
Quantitative Risk 
Management  
Using Python

An Essential Guide for Managing  
Market, Credit, and Model Risk
—
Peng Liu



Quantitative Risk Management Using
Python



Peng Liu

Quantitative Risk
Management Using
Python
An Essential Guide for Managing
Market, Credit, and Model Risk



Peng Liu
Santorini
Singapore, Singapore

ISBN-13 (pbk): 979-8-8688-1529-4 ISBN-13 (electronic): 979-8-8688-1530-0
https://doi.org/10.1007/979-8-8688-1530-0

Copyright © 2025 by Peng Liu
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed.
Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol
with every occurrence of a trademarked name, logo, or image we use the names, logos, and images only
in an editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.
The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject
to proprietary rights.
While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for
any errors or omissions that may be made. The publisher makes no warranty, express or implied, with
respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Celestin Suresh John
Development Editor: James Markham
Coordinating Editor: Gryffin Winkler

Cover image by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York, 1 New York
Plaza, New York, NY 10004. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-
sbm.com, or visit www.springeronline.com. Apress Media, LLC is a Delaware LLC and the sole member
(owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is
a Delaware corporation.
For information on translations, please e-mail booktranslations@springernature.com; for reprint, paper-
back, or audio rights, please e-mail www.bookpermissions@springernature.com.
Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk
Sales web page at http://www.apress.com/bulk-sales.
Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub (https://github.com/Apress). For more detailed information, please visit https://www.
apress.com/gp/services/source-code.

If disposing of this product, please recycle the paper

https://doi.org/10.1007/979-8-8688-1530-0
https://doi.org/10.1007/979-8-8688-1530-0
https://doi.org/10.1007/979-8-8688-1530-0
https://doi.org/10.1007/979-8-8688-1530-0
https://doi.org/10.1007/979-8-8688-1530-0
https://doi.org/10.1007/979-8-8688-1530-0
https://doi.org/10.1007/979-8-8688-1530-0
https://doi.org/10.1007/979-8-8688-1530-0
https://doi.org/10.1007/979-8-8688-1530-0
https://doi.org/10.1007/979-8-8688-1530-0
https://www.freepik.com
https://www.springeronline.com
http://www.apress.com/bulk-sales
http://www.apress.com/bulk-sales
http://www.apress.com/bulk-sales
http://www.apress.com/bulk-sales
http://www.apress.com/bulk-sales
http://www.apress.com/bulk-sales
https://github.com/Apress
https://github.com/Apress
https://github.com/Apress
https://github.com/Apress
https://www.apress.com/gp/services/source-code
https://www.apress.com/gp/services/source-code
https://www.apress.com/gp/services/source-code
https://www.apress.com/gp/services/source-code
https://www.apress.com/gp/services/source-code
https://www.apress.com/gp/services/source-code
https://www.apress.com/gp/services/source-code
https://www.apress.com/gp/services/source-code


This book is dedicated to my family,
particularly my wife, Zheng, and my children,
Jiayu, Jiaran, and Jiaxin. Jiayu comes first
this time, as his older sisters already
declared victory in my other books.



Contents

About the Author . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

About the Technical Reviewer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

Foreword . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvii

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xix

1 Introduction to Quantitative Risk Management . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Understanding Different Types of Risk in Financial Markets . . . . . . . . 5

1.1.1 Market Risk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.1.2 Credit Risk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.1.3 Liquidity Risk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.1.4 Operational Risk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.1.5 Model Risk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.1.6 Legal and Regulatory Risk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.1.7 Systemic Risk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.1.8 Environmental, Social, and Governance (ESG) Risk . . . . . . . . . 20
1.1.9 A Summary of Common Risk Types . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.2 Common Financial Instruments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
1.2.1 Low-Risk Assets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
1.2.2 Moderate-Risk Assets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
1.2.3 High-Risk Assets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
1.2.4 Derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
1.2.5 A Summary of Financial Instruments by Risk Level . . . . . . . . . 27

1.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2 Fundamentals of Risk and Return in Finance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.1 Understanding Return. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.2 Understanding Risk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.3 Risk-Return Trade-Off . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.4 Measuring Return . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.4.1 Absolute Return. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.4.2 Percentage Return . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.4.3 Logarithmic Return . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

vii



viii Contents

2.4.4 Total Return vs. Price Return . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.4.5 Annualized Returns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.4.6 Single-Period vs. Multi-Period Returns . . . . . . . . . . . . . . . . . . . . . . . 41

2.5 Measuring Risk. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.5.1 Annualization of Risk Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.5.2 Difference in Volatility Calculated Using Daily vs.

Monthly Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
2.6 Measuring Risk-Adjusted Return . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.6.1 Sharpe Ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
2.6.2 Sortino Ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
2.6.3 Treynor Ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
2.6.4 Evaluating Performance Measures in Portfolio

Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
2.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3 Managing Credit Risk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
3.1 Expected and Unexpected Credit Loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.1.1 Unexpected Loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
3.1.2 Stress Loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.2 Probability of Default . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
3.2.1 Logistic Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
3.2.2 Decision Trees and Random Forests . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
3.2.3 Other Machine Learning Classifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.3 Loss Given Default. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
3.4 Exposure at Default . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
3.5 Expected Credit Loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

3.5.1 Capital Regulation Using Risk-Weighted Asset . . . . . . . . . . . . . . . 79
3.6 Building a PD Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

3.6.1 Data Processing and Exploration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
3.6.2 Dealing with Outliers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
3.6.3 Dealing with Missing Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
3.6.4 Dealing with Categorical Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
3.6.5 Train-Test Split . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
3.6.6 Developing Logistic Regression Model . . . . . . . . . . . . . . . . . . . . . . . 88
3.6.7 Model Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
3.6.8 ROC Curve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

3.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4 Managing Market Risk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
4.1 Variance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.1.1 Unbiasedness in Sample Variance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
4.1.2 Variance in Practice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
4.1.3 Limitations of Variance As a Risk Measure . . . . . . . . . . . . . . . . . . . 101

4.2 Maximum Drawdown (Max Drawdown) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
4.2.1 Distinctive Features of Maximum Drawdown. . . . . . . . . . . . . . . . . 108
4.2.2 Calculating Max Drawdown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110



Contents ix

4.3 Value at Risk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
4.3.1 Historical Simulation Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
4.3.2 Variance-Covariance (Parametric) Approach. . . . . . . . . . . . . . . . . . 115
4.3.3 Monte Carlo Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

5 Risk Management Using Financial Derivatives. . . . . . . . . . . . . . . . . . . . . . . . . . . 125
5.1 Hedging with Futures Contracts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

5.1.1 Hedging Mechanism Using Futures . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
5.1.2 Optimal Hedge Ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
5.1.3 Scenario Analysis at Maturity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
5.1.4 Consideration of Basis Risk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
5.1.5 Implementing the Dynamic Hedging Strategy . . . . . . . . . . . . . . . . 134

5.2 Hedging with Option Contracts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
5.2.1 Protective Put Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
5.2.2 Implementing the Protective Put Strategy . . . . . . . . . . . . . . . . . . . . . 147
5.2.3 Covered Call Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
5.2.4 Implementing the Covered Call Strategy . . . . . . . . . . . . . . . . . . . . . . 157

5.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

6 Static and Dynamic Hedging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
6.1 Dynamic Hedging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

6.1.1 Dynamic Delta Hedging Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
6.1.2 Continuous Rebalancing and Gamma Hedging . . . . . . . . . . . . . . . 168
6.1.3 Dynamic Hedging in Action . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

6.2 Static Hedging. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
6.2.1 Static Hedging for a Forward Contract . . . . . . . . . . . . . . . . . . . . . . . . 177
6.2.2 Static Hedging for a European Put Option . . . . . . . . . . . . . . . . . . . . 182
6.2.3 Static Hedging for Digital Option. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
6.2.4 Static Hedging with Constant Volatility . . . . . . . . . . . . . . . . . . . . . . . 191
6.2.5 Static Hedging with Changing Volatility . . . . . . . . . . . . . . . . . . . . . . 194
6.2.6 Static Hedging of Digital Call Option in Action . . . . . . . . . . . . . . 196

6.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

7 Managing Model Risk in Finance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
7.1 Model Risk Due to Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202

7.1.1 Data Risks in Financial Machine Learning . . . . . . . . . . . . . . . . . . . . 205
7.1.2 Mitigation Strategies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211

7.2 Model Risk Due to Model Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214
7.2.1 Model Bias and Approximation Error . . . . . . . . . . . . . . . . . . . . . . . . . 215
7.2.2 Mitigation Strategies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217

7.3 Model Risk Due to Cost Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218
7.3.1 Mitigation Strategies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220



x Contents

7.4 Model Risk Due to Optimization Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
7.4.1 Estimation Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222
7.4.2 Mitigation Strategies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224

7.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231



About the Author

Peng Liu is an Assistant Professor of Quantitative
Finance (Practice) at Singapore Management
University and an adjunct researcher at the National
University of Singapore. He holds a Ph.D. in
statistics from the National University of Singapore
and has over ten years of working experience across
the banking, technology, and hospitality industries.
Peng is the author of Bayesian Optimization
(Apress, 2023) and Quantitative Trading Strategies
Using Python (Apress, 2023).

xi



About the Technical Reviewer

Sonal Raj is an engineer, mathematician, data sci-
entist, and Python evangelist from India, who has
carved a niche in the financial services domain.
He is a Goldman Sachs and D.E. Shaw alumnus
who currently serves as Vice President and heads
the Data Management and Research division for a
leading high-frequency trading firm.

Sonal holds a dual master’s degree in Com-
puter Science and Business Administration and is
a former research fellow of the Indian Institute of
Science. His areas of research range from image
processing, real-time graph computations to elec-
tronic trading algorithms. Sonal is the author of
the titles Graph Data Analytics (BPB, 2024), The
Pythonic Way (BPB, 2021), and Neo4j High Per-
formance (Packt, 2015), among others. During his
career, Sonal has been instrumental in designing
low latency trading algorithms, trading strategies,
market signal models, and components of electronic
trading systems. He is also a community speaker and
a Python and data science mentor to young minds in
the field.

When not engrossed in reading fiction or playing
symphonies, he spends far too much time watching
rockets lift off.

He is a loving son, husband, and a custodian of
his personal library.

xiii



Foreword

It is a sincere privilege to introduce Quantitative Risk Management Using Python
by Peng Liu. Working with Peng at an international bank, I had the opportunity
to witness his keen interest in risk management and his thoughtful approach to
navigating complex financial challenges. In my roles as his supervisor and friend, I
learned a lot from his technical insights and was quietly encouraged by his steady
pursuit of excellence.

Peng’s transition from the world of corporate risk management to academia is
a journey marked by his passion for both understanding and teaching the intricate
dynamics of financial risk. In this book, he bridges the gap between abstract risk
theories and their tangible applications using Python. His ability to demystify
subjects ranging from market, credit, and model risk to sophisticated hedging
strategies makes this work an indispensable resource for practitioners, researchers,
and students alike.

I believe readers will truly benefit from the clarity, depth, and accessible style of
this book. Its thoughtful presentation of complex risk management concepts makes
them both understandable and relevant to real-world challenges, offering a reliable
guide for both experienced professionals and those new to the field.

Hong Kong Matteo Crippa
April 2025
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Preface

I must confess: the main reason I decided to write this book was to better
understand the topics myself and hopefully teach them in a university course without
sounding completely lost. When I transitioned from working as a risk management
professional at an international bank to academia in 2022, I quickly realized that
knowing how to manage risk is one thing; teaching it is an entirely different beast.

Over time—and especially with the rapid pace of change brought about by large
language models and other breakthroughs in AI—I have come to realize that risk
management is more important than ever. Not just in financial institutions, but also
in everyday life. So, this book became my way of learning by doing, in the hope that
it might also help others, whether you are just starting out or navigating mid-career
challenges.

The chapters cover a range of topics that I believe are essential for developing a
solid foundation in risk management. From the classic risk-return trade-off to the use
of futures and options for hedging and eventually the weeds of static and dynamic
hedging strategies, there is something for everyone here. You will also find practical
ways to measure and manage market risk, a solid introduction to credit risk, and
a full chapter dedicated to model risk, which is becoming increasingly relevant as
machine learning gains ground in finance.

Throughout, I have tried to strike a balance between theory and practice, using
Python to make the concepts more accessible and applicable. We will not hope to
turn readers into quants overnight, but rather to give you the tools and intuition to
approach quantitative risk management with confidence and maybe even enjoy it
along the way.

I hope you find this book helpful and have fun reading and learning along the
way!

Singapore, Singapore Peng Liu
April 2025
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Introduction

In an increasingly complex financial landscape, effective risk management is a
critical skill for professionals navigating the dynamic world of finance. This book
intends to provide a comprehensive and practical approach to understanding and
applying risk management techniques using Python.

The book serves as an essential resource for finance professionals, academics,
and students looking to deepen their knowledge of quantitative risk management.
It bridges theoretical concepts with hands-on Python implementations, equipping
readers with the tools needed to assess, mitigate, and manage financial risks
effectively. Whether you are involved in investment management, banking, financial
analytics, or fintech and beyond, this book offers valuable insights into the intricate
mechanisms that drive market, credit, and model risk.

What YouWill Learn

The book systematically introduces key aspects of financial risk management,
beginning with foundational principles and advancing to sophisticated techniques
for managing risk in various financial contexts. Readers will gain expertise in

– Fundamentals of Risk and Return: Understanding different types of financial
risk, the role of diversification in portfolio management, and the trade-off
between risk and return

– Credit Risk Management: Assessing and managing risks associated with
default and counterparty credit exposure

– Market Risk Management: Identifying, measuring, and mitigating risks stem-
ming from market fluctuations

– Risk Management Using Financial Derivatives: Exploring how derivatives
such as options and futures can be leveraged to manage risk

– Static and Dynamic Hedging Strategies: Applying hedging techniques to
minimize exposure and protect investment positions

– Model Risk Management: Evaluating risks in the development and deployment
of machine learning models within the financial sector

xix



xx Introduction

Who Should Read This Book?

This book is designed for finance professionals, quantitative analysts, risk managers,
students, and academics seeking a structured and practical guide to risk management
using Python. Whether you are an industry practitioner looking to enhance your
risk modeling skills or a student aiming to build a solid foundation in quantitative
finance, this book provides the necessary knowledge and tools to navigate financial
risks with confidence.

Why This Book?

– Hands-On Python Applications: Demonstrates real-world Python implementa-
tions across credit risk, market risk, and portfolio management

– Comprehensive Coverage: Covers fundamental concepts as well as advanced
topics in financial risk management

– Practical Focus: Bridges the gap between theoretical models and their applica-
tion in financial decision-making

With its blend of theory, practice, and programming,Quantitative Risk Management
Using Python is a valuable guide for mastering financial risk management in today’s
evolving financial landscape.
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Financial risk means potential loss in the world of finance. If you invest, risk is
everywhere and sometimes is considered even more important than financial return.
The flavor of financial risk ranges from day-to-day fluctuations in stock prices, also
called volatility, to broader, more unpredictable shocks caused by global events.
Common types of financial risk include market risk (price fluctuations), credit risk
(borrower defaults), and liquidity risk (difficulty in asset liquidation). These risks are
not just abstract ideas; they bring about real challenges that can impact investment
portfolios, financial institutions, and even the entire financial system as a whole.

For example, a recent study by Marani et al. (2021) analyzed disease outbreaks
over the past four centuries and revealed that extreme pandemics are more fre-
quent than previously assumed. The research estimates an annual probability of
approximately 2% for a pandemic with an impact similar to COVID-19, suggesting
that an individual born in the year 2000 would have about a 38% chance of
experiencing such an event by now. Furthermore, the study indicates that a pandemic
of comparable scale could be expected within the next 59 years. Such an extreme
pandemic can disrupt markets, causing volatility, liquidity shortages, and systemic
failures. This unpredictability makes it essential that financial professionals have a
solid understanding of risk dynamics.

Pandemics such as COVID-19 have had undeniably profound effects on our daily
lives, reshaping economies, healthcare systems, and social norms, transforming
practices like remote work from niche to mainstream. For instance, the S&P 500
plummeted by approximately 34% from its peak in February 2020 to its trough in
March 2020 (see Figure 1-1), and the world economy decreased by 3.5% in 2020.
In light of these far-reaching impacts, countries and companies are increasingly
prioritizing supply chain resilience, emphasizing the importance of diversifying
suppliers and establishing alternative sources to mitigate the risk of primary supply
disruptions. To properly manage supply chain risk in case of another pandemic, the
overall supply chain system needs to have both adaptability and redundancy, which
seems to move in the opposite direction against lean management.

© Peng Liu 2025
P. Liu, Quantitative Risk Management Using Python,
https://doi.org/10.1007/979-8-8688-1530-0_1
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Figure 1-1 The S&P 500 plummeted by over 30% from its peak in February 2020 to its trough
in March 2020

See Listing 1-1 used to generate Figure 1-1.

1 import yfinance as yf
2 import matplotlib.pyplot as plt
3

4 # Define the ticker symbol for S&P 500 ETF
5 ticker = ’^GSPC’
6

7 # Fetch data from January 1, 2020, to April 1, 2020
8 sp500 = yf.download(ticker, start=’2020-01-01’, end=’2020-04-01’)
9

10 # Plot the closing prices
11 plt.figure(figsize=(8, 5))
12 plt.plot(sp500.index, sp500[’Close’], label=’S&P 500’, color=’

blue’)
13 plt.title(’S&P 500 Performance (Jan - Mar 2020)’)
14 plt.xlabel(’Date’)
15 plt.ylabel(’Closing Price (USD)’)
16 plt.legend()
17 plt.grid(True)
18 plt.xticks(rotation=45)
19 plt.tight_layout()
20 plt.show()

Listing 1-1 S&P 500 price curve

But why does risk exist in the first place? Given the inherent uncertainty in
the world around us, risk exists because the future is unpredictable and driven
by complex interactions between human behavior, environmental changes, and
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Figure 1-2 Calculating the relative frequency as the empirical probability of S&P trending up or
down in this period

biological evolution. This uncertainty means that we cannot accurately forecast
when or where a pandemic might occur, its severity, or its specific impacts. And,
as a result, the outcome is a random event. Therefore, quantifying and managing
such uncertainty and randomness is the central theme of risk management.

The most effective tool for characterizing the randomness of uncertain events
is the probability distribution, which captures all possible outcomes and assigns a
probability to each. For example, when predicting the likelihood of rain tomorrow,
we might assign a probability of 70% to the event of rain. This implies a 30% chance
that it will not rain, as the probabilities of all possible outcomes must sum to one.
Referring to our previous S&P 500 daily price curve in Figure 1-1, we can calculate
the relative frequency of the next day’s price moving up or down by counting the
occurrences of each outcome and turning the absolute count into relative frequency.
These frequencies allow us to approximate the probability that the market is trending
upward or downward the following day.

As illustrated in Figure 1-2, the relative frequency, which serves as an empirical
probability measure, indicates a 51% likelihood that the S&P 500 closing price
would decrease during the period from January to March 2020. Although it is
impossible to predict with absolute certainty whether the index will rise or fall on
any given day, this approach provides a quantified perspective on the most probable
outcome among all possibilities.
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See Listing 1-2 used to generate Figure 1-2.

1 # Calculate daily percentage change
2 sp500[’Daily Change’] = sp500[’Close’].diff()
3

4 # Calculate relative frequency of going up or down
5 total_days = len(sp500[’Daily Change’].dropna())
6 up_days = len(sp500[sp500[’Daily Change’] > 0])
7 down_days = len(sp500[sp500[’Daily Change’] < 0])
8

9 up_frequency = up_days / total_days
10 down_frequency = down_days / total_days
11

12 # Prepare data for the bar chart
13 categories = [’Up Days’, ’Down Days’]
14 frequencies = [up_frequency , down_frequency]
15

16 # Plot the bar chart
17 plt.figure(figsize=(6, 4))
18 bars = plt.bar(categories , frequencies , color=[’green’, ’red’])
19 plt.title(’Relative Frequency of S&P 500 Daily Changes (Jan - Mar

2020)’)
20 plt.ylabel(’Relative Frequency’)
21 plt.ylim(0, 1)
22 plt.grid(axis=’y’, linestyle=’--’, alpha=0.7)
23

24 # Add exact values as legend
25 for bar, freq in zip(bars, frequencies):
26 plt.text(bar.get_x() + bar.get_width() / 2, bar.get_height()

+ 0.02,
27 f"{freq:.2f}", ha=’center’, va=’bottom’, fontsize

=10)
28

29 plt.tight_layout()
30 plt.show()

Listing 1-2 Calculating the relative frequency of going up or down

This book, Quantitative Risk Management Using Python, provides a clear and
structured guide to the diverse risks that are analyzed and managed in modern
financial markets. We will attempt to quantify and manage these risks from multiple
perspectives, including financial data, statistical techniques, and mathematical mod-
els, ultimately supporting more informed and risk-aware decision-making. At times,
effectively managing risk can be even more critical than pursuing high financial
returns, especially when dealing with large-scale portfolios. Beyond conceptual and
theoretical discussions, we also place a strong emphasis on practical implementation
using Python, hoping that readers gain both a robust theoretical framework and the
hands-on skills needed to navigate real-world challenges.

In the following sections of this chapter, we will first discover key categories of
financial risk, including market, credit, and liquidity risk, and then learn common
financial instruments and their use in risk management. We aim to build a good
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foundational understanding of the risk landscape and a practical set of quantitative
tools to help you navigate the world of financial risk management with confidence.

1.1 Understanding Different Types of Risk in Financial
Markets

To start, let us take a closer look at what financial markets are about and the different
types of risk involved. In financial markets, retail investors, wholesale institutions,
and even central governments engage in financial transactions such as buying
and selling certain financial instruments, such as stocks, bonds, commodities,
and derivatives. These activities promote price discovery, in that they reflect the
aggregate beliefs of market participants and provide a way to approximate each
instrument’s “fair value” through the dynamics of supply and demand toward market
equilibrium.

Although some traders seek arbitrage profits by exploiting temporary deviations
from the fair value of an asset (which could be due to sudden shocks), others
prioritize maximizing returns, minimizing risk, or a combination of both objectives.
For example, retail investors can hope to achieve high returns by investing in long-
term growth stocks, whereas large institutions often employ low-risk strategies to
preserve capital with steady returns and minimal volatility. Consequently, trading
activities can vary substantially based on an investor’s goals, resources, and market
outlook. In general, market participants have different intentions and employ
varying strategies within financial markets.

These activities also come with various risks that can pose significant challenges
if not properly managed. For example, market risk captures the potential losses
due to fluctuations in market prices. Examples include a sudden drop in stock
prices after the market observes a negative earnings report or a massive sell-off
triggered following an announcement of a political policy (think about how the real
estimate market reacts when the government introduces a new policy). If you are
not prepared, market risk can lead to substantial losses in your investment portfolio
since it will likely fluctuate on the downside (everyone likes upside fluctuation).
Besides, there is credit risk, which comes into play when a borrower fails to repay
the debt. This risk is particularly significant for banks and bond investors, who are
often regulated to report and manage risk exposure should a default event occur.
Lastly, liquidity risk says that an investor might not be able to buy or sell an
asset quickly as they hope, or even if it is possible, such a fast trade comes with
a significant price change (think about selling a property at a fairly low price when
in urgent need of cash), potentially leading to losses or missed opportunities.

Beyond these, there are other risks, such as operational risk, which deals with
failures in internal processes or systems in companies; legal risk, which involves
potential losses from lawsuits or changes in regulations; systemic risk, which is the
risk of a collapse in the entire financial system; and model risk, which presents the
potential loss due to misspecification of the model assumption or incorrect model
estimation. The challenges of managing these risks are further compounded by the
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volatile nature of financial markets. For example, a predictive model trained and
deployed today may not be as valid two months later due to changes in market
conditions. In this section, we will introduce these various types of risk and explore
how they can impact financial assets.

Consider an investment firm that operates both in the corporate bond market and
in the stock market, where volatility in the price of the shares introduces market
risk. One morning, the firm discovers that a major bond issuer has defaulted on its
debt, exposing the institution to considerable credit risk: there is now a real threat
that they may not fully recover their investment. At the same time, the firm faces
unexpected withdrawal requests from clients, which require them to sell real estate
assets rapidly at a substantial discount. This action demonstrates liquidity risk, as
the firm must quickly convert assets into cash at the expense of their market value.
Meanwhile, the firm’s forecasting algorithm, which is based on a black-box model,
does not account for sudden changes in market dynamics, thus resulting in greater
potential losses than anticipated; this issue exemplifies the model risk.

In response to these challenges, regulators introduce new measures (reminiscent
of post-2008 financial reforms), placing greater compliance demands on the firm
and amplifying its legal risk. In addition, a technical glitch on a critical trading
day completely halts order executions, illustrating just how impactful operational
risk can be when internal systems fail. Finally, the firm’s global reach makes it
susceptible to external shocks: a significant geopolitical event, such as an armed
conflict, triggers a worldwide sell-off that jeopardizes the stability of the entire
financial system, presenting significant systemic risk.

Let us look at each specific type of financial risk in detail.

1.1.1 Market Risk

Market risk is arguably the most common form of risk faced by individual
investors in financial markets. It involves potential losses arising from unforeseen
fluctuations in asset prices, which can affect everything from stocks and bonds
to foreign exchange rates and commodities such as oil and gold. Various factors,
including economic news, political events, natural disasters, and changes in investor
sentiment, can trigger these price swings. Moreover, because price discovery is an
ongoing process, supply and demand constantly shape asset values, making any
apparent market equilibrium only temporary.

We can classify market risk according to the underlying market of the financial
instrument, such as equity, interest rate, currency, or commodity markets. Let us
examine these distinct risks in more detail.

Equity risk refers to the potential for changes in stock prices to affect the value
of your investments. When you hold shares in a company, you effectively share in
its successes and setbacks. For example, if a company underperforms and releases
a poor earnings report, its stock price can drop, causing losses for shareholders.
Equity risk also includes broader market fluctuations: a sudden economic downturn
can spark a widespread sell-off, impacting virtually all stocks. Because stock prices
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are inherently unpredictable, owning equities carries the possibility of a decline in
value (assuming you hold a long position). Of course, various protective measures,
such as purchasing a put option, can help limit losses, and we will explore these
hedging techniques later in the book.

Interest rate risk refers to the uncertainty in potential changes in the interest
rate, which can have a pronounced effect on the value of fixed-income securities
such as bonds. As an example, imagine that you own a bond that pays an annual
coupon at 2%. If interest rates on the market later increase to 3%, newly issued
bonds will likely offer that higher rate. Consequently, investors will be less willing
to pay the full price for a bond yielding only 2%, causing its market value to drop.
This inverse relationship between bond prices and interest rates stems from the fact
that the fixed coupon of a bond becomes more (or less) attractive depending on the
prevailing interest rate environment.

Currency risk, also known as foreign exchange (or forex) risk, arises whenever
you invest in assets denominated in a currency other than your home currency.
For example, suppose that you are a US-based investor who purchases shares of
a European company. Now, you are exposed to two types of risk: equity risk,
as introduced before, and currency risk, which comes from a depreciation of
the euro against the dollar. Such depreciation would lead to a lower investment
return when you convert your investment back to dollars. Conversely, if the euro
appreciates against the dollar, your returns would increase accordingly. Currency
risk is especially important for multinational companies and international portfolio
managers with investment portfolio across multiple countries.

Commodity risk involves fluctuating prices of raw materials, such as those
of oil, gold, and agricultural products. These prices can be highly volatile due to
supply-demand imbalances in the market, policy instability, or natural disasters
around the world. These price shocks can affect both producers on the supply side
and consumers on the demand side. For example, when political conflicts disrupt oil
production in the Middle East, oil prices can rapidly rise, affecting not only energy
companies but also associated industries dependent on oil. Again, investors and
firms exposed to commodities often adopt hedging strategies (such as purchasing
futures and options) to protect themselves against sudden price swings.

Market risk is an essential consideration in almost every type of financial
investment. It arises because prices in financial markets are perpetually changing,
driven by a complex blend of economic indicators, political developments, changing
investor sentiment, and unforeseen global events. Although it is impossible to
completely eliminate market risk—given that no one can fully control these external
influences—we can still employ several strategies to mitigate and manage its effects.

One of the most widely used approaches to managing market risk is diversifica-
tion, which involves spreading investments across different asset classes, sectors, or
geographic regions. As Harry Markowitz famously observed, “Diversification is the
only free lunch in Finance.” By avoiding “putting all your eggs in one basket,” the
underperformance of one asset can be balanced by the outperformance of another,
thereby reducing overall portfolio volatility. When equity markets become volatile,
holding bonds or commodities can often help stabilize the portfolio. As an example,
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Figure 1-3 Comparing the wealth curve of three strategies in 2024

let us maintain a balanced 50/50 portfolio of equities (SPY) and bonds (AGG) in
the year of 2024. We adopt an equal-weightage strategy with monthly rebalancing
so that the risk profile of the portfolio remains relatively stable even if one asset class
outperforms the other over a given month. This is the central idea of diversification:
rather than relying exclusively on volatile equities or conservative bonds, the
portfolio spreads its exposure, thereby lowering overall volatility compared to a
single-asset strategy.

As shown in Figure 1-3, the monthly rebalanced portfolio of 50/50 shows a
significantly smoother return path than the 100% buy-and-hold strategy (SPY),
with an annualized volatility of approximately 7.27% compared to SPY 12.58%.
Although this balanced approach does not match the upside potential of SPY, it
provides a middle ground that delivers a higher return than bonds alone (AGG) but
far less volatile than stocks. The result illustrates a key benefit of diversification:
by combining two relatively uncorrelated assets and periodically rebalancing, the
portfolio avoids the extreme fluctuations of equities while still capturing a portion
of stock market gains.

See Listing 1-3 used to generate Figure 1-3.

1 import yfinance as yf
2 import pandas as pd
3 import numpy as np
4 import matplotlib.pyplot as plt
5

6 # ---------------------------------------------------------------
7 # 1. Download Historical Data
8 # ---------------------------------------------------------------
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9 tickers = ["SPY", "AGG"]
10 data = yf.download(tickers, start="2024-01-01", end="2025-01-01")

["Adj Close"]
11

12 # Drop any rows with missing values for simplicity
13 data.dropna(inplace=True)
14

15 # If the index has time zone info, remove it:
16 if data.index.tz is not None:
17 data.index = data.index.tz_localize(None)
18

19 # Calculate daily returns
20 daily_returns = data.pct_change().dropna()
21

22 # ---------------------------------------------------------------
23 # 2. Define Monthly Rebalance Dates
24 # ---------------------------------------------------------------
25 # We’ll use the last calendar day of each month, but then we’ll
26 # map that to the nearest *actual* trading date via asof().
27 # This ensures we don’t hit missing index errors.
28

29 calendar_month_ends = pd.date_range(
30 start=daily_returns.index[0],
31 end=daily_returns.index[-1],
32 freq=’M’
33 )
34

35 # Convert these month-ends to actual trading days (or the most
recent trading day before them):

36 monthly_rebalance_dates = []
37 for date in calendar_month_ends:
38 # .asof(date) gives the last valid index on or before ’date’
39 # If no valid date is found, it returns NaT, so we skip it
40 trading_date = daily_returns.index.asof(date)
41 if pd.notnull(trading_date):
42 monthly_rebalance_dates.append(trading_date)
43

44 monthly_rebalance_dates = pd.DatetimeIndex(
monthly_rebalance_dates)

45

46 # ---------------------------------------------------------------
47 # 3. Simulate Monthly Rebalancing
48 # ---------------------------------------------------------------
49 initial_capital = 100_000.0
50 target_weights = np.array([0.5, 0.5]) # 50% in SPY, 50% in AGG
51

52 # Series to hold portfolio values for plotting
53 portfolio_values = pd.Series(dtype=float)
54

55 # Initialize positions on the first rebalance date
56 start_date = monthly_rebalance_dates[0]
57 spy_price = data.loc[start_date , "SPY"]
58 agg_price = data.loc[start_date , "AGG"]
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59

60 spy_shares = (initial_capital * target_weights[0]) / spy_price
61 agg_shares = (initial_capital * target_weights[1]) / agg_price
62

63 # Record the initial portfolio value
64 portfolio_values.loc[start_date] = spy_shares * spy_price +

agg_shares * agg_price
65

66 # Go through each subsequent monthly period
67 for i in range(len(monthly_rebalance_dates) - 1):
68 period_start = monthly_rebalance_dates[i]
69 period_end = monthly_rebalance_dates[i + 1]
70

71 # Get all trading days in [period_start , period_end)
72 period_days = daily_returns.loc[period_start:period_end].

index
73

74 # Track day-to-day value within the month
75 for day in period_days:
76 # Update the portfolio value based on unchanged share

counts
77 spy_price = data.loc[day, "SPY"]
78 agg_price = data.loc[day, "AGG"]
79 daily_value = spy_shares * spy_price + agg_shares *

agg_price
80 portfolio_values.loc[day] = daily_value
81

82 # At period_end , we rebalance to 50/50 (unless period_end is
the final date)

83 if i < len(monthly_rebalance_dates) - 1:
84 # Use .asof() again for the final day price if necessary
85 final_day_price_spy = data["SPY"].asof(period_end)
86 final_day_price_agg = data["AGG"].asof(period_end)
87

88 final_value = spy_shares * final_day_price_spy +
agg_shares * final_day_price_agg

89

90 # Re-allocate to 50/50
91 spy_shares = (final_value * target_weights[0]) /

final_day_price_spy
92 agg_shares = (final_value * target_weights[1]) /

final_day_price_agg
93

94 # ---------------------------------------------------------------
95 # 4. Calculate Portfolio Returns and Cumulative Returns
96 # ---------------------------------------------------------------
97 portfolio_returns = portfolio_values.pct_change().fillna(0)
98 cumulative_portfolio = (1 + portfolio_returns).cumprod() - 1
99

100 # ---------------------------------------------------------------
101 # 5. Compare to SPY and AGG Buy-and-Hold (No Rebalancing)
102 # ---------------------------------------------------------------
103 cumulative_spy = (1 + daily_returns["SPY"]).cumprod() - 1
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104 cumulative_agg = (1 + daily_returns["AGG"]).cumprod() - 1
105

106 # Align indices for plotting (in case of any missing dates at the
ends)

107 cumulative_portfolio = cumulative_portfolio.reindex(daily_returns
.index, method=’ffill’)

108

109 # ---------------------------------------------------------------
110 # 6. Calculate Annualized Volatility
111 # ---------------------------------------------------------------
112 trading_days_per_year = 252
113 # The daily std. dev. of the portfolio returns * sqrt(252)
114 vol_portfolio = portfolio_returns.std() * np.sqrt(

trading_days_per_year)
115 vol_spy = daily_returns["SPY"].std() * np.sqrt(

trading_days_per_year)
116 vol_agg = daily_returns["AGG"].std() * np.sqrt(

trading_days_per_year)
117

118 print("Annualized Volatility:")
119 print(f"Monthly Rebalanced 50/50 Portfolio: {vol_portfolio:.2%}")
120 print(f"SPY (Equities) Buy & Hold: {vol_spy:.2%}")
121 print(f"AGG (Bonds) Buy & Hold: {vol_agg:.2%}")
122

123 # ---------------------------------------------------------------
124 # 7. Plot the Cumulative Returns
125 # ---------------------------------------------------------------
126 plt.figure(figsize=(10, 6))
127 plt.plot(cumulative_portfolio , label=’Monthly Rebalanced 50/50’,

linewidth=2)
128 plt.plot(cumulative_spy , label=’SPY (Equities) Buy & Hold’,

linestyle=’--’)
129 plt.plot(cumulative_agg , label=’AGG (Bonds) Buy & Hold’,

linestyle=’:’)
130 plt.title("Cumulative Returns: Monthly Rebalanced 50/50 vs. SPY &

AGG")
131 plt.xlabel("Date")
132 plt.ylabel("Cumulative Return")
133 plt.legend()
134 plt.grid(True)
135 plt.show()

Listing 1-3 Comparing the wealth curve of three strategies in 2024

As shown in Figure 1-4, applying the same equal-weight strategy in 2020, when
the COVID-19 pandemic initially emerged, resulted in smaller drawdowns than a
purely equity-focused approach, illustrating how spreading exposure across asset
classes can mitigate losses under adverse conditions. Observing the annualized
volatilities, the monthly rebalanced 50/50 portfolio has a volatility of about 18.08%,
substantially lower than the 33.45% registered by an all-equity (SPY) portfolio. In
contrast, the all-bond (AGG) allocation remains the least volatile at 8.37%. Notably,
diversification is especially beneficial during market downturns.
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Note that in real-world settings, such rebalancing is often done at intervals (e.g.,
monthly or quarterly) to manage both market risk and transaction costs. We have
seen that this combination of assets leads to reduced portfolio swings. Although
returns on a balanced portfolio may be somewhat lower in booming equity markets
(as shown in Figure 1-3), the reward comes during downturns, when the bond
component tends to cushion losses (see Figure 1-4). We can continue to add even
more asset classes (commodities, international equities, alternative investments,
etc.) so as to further diversify the market risk. However, we must be aware that
diversification only reduces unsystematic risk specific to a company or industry, not
eliminate systematic risk that affects the entire market.

Another approach to managing market risk is hedging, which involves taking
off-setting positions in different financial instruments to limit potential losses.
Hedging often involves the use of derivatives, such as options, futures, and swaps.
For example, an investor with a substantial equity portfolio might purchase put
options that could generate profit (when exercised) if the underlying stocks decline,
thereby cushioning against losses. Likewise, currency forwards or futures can lock
in the transaction price in advance and help mitigate exchange rate fluctuations in
international investments. However, these hedging activities often come with costs,
such as premiums for options. Thus, a comprehensive risk management strategy
needs to consider these additional transaction costs as well, as they could also
diminish potential upside gains.

Beyond diversification and hedging, we can also employ a variety of other
strategies to manage market risk. For example, we can perform tactical asset
allocation to adjust portfolio exposures periodically in response to evolving market

Figure 1-4 Comparing the wealth curve of three strategies in 2020
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conditions. We have seen this in the previous equal weightage strategy, but such
periodic rebalancing may also be done to cater to investor’s specific risk-reward
preference. Some investors also implement stop-loss orders, which automatically
liquidate positions once they fall below a predetermined price, thereby preventing
small losses from spiraling into large ones. As another example, risk parity strategies
allocate capital based on the risk contribution of each asset rather than traditional
fixed percentage allocations, aiming to balance volatility between different asset
classes.

Managing market risk begins with recognizing the uncertainty inherent in market
prices and adopting strategies to mitigate or even minimize potential losses. Because
higher returns typically come with higher risk, reducing volatility often involves
sacrificing some portion of potential gains, but this trade-off can prove to be well
worth it if it prevents significant drawdowns during market downturns. In addition,
effective risk management calls for a proactive approach: rather than simply reacting
to sudden changes in market conditions, proactive risk management recommends
that we continuously monitor trends and recalibrate portfolios (such as monthly
rebalancing) as needed to maintain an acceptable risk-return balance.

We now provide a mathematical view on why mixing stocks and bonds in a
portfolio typically reduces overall risk. Assume that the correlation between stock
and bond is less than 1. In our two-asset portfolio setup, let RS . be the random
variable for stock returns, and RB . be the random variable for bond returns. We
form a portfolio P by allocating a fraction w to the stock index (such as SPY) and
(1− w). to the bond index (such as AGG). Then the total portfolio return RP . can be
expressed as

.RP = w RS + (1 − w)RB.

Similarly, the portfolio variance can be expressed as

.σ 2
P = Var(RP ) = Var w RS + (1 − w)RB .

By standard properties of variance, we have

. σ 2
P = w2 Var(RS) + (1 − w)2 Var(RB) + 2w (1 − w)Cov(RS, RB).

Now denote

.σ 2
S = Var(RS), σ 2

B = Var(RB), ρS,B = Corr(RS, RB).

Then Cov(RS, RB) = ρS,B σS σB..

Therefore, we have

.σ 2
P = w2 σ 2

S + (1 − w)2 σ 2
B + 2w (1 − w) ρS,B σS σB.
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Since ρS,B < 1. (it is very unlikely that bonds move in perfect sync with stocks),
the product ρS,B σS σB . is less than σS σB .. Hence, the cross-term

.2w (1 − w) ρS,B σS σB

is smaller than the corresponding term if stocks and bonds perfectly moved together
ρS,B = 1 .. This implies that

.σ 2
P < w2 σ 2

S + (1 − w)2 σ 2
B + 2w (1 − w) σS σB

(where we have used the fact that ρS,B < 1)

Simplifying, we have

.σP < w σS + (1 − w) σB

This means that the standard deviation of the portfolio is strictly lower than the
weighted sum of the individual standard deviations when the correlation is less than
1. Therefore, as long as the returns of stocks and bonds are not perfectly positively
correlated (ρS,B 1.), the combined variance is reduced compared to owning only
stocks or only bonds, in any weight allocation. This lower variance (or volatility) is
precisely the mathematical reason why diversifying between stocks and bonds helps
reduce risk in a portfolio.

Now that we have shown that diversification helps reduce total portfolio risk, the
next question is to what extent we can reduce the risk. That is, how do we allocate the
weights across these two assets so as to achieve the minimal risk of our portfolio?
To answer this question, we need to derive the global minimum-variance (GMV)
portfolio weights for our two-asset model, assuming that there are no constraints
such as short-sale bans or leverage limits.

Recall the definition of portfolio variance that we would like to minimize:

. σ 2
P = w2 σ 2

S + (1 − w)2 σ 2
B + 2w(1 − w) ρS,B σS σB.

Since this is a quadratic function of w, we can take the derivative d
dw

σ 2
P . and set

it to zero to obtain the closed-form optimality condition:

.
dσ 2

P

dw
= 2w σ 2

S − 2(1 − w) σ 2
B + 2 ρS,B σS σB 1 − 2w = 0.

After a bit of algebra, we can solve for w∗
.:

.w∗ = σ 2
B − ρS,B σS σB

σ 2
S + σ 2

B − 2 ρS,B σS σB

.
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This is the weight of the stock index (SPY) that produces the minimum variance
in the two-asset framework. Consequently, the weight for the bond index (AGG) is

.1 − w∗ = 1 − σ 2
B − ρS,B σS σB

σ 2
S + σ 2

B − 2 ρS,B σS σB

.

Of course, when our goal is to maximize the portfolio return (recall that RP =
w RS + (1−w)RB .), we can simply invest all our budget in the higher-return asset,
which is the stock index.

Now, let us look at credit risk in the following section.

1.1.2 Credit Risk

Credit risk evaluates the ability of a borrower, also known as a counterparty, to
repay the principal and the interest agreed on in a loan. Typical lenders include
banks, specialized lending firms, and bond investors, all of whom expect to recoup
their invested principal plus any associated interest. However, there is no guarantee
of repayment; borrowers may default on part or all of their debt. Thus, credit
risk captures the possibility that a borrower or counterparty will fail to meet the
obligations stipulated by a loan or debt agreement. In the following section, we will
explore several common types of credit risk, including default risk, credit spread
risk, and downgrade risk.

Default risk is often viewed as the most common type of credit risk, which
captures both the probability that a borrower will fail to repay a loan and the
potential loss incurred if such a default occurs. In the worst case, lenders or
bondholders could face a complete loss of their principal. To manage this risk,
financial institutions typically employ three interrelated models: the probability of
default (evaluating the likelihood that the borrower will default), the loss given
default (estimating how much might be lost when default occurs), and the exposure
at default (estimating the total amount at risk at the time of default). When taken
together, these models provide an overall expected credit loss calculation, indicating
how much a lender might expect to lose should the borrower eventually fail to meet
the debt obligations. Banks and financial institutions commonly use this framework
to set credit limits, price loans, and maintain sufficient capital reserves.

Credit spread risk arises when the creditworthiness of a borrower deteriorates,
even if this change does not result in a real default. The primary mechanism at work
is the “credit spread,” defined as the yield differential between a risk-free bond (such
as a US Treasury) and a bond exposed to credit risk. If investors suddenly perceive
a company to be more likely to default, perhaps due to unfavorable financial news,
adverse market conditions, or other negative signals, they will demand a higher
yield to compensate for the increased uncertainty. Because coupon payments and
face value of a bond are generally fixed, the only way for yield to increase is for the
market price of the bond to drop accordingly. Consequently, bondholders can incur
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losses based solely on a market-driven reassessment of the borrower’s credit profile,
regardless of any actual default.

Downgrade risk refers to the possibility that a borrower’s credit rating may be
lowered by agencies such as Moody’s or Standard & Poor’s, signaling increased
credit risk. A recent example is Intel’s removal from the Dow Jones Industrial
Average on November 8, 2024, after a 25-year tenure, reflecting its declining market
position and financial performance. Such downgrades typically lead to a decrease in
the value of the issuer’s securities. For bondholders, a downgrade results in a higher
yield premium, causing the bond market price to fall. Consequently, if an investor
holds a bond from a downgraded entity, the bond’s market value diminishes, leading
to a potential loss upon sale. This underscores the importance of monitoring credit
ratings, as they directly influence bond valuations and investment returns.

As an example, suppose that an investor holds a corporate bond from a company
with a face value of $1,000, a fixed annual coupon of 5% ($50 per year), a current
yield to maturity (YTM) of 6%, and a risk-free yield of 3%. Following a credit
rating downgrade from A to BBB due to deteriorating financials, the market now
demands an 8% yield to compensate for the increased perceived risk. Although
there is no immediate expectation of default, the bond will continue to pay its fixed
coupon. To align with the market’s demand for a higher yield, the price of the bond
must decrease, since its fixed coupon and face value remain unchanged. This price
decline, driven by the increase in the credit spread, reflects the risk of credit spread
rather than an actual default loss, since the downgrade impacts the market value of
the bond rather than its cash flow reliability.

The probability of default is one of the most commonly monitored risks in
financial risk management, as it reflects the likelihood that a company will not meet
its obligations. As a quick exercise, consider a firm with a 2% chance of default in
the first year and a 3% chance in the second year, conditional on surviving the first
year. To determine the overall probability of default at the end of Year 2 in a single
step, note that the firm can default immediately in the first year with probability 0.02.
Alternatively, if it survives the first year (which happens with probability 0.98),
then it faces a 0.03 chance of default in the second year. Consequently, the total
probability of default by the end of Year 2 is

.0.02 + 0.98 × 0.03 = 0.02 + 0.0294 = 0.0494 = 4.94%.

As an extension to the credit risk framework, the credit migration matrix is a
widely used tool to characterize the transition probabilities among different states.
In particular, it systematically captures the probabilities of transitioning between
different credit ratings over a given time period. This transition probability provides
us with a measure of the likelihood of upgrades, downgrades, and defaults among
different credit grades. For example, we can adopt a frequency-based approach to
estimate these transition probabilities using historical data at different time periods,
thus describing the evolving credit quality of borrowers. This matrix also measures
intermediate changes in creditworthiness that can lead to changes in credit spreads,
offering deeper insights into potential credit deterioration paths.
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Next, we look at the liquidity risk.

1.1.3 Liquidity Risk

Liquidity risk measures the ease with which an asset can be bought or sold
without causing a significant impact on its price. Highly traded assets, such as
popular stocks, are typically very liquid because of consistent supply and demand
throughout trading hours. This allows transactions to occur seamlessly, either at the
prevailing market price via a market order or at a preset price using a limit order.
In contrast, assets such as real estate can be highly illiquid, particularly when the
property is in a less desirable location or condition. Selling such assets often requires
drastically lowering the price to attract buyers. In markets with limited participants,
this lack of liquidity can force sellers to accept prices below the intrinsic value of
an asset or force buyers to pay more than the asset is worth. This highlights the
challenges and potential costs associated with trading in less liquid markets.

There are two primary types of liquidity risk: asset liquidity risk and funding
liquidity risk. Asset liquidity risk arises when an asset cannot be sold at the desired
price due to a lack of willing buyers. In such cases, the seller faces two options: wait
for a buyer willing to pay the desired price or reduce the asking price to attract more
buyers. This risk highlights the challenges of selling less liquid assets promptly
without incurring a loss. In contrast, funding liquidity risk refers to the inability to
meet short-term financial obligations, such as covering day-to-day operational costs
or making scheduled debt payments such as housing mortgages. Addressing this
risk requires maintaining sufficient cash flow to meet these consistent and periodic
commitments, ensuring that operations and debt servicing remain uninterrupted.
Both types of liquidity risk underscore the importance of liquidity management in
financial decision-making.

1.1.4 Operational Risk

Operational risk refers to internal factors that can disrupt an organization’s day-
to-day functions, compared to external forces such as market fluctuations or
macroeconomic events. These disruptions often come from breakdowns in internal
processes, hardware or software systems, and human activities, either inadvertent
or deliberate. For example, a sudden power outage can stop trading floors or
payment processing unless backup generators are in place, and a rogue trader
may bypass internal oversight, incurring substantial unauthorized losses. Even
seemingly minor errors, such as incorrect data entry or flawed calculations, can
entail material, financial, or reputational damage. To mitigate these risks, firms
commonly implement robust internal controls, formalized procedures, and carefully
designed system redundancies. Automation can also reduce human error, while
comprehensive guidelines ensure that staff are well-informed about best practices
and compliance requirements. By recognizing potential vulnerabilities within oper-
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ations and proactively countering them, an organization can better protect itself
against disruptions that might otherwise lead to significant losses.

1.1.5 Model Risk

Model risk arises when the mathematical models used to guide financial decision-
making, whether highly transparent or so-called “black-box” models, differ signifi-
cantly from actual market behavior. As the adage goes, “All models are wrong, but
some are useful.” In practice, the usefulness of a model in modern settings, particu-
larly when employing deep learning or other advanced neural network architectures,
hinges on three interlinked elements: the quality and representativeness of the
underlying data, the choice of model architecture, and the available computational
resources.

With respect to data, financial markets directly shape the information inputs that
feed into these models. Predictive accuracy is highly dependent on having current
and comprehensive data, capturing the genuine statistical signals needed for reliable
forecasting. Outdated data may not reflect future phenomena, incomplete data could
fail to capture critical aspects of the market, and flawed or misspecified data would
inevitably lead to incorrect outputs or instability in model predictions. Ensuring
representativeness in time, for example, by carefully selecting historical data that
match as closely as possible the conditions likely to prevail in the future, is just as
vital as preserving an appropriate signal-to-noise ratio.

The model assumptions also require close scrutiny. These assumptions, in effect,
define how the chosen architecture transforms the data into the final predictions.
Deep neural networks, for instance, impose relatively few explicit assumptions on
functional form and can approximate highly complex relationships in the data.
However, they often face the risk of overfitting, where a model that excels in
historical or training data may not be able to generalize when faced with new
information. In contrast, simpler models, such as linear regression, are built on
stronger structural assumptions, usually linearity in relationships, and thus run
the risk of underfitting. Balancing these trade-offs to obtain robust, generalizable
models is a delicate but essential part of the model design process.

Model validation and ongoing monitoring further mitigate the risk of relying on
a model that may have become outdated or simply failed to account for emerging
realities. Once a model has been developed, often using historical data, it lacks
immediate awareness of real-time events in the external environment. Consequently,
a model might still issue optimistic forecasts for a company that, in reality,
has suffered sudden reputational damage and may soon face a decline in share
price. Regular re-evaluation, combined with updated data feeds, stress testing, and
comparative benchmarks, can help detect such discrepancies before they lead to
potential financial losses.

In a later chapter of the book, we will take a deeper look at model risk in
finance, emphasizing the importance of robust validation techniques and dynamic
adaptation. Next, we turn to legal and regulatory risks.
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1.1.6 Legal and Regulatory Risk

Legal and regulatory risk refers to the prospect of financial or reputational damage
resulting from changes in laws, regulations, or government directives. Such changes
often require businesses to adapt their operational procedures and risk management
strategies rapidly. For example, in the banking sector, dedicated teams are not
uncommon, whose primary role is to interpret and implement policies issued by
regulatory authorities, including the Prudential Regulation Authority (PRA) in the
United Kingdom and the Monetary Authority of Singapore (MAS) in Singapore, to
ensure continuous compliance.

One prominent example is the Basel regulatory framework, which governs the
capital adequacy requirements for banks. This framework has undergone multiple
refinements, including Basel I, Basel II, Basel III, and beyond, to keep up with
ever-changing market dynamics and financial innovations. A similarly influential
standard is the International Financial Reporting Standard 9 (IFRS 9), which
imposes nuanced requirements to estimate expected losses across various portfolios.
Noncompliance with these obligations can lead to severe penalties, including
substantial fines and potential reputational setbacks for the institutions involved.
These realities illustrate why proactive measures, including rigorous monitoring
of legal and regulatory developments and strong internal controls, are vital to
mitigating legal and regulatory risk in modern financial institutions.

1.1.7 Systemic Risk

Systemic risk refers to a major threat that endangers the entire financial system,
often originating with the failure of a single institution or market and then triggering
a broader chain reaction. Regulators and policymakers focus on systemic risk pre-
cisely because it reaches beyond isolated firms and markets, carrying the potential
to ignite a full-blown financial crisis and produce severe economic downturns. One
well-known example occurred in the late 1990s, when the hedge fund Long-Term
Capital Management (LTCM) experienced severe distress. To avoid widespread
repercussions, the Federal Reserve convened an emergency meeting with major
banks in an effort to engineer a rescue plan. Such interventions aim to restore
confidence because if market sentiment collapses, even a localized disruption could
escalate into a global crisis.

When an entity is considered “too big to fail,” government agencies often
intervene—potentially using taxpayer funds—to conduct a bailout. However, this
assistance is not guaranteed, as the sovereign debt itself can default under extreme
conditions. A major driver of systemic risk is the high degree of interconnectivity
among financial institutions. Banks, insurance companies, and other financial enti-
ties often hold each other’s debt or rely on similar funding channels; consequently,
the failure of a key player can have a ripple effect. The collapse of Lehman Brothers
in 2008, for example, led to a huge impact on the global financial system due to
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the firm’s extensive network of loans, derivatives, and credit arrangements. These
interdependencies indicate how quickly a localized problem can spread, posing a
systemic threat that demands careful monitoring, robust regulation, and coordinated
policy responses.

1.1.8 Environmental, Social, and Governance (ESG) Risk

ESG risk involves understanding the potential financial impact of environmental,
social, and governance factors on investments. In recent years, ESG risk has become
an important topic of financial analysis as investors and companies recognize their
importance in managing real risks that can affect long-term performance. ESG
provides different perspectives that allow us to assess how well a company is
prepared to face the challenges of the modern world, from climate change to social
responsibility to ethical leadership. Let’s break down what ESG risk encompasses
and discuss why it is becoming a big deal in the investing world.

Environmental risk contains a wide spectrum of concerns, including climate
change, depletion of natural resources, waste management, and pollution. Busi-
nesses that rely heavily on fossil fuels or do not mitigate their environmental
impact can face substantial legal, financial, and reputational challenges. Heightened
regulatory measures, such as those designed to reduce carbon emissions, can
significantly increase operational costs for companies not prepared to adapt. In
parallel, organizations linked to environmental harm or ecological disasters risk
losing public trust and enduring long-term damage to their brand. These realities
underscore why investors and stakeholders increasingly focus on the environmental
footprint of a company when evaluating its overall viability.

Social risk focuses on how companies manage relationships with employees,
suppliers, customers, and the broader communities where they operate. Issues such
as labor standards, diversity and inclusion, human rights, and consumer protection
have become central to ensuring sustainability and fostering stakeholder confidence.
As an example, an unfavorable review from a former employee on Glassdoor can
put a bad look on the public image of an organization, potentially deterring both
prospective talent and investors. In today’s interconnected economy, companies
demonstrating proactive and responsible social practices are often more resilient,
with a stronger capacity to avoid costly controversies.

Governance risk, meanwhile, refers to the internal policies, leadership structures,
and oversight mechanisms that guide corporate decision-making. It involves factors
such as board diversity, executive compensation schemes, shareholder rights, and
transparency in financial disclosures. Many companies, for example, strive to
ensure that their boards meet certain benchmarks in terms of gender, professional
background, or other diversity measures, recognizing that broader representation
often correlates with more balanced and effective leadership. By maintaining high
standards in environmental, social, and governance (ESG) practices, organizations
can not only mitigate risk but also strengthen their reputations and long-term
competitiveness.
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Table 1-1 Overview of risks in financial markets

Type of Risk Description

Market Risk Risk of losses due to changes in market prices of financial instruments
like stocks, bonds, foreign exchange rates, and commodities.
Influenced by economic news, political events, natural disasters, and
investor sentiment. Includes equity risk, interest rate risk, currency
risk, and commodity risk.

Credit Risk Risk that a borrower will not repay a loan or fulfill financial
obligations. Key for banks, lenders, and bond investors. Includes
default risk, credit spread risk, and downgrade risk.

Liquidity Risk Risk that an investor cannot buy or sell an asset quickly without
significantly impacting its price. Includes asset liquidity risk (lack of
buyers or sellers) and funding liquidity risk (inability to access funds).

Operational Risk Risk of loss due to failures in internal processes, systems, people, or
external events. Examples are process failures, system outages, human
errors, and natural disasters.

Model Risk Risk arising from inaccuracies in the mathematical models used for
financial decision-making. Can result from wrong assumptions,
poor-quality data, or errors in implementation.

