +. . .+Mu)+u+

∑

i∈S
ai .

Since this total revenue is at least Z, we can conclude that
∑

i∈S ai ≥ B, and
there are no tardy orders in the solution. The total demand in this solution is

∑

i∈S
(H + Mi + ai) +

∑

i∈U\S
(H + Mi) = uH + (M1 + . . . + Mu) +

∑

i∈S
ai .

Since there are no tardy orders, the total demand must be no more than the largest
due date (u+1)H . This means that

∑
i∈S ai ≤ B, and hence we have

∑
i∈S ai = B.

��

5.4.3 Approximation Algorithm

In this section, we describe the FPTAS developed by Yue et al. (2019) for the
problem with total weighted completion time. The FPTASs they develop for the
other two problems use similar techniques and hence are not presented here.

We first describe a preliminary result without showing the proof. Let F ∗ be the
optimal profit for the problem with total weighted completion time.

Lemma 5.3 In the problem with total weighted completion time, the optimal profit
F ∗ satisfies F0 ≤ F ∗ ≤ T F0, where

F0 = max
1≤i≤m,1≤t≤T

⎧
⎨

⎩

n∑

j=1

dtj (pi)(pi + vj) − Wit

⎫
⎬

⎭
,

and

Wit =
n∑

j=1

wj

⎡

⎣
dtj (pi)∑

r=1

⎛

⎝(t − 1)L +
j−1∑

l=1

dtl(pi)ql + rqj

⎞

⎠

⎤

⎦

is the total weighted completion time of the orders that arrive in a single period t if
price pi is used in this period and the starting time for processing the orders is the
beginning time of period t (i.e., time (t − 1)L).

234 5 Coordinated Product Pricing and Scheduling Decisions

The idea of the FPTAS provided by Yue et al. (2019) for the problem with total
weighted completion time is similar to that of the FPTAS given in Sect. 5.2.3.1
for the problem with a single period studied there. The FPTAS is based on a
redesigned dynamic programming algorithm for the problem and applies a state
space trimming technique to ensure that the DP can run in polynomial time. The
new dynamic programming algorithm differs from Algorithm MP-DP1 by defining
states differently and using a labeling scheme to handle the states. The new DP
algorithm uses state (t, C,R) to indicate a partial schedule where periods 1, . . . , t
have been considered, the completion time of the last order is C, and the profit is R.
For states (t, C,R), we label them based on the value of profit R. Given multiple
states (t, C1, R), (t, C2, R), . . . with the same t and same label (i.e., the same profit
value R), we only keep the state with the smallest completion time of the last order
and eliminate all the other such states.

Algorithm MP-APP
Input: all parameters of the problem with total weighted completion time and the
approximation precision parameter ε > 0.
State Variables: (t, C,R) corresponds to a partial schedule that has considered
periods 1, . . . , t and has the total completion time (or makespan) C and profit R.
Initialization: Reindex the products in SWPT order. Define F0 as in Lemma 5.3, and
partition the profit dimension R in the state space into intervals with equal length
Δ = εF0/T .
Initial State: (0, 0, 0).
Forward Recursion:

For t = 0, . . . , T − 1, run the following steps:
(1) State Generation. For each state (t, C,R), generate m trial states (t + 1, C′, R′)
by pricing the base product in period t+1 at pi and then scheduling all the incoming
orders in SWPT order, for i = 1, . . . , m.
(2) State Labeling. For each state (t + 1, C′, R′), attach the label (t + 1,Δi) if the
value of the profit R′ satisfies iΔ ≤ R′ < (i + 1)Δ, where i = 0, 1,
(3) State Elimination. For any two partial schedules (t + 1, C′

1, R
′
1) and (t +

1, C′
2, R

′
2) with identical labels, i.e., R′

1 = R′
2, eliminate the second schedule if

C′
1 ≤ C′

2 and the first schedule otherwise.
Optimal Solution: Select a state (T , C,R) for which R is the largest, and backtrack
the forward recursion process to find the corresponding solution σε .

In Algorithm MP-APP, the initialization step sets the value of Δ such that T F0 =
ΔT 2/ε, where from Lemma 5.3, F0 is a lower bound on the optimal profit. For
each period t = 1, . . . , T , the forward recursion step first generates trial states
by choosing the price and scheduling all incoming orders, then labels each trial
state based on the profit value, and finally eliminates trial states by comparing the
makespan of all trial states with the same label, keeping one with the smallest value,
and discards all the others. The final step obtains the optimal solution by selecting a
state with the largest total profit over all time periods and backtracking the forward
recursion process.

5.4 Multi-Period Problems 235

Theorem 5.11 For any ε > 0, Algorithm MP-APP is an FPTAS for the problem
with total weighted completion time with O(n log n + mT 3/ε) running time.

Proof We prove the theorem by induction on the number of time periods t . The
induction hypothesis is that, given any state (t, C,R) that is obtained under the
exact dynamic program Algorithm MP-DP1, Algorithm MP-APP generates a state
(t, C̃, R̃), where C̃ ≤ C and R̃ ≥ R − tΔ. The hypothesis clearly holds for t = 0.
Suppose that the hypothesis holds for t = 0, 1, . . . , l. Now, we prove that for any
state (l + 1, C′, R′) generated in Algorithm MP-DP1, there is a state (l + 1, C̃′, R̃′)
generated by Algorithm MP-APP such that C̃′ ≤ C′and R̃′ ≥ R′ − (l + 1)Δ.

Let (l, C,R) be the state in Algorithm MP-DP1 from which (l + 1, C′, R′) is
generated by applying price pi , for some 1 ≤ i ≤ m, and scheduling all the dl+1(pi)

orders in period l + 1. From the induction hypothesis, we have a state (l, C̃, R̃)

generated in the approximate program where C̃ ≤ C and R̃ ≥ R− lΔ. In Algorithm
MP-APP, for a trial state (l + 1, C̃′, R̃′) that is generated from (l, C̃, R̃) by pricing
in period l + 1 at pi and scheduling dl+1(pi) orders, we prove the following two
claims.
Claim (i): C̃′ ≤ C′. Since C̃ ≤ C and the same orders are added in Algorithm MP-
DP1 and Algorithm MP-APP, the increase in the makespan in Algorithm MP-APP
is no more than that in Algorithm MP-DP1, i.e., C̃′ ≤ C′. This proves Claim (i).
Claim (ii): R̃′ ≥ R′ − (l + 1)Δ. In both Algorithm MP-DP1 and Algorithm
MP-APP, the total revenue of incoming orders in period l + 1 is δ =∑n

j=1 dl+1,j (pi)(pi + vj). Let W ′ and W̃ ′ be the total weighted completion time
in period l + 1 under Algorithm MP-DP1 and Algorithm MP-APP, respectively.
Then, according to the trial state generation process, for state (l + 1, C′, R′), we
have R′ = R + δ − W ′. For state (l + 1, C̃′, R̃′), we have R̃′ = R̃ + δ − W̃ ′.

Due to the fact that C̃′ ≤ C′and the same orders are added in Algorithm MP-
DP1 and Algorithm MP-APP, we have W̃ ′ ≤ W ′. These relations, together with the
induction hypothesis R̃ ≥ R − lΔ, imply that R̃′ ≥ R′ − (l + 1)Δ. This proves
Claim (ii).

If the trial state (l + 1, C̃′, R̃′) is not eliminated, then this state is what we need
in our induction proof and satisfies C̃′ ≤ C′ and R̃′ ≥ R′ − (l + 1)Δ. If this
state is eliminated, then there is another state (l + 1, C̄, R̄) such that C̄ ≤ C̃′ and
R̄ ≥ R̃′ −Δ. Thus, C̄ ≤ C′ and R̄ ≥ R′ − (l + 1)Δ, and state (l + 1, C̄, R̄) is what
we need in our induction proof.

We now show that Algorithm MP-APP delivers a solution with the required
performance guarantee. Let the state (T , C∗, R∗) correspond to an optimal solution
σ ∗ with total profit R∗ in Algorithm MP-DP1. Then, the above induction argument
shows that Algorithm MP-APP generates a solution σε and a corresponding state
(T , C̃, R̃) with total profit R̃, where R̃ ≥ R∗ − TΔ. From Lemma 5.3 and the
definition of Δ, we have (R∗ − R̃)/R∗ ≤ TΔ/R∗ ≤ ε. Therefore, according to the
Optimal Solution step of Algorithm MP-APP, the optimal profit R̃∗ in the optimal
solution σ ∗

ε generated by Algorithm MP-APP satisfies (R∗ − R̃∗)/R∗ ≤ ε.
Finally, we analyze the time complexity of Algorithm MP-APP. First, Algorithm

MP-APP sequences all products in SWPT order, which requires O(n log n) time.

236 5 Coordinated Product Pricing and Scheduling Decisions

Next, we evaluate the number of states (i.e., labels) in the forward recursion step. In
this step, for each period, from the definition of Δ and Lemma 5.3, the number of
labels to generate trial states is no more than T 2/ε and each label generates at most
m trial states. Since there are T periods, the total number of labels is bounded by
O(mT 3/ε). Hence, the overall time complexity of the approximation algorithm is
O(n log n + mT 3/ε), which is a polynomial function of n,m, T , and 1/ε. ��

5.4.4 Computational Results and Managerial Insights

In this section, we summarize the computational results obtained by Yue et al.
(2019) on the performance of the exact dynamic programming algorithms and
FPTAS for the three problems studied. We also present managerial insights from
these results. For ease of presentation, we denote the three problems—the problem
with total weighted completion time, the problem with tardiness allowed, and the
problem with order rejection allowed—as TWC, TA, and ORA, respectively.

Yue et al. (2019) conduct an extensive set of computational experiments on
randomly generated test instances of all the three problems with a number of time
periods T varying from 4 to 8, a number of products n from 5 to 20, and a number
of price levels m from 2 to 6. Half of the instances have a small demand, which
involves, on average, 11 to 3 incoming orders for each product in each period when
n goes from 5 to 20. The other half of the instances have a large demand, which
involves, on average, 18 to 5 incoming orders for each product in each period when
n goes from 5 to 20.

Their computational results show that for any test instance of the first two
problems TWC and TA, their exact algorithms given in Sect. 5.4.2 find optimal
solutions quickly. This means that we can rely on these algorithms to solve the first
two problems and do not need to use approximation algorithms when the problem
instance has a similar size or even slightly larger size than those tested by Yue et al.
(2019).

For problem ORA, however, their test results show that the exact algorithm MP-
DP3 given in Sect. 5.4.2 can be very time-consuming, especially for instances with
a large demand and a large number of time periods. They therefore conduct further
computational experiments to evaluate the performance of their FPTAS for problem
ORA. Their test results show that (1) the FPTAS takes significantly less time than
the optimal DP algorithm for all test instances, (2) the FPTAS with the allowed error
ε = 20% generates solutions within 10% optimality gap for all test instances with
a small demand and most test instances with a large demand, and (3) the FPTAS
with the allowed error ε = 40% generates solutions within 15% optimality gap for
all test instances with a small demand and most test instances with a large demand.
Consequently, it can be concluded that the FPTAS developed for the problem ORA
generates near-optimal solutions in much shorter times than the exact algorithm
MP-DP3.

5.4 Multi-Period Problems 237

For managerial insights, we first discuss the relationship between the number
of price levels (i.e., m) and the total profit over the planning horizon. In their
experiments, the number of price levels tested varies from 1 to 7. The average
percentage gap of the total profit under a smaller value of m relative to the total profit
under a larger value of m is calculated. The average gaps based on test instances with
T = 8, n = 20 and large demand are shown in Table 5.2, where each percentage gap
value shown for row m = x and column m = y is the relative percentage deviation
of the optimal total profit of the problem with m = x, compared to that of the same
problem with m = y. Similar experimental results are observed across other values
of the parameters T and n and other sizes of demand.

From Table 5.2, we can make the following observations. For problems TWC
and TA, when the number of price levels m increases from 1 to 2 or higher or
from 2 to 3 or higher, there is a significant increase in the total profit, more than
45% for problem TWC in most cases and more than 15% for problem TA in many
cases. However, when m increases from 3 or 4 to a higher value, there is only a
small increase in the total profit, less than 5% in most cases of TWC and TA. For
problem ORA, when m increases from 1 to a higher value, the total profit shows a
big increase, but when m increases from 2 or more to a higher value, there is little
change in total profit.

For all the three problems, when there are three price levels, the total profit that
can be generated is already very close to the profit that can be generated when
there are more price levels. Therefore, in practice, using three price levels (e.g.,

Table 5.2 Percentage gap of total profits under different values of m

Problem m = 2 m = 3 m = 4 m = 5 m = 6 m = 7

m = 1 TWC 0.9% 45.7% 46.3% 47.8% 48.4% 49.0%

TA 5.0% 15.2% 16.8% 17.6% 18.5% 18.7%

ORA 7.6% 8.5% 10.2% 11.2% 12.3% 12.4%

m = 2 TWC 45.1% 45.8% 47.3% 47.8% 48.4%

TA 10.2% 11.9% 12.7% 13.7% 14.0%

ORA 1.0% 2.8% 3.9% 5.0% 5.1%

m = 3 TWC 1.1% 3.5% 4.5% 6.0%

TA 1.7% 2.5% 3.5% 3.8%

ORA 1.9% 2.9% 4.1% 4.2%

m = 4 TWC 2.5% 3.4% 5.0%

TA 0.9% 1.9% 2.2%

ORA 1.1% 2.2% 2.4%

m = 5 TWC 1.0% 2.5%

TA 1.1% 1.3%

ORA 1.2% 1.4%

m = 6 TWC 1.6%

TA 0.3%

ORA 0.2%

238 5 Coordinated Product Pricing and Scheduling Decisions

Table 5.3 Benefits of dynamic pricing compared with constant pricing

T = 4 T = 6 T = 8

Problem Demand n = 5 n = 10 n = 20 n = 5 n = 10 n = 20 n = 5 n = 10 n = 20

TWC Small 10.4% 31.3% 27% 40.2% 11% 14.8% 19% 35.3% 29.7%

Large 14.1% 13.7% 17.1% 10.1% 20% 27.8% 19% 20.1% 18.5%

TA Small 5.9% 6.3% 4.5% 7.8% 9.2% 10.4% 8.1% 6.2% 5.3%

Large 5.4% 3.9% 5.3% 13.5% 7.8% 4.4% 13.5% 10.6% 23.1%

ORA Small 4.3% 13.1% 16.2% 12.5% 10.8% 14.2% 5.8% 5.1% 7.5%

Large 3.9% 9.1% 8.9% 10.3% 5.3% 11.5% 12.2% 7.7% 6.7%

a low price, a medium price, and a high price) should be sufficient to generate
a near-optimal total profit. In fact, in practice, practitioners may prefer to use a
small number of price levels for several reasons. With a small number of price
levels, it is generally not as time-consuming to solve the problem as with a large
number of price levels. Also, the solution obtained with a small number of price
levels generally involves less frequent price changes over time and hence is easier
to implement and less annoying to customers, as compared to the solution for the
case with a large number of price levels.

Finally, we discuss the benefits of dynamic pricing policy by comparing the total
profit that can be generated in the current problems where dynamic pricing is used
and the total profit that can be generated in the same problems using a constant
pricing policy. Under a constant pricing policy, a single price is used for all the time
periods, and the allowable price that yields the maximum total profit is adopted.
Table 5.3 shows the average percentage gap between the total profit generated from
the constant pricing policy and the total profit generated from the current problems,
as reported in Yue et al. (2019). We observe that for all the three problems, compared
to the constant pricing policy, the dynamic pricing policy generates more profit for
firms under any parameter combination of T , n, and demand size. Dynamic pricing
yields an average of 20% more profit for problem TWC and an average of 10% more
profit for both problems TA and ORA.

Table 5.4 shows the average number of price changes over the planning horizon
in the optimal solution of the current problems. It can be seen that in the optimal
solution of these problems, the price is indeed dynamically adjusted over time.
Specifically, on average, one or two price changes occur over the planning horizon
for the problem TWC, and two or three price changes occur for the problems TA
and ORA.

These results indicate that when a is faced with a production capacity limit and
changing demand over time, dynamic pricing is a useful tool to match supply with
demand and achieve satisfactory performance.

5.5 Future Research 239

Table 5.4 Average number of price changes

T = 4 T = 6 T = 8

Problem Demand n = 5 n = 10 n = 20 n = 5 n = 10 n = 20 n = 5 n = 10 n = 20

TWC Small 1.8 1.8 1.3 1.9 2 1.9 1.9 2.2 3.3

Large 1.6 1 0.7 0.9 0.8 1.5 1.1 0.2 1.4

TA Small 2.2 1.6 1.9 3 3.2 3.1 3.9 2.3 4

Large 1.6 1.9 1.8 2.9 2.4 2.3 2.4 4 3.3

ORA Small 1.6 1.9 1.8 2.9 2.4 2.3 2.4 4 3.3

Large 2.1 1.2 2.5 2.2 2.5 2.9 3.7 4.6 5.7

5.5 Future Research

Most existing models on coordinated pricing and scheduling involve independent
products or orders with simple demand functions, special scheduling cost functions
such as total weighted completion time, and a single-machine production environ-
ment.

In the following, we highlight some possible new problem classes as future
research topics.

• Problems with a parallel-machine or a job-shop production environment have
not been studied. For problems with a parallel-machine environment, when the
number of parallel machines is fixed, it is likely that the algorithms presented
in Sects. 5.2 and 5.4 can be extended and may still be computationally efficient.
However, when the number of machines is arbitrary, most of the ordinarily NP -
hard problems shown earlier may become strongly NP -hard.

• In make-to-order environments, where customers are waiting to receive their
completed orders, tardiness is an important customer service measure, and hence
tardiness related cost functions deserve more research. For example, one can
consider the total weighted tardiness of orders as the cost function in the single-
period problem setting studied in Sect. 5.2. Another example is that one can
use the weighted number of late orders as the cost function in the multi-period
problem setting considered in Sect. 5.4.

• Problems with stochastic or unknown demand functions have received little
attention. One can borrow some existing demand models for multiple products
from the dynamic pricing literature (e.g., Chen & Chen, 2015). Demand for a
product can be stochastic with a known probability distribution as a function
of the prices of the products or can be uncertain with limited information (e.g.,
only the support of the demand distribution is known). In the latter case, robust
optimization may be used to address the underlying problem (e.g., Chen &
Chen, 2018). It would be valuable to see how some of the existing multi-product
dynamic pricing models can be extended to include job scheduling decisions.

• Problems where different products or orders are correlated, e.g., substitutable or
complementary, have not been studied. In reality, however, it is common that

240 5 Coordinated Product Pricing and Scheduling Decisions

demand for one product is often correlated with the demand for another product.
In such cases, the demand functions are much more complex. One can use some
existing models from the dynamic pricing literature (e.g., Chen & Chen, 2015)
for multiple products that are inter-dependent.

• Problems involving multiple stages of price quotation decisions have not been
considered. Such problems extend from the single-stage price quotation problems
discussed in Sect. 5.3.

• In addition to price quotation, one could also consider due date quotation in
combination with scheduling decisions. Such models, which integrate price and
due date quotation with scheduling, would be more difficult to solve. There are
existing models on joint due date quotation and scheduling (e.g., Panwalkar et
al., 1982, Kaminsky & Kaya, 2008). One could investigate how existing solution
methods from this literature can be used to solve the more complex problems
discussed here.

• From a supply chain perspective, it would also be valuable to coordinate deci-
sions such as distribution in combination with pricing and scheduling. One could
incorporate pricing decisions into the integrated production and distribution
scheduling problems studied in Chap. 3.

• Finally, it would be interesting to investigate the online version of many of the
problems studied in the previous sections and those discussed here.

In addition, from a solution methodology point of view, most existing solution
methods in the literature have been dynamic programming algorithms. The design
and worst-case analysis of simple heuristics for intractable coordinated pricing and
scheduling problems remains an open area. Another possible area of research is the
design of branch-and-bound algorithms for such problems.

Chapter 6
Joint Subcontracting and Scheduling
Decisions

Abstract In this chapter, we discuss centralized supply chain scheduling problems
that involve an in-house processing facility and one or more subcontractors by which
jobs can also be processed. The decision maker needs to determine jointly a subset
of jobs to be subcontracted and a schedule for the jobs processed in-house, and in
some situations may also need to construct a schedule for the subcontracted jobs.
We discuss several representative problems, and for each problem considered, we
study its complexity and describe exact or heuristic solution algorithms, analyze the
performance of these algorithms, and present relevant practical insights.

6.1 Introduction

The problems considered in the previous three chapters involve two different stages
of a supply chain (i.e., production and distribution) or two different functional areas
of a firm (i.e., production and marketing), where the centralized decision maker
needs to take into consideration the inter-dependency of the multiple supply chain
stages or functional areas when making decisions.

There is another class of centralized supply chain scheduling problems that
involve multiple production facilities where jobs can be processed. Scheduling
problems involving multiple facilities are commonly encountered in practice. We
describe two practical situations where such problems arise.

• First, a large number of manufacturing firms have multiple in-house production
facilities. Due to the time urgency of received orders, the company many need
to utilize more than one of its facilities to process incoming orders. Section 3.7
discusses integrated production and distribution scheduling problems involving
multiple processing plants owned by a single firm. In such problems, the firm is
responsible for both assigning the jobs to the plants and creating a schedule for
processing the assigned jobs at each plant.

• Second, it is a common practice in many industries for a manufacturer to
subcontract some operations or outsource an entire line of production because
of the many advantages this practice can bring to the firm. The global market for

© Springer Nature Switzerland AG 2022
Z.-L. Chen, N. G. Hall, Supply Chain Scheduling, International Series
in Operations Research & Management Science 323,
https://doi.org/10.1007/978-3-030-90374-9_6

241

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-90374-9_6&domain=pdf
https://doi.org/10.1007/978-3-030-90374-9_6

242 6 Joint Subcontracting and Scheduling Decisions

outsourced services in 2019 was more than $92 billion (Statista, 2021). When a
firm subcontracts out some of its tasks or outsources an entire set of operations,
it allows the firm to concentrate on its core competencies. Subcontracting lowers
investment requirements, and hence the financial risk of the firm. It also helps
the firm improve its response to customer demand and lower the risk associated
with fluctuating demand. Clearly, scheduling problems that arise in such a setting
involve multiple facilities, including an in-house plant and the plants of the
subcontractors involved.

Since Sect. 3.7 covers several problems with multiple in-house plants, in this
chapter, we focus on problems with an in-house plant and one or more subcon-
tractors. The subcontractors may process jobs at a faster rate but with a higher
production cost. In some cases, the jobs processed by the subcontractors may
need to be delivered back to the in-house facility, which incurs an additional
transportation cost and time. The firm needs to determine (1) a subset of jobs to be
outsourced to each subcontractor, (2) a processing schedule for the in-house facility,
and (3) possibly also a delivery schedule to send the completed jobs from each
subcontractor to the in-house facility. In most such problems, it is assumed that the
decision maker is not responsible for creating schedules for subcontractors because
they do not belong to the same entity. However, there are also some situations where
the decision maker needs to create schedules for subcontractors.

We consider several subclasses of joint subcontracting and scheduling (JSS)
problems and related issues in the following subsections.

• In Sect. 6.2, we consider a JSS problem where the decision maker can subcontract
some jobs to multiple available subcontractors with the objective of minimizing
the total subcontracting cost, subject to a lead time performance guarantee on the
jobs. Some variants of the problem are also considered.

• In Sect. 6.3, we investigate the value of subcontracting based on the problems
discussed in Sect. 6.2 by comparing the objective value of a problem with and
without the subcontracting option.

• In Sect. 6.4, we study JSS problems where there is a budget constraint on the total
subcontracting cost.

• All the problems considered in the other sections involve a production environ-
ment where a job only has one processing stage. In Sect. 6.5, we consider JSS
problems involving a flowshop production environment where each job consists
of multiple operations.

• In Sect. 6.6, we consider JSS problems where the decision maker needs to sched-
ule both the in-house jobs as well as the subcontracted jobs and the subcontracted
jobs must be delivered to the in-house facility after completion. The problems
considered in all the other sections do not involve such complications.

• Finally, in Sect. 6.7 we consider JSS problems where the subcontractor employs
a quantity discount scheme for the subcontracting cost. The subcontracting cost
structure in the problems considered here is more general than those studied in
Sects. 6.2 through 6.6.

6.2 Problem with a Lead Time Performance Guarantee 243

Chapter 6:
Joint Subcontracting and

Scheduling Decisions

Section 6.2: Problem with a Lead Time
Performance Guarantee:
linear programming relaxation for the problem;

a related problem of minimizing weighted sum

of makepan and total cost;

NP-hardness proof; heuristic;

worst-case and asymptotic analysis.

Section 6.3: Value of Subcontracting:
quantifying value of subcontracting;

asymptotic analysis;

computational results; managerial insights.

Section 6.4: Problems with a
Subcontracting Budget Constraint:
total completion time problem;

maximum tardiness problem;

total tardiness problem;

exact algorithms; heuristics.

Section 6.5: Problems with a
Flow Shop Environment:
two-stage flowshop;

proportionate flowshop;

NP-hardness proof; exact algorithm;

polynomially solvable cases.

Section 6.6: Problems Requiring Delivery of Subcontracted Jobs:
problems with a single in-house machine and a single subcontractor;

total completion time; maximum lateness; number of late jobs;

problems with a two-stage flowshop;

exact algorithms.

Section 6.7: Problems with a More Complex
Subcontracting Cost Structure:
quantity discount;

piecewise linear subcontracting cost functions;

problem with incremental discount;

exact algorithms; heuristic; worst-case analysis.

Fig. 6.1 Overview of the topics covered in Chap. 6

Figure 6.1 provides an overview of the topics discussed in this chapter.
Several decentralized supply chain scheduling problems involving subcontract-

ing decisions are studied in Sects. 8.7, 9.2, and 9.3. These problems are modeled as
cooperative or noncooperative games, unlike the problems studied in this chapter,
which are modeled as centralized optimization problems.

6.2 Problem with a Lead Time Performance Guarantee

We first consider a problem studied by Chen and Li (2008). At the beginning
of a planning horizon, a manufacturer has received a set of jobs, and can either
process each of them on one of the multiple identical machines available in-house,
or subcontract it to one of the multiple subcontractors available. The objective of
the model is to minimize the total cost of production and subcontracting, subject
to a constraint on the delivery lead time of the orders. Below, we define the model
following the notation introduced in Chen and Li (2008), and discuss the results
developed there, including the computational complexity of the model, a heuristic
algorithm, and worst-case and asymptotic performance of the heuristic. We also
discuss a related problem.

244 6 Joint Subcontracting and Scheduling Decisions

6.2.1 Problem Definition

A manufacturer receives a set of n jobs N = {1, . . . , n} at the beginning
of a planning horizon. For each job, the manufacturer has two options: It can
either process the job at its own plant or subcontract it to a subcontractor for
processing. There are m identical parallel machines M = {1, . . . , m} available at
the manufacturer’s plant, such that if a job is processed at the manufacturer’s plant,
it only needs to be processed by one of the machines. There are k subcontractors
K = {1, . . . , k} available. Each job is assumed to be indivisible; that is, it has
to be processed entirely by an in-house machine or subcontracted to one of the
subcontractors entirely. This assumption is justified by convenience of accounting,
packaging, and delivery purposes. If job j ∈ N is processed at the manufacturer’s
own plant, a processing time p0j is required and the cost to the manufacturer is q0j .
If job j ∈ N is subcontracted to subcontractor h ∈ K , then the delivery lead time is
phj (i.e., it takes subcontractor phj units of time to complete the job and deliver the
job to the in-house plant) and the cost incurred is qhj dollars. We do not explicitly
define the workload or size of each job. However, if necessary, the workload of a job
j ∈ N can be easily incorporated into the time and cost parameters defined here. We
can set these parameters such that they are proportional to the workload of job j . For
example, if the workload of job j is wj , a possible instance of these parameters can
be pij = αiwj , and qhj = βiwj for i ∈ 0, 1, . . . , k and j ∈ N , where αi, βi > 0
are facility-dependent parameters.

We further assume that for each subcontractor h ∈ K , the delivery lead
time phj and subcontracting cost qhj for a job j ∈ N are independent of the
total workload of the subcontractor. This assumption is made and justified in the
literature. For example, Bertrand and Sridharan (2001) and Bukchin and Hanany
(2007) make the same assumption on the subcontracting lead time of a job. Bukchin
and Hanany (2007) assume that the subcontractor has an unlimited capacity and
that the subcontracting lead time of a job is a constant factor multiplied by the
in-house processing time of the job. They point out that the assumption that
the subcontractor has unlimited capacity is reasonable when the subcontractor’s
available capacity is significantly higher than the manufacturer’s required capacity,
and in this case, a contract can be signed that clearly defines a due date commitment
on the subcontractor’s side. In the models of Chung et al. (2005), Bukchin and
Hanany (2007), and Qi (2008), it is also assumed that the subcontracting cost of
a job is independent of the other jobs processed by the same subcontractor. This
assumption is appropriate if each subcontractor makes independent offers to the
individual jobs from the manufacturer with a promise to deliver a finished job within
a certain deadline at a certain cost.

The manufacturer needs to determine (1) a subset of jobs to be subcontracted to
each of the k subcontractors, and (2) a production schedule for the jobs processed
on the m machines at its own plant, such that the total production cost is minimized,
subject to the constraint that the makespan (i.e., the maximum completion time
of the jobs) is no more than a given threshold. Each subcontractor determines its
own production schedule for the jobs subcontracted from the manufacturer and

6.2 Problem with a Lead Time Performance Guarantee 245

delivers completed jobs to the manufacturer by the pre-specified lead times. The
delivery time and cost are not explicitly considered, but can be viewed as already
incorporated into phj and qhj , respectively.

In a solution to this problem, let Cj denote the completion time of job j ∈ N . If
job j ∈ N is subcontracted to a subcontractor h ∈ K , then Cj = phj . If job j ∈ N

is processed in-house, then Cj is determined by the schedule for the jobs processed
in-house. Define the makespan of all the jobs to be the maximum completion time of
the jobs, and denote it as Cmax = max{Cj |j ∈ N}. Here, Cmax represents the time
when all the customer orders are completed. By imposing a constraint on Cmax, we
guarantee that all jobs are completed within a given time limit. Let G denote the
total cost of a given solution, including the production costs at the manufacturer’s
plant and the subcontracting costs. The problem is to minimize the total cost G
subject to the constraint Cmax ≤ C, where C is a pre-specified threshold value. We
denote this problem as min{G | Cmax ≤ C}. This problem can be used to determine
all Pareto-optimal solutions with respect to G and Cmax if we solve this problem
repeatedly for different values of C.

Remark 6.1 The problem described above can be viewed as a generalized version of
the classical parallel-machine scheduling problems, for example, Pm||Cmax. In clas-
sical parallel-machine scheduling problems, no production costs are involved, while
some performance measure of job completion times is optimized. In our problem,
the objective is to minimize the total operating cost, and each subcontractor h ∈ K

can be viewed as having a sufficient number (e.g., n) of identical parallel machines,
such that each of these machines only needs to handle at most one job.

6.2.2 Complexity and Heuristic Analysis

We first show that problem min{G | Cmax ≤ C} is at least ordinarily NP -hard even
with a special structure. Then, we propose a heuristic and analyze its performance.
All the results are from Chen and Li (2008).

Theorem 6.1 Problem min{G | Cmax ≤ C} is at least ordinarily NP -hard even if
there is only a single machine at the manufacturer, there is a single subcontractor,
and the in-house production costs are proportional to the production times.

Proof Clearly, this problem contains the classical parallel-machine makespan
problem Pm||Cmax as a special case. Thus, when there is an arbitrary number of
machines, the problem is strongly NP -hard because Pm||Cmax with an arbitrary m

is known to be strongly NP -hard (Garey & Johnson, 1978).
In the remainder of the proof, we show that the special case of the problem with

a single machine at the manufacturer, and a single subcontractor, where in-house
production costs are proportional to the production times, is ordinarily NP -hard. To
this end, we first show that this special case of the problem is at least ordinarily NP -
hard by a reduction from the Subset Sum problem, a known NP -complete problem

246 6 Joint Subcontracting and Scheduling Decisions

(Garey & Johnson, 1979). After this, we show that there is a pseudo-polynomial
time algorithm to solve the problem to optimality.

The Subset Sum (SS) problem can be defined as follows: Given a set of items
V = {1, 2, . . . , v}, a size aj ∈ Z+ for each item j ∈ V , and a positive integer A,
the problem asks if there is a subset U ∈ V such that

∑
j∈U aj = A. We define

B = ∑
j∈V aj . We can assume B ≥ A + 1 because otherwise A = B and the

problem is trivial.
Given an instance of SS, we construct the following instance for our problem

min{G | Cmax ≤ C}:
• Number of machines at the manufacturer, m = 1.
• Number of subcontractors, k = 1.
• Number of jobs, n = v + 1, and job set: N = V ∪ {v + 1}.
• Processing time at the manufacturer: p0j = Laj for j ∈ N , and p0,v+1 = LB,

where L is any positive integer.
• Delivery lead time if subcontracted: p1j = Laj for j ∈ N , and p1,v+1 = LA.
• Production cost if processed in-house: q0j = aj for j ∈ N , and q0,v+1 = B.
• Production cost if subcontracted: q1j = 2aj for j ∈ N , and q1,v+1 = 2A.
• Constraint for the makespan: C = LA.
• Threshold for the objective value: Z0 = A + 2B.

Since in the above instance q0j = p0j /L for all j ∈ N , in-house production costs
are proportional to the processing times. We prove that there is a feasible solution
to the constructed instance of our problem with objective value no more than Z0 if
and only if there is a solution to SS.
(⇒) Given a solution to SS, we construct a solution to our problem as follows:
Subcontract all the jobs in N \ U to the only subcontractor available, and process
the jobs in U in-house in any sequence. Clearly, in this solution Cmax = LA = C

and G = A + 2B = Z0.
(⇐) Given a solution to our problem with an objective value G no more than Z0,
let H denote the subset of the jobs processed in-house. Clearly, v + 1 /∈ H , because
otherwise Cmax ≥ LB ≥ L(A + 1), implying that the objective value exceeds
Z0. Thus, Cmax = p1,v+1 = LA = C. Also,

∑
j∈H aj ≤ A, because otherwise

Cmax ≥ L(A + 1) > C. If
∑

j∈H aj < A, then the total cost is

G =
∑

j∈H
q0j +

∑

j∈N\H
q1j =

∑

j∈H
aj + 2A +

∑

j∈V \H
2aj

= 2A + 2B −
∑

j∈H
aj > A + 2B = Z0,

which is a contradiction. This implies that
∑

j∈H aj = A.
Finally, we briefly show that a pseudo-polynomial time dynamic programming

algorithm can be constructed to solve the special case of the problem to optimality.
We design a DP algorithm that considers jobs 1, . . . , n in the sequence of their
indices one by one, and for each job j , tries to process it in-house, or subcontract it.
Define value function F(j,E1, E2) as the minimum total cost of a solution for jobs

6.2 Problem with a Lead Time Performance Guarantee 247

1, . . . , j , where the makespan of the in-house jobs is E1 and the longest lead time
of a subcontracted job is E2. Then, the recurrence relation of the dynamic program
is the following:

F(j,E1, E2) = min{F(j − 1, E1 − p0j , E2) + q0j , Z + q1j },

where

Z =
⎧
⎨

⎩

F(j − 1, E1, E2), if E2 ≥ p1j

min{F(j − 1, E1, x) | x ≤ p1j }, if E2 = p1j

∞, if E2 < p1j

The optimal solution is found by solving the problem: min{F(n,E1, E2) | E1 ≤
C,E2 ≤ C}. Clearly this algorithm has a pseudo-polynomial running time. ��

We now discuss the heuristic proposed by Chen and Li (2008). This heuristic is
based on an integer programming formulation of the problem and exploits a special
property of the LP-relaxation of the IP formulation. For each job j ∈ N , we find
all the subcontractors that can process job j with a delivery time no later than the
required threshold of the makespan, C. Denote the subset of such subcontractors as
Sj . Thus, Sj = {h ∈ K | phj ≤ C}. Define V = {j ∈ N | Sj �= ∅} to be the
set of jobs that can be subcontracted. For each j ∈ V , define a subcontractor sj =
arg minv∈Sj {qvj }, which is the subcontractor that can process job j at a minimum
cost with a delivery time no later than C. With this additional notation defined, the
problem can then be formulated as the following mixed integer program, where each
binary variable xij is defined to be 1 if job j is assigned to machine i ∈ M at the
manufacturer’s own plant, and 0 otherwise; variable yj is defined to be 1 if job j is
assigned to subcontractor sj , and 0 otherwise; and variable Cmax is the makespan.

IP (C) : Minimize
m∑

i=1

n∑

j=1

q0j xij +
∑

j∈V
qsj ,j yj (6.1)

subject to
m∑

i=1

xij + yj = 1, for j ∈ V, (6.2)

m∑

i=1

xij = 1, for j ∈ N \ V (6.3)

Cmax ≥
n∑

j=1

p0j xij , for i ∈ M, (6.4)

Cmax ≤ C, (6.5)

xij ∈ {0, 1}, for i ∈ M and j ∈ N (6.6)

yj ∈ {0, 1}, for j ∈ V. (6.7)

248 6 Joint Subcontracting and Scheduling Decisions

In the above formulation, objective function (6.1) is the total production and
subcontracting cost. Constraints (6.2) and (6.3) ensure that each job j ∈ V is either
assigned to an in-house machine or subcontracted to sj , and that each job j ∈ N \V
is assigned to an in-house machine. Constraints (6.4) and (6.5) define the makespan
and ensure that the threshold on the makespan is met.

We focus on the LP-relaxation problem of IP (C), denoted as LP(C), which is
the same formulation as IP (C) except that variables xij and yj are allowed to take
any nonnegative values. Constraints (6.2) and (6.3) enforce these variables to take
values between 0 and 1. We have the following result about problem LP(C).

Lemma 6.1 If n ≥ m, then in an optimal basic solution of LP(C), at least n − m

of the variables xij and yj take the value 1.

Proof There are n + m + 1 constraints in LP(C) in addition to the nonnegativity
constraints. Hence, in an optimal basic solution, no more than n + m + 1 variables
take positive values. Given that variable Cmax must take a positive value, at most
n + m of the xij and yj variables take positive values in an optimal basic solution.

Given an optimal basic solution of LP(C), let Ωj denote the subset of variables
among x1j , x2j , . . . , xmj , yj that take a nonzero value when j ∈ V , or the subset
of variables among x1j , x2j , . . . , xmj that take a nonzero value when j ∈ N \ V .
Define N1 = {j ∈ N | |Ωj | = 1} and N2 = {(j ∈ N | |Ωj | ≥ 2}. If j ∈ N1,
then there is only one nonzero variable among the variables x1j , x2j , . . . , xmj , yj .
Constraints (6.2) and (6.3) imply that this nonzero variable must have a value 1.
Clearly, each Ωj contains a distinct set of variables, i.e., Ωj ∩ Ωj ′ = ∅ if j �= j ′.
Thus,

n + m ≥ |N1| + 2|N2| = |N1| + 2(n − |N1|) = 2n − |N1|,

which implies that |N1| ≥ n − m. ��
From Lemma 6.1, we can conclude that in an optimal basic solution of LP(C),

there are at most m jobs with fractional values assigned to the corresponding xij
or yj variables. We show in the following that we do not have to use a linear
programming algorithm to obtain an optimal basic solution of LP(C). Instead,
there is a simple strongly polynomial-time algorithm that can find an optimal basic
solution of LP(C) with at most m jobs having fractional values of the corresponding
xij or yj variables.

We first consider the following auxiliary problem, denoted as PAUX, which is a
subproblem in the procedure to solve problem LP(C) given below. We are given a
set of h jobs H = {1, . . . , h} to be scheduled on the m parallel identical machines
in-house, where each job j ∈ H has a processing time aj . Each job j can be split
into subjobs, where each subjob has a processing time less than aj such that the
total processing time of all subjobs of job j is equal to aj . The subjobs of a job are
mutually independent and can be processed on different machines simultaneously if
needed. Problem PAUX is to split at most m jobs into subjobs and find a schedule
for all the resulting subjobs and unsplit jobs on the m identical parallel machines,
such that the makespan of the schedule is equal to AH = 1

m

∑
j∈H aj .

6.2 Problem with a Lead Time Performance Guarantee 249

Problem PAUX can be solved by the following procedure. The idea is to assign
the jobs sequentially to the machines and divide a job into subjobs whenever
necessary in order to make the total processing time of each machine equal to AH .

Procedure PRO1 for Problem PAUX

Step 1: Assign jobs 1, 2, . . . one by one to machine 1. Suppose job u1 is the first job
such that after it is assigned to machine 1, the total processing time on machine
1, i.e.,

∑u1
j=1 aj becomes greater than or equal to AH . Job u1 is divided into two

subjobs u1[1] and u1[2] such that the total processing time of jobs 1, . . . , u1 − 1
and u1[1] is exactly AH . Let the processing time of subjob u1[2] be denoted as
au1[2]. Call u1[2] the leftover subjob from machine 1.

Step 2: For i = 2, . . . , m, assign the leftover subjob ui−1[2] from machine i − 1,
and the remaining jobs ui−1 + 1, ui−1 + 2, . . . one by one to machine i. There
are two cases:

Case (i): If aui−1[2] < AH , then let job ui be the first job such that aui−1[2] +∑ui
j=ui−1+1 aj ≥ AH . Divide job ui into two subjobs ui[1] and ui[2] such that

the total processing time of jobs ui−1[1], ui−1+1, . . . , ui−1 and ui[1] is exactly
AH . Denote the processing time of subjob ui[2] by aui [2]. Call ui[2] the leftover
subjob from machine i.

Case (ii): If aui−1[2] ≥ AH , then subjob ui−1[2] is divided further into two subjobs,
denoted as ui[1] and ui[2], such that the processing time of ui[1] is equal to AH

and that of ui[2], denoted as aui [2], is equal to aui−1[2] − AH . Call subjob ui[2]
the leftover job from machine i.

In the above procedure, in Step 1, the processing time of subjob u1[2] is au1 [2] =∑u1
j=1 aj − AH , and in Case (i) of Step 2, the processing time of subjob ui[2] is

aui [2] = aui−1[2] +∑ui
j=ui−1+1 aj − AH . Furthermore, there is at most one new job

that is split going from machine i to machine i + 1. Thus, it results in a total of at
most m− 1 split jobs. It is not difficult to check that this procedure takes O(h+m)

time.

Example 6.1 (Application of Procedure PRO1) We apply Procedure PRO1 to the
following instance of problem PAUX: Assign 8 jobs H = {1, . . . , 8} with the
processing times a1 = a2 = a3 = 4, a4 = a5 = 5, a6 = 8, a7 = a8 = 6 to
m = 3 identical parallel machines such that the makespan of the schedule is equal
to AH = (

∑8
j=1 aj)/3 = 42/3 = 14.

For this example, in Step 1, we assign jobs 1, 2, 3, 4 to machine 1 with u1
being job 4. Split job 4 into two parts u1[1] with processing time 2 and u1[2] with
processing time 3 such that the total processing time of jobs 1, 2, 3, and u1[1] is 14.
In Step 2, for machine 2, we assign subjob u1[2] and jobs 5 and 6 to machine 2 with
u2 being job 6. Split job 5 into two parts u2[1] with processing time 6 and u2[2]
with processing time 2. As a result, the total processing time of jobs u1[2], 5, u2[1]
is equal to 14. The remaining jobs, u2[2], 7, 8 are assigned to machine 3 with total
processing time 14.

250 6 Joint Subcontracting and Scheduling Decisions

Next, we present a procedure that either concludes that the linear relaxation
problem LP(C) is infeasible or finds an optimal solution of the problem if it is
feasible. We first define some of the notation used in this procedure:

• U denotes the set of in-house jobs and subjobs.
• N1 and N2 denote the set of unsplit and split jobs, respectively, as defined in the

proof of Lemma 6.1.
• W denotes the set of jobs that have not been subcontracted but can be subcon-

tracted if needed.

Procedure PRO2 for LP(C)

Step 1: Initialize U = N , N1 = ∅, and N2 = ∅. For each job j ∈ V , if qsj ,j ≤ q0j ,
then assign job j to subcontractor sj , i.e., set yj = 1 and xij = 0 for i ∈ M , and
set U = U \ {j}, and N1 = N1 ∪ {j}. Set W = U ∩ V .

Step 2: If 1
m

∑
j∈U p0j ≤ C, then all the jobs in U are assigned to the

manufacturer’s in-house plant. Define auxiliary problem PAUX involving the jobs
in U and the m in-house machines. Call Procedure PRO1 to schedule these jobs
on the m machines. This results in at most m − 1 jobs being split into subjobs.
These jobs are added to set N2. The other jobs are added to set N1. For each job
j ∈ U ∩ N1, let xij = 1, where i is the machine to which job j is assigned. For
each job j ∈ U ∩ N2 and each machine i ∈ M , let xij = τij /p0j , where τij is
the total processing time of the subjobs of job j assigned to machine i. Stop.

Step 3: If 1
m

∑
j∈U p0j > C and W is empty, then LP(C) is infeasible, and stop.

Step 4: If 1
m

∑
j∈U p0j > C and W is not empty, then some jobs in W must be

subcontracted. Let Δ = ∑
j∈U p0j − mC, which is the total processing time

of jobs in W that need to be subcontracted in an optimal solution of LP(C).
Suppose that there are w jobs in W . Reindex the jobs in W as [1], [2], . . . , [w]
such that

qs[1],[1]−q0,[1]
p0,[1] ≤ qs[2],[2]−q0,[2]

p0,[2] ≤ · · · ≤ qs[w],[w]−q0,[w]
p0,[w] .

Set v = 1, and consider the following two cases:

(a) If Δ = 0, then define auxiliary problem PAUX involving the jobs in U and the
m in-house machines and call Procedure PRO1 to schedule the jobs in U on the
m in-house machines. This results in at most m − 1 split jobs. These jobs are
added to set N2. The other jobs are added to set N1. For each job j ∈ U ∩ N1,
set xij = 1, where i is the machine to which job j is assigned. For each job
j ∈ U ∩ N2 and each machine i ∈ M , let xij = τij /p0j , where τij is the total
processing time of the subjobs of job j assigned to machine i. Stop.

(b) If Δ > 0, then consider the following two subcases:

(i) If Δ < p0,[v], then split job [v] into two subjobs g1([v]) and g2([v]) with
a processing time p0,[v] − Δ and Δ, respectively. Assign subjob g2([v]) to
subcontractor s[v] (and let y[v] = Δ/p0,[v]). Set U = (U \ {[v]}) ∪ g1([v]).
Define auxiliary problem PAUX involving the jobs in U (including subjob
g1([v])) and the m in-house machines and call Procedure PRO1 to schedule
the jobs in U on the m in-house machines. This results in at most m split

6.2 Problem with a Lead Time Performance Guarantee 251

jobs, including job [v]. These jobs are added to set N2. All the other jobs
are added to set N1. For each job j ∈ U ∩ N1, set xij = 1, where i is the
machine to which job j is assigned. For each job j ∈ U ∩ N2 and each
machine i ∈ M , let xij = τij /p0j , where τij is the total processing time of
the subjobs of job j assigned to machine i. Stop.

(ii) If Δ ≥ p0,[v], then assign job [v] to subcontractor s[v]. Let y[v] = 1, and add
job [v] to N1. Update Δ = Δ− p0,[v] and U = U \ {[v]}. If v < w, then set
v = v + 1 and repeat Steps 4(a) and 4(b). If v = w and Δ = 0, then repeat
Step 4(a) and stop. If v = w and Δ > 0, then LP(C) is infeasible, and stop.

We briefly explain the validity of the above procedure. Clearly, for each job j ∈
V , if qsj ,j ≤ q0j , then job j should be subcontracted to subcontractor sj in an
optimal solution. This is part of what Step 1 does. Steps 2, 3, and 4 consider three
possible cases. Step 4 subcontracts the jobs in W one by one following the sequence
[1], . . . , [w]. Here the following rule is used for subcontracting jobs: The remaining
job in W with the smallest ratio (qs[j],[j] − q0,[j])/p0,[j] is subcontracted first. This
rule minimizes the total subcontracting cost.

We state the following result without a detailed proof. Interested readers are
referred to Chen and Li (2008).

Lemma 6.2 If LP(C) is infeasible, then Procedure PRO2 validates that this
problem is infeasible. If LP(C) is feasible, then Procedure PRO2 finds an optimal
solution to LP(C) with no more than m split jobs in O(n log n + m) time.

Now, we describe the heuristic of Chen and Li (2008) for solving problem
min{G | Cmax ≤ C}. The heuristic assigns each job either to an in-house machine
or to a subcontractor based on the solution of LP(C) obtained by Procedure PRO2,
which generates a set of unsplit jobs N1 and a set of split jobs N2. The heuristic
assigns each job j ∈ N1 with xij = 1 for some i ∈ M to in-house machine i, and
each job j ∈ N1 ∩V with yj = 1 to subcontractor sj . This creates a schedule σ1 for
jobs in N1. Next, each job in N2 is either assigned to a subcontractor or an in-house
machine based on its cost parameters and the workload of each in-house machine in
schedule σ1.

Heuristic H1 for Problem min{G | Cmax ≤ C}
Step 1: Solve LP(C) by Procedure PRO2. If LP(C) is infeasible, then problem

min{G | Cmax ≤ C} is infeasible and stop. Otherwise, based on the solution of
LP(C), define Ji = {j ∈ N1|xij = 1} for i ∈ M .

Step 2: For each i ∈ M , assign each job j ∈ Ji to machine i at the manufacturer.
Schedule the jobs on each machine in an arbitrary sequence. For each job
j ∈ N1 ∩ V with yj = 1 assign job j to subcontractor sj . Denote the resulting
schedule (containing the jobs from N1 only) by σ1. Define the workload of each
in-house machine under solution σ1 as the total processing time of the jobs
assigned to this machine in σ1.

Step 3: For each j ∈ N2, do the following. If Sj �= ∅ and qsj ,j ≤ q0j , then assign
job j to subcontractor sj . If Sj �= ∅ and qsj ,j > q0j , or if Sj = ∅, then assign
job j to an in-house machine with the minimum workload under solution σ1 and
update the workload of this machine accordingly. Denote the final schedule as σ .

252 6 Joint Subcontracting and Scheduling Decisions

In the above heuristic H1, determining S1, S2, . . . , Sn and s1, s2, . . . , sn takes
O(nk) time, where k is the number of subcontractors in the problem. Once these
values are known, Steps 2 and 3 of the heuristic require O(n) time. Since LP(C)

involved in Step 1 of the heuristic is solved by Procedure PRO1 in O(n log n + m)

time, the overall time complexity of the heuristic is O(nk + n log n).

Example 6.2 (Application of Heuristic H1) We apply Heuristic H1 to the following
instance of problem min{G | Cmax ≤ C}: m = 2, k = 2, n = 6, where pij and qij
are given in the following table. Consider two cases of the threshold value of Cmax:
C = 10 or C = 15.

j 1 2 3 4 5 6

p0j 5 5 8 6 5 3

p1j 10 6 9 6 7 4

p2j 6 4 8 7 8 5

q0j 2 4 2 5 5 3

q1j 5 3 4 6 6 2

q2j 4 3 3 7 6 4

qsj ,j 4 3 3 6 6 2

In the table, the qsj ,j values are added as the last row. It can be seen that in both
cases of C, every job can be subcontracted if needed, i.e., V = N . We first apply
Heuristic H1 to the case with C = 10.

Step 1. Use Procedure PRO2 to solve problem LP(C).

• Step 2 of this procedure subcontracts jobs 2 and 6 because qs2,2 ≤ q02 and
qs6,2 ≤ q06. Thus, U = {1, 3, 4, 5}, N1 = {2, 6}, and W = U .

• Since 1
m

∑
j∈U p0j = 12 > C, Step 4 of Procedure PRO2 is run next.

Compute Δ = ∑
j∈U p0j − mC = 4. For each j ∈ W , calculate the ratio

(qsj ,j − q0j)/p0j . Job 3 has the smallest ratio 1/8.

– Since Δ < p03, Case (i) of Step 4(b) applies. Job 3, denoted as [1], is thus
split into two subjobs, g1([1]), g2([1]), each with a length of 4 units. Job
g2([1]) is subcontracted, while job g1([1]) is kept for in-house processing.
Update U = {1, g1([1]), 4, 5}. Call Procedure PRO1 to schedule the jobs
in U on the two in-house machines. Applying Procedure PRO1, ET =
(
∑

j∈U p0j)/2 = 10.

The solution generated is as follows: Split job 4 into two parts such that part 1 is
1 unit long, while part 2 is 5 units long; assign job 1, g1([1]) and part 1 of job
4 to machine 1 (which gives the total processing time of 10), and assign part 2
of job 4 and job 5 to machine 2 (which also gives the total processing time 10).
Now return to Step 1 of the heuristic. Based on the solution of LP(C) generated
by Procedure PRO2, J1 = {1}, J2 = {5}, and N2 = {3, 4}.

6.2 Problem with a Lead Time Performance Guarantee 253

Step 2. Assign job 1 to machine 1 and job 5 to machine 2. Subcontract jobs 2 and 6.
This gives a partial solution σ1. The workload of each machine in this solution is
5.

Step 3. Assign job 3 to machine 1 and job 4 to machine 2. This gives the final
solution. The Cmax value of this solution is 13, and hence no feasible solution is
found.

Next we apply Heuristic H1 to the case with C = 15.

Step 1. Use Procedure PRO2 to solve problem LP(C).

• Step 2 of this procedure is the same as that in the case with C = 10. Thus,
U = {1, 3, 4, 5}, N1 = {2, 6}, and W = U .

• Since 1
m

∑
j∈U p0j = 12 < C, Step 3 of Procedure PRO2 is run next. Call

Procedure PRO1 to schedule the jobs in U on the two in-house machines with
ET = 1/2

∑
j∈U p0j = 12. The solution generated is as follows: Split job

3 into two parts such that part 1 is 7 units long, while part 2 is 1 unit long;
assign job 1 and part 1 of job 3 to machine 1 (which gives the total processing
time of 12), and assign part 2 of job 3 and job 4 and 5 to machine 2 (which
also gives the total processing time 12).

• Now return to Step 1 of the heuristic. Based on the solution of LP(C)

generated by Procedure PRO2, J1 = {1}, J2 = {4, 5}, and N2 = {3}.
Step 2. Assign job 1 to machine 1 and job 4 and 5 to machine 2. Subcontract job 2

and 6. This gives a partial solution σ1. In this solution, the workload of machine
1 is 5, while that of machine 2 is 11.

Step 3. Assign job 3 to machine 1. This gives the final solution. The Cmax of this
solution is 13 and hence this solution is feasible. In fact, this solution is optimal.

If problem LP(C) is infeasible (which can be detected by Step 1 of heuristic
H1), then problem min{G | Cmax ≤ C} is infeasible as well. If problem
min{G | Cmax ≤ C} is feasible, then problem LP(C) is feasible and heuristic
H1 generates schedule σ . However, schedule σ generated by H1 may not always
be feasible for problem min{G | Cmax ≤ C} even if this problem is feasible, as
stated in the following lemma.

Lemma 6.3 There does not exist a polynomial-time heuristic which can always
generate a feasible schedule for every feasible instance of min{G | Cmax ≤ C},
unless P = NP .

Proof We prove the lemma by contradiction. If there is such a heuristic H , then
this heuristic can always find a feasible schedule for every feasible instance of the
following special case of the problem: All in-house production costs are zero (i.e.,
q0j = 0 for all j ∈ N), all subcontracting costs are strictly positive (i.e., qij > 0 for
all i ∈ M and j ∈ N), and the threshold C is the minimum makespan of the jobs if
all the jobs are processed in-house. It can be seen that finding a feasible schedule for
this problem is equivalent to finding an optimal schedule for the classical parallel-

254 6 Joint Subcontracting and Scheduling Decisions

machine makespan minimization problem Pm||Cmax, which is known to be NP -
hard (Garey & Johnson, 1978). Thus, heuristic H can be used to solve this NP -hard
problem optimally, hence P = NP . ��

We show below that when the given threshold of the makespan C satisfies a
certain condition, then schedule σ generated by Heuristic H1 is guaranteed to be
feasible for problem min{G | Cmax ≤ C}.
Theorem 6.2 If C ≥ 1

m

∑
j∈N p0j + p0,max, where p0,max = max{p0j |j ∈ N},

then the solution generated by Heuristic H1 is a feasible solution to problem
min{G | Cmax ≤ C}.
Proof We first show that if C ≥ 1

m

∑
j∈N p0j + p0,max, then problem

min{G | Cmax ≤ C} is feasible. We construct a feasible solution to the problem
as follows: Process all the jobs by the m in-house machines using the following
scheduling rule: For j = 1, 2, . . . , n, schedule job j to a machine with the minimum
workload and update the workload of that machine accordingly. In the resulting
schedule π , let Cmax denote the makespan and Ci denote the total processing time
of the jobs assigned to machine i, for i ∈ M . By this scheduling rule, it is clear that
the start time of the last job on each machine must be no more than 1

m

∑
j∈N p0j .

Thus, Ci ≤ 1
m

∑
j∈N p0j + p0,max for every i ∈ M , which implies that

Cmax = max{Ci |i ∈ M} ≤ 1

m

∑

j∈N
p0j + p0,max ≤ C.

Thus, schedule π is feasible. This means that problem min{G | Cmax ≤ C} has
a feasible solution and, hence, LP(C) is feasible. It is evident that schedule σ1
generated in Step 2 for the jobs in N1 is feasible. Let Ci(σ1) denote the total
processing time of the jobs assigned to machine i, i.e., the total workload of machine
i, in schedule σ1. Define Δi(σ1) = C − Ci(σ1) to be the slack of machine i, for
i ∈ M . We can see that a schedule is feasible if the slack of every machine is
nonnegative. The fact that σ1 is feasible means that Δi(σ1) ≥ 0, for all i ∈ M .
Since some jobs of N1 may be subcontracted in schedule σ1, we have

m∑

i=1

Ci(σ1) ≤
∑

j∈N1

p0j =
∑

j∈N
p0j −

∑

j∈N2

p0j . (6.8)

The fact that C ≥ 1
m

∑
j∈N p0j + p0,max, along with (6.8), implies that

m∑

i=1

Δi(σ1) = mC −
m∑

i=1

Ci(σ1) ≥ mp0,max +
∑

j∈N2

p0j . (6.9)

6.2 Problem with a Lead Time Performance Guarantee 255

Let N3 denote the subset of the jobs in N2 that are assigned to an in-house
machine by Step 3 of the heuristic. Define w = |N3| as the number of jobs in N3.
Clearly, w ≤ m. Let [h] denote the index of the hth job of N3 added to an in-house
machine in Step 3 of H3, for h = 1, 2, . . . , w. By the scheduling rule used in Step 3,
whenever a job in N3 is added to an in-house machine, it is added to a machine with
the minimum workload, i.e., a machine with the maximum slack. Let ih denote
the in-house machine where job [h] of N3 is added, for h = 1, 2, . . . , w. Thus,
immediately before job [1] is added, machine i1 has the minimum total workload
under schedule σ1. From (6.9), this means that Δi1(σ1) ≥ p0,max. This implies that
after job [1] is added, the updated total workload of machine i1 is no more than C,
and hence the resulting schedule remains feasible. From (6.9), we can see that after
job [1] is added, the total updated slack of the m machines is

m∑

i=1

Δi(σ1) ≥ mp0,max +
∑

j∈N2\{[1]}
p0j . (6.10)

Next, we consider job [2]. By a similar argument and using (6.10), we can
prove that immediately after job [2] is added to an in-house machine, the resulting
schedule remains feasible, and the total updated slack of the m machines is

m∑

i=1

Δi(σ1) ≥ mp0,max +
∑

j∈N2\{[1],[2]}
p0j .

Repeatedly applying this argument, we can conclude that the schedule remains
feasible after all the jobs of N3 are added to the schedule. ��
Remark 6.2 The usefulness of the result in Theorem 6.2 is that whether the
condition C ≥ 1

m

∑
j∈N p0j + p0,max holds or not can be checked from the data,

without running the heuristic. If the condition is satisfied, then we know that running
the heuristic will deliver a feasible solution.

Clearly, it is not meaningful to discuss worst-case or asymptotic performance
of a heuristic if the solution generated by the heuristic may not even be feasible.
However, by Theorem 6.2, when the condition that C ≥ 1

m

∑
j∈N p0j + p0,max is

satisfied, Heuristic H1 is guaranteed to generate a feasible solution. Hence, we study
the worst-case and asymptotic performance of our heuristic under this condition.

Let ZH1 denote the total cost of the schedule σ generated by H1, and Z∗ denote
the optimal total cost of problem min{G | Cmax ≤ C}. We have the following results
for the worst-case and asymptotic performance of our heuristic.

Theorem 6.3 ZH1 ≤ 2Z∗ for any instance of problem min{G | Cmax ≤ C} with
C ≥ 1

m

∑
j∈N p0j + p0,max.

Proof Heuristic H1 generates a partial schedule σ1 before generating the final
schedule σ . Let Z(σ1) denote the total cost of schedule σ1, and Z(N2) the total

256 6 Joint Subcontracting and Scheduling Decisions

cost of the jobs in N2 in schedule σ . Let ZLP(C) denote the optimal total cost of
problem LP(C). Clearly, ZLP(C) is a lower bound of Z∗. Since σ1 generated in
Step 2 of the heuristic only includes the jobs in N1, we have Z(σ1) ≤ ZLP(C). In
Step 3 of Heuristic H1, each job in N2 is assigned to a subcontractor or an in-house
machine in a way that it incurs the minimum cost. Thus, Z(N2) ≤ Z∗. Therefore,

ZH1 = Z(σ1) + Z(N2) ≤ ZLP(C) + Z∗ ≤ 2Z∗.

This completes the proof. ��
Theorem 6.4 For problem min{G | Cmax ≤ C} with C ≥ 1

m

∑
j∈N p0j + p0,max,

if the processing times and production costs of the jobs are distributed over the
intervals [X1, X2] and [Y1, Y2], respectively, where 0 < X1 < X2 < ∞ and 0 <

Y1 < Y2 < ∞, and if m and k are fixed, then, as n approaches infinity, the solution
σ generated by Heuristic H1 is asymptotically optimal.

Proof Since m is fixed, the contribution of the jobs in N2 to the total cost of a
schedule is always bounded from above. On the other hand, the optimal total cost of
any schedule approaches infinity as n goes to infinity. Therefore,

lim
n→∞

Z(N2)

Z∗ = 0. (6.11)

As we have shown in the proof of Theorem 6.3, Z(σ1) ≤ Z∗. This, along
with (6.11), implies that

lim
n→∞

Z(σ) − Z∗

Z∗ ≤ lim
n→∞

Z(σ1) + Z(N2) − Z∗

Z∗

= lim
n→∞

Z(σ1) − Z∗

Z∗ ≤ 0.

This completes the proof. ��
The result in Theorem 6.4 shows the asymptotic performance of the heuristic and

provides motivation for studying its computational performance in the following
section.

6.2.3 Computational Results

Chen and Li (2008) conduct computational experiments to evaluate the performance
of Heuristic H1. We summarize their experiments and corresponding results below.

A large number of test problems are generated randomly as follows:

• Number of jobs n ∈ {50, 100, 200, 400}, number of in-house parallel machines
m ∈ {2, 4, 8}, and number of subcontractors k ∈ {1, 3, 9}. We note that a small
(large) m relative to k means a relative small (large) in-house capacity compared

6.2 Problem with a Lead Time Performance Guarantee 257

to available subcontracting options. The nine possible combinations of m and k

here represent a wide range of this relative relationship.
• Job processing times p0j are drawn from the discrete uniform distribution over

the interval [1, 100], and p1j , p2j , . . . , pkj are drawn from the discrete uniform
distribution over the interval [1, 100μ], where μ ∈ {1, 2, 4}. These values of μ
represent situations where the delivery lead time of a subcontracted job is about
the same as, twice, or four times the processing time of the job if it is processed
in-house.

• Production costs of jobs q0j are drawn from the discrete uniform distribution
over the interval [1, 100], and q1j , q2j , . . . , qkj follow the discrete uniform
distribution over the interval [1, 100ν], where ν ∈ {0.5, 1, 4}. These values
of ν represent situations in which the production cost of a job charged by a
subcontractor is about half, the same as, or four times the in-house production
cost of the job.

• The makespan threshold value C is set as �α(∑j∈N p0j)/m� + p0,max, where
α ∈ {0.3, 0.6, 1.0}. With C generated this way, typically at least (1 − α)× 100%
of the jobs have to be subcontracted in order to satisfy the given constraint on the
makespan.

For each possible combination of the values of parameters n, m, k, μ, ν, and α,
10 random test instances are generated. It is found that Heuristic H1 can solve every
test instance in less than 1 CPU second on a 2-GHz processor. Therefore, we do not
report CPU times for the test instances.

The LP-relaxation problem LP(C) is infeasible for some of the test problems.
Even if LP(C) is feasible for a test problem, the test problem itself may not be
feasible; and even if the test problem is feasible, the solution generated by the
heuristic may not be feasible. We report in Table 6.1 the percentage of test instances

Table 6.1 Percentage of test instances of min{G | Cmax ≤ C} for which Heuristic H1 generates
feasible/optimal solutions

k = 1 k = 3 k = 9

n m α = 0.3 α = 0.6 α = 0.3 α = 0.6 α = 0.3 α = 0.6

50 2 90.0% 100% 100% 96.0% 95.7% 100%

4 88.9% 95.0% 96.7% 100% 96.1% 100%

8 67.4% 73.8% 83.6% 92.8% 87.3% 100%

100 2 100% 100% 100% 91.7% 100% 100%

4 90.0% 100% 90.0% 92.3% 91.7% 100%

8 73.3% 100% 95.0% 93.1% 82.9% 100%

200 2 83.3% 95.2% 85.7% 100% 100% 100%

4 100% 100% 100% 87.5% 95.2% 100%

8 100% 90.9% 100% 91.7% 95.0% 100%

400 2 90.9% 100% 100% 100% 100% 100%

4 90.9% 100% 100% 100% 100% 100%

8 90.9% 100% 95.2% 90.9% 100% 100%

258 6 Joint Subcontracting and Scheduling Decisions

for which H1 generates a feasible solution among all the test problems where
LP(C) is feasible. Since a problem may still be infeasible even if the corresponding
LP(C) is feasible, the percentage reported in Table 6.1 is a lower bound on the
percentage of feasible problems for which the heuristic generates a feasible solution.
Each entry in the table corresponds to a given combination of n, m, k, and α based
on 90 test problems, i.e., 9 combinations of μ and ν, and 10 test problems for
each combination. By Theorem 6.2, when α = 1.0, the solution generated by the
heuristic is always feasible. Hence, only the problems with = 0.3 or 0.6 are reported
in Table 6.1. From this table, we conclude that the heuristic often (with an overall
probability of more than 90%) generates a feasible solution when the given problem
instance is feasible. We also observe that Heuristic H1 tends to be more successful
in generating feasible solutions when α = 0.6 than when α = 0.3. This is because,
when α is larger, the test instances generated are more likely to be feasible.

More importantly, among those test instances where Heuristic H1 generates
feasible solutions, the heuristic solution values are always equal to the optimal
objective values of the corresponding LP(C) solutions. In other words, for all
of our test problems, if the solution generated by the heuristic is feasible, then it
is optimal. This means that Heuristic H1 is highly effective at solving problem
min{G | Cmax ≤ C}.

6.2.4 A Related Problem

In the problem considered in Sects. 6.2.1–6.2.3, there is a pre-specified threshold
value C on the makespan of the schedule. This problem represents applications
where there is an explicit overall service level constraint. However, for some other
applications, a different problem variant may be more appropriate. In this section
we discuss such a problem that is studied by Chen and Li (2008).

The problem has the same setting as in problem min{G | Cmax ≤ C}, but with
a different objective, which is to minimize a weighted sum of makespan and the
total cost, i.e., λCmax + (1 − λ)G, where 0 ≤ λ ≤ 1, without a constraint on
service level. Denote this problem as min{λCmax + (1 − λ)G}. This problem is
motivated by a situation where the manufacturer wants to achieve a balance between
the lead time performance Cmax and the total production and subcontracting cost G.
The manufacturer can choose a weighting parameter λ ∈ [0, 1] and consider the
weighted sum of the two measures Cmax and G.

By a reduction from the Subset Sum problem with a similar construction to that
in the proof of Theorem 6.1, it is not difficult to show that when 0 < λ < 1, this
problem is at least ordinarily NP -hard even if there is only a single machine at the
manufacturer, there is a single subcontractor, and the in-house production costs are
proportional to the production times. To solve this problem, Chen and Li (2008)
propose a heuristic algorithm. The heuristic divides the problem into a number of
subproblems and then uses a similar idea to the heuristic developed in Sect. 6.2.2 to
solve each subproblem.

6.2 Problem with a Lead Time Performance Guarantee 259

Suppose that there are L, L ≤ nk, distinct values among all delivery lead times
{phj |j ∈ N, h ∈ K} specified by the subcontractors. Let π1, π2, . . . , πL denote
these L values, where π1 > π2 > · · · > πL. Define πL+1 = 0. We consider L + 1
subproblems. For l = 1, 2, . . . , L + 1, subproblem l is defined to be the original
problem with two additional requirements:

• Requirement (i): The maximum delivery lead time among all of the subcontracted
jobs is no more than πl .

• Requirement (ii): The makespan Cmax is calculated as the maximum of πl and
the completion time of the last job completed at the manufacturer’s own plant.

Clearly, any feasible solution to the original problem is also a feasible solution to
at least one of the subproblems with the same objective value. Thus, the minimum
of the optimal objective values of the subproblems is the optimal objective value of
the original problem. This means that we can solve the original problem by solving
these L + 1 subproblems.

For each job j ∈ N and each l = 1, 2, . . . , L + 1, define a subset of
subcontractors Slj = {h ∈ K|phj ≤ πl}, which are the subcontractors that can
process job j with a delivery time no later than πl . Define Vl = {j ∈ N | Slj �= ∅},
which is the set of jobs that can be subcontracted in subproblem l. For each j ∈ Vl ,
define a subcontractor slj = arg minv∈Slj {qvj }, which is the subcontractor that
can process job j at a minimum cost with a delivery lead time no later than πl .
Requirements (i) and (ii) of subproblem l imply that if a job j ∈ Vl is to be
subcontracted, it is optimal to subcontract it to subcontractor slj . In subproblem
L + 1, since πL+1 = 0, no job can be subcontracted and, hence, VL+1 = ∅.

For l = 1, . . . , L + 1, subproblem l can be formulated as the following mixed
integer program which is similar to the formulation IP (C) given in Sect. 6.2.2:

IPl : Minimize λCmax + (1 − λ)

m∑

i=1

n∑

j=1

q0j xij + (1 − λ)
∑

j∈Vl

qslj ,j yj

subject to
m∑

i=1

xij + yj = 1, for j ∈ Vl ,

m∑

i=1

xij = 1, for j ∈ N \ Vl

Cmax ≥
n∑

j=1

p0j xij , for i ∈ M ,

Cmax ≥ πl,

xij ∈ {0, 1}, for i ∈ M and j ∈ N

yj ∈ {0, 1}, for j ∈ Vl.

260 6 Joint Subcontracting and Scheduling Decisions

We study the LP-relaxation problem of IPl , denoted as LPl . By a similar proof to
that of Lemma 6.1, we can show that in an optimal basic solution of LPl , if n ≥ m,
then at least n − m of the xij and yj variables take the value of 1. Therefore, in an
optimal basic solution of LPl , there are at most m jobs with some fractional values
assigned to the xij or yj variables. An efficient procedure similar to Procedure PRO2
given in Sect. 6.2.2 can be designed to find an optimal solution to problem LPl with
at most m split jobs. Based on this optimal solution, a heuristic similar to Heuristic
H1 given in Sect. 6.2.2 can be designed to solve subproblem l. The heuristic for the
overall problem min{λCmax + (1 − λ)G} can then be summarized as follows.

Heuristic H2 for Problem min{λCmax + (1 − λ)G}
Step 1: For l = 1, 2, . . . , L+ 1, solve subproblem l by a heuristic similar to H1 (as

discussed above) and obtain the solution σl .
Step 2: Choose the solution with the minimum objective value among the L + 1

solutions σ1, σ2, . . . , σL+1 generated in Step 1.

Chen and Li (2008) show that (i) the worst-case performance ratio of Heuristic
H2 is 2 and this bound is tight, and (ii) under similar conditions to those in
Theorem 6.4, the solution generated by Heuristic H2 is asymptotically optimal as n
approaches infinity.

Remark 6.3 Note that Heuristic H2 always generates a feasible solution to problem
min{λCmax + (1−λ)G}. Thus, although both problems min{λCmax + (1−λ)G} and
min{G | Cmax ≤ C} are NP -hard, it is easier to obtain a feasible solution with a
worst-case performance guarantee for the former problem than obtaining a feasible
solution for the latter problem.

Chen and Li (2008) test the performance of Heuristic H2 using various test
problems similar to those described in Sect. 6.2.3. They report that the average
relative error among all test instances equals 0.62%, indicating that Heuristic H2
is highly effective overall. Their computational results also show that the relative
error of the heuristic decreases as n increases, and it approaches 0 as n tends to
infinity. This is consistent with the fact that the heuristic is asymptotically optimal.

6.3 Value of Subcontracting

The value of subcontracting is well understood in a qualitative sense (e.g., Bazinet
et al., 1998, Craumer, 2002, Kolawa, 2004). In contrast, few works have quan-
titatively evaluated the value of subcontracting. Chen and Li (2005, 2008) are
apparently the first such studies in the context of detailed operations scheduling.
They build on the problems min{G | Cmax ≤ C} and min{λCmax + (1 − λ)G}
discussed in Sect. 6.2 to evaluate the possible benefits that can be obtained by using
the subcontracting option. In the following, we describe the analysis and results
from Chen and Li (2005, 2008). Their analysis provides a tool for deriving various

6.3 Value of Subcontracting 261

managerial insights and performing sensitivity analysis in practice, for example,
how the solution with or without the subcontracting option changes with various
parameters of the problem.

Let ω and Z(ω) denote the optimal solution and optimal objective value of a
problem without the subcontracting option, respectively. Similarly, let σ and Z(σ)

denote the optimal solution and optimal objective value to the same problem but
with the subcontracting option, respectively. We investigate the relative reduction in
the objective value that can be achieved when subcontracting is an available option.
The relative reduction in the objective value is given as

Z(ω) − Z(σ)

Z(ω)
= 1 − Z(σ)

Z(ω)
. (6.12)

With the subcontracting option, we can apply a Heuristic H to obtain a solution
σH whose objective value Z(σH) is an upper bound on the optimal objective value
Z(σ). Then (6.12) implies that

Z(ω) − Z(σ)

Z(ω)
≥ 1 − Z(σH)

Z(ω)
. (6.13)

Thus, given a problem instance, the right-hand side of (6.12) provides a lower
bound on the relative cost reduction that can be achieved. In the following
Sects. 6.3.1 and 6.3.2, respectively, we describe the results from Chen and Li (2008)
based on problem min{G | Cmax ≤ C} and the results from Chen and Li (2005)
based on problem min{λCmax + (1 − λ)G}.

6.3.1 Value of Subcontracting in the Total Cost Problem

Without the subcontracting option, all of the jobs are processed on the m in-
house machines. Hence, the total production cost is fixed and independent of
how the jobs are scheduled. Therefore, for problem min{G | Cmax ≤ C}, Z(ω)
in (6.13) is

∑
j∈N q0j . We use Heuristic H1 given in Sect. 6.2.2 to solve problem

min{G | Cmax ≤ C}, which means that Z(σH) in (6.13) is equal to the total cost of
the solution obtained by Heuristic H1.

We use the same set of test instances with α = 1.0 generated in the experiments
reported in Sect. 6.2.3. The instances with α = 0.3 or 0.6 are not used here
because the problem without the subcontracting option is likely to be infeasible
with those values of α. With α = 1.0, the problem without the subcontracting
option is always feasible, and Heuristic H1 is also guaranteed to generate a feasible
solution. We report in Tables 6.2 and 6.3 both the average relative cost reduction
and the minimum relative cost reduction, in terms of n and k, and in terms of ν,
respectively. Since the relative cost reduction due to subcontracting does not change
much with the number of machines m or the average subcontractors’ processing

262 6 Joint Subcontracting and Scheduling Decisions

Table 6.2 Relative cost
reduction due to the
subcontracting option based
on problem
min{G | Cmax ≤ C}: results
in terms of n and k

n k Avg reduction (%) Min reduction (%)

50 1 34.7% 4.6%

3 53.8% 12.4%

9 71.8% 37.8%

100 1 34.1% 4.4%

3 53.0% 16.0%

9 72.2% 43.2%

200 1 33.1% 7.1%

3 53.0% 17.1%

9 72.0% 43.6%

400 1 32.8% 7.3%

3 52.6% 18.1%

9 72.6% 44.9%

Table 6.3 Relative cost reduction due to the subcontracting option based on problem
min{G | Cmax ≤ C}: results in terms of ν

ν Avg reduction (%) Min reduction (%)

0.5 74.5% 52.1%

1 57.9% 28.0%

4 25.8% 4.4%

time (represented by μ), we do not report the results in terms of m or μ. The
results in Table 6.2 are based on 90 test problems with m = 4 (10 for each of
the 9 combinations of the values of μ and ν). The results in Table 6.3 are based on
360 test problems with μ = 2, i.e., 10 for each of the 36 combinations of the values
of n, m, and k.

The results in these tables demonstrate that there is a significant cost reduction
from using the subcontracting option for almost every problem tested. The relative
cost reduction increases quickly with the number of subcontractors k and decreases
quickly with the average subcontracting cost (represented by ν).

6.3.2 Value of Subcontracting in the Weighted Sum of
Makespan and Total Cost Problem

For problem min{λCmax + (1 −λ)G} without the subcontracting option, since all of
the jobs are processed on the m in-house machines, in the optimal objective value
Z(ω) = λCmax(ω) + (1 − λ)G(ω), the total production cost G(ω) is equal to∑

j∈N q0j , and the makespan of the jobs Cmax(ω) is the minimum makespan of
the jobs when they are all processed on the m in-house machines.

6.3 Value of Subcontracting 263

Since the parallel-machine makespan minimization problem is NP -hard, it is
impractical to find the exact value of Cmax(ω). We use the following lower bound
on Cmax(ω) to replace Cmax(ω) in Z(ω): LB(ω) = 1

m

∑
j∈N p0j .

If the subcontracting option is available, we can apply Heuristic H2 given in
Sect. 6.2.4 to obtain a solution σH2. Clearly, the objective value of σH2, i.e.,
λCmax(σ

H2) + (1 − λ)G(σH2), is an upper bound on the optimal objective value
λCmax(σ) + (1 − λ)G(σ). This implies that (6.13) can be rewritten as

Z(ω) − Z(σ)

Z(ω)
≥ 1 − λCmax(σ

H2) + (1 − λ)G(σH2)

λLB(ω) + (1 − λ)G(ω)
. (6.14)

Hence, given any problem instance, the right-hand side of (6.14) provides a lower
bound for the relative cost reduction that can be computed efficiently.

Next, we provide an asymptotic analysis on the relative cost reduction that can
be achieved by subcontracting as the number of jobs in the problem approaches
infinity. We make the following assumption about the problem parameters:

Assumption A All parameters in a problem instance are integers, and independent
and uniformly distributed as follows:

(i) p0j ∼ U [P0l , P0u] and q0j ∼ U [Q0l ,Q0u], for all j ∈ N , and
(ii) phj ∼ U [P1l , P1u] and qhj ∼ U [Q1l ,Q1u], for all h ∈ K and j ∈ N ,

where P0l , P0u, Q0l , Q0u, P1l , P1u, Q1l , Q1u are integers and satisfy 0 < P0l <

P0u < ∞, 0 < Q0l < Q0u < ∞, 0 < P1l < P1u < ∞, and 0 < Q1l < Q1u < ∞.

We note that it is a common assumption in the literature that job processing times
follow uniform distributions (e.g., Tsai, 1992; Cheng & Liu, 2004).

For ease of presentation, we define the following notation:

• qmin,j = min{qhj |h ∈ K}, for j ∈ N .
• Prob(x, y, z) = probability that a job j ∈ N satisfies p0j = x, qmin,j = y, and

q0j = z.
• δS(x, y, z) = 1 if λx > (1 − λ)(y − z)m, and 0 otherwise.
• δM(x, y, z) = 1 if λx ≤ (1 − λ)(y − z)m, and 0 otherwise.
• RS(x, y) = ∑Q0u

z=Q0l
P rob(x, y, z) · δS(x, y, z).

• RM(x, z) = ∑Q1u
y=Q1l

P rob(x, y, z) · δM(x, y, z).

The exact formula for Prob(x, y, z), for all integers x, y, and z satisfying P0l ≤
x ≤ P0u, Q1l ≤ y ≤ Q1u and Q0l ≤ z ≤ Q0u, can be derived as follows:

Prob(x, y, z) = Pr(p0j = x) · Pr(qmin,j = y) · Pr(q0j = z)

= Pr(p0j = x) · [Pr(qmin,j ≥ y) − Pr(qmin,j ≥ y + 1)] · Pr(q0j = z)

= 1

P0u − P0l + 1
·
[(

Q1u − y + 1

Q1u − Q1l + 1

)k

−
(

Q1u − y

Q1u − Q1l + 1

)k
]

· 1

Q0u − Q0l + 1
.

264 6 Joint Subcontracting and Scheduling Decisions

Note that as k goes to infinity, Prob(x, y, z) approaches 1
[(P0u−P0l+1)(Q0u−Q0l+1)]

if y = Q1l , P0l ≤ x ≤ P0u, and Q0l ≤ z ≤ Q0u, and it approaches 0, otherwise.
Chen and Li (2005) show the following result.

Theorem 6.5 For problem min{λCmax + (1 − λ)G}, under Assumption A, if m is
fixed, then as the number of jobs n approaches infinity, the relative cost reduction
achieved by subcontracting satisfies the following:

lim
n→∞

Z(ω) − Z(σ)

Z(ω)

= 1 −
λ
m

P0u∑

x=P0l

Q0u∑

z=Q0l

xRM(x, z) + (1 − λ)
P0u∑

x=P0l

(
Q1u∑

y=Q1l

yRS(x, y) +
Q0u∑

z=Q0l

zRM(x, z)

)

λ
2m(P0l + P0u) + 1−λ

2 (Q0l + Q0u)
,

(6.15)

almost surely (a.s.).

Proof Without the subcontracting option, the optimal solution ω satisfies the
following two properties:
(i) 1

m

∑
j∈N p0j ≤ Cmax(ω) ≤ 1

m

∑
j∈N p0j + P0u, and (ii) G(ω) = ∑

j∈N q0j .

Since p0j ∼ U [P0l , P0u] and q0j ∼ U [Q0l ,Q0u] for all j ∈ N and they are all
independent, by the Law of Large Numbers, we have

lim
n→∞

Cmax(ω)

n
= 1

m
lim
n→∞

1

n

∑

j∈N
p0j = P0l + P0u

2m
, a.s. (6.16)

lim
n→∞

G(ω)

n
= lim

n→∞
1

n

∑

j∈N
q0j = Q0l + Q0u

2
, a.s. (6.17)

We now focus on the case with the subcontracting option. We propose the
following simple rule to derive a solution:

Heuristic Rule For each j ∈ N , if λp0j > (1−λ)(qmin,j −q0j)m, then subcontract
job j to subcontractor s′

j = arg minh∈K{qhj }, otherwise assign job j to the earliest
available machine at the in-house facility. We denote the solution generated as σ ′.

In the following, we show that σ ′ is asymptotically optimal and characterize the
objective value of σ ′ and thus also the optimal objective value of the problem in the
asymptotic sense.

Consider any solution ρ for the case with the subcontracting option. Let NM

and NS denote the subset of the jobs processed in-house and the subset of the
jobs subcontracted, respectively, in ρ. Let T (ρ) = ∑

j∈NM
p0j be the total

6.3 Value of Subcontracting 265

processing time of the jobs processed in-house in ρ. Clearly, G(ρ) = ∑
j∈NM

q0j +∑
j∈NS

qmin,j and

1

m
T (ρ) ≤ Cmax(ρ) ≤ max

{
1

m
T (ρ) + P0u, P1u

}

. (6.18)

This, along with the fact that limn→∞(P0u/n) = limn→∞(P1u/n) = 0, implies
that

lim
n→∞

Z(ρ)

n
= lim

n→∞
λCmax(ρ) + (1 − λ)G(ρ)

n
= lim

n→∞

λ
m
T (ρ) + (1 − λ)G(ρ)

n
,

or equivalently,

lim
n→∞

Z(ρ)

n
= lim

n→∞
1

n

⎡

⎣
∑

j∈NM

(
λp0j

m
+ (1 − λ)q0j

)

+
∑

j∈NS

(1 − λ)qmin,j

⎤

⎦ .

It is evident that the proposed heuristic rule minimizes the right-hand side of the
above equation. Therefore, solution σ ′ is asymptotically optimal.

Next, we characterize the objective value of σ ′. By the proposed heuristic rule
and the definition of RS(x, y), it is easy to see that RS(x, y) is the probability that
a given job j is assigned to a subcontractor and satisfies p0j = x and qmin,j = y.
Similarly, RM(x, z) is the probability that a given job j is assigned to a machine at
the manufacturer and satisfies p0j = x and q0j = z. Define:

nS(x, y) = number of jobs j with p0j = x and qmin,j = y that are subcontracted;
nM(x, z) = number of jobs j with p0j = x and q0j = z that are processed

in-house.
Clearly, by the Law of Large Numbers,

lim
n→∞

nS(x, y)

n
= RS(x, y), a.s. (6.19)

lim
n→∞

nM(x, z)

n
= RM(x, z), a.s. (6.20)

The total production cost of solution σ ′ is given as

G(σ ′) =
P0u∑

x=P0l

Q1u∑

y=Q1l

y · nS(x, y) +
P0u∑

x=P0l

Q0u∑

z=Q0l

z · nM(x, z), (6.21)

266 6 Joint Subcontracting and Scheduling Decisions

where the first term is the contribution of the subcontracted jobs, and the second term
is the contribution of the jobs processed in-house. From (6.19), (6.20), and (6.21),
we have

lim
n→∞

G(σ ′)
n

= lim
n→∞

P0u∑

x=P0l

Q1u∑

y=Q1l

y · nS(x, y)
n

+ lim
n→∞

P0u∑

x=P0l

Q0u∑

z=Q0l

z · nM(x, z)

n

=
P0u∑

x=P0l

Q1u∑

y=Q1l

yRS(x, y) +
P0u∑

x=P0l

Q0u∑

z=Q0l

zRM(x, z), a.s. (6.22)

In solution σ ′, the total processing time of the jobs processed at the manufacturer is
given by

T (σ ′) =
P0u∑

x=P0l

Q0u∑

z=Q0l

x · nM(x, z).

Applying (6.18) to σ ′, we have,

lim
n→∞

Cmax(σ
′)

n
= 1

m
lim
n→∞

T (σ ′)
n

= 1

m
lim
n→∞

P0u∑

x=P0l

Q0u∑

z=Q0l

x · nM(x, z)

n
= 1

m

P0u∑

x=P0l

Q0u∑

z=Q0l

xRM(x, z), a.s. (6.23)

From (6.22) and (6.23), we have

lim
n→∞

Z(σ ′)
n

= lim
n→∞

λCmax(σ
′) + (1 − λ)G(σ ′)

n

= λ

m

P0u∑

x=P0l

Q0u∑

z=Q0l

xRM(x, z)

+(1 − λ)

P0u∑

x=P0l

⎛

⎝
Q1u∑

y=Q1l

yRS(x, y) +
Q0u∑

z=Q0l

zRM(x, z)

⎞

⎠, a.s.

This, along with (6.16) and (6.17) and the fact that σ ′ is asymptotically optimal,
completes the proof of the theorem. ��
Remark 6.4 Note that in Theorem 6.5, we do not assume that the number of
subcontractors, k, is fixed. Thus, the asymptotic result (6.15) holds for both the
case with a fixed k and the case with k approaching infinity. From the proof
of Theorem 6.5, we can see that the terms in Eq. (6.15) represent the average

6.3 Value of Subcontracting 267

contributions to Cmax and the total production cost as follows. The terms (P0l +
P0u)/2m (denoted as C̄1

max) and (Q0l + Q0u)/2 (denoted as Ḡ1) are the average
contribution per job to Cmax and the average contribution per job to the total
production cost (as n approaches infinity) in the case with no subcontracting
option. Similarly, the terms 1

m

∑P0u
x=P0l

∑Q0u
z=Q0l

xRM(x, z) (denoted as C̄2
max) and

∑P0u
x=P0l

(
∑Q1u

y=Q1l
yRS(x, y) +∑Q0u

z=Q0l
zRM(x, z)) (denoted as Ḡ2) are the corre-

sponding average contributions per job in the case with the subcontracting option.

Theorem 6.5 and the associated average contribution terms observed in the
above remark (i.e., C̄1

max, C̄2
max, Ḡ1, and Ḡ2) enable us to estimate the following

performance measures for problems with a large number of jobs (e.g., n ≥ 500):

(i) The makespan in the optimal solution with or without the subcontracting
option, which is nC̄1

max or nC̄2
max.

(ii) The total production cost in the optimal solution with or without the subcon-
tracting option, which is nḠ1 or nḠ2.

(iii) The benefit of subcontracting, which is given by (6.15).

Given the number of machines (i.e., m), the number of subcontractors (i.e., k), the
ranges of processing times (i.e., P0l , P0u, P1l , and P1u), the ranges of production
costs (i.e., Q0l , Q0u, Q1l , and Q1u), and the weighting parameter λ, measurements
(i), (ii), and (iii) can be calculated easily using the functions Prob(x, y, z),
RM(x, z), and RS(x, y).

Furthermore, the result of Theorem 6.5, along with the above observations, can
be used to perform sensitivity analysis in practice. For example, in situations where
the manufacturer is faced with a large number of jobs, the manufacturer can use the
results derived here to answer a number of important managerial questions, such
as:

1. How will the makespan and total production cost change if some additional
subcontractors are used and/or some additional machines are added for in-house
processing?

2. How will the benefit of subcontracting change if some problem parameters
change?

Some general insights can also be obtained from the result of Theorem 6.5. It
can be easily proved that the relative cost reduction given in Theorem 6.5 increases
with the number of subcontractors k and the weighting parameter λ, but decreases
with the number of machines m. These insights are intuitively correct (as explained
below where some computational results are reported), but we can use the result of
Theorem 6.5 to verify those insights analytically.

Finally, we describe the computational results about the value of subcontracting
reported in Chen and Li (2005) based on problem min λCmax + (1 − λ)G. For
problem instances with a finite n, the lower bound on the relative cost reduction
given in (6.14) is used. For problem instances with an infinite n, the asymptotic
relative cost reduction derived in Theorem 6.5 is used. For the case with a finite
n, test instances are randomly generated in the same way as those used in the

268 6 Joint Subcontracting and Scheduling Decisions

Table 6.4 Relative cost reduction due to the subcontracting option based on problem
min{λCmax + (1 − λ)G}

k = 1 k = 3 k = 9

n m Avg red Min red Avg red Min red Avg red Min red

50 2 42.97% 5.14% 59.82% 13.63% 75.38% 40.15%

4 37.24% 4.73% 54.19% 12.91% 70.54% 38.34%

8 32.61% 4.23% 47.15% 8.67% 58.45% 26.54%

100 2 44.06% 4.73% 61.37% 16.92% 77.89% 45.68%

4 38.96% 4.55% 56.52% 16.26% 74.04% 44.32%

8 35.32% 4.46% 53.00% 16.03% 69.17% 41.25%

200 2 44.20% 7.70% 62.27% 18.42% 78.73% 45.72%

4 39.18% 7.33% 57.80% 17.68% 75.32% 44.54%

8 35.87% 7.17% 54.79% 17.38% 71.66% 43.96%

400 2 44.22% 8.08% 62.45% 19.00% 79.75% 47.18%

4 39.22% 7.57% 58.12% 18.49% 76.63% 45.94%

8 35.96% 7.41% 55.26% 18.27% 74.35% 45.41%

∞ 2 44.46% 11.06% 62.80% 23.17% 80.20% 49.44%

4 39.51% 8.53% 58.54% 22.46% 77.26% 48.37%

8 36.31% 8.39% 55.76% 22.13% 75.16% 47.86%

computational experiment reported in Sect. 6.2.3, except that slightly different
values of λ, ν are used here: λ ∈ {0.2, 0.5, 0.8}, ν ∈ {1, 2, 4}. For the case with
n = ∞, the only relevant parameters are m, k, P0l , P0u, Q0l , Q0u, Q1l , Q1u, and λ.
We generate these parameters as in the case with a finite n.

We report in Table 6.4 both average and minimum relative cost reductions due to
the subcontracting option. For each combination of (n,m, k) with a finite n reported
in the table, the results are based on 270 test problems (10 for each of the 27
combinations of the values of μ, ν, and λ). Each entry in the columns Avg red (Min
red) is the average (minimum) relative cost reduction over the 270 test problems for
the corresponding (n,m, k) combination. In the case with n = ∞, the lower bounds
derived in Theorem 6.5 are reported for each row based on the 27 lower bounds, one
for each combination of μ, ν, and λ.

The results in Table 6.4 demonstrate that there is a significant reduction in cost by
using the subcontracting option for almost every problem tested. The relative cost
reduction increases quickly with the number of subcontractors k, increases slightly
with the number of jobs n, and decreases slightly with the number of machines
m at the manufacturer. This can be explained intuitively. As k increases, there is
more flexibility in using the subcontracting option; hence, the overall cost should
go down. On the other hand, as m decreases or n increases, the capacity of the
manufacturer becomes tighter, and the relative value of subcontracting becomes
larger. Note that the cost reduction does not change much when n increases from
50 to ∞ for fixed m and k. This means that the subcontracting option is beneficial
even if the manufacturer is faced with a small number of jobs. Although no results
are explicitly reported as a function of λ in the table, Chen and Li (2005) discuss

6.4 Problems with a Subcontracting Budget Constraint 269

how their results show that the value of subcontracting increases with λ. This can be
explained as follows. The impact of Cmax on the overall objective function increases
with λ, and this measure decreases if more jobs are subcontracted. As a result,
one can typically expect that as λ increases, more jobs should be subcontracted.
In summary, we conclude that the value of subcontracting mainly depends on the
availability of subcontractors (k), the in-house capacity (m), and the weighting
parameter in the objective function (λ).

6.4 Problems with a Subcontracting Budget Constraint

Lee and Sung (2008a,b) consider several scheduling problems with subcontracting
options where there is a budget constraint on the total subcontracting cost. In all
their problems, a single in-house machine and a single subcontractor are available.

We first define the problems of Lee and Sung (2008a,b), following most of the
notation introduced in their work. A manufacturer needs to process a set of n given
jobs N = {1, . . . , n} using either a single machine in-house or a subcontractor. If
a job j ∈ N is processed on the in-house machine, the processing time required is
pj ; but if it is subcontracted to the subcontractor, the lead time (i.e., the completion
time) of the job is lj regardless of how many jobs are handled by the subcontractor.
Furthermore, if a job j ∈ N is subcontracted, there is a subcontracting cost sj ,
which can be viewed as the additional cost incurred due to subcontracting relative
to the in-house processing cost (which is not explicitly considered). Each job j ∈ N

has a due date dj . In a given schedule, let S denote the set of subcontracted jobs,
and SC = ∑

j∈S sj the total subcontracting cost. There is a given budget B such
that the total subcontracting cost cannot exceed this budget, i.e., it is required that
SC ≤ B in a feasible schedule.

Given a schedule, let Cj denote the completion time of job j , which is lj if job j

is subcontracted, and the total processing time of all the jobs scheduled before it on
the in-house machine plus pj if it is processed in-house. Let Tj = max{0, Cj − dj }
be the tardiness of job j . Three scheduling measures are considered, namely,

• Total completion time of the jobs, denoted as
∑

Cj , which is equal to
∑

j∈N Cj .
• Maximum tardiness of the jobs, denoted as Tmax, which is equal to maxj∈N {Tj }.
• Total tardiness of the jobs, denoted as

∑
Tj , which is equal to

∑
j∈N Tj .

Lee and Sung (2008a,b) consider three specific objective functions:

1. Weighted sum of the total completion time of the jobs and the total subcon-
tracting cost, denoted as α

∑
Cj + (1 − α)SC, where the weighting parameter

α ∈ [0, 1] represents the relative importance between the two measures involved
from the manufacturer’s point of view.

2. Weighted sum of the maximum tardiness the jobs and the total subcontracting
cost, denoted as αTmax + (1 − α)SC.

3. Weighted sum of the total tardiness of the jobs and the total subcontracting cost,
denoted as α

∑
Tj + (1 − α)SC.

270 6 Joint Subcontracting and Scheduling Decisions

For ease of presentation, we simply call the corresponding problems with these
objective functions the total completion time problem, the maximum tardiness
problem, and the total tardiness problem, respectively.

Lee and Sung (2008a,b) show that all these problems are ordinarily NP -hard. We
do not present their NP -hardness proofs. Instead, we focus on how these problems
can be solved either exactly or heuristically. In the following Sects. 6.4.1, 6.4.2,
and 6.4.3, we discuss exact and heuristic algorithms for each of these problems,
respectively. All the results are from Lee and Sung (2008a,b).

6.4.1 The Total Completion Time Problem

For this problem, since the total completion time of the jobs is a part of the objective
function to be minimized, it is optimal to schedule the jobs that are processed on the
in-house machine in the shortest processing time first (SPT) order.

Lee and Sung (2008b) propose a pseudo-polynomial time dynamic programming
algorithm to solve this problem with time complexity O(n2B). We describe this
algorithm below.

Algorithm DP-TCT

Initialization Reindex the jobs in SPT order, i.e., p1 ≤ · · · ≤ pn.

Value Function f (j,m, b) = the minimum total completion time of a partial
schedule for jobs j, . . . , n where m (m ≤ n− j + 1) of these jobs are subcontracted
and the total subcontracting cost of these jobs is b.

Boundary Conditions f (n + 1, 0, 0) = 0.

Recurrence Relation For j = n, . . . , 1, m = 1, . . . , n−j+1, and b = 0, 1, . . . , B:

f (j,m, b) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(n − j + 1)pj + f (j + 1,m, b) if m = 0,

∞ if n − j + 1 = m and sj > b,

lj + f (j + 1,m − 1, b − sj) if n − j + 1 = m and sj ≤ b,

(n − j − m + 1)pj + f (j + 1,m, b) if n − j + 1 > m > 0 and sj > b,

min{(n − j − m + 1)pj + f (j + 1,m, b),

lj + f (j + 1,m − 1, b − sj)} if n − j + 1 > m > 0 and sj ≤ b.

Optimal Solution Value The optimal solution value is found by solving the
following problem:

min
0≤m≤n,0≤b≤B

{αf (1,m, b) + (1 − α)b)}.

The recurrence relation compares all five possible cases of (j,m, b): (1) m = 0,
where all the jobs j, . . . , n are processed in-house; (2) m = n− j + 1, where all the

6.4 Problems with a Subcontracting Budget Constraint 271

jobs j, . . . , n are subcontracted out, and sj > b; (3) m = n − j + 1 and sj ≤ b; (4)
n − j + 1 > m > 0, where some of the jobs j, . . . , n are processed in-house and
some are subcontracted out, and sj > b; (5) n − j + 1 > m > 0, and sj ≤ b. Case
(2) is not possible and hence the value function is ∞. In Cases (1) and (4), job j

must be processed in-house, whereas in Case (3), job j must be subcontracted out.
In Case (5), job j can either be processed in-house or subcontracted out.

In addition, Lee and Sung (2008b) give two heuristics and a branch-and-bound
exact algorithm for the total completion time problem. We describe one of their
heuristics. The idea is first to solve the problem without considering the budget
constraint, which may result in a solution with too many jobs subcontracted out,
and then gradually remove some of the jobs from the set of the subcontracted jobs
until the budget constraint is satisfied. Before presenting this heuristic, we first
discuss how the total completion time problem without the budget constraint can be
solved. Lee and Sung (2008b) give a polynomial-time exact dynamic programming
algorithm with time complexity O(n2) to solve this problem. This algorithm is
described in the following.

Algorithm DP-TCT-NB

Initialization Reindex jobs in SPT order, i.e., p1 ≤ · · · ≤ pn.

Value Function f (j,m) = the minimum objective value of a partial schedule for
jobs j, . . . , n where m (m ≤ n − j + 1) of these jobs are subcontracted out.

Boundary Conditions f (n + 1, 0) = 0.

Recurrence Relation For j = n, . . . , 1, and m = 1, . . . , n − j + 1:

f (j,m) =

⎧
⎪⎪⎨

⎪⎪⎩

α(n − j + 1)pj + f (j + 1, 0) if m = 0,
αlj + (1 − α)sj + f (j + 1,m − 1) if n − j + 1 = m,

min{α(n − j − m + 1)pj + f (j + 1,m),

αlj + (1 − α)sj + f (j + 1,m − 1)} if n − j + 1 > m > 0.

Optimal Solution Value The optimal solution value is found by solving the
following problem:
min0≤m≤n{f (1,m)}.

Now we describe the heuristic. It generates three feasible schedules and chooses
the one with the lowest objective value as the solution.

Heuristic TCT
Step 1: Solve the total completion time problem without the budget constraint by

Algorithm DP-TCT-NB. Let the solution be denoted as π , and let the set of the
subcontracted jobs be denoted as S(π). If

∑
j∈S(π) sj ≤ B, then π is also an

optimal solution to the original problem with the budget constraint, and stop.
Step 2: Let S1 = S2 = S3 = S(π). Generate three solutions based on π as

follows.

272 6 Joint Subcontracting and Scheduling Decisions

1. Remove the jobs with the shortest processing times from S1, one by one, until∑
j∈S1

sj ≤ B. Construct a feasible solution as follows: The jobs in the final
set S1 are subcontracted out, and the rest are processed in-house in SPT order.
Let π1 denote this solution, and f (π1) denote its objective value.

2. Remove the jobs with the largest subcontracting costs from S2, one by one,
until

∑
j∈S2

sj ≤ B. Construct a feasible solution as follows: The jobs in the
final set S2 are subcontracted out, and the rest are processed in-house in SPT
order. Let π2 denote this solution, and f (π2) denote its objective value.

3. Remove the jobs with the longest lead times provided by the subcontractor
(i.e., lj) from S3, one by one, until

∑
j∈S3

sj ≤ B. Construct a feasible
solution as follows: The jobs in the final set S3 are subcontracted out, and
the rest are processed in-house in SPT order. Let π3 denote this solution, and
f (π3) denote its objective value.

Step 3: Select the solution with the lowest objective value among π1, π2, π3 as the
heuristic solution.

The computational results reported in Lee and Sung (2008b) show that this
heuristic performs well, particularly when the budget B is relatively large.

Example 6.3 (Application of Heuristic TCT) We apply Heuristic TCT to the follow-
ing instance of the total completion time problem: α = 0.5, B = 9, and pj , lj , sj
are given in the following table.

j 1 2 3 4

pj 2 4 6 8

lj 4 3 2 2

sj 8 4 4 6

Step 1. Solve the problem without the budget constraint by Algorithm DP-TCT-
NB. The optimal solution π is as follows: process jobs 1 and 2 in-house, but
subcontract jobs 3 and 4 (i.e., S(π) = {3, 4}). This solution has an objective
value of 11. The total subcontracting cost of this solution is 10, which violates
the budget constraint.

Step 2. S1 = {3, 4}. Since job 3 has a shorter processing time than job 4, job 3 is
removed from S1. After this,

∑
j∈S1

sj = s4 = 6 < B, and a feasible solution
π1 is generated in which job 4 is subcontracted, but jobs 1, 2 and 3 are processed
in-house. The objective value of this solution is 14 with the total subcontracting
cost of 6.

Step 3. S2 = {3, 4}. Since job 4 has a larger subcontracting cost than job 3, job 4 is
removed from S2. After this,

∑
j∈S2

sj = s3 = 4 < B, and a feasible solution
π2 is generated in which job 3 is subcontracted, but jobs 1, 2 and 4 are processed
in-house. The objective value of this solution is 16 with the total subcontracting
cost of 4.

6.4 Problems with a Subcontracting Budget Constraint 273

Step 4. This step generates the same solution as in Step 3.
Step 5. π1 is selected as the solution for this example.

An optimal solution for this example is to subcontract jobs 2 and 3, and process
jobs 1 and 4 in-house. This solution has an objective value of 12.5 with total
subcontracting cost of 8.

6.4.2 The Maximum Tardiness Problem

Since in this problem the maximum tardiness of the jobs is a part of the objective
function to be minimized, it is optimal to schedule the jobs that are processed on
the in-house machine in earliest due date first (EDD) order. Thus, we only need to
consider the EDD order for the jobs processed in-house in any solution.

Lee and Sung (2008a) propose a pseudo-polynomial time dynamic programming
algorithm to solve this problem with time complexity O(nBP), where P =∑

j∈N pj . We describe this algorithm below.

Algorithm DP-MT

Initialization Reindex the jobs in EDD order, i.e., d1 ≤ . . . ≤ dn.

Value Function f (j, t, b) = the minimum maximum tardiness of a partial schedule
for jobs 1, . . . , j where the total processing time of the jobs processed in-house is t
and the total subcontracting cost of these jobs is b.

Boundary Conditions f (0, 0, 0) = 0

Recurrence Relation For j = 1, . . . , n, t = 1, . . . , P , and b = 0, 1, . . . , B:

f (j, t, b) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∞ if pj > t and sj > b,

max{max{0, lj − dj }, f (j − 1, t, b − sj)} if pj > t and sj ≤ b,

max{max{0, t − dj }, f (j − 1, t − pj , b)} if pj ≤ t and sj > b,

min{max{max{0, t − dj }, f (j − 1, t − pj , b)},
max{max{0, lj − dj }, f (j − 1, t, b − sj)}} if pj ≤ t and sj ≤ b.

Optimal Solution Value The optimal solution value is found by solving the
following problem:

min
0≤t≤P,0≤b≤B

{αf (n, t, b) + (1 − α)b)}.

The logic of this algorithm is very similar to that of Algorithm DP-TCT given in
Sect. 6.4.1.

274 6 Joint Subcontracting and Scheduling Decisions

Lee and Sung (2008a) give two heuristics, one of which is similar to Heuristic
TCT given in the previous subsection for the total completion time problem. We do
not describe these heuristics here.

6.4.3 The Total Tardiness Problem

Lee and Sung (2008a) propose a pseudo-polynomial time dynamic programming
algorithm to solve this problem with time complexity O(n3BP), where P =∑

j∈N pj . The idea of their algorithm is based on the well-known pseudo-
polynomial dynamic programming algorithm given by Lawler (1977) for the
classical single-machine total tardiness problem without subcontracting options,
i.e., problem 1||∑ Tj , which can be viewed as a special case of the total tardiness
problem studied here.

Lawler’s algorithm for problem 1||∑ Tj is based on the following important
property. Consider a problem of scheduling any given subset of l jobs i1, . . . , il .
Find an optimal schedule starting at a given time t that minimizes the total tardiness
of the jobs. Suppose the jobs are indexed in EDD order, i.e., di1 ≤ . . . ≤ dil . Let ik
be the job with the longest processing time, i.e., pik = max{pi1, . . . , pil }. Lawler
(1977) proves the following property.

Lemma 6.4 There exists some job iq ∈ {ik+1, . . . , il} such that there is an optimal
schedule for the problem that starts at time t and is a concatenation of the following
three segments:

(i) Some sequence of jobs i1, . . . , ik−1, ik+1, . . . , iq .
(ii) Followed by job ik .
(iii) Followed by some sequence of jobs iq+1, . . . , il .

Clearly, to have an overall optimal schedule, both the sequence of the first
segment (i.e., the sequence for the jobs i1, . . . , ik−1, ik+1, . . . , iq) and the sequence
of the third segment (i.e., the sequence for the jobs iq+1, . . . , il) must be optimal.
This provides the foundation for a dynamic programming based algorithm. Below,
we briefly summarize the main idea of Lawler’s DP algorithm, since essentially the
same idea is used by Lee and Sung (2008a) to design their algorithm for the problem
with subcontracting options.

Lawler’s DP algorithm uses a job set as a part of a DP state. Suppose that all the
jobs 1, . . . , n are reindexed in EDD order, i.e., d1 ≤ · · · ≤ dn. For any j, l, k with
j ≤ l, define a job set J (j, l, k) to be the subset of jobs in {j, j+1, . . . , l−1, l}\{k}
with processing times less than or equal to pk , i.e.,

J (j, l, k) = {i ∈ {j, j + 1, . . . , l − 1, l} \ {k}|pi ≤ pk}

We note that although J (j, l, k) is a set, the members in J (j, l, k) are uniquely
determined by three numbers, j, l, k. Thus, keeping track of this set in a DP algo-

6.4 Problems with a Subcontracting Budget Constraint 275

rithm is equivalent to keeping tracking of j, l, k, which requires only polynomial
time.

With J (j, l, k) defined as above, Lawler’s DP algorithm uses value function
V (J (j, l, k), t) to denote the minimum total tardiness of the jobs in the set
J (j, l, k), given that the processing of the first job starts at time t . Let k∗ =
arg maxi∈J (j,l,k){pi}. Then by Lemma 6.4 described earlier, V (J (j, l, k), t) can be
computed recursively as follows:

V (J (j, l, k), t) = min
k∗≤q≤l

{V (J (j, q, k∗), t) + max(0, Ck∗(q) − dk∗)

+V (J (q + 1, l, k∗), Ck∗(q)))},

where Ck∗(q) = ∑
i∈J (j,q,k∗) pi + pk∗ is the completion time of job k∗. This

algorithm has a time complexity O(n4P), and hence is pseudo-polynomial. This,
together with the NP -hardness proof given by Du and Leung (1990), implies that
problem 1||∑ Tj is ordinarily NP -hard.

Now we consider the problem with subcontracting options. Clearly, for the jobs
processed in-house, the property stated in Lemma 6.4 holds. Based on this fact, Lee
and Sung (2008a) propose the following DP algorithm for solving this problem. The
algorithm can be viewed as an extension of Lawler’s (1977) algorithm.

Algorithm DP-TT

Initialization Reindex jobs in EDD order, i.e., d1 ≤ · · · ≤ dn.

Value Function f (J (j, l, k), a, b, c) = the minimum objective value of a schedule
for jobs in the set J (j, l, k) where the jobs processed in-house are processed in the
interval [a, b] and the total subcontracting cost of the jobs subcontracted out is c.

Boundary Conditions f (∅, 0, 0, 0) = 0.

Recurrence Relation For j = 1, . . . , n, l = j, . . . , n, k = 1, . . . , n, a = 0, . . . , P ,
b = a, . . . , P , and c = 0, . . . , B:

f (V (j, l, k), a, b, c) =

⎧
⎪⎪⎨

⎪⎪⎩

∞ if pk∗ > b − a and sk∗ > c,

f1(V (j, l, k), a, b, c) if pk∗ > b − a and sk∗ ≤ c,

f2(V (j, l, k), a, b, c) if pk∗ ≤ b − a and sk∗ > c,

f3(V (j, l, k), a, b, c) if pk∗ ≤ b − a and sk∗ ≤ c,

where k∗ = arg maxi∈J (j,l,k){pi}, and

f1(V (j, l, k), a, b, c) = f (V (j, l, k∗), a, b, c − sk∗)

+α max(0, lk∗ − dk∗) + (1 − α)sk∗

276 6 Joint Subcontracting and Scheduling Decisions

f2(V (j, l, k), a, b, c)

= min
k∗≤q≤l,0≤u≤b−a−pk∗ ,0≤v≤c

⎧
⎨

⎩

f (J (j, q, k∗), a, a + u, v)

+ α max(0, a + u + pk∗ − dk∗)
+ f (J (q + 1, l, k∗), a + u + pk∗ , b, c − v)

⎫
⎬

⎭

f3(V (j, l, k), a, b, c)

= min

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

f (J (j, l, k∗), a, b, c − sk∗) + α max(0, lk∗ − dk∗) + (1 − α)sk∗ ,

mink∗≤q≤l,0≤u≤b−a−pk∗ ,0≤v≤c

⎧
⎪⎨

⎪⎩

f (J (j, q, k∗), a, a + u, v)

+ α max(0, a + u + pk∗ − dk∗)

+ f (J (q + 1, l, k∗), a + u + pk∗ , b, c − v)

⎫
⎪⎬

⎪⎭
.

Optimal Solution Value The optimal solution value is found by solving the
following problem: min0≤b≤P,0≤c≤B{f (N, 0, b, c)}.

The recurrence relation of the above DP algorithm considers four possible cases:
(i) pk∗ > b − a and sk∗ > c, (ii) pk∗ > b − a and sk∗ ≤ c, (iii) pk∗ ≤ b − a and
sk∗ > c, and (iv) pk∗ ≤ b − a and sk∗ ≤ c. Case (i) is infeasible because job k∗
cannot be processed in-house or subcontracted. Case (ii) means that job k∗ must be
subcontracted. Case (iii) means that job k∗ must be processed in-house during the
interval [a+u, a +u+pk∗]. Case (iv) means that job k∗ can be processed in-house
or subcontracted, depending on whichever option gives a lower cost.

Lee and Sung (2008a) also give heuristics and a branch-and-bound algorithm.
We do not elaborate on these procedures here.

6.5 Problems with a Flowshop Environment

In this section, we discuss a joint subcontracting and scheduling problem studied by
Lee and Choi (2011) that arises in a two-stage flowshop production environment. In
a two-stage flowshop, each given job needs to undergo two processing operations—
it is processed first on a machine in the first stage, and then on a machine in the
second stage. In Lee and Choi’s problem, the in-house plant has two machines which
can process the stage-one and stage-two operations of any given job, respectively.
One or both operations of a job can be subcontracted at a cost that is proportional
to the processing time of the operation(s) involved. The objective is to minimize the
sum of the makespan of the jobs processed in-house and the total subcontracting
cost. It is implicitly assumed that the subcontracted job operations are completed
instantaneously so that they do not delay the remaining operations of the jobs
involved. This essentially means that we can treat a subcontracted operation of a
job as if it is processed in-house but with zero processing time.

6.5 Problems with a Flowshop Environment 277

We now define the problem. There is a given set of n jobs N = {1, . . . , n}
to be processed. Each job j consists of two operations, denoted as (1, j) as its
stage-one operation and (2, j) as its stage-two operation, respectively. There are two
in-house machines, M1 and M2, which can process stage-one operations and stage-
two operations, respectively. Either or both operations of a job can be processed
in-house or subcontracted. For i = 1, 2 and j ∈ N , if operation (i, j) is processed
in-house, it requires a processing time of pij on machine Mi ; if this operation is
subcontracted, it costs αipij , where αi is the subcontracting cost per unit of in-house
processing time.

Let Cij denote the completion time of operation (i, j) if it is processed in-house,
for i = 1, 2, j ∈ N . Let Cj denote the completion time of job j if at least one of its
two operations is processed in-house, for j ∈ N . If only the second-stage operation
(2, j) or both operations of job j are processed in-house, then Cj = C2j . If only
the first-stage operation (1, j) of job j is processed in-house, then Cj = C1j . The
problem is to find a set of jobs S1 whose stage-one operations are subcontracted,
a set of jobs S2 whose stage-two operations are subcontracted, and a schedule σ

for the operations processed in-house such that the following objective function is
minimized:

F(S1, S2, σ) = Cmax(σ) + α1

∑

j∈S1

p1j + α2

∑

j∈S2

p2j ,

where Cmax(σ) = max{Cj |j ∈ σ } is the makespan of schedule σ (i.e., the
completion time of the last operation in-house).

Given S1 and S2, the problem is reduced to finding a schedule σ for the two in-
house machines to process the operations kept in-house with a minimum makespan
Cmax(σ). Since this problem is the classical two-machine flowshop makespan
minimization problem, a schedule given by Johnson’s rule (Johnson, 1954, also see
Sect. 5.2.1) is optimal. For ease of presentation, in the remainder of this section, we
use (S1, S2, σ) to denote a solution of the problem, where S1, S2, σ are defined as
above.

Lee and Choi (2011) provide the following results:

• If α1 + α2 > 1, and α1 < 1, α2 < 1, then the problem is at least ordinarily
NP -hard.

• If α1 + α2 > 1, and max{α1, α2} ≥ 1, min{α1, α2} < 1, then the problem is at
least ordinarily NP -hard.

• If α1+α2 > 1, and α1 ≥ 1, α2 ≥ 1, then the problem can be solved in polynomial
time.

• If α1 + α2 ≤ 1, then the problem can be solved in polynomial time.

We show that there is a pseudo-polynomial time algorithm for solving the general
case of the problem. Thus, the problem under the first two cases above is ordinarily
NP -hard. In addition, Lee and Choi (2011) provide a polynomial-time heuristic for
the problem with α1 + α2 > 1, and α1 < 1, α2 < 1 and show that its worst-case
performance ratio is bounded by a constant. They also consider the problem where

278 6 Joint Subcontracting and Scheduling Decisions

the two operations of each job have the same processing time (i.e., p1j = p2j ,
for all j ∈ N). The corresponding flowshop environment is called a proportionate
flowshop (see e.g., Pinedo, 2016, Section 8.3.7). In the following, we present an
NP -hardness proof for the problem with max{α1, α2} ≥ 1, min{α1, α2} < 1 in
Sect. 6.4.1, discuss the two cases that can be solved in polynomial time in Sect. 6.4.2,
and finally discuss the problem with the proportionate flowshop in Sect. 6.4.3. We
refer the reader to Lee and Choi (2011) for an NP -hardness proof for the problem
with α1 + α2 > 1, and α1 < 1, α2 < 1, and for their heuristic and related analysis
for the problem with α1 + α2 > 1, and α1 < 1, α2 < 1.

6.5.1 NP -Hardness Proof

We first consider the problem with max{α1, α2} ≥ 1 and min{α1, α2} < 1. Lee and
Choi (2011) prove the following result.

Theorem 6.6 The problem with max{α1, α2} ≥ 1 and min{α1, α2} < 1 is at least
ordinarily NP -hard.

Proof We show that the problem with any given values of α1, α2 satisfying α1 < 1
and α2 ≥ 1 is NP -hard by a reduction from Partition Problem (PP), a known NP -
hard problem (Garey & Johnson, 1979). In PP, we are given h integers, a1, . . . , ah
such that

∑h
j=1 aj = A. The question asks whether there is a subset Q ⊆ {1, . . . , h}

such that
∑

j∈Q = A/2. Given an instance of PP, construct an instance of our
problem as follows: n = h+ 2 jobs, with the processing times pij given below, and
a threshold Z = 2A + A

2 α1 on the objective value.

p1j =
⎧
⎨

⎩

aj , if j = 1, . . . , h
3A
2 , if j = h + 1

0, if j = h + 2
p2j =

⎧
⎨

⎩

0, if j = 1, . . . , h
0, if j = h + 1
2A, if j = h + 2

Below, we show that there exists a solution (S1, S2, σ) to the above constructed
instance of our problem with objective value T (S1, S2, σ) ≤ Z if and only if there
is a solution to PP.
(⇒) If there exists a subset Q ⊆ {1, . . . , h} such that

∑
j∈Q = A/2, we construct

the following solution (S1, S2, σ) for the instance of our problem: Let S1 = Q,
S2 = ∅, and schedule the operations kept in-house following Johnson’s rule (see
Sect. 5.2.1). Since p2j = 0 for j = 1, . . . , h + 1 and p1,h+2 = 0, the completion
times of the operations on M1 do not have any impact on those on M2. Let S̄1 =
{1, . . . , h + 2} \ Q. We have

Cmax(σ) = max{
∑

j∈S̄1

p1j , p2,h+2} = max{2A, 2A} = 2A.

6.5 Problems with a Flowshop Environment 279

Thus, the objective value of the solution is

F(S1, S2, σ) = Cmax(σ) + α1

∑

j∈S1

p1j = 2A + α1(A/2) = Z.

(⇐) If there is a solution (S1, S2, σ) for the instance of our problem with
F(S1, S2, σ) ≤ Z, we first show that both operations (1, h + 1) and (2, h + 2)
must be processed in-house, i.e., h + 1 /∈ S1 and h + 2 /∈ S2. We prove
this by contradiction. There are two cases. First, if (2, h + 2) is subcontracted,
then its contribution to the objective value is 2Aα2 ≥ 2A, and the contribution
from any stage-one operation (1, j), for j = 1, . . . , h + 2, is at least α1p1j ,
regardless of whether it is subcontracted or processed in-house. This means that
if (2, h + 2) is subcontracted, then the objective value of the solution is at least
2A + α1

∑h+2
j=1 p1j = 2A + (5A/2)α1 > Z, a contradiction.

Alternatively, if (1, h+ 1) is subcontracted, then its contribution to the objective
value is (3A/2)α1. The contribution of operation (2, h+2) is at least 2A, regardless
of whether it is subcontracted or processed in-house. This means that if (1, h+ 1) is
subcontracted, then the objective value of the solution is at least 2A + (3A/2)α1 >

Z, a contradiction.
Therefore, both operations (1, h+1) and (2, h+2) are processed in-house in the

solution (S1, S2, σ). Thus, the objective value of this solution is

F(S1, S2, σ) = max{5A/2 −
∑

j∈S1

p1j , 2A} + α1

∑

j∈S1

p1j . (6.24)

We show that the fact that F(S1, S2, σ) ≤ Z means that
∑

j∈S1
p1j = A/2. First, if∑

j∈S1
p1j > A/2, then (6.24) implies that F(S1, S2, σ) = 2A + α1

∑
j∈S1

p1j >

2A+ (A/2)α1 = Z, leading to a contradiction. Alternatively, if
∑

j∈S1
p1j < A/2,

then (6.24) implies that

F(S1, S2, σ) = 2A + (A/2 −
∑

j∈S1

p1j) + α1

∑

j∈S1

p1j

= Z + (1 − α1)(A/2 −
∑

j∈S1

p1j) > Z,

leading to a contradiction. Thus,
∑

j∈S1
p1j = A/2, and hence there is a solution to

PP. ��
Next, we give a pseudo-polynomial time dynamic programming algorithm for the

general case of the problem. The algorithm is based on the following observation.
From Johnson’s rule, there is an optimal solution where on the two in-house
machines, the jobs with the first-stage operations subcontracted are scheduled first,
the jobs with both operations processed in-house are scheduled next, and the jobs
with the second-stage operations subcontracted are scheduled last.

280 6 Joint Subcontracting and Scheduling Decisions

Algorithm FS

Initialization Reindex the jobs following Johnson’s rule (see Sect. 5.2.1). Define
P1j = ∑j

k=1 p1j and P2j = ∑j

k=1 p2j for j = 1, . . . , n, and let P1 = P1n and
P2 = P2n.

Value Function F(j, x, y, z1, z2, w) = the minimum completion time of the second
operation of the last job processed in-house in a schedule for jobs 1, . . . , j where
(1) among the jobs 1, . . . , j with both operations processed in-house, the total
processing time of stage-one operations of these jobs is x, and the total processing
time of stage-two operations of these jobs is y, (2) among the jobs 1, . . . , j
with stage-two operations subcontracted, the total processing time of stage-one
operations of these jobs is z1, (3) among the jobs 1, . . . , j with stage-one operations
subcontracted, the total processing time of stage-two operations of these jobs is
z2, and (4) in the final schedule after all the n jobs are considered, among the
jobs with stage-one operations subcontracted, the total processing time of stage-two
operations of these jobs is w.

Boundary Conditions

F(0, 0, 0, 0, 0, w) = w, for 0 ≥ w ≥ P2,
F(0, x, y, z1, z2, w) = ∞ for x > 0 or y > 0,
F(j, x, y, z1, z2, w) = ∞ if any one of the following conditions holds: x+z1 > P1,

y + z2 > P2, z2 > w.

Recurrence Relation For j = 1, . . . , n, x = 0, 1, . . . , P1j , y = 0, 1, . . . , P2j ,
z1 = 0, 1, . . . , P1j − x, z2 = 0, 1, . . . , w, w = 0, 1, . . . , P2:

F(j, x, y, z1, z2, w) = min{F1, F2, F3, F4},

where

F1 = F(j − 1, x, y, z1, z2, w),

F2 = F(j − 1, x, y, z1, z2 − p2j , w),

F3 = F(j − 1, x, y, z1 − p1j , z2, w),

F4 = max
{
x + p1j , F (j − 1, x − p1j , y − p2j , z1, z2, w)

}+ p2j .

Optimal Solution Value The optimal solution value is found by solving the
following problem:

min
{
α1(P1 − x − z1) + α2(P2 − y − w) + max{x + z1, F (n, x, y, z1, w,w)}

| x = 0, 1, . . . , P1; y = 0, 1, . . . , P2; z1 = 0, 1, . . . , P1 − x;
w = 0, 1, . . . , P2 − y

}
.

6.5 Problems with a Flowshop Environment 281

Theorem 6.7 Algorithm FS finds an optimal solution for the general case of the
problem with a flowshop environment in O(nP 2

1 P
3
2) time.

Proof The validity of the algorithm can be shown by the following observations.
The recurrence relation of the above algorithm compares all the four options for
job j : (i) Both operations are subcontracted, which corresponds to F1, (ii) stage-
one operation is subcontracted but stage-two operation is processed in-house, which
corresponds to F2, (iii) stage-two operation is subcontracted but stage-one operation
is processed in-house, which corresponds to F3, and (iv) both operations are
processed in-house, which corresponds to F4. The makespan of the final schedule is
max{x + z1, F (n, x, y, z1, w,w)} since it is the maximum between the completion
time of the last first-stage operation (which is x + z1) and the completion time of
the last second-stage operation (which is F(n, x, y, z1, w,w)).

It can be shown that this algorithm has a time complexity O(nP 2
1 P

3
2). Thus, it is

a pseudo-polynomial time algorithm. ��
This theorem, together with Theorem 6.6, implies that the problem with

max{α1, α2} ≥ 1 and min{α1, α2} < 1 is ordinarily NP -hard.

6.5.2 Polynomially Solvable Cases

We now consider the two polynomially solvable cases of the problem: (i) α1 +α2 ≤
1, and (ii) α1 ≥ 1 and α2 ≥ 1. Lee and Choi (2011) prove the following results.

Theorem 6.8 For the problem with α1 +α2 ≤ 1, there is an optimal solution where
all the operations are subcontracted out (i.e., S1 = S2 = N).

Proof Consider any solution (S1, S2, σ). Its objective value satisfies

F(S1, S2, σ) ≥ max

⎧
⎨

⎩

∑

j∈N\S1

p1j ,
∑

j∈N\S2

p2j

⎫
⎬

⎭
+ α1

∑

j∈S1

p1j + α2

∑

j∈S2

p2j .

(6.25)
Since α1 + α2 ≤ 1, we have

max

⎧
⎨

⎩

∑

j∈N\S1

p1j ,
∑

j∈N\S2

p2j

⎫
⎬

⎭
≥ α1

∑

j∈N\S1

p1j + α2

∑

j∈N\S2

p2j .

This, along with (6.25), means that

F(S1, S2, σ) ≥ α1

∑

j∈N
p1j + α2

∑

j∈N
p2j . (6.26)

However, if all the jobs are subcontracted out, the objective value is in fact
α1
∑

j∈N p1j + α2
∑

j∈N p2j . This, along with (6.26), implies that subcontracting
all the jobs out is an optimal solution. ��

282 6 Joint Subcontracting and Scheduling Decisions

Theorem 6.9 For the problem with α1 ≥ 1 and α2 ≥ 1, there is an optimal solution
where all the operations are processed in-house (i.e., S1 = S2 = ∅) following
Johnson’s rule.

Proof Given any solution (S1, S2, σ) where S1 �= ∅. For any j ∈ S1, in this
solution, operation (1, j) is subcontracted. If this operation is instead processed
in-house, then the makespan of σ increases by at most p1j , but the subcontracting
cost decreases by α1p1j ≥ p1j . This means that it may improve the current solution
to process operation (1, j) in-house instead. Thus, we revise the given solution by
keeping operation (1, j) in-house. We repeat this process until all the stage-one
operations are kept in-house. The resulting solution has an objective value no more
than that of the original solution. If S2 �= ∅, we can apply the same logic to any
j ∈ S2 by keeping operation (2, j) in-house. Eventually, we arrive at a solution
with an objective value no more than that of the original solution by keeping all the
stage-two operations in-house. ��

6.5.3 Proportionate Flowshop

As defined above, in a two-stage proportionate flowshop, p1j = p2j for j ∈
N . For notational convenience, we replace both p1j and p2j by pj . The joint
subcontracting and scheduling problem with a two-stage proportionate flowshop
is a special case of the problem with a general two-stage flowshop. Thus, the
polynomially solvable cases discussed in Sect. 6.5.2 are still solvable in polynomial
time under a proportionate flowshop. When α1 + α2 > 1 and α1 < 1, α2 < 1, the
NP -hardness proof given by Lee and Choi (2011) for the problem with a general
flowshop also works for the problem with a proportionate flowshop. Similarly,
the pseudo-polynomial time algorithm given in Sect. 6.5.2 for the problem with a
general flowshop also works for the problem with a proportionate flowshop. Thus,
when α1 + α2 > 1 and α1 < 1, α2 < 1, the problem with a proportionate flowshop
is still ordinarily NP -hard.

However, for the case with max{α1, α2} ≥ 1 and min{α1, α2} < 1, the problem
complexity changes when the production environment changes from a general
flowshop to a proportionate flowshop. It is NP -hard with a general flowshop, as
shown in Sect. 6.5.1. The problem with a proportionate flowshop is polynomially
solvable, as shown below.

Theorem 6.10 For the problem with a two-machine proportionate flowshop,

(i) If α1 < 1 ≤ α2, there is an optimal solution where only the first-stage operation
of the largest job is subcontracted out and all other operations are processed
in-house.

(ii) If α2 < 1 ≤ α1, there is an optimal solution where only the second-stage
operation of the largest job is subcontracted out and all other operations are
processed in-house.

6.5 Problems with a Flowshop Environment 283

Proof We prove (i) below. Suppose that the jobs are reindexed such that p1 ≤
p2 ≤ · · · ≤ pn. First, consider the solution where only the first-stage operation
of the largest job is subcontracted out, denoted as ({n},∅, σ ∗), where σ ∗ follows
Johnson’s rule. In σ ∗, M1 processes the jobs in the order (1, 2, . . . , n − 1), and M2
processes the jobs in the order (n, 1, . . . , n − 1). Thus, the objective value of this
solution is

F({n},∅, σ ∗) =
n∑

j=1

pj + α1pn. (6.27)

Now, consider any given solution (S1, S2, σ) with S2 �= ∅. If operation (2, j)
for any j ∈ S2 is processed in-house instead of being subcontracted in the current
solution, the subcontracting cost decreases by α2p2j whereas the makespan of σ

increases by at most p2j . Since α2 ≥ 1, processing operation (2, j) in-house does
not increase the overall objective value. We repeat this until the stage-two operations
of all the jobs in S2 are processed in-house without increasing the objective value.
This means that there exists an optimal solution where all the stage-two operations
are kept in-house. We consider such solutions below.

Given any solution (S1,∅, σ) where operation (1, n) is not subcontracted,
i.e., n /∈ S1, we compare the objective value of this solution, F(S1,∅, σ) with
F({n},∅, σ ∗) given in (6.27). Clearly,

F(S1,∅, σ) ≥ max

⎧
⎨

⎩

∑

j∈N\S1

pj + pn,

n∑

j=1

pj

⎫
⎬

⎭
+ α1

∑

j∈S1

pj . (6.28)

There are two possible cases. If
∑

j∈S1
pj ≥ pn, then from (6.28) and (6.27), we

have

F(S1,∅, σ) ≥
n∑

j=1

pj + α1pn = F({n},∅, σ ∗). (6.29)

If
∑

j∈S1
pj < pn, then from (6.28) and (6.27) and the fact that α1 < 1 (which is

assumed in part (i) statement of the theorem), we have

F(S1,∅, σ) ≥
∑

j∈N\S1

pj + pn + α1

∑

j∈S1

pj

=
∑

j∈N
pj +

⎛

⎝pn −
∑

j∈S1

pj

⎞

⎠+ α1

∑

j∈S1

pj

>
∑

j∈N
pj + α1pn = F({n},∅, σ ∗). (6.30)

284 6 Joint Subcontracting and Scheduling Decisions

Inequalities (6.29) and (6.30) mean that solution ({n},∅, σ ∗) is optimal. This shows
result (i).

Result (ii) can be shown similarly. ��

6.6 Problems Requiring Delivery of Subcontracted Jobs

In this section, we discuss several problems studied by Qi (2008, 2011) where
subcontracted jobs, once completed, need to be delivered to the in-house plant in
batches, which incurs a transportation delay and transportation cost. The problems
discussed in the other sections of this chapter do not explicitly involve delivery
of subcontracted jobs. This is one major difference. Another major difference is
that in the problems considered by Qi (2008, 2011), a schedule for processing
subcontracted jobs needs to be determined for the subcontractor, in addition to a
schedule for the jobs kept for in-house processing. In all the problems considered
in the other sections of this chapter, no scheduling decision needs to be made for
subcontracted jobs.

We first consider in Sect. 6.6.1 three problems where there is a single in-house
machine, and there is a single subcontractor with a single machine that can be used
to process subcontracted jobs, and then consider in Sect. 6.6.2 several problems with
a two-stage flowshop.

6.6.1 Single In-House Machine and Single Subcontractor’s
Machine

We first describe three of the problems considered in Qi (2008), using their notation,
which are distinguished by their objective functions. There are n jobs, each of
which can be either processed on a single machine in-house or subcontracted and
processed on a single machine owned by the subcontractor. If a job j is processed
in-house, the processing time is pj , and it becomes αpj if the job is processed on
the subcontractor’s machine, where α represents that the subcontractor’s machine
operates at a different speed from the in-house machine. If a job j is subcontracted,
it incurs an extra processing cost βpj , which is assumed to be proportional to
the processing time requirement of the job. Subcontracted jobs, after completing
processing, must be delivered in batches to the in-house facility. The delivery of a
batch incurs a fixed transportation cost K and a transportation time τ . There is no
capacity constraint on a delivery batch. Each job j may have a due date dj . The
decision maker needs to decide which jobs to be subcontracted out, how to schedule
the in-house jobs on the single in-house machine, how to schedule the subcontracted
jobs on the single subcontractor’s machine, and how to batch the subcontracted jobs
for delivery to the in-house facility so that the sum of the total subcontracting and

6.6 Problems Requiring Delivery of Subcontracted Jobs 285

transportation cost and a performance measure based on the job completion times is
minimized.

In a given schedule, let Cj denote the completion time of job j . If a job j

is processed in-house, then Cj is the time it completes processing, but if it is
subcontracted, then Cj is the time when it is delivered to the in-house facility after
being processing by the subcontractor. We consider three performance measures
based on C1, . . . , Cn as follows:

• Total completion time of the jobs,
∑n

j=1 Cj

• Maximum lateness of the jobs, Lmax = max{Cj − dj |j = 1, . . . , n}
• Number of late jobs,

∑n
j=1 Uj , where Uj = 1 if Cj > dj and 0 otherwise

For ease of presentation, we call the problem of minimizing the sum of the total
subcontracting and transportation cost and each of the above completion time based
performance measures the total completion time problem, the maximum lateness
problem, and the number of late jobs problem, respectively.

Qi (2008) shows that for the total completion time problem, there exists an
optimal solution where both the jobs kept in-house and the jobs subcontracted
out are processed in their SPT order on the respective machine. Based on this, he
gives an O(n4) dynamic programming algorithm to solve the total completion time
problem. This algorithm is described below.

Algorithm DP-CT

Initialization Reindex jobs in SPT order, i.e., p1 ≤ · · · ≤ pn.

Value Function F(j,m, h, h′) = the minimum objective value of a schedule for jobs
j, . . . , n where (a) there are m jobs kept for in-house processing (and hence n− j +
1 − m jobs subcontracted), (b) among these jobs, the earliest one subcontracted is
in a batch where there will be a total of h jobs in the end, but there are currently h′
(h′ ≤ h) jobs.

Boundary Conditions

F(n, 0, h, 1) = K + hpn + τ , for h = 1, . . . , n.
F(n, 0, h, h′) = ∞, for h′ �= 1.
F(j,m, 0, 0) = ∞ if m �= n − j + 1, and

∑n
i=j (n − i + 1)pi if m = n − j + 1.

Recurrence Relation For j = n, . . . , 1, m = 0, . . . , n− j + 1, h = 1, . . . , n− j +
1 − m, and h′ = 1, . . . , h:
If h′ = 1, then

F(j,m, h, 1) = min

{
F(j + 1,m − 1, h, 1) + mpj ,

(n − j − m + h)αpj + τ + βpj + K + minv≤n−j−m{F(j + 1,m, v, v)}.

If h′ > 1, then

F(j,m, h, h′) = min

{
F(j + 1,m − 1, h, h′) + mpj ,

(n − j + 1 − m + h − h′)αpj + τ + βpj + F(j + 1,m, h, h′ − 1)}.

286 6 Joint Subcontracting and Scheduling Decisions

Optimal Solution Value The optimal solution value is found by solving the
following problem:

min{F(1,m, h, h)|m = 0, 1, . . . , n;h = 0, 1, . . . , n − m}.

The optimality of the above algorithm can be validated by checking the recur-
rence relation. There are two options for job j : Either it is subcontracted out, or it is
processed in-house. First, consider the case when h′ = 1. If job j is processed in-
house, then the value of the state (j,m, h, 1) is equal to F(j+1,m−1, h, 1)+mpj .
If job j is subcontracted out, then job j is the first one in the batch containing it. In
this case, the value of the state (j,m, h, 1) is equal to (n−j−m+h)αpj +τ+βpj +
K+minv≤n−j−m{F(j+1,m, v, v)}, where the last part (the min operator) considers
all possible sizes (v) for the delivery batch that follows the batch containing job j .
The recurrence relation chooses the lower cost one of these two options. This shows
the validity of the recurrence relation when h′ = 1. When h′ > 1, the recurrence
relation again considers the two options for job j and can similarly be shown to be
valid.

Both the maximum lateness problem and the number of late jobs problem are at
least ordinarily NP -hard because under the special case with no subcontracting
cost (i.e., β = 0) and no delivery requirement for the subcontracted jobs (i.e.,
τ = 0,K = 0), these problems reduce to the classical parallel-machine scheduling
problem of minimizing the maximum lateness Pm||Lmax, and that of minimizing the
number of late jobs Pm||∑Uj , respectively, which are both known to be ordinarily
NP -hard (Pinedo, 2016). Qi (2008) provides pseudo-polynomial time algorithms
for solving these problems. Therefore, these problems are ordinarily NP -hard.

Below we present the pseudo-polynomial time algorithms of Qi (2008) for these
problems. Their algorithms are based on the following straightforward properties:
(i) For the maximum lateness problem, there exists an optimal solution in which
both the jobs kept in-house and the jobs subcontracted are processed in their EDD
order on the respective machine; (ii) for the number of late jobs problem, there exists
an optimal solution where the jobs subcontracted are all on time and scheduled in
their EDD order, and among the jobs that are kept in-house, the ones that are on
time are processed in their EDD order before the ones that are tardy.

For the maximum lateness problem, the algorithm is as follows.

Algorithm DP-ML

Initialization Reindex the jobs in EDD order, i.e., d1 ≤ . . . ≤ dn. Define Pj =
∑j

k=1 pj for j = 1, . . . , n, and let P = Pn.

Value Function F(j, x, h, t) = the minimum maximum lateness of the jobs in a
schedule for jobs 1, . . . , j where (a) the total processing time of the subcontracted
jobs is αx, (b) among the jobs 1, . . . , j , the last one subcontracted is in the hth
batch when it is delivered from the subcontractor to the in-house plant, and (c) the
hth batch is completed on the subcontractor’s machine at time αt .

6.6 Problems Requiring Delivery of Subcontracted Jobs 287

Boundary Conditions

F(1, x, h, t) =
⎧
⎨

⎩

p1 − d1, if x = 0, h = 0, t = 0,
αt + τ − d1, if x = p1, h = 1, t ≥ p1,
∞, otherwise.

Recurrence Relation For j = 1, . . . , n, x = 0, 1, . . . , Pj , h = 0, 1, . . . , j , and
t = x, x + 1, . . . , P :

F(j, x, h, t) = min{F1(j, x, h, t), F2(j, x, h, t)},

where

F1(j, x, h, t) = max{F(j − 1, x, h, t), Pj − x − dj }

F2(j, x, h, t) = max

{
αt + τ − dj ,

min{F(j − 1, x − pj , h − 1, x − pj), F (j − 1, x − pj , h, t)}

Optimal Solution Value The optimal solution value is found by solving the
following problem:

min{F(n, x, h, x) + βx + hK|x = 0, 1, . . . , P ;h = 0, 1, . . . , n}.

In the recurrence relation of the above algorithm, F1(j, x, y, t) is the value of
the state (j, x, y, t) if job j is subcontracted out, and F2(j, x, y, t) is that if job j is
processed in-house. The recurrence relation for F1 is quite clear. For F2, the second
term (i.e., the term with the min operator) considers the two possibilities for the job
j : It is either the first job in the hth batch of the subcontracted jobs, or not. The
optimality of the algorithm is based on comparing the values of all feasible state
transitions.

For the number of late jobs problem, the algorithm is as follows.

Algorithm DP-LJ

Initialization Reindex the jobs in EDD order, i.e., d1 ≤ . . . ≤ dn. Define Pj =
∑j

k=1 pj for j = 1, . . . , n, and let P = Pn.

Value Function F(j, x, y, t) = the minimum objective value of a schedule for jobs
1, . . . , j where (a) the total processing time of the subcontracted jobs is αx, (b)
the total processing time of the jobs processed in-house that are on time is y, and
(c) the last batch that contains at least one of the jobs 1, . . . , j is completed on the
subcontractor’s machine at time αt .

288 6 Joint Subcontracting and Scheduling Decisions

Boundary Conditions

F(1, x, y, t) =

⎧
⎪⎪⎨

⎪⎪⎩

0, if x = 0, y = p1, p1 ≤ d1,
K, if x = p1, y = 0, t + τ ≤ d1,
1, if x = 0, y = 0,
∞, otherwise.

Recurrence Relation For j = 1, . . . , n, x = 0, 1, . . . , Pj , y = 0, 1, . . . , Pj − x,
and t = x, x + 1, . . . , P :

F(j, x, y, t) = min{F1(j, x, y, t), F2(j, x, y, t), F3(j, x, y, t)},

where

F1(j, x, y, t) =
{

∞, if t + τ > dj ,
min{F(j − 1, x − pj , y, t), F (j − 1, x − pj , y, x − pj) + K}, if t + τ ≤ dj .

F2(j, x, y, t) =
{

∞, if y > dj ,
F(j − 1, x, y − pj , t), if y ≤ dj .

F3(j, x, y, t) = F(j − 1, x, y, t) + 1.

Optimal Solution Value The optimal solution value is found by solving the
following problem:

min{F(n, x, y, x)|x = 0, 1, . . . , P ; y = 0, 1, . . . , P − x}.

In the recurrence relation of the above algorithm, F1(j, x, y, t) is the value of
the state (j, x, y, t) if job j is subcontracted out, F2(j, x, y, t) is that if job j is
processed in-house and on time, and F3(j, x, y, t) is that if job j is processed in-
house and tardy. The optimality of the algorithm follows from comparing the values
of all feasible state transitions.

We note that a Stackelberg game, which consists of a subcontractor as the leader
and a manufacturer as the follower and is built on a problem similar to the ones
discussed above, is studied in Qi (2012) and discussed in Sect. 9.3.2. In this game,
first the subcontractor sets the unit price β for processing the manufacturer’s jobs.
Then, the manufacturer decides which jobs to subcontract, as well as a schedule for
processing the jobs kept in-house, and a schedule for processing the subcontracted
jobs on the subcontractor’s machine.

6.6 Problems Requiring Delivery of Subcontracted Jobs 289

6.6.2 Two-Stage Flowshop

In this section, we discuss two problems studied by Qi (2011). Both problems
involve scheduling with subcontracting options in a two-stage flowshop environ-
ment. The subcontracting mechanism is different from that in the flowshop problem
discussed in Sect. 6.5. To subcontract a job, both stage-one and stage-two operations
of the job must be subcontracted out together. In the first problem of Qi (2011),
there is a single subcontractor that handles both operations of every subcontracted
job, whereas in the second problem of Qi (2011) there are two independent
subcontractors, each dealing with one operation of each subcontracted job. We
define each of these problems and show how it can be solved below, respectively.

We consider the first problem. There are n jobs, each of which consists of two
operations. For each job j , the processing time of its stage-one operation is pj ,
and that of its stage-two operation is qj . There are two in-house machines, one
for stage-one operations, and the other for stage-two operations. There is a single
subcontractor available that also has two machines, one for stage-one operations,
and the other for stage-two operations. If a job is subcontracted out, both of its
operations must be processed by the subcontractor. The processing time of an
operation remains the same whether it is processed in-house or by the subcontractor.
Subcontracted jobs, once completed, need to be delivered to the in-house facility in
batches. Each batch can deliver any number of jobs and incurs a fixed delivery cost
μ, and a fixed transportation time τ .

The in-house production cost of an operation may differ from the subcontracting
cost of the same operation. It is assumed that for each job j , the difference between
the subcontracting cost of the job’s stage-one operation and the in-house production
cost of the same operation is proportional to its processing time, i.e., α1pj , where α1
is identical for all the jobs. Similarly, it is assumed that, for each job j , the difference
between the subcontracting cost of the job’s stage-two operation and the in-house
production cost of the same operation is α2pj , where α2 is identical for all the jobs.
Here α1, α2 can be negative if the subcontracting cost is lower.

The problem is to find a subset of jobs to subcontract out, a schedule for the
jobs kept for in-house processing, a schedule for the jobs subcontracted out, and
a delivery schedule for the subcontracted jobs from the subcontractor to the in-
house facility, so as to minimize the sum of the makespan of the jobs and the total
subcontracting and delivery cost.

This problem is ordinarily NP -hard because it contains the NP -hard classical
parallel-machine scheduling problem P2||Cmax as a special case when the second-
stage operations all have a zero processing time, and the transportation time from
the subcontractor to the in-house facility τ is 0.

To solve this problem, we first observe that all the subcontracted jobs are
delivered together in one batch at the time when all these jobs are completed by the
subcontractor. Thus, the delivery cost is fixed as μ and independent of how other
decisions are made. In the discussion below for this problem, we do not consider

290 6 Joint Subcontracting and Scheduling Decisions

delivery cost. Qi (2011) proposes a pseudo-polynomial time dynamic programming
algorithm for solving this problem. We describe that algorithm below.

Algorithm DP-FS1

Initialization Reindex the jobs following Johnson’s rule (see Sect. 5.2.1). Define
Pj = ∑j

k=1 pj and Qj = ∑j

k=1 qj for j = 1, . . . , n, and let P = Pn and Q = Qn.

Value Function F(j, x, y, z) = the minimum makespan of the jobs processed in-
house in a schedule for jobs 1, . . . , j where (a) the total processing time of the
stage-one operations of the subcontracted jobs is x (hence that of the jobs processed
in-house is Pj − x), (b) the total processing time of the stage-two operations of
the subcontracted jobs is y, and (c) the makespan of the jobs processed by the
subcontractor is no more than z.

Boundary Conditions

F(0, 0, 0, z) = 0, for z = 0, 1, . . . , P + Q,
F(0, x, y, z) = ∞ for x > 0 or y > 0.

Recurrence Relation For j = 1, . . . , n, x = 0, 1, . . . , Pj , y = 0, 1, . . . ,Qj , and
z = max(x, y),max(x, y) + 1, . . . , x + y:

F(j, x, y, z) = min{F1(j, x, y, z), F2(j, x, y, z)},

where

F1(j, x, y, z) = max{F(j − 1, x, y, z), Pj − x} + qj ,

F2(j, x, y, t) =
{∞, if x + qj > z,
F(j − 1, x − pj , y − qj , z − qj), if x + qj ≤ z.

Optimal Solution Value

min {α1x + α2y + max{F(n, x, y, z), z + τ } | x = 0, 1, . . . , P ;
y = 0, 1, . . . ,Q; z = max(x, y), . . . , x + y} .

In the recurrence relation of the above algorithm, F1(j, x, y, z) and F2(j, x, y, z)

are the value of the state (j, x, y, z) if job j is processed in-house and if job j is
subcontracted out, respectively. The recurrence relation for F1(j, x, y, z) is quite
straightforward. For F2(j, x, y, z), if x + qj > z, then the completion time of the
second-stage operation of job j , which defines the makespan of the subcontracted
jobs among the first j jobs (denoted as Cj

max) would be more than z, a contradiction.
Since Cj

max = max{x, Cj−1
max }+qj , where Cj−1

max is the makespan of the subcontracted

jobs among the first j − 1 jobs, if x + qj ≤ z and C
j−1
max + qj ≤ z, then C

j
max ≤ z.

This shows the validity of the recurrence relation for F2(j, x, y, z).

6.6 Problems Requiring Delivery of Subcontracted Jobs 291

Qi (2011) also considers a special case of this problem where no subcontracting
cost is considered. A simplified version of Algorithm DP-FS1 can be used to solve
this problem. Since the subcontracting cost is not considered, we do not need to keep
track of the total processing time of the second-stage operations of the subcontracted
jobs, i.e., we can drop the y variable from each state in the algorithm. The same
recurrence relations apply.

We now consider the second problem studied by Qi (2011). It is the same as the
first problem discussed above, except that now there are two subcontractors, denoted
as S1 and S2, respectively, that handle subcontracted jobs sequentially such that S1
processes the stage-one operations and S2 processes the stage-two operations of
subcontracted jobs, and all the jobs completed at S1 are delivered together in one
batch to S2. The transportation time from S1 to S2 is τ1. Completed jobs at S2
are shipped to the in-house facility in batches, where each delivery batch incurs a
transportation time τ2.

This problem is at least ordinarily NP -hard because it is more general than the
first problem. Also, as in the first problem, we observe that there exists an optimal
solution where all the completed jobs at S2 are delivered together in one batch.
Hence, the total delivery cost is fixed and independent of how other decisions are
made. In the discussion below for this problem, we do not consider delivery cost.
Finally, by the requirement in the problem that all the jobs completed at S1 are
delivered together to S2 in one batch, we can see that (i) an arbitrary schedule can
be used for the jobs processed at S1 and those processed at S2, and (ii) the makespan
of the subcontracted jobs is simply the sum of the total processing time of the two
operations together of the subcontracted jobs, and the total transportation delay, i.e.,
τ1 + τ2.

