
https://t.me/PrMaB2



Table of Contents

Cover
Table of Contents
Title Page
Foreword
Introduction

What Does This Book Cover?
Who Should Read This Book

1 Asset Management
Physical and Mobile Asset Management
Cloud Asset Management
Third-Party Software and Open Source Software
(OSS)
On-Premises and Cloud Asset Inventories
Tooling
Asset Management Risk
Recommendations for Asset Management
Summary

2 Patch Management
Foundations of Patch Management
Manual Patch Management
Automated Patch Management
Patch Management for Development Environments
Open Source Patching
Not All Software Is Equal
Who Owns Patch Management?
Building a Patch Management Program

https://t.me/PrMaB2

clbr://internal.invalid/book/OPS/cover.xhtml


Summary
3 Secure Configuration

Regulations, Frameworks, and Laws
NSA and CISA Top Ten Cybersecurity
Misconfigurations
Summary

4 Continuous Vulnerability Management
CIS Control 7—Continuous Vulnerability
Management
Continuous Monitoring Practices
Summary

5 Vulnerability Scoring and Software Identification
Common Vulnerability Scoring System
Exploit Prediction Scoring System
Moving Forward
Stakeholder-Specific Vulnerability Categorization
Software Identification Formats
Summary

6 Vulnerability and Exploit Database Management
National Vulnerability Database (NVD)
Sonatype Open Source Software Index
Open Source Vulnerabilities
GitHub Advisory Database
Exploit Databases
Summary

7 Vulnerability Chaining
Vulnerability Chaining Attacks
Vulnerability Chaining and Scoring
Vulnerability Chaining Blindness

https://t.me/PrMaB2



The Human Aspect of Vulnerability Chaining
Integration into VMPs
IT and Development Usage
Summary

8 Vulnerability Threat Intelligence
Why Is Threat Intel Important to VMPs?
Where to Start
Threat Hunting
Integrating Threat Intel into VMPs
Summary

9 Cloud, DevSecOps, and Software Supply Chain
Security

Cloud Service Models and Shared Responsibility
Hybrid and Multicloud Environments
Summary

10 The Human Element in Vulnerability Management
Human Factors Engineering
Human Factors Security Engineering
Cognition and Metacognition
Vulnerability Cognition
The Art of Decision-Making
Integration of Human Factors into a VMP
Summary

11 Secure-by-Design
Secure-by-Design/Default
Secure-by-Design
Secure-by-Default
Software Product Security Principles

https://t.me/PrMaB2



Secure-by-Design Tactics
Secure-by-Default Tactics
Hardening vs. Loosening Guides
Recommendations for Customers
Threat Modeling
Secure Software Development
Security Chaos Engineering and Resilience
Summary

12 Vulnerability Management Maturity Model
Step 1: Asset Management
Step 2: Secure Configuration
Step 3: Continuous Monitoring
Step 4: Automated Vulnerability Management
Step 5: Integrating Human Factors
Step 6: Vulnerability Threat Intelligence
Summary

Acknowledgments
About the Authors
About the Technical Editor
Index
Copyright
Dedication
End User License Agreement

List of Illustrations

Chapter 1
Figure 1.1: Hybrid vs. multicloud environments
Figure 1.2: IT infrastructure layers

https://t.me/PrMaB2



Figure 1.3: Various enterprise layers
Figure 1.4: Physical data centers
Figure 1.5: On-premises vs. cloud environments
Figure 1.6: Complexity of an asset inventory system
Figure 1.7: Progression of organizational
management over the years
Figure 1.8: Digital transformation (DX)

Chapter 2
Figure 2.1: Foundations of patch management
pyramid
Figure 2.2: Manual patching risks
Figure 2.3: How Ansible works
Figure 2.4: Example of Ansible script for patch
management
Figure 2.5: Benefits of automated vs. manual
patching solutions
Figure 2.6: Risks of automated patching
Figure 2.7: Example of RACI matrix for
infrastructure and operations
Figure 2.8: End-of-life software listing examples
Figure 2.9: Alignment of people-process-tech

Chapter 3
Figure 3.1: CISA KEV flag
Figure 3.2: Ratio of monthly open to closed
vulnerabilities
Figure 3.3: Weaponization of vulnerabilities

Chapter 5

https://t.me/PrMaB2



Figure 5.1: CVSS metrics
Figure 5.2: CVSS nomenclature
Figure 5.3: How a CVE Makes it’s Way Into the
NVD
Figure 5.4: Base metric group breakdown
Figure 5.5: Threat metric group
Figure 5.6: Environmental metric group
Figure 5.7: Supplemental metric group
Figure 5.8: Qualitative Severity Rating Scale
Figure 5.9: CVE improvements
Figure 5.10: EPSS efficiency
Figure 5.11: SSVC comparison
Figure 5.12: Potential SSVC decisions
Figure 5.13: Potential exploitation decision values
Figure 5.14: Two options of technical impact
Figure 5.15: Lockheed Martin's seven-step Kill
Chain
Figure 5.16: CISA's SSVC binary approach to
assessment
Figure 5.17: Mission Prevalence potential decision
values
Figure 5.18: SSVC Impact Types
Figure 5.19: Three criteria of Mitigation Status
Figure 5.20: An expanded attack tree
Figure 5.21: A table format of an attack tree
Figure 5.22: CPE 2.3's structure

https://t.me/PrMaB2



Figure 5.23: 2022 OSSRA Report summary
Figure 5.24: Required CWE elements

Chapter 6
Figure 6.1: OSV data aggregation

Chapter 7
Figure 7.1: Direct vs. indirect chaining
Figure 7.2: Diagram of gaps
Figure 7.3: Combination of terms to create VCB
Figure 7.4: Solutions for VCB
Figure 7.5: Integration into a VMP diagram

Chapter 9
Figure 9.1: The shared responsibility model
Figure 9.2: The four Cs of cloud security
Figure 9.3: Containers vs. virtual machines
Figure 9.4: Chainguard analysis of base images
Figure 9.5: A Kubernetes cluster
Figure 9.6: Inherent OSS risks
Figure 9.7: 2022 OSS security risks
Figure 9.8: OSS in 2021

Chapter 10
Figure 10.1: Vulnerability management life cycle
Figure 10.2: How human factors incorporate
psychology, engineering, and desi...
Figure 10.3: Example of SOC tools and complexity
Figure 10.4: Example of vulnerability dashboard
Figure 10.5: Example of a vulnerability report

https://t.me/PrMaB2



Figure 10.6: Funnel of data inputs for patching
Figure 10.7: Roadmap of solutions

Chapter 12
Figure 12.1: A maturity model pyramid

https://t.me/PrMaB2



Effective Vulnerability

Management

Managing Risk in the Vulnerable

Digital Ecosystem

 

Chris Hughes, M.S., MBA

Nikki Robinson, DSc, PhD

 
 
 
 
 
 

https://t.me/PrMaB2



Foreword

When I helped found Tenable Network Security, in many
ways I was trying to get ahead of all the ways that we'd
seen bad actors break into networks with our Dragon
Network Intrusion Detection System. With Dragon, we saw
all sorts of hostile state-of-the-art nation-state attacks and
exploitations of unpatched systems as well as ankle-biter
hackers. In starting Tenable, my cofounders and I wanted
to make cybersecurity an obtainable and defendable goal.
Continuous monitoring did not exist as a concept in the
early 2000s. Annual penetration tests and even quarterly
vulnerability scans were the norm. We wanted to make
understanding cybersecurity risks easy for individuals and
organizations.
As use of the Internet and dependency on it grew, so did
nation-state threat actors. Our industry responded with IT
regulations and frameworks. By 2020, we had the Payment
Card Industry requirement, which was a wide variety of
government standards that culminated in the National
Institute of Standards and Technology (NIST)
Cybersecurity Framework as well as the MITRE ATT&CK
framework. During that same time frame, we saw the SANS
organization publish their list of the Top 20 Vulnerabilities.
This quickly became hard to manage and was replaced by
the SANS Top 20 Controls, which was subsumed by the
Center for Internet Security (CIS). We also saw hacking
move from denial-of-service attacks on websites in the early
2000s, to crippling nation-state attacks that shut down
hospitals, shipyards, and grocery stores.
As awareness of the risks of IT grew, new types of tech
seemed to grow faster. From 2000 to 2020, we saw the
introduction of Wi-Fi networks, mobile devices,

https://t.me/PrMaB2



virtualization, containers, software-as-a-service (SaaS)
services, elastic cloud infrastructure, and embedded
devices, and now we are grappling with implementing
artificial intelligence (AI).
In the last decade, we have seen an increased role of
government in IT. The Trump administration banned
network technologies like drones, security cameras, and
network devices from China, and introduced the “defend
forward” concept that is still in use by the National
Security Agency (NSA). The Biden administration recently
added the Office of the National Cyber Director, which
quarterbacks much of the U.S. government's cyber
strategy. It's very likely there will be more regulation to
come that will impact how we defend and use the Internet.
However, as of late 2023, we don't have a consistent recipe
or set of rules for securing data. If you are new to
vulnerability management, this may seem surprising to you.
How you perform vulnerability management is extremely
subjective, based on the technology, the sensitivity of the
data stored within it, the sophistication of the threat actors
you are protecting against, your available budget, your
people, and a wide variety of political, regulatory, and legal
requirements. What works for a financial institution
protecting trillions of dollars of transactions per day simply
won't work for protecting the U.S. President's email.
Protecting a video game service with millions of users is
very different than keeping ransomware actors from
stealing credit cards at your favorite coffee shop. Even
though we all use the Internet, we all use it differently,
with different technologies and tolerances for reliability
and potential data loss.
It's because of this that I am very happy to have been asked
by Nikki and Chris to write this book's Foreword. No
matter what type of network security background you have,

https://t.me/PrMaB2



this book does an excellent job of covering the various
aspects of vulnerability management. It presents several
different advantages and limitations of technology for
measuring vulnerabilities and remediating them across a
wide breadth of technologies. It also covers the different
types of frameworks that can be used to make sense of
assets, their vulnerability, and compliance data, which can
be extremely overwhelming. Whether you are learning
vulnerability management concepts for the first time or
looking to run an enterprise team focused on securing the
network of a major bank, this book has the proper topics
covered.
—Ron Gula, President, Gula Tech Adventures and Co-

Founder, Tenable Network Security

https://t.me/PrMaB2



Introduction

We live in a world that is enabled in countless ways by
software. Over a decade ago, Marc Andreessen quipped,
“Software is eating the world,” and it indeed is. From our
personal leisure activities to critical infrastructure and
national security, nearly everything uses software. It
powers our medical devices, telecommunications networks,
water treatment facilities, educational institutions, and
countless other examples. This means that software is
pervasive, but as software use and integration into every
facet of society has grown, so have the vulnerabilities
associated with our digital systems. This has manifested in
tremendous levels of systemic risk that can, has, and will
continue to impact our daily lives.
The World Economic Forum (WEF) stated that at the end of
2022, a total of 60 percent of global gross domestic product
(GDP) was dependent on digital technologies. That said,
the WEF also conducted a survey in 2023 with respondents
projecting a “catastrophic” cyber incident within the next
two years. The threats of vulnerability exploitation are
growing each year, in combination with the ease of use of
malicious tools for creating and distributing ransomware
and malware.
Since the earliest days of computer systems, researchers
and practitioners have been trying to address
vulnerabilities in digital systems by practicing what is
referred to as “vulnerability management.” As defined by
the National Institute of Standards and Technology (NIST),
a vulnerability is “a weakness in an information system,
system security procedures, internal controls, or
implementation that could be exploited or triggered by a
threat source.”

https://t.me/PrMaB2



Digital system vulnerabilities and the ability for them to be
exploited were documented as early as the 1970s, with a
report titled “Security Controls for Computer Systems,”
also known as the “Ware Report” because a RAND
employee named Willis Ware chaired the committee
producing it for the U.S. Department of Defense (DoD). In
addition to the report touching on vulnerabilities in
systems, it discusses the need to design systems with
security in mind throughout the software and system
development life cycle. In 2023, the U.S. Cybersecurity and
Infrastructure Security Agency (CISA) issued guidance
titled, “Shifting the Balance of Cybersecurity Risk:
Security-by-Design and Default Principles,” which called for
technology manufacturers to shift to creating products that
are secure-by-design.
Despite the calls for secure-by-design systems and the
awareness for over 50 years of the vulnerabilities of digital
systems and the ability to exploit them, as an industry we
continue to struggle with remediating vulnerabilities in
digital systems as well as ensuring that security is a core
part of system design and development. As modern digital
environments have only gotten more complex and software
more pervasive, organizations struggle to keep up with
addressing vulnerabilities, now leading to unforeseen levels
of systemic risk in our digital ecosystems.
Tremendous growth has occurred in publicly disclosed and
tracked vulnerabilities, with notable sources such as the
NIST National Vulnerability Database (NVD) seeing
Common Vulnerabilities and Exposures (CVEs) grow from
merely a few hundred in the 1990s to over 190,000 in 2022.
These vulnerabilities are seen across a sprawl of software,
hardware, libraries, and tools (in both open source and off-
the-shelf solutions). With the complexity of software and
applications across organizations, the sheer volume of
vulnerabilities is difficult to track and remediate.

https://t.me/PrMaB2



As the list of publicly disclosed vulnerabilities has grown
each year, so have organizations' backlogs of unresolved
vulnerabilities as they struggle to keep pace. A 2022 survey
conducted by security vendor Rezilion and the Ponemon
Institute found that 66 percent of respondents cited having
a backlog of more than 100,000 vulnerabilities, and that
they're only able to patch less than half of those
vulnerabilities. Another study published in 2022 by security
vendor Qualys found that there remains a gap between
organizations' mean-time-to-remediate (MTTR)
vulnerabilities and malicious actors' abilities to exploit
them. In our roles both in organizations and as members of
society, we, as cybersecurity practitioners, simply cannot
keep up with the growth of vulnerabilities associated with
our digital ecosystem, nor the malicious actors who are
actively exploiting them.
Contributing to the problem of the growing publication of
vulnerabilities and malicious actors exploiting them is the
reality that organizations can't identify the important
components of the noise. Despite there being over 25,000
known vulnerabilities published in 2022, less than 1
percent of all these known vulnerabilities were exploited by
malicious actors. This means that organizations are
spending energy, effort, and resources on addressing
vulnerabilities that never actually get exploited by
malicious actors, and are trying to make sense of and
prioritize the ones that have been or are likely to be
exploited.
As we will point out throughout the text, in addition to
organizations struggling to keep up with patching flaws in
software and systems, there are a myriad of other factors
that complicate an organization's ability to address
vulnerabilities. These include challenges with proper asset
visibility and inventory, ensuring secure configurations are
in place to prevent system exploitation by malicious actors,

https://t.me/PrMaB2



the pervasive use of third-party and open source code,
configuration missteps, and the addition of the human
factors in vulnerability management.
Malicious actors increasingly are gaining efficiency at
chaining together vulnerabilities and taking advantage of
the pervasiveness of software in modern society, driven by
widespread efforts at digital transformation. Efforts such as
DevSecOps that promise to “shift security left” have their
own challenges like noisy findings by modern vulnerability
scanning tools, cognitive overload on often-understaffed
security teams, and worldwide shortages of cybersecurity
talent.
Given the prevalence of vulnerability chaining, digital
transformation, DevSecOps, and software supply chain
security concerns, vulnerability management is more
important now than ever. Without an updated and modern
approach to handling vulnerabilities, organizations will
continue to be buried in vulnerabilities with little context.
Our approach addresses cloud environments, large and
small development programs, and the combination of
hybrid and multicloud deployments. This approach focuses
on not just the technology and methodologies of
vulnerability management, but also the humans and
organizations involved in the activities.
So let's begin.

https://t.me/PrMaB2



What Does This Book Cover?

This book covers the following topics:
Chapter 1: Asset Management This chapter addresses
fundamental activities such as asset management, which
includes physical and mobile asset management, as well as
software asset inventory and dealing with complex cloud,
hybrid, and multicloud environments. There will also be
coverage of tooling to facilitate asset management.
Chapter 2: Patch Management This chapter covers the
fundamentals of patch management, including both manual
and automated patch management, as well as the benefits
and trade-offs between the two. It discusses software patch
management, including open source management, and the
various roles and responsibilities for patch management
between different teams within the organization.
Chapter 3: Secure Configuration While patching known
vulnerabilities are a core of vulnerability management
processes, there is also the need for secure configurations.
This chapter discusses the role of regulations and
frameworks in secure configurations, as well as resources
such as the NSA and CISA Top 10 cybersecurity
misconfigurations publication. It also discusses industry-
leading configuration resources such as CIS Benchmarks
and DISA STIGs.
Chapter 4: Continuous Vulnerability Management
Vulnerability management is far from a snapshot in time or
once-and-done activity. This chapter discusses the concept
of continuous vulnerability management and continuous
monitoring. It discusses resources such as CIS and NIST
controls that tie in to continuous vulnerability management
and their associated tasks and activities.

https://t.me/PrMaB2



Chapter 5: Vulnerability Scoring and Software
Identification A major part of vulnerability management is
identifying software and properly prioritizing
vulnerabilities. In this chapter we cover both, including
long-standing vulnerability scoring methodologies, as well
as emerging vulnerability intelligence resources to help
organizations more effectively prioritize vulnerabilities
such as the Exploit Prediction Scoring System (EPSS) and
the CISA Known Exploited Vulnerability (KEV) catalog.
Chapter 6: Vulnerability and Exploit Database Management
Vulnerabilities are captured and stored in vulnerability
databases. In this chapter, we cover widely used
vulnerability databases such as the NIST National
Vulnerability Database (NVD), as well as emerging
databases such as Open Source Vulnerabilities (OSV) and
others that address gaps in databases such as NVD. We
also cover the role of exploit databases and how they can
be used for both good and harm, depending on the user.
Chapter 7: Vulnerability Chaining It's often said that
defenders think in lists while attackers think in graphs.
This is because attackers are often looking to chain
vulnerabilities together to move laterally through
environments or make their way toward sensitive
resources. In this chapter, we discuss the concept of
vulnerability chaining, as well as provide examples and
gaps in the industry when it comes to focusing on
vulnerability chaining.
Chapter 8: Vulnerability Threat Intelligence This chapter
covers the role of vulnerability threat intelligence and
advanced techniques such as threat hunting. We also
discuss integrating threat intelligence into vulnerability
management programs, including not just technologies but
also people and process.

https://t.me/PrMaB2



Chapter 9: Cloud, DevSecOps, and Software Supply Chain
Security The modern threat landscape is complex,
including cloud, a push for DevSecOps, and increasing
attacks on the software supply chain. In this chapter, we go
deep into these topics, including multi- and hybrid cloud
containers, as well as the role of open source software and
the systemic risks across the software supply chain.
Chapter 10: The Human Element in Vulnerability
Management Most conversations about vulnerability
management focus on the technical aspects, such as
software and applications. However, behind all that
technology are humans, operating in complex socio-
technical environments, dealing with psychological
stressors and challenges such as decision and alert fatigue.
This chapter covers the human element of vulnerability
management, including leading research on the topic from
one of the authors.
Chapter 11: Secure-By-Design At the heart of vulnerability
management is an uncomfortable truth, that the process of
“patch faster, fix faster” is broken. Organizations continue
to struggle with mounting vulnerability backlogs and
insecure products. This chapter discusses the push for
secure-by-design/default software and products and some
of the key players who advocated for this paradigm shift. It
also discusses some of the challenges facing the need to
make this fundamental change of how we operate in the
digital world.
Chapter 12: Vulnerability Management Maturity Model We
conclude the book with a chapter looking at how to begin
down the path of creating a mature vulnerability
management model. We discuss key recommendations and
steps, from asset management to continuous monitoring
and integrating human factors. We hope to empower
readers to modernize their vulnerability management

https://t.me/PrMaB2



programs and ultimately lead to decreased organizational
risk.

Who Should Read This Book

As the title implies, this book is intended for people who
have an interest in vulnerability management, software,
and digital and cyber physical systems. It is suited for
various professional roles ranging from the C-suite (CISO,
CTO, CEO, etc.) to security and software practitioners and
aspiring entrants looking to better understand the
vulnerability management practice and evolving landscape.

How to Contact the Publisher

If you believe you have found a mistake in this book, please
bring it to our attention. At John Wiley & Sons, we
understand how important it is to provide our customers
with accurate content, but even with our best efforts an
error may occur.
In order to submit your possible errata, please email it to
our Customer Service Team at wileysupport@wiley.com with
the subject line “Possible Book Errata Submission.”

How to Contact the Authors

The authors would appreciate your input and questions
about this book! Email Chris Hughes at
chughes@resilientcyber.io and Dr. Nikki Robinson at
dr.nikki.robinson@gmail.com.

https://t.me/PrMaB2

mailto:wileysupport@wiley.com
mailto:chughes@resilientcyber.io
mailto:dr.nikki.robinson@gmail.com


1 

Asset Management

Asset management is one of the most critical components
of a vulnerability management program (VMP). Of all the
fundamental building blocks of a successful VMP, it's
crucial to get asset management right and complete before
focusing on other aspects of vulnerability management.
Asset management is the listing or inventory of all
hardware and software of an environment. Each
environment has a different makeup of assets, including
everything from mobile devices (e.g., laptops and cell
phones) to application libraries and third-party software-as-
a-service (SaaS) software. Without a comprehensive asset
management program, organizations are limited in building
mature VMPs with secure configuration, patch
management, and continuous monitoring.
Asset management has evolved quite a bit over the last 10
years, with the advent of cloud infrastructure, increased
use of SaaS, exponential growth of open source software
use, and incredibly large and complex development
environments. Years ago, asset management could be as
simple as a spreadsheet with a list of asset names, tag
numbers, and potentially an asset owner or IP address.
Hardware and software inventories were kept separately
and possibly managed by that same IT administrator. Yet
with the increased use of cloud infrastructure, whether
infrastructure-as-a-service (IaaS), platform-as-a-service
(PaaS), or SaaS, traditional asset management methods are
simply no longer viable. Using a spreadsheet to manage
complex and dynamic assets is not maintainable or feasible
to keep updated information available for management.

https://t.me/PrMaB2



Traditional vulnerability management components are no
longer able to mature with manual or incomplete asset
inventories. It's increasingly difficult to manage dynamic
assets such as containers, which are meant to come online
and be torn down at will. These asset types require a
dynamic asset management program—one that can be
updated quickly and at scale with large-scale development
projects. An asset library can no longer be solely used for
managing mobile devices or hardware assets but must be
capable of keeping updated information on ephemeral
applications and tools.
Without a modern approach to asset management,
organizations have limited visibility of the hardware and
software used by employees, which can have several
cascading effects. Without knowledge of a laptop, for
example, there is no way to determine if it has proper
monitoring software installed, if it's still in the employee's
possession, if it's checking for updated patches, or if it's
compliant with organizational policies. And if an
organization does not have the ability to see what software
is installed on what systems, they have no way of knowing
the number of vulnerabilities it has, what its potential
attack surface is, or what dependencies that software
might have on other systems.
Other limitations of an immature asset management
program are the “unknown unknowns.” If there are
hardware or software assets that aren't effectively
managed or visible to IT operations staff, organizations do
not know the scope of vulnerabilities, inherent risks, or the
interconnectivity of devices and applications. These
limitations make it impossible to prioritize and remediate
vulnerabilities effectively. It also makes it difficult to
determine if applications are at the right patch level, if the
application's version is at end of life/support, and if there
are outstanding vulnerabilities or missing configurations

https://t.me/PrMaB2



that could lead to cyberattacks like distributed denial-of-
service (DDoS) attacks, malware, or ransomware.
Asset management can be performed in a variety of ways.
Organizations are using IT operations software,
vulnerability scanning tools, cloud inventories, and even
other configuration management software like ServiceNow
(www.servicenow.com). This type of software can not only keep
track of assets, but can also tie tickets and ongoing
management of those devices with a system owner. Smaller
organizations might still be managing assets manually,
which limits the maturity and capability of a VMP. In this
chapter, we discuss the common limitations of asset
management tools and processes, possible impacts of an
immature asset management program, and what
organizations can do to create a modern approach to asset
management.

Physical and Mobile Asset

Management

In traditional data centers, asset management consists of
the physical components in server racks—for example,
networking devices, servers, power management, and any
other physical devices in the organization. However,
organizations have moved to a much more digital
workforce, utilizing multiple mobile devices per employee.
One employee might have a tablet, laptop, and smartphone,
and use primarily online applications for collaboration
versus solely working on a physical desktop located in an
office setting.
Many organizations are moving to hybrid work
environments where employees are working between an
organization's office and their home or an off-site location.
This type of work environment complicates the

https://t.me/PrMaB2

http://www.servicenow.com/


management of these devices, given that they may or may
not be connected to the organization's virtual private
network (VPN) or potentially cloud assets and servers. This
setup has increased the challenge of managing and
tracking mobile devices.
In modern organizations, managing all these mobile
devices requires an asset management solution to handle
all the operating systems (OSs) and types of applications
required for online collaboration. A mobile toolkit includes
asset management and inventory software, as well as
configuration management, usually performed by a mobile
device management (MDM) solution. This tool provides a
management console to catalog each mobile device and
assigns policies and security configurations as determined
by the organization.
Several SaaS solutions are also available as well as tools
provided by the mobile carrier. For example, mobile
solutions provided by Apple (e.g., iPhones and iPads) have
their own asset management solution like Jamf software.
Other devices or applications, however, can be managed by
MDM solutions like Miradore and Citrix Endpoint
Management.
Because most organizations are moving away from on-
premises data centers, there are fewer servers and network
devices requiring asset management. With the advent of
the cloud, more organizations are migrating their physical
assets to a cloud infrastructure and using more ephemeral
servers like containers. Yet on-premises data centers still
require an asset management solution to provide full
visibility to all systems. And it's not just for security reasons
—they also must manage systems and ensure they are
properly online and functioning without hardware failures.
All the physical assets could be providing warning
indicators of cyberattacks, and if not monitored properly,

https://t.me/PrMaB2



an organization could be missing critical data to determine
risk.
While physical risk management is typically focused on
mobile devices, there has been an increased “return to
work” effort across large organizations. It means that
physical assets and MDM could grow in complexity and
include a mix of bring-your-own-device (BYOD) and
corporate-owned assets. Such complexity might require
integration with either multiple products or the use of two
separate applications to manage the physical assets, versus
more configuration settings on laptops and tablets. Because
most organizations use a tool for inventory and a separate
tool for configuration management, this complexity adds
another layer for system owners to review and manage
assets for consistency.

Consumer IoT Assets

Another category of assets that has become a major risk for
organizations is Internet of Things (IoT) devices. With the
interconnectivity of devices, IoT could be anything from a
thermostat to a treadmill, home automation devices, or
wearable devices like smartwatches. Because many
organizations, particularly healthcare and medical
organizations, use Wi-Fi or wireless connections,
employees may have the option to connect their wearable
devices to the local network.
Allowing these potentially vulnerable IoT devices to gain
access to the network causes many concerns. The National
Institute of Standards and Technology (NIST) has
published a consumer's guide on the risks and potential
security concerns around IoT devices. The NIST guide, “IoT
Cybersecurity Criteria for Consumer Labeling Program,”
came out in early 2022 and details a growing need for more
consumer cybersecurity information around risks of IoT

https://t.me/PrMaB2



devices. The Biden–Harris administration recently released
additional guidance around consumer labeling to ensure
consumers understand risks associated with products (see
www.whitehouse.gov/briefing-room/statements-

releases/2023/07/18/biden-harris-administration-announces-

cybersecurity-labeling-program-for-smart-devices-to-protect-

american-

consumers/#:~:text=This%20new%20labeling%20program%20would,trus

tworthy%20products%20in%20the%20marketplace).
Based on an article by Mary K. Pratt in TechTarget titled
“Top 10 security threats and risks to Prioritize” on page
(www.techtarget.com/iotagenda/tip/5-IoT-security-threats-to-
prioritize), there are numerous ways that IoT devices can
pose risk to organizations. One of the biggest threats to all
organizations that is highlighted in the article is the
increased attack surface. Similar to mobile devices and
increased teleworking or mobile workforces, the more
devices that connect to the network, the more risks and
possible attack vectors there are. Organizations must have
a good grasp of what IoT devices may exist on their
network, by using either network scanning or sniffing to
detect rogue or unexpected IoT devices. Sniffing is a
technique used by hackers to detect if there are unsecured
devices or systems that may be exploitable. There are many
ways to detect attacks in an environment and these are
covered at length in later chapters.

Software Assets

Software inventories have become an increasingly
important topic. While this area will be covered in depth in
a later chapter, it's important to cover the basics here.
Recent attacks and zero-days against SolarWinds, Log4J,
and MOVEit have been big motivators for understanding
the software landscape and attack surface. To understand
large attack surfaces, organizations need to catalog and

https://t.me/PrMaB2

http://www.whitehouse.gov/briefing-room/statements-releases/2023/07/18/biden-harris-administration-announces-cybersecurity-labeling-program-for-smart-devices-to-protect-american-consumers/#:~:text=This%20new%20labeling%20program%20would,trustworthy%20products%20in%20the%20marketplace
http://www.techtarget.com/iotagenda/tip/5-IoT-security-threats-to-prioritize


inventory their use of software tools, libraries, and
dependencies. A zero-day is a vulnerability that was
previously unknown in software or hardware that can be
majorly exploitable.
Without a proper software inventory, organizations may
scramble to find zero-days in their applications, which
leaves little time for remediation and more time for
attackers to exploit vulnerabilities. With many
organizations leveraging larger and more complex
development environments, software asset discovery and
continuous monitoring become a crucial aspect of risk
management.
For example, if an organization has limited visibility into
which libraries developers are adding, removing, patching
or not patching, their security team will be unable to
determine risk and prioritize patching and remediation. If
any libraries and dependencies go undetected, or are not
reported automatically to an inventory tool, the
organization would be unaware of the number and severity
of vulnerabilities that do exist.
Another concern is the possibility of using open source
software that may not be patched or maintained regularly.
And the larger the development environment, the more
possibility there is for unknown and undetected
vulnerabilities and missing secure configurations.

Cloud Asset Management

With digital transformation, agile software development,
and an increasing focus on artificial intelligence (AI), the
move to the cloud for systems is an integral step of
managing infrastructure and complex development
environments. More organizations are considering
multicloud or hybrid cloud environments using either two

https://t.me/PrMaB2



cloud providers or potentially a private and public cloud
deployment with the same provider. Multicloud
environments allow for more resiliency and scalability,
whereas private and public cloud options (i.e., a hybrid
cloud) allow organizations to keep specific assets apart
from the public cloud infrastructure.
Figure 1.1 provides a simple explanation of the differences
between hybrid and multicloud environments. A hybrid
cloud setup uses a combination of a private and public
cloud option, but typically within the same cloud service
provider (CSP). A multicloud solution uses two or more
different CSPs to host the infrastructure.

Figure 1.1: Hybrid vs. multicloud environments
Figure 1.1 shows the unique characteristics of multicloud
environments compared to hybrid cloud environments.
Hybrid cloud is made up of one public cloud and one (or
more) private cloud environments while using the same
CSP, whereas a multicloud solution uses a combination of
private and public cloud environments across multiple
CSPs.

https://t.me/PrMaB2



Multicloud Environments

In some multicloud environments, an organization may
need multiple cloud providers. One example is the need to
run production and nonproduction workloads in one cloud
environment and use a second cloud for resiliency and
quick transfer in the event of network or regional failure in
one of their providers. Another example is to run
production and nonproduction workloads in one cloud
environment and have backups and long-term storage for
recovery in the event of data loss in another cloud
environment.
Unfortunately, using multiple cloud providers complicates
an asset management strategy. One of the biggest concerns
of using multiple cloud providers in a multicloud strategy is
that collecting, automating, and keeping track of assets
between both environments may require multiple tools.
There are more modern organizations using a multicloud
strategy and third-party tools can sync data between those
disparate workloads. Tools like CloudSphere are working to
solve secure configuration and inventory concerns by
collecting and maintaining asset data. But this means that
each cloud environment may need to open various ports
and create service accounts to manage the information. It
would be incredibly easy to lose sight of the ephemeral
systems of each environment unless they were mirrored.

Hybrid Cloud Environments

A hybrid cloud solution could potentially be used for similar
reasons, but the architecture is quite different. A hybrid
cloud utilizes both public and private cloud environments.
Organizations, for example, might use this strategy to store
certain high-impact data and assets in the private cloud,
while keeping lower-impact items in a lower-cost public
cloud environment. This may complicate asset management

https://t.me/PrMaB2



in a few ways, but it can also be beneficial for organizations
looking to strategize spending and budget over time.
Hybrid cloud environments can also be a great solution for
organizations who want to keep intellectual property (IP),
personally identifiable information (PII), or other sensitive
data in a private cloud, while keeping other data and
workloads that are less critical to the business in the public
cloud environment.
Figure 1.2 highlights the various layers within an
organization for which you should build an IT
infrastructure. The top layer includes everything from the
platform to cloud management and infrastructure, as well
as the overall networking architecture. The mid-layer
includes the infrastructure operations applications,
development environment, and the major security
components that continuously monitor the environment. A
sovereign cloud environment is one where the provider
stores each organization's data within their own country.

Figure 1.2: IT infrastructure layers
Figure 1.2 illustrates the differing layers in platform
services in cloud environments. In the top layer, there are

https://t.me/PrMaB2



services like cloud and edge computing, management
interfaces, as well as the application platform. The middle
layers are composed of development environments,
infrastructure operations, as well as the largest security
components. The cloud layer is really the platform itself,
whether it's Amazon Web Services (AWS) or Oracle.
One of the main concerns in using hybrid cloud solutions is
the potential limitations between the private and public
cloud environments. These limitations include the sheer
complexity of managing two separate cloud environments
as well as the security concerns of using two separate cloud
environments and manually implementing the same
controls. Another possible solution would be to run the
same tool in both environments to segment the networks
and aggregate the data elsewhere. But allowing access to
the private cloud from the public cloud could increase the
risk of compromise between both environments.

Third-Party Software and Open

Source Software (OSS)

Many traditional asset management tools did not account
for third-party software or open source software (OSS)
being used in modern organizations. But the rampant use
of OSS has complicated the asset management and
software library processes and the ability to calculate risk.
As displayed in Figure 1.3, software assets are used across
the various enterprise layers. Starting with the business
layer, applications like Java and Log4j (i.e., OSS
components) build the foundation for development
environments. Additional software in the presentation and
service layers may be required to integrate and
communicate to build complex applications.

https://t.me/PrMaB2



Figure 1.3: Various enterprise layers
Figure 1.3 outlines the various layers that work together
across an enterprise. The business layer is the backbone of
the rest of the layers, and it has major connectivity
between all the other enterprise environments—everything
from the data and persistence layer that contains
databases, to the infrastructure layer using Red Hat and
OS components. Each piece of this matrix works together

https://t.me/PrMaB2



to create a comprehensive platform to support business
functions.
Due to the increased OSS use, organizations are witnessing
the dependencies and intricacies of how OSS works in
complex and large application environments. Many
developers leverage OSS because of the mean time to
delivery, meaning the developer can spend less time
rebuilding code that already exists by using tools that other
developers have built. Lowering their time spent coding
and providing some consistency in their applications allows
developers to spend their time on more complex and
nuanced development cycles. Yet with the increased use of
OSS comes the need to catalog and understand what types
of libraries and tools are being used within the
applications.

Third-Party Software (and Risk)

One of the difficult items to collect and maintain within an
inventory is the number of third-party companies and
applications, contractors, SaaS products, and any other
external software or hardware involved. For example, an
organization might choose to use a firewall service provider
rather than running their own firewall appliances and
network configuration, due to a lack of skilled personnel or
other resources to manage those assets.
Another third-party assets example is when an organization
outsources their accounting or IT helpdesk firm. These
third parties must have access to corporate resources,
potentially requiring domain credentials or open
ports/access to an organization's SaaS or infrastructure. A
third-party contractor might have mobile devices that
require access to an environment, thus spreading the
potential attack surface.

https://t.me/PrMaB2



Since the early 2020s, malicious actors have been
leveraging open account access or infrastructure from
third-party applications to gain access to corporate secrets.
Cataloging these third-party applications can be performed
using a variety of tools and methods but may be discovered
by vulnerability scanning tools like Tenable or Qualys.
Therefore, it's critical for organizations to determine what
method is best for discovering and monitoring these third-
party applications in the environment to protect themselves
from risk.

Accounting for Open Source Software

Static lists will not capture changing versions, patches, or
removal of any OSS within an environment. Organizations
must move to dynamic asset discovery and categorization
because of the possibility for human error and missed
assets with a manual process. Every missed asset is a
possible entry point for an attacker with exploitable
vulnerabilities or misconfigurations. The process should be
as automated as possible—allowing developers to
consistently change their applications without running into
major hurdles with configuration management activities.
Using something like GitHub or another open source tool
(made for developers) is a possible solution for dynamic
OSS application inventories. The recommendation is to use
the open source repository that the developers are already
using, whether that's GitHub, GitLab, or another platform.
The most important component of each of these options is
to have a consistent process known among all developers.
Documentation and the standard operating procedure
(SOP) for OSS inventory management is just as important
as the tools that perform inventory management. These
options allow developers to manage OSS, are usually cross-
platform, and provide additional functionality over the

https://t.me/PrMaB2



standard cloud inventory management systems. There are
also several “for purchase” options, and organizations
should carefully weigh their own unique needs before

selecting a product.

On-Premises and Cloud Asset

Inventories

While many small to medium businesses (SMBs) are
choosing to create cloud environments from the start, there
are still many organizations who have on-premises
environments or who are choosing smaller on-premises
data centers to manage specific data. Because there's still a
mix of solutions for organizations, this complicates the
tooling landscape for managing hardware and software
appropriately. Hardware in data centers includes
everything from servers to network devices, as well as all
the IoT devices that may tie into the corporate network.
Software incorporates everything from SaaS products like
email services, to the actual tools and libraries used by
developers like Python and Tomcat.
In reviewing Figure 1.4, it's easy to see how complex
physical data centers can be compared to their cloud
environment competitors. Physical data centers require
power management, servers, racks, cables, and physical
storage devices like storage area networks (SANs).

https://t.me/PrMaB2



Figure 1.4: Physical data centers
Source: pixelnest/Adobe Stock Photos, khamkula/Adobe Stock and
shymar27/Adobe Stock.