Legal and Regulatory
Risk

Risk of financial loss due to changes in laws, regulations, or
government policies. Includes regulatory changes, compliance costs,
and potential legal actions.

Systemic Risk Risk of a breakdown in the entire financial system, often triggered by
the failure of a major institution. Can cause a chain reaction or
contagion effect, leading to a global crisis.

ESG Risk Risk related to environmental, social, and governance factors affecting
investments. Includes environmental risks (e.g., climate change),
social risks (e.g., labor practices), and governance risks (e.g.,
corporate policies).

1.1.9 A Summary of Common Risk Types

Table 1-1 provides a high-level overview of the various types of financial risk
prevalent in financial markets. Each type of risk, be it market, credit, liquidity,
operational, model, legal and regulatory, systemic, or ESG, presents unique chal-
lenges and requires specific strategies for effective management. By recognizing
the characteristics and implications of each risk type, we can make more informed
decisions, adapt to changing conditions, and better protect our assets against
potential financial disruptions.

In the final section, we explore commonly used financial products and their
varying risk profiles. These instruments serve as fundamental risk management tools
in modern financial markets, enabling many practitioners to hedge, diversify, and
control the myriad of uncertainties inherent in investment and lending activities in
the financial markets.
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1.2 Common Financial Instruments

Having explored the various types of financial risks, we now look at the common
financial instruments as tools used to navigate these risks in the financial markets.
These tools include stocks, bonds, derivatives, and more, which are often used
by investors and institutions to build and manage portfolios. Not all financial
instruments are created equal when it comes to risk, so we will also rank them in
terms of their riskiness to help you better understand where they fit within a broader
investment strategy.

For example, bonds are generally considered less risky than stocks. Bonds are
debt products that generally offer an interest payment (called a coupon), which may
be fixed or floating, over a set period, and return the principal at maturity. They are
typically less volatile, making them a safer choice for more conservative investors.
However, while stocks offer the potential for higher returns, they come with greater
volatility and risk. Then, there are other instruments like derivatives, which can
be used to hedge risks or, conversely, to take on additional risk (called leverage) in
pursuit of higher returns. Understanding the risk profile of each instrument is crucial
because it helps us determine how best to incorporate them into the investment
strategy based on the specific risk tolerance and investment objective.

In this section, we will attempt to group common financial instruments by
the typical risk levels, ranging from low-risk options that offer more stability to
high-risk choices that come with the potential for higher returns, but also greater
volatility. We start with low-risk assets.

1.2.1 Low-Risk Assets

Low-risk assets are generally known for their stability and are less prone to
significant price swings compared to higher-risk investments. They are the bedrock
of conservative investment strategies, appealing primarily to those who prioritize
capital preservation and steady income over pursuing higher returns. These are
assets that are used to protect the principal amount invested since they provide
a relatively predictable, albeit modest, return. Although they may not deliver
spectacular gains, such reliability makes them attractive, especially in uncertain or
volatile market conditions. Let us take a closer look at some common low-risk assets
and their risk-return characteristics.

• Cash and Cash Equivalents: These are considered the safest assets around.
Cash equivalents include instruments such as money market funds, Treasury
bills, and savings accounts. The primary appeal of these assets is that the
principal is almost always guaranteed, which means you are highly unlikely to
lose money. However, this safety comes at a cost—they offer very low returns,
often barely keeping up with inflation. For example, a savings account might
provide a return of 1–2% per year, which is minimal but stable. These are
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ideal for risk-averse investors who prioritize liquidity, which means they can
easily access their money as needed, without worrying about market fluctuations.
They’re also a great option for those who need to park their funds temporarily
while deciding on more strategic and longer-term investments.

• Government Bonds: Government bonds, especially those issued by stable gov-
ernments, such as US Treasury bonds, are another popular low-risk asset. They
are considered low-risk because they are backed by the government’s ability to
tax its citizens and print money if needed. This means that government bonds
are highly unlikely to default, although such defaults have happened before.
A notable example is the 2012 Greek debt crisis, when Greece restructured its
sovereign bonds under severe economic pressure. Government bonds provide
regular interest payments, known as coupons, which can offer a reliable income
stream to investors. They are less volatile than stocks, meaning that their prices
do not fluctuate as much in response to market news or economic data. However,
the trade-off is that the returns are typically lower than the riskier assets. For
example, a ten-year US Treasury bond could yield around 2–3% annually, which
is better than cash but still relatively modest. These are a good option for
conservative investors or retirees who want to ensure a steady income without
taking on much risk.

• Investment-Grade Corporate Bonds: These are bonds issued by companies
with strong credit ratings, such as those rated BBB or higher by agencies like
Standard & Poor’s or Moody’s. Although they are slightly riskier than govern-
ment bonds (due to the small probability of default), they are still considered
relatively low risk. To account for such default risk, the returns, or yields, on
investment-grade corporate bonds are typically higher than those on government
bonds, offering a bit more income for a bit more risk. For example, an investment-
grade corporate bond might yield 3–5% per year, which is attractive to investors
looking for a balance between risk and return. These bonds are suitable for those
who want a higher yield than government bonds without taking too much risk in
high-yield or junk bonds.

In summary, low-risk assets offer safety and stability. They’re perfect for
investors who want to protect their principal and enjoy a predictable income stream
without worrying about market turbulence. Although the returns on these assets are
lower than most higher-risk investments, the trade-off is still safety and stability,
especially in times of economic uncertainty or for those nearing retirement who
need to safeguard their savings.

1.2.2 Moderate-Risk Assets

Moderate-risk assets seek a sweet spot between risk and return. These assets are
good investment vehicles for investors who are looking to take on a bit more risk,
but are not yet ready to dive into high-risk investments. They offer a nice balance,
providing the potential for higher returns than low-risk assets while still maintaining



24 1 Introduction to Quantitative Risk Management

a reasonable level of stability. Let us take a closer look at some common types of
moderate-risk assets.

• Dividend-Paying Stocks: Dividend-paying stocks represent shares of listed
companies that provide dividends to shareholders. These stocks are considered
moderately risky because they provide a dual benefit: the potential for both
capital appreciation (as the stock price increases) and a steady income stream
through dividends (should this be provided). Companies that pay dividends are
usually more mature and have stable cash flows, and issuing such dividends
also has a promoting effect, thus leading to lower volatility in their stock prices
compared to those of high-growth companies. However, a certain level of risk is
involved. If the market goes down or the company’s financial status worsens,
the stock price will drop, and the dividend payout may be reduced or even
avoided. Despite these risks, these dividends remain an important consideration
for investors seeking long-term growth and short-term income, particularly
during periods of market uncertainty.

• Real Estate Investment Trusts (REITs): REITs allow investors to participate
in the real estate market without having to purchase and own properties directly.
The purchase is made through a company that owns and operates the real estate to
generate rental income. These real estate properties could include multiple types,
including office buildings, shopping malls, or apartments. Investors then enjoy
a percentage of the rental income based on the total ownership of shares. Like
stocks, real estate property could increase in value, along with dividend payout,
which amounts to a steady stream of income. REITs are subject to market risk
that causes housing prices to move downward, as well as interest rate risk that
influences property value given rising interest rates.

• High-Yield Bonds (Junk Bonds): High-yield bonds, often referred to as junk
bonds, are issued by relatively risky companies with lower credit ratings. These
companies are considered more likely to default on their debt than creditworthy
companies, so bond yields are set higher to attract investors to take up the
additional risk. This means that if the issuing company fails to meet its debt
obligations, bondholders could lose part or all of their investment. The higher
return of high-yield bonds thus comes from the risk premium taken by bond
investors. In addition, these bonds also offer diversification benefits, as their
returns are often less correlated with traditional stocks and (low-yield) bonds.

In summary, moderate-risk assets provide a middle ground for those who prefer
more than just the safety of low-risk options but aren’t quite ready to dive into high-
risk territory. These assets combine the potential for higher returns with a level of
stability that can help cushion against market volatility.
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1.2.3 High-Risk Assets

High-risk assets carry the potential for substantial returns, but also bear the equiv-
alent possibility of significant losses. These assets are geared toward investors who
exhibit higher risk tolerance, seek notable portfolio growth, and are comfortable
with the increased volatility that may ensue. In other words, the prices of high-risk
assets can deliver considerable rewards but also fluctuate dramatically in response
to market conditions, economic factors, or even company-specific news. Let us now
look at several common categories of such high-risk assets.

Stocks (equities) issued by smaller companies or startups are commonly
regarded as high-risk assets due to their increased volatility. Unlike dividend-paying
stocks that can provide a steady income stream and often exhibit more moderate
price fluctuations, shares of newly established or smaller-scale businesses face
increased uncertainty. Their limited size makes them more susceptible to market
dynamics, sometimes resulting in rapid price movements. Although this volatility
can yield substantial returns in a bullish environment, it also creates the possibility
of significant losses if the market declines or the company fails to meet performance
expectations. To mitigate this elevated risk, investors often diversify their portfolios,
for instance, by holding stocks from multiple sectors or asset classes.

Cryptocurrencies, such as Bitcoin and Ethereum, are among the most volatile
assets in modern financial markets. Their rapid price fluctuations can generate
sizable returns, yet this potential is also accompanied by a similarly high degree of
risk. Prices are influenced by a multitude of factors, including market sentiment,
technological innovation, regulatory developments, and broader macroeconomic
conditions. In contrast to traditional assets, cryptocurrencies typically lack intrinsic
value and government backing, which further amplifies their risk profile. In addition,
ongoing regulatory uncertainties and the susceptibility of digital exchanges or
wallets to security breaches add additional complexity to their investment landscape.
Consequently, while cryptocurrencies can yield impressive gains, we must also
recognize potential significant losses and exercise due diligence before allocating
capital to this emerging asset class.

• Commodities, such as oil, gold, silver, and various agricultural products, can
be highly speculative investments due to their wide exposure to factors such
as geopolitical events (for instance, unrest in oil-producing regions), weather
patterns (which affect crop yields), and global economic cycles (shaping indus-
trial demand for metals). These factors can result in sudden and substantial
price movements, leading to increased risk for investors. At the same time,
commodities may offer valuable diversification benefits and provide a hedge
against inflation, since they often appreciate in price during periods of rising
inflation.

• Private equity and venture capital involve the acquisition of stakes in privately
held companies, often startups or businesses in the early stages of development.
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Although such investments can generate substantial returns, often exceeding
those in public equity markets, this potential is also accompanied by increased
risks. A venture may also face liquidity risk because private shares cannot be
readily bought or sold on the open market. Those investing in private equity
or venture often need to wait several years for the company to go public or be
acquired, which typically brings a significant amount of return. Furthermore, the
lack of regular financial disclosures and the high failure rate among early-stage
companies amplify the risk profile. However, for those equipped to bear these
uncertainties, private equity and venture capital can offer a capital boost for high-
growth sectors. This requires a long-term investment horizon and the patience to
tolerate elevated levels of volatility.

In general, high-risk assets can provide significant growth opportunities, but also
require a careful approach to risk management.

Next, we look at another class of risky assets, called derivatives.

1.2.4 Derivatives

Derivatives are a different breed of financial instruments. Unlike traditional invest-
ments in which you own an asset directly, derivatives are contracts that derive
their value from the performance of something else, such as a stock, bond,
commodity, or even an interest rate. This indirect relationship gives derivatives
their unique versatility: they can be used to hedge against risk, speculate on future
price movements, or even take advantage of arbitrage opportunities when markets
experience temporary frictions. Let us look at some common types of derivatives:

• Options serve as financial contracts that give the right, but not the obligation,
to buy or sell an underlying asset at a predetermined strike price on or before
a specified expiration date. This structure (assuming a call option) gives us a
unique advantage in that we can reap the benefit of unlimited upside potential,
along with limited downside risk, without committing to its full purchase or sale.
Options can also be used for hedging purposes, which can mitigate downside
risk and protect against adverse price movements. When used for speculative
purposes, they can offer outsized returns relative to the initial premium (paid
to purchase the option). However, options exhibit a varied risk profile. On the
one hand, option buyers face limited risk, which is capped at the premium paid
for the contract. However, option writers (sellers) may incur substantial losses if
the market moves against them since their potential liability can far exceed the
premium received. This combination of versatility and asymmetrical risk makes
options a powerful but potentially dangerous tool.

• Futures and Forwards are derivative contracts that obligate one to buy or sell
an underlying asset at a predetermined price on a specified future date. Futures
are standardized instruments traded on regulated exchanges, which enjoy a high
level of liquidity and transparency, while forwards are privately negotiated over-
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the-counter (OTC) contracts that offer more customization, but lack sufficient
oversight and market visibility. Hedgers such as farmers and oil producers are
frequent users of futures and forwards as they are interested in locking the future
prices to be transacted. After locking the prices, these farmers and producers are
no longer subject to unfavorable market fluctuations, although they also give up
opportunities for the upside volatility and resulting return. Similarly, speculators
would bet on price movements for profit. Being derivative contracts, they provide
a leverage effect, meaning even a small change in the price of the underlying asset
could lead to substantial gains or losses.

• Swaps are derivative contracts that allow two parties to exchange specified cash
flows or assets, often to manage or transfer risk. The most commonly encountered
variants are interest rate swaps, wherein one party exchanges a fixed interest rate
for a floating interest rate (or vice versa), and currency swaps, through which
counterparties swap principal and interest payments denominated in different
currencies. A typical use case involves converting a floating rate loan to a
fixed rate obligation, thereby stabilizing payments and insulating the borrower
from interest rate fluctuations. However, participating in a swap introduces
counterparty risk, as each party depends on the other’s capacity to meet ongoing
payment obligations. If the counterparty’s creditworthiness deteriorates, or if the
counterparty defaults, the non-defaulting party can face financial losses and find
itself without the anticipated hedge.

Derivatives represent a category of highly adaptable instruments that can be used
to achieve various objectives, including hedging strategies and speculative positions.
Although subsequent chapters will illustrate specific hedging examples, it is equally
important to recognize the substantial losses that can arise from the improper
or excessive use of these products. Furthermore, derivatives do not simply align
with conventional low-, medium-, or high-risk classifications, given their structural
complexities and the diverse ways in which they can be utilized. Consequently, it
is more appropriate to treat them as a separate asset category in any comprehensive
risk assessment.

1.2.5 A Summary of Financial Instruments by Risk Level

Table 1-2 categorizes different financial instruments by their typical risk levels,
providing a unified overview of the spectrum of investment options available in
financial markets. Low-risk assets, such as cash equivalents, government bonds, and
investment-grade corporate bonds, are ideal for investors who prioritize stability and
capital preservation. Moderate-risk assets, such as dividend-paying stocks, REITs,
and high-yield bonds, offer a balanced approach, providing the potential for higher
returns while maintaining a reasonable level of risk. On the other hand, high-risk
assets, including stocks of smaller companies, cryptocurrencies, commodities, and
private equity, cater to investors with a higher risk appetite, offering the possibility of
significant returns but with greater volatility. Finally, derivatives are a unique class
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Table 1-2 Classification of financial instruments by risk level

Risk level Asset type Examples

Low-Risk Assets Stability and predictable income; ideal
for conservative investors.

Cash Equivalents (e.g.,
savings accounts, money
market funds), Government
Bonds, Investment-Grade
Corporate Bonds

Moderate-Risk Assets Balance of risk and return, with
moderate volatility.

Dividend-Paying Stocks,
REITs, High-Yield Bonds

High-Risk Assets High returns and high volatility; suited
for high-risk tolerance.

Stocks (e.g., smaller
companies or startups),
Cryptocurrencies,
Commodities (e.g., oil,
gold), Private Equity,
Venture Capital

Derivatives Instruments that derive value from
underlying assets; used for hedging or
speculation.

Options, Futures, Forwards,
Swaps

of instruments that can range from low to high risk depending on their usage; they
are highly versatile tools that are used for both hedging and speculative strategies.

1.3 Summary

This chapter introduced the multifaceted nature of financial risk by examining
how unexpected events, ranging from daily market fluctuations to historic pan-
demics, can severely impact investment portfolios and the broader financial system.
We introduced standard categories of risk, including market, credit, liquidity,
operational, model, legal and regulatory, systemic, and ESG considerations, each
highlighting distinct challenges. Through real-world examples, such as the 2020
market sell-off and the ongoing focus on climate-driven regulations, we saw how
these risk dimensions can manifest abruptly, underscoring the need for robust risk
assessment and mitigation strategies.

We then explored how probability distributions serve as indispensable tools
in capturing the randomness of market-driven outcomes, offering quantitative
insights into the likelihood of favorable and adverse scenarios. Building on this
probabilistic foundation, we demonstrated practical risk management techniques
such as diversification, hedging, and tactical asset allocation. By presenting a
balanced 50/50 equity-bond portfolio vs. a purely equity-oriented investment, we
illustrated how mixing uncorrelated assets can reduce volatility and drawdowns,
particularly during periods of market turbulence.

Finally, we surveyed an array of financial instruments and classified them by
typical risk levels, from low-risk government bonds and investment-grade securities
to moderate-risk assets such as dividend-paying stocks and REITs, all the way up
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to high-risk ventures such as early-stage equities and cryptocurrencies. Derivatives,
which function as contracts derived from underlying assets, were also discussed for
their dual capacity to hedge against unwanted risk or amplify speculative positions.
Together, these discussions serve as a gateway to the quantitative methods and
analytical frameworks detailed in the following chapters.



2Fundamentals of Risk and Return in Finance

The world of finance revolves around two fundamental concepts: risk and return.
When we invest, the goal is often to maximize return, minimize risk, or reach
an optimal trade-off between the two. However, a higher level of risk often
accompanies higher potential returns, and these two quantities are often positively
correlated. For example, the previous chapter introduced low-risk and high-risk
products, which also correspond to (relatively stable) low-return and (likely volatile)
high-return assets. This risk manifests itself in the uncertainty of the investment
outcome, meaning that we are not certain about whether the investment will be
profitable or not, and, if profitable, how much. Thus, a risk-averse investor tends to
prefer low-risk products that deliver more or less guaranteed returns.

Understanding how risk and return are intertwined is crucial for making informed
investment decisions. The trade-off is simple: to aim for higher returns, we need to
face higher risk. This additional risk that investors take on is what generates the
“risk premium,” an additional layer of return that compensates for the burden of
this uncertainty. In essence, risk-seeking investors are not just gambling for higher
rewards; they’re earning a premium for venturing into more volatile territories. This
concept is similar to starting a business; if it is successful, the return could be
tremendous, and the corresponding risk of losing market competition or not gaining
the right market share is also high. Grasping this risk-return dynamic is therefore at
the heart of constructing and managing a successful investment portfolio.

2.1 Understanding Return

So what is the return of a financial asset? Return is the financial reward we receive
for putting our money to work in the financial market instead of not investing at all
(even saving in the bank gives us fixed interest). Return measures how much our
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investment has grown or decreased over some period of time. That is, we only need
to use the price of our current portfolio Pt . to subtract the previous price Pt−1 . and
obtain the difference Pt −Pt−1 .. To avoid the impact of the unit, we often convert this
difference in a relative term, giving Pt−Pt−1

Pt−1
., which represents how much percentage

change the portfolio experiences from period t − 1. to t . This is to facilitate the
comparison across different assets and time periods.

Returns can come from a variety of sources, depending on the specific type of
instrument invested. In practice, all components are included in the calculation of
the return. For example, if our portfolio is a stock that pays dividends Dt . in the time
period t , then our previous return calculation will be Pt−Pt−1+Dt

Pt−1
.. Common sources

of return include

• Capital Appreciation: This is the increase in the value of the asset itself, such
as a stock price rising over time.

• Dividends: Dividends are cash payments made to shareholders, typically dis-
tributed from a company’s profits.

• Interest Payments: Bonds and other fixed-income securities generate returns
through regular interest payments (coupon payment).

These are three common streams of income: capital gains, dividends, and
interest. However, we can also define custom derivative products with desired
payoff structures to satisfy investor needs with either return maximization or risk
minimization.

In addition, it is a common practice to annualize returns, which means converting
the original calculated returns from the previous period (which could be daily,
monthly, or quarterly) into a standardized annual basis. This gives a clearer
picture of how an investment performs on a yearly basis and makes it easier
to compare different investment opportunities, regardless of their time frames.
However, converting to an annual basis is not a straightforward process, such as
multiplying a quantity by 12 to convert the figure from monthly to yearly. In finance,
money invested in the financial market (such as saving in a bank) gives interest, and
different ways to calculate the interest could make a notable difference, due to the
process of compounding.

For example, if a stock return is 2% in a single month, the annualized return
would not simply be 12 times that monthly return. Due to the effect of compounding,
the annualized return would be slightly higher, capturing the cumulative impact of
returns reinvested over time. This practice of annualization provides a consistent
and accurate measure of the performance of an investment over different periods.

Note that there are also different ways to report this return. For example, we
can use the absolute return to measure the total amount of money gained or lost
or the percentage return to represent the gain or loss as a proportion of the initial
investment. We can use cumulative return to generate the wealth curve and indicate
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the total wealth across each period of the investment horizon or use a single-period
return to report the individual percentage return in each period. Additionally, we
can use risk-adjusted return to consider the risk taken to achieve the return or use
the ratio of the two (return divided by risk) to give the return per unit risk (similar
to the idea of Sharpe ratio introduced later in this chapter).

2.2 Understanding Risk

Now, let us flip to the other side of the coin: risk. While return represents the
financial reward of an investment, risk is the uncertainty surrounding how much
of that return we will actually receive (if it is indeed a positive return). In finance,
risk is most often associated with volatility, which measures the fluctuations in an
investment’s value over time. The greater the volatility, the more the value can
swing from day to day, week to week, or year to year, indicating a higher level
of uncertainty or risk. When drawn on the graph, a high-volatility asset would look
more wiggly than a low-volatility one.

So far, we have used volatility as a measure of risk. However, such volatility
means both upside and downside volatility. While everyone loves the upside jump
(assuming that you have the asset), we are generally more interested in (and
concerned with) the downside. In addition, we have learned that the risk itself can
take many forms, such as market risk, credit risk, liquidity risk, and operational
risk (see Chapter 1). These different types of risk do not exist in isolation. Often, a
single investment may be subject to multiple risks simultaneously, each influencing
the overall risk profile in complex ways (which are determined by their correlation).
Although volatility provides a lens for understanding some of the risks, it is only
part of the bigger picture in assessing and mitigating the uncertainty that comes
with investing.

Let us look at one simulated example to compare the wealth curve of stable vs.
volatile stocks and analyze how varying volatility levels can affect an investor’s
wealth trajectory over the course of a year. We first assign different drift (average
return) and volatility parameters to two stocks—one labeled “stable” and the other
“volatile”—to see how daily random fluctuations accumulate into different wealth
paths. The stable stock shows less severe price changes but similarly limited upside
potential, whereas the volatile stock experiences more dramatic gains or losses day
by day. As seen in Figure 2-1, although both stocks begin with the same initial
investment and share an identical average daily return, increased volatility in the
second stock can lead to substantial divergence in their final outcomes, making its
wealth curve more extreme compared to the first stock.
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Figure 2-1 Comparing the wealth curve of stable and volatile stocks over one year

See Listing 2-1 used to generate Figure 2-1.

1 import numpy as np
2 import matplotlib.pyplot as plt
3

4 # Number of days in a simulated year
5 num_days = 365
6

7 # Simulation parameters
8 initial_wealth = 100.0 # starting wealth for both stocks
9

10 # Stable Stock parameters
11 stable_daily_drift = 0.0005 # e.g., 0.05% mean daily return
12 stable_daily_vol = 0.005 # e.g., 0.5% standard deviation
13

14 # Volatile Stock parameters
15 volatile_daily_drift = 0.0005 # same drift for easier comparison
16 volatile_daily_vol = 0.015 # e.g., 1.5% standard deviation
17

18 # Arrays to hold wealth values over the simulation
19 stable_wealth = np.zeros(num_days)
20 volatile_wealth = np.zeros(num_days)
21

22 # Initialize
23 stable_wealth[0] = initial_wealth
24 volatile_wealth[0] = initial_wealth
25

26 # Seed for reproducibility; remove or change if desired
27 np.random.seed(42)
28

29 # Simulation loop for each day
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30 for i in range(1, num_days):
31 # Random daily return for the stable stock
32 stable_shock = np.random.normal(stable_daily_drift ,

stable_daily_vol)
33 stable_wealth[i] = stable_wealth[i-1] * (1 + stable_shock)
34

35 # Random daily return for the volatile stock
36 volatile_shock = np.random.normal(volatile_daily_drift ,

volatile_daily_vol)
37 volatile_wealth[i] = volatile_wealth[i-1] * (1 +

volatile_shock)
38

39 # Create a day index for plotting
40 days = np.arange(num_days)
41

42 # Plot both wealth curves
43 plt.figure(figsize=(10, 6))
44 plt.plot(days, stable_wealth , label=’Stable Stock’)
45 plt.plot(days, volatile_wealth , label=’Volatile Stock’)
46 plt.title(’Simulated Wealth Curves Over One Year’)
47 plt.xlabel(’Day’)
48 plt.ylabel(’Wealth’)
49 plt.legend()
50 plt.grid(True)
51 plt.tight_layout()
52 plt.show()

Listing 2-1 S&P 500 price curve

Note that the parameters used in this simulation constitute two Gaussian
(also called normal) distributions. Each normal distribution is specified with two
parameters, mean (also called drift) and variance, which roughly correspond to the
asset return and volatility. In this simulation, we used the same mean but different
variances for the two distributions. Figure 2-2 shows the Probability Density
Function (PDF) of stable and volatile stocks in terms of their daily returns. A PDF
specifies the different outcomes and the corresponding probabilities. Clearly, the
volatile stock shows wider coverage and, therefore, a higher degree of uncertainty.

Listing 2-2 is used to generate the graph. In general, we would observe that a
higher standard deviation σ . leads to a wider range of possible outcomes in the end,
even if the mean parameter μ. remains the same. In addition, the PDF with higher
volatility is flatter and wider, indicating a higher uncertainty in day-to-day returns.

1 import numpy as np
2 import matplotlib.pyplot as plt
3 from scipy.stats import norm
4

5 # Parameters for Stable Stock
6 stable_mean = 0.0005 # 0.05% mean daily return
7 stable_vol = 0.005 # 0.5% std. dev.
8

9 # Parameters for Volatile Stock
10 volatile_mean = 0.0005 # same mean for direct comparison
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11 volatile_vol = 0.015 # 1.5% std. dev.
12

13 # Range of possible daily returns for plotting PDF
14 x = np.linspace(-0.05, 0.05, 1000)
15

16 # Calculate the PDF values
17 stable_pdf = norm.pdf(x, loc=stable_mean , scale=stable_vol)
18 volatile_pdf = norm.pdf(x, loc=volatile_mean , scale=volatile_vol)
19

20 # Plot
21 plt.figure(figsize=(8, 5))
22 plt.plot(x, stable_pdf , label=’Stable Stock PDF’)
23 plt.plot(x, volatile_pdf , label=’Volatile Stock PDF’)
24 plt.title(’PDF of Stable vs. Volatile Stock Daily Returns’)
25 plt.xlabel(’Daily Return’)
26 plt.ylabel(’Probability Density’)
27 plt.legend()
28 plt.grid(True)
29 plt.tight_layout()
30 plt.show()

Listing 2-2 Comparing PDFs of stable and volatile stocks

Figure 2-2 Probability density function of stable vs. volatile stock daily returns
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2.3 Risk-Return Trade-Off

We have learned that higher potential returns come with higher risks. This relation-
ship is known as the risk-return trade-off. This means that it is very difficult to find
a financial product with a higher return and a lower risk in the market. Even if there
is, it could be a temporary promotion. This trade-off is often visualized in the mean-
variance space of a portfolio, where the mean corresponds to the expected return
and the variance (or, equivalently, standard deviation) represents the risk. Picture
a two-dimensional plot, with risk on the horizontal axis and return on the vertical
axis. The financial instruments we have discussed so far, with different levels of risk,
will fill in the graph from the lower left to the upper right, signifying the generally
monotone relationship between risk and return.

In this mean-variance graph, the upper-right quadrant contains high-risk and
high-return assets, such as stocks, commodities, and derivatives. These investments
can offer attractive returns, but come with significant volatility and the potential
for loss. The lower-left quadrant contains stable and low-return assets, such as
bonds, savings accounts, and other fixed-income securities. These assets tend to
provide more stability and lower returns, appealing to risk-averse investors. Also,
see Figure 2-3 for an illustration.

This trade-off is the fundamental theme in modern portfolio management,
pioneered by Markowitz (1952), who proposed that a diversified portfolio seeks
to optimize the balance between risk and return. This balance mixes assets from

Figure 2-3 Mean-variance space of risk-return trade-off
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different parts of the mean-variance space to match the investor’s risk tolerance and
return objectives. Let us take a closer and more quantitative look at how to measure
risk and return.

2.4 Measuring Return

Return is a key measure of financial performance in financial markets. It quantifies
how much the asset has appreciated or depreciated over a specific period of time. It
also provides a standardized way to assess financial growth in various asset classes.
In the following section, we break down the concept of return and explore different
ways in which it can be measured and interpreted.

As briefly introduced earlier, return can take several forms, including absolute
return and percentage return. We also have logarithmic return, total return, price
return, annualized return, single-period return, and multi-period return.

2.4.1 Absolute Return

As the most straightforward form of return, absolute return is the total profit or loss
of an investment. For example, if we invested $1,000 and ended up with $1,200, the
absolute return is simply $200. Although the calculation is intuitive, the absolute
return does not provide a good context about the base, in that a $200 gain will not
be so attractive for a total investment of $10,000 (which corresponds to a 2% return).

2.4.2 Percentage Return

To create a level playing field for comparing investments, we can convert absolute
returns into a percentage term of the initial investment via the following formula:

.Percentage Return = Terminal Value − Initial Value

Initial Value

Denoting the percentage return of period t − 1. to t as Rt . and the asset prices in
the period t as St ., we have the following:

.Rt = St − St−1

St−1
= St

St−1
− 1

For example, if the investment grows from $1,000 to $1,200, the percentage
return is

.
1200 − 1000

1000
= 20%
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This allows us to compare returns across investments of different sizes and time
frames. We may also refer to this percentage return as the simple return.

2.4.3 Logarithmic Return

Logarithmic return, or log return (also known as continuously compounded return),
offers an alternative to simple percentage returns, especially when analyzing longer-
term investments or volatile assets:

.Log Return = ln
Terminal Value

Initial Value

Log returns are additive over time, which simplifies calculations for returns that
involve multiple periods. To see this, let us define the single-period log return at
time period t as

.rt = ln
St

St−1

and for multiple periods, the cumulative log return is

.rtotal = ln
Sn

S0

Using the property of logarithms, we have the following:

.rtotal = ln
Sn

Sn−1
· Sn−1

Sn−2
· · · S2

S1
· S1

S0

which simplifies to

.rtotal = r1 + r2 + · · · + rn

Hence, log returns are additive over time, while simple returns require com-
pounding. We can convert the cumulative log return back to a simple return via
the following:

.Rtotal = ertotal − 1

2.4.4 Total Return vs. Price Return

The price return measures only the change in the price of an asset, while the total
return incorporates both price changes and any cash flows, like dividends or interest,
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received during the holding period. By comparison of the two, the total return is
a more comprehensive measure of performance, as it includes all components of
investment income.

For a stock that pays dividends, the total return would be

.Total Return = Terminal Value + Dividends Received − Initial Value

Initial Value

2.4.5 Annualized Returns

One practical challenge when comparing different investments is the different
holding periods. For example, comparing the return on a stock held for three months
to the return on a bond held for a full year would be difficult without holding them on
the same investment horizon. To make returns comparable, we often convert them to
an annualized return, which shows the equivalent yearly return as if the investment
had grown at a steady rate for a full year.

To annualize a single-period return, we typically employ compounding, the
principle that each period’s earnings are reinvested to generate additional returns
in subsequent periods. At the start, the initial principal is multiplied by (1 + R). to
include both the original amount and the gain for that period. If multiple periods
follow, this multiplication is repeated each time, so after n periods, the total growth
factor becomes (1 + R)n ., which gives an exponential growth.

We can use the following formula to calculate the annualized return for an
investment period that is within one year:

.Annualized Return = (1 + Single Period Return)Number of Periods per Year − 1

For example, if the monthly return is 1%, the annualized return would be (1 +
0.01)12 − 1 = 12.68%.. The difference from simply multiplying 1% by 12 is due to
the effect of compounding.

When an investment is held over multiple years, we use the geometric mean to
find the average annual return and compound it to obtain the final value:

.Annualized Return = Terminal Value

Initial Value

1
Number of Years − 1

For example, if an investment grows from $1,000 to $2,000 over five years, the
annualized return is

.
2000

1000

1
5 − 1 = 14.87%
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Now, if the return is calculated using a frequency that is different than yearly
(such as monthly return) and lasts more than a year, we can still convert it into years
by adjusting the exponent to account for the total number of years covered by the
investment:

.Annualized Return = Terminal Value

Initial Value

12
Number of Months − 1

For example, if an investment grew from $1,000 to $1,500 over 18 months, we

can calculate the annualized return as 1500
1000

12
18 − 1 = 1.5

2
3 − 1 ≈ 0.287 or 28.7%..

2.4.6 Single-Period vs. Multi-Period Returns

When an investment covers more than one period, we need to account for how
returns compound as time passes. Compounding does not mean we add up single-
period returns; instead, since interest earned in the interim periods can also be
revested, the net return from compounding will be slightly higher than the additive
approach. That is, when returns compound, the return for each period is based on
the value generated in the previous periods. This compounding determines the real
growth (or decline) of an investment over multiple periods.

To calculate the multi-period return, we resort to the 1 + R formatted return,
which is in contrast to the simple return R. Thus, to calculate the terminal return
R0T . (in a simple return format), we can use

.R0T = (1 + R01)(1 + R12) · · · (1 + RT −1,T ) − 1

In this formula, we multiply all the single-period 1 + R formatted returns for each
period, which essentially captures how returns build on each other. We then subtract
1 at the end to bring the result back into a simple return format.

Let’s look at an example in which an investment experiences the following
returns over three months: +5%, –2%, and +3%. To calculate the multi-period
return, we multiply the individual period returns R03 = (1 + 0.05) × (1 − 0.02) ×
(1 + 0.03) − 1 = 0.05954 or 5.95%..

There is another quicker way to get the same result, which is using the terminal
price and the initial price alone. Specifically, the cumulative return over multiple
periods can also be calculated as

.R0T = ST

S0
− 1

where S0 . is the initial price of the asset, and ST . is the price in the final period T . In
the previous example, if we know the initial price and the final price, we can simply
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calculate R03 = ST

S0
− 1.. Both approaches give the same result, but compounding

makes the step-by-step growth more visible.

2.5 Measuring Risk

So far, we have been discussing the risk of an asset and how it correlates with return.
The risk is due to randomness in the outcome (terminal price of the asset), and thus
uncertainty in the final result gives the risk. Generally, a more uncertain outcome
corresponds to a higher risk, which means that the terminal return could be very
high or low. This level of uncertainty is also known as the volatility of the asset. The
higher the volatility, the more ups and downs we will see in the asset price curve.

To understand and quantify volatility in a more concrete way, we often use two
core measures: variance and standard deviation. These are fundamental to how we
measure risk in finance. Assume that we have the simple return Ri . on an asset over
multiple periods, where i = 1, 2, . . . , T .. The mean return can be calculated as

.RP =
T
i=1 Ri

T

This mean return RP . gives us a sense of where the asset’s returns generally
sit, on average, over time. In practice, the returns fluctuate, sometimes above and
sometimes below. Thus, we need to capture such deviations from the mean and get
a sense of its volatility as an indicator of risk.

The first step to quantifying risk is to measure how much each return deviates
from the mean. For each single-period return Ri ., the deviation from the mean is
Ri −RP .. Now, deviations can be positive (if a return is above the mean) or negative
(if it is below), and simply summing them up could potentially cancel out the ups
and downs. To avoid such a cancellation, we often square each deviation to make all
the deviations positive.

.σ 2
P =

T
i=1(Ri − RP )2

T

This gives us the variance σ 2
P ., which says how spread out the returns are around

the mean. The larger this number, the more the returns are deviating, and hence the
riskier the asset. However, the unit of variance is the square of the returns, which
makes it hard to interpret directly, so we could take an additional step to square-root
the variance to obtain the standard deviation.

Specifically, to bring variance back to the same scale as the original returns, we
can take the square root:

.σP =
T
i=1(Ri − RP )2

T
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This square root of the variance is known as the standard deviation, which is often
just called volatility. Now we are back to the same units as the returns themselves,
making it easier to understand and compare. Volatility essentially tells us how much
we could expect the asset return to deviate from its average. The higher the volatility,
the more erratic the asset’s return, and thus the greater the risk involved. Therefore,
volatility can be considered the standardized version of the spread of asset returns.

Note that squaring each deviation is more convenient mathematically than taking
the absolute value of each single-period return. Squaring preserves the sign but
makes all terms positive, just like taking the absolute value, but it also allows us
to use powerful tools from calculus and algebra. For example, when minimizing or
maximizing functions (such as variance), the squared deviations are differentiable,
whereas absolute value functions are not smooth (they have a “kink” at zero), which
makes mathematical analysis more difficult.

By squaring the deviations, we penalize larger deviations more heavily than
smaller ones. This makes variance (and hence standard deviation) particularly
sensitive to extreme values or outliers. In finance, large deviations from the mean
are often of greater concern (i.e., higher risk), so squaring helps capture this idea
that bigger deviations should have a disproportionately bigger impact on our risk
measure.

In addition, many financial models assume that returns are normally distributed,
which fits well with the properties of variance. The normal distribution has a natural
relationship with variance and standard deviation, allowing us to easily calculate
probabilities and make predictions about return behavior. The use of variance is
aligned with these statistical properties, making it a natural fit for risk measurement
in contexts where the normal distribution is a good approximation.

2.5.1 Annualization of Risk Measures

Variance and standard deviation give us a gauge of the level of risk for a particular
asset. For example, if we look at two assets with the same average return but
different volatilities, the one with the higher volatility is considered riskier because
its returns deviate more widely from the mean. However, as with asset returns, when
assessing the risk of an investment, it’s important to compare assets on the same
time scale. Risk metrics such as volatility also need to be annualized to make them
comparable across different time periods.

The goal of annualizing volatility is thus to estimate what the risk of an asset
would be on an annual basis, based on historically observed returns that last either
shorter or longer than a full year. To do this, we can use the following formula:

.σP,T = √
T · σP

where σP,T . is the annualized volatility, σP . is the single-period volatility (daily,
monthly, or quarterly), and T is the number of periods in a year (252 for trading
days, 12 for months, or 4 for quarters). The key insight here is that volatility scales
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with the square root of time. This means that we can estimate the volatility for a full
year simply by multiplying the square root of the number of periods in a year.

Notice that as the time period T increases, the annualized volatility σP,T . grows
at a decreasing rate due to the square root operation. This means that doubling the
number of periods does not double the annualized volatility; it only increases it by
a factor of

√
2..

Correspondingly, the annualized variance σ 2
P,T . grows linearly with time:

.σ 2
P,T = T · σ 2

P

Although volatility increases with
√

T ., variance increases directly with T . This
linear relationship with variance makes it straightforward to aggregate risk over
multiple periods.

As an example, suppose that the standard deviation (volatility) of a stock’s daily
returns is 0.1%. To annualize this daily volatility, we can use the following formula:

.σP,T = 0.001 · √
252 ≈ 0.0159 or 1.59%

This means that the annualized volatility would be around 1.59%, assuming 252
trading days in a year.

2.5.2 Difference in Volatility Calculated Using Daily vs. Monthly
Data

When calculating stock volatility, the frequency of data (daily vs. monthly) sig-
nificantly impacts the outcome. For example, daily volatility captures short-term
fluctuations in the stock price. This means that it reflects all minor market
movements, such as those caused by day-to-day news, investor sentiment, and
market microstructure noise. Daily volatility is more sensitive to sudden spikes
or drops in the stock price, providing a more granular view of risk. On the other
hand, monthly volatility smooths out the day-to-day fluctuations by averaging them
over the month. It primarily captures broader trends in the stock price rather than
the small movements seen in daily data, which are already smoothed out when
aggregating at a monthly level. Monthly volatility is, therefore, less reactive to
short-term noise and is influenced by longer-term forces such as economic cycles or
company fundamentals. Therefore, in general, daily volatility is higher than monthly
volatility because it encompasses the fine details of price movements, while monthly
volatility averages out these short-term variations.

Also, when it comes to compounding risk, different data granularity will lead
to different results. When calculating volatility using daily returns, we get a
compounded picture of risk because we are summing up many individual daily
movements (up to 252 trading days in a year). Multiplying by

√
252. further

amplifies the impact of these frequent price changes at a yearly level. However,
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when using monthly returns, we have only 12 data points in a year. These monthly
returns already aggregate the effects of the daily movements within each month.
Thus, the annualization multiplier is

√
12., which is much smaller, reflecting less

compounding of risk over the same period. Therefore, the volatility derived from
daily data will tend to be higher because it captures the compounded effect of
frequent price changes, whereas monthly data smooth out this noise.

Daily volatility also offers a more immediate reflection of market conditions.
It is sensitive to short-term market shocks like corporate earnings announcements,
geopolitical events, or unexpected macroeconomic data releases. This makes daily
volatility a good measure for traders who are concerned with short-term risk and
potential rapid market movement. It offers a more real-time gauge of risk. On the
other hand, monthly volatility provides a more stable view of the risk of a stock,
as it does not react as quickly to short-term market shocks. It is more appropriate
for long-term investors who are less concerned with daily noise and more focused
on general market trends and the company’s fundamentals. Choosing which type of
volatility to use thus depends on the investment horizon and frequency.

From a statistical estimation perspective, the more data points we have, the more
reliable the statistical measures (such as mean and standard deviation) are likely
to be. With daily data, we typically have 252 observations per year, compared to
just 12 with monthly data. This larger sample size reduces the estimation errors,
which leads to a more precise calculation of volatility. More data points mean that
estimates are less sensitive to outliers or random noise. With monthly data, a single
large return can significantly skew the volatility measure, while daily data spread
such impacts across multiple observations.

For example, higher-frequency data often improve the modeling and forecasting
of volatility. Many financial models, like GARCH (Generalized Autoregressive
Conditional Heteroskedasticity), benefit from high-frequency data to predict volatil-
ity more accurately. With more data points, the model can better capture patterns,
correlations, and the persistence of volatility over time, leading to more accurate
risk forecasts.

It also allows for more effective detection of market anomalies. For example, in
volatility clustering, periods of high volatility often follow each other. Daily data
allows for the detection of such clusters quickly, while monthly data might obscure
these patterns. In mean reversion or momentum, certain stocks exhibit short-term
momentum or mean reversion, where prices either continue to move in the same
direction or revert to a historical mean. These patterns are more easily detected and
taken into account using daily data.

In summary, while monthly data provide a smoother, more aggregated view of
stock volatility suitable for long-term trends, daily data offer more granularity, accu-
racy, and timeliness. This granularity allows better risk management and improved
forecasting and is particularly valuable for those who need a real-time assessment of
market risks or engage in short-term trading strategies. Therefore, higher-frequency
data are generally preferred for calculating volatility and managing financial risks
effectively.



46 2 Fundamentals of Risk and Return in Finance

2.6 Measuring Risk-Adjusted Return

Now that we have covered both asset return and risk, how can we combine them
to obtain a unified view? This combination means merging the risk and return into
a single number, which will make it easier to compare different assets on a risk-
adjusted basis. In the following, we introduce three of the most widely used metrics:
the Sharpe ratio, the Sortino ratio, and the Treynor ratio.

2.6.1 Sharpe Ratio

The Sharpe ratio is one of the most popular risk-adjusted performance metrics and
is proposed by Sharpe (1966). It measures how much excess return an asset (or,
more generally, a portfolio, if it is a single asset) generates per unit of risk taken. It
is defined as

.Sharpe Ratio = RP − Rf

σP

where RP . denotes the average return of the portfolio, Rf . is the risk-free rate (such
as the return on a Treasury bond), and σP . is the volatility of the portfolio returns.

The Sharpe ratio essentially tells us how much return is being earned per unit
of risk. A higher Sharpe ratio indicates a better risk-adjusted return, suggesting that
the investment is generating more return for each unit of risk taken. A Sharpe ratio
above one is often considered acceptable or decent, while a Sharpe ratio above two
is often deemed excellent. A negative return could also lead to a negative Sharpe
ratio.

Let us look at an example of calculating the Sharpe ratio. Consider a portfolio
with an annualized return of 5% and an annualized volatility of 20%, and another
portfolio with an annualized return of 10% and an annualized volatility of 50%.
Given a risk-free rate of 3%, the Sharpe ratios would be calculated as 0.05−0.03

0.20 =
0.10. and 0.10−0.03

0.50 = 0.14., respectively. Here, the second portfolio has a higher
Sharpe ratio, making it more attractive on a risk-adjusted basis, even though it has a
higher absolute volatility.

However, there is no differentiation between the upside risk and the downside
risk in the overall volatility term in the Sharpe ratio. Since most of us are risk averse
(taking $100 dollars away from us inflects more aversion than the joy brought by
giving us $100), most would prefer to minimize the downside risk more. This leads
to the following risk-adjusted return that focuses only on the risk below the target
return.
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2.6.2 Sortino Ratio

The Sortino ratio is a refinement of the Sharpe ratio that focuses only on downside
risk (negative deviations from a target return), rather than overall volatility. This
treatment allows us to focus only on the downside risk rather than the upside
volatility. The Sortino ratio is defined as

.Sortino Ratio = RP − Rf

σD

where σD . is the downside deviation (standard deviation of negative returns).
By focusing on returns that fall below a specified threshold (often the risk-free

rate), the Sortino ratio does not penalize a portfolio for its upside volatility (positive
returns). Thus, a higher Sortino ratio indicates that an investment generates higher
returns per unit of downside risk. This means that either the excess return is high
or the downside volatility is low. Therefore, the Sortino ratio is especially valuable
for investors who are primarily concerned with avoiding losses, such as risk-averse
individuals or those near retirement.

2.6.3 Treynor Ratio

The Treynor ratio is another measure of risk-adjusted return, similar to the Sharpe
ratio but focusing on the systematic risk (market risk) instead of the total risk. As
mentioned earlier, systematic risk is a major type of financial risk and impacts
all assets in the market. Based on the Capital Asset Pricing Model (CAPM), it is
measured by the beta of a portfolio βM ., which represents its sensitivity to the overall
market. It is defined as

.Treynor Ratio = RP − Rf

βM

Based on CAPM, βM . is defined as

.βM = Cov(RP ,RM)

Var(RM)

where the covariance term Cov(RP ,RM). measures the strength of comovement
between the returns of the portfolio and the overall market. A high positive
covariance indicates that portfolio returns generally move in the same direction as
the market. Var(RM).measures the variance of the market returns.

The Treynor ratio essentially measures how much excess return is generated per
unit of market risk. Unlike the Sharpe ratio, which uses total volatility σP . in the
denominator, the Treynor ratio considers only the portion of risk that cannot be
diversified (since the market factor is a systematic risk). A higher Treynor ratio
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Table 2-1 Comparison of Sharpe, Sortino, and Treynor ratios

Metric Definition When to Use

Sharpe ratio RP − Rf

σP

.
Use when you want to assess overall risk-adjusted performance,
accounting for all sources of risk (both systematic and idiosyncratic).

Sortino ratio RP − Rf

σD

.
Use when you are more concerned with downside risk and want to
avoid penalizing upside volatility. Ideal for conservative or risk-averse
investors.

Treynor ratio RP − Rf

βM

.
Use when focusing on the market (systematic) risk of a
well-diversified portfolio, and you wish to assess performance relative
to that systematic risk only.

implies a better risk-adjusted performance, relative to the market risk undertaken.
Since it uses βM ., it is particularly relevant when evaluating portfolios against a
benchmark index (e.g., the S&P 500). It is useful for comparing well-diversified
portfolios.

Table 2-1 provides a summary of the different measures of risk-adjusted return
and specific situations on when to use them.

The next section explores the use of these different performance measures in a
portfolio optimization context.

2.6.4 Evaluating PerformanceMeasures in Portfolio Optimization

In this section, we will assess these performance metrics in the context of different
portfolio selection strategies, each set to optimize a particular performance metric.
We will focus on three major US stocks as risky assets and apply various
optimization strategies to maximize returns, minimize risk, and optimize risk-
adjusted returns. This exercise allows us to better appreciate the roles of different
performance metrics in optimization management.

2.6.4.1 Data Preparation
As shown in Listing 2-3, we start by importing the necessary libraries and
downloading the necessary financial data for three major US stocks: Apple Inc.
(AAPL), Microsoft Corporation (MSFT), and Amazon.com, Inc. (AMZN). We will
also use the S&P 500 Index (SPY) as our market benchmark to calculate the Treynor
ratio. For all assets, we retrieve five years of daily adjusted closing prices between
2019 and 2024. We also calculate daily and annualized returns and risk measures for
the stocks. Note that the first row contains NaN values because there is no previous
day to compare. Thus, we remove the first row using the dropna() function.

1 import numpy as np
2 import pandas as pd
3 import yfinance as yf
4 import matplotlib.pyplot as plt
5 from scipy.optimize import minimize
6
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7 # Define the tickers
8 tickers = [’AAPL’, ’MSFT’, ’AMZN’, ’SPY’]
9

10 # Fetch data from Yahoo Finance
11 data = yf.download(tickers, start=’2019-01-01’, end=’2024-01-01’)

[’Adj Close’]
12

13 # Calculate daily returns
14 returns = data.pct_change().dropna()

Listing 2-3 Downloading asset data

As shown in Listing 2-4, to make our metrics comparable on a yearly basis, we
will annualize the daily returns and risk measures. For simplicity, we will multiply
the average daily return by 252 to convert to an annualized scale (and similarly for
annualized volatility), assuming independence and stationarity of returns. Note that
such arithmetic scaling does not take into account the effect of compounding, and
the geometric mean is often used when dealing with real-world financial returns.

1 # Define the number of trading days in a year
2 trading_days = 252
3

4 # Calculate annualized mean returns
5 annual_returns = returns.mean() * trading_days
6

7 # Calculate annualized volatility (standard deviation)
8 annual_volatility = returns.std() * np.sqrt(trading_days)
9

10 # Display the annualized returns and volatility
11 print("Annualized Returns:\n", annual_returns)
12 print("\nAnnualized Volatility:\n", annual_volatility)
13

14 # Output
15 Annualized Returns:
16 Ticker
17 AAPL 0.378031
18 AMZN 0.198360
19 MSFT 0.320295
20 SPY 0.167224
21 dtype: float64
22

23 Annualized Volatility:
24 Ticker
25 AAPL 0.322345
26 AMZN 0.352214
27 MSFT 0.304909
28 SPY 0.209957
29 dtype: float64

Listing 2-4 Downloading asset data

2.6.4.2 Defining the Portfolios
We’ll evaluate five different portfolios based on the following criteria:
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• Maximizing Portfolio Return
• Minimizing Portfolio Risk
• Maximizing Sharpe Ratio
• Maximizing Sortino Ratio
• Maximizing Treynor Ratio

We assume a risk-free rate of 3% when calculating the Sharpe ratio and the
Sortino ratio.

In addition, to calculate the Treynor ratio, we also need the beta of each stock
relative to the market (S&P 500 in this case). As discussed, beta measures the
volatility of a stock relative to the market portfolio. See Listing 2-5 for detailed
processing.

1 risk_free_rate = 0.03
2

3 # Calculate covariance matrix
4 cov_matrix = returns.cov() * trading_days
5

6 # Calculate market variance
7 market_variance = returns[’SPY’].var() * trading_days
8

9 # Calculate beta for each stock
10 betas = cov_matrix.loc[[’AAPL’, ’AMZN’, ’MSFT’], ’SPY’] /

market_variance
11

12 print("Betas:\n", betas)
13

14 # Output
15 Betas:
16 Ticker
17 AAPL 1.235198
18 AMZN 1.087888
19 MSFT 1.197498
20 Name: SPY, dtype: float64

Listing 2-5 Calculating asset betas

Note that in the code above, we have used the .var() function to calculate the
sample variance, which assumes a default setting of ddof=1 in the input arguments.
Given limited data, it is more often to calculate sample variance as a better
(consistent) approximation to the theoretical population variance, if we were to be
able to access all the data available.

As shown in Listing 2-6, for all portfolios, we also enforce the following common
constraints:

• Fully Invested: The sum of all portfolio weights is equal to 1. This is also
referred to as the budget constraint, in that all available capital should be
allocated among the assets in the portfolio and should not be kept in the pocket.

• No Short Selling: All weights are between 0 and 1. This is often an optional
constraint to reflect the fact that, in some markets such as China, shorting is not
allowed.
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1 # Number of assets
2 num_assets = len(tickers) - 1
3

4 # Initial guess for weights
5 init_guess = num_assets * [1. / num_assets]
6

7 # Bounds for weights: no short selling
8 bounds = tuple((0, 1) for _ in range(num_assets))
9

10 # Constraint: sum of weights is 1
11 constraints = ({’type’: ’eq’, ’fun’: lambda x: np.sum(x) - 1})

Listing 2-6 Defining portfolio constraints

We will also define different objective functions for each portfolio optimization
criterion. For the first portfolio that aims at maximizing return, we can convert it
to a minimization problem (a common practice in optimization) by minimizing the
negative of the portfolio’s expected return.

1 def portfolio_return(weights, mean_returns):
2 return np.dot(weights, mean_returns)
3

4 def neg_portfolio_return(weights, mean_returns):
5 return -portfolio_return(weights, mean_returns)

Listing 2-7 Defining optimization objective for portfolio 1

For the second portfolio, our aim is to minimize the portfolio’s variance.

1 def portfolio_variance(weights, cov_matrix):
2 return np.dot(weights.T, np.dot(cov_matrix , weights))

Listing 2-8 Defining optimization objective for portfolio 2

For the third portfolio that aims at maximizing the portfolio Sharpe ratio, we
define a function that calculates the portfolio excess return over the risk-free interest
rate (the numerator of the Sharpe ratio) and the portfolio volatility (the denominator
of Sharpe ratio).

1 def sharpe_ratio(weights, mean_returns , cov_matrix ,
risk_free_rate):

2 p_return = portfolio_return(weights, mean_returns)
3 p_variance = portfolio_variance(weights, cov_matrix)
4 p_volatility = np.sqrt(p_variance)
5 return (p_return - risk_free_rate) / p_volatility
6

7 def neg_sharpe_ratio(weights, mean_returns , cov_matrix ,
risk_free_rate):

8 return -sharpe_ratio(weights, mean_returns , cov_matrix ,
risk_free_rate)

Listing 2-9 Defining optimization objective for portfolio 3

The fourth portfolio aims to maximize the Sortino ratio, which focuses on
downside risk instead of total volatility. Note that the target return can be set to
the risk-free rate or any desired threshold.
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1 def sortino_ratio(weights, returns, risk_free_rate , target_return
=0):

2 portfolio_returns = returns[[’AAPL’, ’MSFT’, ’AMZN’]].dot(
weights)

3 downside = portfolio_returns[portfolio_returns <
target_return]

4 expected_return = portfolio_returns.mean() * trading_days
5 downside_deviation = np.sqrt((np.square(downside -

target_return)).mean()) * np.sqrt(trading_days)
6 return (expected_return - risk_free_rate) /

downside_deviation
7

8 def neg_sortino_ratio(weights, returns, risk_free_rate ,
target_return=0):

9 return -sortino_ratio(weights, returns, risk_free_rate ,
target_return)

Listing 2-10 Defining optimization objective for portfolio 4

Finally, the last portfolio aims at maximizing the Treynor ratio, which measures
excess return per unit of systematic risk (the beta).

1 def treynor_ratio(weights, mean_returns , betas, risk_free_rate):
2 p_return = portfolio_return(weights, mean_returns)
3 p_beta = np.dot(weights, betas)
4 return (p_return - risk_free_rate) / p_beta
5

6 def neg_treynor_ratio(weights, mean_returns , betas,
risk_free_rate):

7 return -treynor_ratio(weights, mean_returns , betas,
risk_free_rate)

Listing 2-11 Defining optimization objective for portfolio 5

2.6.4.3 Optimizing the Portfolios
Now that we’ve defined our objective functions and constraints, let us perform the
optimizations for each portfolio, starting with the first portfolio that maximizes
return.

1 # Optimize Portfolio 1: Maximizing Return
2 def optimize_max_return(mean_returns , constraints , bounds,

init_guess):
3 result = minimize(neg_portfolio_return , init_guess , args=(

mean_returns ,),
4 method=’SLSQP’, bounds=bounds, constraints=

constraints)
5 return result
6

7 result_max_return = optimize_max_return(annual_returns[[’AAPL’, ’
AMZN’, ’MSFT’]], constraints , bounds, init_guess)

8

9 print("Portfolio 1: Maximizing Return")
10 print("Weights:", result_max_return.x)
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11 print("Expected Annual Return:", portfolio_return(
result_max_return.x, annual_returns[[’AAPL’, ’AMZN’, ’MSFT’
]]))

12 print("Annual Volatility:", np.sqrt(portfolio_variance(
result_max_return.x, cov_matrix.loc[[’AAPL’, ’AMZN’, ’MSFT’],
[’AAPL’, ’AMZN’, ’MSFT’]])))

13 print("\n")
14

15 # Output
16 Portfolio 1: Maximizing Return
17 Weights: [1.00000000e+00 6.31439345e-16 0.00000000e+00]
18 Expected Annual Return: 0.37803071152250534
19 Annual Volatility: 0.3223453947637612

Listing 2-12 Optimizing portfolio 1

The optimal allocation result is not surprising. Since Apple has the highest
annualized return, the maximum return portfolio will allocate all weight to this asset.