Qi (2011) proposes a pseudo-polynomial time dynamic programming algorithm
for solving this problem. We describe that algorithm below.

Algorithm DP-FS2

Initialization Reindex jobs following Johnson’s rule (see Sect. 5.2.1). Define Pj =
∑j

k=1 pj and Qj = ∑j

k=1 qj for j = 1, . . . , n, and let P = Pn and Q = Qn.

Value Function F(j, x, y) = the minimum makespan of the jobs processed in-house
in a schedule for jobs 1, . . . , j where (i) the total processing time of the stage-
one operations of the subcontracted jobs is x (and hence that of the in-house jobs
is Pj − x), and (ii) the total processing time of the stage-two operations of the
subcontracted jobs is y.

Boundary Conditions

F(0, 0, 0) = 0; F(0, x, y) = ∞ for x, y > 0;
F(j, x, y) = ∞ for j = 1, . . . , n, and x, y < 0.

Recurrence Relation For j = 1, . . . , n, x = 0, 1, . . . , Pj , and y = 0, 1, . . . ,Qj :

F(j, x, y) = min

{
F(j − 1, x − pj , y − qj),

max{F(j − 1, x, y), Pj − x} + qj .

292 6 Joint Subcontracting and Scheduling Decisions

Optimal Solution Value

min
{
α1x+α2y+max{F(n, x, y), x+y+τ1+τ2}|x=0, 1, . . . , P ; y=0, 1, . . . ,Q

}
.

The recurrence relation in the above algorithm considers two cases of job j : (1)
it is subcontracted out, and in this case, F(j, x, y) = F(j − 1, x − pj , y − qj),
(2) it is processed in-house, and in this case the completion time of job j (which is
defined as F(j, x, y)) is max{F(j − 1, x, y), Pj − x} + qj . This shows the validity
of the recurrence relation.

6.7 Problems with a More Complex Subcontracting Cost
Structure

In all the problems discussed in the previous sections, it is assumed that the
subcontracting cost of a job is independent of the total subcontracted workload.
However, in practice, due to fixed overhead and necessary setups, production
costs often exhibit economies of scale. This means that the higher the volume a
subcontractor handles, the lower the unit production cost is for the subcontractor.
Hence, a subcontractor may be willing to lower the subcontracting cost of a job
if the partnering manufacturer can subcontract a larger amount of work to the
subcontractor. Discount schemes like this are called quantity discounts, and studied
extensively in the inventory management and lot-sizing literature (e.g., Pereira &
Costa, 2015 and Munson & Jackson, 2015).

In this section, we consider several JSS problems with a quantity discount
scheme applied to the subcontracting cost. These problems are studied by Lu et al.
(2021). Below, we first describe these problems and summarize the results derived
by Lu et al. (2021) in Sect. 6.7.1, followed by an in-depth analysis of two problems
in Sect. 6.7.2.

6.7.1 Problem Description

A manufacturer receives a set of n jobs N = {1, . . . , n}. Each job is processed
either on a single machine available in-house at the manufacturer or subcontracted
to a subcontractor. Each job j ∈ N is associated with a release time rj , a processing
time pj if it is processed in-house, and an original subcontracting cost ej if it is
processed by the subcontractor. Let S ⊆ N be the set of subcontracted jobs, and
Q(S) = ∑

j∈S ej be the total original subcontracting cost. Based on the value
of Q(S), the subcontractor applies a quantity discount scheme to determine the
actual total subcontracting cost for the manufacturer. Consequently, the actual total
subcontracting cost is a function of Q(S), denoted as f (Q(S)). The manufacturer

6.7 Problems with a More Complex Subcontracting Cost Structure 293

needs to determine a subset of jobs S to be subcontracted such that the sum of the
makespan of the in-house jobs, denoted as Cmax(N \S), and the total subcontracting
cost f (Q(S)) is minimized.

Lu et al. (2021) consider four quantity discount schemes, all representable by a
piece-wise linear subcontracting cost function f (Q(S)). The basic idea of all these
discount schemes is the same: The domain for the total original subcontracting cost
is divided into m (m ≤ n) disjoint intervals [W0,W1), [W1,W2), . . . , [Wm−1,Wm),
where W0 = 0 and Wm = ∞, such that the discount applied increases over these
intervals, i.e., the larger the total original subcontracting cost Q(S), the larger the
discount the manufacturer receives. These discount schemes differ in the functional
form of the discount applied. Below we describe the discount function as well as the
actual subcontracting cost f (Q(S)) under each discount scheme.

• Under every discount scheme, if Q(S) ∈ [W0,W1), there is no discount, i.e.,
f (Q(S)) = Q(S).

• Discount scheme (i): If Q(S) ∈ [Wk,Wk−1) for some k ∈ {1, . . . , m − 1}, the
discount offered is a constant αk such that f (Q(S)) = Q(S) − αk , where α1 <

α2 < · · · < αm−1.
• Discount scheme (ii): If Q(S) ∈ [Wk,Wk−1) for some k ∈ {1, . . . , m − 1}, the

discount offered is a linear function Q(S) − βk such that f (Q(S)) = Q(S) −
(Q(S) − βk) = βk , where β1 < β2 < · · · < βm−1 are constants.

• Discount scheme (iii): If Q(S) ∈ [Wk,Wk−1) for some k ∈ {1, . . . , m − 1},
the discount offered is a linear function (1 − γk)Q(S) such that f (Q(S)) =
Q(S) − (1 − γk)Q(S) = γkQ(S), where 1 > γ1 > γ2 > · · · > γm−1 > 0 are
constants.

• Discount scheme (iv): If Q(S) ∈ [Wk,Wk−1) for some k ∈ {1, . . . , m − 1}, the
discount offered is a complex linear function such that f (Q(S)) = W1+θ1(W2−
W1) + · · · + θk−1(Wk − Wk−1) + θk(Q(S) − Wk), where 1 > θ1 > θ2 > · · · >
θm−1 > 0 are constants.

It can be seen that under the discount schemes (ii), (iii), and (iv), f (Q(S)) is a step-
wise function, all-unit discount function, and an incremental discount function, over
the domain [W1,Wm), respectively.

To illustrate, we give a numerical example of each discount scheme as follows.

Example 6.4 (Discount Schemes) Suppose that the domain of Q(S) is divided into
3 intervals, [0, 100), [100, 200), [200,∞), i.e., W1 = 100,W2 = 200, and W3 =
∞. Let α1 = 10, α2 = 30. Then under discount scheme (i), we have

f (Q(S)) =
⎧
⎨

⎩

Q(S), if Q(S) ∈ [0, 100),
Q(S) − 10, if Q(S) ∈ [100, 200),
Q(S) − 30, if Q(S) ∈ [200,∞).

294 6 Joint Subcontracting and Scheduling Decisions

Let β1 = 100, β2 = 200. Then, under discount scheme (ii), we have

f (Q(S)) =
⎧
⎨

⎩

Q(S), if Q(S) ∈ [0, 100),
100, if Q(S) ∈ [100, 200),
200, if Q(S) ∈ [200,∞).

Let γ1 = 0.8, γ2 = 0.6. Then, under discount scheme (iii), we have

f (Q(S)) =
⎧
⎨

⎩

Q(S), if Q(S) ∈ [0, 100),
0.8Q(S), if Q(S) ∈ [100, 200),
0.6Q(S), if Q(S) ∈ [200,∞).

Let θ1 = 0.8, θ2 = 0.6. Then, under discount scheme (iv), we have

f (Q(S)) =
⎧
⎨

⎩

Q(S), if Q(S) ∈ [0, 100),
100 + 0.8(Q(S) − 100), if Q(S) ∈ [100, 200),
100 + 0.8(100) + 0.6(Q(S) − 200), if Q(S) ∈ [200,∞).

Lu et al. (2021) consider both the general problem where the jobs have different
release times rj , denoted as 1|rj |Cmax(N \ S) + f (Q(S)), and the special case
where all the jobs have the same release time (or equivalently, rj = 0 for j ∈ N),
denoted as 1||Cmax(N \ S) + f (Q(S)), under each of the four discount schemes.
They show that (1) both problems 1||Cmax(N \ S) + f (Q(S)) and 1|rj |Cmax(N \
S)+f (Q(S)) under the discount scheme (i), (ii), or (iii) are ordinarily NP -hard; (2)
problem 1||Cmax(N \S)+f (Q(S)) under the discount scheme (iv) is polynomially
solvable, whereas problem 1|rj |Cmax(N \S)+f (Q(S)) under the discount scheme
(iv) is ordinarily NP -hard. In addition, they provide a polynomial time heuristic
for problem 1|rj |Cmax(N \ S) + f (Q(S)) under the discount scheme (iv) with a
tight worst-case performance ratio of 2. In the following subsection, we provide an
in-depth analysis of the two problems under the discount scheme (iv).

6.7.2 Analysis of Problems with Incremental Discount

In this section we analyze problems 1||Cmax(N \ S)+ f (Q(S)) and 1|rj |Cmax(N \
S) + f (Q(S)) under the incremental discount scheme, i.e., discount scheme (iv).

Lemma 6.5 There is an optimal solution for problem 1||Cmax(N \ S) + f (Q(S))

with the incremental discount scheme in which any subcontracted job u ∈ S and
any job processed in-house v ∈ N \ S must satisfy pu/eu ≥ pv/ev .

Proof We prove the lemma by contradiction. Given an optimal solution π∗, suppose
that there are two jobs in this solution, u ∈ S and v ∈ N \ S satisfy pu/eu < pv/ev .

6.7 Problems with a More Complex Subcontracting Cost Structure 295

Suppose that Q(S) = ∑
j∈S ej ∈ [Wk,Wk+1) for some k ∈ {0, . . . , m − 1}. Let

θ0 = 1.
First, consider another solution π1 where job u is processed in-house whereas the

status of every other job is the same as in π∗. Compared to π∗, in π1 the makespan of
the in-house jobs is pu units longer, but the subcontracting cost is at least θkeu units
lower because of the incremental discount scheme. Thus, the objective function of
π1 is higher than that of π∗ by at most pu−θkeu. Since π∗ is optimal, pu−θkeu ≥ 0,
which implies that θk ≤ pu/eu. Since pu/eu < pv/ev , we have

θk < pv/ev. (6.31)

Next, consider another solution π2 where job v is subcontracted whereas the status
of every other job is the same as in π∗. Compared to π∗, in π2 the makespan of the
in-house jobs is pv units shorter, but the subcontracting cost is at most θkev units
higher because of the incremental discount scheme. Thus, the objective function of
π2 is higher than that of π∗ by at most θkev−pv . Since π∗ is optimal, θkev−pv ≥ 0,
which implies that θk ≥ pv/ev , which is a contradiction with (6.31). Thus, the
condition that pu/eu < pv/ev does not hold. ��

Reindex the jobs such that p1/e1 ≥ · · · ≥ pn/en. Lemma 6.5 implies that there
exists an optimal solution to problem 1||Cmax(N\S)+f (Q(S)) with the incremental
discount scheme, in which, for some h ∈ {0, 1, . . . , n}, the first h jobs 1, . . . , h
are subcontracted and the remaining jobs are processed in-house. Based on this
observation, we can solve this problem by the following algorithm, which has a
time complexity of O(n log n).

Algorithm A6.7.1
Step 1: Reindex the jobs such that p1/e1 ≥ · · · ≥ pn/en. Let P0 = ∑n

j=1 pj ,
E0 = 0, and Z0 = P0.

Step 2: For j = 1, . . . , n, compute Pj = Pj−1 − pj , and Ej = Ej−1 + ej , and
Zj = Pj + f (Ej).

Step 3: Find h = arg min{Zj | j = 0, 1, . . . , n}. Let S = ∅ if h = 0, and
S = {1, . . . , h} otherwise. [An optimal solution is found where the jobs in S are
subcontracted and the rest are processed in-house. The optimal objective value is
Zh.]
Next, we consider problem 1|rj |Cmax(N \ S) + f (Q(S)) with the incremental

discount scheme. Consider a special case of this problem with m = 1, i.e.,
f (Q(S)) = Q(S) over the entire domain of Q(S). There is no discount on
the subcontracting cost. If a job j is subcontracted, its contribution to the total
subcontracting cost is ej . This special case of the problem is equivalent to the
scheduling problem with rejection, denoted as 1|rj |Cmax + ∑

j∈R wj , where jobs
have generally different release times and can be rejected with a penalty wj = ej
and the objective is to minimize the makespan of the accepted jobs and the total
penalty of the rejected jobs (whose job set is denoted as R). This problem is known
to be NP -hard (Zhang et al., 2009). Thus, our problem 1|rj |Cmax(N \S)+f (Q(S))

with the incremental discount scheme is NP -hard. Below we give a pseudo-

296 6 Joint Subcontracting and Scheduling Decisions

polynomial time dynamic programming algorithm for solving this problem, which
implies that this problem is ordinarily NP -hard.

The algorithm is based on the straightforward property that the jobs processed in-
house are scheduled by earliest release times first (ERT) rule in an optimal solution.
By this property, the algorithm considers the jobs in ERT order, and for each job,
decides whether to subcontract it or process it in-house.

Algorithm A6.7.2

Initialization Reindex the jobs following the ERT rule, i.e, r1 ≤ · · · ≤ rn.

Value Function F(j,Q) = the minimum makespan of the jobs processed in-house
in a solution for jobs 1, . . . , j , where the total original subcontracting cost, without
discount, of the subcontracted jobs is Q.

Boundary Conditions
F(0, 0) = 0; F(0,Q) = ∞ for Q > 0.

Recurrence Relation For j = 1, . . . , n, Q = 0, 1, . . . ,
∑n

j=1 ej :

F(j,Q) = min
{
max{F(j − 1,Q), rj } + pj , F (j − 1,Q − ej)

}
.

Optimal Solution Value

min{F(n,Q) + f (Q) | 0 ≤ Q ≤
n∑

j=1

ej }.

The recurrence relation of the above algorithm considers both the case with job
j processed in-house, under which the makespan of the schedule is max{F(j −
1,Q), rj } + pj , and the case with job j subcontracted, under which the makespan
of the schedule is F(j − 1,Q − ej). The time complexity of this algorithm is
O(n

∑
j∈N ej).

Finally, we give a polynomial time heuristic for problem 1|rj |Cmax(N \ S) +
f (Q(S)) with the incremental discount scheme and analyze its worst-case perfor-
mance. For ease of presentation, we refer to this problem as the original problem.
The idea of the heuristic is to solve n auxiliary problems of the original problem
and choose one of the resulting solutions with the lowest objective value as the
solution to the original problem. We first define these auxiliary problems, denoted
as AP1, . . . , APn. Reindex the jobs such that r1 ≤ · · · ≤ rn and ej ≥ ej+1 in case
rj = rj+1 for every such j . For l = 1, . . . , n, auxiliary problem APl is the original
problem with the following two additional constraints:

• Job l is the job with the largest index that is processed in-house, which means
that all the jobs in Vl = {l + 1, . . . , n} are subcontracted.

• The jobs processed in-house (which consist of a subset of the first l − 1 jobs and
job l) must start at time rl consecutively without any idle time.

6.7 Problems with a More Complex Subcontracting Cost Structure 297

Problem APl is to find a subset of jobs Ul ⊆ {1, . . . , l − 1} such that the jobs in
Sl = Ul ∪ Vl are subcontracted and the jobs in N \ Sl are processed in-house.

It is not difficult to see that Lemma 6.5 holds for every auxiliary problem APl , for
l = 1, . . . , n. This means that if we reindex the jobs in {1, . . . , l−1} as [1], . . . , [l−
1] such that p[1]/e[1] ≥ · · · ≥ p[l−1]/e[l−1], then there exists an optimal solution to
problem APl where jobs [1], . . . , [h], for some 0 ≤ h ≤ l − 1, are subcontracted
and the remaining jobs are processed in-house.

We can thus solve every problem APl with fixed l, for l = 1, . . . , n, by a slightly
modified version of Algorithm A6.7.1. It is described below. This is used as a
subroutine for Heuristic H6.7.4 below.

Algorithm A6.7.3
Step 1: Let Vl = {l + 1, . . . , n}. Let P0 = rl + ∑l

j=1 pj , E0 = ∑
j∈Vl

ej , and
Z0 = P0 +f (E0). Reindex the jobs in {1, . . . , l−1} as [1], . . . , [l−1] such that
p[1]/e[1] ≥ · · · ≥ p[l−1]/e[l−1].

Step 2: For j = 1, . . . , l − 1, compute Pj = Pj−1 − p[j], Ej = Ej−1 + e[j], and
Zj = Pj + f (Ej).

Step 3: Find h = arg min{Zj | j = 0, 1, . . . , l − 1}. Let Ul = ∅ if h = 0, and
Ul = {[1], . . . , [h]} otherwise. [An optimal solution is found for problem APl

where the jobs in Ul ∪ Vl are subcontracted and the rest are processed in-house.
The optimal objective value is Zh.]

The time complexity of the above algorithm is O((l − 1) log(l − 1)).
We now describe the heuristic for the original problem, 1|rj |Cmax(N \ S) +

f (Q(S)) with the incremental discount scheme.

Heuristic H6.7.4
Step 1: Reindex the jobs such that r1 ≤ · · · ≤ rn, and ej ≥ ej+1 in case rj = rj+1

for every such j .
Step 2: Create solution σ0 in which all the n jobs are subcontracted.
Step 3: For l = 1, . . . , n, solve auxiliary problem APl using Algorithm A6.7.3. Let

σl be the solution.
Step 4: Among the solutions generated, σ0, . . . , σn, choose one with the lowest

objective value as the final solution.

Theorem 6.11 Heuristic H6.7.4 generates a solution for problem 1|rj |Cmax(N \
S)+f (Q(S)) with the incremental discount scheme with a tight worst-case ratio of
2 in O(n2 log n) time.

Proof First, since the heuristic applies Algorithm A6.7.3 n times, and the lth time
when this algorithm is applied, its running time is O((l−1) log(l−1)), the total time
taken by Step 3 of the heuristic is thus O(n2 log n). The other steps of the heuristic
together take less than this time. Thus, the overall time complexity of the heuristic
is O(n2 log n).

Next, we analyze the worst-case performance of the heuristic. Reindex the jobs
such that r1 ≤ · · · ≤ rn, and ej ≥ ej+1 in case rj = rj+1 for every such j . Let
π∗ be an optimal solution of the problem, and σ ∗ be the solution generated by the

298 6 Joint Subcontracting and Scheduling Decisions

heuristic. We denote the objective value of any feasible solution η as Z(η). If no
job is processed in-house in π∗, then σ0 has the same objective value as π∗, which
implies that the solution generated by the heuristic, σ ∗, is optimal, i.e., Z(σ ∗) =
Z(π∗). Suppose that in π∗, job u is the largest indexed job processed in-house. This
means that all the jobs u+1, . . . , n and possibly a subset of the jobs in {1, . . . , u−1}
are subcontracted. We create a new solution π ′ based on π∗ as follows: π ′ has the
same set of jobs subcontracted and the same set of jobs processed in-house with the
same sequence as in π∗, but shifts the schedule of the jobs processed in-house later
such that the first job starts exactly at time ru.

Clearly, solution π ′ is feasible for auxiliary problem Pu. Thus, Z(π ′) ≥ Z(σ ∗).
Furthermore, the way π ′ is constructed implies that Z(π ′) ≤ ru+Z(π∗) ≤ 2Z(π∗).
Therefore, Z(σ ∗) ≤ 2Z(π∗), meaning that the worst-case ratio of the heuristic is
bounded above by 2.

Next, we show that the worst-case bound of 2 is tight. Consider an instance where
there are two jobs, with r1 = 0, p1 = 1, e1 = 3 and r2 = 1, p2 = 0, e2 = 3.
The subcontracting cost function f (Q) = Q for any Q ≥ 0. For this instance,
the following solution is optimal: Process all jobs in-house with job 1 processed in
interval [0, 1] and job 2 at time point 1. This solution has an objective value 1. Using
the heuristic, three solutions are generated: (1) σ0 which subcontracts all the jobs,
and hence has an objective value 6, (2) σ1 which subcontracts job 2 and processes
job 1 in-house with starting time 0, and hence has an objective value 4, and (3) σ2
which processes both jobs in-house with starting time 1, and hence has an objective
value 2. Thus, solution σ2 is chosen as the final solution to this instance with an
objective value 2. This implies that the performance bound of the heuristic for this
instance is exactly 2. ��

In addition to the results presented here, Lu et al. (2021) also provide an FPTAS
for problem 1|rj |Cmax(N \ S) + f (Q(S)) with the incremental discount scheme.

6.8 Future Research

Most existing research on joint subcontracting and scheduling problems that we are
aware of has made quite restrictive assumptions, including,

(i) Any job can be subcontracted if necessary.
(ii) A subcontractor has an unlimited capacity such that it can process as many

jobs as assigned to it and still guarantee a promised lead time for each job, or
there is only a single machine available at a subcontractor.

(iii) The subcontracting cost rate per unit processing time is a constant, independent
of the total subcontracted amount, or the subcontracting cost for a subcon-
tracted job is fixed, independent of the other subcontracted jobs.

(iv) There is a fixed number of machines in-house and all these machines can be
used to process jobs without incurring any fixed cost for using a machine or
treating the fixed cost as a sunk cost.

6.8 Future Research 299

However, these assumptions may not be valid in some practical settings. Below,
we discuss several situations where these assumptions may not hold, and possible
new problems that can be studied when these assumptions are relaxed.

• In practice, some jobs may have precedence constraints because of inherent
characteristics of the jobs (Pinedo, 2016). For example, suppose jobs 1 and 2
are two sequential production steps (or service procedures) applied to a given
component (or customer). Clearly, job 1 needs to be processed first before
job 2, and because they deal with the same component, either both jobs are
subcontracted or both jobs are processed in-house. In such a case, assumption
(i) above is not valid. To reflect the example given here, we can replace this
assumption by the following: There are subsets of jobs such that if one of the jobs
in a subset is subcontracted, then all the jobs in this subset must be subcontracted
together to the same subcontractor. It would be useful to study various problems
with this new assumption.

• In reality, every subcontractor has a capacity limit, and hence assumption (ii)
above may not hold. A subcontractor may set lower and upper bounds on how
much work it can take in from a manufacturer. For example, on one hand, a
subcontractor may not want to process only one job for a manufacturer because
it is not worth the fixed cost involved (such as paperwork, machine setup, and
overhead). On the other hand, its limited capacity may allow it to accept at
most 10 jobs or 10 h of work from a manufacturer. Furthermore, the lead time
that a subcontractor can guarantee may depend on how much work it processes.
Clearly, the corresponding problems with such practical capacity and lead time
complications will be more complex to solve.

• Because of economies of scale and fixed costs that are present, the unit produc-
tion cost usually decreases with the production volume. Thus, a subcontractor
may charge less per unit if a larger amount of work is subcontracted to it. In
such a case, assumption (iii) above may not hold. A more practical problem
then involves a subcontracting cost as a nonlinear function (e.g., nondecreasing
concave function) of the total amount processed by a subcontractor. As discussed
in Sect. 6.7, Lu et al. (2021) study some problems with such a subcontracting cost
function. More research on such problems is needed.

• The main reason why companies subcontract or outsource jobs is to lower
investment cost for in-house production capacity. For example, a company can
use fewer in-house machines by subcontracting more jobs, which can lower the
cost for using the machines but increase the subcontracting cost. Hence, there is
a tradeoff between the fixed cost for using a certain number of in-house machines
and the subcontracting cost if some jobs are subcontracted out. Thus, assumption
(iv) above may not hold. To examine such issues, we would need to consider
problems where a fixed cost is incurred whenever an in-house machine is used,
and part of the decision is the number of in-house machines to use.

In addition to these possible directions for future research, there are several issues
related to the specific problems studied in the previous sections of this chapter that
need to be addressed.

300 6 Joint Subcontracting and Scheduling Decisions

• The majority of the problems studied in this chapter are NP -hard. Although
pseudo-polynomial time algorithms are provided for many of these problems,
there are few existing fast heuristics for these problems with a constant worst-
case performance ratio. Thus, designing efficient heuristics with a theoretical
performance guarantee for many of these problems is a future research direction.

• We are not aware of any online joint subcontracting and scheduling problems
studied in the existing literature. Hence, another future research direction is to
investigate online versions of the problems studied in this chapter.

Part II
Decentralized Supply Chain Scheduling

Part II of the book consists of Chaps. 7 through 9 on decentralized supply chain
scheduling problems. Chapter 7 presents some early foundational works on supply
chain scheduling that use optimization techniques from classical scheduling. Typical
results here include describing efficient algorithms, identifying the solvability
boundary of various problems, evaluation of the cost of conflict when decision
makers fail to coordinate their decisions, and evaluation of the benefit of cooperation
when they do. Chapter 8 applies cooperative solution concepts to decentralized
scheduling problems and addresses issues such as the stability of cooperation and
how to divide the benefit of cooperation to ensure stability. Chapter 9 applies
noncooperative solution concepts to study the existence of equilibria and their effect
on the performance of an overall system. In scheduling systems where decision
makers have private information, we investigate mechanisms that ensure truthful
reporting of that information to a central planner, in some cases with the help of a
payment or cost allocation scheme. In addition to covering a variety of supply chain
scheduling applications, Chaps. 8 and 9 also include sufficient background to serve
as an introduction to cooperative and noncooperative games, respectively.

Chapter 7
Optimization and Conflict

Abstract This chapter discusses decentralized supply chain scheduling appli-
cations and related models that use optimization methodology. We study four
problems that have both a scheduling component and a second component that
arises from the structure of the supply chain and the self-interest of the different
parties. We discuss mathematical models to evaluate the cost of conflict experienced
by one party when another party dominates the decision making process and also to
evaluate the benefit of cooperation between the parties. Methods by which one party
can compensate others, in order to achieve such cooperation, are also discussed.

7.1 Introduction

This chapter presents four foundational works on optimization approaches to
decentralized supply chain scheduling problems. They focus, respectively, on the
following issues that fall within the scope of scheduling and related decisions in
supply chains:

1. The coordination of schedule formation with the quantity and timing of batch
deliveries

2. The coordination of the delivery schedules of parts suppliers with a manufac-
turer’s final assembly schedule

3. The coordination of a manufacturer’s production schedule and a downstream
distributor’s delivery schedule

4. The coordination of sequences involving setup costs between consecutive stages
of a supply chain

Together, these issues and the related works we discuss illustrate the extensive
variety of problems, issues, solution methods, and insights that arise within the
optimization of supply chain scheduling problems. Chapter 8 studies similar issues
using cooperative game theory. In Chap. 9, we examine how noncooperative game
theory can be applied to these issues.

© Springer Nature Switzerland AG 2022
Z.-L. Chen, N. G. Hall, Supply Chain Scheduling, International Series
in Operations Research & Management Science 323,
https://doi.org/10.1007/978-3-030-90374-9_7

303

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-90374-9_7&domain=pdf
https://doi.org/10.1007/978-3-030-90374-9_7

304 7 Optimization and Conflict

In decentralized supply chain scheduling, the overall performance of the supply
chain is affected by the decisions of several self-interested parties. As a result, the
performance achieved by those parties and by the overall supply chain depends not
only on their own decisions but also on those of others. Two challenges that arise
both naturally and frequently here are discussed within the context of the above four
issues.

The first challenge is avoiding conflict. Consider two decision making parties,
A and B, in a supply chain. It may happen that A imposes on B a decision that
restricts B’s options. This typically occurs for one of the two reasons. First, party A
has greater decision making power in the supply chain than party B does. Second,
the position of party A in the supply chain enables it to make decisions that arise
earlier in the supply chain than those of party B. This restriction may reduce the best
possible outcome achievable by B. This reduction is party B’s cost of conflict. We
typically assume that the decision chosen by party A is optimal for its own problem,
and those decisions are presented to party B as already given. This conflict arises
frequently in the literature of supply chain management. However, we study it here
within the context of scheduling problems. We discuss ways in which the cost of
this conflict can be estimated, in various scheduling environments. These include
a supplier that batches jobs for multiple manufacturers, an assembly supply chain,
and supply chains consisting of either a manufacturer and a distributor or a supplier
and a manufacturer.

The second challenge is encouraging cooperation between the various parties,
for the purpose of achieving an improved outcome for the entire supply chain. The
base case for defining the benefit of cooperation is that each party in the supply chain
makes its own self-interested decisions, either optimally or heuristically. Given these
decisions, the resulting performance of the overall supply chain can be estimated.
However, it is also possible that the various players cooperate to find a commonly
agreed solution, and this solution may provide improved, perhaps even globally
optimal, performance of the supply chain. The relative improvement in overall
supply chain performance is the benefit of cooperation. A mechanism is needed
to initiate this cooperation, and this mechanism naturally varies with the supply
chain environment. For the supply chain scheduling environments described above,
we assess the potential benefit of cooperation and identify practical incentives and
methods within the scope of optimization for establishing cooperation.

As we demonstrate in this chapter, both the cost of conflict and the benefit
of cooperation are substantial in various supply chain scheduling environments.
This chapter therefore studies the challenges of avoiding conflict and encouraging
cooperation as they arise in supply chain scheduling problems. Differences among
the four environments studied originate from varying characteristics of resources,
jobs, costs, constraints, decisions that need to be made, and other specifications. As
a result, there exists a rich literature that recommends a wide variety of algorithms
and heuristic solution procedures for these problems, and the works presented here
are central to this literature. For each supply chain environment studied, we discuss
these solution procedures, which enables us to study the resulting conflict and
cooperation issues that arise when self-interested but potentially cooperative parties
use those solution procedures. An overview of this chapter now follows.

7.1 Introduction 305

Section 7.2 is based on the work of Hall and Potts (2003) on scheduling and
batching problems. Several works motivate the study of supply chain scheduling
and batching problems. Thomas and Griffin (1996) provide an extensive review and
discussion of the literature of supply chain management. They emphasize that for
many products, logistics expenditures can constitute over 30% of the cost of goods
sold. Sarmiento and Nagi (1999) survey the literature of integrated production and
distribution models. They motivate the importance of such models by pointing out
that the modern trend toward reduced inventory levels creates the need for closer
coordination between consecutive stages of a supply chain. This work is specifically
motivated by their discussion of possible topics for future research. Hall et al. (2001)
analyze a variety of problems with different machine environments where a set of
available times, at which batches may be delivered, is fixed before the schedule is
determined.

The work of Hall and Potts (2003) considers a variety of scheduling, batching,
and delivery problems that arise in an arborescent supply chain where a supplier
makes deliveries to several manufacturers, who also make deliveries to customers.
The objective is to minimize the overall scheduling and delivery cost, using several
classical scheduling objectives to represent scheduling cost. This is achieved by
scheduling jobs and forming them into batches, each of which is delivered to the
next downstream stage as a single shipment. Optimal algorithms and limits to
computational tractability are identified. It is shown that cooperation between a
supplier and a manufacturer may reduce the total system cost substantially, but
to an extent that depends on the scheduling objective. Incentives and practical
mechanisms for achieving cooperation are also discussed.

Section 7.3 is based on the work of Chen and Hall (2007) on scheduling in
assembly systems. Reductions in inventory levels (Rajagopalan & Malhotra, 2001;
Walts, 2020) motivate the need for closer coordination within supply chains. It
is well known (Cachon, 2003; Chen, 2003) that cooperation between companies
can improve efficiency. However, most supply chain cooperation models in the
literature consider inventory control decisions. Within traditional supply chain
management research, the literature that is most closely related to this work is on
production and distribution systems with multiple stages. There are at least two
previous studies of scheduling problems in assembly systems. Lee et al. (1993)
consider the minimization of makespan in an assembly system with two suppliers
and one manufacturer. They prove that this problem is intractable, provide an
enumerative algorithm, and analyze special cases and heuristics. Potts et al. (1995)
consider a more general problem with several suppliers and one manufacturer and
describe heuristics with small worst-case error bounds. However, these works do
not discuss conflict and cooperation between decision makers, which are the main
focus of Sect. 7.3. Many electronics manufacturers, including Dell Computer, have
adopted assemble-to-order production approaches (The Economist, 2001), where
the coordination of suppliers’ production schedules with that of the manufacturer is
critical. This is the environment we discuss.

The work of Chen and Hall (2007) considers an assembly system with several
suppliers and one manufacturer. Each supplier provides parts to the manufacturer.
The manufacturer waits until all the parts for a job have arrived and then initiates a
final stage of manufacturing. As is customary in assembly systems, different parts of

306 7 Optimization and Conflict

the same job can be processed simultaneously by different suppliers. The objective
is to minimize the overall scheduling cost. The best schedule for the suppliers’
scheduling problem can be far from optimal for the corresponding manufacturer’s
problem, and vice versa. Moreover, it may be the case that neither’s best schedule
is close to optimal for the overall supply chain. Evaluating the cost of conflict and
the benefit of cooperation under various definitions of cost requires the solution
of various scheduling problems by the suppliers, the manufacturer, and the overall
system. Efficient optimal algorithms or heuristics with guaranteed performance are
provided. The cost saving realized by cooperation between the decision makers is
significant in many cases.

Section 7.4 is based on the work of Dawande et al. (2006), which considers
tradeoffs between production cost and downstream costs in a supply chain con-
sisting of a manufacturer and a distributor. The need for coordination between
a manufacturer and a distributor arises in many practical situations. Chen and
Vairaktarakis (2005) study an integrated scheduling model involving production
and distribution operations, using an objective that considers both customer service
level and distribution costs. This paper provides efficient algorithms, proofs of
intractability, and heuristic analysis but does not explicitly model conflict and
coordination issues in a manufacturing and distribution system. Specific practical
situations that motivate the need for such coordination include perishable products
where inventory immediately loses value and applications with significant setup
costs when changing between the manufacture of different products.

The work of Dawande et al. (2006) considers a supply chain where a manu-
facturer makes products that are shipped to customers by a distributor. Both the
manufacturer and the distributor have an ideal schedule, determined by cost and
capacity considerations. However, these two schedules are in general not well
coordinated, which leads to poor overall performance. Two practical problems
are studied. In both problems, the manufacturer focuses on production costs, i.e.,
minimizing unproductive time. However, the distributor minimizes downstream
costs, which include customer cost measures in the first problem and inventory
holding cost in the second problem. The work discussed in Sect. 7.4 first evaluates
each party’s conflict, which is the relative increase in cost that results from using the
other party’s optimal schedule. Since this conflict is often significant, we consider
several practical scenarios about the level of cooperation between the manufacturer
and the distributor. These scenarios define various scheduling problems for the
manufacturer, the distributor, and the overall system. For each of these scheduling
problems, we provide an algorithm. We demonstrate that the cost saving provided by
cooperation between the decision makers is usually significant. Finally, we discuss
the implications of our work for how manufacturers and distributors negotiate,
coordinate, and implement their supply chain schedules in practice.

Section 7.5, based on the work of Agnetis et al. (2006), considers the problem
of resequencing when successive stages of a manufacturing process prefer different
production sequences. This most typically occurs due to different production setup
or changeover times at different stages. The work discussed considers operational
issues that are important to the scheduling of supply chains organized to achieve
just-in-time (JIT) goals (Hernandez, 1989; Ohno, 1988). At the operational level,

7.2 Scheduling and Batching in a Supply Chain 307

decision makers at different stages of the chain need to consider various factors
such as their immediate customers’ due dates, production deadlines, changeover
costs and times. For example, an assembly facility that has to ship jobs to different
customers may wish to process the materials in the chronological sequence of the
customers’ due dates. On the other hand, according to JIT concepts, scheduling
decisions at an upstream stage must also comply with the actual time at which the
supplier will dispatch the raw materials and with technological requirements that
may make certain schedules infeasible. Nellemann and Smith (1982) identify the
punctual delivery of materials at different stages to be among the most important
elements of a successful JIT system. Hence, the schedule that is used at each stage
depends on the requirements at the other stages. Agnetis et al. (2001) consider
the problem of finding a common sequence that minimizes the number of setups
between the two departments. They provide intractability results and design and
test a heuristic.

The work of Agnetis et al. (2006) considers two consecutive stages of a supply
chain, consisting of one supplier and several manufacturers, respectively. The costs
and requirements specific to each stage (for example, changeover times, resource
availability, and deadlines) define an ideal schedule in which the jobs should
be processed. This ideal schedule minimizes overall costs subject to resource
constraints at that stage. Resequencing between a supplier and a manufacturer
requires the use of a buffer, which may incur additional cost. An interchange cost,
which models buffer storage cost, is incurred by the supplier or a manufacturer
whenever the relative order of two jobs in its actual schedule is different from that
in its ideal schedule. The problems of finding an optimal supplier’s schedule, an
optimal manufacturer’s schedule, and an optimal schedule for the overall system
are considered. The objective functions considered are the minimization of total
interchange cost and of total interchange plus buffer storage cost. Algorithms
for all the supplier’s and manufacturers’ problems, as well as for a special case
of the overall system scheduling problem, are provided. The running time of
these algorithms is polynomial in both the number of jobs and the number of
manufacturers. Finally, conditions are identified under which cooperation between
the supplier and a manufacturer reduces their total cost.

Section 7.6 uses the current literature of supply chain scheduling to identify
several suggestions for future research. Figure 7.1 provides an overview of the topics
within the optimization of supply chain scheduling problems that are discussed in
this chapter.

7.2 Scheduling and Batching in a Supply Chain

This section, based on the work of Hall and Potts (2003), considers the objective
of minimizing the total batch delivery cost plus a scheduling cost that models
the inconvenience of the downstream party based on the delivery time of the
batch. This objective is a natural extension of the classical scheduling literature

308 7 Optimization and Conflict

Chapter 7:
Global Optimization and Conflict

Section 7.2: Arborescent Supply Chain:
batching and delivery cost;

polynomial time algorithms;

cost of conflict; benefit of cooperation.

Section 7.3: Assembly System:
coordination of part schedules;

efficient algorithms; intractability;

heuristics; asymptotic optimality.

Section 7.4: Manufacturer and Distributor:
customer cost; holding cost;

relative power in supply chain;

benefit of cooperation.

Section 7.5: Resequencing:
interchange cost; buffer storage cost;

polynomial time algorithms;

conditions for cooperation.

Fig. 7.1 Overview of the topics covered in Chap. 7

to allow for batch delivery cost. An important example of decision making that
affects both a supplier and a manufacturer is the delivery process between the
two. The supplier processes jobs and delivers them to the manufacturer. The
manufacturer may prefer to receive frequent deliveries of small batches from the
supplier, because this enables the manufacturer to achieve better resource utilization.
However, the supplier may be reluctant to deliver very frequently because of the
resulting high delivery cost. Furthermore, the manufacturer may prefer to receive
parts earlier rather than later, because this enlarges the manufacturer’s scheduling
options and improves utilization. Also, because of production capacity constraints
at the supplier, scheduling decisions may prioritize the processing of certain parts,
perhaps for specific high value or long-standing customers, over others. Importantly,
scheduling decisions must be coordinated with the related batching and delivery
decisions. This problem is studied from the viewpoint of the supplier.

The manufacturer also has downstream customers. The decision problem faced
by the manufacturer is therefore similar to that faced by the supplier, with the
difference that the scheduling, batching, and delivery decisions made by the supplier
define batch release dates, before which the manufacturer cannot begin work on
any job in that batch. Analysis of this problem shows that these batch release
dates can be incorporated into scheduling, batching, and delivery models. The batch
release dates defined for the manufacturer by the supplier’s decisions may be less
than ideal from the viewpoint of the manufacturer. This suggests that it may be
mutually advantageous for the supplier and manufacturer to cooperate in developing
combined models that incorporate the total costs of both parties. Therefore, models
for cooperative decision making between the supplier and the manufacturer are also
developed.

7.2 Scheduling and Batching in a Supply Chain 309

This section is organized as follows. In Sect. 7.2.1, we describe our notation and
classification scheme. We also provide some general results for all our scheduling
objectives, and we present an overview of our algorithmic and computational
complexity results. Section 7.2.2 considers the minimization of the total scheduling
and delivery cost, using a variety of classical scheduling objectives, from the
viewpoint of the supplier. In Sect. 7.2.3, we consider the same problems from
the viewpoint of the manufacturer. The problem of minimizing the total system
cost of a supplier and a manufacturer who cooperate is studied in Sect. 7.2.4. The
potential benefits from such cooperation, and practical mechanisms for achieving it,
are discussed in Sect. 7.2.5.

7.2.1 Preliminaries

This section describes the notation and assumptions used, provides some general
results that simplify the subsequent analysis, and summarizes results for algorithms
and intractability issues.

7.2.1.1 Notation and Classification

Consider three categories of problems that arise in an arborescent supply chain. In
the supplier’s problem, nS jobs are to be scheduled on a single machine, MS , by
the supplier S . Each job is produced for one of G manufacturers M1, . . . ,MG,
and the jobs for each manufacturer are delivered in batches. The supplier’s problem
is illustrated in Fig. 7.2, where the asterisk indicates that scheduling, batching, and
delivery decisions by the supplier are required.

Similarly, in the manufacturer’s problem, one of the manufacturers (without
loss of generality, M1, as indicated by an asterisk) uses jobs from the supplier to

Fig. 7.2 Structure of the supplier’s problems

310 7 Optimization and Conflict

Fig. 7.3 Structure of the manufacturer’s problems

Fig. 7.4 Structure of the combined problems

produce nm jobs on a single machine, MM , for customers C1, . . . ,CH . These jobs
are scheduled and delivered in batches to the customers, as shown in Fig. 7.3.

Finally, in the combined problem, it is necessary to find an overall schedule for
the supplier S and manufacturer M1 that creates batches to be delivered from the
supplier to each of the manufacturers and from manufacturer M1 to the customers.
Figure 7.4 shows the structure of the combined problem, where again the asterisks
shown at the supplier S and manufacturer M1 indicate by which parties scheduling,
batching, and delivery decisions are required.

A description of the notation used starts with the supplier’s problem. Let NS =
{1, . . . , nS} denote the set of jobs. We refer to the jobs processed for manufacturer
Mg , as (1, g), . . . , (ng, g), for g = 1, . . . ,G. Job (j, g) has a processing time
pS
jg on machine Ms , for j = 1, . . . , ng . Where relevant, job (j, g) has a weight

(or value) wS
jg and a due date dSjg . For the manufacturer’s problem, the set of jobs

is NM = {1, . . . , nM }, and the jobs for customer Ch are (1, h), . . . , (nh, h), for
h = 1, . . . , H . Job (j, h) has a processing time pM

jh and, where relevant, has a

weight wM
jh and a due date dMjh, for j = 1, . . . , nh. The time when job (j, h) is

7.2 Scheduling and Batching in a Supply Chain 311

delivered from the supplier to the manufacturer defines a release date rMjh, which
is the earliest time when the manufacturer can start to process this job. For the
combined problem, the set of jobs is NC = {1, . . . , nC}. The jobs processed for
customer Ch are (1, h), . . . , (nh, h), for h = 1, . . . , H , and these two-stage jobs
require first machine MS and then machine MM . Furthermore, the jobs processed for
manufacturer Mg are (1,H +g− 1), . . . , (nH+g−1,H +g− 1), for g = 2, . . . ,G,
and these single-stage jobs require machine MS only. Job (j, h) has a processing
time pS

jh on machine MS and a processing time pM
jh on machine MM and where

relevant has a weight wM
jh and a due date dMjh, for h = 1, . . . , H and j = 1, . . . , nh.

Also, job (j, g) has a processing time pS
jg on machine MS and where relevant

has a weight wS
jg and a due date dSjg , for g = H + 1, . . . , H + G − 1 and

j = 1, . . . , ng . Consistent with the classical scheduling literature, it is assumed
that all processing times, weights, and release dates are positive integers and that
G and H are fixed so that they do not form part of the input data for a particular
instance. Also, let P denote the sum of all the processing times in the specified
problem, WS = ∑G

g=1
∑ng

j=1 w
S
jg and WM = ∑H

h=1
∑nh

j=1 w
M
jh. Where there is no

ambiguity, we write n instead of nS or nM or nC and W instead of WS or WM .
The due dates are set as follows. Customers specify due dates by which the

corresponding jobs should ideally be delivered from the manufacturer. To specify
a due date for the supplier, the manufacturer assumes a specific (but not necessarily
optimal) schedule for the processing of its jobs, i.e., one in which all jobs can be
delivered to the customers on time. Then, the due date of each job at the supplier is
equal to the start time of that job in the manufacturer’s given schedule.

A group of jobs forms a batch for the supplier if all of these jobs are delivered
from the supplier to a single manufacturer at the same time. A batch for the
manufacturer is defined analogously. Let DS

g and DM
h denote the cost of delivering

each batch from the supplier to manufacturer Mg for g = 1, . . . ,G and from
manufacturer M1 to customer Ch for h = 1, . . . , H , respectively, independent of
the contents of the batch.

The following definitions are functions of the variable σ , which denotes the
supplier’s schedule:

CS
j (σ) = the time at which job j is delivered to the relevant manufacturer;

FS
j (σ) = CS

j (σ), the flow time of job j ;
US
j (σ) =

{
0 if job j is delivered to the relevant manufacturer by its due date,

1 if job j is late;
ySg (σ) = the number of deliveries to manufacturer Mg in σ.

The quantities CM
j (σ), UM

j (σ), and yMh (σ) are defined analogously for a manufac-

turer’s schedule σ , and FM
j (σ) = CM

j (σ) − rMj . For the combined problem, define

CC
j (σ) to be CS

j (σ) for the single-stage jobs j that are produced for manufacturers

M2, . . . ,MG, and CM
j (σ) for the two-stage jobs that are produced for customers

312 7 Optimization and Conflict

C1, . . . ,CH , from which the analogous variables FC
j (σ) = CC

j (σ) and UC
j (σ) are

computed. When there is no ambiguity, we simplify CS
j (σ), F

S
j (σ), U

S
j (σ), and

ySg (σ) to CS
j , FS

j , US
j , and ySg , respectively, and similarly for the manufacturer’s

problem and the combined problem. We also refer to CS
j and CM

j as the completion
times of job j (as perceived by the manufacturer and customer, respectively).
Observe that, for any two-stage job j , FC

j = FS
j + FM

j when rMj = CS
j = FS

j .
The scheduling objectives that we consider are classical ones motivated either by

internal costs or by external costs or target dates. First, in the absence of due dates,
we consider total (weighted or unweighted) completion or flow time objectives
that model internal holding costs. Since we are considering a supply chain which
ultimately delivers jobs to a customer, it is natural to use the definitions of CS

j ,

CM
j , and CC

j in the previous paragraph. In models, that minimize the (weighted or
unweighted) number of late jobs, we assume that a job that would be late is neither
produced nor delivered. This assumption is relevant where late deliveries are not
accepted. When the aim is to meet due dates, the number of late jobs is a standard
measure of performance in the scheduling literature (Pinedo, 2016).

The standard classification scheme for scheduling problems (Graham et al.,
1979) is α|β|γ , as defined in Chap. 2. Under β, we may have “rj ,” which denotes
that each of the manufacturer’s jobs has a release date rMjh that defines the earliest
time at which job (j, h) becomes available for processing. The objective functions
studied under γ comprise a delivery cost and a scheduling cost. The delivery cost
for the supplier is

∑
DS

gy
S
g and for the manufacturer is

∑
DM

h yMh . The scheduling
cost is

∑
(wj)F

X
j = the total (weighted) flow time of the jobs;

∑
(wj)U

X
j = the total (weighted) number of late jobs,

where X = S for the supplier, X = M for the manufacturer, and X = C for
the combined problem. For the combined problem, we consider the total delivery
cost

∑
DS

gy
S
g +∑

DM
h yMh , the supplier’s scheduling cost for those jobs of NS that

are produced for manufacturers M2, . . . ,MG, and the scheduling cost incurred by
manufacturer M1 for all jobs of NM . Since the combined problem considers the
complete system as illustrated in Fig. 7.4, the supplier’s scheduling cost for the jobs
of NS that are produced for manufacturer M1 is assumed to represent a performance
measure for work in process and hence does not affect the total system cost.

7.2.1.2 General Assumptions and Properties

For problems where the scheduling objective is to minimize the number of late jobs,
we assume that it is sufficient to construct a delivery schedule for the on-time jobs
only, and the delivery cost of the late jobs is ignored.

7.2 Scheduling and Batching in a Supply Chain 313

We present some results that apply to various problems, irrespective of the
scheduling objective. The first result eliminates inserted idle time from the schedules
we construct and follows directly from the assumption of costs that are nondecreas-
ing in time.

Lemma 7.1 There exists an optimal schedule where:

(a) In any of the supplier’s and combined problems which we consider, there is no
idle time between the jobs on machine MS .

(b) In any of the manufacturer’s problems which we consider, each job starts
processing on machine MM either at its release date or immediately after
another job.

The next result restricts the choice of times at which batch deliveries are
scheduled.

Lemma 7.2 There exists an optimal schedule with the following properties:

(a) In any problem, each delivery from the supplier S to any manufacturer
(respectively, each delivery from manufacturer M1 to any customer) occurs
when some job destined for the relevant manufacturer (respectively, customer)
completes processing.

(b) In any of the supplier’s or combined problems, a delivery from the supplierS to
some manufacturerMg that occurs when some job (j, g) completes processing
comprises a group of jobs destined for manufacturerMg , including (j, g), that
are processed consecutively on machine MS .

Proof

(a) Consider an optimal schedule with a delivery from the supplier S to a
manufacturer Mg at some time t , where no job for Mg completes processing at
t . Let job (j, g) be the last job for manufacturer Mg that completes processing
before time t . Move the delivery at t earlier so that it occurs at the time when job
(j, g) completes processing. Since no job is delivered later, and the number of
deliveries is unchanged, the new schedule is also optimal. A similar argument
establishes that each delivery from manufacturer M1 to a customer can also be
scheduled when a job for that customer completes processing.

(b) Now consider the delivery from the supplier S to manufacturer Mg that is
scheduled when job (j, g) completes processing. If there is another job (i, g)

that is delivered in the same batch as job (j, g) but is processed immediately
before another job (k, l) that is not delivered in this batch, then interchange
jobs (i, g) and (k, l). Also, if there is a delivery when job (k, l) completes
processing in the original schedule, then schedule that delivery pS

ig units earlier,
at the time when job (k, l) completes processing in the new schedule. Repeat
this adjacent job interchange process a finite number of times until all the jobs
that are delivered in the batch containing job (j, g) are processed consecutively,

314 7 Optimization and Conflict

finishing at the completion time of job (j, g). Since no job is delivered later, and
the number of deliveries is unchanged, the new schedule is also optimal. ��

The third result restricts the processing orders on machines MS and MM in
combined problems.

Lemma 7.3 In any of the combined problems, there exists an optimal schedule
in which the jobs on machine MM are processed in the same order as the
corresponding jobs are processed on machine MS .

We refer the reader to Hall & Potts (2003) for a proof.
Schedules that satisfy Lemma 7.3 are called permutation schedules.
The final result in this section provides a complexity hierarchy between a

classical scheduling problem α|β|γ , a supplier’s problem α|β|γ S , a manufacturer’s
problem α|β, rj |γM , and a combined problem α|β|γ C . Given two problems P1 and
P2, let the notation P1 ∝ P2 denote that P2 is a generalization of P1.

Theorem 7.1 α|β|γ ∝ α|β|γ S ∝ α|β, rj |γM and α|β|γ S ∝ α|β|γ C .

Proof If DS
g = 0 for g = 1, . . . ,G, then without loss of generality all batches in

problem α|β|γ S contain a single job, and consequently problems α|β|γ and α|β|γ S

are equivalent. Also, when rMj = 0 for j ∈ NM , problems α|β|γ S and α|β, rj |γM

are equivalent. Finally, if DM
h = 0 for h = 1, . . . , H and all the manufacturer’s

processing times are zero, then problems α|β|γ S and α|β|γ C are equivalent. ��

7.2.1.3 Overview of the Results

We provide an overview of the algorithm and intractability results in this work.
Because the cost and the feasibility of a schedule can be evaluated in O(n) time, the
recognition versions of all the problems considered in this work belong to the class
NP. Table 7.1 presents a summary of our results for the supplier’s, manufacturer’s,
and combined problems. For the manufacturer’s problems, our polynomial-time
algorithms are derived under the assumption of batch consistency, which means that,
if some job i is delivered to the manufacturer before another job j , then i cannot
be scheduled for delivery by the manufacturer strictly later than j . For various
manufacturer’s problems within Table 7.1, we also assume SPT-batch consistency,
EDD-batch consistency, or EDD-batch consistency for the on-time jobs, which
means that jobs with the same release date that are destined for the same customer
are sequenced in SPT order, i.e., nondecreasing order of processing times (Smith,
1956), in EDD order, i.e., nondecreasing order of due dates (Jackson, 1955), or
in EDD order for the on-time jobs, respectively. For the combined problems, we
assume a given ordering of the jobs for each of the manufacturers M2, . . . ,MG

and for each of the customers C1, . . . ,CH . All these assumptions are motivated and
discussed below. The first column of Table 7.1 specifies the scheduling objective.
The second, third, and fourth columns show the running time of the fastest known

7.2 Scheduling and Batching in a Supply Chain 315

Ta
bl
e
7.
1

A
lg

or
ith

m
an

d
co

m
pl

ex
ity

re
su

lts
fo

r
su

pp
ly

ch
ai

n
sc

he
du

lin
g

pr
ob

le
m

s

Sc
he

du
lin

g
Su

pp
lie

r’
s

M
an

uf
ac

tu
re

r’
s

C
om

bi
ne

d
ob

je
ct

iv
e

pr
ob

le
m

pr
ob

le
m

pr
ob

le
m

∑
C
j

or
∑

F
j

O
(n

G
+1

)
T

he
or

em
7.

2
U
N
P
C

T
he

or
em

7.
1

U
N
P
C

T
he

or
em

7.
1

O
(n

3H
)

a
T

he
or

em
7.

6
O
(n

2G
+7

H
−2

)
b

T
he

or
em

7.
9

∑
w
j
C
j

or
∑

w
j
F
j

U
N
P
C

T
he

or
em

7.
3

U
N
P
C

T
he

or
em

7.
1

U
N
P
C

T
he

or
em

7.
1

O
(n

2G
+2

)
T

he
or

em
7.

4
U
N
P
C

T
he

or
em

7.
1

U
N
P
C

T
he

or
em

7.
1

∑
U
j

B
N
P
C

c
T

he
or

em
7.

10

O
(n

3H
+1

)
d

T
he

or
em

7.
7

O
(n

G
+2

H
−1

P
3
)

c
T

he
or

em
7.

11

B
N
P
C

T
he

or
em

7.
5

U
N
P
C

T
he

or
em

7.
1

U
N
P
C

T
he

or
em

7.
1

∑
w
j
U
j

B
N
P
C

d
T

he
or

em
7.

8
B
N
P
C

c
T

he
or

em
7.

10

O
(n

2G
+1

W
)

T
he

or
em

7.
5

O
(n

3H
W

)
d

T
he

or
em

7.
8

O
(n

G
+2

H
−1

P
3
)c

T
he

or
em

7.
11

a
R

es
ul

ta
pp

lie
s

fo
r

SP
T-

ba
tc

h
co

ns
is

te
nc

y
b

R
es

ul
ta

pp
lie

s
fo

r
to

ta
lS

PT
w

ith
in

gr
ou

ps
se

qu
en

ci
ng

c
R

es
ul

ta
pp

lie
s

fo
r

E
D

D
w

ith
in

gr
ou

ps
se

qu
en

ci
ng

fo
r

th
e

on
-t

im
e

jo
bs

d
R

es
ul

ta
pp

lie
s

fo
r

E
D

D
-b

at
ch

co
ns

is
te

nc
y

fo
r

th
e

on
-t

im
e

jo
bs

316 7 Optimization and Conflict

polynomial or pseudo-polynomial time algorithm for the supplier’s, manufacturer’s,
and combined problem, respectively, if such an algorithm exists. Otherwise, we use
UNPC (respectively, BNPC) to indicate that the equivalent recognition version of
a problem is NP-complete with respect to a unary (respectively, binary) encoding
of the data, respectively. Related definitions can be found in Garey and Johnson
(1979). Included in the appropriate cell is a reference to where a proof of that result
can be found.

7.2.2 The Supplier’s Problem

In this section, we describe models for minimizing the sum of scheduling and
delivery cost in various environments, from the viewpoint of the supplier. For some
of the models, we establish the processing order of jobs for the same manufacturer
in an optimal schedule and then use dynamic programming to form batches for
delivery. Our dynamic programs are forward algorithms that append either a single
job or a batch to a previously constructed partial schedule of jobs.

7.2.2.1 Sum of Flow Times

Lemma 7.4 For problem 1||∑FS
j +∑DS

gy
S
g , the cost is minimized by sequencing

the jobs for each manufacturer Mg according to a shortest processing time (SPT)
rule.

Proof The result is established by a standard job interchange argument. ��
From Lemma 7.4, we assume throughout this subsection that the jobs for each

manufacturer Mg are indexed in SPT order, so that pS
1g ≤ · · · ≤ pS

ng,g
, for g =

1, . . . ,G. Generalizing ideas from Albers and Brucker (1993) for a similar problem
with G = 1, we propose the following dynamic programming algorithm to solve
problem 1||∑CS

j +∑
DS

gy
S
g .

Algorithm SF
Value Function
f (q) = f (q1, . . . , qG) = the minimum total cost of scheduling and delivering
jobs (1, g), . . . , (qg, g) for g = 1, . . . ,G, where the last delivery is at time
∑G

g=1
∑qg

j=1 p
S
jg , and where 0 ≤ qg ≤ ng .

Boundary Condition
f (0, . . . , 0) = 0.
Optimal Solution Value
f (n1, . . . , nG).
Recurrence Relation
f (q) = min

(q ′
g,g)∈J

{(qg − q ′
g)T + DS

g + f (q ′)},

7.2 Scheduling and Batching in a Supply Chain 317

where
J = {(q ′

g, g) | 1 ≤ g ≤ G, qg > 0, 0 ≤ q ′
g < qg},

T = ∑G
g=1

∑qg
j=1 p

S
jg and

q ′ = (q1, . . . , qg−1, q
′
g, qg+1, . . . , qG).

The recurrence relation selects a batch {(q ′
g + 1, g), . . . , (qg, g)} of jobs to be

delivered to manufacturer Mg at time T . Each of these jobs contributes a flow time
of T to the total scheduling cost, and a delivery cost of DS

g is also incurred.

Theorem 7.2 Algorithm SF finds an optimal schedule for problem 1||∑CS
j +

∑
DS

gy
S
g in O(nG+1) time.

Proof The dynamic program exploits structural properties of an optimal schedule
that are established in part (a) of Lemmas 7.1, 7.2, and 7.4. There are O(nG)

states (q1, . . . , qG), and for each state the recurrence relation requires O(n) time.
Therefore, the overall time complexity of Algorithm SF is O(nG+1). ��

However, we now show that the weighted version of this problem is intractable,
even when there is only one manufacturer.

Theorem 7.3 The recognition version of problem 1||∑wjF
S
j +∑

DS
gy

S
g is unary

NP-complete, even for G = 1.

Proof Hall and Potts (2003) provide a reduction from 3-Partition. ��

7.2.2.2 Number of Late Jobs

First, we state the following result for weighted and unweighted number of late jobs
problems.

Lemma 7.5 For problem 1||∑wjU
S
j + ∑

DS
gy

S
g , the cost is minimized by

sequencing the on-time jobs for each manufacturer according to an earliest due
date (EDD) rule.

Proof The result is established by a standard job interchange argument. ��
As a result of Lemma 7.5, we assume throughout this subsection that the jobs for

each manufacturer Mg are indexed in EDD order. For problem 1||∑US
j +∑DS

gy
S
g ,

we describe a dynamic programming algorithm that either appends a job to some
previous schedule of on-time jobs or specifies that this job is late and therefore
not scheduled. A subsequent decision is made about whether a batch delivery is
scheduled on completion of an appended on-time job. To enable checking that all
the jobs of the current batch are on time when the batch is delivered, we store the
index (j, ḡ) of the lowest indexed job in this batch as a state variable. Since the jobs
are indexed in EDD order, all the jobs in the batch are on time if and only if the
lowest indexed job is. Since the number of values for the makespan of the current

318 7 Optimization and Conflict

partial schedule of on-time jobs is pseudo-polynomial, the makespan is used as the
function value, while the number of late jobs u is treated as a state variable.

Algorithm SU
Value Function
f (q, y, u, j, ḡ) = f (q1, . . . , qG, y1, . . . , yG, u, j, ḡ) = the minimum makespan
for the on-time jobs from (1, g), . . . , (qg, g) for g = 1, . . . ,G, given that
(i) for manufacturer Mg , all on-time jobs are delivered using yg deliveries for
g = 1, . . . , ḡ − 1, ḡ + 1, . . . ,G, (ii) if yḡ > 0, then all processed jobs from
(1, ḡ), . . . , (j − 1, ḡ) for manufacturer Mḡ are delivered using yḡ − 1 deliveries,
(iii) if j > 0, then (j, ḡ) is the first (i.e., earliest due date) job in the last batch
of the current partial schedule that is not yet scheduled for delivery, and (iv) the
total number of late jobs is u, where 0 ≤ yg ≤ qg ≤ ng , 0 ≤ u ≤ n,
0 ≤ j ≤ qḡ , and 1 ≤ ḡ ≤ G. If j > 0 and f (q, y, u, j, ḡ) > dSjḡ , then we
define f (q, y, u, j, ḡ) = ∞.
Boundary Condition
f (0, . . . , 0, 0, . . . , 0, 0, 0, 0) = 0.
Optimal Solution Value

min
{
u +

G∑

g=1
DS

gyg | min
(j,ḡ)∈NS

{f (n1, . . . , nG, y1, . . . , yG, u, j, ḡ)} < ∞, 0 ≤ u ≤

n, 0 ≤ yg ≤ ng for g = 1, . . . ,G
}

.

Recurrence Relation
f (q, y, u, j, ḡ) =

min

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

f (q ′, y, u − 1, j, ḡ)

pS
qḡ,ḡ

+ f (q ′, y, u, j, ḡ), if 0 < j < qḡ and f (q ′, y, u, j, ḡ)
+pS

qḡ,ḡ
≤ dSjḡ

min
(j ′,ḡ′)∈J

{pS
qḡ,ḡ

+ f (q ′, y′, u, j ′, ḡ′)}, if j = qḡ,

where
q ′ = (q1, . . . , qḡ−1, qḡ − 1, qḡ+1, . . . , qG),
y′ = (y1, . . . , yḡ−1, yḡ − 1, yḡ+1, . . . , yG), and
J = {(j ′, ḡ′) | 0 ≤ ḡ′ ≤ G,

j ′ = 0 if ḡ′ = 0;
1 ≤ j ′ ≤ qḡ − 1 if ḡ′ = ḡ �= 0;
1 ≤ j ′ ≤ qḡ′ if ḡ′ �= ḡ and ḡ′ �= 0;
f (q ′, y′, u, j ′, ḡ′)} + pS

qḡ,ḡ
≤ dSqḡ,ḡ}.

The first term in the minimization in the recurrence relation schedules job (qḡ, ḡ)

to be late. The second term schedules job (qḡ, ḡ) to be on time and belonging to the
current batch of jobs for customer Mḡ , provided that job (qḡ, ḡ) can be completed
no later than time dSjḡ , so that job (j, ḡ) can be dispatched by its due date. No
decision has yet been made about when to deliver the batch containing jobs (j, ḡ)

and (qḡ, ḡ). The third term schedules a delivery for a batch containing (j ′, ḡ′) as

7.2 Scheduling and Batching in a Supply Chain 319

its first job if j ′ > 0, starts a new batch with job (qg, g) which is scheduled to
be on time, and accounts for a delivery that will eventually need to be made to
manufacturer Mḡ , since a new batch destined for that manufacturer has been started.
In the definition of J , we distinguish the case where customers ḡ′ and ḡ are the same
and therefore the first job (j ′, ḡ′) in the delivered batch satisfies j ′ ≤ qḡ − 1, from
the case where those customers are different and therefore the first job can also be
(qḡ′ , ḡ′).

Theorem 7.4 Algorithm SU finds an optimal schedule for problem 1||∑US
j +

∑
DS

gy
S
g in O(n2G+2) time.

Proof The dynamic program exploits structural properties of an optimal schedule
that are established in part (a) of Lemmas 7.1, 7.2, and 7.5. There are O(n2G+2)

states (q1, . . . , qG, y1, . . . , yG, u, j, ḡ). The first and second terms in the recurrence
relation require constant time for each state. The third term requires O(n) time
for each of the O(n2G+1) states for which j = qḡ . Therefore, the overall time
complexity of Algorithm SU is O(n2G+2). ��

We now consider the corresponding problem with the weighted number of late
jobs as a scheduling objective.

Theorem 7.5 An optimal solution for problem 1||∑wjU
S
j + ∑

DS
gy

S
g can be

found in O(n2G+1WS) time. The recognition version of this problem is binary NP-
complete.

Proof We modify Algorithm SU by replacing the state variable u that represents the
number of late jobs by one that specifies the total weight of late jobs. The original
time complexity of O(n2G+2) in Algorithm SU becomes O(n2G+1WS) with this
modification. The second result follows from the binary NP-completeness of the
recognition version of the classical problem 1||∑wjUj (Karp, 1972) and from
Theorem 7.1. ��

7.2.3 The Manufacturer’s Problem

We first describe models for minimizing the sum of scheduling cost plus delivery
cost from the viewpoint of one particular manufacturer, M1. In these models, the
time at which each job j is delivered from the supplier to the manufacturer defines
a release date rMj from the perspective of the manufacturer.

Remark 7.1 Unfortunately, neither the SPT ordering of Lemma 7.4 nor the EDD
ordering of Lemma 7.5 can be generalized to give a sequence of jobs for each cus-
tomer in this case because the jobs have different release dates. However, by making
some natural assumptions about the processing order of jobs for each customer, we
are still able to provide dynamic programming algorithms that generate an optimal
schedule in polynomial or pseudo-polynomial time. The algorithms here are more

320 7 Optimization and Conflict

complicated than those in Sect. 7.2.2. This is because part (b) of Lemma 7.2 does
not generalize to batches that are delivered from a manufacturer to a customer, due
to the presence of release dates.

Definition 7.2 A supplier’s batch schedule and a manufacturer’s batch schedule are
batch consistent if for each pair of jobs (i, h) and (j, h) that are processed by the
supplier S and manufacturer M1, where 1 ≤ h ≤ H , 1 ≤ i, j ≤ nh, and i �= j ,
whenever job (i, h) is in a strictly earlier batch than job (j, h) in the supplier’s batch
schedule, then job (i, h) is in an earlier batch or in the same batch as job (j, h) in
the manufacturer’s batch schedule.

The algorithms developed by Ahmadi et al. (1992) for serial production processes
with both discrete and batch processors provide schedules that meet this assumption.
Moreover, this assumption is a natural and practical simplification of the production
planning process, since it permits some scheduling decisions to be made without
waiting for the next incoming batch. Another practical justification for making this
assumption is that it reduces the need for resequencing and for storage buffers.

7.2.3.1 Sum of Flow Times

From the unary NP-completeness of the recognition version of the classical problem
1|rj |∑Fj (Lenstra et al., 1977) and Theorem 7.1, the recognition version of
problem 1|rj |∑FM

j +∑
DM

h yMh is also unary NP-complete.

We derive a dynamic programming algorithm for problem 1|rj |∑FM
j +

∑
DM

h yMh under the assumption of batch consistency. We make the further assump-
tion of SPT-batch consistency, in which jobs with the same release date (that is, jobs
delivered in one batch by the supplier) and for the same customer are processed by
the manufacturer in SPT order. Thus, for customer Ch, we index the jobs such that
rM1h ≤ · · · ≤ rMnh,h

, for h = 1, . . . , H , where rMjh = rMj+1,h implies that pM
jh ≤ pM

j+1,h
for j = 1, . . . , nh − 1. This assumption is motivated by a local optimization rule
that minimizes the

∑
FM
j objective within a batch.

We now provide a dynamic programming algorithm for problem 1|rj |∑FM
j +

∑
DM

h yMh under the assumption of SPT-batch consistency.

Remark 7.2 We need additional state variables besides those in Algorithm SF, first
because we consider the jobs one at a time here and therefore some jobs may have
been processed and not yet delivered, and second because the presence of release
dates may cause machine idle time which affects the makespan of the current partial
schedule. To control the machine idle time, we partition the partial schedule into
blocks, where a block is a maximal set of jobs that are processed with no idle time
in between. Thus, the first job in a block is either the first job in the schedule or it is
preceded by idle time. In either case, the first job in a block starts processing at its
release date.

7.2 Scheduling and Batching in a Supply Chain 321

Algorithm MF
Value Function
f (q, s, b, h̄) = f (q1, . . . , qH , s1, . . . , sH , b1, . . . , bH , h̄) = the minimum total cost
(where flow time is evaluated on the basis of zero release dates) for processing jobs
(1, h), . . . , (qh, h) and delivering jobs (1, h), . . . , (sh, h) for h = 1, . . . , H , given
that (i) the last block contains jobs (bh + 1, h), . . . , (qh, h) for h = 1, . . . , H , (ii) if
h̄ > 0, then the last block starts with job (bh̄ + 1, h̄), (iii) 0 ≤ sh ≤ qh ≤ nh, and
0 ≤ bh ≤ qh, (iv) if h̄ > 0, then bh̄ < qh̄, and (v) 0 ≤ h̄ ≤ H .
Boundary Condition
f (0, . . . , 0, 0, . . . , 0, 0, . . . , 0, 0) = 0.
Optimal Solution Value

min
(b1,...,bH ,h̄)∈B

{f (n1, . . . , nH , n1, . . . , nH , b1, . . . , bH , h̄)} −
H∑

h=1

nh∑

j=1

rMjh,

where B = {(b1, . . . , bH , h̄) | 0 ≤ bh ≤ nh for 1 ≤ h ≤ H, bh̄ < nh̄, 1 ≤
h̄ ≤ H }.
Recurrence Relation
f (q, s, b, h̄) =

min

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
h∈G1

{f (q ′, s, b, h̄)}
min
h∈G2

{
min

0≤s′h<sh

{(qh − s′
h)T + DM

h + f (q ′, s′, b, h̄)}
}

min
(b′,h̄′)∈B1

{f (q ′′, s, b′, h̄′)}, if b = q ′′, sh̄ < qh̄

min
(b′,h̄′)∈B1

{
min

0≤s′′̄
h
<sh̄

{(qh̄ − s′′̄
h
)T + DM

h̄
+ f (q ′′, s′′, b′, h̄′)}

}
, if b = q ′′, sh̄ = qh̄,

where
q ′ = (q1, . . . , qh−1, qh − 1, qh+1 . . . , qH),
s′ = (s1, . . . , sh−1, s

′
h, sh+1 . . . , sH),

q ′′ = (q1, . . . , qh̄−1, qh̄ − 1, qh̄+1 . . . , qH),
s′′ = (s1, . . . , sh̄−1, s

′′̄
h
, sh̄+1 . . . , sH),

G1 = {h | 1 ≤ h ≤ H, sh < qh, bh < qh, bh̄ + 1 < qh if h = h̄, rMqh,h
≤ T ′},

G2 = {h | 1 ≤ h ≤ H, sh = qh, bh < qh, bh̄ + 1 < qh if h = h̄, rMqh,h
≤ T ′},

B1 = {(b′
1, . . . , b

′
H , h̄′) | 0 ≤ h̄′ ≤ H, 0 ≤ b′

h ≤ bh for h = 1, . . . , H, b′̄
h′ <

bh̄′ , rM
qh̄,h̄

> T ′′ if h̄ > 0},
T = rM

bh̄+1,h̄
+∑H

h=1
∑qh

j=bh+1 p
M
jh,

T ′ = rM
bh̄+1,h̄

+∑H
l=1

∑q ′
l

j=bl+1 p
M
jl , and

T ′′ = rM
bh̄′+1,h̄′ +∑H

l=1
∑q ′′

l

j=b′
l+1 p

M
jl .

In the recurrence relation, the first term in the minimization schedules job (qh, h)

to be processed at the end of the current block and does not schedule a delivery upon
completion of this job. The set G1 ensures that sh < qh so that job (qh, h) is not
delivered, that bh < qh so that job (qh, h) is in the last block, and that there is no

322 7 Optimization and Conflict

idle time immediately before job (qh, h) is processed. The second term is similar,
except that a batch {(s′

h + 1, h), . . . , (qh, h)} is scheduled for delivery to customer
Ch when job (qh, h) completes processing. In this case, the set G2 ensures that
qh = sh, so that the current state is consistent with such a delivery. The third and
fourth terms in the recurrence relation correspond to the case where job (qh̄, h̄) is
the last job in the current schedule and starts a new block. Specifically, the third term
considers the case where sh̄ < qh̄, so that no delivery is scheduled on completion
of job (qh̄, h̄), whereas sh̄ = qh̄ in the fourth term so that a batch delivery for jobs
{(s′′̄

h
+ 1, h̄), . . . , (qh̄, h̄)} is scheduled. The set B1 defines b′ and h̄′ for a previous

state that allows the processing of job (qh̄, h̄) to start at its release date and be
preceded by machine idle time.

Theorem 7.6 Algorithm MF finds an optimal SPT-batch consistent schedule for
problem 1|rj |∑FM

j +∑
DM

h yMh in O(n3H) time.

Proof The dynamic program exploits structural properties of an optimal schedule
that are established in part (b) of Lemma 7.1, part (a) of Lemma 7.2, and the
assumption of SPT-batch consistency. There are O(n3H) states (q, s, b, h̄). In the
recurrence relation, the first term in the minimization requires constant time. The
second term requires O(n) time but is only applied for the O(n3H−1) states for
which sh = qh. The third term requires O(nH) time but is only applied for the
O(n2H) states for which bl = ql for l �= h̄ and bh̄ = qh̄ − 1. Similarly, the fourth
term requires O(nH+1) time but is only applied for the O(n2H−1) states for which
bl = ql for l �= h̄, bh̄ = qh̄ − 1, and sh̄ = qh̄. Therefore, the overall time complexity
of Algorithm MF is O(n3H). ��

7.2.3.2 Number of Late Jobs

From the unary NP-completeness of the recognition version of the classical problem
1|rj |∑Uj (Lenstra et al., 1977) and Theorem 7.1, the recognition version of
problem 1|rj |∑UM

j + ∑
DM

h yMh is also unary NP-complete. Thus, we again
restrict the class of schedules that we consider.

We assume EDD-batch consistency for the on-time jobs. Accordingly, we index
the jobs such that rM1h ≤ · · · ≤ rMnh,h

for h = 1, . . . , H , where rMjh = rMj+1,h implies

that dMjh ≤ dMj+1,h for j = 1, . . . , nh − 1. This assumption is motivated by a local
rule that satisfies due dates for on-time jobs within a batch.

We now provide a dynamic programming algorithm for problem 1|rj |∑UM
j +

∑
DM

h yMh , under the assumption of EDD-batch consistency for the on-time jobs.
Following the approach in Algorithm SU, we define the value function to be the

makespan of the current partial schedule of on-time jobs. This avoids the need to use
state variables of the type defined in Algorithm MF for storing information about
blocks. However, we introduce state variables to store the undelivered on-time job
with the smallest due date for each customer, in order to check that all jobs of a
batch are on time when a delivery is scheduled.

7.2 Scheduling and Batching in a Supply Chain 323

Algorithm MU
Value Function
f (q, v, y, u) = f (q1, . . . , qH , v1, . . . , vH , y1, . . . , yH , u) = the minimum
makespan for the on-time jobs from (1, h), . . . , (qh, h) for h = 1, . . . , H , given
that (i) yh deliveries are used for completed batches for customer Ch, (ii) job
(vh, h) is the job with the smallest due date among the undelivered on-time
jobs for customer Ch, for h = 1, . . . , H , (iii) the total number of late jobs is
u, and (iv) 0 ≤ yh ≤ qh ≤ nh, 0 ≤ vh ≤ qh, and 0 ≤ u ≤ n. If vh > 0
and f (q, v, y, u) > dMvh,h

for any h, where 1 ≤ h ≤ H , then we define
f (q, v, y, u) = ∞ and this replaces any assigned value. We define vh = 0 if
there are no undelivered on-time jobs for customer Ch, and d0h = ∞.
Boundary Condition
f (0, . . . , 0, 0, . . . , 0, 0, . . . , 0, 0) = 0.
Optimal Solution Value

min
{
u +

H∑

h=1
DM

h yh | f (n1, . . . , nH , 0, . . . , 0, y1, . . . , yH , u) < ∞, 0 ≤ u ≤
n, 0 ≤ yh ≤ nh for h = 1, . . . , H

}
.

Recurrence Relation

f (q, v, y, u) = min

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
h∈G1

{f (q ′, v, y, u − 1)}
min
h∈G2

{
pM
qh,h

+ max{f (q ′, v, y, u), rMqh,h}
}

min
h∈G3

{
min
v′
h∈V1

{
pM
qh,h

+ max{f (q ′, v′, y, u), rMqh,h}
}}

min
h∈G4

{
min
v′
h∈V2

{
pM
qh,h

+ max{f (q ′, v′, y′, u), rMqh,h}
}}

,

where
q ′ = (q1, . . . , qh−1, qh − 1, qh+1 . . . , qH),
v′ = (v1, . . . , vh−1, v

′
h, vh+1 . . . , vH),

y′ = (y1, . . . , yh−1, yh − 1, yh+1 . . . , yH),
G1 = {h | 1 ≤ h ≤ H, 0 ≤ vh < qh},
G2 = {h | 1 ≤ h ≤ H, 0 < vh < qh, dMvh,h

≤ dMqh,h
},

G3 = {h | 1 ≤ h ≤ H, vh = qh > 0},
G4 = {h | 1 ≤ h ≤ H, vh = 0, qh > 0},
V1 = {v′

h | v′
h = 0, or 0 < v′

h < qh and dM
v′
h,h

> dMqh,h
} and

V2 = {v′
h | 0 ≤ v′

h < qh, max{f (q ′, v′, y′, u), rMqh,h}+pM
qh,h

≤ min{dM
v′
h,h

, dMqh,h
}}.

In the recurrence relation, the first term in the minimization schedules job (qh, h)

to be late, whereas job (qh, h) is on time in the schedule corresponding to the
other three terms. In the second term, no delivery is scheduled when job (qh, h)

completes processing, and job (vh, h) remains the undelivered job with the smallest
due date for customer Ch. The third term similarly does not schedule a delivery
when job (qh, h) completes processing, but as specified by V1, (qh, h) is either
the only undelivered on-time job for customer Ch or it has a smaller due date

324 7 Optimization and Conflict

than the job (v′
h, h) which has the smallest due date among undelivered on-time

jobs for customer Ch in the previous schedule. Thus, the third term is used only
when vh = qh. The fourth term schedules a delivery when job (qh, h) completes
processing and therefore is applied only when vh = 0. The condition specified in
V2 ensures that all jobs of the batch that is scheduled for delivery are on time.

Theorem 7.7 Algorithm MU finds an optimal EDD-batch consistent schedule of
on-time jobs for problem 1|rj |∑UM

j +∑
DM

h yMh in O(n3H+1) time.

Proof The dynamic program exploits structural properties of an optimal schedule
that are established in part (b) of Lemma 7.1, part (a) of Lemma 7.2, and the
assumption of EDD-batch consistency for the on-time jobs. There are O(n3H+1)

states (q, v, y, u). The first two terms in the recurrence relation require constant
time. The third term requires O(n) time but is only applied for the O(n3H) states
where vh = qh for some h. Similarly, the fourth term requires O(n) time but is only
applied for the O(n3H) states where vh = 0 for some h. Therefore, the overall time
complexity of Algorithm MU is O(n3H+1). ��

We now consider the corresponding weighted problem 1|rj |∑wjU
M
j +

∑
DM

h yMh .

Theorem 7.8 An optimal EDD-batch consistent schedule of on-time jobs for
problem 1|rj |∑wjU

M
j + ∑

DM
h yMh can be found in O(n3HWM) time. The

recognition version of this problem, under the assumption of EDD-batch consistency
for the on-time jobs, is binary NP-complete.

Proof We modify Algorithm MU by replacing the number of late jobs state variable
u by one that specifies the total weight of late jobs. The original time complexity
of O(n3H+1) in MU becomes O(n3HW) with this modification. The second result
follows from the binary NP-completeness of the recognition version of the classical
problem 1||∑wjUj (Karp, 1972) and Theorem 7.1, where the latter is valid under
the assumption of EDD-batch consistency for the on-time jobs. ��

7.2.4 The Combined Problem

Here we assume that the supplier S and manufacturer M1 cooperate to solve a
combined problem of minimizing the total system cost. There are single-stage jobs
which the supplier S produces for manufacturers M2, . . . ,MG with indexes (j, g),
for g = H + 1, . . . , H + G − 1 and j = 1, . . . , ng . There are also two-stage jobs
for which parts are produced by the supplier and the final product is produced by
manufacturer M1 for customers C1, . . . ,CH with indexes (j, h), for h = 1, . . . , H
and j = 1, . . . , nh. We refer to jobs (1, k), . . . , (nk, k) for k = 1, . . . , H + G − 1
as group k. Thus, all the jobs in group k are destined for customer Ck if 1 ≤ k ≤ H

7.2 Scheduling and Batching in a Supply Chain 325

and for manufacturer Mk−H+1 if H + 1 ≤ k ≤ H + G − 1. We need to determine
schedules for machines MS and MM and to specify a batch delivery schedule from
the supplier S to all manufacturers and from manufacturer M1 to all customers.
The scheduling cost of the two-stage jobs is based on delivery times from M1 to the
customers. This combined problem is a two-machine flowshop with batch deliveries
and with some missing operations at the second stage.

Since the recognition versions of the classical problems F2||∑Fj and
F2||∑Uj are unary NP-complete (Garey et al., 1976; Lenstra et al., 1977)
and from Theorem 7.1, the recognition versions of the combined problems
1||∑FC

j + ∑
DS

gy
S
g + ∑

DM
h yMh and 1||∑UC

j + ∑
DS

gy
S
g + ∑

DM
h yMh ,

respectively, are also unary NP-complete. Therefore, we first describe and then
motivate a simplifying assumption for both these problems. For the sum of flow
times problem, we make the natural and practical assumption that the single-stage
jobs for each of the manufacturers M2, . . . ,MG are sequenced in SPT order by the
supplier according to the processing time on machine MS and that the two-stage
jobs for each customer are sequenced by both the supplier and the manufacturer
M1 in SPT order according to the total processing time on machines MS and MM .
We refer to this assumption as total SPT within groups. This assumption enables us
to develop a polynomial-time dynamic programming algorithm for that problem.
Similarly, by making an EDD within groups for the on-time jobs assumption for
the number of late jobs problem, we provide a pseudo-polynomial time dynamic
programming algorithm. Both assumptions are motivated by a heuristic scheduling
rule for the particular objective being considered. These assumptions produce a
permutation schedule, as defined in Lemma 7.3.

Let τ denote the set of all possible completion times on machine MM . The
following result shows that τ contains only a polynomial number of values.

Lemma 7.6 For problem 1||∑FC
j + ∑

DS
gys + ∑

DM
g yM , assuming a given

ordering of the jobs within each group, we have |τ | = O(nG+3H−1).

We refer the reader to Hall and Potts (2003) for a proof.

7.2.4.1 Sum of Flow Times

In this subsection, we adopt the total SPT within groups assumption for problem
1||∑FC

j +∑
DS

gy
S
g +∑

DM
h yMh . Thus, we index the jobs such that pS

1h + pM
1h ≤

· · · ≤ pS
nh,h

+ pM
nh,h

for h = 1, . . . , H and pS
1g ≤ · · · ≤ pS

ng,g
for g = H +

1, . . . , H + G − 1.

326 7 Optimization and Conflict

Our dynamic programming algorithm combines the enumeration schemes used
in Algorithms SF and MF. Thus, we schedule batches of jobs on machine MS and
individual jobs on machine MM . We define a state variable t which denotes the
completion time of the current partial schedule on machine MM . When scheduling
a job on machine MM , we ensure that it does not start before time T , the completion
time of the current partial schedule on MS .

Algorithm CF
Value Function
f (q, q̄, s, t) = f (q1, . . . , qH+G−1, q̄1, . . . , q̄H , s1, . . . , sH , t) = the minimum total
cost for (i) the supplier processing jobs (1, h), . . . , (qh, h) and delivering them to
manufacturer M1 for h = 1, . . . , H , (ii) the supplier processing jobs (1,H +
g − 1), . . . , (qH+g−1,H + g − 1) and delivering them to manufacturer Mg for
g = 2, . . . ,G, and (iii) for manufacturer M1 processing jobs (1, h), . . . , (q̄h, h)
and delivering jobs (1, h), . . . , (sh, h) to customer Ch for h = 1, . . . , H , where the
last job processed by manufacturer M1 completes at time t , and where 0 ≤ sh ≤
q̄h ≤ qh ≤ nh, 0 ≤ qH+g−1 ≤ nH+g−1, and t ∈ τ .
Boundary Condition
f (0, . . . , 0, 0, . . . , 0, 0, . . . , 0, 0) = 0.
Optimal Solution Value

min
t∈τ

{
f (n1, . . . , nH+G−1, n1, . . . , nH , n1, . . . , nH , t)

}
.

Recurrence Relation

f (q, q̄, s, t) = min

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
q ′∈Q′{f (q ′, q̄, s, t)} + DS

1

min
g∈G1

{
min

0≤q ′′
g<qg

{(qg − q ′′
g)T + DS

g−H+1 + f (q ′′, q̄, s, t)}
}

min
h∈I1

{f ∗(q, q̄ ′, s, t − pM
q̄h,h

)}
min
h∈I2

{f (q, q̄ ′, s, t − pM
q̄h,h

)}
min
h∈I3

{
min

0≤s′h<sh

{(q̄h − s′
h)t + DM

h + f ∗(q, q̄ ′, s′, t − pM
q̄h,h

)}
}

min
h∈I4

{
min

0≤s′h<sh

{(q̄h − s′
h)t + DM

h + f (q, q̄ ′, s′, t − pM
q̄h,h

)}
}
,

where
f ∗(q, q̄, s, t) = min

0≤t ′≤t
{f (q, q̄, s, t ′)},

q ′′ = (q1, . . . , qg−1, q
′′
g , qg+1, . . . , qH+G−1),

q̄ ′ = (q̄1, . . . , q̄h−1, q̄h − 1, q̄h+1, . . . , q̄H),
s′ = (s1, . . . , sh−1, s

′
h, sh+1, . . . , sH),

Q′ = {(q ′
1, . . . , q

′
H , qH+1, . . . , qH+G−1) | q̄h ≤ q ′

h ≤ qh for 1 ≤ h ≤ H, q ′
h <

qh for some h},

7.2 Scheduling and Batching in a Supply Chain 327

G1 = {g | H + 1 ≤ g ≤ H + G − 1, qg > 0},
I1 = {h | 1 ≤ h ≤ H, sh < q̄h, pM

q̄h,h
= t − T },

I2 = {h | 1 ≤ h ≤ H, sh < q̄h, pM
q̄h,h

< t − T },
I3 = {h | 1 ≤ h ≤ H, sh = q̄h > 0, pM

q̄h,h
= t − T },

I4 = {h | 1 ≤ h ≤ H, sh = q̄h > 0, pM
q̄h,h

< t − T }, and

T = ∑H+G−1
h=1

∑qh
j=1 p

S
jh.

In the recurrence relation, the first term schedules a batch containing the two-
stage jobs (q ′

h + 1, h), . . . , (qh, h) for h = 1, . . . , H to be processed on machine
MS , and this batch is delivered to manufacturer M1 on completion of its processing
at time T . The condition q̄h ≤ q ′

h in the definition of Q′ ensures that jobs
of this batch are not currently scheduled on machine MM . At this stage, no
scheduling cost is incurred for this batch of jobs. The second term schedules a batch
{(q ′′

g + 1, g), . . . , (qg, g)} of single-stage jobs, where H + 1 ≤ g ≤ H + G − 1,
for processing on machine MS and subsequent delivery to manufacturer Mg−H+1
at time T , and evaluates the completion time and delivery cost of this batch
accordingly. The third through sixth terms schedule the two-stage job (q̄h, h) to
be processed on machine MM in the interval [t − pM

q̄h,h
, t], so that it completes at

time t . The time t ′ at which machine MM completes processing the previous job in
the partial schedule is such that t ′ ≤ T in the third and fifth terms and such that
t ′ = t − pM

q̄h,h
> T in the fourth and sixth terms. In the third and fourth terms,

sh < q̄h, and thus no delivery of a batch containing job (q̄h, h) to customer Ch

occurs at time t . However, in the fifth and sixth terms, sh = q̄h, and thus a delivery
of batch {(s′

h + 1, h), . . . , (q̄h, h)} to customer Ch is scheduled at time t .

Theorem 7.9 Algorithm CF finds an optimal total SPT within groups schedule for
problem 1||∑FC

j +∑
DS

gy
S
g +∑

DM
h yMh in O(n2G+7H−2) time.

Proof The dynamic program exploits structural properties of an optimal schedule
that are established in part (a) of Lemmas 7.1, 7.2, 7.3, and the assumption of
total SPT within groups. For any (q, q̄, s, t), where t ≥ 1, f ∗(q, q̄, s, t) =
min{f ∗(q, q̄, s, t − 1), f (q, q̄, s, t)} can be computed recursively in constant time.
From Lemma 7.6, there are O(n2G+6H−2) states (q, q̄, s, t). In the recurrence
relation, the first term in the minimization requires O(nH) time, while the other
terms require no more than O(n) time. Therefore, the overall time complexity of
Algorithm CF is O(n2G+7H−2). ��

7.2.4.2 Number of Late Jobs

The first result shows that, assuming an EDD within groups sequence for the on-
time jobs, problem 1||∑UC

j + ∑
DS

gy
S
g + ∑

DM
h yMh is intractable, even when

there is only one manufacturer and one customer.

328 7 Optimization and Conflict

Theorem 7.10 The recognition version of problem 1||∑UC
j + ∑

DS
gy

S
g +

∑
DM

h yMh , assuming an EDD within groups schedule for the on-time jobs, is
binary NP-complete.

Proof Hall and Potts (2003) provide a reduction from Partition. ��
Although Theorem 7.10 provides a negative result, we still describe a computa-

tionally practical algorithm for the more general problem 1||∑wjU
C
j +∑DS

gy
S
g +

∑
DM

h yMh , assuming an EDD within groups schedule for the on-time jobs. We index
the jobs such that dM1h ≤ · · · ≤ dMnh,h

for h = 1, . . . , H , and dS1g ≤ · · · ≤ dSng,g for
g = H + 1, . . . , H + G − 1.

Our dynamic programming algorithm schedules one job at a time. To prevent a
job being processed on MM before it is delivered from the supplier, we assign a state
variable to represent the time at which the current supplier’s batch is to be delivered,
and only schedule any further processing on machine MM after this time.

Algorithm CU
Value Function

f (q, v, t, z, t̄ , k) = f (q1, . . . , qH+G−1, v1, . . . , vH , t, z, t̄ , k) = the total cost of (a)
scheduling the on-time jobs from (1, l), . . . , (ql, l) on machine MS and delivering
them to the relevant manufacturer for l = 1, . . . , H + G − 1 and (b) scheduling
the on-time jobs from (1, h), . . . , (qh, h) on machine MM and delivering those jobs
except (vh, h), . . . , (qh, h) if vh > 0 to customer Ch for h = 1, . . . , H , given that (i)
machine MS completes processing the on-time jobs at time t , (ii) the delivery of the
current batch from MS to MM is scheduled at time z, (iii) machine MM completes
processing the on-time jobs at time t̄ , and (iv) k is the group of the last on-time job
on machine MS if k > 0, where 0 ≤ vh ≤ qh ≤ nh for h = 1, . . . , H ; 0 ≤ qg ≤ ng

for g = H + 1, . . . , H + G − 1; 0 ≤ t ≤ z ≤ t̄ ≤ ∑H+G−1
h=1

∑nh
j=1 p

S
jh +

∑H
h=1

∑nh
j=1 p

M
jh; z ≤ ∑H+G−1

h=1
∑nh

j=1 p
S
jh; and 0 ≤ k ≤ H + G − 1. If there are

no undelivered on-time jobs for customer Ch, then we set vh = 0; otherwise, (vh, h)
is the undelivered job with the smallest due date.
Boundary Condition
f (0, . . . , 0, 0, . . . , 0, 0, 0, 0, 0) = 0.
Optimal Solution Value

min
(t,z,t̄ ,k)∈Y

{f (n1, . . . , nH+G−1, 0, . . . , 0, t, z, t̄ , k)},
where Y = {(t, z, t̄ , k) | 0 ≤ t ≤ z ≤ PS, 0 ≤ z ≤ t̄ ≤ PS + PM, 0 ≤ k ≤
H + G − 1}, PS = ∑H+G−1

h=1
∑nh

j=1 p
S
jh and PM = ∑H

h=1
∑nh

j=1 p
M
jh.

7.2 Scheduling and Batching in a Supply Chain 329

Recurrence Relation

f (q, v, t, z, t̄ , k) =

min

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

min
1≤k′≤H

{wM
qk′ ,k′ + f (q ′, v, t, z, t̄ , k)}, if k = 0

min
H<k′≤H+G−1

{wS
qk′ ,k′ + f (q ′, v, t, z, t̄ , k)}, if k = 0

wM
qk,k

+ f (q ′′, v, t, z, t̄ , k), if 1 ≤ k ≤ H, qk > vk

wS
qk,k

+ f (q ′′, v, t, z, t̄ , k), if H < k ≤ H + G − 1

f ∗
1 (q

′′, v, t − pS
qk,k

, z, t̄ − pM
qk,k

), if k ∈ K1, qk > vk > 0

f ∗
1 (q

′′, v′, t − pS
qk,k

, z, t̄ − pM
qk,k

), if k ∈ K1, qk = vk > 0

min
v′′
k∈V1

{f ∗
1 (q

′′, v′′, t − pS
qk,k

, z, t̄ − pM
qk,k

)} + DM
k , if k ∈ K1, vk = 0

f ∗
1 (q

′′, v, t − pS
qk,k

, t − pS
qk,k

, t̄ − pM
qk,k

) + DS
1 , if k ∈ K1, qk > vk > 0,

t̄ − pM
qk,k

> z

min
0≤t̄ ′≤z

{f ∗
1 (q

′′, v, t − pS
qk,k

, t − pS
qk,k

, t̄ ′)} + DS
1 , if k ∈ K1, qk > vk > 0,

t̄ − pM
qk,k

= z

f ∗
1 (q

′′, v′, t − pS
qk,k

, t − pS
qk,k

, t̄ − pM
qk,k

) + DS
1 , if k ∈ K1, qk = vk > 0,

t̄ − pM
qk,k

> z

min
0≤t̄ ′≤z

{f ∗
2 (q

′′, v′, t − pS
qk,k

, t − pS
qk,k

, t̄ ′)} + DS
1 , if k ∈ K1, qk = vk > 0,

t̄ − pM
qk,k

= z

min
v′′
k∈V1

{f ∗
1 (q

′′, v′′, t − pS
qk,k

, t − pS
qk,k

, t̄ − pM
qk,k

)} + DS
1 + DM

k , if k ∈ K1, vk = 0,

t̄ − pM
qk,k

> z

min
v′′
k∈V1

{
min

0≤t̄ ′≤z
{f ∗

2 (q
′′, v′′, t − pS

qk,k
, t − pS

qk,k
, t̄ ′)}

}
+ DS

1 + DM
k , if k ∈ K1, vk = 0,

t̄ − pM
qk,k

= z

f (q ′′, v, t − pS
qk,k

, z, t̄ , k), if k ∈ K2

min
0≤k′≤H+G−1

{f (q ′′, v, t − pS
qk,k

, t − pS
qk,k

, t̄ , k′)} + DS
k−H+1, if k ∈ K2,

where
f ∗

1 (q, v, t, z, t̄) = min1≤k≤H {f (q, v, t, z, t̄ , k)},
f ∗

2 (q, v, t, z, t̄) = min0≤k≤H {f (q, v, t, z, t̄ , k)},
q ′ = (q1, . . . , qk′−1, qk′ − 1, qk′+1, . . . , qH+G−1),
q ′′ = (q1, . . . , qk−1, qk − 1, qk+1, . . . , qH+G−1),
v′ = (v1, . . . , vk−1, 0, vk+1, . . . , vH),
v′′ = (v1, . . . , vk−1, v

′′
k , vk+1, . . . , vH),

V1 = {v′′
k | 0 ≤ v′′

k < qk, v′′
k = 0 or dM

k,v′′
k

≥ t̄},
K1 = {k | 1 ≤ k ≤ H, dMqk,k

≥ t̄ }, and

K2 = {k | H < k ≤ H + G − 1, dSqk,k
≥ z}.

330 7 Optimization and Conflict

In the recurrence relation, there are 15 terms. The first two terms in the
minimization schedule a job (qk′ , k′) to be late when no jobs are currently scheduled
to be on time. In the first term, (qk′ , k′) is a two-stage job, whereas in the second
term it is a single-stage job. The third and fourth terms schedule job (qk, k) to be late
when the schedule contains at least one on-time job. In the third term, the condition
qk > vk allows the two-stage job k to be late, whereas the fourth term schedules
a single-stage job to be late. The fifth through thirteenth terms schedule the two-
stage job (qk, k) in the interval [t − pS

qk,k
, t] on machine MS and in the interval

[t̄ − pM
qk,k

, t̄] on machine MM , so that it is on time. In the fifth, sixth, and seventh
terms, job (qk, k) does not start a new batch on machine MS , and the previous job in
the batch is in some group k′, where 1 ≤ k′ ≤ H . In the fifth term, vk > 0, thereby
preventing a delivery to customer Ck when job (qk, k) completes processing. The
sixth term applies for qk = vk > 0, so that no delivery is scheduled on completion of
job (qk, k); however, (qk, k) is the first undelivered job in group k and the previous
schedule has no undelivered job in group k. The seventh term has vk = 0 so that
a delivery to customer Ck is scheduled upon completion of job (qk, k) on machine
MM at time t̄ . The condition on v′′

k in the definition of V1 in the seventh term ensures
that all jobs in this batch are delivered to the customer by their due dates. The eighth
through thirteenth terms correspond to the situation in which job (qk, k) starts a new
batch on machine MS . The first two of these terms are analogous to the fifth term,
the next two are analogous to the sixth term, and the last two are analogous to the
seventh term. There are two terms in each case, depending upon whether job (qk, k)

starts processing on machine MM at time z and is preceded by idle time in some
interval [t̄ ′, z], or job (qk, k) is processed on machine MM immediately after the
previous job. The eleventh and thirteenth terms allow scheduling of the first on-time
job. The fourteenth and fifteenth terms schedule the single-stage job (qk, k), where
k > H , in the interval [t − pS

qk,k
, t] on machine MS so that it is on time. In the

fourteenth term, this job is scheduled in the same batch as the previous job, whereas
in the last term job (qk, k) starts a new batch at time t − pS

qk,k
when the previous

batch completes.

Theorem 7.11 Algorithm CU finds an optimal EDD within groups schedule for
problem 1||∑wjU

C
j +∑

DS
gy

S
g +∑

DM
h yMh , in O(nG+2H−1P 3) time.

Proof The dynamic program exploits structural properties of an optimal schedule
that are established in part (a) of Lemmas 7.1, 7.2, 7.3, and the assumption of EDD
within groups for on-time jobs. There are O(nG+2H−1P 3) states (q, v, t, z, t̄ , k).
An analysis of the recurrence relation similar to that in the proof of Theorem 7.9
shows that the overall time complexity of Algorithm CU is O(nG+2H−1P 3). ��

7.2 Scheduling and Batching in a Supply Chain 331

7.2.5 Cooperation

We first show through three examples that substantial benefits can result from
cooperation between the supplier S and the manufacturer M1. Then, using two
further examples, we discuss the stability of such cooperations and mechanisms for
achieving them.

7.2.5.1 Benefits of Cooperation

We present an example for both of the scheduling objectives analyzed above. Each
example shows that the solution that results from the supplier and manufacturer
acting independently is considerably more costly than the solution of the combined
problem.

Example 7.1 (Benefit of Cooperation in a Flowtime Problem) Consider the follow-
ing instance of the combined problem 1||∑FC

j +∑
DS

gy
S
g +∑

DM
h yMh . There are

two jobs (n = 2), both produced by a single manufacturer (G = 1) for a single
customer (H = 1), where the processing times and delivery costs are given in
Table 7.2, and where K is an integer such that K > 3.

A straightforward cost comparison shows that there is an optimal schedule in
which both the supplier and the manufacturer process the jobs in the order (1, 2) on
machines MS and MM , respectively. For the supplier, processing of the two jobs is
completed at times 1 and K + 1, respectively. Therefore, if the jobs are delivered in
two separate batches, the scheduling cost is

∑
FS
j = 1 + (K + 1) = K + 2. On

the other hand, if the jobs are delivered in a single batch, then
∑

FS
j = 2(K + 1).

Thus, the overall costs
∑

FS
j + ∑

DS
gy

S
g for two deliveries and one delivery are

(K + 2) + 2(K − 1) = 3K and 2(K + 1) + (K − 1) = 3K + 1, respectively.
Consequently, the supplier’s decision is to deliver the two jobs in separate batches
to arrive at the manufacturer at times 1 and K + 1, respectively.

For the manufacturer’s problem, using release dates rM1 = 1 and rM2 = K + 1,
processing of the two jobs is completed at times 2 and K+2, respectively. Using two
separate batches, the overall cost is

∑
FM
j + ∑

DM
h yMh = 2K + 2. Alternatively,

using a single-batch delivery,
∑

FM
j + ∑

DM
h yMh = (K + 2) + K = 2K + 2.

Thus, the minimum total cost for the manufacturer’s problem is 2K + 2. In order to
evaluate this schedule with respect to the combined problem, we add the supplier’s
optimal cost of 3K , giving a total cost of 5K + 2.

Table 7.2 Data for
Example 7.1

Supplier Manufacturer

Job 1 2 1 2

Processing time 1 K 1 1

Delivery cost K − 1 K

332 7 Optimization and Conflict

Table 7.3 Data for Example 7.2

Supplier Manufacturer

Job 1 . . . n − 1 n 1 . . . n − 1 n

Processing
time

K . . . K K − 1 1 . . . 1 (n − 1)K + 1

Due date K − n + 1 . . . K − 1 K (n − 1)K + 1 . . . (n − 1)K + 1 nK + 1

Delivery
cost

0 0

However, an optimal schedule for the combined problem is to deliver both jobs
from the supplier to the manufacturer in a single batch at time K+1. At time K+3,
after the manufacturer has processed both jobs, they are delivered to the customer in
a single batch. The overall cost of this schedule is

∑
FC
j +∑

DS
gy

S
g +∑

DM
h yMh =

2(K + 3)+ (K − 1)+K = 4K + 5. Therefore, the ratio of the cost incurred in the
combined problem when the supplier and the manufacturer make separate decisions
to the optimal cost is (5K + 2)/(4K + 5), which can be arbitrarily close to 5/4 if K
is large. Thus, cooperation provides a 20% reduction in the total system cost.

Example 7.2 (Benefit of Cooperation in a Late Jobs Problem) Consider the follow-
ing instance of the combined problem 1||∑UC

j + ∑
DS

gy
S
g + ∑

DM
h yMh , where

G = H = 1. The processing times, due dates, and delivery costs are given in
Table 7.3, where K is an integer and K ≥ n ≥ 2. The supplier’s due dates are
based on a schedule for the manufacturer in which jobs 1, . . . , n − 1 are scheduled
consecutively in the interval [K − n + 1,K] and job n is scheduled in the interval
[K, nK + 1].

A unique optimal solution of the supplier’s problem schedules job n to be on time
and all other jobs to be late and not delivered to the manufacturer. The manufacturer
consequently schedules job n to be on time. Thus, the total cost is equal to n − 1.

However, an optimal schedule for the combined problem schedules jobs
1, . . . , n − 1 on time, where each job is delivered separately, and job n late, giving
an optimal cost of 1. Thus, cooperation provides a reduction in the total system cost
that can be arbitrarily close to 100%.

The potential benefits of cooperation identified in Examples 7.1 and 7.2 can
be viewed in the context of similar results from the supply chain management
literature. For example, Parlar and Weng (1997) consider a problem of coordination
between a firm’s supply and manufacturing departments and estimate the benefit of
cooperation to total profit to be at least 26%.

7.2.5.2 Mechanisms for Cooperation

We now present two further examples for problem 1||∑FC
j + ∑

DS
gy

S
g +

∑
DM

h yMh . If the supplier’s and manufacturer’s schedules are used to form a

7.2 Scheduling and Batching in a Supply Chain 333

Table 7.4 Data for
Example 7.3

Supplier Manufacturer

Job 1 2 1 2

Processing time 1 K 1 1

Delivery cost K/2 K

Table 7.5 Cost matrix for Example 7.3

Manufacturer

1 batch 2 batches

Supplier 1 batch (5K/2 + 2,K + 4) : 7K/2 + 6 (5K/2 + 2, 2K + 3) : 9K/2 + 5

2 batches (2K + 2, 2K + 2) : 4K + 4 (2K + 2, 2K + 2) : 4K + 4

combined schedule, then FC
j = FS

j + FM
j . Thus, the overall cost in the combined

problem is equal to the supplier’s total cost plus the manufacturer’s total cost.

Example 7.3 (Benefit of Cooperation in a Flowtime Problem) Consider the follow-
ing instance of problem 1||∑FC

j + ∑
DS

gy
S
g + ∑

DM
h yMh , where n = 2, G = 1,

and H = 1. The processing times and delivery costs are given in Table 7.4, where
K > 8 is an integer.

Some insights about cooperation can be gained from summarizing the results
for Example 7.3 in the form of a cost matrix, as in Table 7.5, where the notation
(c1, c2) : c1 + c2 denotes that the supplier’s cost is c1, the manufacturer’s cost is c2,
and the total cost is c1 + c2. As in Example 7.1, the jobs are processed in the order
(1, 2) on machines MS and MM .

It is easy to see that the solution that minimizes total cost in Table 7.5 requires
both the supplier and the manufacturer to use a single batch. However, this solution
is not a Nash equilibrium (Myerson, 1981; Nash, 1951), since the supplier can
benefit by unilaterally deviating from it and using two batches. Mechanisms by
which the manufacturer can encourage the supplier’s cooperation include:

1. Offering an incentive if all the jobs in the order are delivered together, to an extent
sufficient to compensate the supplier for the increased cost

2. Offering to share holding costs for completed jobs at the supplier

A situation analogous to that in the first mechanism above arises in the personal
computer industry, as discussed by Lee et al. (2000). Because of rapid innovation
and new product development, leading to frequent declines in retail prices, retailers
of personal computers tend to delay purchases, so as to avoid being caught with
expensive inventory that can only be sold cheaply. In this situation, computer
manufacturers may offer price protection packages to encourage earlier purchases.
Regarding the second mechanism above, our recommendations are similar to
Propositions 1 and 2 of Moses and Seshadri (2000), where a necessary and sufficient
condition for decision makers at two stages to agree on a stocking level is an
agreement to share holding costs at the second stage. Also, Agrawal and Seshadri
(2000) consider a model that determines the timing of replenishments from a

334 7 Optimization and Conflict

Table 7.6 Data for
Example 7.4

Supplier Manufacturer

Job 1 2 1 2

Processing time 1 K K K

Delivery cost 3K/2 K

Table 7.7 Cost matrix for Example 7.4

Manufacturer

1 batch 2 batches

Supplier 1 batch (7K/2 + 2, 5K) : 17K/2 + 2 (7K/2 + 2, 5K) : 17K/2 + 2

2 batches (4K + 2, 4K) : 8K + 2 (4K + 2, 4K) : 8K + 2

supplier to multiple retail stores. Their discussion of the tradeoff between immediate
and delayed replenishment is analogous to our batching decision.

In the event that attempts at cooperation fail, the manufacturer can still attempt
to force the supplier to deliver only one batch. Mechanisms for doing so include
refusing to accept delivery before a certain date or refusing to accept delivery of
partial orders.

Example 7.4 (Benefit of Cooperation in a Flowtime Problem) Consider the follow-
ing instance of problem 1||∑FC

j +∑
DS

gy
S
g +∑

DM
h yMh with n = 2, G = 1, and

H = 1. The processing times and delivery costs are given in Table 7.6, where K is
an integer such that K ≥ 2.

The costs for Example 7.4 are summarized in Table 7.7, using the same format
as Table 7.5, where the optimal processing order on machines MS and MM is (1, 2).

Mechanisms by which the manufacturer can encourage the supplier to deliver the
first batch earlier include:

1. Offering an incentive for earlier delivery of part of the order, to an extent
sufficient to compensate the supplier for the increased delivery cost

2. Offering to pick up part of the order, perhaps as part of an existing logistics
operation

3. Offering to share the extra delivery costs

The linkages to the supply chain management literature discussed following
Example 7.3 are again relevant here. Agrawal and Seshadri (2000) address related
timing issues in the balancing of inventory between a supplier and several manufac-
turers. If attempts at cooperation fail, then the manufacturer can still attempt to force
the supplier to deliver a batch earlier, for example, by refusing to accept delivery of
job 1 after a certain date.

In both Examples 7.3 and 7.4, the supplier and manufacturer can bargain over
the savings in the total system cost that are achieved by an optimal cooperative
strategy, relative to a solution found by independent decision making. These savings
are (4K+4)−(7K/2+6) = K/2−2 in Table 7.5 and (17K/2+2)−(8K+2) = K/2
in Table 7.7. The bargaining solution theory of Nash (1950, 1953) suggests that

7.3 Sequencing in an Assembly System 335

neither player will bargain at a cost greater than they can achieve independently.
Thus, a solution with c1 ≤ 2K + 2 and c2 ≤ 2K + 2 is found for Example 7.3,
and a solution with c1 ≤ 7K/2 + 2 and c2 ≤ 5K is found for Example 7.4. The
supply chain management literature offers some guidance about how the profits
from cooperation should be divided. For example, Weng (1995) develops models
that share the increased profit from cooperation. A similar methodology can be used
here, subject to the above constraints.

It is clear from Tables 7.5 and 7.7 that the supplier’s cost is independent of the
manufacturer’s decisions, and therefore the supplier has no incentive to persuade
the manufacturer to change behavior. For this reason, if cooperation is to lead to
a solution that is optimal for the system as a whole, then that cooperation must
be initiated by the manufacturer. Although our analysis focuses on supply chains
with three stages, namely a supplier, manufacturers, and customers, more generally
there may be s stages, where stage s corresponds to the customers. In this case,
cooperation should be initiated at stage s − 1 by discussion with stage s − 2. If
this cooperation is successfully achieved, then stages s − 2 and s − 1 can jointly
approach stage s − 3 about cooperation. Continuing in this way, the negotiations
work their way upstream until all parts of the supply chain are cooperating for
maximum benefit.

The study of scheduling and batching presented in this section is important for
applications that involve significant transportation cost. Another relevant factor is
the availability of sufficient transportation resources—either internally or through
third party logistics—to make frequent deliveries in order to satisfy customer
deadlines.

7.3 Sequencing in an Assembly System

This section focuses on the important issues of conflict and cooperation between
decision makers in an assembly system. The issues of conflict and cooperation
between the suppliers and the manufacturer arise from the requirement that all
parts required for a job must be received before the final stage of manufacturing
for that job can begin. Therefore, the performance of the manufacturer depends on
the last supplier to deliver a part for each job and thus on decisions made by all
the suppliers. However, the suppliers are concerned about their own costs which
are not, in general, optimized by the same scheduling decisions that optimize the
manufacturer’s cost. How these conflicts are resolved depends on the relative bar-
gaining power of the suppliers and the manufacturer, and cooperation mechanisms
that achieve this resolution need to be developed. In order to focus on conflict and
coordination issues instead of the constraints faced by the manufacturer, we assume
that this final stage is nonbottleneck; however, none of the cooperation mechanisms
discussed in this section rely on this assumption. In nonbottleneck manufacturing,
as many products as needed can be processed through the final stage simultaneously.

336 7 Optimization and Conflict

Fig. 7.5 Logical flow of the assembly system study

Practical examples of nonbottleneck final manufacturing stages include outsourced
assembly, packaging, and delivery.

We assume that all the suppliers act as a single agent when negotiating with the
manufacturer. This is motivated by the common practice that sellers (or buyers)
act together to negotiate collectively with buyers (or sellers) in order to increase
their bargaining power (Moore & Gray, 2011). It is necessary to evaluate the
cost saving from cooperation between the decision makers, in order to understand
when cooperation is worthwhile. This in turn requires the solution of the various
scheduling problems that these mechanisms define for solution by the suppliers, the
manufacturer, and the overall system. Figure 7.5 provides an overview of the logical
flow of this section.

7.3.1 Notation and Assumptions

The assembly system studied in this section consists of s suppliers S1, . . . , Ss , which
supply parts to a manufacturer M . Each supplier operates a dedicated production
line for the manufacturer. This situation occurs commonly in practice, for example,
when (i) the jobs from the manufacturer are customized and require special tools
and (ii) the supplier and manufacturer have a long-term relationship. Each supplier
may produce one or more parts for each job. Because the cost functions considered
are nondecreasing in job completion time, there exists an optimal schedule in which
the parts produced for a single job by the same supplier are scheduled consecutively.

The manufacturer receives a set of jobs N = {1, . . . , n} from its customer(s)
at the beginning of the planning horizon. Each job consists of several parts to
be processed nonpreemptively at suppliers S1, . . . , Ss . The parts of a particular
job can be processed concurrently by different suppliers. Since it has been shown
in practice (Stein & Sweat, 1998) and in the academic literature that sharing
information vertically among the supply chain members helps the system operate
more efficiently, we assume that the manufacturer passes the known information
about all the jobs to the suppliers simultaneously. Therefore, all parts become

7.3 Sequencing in an Assembly System 337

simultaneously available for processing by the suppliers. Let pij denote the total
processing time of the parts processed by supplier Si for job j , for i = 1, . . . , s, j =
1, . . . , n. Each job j may have a due date dj , for j = 1, . . . , n. We assume that all
parameters pij and dj are nonnegative integers.

We define a schedule in any problem in this section to consist of s + 1
subschedules, one for each of the suppliers S1, . . . , Ss and the manufacturer M .
We define the following decision variables in a given schedule σ :

Cij (σ) = the time at which the parts for job j are delivered from supplier Si
to the manufacturer;

Cj (σ) = max1≤i≤s{Cij (σ)}, the time at which the last part for job j is delivered
to the manufacturer;

Lj (σ) = Cj (σ) − dj , the lateness of job j.

We assume that the delivery time from a supplier to the manufacturer is
negligible, relative to the processing times of the jobs at the supplier. The insights
about conflict and cooperation issues which we discuss still hold without this
assumption. However, the solvability of the implied scheduling problems may
change in the more general case. Since we consider the manufacturer’s operations
as nonbottleneck, we assume without loss of generality that the processing time of
each job at the manufacturer is zero. Therefore, Cj (σ) is not only the delivery time
of the last part for job j to the manufacturer but also the completion time of job j

at the manufacturer. We use a shortest processing time (SPT) ordering of the parts
or jobs, where they are scheduled in nondecreasing order of their processing times.
We also use an earliest due date (EDD) ordering, where the jobs are scheduled in
nondecreasing order of their due dates.

We consider various scheduling problems denoted by the classification scheme
ψ1|ψ2|ψ3 (Graham et al., 1979). Except where stated, we let ψ1 = As, which
denotes an assembly system with s suppliers and one manufacturer. We also refer
to problems with ψ1 = 1, which denotes a single-machine problem, or ψ1 = F2,
which denotes a two machine flowshop problem. Under ψ2, we may have coseq

which specifies that the suppliers use a common job sequence, tij which denotes a
transportation time for the parts of job j from supplier Si to the manufacturer, or a
constraint on cost.

In order to model conflict and cooperation issues in our assembly system, we
consider four problems.

1. Supplier Si’s problem. An individual supplier Si acts alone to minimize a
performance measure Fi .

2. The suppliers’ problem. The suppliers act jointly to minimize a total performance
measure

∑s
i=1 Fi .

3. The manufacturer’s problem. The manufacturer acts alone to minimize a perfor-
mance measure G.

4. The system problem. All the suppliers and the manufacturer act jointly to
minimize their total cost α

∑s
i=1 Fi + (1 − α)G.

338 7 Optimization and Conflict

Remark 7.3 We consider the suppliers as a single agent; however, the first definition
helps in understanding the cost function of an individual supplier. In the system
problem, α is used to convert the performance measures of the suppliers and the
manufacturer into common cost units. For example, if one unit of

∑s
i=1 Fi costs $2

and one unit of G costs $3, then α = 0.4. Here, αFi represents the cost of supplier
Si , for i = 1, . . . , s, and (1 − α)G represents the cost of the manufacturer.

The models discussed here are applicable to an assembly system with any Fi and
G cost functions. We now describe and motivate our specific choice of cost functions
under ψ3. Since the suppliers do not deal directly with customers, their objective is
internally focused; therefore, we use the minimization of work-in-process cost. We
note that the total completion time of a set of jobs is often used in the scheduling
literature (Lane & Sidney, 1993; Ng et al., 2003) as a surrogate for the work-in-
process inventory cost of the jobs. Furthermore, minimizing the total completion
time of the jobs in a plant is equivalent to minimizing the average number of jobs
in the plant and hence minimizing the congestion of the plant (Hopp & Spearman,
2000; Pinedo & Chao, 1999). For the manufacturer, however, customer service is
important; therefore, we use total lead time and maximum lateness as cost measures.
Total lead time measures average customer service, whereas maximum lateness
measures worst-case customer service. These scheduling cost functions are among
the most commonly used in manufacturing practice (Pinedo, 2016). Other objective
functions, such as the total tardiness or the total number of tardy jobs, could also be
considered. Therefore, our discussion focuses on the following cost function Fi for
supplier Si , for i = 1, . . . , s,

∑
j∈N Cij (σ) = total completion time of the parts at supplier Si in schedule σ

representing the work-in-process cost of the supplier,

and the following two cost functions G for the manufacturer

∑
j∈N Cj (σ) = total completion time of the jobs at the manufacturer

in schedule σ ;
Lmax(σ) = max{Lj (σ) | j ∈ N}, maximum lateness of the jobs at the

manufacturer in schedule σ.

When the schedule being used is clear from the context, we write Cij (σ), Cj (σ),
and Lmax(σ) as Cij , Cj , and Lmax, respectively.

7.3.2 Conflicts Between Suppliers and Manufacturer

We study the extent to which an optimal schedule for the manufacturer’s problem
can be suboptimal for the suppliers’ problem, and vice versa. Let ν and γ

7.3 Sequencing in an Assembly System 339

denote an optimal schedule for the suppliers’ problem As||∑s
i=1 Fi and for the

manufacturer’s problem As||G, respectively. Also, let π denote an optimal schedule
for the system problem, As||α∑s

i=1 Fi + (1 − α)G. The levels of conflict between
the suppliers and the manufacturer are measured by the following relative errors
between ν and γ :

(i)
[∑

s
i=1Fi(γ) −

∑
s
i=1Fi(ν)

]
/
∑

s
i=1Fi(ν) and (ii) [G(ν) − G(γ)] /G(γ),

where (i) represents the relative error of the optimal schedule for the manufacturer’s
problem when used for the suppliers’ problem, and (ii) represents the relative error
of the optimal schedule for the suppliers’ problem when used for the manufacturer’s
problem.

For the analysis in this section, we use the following notations:

pj = max{pij | i = 1, . . . , s};
Ng = {j ∈ N | pj = g};
Mg = {j ∈ N | ∑s

i=1 pij = g};
Nig = {j ∈ N | pij = g};
ng = |Ng| = number of jobs with pj = g;
mg = |Mg| = number of jobs with

∑s
i=1 pij = g;

nig = |Nig| = number of jobs with pij = g;
rg = min{nig | i = 1, . . . , s};
migh = number of jobs with pij = h and pj ≤ g;
qgh = max{migh | i = 1, . . . , s}.

7.3.2.1 Completion Time and Completion Time

We firstevaluate the relative error of the optimal schedule ν for the supplier’s
problem As||∑∑

Cij when it is used for the manufacturer’s problem As||∑Cj ,
i.e.,

∑
j∈N Cj (ν) −∑

j∈N Cj (γ)
∑

j∈N Cj (γ)
.

As a preliminary step, we analyze the solvability of these two problems. We
define an individual shortest processing time (ISPT) schedule to be one obtained
when supplier Si schedules its parts in SPT order, i.e., such that pi1 ≤ · · · ≤ pin,
for i = 1, . . . , s.

Theorem 7.12 Problem As||∑∑
Cij is solved optimally by an ISPT order of the

jobs, which can be found in O(n log n) time.

Proof The result follows from Smith (1956). ��
Theorem 7.13 The recognition version of problem As||∑Cj is unary NP-
complete.

340 7 Optimization and Conflict

Proof By reduction from the following problem, which is known to be unary NP-
complete. ��
3-Partition (Garey & Johnson, 1979, p. 224): given 3m elements with integer sizes
a1, . . . , a3m, where

∑3m
i=1 ai = mB and B/4 < ai < B/2, for i = 1, . . . , 3m,

does there exist a partition H1, . . . , Hm of the index set H = {1, . . . , 3m} such that
|Hj | = 3 and

∑
i∈Hj

ai = B, for j = 1, . . . , m? As part of this definition, we
assume that, if there exists a solution to 3-Partition, then the elements are numbered
such that a3i−2 + a3i−1 + a3i = B, for i = 1, . . . , m.

Consider an instance of the recognition version of problem As||∑Cj defined
by

n = 4m,
s = 4,
p1j = 4B, for j = 1, . . . , 3m,
p2j = 4B − aj , for j = 1, . . . , 3m,
p3j = 3B + aj , for j = 1, . . . , 3m,
p4j = 0, for j = 1, . . . , 3m,
p1j = 0, for j = 3m + 1, . . . , 4m,
p2j = B, for j = 3m + 1, . . . , 4m,
p3j = 2B, for j = 3m + 1, . . . , 4m,
p4j = 12B, for j = 3m + 1, . . . , 4m, and
C = 24m2B + 12mB,

where C is a threshold cost. We prove that there exists a schedule for this instance
of As||∑Cj with cost less than or equal to C if and only if there exists a solution
to 3-Partition.
(⇒) Consider the sequence (1, 2, 3, 3m + 1, . . . , 3m − 2, 3m − 1, 3m, 4m). The
bottleneck supplier for the first three jobs is S1, and those jobs are completed at times
4B, 8B, and 12B, respectively. Each of the four suppliers completes job 3m + 1 at
time 12B. Each subsequent subset of four jobs is scheduled similarly, requiring a
total processing time of 12B at each supplier. It can be shown that the total cost of
the schedule is equal to C.
(⇐) Assume the existence of a schedule σ for problem As||∑Cj for which∑

Cj ≤ C. Without loss of generality, suppose that the jobs {1, . . . , 3m} are
sequenced in this order at supplier S1 and that the jobs {3m + 1, . . . , 4m} are
sequenced in this order at supplier S4. Then, it can be shown that Cj ≥ C1j = 4jB
for j ∈ {1, . . . , 3m} and Cj ≥ C4j = 12(j − 3m)B for j ∈ {3m + 1, . . . , 4m}.
Hence,

∑
Cj ≥ C, and

∑
Cj ≤ C if and only if Cj = 4jB for j ∈ {1, . . . , 3m}

and Cj = 12(j − 3m)B for j ∈ {3m + 1, . . . , 4m}. This means that, in σ ,
C2j ≤ 4jB and C3j ≤ 4jB for j ∈ {1, . . . , 3m}, and C2j ≤ 12(j − 3m)B and
C3j ≤ 12(j − 3m)B for j ∈ {3m + 1, . . . , 4m}.

Now consider the following four jobs: 1, 2, 3, and 3m+1. They are all completed
no later than time 12B at both suppliers S2 and S3. Thus, p21+p22+p23+p2,3m+1 =
13B−(a1+a2+a3) ≤ 12B, and p31+p32+p33+p3,3m+1 = 11B+(a1+a2+a3) ≤
12B. This implies that a1 + a2 + a3 = B. Therefore, the four jobs are completed
exactly at 12B at each supplier. This argument can be repeated for each group of

7.3 Sequencing in an Assembly System 341

four jobs {3j − 2, 3j − 1, 3j, 3m + j} to show that a3j−2 + a3j−1 + a3j = B, for
j = 2, . . . , m. This implies the existence of a solution to 3-Partition. ��

In view of Theorem 7.13, we use schedule ρ generated by the following heuristic,
instead of γ , to evaluate the performance of ν.

Heuristic SMPT Schedule the jobs in nondecreasing order of pj at all the
suppliers, where pj = max{pij | i = 1, . . . , s}.

Clearly,
∑

j∈N Cj (γ) ≤ ∑
j∈N Cj (ρ). Therefore,

∑
j∈N Cj (ν) −∑

j∈N Cj (γ)
∑

j∈N Cj (γ)
≥
∑

j∈N Cj (ν) −∑
j∈N Cj (ρ)

∑
j∈N Cj (ρ)

. (7.1)

The following result provides an asymptotic analysis for the relative error as
n → ∞.

Theorem 7.14 Assume that the job processing times pij are integer valued and
follow an independent and identical discrete uniform distribution over a finite
interval [l, u], where l and u are nonnegative integers. If the optimal schedule ν

for the suppliers’ problem is used for the manufacturer’s problem As||∑Cj , then
the relative error between the cost of ν and the optimal manufacturer’s cost satisfies

lim
n→∞

∑
j∈N Cj (ν) −∑

j∈N Cj (γ)
∑

j∈N Cj (γ)

a.s.≥

u∑

g=l

(g2 − l2 − g + l) [(g − l + 1)s − (g − l)s]

u∑

g=l

[

(g2 − l2 + g + l)
(
g−l+1
u−l+1

)s−1
]

[(g − l + 1)s − (g − l)s]
− 1. (7.2)

Proof From the Laws of Large Numbers (see Remark 2.2 in Sect. 2.3.4.1) and the
stated assumption on the probability distribution of the pij values, we have, for
i = 1, . . . , s, g = l, . . . , u, and h = l, . . . , g,

lim
n→∞

nig

n

a.s.= Pr[pij = g] = 1

u − l + 1
, (7.3)

lim
n→∞

ng

n

a.s.= Pr[pj = g] = Pr[pj ≤ g] − Pr[pj ≤ g − 1]

=
(
g − l + 1

u − l + 1

)s

−
(

g − l

u − l + 1

)s

, and (7.4)

lim
n→∞

migh

n

a.s.= Pr[pij = h, pj ≤ g] = Pr[pj ≤ g] × Pr[pij = h | pj ≤ g]

=
(
g − l + 1

u − l + 1

)s

× 1

g − l + 1
= (g − l + 1)s−1

(u − l + 1)s
. (7.5)

342 7 Optimization and Conflict

It follows from (7.3) and (7.5) that

lim
n→∞

rg

n

a.s.= 1

u − l + 1
, and (7.6)

lim
n→∞

qgh

n

a.s.= (g − l + 1)s−1

(u − l + 1)s
. (7.7)

We provide a lower bound on the cost of ν in the manufacturer’s problem. From
Theorem 7.12, in schedule ν, the parts are processed at each supplier Si in SPT
order of their processing times pij . Thus, each supplier Si processes the jobs from
the same subset Nig consecutively, for g = l, . . . , u, and the jobs from different
subsets in the order (Nil, Ni,l+1, . . . , Niu). Let Eig denote the starting time of the
first job from Nig at supplier Si . We have, for each j ∈ Ng ,

Cj (ν) ≥ min{Eig | i = 1, . . . , s} = min

⎧
⎨

⎩

g−1∑

k=l

knik | i = 1, . . . , s

⎫
⎬

⎭

≥
g−1∑

k=l

k min {nik | i = 1, . . . , s} =
g−1∑

k=l

krk.

This implies that

∑

j∈N
Cj (ν) =

u∑

g=l

∑

j∈Ng

Cj (ν) ≥
u∑

g=l

⎡

⎣ng

g−1∑

k=l

krk

⎤

⎦ . (7.8)

Then, from (7.4), (7.6), and (7.8), we have

lim
n→∞

∑
j∈N Cj (ν)

n2
≥ lim

n→∞

u∑

g=l

ng

n

⎡

⎣
g−1∑

k=l

rk

n
k

⎤

⎦ =
u∑

g=l

(
lim
n→∞

ng

n

)
⎡

⎣
g−1∑

k=l

(
lim
n→∞

rk

n

)
k

⎤

⎦

a.s.=
u∑

g=l

[(
g − l + 1

u − l + 1

)s

−
(

g − l

u − l + 1

)s]
⎡

⎣
g−1∑

k=l

k

u − l + 1

⎤

⎦

= 1

2(u − l + 1)s+1

u∑

g=l

[
(g − l + 1)s − (g − l)s

] [
g2 − l2 − g + l

]
. (7.9)

Next, we derive an upper bound on the optimal manufacturer’s cost,∑
j∈N Cj (γ), using schedule ρ from Heuristic SMPT and (7.1). In schedule ρ,

the jobs from the same subset Ng , for g = 1, . . . , s, are scheduled consecutively,
and the jobs from different subsets are scheduled in the order (Nl,Nl+1, . . . , Nu).
Let Dg be the completion time of the last job from the subset Ng and Hig be the total
processing time of the jobs from

⋃g
k=l Nk at supplier Si . Thus, for g = l, . . . , u,

7.3 Sequencing in an Assembly System 343

Dg = max{Hig | i = 1, . . . , s} = max

{
g∑

k=l

kmigk | i = 1, . . . , s

}

≤
g∑

k=l

k max{migh | i = 1, . . . , s} =
g∑

k=l

kqgk. (7.10)

Since Cj (ρ) ≤ Dg for j ∈ Ng , from (7.10), we have

∑

j∈N
Cj (ρ) =

u∑

g=1

∑

j∈Ng

Cj (ρ) ≤
u∑

g=l

ngDg ≤
u∑

g=l

ng

[
g∑

k=l

kqgk

]

. (7.11)

Then, we have

lim
n→∞

∑
j∈N Cj (γ)

n2
≤ lim

n→∞

∑
j∈N Cj (ρ)

n2
≤ lim

n→∞

u∑

g=l

[
ng

n

g∑

k=l

qgk

n
k

]

, from (7.11)

=
u∑

g=l

[
(

lim
n→∞

ng

n

) g∑

k=l

(
lim
n→∞

qgk

n

)
k

]

a.s.=
u∑

g=l

[
(g − l + 1)s − (g − l)s

(u − l + 1)s

] g∑

k=l

[
(g − l + 1)s−1

(u − l + 1)s
k

]

, from (7.4) and (7.7)

= 1

2(u − l + 1)s+1

u∑

g=l

[
(g − l + 1)s − (g − l)s

] [
g2 − l2 + g + l

] [(g − l + 1)s−1

(u − l + 1)s−1

]

.

(7.12)

The main result, (7.2), then follows from (7.9) and (7.12). ��
Theorem 7.14 provides an asymptotic lower bound on the relative error between

schedules ν and γ for the manufacturer’s problem, as n → ∞. For finite values
of n, we compute the lower bound in (7.1), using random test problems that are
generated as follows: (i) the number of suppliers s ∈ {2, 4, 8, 16}, (ii) the number
of jobs n ∈ {50, 100, 200, 400}, and (iii) job processing times pij are independently
drawn from a uniform integer distribution over the interval [l, u], where l ∈ {10, 50},
and u ∈ {100, 500, 1000}. For a small number of randomly generated test problems,
we have

∑
j∈N Cj (ν) <

∑
j∈N Cj (ρ). For these problems, we record the relative

error as 0 because the actual relative error between ν and γ is always nonnegative.
For each (s, l, u, n) combination, the mean lower bound over 10 random instances
is reported in Table 7.8. We also compute the lower bound in (7.2) for each (s, l, u)

combination and report the results in the columns with n = ∞ in Table 7.8. Since

344 7 Optimization and Conflict

Ta
bl
e
7.
8

L
ow

er
bo

un
ds

on
re

la
tiv

e
er

ro
r

in
th

e
m

an
uf

ac
tu

re
r’

s
pr

ob
le

m
(∑

C
j
)

L
ow

er
bo

un
d

on
re

la
tiv

e
er

ro
r

L
ow

er
bo

un
d

on
re

la
tiv

e
er

ro
r

s
l

u
n

=
50

n
=

10
0

n
=

20
0

n
=

40
0

n
=

∞
s

l
u

n
=

50
n

=
10

0
n

=
20

0
n

=
40

0
n

=
∞

10
0

21
.9

4%
23

.2
9%

24
.4

2%
25

.1
3%

22
.6

6%
10

0
28

.5
5%

29
.5

8%
29

.9
8%

30
.2

8%
24

.8
9%

2
10

50
0

19
.9

1%
21

.2
9%

22
.6

8%
23

.5
2%

24
.5

8%
2

50
50

0
21

.9
3%

23
.3

1%
24

.4
8%

25
.2

2%
25

.9
7%

10
00

19
.6

3%
20

.9
9%

22
.4

2%
23

.3
0%

24
.7

9%
10

00
20

.7
4%

22
.0

8%
23

.4
0%

24
.2

1%
25

.5
5%

10
0

39
.3

4%
43

.9
8%

45
.7

0%
47

.3
2%

45
.7

3%
10

0
50

.0
3%

52
.5

9%
53

.8
5%

54
.5

3%
47

.2
9%

4
10

50
0

36
.4

5%
41

.6
2%

43
.3

8%
45

.0
9%

49
.2

1%
4

50
50

0
39

.4
9%

44
.1

2%
45

.8
3%

47
.3

3%
50

.7
1%

10
00

35
.9

9%
41

.2
1%

43
.0

4%
44

.8
0%

49
.6

1%
10

00
37

.6
5%

42
.6

0%
44

.3
6%

45
.9

9%
50

.4
3%

10
0

54
.3

4%
57

.1
1%

61
.5

3%
65

.0
8%

61
.1

8%
10

0
66

.3
3%

68
.2

2%
70

.5
6%

72
.3

8%
58

.8
4%

8
10

50
0

50
.9

4%
53

.8
9%

58
.8

0%
62

.9
9%

68
.3

0%
8

50
50

0
54

.2
0%

57
.0

3%
61

.3
9%

65
.1

5%
69

.3
3%

10
00

50
.4

8%
53

.4
6%

58
.4

7%
62

.7
0%

69
.1

5%
10

00
52

.2
3%

55
.1

2%
59

.8
7%

63
.8

5%
69

.7
4%

10
0

62
.6

3%
67

.9
5%

72
.8

0%
75

.2
4%

66
.3

5%
10

0
75

.5
4%

78
.4

2%
81

.5
6%

82
.4

4%
57

.9
7%

16
10

50
0

59
.4

2%
64

.7
1%

70
.4

9%
73

.2
4%

79
.9

3%
16

50
50

0
62

.7
0%

67
.6

6%
72

.9
5%

75
.2

8%
80

.3
8%

10
00

59
.0

0%
64

.4
3%

70
.2

5%
72

.9
6%

81
.6

3%
10

00
60

.7
9%

65
.8

7%
71

.4
9%

74
.0

4%
81

.9
5%

7.3 Sequencing in an Assembly System 345

the relative error is at least 19.6% for all the (s, l, u, n) combinations considered,
we conclude that there is substantial conflict between the two schedules. The results
in Table 7.8 indicate that the relative errors increase significantly with the number
of suppliers, s. This can be explained as follows. As s increases, Cj increases, since
it is the maximum of Cij over i = 1, . . . , s. Also, the increase of Cj under schedule
ν is likely to be larger than that under schedule ρ, because schedule ρ uses the same
job sequence at all the suppliers, whereas schedule ν does not. The relative errors
also increase slightly with n, for 50 ≤ n ≤ 400.

We next evaluate the relative error of the optimal schedule γ for the manufac-
turer’s problem As||∑Cj when it is used for the suppliers’ problem As||∑∑

Cij ,
i.e.,

∑s
i=1

∑
j∈N Cij (γ) −∑s

i=1
∑

j∈N Cij (ν)
∑s

i=1
∑

j∈N Cij (ν)
.

We first analyze the solvability of these two problems. In view of Theorems 7.12
and 7.13, we use schedule ξ generated by the following shortest total processing
time rule to evaluate the performance of γ .

Heuristic STPT Schedule the jobs in nondecreasing order of
∑s

i=1 pij at each
supplier.

We need the following two preliminary results to provide some insight.

Theorem 7.15 Heuristic STPT finds an optimal schedule for problem As|coseq|∑∑
Cij in O(n log n) time.

Proof Consider a hypothetical schedule in which job k immediately precedes job
j in some common sequence σ , where

∑s
i=1 pik >

∑s
i=1 pij . Let ti denote the

total processing time of the jobs that are scheduled before j and k at supplier Si , for
i = 1, . . . , s. Then, the total completion time of jobs k and j is

s∑

i=1

(Cik + Cij) =
s∑

i=1

2ti +
s∑

i=1

2pik +
s∑

i=1

pij .

If we interchange jobs j and k to obtain a sequence σ ′, then the total completion
time of jobs k and j becomes

s∑

i=1

(C′
ik + C′

ij) =
s∑

i=1

2ti +
s∑

i=1

2pij +
s∑

i=1

pik.

Since
∑s

i=1 pik >
∑s

i=1 pij , we have

s∑

i=1

(C′
ik + C′

ij) −
s∑

i=1

(Cik + Cij) =
s∑

i=1

(pij − pik) < 0.

346 7 Optimization and Conflict

Thus, the total completion time of sequence σ ′ is lower than that of σ . Repeating
this argument proves the theorem. ��
Lemma 7.7 For any manufacturer’s problem with a regular objective function of
(C1, . . . , Cn) denoted by As| · | max1≤j≤n {fj (Cj)} or As| · |∑ fj (Cj), where
fj (·) is a nondecreasing function, and without processing times at the manufacturer
or transportation times, there exists an optimal schedule that uses identical job
sequences at all suppliers.

Proof Consider a schedule with two jobs i and j such that job i is scheduled before
job j at supplier S1 and job j is scheduled before job i at supplier S2. If C1j ≤ C2k ,
then interchange jobs k and j at supplier S1. Alternatively, if C1j > C2k , then
interchange jobs k and j at supplier S2. In both cases, the completion time of each
job is either unchanged or decreased in the new schedule. ��

From Theorem 7.15, schedule ξ minimizes
∑∑

Cij over all schedules that
require identical job sequences at the suppliers. From Lemma 7.7, we may assume
without loss of generality that schedule γ has identical job sequences at the
suppliers. Therefore, we have

s∑

i=1

∑

j∈N
Cij (γ) ≥

s∑

i=1

∑

j∈N
Cij (ξ) (7.13)

⇒
∑s

i=1
∑

j∈N Cij (γ) −∑s
i=1

∑
j∈N Cij (ν)

∑s
i=1

∑
j∈N Cij (ν)

≥
∑s

i=1
∑

j∈N Cij (ξ) −∑s
i=1

∑
j∈N Cij (ν)

∑s
i=1

∑
j∈N Cij (ν)

. (7.14)

The following result provides an asymptotic analysis for the relative error as
n → ∞.

Theorem 7.16 Assume that the job processing times pij are integer valued and
follow an independent and identical discrete uniform distribution over a finite
interval [l, u], where l and u are nonnegative integers. If the optimal schedule γ

for the manufacturer’s problem is used for the suppliers’ problem As||∑∑
Cij ,

then the relative gap between the cost of γ and the optimal manufacturer’s cost
satisfies

lim
n→∞

s∑

i=1

∑

j∈N
Cij (γ) −

s∑

i=1

∑

j∈N
Cij (ν)

s∑

i=1

∑

j∈N
Cij (ν)

a.s.≥

su∑

g=sl

[

rsg

g−1∑

h=sl

hrsh

]

s

[
u∑

g=l

(g2 − l2 + g + l)

]

/[2(u − l + 1)2]
− 1,

(7.15)

7.3 Sequencing in an Assembly System 347

where rsk is the probability that the total processing time
∑s

i=1 pij of any job is
equal to k, for sl ≤ k ≤ su.

Proof From the Laws of Large Numbers and the given assumption on the proba-
bility distribution of the pij values, we have, for i = 1, . . . , s, g = l, . . . , u, and
h = sl, . . . , su,

lim
n→∞

mh

n

a.s.= Pr

[
s∑

i=1

pij = h

]

= rsh. (7.16)

We first derive an upper bound on
∑s

i=1
∑

j∈N Cij (ν). From Theorem 7.12, jobs
are in SPT order at each supplier in schedule ν. Thus, each supplier Si processes the
jobs from the same subset Nig consecutively, for g = l, . . . , u, and the jobs from
different subsets in the order (Nil, Ni,l+1, . . . , Niu). At supplier Si , the completion
time of each job j ∈ Nig satisfies Cij (ν) ≤ ∑g

k=l knik . This implies that

∑

j∈N
Cij (ν) =

u∑

g=l

∑

j∈Nig

Cij (ν) ≤
u∑

g=l

(

nig

g∑

k=l

knik

)

. (7.17)

Then, from (7.3) and (7.17), we have

lim
n→∞

∑s
i=1

∑
j∈N Cij (ν)

n2 ≤ lim
n→∞

∑s
i=1

∑u
g=l

(
nig

∑g
k=l knik

)

n2

= lim
n→∞

s∑

i=1

u∑

g=l

(
nig

n

g∑

k=l

nik

n
k

)

a.s.= 1

(u − l + 1)2

s∑

i=1

u∑

g=l

g∑

k=l

k

= s

2(u − l + 1)2

u∑

g=l

(g2 − l2 + g + l). (7.18)

Next, we derive a lower bound on
∑s

i=1
∑

j∈N Cij (γ), using schedule ξ from
Heuristic STPT and (7.13). In schedule ξ , the jobs from the same subset Mg , for
g = sl, . . . , su, are scheduled consecutively, and the jobs from different subsets
are scheduled in the order (Msl,Msl+1, . . . ,Msu). Thus, for each job j ∈ Mg for

g ∈ {sl, . . . , su}, we have Cij (ξ) ≥ ∑g−1
h=sl

∑
j∈Mh

pij , and hence

s∑

i=1

Cij (ξ) ≥
g−1∑

h=sl

∑

j∈Mh

s∑

i=1

pij =
g−1∑

h=sl

∑

j∈Mh

h =
g−1∑

h=sl

hmh.

348 7 Optimization and Conflict

This implies that

s∑

i=1

∑

j∈N
Cij (γ) ≥

s∑

i=1

∑

j∈N
Cij (ξ) =

su∑

g=sl

∑

j∈Mg

[
s∑

i=1

Cij (ξ)

]

≥
su∑

g=sl

∑

j∈Mg

g−1∑

h=sl

hmh =
su∑

g=sl

⎡

⎣mg

g−1∑

h=sl

hmh

⎤

⎦ . (7.19)

Then, from (7.16) and (7.19), we have

lim
n→∞

∑s
i=1

∑
j∈N Cij (γ)

n2 ≥ lim
n→∞

∑su
g=sl

[
mg

∑g−1
h=sl hmh

]

n2

= lim
n→∞

su∑

g=sl

⎡

⎣
mg

n

g−1∑

h=sl

h
mh

n

⎤

⎦ a.s.=
su∑

g=sl

⎡

⎣rsg

g−1∑

h=sl

hrsh

⎤

⎦ . (7.20)

The main result, (7.15), then follows from (7.18) and (7.20). ��
Theorem 7.16 provides an asymptotic lower bound on the relative gap between

schedules γ and ν for the suppliers’ problem, as n → ∞. The probability
parameters rsk can be calculated recursively for given l and u, as follows. First,
when s = 1, we have r1k = 1/(u − l + 1) for l ≤ k ≤ u. Suppose that we
have already calculated rsk for s = 1, . . . , i for some i. Then, the values of ri+1,k

can be found from the following formula: ri+1,k = ∑min{u,k}
j=l ri,k−j /(u− l + 1), for

(i+1)l ≤ k ≤ (i+1)u. For finite values of n, we compute the lower bound in (7.14),
using random test problems that are generated similarly to those in Table 7.8. The
results are reported in Table 7.9. We also compute the lower bound in (7.15) for
each (s, l, u) combination and report the results in the columns with n = ∞ in
Table 7.9. Since the relative error is at least 10% for most (s, l, u, n) combinations
considered, we conclude that there is substantial conflict between the two schedules.
Since in (7.14) schedules γ and ξ use a common sequence for all the suppliers,
whereas schedule ν does not, the relative errors increase with s.

7.3.2.2 Completion Time and Maximum Lateness

We first evaluate the performance of the optimal schedule ν for the supplier’s
problem As||∑∑

Cij when it is used for the manufacturer’s problem As||Lmax,
i.e.,

Lmax(ν) − Lmax(γ)

Lmax(γ)
.

7.3 Sequencing in an Assembly System 349

Ta
bl
e
7.
9

L
ow

er
bo

un
ds

on
re

la
tiv

e
er

ro
r

in
th

e
su

pp
lie

rs
’

pr
ob

le
m

(∑
∑

C
ij

)

L
ow

er
bo

un
d

on
re

la
tiv

e
er

ro
r

L
ow

er
bo

un
d

on
re

la
tiv

e
er

ro
r

s
l

u
n

=
50

n
=

10
0

n
=

20
0

n
=

40
0

n
=

∞
s

l
u

n
=

50
n

=
10

0
n

=
20

0
n

=
40

0
n

=
∞

10
0

10
.6

0%
11

.1
3%

11
.2

6%
11

.2
3%

8.
73

%
10

0
3.

56
%

3.
72

%
3.

74
%

3.
72

%
0.

06
%

2
10

50
0

13
.1

6%
13

.8
0%

13
.9

9%
13

.9
7%

13
.6

4%
2

50
50

0
10

.5
0%

11
.0

0%
11

.1
4%

11
.1

1%
10

.7
4%

10
00

13
.5

3%
14

.1
9%

14
.3

9%
14

.3
7%

14
.3

1%
10

00
12

.0
5%

12
.6

4%
12

.8
1%

12
.7

8%
12

.7
0%

10
0

17
.2

9%
17

.9
4%

18
.7

4%
18

.7
8%

16
.8

2%
10

0
5.

82
%

5.
98

%
6.

22
%

6.
24

%
3.

07
%

4
10

50
0

21
.4

2%
22

.2
8%

23
.3

1%
23

.3
5%

23
.5

0%
4

50
50

0
17

.1
2%

17
.7

6%
18

.5
5%

18
.5

9%
18

.6
1%

10
00

22
.0

2%
22

.9
1%

23
.9

7%
24

.0
1%

24
.4

4%
10

00
19

.6
4%

20
.4

1%
21

.3
3%

21
.3

7%
21

.7
3%

10
0

23
.5

6%
24

.4
8%

24
.4

7%
24

.6
0%

22
.4

6%
10

0
7.

90
%

8.
16

%
8.

15
%

8.
18

%
5.

18
%

8
10

50
0

29
.1

9%
30

.4
1%

30
.4

1%
30

.5
9%

30
.3

8%
8

50
50

0
23

.3
2%

24
.2

4%
24

.2
3%

24
.3

6%
24

.0
9%

10
00

30
.0

1%
31

.2
7%

31
.2

7%
31

.4
6%

31
.5

1%
10

00
26

.7
6%

27
.8

5%
27

.8
5%

28
.0

0%
28

.0
1%

10
0

27
.2

7%
27

.9
5%

28
.4

7%
28

.4
6%

26
.4

3%
10

0
9.

13
%

9.
33

%
9.

48
%

9.
46

%
6.

67
%

16
10

50
0

33
.8

1%
34

.7
0%

35
.3

8%
35

.3
8%

35
.2

1%
16

50
50

0
27

.0
0%

27
.6

8%
28

.1
9%

28
.1

8%
27

.9
4%

10
00

34
.7

6%
35

.6
8%

36
.3

8%
36

.3
9%

36
.4

7%
10

00
30

.9
9%

31
.7

9%
32

.4
0%

32
.3

9%
32

.4
3%

350 7 Optimization and Conflict

As a preliminary step, we briefly discuss the solvability of these two problems.
Problem As||∑∑

Cij is studied in Theorem 7.12. For problem As||Lmax, the fol-
lowing result generalizes that of Jackson (1955) for the single-machine scheduling
problem 1||Lmax.

Theorem 7.17 An optimal schedule for problem As||Lmax is provided by an
earliest due date (EDD) ordering of the jobs, which can be found in O(n log n)
time.

Proof From Lemma 7.7, we assume that the suppliers use a common sequence.
Consider a hypothetical schedule in which job k immediately precedes job j in
sequence σ , where dj < dk . Let ti denote the total processing time of the jobs
before j and k at supplier Si , for i = 1, . . . , s. Then the maximum lateness among
jobs j and k is given by

Lmax = max
{

max
1≤i≤s

{ti + pik} − dk, max
1≤i≤s

{ti + pik + pij } − dj
}
.

If we interchange jobs j and k to obtain a sequence σ ′, then the maximum
lateness among jobs j and k is given by

L′
max = max

{
max

1≤i≤s
{ti + pij } − dj , max

1≤i≤s
{ti + pij + pik} − dk

}
,

where since dj < dk , the second term in Lmax is larger than the second term in L′
max.

Thus, L′
max ≤ Lmax. The jobs can be sorted in EDD order in O(n log n) time. ��

The following result provides an asymptotic analysis for the relative error as
n → ∞.

Theorem 7.18 Assume that

(i) The job processing times pij are integer valued and follow an independent and
identical discrete uniform distribution over a finite interval [l, u], where l and
u are nonnegative integers.

(ii) The job due dates dj follow an independent and identical uniform distribution
over the interval [0, np̄], where p̄ = (l + u)/2 is the average processing time
of a job at a supplier.

(iii) The pij and dj values are independent.