On-Premises Data Centers

In on-premises environments, assets are a mix of hardware
and software, in addition to any other SaaS products that
the organization is using. Part of the trouble is that many
organizations who have on-premises environments are also
supporting workloads in the cloud.
It's rare to find a tool to manage all of an organization's
systems and applications and parse the information into
one spot. But organizations should work toward using as
few tools as possible, while also balancing the needs of an
ever-changing hardware and software landscape.
Because hardware fails and must be replaced over time,
having a tool like Microsoft Configuration Manager may be
good for both inventory and patch management.
Organizations can benefit from this automation and reduce

https://t.me/PrMaB2



the overhead of manual patching and remediation
activities.
Figure 1.5 shows the vast difference between on-premises
and cloud environments. On-premises environments
require appliances and physical devices like firewalls and
physical servers that will sit in a server rack, whereas cloud
environments will require additional tooling to look at
static and dynamic application scanning, web application
firewalls, and more software devices.
In Figure 1.5, it is easy to see how different on-premises
and cloud environments are, based on the types of
hardware and software supported. In a data center, there
are hardware firewalls and network switches, as well as all
of the physical servers that would sit in a server rack.
However, in a cloud environment, there would be web
application firewalls (WAFs), cloud-native tooling, as well
as containers and virtual servers.

Figure 1.5: On-premises vs. cloud environments

https://t.me/PrMaB2



Tooling

There are multiple tool options to determine whether assets
—physical or virtual, hardware or software—are available
for on-premises and cloud environments. For most
organizations, a combination of inventories from cloud
systems and application libraries may need to be
consolidated into one platform. A few tools are available
today that will catalog and categorize hardware, software,
continuous integration/continuous delivery (CI/CD)
pipelines, SaaS, and cloud platform inventories into one
dashboard.
But there is hope; asset management is a moving target
that must be evaluated any time new products or devices
are brought on board. Just like patch management,
monitoring and logging, and all other cybersecurity
activities, asset management must be an iterative and
continuous process.

Asset Management Tools

To begin, tools like Salesforce, ServiceNow, Microsoft
Configuration Manager, and others, have been standard IT
asset management tools for many years. Many large
organizations leverage ServiceNow or a similar ticketing
system because of its ability to catalog assets and assign
tickets for maintenance and operations to those assets and
their respective owners. However, this may not be an
option for SMBs. Smaller organizations may need to
leverage open source tools or the inventory management
systems that come with their CSP. If you're using a small
cloud environment, whether private or public, it makes
more sense to leverage the CSP's in-house capabilities and
compare those results to a vulnerability scanner for
validation. One possible open source tool is Asset Panda,

https://t.me/PrMaB2



which can be used to manage inventory for cloud
environments.
The most important point of choosing an asset management
tool, whether off-the-shelf or open source, is to select a tool
that's scalable for the environment. For smaller businesses,
consider an option that automatically updates inventory
based on dynamic scanning. Otherwise it could become an
incredibly manual task that the organization may not have
enough personnel to do. Organizations should consider the
best option for their environment as well—if there's a large
development environment with test, development, and
production in place, use a tool that covers ephemeral
devices and dynamically updates. Doing so provides a real-
time view of the environment instead of using a tool that
requires manual input.

Vulnerability Scanning Tools

Organizations typically have a vulnerability management
tool in place that serves as a vulnerability scanner and
secures configuration validation, in addition to many other
functions like reporting and asset discovery. These tools
can also be used to validate inventory alongside
configuration management tools like ServiceNow.
Vulnerability scanning tools should not be the only source
of truth, and assets should be checked regularly by the
owners and operators of ephemeral systems.
Given the dynamic nature of development environments,
automation should be used wherever possible to capture
and remove systems when they are no longer required.
Outdated systems with years of vulnerabilities take an
incredible amount of time for administrators to sort
through and determine what is truly vulnerable. To save
time and resources, asset discovery should be automated
and validated using at least two tools.

https://t.me/PrMaB2



Off-the-shelf tools like Tenable or Qualys can double as an
inventory checking tool to ensure that all assets are being
scanned for vulnerabilities and secure configurations. Most
of these tools serve double duty to validate that the servers,
applications, and other systems in place are being scanned
properly. If an asset is missing from the scanner, the tool
can be updated with proper IP ranges, or even be set up to
discover unknown assets by scanning the entire network.
Daily or weekly reports can then be configured to notify
system administrators and account owners of these new or
unexpected servers and systems.

Cloud Inventory Management Tools

Cloud inventory management is easier with AWS or Google
Cloud Platform (GCP) because they have inventory built
into the management console. This is in stark contrast to
managing a data center inventory where assets need to be
managed with some additional tool or managed via a
spreadsheet. Major cloud providers have made it much
easier to identify, manage, and organize assets, even over
multiple cloud accounts. There are an incredible number of
benefits to using cloud systems, including the built-in
categorization for containers, servers, workers, nodes, and
more.
AWS has the AWS Systems Manager Inventory, GCP has
the Cloud Asset Inventory, and Microsoft Azure uses an
inventory system called Change Tracking and Inventory in
their Azure Automation suite. These cloud inventories
provide the ability to categorize systems and include
tagging or metadata for system type, system-specific
drivers or components, as well as instance details and
network configuration. Microsoft's tracking and inventory
tools leverage Log Analytics to monitor and manage assets.

https://t.me/PrMaB2



Cloud providers have integrated several essential
components into their inventory systems, so a traditional
inventory tool may not even be capable of tracking their
inventory. For example, the ability to leverage log analysis
within an inventory system provides cloud engineers and
security analysts with the ability to review logs without
switching from an inventory management system to a
security information and event management (SIEM) tool.
Organizations benefit from these cloud inventories based
on their ease of use, “single pane of glass” to review assets,
and lower administrative overhead to manage multiple
tools. A “single pane of glass” means that there is one
dashboard or panel that a group of security tools can be
part of. This allows an organization to review one website
instead of administrators or analysts having to log in to
multiple tools and use numerous dashboards. Using a cloud
environment may also reduce the number of separate tools
required to manage the infrastructure, also reducing risk
and cost to the organization.
Figure 1.6 illustrates the increasing complexity when
starting with an asset inventory system, as well as the
additional tools and considerations for the whole
environment. Having an inventory management system is
the backbone to building a comprehensive security tooling
strategy.

https://t.me/PrMaB2



Figure 1.6: Complexity of an asset inventory system

Ephemeral Assets

One of the major challenges in modern IT infrastructure
and cloud environments is ephemeral assets, which include
containers, nodes, workloads, and several types of modern
container technologies. The typical life span of these
system types can be anywhere from minutes to hours to
days, and they only come online to serve a scalability
purpose. For example, a new worker node may come online
during business hours to support the increased workload
from major website traffic. That node may go offline at 5
p.m. and a new instance is then brought online the next
morning at 8 a.m. So, how can an organization's inventory
systems and containers stay online for minutes or hours?
Easy; they can utilize any number of the cloud-native tools
and automation when bringing servers and containers
online to keep their assets up-to-date.

https://t.me/PrMaB2



Accounting for ephemeral assets is a growing requirement
for organizations, but it is incredibly difficult because
accounting for these systems by hostname or IP is not
sufficient. Because they're only online for minutes or hours,
asset inventories must be dynamic and account for IP
ranges and expected hostname ranges, versus a static
hostname or IP. Many cloud environments can monitor
these assets, but vulnerability scanners and endpoint
detection and response (EDR) solutions must be configured
properly to monitor entire IP spaces and use dynamic
scanning to capture all systems.
If there are static IPs or hostnames in those scans, these
scans will be insufficient for finding vulnerabilities and
providing an accurate view of the vulnerability landscape.
Organizations will need to not only review their inventory
tool, but also their vulnerability scanners and any other
security tools to ensure the entire organization is
accounting for ephemeral assets.

Sources of Truth

Many security teams, developers, and platform engineers
use multiple sources of truth to validate vulnerabilities,
secure configurations, and asset/inventory management
activities. A source of truth is the ability for an organization
to aggregate data into a single dashboard or tool to verify
that (in this case) the assets are configured properly. This
would be a combination of multiple tools and utilizing that
“single pane of glass” mentioned previously. If a team is
using a single tool for all these activities—for example,
using a vulnerability scanner to double as an inventory
record system—the team might be missing out on assets
that either cannot or do not get scanned by those tools.
One concern would be whether the team is using a tool that
does not have the functionality or ability to identify and
manage certain types of assets.

https://t.me/PrMaB2



For example, it's possible that some vulnerability scanners
aren't able to inventory or find vulnerabilities on containers
or infrastructure as code (IaC). Because of this limitation,
organizations must understand the full functionality and
capability of the tools that they use for specific purposes. A
vulnerability scanner without the ability to find
vulnerabilities in a container would not be sufficient for a
cloud workload that consists of only containers.
Organizations should have a primary source of truth—a
configuration management tool that they can rely on for
enterprise asset discovery and management. However, a
VMP should have a second source of truth to validate that
the proper assets are in place, being patched consistently,
and scanned regularly by both the vulnerability scanner
and the EDR solution. The ability to validate between two
tools provides clarity for teams and prioritization to
investigate any inconsistencies between the tools.

Asset Management Risk

Asset management is the basis of any vulnerability
management program. Without a comprehensive
understanding of all possible assets across an organization,
it's impossible to understand the organization's risk
landscape or to even prioritize vulnerability management
activities. The “unknown unknowns” are typically the
highest risk to any organization, because without an
understanding of assets there's no way to know which
vulnerabilities are still exploitable on the network. Without
any visibility, the risk of an organization moves from a
“known known” to an “unknown unknown.”

Log4j

An excellent example of the need for proper software
inventories is the incident that occurred in December 2021

https://t.me/PrMaB2



called Log4j, or Log4Shell. Based on the guidance from the
Cybersecurity and Infrastructure Security Agency (CISA),
CVE-2021-44228 was a remote code execution (RCE) that
malicious actors leveraged to gain access to systems,
conduct a ransomware attack, and exfiltrate data
(www.cisa.gov/news-events/news/apache-log4j-vulnerability-
guidance).
The UK's National Cyber Security Centre (NCSC) noted
just how prevalent Log4j was based on the open source
nature of the tool and how developers needed such a tool
for logging functionality (www.ncsc.gov.uk/information/log4j-
vulnerability-what-everyone-needs-to-know). The NCSC also
noted, however, how difficult it was for organizations to
determine or identify that Log4j was in their environment.
This article also mentions the increased need for the
communication required between vendors and developers.
The Center for Internet Security (CIS) released an article
discussing the severity of the vulnerability, rated a 10.0 on
the Common Vulnerability Scoring System (CVSS;
www.cisecurity.org/log4j-zero-day-vulnerability-response).
One of the major challenges with this incident was the
inability for organizations to find and detect Log4j
instances within their pipelines or development
environments. Any delay in patching this vulnerability left
precious time for malicious actors to exploit this
vulnerability. Because the vulnerability was made public, it
was possible for actors and hackers to exploit the
vulnerability in the time it took organizations to identify
whether they had Log4j in place. This example highlights
the need to understand the software, libraries, and
dependency components of any development environment.
Organizations must have a dynamic library of all software
components, both off-the-shelf and OSS. OSS will be
covered more in-depth in later chapters, but the Log4j

https://t.me/PrMaB2

http://www.cisa.gov/news-events/news/apache-log4j-vulnerability-guidance
http://www.ncsc.gov.uk/information/log4j-vulnerability-what-everyone-needs-to-know
http://www.cisecurity.org/log4j-zero-day-vulnerability-response


incident highlights the harmony required between asset
management and OSS.

Missing and Unaccounted-for Assets

This section might seem redundant—but enterprise risk
around assets is tied very closely to unknown or
unaccounted-for hardware and software assets. Without the
proper inventory or management of devices, servers,
containers, and applications, organizations cannot account
for those risks. Any server that's unaccounted for is most
likely not being patched, missing secure configurations,
and ultimately increasing the risk for the whole
environment. That server could become the entry point for
an attacker or actor to gain access to privileged credentials
or compromise the entire network. Each hardware or
software asset that's unaccounted for is a potential entry
method, providing the ability to gain a foothold in the
environment.
It's also impossible to monitor servers and systems for
compromise if they are not in the EDR or asset inventory
lists. Administrators and security analysts would be
unaware of such compromises and not be able to monitor
and review potential alerts on unmanaged devices and
applications. If there is malware, a potential compromise,
or even a system that's being leveraged to gain access to
other systems, it may go undetected and unnoticed until
the asset comes into the inventory management system.
Detecting hardware and software assets necessitates both
tools and processes to detect, monitor, and bring those
assets into alignment. An organization's asset management
team should be heavily involved in the process and policy,
continuously monitoring for unaccounted-for and missing
assets.

https://t.me/PrMaB2



Unknown Unknowns

In the world of vulnerabilities, there are known knowns,
known unknowns, and unknown unknowns. What is of
major concern to any organization are the unknown
unknowns. Based on the 2022 article by Nathan Wenzler
from Tenable, unknown unknowns are a major concern
when understanding an enterprise risk landscape
(www.tenable.com/blog/finally-finding-the-unknown-unknowns-
across-your-entire-attack-surface).
These unknown unknowns (henceforth known as UUs) are
typically items classified as zero-day or being actively
exploited in the wild by the time that they're disclosed.
These types of vulnerabilities are incredibly difficult to plan
for within a VMP. But VMPs should have their own
processes and people in place to manage events and be
prepared when these vulnerabilities are found.
One example of a UU is the SolarWinds attack that took
place in September 2019. The U.S. Government
Accountability Office (GAO) in 2021 noted that the
SolarWinds attack was the largest hacking campaign
against both government and private organizations
(www.gao.gov/blog/solarwinds-cyberattack-demands-significant-
federal-and-private-sector-response-infographic). What is
interesting is the SolarWinds attack was just the beginning
for software supply chain attacks and the understanding
that even patches can contain malicious code, leaving
organizations vulnerable to UUs.
To plan for such events, organizations should have a
strategy and procedure to handle UU events like zero-days
and highly exploitable vulnerabilities. Using resources like
the CISA Known Exploitable Vulnerabilities (KEV) catalog
and the National Vulnerability Database (NVD),
organizations can set up alerts for when possible
exploitable vulnerabilities have been released. These

https://t.me/PrMaB2

http://www.tenable.com/blog/finally-finding-the-unknown-unknowns-across-your-entire-attack-surface
http://www.gao.gov/blog/solarwinds-cyberattack-demands-significant-federal-and-private-sector-response-infographic


processes tie well together with an incident response (IR)
plan and any cyber-resiliency tooling and procedures.

Patch Management

Patch management is one of the major areas of concern
when it comes to what servers, systems, and applications
exist in any on-premises or cloud environment. And of
course, without a thorough understanding of what
hardware and software assets exist, an organization will
have an ineffective patch management program. If an asset
program is missing any systems or devices, it will be
impossible to determine what patches are missing, leading
to unknown risks.
To create an effective patch management strategy, an
organization must first understand the levels of OSs,
applications, libraries, container versions, and so on. Each
of these pieces helps create a complete picture of their
vulnerabilities and allows organizations to prioritize
remediation activities.
An example of the complexity of software asset patch
management is the migration from one OS to another.
Chances are that an organization who's migrating from one
server version to another (e.g., Windows Server 2019 to
2022 or Red Hat Enterprise Linux [RHEL] 8 to 9) will be
managing two levels of patch sets. The administrators will
need to download and install patches for both version
levels, meaning that they will need to ensure that the
proper patches are being both downloaded and installed
properly. This necessity doubles administrative overhead
unless the team leverages some automation or automatic
patching for servers and applications.
Patch management will be covered more in-depth in the
next chapter, but the connection between inventory
management and patch strategy is undeniable.

https://t.me/PrMaB2



Increased complexity with patch management starts when
an organization cannot reboot or patch systems outside of
maintenance windows. Many environments will require
some customization and considerations for service level
agreements (SLAs), customer requirements, maintenance
windows, and stability of the environment. There will
always be unique requirements, but organizations must
have a patch management strategy to combat these
complexities. Recommendations include building resiliency
into systems that are considered unstable, patching test
and development environments first for monitoring, and
instituting a rollback plan for any patches or secure
configuration changes.

Recommendations for Asset

Management

There are several recommendations for organizations,
large or small, to get a handle on their assets. Whether on-
premises, cloud-based, multicloud, or any combination of
software and hardware assets, organizations must start
with the people who will manage those assets. The people-
process-technology aspect of asset management is an
important combination of having the personnel who own
and manage the assets, installing the proper tooling in
place for inventory systems, and understanding the
processes to discover, manage, and organize their assets.
This section covers multiple areas for organizations to
consider when creating an asset management program.

Asset Manager Responsibilities

The people part of the people-process-technology trilogy is
just as important as the tools and processes used for
inventory management. An account owner might be
designated to manage the cloud infrastructure, an

https://t.me/PrMaB2



operations team may be in place to manage the OS and
application layers, and a security team may be in place for
vulnerability management. But without properly identifying
who will own the asset inventory tooling and processes,
organizations may spend hours, days, or weeks trying to
find the proper technology owner. This wastes company
resources and time, and potentially compiles risk for
vulnerable systems without an owner.
Designating a primary and secondary asset manager helps
alleviate some of these potential concerns. A primary asset
manager should be making the decisions about the
frequency of vulnerability scanning, continuous monitoring,
provisioning and decommissioning of systems, and the
categorization of the data. For a thorough understanding of
how to catalog and understand asset management, any
organization can start with the Risk Management
Framework (RMF) from NIST.
The NIST RMF is a framework used to help organizations
understand and determine their security and risk
management activities. There are seven steps to the RMF:
preparation, categorization of systems, selection of security
controls, implementation of controls, assessment,
authorization of a system for use, and finally monitoring of
the selected controls. This framework is a starting point for
any organization to determine risk in their environments
and continuously monitor to ensure the proper security
controls are in place.
A secondary asset manager provides backup, can perform
an additional check for unexpected devices, or aids in
understanding workloads to determine expected versus
unexpected systems. Having a secondary manager also
provides an extra layer of security when the primary leaves
the company, goes on vacation, or simply needs another

https://t.me/PrMaB2



pair of eyes on an incident. Having an additional pair of
eyes on missing devices can provide context as well.

Asset Discovery

Asset discovery is the continuous monitoring component of
any asset and configuration management program. With
the increased complexity and incredible speed at which
systems are built, brought online, and put into production,
organizations need to continuously detect and monitor new
systems. This ensures that any team is aware of expected
versus unexpected (or rogue) devices on their network. As
mentioned previously, having assets that are unknown
increases risk and there is no accounting for
vulnerabilities, missing configurations, or even
understanding if rogue devices have been placed on the
network.
To start an asset discovery process, you will need the right
tools in place. Use discovery tools to regularly scan for
expected assets, or use the dynamic scanning process that
exists in your current tools. For example, vulnerability
scanners may have special scans to monitor the entire
network and report on any new and unaccounted-for
systems and servers. These reports should be run daily and
alerts should be set up for any unexpected devices.
After these reports are put in place, a process should be
enacted to determine why a system wasn't accounted for
and who the system's owner is, and to catalog that asset
properly. For cloud environments, the in-house inventory
system is a good starting place and should be compared to
any of the other scanning or inventory tools that the team
employs. This asset discovery program is a balance of tools
and processes to ensure that no rogue or unexpected
systems are online.

https://t.me/PrMaB2



Part of IT project management is asset discovery and the
ongoing management of the asset and configuration
management processes. To align with the asset discovery
tooling, the processes must pick up where the tooling
leaves off. To do so, proper alerting and notifications
should be installed to notify the appropriate system or
account owner. This alert or notification should trigger a
process to assign the right technical owner, bring the
system into alignment with the organization's inventory,
and then have continuous monitoring and vulnerability
scanning occurring. Similarly, if an unexpected server is
brought online and discovered, an incident response
process should be triggered to notify the security team and
contain or investigate it, as appropriate.

Getting the Right Tooling

Asset management is part of everyone's responsibility.
Leveraging a tool like ServiceNow for asset and
configuration management is part of the puzzle but not the
entire picture. Each organization has their unique
requirements, but it is important for the IT, development,
and management teams to come together to select a tool
that will work for today and for five years from now. When
organizations are first formed, it's a perfect time for the IT,
security, and architecture staff to come together to decide
on a solution. But asset inventory tooling will not
necessarily grow and scale with the organization; the
tooling should be reviewed and measured over time for
success.
Organizations many years ago maintained data centers or
server rooms. Then “the cloud” became a viable solution
for many businesses to reduce cost and speed up access to
development resources. It created a more agile and
scalable environment that allowed organizations to move
away from physical data centers.

https://t.me/PrMaB2



Now organizations are leveraging hybrid or multicloud
solutions to increase scalability even further. To reduce
risk, and administrative overhead of OS-level
infrastructure, organizations are now moving to
infrastructure as code or low-code solutions to manage
their platforms and infrastructure. Each step of the way,
organizations are looking to reduce cost and overhead, and
allow for lower risk and a smaller attack surface.
Figure 1.7 shows the progression over the years from on-
premises and physical infrastructure, through the great
cloud migration, and now to infrastructure as code.
As an organization grows, the asset inventory and
configuration management tools need to grow too. For
example, an organization that manages one server rack in a
local data center has very different business requirements
than a multicloud environment. The right tool needs to be
scalable and grow with the organization, but that's not
always possible. So as other security tools and vulnerability
scanners are being reviewed for efficiency, the asset
inventory tool should be reviewed at the same time. If
deficiencies or missing functionalities exist, consider the
cost of ripping and replacing before choosing a new tool.
An example of when an organization does a “rip and
replace” is when a company removes one vulnerability
scanner and replaces it with another vulnerability scanner
from a different vendor. One example is removing Tenable
Security Center and replacing it with a Qualys suite of
tools. This would require the removal of servers and
infrastructure, and applying all new permissions and access
for the new tooling. The cost and management of these
tools is just as important as the automation and reduction
in overhead.
Any IT or security team should also be aware of asset
inventory tooling that could potentially lead to confusion,

https://t.me/PrMaB2



mismanagement, or inconsistent information.

Figure 1.7: Progression of organizational management
over the years

Digital Transformation

Digital transformation should be aligned with an asset
management provisioning and decommissioning process. In
a 2021 article by Michael Pease from NIST, he noted that
digital transformation (DX) is divided into three phases:
digitization, digitalization, and digital transformation
(www.nist.gov/blogs/manufacturing-innovation-blog/supporting-
digital-transformation-legacy-components). Basically, this
means bringing data to the business using more digital
assets and transforming the business to move away from
legacy systems. Digital transformation requires enhanced
technical skills to manage dynamic and emerging
technologies (see Figure 1.8).

https://t.me/PrMaB2

http://www.nist.gov/blogs/manufacturing-innovation-blog/supporting-digital-transformation-legacy-components


Figure 1.8: Digital transformation (DX)
Speaking of legacy systems, organizations will see the
decommissioning and removal of many legacy applications,
systems, devices, and appliances as they move toward a
more DX strategy. Improving a DX strategy means having
the ability to remove and decommission end-of-life (EoL)
and legacy applications quickly and efficiently.
There are so many benefits to using a DX strategy,
including lowering risk, removing old vulnerabilities, and
implementing newer applications and methods of
development that reduce complexity. However, with DX
comes the need to manage newer systems that the current
workforce may not be prepared for based on their current
skillset. Along with using updated methods for inventory
management, IT and development teams will need training
to manage new and emerging technology.

Establishing and Decommissioning Standard

Operating Procedures

A final recommendation for organizations is the process
behind the inventory management tooling. For asset
discovery and management, the processes and procedures
are just as important for both auditing and an overall

https://t.me/PrMaB2



understanding of the environment. The establishment of
service documents should outline the inventory component
of bringing systems online, whether they are servers,
containers, or applications. This document, known as the
standard operating procedures (SOPs), provides the steps
to validate that the system is checking the right inventory
tool and is being properly scanned by the vulnerability
scanner of choice.
The SOPs ensure that no system is brought online without
some visibility by the administrative and operations team.
Similarly, a decommissioning process will ensure that any
system taken offline or removed is documented properly
and removed from the inventory as appropriate. Having
systems showing as still online and vulnerable can be
confusing and waste time for operations teams, versus
spending time on real live vulnerabilities.
Decommissioning and removing EoL products is an
essential part of the asset management program.
Organizations can determine their own schedule for
validating if their systems are online or offline, but within
minutes of a system coming online, it should be scanned
before being put into production or set as externally facing.
Protection of new systems is paramount to ensuring that
vulnerable or misconfigured systems do not enter a
production environment without being cataloged and
scanned. Without these processes in place, systems that
are vulnerable may be set to be decommissioned but stay
online and accessible to malicious actors, opening an
organization to risk. Having an asset inventory and
management program is not just good IT practice, but a
risk management activity to protect the business.

Summary

https://t.me/PrMaB2



This chapter encompassed a number of topics within asset
and inventory management. It began with the physical
components of organizations like on-premises data centers
and mobile device management, then covered the
challenges of managing that physical infrastructure.
Moving from physical environments, the chapter covered
all aspects of cloud assets and software management
managed in hybrid or multicloud environments. Risk was
discussed across all types of environments, focusing on
how important it is for organizations to understand their
assets to determine the appropriate risk level for their
infrastructure. Starting with a proper asset and inventory
management program is crucial, especially as organizations
then consider a patch management process, which will be
discussed in the next chapter.

https://t.me/PrMaB2



2 

Patch Management

Any good patch management program consists of
automatic and  manual patching processes and techniques.
Given the dynamic nature of infrastructure, it should be a
continuous process of evaluating what's working, what's
being patched, and what's missing. Without a strong
vulnerability management program, systems can become
outdated or reach EOL. Similarly, without a scheduled and
regimented plan, systems will be left vulnerable for days,
weeks, or longer to zero-day vulnerabilities like what
happened at MOVEit or SolarWinds.

Foundations of Patch Management

Despite all the industry buzz about the latest flashy zero-
day vulnerability, malicious actors are regularly targeting
“vintage vulnerabilities”—vulnerabilities with existing
patches that are known to be exploited in the wild
(www.rezilion.com/blog/report-vintage-vulnerabilities-never-go-
out-of-fashion). This is due to the fact that, despite being
known to be exploited and having existing patches,
organizations still struggle with remediation capacity, on
average only being able to remediate 1 out of 10 new
vulnerabilities per month. Figure 2.1 displays the layers of
patch management activities that would take place in any
IT infrastructure, whether cloud or on-premises.
Each organization must determine what patch management
process will work best for them, but the basics include a
comprehensive inventory; maintenance windows, tools, or
processes to automate patching; and processes for reboots
or taking systems offline for testing.

https://t.me/PrMaB2

http://www.rezilion.com/blog/report-vintage-vulnerabilities-never-go-out-of-fashion


Figure 2.1: Foundations of patch management pyramid
A patch management plan must also include high-
availability or redundancy concerns to ensure that systems
are patched and backed up to keep them online for
customers. It's typical for service level agreements (SLAs)
to include an outlined maintenance window or allotted time
frame for patching and other activities. This also includes a
rollback plan or backup strategy for when patches may
cease functioning or cause service disruption.

Manual Patch Management

Manual patching is any patching in an environment that
requires an individual to download and install a patch,
reboot servers based on organizational requirements, or
investigate patching for servers that falls outside of normal
maintenance windows. Typical organizations will have a
combination of manual and automated patching due to the
reality that not all activities can always be automated, and
implementation might vary, based on organizational and
technical considerations.
Although it's ideal to have as much automation in place as
possible, there will always be a need for manual patches.

https://t.me/PrMaB2



For example, an organization may have an application that
requires 99 percent uptime. The team would then need to
apply patches to a development environment, then perform
user acceptance testing (UAT), and finally apply patches in
production. While there might be some automation for
patch application, rebooting the servers and testing might
still be a manual task (in the early stages of a patch
management program) before patching subsequent
production servers.
Another common use for manual patching is testing one-off
patches when a zero-day vulnerability is announced.
Depending on the vulnerability's severity, it could be
possible to download and automatically install patches, but
accelerated testing and remediation would still need to
occur. With a condensed timeline, groups may not want to
alter the automation in place to account for a one-off
situation or unique patch that doesn't follow their regular
patch cadence.

Risks of Manual Patching

As previously mentioned, a combination of automated and
manual patching is more of a reality for organizations than
having all patch management activities automatically done
using tools. But with any manual activity, there are risks.
One of the first concerns is human error. Any IT
administrator or systems engineer is balancing
engineering, operations, and security tasking.
As with any other role, a systems administrator juggling
many systems, responsibilities, projects, and tasks is prone
to mistakes here and there. These mistakes could lead to:

1. Missing patches for exploitable vulnerabilities
2. Misconfigured settings
3. Additional system-compromising vulnerabilities

https://t.me/PrMaB2



Figure 2.2 highlights the risk level if a team is solely
managing patches by manually downloading and installing
them per system.
Another potential risk of manual patching is the sheer
amount of effort needed to download patches, install and
test them, and have fully updated systems in production. In
automated patching, typically any outstanding hotfixes,
rollups, or individual patches are downloaded and installed
based on a predetermined schedule. The added time to
manually install patches means additional risk for possible
vulnerability exploitation.
On the flip side, if no test environment exists for patching
and manual patches must be installed on production
systems, there's a major risk to operations. Security is a
balance of risk management and operations, per the
Confidentiality, Integrity, and Availability (CIA) triad. If
there's a requirement for customer systems to be
operational 99 percent of the time, administrators and
system owners will spend additional time in testing before
applying patches to production.

Figure 2.2: Manual patching risks
Systems administrators could consider a phased rollout of
patches throughout the environment. This path could

https://t.me/PrMaB2



alleviate some concerns with functionality or operability
concerns. It would also provide limited interruption to the
environment at large, limiting the impact of patching
operations.

Manual Patching Tooling

Some tools allow administrators to perform patch
management activities without fully automating a solution,
using capabilities that will automatically download and
install patches based on the system's type. One example
would be using Ansible for either Linux or Windows servers
or both. Administrators can leverage Ansible playbooks to
download and install updates while still requiring manual
intervention for reboots. Figure 2.3 details how Ansible
works in a cloud environment, including infrastructure and
networking requirements.
For Windows, it's as simple as creating scheduled tasks (if
you're old school), or you can leverage Ansible. Other tools
like ManageEngine and even SolarWinds can manage
patches for Windows as well. However, SolarWinds comes
at a cost, and if it isn't already used in the environment for
server management, you should leverage the capabilities of
newer Windows servers, including centralized
management.

https://t.me/PrMaB2



Figure 2.3: How Ansible works
Another paid option is Microsoft Configuration Manager,
which, like SolarWinds, is a great option if it's already
being utilized for other capabilities. But using it solely to
manage patches could be a costly solution. Any solution is
dependent on customer requirements, the ability to
connect to the Internet to automatically download patches,
and who manages the patches on the systems.
If the team is quite experienced and understands the
environment's nuances, there might be little need to
purchase expensive patching solutions. However, if the
team is more junior and newer to the environment, it could

https://t.me/PrMaB2



be beneficial to augment any manual patching with a more
automated solution like Ansible. There are several open
source repositories and references that administrators can
leverage to reduce the manual tasking required. Figure 2.4
provides an example of a simple Ansible playbook to
automate patch installation.

Figure 2.4: Example of Ansible script for patch
management

Automated Patch Management

Automated patching is a great benefit to anyone who is
managing systems. Whether these systems use containers,
development projects, operating systems, or firmware or
applications, everything must be patched due to the reality
that software is never “complete.” Most organizations have

https://t.me/PrMaB2



a patching schedule based on their corporate or customer
requirements.
For example, an organization might be required to patch
critical vulnerabilities within 15 days (about 2 weeks), and
high-severity vulnerabilities within 30 days (1 month). To
accomplish these timelines, automated patching is a must
to accurately and effectively apply required patches.
Because of the massive number of vulnerabilities released
each day—roughly 85 a day based on recent reports
(www.linkedin.com/posts/jgamblin_2023-ytd-cve-stats-total-
number-of-cves-activity-7136354512683859968-YjfK?

utm_source=share&utm_medium=member_desktop)—administrators
must reduce manual tasking to maintain constant patching
activities.
Another organization might be required to report
vulnerabilities or patching status to a third agency or
prepare those findings for audits. In that scenario, it's even
more valuable to have some automation in place as well as
documentation to outline the process. Patching automation
is as much about the tools and techniques as it is about the
alignment of processes and practice.
Automated patching can not only reduce the potential for
oversight or errors that may arise with manual patching
activities, but can also help with the constant reality most
organizations face, which is a shortage of cybersecurity
talent and resource constraints.

Benefits of Automated vs. Manual Patching

As Figure 2.5 shows, there are some incredible benefits to
utilizing automated patching tools and techniques versus
solely relying on manual patching methods:

https://t.me/PrMaB2

http://www.linkedin.com/posts/jgamblin_2023-ytd-cve-stats-total-number-of-cves-activity-7136354512683859968-YjfK?utm_source=share%26utm_medium=member_desktop


Figure 2.5: Benefits of automated vs. manual patching
solutions

Reduced Administrative Overhead   It's well
established that the time that administrators,
engineers, and developers have to patch systems is
limited. These operations teams are typically juggling
many different tasks and projects, while also working to
patch and remediate vulnerabilities within a predefined
timeline.
Faster and More Efficient Patching Cycles

  Without having some automation in place, patching
simply takes more time. Additional time is required for
downloading and installing the patches, especially
when across multiple environments. In any complex
environment, automated patching is a must to keep up
with the multitude of patches released at the operating
system (OS), application, and container levels. In
development environments, there will likely be
development, UAT, and production levels as well.
Reduced Time to Remediation   Based on the sheer
volume of vulnerabilities identified daily, without
automation, teams will need weeks or months to
remediate vulnerabilities. However, by using additional

https://t.me/PrMaB2



tools, scripts, or playbooks, the time from vulnerability
identification to remediation can be reduced
significantly.

Reducing the time to remediation is critical, as
organizations are often in a race with attackers seeking to
exploit new or known vulnerabilities faster than
organizations can remediate them. Known as the minimize

the attack or exploitation window, this time frame can help
mitigate the risk of an organization being breached or
compromised as part of a security incident. It can also
bolster an organization's case that they're performing due
diligence with mitigating known vulnerabilities and risks.

Combination of Manual and Automated

Patching

However, the true solution lies somewhere between manual
practices and automated solutions. There will not be any
one right solution for a team, especially due to the
intricacies between infrastructure, operations, and
development. However, the best way to build a
comprehensive patch management program is to start by
building a Roles and Responsibilities Matrix. This simple
activity allows teams to understand what they are
responsible for and start building the tools and practices
around it. Each team can align their patching activities,
which not only reduces risk, but can also build
relationships between teams.
Building a comprehensive patch strategy including all
teams helps teams align their goals and missions regarding
an overall vulnerability management program. Each may be
able to leverage the same automation and implement the
same days/times for patching to limit downtime and reduce
remediation time.

https://t.me/PrMaB2



The balance of automation and manual patching can be a
shared experience between teams, including sharing
scripts and playbooks. Overall, the strategy is just as
important as the teamwork. Sharing automation techniques
with other teams that may not be as mature in patch
management will grow the teams, align strategy, and
ultimately provide a more secure environment. The
recommendation here is to build a patch management
repository where teams can share information, instead of
groups working in silos and potentially impacting one
another's work.

Risks of Automated Patching

Several risks associated with automation have more to do
with operations than security (see Figure 2.6). For
example, automating the patching and rebooting servers
without testing could lead to broken functionality or even
corruption in the patch sets themselves. Patches include
not only security features but also enhancements and
potentially resolve other software issues.

Figure 2.6: Risks of automated patching
The first risk is the impact to operations and associated
downtime for users due to patch activities. Because

https://t.me/PrMaB2



patching one application may have a dependency on
another, it could take an application down or impact
functionality. This is why it's so critical for teams to test
patches as much as possible in a separate environment or
create a rollback plan before patching systems.
Additionally, organizations have been adopting strategies,
such as Blue/Green deployments, where changes are made
to one version of a running system. For example, green
may be the production environment, patches are made to
the blue environment, and then configuration changes are
made to route traffic to the staging, or blue, environment,
making it the production environment moving forward.
An additional patching risk is that the patch doesn't resolve
the vulnerability alone and requires configuration changes.
An example would be a Microsoft patch to fix a
vulnerability that also requires an Active Directory (AD)
Group Policy or registry key change. This complexity could
leave open vulnerabilities simply because remediation
instructions aren't always clear.
A final risk is that if teams aren't proficient with patching,
they may not read the details of the Common
Vulnerabilities and Exposures (CVE) ID to understand
what's needed for full remediation. If there's a lack of
knowledge of how patching works, it could be the
beginning of a large vulnerability backlog, which is
incredibly difficult to return from.

Patch Management for Development

Environments

As organizations move to larger and more diverse
development environments, patching in development
environments becomes an even higher priority for
operations teams. Development-level patching includes

https://t.me/PrMaB2



everything from the OS level (e.g. Red Hat Enterprise
Linux [RHEL]) to the application layer (e.g., Tomcat,
Python, and other libraries) and other tools (e.g.,
Bootstrap, Java, or Jenkins).
Newer roles such as DevOps and DevSecOps are more
prevalent and include responsibilities from software
development, security engineering, and infrastructure
operations. These new roles require additional skillsets
across each discipline to provide harmony in operations
and security.
Anything external facing is at a higher exploitation risk and
would be at the top of the patch management list. And with
any application, there will be external-facing components
requiring some additional testing before the patches are
installed.

Open Source Patching

Most developers use some level of open source software
(OSS) within their applications. In fact, studies show that
modern codebases are composed of up to 60 to 80 percent
OSS code overall. OSS allows teams to focus on the actual
development and engineering aspects, without having to
reinvent every function type. For example, why create a
logging tool when a team could leverage Log4j?
OSS provides a lot of flexibility and adaptability whereas
simply purchasing software or building it could take
additional time and resources. With stretched budgets and
condensed timelines, it makes sense to use as much free
software as possible. However, OSS patching can be tricky,
especially when using tools or libraries that aren't updated
often.
As we'll discuss in Chapter 9, “Cloud, DevSecOps, and
Software Supply Chain Security,” studies from

https://t.me/PrMaB2



organizations like Synopsys have found that 88 percent of
modern codebases contain OSS components that have had
no new development in 2 years, and 85 percent of
codebases contained OSS that was more than 4 years out of
date. Further complicating the issue is the fact that 25
percent of all OSS projects have one developer contributing
code, and 94 percent of projects have 10 or fewer active
contributors. In fact, Sonatype's 9th Annual State of the
Software Supply Chain report (www.sonatype.com/state-of-the-
software-supply-chain/introduction) found that only 11
percent of all OSS overall seems to be actively maintained.
Multiple OSS projects are used widely but are only
maintained by a small group of developers. For example,
Log4j was managed by three developers and because it
wasn't a paid product, they didn't have the time or
resources to patch and manage it over time. When the
Log4j exploit was released at the end of 2022, it took time
to obtain a patch due to its smaller team and limitations on
their availability.
While major exploits like Log4j don't occur all the time,
there is a possibility for an attacker to use OSS to develop
malware or attacks. They know that these projects aren't
always maintained, and because Log4j was so successful,
it's possible that another opportunity like this exists in
other software. Teams must be aware of the exploitation
potential for any OSS that isn't actively maintained.