Now, let us turn to portfolio 2 that minimizes risk.

1 # Optimize Portfolio 2: Minimizing Risk
2 def optimize_min_risk(cov_matrix , constraints , bounds, init_guess

):
3 result = minimize(portfolio_variance , init_guess , args=(

cov_matrix ,),
4 method=’SLSQP’, bounds=bounds, constraints=

constraints)
5 return result
6

7 result_min_risk = optimize_min_risk(cov_matrix.loc[[’AAPL’, ’AMZN
’, ’MSFT’], [’AAPL’, ’AMZN’, ’MSFT’]], constraints , bounds,
init_guess)

8

9 print("Portfolio 2: Minimizing Risk")
10 print("Weights:", result_min_risk.x)
11 print("Expected Annual Return:", portfolio_return(result_min_risk

.x, annual_returns[[’AAPL’, ’AMZN’, ’MSFT’]]))
12 print("Annual Volatility:", np.sqrt(portfolio_variance(

result_min_risk.x, cov_matrix.loc[[’AAPL’, ’AMZN’, ’MSFT’], [
’AAPL’, ’AMZN’, ’MSFT’]])))

13 print("\n")
14

15 # Output
16 Portfolio 2: Minimizing Risk
17 Weights: [0.3180772 0.2094853 0.4724375]
18 Expected Annual Return: 0.313115822392309
19 Annual Volatility: 0.288101952001344

Listing 2-13 Optimizing portfolio 2

Now, each individual weight allocation is closer to each other, with MSFT getting
close to half of the total allocation, possibly due to the lowest volatility out of the
three stocks.

As shown in Listing 2-14, now we turn to portfolio 3 that maximizes the Sharpe
ratio.
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1 # Optimize Portfolio 3: Maximizing Sharpe Ratio
2 def optimize_max_sharpe(mean_returns , cov_matrix , risk_free_rate ,

constraints , bounds, init_guess):
3 result = minimize(neg_sharpe_ratio , init_guess , args=(

mean_returns , cov_matrix , risk_free_rate),
4 method=’SLSQP’, bounds=bounds, constraints=

constraints)
5 return result
6

7 result_max_sharpe = optimize_max_sharpe(annual_returns[[’AAPL’, ’
AMZN’, ’MSFT’]],

8 cov_matrix.loc[[’AAPL’, ’
AMZN’, ’MSFT’], [’AAPL’, ’AMZN’, ’MSFT’]],

9 risk_free_rate ,
constraints , bounds, init_guess)

10

11 print("Portfolio 3: Maximizing Sharpe Ratio")
12 print("Weights:", result_max_sharpe.x)
13 print("Expected Annual Return:", portfolio_return(

result_max_sharpe.x, annual_returns[[’AAPL’, ’AMZN’, ’MSFT’
]]))

14 print("Annual Volatility:", np.sqrt(portfolio_variance(
result_max_sharpe.x, cov_matrix.loc[[’AAPL’, ’AMZN’, ’MSFT’],
[’AAPL’, ’AMZN’, ’MSFT’]])))

15 print("Sharpe Ratio:", sharpe_ratio(result_max_sharpe.x,
annual_returns[[’AAPL’, ’AMZN’, ’MSFT’]],

16 cov_matrix.loc[[’AAPL’, ’AMZN’
, ’MSFT’], [’AAPL’, ’AMZN’, ’MSFT’]], risk_free_rate))

17 print("\n")
18

19 # Output
20 Portfolio 3: Maximizing Sharpe Ratio
21 Weights: [7.17495581e-01 5.81132364e-17 2.82504419e-01]
22 Expected Annual Return: 0.3617201069615052
23 Annual Volatility: 0.3018898876667841
24 Sharpe Ratio: 1.0988115883088032

Listing 2-14 Optimizing portfolio 3

Indeed, the third portfolio gives the highest Sharpe ratio out of the three portfolios
analyzed so far (whose Sharpe ratios are 1.079 for the first portfolio and 0.982 for
the second portfolio).

Now we turn to portfolio 4 that maximizes the Sortino ratio. We also set the target
return to zero in Listing 2-15.

1 # Optimize Portfolio 4: Maximizing Sortino Ratio
2 def optimize_max_sortino(weights, returns, risk_free_rate ,

constraints , bounds, init_guess , target_return=0):
3 return minimize(neg_sortino_ratio , init_guess , args=(returns,

risk_free_rate , target_return),
4 method=’SLSQP’, bounds=bounds, constraints=

constraints)
5
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6 result_max_sortino = optimize_max_sortino(init_guess , returns,
risk_free_rate , constraints , bounds, init_guess)

7

8 # Extract weights from optimization result
9 weights_sortino = result_max_sortino.x

10

11 # Calculate expected return and downside deviation
12 expected_return_sortino = portfolio_return(weights_sortino ,

annual_returns[[’AAPL’, ’AMZN’, ’MSFT’]])
13 portfolio_returns_sortino = returns[[’AAPL’, ’MSFT’, ’AMZN’]].dot

(weights_sortino)
14 downside_sortino = portfolio_returns_sortino[

portfolio_returns_sortino < 0]
15 downside_deviation_sortino = np.sqrt((np.square(downside_sortino)

).mean()) * np.sqrt(trading_days)
16 sortino = (expected_return_sortino - risk_free_rate) /

downside_deviation_sortino
17

18 print("Portfolio 4: Maximizing Sortino Ratio")
19 print("Weights:", weights_sortino)
20 print("Expected Annual Return:", expected_return_sortino)
21 print("Downside Deviation:", downside_deviation_sortino)
22 print("Sortino Ratio:", sortino)
23 print("\n")
24

25 # Output
26 Portfolio 4: Maximizing Sortino Ratio
27 Weights: [7.51230682e-01 2.48769318e-01 4.48859699e-18]
28 Expected Annual Return: 0.3333341715302924
29 Downside Deviation: 0.30636490028556385
30 Sortino Ratio: 0.9901074543707634

Listing 2-15 Optimizing portfolio 4

Finally, we optimize the fifth portfolio by maximizing the Treynor ratio as shown
in Listing 2-16.

1 # Optimize Portfolio 5: Maximizing Treynor Ratio
2 def optimize_max_treynor(mean_returns , betas, risk_free_rate ,

constraints , bounds, init_guess):
3 result = minimize(neg_treynor_ratio , init_guess , args=(

mean_returns , betas, risk_free_rate),
4 method=’SLSQP’, bounds=bounds, constraints=

constraints)
5 return result
6

7 result_max_treynor = optimize_max_treynor(annual_returns[[’AAPL’,
’AMZN’, ’MSFT’]],

8 betas[[’AAPL’, ’AMZN’, ’
MSFT’]],

9 risk_free_rate ,
constraints , bounds, init_guess)

10

11 print("Portfolio 5: Maximizing Treynor Ratio")
12 print("Weights:", result_max_treynor.x)
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13 print("Expected Annual Return:", portfolio_return(
result_max_treynor.x, annual_returns[[’AAPL’, ’AMZN’, ’MSFT’
]]))

14 print("Beta:", np.dot(result_max_treynor.x, betas[[’AAPL’, ’AMZN’
, ’MSFT’]]))

15 print("Treynor Ratio:", treynor_ratio(result_max_treynor.x,
annual_returns[[’AAPL’, ’AMZN’, ’MSFT’]], betas[[’AAPL’, ’
AMZN’, ’MSFT’]], risk_free_rate))

16 print("\n")
17

18 # Output
19 Portfolio 5: Maximizing Treynor Ratio
20 Weights: [1.00000000e+00 0.00000000e+00 3.88578059e-16]
21 Expected Annual Return: 0.3780307115225055
22 Beta: 1.2351976772098658
23 Treynor Ratio: 0.2817611447494436

Listing 2-16 Optimizing portfolio 5

Let us summarize the optimized portfolios’ weights, expected returns, volatility,
and risk-adjusted ratios.

1 #################################################################
2 # Additional code snippet for generating the final summary table
3 #################################################################
4

5 # 1) Helper to compute the same Sortino ratio
6 # but directly from daily returns (annually scaled).
7 def compute_annual_sortino_ratio(weights, daily_returns , rf=0.03,

target_return=0.0):
8 """
9 Computes the annualized Sortino ratio for a given portfolio (

weights) and daily returns.
10 The logic here mirrors the approach in ’sortino_ratio()’, but

uses daily returns
11 and scales to annual figures, ensuring consistency with your

optimization code.
12 """
13 # 1) Construct daily portfolio returns from the chosen assets
14 pf_daily_returns = daily_returns[[’AAPL’, ’MSFT’, ’AMZN’]].

dot(weights)
15

16 # 2) Annualized portfolio return = mean(daily) * 252
17 pf_annual_return = pf_daily_returns.mean() * 252
18

19 # 3) Extract returns below the target threshold
20 negative_returns = pf_daily_returns[pf_daily_returns <

target_return]
21 if len(negative_returns) == 0:
22 # Means no negative returns at all -> "infinite" Sortino
23 return np.nan
24

25 # 4) Annualize the downside deviation



2.6 Measuring Risk-Adjusted Return 57

26 # (mean of squared deviations) -> multiply by #days ->
sqrt

27 downside_var = np.mean((negative_returns - target_return)**2)
28 downside_dev_annual = np.sqrt(downside_var * 252)
29 if downside_dev_annual == 0:
30 return float(’inf’)
31

32 # 5) Compute the actual Sortino ratio
33 sortino_ratio_val = (pf_annual_return - rf) /

downside_dev_annual
34 return sortino_ratio_val
35

36 # 2) Define the summary table as a dictionary with performance
metrics for each portfolio

37 portfolios = {
38 ’Max Return’: {
39 ’Weights’: result_max_return.x,
40 ’Return’: portfolio_return(result_max_return.x,

annual_returns[[’AAPL’, ’AMZN’, ’MSFT’]]),
41 ’Volatility’: np.sqrt(portfolio_variance(

result_max_return.x, cov_matrix.loc[[’AAPL’, ’AMZN’, ’MSFT’],
[’AAPL’, ’AMZN’, ’MSFT’]])),

42 ’Beta’: np.dot(result_max_return.x, betas[[’AAPL’, ’AMZN’
, ’MSFT’]].values.flatten()),

43 ’Downside Deviation’: downside_deviation_sortino , #
Replace with actual downside deviation calc

44 ’Sharpe Ratio’: (portfolio_return(result_max_return.x,
annual_returns[[’AAPL’, ’AMZN’, ’MSFT’]]) - risk_free_rate) /
np.sqrt(portfolio_variance(result_max_return.x, cov_matrix.
loc[[’AAPL’, ’AMZN’, ’MSFT’], [’AAPL’, ’AMZN’, ’MSFT’]])),

45 ’Sortino Ratio’: (portfolio_return(result_max_return.x,
annual_returns[[’AAPL’, ’AMZN’, ’MSFT’]]) - risk_free_rate) /
downside_deviation_sortino , # Replace with actual
calculation

46 ’Treynor Ratio’: treynor_ratio(result_max_return.x,
annual_returns[[’AAPL’, ’AMZN’, ’MSFT’]], betas[[’AAPL’, ’
AMZN’, ’MSFT’]].values.flatten(), risk_free_rate)

47 },
48 ’Min Risk’: {
49 ’Weights’: result_min_risk.x,
50 ’Return’: portfolio_return(result_min_risk.x,

annual_returns[[’AAPL’, ’AMZN’, ’MSFT’]]),
51 ’Volatility’: np.sqrt(portfolio_variance(result_min_risk.

x, cov_matrix.loc[[’AAPL’, ’AMZN’, ’MSFT’], [’AAPL’, ’AMZN’,
’MSFT’]])),

52 ’Beta’: np.dot(result_min_risk.x, betas[[’AAPL’, ’AMZN’,
’MSFT’]].values.flatten()),

53 ’Downside Deviation’: downside_deviation_sortino , #
Replace with actual downside deviation calc

54 ’Sharpe Ratio’: (portfolio_return(result_min_risk.x,
annual_returns[[’AAPL’, ’AMZN’, ’MSFT’]]) - risk_free_rate) /
np.sqrt(portfolio_variance(result_min_risk.x, cov_matrix.loc
[[’AAPL’, ’AMZN’, ’MSFT’], [’AAPL’, ’AMZN’, ’MSFT’]])),
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55 ’Sortino Ratio’: (portfolio_return(result_min_risk.x,
annual_returns[[’AAPL’, ’AMZN’, ’MSFT’]]) - risk_free_rate) /
downside_deviation_sortino , # Replace with actual
calculation

56 ’Treynor Ratio’: treynor_ratio(result_min_risk.x,
annual_returns[[’AAPL’, ’AMZN’, ’MSFT’]], betas[[’AAPL’, ’
AMZN’, ’MSFT’]].values.flatten(), risk_free_rate)

57 },
58 ’Max Sharpe’: {
59 ’Weights’: result_max_sharpe.x,
60 ’Return’: portfolio_return(result_max_sharpe.x,

annual_returns[[’AAPL’, ’AMZN’, ’MSFT’]]),
61 ’Volatility’: np.sqrt(portfolio_variance(

result_max_sharpe.x, cov_matrix.loc[[’AAPL’, ’AMZN’, ’MSFT’],
[’AAPL’, ’AMZN’, ’MSFT’]])),

62 ’Beta’: np.dot(result_max_sharpe.x, betas[[’AAPL’, ’AMZN’
, ’MSFT’]].values.flatten()),

63 ’Downside Deviation’: downside_deviation_sortino , #
Replace with actual downside deviation calc

64 ’Sharpe Ratio’: sharpe_ratio(result_max_sharpe.x,
annual_returns[[’AAPL’, ’AMZN’, ’MSFT’]],

65 cov_matrix.loc[[’AAPL’, ’
AMZN’, ’MSFT’], [’AAPL’, ’AMZN’, ’MSFT’]], risk_free_rate),

66 ’Sortino Ratio’: (portfolio_return(result_max_sharpe.x,
annual_returns[[’AAPL’, ’AMZN’, ’MSFT’]]) - risk_free_rate) /
downside_deviation_sortino , # Replace with actual
calculation

67 ’Treynor Ratio’: treynor_ratio(result_max_sharpe.x,
annual_returns[[’AAPL’, ’AMZN’, ’MSFT’]], betas[[’AAPL’, ’
AMZN’, ’MSFT’]].values.flatten(), risk_free_rate)

68 },
69 ’Max Sortino’: {
70 ’Weights’: weights_sortino ,
71 ’Return’: expected_return_sortino ,
72 ’Downside Deviation’: downside_deviation_sortino ,
73 ’Sortino Ratio’: sortino
74 },
75 ’Max Treynor’: {
76 ’Weights’: result_max_treynor.x,
77 ’Return’: portfolio_return(result_max_treynor.x,

annual_returns[[’AAPL’, ’AMZN’, ’MSFT’]]),
78 ’Beta’: np.dot(result_max_treynor.x, betas[[’AAPL’, ’AMZN

’, ’MSFT’]].values.flatten()),
79 ’Treynor Ratio’: treynor_ratio(result_max_treynor.x,

annual_returns[[’AAPL’, ’AMZN’, ’MSFT’]], betas[[’AAPL’, ’
AMZN’, ’MSFT’]].values.flatten(), risk_free_rate)

80 }
81 }
82

83 # 3) Populate missing metrics for each portfolio in the summary
84 for pf in portfolios:
85 w = portfolios[pf][’Weights’]
86 p_ret = portfolios[pf][’Return’]
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87

88 # -- If needed, compute portfolio volatility
89 if ’Volatility’ not in portfolios[pf]:
90 portfolios[pf][’Volatility’] = np.sqrt(
91 portfolio_variance(
92 w,
93 cov_matrix.loc[[’AAPL’,’AMZN’,’MSFT’], [’AAPL’,’

AMZN’,’MSFT’]]
94 )
95 )
96

97 # -- Compute Sharpe Ratio (if you want it in the summary)
98 if portfolios[pf][’Volatility’] != 0:
99 portfolios[pf][’Sharpe Ratio’] = (
100 (p_ret - risk_free_rate) / portfolios[pf][’Volatility

’]
101 )
102 else:
103 portfolios[pf][’Sharpe Ratio’] = np.nan
104

105 # -- Compute the annualized Sortino Ratio (using the new
helper)

106 sortino_val = compute_annual_sortino_ratio(
107 w, # weights
108 returns, # daily returns DataFrame
109 rf=risk_free_rate ,
110 target_return=0.0 # or set to risk_free_rate if you

prefer
111 )
112 portfolios[pf][’Sortino Ratio’] = sortino_val
113

114 # -- Optionally store the raw Downside Deviation if you’d
like

115 # (just for the summary display)
116 pf_daily_returns = returns[[’AAPL’,’MSFT’,’AMZN’]].dot(w)
117 negative_rets = pf_daily_returns[pf_daily_returns < 0]
118 if len(negative_rets) == 0:
119 dd_annual = 0.0
120 else:
121 dd_annual = np.sqrt(np.mean((negative_rets - 0.0)**2) *

252)
122 portfolios[pf][’Downside Deviation’] = dd_annual
123

124 # -- Compute Treynor Ratio if Beta is known
125 if ’Beta’ in portfolios[pf]:
126 b = portfolios[pf][’Beta’]
127 if b != 0:
128 portfolios[pf][’Treynor Ratio’] = (p_ret -

risk_free_rate) / b
129 else:
130 portfolios[pf][’Treynor Ratio’] = np.nan
131 else:
132 portfolios[pf][’Treynor Ratio’] = np.nan
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133

134 # 4) Convert the dictionary to a DataFrame and format
135 summary = pd.DataFrame(portfolios).T
136

137 # Round & format columns
138 summary[’Weights’] = summary[’Weights’].apply(lambda arr: [round(

x, 2) for x in arr])
139 summary[’Return’] = summary[’Return’].round(4)
140 summary[’Volatility’] = pd.to_numeric(summary.get(’Volatility’,

pd.Series()), errors=’coerce’).round(4)
141 summary[’Beta’] = pd.to_numeric(summary.get(’Beta’, pd.Series()),

errors=’coerce’).round(4)
142 summary[’Downside Deviation’] = pd.to_numeric(summary.get(’

Downside Deviation’, pd.Series()), errors=’coerce’).round(4)
143 summary[’Sharpe Ratio’] = pd.to_numeric(summary.get(’Sharpe Ratio

’, pd.Series()), errors=’coerce’).round(4)
144 summary[’Sortino Ratio’] = pd.to_numeric(summary.get(’Sortino

Ratio’, pd.Series()), errors=’coerce’).round(4)
145 summary[’Treynor Ratio’] = pd.to_numeric(summary.get(’Treynor

Ratio’, pd.Series()), errors=’coerce’).round(4)
146

147 pd.set_option(’display.max_columns’, None)
148 pd.set_option(’display.width’, 1000)
149

150 # Finally, display the summary table
151 summary

Listing 2-17 Analyzing portfolio results

Running the code generates Figure 2-4. The result suggests that the Max Return
portfolio and the Max Treynor ratio portfolio achieve the highest return, but also
have high volatility and market sensitivity, leading to moderate Sharpe and Treynor
ratios. The Min Risk portfolio is more diversified with the lowest volatility, but has
lower returns and risk-adjusted performance, making it suitable for conservative
investors. The Max Sharpe portfolio balances return and risk efficiently, achieving a
high Sharpe ratio and suggesting an optimal risk-adjusted return. The Max Sortino
portfolio, with its emphasis on downside risk, yields a maximum Sortino ratio and
moderate return. Finally, the Max Treynor portfolio, identical to Max Return in
weights, offers a strong Treynor ratio, excelling in return per unit of market risk.

Figure 2-4 Summary results of each portfolio
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Finally, let us visualize the efficient frontier in the mean-variance space and plot
our optimized portfolios. As shown in Listing 2-18, we generate 5,000 random
portfolios (random set of weights) to visualize the efficient frontier, using a scatter
plot to represent the trade-off between risk (volatility) and return. We also highlight
the five optimized portfolios with different markers and colors.

1 # Function to calculate portfolio performance
2 def portfolio_performance(weights, mean_returns , cov_matrix):
3 returns = np.dot(weights, mean_returns)
4 volatility = np.sqrt(np.dot(weights.T, np.dot(cov_matrix ,

weights)))
5 return returns, volatility
6

7 # Generate random portfolios
8 num_portfolios = 5000
9 results = np.zeros((3, num_portfolios))

10 weight_records = []
11

12 for i in range(num_portfolios):
13 weights = np.random.dirichlet(np.ones(num_assets), size=1)[0]
14 weight_records.append(weights)
15 portfolio_ret , portfolio_vol = portfolio_performance(weights,

annual_returns[[’AAPL’, ’AMZN’, ’MSFT’]], cov_matrix.loc[[’
AAPL’, ’AMZN’, ’MSFT’], [’AAPL’, ’AMZN’, ’MSFT’]])

16 results[0,i] = portfolio_vol
17 results[1,i] = portfolio_ret
18 results[2,i] = (portfolio_ret - risk_free_rate) /

portfolio_vol
19

20 # Convert results to DataFrame
21 results_df = pd.DataFrame(results.T, columns=[’Volatility’, ’

Return’, ’Sharpe Ratio’])
22

23 # Plot the efficient frontier
24 plt.figure(figsize=(10, 7))
25 plt.scatter(results_df.Volatility , results_df.Return, c=

results_df[’Sharpe Ratio’], cmap=’viridis’, alpha=0.5)
26 plt.colorbar(label=’Sharpe Ratio’)
27 plt.xlabel(’Annualized Volatility’)
28 plt.ylabel(’Annualized Return’)
29 plt.title(’Efficient Frontier’)
30

31 # Plot optimized portfolios
32 portfolios_to_plot = {
33 ’Max Return’: result_max_return.x,
34 ’Min Risk’: result_min_risk.x,
35 ’Max Sharpe’: result_max_sharpe.x,
36 ’Max Sortino’: weights_sortino ,
37 ’Max Treynor’: result_max_treynor.x
38 }
39

40 colors = [’r’, ’b’, ’g’, ’c’, ’m’]
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41 for (name, weights), color in zip(portfolios_to_plot.items(),
colors):

42 p_ret, p_vol = portfolio_performance(weights, annual_returns
[[’AAPL’, ’AMZN’, ’MSFT’]], cov_matrix.loc[[’AAPL’, ’AMZN’, ’
MSFT’], [’AAPL’, ’AMZN’, ’MSFT’]])

43 plt.scatter(p_vol, p_ret, marker=’*’, color=color, s=200,
label=name)

44

45 plt.legend()
46 plt.show()

Listing 2-18 Optimizing portfolio 4

Running the code generates Figure 2-5, where all portfolios with the Max Sortino
portfolio are on the efficient frontier, by definition. Each point on the graph is a
portfolio, and those lying along the upper boundary are called efficient, in the sense
that they have the highest return for a given risk or the lowest risk for a given return.
Portfolios whose return lies below risk-free rate are considered inferior and thus not
optimal; thus, the actual efficient frontier is only cut to the top half.

In addition, we also observe how optimal asset weights shift in response to
changes in key inputs such as expected returns, risk (volatility), and correlations.
Correctly estimating these parameters thus greatly impacts the quality of the
resulting solutions (portfolio weights), and it is important to perform such a

Figure 2-5 Efficient frontier with the five portfolios
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sensitivity analysis on the impact of model misspecification. Such an analysis helps
identify which assets are most sensitive to estimation errors, in the sense that a
small change in the estimated parameter leads to a large change in the corresponding
allocation weight.

2.7 Summary

In this chapter, we reviewed different approaches in the definition and calculation
of risk and return, two fundamental concepts in finance, and illustrated their
use in constructing and managing portfolios effectively. Returns can arise from
capital appreciation, dividends, and interest and are often annualized to standardize
performance across time frames. Risk comes from the uncertainty of returns and can
be quantified using performance metrics such as variance (or standard deviation)
or other downside risk measures (we will cover more on this in a later chapter).
The risk-return trade-off highlights that higher potential returns generally require
accepting greater risk.

Measuring returns involves various forms, including absolute return, percentage
return, and logarithmic return. The performance of investments is often evaluated on
a risk-adjusted basis, using metrics such as the Sharpe ratio, which evaluates return
per unit of total volatility; the Sortino ratio, which focuses only on downside risk;
and the Treynor ratio, which assesses excess return per unit of market (systematic)
risk. These metrics enable investors to compare the effectiveness with which
different portfolios manage risk in pursuit of returns.

Portfolio optimization strategies can vary, focusing on maximizing return,
minimizing risk, or maximizing risk-adjusted returns based on the above metrics.
For instance, the Max Return portfolio aims for the highest return but carries higher
volatility, while the Min Risk portfolio seeks to minimize volatility at the expense
of some return. The Max Sharpe portfolio balances risk and return efficiently,
delivering the best risk-adjusted return when accounting for total volatility. The Max
Sortino portfolio is designed to minimize downside risk, while the Max Treynor
portfolio optimizes returns relative to market risk. Understanding these metrics and
optimization strategies helps to build portfolios that are aligned with specific risk
tolerance and return objectives.



3Managing Credit Risk

Credit risk is a primary source of concern for institutions engaged in the lending
business. When the borrower does not honor the contractual obligation to pay back
the interest or the principal, the lending institution will suffer financial loss. Thus,
proper management of credit risk plays an important role in sustainable financial
operations and stability in the lending industry, including banks and other financial
institutions. It is also a primary concern for regulatory authorities. For example,
during the 2008 financial crisis, the underestimation of credit risk in subprime
mortgage lending was a major contributing factor. Consequently, many modern
regulatory frameworks have been proposed and are still being revised to actively
detect vulnerabilities before they escalate into crises.

Credit risk refers to the potential that a borrower (also referred to as a debtor)
will fail to fulfill their obligation to repay the loan or satisfy other contractual debt
terms (such as paying back interest), thus resulting in a financial loss for the lender
(also called the creditor). This risk materializes when the borrower defaults by not
making timely payments of principal or interest, such as paying back credit card
spending or home mortgage. Credit card lending typically involves a higher credit
risk because it is unsecured, which means that there is no collateral to support the
loan. Thus, credit card issuers typically face challenges in recovering the borrowed
amount when the borrower defaults.

However, home ownership loans generally present a lower credit risk because
they are secured by the property being financed. In case the borrower defaults, the
lender can recover some or all of their losses through the foreclosure process, where
the property is seized and sold at the prevailing market price. Despite differences
in risk levels, properly and accurately assessing a borrower’s creditworthiness is
an important first-stage screening task. Such an assessment often comes with two
decision outcomes: a binary output that indicates whether the credit card (or home
loan application) is approved or not and a continuous output that indicates the credit
line (or home loan amount) that limits the maximum amount to be borrowed.
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Such an assessment process often involves developing credit scoring models
(also called scorecards), setting appropriate interest rates for the loan based on risk
levels, or asking for additional support from collateral or guarantees to reduce the
lender’s exposure to potential losses. This risk-based pricing principle also applies
to asset financing for firms that seek loans from banks.

Credit risk management is also a key consideration for the broader financial
system. For example, the 2008 global financial crisis was the result of poor credit
risk management that led to significant financial loss. Why did it occur? It turned out
that many financial institutions were lending money to risky borrowers with a high
probability of default, particularly through subprime mortgages (a type of home
loan offered to individuals who have low credit scores or limited credit history).
These unmanaged credit exposures then accumulated in the banking sector and other
financial entities until they reached a financial meltdown. As borrowers defaulted on
their loans, a cascade of losses was triggered, resulting in a global financial crisis.
Thus, proper credit risk management for the entire financial system is crucial to
ensure financial robustness and stability.

The credit risk management life cycle encompasses the end-to-end process of
identifying, assessing, and managing the risk of borrower default. It begins with
the origination, where the borrower’s creditworthiness is evaluated (typically by a
scorecard) and the loan is structured. After approval and disbursement, the credit
exposure enters the monitoring phase, where the performance, financial health, and
external risk factors of obligors are assessed on a regular basis, mostly yearly or
even shorter. If signs of stress appear, mitigation strategies, such as restructuring
or additional collateral, are used to reduce potential losses. In the event of default,
a recovery process would be triggered, which aims to maximize asset realization
and minimize credit exposure (more on this later). Throughout the life cycle,
regular portfolio-level review and reporting would be performed to ensure that
credit risk exposure remains aligned with the institution’s appetite and regulatory
requirements. See Figure 3-1 for an illustration of the full credit management life
cycle.

Figure 3-1 Illustrating the full credit management life cycle. The last two components are drawn
with dashed line since not all loans are going to default
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This chapter introduces common quantitative measures for credit risk manage-
ment, focusing on the fundamental components that underpin this field, including
probability of default (PD), loss given default (LGD), and exposure at default
(EAD). We will also explore how these elements converge to form the expected
credit loss (ECL), a critical metric for gauging anticipated losses. Finally, we will
implement a PD model that is used to predict the PD of individual obligors.

3.1 Expected and Unexpected Credit Loss

The expected credit loss, or ECL, refers to the anticipated financial loss that a lender
(such as a bank or specialized lending institution) may incur due to a borrower’s
failure to meet their financial obligations, such as paying back the principal or
interest. Unlike traditional loss estimation methods that predominantly rely on
historical default data, ECL adopts a forward-looking perspective to predict future
likely outcomes and sets the expected loss accordingly. It uses both historical
performance and predictive indicators to forecast potential future losses, where both
statistical and machine learning tools can be used. When future potential losses are
forecast, with some degree of accuracy, institutions can take proactive measures to
mitigate these risks, such as only selecting borrowers with low ECL. These forecasts
can help optimize credit portfolios and thus improve overall financial stability.
Furthermore, ECL plays a pivotal role in regulatory compliance frameworks,
notably under International Financial Reporting Standards (IFRS 9) and the Current
Expected Credit Loss (CECL) model in the United States, which mandate the
recognition of expected losses over the entire life of a financial instrument. Similar
regulations in Singapore are also in place and set by the Monetary Authority of
Singapore.

ECL is systematically calculated by integrating three fundamental components:
PD, LGD, and EAD. Each component captures a distinct facet of credit risk and is
connected by the following equation:

.ECL = PD × LGD × EAD

This equation characterizes the interaction between the likelihood of default, the
severity of the loss on default, and the magnitude of exposure, providing a detailed
view of the anticipated losses under normal economic conditions. The expected loss
is the product of the probability of a loss event (default), the expected loss per
event (LGD), and the size of the exposure at the time of the event (EAD). This
multiplicative relationship ensures that the impact of each component is reflected
proportionately in the overall expected loss. For example, even if the PD is low, a
high LGD or EAD can result in a significant ECL. In practice, PD is often subject
to greater scrutiny in financial institutions, as it serves as the initial gatekeeper for
identifying and filtering potential high-quality customers.

Let us look at an example of how to calculate the ECL. To calculate the lifetime
ECL for a two-year term loan under the assumptions of IFRS 9, consider a loan with
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a principal (EAD) of $500,000, an LGD of 50%, annual marginal PDs of 3% for the
first year and 5% for the second year, and a constant discount rate of 5%.

First, note that the maximum possible loss in any default scenario is

.$500,000 × 50% = $250,000.

In year 1, the probability of default is 3%, giving an undiscounted expected loss
of

.$250,000 × 0.03 = $7,500.

For year 2, we incorporate survival from year 1 (97% survival) and then apply
the 5% marginal PD, leading to a year 2 unconditional default probability of

.0.97 × 0.05 = 0.0485,

which yields an undiscounted expected loss of

.$250,000 × 0.0485 = $12,125.

Next, we discount these amounts to the present. The year 1 expected loss is
discounted by one year at 5%, giving

.
$7,500

1.05
≈ $7,142.86,

and the year 2 expected loss is discounted for two years, giving

.
$12,125

(1.05)2
≈ $10,999.55.

Summing these discounted figures leads to a total lifetime ECL of approximately

.$7,142.86 + $10,999.55 = $18,142.41.

Although the ECL measures expected losses under normal circumstances, many
financial institutions also consider unforeseen and extreme loss scenarios to ensure
complete risk management. This is where unexpected loss (UL) and stress loss
(SL) come into play, extending the ECL framework to consider a broader spectrum
of potential credit risks. Extending ECL to cover both UL and SL also helps us
assess the variability and extreme quantities of credit risk, ensuring that financial
institutions are prepared not only for routine credit events but also for unforeseen
and severe adverse conditions.
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3.1.1 Unexpected Loss

Unexpected loss (UL) measures potential losses that exceed expected loss, reflecting
the extent of tail risk across the entire distribution of credit exposures. It is
mainly used to quantify and assess the capital reserves necessary to cover losses
from unexpected adverse events that are beyond the usual circumstances, such as
rare disasters like COVID-19, along with the ensuing economic downturns and
market turbulence. These infrequent but potentially disastrous events could lead to
considerable financial losses.

We can calculate UL using the Value at Risk (VaR) at a certain confidence level
(α).:

.UL = VaRα − ECL

where VaRα . denotes the loss level that is exceeded with a probability of 1 − α .. For
example, at a confidence level 99%, VaR0.99 . represents the loss that is not expected
to be exceeded in cases 99%, thus capturing the extreme tail threshold of the loss
distribution (while ignoring those outside 99%). For example, assume that VaR at
the 99% confidence level is $15,000 and ECL is $10,000. The UL is then calculated
as UL = 15, 000 − 10, 000 = $5, 000.. This means that there is an additional
$5,000 excess loss beyond the ECL value at the 99% confidence level. Thus, the
bank (or financial institution) needs to prepare additional capital reserves to cover
such extreme events.

Note that we can also use alternative downside risk measures, such as Conditional
Value at Risk (CVaR), to calculate the unexpected loss. We will discuss different
ways of VaR calculation and its shortcomings compared to CVaR in a later chapter.

3.1.2 Stress Loss

Stress loss (SL) refers to losses in stress scenarios, which are typically simulated
adverse conditions to assess their impact on credit portfolios. This is a periodic
exercise in banks and financial institutions when developing credit scoring models,
as these models need to be able to withstand significant economic shocks without
compromising their financial stability.

Stress testing involves simulating adverse conditions to assess their impact
on credit portfolios, ensuring that financial institutions can withstand significant
economic shocks without compromising their financial stability. SL is crucial
for strategic planning and regulatory compliance, as it provides insight into the
resilience of credit portfolios under extreme but plausible conditions.

Specifically, stress testing involves adjusting key credit risk parameters, such
as PD, LGD, and EAD, based on predefined or preidentified adverse scenarios.
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The resulting SL can be quantified by recalculating the ECL under these stressed
conditions:

.SL = Stress PD × Stress LGD × Stress EAD

Consider a recession scenario where economic conditions deteriorate signifi-
cantly, leading to an increase in PD by 100% from 2% to 4% and an increase in
LGD by 50% from 60% to 90%. Using an EAD of $1,100,000 (which is an absolute
amount that represents the loss instead of probability), the stressed loss is

.SL = 0.04 × 0.90 × 1,100,000 = 39,600

This represents a substantial increase (tripled) in the baseline EL of $13,200,
highlighting the potential impact of adverse economic conditions on credit losses.
The multiplicative nature of the ECL formula implies that the influence of each
component is captured proportionately, providing a comprehensive measure of
expected losses. In essence, it accounts for the frequency (PD) and severity (LGD)
of potential credit losses and adjusts for the size of exposures (EAD).

In general, the ECL framework, through its integration of PD, LGD, and EAD,
offers a good foundation for estimating credit risk. However, this also means that we
need to obtain proper prediction for PD, LGD, and EAD to obtain a good estimate
of ECL. For PD, we often develop statistical and econometric models to estimate
the probability of default. There could be multiple considerations going into the
estimation, such as sparsity (the model should not admit too many input features)
and direction of travel (certain features should only have positive or negative signs
in the corresponding coefficient), etc. Additional data, such as borrower-specific
profile or transactional data, as well as macroeconomic indicators, are available to
refine risk assessments.

On the other hand, LGD is influenced by collateral quality and recovery
processes, which require quantitative asset valuations and qualitative legal recovery
pathways. To evaluate EAD, we also need to have a good understanding of common
credit utilization patterns and the potential for future loss.

We will dive into these three components of the ECL calculation in the following
sections.

3.2 Probability of Default

Probability of default (PD) quantifies the likelihood that a borrower will fail to meet
their financial obligations within a specified time horizon, typically using a one-year
horizon, and could be extended to multiple years using conditional probabilities.
PD serves as a critical indicator of the creditworthiness of a borrower. A PD
model captures both the characteristics of the individual borrower and the broader
economic conditions as its predictors. For example, individual profile factors of the
borrower could cover aspects related to financial health and credit history, while
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broader factors include industry stability, GDP growth, unemployment rates, or
other macroeconomic variables.

Additional restrictions on the direction of travel for these factors may also
come into play. For example, during an economic downturn, the PD of borrowers
can increase due to reduced income streams and increased financial stress, both
reflected in the relevant variables. In this case, we would expect the PD to be
negatively correlated with the income stream variable (higher income is associated
with lower PD), and the resulting coefficient for the income streammust be negative.
Similarly, if we expect the obligor PD to decrease if China’s GDP increases, then
we would expect the China GDP variable to be negatively correlated with PD and
the corresponding coefficient to be a negative sign.

PD can be empirically calculated as the percentage between the number of
defaults out of the total number of loans:

.PD = Number of Defaults

Total Number of Loans

This empirical estimation provides a basic measure of the probability of default
based on historical data. For example, consider a financial institution that has issued
10,000 loans in the past year. Of these, 200 loans have been terminated due to
flagged defaults. The PD is then calculated as

.PD = 200

10, 000
= 0.02 or 2%

This implies that, based on historical data, there is a 2% probability that any
given loan will default within the year. However, the past does not represent
future performance; thus, practical PD estimation often uses more sophisticated
models that incorporate various borrower-specific and macroeconomic variables,
as discussed earlier. These advanced models aim to enhance the predictive accuracy
by capturing complex, nonlinear relationships and interactions between predictors.
In the following sections, we introduce some of the common methodologies used in
PD estimation.

3.2.1 Logistic Regression

Logistic regression is a widely used statistical method for binary classification
problems, making it suitable for modeling default events (default vs. non-default).
The logistic regression model estimates the probability that a borrower i will default
based on a total of k explanatory variables {Xj }kj=1 ..

.PDi = 1

1 + e−(β0+β1X1i+β2X2i+···+βkXki )
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where PDi . is the probability of default for the borrower i. X1i , X2i , . . . , Xki .

are the explanatory (also called independent) variables of the borrower i (such
as individual credit score, income, debt-to-income ratio, or other macroeconomic
variables). β0, β1, . . . , βk . are the coefficients to be estimated from the data, so that
the estimated PD is close to the true label (either 1 or 0). The logistic function
is designed to ensure that the estimated PD is between 0 and 1, thus providing a
probabilistic interpretation (i.e., how likely the underlying obligor will default). The
coefficients βj . represent the log-odds change in PD for a one-unit change in the
corresponding predictor Xj ., which corresponds to a similar marginal interpretation
in linear regression.

For example, suppose that we have a logistic regression model with two
predictors: third-party credit score X1 . and debt-to-income ratio X2 ., with intercept
β0 . and coefficients β1 . β2 ., respectively. The logistic regression model assumes the
following form:

.PDi = 1

1 + e−(β0+β1X1i+β2X2i )

Let us assume that the estimated coefficients are β0 = −1., β1 = −0.5., and
β2 = 2.. For a borrower with a credit score of 75 and a debt-to-income ratio of 20,
the PD is calculated as

.PD = 1

1 + e−(−1−0.5×75+2×20)
≈ 0.818

This relatively high PD of 81.8% indicates that this borrower has a high risk of
default.

3.2.2 Decision Trees and Random Forests

Decision trees and ensemble methods such as random forests belong to the non-
parametric family of models, which can be more powerful in making accurate
predictions of PD. The power lies in the approximation capability that can learn
complex interactions and nonlinearities automatically, without the need for explicit
specification of model form.

A decision tree learns a decision rule by recursively partitioning the feature space
based on a particular measure of marginal utility to classify the borrowers into
default or non-default classes. Each split aims to maximize the separation between
classes, as measured by the level of impurity in the resulting node, often using
criteria like Gini impurity or information gain.

A random forest is an enhanced tree model that aggregates multiple decision
trees, each trained on a bootstrap sample of the data and a random subset of
features. The randomness of both samples and features significantly improves the
model’s learning capability and generalization performance. The final PD estimate
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is obtained by averaging the predictions of individual trees, thus reducing variance
and improving robustness.

These models can automatically handle high-dimensional data (where the num-
ber of features exceeds the number of observations) and interactions between
variables (multicollinearity is a major issue in linear models), providing flexible
and accurate PD estimates due to their ability to capture nonlinear relationships.
However, compared to simpler models like logistic regression, they typically require
larger datasets and computational resources.

3.2.3 Other Machine Learning Classifiers

Advanced machine learning classifiers, such as support vector machines (SVM),
gradient boosting machines (GBM), and neural networks, can further enhance PD
estimation by leveraging their ability to learn highly complex and possibly nonlinear
patterns in the data.

SVM works by constructing hyperplanes in high-dimensional feature spaces
to separate default and non-default borrowers. These hyperplanes are learned
classifiers to best classify the observations with maximum margin in between
supporting hyperplanes, subject to a pre-specified tolerance threshold. It also uses a
kernel function to capture nonlinear decision boundaries.

GBMs work by learning an ensemble of weak learners (which are simple
decision trees) in a sequential manner, where each subsequent tree is learned to
minimize the errors of the previous ones. This iterative process turns out to be
particularly effective in minimizing training error.

Neural networks consist of interconnected layers of nodes that digest input
features through weight sum and nonlinear transformations. Such information
extraction and nonlinear activation enable the modeling of highly complex relation-
ships between predictors and PD. In particular, we can design very powerful and
complex neural networks to learn arbitrary PD functions.

These classifiers excel at capturing intricate dependencies and interactions within
the data and often outperform traditional statistical models in predictive accuracy.
However, complex models often have many hyperparameters, and tuning a good
set of hyperparameters could be quite time-consuming. In addition, regularization
techniques are often applied to avoid overfitting during the training process.

3.3 Loss Given Default

Loss given default (LGD) represents the proportion (a ratio) of the exposure (an
amount) that a lender is likely to lose due to a default event. Unlike PD, which
measures the likelihood that a default occurs, LGD quantifies the severity of the
loss (in terms of the percentage loss out of total exposure) once a default event
has occurred. PD tells us how likely defaults may occur, while LGD measures the
potential magnitude of losses associated with those defaults.
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The level of LGD provides valuable insight into the potential severity of the
losses. For example, a high LGD indicates a relatively significant loss, often
associated with illiquid collateral that is difficult to recover. In contrast, a low LGD
suggests a smaller loss, which may reflect high liquidity in the underlying collateral.
Loans backed by easily recoverable and liquid collateral typically exhibit lower
LGD values, whereas loans with illiquid and hard-to-recover collateral are more
likely to result in higher LGD. For example, loans secured by tangible assets, such
as real estate, typically exhibit lower LGDs compared to unsecured loans such as
credit cards, as lenders can liquidate these collaterals to offset losses. The legal
system that enforces efficient debt recovery also tends to lead to a lower LGD.

LGD is defined as

.LGD = 1 − Recovery Rate

where the recovery rate denotes the percentage of the total exposure that can be
recovered if the default event occurs. As an alternative definition, if a lender provides
a loan with an outstanding exposure (unpaid total sum) of E and recovers a total
amount of R after the default event, the LGD can be expressed as

.LGD = E − R

E
= 1 − R

E

Thus, LGD depends on two quantities: the outstanding exposure E and the
recovery amount R. Since E cannot be changed if a default event occurs, LGD
essentially depends on R, which also relates to the lender’s ability to recover the
full or partial outstanding exposure as efficiently as possible. In general, high-
quality collateral and efficient recovery mechanisms lead to a high R and a low
LGD, improving the resilience of the lender against defaults. In contrast, poor
collateral quality or inefficient recovery processes result in low R and high LGD,
thus increasing the likelihood of further loss.

There are multiple methods that can be used to estimate LGD. We outline a few
commonly used methodologies here:

• Using Historical Recovery: This approach involves analyzing historical default
data and calculating average recovery rates for similar asset classes, loan types,
and economic conditions. In other words, this approach assumes average past
performance as a prediction for future LGD prediction. As an example, suppose
that a lender reviews ten defaulted loans for the past three years and finds that,
on average, only 40% of the outstanding amounts were recovered. Then the
estimated LGD is 1 – 0.40 = 0.60, meaning a 60% loss is expected in the event
of default.

• Using Collateral Valuation: For secured loans, the quality and liquidity of
collateral are critical determinants as they represent the recoverable amount R

in the definition of LGD. Valuation models are developed to assess the current
market value of collateral assets, considering factors such as depreciation, market
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volatility, and liquidation costs. This is different from the previous approach that
focuses on estimating the LGD alone; instead, we focus on the collateral assets
and try to predict their future value, which is further assumed to be recoverable
should a default event happen. For example, imagine a secured loan of $100,000
backed by collateral currently valued at $90,000. This means that we will be able
to recover at most 90% of the total risk exposure. If liquidating the collateral
(such as selling the property collateral) requires 10% of the collateral value (i.e.,
$9,000) as an additional cost, the recoverable amount becomes $90,000 – $9,000
= $81,000. Thus, our estimate of LGD is 100,000−81,000

100,000 = 0.19..
• Using Expert Judgment and Heuristics: When historical data is sparse, insuf-

ficient, or unreliable, expert judgment often plays a crucial role in supplementing
LGD estimation. Subject matter experts leverage their domain knowledge and
experience to provide informed LGD estimates, which are particularly valuable
when data is inadequate to train a reliable model. In addition, experts can refine
their estimates by incorporating insights into current and evolving economic
conditions, as well as prevailing market sentiment, ensuring that the predictions
remain relevant and contextually accurate. For example, in cases with limited
historical data, an expert might assess that, given current economic conditions,
similar loans will have an expected recovery rate of 50%, which translates to an
implied LGD of 1 − 0.50 = 0.50., or 50%.

• Using Statistical Models: Statistical models, including linear regression and
logistic regression, can be used to predict LGD based on various predictor
variables such as borrower demographics, loan attributes, collateral information,
and macroeconomic indicators. These models are trained to minimize the
discrepancy between predicted and actual losses by optimizing the parameters
based on historical data. These models, once properly developed, can potentially
capture the underlying pattern in the data and make reliable predictions on LGD.
In this regard, ensuring the proper training data and modeling assumption is the
key to building a reliable model. As an example, consider a linear regression
model that estimates LGD as ˆLGD = 0.20+ 0.5× (LTV− 0.60),.where LTV is
the loan-to-value ratio expressed as a decimal. For a loan with an LTV of 0.80,
the predicted LGD is 0.20 + 0.5 × (0.80 − 0.60) = 0.30,. or 30%.

• Using Machine Learning Models: Advanced machine learning algorithms,
such as random forests and neural networks, offer more complex and powerful
models for LGD estimation. These techniques can capture complex nonlinear
relationships and interactions between predictors. However, it is important to
prevent these complex approximators from overfitting the data, which corre-
sponds to good training set performance but poor out-of-sample performance.
In addition, the choice of predictors and the modeling approach significantly
influence the accuracy and reliability of LGD estimates. Suppose a random forest
model, trained on historical loan and borrower data, predicts an LGD of 15% for
a new loan of $100,000. This implies an expected loss of 0.15 × 100,000 =
$15,000..
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It is also important to note the interaction between LGD and other components
of credit risk, such as PD and EAD. For example, a high PD coupled with a high
LGD signifies a particularly risky exposure, as this means that the borrower is
likely to default, and if such a default happens, most of the exposure will not be
recoverable. Thus, such a type of obligor requires more stringent risk mitigation
measures and higher capital reserves. In contrast, a high EAD (meaning a large
amount of exposure at risk) with a low LGD (meaning that the majority of the
exposure can be recovered, likely due to high-quality and liquid collateral) might
require careful monitoring of exposure levels to manage potential losses effectively.

3.4 Exposure at Default

Exposure at default (EAD) represents the total value to which a lender is exposed
when the borrower defaults (note that the definition of default may vary in different
financial institutions). Unlike PD and LGD, which quantify the probability of
default and the severity of potential loss, respectively, EAD quantifies the magnitude
of exposure that is at risk, thus being an absolute amount instead of a percentage.
Accurately estimating EAD is a key component not only for calculating ECL but
also for determining the necessary capital reserves required to absorb potential
losses.

To obtain EAD, we need to consider both the outstanding principal and accrued
interest on a loan, as well as any additional exposures, such as undrawn credit lines
or commitments that may be utilized by the borrower before defaulting. Thus, the
exact value of EAD is inherently dynamic and may fluctuate in time, similar to both
PD and LGD. All three components are, therefore, point-in-time estimates.

EAD is calculated by summing the current outstanding balance of a loan with the
expected utilization of any undrawn credit facilities:

.EADt = Et + θUt

where the outstanding balance Et . denotes the current principal and the interest
accrued on the loan at time t . The undrawn credit line Ut . represents the portion
of a revolving credit facility that remains unused by the borrower at time t . The
credit conversion factor (CCF) θt . is the time-dependent CCF reflecting the expected
utilization at time t . It is a factor that estimates the proportion of the undrawn credit
line that will be used at the time of default. This equation captures the total exposure
at default by accounting for both the utilized and potential future drawdowns on
credit facilities. The CCF θ . is typically determined based on historical utilization
rates and can vary depending on the type of credit facility, borrower characteristics,
and prevailing economic conditions.

EAD can be estimated using the following approaches:

• Using a Standardized Approach Based on Regulations: Under regulatory
frameworks such as Basel II and Basel III, the standardized approach prescribes



3.4 Exposure at Default 77

fixed CCFs for different types of credit facilities. For example, an undrawn
portion of a commercial loan might have a CCF of 50%, implying that 50%
of the undrawn amount is expected to be used at default.

• Using Behavioral Models: Behavioral models can be trained to estimate EAD
by forecasting the future utilization of undrawn credit lines based on borrower-
specific behavior and macroeconomic indicators. Similar to PD and LGD
estimation, these models often employ statistical models such as time series
analysis to predict utilization patterns.

• Using Machine Learning Models: Machine learning algorithms, including
random forests, XGBoost, and neural networks, are increasingly utilized to
model EAD due to their good learning capacity without the need for feature
engineering. These models can also incorporate a wide range of features, such as
borrower demographics, credit history, loan characteristics, and macroeconomic
variables, to enhance predictive accuracy.

As an example, consider the following scenario with an outstanding balance E

of $1,000,000, an undrawn credit line U of $200,000, and a credit conversion factor
θ . of 50%. The EAD can be calculated as

.EAD = 1,000,000 + (200,000 × 0.50) = 1,100,000

which indicates that the total exposure at default is $1,100,000, comprising the
outstanding balance of $1,000,000 and an additional $100,000 expected from the
undrawn credit line.

For a portfolio with multiple undrawn credit lines, each with different CCFs
based on borrower profiles and economic scenarios, the corresponding EAD for
the entire portfolio (EADportfolio). can be aggregated as

.EADportfolio =
n

i=1

(Ei + Ui × θi)

where n is the total number of credit facilities in the portfolio.
Furthermore, for revolving credit facilities where borrowers can make multiple

withdrawals over the loan life, EAD estimation may require integrating over the
expected utilization path. This involves predicting not just a single drawdown, but
a sequence of potential utilizations at different points in time, leading to a more
dynamic and time-sensitive EAD estimation.

.EAD = E0 +
T

t=1

(Ut × θt )

where E0 . is the initial outstanding balance, Ut . is the undrawn credit line at time t ,
θt . is the CCF at time t , and T is the total time horizon.
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The definition of EAD suggests that it is quite sensitive to the CCF parameter
.. This sensitivity can be characterized using sensitivity analysis, which involves

assessing how changes in key parameters, such as the CCF or the undrawn credit
line, impact the EAD estimates. For example, an increase in the CCF from 50%
to 60% would proportionally increase the EAD by $20,000 in the aforementioned
example:

. EAD = × new − old = 200 000 × 0 60 − 0 50 = 20 000

3.5 Expected Credit Loss

Let us look at a concrete example of calculating the ECL in a housing mortgage loan.
Imagine a bank that provides a mortgage loan to a borrower to purchase a residential
property. The key parameters of this loan are as follows: The borrower secures a
loan amount of $400,000 to finance a property valued at $500,000, resulting in
a loan-to-value ratio (LTV) of 80%. Over time, the borrower makes repayments
that add up to $40,000, thus reducing the outstanding loan balance to $360,000.
This outstanding balance is calculated by subtracting the repayments made from the
initial loan amount. It is the EAD for the bank, representing the total Value at Risk
should the borrower default on the loan. This calculation reveals that the lender’s
exposure at the current time point is $360,000, which consists of both the principal
and any accrued interest that remains unpaid.

Next, we look at PD, which measures the likelihood that the borrower will default
on the mortgage within a specified time horizon. Based on historical data, suppose
that it is observed that one out of four homeowners default on their mortgage loans
within a year. This empirical observation serves as an estimate for future PD:

.PD = Number of Defaults

Total Number of Loans
= 1

4
= 0 25 or 25%

This implies a 25% probability that the borrower will default on the loan within
the year.

We also look at LGD, which quantifies the proportion of the exposure that is
lost when a borrower defaults, after accounting for recoveries from collateral or
other credit enhancements. In this example, assume that if the borrower defaults,
the lender is able to immediately sell the property for $342,000. The remaining loss
incurred by the default event is the difference between the total outstanding loan
balance and the recovery amount.

. = EAD − = 360000 − 342000 = 18000
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LGD is then calculated as the ratio of this loss to the exposure at default:

.LGD = L

EAD
= $18,000

$360,000
= 0.05 or 5%

This calculation indicates that, in the event of default, the lender expects to lose
5% of the exposure at default, primarily due to the shortfall between the outstanding
balance and the amount of recovery from the property sale.

Finally, let us calculate the ECL by integrating the three components, PD, LGD,
and EAD, into a single measure that quantifies the expected average loss from credit
exposures via the following:

.ECL = PD × LGD × EAD

Substituting the values from our example:

.ECL = 0.25 × 0.05 × 360000 = 4500

Thus, the bank’s ECL is $4,500. This figure represents the expected average loss
from the loan, considering both the likelihood of default and the severity of the loss
upon default.

Note that the ECL formula is based on the principle of conditional expectation,
where the expected loss is the product of the probability of a loss event (PD), the
percentage loss given a default (LGD), and the size of the exposure at the time
of the event (EAD). This multiplicative relationship ensures that the impact of
each component is reflected proportionately in the overall expected loss. In this
example, a PD of 25% combined with an LGD of 5% and an EAD of $360,000
yields an ECL of $4,500, highlighting how even relatively low LGD values can
result in significant expected losses when combined with substantial exposure and
non-negligible default probabilities.

Note that we can further perform sensitivity analysis to analyze the impact of
individual components, while assuming the rest is fixed, on the resulting ECL. All
of these components have a positive correlation with ECL, meaning that a higher
level of PD, LGD, or EAD will tend to increase ECL.

In the following section, we look at a related concept: the risk-weighted asset.

3.5.1 Capital Regulation Using Risk-Weighted Asset

In modern banking, managing credit risk is a crucial function within the risk
management space. If not properly managed, credit risk can significantly affect a
bank’s financial health. To mitigate this risk, many regulatory frameworks have been
proposed, such as Basel III, which requires banks to have sufficient capital relative
to the level of risk and exposure. This is where the concept of risk-weighted assets
(RWAs) comes in.
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RWAs provide a mechanism to adjust the total value of bank assets based on the
level of risk they carry. Simply put, it is a weighted combination across the value
of all available assets. For instance, a government bond may be considered less
risky than a corporate loan, and, therefore, it should receive a lower risk weight. By
assigning risk weights to different asset classes, RWAs ensure that banks maintain
an appropriate capital buffer proportional to the total exposure.

In addition to RWA, we also have a regulatory requirement on the bank’s Capital
Adequacy Ratio (CAR), a key measure of financial stability used to derive the
required amount of capital reserve. Regulatory authorities, through the Basel III
framework, have established minimum capital requirements (often set at 8%) to
ensure that banks remain resilient in times of economic stress. CAR helps ensure
that a bank has enough capital to cover its risks, thereby promoting stability and
solvency in the financial system.

The required capital reserve is thus defined as the product of RWA and CAR:

.Capital = CAR × RWA

where Capital refers to the regulatory capital of a bank, which consists of Tier
1 (core capital, including common equity and retained earnings) and Tier 2
(supplementary capital, such as subordinated debt). Given the regulated CAR and
the calculated RWA, we can then derive the amount of capital that the bank needs
to reserve.