If the optimal schedule ν for the suppliers’ problem is used for the manufacturer’s
problem As||Lmax, then the relative error between the maximum lateness of ν and
the optimal manufacturer’s maximum lateness satisfies

lim
n→∞

Lmax(ν) − Lmax(γ)

Lmax(γ)

a.s.= ∞. (7.21)

Proof Classify the jobs into m classes, D1, . . . , Dm, where m is an arbitrary
positive integer, and Dk = {j ∈ N | np̄(k − 1)/m ≤ dj < np̄k/m}, for

7.3 Sequencing in an Assembly System 351

k = 1, . . . , m. Define Nigk = Nig ∩ Dk , and let nigk be the number of jobs in
Nigk , for i = 1, . . . , s, g = l, . . . , u, and k = 1, . . . , m. From the Laws of Large
Numbers and the given assumption on the probability distributions of the pij and dj
values, we have

lim
n→∞

nigk

n

a.s.= Pr[pij = g, np̄(k − 1)/m ≤ dj < np̄k/m] = 1

m(u − l + 1)
.

(7.22)

Equation (7.22) means that, almost surely, Nigk contains an infinite number of
jobs. Consider a job j ∈ Niu1 in schedule ν. Since in ν, jobs are processed in SPT
order at each supplier, all the jobs from Nil ∪ . . . ∪ Ni,u−1 are scheduled before j .
Thus,

Cij (ν) ≥
u−1∑

h=l

hnih. (7.23)

Now, (7.23) implies that

Lmax(ν) ≥ Lij (ν) = Cij (ν) − dj ≥
u−1∑

h=l

hnih − dj

≥
u−1∑

h=l

hnih − np̄/m. (7.24)

From (7.3), (7.24) implies that

lim
n→∞

Lmax(ν)

n
≥ lim

n→∞

u−1∑

h=l

hnih/n − p̄/m

a.s.≥
u−1∑

h=l

h/(u − l + 1) − p̄/m = (u − l)(u + l − 1)

2(u − l + 1)
− p̄/m.

(7.25)

Next, we consider schedule γ . Since, from Theorem 7.17, jobs are processed in
EDD order at each supplier in schedule γ , we have, for i = 1, . . . , s, j ∈ Dk , and
k = 1, . . . , m,

Cij (γ) ≤
k∑

h=1

u∑

g=l

gnigh. (7.26)

352 7 Optimization and Conflict

Then, from (7.26), we have

lim
n→∞

Lij (γ)

n
= lim

n→∞
Cij (γ) − dj

n
≤ lim

n→∞

∑k
h=1

∑u
g=l gnigh − np̄(k − 1)/m

n

= lim
n→∞

⎛

⎝
k∑

h=1

u∑

g=l

gnigh/n − p̄(k − 1)/m

⎞

⎠

a.s.=
k∑

h=1

u∑

g=l

g/[m(u − l + 1)] − p̄(k − 1)/m, from (7.22)

= p̄k/m − p̄(k − 1)/m = p̄/m. (7.27)

Since (7.27) holds for i = 1, . . . , s and j ∈ N , we have

lim
n→∞

Lmax(γ)

n

a.s.≤ p̄/m. (7.28)

Now, (7.25) and (7.28) hold for any given m. Therefore, as m → ∞, (7.25)
and (7.28) imply the main result, (7.21). ��

Theorem 7.18 implies that, as n → ∞, the relative error between schedules ν

and γ for the manufacturer’s problem becomes, almost surely, arbitrarily large. For
finite values of n, we compute the relative error using random test problems where
the parameters s, n, l, u, and pij are generated similarly to those in Tables 7.8
and 7.9 and where the parameter dj is independently drawn from a discrete uniform
distribution over the interval [0, n(l + u)/2]. For each (s, l, u, n) combination, the
mean relative error over 10 random instances is reported in Table 7.10. As can be
seen there, large relative errors occur over all (s, l, u, n) combinations considered,
indicating huge conflict between the two schedules. These errors are much larger
than those observed in Tables 7.8 and 7.9 because lower bounds on the value of
Lmax may be small. The relative errors increase strongly with n, since as the number
of jobs increases, the error caused by a single job with large processing times but a
small due date being at the end of schedule ν increases.

We next evaluate the relative error of the optimal schedule γ for the manufac-
turer’s problem As||Lmax when it is used for the suppliers’ problem As||∑∑

Cij ,
i.e.,

∑s
i=1

∑
j∈N Cij (γ) −∑s

i=1
∑

j∈N Cij (ν)
∑s

i=1
∑

j∈N Cij (ν)
.

The following result provides an asymptotic analysis of the relative error as n → ∞.

7.3 Sequencing in an Assembly System 353

Ta
bl
e
7.
10

R
el

at
iv

e
er

ro
rs

in
th

e
m

an
uf

ac
tu

re
r’

s
pr

ob
le

m
(L

m
ax

)

R
el

at
iv

e
er

ro
r

R
el

at
iv

e
er

ro
r

s
l

u
n

=
50

n
=

10
0

n
=

20
0

n
=

40
0

n
=

∞
s

l
u

n
=

50
n

=
10

0
n

=
20

0
n

=
40

0
n

=
∞

10
0

76
4%

10
06

%
14

65
%

20
59

%
∞

10
0

13
05

%
14

19
%

20
66

%
29

62
%

∞
2

10
50

0
63

6%
87

5%
12

88
%

17
65

%
∞

2
50

50
0

72
2%

95
6%

13
97

%
17

30
%

∞
10

00
62

1%
86

4%
12

70
%

17
30

%
∞

10
00

66
2%

90
5%

13
22

%
18

03
%

∞
10

0
62

7%
10

84
%

12
58

%
22

27
%

∞
10

0
99

1%
15

42
%

20
35

%
36

33
%

∞
4

10
50

0
55

2%
93

6%
10

62
%

17
69

%
∞

4
50

50
0

61
1%

99
9%

11
89

%
19

78
%

∞
10

00
54

3%
91

7%
10

42
%

17
22

%
∞

10
00

57
2%

95
8%

11
03

%
18

25
%

∞
10

0
60

3%
87

3%
13

37
%

22
86

%
∞

10
0

10
13

%
13

98
%

21
48

%
39

64
%

∞
8

10
50

0
51

1%
73

9%
10

78
%

18
14

%
∞

8
50

50
0

58
2%

83
0%

12
23

%
20

35
%

∞
10

00
50

4%
72

4%
10

50
%

17
71

%
∞

10
00

53
8%

77
0%

11
18

%
18

75
%

∞
10

0
43

6%
78

6%
11

85
%

19
92

%
∞

10
0

66
9%

13
17

%
23

61
%

37
39

%
∞

16
10

50
0

37
2%

67
7%

95
2%

15
65

%
∞

16
50

50
0

42
1%

76
3%

10
87

%
17

89
%

∞
10

00
36

6%
66

0%
93

0%
15

15
%

∞
10

00
39

1%
70

3%
99

2%
16

21
%

∞

354 7 Optimization and Conflict

Theorem 7.19 Assume that

(i) The job processing times pij are integer valued and follow an independent and
identical discrete uniform distribution over a finite interval [l, u], where l and
u are nonnegative integers.

(ii) The job due dates dj follow an arbitrary independent and identical distribu-
tion.

(iii) The pij and dj values are independent.

If the optimal schedule γ for the manufacturer’s problem is used for the suppliers’
problem As||∑∑

Cij , then the relative error between the cost of γ and that of ν
satisfies

lim
n→∞

s∑

i=1

∑

j∈N
Cij (γ) −

s∑

i=1

∑

j∈N
Cij (ν)

s∑

i=1

∑

j∈N
Cij (ν)

a.s.≥ (u + l)(u − l + 1)2

2
u∑

g=l

(g2 − l2 + g + l)

− 1. (7.29)

We refer the reader to (Chen & Hall, 2007) for a proof.
Theorem 7.19 provides an asymptotic lower bound on the relative error between

schedules γ and ν for the suppliers’ problem. For finite values of n, we compute the
relative error using random test problems which are generated similarly to those in
Table 7.10. For each (s, l, u, n) combination, the mean relative error over 10 random
instances is reported in Table 7.11. We also compute the lower bound in (7.29) for
each (s, l, u) combination and report the results in the columns with n = ∞ in
Table 7.11. Since the relative error is at least 10.3% for all (s, l, u, n) combinations
considered, we conclude that there is substantial conflict between the schedules. The
explanation of the results is similar to that for Table 7.9.

7.3.3 Suppliers Dominate and Manufacturer Negotiates

Motivated by the evidence of significant cost of conflict found in Sect. 7.3.2, we
investigate in Sects. 7.3.3–7.3.6 how different bargaining power scenarios lead to
various resolutions of this conflict. Figure 7.5 provides an overview of this work. We
first consider a situation where the suppliers have dominant bargaining power in the
supply chain and choose their optimal schedule, ν. Here, the manufacturer may wish
to compensate the suppliers for using some alternative schedule σ which is cheaper
for the manufacturer than ν. The bargaining theory of Nash (1950, 1953) suggests
that this incentive has to be sufficient to persuade the suppliers to select schedule
σ (to be determined) instead of ν, while the resulting cost to the manufacturer has
to be no more than that of ν. Recall that αFi denotes the cost of supplier Si , and

7.3 Sequencing in an Assembly System 355

Ta
bl
e
7.
11

R
el

at
iv

e
er

ro
rs

in
th

e
su

pp
lie

rs
’

pr
ob

le
m

(∑
∑

C
ij

)

R
el

at
iv

e
er

ro
r

R
el

at
iv

e
er

ro
r

s
l

u
n

=
50

n
=

10
0

n
=

20
0

n
=

40
0

n
=

∞
s

l
u

n
=

50
n

=
10

0
n

=
20

0
n

=
40

0
n

=
∞

10
0

34
.7

8%
36

.1
9%

36
.8

2%
37

.1
7%

36
.0

1%
10

0
11

.6
4%

12
.0

2%
12

.1
9%

12
.3

5%
10

.3
4%

2
10

50
0

43
.1

1%
44

.9
6%

45
.8

3%
46

.2
0%

46
.8

2%
2

50
50

0
34

.4
0%

35
.8

0%
36

.4
4%

36
.7

9%
37

.2
0%

10
00

44
.3

1%
46

.2
5%

47
.1

5%
47

.5
2%

48
.3

8%
10

00
39

.5
0%

41
.1

6%
41

.9
3%

42
.3

0%
43

.0
3%

10
0

36
.5

0%
37

.2
3%

37
.4

4%
37

.6
4%

36
.0

1%
10

0
12

.2
0%

12
.3

7%
12

.4
7%

12
.5

3%
10

.3
4%

4
10

50
0

45
.2

6%
46

.2
8%

46
.5

0%
46

.7
7%

46
.8

2%
4

50
50

0
36

.1
1%

36
.8

4%
37

.0
6%

37
.2

6%
37

.2
0%

10
00

46
.5

3%
47

.6
0%

47
.8

2%
48

.1
0%

48
.3

8%
10

00
41

.4
7%

42
.3

6%
42

.5
9%

42
.8

3%
43

.0
3%

10
0

35
.9

9%
37

.0
3%

37
.6

6%
37

.6
5%

36
.0

1%
10

0
12

.0
2%

12
.3

6%
12

.5
5%

12
.5

2%
10

.3
4%

8
10

50
0

44
.6

5%
45

.9
6%

46
.7

8%
46

.7
9%

46
.8

2%
8

50
50

0
35

.6
2%

36
.6

6%
37

.2
8%

37
.2

7%
37

.2
0%

10
00

45
.9

0%
47

.2
6%

48
.1

0%
48

.1
2%

48
.3

8%
10

00
40

.9
1%

42
.1

1%
42

.8
4%

42
.8

4%
43

.0
3%

10
0

36
.0

6%
37

.1
9%

37
.5

9%
37

.8
0%

36
.0

1%
10

0
12

.0
9%

12
.4

2%
12

.5
2%

12
.5

5%
10

.3
4%

16
10

50
0

44
.6

8%
46

.1
5%

46
.7

0%
47

.0
1%

46
.8

2%
16

50
50

0
35

.7
0%

36
.8

2%
37

.2
2%

37
.4

2%
37

.2
0%

10
00

45
.9

3%
47

.4
5%

48
.0

3%
48

.3
5%

48
.3

8%
10

00
40

.9
6%

42
.2

8%
42

.7
7%

43
.0

3%
43

.0
3%

356 7 Optimization and Conflict

(1 −α)G denotes the cost of the manufacturer. Therefore, the incentive ui provided
to each supplier Si must satisfy

αFi(σ) − ui ≤ αFi(ν), for i = 1, . . . , s, and (7.30)

(1 − α)G(σ) +
s∑

i=1

ui ≤ (1 − α)G(ν). (7.31)

Also, the manufacturer chooses σ to minimize its total cost (1 − α)G(σ) +∑s
i=1 ui . Thus, the manufacturer is faced with the following optimization problem

in determining σ and u1, . . . , us :

min
σ,u1,...,us

(1 − α)G(σ) +
s∑

i=1

ui, s.t. (7.30), (7.31), and ui ≥ 0, i = 1, . . . , s.

(7.32)

Theorem 7.20 The solution (σ, u1, . . . , us) defined by σ = π and ui = α[Fi(π)−
Fi(ν)], for i = 1, . . . , s, where π is a schedule that minimizes α

∑s
i=1 Fi(σ)+ (1−

α)G(σ), is optimal for problem (7.32).

Proof By definition of π , we have α
∑s

i=1 Fi(π)+(1−α)G(π) ≤ α
∑s

i=1 Fi(ν)+
(1 − α)G(ν). Thus, the solution (σ, u1, . . . , us) satisfies (7.31). Since by construc-
tion it also satisfies (7.30), it follows that this solution is feasible for problem (7.32).
From (7.30), given any feasible solution (σ, u1, . . . , us) to problem (7.32), its cost
to the manufacturer, denoted by Z(σ, u1, . . . , us), satisfies

Z(σ, u1, . . . , us) ≥ α

s∑

i=1

Fi(σ) + (1 − α)G(σ) − α

s∑

i=1

Fi(ν). (7.33)

Since α
∑s

i=1 Fi(σ)+ (1 − α)G(σ) is minimized when σ = π , the right-hand side
of (7.33) is minimized when σ = π . Therefore, α

∑s
i=1 Fi(π) + (1 − α)G(π) −

α
∑s

i=1 Fi(ν) is a lower bound on optimal cost in problem (7.32). However, the cost
of the solution given in the theorem equals this lower bound. Therefore, this solution
is optimal for problem (7.32). ��

Theorem 7.20 implies that (i) problem (7.32) is feasible and hence the proposed
cooperation mechanism can always be used, and (ii) the optimal strategy of the
manufacturer is to provide an incentive of ui = α[Fi(π) − Fi(ν)] to each supplier
Si , for i = 1, . . . , s. Consequently, the suppliers agree to use schedule π . It follows
that the manufacturer’s cost is equal to the optimal cost in problem (7.32), i.e.,
α
∑s

i=1[Fi(π) − Fi(ν)] + (1 − α)G(π). In the absence of cooperation, schedule
ν is used and the manufacturer’s cost is (1 − α)G(ν). Thus, the net saving to the
manufacturer from obtaining the suppliers’ cooperation is

7.3 Sequencing in an Assembly System 357

(1 − α)G(ν) − α

s∑

i=1

[Fi(π) − Fi(ν)] − (1 − α)G(π)

=
[

α

s∑

i=1

Fi(ν) + (1 − α)G(ν)

]

−
[

α

s∑

i=1

Fi(π) + (1 − α)G(π)

]

, (7.34)

which is also the difference between the total system cost under schedule ν and
under schedule π .

Remark 7.4 If ν is not optimal for the system problem, then the net saving to the
manufacturer in (7.34) is positive, hence the manufacturer should encourage the
suppliers to use schedule π by providing the incentive ui given in Theorem 7.20 to
each supplier Si , for i = 1, . . . , s. However, if ν is optimal for the system problem,
then no incentive provided to the suppliers creates a net saving to the manufacturer.
In this case, the suppliers use schedule ν. In either case, the suppliers’ total cost is no
greater than the optimal cost given by schedule ν. Since the suppliers use a schedule
which is optimal for the system problem (i.e., either π or ν if ν is optimal for the
system problem), the proposed cooperation mechanism is equivalent to centralized
decision making for the system as a whole.

Theorem 7.20 shows that, whether π = ν or not, the optimal system schedule π

is always achieved. Therefore, we need to operationalize this result by studying the
solvability of the two system problems defined by our cooperation mechanism. In
doing so, we note that α is fixed, and therefore the system problem does not directly
generalize the related suppliers’ or manufacturer’s problem.

First, we consider problem As||α∑∑
Cij + (1 − α)

∑
Cj .

Theorem 7.21 The recognition version of problemAs||α∑∑
Cij +(1−α)

∑
Cj ,

where 0 < α < 1 is a fixed parameter, is unary NP-complete.

Proof We first prove a similar result for problem As|coseq|α∑∑
Cij + (1 −

α)
∑

Cj . The proof is by reduction from 3-Partition, as described in the proof
of Theorem 7.13. Construct an instance of problem As|coseq|α∑∑

Cij + (1 −
α)
∑

Cj with n = 4m and s = 5, where the job processing times at the first four
suppliers are exactly the same as in the instance in the proof of Theorem 7.13, and
the job processing times at supplier S5 are identical to those at supplier S1. Let the
threshold cost be C = α[15Bn(n + 1)/2] + (1 − α)(24m2B + 12mB). We prove
that there exists a schedule for this instance of problem As|coseq|α∑∑

Cij +(1−
α)
∑

Cj with cost less than or equal to C if and only if there exists a solution to
3-Partition.
(⇒) Consider the sequence (1, 2, 3, 3m+1, . . . , 3m−2, 3m−1, 3m, 4m). From the
(⇒) part of the proof of Theorem 7.13, (1 − α)

∑
Cj = (1 − α)(24m2B + 12mB).

Also, since
∑s

i=1 pi1 = · · · = ∑s
i=1 pin = 15B, we have α

∑∑
Cij = α[15B(1+

· · ·+n)] = α[15Bn(n+1)/2]. Thus, the total cost is α
∑∑

Cij + (1−α)
∑

Cj =
α[15Bn(n + 1)/2)] + (1 − α)(24m2B + 12mB) = C.

358 7 Optimization and Conflict

(⇐) Since
∑s

i=1 pi1 = · · · = ∑s
i=1 pin = 15B, and from Theorem 7.15, we have

α
∑∑

Cij = α[15Bn(n + 1)/2] for any sequence. The remainder of the proof
follows from the (⇐) part of the proof of Theorem 7.13.

We can now proceed to our main result for problem As||α∑∑
Cij + (1 −

α)
∑

Cj . The proof is by reduction from problem As|coseq|α∑∑
Cij + (1 −

α)
∑

Cj . Given an arbitrary instance of problem As|coseq|α∑∑
Cij + (1 −

α)
∑

Cj defined by α, processing times p′
ij , and threshold cost C′, we construct an

instance of problem As||α∑∑
Cij+(1−α)

∑
Cj with pij = p′

ij+(C′+1)/(1−α)

and a threshold cost C = C′+αsn(n+1)(C′+1)/[2(1−α)]+n(n+1)(C′+1)/2. We
prove that there exists a schedule for this instance of problem As||α∑∑

Cij +(1−
α)
∑

Cj with α
∑∑

Cij + (1−α)
∑

Cj ≤ C if and only if there exists a schedule
for problem As|coseq|α∑∑

Cij+(1−α)
∑

Cj with α
∑∑

Cij+(1−α)
∑

Cj ≤
C′.
(⇒) Let σ ′ denote a schedule for problem As|coseq|α∑∑

Cij +(1−α)
∑

Cj that
has α

∑∑
Cij + (1 − α)

∑
Cj ≤ C. From the construction of the pij values, we

have α
∑∑

Cij+(1−α)
∑

Cj ≤ C′+αsn(n+1)(C′+1)/[2(1−α)]+n(n+1)(C′+
1)/2 = C for σ ′ in the constructed instance of As||α∑∑

Cij + (1 − α)
∑

Cj .
(⇐) Let σ denote a schedule for the constructed instance of problem
As||α∑∑

Cij + (1 − α)
∑

Cj that has α
∑∑

Cij + (1 − α)
∑

Cj ≤ C.
From the construction of the pij values, we have

∑
C′
j ≤ C − αsn(n + 1)(C′ +

1)/[2(1 − α)] − n(n + 1)(C′ + 1)/2 = C′. It remains to prove that σ satisfies
the common sequence requirement. First, in the constructed instance of problem
As||α∑∑

Cij + (1 − α)
∑

Cj , we must have

∑∑
Cij ≥ sn(n + 1)(C′ + 1)

2(1 − α)
, (7.35)

where this lower bound is obtained by assuming that pij = 0 for i = 1, . . . , s, j =
1, . . . , n. Second, if σ does not satisfy the common sequence requirement, then
using the same assumption,

∑
Cj ≥ (C′ + 1)[(1 + · · · + n) + 1]

(1 − α)
= n(n + 1)(C′ + 1)

2(1 − α)
+ (C′ + 1)

(1 − α)
.

(7.36)

Finally, from (7.35) and (7.36), we obtain

α
∑∑

Cij + (1−α)
∑

Cj ≥ αsn(n + 1)(C′ + 1)

2(1 − α)
+ n(n + 1)(C′ + 1)

2
+ (C′ +1) > C.

This contradiction completes the proof. ��
Theorem 7.21 motivates the use of ISPT as a heuristic for problem

As||α∑∑
Cij + (1 − α)

∑
Cj .

7.3 Sequencing in an Assembly System 359

Theorem 7.22 For problem As||α∑∑
Cij + (1 − α)

∑
Cj , let the value of the

solution delivered by ISPT be FH and the optimal objective value be F ∗. Then,
FH ≤ [s/(αs − α + 1)]F ∗.

Proof Let CH
ij and CH

j denote the completion time of job j at supplier Si and that at
the manufacturer, respectively, in the schedule obtained by Heuristic ISPT and C∗

ij

and C∗
j the job completion time of job j at supplier Si and that at the manufacturer,

respectively, in the optimal schedule. Since
∑

j∈N C∗
j = ∑

j∈N max1≤i≤s{C∗
ij } ≥

∑s
i=1

∑
j∈N C∗

ij /s, we have

F ∗ = α

s∑

i=1

∑

j∈N
C∗
ij + (1 − α)

∑

j∈N
C∗
j ≥ [α + (1 − α)/s]

s∑

i=1

∑

j∈N
C∗
ij

≥ [α + (1 − α)/s]
s∑

i=1

∑

j∈N
CH
ij , (7.37)

where the last inequality follows from Smith (1956). Also, since
∑

j∈N CH
j ≤

∑s
i=1

∑
j∈N CH

ij , we have

FH = α

s∑

i=1

∑

j∈N
CH
ij + (1 − α)

∑

j∈N
CH
j ≤

s∑

i=1

∑

j∈N
CH
ij . (7.38)

Finally, from (7.37) and (7.38), we have

FH ≤ 1/[α + (1 − α)/s]F ∗ = [s/(αs − α + 1)]F ∗. ��

Remark 7.5 It follows from Theorem 7.22 that Heuristic ISPT is optimal for
problem As||∑∑

Cij and also performs well for problem As||α∑∑
Cij + (1 −

α)
∑

Cj when α is close to 1. Alternatively, when α is close to zero, the problem is
similar to As||∑Cj , for which we discuss a heuristic in Sect. 7.3.5.

Second, we consider problem As||α∑∑
Cij +(1−α)Lmax. Hoogeveen and van

de Velde (1995) describe an O(n3 log n) time algorithm for finding all the Pareto-
optimal solutions for problem 1||F(

∑
Cj ,Lmax), where F denotes an arbitrary

linear additive objective function, and Cj denotes the completion time of job j on
the single machine. We propose the following algorithm.

Algorithm SCL

1. For each supplier, apply the algorithm of Hoogeveen and van de Velde (1995) to
find all the Pareto-optimal (

∑
Cj ,Lmax) pairs.

360 7 Optimization and Conflict

2. Sort the Pareto-optimal solutions for each supplier i = 1, . . . , s by nonde-
creasing order of Lmax values. Let (li1, . . . , liki) and (πi1, . . . , πiki) denote
the resulting list of Lmax values and the associated schedules of supplier Si ,
respectively, where ki is the number of Pareto-optimal solutions for supplier
Si . Merge the lists (li1, . . . , liki), for i = 1, . . . , s, to create a single list
(l[1], . . . , l[q]), where l[1] ≤ · · · ≤ l[q], and q is the number of different values of
lih, for i = 1, . . . , s, and h = 1, . . . , ki .

3. For each l[h], for h = 1, . . . , q, do the following:
4. For each i = 1, . . . , s, find index ui from the list (li1, . . . , łiki) such that lui ≤ l[h]

and lui is closest to l[h] in this list.
5. Compute the total cost α

∑s
i=1

∑
j∈N Cij (πiui) + (1 − α)l[h].

6. Select a solution with the minimum total cost.

Theorem 7.23 Algorithm SCL solves problem As||α∑∑
Cij + (1 − α)Lmax in

O(sn3 log n) time.

Proof We first prove the optimality of Algorithm SCL. The total cost, α
∑∑

Cij +
(1−α)Lmax, changes only at values of Lmax that identify a Pareto-optimal solution.
Therefore, it is only necessary to identify Lmax values at which at least one supplier
has such a solution. This is achieved for individual suppliers in Step 1 and by
merging the suppliers’ lists in Step 2. The comparison of all candidate solutions’
costs in Step 3 thus identifies an optimal solution.

We now consider the time required by Algorithm SCL. From Hoogeveen and van
de Velde (1995), Step 1 requires O(sn3 log n) time. They also show that the list of
Pareto-optimal points for a single supplier has O(n2) entries. Therefore, the lists
can be sorted and merged in Step 2 in O(sn2 log n + sn2) time. Since each Pareto-
optimal solution needs to be considered only once when Lmax is monotonically
increasing, Step 3 requires constant time for each of the entries in the merged
list, i.e. O(sn2) time. Therefore, the overall time requirement of Algorithm SCL
is O(sn3 log n). ��

7.3.4 Manufacturer Dominates and Suppliers Negotiate

Referring to Fig. 7.5, we consider a situation where the manufacturer has dominant
bargaining power and chooses its optimal schedule γ . Here, the suppliers may
prefer the manufacturer to choose some other schedule which is cheaper than γ

for the suppliers. To resolve this conflict, we propose the following cooperation
mechanism.

The suppliers collectively offer an incentive to the manufacturer to use a schedule
that is cheaper for them than γ . Let v and σ denote the incentive provided by
the suppliers and the schedule which the suppliers want the manufacturer to use,

7.3 Sequencing in an Assembly System 361

respectively. Similar to the derivation of (7.32), the suppliers are faced with the
following optimization problem:

min
σ,v

α

s∑

i=1

Fi(σ) + v (7.39)

s.t. (1 − α)G(σ) − v ≤ (1 − α)G(γ) (7.40)

α

s∑

i=1

Fi(σ) + v ≤ α

s∑

i=1

Fi(γ) (7.41)

v ≥ 0. (7.42)

Theorem 7.24 The solution (σ, v) defined by σ = π and v = (1 − α)[G(π) −
G(γ)] is optimal for problem (7.39)–(7.42), where π is the schedule that minimizes
α
∑s

i=1 Fi(σ) + (1 − α)G(σ).

Proof The proof is similar to that of Theorem 7.20. ��
Theorem 7.24 implies that (i) problem (7.39)–(7.42) is feasible, and therefore

the proposed cooperation mechanism can always be used if the suppliers are willing
to negotiate collectively with the manufacturer, and (ii) the optimal strategy of the
suppliers is to provide collectively an incentive of v = (1 − α)[G(π) − G(γ)] to
the manufacturer. Consequently, the manufacturer agrees to use schedule π , and the
net saving to the suppliers from the manufacturer’s cooperation is given by

Δ = α

s∑

i=1

Fi(γ) −
{

α

s∑

i=1

Fi(π) + (1 − α)[G(π) − G(γ)]
}

(7.43)

=
[

α

s∑

i=1

Fi(γ) + (1 − α)G(γ)

]

−
[

α

s∑

i=1

Fi(π) + (1 − α)G(π)

]

≥ 0.

The first and second terms in (7.43) are the suppliers’ total cost without and with
the manufacturer’s cooperation, respectively.

Remark 7.6 If γ is not optimal for the system problem, then the net saving to
the suppliers in (7.43) is positive, and hence the suppliers as a whole benefit
from the manufacturer’s cooperation. Here, the suppliers work together to provide
the incentive v in Theorem 7.24 to the manufacturer, so that the manufacturer
chooses schedule π . Theorem 7.24 shows that the suppliers prefer schedule π to
ν. If γ is optimal for the system problem, then the suppliers do not bargain with
the manufacturer because they as a whole do not benefit from the manufacturer’s
cooperation.

362 7 Optimization and Conflict

7.3.5 Manufacturer Dominates and Suppliers Adjust

Again referring to Fig. 7.5, we recognize the reality that, in some practical supply
chains, the manufacturer may not allow its suppliers to bargain. This occurs
when a manufacturer is much larger and/or financially stronger than all of its
suppliers. Here, since the suppliers have no bargaining power, they need to meet
any requirements imposed by the manufacturer without compensation. We consider
situations where the manufacturer’s dominance allows it to impose two self-
interested but natural requirements on the suppliers.

The first requirement arises from the manufacturer’s choice of production
sequence, γ . This requirement can be interpreted in two alternative ways: either
that the suppliers face due dates implied by γ for all parts or that some delays in
the manufacturer’s schedule are permitted, subject to a predetermined limit on the
resulting cost increase to the manufacturer. In either case, this requirement can be
implemented by the suppliers individually, without cooperation between them.

The second requirement is that the suppliers all send the jobs to the manufacturer
in some common sequence, so that the manufacturer’s average lead time is
minimized (see Lemma 7.7). One possible cooperation strategy for the suppliers
is as follows. They find a schedule with the same sequence at each supplier that
minimizes the total cost of the suppliers over all such sequences. We denote the
problem of finding such a schedule by As|coseq|∑s

i=1 Fi . We consider problem
As|coseq|∑s

i=1 Fi with various objective functions. Let μ denote an optimal
schedule to problem As|coseq|∑s

i=1 Fi , which is chosen by the suppliers. Since μ

is by definition no better than ν for supplier Si , the cost of each supplier Si increases
by α[Fi(μ) − Fi(ν)] ≥ 0 when using μ instead of ν. Suppliers with a lower than
average cost increase may need to compensate other suppliers.

In order to understand the scheduling problems faced by the suppliers as a
result of the above requirements imposed by the manufacturer, we now discuss the
solvability of the two manufacturer’s problems, As||∑Cj and As||Lmax. Recall
that Theorem 7.13 establishes the intractability of problem As||∑Cj . Therefore,
we now describe a heuristic, Batch, for this problem. We demonstrate that, under
the following mild Assumption A about the job processing times, Batch provides
solutions that are asymptotically optimal in the number of jobs.
Assumption A: The processing times pij take only integer values and follow an
independent and identical discrete distribution Φ(·) over a finite interval [Lp,Up],
where Lp and Up are nonnegative integers.

The intuition behind Heuristic Batch is to schedule most of the jobs in nonde-
creasing order of

∑s
i=1 pij and use special sequences within jobs that have identical

value of
∑s

i=1 pij . The heuristic first divides the jobs into different subsets based on
their processing times. We refer to the vector of data (p1j , . . . , psj) associated with
a job j as the parameter vector of this job. We divide the jobs in N into different
classes such that all the jobs in a class have the same parameter vector, i.e., they are
identical. Let N1, . . . , NK denote those classes of jobs, where N = ∪K

k=1Nk . Note
that K is finite even as n → ∞.

7.3 Sequencing in an Assembly System 363

The following O(sK2) time subroutine partitions the set N into classes
N1, . . . , NK .

Subroutine Class
1. Define the first class by N1 = {1}. Let K = 1.
2. For j = 2, . . . , n, compare the parameter vector of job j with that of each of

the K classes already created, N1, . . . , NK . If job j is identical to the jobs in Nk

for some k, 1 ≤ k ≤ K , then let Nk = Nk ∪ {j}. Otherwise, create a new class,
NK+1 = {j}, and let K = K + 1.

Given a parameter vector (x1, x2, . . . , xs), we define s − 1 shifted vectors
(Kaminsky & Simchi-Levi, 1998) as follows:

(x2, x3, . . . , xs, x1), (x3, x4, . . . , xs, x1, x2), . . . , (xs, x1, . . . , xs−1).

We use the following O(sK2) time subroutine to combine the job classes
N1, . . . , NK into H ≤ K groups, G1, . . . ,GH , such that the parameter vector of
each class in a group is a shifted vector of each of the other classes in this group. It
follows that there are at most s classes in a group. We denote Gh = {Q1h, . . . ,Qsh},
where, for each i = 1, . . . , s, Qih is either empty or Qih = Nk for some k with
1 ≤ k ≤ K . Note that H is finite even when n → ∞.

Subroutine Group
1. Define the first group by G1 = {N1}. Let H = 1.
2. For k = 2, . . . , K , compare the parameter vector of class Nk with that of each

class in each group already created, G1, . . . ,GH . If the parameter vector of class
Nk is a shifted vector of that of a class in some group Gh, for 1 ≤ h ≤ H , then
let Gh = Gh ∪ {Nk}. Otherwise, create a new group, GH+1 = {Nk}, and let
H = H + 1.

By construction, each job j in each group Gh (i.e., j ∈ ∪s
i=1Qih) has identical

total processing time Ph = ∑s
i=1 pij . We assume for the remainder of this section

that groups G1, . . . ,GH are indexed such that P1 ≤ · · · ≤ PH . Let nih denote
the number of jobs in class Qih, and define nh = min{nih | 1 ≤ i ≤ s}. Also,
let gh = ∑s

i=1 nih denote the total number of jobs in group Gh, and define δh =∑s
i=1(nih − nh).

Heuristic Batch
1. Divide the jobs of N into the H groups G1, . . . ,GH as described above, by

calling Subroutines Class and Group.
2. For each group h = 1, . . . , H , do the following:
3. Form nh batches of jobs, denoted as B1h, . . . , Bnh,h, such that each batch consists

of exactly s jobs, one from each job class Qih in Gh, for i = 1, . . . , s.
4. For k = 1, . . . , nh, schedule the s jobs of batch Bkh consecutively in arbitrary

order.
5. Schedule the jobs in N \ (∪H

h=1 ∪nh
k=1 Bkh) in arbitrary order at the end.

364 7 Optimization and Conflict

Steps 1 and 2 each requires O(n) time. Thus, the overall time requirement of
Heuristic Batch is O(max{sK2, n}). The job sequence generated by Heuristic Batch
is

B11, . . . , Bn1,1, B12, . . . , Bn2,2, . . . , B1H , . . . , BnH ,H ,N \ (∪H
h=1 ∪nh

k=1 Bkh).

For each batch Bkh, since the parameter vector of each of the s jobs in Bkh is
a shifted vector of that of each other job, the total processing time of the s jobs of
Bkh at each supplier Si is the same and equal to Ph, i.e.,

∑
j∈Bkh

pij = Ph, for
i = 1, . . . , s. We begin our analysis of the performance of Heuristic Batch with two
preliminary results.

Lemma 7.8 The total completion time, ZBatch, of the schedule generated by
Heuristic Batch satisfies

ZBatch ≤
H∑

h=2

snh

⎛

⎝
h−1∑

j=1

njPj

⎞

⎠+
H∑

h=1

Phsnh (nh + 1) /2+
(

H∑

h=1

δh

)(
H∑

h=1

(nh + δh)Ph

)

.

Proof First, consider the jobs of Bkh for given k and h. It can be seen that the
completion time of the last job of Bkh is (

∑h−1
j=1 njPj) + kPh. Thus, the total

completion time of the s jobs in Bkh is no more than s[(∑h−1
j=1 njPj) + kPh]. This

implies that the total completion time of the jobs in ∪H
h=1 ∪nh

k=1 Bkh is no more than

H∑

h=1

nh∑

k=1

s

⎡

⎣

⎛

⎝
h−1∑

j=1

njPj

⎞

⎠+ kPh

⎤

⎦ =
H∑

h=2

snh

⎛

⎝
h−1∑

j=1

njPj

⎞

⎠+
H∑

h=1

Phsnh (nh + 1) /2.

(7.44)

Now, consider the jobs in the subset N \ (∪H
h=1 ∪nh

k=1 Bkh). The completion time

of the last job in this subset is no more than
∑H

h=1(nh + δh)Ph. Since in this subset
there are exactly

∑H
h=1 δh jobs, the total completion time of the jobs in this subset

is at most

(
H∑

h=1

δh

)(
H∑

h=1

(nh + δh)Ph

)

. (7.45)

The lemma then follows immediately from (7.44) and (7.45). ��

7.3 Sequencing in an Assembly System 365

Lemma 7.9 The total completion time, ZOPT , of an optimal schedule for problem
As||∑Cj satisfies

ZOPT ≥ 1

s

⎡

⎣
H∑

h=2

gh

⎛

⎝
h−1∑

j=1

gjPj

⎞

⎠+
H∑

h=1

Ph

(
g2
h + gh

)
/2

⎤

⎦ .

We refer the reader to Chen and Hall (2007) for a proof.

Theorem 7.25 If the processing times are generated according to Assumption A,
then Heuristic Batch provides solutions that are asymptotically optimal in
the number of jobs for problem As||∑Cj . The time complexity of Batch is
O(max{sK2, n}).
Proof First, under Assumption A, for each h = 1, . . . , H , there exists a con-
stant θh with 0 < θh < 1 and

∑H
h=1 θh = 1 such that limn→∞ nih

n

a.s.=
θh for each i = 1, . . . , s and that limn→∞ nh

n

a.s.= θh, limn→∞ gh
n

a.s.= sθh, and

limn→∞ δh
n

a.s.= 0.
It is easy to see that the total completion time of the last batch of jobs in the

schedule constructed by Heuristic Batch satisfies

lim
n→∞

(
H∑

h=1

δh

)(
H∑

h=1

(nh + δh)Ph

)

/n2 = 0.

Thus, from Lemmas 7.8 and 7.9, respectively, we have

lim
n→∞

ZBatch

n2 ≤
H∑

h=2

sθh

⎛

⎝
h−1∑

j=1

θjPj

⎞

⎠+
H∑

h=1

sPhθ
2
h/2, and

lim
n→∞

ZOPT

n2 ≥
H∑

h=2

sθh

⎛

⎝
h−1∑

j=1

θjPj

⎞

⎠+
H∑

h=1

sPhθ
2
h/2.

Since the right-hand sides of the above two inequalities are finite, these inequalities
imply that

lim
n→∞

ZBatch − ZOPT

n2
a.s.= 0, and

lim
n→∞

ZBatch − ZOPT

ZOPT

a.s.= 0.

366 7 Optimization and Conflict

The time requirement of Step 0 is determined by the running time of Subrou-
tines Class and Group, as discussed above. Steps 1 and 2 each requires O(n) time.
Therefore, the overall computation time of Heuristic Batch is O(max{sK2, n}). ��
Remark 7.7 Theorem 7.25 shows that, although problem As||∑Cj is formally
intractable, close to optimal schedules can be found efficiently for large instances.

The other manufacturer’s problem we consider is As||Lmax. Recall that Theo-
rem 7.17 shows that this problem can be solved in O(n log n) time by sequencing
the jobs in nondecreasing due date order.

Having studied the schedules which the manufacturer may choose, we now
consider the solvability of the resulting suppliers’ problems. Here, we first consider
problems where the suppliers face due dates implied by the manufacturer’s choice
of schedule γ . In this case, it is natural for the suppliers to minimize their total cost,
subject to a constraint “Lmax ≤ L” on the maximum lateness with respect to those
due dates. We show that this suppliers’ problem is efficiently solvable.

Theorem 7.26 Problem As|Lmax ≤ L|∑∑
Cij is solvable in O(sn log n) time.

Proof In problem As|Lmax ≤ L|∑∑
Cij , the constraint Lmax ≤ L can be

enforced by requiring job j and therefore each part ij , where i = 1, . . . , s, to satisfy
Cij ≤ d̄j = dj + L. This decomposes the problem into s instances of problem
1|d̄j |∑Cj , where d̄j denotes a deadline on the maximum completion time of job
j . From Smith (1956), these instances can be solved in a total of O(sn log n) time.

��
As discussed above, an alternative interpretation of the requirement implied by

the manufacturer’s choice of schedule γ is that an upper bound constraint “
∑

Cj ≤
C” is imposed on the manufacturer’s cost.

Theorem 7.27 The recognition version of problem As|∑Cj ≤ C|∑∑
Cij is

unary NP-complete.

We refer the reader to Chen and Hall (2007) for a proof that uses the result in
Theorem 7.13.

Next, we consider the suppliers’ scheduling problem implied by the
second requirement to process all jobs in a common sequence or problem
As|coseq|∑∑

Cij . Recall that Theorem 7.15 shows that this problem can be
solved in O(n log n) time.

Finally, we consider problems where both requirements are imposed by the
manufacturer on the suppliers. That is, they need to take schedule γ into account
and also process the jobs in a common sequence.

Theorem 7.28 The recognition version of problemAs|coseq, Lmax ≤ L|∑∑
Cij

is unary NP-complete.

Proof Chen and Hall (2007) provide a reduction from 3-Partition. ��
Theorem 7.29 The recognition version of problem As|coseq,∑Cj ≤
C|∑∑

Cij is unary NP-complete.

7.3 Sequencing in an Assembly System 367

We refer the reader to Chen and Hall (2007) for a proof that uses the result in
Theorem 7.13.

7.3.6 Suppliers and Manufacturer Cooperate

Once again referring to Fig. 7.5, we discuss conflict and cooperation where the
suppliers and the manufacturer are all subsidized or fully owned by a single com-
pany. The company would like the suppliers and the manufacturer to use the system
optimal schedule π because it minimizes the company’s total cost. However, since
π is in general not optimal for either the suppliers’ or the manufacturer’s problem,
the company may have to provide an incentive for them to use π . We propose
one possible incentive scheme that the company can use. Without cooperation
between the suppliers and the manufacturer, either schedule ν or schedule γ will
be implemented, depending on whether the suppliers or the manufacturer selects
the schedule. Thus, the potential reduction in total cost due to cooperation is at least

Rc = min

{

α

s∑

i=1

[Fi(ν) − Fi(π)] + (1 − α)[G(ν) − G(π)],

α

s∑

i=1

[Fi(γ) − Fi(π)] + (1 − α)[G(γ) − G(π)]
}

. (7.46)

The suppliers and the manufacturer can be compensated using the cost saving
Rc given in (7.46). Let ui and v denote the amount of compensation provided to
the supplier Si , for i = 1, . . . , s, and the manufacturer, respectively. Since the
compensation is funded by the total cost saving, we require

s∑

i=1

ui + v ≤ Rc. (7.47)

From Nash (1950, 1953), in order for the suppliers and the manufacturer to adopt
schedule π , the compensation they receive, (u1, . . . , us, v), must make them better
off compared to their own optimal schedules. Thus, (u1, . . . , us, v) must satisfy

αFi(π) − ui ≤ αFi(ν), for i = 1, . . . , s, and (7.48)

(1 − α)G(π) − v ≤ (1 − α)G(γ). (7.49)

In general, if there exists a solution (u1, . . . , us, v) satisfying (7.47), (7.48),
and (7.49), then this mechanism can be used to achieve cooperation. This discussion
leads to the following result.

368 7 Optimization and Conflict

Theorem 7.30 There exists a solution (u1, . . . , us, v) satisfying (7.47), (7.48),
and (7.49), if and only if schedules ν, γ , and π satisfy the following conditions:

(1 − α)[G(ν) − G(π)] ≥ 2α
s∑

i=1

[Fi(π) − Fi(ν)] + (1 − α)[G(π) − G(γ)]

(7.50)

α

s∑

i=1

[Fi(γ) − Fi(π)] ≥ 2(1 − α)[G(π) − G(γ)] + α

s∑

i=1

[Fi(π) − Fi(ν)].

(7.51)

Proof Let

ui = α[Fi(π) − Fi(ν)], for i = 1, . . . , s, and (7.52)

v = (1 − α)[G(π) − G(γ)]. (7.53)

Clearly, the solution (u1, . . . , us, v) satisfies (7.48) and (7.49). Since
∑s

i=1 ui+v =
α
∑s

i=1[Fi(π) − Fi(ν)] + (1 − α)[G(π) − G(γ)], Eqs. (7.50) and (7.51) imply,
respectively,

s∑

i=1

ui + v ≤ α

s∑

i=1

[Fi(ν) − Fi(π)] + (1 − α)[G(ν) − G(π)], and (7.54)

s∑

i=1

ui + v ≤ α

s∑

i=1

[Fi(γ) − Fi(π)] + (1 − α)[G(γ) − G(π)]. (7.55)

It follows from (7.54) and (7.55) that the solution (u1, . . . , us, v) satisfies (7.47).
(⇐) Given a solution (u1, . . . , us, v) satisfying (7.47), (7.48), and (7.49), we have

α

s∑

i=1

[Fi(π) − Fi(ν)] + (1 − α)[G(π) − G(γ)] ≤
s∑

i=1

ui + v ≤ Rc,

which, using (7.46), implies

α

s∑

i=1

[Fi(π) − Fi(ν)] + (1 − α)[G(π) − G(γ)]

≤ α

s∑

i=1

[Fi(ν) − Fi(π)] + (1 − α)[G(ν) − G(π)], and

7.3 Sequencing in an Assembly System 369

α

s∑

i=1

[Fi(π) − Fi(ν)] + (1 − α)[G(π) − G(γ)]

≤ α

s∑

i=1

[Fi(γ) − Fi(π)] + (1 − α)[G(γ) − G(π)],

which further imply (7.50) and (7.51), respectively. ��
Theorem 7.30 shows that if schedules ν, γ , and π satisfy (7.50) and (7.51),

then the proposed cooperation mechanism can be implemented. Checking these
conditions requires finding schedules ν, γ , and π . Results for the suppliers’
problems, to obtain ν, can be found in Theorems 7.12, 7.15, 7.26, 7.27, 7.28,
and 7.29. Results for the manufacturer’s problems, to obtain γ , can be found in
Theorems 7.13, 7.17, and 7.25. Results for the system problems, to obtain π , can be
found in Theorems 7.21, 7.22, and 7.23.

Remark 7.8 Some interpretation of (7.50) and (7.51) is useful here. Note that
Fi(π) ≥ Fi(ν), for i = 1, . . . , s, and G(π) ≥ G(γ). Condition (7.50) means that, in
order for the proposed cooperation mechanism to work, the maximum possible cost
increase to the manufacturer as a result of no cooperation must be at least twice the
total cost increase to all the suppliers plus the cost increase to the manufacturer as a
result of cooperation. Similarly, condition (7.51) means that the maximum possible
total cost increase to the suppliers as a result of no cooperation must be at least twice
the cost increase to the manufacturer plus the total cost increase to the suppliers as
a result of cooperation.

We now show how the solutions to the suppliers’ and manufacturer’s problems
can be used to check whether the conditions of Theorem 7.30 can be satisfied,
even if π is unknown. In general, the suppliers’ problem As||∑s

i=1 Fi and
the manufacturer’s problem As||G are easier to solve than the system problem
As||α∑s

i=1 Fi + (1 − α)G. Assuming that we already know ν and γ but not π , we
find an upper bound on the cost of schedule π for the system problem as follows.
Condition (7.50) implies that

α

s∑

i=1

Fi(π) + (1 − α)G(π) ≤ α

s∑

i=1

Fi(ν) + (1 − α)[G(ν) + G(γ)]/2. (7.56)

Similarly, condition (7.51) implies that

α

s∑

i=1

Fi(π)+ (1 − α)G(π) ≤ α

s∑

i=1

[Fi(ν)+ Fi(γ)]/2 + (1 − α)G(γ). (7.57)

370 7 Optimization and Conflict

Combining (7.56) and (7.57), we obtain an upper bound on α
∑s

i=1 Fi(π) + (1 −
α)G(π) given by

UB(π) = α

s∑

i=1

Fi(ν)/2 + (1 − α)G(γ)/2

+1

2
min

{

α

s∑

i=1

Fi(ν) + (1 − α)G(ν), α

s∑

i=1

Fi(γ) + (1 − α)G(γ)

}

.

(7.58)

Suppose that we have also found a lower bound, denoted by LB(π), on
α
∑s

i=1 Fi(π) + (1 − α)G(π), by using mathematical programming techniques.
Then, using (7.58), if LB(π) > UB(π), we do not need to know π exactly in order
to establish that the proposed cooperation mechanism is not implementable.

7.3.7 Cost Saving from Cooperation

We now computationally evaluate the cost saving from the various mechanisms
for cooperation between the suppliers and the manufacturer proposed in
Sects. 7.3.3, 7.3.4, and 7.3.6.

First, where the suppliers have dominant power in the supply chain, the mecha-
nism for cooperation proposed in Sect. 7.3.3 provides a net saving given by (7.34)
to the manufacturer. Without cooperation, the suppliers impose schedule ν, and
therefore the relative cost saving to the manufacturer is

zman =
[
α
∑s

i=1 Fi(ν) + (1 − α)G(ν)
]− [

α
∑s

i=1 Fi(π) + (1 − α)G(π)
]

(1 − α)G(ν)
.

(7.59)

Second, where the manufacturer has dominant power in the supply chain, the
mechanism for cooperation proposed in Sect. 7.3.4 provides a total net saving given
by (7.43) to the suppliers. Without cooperation, the manufacturer imposes schedule
γ , and therefore the relative cost saving to the suppliers is

zsup =
[
α
∑s

i=1 Fi(γ) + (1 − α)G(γ)
]− [

α
∑s

i=1 Fi(π) + (1 − α)G(π)
]

α
∑s

i=1 Fi(γ)
.

(7.60)

Finally, where there is a decision maker in the supply chain who makes centralized
decisions for the system, the mechanism for cooperation proposed in Sect. 7.3.6

7.3 Sequencing in an Assembly System 371

provides a net saving given by (7.46) to the system. There are two cases to be
considered.
Case 1: If schedule ν is used without cooperation, then the relative cost saving to
the system is

zsys(ν) =
[
α
∑s

i=1 Fi(ν) + (1 − α)G(ν)
]− [

α
∑s

i=1 Fi(π) + (1 − α)G(π)
]

α
∑s

i=1 Fi(ν) + (1 − α)G(ν)
.

(7.61)

Case 2: If schedule γ is used without cooperation, then the relative cost saving to
the system is

zsys(γ) =
[
α
∑s

i=1 Fi(γ) + (1 − α)G(γ)
]− [

α
∑s

i=1 Fi(π) + (1 − α)G(π)
]

α
∑s

i=1 Fi(γ) + (1 − α)G(γ)
.

(7.62)

As throughout this section, we consider two combinations of cost functions:
(1) the suppliers’ cost function Fi = ∑

j∈N Cij , for i = 1, . . . , s, and the
manufacturer’s cost function G = ∑

j∈N Cj and (2) the suppliers’ cost function
Fi = ∑

j∈N Cij , for i = 1, . . . , s, and the manufacturer’s cost function G = Lmax.
In the following subsections, we estimate the four relative cost savings defined
by (7.59)–(7.62).

7.3.7.1 Completion Time and Completion Time

From Theorem 7.12, schedule ν consists of an SPT order of the jobs at each supplier.
However, from Theorems 7.13 and 7.21, finding schedules γ and π , respectively, is
intractable. Therefore, instead of finding γ and π exactly, we compute an upper
or a lower bound on the cost of an optimal schedule. We derive an upper bound
UBsys(π) on the system cost α

∑∑
Cij (π) + (1 − α)

∑
Cj (π), a lower bound

LBsup(γ) on the suppliers’ total cost α
∑∑

Cij (γ), and a lower bound LBman(γ)

on the manufacturer’s cost (1 − α)
∑

Cj (γ).
The upper bound UBsys(π) is found using a simulated annealing (Koulamas

et al., 1994) heuristic for problem As||α∑∑
Cij + (1 − α)

∑
Cj . An initial

schedule is given by an SPT order of the jobs at each supplier. The neighborhood
used is pairwise exchange of job positions at a supplier. Any schedule σ that is
found becomes the new seed schedule with probability e−aΔ(σ), where Δ(σ) is the
relative difference in the costs of σ and the incumbent schedule, and a is a positive
parameter. The value of a increases from 10 to 50 during the procedure. If no new
incumbent schedule is found during 10,000 consecutive iterations, then the heuristic
terminates.

372 7 Optimization and Conflict

We let LBsup(γ) = α
∑∑

Cij (ρ), where schedule ρ is generated by Heuristic
STPT described in Sect. 7.3.2.1. From (7.13), LBsup(γ) provides a lower bound on
α
∑∑

Cij (γ).
The lower bound LBman(γ) is derived from the following observations. It is easy

to show that for any given parameters (v1, . . . , vs) with vi ≥ 0 and
∑s

i=1 vi = 1,
we have

∑

j∈N
Cj (γ) =

∑

j∈N
max

i=1,...,s
{Cij (γ)} ≥

∑

j∈N

s∑

i=1

viCij (γ). (7.63)

It can be shown that the term
∑

j∈N
∑s

i=1 viCij is minimized over schedules with
identical sequences at all suppliers if the jobs are scheduled in nondecreasing order
of
∑s

i=1 vipij at all suppliers. Let the schedule corresponding to nondecreasing
order of

∑s
i=1 vipij be denoted by θ(v1, . . . , vs). From Lemma 7.7, we may assume

that schedule γ uses identical sequences at all suppliers. Therefore,

∑

j∈N

s∑

i=1

viCij (γ) ≥
∑

j∈N

s∑

i=1

viCij (θ(v1, . . . , vs)). (7.64)

Then, for any nonnegative numbers v1, . . . , vs with
∑s

i=1 vi = 1, (7.63) and (7.64)
imply that

∑

j∈N
Cj (γ) ≥

∑

j∈N

s∑

i=1

viCij (θ(v1, . . . , vs)). (7.65)

We use a simulated annealing heuristic to search for values of v1, . . . , vs
such that the right-hand side of (7.65) is as large as possible. This heuristic
is similar to that used to find UBsys(π). Let the values of v1, . . . , vs found
by this heuristic be denoted by v̄1, . . . , v̄s , respectively. Let LBman(γ) =
(1 − α)

∑
j∈N

∑s
i=1 v̄iCij (θ(v̄1, . . . , v̄s)). It follows from (7.65) that LBman(γ) is

a lower bound on (1 − α)
∑

j∈N Cj (γ).
Using the bounds UBsys(π), LBsup(γ), and LBman(γ) to replace, respectively,

α
∑∑

Cij (π)+(1−α)
∑

Cj (π), α
∑∑

Cij (γ), and (1−α)
∑

Cj (γ) in (7.59)–
(7.62), we obtain

zman ≥ max

{

0,
α
∑s

i=1
∑

j∈N Cij (ν) + (1 − α)
∑

j∈N Cj (ν) − UBsys(π)

(1 − α)
∑

j∈N Cj (ν)

}

,

(7.66)

zsup ≥ max

{

0, 1 − UBsys(π) − LBman(γ)

LBsup(γ)

}

, (7.67)

7.3 Sequencing in an Assembly System 373

zsys(ν) ≥ max

{

0, 1 − UBsys(π)

α
∑s

i=1
∑

j∈N Cij (ν) + (1 − α)
∑

j∈N Cj (ν)

}

, and

(7.68)

zsys(γ) ≥ max

{

0, 1 − UBsys(π)

LBsup(γ) + LBman(γ)

}

. (7.69)

We compute the lower bounds in (7.66)–(7.69) using random test problems
generated as follows: (i) the number of suppliers s ∈ {2, 4, 8}, (ii) the number of jobs
n ∈ {25, 50, 100}, (iii) the job processing times pij are independently drawn from
a uniform integer distribution over the interval [10, 100], and (iv) the relative cost
parameter α ∈ {0.2, 0.5, 0.8}. For each (s, n, α) combination, 10 random instances
are generated and the lower bounds on zman, zsup, zsys(ν), and zsys(γ) are computed.
The mean lower bounds over the 10 random instances are reported in Table 7.12(a).
The cost saving depends on the relative cost parameter (α) and the problem size
(s, n). The relative cost saving to the manufacturer (zman) and to the system (zsys(ν))
when the suppliers’ optimal schedule ν is used without cooperation is larger when α

is small. For example, zman and zsys(ν) are always at least 12.5% when α ≤ 0.2. By
contrast, the relative cost saving to the suppliers as a whole (zsup) and to the system
(zsys(γ)) when the manufacturer’s optimal schedule γ is used without cooperation
is larger when α is large. In particular, zsup and zsys(γ) are always at least 10.1%
when α ≥ 0.5 and s ≥ 8. The relative cost savings on zman (respectively, zsup) are
consistently larger than those on zsys(ν) (respectively, zsys(γ)). The reason is that a
schedule typically has more impact on an individual party in the system (i.e., the
suppliers or the manufacturer) than on the entire system. This is because positive
and negative effects may cancel each other out within the system objective, and
hence the overall system performance may not be as good (or as bad).

7.3.7.2 Completion Time and Maximum Lateness

From Theorem 7.12, schedule ν is an SPT order of the jobs at each supplier. From
Theorem 7.17, schedule γ is an EDD order of the jobs. Schedule π , which is optimal
for problem As||α∑∑

Cij + (1 −α)Lmax, can be found by Algorithm SCL which
from Theorem 7.23 runs in polynomial time (see Sect. 7.3.3).

We compute the relative cost savings zman, zsup, zsys(ν), and zsys(γ) defined,
respectively, in (7.59), (7.60), (7.61), and (7.62), using random test problems
generated as follows: (i) s, n, and pij are generated as in Sect. 7.3.7.1, (ii) the
job due dates dj are independently drawn from a uniform integer distribution
over the interval [10, 55n], and (iii) the relative cost parameter α = β/n, where
β ∈ {0.5, 2, 8}. The values of α are selected such that both cost components play
a significant role and that a wide range of values for the relative cost saving is
considered. Since the completion time of the last job is approximately 55n and the
due dates are generated from the interval [10, 55n], it can be expected that Lmax

374 7 Optimization and Conflict

Ta
bl
e
7.
12

R
el

at
iv

e
co

st
sa

vi
ng

fr
om

co
op

er
at

io
n

(a
)

L
ow

er
bo

un
d

on
re

la
tiv

e
co

st
sa

vi
ng

(b
)

R
el

at
iv

e
co

st
sa

vi
ng

s
n

α
z
m
a
n

z
s
u
p

z
sy
s
(ν
)

z
sy
s
(γ

)
s

n
α

z
m
a
n

z
s
u
p

z
sy
s
(ν
)

z
sy
s
(γ

)

0.
2

16
.7

6%
0.

00
%

12
.5

0%
0.

00
%

0.
5/

25
69

.8
5%

12
.6

8%
47

.0
0%

9.
29

%

2
25

0.
5

10
.9

3%
1.

66
%

4.
63

%
1.

10
%

2
25

2/
25

56
.1

2%
16

.5
0%

18
.3

5%
15

.2
2%

0.
8

4.
30

%
6.

45
%

0.
67

%
5.

72
%

8/
25

34
.6

7%
21

.3
4%

2.
87

%
21

.0
2%

0.
2

18
.5

8%
0.

00
%

13
.7

6%
0.

00
%

0.
5/

50
78

.3
5%

13
.4

6%
54

.7
4%

10
.7

1%

2
50

0.
5

12
.1

5%
1.

53
%

5.
08

%
1.

02
%

2
50

2/
50

66
.3

5%
17

.5
8%

23
.9

0%
16

.5
3%

0.
8

4.
62

%
5.

82
%

0.
70

%
5.

17
%

8/
50

46
.0

7%
21

.9
4%

5.
06

%
21

.6
4%

0.
2

18
.5

1%
0.

00
%

13
.7

9%
0.

00
%

0.
5/

10
0

82
.3

7%
12

.7
0%

58
.3

8%
10

.7
4%

2
10

0
0.

5
11

.5
4%

1.
99

%
4.

87
%

1.
33

%
2

10
0

2/
10

0
69

.2
6%

17
.1

4%
25

.9
7%

16
.4

0%

0.
8

3.
75

%
6.

71
%

0.
58

%
5.

96
%

8/
10

0
50

.0
1%

22
.1

3%
6.

18
%

21
.9

0%

0.
2

23
.9

5%
0.

00
%

15
.5

7%
0.

00
%

0.
5/

25
64

.0
0%

16
.7

6%
33

.8
9%

13
.6

3%

4
25

0.
5

14
.9

9%
6.

17
%

4.
75

%
4.

90
%

4
25

2/
25

49
.6

3%
19

.7
0%

10
.8

3%
18

.6
9%

0.
8

6.
07

%
11

.3
3%

0.
63

%
10

.6
4%

8/
25

28
.1

8%
22

.7
1%

1.
32

%
22

.4
8%

0.
2

25
.8

9%
0.

03
%

16
.8

8%
0.

01
%

0.
5/

50
74

.8
5%

16
.8

6%
41

.2
4%

14
.7

3%

4
50

0.
5

16
.0

6%
6.

88
%

5.
12

%
5.

49
%

4
50

2/
50

60
.1

8%
20

.2
3%

13
.8

1%
19

.5
5%

0.
8

5.
95

%
11

.9
2%

0.
62

%
11

.2
1%

8/
50

39
.8

1%
23

.4
5%

2.
44

%
23

.2
7%

0.
2

26
.3

1%
0.

00
%

17
.1

7%
0.

00
%

0.
5/

10
0

77
.6

3%
15

.7
6%

43
.3

7%
14

.1
9%

4
10

0
0.

5
15

.9
3%

7.
01

%
5.

09
%

5.
60

%
4

10
0

2/
10

0
62

.3
8%

19
.8

8%
14

.8
6%

19
.3

6%

0.
8

4.
28

%
12

.0
4%

0.
45

%
11

.3
2%

8/
10

0
43

.7
3%

23
.4

5%
3.

00
%

23
.3

1%

0.
2

24
.9

4%
2.

66
%

13
.0

7%
1.

73
%

0.
5/

25
60

.6
8%

19
.1

7%
22

.5
4%

17
.0

8%

7.3 Sequencing in an Assembly System 375

8
25

0.
5

15
.0

8%
11

.4
7%

3.
25

%
10

.1
2%

8
25

2/
25

44
.2

5%
21

.5
2%

5.
40

%
20

.9
1%

0.
8

6.
04

%
15

.4
1%

0.
39

%
14

.9
1%

8/
25

24
.0

1%
23

.5
5%

0.
60

%
23

.4
2%

0.
2

26
.7

6%
3.

71
%

14
.0

5%
2.

45
%

0.
5/

50
68

.3
7%

19
.0

0%
26

.5
9%

17
.5

0%

8
50

0.
5

16
.0

7%
12

.3
1%

3.
48

%
10

.9
1%

8
50

2/
50

51
.5

6%
21

.9
3%

6.
91

%
21

.4
9%

0.
8

4.
59

%
16

.2
3%

0.
3%

15
.7

2%
8/

50
32

.7
6%

24
.1

8%
1.

08
%

24
.0

7%

0.
2

27
.0

2%
3.

49
%

14
.2

4%
2.

32
%

0.
5/

10
0

71
.1

7%
18

.5
1%

28
.1

4%
17

.4
3%

8
10

0
0.

5
14

.2
8%

12
.1

6%
3.

11
%

10
.8

0%
8

10
0

2/
10

0
54

.0
5%

22
.3

1%
7.

51
%

21
.9

8%

0.
8

0.
13

%
16

.4
1%

0.
01

%
15

.9
1%

8/
10

0
36

.6
9%

24
.8

4%
1.

34
%

24
.7

5%

(a
)

C
om

pl
et

io
n

tim
e

an
d

co
m

pl
et

io
n

tim
e

(b
)

C
om

pl
et

io
n

tim
e

an
d

m
ax

im
um

la
te

ne
ss

376 7 Optimization and Conflict

should be O(n), almost surely. Since
∑∑

Cij is O(n2), by using α = O(1/n) in
our experiment, the magnitude of α

∑∑
Cij matches that of (1 − α)Lmax at O(n),

which makes our test problems representative. For each (s, n, α) combination, 10
random instances are generated and the values of zman, zsup, zsys(ν), and zsys(γ)
are computed. The mean values of these measures over the 10 random instances
are reported in Table 7.12b. From these results, we conclude that, in most cases,
the proposed cooperation mechanism results in significant cost reductions for the
decision makers. In fact, all results for zman, zsup, and zsys(γ) show a relative
cost saving of at least 9.2%. The explanation of the results is similar to that for
Table 7.12a.

7.3.8 Extensions

Chen and Hall (2007) study two practical extensions of the assembly system
model, for nonzero transportation times between the suppliers and the manufacturer
and for bottleneck processing operations at the manufacturer. Let tij denote the
transportation time for part i of job j . We briefly summarize the results.

Theorem 7.31 Problem As|tij |Lmax is solvable in O(ns log n) time.

Proof For i = 1, . . . , s, define dij = dj − tij and Lij = Cij − dij , for j =
1, . . . , n, and Li

max = max1≤j≤n{Lij }. Here, dij represents the due date by which
all parts for job j must be completed at supplier Si if job j is on time. Since Lmax =
max1≤i≤s{Li

max}, it follows from Jackson (1955) that an optimal schedule is found
when each supplier Si sequences its parts in nondecreasing dij order. ��
Theorem 7.32 Problem As|tij |α∑∑

Cij + (1 − α)Lmax is solvable in
O(sn3 log n) time.

Proof Define dij , Lij , and Li
max as in the proof of Theorem 7.31. Apply Algorithm

SCL, replacing Lmax by Li
max throughout. The proof follows that of Theorem 7.23.

��
Theorem 7.33 Problem As|tij , Lmax ≤ L|∑∑

Cij is solvable in O(ns log n)
time.

Proof Define dij as in the proof of Theorem 7.31. The constraint Lmax ≤ L can be
enforced by requiring each part ij to satisfy Cij ≤ dij + L. The remainder of the
proof follows that of Theorem 7.26. ��

In the presence of bottleneck operations at the manufacturer, the recognition
versions of manufacturer’s or system problems with

∑
Cj objective are unary

NP-complete, since they are generalizations of problem As||∑Cj , as discussed
in Theorem 7.13. Also, the recognition versions of the manufacturer’s and system
problems with Lmax objective are unary NP-complete, since they are generalizations
of the two-machine flowshop problem F2||Lmax (Lenstra et al., 1977).

7.4 Manufacturer and Distributor 377

The study of assembly systems presented in this section highlights the need for
coordination between suppliers in delivering their parts in a horizontal supply chain.
This issue assumes increasing importance as a result of the more frequent use of
platform-based supply networks which often unite suppliers who have not worked
together previously.

7.4 Manufacturer and Distributor

This section studies coordinated decision making between a manufacturer and
a distributor in two practical distribution systems. Problem 1 is motivated by
Hurter and van Buer (1996), who study coordination between the printing (i.e.,
manufacturing) and distribution departments of a newspaper company. Here, the
printing department prefers to produce jobs according to an ideal schedule that
minimizes overall production time, whereas the distribution department prefers that
products which will be shipped over longer distances are produced first. Hurter
and van Buer’s objective is to reduce the number of vans required to deliver
the newspapers to drop-off points while satisfying the vehicle capacity and time
constraints. Their methodology is to solve several instances of the capacitated
vehicle routing problem with time windows and then to design a production
schedule that supports the resulting routes. They assume that the printing and
distribution departments cooperate on this schedule. They compare their results with
the prevailing practice at a medium-sized newspaper company and demonstrate a
significant reduction in the number of vans required and the total distribution time.

In a more general context, Problem 1 is a scheduling problem in which a
manufacturer produces variations of a single perishable product and a distributor
must deliver the appropriate variation to each of several customers by specified times
within a single day. A setup time occurs when the manufacturer changes from the
production of one variation of the product to another. Conflict arises because the
manufacturer prefers a schedule with a minimum number of setups, whereas the
distributor prefers a schedule in which all products are delivered by a certain time.

Problem 2 is motivated by Blumenfeld et al. (1991), who consider a coordination
problem in which one producer makes several products and has several customers,
each cyclically receiving its specific product type. The production sequence is
based on setup and in-process inventory costs; however, the distribution schedule
depends on freight and in-transit inventory costs. Their objective is the minimization
of overall inventory costs, and they analyze the tradeoff between the benefits of
coordination and increased management complexity.

More generally, Problem 2 is a scheduling problem in which a manufacturer
produces two products on a single production line, and a distributor has to manage
inventory and deliver specified combinations of the different products to several
retailers within a planning horizon. There is a setup cost when the manufacturer
changes from the production of one product to another. This problem arises, among
other situations, in the manufacture and distribution of household cleaners (Lee

378 7 Optimization and Conflict

& Tse, 1992) and in food processing (Claassen et al., 2016). The manufacturer
prefers a schedule that produces individual products in large batch sizes, in order to
minimize total setup costs. However, in order to minimize its inventory holding cost,
the distributor prefers a schedule that batches products which are shipped together
to retailers.

Both of these problems create a need for the manufacturer and the distributor
to coordinate their decisions within the supply chain. In each, the manufacturer
and the distributor may or may not be part of the same company. For example, in
some cities with two newspapers, one newspaper is printed on presses owned by the
other but distributed separately; in this case, schedules and fees must be negotiated.
Ideally, the manufacturer and the distributor can agree on a common schedule that
minimizes the overall system cost. In each problem, we computationally evaluate
the benefits of cooperation using performance measures from classical scheduling.

This section is organized as follows. In Sect. 7.4.1, we formally define the
two problems considered and describe our notation and assumptions. Section 7.4.2
presents an evaluation of the conflict that results when one decision maker imposes
its optimal schedule on the other. Section 7.4.3 considers the effect of different
assumptions about the relative bargaining power of the manufacturer and the
distributor. This requires solving the scheduling problem of the nondominant
decision maker under a constraint imposed by the dominant decision maker. In
Sect. 7.4.4, we solve the overall system problems and evaluate the cost savings
that result from coordination between the manufacturer and the distributor. We
also discuss how manufacturers and distributors can negotiate, coordinate, and
implement their supply chain schedules in practice.

7.4.1 Problem Descriptions

7.4.1.1 Problem 1

Besides the newspaper application mentioned above, Problem 1 is also applicable to
various process industries, such as industrial chemicals (Lei et al., 2006). Consider
a newspaper publisher, for example, the Dallas Morning News, which serves a large
metropolitan area. Each day, it produces an issue that contains five standard sections:
News, Metropolitan, Sports, Business, and Living. There are also supplements,
such as community news, event listings, and advertisements, that are specific to
downtown or suburban zones within the metropolitan area. Each zone receives its
own specific version of each day’s issue. To formulate this problem for a general
newspaper, let n be the number of different editions printed, one for each of n

delivery zones. Zone Zi , for i = 1, . . . , n, is divided into �i subzones, each with
a single local distribution center. The j th distribution center in zone Zi is denoted
by Zij .

We describe the manufacturing process. The printer generally does not begin
processing until midnight, so that it can include information (including zone-specific

7.4 Manufacturer and Distributor 379

news) that is as up to date as possible. Let job Jij denote the printing of enough
copies of all sections and supplements required to serve distribution center Zij . Let
schedule σ denote the order in which all jobs Jij , for i = 1, . . . , n, j = 1, . . . , �i ,
are processed nonpreemptively in the production system. In Corollary 7.1 below, we
show that there is no advantage for either the printer or the distributor to consider
preemptive schedules. If the printer uses schedule σ , then the time at which the
printing of job Jij completes is denoted by CM

ij (σ). Before printing a job for a
subzone within Zi , the printing presses must be set up for that zone, which requires
time si . If jobs for two different subzones within the same zone are performed, then
no additional setup is required between them.

Now consider the distribution process. Newspapers are delivered by truck from
the plant to the distribution centers. In large metropolitan areas, adult carriers using
automobiles then pick up the newspapers from the distribution centers and deliver
them to subscribers’ homes (Hurter & van Buer, 1999). Subscribers are allocated
to carriers, and carriers are assigned to distribution centers so that each distribution
center receives and distributes one truckload of newspapers. The travel time from
the plant to distribution center Zij is denoted by tij . The delivery of newspapers to
center Zij has due date dij , which is based on the time required by the carriers for
delivery; for most distribution centers, this time is between 4:00 AM and 4:30 AM.
If the printer uses schedule σ and the distributor uses schedule ν, then the time at
which the delivery to center Zij is completed is denoted by CD

ij (σ, ν).
Our assumption that each distribution center receives and distributes one truck-

load of newspapers is not restrictive. If multiple truckloads are demanded by a
distribution center, then this assumption can be made without loss of generality,
since we can treat that center’s location as though it has multiple distribution centers,
each of which demands one truckload. Hence, the time required for the printer to
produce enough newspapers for any distribution center within zone Zi is a constant,
which we denote by pi .

Since the printer does not deal directly with the customers, its goal is to minimize
its overhead costs. Hence, its objective is to find a schedule σm that minimizes
CM

max(σ) = max
1≤i≤n

max
1≤j≤�i

{CM
ij (σ)} over all production schedules σ . The distributor

aims to deliver each truckload of newspapers before its due date. This objective
can be operationalized by using maximum lateness, a number of tardy jobs, or total
tardiness objectives. We choose the maximum lateness objective over the number of
tardy jobs because it is preferred to have several subzones’ newspapers delivered to
customers slightly late (for example, at 6:10 AM instead of at 6:00 AM) rather than
one or two subzones’ newspapers delivered very late (for example, at 7:30 AM or
8:00 AM). The total tardiness objective does not capture precisely the late deliveries
to individual customers and is, therefore, not an attractive choice; moreover, the total
tardiness problem is known to be NP-hard (Du & Leung, 1990).

380 7 Optimization and Conflict

Therefore, we consider the distributor’s objective to minimize

LD
max(σ, ν) = max

1≤i≤n
max

1≤j≤�i
{LD

ij (σ, ν)}

for a given σ , over all ν, where LD
ij (σ, ν) = CD

ij (σ, ν) − dij .
The system problem is to minimize

αCM
max(σ) + (1 − α)LD

max(σ, ν),

where α is a parameter satisfying 0 ≤ α ≤ 1, over all schedules σ and ν.

7.4.1.2 Problem 2

In Problem 2, two closely related products P1 and P2 are manufactured on the same
production line. The products are to be distributed to n retailers Ri, i = 1, . . . , n, by
trucks, each with a fixed capacity C. Define a period as the time required to produce
one truckload of items. This time is Ct , where t is the fixed length of the interval
between the completion of two consecutive items and t is the same for each product.
After the production line starts producing a product, it restricts production to that
product for a duration of time which is an integer multiple of Ct . This process is
used because a setup is required for changing the production from one product to
the other. The cost of each setup is μ.

At the end of each period, the manufacturer transfers one truckload containing a
single product to the distributor. Let the ratio of the demands for the two products
for retailer Ri be r1i : r2i , where r1i + r2i = 1, i = 1, . . . , n. For some retailer Ri

of the distributor’s choosing, the distributor sends a shipment containing b1i = r1iC

units of product P1 and b2i = r2iC units of product P2. Thus, within time nCt ,
which represents a complete distribution cycle, each retailer receives exactly one
truckload of the products. That is, the plant is operating at full capacity and the total
demand from each retailer during each distribution cycle is at least C, so the total
demand is not necessarily satisfied.

Remark 7.9 If multiple truckloads are demanded by a retailer Ri , we assume that
each delivered truckload is required to have a mix of the two products in the ratio
r1i : r2i . This assumption is natural in that it matches supply with demand at the
retailers as well as defining a simple truck loading policy for the distributor. Under
this assumption, it can be further assumed without any loss of generality that each
retailer demands one truckload of products. If multiple truckloads are demanded by
a retailer, then we treat that retailer as multiple retailers, each of which demands one
truckload.

Assuming that the inventory for each product at the beginning of the distribution
cycle must equal the inventory at the end of the distribution cycle, the total number
of periods devoted to producing product Pj during the distribution cycle is kj =

7.4 Manufacturer and Distributor 381

∑n
i=1 bji
C

. Hence, k1 + k2 = n. We assume k1 and k2 to be integers. The distribution
cycle’s schedule is defined by a production sequence σ that specifies which product
is produced during each of the n periods, and a distribution sequence ν that specifies
which retailer is served at the end of each of the n periods. This cyclic schedule
is then repeated until the end of the planning horizon. This model is suitable for
products that have a stable demand over the planning horizon. For example, the
demand for laundry products is typically stable during the winter period in North
America (Lee & Tse, 1992).

Let Ijs denote the inventory level of product Pj , j = 1, 2, at the end of period
s. At the beginning of each distribution cycle, some initial inventory Ij0 of product
Pj is kept in order to satisfy demand in the early periods, if needed; this amount
depends on the production sequence and the delivery sequence. The inventory
holding cost per production period for product Pj is hj per unit. The holding cost
for product Pj in a period s is computed using the period’s average inventory:
hj (Ijs−1 + Ijs)/2, j = 1, 2.

We assume a make-to-order manufacturer. Since the manufacturer knows the
exact demands of the two products during a distribution cycle, it does not need
to hold any inventory. The manufacturer’s problem is to minimize the total
manufacturing cost (i.e., production cost + setup cost) per distribution cycle. Since
the production cost during a distribution cycle is constant, minimizing the total
manufacturing cost is equivalent to minimizing the total setup cost. Let S(σ) denote
the total setup cost in one distribution cycle for schedule σ . For the distributor, it is
necessary to hold inventory. This is because the production lots for both the products
are in multiples of C, the fixed truck capacity. At the end of each period, one
truckload of C units consisting entirely of one product is delivered to the distributor.
However, in each period, the distributor has to supply a retailer, say Ri , with a mix
of the two products with quantities b1i = r1iC and b2i = r2iC, respectively, where
r1i + r2i = 1. Thus, the distributor must incur inventory holding cost.

Given σ , the distributor’s problem is to find a distribution sequence ν(σ) that
minimizes its total inventory cost, T (σ, ν(σ)).

The system problem is to minimize αS(σ) + (1 − α)T (σ, ν(σ)), where α is a
parameter, 0 ≤ α ≤ 1, over all production sequences σ and distribution sequences ν.

7.4.2 Cost of Conflict

We consider the extent to which one decision maker’s cost is larger than optimal
when the other decision maker imposes its optimal schedule. This is the cost of
conflict. Calculating the cost of conflict requires first solving the manufacturer’s
and the distributor’s individual problems optimally. We then perform computational
experiments to measure the average cost of conflict for both the manufacturer and
the distributor in each problem. We show that this cost is significant in all cases,

382 7 Optimization and Conflict

which motivates the subsequent study of different power relationships and the
benefit of cooperation.

7.4.2.1 Conflict in Problem 1

The manufacturer (i.e., the printer), motivated by the objective of minimizing
overhead cost, solves a makespan minimization problem. This problem can be
written as

min
yi≥1

Cmax =
n∑

i=1

�ipi +
n∑

i=1

siyi, (7.70)

where the first term is a constant and yi ≥ 1 is a decision variable specifying the
number of setups for the jobs in zone Zi . This problem is easily solved, and hence
the result is stated without proof.

Proposition 7.1 The printer’s Problem 1 is solved by any schedule with y1 = · · · =
yn = 1.

We refer to schedules that are characterized by Proposition 7.1 as block family
schedules, since all jobs for the same zone are produced consecutively. In the
newspaper context, this means that the jobs for all subzones of a particular zone
are printed consecutively. Furthermore, the manufacturer’s cost is unaffected by the
order in which it processes the blocks.

To understand how the distributor can determine its optimal schedules for
production and distribution, we first discuss how jobs are released to the distributor.
After a job is printed, which requires time pi for a job for zone Zi , it is transferred
to the packaging center. This transfer requires time δ. At the packaging center,
the newspapers are collated, compiled with their inserts, and loaded into a truck.
This process is performed in time qi for each job for zone Zi . Based on typical
industry data (Hurter & van Buer, 1996), we assume that qi ≤ pi for all i, and
max1≤i≤n{qi} ≤ min1≤i≤n{si + pi}; hence, no bottlenecks occur at the packaging
center. We also assume that a sufficient number of trucks is available so that a
compiled job can be dispatched immediately. This process is illustrated in Fig. 7.6.

Fig. 7.6 Operations of the printer and the packaging center

7.4 Manufacturer and Distributor 383

Job Jij is released to the distributor at time CM
ij (σ) + δ + qi , it arrives at

distribution center Zij at time CD
ij (σ, ν(σ)) = CM

ij (σ)+δ+qi + tij , and its lateness

is LD
ij (σ, ν(σ)) = CD

ij (σ, ν(σ)) − dij . Conversely, since by assumption a truck is
always available to make a delivery, the distributor’s due dates dij can be translated
into implied due dates dMij for the printer, as follows:

dMij = dij − δ − qi − tij , i = 1, . . . , n; j = 1, . . . , �i . (7.71)

This discussion leads to the following result, which simplifies the search for the
distributor’s optimal production and distribution schedules.

Lemma 7.10 For a given printer’s schedule σm, the distributor’s cost Lmax is
minimized if it uses a schedule that is the same as the printer’s schedule, i.e.,
ν(σm) = σm.

Proof Since the printer uses a single production line to process the jobs, it releases
the jobs to the distributor in the same sequence, σm, in which it begins them. Under
the assumption that a truck is always available for delivery when a job is ready to
be loaded, the distributor minimizes its maximum lateness by delivering each job as
soon as possible, which is achieved by setting ν(σm) = σm. ��

Lemma 7.10 allows us to simplify our notation from Lij (σ, ν(σ)) to Lij (σ).

Corollary 7.1 In either the printer’s or distributor’s Problem 1, there exists an
optimal schedule in which no job is preempted during processing at the printer.

We refer the reader to Dawande et al. (2006) for a proof. ��
The implied due dates dMij defined in (7.71) are used in the lemma and algorithm

which follow. The algorithm finds a schedule that minimizes the distributor’s
maximum lateness over all schedules. It requires the following structural result.

Lemma 7.11 In the distributor’s Problem 1, there exists an optimal schedule in
which the jobs for zone Zi are processed in earliest due date (EDD) order based on
the implied due dates dMij from (7.71).

Proof For a given nonpreemptive schedule σ , the jobs for zone Zi are released to
the distributor at times rij = CM

ij + δ + qi , j = 1, . . . , �i . This holds for any
permutation of these jobs for zone Zi . However, the distributor’s objective function
(Lmax) depends only on the values rij , j = 1, . . . , �i . Since each job for zone Zi

requires the same processing time pi , the result follows from Jackson (1955). ��
Lemma 7.11 motivates the following optimal algorithm for the distributor’s

problem of minimizing the maximum lateness in Problem 1.

Algorithm P1D
Input
Given dij , tij for i = 1, . . . , n, j = 1, . . . , �i ; pi, qi, si for i = 1, . . . , n, and δ.

384 7 Optimization and Conflict

Indexing
Index the jobs for each zone Zi such that dMi1 ≤ · · · ≤ dMi�i

, for i = 1, . . . , n.
Value Function
f (v1, . . . , vn; u1, . . . , un; j) = minimum value of the maximum lateness for
scheduling jobs 1, . . . , vi using ui ≤ vi setups for zone Zi , for i = 1, . . . , n,
where the last job scheduled is for zone Zj if j ≥ 0. [Zone Z0 is assumed to be
a dummy zone that requires a zero setup time and consists of a single dummy job
that is scheduled at time zero. The dummy job has zero processing time and its due
date is infinity.]
Boundary Condition
f (0, . . . , 0; 0, . . . , 0; 0) = −∞.
Optimal Solution Value
min1≤j≤n,1≤u1≤�1,...,1≤un≤�n{f (�1, . . . , �n; u1, . . . , un; j)}.
Recurrence Relation

f (v1, . . . , vn; u1, . . . , un; j) =

min

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

max{∑n
i=1(vipi + uisi) − dMjvj

, f (v1, . . . , vj−1, vj − 1, vj+1, . . . ,

vn; u1, . . . , un; j)}
min1≤i≤n,i �=j {max{∑n

i=1(vipi + uisi) − dMjvj
,

f (v1, . . . , vj−1, vj − 1, vj+1, . . . , vn; u1, . . . ,

uj−1, uj − 1, uj+1, . . . , un; i)}}.

In the first term in the recurrence relation, no setup is needed because the zone
served, Zj , is the same as that for the previous job. In the second term, the choice
of a job for a different zone necessitates a setup at the printer.

Theorem 7.34 Algorithm P1D finds an optimal schedule for the distributor’s
problem of minimizing the maximum lateness in Problem 1 in O(n2 ∏n

i=1 �
2
i) time.

Proof It follows from Lemma 7.11 that Algorithm P1D compares the cost of
all possible optimal state transitions and therefore finds an optimal schedule. We
consider the time complexity of Algorithm P1D. Since ui, vi ≤ �i for i = 1, . . . , n,
and j ≤ n, the number of possible values for the state variables is O(n

∏n
i=1 �

2
i).

The second term in the recurrence relation requires the most computation, which
is O(n). Thus, the overall time complexity of Algorithm P1D is O(n2 ∏n

i=1 �
2
i),

which is polynomial for fixed n. ��
The distributor’s conflict arises when it must follow the printer’s schedule. From

Theorem 7.1, the printer is content to select a block family schedule randomly. From
Lemma 7.11, we assume that within each block the jobs are ordered by EDD.

We define the relative increase in cost resulting from the distributor’s conflict as

[LD
max(σ

m) − LD
max(σ

d)] / LD
max(σ

d), (7.72)

7.4 Manufacturer and Distributor 385

where σd is a printer’s schedule that allows the distributor to achieve minimum
customer cost over all printer’s schedules, and σm is a randomly chosen block family
schedule for the printer. The use of a randomly chosen block family schedule models
the case in which there is no cooperation between the parties. In Sect. 7.4.3.1 below,
we find a manufacturer’s block family schedule that minimizes the distributor’s
maximum lateness.

We evaluate (7.72) computationally by examining 100 random instances for each
of three different configurations, as follows. Each configuration has three zones and
a total of 10 subzones. Different configurations are created by varying the number
of subzones per zone. In the first configuration, there are four subzones in zone 1,
three subzones in zone 2, and three subzones in zone 3. In the second configuration,
there are five, four, and one subzones in the three zones, respectively. Finally, in
the third configuration, there are seven, two, and one subzones in the three zones,
respectively. For the setup time, processing time, and due date, each is generated
from one of two distributions. Specifically, the setup times are randomly generated
integers from a U [1, 50] distribution or a U [1, 100] distribution, the processing
times are integers from a U [1, 50] or a U [1, 100] distribution, and the due dates
are integers from a U [400, 600] or a U [200, 800] distribution. This variety creates
2 × 2 × 2 = 8 different data sets for each configuration. These ranges are designed
to be representative of those arising in a wide variety of manufacturing problems.

Table 7.13 presents our results. The first two columns show the lower and upper
bounds on setup times and processing times, respectively. Column 3 (respectively,
Column 4) shows the relative percentage increase in distributor’s cost (computed
as the mean over 300 randomly generated instances, including 100 for each
configuration) resulting from conflict for due dates generated from a U [400, 600]
(respectively, U [200, 800]) distribution. These results indicate that if the printer
randomly chooses a block family schedule, then the overall average relative increase
in maximum lateness from the distributor’s conflict is 15.81%. We note that the
relative lateness cost almost doubles when the due dates are more dispersed.

Table 7.13 Distributor’s cost of conflict in Problem 1

Setup Processing Due dates

times times l = 400, u = 600 l = 200, u = 800

l u l u Conflict Conflict

1 50 1 50 16.47% 20.16%

1 50 1 100 8.73% 22.83%

1 100 1 50 10.55% 18.87%

1 100 1 100 7.30% 21.59%

Overall averages 10.76% 20.86%

386 7 Optimization and Conflict

Table 7.14 Manufacturer’s cost of conflict in Problem 1

Setup Processing Due dates

times times l = 400, u = 600 l = 200, u = 800

l u l u Conflict Conflict

1 50 1 50 6.07% 3.18%

1 50 1 100 1.57% 5.46%

1 100 1 50 2.85% 14.61%

1 100 1 100 1.24% 8.65%

Overall averages 2.93% 7.97%

The printer incurs a cost of conflict when it must produce according to a
distributor’s optimal schedule σd . If σm is a block family schedule, then we define
the relative increase in cost that results from the printer’s conflict as

[Cmax(σ
d) − Cmax(σ

m)]/Cmax(σ
m). (7.73)

We evaluate expression (7.73) computationally using the same test data as
for (7.72). The results are shown in Table 7.14.

The mean relative increase in cost resulting from the printer’s conflict is 5.45%.
A 5.45% increase in the length of an eight-hour shift is almost 30 minutes. Hence,
the resulting overtime pay for the production staff represents a significant cost
to the printer. Therefore, each party in this production–distribution system faces
a significant cost of conflict if forced to use the other’s optimal schedule. This
motivates our investigations of supply chain dominance in Sect. 7.4.3 and of the
benefit of cooperation in Sect. 7.4.4.

7.4.2.2 Conflict in Problem 2

As in Problem 1, the manufacturer’s problem is solved by minimizing the number
of setups. The result here is similarly stated without proof.

Proposition 7.2 The manufacturer’s Problem 2 is solved by any schedule that has
one setup for each product.

To determine a production sequence and a delivery schedule that jointly minimize
the distributor’s overall inventory cost, we formulate the problem as the following
assignment problem with side constraints. Recall that k1 is the total number of
periods during which product P1 is produced. Let ys = 1 if P1 is produced during
period s, and ys = 0 otherwise. Let xsi = 1 if the distributor delivers to retailer i
at the end of period s, and xsi = 0 otherwise. The objective is to minimize the total
inventory holding cost. Since the average inventory level in period s for product j
is hj (Ij,s−1 + Ij,s)/2, the total inventory holding cost for a distribution cycle is

7.4 Manufacturer and Distributor 387

h1[I1,0 +2
∑n−1

s=1 I1,s +I1,n]/2+h2[I2,0 +2
∑n−1

s=1 I2,s +I2,n]/2. Since Ij,0 = Ij,n,
this reduces to

∑n
s=1(h1I1,s + h2I2,s), which enables the following model.

Minimize
∑n

s=1(h1I1,s + h2I2,s)

s.t.
n∑

i=1

xsi = 1, s = 1, . . . , n (7.74)

n∑

s=1

xsi = 1, i = 1, . . . , n (7.75)

I1,s = I1,s−1 + Cys −
n∑

i=1

b1ixsi , s = 1, . . . , n (7.76)

I2,s = I2,s−1 + C(1 − ys) −
n∑

i=1

b2ixsi , s = 1, . . . , n (7.77)

I1,0 = I1,n (7.78)

I2,0 = I2,n (7.79)

n∑

s=1

ys = k1 (7.80)

I1,s ≥ 0, s = 1, . . . , n (7.81)

I2,s ≥ 0, s = 1, . . . , n (7.82)

ys ∈ {0, 1}, s = 1, . . . , n (7.83)

xsi ∈ {0, 1}, i = 1, . . . , n, s = 1, . . . , n. (7.84)

Constraints (7.74) and (7.75) ensure that exactly one retailer is served at the end
of each period. Constraints (7.76) and (7.77) define each period’s ending inventory
level for each product. Constraints (7.78) and (7.79) ensure that the distribution
cycle’s ending inventory level equals its starting inventory level for each product.
Constraint (7.80) ensures that the required amount of each product is manufactured.

As in Problem 1, the distributor’s conflict arises when the manufacturer solves
its problem independently from the distributor. We perform a computational study
to determine the cost of the distributor’s conflict. We compare its costs under the
following two alternative scenarios:

1. The manufacturer uses its optimal schedule σm, and the distributor then deter-
mines its best schedule ν(σm), given the manufacturer’s schedule. The distribu-
tor’s inventory holding cost in this scenario is denoted as T (σm, ν(σm)).

2. The manufacturer produces according to a schedule σd preferred by the dis-
tributor, which then uses an optimal delivery schedule ν(σ d). That is, the
distributor chooses σd for the manufacturer such that ν(σ d) is optimal for the

388 7 Optimization and Conflict

distributor. The distributor’s inventory holding cost in this scenario is denoted as
T (σd, ν(σ d)).

The data set includes two products delivered to six retailers; the truck capacity is
100 units. The manufacturer, therefore, produces 100 units of one product during
each of the six periods, and each retailer receives a total of 100 units, mixed
according to its demand ratio. The demand ratios across all retailers sum to 50:50.
To simulate this, the demand for product P1 is a randomly generated integer from
U [1, 99] for each of the first five retailers, and b16 = 300 − ∑5

i=1 b1i . Infeasible
instances where b16 ≤ 0 or b16 ≥ 100 are discarded. Also, b2i = 100 − b1i , for
i = 1, . . . , 6. One set of these six pairs of demands defines an instance. Each of
100 instances is tested for several combinations of holding costs for product P1
(h1 ∈ {5, 10, 20, 40}) and product P2 (h2 ∈ {1, 5, 10, 20, 40}).

The distributor’s cost of conflict for an instance is computed as [T (σm, ν(σm))−
T (σd, ν(σ d))]/T (σ d, ν(σ d)), i.e., the percentage increase in the distributor’s
inventory cost if the manufacturer uses its optimal schedule. For each combination
of holding costs, the mean cost of conflict over 100 instances is computed. The
distributor’s problem (i.e., the assignment problem with side constraints) is solved as
a linear mixed integer program using CPLEX (version 8.1). The results are shown in
Table 7.15. The distributor’s cost in Table 7.15 is symmetric with respect to holding
costs, as discussed below in Corollary 7.2 in Sect. 7.4.3.3.

The manufacturer incurs a cost of conflict when it produces according to a
schedule chosen by the distributor. This can increase the number of setups from
the manufacturer’s optimal number (which is the number of products, in this case
two) to as many as the number of periods, n. This increases the manufacturer’s
cost from 2μ to nμ. Since the number of setups required by the distributor’s
optimal schedule is S(σd)/μ, the manufacturer’s cost of conflict is computed as
[S(σd)/μ − 2]/2, the relative increase in the number of setups. Our computational
study includes two products and six retailers, with 1000 random instances of
demand ratios generated as described above. In none of the instances tested does
the distributor’s optimal schedule allow the manufacturer to have only two setups,
i.e., the schedule (P1P1P1P2P2P2). In 24.6% of these instances, the manufacturer
performs four setups, i.e., (P1P1P2P1P2P2) or (P1P1P2P2P1P2). In the other 75.4%
of the instances, the manufacturer performs six setups, i.e., (P1P2P1P2P1P2). These
data show that the mean number of setups increases from 2.00 to 5.51; therefore, the
manufacturer’s mean cost of conflict is 175.5%.

Table 7.15 Distributor’s cost
of conflict in Problem 2

h2 = 1 h2 = 5 h2 = 10 h2 = 20 h2 = 40

h1 = 5 87.96% 89.28% 88.26% 87.94% 88.10%

h1 = 10 88.19% 88.26% 89.28% 88.26% 87.94%

h1 = 20 88.46% 87.94% 88.26% 89.28% 88.26%

h1 = 40 88.66% 88.10% 87.94% 88.26% 89.28%

7.4 Manufacturer and Distributor 389

7.4.3 Supply Chain Dominance

In this section, we consider two alternative scenarios for each problem with respect
to supply chain dominance. In the first scenario, the manufacturer is dominant and
insists on a schedule that serves as a constraint for the distributor. In the second
scenario, the roles are reversed. In each scenario, we discuss how the decision maker
which is not dominant can minimize its cost under the constraint imposed by the
dominant decision maker.

7.4.3.1 Dominance in Problem 1: Printer Dominates

Since there is no difference in the printer’s cost between all block family schedules,
a rational printer is willing to use any block family schedule the distributor requests.
Thus, we now determine which block family schedule is best for the distributor.
Recall that the distributor’s due dates can be translated into printer’s due dates dMij
using (7.71). Consequently, the distributor’s minimum maximum lateness can be
found by solving a maximum lateness scheduling problem at the printer.

To study this problem, we need a measure to compare the lateness of jobs within
a block. Index the jobs such that dMi1 ≤ · · · ≤ dMi�i

, for i = 1, . . . , n. Thus, CM
i�i
(σ)

denotes the time at which the last job for zone Zi is completed by the printer. Since
jobs are ordered by EDD within each block, for each j ∈ {1, . . . , �i}, CM

ij (σ) −
CM
i�i
(σ) is constant for all block family schedules. For each zone Zi , we define the

constant

Xi = max
1≤j≤�i

{CM
ij (σ) − CM

i�i
(σ) − dMij }.

We are now ready to solve the maximum lateness block scheduling problem.

Theorem 7.35 Among all of the printer’s block family schedules, one which
minimizes the maximum lateness is given by sequencing the blocks i = 1, . . . , n,
in nonincreasing order of Xi .

Proof By adjacent pairwise interchange. Consider scheduling the blocks in reverse
order, i.e., starting at Cmax and moving backward. Suppose we have just sched-
uled a block whose starting time is B. Assume that block i is selected at
this point, and then block k is selected to precede block i, where Xk ≤ Xi ,
as shown in Fig. 7.7. Here, the maximum lateness within blocks i and k is

sk block k si block i other blocks

CB max

Fig. 7.7 Schedule where Block k precedes Block i

390 7 Optimization and Conflict

si block i sk block k other blocks

CB max

Fig. 7.8 Schedule where Block i precedes Block k

Table 7.16 Distributor’s cost of conflict and its improvement from Theorem 7.35

Setup Processing Due dates

times times l = 400, u = 600 l = 200, u = 800

l u l u Conflict Improvement Conflict Improvement

1 10 1 50 3.54% 10.06% 6.73% 10.25%

1 10 1 100 0.58% 6.82% 7.39% 11.45%

1 50 1 50 1.68% 7.33% 6.39% 9.68%

1 50 1 100 0.64% 5.71% 6.38% 11.38%

Overall averages 1.61 % 7.48% 6.72% 10.69%

max{Xi + B,Xk + B − �ipi − si} = Xi + B. However, if we interchange
blocks i and k (Fig. 7.8), then the maximum lateness within those blocks is
max{Xi + B − �kpk − sk,Xk + B} ≤ Xi + B. ��

We perform a computational study similar to the one in Sect. 7.4.2.1. That
study evaluates the distributor’s conflict for a randomly chosen block family
schedule. In this case, however, we evaluate the distributor’s conflict from using
a block family schedule σm

7.35 that satisfies Theorem 7.35, which is [Lmax(σ
m
7.35) −

Lmax(σ
d)]/Lmax(σ

d). We also evaluate the improvement in the distributor’s maxi-
mum lateness from the use of such a block family schedule rather than a randomly
chosen one, denoted by σm

r , which is [Lmax(σ
m
r) − Lmax(σ

m
2)]/Lmax(σ

m
r). The

results are shown in Table 7.16. The mean reduction in the distributor’s maximum
lateness that results from the printer using the most favorable block family schedule
is 9.08%, which still leaves an average distributor’s conflict of 4.17%. As in
Table 7.13, the distributor’s cost of conflict is significantly larger for the case of
more dispersed due dates.

Remark 7.10 The results in Table 7.16 suggest that approximately one-third of the
distributor’s conflict computed in Sect. 7.4.2.1 arises from the printer’s use of a
block family schedule, and the remainder comes from the choice of which block
family schedule the printer uses.

7.4.3.2 Dominance in Problem 1: Distributor Dominates

If the distributor has dominant power in the supply chain, then it may impose a
limit, Δ, on the maximum lateness that results from the printer’s decisions. The
printer then minimizes its cost, subject to this constraint. We now show how this
can be modeled.

7.4 Manufacturer and Distributor 391

Lemma 7.12 In the printer’s problem of minimizing Cmax subject to the constraint
Lmax ≤ Δ, there exists an optimal schedule in which the jobs for zone Zi are
processed in EDD order based on dMij .

Proof Similar to Lemma 7.11. ��
Algorithm P1MC finds a schedule that minimizes the printer’s makespan,

while satisfying the distributor’s requirement that Lmax ≤ Δ. It is the same as
Algorithm P1D, except for the Optimal Solution Value step shown below.

Algorithm P1MC
Optimal Solution Value
min1≤j≤n,1≤u1≤�1,...,1≤un≤�n{

∑n
i=1 uisi | f (�1, . . . , �n; u1, . . . , un; j) ≤ Δ}.

Theorem 7.36 Algorithm P1MC finds an optimal schedule for the printer’s version
of Problem 1 with the Lmax ≤ Δ constraint in O(n2 ∏n

i=1 �
2
i) time.

Proof Similar to Theorem 7.34. ��
In order to evaluate the cost incurred by the printer if it must satisfy a maximum

lateness constraint imposed by the distributor, we compute the relative cost increase
resulting from the printer’s conflict. If σm denotes any block family schedule, and
σd(Δ) denotes the printer’s schedule derived from Algorithm P1MC, then we define
the relative increase in cost resulting from the printer’s conflict as

[Cmax(σ
d(Δ)) − Cmax(σ

m)]/Cmax(σ
m). (7.85)

We evaluate this expression computationally, as for (7.73) in Sect. 7.4.2.1. The
results appear in Table 7.17. For each combination of setup times, processing times,
and due dates, we evaluate (7.85) for three values of Δ. Let L∗

max be the optimum
Lmax value from Algorithm P1D and Z = Lmax(σ

m) − L∗
max. The three values of

Δ for which each instance is tested are Δ = L∗
max + 0.25Z, Δ = L∗

max + 0.5Z, and
Δ = L∗

max + 0.75Z. Recall that values for Δ = L∗
max can be found in Table 7.14,

whereas for Δ = Lmax(σ
m) the cost of conflict is zero.

The results in Table 7.17 show that most of the printer’s conflict is incurred when
the weakest constraint, Lmax ≤ Δ = L∗

max + 0.75Z, is imposed by the distributor.
By comparing Table 7.17 with Table 7.14, we observe that on average 68.0% of
the printer’s total conflict is incurred as a result of this first marginal reduction in
allowable Lmax value from Lmax(σ

m) to L∗
max + 0.75Z. It follows that the largest

marginal reduction in conflict occurs when the printer first uses a schedule that is
not a block family schedule.

7.4.3.3 Dominance in Problem 2: Manufacturer Dominates

The manufacturer produces so that it has only two setups per distribution cycle, one
for each product. Given this production sequence, the distributor seeks a distribution

392 7 Optimization and Conflict

Ta
bl
e
7.
17

Pr
in

te
r’

s
co

st
of

co
nfl

ic
ti

n
Pr

ob
le

m
1

as
Δ

va
ri

es

D
ue

da
te

s

Se
tu

p
Pr

oc
es

si
ng

l
=

40
0,

u
=

60
0

l
=

20
0,

u
=

80
0

tim
es

tim
es

M
ax

im
um

al
lo

w
ab

le
la

te
ne

ss
(Δ

)
M

ax
im

um
al

lo
w

ab
le

la
te

ne
ss

(Δ
)

l
u

l
u

L
∗ m

ax
+

0.
25

Z
L

∗ m
ax

+
0.

5Z
L

∗ m
ax

+
0.

75
Z

L
∗ m

ax
+

0.
25

Z
L

∗ m
ax

+
0.

5Z
L

∗ m
ax

+
0.

75
Z

1
50

1
50

5.
31

%
4.

42
%

3.
99

%
2.

64
%

1.
94

%
1.

79
%

1
50

1
10

0
1.

46
%

1.
28

%
1.

24
%

4.
46

%
3.

49
%

3.
11

%

1
10

0
1

50
2.

77
%

2.
70

%
2.

63
%

12
.1

5%
9.

59
%

8.
69

%

1
10

0
1

10
0

1.
24

%
1.

20
%

1.
18

%
6.

97
%

5.
79

%
5.

22
%

O
ve

ra
ll

av
er

ag
es

2.
70

%
2.

40
%

2.
26

%
6.

56
%

5.
20

%
4.

70
%

7.4 Manufacturer and Distributor 393

sequence that minimizes its cost over all possible distribution sequences. This
distribution sequence is then repeated throughout the planning horizon.

The manufacturer produces product P1 for k1 consecutive periods and then
produces product P2 for k2 consecutive periods. Let ν = (ν(1), . . . , ν(n)) denote
the delivery sequence. We first explain how the inventory level of product Pj , for
j = 1, 2, can be computed over the distribution cycle time nCt and then specify the
distributor’s best distribution sequence, given this production sequence. Let the total
inventory holding cost from period 1 through period k1 for product P1 be denoted
by T 1

1,k1
and the total inventory holding cost for both products from period 1 through

period n be denoted by T1,n.

Lemma 7.13 For production sequence (P1 · · ·P1P2 · · ·P2), the distributor’s inven-
tory cost in Problem 2 is

T1,n = nI1,0h1 + nI2,k1h2 +
(
k2

1

2
+ k1k2 + k1

2

)

h1C +
(
k2

2

2
+ k1k2 + k2

2

)

h2C

−
n∑

s=1

(n − s + 1)
(
h1b1ν(s) + h2b2ν(k1+s)

)
,

where b2ν(s) = b2ν(n+s), s = 0, 1, . . . , n.

We refer the reader to Dawande et al. (2006) for a proof.
We now find the distributor’s best delivery sequence if the manufacturer uses its

optimal schedule.

Theorem 7.37 Suppose that h1 ≥ h2 and that the retailers are indexed such that
b11 ≥ · · · ≥ b1n. For production sequence (P1 . . . P1P2 . . . P2), the distributor’s
inventory cost in Problem 2 can be minimized by using the delivery sequence ν =
(1, . . . , n).

Proof Because I1,0 = I2,k1 = 0 for this production sequence, we can prove the
result by showing that the non-constant term

∑n
s=1(n−s+1)(h1b1ν(s)+h2b2ν(k1+s))

in Lemma 7.13 is maximized by the proposed sequence ν. First, observe that since
the distribution sequence is cyclic,

n∑

s=1

(n − s + 1)h2b2ν(k1+s) =
k1∑

s=1

(k1 − s + 1)h2b2ν(s) +
n∑

s=k1+1

(n + k1 − s + 1)h2b2ν(s).

Suppose that νo is a distribution schedule in which the retailers’ demands are
not served in nonincreasing order. Then, there must be two adjacent periods i and
j = i + 1 in νo such that b1νo(i) < b1νo(j). We perform a pairwise interchange on
the demands served in those periods and thus obtain a new schedule ν′. We show
that T1,n(ν

′) − T1,n(νo) ≤ 0. If 2 ≤ j ≤ k1, then

394 7 Optimization and Conflict

T1,n(ν
′) − T1,n(νo) = −h1[(n − i + 1)(b1νo(j) − b1νo(i)) + (n − j + 1)(b1νo(i) − b1νo(j))]

− h2[(k1 − i + 1)(b2νo(j) − b2νo(i)) + (k1 − j + 1)(b2νo(i) − b2νo(j))]
= −h1(j − i)(b1νo(j) − b1νo(i)) − h2(j − i)(b2νo(j) − b2νo(i))

= (h2 − h1)(b1νo(j) − b1νo(i)) ≤ 0.

Thus, any distribution schedule can be rearranged into nonincreasing order of the b1i
values without increasing the total inventory cost. The proof is similar for k1 + 1 ≤
j ≤ n. ��
Remark 7.11 The result in Theorem 7.37 leads to the symmetry with respect
to holding costs observed in Table 7.15: the distributor’s optimal inventory cost
remains the same if the holding costs of the two products are interchanged.

Corollary 7.2 For the production sequence (P1 . . . P1P2 . . . P2), the distributor’s
optimal inventory cost in Problem 2 is symmetric with respect to the holding costs
h1 and h2.

Proof Theorem 7.37 implies that if h2 ≥ h1, then for production sequence
(P1 . . . P1P2 . . . P2), the distributor’s inventory cost in Problem 2 is minimized by
using delivery order ν′ = (k1, k1 − 1, . . . , 1, n, n − 1, . . . , k1 + 1).

We consider two different problems. In each, the production sequence is
(P1 . . . P1P2 . . . P2). In the first, h1 ≥ h2 and the distributor uses delivery order ν =
(1, 2, . . . , n− 1, n). Inventory levels are represented by Ij,s . In the second, h2 ≥ h1
and the distributor uses delivery order ν′ = (k1, k1 −1, . . . , 1, n, n−1, . . . , k1 +1).
Inventory levels are represented by I ′

j,s . We prove Corollary 7.2 by showing that
I1,s = I ′

2,k1−s for s = 0, . . . , k1, and I1,s = I ′
2,n+k1−s for s = k1, . . . , n − 1. We

have

I1,0 = I ′
2,k1

= 0

I1,1 = I1,0 + C − b1,ν(1) = I ′
2,k1

+ C − b1,ν′(k1) = I ′
2,k1

+ b2,ν′(k1) = I ′
2,k1−1

.

.

.

I1,k1 = I1,0 + k1C −
k1∑

i=1

b1,ν(i) = I ′
2,k1

+
k1∑

i=1

(C − b1,ν′(i)) = I ′
2,k1

+
k1∑

i=1

b2,ν′(i) = I ′
2,0

I1,k1+1 = I1,k1 − b1,ν(k1+1) = I ′
2,0 − C + b2,ν′(n) = I ′

2,n−1

.

.

.

I1,n−1 = I1,k1 −
n−1∑

i=k1+1

b1,ν(i) = I ′
2,0 −

n∑

i=k1+2

b1,ν′(i) = I ′
2,0 −

n∑

i=k1+2

(C − b2,ν′(i)) = I ′
2,k1+1.

��

7.4 Manufacturer and Distributor 395

Recall that for Problem 1 in Sect. 7.4.3.1, we show how the distributor can
benefit by finding a production sequence that improves Lmax and does not degrade
Cmax. However, since the manufacturer’s optimal schedule in Problem 2 is simply
(P1 . . . P1P2 . . . P2), no such improved schedule exists in this case. Hence, no
computational study is needed here. Therefore, the contribution of this section
is to show that the problem of finding the best distribution schedule, given a
manufacturer’s schedule (P1 . . . P1P2 . . . P2), is polynomially solvable via a sorting
algorithm.

7.4.3.4 Dominance in Problem 2: Distributor Dominates

If the distributor has dominant power in the supply chain, then it may impose a
limit, I ∗, on the total inventory holding cost that results from the decisions of the
manufacturer. The manufacturer then minimizes its cost, subject to this constraint,
by solving a variant of the assignment problem with side constraints in Sect. 7.4.2.2.
We let gs = 1 if a setup is required in period s; otherwise, gs = 0.

Minimize g2 + g3 + · · · + gn+1 (7.86)

s.t.
n∑

s=1

(h1I1,s + h2I2,s) ≤ I ∗ (7.87)

ys − ys−1 ≤ gs, s = 2, . . . , n + 1 (7.88)

ys−1 − ys ≤ gs, s = 2, . . . , n + 1 (7.89)

gs ∈ {0, 1}, s = 2, . . . , n + 1

and (7.74)–(7.84).

Constraint (7.87) enforces the inventory holding cost limitation. Constraints (7.88)
and (7.89) determine whether a setup is required in period s.

We perform a computational study to evaluate how different values of I ∗
affect the manufacturer’s cost. The same data set generated for the study of the
manufacturer’s conflict in Sect. 7.4.2.2 is used to compute the mean number of
setups, S(σ(I ∗))/μ, required for the manufacturer to meet the given inventory cost
constraint and to compute the mean relative cost increase, [S(σ(I ∗))/μ − 2]/2.
This is performed for five values of I ∗. Let T (σm, ν(σm)) be the distributor’s
total inventory holding cost for the manufacturer’s optimal production sequence,
T ((σ d, ν(σ d)) be the distributor’s optimal total inventory holding cost, and Y =
T (σm, ν(σm)) − T ((σ d, ν(σ d)). The five values of I ∗ for which 100 instances
are tested are I ∗ = T ((σ d, ν(σ d)), I ∗ = T ((σ d, ν(σ d)) + 0.25Y , I ∗ =
T ((σ d, ν(σ d)) + 0.5Y , I ∗ = T ((σ d, ν(σ d)) + 0.75Y , and I ∗ = T (σm, ν(σm)).
Holding cost values h1 = 5 and h2 ∈ {5, 10, 20, 40} are used. Mean results over the
100 instances are shown in Table 7.18.

396 7 Optimization and Conflict

Ta
bl
e
7.
18

M
an

uf
ac

tu
re

r’
s

co
st

of
co

nfl
ic

ti
n

Pr
ob

le
m

2
as

I
∗

va
ri

es

T
((
σ
d
,
ν
(σ

d
))

T
((
σ
d
,
ν
(σ

d
))

+
0.

25
Y

T
((
σ
d
,
ν
(σ

d
))

+
0.

5Y
T
((
σ
d
,
ν
(σ

d
))

+
0.

75
Y

T
(σ

m
,
ν
(σ

m
))

Se
tu

ps
C

os
t

Se
tu

ps
C

os
t

Se
tu

ps
C

os
t

Se
tu

ps
C

os
t

Se
tu

ps
C

os
t

h
2

=
5

5.
26

16
3%

4.
32

11
6%

4.
00

10
0%

4.
00

10
0%

2.
00

0%

h
2

=
10

5.
62

18
1%

4.
36

11
8%

4.
00

10
0%

4.
00

10
0%

2.
00

0%

h
2

=
20

5.
50

17
5%

4.
38

11
9%

4.
00

10
0%

4.
00

10
0%

2.
00

0%

h
2

=
40

5.
45

17
2%

4.
43

12
1%

4.
00

10
0%

4.
00

10
0%

2.
00

0%

A
ve

ra
ge

s
5.

46
17

3%
4.

37
11

9%
4.

00
10

0%
4.

00
10

0%
2.

00
0%

7.4 Manufacturer and Distributor 397

The results in Table 7.18 show that 57.8% of the manufacturer’s cost of conflict
is incurred when the weakest constraint, I ∗ = T ((σ d, ν(σ d)) + 0.75Y , is imposed
by the distributor.

7.4.4 Benefit of Cooperation

In this section, we compare the total system cost in a situation where the manufac-
turer and the distributor cooperate fully, to the total system cost that results if either
party makes an independent decision. For each problem, the combined objective
function is a convex combination of the individual objectives. This model is chosen
for generality; we evaluate the objective for different values of the combination
parameter α. In any practical system consisting of a manufacturer and a distributor,
the value of α is defined either by an executive decision if they are in the same
company or by the two parties’ relative negotiating power otherwise. We conclude
this section with a discussion of methods for encouraging and implementing supply
chain cooperation.

7.4.4.1 Problem 1

For the newspaper example, various reasonable objectives for the combined problem
can be formulated. In practice, the distributor’s goal may not be to minimize Lmax,
but rather to ensure that Lmax = 0. In this case, the discussion in Sect. 7.4.3.2 and the
results in Table 7.17 are applicable. Similarly, the printer may not want to minimize
Cmax as much as requiring that Cmax ≤ C∗, where C∗ is a value which ensures that
production can be completed without the use of overtime labor. Here, the printer
can offer the distributor the opportunity to design and request a production sequence
with a fixed number of extra setups allowed. Each of these scenarios is more likely
if the printer and the distributor are in the same company, which is typical but not
ubiquitous in the newspaper industry.

If the printer and distributor cooperate, then they select a schedule σc that
minimizes the convex combination αCM

max(σ) + (1 − α)LD
max(σ), for some fixed

α. Given α, Algorithm P1C below, which differs from Algorithm P1D only in the
Input and Optimal Solution Value steps, finds such a schedule.

In order for the distributor to agree to a certain value of Lmax, it is important for
the distributor to assess the cost implication of choosing this value. We now describe
an approach to assess this cost in practice. The demand of each distribution center
Zij typically consists of demand from individual subscribers and from newsstands.
Late deliveries may affect these demands; the demand at newsstands is particularly
time sensitive. Using historical data, each distribution center Zij can express the
dollar value of lost sales, Gij (Lij), as a function of the lateness Lij . Typically,
Gij (Lij) is an increasing function of Lij . Thus, by agreeing to a specific value of

398 7 Optimization and Conflict

Lmax , the distributor may incur a maximum total cost of
∑n

i=1
∑�i

j=1 Gij (Lmax).
We note that this is a worst-case scenario in which the lateness of each distribution
center is Lmax. In practice, when a solution with given Lmax value is implemented,
the distributor’s cost will typically be much less than the maximum committed, i.e.,
∑n

i=1
∑�i

j=1 Gij (Lmax). In Algorithm P1C, the boundary condition and recurrence
relation are the same as in Algorithm P1D. The other details appear below.

Algorithm P1C
Input
Given dij , tij for i = 1, . . . , n, j = 1, . . . , �i ; pi, qi, si for i = 1, . . . , n; δ and α.
Optimal Solution Value
min1≤j≤n,1≤u1≤�1,...,1≤un≤�n{α

∑n
i=1(�ipi + uisi)+ (1 − α)f (�1, . . . , �n; u1, . . . ,

un; j)}.
Theorem 7.38 Algorithm P1C finds an optimal schedule for the combined version
of Problem 1 in O(n2 ∏n

i=1 �
2
i) time.

Proof Similar to Theorem 7.34. ��
In order to evaluate the benefit of cooperation, we compare the schedule derived

by Algorithm P1C to the printer’s optimal schedule and to the distributor’s optimal
schedule. As in Sect. 7.4.2.1, we use eight combinations of ranges for the setup
times, processing times, and due dates. For each combination, we generate 100
random instances for each of the three configurations defined in Sect. 7.4.2.1 and
for α ∈ {0.2, 0.4, 0.6, 0.8}. Then we compute:

1. A random block family schedule σm and its cost Γ m = αCmax(σ
m) + (1 −

α)Lmax(σ
m)

2. The schedule σd found by Algorithm P1MC, where the printer is required to
satisfy Lmax ≤ Δ = L∗

max, and its cost Γ d = αCmax(σ
d) + (1 − α)Lmax(σ

d)

3. The optimal system schedule σc found by Algorithm P1C and its cost Γ c =
αCmax(σ

c) + (1 − α)Lmax(σ
c)

The benefit of cooperation relative to the cost of the printer’s optimal schedule,
(Γ m − Γ c)/Γ m, is shown in Table 7.19. The corresponding information, (Γ d −
Γ c)/Γ d , for the distributor’s optimal schedule is shown in Table 7.20.

Our results show that the mean benefit of cooperation relative to using the
printer’s optimal schedule is 6.50% and relative to using the distributor’s optimal
schedule is 1.28%. The parameter that has the greatest effect on the benefit of
cooperation is due dates. For more dispersed due dates (200–800 vs. 400–600),
the benefit of cooperation is relatively 81.35% greater (8.37% vs. 4.62%) when
compared to the printer’s optimal schedule, and it is relatively 206.43% greater
(1.92% vs. 0.63%) when compared to the distributor’s optimal schedule. These
results imply that cooperation is more valuable when due dates are more dispersed.
This observation is consistent with the results in Tables 7.13 and 7.16.

7.4 Manufacturer and Distributor 399

Table 7.19 Benefit of cooperation vs. printer’s optimal schedule in Problem 1

Setup Processing Due Savings over manufacturer’s

times times dates optimal schedule

l u l u l u α = 0.2 α = 0.4 α = 0.6 α = 0.8

1 50 1 50 400 600 9.69% 7.49% 5.22% 2.56%

1 50 1 100 400 600 6.81% 5.06% 3.31% 1.77%

1 100 1 50 400 600 7.86% 5.48% 3.78% 2.09%

1 100 1 100 400 600 4.94% 3.93% 2.54% 1.36%

1 50 1 50 200 800 13.64% 10.07% 7.36% 3.59%

1 50 1 100 200 800 14.04% 10.25% 6.77% 3.63%

1 100 1 50 200 800 12.30% 9.79% 6.81% 3.96%

1 100 1 100 200 800 12.63% 9.72% 6.09% 3.34%

Averages 10.24% 7.72% 5.24% 2.79%

Table 7.20 Benefit of cooperation vs. distributor’s optimal schedule in Problem 1

Setup Processing Due Savings over Distributor’s

times times dates optimal schedule

l u l u l u α = 0.2 α = 0.4 α = 0.6 α = 0.8

1 50 1 50 400 600 0.08% 0.45% 1.30% 2.54%

1 50 1 100 400 600 0.03% 0.17% 0.40% 0.79%

1 100 1 50 400 600 0.12% 0.50% 1.03% 1.72%

1 100 1 100 400 600 0.02% 0.11% 0.28% 0.51%

1 50 1 50 200 800 0.14% 0.66% 1.92% 4.55%

1 50 1 100 200 800 0.05% 0.38% 1.23% 2.95%

1 100 1 50 200 800 0.30% 1.37% 3.55% 6.86%

1 100 1 100 200 800 0.15% 0.77% 1.99% 3.92%

Averages 0.11% 0.55% 1.46% 2.98%

7.4.4.2 Problem 2

Whereas in Problem 1 the decision makers minimize time, in Problem 2 they
minimize cost. Therefore, there is no obvious scenario in which one party will freely
relinquish its optimal schedule without compensation, even if the parties are within
the same company. We again use a convex combination of the individual objectives
to define a combined objective function.

If the manufacturer and the distributor cooperate, then they can find a man-
ufacturer’s schedule σc and a distributor’s schedule ν(σ c) that jointly minimize
αS(σ)+ (1−α)T (σ, ν(σ)) by solving an assignment problem with side constraints
that is similar to that in Sect. 7.4.3.4. The only changes are to remove the first
constraint and to change the objective function to

Minimize α(g2 + g3 + · · · + gn+1)μ + (1 − α)

n∑

s=1

(h1I1,s + h2I2,s).

400 7 Optimization and Conflict

We perform a computational study to determine the relative cost saving to the
supply chain that results from cooperation between the two parties. The same data
generated for the study of the manufacturer’s conflict in Sect. 7.4.2.2 are used, under
three different scenarios:

1. The manufacturer uses its optimal schedule σm, and then the distributor uses
Theorem 7.37 to determine its best schedule ν(σm). We denote the total cost of
this scenario by Γ m = αS(σm) + (1 − α)T (σm, ν(σm)).

2. The manufacturer uses a schedule σd , derived from the assignment problem with
side constraints in Sect. 7.4.3.4, that enables the distributor to achieve its overall
minimum total inventory holding cost. We denote the total cost of this scenario
by Γ d = αS(σd) + (1 − α)T (σd, ν(σ d)).

3. A production schedule σc that minimizes the overall system cost is used. We
denote the total cost of this scenario by Γ c = αS(σ c) + (1 − α)T (σ c, ν(σ c)).

The setup cost is μ = 200 throughout. The relative gain from using the cooperative
schedule over the manufacturer’s optimal schedule is computed as (Γ m −Γ c)/Γ m.
The mean benefit of cooperation for various combinations of holding costs and
different values of α is shown in Table 7.21.

The relative gain from using the cooperative schedule over the distributor’s
optimal schedule is computed as (Γ d − Γ c)/Γ d . The mean benefit of cooperation
for various combinations of holding costs and different values of α is shown in
Table 7.22.

As in Table 7.15, the results in Tables 7.21 and 7.22 are approximately symmetric
with respect to holding costs. Here, the manufacturer does not use production
sequence (P1 . . . P1P2 . . . P2) in all instances, however analogs to Corollary 7.2 can
be similarly proven for the different production sequences.

From Tables 7.21 and 7.22, the average benefit of cooperation over the manufac-
turer’s optimal schedule is 25.26%, whereas the average benefit of cooperation over
the distributor’s optimal schedule is 6.02%.

Additional computational results show that the improvement over the manu-
facturer’s optimal schedule decreases and the improvement over the distributor’s
optimal schedule grows as μ increases. This is to be expected because a larger setup
cost gives more weight to the manufacturer’s cost in the combined objective. Similar
reasoning applies to two other observations from the results: (i) as holding costs
increase, the benefit of cooperation relative to the manufacturer’s optimal schedule
increases, and the benefit relative to the distributor’s optimal schedule decreases and
(ii) as α increases, the benefit of cooperation relative to the manufacturer’s optimal
schedule decreases, and the benefit relative to the distributor’s optimal schedule
increases.

7.4.4.3 Implementing Cooperation

In both the problems considered, a benefit of cooperation arises when the dominant
player agrees not to use its individually optimal schedule. Unless the distributor

7.4 Manufacturer and Distributor 401

Ta
bl
e
7.
21

B
en

efi
to

f
co

op
er

at
io

n
vs
.m

an
uf

ac
tu

re
r’

s
op

tim
al

sc
he

du
le

in
Pr

ob
le

m
2

α
=

0.
2

α
=

0.
4

h
1

h
2

=
1

h
2

=
5

h
2

=
10

h
2

=
20

h
2

=
40

h
1

h
2

=
1

h
2

=
5

h
2

=
10

h
2

=
20

h
2

=
40

5
30

.1
0%

36
.4

4%
37

.8
3%

39
.7

3%
41

.3
2%

5
15

.6
4%

26
.7

2%
30

.3
1%

34
.3

2%
37

.9
6%

10
35

.3
5%

37
.8

3%
39

.9
3%

40
.4

9%
41

.5
0%

10
25

.1
5%

30
.3

1%
34

.3
3%

36
.1

6%
38

.5
8%

20
39

.0
5%

39
.7

3%
40

.4
9%

41
.7

9%
41

.9
2%

20
32

.6
0%

34
.3

2%
36

.1
6%

38
.7

2%
39

.5
8%

40
41

.2
9%

41
.3

2%
41

.5
0%

41
.9

2%
42

.7
4%

40
37

.5
6%

37
.9

6%
38

.5
8%

39
.5

8%
41

.1
7%

α
=

0.
6

α
=

0.
8

h
1

h
2

=
1

h
2

=
5

h
2

=
10

h
2

=
20

h
2

=
40

h
1

h
2

=
1

h
2

=
5

h
2

=
10

h
2

=
20

h
2

=
40

5
1.

86
%

13
.1

3%
18

.9
4%

25
.7

8%
32

.1
7%

5
0.

07
%

0.
00

%
1.

72
%

9.
21

%
19

.1
9%

10
11

.3
3%

18
.9

4%
25

.0
4%

28
.9

8%
33

.3
4%

10
0.

10
%

1.
72

%
7.

49
%

13
.7

3%
21

.4
9%

20
22

.5
4%

25
.7

8%
28

.9
8%

33
.3

0%
35

.3
6%

20
5.

31
%

9.
21

%
13

.7
3%

20
.5

0%
25

.2
8%

40
31

.2
2%

32
.1

7%
33

.3
4%

35
.3

6%
38

.1
3%

40
17

.1
1%

19
.1

9%
21

.4
9%

25
.2

8%
30

.3
4%

402 7 Optimization and Conflict

Ta
bl
e
7.
22

B
en

efi
to

f
co

op
er

at
io

n
vs
.d

is
tr

ib
ut

or
’s

op
tim

al
sc

he
du

le
in

Pr
ob

le
m

2

α
=

0.
2

α
=

0.
4

h
1

h
2

=
1

h
2

=
5

h
2

=
10

h
2

=
20

h
2

=
40

h
1

h
2

=
1

h
2

=
5

h
2

=
10

h
2

=
20

h
2

=
40

5
1.

92
%

0.
23

%
0.

46
%

0.
18

%
0.

03
%

5
7.

21
%

2.
03

%
2.

38
%

0.
87

%
0.

26
%

10
0.

70
%

0.
46

%
0.

01
%

0.
12

%
0.

05
%

10
3.

57
%

2.
38

%
0.

57
%

0.
74

%
0.

28
%

20
0.

24
%

0.
18

%
0.

12
%

0.
00

%
0.

04
%

20
1.

41
%

0.
87

%
0.

74
%

0.
04

%
0.

22
%

40
0.

08
%

0.
03

%
0.

05
%

0.
04

%
0.

00
%

40
0.

47
%

0.
26

%
0.

28
%

0.
22

%
0.

00
%

α
=

0.
6

α
=

0.
8

h
1

h
2

=
1

h
2

=
5

h
2

=
10

h
2

=
20

h
2

=
40

h
1

h
2

=
1

h
2

=
5

h
2

=
10

h
2

=
20

h
2

=
40

5
17

.8
3%

6.
81

%
6.

71
%

3.
43

%
1.

32
%

5
40

.2
4%

23
.4

4%
18

.7
1%

11
.1

6%
5.

60
%

10
9.

42
%

6.
71

%
2.

46
%

2.
80

%
1.

06
%

10
27

.5
3%

18
.7

1%
9.

66
%

9.
19

%
4.

96
%

20
4.

53
%

3.
43

%
2.

80
%

0.
73

%
0.

91
%

20
13

.9
9%

11
.1

6%
9.

19
%

3.
86

%
4.

12
%

40
1.

86
%

1.
32

%
1.

06
%

0.
91

%
0.

07
%

40
6.

48
%

5.
60

%
4.

96
%

4.
12

%
1.

25
%

7.4 Manufacturer and Distributor 403

can assert itself as dominant, the manufacturer is dominant because it chooses its
schedule first, i.e., it is a Stackelberg leader (Frank & Parker, 2004). When the
supply chain switches from the dominant party’s schedule to the overall optimal
schedule, the dominant player’s cost increases, but the nondominant party’s cost
decreases by a larger amount. We note in Sect. 7.4.4.1 that there are situations in
which the dominant party may accept a suboptimal schedule. However, in general
the nondominant party must use some of its cost saving to compensate the dominant
party for changing its schedule. Classical game theory Nash (1953) states that for the
dominant party to agree to cooperate, this compensation should exceed the amount
by which its cost increases in the overall optimal schedule.

More formally, suppose S(π) is the manufacturer’s cost and T (π) is the
distributor’s cost if schedule π is used. Suppose the manufacturer is dominant, and
σ is its preferred schedule. The total cost of the non-coordinated schedule is thus
S(σ) + T (σ). Let σc denote an optimal coordinated system schedule. The total
cost savings from implementing the coordinated schedule are thus p∗ = [S(σ) +
T (σ)] − [S(σ c) + T (σ c)]. The dominant party’s increase in cost from agreeing to
use the coordinated schedule is p = S(σ c) − S(σ). Since the nondominant party’s
cost decreases by more than p in an optimal coordinated schedule, the system has a
surplus of p∗ − p > 0. A possible mechanism for cooperation is for the dominant
party to receive a lump sum side payment of p + β(p∗ − p), where 0 < β < 1; the
value of β typically depends on the difference in negotiating power between the two
parties. Under this mechanism, both parties have an incentive to cooperate, since the
dominant party’s net cost is S(σ c) − p − β(p∗ − p) < S(σ) and the nondominant
party’s net cost is T (σ c)− (1 − β)(p∗ −p) < T (σ). A similar argument applies to
the case in which the distributor is dominant.

The distribution of the surplus between the two parties is determined by the value
of β. Marketing research (Corfman & Lehman, 1993; Lehman, 2001) and manage-
ment research (Ouchi, 1980; Williamson, 1975) suggest that the surplus should be
divided equitably to ensure continued cooperation. A perfectly equitable split of the
surplus, however, would require that the parties accurately and continuously share
their cost data in a verifiable way. The related topic of strategic misreporting of
private data is discussed in Sects. 9.4 and 9.5.

An alternative approach is one that is more market-oriented. For either problem,
if the manufacturer dominates, then it can negotiate a price to be paid by the
distributor for each additional setup that the manufacturer performs. This price
should be at least the manufacturer’s cost for the additional setup and at most the
distributor’s benefit from the resulting increase in scheduling flexibility. Because
the result of this negotiation is an easily verified job release schedule to which
compensation is tied, the manufacturer is unable to cheat without being detected. If
the distributor dominates, then a similar negotiation determines the price paid by the
manufacturer for the right to impose on the distributor a larger maximum lateness
in Problem 1 or a larger inventory cost in Problem 2. Again, the results are easily
verified. In both situations, the burden of initiating cooperation and of determining
an alternative schedule is borne by the nondominant party.

404 7 Optimization and Conflict

7.5 Resequencing in a Supply Chain

Consider two consecutive stages of a production system that prefer different
sequences. A single supplier fills orders for several manufacturers. A typical
situation is that the two stages determine their job sequences independently, without
regard for the resulting cost to the other. In some other situations, one of the two
stages imposes its own ideal schedule on the other. Then, the other stage has to
optimize its own schedule, subject to this given schedule and a limited resequencing
capability in a storage buffer. Neither of these situations is typically optimal for the
overall system performance.

More generally, in a situation where it is costly to resequence work, we are
interested in minimizing the distance between the actual schedules at the various
stages of the chain and their respective ideal schedules. For this purpose, the distance
between the actual and ideal schedules at any stage of the supply chain is measured
by the minimum number of adjacent pairwise interchanges that are necessary to
transform one schedule into the other. The pairwise interchange cost is a standard
measure of the distance between sequences. It is used, for example, in genome
sequencing (Mahajan et al., 2003).

In the context of classical scheduling problems, consider an ideal sequence as
being defined by changeover times, such as might occur in various process industries
including paint, chemicals, and fertilizer. Suppose that, in these applications, the
ideal and least costly sequence (1,2,3) is from light to dark or from mild to toxic.
In this case, the sequence σ = (3, 1, 2) which has two interchanges is worse than
the sequence σ ′ = (1, 3, 2) which has only one interchange. This is because the
“increasing job index” changeovers (1, 2) in σ and (1, 3) in σ ′ have zero or minimal
cost, whereas the cost of the “decreasing job index” changeover (3, 1) in σ is likely
to be greater than that for (3,2) in σ ′, due to greater dissimilarity between the
products.

Such situations are studied from the point of view of a manufacturer and also
from that of an immediately upstream supplier. Both these problems are considered
under two different objectives. In the first objective, there is an interchange cost but
no storage cost. In the second objective, the addition of storage cost discourages
the use of the buffer. A second situation we consider occurs when both stages
compromise in order to reach an overall schedule that is satisfactory to both parties.
That is, they both schedule the jobs in a less than ideally self-interested way, in
order to achieve a fair redistribution of the overall costs. We study this problem
under the objective of minimizing the interchange cost and show by example that
some intuitive results do not hold in the presence of buffer costs.

This section is organized as follows. In Sect. 7.5.1, we describe our notation
and scheme for classifying changeover cost supply chain scheduling problems,
and we provide a brief overview of our results. In Sect. 7.5.2, we analyze several
problems where one of the manufacturers has to follow the supplier’s ideal
schedule. In Sect. 7.5.3, the roles are reversed and the supplier has to follow
several manufacturers’ ideal schedules. Section 7.5.4 considers the joint supplier–

7.5 Resequencing in a Supply Chain 405

manufacturer decision problem that minimizes the overall system cost and identifies
conditions for profitable cooperation between the supplier and the manufacturer.
Some incentives and practical mechanisms for cooperation are also discussed.

7.5.1 Notation and Classification

We begin with a description of our notation and assumptions and then provide a brief
overview of our results. Let N = {1, . . . , n} denote a set of jobs to be processed.
In a two-stage supply chain, each job is processed first by the supplier and then by
the manufacturer who ordered it, as in a typical flowshop. A single supplier supplies
G manufacturers. The time horizon is divided into T time slots. Processing of a
job takes one time slot, for both the supplier and a manufacturer. We consider a
balanced flow situation where each manufacturer can process at most one job in
each time slot, whereas the supplier can process at most G jobs in each time slot. It
is possible that two or more jobs processed by the supplier in a given time slot may
have been ordered by the same manufacturer. We assume zero transportation time
between the supplier and the manufacturer. Hence, a job that is processed by the
supplier in time slot t can be processed by a manufacturer either in time slot t +1 or
later. If it is not processed immediately, the job must wait in an intermediate buffer
of given capacity b < n. We assume that the buffer is controlled by the specified
decision maker(s) in each problem considered. The set of available jobs in the buffer
during time slot t is denoted by β(t), where |β(t)| ≤ b. Figure 7.9 illustrates the
arborescence structure of the two-stage supply chain.

As discussed above, both the supplier and each manufacturer have an ideal
schedule in which they would like to process the jobs. We denote by S, SI , and
S∗ a feasible schedule of jobs for the supplier, an ideal schedule for the supplier,
and an optimal schedule that minimizes the supplier’s cost while meeting the
manufacturer’s requirements defined below, respectively. A feasible schedule is one

Fig. 7.9 Structure of the
two-stage supply chain

406 7 Optimization and Conflict

that does not exceed the available buffer capacity, b, at any time. Also, we denote
by S(t) (respectively, SI (t), S∗(t)) the set of jobs processed by the supplier in
time slot t in schedule S (respectively, SI , S∗). We let σ(j) (respectively, σ I (j),
σ ∗(j)) denote the time slot in which job j is processed by the supplier in schedule
S (respectively, SI , S∗). Analogously for the manufacturers, we let Mr , MI

r , and
M∗

r denote a feasible schedule for the rth manufacturer, an ideal schedule for the
rth manufacturer, and an optimal schedule for the rth manufacturer, respectively.
We use the notation M , MI , and M∗ when referring to all the G manufacturers
as a whole. Hence, M(t) (respectively, MI(t), M∗(t)) denotes the set of jobs
processed by the G manufacturers during time slot t in schedule M (respectively,
MI , M∗), while Mr(t) (respectively, MI

r (t), M
∗
r (t)) has the same meaning for the

rth manufacturer. We also denote by μ(j) (respectively, μI (j), μ∗(j)) the time slot
in which job j is processed by some manufacturer in schedule M (respectively, MI ,
M∗).

If a decision maker processes one or more jobs during a time slot, then that time
slot is said to be active; otherwise, it is said to be idle. Consider the supplier’s ideal
schedule, SI . We use i ≺S j to denote that job i precedes job j in SI . For the
ideal sequence of the rth manufacturer, we use the notation i ≺Mr j , omitting the
subscript where the identity of the manufacturer is clear from the context. We say
that an interchange occurs whenever job i is processed strictly before j , whereas in
the ideal schedule j strictly precedes i. We define the cost of an interchange relative
to an ideal schedule to be 1. The cost of storing one job in a buffer for one time slot
is denoted by w. Depending upon which model is being studied, the decisions to be
made include finding:

(i) An optimal supplier’s schedule S∗
(ii) An optimal schedule M∗

r for the rth manufacturer where 1 ≤ r ≤ G

(iii) An optimal combined schedule S∗,M∗
r

Here, the decision maker(s) are either the supplier, the rth manufacturer, or both
jointly, respectively.

Using the standard classification scheme of Graham et al. (1979), we let ψ1 = S

where the decision maker is a supplier and ψ1 = Mr where the decision maker is
manufacturer Mr . Where both these parties are joint decision makers, we let ψ1 =
S,Mr . Under ψ2, we use b to describe the buffer capacity. The objective functions
that we consider under ψ3 are

C = the total cost of interchanges, relative to the decision maker’s ideal schedule;
C + W = the total cost of interchanges plus storage.

We first show that the number of time slots that need to be considered to construct
an optimal schedule is small. For simplicity, we consider the case G = 1, but the
extension to G ≥ 2 is straightforward.

Lemma 7.14 The number of time slots in which processing may occur in an optimal
schedule is O(nb).

7.5 Resequencing in a Supply Chain 407

Proof Consider a feasible schedule for the supplier and a manufacturer, and suppose
that the supplier releases one job at time t . There are |β(t)| jobs in the buffer at time
t . Suppose that the supplier releases the next job at time t ′, where t ′ > t+|β(t)|+1.
Furthermore, suppose that the manufacturer processes a job in a time slot between
t + |β(t)| + 2 and t ′. Here, at least one time slot between t + 1 and t + |β(t)| + 1 is
idle for both the supplier and the manufacturer. Removing this time slot clearly does
not affect schedule feasibility, nor does it alter interchange costs. Storage costs, if
present, can decrease but not increase as a result. Thus, for each of the O(n) jobs
released by the supplier, we consider at most b + 1 time slots in the schedule. ��

In view of Lemma 7.14, we discard irrelevant time slots and hence number the
remaining time slots 1, . . . , T , where T = O(nb), in all the following discussion.

7.5.2 Manufacturer’s Problems

We consider problems where the decision maker is the rth of the G manufacturers.
We let SI denote the ideal supplier’s schedule relative to this manufacturer, i.e., the
ideal schedule of the jobs which are ordered by this manufacturer. Hence, job sets
SI (t) may be empty for some time slots t . In the manufacturer’s problem, the jobs
are released by the supplier according to schedule SI . The rth manufacturer also has
its own ideal schedule, MI

r . The manufacturer can resequence the jobs by storing
them in a buffer when they arrive from the supplier and then retrieving them in a
sequence that is different from that in which they were received. However, the given
capacity b < n of the buffer limits this resequencing option. Let z be the last time
slot t during which jobs are released by the supplier, i.e., z = max{t : |SI (t)| > 0}.

7.5.2.1 Interchange Costs

We first consider problem Mr |b|C, i.e., the minimization of interchange cost for
the manufacturer. At each time slot, based on the current jobs in the buffer, the
manufacturer decides whether or not to produce a job. We let ut = 1 if time slot t is
idle and ut = 0 if a job is scheduled at time t . Note that u1 = 1, since the supplier
releases no jobs before time slot 1.

Definition 7.3 We define the vector U = [u1, . . . , uT] to be the profile of a
schedule Mr . The profile of a schedule identifies which time slots are active and
which are idle in the manufacturer’s schedule but does not specify the order in which
the jobs are processed.

We let qt = ∑t−1
i=1 |SI (i)| − t , and Qt = maxt≤v≤T {qv} − qt =

maxt≤v≤T {∑v−1
i=t |SI (i)| − (v − t)}. Observe that Qt represents the minimum

408 7 Optimization and Conflict

amount of buffer space that needs to be set aside for jobs arriving in the future, in
order to ensure feasibility. In fact,

Qt = max
v=t,...,T

{qv} − qt . (7.90)

Hence, Qt ≥ 0.
We now establish a series of structural results about a solution to problem

Mr |b|C.

Lemma 7.15 A schedule for problem Mr |b|C satisfies the buffer capacity con-
straint if and only if qt +∑t

i=1 ui ≤ b, for t = 1, . . . , T .

Proof Observe that from time slot 1 through time slot t , the supplier supplies∑t−1
i=1 |SI (i)| jobs, and only t −∑t

i=1 ui of them have so far been processed by the
manufacturer. Hence, the number of jobs in the buffer during time slot t is exactly
qt +∑t

i=1 ui . ��
Given a partial schedule from time slot 1 to time slot t , we let ψ(t) = Qt + qt +∑t
i=1 ui . Note that ψ(t) is the total buffer requirement at time t , including both the

space required to store the jobs currently in the buffer and also the space that needs
to be set aside for jobs arriving in the future.

Lemma 7.16 Given a partial schedule from 1 to t , if ψ(t) > b, then no feasible
schedule exists from time t + 1 on.

Proof Given t , let v∗ ≥ t be such that Qt = ∑v∗−1
i=t |SI (i)| − (v∗ − t). Then,

Qt + qt = ∑v∗−1
i=1 |SI (i)| − t − (v∗ − t) = qv∗ by definition. Hence, if ψ(t) > b,

and since t ≤ v∗, we have qv∗ + ∑v∗
i=1 ui ≥ qv∗ + ∑t

i=1 ui = ψ(t) > b. Then,
from Lemma 7.15, it follows that no feasible schedule exists. ��
Lemma 7.17 Qt−1 = max{0,Qt + qt − qt−1}, for t = 2, . . . , T .

Proof From (7.90) and Qt−1 = maxt−1≤v≤T {qv} − qt−1, we obtain Qt−1 =
max{qt−1,Qt + qt } − qt−1 = max{0,Qt + qt − qt−1}. ��
Lemma 7.18 In any feasible schedule, given a time slot t such that ut = 0, we have
ψ(t) ≤ ψ(t − 1).

Proof By definition, and since ut = 0, we have ψ(t) − ψ(t − 1) = (Qt + qt +∑t
i=1 ui) − (Qt−1 + qt−1 + ∑t−1

i=1 ui) = (Qt + qt − qt−1) − Qt−1 ≤ 0 from
Lemma 7.17. ��
Remark 7.12 The result in Lemma 7.18 provides a condition that is satisfied by an
optimal solution to Problem Mr |b|C. Consider a profile U such that ut = 0 if and
only if qt + Qt + ∑t−1

i=1 ui = b for t = 1, . . . , z. Intuitively, this means that the
manufacturer delays the processing of the next job until the widest possible choice
of jobs is available; this occurs when the buffer is full. A manufacturer’s profile that
satisfies this property is said to be packed. If a profile is packed, then the position

7.5 Resequencing in a Supply Chain 409

of the idle time slots from 1 to z is uniquely determined by the supplier’s ideal
schedule SI .

Lemma 7.19 There exists an optimal schedule for problem Mr |b|C that has a
packed profile.

Proof First, observe that in a feasible schedule, ut = 1 implies qt+Qt+∑t−1
i=1 ui =

ψ(t)−ut < b. In fact, if ψ(t)−ut = b and ut = 1, then from Lemma 7.16, a buffer
overflow occurs at some time slot after t . Hence, to prove the lemma, it is sufficient
to show that, given any feasible schedule for problem Mr |b|C, there exists another
feasible schedule with the same or smaller interchange cost and a packed profile.
Consider any feasible manufacturer’s schedule without a packed profile.

Suppose there is a time slot t such that ut = 0, ut+1 = 1 and ψ(t)− ut < b. We
can move the idle time earlier from t + 1 to t , which delays the processing of the
job from time slot t to t + 1. This solution is still feasible, since in the new schedule
ψ(t) increases by 1 (and cannot therefore exceed b), and all the other ψ(i) values,
for i = 1, . . . , T , i �= t , remain the same. Clearly, no new job interchange occurs
when moving idle time slots earlier. Repeating this argument, we obtain a feasible
schedule in which all the active time slots t preceding an idle time slot t + 1 satisfy
the property ψ(t) − ut = b.

Alternatively, suppose that ut = 0, ut+1 = 0 and ψ(t + 1) − ut+1 = b.
Since ut+1 = 0, from Lemma 7.18, we have ψ(t) ≥ ψ(t + 1) = b. Also, from
Lemma 7.16, ψ(t) ≤ b, and hence ψ(t) = b. Repeating this argument backward in
the schedule, we obtain ψ(i)−ui = b for all consecutive active time slots i between
any two idle time slots. Thus, the resulting profile is packed. ��
Definition 7.4 In a manufacturer’s problem, given a set of jobs X, we say that j ∈
X is the leftmost job in MI

r if j ≺M k for all k ∈ X. Further, j ∈ X is the rightmost
job in Mr

I if k �M j for all k ∈ X.

Lemma 7.20 A schedule M̃r for problem Mr |b|C has the minimum number of
interchanges among all schedules with a given profile if and only if, whenever a
job is scheduled in time slot t + 1, it is the leftmost job in MI

r among those in
β(t) ∪ S(t).

We refer the reader to Agnetis et al. (2006) for a proof.
Lemmas 7.15 through 7.20 suggest the following algorithm.

Algorithm M-C

1. Given SI ,MI
r , b. Let z be the last slot in which some job is released by the

supplier.
2. For t = 1, . . . , z, compute qt = ∑t−1

i=1 |SI (i)| − t , and
Qt = maxt≤v≤T {∑v−1

i=t |SI (i)| − (v − t)}.
3. For t = 1, . . . , T :

If Qt + qt +∑t−1
i=1 ui ≥ b and there are no jobs available to the

manufacturer, then no feasible schedule exists. Terminate.
If Qt + qt +∑t−1

i=1 ui < b, then schedule idle time and set ut = 1.

410 7 Optimization and Conflict

Fig. 7.10 Illustration of Algorithm M-C

Otherwise, schedule the available job which is leftmost in MI
r ,

and set ut = 0.
4. For t = z + 1, . . . , T :

Schedule the job in the buffer which is leftmost in MI
r . Terminate.

Example 7.5 (Application of Algorithm M-C) Consider the example in Fig. 7.10.
There are n = 6 jobs and the buffer has capacity b = 2. The ideal supplier’s and
manufacturer’s schedules are also shown in Fig. 7.10. The time slot in which the
last job is released by the supplier is z = 6. At time 1, u1 = 1. At time 2, q2 =
|SI (1)| − 2 = 2 − 2 = 0 and Q2 = max{0, 0 − 1, 1 − 2, 1 − 3, 3 − 4, 4 − 5} = 0.
Hence, q2 +Q2 +u1 = 1 < b = 2, so again an idle time slot is scheduled (u2 = 1).
Similarly, q3 = −1 and Q3 = 0, q3 +Q3 +u1 +u2 = −1+2 = 1 < 2, and u3 = 1.
For t = 4, q4 = ∑3

i=1 |SI (i)|−4 = −1, Q4 = 0, and hence q4+Q4+u1+u2+u3 =
2 = b. Since there are available jobs (1, 2, and 3), the leftmost in MI

r among them
(i.e., job 2) is scheduled at t = 4, so that u4 = 0. Continuing thus, q5 = −2, Q5 = 1
(obtained for v = 6), and therefore q5 + Q5 + u1 + u2 + u3 + u4 = 2 = b. Again
there are available jobs, so job 3 is scheduled and u5 = 0. At time t = 6, q6 = −1,
Q6 = 0, and q6 +Q6 + u1 + u2 + u3 + u4 + u5 = 2 = b, so job 4 is scheduled and
u6 = 0. After slot z, the buffer is emptied by repeatedly scheduling the leftmost job
in MI

r , which yields the remaining sequence (6, 5, 1). ��

Theorem 7.39 Algorithm M-C finds an optimal schedule for Problem Mr |b|C in
O(nb log b) time.

Proof Algorithm M-C schedules idle time whenever ψ(t) − ut < b. Hence,
from Lemmas 7.15 through 7.18, the profile of the resulting schedule is packed,
and therefore Algorithm M-C finds a feasible solution if one exists. Finally, it
follows from Lemmas 7.19 and 7.20 that the schedule found by Algorithm M-C
has minimum cost.

7.5 Resequencing in a Supply Chain 411

We consider the time complexity of Algorithm M-C. From the definitions of qt
and Qt and from Lemma 7.17, it follows that Step 2 requires O(T) time. Step 3
requires O(T) repetitions of the choice of next job to schedule. The jobs in the
buffer are stored in a list ordered by the MI

r schedule. Each arriving job is inserted
in this list, using binary search, in O(log b) time. The next (i.e., leftmost) job is
taken from the front of the list. Step 3 requires O(T) insertions in the list, each
requiring O(log b) time. Therefore, the overall time complexity of Algorithm M-C
is O(T log b), which from Lemma 7.14 equals O(nb log b). ��

7.5.2.2 Interchange and Storage Costs

Consider the problem of the rth manufacturer where the objective function also
includes storage costs, Mr |b|C + W . Recall that the cost of holding one job in the
buffer for one time slot is w. We describe two dynamic programming algorithms for
problem Mr |b|C + W . The first, M-CW1, has running time that is polynomial in
n, but exponential in the buffer capacity, b. The second, M-CW2, has running time
that is polynomial in both n and b. However, neither algorithm is more efficient than
the other for all problem instances. For both algorithms, the following preliminary
result simplifies the choice of which job to schedule next. The proof is similar to the
“only if” part of Lemma 7.20 and is omitted.