Not All Software Is Equal

In this section, we'll discuss some of the complexities of
managing OSS patches internally and the varying
responsibilities between development and operations
teams. We'll also discuss the need for clear roles and
responsibilities, such as ownership of patch management.

https://t.me/PrMaB2

http://www.sonatype.com/state-of-the-software-supply-chain/introduction


Managing OSS Patches Internally

The first part of managing OSS patches internally within
the development, operations, or security teams is to
understand what applications and libraries are actively
being used. Creating an OSS application library would be
beneficial to understand the OSS projects being used, what
they are used for, who has responsibility for them, and
what version is on which system.
The next step would be to integrate OSS patching within a
normal patch management window. Patch management
plans aren't just for vendor-related software but also for
any OSS. Within Linux and Windows environments, it could
be as simple as creating a patch playbook within Ansible to
download and install those patches.
To reiterate, whether it's OSS or vendor-related
applications, both the process and tooling aspects are
equally important to the patch management program's
success.
The final step would be the vulnerability scanning and
reporting of those servers and containers to ensure that the
patches are being properly applied. These reports could be
used to determine if a particular OSS component hasn't
been upgraded in some time or doesn't have any newer
patches available. Security teams can then determine risk
for any OSS components that are no longer being
maintained, to evaluate alternatives or decide to accept the
risk of using the components.
Managing OSS dependencies in modern environments is
very complex and tedious and is often referred to as
“dependency hell.” As a sign of embracing automation and
tooling, the industry is seeing the increased adoption of
tools such as Dependabot (https://github.com/dependabot) and
Renovate (https://github.com/renovatebot/renovate), which

https://t.me/PrMaB2

https://github.com/dependabot
https://github.com/renovatebot/renovate


help facilitate automated dependency updates. These tools
can be integrated into existing developer workflows, and
they are supported by widely used development platforms
such as GitHub.

Responsibilities of Infrastructure vs.

Operations Teams

There's a long-standing debate in the technology industry
that exists between infrastructure and operations teams
about who is responsible for what. Infrastructure teams are
typically responsible for the underlying hosting and
management that is the foundation upon which all
applications, servers, and containers sit. They may also be
responsible for some patching, secure configuration, and
even identity and access management (IAM). In a data
center, infrastructure teams would manage the data center,
while operations teams would remain focused on the daily
care of the servers and operations on top, including
resolving downed servers, application errors, or any other
user functionality concerns. These teams may also be
responsible for high availability (HA). However, this
paradigm is changing with the advent of cloud computing,
infrastructure as code (IaC), and methodologies such as
GitOps that declaratively provision and manage digital
infrastructure using practices leveraged from software
development. Increasingly, the industry is adopting a “you
build it, you own it” mantra, where many development and
engineering teams find themselves responsible for the
systems they've developed, designed, and put into
production. There is also a concurrent push over the last
decade for DevOps, breaking down the silos between
development and operations teams.

Who Owns Patch Management?

https://t.me/PrMaB2



It's a tricky question—who owns patch management? And
at what level? Hardware devices, hosts, applications,
containers, and so forth are all going to potentially require
different individuals to be responsible for patching. One
example is an application that uses a database. The
development team might be required to patch and
configure the application, but a separate database
administrator (DBA) could be responsible for the database.
And yet another team could be responsible for the
infrastructure-level patching, or the OS or hosts on which
the systems rely. For example, when there are patches for
Oracle servers, who would install them?
While not a simple answer, it could be the DBAs simply
because they're performing the regular database
maintenance and should know the expected behavior
before and after patches are applied. The expected system
performance and operations are important to validate once
changes have been made. So, it's possible that once DBAs
apply the fixes, they may work together with the
development team to ensure that application functionality
hasn't changed.
Each situation will be different, but the best way to run
patch management programs is to align teams with patch
strategies and coordinate efforts. Create a Responsible,
Accountable, Consulted, and Informed (RACI) matrix, also
known as a responsibility assignment matrix, and document
what roles each team will play. Without this, team members
could point fingers at another team who should be
responsible for patching, leading to confusion and delays in
remediation. The RACI matrix in Figure 2.7 shows an
example of how teams can create their own matrix to
organize patching.

https://t.me/PrMaB2



Figure 2.7: Example of RACI matrix for infrastructure and
operations

Separation of Duties

After creating a RACI matrix, teams should also consider
the classic concept of separation of duties. IT and security
teams would keep separate duties to ensure that checks
and balances are in place. For example, the infrastructure
team would handle the underlying patching and secure
configuration, while the security team would run
vulnerability scans and validate that all security
expectations are met.
IT and development teams may share some responsibilities
when it comes to patching, but there would also be a
secondary set of checks performed by another team for
testing and ensuring functionality across systems. Patching
at an OS level may affect the top-level applications or
databases, so it would be important to have a multi-tier
patch management plan.
Separating duties provides two main benefits to any patch
management strategy. The first benefit is that not one
person is responsible for every task of patching and

https://t.me/PrMaB2



validating each setting as it's complete. This allows team
members to not be responsible for every task and risk
burning out, missing a patch or configuration, or having too
many tasks to juggle at once.
The second benefit is enhanced in-depth security using
multiple tiers of individuals who will implement and
validate that the vulnerabilities are remediated. Without at
least two pairs of eyes to ensure that patches were
implemented, it is possible that they could fail, and that the
implementer may not know without a second validation
step. This could be done with a vulnerability scanner with
reporting sent to both the operations and security teams.
The security engineer or analyst could then review the
findings and notify the IT staff if any patches were
unsuccessful.

Tools and Reporting

Tools are the backbone of any patch management program,
regardless of what technology is used in the environment.
Reporting is the second part of the program that provides
validation and organization vulnerability data for users.
Tooling and reporting work together to install, manage, and
continuously monitor patches.
Common patch management tools like Microsoft's
Configuration Manager or SolarWinds require some
additional configuration and can be costly. Entire
engineering roles are dedicated solely to managing those
tools given the complexity of cloud environments and
software products. Reporting can be done in any of the
tools mentioned previously and customized for the
individual receiving that report.
For example, a security engineer might want to see every
vulnerability, regardless of its severity or exploitability.
However, a developer might only be interested in their

https://t.me/PrMaB2



specific applications and not the vulnerabilities on the
infrastructure side.
For reporting, a manager would only be interested in the
assets under their area of responsibility (AOR), while an
executive would only be interested in the top five
vulnerable systems or the top three most exploitable
vulnerabilities. Each unique data set can be built into a
reporting tool to give job roles their own reports. This
solution reduces the amount of irrelevant information in
reports, cutting down on time needed to remediate or
spend time on vulnerabilities that are not a high priority.

Patching Outdated Systems

There may be many reasons why an organization is using
EOL or end-of-support (EOS) software. EOL software or
hardware is no longer being patched or fixed by the
vendor. It's common that there would be a timeline for a
particular OS or application to be supported and then
retired for newer versions.
One example is the support of Windows Server 2012 until
October 2023. After that date, customers could purchase
extended support from Microsoft for a year or two while
they worked on a transition plan to a later version like
Windows Server 2019 or 2022. But if a customer doesn't
purchase extended support, they will be left with
potentially vulnerable software that will not be patched.
One of the largest risks that leaves behind exploitable
vulnerabilities is outdated patches. As mentioned
previously, most organizations follow a timeline for
remediating vulnerabilities within a certain time frame.
Along with unsupported software, the other major risk is
the use of open source software, if the
developers/maintainers aren't maintaining and updating

https://t.me/PrMaB2



their products and projects. Each of these scenarios leads
to major unknown vulnerabilities and risks.

End-of-Life Software

Organizations may need to keep older software because of
customer requirements or the complexity of applications.
It's possible in a development project that the team would
be hesitant to upgrade certain libraries or dependencies
due to the code's rework. However, this would be a
mistake. The earlier the planning begins for upgrading or
migrating to a new environment, the sooner the teams can
identify problems in functionality that require additional
testing. Figure 2.8 shows end-of-life software listing
examples.

Figure 2.8: End-of-life software listing examples
There are incredible risks associated with unsupported or
EOL software and hardware. Because these outdated
systems are no longer being patched or maintained, no
more fixes for bugs or exploitable vulnerabilities exist, with
unknown vulnerabilities remaining. This adds to the list of
unknown unknown risks, leaving an organization
potentially vulnerable to a common attack against

https://t.me/PrMaB2



unpatched systems known as remote code execution (RCE),
unauthenticated access, or other exploitable vulnerabilities.
In RCE, an attacker could leverage an RCE to inject
malware or malicious code into a web application or
infrastructure. RCE vulnerabilities exist across several
types of applications, OSs, and other devices, which are
highly exploitable and easier for attackers to leverage, in
order to gain initial access into a system.
It's essential to have a plan for EOL and EOS software and
hardware long before the software has reached its end of
life. Otherwise, organizations might be at risk from EOL
products in the environment while transitioning away from
older software. One example would be the migration of
applications and services to an RHEL 9.x server, while
maintaining the old environment on an RHEL 7.x. Typically,
these types of projects take time and require several teams
to be engaged.

Unpatched Open Source Software

One of the risks with using any OSS application or package
is that some of them aren't maintained, based on the
limited developers and team who manage an open source
project. Each application, library, or tool will be dependent
on whomever maintains that repository. Several open
source projects started because developers wanted to
share their work with the world and make repetitive tasks
easier for others.
But therein lies the risk—these projects are available for
free, and are maintained as the developers have the time
and ability to work on them outside of their normal jobs. If
OSS looks like it hasn't been updated in 3 months or 3
years, it would be important to reach out to the owners of
the repo to determine if it is still actively maintained.
Without a response, teams can assume that any

https://t.me/PrMaB2



vulnerabilities found in the software may not be patched
quickly.
With this risk, it is incredibly important for an organization
to keep a library of all OSS applications and components
used in their environment. Without it, it could be a lengthy
process to determine risk, or even find where the libraries
and tools are being used. Each security team should be
aware of what OSS is used, where it is installed, and if it is
currently required. Most organizations struggle with a
comprehensive inventory of OSS components used in their
environments, whether for internally developed software or
components contained in software they consume from third
parties (either self-hosted or consumed over the Internet
such as software-as-a-service [SaaS]). For example, the
Cyber Safety Review Board (CSRB) review of the Log4j
incident revealed that some U.S. federal agencies spent
tens of thousands of aggregate hours just trying to figure
out where the Log4j component existed in their systems.
All outdated or unused OSS should be updated or removed
from the environment as quickly as possible, which can also
help minimize the attack surface of applications and the
software for malicious actors to exploit.
Another key consideration and distinction when dealing
with OSS compared to proprietary software is, when you're
working with a vendor, you typically have service level
agreements (SLAs) and timelines associated with
maintaining software, providing updates, and disclosing
vulnerabilities. Unlike proprietary software vendors, OSS
maintainers aren't software suppliers, and OSS is generally
free for use as is, meaning that consumers have no
assurance of the vulnerabilities or defects being addressed
in any formal and rigid timeline. Organizations consuming
OSS need to be aware of this distinction and be prepared to
implement compensating controls for vulnerable OSS

https://t.me/PrMaB2



software without patches available, as well as potentially
forking the code and implementing remediations
themselves. Despite this being the reality, most
organizations don't have a strong understanding of this
distinction and defer to relying on the OSS maintainers,
failing to realize they are ultimately responsible for any
OSS they're consuming and utilizing.

Residual Risk

Residual risk is any risk that is left over from any
vulnerability management activities, including the
application of patches and hotfixes, which are quick
engineering updates or secure configurations. This residual
risk could be accepted, mitigated, or transferred to another
party.
It is important to note that not all patches can be
implemented on all systems, simply because of the
requirements by customers or other circumstances.
Residual risk is a component of any vulnerability
management program and must be accounted for by
creating exemptions or accepting specific risks in the
environment.
The worst thing a team can do, however, is to be
overwhelmed by the sheer volume of vulnerabilities or work
that it would take to “catch up” or remediate all the
outstanding vulnerabilities. Decision paralysis is when an
individual is incapable of making a timely decision based on
the sheer volume of data to input at one time. To this end,
teams should be aware of this concept and provide
adequate space to make complex decisions on risk.

Common Attacks for Unpatched Systems

According to statistics from a Cybersecurity and
Infrastructure Security Agency (CISA) article, there is a

https://t.me/PrMaB2



serious need to focus on updated vulnerability management
practices to reduce risk (www.cisa.gov/news-
events/news/transforming-vulnerability-management-landscape).
Leaving systems with exploitable vulnerabilities expands
the possible attack surface. With a larger attack surface, an
attacker has multiple routes into systems. Each
vulnerability left unmitigated is a possible entry point,
leaving an opportunity for an attacker to conduct
vulnerability chaining attacks. Vulnerability chaining will
be explored in depth later in Chapter 7, “What is
Vulnerability Chaining?”
Another common attack method against unpatched systems
is targeting any unauthenticated login access to servers
and conducting a compromise, or then conducting a
privilege escalation attack. These types of attacks can be
found in a variety of software and aren't exclusive to any
one type of application or vendor.
These two attack vectors are particularly devastating, given
the possibility to gain remote access or elevate privileges to
gain access to more systems. If there is no network
segmentation or other mitigating controls set in place,
exploiting these vulnerabilities would make it relatively
easy to move to other systems. One example is gaining
access to a web application server and then laterally
moving to a database or another server containing business
or financial information. Even with these few examples, it's
easy to see how unpatched systems are a massive attack
vector and how they can be used frequently to gain
unauthorized access to systems.
One area that can greatly assist unpatched systems, if they
cannot be patched due to application or legacy system
requirements, is mitigating controls. Mitigating controls
offer additional protection to limit the “blast radius,” or the
potential damage done to systems. For example, if network

https://t.me/PrMaB2

http://www.cisa.gov/news-events/news/transforming-vulnerability-management-landscape


segmentation is put in place to limit access to databases, a
malicious actor might be able to compromise a frontend
web server, but might be unable to leverage it to gain
access to the database due to limited connectivity between
the web server and database.
Another example of mitigating controls is the concept of
least privilege, or limiting the number of permissions that
users have within a system. Limiting root access to Linux
servers, or disabling root access, requires that each user
log in with far fewer permissions or less access than
administrators. While an attacker might still be able to
conduct privilege escalation, it will be far more difficult for
the attacker to do that without being detected by logging
and monitoring.

Prioritizing Patching Activities

Any IT project is going to require juggling operations,
maintenance, and ongoing innovation and engineering
projects. One common example would be an organization
deciding to upgrade from an EOL version of RHEL to the
latest on new containers. Another common example would
be the upgrade of Windows servers from 2016 to the latest
2022 server version. These migration types typically
include maintaining an old environment while building a
new one.
Of course, with these types of situations, there will not be
an increase in staff to build the new systems. The same
team who is managing the production environment might
also be developing new containers and applications. These
administrators and developers will need to double up their
work to keep up on patching activities in both
environments.
To help prioritize patch management, organizations should
be leveraging automation as much as possible to limit the

https://t.me/PrMaB2



amount of manual intervention (and time) required by
administrators and engineers. Before even beginning to
prioritize patch management, a full asset and application
inventory should be considered so that teams understand
their highest-priority assets.
First, any OS and application patching that can be
automated should be tested and put into production to
handle the majority of vulnerabilities with the least amount
of effort. At this stage, the teams can also create
prioritization for development and testing systems, then
patch production systems after. An example is patching dev
on a Friday morning, then after a week of testing, patching
all production systems, the following Thursday evening.
Second, organizations should look at third-party
applications that may not automatically be pulled into repos
or their patch management system. Administrators and
engineers should create alerts or notifications from the
vendors to be notified as patches are released. These
applications should be built into the patch management
process and may be organized around normal patching
schedules.
Finally, there should be continuous monitoring and
improvement of this process over time. Both the operations
and security teams should be reviewing vulnerability
reports to ensure that patching is happening as expected,
and if not, that the process and tooling are adjusted.
Patching is not a one-time activity—it must be iterated and
improved over time. As long as teams understand their
responsibilities in regard to patching, it will go a long way
in terms of helping them to adjust to integrating these
activities into their daily routines.

Risk Management and Patching

https://t.me/PrMaB2



Risk management programs and patching should not be
done as siloed activities, or without interaction between
responsible teams. Some larger organizations have
separate risk management teams and programs. While this
might work in a larger business, smaller organizations
should be conducting risk management activities in
coordination with their regular maintenance and operations
activities.
For example, it would make no sense to prioritize patching
database servers that no longer contain sensitive or
proprietary data when there are higher-risk databases
attached to web application servers with no network
segmentation. Without this knowledge, siloed teams might
deprioritize other patching efforts that could potentially
cause high risks to the organization.
Each team should consider the risk associated with any
outstanding vulnerabilities and how they want to conduct
their patching schedules. If a team decides to patch all
externally facing assets first, then they can deal with
patching infrastructure and databases or storage second.
However, note that a healthcare organization would
prioritize protected health information (PHI) over a
database server that might be used for testing.
One final thought on patching and risk management: As
with vulnerability management concepts, it is a continuous
and iterative process. It isn't a one-time exercise, but it
must be done horizontally and vertically throughout the
organization.

Building a Patch Management

Program

This chapter has outlined several of the risks, concerns,
and considerations for building a comprehensive patch

https://t.me/PrMaB2



management program. The biggest theme throughout has
been the classic concept of people, process, and
technology. The reason this concept is still so prevalent is
due to how it comprehensively captures all aspects of an
organization. This concept works well in building a patch
management program because classic practices (like
manual patching alone) do not work.
The harmony between the people (e.g., development,
operations, and security), process (e.g., standard operating
procedures [SOPs] or policies), and technology (e.g.,
configuration managers and vulnerability scanners) is
essential to a successful program. Without alignment
between all three, organizations are at risk for all the
concerns listed previously: exploits, zero-day
vulnerabilities, and unknown unknowns.
Building that alignment isn't going to happen overnight but
can be done in steps to build maturity into any
organization. Figure 2.9 illustrates what teams should be
involved, how to integrate tooling, and how processes can
be the glue between both when building or maturing a
patch management program.

People

The aspects of people, process, and technology will be seen
throughout the book, but here it's important to note who is
responsible for patch management. The decision as to who
is responsible for patch management is integral to the
successful patching of systems across the enterprise.
It is possible that the system owners, administrators,
developers, security engineers, or even third parties might
be responsible for patching their own individual
components. For everyone involved in the patch
management process, they must understand their own
responsibilities and timelines for applying patches.

https://t.me/PrMaB2



Figure 2.9: Alignment of people-process-tech

Process

For practitioners, they might have their own set of SOPs, or
processes defined for the technical implementation of
patches and associated playbooks or scripts. Their
timelines and schedules might align with the requirements
from customers or other guidelines—for example, they
must remediate critical vulnerabilities within 4 days.
For management and executives, processes might be more
in line with the customer requirements or any federal
mandates that may be applicable to their area of business.
A healthcare organization might have different
requirements than an IT contractor company. The
leadership teams might create a policy to travel down to all
other management and practitioners to implement via
technical methods.

Technology

The technology for patch management will be at the
discretion of the people behind the regular patching and
management of systems. This includes anything from using
third-party tools like Configuration Manager or

https://t.me/PrMaB2



ManageEngine, to creating scripts or playbooks with
Ansible or PowerShell.
Each of these components would be selected by the
administrators and, if requiring funding, would be
approved by the leadership. Ideally, administrators and
engineers would have the ability to manage multiple OSs,
containers, or applications with the same tool. However,
administrators and engineers might need to come up with
creative technical solutions.

Summary

Organizations need to have a comprehensive patch
management strategy. This strategy includes building an
asset inventory, in addition to understanding missing
patches and how patches will be deployed throughout the
environment. Patch management truly requires harmony
between people, process, and technology. Organizations
should focus on removing EOL and EOS, preparing for
regular patching cadence, and building rollback and
backup plans for when things go wrong. In addition,
organizations should have expected patching and
maintenance windows.

https://t.me/PrMaB2



3 

Secure Configuration

While some vulnerabilities are inherent to software and
services and intrinsic aspects of a digital environment,
others are tied to how a specific product, software, or
service is configured. This chapter covers the topic of
secure configurations and discusses various aspects such
as regulatory frameworks, common misconfigurations, and
industry secure configuration guidance.

Regulations, Frameworks, and Laws

Regulatory frameworks and laws play a significant role in
advocating for the industry adoption of best practices and
secure configurations. For example, the Center for Internet
Security (CIS) Benchmarks align closely and map to
frameworks such as the National Institute of Standards and
Technology (NIST) Cybersecurity Framework (CSF), the
Payment Card Industry Data Security Standard (PCI DSS),
and the Health Insurance Portability and Accountability Act
(HIPAA).
In the defense space, there are requirements for utilizing
the Department of Defense's (DoD) Defense Information
Systems Agency (DISA) Security Technical Implementation
Guides (STIGs) where possible, and to utilize vendor- and
industry secure configuration guidance in the absence of
STIG availability. The reason is that most products and
software don't come to customers and consumers in a
“hardened” state. This is due to the inherent give and take
between concepts such as usability and security. Suppliers
are often trying to make products as feature-rich, capable,
and easy to use as possible, whereas security practitioners

https://t.me/PrMaB2



are often looking to make products secure and difficult to
exploit, with a minimized attack surface. These two
priorities often are at odds, as features get disabled,
configurations get hardened, and systems get “locked
down” to minimize the exploitation of their systems,
software, and products by malicious actors.
It isn't uncommon for users to use hardening guides from
suppliers directly or other industry organizations such as
CIS or DISA, as well as security vendors and independent
experts. This often involves making configuration changes
to enable an application or product to be more secure and
to disable features and functions that may be exploited by
attackers.
That said, we are seeing a push from sources like the
Cybersecurity and Infrastructure Security Agency (CISA) to
pivot within the industry, advocating for suppliers to
provide secure-by-design/default products, and have them
hardened upon delivery to customers and consumers.
Instead of hardening guides, suppliers would provide
“loosening guides” to help customers make configuration
changes to enable features and functionality that might
increase risk, and to inform consumers of the risks of
making such configuration changes.

NSA and CISA Top Ten Cybersecurity

Misconfigurations

While cybersecurity headlines are often dominated by the
latest zero-day or other notable vulnerability in a vendor's
software/product or open source software (OSS) library,
the reality is that many significant data breaches have (and
will) continue to be due to misconfigurations.
As defined by NIST, a misconfiguration is:

https://t.me/PrMaB2



An incorrect or suboptimal configuration of an

information system or system component that may lead

to vulnerabilities.

It's why the National Security Agency (NSA)/CISA recently
released their Top Ten Cybersecurity Misconfigurations
(https://media.defense.gov/2023/Oct/05/2003314578/-1/-1/0/JOINT
_CSA_TOP_TEN_MISCONFIGURATIONS_TLP-CLEAR.PDF). These
misconfigurations were identified through extensive red
and blue team assessments and threat hunting and incident
response team activities.
If you're like most cybersecurity professionals, many of
these items should come as no surprise and might even
seem simple. But as the saying goes, just because
something is simple doesn't mean it's easy, and in modern
complex digital environments doing these fundamentals at
scale may be daunting.
Their publication emphasizes how pervasive these
misconfigurations are in large organizations, even ones
with mature security postures, and also emphasizes the
need for software suppliers to take a secure-by-
design/default approach, which is something CISA in
particular has been advocating for and has published a
document discussing (www.cisa.gov/securebydesign).
For those interested in secure-by-design/default, one of this
book's authors has covered the topic in previous articles
such as “The Elusive Built-in not Bolted-on”
(https://resilientcyber.substack.com/p/the-elusive-built-in-
not-bolted-on) and “Cybersecurity First Principles &
Shouting Into the Void”
(https://resilientcyber.substack.com/p/cybersecurity-first-
principles-and).
With that said, let's dive into the Top Ten items the NSA
and CISA identified. As their publication points out, these

https://t.me/PrMaB2

https://media.defense.gov/2023/Oct/05/2003314578/-1/-1/0/JOINT_CSA_TOP_TEN_MISCONFIGURATIONS_TLP-CLEAR.PDF
http://www.cisa.gov/securebydesign
https://resilientcyber.substack.com/p/the-elusive-built-in-not-bolted-on
https://resilientcyber.substack.com/p/cybersecurity-first-principles-and


are in no way prioritized or listed in order of significance,
as each one on its own can be problematic and lead to a
pathway of exploitation by attackers.

Default Configurations of Software and

Applications

One wouldn't think in 2024 that we would be discussing the
risks of insecure default configurations of software, but
here we are. Issues like default credentials, permissions,
and configurations are still a common attack vector that is
exploited.
For example, having default credentials in widely used
commercial-off-the-shelf (COTS) software and products
creates a situation where malicious actors who can identify
those credentials can exploit the systems and environments
that haven't changed those defaults. These defaults are
often widely known and easy to find by even the least
skilled malicious actors, as they are often published by the
manufacturers themselves. This can allow attackers to
identify credentials, change administrative access to
something they can control, and pivot from compromised
devices to other networked systems.
In addition to default credentials on devices, CISA points
out that services can have overly permissive access
controls and vulnerable settings by default. They
specifically call out items like insecure Active Directory
(AD) Certificate Services, legacy protocols/services, and
Server Message Block (SMB) services.
For those unfamiliar with the CISA Known Exploited
Vulnerabilities (KEV) Catalog, it's an authoritative source
of vulnerabilities that have been exploited in the wild. You
can find a digital visualization of it at www.cisa.gov/known-
exploited-vulnerabilities-catalog, representing the leading

https://t.me/PrMaB2

http://www.cisa.gov/known-exploited-vulnerabilities-catalog


vendors on the KEV Catalog and their number of known
exploited vulnerabilities.
If it seems like Microsoft has a large presence among the
vulnerabilities listed, it's because Microsoft products are
also the most common that the assessment teams
encountered throughout their activities. Default credentials
aside, Microsoft also reigns supreme atop the CISA KEV
Catalog. They are also the recent target of the Cyber Safety
Review Board (CSRB) due to Chinese hacks of Microsoft
Exchange and prompts from some elected officials
(www.bleepingcomputer.com/news/security/us-cyber-safety-board-
to-analyze-microsoft-exchange-hack-of-govt-emails). Sometimes
being first isn't quite so glamorous (see Figure 3.1).

Figure 3.1 CISA KEV flag
Source: Patrick Garrity/2023// last accessed on 19 january 2024.

https://t.me/PrMaB2

http://www.bleepingcomputer.com/news/security/us-cyber-safety-board-to-analyze-microsoft-exchange-hack-of-govt-emails


Improper Separation of User/Administrator

Privilege

Despite industry-wide buzz about things like zero trust,
which is rooted in concepts such as least-privileged access
control, this weakness still runs rampant. The NSA/CISA
publication calls out excessive account privileges, elevated
service accounts, and nonessential use of elevated
accounts.
Anyone who has worked in IT/cyber for some time knows
that many of these issues trace back to human behavior
and the general demands of working in complex
environments. Accounts tend to aggregate permissions and
privileges as people rotate through different roles and
tasks, and these permissions rarely, if ever, are cleaned up.
Sources such as the Verizon Data Breach Investigations
Report (DBIR)
(www.verizon.com/business/resources/reports/dbir) yearly
demonstrate that credential compromise remains a key
aspect of most data breaches, and these overly permissive
accounts sit, lying in wait, as a rich target for malicious
actors to abuse.

Insufficient Internal Network Monitoring

If a tree falls in a forest and no one is around to hear it,
does it make a sound? Similarly, if your network is being
compromised and you lack visibility, awareness, and
associated alerting, are you able to do anything about it?
No.
The NSA/CISA publication demonstrates that organizations
need to have sufficient traffic collection and monitoring to
ensure that they can detect and respond to anomalous
behavior. As the publication discusses, it isn't uncommon
for assessment and threat-hunting teams to encounter

https://t.me/PrMaB2

http://www.verizon.com/business/resources/reports/dbir


systems with either insufficient networking and host-based
logging, or to have these measures in place but not
properly configured and monitored to be able to respond to
potential incidents when they occur.
This lack of configuration and monitoring allows malicious
activity to go on unfettered and extends the dwell time of
attackers in victims' systems without detection. To bolster
network monitoring and hardening, the publication
recommends that readers check out CISA's document,
“CISA Red Team Shares Key Findings to Improve
Monitoring and Hardening of Networks” (www.cisa.gov/news-
events/cybersecurity-advisories/aa23-059a).

Lack of Network Segmentation

Another fundamental security control that makes an
appearance is the need to segment networks, a practice
that again ties to the broader push for zero trust. By failing
to segment networks, organizations are failing to establish
security boundaries between different systems,
environments, and data types.
Without boundaries, malicious actors can compromise a
single system and move freely across other systems without
encountering friction and additional security controls and
boundaries that could impede their nefarious activities. The
NSA/CISA publication specifically calls out challenges
where there's a lack of segmentation between IT and
operational technology (OT) networks, putting OT networks
at risk, which have real-world implications for security and
safety in environments such as industrial control systems
(ICSs).
The problem can be further exacerbated with cloud
environments due to their multi-tenant nature, allowing a
malicious actor to compromise a single
account/environment or service but have a cascading

https://t.me/PrMaB2

http://www.cisa.gov/news-events/cybersecurity-advisories/aa23-059a


impact across other victims. This challenge was discussed
by one of the authors in an article titled “Troublesome
Tenants” (https://resilientcyber.substack.com/p/trouble-in-
the-neighborhood), where he used Wiz's Cloud Isolation
Framework to examine the issue in cloud environments.

Poor Patch Management

Patching is everyone's favorite activity in cybersecurity,
right? CISA's Top Ten publication points out that failing to
apply the latest patches can leave a system open to being
exploited by malicious actors who target known
vulnerabilities.
The challenge there is that even for organizations who are
performing regular patching, sources such as the Cyentia
Institute (www.cyentia.com) have pointed out that
organizations' remediation capacity—their ability to patch
and otherwise remediate vulnerabilities—is subpar.
Organizations on average can only remediate 1 out of 10
new vulnerabilities per month, placing them in a perpetual
situation where vulnerability backlogs continue to grow
exponentially, demonstrating why others such as Ponemon
and Rezilion found (www.rezilion.com/wp-
content/uploads/2022/09/Ponemon-Rezilion-Report-Final.pdf) that
organizations have vulnerability backlogs ranging from
several hundred thousand to millions. See Figure 3.2.

https://t.me/PrMaB2

https://resilientcyber.substack.com/p/trouble-in-the-neighborhood
http://www.cyentia.com/
http://www.rezilion.com/wp-content/uploads/2022/09/Ponemon-Rezilion-Report-Final.pdf


Figure 3.2 Ratio of monthly open to closed vulnerabilities
Source: Wade Baker / 2023 / 
(www.linkedin.com/feed/update/urn:li:activity:7071571847460311040) / last
accessed on 19 january 2024.

Couple that with findings from Qualys on attackers'
abilities to exploit vulnerabilities 30 percent faster than
organizations can remediate them, and it's a recipe for
disaster—remember, attackers only need to be right once
(see Figure 3.3).
Issues cited include a lack of regular patching as well as
using unsupported operating systems and firmware,
meaning that these items simply don't have patches
available and are no longer supported by vendors. I would
personally add the need for organizations to ensure that
they're making use of secure open source components and
using the latest versions, which is also something that

https://t.me/PrMaB2

http://www.linkedin.com/feed/update/urn:li:activity:7071571847460311040


many organizations struggle with and which is helping
contribute to the increase in software supply chain attacks.
We will also discuss extensively in Chapter 5, “Vulnerability
Scoring and Software Identification,” how organizations
should prioritize known exploited vulnerabilities (e.g., CISA
KEV) and vulnerabilities that are highly probable to be
exploited (e.g., Exploit Prediction Scoring System [EPSS];
https://resilientcyber.substack.com/p/a-look-at-the-exploit-

prediction). CISA and the NSA make similar
recommendations in their guidance.

Figure 3.3 Weaponization of vulnerabilities
Source: Qualys TRURISK Threat Report 2023 (www.qualys.com/forms/tru-
research-report) /  last accessed on 19 january 2024.

Bypass of System Access Controls

We've discussed the need for access controls quite a bit,
but some situations allow malicious actors to bypass system
access controls. The guidance specifically points out
examples such as collecting hashes for authentication

https://t.me/PrMaB2

https://resilientcyber.substack.com/p/a-look-at-the-exploit-prediction
http://www.qualys.com/forms/tru-research-report


information like pass-the-hash (PtH) attacks, and then
using that information to escalate privileges and access
systems in an unauthorized manner.

Weak or Misconfigured Multifactor

Authentication Methods

In this misconfiguration, we again see CISA and the NSA
discuss the risk of PtH-type attacks. They point out that
despite the use of multifactor authentication (MFA) such as
smart cards and tokens on many government/DoD
networks, there's still a password hash for the account, and
malicious actors can use the hash to gain unauthorized
access if MFA isn't enforced or properly configured. This
problem, of course, can exist in commercial systems as
well, where YubiKeys or digital form factors and
authentication tools are used.

Lack of Phishing-Resistant MFA

Despite the industry-wide push for MFA for quite some
time, we face the stark reality that not all MFA types are
created equal. This misconfiguration and weakness points
to the presence of MFA types that are not “phishing-
resistant,” meaning they're vulnerable to attacks such as
subscriber identity module (SIM) swapping. CISA directs
readers to resources such as their fact sheet
“Implementing Phishing-Resistant MFA”
(www.cisa.gov/sites/default/files/publications/fact-sheet-
implementing-phishing-resistant-mfa-508c.pdf).

Insufficient Access Control Lists on Network

Shares and Services

It's no secret that data is the primary thing malicious actors
are after in most cases, so it isn't a surprise to see
insufficiently secured network shares and services on this

https://t.me/PrMaB2

http://www.cisa.gov/sites/default/files/publications/fact-sheet-implementing-phishing-resistant-mfa-508c.pdf


list. The guidance states that attackers are using
comments, OSS tooling, and custom malware to identify
and exploit exposed and insecure data stores.
We, of course, see this occur with on-premises data stores
and services too. But the trend has accelerated with the
adoption of cloud computing and the rampant presence of
misconfigured storage services by users, coupled with
cheap and extensive cloud storage, enabling attackers to
walk away with stunning amounts of data in terms of both
the data's size and the number of individuals impacted.
The guidance also emphasizes that attackers not only can
steal data, but that they can also use it for other nefarious
purposes like intelligence gathering for future attacks,
extortion, identification of credentials to abuse, and much
more.

Poor Credential Hygiene

Credential compromise remains a primary attack vector,
with sources such as Verizon's DBIR citing compromised
credentials being involved in over half of all attacks. The
guidance specifically calls out issues such as easily
crackable passwords or cleartext password disclosure, both
of which can be used by attackers to compromise
environments and organizations.
We would add that with the advent of the cloud and the
push for declarative infrastructure-as-code and for machine
identities and authentication, we've seen an even more
explosive abuse of secrets, which often includes credentials
and is cited well in sources like security vendor
GitGuardian's “The State of Secrets Sprawl” report
(https://res.cloudinary.com/da8kiytlc/image/upload/v1646148528/
GitGuardian_StateOfSecretsSprawl2022.pdf), which one of the
authors discussed in “Keeping secrets in a devsecops cloud-

https://t.me/PrMaB2

https://res.cloudinary.com/da8kiytlc/image/upload/v1646148528/GitGuardian_StateOfSecretsSprawl2022.pdf


native world” (www.csoonline.com/article/572425/keeping-
secrets-in-a-devsecops-cloud-native-world.html).
This problem is also why we continue to see vendors
implement secret management capabilities into their
platforms and offerings. This continues to impact even the
most competent digital organizations as well, such as
Samsung, who saw over 6,000 secret keys exposed in their
source code leak.

Unrestricted Code Execution

This one is straightforward, with the recognition that
attackers are looking to run arbitrary malicious payloads on
systems and networks. Unverified and unauthorized
programs pose significant risks as they can execute
malicious code on a system or endpoint and lead to its
compromise, facilitating lateral movement and the spread
of malicious software across enterprise networks. The
guidance mentions that this code can take various forms,
such as executables, dynamic link libraries, HTML
applications, and macros in office applications.

Mitigations

For the sake of brevity, we won't be laying out all of the
recommended mitigations in this article, but we definitely
recommend that those interested read the source
document from the NSA/CISA. Note that several of the
recommendations are specific to the assessed
environments (e.g., Windows-specific).
The mitigations are broken out into two sections: one
aimed at network defenders, and the other at software
manufacturers/suppliers.
We wanted to spend some time on the supplier angle,
because it aligns with the language of the latest National

https://t.me/PrMaB2

http://www.csoonline.com/article/572425/keeping-secrets-in-a-devsecops-cloud-native-world.html


Cybersecurity Strategy (which one of the authors has
covered in the article
https://resilientcyber.substack.com/p/striving-towards-an-

implementing) when it comes to pushing the onus for
mitigating vulnerabilities onto those best positioned to do
something about it (i.e., the least-cost avoider in economic
speak).
Rather than the burden of vulnerabilities falling on
customers and consumers, software suppliers, in many
cases, are arguably better positioned and equipped to
address them, rather than externalize that cost/risk onto
downstream customers and consumers.
The NSA/CISA publication once again points to their
secure-by-design/default publication titled “Shifting the
Balance of Cybersecurity Risk: Principles and Approaches
for Secure by Design Software” (www.cisa.gov/resources-
tools/resources/secure-by-design-and-default).
So, let's walk through some of the recommended
mitigations for suppliers.