There are two main methods outlined in the Basel III framework for calculating
RWAs for credit risk: the standardized approach (SA) and the internal ratings–based
(IRB) approach. Both methods involve assigning risk weights to assets. SA is the
simpler method of calculating RWA and is commonly used by smaller banks and
financial institutions. This approach uses a fixed set of risk weights predefined by
regulators, typically based on the external credit ratings of the counterparty or asset
class involved. These credit ratings are then converted to a set of risk weights and
further used to calculate RWA through the following:

.RWA = EAD × Risk Weight

Thus, to calculate the RWA, we would first determine the exposure value of
each asset (along with additional adjustments for collateral or guarantees), multiply
the exposure value of each asset by its assigned risk weight, and then sum the
results across all assets. Consider a bank with the following assets: $200 million
in AAA-rated government bonds with a risk weight of 0%, $80 million in BBB-
rated corporate loans with a risk weight of 100%, and $50 million in residential
mortgages with a risk weight of 50%. The RWA is calculated as (200 × 0%) +
(80× 100%) + (50× 50%) = 105.million. Therefore, the total RWA for credit risk
amounts to $105 million.

There are multiple types of asset classes when it comes to risk exposure, includ-
ing sovereign exposures, corporate loans, residential mortgages, retail exposures,
and off-balance sheet items. Each asset class is assigned a specific risk weight based
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on the credit rating of the counterparty (if available) or the asset type. For example,
government bonds, which are AAA rated, can get 0% risk weight, while corporate
loans (BBB rated) get 100% risk weight (due to their high risk of default), residential
mortgages get 50% risk weight (since the property itself can serve as collateral), and
retail loans get 75% risk weight (relatively risky especially for unsecured loans).

Compared to SA, the IRB approach is more advanced and allows banks and
financial institutions to use their own risk models to calculate the three risk
components (PD, LGD, and EAD). Due to its complexity and a considerable
amount of development effort, this method is typically used by larger banks with
more complex portfolios and requires regulatory approval from local and/or foreign
regulators.

There are two variants of the IRB approach: Foundation IRB (F-IRB), where
banks estimate PD with LGD and EAD provided by regulators, and Advanced IRB
(A-IRB), where banks estimate all three key components. These parameters, once
estimated, are then used in the calculation of the RWA.

Specifically, we first calculate the risk weight parameter , which represents the
capital requirement per unit of EAD. A common calculation is based on the PD,
LGD, and asset correlation parameter . using the following expression:

. = LGD ×
−1 PD + √ −1 0 999√

1 −

This quantity reflects the amount (in percentage) of capital that a bank needs
to hold for each unit exposure to cover the unexpected loss (tail risk or extreme
loss scenarios beyond the average anticipated loss) with a specified confidence
level (99.9%). . is the cumulative distribution function of the standard normal
distribution (used to map probabilities to the corresponding Z scores), and −1

.

is the inverse cumulative distribution function (quantile function) of the standard
normal distribution, representing the Z score corresponding to a probability . Note
that more advanced models may also consider the maturity of the exposure in the
calculation.

Once is calculated, we can then calculate RWA via RWA = × EAD.. This
process reflects the risk sensitivity of the bank’s exposures and helps determine how
much capital the bank needs to hold to cover potential losses.

Consider a scenario with the following parameters: an EAD of $120 million, a
PD of 5%, an LGD of 55%, an asset correlation ( .) of 0.2, a CAR of 8%, and a target
confidence level 99.9%. To calculate the capital requirement, we first determine .:

. = 0 55 ×
−1 0 05 + √

0 2 × −1 0 999√
1 − 0 2

≈ 21 12%

Next, the RWA is calculated as follows:

.RWA = 0 2112 × 120 000 000 = $25 344 000
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Finally, the required capital is computed as follows:

.Capital = 0.08 × 25,344, 000 ≈ $2.03 million

This implies that a bank with an RWA value of $25.344 million must maintain
$2.03 million in capital to meet the regulatory CAR of 8%. This calculation high-
lights the interaction between credit risk parameters and regulatory requirements,
ensuring sufficient capital buffers to absorb potential losses.

In the next section, we will look at how to build a PD model using the logistic
regression model. We focus on this component due to its important role as a first-
level screening between high-risk and low-risk borrowers.

3.6 Building a PDModel

A PD model takes relevant borrower information and outputs the probability of
default within the next period of time, which could be one year, two years, etc. There
are typically two types of obligor data: one-time application data and recurrent
behavioral data. By digesting both application and behavioral data, credit risk
models aim to predict the probability of default, which helps to set the interest rate
and other risk management guidelines throughout the borrowing period.

Application data refers to the information provided by the borrower at the time
of the credit application. It typically includes key demographic and loan-specific
characteristics that give an initial indication of the borrower’s risk profile. The
key attributes in the application data, once approved, include interest rate (which
positively correlates with credit risk), credit grade (an internal grade assigned to
potential obligors as an indicator of creditworthiness), and loan amount (the total
amount of money requested by the borrower).

Behavioral data reflect the borrower’s financial status and historical background
information. This information is often collected and assessed on a periodic basis,
often yearly, after the borrower has taken out a loan. This periodic assessment
ensures that the borrower is in good financial condition on a regular basis. Example
behavior attributes include employment history (such as length of service and
income level), historical default (past default history, which is a key predictor of
future default risk), and other demographics such as spending or transaction history.

When developing a PD model, the default definition, or good-bad definition, is
typically based on the delinquency status of the borrower in terms of the number of
days past the due date. A common definition is that a borrower would be considered
as default if it has been more than 90 days past the due date. However, a borrower
who has committed fraud may also be considered a default. The default status is
often stored in a binary variable where 1 indicates default and 0 indicates non-
default. When modeling the default outcome in logistic regression, the log odds
of the default probability are modeled as a linear combination of the features.
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In the following sections, we first look at common best practices in data
processing and exploration, including dealing with outliers and missing data. We
then move on to model development using logistic regression and its evaluation.

3.6.1 Data Processing and Exploration

We will look at a credit bureau dataset that contains both application and behavior
features. The dataset contains 32,581 rows and 12 columns, as shown in Listing 3-1.

1 import numpy as np
2 import pandas as pd
3 import matplotlib.pyplot as plt
4 from sklearn.model_selection import train_test_split
5 from sklearn.linear_model import LogisticRegression
6 from sklearn.metrics import (
7 accuracy_score ,
8 precision_score ,
9 recall_score ,

10 f1_score ,
11 confusion_matrix ,
12 roc_curve ,
13 auc,
14 classification_report
15 )
16 import seaborn as sns
17

18 cr_loan = pd.read_csv("data/cr_loan2.csv")
19 cr_loan.shape
20

21 # Output
22 (32581, 12)

Listing 3-1 Importing data

In this dataset, the loan_status variable indicates the default status. As mentioned
earlier, banks and financial institutions demand a higher interest for risky obligors
whose probability of default is higher than less risky borrowers. We can verify this
via Listing 3-2, which shows the average interest rate for each type of loan_status
and person_home_ownership. The resulting table, as shown in Table 3-1, suggests
that the average interest rate is the lowest for non-default cases but rises up for
default cases.

1 # Crosstab between ’person_home_ownership’ and ’loan_status’,
2 # calculating the mean of ’loan_int_rate’ and rounding it to 2

decimal places
3 pd.crosstab(
4 cr_loan[’person_home_ownership’], # Index: Homeownership

status
5 cr_loan[’loan_status’], # Columns: Loan status
6 values=cr_loan[’loan_int_rate’], # Values to aggregate:

Loan interest rate
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Table 3-1 Comparing the
interest rates across different
home ownerships and default
status

Loan status 0 1

Person home ownership

MORTGAGE 10.06 13.43

OTHER 11.41 13.56

OWN 10.75 12.24

RENT 10.75 12.97

7 aggfunc=’mean’ # Aggregation function:
Mean

8 ).round(2) # Round the results to 2
decimal places

Listing 3-2 Analyzing interest rate across different home ownerships and default status

3.6.2 Dealing with Outliers

When developing credit risk models, outliers can arise from various sources, such
as incorrect data entry, rare but extreme financial behaviors, or unique economic
events that lead to significant deviation from the norm. These outliers are typically
data points that deviate considerably from the majority of observations and can
distort statistical analyses and predictions. For example, exceptionally long or
short employment terms, income levels, or loan amounts may not represent typical
borrower behavior and can skew the model’s understanding of default risk. Thus,
it is important to detect and handle these outliers because they can influence the
estimation process and lead to biased PD predictions. Once detected, outliers can
be treated by either removing them, transforming them, or using robust modeling
techniques that reduce their influence.

Let us start by analyzing person_emp_length and loan_int_rate, where we show
the original scatterplot in the left panel of Figure 3-2. Since it is unlikely that a
person will have more than 60 years of employment duration, we can identify these
rows as outliers and remove them from the original dataframe. This generates the
right panel of Figure 3-2.

See Listing 3-3 for details on removing outlier observations.

1 # Copy original data to preserve it for "before" plot
2 df_before = cr_loan.copy()
3

4 # Identify outliers: employment length >= 60 months
5 outlier_indices = df_before[df_before[’person_emp_length’] >=

60].index
6

7 # Remove those outliers to create ’after’ set
8 df_after = df_before.drop(outlier_indices)
9

10 # Create a 1x2 subplot
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Figure 3-2 Scatter plot of Employment Length vs. Loan Interest Rate. Left: before removing
outliers. Right: after removing outliers

11 fig, axes = plt.subplots(nrows=1, ncols=2, figsize=(8, 3))
12

13 # -- Plot 1: Before Outlier Removal
14 axes[0].scatter(df_before[’person_emp_length’],
15 df_before[’loan_int_rate’],
16 alpha=0.5,
17 color=’blue’)
18 axes[0].set_title(’Before Outlier Removal’)
19 axes[0].set_xlabel(’Employment Length (months)’)
20 axes[0].set_ylabel(’Loan Interest Rate (%)’)
21 axes[0].grid(True)
22

23 # -- Plot 2: After Outlier Removal
24 axes[1].scatter(df_after[’person_emp_length’],
25 df_after[’loan_int_rate’],
26 alpha=0.5,
27 color=’blue’)
28 axes[1].set_title(’After Outlier Removal’)
29 axes[1].set_xlabel(’Employment Length (months)’)
30 axes[1].set_ylabel(’Loan Interest Rate (%)’)
31 axes[1].grid(True)
32

33 plt.tight_layout()
34 plt.show()

Listing 3-3 Removing outliers

In addition to removing outliers, we can also transform them into meaningful
observations so that they can still be used for modeling purposes. For example,
applying a log transformation compresses the range of the data by converting large
values into a logarithmic scale, which reduces the disproportionate influence of
extreme observations and stabilizes variance. Standardization, on the other hand,
rescales the data so that each feature has a mean of 0 and a standard deviation
of 1, thereby facilitating comparisons across different variables and improving
the convergence of many algorithms. Additionally, winsorization involves capping
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extreme values at specific percentile thresholds, which limits the impact of outliers
while preserving the overall distribution of the data. Together, these methods enable
us to retain valuable information from outliers while ensuring that they do not
unduly distort the modeling process.

3.6.3 Dealing withMissing Data

The handling of missing data is also a critical step in ensuring the integrity and
predictive power of the model. Missing data can occur for a variety of reasons,
such as incomplete customer applications, data entry errors, or limitations in data
collection systems. If not addressed properly, missing values can introduce bias,
reduce the efficiency of the model, or even render the model invalid. When a feature
has most of the observations missing, the common practice is to remove it. However,
when only a few observations are missing, we tend to fill these missing values with
some estimate.

There are several techniques for treating missing data in credit risk modeling,
each depending on the extent and nature of the missing observations. Common
methods include mean or median imputation, where missing values are replaced by
the average or median of the observed data, which is simple and often effective for
continuous variables. Mode imputation is useful for categorical variables. In some
cases, the missing data itself may be informative and indicative of increased risk, in
which case creating a separate “missing” category can be useful.

In Listing 3-4, we first count the number of rows with missing data in
loan_int_rate and person_emp_length, followed by mean value replacement and
row removal for the latter.

1 cr_loan = df_after.copy()
2

3 # Fill missing values in the ’loan_int_rate’ column with the mean
of the non-missing values

4 cr_loan[’loan_int_rate’].fillna(cr_loan[’loan_int_rate’].mean(),
inplace=True)

5 # Get the indices of rows where ’person_emp_length’ is null (NaN)
6 indices = cr_loan[cr_loan[’person_emp_length’].isnull()].index
7 # Drop the rows with missing ’person_emp_length’ values from the

DataFrame
8 cr_loan.drop(indices, inplace=True)

Listing 3-4 Dealing with missing value

3.6.4 Dealing with Categorical Data

Logistic regression requires numerical input, so any categorical variables in the
dataset must be converted to a numerical format. One common method for this
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conversion is one-hot encoding, which transforms categorical variables into a series
of binary columns, as shown in Listing 3-5.

1 # Identify categorical variables
2 categorical_vars = [’person_home_ownership’, ’loan_intent’, ’

loan_grade’, ’cb_person_default_on_file’]
3

4 # Perform dummy encoding on categorical variables, dropping the
first category to avoid multicollinearity

5 cr_loan_encoded = pd.get_dummies(cr_loan, columns=
categorical_vars , drop_first=True)

Listing 3-5 One-hot encoding categorical data

By applying one-hot encoding to the identified categorical variables and dropping
the first category, we prevent multicollinearity, which can adversely affect the
model’s performance.

3.6.5 Train-Test Split

As shown in Listing 3-6, after encoding the categorical variables, the next step is to
separate the dataset into features and the target variable. The features (X) are all the
columns except loan_status, which is the target (y) that we aim to predict.

1 # Define feature matrix X and target vector y
2 X = cr_loan_encoded.drop(’loan_status’, axis=1)
3 y = cr_loan_encoded[’loan_status’]

Listing 3-6 Creating features and target variables

To effectively evaluate the performance of the model, it is important to divide
the data into training and testing sets. As shown in Listing 3-7, typically, a common
split is 70% for training and 30% for testing. This division allows the model to learn
from the training data and be evaluated on unseen testing data.

1 # Split the data into training and testing sets (e.g., 70% train,
30% test)

2 X_train, X_test, y_train, y_test = train_test_split(
3 X, y, test_size=0.3, random_state=42, stratify=y
4 )

Listing 3-7 Performing train-test split

Here, setting random_state=42 ensures reproducibility of the results, and strat-
ify=y maintains the same distribution of the target variable in both training and
testing sets.

Now, let us move on to the model development stage.
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3.6.6 Developing Logistic RegressionModel

With the data prepared, the next step is to build and train the logistic regression
model. As shown in Listing 3-8, we will initialize the model with a higher maximum
number of iterations to ensure convergence and use the “lbfgs” solver, which is
suitable for smaller datasets and supports multinomial loss.

1 # Initialize the Logistic Regression model with increased
max_iter to ensure convergence

2 logreg = LogisticRegression(max_iter=1000, solver=’lbfgs’)
3 # Fit the model on the training data
4 logreg.fit(X_train, y_train)

Listing 3-8 Building logistic regression model

As shown in Listing 3-9, training the predictive model involves fitting it to the
training data, allowing it to learn the relationships between the features and the target
variable. After training the model, we use it to make predictions on the test set. This
involves predicting both the class labels and the probabilities associated with the
positive class, which are useful for evaluating the model’s performance using ROC
analysis.

1 # Make predictions on the test set
2 y_pred = logreg.predict(X_test)
3 y_pred_proba = logreg.predict_proba(X_test)[:, 1]

Listing 3-9 Generating model predictions

Here, y_pred contains the predicted class labels, while y_pred_proba contains
the predicted probabilities for the positive class.

3.6.7 Model Evaluation

Evaluating the model’s performance is crucial to understand how well it generalizes
to new data. As shown in Listing 3-10, we will use several metrics, including
accuracy, precision, recall, F1 score, confusion matrix, and the ROC-AUC curve, to
assess the model’s performance. Specifically, accuracy measures the proportion of
correctly predicted instances out of all instances. Precision assesses the correctness
of positive predictions, recall evaluates the model’s ability to capture all positive
instances, and the F1 score balances precision and recall.

1 # Evaluate the model
2 accuracy = accuracy_score(y_test, y_pred)
3 precision = precision_score(y_test, y_pred)
4 recall = recall_score(y_test, y_pred)
5 f1 = f1_score(y_test, y_pred)
6

7 print("Model Evaluation Metrics:")
8 print(f"Accuracy : {accuracy:.4f}")
9 print(f"Precision: {precision:.4f}")

10 print(f"Recall : {recall:.4f}")
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Figure 3-3 Confusion matrix between model predictions and actual targets

11 print(f"F1 Score : {f1:.4f}")
12

13 # Output
14 Accuracy : 0.8474
15 Precision: 0.7375
16 Recall : 0.4526
17 F1 Score : 0.5610

Listing 3-10 Model evaluation

The result suggests that there might be a trade-off between precision and recall.
Although the model is good at avoiding false positives (as indicated by the high
precision), it is poor at capturing actual defaults (low recall). In credit risk modeling,
missing actual defaults can be risky, so recall is often more important than precision.

As shown in Listing 3-11, the confusion matrix provides a more detailed
breakdown of the model predictions, showing the number of true positives, true
negatives, false positives, and false negatives. This visualization, as shown in
Figure 3-3, helps to understand where the model is performing well and where it
might be making mistakes.

1 # Display the confusion matrix
2 conf_matrix = confusion_matrix(y_test, y_pred)
3 plt.figure(figsize=(6,4))
4 sns.heatmap(conf_matrix , annot=True, fmt=’d’, cmap=’Blues’,
5 xticklabels=[’Predicted Negative’, ’Predicted

Positive’],
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6 yticklabels=[’Actual Negative’, ’Actual Positive’])
7 plt.title(’Confusion Matrix’)
8 plt.xlabel(’Predicted’)
9 plt.ylabel(’Actual’)

10 plt.show()

Listing 3-11 Displaying confusion matrix

As shown in Listing 3-12, we can also use the classification report to obtain a
comprehensive overview of the model’s performance, including precision, recall,
F1 score, and support for each class. This report also helps us to understand how the
model performs in different categories.

1 # Classification report for detailed metrics
2 print("Classification Report:")
3 print(classification_report(y_test, y_pred))
4

5 # Output
6 # Classification Report:
7 precision recall f1-score support
8

9 0 0.86 0.96 0.91 7458
10 1 0.74 0.45 0.56 2048
11

12 accuracy 0.85 9506
13 macro avg 0.80 0.70 0.73 9506
14 weighted avg 0.84 0.85 0.83 9506

Listing 3-12 Classification report

3.6.8 ROC Curve

Note that such a classification report is based on a threshold value of 0.5 by default.
Choosing the appropriate classification threshold is a critical step in building an
effective logistic regression model, especially in sensitive applications such as credit
risk modeling. The threshold determines how predicted probabilities are converted
into class labels (e.g., default or no default), directly impacting the balance between
true positives and false positives. In this context, selecting the optimal threshold
involves not only statistical considerations but also a deep understanding of the
business implications.

The classification threshold is the probability value above which a prediction is
classified as the positive class (e.g., loan default) and below which it is classified
as the negative class (e.g., loan non-default). Adjusting this threshold affects the
model’s sensitivity (true positive rate) and specificity (true negative rate).

The Receiver Operating Characteristic (ROC) curve is a graphical representation
that illustrates the trade-off between the true positive rate (TPR) and the false
positive rate (FPR) in different threshold settings. Each point on the ROC curve
corresponds to a specific threshold value and the corresponding trade-off between
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Figure 3-4 ROC curve

precision and recall. By plotting TPR against FPR at various thresholds, the ROC
curve provides a comprehensive view of the model’s performance. The Area Under
the Curve (AUC) then quantifies the overall ability of the model to discriminate
between the two classes, with a higher AUC indicating better performance.

However, the ROC curve alone does not specify the best threshold for classifi-
cation. To determine the optimal threshold, especially in the context of credit risk
modeling, it is still essential to consider the specific costs and benefits associated
with different types of prediction errors.

To better understand how the threshold impacts model performance and to
identify the optimal threshold for credit risk modeling, let us delve deeper into
the ROC curve and incorporate additional analyses. In Listing 3-13, we plot the
ROC curve and highlight specific threshold points (0.3, 0.5, and 0.7) to visualize
how different thresholds affect the true positive and false positive rates, as shown in
Figure 3-4. The find_closest_threshold function ensures that we select the nearest
available threshold value to avoid indexing errors. In addition, we also demonstrate
how changing the threshold to 0.7 affects key performance metrics.

1 # ROC Curve and AUC
2 fpr, tpr, thresholds = roc_curve(y_test, y_pred_proba)
3 roc_auc = auc(fpr, tpr)
4

5 plt.figure(figsize=(8,6))
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6 plt.plot(fpr, tpr, color=’darkorange’, lw=2, label=f’ROC curve (
AUC = {roc_auc:.4f})’)

7 plt.plot([0, 1], [0, 1], color=’navy’, lw=2, linestyle=’--’)
8

9 # Define the thresholds you want to highlight
10 desired_thresholds = [0.3, 0.5, 0.7]
11

12 # Function to find the closest threshold
13 def find_closest_threshold(thresholds , desired_thresh):
14 idx = np.argmin(np.abs(thresholds - desired_thresh))
15 return idx
16

17 # Highlight specific threshold points
18 for thresh in desired_thresholds:
19 idx = find_closest_threshold(thresholds , thresh)
20 plt.scatter(fpr[idx], tpr[idx], label=f’Threshold {

thresholds[idx]:.2f}’, marker=’o’)
21

22 plt.xlim([-0.01, 1.0])
23 plt.ylim([0.0, 1.05])
24 plt.xlabel(’False Positive Rate’)
25 plt.ylabel(’True Positive Rate’)
26 plt.title(’Receiver Operating Characteristic (ROC) Curve’)
27 plt.legend(loc="lower right")
28 plt.show()
29

30 # Example of threshold impact on predictions
31 threshold = 0.7
32 y_pred_threshold = (y_pred_proba >= threshold).astype(int)
33

34 # Evaluate performance at the chosen threshold
35 accuracy = accuracy_score(y_test, y_pred_threshold)
36 precision = precision_score(y_test, y_pred_threshold)
37 recall = recall_score(y_test, y_pred_threshold)
38 f1 = f1_score(y_test, y_pred_threshold)
39

40 print(f"Performance Metrics at Threshold = {threshold}:")
41 print(f"Accuracy : {accuracy:.4f}")
42 print(f"Precision: {precision:.4f}")
43 print(f"Recall : {recall:.4f}")
44 print(f"F1 Score : {f1:.4f}")
45

46 # Output
47 Performance Metrics at Threshold = 0.7:
48 Accuracy : 0.8340
49 Precision: 0.8210
50 Recall : 0.2935
51 F1 Score : 0.4324

Listing 3-13 ROC curve and AOC

Assuming that there is no preference between precision and recall, we can use
the F1 score to balance the two. The F1 score is the harmonic mean of precision
and recall, which can be particularly useful when the classes are imbalanced. In
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Listing 3-14, we iterate through all thresholds and calculate the F1 score to select
the threshold that achieves the highest balance between precision and recall. In this
case, the optimal threshold is 0.34.

1 # Maximizing the F1-Score
2 f1_scores = []
3 for thresh in thresholds:
4 y_pred_thresh = (y_pred_proba >= thresh).astype(int)
5 f1 = f1_score(y_test, y_pred_thresh)
6 f1_scores.append(f1)
7

8 optimal_idx = np.argmax(f1_scores)
9 optimal_threshold = thresholds[optimal_idx]

10 print(f"Optimal Threshold based on F1-Score: {optimal_threshold
:.2f}")

11

12 # Output
13 Optimal Threshold based on F1-Score: 0.34

Listing 3-14 Maximizing the F1 score

3.7 Summary

Managing credit risk is a fundamental aspect of financial institutions, who need
to assess potential losses due to potential default event. This chapter began with
an introduction to credit risk, highlighting its importance in maintaining financial
stability and preventing substantial financial losses. The discussion then moved deep
into the core components of credit risk assessment: PD, LGD, and EAD. These
elements collectively form ECL, a pivotal metric that integrates the likelihood,
severity, and magnitude of potential defaults to provide a nuanced estimate of future
expected losses.

This chapter also examined advanced concepts such as unexpected loss (UL)
and stress loss (SL), which extend the ECL framework to account for extreme
and unforeseen adverse events. In addition, the discussion transitioned to capital
regulation, explaining how RWA and CAR are used under regulatory frameworks
like Basel III to ensure that banks have sufficient capital relative to their risk
exposures.

In the realm of predictive modeling, we introduced the construction of a
PD model using logistic regression, starting with data preprocessing steps such
as outlier detection, handling missing data, and categorical variable encoding.
The model development process involves training the logistic regression model,
making predictions, and evaluating its performance through metrics like accuracy,
precision, recall, F1 score, and the ROC curve. We also discussed the importance
of selecting an optimal classification threshold, particularly in credit risk contexts
where the balance between true positives and false positives has significant financial
implications. As an example, we introduced techniques such as maximizing the F1
score to select the most appropriate threshold.



94 3 Managing Credit Risk

In general, this chapter provided a framework for understanding and managing
credit risk, integrating quantitative methodologies with practical considerations
to improve financial institutions’ ability to predict, assess, and mitigate potential
losses. We further enhanced the discussion by introducing a hands-on example of
building a PD model using logistic regression, which serves as an important first-
level check on the creditworthiness of potential and existing obligors.
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Market risk encompasses the uncertainty and potential financial loss generated by
broad-based fluctuations in asset prices, driven by factors such as interest rates,
inflation, currency movements, and macroeconomic indicators. Unlike idiosyncratic
risk, which pertains to specific firms or sectors and can be minimized through
diversification, market risk is systemic throughout the global financial landscape.
It can affect the performance of equities, bonds, commodities, and other asset
classes simultaneously. The inherent challenge lies in managing this pervasive risk
by balancing portfolio construction, hedging strategies, and regulatory oversight to
mitigate vulnerabilities while still pursuing returns. For example, we can adopt a
market-neutral strategy to bet on the relative difference between two assets rather
than focusing on the directional change of a single asset, which is often random and
difficult to predict.

Market risk is ubiquitous in multiple asset classes, such as equities, interest
rates, foreign exchange rates, and commodity prices. For example, fluctuations
in stock prices can result in substantial gains or losses, affecting both individual
investors and institutional portfolios. Changes in interest rates affect borrowing
costs, savings returns, and the valuations of fixed-income securities, which, in
turn, influence investment decisions and overall economic activity. Fluctuations in
currency exchange rates can also significantly affect multinational corporations,
investors with foreign assets, and economies that depend significantly on imports
and exports, such as Singapore. Furthermore, changes in the prices of essential
commodities such as oil, gold, and agricultural products can have a profound impact
on various industries, consumer prices, and geopolitical stability.

Note that market risk is widespread and cannot be completely eliminated through
diversification strategies, which are primarily effective against unsystematic and
idiosyncratic risk, which is the risk associated with individual assets or specific
sectors. To manage market risk, it is essential to have a thorough understanding
of the factors that influence market movements and to implement robust risk
management frameworks. On this front, we often use various quantitative metrics to
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manage and reduce market risk effectively. These metrics offer crucial insights into
different aspects of risk, including volatility, the potential scale of tail losses, and
the overall exposure of investment portfolios to negative market conditions.

In this chapter, we focus on three fundamental market risk metrics: variance,
maximum drawdown, and Value at Risk (VaR). First, variance is a statistical
measure that quantifies how asset returns fluctuate from the mean, serving as an
indicator of volatility and the level of uncertainty in investment returns. Second,
maximum drawdown measures the largest decline from a peak to a trough in the
value of an investment portfolio, highlighting the potential for significant losses
during unfavorable market conditions. Lastly, VaR is a probabilistic measure that
estimates the maximum expected loss of a portfolio over a specified time period
at a given confidence level. Each of these metrics offers a distinct perspective on
market risk, allowing a comprehensive assessment of potential downside risks for
portfolios. These three risk measures jointly provide a benchmark for assessing risk
levels and can be used together to guide capital allocation.

We examine each risk measure in detail in the following sections.

4.1 Variance

Variance is an important statistical metric that measures how much variability or
dispersion exists within a dataset. In statistics, it is the second moment that is used to
describe the distribution of the data. In finance, it is also a crucial tool for evaluating
an asset’s volatility, showing how much the asset’s returns differ from the expected
average over a specific timeframe. A high variance indicates greater uncertainty and
risk, as the asset’s returns fluctuate widely. In contrast, a low variance suggests more
stable and, therefore, more predictable returns.

High volatility should not be universally considered a negative characteristic. In
fact, a highly volatile asset can offer the potential for large gains, which can be
particularly appealing to investors with a strong appetite for risk or those targeting
substantial returns. At the same time, this elevated volatility carries an equally
heightened possibility of severe losses. Consequently, such assets are generally not
suitable for risk-averse individuals or those seeking more stable and predictable
returns.

The variance of a series of returns can be calculated as the average of the squared
differences between each return and the mean return. Here, we would differentiate
between sample variance and population variance, where the former denotes the
variance for the current limited sample, and the latter refers to the whole population
(which we may not have access to). Specifically, for an asset with a series of returns
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R = {R1, R2, . . . , Rn}., the sample variance (s2 .) is determined using the following
formula:

.s2 = 1

n − 1

n

i=1

(Ri − R̄)2

where Ri . represents the return of the asset in the i .-th period, R̄ . denotes the mean
return calculated as R̄ = 1

n
n
i=1 Ri ., and n. is the total number of observations.

Note that squaring the deviations from the mean ensures that both positive
and negative differences contribute to the total variability, preventing them from
canceling each other out. Furthermore, using n − 1. in the denominator, known as
Bessel’s correction, adjusts for the bias that occurs when estimating the population
variance from a sample. This adjustment ensures that the calculated variance is an
unbiased estimator of the true variance of the population.

Let us look at an example of how to calculate the variance of a stock. Suppose
a collection of monthly returns valued at 3%, −.2%, and 4%. The average return is
R̄ = 3+(−2)+4

3 ≈ 1.67%.. Next, the squared deviations from the mean are computed:
(3 − 1.67)2 ≈ 1.77., (−2 − 1.67)2 ≈ 13.44., and (4 − 1.67)2 ≈ 5.44.. Summing
these squared deviations gives approximately 20.65.. Applying Bessel’s correction
by dividing by n − 1 = 2. yields a sample variance of 20.65

2 ≈ 10.33%.. This
indicates that the monthly returns of the stock fluctuate considerably around the
average return of 1.67%, implying higher volatility and, therefore, a higher level of
risk and the potential for significant gains or losses.

4.1.1 Unbiasedness in Sample Variance

When estimating the variance from a sample of data, it is important to use an
unbiased estimator. This means that the expected value of the estimator should equal
the true population variance as the number of observations gets bigger. To achieve
this, the formula for sample variance uses a denominator of n − 1. instead of n.. This
adjustment, known as Bessel’s correction, addresses the bias that can occur when
estimating the population variance from a finite sample.

Consider a set of independently and identically distributed (i.i.d.) random
variables R1, R2, . . . , Rn . with a mean μ. and variance σ 2

.. The sample mean R̄ .

serves as an unbiased estimator of the population mean μ., as indicated by the fact
that E[R̄] = μ. according to the law of large numbers. Recall the definition of
sample variance s2 .:

.s2 = 1

n − 1

n

i=1

(Ri − R̄)2
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Now we would also like to have E[s2] = σ 2
., which means that s2 . is an unbiased

estimator of σ 2
. in expectation. We begin by expanding the squared deviations by

adding and subtracting μ..

.

n

i=1

(Ri − R̄)2 =
n

i=1

(Ri − μ + μ − R̄)2

Now, we expand the squared term inside the summation:

.

n

i=1

(Ri − μ) + (μ − R̄)
2 =

n

i=1

(Ri − μ)2 + 2(Ri − μ)(μ − R̄) + (μ − R̄)2

We can break the expanded expression into three separate sums:

.

n

i=1

(Ri − R̄)2 =
n

i=1

(Ri − μ)2 + 2(μ − R̄)

n

i=1

(Ri − μ) +
n

i=1

(μ − R̄)2

Note that the first term n
i=1(Ri − μ)2 . is the sum of squared deviations from

the population mean. For the second term, we know that

.

n

i=1

(Ri − μ) = nR̄ − nμ = n(R̄ − μ)

Therefore, the second term becomes

.2(μ − R̄) · n(R̄ − μ) = −2n(R̄ − μ)2

The third term is n
i=1(μ − R̄)2 = n(μ − R̄)2 .; since μ − R̄ . is constant with

respect to i ., it can be factored out.
Putting it all together, we have

.

n

i=1

(Ri − R̄)2 =
n

i=1

(Ri − μ)2 − 2n(R̄ − μ)2 + n(R̄ − μ)2

Further simplifying, we have the following:

.

n

i=1

(Ri − R̄)2 =
n

i=1

(Ri − μ)2 − n(R̄ − μ)2
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Now we can take the expected value of both sides:

.E

n

i=1

(Ri − R̄)2 = E

n

i=1

(Ri − μ)2 − E n(R̄ − μ)2

For the first term, since Ri . are i.i.d. with variance σ 2
., we have

.E

n

i=1

(Ri − μ)2 =
n

i=1

E (Ri − μ)2 = nσ 2

For the second term, since the variance of the sample mean R̄ . is Var(R̄) = σ 2

n
.,

thus

.E n(R̄ − μ)2 = n · E (R̄ − μ)2 = n · Var(R̄) = n · σ 2

n
= σ 2

Substituting the expected values back gives

.E

n

i=1

(Ri − R̄)2 = nσ 2 − σ 2 = (n − 1)σ 2

Recall that

.s2 = 1

n − 1

n

i=1

(Ri − R̄)2

Taking the expected value gives

.E[s2] = 1

n − 1
E

n

i=1

(Ri − R̄)2 = 1

n − 1
· (n − 1)σ 2 = σ 2

Thus, we have shown that the sample variance s2 . is an unbiased estimator of the
population variance σ 2

.. This result indicates that using n. as the denominator can
lead to an underestimation of the true population variance, especially when the
sample size n. is small. That is

.E
1

n

n

i=1

(Ri − R̄)2 = n − 1

n
σ 2 < σ 2

which would underestimate the true population variance. Thus, Bessel’s correction
addresses this bias by using n−1. the denominator, ensuring that the sample variance
serves as an unbiased estimator of the population variance.
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4.1.2 Variance in Practice

Let us use Python to demonstrate how to compute the variance using real stock price
data. In this example, we will retrieve historical stock prices, calculate monthly
returns, and determine both sample and population variance. We first download
daily adjusted closing prices for Apple (AAPL), covering the period from January
1, 2024, to December 1, 2024. The adjusted closing prices are used because they
account for dividends and stock splits, providing a more accurate representation of
the stock’s true value over time.

We then calculate the returns after obtaining the data. First, we compute the daily
returns by measuring the percentage change between consecutive trading days using
the “pct_change()” function, which effectively assesses the day-to-day performance
of the stock. To gain a broader understanding of the stock’s performance, we then
aggregate these daily returns into monthly returns. The aggregation is done by
selecting the last available price for each month and calculating the percentage
change from the previous month (also for the last day). Such aggregation smooths
out daily volatility and highlights longer-term trends in the stock’s performance.

As shown in Listing 4-1, the next step is to calculate the variance, which includes
both sample variance and population variance. The sample variance is calculated
with the degree of freedom (known as “ddof”) set to 1. This means that the
denominator in the variance formula is n − 1.. As discussed earlier, this adjustment
helps ensure that the sample variance is an unbiased estimator of the population
variance. On the other hand, the population variance is calculated with “ddof” set to
0, which is the default setting, using n. as the denominator. This approach assumes
that the dataset represents the entire population rather than just a sample. Although
this results in a biased estimator, it is useful for understanding how variance is
computed when considering the entire population.

1 import pandas as pd
2 import numpy as np
3 import yfinance as yf
4 import matplotlib.pyplot as plt
5

6 # Suppress warnings for clean output
7 import warnings
8 warnings.filterwarnings(’ignore’)
9

10 # Step 1: Fetch Historical Stock Data
11 ticker = ’AAPL’ # Example: Apple Inc.
12 start_date = ’2024-01-01’
13 end_date = ’2024-12-01’
14

15 # Download daily adjusted closing prices
16 stock_data = yf.download(ticker, start=start_date , end=end_date ,

progress=False)[’Adj Close’]
17

18 # Display the first few rows
19 print("Historical Adjusted Closing Prices:")
20 print(stock_data.head())
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21

22 # Step 2: Calculate Daily Returns
23 daily_returns = stock_data.pct_change().dropna()
24

25 # Display the first few daily returns
26 print("\nDaily Returns:")
27 print(daily_returns.head())
28

29 # Step 3: Resample to Monthly Returns
30 monthly_returns = stock_data.resample(’M’).ffill().pct_change().

dropna()
31

32 # Display the monthly returns
33 print("\nMonthly Returns:")
34 print(monthly_returns)
35

36 # Step 4: Calculate Sample Variance (Unbiased Estimator)
37 sample_variance = monthly_returns.var(ddof=1) # ddof=1 for

sample variance
38

39 # Step 5: Calculate Population Variance (Biased Estimator)
40 population_variance = monthly_returns.var(ddof=0) # ddof=0 for

population variance
41

42 print(f"\nSample Variance (Unbiased Estimator): {sample_variance
:.4%}")

43 print(f"Population Variance (Biased Estimator): {
population_variance:.4%}")

44

45 # Step 6: Visualization (Optional)
46 plt.figure(figsize=(10, 5))
47 plt.plot(stock_data.index, stock_data , label=’Adjusted Close

Price’)
48 plt.title(f’{ticker} Adjusted Close Price in 2024’)
49 plt.xlabel(’Date’)
50 plt.ylabel(’Price ($)’)
51 plt.legend()
52 plt.show()
53

54 # Output
55 Sample Variance (Unbiased Estimator): 0.3275%
56 Population Variance (Biased Estimator): 0.2947%

Listing 4-1 Downloading stock data and calculating variance

Figure 4-1 shows the daily adjusted close price of Apple in 2024.

4.1.3 Limitations of Variance As a Risk Measure

Although it is a commonly used metric for measuring volatility, variance has
its own limitations. One major drawback is its increased sensitivity to outliers.
Because variance is calculated by squaring the deviations from the mean, it tends
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Figure 4-1 Daily adjusted close price of Apple in 2024

to exaggerate the effects of extreme values. This means that outliers—whether
exceptionally high or low data points—can distort the variance, possibly resulting
in misleading conclusions about the true variability of the dataset.

The Python code in Listing 4-2 demonstrates the impact of outliers on variance.
By adding two extreme returns of 20% and −.20% to the dataset, the population
variance increases from approximately 0.0021 to 0.0028.

1 import numpy as np
2 import matplotlib.pyplot as plt
3

4 # Generate a dataset with normal returns
5 np.random.seed(42)
6 returns = np.random.normal(loc=0.02, scale=0.05, size=100)
7

8 # Calculate initial variance
9 initial_variance = np.var(returns, ddof=1)

10 print(f"Initial Variance: {initial_variance:.4f}")
11

12 # Introduce outliers
13 outliers = np.array([0.2, -0.2]) # Extreme positive and negative

returns
14 returns_with_outliers = np.concatenate((returns, outliers))
15

16 # Calculate variance after adding outliers
17 variance_with_outliers = np.var(returns_with_outliers , ddof=1)
18 print(f"Variance with Outliers: {variance_with_outliers:.4f}")
19

20 # Visualization
21 plt.figure(figsize=(12, 6))
22

23 plt.subplot(1, 2, 1)
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Figure 4-2 Distribution of returns before and after adding outliers

24 plt.hist(returns, bins=20, color=’blue’, alpha=0.7)
25 plt.title(’Returns without Outliers’)
26 plt.xlabel(’Return’)
27 plt.ylabel(’Frequency’)
28

29 plt.subplot(1, 2, 2)
30 plt.hist(returns_with_outliers , bins=20, color=’red’, alpha=0.7)
31 plt.title(’Returns with Outliers’)
32 plt.xlabel(’Return’)
33 plt.ylabel(’Frequency’)
34

35 plt.tight_layout()
36 plt.show()
37

38 # Output
39 Initial Variance: 0.0021
40 Variance with Outliers: 0.0028

Listing 4-2 Assessing the impact of outliers to variance

To further illustrate the distorting impact of outliers on the distribution, we
plot the histograms before and after including extreme returns. As shown in
Figure 4-2, the scale of the x-axis doubles, highlighting how outliers can skew
the variance measure and alter the perceived distribution of returns. Specifically,
the left histogram displays the distribution of returns without outliers, showing a
concentration around the mean with relatively few extreme values. However, the
right histogram includes outliers that extend the range of returns and increase the
overall variance. Therefore, when extreme values are present or likely, relying only
on variance alone can result in misleading risk assessments. On this front, it is often
helpful to use additional risk measures, such as the median absolute deviation or the
interquartile range, which are more resilient to the influence of outliers.
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Another limitation of using variance as a risk measure is its treatment of non-
symmetric returns. Variance treats both positive and negative deviations from the
mean equally, which may not align with the specific risk preferences of most
investors. In particular, a typical investor would be more concerned with the
downside risk, which refers to the negative deviations, rather than fluctuations in
the upside. Consequently, the equal weighting of upward and downward movements
in variance may not adequately capture the types of risks that are most relevant to
investors.

In addition, variance also depends on the assumption that returns follow a
normal distribution. In a normal distribution, represented by N(μ, σ 2)., variance
accurately describes the spread of the data. However, financial returns frequently
show skewness and kurtosis, which indicate asymmetry and fat tails, respectively,
thus deviating from normality. Skewness (γ1 .) measures the asymmetry of the
distribution and is defined as follows:

.γ1
E (R μ)3

σ 3

Kurtosis (γ2 .) measures the heaviness of the distribution’s tails and is defined as

.γ2
E (R μ)4

σ 4 3

These higher-order moments provide additional insights that variance alone
cannot capture. Since variance does not take into account the asymmetry or the
tendency for extreme values in the distribution of returns, using these higher-order
moments could better reflect the actual risk.

Besides, another important limitation of variance as a risk measure is that it
assumes that asset returns do not depend on each other over time. As mentioned
earlier, variance is based on the idea that returns are independent and identically
distributed (i.i.d.). This means that the return Rt . at any time t . does not affect the
returns at other times t t .. This independence can be formally stated as

.P(Rt Rt 1, Rt 2, . . . , R1) P (Rt )

This equation implies that past returns do not influence the probability distribu-
tion of future returns. In addition, each return Rt . is assumed to follow the same
probability distribution with constants μ. and σ 2

.:

.E Rt μ and Var(Rt ) σ 2 t

This uniformity ensures that the statistical properties of the returns remain consis-
tent over various time periods. However, empirical observations in financial markets
frequently show deviations from these assumptions, leading to time dependence in
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return series. Two main forms of time dependence are autocorrelation (or serial
correlation) and volatility clustering.

Autocorrelation refers to intercorrelation between observations at different time
points in a time series. It could also pose modeling challenges, especially when
current returns are correlated with past returns. The autocorrelation function (ACF)
at lag k . quantifies this relationship and is defined as

.ρk

Cov(Rt , Rt k)

Var(Rt )

Here, Cov(Rt , Rt k). is the covariance between the returns at times t . and t k .,
and ρk .quantifies the (linear) correlation betweenRt . andRt k .. When ρk 0. for any
k ., it means that the time series data are autocorrelated, suggesting that past returns
can be used to predict future returns. Positive autocorrelation (ρk > 0.) means that
high returns in the future are likely to be observed by high returns observed now,
and vice versa.

When returns have autocorrelation, the assumption of independence is no longer
valid. Positive autocorrelation can underestimate true variance because groups
of high or low returns make consecutive periods less varied. However, negative
autocorrelation can overestimate variance since the alternating high and low returns
create a perception of greater variability.

In terms of volatility clustering, it is a commonly observed phenomenon in
financial markets. It often occurs when periods of high volatility are followed by
more high volatility, and similarly, periods of low volatility tend to follow other low
volatility periods. This indicates that the variance of returns is not constant over
time; instead, it fluctuates in response to past volatility. To model this behavior,
we can use Autoregressive Conditional Heteroskedasticity (ARCH) or Generalized
ARCH (GARCH) models. These models allow the variance σ 2

t . at a given time to
depend on past squared returns and variances by the following:

.σ 2
t α0 α1R

2
t 1 β1σ

2
t 1

Here, α0 ., α1 ., and β1 . are the parameters to be estimated. The term α1R
2
t 1 .

captures the impact of past squared returns (information about recent volatility),
while β1σ

2
t 1 . accounts for the persistence of volatility from previous periods.

As shown in Listing 4-3, to empirically investigate the time dependence of finan-
cial returns, we can analyze Apple’s daily returns by computing the autocorrelation
coefficients to evaluate the presence of serial correlation.

1 import matplotlib.pyplot as plt
2 from statsmodels.graphics.tsaplots import plot_acf , plot_pacf
3 from statsmodels.tsa.stattools import acf
4

5 # Create a figure with two subplots side by side
6 fig, axes = plt.subplots(1, 2, figsize=(14, 6))
7

8 # Autocorrelation Function (ACF) Plot
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9 plot_acf(daily_returns , lags=30, alpha=0.05, ax=axes[0])
10 axes[0].set_xlabel(’Lag’)
11 axes[0].set_ylabel(’Autocorrelation’)
12

13 # Partial Autocorrelation Function (PACF) Plot
14 plot_pacf(daily_returns , lags=30, alpha=0.05, ax=axes[1])
15 axes[1].set_xlabel(’Lag’)
16 axes[1].set_ylabel(’Partial Autocorrelation’)
17

18 # Adjust layout
19 plt.tight_layout()
20 plt.show()
21

22 # Calculate and print autocorrelation coefficients for
verification

23 autocorr_coeffs = acf(daily_returns , nlags=30, fft=False)
24 print("\nAutocorrelation Coefficients (First 30 Lags):")
25 print(autocorr_coeffs)
26

27 # Output
28 Autocorrelation Coefficients (First 30 Lags):
29 [ 1.00000000e+00 5.37236795e-02 -3.70519869e-02 -8.65535152e-02
30 7.83734376e-02 -1.05379582e-01 1.68068543e-02 3.55114712e-02
31 1.81508577e-02 -2.04299197e-03 -5.55866151e-02 -9.83094485e-03
32 4.56800420e-03 5.31590184e-02 -9.50762751e-02 6.75666460e-02
33 -4.03906304e-02 1.89938306e-02 2.36953557e-02 3.23774660e-02
34 5.57144925e-03 4.98538062e-03 7.48970516e-02 4.48094570e-05
35 -1.34294058e-02 -8.26390596e-02 4.67667504e-02 9.16426999e-02
36 4.78552297e-02 -5.53208738e-02 -1.74259679e-02]

Listing 4-3 Assessing autocorrelation

The ACF plot of daily returns, shown in Figure 4-3, illustrates the correlation
between returns at various time lags. For Apple’s daily returns in 2024, the
autocorrelation coefficients for the first 30 lags are nearly zero, indicating minimal
serial correlation. This suggests that the returns are approximately independent over
time, supporting the assumption of i.i.d. returns. As a result, this validates the use
of variance as a risk measure in this context.

However, this observation may not apply universally to all assets or in different
time periods. For example, the value at lag 5 is very close to the threshold at the
95% confidence interval, suggesting a potential autocorrelation at this specific lag.
The 95% confidence interval indicates that there is a 95% probability that the true
autocorrelation coefficient for each lag falls within this range, assuming that the data
follow a white noise process (i.e., no autocorrelation).

Financial markets are inherently dynamic, and during times of market stress or
significant economic events, characteristics such as volatility clustering can become
more pronounced. For example, at the onset of a financial crisis, returns may show
high autocorrelation and persistent volatility. This situation requires more advanced
risk measures that go beyond just variance. To address these limitations, variance
is frequently combined with other risk measures such as Value at Risk (VaR)
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Figure 4-3 ACF and PACF plots of Apple’s daily returns

and maximum drawdown. These downside risk measures offer a more thorough
assessment of market risk, capturing elements that variance alone may miss. By
using measures that consider time dependence and asymmetric risks, investors can
gain a clearer and more comprehensive understanding of the risks involved in the
investment portfolios.

4.2 MaximumDrawdown (Max Drawdown)

Unlike variance, which places equal weight on both upside and downside risk,
the maximum drawdown (or Max Drawdown) measure specifically focuses on the
download risk in an extreme case. It identifies the largest up-to-date decline in a
portfolio’s value from its peak to its lowest point before recovering. This measure
represents the worst potential loss an investor could experience over a specific
time frame. By focusing on the most significant drop in value, Max Drawdown
highlights the potential severity of losses during challenging market conditions,
offering valuable insights into the investment’s risk and resilience. Formally, for
a series of portfolio values P = {P1, P2, . . . , Pn}., the Max Drawdown (MDD .) is
defined as

.MDD = max
1≤i≤j≤n

Pi − Pj

Pi

× 100%

In this equation, Pi . represents the portfolio value at its peak time i ., and Pj . is

the value at the trough time j . that occurs after the peak i .. The fraction
Pi−Pj

Pi
.

calculates the percentage decline from the peak Pi . to the trough Pj .. Essentially,
Max Drawdown identifies the most significant loss during the investment period,
which is unlike variance that measures average volatility. This focused approach
provides a clear view of downside risk, presenting a better view of the potential
substantial losses in the portfolios.
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To illustrate the calculation of Max Drawdown, consider an investor monitoring
the monthly portfolio values over a four-month period, as shown below:

.

Month Portfolio Value (P )
1 $800
2 $850
3 $830
4 $810

To calculate the Max Drawdown, first, we need to identify all the peak-trough
pairs within the four-month period. A peak refers to a portfolio value that is followed
by a decline, while a trough is the lowest portfolio value that occurs after that peak
before a new peak is reached. In this case, we identify the first peak at Month 2
($850), with toughs at Month 3 ($830) and Month 4 ($810).

Next, for each peak-trough pair, we can calculate the drawdown as follows:

.Drawdown = Ppeak − Ptrough

Ppeak
× 100%

Here, Ppeak . is the portfolio (or asset) value at the peak, and Ptrough . is the value at
the trough. Specifically, from Peak Month 2 ($850) to Trough Month 3 ($830), we
have

.Drawdown = 850 − 830

850
× 100% = 20

850
× 100% ≈ 2.35%

From Peak Month 2 ($850) to Trough Month 4 ($810), we have

.Drawdown = 850 − 810

850
× 100% = 40

850
× 100% ≈ 4.71%

Among these daily drawdowns, the largest is 4.71%, which comes from Peak
Month 2 ($850) to TroughMonth 4 ($810). Thus, this value represents the maximum
drawdown for the portfolio over the four-month period, indicating the deepest
decline experienced. Since Max Drawdown is typically reported as a negative
percentage, it would be −.4.71% in this case.

4.2.1 Distinctive Features of MaximumDrawdown

Max Drawdown measures the largest loss from a peak to a trough during an
investment period, giving us a clear perspective on potential extreme downside risk.
In contrast to variance, which assesses average volatility, Max Drawdown focuses
specifically on extreme losses. It allows us to grasp the potential for significant
declines in the portfolio. WithMax Drawdown, we can evaluate the possible severity
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of losses and make informed decisions about risk management and investment
strategies. For example, a profiting strategy may not be so attractive if it comes
with a big Max Drawdown. This metric is especially valuable for assessing portfolio
performance during turbulent market conditions and for comparing the risk profiles
of different investment options.

Specifically, Max Drawdown is notable for its focus on the sequence of returns,
distinguishing it from variance. Although variance sums all deviations from the
mean regardless of their order, Max Drawdown specifically identifies the largest
decline from a peak to a trough in a portfolio’s history. This means that Max
Drawdown indicates not only how much a portfolio can lose but also when those
losses occur. For example, a sharp decline following a high peak results in a
higher Max Drawdown compared to a gradual decrease, even if the total loss is the
same. This ability to take into account the order of returns allows Max Drawdown
to provide a clearer understanding of extreme loss events, which is essential for
effective risk management.

In addition, Max Drawdown is a non-parametric measure, meaning it does not
assume that investment returns follow a specific distribution. This characteristic
makes it versatile and applicable across various market conditions and asset types.
Unlike variance, which is most effective when returns are normally distributed, Max
Drawdown remains relevant even when returns are skewed or exhibit heavy tails.
This is especially important in financial markets, where returns often deviate from
normal patterns and can display irregular behaviors and extreme values. Therefore,
it can provide an accurate assessment of downside risk without being constrained
by rigid statistical models, thus being able to cater to a more realistic perspective on
investment risks.

Instead of reporting separate measures, Max Drawdown can complement other
risk measures, with variance included. Although variance provides an average
assessment of volatility by considering all deviations from the mean, Max Draw-
down focuses on the most significant losses. This combination gives investors a
comprehensive understanding of both regular and extreme risks. For example, a
portfolio with a low variance but a high Max Drawdown may indicate that it
typically experiences manageable volatility but is at risk of substantial losses during
unfavorable market conditions. Conversely, a portfolio with a high variance but a
low Max Drawdown suggests frequent fluctuations without severe declines, which
might appeal to investors seeking stability.

We can also use Max Drawdown to identify the maximum potential loss an
investment could experience, thus assessing how much capital we should retain as
reserves for significant downturns. Including Max Drawdown in capital allocation
ensures that portfolios maintain sufficient liquidity and buffers during periods of
market stress. For example, if a portfolio has a Max Drawdown of 10%, we may
decide to hold additional reserves or implement hedging strategies to mitigate the
impact of similar future losses. This proactive approach improves the durability
of the portfolio and protects against challenging market conditions, which further
aligns investment strategies with individual risk tolerance.
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However, we should note that the Max Drawdown is highly sensitive to the time
period chosen for calculation. The size of Max Drawdown can vary significantly
based on the duration of the measurement. Shorter periods may reflect temporary
market fluctuations, resulting in greater variability in Max Drawdown. In contrast,
longer periods incorporate larger market movements, leading to more stable and
accurate Max Drawdown values. This sensitivity is related to the time frame used
to identify peaks and troughs. For example, calculating Max Drawdown over six
months may reveal different risks compared to a one-year period due to varying
exposure to market cycles and volatility. Therefore, selecting the appropriate time
horizon is an important decision when assessing the risk associated with a given
portfolio strategy.

The time scale we choose for calculating Max Drawdown, whether daily or
monthly, can also affect the results. Daily data capture quick market changes,
showing sharp declines that occur in just a few trading days. This often leads to
higher or more frequent drawdowns, as daily prices react quickly to news and market
events. In contrast, using monthly data smooths out these daily ups and downs,
focusing on longer-term trends. This typically results in smaller or fewer declines. In
practice, short-term traders may favor daily Max Drawdown to manage immediate
risks, while long-term investors may prefer monthly Max Drawdown to understand
overall performance and how well they can withstand longer market downturns.

4.2.2 CalculatingMax Drawdown

To better appreciate howMax Drawdown is calculated and why it is important, let us
consider an example that calculates total returns over time, identifies daily declines,
and determines the largest drop (i.e., the Max Drawdown).

1 # Step 1: Calculate Cumulative Returns
2 cumulative_returns = (1 + daily_returns).cumprod()
3

4 # Step 2: Calculate Running Maximum
5 running_max = cumulative_returns.cummax()
6

7 # Step 3: Calculate Drawdown
8 drawdown = (cumulative_returns - running_max) / running_max
9

10 # Step 4: Calculate Max Drawdown
11 max_drawdown = drawdown.min() * 100 # Convert to percentage
12

13 print(f"\nMaximum Drawdown: {max_drawdown:.2f}%")
14

15 # Step 5: Visualization of Cumulative Returns and Drawdown
16 plt.figure(figsize=(12, 6)) # Increased figsize for better

readability
17 plt.plot(cumulative_returns , label=’Cumulative Returns’)
18 plt.plot(running_max , label=’Running Maximum’, linestyle=’--’)
19 plt.fill_between(cumulative_returns.index, cumulative_returns ,

running_max ,
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20 color=’red’, alpha=0.3, label=’Drawdown’)
21

22 # Uncomment and set ’ticker’ if needed
23 # plt.title(f’{ticker} Cumulative Returns and Drawdown (Jan-Jun

2023)’)
24

25 plt.xlabel(’Date’)
26 plt.ylabel(’Cumulative Returns’)
27 plt.legend()
28

29 # Rotate x-axis labels for better readability
30 plt.xticks(rotation=45)
31

32 # Adjust layout to prevent clipping of tick-labels
33 plt.tight_layout()
34

35 plt.show()
36

37 # Step 6: Plot Drawdown Over Time
38 plt.figure(figsize=(12, 6)) # Increased figsize for consistency
39 plt.plot(drawdown , label=’Drawdown’, color=’red’)
40

41 # Uncomment and set ’ticker’ if needed
42 # plt.title(f’{ticker} Drawdown Over Time (Jan-Jun 2023)’)
43

44 plt.xlabel(’Date’)
45 plt.ylabel(’Drawdown’)
46 plt.legend()
47

48 # Rotate x-axis labels for better readability
49 plt.xticks(rotation=45)
50

51 # Adjust layout to prevent clipping of tick-labels
52 plt.tight_layout()
53

54 plt.show()
55

56 # Output
57 Maximum Drawdown: -15.35%

Listing 4-4 Calculating max drawdown

In Listing 4-4, we first calculate the cumulative returns by multiplying the daily
returns over a specific period. We then monitor the highest value that the returns
have reached up to each day. Following this, we assess how much the current returns
have decreased from this peak value. The smallest value in the drawdown series is
identified and converted into a percentage, which represents a Max Drawdown of
−.15.35% in this example.