Lemma 7.21 There exists an optimal schedule M∗
r for problem Mr |b|C + W , in

which whenever a job is scheduled in time slot t + 1, it is the leftmost job in MI
r

among those in β(t) ∪ S(t).

In the description of Algorithm M-CW1 that follows, given a set B of jobs, we
let v denote the leftmost job in the manufacturer’s ideal schedule MI

r among the
jobs in B ∪ S(t). We also let F(t, j) denote the number of jobs that are released by
the supplier at or after time slot t and which precede job j in MI

r .

Algorithm M-CW1
Preprocessing
F(t, j) = |{i : i ∈ ∪T

h=t S(h), i ≺M j}|, for t = 1, . . . , T , j = 1, . . . , n.
Value Function
ft (B) = the minimum total (interchange plus storage) cost to solve the problem
over the time slots from t + 1 through T , if β(t) = B.
Boundary Conditions
fT (∅) = 0.
ft+1(B ∪ S(t) \ {j}) = +∞, if B ∪ S(t) = ∅, for t = 0, . . . , T , j = 1, . . . , n.
ft (B) = +∞ if |B| > b, for t = 0, . . . , T + 1.
Optimal Solution Value
f0(∅).

412 7 Optimization and Conflict

Recurrence Relation

ft (B) = min

{
w|B ∪ S(t)| + ft+1(B ∪ S(t))

w(|B ∪ S(t)| − 1) + F(t + 1, v) + ft+1(B ∪ S(t) \ {v}).

The main result for Algorithm M-CW1 now follows.

Theorem 7.40 Algorithm M-CW1 finds an optimal schedule for problemMr |b|C+
W in O(nb+2b) time.

Proof The first alternative in the recurrence relation computes the cost of schedul-
ing one unit of idle time and thus incurring the storage cost of delaying the |B∪S(t)|
jobs in the buffer by one time unit. The second alternative computes the interchange
cost of processing job v in Mr before any jobs which precede v in MI

r . Since, by
definition, at time t + 1 job v is the leftmost job in MI

r among those in B ∪ S(t),
no job in B ∪ S(t) causes an interchange cost when v is scheduled. Hence, the
interchange cost created when processing v at time t equals the number of jobs that
are not available before time t + 1 and that precede v in MI

r , i.e., F(t + 1, v). In
the second alternative, exactly the jobs in B ∪ S(t) \ {v} remain in the buffer at time
t+1. Consequently, Algorithm M-CW1 compares the cost of all nondominated state
transitions and thus finds an optimal schedule.

We now consider the time complexity of Algorithm M-CW1. Observe that, for
any given j , each job i appears in only one set S(h), thus requiring O(max{n, T })
time in the preprocessing step. Therefore, the overall time requirement for pre-
processing is O(nT). Also, the recurrence relation is computed for ft (B), where
0 ≤ t ≤ T , and for all possible subsets B where |B| ≤ b. This requires a total of
O(nbT) applications of the recurrence relation. Since B ∪ S(t) can be computed in
O(n) time, the overall time complexity of Algorithm M-CW1 is O(nb+1T), which
from Lemma 7.14 equals O(nb+2b) time. ��

Below, we present a second algorithm, M-CW2, for problem Mr |b|C + W .
In order to describe Algorithm M-CW2, we need some additional notation. Let
J (i, j, k) be the set of jobs that are processed by the supplier in the time slots from i

through j and that precede job k in MI
r , i.e., J (i, j, k) = {q|q ≺M k, i ≤ σ I (q) ≤

j}. We let J (i, j, k, l) denote the set J (i, j, k) with the addition of l ≥ 0 idle time
slots. Also, we let |J (i, j, k)| denote the number of jobs in J (i, j, k), and we note
that |J (i, j, k, l)| = |J (i, j, k)| + l.

Before describing the algorithm, several definitions and preliminary results are
needed.

Lemma 7.22 If i �S j and i ≺M j , then in every optimal schedule M∗
r , i

precedes j .

Proof Since i �S j , whenever j is available for processing in M∗
r , either i has

already been processed or it is also available. In the first case, the proof is complete.
In the second case, it follows immediately from Lemma 7.21 that, without loss of
generality, job i can be scheduled before job j in M∗

r . ��

7.5 Resequencing in a Supply Chain 413

Definition 7.5 Given a feasible manufacturer’s schedule Mr , a set J (i, j, k, l) is
compact in Mr if all the elements of J (i, j, k, l) (including the idle time slots) are
sequenced consecutively in Mr , i.e., they are scheduled in time slots i + 1, . . . , i +
|J (i, j, k, l)|. That is, if J (i, j, k, l) is compact, then no job or idle time slot that is
not in J (i, j, k, l) can be scheduled in the time interval [i + 1, i + |J (i, j, k, l)|].
Definition 7.6 A set J (i, j, k, l) is compact-feasible if there exists a feasible
schedule Mr such that J (i, j, k, l) is compact in Mr . For a set to be compact-
feasible, l can only assume certain values. There must be a sufficient number of
idle time slots in Mr to account for the time slots in which no job from J (i, j, k)

can be scheduled. More precisely, if J (i, j, k, l) is compact in Mr , in the t − i + 1
time slots from i + 1 through t + 1 (where i ≤ t ≤ j), only jobs in J (i, t, k) can be
scheduled, and the other time slots must be idle.

Using Definitions 7.5 and 7.6, a lower bound on l is given by

lmin(i, j, k) = max{0, max
t=i,...,j

{t − i + 1 − |J (i, t, k)|}}. (7.91)

Let h be the rightmost job of J (i, j, k) in MI
r , and let

P(i, j, k) = {t |σ I (h) ≤ t ≤ j, SI (t) ∩ (J (i, j, k) \ {h}) = ∅}.

Note that P(i, j, k) contains all the time slots, from σ I (h) through j , in which no
job in J (i, j, k) \ {h} is processed by the supplier. In particular, P(i, j, k) contains
time slot σ I (h) if and only if no other job in J (i, j, k), other than h, becomes
available from the supplier in time slot σ I (h). Moreover, from the definition of
lmin(i, j, k) in Eq. (7.91), it follows that lmin(i, j, k) = 0 if j < i and, for all j ≥ i,

lmin(i, j, k) = max{lmin(i, j − 1, k), j − i + 1 − |J (i, j, k)|}. (7.92)

The following lemma identifies the time slots that are candidates to process job h.

Lemma 7.23 Given an optimal scheduleM∗
r and a set J (i, j, k, l), let h be the last

job of J (i, j, k, l) in MI
r . Then,

(i). All jobs u ∈ J (i, j, k) \ {h} such that σ I (u) ≤ σ I (h) precede h in M∗
r .

(ii). Either h is scheduled in time slot p + 1, for some p ∈ P(i, j, k), or h is the
last job from J (i, j, k) in M∗

r .

Proof We consider each part in turn.

(i) The result follows immediately from Lemma 7.22.
(ii) Suppose that h is not the job scheduled last among those of J (i, j, k) in M∗

r ,
and further suppose for contradiction that h is scheduled in time slot q + 1 in
M∗

r , where q �∈ P(i, j, k). Then, by definition of h and P(i, j, k), SI (q)∪β(q)

contains a job v ∈ J (i, j, k) such that v ≺M h. Since jobs v and h are both

414 7 Optimization and Conflict

available for processing by the manufacturer at time q + 1, processing job h

violates Lemma 7.21, a contradiction. ��
The following two preliminary results consider the two cases in part (ii) of

Lemma 7.23, respectively. Each result describes a decomposition of the schedule
of the jobs and idle time slots of J (i, j, k, l), thereby specifying which jobs precede
and which jobs follow job h.

Lemma 7.24 Given an optimal schedule M∗
r and a set J (i, j, k, l) that is compact

inM∗
r , let h be the last job in theMI

r schedule in that set. If h is scheduled in a time
slot p + 1, where p ∈ P(i, j, k), then, letting l′ = lmin(i, p − 1, h):

(i) The jobs and the idle time slots of set J (i, j, k, l) that precede h in M∗
r are

A(p) = J (i, p − 1, h, l′), where l′ ≤ l.
(ii) The jobs and the idle time slots of set J (i, j, k, l) that follow h in M∗

r are
B(p) = J (p + 1, j, h, l − l′), where l − l′ ≥ lmin(p + 1, j, h).

(iii) Sets A(p) and B(p) are compact in M∗
r .

Proof We consider each part in turn.

(i) It follows from Lemma 7.21 that any job q ∈ J (i, p − 1, h, l′) precedes h in
M∗

r . Since J (i, j, k, l) is compact in M∗
r , from time slot i + 1 through time

slot p exactly p − i jobs and idle time slots are scheduled in M∗
r . Since M∗

r is
feasible, l′ ≤ l.

(ii) After h in M∗
r , the remaining jobs from J (i, j, k, l) must be scheduled with

l − l′ idle time slots, thus yielding the set B(p) = J (p + 1, j, h, l − l′). Since
M∗

r is feasible, l − l′ ≥ lmin(p + 1, j, h).
(iii) Note that A(p) ∪ B(p) ∪ {h} = J (i, j, k, l). Then, the compactness of A(p)

and B(p) follows from that of J (i, j, k, l). ��
From Lemma 7.24, the schedule of J (i, j, k, l) consists of the jobs and idle time

slots of A(p), followed by job h, followed by the jobs and idle time slots of B(p).
In the following discussion, we refer to the case considered in Lemma 7.24 as h-
intermediate.

Lemma 7.25 Given an optimal schedule M∗
r and a set J (i, j, k, l) that is compact

in M∗
r , let h be the last job in the MI

r schedule in that set. If h is the last job from
J (i, j, k, l) in M∗

r , then the jobs and idle time slots of set J (i, j, k, l) that precede
h in M∗

r are the set J (i, j, h, l′), for some lmin(i, j, h) ≤ l′ ≤ l, where J (i, j, h, l′)
is compact in M∗

r .

Proof From the lemma conditions, the set of jobs of J (i, j, k) preceding h

in M∗
r is J (i, j, k) \ {h} = J (i, j, h). Since J (i, j, k, l) is compact in M∗

r ,
there is a minimum number of idle time slots lmin(i, j, h) that must precede
h in M∗

r . The remaining l − lmin(i, j, h) idle time slots can be scheduled
either before h, thus contributing to l′, or after h. Finally, the compactness of
J (i, j, h, l′) follows from that of J (i, j, k, l). ��

7.5 Resequencing in a Supply Chain 415

Remark 7.13 From Lemma 7.25, the schedule of J (i, j, k, l) consists of the jobs of
J (i, j, k) \ {h} and l′ idle time slots, followed by job h, followed by l − l′ idle time
slots. In the following discussion, we refer to the case considered in Lemma 7.25
as h-last. Note that, if lmin(i, j, h) > l, then h cannot be scheduled last among
jobs in J (i, j, k) in M∗

r . Moreover in that case, from the definition of lmin(i, j, h),
J (i, j, h, l) is not compact-feasible.

Lemmas 7.23, 7.24, and 7.25 identify all the possible candidate time slots for
processing job h in M∗

r and suggest a dynamic programming algorithm to solve
problem Mr |b|C + W . In order to construct such an algorithm, we need to identify
the contribution of J (i, j, k, l) to the objective function in the cases considered in
Lemmas 7.24 and 7.25. Let V (J (i, j, k, l)) be the minimum total interchange plus
storage cost to schedule the set J (i, j, k, l). If we add a dummy job 0 at the end
of the MI

r schedule, then J (1, T , 0) is the entire set of jobs to be scheduled. Then,
lmin(1, T , 0) is the minimum number of idle time slots that must be inserted in any
feasible schedule Mr of the rth manufacturer. Adding more than b idle time slots to
lmin(1, T , 0), within the interval [1, z], would necessarily result in buffer overflow.
Therefore, the value of the optimal solution can be computed as V (J (1, T , 0, b +
lmin(1, T , 0))).

We now describe our dynamic programming algorithm for problem Mr |b|C+W .
By convention, the value obtained by minimization over an empty set is +∞.

Algorithm M-CW2
Preprocessing
lmin(i, j, k) = max{0,maxt=i,...,j {t−i+1−|J (i, t, k)|}}, for i, k = 1, . . . , n, j > i.
P(i, j, k) = {t |σ I (h) ≤ t ≤ j, SI (t) ∩ (J (i, j, k) \ {h}) = ∅}, for i, k =
1, . . . , n, j > i.
Value Function
V (J (i, j, k, l)) = minimum total interchange plus storage cost to schedule the set
J (i, j, k, l).
Boundary Condition
V (J (i, j, k, l)) = 0 if |J (i, j, k)| ≤ 1, l ≥ 0.
Optimal Cost
V (J (1, T , 0, b + lmin(1, T , 0))).
Recurrence Relation

V (J (i, j, k, l)) = min

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

minp∈P(i,j,k)

⎧
⎪⎨

⎪⎩

V (A(p)) + V (B(p)) + w(p − σ I (h))

+|{f, g|f ∈ A(p), g ∈ B(p), g ≺M f }|
+|J (p + 1, j, h)|

⎫
⎪⎬

⎪⎭
,

minlmin(i,j,h)≤l′≤l

{
V (J (i, j, h, l′)) + w(i + |J (i, j, h, l′)| − σ I (h))

}
,

where A(p) = J (i, p − 1, h, lmin(i, p − 1, h)),

B(p) = J (p + 1, j, h, l − lmin(i, p − 1, h)), and
h is the last job of J (i, j, k, l) in MI

r .

416 7 Optimization and Conflict

We provide an explanation of Algorithm M-CW2, followed by a numerical exam-
ple. The two alternatives in the recurrence relation represent the h-intermediate and
h-last cases, respectively. Consider first the h-intermediate case. From Lemma 7.24,
if h is scheduled in time slot p + 1, then the schedule decomposes into three parts,
namely A(p), h, and B(p). Besides V (A(p)) and V (B(p)), we need to account
for the contributions of h to the storage and interchange costs, plus the interchange
costs between A(p) and B(p). Since job h is first available for processing by the
manufacturer in time slot σ I (h)+ 1 and is scheduled in time slot p + 1, the storage
cost of job h is w(p−σ I (h)). By definition of h, there are no interchanges between
h and any job in A(p), whereas there is one interchange between h and every job in
B(p). This provides |J (p + 1, j, h)| interchanges. Finally, there is one interchange
for each pair (f, g) such that f ∈ A(p), g ∈ B(p), and g ≺M f .

Consider now the h-last case. From Lemma 7.25, and since f ≺M h for all
f ∈ J (i, j, h), we need only add to V (J (i, j, h, l′)) the contribution of job h to
the storage costs. All jobs and idle time slots in J (i, j, h, l′) are scheduled before
h, starting from time slot i + 1. Hence, job h is scheduled in time slot i + 1 +
|J (i, j, h, l′)|, and its contribution to storage costs is w(i + |J (i, j, h, l′)| − σ I (h)).

Regarding the boundary condition, when J (i, j, k) is either empty or a singleton,
there are no interchanges within that set. Moreover, if |J (i, j, k)| = 1, then there is
no reason not to schedule the single job h immediately, i.e., in time slot σ I (h) + 1.
We note that this is always possible, due to the fact that J (i, j, k, l) is compact. We
now provide an example of Algorithm M-CW2.

Example 7.6 (Application of Algorithm M-CW2) Consider the following instance
of problem Mr |b|C + W . There are n = 5 jobs. The ideal supplier’s schedule
releases exactly one job in each time slot, i.e., SI = 1, 2, 3, 4, 5, 0. From (7.91),
lmin(1, 5, 0) = 0. There is a buffer of capacity b = 1. The manufacturer’s ideal
schedule is MI

r = 2, 3, 5, 1, 4, 0. Finally, the storage cost is w = 1/3.
Let ∗ denote an idle time slot. Our objective is to compute V (J (1, n, 0, b +
lmin(1, 5, 0))) = V (J (1, 5, 0, 1)).
V (J (1, 5, 0, 1))

The set J (1, 5, 0, 1) includes all the jobs, so the rightmost element in MI
r within the

set is h = 4. We first consider the h-intermediate case. Let us consider P(i, j, k) =
P(1, 5, 0). Since σ I (h) = σ I (4) = {4}, we have J (i, j, k)\{h} = J (1, 5, 0)\{4} =
{1, 2, 3, 5} and P(1, 5, 0) = {t |4 ≤ t ≤ 5, SI (t)∩ (J (1, 5, 0) \ {4}) = ∅}. The only
value of t for which SI (t) ∩ (J (i, j, k) \ {h}) = ∅ is thus t = 4. Therefore, we
evaluate the recurrence relation for p = 4 only. To consider the h-intermediate
case, we need to compute lmin. For t = 1, J (1, 1, 4) includes the jobs released
from 1 to 1 which precede 4 in MI

r , i.e., job 1 only. Thus, |J (1, 1, 4)| = 1 and
t − i+1−|J (i, t, k)| = 1−1+1−1 = 0. For t = 2, J (1, 2, 4) = {1, 2} and hence
t−i+1−|J (i, t, k)| = 2−1+1−2 = 0. Similarly, for t = 3, J (1, 3, 4) = {1, 2, 3},
so t − i+1−|J (i, t, k)| = 3−1+1−3 = 0, and therefore lmin(1, 3, 4) = 0. Thus,
we have A(p) = A(4) = J (i, p−1, h, lmin(i, p−1, h)) = J (1, 3, 4, 0) = {1, 2, 3}
and B(p) = B(4) = J (p + 1, j, h, l − lmin(i, p − 1, h)) = J (5, 5, 4, 1) = {5, ∗}.

7.5 Resequencing in a Supply Chain 417

We now consider the h-last case. We first compute lmin(1, 5, 4). Besides the
previously considered sets J (1, 1, 4), J (1, 2, 4), and J (1, 3, 4), we must consider
J (1, 4, 4) = {1, 2, 3} and J (1, 5, 4) = {1, 2, 3, 5}. For t = 4, we have t − i + 1 −
|J (i, t, k)| = 4 − 1 + 1 − 3 = 1, and for t = 5, we have t − i + 1 − |J (i, t, k)| =
5 − 1 + 1 − 4 = 1. Therefore, lmin(1, 5, 4) = 1. Since l = 1, we have l′ = 1. In
this case, |J (i, j, h, l′)| = |J (1, 5, 4, 1)| = 5 and σ I (h) = 4, and hence the second
term in the recurrence relation is V (J (1, 5, 4, 1)) + (1 + 5 − 4)w. Thus,

V (J (1, 5, 0, 1)) = min

{
V (J (1, 3, 4, 0)) + V (J (5, 5, 4, 1)) + w(4 − 4) + 1 + 1
V (J (1, 5, 4, 1)) + 2w.

In computing V (J (1, 3, 4, 0)), since l = 0, we are forced to schedule the jobs in
J (1, 3, 4) = {1, 2, 3} in the same order as in SI , which results in two interchanges
with respect to MI

r and no storage costs. Hence, V (J (1, 3, 4, 0)) = 2. From the
boundary condition, V (J (5, 5, 4, 1)) = 0. Therefore, it only remains to compute
V (J (1, 5, 4, 1)).
V (J (1, 5, 4, 1))

As above, we compute h = 1. For the h-intermediate case, we obtain P(1, 5, 4) =
{1, 4}. Therefore, we evaluate the recurrence relation for p = 1 and p = 4.
p = 1:
lmin(1, 0, 1) = 0.
A(1) = J (1, 0, 1, 0) = ∅.
B(1) = J (2, 5, 1, 1) = {2, 3, 5, ∗}.
p = 4:
lmin(1, 3, 1) = 1.
A(4) = J (1, 3, 1, 1) = {2, 3, ∗}.
B(4) = J (5, 5, 1, 0) = {5}.
We now consider the h-last case. Since lmin(1, 5, 1) = 2 > 1 = l, there are no
feasible values for l′, i.e., job 1 cannot be scheduled last in J (1, 5, 4, 1). Thus,

V (J (1, 5, 4, 1)) = min

⎧
⎪⎨

⎪⎩

min

{
V (J (1, 0, 1, 0)) + V (J (2, 5, 1, 1)) + w(1 − 1) + 0 + 3

V (J (1, 3, 1, 1)) + V (J (5, 5, 1, 0)) + w(4 − 1) + 0 + 1

+∞.

Observe that V (J (1, 0, 1, 0)) = 0 and V (J (5, 5, 1, 0)) = 0 from the bound-
ary condition. Therefore, to evaluate V (J (1, 5, 4, 1)), we need to only compute
V (J (2, 5, 1, 1)) and V (J (1, 3, 1, 1)).
V (J (2, 5, 1, 1))

As above, we compute h = 5 and P(2, 5, 1) = {5}. Therefore, we evaluate the
recurrence relation for p = 5 only.
p = 5:
lmin(2, 4, 5) = 1.
A(5) = J (2, 4, 5, 1) = {2, 3, ∗}.
B(5) = J (6, 5, 5, 0) = ∅.

418 7 Optimization and Conflict

Since lmin(2, 5, 5) = 2 > 1 = l, there are no feasible values for l′ in the h-last case.
Thus,

V (J (2, 5, 1, 1)) = min

{
V (J (2, 4, 5, 1)) + V (J (6, 5, 5, 0)) + w(5 − 5) + 0 + 0
+∞.

Observe that V (J (6, 5, 5, 0)) = 0 from the boundary condition. Therefore, to
evaluate V (J (2, 5, 1, 1)), we need to only compute V (J (2, 4, 5, 1)).
V (J (1, 3, 1, 1))

As above, we compute h = 3 and P(1, 3, 1) = {3}. Therefore, we evaluate the
recurrence relation for p = 3 only.
p = 3:
lmin(1, 2, 3) = 1.
A(3) = J (1, 2, 3, 1) = {2, ∗}.
B(3) = J (4, 3, 3, 0) = ∅.
Since lmin(1, 3, 3) = 2 > 1 = l, there are no feasible values for l′ in the h-last case.
Thus,

V (J (1, 3, 1, 1)) = min

{
V (J (1, 2, 3, 1)) + V (J (4, 3, 3, 0)) + w(3 − 3) + 0 + 0
+∞.

Observe that V (J (1, 2, 3, 1)) = 0 and V (J (4, 3, 3, 0)) = 0 from the boundary
condition.
V (J (2, 4, 5, 1))

In this case, h = 3 and P(2, 4, 5) = {3, 4}. We evaluate the recurrence relation for
p = 3 and p = 4.
p = 3:
lmin(2, 2, 3) = 0.
A(3) = J (2, 2, 3, 0) = {2}.
B(3) = J (4, 4, 3, 1) = {∗}.
p = 4:
lmin(2, 3, 3) = 1.
A(4) = J (2, 3, 3, 1) = {2, ∗}.
B(4) = J (5, 4, 3, 0) = ∅.
Since lmin(2, 4, 3) = 2 > 1 = l, there are no feasible values for l′ in the h-last case.
Thus,

V (J (2, 4, 5, 1)) = min

⎧
⎪⎨

⎪⎩

min

{
V (J (2, 2, 3, 0)) + V (J (4, 4, 3, 1)) + w(3 − 3) + 0 + 0

V (J (2, 3, 3, 1)) + V (J (5, 4, 3, 0)) + w(4 − 3) + 0 + 0

+∞.

Observe that V (J (2, 3, 3, 0)), V (J (4, 4, 3, 1)), V (J (2, 3, 3, 1)), and V (J (5, 4,
3, 0)) are all equal to 0 from the boundary condition.

7.5 Resequencing in a Supply Chain 419

Optimal Schedule Construction
First, we evaluate all the above value functions.

V (J (2, 4, 5, 1)) = min{0 + 0 + w(0) + 0 + 0, 0 + 0 + w(1) + 0 + 0,+∞} = 0 for p = 3

V (J (1, 3, 1, 1)) = min{0 + 0 + w(0) + 0 + 0,+∞} = 0 for p = 3

V (J (2, 5, 1, 1)) = min{0 + 0 + w(0) + 0 + 0,+∞} = 0 for p = 5

V (J (1, 5, 4, 1)) = min{0 + 0 + w(0) + 0 + 3, 0 + 0 + w(3) + 0 + 1,+∞} = 2

for p = 4, since w = 1/3

V (J (1, 5, 0, 1)) = min{2 + 0 + w(0) + 1 + 1, 2 + w(2)} = 8/3 for l′ = 1.

We now backtrack to find the optimal schedule. In the summary table of the
backtracking process which follows, {. . .} is used to denote an unordered subset of
the jobs and idle times.

V (J (i, j, k, l)) h p l′ Schedule
V (J (1, 5, 0, 1)) 4 1 {1,2,3,5,*}4
V (J (1, 5, 4, 1)) 1 4 {2,3,*}1 5 4
V (J (1, 3, 1, 1)) 3 3 {2,*}3 1 5 4
V (J (1, 2, 3, 1)) 2 2 {*}2 3 1 5 4

The optimal schedule is * 2 3 1 5 4. The buffer contains job 1 for three time slots
and job 4 for two time slots, yielding a buffer cost of 5/3. There is one interchange
between M∗

r and MI
r , for jobs 1 and 5. Therefore, the total cost is V (J (1, 5, 0, 1)) =

8/3.

The main result for Algorithm M-CW2 now follows.

Theorem 7.41 Algorithm M-CW2 finds an optimal schedule for problemMr |b|C+
W in O(n5b4) time.

Proof First, we prove the optimality of Algorithm M-CW2. Since any optimal
schedule contains only jobs and idle times, the set J (1, T , 0, b + lmin(1, T , 0)) is
compact. Lemma 7.23 shows that, for a compact set of jobs and idle times, there
exists an optimal schedule M∗

r where the job that is last in MI
r is scheduled in one

of the two alternative ways. Lemma 7.24 (respectively, Lemma 7.25) provides a
decomposition of the schedule in the first (respectively, second) case. Algorithm M-
CW2 compares the costs of all possible decompositions in both cases. Since, from
Lemmas 7.24 and 7.25, each subset resulting from the decomposition of a compact
set is also compact, this procedure can be applied recursively. It then follows that
Algorithm M-CW2 finds an optimal schedule for problem Mr |b|C + W .

We consider the time complexity of Algorithm M-CW2. First, consider the sets
J (i, j, k). For each pair i, j , we can identify all jobs preceding k in MI which
are released by the supplier between time slots i and j , in O(n) time. It follows
that, since i, j , and k may assume T , T , and n different values, respectively, all

420 7 Optimization and Conflict

sets J (i, j, k) can be generated in O(T 2n) time. From Eq. (7.92), each value of
lmin(i, j, h) can be computed in constant time. Each set P(i, j, k) can be computed
in O(T) time by checking whether each job released by the supplier from i to j

belongs to J (i, j, k) or not. Hence, the entire preprocessing step requires O(T 3n)

time. The recurrence relation requires the computation of O(T 2nb) values of
V (J (i, j, k, l)). For each p ∈ P(i, j, k), the total number of interchanges between
A(p) and B(p) can be computed in O(n) time, as follows. We scan MI from left
to right, labeling each job g ∈ B(p) with the number of jobs from A(p) following
g (i.e., still to be encountered). Adding up all the labels gives the total number
of interchanges for that value of p. For the computation of V (J (i, j, k, l)), p and
l′ may assume O(T) and O(b) values, respectively, where O(b) < O(T) from
Lemma 7.14. Thus, each value of V (J (i, j, k, l)) requires O(nT) computation
time. Therefore, the overall time complexity of the recurrence step is O(T 3n2b),
which dominates that of the preprocessing step. Recalling from Lemma 7.14 that
T = O(nb), the result follows. ��

Since Algorithm M-CW1 has time complexity O(nb+2b) and Algorithm M-CW2
has time complexity O(n5b4), neither algorithm is more efficient than the other in
general.

7.5.3 Supplier’s Problems

We consider problems where the decision maker is the supplier. We assume that
the jobs must be delivered by the supplier according to the G ideal manufacturers’
schedules. The supplier needs to find a schedule that enables it to achieve this at
minimum cost.

Remark 7.14 The supplier’s problem and the manufacturer’s problem are not
symmetric, due to the different processing capacities of the supplier and of
each manufacturer. A symmetric scenario would involve G suppliers and one
manufacturer who can process G jobs during a time slot, similar to the assembly
system discussed in Sect. 7.3. Here, it would be possible to derive results that are
symmetric to those illustrated in this section. However, the case of one supplier
and G manufacturers is common in practice, since for a given item, a specialized
supplier serves multiple manufacturers. This case is therefore considered here.

Recall from Sect. 7.5.1 that MI
r and SI denote the ideal rth manufacturer’s

schedule and the ideal supplier’s schedule, respectively, and MI(t) denotes the set
of jobs requested by all manufacturers in time slot t . Let dt = |MI(t)|, and, given a
supplier’s schedule S, let It and xt denote the number of jobs in the buffer and the
number of jobs produced by the supplier during time slot t , respectively. The vector
X = [x1, . . . , xT] is referred to as the profile of a supplier’s schedule. The following
inventory balance equations hold in any feasible schedule:

It + xt = dt+1 + It+1, for t = 1, . . . , T − 1. (7.93)

7.5 Resequencing in a Supply Chain 421

7.5.3.1 Interchange Costs

We first consider problem S|b|C, where there are no storage costs, and thus the
objective is the minimization of interchange costs relative to SI . The demand pattern
of each manufacturer requires the production of at most one unit at every time slot.
By assumption, the supplier can supply up to G jobs in each time slot. Jobs that have
been produced by the supplier, but not yet delivered to the manufacturers, enter the
buffer of capacity b.

We propose an algorithm based on the following two preliminary results. The
first result is the supplier’s counterpart of Lemma 7.20.

Definition 7.7 In a supplier’s problem, given a set of jobs J , we say that A ⊆ J
is the rightmost (respectively, leftmost) job set in SI if no job in J \ A strictly
follows (resp., precedes) a job of A in the supplier’s ideal schedule SI .

Lemma 7.26 In problem S|b|C, given a profile, a schedule S̃ has the minimum
number of interchanges among all the schedules having that profile, if and only if,
whenever a set of jobs is scheduled in time slot t − 1, those jobs are the rightmost
jobs in SI among the jobs in β(t) ∪ M(t).

We refer the reader to Agnetis et al. (2006) for a proof.
We assume that the first request for a job by the manufacturers occurs in time

slot 2. Also, we allow I1 > 0, which is equivalent to assuming that the supplier can
start producing before time slot 1.

Definition 7.8 We define a supplier’s profile to be packed if there exists a time slot
t̄ such that:

(i) It = b, for all t = 1, . . . , t̄ − 1.
(ii) It̄ < b.

(iii) xt = 0, for all t = t̄ , . . . , T .

We observe that, if t̄ exists, then (i)–(iii) uniquely define it.

The following result is the supplier’s counterpart of Lemma 7.19.

Lemma 7.27 There exists an optimal schedule for problem S|b|C that has a packed
profile.

Proof Let S∗ be any optimal schedule, and let τ̄ be such that, for all 1 ≤ t ≤ τ̄ − 1,
It = b, and Iτ̄ < b. Since it follows that Iτ̄ + dτ̄ < G + b, Eq. (7.93) implies
xτ̄−1 < G. If xt = 0 from time τ̄ on, then the proof is complete. Else, let t̂ ≥ τ̄ be
the first time slot in S∗ after τ̄ in which some job is produced by the supplier. Since
no job is produced from τ̄ through t̂ −1, the buffer is never full in that time interval.
Let j be the leftmost in SI among the jobs produced in t̂ . Consider the schedule
Ŝ obtained from S∗ by scheduling job j earlier, in time slot τ̄ − 1. Since, in S∗,
xτ̄−1 < G, and the buffer is not full from τ̄ through t̂ − 1, Ŝ is also feasible. Since j

is the leftmost in SI among the jobs produced in t̂ , the number of interchanges in Ŝ

is not greater than in S∗, and thus Ŝ is also optimal. Repeating the above argument,

422 7 Optimization and Conflict

we can move other jobs earlier until we obtain an optimal schedule that has a packed
profile. ��

Lemmas 7.26 and 7.27 suggest an algorithm for finding an optimal schedule.
The algorithm constructs the supplier’s schedule in reverse order. In each time slot,
Lemma 7.27 determines how many jobs must be produced by the supplier in the
current time slot, while Lemma 7.26 indicates which jobs those are.

Algorithm S-C

1. Given SI ,MI
r for all r = 1, . . . ,G, and b. Set β(T) = ∅, IT+1 = 0, and

dT+1 = 0.
2. For t = T , . . . , 1, do:

• Compute xt = max
{

0, It+1 + dt+1 − b
}

.

• Schedule in time slot t the set S(t) formed by the xt rightmost jobs in SI from
the set β(t + 1) ∪ MI(t + 1).

• Set β(t) = (β(t + 1) ∪ MI(t + 1)) \ S(t), and It = |β(t)|.
3. Schedule the job set β(1) before time slot 1, and terminate.

Theorem 7.42 Algorithm S-C finds an optimal schedule for Problem S|b|C in
O(nb log(G + b)) time.

Proof Lemma 7.27 guarantees that there exists an optimal schedule which has

a packed profile. Scheduling max
{

0, It+1 + dt+1 − b
}

jobs at each time slot t

guarantees that the profile of the schedule built by Algorithm S-C is packed. Since
at each time slot t the scheduled jobs are selected according to Lemma 7.26, the
schedule produced by Algorithm S-C has lowest cost among the schedules that have
a packed profile and therefore is optimal.

We consider the time complexity of Algorithm S-C. Step 2 is repeated O(T)

times. During the execution of the algorithm, each job is inserted into and deleted
from an ordered list containing at most G + b elements exactly once. The time
required for each such insertion or deletion is O(log(G+b)). Therefore, the overall
time complexity of Algorithm S-C is O(T log(G + b)), which from Lemma 7.14
equals O(nb log(G + b)). ��

7.5.3.2 Interchange and Storage Costs

We now consider the more general supplier’s problem with both interchange and
storage costs, S|b|C + W . We propose an algorithm, S-CW, which is the supplier’s
counterpart of Algorithm M-CW1. The main difference from M-CW1 is that, in S-
CW, we must decide how many jobs up to G to process in each time slot. Algorithm
S-CW proceeds forward in time. The set of jobs to be processed in time slot t

is determined by the jobs which are in the buffer during time slot t + 1 and by
schedule MI .

7.5 Resequencing in a Supply Chain 423

Let ft (B) denote the minimum cost for the problem restricted to time slots
from 0 through t , given that the set of jobs in the buffer during time slot t + 1
is β(t + 1) = B. We observe that Lemma 7.26, which is proved for problem
S|b|C, also holds for problem S|b|C + W . This is because the storage cost is
determined only by the profile and not by which jobs are scheduled. Thus, from
Lemma 7.26, if the supplier decides to produce xt jobs in time slot t , these are
the xt rightmost jobs in SI from the set B ∪ MI(t + 1). We denote this set by
V (xt). We also denote by F(t, h) the number of interchanges due to the supplier
processing job h in time slot t . This equals the number of jobs that have already
been processed by the supplier, but which follow h in SI . Since h ∈ V (xt), all
the jobs in β(t) precede h in SI and therefore do not contribute to F(t, h), thus

F(t, h) =
∣
∣
∣{i | i ∈ ∪t

j=1M
I(j), h ≺S i}

∣
∣
∣.

There are three cost components in ft (B). The first is the storage cost due to
the jobs in the buffer during time slot t + 1, i.e., w|B|. The second is the total
interchange cost associated with the jobs in V (xt), which equals

∑
h∈V (xt)

F (t, h).
The last component is the optimal cost up to time slot t − 1, with β(t) including all
the jobs of B ∪ MI(t + 1) which are not in V (xt). This discussion motivates the
following algorithm.

Algorithm S-CW
Preprocessing

F(t, h) =
∣
∣
∣{i|i ∈ ∪t

j=1M
I(j), h ≺S i}

∣
∣
∣, for t = 1, . . . , T , h = 1, . . . , n.

Value Function
ft (B) = minimum cost for the problem from 0 to t , given that β(t + 1) = B.
Boundary Conditions
f0(B) = w|B|, for all B ⊆ N , |B| ≤ b.
ft ((B ∪ MI(t + 1)) \ V (xt)) = +∞, if xt > dt+1 + |B|.
ft ((B ∪ MI(t + 1)) \ V (xt)) = +∞, if xt < dt+1 + |B| − b.
Optimal Solution Value
fT (∅).
Recurrence Relation

ft (B) = min
xt=0,...,G

{
w|B|+

∑

h∈V (xt)

F (t, h)+ft−1

(
(B∪MI(t+1))\V (xt)

)}
.

Since 0 ≤ It ≤ b and It+1 = |B|, from Eq. (7.93), xt must be at least dt+1 +
|B| − b and must not exceed dt+1 + |B|. The boundary conditions enforce these
requirements.

Theorem 7.43 Algorithm S-CW finds an optimal schedule for problem S|b|C +W

in O(nb+1b(G + b) log(G + b)) time.

Proof From Lemmas 7.26 and 7.27, Algorithm S-CW compares the cost of all
nondominated feasible partial schedules and thus finds an optimal schedule. In
the preprocessing step, the computation of F(t, h) can be performed in O(T n)

424 7 Optimization and Conflict

time, using a labeling procedure similar to that in the proof of Theorem 7.41.
There are O(nb) possible sets B for each time slot t , for t = 0, . . . , T − 1. For
each pair (t, B), the recurrence relation requires computing a minimum over O(G)

values. All sets V (xt) can be found by ordering the set B ∪ MI(t + 1), which
requires O((G + b) log(G + b)) time. Therefore, the overall time complexity of
Algorithm S-CW is O(T nb(G + b) log(G + b)), which from Lemma 7.14 equals
O(nb+1b(G + b) log(G + b)). ��

7.5.4 Combined Problems

We analyze the combined problem S,M|b|C, for the special case where G = 1.
Hence, we omit the subscript on Mr . Here, the supplier and the only manufacturer
have their own ideal schedules, which may process the jobs in different orders. The
first objective we consider is the minimization of overall interchange costs. The
analysis of this problem requires the following definition.

Definition 7.9 Given two schedules S and M , we say that they are b-compatible if
the manufacturer can feasibly schedule the jobs according to M after the supplier
releases them according to S, when the buffer has capacity b. Also, given two
schedules S and M , we say that a job k is a no-wait job if it is processed by the
supplier and by the manufacturer in consecutive time slots, i.e., if μ(k) = σ(k)+ 1;
otherwise, it is a wait job.

Our main result now follows.

Theorem 7.44 Given the ideal schedules MI and SI , let M∗ and S∗ be optimal
schedules for problems M|b|C and S|b|C, respectively. Let km (respectively, ks)
denote the minimum number of interchanges between MI and M∗ (respectively, SI

and S∗).

(i) There exist two schedules S I
i and M ∗

i which are b-compatible, such that
S I

i differs from SI by i interchanges and M ∗
i differs from MI by km − i

interchanges, for 1 ≤ i ≤ km.
(ii) There exist two schedules M I

j and S ∗
j which are b-compatible, such that

M I
j differs from MI by j interchanges and S ∗

j differs from SI by ks − j

interchanges, for 1 ≤ j ≤ ks .
(iii) Let S′ differ from SI by qs interchanges, and M ′ differ from MI by qm

interchanges. Then, if qs+qm < km, schedulesM ′ and S′ are not b-compatible.

Proof If km = 0 or ks = 0, then the theorem is trivially true. We consider each part
in turn.

(i). We first consider i = 1. Since km > 0, there is at least one pair of consecutively
processed jobs g, h in M∗ such that h ≺M g. Note that g is released by the
supplier before h. From the “only if” part of Lemma 7.20, when g is scheduled

7.5 Resequencing in a Supply Chain 425

in M∗, h is not available yet, and therefore since h immediately follows g in
M∗, h is no-wait. We consider two subcases, depending on whether g is a no-
wait or a wait job.

Assume first that g is a no-wait job. Then, g and h are consecutive in both
SI and M∗. By interchanging jobs g and h in both SI and M∗, we obtain
two new schedules, S I

1 and M ∗
1 , respectively, such that there are exactly one

interchange between S I
1 and SI and exactly km − 1 interchanges between M ∗

1
and MI . Moreover, these two schedules are b-compatible, by construction.

Alternatively, assume that job g is a wait job, and consider the job k

processed by the supplier in time slot σ I (h)− 1. Observe that, since jobs g and
h are consecutive in M∗, job k is scheduled after them in M∗ (see Fig. 7.11).
From the “only if” part of Lemma 7.20, h ≺M k and g ≺M k. Hence, by
interchanging jobs g and h in M∗ and jobs k and h in SI , we again obtain
two schedules, S I

1 and M ∗
1 , respectively. The only difference in buffer usage

resulting from these interchanges is that the pair of schedules SI ,M∗ has job k

in the buffer during time slot σ I (h), whereas the pair S I
1 ,M ∗

1 has job g in the
buffer during that time slot. Thus, S I

1 and M ∗
1 are b-compatible. Moreover,

S I
1 differs from SI by exactly one interchange, and M ∗

1 differs from MI by
exactly km − 1 interchanges. For i > 1, we set SI = S I

1 and M∗ = M ∗
1 and

repeat the above argument.

(ii). The proof is similar to that of part (i), by symmetry.
(iii). For contradiction, assume that two b-compatible schedules S′ and M ′ exist,

such that qs+qm < km. From part (ii), we can find two b-compatible schedules
S′′ and M ′′ requiring qs − 1 and qm + 1 interchanges, where the total number
of interchanges required is still (qs − 1)+ (qm + 1) < km. By applying
this argument another qs − 1 times, we can find two b-compatible schedules
S ∗

qs
= SI and M I

qs
, such that M I

qs
differs from MI by exactly qs + qm < km

Fig. 7.11 Illustration of the Proof of Theorem 7.44 if g is a wait job

426 7 Optimization and Conflict

interchanges. This implies that the schedule found by Algorithm M-C which
contained km interchanges was not optimal, a contradiction. ��

Theorem 7.44 has an important implication for the solvability of problem
S,M|b|C, as shown in the following result.

Theorem 7.45 An optimal schedule for problem S,M|b|C where G = 1 can be
found in O(nb log b) time.

Proof It follows from Theorem 7.44 that an optimal schedule for problem
M|b|C and an optimal schedule for problem S|b|C are both optimal for problem
S,M|b|C where G = 1. Therefore, we can apply either Algorithm M-C which
runs in O(nb log b) time (see Theorem 7.39), or Algorithm S-C which runs in
O(nb log(G + b)) time in general (see Theorem 7.42) and therefore in O(nb log b)
time when G = 1. ��

The complexity status of problem S,M|b|C, where G ≥ 2, remains open.

Remark 7.15 It follows from Theorem 7.44 is that, when there are no storage costs,
the interchange cost incurred by the two parties can be divided between them in
various ways. However, the supplier and the manufacturer cannot decrease the total
interchange cost by cooperation.

On the other hand, if storage costs are also considered as in problem S,M|b|C+
W , cooperation between the supplier and the manufacturer can provide an improve-
ment in total cost, as shown by the following example.

Example 7.7 (Benefit of Cooperation with Storage Costs Considered) Con-
sider the following instance of problem S,M|b|C + W : b = 2; SI =
1, 2, 3, 4, 5, 6, 7, 8, 9, 10; MI = 4, 5, 2, 1, 3, 9, 10, 6, 8, 7; w = 0.1.
Let “∗” denote an idle time period.
The optimal solution, M∗, to problem M|2|C + W (which can be found by
Algorithm M-CW1 or Algorithm M-CW2) is the following, with the total cost of
C + W = 4 + 19(0.1) = 5.9.

SI 1 2 3 4 5 6 7 8 9 10
M∗ ∗ 2 ∗ 4 5 1 3 6 9 10 8 7
MI 4 5 2 1 3 9 10 6 8 7

The optimal solution, S∗, to problem S|2|C +W can be found by Algorithm S-CW.
Note that, for the manufacturer to process job 4 in time slot 2, the supplier must
process jobs 1 and 2 before time slot 1. The algorithm yields the following solution,
also with the total cost of C + W = 4 + 19(0.1) = 5.9.

SI 1 2 3 4 5 6 7 8 9 10
S∗ 1 2 4 5 3 6 7 9 10 ∗ 8 ∗
MI 4 5 2 1 3 9 10 6 8 7

7.6 Future Research 427

However, the following solution for the combined problem S,M|2|C + W has a
smaller total cost of C + W = 4 + 16(0.1) = 5.6:

SI 1 2 3 4 5 6 7 8 9 10
S∗ 1 2 4 5 ∗ ∗ 3 6 7 8 9 10
M∗ 4 5 2 1 3 6 ∗ ∗ 9 10 8 7
MI 4 5 2 1 3 9 10 6 8 7

Example 7.7 shows that cooperation can provide a reduction in the total system
cost when that cost includes storage. Finally, we note that the complexity class of
problem S,M|b|C + W remains open.

The work discussed in this section demonstrates the importance of supply chain
scheduling in practical situations where setup costs between products are significant
and preferred production sequences vary between production stages. The significant
benefits of coordination which are demonstrated here are sufficient to motivate
companies to document these costs and schedule preferences in detail.

7.6 Future Research

In this section, we describe several important directions for future research on
supply chain scheduling, organized according to the four issues discussed in this
chapter. For each issue, we first mention some future research suggestions from the
foundational work and then provide a discussion of more recent works and their
own forward-looking perspectives.

• As discussed in Sect. 7.2, Hall and Potts (2003) discuss a variety of models
that evaluate tradeoffs between scheduling and batching costs. They motivate the
enhancement of their results by the development of dominance rules and lower
bounds and also the design and analysis of heuristics. Generalizations to multi-
stage supply chains are recommended. Their other recommendations relate to
game theory models that are discussed in detail in Chaps. 8 and 9. Finally, their
recommendation to quantify the potential benefits of cooperation is now greatly
supported by the availability of large and current data sets in many planning
situations.

• Hall and Potts (2005) study the coordination of scheduling and batching in
single and parallel machine environments where the objective is to minimize
the total cost, which is determined by batch delivery time. They provide efficient
algorithms for some problems and intractability results for others.

• We refer the reader to Chaps. 3 and 4 for an extensive discussion of scheduling
and batch delivery within the context of centralized decision making.

• Agnetis et al. (2014a) consider a variation of the scheduling and batch delivery
model of Hall and Potts (2003). A third-party logistics provider delivers semi-
finished products in batches from one production location to another owned

428 7 Optimization and Conflict

by the same manufacturer. They consider scheduling and batching problems
under the two alternative assumptions that the manufacturer or the logistics
provider dominates the decision making process. Algorithms and intractability
results are described. Several problems remain open for future research. When
the manufacturer dominates, there are several open complexity issues. When
the logistics provider dominates, there is a need for heuristic design and
analysis. Finally, a model with balanced negotiation power motivates the study of
integrated decision making and the benefit of cooperation, along with the design
of mechanisms to motivate supply chain cooperation.

• As discussed in Sect. 7.3, Chen and Hall (2007) study the coordination of the
schedules of parts suppliers in an assembly system. They recommend extension
of their work to multi-stage assembly systems. Another possible research topic
is the modeling of cooperation between the suppliers. Also of importance is
the development of models of the bargaining process between suppliers and
a manufacturer that take into account practical issues such as imperfect or
asymmetric information. Another significant issue is how, if necessary, to enforce
cooperation between the parties. Finally, it is important to examine how the
benefits of cooperation in supply chains may influence organizational integration,
since vertical integration makes cooperation easier to establish and maintain.

• In related work, Sawik (2009) proposes a mixed integer programming model
for a three-stage assembly system. The objective is to minimize the total
inventory holding, production startup, and shipping costs. Results are presented
for a comparison of an integrated approach that simultaneously determines
manufacturing, supply, and assembly schedules, with a disaggregated approach.

• Ren et al. (2013) consider the suppliers’ problem of minimizing the weighted
number of tardy jobs, which Chen and Hall (2007) show is binary NP-hard in
Theorem 7.8. They strengthen this result by proving unary NP-hardness. They
also prove a similar result for the suppliers’ problem of minimizing the total late
work of parts.

• İnkaya and Akansel (2017) consider coordinated scheduling of transfer lots
in an assembly-type supply chain. Lot streaming is used to enhance product
flow and reduce work-in-process inventory. They develop a mathematical model
to find optimal transfer lot sizes in the supply chain. Their objective is the
minimization of the sum of weighted flow and inventory costs. A genetic
algorithm is developed and tested. Experimental results show that the proposed
GA-based approaches provide acceptable results in a reasonable amount of time
and that coordination with lot streaming provides improvements in supply chain
performance.

• As discussed in Sect. 7.4, Dawande et al. (2006) study conflict and cooperation
issues arising in a supply chain where a manufacturer makes products that are
shipped to customers by a distributor. They recommend the consideration of
other customer-related objectives that are relevant, including minimization of
the number of late jobs and the total tardiness of the jobs. A second important
research topic is to extend the cooperation mechanisms described to multiple-
stage supply chains. Also valuable is the development of models of the bargaining

7.6 Future Research 429

process between a manufacturer and a distributor that generalize the models
presented here to consider imperfect or asymmetric information. Finally, as in
the work of Chen and Hall (2007), cooperation between a manufacturer and a
distributor should be evaluated within a study of the benefits and costs of vertical
supply chain integration.

• In related work, Manoj et al. (2008) study coordinated decision making in a
supply chain consisting of a manufacturer, a distributor, and several retailers.
Finished goods industry is managed by the distributor. An ideal schedule of
either the manufacturer or the distributor, if imposed on the other party, results
in a substantial cost of conflict. They show that integrated decision making can
generate savings that are sufficient to compensate both parties. They present
computational results for up to 30 retailers in the distributor’s problem and up
to nine retailers in the combined problem. They recommend the solution of
larger instances of the problem and suggest that this will require the design and
application of efficient heuristic solution methods.

• Geismar and Murthy (2015) study a paper manufacturing plant that minimizes
its production cost by using long production runs that combine the demands
from its various customers. Distribution is achieved using one railcar for each
customer. However, the tradeoff involved in this policy is that it requires holding
completed jobs within the distribution facility, which is costly. The problem
of minimizing the distribution cost, given a production schedule, is solved.
A coordination mechanism is proposed and shown to reduce distribution cost
by 25% on average. Also, the total system cost is reduced by a further 4%
on average. A possible extension is to use a rolling horizon model. Another
extension is to consider uncertainty in the arrival dates and condition of railcars.
Also, the railcar distribution system can be augmented by the use of trucks.

• As discussed in Sect. 7.5, a critical issue in supply chain scheduling is coordi-
nating the decisions made by decision makers at different stages, for example, a
supplier and one or several manufacturers. Agnetis et al. (2006) model this issue
by assuming that the supplier and each manufacturer have an ideal schedule,
determined by their own costs and constraints. It would be valuable to extend
their models to multiple-stage supply chains. Second, it is important to develop
mechanisms by which decision makers at different stages of a supply chain
can cooperate and to design incentives for this cooperation. Third, it would be
valuable to extend their analysis to account for additional practical complications,
such as due dates for the jobs. Finally, there is a need to develop models that allow
for imperfect or asymmetric information in the negotiations between suppliers
and manufacturers.

• In work that is related to Agnetis et al. (2006), Manoj et al. (2012) study a
production system with two consecutive stages and an intermediate buffer. The
first stage minimizes inventory cost measured by the sum of completion times,
and the second stage minimizes the tardiness cost of late delivery plus the
cost of resequencing in the buffer. This work provides intractability results and
describes a heuristic solution procedure. Computational results show that the cost

430 7 Optimization and Conflict

of conflict for the second stage increases more rapidly than that for the first stage
as the number of jobs increases.

• The resequencing problem studied in Sect. 7.5 is mathematically similar to the
one found in manufacturing settings which mass-produce highly customized
products, as in the automobile industry. In this context, the sequencing problem,
which decides on the succession of workpieces launched down the line, has
major effects on efficiency. Boysen et al. (2012) review research on resequencing
in a mixed-model assembly line context. Relevant problem settings, alternative
buffer configurations, and resulting decision problems are described. While the
problems described there are centralized, there is the potential to extend the
results to the decentralized setting considered in this chapter.

In several other manufacturing environments, besides those considered here, poten-
tially significant cost savings motivate research into supply chain scheduling issues.
For example, Ullrich and Herrmann (2013) study a supplier and a manufacturer,
both of which face a machine scheduling and delivery problem. They conclude
that, on average, supply chain scheduling reduces costs by up to 35%. As the
substantial supply chain management literature attests, there are also several other
types of decisions where cooperation can be valuable. However, the benefits there
are often not as easy to identify and evaluate as they are for scheduling decisions.
This observation emphasizes the central importance of supply chain scheduling in
achieving improved system performance.

Chapter 8
Cooperative Supply Chain Scheduling

Abstract This chapter discusses the application of cooperative solution methods,
especially cooperative game theory, to decentralized supply chain scheduling prob-
lems. We consider many scheduling situations that model diverse applications, and
that have classically been analyzed from the perspective of a centralized decision
maker. By viewing the jobs or resources within those situations as individual self-
interested players, cooperative supply chain scheduling games are defined over
those situations. The analysis of these games applies all the main concepts of
cooperative games, from the perspective of achieving and sustaining cooperation
among the players. Mechanisms for achieving cooperation, and many examples of
supply chain scheduling applications, are discussed.

8.1 Introduction

This chapter discusses five supply chain scheduling application areas that are mod-
eled and solved using methodology from cooperative game theory and optimization.
In each case, a group of players may benefit from cooperating among themselves in
order to find improved solutions to supply chain scheduling problems.

The first application area is sequencing games. Consider a group of customers,
or equivalently in a scheduling context a group of jobs where each is owned by
a different customer, that are initially arranged in an arbitrarily ordered queue in
front of a single server or machine. It may be the case that the last customer in
the queue has an urgent appointment elsewhere, whereas the first customer in the
queue has no pressing appointments and would not object to waiting longer. In this
situation, a resequencing of the queue would potentially benefit the customers as
a whole. But, if the first customer surrenders his place, he should be compensated
for doing so. This raises the question of how the total benefit of the resequencing
should be allocated among the customers. In order to ensure the participation of the
customers, this allocation must meet the stability conditions of a cooperative game.
Ideally, the compensation system should also satisfy some axiomatic properties.
Finally, customers who are not part of a swapping agreement should not be

© Springer Nature Switzerland AG 2022
Z.-L. Chen, N. G. Hall, Supply Chain Scheduling, International Series
in Operations Research & Management Science 323,
https://doi.org/10.1007/978-3-030-90374-9_8

431

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-90374-9_8&domain=pdf
https://doi.org/10.1007/978-3-030-90374-9_8

432 8 Cooperative Supply Chain Scheduling

adversely affected by such an agreement, which raises the issue of which revised
sequences are admissible. While this summary describes the simplest sequencing
game environment, several variations regarding the scheduling environment, the
admissible behavior of the customers, or details about groupings of the customers,
are also motivated by applications.

The second application area considers scheduling games. Scheduling games are
similar to sequencing games in that a set of customers with various levels of urgency
and different length tasks arrive seeking service from a common server. However,
a fundamental difference is that, in a scheduling game, all the customers arrive
simultaneously. Thus, there is no initial arrangement of the customers. As a result,
the admissibility restrictions found in sequencing games, which typically exclude
jobs that are outside a given coalition in the initial sequence from participating
in a resequencing arrangement, do not apply. Nonetheless, customers with higher
levels of urgency may be willing to compensate others in order to obtain earlier
service. Also, the value of a coalition is not measured by cost savings relative to
an initial sequence; instead, it can be measured by the total scheduling cost of
the coalition. Alternatively, it is possible to design an artificial initial sequence to
use as a benchmark, which we demonstrate in various ways. The issues that arise
in scheduling games are similar to those that arise in sequencing games. Within
scheduling games, we also discuss methods for encouraging cooperation where it
does not occur spontaneously, for example, by invoking a penalty on players who
leave the coalition, providing a subsidy to those who remain, or some combination
of these measures.

The third application area considers project management games. There are two
perspectives under which project management can be modeled as a cooperative
game. The first perspective applies at the planning stage, when project performance
has not yet been realized. Here, subcontractors who can provide resources to the
project compete for the opportunity to do so, with a view to sharing rewards from
the project client when the project is completed sooner due to the use of those
resources. The second perspective focuses on issues that arise after the project is
finished. Then, if the project is delayed, as happens frequently in practice, an issue
is how the penalty cost of the delay, as typically defined in a contract with the project
owner, should be shared among the players who represent the tasks of the project.
Symmetrically, if the project is delivered early and thus earns a reward from the
project owner, it is necessary to determine how this reward should be shared. Under
both these perspectives, the stability of the coalition is of importance. This issue is
addressed by studying the emptiness of the core of the game, and also the design of
single-point cost or reward allocations where the entire vector of payments for the
players is uniquely specified.

While the three applications mentioned above focus exclusively on cooperative
game solutions, the last two applications we consider demonstrate the integration of
cooperative game and optimization methodologies in the solution of supply chain
scheduling problems. The fourth application area studies the allocation of scarce
capacity within a fixed capacity supply chain. For example, suppose a manufacturer
receives orders from several distributors, but has insufficient capacity to meet all

8.1 Introduction 433

those orders. Then, the manufacturer has to make a decision about how to allocate
its available capacity to the different distributors. The manufacturer can benefit
by making this decision in consideration of its scheduling cost and its capacity
restrictions. This allocation provides new information to the distributors, which will
cause them to reprioritize their orders and resubmit them. If they choose to do so,
then they may resubmit their revised orders individually. Important issues that are
studied here using cooperative games include whether they can achieve a better
outcome by sharing their allocated capacity as a coalition, and also the stability of
such a coalition. A further issue is whether it is worthwhile for the manufacturer
to cooperate with all the distributors, leading to vertical cooperation in the supply
chain. Finally, the manufacturer needs to schedule the revised and resubmitted
orders efficiently, for example, to minimize its cost, which can be defined in several
practically relevant ways.

The fifth application area considers the acquisition of outsourced capacity by
several manufacturers, either individually or in a coalition. The motivation for using
this option is the technical capability of a third-party supplier, which enables the
manufacturer to outsource specialized components for its products in order to focus
on their main operations. Many examples arise in semiconductor manufacturing,
pharmaceutical research, and biotechnology. In such situations, the third-party
facility announces time slots, amounts of available capacity at those times, and
their prices. Then, the manufacturers have the option to reserve those time slots as
needed for their manufacturing processes. While the manufacturers may make their
reservation decisions individually, they may alternatively benefit from making them
as a coalition, and this problem forms a cooperative game. It is important to study the
stability of this coalition. A second problem that is studied within this application
area involves the purchase of outsourced capacity that is used concurrently with
capacity that is owned by each manufacturer, in order to achieve faster completion
of work. In this case, the outsourced capacity must be purchased in competition with
other manufacturers.

This chapter is organized as follows. Section 8.2 provides a review of solution
concepts within cooperative game theory. Section 8.3 introduces sequencing games,
establishes connections with other topics within cooperative games, and then identi-
fies approaches to establishing balancedness and to allocating the gains achieved by
resequencing. Section 8.4 analyzes scheduling games and discusses issues that are
similar to those for sequencing games. Section 8.5 studies the modeling of projects
as cooperative games. Section 8.6 discusses the issue of capacity allocation in a
fixed capacity supply chain that includes a manufacturer and several distributors.
Section 8.7 considers the possibility of introducing concurrent external capacity, in
the form of specialized manufacturing capability provided by a third party, into a
supply chain. Section 8.8 identifies future research topics of value within the study
of cooperative games for supply chain scheduling. We refer the reader to Sect. 2.3.5
for a brief introduction to, and definitions of standard concepts within, cooperative
games.

Figure 8.1 provides an overview of the topics within cooperative solutions to
decentralized supply chain scheduling problems that are discussed in this chapter.

434 8 Cooperative Supply Chain Scheduling

Chapter 8:
Cooperative Supply Chain Scheduling

Section 8.3: Sequencing Games:
permutation games; unanimity games;

linear costs, regular costs;

rescheduling; admissibility relaxations;

batching; flowshop;

openshop; multi-stage games;

generalized games.

Section 8.4: Scheduling Games:
artificial tail game;

artificial probabilistic game;

no initial sequence, penalty;

no initial sequence, penalty and subsidy.

Section 8.5: Project Games:
project planning games;

project execution games.

Section 8.6: Capacity Allocation Games:
capacity allocation by manufacturer;

cooperative order placement by distributors.

Section 8.7: Outsourcing Games:
common third party facility;

concurrent outsourcing.

Fig. 8.1 Overview of the topics covered in Chap. 8

8.2 Cooperative Game Solutions

This section provides an overview of important definitions and solution concepts
within the theory of cooperative games. A comprehensive introduction to coopera-
tive game theory is provided by Peleg and Sudhölter (2007). Some key concepts
of cooperative games are described in Sect. 2.3.5. We use the following simple
optimization problem and associated cooperative game introduced by Dragan
(2013) to illustrate these definitions and concepts. In general, the participants in
a supply chain scheduling cooperative game are described as agents or players and
typically represent jobs or resources. In this work, because of our focus on supply
chain scheduling applications rather than theoretical development, we use the more
natural term for a participant in a game, i.e., player.

Consider a single machine that processes a set of jobs N = {1, . . . , n}
nonpreemptively around a common due date d. Without loss of generality, we
assume that the jobs have processing times p1 ≥ · · · ≥ pn > 0. While several
variations of this problem are discussed in the literature, we make the simplifying
assumption that d ≥ ∑

j∈N pj . The objective of the problem is to minimize the
total deviation of completion times around d. It should be immediately clear that
there exists an optimal schedule without idle time between the jobs. Moreover, an
optimal schedule can be fully characterized by a sequence for the jobs and a starting
time for the schedule.

8.2 Cooperative Game Solutions 435

8261 d = 151463

2431

Fig. 8.2 Optimal Schedule σ ∗ in Example 8.1

If the completion time of job j in a given schedule σ is denoted by Cj (σ), then
this objective can be written as the minimization of

∑
j∈N |Cj (σ) − d|, where | · |

denotes absolute value. Given a schedule σ , we say that a job j is early if Cj (σ) ≤ d

and tardy if Cj (σ) > d.
This scheduling problem and its variations have been studied extensively in

the operations research literature. Kanet (1981) provides an optimal algorithm
that requires O(n log n) time. This algorithm takes the jobs in index order, i.e.,
nonincreasing processing time order, and schedules the odd numbered jobs to
complete at time d (where necessary, moving previously scheduled early jobs
earlier), and the even numbered jobs to start at time d (where necessary, moving
previously scheduled late jobs later). Hall (1986) develops optimality conditions
that establish the existence of many optimal solutions for this problem, and extends
the results of Kanet (1981) to multiple parallel machines. Hall and Posner (1991)
study a generalization of this problem with weighted deviations for the jobs. Hall
et al. (1991) study a generalization with a restrictive common due date, i.e., d <∑

j∈N pj . We consider an example of this scheduling problem. Let z(σ) denote the
cost of any schedule σ in this problem.

Example 8.1 (Instance of an Earliness–Tardiness Problem) Let N = {1, 2, 3, 4},
where p1 = 12, p2 = 10, p3 = 8, and p4 = 5. Also, let d = 36 >

∑4
j=1 pj = 35.

The algorithm of Kanet (1981) finds an optimal schedule σ ∗ where job 1 is
scheduled from time 16 to time 28, job 2 is scheduled from 41 to 51, job 3 is
scheduled from 28 to 36, and job 4 is scheduled from 36 to 41. Then, z(σ ∗) =
(36 − 28)+ (51 − 36)+ (36 − 36)+ (41 − 36) = 8 + 15 + 0 + 5 = 28. Figure 8.2
shows schedule σ ∗, where the common due date d = 36 is indicated with a bold
vertical line.

We consider a cooperative game defined over the above scheduling problem,
where the players represent jobs in the game. We use Example 8.1 to illustrate
various concepts within cooperative games for supply chain scheduling applications.

Let (N, v) denote a cooperative game described over the above scheduling
problem, where N is the set of players and v : 2N → R defines the coalition
value of any possible coalition formed from N . If all the players of N cooperate,
then they form the grand coalition. All cooperative games considered in this book
are transferable utility (TU) games, which means that members of a coalition can
costlessly share the utility of the coalition between them, for example, through the
use of a common currency. For any subset S ⊆ N , we let v(S) represent the value
achieved by coalition S if it acts alone, which is a benchmark against which the

436 8 Cooperative Supply Chain Scheduling

23 28 d = 858463

2134

Fig. 8.3 Initial Schedule σ0 in Example 8.1

value that coalition S can achieve within the grand coalition can be compared. For
the purposes of this example, we assume that the jobs have the initial schedule σ0
shown in Fig. 8.3, where z(σ0) = (48 − 36)+ (58 − 36)+ (36 − 36)+ (36 − 28) =
12 + 22 + 0 + 8 = 42. The value of a coalition in this game represents nonnegative
cost savings which it can achieve relative to schedule σ0, without the assistance of
other players.

Next, we discuss the issue of admissibility, i.e., which coalitions should be
allowed to reschedule their jobs, and how this should be implemented. Here, we
apply two rules. First, a coalition S ⊆ N must consist of consecutive jobs in σ0. The
coalitions that meet this rule, from Figure 8.3, are as follows: v({i}), i = 1, . . . , 4;
v({1, 2}), v({1, 3}), v({3, 4}; v({1, 2, 3}), v({1, 3, 4}), and v({1, 2, 3, 4}). Second,
the schedule of jobs in N \ S cannot be changed by rescheduling the jobs of S.
The second rule implies that the full interval in which the jobs of S are scheduled
remains unchanged by the rescheduling.

Based on this identification of the admissible coalitions, we provide an example
of the calculation of coalition values in this game.

Example 8.2 (Coalition Values in an Earliness–Tardiness Game) Using the
instance from Example 8.1, the value of each coalition is the maximum cost
savings which it can achieve, relative to σ0 and following the given admissibility
rules. Observe that a single job cannot achieve any rescheduling by itself without
changing the schedule of other jobs; hence, v({i}) = 0, i = 1, . . . , 4. The values of
the other admissible coalitions are as follows:

v({1, 2}) = 2, from schedule (4, 3, 2, 1);
v({1, 3}) = 0, since interchanging jobs 1 and 3 increases the cost of the schedule

from 42 to 46, and coalition value cannot be negative;
v({3, 4}) = 3, from schedule (3, 4, 1, 2);
v({1, 2, 3}) = 2, from schedule (4, 3, 2, 1);
v({1, 3, 4}) = 3, from either schedule (1, 4, 3, 2) or schedule (3, 4, 1, 2); and
v({1, 2, 3, 4}) = 14, from schedule (1, 3, 4, 2), as shown in Fig. 8.2.

Other coalitions that are not admissible as defined above may also have value that
is inherited from their subset coalitions. For example, (1, 2, 4) is not admissible,
but v({1, 2, 4}) = v({1, 2}) = 2, and similarly (2, 3, 4) is not admissible, but
v({2, 3, 4}) = v({3, 4}) = 3.

In general, cooperative game theory studies ways in which the players can be
compensated so that they participate in the game. For example, suppose the players

8.2 Cooperative Game Solutions 437

represent jobs that require resources for processing. Then, the costs that are allocated
to the players for this processing, which form a cost allocation scheme, need to
be sufficiently small that the players are willing to pay them. Alternatively, if the
players represent resources, then they need to receive sufficiently large payments, in
the form of a payment scheme, in order to accept the work. Example 8.2 is similar
to the latter case, where gains, i.e., cost savings, are available for sharing among the
players through a payment scheme.

Before studying several concepts for cooperative games, we identify various
properties that such schemes should possess. In the following description of these
properties, a player’s outcome is his cost allocation or payment that results from
application of the scheme. Individual supply chain scheduling games discussed in
this book may also use additional properties specific to those games.

1. Existence: The scheme is well defined for any cooperative game.
2. Efficiency: The scheme exactly divides the value of the complete game among

the players.
3. Individual Rationality: No player receives a worse outcome than if he refuses to

participate.
4. Coalitional Rationality: No coalition of players can improve their outcome by

splitting off from the grand coalition.
5. Monotonicity: The player’s outcome is a weakly monotonic function of his

marginal value or marginal cost to the game.
6. Zero Outcome for Null Players: A player who adds nothing to the value of any

coalition should receive zero outcome.
7. Symmetry: If we can swap two players who are in different coalitions with equal

value and the coalition values remain equal, then those players should have the
same outcome.

8. Computational Tractability: The scheme should be computable in time that
increases only polynomially with the number of players.

Let yi, i ∈ N , denote a payment scheme for the game described in Example 8.2.
This scheme compensates the players for staying within the grand coalition, by
making payments to them that are at least as much as they could obtain by forming
a coalition to leave and enjoy the coalition value cost savings by themselves. The
payment scheme is said to be in the core of the game if:

(i)
∑

i∈N yi = v(N), and
(ii)

∑
i∈S yi ≥ v(S), for ∅ ⊂ S ⊂ N .

These conditions require some interpretation. Condition (i), the Efficiency
property, requires that the total cost of the payment scheme used is exactly the
value of the grand coalition. Condition (ii), the Coalitional Rationality property
ensures that no coalition of players can do better by leaving the grand coalition.
This condition includes as a special case:

(ii′) yi ≥ v({i}), i ∈ N .

Condition (ii′), the Individual Rationality property, ensures participation by individ-
ual players.

438 8 Cooperative Supply Chain Scheduling

A major focus in studying various cooperative games is the identification of a
core solution. The core is the set of Efficient payment or cost allocation vectors
that satisfy the Coalitional and Individual Rationality properties, i.e., Conditions (ii)
and (ii′) above. In a typical game, it can be conceptualized as a region within an
n-dimensional payment or cost allocation space, which allows for some flexibility
that may be useful for negotiation between the players in practical situations. A
cooperative game that has a nonempty core for all instances is said to be balanced.
Nonetheless, an unbalanced game may, for some instances, have a core solution. We
provide an example of a core solution for the above Earliness–Tardiness game.

Example 8.3 (Example of a Core Solution) Using the instance from Example 8.2,
consider the payment scheme y = (1, 3, 4, 6). We examine whether this payment
scheme is in the core of the game. Since

∑
i∈N yi = 1 + 3 + 4 + 6 = 14 = v(N),

condition (i) is satisfied. For condition (ii′), observe that yi ≥ 0 = v({i}), i ∈ N .
More generally for condition (ii), y1 + y2 = 4 ≥ 2 = v({1, 2}), y1 + y3 = 5 ≥ 0 =
v({1, 3}), y3 + y4 = 10 ≥ 3 = v({3, 4}); y1 + y2 + y3 = 8 ≥ 2 = v({1, 2, 3}), y1 +
y3 + y4 = 11 ≥ 3 = v({1, 3, 4}).
Further, consider any admissible coalition S above. Then, any coalition S′, where
S ⊂ S′ ⊆ N , satisfies

∑
i∈S′ yi ≥ ∑

i∈S yi ≥ v(S) = v(S′), and therefore condition
(ii) is also satisfied for coalition S′.

Therefore, by consideration of all admissible coalitions, we conclude that y =
(1, 3, 4, 6) is a core solution of the game. One insight this example provides is that
the process used here for checking conditions (i) and (ii) for all coalitions is not in
general computationally efficient. Within this book, we discuss several methods to
address this issue for specific supply chain scheduling games.

For cooperative games that have an empty core, a useful concept is the least core
of a game (N,w) with agents N = {1, . . . , n}, which is the set of payoff allocations
x ∈ R that solves the linear program

z∗ = min{z |
∑

i∈N
xi = v(N),

∑

i∈S
xi ≥ v(S) − z, for S ⊂ N, S �= ∅}. (8.1)

In (8.1), z∗ is the least core value. The least core value can be interpreted as the
minimum penalty required to prevent any coalition from leaving the grand coalition.
We refer the reader to Sects. 8.4.3 and 8.4.4 for applications of the least core value
concept.

As mentioned above, core solutions typically represent a range of possible
payments. However, cooperative game theory also defines various single-point
solutions where the entire vector of payments is uniquely specified. Among the best
known of these is the Shapley value (Shapley, 1953), denoted as φi(v), i ∈ N . Let
S ⊆ N denote a coalition of players that does not contain a particular player i ∈ N .
The Shapley value of player i is given by:

φi(v) =
∑

S⊂N\{i}

|S|! (n − |S| − 1)!
n!

[
v(S ∪ {i}) − v(S))

]
, i ∈ N, (8.2)

8.2 Cooperative Game Solutions 439

where the sum includes all subsets S of N that do not contain player i. An intuitive
explanation is that the bracketed term in (8.2) is the marginal value from adding
player i to any coalition S that did not previously contain it. However, this value
depends on the coalition S to which player i is added. Hence, the Shapley value
takes the average over all possible such coalitions S. The Shapley value is the unique
scheme that satisfies the Efficiency, Symmetry, and Monotonicity properties.

Example 8.4 (Example of Shapley Value Calculations) Using the instance from
Example 8.2, we have the following calculations. For each job i, we consider all
admissible coalitions that include i, and compute the value lost if i is removed from
the coalition.
For job 1:

(i) v({1, 2}) − v({2}) = 2 − 0 = 2;
(ii) v({1, 3}) − v({3}) = 0 − 0 = 0;

(iii) v({1, 2, 3}) − v({2, 3}) = 2 − 0 = 2;
(iv) v({1, 2, 4}) − v({2, 4}) = 2 − 0 = 2;
(v) v({1, 3, 4}) − v({3, 4}) = 3 − 3 = 0;

(vi) v({1, 2, 3, 4}) − v({2, 3, 4}) = 14 − 3 = 11.

Then, from (8.2), the Shapley value for job 1, φ1(v), is the total found by multiplying
terms (i)–(ii) for |S| = 1 by 1/12, terms (iii)–(v) for |S| = 2 by (1)(2)/(24) = 1/12,
and term (vi) for |S| = 3 by (6)(1)/24 = 1/4. Thus, φ1(v) = (2 + 2 + 2)/12 +
11/4 = 39/12 = 3.25.
Similar calculations provide φ2(v) = (2 + 2 + 2)/12 + 11/4 = 39/12 = 3.25,
φ3(v) = (3 + 3 + 3)/12 + 12/4 = 45/12 = 3.75, and φ4(v) = (3 + 3 + 3)/12 +
12/4 = 45/12 = 3.75. Then,

∑4
i=1 φi(v) = 3.25 + 3.25 + 3.75 + 3.75 = 14 =

v(N), which establishes Efficiency as required.

As the Shapley value formula in (8.2) suggests, in a general game, finding
the Shapley value requires an exponential time computation. However, we discuss
several games where the Shapley value is efficiently computable. A further useful
characteristic of the Shapley value is that, in some classes of games, including
convex games (Bondareva, 1963; Shapley, 1967), it is in the core.

Another important single-point concept in cooperative game theory is the
nucleolus, introduced by Schmeidler (1969). Given a payment scheme f ∈ R

n

and a coalition S ⊆ N , S �= ∅, define the excess

e(f, S) =
∑

i∈S
fi − v(S).

Intuitively, the larger the excess, the greater the safety margin provided by the
payment scheme to coalition S with respect to keeping S from leaving the grand
coalition. Further, define the excess vector e(f) = (e(f, S1), . . . , e(f, Sm)), where
Si ⊂ N , Si �= ∅, and m = 2n − 2 since S = N and S = ∅ are excluded. In
this definition, the elements of e(f) are arranged in nondecreasing order. Then, the
nucleolus, νi(v), i ∈ N , is a payment scheme with lexicographically greatest excess

440 8 Cooperative Supply Chain Scheduling

vector. The nucleolus satisfies the Existence, Efficiency, Individual Rationality and
Symmetry properties. It is a unique element of the game. In a game with a nonempty
core, the nucleolus is in the core.

Iñarra et al. (2019) give the following example of nucleolus calculations that
provides helpful intuition.

Example 8.5 (Example of Nucleolus Calculations) Consider a cooperative game
with a set N = {1, 2, 3} of players and the following coalition values: v({1}) =
v({2}) = v({3}) = 0, v({1, 2}) = 20, v({1, 3}) = 30, v({2, 3}) = 40, v(N) = 42.
We study three payment schemes.

First, consider a payment scheme x where ν1(v) = ν2(v) = ν3(v) = 14, which
divides the value of the game equally among the players. Then, the ordered excess
vector is:

e(x) = (14 + 14 − 40, 14 + 14 − 30, 14 + 14 − 20, 14 − 0, 14 − 0, 14 − 0)

= (−12,−2, 8, 14, 14, 14, 14),

where the sequence of coalitions is ({2, 3}, {1, 3}, {1, 2}, {1}, {2}, {3}).
Intuitively, since the worst treated coalition is {2, 3}, we should transfer some

utility from player 1 to players 2 and 3. For example, consider a payment scheme y

where ν1(v) = 4, ν2(v) = 24, ν3(v) = 14. In this case, the ordered excess vector
is:

e(y) = (4 + 14 − 30, 24 + 14 − 40, 4 − 0, 4 + 24 − 20, 14 − 0, 24 − 0)

= (−12,−2, 4, 8, 14, 24),

where the sequence of coalitions is ({1, 3}, {2, 3}, {1}, {1, 2}, {3}, {2}).
Recall that we are trying to find the lexicographically largest excess vector.

Disappointingly then, the solution y is not as good as the original solution x. Now,
consider a solution z where ν1(v) = 4, ν2(v) = 14, ν3(v) = 24. In this case, the
ordered excess vector is:

e(z) = (4 + 14 − 20, 4 + 24 − 30, 14 + 24 − 40, 4 − 0, 14 − 0, 24 − 0)

= (−2,−2,−2, 4, 14, 24),

where the sequence of coalitions is ({1, 2}, {1, 3}, {2, 3}, {1}, {2}, {3}). The vector z
happens to be the nucleolus, where ν1(v) = 4, ν2(v) = 14 and ν3(v) = 24.

The nucleolus is not computationally tractable. In a general cooperative game,
finding the nucleolus involves solving a sequence of linear programs which may
have size that is exponential in the number of players. Leng and Parlar (2010)
provide a review of algorithms for this problem, as well as an easily computable
closed form expression for games with three players. See Sect. 8.5.1 for an example
of a game where the nucleolus can be found more efficiently for games of any size.

8.2 Cooperative Game Solutions 441

A final single-point solution discussed here is the τ -value, introduced by Tijs
(1981). In that work and also Driessen and Tijs (1985), it is shown that the τ -value
satisfies several useful properties, including Individual Rationality, Efficiency and
Symmetry.

An explanation of the τ -value for a cost savings allocation game requires several
definitions. Given a game (N, v), we first define the marginal value vector bv =
(bv1, . . . , b

v
n) as the reduction in the value of the game when each job individually is

removed from the grand coalition. Thus, bv(i) ∈ R is defined as

bvi = v(N) − v(N \ {i}). (8.3)

Next, for any coalition S ⊆ N , the gap function gv(S) is defined as

gv(S) =
∑

i∈S
bvi − v(S). (8.4)

The gap function of a coalition is the difference between the total marginal value
of its members, and its value as a coalition; observe that this difference is always
nonnegative. Next, the concession vector λv ∈ R

n of the game is defined as

λvi = min{gv(S) | S ⊆ N, i ∈ S}, i ∈ N. (8.5)

Thus, λvi is the minimum gap for a coalition containing player i, or more intuitively
the potential concession of player i from his marginal value. Each player surrenders
some part of this concession as a reduction from his marginal value in (8.3), in
proportion to his concession value in (8.5). However, there is a unique fraction of
how much total concession needs to be surrendered if the Efficiency property is to
be satisfied. Finding this limit requires first calculating λv(N) = ∑

i∈N λvi . Then,
for a balanced game, the τ -value is given by

τi(v) = bvi −
[gv(N)

λv(N)

]
λvi , i ∈ N. (8.6)

The normalization term gv(N)/λv(N) in (8.6) computes the unique fraction of the
concessions of all the players from their marginal values, such that

∑
i∈N τi(v) =

v(N). This normalization ensures that the payment allocation by the τ -vector
satisfies the Efficiency property.

Example 8.6 (Example of τ -Value Calculations) Using the instance from Exam-
ple 8.2, we have the following calculations.

From (8.3), bv1 = 14 − 3 = 11, bv2 = 14 − 3 = 11, bv3 = 14 − 2 = 12, and
bv4 = 14 − 2 = 12.

From (8.4), gv({1}) = 11, gv({2}) = 11, gv({3}) = 12, and gv({4}) = 12;

442 8 Cooperative Supply Chain Scheduling

gv({1, 2}) = 22 − 2 = 20, gv({1, 3}) = 23 − 0 = 23, gv({3, 4}) = 24 − 3 = 21;
gv({1, 2, 3}) = 34 − 2 = 32, gv({1, 3, 4}) = 35 − 3 = 32, gv({2, 3, 4}) =
35 − 3 = 32;

and gv({1, 2, 3, 4}) = 46 − 14 = 32.
From (8.5), λv1 = 11, λv2 = 11, λv3 = 12, and λv4 = 12, hence λv(N) = ∑4

i=1 λ
v
i =

11 + 11 + 12 + 12 = 46.
We use the above calculations gv(N) = 32 and λv(N) = 46 to calculate the

normalization factor 32/46 to apply to the maximal concessions of the players,
starting from their marginal values.

Thus, from (8.6), we have τ1(v) = 11 − 11(32)/46 = 77/23, τ2(v) = 11 −
11(32)/46 = 77/23, τ3(v) = 12 − (12)(32)/46 = 84/23, and τ4(v) =
12 − (12)(32)/46 = 84/23. Then,

∑4
i=1 τi(v) = (77 + 77 + 84 + 84)/23 =

14 = v(N), as required.

Due to (a) its positioning as a compromise between the total of the marginal
values within a coalition and the value of that coalition, and (b) its satisfaction of
several key properties, the τ -value is an appealing solution concept for balanced
cooperative games. As with the Shapley value and nucleolus, the discussion
of sequencing games below identifies games where the τ -value can be found
efficiently.

The following sections provide many examples of how the cooperative game
concepts discussed above can be applied to supply chain scheduling problems.

8.3 Sequencing Games

In this section, we consider the substantial class of sequencing games within the
field of cooperative games. The classic cooperative game issues of determining
balancedness, identifying core members, and efficiently calculating single-point
solutions such as the Shapley value (Shapley, 1953), run throughout this class of
games. Section 8.3.1 discusses two games that are taken from outside the class of
sequencing games, but which nevertheless provide useful results for games within
this class. The remaining sections are ordered from simple games where the main
results are relatively easy to prove using what are now considered as standard
techniques, to more complex generalizations of those games that require different,
and in some cases more game-specific, proof techniques. Section 8.3.2 discusses
games with costs that are linear functions of job completion times. A more general
environment with regular costs is discussed in Sect. 8.3.3. Section 8.3.4 discusses
games where the arrival of new work results in rescheduling. Section 8.3.5 studies
the effect of relaxing the classical assumptions about the admissibility of sequences
with respect to coalition membership. Sequencing games where multiple jobs can be
processed simultaneously in batches are considered in Sect. 8.3.6. We provide exam-
ples of sequencing games for multiple machine scheduling environments, using a
proportionate flowshop game in Sect. 8.3.7, and an openshop game in Sect. 8.3.8.

8.3 Sequencing Games 443

An extension to multi-stage sequencing games is studied in Sect. 8.3.9. Finally,
Sect. 8.3.10 provides some perspectives on methods for establishing balancedness
in generalized games.

8.3.1 General Related Games

Two classes of cooperative games are closely related to sequencing games, and
provide results that assist in the analysis of some sequencing games. Therefore,
we discuss them first. They are permutation games and unanimity games.

8.3.1.1 Permutation Games

Tijs et al. (1984) introduce the class of permutation games. A permutation game
contains a set N = {1, . . . , n} of players, each with a single job in a service system,
who are waiting in a queue for service at a counter. The order σ0 in which they
expect to receive service is assigned randomly; therefore, without loss of generality,
we assume that player i is in position i, i.e., σ0(i) = i, for i = 1, . . . , n. The service
time for each player is the same, hence also without loss of generality we define it
as one time unit. There is no benefit to the server being idle, hence we assume that
the jobs are processed consecutively. Therefore, if no rearrangement of the players
occurs, player j receives their service in the time interval [j − 1, j]. However, the
players have different costs of waiting, which in practice are motivated by the value
of alternative activities foregone while waiting or receiving service in the system
described. Thus, the cost to player i of being the j th player to receive service is
denoted as a known constant kij .

The players can form coalitions to rearrange their positions, thereby reducing
their total cost, and share the resulting cost savings among them. A coalition can
consist of non-consecutive players in the initial sequence, for example, the players
in the first and third positions could form a coalition and swap positions without
the involvement of the player in second position. However, any coalition S only
has available its own set of initial positions and cannot access positions that are
not occupied by members of S in σ0. For any coalition, the problem of minimizing
the total cost of the coalition is a linear assignment problem. Let π ∈ ΠS denote an
assignment of the players in coalition S to the available positions in the queue, where
ΠS denotes all possible assignments, i.e., permutations, of S. A permutation game
(N, c) has player set N and characteristic function c : 2N → R, where c(∅) = 0,
and for S ∈ 2N \ ∅,

c(S) = min
π∈ΠS

∑

i∈S
kiπ(i). (8.7)

444 8 Cooperative Supply Chain Scheduling

Example 8.7 (Example of a Permutation Game) Consider a game with four players.
The game has the following cost matrix, where the entry in row i and column j is
kij as defined above, and where negative values denote profit:

⎛

⎜
⎜
⎝

0 −1 −2 −1
−4 0 −1 1
−3 −2 0 −1

2 −3 −2 0

⎞

⎟
⎟
⎠ .

The value of the various possible coalitions is as follows:
c({1}) = c({2}) = c({3}) = c({4}) = 0; c({1, 2}) = −5, c({1, 3}) =
−5, c({1, 4}) = 0, c({2, 3}) = −3, c({2, 4}) = −2, c({3, 4}) = −3; c({1, 2, 3}) =
−8, c({1, 2, 4}) = −8, c({1, 3, 4} = −6, c({2, 3, 4}) = −5; and c({1, 2, 3, 4}) =
−10. It is easy to check that an optimal assignment solution π(1) = 3, π(2) =
1, π(3) = 4, π(4) = 2 also has a cost of −10.

Tijs et al. (1984) prove that permutation games are balanced. More strongly,
they prove that permutation games are totally balanced, i.e., each subgame of a
permutation game is balanced. The assumption of a permutation game that the
service time of each player is the same is somewhat restrictive for the purposes
of classical scheduling and sequencing. Essentially, it implies that all jobs in a
scheduling situation have the same processing time. Nonetheless, there are some
sequencing games where the balancedness results of Tijs et al. (1984) prove useful.
We provide an application to a relaxed sequencing game in Sect. 8.3.5.

8.3.1.2 Unanimity Games

Also of relevance to the analysis of sequencing games are unanimity games,
introduced by Harsanyi (1981). An unanimity game is a cooperative game (N, u)

on any given subset T , ∅ �= T ⊆ N ,

uT (S) =
{

1, if S ⊇ T

0, otherwise.
(8.8)

Observe that, from (8.8), a coalition S has value 1 if it contains all the players of
T , and 0 otherwise. Shapley (1953) shows that any cooperative game (N, v) can be
written as a unique linear combination of unanimity games, as follows:

v =
∑

∅�=T⊆N

μT uT , (8.9)

8.3 Sequencing Games 445

where μ∅ = 0, and the coefficients μS are recursively defined as μ{i} = v({i}), i ∈
N , and for S ⊆ N, |S| ≥ 2,

μS = v(S) −
∑

T⊂S

μT . (8.10)

The following example illustrates the decomposition of an arbitrary cooperative
game into unanimity games.

Example 8.8 (Decomposition into Unanimity Games) Consider a cooperative game
(N, v) with three players and the following coalition values: v({1}) = 2, v({2}) =
3, v({3}) = 5, v({1, 2}) = 7, v({1, 3}) = 11, v({2, 3}) = 14, v({1, 2, 3}) =
35. Then, the corresponding decomposition of this game into a unanimity game,
using (8.9) and (8.10), is

v = μ1u1 + μ2u2 + μ3u3 + μ12u12 + μ13u13 + μ23u23 + μ123u123

= 2u1 + 3u2 + 5u3 + (7−2−3)u12 + (11−2−5)u13

+(14−3−5)u23 + (35−2−3−5−2−4 −6)u123

= 2u1 + 3u2 + 5u3 + 2u12 + 4u13 + 6u23 + 13u123.

We also show that the values of v(S), S ⊆ N , given above, can be reconstructed
from the coefficients μ of the vector v in (8.9). Thus, v({1}) = μ1 = 2, v({2}) =
μ2 = 3, v({3}) = μ3 = 5; v({1, 2}) = μ1 +μ2 +μ12 = 2+3+2 = 7, v({1, 3}) =
μ1 +μ3 +μ13 = 2+5+4 = 11, v({2, 3}) = μ2 +μ3 +μ23 = 3+5+6 = 14; and
v({1, 2, 3}) = μ1+μ2+μ3+μ12+μ13+μ23+μ123 = 2+3+5+2+4+6+13 = 35.

Intuition about unanimity games is provided by considering how a coalition S

should allocate gains or costs in such a game. A gain, or cost saving, of 1 is achieved
if and only if all players of T are involved in cooperation. Therefore, any allocation
of gain or cost that divides the total gain or cost among the members of S ∩ T is a
core solution, but members of S \ T receive or pay nothing.

For a sequencing game where a decomposition into unanimity games can be
accomplished efficiently, this makes two contributions toward the analysis of that
sequencing game. First, it provides an efficient calculation for the Shapley value
Shapley (1953) of the game, which in general requires averaging over an exponential
number of possible coalitions, as in (8.2). The second contribution makes use of the
following result.

Theorem 8.1 A cooperative game (N, v) is convex if and only if, for all i, j ∈
N, i �= j , and each S ⊆ N \ {i, j},

∑

U⊆S

μU∪{i,j} ≥ 0.

446 8 Cooperative Supply Chain Scheduling

Proof Let i, j ∈ N, i �= j , and S ⊆ N\{i, j}. Given these definitions, a cooperative
game (N, v) is convex, as defined in Sect. 2.3.5, if and only if

[v(S ∪ {i, j}) − v(S ∪ {j})] − [v(S ∪ {i}) − v(S)] ≥ 0

⇔ [
∑

T⊆S∪{i,j}
μT −

∑

T⊆S∪{j}
μT] − [

∑

T⊆S∪{i}
μT −

∑

T⊆S

μT] ≥ 0

⇔
∑

U⊆S∪{j}
μU∪{i} −

∑

U⊆S

μU∪{i} ≥ 0

⇔
∑

U⊆S

μU∪{i,j} ≥ 0.

��
Observe that if, for a sequencing game, μS ≥ 0, for ∅ �= S ⊆ N , as in

Example 8.8, then from Theorem 8.1, this is sufficient to establish convexity of that
game. This is described as decomposition into a nonnegative linear combination of
unanimity games. We describe applications of this procedure to a rescheduling game
in Sect. 8.3.4, a batch sequencing game in Sect. 8.3.6, and a proportionate flowshop
game in Sect. 8.3.7.

8.3.2 Linear Costs

A sequencing problem is one where a solution is completely characterized by
a sequence of customers or jobs. Within the more general class of scheduling
problems, sequencing problems arise where the sequence completely specifies the
time and resource allocations of all activities being processed. A common reason
why this occurs is the use of a regular cost function, i.e., one that is nondecreasing
in job completion times. When a regular cost function is used, there typically
exists an optimal schedule that includes no inserted, i.e., unnecessary, idle time.
Sequencing problems with costs that are linear in job completion times provide
a regular measure of overall service time performance across a set of orders for
multiple customers. Much of the classical scheduling literature (Pinedo, 2016) uses
linear costs to model a variety of different environments and objectives, as defined
by internal costs or external contracts with customers.

Let N = {1, . . . , n} denote a queue of jobs that are waiting for service from a
single machine. We assume that the queue follows an arbitrary given permutation
σ0 of the jobs. That is, σ0(i) = j means that job i is in the j th position in the queue.
Let pi > 0 denote the processing time of job i, and wi a measure of its urgency

8.3 Sequencing Games 447

that in classical scheduling is known as a weight. We make the natural assumptions
that:

(a) Each job experiences a cost that is determined only by its own completion time
and not that of other jobs.

(b) The overall cost of a solution is equal to the total of all the individual job costs.

Let hi(Ci) denote the cost of job i if it completes processing at time Ci . While
the regular cost function hi(·) can be more general, as discussed, for example, in
Sect. 8.3.3, here we consider a simple case with linear costs, where hi(Ci) = wiCi

and the total cost to be minimized is
∑n

i=1 wiCi . In a situation of centralized
planning, i.e., where all the jobs have the same customer, an optimal sequence is
found by sequencing the jobs in order of nonincreasing wi/pi ratio (Smith, 1956),
which is known as shortest weighted processing time (SWPT) order.

We observe that if σ0(i) = k and σ0(j) = k+1, then interchanging the positions
of jobs i and j results in a change in total cost of wipj − wjpi , irrespective of
the positions of the adjacent jobs i and j in σ0 and also of their start times. It may
be possible for the players to cooperate and resequence their positions to reduce
their total cost, however, players who move earlier may need to compensate those
who move later in order to obtain the agreement of the latter to the move. Since we
are interested in cost reductions from interchanging jobs, we define the gain from
interchanging jobs i and j , where σ0(i) = σ0(j) − 1, as

gij = max{wjpi − wipj , 0}. (8.11)

The sequencing situation thus defined can be described concisely as (σ0, w, p),
where w = {w1, . . . , wn} and p = {p1, . . . , pn}. Let Pj (σ0) = {i ∈ N | σ0(i) <

σ0(j)} denote the set of jobs that precede j in σ0.
From the above sequencing situation, we now define a sequencing game which

falls within the class of cooperative games described in Sect. 2.3.5. Each player
represents a job in N . The following definition is needed.

Definition 8.1 A coalition S is connected if its jobs form a connected component
of σ0, i.e., if it contains consecutive jobs in σ0. That is, for all i, k ∈ S with σ0(i) <

σ0(k), any j ∈ N with σ0(i) < σ0(j) < σ0(k) is also in S.

For S ⊆ N , we define the characteristic function v(S) as the maximal cost
savings that a connected coalition can achieve by rearranging the positions of its
members in the queue. Observe that, when we interchange the positions of jobs i

and j with σ0(i) < σ0(j) and wi/pi < wj/pj , the total cost decreases by gij .
Hence, for a connected coalition S ⊆ N , we have

v(S) =
∑

j∈S

∑

i∈S|σ0(i)<σ0(j)

gij . (8.12)

448 8 Cooperative Supply Chain Scheduling

More generally, a coalition T may not be completely connected but may have
one or more connected components, as defined by σ0. Each component consists of
one or more consecutive jobs in σ0. This requires another definition.

Definition 8.2 Given a coalition T , a connected component S of T is maximally
connected with respect to σ0 if no strict superset of any component of T under σ0
is connected. For example, if σ0 = {1, 2, 3, 4, 5, 6}, and T = {1, 4, 5}, then the
maximally connected components of T are {1} and {4, 5}, since in the first case
{2} �∈ T and in the second case {3}, {6} �∈ T . The given coalition T is equal to the
union of its connected components.

Let T |σ0 denote the set of components of T that are maximally connected with
respect to σ0. Then, the characteristic function of T is

v(T) =
∑

S⊆T |σ0

v(S). (8.13)

The above definitions are sufficient to form a sequencing game.

Theorem 8.2 Consider the sequencing situation (σ0, w, p) and the corresponding
sequencing game (N, v) described above. Then, the game (N, v) is balanced.

Proof Recall the definition of a convex game in Sect. 2.3.5. Then, for components
T1, U1 ∈ S1|σ0 ∪ {∅} and T2, U2 ∈ S2|σ0 ∪ {∅} where T1 ⊂ T2 and U1 ⊂ U2, we
have

v(S1 ∪ {i}) − v(S1) =
∑

k∈T1

gki +
∑

j∈U1

gij +
∑

k∈T1,j∈U1

gkj ,

from (8.12) and (8.13)

≤
∑

k∈T2

gki +
∑

j∈U2

gij +
∑

k∈T2,j∈U2

gkj ,

since T1 ⊂ T2 and U1 ⊂ U2

= v(S2 ∪ {i}) − v(S2).

Thus, the sequencing game (N, v) is convex. Then from Bondareva (1963) and
Shapley (1967), the game is balanced. ��

The result in Theorem 8.2 is intuitive. It specifies that adding player i is
more valuable to a larger existing coalition than a smaller one. This encourages
cooperation and working together within the grand coalition.

As discussed in Sect. 8.1, when the customers are resequenced to achieve a lower
total cost, it is necessary to share the resulting gains equitably. For this purpose, the
following definition is useful.

8.3 Sequencing Games 449

Definition 8.3 An allocation rule is a payment scheme f (σ0, w, p) =
(f1(σ0, w, p), . . . , fn(σ0, w, p)) that assigns to every job i a share of the gain,
such that:

(i) fi(σ0, w, p) ≥ 0, i = 1, . . . , n, and
(ii)

∑
i∈N fi(σ0, w, p) = C(σ0) − C(σ ∗),

where C(γ) is the total cost of sequence γ , and σ ∗ is a sequence that minimizes
the total cost. Condition (i) implements Individual Rationality, and Condition (ii)
implements the Efficiency Property. However, Conditions (i) and (ii) are by
themselves insufficient to define a core solution, since the Coalitional Rationality
property is not considered.

Curiel et al. (1989) describe a rule for dividing the gains from interchanging
positions which they name Equal Gain Splitting (EGS). Recall that (8.11) defines
gij as the gain from interchanging adjacent jobs i and j . Then, EGS gives gij /2 to
both i and j , i.e.,

f EGS
i (σ0, w, p) =

∑

k|σ0(k)<σ0(i)

gki/2 +
∑

j |σ0(i)<σ0(j)

gij /2, i ∈ N. (8.14)

The idea of splitting the gain equally between the interchanging players turns out
to be powerful in a variety of supply chain scheduling applications.

The analysis of EGS begins with the following result. Observe that, by repeatedly
interchanging jobs in adjacent positions whenever a gain can be achieved by doing
so, an optimal sequence σ ∗ can be found.

Theorem 8.3 EGS is a payment scheme.

Proof We need only show that the scheme satisfies properties (i) and (ii) of
Definition 8.3 above. First, from (8.11), gij ≥ 0, hence f EGS

i (·, ·, ·) ≥ 0.
Second, each time a pair of jobs is interchanged to reduce total cost, the exact
cost saving is added to

∑
i∈N f EGS

i (σ0, w, p). Thus, by construction, the total
cost saving between the initial cost C(σ0) and the optimal cost C(σ ∗) appears in∑

i∈N f EGS
i (σ0, w, p), and the Efficiency property is finally satisfied. ��

The following three axiomatic properties are relevant to an analysis of the EGS

payment scheme.

(i) An allocation rule satisfies the dummy property if it allocates no gain to a job
that does not contribute to cost savings since it is already optimally sequenced
in σ0. A job j is optimally sequenced in σ0 if there exists an optimal sequence
where the set of jobs preceding j is exactly the set of jobs preceding j in σ0,
in which case j is a dummy job.

(ii) Given two sequencing situations, we say that one is the ij inverse of the other
if it is obtained from the first one by switching the positions of jobs i and j in
the initial sequence. Then, an allocation rule f (·) possesses the switch property

450 8 Cooperative Supply Chain Scheduling

if for any pair of sequencing situations (σ1, w, p) and its ij -inverse (σ2, w, p),
we have

fi(σ2, w, p) − fi(σ1, w, p) = fj (σ2, w, p) − fj (σ1, w, p), i, j ∈ N.

(iii) Two sequencing situations (σ1, w, p) and (σ2, w, p) are i-equivalent if job
i has exactly the same predecessors in the two original sequences of these
situations, i.e., Pi(σ1) = Pi(σ2). Then, an allocation rule f (·) possesses the
equivalence property if for each job i ∈ N and each pair of i-equivalent
situations, the allocation to job i is equal.

The validity and axiomatic uniqueness of the EGS rule for sequencing games
with linear scheduling costs are demonstrated by the next result of Curiel et al.
(1989) that makes use of the above three properties.

Theorem 8.4

(a) The EGS rule possesses the dummy, switch, and equivalence properties.
(b) The EGS rule is the only rule that possesses all three properties.

Proof

(a) First, if i is a dummy job, then by definition gki = 0 for k ∈ Pi(σ0),
and gij = 0 for j such that i ∈ Pj (σ0), which satisfies the dummy
property. Second, if (σ,w, p) and (σ ′, w, p) are two sequencing situations
that are identical except that adjacent jobs i and j are interchanged where
σ(i) < σ(j), then f EGS

i (σ ′, w, p) − f EGS
i (σ,w, p) = gji/2 − gij /2 =

f EGS
j (σ ′, w, p)−f EGS

j (σ,w, p), which establishes the switch property. Third,
if Pi(σ) = Pi(σ

′), then N \ Pi(σ) = N \ Pi(σ
′), and then from (8.14),

f EGS
i (σ,w, p) = f EGS

i (σ ′, w, p), which establishes the equivalence property.
(b) Let f (σ,w, p) denote an allocation rule that satisfies the dummy, switch,

and equivalence properties. Consider a sequencing situation (σ,w, p). Let the
adjacent pairs of jobs that are out of optimal SWPT sequence in σ be denoted
as: Sσ = {(i, j) | σ(i) = σ(j) + 1, wi/pi > wj/pj }. If Sσ = ∅, then
each job is a dummy and f (σ,w, p) = (0, . . . , 0) = f EGS(σ,w, p). Suppose
f (σ,w, p) = f EGS(σ,w, p) holds for |Sσ | = g, g = 1, . . . , h. The proof
uses induction on the number of pairs of adjacent jobs that are out of sequence
to show that this result holds for h + 1. Let the sequencing situation (φ,w, p)

have |Sφ | = h + 1. Hence, there is a sequencing situation (σ,w, p) and a pair
of jobs (k, l) ∈ Sφ such that σ(i) = φ(i) for i �= k, l, σ(k) = φ(l), and
σ(l) = φ(k). Therefore, Sσ = Sφ\{(k, l)}. Then, from the induction hypothesis,
fi(φ,w, p) = fi(σ,w, p) = f EGS

i (φ,w, p) = f EGS
i (σ,w, p), for i �= k, l.

Further, C(φ) − C(σ) = glk . Then, from part (a) of the theorem,

fk(φ,w, p) = fk(σ,w, p) + glk/2

= f EGS
k (σ,w, p) + glk/2

= f EGS
k (φ,w, p),

8.3 Sequencing Games 451

and similarly for job l. We now have fj (φ,w, p) = f EGS
j (φ,w, p), for all

j ∈ N , which completes the proof.
��

We provide an example of cost savings allocations by the EGS rule.

Example 8.9 (Application of the EGS Rule) Let N = {1, 2, 3}; σ0(i) = 1, i =
1, 2, 3; w = (2, 10, 30), and p = (1, 3, 5). Sequence σ0 has a total cost C(σ0) =
2 + 40 + 270 = 312. Now, since w1/p1 = 2, w2/p2 = 4 and w3/p3 = 6, an
optimal sequence (3, 2, 1) has total cost C(σ ∗) = 150 + 80 + 18 = 248, a saving
of 64 relative to C(σ0). Now, g12 = 4, g21 = 0, g13 = 20, g31 = 0, g23 = 40 and
g32 = 0. Hence,

f EGS
1 (σ,w, p) = (g12 + g13)/2 = (4 + 20)/2 = 12

f EGS
2 (σ,w, p) = (g12 + g23)/2 = (4 + 40)/2 = 22

f EGS
3 (σ,w, p) = (g13 + g23)/2 = (20 + 40)/2 = 30.

Observe that the EGS rule allocates the total cost saving of 12 + 22 + 30 = 64 =
312 − 248 = C(σ0) − C(σ ∗) among the three jobs, as required.

Let ΠN denote the set of all possible sequences of jobs. The next result
establishes that the EGS rule finds a core solution.

Theorem 8.5 Let (σ,w, p) be a sequencing situation and let (N, v) be the corre-
sponding sequencing game. Then, f EGS(σ,w, p) is in the core of the sequencing
game.

Proof From the Efficiency property, let π1, . . . , πr ∈ Π(N) be the sequence
of permutations produced by adjacent pairwise interchanges when changing an
initial sequence σ0 into an optimal sequence σ ∗. Let C(σ0) denote the cost of the
initial sequence σ0, C(πk) denote the cost of the schedule after k interchanges,
and C(σ ∗) = C(πr) denote the cost of an optimal sequence. Then, we have
C(σ0) − C(σ ∗) = ∑r−1

k=0[C(πk) − C(πk+1)], where we define C(π0) = C(σ0),
and C(πr) = C(σ ∗), and C(πq) − C(πq+1) = gij , 0 ≤ q ≤ r − 1. Therefore,∑

i∈N f EGS
i (σo,w, p) = C(σ0) − C(σ ∗), which confirms that EGS satisfies the

Efficiency Property.
Now, consider any coalition S ⊂ N . We have

∑

i∈S
f EGS
i (σ0, w, p) =

∑

i∈S

(∑

k∈Pi(σ0)

gki +
∑

j |i∈Pj (σ0)

gij
)
/2

≥
∑

i∈S

(∑

k∈Pi(σ0)∩S
gki +

∑

j∈S|i∈Pj (σ0)

gij
)
/2

452 8 Cooperative Supply Chain Scheduling

=
∑

i∈S

∑

k∈Pi(σ0)∩S
gki

≥ v(S).

Thus, no coalition has an incentive to leave the grand coalition. ��
It is also useful to consider single-point solutions, specifically the Shapley value

and the τ -value, for the linear sequencing game. Curiel et al. (1989) prove the
following result.

Theorem 8.6 For the sequencing situation (σ,w, p) and corresponding sequenc-
ing game (N, v), the Shapley values φ1, . . . , φn are given by

φi(v) =
∑

σ0(k)≤σ0(i)≤σ0(j)

gkj

σ0(j) − σ0(k) + 1
, i ∈ N.

Also, Driessen and Tijs (1985) prove the following result.

Theorem 8.7 For the sequencing situation (σ,w, p) and corresponding sequenc-
ing game (N, v), the τ -values (τ1, . . . , τn) are given by

τi(v) = v(N) · Mi(v)
∑

i∈N Mi(v)
, where

Mi(v) = v(N) − v(N \ {i}) =
∑

σ(k)≤σ(i)≤σ(j)

gkj .

Since, from the proof of Theorem 8.2, the sequencing game is convex, we can
apply a result of Shapley (1971) about the set of core solutions.

Theorem 8.8 For a given sequence π ∈ ΠN , let ψπ(v) = (ψ1,π (v), . . . , ψn,π (v)),
where

ψi,π (v) = v(Pi(π) ∪ {i}) − v(Pi(π)), i ∈ N. (8.15)

Intuitively, ψi,π (v) is the marginal value added when job i joins a coalition that is
formed in sequence π . Now, Shapley (1971) proves that the core of a convex game
is the convex hull of the vectors ψπ(v), π ∈ ΠN . Thus, every core solution x ∈ R

n

can be written as a convex combination of the marginal vectors defined in (8.15),
i.e.,

x = λπ∈ΠN
ψπ(v), (8.16)

where λ ∈ R
ΠN+ ,

∑
π∈ΠN

λπ = 1, and π ∈ ΠN .

The following example demonstrates the application of the results in Theo-
rems 8.6–8.8.

8.3 Sequencing Games 453

Example 8.10 (Example of Shapley, τ -Value, and Convex Hull Calculations) Con-
sider the sequencing situation in Example 8.9. The corresponding sequencing game
(N, v) is defined by v({1}) = v({2}) = v({3}) = 0, v({1, 2}) = 4, v({1, 3}) = 0,
v({2, 3}) = 40, and v({1, 2, 3}) = 64.
Then, from Theorem 8.6, we compute the Shapley values as follows: φ1(v) = 4/2+
20/3 = 26/3, φ2(v) = 4/2 + 20/3 + 0 + 40/2 = 86/3 and φ3(v) = 20/3 + 40/2 +
0 = 80/3, and

∑3
i=1 φi(v) = 26/3 + 86/3 + 80/3 = 64 = v(N), as required.

Also, from Theorem 8.7, we compute the τ values as follows: Mv
1 = 24,Mv

2 =
64 and Mv

3 = 60, therefore
∑3

i=1 M
v
i = 24 + 64 + 60 = 148. Then, we have

τ1(v) = 64(64 − 40)/148 = 384/37, τ2(v) = 64(64 − 0)/148 = 1024/37, τ3(v) =
64(64−4)/148 = 960/37, and

∑3
i=1 τi(v) = (384+1024+960)/37 = 64 = v(N),

as required.
Finally, for any sequence of jobs π ∈ ΠN , we use (8.15) to compute the
vector ψπ(v) = v(Pi(π) ∪ {i}) − v(Pi(π)), for π ∈ ΠN, i ∈ N , as fol-
lows: ψ1,2,3 = (0, 4, 60), ψ1,3,2 = (0, 64, 0), ψ2,1,3 = (4, 0, 60), ψ2,3,1 =
(24, 0, 40), ψ3,1,2 = (0, 64, 0) and ψ3,2,1 = (24, 40, 0). Removing duplication
and applying Theorem 8.8, the core of the game (N, v) is the convex hull of
the vectors (0, 4, 60), (0, 64, 0), (4, 0, 60), (24, 0, 40) and (24, 40, 0). Then, from
Shapley (1971), every core solution can be written as a convex combination of these
vectors.

The seminal work of Curiel et al. (1989) on the simple sequencing game
described above has inspired a variety of generalizations based on the introduction
of problems and practical issues from classical scheduling as well as related to
assumptions of the games defined. Several of these generalizations are discussed
in the following sections.

8.3.3 Regular Costs

We now consider the use of a more general than linear, but still regular, cost function
for the jobs. A regular cost function for a job is one that is nondecreasing in its
completion time. Regular costs are typically defined by contract penalties for the
delivery of make-to-order work. Within classical scheduling, regular but nonlinear
costs are commonly used to model problems with due dates. They define problems
with objectives that include, for example, the minimization of the number of late
jobs (Moore, 1968), and the minimization of total tardiness (Lawler, 1977). Such
costs also arise frequently in project management due to contract penalties for late
delivery (Klastorin, 2012). By contrast with the game considered in Sect. 8.3.2,
the resulting sequencing game is not in general convex, as demonstrated by the
following example.

Example 8.11 (Counterexample to Convexity with General Regular Costs) N =
{1, 2, 3}, where σ0(i) = i, pi = 4, for i = 1, 2, 3. We define the following

454 8 Cooperative Supply Chain Scheduling

cost functions: h1(C) = C, h2(C) = min{40, 10 max{0, C − 4}}, and h3(C) =
5(max{0, C − 6})2. The cost of sequence σ0 is 4 + 40 + 180 = 224. However,
the cost of an optimal sequence σ ∗ = (2, 3, 1) is 0 + 20 + 12 = 32. Therefore,
v({1, 2, 3}) = 224 − 32 = 192. In this game, v({j}) = 0, j ∈ N . Also,
v({1, 2}) = 44 − (0 + 8) = 36 and v({2, 3}) = 220 − (20 + 40) = 160. Then,
v({1, 2}) + v({2, 3}) = 36 + 160 = 196 > 192 = v({1, 2, 3}) + v({2}), which
shows that the cost saving game is not superadditive, and therefore not convex.

Curiel et al. (1994) propose a rule for sharing cost savings in sequencing games
with nonlinear but regular costs. They name it the β-rule. This rule calculates the
marginal increase in savings achieved by adding job i to an earlier sequence of jobs
in σ0, and similarly to a later sequence of jobs in σ0, and allocates the average of
these two quantities to job i. This is an intuitive generalization of the EGS-rule
discussed in Sect. 8.3.2, to allow for the possibility that costs are not linear in this
case. A formal description now follows.

Let G(i) = {j ∈ N | σ0(j) ≤ σ0(i)}, G′(i) = {j ∈ N | σ0(j) < σ0(i)},
H(i) = {j ∈ N | σ0(j) ≥ σ0(i)}, and H ′(i) = {j ∈ N | σ0(j) > σ0(i)}. Given
these definitions, let f β

i (v) denote the allocation of the resequencing gain to player
i under the β-rule, for i ∈ N , as defined by:

f
β
i (v) = [v(G(i))−v((G′(i))]/2+[v(H(i))−v(H ′(i))]/2, i ∈ N. (8.17)

To interpret (8.17), observe that [v(G(i)) − v(G′(i))] (respectively, [v(H(i)) −
v(H ′(i))]) is the marginal increase in cost savings from adding job i to the sequence
of jobs before (resp., after) i in σ .

Example 8.12 (Application of the β-Rule) Using the same instance as in Exam-
ple 8.11, we calculate the allocations from the β-rule, as follows:

f
β
1 (v) = [v({1, 2, 3}) − v({2, 3}) + v({1}) − 0]/2 = (192 − 160)/2 = 16.

f
β
2 (v) = [v({1, 2}) − v({1}) + v({2, 3}) − v({3})]/2 = (36 + 160)/2 = 98.

f
β
3 (v) = [v{(1, 2, 3}) − v({1, 2}) + v({3}) − 0]/2 = (192 − 36)/2 = 78.

We observe that f β
1 (v) + f

β
2 (v) + f

β
3 (v) = 16 + 98 + 78 = 192 = 224 − 32 =

v(σ0) − v(σ ∗), which shows that the β-rule satisfies the Efficiency property.
Recall Definition 8.1 for connected coalitions. Finally, we check that the

connected coalitions {1, 2} and {2, 3} receive sufficient allocation of the gains from
resequencing that they do not leave the grand coalition:

f
β
1 (v) + f

β
2 (v) = 16 + 98 = 114 > 36 = v({1, 2})

f
β
2 (v) + f

β
3 (v) = 98 + 78 = 176 > 160 = v({2, 3}).

A useful definition within the context of sequencing games is σ0-component
additivity.

8.3 Sequencing Games 455

Definition 8.4 A cooperative game (N, v) is σ0-component additive if:

(i) v(i) ≥ 0, i ∈ N

(ii) the game is superadditive, i.e., v(S) + v(T) ≤ v(S ∪ T) for S, T ⊂ N , when
S ∩ T = ∅, and

(iii) v(S) = ∑
T ∈S|σ0

v(T), where S|σ0 is a partition of the maximally connected
components of S with respect to sequence σ0.

To interpret Condition (iii) in Definition 8.4, T is a subset of jobs that form a
connected component of S with respect to σ0. The cooperative game value of the
jobs in T as an independent coalition is defined as v(T). Then, the value of the
coalitions of jobs S, denoted by v(S), is additive over all the connected components
T of S.

Curiel et al. (1994) prove the following result.

Lemma 8.1 Every one-machine scheduling problem with an additive and regular
cost function defines a cost savings game that is σ0-component additive.

Proof If S1 and S2 are disjoint coalitions, any resequencing of S1 and S2 can
be combined into a feasible resequencing of S1 ∪ S2, where the total cost saving
equals the sum of the cost savings from the individual resequencing of S1 and S2.
This establishes superadditivity. Then, σ0-component additivity follows from the
definition of v(·). ��
Corollary 8.1 It follows from Lemma 8.1 and Le Breton et al. (1992) that a one-
machine scheduling problem with an additive and regular cost function is balanced.

Let λ(i) = σ−1(i), i ∈ N , i.e., λ(i) is the job in position i in σ . The main result
of Curiel et al. (1994) which now follows shows the usefulness of the β-rule in
supporting cooperation.

Theorem 8.9 Let (N, v) denote a cooperative game defined by a one-machine
scheduling problem with an additive and regular cost function. Then, the β-rule
finds a core allocation of the game (N, v).

Proof From Lemma 8.1, the game described in the theorem statement is superaddi-
tive.

Now, consider the σ0-connected coalition T = {i ∈ N | a ≤ σ0(i) ≤ b}, for
integers a and b. For this coalition, the β-rule gives

2
∑

i∈T
f
β
i (v) =

∑

i∈T
[v(G(i)) − v((G′(i)) + v(H(i)) − v(H ′(i))]

= v(G(λ(b))) − v(G′(λ(a))) + v(H(λ(a))) − v(H ′(λ(b)))

≥ 2v(T),

where G′(λ(b)) = G(λ(a)) ∪ T , H ′(λ(a)) = H(λ(b)) ∪ T , and the inequality
follows from superadditivity. ��

456 8 Cooperative Supply Chain Scheduling

Remark 8.1 It is important to note that the result in Theorem 8.9 depends on (a)
each job having a cost that is a regular function of its completion time, and (b) the
admissibility only of coalitions of jobs that are consecutive in σ0, or composed of
smaller coalitions of jobs that are consecutive in σ0.

8.3.4 Rescheduling Games

This section studies two situations where a planned schedule is disrupted, due to
either a change in work requirements or a change in resource availability. As a result,
rescheduling is needed to avoid significant costs. We study how the gains achieved
by rescheduling should be divided among the jobs. Models for rescheduling in the
event of disruptions are provided by Bean et al. (1991) and Wu et al. (1993).

In the first rescheduling situation we consider, jobs arrive in batches, as occurs
frequently in manufacturing. Here, a job that arrives in an earlier batch has certain
privileges over a job that arrives in a later batch. Hall and Potts (2004) model
this problem from an optimization perspective, by defining this privilege as the
maximum number of positions by which an earlier job can be moved later by a later
arriving job, which is known as its disruption level. The motivation for modeling
the disruption level is that the disruption causes resources, possibly including
outsourced ones, to be rescheduled. This may result in stress on other activities
and increased costs. Hence, the imposition of a constraint on maximum disruption
is designed to limit such costs.

We consider a rescheduling problem with two batches. Let N1 = {1, . . . , n1} and
N2 = {n1 + 1, . . . , n1 + n2} denote the sets of jobs in the first and second batch,
respectively, and let N = N1 ∪N2. Using classical scheduling notation, the problem
of minimizing the total completion time of the jobs is denoted as 1|Dmax(σ0) ≤
k|∑Cj . Here, σ0 represents an initial, not necessarily optimal, sequence. Also,
Dmax(σ0) denotes the maximum disruption in the position in sequence of any job
in N1, and the constraint Dmax(σ0) ≤ k requires that no job in N1 be more than
k positions later in a feasible solution to the rescheduling game than it was in the
sequence σ0 before the second batch arrived. For problem 1|Dmax(σ0) ≤ k|∑Cj ,
Hall and Potts (2004) describe the following algorithm.

Algorithm MultiBatch
1. Input the jobs of N1 in SPT order as 1, . . . , n1.
2. Sequence the jobs of N2 separately in SPT order as n1 + 1, . . . , n1 + n2.
3. Schedule the jobs 1, . . . , n1 + k in SPT order at the front of the schedule.
4. Schedule the jobs n1+k+1, . . . , n1+n2 in SPT order at the back of the schedule.

They prove that Algorithm MultiBatch finds an optimal schedule for problem
1|Dmax(σ0) ≤ k|∑Cj in O(n1 + n2 + n2 log n2) time.

Gerichhausen and Hamers (2009) define a partition sequencing situation
(N1, N2, σ

0, p, k) that is closely related to the above problem, but with two
differences. The first difference is that the jobs of the first batch arrive in an arbitrary

8.3 Sequencing Games 457

order that defines the initial sequence for the purposes of computing cost savings,
or gains, achieved by resequencing. The second difference is that the authors define
the maximum disruption constraint differently from that defined by Hall and Potts
(2004) described above. Instead, it is defined as a weaker requirement that each
job i ∈ N1 is sequenced in one of the first n1 + k positions after the second batch
is added. Additionally, since this is a cooperative game, the initial sequence is
defined to include all the players, i.e., all the jobs in N1 ∪ N2, in order to provide a
benchmark for the calculation of overall cost savings. A numerical example follows.

Example 8.13 (Instance of a Partition Sequencing Situation) N1 = {1, 2, 3, 4},
N2 = {5, 6, 7}, k = 1, p = (3, 10, 2, 5, 8, 1, 6).
The original schedule, σ0 = (1, 2, 3, 4, 5, 6, 7), has cost

∑7
j=1 Cj (σ0) = 3 + 13 +

15 + 20 + 28 + 29 + 35 = 143. An optimal schedule σ ∗ = (6, 3, 1, 4, 2, 7, 5), has
cost

∑7
j=1 Cj (σ

∗) = 1 + 3 + 6 + 11 + 21 + 27 + 35 = 104, for a cost saving of
39. This schedule is feasible since the jobs of N1 = {1, 2, 3, 4} are all in the first
n1 + k = 5 positions in σ ∗.

Over a partition sequencing situation, a partition sequencing game is defined.
Recall Definition 8.1 for a connected component. The partition sequencing game
requires the following admissibility rule: a feasible schedule is admissible with
respect to σ0 if and only if the jobs in a connected component S in σ0 do not jump
over other jobs outside S. However, a coalition may contain multiple connected
components. Gerichhausen and Hamers (2009) describe a Partition Equal Gain
Sharing rule, or PEGS-rule, for allocating cost savings from resequencing the jobs.
This rule operates by disaggregation of cost savings. A disaggregated solution
allocation is defined by a matrix FPEGS ∈ R

n×n, where each element f PEGS
ij of F

denotes the nonnegative allocation of costs savings to job i for cooperating with job
j , and f PEGS

ij = f PEGS
ji . Then, the total allocation to job i is

∑n
j=1 f

PEGS
ij .

Let gij = max{pi − pj , 0} denote the potential cost savings from interchanging
adjacent jobs i and job j , where i precedes j in the same connected component in
σ 0.

Let Sj , j = n1 + k, . . . , n1 + n2, be defined as:

Sj =
{

{n1 + 1, . . . , n1 + k}, if j = n1 + k

Sj−1 ∪ {j} \ {vj }, if j ∈ {n1 + k + 1, . . . , n1 + n2},
(8.18)

where vj is the lowest indexed job that has the largest processing time in the set
Sj−1 ∪ {j}. Observe that Sj is defined recursively from Sj−1 by (a) the addition of
job j , and (b) the removal of a single job with largest processing time, which could
also be job j . Intuitively, Sj is an iteratively updated set of the k smallest jobs i,
such that n1 + 1 ≤ i ≤ j .

The PEGS-rule is defined by:

f PEGS
ij =

{
gij /2, if i, j ∈ N1, or if i, j ∈ N2, or if i ∈ N1, j ∈ Sn1+k

(gij − givj))/2, if i ∈ N1, j ∈ N2 \ Sn1+k.

The first definition of f PEGS
ij divides the cost savings from an interchange of jobs i

458 8 Cooperative Supply Chain Scheduling

and j between those two jobs. The second term in the second definition compensates
for the fact that job vj cannot interchange with jobs of N1 due to the maximum
disruption constraint.

Example 8.14 (Application of the PEGS-Rule) Using the same instance as in
Example 8.13, N1 = {1, 2, 3, 4}, N2 = {5, 6, 7}, p = (3, 10, 2, 5, 8, 1, 6),
σ0 = (1, . . . , 7), and k = 1. Then,

FPEGS =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 0.5 0 0 1.0 0
0 0 4.0 2.5 1.0 3.5 0

0.5 4.0 0 0 0 0.5 0
0 2.5 0 0 0 2.0 0
0 1.0 0 0 0 3.5 1.0

1.0 3.5 0.5 2.0 3.5 0 0
0 0 0 0 1.0 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

As examples of the calculations in FPEGS , f PEGS
13 = g13/2 = max{3 − 2, 0}/2 =

0.5, and f PEGS
26 = (g26−g25)/2 = (max{10−1, 0})/2−(max{10−8, 0})/2 = 3.5.

From the disaggregated allocation FPEGS of cost savings, the row or column
sums provide the aggregated allocation (1.5, 11.0, 5.0, 4.5, 5.5, 10.5, 1.0). The total
allocation is thus 39 = ∑

j∈N1∪N2
[Cj (σ

0) − Cj (σ
∗)] = 143 − 104, as in

Example 8.13. This shows that all cost savings are allocated, i.e., the Efficiency
property is satisfied, as required.

Recall Definition 8.2 for a maximally connected component. A coalition of jobs
may consist of multiple maximally connected components. Given σ0, we define a
new sequence as admissible for S with respect to σ0 if the jobs in N \S that precede
job i are the same in σ0 and the new sequence, for i ∈ N . Let A (S) denote the set
of admissible sequences for coalition S. Now, consider the maximal cost savings of
such a coalition S ⊂ N . Then, the characteristic function of a partition sequencing
game (N, v) is defined by:

v(S) = max
σ∈A (S)

{∑

i∈S
[Ci(σ0) − Ci(σ)]

}
, (8.19)

where the value of a disconnected coalition is the sum of the values of its maximally
connected components, as defined in (8.13).

We introduce the following preliminary result. We refer the reader to Gerich-
hausen and Hamers (2009) for a proof.

Lemma 8.2
∑

i,j∈S f PEGS
ij = ∑

i∈S[Ci(σ
0) − Ci(σ

∗)], for all S ⊆ N .

The unanimity game (N, u) on any given subset T ⊂ N is defined by uT (S) =
1 if T ⊆ S, and = 0 otherwise, as introduced in Sect. 8.3.1.2. As discussed
below, Gerichhausen and Hamers (2009) show that a partition sequencing game

8.3 Sequencing Games 459

can be written as a nonnegative linear combination of unanimity games. A further
preliminary result is needed.

Lemma 8.3 Let (N1, N2, σ
0, p, k) be a partition sequencing situation, and let

(N, v) be the corresponding partition sequencing game. Then,
v(S) = ∑

i,j∈N1∪N2
giju[i,j] + ∑

j∈N1,j∈Sn1+k
gij u[i,j] + ∑

i∈N1,j∈N2\Sn1+k
(gij −

givj)u[i,j],
where [i, j] = {i, i + 1, . . . , j} and Sn1+k and vj are defined in (8.18).

Proof From the admissibility rule, the value of a coalition can be written as the sum
of values of its maximally connected components. Therefore, the proof need only
consider connected components S. Let σ ∗ denote an optimal order of S. Define
u[i,j](S) = u[i, j] if {i, i + 1, . . . , j} ∈ S, and = 0 otherwise. Then, we have

v(S) =
∑

i∈S
[Ci(σ0) − Ci(σ

∗)], from (8.19)

=
∑

i∈S

n∑

j=1

f PEGS
ij , from Lemma 8.2

=
∑

i,j∈(N1∪N2)∩S
gij +

∑

i∈N1∩S,j∈Sn1+k∩S
gij

+
∑

i∈N1∩S,j∈(N2\Sn1+k)∩S
(gij − givj)

=
∑

i,j∈N1∪N2

giju[i,j](S) +
∑

j∈N1,j∈Sn1+k

gij u[i,j](S)

+
∑

i∈N1,j∈N2\Sn1+k

(gij − givj)u[i,j](S),

where the third equality follows from (8.19), and the last equality follows from the
definition of unanimity games. ��

This leads immediately to the following result.

Theorem 8.10 Partition sequencing games are convex.

Proof Recall that unanimity games, as defined in Sect. 8.3.1.2, are convex.
Lemma 8.3 shows that partition sequencing games are a linear combination of
unanimity games. Moreover, since gij − givj ≥ 0 by definition of vj , this is a
nonnegative linear combination. The result then follows from Theorem 8.1. ��

We now turn our attention to the Shapley value of a partition sequencing game.
For many cooperative games, the calculation of the Shapley value is computationally
challenging, since it depends on averaging over an exponential number of possible

460 8 Cooperative Supply Chain Scheduling

coalitions. However, a useful result for partition sequencing games is that the
Shapley value for job i, denoted by φi(v), can be computed efficiently.

Theorem 8.11 Let (N1, N2, σ0, p, k) be a partition sequencing situation, and let
(N, v) be the corresponding partition sequencing game. Then, for i ∈ N ,

φi(v) =
∑

h,j∈N1,h≤i≤j ghj

j−h+1 +
∑

h,j∈N2,h≤i≤j ghj

j−h+1 +
∑

h∈N1,j∈Sn1+k,h≤i≤j
ghj

j−h+1 +
∑

h∈N1,j∈N2\Sn1+k ,h≤i≤j (ghj−ghvj)

j−h+1 , where Sn1+k is defined in (8.18).

Proof Define hij =
{
gij , if i, j ∈ N1 ∪ N2, or if i ∈ N1, j ∈ Sn1+k

(gij − givj), if i ∈ N1, j ∈ N2 \ Sn1+k.

Now, from Lemma 8.3, v(S) = ∑
i<j hij u[i,j](S), S ⊆ N . Then, from Curiel

et al. (1993), φl(v) = ∑
i≤l≤j,i �=j hij /(j − i + 1). ��

Example 8.15 (Shapley Value Calculations in a Partition Sequencing Game) Con-
sider job i = 4 in Example 8.13. From Theorem 8.11, noting that v({6}) = 5, we
have

φ4(v) = (g16 − g15)/6 + g24/3 + g25/4 + (g26 − g25)/5

+(g36 − g35)/4 + (g46 − g45)/3

= 2/6 + 5/3 + 2/4 + 7/5 + 1/4 + 4/3

= 329/60.

Also, noting that v({7}) = 7, similar calculations for the other jobs provide
the vector of Shapley values: (2/3, 494/60, 509/60, 329/60, 479/60, 449/60, 2/3),
where

∑7
i=1 φi(v) = 39 = 143−104 = ∑

j∈N1∪N2
[Cj (σ

0)−Cj (σ
∗)], as required.

Remark 8.2 Gerichhausen and Hamers (2009) generalize their above results to
partition sequencing situations with more than two sets, which corresponds to a
situation where multiple batches of jobs arrive sequentially, before any processing
occurs. The corresponding optimization problem is studied by Hall et al. (2007).
As a first step, they extend Algorithm MultiBatch of Hall and Potts (2004) for
this problem. The main results are similar to those for the case with two batches,
including a proof of convexity and an efficiently computable solution for the Shapley
value. They also show that their generalized allocation rule is the unique non-
aggregated rule that satisfies the Efficiency, Symmetry, and Consistency properties.
Consistency means that connected subcoalitions obtain the same division between
them if they renegotiate the current solution after some players leave. They also
show that, if the partition sequencing game is generalized to consider the weighted
objective function

∑
j∈N1∪N2

wjCj , the game is no longer convex; however, it
remains balanced.

In the second rescheduling situation we consider, after an optimal schedule π∗
has been found but not yet implemented, production resources become unavailable
for a single interval of time [T1, T2]. Some processing has typically been scheduled

8.3 Sequencing Games 461

within this interval. Hence, due to the period of unavailability, rescheduling is
needed. Let N = {1, . . . , n} denote the set of jobs. Each job j has a processing
time pj and a weight or urgency value wj .

The jobs are required to be processed nonpreemptively, i.e., without interruption.
As in Hall and Potts (2004) and Gerichhausen and Hamers (2009), a constraint
is imposed on the maximum disruption to any job as a result of the necessary
rescheduling. This constraint is of the form Δmax ≤ k, which requires that each
job is scheduled no more than k time units either earlier or later in a feasible
solution than it was in π∗. Using classical scheduling notation, this problem is
denoted as 1|Δmax ≤ k|∑wjCj . Liu et al. (2018b) study this problem, for
which they provide a pseudo-polynomial time optimal algorithm, which they name
Algorithm 1. After sequencing the jobs according to the SWPT rule of Smith (1956),
i.e., by nonincreasing wj/pj value, Algorithm 1 applies dynamic programming to
schedule each job either before time T1 or after time T2. Observe that Algorithm 1
may need to insert idle time, in order to satisfy the maximum disruption time
constraint. Let z∗ denote the cost of the optimal schedule thus obtained. The
computational requirement of the optimal algorithm is O(n2T1) time. The authors
also provide a fully polynomial-time approximation scheme. These results show
that, while the problem is known to be binary NP-hard as a generalization of a
problem studied by Adiri et al. (1989), it is only ordinarily NP-hard.

Consider a cooperative game defined over the above problem. Let the jobs be
indexed in SWPT order, which we define as sequence π∗. It is necessary to define
a baseline schedule against which any cost savings from cooperative rescheduling
can be compared. This baseline schedule is found as follows. Algorithm H schedules
each job as early as possible, given the sequence π∗.

Algorithm H
1. Let π∗ = (1, 2, . . . , n), where w1/p1 ≥ · · · ≥ wn/pn.
2. Find j ′ = min{j | Cj (π

∗) > T1}.
3. Schedule jobs 1, . . . , j ′ − 1 sequentially without idle time in the interval

[0,∑j ′−1
i=1 pi], and jobs j ′, . . . , n sequentially without idle time in the interval

[T2, T2 +∑n
i=j ′ pi].

Let σH denote the schedule found by Algorithm H, and zH its cost. In the
supply chain scheduling game discussed below, a coalition can only be formed from
jobs processed consecutively in σH , which is a standard admissibility requirement
for coalitions in sequencing games. The discussion of these issues requires the
following definition.

Definition 8.5 A usable time period for a coalition begins at the start time of the
first job in the coalition and ends at the completion time of the last job in the coalition
in σ0, excluding the interval [T1, T2].

Then, the rescheduling game (N, v) is defined by a characteristic function
v(S), S ⊆ N , where v(S) is the cost saving achieved by coalition S from
rescheduling its jobs within its usable time period, relative to its total cost in
schedule σH . The total cost saving is zH − z∗.

462 8 Cooperative Supply Chain Scheduling

Observe that the time interval [0, T1] is fixed. It follows that, as a coalition
increases in size, there is less space for a new job to add value. Hence, the game
is not convex. However, Liu et al. (2018b) show that the game is σ0-component
additive, hence a core solution is found by the β-rule of Curiel et al. (1994) as
discussed in Sect. 8.3.3. More directly, however, a core solution is identified by the
following result.

Theorem 8.12 The vector x, where

xj = 0, for j = 1, . . . , j ′ − 2, j ′ + 1, . . . , n,
xj ′−1 = δ(zH − z∗), and
xj ′ = (1 − δ)(zH − z∗),

for any 0 ≤ δ ≤ 1, is a core solution of the rescheduling game.

Proof It is easy to check that
∑n

i=1 xi = zH − z∗, as required by the Efficiency
property. Observe that any coalition not containing either job j ′ −1 or job j ′ cannot
be better off acting by itself, from the definition of a usable time period. Also, a
coalition that contains both jobs j ′−1 and j ′ has a maximum cost saving of zH −z∗,
which is achieved by the values x1, . . . , xn in the theorem statement. ��

For this game, Liu et al. (2018b) also show that an efficient computation of the
Shapley value is available. Consider a coalition S(j, l) that contains jobs j, . . . , l

processed consecutively in that sequence in σH , where 1 < j ′ ≤ j1 − 1 and j ′ ≤
l < n. The marginal contribution of job i, j ≤ i ≤ l to coalition S(j, l) is defined
as v̄i (j, l) = v(S(j, l)) − v(S(j, l) \ {i}).
Theorem 8.13 The Shapley value of the rescheduling game is given, for i ∈ N ,
by φi(v) = ∑

1<j≤j ′−1, j ′≤l<n, j≤i≤l
2v̄(j,l)

(l−j+1)(l−j+2)(l−j+3) + ∑
j ′≤l<n, i≤l

v̄(1,l)
l(l+1)

+∑
1<j≤j ′−1, j≤i

v̄(j,n)
(n−j+1)(n−j+2)+ v̄(1,n)

n
, which can be computed inO(n3T1) time.

Proof We consider how a player i can contribute to a coalition. There are four cases.

Case 1. Consider j > 1 and l < n. Any set of jobs not containing job j ′ or
j ′ − 1 cannot achieve cost saving through rescheduling. Therefore, the marginal
contribution of job i to any coalition that contains jobs j, . . . , l but excludes j−1
and l+1 is v̄(j, l) = v(S(j, l))−v(S(j, l)\{i}). The total number of permutations
that yield this marginal contribution is 2(l−j)!(l−j +4)(l−j +5) · · · (n−1)n,
which is a fraction

2

(l − j + 1)(l − j + 2)(l − j + 3)

of the total possible number of permutations n!.
Case 2. Now consider j = 1 and l < n. The analysis is similar to Case 1, and the

number of possible permutations in this case is (l−1)!(l+2)(l+3) · · · (n−1)n,
which is a fraction 1/l(l + 1) of the total number of permutations.

Case 3. Similarly, for j > 1 and l = n, the number of possible permutations is a
fraction 1/(n − j + 1)(n − j + 2) of the total number of partitions.

8.3 Sequencing Games 463

Case 4. Similarly, for j = 1 and l = n, the number of possible permutations is a
fraction 1/n of the total number of partitions.

Finally, the time requirement is determined by the need to enumerate all possible
coalitions within their admissible time periods. The characteristic function values
required can be computed using O(n) applications of Algorithm 1 in Liu et al.
(2018b), each of which requires O(n2T1) time. ��
Example 8.16 (Shapley Value Calculations in a Rescheduling Game) N =
{1, 2, 3, 4}; p = (2, 2, 5, 1); w = (2, 2, 6, 3); [T1, T2] = [5, 6]; k = 7;
π∗ = (1, 2, 3, 4). Schedule σH processes job 1 from time 0 to 2, job 2 from 2
to 4, job 3 from 6 to 11, and job 4 from 11 to 12. The cost of schedule σH , allowing
for the unavailable processing time, is 2(2)+ 2(4)+ 6(11)+ 3(12) = 114. Observe
that, since C4(σ

H) = 12 and k = 7, we have C4(σ
∗) ≥ 12 − 7 = 5. Therefore,

an optimal reschedule processes job 3 from 0 to 5, job 4 from 6 to 7, job 1 from 7
to 9, and job 2 from 9 to 11, for a total cost of 6(5) + 3(7) + 2(9) + 2(11) = 91,
giving a total cost saving of 23. The coalition values are v({1, 2}) = v({2, 3}) = 0,
v({3, 4}) = 9, v({1, 2, 3}) = 12, v({2, 3, 4}) = 21, and v({1, 2, 3, 4}) = 23.
The vector of Shapley values, showing the four terms in Theorem 8.13 separately,
is φ1(v) = 0 + 1.0 + 0 + 0.5 = 1.5, φ2(v) = 0 + 1.0 + 1.0 + 3.5 = 5.5,
φ3(v) = 0 + 1.0 + 1.75 + 5.75 = 8.5, and φ4(v) = 0 + 0 + 1.75 + 5.75 = 7.5.
Hence,

∑4
i=1 φi(v) = 1.5 + 5.5 + 8.5 + 7.5 = 23.0, as required.

Remark 8.3 The availability of an efficiently computable solution for the Shapley
value of this game is very useful in establishing cooperation for this game. Liu et al.
(2018b) conduct a computational study involving 18,600 instances, and observe that
the Shapley value is in the core in about 93% of those cases.

8.3.5 Relaxed Sequencing Games

As discussed in the previous sections, the standard admissibility assumption in a
sequencing game is that members of a coalition cannot jump over other players,
in this case jobs, outside the coalition. Hence, the only admissible interchanges of
position are within connected components of a coalition; there can be several such
components within a coalition. Curiel et al. (1993) consider more general situations
where admissible moves include (a) a change of position in the sequence for an
outside job, either earlier or later, and (b) a change of starting time for an outside
job, earlier but not later, and both (a) and (b). Our focus is on both relaxations
(a) and (b), since it is the most general case, and hence establishing the main
result immediately implies the same result for the other cases. The relaxation of
the traditional admissibility assumption under (b) is reasonable in the sense that
players outside the coalition are not necessarily harmed by the additional flexibility

464 8 Cooperative Supply Chain Scheduling

given to the coalition. Moreover, the relaxation provides the potential for additional
cost savings for the coalition.

We consider a sequencing situation with N = {1, . . . , n} jobs that need to be
processed nonpreemptively on a single machine. Each job j has a processing time
pj , and a weight or urgency value wj . The jobs are initially queued in a given
sequence σ0. Let Cj (σ) denote the completion time of job j in a sequence σ . The
sequencing objective is to minimize the total weighted completion time of the jobs,
i.e.,

∑
j∈N wjCj . Over this sequencing situation, we define a sequencing game

(N, v) under both the above admissibility relaxations (a) and (b).

Example 8.17 (Instance of a Sequencing Game under Admissibility Relaxations)
Consider a sequencing situation (N, σ0, p,w) where N = {1, 2, 3, 4}, σ0 =
(1, 2, 3, 4), p = (6, 7, 2, 1), and the weight vector w is arbitrary. Observe that the
job starting times in σ0 are (0, 6, 13, 15). Now, consider the coalition S = {1, 3, 4}.
The corresponding sequencing game (N, v) under relaxations (a) and (b) above has
an admissible schedule σ = (3, 4, 2, 1), where job 2 �∈ S has moved from position
2 to position 3 in the sequence, and has a starting time of 3 < 6.

Slikker (2006) proves the balancedness of the game illustrated in Example 8.17.
This result holds for real-valued processing times. However, consistent with the
usual convention in classical scheduling problems, we present the analysis for the
more intuitive and more practical special case of integer processing times. The
balancedness of this game is established by first considering a sequencing situation
and corresponding game where each job is broken into pieces with unit processing
times. The following definitions are needed for analysis of the unit processing time
game.

Definition 8.6 Given a sequencing situation (N, σ0, p,w), we define a
corresponding relaxed unit sequencing situation (N̄, σ̄0, p̄, w̄) where each job
i ∈ N is replaced by pi unit processing time jobs and the weight of the
job, wi , is shared equally between the pi unit size jobs, such that each has
weight wi/pi . Thus, N̄ = ∪n

i=1Ni , where Ni = {ji1, . . . , jipi
}, i ∈ N ;

σ̄0 = (j11, . . . , j1p1 , . . . , jn1, . . . , jnpn); pik = 1, i ∈ N, k ∈ {1, . . . , pi}; and
wik = wi/pi, i ∈ N, k ∈ {1, . . . , pi}.
Example 8.18 (Instance of a Relaxed Unit Sequencing Situation) Given a sequenc-
ing situation N = {1, 2, 3}, σ0 = (1, 2, 3), p = (3, 2, 1), and w = (3, 4, 5), the
associated unit sequencing situation is:

N̄ = {j11, j12, j13, j21, j22, j31}; σ̄0 = (j11, j12, j13, j21, j22, j31); pik = 1, for all
(i, k) such that jik ∈ N̄ ; and w̄11 = w̄12 = w̄13 = 1, w̄21 = w̄22 = 2, w̄31 = 5.

Associated with the relaxed unit sequencing situation (N̄, σ̄0, p̄, w̄) is a relaxed
unit sequencing game, (N̄, u). The following result in Slikker (2006) characterizes
this game.

Lemma 8.4 If (N, σ0, p,w) is a sequencing situation, then the relaxed unit
sequencing game (N̄, u) is balanced.

8.3 Sequencing Games 465

Proof Since the relaxed unit sequencing game is a permutation game (see
Sect. 8.3.1.1), the result follows from Tijs et al. (1984). ��

We know from Lemma 8.4 that there exists a core element of (N̄, u) that defines
a fair allocation of the cost savings from resequencing. Let this core element be
denoted by yik, i ∈ N, 1 ≤ k ≤ pi . We now show that the aggregated solution
xi = ∑pi

k=1 yik, i ∈ N , is a core element of the relaxed sequencing game (N̄, v).
In any schedule σ , let Cjik (σ) denote the completion time of job jik , and for any
S̄ ⊆ N̄ let CS̄(σ) = ∑

jik∈S̄ Cjik .
Slikker (2006) proves the following result.

Lemma 8.5 If (N, σ0, p,w) is a sequencing situation, and (N̄, u) is the corre-
sponding relaxed unit sequencing game, then v(S) ≤ u(S̄) for all S ⊆ N and
v(N) = u(N̄).

Proof Consider a coalition S ⊆ N , where σ is an admissible sequence for S.
Correspondingly, S̄ is a coalition of unit size jobs, where S̄ ⊆ N̄ in the relaxed
unit sequencing game. Then, σ̄ is also admissible for S̄, since jobs outside S do
not start later than they did in σ0, which satisfies rule (b) of the relaxation. Further,
additional cost savings that are not available to S may be available to S̄ by moving
jobs in N̄ \ S̄ later into their original positions and moving the jobs in S̄ earlier
without changing their internal sequence.

Let Δi denote the cost difference of job i ∈ N between the relaxed sequencing
game and the unit sequencing game with the same sequence. Then, Δi = wipi −∑pi

k=1 kwi/pi = wi(pi − 1)/2. It follows that, for any sequence π ,

Ci(π) = wi

∑

k | π(k)≤π(i)

pk

= wipi + wi

∑

k | π(k)<π(i)

pk

= Δi +
pi∑

k=1

k
wi

pi

+
pi∑

k=1

(wi

pi

∑

k | π(k)<π(i)

pk

)

= Δi +
pi∑

k=1

Cjik (π̄).

Then, for any coalition S ⊆ N , we have

CS(π) = CS̄(π̄) +
∑

i∈S
Δi. (8.20)

466 8 Cooperative Supply Chain Scheduling

Let σS denote an optimal sequence for S, and σS its associated schedule, which
we know from the above discussion is admissible for S̄. Let σS̄ denote an optimal
schedule for S̄. Then, we have

u(S̄) = CS̄(σ̄0) − CS̄(σS̄)

≥ CS̄(σ̄0) − CS̄(σS), from the optimality of σS̄ for S̄

= CS̄(σ̄0) +
∑

i∈S
Δi − [CS̄(σS) +

∑

i∈S
Δi]

= CS(σ0) − CS(σS), from (8.20)

= v(S).

Finally, we consider N . Let σN denote an optimal sequence for N , and σN the
associated order for N̄ . Then, from Smith (1956), the associated order σ̄N is optimal
for N̄ . Hence,

u(N̄) = CN̄(σ̄0) − CN̄(σN̄)

= CN̄(σ̄0) +
∑

i∈N
Δi − [CN̄(σN̄) +

∑

i∈N
Δi]

= CN(σ0) − CN(σN), from (8.20)

= v(N).

��
We are now ready to prove the main result for relaxed sequencing games.

Theorem 8.14 If (N, σ0, p,w) is a sequencing situation, then the associated
relaxed sequencing game (N, v) is balanced.

Proof Let yik, i ∈ N, 1 ≤ k ≤ pi , be a core element of (N̄, u) which, from
Lemma 8.4, exists. Let xi = ∑pi

k=1 yik, i ∈ N . Then,

∑

i∈S
xi ≥ u(S̄) ≥ v(S), and

∑

i∈N
xi ≥ u(N̄) = v(N),

from the definition of yik and Lemma 8.5. ��
From a practical perspective, the relaxations considered here may be useful in

negotiating agreements between coalitions, since they provide additional flexibility
to one coalition that is not necessarily harmful to another. As mentioned above,
Slikker (2006) extends the above results to games with any real-valued processing
times.

8.3 Sequencing Games 467

Musegaas et al. (2015) study a class of games using a different relaxation, where
any player is allowed to step out of his position in the processing sequence and step
in at a later position. They show that sequencing games, as defined in Curiel et al.
(1989), have a nonempty core under this relaxation. This relaxation can also be used
to study the more general games discussed below in this chapter.

8.3.6 Batch Sequencing Games

In batch manufacturing problems, several jobs can be processed simultaneously.
Such problems occur, for example, where several processing resources can be used
concurrently on the same job(s). A well-known application of batch processing
is “burn-in” processing of computer chips (Hochbaum & Landy, 1997; Lee &
Tse, 1992). Çiftçi et al. (2013) study scheduling games that are motivated by
such applications. In the batch sequencing problem studied here, the processing
time of a batch, denoted by t , is independent both of the number of jobs in the
batch and of their individual characteristics; hence, this time is simply a known
constant. However, the maximum number of jobs in the batch, defined by processing
capacity, is L. Each job j has a priority weight, wj . The objective is to minimize
the total weighted completion time of the jobs, where the completion time of a
job is the completion time of the batch that contains it. Intuitively, (a) it would
never be advantageous to use less than a full batch of jobs while some jobs remain
unassigned to a batch, and (b) each batch should contain the L jobs with largest
weights until fewer than L jobs remain. This intuition is formalized below. This is
a batch sequencing situation, for which Çiftçi et al. (2013) define and analyze a
corresponding cooperative batch sequencing game.

Let N = {1, . . . , n} be a set of jobs. Let σ0 = (1, . . . , n) denote an initial
sequence of the jobs. This implies that, initially, jobs 1, . . . , L are in batch 1 with
completion time t , jobs L + 1, . . . , 2L are in batch 2 with completion time 2t , and
so on. Let Bk denote the subset of jobs in the kth batch. For simplicity, we assume
that t = 1. The resulting batch cost is

∑
i∈Bk

wik, the weighted completion time
of that batch. Given a schedule σ , let C(σ) denote its total cost. Formally, a batch
sequencing situation is defined as (N, σ0, w,L), where w ∈ R

n+, and L ∈ Z+.

Lemma 8.6 An optimal schedule is defined by processing the jobs in maximum
capacity batches and in nonincreasing job weight order, which implies nonincreas-
ing total weight of batches.

Proof This result, based on adjacent pairwise interchanges of jobs, follows from
Smith (1956). ��

For a given schedule σ , let bσ (i) = �σ(i)/L� denote the index of the batch
in which job i is scheduled. Let A (S) denote the set of all admissible sequences.
Recall from Definition 8.1 that a connected coalition occupies consecutive positions
in σ . Using Definition 8.2, a σ0-component of S is a maximally connected

468 8 Cooperative Supply Chain Scheduling

component of S with respect to σ0, and S|σ0 is the set of all such components in
S. We let con(σ0) denote the set of coalitions that are connected with respect to σ0.

Formally, a batch sequencing game is defined by (N, v), where for all S ⊆ N ,

v(S) = max
σ∈A (S)

{∑

i∈S
wi[bσ0(i) − bσ (i)]

}
. (8.21)

The next result establishes the existence of a core solution.

Lemma 8.7 Batch sequencing games are balanced.

Proof It is clear that batch sequencing games are superadditive. In a batch
sequencing game, a resequencing σ of the jobs by coalition S is admissible if and
only if the set of jobs that precede any job j ∈ N \ S is the same in the original
sequence σ0 and in σ . This requirement ensures that batch sequencing games are σ0-
component additive. Then, from Le Breton et al. (1992), such games are balanced.

��
As a result of Lemma 8.7, we turn our focus to obtaining an understanding of

the convexity of the game, and also obtaining an efficiently computable expression
for the Shapley value. These are achieved through the use of unanimity games, as
defined in Sect. 8.3.1.2. The value of coalition S ⊆ N is the maximum cost savings
that the coalition can achieve by an admissible resequencing from σ0, and we now
provide an example. Let bσ (i) denote the number of the batch in which job i is
included in a given schedule σ .