Default Configurations of Software Applications

The NSA/CISA publication points to recommendations such
as embedding security controls into product architecture
from the start and throughout the software development
life cycle (SDLC). It references the NIST Secure Software
Development Framework (SSDF), which we discuss in
Chapter 11, “Secure-by-Design.” It also calls for security
features to be provided “out of the box” and to be
accompanied by “loosening guides.”
Of course, this aligns with recent heat that some vendors,
such as Microsoft and other cloud service providers (CSPs),
have taken from industry and government leaders for
charging for logging tier capabilities, leaving customers in
the dark during widespread incidents unless they had the

https://t.me/PrMaB2

https://resilientcyber.substack.com/p/striving-towards-an-implementing
http://www.cisa.gov/resources-tools/resources/secure-by-design-and-default


right licensing tier/subscription. The concept of loosening
guides puts the onus on suppliers to produce secure
products, rather than customers and consumers needing to
use hardening guidance to make a product or system
secure after purchasing it.
It, of course, is a delicate dichotomy between functionality
and security, and one that has been a problem since the
inception of software and digital systems. Additional
recommendations include eliminating default passwords
that apply universally across product lines and considering
the user experience consequences of security settings.
This latter recommendation is particularly refreshing
because it considers the user experience and the cognitive
burden on users, which, as we know, can lead to work-
arounds and behavior that violates security policies like
what we see with “shadow IT,” which is systems, software,
and infrastructure that exists outside of the governance of
the security team or department.

Improper Separation of User/Administration Privilege

This mitigation includes challenges around excessive
account privileges for users and service accounts, as well
as the routine use of elevated accounts when it isn't
essential.
Recommendations for suppliers include designing products
so that the compromise of a single security control doesn't
compromise the entire system, which is commonly referred
to as “limiting the blast radius.” Additionally, there are
recommendations to generate reports automatically on
inactive administrative accounts or services.

Insufficient Network Monitoring

Here again, we see the call for software suppliers to
provide high-quality audit logs to customers at no extra

https://t.me/PrMaB2



charge. While it's debatable what qualifies as high quality,
we think most would agree that customers shouldn't be
forced into scenarios where they have to cough over
additional money to do things like investigate an incident or
respond to a data breach.

Poor Patch Management

This misconfiguration/weakness sees mitigations in the
form of embedding controls through the product
architecture from the onset of development and throughout
the entire SDLC, again pointing to using the SSDF,
following secure coding practices, performing code
reviews, and testing code to identify vulnerabilities.
There's also a call to ensure that published Common
Vulnerabilities and Exposures (CVEs) from suppliers
include a root cause analysis (RCA) and associated
Common Weaknesses Enumeration (CWE) identification, so
that the industry can perform analysis of system design
flaws and seek to systematically resolve them. Following
this approach can slow the pace of the cyclical “identify
and patch” pain cycle we all know too well and allow for
eliminating entire classes of vulnerabilities in
systems/software.
As we've discussed previously in this chapter,
customers/consumers only have the capability to remediate
1 out of 10 new vulnerabilities a month, and vulnerability
backlogs are ballooning out of control from hundreds of
thousands to even millions of un-remediated vulnerabilities
in large complex enterprises. Until we begin to resolve
systemic vulnerabilities and weaknesses at their source,
this isn't likely to change and will continue to leave
organizations drowning in vulnerability backlogs, cognitive
overload, and burnout. When the attacker only needs to be
right once, sitting on a trove of hundreds of thousands to

https://t.me/PrMaB2



millions of vulnerabilities makes their chances of getting
lucky high.

Wrapping up the CIS Misconfigurations Guidance

While on the surface misconfigurations and weaknesses
may seem intuitive to security professionals, the reality is
that these issues continue to wreak havoc across the
IT/cybersecurity landscape, contributing to the majority of
data breaches and security incidents. As modern IT systems
only become more complex, the idea of simply doing the
“basics” continues to become more elusive due to
complexity, coupled with human factors such as cognitive
overload.
That said, by striving to address the misconfigurations and
weaknesses discussed in this guidance, consumers can
mitigate some of the largest attack vectors in their
environments that lead to compromises from malicious
actors. Likewise, if software suppliers focus on addressing
the issues identified in the NSA/CISA publication, they can
systemically drive down common misconfigurations and
weaknesses that leave a wake of security incidents across
downstream consumers and customers.

CIS Benchmarks

Another critical and widely recognized resource for secure
configuration of software and products is the Center for
Internet Security (CIS) Benchmarks. These benchmarks are
prescriptive guidance for secure configuration over 25
vendor product families, and they are created in a
consensus-based model of collaboration between
cybersecurity experts and the vendors themselves. As of
this writing, the benchmarks number over 100 different
secure configuration guidelines.

https://t.me/PrMaB2



The CIS Benchmark community includes over 12,000 IT
and cybersecurity professionals who collaborate and
contribute to the CIS Benchmarks. The CIS Benchmark
portfolio ranges from a variety of products and software
such as operating systems, cloud infrastructure and
services, desktop and server software, mobile devices,
network devices, and even multifunctioning print devices.
Like many approaches to security, the CIS Benchmarks
have various levels/profiles, depending on the rigor needed
and use case. They use a Level 1, Level 2, and STIG profile
tiering of their benchmarks. Level 1 is a base
recommendation that's typically easier to implement and
won't significantly impede the performance of a system or
software or impact business functionality. Level 2 profiles
rally around the long-standing “defense-in-depth”
cybersecurity best practice and are aimed at higher
assurance environments with more rigorous security
requirements. It is stated that Level 2 profiles can
negatively impact systems, software, and business if not
properly implemented because the configurations can
impede the system's performance in some cases. The final
tier of the CIS profiles is the STIG profile, which is used in
the DoD for securely configuring systems and software.
Given the potential impact to production environments and
business operations, CIS recommends that organizations
initially apply their chosen CIS Benchmark(s) to test
environments to assess the potential impact prior to
applying them in production.
Many organizations and industries cite the CIS Benchmarks
as part of security and compliance requirements, requiring
systems and environments to be configured in accordance
with the CIS Benchmarks. The benchmarks range across
some of the most popular vendors and software such as
Microsoft Windows, Linux, VMware, and Kubernetes, and

https://t.me/PrMaB2



major CSPs such as AWS, Microsoft Azure, and Google
Cloud.
Much like the DISA STIGs discussed in the next section,
many security vendors have released tooling to help aid
with the implementation of the CIS Benchmarks, as well as
conducting assessments to verify the compliance posture of
systems and software with the benchmarks. Increasingly
with virtualized computing such as virtual machines and
cloud with machine images and instances, providers have
also begun releasing “hardened” images, which are
preconfigured to align with CIS Benchmark configurations
in advance, to help expedite the compliance efforts of
customers and consumers.

DISA Security Technical Implementation Guides

Unlike the CIS Benchmarks that are developed by
commercial industry, the DoD Defense Information Systems
Agency (DISA) Security Technical Implementation Guides
(STIGs) are developed by the DoD entity known as DISA.
They focus on secure configurations for hardware and
software that are used as part of DoD IT networks, systems,
and data.
DISA STIGs number in the hundreds, and like the CIS
Benchmarks, range across software, routers, operating
systems, and other devices. STIGs are used to ensure that
software and systems used by the DoD are hardened
beyond the default vendor configurations. As we have
discussed, default vendor configurations often focus on
usability and customer experience, sometimes at the
expense of more secure default configurations.
For higher assurance and regulated environments such as
the DoD, that balance may look different due to a lower risk
tolerance, warranting more secure configurations and
implementations.

https://t.me/PrMaB2



DISA STIGs follow a quarterly update and release cycle;
however, the schedule can change, depending on the threat
landscape. They often are updated based on activities such
as major version changes for software or products, as well
as the emergence of new vulnerabilities that must be
addressed to mitigate risk to DoD systems and data.
Much like the CIS Benchmarks, DISA STIGs have varying
compliance levels. These come in the form of Severity
Category Codes (CATs) and go from 1 to 3. CAT 1
compliance levels are focused on the configurations that
pose the most risk in terms of exploitation and impact. CAT
2 includes vulnerabilities that can potentially result in a
security issue, and CAT 3 vulnerabilities are often
considered low risk and low severity but could impact the
defenses of a system, network, or data if not resolved.
The DoD and DISA have various tools they use and offer to
facilitate the implementation and assessment of STIGs in
DoD environments. These include tools such as the Security
Content Automation Protocol (SCAP) Compliance Checker
(SCC), which can help with assessing systems for
compliance with the STIG and implementation gaps, as well
as the Assured Compliance Assessment Solution (ACAS),
which can help with scanning networks and environments
to identify the STIG compliance level of devices and
systems in the environment. Additionally, several
proprietary software vendors and security tools have rolled
out support for DISA STIGs, allowing DoD system owners
and security practitioners to conduct assessments for STIG
compliance and automate activities with implementing
STIG configurations.

Summary

In this chapter, we discussed the role of secure
configurations. While known vulnerabilities can lead to

https://t.me/PrMaB2



exploitation and attacks, so can misconfigurations or the
lack of secure configurations, which is especially prevalent
in cloud-native environments. We covered industry-leading
guidance such as the CIS Benchmarks and DISA STIGs, as
well as CISA and the NSA's publication on the Top Ten
cybersecurity misconfigurations. In the next chapter, we
will discuss the concept of continuous vulnerability
management, and how vulnerability management needs to
be an ongoing and iterative activity.

https://t.me/PrMaB2



4 

Continuous Vulnerability

Management

Vulnerability management is a constant activity, not a
static snapshot in time. New vulnerabilities emerge,
configurations change, assets are exposed, permissions are
modified, and the list goes on. A static snapshot–in-time
approach to vulnerability management will leave you blind
to the dynamic risk landscape in which we operate.
However, that's exactly how many organizations have
traditionally approached the activity of vulnerability
management: performing time-boxed activities, such as
vulnerability scans, at intervals such as monthly, quarterly,
or even annually, and having a false sense of security using
this approach.
Meanwhile, malicious actors are continuously seeking to
identify vulnerabilities, exploit weaknesses, and
compromise vulnerable systems, software, and products. In
fact, continuous vulnerability management is even listed as
a Center for Internet Security (CIS) Critical Security
Control, currently number 7 on the list of controls in CIS
Critical Security Controls version 8. This harsh reality
requires a more dynamic, iterative, and ongoing approach
to vulnerability management, and that's where continuous
monitoring (ConMon) comes into play.
Modern vulnerability management programs take into
account the dynamic nature of the landscape. They are
implementing processes and technologies, underpinned by
competent expertise to facilitate this ongoing activity.

https://t.me/PrMaB2



In this chapter, we discuss aspects of ConMon for
vulnerability management, as well as some technologies
and resources on the topic, and why this approach is
critical for modern vulnerability management programs.

CIS Control 7—Continuous

Vulnerability Management

As mentioned in the chapter's introduction, continuous
vulnerability management is listed as control number 7 in
CIS Critical Security Controls v. 8. Within that control are
various sub-controls that we will discuss in this chapter, as
well as the details of what performing these activities are
and why they are critical to mitigating organizational risk
and operating an effective modern vulnerability
management program.
Before diving into the specifics of this control and the
associated sub-controls and activities, let's look at the
official CIS overview of the control:

Develop a plan to continuously assess and track

vulnerabilities on all enterprise assets within the

enterprise's infrastructure, to remediate, and minimize,

the window of opportunity for attackers. Monitor public

and private industry sources for new threat and

vulnerability information.

CIS points out that it's necessary not only to perform
continuous vulnerability management due to new
vulnerabilities emerging, threats becoming present, and
configuration changes introducing risk, but also to have a
detailed understanding of the organization's risk posture
over time and to track the effectiveness of vulnerability
management and remediation activities.

https://t.me/PrMaB2



CIS proposes an iterative process of seven specific
activities, which should be established and then repeated
indefinitely, to ensure that organizational vulnerabilities
are continuously addressed. Let's take a look at each of
these activities.

Establish and Maintain a Vulnerability

Management Process

While this one may seem intuitive, the reality is that many
organizations don't have a codified and adhered-to
vulnerability management process. Vulnerabilities may be
identified and addressed with an ad hoc cadence without a
defined approach, schedule, and repeatable process. The
vulnerability management process should be documented
and encompass all enterprise assets, which may include
endpoints, servers, cloud environments and instances, and
more, depending on the nature of the enterprise's
technology stack.
These documented processes should be regularly revisited.
CIS recommends these processes be undertaken annually
or when significant changes occur, to ensure that no
changes need to be made to account for shifts within the
enterprise, technologies, and organizational operations.
We also recommend revisiting the processes to ensure that
they are leveraging current industry-best practices,
resources, and methodologies as they evolve. For example,
if your vulnerability management process still revolves
around legacy vulnerability base scoring systems (e.g.,
Common Vulnerability Scoring System [CVSS]) for
prioritization, it might be time to modernize your
vulnerability management process.

Establish and Maintain a Remediation Process

https://t.me/PrMaB2



Having a vulnerability management process is great, and of
course, is key to identifying vulnerabilities. But without a
comprehensive and effective remediation process in place,
you've simply identified risk and aren't doing anything to
address it.
CIS recommends developing a risk-based remediation
strategy that's documented and reviewed frequently for
improvements. This remediation strategy can be revisited
to see how the organization is doing on resolving identified
vulnerabilities and what improvements and optimizations
can be implemented. Organizations should also ensure this
strategy isn't created in a vacuum.
While the security team often identifies the risk, they very
rarely actually “own” the risk. System owners, developers,
and engineers have a system-specific context and need to
be engaged in both documenting the remediation process
and performing the actual remediation activities.

Perform Automated Operating System Patch

Management

As we've discussed, the pace of vulnerabilities is only
accelerating, and the idea that organizations can do
activities like patch management effectively in a manual
fashion, in an enterprise of any significant size and
complexity, is simply impractical.
This is why CIS and industry-standard best practices
recommend performing automated operating systems (OSs)
patch management. They recommend performing this
monthly at a minimum but ideally at a faster cadence.
Minimizing the time between a patch becoming available
and its implementation decreases the potential window of
exploitation, where malicious actors can take advantage of
known vulnerabilities that have a patch available but go
unmitigated.

https://t.me/PrMaB2



For operating systems, there are various vendor and well-
known tools that can help automate this activity and
streamline OS patch management in complex
environments, as long as the organization has an accurate
asset inventory and a mature patch management process.
As we discussed in Chapter 2, “Patch Management,” most
organizations struggle to have an accurate and maintained
asset inventory.

Perform Automated Application Patch

Management

Much like operating systems, applications require
automated patch management as well, whether it's
applying patches for proprietary vendor applications or
using the latest version of an open source software (OSS)
application. Organizations also need to leverage
automation to keep the pervasive footprint of OSS
dependencies and components up-to-date. We've discussed
some tools in Chapter 2 like Renovate and Dependabot,
which can help automate the process of keeping
dependencies updated for OSS components.
Studies from organizations like Sonatype have found that
organizations routinely use outdated components, even
when more secure updated components are available,
which is often due to the challenges of keeping
dependencies updated at scale. Developers even refer to
this activity as “dependency hell” due to the frustration
with trying to manage dependencies in complex modern
applications.
On the proprietary software front, having vendor
applications in your environment that have known
vulnerabilities but remain unpatched can be a recipe for
disaster, leaving vulnerabilities ripe for exploitation by

https://t.me/PrMaB2



attackers. Again, the key is minimizing the exploitation
window, which, in turn, can minimize organizational risk.
However, studies demonstrate that, as an industry, we have
known vulnerable software, applications, and components
throughout our environments even when patches are
available, often due to the challenges of doing patch
management at scale across an expansive portfolio of
proprietary and open source software.

Perform Automated Vulnerability Scans of

Internal Enterprise Assets

A key part of being able to remediate vulnerabilities is
understanding they exist. CIS recommends performing
automated vulnerability scans of internal enterprise assets
on a quarterly basis or more frequently. We suggest doing
it on a much more frequent basis, such as weekly. New
vulnerabilities emerge regularly, and depending on when a
vulnerability is published, identified, and eventually
remediated, a quarterly scan approach could leave exposed
assets vulnerable for several months.
One key distinction that CIS makes is between internal
enterprise assets and externally exposed assets, which we
will touch upon next. While there is merit to the approach
of focusing on externally exposed enterprise assets,
internal assets that are vulnerable also pose risks. For
example, once a malicious actor is inside a network or
enterprise, they often look to move laterally across
vulnerable and misconfigured assets to impact additional
systems and get to sensitive data they are after.
The cybersecurity industry has increasingly moved to adopt
zero-trust methodologies, which do away with the concept
of a hardened perimeter and a “squishy” vulnerable
internal environment. Every vulnerable system is part of
the potential attack surface.

https://t.me/PrMaB2



Perform Automated Vulnerability Scans of

Externally Exposed Enterprise Assets

Next up on the list of CIS activities is performing
automated vulnerability scans of externally exposed
enterprise assets, meaning assets that are exposed to the
Internet and reachable either publicly or more broadly than
strictly “internal” assets. Given that these assets are often
reachable from public actors over the Internet, they are
potentially at more risk than internal systems that might
reside in private IP address ranges or be behind
compensating security measures like web application
firewalls (WAFs) and boundary protection devices. For this
reason, these assets often get prioritized for vulnerability
remediation over internal assets.

Remediate Detected Vulnerabilities

Great; you've created a vulnerability management and
remediation process, implemented automated patch
management for operating systems and applications, and
implemented automated vulnerability scans to continuously
identify new vulnerabilities on your assets, as well as to
understand trends associated with the effectiveness of your
vulnerability management process. Now you must do the
work, meaning you must remediate the vulnerabilities that
you've identified.
CIS lists the activity of remediating detected vulnerabilities
using your processes and tools on a monthly or more
frequent basis. Obviously the smaller the remediation
window, the narrower the exploitation window, but we
know that most organizations are dealing with constraints
like competing priorities, incentives, and resources.
Furthermore, organizations with mature vulnerability
management processes should be utilizing vulnerability
intelligence sources that we've discussed such as the CISA

https://t.me/PrMaB2



Known Exploited Vulnerabilities (KEV) Catalog, as well as
exploitation probability using the Forum of Incident
Response and Security Teams (FIRST) Exploit Prediction
Scoring System (EPSS). Organizations should also be
coupling this with organization-specific context for assets,
such as the data types involved, system and organizational
criticality, and any compensating controls that might be in
place to mitigate risks.

Continuous Monitoring Practices

Another cross-reference to continuous vulnerability
management is NIST SP 800-53, Security and Privacy
Controls for Information Systems and Organizations
(https://csrc.nist.gov/pubs/sp/800/53/r5/upd1/final). As of this
writing, this publication is in its fifth revision. NIST SP 800-
53 is used by various compliance schemes and frameworks,
such as NIST SP 800-171, the Federal Risk and
Authorization Management Program (FedRAMP), and
Cybersecurity Maturity Model Certification (CMMC). NIST
SP 800-53 is a catalog of security and privacy controls for
information systems and organizations to protect
operations, assets, and individuals.
In this section, we take a look at some of the NIST 800-53
controls and control families that focus on vulnerability
management activities and ConMon. These controls also
cross-reference other frameworks like the Cloud Security
Alliance (CSA) Cloud Controls Matrix (CCM), and the CIS
Critical Security Controls that we discussed in the previous
section.
NIST SP 800-53 lists CA-7: Continuous Monitoring, which
falls within the Security Assessment Authorization control
family. While the CA-7 control itself focuses on broader
continuous monitoring, including security controls and the

https://t.me/PrMaB2

https://csrc.nist.gov/pubs/sp/800/53/r5/upd1/final


overall cybersecurity program, it also focuses on
vulnerabilities and vulnerability management.
In NIST SP 800-53, vulnerability scanning falls under the
Risk Assessment control family and is titled RA-5:
Vulnerability Monitoring and Scanning
(https://csf.tools/reference/nist-sp-800-53/r5/ra/ra-5). It
includes controls and control enhancements that increase
through the system categorizations of low, moderate, and
high. In this section, we look at some activities within the
SP 800-53 RA-5 control, as well as some of the additional
activities captured in the control enhancements (CEs),
which tend to be used for more sensitive systems, such as
those categorized as moderate or high.
RA-5 involves some fundamental activities related to
vulnerability monitoring and scanning, including regularly
monitoring and scanning for vulnerabilities in both the
system and the hosted applications at an organizationally
defined frequency. Much like CIS, there are also calls to
automate parts of the vulnerability management process
using tools to enumerate platforms, software flaws, and
misconfigurations, as well as the potential vulnerability
impact (often discussed as severity). NIST recommends
performing these activities at an organization-defined
frequency based on the security categorization of the
systems in scope. Any tools used as part of vulnerability
monitoring should regularly be updated, as new
vulnerabilities emerge and new vulnerability scanning
methods emerge as well, to ensure that no known
vulnerabilities go unidentified.
The frequency and comprehensiveness of vulnerability
scans should be dictated by the security categorization of
the system per NIST. This is based on Federal Information
Processing Standards (FIPS) 199, the security
categorization process, but in industry terms it should be

https://t.me/PrMaB2

https://csf.tools/reference/nist-sp-800-53/r5/ra/ra-5


driven by the business criticality of the system(s) involved
and the sensitivity of the data they involve as well. Systems
that are critical to business continuity and revenue will
drive tighter frequencies of activities than noncritical
business systems, which may not contain sensitive data, for
example.
While organizations might use traditional vulnerability
scanning tools for endpoints and servers, increasingly
organizations are using tools like static application security
testing (SAST), dynamic application security testing
(DAST), secrets scanning, and more, integrated into
continuous integration/continuous delivery (CI/CD)
pipelines and automated as part of the software
development life cycle (SDLC). These activities integrate
vulnerability scanning into every software release,
especially prior to the introduction to production
environments or products. This ties to industry-wide
themes, such as shifting security “left” in the SDLC and
application security and product security.
RA-5 includes various control enhancements, such as
updating tool capabilities, frequency of scanning, and depth
of coverage. It also includes automating trend analysis to
determine if vulnerability backlogs are trending downward,
representing a positive impact, or growing, depicting a
struggle to keep up with the vulnerability footprint and
hygiene of an environment. NIST also recommends
reviewing historical audit logs to determine if a
vulnerability that has been identified in systems has been
previously exploited.
As we discussed in Chapter 3, “Secure Configuration,” it
isn't just known vulnerabilities that can introduce risk to
organizations. The need for securely configured systems,
products, and software is also crucial. This is why NIST
also lists CM-3: Configuration Change Control as a related

https://t.me/PrMaB2



control to continuous monitoring. This control involves
activities such as ensuring system configurations are
controlled, reviewing and documenting proposed
configuration changes, and capturing and regularly
reviewing configuration changes. Unauthorized
configuration changes to a system can introduce
vulnerabilities, which attackers can exploit.
Much like the previous controls we discussed, CM-3 has
various control enhancements as well. These include
controls such as automated notification and documentation
of system changes and even blocking changes from
occurring until authorized. They also include activities such
as ensuring a security representative is part of groups like
a configuration change control board (CCB), and
implementing an automated security response to
unauthorized system changes.
We would like to note that we aren't fans of CCBs in large
complex environments with multiple independent
development and product teams. A CCB often functions as
a bottleneck, slowing down development velocity, as well as
being sidestepped due to being too cumbersome. The CCB
is often disconnected directly from the work and the
context of proposed changes, and therefore is often not in a
position to be able to valuably weigh in on proposed
changes. That said, there is undoubtedly a need for
governance and oversight of configuration changes;
otherwise vulnerabilities can emerge and risk can be
introduced.

Summary

In this chapter, we looked at the concept of continuous
vulnerability management and continuous monitoring. We
reviewed examples like NIST and related control baselines
and frameworks that introduce fundamental activities such

https://t.me/PrMaB2



as continuous monitoring, vulnerability management, and
continuous configuration management. In modern dynamic
IT and software environments, changes are occurring
rapidly, new vulnerabilities are being discovered and
disclosed, and the legacy approach of snapshot-in-time
activities related to vulnerability and configuration
management is insufficient to address organizational risk.
Organizations must have continuous vulnerability and
configuration management processes and innovative
tooling in place to keep up with the evolving threat
landscape.

https://t.me/PrMaB2



5 

Vulnerability Scoring and Software

Identification

No conversation about vulnerability management would be
complete without discussing vulnerability scoring methods.
Vulnerability scoring is used to assign values, either
quantitative or qualitative, to aid in vulnerability
prioritization and remediation efforts. The cybersecurity
industry has a variety of vulnerability scoring
methodologies in current use. Some have been around for
years, whereas others were more recently developed and
adopted in the ecosystem.
In this chapter, we discuss both the pros and cons of
various scoring systems. Some of them might be improved
and may lend themselves to automation, whereas others
are more valuable for manual analysis and scoring. As the
landscape of vulnerabilities continues to grow and evolve,
so does the vulnerability scoring ecosystem, as
organizations seek more efficient and effective methods to
allocate resources when it comes to managing
vulnerabilities.

Common Vulnerability Scoring

System

First up in our discussion of vulnerability scoring systems is
the widely used, well-known, and long-established Common
Vulnerability Scoring System (CVSS). CVSS originated in
2005 with its initial version 1 and was shortly thereafter
adopted by the Forum of Incident Response and Security
Teams (FIRST), where it now resides as part of the CVSS

https://t.me/PrMaB2



Special Interest Group (SIG). Check out www.first.org/cvss
for more on this.
Since its release in 2005, CVSS has undergone various
iterations and, as of this writing, is in the process of its v4.0
release. Previous versions include 2 in 2007, 3.0 in 2015,
and 3.1 in 2019, all addressing critiques and making
improvements from previous versions, as it looks to bolster
its value to the community as one of the leading
vulnerability scoring methodologies. CVSS SIG co-chairs
Dave Dugal and Dale Rich published a presentation
discussing the chronology of CVSS, challenges and goals of
v4.0, and best practices for effectively making use of CVSS
(see
https://csrc.nist.gov/csrc/media/Presentations/2023/update-on-

cvss-4-0/jan-25-2023-ssca-dugal-rich.pdf).
Before we dive into CVSS, how it works or can be used, as
well as some of its critiques, it is worth noting that prior to
CVSS the industry used incompatible and custom rating
systems to try to communicate vulnerability severities.
Despite many valid critiques of CVSS and how it is often
used, it is inarguably the most formalized and widely
adopted system for vulnerability scoring in the industry as
of this writing.
In terms of adoption and use, CVSS has been used by the
National Institute of Standards and Technology (NIST) for
years. NIST's National Vulnerability Database (NVD) is the
most widely used vulnerability database in the ecosystem
and is leveraged by everything from small organizations
and vendors to the U.S. federal government and
Department of Defense (DoD) and international entities as
well.
CVSS is in the process of moving to version 4.0, so let's
examine it and some of the key differences from previous
versions.

https://t.me/PrMaB2

http://www.first.org/cvss
https://csrc.nist.gov/csrc/media/Presentations/2023/update-on-cvss-4-0/jan-25-2023-ssca-dugal-rich.pdf


CVSS 4.0 at a Glance

At its core, the aim of CVSS is to output a numerical score
indicating the severity of a vulnerability among the broader
collection of known vulnerabilities.
There are four metric groups in CVSS 4.0: Base, Threat,
Environmental, and Supplemental, each of which we will
discuss further very soon. The Base score is based on the
intrinsic characteristics of a vulnerability and doesn't
change over time.
Unlike the immutability of the Base score, the Threat
metric can adjust the Base severity based on factors related
to threats, including the existence of either proof-of-
concept exploits, which are non-harmful and used to
demonstrate the existence of a security weakness or full-
blown known exploitation in the wild.
After the Threat metric group is the Environmental metric
group, which customizes the Base and Threat severities
based on the unique aspects of the computing environment
and architecture in which the vulnerability exists. It also
can include factors that influence the score such as
organizations having mitigating controls in place, or the
business context on the criticality of the system(s) that the
vulnerability could impact if exploited.
Last up is the Supplemental metric, which allows for the
consideration of extrinsic attributes of a vulnerability to
further enhance context and make scoring more accurate.
Because the four metric groups often rely on information
known by different parties, it is common for the Base and
Supplemental metrics to be provided by the organization
that maintains the vulnerable product or a neutral third
party such as security researchers. On the other hand,
information such as threat and environmental context is

https://t.me/PrMaB2



known by the impacted organization or consumer, so these
metrics often factor into scoring.

Figure 5.1: CVSS metrics

Figure 5.1 shows each of the four metric groups and their
set of metrics that are taken into consideration to facilitate
scoring. As we mentioned previously, the Base metric
group has intrinsic characteristics for a vulnerability that
do not change over time or across environments and
organizations. The Base metric group includes two
subgroups: Exploitability metrics and Impact metrics.
Exploitability is focused on the difficulty of exploiting a
vulnerability and the technical means to do so, whereas
Impact metrics are focused on the direct consequence of a
successful exploit.
The second metric group is Threat, which has
characteristics specific to vulnerability and associated
threats that can and do change over time, but they aren't
necessarily tied to a specific environment where the
vulnerability belongs. This group focuses on things such as

https://t.me/PrMaB2



the existence of exploits, either as proof-of-concepts or
active-known exploitation.
Environmental metrics are the third metric group and are
focused on a specific user's environment. It serves as one of
the best metric groups to make vulnerability scoring
organizationally specific and actionable. It considers
factors such as mitigating controls and business criticality
of impacted systems and software to influence scoring.
The fourth and final metric is the Supplemental metric
group, which factors in extrinsic attributes of a
vulnerability. This lets consumers add significant local
context to the scoring and analysis.
CVSS scores vulnerabilities on a range from 0.0 to 10.0,
from least to most severe. Vulnerabilities are initially
provided as a Base score by either the maintainer of a
product or software or a third party, but it can be further
enhanced and modified by the additional metric groups of
Threat and Environmental metrics as previously discussed.
In addition to a numeric score, CVSS metrics can be
communicated with a vector string of text representing the
metric values that were used to score the vulnerability.
CVSS 4.0 introduced the following nomenclatures that are
key to understand when discussing the metrics used to
evaluate a vulnerability. They are captured here in Figure
5.2.

Figure 5.2: CVSS nomenclature

https://t.me/PrMaB2



This nomenclature helps quickly communicate the metrics
used to analyze and score a vulnerability and can be
captured in the vector string as well such as
AV:N/AC:L/Au:S/C:P/I:P/A:N, which can demonstrate
things such as attack vector and complexity in a shorthand
fashion. This helps consumers understand what metrics
were used to produce the output score. For example, is it
just a Base metric (e.g., CVSS-B), or does it include Threat
and Environmental metrics (e.g., CVSS-BTE)?
While the NVD provides the Base score for CVEs, the CVSS
consumer is responsible for the Threat and Environmental
metrics, because only the consumers have the context
related to their specific systems and environments. It isn't
possible for NVD to have insight on things such as system
criticality, data sensitivity, and compensating controls like
the CVSS consumer does, so those metrics to further refine
scoring are best suited for the CVSS consumer to apply.
The below image demonstrates the process and workflow
for a new CVE to make it into the NIST NVD (see Figure
5.3).

https://t.me/PrMaB2



Figure 5.3 How a CVE Makes it’s Way Into the NVD
Source: Patrick Garrity of Nucleus Security

If the Threat and Environmental metrics are not used, the
resulting score defaults to a “not defined” value, making it
easy to understand what metrics went into the resulting
score by ensuring the metrics are represented in the final
CVSS string.
Now that you have a high-level understanding of the
various metrics and nomenclature, let's take a deeper dive
into those metrics.

Base Metrics

As discussed, the Base metric group represents the
intrinsic characteristics of a vulnerability, and they do not
change over time or environments. Within that Base metric
group are two sets of metrics: Exploitability and Impact.
See Figure 5.4.

https://t.me/PrMaB2



Figure 5.4: Base metric group breakdown

Exploitability Metrics

https://t.me/PrMaB2



Exploitability metrics are the characteristics of the “thing
that is vulnerable,” as defined in the CVSS 4.0
specification. They're often referred to as the vulnerable

system, which means exploitability metrics get assessed in
relation to the vulnerable system. Base metrics also make
assumptions regarding what a malicious actor knows about
weaknesses of the target system and its associated
configurations. Such weaknesses may include the
following:

Attack Vector   First up under Exploitability metrics is
the Attack Vector (AV). This is the context of how a
vulnerability is exploitable. The metric value is
influenced by various factors, most notably how
accessible the systems are. CVSS 4.0 orients around
four specific metric values for AV: Network, Adjacent,
Local, and Physical. These four values indicate if the
vulnerable system is exploitable over a network, such
as being remotely exploitable if connected to the
Internet, or if it is only exploitable over a specific
networking protocol or network proximity (adjacent)
such as with Bluetooth, or exploitable only from a
specific IP subnet or local area network (LAN).
Attack Complexity   This complexity represents
actions a malicious actor must take to evade or
circumvent existing built-in security controls or
mitigations to get a working exploit. It represents the
level of complexity of the attack and is directly tied to
actions the attacks must take to overcome mitigations
or protective controls set in place to impede their
attack. Potential values include Low or High, with Low
being no measurable action required to exploit the
vulnerability and High requiring an active evasion or
circumvention of measures that may hinder the attack.

https://t.me/PrMaB2



Attack Requirements   In many cases, specific
deployment or execution conditions or variables must
exist for the attack to be enabled; this is represented by
the Attack Requirements. Unlike Attack Complexity,
these requirement conditions exist naturally and are
not mitigating controls intentionally set in place to
impede attacks. Their value may be either Present or
None, indicating whether or not specific conditions
must be present for the attack to succeed.
Privileges Required   In many vulnerability
exploitations, the attackers need specific privileges in
the environment. Privileges Required represents that
scenario. The potential values are None, Low, and
High, with None representing scenarios where an
attacker can exploit the vulnerability without privileges
and escalate from there, up to High, which represents
scenarios requiring administrator-level control to be
successful.
User Interaction   It isn't uncommon for attacks to
require unwitting involvement from a human user. This
is captured in the User Interaction metric. Potential
values include None, Passive, and Active, with None
being no interaction needed from a user, Passive being
limited interaction from a user, and Active requiring a
user to perform specific actions to enable the
exploitation.

The next group of metrics under the Base metric group is
Impact metrics. These metrics capture the effects of a
successfully exploited vulnerability. Let's look at the Impact
metrics.
For anyone familiar with the longstanding Confidentiality,
Integrity, and Availability (CIA) triad in cybersecurity, it
should come as no surprise that the first trio of metrics

https://t.me/PrMaB2



under the Impact metrics are Confidentiality, Integrity, and
Availability:

Confidentiality   This metric measures the extent to
which information access is disclosed to unauthorized
users. The potential values for this metric are None,
Low, and High, with either no loss of confidentiality,
some loss, or a total loss. Low loss could include
scenarios where the attacker can only access a subset
of the information, which doesn't cause a serious
system loss, whereas a High loss would have a direct
and serious impact. The Confidentiality metric includes
an additional metric, SC, for potential impacts to
subsequent systems, for example, if a subsequent
system was impacted as part of the attack.
Integrity   Next up in the CIA triad is Integrity, which
CVSS defines as the trustworthiness of information.
Integrity is impacted by unauthorized modifications.
Potential values, again, are None, Low, and High. The
impacts are similar to those with Confidentiality, in the
sense of either having no loss, no serious impact, or
serious consequences to the impacted system(s).
Availability   Closing out the widely popular CIA triad
is Availability, which CVSS defines as loss of availability
of the impacted system and can include examples such
as consuming network bandwidth, exhausting system
resources, and degrading system performance. Again,
the metric's possible values are None, Low, and High,
which represent no impact to availability, reduced
performance, or a partial denial of service, or total loss
of availability. All of these potential metrics can be
applied to subsequent systems as well.

Threat Metrics

https://t.me/PrMaB2



One significant change from CVSS 3.1 to 4.0 is the
replacement of the Temporal metric group with the Threat
metric group. This group consists of a single metric, Exploit
Maturity (see Figure 5.5). It's essentially a measurement of
the current state of exploit techniques or code availability
for a specific vulnerability to which the CVE applies.

https://t.me/PrMaB2



https://t.me/PrMaB2



Figure 5.5: Threat metric group

As discussed previously, Exploit Maturity is based on the
current state of exploit techniques or the availability of
exploit code in the wild. The maturity of an exploit can have
a significant influence on the likelihood of exploitation. This
metric is left to the CVSS consumer to populate based on
the information they have on the maturity of the exploit in
the wild. Typically, organizations will utilize threat
intelligence sources to provide information related to
Exploit Maturity. The potential values for this metric are
Unreported, Proof-of-Concept, Attacked, and Not Defined.
These range from no knowledge of reported exploit
attempts for the vulnerability, to a proof-of-concept publicly
available but lacking known exploitation attempts, all the
way to Attacked, which means threat intelligence sources
can confirm attempted exploitation of the vulnerability is
occurring or has already succeeded. Not Defined is for
exploits where a maturity has not been explicitly provided.