Figure 4-4 shows the total returns alongside the highest value reached. The
shaded area indicates the periods when the returns were below the peak, which
denotes drawdowns.
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Figure 4-4 Daily cumulative returns and running maximum

Figure 4-5 Daily drawdown

Figure 4-5 displays the daily drawdowns over time, illustrating the extent and
duration of each decline. The Max Drawdown is then identified around mid-April
2024.

Max Drawdown is an important measure of risk, but it is most effective when
used alongside other risk metrics to provide a comprehensive view of portfolio risk.
For example, combining Max Drawdown with measures like VaR and Expected
Shortfall (ES) offers insight into both the probability and magnitude of potential
losses. Additionally, examining the rolling Max Drawdown over various time
periods can reveal the frequency and duration of drawdowns, which is valuable for
managing risk dynamically. Understanding the recovery time from drawdowns is
also crucial, as it indicates the portfolio’s ability to rebound from losses and impacts
long-term investment performance. Integrating it into Monte Carlo simulations and
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stress testing can also enhance risk assessments by evaluating how the portfolio may
perform under different adverse conditions.

The next section introduces another commonly used downside risk measure:
Value at Risk (VaR).

4.3 Value at Risk

Value at Risk, commonly known as VaR, is a key measure used in finance to assess
the risk associated with an investment portfolio. It is an estimate of the maximum
potential loss that a portfolio could experience over a specific time period, such as a
day, week, or month, at a certain confidence level. For example, a daily VaR of 1%
at a 95% confidence level indicates that there is only a 5% chance that the portfolio
will lose more than 1% of its value in a single day.

VaR is formally defined as the smallest loss that will not be exceeded with a
given probability over a specified time frame. Formally, for a portfolio with returns
R = {R1, R2, . . . , Rn}., the VaR at a confidence level α . over a time horizon T . is
expressed as

.V aRα = inf{x ∈ R : P(L ≤ x) ≥ α}

Here, L = P0 − PT . represents the loss, where P0 . is the initial value of the
portfolio and PT . is its value at time T .. This definition ensures that there is at most
(1 − α). probability that the loss L. exceeds the VaR.

Note that VaR is essentially a quantile measure, meaning it identifies the
threshold loss value below which a specific percentage of losses occur. It represents
the inverse of the cumulative distribution function (CDF) of the loss distribution at
a given confidence level.

.V aRα = F−1
L (1 − α)

where F−1
L . is the quantile function of the loss distribution.

Regulatory bodies, including the Basel Committee on Banking Supervision, rec-
ognize and require the use of VaR to assess market risk in financial institutions. VaR
can be applied to portfolios of various sizes and complexities, from straightforward
stock holdings to complex combinations of assets. This flexibility allows many
investors and financial professionals to evaluate and manage risk in a wide range
of investment products.

In terms of mathematical properties, although VaR has several desirable proper-
ties, such as being monotonic and positively homogeneous, it does not always meet
the requirement of subadditivity. Subadditivity means that the VaR of a combined
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portfolio should be less than or equal to the sum of the VaRs of the individual
portfolios. That is, for two portfolios A and B, we would like to see

.V aRα(A B) V aRα(A) V aRα(B)

However, in cases where portfolios exhibit heavy-tailed return distributions or
have high levels of dependency, this property may not be valid. As a result, VaR
might not always promote diversification, since the VaR of a combined portfolio
can sometimes exceed the sum of the individual VaRs. This makes VaR much
less appealing compared to improved measures such as conditional VaR, since
diversification is the only free lunch in finance.

Besides, VaR only considers extreme risk up to the specified quantile level when
it comes to capturing the tail risk while ignoring further extreme losses that occur
beyond the VaR threshold. To address this limitation, Expected Shortfall (ES) is
often used alongside VaR. ES measures the average loss that occurs when losses
exceed the VaR level, offering a more comprehensive understanding of potential
extreme losses. It is defined as

.ESα E L L > V aRα

When it comes to calculation, VaR can be calculated using various methods,
including Historical Simulation, the Variance-Covariance (or parametric) approach,
and Monte Carlo simulation. Each method is based on different mathematical
principles and assumptions, providing unique perspectives and varying levels of
accuracy depending on the portfolio’s characteristics and the data available.

4.3.1 Historical Simulation Approach

The Historical Simulation approach is a simple method for calculating VaR that
does not require any specific statistical distribution for returns. Instead, it relies
entirely on historical return data, operating under the premise that past returns can
help predict future performance.

To start, we first collect a series of past portfolio returns R R1, R2, . . . , Rn .

collected over the time period of analysis. We then sort the returns from lowest
to highest to create an ordered list, R(1) R(2) . . . R(n) .. The next step is to
identify the return that corresponds to the (1 α). percentile of this sorted list, which
represents the VaR at a confidence level α .. Mathematically, VaR at confidence level
α . is calculated as

.V aRα R( (1 α)n )

Here, R(k) . refers to the k .-th return in the sorted list. The ceiling function .

ensures that we select the smallest integer greater than or equal to (1 α)n., which
accurately captures the desired percentile in the dataset.
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For example, to determine 95% VaR using the Historical Simulation method, we
would look for the return at the fifth percentile of the sorted historical returns. This
process is illustrated in Listing 4-5.

1 # Historical Simulation VaR
2 confidence_level = 0.95
3 VaR_hist = np.percentile(daily_returns , (1 - confidence_level) *

100)
4

5 print(f"Historical Simulation VaR at {confidence_level*100}%
confidence level: {VaR_hist:.2%}")

6

7 # Visualization
8 plt.figure(figsize=(10, 6))
9 plt.hist(daily_returns , bins=50, alpha=0.7, color=’blue’,

edgecolor=’black’)
10 plt.axvline(x=VaR_hist , color=’red’, linestyle=’dashed’,

linewidth=2, label=f’VaR at {confidence_level*100}%’)
11 plt.title(f’Histogram of {ticker} Daily Returns with VaR ({

confidence_level*100}%)’)
12 plt.xlabel(’Daily Return’)
13 plt.ylabel(’Frequency’)
14 plt.legend()
15 plt.show()
16

17 # Output
18 Historical Simulation VaR at 95.0% confidence level: -2.18%

Listing 4-5 Calculating VaR using the historical simulation approach

Running this code reveals that Apple’s VaR at a 95% confidence level for the year
2024 (until the first of December) is −.2.18%. This means there is a 95% confidence
that the daily loss will not exceed 2.18%. Figure 4-6 displays a histogram of Apple’s
daily returns for 2024, highlighting the VaR threshold with a red dashed line. The
histogram illustrates the distribution of returns and indicates where VaR falls within
this distribution. Again, this method does not consider losses that exceed the VaR
threshold, and we can use ES to measure the average loss that occurs beyond the
VaR level.

In summary, the Historical Simulation approach offers a straightforward and
intuitive method for estimating VaR using historical return data. Although this
method effectively illustrates potential losses based on past performance, it may
not account for extremely rare or severe losses.

The next section introduces the second approach for the VaR calculation: the
Variance-Covariance (parametric) approach.

4.3.2 Variance-Covariance (Parametric) Approach

The Variance-Covariance method, also known as the parameter approach, is another
technique to calculate VaR. This method assumes that portfolio returns follow a
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Figure 4-6 Histogram of daily returns with VaR at 95%

normal distribution, which simplifies the analytical computation of VaR by using
the mean and standard deviation of the returns.

Specifically, consider portfolio returns denoted by R ., which are normally
distributed as R ∼ N(μ, σ 2)., where μ. represents the mean return and σ . is the
standard deviation. The loss over the time horizon can be expressed as L = −P0R .,
where P0 . is the initial portfolio value. Our objective is to determine V aRα ., the VaR
at a confidence level α ..

We begin by writing the probability that the loss exceeds the VaR:

.P(L > V aRα) = 1 − α

Substituting L = −P0R . into the equation gives

.P(−P0R > V aRα) = 1 − α

Since P0 . is positive, dividing both sides of the inequality − P0R > V aRα . by − P0 .

reverses the inequality:

.P R < −V aRα

P0
= 1 − α

Given that R . is normally distributed, we can standardize it using the z-score
transformation:

.Z = R − μ

σ
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This allows the probability statement to be rewritten in terms of the standard normal
distribution:

.P Z <
−V aRα

P0
− μ

σ
= 1 − α

Let z1−α . denote the z-score corresponding to the cumulative probability 1 − α ..
Therefore, the equation becomes

.
−V aRα

P0
− μ

σ
= z1−α

Recognizing that the standard normal distribution is symmetric, z1−α . is equal to
− zα ., where zα . is the z-score corresponding to the cumulative probability α ..
Substituting this into the equation yields

.
−V aRα

P0
− μ

σ
= −zα

We proceed with the simplification to solve for V aRα .:

. − V aRα

P0
− μ = −σzα

.
V aRα

P0
+ μ = σzα

.V aRα = P0(σzα − μ)

This formula adjusts the mean return μ. by multiplying the standard deviation σ . and
the z-score zα ., thus capturing the risk-adjusted threshold for potential losses.

For instance, consider a portfolio with an initial value P0 = $1,000., an average
daily return μ = 0.2%., a standard deviation σ = 1.5%., and a confidence level
α = 99%. (so zα = 2.33.). The VaR can be computed as follows:

.V aR0.99 = 1,000 × (0.015 × 2.33 − 0.002) = $32.95

This means that there is a 1% chance that the portfolio will lose more than $32.95
in a single day. In other words, among the worst 1% of trading days, losses could
exceed this amount, which is crucial information for risk management and capital
allocation decisions.

Listing 4-6 demonstrates how to calculate VaR using the Variance-Covariance
(parametric) approach. We normalize the portfolio value by setting P0 = 1. to
express VaR as a percentage.
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1 from scipy.stats import norm
2

3 # Variance -Covariance VaR
4 confidence_level = 0.95
5 mu = daily_returns.mean()
6 sigma = daily_returns.std()
7 z_score = norm.ppf(confidence_level) # z-score for the given

confidence level
8

9 # Portfolio Value (normalized)
10 P0 = 1
11

12 # VaR Calculation
13 VaR_var_cov = P0 * (sigma * z_score - mu)
14

15 print(f"Variance -Covariance VaR at {confidence_level*100}%
confidence level: -{VaR_var_cov:.2%}")

16

17 # OutputVariance -Covariance VaR at 95.0% confidence level: -2.26%

Listing 4-6 Calculating VaR using the parametric approach

Here, we set confidence_level to 0.95 to reflect a 95% confidence level. The vari-
ables mu and sigma represent the mean and standard deviation of the daily returns,
respectively. The z_score is calculated using the inverse cumulative distribution
function of the normal distribution for the specified confidence level. By setting
the portfolio value P0 . to 1, the VaR is expressed as a percentage. Running this code
yields a VaR of approximately −.2.26%, indicating a 5% chance that the portfolio
will lose more than 2.26% of its value in a day using the parametric approach. This
VaR is slightly higher than the one obtained using the Historical Simulation method,
reflecting a greater potential loss based on the assumption of a normal distribution.

Note that the z-score zα . is a key element in this calculation, as it indicates how
many standard deviations a data point is from the mean for a given cumulative
probability. For a 95% confidence level with α = 0.95., we have zα ≈ 1.645..
This z-score directly connects VaR to the characteristics of the normal distribution,
allowing for a straightforward calculation based on the portfolio’s mean and
standard deviation.

Also, note that the parametric approach depends on the assumption that return
distributions are normal. This assumption may not always hold, particularly in finan-
cial markets, where returns can show large deviations from a normal distribution.
Although this method provides an analytical solution for VaR, making it computa-
tionally efficient, its accuracy is based on how well the normality assumption fits
the actual return distribution. In situations where the return distribution has long
tails or high levels of autocorrelation, the VaR estimates may be inaccurate, and
extreme events might not be adequately captured. Therefore, despite its usefulness,
the Variance-Covariance approach has limitations and should be applied with an
understanding of its underlying assumptions and potential inaccuracies.
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Figure 4-7 Daily P&L and rolling VaR using the Variance-Covariance approach

Figure 4-7 plots the daily P&L and rolling VaR at the confidence level 95%with a
window size of 100 days, along with the code snippet shown in Listing 4-7. Plotting
the running VaR gives us an idea of the long-term trend of extreme loss metrics.

1 from scipy.stats import norm
2 import numpy as np
3 import pandas as pd
4 import matplotlib.pyplot as plt
5 import matplotlib.dates as mdates
6

7 window_size = 100 # Number of days in the rolling window
8

9 # Calculate Rolling VaR using Variance -Covariance Approach
10 mu_rolling = daily_returns.rolling(window=window_size).mean()
11 sigma_rolling = daily_returns.rolling(window=window_size).std()
12 z_score = norm.ppf(0.95) # 95% confidence level
13

14 # Portfolio Value
15 P0 = 1_000_000 # $1,000,000
16

17 # Calculate Rolling VaR
18 rolling_VaR = P0 * (sigma_rolling * z_score - mu_rolling)
19

20 # Calculate Daily Losses in Dollar Terms
21 daily_losses = -P0 * daily_returns
22

23 # Plot Overlay of Daily Losses and Rolling VaR
24 plt.figure(figsize=(14, 7))
25 plt.plot(daily_losses.index, daily_losses , label=’Daily P&L’,

alpha=0.5)
26 plt.plot(rolling_VaR.index, rolling_VaR , label=’Rolling 95% VaR’,

color=’red’)
27 plt.title(f’{ticker} Daily Losses and Rolling VaR ({window_size}-

Day Window)’)
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28 plt.xlabel(’Date’)
29 plt.ylabel(’Loss ($)’)
30 plt.legend()
31

32 # Format x-axis to show monthly ticks
33 ax = plt.gca()
34 ax.xaxis.set_major_locator(mdates.MonthLocator()) # Set major

ticks to monthly intervals
35 ax.xaxis.set_major_formatter(mdates.DateFormatter(’%b %Y’)) #

Format ticks as ’Month Year’
36 plt.xticks(rotation=45) # Rotate x-axis labels for better

readability
37

38 plt.tight_layout() # Adjust layout to prevent clipping of tick-
labels

39 plt.show()

Listing 4-7 Plotting daily P&L and rolling VaR

Next, we look at the third approach to calculate VaR.

4.3.3 Monte Carlo Simulation

The Monte Carlo simulation method calculates VaR by generating numerous
simulated portfolio returns based on statistical models. This approach is highly
flexible, enabling the modeling of complex return distributions and the relationships
between assets without relying on strict assumptions of normality.

To calculate VaR using Monte Carlo simulation, we first define the statistical
properties of the portfolio returns, including the mean vector and the covariance
matrix. Next, we generate a large number . of random return scenarios based on
these statistical parameters. For each simulation test, we compute the corresponding
loss and then determine the VaR at the 1 − . percentile of the loss distribution.
This identified loss represents the VaR at the specified confidence level.

Formally, if portfolio returns follow a multivariate normal distribution ∼
N ., we simulate . returns 1 2 .. For each simulated return .,
we compute the loss = − 0 ., where 0 . is the initial portfolio value. The VaR
at the confidence level . is then calculated as

. = Percentile 100 × 1 −

where = { 1 2 }. represents the set of simulated losses.
Listing 4-8 demonstrates how to calculate VaR using the Monte Carlo simulation

approach.

1 # Monte Carlo Simulation of Returns
2 np.random.seed(42) # For reproducibility
3 num_simulations = 1000
4 simulated_returns = np.random.normal(mu, sigma, num_simulations)
5
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6 # Calculate Simulated Losses
7 simulated_losses = -P0 * simulated_returns
8

9 # Calculate VaR from Simulated Losses
10 VaR_monte_carlo = np.percentile(simulated_losses , 100 * (1 -

confidence_level))
11

12 print(f"Monte Carlo Simulation VaR at {confidence_level*100}%
confidence level: {VaR_monte_carlo:.2%}")

13

14 # Output
15 Monte Carlo Simulation VaR at 95.0% confidence level: -2.54%

Listing 4-8 Calculating VaR using the Monte Carlo approach

In this code listing, we first set the random seed to ensure that the results can be
reproduced. The simulated_returns are generated using a normal distribution with
a specified mean and standard deviation, simulating a defined number of returns
(num_simulations). The simulated_losses are then calculated by multiplying each
simulated return by −P0 ., where P0 . represents the initial portfolio value. Finally,
VaR_monte_carlo is computed using the Monte Carlo method by identifying the
percentile of the simulated losses that corresponds to 100 × (1 − α)..

The result shows that the VaR calculated using the Monte Carlo simulation
approach is approximately −.2.54%, which is the highest potential loss compared
to the Historical Simulation and Variance-Covariance methods. Figure 4-8 shows
the simulated daily returns/losses along with the associated VaR at 95%.

Figure 4-8 Monte Carlo simulation of daily P&L with VaR at 95%
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Overall, the Monte Carlo simulation approach provides considerable flexibility
by accommodating more complex return distributions and asset dependencies within
a portfolio. However, this method can be computationally intensive, as we need
to generate a large number of simulated returns. The computation becomes more
involved, particularly for large portfolios or when a high number of simulations
are required. In practice, financial institutions typically employ a combination of
methods, including Historical Simulation, Variance-Covariance, and Monte Carlo
simulation, to cross-validate VaR estimates. This approach ensures that estimates
are robust under various market scenarios.

4.4 Summary

In this chapter, we explored market risk, which is a crucial type of systematic risk
that can result in financial losses due to fluctuations in market factors throughout the
entire financial system.We also introduced several metrics to help quantify, manage,
and mitigate market risk, including Variance, Max Drawdown, and VaR.

Variance measures the variability of asset returns by calculating the average of
the squared deviations from the mean return. This provides insight into the volatility
and risk associated with an asset or portfolio. A higher variance indicates a greater
spread of returns, which in turn signifies a higher risk. However, variance has
several drawbacks. It is sensitive to outliers, treats positive and negative deviations
equally, assumes a normal distribution, and assumes that returns are independent
and identically distributed. These assumptions may not always hold in real financial
markets.

Maximum drawdown measures the largest observed loss from a portfolio’s peak
value to its lowest point before a new peak is reached. This metric highlights the
severity of potential losses, which makes it especially useful for understanding
worst-case scenarios that investors may face. Unlike variance, maximum drawdown
is path dependent, meaning it does not rely on any specific distribution of returns.
This attribute makes it a robust measure under different market conditions. However,
it is sensitive to the chosen time horizon.

VaR is a measure that estimates the maximum expected loss over a specified
time period at a given confidence level. It provides a probabilistic assessment of
potential losses. Essentially, VaR is a quantile measure that indicates the threshold
loss value below which a certain percentage of losses is expected to fall. It is
versatile and can be applied to different time horizons and portfolio sizes, making
it a valuable tool for evaluating risk. However, it does not capture risks that exist
beyond the specified confidence level, is sensitive to underlying model assumptions,
and lacks the subadditive property. These shortcomings can reduce the advantages
of diversification.

VaR can be calculated through various methods, each with different mathemat-
ical foundations. The Historical Simulation approach is non-parametric and relies
on historical return data, effectively reflecting market behavior but assuming that
past returns predict future performance. In contrast, the Variance-Covariance (para-
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metric) approach assumes returns are normally distributed, allowing for analytical
VaR calculations based on the mean and standard deviation, but it strongly relies
on the normality assumption. The Monte Carlo simulation approach generates
many hypothetical return scenarios using statistical models, providing flexibility
for complex distributions; however, it is computationally intensive and requires
accurate specification. Each method has its own strengths and weaknesses, making
it important to choose the right one based on the context and available data.

Integrating these risk metrics provides a comprehensive view of market risk. For
example, variance measures the average volatility, while Max Drawdown focuses
on the most extreme losses. VaR estimates potential losses within a specified
confidence interval. Considering additional measures such as Expected Shortfall,
stress testing, and dynamic models such as GARCH can further enhance risk
assessment by addressing tail risks and accounting for time-varying volatility.
All methods are frequently used to cross-validate VaR estimates and ensure their
robustness against various market scenarios.
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A key and recurring theme in finance is the pervasive uncertainty surrounding the
performance of almost every tradable asset, which can manifest itself as increased
volatility in prices, interest rates, and exchange rates. This volatility naturally
poses substantial risks to portfolios and financial positions, prompting the need
for robust strategies to mitigate potential losses. One widely discussed approach
is diversification, a tactic that implicitly offers a “free lunch,” as demonstrated
in Chapter 1, by dispersing individual asset risk across a wider set of holdings.
However, diversification primarily shields against idiosyncratic or unsystematic
risk, and when the entire market changes downward, it proves insufficient to protect
portfolios from broad market declines.

Among the various techniques for managing risk, hedging stands out as a
particularly effective method to minimize unwanted exposures in a portfolio. In
essence, it involves taking positions, often through financial instruments such as
options, futures, or swaps, that can offset potential losses arising from adverse
market movements. This approach may involve letting go of some potential upside
profit, similar to paying an “insurance premium,” to guard against severe downside
outcomes. By carefully calibrating these hedging strategies, we can aim for a
steadier and more predictable financial outcome, one that remains neutral to market
fluctuations. In practical terms, this resembles purchasing insurance against the
damaging effects of sudden price changes, interest rate changes, or currency
fluctuations, thus providing an additional layer of protection and contributing to
a more balanced risk-return profile.

Hedging can be executed with a wide range of financial instruments, commonly
via financial derivatives such as futures and options. By definition, derivatives
derive their value from underlying assets, such as stocks, bonds, commodities, or
currencies, offering a degree of risk management without requiring direct ownership
of the underlying. This inherent flexibility makes them especially attractive for
hedging, where one pays a relatively small premium to shield against the potential
for severe losses. In practice, this means that investors can strategically construct
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positions that offset adverse moves in the market, thereby mitigating portfolio
volatility and preserving more stable returns.

In this chapter, we examine two prominent derivatives, futures and options, that
are central to hedging strategies. Futures contracts, in particular, are standardized
agreements that are used to buy or sell an underlying asset at a predetermined
price on a specific future date. Because the price is locked in at the time the
contract is created, subsequent market fluctuations no longer affect the agreed-upon
transaction value, ensuring a degree of certainty in otherwise volatile conditions.
This feature is particularly advantageous for commodity market participants such
as farmers, who may use futures to lock in the selling price of their crops, and
manufacturers, who can stabilize the cost of raw materials purchased at later
dates. More generally, futures contracts provide a practical means of protecting
against price fluctuations in a variety of markets, including commodities, interest
rates, and other financial products. Traded on regulated exchanges, these contracts
benefit from high liquidity, making them accessible for many hedging scenarios.
In addition, their standardized terms, governed by centralized exchanges, enhance
transparency and reduce counterparty risk through margin requirements and clearing
mechanisms, thus simplifying the implementation of hedging strategies.

When holding option contracts, we gain the right, but not the obligation, to buy
(in the case of a call option) or sell (in the case of a put option) an underlying
asset at a specified strike price within a predetermined time frame. This fundamental
distinction from futures, where both parties are obligated to transact, gives option
holders the flexibility to simply let the contract expire if the market outlook becomes
unfavorable. Consequently, investors can limit their downside while retaining the
ability to capture upside gains should prices move in a beneficial direction. This
asymmetry in risk and return helps protect against adverse market moves and
preserves the potential for profit, making options one of the most popular and
versatile hedging instruments in financial markets.

Options, as financial instruments, also experience price fluctuations driven by
changes in the underlying asset, time to expiration, and implied volatility. A well-
known hedging technique to manage these fluctuations is delta hedging, which
involves quantifying how an option’s price responds to small changes in the price
of the underlying asset, such as stock. This sensitivity is called the delta of the
option ( .). Achieving a “delta neutral” position means compensating for this
sensitivity by adjusting the number of underlying assets or related derivatives
held, thus reducing exposure to the movements of the underlying price. Because
market conditions can change rapidly, maintaining a delta-neutral stance requires
continuous monitoring and frequent rebalancing of positions, making this a dynamic
and complex strategy to implement. Nonetheless, the systematic approach of delta
hedging presents significant opportunities to manage risk effectively, as we will
explore in the following sections.

In this chapter, we will explore hedging strategies that use futures and options,
paying special attention to the principles and applications of delta hedging.We begin
by dissecting the mechanics underpinning these derivatives—covering contract
specifications, pricing, and market conventions—to establish a solid foundation.
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Building on this groundwork, we then examine various hedging tactics and the
theoretical underpinnings that make them effective.

Let us start with the futures contract.

5.1 Hedging with Futures Contracts

Futures contracts are widely used to mitigate exposure to price fluctuations in
commodities, currencies, and other financial instruments. They are standardized
legal agreements that require two parties to buy or sell a specified quantity of an
underlying asset at a set price on a predetermined future date. Crucially, exchanges
govern the terms, such as contract size, expiration date, and quality or delivery
specifications, ensuring consistency between trades and supporting a liquid market.
Although these contracts outline a physical delivery process, market participants
aiming to hedge can opt to close or “roll over” their positions rather than receive or
deliver the physical asset. In this way, futures serve as a versatile tool, allowing
investors and commercial entities to lock in future prices without necessarily
incurring the logistical burden of actual commodity exchange.

5.1.1 HedgingMechanism Using Futures

The fundamental concept behind futures hedging is to establish a position in the
futures market that is counter to one’s position in the spot (cash) market, helping to
offset adverse price movements in the underlying asset. For example, if you already
hold an asset and fear a drop in its price, you can sell (short) futures contracts, known
as a short hedge, to protect against potential losses. Conversely, if you anticipate
buying an asset in the future and worry about rising prices, you can buy (go long)
futures contracts to lock in a predetermined price. This so-called long hedge ensures
that you can secure the asset at a set cost, effectively insulating your budget from
market volatility.

In both cases, movements in the futures market tend to counterbalance fluctu-
ations in the spot market, reducing overall risk. Thus, these offsetting positions
offer a practical and cost-effective means of stabilizing cash flows and mitigating
the impact of unpredictable price changes. The net effect is to reduce exposure
to unfavorable price movements in the underlying asset. However, note that some
residual discrepancy, often referred to as “basis risk,” may persist because of
differences between the price of the spot and futures.

To illustrate the hedging process, consider the following scenario. Let St . denote
the spot price of an asset at time t , and Q represent the total quantity of that asset
either held (in a selling context) or required (in a buying context). The value of the
spot position at time t , denoted by Vspot ., can be expressed as

.Vspot = Q × St
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which captures the portion of a portfolio that depends directly on the current market
price of the asset. Next, let Ft . be the futures price at time t , N the number of futures
contracts (positive if taking a long position, negative if short), and q the contract
size, which specifies how many units of the underlying are covered by each contract.
The value of this futures position, Vfutures ., is thus given by

.Vfutures = N × q × Ft

By examining both Vspot . and Vfutures . in tandem, we can see how changes in the spot
price can be counterbalanced by gains or losses in the futures position, thus forming
the core mechanism behind many hedging strategies.

When we enter into a futures contract at the initiation time (t = 0.), the net
value of our portfolio from both spot and futures positions (aside from any margin
requirements) at any time t . can be expressed as

.Vtotal = Vspot + Vfutures = Q × St + N × q × Ft

The profit or loss ( .) from the hedged position during the hedging period, from
t = 0. to t = T ., can then be calculated by evaluating changes in both the spot and
future positions. That is

. = Vspot(T ) − Vspot(0) + [Vfutures(T ) − Vfutures(0)]

Since the initial value of the futures position is Vfutures(0) = N × q × F0 ., the
change in the futures position value becomes

. futures = Vfutures(T ) − Vfutures(0) = N × q × (FT − F0)

Similarly, we can write the change in the spot position as

. spot = ST − S0

Substituting this into . gives

. = spot + futures = Q × (ST − S0) + N × q × (FT − F0)

At the contract’s maturity, the futures price FT . converges to the spot price ST .,
meaning FT = ST .. Plugging this into . simplifies to

. = Q × (ST − S0) + N × q × (ST − F0)

It is important to note that the sign of N ., the number of futures contracts, gives
an indication of the nature of the hedge. A negative N . indicates a short position,
which means that you have sold futures contracts, while a positive N . indicates a
long position, meaning you have bought futures contracts.
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Let us consider the case of a short hedge, where we long the spot position and
short the futures position as a hedge. Specifically, we hold Q units of the underlying
asset and want protection against a potential drop in its price. To do so, we sell
(short) futures contracts, where the number of contracts N is typically chosen so
that N × q ≈ Q.. As discussed above, during the hedging period, the value of
the spot position changes by Q(ST − S0)., while the futures position changes by
N q (FT −F0).. With N < 0. (due to short position in futures contract) and N × q =
−Q., these changes combine to

. = Q ST − S0 + N q FT − F0 = Q ST − S0 − Q FT − F0 .

At maturity, assume FT . converges to ST . (which is often the case based on the no
arbitrage argument), so substituting FT = ST . eliminates the dependence on the final
spot price ST ., yielding

. = Q F0 − S0 .

This fixed payoff means that we have eliminated the exposure to the asset’s price
movements due to independence with ST .. Therefore, the short position in futures
is considered a perfect hedge in the sense of removing price risk, although the
final profit or loss . can still be positive, negative, or zero depending on the initial
difference F0 − S0 ..

5.1.2 Optimal Hedge Ratio

The effectiveness of a futures hedge largely hinges on how closely the movement
in futures prices tracks the corresponding spot price of the asset. Although the
idealized assumption FT = ST . implies that the futures price converges precisely
to the terminal spot price, real-world factors, such as carrying costs, delivery
specifications, and timing mismatches, can create a nonzero discrepancy known as
basis risk at any time point in between t = 0. and t = T .. As a result, the profit
or loss of the hedged portfolio ( t .) may be positive or negative at any time, rather
than strictly zero. In practice, rather than enforcing t = 0., a common objective
is to minimize the variance σ 2

. of the portfolio’s returns. One way to achieve this
is to determine the optimal hedge ratio h∗

., which specifies the proportion of the
underlying position to hedge. Under the assumption that the returns of the spot and
futures follow a joint normal distribution, the optimal ratio can be derived as

.h∗ = −ρSF

σS

σF

,

where ρSF . is the correlation coefficient between the changes in the price of the spot
and futures, σS . is the standard deviation of the changes in spot price, and σF . is the
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standard deviation of the changes in futures price. This formula highlights the key
role of both correlation and relative volatility in designing an effective hedge.

To derive this formula, we analyze the variance of the hedged position and
determine the value of the hedge ratio (while treating other variables as constant)
that minimizes this variance. Recall that the hedged position consists of both the
spot position and the futures position, and the change in the value of the hedged
position . over a short time interval can be expressed as follows:

. = spot + futures = Q × + N × q ×

where Q. is the quantity of the asset held or required, N . is the number of futures
contracts held (again, positive for a long position and negative for a short position),
and q . is the quantity of the asset per futures contract.

We define the hedge ratio h. as a relative ratio:

.h = N × q

Q

This allows us to express N . as

.N = h × Q

q

Substituting this into the expression for . gives

. = Q × + h ×

The variance of the hedged position is then

.σ 2 = Var = Q2 × Var + h ×

Noting that the random variables are . and ., expanding the variance gives

.σ 2 = Q2 Var + h2Var + 2hCov

Dividing both sides by Q2
. simplifies the equation to

.
σ 2

Q2
= σ 2

S + h2σ 2
F + 2hρSF σSσF

To find the hedge ratio that minimizes the variance σ 2
., we can take the derivative

of σ 2
.with respect to h. (now we treat other variables as fixed) and set it to zero:

.
dσ 2

dh
= 2hσ 2

F + 2ρSF σSσF = 0
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Solving for h∗
. gives

.h∗ = −ρSF

σS

σF

The negative sign indicates that the futures position should be opposite to the spot
position to effectively minimize risk. This means that if we have a long position in
the spot market, we should take a short position in futures contract and vice versa.
However, since N . is already defined as negative for a short position, the optimal
hedge ratio can be expressed without the negative sign:

.h∗ = ρSF × σS

σF

Thus, this expression determines the proportion of the exposure (percentage of
total number of spot assets) that should be hedged to achieve minimal variance in
the hedged position.

For example, assume σS = 2., σF = 1.5., and ρSF = 0.5.. The optimal hedge ratio
can be calculated using these values as follows:

.h∗ = 0.5 × 2

1.5
≈ 0.6667

This result indicates that approximately 66.67% of the exposure should be
hedged. Generally, a lower correlation coefficient leads to a lower hedge ratio
because the effectiveness of the futures contract in hedging the spot position
diminishes as the correlation between their price changes weakens.

Once the optimal hedge ratio is determined, the number of futures contracts N∗
.

that is required to hedge the exposure can be calculated via

.N∗ = −h∗ × Q

q

The negative sign reflects taking a position opposite to the spot position. If, for
instance, the exposure is Q = 100,000. units and each futures contract covers q =
1,000. units, then

.N∗ = −0.6667 × 100,000

1,000
= −0.6667 × 100 = −66.67

Since trading a fraction of a contract is not feasible, we typically round to
the nearest whole number, resulting in selling 67 futures contracts to hedge the
exposure.

Again, note that even with an optimal hedge ratio, perfect hedging is rarely
achievable due to basis risk, which refers to the potential risk that futures prices
do not move in sync with spot prices. This discrepancy can arise from differences
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in the underlying asset, contract specifications, or timing mismatches. Furthermore,
implementing a hedge comes with transaction costs that should be considered along
with the benefits of hedging.

5.1.3 Scenario Analysis at Maturity

To illustrate how the hedge ratio and the correlation factor influence the effective-
ness of a hedge and the terminal payoff, let us look at a scenario analysis. We will
examine two possible outcomes at maturity: one in which the spot price decreases,
leading to ST < S0 ., and another in which it increases, leading to ST > S0 .. This
analysis will reveal how the hedged position responds in each scenario.

Consider the initial condition with a spot price of S0 = $50. per unit and futures
price of F0 = $50. per unit (which may not necessarily be a realistic assumption
due to other considerations on the cost of carry, such as financing costs, storage
costs, convenience yields, and dividends). Assume that the quantity of the asset is
Q = 100,000. units and that each futures contract covers q = 1,000. units. Also,
assume that the optimal hedge ratio is h∗ = 0.4.. Using the optimal hedge ratio, we
calculate the number of futures contracts needed as

.N∗ = −h∗ × Q

q
= −0.4 × 100,000

1,000
= −40 contracts

The negative sign indicates a short position in futures contracts.
First, we analyze the situation where the spot price ST . drops to $45. at maturity.

The change in the spot market is calculated as

. spot = Q × (ST − S0) = 100,000 × ($45 − $50) = −$500,000

which represents a loss of $500,000 due to the decrease in the spot price.
Next, we assume that the futures price at maturity is FT = $43., reflecting an

imperfect correlation between the spot and futures prices (an example of basis risk
where spot and futures prices do not move in perfect lockstep). The change in the
futures price is

. = FT − F0 = $43 − $50 = −$7

Thus, the gain from the futures position is then

. futures = N∗ × q × = (−40) × 1,000 × (−$7) = $280,000

The total profit or loss . from the hedged position is

. = spot + futures = −$500,000 + $280,000 = −$220,000
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In this scenario, the loss in the spot market is partially offset by the gain in the
futures market, leading to a net loss of $220,000. This indicates that while the hedge
has reduced the overall risk, it has not completely eliminated it. This is due to the
imperfect correlation between the markets and the fact that only 40% of the exposure
was hedged.

Let us look at another scenario where the spot price now rises to $55. at maturity.
The change (gain) in the spot market is now

. spot = Q × (ST − S0) = 100,000 × ($55 − $50) = $500,000

which represents a gain of $500,000 due to the increase in the spot price. Now
assuming the futures price at maturity is FT = $54., the change in the futures price
is

. = FT − F0 = $54 − $50 = $4

The loss from the futures position is then

. futures = N∗ × q × = (−40) × 1,000 × $4 = −$160,000

The total profit or loss . for the hedged position is

. = spot + futures = $500,000 − $160,000 = $340,000

In this scenario, the gain in the spot market is partially offset by the loss in the
futures market, resulting in a net profit of $340,000. This outcome shows that the
hedged position limits potential gains, which is an expected result when taking up a
hedging strategy.

In general, hedging reduces the downside risk by limiting the upside gain. It
does not entirely eliminate the risk due to the imperfect correlation between the spot
and futures prices. Specifically, only 40% of the exposure was hedged. Because the
futures price does not move perfectly in line with the spot price, this leads to what
is known as basis risk. Moreover, since only a portion of the exposure is hedged,
gains and losses in the spot market are only partially offset by the futures position.
This analysis emphasizes the importance of understanding the limitations of hedging
strategies and the factors that influence their effectiveness.

5.1.4 Consideration of Basis Risk

The basis at any given time t . is defined as the difference between the spot price and
the futures price of an asset, which can be expressed as

.Basist = St − Ft



134 5 Risk Management Using Financial Derivatives

At maturity (t = T .), the basis is expected to be zero because the futures price FT .

should converge to the spot price ST .; otherwise, arbitrage activities can occur. This
convergence is a fundamental principle in futures markets, ensuring that the futures
contract and the underlying asset are priced consistently as the contract approaches
expiration. However, in reality, the basis may not be exactly zero at maturity. This
discrepancy arises because of an imperfect correlation between the spot and futures
prices and various market inefficiencies. For example, it could be due to differences
in the characteristics of the underlying asset, variations in the specifications of the
contract, or the timing of the hedge being closed out before the futures contract
matures. When the futures price does not move in sync with the spot price, the hedge
fails to eliminate risk, leaving some residual exposure completely. This residual
basis risk leads to FT = ST ..

The effectiveness of a hedge can be assessed by comparing the variance of the
hedged position to that of the unhedged position, where the variance is calculated
based on the entire duration from contract initiation to maturity. This comparison is
quantified by the reduction in variance, which is expressed via

.
2 = σ 2

unhedged − σ 2
hedged

Here, σ 2
unhedged . denotes the variance of the spot position alone, and we would

expect it to be higher than σ 2
hedged ., which represents the variance of the combined

positions in both the spot and futures markets. Ideally, a perfect hedge would
eliminate all risk, resulting in σ 2

hedged = 0. and thus 2 = σ 2
unhedged .. However, due

to basis risk, the reduction in variance 2
. is typically less than the total variance

of the spot position. This echos our previous message that, while the hedge reduces
the overall risk, it does not completely eliminate it.

Basis risk affects the effectiveness of a hedge because a futures contract may
not completely offset the price changes of the underlying asset. As a result, even
when using an optimal hedge ratio, some level of risk persists. Therefore, this
residual risk needs to be recognized and managed, as it can influence the stability
and predictability of the performance of the hedged position.

5.1.5 Implementing the Dynamic Hedging Strategy

In previous sections, we covered the fundamentals of hedging with futures contracts
and the use of the optimal hedge ratio to minimize the variance of a hedged position.
However, financial markets are dynamic, with volatilities, correlations, and other
parameters changing over time. To adapt to these changes, we introduced dynamic
hedging, which involves periodically adjusting the hedge position in response to
evolving market conditions. In this section, we will illustrate the implementation
of a dynamic futures hedging strategy using Python. We first use the Geometric
Brownian Motion (GBM) process to simulate asset prices, then apply linear
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regression to estimate/forecast the optimal hedge ratios. Finally, we dynamically
adjust the hedge over time.

To create realistic simulations of price movements, we use GBM, a continuous-
time stochastic process commonly applied in financial modeling. GBM effectively
captures key characteristics of asset price dynamics, including the log-normal
distribution of prices and the important fact that prices cannot fall below zero. The
stochastic differential equation (SDE) for GBM representing the asset price St . is

.dSt = μSSt dt + σSSt dWS
t

where μS . is the expected return (drift) of the asset, σS . is the volatility of the asset,
and dWS

t . is the increment of a Wiener process (standard Brownian motion).
Similarly, we can model the SDE of the futures price Ft . as

.dFt = μF Ft dt + σF Ft dWF
t

where μF . and σF . are the drift and volatility of the futures price, and dWF
t . is another

Wiener process. To model the correlation between the asset and futures prices, we
assume the dependence structure:

.dWS
t dWF

t = ρSF dt

where ρSF . is the correlation coefficient between changes in asset price St . and
futures Ft .. For numerical simulation, we can discretize these SDEs to obtain the
closed-form pricing formula for the next period:

.St+ = St × exp μS − σ 2
S

2
+ σS S

√

.Ft+ = Ft × exp μF − σ 2
F

2
+ σF F

√

where S . and F . are standard normal random variables with correlation ρSF .. Note
that all asset prices are positive (or zero, theoretically), and this constraint is satisfied
in these pricing formulas.

As time passes and the market moves, the optional hedge ratio h∗
. also changes.

To dynamically estimate h∗
., we can perform a linear regression to model the

changes in St . as a function of changes in Ft . based on the simulated changes at
each time step. The starting point is to consider a spot position in an asset with
price changes t . and a futures position with price changes t .. If we define
the hedge ratio h as the number of futures contracts (scaled appropriately) held
per unit of the underlying asset, then the total change in the value of the hedged
portfolio can be written as = t − t . when the underlying is long and the
futures position is short. As introduced earlier, to determine h that minimizes risk,
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we can seek to minimize the variance of ., denoted Var .. By expanding this
variance and treating t . and t . as jointly normal random variables, it follows
that Var = Var t − t ) = Var t )+h2 Var t )−2hCov t t )..
Differentiating this expression with respect to h and setting it to zero yields h∗ =
Cov t t )

Var t )
.. Because the covariance between t . and t . can be written in terms

of the correlation ρSF . and the product of the respective standard deviations σS . and
σF ., the hedge ratio that minimizes variance becomes h∗ = ρSF

σS

σF
..

To connect this result with the linear regression approach, consider a simple
ordinary least squares (OLS) regression of t . on t .. Here, we often write

. t = α + t + εt

where α . is an intercept, β . is a slope coefficient, and εt . is the error term. It is
a standard OLS result that the optimal estimated β . is given by the ratio of the
sample covariance of t . and t . to the sample variance of t .. Specifically,

β = Cov t t )

Var t )
. by solving the following:

.min
β,α

T

t=1

( t − t − α)2

In the idealized population limit, this converges to the true ratio of covariance to
variance, namely, Cov t t )

Var t )
.. That quantity is precisely the hedge ratio derived by

minimizing the variance of the hedged portfolio.
The equivalence arises because the slope coefficient in a regression of one

random variable on another is the quantity that best explains, in a least squares sense,
how changes in the independent variable co-move with changes in the dependent
variable. In a hedging context, spot price changes t . are viewed as the outcome
to be “covered,” and futures price changes t . are the tool used to hedge. The
slope β . telling us how t . scales with t . is the same parameter that appears
in the variance-minimizing portfolio, since the variance-minimization problem also
requires knowledge of how t . and t . move together. Even if the regression
contains a nonzero intercept α ., that term does not affect the slope and thus does not
alter the hedge ratio; the intercept reflects an average drift or level effect that does
not change the ratio needed to offset price fluctuations. Hence, whether one directly
solves for h∗

. via differentiation of the hedged portfolio’s variance or estimates β . via
an OLS regression of t . on t ., both frameworks produce the same formula for
the optimal hedge ratio in a setting where returns (or price changes) follow a joint
normal distribution.

Now, we can come to the dynamic hedging strategy using the futures contract for
each period. The process consists of several key steps. First, we simulate price paths
for both the asset and futures prices using the GBM model. At each time step, we
estimate the optimal hedge ratios through linear regression, enabling the strategy to
dynamically adjust hedge positions based on these ratios. Throughout this process,
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we calculate the profit and loss for both the asset and the futures positions.
Finally, we evaluate the effectiveness of the hedging strategy by comparing the
P&L distributions and risk metrics of the hedged and unhedged positions. This
comparison provides insights into the performance and risk reduction achieved
through the hedging approach.

As shown in Listing 5-1, we begin by importing the necessary libraries and
setting simulation parameters, including the time horizon, time steps, and number
of simulations.

1 import numpy as np
2 import pandas as pd
3 import matplotlib.pyplot as plt
4 import seaborn as sns
5 from sklearn.linear_model import LinearRegression
6

7 # Simulation parameters
8 np.random.seed(42) # For reproducibility
9 T = 0.5 # Time to maturity in years (6 months)

10 dt = 1/252 # Time step (daily)
11 N_steps = int(T / dt) # Number of time steps
12 N_simulations = 5000 # Number of simulated price paths
13

14 # Asset price parameters
15 S0 = 50 # Initial spot price of the asset
16 mu_S = 0.05 # Expected annual return of the asset
17 sigma_S = 0.25 # Annual volatility of the asset
18

19 # Futures price parameters
20 F0 = 50 # Initial futures price
21 mu_F = 0.05 # Expected annual return of the futures
22 sigma_F = 0.25 # Annual volatility of the futures
23

24 # Correlation between asset and futures price changes
25 rho_SF = 0.9
26

27 # Quantity parameters
28 Q = 5000 # Quantity of the asset
29 q = 50 # Contract size of the futures
30 transaction_cost = 0.001 # Transaction cost per unit

Listing 5-1 Setting up parameters for simulation

Next, we simulate correlated asset and futures price paths using GBM.

1 # Time array
2 time_grid = np.linspace(0, T, N_steps + 1)
3

4 # Preallocate arrays
5 S_paths = np.zeros((N_simulations , N_steps + 1))
6 F_paths = np.zeros((N_simulations , N_steps + 1))
7

8 # Set initial prices
9 S_paths[:, 0] = S0

10 F_paths[:, 0] = F0
11
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12 # Cholesky decomposition for correlated random variables
13 cov_matrix = np.array([[1, rho_SF], [rho_SF, 1]])
14 chol_matrix = np.linalg.cholesky(cov_matrix)
15

16 for i in range(N_simulations):
17 for t in range(1, N_steps + 1):
18 # Generate standard normal random variables
19 z = np.random.normal(size=2)
20 correlated_z = chol_matrix @ z
21

22 # Simulate asset price
23 S_paths[i, t] = S_paths[i, t - 1] * np.exp(
24 (mu_S - 0.5 * sigma_S**2) * dt + sigma_S *

correlated_z[0] * np.sqrt(dt)
25 )
26

27 # Simulate futures price
28 F_paths[i, t] = F_paths[i, t - 1] * np.exp(
29 (mu_F - 0.5 * sigma_F**2) * dt + sigma_F *

correlated_z[1] * np.sqrt(dt)
30 )

Listing 5-2 Simulating GBM processes

Here, we used the Cholesky decomposition to generate correlated random
variables, ensuring that the simulated asset and futures prices reflect the desired
correlation. At each time step, we can estimate the optimal hedge ratio using linear
regression.

1 hedge_ratios = []
2

3 for t in range(N_steps):
4 # Calculate price changes
5 delta_S = S_paths[:, t + 1] - S_paths[:, t]
6 delta_F = F_paths[:, t + 1] - F_paths[:, t]
7

8 # Reshape delta_F for regression
9 delta_F = delta_F.reshape(-1, 1)

10

11 # Perform linear regression
12 model = LinearRegression().fit(delta_F, delta_S)
13 h_star = model.coef_[0]
14

15 hedge_ratios.append(h_star)

Listing 5-3 Estimating optimal hedge ratio via linear regression

We then roll out the dynamic hedging process using futures contracts by adjusting
the futures position on the basis of the estimated optimal hedge ratios.

1 # Initialize arrays
2 position_futures = np.zeros((N_simulations , N_steps + 1))
3 cash_flows = np.zeros((N_simulations , N_steps + 1))
4

5 for t in range(N_steps):
6 h_star = hedge_ratios[t]
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7 N_star = -h_star * (Q / q)
8

9 if t == 0:
10 # Initial position
11 position_futures[:, t] = N_star
12 else:
13 # Adjust position
14 delta_N = N_star - position_futures[:, t - 1]
15 position_futures[:, t] = N_star
16

17 # Transaction costs
18 cash_flows[:, t] -= np.abs(delta_N * F_paths[:, t] * q *

transaction_cost)

Listing 5-4 Rolling out dynamic hedge using futures contract

In this code, we calculate the number of futures contracts needed at each time step
and account for transaction costs incurred due to adjustments. We also compute the
P&L for both the hedged and unhedged positions.

1 # Final futures position remains the same as the last adjustment
2 position_futures[:, -1] = position_futures[:, -2]
3

4 # P&L from spot position
5 pnl_spot = Q * (S_paths[:, -1] - S0)
6

7 # P&L from futures position
8 pnl_futures = position_futures[:, -1] * q * (F_paths[:, -1] -

F_paths[:, 0])
9

10 # Total transaction costs
11 total_transaction_costs = np.sum(cash_flows , axis=1)
12

13 # Total P&L
14 pnl_hedged = pnl_spot + pnl_futures + total_transaction_costs
15 pnl_unhedged = pnl_spot

Listing 5-5 Comparing PnL of hedged and unhedged positions

We then calculate common downside risk metrics such as Value at Risk (VaR)
and Expected Shortfall (ES).

1 def calculate_risk_metrics(pnl, confidence_level=0.95):
2 pnl_sorted = np.sort(pnl)
3 index = int((1 - confidence_level) * len(pnl_sorted))
4 VaR = -pnl_sorted[index]
5 ES = -np.mean(pnl_sorted[:index])
6 return VaR, ES
7

8 # Hedged position risk metrics
9 VaR_hedged , ES_hedged = calculate_risk_metrics(pnl_hedged)

10

11 # Unhedged position risk metrics
12 VaR_unhedged , ES_unhedged = calculate_risk_metrics(pnl_unhedged)

Listing 5-6 Calculating downside risk measures
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Now we can visualize the P&L distributions and the hedge ratios over time.

1 # P&L Distribution Plot
2 plt.figure(figsize=(12, 6))
3 sns.kdeplot(pnl_unhedged , label=’Unhedged Position’, shade=True)
4 sns.kdeplot(pnl_hedged , label=’Hedged Position’, shade=True)
5 plt.title(’P&L Distribution of Hedged vs. Unhedged Positions’)
6 plt.xlabel(’Profit and Loss ($)’)
7 plt.ylabel(’Density’)
8 plt.legend()
9 plt.show()

10

11 # Hedge Ratios Over Time
12 plt.figure(figsize=(10, 4))
13 plt.plot(np.arange(N_steps) * dt, hedge_ratios)
14 plt.title(’Optimal Hedge Ratio Over Time’)
15 plt.xlabel(’Time (Years)’)
16 plt.ylabel(’Hedge Ratio’)
17 plt.show()

Listing 5-7 Plotting P&L and hedge ratios

The P&L distribution plot (left panel of Figure 5-1) shows that the hedged
position has less variability compared to the unhedged position, indicating a reduced
risk. The hedge ratio plot (right panel of Figure 5-1) illustrates how the hedge ratio
fluctuates over time, reflecting adjustments made in response to changing market
conditions.

Figure 5-1 Illustrating hedging effectiveness. The left panel shows the P&L distribution of
hedged and unhedged positions. The right panel shows the estimated optimal hedge ratio over
time
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Finally, we print the risk metrics as shown in Listing 5-8.

1 print(f"Hedged Position VaR at 95% confidence: ${VaR_hedged:,.2f}
")

2 print(f"Hedged Position Expected Shortfall at 95% confidence: ${
ES_hedged:,.2f}\n")

3 print(f"Unhedged Position VaR at 95% confidence: ${VaR_unhedged
:,.2f}")

4 print(f"Unhedged Position Expected Shortfall at 95% confidence: $
{ES_unhedged:,.2f}")

5

6 # Output
7 Hedged Position VaR at 95% confidence: $31,761.44
8 Hedged Position Expected Shortfall at 95% confidence: $39,471.00
9

10 Unhedged Position VaR at 95% confidence: $63,486.41
11 Unhedged Position Expected Shortfall at 95% confidence: $75

,266.29

Listing 5-8 Printing risk metrics

The results indicate that a hedged position has considerably lower VaR and ES
compared to an unhedged position, which means a reduction in risk. By adopting
a dynamic hedging strategy that adjusts the hedge ratio over time based on current
market data, we can more effectively manage risk in changing market conditions.

5.2 Hedging with Option Contracts

Option contracts are a common instrument for hedging and offer greater flexibility
and adaptability than futures contracts. As mentioned earlier, an option gives the
holder the right, but not the obligation, to buy or sell an underlying asset at
a predetermined price within a specific time frame (typically on or before the
expiration date). An option contract is a type of derivative, which means that its
value is derived on the basis of an underlying asset such as stocks, commodities, or
currencies. In this section, we explore how options can be used for hedging, describe
key hedging strategies, and offer detailed frameworks and examples to illustrate
their practical usage. We will focus mainly on European options.

There are two main types of options: call options and put options. A call option
allows the holder to buy the underlying asset at a predetermined price known as the
strike price (denoted K .) on the expiration date. In contrast, a put option grants the
holder the right to sell the underlying asset at the strike price K . on the expiration
date. The cost of purchasing an option is referred to as the premium paid to the other
party (ignoring middlemen such as exchanges or brokers). Options can be traded on
exchanges, where contracts are standardized, or in over-the-counter markets, where
contracts can be customized to meet specific needs.

Options present particularly versatile hedging opportunities by virtue of their
asymmetric payoff profiles, which allow potential gains and losses to be managed
differently compared to linear instruments like futures. Two widely used option-
based hedging strategies are the protective put and the covered call. The protective
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put involves buying a put option on an asset already held, thereby placing a “floor”
on potential losses if the asset price falls below the strike. Meanwhile, the covered
call involves selling (writing) a call option on an asset that one owns, generating
immediate premium income but capping upside gains if the asset’s price rises
substantially. Both of these strategies illustrate how options can be used to fine-tune
a portfolio’s risk-return profile, balancing downside risk mitigation against foregone
opportunities for higher profits.

These hedging techniques harness the mathematically distinctive payoff struc-
tures of options to manage risk in a precise and adaptable manner. By carefully
selecting the strike price and accounting for the option premium, we can construct
tailored hedges that align with specific risk preferences, market outlooks, and
time horizons. Consequently, the resulting strategies offer both reliable downside
protection and the flexibility to accommodate different market conditions, making
them a powerful tool for controlling exposure to adverse price movements.

Let us look at these two common hedging strategies in detail, starting with the
protective put strategy.

5.2.1 Protective Put Strategy

The protective put strategy serves as a mechanism to protect against potential
declines in the value of an asset while preserving the opportunity to gain should the
value of the asset appreciate. Conceptually, it mirrors the principle behind futures-
based hedges, but with the added flexibility due to the asymmetric payoff of the
option. Specifically, say that we have Q units of an asset priced at S0 . and wish
to shield the investment from downside risk at a future time T . We can purchase
N put option contracts, each covering q units, at a chosen strike price K . This
approach effectively places a floor limit on how much we can lose if the asset price
falls below K , while allowing for upside potential if market prices rise. The trade-
off is the premium paid for the put options, which slightly reduces any potential
gain. Mathematically, the total initial outlay, reflecting both the spot holding and the
premium expenditure, is given by

.Initial Outlay = Q × S0 + N × q × Premiumput,

where the terms ensure that the hedging cost is applicable and the downside
protection is in place. Here, the premium is calculated per share of the underlying
asset. At the expiration date of the option T ., the value of our protective put position
depends on the price of the asset at that time ST .. The payoff from holding the asset is

.Payoffasset = Q × (ST − S0)

which represents the gain or loss due to ownership of the asset over the period.
On the other hand, the payoff per share from each put option is

.Payoffput = max(K − ST , 0)
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So, the total payoff from all N × q . put options is

.Total Payoffput = N × q × max(K − ST , 0)

Therefore, the total profit or loss protective put . of our portfolio at maturity (time
T ) is

. protective put = Payoffasset + Total Payoffput − N × q × Premiumput

This formula calculates the net profit or loss from the hedged position, consider-
ing the change in the asset’s value, the payoff from the put options, and the premium
paid.

Note that an equivalent way to express the protective put payoff is to compare the
final value of the combined position to the initial outlay. Specifically, at maturity,
the final value consists of two parts: the value of the underlying asset, QST .,
plus the value of the put options, N q max(K − ST , 0).. The total initial outlay is
simply the cost of acquiring the asset, QS0 ., plus the premium paid for the puts,
N q Premiumput .. Thus, we can write

. protective put = QST + N q max(K − ST , 0)

Final Value

− QS0 + N q Premiumput

Initial Outlay

,

which is mathematically equivalent to the previous expression as the sum of the
change in the price of the asset plus the return of the put and minus the premium of
the put.

The protective put strategy effectively sets a minimum price level (the strike price
K . minus the premium paid per share) below which you will not lose more money,
while still allowing for unlimited gains if the asset’s price rises. In other words,
the protective put strategy offers a form of “insurance” for the asset, ensuring that
its value cannot drop below a certain floor while preserving the upside potential.
By holding the underlying asset and simultaneously purchasing put options with
strike price K , the investor gains the contractual right (but not the obligation) to
sell the asset at K . In practice, this creates a lower limit on losses: if the asset’s
market price falls well below K , put options can be exercised (or sold at an intrinsic
value) to offset further declines, effectively limiting downside. The main cost of this
downside protection is the option premium, which reduces the net payoff by a fixed
amount per share. Consequently, if the asset’s price is above K at expiration, the put
options can expire worthless, allowing the investor to capture all the upside gains of
the asset minus the initial premium paid.