Example 8.19 (Instance of a Batch Sequencing Game) Let N = {1, . . . , 5}, w =
(1, 2, 4, 5, 8) and L = 2. Let σ0 = (1, 2; 3, 4; 5), where we use “;” to indicate
the start of a new batch, i.e., bσ0(1) = bσ0(2) = 1, bσ0(3) = bσ0(4) = 2, and
bσ0(5) = 3. The cost of σ0, denoted by C(σ0) is 1(1 + 2) + 2(4 + 5) + 3(8) =
45. Consider a coalition S = {2, 3, 4, 5}. The optimal rearrangement σ ∗ that is
admissible for S is (1, 5; 4, 3; 2), where bσ ∗(1) = bσ ∗(5) = 1, bσ ∗(4) = bσ ∗(3) =
2, and bσ ∗(2) = 3, with a cost of 1(1 + 8) + 2(5 + 4) + 3(2) = 33, a saving of
C(σ0) − C(σ ∗) = v(S) = 45 − 33 = 12. Using (8.21), we also obtain v(S) =
2(1 − 3) + 4(2 − 2) + 5(2 − 2) + 8(3 − 1) = 12 = 45 − 33, as required.

For any coalition S ⊆ N , it is useful to characterize the first and last member of
S, as scheduled in σ0, i.e.,

f (S) = arg min
i∈S {σ0(i)}, and

l(S) = arg max
i∈S {σ0(i)},

respectively. Note that σ−1
S (y) is the job in position y in schedule σS . Using these

definitions, Çiftçi et al. (2013) prove the following result.

8.3 Sequencing Games 469

Theorem 8.15 Let (N, σ0, w,L) be a batch sequencing situation, and (N, v) be
the corresponding batch sequencing game. Further, let

∑
S⊆N λSuS be a linear

decomposition of (N, v) into unanimity games. Then, for S ∈ con(σ0),

λS =
⎧
⎨

⎩

∑
k|bσS (l(S))≤k<bσS (f (S))

[w
σ−1
S (kL)

− w
σ−1
S (kL+1)], if bσS (l(S)) < bσS (f (S))

0, otherwise.
(8.22)

Observe that the summation in (8.22) is over all batches that contain any jobs
of the coalition S (which is connected with respect to σ0), excluding the last such
batch. The result in Theorem 8.15 is useful in that it enables efficient computation
of the values of all coalitions and also for the Shapley value. We now summarize
these results.

Theorem 8.16 Let (N, σ0, w,L) be a batch sequencing situation, and (N, v) be
the corresponding batch sequencing game. Then,

(i) (N, v) is convex.
(ii) For all S ⊂ N , v(S) = ∑

k |bσS (l(S))≤k<bσS (f (S))
[w

σ−1
S (kL)

− w
σ−1
S (kL+1)].

(iii) For all i ∈ N , the Shapley value of job i, φi(v), is given by

φi(v) =
∑

S∈con(σ0),i∈S

∑

k|bσS (l(S))≤k<bσS (f (S))

w
σ−1
S (kL)

− w
σ−1
S (kL+1)

|S| .

(8.23)
(iv) For all i ∈ V , φi(v) is in the core of the game.

Proof

(i) Follows from the fact that Theorem 8.15 shows that batch sequencing games
are nonnegative combinations of unanimity games, and therefore convex (see
Sect. 8.3.1.2).

(ii) Follows from (8.22).
(iii) Follows from (i) and Theorem 8.15.
(iv) Follows from (i) and Shapley (1971).

��
The following example applies the results in Theorem 8.16 to compute the values

of all coalitions, and the Shapley values of all jobs, efficiently in batch sequencing
games.

Example 8.20 (Coalition and Shapley Values in a Batch Sequencing Game) Con-
sider the batch sequencing game in Example 8.19. We discuss the calculations for
the values of the coalitions and the Shapley value in Table 8.1. First, recall from
Example 8.19 that C(σ0) = 45. Also, from Lemma 8.6, an optimal schedule is
σ ∗ = (5, 4; 3, 2; 1), with C(σ ∗) = 1(8 + 5) + 2(4 + 2) + 3(1) = 28. Hence,
C(σ0) − C(σ ∗) = 45 − 28 = 17, which is the total value of all coalitions in the
fourth column of Table 8.1. More generally, from Theorem 8.16, part (ii), the value

470 8 Cooperative Supply Chain Scheduling

Table 8.1 Coalition and Shapley values in Example 8.20

Row S σS v(S) Shapley

1 {1, 2} (2, 1; 3, 4; 5) 0 0

2 {2, 3} (1, 3; 2, 4; 5) w3 − w2 = 2 2/2 = 1

3 {3, 4} (2, 1; 4, 3; 5) 0 0

4 {4, 5} (2, 1; 3, 5; 4) w5 − w4 = 3 3/2 = 1.500

5 {1, 2, 3} (3, 2; 1, 4; 5) w2 − w1 = 1 1/3 = 0.333

6 {2, 3, 4} (1, 4; 3, 2; 5) w4 − w3 = 1 1/3 = 0.333

7 {3, 4, 5} (1, 2; 5, 4; 3) w4 − w3 = 1 1/3 = 0.333

8 {1, 2, 3, 4} (4, 3; 2, 1; 5) w3 − w2 = 2 2/4 = 0.500

9 {2, 3, 4, 5} (1, 5; 4, 3; 2) (w3 − w2) + (w5 − w4) = 2 + 3 = 5 5/4 = 1.250

10 {1, 2, 3, 4, 5} (5, 4; 3, 2; 1) (w4 − w3) + (w2 − w1) = 1 + 1 = 2 2/5 = 0.400

Total 17

of any coalition can be found from adding the number in the fourth column of the
table over all its subcoalitions, including itself. For example, consider the coalition
S = {2, 3, 4, 5}. Recall from Example 8.19, that v({2, 3, 4, 5}) = 12. This result
can be found by adding the values in the fourth column of all rows except 1,5,8, and
10 for coalitions which contain {1}, giving 2 + 0 + 3 + 1 + 1 + 5 = 12.

We also calculate the Shapley value of each job from Table 8.1, using the result
in Theorem 8.16, part (iii). For each task i, we add the entry in the last column of
the table, for each row where i ∈ S. Thus, we obtain:
φ1(v) = 0 + 0.333 + 0.5 + 0.4 = 1.233;φ2(v) = 0 + 1 + 0.333 + 0.333 + 0.5 +
1.25 + 0.4 = 3.817;φ3(v) = 1 + 0 + 0.333 + 0.333 + 0.333 + 0.5 + 1.25 +
0.4 = 4.15;φ4(v) = 0 + 1.5 + 0.333 + 0.333 + 0.5 + 1.25 + 0.4 = 4.317; and
φ5(v) = 1.5 + 0.333 + 1.25 + 0.4 = 3.483. Then,

∑5
i=1 φi(v) = 1.233 + 3.817 +

4.15 + 4.317 + 3.483 = 17 = C(σ0) − C(σ ∗), as required.

Çiftçi et al. (2013) extend their work in two different directions. First, they relax
the standard condition on admissibility to allow the players in coalition S to take
any position, provided that the players outside S remain in the same position as
in the original schedule. Batch sequencing games under this relaxation are not
convex. However, a useful connection with assignment games (Shapley & Shubik,
1972) is established. Every relaxed batch sequencing game can be written as the
sum of specific assignment games. Then, since assignment games are balanced,
this establishes the balancedness of relaxed batch sequencing games. Second, they
study batch sequencing games defined on flowshops. In general, such games are
neither convex nor σ0-component additive. However, some special cases of such
games reduce to batch sequencing games defined on an easily identified bottleneck
machine in the flowshop.

8.3 Sequencing Games 471

8.3.7 Proportionate Flowshops

Estévez-Fernández et al. (2008) consider cooperative games defined over propor-
tionate flowshops (PFS). In a flowshop problem, a group of jobs has to be processed
through a fixed number of machines, and the order of the machines in which the jobs
have to be processed is the same for all jobs. A proportionate flowshop problem is a
special case of the flowshop problem where processing times vary between jobs, but
for any job they are the same on all machines. A typical application of this occurs
where the processes at the different machines are simple and similar operations,
an example being the addition of various layers of paint to products, i.e., jobs, of
different sizes.

We describe a PFS application where the objective is to minimize the total
weighted completion time of the jobs on the last machine. A PFS situation can
be described by a 4-tuple (M,N, p,w), where M = {M1, . . . ,Mm} is the set
of machines, N = {1, . . . , n} denotes the set of jobs, p ∈ R

n+ is the vector of
processing times of the jobs, and wi ∈ R

n+ denotes the cost of job i per unit of
waiting time. Let Π(N,M) denote the set of all possible schedules. A schedule
σ ∈ Π(N,M) is defined by σ = (σ 1, . . . , σm), where σ j is the sequence of jobs on
machine Mj . Given a schedule σ j for machine Mj , let Pi(σ

j) = {h ∈ N | σ j (h) <

σj (i)} denote the set of jobs that precede job i on machine Mj .

Definition 8.7 If σ1 = · · · = σm, then the schedule is called a permutation
schedule, or an order.

Shakhlevich et al. (1998) show that there exists an optimal schedule for a PFS
problem that is a permutation schedule. The completion time of job i on machine j

in schedule σ is denoted as Cj
i (σ), i ∈ N, j ∈ M . The overall completion time of

job i in schedule σ is its completion time on the last machine on which processing
occurs for all jobs, i.e., machine Mm, and is thus denoted by Cm

i (σ). The objective is
to minimize the total cost cN(σ) = ∑

i∈N ci(σ), where ci(σ) = wiC
m
i (σ), i ∈ N .

Definition 8.8 Given a schedule σ , job i is defined to be a new-max job under σ
if pi > maxj∈Pi(σ){pj }. That is, job i is the largest job in σ up to this point. This
definition enables a partitioning of the jobs into segments where each segment starts
with the next new-max job.

We assume an initial schedule σ0. Given a coalition S ⊂ N , we define S|σ j

0 as

the set of all maximally connected components of S according to σ
j

0 . Also, given
S ⊂ N , the set of admissible schedules of S with respect to σ0, denoted by A(S, σ0),
consists of all schedules σ such that

(i) S|σ j = S|σ j

0 , j ∈ M , and

(ii) C
j
i (σ) = C

j
i (σ0), i ∈ N \ S, j ∈ M .

Condition (i) specifies that a schedule is admissible for a coalition S with respect
to the initial schedule σ0 if changes on any machine j with respect to its local initial

472 8 Cooperative Supply Chain Scheduling

schedule σ
j

0 occur within connected components. Condition (ii) requires that the
completion time of no job in N \ S is changed from schedule σ0 to schedule σ .

Consider a PFS cooperative game defined as follows. Let (M,N, p,w, σ0)

denote an instance of a PFS scheduling problem. Then, the associated PFS game
(N, v) is defined by

v(S) = max
σ∈A(S,σ0)

{
cS(σ0) − cS(σ)

}
,

for S ⊂ N , where cS(σ) = ∑
i∈S ci(σ). Estévez-Fernández et al. (2008) prove the

following result.

Theorem 8.17 PFS games are balanced.

Proof There are two cases.

Case 1. Suppose σ0 is a permutation schedule. Then,

(i) v(i) ≥ 0, i ∈ N ,
(ii) (N, v) is superadditive, and

(iii) v(S) = ∑
T ∈S|σ0

v(T).

Hence (N, v) is σ0-component additive, and from Le Breton et al. (1992) it is
balanced.

Case 2. Let the initial schedule σ0 be an arbitrary schedule. Define σ̃0 by σ
j

0 = σm
0 ,

for j ∈ M . That is, the job sequence of σ0 on the last machine Mm is applied to
all machines, in order to create a permutation schedule. Let (N,w) be the PFS
game associated with the PFS situation (N,M,p,w, σ̃0). Let ai = ci(σ0) −
ci(σ̃0), i ∈ N . Then, since the optimal schedule for N belongs to both A(N, σ0)

and A(N, σ̃0), we have

v(N) = w(N) +
∑

i∈N
ai. (8.24)

Further, since for every σ ∈ A(S, σ0), we can define σ̃ by σ̃ j = σm, j ∈ M , we
have

v(S) ≤ w(S) +
∑

i∈S
ai . (8.25)

Then, since σ̃ is a permutation schedule, σ̃ ∈ A(S, σ̃0), hence

v(S) = max
σ∈A(S,σ0)

{cS(σ0) − cS(σ)}

= cS(σ0) − min
σ∈A(S,σ0)

{cS(σ }

= cS(σ0) − cS(σ̃0) + cS(σ̃0) − min
σ∈A(S,σ0)

{cS(σ)}

8.3 Sequencing Games 473

≤ cS(σ0) − cS(σ̃0) + cS(σ̃0) − min
σ∈A(S,σ0)

{cS(σ̃)}

≤ cS(σ0) − cS(σ̃0) + cS(σ̃0) − min
σ∈A(S,σ̃0)

{cS(σ)}

= cS(σ0) − cS(σ̃0) + max
σ∈A(S,σ̃0)

{cS(σ̃0) − cS(σ)}

=
∑

i∈S
ai + w(S).

Here, the first inequality follows from CS(σ) ≥ CS(σ̃), for σ ∈ A(S, σ0)

(Shakhlevich et al., 1998). The second inequality follows because A(S, σ̃0) ⊇
A(S, σ0). The last equality follows by definition of ai , since cS(σ0) − cS(σ̃0) =∑

i∈S ci(σ0) −∑
i∈S ci(σ̃0) = ∑

i∈S ai .
Finally, by Case 1, (N,w) is balanced. Let y ∈ R

n be in the core of that game,
and define x ∈ R

n such that x = y + a. It follows from (8.24) and (8.25) that x is
in the core of (N, v), and (N, v) is balanced. ��

The remainder of our discussion of PFS games considers a natural and practical
special case. We make the assumption that σ0 is an urgency permutation of the jobs,
i.e., each machine schedules the jobs in the sequence 1, . . . , n, where w1/p1 ≥
· · · ≥ wn/pn, the SWPT order of Smith (1956). We write this assumption as σ0 =
σu.

Estévez-Fernández et al. (2008) describe a procedure to generate an optimal order
which we denote as σ̂ S

iS
, . . . , σ̂ S

jS
for a connected coalition S = {iS, . . . , jS}. In this

procedure, σ̂ S
iS

= σu. Then, the procedure recursively computes σ̂ S
i from σ̂ S

i−1, by
adding a new job at the end of the current sequence of jobs, and then resequencing
the jobs. We refer the reader to their work for details of this procedure.

Let GS
i ≥ 0 be defined as the cost savings obtained by adding job i ∈ S to

the sequence, and then resequencing the jobs to find an optimal sequence from
resequencing job i ∈ S. Thus, Estévez-Fernández et al. (2008) define

GS
i = cN(σ̂

S
i−1) − cN(σ̂

S
i), i ∈ S,

from which it follows that

v(S) =
js∑

i=is

[cN(σ̂ S
i−1) − cN(σ̂

S
i)]

=
∑

i∈S
GS

i .

Given an urgency permutation σu of the jobs, let {a1, . . . , as} denote the
corresponding set of new-max jobs, where a1 < · · · < as . Recall that these jobs
are successively the largest job so far in σu, and since σu is a permutation, they are
well defined.

474 8 Cooperative Supply Chain Scheduling

Definition 8.9

(i) If i is a new-max job in σu, then let r(i)be the index of job i, that is, ar(i) = i.
(ii) If i is not a new-max job in σu, then let r(i) be the index of the new-max job

that precedes job i.

We now show how to derive an efficiently computable closed form expression
for the value of any coalition, and also for the Shapley value of the game (N, v).
This result uses a decomposition into unanimity games, as defined in Sect. 8.3.1.2.

Theorem 8.18

(i) In a PFS game (N, v) with initial urgency permutation σ0,

v(T) =
∑

k∈N

r(k)∑

r=1

[G{ar ,...,n}
k − G

{ar+1,...,n}
k]u{ar ,...,k}(T),

for T ⊂ N , and where G
{ar(k)+1,...,n}
k is defined to be 0.

(ii) The Shapley value of the game (N, v) is

φi(v) =
n∑

k=i

r(i)∑

r=1

G
{ar ,...,n}
k − G

{ar+1,...,n}
k

|{ar , . . . , k}| , i ∈ N.

Proof

(i) Let T ⊂ N be a connected coalition, where we let T = {iT , . . . , jT }. There are
two cases.
Case 1. T ∩ {a1, . . . , as} = ∅. Then, since Shakhlevich et al. (1998) show that
there exists an optimal schedule that follows urgency order within segments,
σ̂ T
k = k, k ∈ T , and therefore GT

k = 0, k ∈ T . Hence, v(T) = 0.
Further, {ar , . . . , k} �⊂ T for every new-max job ar and every k ≥ ar . Hence,
u{ar ,...,k}(T) = 0, and

∑

k∈N

r(k)∑

r=1

[
G

{ar ,...,n}
k − G

{ar+1,...,n}
k

]
u{ar ,...,k}(T) = 0 = v(T).

Case 2. T ∩ {a1, . . . , as} = {au, . . . , aw} with au ≤ · · · ≤ aw. Then, from
Shakhlevich et al. (1998), σ̂ T

k (k) = k, for iT ≤ k < a and σ̂ T
k = σ̂

{au,...,n}
k , for

k ≥ au. Hence, GT
k = 0 for iT ≤ k < au and GT

k = G
{au,...,n}
k for jT ≥ k ≥ au.

Therefore, v(T) = ∑jT
k=au

G
{au...,n}
k . Further,

∑

k∈N

r(k)∑

r=1

[
G

{ar ,...,n}
k − G

{ar+1,...,n}
k

]
u{ar ,...,k}(T)

=
jT∑

k=au

r(k)∑

r=u

[
G

{ar ,...,k}
k − G

{ar+1,...,n}
k

]
u{ar ,...,k}(T)

8.3 Sequencing Games 475

Table 8.2 Cost savings
achieved by job j in various
coalitions

1 2 3 4 5 6 7 8 9

GN
i 0 0 2500 0 1480 800 0 130 0

G
{2,...,9}
i 0 1300 0 720 800 0 0 0

G
{9}
i 0

=
jT∑

k=au

[(
G

{au,...,n}
k − G

{au+1,...,n}
k

)+ (
G

{au+1,...,n}
k − G

{au+2,...,n}
k

)

+ · · · + (
G

{ar(k)−1,...,n}
k − G

{ar(k),...,n}
k

)+ G
{ar(k),...,n}
k

]

=
jT∑

k=au

G
{au,...,n}
k

= v(T),

where the first equality follows from the fact that if either ar < au ≤ k, or
k > jT and ar ≤ k, then {ar , . . . , k} �⊂ T and hence u{ar ,...,k}(T) = 0. Also,
the second equality follows because if au ≤ ar ≤ ar(k) and ar ≤ k ≤ jT , then
{ar , . . . , k} ⊂ T and hence u{ar ,...,k}(T) = 1.

Let T ⊂ N . If T is unconnected, then v(T) = ∑
U∈T |σ0

v(U), and

∑

k∈N

r(k)∑

r=1

(G
{ar ,...,n}
k − G

{ar+1,...,n}
k)u{ar ,...,k}(T)

=
∑

U∈T |σ0

∑

k∈N

r(k)∑

r=1

(G
{ar ,...,n}
k − G

{ar+1,...,n}
k)u{ar ,...,k}(U),

since unanimity games are defined for connected coalitions.
(ii) The proof follows immediately from part (i) of the theorem, and the definition

of Shapley value.
��

Example 8.21 (Cost Savings and Shapley Value Calculations in a PFS Game)
Consider a PFS problem with M = {M1,M2,M3}, N = {1, . . . , 9}, p =
(20, 30, 10, 30, 10, 20, 30, 10, 40), and w = (200, 270, 80, 210, 69, 130, 180, 59,
200). The urgency index order is σ0 = (1, . . . , 9). The cost

∑
i∈M wiCi of a sched-

ule in urgency order is 224,020. An optimal schedule is (3, 5, 8, 1, 6, 2, 4, 7, 9),
with a cost of 219,110. Hence, v(N) = 224,020 − 219,110 = 4,910.

Observe that the new-max jobs are 1,2, and 9. In order to calculate the Shapley
value of this game, we first need to compute (a) GN

i , i ∈ N , (b) G
{2,...,9}
i , i ∈

{2, . . . , 9}, and (c) G{9}
9 . These values are shown in Table 8.2.

476 8 Cooperative Supply Chain Scheduling

Table 8.3 Calculation of Shapley values

Players 1 2 3 4 5 6 7 8 9

GN
3 − G

{2,...,9}
3 = 1200 400.00 400.00 400.00

GN
5 − G

{2,...,9}
5 = 760 152.00 152.00 152.00 152.00 152.00

GN
8 − G

{2,...,9}
8 = 130 16.25 16.25 16.25 16.25 16.25 16.25 16.25 16.25

G
{2,...,9}
3 − G

{9}
3 = 1300 650.00 650.00

G
{2,...,9}
5 − G

{9}
5 = 720 180.00 180.00 180.00 180.00

G
{2,...,9}
6 − G

{9}
6 = 800 160.00 160.00 160.00 160.00 160.00

Shapley value 568.25 1558.25 1558.25 508.25 508.25 176.25 16.25 16.25 0

Table 8.3 shows the calculation of the Shapley values, based on the result in
Theorem 8.18, part (ii). Each row in the table corresponds to a segment defined by
the new-max jobs.

Observe that
∑9

i=1 φi(v) = 568.25 + 1558.25 + 1558.25 + 508.25 + 508.25 +
176.25 + 16.25 + 16.25 + 0 = 4,910 = v(N), as required.

Remark 8.4 The Shapley value of a PFS game can be interpreted as follows. Player
i needs players ar(i), . . . , i − 1 to obtain some cost savings, which are divided
equally among those players and i. If a new segment is added to the left of this
group of jobs, then the extra cost savings are divided among the now larger group
ar(i)−1, . . . , ar(i), . . . , i − 1 of participating jobs, and this process repeats.

8.3.8 Openshops

Atay et al. (2019) study games defined over openshop scheduling problems with
unit processing times. In openshop scheduling problems, each job has to complete
a number of operations on designated machines; however, the sequence of those
operations is left to scheduling decisions. Let N = {1, . . . , n} denote the set of jobs,
and M = {1, . . . , m} the set of machines. Each operation of every job has a unit
processing time. Each job i has unit waiting cost. Given a schedule s, the completion
time of job i is Ci(s) = maxj∈M{Cj

i (s)}, where Cj
i (s) is the completion time of the

operation of job i on machine j in schedule s. For any schedule s and set of jobs
S ⊆ N , let cS = ∑

i∈S Ci(s). This work considers the problem of minimizing the
total completion time of jobs with unit processing times in an openshop environment
with m machines, or problem Om|pij = 1|∑Ci .

In studying this problem, it is important to distinguish an openshop scheme σ

from an openshop schedule s. A scheme specifies the sequence of operations on
every machine, i.e., σ j (i) = k specifies that the operation of job i is in position
k on machine j . A scheme does not specify the order of operations of any job.
However, a schedule specifies the start time of all operations on every machine.
Consequently, a schedule defines a unique scheme, but a scheme can be associated
with various schedules associated with different priority choices between sequences
of operations for the jobs.

8.3 Sequencing Games 477

Assume an arbitrary initial schedule s0, and let σ0 ∈ Σ denote the unique
scheme associated with it, where Σ is the set of all possible schemes. With each
job, we associate a player of a cooperative game (N, v). In this game, N is the
set of players, and the characteristic function v assigns a real number v(T) to each
coalition T ⊆ N , where v(∅) = 0. For any coalition ∅ �= T ⊆ N , we denote by
cT (s) = ∑

i∈T Ci(s) the cost of the coalition T in schedule s. Then, v(·) assigns
to every coalition the maximal cost savings it can achieve by means of admissible
schedules starting from s0. Thus,

v(T) = cT (s0) − cT (s
∗),

where s∗ minimizes cT (s) over all admissible schedules and their associated
schemes.

The definition of which schedules are admissible by a coalition T requires
particular specification for this game. The reason for this is that a standard sequenc-
ing game definition, for example, as used by Curiel et al. (1989) in Sect. 8.3.2,
which requires that rearrangement is possible within connected components of
T , is insufficient. The reasons for this are (a) a job outside T may be delayed,
and (b) resequencing may require active participation by players outside T . Atay
et al. (2019) give an example of both situations. Therefore, a stronger definition of
admissibility is needed. We specify that a schedule s with unique associated scheme
σ is admissible if, for a given coalition T ⊆ N ,

{k ∈ N | σ j (k) < σj (i)}
= {k ∈ N | σ j

0 (k) < σ
j

0 (i)}, i ∈ N \ T , j ∈ M, and (8.26)

Ci(s) ≤ Ci(s0), i ∈ N \ T . (8.27)

Condition (8.26) requires that switches are only possible between players within
connected coalitions, and condition (8.27) ensures that the completion times of play-
ers outside T are not increased. Examples show that this game is not superadditive
and hence not convex, nor is it σ -component additive. However, in order to establish
that a game is balanced, it is possible to consider a specific allocation of cost savings.
If such an allocation can be shown to be a core solution, then the game is balanced.

Atay et al. (2019) prove the following structural result.

Lemma 8.8 Given a unit time openshop scheduling problem with initial schedule
(N,M, s0), for any given machine j ∈ M , there exists an optimal schedule for N
which we denote by s∗j

N , such that:

(a) the unique scheme σ ∗ ∈ Σ associated with s
∗j
N satisfies σ ∗j = σ

j

0 , and
(b) machine j does not incur any idle time, i.e., the operations on machine j are

processed continuously.

478 8 Cooperative Supply Chain Scheduling

Part (a) of Lemma 8.8 specifies that, for any single machine (but not for all
machines simultaneously), it is possible to find an optimal schedule where the
associated scheme on that machine is the same as the initial scheme on that machine.
Let Ci(s

∗j
N) denote the completion time of the operation of job i on machine j in an

optimal schedule.
Now, define the machine j -based allocation μj (N,M, s0) ∈ R

N by:

μ
j
i (N,M, s0) = Ci(s0) − Ci(s

∗j
N), i ∈ N. (8.28)

The allocation in (8.28) is efficient, since

∑

i∈N
μ
j
i (N,M, s0) =

∑

i∈N
[wiCi(s0) − wiCi(s

∗j
N)] = v(N),

from the optimality of s
∗j
N . This allocation does not in general provide a core

allocation. However, it provides a path to one, which is found by averaging the
machine-based allocations, i.e.,

μ̄(N,M, s0) ≡ 1

m

∑

j∈M
μj (N,M, s0), i ∈ N. (8.29)

In order to analyze this possibility, Atay et al. (2019) prove the following
preliminary result.

Lemma 8.9 For all ∅ �= T ⊂ N ,

1

m

∑

j∈M
[Ci(s0) − �C

j
i (s

∗
T)

m
�m] ≥ Ci(so) − Ci(s

∗
T), (8.30)

where s∗
T is an optimal admissible schedule for coalition T .

The main result can now be stated.

Theorem 8.19 Let (N,M, s0) be a unit time openshop scheduling game with initial
schedule s0. Then, μ̄(N,M, s0) is a core allocation of the game.

Proof To show that μ̄(N,M, s0) is efficient, we have

μ̄(N,M, s0) =
∑

i∈N
μ̄i

=
∑

i∈N

1

m

∑

j∈M

[
Ci(s0) − Ci(s

∗j
N)

]

= 1

m

∑

j∈M

∑

i∈N

[
Ci(s0) − Ci(s

∗j
N)

]

8.3 Sequencing Games 479

= 1

m

∑

j∈M

[
cN(s0) − cN(s

∗j
N)

]

= 1

m
m
[
cN(s0) − cN(s

∗
N)
]

= v(N),

where the last equality follows from cN(s
∗j
N) = cN(s

∗j ′
N) = cN(s

∗
N), for j, j ′ ∈

M, j �= j ′.
It remains to prove that μ̄(T) ≥ v(T), for T ⊂ N . Let T |σ denote the set of all

maximally connected components of T under σ . We have

μ̄(T) =
∑

i∈T
μ̄i

=
∑

i∈T

1

m

∑

j∈M
μ
j
i

=
∑

i∈T

1

m

∑

j∈M

[
Ci(s0) − Ci(s

∗j
N)

]

=
∑

i∈T

1

m

∑

j∈M

[
Ci(s0) −

⌈σ
j

0 (i)

m

⌉
m
]

= 1

m

∑

j∈M

[∑

i∈T
Ci(s0) −

∑

i∈T

⌈σ
j

0 (i)

m

⌉
m
]

= 1

m

∑

j∈M

[∑

i∈T
Ci(s0) −

∑

T ′∈T |σj
0

∑

i∈T ′

⌈σ
j

0 (i)

m

⌉
m
]

≥ 1

m

∑

j∈M

[∑

i∈T
Ci(s0) −

∑

T ′∈T |σj
0

∑

i∈T ′

⌈C
j
i (s

∗
T)

m

⌉
m
]

= 1

m

∑

j∈M

[∑

i∈T
Ci(s0) −

∑

i∈T

⌈C
j
i (s

∗
T)

m

⌉
m
]

=
∑

i∈T

1

m

∑

j∈M

[
Ci(s0) −

⌈C
j
i (s

∗
T)

m

⌉
m
]

≥
∑

i∈T

[
Ci(s0) − Ci(s

∗
T)
]

= v(T).

480 8 Cooperative Supply Chain Scheduling

The fourth equality follows from Lemma 8.8 and from Adiri and Amit (1984),

which together imply Ci(s
∗j
N) = �σ

j
0 (i)

m
�m. The first inequality follows from

the definition of admissibility, under which players in T ′|σ j

0 can only switch
positions with other players in T ′. Then, if T ′ = {i1, . . . , iq} and σ ∗

T is the

unique optimal scheme associated with s∗, we have {σ j

0 (i1), . . . , σ
j

0 (iq)} =
{σ ∗j

0 (i1), . . . , σ
∗j
0 (iq)}. Moreover, for ik ∈ T ′, C

j
ik
(s∗

T) ≥ σ
j
T (ik), and hence

∑
i∈T ′ �σ

j
0 (i)

m
�m ≤ ∑

i∈T ′ �C
j
i (s

∗
T)

m
�m. The last inequality follows from Lemma 8.9.

��
Remark 8.5 The balancedness result in Theorem 8.19 still holds if the admissibility
condition is relaxed by continuing to require (8.27), but replacing (8.26) with the
following weaker condition

σ
j

0 (i) = σ j (i), i ∈ N \ T , j ∈ M, (8.31)

where σ is the unique scheme associated with s. This relaxation allows the players
in coalition T to jump over players outside T , provided that such a move does not
hurt those outside players.

8.3.9 Multi-Stage Sequencing Games

Consider a service process where multiple retailers place orders with a manufacturer
repeatedly over a number of periods. For example, each retailer places a weekly
order for a single job, where a job could represent a production run that needs to be
performed nonpreemptively, i.e., without interruption. Examples of this requirement
occur commonly in the chemical and fertilizer industries, where mixing of products
is potentially dangerous. The manufacturer allocates its capacity to the incoming
orders and completes their processing each week. However, the orders received
from a given retailer vary from week to week. Typically, based on their current
inventory level and anticipated sales to their customers, retailers may order more or
less in a particular week, and may also place a different priority on the urgency of
their orders. The possibility exists that the retailers may form coalitions to submit
combined orders which can then be processed more efficiently by the manufacturer,
thereby adding value to all participants. In this case, maintaining the stability of
such coalitions presents an interesting problem. Viewing the retailers from the
perspective of the manufacturer as customers, Curiel (2010) models this problem
as a multi-stage sequencing game.

In multi-stage sequencing games, as discussed further below, cost allocations
that are stable at each stage separately do not, in general, provide stable solutions
for the overall problem. This provides independent motivation for studying multi-
stage games. Curiel (2015) extends her earlier work to consider m-stage sequencing
situations with m ≥ 2, and games defined over them, with a focus on the design of
stable cost allocation rules.

8.3 Sequencing Games 481

Consider an m-stage sequencing situation with a set of customers N =
{1, . . . , n}. This sequencing situation is defined by (σ0, w

1, p1, . . . , wm, pm),
where wq ∈ R

n is a measure of cost or urgency for the jobs in period q, and
pq ∈ R

n is the processing time of the jobs in that period. Also, σ0 ∈ ΠN is an
initial sequence from the set of all possible permutations of N .

Let Pi(σ0) = {j | σ0(j) < σ0(i)} and Fi(σ0) = {j | σ0(j) > σ0(i)} denote
the set of predecessors and successors of i with respect to σ0, respectively. If job i

immediately precedes job j in stage q, then the change in cost (of unrestricted sign)
from interchanging them is

h
q
ij ≡ w

q
j p

q
i − w

q
i p

q
j , (8.32)

and we also define

g
q
ij = max{hqij , 0},

which is the potential cost saving from the interchange. The following discussion
recalls the use of gij in the EGS-rule in Sect. 8.3.2.

At each stage, the initial order of the jobs is the sequence inherited from the
previous stage. This raises the issue of how cost savings should be defined. If they
are defined relative to the sequence from the previous stage, this game is called a
short history m-stage sequencing game. Alternatively, if they are defined relative to
the initial sequence σ0, this game is called a long history m-stage sequencing game.
While Curiel (2015) studies both games, the analysis is similar, hence we focus on
the long history game. In the long history game, the value of a connected coalition
of customers T ⊆ N is given by

v(T) =
∑

i∈T

∑

k∈Pi(σ0)

(g1
ki + g2

ki + · · · + gmki).

Remark 8.6 For purposes of tiebreaking, we assume that, in the event of there being
multiple optimal sequences, the sequence that requires fewer job interchanges is
chosen.

Counterexamples show that aggregation of the EGS-rule and the one-stage
Shapley value do not yield stable solutions for the multi-stage game. The reason
is that, when player i evaluates the allocation that he receives in the long history
m-stage sequencing game when a rule f is used to allocate the cost savings in each
stage, he takes into account the implicit gain or loss he starts with at the beginning
of stage q compared to his starting position at the beginning of stage 1. It is shown in
Curiel (2010) that, even adjusting for implicit gains and losses, there does not exist a
single-stage allocation rule that, when aggregated, provides stable solutions for the
m-stage game. This provides a strong motivation for studying the m-stage game. To
achieve stable solutions in this game requires the design of a compensation rule, as
now defined.

482 8 Cooperative Supply Chain Scheduling

Definition 8.10 Consider the sequencing situation (σ0, w
q−1, pq−1, wq, pq). A

compensation rule is a function that assigns to the jobs a division of the implicit
gains and losses of the jobs created by the change from the starting sequence σ0 of
the first stage to the optimal order of stage (q − 1).

We consider a class of compensation rules that divide the implicit losses and
gains that occur when two jobs switch, between them. More specifically, the
challenge is to design a compensation rule that distributes the implicit losses and
gains that occur between two stages, along with a rule that distributes the cost
savings in the sequencing game at each stage, which together identify a core element
of the m-stage sequencing game.

Let 0 ≤ λ ≤ 1. We give λh
q
ij to i and (1 − λ)h

q
ij to j . Thus, we define a

compensation rule CRλ, for 0 ≤ λ ≤ 1, by

CRλi(σ0, w
q−1, pq−1, wq, pq)=

∑

j∈Fi(σ0)∩Pi(σ
q−1∗)

λh
q
ij+

∑

k∈Fi(σ0)∩Pi(σ
q−1∗)

(1−λ)h
q
ki,

where σq−1∗ is an optimal sequence at stage q−1, if necessary using the tiebreaking
rule described in Remark 8.6.

Consider a CRλ-compensation rule that is used together with the EGS-rule from
Sect. 8.3.2 to allocate the cost savings in an m-stage sequencing game. We denote
such a cost allocation rule by λEGS. Let σq∗ denote an optimal sequence for the
sequencing situation at stage q > 0, and σ 0∗ = σ0. We define, for i ∈ N ,

λEGSi(σ0, w
1, p1, . . . , wm, pm) =

m∑

q=1

EGSi(σ
q−1∗ , wq, pq)

+
m∑

q=2

CRλi(σ0, w
q−1, pq−1, wq, pq).

(8.33)

The main result now follows.

Theorem 8.20 Let (σ0, w
1, p1, . . . , wm, pm) be an m-stage sequencing situation

and let (N, v) be the corresponding long history m-stage sequencing game. Then,
λEGS(σ0, w

1, p1, . . . , wm, pm) is in the core of this game if λ = 1/2.

Proof Let λ = 1/2 and T ⊂ N . Then,

∑

i∈T
λEGSi(σ0, w

1, p1, . . . , wm, pm) =
∑

i∈T

[m∑

q=1

EGSi(σ
q−1∗ , wq, pq)

+
m∑

q=2

CRλi(σ0, w
q−1, pq−1, wq, pq)

]

8.3 Sequencing Games 483

=
∑

i∈T

[(m∑

q=1

∑

j∈Fi(σ
q−1∗)

g
q
ij +

∑

k∈Pi(σ
q−1∗)

g
q
ki

)

+
m∑

q=2

(∑

j∈Fi(σ0)∩Pi(σ
q−1∗)

h
q
ij

+
∑

k∈P(σ0)∩Fi(σ
q−1∗)

h
q
ki

)]
/2. (8.34)

Further,

v(T) =
∑

i∈T

∑

k∈Pi(σ0)∩T
(g1

ki + g2
ki + · · · + gmki). (8.35)

The result is established by showing that the contribution of any job to (8.34)
is at least as large as that job’s contribution to (8.35). Let i ∈ T . Consider the
contribution of a player k ∈ N \ {i} to (8.34) and (8.35). There are two cases. For
Case 1, suppose k �∈ T . Then k does not contribute to (8.35), and it only remains to
show that the contribution of k to (8.34) is nonnegative. We consider four subcases.

Case 1a. k ∈ Pi(σ0) ∩ Pi(σ
q−1∗): the contribution of k is gqki/2 ≥ 0 for 1 ≤ q ≤ m.

Case 1b. k ∈ Pi(σ0) ∩ Fi(σ
q−1∗): the contribution of k is (g

q
ik + h

q
ki)/2 ≥ 0 for

2 ≤ q ≤ m, and g1
ik/2 ≥ 0 for q = 1.

Case 1c. k ∈ Fi(σ0) ∩ Pi(σ
q−1∗): the contribution of k is (g

q
ki + h

q
ik)/2 ≥ 0 for

2 ≤ q ≤ m, and g1
ki/2 ≥ 0 for q = 1.

Case 1d. k ∈ Fi(σ0) ∩ Fi(σ
q−1∗): the contribution of k is gqik/2 ≥ 0 for 1 ≤ q ≤ m.

Summarizing Cases 1a through 1d, when k �∈ T , its contribution to (8.34) is greater
than or equal to its contribution to (8.35).

For Case 2, suppose k ∈ T , and consider the same four subcases.

Case 2a. The contribution of k to (8.35) is gqki , for 1 ≤ q ≤ m. The contribution of
k to (8.34) is also g

q
ki , where half comes from λEGSi(v) and half comes from

λEGSk(v).
Case 2b. The contribution of k to the sum in (8.35) equals gqki , for 1 ≤ q ≤ m. The

contribution of k to (8.34) is gqik + h
q
ki = g

q
ki .

Case 2c. The contribution of k to (8.35) is gqik , for 1 ≤ q ≤ m. The contribution of
k to (8.34) is gqki + h

q
ik = g

q
ik .

Case 2d. The contribution of k to (8.35) is gqik . The contribution of k to (8.34) is also
g
q
ik .

Summarizing Cases 2a through 2d, when k ∈ T , its contribution to (8.34) equals its
contribution to (8.35).

484 8 Cooperative Supply Chain Scheduling

Combining these results, we have

∑

i∈T
λEGSi(σ0, w

1, p1, . . . , wm, pm) ≥ v(T),

for T ⊂ N , and therefore λEGSi(σ0, w
1, p1, . . . , wm, pm) is in the core of the

m-stage sequencing game. ��
We provide an example of how the result in Theorem 8.20 can be used to find a

core solution for the m-stage game.

Example 8.22 (Coalition and Compensation Values and Core Allocations in a
Multi-Stage Game) Consider a game with m = 3 stages, where N = {1, 2, 3, 4}.
Let σq denote the sequence of the jobs in stage q, where σ 0 = (1, 2, 3, 4), which
is the starting sequence of stage 1. The processing time of job i in stage q is
1, for i ∈ N, 1 ≤ q ≤ m. The weights of the jobs are given by the vectors
w1 = (1, 2, 3, 4), w2 = (10, 5, 3, 12) and w3 = (7, 2, 4, 5). Now, σ 1 = (4, 3, 2, 1),
which is the ending sequence of stage 1 and the starting sequence of stage 2. Also,
σ 2 = (4, 1, 2, 3) is the ending sequence of stage 2 and the starting sequence of
stage 3. Finally, σ 3 = (1, 4, 3, 2) is the ending sequence of stage 3.

Table 8.4 shows the coalition values for all possible coalitions that have nonzero
value over the three stages.

We first compute the values EGSi(σ
q−1∗ , wq, pq), i ∈ N, q = 1, . . . , m

from (8.33). Note that, since we are considering the long history game, the positions
of the jobs in the sequence are evaluated relative to σ 0.

i = 1: In stage 1, job 1 swaps with jobs 2, 3, and 4, for a total gain of 1 + 2 + 3 = 6,
of which job 1 receives 6/2 = 3. In stage 2, job 1 swaps with jobs 2 and 3, for a
total gain of 5 + 7 = 12, of which job 1 receives 12/2 = 6. In stage 3, job 1 swaps
with job 4, for a total gain of 2, of which job 1 receives 2/2 = 1. The total gain of
job 1 is therefore 3 + 6 + 1 = 10.0.

i = 2: Similarly, job 2 has a gain of 2 in stage 1, 3.5 in stage 2, and 1 in stage 3, for
a total gain of 6.5.

i = 3: Similarly, job 3 has a gain of 2 in stage 1, 4.5 in stage 2, and 1 in stage 3, for
a total gain of 7.5.

i = 4: Similarly, job 4 has a gain of 3 in stage 1, 0 in stage 2, and 1 in stage 3, for a
total gain of 4.0.

Table 8.4 Coalition values in Example 8.22

Coalition S {1, 2} {1, 4} {2, 3} {3, 4} {1, 2, 3} {1, 2, 4} {1, 3, 4} {2, 3, 4} {1, 2, 3, 4}
v1(S) 1 0 1 1 4 1 1 4 10

v2(S) 5 0 2 0 14 5 0 2 14

v3(S) 0 2 2 0 2 2 2 2 4

v(S) 1 0 3 11 6 1 11 26 34

8.3 Sequencing Games 485

Table 8.5 Interstage
compensation values in
Example 8.22

Jobs i, j 1,2 1,3 1,4 2,3 2,4 3,4

h2
ij −5 −7 2 −2 −7 9

h3
ij −5 −3 −2 2 3 1

Observe that the total gain allocated is 10.0+6.5+7.5+4.0 = 28 < 34 = v(N).
Also, since v({2, 3, 4}) = 26 and v(N) = 34, the current allocation of 10.0 >

34−26 to job 1 is excessive. Hence, the current allocations need to be adjusted. This
is accomplished using the compensation rule CRλi(σ0, w

q−1, pq−1, wq, pq), i ∈
N, q = 2, 3.

Table 8.5 shows the pairwise swap compensation terms h
q
ij from (8.33) for all

pairs of jobs over stages 2 and 3.
We repeat the above process for each job in turn, using the data in Table 8.5, and

once again comparing the new sequence with σ 0.

i = 1: In stage 1, job 1 swaps with jobs 2, 3, and 4, for a total compensation
in stage 2 of −5 − 7 + 2 = −10, of which job 1 receives −10/2 = −5. In
stage 2, job 1 swaps with job 4, for a compensation of −2, of which job 1 receives
−2/2 = −1. The total compensation of job 1 is therefore −5 − 1 = −6.0.

i = 2: Similarly, job 2 has a compensation of 0 in stage 2, and 1.5 in stage 3, for a
total compensation of 1.5.

i = 3: Similarly, job 3 has compensation of 0 in stage 2, and 0.5 in stage 3, for a
total compensation of 0.5.

i = 4: Similarly, job 4 has a compensation of 9 in stage 2, and 1 in stage 3, for a
total compensation of 10.0.

It remains to compute the core allocations by combining, for each job, its gains
from swapping with other jobs and its interstage compensation values: job 1 : 10.0−
6.0 = 4.0; job 2: 6.5 + 1.5 = 8.0; job 3: 7.5 + 0.5 = 8.0; job 4: 4.0 + 10.0 = 14.0.
Then, the total allocation is 4.0 + 8.0 + 8.0 + 14.0 = 34.0 = v(N), as required
(see Table 8.4). It is easy to check that the value v(S) for each coalition S ⊂ N is
covered by this allocation, which is therefore a core solution.

Remark 8.7 Curiel (2015) shows that the condition λ = 1/2 in Theorem 8.20 is
not only sufficient but also necessary. Further, if m = 2, the λEGS allocation rule
possesses the stage-1 dummy property, the equivalence property, and the switch
property, and moreover is the unique rule that does so. See Sect. 8.3.2 for the
definitions of these properties.

8.3.10 Balancedness in Generalized Games

Several generalizations that are developed in classical scheduling theory have
also been studied in the context of sequencing games. These generalizations
include ready times (Hamers et al., 1995), due dates (Borm et al., 2002), and
precedence constraints between the jobs (Hamers et al., 2002). Sequencing games

486 8 Cooperative Supply Chain Scheduling

that correspond to multiple machine scheduling situations are studied by Van den
Nouweland et al. (1992), Hamers et al. (1999) and Calleja et al. (2002).

In the studies of sequencing games discussed in the preceding sections, the
important concept of balancedness is typically established either:

(a) By proving that the game is convex and then invoking the theorem of Bondareva
(1963) and Shapley (1967) (see Sects. 8.3.2 and 8.3.4)

(b) By reduction to a game that is known to be balanced, for example, a permutation
game (see Sect. 8.3.1.1) or a unanimity game that satisfies convexity conditions
(see Sect. 8.3.1.2)

(c) By showing that the game is σ0-component additive and then invoking the result
of Le Breton et al. (1992) (see Sects. 8.3.3, 8.3.6, and 8.3.7)

(d) By using the balancedness of a closely related game as a path to proving
balancedness (see Sect. 8.3.5)

We now discuss two practically important sequencing games where none of these
approaches can be applied. In these games, a particular solution is specified and
shown to be a core solution. This approach is also used in Sects. 8.3.8 and 8.3.9.
Both the games studied below use the concept of a marginal vector, defined below,
although it is applied in different ways in the two games.

8.3.10.1 Controllable Processing Times

Sequencing problems with controllable processing times for jobs are studied by, for
example, Vickson (1980), Alidaee and Ahmadian (1993), Wan et al. (2010), and
Oron (2014). Shabtay and Steiner (2007) provide a review of the literature on this
topic. These situations are motivated by the availability of various resources that, in
many environments, can be applied to expedite processing times. Using additional
resources in this way involves a tradeoff between time and cost.

van Velzen (2006) studies sequencing games that are derived from sequencing
situations of the type now described. A sequencing situation with controllable
processing times, or cp-situation, has a job set N = {1, . . . , n} waiting in front
of a server, in the initial sequence σ0 = (1, . . . , n). For i ∈ N , job i has a standard
processing time pi but it is possible to crash, i.e., expedite, this time by an amount
yi , where yi ≤ pi − p̄i and p̄i is a lower limit on processing time. Such limits
are in practice imposed by physical or logistical limitations on processing. Job i

also has a weight or urgency cost wi , and a crashing cost per unit of time βi . In
schedule σ0, all jobs are at their standard processing times, i.e., there is no crashing
and yi = 0, i ∈ N .

Let Ci(σ, y) denote the completion time of job i in a schedule σ that uses a vector
of crash times y. Then, the scheduling problem is

min
∑

i∈N,y∈R+

[
βiyi + wi

∑

j∈N | σ(j)≤σ(i)

(pj − yj)
]
.

A cp-situation is defined by the 6-tuple (N, σ0, w, β, p, p̄).

8.3 Sequencing Games 487

In order to define a cp-game corresponding to a cp-situation, we need to specify
rules for the admissibility of rescheduling by a coalition S ⊆ N . First, the chosen
crashing time of job i, yi , cannot change for i ∈ N\S. Second, 0 ≤ yi ≤ pi−p̄i , i ∈
S. Third, jumps over jobs in N \ S are not allowed. Let A (S) denote the set of
admissible schedules (σ, y) for S thus defined.

Corresponding to the cp-situation is the cp-game (N, v) defined by these rules,
where

v(S) =
∑

i∈S
Ci(σ0, 0) − min

(σ,y)∈A (S)

∑

i∈S
Ci(σ, y).

Hence, the value of any coalition is the maximum cost savings which it can obtain by
means of an admissible processing schedule, relative to the initial sequence without
crashing. van Velzen (2006) shows that general techniques for proving balancedness
cannot be applied to this game. By examples, it is shown that this game is not
convex, nor is it σ0-component additive. However, it is superadditive.

The following result simplifies the search for an optimal solution to the schedul-
ing problem.

Lemma 8.10 For any coalition S ⊆ N , there exists an optimal schedule where the
processing time of every job is either equal to its initial processing time pi , or to its
fully crashed processing time p̄i .

The analysis of this game requires the following definition.

Definition 8.11 The marginal vector mσ (v) ∈ R
N with respect to σ ∈ Π(N),

which is the set of all possible sequences, is defined as

mσ
i (v) = v(Pi(σ) ∪ {i}) − v(Pi(σ)),

where Pi(σ) = {j ∈ N | σ(j) < σ(i)} is the set of predecessors of job i ∈ N in
sequence σ .

A related concept that is also useful here is permutational convexity.

Definition 8.12 A cooperative game (N, v) is permutationally convex if there
exists a sequence σ that satisfies

v(Pi(σ) ∪ {i} ∪ T) − v(Pi(σ) ∪ {i}) ≤ v(Pj (σ) ∪ {j} ∪ T) − v(Pj (σ) ∪ {j}),

for i, j ∈ N, σ(i) < σ(j), where T ⊂ {h ∈ N | σ(h) > σ(j)} is the set of
successors of job j with respect to σ . In this case, σ is a permutationally convex
sequence.

Observe that permutational convexity is the analog of convexity (as defined in
Sect. 2.3.5) with respect to a given sequence σ . Hence, a game that is convex is
also permutationally convex with respect to any schedule σ , but the reverse is
not true. Permutational convexity of a sequence σ is a sufficient condition for

488 8 Cooperative Supply Chain Scheduling

the corresponding marginal vector mσ (v) ∈ R
n to be a core element (Granot &

Huberman, 1982). This enables the following result by van Velzen (2006).

Theorem 8.21 Let (N, σ0, w, β, p, p̄) be a cp-situation and let (N, v) be the
corresponding game. Let j ∈ {1, . . . , n}. Let σ : {1, . . . , n} → N be defined such
that

(i) σ(i) = n + 1 − i, 1 ≤ i < j ,
(ii) σ(i) = n + 2 − i, j < i ≤ n, and
(iii) σ(j) = 1.

Then, σ is a permutationally convex sequence, and mσ (v) is an element of the core
of the game.

This result shows that sequences where the jobs are in reverse order with respect
to σ0, but job 1 is scheduled in an arbitrary position, are permutationally convex.
Since the choice of j ∈ {1, . . . , n} is arbitrary in Theorem 8.21, this result identifies
potentially many marginal vectors that are elements of the core of the game.
Moreover, they are all close to each other and easy to compute, offering the players
access to multiple potentially agreeable solutions, which improves the chance that
they can find one which is acceptable to all of them.

8.3.10.2 Family Sequencing

Another important and practical generalization of sequencing games is family
sequencing games. In a family sequencing situation, a job does not need a setup
time when it follows another member of the same family, but it does require a family
setup time when it follows a member of another family. Numerous examples exist in
manufacturing processes where a change of engineering specification, product size,
or color, requires resetting of equipment when changing between the scheduling of
different job families on the same production line. There is a substantial literature
of scheduling with setup times. Bruno and Downey (1978) study the solvability
of scheduling problems with deadlines, setup times and changeover costs. Monma
and Potts (1989) analyze the performance of heuristics for scheduling problems
where jobs have sequence-dependent setup times. Potts and Kovalyov (2000) review
the literature of family scheduling problems. Allahverdi et al. (2008) review the
literature of scheduling problems with both sequence-dependent and sequence-
independent setups.

Consider a set of jobs N = {1, . . . , n}. Let F be the set of families, indicating
membership of the jobs within the families. The number of jobs in family k is
denoted by nk . A job in family k requires a setup time sk if it follows a job of
another family. All jobs of family k have the same processing time pk and the
same linear cost wkt , where t is the job completion time. A family sequencing
situation is denoted by (N, F, σ0, s, p,w). For this problem, Santos and Magazine
(1985) define an optimal sequencing rule that sequences the jobs of each family
contiguously, by nonincreasing order of nkwk/(sk + nkpk). Let Π(N) denote the
set of all possible sequences.

8.4 Scheduling Games 489

With respect to proving balancedness, family sequencing games turn out to be
even more challenging than sequencing games with controllable processing times.
Grundel et al. (2013) show by examples that family sequencing games are not
convex, nor are they σ0-component additive, nor are they even permutationally
convex. This leaves a proof of balancedness to a directly constructive approach, i.e.,
finding an allocation and showing that it belongs to the core of the family sequencing
game.

The main result now follows. We refer the reader to Grundel et al. (2013) for the
proof.

Theorem 8.22 Let (N, F, σ0, s, p,w) be a family sequencing situation, and (N, v)

be the corresponding family sequencing game. Then, the marginal vector mσ0(v) is
an element of the core of the game.

Interestingly, Theorem 8.22 shows that the initial order σ0 provides a marginal
vector that is an element of the core of the game. While this establishes that the core
of a family sequencing game is nonempty, it may not be practical in some situations,
since the first job in σ 0 receives no allocation. Indeed, it is easy to imagine situations
where this would lead to obstructive behavior by the first player.

Based on naturally occurring shop floor practice, it may be that the initial
sequence σ0 is family ordered, i.e., all jobs that belong to the same family are
processed consecutively. This assumption defines a special case of the family
sequencing situation and the corresponding family sequencing game. In this case,
the subgame defined by the exclusion of the last job in σ0 is convex. Moreover,
a simple characterization of a core solution from Shapley values is also possible,
as shown in the following result. Let job n be the job scheduled last in the initial
schedule σ0.

Theorem 8.23 The marginal vector for an arbitrary sequence σ ∈ Π(N) such that
σ(n) = n is in the core of the family ordered sequencing game.

This completes our discussion of sequencing games. The above discussion shows
that this literature has evolved strongly from the consideration of games defined
over simple classical scheduling problems, to include a variety of practical general-
izations. Besides the theoretical and practical value of these games themselves, the
variety of techniques and results that are now available within this topic provide a
useful and accessible introduction both to the literature of cooperative games and
also to the many supply chain scheduling applications we discuss in this book.

8.4 Scheduling Games

Sequencing games have an initial schedule, as discussed in Sect. 8.3. Our definition
of scheduling games, however, models situations where all players arrive simul-
taneously at a resource, and hence no initial schedule exists. This implies that an
alternative benchmark is needed to estimate the savings achieved by a coalition in

490 8 Cooperative Supply Chain Scheduling

order to define the characteristic function of the game. Further, in sequencing games,
the resequencing problem faced by a coalition typically includes an admissibility
requirement that only jobs which are contiguous in the initial sequence and within
the coalition can be resequenced. Without the presence of an initial sequence, this
restriction does not apply, and the coalition’s resequencing problem may therefore
be less constrained. Since costs tend to accumulate superlinearly in scheduling
problems as the number of jobs increases, the absence of an initial schedule in
scheduling games to provide a benchmark may result in there being no core solution.
This is one of the issues addressed in this section.

For situations where there is no initial order, a cooperative game can be modeled
using three different approaches. The first approach is to define an artificial initial
sequence to serve as a reference point for cost savings, under various possible
assumptions. Thus, Sect. 8.4.1 uses the assumption that a coalition’s jobs are
arranged at the end of the overall job set, but in an optimal sequence within the
coalition. Section 8.4.2 uses an alternative assumption of a probabilistic initial
sequence, where a coalition’s jobs are either all at the front or all at the back of
the overall job set, with known probability. A third approach is to ignore the need
for a reference point, and simply base the value of a coalition on its cost. This tends
to make games unbalanced. The game discussed in Sect. 8.4.3 illustrates this point,
and suggests how this issue can be resolved for a supply chain scheduling game
with supermodular costs. Finally, a methodology for combining the use of penalties
and subsidization in games without a core solution, in order to sustain cooperation
within the grand coalition, is studied in Sect. 8.4.4 for a scheduling game.

8.4.1 Artificial Initial Sequence: Tail Game

In a variety of practical situations, arriving jobs do not have an initial sequence.
For example, a set of orders that is downloaded daily from a website will typically
be treated as a single batch without an initial order. Similarly, arriving mail has no
initial order. Klijn and Sánchez (2006) discuss a business process where cars owned
by different customers are delivered overnight to a repair shop, and the time at
which they arrived is unknown for the purposes of scheduling them. More generally,
various administrative processes would not recognize an initial order over work
requests. For such applications, there may be a significant cost difference between
sequences, but due to the lack of an initial sequence to serve as a benchmark, it is
not clear how cost savings from the development of an efficient sequence should be
allocated. In order to do so, one possible approach is to define an artificial initial
sequence.

Let N = {1, . . . , n} denote a set of jobs. Each job j has a processing time pj

and a weight or urgency factor wj . The jobs need to be processed nonpreemptively
on a single machine. This uncertainty sequencing situation is denoted by a triple
(N, p,w). Klijn and Sánchez (2006) define two alternative artificial initial orders.
The first is a “tail” game, where each coalition assumes that its jobs are initially

8.4 Scheduling Games 491

consecutively sequenced, in the coalition’s optimal order, at the end of the jobs
of N . Thus, all jobs in N \ S initially appear at the front of σ0. The second
is a “pessimistic” game, where each coalition assumes that its jobs are initially
sequenced by an adversary who maximizes the coalition’s costs. The following
discussion focuses on the tail game, since it is simpler to analyze and the two
games provide similar intuition. Let Π(S) denote all possible admissible orders
for the jobs of coalition S ⊆ N . Let Pk(σS) = {j ∈ S | σS(j) < σS(k)} and
Fk(σS) = {j ∈ S | σS(j) > σS(k)}, i.e., the predecessors and successors of job k in
schedule σS , respectively.

Formally, the uncertainty tail scheduling game (N, ctail) is defined by the
characteristic function

ctail(S) = min
σS∈Π(S)

∑

k∈S
wkCk, S ⊆ N,

where the completion time of job k is Ck = ∑
i∈(N\S)∪Pk(σS)∪{k} pi , i.e., the

processing time includes: first, the jobs of N \ S; second, the predecessors of job k

within S; and finally, job k itself.

Example 8.23 (Calculation of Coalition Values in a Tail Scheduling Game) Con-
sider an instance of the game with N = {1, 2, 3}, p = (1, 2, 3) and w = (5, 4, 3).
Then, ctail({1}) = 5(1 + 2 + 3) = 30, ctail({2}) = 4(1 + 2 + 3) = 24,
ctail({3}) = 3(1 + 2 + 3) = 18; ctail({1, 2}) = 5(1 + 3) + 4(1 + 2 + 3) = 44,
ctail({1, 3}) = 5(1+2)+3(1+2+3) = 33, ctail({2, 3}) = 4(1+2)+3(1+2+3) =
30; ctail({1, 2, 3}) = 5(1) + 4(1 + 2) + 3(1 + 2 + 3) = 35.

The analysis of the tail game requires the following definition.

Definition 8.13 A cost game (N, c) is concave if, for all S ⊂ T ⊆ N \ {i},

c(T ∪ {i}) − c(T) ≤ c(S ∪ {i}) − c(S).

To interpret Definition 8.13, in a concave cost game, the marginal cost con-
tribution to a given coalition is smaller than its marginal cost contribution to a
smaller coalition. Intuitively then, it is always beneficial to group the players, in
this case represented by jobs, together. We study the concavity and balancedness of
the uncertainty tail cost game using the following result.

Theorem 8.24 The game (N, ctail) is balanced.

Proof From Smith (1956), there exists an optimal sequence in which the jobs are
ordered by nonincreasing value of wi/pi . Hence, there exist optimal sequences
σ ∗
S\{i} ∈ Π(S \ {i}) and σ ∗

S ∈ Π(S) such that, for k ∈ S \ {i},

Pk(σ
∗
S) =

{
Pk(σ

∗
S\{i}) ∪ {i}, if wi/pi > wk/pk

Pk(σ
∗
S\{i}), otherwise.

492 8 Cooperative Supply Chain Scheduling

Then, for any S ⊆ N where i ∈ S,

ctail(S) − ctail(S \ {i}) = wi(pi +
∑

h∈N\S
ph) +

∑

k∈S | wk/pk>wi/pi

(wipk − wkpi).

(8.36)
Observe that the first term in this expression is the cost of sequencing job i

immediately after all the jobs of N \ S, and the negative part of the second term
is the cost reduction from any adjacent pairwise interchanges with some job k that
move job i later. Now, let S ⊂ T ⊆ N . Then, for U = S, T , from (8.36),

ctail(U) − ctail(U \ {i}) = wi(pi +
∑

h∈N\U
ph) +

∑

k∈U | wk/pk>wi/pi

(wipk − wkpi).

Further, since S ⊂ T , we have
∑

h∈N\S ph ≥ ∑
h∈N\T ph and {k ∈ T | wk/pk >

wi/pi} ⊇ {k ∈ S | wk/pk > wi/pi}. Hence, for all S ⊂ T ⊆ N ,

ctail(S) − ctail(S \ {i}) ≥ ctail(T) − ctail(T \ {i}),

which from Definition 8.13 establishes that the cost game (N, ctail) is concave.
Therefore, from Bondareva (1963) and Shapley (1967), it is balanced. ��
Remark 8.8 Klijn and Sánchez (2006) prove that the core of the tail game is a
subset of the core of the pessimistic game, and therefore from Theorem 8.24 the
pessimistic game is also balanced. Also, for games with equal processing times, they
describe two efficiently computable allocation rules that are both core solutions of
both games.

The above analysis can be extended to provide an efficiently computable closed
form expression for the Shapley value in the tail scheduling game. Mishra and
Rangarajan (2007) provide a concise analysis for this problem, as follows. Let σ ∗
denote an optimal SWPT sequence of the jobs, i.e., w1/p1 ≥ · · · ≥ wn/pn. Let
Pi(σ

∗) = {j | wj/pj ≥ wi/pi} and Fi(σ
∗) = {j | wj/pj < wi/pi}, i ∈ N . Then,

they prove the following result for the Shapley value, φi(ctail), i ∈ N .

Theorem 8.25 φi(ctail) = wipi + (wi

∑
j∈Pi(σ

∗) pj + pi

∑
j∈Fi(σ

∗) wj)/2, i ∈
N .

We provide an example of the result in Theorem 8.25.

Example 8.24 (Shapley Value Calculations in a Tail Scheduling Game) Consider
the tail scheduling game in Example 8.23. First, observe that, from Smith (1956),
an optimal schedule is σ ∗ = (1, 2, 3), with an optimal cost of 5(1)+4(1+2)+3(1+
2 + 3) = 35.0. The predecessors and successors of each job in σ ∗ are as follows:
P1(σ

∗) = ∅, P2(σ
∗) = {1}, P3(σ

∗) = {1, 2}, F1(σ
∗) = {2, 3}, F2(σ

∗) = {3} and
F3(σ

∗) = ∅. Then, φ1(ctail) = 5(1) + [5(0) + 1(4 + 3)]/2 = 8.5, φ2(ctail) =
4(2)+ [4(1)+ 2(3)]/2 = 13.0, φ3(ctail) = 3(3)+ [3(1 + 2)+ 3(0)]/2 = 13.5, and∑3

i=1 φi(ctail) = 8.5+13.0+13.5 = 35.0, as required. It is easy to verify, from the

8.4 Scheduling Games 493

coalition values shown in Example 8.23, that these cost allocations are sufficiently
small that no coalition has an incentive to leave the grand coalition.

Remark 8.9 Mishra and Rangarajan (2007) define various axioms for the tail
scheduling game, and show that their Shapley value solution satisfies them.
Moreover, they show that any fair and reasonable cost sharing mechanism, under
their definitions, is equivalent to the Shapley value solution identified.

8.4.2 Artificial Initial Sequence: Probabilistic Game

The cooperative game described here combines features of both the capacity
allocation game of Hall and Liu (2010) which is discussed in Sect. 8.6, and the
scheduling game of Klijn and Sánchez (2006) discussed in Sect. 8.4.1. A set
of manufacturers orders capacity from a common supplier. Manufacturers may
coordinate their ordering decisions prior to scheduling decisions being made, in
which case there is no predetermined allocation of capacity to orders. Maniquet
(2003) studies a similar capacity allocation problem, but assumes unit processing
time of each order. He finds the Shapley value (Shapley, 1953) of the cooperative
game thus defined. Schulz and Uhan (2010), as discussed in Sect. 8.4.3, consider the
least core of a cooperate game defined over a similar capacity allocation problem
where each set of manufacturers expects its orders to be processed before all the
other orders.

Essentially, Klijn and Sánchez (2006) assume highly pessimistic manufacturers,
whereas Schulz and Uhan (2010) assume highly optimistic manufacturers. The
balancedness of the two resulting games is different: the game is balanced with
pessimistic manufacturers and unbalanced with optimistic manufacturers. Interest-
ingly, the Shapley values of the two games are the same (Maniquet, 2003; Mishra
& Rangarajan, 2007). The model discussed here is therefore proposed as a more
practical and reasonable alternative between these two extreme assumptions, where
each set of manufacturers has a probability that its orders are processed first and
last. Exact conditions for this cooperative game to be balanced are identified.

Hall and Liu (2016) consider a capacity allocation problem where a set of
manufacturers orders capacity from a common supplier. The capacity is time
sensitive and each capacity unit corresponds to a single time slot. The supplier
has available time slots over a limited time horizon. These time slots can be either
sufficient or insufficient to process all the manufacturers’ orders. Each processed
order generates a value and incurs a scheduling cost for its owner. An unprocessed
order has no value or cost for its owner. Order processing cannot be preempted.
The manufacturers place their orders for capacity simultaneously and no initial
sequence of their orders is known. We investigate how manufacturers can cooperate
in making their ordering decisions to receive higher profit. An important question is
how manufacturers can share the increased profit from cooperation.

494 8 Cooperative Supply Chain Scheduling

Let N = {1, . . . , n} denote a set of manufacturers. The supplier has a unit
available capacity per time slot over a time horizon 1, . . . , T . Each manufacturer
i has an order to place, with capacity requirement, i.e., order size pi , value vi
if processed, and scheduling cost wiCi if completed at time Ci , where wi is a
nonnegative weight or urgency measure. We assume that each order is profitable
even if it completes at time T , i.e., vi ≥ wiT , i ∈ N . Preemption of order processing
is not allowed. Let P denote the total capacity requirement of the n manufacturers,
i.e., P = ∑n

i=1 pi . Since a customer has no incentive to order any capacity at a
time slot later than P , the case with sufficient capacity can be modeled as T = P .
However, as in the classical scheduling literature, it is useful also to consider the
case of insufficient capacity, here defined by T < P .

Since we assume that an incomplete order has no value, it follows that every
order is either processed completely or not at all. Consider a manufacturer, or
equivalently an order, as a player. From the perspective of whether a core allocation
exists, assuming that each manufacturer has a single order is not restrictive, because
a manufacturer having multiple orders can be viewed as a coalition of multiple
manufacturers each having a single order. Let pS = ∑

i∈S pi denote the total
capacity required by coalition S.

We define a head-tail allocation (HTA) characteristic function v(S) for a capacity
allocation game (N, v), as follows:

v(S) = qA (S, RS,h) + (1 − q)A (S, RS,t), (8.37)

where RS,h is the set of time slots 1, . . . ,min{pS, T } in a head allocation allocated
with a head probability q, RS,t is the set of time slots P − pS + 1, . . . , T in a tail
allocation allocated with a tail probability 1 − q, and for k ∈ {h, t}, A (S, RS,k)

is the value of the jobs processed minus their scheduling cost, in a solution found
by an Algorithm A for coalition S using time slots in RS,k . For the purposes of the
definition in (8.37), Algorithm A need not be an optimal algorithm.

The head probability q is a measure of the degree of optimism of each coalition:
a more optimistic coalition would assume a higher value of the head probability.
The consideration of head and tail allocations, with total probability of 1, has a
useful economic interpretation: each firm incorporates best case (head allocation)
and worst-case (tail allocation) scenarios into its decision making. This approach
provides a convenient way for firms competing for time sensitive capacity to
rationalize their expectations when cooperating over their decisions. The head-tail
allocation generalizes the consideration of head-only and tail-only allocations in the
literature (Klijn & Sánchez, 2006; Maniquet, 2003; Mishra & Rangarajan, 2007;
Schulz & Uhan, 2010).

We first consider the capacity allocation game with sufficient capacity to process
all orders, i.e., T = P . Smith (1956) shows that the shortest weighted processing
time (SWPT) rule, where orders are sequenced by nondecreasing ratio of size to
weight, minimizes the total weighted completion time in single-machine processing.
Therefore, we assume that Algorithm A in the characteristic function (8.37) uses

8.4 Scheduling Games 495

the SWPT rule and thus is optimal. We show that under a reasonable condition on
q, the HTA value defines a convex game for the capacity allocation problem.

Theorem 8.26 For the capacity allocation game where the capacity is sufficient
and a job’s scheduling cost is a linear function of its completion time, the HTA
defines a convex and thus also balanced game if q ≤ 0.5. Moreover, the condition
q ≤ 0.5 is also necessary.

Proof Consider a player i and two coalitions S1 and S2, where S1 ⊂ S2 ⊆ N \ {i}.
Assume that orders are indexed by the SWPT rule, i.e., w1/p1 ≥ · · · ≥ wn/pn. Let
SA

1 = {j ∈ S1 | j > i}, and SA
2 = {j ∈ S2 | j > i}. Let SB

1 = S1 \ SA
1 and

SB
2 = S2 \ SA

2 . Let wS = ∑
i∈S wi be the total weight of orders in S ⊆ N . We have

[v(S2 ∪ {i}) − v(S2)] − [v(S1 ∪ {i}) − v(S1)]
= q(vi − wi(pSB2

+ pi) − wSA2
pi) + (1 − q)(vi − wi(P − pSA2

) + wSB2
pi)

−q(vi − wi(pSB1
+ pi) − wSA1

pi) − (1 − q)(vi − wi(P − pSA1
) + wSB1

pi)

= (1 − q)pi(wSB2
− wSB1

) − qwi(pSB2
− pSB1

) + (1 − q)wi(pSA2
− pSA1

)

−qpi(wSA2
− wSA1

)

≥ [pi(wSB2
− wSB1

) − wi(pSB2
− pSB1

) + wi(pSA2
− pSA1

) − pi(wSA2
− wSA1

)]/2

= [(piwSB2 \SB1 − wipSB2 \SB1) + (wipSA2 \SA1 − piwSA2 \SA1)]/2

≥ 0,

where the first inequality follows from the assumptions that q ≤ 0.5 and S1 ⊂ S2.
The second inequality follows from (a) pi/wi ≥ pj/wj for any j ∈ SB

2 \ SB
1 if j

exists, which implies pi/wi ≥ pSB2 \SB1 /wSB2 \SB1 , and (b) pi/wi ≤ pj/wj for any

j ∈ SA
2 \ SA

1 if j exists, which implies pi/wi ≤ pSA2 \SA1 /wSA2 \SA1 . Therefore, the
game is convex, and thus also balanced from Bondareva (1963) and Shapley (1967).

The condition q ≤ 0.5 is also necessary for balancedness. Consider an instance
with n = 3, p1 = p2 = p3 = 1, v1 = v2 = v3 = 3, and w1 = w2 = w3 = 1.
Let q = 0.5 + δ, where 0 < δ ≤ 0.5. Now, v(N) = 3, and a coalition of any two
orders has value 2 + 2δ. If we let (x1, x2, x3) denote a payoff vector in the core,
we must have x1 + x2 ≥ 2 + 2δ, x1 + x3 ≥ 2 + 2δ and x2 + x3 ≥ 2 + 2δ, i.e.,
x1 + x2 + x3 ≥ 3(2 + 2δ)/2 = 3 + 3δ > 3 = v(N), a contradiction. It follows that,
for any q > 0.5, there exists a game instance with an empty core, and thus the game
is unbalanced. ��

When capacity is insufficient, i.e., T < P , the condition q ≤ 0.5 does not
guarantee balancedness of the game. This is shown by the instance constructed
in the proof of Theorem 8.27 below, which shows the intractability of deciding
whether a given game instance has a nonempty core. We note that when T < P ,

496 8 Cooperative Supply Chain Scheduling

even computing the value of the grand coalition is binary NP-hard. However, this
result does not immediately imply intractability of the core emptiness test.

The following result is analogous to that in Theorem 8.46 discussed in Sect. 8.6.

Theorem 8.27 The problem of deciding whether an instance of the capacity
allocation game with T ≤ P has an empty core is binary NP-hard for any
0 < q ≤ 0.5, even when the weight of each job is 0.

Proof By reduction from the following problem.
Partition (Garey & Johnson, 1979): Given 2t elements with positive integer sizes

a1, . . . , a2t , where ai < A for i ∈ {1, . . . , 2t}, and
∑2t

i=1 ai = 2A, does there exist
a partition S1, S2 of the index set {1, . . . , 2t} such that

∑
i∈S1

ai = ∑
i∈S2

ai = A?
Given an instance of Partition, we construct an instance of the capacity allocation

game. Consider the following four cases.

Case 1: 0 < q < 1/3. Let K be the largest integer no greater than 1/q − 2. If
1/q − 2 = K , then let n = 2t + K , T = A, vi = pi = ai for i = 1, . . . , 2t − 1,
v2t = p2t = a2t +Kε, vi = pi = A− ε for i = 2t + 1, . . . , 2t +K , and wi = 0
for i = 1, . . . , 2t+K , where 0 < ε < 1/K is a constant. If 1/q−2 > K , then let
n = 2t+K+2, T = A, vi = pi = ai for i = 1, . . . , 2t−1, v2t = p2t = a2t+Kε,
v2t+1 = 0, p2t+1 = ε, v2t+2 = p2t+2 = ((1/q−2)−K)A−ε, vi = pi = A−ε

for i = 2t + 3, . . . , 2t + K + 2, and wi = 0 for i = 1, . . . , 2t + K + 2, where
0 < ε < min{1/K, ((1/q − 2) − K)A} is a constant.

Case 2: q = 1/3. Let n = 2t + 1, T = A, vi = pi = ai for i = 1, . . . , 2t − 1,
v2t = p2t = a2t + ε, v2t+1 = p2t+1 = A− ε, and wi = 0 for i = 1, . . . , 2t + 1,
where 0 < ε < 1 is a constant.

Case 3: 1/3 < q < 1/2. Let n = 2t + 2, T = A, vi = pi = ai for i = 1, . . . , 2t ,
v2t+1 = 0, p2t+1 = ε, v2t+2 = p2t+2 = (1/q − 2)A − ε, and wi = 0 for
i = 1, . . . , 2t + 2, where 0 < ε < 1 is a constant.

Case 4: q = 1/2. Let n = 2t , T = A, and for each order i, vi = pi = ai and
wi = 0.
For example, consider Case 4. We show that the capacity allocation game
instance has a nonempty core if and only if the instance of Partition has a solution.

(⇒) If the instance of Partition has a solution, then consider the payoff vector
(p1/2, . . . , pn/2). It is easy to check that the value of the grand coalition value is∑n

i=1 ai = A, which is equal to the total payoff. Also, no coalition S can generate a
value greater than the payoff pS/2 it receives from the payoff vector. Therefore, the
proposed payoff vector is a core allocation.
(⇐) If the instance of Partition has no solution, then the grand coalition generates a
value that is strictly less than A = P/2. However, each individual order can generate
a value pi/2 by itself, and thus the core is empty.

In each of the other three cases above, it is similarly straightforward to verify that
the instance of the capacity allocation game has a nonempty core if and only if the
instance of Partition has a solution. ��

8.4 Scheduling Games 497

The study of this cooperative game adds to the literature that addresses how, in
the absence of an initial solution, a benchmark solution for the evaluation of cost
savings in a sequencing game can reasonably be specified.

8.4.3 No Initial Sequence: Penalty

Supply chain scheduling games without an initial sequence against which gains can
be defined tend to be unbalanced, because cost accumulates more quickly as more
jobs are added to a coalition. It is intuitive that, in such a case, cooperation between
players may be difficult to sustain. This section considers the use of a penalty to
resolve this problem. Section 8.4.4 applies a combination of both a penalty and a
subsidy to the same issue.

We consider the problem of finding the minimum amount of penalty necessary
to penalize each coalition in order to achieve their cooperation. For this purpose, the
least core of a cooperate game (N, v) with players N = {1, . . . , n}, as also defined
in Sect. 8.2, is the set of cost allocations x ∈ R

n that solves the linear program

z∗ = min{z |
∑

i∈N
xi = v(N),

∑

i∈S
xi ≤ v(S) + z, for S ⊂ N, S �= ∅}. (8.38)

In (8.38), z∗ is known as the least core value. In a scheduling problem, the least
core value can be interpreted as the minimum penalty required to prevent any
coalition from leaving the grand coalition and opening its own machine. As defined
in Sect. 2.3.5, a cooperative game with supermodular costs is one that satisfies

v(S ∪ {j}) − v(S) ≤ v(S ∪ {j, k}) − v(S ∪ {k}),

for all j, k ∈ N, j �= k, S ⊆ N \ {j, k}.
For general cooperative games with supermodular costs, Schulz and Uhan (2010)

show that computing the least core value is a strongly NP-hard problem that cannot
even be approximated within a ratio of 17/16, unless P = NP (see Garey & Johnson,
1979).

However, they consider a particular scheduling game that has supermodular
costs. Let N denote a set of customers. Each customer i ∈ N has a single job i

with processing time pi > 0 and a weight or value wi that, in this context, describes
the urgency of the task. The jobs need to be scheduled nonpreemptively on a single
machine. The scheduling cost is defined as the weighted completion time of the jobs,
or
∑n

j=1 wjCj . No initial order is defined for the jobs, hence each job has the same
access to any position in the schedule. We assume that the jobs are indexed in their
globally optimal sequence defined by Smith (1956), i.e., w1/p1 ≥ · · · ≥ wn/pn.
This implies that v(S) = ∑

i∈S wi

∑i
j=1|j∈S pj , for S ⊆ N . The following result

shows that, for this game, it is easy to compute a cost allocation x1, . . . , xn that is
in the least core.

498 8 Cooperative Supply Chain Scheduling

Theorem 8.28 The cost allocation

xi = (wi

i∑

j=1

pj + pi

n∑

j=i

wj)/2, i = 1, . . . , n, (8.39)

is an element of the least core of the scheduling game (N, v).

Proof For any S ⊆ N , let x̄(S) = ∑
i∈S xi . Then, for any S ⊆ N , the cost allocation

(x1, . . . , xn) defined in (8.39) satisfies

2[x̄(S) − v(S)] =
∑

i∈S

i∑

j=1

wipj +
∑

i∈S

n∑

j=i

wjpi − 2
∑

i∈S

i∑

j=1|j∈S
wipj

=
∑

i∈S

i∑

j=1

wipj +
∑

i∈S

n∑

j=i

wjpi −
∑

i∈S

i∑

j=1|j∈S
wipj

−
∑

i∈S

n∑

j=i|j∈S
wjpi

=
∑

i∈S

i∑

j=1|j∈N\S
wipj +

∑

i∈S

n∑

j=i|j∈N\S
wjpi

=
∑

i∈S

i∑

j=1|j∈N\S
wipj +

∑

i∈N\S

i∑

j=1|j∈S
wipj

=
∑

i∈N

i∑

j=1

wipj −
∑

i∈S

i∑

j=1

wipj −
∑

i∈N\S

i∑

j=1

wipj

+
∑

i∈S

i∑

j=1|j∈N\S
wipj +

∑

i∈N\S

i∑

j=1|j∈S
wipj

=
∑

i∈N

i∑

j=1

wipj −
∑

i∈S

i∑

j=1|j∈S
wipj −

∑

i∈N\S

i∑

j=1|j∈N\S
wipj

= v(N) − v(S) − v(N \ S). (8.40)

Define z̄ = maxS⊂N,S �=∅{v(N)−v(S)−v(N\S)}/2. From (8.40), the solution (x̄, z̄)

is a feasible solution to the linear program (8.38). Let (x∗, z∗) be an optimal solution
to (8.38). Adding the inequalities x∗(S) ≤ v(S)+z∗ and x∗(N \S) ≤ v(N \S)+z∗
for S ⊂ N, S �= ∅ and from x∗(N) = v(N), we have

z∗ ≥ [v(N) − v(S) − v(N \ S)]/2, S ⊂ N, S �= ∅. (8.41)

8.4 Scheduling Games 499

It follows that z∗ ≥ z̄. Thus, the cost allocation x̄ is an element of the least core of
the scheduling game (N, v). ��

We provide the following example of the least core element defined in (8.39).

Example 8.25 (Least Core Calculations in a Supermodular Cost Scheduling Game)
N = {1, 2, 3, 4}, p = (5, 6, 7, 8), w = (4, 3, 2, 1). From Smith (1956), an optimal
sequence is (1, 2, 3, 4) with

∑4
j=1 wjCj = 4(5)+ 3(5 + 6)+ 2(5 + 6 + 7)+ 1(5 +

6 + 7 + 8) = 115.
The coalition values are: v({1}) = 20, v({2}) = 18, v({3}) = 14, v({4}) = 8;
v({1, 2}) = 53, v({1, 3}) = 44, v({1, 4}) = 33, v({2, 3}) = 44, v({2, 4}) =
32, v({3, 4}) = 29; and v({1, 2, 3}) = 89, v({1, 2, 4}) = 72, v({1, 3, 4}) =
64, v({2, 3, 4}) = 65.
From (8.39), the cost allocations are: job 1: (20 + 50)/2 = 35.0; job 2: (33 +
36)/2 = 34.5; job 3: (36 + 21)/2 = 28.5; and job 4: (26 + 8)/2 = 17.0, where
35.0 + 34.5 + 28.5 + 17.0 = 115.0, as required.
The least core value is: (x1 + x3) − v({1, 3}) = 63.5 − 44 = 19.5 = 51.5 − 32 =
(x2 + x4) − v({2, 4}). Intuitively, the coalitions {1, 3} and {2, 4} can be viewed as
those which are equally most likely to leave the grand coalition.

The cost allocations x1, . . . , xn also specify the Shapley values for the scheduling
game (Mishra and Rangarajan, as discussed in Sect. 8.4.1). However, the problem
of computing the least core value requires solution of the problem

z∗ = max
S⊂N,S �=∅

{v(N) − v(S) − v(N \ S)}/2, (8.42)

which is equivalent to the classical scheduling problem P2||∑wjCj , and hence is
at least binary NP-hard (Bruno et al., 1974).

8.4.4 No Initial Sequence: Penalty and Subsidy

This section, like the previous one, considers supply chain scheduling games
without an initial sequence, and as a result, without a core solution. For cooperative
game instances where there is no core solution, mechanisms can be developed
to sustain players’ cooperation within the grand coalition, and implemented by
a central planner. Two general methods are imposition of a penalty on players
who may leave the grand coalition (see Sect. 8.4.3), and provision of a subsidy
to those who remain. However, potentially problematic issues arise in the use of
either mechanism. In the case of penalties, players may believe that they are being
unfairly targeted and become dissatisfied. On the other hand, providing a subsidy
typically requires the use of resources from outside the game, which involves an
opportunity cost for the unavailability of those resources elsewhere. To investigate
the complex tradeoff between the use of these two mechanisms, Liu et al. (2018a)

500 8 Cooperative Supply Chain Scheduling

develop a “carrot-and-stick” approach to ensuring cooperation. This approach uses
a combination of a penalty and a subsidy. We introduce each mechanism in turn.

The problem of finding the minimum penalty z∗ ∈ R for leaving the grand
coalition, along with a cost allocation β∗ ∈ R

n, such that, for any coalition S ⊂ N ,
its assigned cost β∗(S) is not larger than its own cost as a separate coalition c(S)

plus the penalty z, can be written as the following linear program:

z∗ = min
β,z

{z | β(N) = c(N), β(S) ≤ c(S) + z, S ⊂ N, z ∈ R, β ∈ R
n}. (8.43)

The minimum penalty z∗ is the least core value, and the optimal solution β∗ is the
least core cost allocation.

In the discussion below, we use the following notation for cost allocations: β ∈
R
n, where β = (β1, . . . , βn), and β(s) = ∑

i∈s βi , for s ⊆ N . Also, β(i, z) is
defined as the value of βi given a penalty z ∈ R.

The other alternative for sustaining cooperation is subsidization. The problem
of finding the minimum subsidy ω∗ along with a cost allocation α∗ ∈ R

n that
satisfies the coalitional stability constraints can be formulated as the following linear
program:

ω∗ = min
α∈Rn

{c(N) − α(N) | α(s) ≤ c(s), for s ⊆ N}. (8.44)

The optimal solution α∗ is the optimal cost allocation. Here, ω∗ is nonnegative, and
it is strictly positive only if the scheduling game (N, c) is unbalanced.

The following definition helps to unify the above two mechanisms.

Definition 8.14 In a cooperative game (N, c), for any given penalty z ∈ R,
consider the following linear program with cost allocations β(s), s ⊂ N , as decision
variables:

ω(z) = min
β

{c(N) − β(N) | β(s) ≤ c(s) + z, for s ⊂ N, β ∈ R
n}. (8.45)

The optimal solution to this linear program, denoted by β(·, z), is a z-penalized
optimal cost allocation, and its optimal objective value ω(z) is the z-penalized
minimum subsidy. Also, ω(z) is the penalty-subsidy function.

This definition of the penalty-subsidy function allows exploration of various
combinations of penalty and subsidy. The requirement is that, under the combined
effect of a suitable combination of penalty z and subsidy ω(z), the Coalitional
Rationality constraints can be satisfied and cooperation of all members within the
grand coalition can be achieved. We present an example of how this can be achieved.

Example 8.26 (Penalty, Subsidy, and Cost Allocations in a Scheduling Game) Con-
sider a scheduling game defined over the classical scheduling problem 1||∑wjCj .
There are four players, N = {1, 2, 3, 4}. Each player k ∈ N has a job with
processing time pk and weight wk , where p1 = 5, p2 = 6, p3 = 7, p4 = 8;

8.4 Scheduling Games 501

Table 8.6 Penalty, subsidy, and cost allocations in Example 8.26

Penalty z 0.00 5.00 10.00 15.00 19.50

Subsidy ω(z) 55.00 35.00 20.00 9.00 0.00

β(1, z) 20.00 25.00 29.29 31.62 35.00

β(2, z) 18.00 23.00 28.00 31.45 34.50

β(3, z) 14.00 19.00 24.00 27.38 28.50

β(4, z) 8.00 13.00 13.71 15.55 17.00
∑4

i=1 β(i, z) + ω(z) 115.00 115.00 115.00 115.00 115.00

and w1 = 4, w2 = 3, w3 = 2, w4 = 1. Each coalition S ⊆ N minimizes its total
weighted completion time by processing its jobs on a single machine. From Smith
(1956), the optimal solution is σ ∗ = (1, 2, 3, 4) with cost 4(5) + 3(5 + 6) + 2(5 +
6 + 7) + 1(5 + 6 + 7 + 8) = 20 + 33 + 36 + 26 = 115.

The range of tradeoffs between penalty and subsidy is illustrated in Table 8.6. For
any given value of the penalty z, the corresponding column in the table represents a
vector of cost allocations β(1, z), . . . , β(4, z) to players 1 through 4, respectively.

The last row of Table 8.6 shows the total penalty plus subsidization, which in
each case equals the optimal total cost of 115. Observe that the last column of
Table 8.6 allows for no subsidy, hence the solution shown is found entirely from
the application of penalties.

The problem of computing, for a given penalty z, the z-penalized minimum
subsidy that ensures cooperation, is strongly NP-hard for general scheduling games
(Liu et al., 2018a). This result remains true even for some special case games where
the computation of the cost c(s) of a coalition s is polynomially solvable. For
scheduling games in general, Liu et al. (2018a) develop a cutting plane algorithm.
This algorithm starts with a restricted coalition set and finds a solution to a relaxed
problem with only a subset of constraints included. It then solves the separation
problem

δ = min
s⊂N

{c(s) + z −
∑

k∈s
β(k, z)}. (8.46)

If δ < 0, then the violated constraint is added to the coalition set. Otherwise,
information is obtained to update the search process for optimal z and β(·, z).

The computational bottleneck in this process is solving the separation prob-
lem (8.46), which in general cannot be performed efficiently. However, for some
scheduling games, efficient solution of the separation problem, and thus also of the
penalty-subsidy function, is possible.

One such game is now described. Consider a scheduling problem with a set
of jobs N = {1, . . . , n}, where each job has a processing time pi and needs to
be processed using one of m identical parallel machines, to minimize the total
completion time. From the perspective of a single player who controls all the jobs,
this is the classical scheduling problem Pm||∑Ci . Over this problem, we define

502 8 Cooperative Supply Chain Scheduling

a scheduling game (N, c), where each player i ∈ N is represented by a job. Each
coalition s ⊆ N chooses machines for processing its jobs to minimize the total
completion time of its jobs on the m machines.

It is well-known (Smith, 1956) that an optimal schedule for problem Pm||∑Ci

can be found by sorting the jobs such that p1 ≤ · · · ≤ pn, i.e., SPT order, and
scheduling them sequentially, in index order, on the first machine that becomes
available. If job i is scheduled on a machine as the j th to last job on a machine that
processes it, it contributes the amount jpi to the total completion time. This is the
“positional penalty” approach that is familiar from classical scheduling problems,
which describes the number of jobs that are delayed by the processing of job i.

Since positional penalties are being used to define costs, it is necessary to work
from the back of the schedule to the front. Therefore, we reindex the jobs such that
p1 ≥ · · · ≥ pn, i.e., LPT order, and schedule the lower indexed, i.e., longer, jobs
first. For each (i, u) with i ∈ {1, . . . , n} and u ∈ {0, 1, . . . , n}, we let f (i, u) denote
the minimum objective value of the separation problem for coalition s, given that
coalition s ⊆ {1, . . . , i} and |s| = u. These definitions enable the solution of the
separation problem using the following dynamic program.

Algorithm Separation

Preprocessing
Index the jobs such that p1 ≥ · · · ≥ pn.

Value Function
f (i, u) = the minimum objective value of a solution to the separation problem,

where s ⊆ {1, . . . , i} and |s| = u.

Boundary Conditions
f (1, 0) = z, f (1, 1) = p1 − β1 + z;
f (i, u) = +∞, if u > i, for i ∈ N .

Recurrence Relation For i ∈ {1, . . . , n}, u ∈ {0, . . . , n}:
f (i, u) =

{
f (i − 1, u),

f (i − 1, u − 1) + �u/m�pi − βi.
.

Optimal Solution
δ = min1≤u≤v−1{f (n, u)}.
In the recurrence relation, the first term applies when s∗ does not contain job i,

whereas in the second term it does so. If an optimal s∗ for f (i, u) contains player
i, it is optimal to process job i on machine [1 + (u − 1) mod m] as the �u/m�th
to last job, thus contributing �u/m�pi to the total completion time. The sign of δ
in the Optimal Solution step reveals the solution to the separation problem (8.46).
Algorithm Separation enables the following result.

Theorem 8.29 For the scheduling game (N, c), the separation problem can be
solved in O(n2) time.

8.5 Project Games 503

Proof Algorithm Separation enumerates all relevant coalitions and hence finds an
optimal one, s∗. Since i ≤ n and u ≤ n, and the recurrence relation uses O(1)
comparisons, the running time is O(n2). ��

Further, Liu et al. (2018a) show that the penalty-subsidy function has O(n4)

breakpoints. This result, and Theorem 8.29 enable the main result that follows.

Theorem 8.30 For the scheduling game (N, c), the penalty-subsidy function can
be computed in polynomial time.

Liu et al. (2018a) extend their methodology to find computationally efficient
solution methods for three more general cooperative scheduling games. These
games are based on the corresponding classical scheduling problems:

(i) The minimization of total completion time on unrelated parallel processors,
i.e., Rm||∑Ci ;

(ii) The minimization of total weighted completion time on identical parallel
processors, i.e., Pm||∑wiCi ; and

(iii) The minimization of total weighted completion time on unrelated parallel
processors, i.e., Rm||∑wiCi .

It is an interesting research challenge to understand the full range of problems for
which the methodology of Liu et al. (2018a) can be applied efficiently. See Sect. 8.8
for additional comments.

8.5 Project Games

In this section, we discuss two examples of supply chain scheduling games defined
on projects. We describe these games as project planning games and project
execution games, respectively. A formal definition of a project is a “temporary
business endeavor undertaken to create a unique product or service” (Project
Management Institute, 2021). More operationally, a project is defined as a business
activity composed of several discrete tasks or activities that can be scheduled
independently, but may have some precedence relations between them. It is difficult
to overestimate the importance of project management as a business process. The
global economic value of projects is approximately $27 trillion, representing about
30% of the world’s economic activity (Hu et al., 2015). Background about project
management is provided by Klastorin (2012) and Kerzner (2013). Hall (2016)
provides an overview of research and teaching opportunities in project management.
A major component of successful project management in practice, and also a major
focus of research on project management, is the scheduling of the individual tasks,
i.e., project scheduling. Efficient project scheduling is needed to ensure timely
delivery of the product or service being created, although in practice many projects
are delivered late (The Standish Group, 2020).

504 8 Cooperative Supply Chain Scheduling

In practice, projects are rarely centralized operations. Even within a single
organization, various resources and departments contribute to the project at different
times and under constraints related to their other operations. More generally,
external resources are needed to complete the project. In both cases, cooperation
is needed to ensure complete and timely contributions to support the project, which
motivates the topics discussed in this section. We study two different perspectives
on cooperative game theory for project scheduling.

One cooperative game perspective, discussed in Sect. 8.5.1, studies projects at
the planning stage and associates players not with tasks but with external resource-
holding companies. Either individually or within coalitions, those companies can
provide resources to the project, but require sufficient compensation for doing so.
In this context, within the class of balanced games are two classes of games with
useful properties, 1-convex games and big boss games. In these games, the realized
details of project execution are not used to evaluate the various solutions obtained.
We describe such games as project planning games.

A second cooperative game perspective, discussed in Sect. 8.5.2, studies projects
that are already executed. This approach views the tasks of a completed project
as players who need to share the rewards of early project completion or the costs
of project delay. Those rewards or costs are typically defined in contracts with a
project client. Then, they should be shared with the players whose performance was
responsible for the successful or unsuccessful outcome of the project. We describe
such games as project execution games. In the event that a project is early, or
expedited, a reward from the project owner is used to define a project execution
reward game. When a project is late, which incurs a penalty cost from a contract
with the project owner, that cost is used to define a project execution cost game. The
work discussed below focuses mainly on the stability of coalitions as defined by the
core of the game, although alternative approaches that are more axiomatic are also
discussed.

8.5.1 Project Planning Games

Curiel (2011) studies situations where a central project company relies on work
that is outsourced from external subcontractors to complete a project for a client
efficiently. The external companies can cooperate in order to decrease the makespan,
or earliest completion time (ECT), of a project that consists of several tasks.
However, they require sufficient compensation to do so. For this purpose, the
earliest completion times of individual tasks are equivalent to the early finish times
computed under the critical path method (Kelley Jr and Walker, 1959), and are the
actual completion times if no task delays or expeditions occur. Since the stochastic
performance of the project under actual execution is not modeled here, this analysis
can be considered as ex-ante, or occurring at the planning stage of the project. The
external companies own resources that can expedite the performance of tasks, and
thereby expedite the project.

8.5 Project Games 505

There is a project owner who wants the project to be completed as soon as
possible. Indeed, the project owner is willing to pay more for an earlier completion
time. The total payment must be allocated among the companies that cooperate to
provide their resources. From a cooperative game perspective, the players are the
external companies which can provide resources to the project and hence expedite it.
Each company must be sure that its own payment, or reward allocation, is sufficient
to induce it to cooperate. Since the core of a cooperative game can contain many,
even infinitely many, solutions, it is also valuable to study single-point solution
concepts in this game, including the τ -value, nucleolus and Shapley value.

The earliest completion time of the whole project is the length of the longest
path, or makespan. The client compares all the earliest completion times and assigns
the project to the company, or coalition of companies, that offers the best one.
Companies may decide to work together in coalitions. Companies that decide to
work together can combine their resources to create greater reductions and therefore
reach a more favorable earliest completion time with a resulting greater payoff from
the client that can be shared agreeably among them.

Consider a typical project that is defined using the activity-on-arcs format
(Kerzner, 2013; Klastorin, 2012). Let V denote the vertices of a network G that
represents the project. An arc set A = {A1, . . . , Am} represents the activities of the
project. Let N = {1, . . . , n} denote a set of external resource-owning companies
that compete to support the project, but need to be compensated for doing so. The
nominal duration of activity Aj , where none of the external companies support it
and reduce its duration, is denoted as D(Aj). If no external companies participate,
the project makespan is calculated from the activity durations D(A1), . . . ,D(Am).

However, each external company i ∈ N can provide a vector of potential activity
time reductions riA1

, . . . , riAm
. The choice to do so is binary; either the external

company participates and provides its available resources in full, or it does not
participate. The reduction vector of a coalition S ⊆ N of external companies is
denoted as rS = (rSA1

, . . . , rSAm
), where rSAk

= ∑
i∈S riAk

. As in every practical
project, however, each activity Aj has a minimum achievable duration, denoted as
L(Aj). This minimum value is typically defined by physical or logistical limitations
of the activity. Thus, the duration function d(Aj) of activity Aj , if a set S ⊆ N of
external companies participates, is given by

d(Aj) = max{D(Aj) −
∑

i∈S
riAj

, L(Aj)}.

Let M denote the maximum amount that the project owner would be willing to
pay for a project completed at time 0. The cost of participation for company i is
ci, i ∈ N , which needs to be compensated by the client’s payoff function P(t) =
M − pt , where t is the project duration achieved by using the external companies’
resources, and p is an incentive per unit time. The total cost of participation by a
coalition S ⊆ N is cS ≡ ∑

i∈S ci .
A project management situation is defined by A,N , the network structure, the

duration functions, and the value of p. The corresponding cooperative project

506 8 Cooperative Supply Chain Scheduling

planning game (N, v) is defined by N and the value of each coalition. Let ECTi
denote the earliest completion time that an individual external company can offer
to the project company by sharing its resources. Observe that a coalition S only has
value if the earliest completion time which it bids to the project company, denoted
by ECTS , is at least as good as what the remaining external companies could bid.
Thus, for all coalitions S ⊂ N , the value of coalition S is given by

v(S) =
{
M − p · ECTS − cS, if ECTS ≤ ECTN\S
0, otherwise.

(8.47)

In (8.47), the first two terms represent the amount which the project owner is
willing to pay for a project with delivery date ECTS and the last term is the cost of
coalition S for participating in the project.

Assume that the resources of every external company, if hired alone, would
generate the same critical path in the project, although with various durations. This
assumption is typical of a situation where the external resources being provided
are fairly standard and therefore induce similar, although not in general identical,
reductions in duration regardless of which company provides them. Given this
assumption, Curiel (2011) provides conditions under which this implies that the
combined effect of using the resources provided by every possible coalition results
in the same critical path, once again with various durations. We denote this critical
path by CP .

In the following result, Curiel (2011) proves necessary and sufficient conditions
for balancedness.

Theorem 8.31 Consider a project management situation given by the sets A,N ,
the precedence graph G, the reduction vectors {ri, i ∈ N}, the duration functions
dA(r) = max{D(Ai) − r,mA} for all A ∈ A , and the payoff function P(t) =
M −pt , where every coalition S ⊂ N has the same unique critical path denoted by
CP. Further, assume:

(i) D(Ai) − rNAi
≥ LAi

, i = 1, . . . , A|A |, and
(ii) ECTN\{i} ≤ ECT{i}, i ∈ N .

Then, the core of the game is nonempty if and only if

M
∑

A∈CP DA

≤ p.

In Theorem 8.31, Condition (i) means that the combined reduction in duration of
all the companies working together could not achieve a duration that is smaller than
the minimum duration mA of any activity A. Condition (ii) means that no single
company dominates, i.e., provides a makespan reduction that is smaller than that
provided by all the other companies combined. The result in the theorem can be
explained intuitively, as follows. If the penalty for later completion, or equivalently
the saving for earlier completion, is sufficiently large, then this provides sufficient

8.5 Project Games 507

incentives for the players to cooperate and maintain stability of the grand coalition.
Condition (ii) is modified below in order to study a relevant class of games.

The remainder of the discussion of project planning games studies two special
cases of such games that have useful properties. First, Driessen and Tijs (1985)
introduce the class of 1-convex cooperative games, for which the following defini-
tion provides some background.

Definition 8.15 An n-person game is called 1-convex if its core (when the core
is non-singular) is a regular simplex with n vertices which is obtained from the
marginal value vector (as discussed below) by decreasing only one coordinate to
obtain an efficient vector.

A useful property of this class of games is that reduction to a 1-convex game enables
the application of several known properties, as shown below. These games require
the following definitions. First, recall the definition of a marginal value vector
from (8.3), which we write here as Mv

i = v(N)− v(N \ {i}), i ∈ N . For a coalition
S ⊆ N , let Mv(S) = ∑

i∈S Mv
i .

Definition 8.16 Recall from (8.4) that the gap function of the game (N, v) is

gv(S) =
∑

i∈S
Mv

i − v(S), S ∈ 2N.

Then, the game is called 1-convex if

0 ≤ gv(N) ≤ gv(S), ∅ �= S ⊂ N.

Theorem 8.32 Let (N, v) be a project planning game that satisfies the conditions
of Theorem 8.31. Then (N, v) is a 1-convex game.

Proof The marginal value vector Mv of (N, v) is given by

Mv
i = v(N) − v(N \ {i}) = p

∑

A∈CP

riA − ci, i ∈ N.

For the gap function gv ,

gv(S) = Mv(S) − v(S) =
{

−M + p
∑

A∈CP DA, if v(S) > 0

p
∑

A∈CP rSA − cS, otherwise.
(8.48)

In the first row of (8.48), we have Mv(S) − v(S) = p
∑

A∈CP rSA − cS − (M − p ·
ECTS − cS), which yields the expression shown. In the second row of (8.48), the
result follows immediately by setting v(S) = 0.

Since the game (N, v) is balanced, we have gv(N) ≥ 0. Let S ⊂ N . If v(S) > 0,
then gv(N) = gv(S). Alternatively, if v(S) = 0, then

508 8 Cooperative Supply Chain Scheduling

0 ≤ M − p · ECTS − cS = M − p
∑

A∈CP

(DA − rSA) − cS

⇒ −M + p
∑

A∈CP

DA ≤ p
∑

A∈CP

rSA − cS

⇒ gv(N) ≤ gv(S).

Therefore, 0 ≤ gv(N) ≤ gv(S) for all S ⊂ N , and hence the game (N, v) is 1-
convex. ��

Theorem 8.32 enables the use of a previously known result to establish the τ -
value of this game. Driessen and Tijs (1985) show that, for all 1-convex games, the
τ -value and nucleolus coincide, and are given by

τi(v) = νi(v) = Mv
i − gv(N)/n, i ∈ N. (8.49)

This result can be applied to find closed form solutions for the τ -value and nucleolus
of the game (N, v), as shown by the following result.

Theorem 8.33 For a project planning game (N, v) that satisfies the conditions of
Theorem 8.31,

τi(v) = νi(v) = 1

n
[M − p · ECTN + (n − 1)p

∑

A∈CP

riA − p
∑

A∈CP

r
N\{i}
A] − ci .

Proof From (8.49), we have, for i ∈ N ,

τi(v) = νi(v) = p
∑

A∈CP

riA − ci − (−M + p
∑

A∈CP

DA)/n

= 1

n
[M − p

∑

A∈CP

(DA − rNA) − p
∑

A∈CP

rNA + np
∑

A∈CP

riA] − ci

= 1

n
[M − p · ECTN + (n − 1)p

∑

A∈CP

riA − p
∑

A∈CP

r
N\{i}
A] − ci .

��
Remark 8.10 In the 1-convex game (N, v), the τ -value and nucleolus can be found
by dividing the payoff to the grand coalition equally, and then making adjustments
that depend on the company’s contribution to the value of the grand coalition.
This can be accomplished without computing the coalition values. The contribution
of company i to the value of the grand coalition from the reduction in project
completion time if it participates is p

∑
A∈CP riA, and company i receives a fraction

(n − 1)/n of it. The total contribution of the other companies to the payoff is

8.5 Project Games 509

p
∑

A∈CP r
N\{i}
A , and company i has to pay a fraction 1/n of it. Also, each company

is responsible for its own costs.

We provide an example of the result in Theorem 8.33.

Example 8.27 (τ -Value and Nucleolus Calculations in a 1-Convex Project Planning
Game) Let N = {1, 2, 3}, A = {A,B,C,D,E}, M = 1200, and p = 10. The
costs are ci = 20, i ∈ N . The precedence constraints, reduction vectors riAk

of the
companies, and the duration functions of the activities are shown in Table 8.7.

For this example, Table 8.8 shows the earliest completion times, the values of the
coalitions, the values of the upper vector mv(S), and the values of the gap function
gv(S). If all three companies participate in crashing the project, we have dA(8 +
6 + 12) = 50 − 26 = 24 > mA = 5, dB(12 + 9 + 20) = 45 − 41 = 4 = mB ,
dC(3+3+5) = 30−11 = 19 > mC = 2, dD(2+5+18) = 30−25 = 5 > mD = 2,
and dE(5 + 6 + 10) = 50 − 21 = 29 > mE = 10. Then, the critical path length is
max{dA+dC+dE, dB+dD+dE} = max{24+19+29, 4+5+29} = max{72, 38} =
72, and the critical path is (A,C,E).

Finally, Table 8.9 shows the calculations for the equal distribution of the payoff
to the members of the grand coalition, followed by the adjustments described in
Remark 8.10. Observe that the τ and nucleolus values in the last row are found by
adding all the entries in the column.

Observe that the total allocation is (320 + 290 + 650)/3 = 420 = M − p ·
ECTN −∑

i∈N ci , as required.

Table 8.7 Data of Example 8.27

Activity A B C D E

Predecessors A B C, D

Company 1 8 12 3 2 5

Company 2 6 9 3 5 6

Company 3 12 20 5 18 10

dAk
(r) max{50 − r, 5} max{45 − r, 4} max{30 − r, 2} max{30 − r, 2} max{50 − r, 10}

Table 8.8 Preliminary
calculations in Example 8.27

S {1} {2} {3} {1, 2} {1, 3} {2, 3} {1, 2, 3}
ECTS 114 115 103 99 87 88 72

v(S) 0 0 0 170 290 280 420

Mv(S) 140 130 250 270 390 380 520

gv(S) 140 130 250 100 100 100 100

Table 8.9 Solutions in
Example 8.27

i 1 2 3

(M − pECTN)/3 160 160 160

2p
∑

A∈CP riA/3 320/3 100 180

−p
∑

A∈CP r
N\{i}
A /3 −140 −430/3 −310/3

−ci −20 −20 −20

τi(v) = νi(v) 320/3 290/3 650/3

510 8 Cooperative Supply Chain Scheduling

Besides 1-convex games, the class of balanced project planning games includes
another interesting subclass. Muto et al. [1988] introduce big boss games, as
follows.

Definition 8.17 A game (N, v) is a big boss game if there exists a single player
i∗ ∈ N such that

(i) v(S) = 0, if i∗ �∈ S.
(ii) v(N) − v(S) ≥ ∑

i∈N\S[v(N) − v(N \ {i})], if i∗ ∈ S.

In this case, player i∗ is the big boss.

Intuitively in a big boss game one player, who is here denoted by i∗, dominates.
A coalition that does not include i∗ has no value, as in Condition (i). Moreover, the
loss of value from the grand coalition if i∗ leaves is greater than the total loss if all
the other players leave, as in Condition (ii). However, by working together, the other
players can benefit from working with the big boss. Clearly, there cannot exist more
than one big boss in a game.

Theorem 8.34 Consider a project planning game (N, v) that satisfies the condi-
tions of Theorem 8.31 except ECTN\{i} ≤ ECTi, i ∈ N . Then, (N, v) is a big boss
game, where player i∗ is the big boss.

Proof Let i∗ be such that ECTi∗ < ECTN\{i}. There are two cases.

Case 1. Let S ⊂ N \ {i∗}. Then,

ECTS =
∑

A∈CP

(DA − rSA)

≥
∑

A∈CP

(DA − r
N\{i∗}
A)

>
∑

A∈CP

(DA − ri
∗
A)

≥
∑

A∈CP

(DA − r
N\S
A)

= ECTN\S.

The first inequality follows from S ⊂ N \ {i∗}, and riAj
≥ 0, i ∈ N, j =

1, . . . , m. The second inequality follows from the excepted condition in the
theorem statement. The third inequality follows from i∗ ∈ N \ S, and riAj

≥
0, i ∈ N, j = 1, . . . , m. Since coalition N \ S provides a smaller completion
time than coalition S, we have v(S) = 0, i.e., Condition (i).

8.5 Project Games 511

Case 2. Consider a coalition S with i∗ ∈ S. Then,

v(N) − v(S) = p(ECTS − ECTN) − cN\S

= p
∑

A∈CP

r
N\S
A − cN\S

=
∑

i∈N\S
[v(N) − v(N \ {i})].

��
Theorem 8.35 Let (N, v) be a project planning game that satisfies the conditions
of Theorem 8.34, and is therefore a big boss game, where player i∗ is the big boss.
Then,

τi∗(v) = νi∗(v) = φi∗(v) = M − p
∑

A∈CP

DA

+p
∑

A∈CP

(rNA + ri∗A)/2 − (cN + ci∗)/2, and

τi(v) = νi(v) = φi(v) = (p
∑

A∈CP

riA − ci)/2, i ∈ N \ {i∗}.

Proof From Muto et al. (1988) and Theorem 8.34 the game is convex, and τ(v) =
ν(v) = φ(v). Hence, it is sufficient to show the result for τ(v). From Driessen and
Tijs (1985), the τ -value for a convex game (N, v) is given by

λ(v(1), . . . , v(n)) + (1 − λ)(Mv
1 , . . . ,M

v
n),

where the value of λ is uniquely determined by the Efficiency property∑
i∈N τi(v) = v(N), and (Mv

1 , . . . ,M
v
n) is the marginal value vector. Now, since

(N, v) is a convex big boss game, v(i) = 0 for i ∈ N \ i∗, and Mv
i∗ = v(N). Hence,

∑

i∈N
τi(v) = λv({i∗}) + (1 − λ)[

∑

i∈N\{i∗}
Mv

i + v(N)] = v(N)

⇔ λv({i∗}) + (1 − λ)
∑

i∈N\{i∗}
Mv

i − λv(N) = 0

⇔ λ =
∑

i∈N\{i∗} Mv
i

v(N) − v({i∗}) +∑
i∈N\{i∗} Mv

i

= 1/2,

where the last equality follows from

v(N) − v({i∗}) = p
∑

A∈CP

r
N\{i∗}
A − cN\{i∗} =

∑

i∈N\{i∗}
Mv

i .

512 8 Cooperative Supply Chain Scheduling

It follows that

τi∗(v) = [v({i∗}) + v(N)]/2

= [
M − p

∑

A∈CP

(DA − ri
∗
A) − ci∗ + M − p

∑

A∈CP

(DA − rNA) − cN
]
/2

= M − p
∑

A∈CP

DA + p
∑

A∈CP

(rNA + ri
∗
A)/2 − (cN + ci∗)/2.

Finally, for i ∈ N \ {i∗}, we have

τi(v) = Mv
i /2 = p(

∑

A∈CP

riA − ci)/2.

��
We present an example of the payment calculations in a big boss project planning

game.

Example 8.28 (τ -Value, Nucleolus, and Shapley Value Calculations in a Big Boss
Project Planning Game) Let N = {1, 2, 3}, A = {A,B,C,D,E}, M = 1200,
and p = 10. The precedence constraints, reduction vectors of the companies, and
the duration functions of the activities are shown in Table 8.10. The costs are ci =
20, i ∈ N .

For this example, Table 8.11 shows the earliest completion times, the values of
the coalitions, the values of the upper vector, and the values of the gap function.
Observe that this is a big boss game, where player 3 is the big boss. If all three
companies participate in crashing the project, we have dA(8 + 6 + 22) = 50 − 36 =
14 > mA = 5, dB(12 + 9 + 20) = 45 − 41 = 4 = mB , dC(3 + 3 + 18) =
30 − 24 = 6 > mC = 2, dD(2 + 5 + 18) = 30 − 25 = 5 > mD = 2, and
dE(5 + 6 + 24) = 50 − 35 = 15 > mE = 10. Then, the critical path length is
max{dA+dC+dE, dB+dD+dE} = max{14+6+15, 4+5+15} = max{35, 24} =
35, and the critical path is (A,C,E).

Since this is a big boss game, the Shapley value, τ -value and nucleolus all assign
to the big boss, company 3, the amount [v(N)+v({3})]/2 = (790+520)/2 = 655.

Table 8.10 Data of Example 8.28

Activity A B C D E

Predecessors A B C, D

Company 1 8 12 3 2 5

Company 2 6 9 3 5 6

Company 3 22 20 18 18 24

dAk
(r) max{50 − r, 5} max{45 − r, 4} max{30 − r, 2} max{30 − r, 2} max{50 − r, 10}

8.5 Project Games 513

Table 8.11 Preliminary
calculations in Example 8.28

S {1} {2} {3} {1, 2} {1, 3} {2, 3} {1, 2, 3}
ECTS 114 115 66 99 50 51 35

v(S) 0 0 520 0 660 650 790

Mv(S) 140 130 790 270 930 920 1060

gv(S) 140 130 270 270 270 270 270

Also, Company 1 receives Mv
1 /2 = 140/2 = 70, and Company 2 receives Mv

2 /2 =
130/2 = 65, hence the total payoff is 655 + 70 + 65 = 790, as required.

There are several reasons why many projects require the use of external resources
to reduce project completion time. This becomes necessary, for example, to address
market competition, or to compensate for previous delays or unexpected project
complications. The use of external resources to expedite a project is a standard
procedure for crashing a project. The work of Curiel (2011) on cooperative project
planning games provides decision support for this procedure. Besides the impressive
statistics on the influence of project management described at the beginning of
Sect. 8.5, the importance of this topic is further emphasized by the fact that the
global market for outsourced services in 2019 was more than $92 billion (Statista,
2021).

8.5.2 Project Execution Games

The concept of decentralized scheduling for supply chain scheduling problems
naturally includes project scheduling problems where different players are respon-
sible for various parts of a project. An important difference from the discussion
in Sect. 8.5.1 is that here we consider a project that has already completed. We
discuss the fair compensation of players within a project company. Each player
has completed his task(s) and the resulting execution times may result in an
increase or a reduction in the overall delivery time of the project, or makespan.
If the realized project makespan is less than planned, then the project owner
provides a reward. Alternatively, if the project takes longer than expected, penalties
defined by a project contract may be required. Project execution games model how
such rewards or penalties should be shared among the players. However, from
the interconnectedness of many tasks in a project through the project network, a
reduction or increase in makespan is not uniquely attributable to a single player, but
rather to a subset of players. This subset of players may be viewed as a coalition for
the purposes of cooperative games. An important issue is how to compensate each
coalition and individual player for their performance during project execution.

Projects rarely complete exactly on time. Occasionally, they compete early, but
as the long series of CHAOS reports (The Standish Group, 2020) documents,
frequently they complete late. A consistent stream of literature studies project
execution games. In such games, there are many players, and each player controls

514 8 Cooperative Supply Chain Scheduling

one or more tasks of the project, for example, by deciding how long it takes, within
some limits. If the project is delayed and therefore incurs penalties specified in a
contract with a project client, an issue arises as to how to allocate costs to the
players to recover those penalties. Symmetrically, if a project is completed early
and therefore receives an incentive reward from the project client, that reward needs
to be shared equitably among the players. While the main focus of our discussion
is on the identification of single-player reward or cost allocations, following that
analysis we also provide a discussion of set-valued allocations.

Brãnzei et al. (2002) analyze the problem of sharing the total delay of a project
within the framework of taxation. They propose a two-step allocation rule: first, the
total delay of the project is allocated among the paths based on the aggregated delays
observed; second, the delay assigned to a path is shared among the activities in that
path proportionately to their delay. Castro et al. (2007), also in the same delayed
project setting, propose a parameterized family of rules stemming from the cost
sharing literature. However, these works do not directly make use of game theory
concepts. Estévez-Fernández et al. (2007) is apparently the first study to approach
the related allocation problem directly from a game theoretical point of view and to
analyze both delayed and expedited project problems. Still, that study is restricted to
project problems where the penalty or reward function is proportional with respect
to the total delay or expedition of the project.

Estévez-Fernández (2012) extends the above work by analyzing project problems
with arbitrary but nondecreasing penalty and reward functions, and also by taking
into account whether an activity can be started before its planned starting time. A
first step is to allocate the reward associated with the delay or expedition of each path
(i.e., the total delay or total expedition created by its activities) among its activities,
using a reward or cost sharing mechanism. However, the total amount allocated from
studying the performance of the paths may exceed the total reward or penalty of the
project. Then, in a second step, a cooperative game is used to share the reward of
the project among all its activities, using the initial allocations as reference points.

We define a project as (A, {Pi}i∈A), where A is the set of activities and Pi is
the set of predecessors of i, i.e., the tasks that must complete before task i starts.
Symmetrically, let Fi = {j ∈ A | i ∈ Pj } denote the set of activities that
cannot start until task i has completed. We identify a project with the set of all its
paths {N1, . . . , Nm}. Thus, we consider a project problem ({N1, . . . , Nm}, p, r, R),
where {N1, . . . , Nm} is the set of paths through the project network, p denotes
planned activity times, r denotes realized activity times after execution, and R is a
nondecreasing reward function of the difference between the planned and real times
of the overall project. In practice, p is determined by a project manager before
the start of project execution. However, r represents data that is collected during
project execution, for example, as part of standard project monitoring processes
such as Earned Value Management (Klastorin, 2012). Since our perspective is that
the project has already completed, all the above information is assumed to be known.

We define the delay of activity i as

d(i) = max{r(i) − p(i), 0}, i ∈ A,

8.5 Project Games 515

and the expedition of activity i as

e(i) = max{p(i) − r(i), 0}, i ∈ A.

Associated with this project problem, we define a project execution game where
the set of players is the set of activities, and the value of a coalition is determined
by taking into account the performance of both delayed and expedited activities.
A project execution game can be a project execution reward game in the case of
expedition, or a project execution cost game in the case of delay. The duration of
a path Nα , denoted as D(Nα), is the sum of activity durations on the path. The
project length D is the maximum length of any path. Let D(p) denote the planned
makespan of the project, which is known. Finally, let D = {i ∈ A | r(i) > p(i)}
denote the set of delayed activities, and E = {i ∈ A | r(i) < p(i)} the set of
expedited activities,

Definition 8.18 For any path Nα in the project network, the slack of Nα , denoted
by slack(Nα, p), is given by slack(Nα, p) = D(p) − D(Nα), and represents the
maximum delay that can occur on the path without delaying the overall project.

In computing the value of a coalition S ⊆ A we assume that:

(a) The durations of all delayed activities in A are as realized during project
execution.

(b) The durations of all expedited activities outside the coalition are at their planned
values.

Intuitively, for any coalition S ⊆ A, this computation involves taking the
observed durations of all the tasks, and recomputing the performance of the
project by adjusting the observed durations of the expedited activities outside S

to their planned values. These assumptions can be viewed as pessimistic, since
all responsibility for the delay is incurred by the coalition. See Klijn and Sánchez
(2006) in Sect. 8.4.1 for another example of pessimistically determined value of a
coalition. Such definitions make it easier to achieve cooperation.

Recall that D(p) denotes the planned duration of the project. Then, following
the above discussion, we let D(p|E \S, r|A\(E \S)) denote the realized duration of
the project, as adjusted for the performance of the tasks of coalition S. In this
expression, the condition on p implements assumption (b) above by replacing the
realized values of the expedited activities in A\S with their planned values, and the
condition on r implements assumption (a) above by using the realized values of all
delayed activities in A in calculating the adjusted project duration.

If the adjusted duration of the project is larger than D(p), then we have a
project execution cost game for coalition S. Otherwise, the value of the coalition
is positive and is determined through a project execution reward game for coalition
S. Formally, given the project problem described above, a cost sharing mechanism

516 8 Cooperative Supply Chain Scheduling

y, and a surplus sharing mechanism z, we denote by (A, uyz) the associated project
execution game, where the characteristic function of the project game is given by

uyz(S) =
{

−cy(S), if D(p|E \S, r|A\(E \S)) ≥ D(p),

vz(S), if D(p|E \S, r|A\(E \S)) < D(p),
(8.50)

where cy(S) and vz(S) are defined below for the cost game and the reward game,
respectively.

We first consider the cost game, where there is a delay in project execution. In
order to define the characteristic function of this game, the pessimistic assumption
is made that the activities in a path Nα cannot make use of either (a) any slack
that existed in the original plan defined by the project network and p, or (b) any
expedition in the execution of other tasks in the path. Therefore, activities have to
pay the cost associated with their total delay. We let yαi represent the share of the
total delay on path Nα for which task i is accountable under assumptions (a) and
(b). Based on this reference point, the activities of coalition S that are in path Nα

are not held responsible for more than the total cost assigned to them by the cost
sharing mechanism.

Thus, we define

cy(S) = max
α∈P(S)

{
min

{ ∑

i∈Nα∩S
yαi ,K

(
D(Nα, p|E \S, r|A\(E \S))

)− D(p)
}}

,

(8.51)
where P(S) represents the set of paths in which one or more tasks of S appear,
and K(t) = −R(−t) if t > 0 and K(t) = 0 otherwise. Observe that cy(A) =
K(D(r) − D(p)).

The cost game (A, cy) defined in this way is not concave. Nonetheless, Estévez-
Fernández (2012) proves the following result.

Theorem 8.36 Let ({N1, . . . , Nm}, p, r, a, R) be a project problem, and let y be
a cost sharing mechanism as defined above. Then, the project execution cost game
(A, cy) has a nonempty core.

We provide a brief outline of the proof of Theorem 8.36, which considers a
related taxation game that is known to be concave. It is shown that the values of the
grand coalition A are equal in the two games. Now, consider a coalition S ⊂ A. It
is shown that the value of S in the project execution game is greater than or equal to
that in the taxation game. Hence, coalition S will not defect in the project execution
game whenever it does not do so in the taxation game. The result then follows from
the balancedness of the taxation game. We refer the reader to Estévez-Fernández
(2012) for additional details.

Next, we consider the reward game for a situation where project execution is
expedited. First, consider an optimistic allocation of the part of the expedition that
each path could contribute to among the activities of that path. Then, using these
initial allocations for reference, we define the characteristic function of the game.

8.5 Project Games 517

We now provide an intuitive explanation of the process and refer the interested
reader to Estévez-Fernández (2012) for full details of the sharing mechanism z. The
following definition is needed for this explanation.

Definition 8.19 For any path Nα in the project network, the remaining slack of Nα ,
denoted by rslack(Nα, p, r), is the slack of Nα if its delayed activities had acted
according to plan, i.e., rslack(Nα, p, r) = slack(Nα, p) − ∑

i∈Nα∩D d(i), where
slack(Nα, p) is specified in Definition 8.18.

Let J1 denote the set of paths with remaining slack equal to zero, and then for
k ≥ 2 let Jk contain all paths that would have remaining smallest slack if the paths
in J1, . . . , Jk−1 were not present. Then clearly, rslack(Ji) ≤ · · · ≤ rslack(Ji+1),
for i ≥ 1. Then, we define g such that rslack(Jg) < D(p)−D(r) ≤ rslack(Jg+1)

if D(p) > D(r), and g = 0 otherwise. For k = 1, . . . , g, let Fk represent the
marginal contribution of the paths in J1, . . . , Jk to the total expedition or reward.
Thus,

Fk =
{
R(rslack(Jk+1)) − R(rslack(Jk)), if 1 ≤ k < g

R(D(p) − D(r)) − R(rslack(Jg)), if k = g.
(8.52)

Observe that
∑g

k=1 F
k = R(D(p) − D(r)).

Two further definitions are necessary. We define zαi as the maximum amount
that activity i can claim according to the reward sharing mechanism if its path Nα is
rewarded with the total expedition that it can bring to the project. Then, we define the
vector of maximal rewards, f z, by f z

i = maxα|Nα$i {zαi }, i ∈ A, as the maximum
reward that activity i can claim from the expedition of the project when the sharing
mechanism z is used. Intuitively, this definition is optimistic, since each activity
receives the full reward that is attributable to it. The characteristic function of the
game (A, vz) is then defined as

vz(S) =
g∑

k=1

(
Fk − wk

z (S)
)
, (8.53)

where wk
z (S) ≥ 0 represents the part of the contribution to the total reward Fk that

players in S maximally would have to give to players in the paths corresponding to
∪k
l=1Jl outside S, taking into account rewards previously given, and vz(A) equals

the total expedition of the project. More formally,

wk
z (S) = min

{ ∑

i∈(∪k
l=1Njl

)\S
f z
i −

k−1∑

l=1

wl
z(S), F k

}
, (8.54)

for k ∈ {1, . . . , g}, where Njl = ∪α∈JlNα .

518 8 Cooperative Supply Chain Scheduling

For the reward game, Estévez-Fernández et al. (2007) and Estévez-Fernández
(2012) prove the following result.

Theorem 8.37 Let ({N1, . . . , Nm}, p, r, a, R) be a project problem, and let z be
a surplus sharing mechanism. Then, the project execution reward game (A, vz) is
convex.

We refer the reader to Estévez-Fernández (2012) for a proof.
As a result of Theorem 8.37, the reward game is balanced from Bondareva (1963)

and Shapley (1967).
Theorems 8.36 and 8.37 are now used to establish the following unifying result.

Recall that D denotes the set of delayed activities, and E the set of expedited
activities.

Theorem 8.38 Project execution games have a nonempty core.

Proof Let ({N1, . . . , Nm}, p, r, a, R) be a project problem. Let y be a cost sharing
mechanism and z be a reward sharing mechanism, and let (N, uyz) as defined
in (8.50) be the associated project execution game. We consider these two games
separately.

For project execution cost games where D(p) ≤ D(r), then D(p) ≤ D(r) ≤
D(p|E \S, r|N\(E \S)) for S ⊂ N , and uyz(S) = −cy(S) for S ⊂ N . Then, from
Theorem 8.36, (N, uyz) has a nonempty core.

For project execution reward games where D(p) > D(r), then uyz(N) = vz(N)

and uyz(S) ≤ vz(S) for S ⊂ N . From Theorem 8.37, the game (N, vz) is convex
and therefore has a nonempty core. Let x be in the core of (N, vz), then

∑
i∈N xi =

vz(N) = uyz(N) and
∑

i∈S xi ≥ vz(S) ≥ uyz(S) for S ⊂ N . Therefore, x is in the
core of the game (N, uyz). ��

We provide an example of the cost and reward allocation rules developed above.

Example 8.29 (Allocation of Costs and Rewards in a Project Execution Game)
Consider a project problem with three activities N = {A,B,C}, where both
activities A and B are predecessors of C. There are two paths, which we
designate as N1 = (A,C) and N2 = (B,C). The planned activity times
are p(A) = 15, p(B) = 10 and p(C) = 8. The realized activity times are
r(A) = 7, r(B) = 8 and r(C) = 12. The available times of the activities, i.e., the
times at which their predecessors have all completed processing, are 0 for activities
A and B, and 7 for activity C. The project cost and reward function is

R(t) =

⎧
⎪⎪⎨

⎪⎪⎩

t3 − 100, if t < 0

0, if t = 0

t3 + 200, if t > 0.
Now, activity A achieves an expedition of 15 − 7 = 8 units, but since activity
B finishes at time 8, one unit of this expedition is wasted from the perspective of
minimizing project completion time. Thus, activity C starts at time 8 and finishes at

8.5 Project Games 519

Table 8.12 Project execution game in Example 8.29

S {A} {B} {C} {A,B} {A,C} {B,C} {A,B,C}
Makespan 10 + 12 =

22
15 + 12 =
27

15 + 12 =
27

8 + 12 =
20

10 + 12 =
22

15 + 12 =
27

8 + 12 =
20

−cy(S) 0 0 −164 0 0 −164 0

vz(S) 201 0 0 227 201 0 227

uyz(S) 201 0 −164 227 201 −164 227

time 20. Then D(p) − D(r) = 23 − 20 = 3 = t , and a reward of R(3) = 227 is
available for allocation.
Now, from (8.52), we have F 1 = R(1) − R(0) = 201 and F 2 = R(3) − R(1) =
227 − 201 = 26. The coalition values of the game are shown in Table 8.12.

In Table 8.12, the makespan for a coalition S is computed using the planned
times for activities in E \ S and realized activity times for all other activities,
i.e., D(p|E \S, r|N\(E \S)). The core of this game is the convex hull of the vectors
(391, 0,−164), (365, 26,−164), (201, 26, 0) and (227, 0, 0).

The above discussion focuses on the identification of single-player reward
and cost allocations. However, in some practical situations, the project manager
cannot reasonably expect delayed activities to compensate other activities. In such
situations, a set-valued allocation that we now propose may be easier to implement.
It uses the analysis of single-player solutions above, and the following principles:

(i) If the project is exactly on time, then no payments are made or received.
(ii) If the project is delayed, then there should be a solution in which the delayed

activities pay exactly the total cost associated with the total delay, i.e., the
expedited activities are not compensated.

(iii) If the project is expedited, then there should be a solution in which expedited
activities get exactly the total reward associated with their total expedition, i.e.,
the delayed activities do not need to compensate the expedited activities.

This discussion leads to the following result.

Theorem 8.39 Let ({N1, . . . , Nm}, p, r, R) denote a project problem. Let (N, uyz),
as defined in (8.50), be the associated project execution game.

(i) If the project is delayed, then there exists a core solution x to the game (N, uyz)

such that xi = 0 for i ∈ N \ D .
(ii) If the project is exactly on time, then x = 0 is a core solution to the game

(N, uyz).
(iii) If the project is expedited, then there exists a core solution x to the game

(N, uyz) such that xi = 0 for i ∈ N \ E .
Proof

(i) If D(p) < D(r), then D(p) < D(r) ≤ D(p|E \S, r|N\(E \S)) for S ⊂ N ,
and uyz(S) = −cy(S) for S ⊂ N . Let α̂ ∈ {1, . . . , m} be such that D(r) =

520 8 Cooperative Supply Chain Scheduling

D(Nα̂, r), i.e., the path Nα̂ is responsible for the total delay of the project.
Consider a taxation game (N,Eα̂, Cα̂) where Eα̂ = K

(∑
i∈Nα̂

(d(i)− e(i))−
slack(Nα̂, p)

)
is the amount of tax that must be collected, K(·) is a penalty

function for late project completion, and the ability of the players to pay is
given by cα̂i = yα̂i if i ∈ Nα̂ and cα̂i = 0 if i ∈ N \ Nα̂ . From the proof
of Theorem 8.38, the core of the taxation game is a subset of the core of the
project execution cost game. Since any x in the core of the taxation problem
satisfies 0 ≤ x ≤ cα̂ , we have xi = 0 for i ∈ N \ D .

(ii) If D(p) = D(r), then D(p) = D(r) ≤ D(p|E \S, r|N\(E \S)) for S ⊂ N , and
therefore uyz(S) = −cy(S) ≤ 0, for S ⊂ N . Also, uyz(N) = 0 and hence
x = 0 is a core solution.

(iii) If D(p) > D(r), then uyz(N) = vz(N) and uyz(S) ≤ vz(S), for S ⊂ N . Then,
the core of the game (N, vz) is a subset of the core of the game (N, uyz). Since
f z
i = 0 for i ∈ N \ E , it follows that vz(S ∪ {i}) = vz(S) for i ∈ N \ E , and

therefore xi = 0 for every x in the core of the game (N, vz) and i ∈ N \ E .
��

The results in Theorem 8.39 improve the implementability of the allocation rules
described in the above analysis.

Remark 8.11 An alternative approach to the analysis of project performance is
provided by Castro et al. (2007). That work proposes desirable properties of
separability, non-manipulability by splitting, and independent slack. Since there are
some features of the allocations achieved by this analysis that are not consistent with
the model of Estévez-Fernández (2012), but which nonetheless provide a valuable
alternative perspective, we refer the reader to that work.

8.6 Capacity Allocation Games

This section demonstrates the synergistic use of optimization and cooperative
game methodologies within a supply chain scheduling context. Hall and Liu
(2010) consider a supply chain that includes a manufacturer, several distributors,
and customers. The optimization problems faced by the manufacturer and the
distributors are described in Sect. 8.6.1. Initially, the supply chain is considered
as uncoordinated, and discussed in Sect. 8.6.2. Following the placement of orders
by the distributors, the manufacturer may determine that its capacity is insufficient
to meet all those orders. In this case, the manufacturer’s capacity allocation
problem determines how much capacity to allocate to each distributor. Following
this distribution, the distributors can resubmit their orders under this new constraint.
However, there is the possibility to improve their overall profitability by submitting
their orders together; this problem forms a cooperative distributors’ game. Finally,
it is also possible for the manufacturer and the distributors to coordinate their

8.6 Capacity Allocation Games 521

decisions to improve the profit of the whole supply chain; this problem forms a
cooperative supply chain game, which is discussed in Sect. 8.6.3.

8.6.1 Supply Chain Scheduling Problems

Let M = {1, . . . , m} denote the m products produced by the manufacturer, and
N = {1, . . . , n} denote the n distributors. Let q = mn. We assume that only a
single order can be processed at any time by the manufacturer, hence capacity and
production time are equivalent measures. Let T > 0 denote the manufacturer’s
available production capacity. An order from distributor j for one or more units
of product i is denoted by νij . Let pij denote the capacity required by order νij .
We allow the allocation of fractional units of capacity. Let Pj = ∑

i∈M pij , and
Pmax = maxj∈N {Pj }.

We allow orders to be filled either fractionally, or only entirely, by the manu-
facturer. The manufacturer allocates capacity yij to order νij . If partial orders are
allowed, then 0 ≤ yij ≤ pij ; otherwise, yij ∈ {0, pij }. Each order consists of a
single product, and we assume that the entire order quantity is delivered at the same
time, which reduces transportation and stocking costs. Therefore, we only consider
schedules where no preemption is allowed in the processing of the orders. However,
different orders from the same distributor may be delivered by the manufacturer at
different times. Suppose each order νij generates a revenue uij for the manufacturer
and a profit vij for distributor j . Then, the revenue per unit of capacity from order
νij is uij = uij /pij for the manufacturer, and the profit per unit of capacity is
vij = vij /pij for distributor j . This model allows lot splitting (Trietsch & Baker,
1993). In practice, combined orders are often split for delivery purposes in order to
improve customer service, especially for time-sensitive products (Chen, 2010).

Given a schedule σ of orders, let Cij (σ) denote the completion time of each
order νij . Let S denote the set of orders scheduled. The manufacturer maximizes
its total profit, which is its revenue from the orders processed less its scheduling
cost. The scheduling cost is the total weighted completion time,

∑
νij∈S wijCij (σ),

where wij represents either a holding cost per unit time or the value already added
to order νij . This is a widely used measure of work-in-process inventory cost in
manufacturing systems (Pinedo, 2016). We assume that the cost of a partially filled
order is proportional to its capacity requirement. Thus, for a partially filled order
with processing time yij < pij , the weight of the order is wijyij /pij .

Each distributor j ∈ N is allocated capacity Xj ≤ Pj by the manufacturer.
Let X = ∑

j∈N Xj ≤ T . Each order νij is given a maximum resubmittable size

p̂ij ≤ pij by the manufacturer. Let P̂j = ∑
i∈M p̂ij , and P̂max = maxj {P̂j }. Let

v̂ij = p̂ij vij /pij be the profit of order νij with size p̂ij . Let V denote the maximum
profit of the grand coalition.

522 8 Cooperative Supply Chain Scheduling

8.6.2 Uncoordinated Supply Chain

In this section, we consider a manufacturer which has received orders that it cannot
meet in full. In Sect. 8.6.2.1, we study the manufacturer’s initial capacity allocation
problem. In Sect. 8.6.2.2, we study the manufacturer’s problem of scheduling the
distributors’ revised orders. The distributors’ problem of resubmitting orders is
then studied, with partial orders allowed in Sect. 8.6.2.3, and with only full orders
allowed in Sect. 8.6.2.4.

8.6.2.1 Manufacturer: Capacity Allocation

We consider the manufacturer’s problems of scheduling initial orders and also of
scheduling revised orders submitted by the distributors. We first introduce two
simple and widely used rules for capacity allocation, Proportional Allocation (PA)
and Linear Allocation (LA), respectively (Cachon & Lariviere, 1999; Laffont, 1988;
Lee et al., 1997). The PA rule allocates capacity to each distributor proportionately
to its capacity requirement:

Xj = min{Pj , PjT /
∑

k∈N
Pk}.

The LA rule awards each distributor j its capacity requirement minus the common
deduction that satisfies the capacity constraint, or 0 if this difference is negative. If
we index the distributors by nonincreasing capacity requirements, i.e., P1 ≥ · · · ≥
Pn, then:

Xj =

⎧
⎪⎪⎨

⎪⎪⎩
Pj − 1

ñ
max{0,∑ñ

k=1 Pk − T }, if j ≤ ñ,

0, otherwise,

where ñ is the largest integer no greater than n such that Pñ − max{0,∑ñ
j=1 Pj −

T }/ñ ≥ 0.
These allocation rules are equitable between the distributors, in that the capacity

allocation is nondecreasing in the capacity requirement. However, both the PA
and LA rules are based solely on order requirements. Since they do not consider
revenue or scheduling cost, the resulting capacity allocations may generate small
revenues and large costs for the manufacturer. To resolve this problem, we propose
the following algorithm, which integrates both equity considerations and scheduling
information into the capacity allocation decisions. Let r > 0 denote a measure of the
bargaining power of the distributors, relative to that of the manufacturer. Following
presentation of the algorithm, further details of the steps are discussed below.

8.6 Capacity Allocation Games 523

Proportional Allocation Algorithm (PAAr)
1. Given uij , pij , wij , T and r .
2. The manufacturer finds a schedule that maximizes its total net profit, subject to

the capacity constraint. Suppose in this schedule each order νij is processed at
size p′

ij .
3. The manufacturer allocates capacity Xj = min{Pj , PjT /

∑
k∈N Pk} to distribu-

tor j , for j = 1, . . . , n.
4. The manufacturer allocates a set of resubmittable orders with total capacity

requirement P̂j ≥ rXj to distributor j , for j = 1, . . . , n. Allocate all the
orders that appear in the manufacturer’s optimal schedule in Step 2, each with
a maximum resubmittable size p̂ij = p′

ij . If the total resubmittable size of
those orders is less than rXj , then allocate other orders in nonincreasing order of
revenue per unit of capacity, until P̂j ≥ rXj , where the maximum resubmittable
size p̂ij is equal to pij for each of those allocated orders except for the last one,
and is equal to the minimum feasible value satisfying P̂j ≥ rXj for the last
allocated order.
It is important to note that, although the capacity of the resubmittable orders can

exceed the allocated capacity Xj by a ratio r , the total capacity requirement of the
resubmitted orders cannot exceed Xj . Hence, all the revised orders can be feasibly
scheduled.

The set of resubmittable orders is selected without knowing the distributors’
profits. A larger r value provides the distributors greater flexibility in revising their
orders, hence the manufacturer has less assurance of achieving a high profit level
from the resubmitted orders. If r is not large, then the manufacturer, in Step 4 of
PAAr , excludes from the set of resubmittable orders those which are less profitable.
In practice, either the distributors (Bish et al., 2005) or the manufacturer (Engels
et al., 2003) may have dominant bargaining power. Carr and Duenyas (2000) provide
an example of the latter case, where a major glass manufacturer allocates capacity
on the basis of each individual order. Our definition of r parametrizes the situations
in between these two extreme cases.

We now study the manufacturer’s scheduling problem with partial orders in
Step 2 of PAAr . The first result characterizes the sequence of orders in an optimal
schedule for the manufacturer.

Lemma 8.11 For the manufacturer’s scheduling problem with partial orders, an
optimal schedule processes complete or partial orders in SWPT sequence.

Proof Given a set of complete and partial orders to be processed, the total revenue
of those orders is independent of their processing sequence. Thus, the maximum
total profit from those orders is found by a schedule that minimizes the total
weighted completion time. The result then follows from Smith (1956). ��

In view of Lemma 8.11, we assume for the remainder of this section that the
orders are reindexed in SWPT sequence, i.e., p1/w1 ≤ · · · ≤ pq/wq .

524 8 Cooperative Supply Chain Scheduling

The manufacturer’s scheduling problem, which we denote by QP, can be
formulated as:

max
q∑

j=1

ujyj −
q∑

j=1

[wjyj (

j∑

k=1

yk)/pj] (8.55)

s.t.
q∑

j=1

yj ≤ T (8.56)

0 ≤ yj ≤ pj , j = 1, . . . , q. (8.57)

The objective function (8.55) maximizes the net profit of the manufacturer. Con-
straint (8.56) ensures that the total capacity requirement of the scheduled orders
does not exceed the total available capacity. Constraints (8.57) ensure that each
scheduled order is no larger than the corresponding order placed by the distributor.
Let L denote the length of a binary encoding of the data for problem QP.

Theorem 8.40 Problem QP can be solved optimally in O(m3n3L) time.

Proof The optimality of the SWPT indexing of the variables in problem QP follows
from Lemma 8.11. Observe that the objective function of problem QP is a quadratic
function of the form uy − yTQy, where the matrix Q is positive semidefinite and
yT denotes the transpose of the vector y. It follows that the objective function is
concave. The result then follows from Goldfarb and Liu (1993). ��

When partial orders are not allowed, we propose the following procedure to solve
the manufacturer’s scheduling problem in Step 1 of PAAr .

Procedure Man

Input
pj , uj , wj , for j = 1, . . . , q, where p1/w1 ≤ · · · ≤ pq/wq ; T .

Value Function
F(j, t) = the maximum profit from orders 1, . . . , j achieved by a partial

schedule that completes at time t .

Boundary Condition

F(0, t) =
{

0, if t = 0

−∞, otherwise.

Recurrence Relation
F(j, t) = max

yj∈{0,pj }
{ujyj − wj tyj /pj + F(j − 1, t − yj)}.

Optimal Solution Value
max

t∈{0,...,T }{F(q, t)}.

8.6 Capacity Allocation Games 525

In the recurrence relation, yj can only take on a value of pj if order j is
processed, or 0 if not. In the former case, a profit of ujyj is earned, a scheduling
cost of wj tyj /pj is incurred, and state variables j − 1 and t − yj are updated to j

and t , respectively.

Theorem 8.41 For the manufacturer’s scheduling problem without partial orders,
Procedure Man finds a schedule with maximum total profit in O(mnT) time.

Proof The optimality of Procedure Man follows from Lemma 8.11. In the value
function, there are O(mn) possible values of j , and O(T) possible values of
t . In the recurrence relation, the maximum profit values resulting from the two
possible choices for yj are compared. Therefore, the overall time complexity of
Procedure Man is O(mnT). ��
Remark 8.12 When partial orders are not allowed, the manufacturer’s scheduling
problem is binary NP-hard, even without the capacity constraint (Engels et al.,
2003).

8.6.2.2 Manufacturer: Scheduling Revised Orders

We now consider the manufacturer’s problem of scheduling the distributors’ revised
orders. Observe from Step 3 of Algorithm PAAr that the total capacity requirement
of the revised orders of distributor j must not exceed its allocated capacity, Xj .
Hence, a feasible schedule is guaranteed and all the revised orders are fully
processed. The total revenue is fixed by the manufacturer’s requirement to schedule
revised orders within the allocated capacity and the set of resubmittable orders.
Therefore, maximizing profit is equivalent to minimizing total weighted completion
time. We have the following result.

Corollary 8.2 The manufacturer’s problem of scheduling the revised orders to
maximize the total profit can be solved in O(mn logmn) time.

Proof Since all the revised orders are scheduled, revenue is fixed. Therefore, the
SWPT sequence minimizes the scheduling cost and maximizes the total profit
(Smith, 1956). ��

8.6.2.3 Distributors: Resubmitting Partial Orders

We describe the distributors’ problem of resubmitting orders in response to resource
allocations from manufacturers, using cooperative game theory. We consider two
versions of this problem, depending on whether partial orders are allowed.

First, we consider the situation where the distributors can resubmit partial orders.
The capacity sharing and order revision problem of each distributor or coalition of
distributors can be modeled as a linear program (LP). If a coalition contains a set N ′
of distributors each having allocated capacity Xj , then this problem is:

526 8 Cooperative Supply Chain Scheduling

max
∑

i∈M

∑

j∈N ′
vij xij (8.58)

s.t.
∑

i∈M

∑

j∈N ′
xij ≤

∑

j∈N ′
Xj (8.59)

0 ≤ xij ≤ p̂ij , i ∈ M, j ∈ N ′. (8.60)

The objective function (8.58) maximizes the total profit of the coalition, where
vij is the profit per unit of manufacturing capacity from order νij for distributor
j . Constraint (8.59) ensures that the total capacity requirement of the revised
orders does not exceed the total allocated capacity. Constraints (8.60) ensure that
each revised order is no larger than the corresponding resubmittable size, p̂ij . The
constraints in problem (8.58)–(8.60) include only a single constraint (8.59) with
integer coefficients all equal to 1, and simple integer upper bound constraints (8.60).
Therefore, the LP has an optimal integer solution.

The distributors’ capacity allocation problem is a linear programming game
(Owen, 1975). In any LP game, some core members (the Owen set) can be found
by solving the dual problem of the grand coalition’s LP. In the distributors’ game,
there are mn + 1 constraints in the LP model of the grand coalition. Letting γij , for
i ∈ M , j ∈ N , and γ be the mn + 1 dual variables, the dual problem is:

min
∑

i∈M,j∈N
p̂ij γij + γ

∑

j∈N
Xj (8.61)

s.t. γij + γ ≥ vij , i ∈ M, j ∈ N (8.62)

γij , γ ≥ 0, i ∈ M, j ∈ N. (8.63)

The following algorithm finds a core member of the distributors’ LP game
efficiently.

Algorithm LPCore

Input
p̂ij , vij , for i ∈ M , j ∈ N ; Xj for j ∈ N .

Step 1. Find v̄ = min{v̄ij : i ∈ M, j ∈ N,
∑

k∈M, l∈N, v̄kl>v̄ij
p̂kl ≤ ∑

j∈N Xj }.
Step 2. Let γ = v, and γij = max{vij − v, 0}, for i ∈ M , j ∈ N . Let the payoff

division (χ1, . . . , χn) be:

χj =
∑

i∈M
p̂ij γij + Xjγ, j ∈ N. (8.64)

Theorem 8.42 Algorithm LPCore finds a core member of the distributors’ LP game
in O(mn) time.

8.6 Capacity Allocation Games 527

Proof From constraints (8.62) and (8.63), the objective function (8.61) is mini-
mized by setting γij = max{vij−γ, 0}. Therefore, in (8.61), if γ increases by 1, then∑

i∈M,j∈N p̂ij γij decreases by
∑

i∈M,j∈N,vij>γ p̂ij , and γ
∑

j∈N Xj increases by
∑

j∈N Xj . Consequently, from the definition of v̄, Step 2 of Algorithm LPCore finds
an optimal solution. The core membership of the payoff vector defined by (8.64)
follows from Owen (1975). The time complexity follows from the median finding
algorithm of Schönhage et al. (1976). ��

The following example shows that the Owen set does not fully cover the core of
the distributors’ LP game.

Example 8.30 (Core of the Distributor’s Game and Owen Set) Two distributors
1 and 2 order a single product, with profits 2 and 3 per unit of capacity used,
and capacity requirements of their orders 20 and 10, respectively. Previously, the
manufacturer has allocated capacity 18 and 9 to distributors 1 and 2, respectively,
without restricting the resubmittable orders. Without coordination, distributors 1 and
2 obtain a profit of 2(18) = 36 and 3(9) = 27, respectively. If the two distributors
form a coalition, then their LP game is:

max 2x1 + 3x2

s.t. x1 ≤ 20
x2 ≤ 10

x1 + x2 ≤ 18 + 9 = 27,

where an optimal solution is x1 = 17 and x2 = 10, with solution value 64. Letting
γ1, γ2 and γ denote the three dual variables, the dual of this game is:

min 20γ1 + 10γ2 + 27γ

s.t. γ1 + γ ≥ 2
γ2 + γ ≥ 3

γ1, γ2, γ ≥ 0,

where the unique optimal solution is γ1 = 0, γ2 = 1 and γ = 2. Thus, the unique
fair payoff division in the Owen set is (36, 28). However, any payoff division (36 +
a, 28 − a), where 0 ≤ a ≤ 1, is in the core.

Core solutions that are not in the Owen set may be more reasonable than those
that are. In Example 8.30, the payoff division (36, 28) derived from the unique
Owen set solution seems to favor distributor 2, which receives all the extra payoff
from cooperation. Hence, it is likely that distributor 1 will propose a different
payoff division. In order to evaluate whether this payoff division is in the core,
we need to answer the core membership test: given an instance of the distributors’
game and a payoff vector, is that vector in the core of the instance? In a general
LP game, the core membership test is unary co-NP-complete (Fang et al., 2002).

528 8 Cooperative Supply Chain Scheduling

However, in our distributors’ game, the Owen set is a proper subset of the core,
while the core membership test, although binary co-NP-complete, is solvable in
pseudo-polynomial time.

We propose a dynamic programming algorithm for the core membership test in
the distributors’ LP game. For any given payoff vector (χ1, . . . , χn) and coalition
N ′ ⊂ N , let the surplus profit of N ′ be defined as the difference between the
maximum profit generated by N ′ and the total payoff paid to N ′. We use F(j, t)

to denote the maximum surplus profit of a potentially defecting coalition from
distributors {1, . . . , j}, given that those distributors have a total allocated capacity t .
We assume without loss of generality that the payoff vector (χ1, . . . , χn) is efficient,
i.e.,

∑
j∈N χj equals the total profit of the grand coalition; otherwise, the payoff

vector is not in the core.