Environmental Metrics

Moving on from the new Exploit Maturity metric group,
next we have Environmental metrics (see Figure 5.6). This
group allows CVSS consumers to customize the score using
their specific organizational context. This can include
information such as the criticality of the asset to the
organization, mitigating controls in place, and other unique
organizational factors that can and should influence the
vulnerability scoring.

https://t.me/PrMaB2



Figure 5.6: Environmental metric group
It's worth noting that currently many organizations do not
make use of the Environmental metric group, which would
add organization-specific context, and instead just consume
CVSS Base scores from NVD. This widespread lack of
environmental context leads to prioritizing vulnerabilities,

https://t.me/PrMaB2



which may not pose the most risk to the organization and
could lead to both reduced vulnerability management
effectiveness as well as wasting resources in terms of time
and human capital. We discuss this further in the section
on the Exploit Prediction Scoring System (EPSS), which is
also often used without organization-specific context being
applied.
You'll notice the Environmental metric group builds on
metrics from the Base metric group. The Environmental
metrics allow the CVSS consumer to customize the
resulting score, depending on the importance of the asset
to the organization in terms of the CIA triad we discussed
previously. Each organization may have specific needs that
drive the criticality of Confidentiality, Integrity, or
Availability of its systems and data, and the Environmental
metrics allow for that unique context.
The authors strongly recommend that organizations
utilizing CVSS make use of the Environmental metric group
to ensure that the scoring of vulnerabilities considers their
unique organizational context and helps prioritize
vulnerabilities that pose the most risk to their organization
and their systems and data. The widespread lack of
applying environmental context remains among the most
damning critiques of the CVSS in the industry.
That said, applying environmental context per vulnerability
is much easier said than done. As we have discussed, many
organizations have vulnerability backlogs ranging from
thousands to hundreds of thousands, and even millions. The
practicality of individually assigning modified
environmental context scoring across that level of
vulnerabilities, using human cognition, is simply untenable
for most organizations, hence the widespread use of CVSS
Base scoring.

https://t.me/PrMaB2



Supplemental Metrics

Last in the list of CVSS metric groups is the Supplemental
metric group (see Figure 5.7), which is an optional metric
group used to describe and measure additional extrinsic
attributes of a vulnerability. This, like the Threat metric
group, is left to the CVSS consumer to implement and
determine, and it may look different for each CVSS
consumer based on their unique organizational context. It
is worth noting that Supplemental metrics do not have an
impact on the final calculated CVSS score, but instead
leave it to the CVSS consumer to assign an importance to
each metric and enable them to convey additional extrinsic
characteristics of the vulnerability.
Let's take a look at the available metrics in the
Supplemental metric group and how they may be used:

Safety   This metric represents the degree of impact to
the safety of a human actor or participant who can be
injured as a result of vulnerability exploitation. The
metric represents the increasing convergence of
software with physical systems, often referred to as
cyber-physical systems, as well as software within
critical systems in various fields such as manufacturing
and medical devices, which can pose direct safety
threats to human life. The potential values are Not
Defined, Negligible, or Present; Negligible might
include minor injuries, whereas Catastrophic might
include multiple lives lost.

https://t.me/PrMaB2



https://t.me/PrMaB2



Figure 5.7: Supplemental metric group

Automatable    This metric deals with the potential for
exploitation activity to be automated across multiple
targets by an attacker. CVSS uses the widely
recognized Kill Chain (www.lockheedmartin.com/en-
us/capabilities/cyber/cyber-kill-chain.html) with an
emphasis on steps 1–4, which are reconnaissance,
weaponization, delivery, and exploitation. (See the
section “CISA SSVC Guide” later in this chapter for
more on the Kill Chain.) The potential values are Not
Defined, No, and Yes. Obviously attacks that are
automatable or known to already be automated and
used in exploitation should be considered as part of
vulnerability prioritization.
Provider Urgency   While not all vulnerability
communication occurs between product or software
suppliers and consumers, much of it does. Utilizing
provider urgency allows a CVSS consumer to account
for things such as product security advisories, given
that the supplier is the one best positioned to provide
an assessment of urgency related to their products.
Potential values are Red, Amber, Green, Clear, and Not
Defined, in declining order of urgency. This particular
metric may be increasingly important as we see more
software supply chain attacks and malicious actors
targeting software suppliers.
Recovery   Systems have varying levels of resilience
and recoverability, which is represented in the
Recovery metric. While some systems may have
automated recovery as part of a failover or incident
response, others might require manual intervention or
be completely unrecoverable. The potential values for
this metric represent that reality, with the options of
Not Defined, Automatic, User, or Irrecoverable.

https://t.me/PrMaB2

http://www.lockheedmartin.com/en-us/capabilities/cyber/cyber-kill-chain.html


Value Density   This metric is used to describe the
resources that attacks gain control over as part of the
exploitation event. Potential values are Not Defined,
Diffuse, and Concentrated, and represent the range of
scenarios involving either a single resource or limited
resources up to highly concentrated resources rich in
value. The CVSS 4.0 specification mentions a central
email server as a concentrated target, but other
examples include an identity provider (IdP) or key
management system.
Vulnerability Response Effort   Each vulnerability
and exploitation brings with it a unique response effort
level. The Vulnerability Response Effort metric
captures this by allowing the CVSS consumer to take
into consideration the level of effort required to
respond. Potential values are Not Defined, Low,
Moderate, and High, with impacts ranging from a
trivial response effort to significant or difficult with
implications for outages and service downtime.

Qualitative Severity Rating Scale

CVSS utilizes a Qualitative Severity Rating Scale to
numerically rank vulnerabilities. If you've been in the
cybersecurity career field for some time, you've inevitably
heard organizational- or industry compliance–driven
requirements around remediation timelines tied to
vulnerability severities, such as seven days to remediate a
critical vulnerability. These scores can be tied to Base,
Threat, and Environmental scores, but as we have
discussed, most organizations simply use the Base score. It
is often provided to them via vulnerability scanning tools,
which obtain the scores from sources such as the NIST
NVD. The Qualitative Severity Rating Scale is shown in
Figure 5.8.

https://t.me/PrMaB2



Figure 5.8: Qualitative Severity Rating Scale

Vector String

One other key piece to be familiar with when working with
CVSS is the use of the vector string. This is a text
representation of a set of CVSS metrics. We've discussed
items, such as metric groups, metric names, and possible
values, and whether they were mandatory or not. These all
can consolidate into a concise vector string, such as
CVSS:4.0/AV:N/AC:L/AT:N/PR:H/UI:N/VC:L/VI:L/VA:N/SC
:N/SI:N/SA:N.

Exploit Prediction Scoring System

While predicting the future isn't practical, emerging models
such as the Exploit Prediction Scoring System (EPSS) are
showing that data can drive some highly useful
prioritization criteria. We know from previous discussions
and elsewhere in the book that using CVSS alone for
vulnerability prioritization isn't sufficient. In this section,
we will take a look at the evolving EPSS model, and how it
can be used to aid prioritization by projecting how likely a
vulnerability is to be exploited in the next 30 days.

EPSS 3.0—Prioritizing Through Prediction

Many organizations, including the U.S. federal government
and Department of Defense (DoD), utilize CVSS Severity
Scores to help drive their vulnerability remediation timeline
requirements. While CVSS is the most widely used

https://t.me/PrMaB2



vulnerability rating system for assessing the severity of
vulnerabilities, it is often inappropriately used in isolation
to prioritize risk from the vulnerabilities by prioritizing
vulnerabilities based on their CVSS score alone, despite the
reality that only 2–7 percent of vulnerabilities are ever
known to be exploited in the wild, regardless of CVSS
severity.
The introduction of EPSS attempts to aid in the
vulnerability prioritization efforts by providing a numerical
score of how likely a vulnerability is to be exploited over
the next 30-day window. Oddly enough, both CVSS and
EPSS are governed through FIRST but by separate SIGs.
EPSS aids practitioners and organizations who are looking
to improve their vulnerability management activities.
Studies have shown that organizations can only remediate
between 5 and 20 percent of their vulnerabilities each
month, leaving them in a situation where they are
perpetually falling behind the number of published and
emerging vulnerabilities due to their inability to remediate
them all (https://learn-cloudsecurity.cisco.com/vulnerability-
management-resources/vmc/prioritization-to-prediction-volume-

8). This study was conducted by Cyentia Institute and
Cisco.
Organizations aim to take approaches to prioritize
vulnerabilities for remediation, but they have historically
been inefficient and ineffective, all at a time when we
constantly hear about the shortfall of cybersecurity talent
and organizations struggling to attract and retain it. It has
been found that using just a CVSS Severity Score to
measure the risk of an individual vulnerability is equivalent
to picking random vulnerabilities to fix, whereas focusing
on vulnerabilities with actual exploitation proof or
probability is far more effective at mitigating organizational
risks.

https://t.me/PrMaB2

https://learn-cloudsecurity.cisco.com/vulnerability-management-resources/vmc/prioritization-to-prediction-volume-8


A common vulnerability prioritization strategy called for in
sources such as Payment Card Industry (PCI) and federal
vulnerability management guidance is to remediate
vulnerabilities within a predefined set of calendar days
after initial detection, based on the CVSS Severity Scores.
This often manifests in having Critical and High

vulnerabilities, as categorized by CVSS, and prioritized for
remediation within 7–30 days of initial detection. On the
surface, this seems intuitive except for the issue that less
than 10 percent of known vulnerabilities are actually ever

exploited in the wild.
For example, security vendor Qualys found in their 2023
Qualys TRURISK Research Report
(www.qualys.com/docs/qualys-2023-trurisk-threat-research-
report.pdf) that despite there being 25,000 known
vulnerabilities published to the NIST NVD in 2022, less
than 5 percent of those were ever actually known to be
exploited in the wild.
While organizations may prioritize vulnerabilities based on
CVSS Severity Scores, those vulnerabilities may not be
known to be exploited by sources such as CISA's Known
Exploited Vulnerabilities (KEV) list (www.cisa.gov/known-
exploited-vulnerabilities-catalog), and they may never be
known to be exploited. While patches can also address
factors such as functionality, from a vulnerability
management perspective organizations are essentially
spending precious time and resources remediating
vulnerabilities that pose little to no risk while ignoring
those that potentially do.
As an industry, we desperately need to focus on
vulnerabilities that pose the most risk, and those that are
likely to be exploited are a suitable place to start. This is
where EPSS comes in.

https://t.me/PrMaB2

http://www.qualys.com/docs/qualys-2023-trurisk-threat-research-report.pdf
http://www.cisa.gov/known-exploited-vulnerabilities-catalog


Let's take a look at the EPSS 3.0 model and some of its
improvements over previous versions.

EPSS 3.0

The best way to really dig into EPSS 3.0 and the evolution
of EPSS overall is with the latest whitepaper titled,
“Enhancing Vulnerability Prioritization: Data-Driven Exploit
Predictions with Community-Driven Insights” (found at
https://arxiv.org/pdf/2302.14172.pdf) that was produced by
the EPSS SIG members from organizations such as Cyentia
and the RAND Corporation. The EPSS team opens the
discussion by citing an 82 percent performance
improvement in EPSS 3.0 over previous versions as well as
covering the evolving vulnerability landscape. The NIST
NVD has continued to see huge growth, with a 24.3 percent
increase in vulnerabilities in 2022 over 2021, totaling over
25,000 vulnerabilities in a single year. Despite this
increase, organizations only have a median remediation
rate of 15.5 percent, with one-fourth of the organizations
remediating less than 7 percent of their open
vulnerabilities per month. This creates a scenario where
these organizations are perpetually drowning in increasing
vulnerability backlogs, with some studies finding that the
average organization has a backlog of over 100,000
vulnerabilities and climbing.
EPSS is striving to help organizations quickly prioritize
these vulnerabilities by focusing on those with the highest
probability of being exploited over the next 30 days. EPSS
boasts the ability to help organizations minimize their
burden of patching critical vulnerabilities with one-eighth
of the effort of typical strategies using CVSS.
When it comes to exploits, EPSS utilizes a variety of
sources such as FortiGuard, AlienVault Open Threat
Exchange, the Shadowserver Foundation, and GreyNoise,

https://t.me/PrMaB2

https://arxiv.org/pdf/2302.14172.pdf


which all use various techniques to identify exploitation
attempts in digital environments around the globe. In
addition to these sources, EPSS uses over 1,400 features
for predicting exploitation activity. These include sources
such as published exploit code, public vulnerability lists,
offensive security tools, and the age of the vulnerability.
To prove their performance improvements with EPSS 3.0,
the CVSS 3.0 performed testing to explore the increased
effectiveness of the 3.0 model. They measured their
performance improvement on predicting vulnerability
exploitation over 30 days using the features we discussed
previously, and they compared their performance results
and metrics against previous EPSS versions as well as
CVSS v3 Base scores.
Figure 5.9 illustrates their significant improvement. It
shows all CVEs, including CVEs with scores above a
threshold and CVEs that are actually exploited. As you can
see, when contrasting CVSS v3.x with EPSS v1 and v2,
EPSS v3 shows a significant improvement in terms of
prioritizing the largest portion of exploited vulnerabilities.
The black circles represent the number of vulnerabilities
that need to be remediated under the given methodology,
and the white circle represents the actual exploitation
activity. As you can see, EPSS significantly outperformed
the other models by helping users remediate the largest
portion of the exploited vulnerabilities and minimize wasted
resources and effort on non-exploited vulnerabilities.

Moving Forward

While the EPSS model is not perfect, it does present a
strong data-driven approach to help organizations focus on
vulnerabilities that pose the greatest threat based on
probable exploitation activity (see Figure 5.10).

https://t.me/PrMaB2



Figure 5.9: CVE improvements

https://t.me/PrMaB2



Figure 5.10: EPSS efficiency
We are also seeing an evolution of other industry
resources, such as the long-standing CVSS, which we
covered earlier in this chapter.
It's worth emphasizing that EPSS measures the threat
associated with a published CVE, based on the probability
that the CVE will be exploited in the wild in the next 30
days. It doesn't account for organization-specific context
such as that related to assets or the business. That said,
when organizations are drowning in a backlog of hundreds
of thousands of open vulnerabilities, with the rate of
discovered and published vulnerabilities only accelerating,
starting with the vulnerabilities most likely to be exploited
is a great foundation.
EPSS 3.0 brings a more comprehensive, efficient, and
effective model to the industry looking to prioritize
vulnerabilities that pose the greatest threat. It also offers a
robust application programming interface (API) and
resource that's open for anyone to access and consume as
part of their vulnerability management program. For those
looking to learn more, you can dig in at the EPSS FAQ
page: www.first.org/epss/faq.

Stakeholder-Specific Vulnerability

Categorization

https://t.me/PrMaB2

http://www.first.org/epss/faq


As organizations look to optimize resources when
performing vulnerability prioritization, another prominent
option that has grown in the ecosystem is the Stakeholder-
Specific Vulnerability Categorization (SSVC), which has
been championed by organizations such as Carnegie
Mellon's Software Engineering Institute (SEI) and CISA.
SSVC utilizes decision trees to aid in vulnerability
prioritization and seeks to address some of the shortfalls
and critiques of more prominent options such as CVSS. It
was originally introduced to the community in a Software
Engineering Institute (SEI) paper titled, “Prioritizing
Vulnerability Response: A Stakeholder-Specific
Vulnerability Categorization,” by researchers Jonathan
Spring, Eric Hatleback, Allen Householder, Art Manion,
and Deana Shick in late 2019
(https://resources.sei.cmu.edu/asset_files/WhitePaper/2019_019_
001_636391.pdf).
SSVC’s use of decision trees includes the various elements
of a decision, potential decision values, and potential
outcomes. As pointed out by the original whitepaper, many
organizations default to using CVSS Base severity scores as
decisions when it comes to vulnerability prioritization, so
the authors decided to rally around decisions as a more
useful output than a simple severity score. It's worth noting
that the CVSS SIG explicitly states that CVSS Severity
Scores shouldn't be used solely for vulnerability
prioritization, but that hasn't stopped the industry from
using them in this fashion, including organizations as large
as the U.S. federal government and the Department of
Defense (DoD).
As the original SSVC whitepaper emphasizes, vulnerability
context is critical, not optional. This means the temporal
and environmental considerations for vulnerabilities matter
(e.g., the environment they exist in and the system and

https://t.me/PrMaB2

https://resources.sei.cmu.edu/asset_files/WhitePaper/2019_019_001_636391.pdf


context of the vulnerability), much more than just the Base
severity score. At its core, SSVC is a qualitative framework
for prioritizing vulnerabilities and provides decisions as
outputs that are explainable. SSVC posits that decision
trees are small enough for humans to manage in
vulnerability management.
SSVC is compared against other vulnerability prioritization
options, such as CVSS v3.0, parametric regression, and
random forest, in Figure 5.11 (taken from the SSVC
whitepaper, which can be viewed at
www.cisa.gov/sites/default/files/publications/cisa-ssvc-

guide%20508c.pdf).

Figure 5.11: SSVC comparison
Source: Adapted from www.cisa.gov/sites/default/files/publications/cisa-ssvc-
guide%20508c.pdf

https://t.me/PrMaB2

http://www.cisa.gov/sites/default/files/publications/cisa-ssvc-guide%20508c.pdf
http://www.cisa.gov/sites/default/files/publications/cisa-ssvc-guide%20508c.pdf


The primary differentiator between decision trees (such as
SSVC) and other vulnerability prioritization options is that
the outputs are decisions, which are decisive, so they
empower practitioners to take action on vulnerabilities in a
defined order or value.
The authors of SSVC in the original research paper
advocated that using decision guidance for vulnerability
management should, at a minimum, consider the
stakeholder groups, their potential decision outcomes, and
the data necessary to make decisions at the relevant
decision points.
As SSVC acknowledges, a variety of stakeholders are
involved in vulnerability management and may include
organizations developing, applying, or coordinating
patches. After sufficiently identifying the stakeholders, you
then need to enumerate the various decisions that can be
made. These activities often involve things such as
developing, applying, or coordinating patches, all of which
are often conducted by various stakeholders, including
those external to your respective organization.
Another important aspect that the SSVC whitepaper calls
out is scope as it relates to decision points. Scope can
include items like the boundaries of the impacted system.
Defining scope, of course, can be challenging, because one
system is often part of another, such as in the context of
systems within systems.
While the initial SSVC whitepaper can be a bit theoretical
and abstract, it makes sense to look at a practical example
from an organization using SSVC. For our example, we will
look at CISA, who has adopted and evangelized the use of
the SSVC framework.

CISA SSVC Guide

https://t.me/PrMaB2



CISA published a paper titled, “CISA SSVC Guide,” which
we'll use as our example to look at how organizations can
leverage SSVC to aid in their vulnerability prioritization,
remediation, and management efforts.
As the guidance mentions, the CISA SSVC utilizes decision
tree models to assist in prioritizing their vulnerability
response, much like the original SSVC whitepaper
intended, but in this case, for U.S. government and critical
infrastructure entities. However, as noted by CISA in their
guidance, despite being published for U.S. government
entities, any individual or organization can use SSVC to
improve their vulnerability management practices.
The CISA guidance lays out four potential decisions that an
entity leveraging their version of the SSVC has when
becoming aware of a vulnerability; they are identified in
Figure 5.12.
CISA also points out the topic of scope, which is
determining, for example, if a vulnerability has a presence
across multiple related systems and is accounted for as a
single vulnerability or multiple vulnerabilities.

https://t.me/PrMaB2



Figure 5.12: Potential SSVC decisions
Source: Adapted from www.cisa.gov/sites/default/files/publications/cisa-ssvc-
guide%20508c.pdf

Another key aspect in the CISA SSVC is the state of
exploitation—the evidence of active exploitation of a
vulnerability. Unlike EPSS, this is not seeking to predict
future exploitation but uses the information currently

available at the time of the vulnerability analysis.
CISA's SSVC recommends using sources such as vendor
vulnerability notifications, the NIST NVD, insights from
Information Sharing and Analysis Centers (ISACs), and
reliable threat reports that utilize CVE IDs or common
names for a specific vulnerability. In this vein, SSVC is
more akin to CISA's KEV catalog, because it focuses on the
current state of exploitation, rather than the potential
probability of future exploitation such as EPSS.

https://t.me/PrMaB2

http://www.cisa.gov/sites/default/files/publications/cisa-ssvc-guide%20508c.pdf


Potential exploitation decision values in the CISA SSVC are
shown in Figure 5.13.
After determining the state of exploitation, CISA's SSVC
examines technical impact. They compare it to CVSS's use
of severity, which seeks to summarize the impact on the
affected systems or assets if the vulnerability is present and
exploited. CISA's SSVC takes a simplistic approach here,
with only two potential options, as shown in Figure 5.14.

Figure 5.13: Potential exploitation decision values

Figure 5.14: Two options of technical impact

As you can see, the two options are partial or total. The
former means that the threat actor has limited access over
the impacted system, and the latter means the threat actor
has complete and total control over the impacted software
or system to which the vulnerability applies.

https://t.me/PrMaB2



Another key aspect of the CISA SSVC decision tree process
is determining if the exploit is not only available, but also
automatable. Automation allows for much broader
exploitation attempts by malicious actors and is a key
consideration for how prevalent exploitation attempts may
be across the ecosystem.
For this decision, CISA SSVC makes use of the widely
popular Kill Chain from Lockheed Martin, which has seven
steps, as shown in Figure 5.15.

https://t.me/PrMaB2



Figure 5.15: Lockheed Martin's seven-step Kill Chain

https://t.me/PrMaB2



So, CISA's SSVC takes a binary approach to the assessment
of an exploitation being automatable, oriented around the
first four steps of the Kill Chain, as depicted in Figure 5.16.

Figure 5.16: CISA's SSVC binary approach to assessment

As CISA points out, a variety of factors contribute to the
automatability of exploitation, such as the complexity of the
attack, the code needed to be written or configured by the
attacker, as well as the common network deployment of the
vulnerable system. If a vulnerability requires
authentication, Internet reachability, or other specific
criteria to be present or possible, then the ability to
automate the exploitation of a specific vulnerability
declines. However, as CISA also emphasizes, it isn't
uncommon for malicious actors to chain vulnerabilities
together to execute various steps or exploit multiple
vulnerabilities as part of their overarching attack
campaigns. Referred to as vulnerability chaining, it's a
topic we'll discuss extensively in Section 5, “Vulnerability
Chaining.” It is not uncommon for malicious actors to use
multiple vulnerabilities to achieve a desired outcome. One
of the authors of this book, Dr. Nikki Robinson, conducted
her doctoral thesis on the concept of vulnerability chaining
and blindness.
Organizational context is as critical as other criteria for
considering the prioritization of a vulnerability for

https://t.me/PrMaB2



remediation. CISA's SSVC approaches this from the
concept of Mission Prevalence, meaning how critical a
system or software is to the organization's mission. They
discuss the concept of mission-essential functions (MEFs)
as functions that relate to accomplishing an organization's
mission. Organizations identify their MEFs as part of
activities such as business continuity and disaster recovery
planning activities. For example, if you're an e-commerce
firm such as Amazon, your website's stability to enable
customers to purchase products that contribute to your
revenue is certainly an MEF.
MEFs are critical to normal operations where nonessential
functions are not, although nonessential functions often
support MEFs in various capacities such as logistics and
financial operations, which may not be an organization's
core competency but are key for it to continue to function.
The potential decision values for Mission Prevalence are
listed in Figure 5.17.

Figure 5.17: Mission Prevalence potential decision values
While federal entities utilizing CISA's SSVC might not use
the term mission, they inevitably have key organizational
mission activities that they can designate as MEFs.
Moving on from Mission Prevalence, the next key
consideration in the CISA SSVC is Public Well-Being

Impact. CISA utilizes the Centers for Disease Control and
Prevention (CDC) definition of well-being that includes the
physical, social, emotional, and psychological health of

https://t.me/PrMaB2



humans involved. This is a nod to the increasing
convergence of software and society, often what are called
cyber-physical systems, and could be applied to not just
governmental entities but also critical infrastructure as one
example. Public well-being has a broader potential impact
than the technological specific context usually considered
under vulnerability management. But as software becomes
increasingly integrated into every aspect of our society, it is
also a necessary one.
CISA's SSVC looks at the impact in the context of minimal,
material, or irreversible, and across diverse types of harm
such as physical, environmental, financial, and
psychological, as depicted in Figure 5.18.
Lastly, the criterion as defined by the CISA SSVC guidance
is the Mitigation Status, which is a measurement of the
degree of difficulty to mitigate the vulnerability. CISA looks
at three different criteria—Mitigation Availability, System
Change Difficulty, and Type, as depicted in Figure 5.19.
Considerations include whether a mitigation is publicly
available or not, whether or not it is difficult to implement
the mitigation, and whether it is a direct fix or merely a
workaround to mitigate the risk in the interim until a
permanent solution can be implemented.

https://t.me/PrMaB2



Figure 5.18: SSVC Impact Types

https://t.me/PrMaB2



Figure 5.19: Three criteria of Mitigation Status

Decision Tree Example

Given the governmental and critical infrastructure focus of
CISA, it should come as no surprise that their notional
implementation of an SSVC decision tree rallies around
emphasizing the mission prevalence and public well-being
decision points for prioritization while building on other
metrics such as the maturity of exploitation, ability to be
automated, and the technical impact of the vulnerability
exploitation.
CISA points out that in addition to an expanded attack tree
(see Figure 5.20), the data can also be tracked in a table
format, which is represented in Figure 5.21.

https://t.me/PrMaB2



The decision tree model lends itself to analyzing a specific
vulnerability and walking through the various decision
points and considerations, whereas a table format is more
beneficial when tracking and triaging many vulnerabilities,
leveraging the CISA SSVC model as a guide.

Figure 5.20: An expanded attack tree

https://t.me/PrMaB2



Figure 5.21: A table format of an attack tree
Source: https://csrc.nist.gov/projects/security-content-automation-
protocol/specifications/cpe

Software Identification Formats

No conversation on vulnerability scoring and prioritization
would be complete without also covering some of the
primary software identification formats, their respective
challenges and shortcomings, and the value that each has
in the broader discussion of vulnerability management.
Various stakeholders from software and technology
suppliers, consumers, vendors, and researchers use
software identification formats to tie software and products
to a specific vendor, for example. In this section, we'll
discuss some of their primary formats and where and how
they may be used.
For a good primer on the leading software identity formats
as well as some of the challenges associated with the
existing formats and software identity more broadly, we
recommend watching a 2023 talk from CISA's Branch Chief
for Vulnerability Response and Coordination, Lindsey
Cerkovnik, titled, “Software Identity And The Naming of
Things” at www.youtube.com/watch?
v=wzo81uccSfU&feature=youtu.be. In her talk, Cerkovnik covers
the three primary software identity formats relevant as of
this writing, which we will cover in more detail in the
following section.

https://t.me/PrMaB2

https://csrc.nist.gov/projects/security-content-automation-protocol/specifications/cpe
http://www.youtube.com/watch?v=wzo81uccSfU%26feature=youtu.be


Common Platform Enumeration

While CVEs are used to identify and describe specific
vulnerabilities, Common Platform Enumerations (CPEs) are
used as a naming scheme for systems, software, and
packages. They are compiled into a broad CPE Product
Dictionary, which is maintained by NIST. Versions of the
CPE Dictionary are available for download from the NIST
NVD website at https://nvd.nist.gov/products/cpe.
Products are identified by suppliers, and then a CPE name
is submitted and approved to be included in the
overarching Official CPE Dictionary. This way it can be
used in searches for vulnerabilities, demonstrating the
products and software it impacts. The NIST NVD uses CPEs
when discussing the applicability of vulnerabilities and the
products or software they impact. CPEs provide a
standardized format for machine-readable representations
of IT products and platforms. Prior to CPE's introduction,
the industry lacked such a format and thus struggled to
correlate vulnerabilities with specific products or platforms
in the ecosystem.
As mentioned by NIST at
https://csrc.nist.gov/projects/security-content-automation-

protocol/specifications/cpe, CPEs can be leveraged by IT
management tooling to collect information about installed
products using the CPE name and to help make decisions
regarding the assets based on the vulnerabilities impacting
them.
As of this writing, the current version of CPE is 2.3. Its
structure is captured in Figure 5.22, with its most
fundamental purpose, naming, at the bottom of the
structure with additional layers built on top of it.

https://t.me/PrMaB2

https://nvd.nist.gov/products/cpe
https://csrc.nist.gov/projects/security-content-automation-protocol/specifications/cpe


Figure 5.22: CPE 2.3's structure
Source: https://csrc.nist.gov/projects/security-content-automation-
protocol/specifications/cpe

Let's look at the aspects of the CPE 2.3 structure and its
various components:

Naming   The Naming specification defines the logical
structure of Well-Formed Names (WFNs), Uniform
Resource Identifier (URI) bindings, and formatted
string bindings, and the procedures for converting
Well-Formed Names to and from the bindings.
Name Matching   The Name-Matching specification
defines the procedures for comparing WFNs to each
other to determine whether they refer to some or all of
the same products.
Dictionary   The dictionary specification defines the
concept of a CPE Dictionary, which is a repository of
CPE names and metadata where each name identifies a
single class of IT product. The dictionary specification
defines processes for using the dictionary, such as how
to search for a particular CPE name or look for
dictionary entries that belong to a broader product
class. Also, the dictionary specification outlines all the
rules that dictionary maintainers must follow when

https://t.me/PrMaB2

https://csrc.nist.gov/projects/security-content-automation-protocol/specifications/cpe


creating new dictionary entries and updating existing
entries.
Applicability Language   The Applicability Language
specification defines a standardized structure for
forming complex logical expressions out of WFNs.
These expressions, also known as applicability

statements, are used to tag checklists, policies,
guidance, and other documents with information about
the product(s) to which the documents apply. For
example, a security checklist for Mozilla Firefox 3.6
running on Microsoft Windows could be tagged with a
single applicability statement that ensures only systems
with both Mozilla Firefox 3.6 and Microsoft Windows
Vista will have the security checklist applied.

The CPE Dictionary is updated nightly, and it is available
for download as well as being available as a search-based
website where individuals can run queries for specific
products, applications, and software. You can also dig into
the CPE 2.3 XML schema. All these additional resources
are available at the NIST CPE website
(https://nvd.nist.gov/products/cpe). You can also view the
official CPE Dictionary statistics to see the annual growth
of CPEs and the year-over-year growth of identified
products, vendors, and entries as well as how many have
been deprecated.

Package URL

Another prevalent software identification method is the
Package URL, also known as PURL
(https://github.com/package-url/purl-spec). While CPE is
product-specific and is useful for identifying specific
products and vendors, PURL is much more focused on
third-party dependencies, components, and packages.

https://t.me/PrMaB2

https://nvd.nist.gov/products/cpe
https://github.com/package-url/purl-spec


The reason this is key is based on studies from sources
such as Synopsys. According to their previous versions of
the Synopsys Open Source Security and Risk Analysis
Report (www.synopsys.com/content/dam/synopsys/sig-
assets/reports/rep-ossra-2023.pdf), 78 percent of modern
codebases are increasingly made up of open source
software (OSS) components. Not only were 78 percent of
the 2,409 codebases audited composed of OSS components,
but 97 percent of the codebases contained some level of
OSS. Further concerning is the fact that almost 90 percent
of the components had no new development in two years,
and 85 percent of the components were more than four

years out-of-date. (Check out Figure 5.23 for more
information.)
This proliferation of OSS components and their associated
risks is paired to the growth of software supply chain
attacks, which may, of course, target specific vendors and
products, but also are increasingly targeting the OSS
components that software suppliers and organizations use
in their applications and architectures.

https://t.me/PrMaB2

http://www.synopsys.com/content/dam/synopsys/sig-assets/reports/rep-ossra-2023.pdf


Figure 5.23: 2022 OSSRA Report summary
Source: https://cwe.mitre.org/about/new_to_cwe.html

To emphasize the growth of the risk associated with
software supply chain attacks, software supply chain
vendor Sonatype produced a 2023 State of the Software
Supply Chain report, www.sonatype.com/state-of-the-software-
supply-chain/introduction that found there was a 742 percent
average annual increase in software supply chain attacks
over the previous three years and over 3.4 billion

vulnerable downloads each month. Their report also found
that nearly one trillion more packages were downloaded
from the most popular package repositories than the
previous year, reiterating the explosive growth of OSS and
software package consumption, and further emphasizing
the key role of PURL for software identification.
The increased adoption of OSS, coupled with the growth of
supply chain attacks, means the need for effective software
and hardware identification is critical. However, as it

https://t.me/PrMaB2

https://cwe.mitre.org/about/new_to_cwe.html
http://www.sonatype.com/state-of-the-software-supply-chain/introduction


stands currently, the NIST NVD only supports CPE, which
as we have discussed is product- and vendor-specific.
One group, who goes by the name the SBOM Forum, has
begun to declare that the NVD needs to grow beyond using
CPE as the sole identifier. In a paper titled “A Proposal to
Operationalize Component Identification for Vulnerability
Management”
(https://owasp.org/assets/files/posts/A%20Proposal%20to%20Opera
tionalize%20Component%20Identification%20for%20Vulnerability%20

Management.pdf), the group proposes that the NVD adopt the
use of PURL. The group posits that PURL identifiers are
native to the package manager ecosystem and already in
widespread use.
As pointed out by the paper, modern software development
languages utilize package managers, which describe the
third-party and OSS components used by an application.
These components are referred to as dependencies, and in
the package manager ecosystem, each dependency is given
PURL. To help make the case for using PURL for
vulnerability management, the group also mentions that
several sources of vulnerability intelligence and
vulnerability management vendors have already adopted
PURL into their platforms and offerings.
However, the group does note that PURL is only applicable
to software, whereas CPEs can apply to both hardware and
software.

Software Identification Tags

Another common software identification format, although
it's experiencing less use due to CPE and most notably the
growth of PURL, is the Software Identification (SWID)
format (https://csrc.nist.gov/projects/Software-
Identification-SWID). SWID is an International Organization
for Standardization (ISO) standard that defines a

https://t.me/PrMaB2

https://owasp.org/assets/files/posts/A%20Proposal%20to%20Operationalize%20Component%20Identification%20for%20Vulnerability%20Management.pdf
https://csrc.nist.gov/projects/Software-Identification-SWID


structured metadata format for describing software
products.
SWID seeks to help organizations effectively manage their
software inventories in a structured fashion, by using what
are known as tag files to describe specific releases of
software products. SWID tags can be used throughout the
entire software product life cycle, from installation to
decommissioning.
Organizations other than ISO have also advocated for the
use and adoption of SWID tags. NIST, for example,
recommends SWID's use to entities such as software
producers and standards bodies and mentions the use of
SWID tags in their various guidance and publications.

Common Weaknesses and Enumerations

While CPE provides a standardized schema for discussing
specific products, vendors, and software, the Common
Weaknesses Enumeration (CWE) provides a common
language for discussing software security vulnerabilities
found in applications, software, and systems.
CWE is an effort run by MITRE and leveraged by entities
such as the NIST NVD. As defined by MITRE, “CWE is a
community-developed list of software and hardware
weakness types. It serves as a common language, a
measuring stick for security tools, and as a baseline for
weakness identification, mitigation, and prevention
efforts.”
In the CWE context, a weakness is defined as “a condition
in a software, firmware, hardware, or service component
that, under certain circumstances, could contribute to the
introduction of vulnerabilities.”
While CPEs and CVEs are unique identifiers for products,
software, or vulnerabilities, CWEs provide a common

https://t.me/PrMaB2



language to discuss prevalent weaknesses in systems and
software through specific categorizations, such as buffer
overflows, handler errors, and validity problems.
CWE has ties to MITRE's work with the U.S. Department of
Homeland Security (DHS) and NIST, looking to enumerate
software weaknesses tied to real-world vulnerabilities.
Released in 2006, the original list and taxonomy have
continued to grow in both depth and diversity, supporting
use cases for mobile applications, operational technology,
Internet of Things (IoT), and more.
Much like the Open Worldwide Application Security Project
(OWASP)'s famous “Top 10” list of specific vulnerabilities
and threats for domains such as software and AI, there is a
“CWE Top 25 Most Dangerous Software Weaknesses” list
that represents the most common and impactful software
weaknesses. (Check out
https://cwe.mitre.org/top25/archive/2022/2022_cwe_top25.html).
To create the CWE Top 25, the CWE team utilized CVE
records from the NIST NVD, along with CVSS scores for
CVEs, and compared that information against the CISA
KEV catalog. For the 2022 Top 25 list, they analyzed over
37,000 CVE records over the previous two years. The CWE
Top 25 ranks the CWEs and shows their ID, name, and
score along with the number of KEVs with which they are
associated.
More broadly, NVD integrates CWE into the scoring of the
CVEs. NVD then goes on to categorize and differentiate
CVEs based on the type of vulnerability they represent,
using the CWE classifications.
CWEs are represented with a unique ID chosen at the time
of assignment, such as CWE-<ID>, along with a descriptive
name for each CWE. As stated in the CWE guidance, for a
CWE to be published on their site, it must include name,

https://t.me/PrMaB2

https://cwe.mitre.org/top25/archive/2022/2022_cwe_top25.html


summary, and references among other information, as
detailed in Figure 5.24.

Figure 5.24: Required CWE elements
Source: https://cwe.mitre.org/about/new_to_cwe.html

CWE supports a variety of use cases, from providing the
common language covered previously for developers and
security researchers to discuss security weaknesses, to
organizations evaluating security tooling to determine their
ability to discover weaknesses around the CWE taxonomy.
One of the strongest use cases for CWE, aside from
categorizing vulnerabilities into standardized
classifications, is the ability to try to eliminate mistakes
earlier in the software development life cycle (SDLC) by
educating those designing and developing systems
regarding common mistakes and weaknesses that can
mature into vulnerabilities, which can then be potentially
exploited by malicious actors.
Much like the push to “shift security left” and implement
activities such as threat modeling, which we'll discuss
elsewhere in this book, having a list of common mistakes
and weaknesses can let software and system producers
evaluate whether their system falls victim to any of the
most prevalent weaknesses prior to it being deployed to a
production environment, or subsequently, categorizing

https://t.me/PrMaB2

https://cwe.mitre.org/about/new_to_cwe.html


vulnerabilities in production systems based on the CWE
category of identified vulnerabilities.
In addition to the CWE list that is open for public use as an
industry resource, there are other efforts, such as the Top
25 CWEs we previously discussed, the Common Weakness
Scoring System (CWSS), the Common Weakness Risk
Analysis Framework (CWRAF), and CWE Coverage Claims
Representation (CCR), each of which provides additional
capability to the community in various forms. You can find
out more about each of them in the CWE FAQ
(https://cwe.mitre.org/about/faq.html).

Summary

As we have discussed in this chapter, there are a variety of
vulnerability scoring methodologies and systems in use
today. Some have evolved over a long period of time and
arguably are on the cusp of being replaced or at a minimum
augmented with more modern and practical models that
can aid in activities such as vulnerability prioritization.

https://t.me/PrMaB2

https://cwe.mitre.org/about/faq.html


6 

Vulnerability and Exploit Database

Management

Vulnerability and exploit databases play a fundamental role
in the conversation surrounding vulnerability management.
At a high level, a vulnerability database can be described as
an effort to collect information about known security flaws
in software and products, and then make that information
available either publicly or to some community of users.
Some vulnerability databases have been around for many
years, while others are new and starting to gain increased
use in the technology and cybersecurity community. Exploit
databases are collections of public exploits, used for
research and to aid practitioners and defenders. In this
chapter, we discuss some of the most notable examples, as
well as their challenges and strengths and how they can be
used by both vulnerability management vendors and end-
user organizations.