As shown in Figure 5-2, a put option produces a skewed payoff line that flattens
below K (reflecting limited loss) and rises in tandem with the asset price above K

(preserving the profit potential). Hence, the strategy secures a minimum effective
selling price around K − Premium. per share, while still offering open-ended gains
if the market moves favorably. The graph illustrates the payoff curves for three



144 5 Risk Management Using Financial Derivatives

Figure 5-2 P&L of a protective put option

positions: (1) owning the underlying asset alone, (2) buying a put option, and (3)
combining both into a protective put. The asset payoff we own has a slope of +.1
(i.e., the profit or loss increases one-for-one with the underlying’s price ST .), crossing
the horizontal axis at ST = S0 .. The put payoff remains at − Premium. as long as
ST > K . (since the option expires worthless in that region), then slopes upward
as K − ST − Premium. when ST < K .. When these two positions are combined,
the resulting protective put payoff matches the asset payoff above the strike K but
flattens out below K , effectively placing a floor on losses. Specifically, for ST < K .,
the intrinsic value of the put compensates for any further decline in the asset’s price,
limiting downside exposure to approximately K − S0 − Premium .. Above K , the
position behaves much like a simple long stock, retaining unlimited upside minus
the fixed cost of the put premium. This asymmetry, limited loss, and open-ended
gains make a protective put an attractive hedging strategy for investors who wish to
preserve significant upside potential while insuring against catastrophic losses.

Listing 5-9 is used to generate the plot.

1 import numpy as np
2 import matplotlib.pyplot as plt
3

4 # Adjust global font size for all text elements
5 plt.rcParams.update({
6 ’font.size’: 14, # Main text font size
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7 ’axes.titlesize’: 16, # Axes title font size
8 ’axes.labelsize’: 14, # Axes label font size
9 ’legend.fontsize’: 14, # Legend font size

10 ’xtick.labelsize’: 12, # X tick label size
11 ’ytick.labelsize’: 12 # Y tick label size
12 })
13

14 # Parameters
15 S0 = 100.0 # Initial price of the asset
16 K = 100.0 # Put option strike
17 put_premium = 5 # Cost of the put option (per share)
18

19 # Generate a range of possible final asset prices (S_T)
20 S_T = np.linspace(0, 200, 201)
21

22 # Payoff 1: Long asset (bought at S0).
23 # P&L = (S_T - S0)
24 payoff_asset = S_T - S0
25

26 # Payoff 2: Long put option
27 # Gross payoff = max(K - S_T, 0)
28 # Net payoff after premium = max(K - S_T, 0) - put_premium
29 payoff_put = np.maximum(K - S_T, 0) - put_premium
30

31 # Combined payoff: Protective put = Long asset + Long put
32 payoff_protective = payoff_asset + payoff_put
33

34 # Plot the results
35 plt.figure(figsize=(9, 7))
36

37 # Plot each component payoff
38 plt.plot(S_T, payoff_asset , label=’Long Asset’, linestyle=’--’)
39 plt.plot(S_T, payoff_put , label=’Long Put’)
40 plt.plot(S_T, payoff_protective , label=’Protective Put (Asset +

Put)’, linewidth=2)
41

42 # Reference line at zero P&L
43 plt.axhline(y=0, color=’black’, linewidth=1)
44

45 # Labeling
46 plt.xlabel(’Final Asset Price $S_T$’)
47 plt.ylabel(’Profit / Loss’)
48 plt.title(’Payoff Curves for a Protective Put’)
49 plt.legend()
50 plt.grid(True)
51

52 # Display the figure
53 plt.show()

Listing 5-9 Generating payoff curves for the protective put strategy
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For example, suppose we own 500 shares (Q = 500.) of a stock currently priced
at S0 = $80. per share. We are concerned about a potential decline in the stock price
over the next few months. To hedge this risk, we can purchase put options with a
strike price of K = $80.. Assume the premium per share is Premiumput = $3.. Since
each option contract typically covers 100 shares (q = 100.), we need

.N = Q

q
= 500

100
= 5 contracts

The total premium paid is

.Total Premiumput = N × q × Premiumput = 5 × 100 × $3 = $1,500

The total initial investment outlay is

.Initial Outlay = 500 × $80 + 5 × 100 × $3 = $40,000 + $1,500 = $41,500

If the stock price falls to ST = $65., the payoff from the asset is

.Payoffasset = 500 × ($65 − $80) = 500 × (−$15) = −$7,500

which represents a loss due to the decrease in the stock price.
Next, the payoff from the put options is:

.Total Payoffput = 5 × 100 × ($80 − $65) = 500 × $15 = $7,500

These put options are “in the money” and thus provide a gain that offsets the loss
from the asset.

The total profit or loss becomes

. protective put = −$7,500 + $7,500 − $1,500 = −$1,500

which shows that the net loss is equal to the premium paid for the put options. In
other words, the loss from the asset’s price decline is fully offset by the gain from
the put options, except for the premium paid.

On the other hand, if the stock price rises to ST = $90., the payoff from the asset
becomes

.Payoffasset = 500 × ($90 − $80) = 500 × $10 = $5,000
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Table 5-1 Payoff and profit/loss table

Stock price at
maturity (ST .) Payoff from asset Payoff from put options Premium paid Total P&L

$65 − $7,500. $7,500 − $1,500. − $1,500.

$90 $5,000 $0 − $1,500. $3,500

which is the gain from the increase in the stock price. As for the payoff of the put
options, since ST > K ., the put options expire worthless:

.Total Payoffput = 0

Thus, the total profit or loss is

. protective put = $5,000 + $0 − $1,500 = $3,500

The net profit is the gain from the asset minus the premium paid for the put
options. Thus, we benefit from the asset’s price increase, but incur the cost of the
premium.

Table 5-1 summarizes the P&L of each component and the overall portfolio
of the protective put strategy in each scenario. This strategy essentially limits our
downside risk to the premium paid while allowing for upside potential if the asset
price increases.

The next section looks at implementing this strategy and observing its effect via
simulations.

5.2.2 Implementing the Protective Put Strategy

Now that we understand the protective put strategy, let us implement it using Python.
We will simulate asset price movements, calculate option premiums, and evaluate
payoffs to see how effective the hedge is in different scenarios. We will again use
GBM to simulate asset price movements and the Black-Scholes-Merton (BSM)
model to price the options. As introduced earlier, GBM can be used to capture both
the predictable trend (drift) and random fluctuations (volatility) when simulating
how the asset price changes over time. Recall that we discretize the GBM using the
following equation:

.St+ = St × exp μ − σ 2

2
+ t

√

where . is the time step size, and t . is a standard normal random variable t ∼
N(0, 1))..
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To price European put options, we can use the Black-Scholes-Merton model:

.P = Ke−r(T −t)N(−d2) − StN(−d1)

where

.d1 =
ln St

K
+ r + σ 2

2 (T − t)

σ
√

T − t

.d2 = d1 − σ
√

T − t

In these equations, N(·). is the cumulative distribution function of the standard
normal distribution, St . is the asset price at time t , K is the strike price, r is the risk-
free interest rate, and T is the time to maturity. Recall that at maturity T , the payoff
of the put option is

.Payoffput = max(K − ST , 0)

We can now simulate the protective put strategy by modeling asset price paths
using GBM, calculating option premiums with the BSM model, and evaluating the
payoffs from both the asset and the put options.

First, we import the necessary packages and define the parameters for our
simulation as shown in Listing 5-10.

1 import numpy as np
2 import pandas as pd
3 import matplotlib.pyplot as plt
4 from scipy.stats import norm
5

6 # Simulation parameters
7 np.random.seed(42) # For reproducibility
8 S0 = 100 # Initial asset price ($100)
9 K = 100 # Strike price of the put option ($100)

10 T = 0.5 # Time to maturity in years (6 months)
11 r = 0.02 # Risk-free interest rate (2%)
12 sigma = 0.25 # Volatility of the asset (25%)
13 mu = 0.10 # Expected return of the asset (10%)
14 N_simulations = 5000 # Number of simulation paths
15 N_steps = 126 # Number of time steps (approx. 6

months of trading days)
16 dt = T / N_steps # Time step size
17 Q = 2000 # Quantity of the asset held
18 q = 100 # Quantity per option contract
19 N_options = Q // q # Number of option contracts

Listing 5-10 Defining simulation parameters



5.2 Hedging with Option Contracts 149

Next, we calculate the premium of the put option at time t = 0..

1 def black_scholes_put(S, K, T, r, sigma):
2 d1 = (np.log(S / K) + (r + 0.5 * sigma**2) * T) / (sigma * np

.sqrt(T))
3 d2 = d1 - sigma * np.sqrt(T)
4 put_price = K * np.exp(-r * T) * norm.cdf(-d2) - S * norm.cdf

(-d1)
5 return put_price
6

7 # Calculate the premium per option
8 premium_per_option = black_scholes_put(S0, K, T, r, sigma)
9 print(f"Premium per Put Option: ${premium_per_option:.2f}")

10

11 # Total premium paid
12 total_premium = N_options * q * premium_per_option
13 print(f"Total Premium Paid: ${total_premium:.2f}")
14

15 # Output
16 Premium per Put Option: $6.52
17 Total Premium Paid: $13043.66

Listing 5-11 Calculating option premium

Now we can simulate multiple asset price paths over the time horizon T .

1 # Time array
2 time_grid = np.linspace(0, T, N_steps + 1)
3

4 # Preallocate array for asset prices
5 S_paths = np.zeros((N_simulations , N_steps + 1))
6 S_paths[:, 0] = S0
7

8 # Simulate price paths
9 for t in range(1, N_steps + 1):

10 Z = np.random.standard_normal(N_simulations)
11 S_paths[:, t] = S_paths[:, t - 1] * np.exp((mu - 0.5 * sigma

**2) * dt + sigma * Z * np.sqrt(dt))

Listing 5-12 Simulating asset price paths

At maturity, we can calculate the payoffs from both the asset and the put options.

1 # Asset price at maturity
2 S_T = S_paths[:, -1]
3

4 # Payoff from the asset
5 payoff_asset = Q * (S_T - S0)
6

7 # Payoff from the put options
8 payoff_put = N_options * q * np.maximum(K - S_T, 0)
9

10 # Total profit or loss
11 total_pnl = payoff_asset + payoff_put - total_premium

Listing 5-13 Calculating payoffs
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Now we can analyze the hedging effectiveness by comparing the protective put
strategy to holding the asset without hedging as shown in Listing 5-14.

1 # Profit or loss without hedging
2 pnl_unhedged = payoff_asset
3

4 # Create a DataFrame for comparison
5 results = pd.DataFrame({
6 ’Asset_Price_T’: S_T,
7 ’Payoff_Asset’: payoff_asset ,
8 ’Payoff_Put’: payoff_put ,
9 ’Total_PnL_Hedged’: total_pnl ,

10 ’PnL_Unhedged’: pnl_unhedged
11 })
12

13 # Calculate descriptive statistics
14 stats = results[[’Total_PnL_Hedged’, ’PnL_Unhedged’]].describe()
15 print(stats)
16

17 # OutputTotal_PnL_Hedged PnL_Unhedged
18 count 5000.000000 5000.000000
19 mean 6833.195431 9698.512913
20 std 26862.596609 37183.472059
21 min -13043.659498 -91149.304063
22 25% -13043.659498 -17461.066383
23 50% -6159.277399 6884.382098
24 75% 19882.797212 32926.456709
25 max 178995.442071 192039.101569

Listing 5-14 Comparing strategies

We can also plot the distribution of the profits and losses for both hedged and
unhedged positions:

1 # Plot P&L distributions
2 plt.figure(figsize=(12, 6))
3 plt.hist(total_pnl , bins=100, alpha=0.6, label=’Hedged Position’)
4 plt.hist(pnl_unhedged , bins=100, alpha=0.6, label=’Unhedged

Position’)
5 plt.title(’Distribution of Profit and Loss’, fontsize=18)
6 plt.xlabel(’Profit and Loss ($)’, fontsize=16)
7 plt.ylabel(’Frequency’, fontsize=16)
8 plt.legend(fontsize=16)
9 plt.show()

The plot, as shown in Figure 5-3, shows that the hedged position reduces
downside risk, with losses capped at the premium paid. The unhedged position has
a wider distribution, indicating higher potential losses and gains.
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Figure 5-3 Distribution of profit and loss for hedged vs. unhedged positions

Finally, we examine specific scenarios to see how the protective put strategy
performs under different market conditions:

1 # Scenario where asset price falls to $70
2 scenario_loss = results[results[’Asset_Price_T’] <= 70].iloc[0]
3 print("Scenario: Asset price falls to $70")
4 print(f"Asset Price at Maturity: ${scenario_loss[’Asset_Price_T

’]:.2f}")
5 print(f"Payoff from Asset: ${scenario_loss[’Payoff_Asset ’]:.2f}")
6 print(f"Payoff from Put Options: ${scenario_loss[’Payoff_Put ’]:.2

f}")
7 print(f"Total P&L (Hedged): ${scenario_loss[’Total_PnL_Hedged

’]:.2f}")
8 print(f"P&L (Unhedged): ${scenario_loss[’PnL_Unhedged ’]:.2f}")
9

10 # Scenario where asset price rises to $130
11 scenario_gain = results[results[’Asset_Price_T’] >= 130].iloc[0]
12 print("\nScenario: Asset price rises to $130")
13 print(f"Asset Price at Maturity: ${scenario_gain[’Asset_Price_T

’]:.2f}")
14 print(f"Payoff from Asset: ${scenario_gain[’Payoff_Asset ’]:.2f}")
15 print(f"Payoff from Put Options: ${scenario_gain[’Payoff_Put ’]:.2

f}")
16 print(f"Total P&L (Hedged): ${scenario_gain[’Total_PnL_Hedged

’]:.2f}")
17 print(f"P&L (Unhedged): ${scenario_gain[’PnL_Unhedged ’]:.2f}")
18

19 # Output
20 Scenario: Asset price falls to $70
21 Asset Price at Maturity: $61.64
22 Payoff from Asset: $-76714.94
23 Payoff from Put Options: $76714.94
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24 Total P&L (Hedged): $-13043.66
25 P&L (Unhedged): $-76714.94
26

27 Scenario: Asset price rises to $130
28 Asset Price at Maturity: $140.75
29 Payoff from Asset: $81504.28
30 Payoff from Put Options: $0.00
31 Total P&L (Hedged): $68460.62
32 P&L (Unhedged): $81504.28

In the scenario where the asset price falls to $70, the loss from the asset is fully
offset by the gain from the put options, except for the premium paid, resulting in a
net loss equal to the premium. In the scenario where the asset price rises to $130, the
gain from the asset is reduced by the premium paid for the put options, but we still
achieve a significant profit. By examining these scenarios, we see how the protective
put strategy limits losses while still allowing for potential gains, offering a practical
method to manage risk.

Next, we turn to the covered call strategy.

5.2.3 Covered Call Strategy

A covered call strategy involves owning the underlying asset and simultaneously
writing (selling) call options on the same asset. Also called a yield-enhancement
strategy, this approach can generate additional income by receiving the option
premium, but limit the upside if the asset price rises well above the strike price.
The received premium can act as a buffer against minor price declines in the
underlying asset, although protection is limited and risk mitigation is only partial.
If the underlying asset drops significantly, the writer still assumes most of the
downside risk beyond the premium.

Specifically, suppose that we have Q units of an asset priced at S0 .. To implement
a covered call, we write (sell) N call option contracts, each covering q units (each
standard contract typically covers q = 100. shares), at a chosen strike price K .
Because we receive a premium for writing these calls, we earn extra cash flow
up front, which can partially offset minor price declines in the underlying asset.
However, should the underlying price increase substantially above K , our additional
gains on the asset are capped by the short call position, making this a trade-off
between enhanced current yield and limited upside potential.

Since we receive the call premium rather than pay it, the net initial outlay is

.Initial Outlay = QS0 − N × q × Premiumcall ,

which reflects the fact that the call premium provides an immediate cash inflow that
partially offsets the asset’s purchase cost. Often, one chooses N = Q

q
. so that every

share held in the spot market is “covered” by exactly one corresponding short call
share.
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Now, let ST .be the asset’s price at option expiration T . The covered call strategy’s
P&L (the terminal payoff) then depends on two components: asset in a long position
and call option in a short position. For the long asset payoff, if we purchased Q

shares at S0 ., the change in the asset’s value over the period is

.Payoffasset = Q ST − S0 .

For the short call payoff, writing the call grants the buyer the right to purchase
the asset at price K . If ST ≤ K ., the option expires worthless, and our payoff from
the short call position is simply the premium received: N q Premiumcall .. However,
if ST > K ., the call is exercised, and we must deliver the asset at K . The intrinsic
loss on the short call is max(ST − K, 0). per share, multiplied by N q . total shares.
Factoring in the premium, the net payoff from the short call can be expressed as

.Payoffshort call = N q Premiumcall − N q max ST − K, 0 .

Combining these two payoffs gives the covered call portfolio’s P&L at maturity:

. covered call = Q ST − S0

Asset

+ N q Premiumcall − N q max(ST − K, 0)

Short Call

.

Again, an equivalent way to write this is to compare the final value of the
portfolio to the initial outlay:

. covered call = QST − N q max(ST − K, 0)

Final Value

− QS0 − N q Premiumcall

Initial Outlay

,

which clarifies that any gains above K on the asset are effectively “given up” to the
call buyer, while the premium is ours to keep regardless of the outcome.

In essence, the short call “covers” part of our cost by adding immediate premium
income, thus providing a small buffer against price declines. On the other hand,
once ST . rises above K , we cease to benefit from additional upside, as we must sell
the asset at K . However, below K , we bear the downside risk almost in full (minus
the premium). As a result, a covered call strategy is moderately bullish, in the sense
that

• It performs best in scenarios where the underlying price stays below or moder-
ately above K .

• If the asset surges well beyond K , our gains become capped relative to holding
the asset alone.

• If the asset plummets, we still incur losses similar to an unhedged position, offset
slightly by the option premium.
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Figure 5-4 Payoff diagram for a covered call strategy compared to its components

Figure 5-4 presents the payoff diagram that consists of a long asset alone, a short
call alone, and the combined covered call. For the short call position, the payoff is
simply Premium − max(ST − K, 0)., which remains at the premium received when
ST ≤ K . and declines linearly for ST > K .. The covered call adds this short-call
payoff to the long-asset payoff, resulting in a payoff curve that is identical to the
long-asset payoff up to ST = K ., then flattens out beyond K . That flat portion
indicates the foregone upside. Meanwhile, the initial premium from writing the call
acts as a cushion against mild price dips.

Listing 5-15 shows how to generate this graph.

1 import numpy as np
2 import matplotlib.pyplot as plt
3

4 # Adjust global font size for all text elements
5 plt.rcParams.update({
6 ’font.size’: 14, # Main text font size
7 ’axes.titlesize’: 16, # Axes title font size
8 ’axes.labelsize’: 14, # Axes label font size
9 ’legend.fontsize’: 14, # Legend font size

10 ’xtick.labelsize’: 12, # X tick label size
11 ’ytick.labelsize’: 12 # Y tick label size
12 })
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13

14 # Parameters
15 S0 = 100.0 # Initial price of the asset
16 K = 100.0 # Put option strike
17 put_premium = 5 # Cost of the put option (per share)
18

19 # Generate a range of possible final asset prices (S_T)
20 S_T = np.linspace(0, 200, 201)
21

22 # Payoff 1: Long asset (bought at S0).
23 # P&L = (S_T - S0)
24 payoff_asset = S_T - S0
25

26 # Payoff 2: Long put option
27 # Gross payoff = max(K - S_T, 0)
28 # Net payoff after premium = max(K - S_T, 0) - put_premium
29 payoff_put = np.maximum(K - S_T, 0) - put_premium
30

31 # Combined payoff: Protective put = Long asset + Long put
32 payoff_protective = payoff_asset + payoff_put
33

34 # Plot the results
35 plt.figure(figsize=(9, 7))
36

37 # Plot each component payoff
38 plt.plot(S_T, payoff_asset , label=’Long Asset’, linestyle=’--’)
39 plt.plot(S_T, payoff_put , label=’Long Put’)
40 plt.plot(S_T, payoff_protective , label=’Protective Put (Asset +

Put)’, linewidth=2)
41

42 # Reference line at zero P&L
43 plt.axhline(y=0, color=’black’, linewidth=1)
44

45 # Labeling
46 plt.xlabel(’Final Asset Price $S_T$’)
47 plt.ylabel(’Profit / Loss’)
48 plt.title(’Payoff Curves for a Protective Put’)
49 plt.legend()
50 plt.grid(True)
51

52 # Display the figure
53 plt.show()

Listing 5-15 Generating payoff curves for covered call strategy

Let us look at a specific example. Suppose we hold Q = 500. shares of a stock
currently priced at S0 = $80.. We sell call options at strike K = $85., each option
covering q = 100. shares. Assume the call premium per share is Premiumcall = $2..
The required number of call contracts to cover 500 shares is

.N = Q

q
= 500

100
= 5 contracts.
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The total premium received from writing these five contracts is

.Total Premiumcall = N × q × Premiumcall = 5 × 100 × $2 = $1,000.

Hence, our net initial outlay is the cost of buying (or holding) the 500 shares
minus the premium income:

.Initial Outlay = 500 × $80 − $1,000 = $40,000 − $1,000 = $39,000.

Now consider two scenarios at option expiration. When ST = $90. (above the
strike), the short calls will be exercised, forcing us to sell the stock at $85 per share.
We still own 500 shares, but our effective sale price is $85. The resulting payoffs
will be

• Payoffasset = 500 × (85 − 80) = $2,500..
• Payoffshort call = +$1,000− 500× (90− 85) = +$1,000− $2,500 = −$1,500..
• Total P&L = $2,500 + (−$1,500) = $1,000..

Thus, compared to simply holding the shares (which would have gained $5,000
if sold at $90), our extra income is capped once ST . exceeds $85, resulting in only
$1,000 net profit plus the difference in initial outlay.

When ST = $75. (below the strike), the calls expire worthless (ST < K .), so we
keep the shares plus the entire $1,000 premium. The resulting payoffs will be

• Payoffasset = 500 × (75 − 80) = −$2,500..
• Payoffshort call = +$1,000 − 0 = +$1,000..
• Total P&L = −$2,500 + $1,000 = −$1,500..

The short call cushions our loss by $1,000, but we still incur a net loss if the stock
falls significantly.

Table 5-2 summarizes these outcomes. While the call premium provides some
downside protection, large price drops still lead to notable losses, and substantial
price increases only yield limited gains once ST . exceeds the strike K .

In general, a covered call strategy suits investors with a neutral to moderately
bullish outlook who wish to improve the yield through premium income but accept
a cap on gains if the asset’s price rises beyond strike. Although it offers partial
(limited) protection against small price declines, it leaves the investor exposed to
large downward moves aside from the modest premium cushion.

Table 5-2 Covered call
payoff in two scenarios

ST . Asset P&L Short call P&L Net premium Total P&L

$75 −$2,500. $0 $1,000 −$1,500.

$90 $2,500 −$2,500. $1,000 $1,000
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5.2.4 Implementing the Covered Call Strategy

This section demonstrates how to implement the covered call strategy. As introduced
earlier, the covered call strategy involves owning an underlying asset and simulta-
neously writing call options on it to earn premium income. Although this strategy
improves returns when the asset price remains stable or increases moderately, it also
caps potential profits if the price rises well above the strike price.

Consider owning Q = 1,000. shares of a stock currently priced at S0 = $70.
per share. We write call options with a strike price K = $75.. Since each contract
covers q = 100. shares, the number of contracts is N = Q/q = 1,000/100 = 10..
We assume a time to maturity of T = 1. year, a risk-free interest rate r = 0.03.,
a volatility σ = 0.3., and an expected return of the asset μ = 0.12.. We simulate
Nsimulations = 5,000. price paths over Nsteps = 252. time steps, resulting in =
T/Nsteps ..

The Black-Scholes formula for a European call option gives the call price as

.d1 =
ln S0

K
+ r + σ 2

2 T

σ
√

T
, d2 = d1 − σ

√
T

.Call Price = S0N(d1) − Ke−rT N(d2)

where N(·). is the cumulative distribution function of the standard normal distribu-
tion.

The codes in Listing 5-16 is the Python code that implements this strategy. We
first calculate the call premium using the Black-Scholes model, then simulate asset
price paths under a geometric Brownian motion, compute the terminal payoffs, and
finally compare the covered call strategy against holding the asset unhedged.

1 import numpy as np
2 import pandas as pd
3 import matplotlib.pyplot as plt
4 from scipy.stats import norm
5

6 # Parameters
7 np.random.seed(42)
8 S0 = 70
9 K = 75

10 T = 1.0
11 r = 0.03
12 sigma = 0.3
13 mu = 0.12
14 N_simulations = 5000
15 N_steps = 252
16 dt = T / N_steps
17 Q = 1000
18 q = 100
19 N_options = Q // q
20
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21 def black_scholes_call(S, K, T, r, sigma):
22 d1 = (np.log(S / K) + (r + 0.5 * sigma**2)*T) / (sigma * np.

sqrt(T))
23 d2 = d1 - sigma * np.sqrt(T)
24 call_price = S * norm.cdf(d1) - K * np.exp(-r*T) * norm.cdf(

d2)
25 return call_price
26

27 # Compute the call option premium
28 premium_per_option = black_scholes_call(S0, K, T, r, sigma)
29 total_premium = N_options * q * premium_per_option
30 print(f"Premium per Call Option: ${premium_per_option:.2f}")
31 print(f"Total Premium Received: ${total_premium:.2f}")
32

33 # Simulate asset price paths
34 time_grid = np.linspace(0, T, N_steps + 1)
35 S_paths = np.zeros((N_simulations , N_steps + 1))
36 S_paths[:, 0] = S0
37

38 for t in range(1, N_steps + 1):
39 Z = np.random.standard_normal(N_simulations)
40 S_paths[:, t] = S_paths[:, t-1] * np.exp((mu - 0.5*sigma**2)*

dt + sigma*Z*np.sqrt(dt))
41

42 # Compute payoffs at maturity
43 S_T = S_paths[:, -1]
44 payoff_asset = Q * (S_T - S0)
45 payoff_call_seller = -N_options * q * np.maximum(S_T - K, 0)
46 total_pnl = payoff_asset + payoff_call_seller + total_premium
47

48 pnl_unhedged = payoff_asset
49 results = pd.DataFrame({
50 ’Asset_Price_T’: S_T,
51 ’Payoff_Asset’: payoff_asset ,
52 ’Payoff_Call_Seller’: payoff_call_seller ,
53 ’Total_PnL_Covered_Call’: total_pnl,
54 ’PnL_Unhedged’: pnl_unhedged
55 })
56

57 stats = results[[’Total_PnL_Covered_Call’, ’PnL_Unhedged’]].
describe()

58 print(stats)
59

60 # Plot the P&L distributions
61 plt.figure(figsize=(12,6))
62 plt.hist(total_pnl , bins=100, alpha=0.6, label=’Covered Call

Strategy’)
63 plt.hist(pnl_unhedged , bins=100, alpha=0.6, label=’Unhedged

Position’)
64 plt.title(’Distribution of Profit and Loss’, fontsize=18)
65 plt.xlabel(’Profit and Loss ($)’, fontsize=16)
66 plt.ylabel(’Frequency’, fontsize=16)
67 plt.legend(fontsize=16)
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68 plt.show()
69

70 # Output
71 Premium per Call Option: $7.19
72 Total Premium Received: $7191.96
73 Total_PnL_Covered_Call PnL_Unhedged
74 count 5000.000000 5000.000000
75 mean 4688.877238 8350.378168
76 std 10405.567618 23757.218489
77 min -39000.394164 -46192.358760
78 25% -1173.264159 -8365.228754
79 50% 12191.964596 5187.967171
80 75% 12191.964596 21884.387136
81 max 12191.964596 153288.458197

Listing 5-16 Implementing the covered call strategy

The result shows that the mean profit for the covered call strategy is lower than
the unhedged position, reflecting the capped upside. The standard deviation is lower
for the covered call, indicating reduced volatility. The minimum loss is similar for
both, but the covered call provides some income to offset losses. This observation
is further illustrated in Figure 5-5.

Figure 5-5 Distribution of profit and loss for covered call strategy vs. unhedged position
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Finally, let us examine specific scenarios to illustrate the strategy’s performance.

1 # Scenario where asset price ~ $70
2 scenario_70 = results.iloc[(results[’Asset_Price_T’] - 70).abs().

argsort()[0]]
3 print("Scenario: Asset price near $70")
4 print(f"Asset Price at Maturity: ${scenario_70[’Asset_Price_T

’]:.2f}")
5 print(f"Payoff from Asset: ${scenario_70[’Payoff_Asset ’]:.2f}")
6 print(f"Payoff from Call Options (Seller): ${scenario_70[’

Payoff_Call_Seller ’]:.2f}")
7 print(f"Total P&L (Covered Call): ${scenario_70[’

Total_PnL_Covered_Call ’]:.2f}")
8 print(f"P&L (Unhedged): ${scenario_70[’PnL_Unhedged ’]:.2f}")
9

10 # Scenario where asset price ~ $85
11 scenario_85 = results.iloc[(results[’Asset_Price_T’] - 85).abs().

argsort()[0]]
12 print("\nScenario: Asset price near $85")
13 print(f"Asset Price at Maturity: ${scenario_85[’Asset_Price_T

’]:.2f}")
14 print(f"Payoff from Asset: ${scenario_85[’Payoff_Asset ’]:.2f}")
15 print(f"Payoff from Call Options (Seller): ${scenario_85[’

Payoff_Call_Seller ’]:.2f}")
16 print(f"Total P&L (Covered Call): ${scenario_85[’

Total_PnL_Covered_Call ’]:.2f}")
17 print(f"P&L (Unhedged): ${scenario_85[’PnL_Unhedged ’]:.2f}")
18

19 # Output
20 Scenario: Asset price near $70
21 Asset Price at Maturity: $70.00
22 Payoff from Asset: $-0.72
23 Payoff from Call Options (Seller): $-0.00
24 Total P&L (Covered Call): $7191.24
25 P&L (Unhedged): $-0.72
26

27 Scenario: Asset price near $85
28 Asset Price at Maturity: $85.00
29 Payoff from Asset: $14995.35
30 Payoff from Call Options (Seller): $-9995.35
31 Total P&L (Covered Call): $12191.96
32 P&L (Unhedged): $14995.35

The result shows that, when the asset price is near $70, which is below the strike
price, the call options are not used. The investor retains the entire premium, resulting
in a profit that comes solely from the initial option income. There is no asset-based
gain or loss since the asset price ends where it started and no obligation to sell the
shares arises. In this scenario, the covered call strategy outperforms simply holding
the asset, as the unhedged position would show little to no profit, while the covered
call earns the premium.

When the asset price ends near $85, which is above the strike price, the call
options are exercised. The investor must sell the shares at the strike price, capturing
the difference between the strike and the initial price plus the premium received.



5.3 Summary 161

Although this scenario shows a substantial gain, it is less than what the unhedged
position would have earned if the shares had been sold at a higher market price
without option obligations. Thus, the covered call strategy provides additional
income over small price increases, but sacrifices some of the upside potential,
capping the maximum profit achievable.

5.3 Summary

In this chapter, we explored the foundational concepts and practical implementa-
tions of risk management techniques using financial derivatives. Beginning with
an overview of the importance of hedging in uncertain and volatile markets, we
highlighted the necessity for strategies that reduce unwanted exposure while still
preserving the potential for gains where possible.

Futures contracts were introduced as a straightforward tool for hedging price
risk. Their standardized nature and high liquidity make them suitable for mitigating
uncertainty in commodities, currencies, and financial products. We discussed the
mechanics of setting up a hedge with futures and derived the mathematical relation-
ship between spot and futures positions. This included examining the optimal hedge
ratio, which minimizes variance, and demonstrating the effectiveness of futures-
based hedging through scenario analysis. Although such hedges can significantly
reduce risk, we emphasize that risk and imperfect correlations remain persistent
challenges, preventing complete elimination of uncertainty.

We then moved on to options-based hedging strategies, focusing on protective put
and covered call strategies. By purchasing a protective put, an investor establishes
a safety net against adverse price movements while still retaining the opportunity
to benefit from price increases. In contrast, the covered call strategy allows an
investor who already owns an asset to generate additional income from premiums,
albeit at the cost of capping potential upside if prices rise substantially. Through
several examples of scenario analysis, we show how these strategies strike different
balances between risk reduction, cost, and forgone opportunities.

To provide a deeper understanding, we implemented these hedging strategies
in Python. By simulating asset and futures price paths with Geometric Brownian
Motion and pricing options using the Black-Scholes-Merton model, we illustrated
how changes in underlying parameters, market conditions, and hedge ratios affect
the outcomes of various strategies. Dynamic hedging approaches, which require
continual monitoring and adjustment of hedge positions, were introduced to better
reflect the evolving nature of real-world markets.

In summary, this chapter demonstrated that while no hedge is perfect, the
informed use of futures and option contracts allows for more controlled exposure
to market volatility. By thoughtfully selecting hedge ratios, strike prices, and
maturities, and embracing dynamic adjustments in response to changing conditions,
practitioners can significantly reduce risk and improve the predictability of portfolio
performance. The techniques presented here form the foundation for more advanced
risk management frameworks and guide the practical application of financial
derivatives as essential instruments in modern finance.
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Effective risk management is essential to preserve the stability and resilience of
financial markets, institutions, and individual portfolios, as unmanaged exposures
can lead to significant losses or systemic disruptions due to various types of risks.
One prominent method to mitigate these risks is hedging with derivatives, as
discussed in Chapter 5. This involves the systematic deployment of instruments such
as options, futures, forwards, and swaps to compensate for adverse fluctuations in
underlying asset prices, thus cushioning the negative impact. For example, Chapter 5
introduced the use of futures contracts to lock in future transaction prices and
protective puts to protect against sudden declines in asset prices.

When we invest in options, another commonly used hedging technique is delta
hedging, which is aimed at stabilizing the option price due to fluctuations in the
price of the underlying asset. Options are powerful vehicles for both leverage and
hedging, yet their prices often display high sensitivity to the respective underlying.
The goal of delta hedging is thus to construct portfolios that are locally insensitive
to small changes in the price of the underlying asset; that is, setting the derivative
of the portfolio value with respect to the asset price (the delta) to zero. In other
cases, hedging approaches may involve minimizing portfolio variance by solving
optimization problems where the objective is to minimize the quadratic risk measure
subject to the constraints imposed by the derivative contracts, thus stabilizing returns
and securing the portfolios against unfavorable price movements.

In modern finance, derivatives are acknowledged as versatile instruments that
serve both hedging and leveraging functions, and their efficacy can often be
analyzed using mathematical frameworks. For example, options provide the holder
with the right, though not the obligation, to buy or sell an underlying asset at a
predetermined strike price before or on a specified expiration date. These instru-
ments are often modeled using the Black-Scholes framework, which uses stochastic
differential equations and assumes a geometric Brownian motion to derive closed-
form pricing solutions. In contrast, futures contracts impose a compulsory obligation
to transact at a future date, with their valuation frequently based on cost-of-
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carry models that integrate factors such as interest rates and storage costs to
enforce no-arbitrage conditions. Similarly, forward contracts extend this concept
into over-the-counter agreements, allowing for customized contractual terms that
accommodate unique risk profiles. In addition, swaps facilitate the exchange of
cash flows or other financial variables—such as fixed vs. floating interest rates
or different currencies—by applying fixed-for-floating exchange models that help
mitigate specific exposures. All these vehicles can be further calibrated by formu-
lating different optimization problems and using variance minimization techniques,
aiming at effectively managing risk and optimizing returns.

Hedging is fundamentally a risk mitigation strategy that aims to eliminate or
significantly reduce exposure to adverse market movements rather than to generate
profit. Often, such risk mitigation comes at the cost of potential upside gain. One
example is to take offsetting positions in derivative products, such as futures and
options, thus neutralizing the portfolio’s sensitivity to fluctuations in underlying
asset prices. As discussed in the previous chapter, an investor with a substantial
position in a particular asset can choose to purchase put options (called the
protective put strategy), using models such as Black-Scholes to calculate the option
delta and determine the optimal hedge ratio to offset potential declines in the asset
value. Similarly, a corporation that expects to earn income in a foreign currency may
use currency swaps to stabilize its cash flows and minimize volatility. All of these
hedging techniques aim to protect against unforeseen market fluctuations to obtain
more stable and predictable outcomes in both investment portfolios and corporate
financial operations.

To further elaborate on the concept of delta hedging, consider an option priced
at V (S, t)., where S denotes the underlying asset’s price and t represents the current
time, which also relates to the residual time to expiration. The option’s delta, ., is
then defined as = ∂V

∂S
., which is the first derivative (instantaneous rate of change)

of V against S. In a delta-neutral hedging strategy, the objective is to construct a
portfolio (an additional position on top of the current option) in which the aggregate
delta will be zero, thereby neutralizing the sensitivity of the option price to small
fluctuations in the underlying asset’s price. To achieve this, we can adjust a position
in the underlying asset that has a hedge ratio of − .; that is, for every unit of delta
exposure in the option, an opposing position of equal magnitude is taken in the
underlying asset. Given that . is inherently a function of both the asset price S

and time t (owing to the dynamic nature of the option’s payoff structure and market
volatility), continuous or frequent rebalancing is required to maintain the hedge. For
example, if an investor holds a call option and the underlying stock currently trades
at $100 with = 0.5., the corresponding hedge would be to short 0.5 unit of shares
per option. Should the stock price increase to $101, and the resulting delta become
0.55, the hedge must be adjusted by shorting an additional 0.05 shares per option
to restore delta neutrality. This example illustrates the dynamic and mathematically
intensive nature of delta hedging, where the principles of differential calculus and
continuous-time finance underpin the iterative process of risk mitigation in volatile
markets.
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Hedging strategies can be broadly classified into dynamic and static approaches,
each displaying different methodologies, benefits, and inherent trade-offs. Dynamic
hedging involves continuously or frequently rebalancing portfolio positions to
stabilize portfolio value and adapt to changing market conditions, so that the
portfolio is less sensitive to fluctuations in the price of the underlying asset.
However, this method requires one to continuously monitor the underlying asset
price and make a proper adjustment, which would incur a high transaction cost.
In contrast, static hedging promotes the construction of the hedge at the inception
of a strategy and maintaining such hedging position throughout its duration, thus
simplifying portfolio management. However, such a static nature may potentially
fail to cater to rapid market shifts.

In contrast, static hedging involves establishing a hedge at the beginning of
a position that remains unchanged until maturity, thus preventing the need for
continuous rebalancing of the hedging position. Instead, it relies on the upfront
selection of financial instruments that are engineered to replicate the target payoff
profile from the beginning, ensuring that the hedge remains relatively stable and
demands minimal monitoring throughout its duration. This approach, while oper-
ationally simpler and less burdened by transaction costs associated with frequent
adjustments, inherently sacrifices flexibility because it does not adjust to unforeseen
market movements or shifts in underlying risk factors, thereby potentially exposing
the portfolio to residual risks (the portion of risk that remains after implementing
the hedge) that may deviate from the original expectations. For example, consider
the static replication of a European put option using put-call parity: by combining
a position in the underlying asset, a bond that replicates the risk-free component
(often represented as Ke−rT

. in the pricing formula), and a call option with the
same strike and maturity, one can replicate the eventual payoff of the put option
according to the central put-call parity relationship P + S = C + Ke−rT

.. This
mathematically elegant construction illustrates how a static hedge is designed to
mirror the desired payoff without necessitating ongoing adjustments, yet it also
underscores the inherent trade-off between the simplicity and operational efficiency
of static replication and the potential exposure to market dynamics that a more
flexible, dynamic strategy might mitigate.

Both dynamic and static hedging methods approach risk management in con-
trasting yet complementary ways, reflecting distinct trade-offs between flexibility
and operational simplicity. Dynamic hedging, for example, provides fine-tuned
adaptability by continuously rebalancing positions in response to evolving market
conditions and adjusting for sensitivities encapsulated by the option Greeks, such
as delta, gamma, and vega, thus allowing practitioners to mitigate risk exposures
in real time; however, this precision comes at the cost of increased complexity and
higher transaction costs associated with frequent trading. In contrast, static hedging
simplifies the risk management process by constructing a replicating portfolio at
the inception of the strategy, which is then held constant until maturity, effectively
minimizing transaction costs and reducing the need for constant supervision, yet
at the expense of limited responsiveness to unexpected market movements or
volatility shifts. In this chapter, we delve into the nuances of these methodologies
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by examining dynamic hedging techniques such as continuous rebalancing and
the explicit use of the option Greeks to adjust for market risk. We will also
explore static methods that involve the careful construction of replicating portfolios,
thus providing a comprehensive framework that underscores both the theoretical
foundations and practical implications of these complementary approaches to risk
management.

Let us start with dynamic hedging.

6.1 Dynamic Hedging

Dynamic hedging focuses on continuously adapting a hedging position in response
to evolving sensitivities of an option, collectively known as Greeks, that quantify the
derivatives of the option price with respect to various underlying parameters. These
parameters include . (delta), which measures the first-order sensitivity to changes
in the underlying asset’s price; . (gamma), representing the second-order sensitivity
that captures the curvature of the price response; ν . (often denoted as Vega), which
gauges the sensitivity to changes in volatility; . (theta), reflecting the rate of time
decay; and ρ . (rho), quantifying the sensitivity to interest rate fluctuations. In practi-
cal applications, dynamic hedging typically emphasizes adjustments based on .and

., as these factors play an important role in determining the necessary modifications
to the hedging when the price of the underlying asset changes. Careful rebalancing
of hedging positions based on these Greeks can effectively mitigate undesired risk
exposures that may arise from nonlinear effects or market volatility. However,
achieving such precision comes at a cost: the hedging strategy requires frequent
trading, which inherently increases transaction fees and operational expenses, in
addition to frequent attention given to the hedging portfolio.

The Black-Scholes model provides much of the theoretical foundation for
dynamic hedging by offering a rigorous mathematical framework derived from
no-arbitrage principles and continuous-time stochastic processes. Central to this
framework is the Black-Scholes partial differential equation (PDE):

.
∂V

∂t
+ 1

2
σ 2S2 ∂2V

∂S2 + rS
∂V

∂S
− rV = 0,

where V denotes the option price, σ . represents the volatility of the underlying
asset, S is the asset’s current price, and r is the risk-free interest rate. This
PDE encapsulates the dynamic interplay between the stochastic evolution of the
underlying asset and the deterministic drift provided by the risk-free rate under the
risk-neutral measure, and its solution yields closed-form formulas for European call
and put options. These explicit pricing formulas not only facilitate the valuation
of options but also provide the basis for calculating the Greeks, which represent
the sensitivities of the option price to changes in various parameters such as the
underlying asset’s price ( .), its curvature ( .), volatility (ν .or Vega), time decay ( .),
and interest rates (ρ .). Consequently, these sensitivities are instrumental in informing
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dynamic hedging strategies, as they determine how the hedging portfolio should be
continuously rebalanced in response to market movements, volatility shifts, and the
passage of time.

The following section investigates deeper the details of the dynamic delta
hedging strategy.

6.1.1 Dynamic Delta Hedging Strategy

As introduced in Chapter 5, the Black-Scholes model establishes a rigorous
framework for option pricing by providing closed-form formulas for European
options, where the call option price is given by

.C = S0N(d1) − Ke−rT N(d2)

and the put option price by

.P = Ke−rT N(−d2) − S0N(−d1),

with the variables d1 . and d2 . defined as

.d1 =
ln(S0/K) + r + σ 2

2 T

σ
√

T
, d2 = d1 − σ

√
T ,

where S0 . is the current underlying price, K the strike price, r the risk-free interest
rate, T the time to maturity, and σ . the volatility. To further elaborate on these
concepts, consider an example where S0 = 100., K = 100., T = 1. year, r = 5%.

(or 0.05), and σ = 25%. (or 0.25), and assume that one standard option contract
corresponds to 100 shares. Here, since ln(S0/K) = ln(1) = 0., the numerator in

the expression for d1 . simplifies to 0 + 0.05 + 0.252
2 T = 0.05 + 0.03125 =

0.08125.; dividing by σ
√

T = 0.25 × 1. yields d1 ≈ 0.08125
0.25 = 0.325., and

hence d2 ≈ 0.325 − 0.25 = 0.075.. Using standard normal tables or numerical
routines, one obtains N(d1) ≈ 0.628. and N(d2) ≈ 0.53.; furthermore, calculating
e−rT ≈ e−0.05 ≈ 0.9512. enables us to determine the first term of the call price
as S0N(d1) = 100 × 0.628 = 62.8. and the second term as Ke−rT N(d2) =
100 × 0.9512 × 0.53 ≈ 50.31., thereby resulting in a per-share call price of
approximately C ≈ 62.8 − 50.31 = 12.49.; when scaled to a standard contract
of 100 shares, the call option is priced at roughly 12.49 × 100 = 1249..

Furthermore, the Black-Scholes delta for a call option, defined as call = N(d1).,
is approximately 0.628 per share; therefore, for a contract representing 100 shares,
the total delta is approximately 62.8, indicating that to achieve a delta neutral hedge,
one would need to short close to 63 shares per call contract, thus offsetting the
sensitivity of the call option value to small changes in the price of the underlying
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asset. This means that the current movement in the hedging portfolio is to short 63
shares of stock for each call option contract. When we move to the next period,
another rebalancing is often required due to changes in the asset price.

6.1.2 Continuous Rebalancing and GammaHedging

Suppose that shortly after the initial setup, the underlying stock price increases to
102 in the next period, while the time to maturity T remains effectively one year
due to negligible elapsed time. Recomputing the Black-Scholes parameters with
S = 102., we recalculate d1 . as

.d1 =
ln(102/100) + 0.05 + 0.252

2 × 1

0.25
= ln(1.02) + 0.08125

0.25
≈ 0.4042,

where the term ln(1.02). captures the logarithmic return from the price increase and
the additive term 0.08125. incorporates the effects of both the risk-free rate and the
half-variance adjustment. Consequently, d2 . is updated as

.d2 = d1 − 0.25 ≈ 0.1542.

Using a standard normal cumulative distribution function, we find N(0.4042) ≈
0.6577., which implies that the call option’s per-share delta, defined as call =
N(d1)., is approximately 0.6577. Since each contract corresponds to 100 shares, the
contract delta becomes 65.77.. Recall that prior to the price change, the portfolio was
hedged by shorting 63 shares, which was designed to effectively offset an earlier
call delta of 62.8 per contract. Now, the updated net delta of the portfolio can be
calculated as

. net = call,new × 100 − 63 = 65.77 − 63 = 2.77,

indicating a slight net long exposure to the underlying asset. Therefore, to re-
establish a delta-neutral position, one would need to short an additional 2.77
shares. However, given that trading is carried out in whole shares, this is typically
approximated by selling 3 shares, which adjusts the total delta to

.65.77 − 66 ≈ −0.23,

a value that is effectively zero for the most practical hedging purposes.
In this dynamic delta hedging process, we continuously update the hedge by

buying or selling small increments of the underlying asset as its price changes,
ensuring that the overall portfolio delta remains near zero. Specifically, if we denote
the option’s current delta by option = ∂V

∂S
. and the delta contribution from the short

position in the underlying by underlying . (with a negative sign when short), the goal
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is to maintain net = option + underlying ≈ 0.. Because the option’s delta is a
function of the underlying asset price S, it changes as S fluctuates, thus necessitating
periodic adjustments. The sensitivity of delta to changes in S is quantified by
gamma, defined as

. = ∂2V

∂S2 ,

which indicates how rapidly option . changes with S. A high gamma implies that
even a small change in S can lead to a significant shift in delta, thus increasing the
frequency and magnitude of the required rebalancing. For example, if the delta of
the option increases from old . to new . after a price change, the adjustment needed
in the underlying position is approximately new − old . per share, scaled by the
number of shares in the contract.

To further optimize hedging efficiency, we may also introduce a gamma hedging
position by incorporating an additional derivative whose gamma, hedge ., takes an
opposite sign to that of the primary option, so that the net gamma net = option +
hedge . is minimized. This reduction in gamma sensitivity can substantially lower the

number of delta rebalancing trades required.
However, in practice, the theoretical benefits of such continuous rebalancing

or gamma hedging must be balanced against transaction costs, market liquidity
constraints, and the practicalities of trading in discrete units (often whole shares).
Table 6-1 provides a detailed numerical illustration of these concepts by summa-
rizing how positions, delta, and gamma adjust when the stock price changes from
$100 to $102, including the additional trades required to restore delta neutrality.
In summary, updating the hedge requires recalculating the delta of the option with
each significant price movement and executing an offsetting trade in the underlying
to maintain net ≈ 0.. In addition, the greater the gamma, the faster . changes with
S, and consequently, the more frequent the rebalancing becomes, highlighting the
intricate interaction between delta and gamma in dynamic hedging strategies.

Table 6-1 Delta and gamma hedge after the stock rises to $102, starting from an initial delta
hedge of 63 short shares at $100

Scenario Position Delta/Gamma

Initial hedge at $100 Long 1 call option option ≈ 62.8., option .

Short 63 shares shares = −63., shares = 0.

Net position net ≈ −0.2., net = option .

Price increases to $102 Long 1 call option option,new ≈ 65.77., option .

Additional short 3 shares new shares = −3., shares = 0.

Net position after adjustment net,new ≈ −0.23., net = option .

Gamma hedge Add opposing gamma position hedge = − option .

Net position with gamma hedge net ≈ 0., net = 0.
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6.1.3 Dynamic Hedging in Action

In this section, we implement a dynamic hedging strategy using historical price data
from Tesla (TSLA) and Walmart (WMT) that span January 1, 2024, to December
1, 2024, and we begin by applying the Black-Scholes model to compute the main
option parameters such as volatility (σ .), strike price (K), and time to maturity (T ).
Specifically, we estimate σ . from the historical logarithmic returns of the underlying
asset, and then, using these inputs, we calculate the option price V via the Black-
Scholes formula, which in turn enables us to compute the delta = ∂V

∂S
. of the

option. Recall that for a European call option, this delta is given by = N(d1).,

where d1 = ln(S0/K)+ r+ σ2
2 T

σ
√

T
. and N(·). denotes the standard normal cumulative

distribution function.
Based on the calculated delta, if holding a call option, we short approximately
× (contract size). shares (or purchase shares in the case of a put option) to initiate

a delta-neutral position. As the underlying price evolves throughout the year, the
computed delta adjusts accordingly, necessitating periodic recalibration of the hedge
at discrete time intervals rather than continuous monitoring. Thus, this dynamic
delta hedging process can mathematically ensure that the net portfolio sensitivity,
given by net = option + underlying ., remains close to zero, thus mitigating the
risk associated with small fluctuations in S. However, it is important to note that
such continuous updating, while theoretically sound, must also account for practical
considerations such as transaction costs and market liquidity constraints, which
may impact the frequency and feasibility of rebalancing in a real-world trading
environment.

Figure 6-1 shows the cumulative wealth curve for both stocks, suggesting that
TSLA is much more volatile than WMT for this period and therefore requires more
frequent hedging actions.

Recall that the dynamic nature of the hedge becomes particularly evident as the
underlying stock price evolves over time, requiring a systematic and continuous
recalibration of the hedging position at each discrete trading interval. Specifically,
on each trading day t ., we calculate the delta of the option t = ∂V (St ,t)

∂S
., where

Figure 6-1 Cumulative wealth curve of both stocks
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V (St , t). represents the value of the option based on the current stock price St . and the
remaining time to maturity T − t .. If this recalculated delta differs from the previous
delta value t−1 ., the underlying position is adjusted by trading incremental t −

t−1 . shares, thus ensuring that the net portfolio delta, given by net = t +φt . (with
φt . representing the current position in the underlying, typically negative for call
options), remains approximately zero. This adjustment process can be formulated
as maintaining t + φt ≈ 0. at each rebalancing step. Importantly, transaction costs
are incorporated into the model by associating a cost proportional to the absolute
change in the underlying position, for example, c · | t − t−1|., where c. denotes
the per-share transaction cost, thereby reflecting the financial impact of frequent
rebalancing.

After each adjustment, the total portfolio value is updated to account for the
current option price Vt ., the market value of the underlying position φtSt ., and the
cash balance Bt ., so that the overall portfolio value is given by t = Vt +φtSt +Bt ..
The evolution of this portfolio value is then plotted to visually demonstrate how
the dynamic hedge mitigates risk by stabilizing the portfolio’s performance amid
market fluctuations.

To further clarify the benefits of this strategy, we compare the performance of the
dynamically hedged portfolio against that of an unhedged portfolio, which simply
holds the option position without adjusting the underlying position. Performance
metrics such as cumulative returns, computed as Rcum = T

t=1(1+rt )−1., volatility

σ .measured by the standard deviation of returns, and the Sharpe ratio SR = E[R−rf ]
σ

.

(with rf . representing the risk-free rate) are calculated for both scenarios.
As shown in Figure 6-2, we can see how dynamic hedging often reduces volatility

and improves risk-adjusted performance, even if it sometimes lowers absolute
returns. This trade-off illustrates the essence of risk management: Although hedging
may forgo some upside potential, it also protects against severe downside outcomes.
This trade-off can also be formally expressed as a decrease in the tail risk, where the
probability of extreme losses, measured by metrics such as Value at Risk (VaR) or
Conditional Value at Risk (CVaR), is substantially lowered. Specifically, although
such hedging may sacrifice some upside potential, since positive convexity benefits
are partly dampened, it is a deliberate choice to mitigate severe downside outcomes.

Figure 6-2 Comparing cumulative returns of both hedged and unhedged portfolios
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Listing 6-1 implements this entire process step by step, performing a discrete
approximation of continuously adjusting the hedge to keep the portfolio delta near
zero. Note that for each ticker, we create a list S to store the cumulative return for
each period to present the wealth curve, assuming a buy-and-hold strategy.