Algorithm LPCoreTest

Input
p̂ij , vij , for i ∈ M , j ∈ N ; Xj , for j ∈ N ; X; and an efficient payoff vector

(χ1, . . . , χn).

Initialization
For each distributor j , find the maximum profit φ(j, t) that can be generated

using capacity t , for t = 0, . . . ,min{P̂j , X}, where P̂j = ∑
i∈M p̂ij .

Value Function
F(j, t) = the maximum surplus profit of any coalition formed by distributors

from 1, . . . , j , for the given payoff vector (χ1, . . . , χj), where distributors 1, . . . , j
have a total allocated capacity t .

Boundary Condition
F(0, t) = 0, where t ≥ 0.

Recurrence Relation

F(j, t) = max

⎧
⎨

⎩

F(j − 1, t − Xj)

max
xj∈{0,...,min{t,P̂j }}

{φ(j, xj) − χj + F(j − 1, t − xj)}.

Optimal Solution Value
F(n,X).

Core Membership Test
The payoff vector (χ1, . . . , χn) is a core member if and only if F(n,X) = 0.

In the recurrence relation, the first equation excludes distributor j from the
coalition being built. The second equation includes distributor j in the coalition
and allocates capacity xj to it, where the value of xj is chosen to maximize the
surplus profit. Recall that P̂max = maxj∈N {P̂j }.

8.6 Capacity Allocation Games 529

Theorem 8.43 For a given instance of the distributors’ LP game, Algo-
rithm LPCoreTest determines whether a given payoff vector is in the core in
O(nmax{m,X} min{X, P̂max}) time.
Proof Observe that the surplus profit of any coalition of the distributors is defined
as the difference between the optimal solution of the coalition’s optimization
problem (8.58)–(8.60) and the total payoff to the coalition given by the payoff
vector χ . Since this difference is independent of the sequence of the distributors, it
is sufficient to consider a single arbitrary sequence. It follows that the surplus profits
of all possible state transitions are compared, and hence Algorithm LPCoreTest
generates the maximum surplus profit. Therefore, a finding that F(n,X) > 0
implies the identification of a subset of distributors that will leave the coalition.
Alternatively, a finding that F(n,X) = 0 implies that no such coalition exists, and
therefore the payoff vector (χ1, . . . , χn) is a core member. In the recurrence relation,
there are O(n) possible values of j , and O(X) possible values of t . For each j and
t , there are O(min{X, P̂max}) values of xj to enumerate. Therefore, the overall time
complexity of Algorithm LPCoreTest is O(nmax{m,X} min{X, P̂max}). ��

Theorem 8.43 shows Algorithm LPCoreTest is a pseudo-polynomial time algo-
rithm. However, the next result shows that this problem cannot be solved efficiently.

Theorem 8.44 The core membership problem in the distributors’ LP game is
binary co-NP-complete, even for a single product.

Proof Given a payoff vector and a coalition, it can be verified in polynomial time
that the payoff vector is not in the core. Therefore, the core membership test
belongs to the class co-NP. The co-NP-completeness proof is by reduction from
the following problem.

Partition (Garey & Johnson, 1979, p. 223) Given 2t elements with integer sizes
a1, . . . , a2t , where

∑2t
j=1 aj = 2A, does there exist a partition S1 and S2 of the index

set {1, . . . , 2t} such that
∑

j∈S1
aj = ∑

j∈S2
aj = A? Without loss of generality,

we assume that A ≥ 3.

Given an instance of Partition, we construct an instance of the distributors’ LP
game, where m = 1 and n = 2t +2. This instance is shown in Table 8.13, where for
each distributor j , vj is the profit of its order per unit of capacity requirement, p̂j is
the capacity requirement of its resubmittable order, Xj is the capacity allocated by
the manufacturer, and χj is the payoff received. Let ε > 0 be defined sufficiently
small that ε(2A2 − A − 2) < 1.

First, note that
∑2t+2

j=1 Xj = (2A − 1)
∑2t

j=1 aj − 2 = (2A − 1)2A − 2 <

(2A−1)2A = p̂2t+1 + p̂2t+2. Also, v2t+1 = v2t+2 = 2A+1 is the maximum profit
per unit of production capacity. Therefore, the grand coalition generates a profit of
(2A+1)

∑2t+2
j=1 Xj = (2A+1)[(2A−1)2A−2] = 8A3 −6A−2. Let Y denote this

value of total profit. Also, the total payoff is
∑2t+2

j=1 χj = (4A − 2)a1 − 4 + (4A −
2)a2+· · ·+(4A−2)a2t+2(4A2−1)(A−1) = (4A−2)2A−4+2(4A2−1)(A−1) =
8A3 − 6A − 2 = Y . Hence, the payoff vector is feasible.

530 8 Cooperative Supply Chain Scheduling

Table 8.13 Instance of the distributors’ LP game in Theorem 8.44

j 1 2 . . . 2t 2t + 1 2t + 2

vj ε ε . . . ε 2A + 1 2A + 1

Xj (2A − 1)a1 − 2 (2A − 1)a2 . . . (2A − 1)a2t 0 0

p̂j (2A − 1)a1 (2A − 1)a2 . . . (2A − 1)a2t (2A − 1)A (2A − 1)A

χj (4A − 2)a1 − 4 (4A − 2)a2 . . . (4A − 2)a2t (4A2 − 1)(A − 1) (4A2 − 1)(A − 1)

We now show that the given payoff vector (χ1, . . . , χn) is not in the core if and
only if the instance of Partition has a solution.
(⇒) If the instance of Partition has a solution, then there exists at least one coalition
N ′ with

∑
j∈N ′ Xj = (2A − 1)A. Coalition N ′ includes exactly one of the two

distributors 2t + 1 and 2t + 2, but does not include distributor 1. The total payoff
received by coalition N ′ is

∑
j∈N ′ χj = (4A2 −1)(A−1)+2

∑
j∈N ′ Xj = (4A2 −

1)(A−1)+(2A−1)2A = (4A2−1)A−(2A−1) < (4A2−1)A = (2A+1)(2A−1)A,
which is the total profit generated by this coalition. Hence, the given payoff vector
(χ1, . . . , χn) is not in the core.
(⇐) If the instance of Partition has no solution, we consider the only possible three
types of coalition.

1. Coalitions not containing distributor 2t +1 or 2t +2. In this case, every coalition
with total allocated capacity X has a profit of εX, which is less than the payoff
2X received from the payoff vector.

2. Coalitions containing both distributors 2t + 1 and 2t + 2. In this case, for every
coalition N ′, the profit generated is Y−(2A+1)

∑
j /∈N ′ Xj ≤ Y−2

∑
j /∈N ′ Xj =

Y − ∑
j /∈N ′ χj , where the last term is the total payoff received from the payoff

vector.
3. Coalitions containing exactly one of distributors 2t + 1 and 2t + 2. In this case,

the profit generated by a coalition is no greater than that of a coalition containing
all orders except for order 2t + 2: v2t+1p̂2t+1 + ε(

∑2t
j=1 Xj − p̂2t+2) = (2A +

1)(2A−1)A+ε[(2A−1)A−2] = 4A3 −A+ε(2A2 −A−2). Since the instance
of Partition has no solution, the total capacity allocated to such a coalition cannot
fall in the interval ((2A−1)(A−1), (2A−1)[(A+1)−2)). If the total capacity
is no greater than (2A − 1)(A − 1), then the total profit generated is no greater
than (2A+1)(2A−1)(A−1) = (4A2 −1)(A−1), which is the payoff received
by distributor 2t + 1 or 2t + 2 alone. Alternatively, if the total capacity is no less
than (2A − 1)(A + 1) − 2, then the total payoff received is at least (4A2 −
1)(A − 1) + 2[(2A − 1)(A + 1) − 2] = 4A3 + A − 5. Since A ≥ 3 and
ε(2A2 − A − 2) < 1, the difference between the total payoff received by the
distributors and their total profit is (4A3+A−5)−[4A3−A+ε(2A2−A−2)] >
(4A3 + A − 5) − (4A3 − A + 1) = 2A − 6 ≥ 0.

Therefore, in all cases, the total payoff received by any coalition is no less
than the profit generated by the coalition. Hence, the given payoff vector is a core
member. ��

8.6 Capacity Allocation Games 531

From Garey and Johnson (1979), the result in Theorem 8.44 implies that there
does not exist a polynomial-time algorithm to find a core member of the distributor’s
LP game, unless P = NP.

8.6.2.4 Distributors: Resubmitting Full Orders

We now consider the situation where partial orders are not allowed. This problem
is modeled as a knapsack game, defined by Eqs. (8.58)–(8.60) except that Eq. (8.60)
is changed to xij ∈ {0, p̂ij }, for i ∈ M , j ∈ N ′. Each coalition N ′ ⊆ N faces a
zero-one knapsack problem with knapsack size

∑
j∈N ′ Xj , where each item has a

size p̂ij and a value v̂ij .
We develop a dynamic programming algorithm that finds an integer core member

if one exists. The algorithm uses the same definition of surplus profit as Algorithm
LPCoreTest in Sect. 8.6.2.3.

Algorithm KPCore

Input
p̂ij , v̂ij , for i ∈ M , j ∈ N ; Xj , for j ∈ N ; and X.

Initialization
For each distributor j , find the maximum profit φ(j, t) which it can achieve using

capacity t , for t ∈ {0, . . . ,min{P̂j , X}}. Find V , the maximum profit of the grand
coalition, by solving the grand coalition’s zero-one knapsack problem.

Value Function
F(j, t, χ) = the minimum value of the maximum surplus profit of any coalition

formed by distributors 1, . . . , j , if those distributors have a total allocated capacity
t and receive a total payoff χ .

Boundary Condition

F(1, t, χ) =
{
φ(1, t) − χ, if t < X1, or t ≥ X1 and φ(1, t) ≥ χ, where t, χ ≥ 0

0, if t ≥ X1 and φ(1, t) < χ, where t, χ ≥ 0.

Recurrence Relation
F(j, t, χ) =

min
χj∈{φ(j,Xj),...,χ} max

⎧
⎪⎨

⎪⎩

F(j − 1, t − Xj , χ − χj)

max
xj∈{0,...,min{t,P̂j }}

{φ(j, xj) − χj + F(j − 1, t − xj , χ − χj)}.

Optimal Solution Value
F(n,X, V).

Core Emptiness Test
If F(n,X, V) > 0, then the integer core is empty;

If F(n,X, V) = 0, then the Optimal Solution Value identifies an integer core
member.

532 8 Cooperative Supply Chain Scheduling

In the boundary condition, when t < X1, distributor 1’s capacity is being used by
other distributors. Hence, it must belong to a coalition containing other distributors.
Otherwise, the value function takes the larger value achieved by whether or not
distributor j joins a coalition. The recurrence relation first enumerates all possible
values of the payoff χj to distributor j . Note that in any fair payoff division,
each distributor j receives a payoff no less than its own profit φ(j,Xj). Then,
for each fixed χj , the first equation excludes distributor j from the coalition. The
second equation includes distributor j in the coalition and allocates capacity xj to
distributor j , where all possible values of xj are considered.

Theorem 8.45 Algorithm KPCore finds an integer core member of an instance of
the knapsack game if it has a nonempty integer core, in O(nX min{X, P̂max}V 2)

time.

Proof For fixed χj , in order for a coalition to achieve the maximum surplus profit,
each distributor in the coalition must use capacity xj to generate as much profit as
possible. Since the surplus profit of the grand coalition is 0, F(n,X, V) ≥ 0. If
F(n,X, V) > 0, then Algorithm KPCore determines that the core of the instance is
empty; otherwise F(n,X, V) = 0, and retracing from the Optimal Solution Value
identifies a core member.

In the Initialization step, V and the φ(j, t) values are found in O(mnX) time.
In the recurrence relation, there are O(n) values of j , O(X) values of t , and O(V)

values of χ . To find F(j, t, χ) for fixed j , t and χ requires O(V min{X, P̂max})
time. Therefore, the recurrence relation requires O(nX min{X, P̂max}V 2) computa-
tion time, which is also the overall time complexity of Algorithm KPCore. ��

Theorem 8.45 shows that finding a core member of the knapsack game, if one
exists, can be performed in pseudo-polynomial time. The following result shows
that the existence of a polynomial-time algorithm for this problem is unlikely. It
also shows, by example, that the knapsack game is not balanced.

Theorem 8.46 The problem of deciding whether an instance of the knapsack game
has an integer core member in binary NP-hard, even for a single product.

Proof By reduction from Partition, which is defined in the proof of Theorem 8.44.
Given an arbitrary instance of Partition, we construct an instance of the knapsack
game, where m = 1 and n = 2t+1. The detailed information is shown in Table 8.14,
using the same notation as in Table 8.13. The last row of Table 8.14 contains an
example payoff vector.

Table 8.14 Knapsack game
of Theorem 8.46

j 1 2 . . . 2t 2t + 1

vj A A . . . A A − 1

p̂j 2A 2A . . . 2A A

Xj a1 a2 . . . a2t A

χj a1A a2A . . . a2tA A(A − 1)

8.6 Capacity Allocation Games 533

Next, we show that the knapsack game instance has an empty core if and only if
the instance of Partition has a solution.
(⇒) If the instance of Partition has a solution, then consider three coalitions 1,
2, and 3, where coalitions 1 and 2 are disjoint and each contains distributors from
{1, . . . , 2t} with total capacity allocation A, and coalition 3 contains only distributor
2t + 1. Any two of these three coalitions can jointly achieve a profit of 2A2. Let χ1,
χ2, and χ3 be the payoffs of coalitions 1, 2, and 3, respectively. Then any fair payoff
division (χ1, χ2, χ3) satisfies

χ1 + χ2 ≥ 2A2

χ1 + χ3 ≥ 2A2

χ2 + χ3 ≥ 2A2.

Hence, χ1 + χ2 + χ3 ≥ 3A2. However, the grand coalition can generate profit of at
most 2A2 +A(A− 1), which implies that χ1 + χ2 + χ3 = 3A2 −A. Therefore, no
fair payoff division exists and the instance of the knapsack game has an empty core.
(⇐) If the instance of Partition has no solution, we show that the payoff vector in
the last row of Table 8.14 is a core member. We consider the only possible two types
of coalition.

1. Coalitions not containing distributor 2t + 1. Here, if a coalition has allocated
capacity 2A, then it can generate a profit of at most 2A2. This profit is equal to
the total payoff received. Otherwise, since any single order requires capacity 2A
which exceeds the allocated capacity, the maximum profit is 0.

2. Coalitions containing distributor 2t +1. Here, no coalition has allocated capacity
of exactly 2A, otherwise a solution exists for the instance of Partition. First, the
grand coalition has capacity 3A, and a profit of 2A2+A(A−1) = 3A2−A. Since
A
∑2t

j=1 aj +A(A−1) = 3A2−A, this profit is equal to the total payoff received.
Second, for coalitions having capacity less than 2A, since only distributor 2t+1’s
order is feasible, the maximum profit is A(A − 1). However, since this payoff is
received by distributor 2t +1 alone, the total payoff received is at least A(A−1).
Finally, for coalitions having capacity less than 3A but greater than 2A, only one
order requiring capacity 2A can be selected. This order generates a profit of 2A2.
However, the total allocated capacity is at least A + 1, and the payoff received
by distributor 2t + 1 is A(A − 1). Therefore, the total payoff received by the
distributors from 1, . . ., 2t is at least (A+ 1)A, and the total payoff received is at
least (A + 1)A + (A − 1)A = 2A2.

Therefore in all cases, no coalition can generate more profit than the payoff
received from the given payoff vector. It follows that the given payoff vector is
in the core.

��
For the knapsack game with integer inputs, the maximum profit generated

by each coalition is also integer. However, there may exist a core member with
fractional payoffs. Moreover, an instance may have only fractional core members.

534 8 Cooperative Supply Chain Scheduling

Table 8.15 Instance of the
knapsack game with only
fractional core members

j 1 2 3 4

v̂j 3 3 3 3

p̂j 2 2 2 2

Xj 1 1 1 1

χj 3/2 3/2 3/2 3/2

χ ′
j 2 2 2 1

An example appears in Table 8.15, where each of the four distributors has a single
order. Observe that (χ1, . . . , χ4) is a fair payoff division. In order to pay each
coalition an integer payoff no less than its own profit, a payoff of at least 7 is
required, as with (χ ′

1, . . . , χ
′
4) in the last row of Table 8.15. However, the grand

coalition has a profit of 6. Therefore, no integer core member exists.
Our knapsack game results fundamentally affect the order revision decisions of

the distributors in the uncoordinated supply chain. If an instance of the game has
a core member, then the grand coalition of the distributors solves its knapsack
problem. Otherwise, the grand coalition cannot generate enough payoff to cover
every coalition’s profit. In this case, it is not possible for subsets of the distributors
to form coalitions that are stable (Grieco, 1988), as we now show. Suppose there are
several mutually exclusive and exhaustive coalitions of distributors that are stable.
This implies that each player in the coalitions receives a sufficient payoff that no
players can form a new coalition, including players in other coalitions, that improves
their total payoff. However, in this case, combining all the stable coalitions creates
a grand coalition that is stable. This contradicts the assumption that there is no core
member. It follows that, in an instance with an empty core, each distributor revises
its orders individually.

8.6.3 Coordinated Supply Chain

In this section, we consider the capacity allocation and scheduling problem when
the manufacturer and distributors coordinate their decisions to maximize the profit
of the overall supply chain. In the coordinated supply chain, the manufacturer
and distributors simultaneously agree on how much should be produced in order
to maximize the profit of the supply chain. This coordination does not require
information sharing among the distributors. Hall and Liu (2010) prove the following
result.

Theorem 8.47 An optimal algorithm for problem QP and Procedure Man find a
schedule that maximizes the overall supply chain profit, with or without partial
orders, respectively.

Proof We replace uij in both QP and Man by uij + vij . The remainder of the proof
follows that of Theorems 8.40 and 8.41. ��

8.6 Capacity Allocation Games 535

Now, consider a supply chain game consisting of one manufacturer and n

distributors, where each distributor j has allocated capacity Xj and a set of
resubmittable orders. We consider coalitions formed by the manufacturer and the
grand coalition of distributors. In the supply chain game, each coalition and its
maximum profit are defined as follows. Let R denote the maximum profit of the
grand coalition of the supply chain game, i.e., the maximum profit achieved by the
coordinated supply chain. Let UM denote the profit of the manufacturer outside of
any coalition. Consequently, if the corresponding instance of the distributors’ game
has a nonempty (respectively, an empty) core, then UM is the profit achieved by
the manufacturer assuming that the distributors jointly (resp., individually) revise
their orders. The reason to define UM in this way is that under supply chain
coordination, the manufacturer can access the distributors’ information and predict
each distributor’s behavior if it leaves the grand coalition. Since all other coalitions
contain only distributors, their maximum profits are the same as in the corresponding
instance of the distributors’ game.

We now describe our balancedness, core emptiness test, and core membership
test results for the supply chain game. First, we consider the supply chain game
with partial orders allowed. Hall and Liu (2010) prove the following result.

Theorem 8.48 For the supply chain game with partial orders:

(a) The game is balanced;
(b) Algorithm LPCore finds a core member of the game in O(mn) time;
(c) Algorithm LPCoreTest determines whether a given payoff vector is in the core

of a given instance in O(nmax{m,X} min{X,Pmax}) time;
(d) The core membership test of the supply chain game is binary co-NP-complete,

even for a single product.

Proof

(a) The maximum profit R of the grand coalition is no less than that of the uncoor-
dinated supply chain where the distributors coordinate. Since the corresponding
distributors’ LP game is balanced, (a) holds.

(b) To find a core member, we first apply Algorithm LPCore to find a core member
of the corresponding distributors’ LP game, and then pay the manufacturer the
remaining payoff, UM , from R. Thus, the payoff division is fair, and hence (b)
follows from Theorem 8.42.

(c) For the core membership test, compared with the corresponding distributors’
LP game, the only additional work requires testing whether the payoff to the
manufacturer is no less than UM . Thus, (c) follows from Theorem 8.43.

(d) For each order, we can define both the revenue and the work-in-process cost for
the manufacturer as 0, which makes the supply chain game equivalent to the
distributors’ LP game, hence (d) follows from Theorem 8.46.

��
Next, we consider the supply chain game without partial orders allowed. Hall

and Liu (2010) prove the following result.

536 8 Cooperative Supply Chain Scheduling

Theorem 8.49 For the supply chain game without partial orders:

(a) The game is unbalanced;
(b) Algorithm KPCore finds an integer core member, if one exists, in

O(nX min{X,Pmax}(R − UM)2) time;
(c) It is binary NP-hard to decide whether an instance of the knapsack game has

an integer core member, even for a single product.

Proof

(a) If we define the revenue of each order and the work-in-process cost for the
manufacturer as 0, then the supply chain game is equivalent to the distributors’
knapsack game and the result follows from Theorem 7 of Hall and Liu (2010).

(b) For the core emptiness test, we apply Algorithm KPCore. From Theorem 8.45,
if F(n,X,R − UM) > 0, then the integer core is empty; otherwise, retracing
from the Optimal Solution Value identifies a core member.

(c) The result follows from Theorem 8.46.
��

It is straightforward to observe that the supply chain game and the distributors’
game have the following relationship.

Corollary 8.3 For a given instance of the supply chain game, if a payoff vector is
in the core, then the part of the payoff vector that applies to the distributors is also
in the core of the corresponding instance of the distributors’ game. If an instance of
the distributors’ game has a nonempty core, then the corresponding instance of the
supply chain game also has a nonempty core.

The work of Hall and Liu (2010) is among the first that simultaneously considers
three significant operational coordination issues that arise in two-stage supply chains
with a manufacturer and several distributors. First, the cost savings from integrating
scheduling information into capacity allocation decisions are evaluated. Second, the
additional profit that the distributors can earn by sharing their capacity allocations
and coordinating their revised orders is studied. Third, the additional profit that
becomes available to the overall supply chain when the manufacturer and the
distributors coordinate their decisions is analyzed. Insights, based on sensitivity
analysis, are provided about when coordinating decisions is likely to be more
valuable. The three types of coordination are all valuable, and the benefit is typically
between 1% and 15%. In general, the three types of coordination are especially
valuable when the manufacturer and the distributors have conflicting priorities
between orders. Coordination is also more valuable when the manufacturer’s profit
margins are small, in which case the scheduling cost savings delivered by the
methodology we present become relatively more significant.

8.7 Outsourcing Games 537

8.7 Outsourcing Games

In semiconductor manufacturing, biotechnology, and pharmaceutical development,
it is common for manufacturers to use outsourced capacity. In such situations,
different issues arise from those in the supply chains discussed in Sect. 8.6. We
consider two different models of this situation. In Sect. 8.7.1, we consider a third
party that provides outsourcing services to several manufacturers who may reserve
its capacity individually or jointly. In Sect. 8.7.2, we consider a problem where
manufacturers compete for outsourced capacity that can be used concurrently
with their own dedicated resources. We refer the reader to Chap. 6 for extensive
discussions of similar problems within a centralized supply chain scheduling
environment.

8.7.1 Common Third-Party Facility

Cai and Vairaktarakis (2012) consider a group of manufacturers which outsources
some work to a third-party (3P) facility that possesses specialized capabilities
which the manufacturers do not. First, the 3P announces available times and prices
for its capacity, which can include both regular time and overtime. Then, each
manufacturer reserves blocks of time, and within that available time, schedules its
jobs to minimize a cost function consisting of reservation, overtime, and tardiness
costs for late delivery to customers.

Having received all the manufacturers’ reservations, the 3P may see the potential
to reduce the total costs of the manufacturers by combining their orders. However, in
the process, some manufacturers may incur extra cost. The 3P then needs to design
a scheme to share the resulting savings and compensate those manufacturers. This
problem can be modeled as a cooperative game. Additionally, it may be necessary
to design a mechanism that encourages truth-telling by the manufacturers about the
data of their jobs.

Let M denote a set of manufacturers and 3P a single third party facility.
Each manufacturer m ∈ M has a set Nm of jobs that require scheduling, where
N = ∪m∈MNm and |N | = n. The process begins when the 3P announces a
set of K available time intervals of equal length and corresponding prices, which
each manufacturer m ∈ M can reserve on a first-come first-served basis. Let
Wi = [ai, bi] denote the ith time interval, where each interval has an equal length
L = bi − ai , with announced price hi . Observe that, by assumption, these intervals
have the same available capacity. Within an interval, overtime can also be reserved at
a rate of αi per unit, up to a limit of ci time units, for i = 1, . . . , K . Further, let Wm

denote the subset of time intervals reserved by manufacturer m. In this reservation
process, manufacturers do not share a time interval. Each job j is available at time
0, and has a processing time pj , where P = ∑

j∈N pj . It also has a due date dj that

538 8 Cooperative Supply Chain Scheduling

is assumed to be the end of a manufacturing window. Job j needs to be completed
by time dj , otherwise a tardiness penalty βj is incurred.

Each manufacturer m then schedules its jobs over the time intervals Wm which
it has reserved. The objective of each manufacturer is to minimize its total cost,
which consists of its reservation cost

∑
i∈Wm

hi , plus any overtime cost, plus the
tardiness penalty βj for each job j that is completed after its due date dj . Let the
overall initial schedule of the 3P’s capacity, which is defined by concatenation of the
schedules of the individual manufacturers, be denoted by σ0. Relevant assumptions
include feasibility, i.e., the 3P has enough capacity to process all the jobs, and also
that there are no sequence-dependent setup times between the jobs. Jobs can be
processed preemptively, i.e., stopped at the end of a manufacturing window and
resumed in a later one. As a result, the number of time intervals needed to process
all the jobs is ω ≥ �P/L�.

Consider a situation in which all reservations have already been made. The
objective of the 3P is to maximize the value of work that is delivered on time. Then,
based on structural properties of the problem described, the overall rescheduling
problem of the 3P can be solved by first sequencing the jobs in earliest due date
order, and then applying a dynamic programming algorithm similar to that of Lawler
and Moore (1969) for the classical scheduling problem 1||∑wjUj . Further, by
enumerating this problem over all possible reservations that the manufacturers could
be persuaded to adopt, the 3P’s overall cost minimization problem, i.e., finding
an optimal schedule σ ∗, can be solved in O(ω2nP) time for the problem without
overtime, and O(ω2nŌP) for the problem with overtime, where Ō is the maximum
available amount of overtime in a time period.

A cooperative game (M, v) among the manufacturers is defined as follows. Let
S ⊂ M be an arbitrary coalition of manufacturers and N(S) = ∪m∈SNm be the
set of jobs owned collectively by the members of S. The coalition S must respect
an admissibility rule that, for all j ∈ N \ S, the predecessors of j must be the
same after resequencing as they are in σ0. This rule is justified by the need for
fairness on the part of the 3P, and also to maintain good relations between the
manufacturers in order to encourage cooperation. Subject to this constraint, the
coalition of manufacturers looks for a resequencing of its orders that minimizes
its total cost, i.e., maximizes its cost savings v.

Let v(S) be the maximum cost savings obtained by optimally rescheduling the
jobs in N(S), for a coalition S of manufacturers, S ⊆ M . Here, v(S) consists of
three parts: (i) the total refund (1 − ρ)

∑
k∈W0(S)\W ∗(S) hk that coalition S receives

from the 3P for those windows that are released after the rescheduling, where W0(S)

is the set of time windows that are initially reserved by coalition S, W ∗(S) is the
set of time windows that are utilized after the rescheduling, and ρ is the share of the
reservation fee retained by the 3P in the event of cancellation; (ii) the total refund
for the reduced overtime; and (iii) the reduction in the tardiness costs of the jobs
of S as a result of rescheduling. Then, the pair (M, v) defines the manufacturers’
savings game.

A cooperative game among the jobs is also defined. This game treats each
individual job as a player. Let vJ (S) be the maximum cost savings achieved

8.7 Outsourcing Games 539

by an admissible reschedule σ for a coalition of jobs N(S). The job game is
denoted by (N, vJ). Analysis of the job game provides a pathway to analysis of
the manufacturers’ game.

Let G{a, b} = {σ0(a), σ0(a + 1), . . . , σ0(b)}, for 1 ≤ a ≤ b ≤ n, denote
a contiguous coalition of jobs that occupy all positions from a to b in σ0. For
conciseness, we use vJ {a, b} in place of vJ (G{a, b}) to denote the maximum
savings from rescheduling the jobs in G{a, b}.

Consider the following savings allocation for the ith job:

xi = [vJ {1, i} − vJ {1, i − 1} + vJ {i, n} − vJ {i + 1, n}]/2, i ∈ N, (8.65)

where we define vJ {1, 0} = vJ {n + 1, n} = 0. This rule allocates to job i the
average of its marginal contributions when joining the coalitions of preceding and
succeeding jobs. Further, this allocation can be used to define a savings distribution
for manufacturer m, as

ym =
∑

i∈Nm

xi, m ∈ M, (8.66)

which exploits the connection between the two games.
In order to discuss the balancedness of the two games defined above, the

following result is needed.

Lemma 8.12 The game (N, vJ) is superadditive.

Proof Consider two contiguous coalitions G{a, b} and H {c, d}, where a ≤ b <

c ≤ d. There are two cases.
First, if c = b + 1, then let I {a, d} = G{a, b} ∪ H {c, d}, which is a contiguous

coalition. Let σ ∗(S) denote an optimally resequenced schedule for the jobs of S,
respectively. Concatenate σ ∗(G) and σ ∗(H) to form a (not necessarily optimal)
sequence σ(I). Then, the cost saving achieved by an optimal sequence σ ∗(I) is at
least that of σ(I). It follows that vJ (G ∪ H) ≥ vJ (G) + vJ (H).

Second, if c > b+1, the two components G{a, b} and H {c, d} are disjoint. Then,
vJ (G∪H) ≥ vJ (G)+vJ (H) if G∪H contains a larger contiguous set than in G or
H , else vJ (G ∪ H) = vJ (G) + vJ (H), which is sufficient for superadditivity. ��

We can now prove the following result.

Theorem 8.50 The cost savings allocation {xi | i ∈ N} defined in (8.65) is in the
core of the game (N, vJ).

Proof By definition, xi ≥ 0, for i ∈ N . To establish Coalitional Rationality, we
consider two cases.

Case 1. Consider contiguous coalitions G{a, b} = {σ0(a), σ0(a+ 1), . . . , σ0(b)}.
Then, we have

540 8 Cooperative Supply Chain Scheduling

∑

i∈G{a,b}
xi =

∑

i∈G{a,b}
[vJ {1, i} − vJ {1, i − 1} + vJ {i, n} − vJ {i + 1, n}]/2,

= [vJ {1, b} − vJ {1, a − 1} + vJ {a, n} − vJ {b + 1, n}]/2

≥ vJ (G{a, b}), from Lemma 8.12.

Case 2. Let Gk{ak, bk} denote a contiguous coalition, as discussed in Case 1.
Now, consider non-contiguous coalitions G = ∪kGk{ak, bk}. Then, since∑

i∈Gk
xi ≥ vJ (Gk{ak, bk}) for all k, the same result holds for G =

∪kGk{ak, bk}.
Finally, we establish Efficiency. If a = 1 and b = n, we have

∑
i∈N xi =

[(vJ {1, n} − vJ {1, 0}) + (vJ {1, n} − vJ {n + 1, n})]/2 = vJ (N). ��
This result in Theorem 8.50 can now be applied to the manufacturer’s game.

Theorem 8.51 The cost savings allocation {ym | m ∈ M} defined in (8.66) is in the
core of the game (M, v).

Proof First, xi ≥ 0, i ∈ N ⇒ yj ≥ 0, j ∈ M . Now, consider an arbitrary
coalition S of manufacturers, consisting of kS contiguous job subsets, i.e., N(S) =
∪kS
i=1Gi{ai, bi}. Then,

∑

m∈S
ym =

∑

m∈S

∑

i∈Nm

xi

=
∑

i∈N(S)

xi

=
kS∑

k=1

∑

i∈Gk{ak,bk}
xi

≥
kS∑

k=1

vJ (Gk{ak, bk})

= v(S),

where the inequality follows from Theorem 8.50 and the last equality follows from
the fact that the total savings of coalition S are generated from the maximum savings
of its kS subsets.

Finally, to establish Efficiency, we have
∑

m∈M ym = ∑
i∈N xi = vJ (N) =

v(M). ��
Remark 8.13 Cai and Vairaktarakis (2012) further study the issue of false reporting
of data by the manufacturers, and develop a mechanism to ensure truthful reporting.
They assume that the due date dj and tardiness penalty βj of manufacturer j ∈
M are private information. They describe a mechanism under which the revelation

8.7 Outsourcing Games 541

of true information is a strategy that enables all manufacturers to minimize their
true cost. We refer the reader to their work for details, and also to Chap. 9 for a
more extensive discussion of issues and solutions related to the truthful reporting of
private information.

8.7.2 Concurrent Outsourcing

Aydinliyim and Vairaktarakis (2013) study a scheduling environment with both in-
house and outsourced third-party (3P) resources. Each player, i.e., manufacturer,
can schedule its work either on its own dedicated facility or through competitive
outsourcing to the 3P. In order to complete its work as soon as possible, a player
may divide it between the two resources and process it concurrently on them.

More formally, consider a set M = {1, . . . , m} of manufacturers, which need
to satisfy demand using their own dedicated resources and a 3P’s flexible resource
which they must share competitively with other manufacturers. Each manufacturer
i has a workload Pi . The decision process is as follows. First, the 3P announces a
priority rule that it will use for sequencing work that it receives from the various
players. For example, it may announce a first-come, first-served (FCFS) rule, or a
shortest processing time (SPT) rule. Next, the players use this information to decide
the amount of their work to subcontract. If a player chooses to subcontract ti work,
0 ≤ ti ≤ Pi , then the remaining workload Pi − ti is processed on its dedicated
machine. The subcontracting decisions of the manufacturers and the 3P’s priority
rule jointly determine an initial schedule σ0. However, the initial schedule σ0 may
be changed, by cooperation between the manufacturers, into another schedule σ

which may have a lower total cost
∑

i∈M Ci(σ).
Observe that due to concurrent processing on the dedicated machine and the 3P’s

facility, in any schedule σ , the completion time Ci of player i’s work is the later of
its completion time on those two resources, i.e.,

Ci(σ) = max{Pi − ti ,
∑

k|σ(k)≤σ(i)

tk}. (8.67)

Consider the cooperative game (M, v), where

v(S) =
∑

i∈S
[Ci(σ0) − Ci(σ

∗)], (8.68)

and where for any coalition of players S ⊆ M , Ci(σ0) and Ci(σ
∗) represent the

completion time values attained by player i in an initial schedule σ0 and an optimal
schedule σ ∗, respectively. After the initial schedule σ0 is formed, the players have an
option to form a coalition S ⊆ M and coordinate their subcontracting decisions, for
the purpose of minimizing

∑
i∈S Ci(σ). However, this schedule must be admissible.

For the purposes of this game, a reschedule of the work of coalition S is admissible if
(a) it does not require the active cooperation of players outside S, and (b) it does not

542 8 Cooperative Supply Chain Scheduling

adversely affect players outside S. From (a), a coalition must consist of work that is
processed consecutively in σ0. From (b) and (8.67), a coalition that does not end with
the work of the last player has zero value. This is necessary because, from (8.68), the
value of a coalition derives from increasing its subcontracting to the 3P, which will
adversely affect any later players in the schedule. Hence, an admissible coalition
with positive value must end with the last player. This result is formalized in part (i)
of Lemma 8.13 below.

Let S[a, b] denote a coalition of players whose work is processed consecutively
in positions a through b in σ0. This definition enables an efficient computation
of the characteristic function v(S) of any coalition S ⊆ M in the game (M, v),
without evaluating an exponential number of coalitions. As shown below, it also
facilitates finding a closed form expression for a core allocation of the savings from
the rescheduling of the jobs.

Aydinliyim and Vairaktarakis (2013) establish the following preliminary result.
We refer the reader to their work for details of their proof.

Lemma 8.13

(i) v(S[a, b]) = 0, if b �= m.
(ii) If T is a maximally connected coalition, i.e., T = S[a1, b1] ∪ . . . ∪ S[ar , br],

then

v(T) =
r∑

k=1

v(S[ak, bk]) =
{
v(S[ar , br]), if br = m

0, otherwise.
(8.69)

Lemma 8.13 is used to prove the following result.

Theorem 8.52 The cooperative savings game (M, v) is convex.

Proof First, consider connected coalitions. There are four cases.

(i) S[a, b] and S[a′, b′] with a, a′ ≥ 1 and b, b′ < m. In this case, v(S[a, b]) =
v(S[a′, b′]) = 0.

(ii) S[a,m] and S[a′, b′] with a, a′ ≥ 1 and b, b′ < m. In this case,
v(S[a,m] ∪ S[a′, b′]) + v(S[a,m] ∩ S[a′, b′]) = v(S[min{a, a′}, b′]) +
v(S[max{a, a′}, b′]) ≥ v(S[a,m]) = v(S[a,m]) + v(S[a′, b′]). In this
case, the inequality follows from the superadditivity of v, i.e., from
v(S[min{a, a′},m]) ≥ v(S[a,m]), and the last equality follows from b′ < m

which implies v(S[a′, b′]) = 0.
(iii) S[a, b] and S[a′,m] with a, a′ ≥ 1 and b < m. The proof is similar to (ii).
(iv) S[a,m] and S[a′,m] with a, a′ ≥ 1. In this case, v(S[a,m] ∪ S[a′,m]) +

v(S[a,m] ∩ S[a′,m]) = v(S[min{a, a′},m]) + v(S[max{a, a′},m]) =
v(S[a,m]) + v(S[a′,m]).

Finally, for disconnected coalitions, the result follows from Lemma 8.13, part
(ii). ��

From Theorem 8.52 and the work of Bondareva (1963) and Shapley (1967), we
know that the cooperative game (M, v) is balanced and the Shapley value is a core
solution.

8.7 Outsourcing Games 543

Again from Lemma 8.13, it suffices to consider only coalitions S[a,m], for
1 ≤ a < m. Now, define arbitrary constants 0 ≤ λ1, . . . , λm−1 ≤ 1. Then, the
characteristic function v can be written, for coalitions S[a,m] where 1 ≤ a < m,
as:

v(S[a,m]) =
m−1∑

k=a

λk[v(S[k,m]) − v(S[k + 1,m])]

+
m∑

i=a+1

i−1∑

k=a

(1 − λk)[v(S[k,m]) − v(S[k + 1,m])]
[|S[a,m]| − k + a − 1] . (8.70)

We now provide an example of the expression in (8.70).

Example 8.31 (Coalition Value Calculations in a Concurrent Outsourcing Game)
Consider S[3, 6] for a game where m = 6. Then, from (8.70), we have

v(S[3, 6]) = λ3[v(S[3, 6]) − v(S[4, 6])] + 1 − λ3

3
[v(S[3, 6]) − v(S[4, 6])]

+λ4[v(S[4, 6]) − v(S[5, 6])]
+1 − λ3

3
[v(S[3, 6]) − v(S[4, 6])] + 1 − λ4

2
[v(S[4, 6]) − v(S[5, 6])]

+λ5v(S[5, 6])
+1 − λ3

3
[v(S[3, 6]) − v(S[4, 6])] + 1 − λ4

2
[v(S[4, 6]) − v(S[5, 6])]

+(1 − λ5)v(S[5, 6]).

We now use (8.70) to define a cost savings allocation rule based on the Shapley
value and show that it is a core solution. This rule distributes a fraction λi of the
marginal savings achieved by adding the player processed in ith position on the
outsourced resource to a coalition of his followers in σ0, and distributes a fraction
(1 − λi) among those followers as compensation for facilitating rescheduling. The
main result for this allocation rule now follows.

Theorem 8.53 The cost savings allocation rule:

xi = λi
[
v(S[i, m]) − v(S[i + 1,m])]

+
i−1∑

k=1

(1 − λk)
[
v(S[k,m]) − v(S[k + 1,m])]

(m − k)
, i ∈ M, (8.71)

defines a core allocation for the cooperative game (M, v) defined in (8.68).

544 8 Cooperative Supply Chain Scheduling

Proof Observe that xi ≥ v({i}), for i ∈ M . Next,

∑

i∈S[a,m]
xi =

m−1∑

i=a

λi
[
v(S[i, m]) − v(S[i + 1,m])]

+
m∑

j=2

j−1∑

i=1

(1 − λi)
[v(S[i, m]) − v(S[i + 1,m])]

(m − i)

≥
m−1∑

i=a

λi
[
v(S[i, m]) − v(S[i + 1,m])]

+
m∑

j=a+1

j−1∑

i=a

(1 − λi)[v(S[i, m]) − v(S[i + 1,m])]
[|S[a,m]| − i + a − 1]

= v(S[a,m]),

where the inequality follows from a ≥ 1, and |S[a,m]|− i+a−1 = m− i if i ≥ a.
Finally, we have

∑

i∈M
xi =

m−1∑

i=1

λi
[
v(S[i, m]) − v(S[i + 1,m])]

+
m∑

h=2

h−1∑

i=1

(1 − λi)
[
v(S[i, m]) − v(S[i + 1,m])]

(m − i)

=
m−1∑

i=1

λi
[
v(S[i, m]) − v(S[i + 1,m])]

+
m−1∑

i=1

m∑

h=i+1

(1 − λi)
[
v(S[i, m]) − v(S[i + 1,m])]

(m − i)

=
m−1∑

i=1

λi
[
v(S[i, m]) − v(S[i + 1,m])]

+
m−1∑

i=1

(1 − λi)[v(S[i, m]) − v(S[i + 1,m])]

=
m−1∑

i=1

[v(S[i, m]) − v(S[i + 1,m])]

8.8 Future Research 545

= v(S[1,m])
= v(M).

��
Remark 8.14 Aydinliyim and Vairaktarakis (2013) conduct a computational study
that yields valuable insights about effective management of the flexible third-party
resource. First, they demonstrate the benefit of processing the shortest subcontracted
load first, rather than using the first-come, first-served rule that is commonly used in
practice. Second, they observe that the subcontractor’s sequencing priority scheme
and the savings allocation scheme decisions should be coordinated, in order to
achieve fair coordination of the manufacturers’ subcontracting decisions.

The results presented in this section show that various subcontracting problems
within supply chain scheduling can be effectively coordinated using cooperative
games.

8.8 Future Research

We describe several topics of future research interest. These are organized around
the sections of this chapter, i.e., sequencing games, scheduling games, project
management games, capacity allocation games in supply chains, and outsourcing
games.

• For the topic of sequencing games discussed in Sect. 8.3, Aydinliyim and
Vairaktarakis (2011) provide a review of the related literature and several
suggestions for future research. Related to the implementability of sequencing
game solutions, they note that recent advances in information technology are
substantially enhancing the information sharing capabilities of supply chain
members. Hence, many coordination problems that have been studied in the
supply chain management literature can be revisited to investigate the benefit
of coordinating decisions at the detailed scheduling level. Several open research
questions arise in this context, based on the assumptions of such games. The first
is more detailed investigation of reasonable assumptions about initial schedules.
For example, a common assumption is that jobs are sequenced as first-come,
first-served (FCFS). However, since the players know that resequencing will
be possible, the use of strategic behavior may modify this assumption. Also,
typical models assume that one dollar lost in booking costs can be compensated
by one dollar worth of improvements in the delivery time, which is a strong,
although mathematically useful, assumption that can be relaxed. The use of
Pareto-optimal schedules may generate new insights. Full information sharing
is another common assumption. Alternative treatments of information include
Bayesian models with asymmetric information, which motivates studying the
benefits of sharing information and mechanisms that induce truth-telling by the
players, as discussed in Chap. 9. Most manufacturing systems are more complex

546 8 Cooperative Supply Chain Scheduling

than those considered in the sequencing game works in the literature, which
motivates the study of more general systems. These systems include the machine
environments of classical scheduling: parallel machines, flowshops, jobshops,
and openshops. Finally, resource sharing is of importance in large and complex
projects where many different contractors are responsible for different groups
of tasks. In such models, players who finish their tasks earlier can move their
resources to other tasks in return for side payments, and this process of resource
sharing can create additional value for the grand coalition.

• Within the class of sequencing games, Gerichhausen and Hamers (2009) consider
a game defined over a partition sequencing situation. The underlying scheduling
problem has strong similarities to that of Hall and Potts (2004). That work
suggests several related problems. Other definitions of scheduling cost are also
relevant, as are more general machine configurations. In related work, Hall and
Potts (2010) consider rescheduling problems where, after a schedule has been
formed, the release date of some jobs is delayed; it would be useful to study
sequencing games defined over such problems.

• Curiel (2015) studies multi-stage sequencing games. For future research, she rec-
ommends the study of multi-stage permutation games (see Sect. 8.3.1.1) where
compensation is needed for the loss of an advantageous position. Also of value
is the study of multi-stage sequencing games that incorporate uncertainty, which
can be modeled in various ways, or games that include dynamic compensation
rules.

• For scheduling games, Liu et al. (2018a) develop a valuable new mechanism for
maintaining cooperation by combining subsidization and penalties. This work
suggests both technical and economic questions of interest. First, on the technical
side, even the subproblem of finding the optimal subsidy for a given level of
penalty is computationally challenging. Second, there are significant computa-
tional challenges that require better approximation and faster convergence when
the penalty-subsidy function has a large number of breakpoints. Third, besides
the scheduling game which we discuss in detail, the authors also provide results
for three closely related scheduling games. This motivates the characterization
of a new “complexity boundary”, to identify which scheduling games admit an
efficiently found penalty-subsidy function. On the economic side, it is intriguing
to model the opportunity cost of subsidy decisions within various models. For
example, the decision to implement a subsidy may create a cost that removes,
or reduces the efficiency of, production capacity. With this perspective, the level
and efficiency of production resources should be viewed endogenously, thereby
enriching the analysis of the tradeoff between penalties and subsidies.

• Regarding the project planning game for subcontractors studied by Curiel (2011)
and discussed in Sect. 8.5, further research should be directed toward relaxing
the condition that all coalitions should have the same unique critical path.
Generalization of the model by considering allocation schemes that are not linear
and duration functions that are not piecewise linear provide other opportunities
for further research. It is also relevant to consider a situation where, as long as
the project is completed before a certain due date, no penalty is incurred.

8.8 Future Research 547

• The project execution game that is also discussed in Sect. 8.5 raises several
significant research issues. A fundamental issue that is not fully resolved is
what solution concepts are appropriate. Castro et al. (2007) model a project
game based on what they argue are desirable properties: separability, non-
manipulability by splitting, and independent slack. However, Estévez-Fernández
(2012) questions the relevance of these concepts and provides counterexamples.
Her own work concentrates on traditional solution concepts within cooperative
games, especially the core. Nonetheless, Bergantiños et al. (2018) argue that,
within projects, strategic stability has no clear definition, since no group of
activities can do without the others. This means that concepts such as the
core are not necessarily applicable. They therefore consider several fairness
properties: cost monotonicity (i.e., no activity should pay more if it finishes
ahead of schedule), dummy (i.e., an activity finishing on schedule pays nothing),
anonymity (i.e., the allocation does not depend on the name of the activity), and
symmetry (i.e., symmetric activities pay the same). Both approaches can provide
valuable insights about appropriate rewards in project execution games.

• As a more general comment about project games, because of the precedence
requirements of the project and also the resource sharing between activities that
often occurs, it is problematic to define reasonable criteria for admissibility of
rearrangements. Therefore, relaxations of admissibility requirements should be
studied.

• Section 8.6 discusses capacity allocation games. Hall and Liu (2010) discuss sev-
eral directions for further research. First, the problem of testing whether instances
of the knapsack game have fractional core members remains open. Second, since
several of the algorithms presented require pseudo-polynomial time, it would be
useful to develop effective heuristics to solve instances with large data values.
Third, other measures of scheduling cost besides the total weighted completion
time can be considered. Also, other operational decisions such as distribution
can be incorporated into the supply chain considered. Furthermore, the supply
chain studied in that work, which consists of one manufacturer and multiple
distributors, can be generalized to consider multiple competing manufacturers.
Finally, the impact of strategic behavior, such as deliberate overordering, on the
manufacturer’s and distributors’ coordination decisions, should be considered.

• Section 8.7 studies outsourcing games. In this context, Cai and Vairaktarakis
(2012) suggest several opportunities for further investigation. One practical
research direction is to consider multiple external resources, rather than only a
single third party. More general cost functions of relevance could include cost
of earliness (as a proxy for inventory holding cost) as well as lateness. Also of
importance is the consideration of various other capacity reservation protocols,
for example, based on an auction model. It would also be valuable to consider, in
situations with private information, the effect of strategic behavior. Such models
should yield many practical and challenging topics for future research.

• Also for outsourcing games, Aydinliyim and Vairaktarakis (2013) mention
several interesting future research directions that address other practical subcon-
tracting issues. Such research opportunities include considering pricing issues,

548 8 Cooperative Supply Chain Scheduling

incorporating due dates, and varying the sensitivity to delay of the players.
Asymmetric information issues and the resulting moral hazard problem can also
be studied. Another topic worthy of investigation is sequential decision making
settings where some of the players have more power and act as Stackelberg
leaders. We refer the reader to Sect. 9.3.1 for related discussions.

To summarize this chapter, we observe that there are numerous practically
important and mathematically challenging research problems within the area of
cooperative supply chain scheduling.

Chapter 9
Noncooperative Supply Chain Scheduling

Abstract This chapter discusses the application of noncooperative solution meth-
ods, especially noncooperative game theory, to decentralized supply chain schedul-
ing problems. We consider a wide variety of scheduling problems that have
classically been modeled and analyzed from the perspective of a centralized
decision maker. By viewing the jobs or resources within these applications as
individual self-interested players, noncooperative supply chain scheduling games
are defined over those problems. We consider games with complete information,
first without and second with structural enhancements, as well as games where the
players have private information which they may report untruthfully. Within private
information games, we study mechanism design both without and with payments
and illustrate various concepts of truthfulness that are established by deterministic or
randomized mechanisms. Our analysis of these games applies all the main concepts
of noncooperative games, from the perspective of finding equilibrium solutions and
analyzing their quality.

9.1 Introduction

The literature of cooperative solutions to decentralized supply chain scheduling
problems is impressive, as discussed in Chap. 8. However, there are various general
situations where cooperation between agents (referred to as players in our work)
is difficult, or even impossible, to achieve. One typical situation occurs where
the players are fundamentally hostile toward each other and each seeks to drive
the other players out of the market. Another frequently occurring situation occurs
where the players do not trust each other sufficiently to share their information in
a way that would enable cooperation. Another problem is that cooperative games
require large amounts of information to be collected from many players, and this
may be administratively difficult. Yet another problem is that the optimization
problem of the grand coalition under cooperation is in many cases large and
computationally intractable. Besides these general situations, there are other issues
that are specific either to particular sets of players or to particular applications that

© Springer Nature Switzerland AG 2022
Z.-L. Chen, N. G. Hall, Supply Chain Scheduling, International Series
in Operations Research & Management Science 323,
https://doi.org/10.1007/978-3-030-90374-9_9

549

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-90374-9_9&domain=pdf
https://doi.org/10.1007/978-3-030-90374-9_9

550 9 Noncooperative Supply Chain Scheduling

make it problematic to obtain cooperative solutions. To address these situations,
an alternative and substantial body of work has developed that uses noncooperative
solutions to provide insights about supply chain scheduling applications. Within this
context, the information requirements and computational challenges are typically
easier to meet in the case of noncooperative solutions than cooperative ones.
Moreover, finding solutions may be possible through the use of local information
and decisions involving local improvement, based on simple equilibrium concepts.
This section discusses four different environments for the study of noncooperative
solutions to supply chain scheduling problems.

The first environment studied is complete information settings. In such settings,
all information is publicly known to all players and a central planner if there is
one. More specifically, the players make public all the information about the data
they use to determine a strategy, although without revealing the strategy itself. Even
so, the outcome of an equilibrium solution is typically not optimal for the overall
system. The identification of equilibrium solutions for a supply chain scheduling
problem makes it important to measure its solution quality, relative to that of an
optimal solution for the system. As measures of the resulting loss, the ratio between
the cost of the worst equilibrium and the optimal system cost is known as the price of
anarchy, and the difference between them is known as the absolute price of anarchy.
However, the price or absolute price of anarchy is in many cases high, suggesting
that some equilibrium solutions are very inefficient. A related issue of importance
under complete information is specifying the rules under which the players may
interact and how this affects the quality of the solutions obtained.

The second environment is complete information settings with enhancement.
Because the quality of system equilibria can be poor relative to system optimal
solutions, even when complete information is available, there is motivation to
enhance the system. There are various approaches by which a noncooperative supply
chain scheduling game can be enhanced, such that equilibrium outcomes are closer
to an optimal system outcome. One approach is to allow the players to make
their decisions sequentially, rather than simultaneously. We discuss some supply
chain scheduling applications where this procedure leads to improved solutions. An
alternative enhancement is to allow central control of some of the players. These
players, or leaders, make their decisions first, motivated by optimizing system
performance, with complete information about how the independent players, or
followers, will respond. This leads to the study of Stackelberg games. Such games
also model other supply chain scheduling applications where the leaders are selfish
but anticipate the reactive decisions of other players. A third possible enhancement
is the incentivization of decisions that are less selfish, i.e., at least partly altruistic,
and therefore more supportive of the overall social welfare. Finally, we consider
methods by which a central authority can manipulate players to move from a
poor quality equilibrium to a better quality one, for example by public service
announcements.

Both the third and fourth environments involve some private information that
is known only to its owner. In this situation, players may not necessarily report
their information truthfully, which makes it harder to achieve a good outcome of
the game. For example, a player may believe that, by underreporting the processing

9.1 Introduction 551

time of his job, that job will be given an earlier position in the schedule. In the third
environment, the study of private information settings without payments, the truthful
reporting of this information is incentivized through algorithm design without the
use of additional payments to players. There is also other information that is public
and therefore known to all players, including a central planner. The central planner,
with the objective of optimizing overall system performance, creates an outcome,
i.e., a schedule, based on information reported by the players. We formally introduce
the concept of a mechanism and provide a generic example. We identify three levels
of truthfulness, the first of which is deterministic, while the second and third require
randomization. The examples we provide demonstrate a deterministically truthful
mechanism that also finds a socially optimal solution, and the use of randomization
to obtain good approximation bounds under truthful reporting.

The fourth environment is the study of private information settings with pay-
ments. Again, the players know some private information about their data that is
not known to other players or to the central scheduler. The main difference from
the third environment is that we consider the use of payments to support a truthful
algorithm. This is the topic of algorithmic mechanism design, for which supply
chain scheduling models are a widely used application. In this environment, a
mechanism has two components: an algorithm that takes the information reported
by the players and uses it to develop an outcome, which in the supply chain
scheduling context is typically a schedule, and a payment scheme that ensures
truthful reporting by the players. We provide an overview of the main design
concepts for this environment. We provide examples of how to design mechanisms
at three different levels of truthfulness. Finally, we study an environment where
players have probabilistic beliefs about the private information of other players,
which requires the use of different design concepts.

In several of these environments, the term mechanism plays an important but
varying role, and we now provide a clarification about its different uses. When we
discuss supply chain scheduling games where all information is public, the role
of a mechanism is to coordinate the decisions of selfish players around a solution
that is socially optimal. For example, it may be possible to identify an optimal
solution that is stable. We describe such a mechanism as a coordination mechanism.
Alternatively, when we discuss a game that includes private information, a truthful
mechanism is one that incentivizes all the players to report their information
truthfully to a central authority. For game solutions that include not only an
algorithm but also payments between the central authority and the players, we use
the term algorithmic mechanism. Thus, within this book, an algorithmic mechanism
is a truthful mechanism that includes a payment scheme.

This chapter is organized as follows. Section 9.2 introduces complete information
settings, illustrates the use of equilibrium concepts to study scheduling problems,
and defines the price of anarchy with several examples. We also provide examples
of algorithms for finding a Nash equilibrium and results which show that, in some
situations, doing so is an intractable problem. Section 9.3 discusses enhanced
complete information settings. Section 9.4 demonstrates the design and application
of truthful algorithms where some information is private but payments are not used.
Section 9.5 studies settings with private information and focuses on algorithmic

552 9 Noncooperative Supply Chain Scheduling

Chapter 9:
Noncooperative Supply Chain Scheduling

Section 9.2: Complete Information:
Nash equilibrium; price of anarchy;

earliness and tardiness costs;

subcontracting games;

project scheduling games;

local sequencing rules;

congestion and activation costs.

Section 9.3: Enhanced Complete Information:
sequential decision games;

leader-follower games;

altruistic games;

central authority manipulation.

Section 9.4: Private Information, No Payments:
design concepts;

deterministic truthfulness;

randomized mechanism.

Section 9.5: Private Information, Payments:
design concepts;

deterministic truthfulness;

universal truthfulness;

truthfulness in expectation;

Bayes-Nash incentive compatibility.

Fig. 9.1 Overview of the topics covered in Chap. 9

mechanism design, including the design of payment schemes, for supply chain
scheduling problems. Section 9.6 identifies future research topics within the study
of noncooperative games for supply chain scheduling.

Figure 9.1 provides an overview of the topics within noncooperative solutions to
decentralized supply chain scheduling problems that are discussed in this chapter.

9.2 Complete Information Games

Complete information games provide a simple starting point for the study of
noncooperative games. In Sect. 9.2.1, we describe the general environment of
noncooperative games and define important noncooperative game concepts, includ-
ing a Nash equilibrium, the price of anarchy, and the absolute price of anarchy.
Section 9.2.2 provides several examples of how to find a Nash equilibrium for a
supply chain scheduling problem. For some applications, doing so is shown to be
intractable. For other applications, a Nash equilibrium can be found efficiently, but
the imposition of a constraint on solution quality makes the problem intractable.

9.2.1 Noncooperative Game Concepts

Heydenreich et al. (2007) provide an inviting overview of noncooperative games
that are defined for supply chain scheduling problems. Within the literature of

9.2 Complete Information Games 553

noncooperative games, it is common to refer to an instance of a scheduling problem
as a scheduling situation and to refer to the corresponding instance of a related
game as being defined over a scheduling situation. We briefly review the essential
definitions for scheduling problems within the supply chain scheduling environ-
ment. These definitions arise within the study of classical scheduling problems and
are independent of the assumptions of noncooperative games that are defined over
them.

In the scheduling applications we consider, there is a set N = {1, . . . , n} of jobs.
The jobs require processing, in most but not all cases nonpreemptively, i.e., without
interruption, on a set M = {1, . . . , m} of machines. The data for the jobs is similar
to that within classical scheduling: a processing time pj and a weight or urgency
measure wj . In some problems, each job also has a due date dj or a release date rj .
If m ≥ 2, the m machines are configured in parallel. In this case, the processing time
of a job j on machine i is pj for i ∈ M when the machines are identical; or pj/si
on machine i that has speed si when processing times are proportional or uniform;
or pij when processing times are unrelated across the machines. For specific supply
chain scheduling games discussed below, additional notation is defined as needed.

We now discuss some definitions for noncooperative supply chain scheduling
games that involve a number of self-interested players. In many supply chain
scheduling applications, we may think of the self-interested players as customers,
each of whom owns one or more jobs; or equivalently, the jobs themselves can
represent the players. Alternatively, we may view the machines as players. A player
is defined by his type, which is his information about the scheduling problem,
whether that information is public or private. Thus, player k has type tk . Available
to the players are several possible actions. For example, in some applications,
a player may select any of several machines to schedule his job. An allocation
algorithm computes an outcome, i.e., a schedule, from the known public or reported
information and the actions of all the players. Let Cj , for j ∈ N , denote the set
of job completion times in a schedule found by the allocation algorithm. To ensure
that this schedule is well defined, it may be necessary to specify a local rule for the
machines. For example, if the players each choose a machine for their jobs, then a
local rule for each machine may specify that the jobs are sequenced in index order
or shortest processing time (SPT) order. Once the jobs are assigned to the machines,
the use of this rule is sufficient to define a schedule. More generally, the sequencing
rule may vary between the machines.

While a focus is on the incentivization and decision making of the self-interested
players, it is important to evaluate the overall system performance, typically
measured by cost, that results from those decisions. Both the construction of the
overall schedule and the evaluation of its utility, cost, or profit are performed by
a central authority, or central planner, or central scheduler. The central authority
optimizes a social objective for the overall system. In some applications, the central
authority owns no resources, whereas in other applications the players own no
resources and access resources owned by the central authority. Meanwhile, various
players may value any given schedule differently. For example, since a player is
self-interested, he is typically concerned only with the costs(s) of his own job(s).
This is where the use of payments to enhance the game may be helpful, in that they

554 9 Noncooperative Supply Chain Scheduling

can be used to encourage the players to make decisions that improve the quality
of the overall solution. To every action of a player, we associate a strategy. A
game is a mapping from the set of strategies into the set of schedules. Let uk(x)
denote the utility gained by player k from a vector of strategies for the n players,
x = (x1, . . . , xn). The following three sections review and illustrate fundamental
concepts within noncooperative games: a Nash equilibrium, the price of anarchy,
and the absolute price of anarchy, respectively.

9.2.1.1 Nash equilibrium

An important concept for analyzing noncooperative games is a Nash equilibrium
(Nash, 1951), as now defined. Consider a game of maximizing utility. The following
definitions are needed. See Sect. 2.3.6 for a brief introduction to several related
concepts. Let N = {1, . . . , n} denote a set of players. Let Xi denote the set of
strategies available to player i, i ∈ N .

Definition 9.1 A pure strategy solution is one where each player makes his
decisions and receives his outcome, deterministically. A vector of strategies for the
n players, x = (x1, . . . , xn) ∈ X1 × · · ·×Xn, is a pure strategy Nash equilibrium if

uk(x) ≥ uk(x1, . . . , xk−1, x
′
k, xk+1, . . . , xn), x′

k ∈ Xk, k = 1, . . . , n. (9.1)

Equation (9.1) states that, given the strategies of all other players, the utility of any
individual player k cannot be improved by any other feasible strategy x′

k �= xk .
Hence, no player has any incentive to change strategy unilaterally, and the system
is in equilibrium. However, this equilibrium solution does not in general achieve
an optimal outcome for the overall game, i.e., it may not be a socially optimal
solution. In a supply chain scheduling game, a socially optimal solution maximizes
the total profit or minimizes the total cost of the system. In a centralized supply chain
scheduling context, as studied in Chaps 3 through 6, this is viewed more simply as
an optimal solution for a single decision maker.

Importantly, not every game admits a pure strategy Nash equilibrium. We provide
an example from supply chain scheduling, by considering the classical scheduling
problem P2||∑Cj , which requires minimization of the total completion time of
all the jobs when they are scheduled on two identical parallel machines. There
are two players, each of whom owns a subset of the jobs and minimizes his total
completion time only over his own jobs. However, those costs may be influenced by
the scheduling decisions of the other players. The strategy of each player consists
of deciding on which of the two machines to schedule each of his jobs. A socially
optimal solution in this game minimizes the total completion time of all the players.

Example 9.1 (A Game Without a Pure Strategy Nash equilibrium) Consider an
example with two players, each of whom owns two jobs, and two machines. Player 1
owns jobs a and b, and player 2 owns jobs c and d. The processing times of the jobs
are pa = 1, pb = 4, pc = 3, and pd = 5. Each machine sequences the jobs assigned
to it in SPT order, as is known to be optimal for the classical scheduling problem

9.2 Complete Information Games 555

Table 9.1 Cost table for
Example 9.1

P 1\P 2 ∅ {c} {d} {c, d}
∅ 9, 17 6, 13 9, 9† 6, 11

{a} 8, 15 5∗, 13 8, 9† 5∗, 13

{b} 5∗, 13 8, 9† 5∗, 13 8, 15

{a, b} 6, 11 9, 9† 6, 13 9, 17

P2||∑Cj (Smith, 1956). Table 9.1 shows the cost table for both players, given their
strategy of which job(s) to schedule on machine 1 shown in the row for player 1 and
in the column for player 2. The other jobs are scheduled on machine 2. For example,
suppose both players choose the strategy ∅, i.e., they schedule both of their jobs on
machine 2. Implementing the SPT rule, the sequence of those jobs on machine 2
is shortest processing time (SPT), i.e., a, c, b, d. Hence, player 1 incurs costs of
Ca = 1 and Cb = 1 + 3 + 4 = 8, for a total cost of 9, and player 2 incurs costs of
Cc = 1 + 3 = 4 and Cd = 1 + 3 + 4 + 5 = 13, for a total cost of 17. Thus, the entry
in Table 9.1 corresponding to the strategy of ∅ for both players shows their costs as
9, 17. The notation ∗ against the relevant cost for player 1 indicates that it is the best
strategy for player 1 who chooses between the rows of the table, given player 2’s
strategy shown in the column. Similarly, the notation † against the relevant cost for
player 2 indicates that it is the best strategy for player 2 who chooses between the
columns of the table, given player 1’s strategy shown in the row. For example, if
player 2 chooses ∅, the best response of player 1 is {b}, with a cost of 5. Observe
that there is no solution in Table 9.1 where both players have a best response, given
the other player’s strategy. This shows that there is no Nash equilibrium in pure
strategy for this game.

A useful alternative for a game without a pure strategy equilibrium is a Nash
equilibrium in mixed strategy, as now defined. Nash (1951) shows that for any game
with a finite number of strategies, there exists an equilibrium in mixed strategies.

Definition 9.2 A mixed strategy is one where the decisions of each player are
defined by a probability distribution over the possible strategies that are available.
Under a mixed strategy, a player maximizes his expected utility. Formally, let
Δ(Xk) denote the set of probability distributions over the set of available pure
strategies Xk for player k, and let E[·] denote expectation. Since this is a utility
maximization problem, a vector of strategies for the n players, x = (x1, . . . , xn) ∈
Δ(X1) × · · · × Δ(Xn), is a mixed strategy Nash equilibrium if

E[uk(x)] ≥ E[uk(x1, . . . , xk−1, x
′
k, xk+1, . . . , xn)], x′

k ∈ Δ(Xk), k = 1, . . . , n.
(9.2)

We now illustrate a mixed strategy equilibrium.

Example 9.2 (Mixed Strategy Nash equilibrium for the Game in Example 9.1)
Consider Table 9.1 in Example 9.1. Observe that, irrespective of the strategy of
player 2, it is always better for player 1 to use strategy {a} over strategy ∅ and
always better to use strategy {b} over strategy {a, b}. Similarly, it is always better

556 9 Noncooperative Supply Chain Scheduling

for player 2 to use strategy {c} over strategy ∅ and always better to use strategy {d}
over strategy {c, d}. Hence, the only pairs of strategies that are nondominated, and
thus receive nonzero probability, are ({a}, {c}), ({a}, {d}), ({b}, {c}), and ({b}, {d}).
A mixed strategy equilibrium is defined by Pr({a}) = Pr({b}) = Pr({c}) =
Pr({d}) = 0.5, which results in an expected cost of 6.5 for player 1 and 11.0 for
player 2, for a total of 17.5. The definition of this is that it does not increase the
expected utility of either player unilaterally to change his probability distribution
over his decisions.

Finally, observe that this solution does not minimize the total system cost, which
is 8 + 9 = 17, as achieved by the strategies {a} for player 1 and {d} for player 2, or
symmetrically {b} for player 1 and {c} for player 2.

9.2.1.2 Price of Anarchy

In a typical game, there may be many Nash equilibrium solutions with varying
levels of profit or cost for the overall system. From the perspective of a central
authority, it is valuable to know the worst-case outcome for the overall system
among those solutions. This information has practical importance, because the
system may naturally evolve to it and, since it is in equilibrium, remain there.

Definition 9.3 Consider a cost minimization game, where z∗ denotes the minimum
total system cost, and zN(σ) denotes the cost of a pure Nash equilibrium solution
σ . Then, the price of anarchy (PoA) is defined by Koutsoupias and Papadimitriou
(1999) as

PoA = max
σ∈NE

{zN(σ)}/z∗, (9.3)

where NE is the set of strategies that are at a Nash equilibrium. Analogously, in
a profit maximization game, we let zN(σ) denote the profit of a Nash equilibrium
solution σ , and PoA = z∗/minσ∈NE{zN(σ)}.
Exact analysis of the price of anarchy is possible for some supply chain scheduling
games. Koutsoupias and Papadimitriou (1999) provide the following example.

Example 9.3 (PoA of a Mixed Strategy Nash equilibrium) Consider the classical
scheduling problem P2||Cmax, where jobs must be allocated to either of two
machines to minimize the makespan of the schedule. Define a related game where
the social objective is also to minimize the makespan. Each player minimizes the
completion time of his own single job by choosing a machine on which to process
it.

Consider an instance of this game where there are two players, each with one job,
i.e., n = 2, and let p1 = p2 = 1. Let x∗

i denote the probability with which player i
chooses to allocate his job to machine 1. A mixed strategy Nash equilibrium is given
by x∗

1 = x∗
2 = 0.5, i.e., each player chooses to schedule his job on machine 1 and on

machine 2 with equal probability. With probability 0.5, both jobs are scheduled on
the same machine, which results in a makespan of 2, and with probability 0.5, the

9.2 Complete Information Games 557

jobs are scheduled on different machines, which results in a makespan of 1. Hence,
the expected makespan is 0.5(1) + 0.5(2) = 1.5. The optimal centralized solution
schedules the jobs on different machines, resulting in a makespan of 1. Hence, the
price of anarchy is at least 1.5. Moreover, Koutsoupias and Papadimitriou (1999)
provide a matching upper bound that establishes that the PoA is exactly 1.5.

Remark 9.1 Since the set of mixed strategies contains the set of pure strategies as
a subset, and from (9.3), the PoA over pure strategies is less than or equal to that
over mixed strategies in a cost minimization or profit maximization game. That is,
the PoA is no worse under pure strategies than under mixed strategies.

It is therefore interesting, for comparison, to consider the problem discussed in
Example 9.3 over pure strategies. Heydenreich et al. (2007) prove the following
result.

Theorem 9.1 For problem P2||Cmax, the PoA of pure strategy Nash equilibria is
4/3.

Proof There are n jobs in this game. To prove the upper bound, consider an arbitrary
schedule in pure strategy Nash equilibria. Let T1, T2 denote the total processing time
on machines 1 and 2, respectively; hence, Cmax = max{T1, T2}, where without loss
of generality we let T2 = T1 + δ, and δ ≥ 0. If machine 2 has only one job, then
the schedule is optimal, i.e., Cmax = T ∗. Otherwise, any job on machine 2 must
have a processing time of at least δ; else it would move to machine 1. Therefore,
T1 + δ ≥ 2δ ⇒ T1 ≥ δ. An optimal schedule cannot do better than divide δ equally
between the two machines, hence T ∗ ≥ T1 + δ/2. Therefore,

PoA = max{T1, T2}
T ∗ = T2

T ∗ ≤ T1 + δ

T1 + δ/2
≤ 2δ

3δ/2
= 4/3, (9.4)

where the second inequality is obtained by setting T1 as small as possible, i.e., T1 =
δ.

The following example shows that the upper bound established in (9.4) is
attainable in this game.

Example 9.4 (Lower Bound on PoA for a Two Machine Makespan Game) Consider
an instance of a game defined over problem P2||Cmax, where n = 4, p1 = p2 = 1,
and p3 = p4 = 2. An optimal solution schedules one job with processing time 1
and one job with processing time 2 on each machine, giving Cmax = 3. However,
consider a schedule with jobs 1 and 2 on machine 1, and jobs 3 and 4 on machine 2,
giving Cmax = 4. Since no job can move to a different machine and reduce its cost,
this schedule is a pure strategy Nash equilibrium. Hence, PoA ≥ 4/3. ��

Lee et al. (2012) consider the price of anarchy in settings with two parallel
uniform, i.e., proportional speed, machines. In a game they describe in this environ-
ment, the social objective is the minimization of the total completion time of all the
jobs. Each player owns a single job. The objective of each player is to minimize the
completion time of his job. The classical scheduling problem underlying this game

558 9 Noncooperative Supply Chain Scheduling

is denoted as Q2||∑Cj . To give some context for this analysis, we provide two
related results for the identical parallel-machine case P2||∑Cj and the unrelated
parallel-machine case R2||∑Cj .

Theorem 9.2 If each machine adopts a local SPT policy in problem P2||∑Cj ,
then the PoA is 1.

Proof The assumption in the theorem implies that, on each machine, jobs are
scheduled in SPT order. Index the entire set of jobs in SPT order. Assume, without
loss of generality, that the shortest job is scheduled on machine 1. Within all possible
schedules that satisfy these conditions, we call a schedule in which all the odd
numbered jobs are scheduled on machine 1 and all the even numbered jobs are
scheduled on machine 2, an alternating schedule. We now show that any schedule
with SPT ordering on both machines that is at a Nash equilibrium is an alternating
schedule.

Observe that in an alternating schedule the total processing time on machine 1
is not smaller (respectively, not larger) than that on machine 2 after the scheduling
of each odd (resp., even) numbered job. Let k denote the lowest indexed job that
does not follow the alternating schedule. There are two cases. If k is odd but job
k is scheduled on machine 2, then from the above observation, job k can move to
machine 1 where its completion time will be smaller or the same. Alternatively, if k
is even but job k is scheduled on machine 1, then the number of jobs on machine 1 is
greater by two than the number on machine 2, and again from the above observation,
job k can move to machine 2 where its completion time will be smaller or the same.
It follows that any schedule with SPT ordering on both machines that is at a Nash
equilibrium is an alternating schedule.

Next, observe that the total completion time cost
∑

Cj of any job sequence
can be expressed as the sum of job processing times multiplied by a positional
penalty that represents the number of jobs scheduled after job j and job j itself.
Given this definition, it can be shown by adjacent pairwise interchange of jobs
that the total cost is minimized if the jobs pn, pn−1, . . . , p1 are associated with the
respective positional penalties 1, 1, 2, 2, . . . , (n−1)/2, (n−1)/2, �n/2� if n is odd,
or 1, 1, 2, 2, . . . , n/2, n/2 if n is even. Finally, observe that an alternating schedule
also associates the jobs and positional penalties in exactly this way. Therefore, an
alternating schedule is a minimum cost schedule. Hence, any Nash equilibrium
schedule is optimal, and the PoA is 1. ��

In the unrelated parallel-machines case, R2||∑Cj , under the same local policy,
Cole et al. (2011) show that the PoA in pure strategy Nash equilibria is at most
4. Intuitively, we expect that the result for two uniform machines, i.e., the Q2
environment, interpolates between 1 and 4. This is indeed the case, as shown by
Lee et al. (2012) in the following result.

Theorem 9.3 Given two uniform parallel machines that adopt a local SPT policy
and a central objective of minimizing the total completion time

∑
Cj , then the PoA

in pure strategy Nash equilibria satisfies 3+√
3

4 ≤ PoA ≤ 1+√
5

2 .

9.2 Complete Information Games 559

Proof The upper bound is proved as follows. Without loss of generality, define the
machine speeds as s2 = 1 and s1 = s > 1. Index the jobs in SPT order, i.e.,
p1 ≤ · · · ≤ pn. Let [j] denote the job with the j th smallest completion time in an
optimal schedule σ ∗. Then, for a schedule σ that is a Nash equilibrium,

n∑

j=1

Cj (σ) = C1(σ) + C2(σ) + · · · + Cn(σ)

≤ p1/s + (p1 + p2)/s + · · · + (p1 + p2 + · · · + pn)/s (9.5)

=
n∑

j=1

j∑

i=1

pi/s.

Inequality (9.5) uses the scheduling of all jobs in SPT order on the faster machine
as a reference point. For large values of s, this solution may be a Nash equilibrium.
However, in all cases, its cost is an upper bound on any Nash equilibrium solution.
Meanwhile, in an optimal schedule σ ∗,

n∑

j=1

Cj (σ
∗) = C[1](σ ∗) + C[2](σ ∗) + · · · + C[n](σ ∗)

≥ p[1]/(s + 1) + (p[1] + p[2])/(s + 1)

+ · · · + (p[1] + p[2] + · · · + p[n])/(s + 1) (9.6)

= [np[1] + (n − 1)p[2] + · · · + 1p[n]]/(s + 1)

≥ [np1 + (n − 1)p2 + · · · + 1pn]/(s + 1) (9.7)

=
n∑

j=1

j∑

i=1

pi/(s + 1),

where the inequality (9.6) is obtained by allowing both machines to process the
same job concurrently, and the inequality (9.7) follows from the SPT indexing of
the jobs. Hence,

∑n
j=1 Cj (σ)

∑n
j=1 Cj (σ ∗)

≤ 1 + 1/s. (9.8)

Recall that s2 = 1 and s1 = s > 1. Now, consider two machine environments that
provide upper and lower bounds on cost in the environment that we are considering
here: s1 = s2 = 1 and s1 = s2 = s. Let z1 (respectively, z2) denote the schedule
from an SPT local policy in the first (resp., second) environment, given the same set
of jobs. Then,

∑n
j=1 Cj (σ) ≤ z1 and

∑n
j=1 Cj (σ

∗) ≥ z2. Therefore,

∑n
j=1 Cj (σ)

∑n
j=1 Cj (σ ∗)

≤ s. (9.9)

560 9 Noncooperative Supply Chain Scheduling

Then, from (9.8) and (9.9),

∑n
j=1 Cj (σ)

∑n
j=1 Cj (σ ∗)

≤ min{1 + 1/s, s}

≤ 1 + √
5

2
.

An example instance is now used to establish the lower bound.

Example 9.5 (Lower Bound on PoA for a Two Machine Completion Time Game)
Let n = 3, p1 = s, p2 = s/(s − 1), p3 = [s/(s − 1)]2, s1 = s = 1 + 1/

√
3, and

s2 = 1. Observe that p1 < p2 < p3 here. Consider the schedule σ where jobs 1 and
2 are scheduled on machine 1 in that sequence in SPT order and job 3 is scheduled
on machine 2. Then, C1(σ) = 1, C2(σ) = [1+1/(s−1)], and C3(σ) = [s/(s−1)]2;
hence,

3∑

j=1

Cj (σ) = 1 + [
1 + 1

(s − 1)

]+ [s

s − 1

]2
.

Observe that no job can reduce its cost by moving to another machine. Hence, this
solution is a Nash equilibrium in pure strategy. However, in an optimal schedule
σ ∗, jobs 1 and 3 are scheduled on machine 1 in that sequence by SPT, and job 2 is
scheduled on machine 2. Then,

3∑

j=1

Cj (σ
∗) = 1 + s

s − 1
+ [

1 + s

(s − 1)2

]
.

Therefore, the PoA in pure Nash equilibria satisfies

PoA ≥
∑3

j=1 Cj (σ)
∑3

j=1 Cj (σ ∗)

= 2 + 1/(s − 1) + [s/(s − 1)]2

2 + s/(s − 1) + [s/(s − 1)2]
= 1 + s − 1

3s2 − 4s + 2

= 1 + 1

2
√

3 + 2
, by definition of s

= 3 + √
3

4
.

��

9.2 Complete Information Games 561

From Theorem 9.3, the PoA for problem Q2||∑Cj is between (3 + √
3)/4 ≈

1.183 and (1 + √
5)/2 ≈ 1.618, and clearly between 1 and 4, as expected from

Theorem 9.2 and Cole et al. (2011).
Lee et al. (2012) also study the absolute price of anarchy for three classical

scheduling objectives defined by due dates: maximum tardiness, total tardiness, and
the number of tardy jobs.

Besides the performance of the worst Nash equilibrium, it is also of interest to
evaluate the best Nash equilibrium. In general, the best Nash equilibrium solution
need not be socially optimal. The following definition is useful for characterizing it.

Definition 9.4 Consider a cost minimization game, where z∗ denotes the minimum
total system cost and zN(σ) denotes the cost of a solution σ . Then, the price of
stability (PoS) is defined by

PoS = min
σ∈NE

{zN(σ)}/z∗, (9.10)

where NE is the set of strategies that are at a Nash equilibrium in pure strategy.
Analogously, in a profit maximization game, we let z∗ denote the maximum total
system profit and zN(σ) denote the profit of a Nash equilibrium solution σ . Then,
PoS = z∗/maxσ∈NE{zN(σ)}.

9.2.1.3 Absolute Price of Anarchy

For scheduling problems with due dates, the value of an optimal solution may be
zero or even negative. Hence, the conventional definition of the price of anarchy
in (9.3) cannot be applied. As an alternative, Lee et al. (2012) define the absolute
price of anarchy for a cost minimization game as

APoA = max
σ∈NE

[
zN(σ) − z∗]. (9.11)

We illustrate the use of this performance measure for a supply chain scheduling
game on m identical parallel machines. The central objective considered is mini-
mization of the total tardiness, i.e., problem Pm||∑ Tj , where Tj = max{Cj −
pj , 0}. There are n players. Each player owns a single job and minimizes the
tardiness of that job, which is a nondecreasing function of its completion time.
Since if n ≤ m, all jobs can start processing at time 0, every schedule that starts
at most one job on each machine is optimal. Hence, we assume that n > m. Let
P = ∑n

j=1 pj . Recall that an EDD policy (Jackson, 1955) schedules the jobs by
nondecreasing order of due dates.

Theorem 9.4 Givenm identical parallel machines that adopt an EDD local policy,
and a central objective of minimizing the total tardiness, then the APoA is (n/m −
1)P .

562 9 Noncooperative Supply Chain Scheduling

Proof To prove the upper bound, observe that, in any feasible schedule, the
completion time of job j is at least pj . Thus, Tj (σ ∗) ≥ max{0, pj − dj }. In a pure
Nash equilibrium schedule, let N0 ⊆ N denote the set of jobs that start processing
at time 0, and let |N0| = m.

Now, for j ∈ N0, we have

Tj (σ) = max{0, Cj − dj }
= max{0, pj − dj }
≤ Tj (σ

∗). (9.12)

On the other hand, for j ∈ N \ N0, we have

Tj (σ) = max{0, Cj − dj }
≤ max{0, (P − pj)/m + pj − dj }, from property of a Nash equilibrium

≤ max{0, pj − dj } + (P − pj)

≤ Tj (σ
∗) + P/m. (9.13)

Therefore, combining the last two results, we have

n∑

j=1

Tj (σ) =
∑

j∈N0

Tj (σ) +
∑

j∈N\N0

Tj (σ)

≤
∑

j∈N0

Tj (σ
∗) +

∑

j∈N\N0

Tj (σ
∗) + (n − m)P/m,

from (9.12) and (9.13)

≤
∑

j∈N
Tj (σ

∗) + (n/m − 1)P .

Thus, APoA ≤ (n/m−1)P for this problem. The following example establishes
the matching lower bound in this game.

Example 9.6 (Lower Bound on APoA in a Total Tardiness Game) Consider the
following instance of the above game. For l ∈ R+, let there be n = l × m

jobs to be scheduled on m machines. There are only two types of jobs. There are
(l − 1)m jobs of the first type and m jobs of the second type. Let pj = ε > 0
and small, and dj = �j/m�ε, for j = 1, . . . , (l − 1)m. Let pj = x, dj = 0, for
j = (l − 1)m+ 1, . . . , lm. Observe that P = ∑n

j=1 pj = (l − 1)mε +mx and also
that l = n/m.

In an optimal schedule σ ∗, jobs 1, . . . , (l − 1)m are scheduled on machines 1
through m in EDD order, and jobs (l − 1)m+ 1, . . . , lm are scheduled last on the m

9.2 Complete Information Games 563

machines. Thus, Tj (σ ∗) = 0 for j = 1, . . . , (l − 1)m, and Tj (σ
∗) = (l − 1)ε + x

for j = (l − 1)m + 1, . . . , lm. Therefore,

n∑

j=1

Tj (σ
∗) = [(l − 1)ε + x]m.

Consider a schedule σ where all jobs are scheduled in EDD order. Then, each
machine processes one job with processing time x, followed by (l − 1) jobs with
processing times ε, all of which are tardy by at least time x. Hence,

n∑

j=1

Tj (σ) ≥ xlm.

Moreover, since all machines complete processing at time x+(l−1)ε, no job can
move to another machine without increasing its completion time. Hence, schedule
σ is a Nash equilibrium schedule.

Now, as ε → 0, it follows that P → xm; hence, we have

APoA ≥ xlm − [(l − 1)ε + x]m
= (l − 1)xm − (l − 1)εm

→ (n/m − 1)P as ε → 0.

��
The above definitions and examples provide a framework for studying the

performance of Nash equilibrium solutions in various supply chain scheduling
games in the following sections.

9.2.2 Finding and Evaluating an Equilibrium

This section contains six examples of supply chain scheduling problems for which
we discuss the development of an algorithm to find a Nash equilibrium. Sec-
tion 9.2.2.1 discusses a simple scheduling problem with unit processing times and
both earliness and tardiness costs. Section 9.2.2.2 discusses two problems involving
subcontracting. In the first problem, a set of manufacturers is supported by a third-
party provider of capacity. In the second problem, various departments within an
organization can use either a common resource shared with other departments or an
external subcontractor. Section 9.2.2.3 describes a project scheduling game where
the players own tasks which they can expedite at cost, if doing so generates a
sufficient share of additional reward for improved project completion time provided
by the project customer. Section 9.2.2.4 illustrates issues that arise in finding an

564 9 Noncooperative Supply Chain Scheduling

equilibrium when different machines use a variety of local prioritization rules for
the jobs assigned to them. Section 9.2.2.5 discusses a scheduling game with both
congestion and activation costs for machines, which generates interesting tradeoffs.
In several of the problems studied in this section, finding a Nash equilibrium, and
particularly finding one with a pre-specified bound on system cost, is shown to be
an intractable problem.

9.2.2.1 Earliness and Tardiness Costs

The first supply chain scheduling game discussed in this section is chosen for
its simplicity and the conciseness of its results. In a centralized decision making
environment, a single machine problem with earliness and tardiness costs around
a common due date is studied by Hall (1986) and Kanet (1981). The motivation
for this problem is that earliness costs model the cost of holding inventory,
whereas tardiness costs model penalties in delivery contracts with customers. A
generalization of this problem with weighted earliness and tardiness penalties
is studied by Hall and Posner (1991), who provide a pseudo-polynomial time
algorithm and a proof of binary NP-completeness, as well as analysis of some
special cases. Hall et al. (1991) provide similar results for an alternative version
of the problem without weights where the common due date may be restrictively
early. In a decentralized decision making environment, Glazer et al. (2018) study
the problem of job arrivals to a single machine, where jobs incur both earliness and
tardiness costs. We describe a noncooperative game defined over this supply chain
scheduling problem.

Consider n customers or players, each of whom owns one or more jobs. Each job
has a processing requirement of one time unit. The strategy of customer i is defined
by si , the time at which he sends his jobs into the system for processing. Those
jobs start processing immediately if and only if no other jobs are being processed or
waiting for service. All jobs share a single server with a common due date, d = 0,
which is not restrictive since negative start times are permitted. The earliness or
tardiness cost of each job is measured by the absolute value of the time difference
between its start time and the common due date d. There is a linear penalty ce for
each unit of earliness and a linear penalty cl for each unit of tardiness. For example,
the cost of starting job i at time t > 0 is clt . The dynamics of this noncooperative
game are as follows:

1. Customers simultaneously decide, at time −n, when to send their jobs.
2. The server starts working when the first job arrives.
3. Jobs arriving at a busy server form a first-come, first-served queue if the server is

busy, with simultaneous arrivals being sequenced according to a uniform random
distribution over all possible sequences.

4. Once it completes processing a job, the server immediately processes a job at the
head of the queue if there is one.

5. Customers pay a penalty for deviation of their service start time from the
common due date.

9.2 Complete Information Games 565

We consider the scheduling environment defined above from the viewpoint of
minimizing total cost, i.e., the total earliness and tardiness cost of the jobs. We first
characterize an optimal solution (Glazer et al., 2018). Define s̃ = ncl/(ce + cl).

Lemma 9.1 A sequence of service start times is optimal if and only if there exists
an indexing of the jobs such that si = si−1 + 1, i = 2, . . . , n, and:

(i) If s̃ is integer, then s1 ∈ [−s̃,−s̃ + 1].
(ii) If s̃ is not integer, then s1 = −�s̃�.
Proof Without loss of generality, let s1 ≤ · · · ≤ sn. Suppose the server is idle after
job i where si < 0. Then, the earliness cost of all jobs up to i can be reduced by
shifting them forward until there is no idle time, without affecting the timing of other
jobs. A similar argument applies to the case where si > 0. Hence, processing of the
unit size jobs is consecutive, i.e., si = si−1 + 1, i = 2, . . . , n, and the optimization
problem reduces to a single decision variable, s1. Letting i0 = max{i | si ≤ 0}, the
total cost function is

z(s1) =
n∑

i=i0+1

cl(s1 + i − 1) −
i0∑

i=1

ce(s1 + i − 1)

= (cln − cli0 − cei0)s1 +
n∑

i=i0+1

cl(i − 1) −
i0∑

i=1

ce(i − 1).

The slope of z(s1) is negative if i0 > s̃, positive if i0 < s̃, and 0 otherwise. The
solution has two cases.

If s̃ is integer, then any s1 that satisfies

−s̃ ≤ s1 ≤ −s̃ + 1

is optimal.
Alternatively, if s̃ is not integer, then an optimal solution satisfies

−s̃ < i0 = max{i | s1 + i − 1 ≤ 0} < −s̃ + 1

and s1 + i0 − 1 = 0. Hence, s1 = −�s̃�. ��
Recall that each job is owned by a player who decides when to release his job into

the system. However, the job does not necessarily start immediately if other jobs are
also waiting to start. We consider each player as the owner of a single job, with the
objective of minimizing the cost of that job. The social objective is minimization of
the total cost of all the players.

The following analysis provides necessary and sufficient conditions under which
a socially optimal set of arrival times is an equilibrium. We define a strategy where
all players make the same choice about when to release their jobs to the system to be

566 9 Noncooperative Supply Chain Scheduling

symmetric. Glazer et al. (2018) prove the following preliminary result for the game
defined above:

Lemma 9.2

(i) There is no asymmetric equilibrium of the game in pure strategy.
(ii) There is no asymmetric equilibrium of the game in mixed strategy.
(iii) There is no symmetric equilibrium of the game in mixed strategy.

From Lemma 9.2, we restrict our discussion of equilibrium solutions to symmet-
ric solutions in pure strategy. Now, let c(s : t) denote the cost of a single player who
chooses strategy s to minimize his individual cost when all the other players choose
strategy t . As a special case of this definition, c(t : t) is the cost of single player
choosing strategy t when all other players choose t . The next result characterizes all
possible equilibria.

Lemma 9.3 Let t = t1 be a solution of c(t : t) = cl(t + n − 1), and let t = t2 be a
solution of c(t : t) = −cet . Then, t1 and t2 are unique, and the set of all equilibria
is given by the pure and symmetric strategies of all customers arriving together at
time t, such that t ∈ [t1, t2] ⊂ (−(n−1), 0), within which t = −(n−1)[cl/(ce+cl)]
is an equilibrium.

Proof Suppose all other customers arrive at some common time t < 0. Then, the
expected cost for each of them, as determined by the uniformly generated random
distribution of start times t, . . . , t + n − 1, is

n−1∑

i=0

t + i

n
[cl(|{i | t + i ≥ 0}|) − ce(|{i | t + i < 0}|)].

Besides the option of joining the other customers to arrive at time t , a single
customer has only two reasonable alternatives: arriving before everyone else and
incurring a cost of at least −cet , and waiting for everyone else to finish service and
incurring a cost of at least cl(t + n − 1). Therefore,

c(s : t) =

⎧
⎪⎪⎨

⎪⎪⎩

−ces, if s < t

[cl ∑n−1
i=it+1(t + i) − ce

∑it
i=0(t + i)]/n, if s = t

cl max{t + n − 1, s}, if s > t.

(9.14)

Let it = max{i | t + i < 0} > 0. Then, the cost function c(s : t) is piecewise linear
with respect to t with a slope of

f (t) = cl(n − 1 − it) − ceit

n
.

Now, if t ∈ (−(n−1), 0), then it ∈ (0, (n−1)); hence, f (t) < cl , and the solution t

of c(t : t) = cl(t+n−1) is unique. Similarly, c(t : t) = −cet has a unique solution.

9.2 Complete Information Games 567

Finally, c(t : t) ≤ cl(t + n − 1) is satisfied for any t ≥ t1, and c(t : t) ≤ −cet is
satisfied for any t ≤ t2. Summarizing, the interval [t1, t2] is the set of all equilibria
with pure symmetric strategies.

Finally, consider the symmetric solution t = −(n − 1)[cl/(ce + cl)]. Using the
expression under the condition s = t from (9.14), we can write

c(t : t) = −cet

n
+ [cl ∑n−1

i=it+1(t + i) − ce
∑it

i=0(t + i)]
n

≤ cl(t + n − 1)

= −cet,

and therefore, neither arriving before or after all other customers reduces the
expected cost of a single customer. Hence, t = −(n − 1)[cl/(ce + cl)] is an
equilibrium. ��

Next, we provide necessary and sufficient conditions for a socially optimal
solution to be an equilibrium. The availability of such simple conditions is unusual
within noncooperative supply chain scheduling games.

Theorem 9.5 For the earliness–tardiness game, there exists a socially optimal
symmetric arrival time that is also an equilibrium if and only if:

(a) n = 2 and ce = cl .
(b) n > 2 and

cl

ce + cl
∈ [1

n
, 1 − 1

n
].

Proof From Lemma 9.1, it is socially optimal if all players arrive together at t∗ =
−�ncl/(ce + cl)�. We consider conditions under which this solution is, or is not, an
equilibrium, and where it is not, whether any equilibrium solutions exist. There are
several cases:

Case 1. If cl/(ce + cl) < 1/n, then t∗ = 0, and any customer can reduce his cost by
arriving momentarily before the others. Symmetrically, if

cl

ce + cl
> 1 − n − 1

n
, (9.15)

then t∗ = −(n−1), and a player who arrives during (−(n−1), 0] incurs no cost.
In either case, ncl/(ce + cl) is not an integer, and t∗ is the unique equilibrium.
Since t∗ is not socially optimal, then it follows that no equilibrium is socially
optimal.

Case 2. If n = 2, (9.15) is only satisfied if ce = cl . In this case, the unique
equilibrium t1 = t2 = −1/2 is socially optimal.

568 9 Noncooperative Supply Chain Scheduling

Case 3. If n > 2 and

cl

ce + cl
∈
[1

n
, 1 − 1

n

]
,

then the social optimum is given by an integer t∗ satisfying −(n − 2) ≤ t∗ ≤
−1. Since the total cost is nc(t : t), minimizing the social cost is equivalent
to minimizing the average customer cost. Let k = −t∗ and m = n − 1 − k.
Then, k/n = −t∗/n ≥ 1/n is the proportion of early arrivals and (m + 1)/n =
(n − k)/n ≥ 1/n is the proportion of late arrivals including the costless job that
arrives at time d = 0. The average cost of the early jobs is

ce

k∑

i=1

i/k = ce(k + 1)/2. (9.16)

The average cost of the late jobs and the one on-time job is

cl

m∑

i=0

i/(m + 1) = clm/2. (9.17)

Collecting the costs from (9.16) and (9.17), the average customer cost is

c(t∗ : t∗) = k

n

ce(k + 1)

2
+ m + 1

n

clm

2
. (9.18)

Observe that the solution is in equilibrium unless a job can reduce its cost by
moving from its expected cost position to an extreme schedule, i.e., the start of the
schedule with cost kce or the end of the schedule with cost mcl . Hence, a sufficient
condition for t∗ to be an equilibrium is that the average customer cost does not
exceed min{cek, clm}, the smaller of the two extreme schedule costs. There are
again three cases (3a, 3b, 3c) that follow:

Case 3a. If cek = clm, then since ce(k + 1)/2 < cek and clm/2 < clm, the average
cost is smaller than the costs kce and mcl of the two extreme schedules.

Case 3b. If cek > clm, then the early extreme schedule cost exceeds the average
cost. Suppose clm < kce/2, then kce > 2clm ≥ cl(m + 1), in which case
setting t = −t∗ + 1 reduces the average cost, which is a contradiction. Then, the
alternative case clm ≥ kce/2 implies that the average cost does not exceed the
late extreme schedule cost.

Case 3c. If cek < clm, then the late extreme cost immediately exceeds the average
cost. Suppose cek < clm/2. Then, consider the special case k = 1 and m = n−1
where 2ce < cl(n − 1), in which case setting t∗ = −2 reduces the average cost,
which is a contradiction. Alternatively, cek ≥ clm/2 implies that cek ≥ c(t∗ :
t∗), i.e., the early extreme cost exceeds the average cost.

��

9.2 Complete Information Games 569

Theorem 9.5 provides the intuition that when n is not very small, there is a
socially optimal equilibrium for reasonably symmetric values of ce and cl . However,
if ce/(ce + cl) is too small (respectively, large), then the equilibrium arrivals are too
early (resp., late) to coincide with an optimal solution.

Remark 9.2 Glazer et al. (2018) extend the results discussed above to consider sev-
eral generalizations: a restricted interval during which service is offered, stochastic
service times, a random number of customer arrivals, and heterogeneous customers
with random cost functions. A general perspective is that their work develops
interesting insights about whether, in equilibrium, customers arrive simultaneously.

The simple structure of the earliness–tardiness problem studied by Glazer et al.
(2018) enables the characterization of necessary and sufficient conditions for a
socially optimal solution to be an equilibrium and thereby provides clear insights
about when the two types of solutions coincide.

9.2.2.2 Subcontracting

We discuss two noncooperative supply chain scheduling games that arise from a
manufacturer’s option to use subcontracting. This option has become widely used
due to the need for increasingly specialized, often highly technical, work. The global
market for subcontracted services in 2019 was more than $92 billion (Statista,
2021). We refer the reader to Chapter 6 for extensive discussions of similar problems
within a centralized supply chain scheduling environment.

Vairaktarakis (2013) considers a third-party (3P) supplier that provides out-
sourced capacity to a set of manufacturers, M = {1, . . . , m}. Each manufacturer
i has a set Ni of jobs that require the total processing time Pi . We number the
manufacturers such that P1 ≤ · · · ≤ Pm. Each manufacturer i also has access to its
own manufacturing resource that is denoted as Mi and the resource of the 3P that
is denoted as F . This model can be used to illustrate a variety of Nash equilibrium
solutions. The manufacturers compete or the 3P’s capacity to optimize their own
objective, which is the minimization of the completion time of their work, whether
that occurs on their own facility or the 3P’s. The 3P meanwhile has its own objective,
which is to maximize the utilization of its capacity.

We discuss two alternative practical scheduling protocols: preemption with
overlapping and nonpreemption. An overlapping preemptive protocol allows the
processing of a job of manufacturer i to be divided between Mi and F and further
allows concurrent processing of a job on Mi and F . By contrast, a nonpreemptive
protocol requires that each individual job is processed either entirely on Mi or
entirely on F , and processed from start to finish without interruption. However,
even under the nonpreemptive protocol, manufacturer i may process some of its
jobs on Mi and others on F . Let the decision variable xi, 0 ≤ xi ≤ Pi denote
the amount of processing subcontracted by manufacturer i to the 3P. The objective
of each manufacturer i is to minimize its makespan, denoted by Ci , which is the
later of its completion time on Mi and that on F in the event that its processing is

570 9 Noncooperative Supply Chain Scheduling

split between the two resources. The objective of the 3P is to maximize its revenue,
which is modeled as

∑
i∈M xi , i.e., the total work processed. All information, which

consists of (a) Pi, i ∈ M , announced by the manufacturers, and (b) a priority rule to
be used to schedule the jobs received as announced by the 3P, is public. As described
below, the priority rule varies among different scheduling protocols.

We first consider the overlapping preemptive protocol. The subcontractor
announces a priority rule under which the orders submitted by the manufacturers
will be processed.

Priority Rule Manufacturers’ workloads xi will be processed in SPT order, i.e., in
nondecreasing order of xi , with ties broken by index order.

For this problem, we present the following result of Vairaktarakis (2013).

Theorem 9.6 For the overlapping preemptive protocol, with the SPT priority rule
used by the 3P, there exists a pure strategy Nash equilibrium where we define x∗

0 = 0,
and

x∗
k = min

i≥k

{Pi −∑k−1
j=1 x

∗
j

i + 2 − k

}
, k = 1, . . . , m. (9.19)

Proof If the manufacturers choose strategies x∗
1 , . . . , x

∗
m, then the makespan Ci of

manufacturer i is

Ci = max
{
Pi − x∗

i ,

i∑

k=1

x∗
k

}
= Pi − x∗

i , (9.20)

where the first term in the maximization is the completion time on Mi and the second
term is the completion time on F . The second term represents the completion time of
the work of manufacturer i on F since x∗

1 ≤ · · · ≤ x∗
i . Also, the equality in (9.20)

holds because otherwise manufacturer i could decrease its outsourced workload,
thereby reduce its makespan, and possibly even have its outsourced work processed
earlier. Hence, for each manufacturer, its makespan is achieved on its own resource.
As a result, x∗

1 + · · · + x∗
i−1 + 2x∗

i ≤ Pi , and from the SPT order, (i + 1)x∗
1 ≤ Pi

which implies x∗
1 ≤ Pi/(i + 1), for i ≥ 1.

Now, consider the outsourcing choice of manufacturer 1. If this manufacturer
were the only player, then it would clearly outsource P1/2 work. However, it needs
to protect against competitive outsourcing of work P2 by manufacturer 2, against
competitive outsourcing of work P3 by manufacturer M3, and so on. Thus,

x∗
1 = min

i≥1

{ Pi

i + 1

}
. (9.21)

The outsourcing decisions of the other manufacturers are similar, except that
the capacity used by the choices of the previous manufacturers has removed some

9.2 Complete Information Games 571

capacity from F . For example, x∗
2 = mini≥2{Pi−x∗

1
i

}. Proceeding similarly for the
other manufacturers establishes the result. ��

The following example provides intuition about the development of the players’
strategies.

Example 9.7 (Nash Equilibrium Strategies in a Preemptive Outsourcing Game)
Consider an instance of the game where m = 4 and P1 = 9, P2 = 12, P3 = 14,
and P4 = 19. Then, x∗

1 = min{9/2, 12/3, 14/4, 19/5} = 3.50. The justification for
this decision is that while manufacturer 1 would wish to outsource 9/2 = 4.50 units
of work, if it does so manufacturer 3 could set x∗

3 = 3.50 and hence have its work
scheduled before manufacturer 1’s work on F under the 3P’s SPT priority rule.
As a result, manufacturer 1 outsources 3.50 units of work. Next, manufacturer 2
calculates x∗

2 = min{(12 − 3.50)/2, (14 − 3.50)/3, (19 − 3.50)/4} = 3.50
and also outsources 3.50 units of work. Then, manufacturer 3 calculates x∗

3 =
min{(14 − 7)/2, (19 − 7)/3} = 3.50, with the same outsourcing decision. Finally,
manufacturer 4 outsources x∗

4 = (19 − 10.50)/2 = 4.25 units of work. The
makespans of the manufacturers are: C1 = 9 − 3.50 = 5.50, C2 = 12 − 3.50 =
8.50, C3 = 14−3.50 = 10.50, and C4 = 19−4.25 = 14.75. Also, the 3P processes
the total work of

∑4
i=1 x

∗
i = 3.50 + 3.50 + 3.50 + 4.25 = 14.75. Finally, note that

∑4
i=1 Ci = 5.50 + 8.50 + 10.50 + 14.75 = 39.25 = (9 + 12 + 14 + 19) −

(3.50 + 3.50 + 3.50 + 4.25) = ∑4
i=1 Pi − ∑4

i=1 x
∗
i , due to the result in the proof

of Theorem 9.6 that each manufacturer achieves its makespan on its own resource.

We next consider the nonpreemptive protocol. Recall that a manufacturer i can
use only one of its two available resources, Mi and F , for any single job but can
divide its jobs between them. The following definition is needed.

Definition 9.5 Let fi(w) denote the maximum feasible workload of any subset of
jobs owned by a manufacturer i with a total workload that does not exceed w.

We provide an example of the relationship between the total workload and the
maximum feasible workload in Definition 9.5.

Example 9.8 (Feasible Workloads in a Nonpreemptive Outsourcing Game) Sup-
pose Pi = 7, where manufacturer i has two jobs with sizes 3 and 4 units. Then,
fi(0) = fi(1) = f1(2) = 0, fi(3) = 3, fi(4) = fi(5) = fi(6) = 4, fi(7) = 7. For
example, if the total workload is fixed at 6, the maximum feasible workload is 4.

The maximum feasible workload is typically a nondecreasing step function of the
total workload. The variable w is similar to a knapsack capacity in this usage. The
3P forces the manufacturers to declare a value of the total workload w in order to
have their jobs scheduled, and this value of w controls the amount of outsourcing by
that manufacturer. Hence, in the following discussion, wi is a total size from which
manufacturer i chooses a feasible amount of outsourcing x∗

i , where x∗
i = fi(wi).

The 3P has the objective of maximizing the utilization of its resource by the
manufacturers. However, the 3P cannot control the outsourcing decisions of the

572 9 Noncooperative Supply Chain Scheduling

manufacturers; thus the only way to achieve this is to guide the manufacturers into
a Nash equilibrium solution that achieves this objective. For this purpose, the 3P
announces to the manufacturers the following rule about the order in which it will
process jobs that it receives.

Priority Rule Manufacturers’ workloads xi will be processed in nondecreasing
order of wi , where xi is the maximum feasible workload from a total workload wi

of manufacturer i’s jobs, and with ties broken by smaller Pi values first.

In Example 9.8, one solution that satisfies the priority rule is wi = 6 and xi =
4. This priority rule is designed to incentivize the manufacturers to make better
utilization of F , by requiring them to maximize the utilization of a knapsack of
size w. Each manufacturer i chooses its own value of wi , taking into consideration
the tradeoff that a larger value of wi provides more options for subcontracting, but
possibly a later processing time by the 3P.

Vairaktarakis (2013) proves the following preliminary result.

Lemma 9.4 If there exists a pure strategy Nash equilibrium, then there exists one
in which the jobs of the manufacturers are scheduled on F in nondecreasing order
of their Pi values.

We observe that Lemma 9.4 is not in conflict with the priority rule, since there exist
total workload values w1, . . . , wm that satisfy both. From Lemma 9.4, we assume
that the manufacturers are indexed such that P1 ≤ · · · ≤ Pm.

Theorem 9.7 Let i = 1, . . . , m denote an SPT order of Pi values. We first define

gki(w) = max

⎧
⎨

⎩
Pi − fi(w),

k−1∑

j=1

x∗
j +

i∑

j=k

fj (w)

⎫
⎬

⎭
, and

hki(w) = max

⎧
⎨

⎩
Pi − fi(w),

k−1∑

j=1

x∗
j + fi(w)

⎫
⎬

⎭
, 1 ≤ k ≤ i ≤ m,

for use in the optimization model (9.22)–(9.23) below.
Then, the strategies defined by solving the following sequence of mathematical

programs, for k = 1, . . . , m:

x∗
k = min

wk≥wk−1
gkk(wk) (9.22)

s.t. gki(wk) ≤ hki(wi), i > k (9.23)

provide a pure strategy Nash equilibrium.

Proof We first interpret the mathematical model in the theorem statement. Man-
ufacturer k chooses a value of w that implies an amount of outsourcing x∗

k .
More specifically, the decision variables for manufacturer k are wk and x∗

k =

9.2 Complete Information Games 573

gkk(wk), where the choice of wk is restricted by previous nondecreasing choices
w1, . . . , wk−1. It is clear that for the purpose of minimizing its makespan, manufac-
turer k may set wk > wk−1, provided that doing so does not provide an incentive
for a later manufacturer r > k to minimize its own makespan by setting wr < wk

and thereby having its jobs scheduled ahead of manufacturer k’s according to the
3P’s priority rule. The wi values are determined in the sequence w1, . . . , wm and
similarly for the x∗

i values x1, . . . , xm.
Consider the problem faced by manufacturer 1:

x∗
1 = min

w1≥0
g11(w1) (9.24)

s.t. g1i (w) ≤ h1i (wi), 1 ≤ i ≤ m. (9.25)

The objective (9.24) minimizes the makespan of manufacturer 1. Constraints (9.25)
ensure that the subcontracting decision of manufacturer 1 does not encourage a later
manufacturer to make a choice that moves the work of manufacturer 1 later.

Given x∗
1 , . . . , x

∗
i , where 1 ≤ i ≤ m, the equilibrium strategies x∗

i+1, . . . , x
∗
m of

the other manufacturers can be found recursively, using the mathematical program
in the theorem statement. ��

The computational requirement of the procedure in Theorem 9.7 is
O(m2 max

i∈M {Ni} max
i∈M {Pi}) time. Although this running time is not formally efficient,

it is computationally tractable to a reasonable size of problem instance. We provide
an example of this procedure.

Example 9.9 (Nash equilibrium Strategies in a Nonpreemptive Outsourcing Game)
Consider an instance of the game where m = 4, {p1j } = {5, 4, 2, 1}, {p2j } =
{11, 2, 1}, {p3j } = {7, 6, 5} and {p4j } = {8, 8, 7}. Because P1 = 12 < P2 = 14 <

P3 = 18 < P4 = 23, and from Lemma 9.4, we assume for the purposes of finding a
Nash equilibrium that the manufacturers will have their jobs processed on F in the
sequence 1, 2, 3, 4 if w1 ≤ w2 ≤ w3 ≤ w4. Nonetheless, the total workload wi of
each player i on F must be set such that each subsequent player does not benefit
from using a smaller total workload on F .

Consider the outsourcing decision of manufacturer 1. Since P1 = 12, it is optimal
for manufacturer 1 to set w1 = 6 and subcontract 12/2 = 6 = 4 + 2 units, i.e., set
x1 = 6. Under the priority rule, this requires each subsequent manufacturer i ≥ 2
to use at least wi ≥ 6 as the total workload of a feasible subset of jobs from which
it chooses its subcontracted jobs. This in turn creates a problem that occurs after
manufacturer 2, for which w2 = 6 and f2(6) = 3, and subcontracts 3 units. Then, F
has already processed 9 units for manufacturers 1 and 2. Then, w3 ≥ w2 = 6, and
since manufacturer 3 has jobs of sizes 5, 6, and 7, f3(6) = 6, and subcontracting
at least 6 units creates a makespan of at least max{9 + 6, 5 + 7} = 15. However, if
manufacturer 3 subcontracts 5 units, the makespan is max{9 + 5, 6 + 7} = 14 < 15.
This implies that manufacturer 1’s choice of w1 = 6 and subcontracting 6 units does
not lead to an equilibrium solution.

574 9 Noncooperative Supply Chain Scheduling

Alternatively, if manufacturer 1 sets w1 = 5, then we have f1(5) = 5 ⇒ x∗
1 = 5;

next, manufacturer 2 sets w2 = 5 and f2(5) = 3 ⇒ x∗
2 = 3; then, manufacturer 3

sets w3 = 5 and f3(5) = 5 ⇒ x∗
3 = 5; and finally, manufacturer 4 sets w4 = 7

and f4(7) = 7 ⇒ x∗
4 = 7, which is an equilibrium solution. This gives

∑4
i=1 x

∗
i =

5 + 3 + 5 + 7 = 20. Further,
∑4

i=1 Ci = max{7, 5} + max{11, 8} + max{13, 13} +
max{16, 20} = 51. By contrast with Example 9.7, we have

∑4
i=1 Pi −∑4

i=1 x
∗
i =

67−20 = 47 < 51 = ∑4
i=1 Ci . This is because, in this nonpreemptive environment,

a manufacturer i may attain its makespan Ci on F , in which case Ci > Pi − x∗
i .

A review of the above sequence of decisions provides some additional intuition.
Manufacturer 1 has 12 units of work that can feasibly be divided into 6 units
on its own resource and 6 units at the 3P, hence minimizing its makespan at a
value of 6. Without any incentives by the 3P, manufacturer 1 will clearly do this
because 6 is a lower bound on its makespan. However, the choice of priority rule
by the 3P disincentivizes this decision, because it leads to a situation where another
manufacturer’s jobs are prioritized ahead of manufacturer 1’s jobs by the 3P.

The two alternative models discussed above provide useful insights about Nash
equilibrium solutions in subcontracting problems. We refer the reader to Vairak-
tarakis (2013) for analysis of an interesting and practical intermediate processing
protocol that allows preemption but not overlapping.

We discuss a second example of a supply chain scheduling problem that includes
an option for subcontracting. Bukchin and Hanany (2007) consider a problem with
two alternative resources. There are several players, each of whom represents a
department within the same organization. Each player owns one or more jobs.
Jobs are scheduled either in-house on a machine shared by the other players or
are subcontracted by the department that owns them.

If the jobs are subcontracted, then they do not need to compete with the jobs of
the same department or those of other departments for processing time. Therefore,
the completion time of a job is simply its processing time on the subcontracted
resource, which is larger than on the in-house resource. The essentially unlimited
concurrent capacity of the subcontractor is motivated by capacity reservation
arrangements made in advance, as is common practice (Özer & Wei, 2006).

Let C = {1, . . . , c} denote the set of all jobs. The organization has departments
N = {1, . . . , n}, department i owns job set Ci ⊂ C, and each job is owned by a
single department. Let pj denote the in-house processing time of job j and αpj

denote its processing time that, as explained above, is also its completion time at
the subcontractor, where α ≥ 1. For any set of jobs V ⊆ C, let jS(V) (respectively,
jL(V)) denotes the shortest (resp., longest) job in V .

The following notation applies to a given schedule. Let Mi ⊆ Ci denote the
set of department i’s jobs that are scheduled on the shared in-house facility. Let Si
denote the set of jobs subcontracted by player i, where S = ∪n

i=1Si . Then clearly,
Ci = Mi ∪ Si, i = 1, . . . , n. Let M−i denote the in-house processing decisions of
all the players except i. Let pMi

(k) denote the length of the kth shortest job in Mi .

9.2 Complete Information Games 575

Player i, representing department i, minimizes his individual total completion
time. The social objective is the minimization of the total cost of the players. Then,
since both the centralized planner and the individual players use the minimization
of the total completion time as their objective, we assume from Smith (1956) that
the jobs are indexed in shortest processing time (SPT) order.

The cost of player i is composed of three parts and can be written as

Fi(Mi,M−i) =
|Mi |∑

m=1

(|Mi | + 1 − m)pMi
(m) +

∑

j∈∪M−i

|{j ′ ∈ Mi : j ′ > j}|pj

+ α
∑

j∈Ci\Mi

pi. (9.26)

In (9.26), the first term is the total completion time of player i’s jobs on the shared
in-house machine, where they will be processed in SPT order (Smith, 1956), not
yet considering delays caused by the processing of the other players’ jobs. This
expression applies a “positional penalty” (|Mi | + 1 − m) to the mth smallest
processing time in Mi . The second term is the delays caused by the jobs of other
players, when they precede the jobs of player j on the shared in-house facility. The
third term is the completion time of player i’s jobs that are sent to the subcontractor.
Using Eq. (9.26), we can write the centralized objective as min

∑
i∈N Fi(Mi,M−i).

Bukchin and Hanany (2007) characterize a socially optimal solution, as follows.
We refer the reader to that work for a proof. Observe that this problem is equivalent
to the noncooperative game where n = 1, i.e., there is only one department.

Theorem 9.8 There exists a socially optimal solution in which the organization
keeps the �α� longest jobs on the shared in-house facility and sends the remaining
c − �α� jobs to the subcontractor.

However, a decentralized solution chosen by the players, i.e., a Nash equilibrium,
may not be socially optimal. Therefore, Bukchin and Hanany (2007) establish
bounds on the PoA. Furthermore, when the centralized solution is not a Nash equi-
librium, it is important to develop a mechanism that coordinates the decentralized
scheduling decisions of the players. We refer the reader to Sect. 9.1 for a definition of
a coordination mechanism. The cost of implementing such a mechanism is assumed
to be not more than the benefit from coordination and is therefore not considered
further. The coordination mechanism needs to modify the incentive schemes of
the departments so that all prefer to act according to the centralized objective. In
achieving this, it needs to satisfy two conditions:

(i) It needs to be based on information that is available to the centralized authority.
(ii) Money transfers between the players should be zero-sum.

The proposed coordination mechanism modifies the SPT rule used for the in-
house jobs, so that players representing the departments prefer not to deviate from
the centralized solution. The mechanism requires that all in-house jobs other than

576 9 Noncooperative Supply Chain Scheduling

the shortest are processed according to the SPT rule. The shortest in-house job
is processed last if either (a) more than �α� jobs are processed in-house or (b)
the longest job sent to the subcontractor is longer than the shortest in-house job.
Otherwise, the shortest in-house job is processed first. No money transfers are
required by the mechanism.

We now formally define the coordination mechanism, C-SPT, which finds an
optimal centralized solution that is a pure Nash equilibrium. For any set of jobs
C′ ⊆ C, let jS(C′) (respectively, jL(C′)) denote the shortest (resp., longest) job in
C′.

Mechanism C-SPT
1. For any set Mi of department i’s jobs that are manufactured in-house, all jobs

j ∈ (∪n
i=1Mi \ jS(∪n

i=1Mi)) are scheduled according to the SPT rule.
2. If either | ∪n

i=1 Mi | > �α� or pjL(C\∪n
i=1Mi) > pjS(∪n

i=1Mi), then job jS(∪n
i=1Mi)

is scheduled in the last position on the shared in-house facility; otherwise, it is
scheduled in the first position on the in-house facility.
Observe that mechanism C-SPT satisfies both the criteria (i) and (ii) above.

First, the coordinator has enough information about the job in its processing time
and does not need to know which department owns each job in order to complete
the schedule. Second, there are no money transfers involved in the algorithm, and
instead coordination is achieved merely by modifying the coordinator’s scheduling
policy. We now provide an example of mechanism C-SPT.

Example 9.10 (Application of Mechanism C-SPT) Consider an instance of the
game defined above where n = 2, c = 3, C1 = {1, 3}, C2 = {2}, p1 = 2, p2 = 4,
p3 = 6, and α = 1.5. Table 9.2 shows the cost table for both players, given their
strategy of which job(s) to schedule on the shared in-house facility for player 1 in the
row and for player 2 in the column. For example, if player 1 chooses strategy {1, 3}
and player 2 chooses strategy {2}, all three jobs are scheduled on the shared resource.
From Step 2 of mechanism C-SPT, |M1 ∪M2| = 3 > �1.5� = 1; hence, the jobs are
scheduled in the order 2,3,1, as a result of which F1 = (4 + 6) + (4 + 6 + 2) = 22
and F2 = 4, as shown in Table 9.2. The optimum centralized cost has M1 = {3},
M2 = ∅, where F1 = 6 + 1.5(2) = 9 and F2 = (1.5)4 = 6, and a total system cost
of 15. The notation ∗ against the relevant payoff for player 1 indicates that it is the
best strategy for player 1 among the rows, given player 2’s strategy in the column.
Similarly, the notation † against the relevant payoff for player 2 indicates that it is
the best strategy for player 2 among the columns, given player 1’s strategy in the
row. For example, if player 2 chooses {2}, the best response of player 1 is {3}, with

Table 9.2 Cost matrix for
Example 9.10

P1\P2 ∅ {2}
∅ 15, 6† 15, 4†

{1} 11, 6† 15, 4†

{3} 9∗, 6† 9∗, 10

{1, 3} 14, 6† 22, 4†

9.2 Complete Information Games 577

a cost of 9. Observe that there is a solution in Table 9.1 where both players have
a best response, given the other player’s strategy, i.e., M1 = {3}, M2 = ∅, where
C1 = 6 + 1.5(2) = 9 and C2 = (1.5)4 = 6, and a total system cost of 15. This
is the unique Nash equilibrium in pure strategy, and also the optimum centralized
solution, of the game.

We now provide the main result for coordination of the system.

Theorem 9.9 Mechanism C-SPT finds a Nash equilibrium solution denoted by
{M∗

i } in pure strategy that is socially optimal, where M∗
i = Ci ∩ {n + 1 −

�α�, . . . , n}, i = 1, . . . , n, and the jobs are indexed in SPT order.

Proof It suffices to show that, for any i = 1, . . . , n, M∗
i is a best response to M∗−i .

For a given i, let Mi ⊆ Ci and C′ = (∪n
j=1,j �=iM

∗
j) ∪ Mi . There are two cases.

First, suppose |C′| < �α�. In this case, there exists some job h ∈ Ci \ Mi ,
since �α� < c and player i fails to process its share of the �α� < c jobs in-house.
Now, consider a new solution where a previously subcontracted job h is processed
in-house. The resulting change in system cost is not more than (|C′| − α)ph <

(�α� − α)ph ≤ 0; hence, Mi is not a best response to M∗−i in this case.
Alternatively, suppose either |C′| > α or |C′| = α, and pjL(C\C′) > pjS(C

′).
In this case, jS(C

′) ∈ Ci , since player i fails to process its share of the �α�
longest jobs in-house. Thus, under mechanism C-SPT, jS(C′) is scheduled last.
Now, consider a new solution where job jS(C

′) is removed from the in-house facility
and subcontracted. The resulting change in system cost is

αpjS(C
′)−∑j∈C′pj < (α − |C′|)pjS(C

′) ≤ 0,

and hence, Mi is also not a best response to M∗−i in this case.
Observing that since there must exist a best response to M∗−i , and all alternatives

to M∗
i have been exhausted, it follows that M∗

i is a best response to M∗−i . In
conclusion, finding a pure best response is equivalent to finding a socially optimal
strategy. ��

We remark that the intuition which underlies moving the shortest job to the end of
the in-house schedule comes from comparing the positional penalty, i.e., the number
of jobs with increased completion time due to the presence of the shortest job, with
the increased processing time required by subcontracting.

9.2.2.3 Project Scheduling

As discussed in Sect. 8.5, project management is a globally important business
process with a huge economic impact. Central to the success of project execution is
efficient scheduling of the tasks of a project. Agnetis et al. (2015) study a project
scheduling problem with multiple players and controllable processing times. The
project customer provides a per unit time reward for shortening the makespan of

578 9 Noncooperative Supply Chain Scheduling

the project. This reward is shared by the players in fixed proportions that are known
by the players in advance of their decision making. Each player has a choice about
how long to take for his task, within a known interval. However, completing the
task more quickly, i.e., crashing it, incurs a cost to the player. Hence, the player
faces a situation where it is only worthwhile to crash his tasks if other players are
doing likewise to the extent that a makespan reduction that generates a sufficient
reward can be achieved. Each player maximizes his share of the project reward, less
his crashing cost. The social objective is the minimization of the project makespan.
We consider this problem as a noncooperative supply chain scheduling game and
describe an algorithm to find a Nash equilibrium solution.

We describe some notation for this problem. Let G = (N,U) denote an
activity-on-arc graph that defines the activities of the project and their precedence
relationships, where N is a set of nodes that represent project events, U is a set
of arcs that represent tasks, and |U | = n. Let A = {1, . . . , m} denote the set of
m players. Player i controls a set of tasks Ti . For each task (i, j), the normal and
crashed durations are pU

ij and pL
ij , respectively, and task durations are assumed to be

integer values in [pL
ij , p

L
ij +1, . . . , pU

ij]. The cost incurred for crashing activity (i, j)

from pU
ij to pij is cij (pU

ij −pij). A reward for earlier project completion is defined by
π per day of makespan reduction, and this reward can be shared among the tasks. Let
D̄ denote the makespan of the project if no crashing occurs. Then, the total reward
given by the project owner for shortening the project makespan from any time D̄ to
any time D < D̄ is π(D̄ − D). Finally, w = {wi ≥ 0, 1 ≤ i ≤ m | ∑m

i=1 wi = 1}
is a vector specifying the fraction of the total reward given to player i, which
is the public information. Player i’s strategy Pi is a vector of durations for the
activities which it controls. An overall strategy profile S = (P1, . . . , Pm) describes
the strategies of all the individual players. An initial strategy in which no crashing
of activities has occurred is denoted by S̄ = (P̄1, . . . , P̄m), which results in a
project makespan of D̄. In a profile S, let zi(S) denote the net profit, i.e., reward
less crashing cost, of player i, i ∈ M . Observe that, given a strategy profile, the
project makespan is well defined.

The following definition is used to reduce the set of strategies under considera-
tion. It states that if an individual player can improve his net profit without changing
the makespan, then the current strategy is not in equilibrium.

Definition 9.6 A strategy S = (P1, . . . , Pm) with project makespan D(S)

is dominated if there exists a player u and an alternative strategy P ′
u for

that player such that D(S′) = D(S) and zu(S
′) > zu(S), where S′ =

(P1, . . . , Pu−1, P
′
u, Pu+1, . . . , Pm).

Let Wi(S) denote the crashing cost of player i in a strategy profile S. Further,
let W+

i (S) (respectively, W−
i (S)) denote the decrease (resp., increase) in player i’s

crashing cost if he acts unilaterally to increase (resp., decrease) the project makespan
by one time unit, starting from strategy S. These definitions enable the following
result, which establishes necessary and sufficient conditions for a Nash equilibrium
in this game.

9.2 Complete Information Games 579

Lemma 9.5 A nondominated strategy S is a Nash equilibrium if and only if, for
each player i, i = 1, . . . , m:

W−
i (S) ≥ wiπ, and (9.27)

W+
i (S) < wiπ. (9.28)

Proof Consider a strategy S and an arbitrary player i. From Definition 9.6, player i
can improve his situation only by decreasing or increasing the project makespan.
Regarding a possible unit reduction of the makespan that increases player i’s
crashing cost, the player receives an increase in reward of wiπ , which however
is insufficient to motivate a move to a new strategy if wiπ ≤ W−

i (S), as in (9.27),
since the increased reward does not exceed the increased cost incurred. In the other
case, player i gives up an amount of reward wiπ ; therefore, if wiπ > W+

i (S),
as in (9.28), it is not worthwhile for the player to increase the makespan since the
reduction in task cost does not fully cover the loss of reward. Therefore, strategy S

is a Nash equilibrium if and only if conditions (9.27) and (9.28) hold. ��
Agnetis et al. (2015) describe a procedure, Algorithm FindNash, that finds a Nash

equilibrium solution of this noncooperative game. The idea of the algorithm is that
the players sequentially crash their activities to a locally optimal solution. As a result
of this decision, crashing decisions of earlier activities may need to be revisited and
possibly reversed in whole or in part. We now provide a formal description of this
algorithm. The net profit of player i consists of his reward based on the project
makespan minus his crashing cost.

Algorithm FindNash
1. Input a starting set of players’ strategies (P̄1, . . . , P̄m) where all activities are at

their upper bound values, i.e., no crashing has been implemented.
2. For players i = 1, . . . , m do:

Solve a linear program that finds a strategy P ∗
i for player i. This program

maximizes the net return to player i, subject to the current strategies of all the
other players, i.e., max{zi | P1, . . . , Pi−1, Pi+1, . . . , Pm}.

Set (P1, . . . , Pm) to (P1, . . . , Pi−1, P
∗
i , Pi+1, . . . , Pm).

For players k = 1, . . . , i − 1 do:
Increase their previously crashed, noncritical activities to the point where

they become critical, or reach their upper bound value, while the project length
remains unchanged.

The main result can now be stated. We provide a short version of the proof and
refer the reader to Agnetis et al. (2015) for more details.

Theorem 9.10 Algorithm FindNash finds a Nash equilibrium in polynomial time.

Proof Since, by construction, Algorithm FindNash finds a strategy that satisfies the
conditions of Lemma 9.5, it finds a Nash equilibrium solution. The computation
time of the algorithm requires the solution of O(m2) linear programs, each of size
no larger than the project graph G. ��

580 9 Noncooperative Supply Chain Scheduling

However, as now shown by example, a Nash equilibrium solution may deliver an
arbitrarily large makespan and PoA.

Example 9.11 (Arbitrarily Large PoA in a Project Crashing Game) Consider a
problem with two players and one activity per player with durations in {pL

ij =
1, pU

ij = M}, where M is an arbitrarily large number. The two activities can be
processed concurrently. Each activity has a crashing cost of 1, and a reward of 2 is
obtained by each player if the makespan decreases by 1 time unit. Since unilateral
crashing by one player does not reduce the makespan and hence results in no reward,
the strategy profile S = (M,M) is a Nash equilibrium, with a resulting makespan
of M . It is clear that the socially optimal schedule profile sets the duration of each
job to 1 time unit, with a resulting makespan of 1; therefore, the PoA is M .

Example 9.11 shows that it is important that the project is delivered with
reasonable makespan, subject to ensuring stability. This motivates the issue of how
to find a Nash equilibrium solution that meets a given upper bound on makespan.
However, as we now show, this problem is intractable.

Theorem 9.11 Given an upper bound Λ ∈ R
+ on the project makespan D(S), the

recognition version of the problem of finding a Nash equilibrium solution S with
D(S) ≤ Λ is unary NP-complete.

Proof Given a strategy S, checking whether the solution is a Nash equilibrium and
also whether D(S) ≤ Λ can be performed in polynomial time; hence, the problem
is in NP. The remainder of the proof uses a reduction from the following problem,
which is known (Garey & Johnson, 1979, p.224) to be unary NP-complete.

3-Partition Given a set Γ = {a1, . . . , a3k} of positive integers, such that
∑3k

j=1 =
kB, and B/4 < aj < B/2 for j = 1, . . . , 3k, can Γ be partitioned into k subsets
Γ1, . . . , Γk such that |Γi | = 3, 1 ≤ i ≤ k, and

∑
j∈Γi

aj = k, i = 1, . . . , k?

Given an arbitrary instance of 3-Partition, we construct an instance of the
multiple player project scheduling problem as follows. The activity-on-arc graph
G has 3k parallel paths, each consisting of k activities, plus two dummy nodes
that are numbered 0 and 3k(k + 1) + 1. The activities on the first path are
(1, 2), (2, 3), . . . , (k, k+1), those on the second path are (k+2, k+3), (k+3, k+
4), . . . , (2k+1, 2k+2), . . ., and so on, until the 3kth and last path contains activities
(3k(k+1)−k, 3k(k+1)−k+1), (3k(k+1)−k+1, 3k(k+1)−k+2), . . . , (3k(k+
1) − 1, 3k(k + 1)). Nodes 0 and 3k(k + 1) + 1 represent the start time and the
finish time of the project, respectively. From node 0, there are dummy activities
(0, 1), (0, k+2), . . . , (0, 3k(k+1)−k). Also, to node 3k(k+1)+1, there are dummy
activities (k+1, 3k(k+1)+1), (2k+2, 3k(k+1)+1), . . . , (3k(k+1), 3k(k+1)+1).
There are k players. Player Ai owns the ith activity of each path, for i = 1, . . . , m.
All real, i.e., non-dummy, activities have pL

ij = 0 and pU
ij = 1. Also, the crashing

cost of every activity on the j th path is aj , j = 1, . . . , 3k, where B/4 < aj < B/2.
Each player’s unit reward is wuπ = B + ε, where ε > 0 and small.

9.2 Complete Information Games 581

Fig. 9.2 Constructed instance of a project network in Theorem 9.11

Figure 9.2, which is reproduced from Agnetis et al. (2015), shows an example
of the project network constructed as described above for an instance with k = 3,
(a1, . . . , a3k) = (7, 8, 7, 7, 7, 8, 9, 10, 9), and B = 24. We show that there exists a
Nash equilibrium strategy for which D(S) < k in this project network if and only
if there exists a solution to 3-Partition. Observe that if the activities on the cut ω(X)

are crashed by one time unit, the result is a Nash equilibrium, with cost D(s) < k.
(⇒) Consider the strategy S where all activities have normal duration, pij = 1.
Then, the project makespan for S satisfies D(S) = k. If there exists a solution to
3-Partition, then for each player there exists a subset of three activities with total
unit crashing cost of B. These 3k activities can be crashed, which from the topology
of the project network, enables a decrease of the makespan to D(S) < k. Moreover,
the crashing cost of each player is B, whereas his share of the reward for a reduction
in the project makespan is B+ ε. Hence, the crashed solution is a Nash equilibrium.
(⇐) In order to obtain a Nash equilibrium, for each player the total unit crashing
cost of the crashed activities must not exceed B. Hence, not more than three crashed
activities per player can be crashed. From the topology of the project network, in
order to decrease the makespan, exactly 3k activities must be crashed. Therefore, for
a Nash equilibrium with makespan smaller than k to exist, and from the definition
of aj , there must exist a subset of exactly three crashed activities per player, where
the current task durations on all arcs are strictly greater than their lower bounds. The
total crashing cost of such a set of activities is

∑3k
j=1 aj = kB. Hence, in order for

a Nash equilibrium to exist, the total crashing cost of the three activities selected

582 9 Noncooperative Supply Chain Scheduling

for each player must be exactly B. This implies the existence of a solution to 3-
Partition. ��

The work of Agnetis et al. (2015) is among the first to model the globally
important application of project management as a noncooperative game. Their
results highlight the difference in computational difficulty between on the one hand
finding a Nash equilibrium solution and on the other hand finding one with a pre-
specified bound on cost in a general case where a player may control more than
one activity. We refer the reader to that work for consideration of a special case
where each player controls only one activity, where finding a Nash equilibrium with
minimum makespan can be performed efficiently.

9.2.2.4 Local Sequencing Rules

Vijayalakshmi et al. (2021) study the computational complexity of determining
the existence of a Nash equilibrium for games defined over a class of scheduling
problems. They consider a scheduling game on uniform parallel machines, where
the players own jobs and minimize their completion time by choosing a machine
on which their jobs are to be processed. The assumption is made that each player
owns one job. An interesting feature of this problem is that each machine uses
an individual priority list to decide the processing sequence for the jobs that are
assigned to it. This is a local sequencing rule. The study of local sequencing rules is
motivated by the use of different shop floor scheduling traditions within a distributed
scheduling environment, for example, among local manufacturing plants.

An instance of a scheduling game with local sequencing rules is given by a tuple
G = (N;M;pi, i ∈ N; sj , πj , j ∈ M), where N is a set of n ≥ 1 jobs, M is a
set of m ≥ 1 machines, pi ∈ R+ is the nominal processing time of job i ∈ N ,
sj ∈ R+ denotes the speed of machine j ∈ M , and πj is the job priority list
of machine j ∈ M . A strategy profile σ assigns every job to a machine. Given a
strategy profile, the jobs are processed according to their order in the machines’
priority lists. Hence, the completion time of job i on machine j is the total of the
nominal processing times of all the jobs that precede i on that machine and job i

itself, divided by the machine speed sj . Let Ci(σ) denote this time. Vijayalakshmi
et al. (2021) consider the alternative social objectives of minimizing makespan
maxi∈N {Ci(σ)} and the total completion time of the jobs

∑
i∈N Ci(σ). The results

described here apply to both objectives. Each player i, representing job i, chooses
a strategy σi ∈ Σi , where Σi is the set of strategies available to it, to minimize
his cost Ci . A strategy profile σ = (σ1, . . . , σn) is a pure Nash equilibrium if,
for all i ∈ N and all possible alternative choices σ ′

i ∈ Σi, σ
′
i �= σi , we have

Ci(σ1, . . . , σn) ≤ Ci(σ1, . . . , σi−1, σ
′
i , σi+1, . . . , σn).

The following example shows that an instance G∗ of the game G does not
necessarily have a Nash equilibrium in pure strategy.

Example 9.12 (Nonexistence of a Pure NE in a Game with Local Sequencing Rules)
Consider an instance G∗ of the game G with |N | = 5, N = {a, b, c, d, e}, and

9.2 Complete Information Games 583

M = {M1,M2,M3}. The nominal job processing times are pa = 5, pb = 4, pc =
4.5, pd = 9.25, and pe = 2. The machine speeds are s1 = 1, s2 = s3 = 1/2.
The local sequencing rules on the machines are π1 = (a, b, c, d, e), π2 = π3 =
(e, d, b, c, a).

Because job a is ordered last on M2 and M3, it is clearly on M1 in every Nash
equilibrium. Similarly, job e is not on M1 in an NE, since job e is first on M2 or
M3. Since these two machines have the same local sequencing rule and speed, then
without loss of generality, if an NE exists, then there exists an NE in which job e is
on M3. Thus, job a is first on M1 and job e is first on M3. Since job e is on M3, job
d prefers M2 over M3. Therefore, job d is on M1 or M2. We consider both cases:

1. Job d is on M1. Then, since job b has the highest remaining priority between b

and c on all machines, job b picks the machine that offers the lowest completion
time that is M2, and hence, job c is on M1. As a result, job d prefers a completion
time of pd/s2 = 9.25/(1/2) = 18.5 on M2 over a completion time of (pa +
pc + pd)/s1 = (5 + 4.5 + 9.25)/1 = 18.75 on M1, and the solution is not in
equilibrium.

2. Job d is on M2. Then, since job b has the highest remaining priority between b

and c on all machines, job b picks the machine with the lowest completion time
that is M1, and hence, job c is on M3. As a result, job d prefers a completion time
of (pa + pb + pd)/s1 = (5 + 4 + 9.25)/1 = 18.25 on M1 over a completion
time of pd/s2 = 9.25/(1/2) = 18.5 on M2, and again the solution is not in
equilibrium.

Thus, by examination of all nondominated schedules, G∗ has no pure Nash
equilibrium.

Example 9.12 raises the question of how difficult it is to determine whether
a given instance of game G has a pure Nash equilibrium. The next result of
Vijayalakshmi et al. (2021) answers this question.

Theorem 9.12 Given an instance of the gameG, it is unary NP-complete to decide
whether the game has a Nash equilibrium in pure strategy.

Proof Given a game and a schedule profile σ , verifying whether σ is a Nash
equilibrium can be performed by checking for every job whether its current
assignment is also its best response; hence, the problem is in NP. The reminder
of the proof is by reduction from the following problem that is known to be unary
NP-complete (Kann, 1991).

3-Bounded 3-Dimensional Matching (3DM-3) Given a set of triplets T ⊆ X×Y ×
Z, where |T | ≥ n and |X| = |Y | = |Z| = n, and where the number of occurrences
of every element of X ∪ Y ∪ Z in T is at most 3, does T have a 3-dimensional
matching of size n, i.e., a subset T ′ ⊆ T , where |T ′| = n and every element in
X ∪ Y ∪ Z appears exactly once in T ?

Given an instance T of 3DM-3, we construct the following scheduling game,
GT . The set of jobs consists of:

584 9 Noncooperative Supply Chain Scheduling

1. The 5 jobs {a, b, c, d, e} from the game G∗ in Example 9.12
2. A single dummy job, f , with processing time 2
3. A set D of |T | − n dummy jobs with processing time 3
4. A set U of |T | + 1 long dummy jobs with processing time 20
5. 3n jobs with processing time 1, one for each element in X ∪ Y ∪ Z

There are m = |T |+4 machines, M1,M2, . . . ,M|T |+4. All the machines except M2
and M3 have speed sj = 1, whereas s2 = s3 = 1/2. The construction of GT makes
use of instance G∗ from Example 9.12 through the local sequencing rules defined
below.

The local sequencing rules are as follows. Where the list includes a set, it means
that the set elements can appear in arbitrary order. For the first machine, π1 =
(a, b, c, d, e, f, U,X, Y,Z,D). For the second and third machines, π2 = π3 =
(e, d, b, c, a, f, U,X, Y,Z,D). For the fourth machine, the local sequencing rule
is π4 = (f,X, Y,Z, e, U,D, a, b, c, d). The remaining |T | machines are defined as
triplet-machines. For every triplet t = (xi, yj , zk) ∈ T , the priority list of the triplet-
machine corresponding to t is (D, xi, yj , zk, U, f,X\xj , Y \yj , Z\zj , a, b, c, d, e).
Observe that in any Nash equilibrium, the dummy job f with processing time 2 is
assigned as the first job on M4. Also, the dummy jobs in D have the highest priority
on the triplet-machines. Hence, in every Nash equilibrium, there are |D| = |T | − n

triplet-machines on which the first job is from D. Finally, in every Nash equilibrium,
there is exactly one dummy job from U on each of the last |T | + 1 machines, due to
the length of those jobs.

We provide some intuition about the proof that follows. First, the dummy jobs
in U are long enough to guarantee that each of the jobs {a, b, c, d} prefers the first
three machines over the last |T | + 1 machines. Next, observe that, in Example 9.12,
if job e is not on M1,M2, or M3, then a Nash equilibrium exists. Since job e has last
priority on the triplet-machines, it will always choose one of M1, . . . ,M4. Thus, it
only remains to show that (a) if a 3DM-3 matching exists, then job e prefers M4, thus
leaving the first three machines for {a, b, c, d} that results in a Nash equilibrium, and
(b) if there is no 3DM-3 matching, then some job that originates from the elements
in X ∪ Y ∪Z precedes job e on M4, and e’s best response is on M2 or M3, as in G∗
in Example 9.12.

We now show that the constructed instance of the game has a pure NE if and only
if the 3DM-3 instance has a matching of size n.
(⇒) Let T ′ ⊆ T be a matching of size n. Assign the jobs of X ∪ Y ∪ Z on the
triplet-machines corresponding to T ′ and the jobs of D on the remaining triplet-
machines. Assign jobs f and e on M4. Also, assign a single job from U on all but
the first three machines. This leaves the jobs a, b, c, d that are assigned on the first
three machines: a and d on M1, b on M2, and c on M3. Observe that all the jobs
originating from X ∪ Y ∪Z complete at time 3 or earlier and thus have no incentive
to select M4. Thus, job e completes at time pc/s4 = 2/(1/2) = 4 on M4 and has no
incentive to join the first three machines. Hence, the resulting assignment is a Nash
equilibrium.

9.2 Complete Information Games 585

(⇐) Assume that a matching of size n does not exist. Then, at least one job from
X ∪ Y ∪ Z is not assigned on its triplet-machine and thus prefers M4, where it
follows job f and its completion time is (2 + 1)/1 = 3. Thus, job e prefers to be
first on M2 or M3, where its completion time is p2/(1/2) = 4. The presence of the
long dummy jobs guarantees that machines M1,M2, and M3 process the five jobs
{a, b, c, d, e} and no others. Then, the game G∗ of Example 9.12 is played on the
first three machines, and as shown there, a Nash equilibrium does not exist. ��
Remark 9.3 Recall Definitions 9.3 and 9.4 for the PoA and PoS, respectively.
Vijayalakshmi et al. (2021) study four special cases of the general problem
discussed above, corresponding to (a) unit size jobs, (b) two machines, (c) identical
machines, and (d) a global priority list, and evaluate the PoA and PoS in each case.
They also study the problem of approximating the best Nash equilibrium solution
within a given factor in case (c) and identify limits to approximability unless P =
NP.

The work of Vijayalakshmi et al. (2021) described here provides an elegant
illustration of the analysis of the computational complexity of determining the
existence of a Nash equilibrium. It therefore provides a useful complement to the
algorithms for finding a Nash equilibrium discussed elsewhere within Sect. 9.2.2.

9.2.2.5 Congestion and Activation Costs

Feldman and Tamir (2012) study a supply chain scheduling game that includes
strategic resource allocation decisions. Let N = {1, . . . , n} denote a set of jobs
to be processed, and M = {M1, . . .} a set of identical parallel machines for
processing them. These definitions specifically allow for the use of n machines,
each with one job assigned to it. Jobs correspond to self-interested players who
choose resources, i.e., machines, with the objective of minimizing their individual
cost, which has two components. The first component is its congestion cost, which
is the total processing time of the jobs assigned to the same machine; this cost
increases with congestion, i.e., with the number of jobs sharing the same machine.
The second component is the job’s share of the machine’s activation cost; this cost
decreases with congestion. This creates an interesting tradeoff. More formally, given
a schedule s = (s1, . . . , sn) where job j selects machine Mi , which is denoted as
sj = Mi , the cost of job j is given by cj (s) = Li(s) + bj (s), where Li(s) is the
total load on machine Mi and bj (s) is the share of the activation cost of Mi paid
by job j . Let B denote the activation cost of any machine. The activation cost of a
machine is shared by the jobs assigned to that machine, according to two alternative
rules that are discussed below. There is no cost consequence of the order of the jobs,
since it is assumed they use a shared resource simultaneously. The social objective
is the minimization of the total cost of all the jobs.

The activation cost component in the cost function of a job depends on a sharing
rule. Under the uniform sharing rule, all the jobs assigned to a particular resource
share its cost equally; hence, the share of activation cost incurred by job j with

586 9 Noncooperative Supply Chain Scheduling

sj = Mi is bj (s) = B/|{k ∈ N | sk = Mi}|. Alternatively, under the proportional
sharing rule, the jobs assigned to a particular machine share its cost in proportion
to their lengths; hence, the share of activation cost incurred by job j with sj = Mi

is bj (s) = pjB/Li(s) since Li(s) = ∑
k∈N | sk=Mi

pk .

Example 9.13 (Alternative Cost Sharing Rules in a Congestion Game) Consider
an instance with two jobs, lengths p1 = 2, p2 = 3, and activation cost B = 10.
If schedule s assigns both jobs to the same machine, its workload is 5. Under the
uniform sharing rule, c1(s) = c2(s) = (2 + 3)+ 10/2 = 10. Under the proportional
sharing rule, c1(s) = (2+3)+2(10)/(2+3) = 9 and c2(s) = (2+3)+3(10)/(2+
3) = 11.

The choice of rule for sharing the activation cost of the jobs that are scheduled
on the same machine has significant implications. Under the uniform sharing rule, a
pure strategy Nash equilibrium does not in general exist, as shown by the following
example.

Example 9.14 (Nonexistence of a Nash equilibrium in a Congestion Game) Con-
sider an instance with two jobs, lengths p1 = 1, p2 = 13 and activation cost B = 8.
If schedule s assigns both jobs to the same machine, c1(s) = c2(s) = (1 + 13) +
8/2 = 18. If schedule s assigns them to separate machines, c1(s) = 1 + 8 = 9 and
c2(s) = 13+8 = 21. Hence, if the jobs are assigned to the same machine, job 1 will
leave to join a dedicated machine, thereby reducing its cost from 18 to 9. But, if it
does so, the increased cost to job 2 will incentivize it to join job 1, thereby reducing
its cost from 21 to 18.

However, Feldman and Tamir (2012) show that, under the proportional sharing
rule, a Nash equilibrium always exists, and moreover they provide a polynomial-
time algorithm to find one. The remaining discussion in this section therefore
focuses on the proportional sharing rule.

The longest processing time (LPT) rule, developed by Graham (1969), finds a
Nash equilibrium in a load balancing problem without activation costs and with
a fixed number of machines (Fotakis et al., 2002). For the present problem, this
result does not hold, since there is the possibility to open a dedicated machine for
each job. However, Feldman and Tamir (2012) show that a generalization of this
rule, Algorithm LPT that is described below, computes a pure Nash equilibrium in
polynomial time. A number of machines are set aside for the processing of one long
job each. Any other machines that are used are designated as LPT machines in the
algorithm and related discussion.

Algorithm LPT
1. Assign each “long job” j , i.e., job j where pj ≥ B, to a separate dedicated

machine.
2. Assign the remaining “short jobs,” i.e., those where pj < B, one at a time in

nonincreasing length order, to m LPT machines, where the assignment is to the
machine that minimizes the job’s total congestion and activation cost, and m is
the minimal number of machines such that the schedule over the LPT machines

9.2 Complete Information Games 587

has makespan at most B. If that makespan would be exceeded by assigning the
next job to any LPT machine, then that job is the first to be assigned to a newly
opened LPT machine.
Observe that the assignment of jobs to machines in Step 2 is the application of

Graham’s (1969) LPT rule to identical parallel machines, except where the limit on
makespan invokes the opening up of a new machine. Since all the jobs considered
in Step 2 are short, and new machines can be opened as needed, a schedule with all
machine loads not larger than B over the LPT machines is found by construction,
if necessary using a separate machine for each short job. The running time of
Algorithm LPT is O(n log2 n). It is shown below that Algorithm LPT finds a Nash
equilibrium.

Before presenting the main result, several preliminary results are needed. We
refer the reader to Feldman and Tamir (2012) for the proofs. The first result defines
necessary and sufficient conditions under which a job will move to another machine
under the proportional sharing rule.

Lemma 9.6 Consider the congestion game under the proportional sharing rule.
Further, consider a given schedule where sj = Mi . Then, job j will move from
machine Mi to machine Mh if and only if either:

(a) Lh(s) + pj > Li(s) and B > Li(s)[Lh(s) + pj]/pj , in which case the
maximum load on the two machines increases

(b) Lh(s) + pj < Li(s) and B < Li(s)[Lh(s) + pj]/pj , in which case the
maximum load on the two machines decreases

Also, Feldman and Tamir (2012) prove the following property of the LPT
algorithm. Let Lmax(s) = maxi∈M {Li(s)} denote the makespan of a schedule s.

Lemma 9.7 Let N ′ be a set of n′ jobs with sizes p1, . . . , pn′ . Let C ∈ R
+ be

such that pj < C for j ∈ N ′, and C ≤ ∑
j∈N ′ pj . Let sk denote a schedule of

the jobs of N ′ that uses k machines. Finally, let m denote the minimal number of
machines such that Lmax(sm) ≤ C < Lmax(sm−1). Then, Li(sm)+Lk(sm) > C, for
1 ≤ i �= k ≤ m.

In order to establish that Algorithm LPT finds a Nash equilibrium, Feldman and
Tamir (2012) also prove the following preliminary result.

Lemma 9.8 Consider a schedule s found by Algorithm LPT. Then:

(i) No long job can benefit from migration to another machine.
(ii) No short job can benefit from migrating to a machine that has a long job, or

from activating a new machine.

The main result is now presented.

Theorem 9.13 For an instance of the congestion game under the proportional
sharing rule, every schedule found by Algorithm LPT is a Nash equilibrium.

588 9 Noncooperative Supply Chain Scheduling

Proof Let s be any schedule that is found by Algorithm LPT. It is sufficient to show
that no job unilaterally migrates from s. From Lemma 9.8, it remains to show that
no short job can benefit from migrating to another LPT machine. If the total load of
short jobs is not more than B, then LPT assigns them to a single machine, and no
such migration is possible. It then remains to show that if the total load of short jobs
is greater than B and LPT assigns them to multiple machines, no migration among
those machines is beneficial.