National Vulnerability Database

(NVD)

Vulnerabilities help inform activities to drive down risk,
both for organizations creating and producing software as
well as those using and consuming it and providing broad
industry knowledge of the vulnerabilities present in the
ecosystem.
While there are several vulnerability databases in the
industry, one of the most notable examples is the National
Institute of Standards and Technology's National
Vulnerability Database (NVD). NVD is a comprehensive

https://t.me/PrMaB2



cybersecurity vulnerability database that integrates all
publicly available U.S. government vulnerability resources
and provides references to industry resources.
NVD was formed in 2005, and reports on the Common
Vulnerabilities and Exposures (CVEs) within the industry.
The origins of the NVD trace all the way back to 1999, with
NVD's predecessor, Internet – Categorization of Attacks
Toolkit (I-CAT), which originally was an access database of
attack scripts. The I-CAT name can be traced to one of the
largest defense contractors, Booz Allen Hamilton. I-CAT
originally involved students from the SANS Technology
Institute who worked as analysts involved with the project.
I-CAT faced some funding challenges, but it was kept alive
through efforts by SANS as well as employees of NIST,
going on to reach over 10,000 vulnerabilities before
receiving some additional funding from the Department of
Homeland Security (DHS) to create a vulnerability
database rebranded as NVD, as it is known today. As the
project evolved, NVD went on to adopt popular
vulnerability data and scoring that's still in use today, such
as the Common Vulnerability Scoring System (CVSS) and
Common Platform Enumeration (CPE).
As of September 2023, NVD contains over 200,000
vulnerabilities that continue to grow as new vulnerabilities
emerge. NVD is utilized worldwide by professionals
interested in vulnerability data, as well as vendors looking
to correlate vulnerability findings and their associated
details.
NVD facilitates this process by analyzing CVEs that have
been published in the CVE dictionary. By referencing the
CVE dictionary and performing additional analysis, the
NVD staff produce important metadata about
vulnerabilities, including CVSS scores, Common Weakness

https://t.me/PrMaB2



Enumeration (CWE) types, and associated applicability
statements in the form of CPEs.
It's worth noting that the NVD staff does not perform the
vulnerability testing and uses insights and information from
vendors and third-party security researchers to aid in the
creation of the attributes previously discussed in the
chapter on vulnerability scoring systems, such as CVSS. As
current information emerges, the NVD revises the
metadata, such as CVSS scores and CWE information.
The NVD integrates information from the CVE program,
which is a dictionary of vulnerabilities that we'll discuss
elsewhere. The NVD assesses newly published CVEs after
they are integrated into the NVD with a rigorous analysis
process. This includes reviewing reference material for the
CVE, including publicly available information located on
the Internet. CVEs are assigned one or more CWE
identifiers to help categorize the vulnerability, and the
vulnerability is also assigned exploitability and impact
metrics through the CVSS. Applicability statements are
given through CPEs to ensure that specific versions of
software, hardware, or systems are identified through
these applicability statements. This helps organizations
take the appropriate action, depending on whether the
vulnerability impacts the specific hardware and software
they're using. Once this initial analysis and assessment is
performed, any assigned metadata such as the CWEs,
CVSS, and CPEs are reviewed as a quality assurance
method by a senior analyst before a CPE is published on
the NVD website and associated data feeds.
The NVD offers a rich set of data feeds and application
programming interfaces (APIs) for organizations and
individuals to consume published vulnerability data. APIs
allow interested parties to programmatically consume the
vulnerability information in a much more automated and

https://t.me/PrMaB2



scalable manner than manually reviewing the data feeds.
The NVD APIs also include other benefits such as being
frequently updated, searchable, and able to perform data
matching, and more, and they are often used by security
product vendors to provide vulnerability data as part of
their product offering.
Despite its broad adoption and use by nearly all reputable
vulnerability management platforms and firms, the NVD
isn't without its critics. Popular bloggers such as Tom
Alrich, who is part of groups such as the Software Bill of
Materials (SBOM) Forum and has been involved in
activities around software supply chain security, met with
the NVD team in 2023 and noted that the team discussed
funding challenges and the nearly 20 percent decrease in
headcount as well. This is discussed in a blog regarding the
call for a global vulnerability database beyond the U.S.-
centric NVD (check out
http://tomalrichblog.blogspot.com/2023/08/a-global-

vulnerability-database.html).
Others have raised concerns about the NVD's process for
ingesting vulnerabilities through what the NVD calls CVE
Numbering Authorities (CNAs). CNAs are qualified
organizations that volunteer to research vulnerabilities and
contribute them for the NVD's consideration and inclusion.
Some have raised concerns about how cumbersome and
inefficient the process is. Others have noted that the NVD
is a “broken” system, allowing for vulnerability submissions
and entries without the proper coordination with the party
responsible for the software and without validation that the
issue is genuinely a vulnerability, which can contribute
noise to vulnerability management issues across the
industry.
Lastly, organizations such as the Open Worldwide
Application Security Project (OWASP) and the SBOM

https://t.me/PrMaB2

http://tomalrichblog.blogspot.com/2023/08/a-global-vulnerability-database.html


Forum have raised concerns regarding the accuracy and
effectiveness of the NVD when it comes to open source
software (OSS) package identification for vulnerability
management purposes. They have called for the NVD to
begin to support additional software identifiers such as
Package URL (PURL), which is key for identifying specific
OSS packages and their associated vulnerabilities as part
of the broader package manager ecosystem.

Sonatype Open Source Software

Index

Some vulnerability databases take the approach of focusing
on specific aspects of the software ecosystem. That is the
case with Sonatype's Open Source Software (OSS) Index,
which is a free catalog of open source components aimed at
helping organizations identify vulnerabilities and the
associated risks of specific OSS components.
These insights are even more pertinent due to factors that
we've discussed in other chapters, such as the exponential
growth and adoption of OSS by organizations and the
increased targeting of OSS components as part of the
broader increase in software supply chain attacks. As we
will discuss in Chapter 10, “Vulnerability Chaining
Blindness,” OSS components are pervasive in modern
applications, making up nearly 80 percent of modern
codebases and presenting a large and enticing attack
surface for malicious actors.
Sonatype's OSS Index lets you search millions of
components, seeking any known or publicly disclosed
vulnerabilities from the various package manager
ecosystems that exist like Maven, npm, and the Python
Package Index (PyPI), among others. Unlike proprietary
databases, the OSS Index uses public sources and doesn't

https://t.me/PrMaB2



rely on human-curated insights or expert guidance. As a
security vendor, Sonatype makes use of these insights to
provide a variety of capabilities such as informing
development teams early in their software development life
cycle (SDLC) of the risks of components, curating internal
repositories of trusted/approved components, and aiding in
activities such as vulnerability remediation.
The OSS Index also offers a public Representational State
Transfer (REST) API, which is used by a variety of
vulnerability scanning tools to identify OSS vulnerabilities.

Open Source Vulnerabilities

The Open Source Vulnerabilities (OSV) schema was
launched by the team at Google in 2021. It is intended to
help developers and consumers of OSS triage
vulnerabilities by providing precise data on where
vulnerabilities are introduced and when they are fixed,
empowering OSS consumers to accurately assess the
impact on their environments due to vulnerable OSS
components. Building on this, Google also announced the
>OSV Scanner, which can help identify vulnerabilities in
OSS dependencies and serves as the frontend for the OSV
database.
OSV was born of the 2021 Google Security and OSS effort
dubbed the “Know, Prevent, Fix” framework, which aimed
to frame the discussion around OSS and its associated
vulnerabilities (https://security.googleblog.com/2021/02/know-
prevent-fix-framework-for-shifting.html). This effort centers
on empowering organizations to identify vulnerabilities in
their OSS, to prevent the addition of new vulnerabilities,
and to fix or remove vulnerabilities from their
environments. To conduct these activities, organizations
must have precise vulnerability data from rich data sources
as well as accurate tracking of their dependencies, so they

https://t.me/PrMaB2

https://security.googleblog.com/2021/02/know-prevent-fix-framework-for-shifting.html


know what their OSS inventory looks like. Furthermore,
there's a push to have a standard schema for vulnerability
databases to allow for interoperability and easier
vulnerability sharing and coordination.
Building on the need for interoperability and schema
standardization, the OSV database uses the Open Source
Security Foundation (OpenSSF) OSV format, which was
developed by the OSS community. It is a human- and
machine-readable format that describes vulnerabilities
mapping to their specific package versions or commit
hashes, which is a more efficient method than the
traditional format used by sources such as CVD and the
NIST NVD.
OSV uses a robust set of data sources that support the OSV
format, which include the GitHub Advisory Database, OSS-
Fuzz, and various language-specific databases such as
PyPI, Go, and Rust, among others.
Figure 6.1 is an example of how vulnerability data is
aggregated from various vulnerability data sources and fed
into OSV.dev, which is the database of vulnerabilities
allowing open source users to query for known
vulnerabilities by version numbers and commit hashes. It
also allows for interaction with upstream package
repositories for data on versioning and more.

https://t.me/PrMaB2



Figure 6.1: OSV data aggregation
Source: https://google.github.io/osv.dev \\Open Source Vulnerabilities(OSV)

OSV.dev provides a publicly available API that can be used
by organizations and third parties, such as vulnerability
management vendors and other vulnerability database
providers, and can even be downloaded in its entirety as
well.
The OSV's schema is JavaScript Object Notation (JSON)-
based. If you're interested in learning more, visit the OSV
schema overview page at https://github.com/ossf/osv-schema.

GitHub Advisory Database

While organizations have increased their efforts in using
technology to drive business outcomes, they have
increasingly begun to employ software developers, whether
it's those writing software natively for the organization or

https://t.me/PrMaB2

https://google.github.io/osv.dev
https://github.com/ossf/osv-schema


those working to integrate software products into their
business workflows and operations. There is no commercial
organization used more worldwide to facilitate software
development activities than GitHub, which boasts over 100
million users worldwide.
As the use of GitHub has grown, the organization has
expanded its offerings to include what is known as the
GitHub Advisory Database, a list of known security
vulnerabilities and malware. These advisories are grouped
into two categories: reviewed and unreviewed.
The GitHub Advisory Database sources vulnerabilities from
sources such as the NVD, which we discussed earlier, as
well as many others such as popular language and package
databases from npm, Go, Python, and Ruby, among others.
It also accepts community contributions, allowing users to
submit vulnerabilities information that might be beneficial
to the broader community.
The GitHub Advisory Database (https://github.com/ossf/osv-
schema) makes use of the Open Source Vulnerability (OSV)
format, which aims to provide a standard interchange
format for vulnerability databases to facilitate an easier
exchange of vulnerability data. This format is supported by
other databases that we've discussed such as OSV.
In the context of the GitHub security advisories (GHSAs),
the database makes use of a GitHub security advisories
identification (GHSA ID), which is a unique identifier that
every security advisory in the GHSA database is assigned.
The GHSA provides a robust REST API that the community
can interact with for doing activities such as creating
security advisories or consuming advisory data.
With the continued growth of software developers and
organizations performing software development activities
and adopting development security operations

https://t.me/PrMaB2

https://github.com/ossf/osv-schema


(DevSecOps) methodologies and practices, we anticipate
that the GitHub Advisory Database will continue to
experience growth and adoption rather than developers
going to original sources such as the NIST NVD.

Exploit Databases

Much like vulnerability databases are used to inventory and
describe vulnerabilities, exploit databases are used to
inventory and describe exploits. Vulnerabilities are often
defined as qualities or characteristics of a given system,
software, or environment that might allow a threat to be
realized. Exploits, on the other hand, are often pieces of
software code or techniques that allow a security flaw or
vulnerability to be taken advantage of.

Exploit-DB

Exploit-DB, the Exploit Database, is one of the most popular
databases of publicly available exploits on the Internet. It
offers functionality such as searchsploit, a command-line
search tool that allows users to search for specific exploits.
In addition, it is integrated with some very popular security
and hacking tools. Users can download and locally store
Exploit-DB locally and use the tools to conduct research as
well as identify malicious activities targeted at specific
vulnerabilities, products, and software. Users can search
for specific software, versions, titles, and use cases.
Exploit-DB also boasts a robust set of additional resources,
such as the Google Hacking Database, Exploit Database
Security Papers, specific shell codes, and online training.

Metasploit

While not necessarily an exploit database, Metasploit is a
widely popular tool that is used by not only security

https://t.me/PrMaB2



professionals but also hackers and malicious actors due to
its ease of use and open source availability. Metasploit is
open source and actively developed and maintained. It
helps facilitate large penetration tests via automation but
can also be used for nefarious purposes, such as allowing
malicious actors to easily pivot between payloads during
testing and exploitation activities. It can also allow for
malicious actors to minimize the potential that their
activities are noticed or identified, challenging activities
such as investigation and response.

GitHub

As we discussed earlier, GitHub is a fundamental platform
in the modern software ecosystem, with over 100 million
users worldwide. It also plays a part in exploitation, most
notably in exploit code. This is because there are
repositories—some public and some private—that host
proofs-of-concept and exploit code associated with
vulnerabilities. These exploits can be useful not only for
security researchers and vendors but also for malicious
actors looking for quick ways to exploit known
vulnerabilities.

Summary

This coverage of vulnerability and exploit databases is far
from exhaustive. You can search the Internet for
discussions and details about vulnerabilities, and their
associated exploits can exist in nearly infinite locations as
reported on by its diverse and expansive community. That
said, the items discussed in this chapter represent some of
the most popular vulnerabilities and exploit databases often
used in security and hacking communities alike. It is also
worth noting, as we have discussed in other chapters, that
the presence of a vulnerability or even the existence of

https://t.me/PrMaB2



exploit code does not guarantee a system or software can
be exploited or compromised. Organizations must take into
account a myriad of factors such as configurations,
architectures, compensating controls, and reachability to
determine whether a specific vulnerability can be exploited.
However, by using some of the resources we've discussed,
organizations can gain a strong understanding of the
vulnerability landscape as well as the existing exploits
associated with popular vulnerabilities, products, and
software.

https://t.me/PrMaB2



7 

Vulnerability Chaining

Vulnerability chaining is defined as the usage of multiple
vulnerabilities to create critical cyberattacks in the FIRST
CVSS User Guide (www.first.org/cvss/v3.0/user-guide). The
use of multiple vulnerabilities in combination is a common
tactic used by hackers and red teamers to compromise
systems. Vulnerability chaining, however, isn't typically
defined in Vulnerability Management Programs (VMPs), or
used as a technique for prioritization and remediation.
This chapter will explore the use of vulnerability chains
within a cybersecurity program, specifically in the
remediation aspect of VMPs. Examples of chained
vulnerabilities will be provided, including possible
remediation paths for each situation. Each organization will
have its own unique vulnerability considerations, but each
scenario will provide a path forward to implementing
chained vulnerabilities into their cybersecurity programs.

Vulnerability Chaining Attacks

Vulnerability chaining attacks have only recently become
part of the mainstream conversation of vulnerability
management, but they have been leveraged by advanced
persistent threat (APT) groups for many years. Some
documentation links vulnerability chaining directly to APT-
type attacks, including a 2020 article by the Cybersecurity
and Infrastructure Security Agency (CISA) on how APT
groups leverage vulnerability chains against critical
infrastructure and election organizations (read the article
at www.cisa.gov/news-events/cybersecurity-advisories/aa20-283a).

https://t.me/PrMaB2

http://www.first.org/cvss/v3.0/user-guide
https://www.cisa.gov/news-events/cybersecurity-advisories/aa20-283a


A 2023 article by Walter Haydock outlines both direct and
indirect chaining, because vulnerability chaining is more
complex than simply adding multiple vulnerabilities in a
row to conduct an attack (see
https://blog.stackaware.com/p/vulnerability-chaining-part-1-a-

logical). He's one of the few writers and cybersecurity
experts who writes about vulnerability chaining. His
background includes everything from product management
to founding a company for managing AI-related cyber and
compliance risk.
Direct chaining allows an attacker to gain access to a
second or third vulnerability simply by exploiting the first
vulnerability. However, indirect chaining is when an
attacker can gain access to a second vulnerability by using
the initial vulnerability to learn details of the next
vulnerability.
An example of direct chaining provided by Haydock would
be the combination of using CVE-2017-5638, which would
lead an attacker to leverage CVE-2012-2122. CVE-2017-
5638 is a vulnerability in Apache Struts that allows an
initial attack vector, using arbitrary command execution
into the system (https://nvd.nist.gov/vuln/detail/cve-2017-
5638). From there, using CVE-2012-2122
(https://nvd.nist.gov/vuln/detail/CVE-2012-2122) provides
access for a remote attacker to bypass authentication and
gain access to a MySQL database and potentially sensitive
information.
An example of indirect chaining from the same article by
Haydock is the use of CVE-2014-0160 to steal a hashed
password, and subsequently use a pass-the-hash

vulnerability to compromise a system. A pass-the-hash
vulnerability is commonly used to conduct attacks against
Windows systems; a hacker could look for password hashes
on the system for a user and ideally use the hash (or

https://t.me/PrMaB2

https://blog.stackaware.com/p/vulnerability-chaining-part-1-a-logical
https://nvd.nist.gov/vuln/detail/cve-2017-5638
https://nvd.nist.gov/vuln/detail/CVE-2012-2122


password) for the account to elevate privileges to an
administrator account (refer to
www.bleepingcomputer.com/news/security/pass-the-hash-attacks-

and-how-to-prevent-them-in-windows-domains). CVE-2014-0160 is
relatively “famous” in the vulnerability management world
and dubbed the Heartbleed bug

(https://nvd.nist.gov/vuln/detail/cve-2014-0160). This CVE
allows an adversary to gain access to sensitive information
(including private keys). Then that same attacker can use a
pass-the-hash vulnerability in any number of other devices
to gain access to more systems or attempt to elevate
privileges further.
While it might seem unwise to use these older
vulnerabilities in newer infrastructure or technical
environments, many organizations are still holding on to
legacy and outdated software. Research by Finnish
cybersecurity enterprise F-Secure suggests that around 60
percent of vulnerabilities in corporate environments are
from 2016 or earlier (see https://blog-assets.f-secure.com/wp-
content/uploads/2021/03/30120359/attack-landscape-update-h1-

2021.pdf). Based on that data, it's absolutely possible for
attackers to leverage older vulnerabilities to conduct
critical vulnerability chaining attacks.
Each example shows how starting with one vulnerability
can lead to another and then another, until full-system
compromise is conducted. With any vulnerability chain, a
number of options become available to attackers. They can
move from application to application, exploiting flaws along
the way, either gaining access to data or dropping malware
and ransomware. See Figure 7.1.

https://t.me/PrMaB2

https://www.bleepingcomputer.com/news/security/pass-the-hash-attacks-and-how-to-prevent-them-in-windows-domains
https://nvd.nist.gov/vuln/detail/cve-2014-0160
https://blog-assets.f-secure.com/wp-content/uploads/2021/03/30120359/attack-landscape-update-h1-2021.pdf


Figure 7.1: Direct vs. indirect chaining
This chapter explores the technical aspects of vulnerability
chaining as well as the concerns with the language and
terminology used in this space. We provide examples of
vulnerability chaining, along with vendor-identified
vulnerability chains and how organizations can integrate
these concepts into their own vulnerability management
programs (VMPs).

Exploit Chains

The concept of exploit chaining is like vulnerability
chaining, and depending on the literature, it's possible that
each term is interchangeable. According to Michael Hill
(www.csoonline.com/article/571799/exploit-chains-explained-how-
and-why-attackers-target-multiple-vulnerabilities.html), exploit
chains are specifically intended to conduct full-system
compromise by gaining access to root or system
credentials. Hill, the UK editor of CSO Online, has spent
eight years researching and writing about information
security topics. He's also one of the few writers in the
industry who addresses exploit chaining (or vulnerability
chaining) in a technical article. But with both terms (exploit

https://t.me/PrMaB2

https://www.csoonline.com/article/571799/exploit-chains-explained-how-and-why-attackers-target-multiple-vulnerabilities.html


chaining and vulnerability chaining), there are limitations
to the scope of possible vulnerability chains.
Vulnerability or exploit chaining definitions don't currently
define how vulnerability chains may be used once the
system is compromised. Nor do the current definitions
outline the other components outside of the Common
Vulnerabilities and Exposures identifications (CVE IDs) and
identified vulnerabilities for how chaining attacks may
occur.
It is important to note that the term exploit chaining exists
in the cybersecurity industry and, depending on the
definition, it could confuse the independent aspects of
chaining. Exploit chaining assumes that all vulnerabilities
are highly exploitable, whereas vulnerability chaining

defined in the CVSS User Guide
(www.first.org/cvss/v3.0/user-guide) is meant more for the
scoring purposes and analysis of each vulnerability.

Daisy Chains

Another common term for vulnerability chaining is daisy

chaining, or linking vulnerabilities (see
www.tenable.com/blog/daisy-chaining-how-vulnerabilities-can-be-

greater-than-the-sum-of-their-parts). You can find some
vendor-related documents from Tenable on daisy chaining,
in addition to some documentation from Wiz.io
(www.wiz.io/crying-out-cloud/4-customer-data-exposed-for-10-
years) on how daisy chaining can be used in software supply
chain attacks.
The confusion lies in talking about vulnerability chaining
using multiple terms and different definitions. Ideally,
vulnerability chains should be identified using the same
language to provide consistency for security practitioners
to identify and remediate effectively.

https://t.me/PrMaB2

https://www.first.org/cvss/v3.0/user-guide
https://www.tenable.com/blog/daisy-chaining-how-vulnerabilities-can-be-greater-than-the-sum-of-their-parts
https://www.wiz.io/crying-out-cloud/4-customer-data-exposed-for-10-years


Using consistent language will also help vendors and
organizations to identify where vulnerability chains may
exist in their own products. Another benefit of using
consistent terminology is when analysts and engineers
submit new vulnerabilities for the Common Vulnerability
Scoring System (CVSS).

Vendor-Released Chains

In our discussion of vulnerability chains, we will provide
specific vendor examples. Our intention of selecting
specific vulnerabilities is to show that vulnerability
chaining can be used across multiple types of software. The
specific vendors aren't relevant—only that the types of
services and software are showing an industry trend for
vendors to discuss and categorize vulnerability chains.
The CVSS has offered the possibility of scoring multiple
vulnerabilities together using their formula, but it wasn't
until 2021 that vendors started to release multiple
vulnerabilities in combination as identified chains. As this is
relatively new in the vulnerability management space,
VMPs may not account for resolving or prioritizing
remediation for vulnerability chains.
However, numerous vendors and suppliers have started
releasing chained vulnerabilities with multiple CVE IDs and
providing remediation guidance based on those chains.
This positive and growing industry trend helps
practitioners and organizations understand what chained
vulnerabilities are and how to resolve them.

Microsoft Active Directory

One of the first mainstream vulnerability chaining
disclosures was about two CVEs: CVE-2021-42287 and
CVE-2021-42278, each used in combination to conduct an
Active Directory (AD) domain takeover

https://t.me/PrMaB2



(www.fortinet.com/blog/threat-research/cve-2021-42278-cve-2021-
42287-from-user-to-domain-admin-60-seconds). Using both
vulnerabilities allowed an attacker to obtain a Kerberos
ticket to a domain controller (DC). By gaining access to the
DC, the attacker could then elevate privileges to become a
domain administrator.
From there, an attacker could drop malware, reset
passwords, gain access to any other Windows or domain-
joined system, and many other activities. The CVE-2021-
42287 (https://nvd.nist.gov/vuln/detail/CVE-2021-42287) is an
elevation of privilege vulnerability on AD DCs, and CVE-
2021-42278 (https://nvd.nist.gov/vuln/detail/CVE-2021-42278)
is a bypass escalation of privilege vulnerability, allowing an
attacker to impersonate a DC using spoofing techniques.
Using these vulnerabilities in combination provided a direct
path for attackers to gain domain administration access on
any unpatched AD DC. These vulnerabilities were added to
the CISA Known Exploited Vulnerabilities (KEV) Catalog
and part of the Binding Operational Directive (BOD) 22-01
(www.cisa.gov/news-events/directives/bod-22-01-reducing-
significant-risk-known-exploited-vulnerabilities).

VMware vRealize Products

In 2022, three vulnerabilities were identified in VMware
vRealize products that were initially identified as individual
vulnerabilities. The first vulnerability, CVE-2022-31706, is a
directory traversal vulnerability, and the second, CVE-
2022-31704, is a broken access control vulnerability.
According to an article by Tara Seals, the vRealize Log
Insight platform provides log retention and management
for infrastructure and other components in a technical
environment (see www.darkreading.com/application-
security/critical-vmware-rce-vulnerabilities-targeted-public-

exploit-code). Seals is the Managing Editor for news at Dark

https://t.me/PrMaB2

https://www.fortinet.com/blog/threat-research/cve-2021-42278-cve-2021-42287-from-user-to-domain-admin-60-seconds
https://nvd.nist.gov/vuln/detail/CVE-2021-42287
https://nvd.nist.gov/vuln/detail/CVE-2021-42278
https://www.cisa.gov/news-events/directives/bod-22-01-reducing-significant-risk-known-exploited-vulnerabilities
https://www.darkreading.com/application-security/critical-vmware-rce-vulnerabilities-targeted-public-exploit-code


Reading, an important platform for articles on applications
security, vulnerability management, and many other
cybersecurity-related topics.
Because this is a comprehensive logging tool, vRealize Log
Insight stores data from sensitive systems and potentially
important corporate data. The third flaw, which was
identified as CVE-2022-31710, could allow unauthenticated
access to an adversary by triggering the deserialization of
untrusted information.
Researchers at Horizon3.ai were able to exploit code using
these three vulnerabilities in combination, and they
provided the information publicly (www.horizon3.ai/vmware-
vrealize-cve-2022-31706-iocs). This vulnerability chain would
have to be conducted internally on a network but it is
possible for exploitation to occur by an insider or once an
external party has internal access.

iPhone Exploit Chain

In late September 2023, researchers at Google's Threat
Analysis Group (TAG) found an exploit chain in iOS devices
(https://blog.google/threat-analysis-group/0-days-exploited-by-
commercial-surveillance-vendor-in-egypt). Bugs were found
and patched by Apple, and they were identified as CVE-
2023-41991, CVE-2023-41992, and CVE-2023-41993. The
attack was conducted using an on-path method and created
a 0-click vulnerability chain.
The attackers were able to redirect users to a website and
redirect a targeted user to their exploit server. Both the
vulnerabilities and the on-path delivery method didn't
require any user interaction to open documents or answer
phone calls. CVE-2023-41993 was a remote code execution
(RCE) in the Safari browser, CVE-2023-41991 was a bypass
vulnerability, and CVE-2023-41992 was a local privilege
escalation (LPE) in the kernel.

https://t.me/PrMaB2

https://www.horizon3.ai/vmware-vrealize-cve-2022-31706-iocs
https://blog.google/threat-analysis-group/0-days-exploited-by-commercial-surveillance-vendor-in-egypt


This exploit or vulnerability chain was leveraged by
attackers to install their version of spyware to look at all
the applications, usernames and passwords, and any other
personal data on their mobile devices. TAG also noted that
this vulnerability chain was used in an attempt to attack
Android devices as well. This highlights another example of
modern vulnerability chaining and how this attack method
can be used to gain access to devices and conduct full-
system compromise.

Vulnerability Chaining and Scoring

We covered vulnerability scoring in depth in Chapter 5,
“Vulnerability Scoring and Software Identification,” but to
zoom in on chained vulnerabilities, we will briefly explore
the associated CVSS and EPSS scoring systems. Each
scoring system is used for different purposes, but they are
both important in understanding how chained attacks can
be leveraged against an organization. The majority of the
information and guidance on scoring chained
vulnerabilities is in industry whitepapers and blogs, but
solid scoring guidance is available from organizations like
the Forum of Incident Response and Security Teams
(FIRST).
There's still work to do to mature and grow the language,
scoring, and ultimately the guidance around vulnerability
chaining. But both scoring systems can aid in that endeavor
by leveraging the CVSS as a starting point for possible
vulnerability chains, and then focusing on prioritization
activities further, using EPSS or CISA KEV. The following
sections examine where vulnerability chaining scoring and
analysis is addressed in cybersecurity guidance.

Common Vulnerability Scoring System

https://t.me/PrMaB2



The FIRST organization had the first vulnerability chaining
guidance available in the Common Vulnerability Scoring
System (CVSS) User Guide (www.first.org/cvss/user-guide),
related to scoring and submitting vulnerabilities as part of
a chained attack. This user guide provides the most
comprehensive and standardized format for scoring and
understanding vulnerability chains. The CVSS states that
it's up to the analyst who submits the vulnerabilities to list
each distinct vulnerability and their score, along with the
chained vulnerability score.
In the CVSS User Guide, analysts are also encouraged to
include other types of vulnerabilities that can create a
vulnerability chain within their own submission. An
example provided in the guide includes how a Structured
Query Language (SQL) injection could be the initial vector
to then conduct a cross-site scripting (XSS) attack. This
scoring method has been used for multiple vulnerabilities
since then, as discussed in the Microsoft AD and VMware
vulnerability chains presented previously.
Based on the CVSS User Guide, chained vulnerabilities are
scored using their analysts calculation between
Vulnerability A and Vulnerability B. The guidance only
accounts for a combination of two vulnerabilities, which
become Chain C in the formula for scoring. But this is a
great start; it provides analysts with the ability to score and
detail vulnerability chains as well as vulnerabilities within
their own products.

EPSS

As of this writing, the FIRST EPSS model
(www.first.org/epss/model) is still relatively new in the
industry, but it shows promise to help organizations
prioritize vulnerabilities and provide another opportunity to
understand risk. The EPSS noted that there are far too

https://t.me/PrMaB2

http://www.first.org/cvss/user-guide
http://www.first.org/epss/model


many vulnerabilities for an organization to remediate them
all as soon as they are released. Based on prior research,
the EPSS also stated that organizations are only able to
remediate up to 20 percent of vulnerabilities per month. As
discussed more in depth in Chapter 5, the EPSS uses
multiple sources to determine how exploitable a
vulnerability can be.
But currently the EPSS is still growing and evolving, and it
is limited in the amount of information available on
vulnerability chaining. In the EPSS User Guide, the team
noted that future research would be needed to determine
whether specific vulnerabilities could be used in a chained
attack. As the EPSS continues to mature, there might be
more specific data and solutions discovered on vulnerability
chaining and scoring.
The EPSS User Guide also defines the term co-exploitation,
which is when multiple vulnerabilities can be exploited at
the same time. The definition includes a note about the
possibility of vulnerability chaining, or using multiple
exploits in combination to compromise a system. Although
there's no official guidance as of this writing for how EPSS
aligns with vulnerability chaining, there's enough to show
that chained vulnerabilities are possible based on their
findings.

Gaps in the Industry

One of the first challenges of vulnerability chaining is the
lack of updated and consistent guidance on vulnerability
chaining remediation. Some technical blogs, academic
research papers, and guidance from the CVSS exist, but
limited information can be found at an industry level (see
Figure 7.2). Thus, it's very important to explore this topic in
depth, regarding building a mature and comprehensive
VMP.

https://t.me/PrMaB2



Another gap identified in the industry is the missing
requirement for vendors and suppliers to identify
vulnerability chains and score them when submitting for
CVE IDs. Without this requirement, vulnerability chains are
still incredibly difficult to identify and considered unknown
risks. In general, there's a lack of knowledge and education
about vulnerability chaining in current industry
certifications and training on vulnerability management.
The SANS Institute has a course on vulnerability
management (www.sans.org/cyber-security-courses/building-
leading-vulnerability-management-programs), and several vendor
certifications are offered in products like Tenable and
Qualys, but limited material is available for organizations
and practitioners using general concepts.
Specifically, no training or certifications are available to
network defenders on vulnerability chaining. While these
concepts are taught to red teamers and used in
certifications like Offensive Security Certified Professional
(OSCP), many network defenders only have options to
receive training from vendors that may (or may not)
include vulnerability chaining information.
Without specific guidance or training on vulnerability
chaining, organizations will continue to struggle to identify
and remediate chains. There will also still be limited
information from vendors on chains, without the
requirements to annotate and score those chains in their
CVE analysis. With more vendors and security researchers
discussing vulnerability chaining, it's simply a matter of
time before more guidance becomes available in the forms
of industry scoring, research, and widespread industry
recognition.

https://t.me/PrMaB2

http://www.sans.org/cyber-security-courses/building-leading-vulnerability-management-programs


https://t.me/PrMaB2



Figure 7.2: Diagram of gaps

Vulnerability Chaining Blindness

Vulnerability chaining blindness (VCB) is a term coined by
one of the authors, Dr. Nikki Robinson. This language was
developed based on academic and technical research using
established language from law enforcement and combining
the concept of vulnerability chaining. This term was
created to help define the phenomenon of how
vulnerabilities are chained together and the difficulty in
addressing multiple vulnerabilities in remediation
activities.

Terminology

This new terminology was developed by initially using the
term linkage blindness, coined by S. A. Egger in the early
1980s (www.ojp.gov/ncjrs/virtual-library/abstracts/working-
definition-serial-murder-and-reduction-linkage-blindness).
Egger was the original creator and publisher of the term
linkage blindness, which helped to change the way that law
enforcement agencies work together and share
information. This term was invented to describe the
inability of different agencies or departments to share
information that might lead to an arrest or finding a
specific criminal. For research purposes, the term was used
specifically based on the inability to link or share
information with different agencies that led to the inability
to solve crimes and ultimately resolve cases.
The reason this term was used as the basis for VCB was the
inability to link disparate information. Without the
combination or sharing of this information (see Figure 7.3),
it would be difficult to find the root cause or to identify
possible crimes. As with vulnerability management, without

https://t.me/PrMaB2

http://www.ojp.gov/ncjrs/virtual-library/abstracts/working-definition-serial-murder-and-reduction-linkage-blindness


the proper understanding of how vulnerabilities can be
used in combination, it could lead organizations to try to
remediate every single vulnerability.

Figure 7.3: Combination of terms to create VCB
As stated previously, it's impossible to remediate every
vulnerability across an enterprise. Some cannot be fixed
because of functionality or operability concerns, whereas
others might be left unresolved due to the lack of dedicated
time and resources to remediate them. To help with the
decision-making on how vulnerabilities should be
prioritized, understanding vulnerability chaining can be a
major factor in reducing risk and the time spent on
remediation.
The combination of vulnerability chaining and linkage
blindness to create the term VCB is the inability to link
multiple vulnerabilities in combination, which could lead to
difficulties in prioritizing and remediating vulnerabilities.
To solve this, organizations can use this language and
definition within their VMPs to help identify, define, and
ultimately create a process to remediate chained
vulnerabilities.

https://t.me/PrMaB2



VCB has major implications for organizations as well as the
cybersecurity industry. This terminology defines a new
phenomenon and allows practitioners to become more
aware of this topic. Once more network defenders, IT
professionals, and developers are aware of VCB, it can start
to become part of the vulnerability remediation
methodology and processes.

Usage in Vulnerability Management Programs

How can VMPs leverage the use of VCB and, to a larger
extent, vulnerability chaining concepts in their VMPs?
There are several ways that teams and organizations can
build chaining into their security policies, processes, and
even tooling. Each recommendation should be taken and
reviewed in order and used to mature and grow the VMP
over time (see Figure 7.4).
To begin, an organization would need to evaluate how
mature their VMP really is, starting with a real examination
into the backlog of vulnerabilities and asking their team
members what is blocking or stopping vulnerability
remediation activities. They should inquire about not only
just how many vulnerabilities are outstanding, but also
what the real barriers are in remediating them. Adding
VCB too early into a VMP could be potentially limiting for
an organization and not address the root cause of the
vulnerability.
The second step in incorporating VCB into a VMP would be
for an organization to evaluate where it would best fit into
their organization. For some organizations, a red team
might be served more effectively with incorporating VCB
into their feedback on penetration test reports, providing
any data back to their blue teams (or network defense
teams). Penetration test reports are typically written by the
red team after a penetration test has been conducted.

https://t.me/PrMaB2



These tests include attempting to infiltrate the network by
exploiting vulnerabilities, compromising credentials, or
otherwise trying to gain unauthorized access to systems.
The final report is essential in helping an organization to
understand what risks may exist in their networks and then
work on a remediation plan.

Figure 7.4: Solutions for VCB
However, other groups might elect to incorporate VCB into
their blue teams to help streamline and organize
remediation. Finally, some organizations with smaller
cybersecurity teams might choose to incorporate this
concept into their DevSecOps processes to identify and

https://t.me/PrMaB2



prioritize vulnerability chaining in their development
environments.
A third step organizations can take to build vulnerability
chaining is in their user awareness training. Typically, user
awareness training covers using multifactor authentication
(MFA), phishing examples, and the organization's security
policies.
However, even users can benefit from understanding what
attackers do and how they leverage multiple vulnerabilities
in combination when conducting attacks. Not every user
must understand chaining, but as with phishing tests, the
more knowledge that is available to the user population,
the more you can spread knowledge and lower risk.
A final component to incorporating VCB into any
organization would be the inclusion of vulnerability
chaining concepts into the organization's security policy.
Each security policy will be unique to the organization; for
example, smaller organizations may not be ready to
leverage these concepts as they build their infrastructure.
But larger organizations with a more mature VMP will want
to build vulnerability chaining identification and
remediation into their security policies and processes.
Without understanding vulnerability chaining,
organizations will be stuck with massive backlogs of
vulnerabilities and limited resources to prioritize
remediation.

The Human Aspect of Vulnerability

Chaining

Vulnerability chaining is defined by FIRST CVSS as the
combination of multiple vulnerabilities to conduct a single
attack. Because this is the industry standard for

https://t.me/PrMaB2



vulnerability scoring as of this writing, this definition is
used as the basis for this work.
However, this definition does not include how humans are a
component as an initial vector to a vulnerability chaining
attack. This section includes different examples of how
users can be a component of vulnerability chaining,
including phishing, business email compromise (BEC), and
other social engineering tactics.

NOTE  We do not intend to pass blame to users, but
simply highlight the limitations of the current definitions
of vulnerability chaining. Understanding where
vulnerability chaining starts (i.e., outside of CVE IDs and
technical vulnerabilities) will allow security teams and
organizations to begin considering the entire path of
possible exploitation.

Phishing

Phishing, a common attack technique of sending emails to
users to ask them to click a link or provide sensitive data
over email, is an easy example of how vulnerability
chaining can be conducted with a single click. Whether it is
via email phishing, targeted spear-phishing, or vishing via a
phone call, phishing is still the number one way that
attackers gain access to systems. According to CISA's Stop
Ransomware campaign, over 90 percent of attacks start
with a phishing attack (see
www.cisa.gov/stopransomware/general-information).
Each phishing method can be used to convince a user to
click a link to malicious software or a server, to reset their
password and allow the attacker access to systems, or to
download malware. In any of these cases, the user is the
initial link in the chain that can lead to exploiting
vulnerabilities.

https://t.me/PrMaB2

http://www.cisa.gov/stopransomware/general-information


One example would be where a user is sent a phishing
email, asking them to reset their password for their bank or
favorite shopping site. This website captures the
credentials they enter, allowing the malicious actor to steal
the user's credentials and log in to their personal or
business accounts. Once a malicious actor can leverage
those credentials in an attack, they can then conduct a
privilege escalation or use lateral movement by gaining
access to other systems.
Once the malicious actor can gain entrance to these
systems, the possibilities for vulnerability exploitation from
there are endless. They could leverage any vulnerabilities
left open either on the system itself or from web
applications that the user has access to in order to gain
access to databases or directory services. The initial attack
vector would be the user's interaction with a malicious
website, leading potentially to a full-system compromise.