1 import numpy as np
2 import pandas as pd
3 import yfinance as yf
4 from scipy.stats import norm
5 import matplotlib.pyplot as plt
6 import warnings
7 import matplotlib.dates as mdates
8

9 warnings.filterwarnings(’ignore’)
10

11 # Parameters for the option
12 S0 = 100 # Initial stock price
13 K = 105 # Strike price
14 r = 0.05 # Risk-free interest rate
15 sigma = 0.2 # Volatility
16 T = 1 # Time to expiration in years
17

18 # Define tickers and date range
19 tickers = [’TSLA’, ’WMT’]
20 start_date = "2024-01-01"
21 end_date = "2024-12-01"
22

23 # Black-Scholes functions
24 def d1(S, K, r, sigma, T):
25 with np.errstate(divide=’ignore’, invalid=’ignore’):
26 return (np.log(S / K) + (r + 0.5 * sigma ** 2) * T) / (

sigma * np.sqrt(T))
27

28 def delta_call(S, K, r, sigma, T):
29 d1_val = d1(S, K, r, sigma, T)
30 return norm.cdf(d1_val)
31

32 # Download and prepare data
33 stock_data = {}
34 stock_returns = {}
35 stock_S = {}
36

37 for ticker in tickers:
38 data = yf.download(ticker, start=start_date , end=end_date ,

interval=’1d’)
39 if data.empty:
40 raise ValueError(f"No data fetched for {ticker}. Check

the symbol or date range.")
41 close_prices = data[’Close’].dropna()
42 returns = close_prices.pct_change().dropna()
43 S = [S0]
44 for ret in returns:
45 S.append(S[-1] * (1 + ret))
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46 S = np.array(S)
47 stock_data[ticker] = close_prices
48 stock_returns[ticker] = returns
49 stock_S[ticker] = S
50

51 # Initialize portfolio metrics
52 portfolio_value = {ticker: [] for ticker in tickers}
53 deltas = {ticker: [] for ticker in tickers}
54 shares_held = {ticker: [] for ticker in tickers}
55 cash_position = {ticker: [] for ticker in tickers}
56

57 transaction_cost = 0.01
58

59 for ticker in tickers:
60 S_current = stock_S[ticker]
61 N = len(S_current)
62 dt = T / (N - 1)
63 t_min = 1 / 252
64

65 initial_delta = delta_call(S0, K, r, sigma, T)
66 initial_shares = initial_delta * 100
67 shares_held[ticker].append(-initial_shares)
68 cash = initial_delta * S0 * 100
69 cash_position[ticker].append(cash)
70 portfolio = initial_delta * S0 * 100 - cash
71 portfolio_value[ticker].append(portfolio)
72 deltas[ticker].append(initial_delta)
73

74 for i in range(1, N):
75 t = max(T - i * dt, t_min)
76 current_S = S_current[i]
77 current_delta = delta_call(current_S , K, r, sigma, t)
78 deltas[ticker].append(current_delta)
79

80 delta_change = (current_delta - deltas[ticker][i - 1]) *
100

81 shares_adjustment = np.round(delta_change)
82 shares_held[ticker].append(shares_held[ticker][-1] -

shares_adjustment)
83

84 cash_change = shares_adjustment * current_S * (1 +
transaction_cost)

85 cash_position[ticker].append(cash_position[ticker][-1] +
cash_change)

86

87 option_value = current_delta * current_S * 100
88 stock_position = shares_held[ticker][-1] * current_S
89 portfolio = option_value + stock_position + cash_position

[ticker][-1]
90 portfolio_value[ticker].append(portfolio)
91

92 # Plot wealth curves side by side
93 fig, axes = plt.subplots(1, 2, figsize=(14, 5))
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94 for ax, ticker in zip(axes, tickers):
95 S = stock_S[ticker]
96 ax.plot(stock_data[ticker].index[1:], S[1:], label=f’{ticker}

Wealth Curve’, linewidth=2)
97 ax.set_title(f’Wealth Curve Over Time for {ticker}’, fontsize

=14)
98 ax.set_xlabel(’Date’, fontsize=12)
99 ax.set_ylabel(’Wealth ($)’, fontsize=12)
100 ax.grid(True, linestyle=’--’, alpha=0.7)
101 ax.legend(fontsize=12)
102

103 # Format the x-axis dates
104 import matplotlib.dates as mdates
105 ax.xaxis.set_major_locator(mdates.MonthLocator()) # Set

major ticks to monthly intervals
106 ax.xaxis.set_major_formatter(mdates.DateFormatter(’%b %Y’))

# Format as ’Jan 2024’, etc.
107 plt.setp(ax.get_xticklabels(), rotation=45, ha=’right’)
108

109 plt.tight_layout()
110 plt.show()
111

112 # Compare hedged vs unhedged portfolios
113 fig, axes = plt.subplots(1, 2, figsize=(14, 5))
114

115 for i, ticker in enumerate(tickers):
116 S = stock_S[ticker]
117 N = len(S)
118 dt = T / (N - 1)
119 t_min = 1 / 252
120 unhedged_portfolio = []
121 for j in range(1, N):
122 t = max(T - j * dt, t_min)
123 current_S = S[j]
124 d1_val = d1(current_S , K, r, sigma, t)
125 d2_val = d1_val - sigma * np.sqrt(t)
126 if np.isnan(d1_val) or np.isnan(d2_val) or np.isinf(

d1_val) or np.isinf(d2_val):
127 option_price = max(0, current_S - K) * 100
128 else:
129 option_price = (current_S * norm.cdf(d1_val) -
130 K * np.exp(-r * t) * norm.cdf(d2_val)

) * 100
131 unhedged_portfolio.append(option_price)
132

133 hedged_port = np.array(portfolio_value[ticker][1:])
134 unhedged_port = np.array(unhedged_portfolio)
135

136 unhedged_returns = (unhedged_port - unhedged_port[0]) /
unhedged_port[0]

137 hedged_returns = (hedged_port - hedged_port[0]) / hedged_port
[0]

138
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139 axes[i].plot(stock_data[ticker].index[1:], unhedged_returns ,
label=’Unhedged’, color=’red’)

140 axes[i].plot(stock_data[ticker].index[1:], hedged_returns ,
label=’Hedged’, color=’green’)

141 axes[i].set_title(f’Cumulative Returns for {ticker}’,
fontsize=14)

142 axes[i].set_xlabel(’Date’, fontsize=12)
143 axes[i].set_ylabel(’Cumulative Return’, fontsize=12)
144 axes[i].grid(True, linestyle=’--’, alpha=0.7)
145 axes[i].legend(fontsize=12)
146

147 axes[i].xaxis.set_major_locator(mdates.MonthLocator())
148 axes[i].xaxis.set_major_formatter(mdates.DateFormatter(’%b %Y

’))
149 plt.setp(axes[i].get_xticklabels(), rotation=45, ha=’right’)
150

151 plt.tight_layout()
152 plt.show()
153

154 for ticker in tickers:
155 hedged_port = np.array(portfolio_value[ticker][1:])
156 S = stock_S[ticker]
157 N = len(S)
158 dt = T / (N - 1)
159 t_min = 1 / 252
160 unhedged_portfolio = []
161 for j in range(1, N):
162 t = max(T - j * dt, t_min)
163 current_S = S[j]
164 d1_val = d1(current_S , K, r, sigma, t)
165 d2_val = d1_val - sigma*np.sqrt(t)
166 if np.isnan(d1_val) or np.isnan(d2_val) or np.isinf(

d1_val) or np.isinf(d2_val):
167 option_price = max(0, current_S - K)*100
168 else:
169 option_price = (current_S*norm.cdf(d1_val) - K*np.exp

(-r*t)*norm.cdf(d2_val))*100
170 unhedged_portfolio.append(option_price)
171

172 unhedged_port = np.array(unhedged_portfolio)
173 unhedged_daily_returns = np.diff(unhedged_port) /

unhedged_port[:-1]
174 hedged_daily_returns = np.diff(hedged_port) / hedged_port

[:-1]
175

176 def calculate_metrics(daily_returns):
177 cumulative_return = np.prod(1 + daily_returns) - 1
178 volatility = np.std(daily_returns)*np.sqrt(252)
179 sharpe_ratio = (np.mean(daily_returns) / np.std(

daily_returns))*np.sqrt(252)
180 return cumulative_return , volatility , sharpe_ratio
181
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182 unhedged_cum_ret , unhedged_vol , unhedged_sharpe =
calculate_metrics(unhedged_daily_returns)

183 hedged_cum_ret , hedged_vol , hedged_sharpe = calculate_metrics
(hedged_daily_returns)

184

185 print(f"Risk Metrics for {ticker}:")
186 print("Unhedged: Cumulative Return = {:.4f}, Volatility =

{:.4f}, Sharpe Ratio = {:.4f}".format(unhedged_cum_ret ,
unhedged_vol , unhedged_sharpe))

187 print("Hedged: Cumulative Return = {:.4f}, Volatility =
{:.4f}, Sharpe Ratio = {:.4f}".format(hedged_cum_ret ,
hedged_vol , hedged_sharpe))

188 print()

Listing 6-1 Dynamic delta hedging for call option contract

The summary in Table 6-2 displays the overall performance outcomes achieved
through dynamic hedging and quantitatively demonstrates how such strategies can
modify a portfolio’s risk and return profile. As illustrated in the table, while a hedged
strategy may sometimes lead to lower absolute returns—implying that the expected
growth rate E[R]. is reduced—the corresponding decrease in volatility σ . tends to
enhance the Sharpe ratio. For example, in the case of TSLA, the hedged portfolio
exhibits a higher SR, indicating that despite sacrificing some of the upside potential,
the reduction in risk more than compensates in terms of risk-adjusted returns.
Conversely, for WMT, which shows a consistent upward trend during the analyzed
period, the hedging mechanism dampens the opportunity for higher growth to some
extent, as reflected in its lower Sharpe ratio. This trade-off, which is characterized
by the interplay between expected return and volatility, highlights a central theme of
risk management: accepting a modest reduction in E[R]. can lead to a significantly
lower σ . and thereby a more stable portfolio, ultimately improving the risk-adjusted
return even if the absolute returns are somewhat diminished.

Now let us turn to the case of static hedging that involves a forward contract.

Table 6-2 Overall metrics
for TSLA and WMT

Stock Strategy Cumulative return Volatility Sharpe ratio

TSLA Unhedged 4.6767 851.1622 1.1297

TSLA Hedged 1.9256 4.2331 1.5846

WMT Unhedged 7.6567 0.9249 2.9973

WMT Hedged 1.0247 0.3227 2.5643
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6.2 Static Hedging

For certain derivatives, one can devise a hedge that requires minimal or no
rebalancing over time—a technique referred to as static hedging. Mathematically,
suppose the derivative has a payoff function f (ST ). at expiration T ., where ST .

is the underlying asset’s price at maturity. The objective of static hedging is
to construct, at inception, a replicating portfolio comprising positions in readily
available instruments with payoff functions gi(ST ). and weights φi . such that

.

n

i=1

φi gi(ST ) ≈ f (ST )

for all possible values of ST .. This equation, derived from no-arbitrage principles, is
either solved analytically for simpler instruments or numerically for more complex
structures. By establishing such a portfolio at the beginning, the hedge is constructed
once and for all, remaining largely unchanged until maturity, thereby eliminating the
need for continuous adjustments that are needed in dynamic hedging. In contrast,
dynamic hedging involves the continuous recalibration of the hedge to maintain a
risk-neutral stance, typically by adjusting the underlying asset position according to
the option’s delta = ∂V

∂S
. and monitoring higher-order sensitivities such as gamma

= ∂2V
∂S2 . as the underlying price St . evolves.

Static hedging, while more straightforward and often more cost-effective due
to a lack of repeated transaction costs, may not be as responsive to unanticipated
price movements. Nonetheless, when the replicating instruments are liquid and the
derivative’s payoff is amenable to such a precise static replication, this approach can
efficiently approximate the target payoff and offer a robust risk management strategy
without the cumulative errors and costs associated with continuous rebalancing.

Let us start by looking at statically hedging a forward contract.

6.2.1 Static Hedging for a Forward Contract

Determining the fair value of a forward contract involves setting a forward price
K that precludes any arbitrage opportunities and aligns the contract’s value with
the cost of replicating its eventual payoff. By definition, a forward contract is
an agreement made at inception (time t = 0.) to transact an underlying asset at
a predetermined price K at a future maturity date T . This means that, if priced
correctly, the contract’s initial value should be zero, thus ensuring fairness for both
parties and eliminating the possibility of risk-free profits. To see this, consider an
asset currently priced at S0 = 120. with a proposed forward price K = 125., a
continuously compounded risk-free rate r = 0.03. per annum, and a time to maturity
T = 2. years. The underlying asset’s dynamics under the real-world measure P can
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be modeled by the stochastic differential equation (SDE):

.dSt = μSt dt + σSt dWP
t ,

where μ. is the drift and σ . the volatility. However, in order to enforce no-arbitrage,
we transition to the risk-neutral measure Q where the drift is replaced by the risk-
free rate r , yielding

.dSt = rSt dt + σSt dW
Q
t ,

with W
Q
t . representing a Brownian motion under Q. This change of measure

guarantees that the discounted asset price e−rt St . behaves as a martingale. Solving
this SDE from time t to T results in

.ST = St exp (r − 1
2σ

2)(T − t) + σ(W
Q
T − W

Q
t ) .

Taking the expectation under Q and applying the moment generating function of

the normal distribution, EQ eσ(W
Q
T −W

Q
t ) = e

1
2σ 2(T −t)

., we obtain

.E
Q[ST | St ] = Ste

r(T −t).

Thus, the time t value of the forward contract, which pays ST − K . at maturity, is
given by

.F(St , t;K) = e−r(T −t)
E

Q[ST − K | Ft ] = e−r(T −t) St e
r(T −t) − K

= St − Ke−r(T −t).

This formula establishes a clear relationship between the current asset price St ., the
forward price K (appropriately discounted to present value), and the contract’s fair
value. Notably, by choosing K such that St = Ke−r(T −t)

., the forward contract is
initially priced at zero, thereby preventing any immediate arbitrage opportunities.
This static hedging approach, which replicates the derivative’s payoff using a cost-
of-carry argument, underscores the interplay between replication strategies and
risk-neutral pricing in ensuring that forward contracts are fairly valued and that the
market remains arbitrage-free.

To replicate the payoff of a forward contract using a static hedge, we begin by
constructing a replicating portfolio at time t = 0. that requires no further adjustments
until maturity. The strategy involves purchasing the underlying asset at its spot price
S0 . and financing part of this acquisition by borrowing funds at the risk-free rate r .
Specifically, suppose S0 = 120. and we have a forward contract with a designated
forward price K . At t = 0., you buy the asset for S0 . and simultaneously borrow an
amount equal to the present value of K , which is calculated as Ke−rT

. for a contract
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with maturity T . For example, if K = 125., r = 0.03. per annum, and T = 2. years,
then the amount borrowed is

.Ke−rT = 125e−0.03×2 = 125e−0.06.

Since e−0.06 ≈ 0.9418., we have

.125 × 0.9418 ≈ 117.72.

Thus, the net initial investment required to set up the hedge is

.Net Initial Investment = S0 − Ke−rT = 120 − 117.72 = 2.28.

This net investment of 2.28. represents the initial value of the forward contract with
the given parameters.

If our goal is to have a forward contract with zero initial cost—thereby
eliminating any arbitrage opportunities—we set the forward contract’s initial value
to zero. Specifically, this is achieved by solving the equation

.S0 − Ke−rT = 0,

which implies that

.K = S0e
rT .

Substituting S0 = 120., r = 0.03., and T = 2. yields

.K = 120e0.06 ≈ 120 × 1.0618 ≈ 127.42.

With K ≈ 127.42., the forward contract is fairly priced with a zero initial net
investment.

As time progresses toward maturity, the borrowed sum accrues interest determin-
istically at the rate r . Thus, by time T , the borrowed amount grows to

.Ke−rT erT = K.

At maturity, the asset is sold at the prevailing market price ST ., and the debt K is
repaid. The net payoff from this replicating portfolio is then

.Net Payoff = ST − K,

which exactly mirrors the payoff of a long forward contract. For instance, if at
maturity ST = 130., the net payoff becomes 130 − 125 = 5. (assuming the forward
strike price is 125); alternatively, if ST = 115., the net payoff is 115 − 125 = −10..
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This static replication is particularly efficient because it requires no rebalancing
between t = 0. and t = T .; the interest accrual is fully deterministic, and the asset
does not generate intermediate cash flows (such as dividends) that might necessitate
adjustments. Moreover, any deviation from the no-arbitrage condition (i.e., if the
initial value of the replicating portfolio does not match the forward contract’s value)
would create an arbitrage opportunity, prompting market participants to exploit and
thereby correct the mispricing.

To summarize the replication process, we have

• At t = 0.: Purchase the underlying asset for S0 . and borrow Ke−rT
.. The net

cash outflow is

.S0 − Ke−rT .

• Between t = 0. and t = T .: Hold the asset without further adjustments while
the borrowed amount accrues interest at the risk-free rate r , growing to K by
time T .

• At t = T .: Sell the asset for ST . and repay the debt of K . The net payoff is

.ST − K.

This one-time setup perfectly replicates the forward contract’s payoff function,
demonstrating that the forward’s initial value must be consistent with the cost of
establishing this static hedge.

Listing 6-2 illustrates this idea by plotting the net payoff ST − K . for a range of
possible maturity prices ST .. We set the initial parameters as above, simulate a range
of values of ST ., and observe the linear relationship between ST . and the net payoff.

1 import numpy as np
2 import matplotlib.pyplot as plt
3

4 # Parameters
5 S0 = 120 # Initial asset price
6 K = 125 # Forward price
7 r = 0.03 # Risk-free interest rate (continuously compounded)
8 T = 2 # Time to expiration in years
9

10 # Present value of the forward price
11 PV_K = K * np.exp(-r * T)
12

13 # Initial net investment to replicate the forward
14 cost_asset = S0
15 borrow_amount = PV_K
16 net_investment = cost_asset - borrow_amount
17

18 print(f"Initial Investment to replicate forward: ${net_investment
:.2f}")

19

20 # Range of possible asset prices at maturity
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21 S_T_values = np.linspace(80, 160, 500)
22

23 # Net payoff of the replication at maturity
24 net_payoff = S_T_values - K
25

26 # Plot the relationship
27 plt.figure(figsize=(10, 6))
28 plt.plot(S_T_values , net_payoff , color=’blue’)
29 plt.axhline(0, color=’black’, linewidth=0.5)
30 plt.title(’Net Payoff of Static Hedge for a Forward Contract at

Maturity’)
31 plt.xlabel(’Asset Price at Maturity ($)’)
32 plt.ylabel(’Net Payoff ($)’)
33 plt.grid(True)
34 plt.show()
35

36 # Output
37 Initial Investment to replicate forward: $2.28

Listing 6-2 Static hedging for forward contract

As shown in Figure 6-3, the linearity visually confirms that the static hedge
perfectly replicates the forward payoff and that the forward value is consistent with
the non-arbitrage principles.

Therefore, by linking the forward contract to a straightforward buy-and-borrow
strategy, we demonstrate mathematically that the no-arbitrage forward price must
reflect both the time value of money and the carrying costs associated with holding
the underlying asset. In this replication approach, an investor purchases the asset

Figure 6-3 Net payoff curve of static hedge for a forward contract at maturity
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at the current spot price S0 . and simultaneously borrows an amount equal to the
present value of the forward price K , namely Ke−rT

., where r is the continuously
compounded risk-free rate and T is the time to maturity. The net initial investment
is thus

.S0 − Ke−rT .

For the forward contract to be fairly priced—that is, to have zero initial value—this
net investment must vanish, which requires that

.S0 − Ke−rT = 0 K = S0e
rT .

This formula encapsulates the principle that the forward price grows at the risk-free
rate, capturing the time value of money. In more general terms, if the underlying
asset incurs additional carrying costs or provides a convenience yield, the forward
price can be adjusted to

.K = S0e
(r+u−c)T ,

where u represents storage or other holding costs and c denotes any benefits
such as a convenience yield. Any deviation from this fair pricing would yield a
discrepancy between the cost of constructing the static replication portfolio and the
contractual payoff ST − K . at maturity, thereby opening arbitrage opportunities.
Arbitrageurs would exploit such mispricing by, for instance, buying the asset and
simultaneously selling the overpriced forward contract, or vice versa, until the no-
arbitrage condition is restored. Thus, by ensuring that the initial value of the forward
contract aligns precisely with the static replication cost, the forward price is set to
prevent arbitrage and maintain market efficiency.

Next, we introduce static hedging for a European option.

6.2.2 Static Hedging for a European Put Option

To understand how to statically hedge a European put option, consider a put option
with strike price K and maturity T , whose payoff at expiration is given by

.(K − ST )+ = max{K − ST , 0},

where ST . is the price of the underlying asset at time T . This thresholding function
implies that if ST < K ., the option pays K − ST ., and if ST ≥ K ., the payoff is
zero. The objective of a static hedge is thus to establish a replicating portfolio at
the initial time t0 . that remains unchanged until maturity T and whose final payoff
exactly matches that of the put option without requiring any rebalancing. To achieve
this replication, we construct a portfolio comprising three components: first, a short
position in one unit of the underlying asset, which yields a payoff of − ST . at time
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T ; second, a long position in K units of a zero-coupon bond maturing at T , each
paying $1, so that the bonds collectively yield K at maturity (with a present value
of Ke−r(T −t)

. at time t0 .when r is the continuously compounded risk-free rate); and
third, a long position in a European call option on the same underlying asset with
the same strike K and maturity T , which at expiration pays (ST − K)+ .. Thus, the
total payoff of the replicating portfolio at time T is given by

.VT = −ST + K + (ST − K)+.

To verify that this portfolio indeed replicates the put payoff, we consider two
cases. If ST ≤ K ., the call option expires worthless so that (ST − K)+ = 0., and the
portfolio payoff simplifies to

.VT = −ST + K = K − ST ,

which is exactly the payoff (K −ST )+ . since K −ST ≥ 0. in this region. Conversely,
if ST > K ., the call option is in the money and pays (ST −K)+ = ST −K ., yielding

.VT = −ST + K + (ST − K) = 0.

In this scenario, the put option would also pay (K −ST )+ = 0. because K −ST < 0.,
thereby ensuring that the portfolio payoff matches the put payoff in all cases.

This construction is intimately related to the concept of put-call parity, which for
European options on non-dividend-paying stocks states that

.C − P = S0 − Ke−rT ,

where C and P are the call and put prices, respectively, and S0 . is the current spot
price of the underlying asset. Rearranging gives

.P = C − S0 + Ke−rT ,

which is consistent with our replicating strategy: by taking a long call, shorting
the underlying asset, and holding Ke−rT

. in risk-free bonds, one can synthetically
construct the payoff of a put option.

By strategically selecting these initial positions at t0 ., we create a portfolio that
yields exactly

.VT = (K − ST )+

at maturity, without any subsequent rebalancing. The absence of rebalancing is a
direct consequence of the deterministic nature of the bond’s accrual and the fact that
the underlying asset and call option positions do not require interim adjustments
when their payoffs are already fixed by expiration. This static hedging approach not
only provides a clear illustration of the relationship between put and call options,
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the underlying asset, and the time value of money through discounting, but it also
reinforces the fundamental principles of derivative pricing and risk management
by demonstrating how arbitrage-free conditions can be maintained through perfect
replication.

6.2.2.1 Put-Call Parity
The static hedging strategy for a European put option is fundamentally rooted in the
put-call parity theorem, a cornerstone of options pricing for European options on
non-dividend-paying assets. This theorem establishes that the sum of the put option
price P(St , t). and the current underlying asset price St . is exactly equal to the sum of
the call option price C(St , t). and the present value of the strike price K , discounted
over the time to maturity T − t . at the continuously compounded risk-free rate r .
Mathematically, this relationship is expressed as

.P(St , t) + St = C(St , t) + Ke−r(T −t).

Rearranging the equation to solve for the put price yields

.P(St , t) = C(St , t) + Ke−r(T −t) − St .

This expression shows that the price of a European put option can be replicated by
constructing a portfolio comprising three elements:

1. A long position in one European call option with strike K and maturity T ,
which grants the right to purchase the underlying asset at K

2. A long position in a portfolio of zero-coupon bonds with a combined face value
of K , whose present cost is Ke−r(T −t)

. (reflecting the time value of money)
3. A short position in one unit of the underlying asset, incurring a payoff of −ST .

at maturity

At expiration, the European call option pays (ST − K)+ ., the zero-coupon bonds
mature to pay K , and the short asset position delivers − ST ., so that the total payoff
of the replicating portfolio is

.VT = (ST − K)+ + K − ST .

We can then consider the two cases (i.e., ST ≤ K . and ST > K .) to confirm that this
portfolio replicates the put payoff (K − ST )+ .. Thus, by carefully selecting these
initial positions, the replicating portfolio produces a payoff identical to that of the
put option without requiring any dynamic rebalancing. This static hedge not only
underscores the elegance of the put-call parity but also reinforces the consistency of
option pricing. If market prices were to deviate from this parity, arbitrageurs could
construct risk-free profit strategies by buying the underpriced instrument and selling
the overpriced one until the equilibrium is restored.
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Moreover, the put-call parity relationship can be extended to more complex
scenarios. For instance, if the underlying asset pays a continuous dividend yield
q, the modified put-call parity becomes

.P(St , t) + Ste
−q(T −t) = C(St , t) + Ke−r(T −t),

ensuring that even with dividend payments, the replicating portfolio remains aligned
with no-arbitrage principles.

In summary, by linking the static hedging strategy for a European put option
to the mathematical framework provided by put-call parity, we see that the correct
pricing of options inherently accounts for both the time value of money and the
cost (or benefit) of carrying the underlying asset. This framework guarantees that
the cost of establishing the replicating portfolio, comprised of a call option, zero-
coupon bonds, and a short position in the asset, exactly equals the price of the put
option, thereby ensuring consistent, arbitrage-free pricing in efficient markets.

6.2.2.2 Derivation Using Risk-Neutral Valuation
To derive the relationship between the prices of European put and call options, we
begin within the risk-neutral valuation framework. Under the risk-neutral measure
Q, the present value at time t of a European put option with strike K and maturity
T that pays (K − ST )+ . is given by

.P(St , t) = e−r(T −t)
E

Q (K − ST )+ Ft ,

where r is the continuously compounded risk-free rate, and Ft . represents the
information available at time t . Similarly, the price of a European call option with
the same strike and maturity, which pays (ST − K)+ . at expiration, is expressed as

.C(St , t) = e−r(T −t)
E

Q (ST − K)+ Ft .

A key step in establishing put-call parity is to consider the linear combination

.P(St , t) + St − Ke−r(T −t).

Substituting the risk-neutral valuation of the put option, we have

.P(St , t) + St − Ke−r(T −t) = e−r(T −t)
E

Q (K − ST )+ Ft + St − Ke−r(T −t).

Notice that we can rewrite the current price St . in its forward form by recalling
that under the risk-neutral measure

.E
Q[ST | Ft ] = Ste

r(T −t).
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Thus, expressing St . as e−r(T −t) · Ste
r(T −t)

., the equation becomes

.P(St , t) + St − Ke−r(T −t) = e−r(T −t)
E

Q (K − ST )+ Ft + Ste
r(T −t) − K .

Recognize that the term Ste
r(T −t) − K . is equivalent to E

Q[ST − K | Ft ].. To
combine the two components inside the expectation, consider the random variable

.X = (K − ST )+ + (ST − K).

We examine X under two cases. When ST ≤ K ., we have (K − ST )+ = K − ST .

and (ST − K) = −(K − ST )., so that

.X = (K − ST ) + (ST − K) = 0.

When ST > K ., we have (K − ST )+ = 0. and (ST − K) = ST − K ., yielding

.X = 0 + (ST − K) = ST − K.

Thus, in all cases, we have

.(K − ST )+ + (ST − K) = (ST − K)+.

Substituting back, we obtain

.P(St , t) + St − Ke−r(T −t) = e−r(T −t)
E

Q (ST − K)+ Ft = C(St , t).

Rearranging the expression leads to the celebrated put-call parity formula:

.P(St , t) = C(St , t) + Ke−r(T −t) − St .

This relationship shows that the price of a European put option can be directly
determined from the price of a European call option, the current spot price St .,
and the present value of the strike price K . The derivation underscores how risk-
neutral valuation and the no-arbitrage principle work together: if the put-call parity
did not hold, market participants could construct arbitrage strategies to exploit the
mispricing, thereby restoring equilibrium. This fundamental connection not only
ensures consistency in option pricing but also serves as a critical tool for detecting
mispricings and maintaining efficient market conditions.

6.2.2.3 Static Hedging of European Put Option in Action
To demonstrate the practical implementation of a static hedge for a European put
option, we leverage put-call parity that specifies the mathematical link between the
prices of European put and call options on the same underlying asset with identical
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strike K and maturity T . Specifically, recall that we can write the put option price
as

.P(St , t) = C(St , t) + Ke−r(T −t) − St .

This equation implies that by knowing the price of a call option, the current price
St ., and the discounted strike Ke−r(T −t)

., we can construct a replicating portfolio
that perfectly mimics the payoff of the put option at expiration. In practical terms,
to replicate the put payoff (K − ST )+ . at maturity, one can establish a portfolio at
t = 0. comprising three components: a long position in one European call option,
a long position in zero-coupon bonds with a face value of K (which cost Ke−rT

.

at inception), and a short position in one unit of the underlying asset. At maturity,
the call option yields (ST − K)+ ., the bonds mature to pay K , and the short asset
position results in a payoff of − ST .; together, these deliver a total payoff of

.(ST − K)+ + K − ST ,

which simplifies to (K − ST )+ . when considering the two cases ST ≤ K . and
ST > K ..

In the code provided below, we first calculate the price of the European call
option using the Black-Scholes formula, which requires as inputs the current asset
price S0 ., strike K , time to maturity T , risk-free rate r , and volatility σ .. For our
demonstration, we set the parameters as follows: S0 = 120., K = 110., r = 0.03.
(3% per annum), T = 2. years, and σ = 0.25. (25% annual volatility). With these
inputs, the Black-Scholes model computes the call price C(S0, 0).; then, using the
put-call parity relation, we derive the corresponding put price via

.P(S0, 0) = C(S0, 0) + Ke−rT − S0.

Subsequently, we simulate a range of possible terminal asset prices ST . and
calculate the final payoffs for both the replicating portfolio and the European put
option. These simulations serve to validate that the static hedge, established at
inception without any need for rebalancing, indeed produces a terminal payoff
identical to (K − ST )+ .. As illustrated in Listing 6-3 and Figure 6-4, the payoff
profiles of the replicating portfolio and the put option are virtually indistinguishable,
confirming the effectiveness of the static hedging strategy. This exercise not only
provides a practical demonstration of put-call parity in action but also reinforces the
theoretical underpinnings of static hedging and no-arbitrage pricing in the options
market.
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1 import numpy as np
2 import matplotlib.pyplot as plt
3 from scipy.stats import norm
4

5 def black_scholes_call(S, K, T, r, sigma):
6 """
7 Compute the Black-Scholes price for a European call option.
8 S: current asset price
9 K: strike price

10 T: time to maturity in years
11 r: risk-free interest rate (annual, continuously compounded)
12 sigma: volatility (annual)
13 """
14 d1 = (np.log(S / K) + (r + 0.5 * sigma**2) * T) / (sigma * np

.sqrt(T))
15 d2 = d1 - sigma * np.sqrt(T)
16 call = S * norm.cdf(d1) - K * np.exp(-r * T) * norm.cdf(d2)
17 return call
18

19 # Parameters
20 S0 = 120 # Current underlying asset price
21 K = 110 # Strike price
22 r = 0.03 # Risk-free rate (3%)
23 T = 2 # Time to maturity (2 years)
24 sigma = 0.25 # Volatility (25%)
25

26 # Compute the call option price using Black-Scholes
27 call_price = black_scholes_call(S0, K, T, r, sigma)
28

29 # Compute the present value of the strike price
30 PV_K = K * np.exp(-r * T)
31

32 # Put-call parity: P = C + PV(K) - S0
33 put_price_implied = call_price + PV_K - S0
34

35 print(f"European Call Option Price: ${call_price:.2f}")
36 print(f"Present Value of Strike: ${PV_K:.2f}")
37 print(f"Put Price from Put-Call Parity: ${put_price_implied:.2f}"

)
38

39 # Simulate possible asset prices at maturity
40 S_T_values = np.linspace(60, 180, 500)
41

42 # Compute the payoff of the replicating portfolio
43 # Replicating portfolio = short underlying + K zero-coupon bonds

+ long call
44 payoff_short_asset = -S_T_values
45 payoff_bonds = K
46 payoff_call = np.maximum(S_T_values - K, 0)
47 portfolio_payoff = payoff_short_asset + payoff_bonds +

payoff_call
48

49 # Compute the actual put payoff for comparison
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50 put_payoff = np.maximum(K - S_T_values , 0)
51

52 # Plot the payoffs to compare
53 plt.figure(figsize=(10, 6))
54 plt.plot(S_T_values , portfolio_payoff , label=’Replicating

Portfolio Payoff’, color=’blue’)
55 plt.plot(S_T_values , put_payoff , label=’European Put Option

Payoff’, color=’red’, linestyle=’--’)
56 plt.axhline(0, color=’black’, linewidth=0.5)
57 plt.title(’Static Hedge Replicating European Put Option Payoff’)
58 plt.xlabel(’Asset Price at Maturity ($)’)
59 plt.ylabel(’Payoff ($)’)
60 plt.legend()
61 plt.grid(True)
62 plt.show()
63

64 # Outputs of interest
65 print(f"With these parameters , the static hedge set up at time 0

costs: ${put_price_implied:.2f}")
66

67 # Ouptput
68 European Call Option Price: $25.21
69 Present Value of Strike: $103.59
70 Put Price from Put-Call Parity: $8.80
71 With these parameters , the static hedge set up at time 0 costs: \

$8.80

Listing 6-3 Static hedging for replicating European put option payoff function

Figure 6-4 Replicating European put option via put-call parity
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6.2.3 Static Hedging for Digital Option

A digital option, often referred to as a binary or all-or-nothing option, is a financial
derivative that provides a fixed payout if the underlying asset’s price satisfies a
predetermined condition at maturity. In particular, a digital call option pays a
specified amount, typically normalized to 1 if the asset’s price ST . at expiration
exceeds a strike price K; otherwise, it expires without value. The payoff of such
an option can be succinctly represented by the indicator function

. T ) = {ST ≥K},

which, in payoff form, is expressed as

.Payoff = 1, if ST ≥ K,

0, if ST < K.

To determine the fair price of a digital call option, we employ the risk-neutral
valuation framework. Under this approach, the price at time t is the discounted
expectation of its payoff under the risk-neutral measure Q:

.DC(S;K) = e−r(T −t)
E

Q {ST ≥K} | Ft = e−r(T −t) P Q(ST ≥ K),

where r is the continuously compounded risk-free rate, T is the time to maturity,
and Ft . denotes the information available at time t . Here, P Q(ST ≥ K). is the risk-
neutral probability that the asset’s price will be at least K at expiration.

Within the Black-Scholes model, this probability is calculated using the cumu-
lative distribution function (CDF) of the standard normal distribution, denoted by
N(·).. Consequently, the price of the digital call option is given by

.DC(S;K) = e−r(T −t) N(d2),

with

.d2 =
ln S

K
+ r − q − σ 2

2 (T − t)

σ
√

T − t
,

where S is the current price of the underlying asset, K is the strike price, q is
the continuous dividend yield (which may be set to zero for non-dividend-paying
assets), σ . is the volatility of the asset, and T − t . is the time remaining to maturity.
The term ln(S/K). captures the logarithmic distance between the asset price and
the strike, while σ

√
T − t . normalizes this distance by the product of volatility and

the square root of time, reflecting the uncertainty in the future price of the asset.
The cumulative function N(d2). then represents the risk-neutral probability that ST .

exceeds K .
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In a static hedging context, digital options can be replicated without continuous
rebalancing. One common approach is to approximate the digital payoff using a
portfolio of vanilla options. Recall that the derivative of a call option price with
respect to its strike yields the negative of the discounted risk-neutral probability:

.
∂C

∂K
= −e−r(T −t) N(d2).

Thus, by constructing a tight call spread—buying a call at strike K and selling a
call at a slightly higher strikeK+ .—and taking the limit as → 0., one can replicate
the payoff of a digital option. Mathematically, this finite-difference approximation
is expressed as

.
C(K) − C(K + ≈ − ∂C

∂K
= e−r(T −t) N(d2).

This approach illustrates the static hedge: once the replicating portfolio is
constructed at inception, it will yield a terminal payoff that closely approximates

{ST ≥K} . without the need for further adjustments, provided market conditions
remain consistent with the Black-Scholes assumptions.

In summary, the fair price of a digital call option is determined by discounting
the risk-neutral probability of a favorable outcome. The final pricing formula,

.DC(S;K) = e−r(T −t) N(d2),

is derived from the risk-neutral expectation and is central to both theoretical and
practical applications in option pricing. This method not only upholds the no-
arbitrage principle but also serves as the foundation for constructing static hedges
that replicate digital payoffs. Such replication techniques are particularly valuable
in practice, as they allow for the creation of portfolios that mimic the behavior of
digital options, thereby ensuring consistent pricing and effective risk management
in financial markets.

6.2.4 Static Hedging with Constant Volatility

In the previous section, we assumed that the volatility remains constant. Here, we
discuss an alternative method for replicating, or hedging, a digital call option under
the same assumption. Our objective is to replicate the binary payoff of a digital call
option, which pays 1 if the price of the underlying asset at maturity ST . satisfies or
exceeds a predetermined strike K ., and 0 otherwise. An effective method to achieve
this replication is through a call spread strategy.

A call spread strategy involves two main actions: (i) purchasing a call option with
a strike slightly below K ., specifically at K − h., and (ii) selling a call option with a
strike slightly above K ., at K +h., where h. is a small positive number. To ensure that
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Figure 6-5 Call spread payoff to approximate digital option

the resulting payoff approximates that of a digital option as h. becomes very small,
each option is scaled by a factor of 1

2h .. This scaling is necessary because it adjusts
the magnitude of the payoff difference so that, in the limit as h → 0., the spread
converges to a step function. Figure 6-5 illustrates this call spread strategy and its
convergence to the digital payoff.

Now let C(K − h, σ ). and C(K + h, σ ). denote the Black-Scholes prices of call
options with strikes K−h. and K+h., respectively, where the volatility σ . is assumed
constant. The value of the scaled call spread at any time t . before maturity T . is given
by

.Call Spread Value = C(K − h, σ ) − C(K + h, σ )

2h
.

To understand why this call spread replicates the digital call option, consider its
payoff at maturity. There are three distinct cases:

1. If ST ≥ K + h.: Both calls are in the money. The payoff from the call with
strike K −h. is ST − (K −h)., and from the call with strike K +h. it is ST − (K +h)..
The net payoff is

.
(ST − (K − h)) − (ST − (K + h))

2h
= 2h

2h
= 1,

which exactly matches the digital option’s payoff of 1.
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2. If ST ≤ K − h.: Both call options expire worthless, so their payoffs are zero.
Thus, the call spread payoff is

.
0 − 0

2h
= 0,

matching the digital option’s payoff of 0.
3. If ST . lies between K −h. and K +h.: The call with strike K −h. is in the money,

while the call with strike K + h. is either at the money or out of the money. In this
interval, the net payoff of the spread increases linearly from 0 to 1 as ST .moves from
K − h. to K + h.. As h. approaches zero, the width of this linear region diminishes,
and the spread’s payoff converges to a discontinuous jump from 0 to 1 at ST = K ..

To formalize this replication, we examine the limit as h → 0.. Using a Taylor
series expansion of the call price about K ., we have

.C(K − h, σ ) = C(K, σ) − h
∂C

∂K
+ h2

2

∂2C

∂K2 + O(h3),

.C(K + h, σ ) = C(K, σ) + h
∂C

∂K
+ h2

2

∂2C

∂K2 + O(h3).

Subtracting these two expansions yields the following result:

.C(K − h, σ ) − C(K + h, σ ) = −2h
∂C

∂K
+ O(h3).

Dividing both sides by 2h. gives

.
C(K − h, σ ) − C(K + h, σ )

2h
= − ∂C

∂K
+ O(h2).

Taking the limit as h → 0. leads to

.DC(S;K) = lim
h→0

C(K − h, σ ) − C(K + h, σ )

2h
= −∂C(K, σ)

∂K
.

Within the Black-Scholes framework, the price of a European call option is given
by

.C(S,K, T − t, r, σ, q) = Se−q(T −t)N(d1) − Ke−r(T −t)N(d2),

where

.d2 = ln(S/K) + (r − q − σ 2

2 )(T − t)

σ
√

T − t
.
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Differentiating C(S,K, T − t, r, σ, q). with respect to K . and noting that the
derivative − ∂C

∂K
. recovers the discounted risk-neutral probability e−r(T −t)N(d2)., we

obtain

.DC(S;K) = −∂C(K, σ)

∂K
= e−r(T −t)N(d2).

This derivation confirms that the digital call option’s price can be derived from
the call option pricing formula through differentiation. By constructing a call spread
with strikesK−h. andK+h. and letting the spread width 2h. tend to zero, we achieve
a static hedge for the digital option. This hedge is static because, once the spread is
established at inception, it requires no further rebalancing until maturity.

In summary, by utilizing a call spread strategy with appropriately scaled positions
and taking the limit as h → 0., we replicate the binary payoff of a digital call option.
The mathematical derivation demonstrates that

. lim
h→0

C(K − h, σ ) − C(K + h, σ )

2h
= e−r(T −t)N(d2),

thus validating the effectiveness of this replication method. This approach is
advantageous in practice because it creates a robust static hedge that does not require
continuous adjustments, thereby simplifying the management of digital options in
various financial contexts.

Now let us turn to the case with a changing volatility.

6.2.5 Static Hedging with Changing Volatility

When volatility σ . is not constant but instead varies with the strike price, a common
phenomenon observed in practice as the volatility skew or smile, the static hedging
strategy for replicating a digital call option becomes more intricate. In such cases,
the volatility is modeled as a function of the strike, σ = σ(K)., which introduces an
additional layer of dependency into the option pricing and hedging process.

Recall that, under constant volatility, one can replicate a digital call option by
constructing a narrow call spread. Specifically, by purchasing a call option with a
strike slightly below K . (i.e., at K −h.) and selling a call option with a strike slightly
above K . (i.e., at K + h.), and by scaling the difference in prices by 1

2h ., the resulting
spread converges to the digital payoff as h → 0.. In mathematical terms, the price of
the digital call option DC(S;K). in the constant volatility scenario is given by

.DC(S;K) = lim
h→0

C(K − h, σ ) − C(K + h, σ )

2h
= − ∂C

∂K
(K, σ),

where C(K, σ). denotes the price of a call option with strike K . and constant
volatility σ ..
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However, when volatility is strike dependent, the call price becomes a function of
both K . and σ(K)., denoted as C(K, σ(K)).. In order to replicate the digital option in
this more general setting, we again construct a call spread, but now we must account
for the variability of σ . with respect to K .. For a small h > 0., consider the Taylor
series expansion of the call option price around the strike K .:

.C(K − h, σ (K − h)) = C(K, σ(K)) − h
∂C

∂K
(K, σ(K)) − h

∂C

∂σ
(K, σ(K))

∂σ (K)

∂K

+ O(h2),

.C(K + h, σ (K + h)) = C(K, σ(K)) + h
∂C

∂K
(K, σ(K)) + h

∂C

∂σ
(K, σ(K))

∂σ (K)

∂K

+ O(h2).

Subtracting these two expansions gives

.C(K − h, σ (K − h)) − C(K + h, σ (K + h))

= −2h
∂C

∂K
(K, σ(K)) − 2h

∂C

∂σ
(K, σ(K))

∂σ (K)

∂K
+ O(h2).

Dividing the result by 2h. and taking the limit as h → 0. yields the digital call
option price under nonconstant volatility:

.DCσ (S;K) = lim
h→0

C(K − h, σ (K − h)) − C(K + h, σ (K + h))

2h

= − ∂C

∂K
(K, σ(K)) − ∂C

∂σ
(K, σ(K))

∂σ (K)

∂K
.

The first term, − ∂C
∂K

(K, σ(K))., is the familiar derivative of the call price with
respect to the strike and corresponds to the digital call price in the constant
volatility framework. The second term, − ∂C

∂σ
(K, σ(K))

∂σ(K)
∂K

., captures the addi-
tional cost incurred due to the strike dependence of volatility. Here, the sensitivity
∂C
∂σ

(K, σ(K)). is known as vega, which measures how the call option price changes

with respect to volatility, and ∂σ(K)
∂K

. represents the slope of the volatility skew.
In the Black-Scholes model, vega is given by

.
∂C

∂σ
(K, σ(K)) = e−q(T −t)S

√
T − t φ(d1),
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where φ(d1). is the standard normal probability density function evaluated at d1 ., and
q . is the continuous dividend yield. Since φ(d1) ≥ 0. for all d1 ., the product

. − ∂C

∂σ
(K, σ(K))

∂σ (K)

∂K

is nonnegative when the volatility skew is negative (i.e., when ∂σ(K)
∂K

< 0.), which is
typically observed in equity markets. This observation implies that

.DCσ (S;K) ≥ − ∂C

∂K
(K, σ(K)) = DC(S;K),

meaning that the digital call option is more expensive under nonconstant volatility
than it would be under constant volatility. The additional term accounts for the
increased likelihood of extreme moves implied by the skew, and it ensures that the
static hedging strategy remains accurate and reflective of actual market conditions.

In conclusion, when volatility varies with the strike price, the static hedging
approach for a digital call option must be adjusted to include the extra term

. − ∂C

∂σ
(K, σ(K))

∂σ (K)

∂K
,

which captures the impact of the volatility skew on the option price. This results in
a digital call option price

.DCσ (S;K) = − ∂C

∂K
(K, σ(K)) − ∂C

∂σ
(K, σ(K))

∂σ (K)

∂K
,

that is generally higher than the price computed under the assumption of constant
volatility. This enhanced pricing formula not only improves the accuracy of the static
hedge in a realistic setting but also provides a more robust framework for managing
the risk associated with digital options in markets where volatility exhibits a skew
or smile.

6.2.6 Static Hedging of Digital Call Option in Action

In this section, we illustrate the implementation of a static hedging strategy
specifically designed for a digital call option by constructing a call spread that
replicates its distinctive binary payoff. The method involves determining the prices
of two European call options whose strike prices are positioned symmetrically
around the digital option’s strike: one with a strike of K − h. and the other with
a strike of K + h., where h. is a small positive number. The interval between
these strikes, 2h., essentially controls the granularity of the approximation, thereby
influencing both the sensitivity and precision of the call spread in closely mimicking
the digital option’s payoff structure.
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As shown in Listing 6-4, to approximate the digital call option’s price, we
calculate the difference between the prices of the two call options and then scale
this difference by the factor 1

2h .. This scaling is critical, as it normalizes the payoff
difference, ensuring that as h. decreases, the call spread’s payoff converges more
accurately to the binary outcome—1 if the underlying asset’s price at maturity
exceeds K ., and 0 otherwise. To further substantiate this approximation, we compute
the exact price of the digital call option using the Black-Scholes formula, which
integrates the cumulative distribution function of the standard normal distribution
to evaluate the risk-neutral probability of the asset finishing above the strike. This
Black-Scholes-derived price serves as a benchmark, allowing us to gauge the fidelity
of the call spread approximation in replicating the digital option’s intended payoff.

1

2 # Parameters
3 S0 = 120 # Current stock price
4 K = 100 # Strike price
5 r = 0.03 # Risk-free interest rate (3%)
6 T = 0.5 # Time to maturity (6 months)
7 sigma = 0.25 # Volatility (25%)
8 h = 0.25 # Small increment for strikes
9

10

11 # Calculate call option prices at K - h and K + h
12 call_price_lower = black_scholes_call(S0, K - h, T, r, sigma)
13 call_price_upper = black_scholes_call(S0, K + h, T, r, sigma)
14

15 # Calculate the approximate digital call option price using the
call spread

16 digital_call_price_approx = (call_price_lower - call_price_upper)
/ (2 * h)

17

18 # Calculate the exact digital call option price in Black-Scholes
19 d2 = (np.log(S0 / K) + (r - 0.5 * sigma ** 2) * T) / (sigma * np.

sqrt(T))
20 digital_call_price_exact = np.exp(-r * T) * norm.cdf(d2)
21

22 print(f"Approximate Digital Call Option Price using Call Spread:
{digital_call_price_approx:.6f}")

23 print(f"Exact Digital Call Option Price from Black-Scholes: {
digital_call_price_exact:.6f}")

24

25 # Simulate asset prices at maturity
26 S_T = np.linspace(90, 110, 1000)
27

28 # Payoff of the digital call option
29 digital_payoff = np.where(S_T >= K, 1, 0)
30

31 # Payoff of the call spread
32 call_payoff_lower = np.maximum(S_T - (K - h), 0)
33 call_payoff_upper = np.maximum(S_T - (K + h), 0)
34 call_spread_payoff = (call_payoff_lower - call_payoff_upper) / (2

* h)
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35

36 # Plot the payoffs
37 plt.figure(figsize=(10, 6))
38 plt.plot(S_T, digital_payoff , label=’Digital Call Option Payoff’,

color=’green’)
39 plt.plot(S_T, call_spread_payoff , label=’Call Spread Payoff (h

={})’.format(h), color=’orange’, linestyle=’--’)
40 plt.title(’Digital Call Option vs. Call Spread Replication’)
41 plt.xlabel(’Asset Price at Maturity $S_T$’)
42 plt.ylabel(’Payoff’)
43 plt.legend()
44 plt.grid(True)
45 plt.show()
46

47 # Output
48 Approximate Digital Call Option Price using Call Spread: 0.828816
49 Exact Digital Call Option Price from Black-Scholes: 0.835360

Listing 6-4 Static hedge for digital call option

To evaluate the effectiveness of replication, we simulate a range of potential
underlying asset prices at maturity and calculate the corresponding payoffs for both
the digital call option and the call spread. The payoff of the digital option is a
step function that shifts from zero to one at the strike price. In contrast, the call
spread’s payoff transitions smoothly between these two values, demonstrating the
approximation process. As the interval h. decreases, the call spread’s payoff curve
increasingly resembles the binary payoff of the digital option. Figure 6-6 illustrates

Figure 6-6 Replicating digital call option via call spread
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how the call spread effectively captures the payoff of the digital option, especially
as h. approaches zero.

This implementation demonstrates the practicality of static hedging in financial
markets. By constructing a simple portfolio of call options, we can replicate the
payoff of a digital option without the need for continuous adjustments. Furthermore,
by experimenting with different values of the h. interval, we can observe how the
accuracy of the replication improves as the interval decreases, thus enhancing the
precision of the hedging strategy.

6.3 Summary

In this chapter, we examined two fundamental approaches to hedging, dynamic
and static, and their roles in mitigating financial risk. We began by discussing
derivative hedging in general, emphasizing the use of instruments such as options,
futures, forwards, and swaps to transfer and manage risk. These instruments enable
market participants to protect portfolios from adverse price movements, thereby
contributing to the stability and predictability of financial outcomes.

Dynamic hedging, as illustrated by the Black-Scholes framework, involves
continuous or frequent rebalancing of positions to maintain a delta-neutral portfolio.
By calculating sensitivities, most notably delta and gamma, traders can adjust
their positions in real time, thus counteracting the impact of small fluctuations
in the underlying asset’s price. Although this approach offers a high degree of
precision and adaptability, it comes at the cost of increased transaction expenses
and operational complexity, particularly when factoring in practical issues such as
discrete trading and market liquidity constraints.

In contrast, static hedging is based on the construction of a replicating portfolio
at inception that remains fixed until maturity. We demonstrated this concept through
the static hedging of forward contracts and European put options. In these cases,
replicating portfolios are derived by matching the yield of the derivative, using
combinations of the underlying asset, zero-coupon bonds, and options, so that the
yield of the portfolio’s terminal is exactly that of the target instrument. Although
static hedging reduces the frequency of transactions and associated costs, it does
not adjust to unexpected market movements, potentially leaving residual risk.

We further extended the analysis to digital options, illustrating how a call spread
can be used to approximate the binary payoff characteristic of a digital call option.
The methodology involves computing the prices of call options with strikes K − h.

and K + h. and scaling their difference by 1
2h ., thus demonstrating that the finite-

difference approximation converges to the derivative − ∂C
∂K

. as h tends to zero. This
derivation not only corroborates the theoretical pricing formula obtained from the
Black-Scholes model but also provides a practical framework for constructing static
hedges under idealized market conditions.

Additionally, the chapter addressed the impact of non-constant volatility on static
hedging. When volatility exhibits a skew or smile, that is, when it varies with the
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strike, the replication strategy must incorporate an extra term involving vega and
the derivative of the volatility function with respect to the strike. This adjustment
ensures that the price of the digital call option is accurately captured under a non-
constant volatility regime, reflecting a more realistic market environment.

In general, this chapter highlighted that both dynamic and static hedging strate-
gies have distinct advantages and trade-offs. Dynamic hedging offers the flexibility
to respond instantaneously to market changes and manage multiple sensitivities,
making it well-suited for managing complex derivatives. In contrast, static hedging
provides a more cost-effective and operationally simpler alternative, particularly
when the derivative’s payoff can be perfectly replicated at inception. By under-
standing the underlying mathematical principles and practical implications of these
strategies, investors and institutions can select and implement hedging techniques
more effectively that align with their risk profiles, operational capabilities, and
prevailing market conditions.
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In the fast-changing world of financial markets, the use of quantitative models has
become essential for decision-making, risk management, and strategic planning.
These models range from traditional frameworks, such as the Black-Scholes option
pricing model, to advanced machine learning (ML) algorithms. Their purpose is
to capture the complexities of financial instruments and market behavior. How-
ever, using these models carries risks. Model risk—the possibility of negative
consequences resulting from decisions based on inaccurate or flawed models—has
become a significant concern for financial institutions, regulators, and stakeholders.

Model risk can take various forms, primarily stemming from differences between
a model’s assumptions and the actual conditions of the financial environment it aims
to represent. These discrepancies can arise from model specification errors, where
the selected mathematical framework does not adequately capture the essential
dynamics of the underlying assets or markets. For example, assuming constant
volatility in option pricing overlooks the observed volatility smile, which can result
in mispriced derivatives.

Even if the model specification is correct, another source of model risk is linked
to parameter estimation. Financial models often use historical data to estimate
parameters such as mean returns, variances, and correlations. Although statistical
estimation techniques can be powerful, they are vulnerable to issues like sampling
errors, overfitting, and multicollinearity. These problems can distort the parameter
values and, in turn, affect the model’s outputs. For instance, if a model is overfitted
to historical price data, it may show excellent performance on past data (in-sample)
but perform poorly on new, unseen data (out-of-sample), diminishing its usefulness
in real-world situations.

Numerical implementation issues also play an important role in model risk.
Many complex financial models rely on numerical methods for solutions, such as
Monte Carlo simulations or finite difference methods. These techniques introduce
approximation errors and computational uncertainties. The choice of discretization
steps, convergence criteria, and algorithmic stability can greatly affect the accuracy
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and reliability of the model results. Inaccurate numerical solutions can result in
incorrect pricing, ineffective hedging strategies, and flawed risk assessments.

Model risk tends to increase in situations where models are regarded as black
boxes, especially with the rise of machine learning and artificial intelligence in
finance. The lack of transparency in these models makes it difficult to understand
and trust their outputs. This opacity can prevent the identification of model
limitations and vulnerabilities, raising the likelihood of unexpected and significant
financial losses. To effectively manage model risk, a comprehensive approach is
essential. This includes thorough validation processes to evaluate model assump-
tions, sensitivity analyses to comprehend the impact of various parameters, and
ongoing monitoring to identify any decline in model performance over time.
Furthermore, implementing strong governance frameworks ensures that models
are developed, implemented, and used responsibly, with clear accountability and
oversight mechanisms in place.

In summary, model risk poses a significant challenge in the financial sector,
closely linked to the mathematical foundations and execution of quantitative
models. As financial institutions increasingly adopt complex modeling techniques,
especially those that utilize advanced computational power and machine learning,
the need to understand and manage model risk thoroughly becomes paramount.
Addressing model risk is vital for preserving financial stability, ensuring accurate
risk assessments, and maintaining trust in the quantitative tools that support modern
finance.

In the following sections, we will explore the four essential components of
training a modern machine learning model: data, model class, cost function,
and optimization algorithm. We will also discuss the risks associated with each
component and provide strategies for managing and alleviating these risks, building
on previous work by Cohen et al. (2023).

7.1 Model Risk Due to Data

Data serves as the foundation for machine learning models, especially in the
financial sector, where accuracy and reliability are crucial. In financial applications,
data are the key input that enables models to identify patterns, make predictions, and
guide strategic decision-making processes. The quality, quantity, and relevance of
this data are vital factors that determine a model’s performance, its ability to adapt
to new situations, and, ultimately, the reliability of its results.

Mathematically, a machine learning model can be represented as a function
fw . parameterized by a set of weights w., which maps the input features X. to the
predicted outputs ŷ.:

.ŷ = fw(X)

The training process involves adjusting the parameters w. to minimize a cost
function Q(w)., which quantifies the discrepancy between the model predictions ŷ.
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and the true target values y.:

.Q(w) = 1

N

N

i=1

l yi, ŷi

Here, l(·, ·). denotes a loss function, such as the mean squared error (MSE) for
regression tasks:

.l yi, ŷi = 1

2
(yi − ŷi )

2

The effectiveness of the optimization process is highly dependent on the quality
of the data used during training. Poor-quality data, characterized by noise, biases,
or insufficient representation of the underlying phenomena, can result in inaccurate
parameter estimates, leading to models that not only perform poorly on the training
data but also, more importantly, fail to generalize to new, unseen data. This inability
to generalize is a major source of model risk, where decisions based on the model’s
predictions could result in adverse financial outcomes.

Generalization is a model’s capacity to perform well on unseen data, effectively
capturing the underlying data-generating process instead of just memorizing the
training data. This concept can be mathematically defined through the relationship
between expected risk and empirical risk. The expected risk R(fw). is defined as the
expected loss in the true data distribution Ptrue(X, y).:

.R(fw) = E(X,y)∼Ptrue [l(y, fw(X))]

In contrast, the empirical risk Q(w). is the average loss in the training dataset.
A model that generalizes well has a low expected risk by effectively minimizing
empirical risk while avoiding overfitting the training data. Overfitting occurs when
a model captures noise or irrelevant patterns in the training data, which leads to poor
performance on new, unseen data. On the other hand, underfitting happens when the
model is too simplistic to capture the underlying structure of the data, resulting in
high errors on both the training data and the new data.

Data is generally divided into three separate subsets—training, validation, and
test sets—to effectively assess and improve a model’s generalization abilities.
This division helps reduce overfitting and provides unbiased evaluations of model
performance.

The training set is the primary dataset used to train and adjust the model
parametersw.. During training, the model learns to optimize (often in a minimization
setting) the empirical risk Q(w). by iteratively updating w. based on the loss
computed on the training data. The following update rule is an instance of the
gradient descent algorithm, commonly used in training modern neural networks.

.wt+1 = wt − η∇wQ(wt )
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where η . is the learning rate, and ∇wQ(wt ). is the gradient of the cost function with
respect to the weights at iteration t ..

The validation set is an important evaluation dataset used to fine-tune hyper-
parameters and select the best model configuration. Unlike the training set, the
validation set is not used to update the model’s parameters directly. Instead, it offers
insight into how modifications to the model architecture, learning rate, regulariza-
tion parameters, and other hyperparameters impact performance. By assessing the
empirical risk Rval(fw). on the validation set, we can make informed decisions about
the model’s optimal hyperparameter configuration that could potentially lead to a
low true risk.

.Rval(fw) = 1

Nval

Nval

i=1

l yval
i , ŷval

i

Using a representative validation set can help us select generalizable models and
prevent overfitting by ensuring that the model performs well on unseen data.

The test set is an independent dataset reserved explicitly for evaluating the
final model’s generalization performance. Once the model has been trained and the
hyperparameters have been optimized using the training and validation sets, the test
set offers an unbiased estimate of the expected risk.

.Rtest(fw) = 1

Ntest

Ntest

i=1

l ytest
i , ŷtest

i

This final evaluation ensures that the model’s performance metrics accurately
reflect its ability to generalize to new, unseen data, providing a realistic assessment
of its utility in practical financial applications.