Let j be a short job assigned to LPT machine Mi . We show that job j on machine
Mi cannot reduce its cost by moving to some other LPT machine Mh. From a well-
known property of LPT schedules, the load of Mh after the move is at least the load
of Mi in s, i.e., Lh(s) + pj ≥ Li(s). Consequently, only load-increasing moves
need to be considered. From Lemma 9.6, if sj = Mi , a cost reduction is available to
job j for moving from Mi to Mh if and only if either (a) Lh(s) + pj > Li(s) and
Bpj > Li(s)[Lh(s) + pj] or (b) Lh(s) + pj < Li(s) and Bpj < Li(s)[Lh(s) +
pj]. Only (a) is load-increasing and (b) is not. Hence, it suffices to show that B ≤
Li(s)[Lh(s)+pj)]/pj = Li(s)Lh(s)/pj +Li(s). Now, since pj ≤ Li(s), we have
Li(s)Lh(s)/pj + Li(s) ≥ Lh(s) + Li(s) ≥ B, where the last inequality follows
from Lemma 9.7. ��

The following result is analogous with that of Theorem 9.11 of Agnetis et al.
(2015), as discussed in Sect. 9.2.2.3. Although a Nash equilibrium can be found in
polynomial time, finding a Nash equilibrium with social cost no larger than a given
amount is an NP-hard problem, as shown by Feldman and Tamir (2012). However,
the proof in this case is only of binary NP-hardness.

Theorem 9.14 Given an instance of the congestion game under the proportional
sharing rule, and a constant c ∈ R

+, it is binary NP-hard to determine whether
there exists a Nash equilibrium solution that achieves social cost less than or equal
to c.

Proof By reduction from Partition (Garey & Johnson, 1979, p.223): given a set of
positive integers A = {a1, . . . , an}, with

∑n
j=1 aj = 2S, does there exist a subset

A′ ⊂ A such that
∑

j∈A′ aj = S?
Given A, consider an instance of the game containing n jobs with lengths

a1, . . . , an and machines with activation cost B = S2/amax, where amax =
max1≤j≤n{aj }, and where c = 2S. We show that this instance of the game admits a
Nash equilibrium with a social cost of at most c if and only if A admits a partition.
(⇒) Assume that A admits a partition, and consider a schedule s on two machines,
each with a load of S. Because all the jobs incur the same load, the maximal cost is
incurred by the longest job and is given by S + amaxB/S = 2S. It remains to show
that s is a Nash equilibrium. Consider a largest job j with length aj .

From condition (a) in the proof of Theorem 9.13, moving to a nonempty machine
reduces the cost of job j only if B = S2/amax > S(S+aj)/aj , i.e., only if S/amax >

(S+aj)/aj = S/aj +1, which is clearly impossible. From condition (b) in the proof
of Theorem 9.13, moving to an empty machine reduces the cost of job j only if

9.3 Enhanced Complete Information Games 589

B < S, i.e., only if S < amax, which is impossible from the existence of a partition.
It follows that s is a Nash equilibrium.
(⇐) Assume that A does not admit a partition. Hence, in any Nash equilibrium, the
longest job is assigned to a machine with load l �= S. The cost of the longest job is
l + amaxB/l, which achieves its minimum value at l = √

amaxB = S, where the
cost is

√
amaxB+amaxB/

√
amaxB = 2S = c. It follows that, for any l �= S, the cost

of the longest job is strictly greater than c. ��
To summarize, the inclusion of both congestion effects and activation costs

within supply chain scheduling games generates new and interesting results about
the existence of Nash equilibria and the computational difficulty of finding them.

9.3 Enhanced Complete Information Games

The high price of anarchy in many noncooperative games and several practical
concerns about the implementation of such games both provide motivation for
the enhancement of noncooperative games to improve the performance of their
equilibrium outcomes. This enhancement is possible in various ways. In Sect. 9.3.1,
we consider games where the players make their strategic decisions sequentially,
rather than simultaneously, and evaluate the resulting improvement in the price of
anarchy. In Sect. 9.3.2, we consider games with a central planner who acts as a
leader to improve the outcome of the game, as well as another game where a leader
and follower are both selfish. In Sect. 9.3.3, we study the consequences of altruistic
behavior, i.e., where some players’ objectives are at least partly supportive of the
social optimum. Finally, in Sect. 9.3.4, we discuss the use of manipulation by a
central authority to guide players from a high cost equilibrium to a lower cost one.

9.3.1 Sequential Games

In this section, we discuss supply chain scheduling games where the players make
their decisions sequentially rather than simultaneously. These games consist of
homogeneous players making the same decisions with the same self-interested
perspective, which distinguishes them from the leader–follower games studied
in Sect. 9.3.2. As discussed below, sequential decision making enables improved
performance for the worst-case outcomes of the games. Moreover, from a practical
viewpoint, simultaneous playing of some games seems unnatural. It is not nec-
essarily the case administratively that each player is ready to reach a decision at
the same time, especially where the players are involved in various other revenue-
generating activities. A common practical example arises in scheduling, where each
player controls a job. The previous processing or preparation of the jobs may not
complete at the same time for all players. For this reason, if the strategic decision of

590 9 Noncooperative Supply Chain Scheduling

each player is to choose a machine on which to process his job, it is natural to allow
players to select machines sequentially. Allowing sequential decision making may
eliminate some bad quality equilibria and thereby reduce the price of anarchy. We
provide two examples.

Leme et al. (2012) demonstrate improvements to the price of anarchy in two
simple scheduling games that are played sequentially. Given n players, we assume
that the game has n rounds, where player i only acts in round i, for i = 1, . . . , n.
The order of the players is arbitrary and is public information. All players are
selfish utility maximizers. Since this is a complete information game, each player
can predict with certainty how later players will react to his decision, and make
his decision accordingly. The players have action sets A1, . . . , An, and functions
u1, . . . , un that map actions into costs. At each round i, player i observes the
actions chosen by players 1, . . . , i − 1 and chooses an action ai ∈ Ai . Hence, the
strategy of player i is a mapping si : A1 × · · · × Ai−1 → Ai . Then, the outcome
a = (a1, . . . , an) is defined by: a1 = s1(∅), a2 = s2(a1), a3 = s3(a1, a2), . . . , ai =
si(a1, . . . , ai−1). Thus, the cost of player i is determined by his action, as well as
by all previous and subsequent actions by other players. As a result, player i gains
utility ui(ai, . . . , an).

Given pre-specified actions α1, . . . , αi−1, an induced subgame of the original
game is defined for players i, i + 1, . . . , n. As defined in Section 2.3.6, a set of
strategies (s1, . . . , sn) is a subgame perfect equilibrium if it is simultaneously an
equilibrium of all subgames defined by the pre-specified actions which it observes
(Osborne, 2004). It is also a Nash equilibrium of the original sequential game in the
case where there are no pre-specified actions. Let SPE denote the set of all possible
subgame perfect equilibrium solutions. The following definition is needed.

Definition 9.7 Given a social cost function W(a) that maps actions into a positive
real number, the sequential price of anarchy (SPoA) of a sequential game is the
ratio between the cost of the worst subgame perfect equilibrium and the cost of the
socially optimal solution W ∗ = mina∈A1×···×An{W(a)}. Thus,

SPoA = maxa∈SPE{W(a)}
W ∗ . (9.29)

Consider a simple cost sharing game with a set N of n jobs and a set R of m
identical parallel machines. Each player i ∈ N can choose to place his job on any
eligible machine in a given set Ri ⊆ R. Each machine j has a running cost cj ,
independent of the number of jobs assigned to it, that is divided equally among
the players choosing that machine. This is similar to the uniform sharing rule for
activation cost of Feldman and Tamir (2012) discussed in Sect. 9.2.2.5 and is here
described as a fair cost allocation. Then, if x players choose machine j , each incurs
a cost cj /x. We assume for simplicity that no combination of machine j and a
number of players x choosing that machine produces the same cost allocation as
another pair, i.e., ci/y �= cj /x, for 1 ≤ i �= j ≤ n, 0 < x, y ≤ n. If necessary, this
assumption can be realized by a small perturbation of the data and hence is made

9.3 Enhanced Complete Information Games 591

without loss of generality. Each player minimizes the cost of his job. The social
objective is minimization of the total cost of all the players. Leme et al. (2012)
prove the following result.

Theorem 9.15 For any machine cost sharing game with fair cost allocation and
arbitrary costs, the sequential price of anarchy satisfies

SPoA ≤ O(log n).

Proof Consider the following greedy algorithm: while there are jobs that are not yet
assigned to machines, choose the machine that has the smallest ratio of its cost to
the number of as yet unassigned jobs for which that machine is an available choice.
This algorithm, originally developed for the classical set covering problem (Chvátal,
1979), has a worst-case bound, i.e., the ratio of the cost of a solution delivered by
the greedy algorithm to an optimal cost, of O(log n).

We show that the outcome of this greedy algorithm is the unique subgame perfect
equilibrium of this game. To solve the game, we calculate for t = n, n − 1, . . . , 1
the best move player t has available at each round, which is unique due to the
absence of ties. We show by backward induction that all players play according
to the greedy algorithm. Let r1, . . . , rk be the machines in the order picked by the
greedy algorithm, and let Nj denote the subset of jobs that are first allocated to
machine rj .

Consider the players in N1, who incur cost cr1/|N1|. From the definition of r1
and the greedy choice rule, this is the smallest possible cost available. Hence, the
last player in N1 cannot do better and, since there are no ties, will choose r1. Further,
the second last player in N1 also chooses r1, since he knows that by doing so, the
last player will choose r1 too, thereby reducing his cost to cr1/|N1|. Continuing
similarly, all players in N1 choose machine r1, whatever other players do. From
the definition of the greedy algorithm, the best possible cost for players in N2
is cr2/|N2|. The same argument again applies and can be repeated for the other
machines. ��

In this problem, the price of anarchy of a simultaneous game is n (Anshlevich
et al., 2004), whereas Theorem 9.15 shows that a subgame perfect equilibrium
solution described above for the sequential game has a price of anarchy of
O(log n). This improvement illustrates the benefit of sequential decision making
in noncooperative supply chain scheduling games.

Corollary 9.1 The subgame perfect equilibrium solution is independent of the
order in which the players move. Moreover, the players do not need to know the
order in which the rest of the players act to find their optimal move. Consequently,
the subgame perfect equilibrium is also a Nash equilibrium of the sequential game
described.

As a second example of sequential games, consider a set M of m unrelated
parallel machines and n players, each of whom owns a single job j . Let pij denote
the processing time of job j on machine i. Recall the classical problem Rm||Cmax,

592 9 Noncooperative Supply Chain Scheduling

which requires allocating the jobs nonpreemptively to the machines to minimize
the makespan, i.e., the processing time of the most loaded machine. Our focus
is on a noncooperative game defined over this scheduling problem. The objective
of each player is the minimization of the load of the machine to which his job is
assigned. The social objective is the minimization of the makespan. The classical
simultaneous version of this game has an unbounded PoA, even for n = m = 2, as
Leme et al. (2012) show by example. The purpose of this analysis is to establish
a better price of anarchy through sequential decision making. They prove the
following result.

Theorem 9.16 The SPoA of the sequential game for unrelated parallel machine
scheduling described above satisfies

SPoA ≤ O(m2n).

Proof Let M(L̄) denote the makespan resulting from a vector L̄ = (L1, . . . , Lm)

of machine loads. Let L̄0 denote a given vector of initial machine loads.
Also, let SPE(L̄0, k) denote the makespan of the subgame perfect equilibrium
obtained when players k, k + 1, . . . , n make decisions starting from L̄0. Let
p∗
j = mini∈M {pij }, i.e., the shortest processing time of job j on any machine.

The result is proved using the induction hypothesis:

SPE(L̄0, k) ≤ M(L̄0) + 2n−k
n∑

j=k

p∗
j , L̄0 ∈ R

m+.

Consider the last player, n. Since his cost is determined by the makespan of the
machine which he chooses, he chooses the machine that provides the minimum
makespan. Hence, the resulting makespan is at most M(L̄0) + p∗

n. Suppose the
hypothesis holds for players j = n, n − 1, . . . , k + 1. There are two cases:

Case 1. Player k allocates his job to the machine where he has processing time p∗
k ,

resulting in a new vector of machine loads denoted by L̄1. Then,

M(L̄1) ≤
n∑

j=k

p∗
j + M(L̄0). (9.30)

Therefore, from the induction hypothesis,

SPE(L̄0, k) ≤ M(L̄1) + 2n−k−1
n∑

j=k+1

p∗
j

≤ M(L̄0) + 2n−k
n∑

j=k

p∗
j , from (9.30).

9.3 Enhanced Complete Information Games 593

Case 2. Player k allocates his job to another machine i where his cost is lower
because the machine is less loaded, resulting in a load vector L̄′ = (L′

1, . . . , L
′
m).

Hence,

L′
i ≤ p∗

k + M(L̄0) + 2n−k−1
n∑

j=k+1

p∗
j .

Then, since the load is unchanged for any machine h �= i, we have

M(L̄′) ≤ M(L̄0) + 2n−k−1
n∑

j=k

p∗
j . (9.31)

Therefore,

SPE(L̄0, k) = SPE(L̄′, k + 1)

≤ M(L̄′) + 2n−k−1
n∑

j=k+1

p∗
j , from the induction hypothesis

≤ M(L̄0) + 2n−k
n∑

j=k

p∗
j , from (9.31).

Finally, the result is established by setting L̄0 = 0, k = 1, and noting that∑n
j=1 p

∗
j is not larger than m times the optimal makespan. ��

Theorem 9.16 shows that a subgame perfect equilibrium solution described
above for the sequential game has a price of anarchy of O(m2n), whereas in the
equivalent simultaneous game the price of anarchy is unbounded. This result further
illustrates how sequential decision making can improve the quality of a worst-case
equilibrium.

Chen and Xu (2020) consider a scheduling situation where N is the set of
n players, each of whom represents a job, and M the set of unrelated parallel
machines, where m = |M|. Let pij denote the processing time of job j on machine
i and p∗

j = mini∈M {pij } denote the minimum processing time of job j on any
machine. The players in publicly known sequence 1, . . . , n choose one of the
machines to process their job. A schedule σ = (σ1, σ2, . . . , σn) represents the
sequence of machines chosen by jobs 1, . . . , n, respectively. The load Li(N) =∑

j |σ(j)=i pij is the total processing on machine i.
Over this situation, they define a supply chain scheduling game where player

i’s objective is to minimize the load of the machine which he chooses, taking
into account the choices of all predecessors and k successors. This objective is
motivated by a situation where a machine delivers all its jobs together when all have

594 9 Noncooperative Supply Chain Scheduling

completed processing. The social objective is the minimization of the makespan.
In this environment, the players have bounded rationality, i.e., they are only able
to look ahead to the next k decisions before making their own decision. Here,
0 ≤ k ≤ n − 1, where k = 0 corresponds to an online greedy solution and
k = n − 1 corresponds to perfect rationality as assumed in the work of Leme
et al. (2012) discussed above. Bounded rationality is defined by Simon (1955)
as “rational choice that takes account the cognitive limitations of the decision
maker—limitations of both knowledge and computational capacity.” A player has a
k-lookahead ability in a sequential game if he computes his best decision using the
decisions of his predecessors and his first k−1 successors. This decision process can
be conceptualized as follows: when a player makes a decision, he draws a (k + 1)-
depth decision tree that includes his own node, assigns the corresponding costs to
the leaves, and then performs backward induction to determine what decision to
make. If k = 0, he assumes that his successors will choose machines with minimum
processing times, which defines his best choice. This game always has a subgame
perfect equilibrium (see Definition 2.13). However, finding one that minimizes the
central objective of the makespan is an intractable problem (Leme et al., 2012).

Some additional notation is needed. Let [a : b] = {a, a + 1, . . . , b} and [b] =
[1 : b], where a, b are the integers. Let Kj = [j + 1 : min{j + k, n}] denote
the lookahead set for job j , where |Kj | ≤ k. Let L̄0 denote an initial vector of
machine loads before the game, and M(L̄0,∅) its makespan. More generally, L̄
denotes a vector of current loads on the machines. This definition provides a baseline
for calculating the increase in makespan at any point during the playing of the game.
Let Li(L̄, J) denote the load of machine i after the set of players J ⊆ N has played,
and M(L̄, J) = maxi∈M {Li(L̄, J)} the resulting makespan.

Considering any possible initial load L̄0 ∈ R
m+, we define

ΔL(J) = sup
L̄∈Rm+

{M(L̄, J) − M(L̄0,∅)}.

Here, ΔL(J) is used to bound the increase in makespan as a result of scheduling the
set of jobs J , relative to any initial load. This amount in turn can be used to bound
the SPoA, as shown below.

Consider the general case where each player j has k-lookahead ability, j = 1 ≤
k ≤ n − j . Chen and Xu (2020) prove the following preliminary result.

Lemma 9.9 ΔL([j : n]) ≤ ΔL([j + 1 : n]) + p∗
j + ΔL(Kj), j = 1, . . . , n.

This result bounds the amount that each job can contribute to the makespan, and
enables the main result that follows. Let OPT (N) denote the value of a socially
optimal solution that minimizes the makespan.

Theorem 9.17 For the sequential scheduling game where players have k-
lookahead ability, the sequential price of anarchy for the makespan is at mostO(k2)

for the two unrelated machines environment R2, and at most O(2k min{mk, n}) for
the m unrelated machines environment Rm.

9.3 Enhanced Complete Information Games 595

Proof From Lemma 9.9,

ΔL(N) ≤ ΔL([2 : n])+p∗
1 +ΔL(K1) ≤ · · · ≤

n∑

j=1

p∗
j +

n∑

j=1

ΔL(Kj). (9.32)

First, consider the case of two unrelated machines. From (Chen et al., 2016,
Theorem 4),

ΔL(Kj) ≤ (k − 1)
∑

i∈Kj

p∗
i . (9.33)

This gives

ΔL(N) ≤
n∑

j=1

p∗
j +

n∑

j=1

ΔL(Kj), from (9.32)

≤
n∑

j=1

p∗
j + (k − 1)

[∑

j∈K1

p∗
j +

∑

j∈K2

p∗
j + · · · +

∑

j∈Kn

p∗
j

]
, from (9.33)

≤
n∑

j=1

p∗
j + k(k − 1)

n∑

j=1

p∗
j

= (k2 − k + 1)
n∑

j=1

p∗
j .

Therefore, it follows that

SPoA ≤ ΔL(N)

OPT (N)

≤ (k2 − k + 1)
∑n

j=1 p
∗
j

∑n
j=1 p

∗
j /2

= 2(k2 − k + 1)

= O(k2).

Second, consider the case of m unrelated machines. Leme et al. (2012, Theo-
rem 4) and Bilò et al. (2016, Theorem 5) provide upper bounds for ΔL(Kj):

596 9 Noncooperative Supply Chain Scheduling

ΔL(Kj) ≤ 2k
∑

j∈Kj

p∗
j , and (9.34)

ΔL(Kj) ≤ 2k max
j∈Kj

{p∗
j }. (9.35)

These bounds are now used in turn to estimate the SPoA.
Using OPT (N) ≥ ∑

j∈N p∗
j /m, we obtain

SPoA ≤ ΔL(N)

OPT (N)

≤
∑

j∈N p∗
j +∑

j∈N ΔL(Kj)
∑

j∈N pj/m
, from (9.32)

≤
∑

j∈N p∗
j + k2k

∑
j∈N p∗

j
∑

j∈N p∗
j /m

, from (9.34)

= m + mk2k

= O(mk2k). (9.36)

Using OPT (N) ≥ maxj∈N {p∗
j }, we obtain

SPoA ≤ ΔL(N)

OPT (N)

≤
∑

j∈N p∗
j +∑

j∈N ΔL(Kj)

OPT (N)
, from (9.32)

≤
∑

j∈N p∗
j

OPT (N)
+ n2k maxj∈N {pj }

OPT (N)
, from (9.35)

≤
∑

j∈N p∗
j

∑
j∈N p∗

j /m
+ n2k maxj∈N {p∗

j }
maxj∈N {p∗

j }
= m + n2k

= O(n2k). (9.37)

Combining (9.36) and (9.37) gives SPoA = O(2k min{mk, n}). ��
Table 9.3 summarizes results for the sequential price of anarchy from the

literature, including from Chen and Xu (2020).
These results illustrate why Chen and Xu (2020) use the term “curse of

rationality” in the title of their work.
Chen and Xu (2020) also study the case of simple-minded players, who select a

machine with minimum anticipated load, under the assumption that all subsequent

9.3 Enhanced Complete Information Games 597

Table 9.3 Sequential price
of anarchy results for
makespan on unrelated
machines

Machines Two machines m machines

Online 2 m

1-lookahead 2 O(m)

k-lookahead O(k2) O(2k min{mk, n})
n-lookahead Θ(n) O(2n)

players choose machines with minimum processing time. They show that, in this
case, the SPoA is exactly m, the number of machines. Noncooperative supply chain
scheduling games with limited lookahead ability are an important subject for further
research (see Sect. 9.6).

9.3.2 Leader–Follower Games

This section discusses two games with leaders and followers. While these games are
sequential in nature, we distinguish them from the games considered in Sect. 9.3.1
by the fact that either the objectives of the leaders and followers are different,
or their range of control is different. The sequential games studied above consist
of homogeneous players making the same decisions with the same self-interested
perspective. A further distinction is that the number of decision making stages here
is only two.

In the first game we describe, the leader is motivated by optimization of social
welfare, whereas the followers are self-interested. In the second game studied,
the self-interested leader makes a decision about price, whereas the self-interested
follower makes a decision about how much work to subcontract.

A Stackelberg game (Fudenberg & Tirole, 1993, Chapter 3) is a complete
information game in which one or more players, i.e., leaders, move first, and then
one or more other players, i.e., followers, react to the decisions of the leaders. A
Stackelberg game contains several structural assumptions. First, the leaders know
before they make their decisions that the followers will observe those decisions.
Further, the leaders know the best response of the followers to their decisions and
are therefore able to determine both their outcome and the overall outcome of the
system from their own decisions. Solution of a Stackelberg game model is typically
achieved by backward induction, i.e., by considering the followers’ best responses
as a function of the leaders’ decisions and then optimizing over the latter. Solution of
the game finds a Stackelberg equilibrium, i.e., a subgame perfect equilibrium that is
a combination of sequential strategies that best serve each player, given the strategies
of the other players. Then, every player is at a Nash equilibrium in every subgame.
Regarding applications, many Stackelberg games model the leaders and followers
as two groups of self-interested players who are either responsible for different
decisions or distinguished from the other groups by order of decision making. An
example of this in a supply chain is a supplier or subcontractor that makes pricing

598 9 Noncooperative Supply Chain Scheduling

decisions before a manufacturer does. The work of Qi (2012) discussed below in
this section provides an example.

An alternative perspective offered by Roughgarden (2004) defines a game where
a central planner solves part of a planning problem, and self-interested players react
to this partial solution and solve the remainder of the problem. In this game, the
central planner is the leader and is responsible for allocating a fraction of the total
available work to machines. The central planner has complete information about
how the other players will react to any strategy which it adopts. The objective of the
central planner is to minimize the total cost of the machines. In this role, the central
planner has limited power but can partially control the solution determined by the
following self-interested players.

This process results in a Nash equilibrium; however, the social cost of that
equilibrium can vary considerably based on the leader’s strategy. It is therefore
useful to evaluate, for any central planner’s strategy, the ratio of social cost given
by the Stackelberg equilibrium to the optimal social cost. A further challenge is to
identify the leader’s strategy that minimizes this ratio at the induced Stackelberg
equilibrium. These challenges fall within the study of Stackelberg games.

Consider a set M = {1, . . . , m} of machines. Machine i has a latency function
c(·) that measures the load-dependent time required to complete work. Each latency
function is assumed to be a nonnegative, continuous, nondecreasing, and convex
function of its argument. The following players choose machines to minimize the
latency of their jobs. There is a known, finite, positive, and constant rate r of arriving
jobs that need to be processed by the machines. The central planner controls a
fraction α of the arriving jobs, which defines an arrival rate of αr jobs to the central
planner. The central planner allocates these jobs to the machines. The remaining
work, with an arrival rate of (1 − α)τ , is assigned to the machines by the choices of
the selfish, independent following players who represent the work not allocated by
the central planner. An instance (M, r, α) of the Stackelberg game is defined by the
set of machines M , the arrival rate of jobs r , and the fraction α of those jobs that are
controlled by the decision maker. If there are no centrally controlled jobs, and hence
all decisions are made by the self-interested players, then an instance is denoted as
(M, r).

The following definition clarifies the role of the central planner and the other
players:

Definition 9.8

(i) A strategy s = (s1, . . . , sm) for the Stackelberg instance (M, r, α) is an
assignment of work αr to machines by the leader that is feasible for the game
instance (M, αr).

(ii) An equilibrium induced by strategy s is an assignment t at Nash equilibrium
for the instance (M, (1 − α)r) with respect to latency functions fi(·), i ∈ M .

(iii) Then, s + t is an assignment induced by s for the original Stackelberg game
instance (M, r, α), where s describes the leader’s strategy, and t describes the
decisions of the selfish players in reacting to the leader’s strategy.

9.3 Enhanced Complete Information Games 599

To elaborate on Definition 9.8, (i) defines the only role of the central planner as
assigning part of the arriving work among the machines. However, this is done with
an understanding of how the remaining work will be allocated. Also, (ii) describes
the situation after the jobs not allocated by the central planner have selfishly chosen
their machines. Finally, (iii) describes the complete solution by both the central
planner and the selfish followers.

An assignment of the jobs to the machines is an m-vector x ∈ R
M+ , such

that
∑

i∈M xi = r , i.e., both the centrally controlled work and the remaining
work have been allocated to the machines. The performance of the system, as
viewed by the central planner, is measured by minimization of its total latency
C(x) = ∑m

i=1 xifi(xi), where fi(xi) measures the performance of machine i given
workload xi . In general, the latency function varies among the machines, as is the
case in many supply chain scheduling applications that employ resources of varying
age and quality.

Each player minimizes his job’s latency by choosing a machine on which it
is to be processed. This perspective is similar to that in the congestion game of
Feldman and Tamir (2012) in Sect. 9.2.2.5. All jobs assigned to the same machine
experience the same latency. This assumption is consistent with the modeling of
congested systems where a particular allocation of resources represents a “steady-
state solution” with jobs arriving continuously over time.

The development of a good strategy by the central planner is key to obtaining
good overall system performance. Roughgarden (2004) applies the intuition that a
good strategy by the central planner, i.e., one that balances workload among the
machines, should give more work to the machines that are least appealing to the
following selfish users, i.e., machines with relatively high latency. This motivates
the following strategy.

Algorithm Largest Latency First (LLF)
1. Compute an optimal assignment x∗ for problem (M, r) in polynomial time, using

the mathematical model:

min
∑

i∈M
xifi(xi)

s.t.
∑

i∈M
xi = r

xi ≥ 0, i ∈ M.

2. Index the machines of M such that f1(x
∗
1) ≤ · · · ≤ fm(x

∗
m).

3. Define k = min{i ≤ m | ∑m
h=i+1 x

∗
h ≤ αr}.

4. Set si =

⎧
⎪⎪⎨

⎪⎪⎩

x∗
i , i > k

αr −∑m
i=k+1 x

∗
i , i = k

0, i < k.

600 9 Noncooperative Supply Chain Scheduling

We provide an example of Algorithm LLF.

Example 9.15 (Application of Algorithm LLF) Let M = {1, 2, 3} denote a set of
machines, and let τ = 10 denote the arrival rate of work. Let α = 0.9; hence, the
central authority can assign the total work of ατ = 9. Consider the latency functions
l1(x1) = 2x1 + 1, l2(x2) = x2, and l3(x3) = 4. The assignment problem in Step 1 is

min 2x2
1 + x1 + x2

2 + 4x3

s.t. x1 + x2 + x3 = 10

x1, x2, x3 ≥ 0,

with optimal solution x∗
1 = 0, x∗

2 = 2, x∗
3 = 8.

In Step 2, we have l1(x
∗
1) = 1, l2(x∗

2) = 2, and l3(x
∗
3) = 4, i.e., l1(x∗

1) ≤
l2(x

∗
2) ≤ l3(x

∗
3), and hence, the machines are correctly indexed. In Step 3, we have

k = 2. In Step 4, since ατ = 9, we have s3 = 8, s2 = 1. The remaining work of 1
remains to be assigned among the three machines by the selfish players.

Under the assumption that the latency function li (xi) of each machine i is convex,
Roughgarden (2004) shows that Step 1 involves the minimization of a convex
function over a convex set that is the polytope of possible assignments, and can
therefore be computed in polynomial time using convex programming techniques.
As a special case, if the latency functions are linear, then Step 1 requires O(m2)

time. The LLF strategy fills the machines one by one up to their x∗ level, in
order from the largest latency with respect to x∗ to the smallest, until there is no
unallocated work remaining, and thus clearly runs in polynomial time.

Next, the performance of the LLF strategy is evaluated. Roughgarden and Tardos
(2002) show that a Nash equilibrium in this problem can be arbitrarily bad if there is
no central planner; hence, the gains achieved under central planning are potentially
significant. Roughgarden (2004) proves the following preliminary results that are
needed for analysis of the problem. Let ti denote the amount of work assigned to
machine i ∈ M by the following players.

Lemma 9.10 Let M1 denote the machines i ∈ M for which ti = 0 and M2 denote
the machines i ∈ M for which ti > 0. For i = 1, 2, let αi denote the amount
of centrally controlled jobs assigned to machines in Mi , and Ci the cost incurred
by the induced assignment s + t on machines in Mi , where α1 + α2 = α. Then,
every machine i with ti > 0 has the same latency, which we denote by L. Moreover,
C2 = (1 − α1)L and C1 ≥ α1L.

Lemma 9.10 is used to prove the next result.

Lemma 9.11 Let (M, r, α) denote a Stackelberg instance with optimal assignment
x∗ from Step 1 of Algorithm LLF and index the machines of M such that fm(x∗

m) ≥
fi(x

∗
i), i = 1, . . . , m − 1. Then:

(i) fm(x
∗
m) ≥ L.

9.3 Enhanced Complete Information Games 601

(ii) If s is a strategy from Step 4 of Algorithm LLF with sm = x∗
m, then there exists

an equilibrium induced by s where tm = 0.

Part (ii) of Lemma 9.11 states that if the LLF strategy fills the mth machine up to
x∗
m, then some induced equilibrium assigns all work to the first m− 1 machines and

none to machine m.
These properties enable the main result for the performance of an LLF-induced

strategy.

Theorem 9.18 Let (M, r, α) denote a Stackelberg game instance:

(i) If s is an LLF central planner’s strategy for this game instance that induces
equilibrium t and x∗ is an optimal assignment for this instance, then C(s+ t) ≤
C(x∗)/α.

(ii) The ratio bound of 1/α is best possible under Stackelberg strategies.

Proof (i) The proof proceeds by induction on m, the number of machines. For each
fixed m, the theorem is proved for arbitrary latency functions f (·), r and α. The
case of m = 1 machine is trivial. Hence, we assume m ≥ 2.

Consider a Stackelberg instance (M, r, α) with m ≥ 2. Let x∗ denote an optimal
assignment to the instance (M, r) and s the corresponding LLF strategy that induced
x∗. Index the machines such that f1(x

∗
1) ≤ · · · ≤ fm(x

∗
m). Rescale the total

workflow to 1. Let L = fm(sm + tm) = fm(x
∗
m + tm) denote the common latency

with respect to s+ t of every machine i ∈ M2 with ti > 0 as defined in Lemma 9.10.

Case 1. Suppose tk = 0 for some machine k. Let M1 = {i ∈ M | ti = 0} and
M2 = M \ M1, where M1,M2 �= ∅. From Lemma 9.10, C2 = (1 − α1)L

and C1 ≥ α1L. Further, since x∗ restricted to M2 is an optimal assignment for
(M2, 1−α1, 1), the strategy s restricted to M2 is an LLF strategy for the instance
(M2, 1 − α1, α2/(1 − α1)).
From the induction hypothesis and the fact that x∗

i ≥ si = si + ti , i ∈ M1, we
have

C(x∗) ≥ C1 + α2C2/(1 − α1).

Proving that C(s + t) ≤ C(x∗)/α thus reduces to showing that

α(C1 + C2) ≤ C1 + α2C2/(1 − α1). (9.38)

Since α ≤ 1 and C1 ≥ α1L, it suffices to prove (9.38) with C1 replaced by α1L,
i.e.,

α(α1L + C2) ≤ α1L + α2C2/(1 − α1). (9.39)

Now, setting C2 = (1 − α1)L, both sides of (9.39) reduce to αL.

602 9 Noncooperative Supply Chain Scheduling

Case 2. Suppose ti > 0 for every machine i; hence, C(s + t) = L. If the LLF
strategy has sm ≥ x∗

m, then from part (ii) of Lemma 9.11, the argument of Case 1
applies. Hence, we assume α < x∗

m, as is the case in Example 9.15. Further, from
part (i) of Lemma 9.11, fm(x∗

m) ≥ L, else li (x
∗
i) < L, i = 1, . . . , m, in which

case x∗ and s + t do not deliver the same total load. Then,

C(x∗) ≥ x∗
mfm(x

∗
m)

≥ αL

= αC(s + t).

(ii) The following example shows that the ratio bound of 1/α is the best possible
result under Stackelberg strategies.

��
Example 9.16 (Worst-Case Instance of an LLF Strategy in a Stackelberg Game)
Consider an example with m = 2 machines, α = 1/2, and latency functions
f1(x1) = 1 and f2(x2) = 2kxk2 , where k is a positive integer. For this example,
any Stackelberg strategy induces the assignment (1/2, 1/2) with the total cost
1. However, an optimal assignment is (1/2 + δk, 1/2 − δk) with the total cost
1/2 + εk , where δk, εk → 0 as k → ∞. Thus, the best induced assignment may
be (arbitrarily close to) twice as costly as the optimal assignment. Similar examples
can be developed for any α, 0 < α < 1.

For the natural case of linear latency functions, Roughgarden (2004) proves a
stronger ratio bound of 4/(3 +α). He also shows that, even for this special case, the
problem of computing an optimal Stackelberg strategy is binary NP-hard.

Having presented the above theoretical background to Stackelberg games, we
now discuss an interesting application that provides different intuition. Qi (2012)
describes a two-stage Stackelberg game for a manufacturer and a subcontractor
whose decisions collectively form a supply chain scheduling problem. The self-
interested manufacturer needs to process a set of jobs, and outsourcing some or
all of them to a subcontractor can reduce its tardiness cost that is incurred when
a customer deadline is not met. In the first stage of the game, the self-interested
subcontractor (i.e., leader) sets a unit price, and in the second stage the manufacturer
(i.e., follower) uses this information to decide which jobs to subcontract and also
how to schedule the jobs on both its and the subcontractor’s resources. It is assumed
that the subcontractor accepts the manufacturer’s schedule for outsourced work,
based on the manufacturer’s due date priorities, as part of the subcontract. The
subcontractor knows the response of the manufacturer, i.e., the amount of work that
is subcontracted, to whatever pricing decision it makes.

Consider a manufacturer with n jobs to schedule. Each job j has a processing
time pj , a due date dj where d1 ≤ · · · ≤ dn ≡ D, and a fixed tardiness cost
wj if it completes at time Cj where Cj > dj . A cost cm per unit time is incurred
for in-house processing; hence, the cost of processing job j is cmpj if it is not

9.3 Enhanced Complete Information Games 603

outsourced. If job j is outsourced, it requires p′
j time at the subcontractor, where

in general p′
j �= pj . Let P = ∑n

j=1 pj , and P ′ = ∑n
j=1 p

′
j . The subcontractor’s

capacity is P ′, and therefore not a binding constraint; in practice, this is justified
by the possibility of further subcontracting by the subcontractor. The subcontractor
determines a price x per unit time for work received, which is therefore xp′

j

for processing job j . The subcontractor’s cost of processing per unit time is cs .
Naturally, the manufacturer incurs the tardiness cost wj if it is tardy, even if a job
is outsourced. Each job is scheduled either entirely in-house or entirely outsourced
and in both cases is processed nonpreemptively.

The manufacturer minimizes its total cost, which includes processing, outsourc-
ing, and tardiness costs. The subcontractor maximizes its net profit, which is its
revenue from the manufacturer, less its processing cost.

Given a price x set by the subcontractor, consider the manufacturer’s problem
of determining which of its jobs to outsource and whether it is worth the increased
outsourcing cost of scheduling them in order that they be delivered on time. This
problem can be solved using the following dynamic program.

Algorithm SC

Preprocessing
Index the jobs in EDD order, i.e., such that d1 ≤ · · · ≤ dn ≡ D.

Value Function
Let fj (a, b) denote the minimum total in-house processing, subcontracting, and
tardiness cost, for scheduling jobs 1, . . . , j , where the total processing time of the
on-time in-house jobs is a and the total processing time of the on-time outsourced
jobs is b.

Boundary Condition
f0(0, 0) = 0.

Recurrence Relation

fj (a, b) = min

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

fj−1(a, b) + cmpj + wj

fj−1(a, b) + xp′
j + wj

vj (a, b)

yj (a, b),

where

vj (a, b) = min

{
fj−1(a − pj , b) + cmpj , if a ≤ dj

∞, if a > dj ,

yj (a, b) = min

{
fj−1(a, b − p′

j) + xp′
j , if b ≤ dj

∞, if b > dj .

Optimal Solution Value
h(x) ≡ min0≤a≤P, 0≤b≤P ′ {fn(a, b)}.

604 9 Noncooperative Supply Chain Scheduling

The recurrence relation includes four alternatives. In the first two alternatives,
job j is tardy. In the first alternative, it is processed in-house, whereas in the
second alternative it is subcontracted. The third and fourth alternatives attempt to
schedule job j on time. However, this is only possible by in-house processing in
the third alternative if a ≤ dj , and it is only possible by subcontracting in the
fourth alternative if b ≤ dj . Finally, h(x) represents the minimal total cost of the
manufacturer, given the subcontractor’s choice of x as the price.

Theorem 9.19 For a given subcontractor’s price x, Algorithm SC finds an optimal
selection of jobs to outsource in O(nPP ′) time.

Proof Since an EDD sequence is optimal for on-time jobs on each machine (Lawler
& Moore, 1969) for the classical scheduling problem P2||∑wjUj , the algorithm
compares the cost of all possible schedules of in-house and outsourced jobs and
therefore finds a minimum cost solution. Regarding the computation time, 1 ≤ j ≤
n, 0 ≤ a ≤ P, 0 ≤ b ≤ P ′, and each application of the recurrence relation
requires constant time. ��

Qi (2012) proves the following preliminary result.

Lemma 9.12 The manufacturer’s minimum cost function h(x) is a piecewise linear
concave increasing function of the unit subcontracting price, x.

The next result provides a path to computationally efficient solution of the overall
problem of the manufacturer and subcontractor.

Theorem 9.20

(i) The manufacturer’s optimal total subcontracting time b∗(x) is a stepwise
nonincreasing function of the unit subcontracting price x and has the same
breakpoints as the manufacturer’s minimum cost function, h(x).

(ii) The subcontractor needs to consider only the same breakpoints as the manu-
facturer in setting its optimal price.

Proof

(i) The result follows from Lemma 9.12.
(ii) Observe that the manufacturer does not change its schedule, and therefore,

the subcontractor’s revenue does not change between two price breakpoints.
Therefore, the subcontractor’s optimal price is found by comparing its profit at
each of the manufacturer’s breakpoints.

��
Qi (2012) provides a simple algorithm for finding all the breakpoints of h(x),

which from Theorem 9.20 is sufficient to enable the manufacturer to evaluate and
compare its cost under any given price x, and moreover is sufficient to define the set
of candidate prices that the subcontractor needs to consider.

Remark 9.4 The availability of complete information and sequential decision mak-
ing help to identify an equilibrium solution in this game. While the subcontractor

9.3 Enhanced Complete Information Games 605

plays first by setting the price, it is able to predict with certainty the manufacturer’s
reaction to that price, as specified by the total amount of time subcontracted, and
therefore its own revenue and cost. Moreover, the subcontractor needs only to opti-
mize over the price breakpoints that correspond to prices where the manufacturer’s
subcontracting decision changes.

The equilibrium solution found by the above analysis is in general not optimal
for the system as a whole. Further investigation of this point requires the following
definition.

Definition 9.9

(i) The total system cost equals the manufacturer’s processing cost, plus the
subcontractor’s processing cost, plus the tardiness cost.

(ii) The system is coordinated if the pricing decision of the subcontractor and the
outsourcing decision of the manufacturer are aligned such that the total system
cost is minimized.

Qi (2012) describes a coordinating contract that contains a quantity discount. In
such a contract, which is defined by a triple (q, x1, x2), the subcontractor announces
a threshold q for the amount of time subcontracted and two unit prices x1 and
x2, where x1 > x2. The unit price paid by the manufacturer depends on the total
subcontracting time, i.e.,

x =
{
x1, if b < q

x2, if b ≥ q.

Thus, the manufacturer enjoys a discounted unit price if and only if it subcontracts
a sufficient amount of work. Let b∗(cs) denote the optimal amount subcontracted
by the manufacturer if the subcontractor’s price is cs . Further, let g(b) denote the
manufacturer’s minimum cost, excluding subcontracting cost, if the total amount of
time subcontracted is b. The following result (Qi, 2012) specifies the design of such
a coordinating contract.

Theorem 9.21 A quantity discount contract (q∗, x∗
1 , x

∗
2) where

q∗ = b∗(cs),
x∗

1 = 1 + cm + minj∈N {wj/pj }, and
x∗

2 = cs + [g(0) − g(b∗(cs)) − csb
∗(cs)]/b∗(cs)

coordinates the system.

Proof It suffices to prove that:

(i) The optimal subcontracting time for the manufacturer is q∗.
(ii) The subcontractor cannot reduce its cost by changing x∗

1 and x∗
2 .

To prove (i), if the manufacturer outsources a quantity smaller than q∗, the unit price
which it pays is 1 + cm + minj∈N {wj/pj }, which exceeds any possible in-house
production cost, including tardiness penalties.

606 9 Noncooperative Supply Chain Scheduling

Hence, the amount of time subcontracted by the manufacturer is at least q∗. If it
is exactly q∗, the profit of the subcontractor is (x∗

2 − cs)b
∗(cs), and hence, the total

system cost is g(b∗(cs)) + csb
∗(cs), which is the minimum system cost.

If the amount of time subcontracted exceeds q∗, the subcontractor’s profit is
strictly greater than (x∗

2 − cs)b
∗(cs). Since the total system cost is bounded below

by g(b∗(cs)) + csb
∗(cs), the manufacturer’s costs must be strictly greater than if it

subcontracted exactly q∗ jobs. Consequently, the manufacturer will choose not to
subcontract this much. This completes the proof of (i).

To prove (ii), the profit of the subcontractor under the proposed contract is (x∗
2 −

cs)b
∗(cs), which equals the total system saving relative to no subcontracting. Hence,

the subcontractor cannot increase its profit without incentivizing the manufacturer
to avoid subcontracting entirely, which in turn will reduce the subcontractor’s profit.

��
This widely observed outsourcing application, where a subcontractor sets a price

first and then the manufacturer reacts to it in a way that the subcontractor can
predict, provides valuable intuition about Stackelberg games. For discussions of
subcontracting problems in a centralized supply chain scheduling environment, we
refer the reader to Chap. 6.

9.3.3 Altruistic Games

Most classical game theory models assume that players are both rational and
selfish. The players therefore focus on optimizing their utility, for example by
minimizing their personal delay in a routing or congestion game. However, this
assumption has been repeatedly questioned by economists and psychologists. In
experiments, it has been observed that participants’ behavior can be quite complex
and contradictory to selfishness (Ledyard, 1997; Levine, 1998). Further motivation
for altruistic behavior arises from Internet behavior, such as Wikipedia, open-source
software development, or Web 2.0 applications, which explicitly rely on voluntary
participation and contributions toward a joint project without direct personal benefit.
These environments demonstrate forms of altruism in which players accept certain
personal burdens (e.g., by investing time, attention, and money) to improve a
common outcome. We consider two games that involve different ways of modeling
altruistic behavior. In Sect. 9.3.3.1, we consider a congestion game where the players
are all pure egoists or pure altruists. In Sect. 9.3.3.2, each player has an objective that
is a weighted combination of egoistic and altruistic cost measures.

9.3.3.1 Egoists and Altruists

Motivated by the substantial evidence of altruism discussed above, Hoefer and
Skopalik (2013) consider congestion games where the players, although rational,

9.3 Enhanced Complete Information Games 607

are altruistic. These games model supply chain scheduling problems in a horizontal
supply chain, as studied by Li (2002). Each player i is assumed to be partly selfish
and partly altruistic, and his objective is to optimize a linear combination of personal
cost and social cost, where the latter is defined as the total cost of all players. The
strength of altruism of each player i is captured by his altruism level βi ∈ [0, 1],
where βi = 0 implies purely egoist behavior and βi = 1 implies pure altruism.

A congestion game contains a set of players N = {1, . . . , n}. This is a supply
chain scheduling problem where each player owns one or more jobs that must
be assigned to a resource. Available to the players is a set E of resources or
facilities that we henceforth refer to as machines for consistency with the scheduling
literature. Each player i makes a choice about what subset Si of the available
machines to use. We describe this as a strategy Si ⊆ 2E . A joint strategy of all
the players is denoted by s ∈ S1 × · · · × Sn. Given s, let xe(s) denote the number of
players who choose machine e ∈ E. These choices result in delays that are described
by delay functions de : N → R+. This delay is experienced by all the players who
use machine e, since it is a congestion effect that affects them all equally. Given s,
the objective of player i is to minimize his total cost ci(s) = ∑

e∈Si de(xe(s)). The
social cost is the total cost of all the players.

Various classes of congestion games are available:

Definition 9.10

(i) If each player is allowed to select only a single machine, then the game is a
singleton game.

(ii) If each player has the same set of available strategies, then the game is
symmetric.

We consider symmetric singleton congestion games, where each player i ∈
N is either a pure egoist (βi = 0) or a pure altruist (βi = 1). A vector of
strategies s = (S1, . . . , Sn) chosen by the players defines a state. Let di(ni) denote
the delay experienced by each of ni players who choose machine i, which is a
nondecreasing function of ni . The following example shows that in a symmetric
singleton congestion game there may be no pure Nash equilibrium, even if the game
contains only pure egoists and pure altruists.

Example 9.17 (Nonexistence of a Pure NE in an Altruistic Congestion Game)
Consider a symmetric singleton congestion game with two machines a and b, three
pure egoists, and one pure altruist. The delay functions are da(x) = db(x) with
da(1) = 4, da(2) = 8, da(3) = 9, and da(4) = 11. If either all three egoists or
two egoists and the altruist choose the same machine, then one of the egoists can
reduce his cost from 9 or more to 8 or less by moving to the other machine. Hence,
in equilibrium, each machine must be chosen by exactly two players. However, in
this case, the social cost is 2(8) + 2(8) = 32, as a result of which the altruist is
motivated to change machine so that the resulting social cost is 1(4)+3(9) = 31. In
that event, the previous situation applies. Hence, no pure Nash equilibrium exists.

608 9 Noncooperative Supply Chain Scheduling

In view of Example 9.17, it is valuable to develop a methodology to determine
in polynomial time, for a given instance of a symmetric singleton congestion game,
whether it has a Nash equilibrium. We also show how to compute a Nash equilibrium
with minimum and maximum social costs, if such an equilibrium exists.

Let ne denote the number of egoists and na the number of altruists in an arbitrary
symmetric singleton game. Hoefer and Skopalik (2013) provide the following result
that simplifies the game into one with only egoists.

Lemma 9.13 An altruist can be modeled as an egoist with a transformed cost
function.

Proof An altruist moves from strategy Si to strategy S′
i if and only if the decrease

in the total delay on the machines e ∈ Si \ S′
i from which it is leaving exceeds

the increase in the total delay on the machines e ∈ S′
i \ Si which it is joining.

Consequently, for the purposes of computing a Nash equilibrium, an altruist can be
modeled as a selfish player i with a transformed cost function ci(s) = ∑

e∈Si d
′
e(ne),

where d ′
e(ne) = nede(ne) − (ne − 1)de(ne − 1), for ne > 0. ��

We provide some additional notation. For a given state s, let Ee (respectively,
Ea) denote the set of machines chosen by at least one egoist (resp., altruist).
Let the maximum delay of any machine chosen by an egoist be denoted by
dmax
e = maxi∈Ee di(ni) and the minimum delay of any machine if an additional

player is added be denoted by dmin +
e = mini∈Ee di(ni + 1). Similarly, let the

maximum altruistic delay of any machine chosen by an altruist be denoted by
dmax
a = maxi∈Ea d

′
i (ni) and the minimum altruistic delay of any machine if an

additional player is added be denoted by dmin +
a = mini∈Ea d

′
i (ni + 1).

Given this notation, the following result by Hoefer and Skopalik (2013) charac-
terizes a Nash equilibrium in a symmetric singleton congestion game.

Lemma 9.14 Necessary and sufficient conditions for a Nash equilibrium are that

dmax
e ≤ dmin +

e and dmax
a ≤ dmin +

a . (9.40)

Proof Let Ne denote the set of egoists where ne = |Ne|, and let Na denote the set
of altruists where na = n − ne = |Na|. Thus, Ee = ∪i∈NeSi and Ea = ∪i∈NaSi .
Observe that, if and only if the first inequality in (9.40) is not satisfied, then an egoist
can move from one machine to another and reduce his cost. Further, if and only if
the second inequality in (9.40) is not satisfied, then an altruist can move similarly.

��
Hoefer and Skopalik (2013) use Lemma 9.14 to prove the following result:

Theorem 9.22

(i) Given an instance of the symmetric singleton congestion game described above
with only pure altruists and egoists, there is an algorithm that determines if a
pure Nash equilibrium exists in O(n3

en
3
am

5) time.

9.3 Enhanced Complete Information Games 609

(ii) The same algorithm can be modified to compute the lowest and highest social
cost Nash equilibrium with the same running time.

Proof

(i) Fix values of dmax
e , dmin +

e , dmax
a , and dmin +

a . The following procedure tests for
the existence of a Nash equilibrium with exactly those four values.

Index the machines in arbitrary order. For machines 1 and 2, find a
combination of egoists and altruists that satisfies the conditions in (9.40). Now,
add machines i one at a time and test the number of egoists and altruists
who could be assigned to i while sustaining a Nash equilibrium. By doing so,
bounds are obtained on the feasible numbers of altruists and egoists remaining
unassigned for later machines.

To implement this procedure, maintain a binary matrix R = {rhj } of
dimension (ne + 1) × (na + 1), where rhj = 1 if and only if there is a feasible
assignment of ne − h egoists and na − j altruists to the previously considered
machines. Now, consider a new machine i. For this machine, we test all possible
combinations of ye egoists and ya altruists that could be allocated to i such that
conditions (9.40) remain satisfied. If so, the matrix entry rh−ye,j−ya is set to 1.
If, when the last machine has been added, the matrix entry r00 = 1, this means
that all players have been assigned and a Nash equilibrium exists for the given
values of dmax

e , dmin +
e , dmax

a , and dmin +
a . If so, this is sufficient to terminate the

process. Otherwise, another combination of the values of dmax
e , dmin +

e , dmax
a ,

and dmin +
a is tested. Failure to find a Nash equilibrium for any such combination

determines that no Nash equilibrium exists.
Regarding the running time of the above procedure, observe that

dmax
e , dmin +

e ≤ (ne + 1)m, and dmax
a , dmin +

a ≤ (na + 1)m; hence, there
are O(n2

en
2
am

4) iterations of the process. Each iteration tests O(nena)

combinations for the numbers of egoists and altruists to add, at each of m

stages corresponding to the number of machines being tested. Hence, the
overall running time of the algorithm is O(n3

en
3
am

5).
(ii) Lemma 9.14 can also be used to find the lowest and highest social cost Nash

equilibrium. To accomplish this for the best Nash equilibrium, the procedure for
identifying feasibility with an entry rij is modified to store the lowest social cost
of a feasible assignment. Similarly, the worst Nash equilibrium can be found by
storing the highest social cost of a feasible solution. The decisions that provide
the highest and lowest costs can be found by retracing the solution.

��
Finally, consider the problem faced by a central planner who wishes to convince

as many players as necessary to become altruists, in order to achieve a Nash
equilibrium that is socially optimal. In this context, a natural question is how many
altruists are required to stabilize a social optimum. Intuitively, the more altruists and
fewer egoists are present in the game, the easier it is to establish a Nash equilibrium
that is socially optimal. The investigation of this issue requires the definition of two
performance measures for the game:

610 9 Noncooperative Supply Chain Scheduling

(a) An optimal stability threshold, which is the minimum number of altruists such
that there exists an optimal Nash equilibrium.

(b) An optimal anarchy threshold, which is the minimum number of altruists such
that every Nash equilibrium is optimal.

For symmetric singleton congestion games, Hoefer and Skopalik (2013) adapt
the procedure described in the proof of Theorem 9.22 above for computing Nash
equilibria to determine both thresholds. The main result of this analysis now follows.
We provide an outline of the proof and refer the reader to their work for details.

Theorem 9.23 The optimal stability threshold and optimal anarchy threshold of
symmetric singleton congestion games with only pure altruists and egoists can be
computed in polynomial time.

Proof By iteratively applying the polynomial time algorithm that is described in the
proof of Theorem 9.22 for different numbers of altruists, for any given number of
altruists, compare the cost of the best or worst Nash equilibrium with the cost of the
social optimum. ��

Hoefer and Skopalik (2013) also show the limits to analysis of the type
described above by proving that, for symmetric but nonsingleton congestion games
with quadratic delay functions, it is unary NP-complete to determine whether a
singleton congestion game with only pure egoists and pure altruists has a pure Nash
equilibrium.

9.3.3.2 Common Altruistic Preference

Apt and Schäfer (2014) provide a perspective on altruistic games that is different
from that of Hoefer and Skopalik as discussed in Sect. 9.3.3.1. In their version of
such games, each player’s payoff is modified by adding a positive fraction α of the
social welfare realized by a joint strategy of all the players to the individual player’s
payoff. Hence, each player is partly but not completely altruistic, and to the same
extent.

The selfishness level of a game, which is formally defined below, is the infimum
over all values of α ≥ 0 that results in a social optimum being realized at a pure
Nash equilibrium. Intuitively, the selfishness level of a game can be viewed as a
measure of the players’ unwillingness to cooperate. A low selfishness level, i.e.,
a low value of α, indicates that the players are easily incentivized to align their
interests with those of the society, whereas a high selfishness level suggests that the
players are reluctant to cooperate in this way. Since it is a measure of unwillingness
to cooperate, the selfishness level is not directly comparable with the price of
anarchy, hence using it provides different insights about noncooperative games. We
first discuss a general model of these altruistic games and then demonstrate how this
model can be applied to a linear congestion game.

An altruistic cost game G = (N, {Si, i ∈ N}, {ci, i ∈ N}) is defined by a set
N = {1, . . . , n} of players, a nonempty set of strategies Si for every player i ∈ N ,

9.3 Enhanced Complete Information Games 611

and a scheduling cost function ci for every player i ∈ N where ci : S1 × · · · ×
Sn → R. The players choose their strategies simultaneously, and every player i ∈ N

aims at choosing a strategy si ∈ Si so as to minimize his individual cost ci(s) =
ci(s1, . . . , sn). We define s ∈ S1 × · · · × Sn as a joint strategy with ith element
si . Let s−i = (s1, . . . , si−1, si+1, . . . , sn} and S−i = (S1, . . . , Si−1, Si+1, . . . , Sn}.
The social objective is the minimization of the social cost of the game, which is
defined as

SC(s) ≡
n∑

i=1

ci(s).

Now, define an altruistic cost game instance G(α) = (N, {Si, i ∈ N}, {ci, i ∈
N}, α ≥ 0). The objective of each player i is to minimize his partly altruistic cost
τi = ci + αSC(s). If, for some α ≥ 0, a pure Nash equilibrium of G(α) is also
a social optimum, then G(α) is said to be α-selfish. Then, the selfishness level of
G(α) is

inf{α ∈ R
+ | G(α) is α−self ish.}.

The motivation for studying the selfishness level of G(α) is that it provides an
indication of how much altruism for all players would be needed to ensure that
a socially optimal solution is stable. Then practical measures, for example direct
appeals to the players or public service announcements, can be undertaken to induce
that level.

A social optimum s is stable if, for all i ∈ N and alternative strategies s′
i ∈ Si ,

ci(si , s−i) ≤ ci(s
′
i , s−i),

i.e., no player is better off by unilaterally deviating to another social optimum.
Finally, we define the appeal factor AF(·, ·) of strategy s′

i of player i, given the
social optimum s, as

AFi(s
′
i , s) = ci(si, s−i) − ci(s

′
i , s−i)

SC(s′
i , s−i) − SC(si, s−i)

. (9.41)

The numerator in (9.41) represents the reduction in cost experienced individually by
player i in changing his strategy from si to s′

i , whereas the denominator represents
the increase in social cost that results. Hence, if the numerator is large but the
denominator is small, this change of strategy is appealing to player i. The selfishness
level of a game G can be characterized by bounds on the appeal factors of possible
deviations from a stable social optimum. First, Apt and Schäfer (2014) prove the
following result about the properties of social optima.

612 9 Noncooperative Supply Chain Scheduling

Lemma 9.15 Consider a noncooperative game G(α) = (N, {Si, i ∈ N}, {ci, i ∈
N}, α ≥ 0):

(i) If s is both a Nash equilibrium of G(α) and a social optimum of G, then s is a
stable social optimum of G(α).

(ii) If s is a stable social optimum ofG, then s is a Nash equilibrium ofG(α) if and
only if, for all i ∈ N and s′

i ∈ Ui(s), AFi(s
′
i , s) ≤ α, where

Ui(s) = {s′
i , i ∈ Si | ci(s′

i , s−i) < ci(si , s−i)}. (9.42)

The set Ui(s) in (9.42) contains players who could reduce their individual cost by
moving from their current strategy si to an alternative strategy s′

i and indeed would
do so if α = 0. Also, to interpret part (ii) of Lemma 9.15, we may think of α as a
minimum threshold for the appeal factor at which any possible change of strategy
from si to s′

i is not appealing to any player i ∈ N . Lemma 9.15 enables the main
result for general games that follows.

Theorem 9.24 Consider a game G(α) as defined above.

(i) The selfishness level of G(α) is finite if and only if a stable social optimum s

exists for which α(s) ≡ supi∈N,s′i∈Ui(s)
{AFi(s

′
i , s)} is finite.

(ii) If the selfishness level of G(α) is finite, then it equals the minimum value of
α(s) over all stable socially optimal solutions.

(iii) If G(α) is finite, then its selfishness level is finite if and only if it has a stable
social optimum. In particular, if G(α) has a unique social optimum, then its
selfishness level is finite.

(iv) If β > α ≥ 0 and G(α) is α-selfish, then G(α) is β-selfish.

Proof Part (i) follows from Lemma 9.15. Part (ii) follows from part (i) and
Lemma 9.15. Part (iii) follows from part (i). Part (iv) follows from part (ii) of
Lemma 9.15. ��

We provide some intuition about Theorem 9.24. In part (i), if there exists a player
in Ui(s) with current strategy si and an infinite appeal factor α(s) for another s′

i ,
then no finite value of α will ensure that the game is stable. Part (ii) recognizes
that since different socially optimal solutions may have different values of α(s), the
selfishness level is defined by the most stable of those solutions. Part (iii) is useful
in establishing a property of a unique social optimum. Part (iv) makes the point that
a game that is selfish under a given value of α is also selfish under a higher value of
α, which follows from (9.42).

We apply the above results for general games to a symmetric singleton conges-
tion game, as discussed by Hoefer and Skopalik (2013) in Sect. 9.3.3.1. However,
we add an extra condition that the game is linear, i.e., the delay function of every
machine e ∈ E is of the form de(xe) = aexe +be, where xe is the load on machine e
under a given strategy s of all the players. This defines a linear symmetric singleton
congestion game. Let s be a stable social optimum. We write xe in place of xe(s) for
conciseness. Let the discrepancy between two machines e and e′ be defined as

9.3 Enhanced Complete Information Games 613

δ(xe, xe′) = 2aexe + be

ae + ae′
− 2aexe′ + be′

ae + ae′
. (9.43)

Further, let

δmax(s) = max
e,e′∈E

{δ(xe, xe′) | ae + ae′ > 0, δ(xe, xe′) < 1}.

Then, δmax is the maximum discrepancy over all stable social optima. Further, let
Δmax = maxe∈E{ae + be} and Δmin = mine∈E{ae + be}. Finally, let amin =
mine∈E{ae | ae > 0}.

Apt and Schäfer (2014) prove the following preliminary result.

Lemma 9.16 Consider the linear symmetric singleton congestion game defined
above. Let s be a social optimum and e, e′ ∈ E be two machines with ae + ae′ > 0.
Then the discrepancy between e and e′ under s satisfies δ(xe, xe′) ∈ [−1, 1].

The main result for congestion games can now be stated.

Theorem 9.25 The selfishness level of a symmetric singleton linear congestion
game is at most

max

{

0,
Δmax − Δmin

2(1 − δmax)amin
− 1

2

}

.

Moreover, this bound is tight.

Proof Let s be a stable social optimum that exists from Theorem 9.24, parts (ii) and
(iii). If Ui(s) = ∅, i ∈ N , then the selfishness level is 0, from Theorem 9.24, part
(ii). Now, consider some player i ∈ N with Ui(s) �= ∅. Let s′ = (s′

i , s−i) for some
s′
i ∈ Ui(s). Let xe and x′

e refer to xe(s) and xe(s
′), for e ∈ E, respectively. For every

e ∈ E,

x′
e =

⎧
⎪⎪⎨

⎪⎪⎩

xe + 1, if e ∈ s′
i \ si,

xe − 1, if e ∈ si \ s′
i

xe, otherwise.

(9.44)

Let si = {e} and s′
i = {e′} be the sets of resources chosen by player i in s and s′,

respectively. From (9.44), we have

ci(si, s−i) − ci(s
′
i , s−i) = aexe + be − ae′(xe′ + 1) − be′ . (9.45)

Also,

SC(s′
i , s−i) − SC(si, s−i) = ae′(2xe′ + 1) + be′ − ae(2xe − 1) − be. (9.46)

614 9 Noncooperative Supply Chain Scheduling

Now, the left-hand side of (9.45) must be strictly positive, since si ∈ Ui(s). Also, the
left-hand side of (9.46) must be strictly positive, since s is a stable equilibrium and
si ∈ Ui(s). Hence, ae + ae′ > 0, to avoid a contradiction between (9.45) and (9.46).

Further, using the definition of δ in (9.44), the left-hand side of (9.46) evaluates
to (1 − δ)(ae + ae′) > 0, which implies that δ �= 1. Then, from Lemma 9.16, we
have δ < 1. As a result,

AFi(s
′
i , s) = (ae + ae′)δ + be − be′ − 2ae′

2(1 − δ)(ae + ae′)

= (ae + be) − (ae′ + be′)

2(1 − δ)(ae + ae′)
− 1

2

≤ Δmax − Δmin

2(1 − δmax)amin
− 1

2
,

where the inequality follows from the definitions of Δmax,Δmin, δmax, and amin.

The result now follows from Theorem 9.24, part(ii).
The following example shows that this bound is tight, even for n = 2 players and

two resources.

Example 9.18 (Instance of an Altruistic Game with Maximum Selfishness Level)
Let N = {1, 2}, E = {e, e′}, and S1 = S2 = {{e}, {e′}}. Suppose we are given
δ ∈ [0, 1) and ae′ ∈ R

+. Let de(x) = (2+δ)ae′ and de′(x) = ae′x. The joint strategy
s = ({e}, {e′}) is the unique social optimum with SC(s) = (3 + δ)ae′ . Further,
c1(s) = (2 + δ)ae′ and c2(s) = ae′ . Now, suppose player 1 deviates to s′

1 = {e′},
then SC(s′

1, s2) = 4ae′ and c1(s
′
1, s2) = 2ae′ . Thus, AFi(s

′
1, s) = δ/(1 − δ), which

matches the upper bound in the theorem statement. The case of δ ∈ [−1, 0] is
similar. ��

The two works on altruistic games discussed in this section provide valuable
insights about how variations in the motivations of players can influence the
outcomes of noncooperative supply chain scheduling games. The study of altruistic
supply chain scheduling games offers considerable potential for future research, and
we refer the reader to Sect. 9.6 for a related discussion.

9.3.4 Central Authority Manipulation

Balcan (2011) discusses methods to improve a Nash equilibrium solution with a
high social cost into another Nash equilibrium with a lower social cost. Recall the
definitions of Price of Anarchy (PoA) in Definition 9.3 and Price of Stability (PoS)
in Definition 9.4. There are many practical noncooperative games where the PoA
(which evaluates the quality of the highest cost Nash equilibrium) is large, while
the PoS (which evaluates the quality of the lowest cost Nash equilibrium) is small.

9.3 Enhanced Complete Information Games 615

For example, as shown below, in job scheduling on unrelated machines, the PoA is
unbounded, while there is a Nash equilibrium that is socially optimal and hence the
PoS is 1.

Example 9.19 (Noncooperative Game with PoS of 1 and Unbounded PoA) Con-
sider the classical scheduling problem Rm||Cmax and a supply chain scheduling
instance where m = n = 2. The social objective is the minimization of makespan.
Each player, represented by a job, minimizes the completion time of his job. Let
pij denote the processing time of job j on machine Mi , where p11 = p22 = 1 and
p12 = p21 = 1/δ, for some 0 < δ < 1. Then, a solution with job 1 on machine M1
and job 2 on machine M2 is a Nash equilibrium and has Cmax = 1. This solution
is socially optimal, and hence, the PoS is 1. However, a solution with job 1 on
machine M2 and job 2 on machine M1 is also a Nash equilibrium, since if either
player changes their decision, their cost increases from 1/δ to 1+1/δ. This solution
has Cmax = 1/δ, and hence, the PoA is unbounded as δ → 0.

In situations where there are both high cost and low cost Nash equilibria, it is
potentially valuable for a central authority—for example, a government agency or
another regulator—to try to “nudge” decisions that are currently stuck at a high cost
equilibrium into a low cost one, for example by running a public service advertising
campaign that promotes socially better decisions.

However, it is in practice too optimistic to hope that everyone will follow any
given piece of advice, even if the recommended behavior is optimal if everyone
else follows it. A more realistic assumption is that following a public service
announcement, some fraction 0 < α < 1 of players will follow it, whereas other
players will continue to behave selfishly. For any such game, an important question
is what can be achieved in this situation. More specifically, Balcan (2011) asks, “Is
affecting a small constant fraction α of players sufficient to cause the rest to head
toward a low-cost equilibrium, or on the other hand, is even a small constant fraction
[of the players] not paying attention enough to cause the whole thing to unravel?”
This question can be generalized to consider situations where the fraction of players
who follow the advice from the central authority changes over time, for example as
a result of the information becoming viral through social media.

There are two models (Balcan et al., 2009) by which it is possible for players
to learn toward an improved cost Nash equilibrium solution. The first is a simple
advertising model, under which the central authority first suggests to each player a
proposed action, and each player accepts the proposal with some probability. The
players that accept the new action stay with it until the other players, conditioned on
that response, converge to a Nash equilibrium. The goal of the central authority is to
design its advertising in such a way that the process converges to a Nash equilibrium
with a low social cost. Here, it is easy to see that tradeoffs emerge in this design.
For example, the more draconian the advice offered in the advertising message, the
more effective it may be for those who follow it, but the smaller the proportion α

of players who do so. Similarities may be observed in reactions to public service
messages related to the global public health emergency in 2020–2021. The second
approach uses adaptive learning, where each player individually decides, in each

616 9 Noncooperative Supply Chain Scheduling

round, between following the advertised strategy or acting in a best response manner
with some probability. Players may adjust their probabilities over time using some
learning rule of their choosing. The goal again is to show that (in expectation, or with
high probability) this process results in a low cost Nash equilibrium solution, under
conditions that are as mild as possible on the learning rules used by the individual
players.

Regrettably, based on currently existing research, supply chain scheduling games
seem to be less amenable to these types of learning than others. Balcan et al. (2009)
describe a negative result in this context. Consider the unrelated parallel-machine
problem Rm||Cmax. In this case, even for m = n, and allowing the central authority
to convince n−2 of the players to follow its advertising, there is still a possibility of
reaching a pure Nash equilibrium with unbounded PoA. Even for m = 2 machines,
the same result holds if no more than n/2−1 jobs follow the recommended behavior.
Nonetheless, there are intriguing questions here for future research (see Sect. 9.6).

9.4 Private Information: Mechanisms Without Payments

This section studies supply chain scheduling games where part of a player’s
information is private. This information may be misreported to a central authority
and to other players. Achieving good system performance in this situation requires
the design of mechanisms that induce truthful reporting of private information. In
general, a mechanism includes (a) an algorithm for converting reported information
from the players into an output, which in the supply chain scheduling context is
typically a schedule for the system, and (b) a payment scheme that defines a vector
of payments to or from the players. However, the mechanisms discussed in this
section rely only on an algorithm, which in some cases includes randomization
steps, and do not require the use of payments either to or from the players to ensure
truthfulness. Within social choice settings generally, there are various situations
where payment is ethically or legally problematic (Schummer & Vohra, 2007).
Within supply chain scheduling, similarly problematic issues are most likely to arise
from antitrust concerns.

In Sect. 9.4.1, we describe the main concepts necessary to design mechanisms
and provide a generic description of one. An important concept explored here
is different types of truthfulness, including deterministic truthfulness, universal
truthfulness, and truthfulness in expectation. Each of these has its own char-
acteristics regarding when it can be used and what it enables for a particular
supply chain scheduling application. In Sect. 9.4.2, we describe an application of
deterministic truthfulness without payments. Section 9.4.3 demonstrates the power
of randomization in designing truthful mechanisms for two supply chain scheduling
applications without payments. The design of mechanisms that include both an
algorithm and a payment scheme is deferred to Sect. 9.5.

9.4 Private Information: Mechanisms Without Payments 617

9.4.1 Design Concepts

In this section, we describe several design concepts that are important for the study
of private information settings where payments are not used. In Sect. 9.4.1.1, we
describe the steps in a generic mechanism design process. In Sect. 9.4.1.2, we
describe three different levels of truthfulness that can be implemented through
mechanism design.

9.4.1.1 A Mechanism

Consider a situation where a principal, or central authority, wants to achieve a
good overall performance for a system that includes multiple self-interested players.
A mechanism is a decision structure to elicit truthful reporting by the players
who otherwise may have an incentive to provide false information in the hope of
improving their outcome. The central authority designs a mechanism to collect
truthful information and then uses it to determine a good or even optimal solution for
the system. A mechanism has two parts. The first part is an algorithm implemented
by the central authority to generate an outcome that defines a value for all the
players. In the present context, an outcome is a schedule of jobs owned by the
players. The value received by a player may be, for example, the cost determined
by the completion time of his job in that schedule. In introducing the concept of a
mechanism in Sect. 9.1, we refer to this as a truthful mechanism if it induces each
player to report his private information truthfully. The second part of a mechanism is
a payment between the central authority and the players, which needs to be based on
the value they have received. Examples of payment schemes, along with supporting
design concepts, are provided in Sect. 9.5.

We now summarize the steps of a generic mechanism.

Mechanism Any
1. The central authority announces a mechanism to the players. (For example, it

may announce that all jobs submitted by the players will be processed in order
of nonincreasing waiting cost and a scheme for how payments will be transacted
with each player based on the reported waiting costs of the players.)

2. The players report information about their private data to the central authority,
in the form of a “report,” “announcement,” or “bid.” (For example, the players
may report their waiting costs to the central authority. The submitted information
may be false, if the submitting player believes that false reporting will improve
his outcome. However, a well designed mechanism should disincentivize false
reporting.)

3. Using the reported information, the central authority applies an algorithm to
compute and possibly implement an outcome that specifies a value for each
player. (For example, the outcome could be a schedule of all the submitted jobs,
which defines a completion time for each job i ∈ N and a resulting value for

618 9 Noncooperative Supply Chain Scheduling

each player, such as how long he needs to wait for his job to start in the computed
schedule.)

4. Based on the announced payment scheme and the outcome generated, the central
authority transacts a payment with each player. (For example, each player may
receive compensation based on the start time of his job, which can be viewed as
the inconvenience he incurs through waiting.)
As mentioned above, this section discusses the use of mechanisms without pay-

ment. Hence, for the current discussion, Step 1 does not include the announcement
of a payment scheme, and Step 4 is not needed. The full version of a mechanism
that includes payments is discussed in Sect. 9.5.

We complete this brief introduction to mechanism design with several important
definitions. Let O denote a set of possible outcomes that could be chosen by an
algorithm α that is part of a mechanism. For example, O could represent the set of
all permutations of jobs N = {1, . . . , n}, each of which represents a schedule. Each
job i ∈ N is represented by a player with true but private information ti . Let o ∈ O

denote a particular outcome, for example, a well defined schedule of the jobs. Then,
for i ∈ N , let vi(o | ti) denote the value received by player i in schedule o, given his
true information. Let πi denote a payment specified by the mechanism that player
i ∈ N must pay to the central authority.

Definition 9.11 If the utility of player i can be written as vi(o|ti)−πi, i ∈ N , then
we say that the players have quasilinear preferences.

In common with much of the mechanism design literature, we assume quasilinear
preferences.

9.4.1.2 Levels of Truthfulness

In this section, we define three concepts of truthfulness that guide the subsequent
discussion and examples in this section and also in Sect. 9.5. Before doing so,
however, we need some perspective on why truthfulness is important. The reason
for an insistence on truthful reporting of private data by players is not immediately
obvious. In this context, a reasonable question to consider is:
Q1: Might allowing some strategic false reporting by players be less costly to
an overall system solution than imposing constraints to ensure that they report
truthfully?
This question can be answered in the negative, as explained below.

A related issue is what type of actions should we expect a player to take as part
of a mechanism. One possible answer is provided by the following definition.

Definition 9.12 A direct revelation mechanism is a mechanism where the only
action that a player is required to take is reporting his type.

We observe that not all mechanisms are direct; examples of indirect mechanisms
include some auctions. In a traditional or English auction, each bidder has to answer
multiple binary questions about whether to participate at different bid levels. The

9.4 Private Information: Mechanisms Without Payments 619

literature of mechanism design focuses largely on the design of direct revelation
mechanisms, and it is reasonable to wonder why that is the case. Hence, it is
reasonable to ask another question:
Q2: Might a more elaborate mechanism, for example one that requires multiple
responses over time, produce a better outcome?
This question can also be answered in the negative.

The reason for the two negative answers to Q1 and Q2 above lies in the
Revelation Principle (Myerson, 1981; Vazirani et al., 2007, pp.224–225). This
important principle states that every available truthful equilibrium can be replicated
within the class of direct revelation mechanisms. Therefore, there is no loss implied
by insisting on truthfulness, nor is there any loss implied by restricting the search
for a suitable mechanism to the class of direct revelation mechanisms. As a result,
a mechanism designer who wants to implement some outcome or property can
restrict his search to mechanisms where the players reveal their private information
truthfully and directly to the mechanism designer.

The above discussion enables us to summarize the three main levels of truthful-
ness used in the algorithmic mechanism design literature:

Definition 9.13

(i) Under deterministic truthfulness, a player always maximizes his utility by
reporting his private data truthfully. There is no randomization involved in the
process.
The following definitions (ii) and (iii) both belong to the category of random-
ized mechanism design.

(ii) Under universal truthfulness, the mechanism is a probability distribution over
deterministically truthful mechanisms. The mechanism remains truthful even
after the realization of the random numbers that are used to specify individual
choices, for example which machine processes a job.

(iii) Under truthfulness in expectation, a player always maximizes his expected
utility by reporting truthfully. However, once he sees the realized outcome,
he may realize that his ex-post utility has not been maximized.

The three concepts of truthfulness introduced in Definition 9.13 define a hier-
archy of strength. Deterministic truthfulness implies truthfulness in expectation;
however, the converse is not true. Relaxing the truthfulness requirement provides
more flexibility to achieve stronger performance results, for example, better perfor-
mance guarantees for an approximation algorithm where an underlying scheduling
problem is intractable. In other cases, there may be mathematical problems in
establishing deterministic truthfulness, whereas truthfulness can be established
using one of the two randomized concepts.

The two definitions of truthfulness that fall within randomized mechanism design
have important differences. First, since universal truthfulness is the result of a
randomization over deterministic mechanisms, the use of randomization in this case
cannot improve truthfulness; it can only improve other aspects of the mechanism
such as an approximation bound (see Nisan & Ronen, 2001 in Sect. 9.5.3). However,

620 9 Noncooperative Supply Chain Scheduling

truthfulness in expectation may be achievable in cases where universal truthfulness
is not. Second, the use of universal truthfulness makes no assumptions about
a player’s attitude to risk. This makes it significantly stronger in practice than
truthfulness in expectation, for which reporting the truth is only provably the best
strategy for players who are risk neutral.

The majority of the literature on mechanism design for supply chain scheduling
problems without the use of payments falls into either the first or third category
of truthfulness described above. Section 9.4.2 explores the design of algorithms
that achieve deterministic truthfulness without the need for payments. Section 9.4.3
shows how randomized mechanisms can be used to establish truthfulness in
expectation, also without using payments. Section 9.5 allows the use of payments
to support algorithms within mechanism design, which enables the presentation of
examples of all three types of truthfulness.

9.4.2 Deterministic Truthfulness

We describe an application that uses a deterministically truthful mechanism without
the need for a payment. This discussion shows how to design an algorithm that
is both truthful and achieves a socially optimal solution. This requires that the
equivalent scheduling problem under centralized decision making is efficiently
solvable.

Angel et al. (2016) describe a truthful algorithm that is also optimal for a
noncooperative game defined over the classical scheduling problem of minimizing
the total weighted completion time on a single machine, or problem 1||∑wjCj .
The centralized decision making version of this problem is solved by scheduling the
jobs in shortest weighted processing time order, i.e., w1/p1 ≥ · · · ≥ wn/pn (Smith,
1956).

Consider a set of jobs N = {1, . . . , n} and a single machine for processing
them nonpreemptively. To clarify the following discussion, while processing of each
job is eventually nonpreemptive for feasibility, it may be necessary, as a device to
ensure truthful reporting of private information, to threaten preemption in order to
discourage false reporting.

Each player i is the owner of a single job i, and he alone knows the job length pi .
The job weight wi is public information. The player reports to a central scheduler
his job length as bid bi , which is not necessarily equal to pi . Let B = {b1, . . . , bn}
denote the set of all bids. The central scheduler uses the information B to create
an output schedule o(B). Under the assumptions of the strong model of execution
assumed here, once job i starts to be executed, it is executed for pi time units,
irrespective of the value of bi . Either pi < bi or pi ≥ bi is possible; in the first
case, the processing of job i finishes sooner than the scheduler expects, whereas in
the latter case the scheduler allows the job to continue to completion.

A mechanism for this problem is an algorithm A that determines an output o(B).
For every job i, let Si denote the set of jobs scheduled before i in the output schedule

9.4 Private Information: Mechanisms Without Payments 621

o(B), and let Ti = {pj | j ∈ Si}, i.e., the set of true lengths of the jobs that precede
i in o(B). Each player plays selfishly to maximize his utility ui(pi, o(B), B, Ti) =
−Ci(pi, o(B), B, Ti), i.e., minimize his job’s completion time. The objective of
the mechanism is to determine a schedule of the jobs that minimizes the sum of
weighted completion times

∑n
i=1 wiCi(pi, o(B), B, Ti) or equivalently maximizes

the social welfare.
The designer needs to propose a truthful mechanism, i.e., a mechanism that

incentivizes the players to declare their true processing times, and moreover delivers
a socially optimal solution. The following definition formalizes the concept of
truthfulness for this purpose.

Definition 9.14 A mechanism is truthful if and only if, for every player i, 1 ≤ i ≤
n, and every bid bj , j �= i, the utility ui of job i is maximized when player i bids
bi = pi . Thus, a mechanism is truthful if truth-telling is the best strategy for a player
i, regardless of the strategies adopted by the other players.

The truthful algorithm described below makes use of the procedure that is now
defined. Recall that player i has reported the bid bi as the job length of job i. While
the scheduler does not know the true length pi of job i until the job completes
processing, he does know that it is at least equal to the total amount of processing
of that job that has occurred at any point in time. Based on this information, it is
possible to know when pi > bi and implement the following scheduling rule.

Definition 9.15 An algorithm uses preventive preemption if it constructs a schedule
in which a job i is preempted after it has been processed for bi time units and (if not
completed) resumed later, if and only if pi > bi .

Remark 9.5 The intuition behind preventive preemption is that whenever a player
bids a length smaller than its real length, the scheduler preempts his job at the end
of the bid processing time and resumes it later, in fact potentially much later. This is
essentially a threat that discourages untruthful bidding. This device enables a simple
optimal truthful algorithm with no payments for the problem considered here.

A preemptive schedule on a single machine can be defined as a vector σ =
(ρ1, . . . , ρn), where for every job i, 1 ≤ i ≤ n, ρi corresponds to the set of k time
intervals during which job i is executed, i.e., ρi = ∪k

j=1[lji , rji), where l1i < r1
i <

l2i < r2
i < · · · < lki < rki and

∑k
j=1(r

j
i − l

j
i) = pi , which is the true length of job i.

Also, for i, j ∈ N , ρi ∩ ρj = ∅. Thus, in schedule σ , job i is potentially processed
in the interval [l1i , r1

i], then preempted, then processed in the interval [l2i , r2
i], again

preempted, and so on, until it completes processing at time rki .
Clearly, for the objective of minimizing the sum of weighted completion times,

any schedule where at least one job is preempted is not better than the optimal
nonpreemptive schedule. Hence, given that we are interested in obtaining a truthful
algorithm that outputs an optimal outcome, we need to design an algorithm that
preempts the execution of a job only when the job bids a false value of its length.

The algorithm proposed by Angel et al. (2016), named SWPT-PP and now
described, uses the sequencing rule of Smith (1956), i.e., schedules the jobs

622 9 Noncooperative Supply Chain Scheduling

following the increasing order of the ratio of the job’s reported length to its publicly
known weight, and uses preventive preemption. It executes each job i during bi units
of time in the time interval [l1i , l1i + bi), as specified in Step 2 below. Whenever the
real length of a job is greater than its declared length, the job is preempted at l1i + bi
and restarted after time

∑
i∈N bi , following a round robin policy of rotating through

the jobs if more than one job has been preempted. However, if the length of job i is
reported truthfully, it completes processing by time li +bi without being preempted.

Algorithm SWPT-PP
1. Sort the jobs in shortest weighted processing time order based on their bid

lengths, i.e., such that w1/b1 ≥ · · · ≥ wn/bn.
2. Schedule the first interval [l1i , r1

i) of every job i such that l1i = ∑i−1
j=1 bj and

r1
i = l1i + bi , where l11 = 0.

3. From time t = ∑n
j=1 bj , schedule the jobs that are not yet completed using

a round robin policy, i.e., by rotation over job index i among the preempted
jobs. For each x = 2, 3, . . . , n, the scheduler checks whether job i still has
uncompleted work at time

∑n
j=1 bj +n(x−2)+ i−1. If so, this job is scheduled

in its dedicated time interval [lxi , rxi), where lxi = ∑n
j=1 bj + n(x − 2) + i − 1

and rxi = ∑n
j=1 bj + n(x − 2) + i. Stop.

Remark 9.6 Observe that Step 3 of Algorithm SWPT-PP sets aside dedicated unit
size intervals of time for each preempted job independently. Therefore, the timing
of the preempted part of job i does not depend on the reporting decisions of the
other jobs. This is the reason why the reporting decisions of the other players do
not affect the incentive for an individual player to report truthfully, as required by
Definition 9.14.

The schedule produced by Algorithm SWPT-PP could in theory include some
periods of idle time if there is false reporting such as bi > pi . However, this
possibility does not affect the reporting decision of job i, where a job does not use
its setaside preemption intervals because it was not preempted. Also, observe that
the preemption rule in Step 3 of Algorithm SWPT-PP is quite penal, in that a job
that has not been completed is sent to the back of the schedule. However, this is not
unreasonable, in that this only happens if the job has failed to complete processing
in the time that it bid.

The main result that follows analyzes the performance of Algorithm SWPT-PP.

Theorem 9.26 Algorithm SWPT-PP is a polynomial time, optimal, and truthful
algorithm for the single machine problem where the private data of every job is
its length and the social welfare is the weighted sum of completion times.

Proof There are two cases:

Case 1. If job i bids bi > pi , then from Steps 1 and 2 of SWPT-PP, it will not start
earlier than if it bids bi = pi and hence there is no reduction in completion time
from reporting falsely.

9.4 Private Information: Mechanisms Without Payments 623

Case 2. If job i bids bi < pi , then from Step 3 of SWPT-PP, it will be preempted
bi units of time after its starting time and its remaining processing time (pi −
bi) will be continued after time

∑n
j=1 bj . As a result, its completion time is

at least (pi − bi) + ∑n
j=1 bj = pi + ∑n

j=1,j �=i bj . However, if job i reports
truthfully, it will not be preempted. Then, since no job j is allowed more than bj
processing time within the interval [0,∑ bj], its completion time will be at most
pi +∑n

j=1|j �=i bj = ∑n
j=1 bj .

From the consideration of both cases, job i has no incentive to report falsely,
and hence, Algorithm SWPT-PP is truthful. Thus, the obtained schedule is non-
preemptive, as in the classical SWPT algorithm. From the optimality of the
nonpreemptive SWPT algorithm for problem 1||∑wjCj (Smith, 1956), it follows
that Algorithm SWPT-PP is also optimal. ��

Angel et al. (2016) further demonstrate the power of preventive preemption by
showing that, for the unweighted version of the game, there is no optimal truthful
mechanism without preventive preemption, even if payments are allowed.

They also study the problem of minimizing the sum of completion times on
identical parallel machines, or Pm||∑Cj . The centralized version of this problem
is polynomially solvable (Smith, 1956). They consider a game defined on this
problem, where the private data is the processing time of the jobs, and the social
objective is minimization of the total completion time. They prove that an algorithm
similar to SWPT-PP is truthful and optimal for this game.

9.4.3 Randomized Mechanisms

We provide two examples of the use of randomized mechanisms without payments.
The first example in Sect. 9.4.3.1 is an application of truthfulness in expectation
for a problem where the players represent unrelated parallel machines that report
their processing times for jobs, perhaps falsely, as they attempt to minimize
their individual expected cost. In Sect. 9.4.3.2, a second example shows how an
approximation algorithm for a centralized scheduling problem on uniform parallel
machines can be extended, through the use of a randomized mechanism, to provide
an approximation algorithm that is truthful in expectation for a decentralized version
of that problem under private information.

9.4.3.1 Unrelated Parallel Machines

For the first example, we consider a simple scheduling game with job set N =
{1, . . . , n} and available machines M = {1, . . . , m}, as studied by Koutsoupias
(2014). In this game, each machine acts as a selfish player. The game proceeds as
follows. A central scheduler announces a mechanism that specifies the probabilities

624 9 Noncooperative Supply Chain Scheduling

that jobs are assigned to the various machines, based on the not yet reported
processing times for the jobs. Machine i requires time pij to process job j , but
this information is private. Every machine i reports its private information, perhaps
untruthfully, to the central scheduler as a bid bij , where b−ij denotes the bids of
all machines except i for job j . If bij > pij , then its actual processing time is
bij . A practical explanation for this assumption is that, as a result of the reported
processing time, an equivalent block of capacity is set aside. In the other case where
bij < pij , the actual processing time is pij . Combining the two cases, the actual
processing time of job j on machine i is max{pij , bij }. This is known as a weak
model of execution, as also used by Angel et al. (2009) and discussed in the second
example below in this section. We observe that it is not in the interests of a machine
to bid an extremely large processing time for a job in order to reduce the probability
of having that job assigned to it, since it may nonetheless have that job assigned to
it, which would commit it to the large processing time that it had bid.

Let xij = 1 if job j is assigned to machine i, and xij = 0 otherwise.
The social objective is to minimize either the total actual cost of the players∑

i∈M
∑

j∈N max{pij , bij }xij , or the actual makespan maxi∈M
∑

j∈N max{pij , bij }
xij . For reference below, we note that, in the case of a single job, the total completion
time and makespan objectives are equivalent.

The mechanism determined by the central scheduler specifies a probability
function φij (bij , b−ij) that, for any job j ∈ N , defines the probability that it is
assigned to machine i ∈ M based on its own bid and those of all the other machines.
The central scheduler implements this probabilistic assignment using random
numbers. A player makes a decision about bidding his reported time for each job but
after bidding makes no further decisions, accepts the assignment of jobs randomly
assigned by the central scheduler, and schedules them. The objective of player
i ∈ M is to minimize his expected cost ci = ∑

j∈N φij (bij , b−ij)max{bij , pij }.
While we present results for general values of m and n, we first develop

intuition by considering the case of n = 1, i.e., one job. Since there is only one
job, we omit the second subscript on bij , pij , and φij . Hence, we let φi(bi, b−i)

denote the probability that the single job is allocated to machine i, i ∈ M , where
this probability depends on its reported processing time or bid bi , and those of
other machines b−i , through a mechanism that is described below. We describe a
mechanism that is truthful in expectation, i.e., one where each player minimizes his
expected cost by reporting truthfully, as well as delivering a schedule that provides
a close approximation in cost to a socially optimal schedule.

The following result by Koutsoupias (2014) provides intuition about the report-
ing process.

Theorem 9.27 Consider an instance of the one job scheduling game with m ≥ 2
machines. We define the following conditions: for all i ∈ M and b−i ,

(i) φi(bi, b−i)bi is nondecreasing in bi .
(ii) φi(bi, b−i) is nonincreasing in bi .

9.4 Private Information: Mechanisms Without Payments 625

Then, conditions (i) and (ii) are sufficient and necessary for an algorithm to be
truthful in expectation for the game.

Proof We first prove sufficiency. Suppose bi ≥ pi , then from (i), the cost ci =
φi(bi, b−i)max{pi, bi} = φi(bi, b−i)bi is minimized at bi = pi . Alternatively,
if bi ≤ pi , then from (ii), ci = φi(bi, b−i)max{pi, bi} = φi(bi, b−i)pi is also
minimized at bi = pi .

Conditions (i) and (ii) are also both necessary. We consider each condition in
turn and show that its contradiction leads to false reporting. First, assume there exist
some b̄ and b̃ such that b̄ < b̃ and φi(b̃, b−i)b̃ < φi(b̄, b−i)b̄, which contradicts
condition (i), where pi = b̄. Then, in both cases bi ≥ pi and bi < pi , player i
can directly reduce his cost by falsely reporting bi = b̃. Alternatively, assume there
exist some b̄ and b̃ such that b̄ > b̃ and φi(b̄, b−i) > φi(b̃, b−i), which contradicts
condition (ii), where pi = b̄. Then, player i can reduce both his probability of being
assigned the task, and his cost if that occurs, by bidding bi = b̃. ��

To develop further intuition, we consider the case of m = 2, i.e., two machines,
and still assume one job, i.e., n = 1. For this case, we can immediately present the
main result for this problem.

Theorem 9.28 The central scheduler indexes the machines based on the bids
received, such that b1 ≤ b2. Then, the mechanism defined by the following
probabilities of assigning the single job to the two machines is

φ1(b1, b2) = 1 − (b1/2b2) and φ2(b1, b2) = b1/2b2 (9.47)

(a) is truthful in expectation
(b) has an approximation ratio with the optimal cost of 3/2

Proof

(a) We first consider player 1. Observe that player 1 does not know b2. Therefore,
while he knows the two probability formulas announced by the central scheduler
in (9.47), he does not know which formula applies to him. Hence, he needs to
consider his bid in the two cases b1 ≤ b2 and b1 > b2.
Case 1a: Suppose b1 ≤ b2 and b1 ≤ p1. Then, since φ1(b1, b2) is nonincreasing
in b1, it follows that c1 = φ1(p1, b2)p1 ≤ φ1(b1, b2)p1, and the processing
time does not change if he bids b1 = p1, player 1 does not benefit from bidding
b1 < p1.
Case 1b: Suppose b1 ≤ b2 and b1 > p1. Then, since c1 = φ1(b1, b2)b1 =
b1 − b1b1/2b2 = (2b1b2 − b2

1)/2b2 is increasing in b1 for b1 < b2, player 1
does not benefit from bidding b1 > p1.
Case 2a: Suppose b1 > b2 and b1 ≤ p1. In this case, the order of the values
changes, and the probability of being assigned the task is φ1(b2, b1) = b2/2b1,
giving an expected cost of c1 = φ1(b2, b1)p1 = (b2/2b1)p1, which is
decreasing in b1. Thus, if he alternatively bids b1 = p1, the probability of being

626 9 Noncooperative Supply Chain Scheduling

assigned the job decreases, and the processing time of the job does not change.
Therefore, he bids b1 = p1 to minimize his expected cost.
Case 2b: Suppose b1 > b2 and b1 > p1. In this case, c1 = φ1(b2, b1)b1 =
(b2/2b1)b1 = b2/2, which is unchanged if he bids b1 = p1.

The analysis for the second player is similar. Hence, based on the reporting
decisions of the two players to minimize their expected costs, both report their true
values, and the mechanism is truthful in expectation.

(b) The social cost of the mechanism described above, under truthful reporting, is

φ1(p1, p2)p1 + φ2(p1, p2)p2 =
(

1 − p1

2p2

)
p1 +

(p1

2p2

)
p2

= p1 − p2
1

2p2
+ p1

2

= 3p1

2
− p2

1

2p2

≤ 3p1

2
.

Therefore, the approximation ratio is always less than 3/2 and tends to 3/2 as
p2 → ∞.

��
Koutsoupias (2014) extends the above analysis to consider a general number of

players representing m machines, for the one job case. For this case, the following
mechanism is proposed. Let b = (b1, . . . , bm), where we assume b1 ≤ · · · ≤ bm.

φ1(b) = 1

b1

∫ b1

0

m∏

i=2

(
1 − y

bi

)
dy, and (9.48)

φk(b) = 1

b1bk

∫ b1

0

∫ y

0

∏

i=2,...,m,i �=k

(
1 − x

bi

)
dxdy, k = 2, . . . , m. (9.49)

It is easy to show that (9.48) and (9.49) define (9.47) for the special case m = 2.
The main result of this analysis is as follows:

Theorem 9.29

(i) The mechanism defined by (9.48) and (9.49) provides a truthful in expectation
mechanism without payments for the problem of scheduling one job on m

unrelated machines with an approximation ratio (m + 1)/2 for both total cost
and makespan.

(ii) No other truthful mechanism has a better approximation ratio.

We refer the reader to Koutsoupias (2014) for details of the proof.

9.4 Private Information: Mechanisms Without Payments 627

Koutsoupias (2014) generalizes the above results to m ≥ 2 machines and n ≥ 1
jobs, by allowing the mechanism defined by (9.48) and (9.49) to run independently
for each task, for which it still achieves truthfulness in expectation. This results in
the same approximation bound of (m + 1)/2 for the total cost problem and m(m +
1)/2 for the makespan problem. This result for the total cost problem is known to be
the best possible approximation, as a direct corollary of part (ii) of Theorem 9.29.
However, it is an open question whether this result for the makespan problem can
be improved by an alternative mechanism that is truthful in expectation.

9.4.3.2 Uniform Parallel Machines

In our second example of randomized mechanism design, the scheduling problem
under centralized decision making is an intractable one, and hence, the result
achieved is an approximate, rather than optimal, algorithm. Angel et al. (2009)
consider the classical problem of scheduling n tasks on m uniform parallel
machines with the objective of minimizing makespan, or problem Qm||Cmax. In the
noncooperative supply chain scheduling game which they define over this problem,
each task is owned by a selfish but rational player who alone knows the length
of his task. There is a central scheduler who works with information reported by
the players. Initially, the players report the lengths of their tasks, and then given
this information, the scheduler allocates the tasks to the machines. The objective of
the central scheduler is to minimize the makespan, i.e., the time at which the last
task finishes its execution. The objective of each player is to minimize his task’s
completion time, and a player may misreport the length of his task in order to
achieve this.

We are given machines M1, . . . ,Mm with speeds s1, . . . , sm, respectively. This
information is public. Without loss of generality, let s1 ≤ · · · ≤ sm, and denote by
r = sm/s1 ≥ 1 the ratio between the largest and smallest machine speed. We are
given a set of tasks N = {T1, . . . , Tn}. Let pi denote the actual length of task i. If
task Ti is scheduled on machine Mj , its processing time is pi/sj . Let C(Tj) denote
the completion time of task j in a given schedule. The goal of the analysis below
is to design a scheduling algorithm that (a) ensures that all the players report the
true values of their jobs’ lengths and (b) approximately minimizes the makespan
maxj∈N {C(Tj)} with bounded performance error.

Each player bids a (not necessarily true) length for his task to the algorithm. In a
weak model of execution, if a task Ti with true length pi bids a length p′

i , then its
length in the implemented schedule is max{pi, p

′
i}. In particular, we consider the w-

weak model, i.e., the weak model without shrinkage, under which p′
i ≥ pi, i ∈ N .

That is, no player can bid a length for his job that is shorter than its true length.
Before describing a truthful mechanism for problem Qm||Cmax, some additional

notation is required. Let A be an approximation algorithm for the equivalent
identical parallel-machine problem, Pm||Cmax, with a worst-case performance ratio
of c. Let N denote a set of tasks in a given instance. Then, Ai(N) denotes the set

628 9 Noncooperative Supply Chain Scheduling

of tasks scheduled on machine Mi by Algorithm A, and Li(N) = ∑
j∈Ai(N) pj ,

denotes the load of machine Mi , for 1 ≤ i ≤ m. Let Cmax(N) = max1≤i≤m{Li(N)}
denote the maximum load of any machine, i.e., the makespan. Consider the
following Procedure T (A) that takes as input a set of tasks N , the number of
machines m, and the algorithm A. The output of this procedure is a schedule for
problem Q||Cmax.

Procedure T (A)
1. Suppose that the machines all have the same fastest speed sm, and apply

Algorithm A for the tasks of N . Let Li(N), i = 1, . . . , m denote the load on
machine Mi in this solution. Let C̄max(N) denote the makespan of the resulting
schedule for problem Pm||Cmax.

2. Add to machine Mi a dummy task of length C̄max(N)−Li(N), for i = 1, . . . , m.
Let Si denote the sets of jobs, including dummy jobs, scheduled on machine Mi .

3. Randomly assign the set of tasks Si to the set of machines M1, . . . ,Mm using
a uniform distribution, i.e., each set of tasks has an equal probability of being
completely assigned to any machine. Let machine Mi have the original speed
si , for i = 1, . . . , m. The result is a new schedule with makespan Cmax(N) ≤
rC̄max(N) for problem Q||Cmax.

4. On each machine, schedule the assigned tasks in random sequence, where the
execution of the dummy task corresponds to idle time on its machine. Output
this schedule for problem Q||Cmax.

We define a concept that is needed for the analysis that follows.

Definition 9.16 Let N = {T1, . . . , Tn} and N ′ = {T ′
1, . . . , T

′
n} denote two sets of

jobs that are both in nonincreasing order of processing times, which we denote by
pi and p′

i , respectively, i = 1, . . . , n. If p′
i ≥ pi, 1 ≤ i ≤ n, we say that N ′

dominates N , which is denoted by N ′ ≺ N . Then, an Algorithm A is increasing if,
given two sets of jobs N1 and N2 where N2 ≺ N1, it returns a schedule that satisfies
Cmax(N2) ≥ Cmax(N1).

Next, we present the following preliminary result that is due to Koutsoupias and
Papadimitriou (1999).

Lemma 9.17 If jobs T1, . . . , Tk of lengths p1, . . . , pk are scheduled in a sequence
that is randomly chosen from a uniform distribution where each set of tasks has an
equal probability of being completely assigned to any machine, then the expected
completion time of task Ti is pi +∑k

j=1,j �=i pj /2.

We can now analyze the truthfulness of Algorithm T (A).

Theorem 9.30 If A is an increasing scheduling algorithm for P ||Cmax, then
Procedure T (A) is a truthful algorithm for problemQm||Cmax in the w-weak model
of execution.

Proof Let H denote an instance where tasks T1, . . . , Ti−1, Ti+1, . . . , Tn bid
p′

1, . . . , p
′
i−1, p

′
i+1, . . . , p

′
n, respectively. We compare the expected completion

9.4 Private Information: Mechanisms Without Payments 629

time of task Ti under its two options for the w-weak model of execution, i.e., to bid
its true value pi or a false value p′

i > pi .
From Lemma 9.17, if task Ti is scheduled on machine Mj with k − 1 other tasks

from instance H , its expected completion time is [(p′
i +∑k

j=1,j �=i p
′
j)/2]/sj .

On each machine, the sum of the tasks’ lengths is equal to C̄max(N) due to the
dummy task added at Step 2. Moreover, task Ti is scheduled on machine Mj, j ∈
{1, . . . , m} with a probability equal to 1/m. The expected completion time of this
task is thus equal to

m∑

j=1

[
p′
i + C̄max(N) − p′

i

2

]
/(msj) = [

p′
i + C̄max(N)

] 1

2m

m∑

j=1

1

sj
.

Let Htrue be an instance where task Ti bids pi and each other task Tj bids p′
j ,

and Hfalse be a similar instance where task Ti bids p′
i > pi . Since by assumption

A is an increasing algorithm, C̄max(Htrue) ≤ C̄max(Hfalse), where C̄max(I) is the
makespan of the schedule found by Algorithm A for instance I . Consequently, the
expected completion time of task Ti is larger if it bids p′

i than if it bids the true
length pi . ��

The result in Theorem 9.30 becomes most valuable when supported by the
analysis of the accuracy of Procedure T (A) in the following result.

Theorem 9.31 Let r = sm/s1. If A is a c approximation algorithm for problem
Pm||Cmax, then Procedure T (A) is a truthful (r · c) approximation algorithm for
problem Qm||Cmax in the w-weak model of execution.

Proof Let N be an instance of problem Qm||Cmax. Let C1∗
max (respectively, C2∗

max)
be the makespan of an optimal solution of the problem that schedules the jobs
of N on machines with the actual speeds s1, . . . , sm (resp., with all speeds sm).
Then, C1∗

max ≥ C2∗
max. Since A is a c approximation algorithm, the makespan of

the schedule returned at Step 2 is no larger than c · C2∗
max. At Steps 3 and 4 of

Procedure T (A), since each set of tasks Si is scheduled on a machine that is at most
r times slower than the original machine that has a speed of sm, the makespan of
the schedule is no larger than r · c · C2∗

max. Since C1∗
max ≥ C2∗

max, this schedule is
therefore (r · c) approximate. ��

Angel et al. (2009) also discuss the use of Procedure T (A) for online problems,
where jobs arrive during processing and their data is unknown until they arrive.

Remark 9.7 Lavi and Swamy (2009) study a noncooperative game defined over
the makespan minimization problem on unrelated parallel machines, i.e., problem
Rm||Cmax. In the special case they study, the processing time of each job has only
two possible values, which are designated as “low” or “high.” For this special case,
they describe a technique that converts any α-approximation algorithm into a 3α-
approximation mechanism that is truthful in expectation.

630 9 Noncooperative Supply Chain Scheduling

9.5 Private Information: Mechanisms with Payments

This section focuses on algorithmic mechanism design for noncooperative supply
chain scheduling games with private information. The definition of a mechanism
used here includes both an allocation algorithm and a payment scheme. There
is a large body of literature on such mechanisms. Nisan et al. (2007) provide
a comprehensive introduction to algorithmic mechanism design. Section 9.5.1
provides an introduction to the environment, objectives, and solution concepts, of
mechanism design with payments. Section 9.5.2 provides an example of deter-
ministic truthfulness with payments, applied to an online supply chain scheduling
problem. Section 9.5.3 provides an example of universally truthful mechanism
design, with an application to a supply chain scheduling problem on unrelated
parallel machines. Section 9.5.4 provides an example of a mechanism design that
delivers truthfulness in expectation. Finally, Sect. 9.5.5 considers situations where
private information is not completely unknown to other players. Here, all players
and a central authority share prior probabilistic beliefs about the private information.
For such situations, alternative solution concepts are available, and in Sect. 9.5.5,
we illustrate them using a supply chain scheduling game with the social objective
of minimizing expected total cost.

9.5.1 Design Concepts

This section provides an introduction to the environment, objectives, and solution
concepts, of mechanism design, as well as several examples of their application.
In Sect. 9.5.1.1, we introduce the fundamental concept of monotonicity, which
establishes conditions for implementability, i.e., the potential to find an equilibrium,
of a truthful mechanism. Section 9.5.1.2 introduces the concept of dominant
strategy incentive compatibility, which is used to describe the strongest type of
equilibrium available within mechanism design. A widely applied payment scheme
for implementing a truthful algorithm is discussed in Sect. 9.5.1.3. Finally, the
important concept of weak monotonicity, which provides conditions for ensuring
truthful reporting, is discussed in Sect. 9.5.1.4.

We first provide two alternative, but equivalent, conceptualizations of an algo-
rithmic mechanism design problem. The first is more intuitive but more abstract.
Suppose there are n players and k outcomes. Then, the problem is defined by a real-
valued n×k matrix by which each player values every possible outcome. There is an
overall social choice function that is analogous to an objective function in the case of
a centralized optimization problem. Each player knows the values of his own row of
the valuation matrix; this is private information known only to that player. In a direct
revelation mechanism (see Definition 9.12), each player declares his valuations of
all possible outcomes; however, these declarations are not necessarily truthful. The
value declarations of the players collectively form a new n × k matrix. One task

9.5 Private Information: Mechanisms with Payments 631

of the mechanism designer is to take as input the matrix of reported valuations and
use a suitably chosen algorithm to compute a specific outcome from the finite set
of possible outcomes. In the supply chain scheduling context, this finite set would
typically be the set of all feasible schedules, and the outcome would be one of
them. At the same time, the designer computes a payment scheme that defines a
payment that will be required from each player. The payment scheme is a mapping
from an n vector of reported valuations at the chosen outcome into an n vector of
specific amounts payable. The utility received by each player is his true valuation
of the chosen outcome, minus the payment required. There are two performance
criteria for the mechanism design. First, the choice of outcome must be desirable,
as measured by the social choice function. Second, the payments must be designed
such that the players announce their values in a way that leads to desirable outcomes.
The mechanism is called truthful when the algorithm and the payment functions
ensure that, for a given set of reported values by the other players, the objective of
each individual player is maximized when he reports his valuations for all possible
outcomes truthfully.

An appealing introduction to mechanism design for decentralized scheduling
problems is provided by Heydenreich et al. (2007). The definitions and basic
results presented here follow their discussion. A description of a mechanism design
problem that is more concrete than the one in the previous paragraph now follows. A
mechanism μ = (α, π) consists of an allocation algorithm α and a payment scheme
π . The allocation algorithm takes as input any known public information, as well as
reported but not necessarily true, information provided by the players, and computes
an outcome, i.e., a schedule. The allocation algorithm and payment scheme jointly
need to ensure that all players report their private information truthfully, leading to
a good, ideally optimal, social outcome.

The following notation is used to describe a generic mechanism design problem.
Consider a set of players N = {1, . . . , n}. The data for player k is referred to as
type k and denoted by tk . The type of player k includes both private and public
information. For player k, a strategy sk is a mapping from a type tk to action ak .
For the strategies, types, and actions of all players other than k, we use the notation
s−k, t−k , and a−k , respectively. Referring similarly to all the players, we use the
notation s(k,−k), t(k,−k), and a(k,−k), respectively.

We provide some examples of the notation introduced in the previous paragraph.
In a supply chain scheduling game, a player could represent a machine and his
type could represent the time or cost to process each job. Alternatively, if a player
represents a job, then his type could be the value of that job, or its waiting cost.
Given his type, a player’s strategy determines his actions. An action could be a
machine deciding to report its speed falsely or a job determining on which machine
to be processed. The outcome of the game depends on the actions of all the players
and also on an allocation algorithm that uses those actions as input.

632 9 Noncooperative Supply Chain Scheduling

9.5.1.1 Monotonicity

In this section, we consider necessary and sufficient conditions for the imple-
mentability of a truthful mechanism. More specifically, we focus on mechanisms
where only a single parameter of each player is private. An example of such
a parameter is a job’s cost of waiting. Myerson (1981) proves the following
fundamental result for this situation, formulated for an auction setting.

Theorem 9.32 If players’ values can be described with a single parameter, a social
choice function is truthfully implementable if and only if it is monotone. That is, a
player’s winnings can only increase when his bid increases, assuming that the bids
of other players remain unchanged.

We may interpret “implementable” as meaning that it can form an equilibrium.
As an illustration of Theorem 9.32, consider a single-item auction that awards the
item to the highest bidder. If a player is the winner, and then raises his bid, keeping
all other bids constant, then he is still the winner. However, a similar auction where
the item is awarded to the second highest bidder is not monotone, since a winning
player who raises his bid may lose. Closer to the supply chain scheduling domain,
the outcome of the mechanism is determined by an allocation algorithm rather than
an auction. Suppose the players are waiting for service from a common server and
need to report their cost of waiting. Further suppose that a player reports a higher
waiting cost, and the reported costs of all other players remain unchanged. Then,
if the result of reporting the higher waiting cost is service that is either earlier or
at the same time, the allocation algorithm is monotone. However, if the allocation
algorithm that defines a schedule is heuristic, then it may happen that the service
time is later as a result of the higher reported waiting cost. This situation is discussed
further in Sect. 9.5.1.4 below. The following remark provides some perspective.

Remark 9.8 In a truthful mechanism, the following must hold:

(i) For a fixed outcome, i.e., schedule, the payment of a player cannot depend on
his own private valuation; however, it may depend on the valuations of the other
players.

(ii) Also, the schedule must maximize the player’s utility as a function of the
payments and the player’s valuation.

An example of Remark 9.8, part (i), within a scheduling context, occurs where
the players represent machines to which the mechanism is assigning jobs. In this
case, the payment received by a machine cannot depend on its reported valuation,
rather it can only depend on the jobs assigned to it and the other player’s reported
valuations. This point is quite intuitive, since it suggests that the payment to a
machine derives from the influence of that machine on the utilities of the other
players. See Example 9.22 below for a numerical example that supports this
intuition.

The next section establishes a standard for an equilibrium in this context.

9.5 Private Information: Mechanisms with Payments 633

9.5.1.2 Dominant Strategy Incentive Compatibility

For games with private information, we describe an equilibrium concept that is
strong, in the sense that it incentivizes truthful reporting by an individual player
without requiring any assumptions about the truthfulness of the reporting of other
players. We first define some notation. The allocation algorithm α maps the actions
of the players, i.e., (a1, . . . , an) or equivalently (ak, a−k) if we wish to distinguish
player k, into an outcome. In our context, this outcome is a schedule, which in turn
determines a value that is defined as vj (α(aj , a−j)) for each player j ∈ N . As an
example of player k’s value, the schedule might place his job k sixth among the
jobs scheduled on a single machine. Then, if the value of the job is defined by (the
negative of) its completion time, it would equal (the negative of) the total processing
time of the first six jobs in the schedule. However, since it is possible that player k
submitted an action that was not based on his true type tk , the true value gained by
player k needs to be evaluated using his true type, i.e., his job’s actual data. Thus, it
can be written as

vk(α(ak, a−k) | tk), k ∈ N, (9.50)

where “|tk” can be read as “given that player k’s true type is tk .” As mentioned
above, a mechanism also contains a payment scheme that specifies a payment to
each player. Since this scheme is based solely on actions that may be misleading, it
is independent of the true type tk and can be written as

πk(ak, a−k), k ∈ N. (9.51)

Finally, we apply the concept of a strategy, defined above as a mapping from a true
type tk into an action ak . This enables us to replace ak by sk(tk) in (9.50) and (9.51)
for the case where player k reports his type truthfully. The objective of a player k
is to maximize his utility, which we define as his value from the outcome, minus
his payment to the system. This motivates the following definition that establishes a
benchmark for algorithmic mechanism design.

Definition 9.17 A strategy vector s is a dominant strategy equilibrium, if for all
players k, for all types tk of player k, for all actions a−k of the other players, and all
alternative actions a′

k of player k,

vk(α(sk(tk), a−k) | tk) − πk(sk(tk), a−k) ≥ vk(α(a
′
k, a−k) | tk) − πk(sk(a

′
k), a−k).

Thus, a dominant strategy equilibrium describes a situation where, independent
of the actions of the other players, it never benefits any player k to deviate from
the action sk(tk) based on his true type tk and adopt some alternative action a′

k . The
strength of this result lies in the emphasized condition which implies that player k
need not know the strategy with respect to truth-telling or otherwise of the other
players in order to benefit from truth-telling.

634 9 Noncooperative Supply Chain Scheduling

Recall that the Revelation Principle (see Sect. 9.4.1.2) effectively narrows the
search for a direct revelation mechanism that can provide an equilibrium solution.
We now apply that discussion using the following definitions:

Definition 9.18

(i) A direct revelation mechanism μ = (α, π) is dominant strategy incentive
compatible if the strategy vector s in which each player truthfully reports his
type is a dominant strategy equilibrium.

(ii) An allocation algorithm is truthfully implementable if there exists a payment
rule π such that the mechanism μ = (α, π) is dominant strategy incentive
compatible.

Definition 9.18 (i) provides a sufficient condition for a mechanism to be dominant
strategy incentive compatible. Definition 9.18 (ii) defines a requirement for a
mechanism to allow, which in practice means also to specify, a payment scheme
that coordinates effectively with the allocation algorithm α. The following sections
describe how this can be achieved.

9.5.1.3 Vickrey–Clarke–Groves Mechanism

We describe a general method for implementing a truthful equilibrium in mech-
anism design that applies to several supply chain scheduling problems. The most
widely applicable general mechanism is the Vickrey-Clarke–Groves (VCG) pay-
ment scheme. This scheme was originally developed for a special case by Vickrey
(1961) and then established more generally by Clarke (1971), Groves (1973), and
Roberts (1979).

A formal explanation of the VCG mechanism requires additional notation. Let
Y denote the set of all possible outcomes, i.e., feasible schedules. We start with a
useful definition.

Definition 9.19 Given n players, their types t1, . . . , tn, valuation functions
v1, . . . , vn, strictly positive weights γ1, . . . , γn, and constants βy, y ∈ Y , an
allocation algorithm α is an affine maximizer if it finds a schedule y ∈ Y that
maximizes βy +∑n

j=1 γjvj (y | tj).
While it may appear complex when stated formally, the content of Definition 9.19
is quite simple. Observe that the weights γi, i ∈ N and the constants βy, y ∈ Y do
not depend on the players’ valuations. Consider an objective function that maps any
schedule into a real number, where this number consists of a constant that is unique
to that schedule plus a total value from that schedule to the players. Then an affine
maximizer optimizes this objective, given the reported information. We provide an
example.

Example 9.20 (An Affine Maximizer) Consider a scheduling problem with job set
N = {1, 2} and processing times p1 = 2, p2 = 5. The jobs need to be scheduled
on a single machine. The value of each job is (the negative of) its completion time

9.5 Private Information: Mechanisms with Payments 635

in a given schedule. The social objective is defined by relative weights γ for the
jobs and costs β for all possible schedules. We assume γ1 = 2, γ2 = 1, for the two
jobs. There are two possible schedules: σ12 = (1, 2) and σ21 = (2, 1). Associated
with these schedules are costs β12 = −6 and β21 = −2. These costs are most
likely to arise from resource costs for processing particular jobs at particular times.
Then, the value of σ12 = −6 + 2(−2) + 1(−2 − 5) = −17, and the value of
σ21 = −2 + 1(−5) + 2(−5 − 2) = −21. An allocation algorithm is an affine
maximizer if, given all the γ and β values and the information reported by the
players, it finds an optimal schedule, in this case σ12.

The focus on affine maximizers follows from the work of Roberts (1979), which
shows that, in a game with three or more possible outcomes, and where the players’
valuations are arbitrary or “unrestricted,” only affine maximizers are implementable.
While the characterization of VCG payments in the following theorem is presented
in this full generality, it should be noted that in most scheduling problems valuations
are not unrestricted. For example, a player representing a job typically cares only
about the cost of his job, not the costs of other jobs. However, it has proved
difficult to establish general results for payment schemes under less restrictive but
still practical conditions for players’ valuations. Dobzinski and Sundararajan (2008)
provide an interesting discussion of this issue.

The following theorem defines the payments needed to ensure that a mechanism
is truthful. The VCG payment scheme shown here is a general one that allows for
flexibility in the total amount of payment. A particular commonly used implemen-
tation of this scheme is discussed in Remark 9.9 following the theorem.

Theorem 9.33 Let an allocation algorithm α be an affine maximizer, and t denote
a vector of reported types of the players. Let α(t) denote an outcome found by
algorithm α, given t . For every player k, let hk be an arbitrary function mapping
reports of type t−k of the other players to real numbers. Then, the mechanism μ =
(α, π) is truthful if the payments required from player k, k = 1, . . . , n satisfy

πk(t) = hk(t−k) − βα(t)/γk −
∑

j �=k

γj vj (α(t) | tj)/γk. (9.52)

Proof Suppose player k reports false information t̂k instead of his true information
tk , and let t̂ = (t̂k, t−k). Since α is an affine maximizer, then

βα(t) +
∑

j

γj vj (α(t)|tj) ≥ βα(t̂) +
∑

j

γj vj (α(t̂)|tj)

⇒ vk(α(t)|tk) + βα(t)

γk
+
∑

j �=k γj vj (α(t)|tj)
γk

≥ vk(α(t̂)|tk) + βα(t̂)

γk
+
∑

j �=k γj vj (α(t̂)|tj)
γk

636 9 Noncooperative Supply Chain Scheduling

⇒ vk(α(t)|tk) + βα(t)

γk
+
∑

j �=k γj vj (α(t)|tj)
γk

− hk(t−k)

≥ vk(α(t̂)|tk) + βα(t̂)

γk
+
∑

j �=k γj vj (α(t̂)|tj)
γk

− hk(t−k)

⇒ vk(α(t)|tk) − πk(t)

≥ vk(α(t̂)|tk) − πk(t̂).

The first inequality holds because if player k reports true information and algorithm
α optimizes over it, then greater utility (when correctly evaluated using true
information) cannot be achieved by applying α to false information. The left-hand
side of the last inequality is the utility of player k for making a truthful declaration,
and the right-hand side is his utility for making a false declaration. Hence, each
player has an incentive to report his information truthfully. ��

The following discussion provides guidance about the flexibility that is available
within the VCG payment scheme.

Remark 9.9 The payment scheme in (9.52) includes an arbitrary function hk(t−k),
which maps reports of the other players into a real number. This function does not
affect the incentive of player k for truthful reporting, since it depends only on the
reports of the other players and appears on both sides of the second last line of
the proof of Theorem 9.33. It thus offers considerable flexibility in the design of a
mechanism. On the other hand, if extreme values are used for hk(t−k), then it may
not be individually rational for the players to participate, or in the opposite case,
the system may be bankrupted by paying the players to participate when they also
receive value.

In practical usage, a common implementation of the general payment scheme
in (9.52) is to set hk(t−k) equal to the total value or cost of the other players if
player k does not participate in the game. Then, the payment is the total value which
the other players could achieve in that smaller game, minus the total value of the
other players in the n player game. This implementation has the following natural
interpretations:

(i) Consider a game with n players, where the players gain value by participating
and then have to make a payment to a central authority in exchange. In this case,
the utility of a player k is the total value of all n players in an optimal solution
to the game, minus the total value of the other (n − 1) players in an optimal
solution to a game in which only they participate. This utility equals player k’s
marginal value to the game.

(ii) Alternatively, consider a game with n players, where a player incurs costs by
participating and receives a payment from a central authority in exchange. In
this case, the utility of a player k is the total cost of all n players in an optimal
solution to the game, minus the total cost incurred by the other (n−1) players in

9.5 Private Information: Mechanisms with Payments 637

an optimal solution to a game in which only they participate. This utility equals
player k’s marginal cost to the game.

Finally, we observe that the use of optimal solutions to enable these computations
suggests that if an optimal solution is difficult to find, then it may become
challenging to implement the VCG payment scheme correctly. This is indeed the
case, as discussed in Sect. 9.5.1.4 below.

We now provide an example of the VCG payment scheme described in
Remark 9.9.

Example 9.21 (Application of a Common VCG Payment Scheme) Consider a game
with a set of players N = {A,B,C}. With reference to (9.52), let βy = 0, y ∈ Y ,
and γi = 1, i ∈ N . The values which the players receive from participating in the
game are as follows: A 57, B 48, C 35. The total value of the game is 140. Further,
consider two player games among the three players. If A and B play, the total value
is 106; if A and C play, the total value is 97; and if B and C play, the total value is
84. Based on this given information, we now calculate the VCG payments due from
the three players.
Player A has received value 57 directly from participating. Against this, he must
make a payment of 84 − (48 + 35) = 1. Here, 84 comes from the first term, and
(48 + 35) comes from the last term, in the right-hand side expression in (9.52).
Therefore, the utility of A is 57 − 1 = 56.
Similarly, player B has received a value 48 directly and makes a payment of 97 −
(57 + 35) = 5. Thus, the utility of B is 48 − 5 = 43.
Similarly, player C has received value 35 directly and makes a payment of 106 −
(57 + 48) = 1. Thus, the utility of C is 35 − 1 = 34.
As a result, each player ends up with the marginal value he adds by participating
in the game: player A receives 140 − 84 = 56, B receives 140 − 97 = 43, and C
receives 140 − 106 = 34.

An example that demonstrates the calculation of payments under the VCG
scheme to a supply chain scheduling game now follows.

Example 9.22 (Application of VCG Payment Scheme in a Scheduling Game) Con-
sider an instance of the classical scheduling problem 1||∑wjCj , with job set
N = {1, 2, 3}, where publicly known processing times are p = (1, 2, 4) and private
weights are w = (6, 4, 2). The payoff valuation of a player is the negative of its
weighted completion time, which makes the players payoff maximizers rather than
cost minimizers. Hence, they will need to make a payment to the system. The set of
all possible schedules is denoted by Y . We let βy = 0, y ∈ Y , and γi = 1, i ∈ N , in
this example. Let Ck(t) denote the completion time of job k in the optimal schedule
of the instance with all three jobs. Let Cj (t−k) denote the completion time of job j

in the optimal solution of an instance in which job k is removed, j ∈ N \ {k}.
We initially assume that reporting is truthful. An affine maximizer is an optimal

algorithm α that minimizes the weighted sum of completion times. From Smith

638 9 Noncooperative Supply Chain Scheduling

(1956), the allocation algorithm α schedules the jobs in SWPT order, i.e., (1, 2, 3),
and is an affine maximizer.

The payment specified by (9.52) is
∑3

j=1 wjCj if we set hk(t−k) = 0.
However, following the discussion in Remark 9.9, we choose to set hk(t−k) =∑

j �=k wjCj (t−k), which is the total value of the other jobs if job k does not
participate. This information is as follows: C1(t) = C1(t−2) = C1(t−3) =
1;C2(t) = 3, C2(t−1) = 2, C2(t−3) = 3; and C3(t) = 7, C3(t−1) = 6, C3(t−2) =
5.

We now compute the VCG payments, from (9.52). However, the signs are
reversed because a job’s value is the negative of its weighted completion time, i.e.,
player j receives a value of −Cj , j ∈ N . These payments, computed from the
publicly known processing times pj and the truthfully reported job weights wj , are
as follows:

πk(t) = −
∑

j �=k

wjCj (t−k) +
∑

j �=k

wjCj (t)

=
∑

j �=k

wj [Cj (t) − Cj (t−k)]

=
∑

j | wj /pj<wk/pk

wjpk.

Thus, π1(t) = p1(w2 + w3) = 1(4 + 2) = 6, π2(t) = p2w3 = 2(2) = 4, and
π3(t) = 0. Intuitively, each job k pays for its marginal cost to the game, i.e., the
total increase in cost which it causes for all the other players.

We now consider the possibility of false reporting of the job weights. In the
schedule from truthful reporting above, the value of job 3 is w3C3 = −(2)(7) =
−14, and it makes no payment. Now suppose that job 3 exaggerates its private
weight, in order to obtain an earlier completion time, by reporting a false type
ŵ3 = 8+ε, where ε > 0 and small. Then, ŵ3/p3 = (8+ε)/4 > 2 = w2/p2. Since
the allocation algorithm α schedules the jobs in SWPT order based on their reported
weights, job 3 obtains the second position in the schedule and a completion time of
5 instead of 7. Hence, its new value is −2(1 + 4) = −10; therefore, its increase in
value directly from the game is −10 − (−14) = 4. However, it must now make a
new payment of w2p3 = 4(4) = 16 > 4, which is clearly not worthwhile.

To provide some further intuition, we consider an alternative situation where
w3 = 8. In this case, w2/p2 = w3/p3 = 2. Then, job 3 can be scheduled second
rather than third by falsely reporting w3 = 8 + ε, where ε > 0 and small. Here,
the increase in value for job 3 is 8(−5) − (8)(−7) = 16, while the new payment is
16 as in the previous example. Thus, no advantage is gained by submitting the false
report, even where the extent of the deception is arbitrarily small.

The success of the VCG payment scheme in truthfully optimizing the game in
Example 9.22 relies on the fact that the allocation algorithm α used, namely SWPT,

9.5 Private Information: Mechanisms with Payments 639

is optimal for the scheduling problem 1||∑wjCj . Hence, the algorithm is an affine
maximizer, as in Definition 9.19.

9.5.1.4 Weak Monotonicity

This section is motivated by two considerations. The first consideration is that we
may wish to consider private data with more than one type. For example, a supply
chain scheduling problem may have jobs where both their processing times and
their waiting costs are private. In this more general situation, the analysis underlying
Myerson’s (1981) proof of Theorem 9.32 does not generate a simple monotonicity
requirement. Instead, it generates a requirement for cyclic monotonicity, as proved
by Rochet (1987). However, cyclic monotonicity is difficult to interpret and apply.
As a result, it is commonly represented by a weaker but more intuitive and
implementable condition, weak monotonicity, as defined below. As explained by
Bikhchandani et al. (2006), the distinction between the two conditions is as follows.
Cyclic monotonicity is a requirement on every finite selection of type vectors from
the domain, whereas weak monotonicity is only a requirement on every pair of type
vectors. However, in some applications, the two conditions are equivalent, and we
refer the reader to Bikhchandani et al. (2006) for more discussion of this issue.

The second consideration is that, only when the scheduling problem underlying
a supply chain scheduling game is efficiently solvable, is it generally possible to
find an efficient optimal allocation algorithm for mechanism design. In this case,
VCG payments (see Sect. 9.5.1.3) are sufficient to ensure deterministically truthful
reporting. On the other hand, if the underlying scheduling problem is NP-hard, then
the only available allocation algorithm may be heuristic. If it is heuristic, then it is
not an affine maximizer. In such a case, VCG payments do not in general ensure
truthful declaration of private information. However, there are alternative paths,
which typically rely on a combination of weak monotonicity and problem-specific
properties, to the development of truthful mechanisms.

The following discussion (Heydenreich et al., 2007) provides helpful guidance.
Let α(tk, t−k) be an outcome computed by allocation algorithm α, where player
k reports its type tk and players 1, . . . , k − 1, k + 1, . . . , n report their types
t1, . . . , tk−1, tk+1, . . . , tn, respectively. Observe that this definition is identical
to (9.50), where the action required by player k is simply the reporting of its type.
Further, let v(α(tk, t−k) | tk) denote the value gained by player k from this outcome,
given that its true type is tk .

Definition 9.20 An allocation algorithm α satisfies weak monotonicity if, for all
players k, for all given types tk , other types t̂k , and any fixed types t−k of all other
players,

v(α(t̂k, t−k) | tk) − v(α(tk, t−k) | tk) ≤ v(α(t̂k, t−k) | t̂k) − v(α(tk, t−k) | t̂k).

640 9 Noncooperative Supply Chain Scheduling

A less formal but more intuitive explanation of weak monotonicity is as follows.
Suppose a player k’s true type changes from tk to t̂k and doing so changes the
outcome, i.e., the schedule, given by the allocation algorithm. Then, the difference
in the total valuation of all the players between the original and new outcomes,
evaluated at the new type, must be at least as much as that difference evaluated at
the original type. Equivalently, if the outcome changes when a single player changes
his valuation, then this must be because that player increased his value of the new
outcome relative to his value of the old outcome.

The next result establishes a connection between weak monotonicity and truthful
implementability.

Theorem 9.34 Weak monotonicity is a necessary condition for a deterministically
truthful implementation of an allocation algorithm.

Proof Assume that truthful payments exist. Then, we have

(a) v(α(tk, t−k)|tk) − π(tk, t−k) ≥ v(α(t̂k, t−k)|tk) − π(t̂k, t−k)

⇒ v(α(tk, t−k)|tk) − v(α(t̂k, t−k)|tk) ≥ π(tk, t−k) − π(t̂k, t−k), and (9.53)

(b) v(α(t̂k, t−k)|t̂k) − π(t̂k, t−k) ≥ v(α(tk, t−k)|t̂k) − π(tk, t−k)

⇒ π(tk, t−k) − π(t̂k, t−k) ≥ v(α(tk, t−k)|t̂k) − v(α(t̂k, t−k)|t̂k),
then (9.54)

v(α(t̂k, t−k)|tk) − v(α(tk, t−k)|tk) ≤ v(α(t̂k, t−k)|t̂k) − v(α(tk, t−k)|t̂k),
from (9.53) and (9.54),

i.e., weak monotonicity is established. ��
Nonetheless, in some environments, weak monotonicity may also be sufficient

for deterministically truthful implementation. An important result regarding this
issue is due to Saks and Yu (2005), who show that, on any convex domain, weak
monotonicity is both necessary and sufficient.

However, in many applications, insistence on a truthful mechanism is incom-
patible with finding a socially optimal outcome. Consider a noncooperative game
defined over the classical scheduling problem of minimizing the makespan on m

unrelated parallel machines, or problem Rm||Cmax. In this game, the players are the
machines, and their private information is their processing times of all the jobs. The
following result is due to Nisan and Ronen (2001).

Theorem 9.35 There does not exist a deterministically truthful mechanism that
minimizes the makespan in the unrelated parallel-machine scheduling game.

Proof Recall that Theorem 9.34 shows that satisfying weak monotonicity is a neces-
sary condition for truthfulness. Now, consider the following example (Heydenreich
et al., 2007).

9.5 Private Information: Mechanisms with Payments 641

Example 9.23 (Nonexistence of Weak Monotonicity in a Scheduling Game) Con-
sider an instance with m = 2 and n = 4. Let the private processing times on
machine M2 be (1, 1, 1, 1). Initially, let the private processing times on machine M1
be p = (1, 1, 1, 1). Assume without loss of generality that the allocation algorithm
assigns jobs 1 and 2 to machine M1. That is, for type p = (1, 1, 1, 1), the set
T = {1, 2} of jobs is assigned to machine 1. Consider an alternative reported set
of processing times on machine M1, p′ = (ε, ε, 1 + ε, 1 + ε), where ε > 0 is
small. Now, an optimal allocation algorithm must assign jobs 1, 2 and either 3 or
4 to machine M1 and the remaining job to machine M2. Without loss of generality,
we assume that {1, 2, 3} is the set of jobs assigned to machine M1, represented by
T ′ = {1, 2, 3}. Then, weak monotonicity implies

v1(T
′ | p′) − v1(T

′ | p) + v1(T | p) − v1(T | p′) ≥ 0

⇔ −
∑

j∈T ′
p′
j +

∑

j∈T ′
pj −

∑

j∈T
pj +

∑

j∈T
p′
j ≥ 0

⇔
∑

j∈T \T ′
(p′

j − pj) +
∑

j∈T ′\T
(pj − p′

j) ≥ 0.

Evaluating the left-hand side of the last inequality for this example gives p3 −p′
3 =

1 − (1 + ε) = −ε < 0. Hence, weak monotonicity is not satisfied and, from
Theorem 9.34, the mechanism is not truthful. ��

In fact, Nisan and Ronen (2001) establish the stronger but less concisely
proved result that there does not exist a deterministically truthful mechanism that
approximates the makespan for the unrelated parallel-machine scheduling problem
with an error ratio bound strictly less than two. From a practical perspective, when
truthfulness and finding a socially optimal solution are incompatible, a central
authority needs to understand the sensitivity of the social cost function to false
reporting.

9.5.2 Deterministic Truthfulness

This section studies the application of deterministically truthful mechanism design
with payments to games defined over online supply chain scheduling problems. In
practice, many manufacturing and service processes are online, since customers
have the option to submit orders at any time. The use of Internet platforms for
placing orders increases the practical relevance of this environment. In an online
scheduling problem, jobs arrive during the execution of the schedule, and some
or even all information about those jobs is unknown until they arrive. Pruhs et al.
(2004) provide a comprehensive introduction to online scheduling problems.

Chen et al. (2016) consider an online scheduling environment with a central
scheduler, which owns a machine that the players use to have their jobs processed

642 9 Noncooperative Supply Chain Scheduling

for a payment. Each job has a release date, a due date, a processing time, and a value
if it is completed by its due date. None of the parameters of a job are known until it is
released. Each job is owned by a separate, self-interested player. When a job arrives,
it is released to the player who owns it. The player then has several options: it can
decide when to pass the job to the central scheduler who owns the machine, it can
falsely report the processing time, and it can declare an arbitrary value and due date.
In this problem, jobs are preemptive under either preempt-restart or preempt-resume
mode. In the former mode, a job that is preempted must restart its processing from
the beginning, whereas in the latter mode processing restarts from the exact point
where it left off previously.

Assume an infinite time period T . There is a single machine that processes at
most one job at any given time. A set J of jobs arrives over time. Each job i ∈ J is
owned by a self-interested player i and characterized by a type θi = (ri, di, pi, vi),
representing its release date, deadline, processing time, and value, respectively. All
this information is private to the owner of the job. The value of a job is earned if
and only if it completes by its deadline. However, a player reports the details of its
job as θ̂i = (r̂i , d̂i , p̂i , v̂i), perhaps falsely. The details θ̂i reported for job i, whether
truthfully or falsely, are collectively described as its bid. Let θ̂−i denote the reported
information of all jobs except i.

Remark 9.10 Some options for false reporting can be eliminated straightforwardly.
First, if the job processing time is underreported, i.e., p̂i < pi , then even if job
i is scheduled, it cannot be completed. It would also be problematic to overreport
a due date, i.e., d̂i > di , since the job could be late when it was returned to the
player. Finally, in this online problem, a player i has no knowledge of his job until
its release date ri , hence it is not possible to report r̂i < ri . We therefore assume
for the following analysis that p̂i ≥ pi, d̂i ≤ di, r̂i ≥ ri, i ∈ J . Observe that the
reporting options v̂i < vi and v̂i > vi remain available at this point.

Let κ = maxi,j∈J,i �=j {pi/pj }, i.e., the maximum ratio of the processing times
of any two jobs. To normalize the data, we assume without loss of generality that
pj ∈ [1, κ], j ∈ J . The objective of each player is to maximize his utility, which is
the value of his job, less the payment required by the central planner. More formally,
the utility of player j is uj (g(θ̂), θi) = qj (θ̂ , dj)vj −πj (θ̂), where qj (θ̂ , dj) = 1 if
job j is completed on time, and 0 otherwise, since no payment is required if a job is
not completed on time. The objective of the central planner is to maximize the total
value of jobs that are delivered on time.

Let ej (θ̂ , t) denote the amount of processing of job j that is completed by time
t when the job sequence results from each player i submitting a bid θ̂i , i ∈ J . We
now describe the proposed mechanism.

Mechanism Γ

(i) When the machine becomes available, i.e., when either an existing job is
completed or a new job arrives, the next job is chosen for processing. This

choice is based on the priority score for every job j , which is v̂j · βp̂j−ej (θ̂ ,t),
where 0 < β < 1, and the highest priority score feasible job is processed next.

9.5 Private Information: Mechanisms with Payments 643

(ii) The payment is equal to the minimum bid that the players have to make in order
for the job to be completed, i.e., πj (θ̂) = min

{
v′
j | qj (((r̂j , d̂j , p̂j , v

′
j), θ̂−j),

d̂j) = 1
}
.

We provide some intuition about Mechanism Γ . In either the preempt-restart
or the preempt-resume mode, processing is preemptive, and the job currently in
process can be preempted at any time if another job has a higher priority score,
from (i). The priority rule in (i) models the intuition that a job with higher value has
higher priority, and a job with larger remaining processing time has lower priority.
The value of β can be adjusted for the analysis of approximation bounds, but for the
purposes of defining Mechanism Γ and establishing truthfulness any 0 < β < 1
suffices. If a job j is completed by its deadline dj , then the mechanism requires a
payment from job j of πj (θ̂) based on the reported information of all the jobs, from
(ii).

Both the allocation rule and the payment rule can be implemented efficiently.
The allocation rule is only applied when a job arrives or a job is completed. Since
the set of critical time points t ∈ [rj , dj) has polynomial size, the payment for each
player can be computed in polynomial time. From the payment rule, it is clear that
mechanism Γ is individually rational. The remaining issue to consider is incentive
compatibility.

Suppose that job j has been executed k > 0 times when truthfully declared
but eventually abandoned. Let t si and t

p
i denote the ith time at which job j starts

execution and is preempted, respectively, where i = 1, . . . , k, and let ta =
arg inft (ej (t)+ d̂j − t < p̂j) be the time at which job j is abandoned. Also, within
the interval [rj , ta], let the executing period A and the pending period P of job j be
defined according to those times. Thus, for job j , A = [t s1 , tp1)∪[t s2 , tp2)∪. . .∪[t sk , tpk)
and P = [rj , ts1) ∪ [tp1 , t s2) ∪ . . . ∪ [tpk , ta).

Chen et al. (2016) prove the following preliminary result.

Lemma 9.18 Let J (respectively, J ′) denote the jobs that are executed during
period P when θj is truthfully (resp., falsely) declared. Let I (respectively, I ′)
denote the jobs that are pending during A when θj is truthfully (resp., falsely)
declared. Then:

(i). I ∩ J = ∅.
(ii). I ∩ J ′ = ∅.
(iii). J = J ′.

We refer the reader to Chen et al. (2016) for a proof. In Lemma 9.18, (i) means
that, if θj is declared truthfully, job i ∈ I with lower priority than job j in period
A ∪ P cannot be executed in period P , since job j with higher priority than i is
pending in that period. Also, (ii) means that, if θj is declared falsely, then job i

cannot be executed in period P either. Finally, (iii) means that, regardless of whether
θj is declared truthfully or not, the jobs that are executed in period P are the same.

Theorem 9.36 Mechanism Γ is dominant strategy incentive compatible, in both
the preempt-restart model and the preempt-resume model.

644 9 Noncooperative Supply Chain Scheduling

Proof We first interpret monotonicity (see Theorem 9.32) for the problem at hand.
An allocation rule within a mechanism is monotone if, given that a job with
truthfully reported type θj = (rj , dj , pj , vj) cannot be completed, then if it
reports r̂j ≥ rj , d̂j ≤ dj , p̂j ≥ pj and v̂j ≤ vj , it still cannot be completed.
From Theorem 9.32, a sufficient condition for the truthfulness of a mechanism
is the monotonicity of its allocation rule. Hence, we prove the monotonicity of
the allocation rule of mechanism Γ . Observe that this is a composite rule that
incorporates the reported job value v̂j and reported processing time p̂j explicitly
into the choice of the next job to process. Moreover, the reported ready time r̂j and
reported due date d̂j are implicitly incorporated through the definition of feasibility.

We first recall the restrictions on the possibilities for false reporting discussed in
Remark 9.10. Next, consider monotonicity with regard to r̂j only. For feasibility,
r̂j ∈ [rj , ta] = P ∪ A. If player j reports falsely, a necessary condition for job j to
be completed is that it should be executed sometime in the period P . We show that
this condition cannot be met. Consider a job i ∈ I that has lower priority than job j

in period A∪P . We first show that job i cannot be executed in period P , regardless
of how job j reports. There are two cases:

Case 1. Job j reports truthfully. Then, Lemma 9.18, part (i), implies that job i cannot
be executed in period P , since job j that has higher priority is pending in period
P .

Case 2. Job j reports falsely. Then, Lemma 9.18, part (ii), implies that again job i

cannot be executed in period P .

The two cases above show that job i cannot be executed in period P . Then,
Lemma 9.18, part (iii), implies that job j cannot be executed in P either. Hence,
declaring r̂j ≥ rj cannot cause job j to be completed if it is not completed under
true reporting. A similar argument applies to d̂j , p̂j , and v̂j . As is intuitive, declaring
d̂j ≤ dj , p̂j ≥ pj , or v̂j ≤ vj does not improve job j ’s priority from the composite
allocation rule and cannot cause it to be completed. Hence, the allocation rule of Γ
is monotone, and from Theorem 9.32, it admits a truthful payment scheme.

The one remaining opportunity for false reporting is v̂i > vi , which potentially
provides job i with more chance of being scheduled. However, the payment rule of
Mechanism Γ implies that such false reporting would increase the amount payable
by the player to the central scheduler. Hence, the payment rule is truthful, and
Mechanism Γ is incentive compatible. ��

The following competitive ratio results are achieved by Chen et al. (2016), under
the above assumptions about private data:

(i). In the preempt-restart model with private job lengths, Mechanism Γ achieves
the optimal competitive ratio of 5 for equal-length jobs and a near optimal ratio
of [1

(1−ε)2 + o(1)]κ/ ln κ for unequal-length jobs, where 0 < ε < 1.
(ii). In the preempt-resume model with private job lengths, Mechanism Γ achieves

the best possible competitive ratio of 5 for equal-length jobs and a competitive
ratio within a factor of 2 for unequal-length jobs.

9.5 Private Information: Mechanisms with Payments 645

In earlier work, Porter (2004) derives deterministic truthfulness and approxima-
bility results for a similar online problem. It is interesting to compare the results of
Porter (2004) and Chen et al. (2016), based on the different models of preemption
assumed and the use of different parameters to evaluate the competitive ratios, in
their respective works.

9.5.3 Universal Truthfulness

We provide an example of the use of randomized mechanism design to establish
universal truthfulness, as defined in Sect. 9.4.1.2. Nisan and Ronen (2001) introduce
randomized mechanism design in their study of a game defined over the problem of
minimizing the makespan on two unrelated parallel machines, or problem R2||Cmax.
There is a set of jobs N = {1, . . . , n}. These jobs require nonpreemptive processing
on the machines. In this game, the players represent the two machines. Each player
or machine has private information, which is the time it takes for it to process each of
the jobs. If machine i processes job j , the processing time is pij , but this information
is known only to player i. Each player maximizes its utility, which is defined as its
payment received based on which jobs it has processed, less its processing load. In
order to improve its utility, player i may report processing times that are false, i.e.,
p̂ij instead of pij . The time for which a job is processed is its privately known
processing time, independent of the time bid for it. The social objective is the
minimization of the makespan.

As a benchmark for mechanism design for this problem, we first consider the
following deterministic mechanism due to Nisan and Ronen (2001). We assume that
this mechanism is implemented by a central authority. The mechanism contains both
an algorithm for assigning the jobs to the machines and a payment for compensating
the machines for processing the allocated jobs.

Mechanism MinWork
1. Each player reports a bid, i.e., its processing time for each job.
2. Each job is assigned to the machine where it has smaller reported processing

time, with ties broken arbitrarily.
3. Each machine receives, for each job that it processes, a payment that equals the

second smallest reported processing time for that job.
The following result specifies the performance of Mechanism MinWork relative

to the social objective of makespan minimization.

Theorem 9.37 Mechanism MinWork is truthful, i.e., the players report the pro-
cessing times of all jobs truthfully, and provides a 2-approximation for problem
R2||Cmax.

We refer the reader to Nisan and Ronen (2001) for a proof.
In order to improve on the ratio bound of 2 in Theorem 9.37, it is necessary to use

a randomized mechanism. Let omi
(a), i ∈ F denote the output, i.e., in this context

646 9 Noncooperative Supply Chain Scheduling

the schedule, obtained by applying Mechanism mi in a family F of mechanisms
to a set a of strategies, i.e., reported bids, of the players, given their true types t .
Then, let f (omi

(a), t) denote the centralized objective value achieved in that case.
A formal definition of a randomized mechanism now follows.

Definition 9.21 A randomized mechanism is a probability distribution over a
family {mi | i ∈ F } of mechanisms each having the same sets of strategies and
possible outputs. The outcome of such a mechanism is a probability distribution
over outputs and payments. For optimization problems, the objective function over
such a distribution is the expected objective value, Ei∈F [f (omi

(a), t)].
To clarify, the use of expectation in Definition 9.21 does not imply that

the resulting mechanism is only truthful in expectation. In fact, the mechanism
described below is universally truthful, which means truthful for any realization
of the random process, since it is a randomization over deterministically truthful
mechanisms.

For problem R2||Cmax, consider the following mechanism. The bias parameter δ
introduced in Step 2 is used to control the balance of load between the two machines.
The mechanism is a probability distribution over biased MinWork mechanisms.

Mechanism Randomly Biased MinWork
1. Each player reports his processing time for each job.
2. Define a constant δ = 4/3.
3. Consider the jobs in arbitrary order, j = 1, . . . , n, and for each:

Generate a random integer s uniformly from s ∈ {1, 2}.
If p̂sj ≤ δp̂3−s,j :

Job j is assigned to machine s.
Machine s receives a payment of δp̂3−s,j .

Otherwise:
Job j is assigned to Machine 3 − s.
Machine 3 − s receives a payment of p̂s,j /δ.

The main result for this mechanism can now be stated. We provide a brief outline
of the proof. For full details of the proof, we refer the reader to Nisan and Ronen
(2001).

Theorem 9.38 Mechanism Randomly Biased MinWork is a polynomial time
universally truthful mechanism that provides a 7/4-approximation for problem
R2||Cmax.

Proof Observe that the overall utility of each player, i.e., machine, is the sum of
the utilities of the jobs assigned to it at each job allocation; hence, it is sufficient to
consider the case of a single job. The single job case is equivalent to a weighted VCG
mechanism, as in (9.52) with weights γ1 = 1, γ2 = δ or γ1 = δ, γ2 = 1, depending
on the random value of s. Therefore, it is a randomization over deterministically
truthful VCG algorithms. This establishes universal truthfulness.

To prove the approximation bound, the jobs are divided into “balanced” jobs
where the ratio of larger to smaller processing times between the two machines

9.5 Private Information: Mechanisms with Payments 647

does not exceed δ, and the remaining jobs that are described as “unbalanced.” Then,
the worst-case outcome is shown to exist with exactly four jobs, two balanced and
two unbalanced. Moreover, each of the machines schedules one balanced and one
unbalanced job. This leaves three cases to consider, based on the relative processing
times of the four jobs. In each case, the approximation bound of 7/4 is established.

��
The work of Nisan and Ronen (2001) has motivated a substantial research

literature on randomized mechanism design.

9.5.4 Truthfulness in Expectation

We illustrate the application of truthfulness in expectation with the use of payments.
Archer and Tardos (2001) study a supply chain scheduling game defined over a
scheduling problem on an arbitrary number of uniform parallel machines. The set
of jobs is N = {1, . . . , n}. There are players M = {1, . . . , m}, each of whom
represents a machine. Each player has private data ti ∈ R, which represents the
cost per unit time of the machine. The machines accept and process work that is
assigned to them by a mechanism, the details of which are discussed below. The
reported value of ti by player i is denoted as bi , for i = 1, . . . , m.

Let O denote a set of allowable outcomes, i.e., feasible schedules. Given a vector
b of reported costs by the players, an algorithm within the mechanism computes
an output function o(b) ∈ O, i.e., a schedule that defines a cost for all players.
Each player incurs a cost ci(ti , o) for processing the work that is assigned to it but
receives a payment πi(b) from the mechanism as compensation. Consider a special
form of the player’s cost, i.e., ci(ti , o) = tiwi(o). In this case, a player’s cost is its
private cost per unit of work times the amount of work wi(o) assigned to it. Then,
each player i is self-interested and maximizes its utility, πi(b)− tiwi(o). The social
objective is minimization of a function g(o, b).

For this problem, Archer and Tardos (2001) describe a necessary and sufficient
condition for truthfulness, that is based on “decreasing work curves,” using the
following definition.

Definition 9.22 Assume that the bids of all other players are fixed at b−i , consider
the workload of player i as a function wi(b−i , bi). This is the work curve of player
i. If wi(b−i , bi) is a decreasing function of bi for all i and b−i , then the work curve
is decreasing. That is, a machine that reports a higher cost receives less work.

The following result shows that these definitions are important in establishing
truthfulness.

Recall that an algorithmic mechanism consists of an output function o(b) and a
payment scheme that need to be mutually compatible to ensure truthful reporting of
costs by the players. The following result specifies conditions for this compatibility.

648 9 Noncooperative Supply Chain Scheduling

Theorem 9.39 The output function o(b) is implementable by a truthful payment
scheme, i.e., one that incentivizes the players to report their costs truthfully, if and
only if it is decreasing. In this case, the mechanism is truthful if and only if the
payments πi(b−i , bi), i ∈ M , are of the form

hi(b−i) + biwi(b−i , bi) −
∫ bi

0
wi(b−i , u)du, (9.55)

where the hi functions are arbitrary.

We refer the reader to Archer and Tardos (2001) for the proof of Theorem 9.39.
As discussed in Remark 9.9, the functions hi(·) are useful for maintaining individual
rationality and preventing overpayment. We relate the general problem description
above to the supply chain scheduling problem Q||Cmax, i.e., the minimization of
makespan on uniform parallel machines, by setting ti = 1/si , where si represents
the privately known speed of machine i. Then, if machine i has the total work
wi(o) assigned to it, it requires time tiwi(o) = wi(o)/si to complete it. The social
objective is the minimization of the makespan Cmax = maxi∈M {wi(o)/si}.

Observe that the uniform parallel-machine problem Q||Cmax is equivalent to
bin packing with bins of unequal sizes that represent the processing speeds of
the machines. A mechanism that allows the jobs to be split between bins is now
described. In the following, bin i represents machine i, and bi represents the bid of
machine i about its cost, or equivalently, the reciprocal of its speed.

Algorithm Greedy
1. Number the bins from largest to smallest bid of the corresponding machine, i.e.,

b1 ≥ · · · ≥ bm and similarly number of the jobs p1 ≥ · · · ≥ pn.
2. Assign jobs 1, . . . , k − 1 to bin 1, where k is the first job that would cause the

bin to overflow.
3. Further, assign to bin 1 a piece of job k exactly as large as the remaining capacity

in bin 1.
4. Continue by assigning jobs to bin 2, starting with the remaining part of job k.

Repeat for the remaining jobs.
Problematically, Algorithm Greedy does not yield decreasing work curves.