Business Email Compromise

A more targeted and sophisticated type of attack, the
business email compromise (BEC), begins in a similar
manner, but the vulnerability chains are exploited quite
differently (see www.fbi.gov/how-we-can-help-you/safety-
resources/scams-and-safety/common-scams-and-crimes/business-

email-compromise). BEC attacks are typically conducted by
spoofing (i.e., when an actor sends an email with a fake
sender address to an executive's email address) or by
compromising their account. Once the bad actor has access
to the email account, they can sit and wait for three to six
months, watching how the individual sends emails.
During that time, they'll study their language, the
frequency of emails sent, and ultimately how they conduct
wire transfers or send money within the organization. Their
intention is to encourage a financial executive or officer to

https://t.me/PrMaB2

http://www.fbi.gov/how-we-can-help-you/safety-resources/scams-and-safety/common-scams-and-crimes/business-email-compromise


approve a wire transfer to a foreign bank account. The bad
actor who compromised the email account simply sits idly
by, monitoring email traffic to understand the executive's
behavior.
Then a different type of vulnerability chaining attack
occurs, assuming that the email account is already
compromised versus a spoofed account. Once the email
account is compromised, a fake email is then sent
requesting a wire transfer to a foreign or offshore bank
account outside of the organization. The email is sent with
some urgency and mimics the language and cadence of the
executive's emails.
If successful, the bad actor might stop there. But if
unsuccessful, they still have gained access to an executive's
email account and might conduct privilege escalation or
exploit other vulnerabilities to gain access to sensitive
information. However, in the event of a spoofed account
requesting wire transfers, an account or system may never
be compromised. The actor may simply be hoping that they
will be able to catch someone off guard.

Social Engineering

There are many other forms of social engineering that
could be leveraged to begin a chained vulnerability attack.
Vishing is when a bad actor calls an individual, trying to
gain access to data. Smishing is when a bad actor uses
texting to get a user to click a link or send data back to
them. (See www.cisecurity.org/insights/newsletter/vishing-and-
smishing-what-you-need-to-know). In either scenario, the
intention is to compromise systems, to gain access to a
user's account, or to encourage a user to download
malware or connect them back to their own servers.
An example of vishing is the MGM breach
(www.nbcnews.com/tech/security/mgm-las-vegas-hackers-scattered-

https://t.me/PrMaB2

https://www.cisecurity.org/insights/newsletter/vishing-and-smishing-what-you-need-to-know
https://www.nbcnews.com/tech/security/mgm-las-vegas-hackers-scattered-spider-rcna105238


spider-rcna105238), in which an actor claimed to call a
helpdesk technician and ask for a password reset. This
cyberattack is still relatively new and more information
continues to come out about possible entry points for
attackers. But this example highlights how attackers may
leverage phone calls to access user accounts and gain
access to systems, which would be the beginning of a
chained vulnerability attack.
Both the Federal Communications Commission (FCC) and
Internal Revenue Service (IRS) noted in 2022 that smishing
and vishing attacks were trending upward (see
www.bleepingcomputer.com/news/security/us-govt-warns-americans-

of-escalating-sms-phishing-attacks and
www.bleepingcomputer.com/news/security/irs-warns-americans-of-

massive-rise-in-sms-phishing-attacks). Whether it's phishing,
vishing, or smishing, users are an initial attack vector for
bad actors to conduct several types of chained vulnerability
exploits.

Integration into VMPs

Now that the foundation has been laid for vulnerability
chaining, including existing guidance and research,
examples of exploits, and usage in the industry, we will
provide several options for how organizations can build this
information into their own cybersecurity programs.
Vulnerability chaining concepts and remediation can be
built into organizations from the leadership level down to
practitioners and users (see Figure 7.5).

https://t.me/PrMaB2

https://www.nbcnews.com/tech/security/mgm-las-vegas-hackers-scattered-spider-rcna105238
http://www.bleepingcomputer.com/news/security/us-govt-warns-americans-of-escalating-sms-phishing-attacks
http://www.bleepingcomputer.com/news/security/irs-warns-americans-of-massive-rise-in-sms-phishing-attacks


Figure 7.5: Integration into a VMP diagram
As mentioned earlier, incorporating vulnerability chaining
into security awareness programs can help users
understand their own role in these attack types. And
because vulnerability chaining attacks continue to be used
by APT groups (www.cisa.gov/news-events/cybersecurity-
advisories/aa20-283a), the more awareness and prevention is
built into VMPs, the better, as organizations will be
prepared to protect themselves against highly sophisticated
attacks.

Leadership Principles

At the executive leadership level, a basic understanding of
vulnerability chaining is required. Because executive
leadership would be the determining factor in adding
language to an organization's cybersecurity policies, it is
essential that they understand the impact of these attack
types. Vulnerability chaining attacks can be used to
compromise all systems, drop ransomware, or steal
corporate data to sell on the dark web.
From the mid- to senior-level leadership perspective,
vulnerability chaining is a concept to understand and in
which to provide training for technical professionals. If

https://t.me/PrMaB2

http://www.cisa.gov/news-events/cybersecurity-advisories/aa20-283a


executives did approve some language to incorporate into
the company's cybersecurity policy, it would mean a
reinforcement of these policies throughout the
organization. It could also mean some additional training in
basic chained attacks and exploitation for their incident
response (IR) leadership if they aren't already aware.
Leaders across the organization need a basic
understanding of how exploitation can occur with chained
attacks. Our recommendation is to have separate
cybersecurity awareness training for executive leadership
(versus practitioners) and management. This training
ensures that there's awareness, but there isn't necessarily
action required on their part unless they're handling an
incident or preparing budgets for security programs and
tools.

Security Practitioner Integration

Many security practitioners may already be aware of the
vulnerability chaining attacks leveraged against users and
systems. However, this concept might be more prevalent
within red teams, penetration testers, or ethical hacker
circles. It is important for each organization to gauge their
practitioners’ general awareness of vulnerability chaining
before determining the best course of action or where it
best fits in their cybersecurity policies and processes.
From the IR team's perspective, it's important to
understand how chained vulnerabilities work in
combination to help lead forensics investigations. While
many IR specialists may already be aware, they may not
use the same terminology or have processes for handling
these chained attacks. Building these concepts into an IR
method and process encourages the analysts and
responders to identify possible chains or how each exploit
was leveraged to gain access to multiple systems.

https://t.me/PrMaB2



From a vulnerability analyst perspective, anyone who
works in remediation should be aware of vulnerability
chaining and how these chains can be broken. This
knowledge will help teams collaborate with their IT and
developer partners to resolve their highest-priority
vulnerabilities. It's also essential for anyone responsible
and accountable for vulnerability remediation to be skilled
in and understand the technical components of
vulnerability chains.
For security assessors and auditors, this may not be a
concept built into their training or certification programs or
a part of their daily routines. Incorporating vulnerability
chaining as a potential security control, or something to
evaluate, could be beneficial for all parties. While not an
official security control as part of the NIST 800-53 series, it
is another area for assessors to review and determine if
there are any concerns.

IT and Development Usage

For system owners—who could be IT professionals owning
a cloud infrastructure or running operations for
development environments—vulnerability chaining doesn't
need to be understood in depth. The most crucial detail is
that vulnerability chains can be broken through
remediation activities. Leaving older or end-of-life (EOL)
software in an environment increases the risk of chained
vulnerability attacks. Through collaboration with their own
security engineering teams, system owners could identify
and potentially break those vulnerability chains.
For developers, it's essential that they understand how
leaving a SQL injection, cleartext passwords, or XSS
vulnerability could be the entry point for a chained
vulnerability attack. Developers should be learning about
vulnerability chaining as part of a DevSecOps program, and

https://t.me/PrMaB2



it should be built into their dynamic application security
testing (DAST) and static application security testing
(SAST) processes.
For any other technical practitioners who manage web
applications or any network or platform engineers,
vulnerability chaining should be built into the security
review and vulnerability remediation activities, just as with
any other team. Each group should be aware of and
understand the technical implications for leaving highly
exploitable vulnerabilities unremediated.

Summary

Vulnerability chaining continues to be a popular attack type
for threat actors, but it's not as prevalent from the
vulnerability management or remediation side. From a blue
team perspective, there's still more to be done to integrate
these concepts into daily routines and to assist in the
prioritization of vulnerability remediation activities. This
chapter introduced examples of vulnerability chains,
guidance, and usage in the industry as well as
recommendations for leadership and practitioners to
incorporate into their own VMPs.

https://t.me/PrMaB2



8 

Vulnerability Threat Intelligence

Threat intelligence is a domain within cybersecurity where
teams leverage open source information to determine and
prioritize threats to an organization. While commonly a
separate practice in larger cybersecurity teams, smaller
teams may leverage the same tactics to determine if there
are known bad domains, IP addresses, types of files and file
hashes, or specific vulnerabilities that are being exploited
in the wild. All this technical information can be used to
create alerts, detect possible ongoing attacks, or block
unwanted network scanning from bad actors. Threat
intelligence is also known as cyber threat intelligence (CTI)
and is used by multiple organizations, one example being
the Cybersecurity and Infrastructure Security Agency
(CISA) (www.cisa.gov/resources-tools/services/cyber-threat-
intelligence).

Why Is Threat Intel Important to

VMPs?

Using this intelligence, organizations can create alerts or
focus remediation activities on the given information. For
example, if a threat actor is found to be using a specific
type of ransomware or a list of file types and specific
hashes, techniques will be found and distributed among
proper threat intelligence communication channels to
combat them. A threat intel team will learn that this
specific threat actor is using this attack type and may
choose to increase detection and tailor alerting for specific
IP addresses or domains. The SANS Whitepaper on Threat
Intelligence is an excellent resource to use to get started

https://t.me/PrMaB2

http://www.cisa.gov/resources-tools/services/cyber-threat-intelligence


when building a threat intelligence practice or team.
(https://nsfocusglobal.com/wp-
content/uploads/2017/01/SANS_Whitepaper_Threat_Intelligence:_Wh

at_It_Is__and_How_to_Use_It_Effectively.pdf).
There might be a separate threat intelligence team, or the
same tactics used within the cybersecurity teams
(potentially the Security Operations Center [SOC] or
CSIRT). These tactics can also be leveraged within
vulnerability management programs (VMPs). Information
from current targeted cyberattacks can be another tool to
help teams hone in on the most critical vulnerabilities to
mitigate or remediate.
Without leveraging threat intelligence, vulnerability teams
will be solely leveraging Common Vulnerability Scoring
System (CVSS) Base scores and possibly some system
context (i.e., web applications or external-facing assets).
With the known backlogs of vulnerabilities, any tools and
techniques that focus remediation and apply mitigating
controls will help reduce overhead on vulnerability
management teams.
As with the other chapters in this book, adding threat
intelligence might not be the first step in building a
comprehensive VMP. However, threat intelligence
techniques can be added once a solid asset management
and vulnerability scoring and prioritization program is
already in place.

Where to Start

First, it's important to understand the various types of
threat intelligence that are applicable to a VMP: technical,
tactical, strategic, and operational. Each type of threat
intelligence can be used at different places within the VMP.

https://t.me/PrMaB2

https://nsfocusglobal.com/wp-content/uploads/2017/01/SANS_Whitepaper_Threat_Intelligence:_What_It_Is__and_How_to_Use_It_Effectively.pdf


Technical Threat Intelligence

Technical threat intelligence is the specific indicators of
compromise (IOCs) that teams can use to identify threat
actors (https://socradar.io/what-is-technical-cyber-threat-
intelligence-and-how-to-use-it). An IOC is information gained
from an attack that has already occurred—for instance,
learning that a specific list of domains and IPs are related
to an advanced persistent threat (APT) group. The IOC may
have been discovered either internally from an attack or
from an attack that occurred at another organization and
was shared through threat intelligence communication
channels. This type of threat intelligence focuses on the
tooling and techniques around gathering intelligence and
technical resources. Resources and technical components
include attack vectors, exploitable vulnerabilities, log
sources, and domain information.
These technical data and resources may be available from
internal vulnerability scanners, endpoint detection and
response (EDR) monitoring, and network mapping tools.
The biggest benefit of the technical threat intel components
is that this data type is common between teams and is easy
to share and utilize quickly. Chances are, this data is
already available in the environment, and when combined
with outside intel, it will be the beginning of leveraging
tactical, strategic, and operational intel techniques.

Tactical Threat Intelligence

Tactical threat intelligence may be the most widely used
and consistent form of threat intel that would be relevant to
a VMP. This threat intel method gives organizations a peek
into the type of potential attack vectors or methods of
compromise that a bad actor might use. This intelligence
type is most beneficial for SOCs, IT managers and
leadership, as well as network engineering teams. This

https://t.me/PrMaB2

https://socradar.io/what-is-technical-cyber-threat-intelligence-and-how-to-use-it


article from CrowdStrike provides a good source on tactical
threat intelligence (www.crowdstrike.com/cybersecurity-
101/threat-intelligence).
A few examples of the types of tactical threat intelligence
that might be used in an organization are:

Known bad IP addresses, domains, and URLs
Trending signatures and types of malware and/or
ransomware
Types of network scanning patterns or techniques
Phishing, vishing, or smishing attacks and trends

There are several methods that threat intel teams and
vulnerability management analysts can use to gather this
information. For example, if they have a separate network,
they could access the dark web to monitor and track
related signatures or patterns, as well as reports for
associated known APTs and other groups. Teams could also
leverage malware samples and human intelligence, or the
gathering of information from individuals based on their
experience. Organizations will commonly leverage a variety
of data sources, including using their internal tooling, as
well as industry groups, commercial products and vendors,
as well as other third-party vendors and consultants.
But tactical threat intelligence can also be integrated into
vulnerability management groups by using this information
to test their own tooling and processes. This would align
more with bringing red and blue teams together to create a
purple team or a purple team process. They could also
leverage this intel to fine-tune security tooling and alerts
and find unknown gaps in their security processes and
procedures. Tactical threat intelligence is the true
alignment of people, process, and technology.

https://t.me/PrMaB2

http://www.crowdstrike.com/cybersecurity-101/threat-intelligence


Strategic Threat Intelligence

In comparison to tactical, strategic threat intelligence is
more about high-level information for senior leaders versus
the technical details of specific Common Vulnerabilities and
Exposures (CVEs) or exploited vulnerabilities. This
information is available to help make decisions and may not
be used as a main source of intelligence. The leaders from
the threat intel and VMP teams should work closely
together to identify strategic intel and bring it forward to
other senior and executive leadership in the organization.
The same article from CrowdStrike, mentioned that,
provides an overview of threat intelligence types, including
tactical and strategic.
Examples of strategic threat intelligence include:

Policies and regulations (national and international)
Media from regional, national, and international
sources
Information and data collected from social media
(verified and unverified sources)

This information can be integrated within VMPs by helping
to validate a specific remediation path for vulnerabilities.
For example, suppose a hospital received word that an APT
group was leveraging a specific type of malware to disrupt
healthcare organizations. The senior hospital leaders might
be aware of campaigns across the country to disrupt
services and would encourage the VMP to identify any
relevant vulnerabilities and report on any vulnerable
systems. The VMP team could work closely with the threat
intelligence team to determine the techniques, tactics, and
procedures (TTPs) and any evolving information around
vulnerabilities used by the APT group.

https://t.me/PrMaB2



Operational Threat Intelligence

Operational threat intelligence focuses on the information
that security teams use around a threat actor's motives,
methods, and techniques, and how they perform attacks.
Most of this data is not open source and may be difficult to
find, and would require the skillset and capabilities of
threat intelligence analysts. To gain more insight into
operational threat intelligence, the article from
CrowdStrike provides a high level overview of all threat
intelligence types.
A few sources of operational threat intelligence are listed
below:

Social media or profiles on bad actors or APT groups
Forums and chat sites (either that are open source or
located on the dark web)

This type of information is best used by the threat
intelligence team and parsed for the vulnerability
management teams. The vulnerability management
analysts and engineers may not need deep information on
the specific motivations and behaviors of an APT group or
individual, but they would benefit from understanding how
they may conduct an attack. This information helps the
analysts and engineers because they might be able to
detect attacks simply by the patterns of behavior versus
looking for specific files or intellectual properties. An
example would be if it's known that a bad actor uses a
specific email campaign to entice a user to enter their
credentials into a website for credential theft. They would
be able to look for specific email subject lines or types
based on that behavior type.
For example, if an APT group prefers contacting users
through social media to gather business information or

https://t.me/PrMaB2



attempt credential theft, the threat intel team could help
the detection engineering team to create rules and alerts
for that behavior type. This intel type would also benefit the
SOC and incident response teams by helping them
understand how a bad actor accessed systems and
hopefully prevent future attacks using those methods. This
intel would also benefit the VMP by offering prioritization
for favorite methods by different groups, including specific
vulnerability remediation or attack methods.

Threat Hunting

Using any of the discussed threat intelligence methods
(technical, tactical, strategic, or operational), the threat
intel and vulnerability management teams can conduct
threat hunting activities together or through a cyclical
process (www.splunk.com/en_us/blog/learn/threat-hunting.html).
Threat hunting can be broken down into a methodical
approach:

1. Develop and test hypotheses based on intelligence and
attackers' TTPs.

2. Investigate threats or alerts based on known IOCs or
indicators of attacks (IOAs). IOCs focus on identifying
incidents and evidence after a compromise, whereas
IOAs focus on detecting suspicious or anomalous
behavior during an ongoing attack.

3. Leverage analytics and data science techniques to sift
through mountains of data.

4. Fine-tune alerts and security tooling to detect novel
attack methods and techniques.

A threat hunting team would then use this information to
conduct a hunt:

https://t.me/PrMaB2

http://www.splunk.com/en_us/blog/learn/threat-hunting.html


1. Trigger: Find a system or location within the
environment that might be associated with anomalous
behavior.

2. Investigation: Leverage tooling available to the team
to determine if there are additional alerts or
components to investigate.

3. Resolution: After finalizing the investigation, gather
the information, eliminate any missing security
controls, and remediate vulnerabilities.

4. Incident Response: Based on the findings, incidents
may be reported and investigated, information would
be disseminated to the proper teams for resolution, and
alerts would be tuned.

Threat hunting is a great way to use threat intelligence
information and support the activities of a VMP. With
actionable information, vulnerability management teams
can use threat hunting reports and findings to focus
remediation efforts. It cannot be stated enough—the more
intel and data that teams are able to utilize will focus
remediation efforts, save on administrative overhead,
reduce the burden of manual patching, and ultimately
improve the vulnerability management process over time.

Integrating Threat Intel into VMPs

Each of the various threat intelligence categories we've
covered can be used to create a more mature and effective
VMP. Solely using vulnerability scoring might create a
backlog of vulnerabilities that could be difficult to
completely remediate. Using the methods discussed,
organizations can systematically focus on the
vulnerabilities and configurations that are most important.

https://t.me/PrMaB2



First, it is important to define the scope of what threat
intelligence will mean to each individual group and
organization. Each organization must have its own method
and data that's important to collect—but not everything will
be actionable. There's an important balance to strike
around what data is important and what isn't. Not all data
is consumable or even relevant to a business, sector, or
organization. Spend the time up front to determine which
sets of intelligence will help you hone your vulnerability
remediation efforts.
Second, determine what skillset and training the teams
currently have. Evaluate if the skill training can be held in-
house, or if your teams will need additional training,
consulting, or the hiring of outside personnel. There are a
variety of open source, inexpensive, and expensive options
available in the threat intelligence space. For example,
Martin Lee's book Cyber Threat Intelligence (Wiley, 2023)
is a great resource for teams to use to get started on basic
threat intel processes and techniques.
Finally, integrate the technology and processes with people
on both the threat intelligence and vulnerability
management teams. Whether an organization ultimately
decides to keep those teams separate, or leverage threat
intel techniques within their vulnerability management
team, the processes and technology are going to be just as
important to define. Each team will most likely use a
combination of open source and paid-for tools (depending
on their budget), and those processes will be unique per
organization, industry, and ultimately, team dynamics.

People

The first task within the people portion of leveraging threat
intelligence is to ensure that the proper team members are
in place, and that they have the proper training and

https://t.me/PrMaB2



understanding of how these separate tasks will align within
the VMP. For example, if there are larger threat
intelligence and VMP teams running independently, a plan
needs to be coordinated for how frequently data is shared,
what format is used, and ultimately who is responsible for
actioning on the intel.
Your people will help to define the scope of what
information types are important, how that information will
be used, and ultimately who will be responsible for
integrating this information into the VMP. For example, if
there are separate teams for threat intelligence and
vulnerability management priorities, then it would be
essential to determine who owns which process, and from
there, who will act on the intelligence.
Determine which teams should be involved and how
communication will flow between those teams. In larger
teams, data flow will potentially be confusing without a
proper communication process, and each group might miss
critical data points.
The best format is to integrate these teams and create a
cohesive information flow diagram, as shown in the next
section. The information should move fluidly through the
teams, and each data type should be handled separately.
For example, any intel for vulnerabilities that are being
exploited in the wild should be communicated as quickly as
possible, whereas other less critical intel may be shared
during a daily or weekly digest (depending on severity and
relevance to the organization).
Once the team and data flows have been organized and
structured, the processes and documentation should follow.

Process

https://t.me/PrMaB2



The threat intel and vulnerability management teams
should collaborate to build process documentation for how
the data flows will work, what types of data structures are
important to the business, and even timelines for actions on
the intel.
For example, if there's information about a known exploited
vulnerability in a different sector (e.g., healthcare versus
technology), this intelligence might be put into a daily or
weekly briefing. Because the intelligence received is from a
different sector, it may not indicate a direct threat to the
organization. However, that information about the
exploitation might be relevant to their systems if they have
the same vulnerabilities on external-facing systems. It
would still be beneficial to evaluate those vulnerability
details and remediation information, but it should be
prioritized around other vulnerabilities or exploits that are
more pertinent to their business.
Processes and associated workflows like the following
would be built based off the scenario previously discussed:

1. Take an inventory of, and define, your specific usage of
intel and vulnerability management tooling.

2. Create your architecture diagrams for tooling
integration.

3. Designate a timeline for your intelligence gathering
and reporting requirements.

4. Document an understanding between teams covering
their areas of responsibility.

5. Write your organization's standard operating
procedures (SOPs) for how intelligence is gathered and
from what sources.

https://t.me/PrMaB2



A final recommendation would be to process or document a
workflow to indicate how these processes align and your
teams’ associated roles and responsibilities within each
process. Documentation, especially when integrating teams
or different processes, should be updated as appropriate
and follow organizational guidelines. As stated in previous
chapters, it's crucial that this documentation be improved
over time. Threat intelligence is incredibly dynamic and
evolving all the time—these documents and processes
should be evaluated quarterly to keep your organization up-
to-date.

Technology

There are an incredible number of open source and paid-for
solutions in the threat intelligence space. Tools include
Bitdefender, Recorded Future, and CrowdStrike, and open
source options include AlienVault Open Threat Exchange
(OTX), GreyNoise, and OpenCTI, to name a few. Numerous
options are available that provide strategic intel,
workflows, and taxonomies for classification of data as well
as data sharing and notifications.
The most important components of selecting tooling will be
budget and ultimately how mature the VMP is. For
example, smaller organizations or startups might only need
open source tooling to start. As the business grows and
matures, they may want to create a more robust tooling
solution and separate threat intel and vulnerability
management teams. That way, the teams can integrate, like
a purple team, to share information and iterate over time.
But the tooling must align with the people and processes
defined in previous sections. The recommendation is to
start small and build up tooling over time. Giving teams too
much information, tooling, or alerts can overwhelm them
and reduce teams' effectiveness. Select your tools with

https://t.me/PrMaB2



purpose, and continuously evaluate if they still aid the
teams, reduce their stress, and improve their effectiveness.

Summary

Incorporating threat intelligence into regular vulnerability
management practices has so many incredible benefits. By
reducing the noise and constant barrage of vulnerabilities
to sift through, organizations can focus remediation efforts
from technical, tactical, strategic, and operational
intelligence practices.
Including threat intelligence would not be a first step to
creating a vulnerability management program, but it would
enhance and mature the program over time. Whether an
organization chooses to leverage open source threat
intelligence tools or hire a full-time team, this information
will help provide prioritization for vulnerability remediation
activities.

https://t.me/PrMaB2



9 

Cloud, DevSecOps, and Software

Supply Chain Security

While vulnerability management has been a long-standing
practice and comes with its own challenges in traditional
on-premises environments, the era of widespread cloud
adoption has added new complexities to the challenges,
while also ushering in opportunities for innovative
technologies and approaches to addressing those
challenges. We will spend this chapter discussing some of
those unique considerations and aspects as they relate to
vulnerability management in the cloud.
Although the definition is a bit dated, for the purpose of the
book we will be leveraging guidance from National
Institute of Standards and Technology (NIST) as it relates
to defining the cloud and its various service models. NIST's
Special Publication (SP) 800-145 defines cloud computing
as follows:

Cloud computing is a model for enabling ubiquitous,

convenient, on-demand network access to a shared pool

of configurable computing resources (e.g., networks,

servers, storage, applications, and services) that can be

rapidly provisioned and released with minimal

management effort or service provider interaction. This

cloud model is composed of five essential characteristics,

three service models, and four deployment models.

Throughout this chapter, we will discuss each of the service
models as well as aspects of the various deployment models
that organizations may need to take into consideration as
they build their vulnerability management programs.

https://t.me/PrMaB2



Cloud Service Models and Shared

Responsibility

As previously discussed, the cloud operates with three
service models:

Infrastructure-as-a-service (IaaS)
Platform-as-a-service (PaaS)
Software-as-a-service (SaaS)

Starting with the first service model, IaaS is where
fundamental computing resources and activities are
managed by the cloud service provider (CSP). This means
things such as compute, storage, networking, and the
underlying physical materials that make them possible are
handled by the CSP. The CSP either owns or works with
data center providers to host the physical materials that
provide these services to consumers and handles activities
such as the physical security of the facilities, which would
traditionally be done by individual organizations or
managed service providers with whom they work.
Cloud computing operates in a multi-tenant model, with
CSPs providing core infrastructure services to consumers
similar to a utility model with consumption-based billing.
Depending on the deployment model and risk tolerance of
consumers, CSPs utilize logical and sometimes physical
isolation to ensure proper segmentation among tenants,
their resources, and their data.
As you'll see later in this section, there is potential for
vulnerabilities that can impact multiple tenants, or allow
malicious actors to compromise the isolation between
tenants and their environments and data, which can
present systemic risks.

https://t.me/PrMaB2



Traditionally, organizations had to do things such as order
physical equipment, wait for it to arrive, rack it, run
cabling, and ensure connectivity and sufficient power, all of
which is now handled by the CSP. On one hand, it
minimizes the risk and vulnerabilities that consumers need
to be responsible for regarding physical infrastructure,
security, and basic functions such as computing and
networking. However, on the other hand, the explosion of
cloud adoption and use, application programming
interfaces (APIs), and SaaS has rapidly expanded the attack
surface of most modern organizations as well.
A good depiction of the shared responsibility model (SRM)
can be found in Figure 9.1 from Microsoft Azure, one of the
largest IaaS providers.

Figure 9.1: The shared responsibility model
As shown in Figure 9.1, what the customer or consumer
needs to be concerned with in terms of responsibilities and
vulnerabilities is dictated by the service model in which

https://t.me/PrMaB2



they're operating. That said, most modern organizations
live in complex hybrid-cloud environments with a
combination of on-premises infrastructure and systems,
applications, and workloads residing in the cloud, and
consuming applications via SaaS from cloud providers. This
means the modern vulnerability management program
needs to account for this complex reality.
One thing that we want to emphasize is that while you
might be able to outsource responsibility via the shared
responsibility model, you cannot outsource accountability.
It is ultimately still your organization's data and reputation
on the line in the event of a vulnerability's exploitation,
whether the vulnerability belonged to you as the consumer
or was actually on the CSP's side of the SRM. This is why
it's critical for organizations adopting the cloud to
understand this paradigm and base their decisions on their
respective risk tolerance.
Historically (and still), the majority of cloud security
incidents have occurred on the customer's side of the SRM,
and are most often due to customer misconfigurations. In
fact, industry analyst organization Gartner estimates that
through 2025, some 99 percent of cloud security failures
will be the customer's fault
(www.gartner.com/smarterwithgartner/is-the-cloud-
secure#:~:text=Through%202025%2C%2099%25%20of%20cloud,ownership

%2C%20responsibility%20and%20risk%20acceptance). This has
proven to be fairly accurate so far, as we've seen many
cloud security incidents and data leaks due to issues such
as insecure configurations or misconfigurations on the
consumer's part that have led to data loss and more
(www.datadoghq.com/state-of-cloud-security). These incidents
have led to the exposure of millions of records and personal
data.

https://t.me/PrMaB2

http://www.gartner.com/smarterwithgartner/is-the-cloud-secure#:~:text=Through%202025%2C%2099%25%20of%20cloud,ownership%2C%20responsibility%20and%20risk%20acceptance
http://www.datadoghq.com/state-of-cloud-security


As consumers move through the various SRMs, their
responsibility in the context of vulnerability management
changes. For example, in IaaS environments, customers are
still responsible for OS-level vulnerabilities, whereas that is
no longer the case with PaaS and SaaS offerings due to the
CSP's handling of the operating system and compute in
most cases.
In the following sections, we will discuss some cloud
aspects that have allowed innovative modern approaches to
vulnerability management, in addition to some unique
considerations for cloud-native technologies that should be
accounted for in vulnerability management programs.

Hybrid and Multicloud Environments

While cloud adoption has undeniably increased (except for
entirely cloud-native greenfield organizations that were
“born” in the cloud), most organizations still have legacy or
on-premises infrastructure and systems that must be
accounted for. This means that organizations need to
include these complex hybrid cloud (e.g., on-premises and
cloud) environments as part of their broader vulnerability
management programs.
This approach can be complex, due to disparate and
diverse technological stacks and tooling that may only work
in one environment or another. This often can lead to
organizations needing to implement multiple tools to
ensure they are covering the systems on-premises and in
the cloud with regard to activities such as asset
management, inventory, configuration management, and
vulnerability management.
Malicious actors often look to pivot laterally between
systems in the on-premises and cloud environments due to
their ubiquitous connectivity. Due to this reality, leading

https://t.me/PrMaB2



vulnerability management vendors have been expanding
their platforms and capabilities to account for hybrid cloud
environments to ensure that organizations can see all their
assets and exposures, enrich findings with business-specific
context, and mitigate the various hybrid attack paths that
may exist.
Multicloud environments, which are scenarios where
organizations are using multiple CSPs, is another
challenging aspect of vulnerability management in modern
digital environments. Some often discuss multicloud
environments in the context of IaaS—for instance, with
organizations using a combination of the largest IaaS
providers like Microsoft Azure, Google Cloud, and Amazon
Web Services (AWS)—but the reality is that SaaS is also
part of the cloud, and therefore nearly every organization is
already considered “multicloud” by definition. That said,
SaaS has some unique considerations that we will discuss
in a separate section to follow.
Remember, as we have discussed, the majority of cloud
security incidents are due to customer misconfigurations.
In addition, the potential of such incidents increases when
you're dealing with multicloud environments because of
their increased complexity. Organizations often struggle
with configuration and vulnerability management in cloud
environments due to the myriad of potential configurations,
services, and implementations, and the complexity is
exponential across the clouds. From a vulnerability
management perspective, organizations need to aggregate
vulnerabilities from their multicloud environments to avoid
needing to have disparate vulnerability details for each
unique cloud provider and environment, and instead
understand a holistic picture of their vulnerability posture
across clouds.

Containers

https://t.me/PrMaB2



With the growth and evolution of cloud computing, we've
also seen the growth and adoption of modernized forms of
computing, including containers. Cloud-native surveys by
organizations such as the Cloud Native Computing
Foundation (CNCF) found that 96 percent of organizations
are either currently using containers or evaluating them for
use (www.cncf.io/reports/cncf-annual-survey-2021). In the world
of the cloud-native ecosystem, containers fit into what is
called the “four Cs” of cloud security: cloud, clusters,
containers, and code
(https://kubernetes.io/docs/concepts/security/overview). Each
layer builds upon the next, and vulnerabilities at any layer
can impact the layers that follow, such as applications
deployed using insecure or vulnerable containers (see
Figure 9.2).

Figure 9.2: The four Cs of cloud security
Source: https://kubernetes.io/docs/concepts/security/overview / The Kubernetes
Authors/CC-BY 4.0

In the context of computing, industry leader Docker defines
a container as “a standard unit of software that packages

https://t.me/PrMaB2

http://www.cncf.io/reports/cncf-annual-survey-2021
https://kubernetes.io/docs/concepts/security/overview
https://kubernetes.io/docs/concepts/security/overview


up code and all of its dependencies, so the application runs
quickly and reliably from one environment to another
(www.docker.com/resources/what-container).” Worth
emphasizing in that definition is the concept of portability—
being able to move from one environment to another—as
well as characteristics such as the packaging of
dependencies, which has ramifications for vulnerability
management. Containers represent an evolution of
compute abstractions built on the world of virtual machines
(VMs).
Both VMs and containers are compute abstractions to host
applications and virtualized workloads but with some key
differences. Virtual machines turn one server into many;
many VMs can run on a single piece of hardware, each with
its own guest operating system and applications.
Containers, on the other hand, package the code and
dependencies together; multiple containers can run on the
same machine, sharing the same OS kernel with other
containers, running as isolated processes in their
respective spaces. Containers tend to be more compact and
less sizable than VMs, making them more efficient in terms
of size and cost. In Figure 9.3, you can view a depiction of
some of the key differences between the two abstractions.

Figure 9.3: Containers vs. virtual machines

https://t.me/PrMaB2

http://www.docker.com/resources/what-container


Containerized applications are lightweight and enable
needed capabilities in cloud-native workloads, such as
immutability, scalability, and portability. They're often
managed by what is called a container orchestrator, with
the most popular one being Kubernetes, which we will
discuss in the next section. It is these unique aspects of
containers that provide not only benefits but also
challenges when it comes to vulnerability management.
Container images are stored in what is referred to as a
container registry. Some of these registries are open to the
public Internet, while others are privately hosted with
access controls in place. In 2021, security vendor Palo Alto
Network’s Unit 42 Threat Research group analyzed over
1,500 distinct images in popular public registries such as
Docker Hub, Quay, and Google Container Registry (GCR)
(www.paloaltonetworks.com/prisma/unit42-cloud-threat-research-
2h21). They found that 96 percent of the images had
vulnerabilities and 91 percent of them had critical
vulnerabilities. Their research also highlighted that the
higher the number of dependencies a container has, the
higher the number of vulnerabilities it tends to have as
well. This is why you will often see best practices advocated
for such as limiting the container's attack surface by only
including dependencies and libraries that are absolutely
required for the application to function.
On one hand, while there are tremendous benefits of
containers, such as their declarative nature and ability to
be portable across environments and distributed much like
traditional code, they also enable the widespread
distribution of vulnerable container images, which can then
be consumed by organizations and have applications built
on top of them, inherently including the vulnerabilities
included in those base images. This makes it critical that
organizations understand the source of where they're

https://t.me/PrMaB2

http://www.paloaltonetworks.com/prisma/unit42-cloud-threat-research-2h21


pulling their container images from, and are aware of the
vulnerabilities associated with those images.
Due to the security concerns of public container registries,
organizations have increasingly begun to build internal
container repositories to host container images that they've
hardened through efforts such as utilizing container
scanning and vulnerability remediation. In addition, they've
established secure base images by minimizing the
dependencies included in the containers to reduce their
attack surface.
Some examples include the Department of Defense (DoD)
United States Air Force (USAF), which has established the
“Iron Bank,” a secure container image repository that
allows DoD mission/system owners to utilize these
hardened container images for running their applications.
Commercial industry efforts are also underway, specifically
by software supply chain vendor Chainguard and their
Chainguard images offering, which includes maintaining
updated and hardened container images for some of the
most widely popular container images in the ecosystem.
This minimizes the toil on enterprises by offering them
something to consume, rather than the respective
organizations needing to do the container hardening
activities themselves.
To demonstrate the importance of secure base images,
Chainguard produced a paper titled “All About That Base
Image,” which looked at popular base images and the
associated security technical debt (e.g., vulnerabilities and
vulnerable dependencies or components) associated with
them by using various popular open source software (OSS)
vulnerability scanners (https://uploads-
ssl.webflow.com/6228fdbc6c97145dad2a9c2b/624e2337f70386ed568d7e

7e_chainguard-all-about-that-base-image.pdf). It demonstrated
that some of the most popular base images come with tens

https://t.me/PrMaB2

https://uploads-ssl.webflow.com/6228fdbc6c97145dad2a9c2b/624e2337f70386ed568d7e7e_chainguard-all-about-that-base-image.pdf


or even hundreds of inherent vulnerabilities that
organizations then build their applications on top of,
creating a situation where applications are vulnerable from
their inception due to building on insecure base images.
In addition to highlighting the nature of vulnerable base
images, the report demonstrates the wide range of findings
across different vulnerability scanners, making the case for
potentially using more than one scanner, or at least
ensuring standardized tooling across an organization to not
have disparate findings between teams within the
organization. It is worth emphasizing that no single tool is
infallible, and that multiple tools can help compensate for
weaknesses or gaps from any single tool. Figure 9.4
provides an analysis of base images.
Container security, much like other areas of security, exists
in a life cycle and warrants securing container use
throughout that life cycle. This includes initial container
hardening, securing the repository where the images are
stored from malicious access and tampering, in addition to
ensuring that the containers are monitored for
vulnerabilities in runtime environments because new
vulnerabilities are constantly emerging, even after a
container image may have initially been scanned.
As a result of their ephemeral and declarative nature, many
organizations opt for a “cattle vs. pets” approach to
managing container workloads. This approach means that,
rather than patching systems in place, they simply update
the container image in the repository and then rip and
replace the existing containers in the runtime environment,
while taking advantage of capabilities from the container
orchestrator to ensure that service disruption is minimized.
This approach has additional security benefits such as
potentially disrupting malicious actors' dwell times, as
containers are cycled and have a shorter life cycle than

https://t.me/PrMaB2



long-lived persistent systems where malicious actors can
establish a foothold and maintain a presence over an
extended time period.
Organizations like NIST have published detailed guidance
on container security, such as their 800-190 Application
Container Security Guide
(https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.
800-190.pdf), which discusses container security best
practices and recommendations. The guidance also
discusses how container images include all components
used to run an application, and that any of the components
may be missing critical security updates, be outdated, or
have associated vulnerabilities that can be a pathway for
malicious actors.

https://t.me/PrMaB2

https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-190.pdf


https://t.me/PrMaB2



Figure 9.4: Chainguard analysis of base images
Source: https://uploads-
ssl.webflow.com/6228fdbc6c97145dad2a9c2b/624e2337f70386ed568d7e7e_chainguard-all-

about-that-base-image.pdf / Chainguard

It also points out that just because best practices, such as
container vulnerability scanning, were conducted in places
such as a repository or continuous integration/continuous
delivery (CI/CD) pipeline, new vulnerabilities may emerge
and impact containers operating in runtime environments.
This is why organizations must implement container
vulnerability scanning throughout the container's life cycle,
from repository to build and pipelines, and in runtime
environments to identify vulnerabilities that might put the
workloads and organization at risk.
There are, of course, additional security controls and steps
to take to secure the use of containers for running
virtualized workloads that extend beyond vulnerability
management, such as limiting privileges, implementing
access controls, segmenting network environments, and
monitoring for malicious activity. All that said, starting with
a secure base image, minimizing unnecessary and
potentially vulnerable dependencies, and regularly
conducting vulnerability scanning of containers throughout
their life cycle as discussed previously is critical.
For an incredibly detailed deep dive on container security,
we recommend resources such as industry leader Liz Rice's
Container Security (O'Reilly, 2020). Rice dives into the
basics of containers, their potential risks and
vulnerabilities, and details of securely adopting containers
at scale in large enterprise environments.