The integrity of the train-validation-test split, along with the quality of the data in
each subset, significantly affects a model’s ability to generalize. If the training data
fail to represent the diverse scenarios that the model will encounter in production, it
may struggle to generalize effectively. For example, in financial markets, structural
changes such as regulatory shifts or economic crises can make historical data less
relevant to predict future behavior.

Insufficient data can lead to models that do not accurately capture the underlying
distribution, resulting in high variance and poor generalization. On the other hand,
overly complex models trained on limited data may overfit, picking up noise
instead of meaningful patterns. Furthermore, financial data often display temporal
dependencies and non-stationarities. Therefore, it is crucial to ensure that the train-
validation-test split maintains the temporal order of the data to prevent information
leakage and to accurately evaluate the model’s performance in real-world, time-
sensitive situations.

In cases where certain events, such as financial crises, occur infrequently, the
training set may not have enough examples to identify these critical patterns. As



7.1 Model Risk Due to Data 205

a result, models may struggle to predict or respond effectively to such events. To
address these imbalances, techniques such as resampling, synthetic data generation,
or cost-sensitive learning may be required. Furthermore, improper separation of
datasets can lead to data leakage, where information from the test set uninten-
tionally influences the training process. This contamination can artificially inflate
performance metrics, misleading stakeholders about the model’s actual ability to
generalize.

To enhance a model’s ability to generalize and reduce associated risks, several
data management strategies can be utilized. An effective approach is k-fold cross-
validation, which provides a more reliable estimate of a model’s generalization
performance by ensuring that each data point participates in both the training and
validation sets across different iterations.

Additionally, incorporating regularization methods, such as L1 or L2 penalties,
can help limit model complexity, encouraging the development of simpler models
that generalize more effectively. Careful selection and transformation of features
based on domain knowledge can improve the model’s capacity to identify relevant
patterns while avoiding overfitting to noise.

Implementing thorough data cleaning, normalization, and transformation pro-
cedures also ensures that the data used for training is consistent, accurate, and
compliant with necessary economic constraints.

Data is essential for training and ensuring the effectiveness of machine learning
models, particularly in the financial sector, where the stakes are high. The rela-
tionship between data quality, model complexity, and training methods directly
influences a model’s ability to apply historical observations to future situations.
By carefully managing the train-validation-test split, addressing biases and errors
in the data, and using strategies to improve generalization, we can significantly
reduce model risk. Crucially, ensuring that the data (X, y). accurately represents the
true underlying distribution Ptrue(X, y). is essential for the model fw . to effectively
approximate the true mapping ftrue .:

.fw ≈ ftrue when (X, y) ∼ Ptrue(X, y)

By diligently managing data and understanding generalization risks, financial
ML models can deliver reliable and robust performance, aiding sound decision-
making and reducing potential financial losses.

7.1.1 Data Risks in Financial Machine Learning

In the realm of financial machine learning, data-related risks are a significant
concern because they can adversely affect the performance and reliability of models.
These risks stem from various issues, including biases, errors, and deficiencies in the
datasets used for training and evaluation. It is crucial to comprehend and address
these risks to develop robust models that can effectively generalize to new unseen
data.
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Biases in data can introduce systematic errors into model predictions, undermin-
ing their validity and usefulness. Several forms of bias are particularly pertinent in
financial datasets:

7.1.1.1 Sampling Bias (Backward-Looking Data)
Sampling bias occurs when the training data do not accurately represent the wider
population or the conditions in which the model will be used. For example, a model
trained on data from a specific regional market may not perform well in a different
market due to differences in market structure, participant behavior, or regulatory
conditions. This shift in data distribution can result in significant increases in
prediction errors when the model is applied to the target population. Therefore, it is
crucial to use representative training data.

Such a distributional shift may also occur in terms of the time dimension.
Financial datasets are inherently historical, reflecting past market behaviors and
asset performances. Relying solely on these data assumes that future market dynam-
ics will follow historical patterns. However, financial markets are vulnerable to
structural changes, regulatory changes, and unforeseen events that can significantly
alter these underlying dynamics. Mathematically, this issue arises when there is a
discrepancy between the training data distribution Ptrain(X, y). and the future data
distribution Pfuture(X, y).:

.Ptrain(X, y) Pfuture(X, y)

This divergence, or distributional bias, can lead to models that perform well on
historical data but poorly on future data, increasing the model risk due to poor
generalization.

7.1.1.2 Spurious Correlations
In high-dimensional financial datasets, it is common to observe correlations that
are statistically significant but lack any causal or meaningful economic basis.
For example, a predictive model might identify a strong relationship between the
price of a particular stock and an unrelated index by chance. Such correlations,
which arise without a genuine underlying connection, are referred to as spurious
correlations.

Incorporating spurious correlations into a model can lead to overfitting, which
occurs when the model learns to capture random noise in the training data instead
of true, generalizable patterns. Specifically, a model may achieve a low in-sample
error by optimizing the empirical risk on the observed data, but this success does not
necessarily mean it will have a low expected risk. In other words, while the model
may perform well on the training dataset, it might struggle to generalize to unseen
data.

The difference between in-sample performance and out-of-sample reliability
emphasizes the importance of carefully selecting features that have both theoretical
and economic justification. By incorporating domain expertise and human judgment
into the feature selection process, we can avoid relying on arbitrary or irrelevant
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relationships. This approach ultimately enhances the model’s ability to generalize.
By prioritizing features grounded in sound financial principles, we can reduce the
risk of overfitting, ensuring that the model captures meaningful and robust patterns
rather than just noise.

7.1.1.3 Class Imbalance (Imbalanced Inputs)
Critical financial events, such as defaults, fraud, or market crashes, are relatively
rare. This leads to imbalanced datasets where the minority class (e.g., instances
of default) is underrepresented compared to the majority class (e.g., non-default
instances). Training models on imbalanced data can bias the model toward the
majority class, which reduces its ability to detect and predict events in the minority
class. The extent of this imbalance can be quantified using the imbalance ratio:

.Imbalance Ratio = Nmajority

Nminority

where Nmajority . and Nminority . are the numbers of samples in the majority and
minority classes, respectively. Addressing class imbalance is crucial for models
where accurate prediction of minority events has significant implications.

7.1.1.4 Data Errors and Preprocessing Challenges
In the field of financial machine learning, the accuracy and integrity of data pre-
processing are crucial to ensuring the reliability of model predictions. Mistakes and
shortcomings in data handling can pose significant risks, undermining the training
process and hindering the model’s ability to generalize effectively. Among these
challenges, data leakage is a particularly concerning issue, but other preprocessing
errors also require careful attention.

Data leakage occurs when information from outside the training dataset uninten-
tionally affects the model training process. This contamination can result in overly
optimistic performance estimates during evaluation, which can obscure the model’s
true predictive abilities. An example of data leakage is the inclusion of features
in training data that depend on future information. Suppose that we have input
features X . and target variables y .. Ideally, training data Xtrain . should contain only
information available up to the prediction point. However, if future information
Xfuture . is erroneously included, the training data becomes

.Xtrain = {Xpast, Xfuture}

In this scenario, the model fw . learns to associate future-dependent features with
the target variable:

.ŷ = fw(Xtrain) = fw(Xpast, Xfuture)

Including such future data violates the principle of temporal causality that should
guide financial predictions. As a result, models may perform impressively on
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training data but struggle when applied to real-world, forward-looking situations.
This issue occurs because the model uses information that would not have been
accessible at the time of prediction, which artificially inflates the performance
metrics.

Preventing data leakage requires strict data management practices. A key
approach is to clearly separate the training, validation, and test datasets, ensuring
that the preprocessing steps are limited to each subset independently. For example,
when scaling feature, parameters such as mean (μ.) and standard deviation (σ .)
should be calculated exclusively from the training data:

.μtrain = 1

Ntrain

Ntrain

i=1

Xtrain
i

.σtrain = 1

Ntrain

Ntrain

i=1

(Xtrain
i − μtrain)2

These computed parameters are then applied to normalize both the training,
validation, and test datasets:

.X
train_norm
i = Xtrain

i − μtrain

σtrain

.X
validation_norm
i = Xvalidation

i − μtrain

σtrain

.X
test_norm
i = Xtest

i − μtrain

σtrain

This method ensures test data remains untouched during training, preserving
evaluation integrity.

In addition to data leakage, preprocessing challenges also include managing
missing data, detecting outliers, and ensuring feature consistency. Poorly addressing
missing values can introduce biases that skew the model’s learning process. For
example, imputing missing values using global statistics, such as the mean or
median, without considering temporal dependencies can obscure important under-
lying patterns that are essential for accurate predictions. In other words, if Xmissing .

denotes the missing entries in X ., improper imputation might replace these with

.Ximputed = μglobal

where μglobal . does not account for temporal or contextual variations, leading to
biased estimations. This means that μglobal . may be calculated using test data in the
future, while it should only be based on the information available in the training set.
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Outlier detection is a crucial step in data preprocessing. Financial data often
includes extreme values that can significantly impact model training. If outliers are
not managed properly, the model may overfit to these anomalies, which can decrease
its ability to generalize well to new data. Outliers can be identified using measures
such as the z-score.

.zi = Xi − μ

σ

where |zi | > 3. might indicate an outlier. Carefully deciding whether to remove,
transform, or retain outliers is crucial for maintaining the model’s robustness. Such
a decision may also lead to drastically different ML models developed downstream.

Standardizing the representation of input variables is essential for ensuring
feature consistency and preventing discrepancies that may confuse the model. For
instance, categorical variables should be uniformly encoded across all datasets to
maintain this consistency.

.One-Hot Encoding : Xcategorical = OneHot(Xcategorical)

Differences in encoding schemes between training and test sets can cause
misaligned feature spaces, which adversely affect model performance.

To represent the cumulative impact of these preprocessing challenges, consider
the overall transformation function T . applied to the raw data X .:

.Xprocessed = T (X) = Tscaling(Timputation(Toutlier_handling(X)))

Each transformation Ti . must be carefully designed to avoid introducing biases
or leaking information. The integrity of the processed data directly influences the
empirical risk Q(w).minimized during training.

.Q(w) = 1

N

N

i=1

l yi, fw(X
processed
i )

If T . introduces bias or leaks information, the minimization of Q(w). does not
accurately reflect the true risk R(fw).:

.R(fw) = E(X,y)∼Ptrue [l(y, fw(X))]

This discrepancy is represented by

. = R(fw) − Q(w)

which indicates a misalignment between training objectives and real-world perfor-
mance, thereby raising model risk.
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To address preprocessing challenges, it is essential to implement strict data-
handling protocols. One effective technique is pipeline encapsulation, which
involves confining each preprocessing step within a defined sequence that is
consistently applied during both the training and evaluation phases. This approach
helps prevent unintentional data leakage. Additionally, employing time-series cross-
validation methods ensures that temporal dependencies are maintained, further
protecting against leakage and improving the model’s ability to generalize.

7.1.1.5 Violation of Economic Principles
In financial machine learning, it is essential that the data used comply with
fundamental economic principles to ensure the development of reliable and effective
models. Key economic concepts, such as the absence of arbitrage opportunities and
the law of one price, are crucial for maintaining market efficiency. When financial
data violates these principles, it can lead models to detect and exploit patterns that
are not economically viable. This can result in strategies that are unprofitable or
excessively risky in real-world trading environments.

In emerging markets, historical options price data for both listed and over-
the-counter (OTC) contracts can sometimes be inconsistent with no-arbitrage
constraints. For example, Cohen et al. (2020) have highlighted the reasons for these
inconsistencies, revealing that price data can misleadingly indicate the presence of
arbitrage opportunities. These anomalies can arise from various factors, including
stale quotes that were incorrectly recorded as current in historical datasets.

When a machine learning model is trained on flawed data, it may mistakenly
identify certain discrepancies as genuine arbitrage opportunities and assume they
offer risk-free profit. However, in a well-functioning market, these discrepancies
would be quickly corrected by arbitrageurs. As a result, the model’s strategies could
become ineffective, potentially leading to significant financial losses.

The law of one price states that identical goods should have the same price
in efficient markets, taking into account transaction costs and other frictions. If
historical data indicate that two identical assets are priced differently without a
justifiable reason, a model might see this as an opportunity to buy the cheaper
asset and sell the more expensive one, anticipating a risk-free profit. However,
in reality, such price differences are usually short-lived and quickly corrected by
market participants, which means that the model’s strategy is unlikely to generate
the expected returns.

Violations of these economic principles can arise from various sources. One
primary source is data record errors, where mistakes in data entry, such as logging
outdated or incorrect prices, introduce false signals of arbitrage opportunities.
For example, if stale quotes are mistakenly recorded as live prices in historical
datasets, the resulting data may falsely indicate that certain assets are underpriced or
overpriced, misleading the model into developing trading strategies based on these
inaccuracies.

Another significant source of economic principle violations is market microstruc-
ture noise, which is particularly prevalent in high-frequency trading environments.
Rapid and often erratic price movements can create temporary price discrepancies
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that do not reflect true market inefficiencies. These fleeting anomalies can confuse
models, causing them to interpret random fluctuations as meaningful patterns, which
undermines their ability to make accurate predictions.

Regulatory and structural changes within financial markets also contribute
to violations of economic principles. Sudden changes in market regulations or
structural frameworks can disrupt historical price relationships, making past data
less relevant or even misleading for future predictions. For example, the introduction
of new trading rules or the emergence of new financial instruments can alter market
dynamics in ways that historical data do not account for, leading models to base
their strategies on outdated or incorrect assumptions.

Illiquid markets present another challenge, as they are more susceptible to price
discrepancies that can persist longer than in more liquid markets. In markets with
low trading volumes, the lack of sufficient trading activity can result in prolonged
price imbalances, which can mislead models trained on such data into believing
that these discrepancies represent exploitable opportunities. This misinterpretation
can lead to the development of strategies that are ineffective or even harmful when
applied in practice.

When machine learning models are exposed to data that violate these eco-
nomic principles, several adverse outcomes can ensue. One major consequence is
overfitting to anomalies. Models may become overly specialized in recognizing
and exploiting these false patterns, which reduces their ability to generalize to
actual market conditions. This overfitting means that while the model may perform
exceptionally well on historical data, its performance deteriorates when faced with
new, real-world data that do not contain the same artificial discrepancies.

Unreliable predictions are another significant risk. Strategies based on flawed
data can lead to inconsistent and unpredictable performance, reducing trust in the
utility of the model. For example, a model trained on data that inaccurately suggests
persistent arbitrage opportunities might generate trading signals that fail to yield the
expected profits when deployed, as the supposed opportunities do not exist in the
live market.

7.1.2 Mitigation Strategies

To effectively address data risks in financial machine learning, it is essential to adopt
a comprehensive approach that improves both the quality and representativeness
of the data used. By implementing robust strategies, we can mitigate the adverse
effects of data-related issues and strengthen models against potential pitfalls, leading
to more reliable and accurate predictions. The following strategies are crucial for
managing data risks.

7.1.2.1 Synthetic Data Generation and Resampling Techniques
Synthetic data generation seeks to enhance existing datasets by creating artificial
data points that replicate the statistical characteristics of real data. Techniques such
as Generative Adversarial Networks (GANs) and Variational Autoencoders (VAEs)
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are employed to learn the underlying distribution P(X, y). and generate new samples
X̃, ỹ .:

.X̃, ỹ ∼ Psynthetic(X, y)

These methods help tackle the issue of data scarcity, particularly for rare
events, and they also assist in balancing datasets to reduce class imbalance. In
financial datasets, critical events such as defaults or market crashes occur much less
frequently than in normal trading periods, resulting in imbalanced datasets. This
imbalance can lead models to favor the majority class, causing them to overlook the
minority class, which often has significant financial implications.

Resampling techniques can be utilized to address this issue. Methods such as
oversampling the minority class, undersampling the majority class, or generating
synthetic samples using techniques such as the Synthetic Minority Oversampling
Technique (SMOTE) can help create a more balanced dataset. Additionally, using
generative models like GANs or VAEs allows for the creation of new, realistic
samples that enhance the minority class. As a result, the model becomes more
attuned to patterns in the minority class, improving its predictive capabilities in
critical situations.

7.1.2.2 Market Simulation Engines
Market simulation engines, especially those utilizing Agent-Based Modeling
(ABM), create a controlled environment to produce data that mirror complex
market interactions. In ABM, individual agents with defined behaviors interact
within a simulated market, resulting in emergent phenomena that can be studied
and analyzed.

.Simulated Market Dynamics = ABM(Agent Behaviors,Market Rules)

These simulations can create scenarios that have not occurred historically, but
are plausible under specific conditions. They enable the stress testing of models
against extreme events and allow for the exploration of the impacts of various
market structures or regulations. However, the accuracy of the simulation depends
largely on the realism of the agent behaviors and the validity of the market rules
incorporated into the model. Careful calibration and validation are essential to
ensure that the simulated data is realistic and relevant for training purposes.

7.1.2.3 Standardized Data Cleaning and PreprocessingMethodologies
Implementing rigorous and standardized data cleaning and preprocessing protocols
can help ensure data integrity and consistency. This includes

• Enforcing Economic Constraints: Adjusting data to align with fundamental
economic principles, such as the absence of arbitrage, ensures that models are
trained on realistic data. For example, prices can be modified to eliminate nega-
tive spreads, or interest rate curves can be adjusted to remain arbitrage-free. This
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practice helps prevent models from learning patterns that are not economically
viable.

• Data Normalization and Standardization: Scaling features to have consistent
ranges or distributions is vital for model training, especially for algorithms
sensitive to feature scales. Techniques such as min-max scaling or z-score
normalization help ensure that no single feature disproportionately influences
the model due to its scale.

• Handling Missing Data: Employing appropriate imputation methods that con-
sider temporal dependencies while avoiding the introduction of future informa-
tion is crucial. Techniques like forward filling or interpolation, when applied
carefully, can mitigate the risks associated with missing values without violating
temporal causality.

• Outlier Detection and Treatment: Identifying and appropriately addressing
outliers can prevent them from unduly influencing model training. Statistical
methods or robust estimation techniques can help detect anomalies. Decisions
regarding whether to remove, transform, or retain outliers should be made
carefully to maintain the model’s robustness.

Following standardized methodologies reduces the chances of errors during
preprocessing and improves the reproducibility of model development. Further-
more, we emphasize additional best practices in data processing and monitoring
to enhance model performance and reliability:

• Feature Selection and Engineering: Using domain knowledge to identify and
create relevant features can help capture meaningful patterns in the data while
eliminating irrelevant or misleading variables. In particular, financial expertise
in market dynamics, economic indicators, and asset behaviors can be leveraged
to select meaningful features. For example, rather than relying solely on raw
price data, engineered features such as moving averages, volatility indices, or
macroeconomic factors can provide deeper insight into market trends. This
careful selection and transformation of features not only enhances the model’s
ability to identify genuine patterns but also reduces the risk of overfitting to noise
or false correlations that do not reflect real-world scenarios.

• Continuous Data Monitoring: Implementing ongoing monitoring mechanisms
helps ensure that the data pipeline remains robust and that incoming data
maintain its quality over time. This includes tracking data distributions, detecting
drift, and setting up alerts for anomalies. Continuous monitoring facilitates the
timely identification and resolution of issues such as data degradation, changes in
underlying patterns, or the introduction of new types of errors, thus maintaining
the model’s effectiveness and reliability.

• Data Validation Procedures: Beyond initial cleaning, establishing compre-
hensive validation steps is vital to maintaining data integrity. This involves
cross-referencing datasets with reliable external sources, performing statistical
checks to ensure consistency, and verifying that the data align with expected
business rules and constraints. Robust validation procedures help in the early
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detection of discrepancies and ensure that the data entering the models accurately
represent real-world conditions.

7.2 Model Risk Due toModel Selection

The model risk associated with a specific model selection procedure is particularly
pronounced. Since ML methods often aim to develop models from flexible, non-
parametric families, this process effectively merges the classical tasks of model
selection and calibration into a single step. This approach differs from traditional
handcrafted models, which are typically lower-dimensional and designed to capture
specific known relationships within the data. Although machine learning models
provide greater flexibility and the potential to identify complex patterns, they also
introduce structural risks due to their sensitivity to training data and the choices
made in the algorithms.

For example, replacing the classical paradigm of selecting a martingale model
calibrated to market data with fitting large non-parametric models on historical data
introduces significant sensitivity to the training dataset and the algorithms used.
If the hypothesis space does not align well with the underlying data-generating
process, the model may suffer from a high approximation error (to be introduced
later) and fails to capture essential market dynamics. This misalignment can
result from neglecting economic principles or the inherent constraints in financial
data, leading to models that do not accurately reflect real-world conditions. In
applications like end-to-end deep reinforcement learning for hedging strategies,
large hypothesis spaces associated with complex architectures can also result in
models that perform exceptionally well on simulated or historical data but struggle
to generalize to real market conditions.

To better understand some essential concepts, let’s explore model architecture,
model class, hypothesis space, hyperparameters, bias in model selection, and
approximation error. Model architecture refers to the structural design of a neural
network. It includes elements such as depth (the number of layers), width (the
number of neurons in each layer), and the types of activation functions used. These
architectural choices influence how data flows through the network and how features
are transformed at each stage.

The model class consists of all models that share the same architecture but differ
in their parameter values, such as weights and biases. Essentially, the model class
represents the variety of models that can be created by adjusting these parameters
within a fixed architectural framework.

The hypothesis space refers to the set of all possible functions that a specific
model class can represent. This is determined by the model architecture and the
configurations of its parameters. For neural networks, the hypothesis space is
influenced by several factors, including the number of layers in the network, the
number of neurons in each layer, and the types of activation functions used, all
of which are hyperparameters that need to be determined before training a neural
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network. For example, a neural network can be expressed as

.fw(X) = NeuralNetwork(X;w)

where fw . denotes the function mapping input features X. to outputs, parameterized
by the weight vector w.. The network architecture defines the structure and flow of
the data through the model (focusing on model selection), while the parameters w.

(comprising weights and biases) are the adjustable components optimized during
the training process (focusing on model estimation). Modifying the architecture,
such as adjusting the number of layers or the type of activation functions, funda-
mentally changes the hypothesis space, thereby altering the functions the model can
potentially represent.

As a result, the hypothesis space is the set of all possible functions that can
be generated by varying the parameters within a specific model class. Selecting
an appropriate hypothesis space is crucial because it directly impacts the model’s
ability to learn from data and generalize to new, unseen situations. A well-chosen
hypothesis space ensures that the model is neither too simplistic to capture the
underlying data patterns nor too complex, which could lead to overfitting of the
training data. Formally, for a given architecture, the hypothesis space H. can be
expressed as

.H = {fw(X) = NeuralNetwork(X;w) | w ∈ R
d}

where w. represents the weight vector comprising all parameters of the network, and
d . is the dimensionality of the parameter space.

Hyperparameters are key configurations that dictate both the training process
and the structure of a model, but are not derived from the data itself. These high-
level, predefined parameters include learning rates, regularization coefficients, batch
sizes, and architectural choices, such as the number of layers and neurons. Selecting
a model involves identifying the optimal set of hyperparameters and architectural
configurations that strike a balance between model complexity and the ability to
generalize to new data.

7.2.1 Model Bias and Approximation Error

The approximation error measures the discrepancy between the true underlying
function f ∗(X). that generates the data and the best possible function f̂ (X). within
the chosen hypothesis space H.. It quantifies how well the hypothesis space can, at
best, approximate the true function. The approximation error is defined as

.Approximation Error = inf
f̂ ∈H

EX f ∗(X) − f̂ (X)
2
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This error occurs when the hypothesis space is too limited to capture the
complexity of f ∗(X)., leading to systematic discrepancies regardless of the training
data used.

Bias in statistical learning theory is closely related to approximation error. It
measures the error introduced when we simplify a complex real-world problem by
using a simpler model from the hypothesis space. A model with high bias makes
strong assumptions about the data, which can result in missing important patterns.
The bias at a specific input X. is given by

.Bias(X) = ED f̂D(X) − f ∗(X)

where f̂D(X). is the prediction made by the model trained on the datasetD., and the
expectation is on all possible training datasets.

Model risk occurs when the selected hypothesis space results in significant
approximation errors due to excessive bias. If the hypothesis space does not include
functions that are close to the true function, the model will consistently produce
inaccurate predictions, regardless of how well the parameters are estimated from
the data. This systematic error can have serious consequences, particularly in fields
like finance, where accurately modeling complex relationships is essential.

In financial modeling, selecting an overly simplistic hypothesis space, such as
using linear models for relationships that are inherently nonlinear, can lead to high
bias and significant approximation errors. This situation, known as underfitting,
prevents the model from capturing essential market dynamics, resulting in poor
predictive performance and increased model risk. On the other hand, choosing
a highly complex hypothesis space may reduce approximation errors but can
introduce high variance, leading to overfitting and another form of model risk.

The bias-variance trade-off encapsulates this balance between approximation
error (bias) and estimation error (variance). The total expected prediction error
(EPE) can be decomposed as

.EPE = EX (Bias(X))2 + Variance(X) + σ 2

where the bias term reflects the approximation error due to the limitations of the
hypothesis space, the variance term represents the estimation error from the model’s
sensitivity to fluctuations in the training data (more on this later), and the irreducible
error (σ 2

.) denotes the inherent noise in the data that no model can capture. A model
with high bias (high approximation error) will have a large systematic error because
it cannot adequately represent the true function. This contributes significantly to the
model risk, as predictions will consistently deviate from reality.
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7.2.2 Mitigation Strategies

To reduce model risk related to bias and approximation errors, proper design and
selection of the hypothesis space are needed. Expanding the hypothesis space by
using more flexible models can better capture the complexity of the true function.
For example, increasing the number of layers or neurons in a neural network enables
it to approximate more complex functions, thereby minimizing approximation
errors. However, this flexibility must be balanced with the risk of overfitting, which
can lead to high variance and diminish the model’s ability to generalize effectively.

Regularization techniques, such as L1 and L2 regularization, are essential for
managing the complexity of the hypothesis space. By adding penalties for large
weights, these techniques help constrain the model, preventing it from becoming
overly complex and reducing the risk of overfitting. This balance between expanding
the hypothesis space and applying regularization plays an important role in address-
ing the bias-variance trade-off. It ensures that the model is flexible enough to capture
important patterns while remaining robust against noise in the training data.

Cross-validation and model selection criteria are common techniques used to
control the approximation error. By using cross-validation, practitioners can assess
how changes in the hypothesis space affect the model’s performance on unseen data.
This process helps to select a model that minimizes the total expected prediction
error by striking an optimal balance between bias and variance. Additionally, model
selection criteria, such as the Akaike Information Criterion (AIC) and the Bayesian
Information Criterion (BIC), provide quantitative metrics for evaluating the trade-
off between model fit and complexity. These metrics aid in choosing an appropriate
hypothesis space.

Incorporating domain knowledge, also termed inductive bias, into model design
can significantly reduce approximation errors. By embedding financial theories
and constraints, we ensure that the hypothesis space includes functions that are
realistic and relevant to the specific application. This alignment between the model’s
assumptions and the known properties of the data helps minimize bias, enhancing
the model’s ability to accurately capture true underlying relationships without being
misled by irrelevant patterns.

Finally, continuous monitoring and adjustment of the model are also essential
in managing approximation error and overall model risk. As more data become
available, or as the underlying data-generating processes evolve, it may be necessary
to adjust the hypothesis space to maintain the model’s effectiveness. This dynamic
approach ensures that the model remains aligned with the current state of the data,
thereby minimizing the approximation error and sustaining predictive performance
over time.

Figure 7-1 illustrates two different scenarios of approximation error. The left
panel represents a model class that corresponds to a smaller hypothesis space (thus
a smaller circle) and a bigger approximation error, identified by the distance between
the star (optimal model with minimal true risk) and the point within the circle that
is closest to the star. The right panel represents a larger hypothesis class that gives a
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Figure 7-1 Illustrating the approximation error for different hypothesis space

lower approximation error. However, it is also more difficult to estimate and identify
the corresponding point that is closest to the star.

7.3 Model Risk Due to Cost Function

The cost function, also known as the loss function, is fundamental to the training
process of models. It measures the difference between the predicted outputs ŷ.

and the actual target values y., serving as an objective metric that the optimization
algorithm aims to minimize. In financial applications, selecting the appropriate cost
function is especially crucial, as it directly impacts the model’s behavior, its sensi-
tivity to different types of errors, and the decisions made based on its predictions.
Using an unsuitable or misaligned cost function can introduce significant model risk,
leading to suboptimal performance, biased predictions, or unintended consequences.

Recall that the cost functionQ(w). for a model parameterized byw. can be defined
as a summation of individual loss over the entire training dataset:

.Q(w) = 1

N

N

i=1

l (yi, fw(Xi ))
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where l(yi, ŷi ). is the loss incurred for a single prediction ŷi = fw(Xi ).. The form of
the loss function l(·, ·). determines how prediction errors are penalized. A common
choice for evaluating regression tasks is the mean squared error (MSE):

.lMSE(yi, ŷi ) = 1

2
(yi − ŷi )

2

and the cross-entropy loss for (binary) classification tasks:

.lCE(yi, ŷi ) = −yi log(ŷi) − (1 − yi) log(1 − ŷi )

The choice of cost function affects how sensitive a model is to various types of
errors and shapes the optimization landscape. In finance, where the implications of
predictions can differ greatly based on the context, using an unsuitable cost function
can even increase model risk. If the cost function does not accurately represent
the financial consequences of prediction errors, the model can be optimized for
an incorrect objective. For example, using MSE in a context where large errors
are significantly more costly than small ones can lead to poor risk management
decisions. Although MSE penalizes errors quadratically and gives more weight
to larger mistakes, this approach may not align with the actual financial losses
associated with those prediction errors.

Some cost functions are more sensitive to outliers than others. MSE, for example,
is particularly affected due to its quadratic nature, which heavily penalizes large
deviations. This characteristic can be problematic when dealing with financial data
that often contain extreme values or anomalies, thus necessitating proper feature
standardization to alleviate this impact. This sensitivity may cause the model to
focus too much on fitting outliers, resulting in overfitting and poor generalization to
new data.

In addition, a cost function that does not include mechanisms to penalize model
complexity can potentially lead to overfitting. Overfitting occurs when the model
captures the noise and specific details of the training data, which reduces its ability
to generalize to new, unseen data. As a result, the risk associated with the model
increases because its predictions can become unreliable in real-world situations.
The costs associated with overestimating and underestimating a target variable
can also be significantly different. A symmetric cost function, such as MSE, does
not consider this asymmetry and may lead to suboptimal decisions. For example,
underestimating risk can result in more severe consequences than overestimating it.
However, a symmetric cost function treats both types of errors as equal.

The mathematical characteristics of the cost function also play an important
role in the optimization process. Nonconvex or nondifferentiable cost functions can
complicate training, leading to convergence problems or suboptimal solutions. This
can result in models that fail to accurately capture the underlying patterns in the
data, which in turn increases the approximation error and model risk. In contrast,
convex cost functions, such as MSE, are often easier to optimize and often have
closed-form solutions in simple models such as linear regression.
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7.3.1 Mitigation Strategies

To manage model risk associated with the choice of cost function, several mitigation
strategies can be utilized. One effective approach is to incorporate regularization
terms. Regularization adds a penalty term to the cost function, which discourages
overly complex models by penalizing large parameter values. This technique helps
prevent overfitting and enhances the model’s ability to generalize to new data. The
regularized cost function Qreg(w). can be written as

.Qreg(w) = Q(w) + w)

where λ. is the regularization coefficient that controls the trade-off between fitting the
data well and keeping the model parameters small, and w). is the regularization
term that measures the size or magnitude of the model parameters. Common choices
for w). include L1 regularization (Lasso) and L2 regularization (Ridge). L1
regularization is given by

. L1(w) w 1 =
d

j=1

|wj |

It promotes sparsity in model parameters, effectively selecting features by driving
less significant weights to zero. L2 regularization is expressed as

. L2(w) = 1

2
w 2

2 = 1

2

d

j=1

w2
j

It discourages the use of large weights but does not enforce sparsity, allowing
the impact to be distributed across all parameters. This approach leads to more
stable solutions. By incorporating regularization, the model becomes less sensitive
to fluctuations in the training data, which reduces variance and improves robustness.
This directly mitigates the risk of overfitting and enhances the model’s ability to
generalize effectively.

An effective strategy is to customize the cost function to align with business
objectives. Designing a cost function that properly reflects the specific financial
context could potentially reduce model risk. This approach involves using asym-
metric loss functions that penalize overestimations and underestimations differently,
taking into account the actual costs associated with prediction errors. For instance,
the Quantile Loss function is particularly useful when the costs are not symmetric.

.lτ (yi, ŷi ) = τ(yi − ŷi ) if yi ≥ ŷi

(1 − τ)(ŷi − yi) if yi < ŷi
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where τ ∈ (0, 1). controls the degree of asymmetry. Creating custom loss functions
that accurately reflect the financial impact of errors can be advantageous. For
instance, in portfolio optimization, it can be helpful to include metrics like Value
at Risk (VaR) or Conditional Value at Risk (CVaR) in the loss function to address
tail risks. By customizing the cost function to align with the specific risks and
costs associated with a financial application, the model can be guided to produce
predictions that are not only statistically sound but also economically meaningful.

Using robust loss functions is another effective way to reduce the impact of
outliers and anomalies in data. Robust loss functions are designed to be less sensitive
to extreme values. A notable example is the Huber loss, which merges the benefits
of MSE and Mean Absolute Error (MAE). It behaves quadratically for small errors
and linearly for large errors.

.lδ(yi, ŷi ) =
1
2 (yi − ŷi )

2 if |yi − ŷi | ≤ δ

δ|yi − ŷi | − 1
2δ

2 if |yi − ŷi | > δ

where δ . is a threshold parameter. This loss is a robust loss function that minimizes
the impact of outliers by assigning zero weight to errors that surpass a certain
threshold. Utilizing robust loss functions decreases the model’s susceptibility to
anomalies, thereby enhancing its stability and reliability.

As for the choice of λ., one often employs cross-validation and hyperparameter
tuning techniques to assess how different values affect the model’s performance on
unseen data. These techniques include grid search, random search, or more sample-
efficient Bayesian optimization designed to find the optimal values that balance the
trade-off between bias and variance.

In addition, ensuring that the cost function is both convex and smooth can
significantly enhance the optimization process, leading to more reliable convergence
toward either a global minimum or a good local minimum. By selecting cost
functions that are convex and differentiable, we can address the challenges posed
by nonconvex or nondifferentiable functions, which can lead to suboptimal models.
For instance, using cross-entropy loss for classification tasks guarantees convexity
in linear models, making the optimization process more manageable. In the case
of neural networks, even though the overall optimization landscape may still be
nonconvex, opting for smooth activation functions and loss functions can contribute
to achieving better optimization results.

7.4 Model Risk Due to Optimization Procedure

The optimization procedure is a crucial part of the training procedure of machine
learning models, particularly in finance, where accurate predictions and robustness
are essential. It plays a key role in how effectively a model minimizes its cost
function and identifies the optimal parameters within the hypothesis space. If
an optimization algorithm is poorly chosen or not tuned properly, it can lead to
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significant model risk. This may result in suboptimal convergence, getting stuck in
poor local minima, excessive sensitivity to training data, or overfitting, all of which
can harm model performance and increase the risk of negative outcomes.

Complex machine learning models, such as deep neural networks, involve
solving nonconvex optimization problems due to the intricate nature of their cost
functions and hypothesis spaces. The cost function Q(w)., parameterized by the
model weights w., is minimized during training:

.w∗ = argmin
w

Q(w)

Nonconvexity means that Q(w). may have multiple local minima, saddle points,
and flat regions. This complexity makes it difficult to locate the global minimum
or to find a solution that generalizes well. The choice of optimization algorithm
affects the path taken through the parameter space, ultimately determining which
local minimum is identified.

For instance, stochastic gradient descent (SGD) and its variants are commonly
used optimization algorithms for training neural networks. SGD updates the model
parameters iteratively using mini-batches of data, which introduces randomness into
the optimization process.

.wt+1 = wt − ηt∇wQBt (wt )

where ηt . is the learning rate at iteration t ., Bt . is the mini-batch of data sampled
at iteration t ., and ∇wQBt (wt ). is the gradient of the cost function computed over
the mini-batch. The noise inherent in sampling different mini-batches aids SGD in
escaping shallow local minima and saddle points, potentially directing it toward
flatter minima that are linked to better generalization.

7.4.1 Estimation Error

In statistical learning theory, the total error of a model is decomposed into
two primary components: the approximation error and the estimation error. As
introduced earlier, the approximation error arises from the inherent limitations of
the chosen hypothesis space H. in representing the true underlying function f ∗(X)..
It quantifies the smallest discrepancy between f ∗(X). and any function within H..
This indicates that a smaller hypothesis space may result in a higher approximation
error because of its limited ability to capture complex patterns in the data.

The estimation error arises from determining the optimal parameters within the
hypothesis space using a limited set of training data. It measures the difference
between the best possible model f̂ . inH. (in terms of the true risk) and the model fw .

learned from the data.

.Estimation Error = EX f̂ (X) − fw(X)
2
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Estimation error reflects sample variability and the optimization algorithm’s
efficiency in identifying the optimal parameters withinH.. The optimization process
has a direct impact on the estimation error. A well-designed and well-tuned
optimization algorithm can significantly reduce the estimation error by identifying
parameters that closely approximate the optimal solution. In contrast, a poorly
designed or suboptimal algorithm may struggle to find the appropriate parameters
within the hypothesis space, leading to higher estimation errors.

The optimization process in machine learning models used in finance carries sev-
eral risks. One significant concern is structural risk, which arises from the flexibility
and high-dimensional parameter spaces of models, such as deep neural networks.
This means that a more flexible model is more difficult to train. Additionally, as
introduced earlier, the nonconvex nature of the optimization landscape can result in
nonunique solutions. Depending on the initial conditions and stochastic factors, the
optimization algorithm may converge to different local minima.

The sensitivity of the model is another crucial issue to consider. When using
high-dimensional inputs and complex models, even small changes in the inputs or
parameters can cause significant variations in the model’s outputs. Furthermore, ran-
domness during training—due to factors such as variations in initialization, dropout,
and the use of stochastic gradient descent—can contribute to the unpredictability of
the resulting models, potentially increasing estimation errors.

Robustness and adversarial vulnerabilities present significant risks for financial
ML models. Both intentional and unintentional adversarial attacks, such as data
poisoning or the exploitation of inherent weaknesses, can target these models.
If an optimization algorithm does not prioritize robustness, it may converge on
solutions that perform poorly when exposed to minor perturbations, which can lead
to increased estimation errors and model risk. Furthermore, financial markets are
dynamic, and data distributions can change over time, resulting in model drift.
Optimization algorithms that focus excessively on fitting historical data without
mechanisms to adapt to new data may produce models that do not generalize well,
leading to higher estimation errors when applied to current market conditions.

Another significant risk is overfitting due to excessive optimization, such as
training a neural network for too long. When an optimization algorithm concentrates
solely on minimizing the training cost function, it can end up capturing noise instead
of the underlying patterns in the data. This can result in models that exhibit low
training error but high estimation error when faced with unseen data.

Comparing handcrafted models with ML models also reveals certain
optimization-related risks. Handcrafted models in finance are typically low-
dimensional, producing smoother and more interpretable outputs. They often
use convex optimization procedures, which result in unique and stable solutions
with lower estimation errors due to simpler optimization processes. However, these
models may experience high approximation errors if they fail to capture the complex
dynamics of the market.

On the other hand, ML models offer greater flexibility and can reduce approx-
imation errors by identifying intricate patterns in the data. However, their com-
plex optimization landscapes and high-dimensional parameter spaces can lead to
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Figure 7-2 Comparing estimation error and approximation error of two different hypothesis
spaces

increased estimation errors, primarily due to challenges in the optimization process.
The nonconvex nature of these models and their sensitivity to training conditions
can make the optimization process more likely to converge on suboptimal solutions.

Figure 7-2 compares the estimation error and the approximation error of two
different hypothesis spaces (due to two different model classes). The left circle
corresponds to a small hypothesis space, which tends to lead to a small estimation
error (simpler models are easier to train) and a large approximation error (insuffi-
cient model complexity to capture the true underlying relationship). The right circle
corresponds to a large hypothesis space, which likely leads to a large estimation
error (since complex models are difficult to train) and a small approximation error
(capable of capturing the underlying relationship).

7.4.2 Mitigation Strategies

To effectively manage the model risk associated with the optimization process and
minimize estimation errors, several strategies can be used. First, it is essential to
choose an appropriate optimization algorithm that fits the model architecture and
the specific problem domain. For deep neural networks, popular algorithms include
SGD with momentum, Adam, and RMSProp. These algorithms are preferred
because they efficiently handle nonconvex landscapes and large datasets. Designed
to navigate complex optimization landscapes, they tend to increase the likelihood of
finding robust solutions that generalize well.

Tuning hyperparameters such as learning rates, batch sizes, and momentum coef-
ficients is crucial to improving model convergence and generalization. Techniques
like grid search, random search, and Bayesian optimization can be used to find the
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best configurations that improve performance. Moreover, the proper initialization
of model parameters can significantly influence the optimization process. Using
methods like Xavier or He initialization helps maintain the variance of activations
across layers, leading to better convergence. This approach also reduces estimation
errors by preventing problems such as vanishing or exploding gradients.

Incorporating regularization techniques, such as L1 or L2 regularization,
dropout, and batch normalization, helps prevent overfitting during the optimization
process. Regularization adds constraints that encourage the optimization algorithm
to find solutions with better generalization properties by penalizing overly complex
models. In addition, implementing early stop criteria is an effective strategy. This
involves halting training when the model’s performance on a validation set no
longer improves (for several iterations in a row). By doing this, we can prevent
the model from overfitting the training data, thereby reducing estimation error and
ensuring that the model remains applicable to unseen data.

Ensemble methods, which involve combining multiple models that have been
trained with different initializations or optimization algorithms, can potentially
reduce the estimation error by averaging individual models. By doing so, it reduces
the risk associated with relying on a single optimization outcome, resulting in more
stable and reliable predictions. Furthermore, robust optimization techniques, such as
adversarial training, which involves training models on perturbed data, can improve
performance under challenging conditions. These methods help the optimization
algorithm identify solutions that are less sensitive to variations in input, thereby
improving the model’s resilience and further reducing estimation error.

In addition, regular monitoring of optimization metrics, such as training and
validation loss curves, gradient norms, and parameter distributions, offers valuable
insights into the optimization process. These diagnostics help identify and address
issues such as vanishing or exploding gradients, allowing for timely adjustments
to the optimization procedure. In addition, incorporating expert knowledge into
the model and optimization process can significantly improve regularization and
stability. By adjusting model architectures to incorporate specific financial features,
applying constraints, or adding penalties to the loss function, the optimization
algorithm is guided toward more realistic and economically meaningful solutions.

Analyzing the geometry of the cost function could also help to understand the
optimization landscape and inform the choice of optimization strategies. Recogniz-
ing potential challenges, such as flat regions or sharp minima, allows practitioners
to adjust their optimization procedures accordingly, leading to more effective
navigation through the parameter space.

7.5 Conclusion

In the complex and ever-changing landscape of financial markets, managing model
risk is crucial for ensuring the reliability and effectiveness of quantitative models. In
this chapter, we have explored the various aspects of model risk related to machine
learning models in finance. We identified key areas, including data integrity, model
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selection, alignment of cost functions, and the optimization process. Each of these
components is vital to the overall performance and robustness of financial models.

Data are the foundation of ML models, and the quality of these data greatly
affects the model’s ability to generalize and perform accurately in real-world
situations. We examined the inherent risks associated with data, such as sampling
bias, spurious correlations, class imbalance, and challenges in data preprocessing.
These issues can result in models that either fail to capture important market
dynamics or become overfit to noise, increasing the chances of making incorrect
predictions. To improve data quality and ensure models are trained on robust
and representative datasets, it is essential to implement mitigation strategies such
as synthetic data generation, market simulation engines, and standardized data
cleaning methodologies.

Model selection adds another layer of complexity and risk. Although more
complex ML models tend to capture intricate patterns, it also makes them prone
to high estimation errors and overfitting. We discussed the importance of balancing
approximation and estimation errors through careful design of the hypothesis space,
the use of regularization techniques, and the incorporation of domain knowledge.
By choosing appropriate model architectures and employing rigorous validation
practices, practitioners can achieve an optimal balance that minimizes both bias and
variance, thus reducing model risk.

The selection of a cost function is crucial because it determines how models
penalize various types of errors, ultimately influencing the optimization process. An
inappropriate cost function can result in models that do not align with financial
goals, either by placing too much emphasis on certain errors or by neglecting
the asymmetric costs associated with underestimating and overestimating. We
emphasized the importance of tailoring cost functions to reflect business objectives.
This includes using robust loss functions to address outliers and ensuring that cost
functions are both convex and smooth to enable effective optimization.

Optimization procedures can increase model risk by affecting how well models
navigate complex, nonconvex landscapes to find optimal or near-optimal solutions.
The effectiveness of the optimization algorithm has a direct impact on estimation
error, which measures the difference between the learned model and the best
possible model within the hypothesis space. Risks such as converging to poor
local minima, sensitivity to hyperparameters, and overfitting due to excessive
optimization highlight the need for robust optimization strategies. Techniques such
as hyperparameter tuning, regularization, early stopping, ensemble methods, and
adaptive optimization algorithms are essential to mitigate these risks and ensure
that the models generalize well to unseen data.

Comparing ML models with traditional handcrafted models highlights the
trade-offs involved. Handcrafted models are often simpler and more interpretable,
and they tend to have a lower estimation error because of their straightforward
optimization processes. However, they can struggle with higher approximation
errors as they may not effectively capture complex market behaviors. On the
other hand, ML models offer the flexibility to model intricate patterns and reduce
approximation error. However, they can lead to an increase in the estimation error
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and are more vulnerable to optimization-related risks. This comparison emphasizes
the importance of adopting a balanced approach that takes advantage of the strengths
of both methodologies while addressing their respective weaknesses.

In conclusion, effectively managing model risk in financial machine learning
requires a comprehensive approach that addresses risks related to data quality, model
selection, cost function alignment, and optimization procedures. By implementing
thorough mitigation strategies—such as data preprocessing, regularization, robust
optimization, and continuous monitoring—financial institutions can develop models
that are not only accurate and reliable but also resilient to the ever-evolving market
conditions. As the financial landscape continues to advance with the integration of
sophisticated ML techniques, the importance of diligent model risk management
cannot be overstated. It is essential to ensure that the models are built on a
foundation of high-quality data, properly selected architectures, well-aligned cost
functions, and robust optimization processes to protect against potential financial
losses and maintain trust in quantitative decision-making tools.
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Legal and regulatory risks, 19, 21
LGD, see Loss given default (LGD)
Liquidity risk, 5, 17, 21
Logarithmic/log return, 39, 63, 168, 170
Long-Term Capital Management (LTCM), 19
Loss given default (LGD), 15, 67, 69, 70,

73–79, 81, 93
definition, 74
collateral valuation, 74–75
expert judgment and heuristics, 75
historical recovery, 74
machine learning models, 75
and PD, 73, 76
statistical models, 75

Low-risk assets
cash and cash equivalents, 22–23
government bonds, 23

LTCM, see Long-Term Capital Management
(LTCM)

M
Machine learning (ML), 201, 202
Machine learning models, 210, 211, 214,

221–223, 226
MAE, see Mean Absolute Error (MAE)
Market conditions, 13, 25, 122, 126, 151, 211
Market-neutral strategy, 95
Market risk, 5, 21, 95

asset classes, 95
commodity risk, 7
currency exchange rates, 95
currency risk, 7
diversification, 7–8, 14
equity risk, 6–7
factors, 6
global minimum-variance (GMV), 14
hedging, 12
integration, 123
interest rate risk, 7
managing, 95
MDD (seeMaximum drawdown (MDD))
metrics, 95, 96, 122
proactive risk management, 13
risk parity strategies, 13
stock prices, 95
stop-loss orders, 13
tactical asset allocation, 12–13
and transaction costs, 12
VaR (see Value at Risk (VaR))
variance (see Variance)
wealth curve, strategies, 8–11
weight for the bond index (AGG), 15

Maximum drawdown (MDD), 122, 123
calculation, 108, 110–111

cumulative returns and running
maximum, 111, 112

daily drawdown, 112
and VaR/ES, 112

definition, 107
features, 108–110

non-parametric measure, 109
portfolio, 109
potential loss, 109
profiting strategy, 109
sequence of returns, 109
severity of losses, 108
time period, 110
time scale, 110
vs. variance, 108

portfolio’s value, 107, 108
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potential severity of losses, 107
Mean Absolute Error (MAE), 221
Mean squared error (MSE), 203, 219
Mitigation strategies, 211, 217, 220, 226, 227
ML, see Machine learning (ML)
Model risk, 5, 18, 21, 201

components, 202
constant volatility, 201
cost function (see Cost function)
data, 226

data leakage, 205
financial crises, 204
financial data, 204
financial machine learning (see

Financial machine learning)
financial sector, 205
generalization, 203
implementation, 205
insufficient data, 204
k-fold cross-validation, 205
machine learning model, 202, 205
optimization process, 203
overfitting/underfitting, 203
regularization methods, 205
subsets, 203
test set, 204
training process, 202–203
training set, 203–204
train-validation-test split, 204, 205
validation set, 204

financial sector, 201
hypothesis space, 216
managing, 227
models, 201
model selection (seeModel selection)
model specification, 201
numerical implementation, 201
optimization procedure (see Optimization

procedure)
Model selection, 226

approximation error, 215–218
bias, 216
classical paradigm, 214
hyperparameters, 215
hypothesis space, 214, 215
mitigation strategies, 217–218
model architecture, 214, 215
model class, 214
neural network, 215

Moderate-risk assets, 23–24
Monte Carlo simulation, 120–122, 201
Monthly volatility, 44–45
MSE, seeMean squared error (MSE)
Multi-period returns, 41–42

N
Neural networks, 18, 73, 75, 77, 203–204, 214,

215, 217, 221–224

O
Operational risk, 5, 17–18, 21
Optimal hedge ratio

basis risk, 129
calculation, 131
determination, 129
hedged position, 130
idealized assumption, 129
negative signs, 131
number of futures con, 131
variance, 130

Optimization procedures, 226
estimation error, 222

adversarial vulnerabilities, 223
vs. approximation error, 224
handcrafted models, 223
model sensitivity, 223
optimization process, 223
overfitting, 223
robustness, 223
structural risk, 223

hypothesis space, 221
machine learning models, 222
mitigation strategies, 224–225
nonconvexity, 222
SGD, 222

Option contracts, hedging
covered call strategy (see Covered call

strategy)
vs. futures contracts, hedging, 126
hedging strategies, 141, 142
investors, 126
options, 141
protective put strategy (see Protective put

strategy)
underlying asset, 141

OTC, see Over-the-counter (OTC)
Over-the-counter (OTC), 210

P
Pandemics, 1, 3, 11
Partial differential equation (PDE), 166
PD, see Probability of default (PD)
PDE, see Partial differential equation (PDE)
Percentage return, 32, 38–39
Portfolio, 4, 44, 107, 125, 151, 221
Probability of default (PD), 16, 23, 66–68, 82,

83



236 Index

borrower’s creditworthiness, 70
build PD model

application data, 82
behavioral data, 82
categorical data, 86–87
data processing and exploration, 83–84
logistic regression model, 88
missing data, 86
model evaluation, 88–90
outliers, 84–86
ROC curve, 90–93
train-test split, 87

calculation, 71
decision trees and random forests, 72–73
GBMs, 73
logistic regression, 71–72
machine learning classifiers, 73
neural networks, 73
SVM, 73

Protective put strategy, 142
asset, 142
asset price paths, 148
BSM model, 147, 148
GBM, 147
hedged vs. unhedged positions, 150–151
implementation, 147
initial outlay, 142
insurance, 143
maturity, 143
parameters, 147–148
payoff curves, 143, 145–147
payoffs, 142, 144, 149–150
P&L, 143
plot, 144–145
premium, 142, 144, 148
put options, 143, 144, 148
scenarios, 151
strategies comparison, 150
trade-off, 142

R
Real estate investment trusts (REITs), 24, 27,

28
Receiver Operating Characteristic (ROC)

curve, 90–93
Regularization techniques, 217, 220, 225
REITs, see Real estate investment trusts

(REITs)
Relative frequency, 3, 4
Resampling techniques, 212
Return

absolute return, 38
annualized return, 32, 40–41

capital appreciation, 32
description, 31–32
dividends, 32
interest payments, 32
logarithmic/log return, 39
measure, 38
percentage return, 38–39
risk-adjusted return, 33
single-vs. multi-period returns, 41–42
sources of return, 32
total vs. price return, 39–40

Risk
annualization of riskmeasures, 43–44
forms, 33
and return, 33
stable vs. volatile stocks

PDF, 35, 36
wealth curve, 33–35

variance and standard deviation, 42, 43
volatility of the asset, 42, 43

Risk-adjusted return
portfolio selection strategies

data preparation, 48–49
define portfolios, 49–52
optimization strategies, 52–63

Sharpe ratio, 46
Sortino ratio, 47
Treynor ratio, 47–48

Risk management, 161, 163, 165, 201
probability distribution, 3
relative frequency, 3, 4
S&P 500 price curve, 1–3

Risk mitigation, 76, 142, 164
Risk-return trade-off, 37–38
Risk-weighted assets (RWAs), 79–82
Robustness, 66, 73, 209, 220, 223
Robust optimization techniques, 225, 227
RWAs, see Risk-weighted assets (RWAs)

S
SDE, see Stochastic differential equation

(SDE)
SGD, see Stochastic gradient descent (SGD)
Sharpe ratio, 46–48, 50, 51, 53, 54, 60, 63,

171, 176
Single-period returns, 33, 40–43
SMOTE, see Synthetic Minority Oversampling

Technique (SMOTE)
Sortino ratio, 47, 48, 50, 51, 54, 60, 63
Spot/cash market, 127, 131–133
Static hedging

changing volatility
Black-Scholes model, 195–196
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call option price, 195
digital call option, 194–196
strike price, 194, 196

constant volatility
call spread strategy, 191, 192, 194
call spread value, 192, 193
digital call option, 191, 192, 194
replication, 193

derivatives, 177
digital call option, 197–198

Black-Scholes formula, 197
call spread, 196, 198
European call options, 196
payoff, 198, 199
portfolio, 199
prices, 197
replication, 198

digital option, 190–191
establishing hedge, 165
European call option, 193
European put option

Black-Scholes formula, 187
implementation, 186–187
payoff, 183, 187
payoff function, 188–189
portfolio, 182, 183
price, 187
put-call parity, 184–185, 187, 188
put option, 182
rebalancing, 183
risk-neutral valuation framework,

185–186
simulations, 187
zero-coupon bonds, 187, 199

forward contract, 180–181
Arbitrageurs, 182
asset, 177
current asset price & forward price, 178
definition, 177
forward price, 182
investor, 181
maturity, 179
net initial investment, 179, 182
net payoff curve, 181
payoff, 178
SDE, 178
static replication, 179
value determination, 177

no-arbitrage principles, 177
non-constant volatility, 199
objective, 177, 182
portfolio, 177, 199
transaction costs, 177
volatility function, 200

Statistical learning theory, 216, 222
Stochastic differential equation (SDE), 135,

178
Stochastic gradient descent (SGD), 222, 224
Stocks (equities), 25
Strategic planning, 69, 201
Stress loss (SL), 68–70, 93
Stress testing, 18, 69, 113, 212
Support vector machines (SVM), 73
SVM, see Support vector machines (SVM)
Synthetic Minority Oversampling Technique

(SMOTE), 212
Systemic risk, 5, 19–20

T
Tesla (TSLA), 170, 176
Traditional frameworks, 201
Treynor ratio, 47–48, 50, 52, 55, 60, 63

U
UL, see Unexpected loss (UL)
Unexpected loss (UL), 68, 69, 81, 93

V
VAEs, see Variational Autoencoders (VAEs)
Value at Risk (VaR), 122, 123, 221

calculation methods, 114
daily returns, 116
definition, 113
ES, 114
historical simulation approach, 114–115
mathematical properties, 113–114
Monte Carlo simulation, 120–122
parameter approach (see Variance-

covariance method)
portfolio, 114
quantile measure, 113
regulatory bodies, 113
uses, 113
Variance-covariance method (see

Variance-covariance method)
VaR, see Value at Risk (VaR)
Variance, 122, 123

ACF and PACF plots, 106, 107
Bessel’s correction, 97, 99
calculation, 97
daily adjusted close price of Apple, 102
dataset, 96
definition, 96
finance, 96
high volatility, 96
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limitations
asset returns, 104
autocorrelation, 105–106
non-symmetric returns, 104
normal distribution, 104
outliers, 101–103
volatility clustering, 105

sample variance, unbiasedness, 97–99
series of returns, 96–97
statistics, 96
stock data and calculating variance,

100–101
Variance-covariance method

calculation, 117–118
daily P&L and rolling, 119–120
limitations, 118
loss, 116

portfolio, 117
portfolio returns, 116
return distribution, 118
standard normal distribution, 117
z-score, 116, 118

Variational Autoencoders (VAEs), 211, 212

W
Walmart (WMT), 170, 176
Wiener process, 135

Y
Yield-enhancement strategy, see Covered call

strategy
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