Hence, from Theorem 9.39, it does not admit a truthful payment scheme. Random-
ization is now introduced in order to obtain a monotone work curve.

Randomization Step
Starting from Step 4 of Algorithm Greedy, job j is assigned to machine i with a
probability that is equal to the proportion of j that is fractionally assigned to bin i.

The main result requires the following preliminary calculation of a lower bound
TLB on the optimal value of Cmax.

9.5 Private Information: Mechanisms with Payments 649

Lemma 9.19

TLB ≥ max
j

min
i

max
{
bipj ,

∑j

k=1 pk
∑i

l=1 1/bl

}
. (9.56)

Proof For each job j , let i(j) denote the last bin that is at least as large as job j .
Observe that, for job j , the value of i(j) is at least as large as the value of j that
is minimum for job j in (9.56). Then, the greedy assignment is valid if and only if,
for each j , the total capacity of the first i(j) bins is at least the total size of the first
j jobs. So, if the greedy assignment is valid and i is the last bin to which job j is

partially assigned, then TLB ≥ max{bipj ,

∑j
k=1 pk

∑i
l=1 1/bl

}. ��
The main result can now be stated.

Theorem 9.40 The Greedy Algorithm with Randomization Step admits a truthful
payment scheme satisfying voluntary participation and deterministically provides a
polynomial time 3-approximation mechanism for problem Q||Cmax.

Proof The approximation bound is easy to prove. Observe from Steps 2 through
4 of the Greedy Algorithm that each bin is assigned at most two fractional jobs.
If the fractions of these two jobs are increased to full size, the amount of work
added is not more than that of two jobs. Hence, each bin is not more than 300% full
deterministically, i.e., regardless of how the Randomization Step realizes.

From Theorem 9.39, a sufficient condition for truthfulness is that the expected
load on each machine i decreases as i increases its bid, which is equivalent to
claiming to be slower. Now, the expected load is the load from the randomized
greedy assignment. For full bins this is TLB = bi , for the (at most one) partially full
bin it is the work left over from the full bins, and for the empty bins it is 0. Suppose
some machine claims to be slower, replacing its bid bi with αbi , for some α > 1.
This would provide a new lower bound T ′

LB ≥ TLB from (9.56). However, we also
have T ′

LB ≤ αTLB , since shrinking bin i by a factor of α and then expanding all
bins by a factor of α > 1 would allow for a valid fractional assignment. Thus, the
overall effect of increasing i’s bid is to enlarge the other bins while shrinking bin
i, so the greedy fractional assignment gives machine i less work. This satisfies the
condition in Theorem 9.39.

To compute the payments requires the computation of wi(b−i) and the integral∫∞
bi

wi(b−i , x)dx. This reduces to computing an integral with a closed form
expression over a polynomial number of intervals, which is an overall polynomial-
time computation. ��

Archer and Tardos (2001) extend their results for the makespan objective to
develop a truthful mechanism for the problem of minimizing total completion time
on uniform machines, or Q||∑Cj .

Dhangwatnotai et al. (2011) present a monotone randomized polynomial-time
approximation scheme (PTAS, see Section 2.3.4.2 for definitions) for problem
Q||Cmax. This gives a polynomial time, truthful in expectation mechanism whose

650 9 Noncooperative Supply Chain Scheduling

approximation guarantee attains the best possible one for all polynomial-time
algorithms, if P �= NP . We provide a brief description of their approximation
scheme. First, jobs with processing time sizes that differ by a factor of not more
than 1 + ε are grouped together. Temporarily assume that every job in a group has
a processing time equal to the average processing time in its group. The jobs are
assigned to the machines, allowing fractional assignments. Randomized rounding
is used to obtain an integer schedule. Finally, the processing times of the jobs are
restored to their original values. We refer the reader to that work for additional
details.

9.5.5 Bayes–Nash Incentive Compatibility

The assumption about private information made in all the previous sections is that
players other than the owner of that information have no knowledge whatsoever
about the information. However, it is easy to think of applications where, for
example, one company would be able to estimate—perhaps not perfectly, but with
reasonable accuracy—the costs of another company in the same industry. Such
estimates might be available in the form of prior probabilities over a discrete set of
reasonable values. In principle, it would be valuable to incorporate this information
into mechanisms that ensure truthfulness in reporting and good performance of
an overall system. This can be accomplished using a Bayes–Nash equilibrium and
related concepts, as now defined.

Definition 9.23

(i) A Bayes–Nash equilibrium is a strategy profile that maximizes the expected
utility of each player, given their beliefs and the strategies played by other
players.

(ii) In a mechanism that is Bayes–Nash incentive compatible, if all the other players
report truthfully, then any given player is at least not worse off in expectation
by reporting his type truthfully.

We observe that the additional condition in Definition 9.23 (ii) that all the other
players are acting truthfully makes Bayes–Nash incentive compatibility weaker than
dominant strategy incentive compatibility. See Definition 9.17 for comparison. In
addition, the use of expected utility makes an implicit assumption that the players
are risk neutral.

We describe an application of Bayes–Nash incentive compatibility. Duives
et al. (2015) consider a single machine setting where the players represent jobs
that require compensation for waiting, where each job’s waiting cost is private
information. Each job must be processed nonpreemptively. Let N = {1, . . . , n}
denote the set of jobs with publicly known processing times pj and private weights
wj . The other players, however, know a set of possible discrete types of job j ,
i.e., possible values for wj . This set is denoted by Tj , where mj = |Tj |. Then,

9.5 Private Information: Mechanisms with Payments 651

wi
j , i = 1, . . . , mj , are possible values of wj with positive and commonly known

probabilities which we denote by φj (w
i
j). A vector of payments, computed from the

reported weights of all the jobs, compensates the jobs for waiting. Based on reported
information about the possible types of all the jobs and prior beliefs, the mechanism
designer uses an allocation rule f to compute a schedule, which is a sequence of the
jobs on the single machine. In a given schedule, let Sj denote the waiting time of
job j , i.e., the time at which it starts processing. The expected utility of a job is its
expected payment from the system for waiting, less the cost of its expected waiting
time.

Since the waiting cost of each job is private, the player who is represented by
that job may report a higher than true waiting cost, in the hope that doing so will
generate higher compensation payments for waiting. The optimal mechanism design
problem is then to find a scheduling rule and a payment scheme under which the jobs
are incentivized both to participate and to report their private information truthfully,
while at the same time minimizing the total expected payments π that are made to
the jobs.

The following definition is needed.

Definition 9.24 A mechanism μ = (α, π), consisting of an allocation algorithm α

and a payment scheme π , is Bayes–Nash incentive compatible for the supply chain
scheduling game if truth-telling is a weakly dominant strategy in expectation, so for
every job j and every two types wj

j ,w
k
j ∈ Tj , where w

j
j is the true type,

Eπj

(
w

j
j

)− w
j
jESj

(
α,w

j
j

) ≥ Eπj

(
wk
j

)− w
j
jESj

(
α,wk

j

)
. (9.57)

In (9.57), the left-hand side represents the expected compensation received by job
j less its expected cost if it reports true type w

j
j ∈ Tj , and the right-hand side is a

similar calculation if it reports false type wk
j ∈ Tj . This expectation assumes that

all jobs other than j report their type truthfully. If a given allocation algorithm α

admits a payment scheme π such that the mechanism μ = (α, π) is Bayes–Nash
incentive compatible, then α is Bayes–Nash implementable and the payment scheme
is incentive compatible.

Besides incentive compatibility, the other constraint that is required in a Bayes–
Nash equilibrium is individual rationality, which ensures that each job is interested
in participating. While this may seem unnecessary in the current problem setting
where all jobs must be scheduled, it can be motivated in practice as ensuring
“reasonable cooperation” by the job with the mechanism designer, for example
timely provision of the report about the private waiting cost and timely submission
of the job when scheduled. Individual rationality is now defined for truthful jobs.

Definition 9.25 A mechanism μ(α, π) is individually rational if, for every player
j and every true type w

j
j ∈ Tj ,

Eπj

(
w

j
j

)− w
j
jESj

(
α,w

j
j

) ≥ 0, w
j
j ∈ Tj . (9.58)

652 9 Noncooperative Supply Chain Scheduling

Observe that this condition is stated only for truthful jobs. The following definition
is also needed to define the Bayes–Nash implementability of an allocation rule.

Definition 9.26 An allocation algorithm α satisfies monotonicity with respect to
weights if, for every job j , wi

j < wk
j implies that ESj (α,w

i
j) ≥ ESj (α,w

k
j).

Definition 9.26 is intuitive. It states that the reporting of a smaller waiting cost
wj cannot decrease the expected start time of a job. Duives et al. (2015) apply this
definition to establish the following result.

Theorem 9.41 An allocation algorithm α is Bayes–Nash implementable if and only
if it satisfies monotonicity with respect to weights.

The proof relies on construction of a complete directed type graph for each job j ,
where nodes represent all possible types and arc lengths between them represent
the gain in expected valuation for reporting one type over another. The Bayes–Nash
implementability of f is equivalent to there being no negative length directed cycles
in this graph. We refer the reader to Duives et al. (2015) for a detailed proof. The
concept of a type graph is explored further below.

We provide an example to demonstrate the use of these concepts.

Example 9.24 (Application of Bayes–Nash Implementability) Consider the follow-
ing instance of the problem: n = 2, p1 = 1, w1 = 1, or w1 = 2, both with
probability 0.5; p2 = 3, and w2 = 4 deterministically.

We define the allocation rule to be the indexing rule of Smith (1956), where
the jobs are sequenced in nonincreasing order of wj/pj . As an illustration of
Theorem 9.41, this rule satisfies monotonicity, since if the weight of a job increases,
its start time cannot increase. Now, if w1 = 2, job 1 is scheduled first, S1 = 0 and
S2 = 1; whereas if w1 = 1, job 2 is scheduled first, S1 = 3 and S2 = 0. Thus, since
job 1 is truthful, ES2 = 1(0.5) + 0(0.5) = 0.5.

For job 1, Bayes–Nash incentive compatibility (9.57) implies

E(π1 | w1 = 1) − 1 · E(S1 | w1 = 1) ≥ E(π1 | w1 = 2) − 1 · E(S1 | w1 = 2)

⇒ E(π1 | w1 = 1) − E(π1 | w1 = 2) ≥ 1(3) − 1(0) = 3, and

E(π1 | w1 = 2) − 2 · E(S1 | w1 = 2) ≥ E(π1 | w1 = 1) − 2 · E(S1 | w1 = 1)

⇒ E(π1 | w1 = 2) − E(π1 | w1 = 1) ≥ 2(0) − 2(3) = −6.

The individual rationality constraints (9.58) for job 1 are

E(π1 | w1 = 1) − 1 · E(S1 | w1 = 1) ≥ 0

⇒ E(π1 | w1 = 1) ≥ 1(3) = 3, and

E(π1 | w1 = 2) − 2 · E(S1 | w1 = 2) ≥ 0

⇒ E(π1 | w1 = 2) ≥ 2(0) = 0.

9.5 Private Information: Mechanisms with Payments 653

Observe that, for the above incentive compatibility constraints, the first condition
applies to the case w1 = 1, and the second condition applies to the case w1 = 2.
The individual rationality constraints follow the same format.

Solving the above inequalities, we observe that the payment scheme
E(π1 | w1 = 1) = 3 and E(π1 | w1 = 2) = 0 is both Bayes–Nash incentive
compatible and individually rational for job 1.

Since job 2 has only one type, it has no private information, and no incentive
compatibility constraints arise. However, individual rationality (9.58) implies

Eπ2 − w2ES2 ≥ 0

⇒ Eπ2 ≥ 4[0.5(0) + 0.5(1)] = 2.

For example, π2 = 2 in both cases w1 = 1 and w1 = 2 suffices.

However, the solution shown above for Example 9.24 is only one implementable
payment scheme π . It is also valuable to compute the minimal payment scheme
that is incentive compatible and individually rational. This is indeed possible, by
computing shortest path lengths in the graph now described, which is justified by
the absence of negative length directed cycles.

Definition 9.27 Given an allocation algorithm α, the type graphGj(α) for job j is
a complete directed graph with node set Wj = {w1

j , . . . , w
mj

j }, which describes the

type space of job j and an arc from any node wi
j to any node wk

j of length

lik = wi
j

[
ESj

(
α,wk

j

)− ESj
(
α,wi

j

)]
,

which is the gain in expected waiting cost for player j from reporting its true type
wi
j instead of a false type wk

i . We add a dummy end node mj + 1 to Gj(α).

This definition enables the main result that follows.

Theorem 9.42 For a Bayes–Nash implementable allocation algorithm α, the pay-

ment scheme defined by πj (w
mj+1
j) = 0, and

πj

(
wi
j

) =
mj∑

k=i

wk
j

[
ESj

(
α,wk

j

)− ESj
(
α,wk+1

j

)]
, (9.59)

for i = 1, . . . , mj , is incentive compatible, individually rational, and also minimizes
the expected total payment made to the jobs.

Proof Since α is Bayes–Nash implementable, Tj (α) satisfies the nonnegative cycle
property. Consequently, we can compute shortest paths in Tj (α). Let P = (wi

j =
a0, a1, . . . , am = w

mj+1
j) denote a directed path from wi

j to a dummy node w
mj+1
j

in the type graph for job j , and L(P) = L(a0, am) its length. Let Δ(wi
j , w

mj+1
j)

654 9 Noncooperative Supply Chain Scheduling

denote the length of a shortest path from node wi
j to node w

mj+1
j in the type graph

for job j . Adding the incentive compatibility constraints obtained from (9.57),

Eπj (ai) ≤ Eπj (ai−1) + ai−1[ESj (α, ai) − ESj (α, ai−1)]
= Eπj (ai−1) + L(ai−1, ai),

for i = 1, . . . , mi , gives

Eπj

(
w

mj+1
j

) ≤ Eπj

(
wi
j

)+ L(P) = Eπj

(
wi
j

)+ Δ
(
wi
j , w

mj+1
j

)
. (9.60)

Now, since Eπj (w
mj+1
j) = 0 by definition, (9.60) implies −Δ(wi

j , w
mj+1
j) ≤

Eπj (w
i
j).

Hence, −Δ(wi
j , w

mj+1
j) is a lower bound on the expected payment for reporting

wi
j .

Further, observe that for any two types wi
j and wk

j ,

Δ
(
wi
j , w

mj+1
j

) ≤ L(i, k) + Δ
(
wk
j ,w

mj+1
j

)

⇒ −Δ
(
wk
j ,w

mj+1
j

) ≤ −Δ
(
wi
j , w

mj+1
j

)+ L(i, k).

Consequently, setting the expected payment to every job for any reported type

πj

(
wi
j

) = −Δ
(
wi
j , w

mj+1
j

)

yields a Bayes–Nash incentive compatible payment scheme that minimizes the
expected payment to every job for any reported type of the player.

It is easy to show that if i < k < l, then L(i, k) + L(k, l) ≤ L(i, l) and
L(l, k)+L(k, i) ≤ L(l, i), a property that Duives et al. (2015) name decomposition

monotonicity. Hence, a shortest path from wi
j to w

mj+1
j is exactly the path that

includes wi
j , . . . , w

mj

j . Finally, we observe that Δ(w
mj+1
j , w

mj+1
j) = 0 and

−Δ
(
wi
j , w

mj+1
j

) =
mj∑

k=i

wk
j

[
ESj

(
α,wk

j

)− ESj
(
α,wk+1

j

)]
,

for wi
j ∈ {w1

j , . . . , w
mj

j }. This establishes the result. ��
We refer the reader to Duives et al. (2015) for an efficiently computable closed

form expression for the minimal expected total payment.
Duives et al. (2015) also show by example that, even for a problem with two

symmetric jobs, each having two equal probability weights, the use of the VCG

9.6 Future Research 655

mechanism can result in payments that are 50% greater than those required by their
mechanism described above.

In related work, Hoeksma and Uetz (2016) consider a supply chain scheduling
problem where the processing times and weights of jobs are both private informa-
tion. To model this problem, they construct a linear programming problem that
represents the problem of designing a Bayes–Nash incentive compatible mecha-
nism. The main result is a polynomial-time solution procedure for the mechanism
design problem. The methodology presented also allows for the possibility of
correlation across the types of different jobs.

9.6 Future Research

We provide an overview of several promising directions for future research, fol-
lowing the organization of the chapter into complete information games, enhanced
complete information games, mechanisms without payments, and algorithmic
mechanism design.

For supply chain scheduling games with complete information, relevant topics
include the following:

• Lee et al. (2012) study coordination mechanisms for parallel-machine scheduling
problems. Each player with a job acts selfishly to minimize his own disutility, for
example, the congestion time or completion time of the job on the machine that
processes it. The machines announce a common sequencing rule for the jobs
assigned to them. Of particular interest is extending this work to allow for the
practical generalization that each machine announces a different local sequencing
rule, and analyzing the PoA and APoA in that more general environment. The
work of Vijayalakshmi et al. (2021) discussed in Sect. 9.2.2.4 is an example.
Classical machine scheduling generalizations such as the presence of release
dates should also be considered.

• Glazer et al. (2018) study a game that involves timing the arrivals of jobs to
minimize a function of job earliness and tardiness around a common due date.
Various generalizations are possible, for example considering multiple servers, or
considering a common due date that is restrictively early. In addition, also adding
practicality to the problem, it would be valuable to study groups of customers
with due dates that are common within the group and different but not widely
separated across groups. An interesting question related to this problem is under
what conditions all jobs in a group arrive consecutively in a Nash equilibrium.

• Vairaktarakis (2013) studies a problem including a set of manufacturers, all of
which may subcontract part or all of their work to a third party that prioritizes
smaller workloads, and develops Nash equilibria under three different production
protocols. For possible extensions, it would be valuable to consider different
scheduling environments such as flowshops, different objectives of the players

656 9 Noncooperative Supply Chain Scheduling

such as the completion times of multiple jobs, and different priority rules
specified by the third party.

• Bukchin and Hanany (2007) consider an environment where decentralized deci-
sion makers compete for limited resources. They study the decentralization cost,
which is the ratio between the cost of the solution reached when decision makers
make their decisions independently while taking into account the decisions of
others and the cost of a centrally optimized decision that in general is not a
Nash equilibrium. While they consider minimization of the total completion time,
several other objectives are also relevant.

• Agnetis et al. (2015) study a project scheduling game where multiple players
have the option to crash, or expedite, their tasks and share a reward for doing so
from the project client in fixed and known proportions. This presents a tradeoff
with the cost of crashing. While the paper focuses on finding a Nash equilibrium
solution, it would also be valuable to identify Pareto optimal strategies. For a
given strategy, Nash equilibrium and Pareto optimality are independent concepts
in this context, i.e., neither implies the other. Also of interest is the consideration
of this problem in a private information setting.

• Vijayalakshmi et al. (2021) study supply chain scheduling problems where every
machine has an independent priority list for the jobs that are assigned to it. This
problem raises interesting issues as a variant of a classical scheduling problem
where each machine defines a separate sequencing rule. Since their game may
not have a Nash equilibrium, it would be interesting to study the existence of
α-approximate Nash equilibria, under which no job changes strategy unless it
can achieve a cost reduction of at least α. This problem is motivated by the cost
and inconvenience of changing strategy. A further natural generalization is the
consideration of games in which jobs have an arbitrary strategy space, and the
cost of a job is the sum of the cost for the resources used, where each resource
has its own priority list.

• Feldman and Tamir (2012) study conflicting congestion effects in resource allo-
cation games with supply chain scheduling applications. A resource activation
cost is divided between the users of that resource, whereas many users of the
same resource generate congestion effects; hence, an interesting tradeoff arises.
It would be valuable to generalize their results to other job scheduling settings
with different machine models, different sharing rules, different cost structures,
and different social choice functions. Valuable insights could also be gained
from providing a characterization of initial states from which best response
dynamics are guaranteed to converge to a Nash equilibrium. Additional notions
of equilibria are also relevant here, for example strong equilibrium where stability
is guaranteed against coalitional deviations.

For enhanced games with complete information, the following topics are
relevant for future research.

• In their discussion of the benefits of sequential, rather than simultaneous,
decision making, Leme et al. (2012) motivate similar studies of a broader class of
games. Of particular interest is identifying classes of games where the subgame
perfect equilibrium of the sequential version is a pure Nash equilibrium of the

9.6 Future Research 657

simultaneous version. They observe that where the subgame perfect equilibrium
solution does not depend on the ordering of the players’ decisions, then this result
should apply.

• Chen and Xu (2020) investigate the interesting issue of bounded rationality,
which is modeled either by limiting the number of lookahead steps that a player
can use or by limiting the complexity of calculations they can perform. Such
limitations apparently offer the potential for significant improvement in the price
of anarchy. Their work focuses on unrelated parallel-machine scheduling games;
however, their ideas can be applied more generally. They also consider games
with single-minded players who always choose machines on which their jobs
have minimum processing time, and such games deserve further investigation.

• Roughgarden (2004) considers scheduling strategies in Stackelberg games where
the leader maximizes social welfare. He suggests extensions to consider prob-
lems without jobs of negligible size, which is not only more practical but may
improve the results obtained. In addition, various practical conditions can be
imposed on the machine latency functions. More generally, there are many
possible extensions of Stackelberg games to different supply chain scheduling
applications.

• In work that is closely related to a specific application, Qi (2012) analyzes a
Stackelberg game for a manufacturer and a subcontractor. Possible extensions
can include multiple manufacturers who share a common subcontractor, to
address the issue of how the subcontractor may use pricing as a decision variable.
An alternative direction is the consideration of multiple subcontractors who may
compete with each other for the business of the manufacturer or alternatively
form a coalition to negotiate more effectively with the manufacturer. Hall and
Liu (2010) analyze a related problem in a cooperative game context.

• Hoefer and Skopalik (2013) study altruism in atomic congestion games, a class
that includes several supply chain scheduling games. They study the existence of
pure Nash equilibria and the convergence of better response dynamics in games
with the total social cost. The most natural open problems include analysis of
models for other relevant social functions, such as the makespan on parallel
machines. Further research issues include understanding the convergence of
best response dynamics in games with altruistic players. It is also of interest to
consider the effect of altruism in Stackelberg games for supply chain scheduling.

• Apt and Schäfer (2014) study the effect on several strategic games of the
selfishness level, which they define to be the smallest fraction of social welfare
that needs to be offered to each player such that a social optimum is realized
in a pure Nash equilibrium, i.e., such that the price of stability is 1. A natural
extension of their work is to study a similar question for mixed, rather than pure,
Nash equilibria, for which they provide an example outside the scope of supply
chain scheduling games. There are also two alternative definitions of selfishness
that are valuable to investigate. First, it would be interesting to study how to find
the smallest value of the selfishness level such that the price of stability is 1.
Second, the same question can be asked for the price of anarchy to be 1, i.e.,
such that all Nash equilibria are socially optimal.

658 9 Noncooperative Supply Chain Scheduling

• Balcan (2011) describes two models by which a central authority can influence
players to move from a poor quality Nash equilibrium to a better one. However,
there is an unexplored tradeoff in this idea. As a result of trying to induce a better
solution, the price of stability may change if the best available Nash equilibrium
solution becomes unstable. Thus, starting from a good equilibrium, it is important
to investigate whether a small shock to the system can produce a bad state from
which natural dynamics cannot recover (Balcan et al., 2009).

For mechanisms without payments, we discuss three works.
• Angel et al. (2016) develop truthful and socially optimal algorithms for supply

chain scheduling problems. They suggest extensions to multiple machine prob-
lems, using randomized truthful approximation algorithms.

• Koutsoupias (2014) develops a truthful in expectation mechanism for an m

makespan problem with an approximation bound of m(m + 1)/2, and it is an
open question whether any such mechanism can provide a better approximation.
Also, the question remains whether there exists a non-truthful mechanism that
provides a better approximation.

• Angel et al. (2009) discuss tradeoffs that arise if the requirement that an algorithm
is truthful is relaxed. They mention a case where a given approximation ratio is
still achievable, even if the algorithm is not truthful. This raises the interesting
and more philosophical question as to what is the value of truthfulness if the real
objective is the optimization of social welfare.

For algorithmic mechanism design including payments, relevant topics for
future research include the following.

• From a general perspective, Heydenreich et al. (2007) emphasize the importance
of considering other criteria besides efficiency and truthfulness. They mention
various definitions of fairness, as in the discussion of matching markets by Roth
et al. (2004). Connections with combinatorial auctions (Cramton et al., 2006) are
also relevant, especially when the allocation rule involves assigning and timing
resources, as in supply chain scheduling.

• Kress et al. (2018a) provide a comprehensive overview of the literature of mech-
anism design for scheduling problems, as well as identifying many open research
problems. We refer the reader to their work for many details. A significant and
general question is how to achieve a better understanding of the tradeoff between
truthfulness on one hand and computational complexity and approximation on
the other hand. There also remain many open research questions with respect
to supply chain scheduling games defined over classical machine scheduling
settings. The literature they review focuses on parallel-machine settings, and it
is also of interest to analyze games defined over flowshop, openshop, or jobshop
problems. Furthermore, the literature rarely considers general and practical job
characteristics such as job release dates or precedence relations. There are also
various research opportunities related to emerging applications; interesting ones
are described by Kovalyov and Pesch (2014). The topic of risk aversion among
the players also presents interesting problems.

• A topic that includes several open problems is mechanism design in the presence
of multi-dimensional private types. Lavi and Swamy (2009) obtain some initial

9.6 Future Research 659

results of this type. More recently, Kress et al. (2018b) show how to take
advantage of problem structure to simplify the conditions of cycle monotonicity.
They suggest the use of their results with heuristics for intractable supply chain
scheduling problems to construct truthful polynomial-time mechanisms. Another
possible research direction is considering players who are risk averse or risk
seeking.

• Vairaktarakis (2013), as discussed above under complete information settings,
also identifies several research issues for supply chain scheduling games with
private information. It is unclear under what conditions it would be worthwhile
for players to report falsely, since doing so may expose them to considerable
risk. In this case, players may respond with strategies that hedge against poor
outcomes.

• Chen et al. (2016) develop a mechanism for online supply chain scheduling
problems with preempt-restart and preempt-resume modes. They mention several
possible extensions of their work. One is a study of a hybrid model where some
of the jobs are preempt-restart and others are preempt-resume. Strategic issues
also arise, for example whether a preempt-resume job can benefit by presenting
itself as a preempt-restart job. Finally, motivated by the increasing use of cloud
computing, it would be valuable to study supply chain scheduling problems with
multiple heterogeneous machines.

• Duives et al. (2015) study both one- and two-dimensional private information in a
single machine scheduling environment. In the one-dimensional environment, an
efficiently computable closed form expression exists for an optimal mechanism
design. For the two-dimensional case, an optimal randomized mechanism can be
computed in polynomial time (Hoeksma & Uetz, 2016), but the computational
complexity of doing so for an optimal deterministic mechanism remains an open
problem.

To conclude this chapter, the research area of noncooperative supply chain
scheduling is very active, with many challenging questions remaining to be solved.
Moreover, the economic insights gained from this analysis are in many cases highly
valuable for a diverse range of supply chain scheduling applications.

References

Aarts, E., & Lenstra, J. K. (2003). Local search in combinatorial optimization. Princeton, NJ:
Princeton University Press.

Adiri, I., & Amit, N. (1984). Openshop and flowshop scheduling to minimize sum of completion
times. Computers & Operations Research, 11, 275–284.

Adiri, I., Bruno, J., Frostig, E., & Rinnooy Kan, A. H. G. (1989) Single machine flow-time
scheduling with a single breakdown. Acta Informatica, 26, 679–696.

Agnetis, A., Aloulou, M. A., & Fu, L.-L. (2014a) Coordination of production and interstage batch
delivery with outsourced distribution. European Journal of Operational Research, 238, 130–
142.

Agnetis, A., Billaut, J.-C., Gawiejnowicz, S., Pacciarelli, D., & Soukhal, A. (2014b). Multiagent
scheduling: models and algorithms. Berlin, Germany: Springer.

Agnetis, A., Briand, C., Billaut, J.-C., & Šucha, P. (2015). Nash equilibria for the multi-agent
project scheduling problems with controllable processing times. Journal of Scheduling, 18,
15–27.

Agnetis, A., Detti, P., Meloni, C., & Pacciarelli, D. (2001). Set-up coordination between two stages
of a supply chain. Annals of Operations Research, 107, 15–32.

Agnetis, A., Hall, N. G., & Pacciarelli, D. (2006). Supply chain scheduling: Sequence coordination.
Discrete Applied Mathematics, 154, 2044–2063.

Agrawal, V., & Seshadri, S. (2000). Joint determination of allocation & the timing of inventories
in a supply chain. Working paper, Stern School of Business, New York University.

Ahmadi, J. H., Ahmadi, R. H., Dasu, S., & Tang, C. S. (1992). Batching and scheduling jobs on
batch and discrete processors. Operations Research, 40, 750–763.

Albers, S., & Brucker, P. (1993). The complexity of one-machine batching problems. Discrete
Applied Mathematics, 47, 87–107.

Alidaee, B., & Ahmadian, A. (1993). Two parallel machine sequencing problems involving
controllable job processing times. European Journal of Operational Research, 70, 335–341.

Allahverdi, A., Ng, C. T., Cheng, T. C. E., & Kovalyov, M. (2008). A survey of scheduling
problems with setup times or costs. European Journal of Operational Research, 187(3), 985–
1032.

Anderson, E., & Simester, D. (2003). Effects of $9 price endings on retail sales: Evidence from
field experiments. Quantitative Marketing and Economics, 1(1), 93–110.

Angel, E., Bampis, E., Pascual, F., Tchetgnia, A.-A. (2009). On truthfulness and approximation for
scheduling selfish tasks. Journal of Scheduling, 12, 437–445.

© Springer Nature Switzerland AG 2022
Z.-L. Chen, N. G. Hall, Supply Chain Scheduling, International Series
in Operations Research & Management Science 323,
https://doi.org/10.1007/978-3-030-90374-9

661

https://doi.org/10.1007/978-3-030-90374-9

662 References

Angel, E., Bampis, E., Pascual, F., & Thibault, N. (2016). Truthfulness for the sum of weighted
completion times. In Computing and Combinatorics (COCOON 2016), Lecture Notes in
Computer Science (Vol. 9797, pp. 15–26).

Anshlevich, E., Dasgupta, A., Kleinberg, J. M., Tardos, É., Wexler, T., & Roughgarden, T. (2004).
The price of stability for network design and fair cost allocation. In 45th Symposium on
Foundations of Computer Science (FOCS 2004) (pp. 285–304).

Apt, K. R., & Schäfer, G. (2014). Selfishness level of strategic games. Journal of Artificial
Intelligence Research, 49, 207–240.

Archer, A., & Tardos, É. (2001). Truthful mechanisms for one-parameter agents. In Proceedings
of the 42nd IEEE Symposium on Foundations of Computer Science (FOCS’01).

Arkin, E. M., & Silverberg, E. B. (1987). Scheduling jobs with fixed start and end times. Discrete
Applied Mathematics, 18, 1–8.

Armstrong, R., Gao, S., & Lei, L. (2008). A zero-inventory production and distribution problem
with a fixed customer sequence. Annals of Operations Research, 159, 395–414.

Atay, A., Calleja, P., & Soteras, S. (2019). Open shop scheduling games. Working paper, Hungarian
Academy of Sciences, July.

Averbakh, I. (2010). On-line integrated production-distribution scheduling problems with capaci-
tated deliveries. European Journal of Operational Research, 200, 377–384.

Averbakh, I., & Baysan, M. (2012). Semi-online two-level supply chain scheduling problems.
Journal of Scheduling, 15, 381–390.

Averbakh, I., & Baysan, M. (2013). Batching and delivery in semi-online distribution systems.
Discrete Applied Mathematics, 161, 28–42.

Aydinliyim, T., & Vairaktarakis, G. L. (2010). Coordination of outsourced operations to minimize
weighted flow time and capacity booking costs. Manufacturing & Service Operations Manage-
ment, 12(2), 236–255.

Aydinliyim, T., & Vairaktarakis, G. L. (2011). Sequencing strategies and coordination issues in
outsourcing and contracting operations. Section 12 In K. Kempf, P. Keskinocak, & R. Uzsoy
(Eds.), Planning production and inventories in the extended enterprise. International Series in
Operations Research and Management Science (Vol. 151, pp. 269–319). New York: Springer.

Aydinliyim, T., & Vairaktarakis, G. L. (2013). A cooperative savings game approach to a time
sensitive capacity allocation and scheduling problem. Decision Sciences, 44(2), 357–376.

Bagchi, T. P., Gupta, J. N. D., & Sriskandarajah, C. (2006). A review of TSP based approaches for
flowshop scheduling. European Journal of Operational Research, 169, 816–854.

Balcan, M.-F. (2011). Leading dynamics to good behavior. CM SIGecom Exchanges, 10(1), 19–22.
Balcan, M.-F., Blum, A., & Mansour, Y. (2009). Improved equilibria via public service advertising.

In Proceedings of ACM-SIAM Symposium on Discrete Algorithms (pp. 728–737).
Barnhart, C., Johnson, E. L., Nemhauser, G. L., Savelsbergh, M. W., & Vance, P. H. (1998). Branch-

and-price: Column generation for solving huge integer programs. Operations Research, 46(3),
316–329.

Bazaraa, M. S., Sherali, H. D., & Shetty, C. M. (2013). Nonlinear programming: Theory and
algorithms (2nd ed.). Hoboken: Wiley.

Bazinet, C. G., Kahn, S. A., & Smith, S. J. (1998). Measuring the value of outsourcing. Best’s
Review, 99, 85–88.

Bean, J. C. G., Birge, J. R., Mittenthal, J., & Noon, C. E. (1991). Matchup scheduling with multiple
resources, release dates and disruptions. Operations Research, 39, 470–483.

Bergantiños, G., Valencia-Toledo, A., & Vidal-Puga, J. (2018). Hart and Mas-Colell consistency
in PERT problems. Discrete Applied Mathematics, 243, 11–20.

Berghman, L., & Spieksma, F. C. R. (2015). Valid inequalities for a time-indexed formulation.
Operations Research Letters, 43, 268–272.

Berghman, L., Spieksma, F. C. R., & t’Kindt, V. (2021). Solving a time-indexed formulation for an
unrelated parallel machine scheduling problem by preprocessing and cutting planes. RAIRO-
Operations Research, 55, S1747–S1765.

Bertrand, J. W. M., & Sridharan, V. (2001). A study of simple rules for subcontracting in make-to-
order manufacturing. European Journal of Operational Research, 128, 509–531.

References 663

Bikhchandani, S., Chatterji, S., Lavi, R., Mu’alem, A., Nisan, N., & Sen, A. (2006). Weak
monotonicity characterizes deterministic dominant-strategy implementation. Econometrica,
74(4), 1109–1132.

Bilgen, B., & Ozkarahan, I. (2004). Strategic tactical and operational production-distribution
models: A review. International Journal of Technology Management, 28, 151–171.

Bilò, V., Flammini, M., Monaco, G., & Moscardelli, L. (2016). Some anomalies of farsighted
strategic behavior. Theoretical Computer Science, 56(1), 156–180.

Bish, E. K., Muriel, A., & Biller, S. (2005). Managing flexible capacity in a make-to-order
environment. Management Science, 51, 167–180.

Blumenfeld, D. E., Burns, L. D., & Daganzo, C. F. (1991). Synchronizing production and
transportation schedules. Transportation Research, Part B, 25, 23–37.

Bondareva, O. N. (1963). Some applications of linear programming methods to the theory of
cooperative games. Published in Russian. Problemy Kybernetiki, 10, 119–139.

Borm, P., Fiestras-Janeiro, G., Hamers, H., Sánchez, E., & Voorneveld, M. (2002). On the
convexity of sequencing games with due dates. European Journal of Operational Research,
136, 616–634.

Boysen, N., Bock, S., & Fliedner, M. (2013). Scheduling of inventory releasing jobs to satisfy
time-varying demand: an analysis of complexity. Journal of Scheduling, 16, 185–198.

Boysen, N., Scholl, A., & Wopperer, N. (2012). Resequencing of mixed-model assembly lines:
Survey and research agenda. European Journal of Operational Research, 216, 594–604.

Brãnzei, R., Ferrari, G., Fragnelli, V., & Tijs, S. (2002). Two approaches to the problem of sharing
delay costs in joint projects. Annals of Operations Research, 109, 359–374.

Brucker, P. (2013). Scheduling algorithms (4th Ed.). Springer.
Bruno, J., Coffman Jr., E. G., & R. Sethi. (1974). Scheduling independent tasks to reduce mean

finishing time. Communications of the ACM, 17, 383–387.
Bruno, J., & Downey, P. (1978). Complexity of task sequencing with deadlines, set-up times and

changeover costs. SIAM Journal on Computing, 7, 393–404.
Bukchin, Y., & Hanany, E. (2007). Decentralization cost in scheduling: A game-theoretic approach.

Manufaturing & Service Operations Management, 9(3), 263–275.
Cachon, G. P. (2003). Supply chain coordination with contracts. In A. G. de Kok, & S. C. Graves

(Eds.), Supply chain management: Design, coordination, and operation (Vol. 11, pp. 229–339).
Cachon, G. P., & Lariviere, M. A. (1999). Capacity choice and allocation: Strategic behavior and

supply chain performance. Management Science, 45, 1091–1108.
Cai, X., & Vairaktarakis, G. L. (2012). Coordination of outsourced operations at a third-party

facility subject to booking, overtime and tardiness costs. Operations Research, 60(6), 1436–
1450.

Calleja, P., Borm, P., Hamers, H., Klin, F., & Slikker, M. (2002). On a new class of parallel
sequencing situations and related games. Annals of Operations Research, 109, 265–277.

Calma, A., Ho, W., Shao, L., & Li, H. (2021). Operations Research: Topics, impact, and trends
from 1952–2019. Operations Research, to appear.

Carr, S., & Duenyas, I. (2000). Optimal admission control and sequencing in a make-to-
stock/make-to-order production system. Operations Research, 48, 709–720.

Castro, J., Gómez, D., & Tejada, J. (2007). A project game for PERT networks. Operations
Research Letters, 35(6), 791–798.

Celik, S., & Maglaras, C. (2008). Dynamic pricing and lead-time quotation for a multiclass make-
to-order queue. Management Science, 54(6), 1132–1146.

Chand, S., & Schneeberger, H. (1988). Single machine scheduling to minimize weighted earliness
subject to no tardy jobs. European Journal of Operational Research, 34, 221–230.

Chang, Y.-C., & Lee, C.-Y. (2004). Machine scheduling with job delivery coordination. European
Journal of Operational Research, 158, 470–487.

Charnsirisakskul, K., Griffin, P.M., & Keskinocak, P. (2006). Pricing and scheduling decisions with
leadtime flexibility. European Journal of Operational Research, 171(1) 153–169.

Chen, B., & Vestjens, A. P. A. (1997). Scheduling on identical machines: How good is LPT in an
on-line setting? Operations Research Letters, 21 165–169.

664 References

Chen, C., & Xu, Y. (2020). The curse of rationality in sequential scheduling games. Working paper
arXix:2009:03634v2 (September 2020).

Chen, F. (2003). Information sharing and supply chain coordination. In A. G. de Kok, & S. C.
Graves (Eds.), Supply chain management: Design, coordination, and operation (Vol. 11 pp.
341–421).

Chen, M., & Chen, Z.-L. (2015). Recent developments in dynamic pricing research: multiple prod-
ucts, competition, and limited demand information. Production and Operations Management,
24(5), 704–731.

Chen, M., & Chen, Z.-L. (2018). Robust dynamic pricing with two substitutable products.
Manufacturing & Service Operations Management, 20 249–268.

Chen, X., Hu, X., Liu, T.-Y., Ma, W., Qin, T., Tang, P., Wang, C., & Zheng, B. (2016). Efficient
mechanism design for online scheduling. Journal of Artificial Intelligence Research, 56 429–
461.

Chen, X., & Simchi-Levi, D. (2012) Pricing and inventory management. In Ö. Özer, R. Phillips
(Eds.) The Oxford handbook of pricing management (pp. 784–824).

Chen, Z.-L. (2004). Integrated production and distribution operations: Taxonomy, models, and
review. In D. Simchi-Levi, S. D. Wu, & Z.-J. Shen (Eds.), Handbook of quantitative supply
chain analysis: Modeling in the E-business era. Kluwer Academic Publishers.

Chen, Z.-L. (2010). Integrated production and outbound distribution scheduling: Review and
extensions. Operations Research, 58, 130–148.

Chen, Z.-L., & Hall, N. G. (2007). Supply chain scheduling: Conflict and cooperation in assembly
systems. Operations Research, 55, 1072–1089.

Chen, Z.-L., & Hall, N. G. (2010). The coordination of pricing and scheduling decisions.
Manufacturing & Service Operations Management, 12(1), 77–92.

Chen, Z.-L., & Li, C.-L. (2005). Scheduling with subcontracting options. Working Paper. Univer-
sity of Maryland, College Park, MD 20742.

Chen, Z.-L., & Li, C.-L. (2008). Scheduling with subcontracting options. IIE Transactions, 40(12),
1171–1184.

Chen, Z.-L., & Powell, W. B. (1999a). A column generation based decomposition algorithm for a
parallel machine just-in-time scheduling problem. European Journal of Operational Research,
116(1), 220–232.

Chen, Z.-L., & Powell, W. B. (1999b). Solving parallel machine scheduling problems by column
generation. INFORMS Journal on Computing, 11, 78–94.

Chen, Z.-L., & Pundoor, G. (2006). Order assignment and scheduling in a supply chain. Operations
Research, 54(3), 555–572.

Chen, Z.-L., & Pundoor, G. (2009). Integrated order scheduling and packing. Production and
Operations Management, 18(6), 672–692.

Chen, Z.-L., & Vairaktarakis, G. L. (2005). Integrated scheduling of production and distribution
operations. Management Science, 51, 614–628.

Cheng, T. C. E., & Kahlbacher, H. G. (1993). Scheduling with delivery and earliness penalties.
Asia-Pacific Journal of Operational Research, 10, 145–152.

Cheng, T. C. E., & Liu, Z. (2004). Parallel machine scheduling to minimize the sum of quadratic
completion times. IIE Transactions, 36(1), 11–17.

Chou, M. C., Queyranne, M., & Simchi-Levi, D. (2006). The asymptotic performance ratio of an
on-line algorithm for uniform parallel machine scheduling with release dates. Mathematical
Programming, 106(1), 137–157.

Chung, D., Lee, K., Shin, K., & Park, J. (2005). A new approach to job shop scheduling
problems with due date constraints considering operation subcontracts. International Journal
of Production Economics, 98, 238–250.

Chvátal, V. (1979). A greedy heuristic for the set covering problem. Mathematics of Operations
Research, 4(3), 233–235.

Çiftçi, B., Borm, P., & Hamers, H. (2013). Batch sequencing and cooperation. Journal of
Scheduling, 16, 405–413.

References 665

Claassen, G. D. H., Gerdessen, J. C., Hendrix, E. M. T., & van der Vorst, J. G. A. J. (2016).
On production planning and scheduling in food processing industry: Modelling non-triangular
setups and product decay. Computers & Operations Research, 76, 167–182.

Clarke, E. H. (1971). Multipart pricing of public goods. Public Choice, 11, 17–33.
Coffman, E. G., Jr., & Lueker, G. S. (1991). Probabilistic analysis of packing and partitioning

algorithms. John Wiley & Sons Ltd.
Cole, R., Correa, J. R., Gkatzelis, V., Mirrokni, V., & Olver, N. (2011). Inner product spaces for

minsum coordination mechanisms, In L. Fortnow, & S. P. Vadhan (Eds.), Proceedings of the
43rd ACM Symposium on Theory of Computing (pp. 539–548).

Corfman, K. P., & Lehman, D. R. (1993). The importance of others’ welfare in evaluating
bargaining outcomes. Journal of Consumer Research, 14, 1–13.

Cramton, P., Shoham, Y., & Steinberg, R. (2006). Combinatorial auctions. Cambridge, MA: MIT
Press.

Craumer, M. (2002). How to think strategically about outsourcing. Harvard Management Update,
7, 4–6.

Curiel, I. (2010). Multi-stage sequencing situations. International Journal of Game Theory, 39,
151–162.

Curiel, I. (2011). Project management games. International Journal of Game Theory, 13(3), 281–
300.

Curiel, I. (2015). Compensation rules for multi-stage sequencing games. Annals of Operations
Research, 225, 65–82.

Curiel, I., Pederzoli, G., & Tijs, S. (1989). Sequencing games. European Journal of Operational
Research, 40, 344–351.

Curiel, I., Potters, J., Prasad, R., Tijs, S., & Veltman, B. (1994). Sequencing and cooperation.
Operations Research, 42(3), 566–568.

Curiel, I., Potters, J., Tijs, V. R., Prasad., S., & Veltman, B. (1993). Cooperation in one-machine
scheduling. Zeitschrift für Operations Research, 38, 113–129.

Daniels, R.L., & Kouvelis, P. (1995). Robust scheduling to hedge against processing time
uncertainty in single-stage production. Management Science, 41(2), 363–376.

Dantzig, G.B., & Wolfe, P. (1960). Decomposition principle for linear programs. Operations
Research, 8, 101–111.

Dawande, M., Geismar, H. N., Hall, N. G., & Sriskandarajah, C. (2006). Supply chain scheduling:
Distribution systems. Production and Operations Management, 15, 243–261.

de Kok, A. G., & Graves, S. C. (Eds.) (2003). Supply chain management: Design, coordination and
operation. Handbooks in Operations Research and Management Science (Vol. 11). Elsevier.

Desaulniers, G., Desrosiers, J., & Solomon, M. M. (2010). Column generation. Springer.
Dhangwatnotai, P., Dobzinski, S., Gughmi, S., & Roughgarden, T. (2011). Truthful approximation

schemes for single-parameter agents. SIAM Journal on Computing, 40(3), 915–933.
Dobzinski, S., & Sundararajan, M. (2008). On characterizations of truthful mechanisms for

combinatorial auctions and scheduling. In Proceedings of the 9th ACM Conference on
Electronic Commerce, Chicago, IL, July.

Dragan, I. (2013). Scheduling jobs with a common due date via cooperative game theory. American
Journal of Operational Research, 3, 439–443.

Driessen, T., Tijs, S. H. (1985). The τ -value, the core and seminconvex games. International
Journal of Game Theory, 14, 229–247.

Du, J., & Leung, J. Y.-T. (1990). Minimizing total tardiness on one machine is NP -hard.
Mathematics of Operations Research, 15(3), 483–495.

Duives, J., Heydenreich, B., Mishra, D., Müller, R., & Uetz, M. (2015). On optimal mechanism
design for a sequencing problem. Journal of Scheduling, 18, 45–59.

Durango-Cohen, E. J., & Yano, C. A. (2006). Supplier commitment and production decisions under
a forecast-commitment contract. Management Science, 52(1), 54–67.

Eliashberg, J., & Steinberg, R. (1993). Marketing-production joint decision making. In Handbooks
in operations research and management science (Vol. 5, pp. 827–880). Amsterdam, Nether-
lands: Elsevier Science Publishers.

666 References

Elmaghraby, W., & Keskinocak, P. (2003). Dynamic pricing in the presence of inventory con-
siderations: Research overview, current practices, and future directions. Management Science,
49(10), 1287–1309.

Engels, D. W., Karger, D. R., Kolliopoulos, S. G., Sengupta, S., Uma, R. N., & Wein, J. (2003).
Techniques for scheduling with rejection. Journal of Algorithms, 49, 175–191.

Erengüç, Ş. S., Simpson, N. C., & Vakharia, A. J. (1999). Integrated production/distribution
planning in supply chains. European Journal of Operational Research, 115, 219–236.

Estévez-Fernández, A. (2012). A game theoretical approach to sharing penalties and rewards in
projects. European Journal of Operational Research, 216(3), 647–657.

Estévez-Fernández, A., Borm, P., & Hamers, H. (2007). Project games. International Journal of
Game Theory, 36, 149–176.

Estévez-Fernández, A., Mosquera, M. A., Borm, P., & Hamers, H. (2008). Proportionate flow shop
games. Journal of Scheduling, 11, 433–447.

Fang, Q., Zhu, S., Cai, M., & Deng, X. (2002). On computational complexity of membership test
in flow games and linear production games. International Journal of Game Theory, 31, 39–45.

Farahani, P., Grunow, M., & Günther, H.-O. (2012). Integrated production and distribution planning
for perishable food products. Flexible Services and Manufacturing Journal, 24, 28–51.

Feldman, M., & Tamir, T. (2012). Conflicting congestion effects in resource allocation games.
Operations Research, 60(3), 529–540.

Feng, X., Cheng, Y., Zheng, F., & Xu, Y. (2016). Online integrated production-distribution
scheduling problems without preemption. Journal of Combinatorial Optimization, 31, 1569–
1585.

Fisher, M. L. (1997). What is the right supply chain for your product? Harvard Business Review,
75, 105–117.

Fotakis, D., Mavronicolas, M., Kontogiannis, S., & Spiraklis, P. (2002). The structure and
complexity of Nash equilibria for a selfish routing game. In: International Colloquium on
Automata, Languages, and Programming (ICALP) (pp. 510–519). Berlin: Springer.

Frank, R. H., & Parker, I. C. (2004). Microeconomics and behavior (2nd ed.) Boston, MA:
McGraw-Hill.

Fudenberg, D., & Tirole, J. (1993). Game theory. Cambridge, MA: MIT Press.
Garcia, J. M., & Lozano, S. (2004a). Production and delivery scheduling problem with time

windows. Computers & Industrial Engineering, 48, 733–742.
Garcia, J. M., & Lozano, S. (2004b). Production and vehicle scheduling for ready-mix operations.

Computers & Industrial Engineering, 46, 803–816.
Garey, M. R., & Johnson, D. S. (1978). “Strong” NP-completeness results: Motivation, examples,

and implications. Journal of the ACM, 25(3), 499–508.
Garey, M. R., & Johnson, D. S. (1979). Computers and intractability: A guide to the theory of

NP-completeness. San Francisco, CA: Freeman.
Garey, M. R., Johnson, D. S., & Sethi, R. (1976). The complexity of flowshop and jobshop

scheduling. Mathematics of Operations Research, 1, 117–129.
Geismar, H. N., Laporte, G., Lei, L., & Sriskandarajah, C. (2008). The integrated production and

transportation scheduling problem for a product with a short lifespan. INFORMS Journal on
Computing, 20(1), 21–33.

Geismar, H. N., & Murthy, N. M. (2015). Balancing production and distribution in paper
manufacturing. Production and Operations Management, 24(7), 1164–1178.

Gerichhausen, M., & Hamers, H. (2009). Partitioning sequencing situations and games. European
Journal of Operational Research, 196, 207–216.

Gharbi, A., & Haouari, M. (2002). Minimizing makespan on parallel machines subject to release
dates and delivery times. Journal of Scheduling, 5, 329–355.

Gilbert, S. M. (2000). Coordination of pricing and multiple-period production across multiple
constant priced goods. Management Science, 46(12), 1602–1616.

Gilmore, P. C., & Gomory, R. E. (1964). Sequencing a one state-variable machine: A solvable case
of the traveling salesman problem. Operations Research, 12, 655–679.

References 667

Glazer, A., Hassin, R., & Ravner, L. (2018). A strategic model of job assignment to a single
machine with earliness and tardiness penalties. IISE Transactions, 50(4), 265–278.

Goetschalckx, M., Vidal, C. J., & Dogan, K. (2002). Modeling and design of global logistics
systems: A review of integrated strategic and tactical models and design algorithms. European
Journal of Operational Research, 143, 1–18.

Goldfarb, D., & Liu, S. (1993). An O(n3L) primal-dual potential reduction algorithm for solving
convex quadratic programs. Mathematical Programming, 61, 161–170.

Graham, R. L. (1969). Bounds on multiprocessor timing anomalies. SIAM Journal on Applied
Mathematics, 17(2), 263–269.

Graham, R. L., Lawler, E. L., Lenstra, J. K., & Rinnooy Kan, A. H. G. (1979). Optimization
and approximation in deterministic sequencing and scheduling: a survey. Annals of Discrete
Mathematics, 5, 287–326.

Granot, D., & Huberman, G. (1982). The relationship between convex games and minimal cost
spanning tree games: A case for permutationally convex games. SIAM Journal of Algebraic
and Discrete Methods, 3, 288–292.

Grieco, J. (1988). Realist theory and the problem of international cooperation: Analysis with an
amended prisoner’s dilemma model. Journal of Politics, 50, 600–625.

Grosvenor, F., & Austin, T. A. (2001). Cisco’s eHub initiative. Supply Chain Management Review
July/August 28–35.

Groves, T. (1973). Incentives in teams. Econometrica, 41, 617–631.
Grundel, S., Çiftçi, B., Borm, P., & Hamers, H. (2013). Family sequencing and cooperation.

European Journal of Operational Research, 226, 414–424.
Hall, L. A., & Shmoys, D. B. (1989). Approximation algorithms for constrained scheduling

problems. In Proceedings of the 30th Annual Symposium on Foundations of Computer Science
(pp. 134–140).

Hall, L. A., & Shmoys, D. B. (1992). Jackson’s rule for single-machine scheduling: making a good
heuristic better. Mathematics of Operations Research, 17, 22–35.

Hall, N. G. (1986). Single and multiple processor models for minimizing completion time variance.
Naval Research Logistics Quarterly, 33, 49–54 (1986).

Hall, N. G. (2016). Research and teaching opportunities in project management. In INFORMS
Tutorials in Operations Research, November, 329–388. Available at: https://doi.org/10.1287/
educ.2016.0146

Hall, N. G., Kubiak, W., & Sethi, S. P. (1991). Earliness-tardiness scheduling problems, II:
deviation of completion times about a restrictive common due date. Operations Research,
39, 847–856.

Hall, N. G., ‘Lesaoana, M. A., & Potts, C. N. (2001). Scheduling with fixed delivery dates.
Operations Research, 49, 134–144.

Hall, N. G., & Liu, Z. (2010). Capacity allocation and scheduling in supply chains. Operations
Research, 58(6), 1711–1725.

Hall, N. G., & Liu, Z. (2016). Capacity allocation games without an initial sequence. Operations
Research Letters, 44(6), 747–749.

Hall, N. G., Liu, Z., & Potts, C. N. (2007). Rescheduling for multiple new orders. INFORMS
Journal on Computing, 19(4), 633–645.

Hall, N. G., & Posner, M. E. (1991). Earliness-tardiness scheduling problems, I: Weighted
deviation of completion times about a common due date. Operations Research, 39(5), 836–
846.

Hall, N. G., & Posner, M. E. (2001). Generating experimental data for computational testing with
machine scheduling applications. Operations Research, 49(6), 854–865.

Hall, N. G., Posner, M. E., & Potts, C. N. (2009). Online scheduling with known arrival times.
Mathematics of Operations Research, 34(1), 92–102.

Hall, N. G., & Potts, C. N. (2003). Supply chain scheduling: batching and delivery. Operations
Research, 51, 566–584.

Hall, N. G., & Potts, C. N. (2004). Rescheduling for new orders. Operations Research, 52(3),
440–453.

https://doi.org/10.1287/educ.2016.0146
https://doi.org/10.1287/educ.2016.0146

668 References

Hall, N. G., & Potts, C. N. (2005). The coordination of scheduling and batch deliveries. Annals of
Operations Research, 135, 41–64.

Hall, N. G., & Potts, C. N. (2010). Rescheduling for job unavailability. Operations Research, 58(3),
746–755.

Hall, N. G., & Sriskandarajah, C. (1996). A survey of machine scheduling problems with blocking
and no-wait in process. Operations Research, 44, 510–525.

Hamers, H., Borm, P., & Tijs, S. (1995). On games corresponding to sequencing situations with
ready times. Mathematical Programming, 70, 1–13.

Hamers, H., Klijn, F., & Suijs, J. (1999). On the balancedness of multimachine sequencing games.
European Journal of Operational Research, 119, 678–691.

Hamers, H., Klijn, F., & van Velzen, B. (2002). On the convexity of precedence sequencing games.
CentER Discussion Paper 2002–112, Tilburg University, Netherlands.

Hamers, H., Suijs, J., Tijs, S., & Borm, P. (1996). The split core for sequencing games. Games and
Economics Behavior, 15, 165–176.

Han, B., Zhang, W., Lu, X., & Lin, Y. (2015). On-line supply chain scheduling for single-machine
and parallel-machine configurations with a single customer: minimizing the makespan and
delivery cost. European Journal of Operational Research, 244, 704–714.

Harsanyi, J. C. (1981). Solutions for some bargaining games under the Harsanyi-Selten solution
theory, part II: analysis of specific bargaining games. Working paper CP-432, Center for
Research in Management Sciences, University of California, Berkeley, CA.

He, Y., Zhong, W., & Gu, H. (2006). Improved algorithms for two single machine scheduling
problems. Theoretical Computer Science, 363, 257–265.

Hernandez, A. (1989). Just-in-time manufacturing: A practical approach. Englewood Cliffs, NJ:
Prentice-Hall.

Heydenreich, B., Müller, R., & Uetz, M. (2007). Games and mechanism design in machine
scheduling - An introduction. Production and Operations Management, 16(4), 437–454.

Hochbaum, D. S. (Ed.) (1996). Approximation algorithms for NP-hard problems. Boston, MA:
PWS Publishing Company.

Hochbaum, D. S., & Landy, D. (1997). Scheduling semiconductor burn-in operations to minimize
total flowtime. Operations Research, 45, 874–885.

Hoefer, M., & Skopalik, A. (2013). Altruism in atomic congestion games. ACM Transactions on
Economics and Computation, 1(4), Article 21.

Hoeksma, R., & Uetz, M. (2016). Optimal mechanism design for a sequencing problem with two-
dimensional types. Operations Research, 64(6), 1438–1450.

Hoogeveen, J. A., & van de Velde, S. L. (1995). Minimizing total completion-time and maximum
cost simultaneously is solvable in polynomial-time. Operations Research Letters, 17, 205–208.

Hoogeveen, J. A., & Vestjens, A. P. A. (1996). Optimal on-line algorithms for single-machine
scheduling. Lecture Notes in Computer Science, 1084, 404–414.

Hoogeveen, J. A., & Vestjens, A. P. A. (2000). A best possible deterministic on-line algorithm
for minimizing maximum delivery time on a single machine. SIAM Journal on Discrete
Mathematics, 13, 56–63.

Hopp, W. J., & Spearman, M. L. (2000). Factory physics(2nd ed.). New York: Irwin McGraw-Hill.
Hu, X., Cui, N., & Demeulemeester, E. (2015). Effective expediting to improve project due

date and cost performance through buffer management. International Journal of Production
Research, 53(5), 1460–1471.

Hurter, A. P., & van Buer, M. G. (1996). The newspaper production/distribution problem. Journal
of Business Logistics, 17, 85–107.

Hurter, A. P., & van Buer, M. G. (1999). Solving the medium newspaper production/distribution
problem. European Journal of Operational Research, 115, 237–253.

Ibarra, O., & Kim, C. (1977). Heuristic algorithms for scheduling independent tasks on nonidenti-
cal processors. Journal of the ACM, 24(2), 280–289.

Immorlica, N., Li, L., Mirrokni, V. S., & Schulz, A. (2005). Coordination mechanisms for selfish
scheduling. In X. Deng, & Y. Ye (Eds.), Internet and network economics. Lecture Notes in
Computer Science (Vol. 3828, pp. 55–69). Berlin, Germany: Springer.

References 669

Iñarra, E., Serrano, R., & Shimomura, K.-I. (2019). The nuclelolus, the kernel and the bargaining
set: An update. Working paper series II, 113/19, Departamento de Fundamentos del Análisis
Económico, University of the Basque Country, Spain.

İnkaya, T., & Akansel, M. (2017). Coordinated scheduling of the transfer lots in an assembly-type
supply chain: a genetic algorithm approach. Journal of Intelligent Manufacturing, 28, 1005–
1015.

Ivanov, D., Sokolov, B., & Dolgui, A. (2014). Multi-stage supply chain scheduling with non-
preemptive continuous operations and execution control. International Journal of Production
Research, 52(13), 4059–4077.

Iyer, A. V., Deshpande, V., & Wu, Z. (2003). A postponement model for demand management.
Management Science, 49(8), 983–1002.

Jackson, J. R. (1955). Scheduling a production line to minimize maximum tardiness. Research
Report 43, Management Science Research Project, University of California, Los Angeles.

Ji, M., He, Y., & Cheng, T. C. E. (2007). Batch delivery scheduling with batch delivery cost on a
single machine. European Journal of Operational Research, 176, 745–755.

Johnson, S. M. (1954). Optimal two and three-stage production schedules with setup times
included. Naval Research Logistics Quarterly, 1, 61–67.

Kaminsky, P. (2003). The effectiveness of the longest delivery time rule for the flow shop delivery
time problem. Naval Research Logistics, 50(3), 257–272.

Kaminsky, P., & Kaya, O. (2008). Scheduling and due-date quotation in a make-to-order supply
chain. Naval Research Logistics, 55(5), 444–458.

Kaminsky, P., & Simchi-Levi, D. (1998). Probabilistic analysis and practical algorithms for the
flow shop weighted completion time problem. Operations Research, 46(6), 872–882.

Kanet, J. J. (1981). Minimizing the average deviation of job completion times about a common
due date. Naval Research Logistics Quarterly, 28(4), 643–652.

Kann, V. (1991). Maximum bounded 3-dimensional matching is MAX SNP-complete. Information
Processing Letters, 37(1), 27–35.

Karp, R. M. (1972). Reducibility among combinatorial problems. In R. E. Miller, & J. W. Thatcher
(Eds.), Complexity of computer computations (pp. 85–103). New York: Plenum Press.

Kellerer, H., Pferschy, U., & Pisinger, D. (2004). Knapsack problems. Berlin: Springer.
Kelley Jr., & Walker, M. R. (1959). Critical-path planning and scheduling. In Proceedings of the

Eastern Joint Computer Conference. National Joint Computer Committee (pp. 160–173). New
York: ACM.

Kergosien, Y., Gendreau, M., & Billaut, J.-C. (2017). A Benders decomposition-based heuristic
for a production and outbound distribution scheduling problem with strict delivery constraints.
European Journal of Operational Research, 262, 287–298.

Kerzner, H. R. (2013). Project management: A systems approach to planning, scheduling, and
controlling (11th ed.). Hoboken, NJ: Wiley.

Kise, H., Ibaraki, T., & Mine, H. (1979). Performance analysis of six approximation algorithms
for the one-machine maximum lateness scheduling problem with ready times. Journal of the
Operations Research Society of Japan, 22(3), 205–224.

Klastorin, T. D. (2012). Project management: Tools and trade-offs (3rd Pearson, ed.). Upper Saddle
River, NJ: Pearson Learning Solutions.

Kleinberg, J., & Tardos, É. (2006). Algorithm design. Pearson Education.
Klijn, F., & Sánchez, E. (2006). Sequencing games without initial order. Mathematical Methods of

Operations Research, 63, 53–62.
Kolawa, A. (2004). Outsourcing is not the enemy. Wall Street Journal, Feb. 24, 2004, page B2.
Koulamas, C. (2010). The single-machine total tardiness scheduling problem: Review and

extensions. European Journal of Operational Research, 202, 1–7.
Koulamas, C., Antony, S. R., & Jaen, R. (1994). A survey of simulated annealing applications to

operations research problems. Omega, 22, 41–56.
Koutsoupias, E. (2014). Scheduling without payments. Theory of Computer Systems, 54, 375–387.

670 References

Koutsoupias, E., & Papadimitriou, C. (1999). Worst-case equilibria. In C. Meinel, & S. Tison
(Eds.), STAC 1999, 16th Annual Symposium on Theoretical Aspects of Computer Science.
Lecture Notes in Computer Science (Vol. 1563, pp. 404–413). Berlin, Germany: Springer.

Kovalyov, M. Y., & Pesch, E. (2014). A game mechanism for single machine sequencing with zero
risk. Omega, 44, 104–110.

Kreipl, S., & Pinedo, M. (2004). Planning and scheduling in supply chains: An overview of issues
in practice. Production and Operations Management, 13(1), 77–92.

Kress, D., Meiswinkel, S., & Pesch, E. (2018a). Mechanism design for machine scheduling
problems: Classification and literature overview. OR Spectrum, 40, 583–611.

Kress, D., Meiswinkel, S., & Pesch, E. (2018b). Incentive compatible mechanisms for scheduling
two-parameter jobs on parallel identical machines to minimize the weighted number of late
jobs. Discrete Applied Mathematics, 242, 89–101.

Kroon, L. G., Salomon, M., & Van Wassenhove, L. N. (1995). Exact and approximation algorithms
for the operational fixed interval scheduling problem. European Journal of Operational
Research, 82, 190–205.

Kunreuther, H., & Schrage, L. (1973). Joint pricing and inventory decisions for constant priced
items. Management Science, 19(7), 732–738.

Laffont, J. J. (1988). Fundamentals of public economics. Cambridge, MA: The MIT Press.
Lane, D. E., & Sidney, J. B. (1993). Batching and scheduling in FMS hubs: flow time considera-

tions. Operations Research, 41, 1091–1103.
Lavi, R., & Swamy, C. (2009). Truthful mechanism design for multidimensional scheduling via

cycle monotonicity. Games and Economic Behavior, 67(1), 94–124.
Lawler, E. L. (1977). A ‘pseudopolynomial’ time algorithm for sequencing jobs to minimize total

tardiness. Annals of Discrete Mathematics, 1, 331–342.
Lawler, E. L., & Moore, J. M. (1969). A functional equation and its application to resource

allocation and sequencing problems. Management Science, 16(1), 77–84.
Le Breton, M., Owen, G., & Weber, S. (1992). Strongly balanced cooperative games. International

Journal of Game Theory, 20, 419–427.
Ledyard, J. (1997). Public goods: A survey of experimental research. In J. Kagel, & A. Roth (Eds.),

Handbook of experimental economics (pp. 111–194). Princeton University Press.
Lee, C.-Y., & Chen, Z.-L. (2001). Machine scheduling with transportation considerations. Journal

of Scheduling, 4, 3–24.
Lee, C.-Y., Cheng, T. C. E., & Lin, B. M. T. (1993). Minimizing the makespan in the 3-machine

assembly-type flowshop scheduling problem. Management Science, 39, 616–625.
Lee, C.-Y., & Uzsoy, R. (1999). Minimizing makespan on a single batch processing machine with

dynamic job arrivals. International Journal of Production Research, 37, 219–236.
Lee, C.-Y., Uzsoy, R., & Martin-Vega, L. A. (1992). Efficient algorithms for scheduling semicon-

ductor burn-in operations. Operations Research, 40(4), 764–775.
Lee, H. L., Padmanabhan, V., Taylor, T. A., & Wang, S. (2000). Price protection in the personal

computer industry. Management Science, 46, 467–482.
Lee, H. L., Padmanabhan, V., & Whang, S. J. (1997). Information distortion in a supply chain: The

bullwhip effect. Management Science, 43, 546–558.
Lee, I. S., & Sung, C. S. (2008a). Minimizing due date related measures for a single machine

scheduling problem with outsourcing allowed. European Journal of Operational Research,
186, 931–952.

Lee, I. S., & Sung, C. S. (2008b). Single machine scheduling with outsourcing allowed.
International Journal of Production Economics, 101, 623–634.

Lee, K., & Choi, B.-C. (2011). Two-stage production scheduling with an outsourcing option.
European Journal of Operational Research, 213, 489–497.

Lee, K., Leung, J.Y.-T., & Pinedo, M. L. (2012). Coordination mechanisms for parallel machine
scheduling. European Journal of Operational Research, 220, 305–313.

Lee, K. C., & Tse, C. S. (1992). Inventory control at Procter and Gamble, Inc. Undergraduate
Thesis, Department of Mechanical and Industrial Engineering, University of Toronto.

References 671

Lehman, D. (2001). The impact of altruism and envy on competitive behavior and satisfaction.
International Journal of Research in Marketing, 18, 5–17.

Lei, L., Ruszcynski, A., Park, S., & Lui, S. (2006). On the integrated production, inventory and
distribution routing problem. IIE Transactions, 38, 955–970.

Lejeune, M. (2008). A unified approach for cycle service levels. Technical Report TR-2008-19, The
Institute for Integrating Statistics in Decision Sciences, The George Washington University,
Washington, DC.

Leme, R. P., Syrgkanis, V., & Tardos, É. (2012). The curse of simultaneity. In Proceedings of the
3rd Innovations in Theoretical Computer Science Conference (pp. 60–67).

Leng, M., & Parlar, M. (2010). Analytic solution for the nucleolus of a three-player cooperative
game. Naval Research Logistics, 57, 667–672.

Lenstra, J. K., Rinnooy Kan, A. H. G., & Brucker, P. (1977). Complexity of machine scheduling
problems. Annals of Discrete Mathematics, 1, 343–362.

Leung, J. Y.-T., & Anderson, J. H. (Eds.) (2004). Handbook of scheduling: Algorithms, models and
performance analysis. Chapman & Hall/CRC Press.

Leung, J. Y.-T., & Chen, Z.-L. (2013). Integrated production and distribution with fixed delivery
departure dates. Operations Research Letters, 41(3), 290–293.

Levine, D. (1998). Modeling altruism and spitefulness in experiments. Review of Economic
Dynamics, 1, 593–622.

Li, C.-L., Vairaktarakis, G., & Lee, C.-Y. (2005a). Machine scheduling with deliveries to multiple
customer locations. European Journal of Operational Research, 164, 39–51.

Li, F., Chen, Z.-L., & Tang, L. (2017). Integrated production, inventory and delivery problems:
Complexity and algorithms. INFORMS Journal on Computing, 29(2), 232–250.

Li, K. P., Ganesan, V. K., & Sivakumar, A. I. (2005b). Synchronized scheduling of assembly
and multi-destination air-transportation in a consumer electronics supply chain. International
Journal of Production Research, 43(13), 2671–2685.

Li, K. P., Ganesan, V. K., & Sivakumar, A. I. (2006). Scheduling of single stage assembly with air
transportation in a consumer electronics supply chain. Computers & Industrial Engineering,
51, 264–278.

Li, K. P., Sivakumar, A. I., & Ganesan, V. K. (2008). Analysis and algorithms for coordinated
scheduling of parallel machine manufacturing and 3PL transportation. International Journal
of Production Economics, 115(2), 482–491.

Li, L. (2002). Information sharing in a supply chain with horizontal competition. Management
Science, 48(9), 1196–1212.

Liu, L., Qi, X., & Xu, Z. (2018a). Simultaneous penalization and subsidization for stabilizing grand
cooperation. Operations Research, 66(5), 1362–1375.

Liu, M., Chu, C., Xu, Y., & Zheng, F. (2010). An optimal online algorithm for single machine
scheduling with bounded delivery times. European Journal of Operational Research, 201, 693–
700.

Liu, P., & Lu, X. (2015). Online scheduling on two parallel machines with release dates and
delivery times. Journal of Combinatorial Optimization, 30, 347–359.

Liu, Z., Lu, L., & Qi, X. (2012). Simultaneous and sequential price quotations for uncertain order
inquiries with production scheduling cost. IIE Transactions, 44, 820–833.

Liu, Z., Lu, L., & Qi, X. (2018b). Cost allocation in rescheduling with machine unavailable period.
European Journal of Operational Research, 266, 16–28.

Liu, Z., Lu, L., & Qi, X. (2020). Price quotation for orders with different due dates. International
Journal of Production Economics, 220, 107448.

Lu, L., Liu, Z., & Qi, X. (2013). Coordinated price quotation and production scheduling for
uncertain order inquiries. IIE Transactions, 45, 1293–1308.

Lu, L., Yuan, J., & Zhang, L. (2008). Single machine scheduling with release dates and job delivery
to minimize the makespan. Theoretical Computer Science, 393, 102–108.

Lu, L., Zhang, L., & Ou, J. (2021). In-house production and outsourcing under different discount
schemes on the total outsourcing cost. Annals of Operations Research, 298, 361–374.

672 References

Lu, X., Sitters, R. A., & Stougie, L. (2003). A class of on-line scheduling algorithms to minimize
total completion time. Operations Research Letters, 31, 232–236.

Mahajan, M., Rama, R., & Sundarrajan, V. (2003). On sorting by 3-bounded transpositions.
Electronic Notes in Discrete Mathematics, 15, 117–120.

Maniquet, F. (2003). A characterization of the Shapley value in queueing problems. Journal of
Economic Theory, 109, 90–103.

Manoj, U. V., Gupta, J. N. D., Gupta, S. K., & Sriskandarajah, C. (2008). Supply chain scheduling:
Just-in-time environment. Annals of Operations Research, 161, 53–86.

Manoj, U. V., Sriskandarajah, C., & Wagneur, E. (2012). Coordination in a two-stage production
system: Complexity, conflict and cooperation. Computers & Operations Research, 39, 1245–
1256.

Mastrolilli, M. (2003). Efficient approximation schemes for scheduling problems with release dates
and delivery times. Journal of Scheduling, 6, 521–531.

Melo, R. A., & Wolsey, L. A. (2010). Optimizing production and transportation in a commit-to-
delivery business mode. European Journal of Operational Research, 203, 614–618.

Mishra, D., & Rangarajan, B. (2007). Cost sharing in a job scheduling problem. Social Choice and
Welfare, 29, 369–382.

Monma, C. L., & Potts, C. N. (1989). On the complexity of scheduling with batch set-up times.
Operations Research, 37, 798–804.

Moore, J. M. (1968). A n job, one machine sequencing algorithm for minimizing the number of
late jobs. Management Science, 15, 102–109.

Moore, S., & Gray, K. (2011). GPOs and buying consortiums must be on the radar for 2011–2012.
Available online at: https://spendmatters.com/pdf/GPOperspectivespaper.pdf

Moses, M., & Seshadri, S. (2000). Policy mechanisms for supply chain coordination. IIE
Transactions, 32, 245–262.

Munson, C. L., & Jackson, J. (2015). Quantity discounts: an overview and practical guide
for buyers and sellers. Foundations and Trends in Technology, Information and Operations
Management, 8(12), 1–130.

Musegaas, M., Borm, P. E. M., & Quant, M. (2015). Step out-step in sequencing games. European
Journal of Operational Research, 246, 894–906.

Muto, S., Nakayama, M., Potters, J., & Tijs, S. H. (1988). On big boss games. Economic Studies
Quarterly, 39, 302–321.

Myerson, R. B. (1981). Optimal auction design. Mathematics of Operations Research, 6(1), 58–73.
Myerson, R. B. (1997). Game theory: Analysis of conflict. Cambridge, Massachusetts: Harvard

University Press.
Nash, J. F. (1950). The bargaining problem. Econometrica, 18, 155–162.
Nash, J. F. (1951). Non-cooperative games. The Annals of Mathematics, 54(2), 286–295.
Nash J. F. (1953). Two-person cooperative games. Econometrica, 21, 128–140.
Naso, D., Surico, M., Turchiano, B., & Kaymak, U. (2007). Genetic algorithms for supply-chain

scheduling: A case study in the distribution of ready-mixed concrete. European Journal of
Operational Research, 177, 2069–2099.

Nellemann, D. O., & Smith, L. F. (1982). Just-in-time vs. just-in-case production systems borrowed
back from Japan. Production and Inventory Management, 23, 12–21.

Nemhauser, G. L., & Wolsey, L. A. (1988). Integer programming and combinatorial optimization.
Chichester: Wiley.

Ng, C. T., Cheng, T. C. E., & Kovalyov, M. Y. (2003). Batch scheduling with controllable setup
and processing times to minimize total completion time. Journal of the Operational Research
Society, 54, 499–506.

Ng, C. T., & Lu, L. (2012). On-line integrated production and outbound distribution scheduling to
minimize the maximum delivery completion time. Journal of Scheduling, 15, 391–398.

Ng, C. T., & Lu, L. (2020). Private communication. December 2020.
Ng, C. T. (2021). Private communication. August 2021.
Nisan, N., & Ronen, A. (2001). Algorithmic mechanism design. Games and Economic Behavior,

35, 166–196.

https://spendmatters.com/pdf/GPOperspectivespaper.pdf

References 673

Nisan, N., Roughgarden, T., Tardos, É. Vazirani, V. (Eds.) (2007). Algorithmic game theory.
Cambridge, U.K.: Cambridge University Press.

Ohno, T. (1988). Toyota production system: Beyond large-scale production. Shelton, CT: Produc-
tivity Press, Productivity .

Oron, D. (2014). Scheduling controllable processing time jobs in a deteriorating environment.
Journal of the Operational Research Society, 65(1), 49–56.

Osborne, M. J. (2004). An introduction to game theory. Oxford, U.K.: Oxford University Press.
Ouchi, W. G. (1980). Markets, bureaucracies and clans. Administrative Science Quarterly, 25, 129–

142.
Owen, G. (1975). On the core of linear production games. Mathematical Programming, 9, 358–

370.
Özer, Ö., & Wei, W. (2006). Strategic commitments for an optimal capacity decision under

asymmetric forecast information. Management Science, 52(8), 1238–1257.
Panwalkar, S. S., Smith, M. L., & Seidmann, A. (1982). Common due date assignment to minimize

total penalty for the one machine scheduling problem. Operations Research, 30(2), 391–399.
Papadimitriou, C. H., & Steiglitz, K. (1998). Combinatorial optimization: Algorithms and

complexity. North Chelmsford, U.K.: Courier Corporation.
Parlar, M., & Weng, Z. K. (1997). Designing a firm’s coordinated manufacturing and supply

decisions with short product life cycles. Management Science, 43, 1329–1344.
Peleg, B., & Sudhölter, P. (2007). Introduction to the theory of cooperative games. Springer.
Perakis, G., & Roels, G. (2008). Regret in the newsvendor model with partial information.

Operations Research, 56(1), 188–203.
Pereira, V., & Costa, H. G. (2015). A literature review on lot size with quantity discounts: 1995–

2013. Journal of Modelling in Management, 10(3), 341–359.
Pinedo, M. L. (2016). Scheduling: Theory, algorithms, and systems (5th ed.). Springer.
Pinedo, M. L., & Chao, X. L. (1999). Operations scheduling with applications in manufacturing

and services (1st ed.). Irwin McGraw-Hill.
Porter, R. (2004). Mechanism design for online real-time scheduling. In Proceedings of the 5th

ACM Conference on Electronic Commerce (pp. 61–70).
Potts, C. N. (1980). Analysis of a heuristic for one machine sequencing with release dates and

delivery times. Operations Research, 28, 1436–1441.
Potts, C. N., & Kovalyov, M. (2000). Scheduling with batching: a review. European Journal of

Operational Research, 120(2), 228–249.
Potts, C. N., Sevast’janov, S. V., Strusevich, V. A., Van Wassenhove, L. N., & Zwaneveld,

C. M. (1995). The two-stage assembly scheduling problem: complexity and approximation.
Operations Research, 43, 346–355.

Project Management Institute (2019). Practice Standard for Scheduling (3rd ed.).
Project Management Institute (2021). What is project management? Available at: https://www.pmi.

org/about/learn-about-pmi/what-is-project-management, last accessed April 14, 2021.
Pruhs, K., Sgall, J., & Torng, E. (2004). Online scheduling. In J.Y.-T. Leung (Ed.), Handbook

of scheduling: Algorithms, models, and performance analysis, Chapter 15. Boca Raton: CRC
Press.

Pundoor, G., & Chen, Z.-L. (2005). Scheduling a production-distribution system to optimize the
tradeoff between delivery tardiness and total distribution cost. Naval Research Logistics, 52,
571–589.

Qi, X. (2008). Coordinated logistics scheduling for in-house production and outsourcing. IEEE
Transactions on Automation Science and Engineering, 5, 188–192.

Qi, X. (2011). Outsourcing and production scheduling for a two-stage flowshop. International
Journal of Production Economics, 129, 43–50.

Qi, X. (2012). Production scheduling with subcontracting: the subcontractor’s pricing game.
Journal of Scheduling, 15, 773–781.

Rajagopalan, S., & Malhotra, A. (2001). Have U.S. manufacturing inventories really decreased?
An empirical study. Manufacturing & Service Operations Management, 3, 14–24.

https://www.pmi.org/about/learn-about-pmi/what-is-project-management
https://www.pmi.org/about/learn-about-pmi/what-is-project-management

674 References

Rebollo, M., Julian, V., Carrascosa, C., & Botti, V. (2000). A multi-agent system for the automation
of a port container terminal. In Proceedings, Agents 2000 Workshop.

Ren, J., Du, D., & Xu, D. (2013). The complexity of two supply chain scheduling problems.
Information Processing Letters, 113, 609–612.

Respício, A., & Captivo, M. E. (2008). Marketing-production interface through an integrated DSS.
Journal of Decision Systems, 17, 119–132.

Roberts, K. (1979). The characterization of implementable choice rules. In J.-J. Laffont (Ed.),
Aggregation and revelation of preferences. North-Holland, Amsterdam, Netherlands.

Rochet, J.C. (1987). A necessary and sufficient condition for rationalizability in a quasilinear
context. Journal of Mathematical Economics, 16, 191–200.

Ross, S. (1998). A first course in probability (5th ed.). Prentice Hall.
Roth, A., Sotomayor, M. A. O., & Chesher, A. (Eds.) (2004). Two-sided matching: A study in game

theoretic modeling and analysis. Cambridge, MA: Cambridge University Press.
Roughgarden, T. (2004). Stackelberg scheduling strategies. SIAM Journal on Computing, 33(2),

332–350.
Roughgarden, T., & Tardos, É. (2002). How bad is selfish routing? Journal of the ACM, 49(2),

236–259.
Sahin, F., & Robinson, E. P. (2002). Flow coordination and information sharing in supply chains:

review, implications, and directions for future research. Decision Sciences, 33(4), 505–536.
Saks, M., & Yu, L. (2005). Weak monotonicity suffices for truthfulness on convex domains. In

Proceedings of the 6th ACM Conference on Electronic Commerce (pp. 286–293). New York:
ACM.

Santos, C., & Magazine, M. (1985). Batching in single operation manufacturing systems.
Operations Research Letters, 4, 99–103.

Sarmiento, A. M., & Nagi, R. (1999). A review of integrated analysis of production-distribution
systems. IIE Transactions, 31, 1061–1074.

Sawik, T. (2009). Coordinated supply chain scheduling. International Journal of Production
Economics, 120, 437–451.

Schmeidler, D. (1969). The nucleolus of a characteristic function game. SIAM Journal on Applied
Mathematics, 17(6), 1163–1170.

Schönhage, A., Paterson, M., & Pippenger, N. (1976). Finding the median. Journal of Computer
and System Sciences, 13, 184–199.

Schrage, L. (1968). A proof of the optimality of the shortest remaining processing time discipline.
Operations Research, 16, 687–690.

Schubert, D., Scholz, A., & Wäscher, G. (2018). Integrated order picking and vehicle routing with
due dates. OR Spectrum, 40, 1109–1139.

Schulz, A. S., & Uhan, N. A. (2010). Sharing supermodular costs. Operations Research, 58(4),
1051–1056.

Schummer, J., & Vohra, R. V. (2007). Mechanism design without payment. Chapter 10 In N. Nisan,
T. Roughgarden, É. Tardos, & V. Vazirani (Eds.), Algorithmic game theory. Cambridge, U.K.:
Cambridge University Press.

Schuurman, P., & Woeginger, G. J. (2011). Approximation schemes–a tutorial. In R. H. Möhring,
C. N. Potts, A. S. Schulz, G. J. Woeginger, & L. A. Wolsey (Eds.), Lectures on scheduling.

Shabtay, D., & Steiner, G. (2007). A survey of scheduling with controllable processing times.
Discrete Applied Mathematics, 155(13), 1643–1666.

Shakhlevich, N., Hoogeveen, H., & Pinedo, M. (1998). Minimizing total weighted completion time
in a proportionate flow shop. Journal of Scheduling, 1(3), 157–168.

Shapley, L. S. (1953). A value for n-person games. In Contributions to the theory of games (AM-
28) (Vol. 11, pp. 307–318). Princeton University Press.

Shapley, L. S. (1967). On balanced sets and cores. Naval Research Logistics Quarterly, 14(4),
453–460.

Shapley, L. S. (1971). Cores of convex games. International Journal of Game Theory, 1(1), 11–26.
Shapley, L. S., & Shubik, M. (1972). The assignment game, I: The core. International Journal of

Game Theory, 1(1), 111–130.

References 675

Simchi-Levi, D., Chen, X., & Bramel, J. (2013). The logic of logistics: Theory, algorithms, and
applications for logistics management (3rd ed.). Springer.

Simchi-Levi, D., Kaminsky, P., & Simchi-Levi, E. (2008). Designing & managing the supply
chain: Concepts, strategies and case studies (3rd ed.). McGraw-Hill Book Company.

Simchi-Levi, D., Wu, S. D., & Shen, Z.-J. (2004). Handbook of quantitative supply chain analysis:
Modeling in the E-business era. Kluwer Academic Publishers.

Simon, H. A. (1955). A behavioral model of rational choice. The Quarterly Journal of Economics,
69(1), 99–118.

Slikker, M. (2006). Relaxed sequencing games have a nonempty core. Naval Research Logistics,
53, 235–242.

Smith, W. E. (1956). Various optimizers for single stage production. Naval Research Logistics
Quarterly, 3, 59–66.

So, K. C., & Song, J. S. (1998). Price, delivery time guarantees and capacity selection. European
Journal of Operational Research, 111(1), 28–49.

Sokolov, B., Ivanov, D., & Dolgui, A. (Eds.) (2020). Scheduling in industry 4.0 and cloud
manufacturing. Springer.

Sousa, J. P., & Wolsey, L. A. (1992). A time indexed formulation of non-preemptive single machine
scheduling problems. Mathematical Programming, 54, 353–367.

Sriskandarajah, C., & Ladet, P. (1986). Some no-wait shops scheduling problems: Complexity
aspects. European Journal of Operational Research, 24, 424–438.

Statista (2021). Global market size of outsourced services from 2000 to 2019. Available at:
https://www.statista.com/statistics/189788/global-outsourcing-market-size/

Stecke, K. E., & Zhao, X. (2007). Production and transportation integration for a make-to-order
manufacturing company with a commit-to-delivery business mode. Manufacturing & Service
Operations Management, 9(2), 206–224.

Stein, T., & Sweat, J. (1998). Killer supply chains. Information Week.
Talluri, K. T., & Van Ryzin, G. (2004). The theory and practice of revenue management. Boston:

Kluwer Academic Publishers.
Tan, Z., & Zhang, A. (2013). Online and semi-online scheduling. In P. M. Pardalos, D.-Z. Du, &

R. L. Graham (Eds.), Handbook of combinatorial optimization (pp. 2192–2252). New York:
Springer Press.

Tang, C. S. (2010). A review of marketing-operations interface models: From co-existence to
coordination and collaboration. International Journal of Production Economics, 1, 22–40.

Tang, L., & Gong, H. (2008). A hybrid two-stage transportation and batch scheduling problem.
Applied Mathematical Modeling, 52, 2467–2479.

Tang, L., Li, F., & Chen, Z.-L. (2019). Integrated scheduling of production and two-stage delivery
of make-to-order products: offline and online algorithms. INFORMS Journal on Computing,
31(3), 493–514.

Tayur, S., Ganeshan, R., & Magazine, M. (Eds.) (1999). Quantitative models for supply chain
management. Kluwer Academic Publishers.

The Economist (2001). A long march to mass customisation. The Economist 360(8230), 63.
The Standish Group (2020). CHAOS Report. Available at: https://www.standishgroup.com/news/

45
Thomas, D. J., & Griffin, P. M. (1996). Coordinated supply chain management. European Journal

of Operational Research, 94, 1–15.
Tian, J., Cheng, T. C. E., Ng, C. T., & Yuan, J. (2012). An improved on-line algorithm for single

parallel-batch machine scheduling with delivery times. Discrete Applied Mathematics, 160,
1191–1210.

Tian, J., Fu, R., & Yuan, J. (2008). A best on-line algorithm for single machine scheduling with
small delivery times. Theoretical Computer Science, 393, 287–293.

Tian, J., Fu, R., & Yuan, J. (2011). An on-line algorithm for the single machine unbounded
parallel-batching scheduling with large delivery times. Information Processing Letters, 111,
1048–1053.

https://www.statista.com/statistics/189788/global-outsourcing-market-size/
https://www.standishgroup.com/news/45
https://www.standishgroup.com/news/45

676 References

Tijs, S. (1981). Bounds for the core of a game and the τ -value. In O. Moeschlin, & D. Pallaschke,
Game theory and mathematical economics (pp. 123–132). North-Holland.

Tijs, S. H., Parasarathy, T., Potters, J. A. M., & Prasad, V. R. (1984). Permutation games: Another
class of totally balanced games. OR Spektrum, 6, 119–123.

Toptal, A., Koc, U., & Sabuncuoglu, I. (2014). A joint production and transportation planning
problem with heterogeneous vehicles. Journal of the Operational Research Society, 65, 180–
196.

Trietsch, D., & Baker, K. R. (1993). Basic techniques for lot streaming. Operations Research, 41,
1065–1076.

Tsai, L.-H. (1992). Asymptotic analysis of an algorithm for balanced parallel processor scheduling.
SIAM Journal on Computing, 21(1), 59–64.

Ullrich, C. A., & Herrmann, J. (2013). The cost cutting potential of supply chain scheduling.
Working paper, Department of Business Administration and Economics, Bielefeld Univer-
sity, Germany, February. Available at: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=
1829138

Vairaktarakis, G. L. (2013). Noncooperative games for subcontracting operations. Manufacturing
& Service Operations Management, 15(1), 148–158.

Van Dal, R., van der Veen, J. A. A., & Sierksma, G. (1993). Small and large TSP: Two polynomially
solvable cases of the traveling salesman problem. European Journal of Operational Research,
69, 107–120.

Van den Akker, J. M., Hoogeveen, J. A., & Van de Velde, S.L. (1999). Parallel machine scheduling
by column generation. Operations Research, 47, 862–872.

Van den Akker, J. M., Hurkens, C. A., & Savelsbergh, M. W. (2000). Time-indexed formulations
for machine scheduling problems: Column generation. INFORMS Journal on Computing,
12(2), 111–124.

Van den Nouweland, A., Krabbenborg, M., & Potters, J. (1992). Flowshops with a dominant
machine. European Journal of Operational Research, 62, 38–46.

van Velzen, B. (2006). Sequencing games with controllable processing times. European Journal of
Operational Research, 172, 64–85.

Vazirani, V. V. (2001). Approximation algorithms. New York: Springer.
Vazirani, V. V., Nisan, N., Roughgarden, T., & Tardos, É. (2007). Algorithmic game theory.

Cambridge, U.K.: Cambridge University Press.
Vestjens, A. P. A. (1997). Online machine scheduling. PhD. Thesis, Department of Mathematics

and Computing Science, Eindhoven University of Technology, Eindhoven, The Netherlands.
Vickrey, W. (1961). Counterspeculation, auctions, and competitive sealed tenders. Journal of

Finance, 16, 8–37.
Vickson, R. G. (1980). Choosing the job sequence and processing times to minimize total

processing plus flow cost on a single machine. Operations Research, 28(5), 1155–1167.
Vijayalakshmi, V. R., Schröder, M., & Tamir, T. (2021). Theoretical Computer Science, 855, 90–

103.
Voss, S., Martello, S., Osman, I. H., & Roucairol, C. (Eds.) (1999). Meta-heuristics: Advances and

trends in local search paradigms for optimization. Springer.
Walts, A. (2020). How inventory reduction actually helps you make more money. Available at:

https://www.skuvault.com/blog/how-inventory-reduction-actually-helps-you-make-more-
money/

Wan, G., Vakati, S. R., Leung, J. Y.-T., & Pinedo, M. (2010). Scheduling two agents with
controllable processing times. European Journal of Operational Research, 205(3), 528–539.

Wang, D.-Y., Grunder, O., & El Moundni, A. (2015). Integrated scheduling of production and
distribution operations: A review. International Journal of Industrial and Systems Engineering,
19(1), 94–122.

Wang, Q., Batta, R., & Szczerba, R. J. (2005). Sequencing the processing of incoming mail to
match an outbound truck delivery schedule. Computers & Operations Research, 32, 1777–
1791.

https://papers.ssrn.com/sol3/papers.cfm?abstract_id=1829138
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=1829138
https://www.skuvault.com/blog/how-inventory-reduction-actually-helps-you-make-more-money/
https://www.skuvault.com/blog/how-inventory-reduction-actually-helps-you-make-more-money/

References 677

Wang, S., & Wang, X. (2019). Parallel machine scheduling with pricing and rejection. In 16th
International Conference on Service Systems and Service Management (ICSSSM) (pp. 1–5).
IEEE.

Weng, Z. K. (1995). Channel coordination and quantity discounts. Management Science, 41, 1509–
1522.

Williamson, O. E. (1975). Markets and hierarchies. New York: Free Press.
Woeginger, G. J. (1994). Heuristics for parallel machine scheduling with delivery times. Acta

Informatica, 31, 503–512.
Woeginger, G. J. (2000). When does a dynamic programming formulation guarantee the existence

of a fully polynomial time approximation scheme (FPTAS)? INFORMS Journal on Computing,
12(1), 57–74.

Wu, S. D., Storer, R. H., & Chang, P.-C. (1993). Robust deterministic scheduling in stochastic
environments: The method of capacity hedge points. International Journal of Production
Research, 35, 369–379.

Yang, S., Peng, D., Meng, T., Wu, F., Chen, G., Tang, S., Li, Z., & Luo, T. (2019). On designing
distributed auction mechanisms for wireless spectrum allocation. IEEE Transactions onMobile
Computing, 18(9), 2129–2146.

Yang, X. (2000). Scheduling with generalized batch delivery dates and earliness penalties. IIE
Transactions, 32, 735–741.

Yano, C. A., & Gilbert, S. M. (2004). Coordinated pricing and production / procurement decisions:
A review. In A. Chakravarty, & J. Eliashberg (Eds.), Managing business interfaces: Marketing,
engineering and manufacturing perspectives. Kluwer Academic Publishers.

Yeung, W.-K., Choi, T.-M., & Cheng, T. C. E. (2011). Supply chain scheduling and coordination
with dual delivery modes and inventory storage cost. International Journal of Production
Economics, 132, 223–229.

Yuan, J., Li, S., Tian, J., & Fu, R. (2009). A best possible on-line algorithm for the single
machine parallel-batch scheduling with restricted delivery times. Journal of Combinatorial
Optimization, 17, 206–213.

Yue, Q., Chen, Z.-L., & Wan, G. (2019). Integrated pricing and production scheduling of multiple
customized products with a common base product. IISE Transactions, 51(12), 1383–1401.

Zhang, J., Liu, F., Tang, J., & Li, Y. (2019). The online integrated order picking and delivery
considering pickers’ learning effects for an O2O community supermarket. Transportation
Research Part E: Logistics and Transportation Review, 123, 180–199.

Zhang, L., Lu, L., & Yuan, J. (2009). Single machine scheduling with release dates and rejection.
European Journal of Operational Research, 198, 975–978.

Zhang, J., Wang, X., & Huang, K. (2018). On-line scheduling of order picking and delivery with
multiple zones and limited vehicle capacity. Omega, 79, 104–115.

Zhong, W., Chen, Z.-L., & Chen, M. (2010). Integrated production and distribution scheduling
with committed delivery dates. Operations Research Letters, 38(2), 133–138.

Zhong, W., Dosa, G., & Tan, Z. (2007). On the machine scheduling problem with job delivery
coordination. European Journal of Operational Research, 182, 1057–1072.

Index

A
Absolute price of anarchy, 550, 552, 554,

561–563
Activation, 564, 585–590, 656
Activity, 1, 32, 55, 443, 446, 456, 503, 505,

506, 509, 512, 514–519, 547, 578–582,
589

Activity-on-arcs, 505, 578, 580
Admissibility, 432, 434, 436, 442, 456, 457,

459, 461, 463, 464, 470, 477, 480, 487,
490, 538, 547

Admissible sequence, 44, 458, 465, 467
Affine maximizer, 634, 635, 637–639
Agent, 1, 3, 19–23, 43, 48, 336, 338, 434, 438,

549
Aggregate planning, 20, 185, 186
Algorithmic mechanism, 22, 551, 619, 630,

633, 647, 655, 658
Allocation algorithm, 523–525, 553, 630–635,

638–643, 651–653
Allocation rule, 46, 449, 450, 460, 480–482,

485, 492, 514, 518, 520, 522, 543, 643,
644, 651, 652, 658

Allowable prices, 187, 188, 205–207, 210–220,
222, 223, 227–229, 231, 238

Almost surely, 41, 42, 264, 351, 352, 376
Alternating schedule, 558
Altruist, 607, 608
Altruistic, 22, 550, 589, 606–608, 610–614,

657
Altruistic game, 606–614
Apparel, 12, 19

Appeal factor (AF), 611
Appliance manufacturers, 10
Approximability, 585, 645
Approximation algorithm, 22, 39, 149,

233–236, 619, 623, 627, 629, 658
Approximation ratio, 625, 626, 658
Artificial initial sequence, 432, 490–497
Assembly, 8, 10, 13, 18, 22, 125, 138, 303–305,

307, 335–377, 420, 428, 430
Assignment, 19, 118–122, 124, 386, 388, 395,

399, 400, 443, 444, 470, 583, 584, 586,
587, 598–602, 609, 624, 649, 650

Asymmetric information, 428, 429, 545, 548
Asymmetry, 6
Asymptotic, 41, 264, 266, 267, 308, 343, 348,

354
Asymptotically optimal, 41, 71, 79, 84, 89, 95,

122, 125, 131, 134, 256, 260, 264–266,
362, 365

Asymptotic analysis, 13, 243, 263, 341, 346,
350, 352

Asymptotic competitive ratio, 43, 152, 154,
183

Asymptotic performance, 11, 40, 41, 43, 82,
243, 255, 256

Asymptotic probabilistic analysis, 41
Auction, 19, 547, 618, 632, 658
Automated storage and retrieval system, 18
Automobile plants, 18
Auxiliary problem, 75–77, 80–83, 93–98, 248,

250, 296–298
Average-case performance, 41

© Springer Nature Switzerland AG 2022
Z.-L. Chen, N. G. Hall, Supply Chain Scheduling, International Series
in Operations Research & Management Science 323,
https://doi.org/10.1007/978-3-030-90374-9

679

https://doi.org/10.1007/978-3-030-90374-9

680 Index

B
Balanced game, 441, 495, 504
Bargaining, 6, 113, 114, 334–336, 354, 360,

362, 378, 428, 522, 523
Base product, 12, 188, 220–223, 234
Batch delivery, 21, 22, 54, 60, 88, 135, 175,

308, 313, 317, 322, 325, 427
Batch delivery by direct shipping, 58–60, 88
Batch delivery to a single customer, 54, 60,

72–88, 135, 140, 147–168
Batch delivery to multiple customers, 54, 55,

60, 88–102, 135, 140, 168–175
Batch delivery with routing, 59, 88
Bayes-Nash, 552, 650–655
Benefit of cooperation, 304, 306, 308,

331–334, 382, 386, 397–403, 426, 428
Best possible algorithm, 43, 141
Best response, 555, 576, 577, 583, 584, 597,

616, 656, 657
β-rule, 454, 455, 462
Bid, 19, 506, 617, 618, 620–622, 624, 625,

627–629, 632, 642, 643, 645–649
Big boss game, 504, 510–512
Binary NP-hard, 27, 428, 461, 496, 499, 525,

532, 536, 588, 602
Block family, 382, 384–386, 389–391, 398
Bottleneck, 13, 71, 340, 376, 382, 470, 501
Bounded rationality, 594, 657
Branch-and-bound, 29, 31–33, 39, 40, 71, 240,

271, 276
Breakpoint, 503, 546, 604, 605
Buffer, 4, 7, 18, 307, 308, 320, 404–412, 415,

416, 419–425, 429, 430
Burn-in, 144, 467

C
Capacity allocation, 5, 15–16, 22, 24, 433, 434,

493–496, 520–536, 545, 547
Capacity planning, 2, 3, 12, 17
Catering, 8, 9
Central authority, 550–553, 556, 589, 600,

614–618, 630, 636, 641, 645, 658
Centralized agent, 1, 3
Centralized decision maker, ix, 2, 3, 241
Centralized supply chain, ix, 5–7, 23, 241, 537,

554, 569, 606
Central planner, 19, 301, 499, 550, 551, 553,

589, 598–601, 609, 642
Central scheduler, 551, 553, 620, 623–625,

627, 641, 642, 644

Changeover, 306, 307, 404, 488
Characteristic function, 44–46, 443, 447, 448,

458, 461, 463, 477, 490, 491, 494, 516,
517, 542, 543

Chemical, 7, 8, 20, 378, 404, 480
Cloud computing, 659
Coalition, x, 14, 15, 44–46, 432, 433, 435–445,

447–448, 451, 452, 454–471, 473–475,
477, 478, 480, 481, 484, 485, 487,
489–491, 493–497, 499–502, 505–511,
513, 515, 516, 519, 521, 525–535,
538–543, 546, 549, 657

Coalitional rationality, 437, 449, 500, 539
Column generation, 33, 35–40
Combinatorial auction, 658
Commit-to-deliver, 106, 107
Commit-to-ship, 107
Common due date, 57, 434, 435, 564, 655
Common sequence, 307, 345, 348, 350, 358,

362, 366
Compensation, 44, 362, 367, 399, 403, 433,

481, 482, 484–485, 504, 513, 543, 546,
618, 647, 650, 651

Competition, x, 3, 46, 53, 113, 131, 138, 433,
513

Competitive analysis, 42–43, 146, 158–160,
176, 182, 183

Competitive ratio, 43, 138, 140, 141, 143–145,
149, 150, 152, 154, 157–164, 173, 176,
178, 179, 181, 183, 644, 645

Complete information, 22, 47, 182, 550–616,
655, 656, 659

Completion time, 13, 24, 56, 145, 186, 244,
312, 442, 556

Computational complexity, ix, 5, 25–28, 117,
243, 309, 582, 585, 658, 659

Computer assemblies, 10
Concave cost game, 491
Concession, 441, 442
Concrete, 7, 631
Conflict, x, 4, 6, 12, 15, 18, 22, 303–430,

572
Congestion, 338, 552, 564, 585–589, 599,

606–608, 610, 612, 613, 655–657
Connected component, 447, 448, 455,

457–459, 463, 471, 472, 477, 479
Consistency, 23, 314, 315, 320, 322, 324, 460,

607
Consistent quotation, 217, 220
Consumer electronics, 6, 138
Container port, 19

Index 681

Controllable processing time, 486–489,
577

Convex combination, 397, 399, 452, 453
Convex game, 16, 45, 46, 439, 448, 452, 495,

511
1-Convex game, 504, 507, 508, 510
Convex hull, 452, 453, 519
Cooperative game, x, 15, 16, 29, 43–46, 303,

431–447, 455, 457, 459, 461, 472, 477,
487, 490, 493, 497, 499, 504, 505, 507,
513, 514, 520, 525, 537, 538, 541–543,
545, 547, 549, 657

Cooperative game theory, 15, 29, 43–46, 303,
431, 433, 434, 436, 438, 439, 504, 525

Coordinated pricing and production scheduling
(CPPS), 12, 186, 220, 239, 240

Coordinated problem, 12, 203
Coordination, ix, x, 3–4, 6, 7, 9, 11–17, 22,

48, 203, 204, 207–209, 303, 305, 306,
308, 332, 335, 377, 378, 427–429, 527,
534–536, 545, 547, 551, 575–577, 655

Core, 45, 46, 242, 432, 437–, 440, 442, 445,
449, 451–453, 455, 462, 463, 465–469,
473, 477, 478, 482, 484–486, 488–490,
492–500, 504–507, 516, 518–520,
526–536, 539–540, 542, 543, 547, 642,
643

Core allocation, 45, 46, 455, 478, 484, 485,
494, 496, 542, 543

Core emptiness test, 496, 531, 535, 536
Core membership test, 527–529, 535
Core solution, 438, 445, 449, 451–453, 462,

468, 477, 484–486, 489, 490, 492, 499,
519, 520, 527, 542, 543

Cost allocation scheme, 437
Cost game, 45, 491, 492, 504, 515, 516, 518,

520, 610, 611
Cost of conflict, x, 15, 304, 306, 308, 354,

381–388, 390–392, 396, 397, 429
Cost saving, 15–17, 43–46, 306, 336, 367,

370–376, 378, 400, 403, 430, 432, 436,
437, 441, 443, 445, 449, 451, 454, 455,
457, 458, 461–465, 468, 473, 475–477,
481, 482, 487, 490, 536, 538–540, 543

Cost sharing mechanism, 493, 514–516, 518
Crashing, 486, 487, 509, 512, 513, 578–581,

656
Critical sequence, 62–64
Curse of rationality, 596
Customer service, 14, 53, 113, 221, 239, 306,

338, 521
Customization, 9, 221, 222

Cutting plane, 501
Cycle time, 393
Cyclic, 381, 393, 639

D
Deadlines, 24, 56, 57, 75–77, 105, 107, 108,

110, 112, 182, 184, 210, 244, 307, 335,
366, 488, 602, 642, 643

Decentralized agent, 1, 3, 23, 549
Decentralized decision maker, ix, x, 3, 656
Decentralized supply chain, 6, 14, 23, 243,

303, 304, 433, 549, 552
Decreasing work curve, 647, 648
Delay, 10, 12, 13, 138, 163–167, 173–179,

181, 276, 284, 291, 333, 362, 408, 409,
432, 504, 513–516, 519, 520, 548, 575,
606–608, 610, 612

Delivery characteristics, 57, 58, 125
Delivery date, 10, 21, 107, 506
Delivery deadline, 56, 107, 182
Delivery lead time, 9, 25, 118, 138, 186, 222,

223, 243, 244, 246, 257, 259
Delivery schedule, 6, 20, 22, 37, 54, 56, 67, 79,

87, 100, 108, 119, 121, 122, 133, 153,
161, 165, 170, 172, 242, 289, 303, 312,
325, 386, 387

Delivery sequence, 381, 393
Delivery vehicle, 54, 56, 58, 60, 61, 66, 69, 85,

102, 104, 116, 135, 136, 140, 147, 157,
160, 182, 183

Demand gap, 208
Deterministic truthfulness, 552, 616, 619–623,

630, 641–645
Direct revelation, 618, 619, 630, 634
Direct-revelation mechanism, 618, 619, 630,

634
Direct-sell, 138
Direct shipping, 55, 58–60, 88–96, 99–102,

139, 147, 184
Discount scheme, 242, 292–298
Distributors’ game, 520, 526–528, 535, 536
Dominant decision maker, 378, 389
Dominant power, 370, 390, 395
Dominant strategy equilibrium, 633, 634
Dominant strategy incentive compatible,

633–634, 643
Due date, 2, 24, 56, 184, 185, 244, 307, 435,

553
Dynamic pricing, 188, 221, 238–240
Dynamic program, 72, 198–202, 204, 213,

235, 247, 317, 319, 322, 324, 327, 330,
502, 603

682 Index

Dynamic programming, 14, 28–31, 33, 40,
42, 71, 75, 79, 87, 89, 92, 94, 97, 101,
104, 120, 121, 129, 133, 161, 190, 192,
197, 198, 200, 204, 208, 212, 213, 217,
225–228, 234, 236, 240, 246, 270, 271,
273, 274, 279, 285, 290, 291, 296, 316,
317, 319, 320, 322, 325, 326, 328, 411,
415, 461, 528, 531, 538

E
Earliest due date (EDD), 10, 26, 74, 75, 77, 92,

93, 95, 108, 109, 116, 190–192, 204,
273–275, 286–287, 314, 315, 317–319,
322, 324, 325, 327, 328, 330, 337, 350,
351, 373, 383, 384, 389, 391, 538, 561,
562, 603, 604

Earliest Latest Eligible-Departure-Time first
(ELEDT), 116, 117

Earliness, 116, 435, 436, 438, 547, 552,
563–569, 655

Earned value management, 514
EDD-LPT, 109
Efficiency, 2, 6, 19, 185, 305, 430, 437,

439–441, 449, 451, 454, 458, 460, 462,
511, 540, 546, 658

Egoist, 606–610
Electronics, 6, 12, 125, 138, 305
Equal gain splitting (EGS), 46, 449–451, 454,

481, 482
Equilibrium, x, 18, 22, 550–551, 554–556,

563–590, 593, 597, 598, 601, 604, 605,
607, 608, 614, 615, 619, 630, 632–634,
656, 658

ERT rule, 296
Expected cost, 556, 566–568, 623–626, 651
Expected net profit, 211
Expected total profit, 210, 214, 218, 219
Expected utility, 48, 555, 556, 619, 650, 651
Expedition, 504, 514–519
Exponential-time algorithm, 26, 39

F
Fair cost allocation, 590, 591
False reporting, 540, 617, 618, 620, 622, 625,

638, 641, 642, 644
Family ordered, 489
Family sequencing, 488–489
Fertilizer, 404
Finished goods inventory, 7, 11
First-come first-served (FCFS), 16, 46, 537,

541, 545, 564
Five-field notation, 57, 107, 114, 139

Fixed delivery departure date, 54, 59, 60,
102–117, 136, 184

Fixed delivery time, 57, 59, 71
Fixed interval scheduling, 8, 71
Flowshop, 2, 22, 24, 25, 57, 59, 66, 69, 186,

188–193, 196–198, 200, 201, 204, 208,
209, 242, 243, 276–284, 289–292, 325,
337, 376, 405, 434, 442, 446, 470–476,
546, 655, 658

Flow time, 162, 311, 312, 316–317, 320–322,
325–327

Follower, 22, 288, 543, 550, 552, 589, 597,
599, 602

Food, 7–9
Food processing, 8, 378
Full batch, 157, 159, 163, 170, 467
Fully coordinated, 12, 207
Fully polynomial time approximation scheme

(FPTAS), 42, 188, 190, 197–203, 224,
233–236, 298, 461

G
Gantt chart, 2
General quotation, 217, 218, 220
Genetic algorithm, 8, 40, 428
Glass, 523
Grand coalition, 44, 437–439, 441, 448, 452,

454, 490, 493, 496, 497, 499, 500,
507–510, 516, 521, 526, 528, 529,
531–535, 546, 549

Greedy, 591, 594, 648, 649

H
Hessian matrix, 215, 216
Heterogeneous vehicles, 55, 58, 102, 106–117
Heuristic, 2, 39, 62, 140, 190, 243, 304, 488,

634
Holding cost, 11, 17, 24, 306, 308, 312, 333,

378, 381, 386–388, 393–395, 400, 521,
547

Home textile, 8
Homogeneous vehicles, 55, 56, 102–106, 126
Horizontal supply chain, x, 3, 377
Household cleaners, 377

I
Identical parallel machines, 24, 86, 125, 244,

245, 248, 249, 501, 554, 558, 561, 585,
587, 590, 627

Imperfect information, 428, 429

Index 683

Incentive, 2, 3, 6, 14, 18, 45, 47, 209, 210, 304,
305, 333–335, 354, 356, 357, 360, 361,
367, 403, 405, 429, 452, 493, 494, 505,
507, 514, 552, 554, 573–575, 584, 617,
622, 623, 630, 633–634, 636, 643, 644,
650–654

Incremental discount, 243, 293–298
Individual and immediate delivery, 54, 55,

58–73, 139–147
Individual rationality, 437, 438, 440, 441, 449,

651–653
Industrial chemicals, 8, 378
In-house facility, 242, 264, 284, 285, 289, 291,

574–577
In-house machine, 243, 244, 248, 250–255,

262, 269, 270, 273, 277, 284–289, 299,
575

In-house plant, 242, 244, 276, 284, 286
In-house production, 12, 241, 245, 246, 253,

257, 258, 289, 299
Integer programming, 29, 33–39, 95, 109, 247,

428
Integrated production and outbound

distribution scheduling, ix, 53–184
Interchange cost, 307, 308, 404, 407–412, 416,

421–424, 426
Interference job, 62–65
Intractability, 8, 11, 22, 306–309, 314, 362,

427–429, 495, 497
Inventory, 3, 7–11, 13, 17, 24, 53, 107,

113–115, 185, 186, 190, 221, 292, 305,
306, 334, 338, 377, 378, 380, 381,
386–388, 393–395, 400, 403, 420, 428,
429, 480, 521, 547, 564

J
Job, 1, 23, 54, 137, 239, 241, 304, 431,

551
Jobshop, 2, 24, 239, 546, 658
Johnson’s Rule, 191, 192, 201, 204, 277–280,

282, 283, 290, 291
Joint strategy, 607, 610, 611, 614
Joint subcontracting and scheduling,

241–300
Just-in-time, 15, 19, 113–114, 306

K
k−lookahead, 594, 597
Kitchen furniture, 18
Knapsack problem, 228, 531

L
Latency, 598–602, 657
Lateness, 16, 25, 57, 61, 75–77, 89–96, 105,

106, 184, 188–192, 195–198, 204, 208,
209, 243, 285, 286, 337, 338, 348–354,
366, 373–376, 379, 383–385, 389–392,
397, 398, 403, 547

Laundry, 381
Laws of large numbers, 341, 347
Leader, 22, 288, 403, 548, 550, 552, 589,

597–606, 657
Leader-follower game, 552, 589, 597–606
Lead time, 8, 9, 18, 22, 25, 55, 118–120, 138,

186, 222, 223, 242–260, 269, 272, 298,
299, 338, 362

Least core, 438, 493, 497–500
Limited number of vehicles, 21, 55, 66–70, 74,

85–89, 99–102
Linear allocation (LA), 246, 522
Linear decomposition, 36, 446, 469
Linear programming game, 526
Liquid crystal display, 13
Local sequencing rule, 552, 582–585
Logistics, 1, 10, 11, 58, 59, 102, 107, 114, 305,

334, 335, 427, 428, 486, 505
Longest processing time (LPT), 80, 81, 109,

133, 144, 153, 158, 159, 179, 181, 220,
274, 502, 586–588

Lookahead, 594, 597, 657
Lot splitting, 521
Lot streaming, 428
Lower bound, 8, 9, 11, 32, 33, 36, 37, 40, 41,

77, 81, 95, 120–123, 125, 198, 199,
234, 256, 258, 261, 267, 268, 342–344,
347–349, 352, 354, 356, 358, 370–375,
413, 557, 559, 560, 562, 572, 581, 648,
649, 654

LP relaxation, 32, 33, 36–38, 95, 122–124,
247, 248, 257, 260

LP-relaxation problem, 248, 257, 260
LTT rule, 168–171

M
Mail, 7, 16, 20, 490
Makespan, 13, 24, 56, 188, 244, 305, 504, 556
Make-to-order, 5, 9–12, 51, 54, 106, 107, 113,

118, 125, 185, 186, 220, 239, 381, 453
Manufacturers’ game, 539
Manufacturing cost, 12, 381
Marginal cost, 437, 491, 637, 638
Marginal value, 437, 438, 441, 442, 452, 507,

636

684 Index

Marginal vector, 452, 486–489
Matching, 557, 562, 583, 584, 658
Materials requirements planning, 2
Maximum delivery time, 54–56, 61–70,

122–127, 131–134, 140–145, 147–160,
168–173

Maximum lateness, 25, 57, 61, 75–77, 89–96,
105, 243, 285, 286, 337, 348–354, 375,
379, 383–385, 389, 390, 403

Maximum tardiness, 9, 243, 269, 273–274, 561
Mechanism, 4, 47, 289, 304, 493, 551
Medication, 9
Metaheuristic, 8
Misreporting, 403
Mixed integer program, 246, 388, 428
Mixed-model, 18, 430
Mixed strategy, 47, 48, 555, 556, 566
Mixed strategy Nash equilibrium, 47, 555, 556
Modular pricing, 188, 221
Monotonicity, 437, 439, 547, 630, 632,

639–641, 644, 652, 654, 659
Multi-agent, 20
Multi-period problem, 187, 217, 220–239
Multiple decision makers, x, 6, 14, 18
Multiple plants, 55, 60, 117–125, 136
Multiple stages, 136, 186, 240, 305, 429
Multi-stage, 18, 20, 217, 428, 434, 443,

480–485, 546

N
Nash equilibrium, 47–49, 333, 551, 552,

554–564, 569–573, 575–591, 597, 598,
600, 607–612, 614–616, 650, 651,
655–658

Negotiating power, 397, 403
Negotiation, 335, 403, 428, 429, 438
Net profit, 12, 189, 191, 192, 194–202,

205–209, 211, 227, 523, 524, 578, 579,
603

New product development, 333
Newspapers, 7, 16, 377–379, 382, 397
Nonbottleneck, 335–337
Noncooperative, ix–xi, 5, 7, 14, 22, 29, 43,

46–48, 243, 301, 303, 549–659
Noncooperative game theory, x, ix, 5, 7, 14,

29, 46–49
Nonpreemptive, 10, 21, 152–156, 161,

164–168, 171, 222, 336, 379, 383, 461,
464, 480, 490, 497, 553, 569, 571, 573,
574, 592, 603, 620, 621, 623, 645, 650

Non-preemptive problem, 140, 152–156,
164–168, 171

No-wait, 57, 66, 69, 424, 425

No-wait flow shop, 66
NP-complete, 194, 245, 316, 317, 319, 320,

322, 324, 325, 328, 357, 366, 376,
527–529, 535, 564, 580, 583, 610

NP-hard, 26, 61, 140, 188, 243, 379, 461, 588
Nucleolus, 439, 440, 442, 505, 508, 509, 512
Number of late jobs, 56, 243, 285–287, 312,

317–320, 323, 325, 327–330, 428

O
Offline algorithm, 42, 43, 139, 181–183
Offline counterpart, 140, 147–149, 157
Online, 10, 24, 54, 138, 214, 299, 453, 594
Online algorithm, 42, 43, 51, 138, 140–142,

144, 145, 147, 149, 150, 152, 157, 158,
160–164, 168, 169, 171, 173, 175, 176,
179, 182–184

On-time, 6, 16, 53, 74, 91, 191, 204, 221,
286–288, 311, 312, 314, 315, 317, 319,
322–325, 328, 330, 332, 513, 519, 538,
568, 603, 604, 642

On-time job, 312, 323, 328, 330, 568
Openshop, 24, 434, 442, 476–478, 658
Optimal anarchy threshold, 610
Optimal basic solution, 124, 248, 260
Optimal offline solution, 150–152, 154, 165,

174, 175, 182
Optimal online algorithm, 43
Optimal schedule, 34, 63, 64, 141, 191, 253,

306, 434, 557
Optimal sequence, 447, 449, 451, 454, 456,

466, 473, 481, 482, 490, 491, 497, 539
Optimal stability threshold, 610
Optimization, x, ix, 4, 5, 15, 21, 22, 25, 28,

31, 35, 40, 78, 239, 243, 301, 303–432,
434, 456, 460, 520, 529, 549, 565, 572,
597, 630, 646, 658

Order based problem, 187, 210–220
Order inquiry, 210–212
Ordinarily NP-hard, 27–29, 37, 42, 70, 79, 89,

96, 117, 122, 135, 190, 194–196, 212,
229, 230, 245, 258, 275, 277, 278, 281,
282, 286, 289, 291, 294, 296, 461

Outbound distribution, ix, 7, 21, 53–134,
137–184

Outsourcing, 3, 5, 13, 17, 22, 434, 537–545,
547, 570–573, 602, 603, 605, 606

Overtime, 16, 386, 397, 537, 538

P
Paper manufacturing, 429
Parallel batching, 144

Index 685

Parallel machines, 2, 23–25, 29, 36, 47, 48,
55, 59, 66, 79–85, 96–99, 125, 127,
128, 130, 131, 133, 136, 140, 145–147,
156, 157, 175, 176, 180, 239, 244, 245,
248, 249, 256, 263, 286, 289, 427, 435,
501, 546, 554, 558, 561, 582, 585, 587,
590–593, 616, 623–630, 640, 641, 645,
647, 648, 655, 657, 658

Pareto optimal, 21, 245, 359, 360, 545, 656
Partial batch, 104, 157, 159, 170, 174, 175
Partially coordinated, 12, 203, 207
Partial order, 8, 108, 334, 521–531, 534–536
Partition, 31, 33, 36, 38, 78–80, 98, 192,

194–197, 201, 229, 234, 278, 317, 320,
328, 340, 341, 357, 363, 366, 455–463,
471, 496, 529, 530, 532, 533, 546,
580–582, 588, 589

Partition equal gain sharing (PEGS), 457–459
Partition problem, 36, 38, 193, 194, 229, 278
Partition sequencing, 456–460, 546
Parts suppliers, 22, 303, 428
Payment scheme, 22, 437–440, 449, 551, 552,

616–618, 630, 631, 633–638, 646–649,
651, 653, 654

Payoff vector, 495, 496, 527–530, 532, 533,
535, 536

z-Penalized optimal cost allocation, 500
Penalty, 10, 16, 56, 116, 184, 222–224, 226,

231, 232, 295, 432, 434, 438, 453, 490,
497–504, 506, 513, 514, 520, 538, 540,
546, 558, 564, 575, 577, 607

Penalty-subsidy function, 500, 501, 503, 546
Perishable product, 7, 16, 185, 306, 377
Permutational convexity, 487
Permutation game, 434, 443–444, 465, 486,

546
Permutation schedule, 314, 325, 471, 472
Pessimistic, 491–493, 515, 516
Placement probability, 211–216, 218, 219
Planning system, 13, 14
Player, 43, 304, 432, 551
Polynomially reducible, 27, 74
Polynomially solvable, 26–28, 100, 117, 243,

281–282, 294, 395, 501, 623
Polynomial time, 26, 65, 148, 188, 246, 308,

461, 564
Polynomial-time algorithm, 26–28, 42, 67, 75,

100, 106, 148, 248, 308, 314, 531, 532,
610, 650

Polynomial time approximation scheme, 42,
65, 188, 190, 197–203, 461, 649

Pool point, 11, 125–134, 176–181
Positional penalty, 502, 558, 575, 577

Precedence constraints, 64, 65, 299, 485, 509,
512

Preemption, 147, 160–162, 165, 167, 168, 171,
173, 494, 521, 569, 574, 620–623, 645

Preemptive, 140, 149–152, 162–164, 175, 379,
569–571, 621, 642, 643

Preemptive problem, 140, 149–152, 162–164
Preempt-restart, 642–644, 659
Preempt-resume, 642–644, 659
Preventive preemption, 621–623
Price of anarchy, 48, 550–552, 554, 556–563,

589–594, 596, 597, 610, 614, 657
Price of stability, 561, 614, 657, 658
Price quotation, 12, 186, 210, 211, 214,

217–219, 240
Pricing, ix, 3–5, 11–12, 21, 24, 28, 51,

185–240, 547, 597, 602, 605, 657
Pricing-scheduling coordination, 203
Priority rule, 541, 570–574, 643, 656
Priority score, 642, 643
Private information, x, 4, 22, 47, 301, 540, 541,

547, 550–552, 616–656, 659
Probabilistic analysis, 41
Probabilistic assignment, 624
Probabilistic initial sequence, 493–497
Process industry, 378, 404
Product based problem, 187–210
Production planning, 2, 3, 11, 185
Production schedule, 6, 9, 13, 17, 22, 29, 30,

107, 115, 133, 134, 155, 165–167, 170,
174, 221, 223, 244, 303, 305, 379, 400,
429

Profile, 47, 48, 192, 193, 199–201, 407–410,
420–423, 578, 580, 582, 583, 650

Profit gap, 208, 209
Project, 2, 113, 432, 552
Proportional allocation, 522–524
Proportional sharing rule, 586, 588
Proportionate flowshop, 243, 278, 282–284,

442, 446, 471–476
Pseudo polynomial time, 26–29, 37, 42, 190,

194–196, 204, 212, 224–226, 229, 230,
246, 270, 273, 274, 277, 279, 281, 282,
286, 290, 291, 300, 316, 319, 325, 461,
528, 529, 532, 564

Pseudo-polynomial-time algorithm, 26, 27,
190, 194–196, 224, 226, 229, 230, 277,
281, 282, 286, 300, 316

Public information, 578, 590, 620, 631
Pure strategy, 47, 48, 554, 555, 557, 558, 560,

561, 566, 570, 572, 577, 582, 583, 586
Pure strategy Nash equilibrium, 47, 48, 554,

557, 570, 572, 586

686 Index

Q
Quadratic program, 215, 216
Quantity discount, 242, 243, 292, 293, 605
Quasilinear, 618

R
Radio spectrum, 19
Railcar distribution, 429
Randomization, 551, 616, 619, 648, 649
Randomized mechanism, 552, 619, 620,

623–629, 647, 659
Randomized rounding, 652
Regular cost, 434, 442, 446, 447, 453–456
Relative error, , 197, 260, 339, 341, 343–346,

348–350, 352–354
Relaxed sequencing game, 444, 463–467
Release date, 2, 56, 57, 61, 308, 311–314,

319–321, 331, 546, 553, 642, 655
Rescheduling game, 446, 456–463
Rescheduling problem, 456, 538, 546
Resequencing, 18, 306, 307, 320, 404–427,

429–432, 454, 455, 457, 465, 468, 473,
477, 490, 538, 545

Reservation, 15, 17, 433, 537, 538, 547, 574
Resource allocation, 446, 585
Retailer, 3, 6, 10, 12, 118, 137, 138, 333, 377,

378, 380, 381, 386–388, 393, 429, 480
Revelation principle, 619, 636
Revenue, 6, 12, 28, 54, 56, 57, 59, 71, 72,

186, 188–190, 192, 197, 203–206, 209,
211, 212, 214, 215, 217–219, 221–228,
231–233, 235, 521–523, 525, 535, 536,
570, 589, 603, 604

Reward, 20, 432, 504, 505, 513–519, 547, 563,
577–581

Risk aversion, 660
Rolling horizon, 21, 138, 140, 181, 182, 184,

429
Rule S, 63, 64, 140, 141

S
Saturated batch, 164, 166
Scheduling game, 5, 16, 22, 432–434, 437,

438, 461, 467, 468, 478, 489–503, 545,
546, 550–554, 556, 563, 564, 567, 569,
578, 582, 583, 585, 589–591, 593, 594,
597, 614, 616, 623, 624, 627, 632, 633,
639, 640, 649, 653, 657–661

Scheduling situation, 444, 486, 553, 593
SEDD, 93–96

Self-interested, ix, 5, 14, 20, 22, 48, 304, 404,
553, 585, 589, 597, 598, 602, 617, 642,
649

Selfish, 550, 551, 589, 590, 598–600, 606, 608,
611, 612, 623, 627

Selfishness level, 610–614, 659
Semiconductor, 15, 144, 433, 537
Semi-online, 184
Sensitivity analysis, 208, 261, 267, 536
Separation problem, 501, 502
SEQC, 217–220
SEQG, 217–220
Sequence-dependent, 488, 538
Sequence-independent, 38, 488, 523, 529
Sequencing, 2, 24, 71, 190, 307, 432, 553
Sequential game, 48, 49, 589–597
Sequential quotation, 12, 188, 210, 214,

217–220
Sequencing game, 16, 22, 44, 46, 431–434,

442–490, 497, 545, 546
Service, 1, 6, 8, 14, 16, 19, 20, 22, 53, 59, 102,

113, 185, 186, 221, 239, 242, 258, 299,
306, 338, 432, 443, 444, 446, 480, 503,
513, 521, 537, 550, 564–566, 569, 611,
615, 634, 641

Set covering, 591
Setup, 6, 13, 18–19, 22, 185, 292, 299, 303,

306, 307, 377–382, 384–386, 388,
390–392, 395–400, 403, 427, 488, 538

Shapley value, 46, 438, 439, 442, 445, 452,
453, 459, 460, 462, 463, 468–470,
474–476, 481, 489, 492, 493, 499, 505,
512, 542

Shifted shortest processing time (SSPT) rule,
161, 162, 164, 175–177

Shipping due date, 93, 95
Shipping with fixed delivery departure dates,

59
Shortest processing time (SPT), 39, 47, 74,

79, 81, 85–87, 97, 99–101, 103, 104,
119–121, 127, 128, 131, 152, 181, 216,
220, 225, 226, 270–272, 285, 314–316,
320, 322, 325, 327, 337, 339, 342, 347,
351, 371, 373, 456, 502, 541, 553–555,
558–560, 570–572, 575–577, 592

Shortest weighted processing time (SWPT),
190, 191, 198, 204, 205, 211, 212, 215,
225, 234, 447, 450, 461, 473, 492, 494,
495, 523–525, 621–623, 638, 640

Short lead time, 8, 18
Short shelf-life, 5, 7–9, 19, 54
σ0-component additive, 455, 468, 470, 472,

477, 486, 487, 489

Index 687

Simulated annealing, 40, 371, 372
Simultaneous game, 48, 591, 593
Simultaneous quotation, 188, 210, 214–216,

220
Single decision maker, x, ix, 4, 5, 20, 21, 43,

554
Single machine, 2, 23, 59, 156, 189, 245, 309,

434, 566
Single-period problem, 187, 217, 239
Smallest counterexample, 143
Socially optimal, 551, 554, 561, 565, 567, 569,

575, 577, 580, 590, 609, 611, 612, 615,
620, 621, 624, 640, 641, 659, 660

Social optimum, 568, 589, 609–614, 659
Social welfare, 550, 597, 610, 621, 622, 659,

660
Split job, 249–253, 260
Splittable delivery, 59, 114, 115
SRPT rule, 148–151, 161–163, 165, 166, 174,

175
s-shipment, 127, 131, 177, 178
Stability, x, 15, 331, 431–433, 480, 500, 504,

507, 547, 561, 580, 610, 614, 658–660
Stable coalition, 534
Stable equilibrium, 614
Stable game, 16, 45, 480, 481, 551, 611
Stackelberg, 288, 403, 548, 550, 597, 598,

600–602, 606, 659
State space trimming, 197, 234
Steel, 11, 13, 113–115, 125
Storage, 7, 10, 18, 29, 113, 114, 307, 308, 320,

404, 406, 407, 411–424, 426, 427
Strategic behavior, 545, 547
Strong law of large numbers, 42
Strongly NP-hard, 26–28, 33, 37, 39, 42, 61,

62, 69, 70, 77, 78, 96, 100, 116, 117,
119, 127, 135, 136, 140, 149, 157, 161,
168, 173, 239, 245, 497, 501

Strongly polynomial-time algorithm, 26, 248
Strong model of execution, 620
Subcontracting, ix, 4–6, 12–13, 17–18, 22, 24,

241–300, 541, 542, 545, 547, 552, 563,
569–577, 603–606

Subcontracting budget, 243, 269–276
Subcontracting cost, 13, 242–245, 248, 251,

253, 258, 262, 269, 270, 272, 273, 275,
277, 282, 283, 289, 291–299, 605

Subcontractor, 13, 242–247, 250–252,
256–259, 261, 262, 264–269, 272,
284–292, 298, 299, 432, 504, 545, 546,
563, 570, 574–576, 597, 602–606, 659

Subgame perfect equilibrium, 49, 590–594,
597, 658, 659

Submodular, 45
Submodularity, 45
Subset sum, 89, 230, 245, 258
Subsidy, 432, 434, 497, 499–503, 546
Sufficient number of vehicles, 55, 58, 59, 61,

73, 76, 85, 183
Sum of weighted completion times, 621
Superadditive, 454, 455, 468, 472, 477, 487,

539
Supermodular, 45, 490, 497, 499
Supermodularity, 45
Supplier, x, 3, 6, 14, 17–19, 22, 113, 114,

303–316, 319, 320, 324–326, 328,
331–343, 345–352, 354–357, 359–362,
364, 366–373, 376, 377, 404–413, 416,
419–426, 428–430, 433, 493, 494, 569,
597

Suppliers’ game, 431, 433, 435, 438
Supply chain, 1, 23, 53, 54, 137, 185, 241, 303,

431, 549
Supply chain performance, 1, 19, 22, 304
Surplus sharing mechanism, 516, 518
Symmetric singleton congestion game, 607,

608, 610, 612, 613
Symmetric strategy, 566, 567
Symmetry, 394, 425, 437, 439–441, 460, 547
System cost, 6, 16, 305, 312, 324, 332, 334,

357, 371, 378, 397, 400, 405, 429, 550,
556, 561, 564, 576, 577, 606

T
Tabu search, 11, 40
Tail game, 434, 490–493
Tardiness, 9, 25, 26, 56, 57, 184, 188, 222–227,

230–232, 236, 239, 243, 269, 270,
273–276, 338, 379, 428, 429, 453, 537,
538, 552, 561–569, 602, 603, 605, 657

Task, 470, 497, 504, 513, 514, 516, 578, 579,
581, 625, 627–629

Taxation game, 516, 520
Terminal management, 19
Textile company, 19
Third party, 10, 11, 15, 17, 58, 59, 107, 114,

335, 427, 433, 434, 537–541, 545, 547,
569, 657, 658

Third-party logistics (3PL), 10, 11, 58, 59, 107,
335, 427

Three-field notation, 25
Time-indexed formulation, 33–35
Time window, 11, 19, 56, 71, 113, 114, 538
Total delay time, 163–167, 174–179
Total delivery cost, 82, 157, 164, 165, 167, 291

688 Index

Total delivery time, 30, 34, 35, 55, 59, 79–85,
87, 88, 96–99, 101, 119–122, 126, 127,
129–131, 160–168, 173–175

Total tardiness, 26, 184, 222, 224, 226, 227,
231, 243, 269, 270, 274–276, 338, 379,
428, 453, 561, 562

Transportation cost, 34, 35, 37, 54, 56, 57, 59,
73–85, 96–99, 105–107, 113, 118–123,
126, 127, 131, 156–160, 162, 168–174,
176, 242, 284, 285

Transportation time, 30, 34, 37, 56, 58, 60–62,
66, 69, 73, 81, 89, 103, 124, 126,
141–145, 150, 153, 155, 168, 169, 176,
184, 284, 289, 291, 337, 346, 376, 405

Truckload, 379–381
Truthful algorithm, 47, 551, 620–622, 628, 632
Truthful mechanism, 551, 616, 617, 619–621,

623, 626, 627, 632, 634, 639–641, 648,
651, 660

Truthfulness in expectation, 552, 616, 619,
620, 623, 627, 632, 649–652

Truthful payment scheme, 644, 650
Truthful reporting, 4, 22, 540, 551, 616–618,

620, 626, 632, 635, 638–640, 649
Two-stage flowshop, 243, 276, 282, 284,

289–292
Two stages of job delivery, 60

U
Unanimity game, 434, 443–446, 458, 459, 468,

469, 474, 475, 486
Unary NP-hard, 27, 428
Uncertainty sequencing situation, 490
Uniform parallel machines, 558, 582, 627–632,

649, 650
Uniform sharing rule, 585, 586, 590
Unit sequencing game, 464, 465
Universal truthfulness, 552, 619, 620, 647–649
Unrelated parallel machines, 558, 592, 616,

623–627, 630, 640, 641, 659
Unsaturated batch, 163, 166
Upper bound, 40, 41, 77, 120, 130, 145, 198,

202, 227, 228, 261–263, 299, 342, 347,
366, 369–371, 526, 557, 559, 562, 579,
580, 595, 614

Upstream, 307, 335, 404

Utility, 46–48, 435, 440, 553–556, 590, 606,
618, 619, 621, 633–635, 638, 639, 642,
647–649, 652, 653, 657

Utilization, 138, 308, 569, 571, 572

V
τ -value, 441, 442, 452, 453, 505, 508, 509,

511, 512
Value of coordination, x, 12, 15, 203, 208, 306
Value of integration, 98, 99
Value of partial coordination, 208
Value of subcontracting, 22, 51, 242, 243,

260–269
Vehicle capacity, 56, 58, 75, 77, 79, 81, 89, 92,

95, 99, 135, 136, 150, 153, 155, 169,
377

Vehicle routing, 3, 8, 14, 59, 85, 88, 89, 99,
135, 136, 377

Vertical supply chain, 3
Vickrey–Clarke–Groves (VCG), 636–639, 648,

656
Volume discount, 22
v-shipment, 82, 87, 126–134, 176–180

W
Waiting strategy, 141, 149
Weak model of execution, 627–629
Weak monotonicity, 632, 639–641
Weight, 2, 24, 56, 58, 107, 115, 189, 190, 211,

213, 216, 222, 229, 310, 319, 324, 400,
447, 461, 464, 467, 486, 490, 494–497,
500, 521, 553, 620, 622, 640, 654

Work-in-process, 5, 24, 186, 190, 312, 338,
428, 521, 535, 536

Work-in-process inventory, 24, 190, 428, 521
Worst case, 13, 25, 26, 40–43, 48, 51, 62, 64,

65, 79, 82, 83, 97, 109, 112, 124, 125,
131, 140, 146, 149, 182, 240, 243, 255,
260, 277, 294, 296–298, 305, 338, 398,
494, 556, 589, 591, 593, 602, 627, 649

Worst-case analysis, 13, 240, 243
Worst-case performance, 40, 43, 48, 51, 62,

64, 65, 83, 97, 109, 112, 125, 131, 140,
149, 260, 294, 296, 627

	Foreword
	Preface
	Contents
	1 Introduction
	1.1 Supply Chain Scheduling
	1.2 Applications
	1.2.1 Centralized Applications and Models
	1.2.1.1 Production–Distribution Scheduling for Short Shelf-Life Products
	1.2.1.2 Production–Distribution Scheduling for Make-to-Order Products
	1.2.1.3 Scheduling and Pricing
	1.2.1.4 Subcontracting and Scheduling
	1.2.1.5 Other Applications

	1.2.2 Decentralized Applications and Models
	1.2.2.1 Scheduling and Batching
	1.2.2.2 Capacity Allocation
	1.2.2.3 Sequencing and Scheduling Games
	1.2.2.4 Manufacturing and Distribution
	1.2.2.5 Subcontracting Games
	1.2.2.6 Multi-Stage Production with Setups
	1.2.2.7 Other Applications

	1.3 Limitations to Scope
	1.4 Overview of the Book

	2 Solution Methods for Supply Chain Scheduling Problems
	2.1 Common Elements in Scheduling Problems
	2.2 Computational Complexity
	2.3 Solution Methods
	2.3.1 Dynamic Programming Algorithms
	2.3.2 Branch-and-Bound Algorithms
	2.3.3 Integer Programming Based Algorithms
	2.3.3.1 Time-Indexed Formulations
	2.3.3.2 Column Generation

	2.3.4 Approximate Solution Methods
	2.3.4.1 Worst-Case and Average-Case Analysis
	2.3.4.2 Fully Polynomial Time Approximation Schemes
	2.3.4.3 Competitive Analysis

	2.3.5 Cooperative Game Theory
	2.3.6 Noncooperative Game Theory

	Part I Centralized Supply Chain Scheduling
	3 Integrated Production and Outbound Distribution Scheduling: Offline Problems
	3.1 Introduction
	3.2 Problem Definition and Classification
	3.2.1 Model Parameters and Notation
	3.2.1.1 Five-Field Model Representation
	3.2.1.2 Model Classification

	3.3 Problems with Individual and Immediate Delivery
	3.3.1 Maximum Delivery Time Problems with a Sufficient Number of Vehicles
	3.3.2 Maximum Delivery Time Problems with a Limited Number of Vehicles
	3.3.3 Multi-Machine Problems

	3.4 Problems with Batch Delivery to a Single Customer
	3.4.1 Optimality Properties
	3.4.2 Single-Machine Maximum Lateness and Transportation Cost Problem
	3.4.3 Single-Machine Total Weighted Delivery Time and Transportation Cost Problem
	3.4.4 Parallel-Machine Total Delivery Time and Transportation Cost Problem
	3.4.5 Problems with a Limited Number of Vehicles

	3.5 Problems with Batch Delivery to Multiple Customers
	3.5.1 Single-Machine Maximum Lateness and Transportation Cost Problems with Direct Shipping
	3.5.1.1 NP-Hardness Proof
	3.5.1.2 DP Algorithm
	3.5.1.3 Heuristic

	3.5.2 Parallel-Machine Total Delivery Time and Transportation Cost Problem with Routing
	3.5.3 Problems with a Limited Number of Vehicles and Direct Shipping

	3.6 Problems with Fixed Delivery Departure Dates
	3.6.1 Problems with Homogeneous Vehicles
	3.6.1.1 Problem 1||V(v, c), fdep|1|Dj+TC
	3.6.1.2 Problem 1||V(v, c), fdep|1|Lmax

	3.6.2 Problems with Heterogeneous Vehicles
	3.6.2.1 Problem 1||Vhet(∞, 1), fdep|1|TC
	3.6.2.2 Problems 1|[aj, bj]|Vhet(v, 1), fdep|k|IC +TC

	3.7 Problems with Multiple Plants
	3.7.1 Minimizing Total Delivery Time and Transportation Cost
	3.7.2 Minimizing Maximum Delivery Time and Transportation Cost

	3.8 Problems with Two Stages of Delivery
	3.8.1 Optimality Properties
	3.8.2 Solving the Total Delivery Time Problem
	3.8.3 Solving the Maximum Delivery Time Problem

	3.9 Future Research

	4 Integrated Production and Outbound Distribution Scheduling: Online Problems
	4.1 Introduction
	4.2 Online Problems with Individual and Immediate Delivery
	4.2.1 Single-Machine Maximum Delivery Time Problem and Some Variants
	4.2.2 Parallel-Machine Maximum Delivery Time Problem

	4.3 Online Problems with Batch Delivery to a Single Customer
	4.3.1 Maximum Delivery Time Problems
	4.3.1.1 Offline Counterparts
	4.3.1.2 Algorithm for the Preemptive Problem
	4.3.1.3 Algorithms for the Nonpreemptive Problem

	4.3.2 Maximum Delivery Time and Transportation Cost Problems
	4.3.3 Total Delivery Time and Transportation Cost Problems
	4.3.3.1 Closely Related Problems
	4.3.3.2 Algorithm for the Preemptive Problem
	4.3.3.3 Algorithm for the Nonpreemptive Problem

	4.4 Online Problems with Batch Delivery to Multiple Customers
	4.4.1 Maximum Delivery Time and Transportation Cost Problems
	4.4.2 Total Delivery Time and Transportation Cost Problems

	4.5 Online Problems with Two Stages of Delivery
	4.6 Online or Offline Algorithms?
	4.7 Future Research

	5 Coordinated Product Pricing and Scheduling Decisions
	5.1 Introduction
	5.2 Single-Period Product Based Problems
	5.2.1 Exact Algorithms
	5.2.2 NP-Hardness Proofs
	5.2.3 Fully Polynomial Time Approximation Schemes
	5.2.3.1 FPTAS for the Single-Machine Completion Time Problem
	5.2.3.2 FPTAS for the Flowshop Makespan Problem

	5.2.4 Heuristics
	5.2.5 Computational Results and Managerial Insights

	5.3 Single-Period Order Based Problems
	5.3.1 Discrete Allowable Prices
	5.3.2 Continuous Allowable Prices
	5.3.2.1 Simultaneous Quotation
	5.3.2.2 Sequential Quotation

	5.4 Multi-Period Problems
	5.4.1 Exact Algorithms
	5.4.2 NP-Hardness Proofs
	5.4.3 Approximation Algorithm
	5.4.4 Computational Results and Managerial Insights

	5.5 Future Research

	6 Joint Subcontracting and Scheduling Decisions
	6.1 Introduction
	6.2 Problem with a Lead Time Performance Guarantee
	6.2.1 Problem Definition
	6.2.2 Complexity and Heuristic Analysis
	6.2.3 Computational Results
	6.2.4 A Related Problem

	6.3 Value of Subcontracting
	6.3.1 Value of Subcontracting in the Total Cost Problem
	6.3.2 Value of Subcontracting in the Weighted Sum of Makespan and Total Cost Problem

	6.4 Problems with a Subcontracting Budget Constraint
	6.4.1 The Total Completion Time Problem
	6.4.2 The Maximum Tardiness Problem
	6.4.3 The Total Tardiness Problem

	6.5 Problems with a Flowshop Environment
	6.5.1 NP-Hardness Proof
	6.5.2 Polynomially Solvable Cases
	6.5.3 Proportionate Flowshop

	6.6 Problems Requiring Delivery of Subcontracted Jobs
	6.6.1 Single In-House Machine and Single Subcontractor's Machine
	6.6.2 Two-Stage Flowshop

	6.7 Problems with a More Complex Subcontracting Cost Structure
	6.7.1 Problem Description
	6.7.2 Analysis of Problems with Incremental Discount

	6.8 Future Research

	Part II Decentralized Supply Chain Scheduling
	7 Optimization and Conflict
	7.1 Introduction
	7.2 Scheduling and Batching in a Supply Chain
	7.2.1 Preliminaries
	7.2.1.1 Notation and Classification
	7.2.1.2 General Assumptions and Properties
	7.2.1.3 Overview of the Results

	7.2.2 The Supplier's Problem
	7.2.2.1 Sum of Flow Times
	7.2.2.2 Number of Late Jobs

	7.2.3 The Manufacturer's Problem
	7.2.3.1 Sum of Flow Times
	7.2.3.2 Number of Late Jobs

	7.2.4 The Combined Problem
	7.2.4.1 Sum of Flow Times
	7.2.4.2 Number of Late Jobs

	7.2.5 Cooperation
	7.2.5.1 Benefits of Cooperation
	7.2.5.2 Mechanisms for Cooperation

	7.3 Sequencing in an Assembly System
	7.3.1 Notation and Assumptions
	7.3.2 Conflicts Between Suppliers and Manufacturer
	7.3.2.1 Completion Time and Completion Time
	7.3.2.2 Completion Time and Maximum Lateness

	7.3.3 Suppliers Dominate and Manufacturer Negotiates
	7.3.4 Manufacturer Dominates and Suppliers Negotiate
	7.3.5 Manufacturer Dominates and Suppliers Adjust
	7.3.6 Suppliers and Manufacturer Cooperate
	7.3.7 Cost Saving from Cooperation
	7.3.7.1 Completion Time and Completion Time
	7.3.7.2 Completion Time and Maximum Lateness

	7.3.8 Extensions

	7.4 Manufacturer and Distributor
	7.4.1 Problem Descriptions
	7.4.1.1 Problem 1
	7.4.1.2 Problem 2

	7.4.2 Cost of Conflict
	7.4.2.1 Conflict in Problem 1
	7.4.2.2 Conflict in Problem 2

	7.4.3 Supply Chain Dominance
	7.4.3.1 Dominance in Problem 1: Printer Dominates
	7.4.3.2 Dominance in Problem 1: Distributor Dominates
	7.4.3.3 Dominance in Problem 2: Manufacturer Dominates
	7.4.3.4 Dominance in Problem 2: Distributor Dominates

	7.4.4 Benefit of Cooperation
	7.4.4.1 Problem 1
	7.4.4.2 Problem 2
	7.4.4.3 Implementing Cooperation

	7.5 Resequencing in a Supply Chain
	7.5.1 Notation and Classification
	7.5.2 Manufacturer's Problems
	7.5.2.1 Interchange Costs
	7.5.2.2 Interchange and Storage Costs

	7.5.3 Supplier's Problems
	7.5.3.1 Interchange Costs
	7.5.3.2 Interchange and Storage Costs

	7.5.4 Combined Problems

	7.6 Future Research

	8 Cooperative Supply Chain Scheduling
	8.1 Introduction
	8.2 Cooperative Game Solutions
	8.3 Sequencing Games
	8.3.1 General Related Games
	8.3.1.1 Permutation Games
	8.3.1.2 Unanimity Games

	8.3.2 Linear Costs
	8.3.3 Regular Costs
	8.3.4 Rescheduling Games
	8.3.5 Relaxed Sequencing Games
	8.3.6 Batch Sequencing Games
	8.3.7 Proportionate Flowshops
	8.3.8 Openshops
	8.3.9 Multi-Stage Sequencing Games
	8.3.10 Balancedness in Generalized Games
	8.3.10.1 Controllable Processing Times
	8.3.10.2 Family Sequencing

	8.4 Scheduling Games
	8.4.1 Artificial Initial Sequence: Tail Game
	8.4.2 Artificial Initial Sequence: Probabilistic Game
	8.4.3 No Initial Sequence: Penalty
	8.4.4 No Initial Sequence: Penalty and Subsidy

	8.5 Project Games
	8.5.1 Project Planning Games
	8.5.2 Project Execution Games

	8.6 Capacity Allocation Games
	8.6.1 Supply Chain Scheduling Problems
	8.6.2 Uncoordinated Supply Chain
	8.6.2.1 Manufacturer: Capacity Allocation
	8.6.2.2 Manufacturer: Scheduling Revised Orders
	8.6.2.3 Distributors: Resubmitting Partial Orders
	8.6.2.4 Distributors: Resubmitting Full Orders

	8.6.3 Coordinated Supply Chain

	8.7 Outsourcing Games
	8.7.1 Common Third-Party Facility
	8.7.2 Concurrent Outsourcing

	8.8 Future Research

	9 Noncooperative Supply Chain Scheduling
	9.1 Introduction
	9.2 Complete Information Games
	9.2.1 Noncooperative Game Concepts
	9.2.1.1 Nash equilibrium
	9.2.1.2 Price of Anarchy
	9.2.1.3 Absolute Price of Anarchy

	9.2.2 Finding and Evaluating an Equilibrium
	9.2.2.1 Earliness and Tardiness Costs
	9.2.2.2 Subcontracting
	9.2.2.3 Project Scheduling
	9.2.2.4 Local Sequencing Rules
	9.2.2.5 Congestion and Activation Costs

	9.3 Enhanced Complete Information Games
	9.3.1 Sequential Games
	9.3.2 Leader–Follower Games
	9.3.3 Altruistic Games
	9.3.3.1 Egoists and Altruists
	9.3.3.2 Common Altruistic Preference

	9.3.4 Central Authority Manipulation

	9.4 Private Information: Mechanisms Without Payments
	9.4.1 Design Concepts
	9.4.1.1 A Mechanism
	9.4.1.2 Levels of Truthfulness

	9.4.2 Deterministic Truthfulness
	9.4.3 Randomized Mechanisms
	9.4.3.1 Unrelated Parallel Machines
	9.4.3.2 Uniform Parallel Machines

	9.5 Private Information: Mechanisms with Payments
	9.5.1 Design Concepts
	9.5.1.1 Monotonicity
	9.5.1.2 Dominant Strategy Incentive Compatibility
	9.5.1.3 Vickrey–Clarke–Groves Mechanism
	9.5.1.4 Weak Monotonicity

	9.5.2 Deterministic Truthfulness
	9.5.3 Universal Truthfulness
	9.5.4 Truthfulness in Expectation
	9.5.5 Bayes–Nash Incentive Compatibility

	9.6 Future Research

	References
	Index