Kubernetes

Moving on from the containers themselves, next up in the
cloud-native paradigm are container orchestrators. A

https://t.me/PrMaB2

https://uploads-ssl.webflow.com/6228fdbc6c97145dad2a9c2b/624e2337f70386ed568d7e7e_chainguard-all-about-that-base-image.pdf


container orchestration platform helps automate the
deployment, management, scaling, and networking of
containers running on top of a cluster. While there are
several potential container orchestration options to discuss,
Kubernetes is the most widely popular container
orchestration tool of choice, so we'll focus our discussion
on it.
As we discussed in the previous section, containers are
portable, immutable, and ephemeral, using their
declarative nature, coupled with the dynamic and elastic
nature of cloud computing, to allow organizations to scale
services up or down due to factors like customer demand
and network traffic. Container orchestration tools such as
Kubernetes aid this activity by facilitating the scaling
demands of the applications and services they orchestrate
and host.
Kubernetes itself has a variety of components that make up
its architecture, including the control plane, data plane,
API server, controller manager, and so on, in addition to
kubelet, nodes, and scheduler, just to name a subset
(https://kubernetes.io/docs/concepts/overview/components).
These components function as part of either the control
plane or data plane within its architecture. Organizations
choose to either do what is referred to as “roll your own”
Kubernetes, which is taking on responsibility for the
control plane of the Kubernetes clusters and environments
as well as the data plane, or to alternatively consume a
Kubernetes-managed service from entities such as CSPs,
with examples including AWS Elastic Kubernetes Service
(EKS) or Microsoft Azure Kubernetes Service (AKS). Figure
9.5 from the Kubernetes documentation helps demonstrate
the complexity and number of moving parts associated with
a Kubernetes cluster.

https://t.me/PrMaB2

https://kubernetes.io/docs/concepts/overview/components


Figure 9.5: A Kubernetes cluster
Source: https://kubernetes.io/docs/concepts/overview/components / The Linux
Foundation/CC-BY 4.0

While organizations may opt for the do-it-yourself (DIY)
approach, security practitioners generally recommend
against it due to the complexity and administrative burden
associated with managing the Kubernetes control plane,
unless the organization has the internal expertise and
resources to do so. Instead, many security and technology
professionals recommend consuming managed Kubernetes
offerings to offload the administrative toil, let organizations
focus on their core competencies, and minimize the
potential for misconfigurations and vulnerabilities, both of
which can be exploited by malicious actors.
Much like containers, research from groups such as Palo
Alto Network’s Unit 42 Threat Research Group
(www.paloaltonetworks.com/prisma/unit42-cloud-threat-research-
2h21) found that publicly available Kubernetes manifests
and configuration documents often include inherently
insecure configurations and vulnerabilities that, if not

https://t.me/PrMaB2

https://kubernetes.io/docs/concepts/overview/components
https://www.paloaltonetworks.com/prisma/unit42-cloud-threat-research-2h21


reconciled, can present risk to downstream organizations
deploying these systems.
A variety of tools organizations can be used to assess the
security and posture of their Kubernetes environments,
such as kube-hunter (https://github.com/aquasecurity/kube-
hunter) and kube-bench (https://github.com/aquasecurity/kube-
bench). These open source tools can help organizations
assess the configuration and security posture of their
Kubernetes environments, and identify vulnerabilities that
malicious actors might exploit. They can even assess the
deployment of Kubernetes clusters in alignment with
industry references such as the CIS Kubernetes
Benchmark. Increasingly, cloud-native security vendors
have also included security capabilities and functionality in
their platforms to let organizations securely deploy and
manage Kubernetes clusters and their associated
workloads.
OWASP has published a Kubernetes Security Top Ten on
site project, which aims to help organizations address the
most common misconfigurations, vulnerabilities, and
threats associated with deploying and managing
Kubernetes workloads (https://owasp.org/www-project-
kubernetes-top-ten). Among those risks are items like
workload misconfigurations, supply chain vulnerabilities,
and poor secrets management, all of which can be
exploited by malicious actors to compromise Kubernetes
deployments.
It hasn't taken researchers long to identify concerning
trends occurring as part of broader Kubernetes adoption.
For example, in 2022, the Shadowserver Foundation
identified 380,000 open Kubernetes API servers exposed to
the Internet using HTTP GET requests, and stated the
figures represented 84 percent of all global Kubernetes API
instances observable online (www.darkreading.com/application-

https://t.me/PrMaB2

https://github.com/aquasecurity/kube-hunter
https://github.com/aquasecurity/kube-bench
https://owasp.org/www-project-kubernetes-top-ten
http://www.darkreading.com/application-security/more-than-eight-in-10-kubernetes-api-servers-exposed-to-the-internet


security/more-than-eight-in-10-kubernetes-api-servers-exposed-

to-the-internet). However, they did emphasize that it
doesn't mean they are fully open or vulnerable to an attack,
but they do represent an unnecessarily exposed attack
surface for many organizations and environments.
Additionally, in 2023, it was reported that more than 350
organizations, OSS projects, and individuals had
Kubernetes clusters that were detected as openly
accessible and unprotected
(www.csoonline.com/article/648756/kubernetes-clusters-under-
attack-in-hundreds-of-organizations.html). More concerning,
more than half of those clusters had been breached or had
an active campaign underway to deploy malware or
backdoors, as reported by the Nautilus research team at
cloud-native security vendor Aqua Security
(www.aquasec.com/news/kubernetes-clusters-under-attack).
In efforts to mitigate insecure adoption and implementation
of Kubernetes in the ecosystem, various organizations both
public and private have produced a variety of guidance to
facilitate secure Kubernetes use. Examples include the
NSA's Kubernetes Hardening Guide
(https://media.defense.gov/2022/Aug/29/2003066362/-1/-1/0/CTR_K
UBERNETES_HARDENING_GUIDANCE_1.2_20220829.PDF), CIS's
Kubernetes Benchmark
(www.cisecurity.org/benchmark/Kubernetes), and the DoD’s
Information Security Agency's Kubernetes STIG
(www.stigviewer.com/stig/kubernetes/2021-04-14). A common
collection of recommendations in these guides includes
items such as scanning containers and Pods for
vulnerabilities and misconfigurations, utilizing network
segmentation and running containers and pods with least
privileges, as well as implementing proper monitoring and
logging to ensure malicious activity can be observed and
responded to.

https://t.me/PrMaB2

http://www.darkreading.com/application-security/more-than-eight-in-10-kubernetes-api-servers-exposed-to-the-internet
http://www.csoonline.com/article/648756/kubernetes-clusters-under-attack-in-hundreds-of-organizations.html
http://www.aquasec.com/news/kubernetes-clusters-under-attack
https://media.defense.gov/2022/Aug/29/2003066362/-1/-1/0/CTR_KUBERNETES_HARDENING_GUIDANCE_1.2_20220829.PDF
http://www.cisecurity.org/benchmark/Kubernetes
https://www.stigviewer.com/stig/kubernetes/2021-04-14


In addition to publications and secure configuration
guidance, organizations such as the Linux Foundation have
begun to publish a variety of Kubernetes certifications to
upskill the broader workforce and enable organizations to
securely adopt Kubernetes
(https://training.linuxfoundation.org/certification/certified-
kubernetes-administrator-cka). These credentials are
important, given it is often misconfigurations by
users/administrators or a lack of implementing best
practices that lead to organizations using these
technologies in a vulnerable way.
Cloud-native security vendors have begun to provide and
integrate capabilities to enable Kubernetes security efforts,
such as scanning Kubernetes manifest files for vulnerable
configurations, as well as monitoring runtime Kubernetes
environments to identify vulnerabilities and potentially
malicious activities in production. A collection of these
security concerns includes networking, configurations,
CVEs in running images, role-based access control of the
cluster and pods, and runtime monitoring and alerting.
All said, Kubernetes is an incredibly powerful cloud-native
technology that allows organizations to provide dynamic,
scalable, and self-healing workloads in modern
environments, all through a declarative approach of
defining Kubernetes manifests to detail how the clusters
should operate. It is also, however, an incredibly complex
technology that requires decisions around self-hosting or
utilizing managed services, as well as a comprehensive
understanding of deploying, configuring, and managing
Kubernetes-orchestrated workloads to ensure that
organizations don't fall victim to vulnerabilities and
misconfigurations that can introduce risk.

Serverless

https://t.me/PrMaB2

https://training.linuxfoundation.org/certification/certified-kubernetes-administrator-cka


While many organizations have embraced cloud-native
options such as Kubernetes and containers, many have also
embraced technologies such as functions-as-a-service
(FaaS) or serverless services. We've discussed the cloud-
shared responsibility model, where cloud consumers
increasingly trade off responsibility for underlying activities
like physical infrastructure, networking, computing, and
more to CSPs in exchange for ease of use, potential cost
savings, and a decrease in administrative overhead. These
trade-offs allow consumers to focus on their application's
core competencies and deliver value to their customers and
stakeholders, which, of course, come with a level of implicit
trust in the CSPs to ensure they are properly securing their
share of the responsibility model.
The next compute abstraction that goes beyond containers
is serverless, with popular examples including AWS
Lambda and Microsoft Azure Functions. In the serverless
paradigm, consumers no longer need to worry about the
underlying infrastructure as in IaaS, but also shed the
responsibility for managing hosting things such as a
virtualized infrastructure, and performing activities like
patching, updates, and maintenance. Instead, consumers
can simply take their code and run it on serverless
functions, letting the CSP retain full responsibility for the
underlying infrastructure and only paying for the period in
which they're consuming the dynamic computing that CSPs
provide.
While there may be a less traditional attack surface due to
factors such as there being no managed server for the
customer to maintain, serverless applications often
functioning on HTTPS by default, and other aspects of the
CSP handling security activities, concerns still exist. As
pointed out in this excellent blog on hacking AWS Lambda
functions titled “Hacking AWS Lambda for security, fun
and profit” (https://blog.appsecco.com/hacking-aws-lambda-for-

https://t.me/PrMaB2

https://blog.appsecco.com/hacking-aws-lambda-for-security-fun-and-profit-c140426b6167


security-fun-and-profit-c140426b6167), malicious actors can
still abuse poor security practices around identity and
access management (IAM) roles assigned to functions,
exposed secrets, API authorizations, poor virtual private
cloud segmentation, and a lack of access control.
In this model, organizations still need to perform security
activities for the software or code they run in serverless
environments. Just because the underlying infrastructure
and computation may be handled by the CSP doesn't mean
the code that organizations, which run on top of the
serverless functions, will be insulated from vulnerabilities
that can lead to exploitation. There are also considerations
such as the underlying configurations in the cloud
environments, and how these functions communicate,
access, and interact within the environment and beyond,
which must be accounted for from the vulnerability
management perspective.

DevSecOps

With the increased adoption of cloud computing and cloud-
native services and technologies, we've seen a parallel
industry push to adopt DevOps, or what is now referred to
as DevSecOps methodologies. With origins dating back
nearly two decades ago (www.atlassian.com/devops/what-is-
devops/history-of-devops), DevOps spawned out of the IT
industry through efforts to break down silos between
development and operations, to utilize tools and
methodologies to release better software faster.
Organizations have strived to move away from legacy
approaches of software development, such as waterfall
methodologies, instead to agile software development and
models of integrating development and operations teams,
and increasingly, security as well, all forming the phrase
DevSecOps. While there can be, and are, entire books
dedicated to the concept of DevOps and DevSecOps, we

https://t.me/PrMaB2

https://blog.appsecco.com/hacking-aws-lambda-for-security-fun-and-profit-c140426b6167
http://www.atlassian.com/devops/what-is-devops/history-of-devops


won't spend too much time defining it here. That said, we
do recommend books such as The Phoenix Project, The

DevOps Handbook (2013) by Gene Kim, George Spafford

and Kevin Behr, and Agile Application Security (2017) by
Laura Bell, Michael Brunton-Spall, Rich Smith, and Jim Bird
as great references on the topic.
DevSecOps is defined by NIST as “helping to ensure that
security is addressed as part of all DevOps practices by
integrating security practices and automatically generating
security and compliance artifacts throughout the process”
(https://csrc.nist.gov/Projects/devsecops).
While not specifically tied to any tools or technologies, the
adoption of DevSecOps practices and methodologies does
include technology and tools such as source code
management (SCM) repositories to store software/code, as
well as the use of tools such as CI/CD. While there are
nuances to CI/CD that we won't define here, the goal is to
automate much of the traditional manual human toil
associated with getting code from the commit through the
various build, test, and deployment phases and
infrastructure provisioning to runtime production
environments.
DevSecOps often includes attempts to “shift security left”
by integrating security tooling and activities earlier in the
software development life cycle (SDLC) to catch
vulnerabilities earlier in the life cycle, lead to potential cost
savings, decrease business disruption from needing to fix
vulnerabilities once they're in production systems, and
mitigate the window of exposure that malicious actors have
to exploit vulnerabilities in runtime environments.
This often includes using tools such as static and dynamic
application security testing, software composition analysis,
container and infrastructure as code (IaC) scanning, and
increasingly producing artifacts such as software bills of

https://t.me/PrMaB2

https://csrc.nist.gov/Projects/devsecops


materials (SBOMs), to understand any licensing violations
or concerns, find vulnerabilities associated with software
components, and also provide visibility to stakeholders
internal to or external to the organization as part of a
broader push for software transparency and software
supply chain security. For those unfamiliar with these
myriads of tools, we'll take a moment to briefly define each
of them here:

Static application security testing (SAST) is a form of
testing that analyzes source code to identify security
vulnerabilities that may present risk in applications.
Dynamic application security testing (DAST) examines
running applications to detect potential security
vulnerabilities.
Software composition analysis (SCA) is like SAST, but
is primarily focused on tracking and analyzing open
source components and dependencies for
vulnerabilities that may pose risk to the applications.
Interactive application security testing (IAST) utilizes a
combination of aspects of both SAST and DAST. IAST
executes application code and monitors behavior in real
time to provide findings for vulnerabilities, flaws, and
inefficiencies that can be remediated. It is often
executed in quality assurance (QA) / testing
environments prior to production.
As modern infrastructure increasingly is written in a
declarative format such as CloudFormation templates
or the vendor-agnostic Terraform, these IaC
templates/manifests can be scanned to identify
vulnerabilities or misconfigurations that may present
risks to running environments.
Container vulnerability scanning helps identify
vulnerabilities in containers, whether in a registry, as

https://t.me/PrMaB2



part of the build process, or even at runtime. There are
several popular open source container vulnerability
scanning tools, as well as support from leading
proprietary vulnerability scanning vendors to cover
containers.

While these tools enable “shifting security left,” they also
pose challenges of shifting work onto development and
engineering teams due to the potential for false positives
that can lead to developers spending significant time to
justify findings to security teams or validate their accuracy.
As the industry push for DevSecOps has continued to
mature, many practitioners, including one of the authors of
this text, have begun to advocate an approach of “shifting
smart” rather than shifting left, and have begun to dive into
the topic on a podcast with the founder of Contrast
Security and longtime AppSec leader Jeff Williams
(https://podcasts.apple.com/us/podcast/shift-smart-its-not-
about-shoving-security-into-devops/id1652615217?

i=1000622279084). DevSecOps strives to break down silos
between teams such as security and development, but the
noisy scanners, which produce false positives or don't
facilitate high-fidelity testing with sufficient context, can
undermine this objective and cause frustration from
developers toward security teams who are throwing
findings and vulnerabilities over the fence with minimal
context. Such actions are causing developers to spend
significant time justifying their findings or remediating
findings that didn't pose significant risks.
All of the security tools we've mentioned have their place,
but it's also true that specific vulnerability types are best
tested for at specific phases of the SDLC. This is why it
makes sense to take a strategic approach to vulnerability
tooling and testing. This approach is also necessary to
ensure that vulnerability scan results and findings are

https://t.me/PrMaB2

https://podcasts.apple.com/us/podcast/shift-smart-its-not-about-shoving-security-into-devops/id1652615217?i=1000622279084


enriched to provide context around known exploitations
(e.g., the Cybersecurity and Infrastructure Security Agency
Known Exploited Vulnerabilities [CISA KEV]), exploitation
probability (e.g., Exploit Prediction Scoring Systems
[EPSS]), and also validation around reachability to help
minimize work and delays to development velocity, as well
as help developers focus on the high-risk vulnerabilities
posed to the organization.
Organizations conducting studies on the maturity of
software development teams have found that teams with
the highest performance in metrics such as DevOps
research and assessment (DORA) have improved security
outcomes and capabilities as well. DORA metrics include
the following:

Deployment frequency
Lead time for changes
Mean time to recover
Change failure rate
Reliability

Studies have shown that organizations with mature DORA
metrics can address security vulnerabilities and concerns
more proficiently. This was communicated in reports such
as the “2022 Accelerate State of DevOps Report: A deep
dive into security”
(https://cloud.google.com/blog/products/devops-sre/dora-2022-
accelerate-state-of-devops-report-now-out). This report found
that high-trust, low-blame cultures are significantly more
likely to adopt emerging security practices than low-trust,
high-blame cultures. Another interesting finding is that the
adoption of emerging security practices led to reduced
developer burnout, showing that modernizing security

https://t.me/PrMaB2

https://cloud.google.com/blog/products/devops-sre/dora-2022-accelerate-state-of-devops-report-now-out


practices can have improved outcomes on software
development culture and delivery.
That said, we do want to highlight that blind adherence to
any mantras in security is never a recommended practice.
While the industry has pushed headfirst into efforts to
“shift security left,” merely putting security tooling in a
CI/CD pipeline, producing scan reports of findings, and
throwing those scan reports over the fence to developers is
not a recommended practice. Doing so actually has an
inverse effect of drawing resentment from development
peers, further emboldening silos between development and
security. It also runs counterproductively to another push
in security, which is “being a business enabler.”
This is because most vulnerabilities that scanners identify
are never actually exploited in the wild, which leads to
development teams needing to justify the vulnerabilities'
existence in their software or system, and to potentially
remediate vulnerabilities that actually pose little to no risk
to the business. Developers are incentivized, and have their
performance evaluated against, factors like the velocity of
feature delivery to production, speed to market, and
software development output, none of which make security
a top priority for them, despite it being a top priority for
security practitioners.
For this reason, it's critical that we recommend taking an
approach of shifting “smart” over blindly shifting “left,” and
ensuring that security is testing for the appropriate
vulnerability type at the appropriate point in the SDLC, as
well as enriching vulnerability scans and data with
additional context like the CISA KEV catalog, EPSS
metrics, and environmental context such as mitigating
controls or the system/data sensitivity to the business, all
of which should be used to make mature vulnerability
prioritization decisions.

https://t.me/PrMaB2



We've also seen vendors begin to provide security scanning
and capabilities that can be embedded into developer
workflows without being disruptive, to try to empower
those writing the code (i.e., developers) to resolve issues
locally before they are committed to the codebase and
promoted to runtime environments.

Open Source Software

While open source software (OSS) is far from being
specifically tied to cloud computing, there has been an
undeniable growth in the use of OSS over the past few
decades. As we discussed in Chapter 5, “Vulnerability
Scoring and Identification,” research from organizations
like Synopsys has shown that up to 78 percent of modern
codebases are composed of OSS, along with several
potential security concerns that we will discuss soon.
We want to start off by emphasizing that any arguments of
whether proprietary code or OSS is more secure are foolish
and lack the context to have a sufficient debate. The reality
is that most modern codebases, even for proprietary
software and services, are composed of large portions of
OSS. Furthermore, there are a myriad of factors that go
into determining the level of security of software or
systems.
For example, there are significant differences in terms of
resources, expertise, priorities, and capabilities between
some of the leading software suppliers in the industry.
Some have thousands of security staff and significant
financial resources and bandwidth to address security
concerns, while others may be a bootstrapped startup just
striving to obtain initial market penetration and have little
to no security staff on hand quite yet. On the contrary,
there are also significant differences between OSS projects,
with some boasting thousands of contributors and

https://t.me/PrMaB2



participants worldwide, while others may have a small
group or even a single maintainer contributing code to the
codebase and addressing vulnerabilities.
Furthermore, there are extrinsic factors at play that
contribute to how “secure” a product, service, software, or
organization is. For example, when looking at reports like
CISA's 2022 Top Routinely Exploited Vulnerabilities report
(www.cisa.gov/news-events/cybersecurity-advisories/aa23-215a),
we know that malicious actors tend to prioritize their focus
on widely used pervasive software and technologies, as
opposed to software with a limited market footprint. The
same goes for OSS, with projects such as Linux or Log4j
serving as examples with widespread adoption and use, and
therefore outsized interest from entities such as malicious
actors and security researchers.
Factors like this contribute to facts such as Microsoft's
long-standing position at the top of the CISA KEV catalog,
for having the most-known exploited vulnerabilities, and
frequently being in the news for being targeted by
malicious actors including nation-state entities. These
widely pervasive vendors/suppliers and software are
obviously more enticing to malicious actors because they
represent a richer target, with wider use and a larger
attack surface when it comes to industry reach and
presence across digital infrastructures.
Now that we've dispelled the false dichotomy of pitting OSS
versus proprietary software against each other, let's look at
some of the unique aspects of OSS that must be accounted
for from a vulnerability management perspective.
As we have previously discussed, organizations are
increasingly making use of the robust and diverse OSS
ecosystem for obvious reasons. It is financially appealing to
be able to minimize the extent of native software
development an organization must do, and instead leverage

https://t.me/PrMaB2

http://www.cisa.gov/news-events/cybersecurity-advisories/aa23-215a


existing software components and libraries to expedite
their product and software development. Much like
malicious actors, developers will often opt for the path of
least resistance and use an OSS component, rather than
writing all functions and capabilities themselves, especially
when their performance is evaluated based on how fast
they can develop products and services. The incentives
simply don't often exist to prioritize security over other
competing metrics such as velocity, feature delivery, and so
on.
This has led to widespread OSS adoption, which until
recently hasn't been accompanied with widespread rigor
and governance from a security perspective with the use of
OSS. This has begun to change, however, with the
exploitation of Log4j among many other OSS components.
Malicious actors have realized how pervasive OSS use is,
and that by exploiting an OSS component, they can
potentially compromise an exponential number of OSS-
consumer victims downstream, often without a good
inventory of where the OSS exists within their
environments. For example, the Cyber Safety Review Board
(CSRB; www.cisa.gov/resources-tools/groups/cyber-safety-
review-board-csrb), which was created after the release of
President Biden's Executive Order (EO) 14028 to review
major cyber events, reported in their review of the Log4j
incident that some federal agencies were spending tens of
thousands of hours just identifying where this vulnerable
and compromised component existed within their
environments. Similar challenges exist in the commercial
sector, due to many organizations having a poor software
asset inventory as it relates to OSS components in their
software and applications.
Further complicating the matter is that studies such as
Endor Labs’ State of Dependency Management report
found that six out of seven vulnerabilities are related to

https://t.me/PrMaB2

http://www.cisa.gov/resources-tools/groups/cyber-safety-review-board-csrb


transitive dependencies of applications, rather than direct
dependencies (www.endorlabs.com/state-of-dependency-
management). These are dependencies that your direct
dependencies use and this often clouds their impact in
terms of both application operation and vulnerability. The
report highlighted that 95 percent of vulnerable
dependencies are transitive, not direct. This makes it
difficult for developers and security teams to understand
the vulnerability posture of their applications and software
without modernized capabilities that can determine
reachability and exploitability of a given OSS component.
Many organizations don't have good visibility of the
inventory of their direct dependencies, let alone transitive
dependencies, especially the further you go along in a
dependency graph.
OSS also has its own inherent risks, such as documented in
the Endor Labs Top 10 Open Source Software (OSS) Risks
report (www.endorlabs.com/blog/introducing-the-top-10-open-
source-software-oss-risks). Those risks include items shown
in Figure 9.6.
As Figure 9.6 shows, known vulnerabilities rank at the top
of the chart for risks; however, they aren't the only risks
with which organizations using OSS need to be concerned.
Other factors, such as malicious actors looking to target
the software supply chain, may look to compromise a
legitimate package through methods like hijacking a
maintainer account, or implementing name confusion
attacks such as typosquatting, where malicious actors
create malicious packages closely named to legitimate
ones. Additionally, as discussed earlier in this section,
concerns also center around unmaintained software as
well. For example, researcher Chinmayi Sharma published
a comprehensive paper titled “Tragedy of the Digital
Commons” that demonstrated that almost 25 percent of all

OSS projects have only one developer contributing code,

https://t.me/PrMaB2

http://www.endorlabs.com/state-of-dependency-management
http://www.endorlabs.com/blog/introducing-the-top-10-open-source-software-oss-risks


and 94 percent of all projects are maintained by 10 or
fewer developers (https://papers.ssrn.com/sol3/papers.cfm?
abstract_id=4245266). This is often referred to as being a bus

factor, due to the hypothetical question of what the impact
would be if a maintainer got hit by a bus, or in other words,
quit maintaining the software.
As pointed out by vendor Synopsys in their 2022 Open
Source Security Risks report, 88 percent of codebases
included components that have had no new development in
two years, whereas 85 percent contained OSS that was
more than four years out of date. See Figure 9.7.
However, despite the extensive use of OSS in modern
codebases, it is worth noting the nuance associated with
that OSS use as it relates to vulnerabilities. While some
studies show that 78 percent of modern codebases are
comprised of OSS components, some have pointed out that
much of that OSS footprint isn't “active” code, meaning it
isn't actually invoked by the application or reachable from a
vulnerability exploitation perspective. For example,
application security vendor Contrast Security, which
focuses on runtime security, found in their State of Open
Source (OSS) Security Report in 2021 that 62 percent of
libraries are completely inactive with no active code, and
that the average application or API, based on their
assessment of over 100,000 real-world applications and
APIs, had 71 percent of inactive library code, which was
never loaded nor invoked by the application.

https://t.me/PrMaB2

https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4245266


https://t.me/PrMaB2



Figure 9.6: Inherent OSS risks
Source: www.endorlabs.com/blog/introducing-the-top-10-open-source-software-oss-
risks / 2024 / Endor Labs

Figure 9.7: 2022 OSS security risks
This is demonstrated in Figure 9.8, shared by Contrast
Security founder, Jeff Williams
(www.linkedin.com/posts/planetlevel_what-about-transitive-
dependencies-i-hear-activity-7090447433146515456-n4GW?

utm_source=share&utm_medium=member_desktop). The intent is to
point out that only 9 percent of OSS on average is active, so
proprietary code at runtime may be the most concerning
for organizations from an AppSec perspective.

https://t.me/PrMaB2

http://www.endorlabs.com/blog/introducing-the-top-10-open-source-software-oss-risks
http://www.linkedin.com/posts/planetlevel_what-about-transitive-dependencies-i-hear-activity-7090447433146515456-n4GW?utm_source=share%26utm_medium=member_desktop


Figure 9.8: OSS in 2021
Source: www.linkedin.com/posts/planetlevel_what-about-transitive-dependencies-i-
hear-activity-7090447433146515456-n4GW?

utm_source=share&utm_medium=member_desktop/Jeff Williams/INKEDIN.

Figures and findings, such as those illustrated in Figure
9.8, emphasize the importance of innovative capabilities
that can add critical context such as reachability and
invocation, providing insight into what aspects of an
application can actually be exploited by malicious actors
and are functional at runtime. Coupling this insight with
vulnerability intelligence around exploitability and known
exploitation can minimize toil on development peers, in
addition to maximizing the time spent on the most critical
vulnerabilities that genuinely pose the most organizational
risk.
Another challenging dynamic at play in the OSS discussion
is that OSS suppliers are not traditional suppliers. The
majority of OSS is provided as is, meaning the entities
consuming these projects, components, and libraries are
doing so at their own peril, and should be taking full
responsibility for its use. Unlike proprietary software, OSS
is generally not in the purview for things such as service

https://t.me/PrMaB2

http://www.linkedin.com/posts/planetlevel_what-about-transitive-dependencies-i-hear-activity-7090447433146515456-n4GW?utm_source=share%26utm_medium=member_desktop


level agreements (SLAs) or contractual language that
requires them to update or patch software within a defined
time period, nor address vulnerabilities in a timely manner,
if at all. Many organizations have begun widespread
adoption and use of OSS in their applications and systems
without accounting for this reality. This isn't to say that
OSS maintainers won't address vulnerabilities or risks for
the community, but they are typically not required to do so.
This reality is starting to be addressed by emerging
requirements in some sectors, such as in the U.S. federal
ecosystem, where emerging requirements such as the
Office of Management and Budget (OMB) Memoranda M-
22-18 and M-23-16 mandate that technology suppliers
selling to the federal government perform due diligence of
the OSS components they include in their products and
services, and take responsibility for the OSS components in
their products. We've also begun to see similar language in
international regulations and efforts such as the EU Cyber
Resilience Act (https://digital-
strategy.ec.europa.eu/en/policies/cyber-resilience-act), which
requires software suppliers to remain aware of the
vulnerabilities of OSS components in their products.
In 2023, the White House and Office of the National Cyber
Director (ONCD) along with the Cybersecurity and
Infrastructure Security Agency (CISA) and others released
a request for information (RFI) on open source software
security. The RFI's intent is to help federal leadership
develop a strategy and action plan to strengthen the
security of the OSS ecosystem. Following the Log4j
incident, the White House also established an interagency
working group named the Open-Source Software Security
Initiative (OS3I) to use policies and government resources
to bolster OSS security.

https://t.me/PrMaB2

https://digital-strategy.ec.europa.eu/en/policies/cyber-resilience-act


Luckily, guidance has begun to emerge about secure OSS
use and governance. NIST, for example, has provided a
dedicated page stemming from the cybersecurity EO titled
“Software Security in Supply Chains: Open Source
Software Controls” (www.nist.gov/itl/executive-order-14028-
improving-nations-cybersecurity/software-security-supply-

chains-open). It focuses on software supply chain security,
providing guidance to organizations on securely using OSS.
Although these guidance sources aren't exhaustive, they
can move organizations in a positive direction with regard
to consuming, securing, and governing their use of OSS, as
well as gaining a baseline level of understanding of the
potential security implications of OSS usage. The guidance
lays out recommendations across a maturity spectrum from
foundational, sustaining, and enhancing capabilities. It
includes activities such as identifying publicly known
vulnerabilities in OSS, acquiring OSS via secure channels
and from trustworthy sources, as well as utilizing tooling
such as software composition analysis (SCA) and internal
repositories of known and trusted OSS components.
However, as many practitioners will note, some of these
activities can be difficult in large complex environments
with many development teams, systems, and processes. To
address these challenges and others associated with OSS
consumption and integration, innovative vendors have
begun providing capabilities to help developers make risk-
informed decisions around OSS use, including not just
known vulnerabilities that are trailing risk indicators, but
also metrics that serve as leading risk indicators such as
maintenance, provenance, and others that can inform
secure OSS usage.
We're supporters of a diverse, vibrant, and thriving OSS
ecosystem, but we also understand that it comes with its
own unique risks and considerations, and that
organizations must account for these issues as part of their

https://t.me/PrMaB2

http://www.nist.gov/itl/executive-order-14028-improving-nations-cybersecurity/software-security-supply-chains-open


broader vulnerability management program. While OSS
adoption and use has grown significantly over the last
several decades, organizations' governance and rigor
around secure OSS usage hasn't followed the same
trajectory.
We're hopeful with the increased dialogue in the industry
and the growth of software supply chain attacks, that
organizations will begin to implement security practices to
mitigate the risk of insecure OSS usage, while still allowing
OSS to serve as a critical part of the modern digital
landscape.

Software-as-a-Service

While it may seem odd to specifically call out software-as-a-
service (SaaS) from the broader cloud discussion, there is
good reason for doing so. Studies show that while
organizations may be using two to three IaaS providers,
they're often using several hundreds of SaaS providers.
This means that an increasingly large portion of software is
being consumed over the IaaS.
Anyone who has been around cybersecurity for some time
is inevitably familiar with the concept of shadow IT, which
is IT that's being used within an organization unbeknownst
to the IT/security team(s). This IT, or software, can (and
often does) have security implications for the organizations,
because it may have misconfigurations, vulnerable
implementations, or outright vulnerabilities that are not on
the radar of the organization's security staff and, therefore,
go unaddressed.
This challenge is further exacerbated by SaaS, where
organizations often struggle to have good visibility into the
extent of the SaaS that an organization is consuming,
especially when business units can simply use a credit card
and email address to begin consuming SaaS and begin

https://t.me/PrMaB2



placing potentially sensitive organizational data into the
SaaS environment without any sort of governance or
oversight. When we discuss the fundamental need for
software asset inventory, as long advocated for by sources
such as the CIS Critical Security Controls, SaaS is included
in that equation, as it's still part of the organization's
software asset inventory, albeit consumed over the Internet
rather than hosted in their own environments.
Many organizations rely on compliance frameworks to gain
a level of assurance around their SaaS consumption. While
frameworks such as SOC-2 and the Federal Risk and
Authorization Management Program (FedRAMP) do have
their place, compliance doesn't equal security. Just because
a SaaS provider has a compliance certification doesn't
mean there won't be any vulnerabilities or risk associated
with that SaaS application. Furthermore, going back to the
SRM, the CSP is responsible for their side of the model,
such as the underlying compute, infrastructure, and
hosting environment. In the case of SaaS, this, of course,
includes the application and software itself, but it doesn't
mean SaaS providers are infallible, nor that consumers
can't misuse the SaaS offering by implementing vulnerable
configurations, or by not properly safeguarding sensitive
data or doing fundamentals such as proper access control.
This is where tooling such as SaaS Security Posture
Management (SSPM) comes into play. Much like the
broader Cloud Security Posture Management (CSPM)
tooling category, SSPM tools help organizations conduct
scans of their SaaS environments for vulnerabilities and
misconfigurations that may be placing them at risk and
exposing them to malicious actors' nefarious activities. As
we've discussed, malicious actors have continued to realize
the concentrated rich targets that entities such as CSPs,
including SaaS providers, represent, and have begun
targeting them. For example, in 2022, a malicious

https://t.me/PrMaB2



campaign targeted popular SaaS providers such as Twilio
and 130 other organizations, as part of a several months'
long hacking spree using phishing techniques.
In addition to tooling, we've seen increased industry efforts
to push for SaaS governance and security, including
publications by organizations such as the Cloud Security
Alliance (CSA) with their paper “SaaS Governance Best
Practices for Cloud Customers”
(https://cloudsecurityalliance.org/artifacts/saas-governance-
best-practices-for-cloud-customers). This paper advocates for
not only tooling such as SSPM, but also for organizations to
bolster their governance and security of SaaS usage,
moving beyond compliance frameworks into SaaS-specific
security practices and considerations.

Systemic Risks

While it's true that the majority of cloud security incidents
are and have been due to customer misconfigurations,
increased calls have been made by U.S. leaders such as
CISA for “Secure-by-Default/Design” systems and software
(www.cisa.gov/securebydesign). There's also an emphasis in the
2023 National Cybersecurity Strategy (NCS) that has
called for shifting the burden of responsibility from
downstream consumers to those best positioned to address
insecure systems, software, and vulnerabilities, which often
includes software suppliers like CSPs.
Other industry organizations such as the Atlantic Council
have begun raising concerns around the ubiquity of cloud
and adoption across critical infrastructure, and the need to
ensure that the cloud is secure. In fact, the Atlantic
Council's article titled “Critical Infrastructure and the
Cloud: Policy for Emerging Risk” states that cloud security
is directly tied to U.S. economic and national security
(https://dfrlab.org/2023/07/10/critical-infrastructure-and-the-

https://t.me/PrMaB2

https://cloudsecurityalliance.org/artifacts/saas-governance-best-practices-for-cloud-customers
http://www.cisa.gov/securebydesign
https://dfrlab.org/2023/07/10/critical-infrastructure-and-the-cloud-policy-for-emerging-risk


cloud-policy-for-emerging-risk). It points out how hyperscale
CSP outages and incidents have had cascading impacts
across some of the largest technology companies in the
world, who often build on top of these IaaS CSPs. The
article emphasizes how, depending on the functionality of a
critical infrastructure sector, concerns such as data
storage, scalability, and continuous availability
requirements could have consequences that impact key
services and safety. The potential concerns and systemic
risks range across sectors such as healthcare,
transportation, energy, and defense, among others.
We've also seen government leaders criticize some of the
leading CSPs for not providing basic security functionality,
such as logging and monitoring, without charging
customers extra for these features. In 2023, this occurred
to CSP Microsoft Azure due to malicious activity by Chinese
hackers. It led to hackers accessing users' Exchange Online
and Outlook.com environments and potentially more due to
compromised keys, allowing the threat actors to forge
access tokens for multiple types of Azure Active Directory
applications such as SharePoint, Teams, and OneDrive.
This particular situation left millions of Microsoft and
customer applications vulnerable, and many customers
lacking the sufficient logging to determine if they were
impacted, leading to outcry from leaders such as U.S.
Senator Ron Wyden, who called for the government to hold
Microsoft accountable for “negligent cybersecurity
practices” (www.reuters.com/technology/us-senator-wyden-asks-
ftc-cisa-doj-take-action-against-microsoft-following-hack-2023-

07-27).
Some CSPs such as Google Cloud have begun to call for a
shift from the traditional SRM to one of “Shared Fate”
(https://cloud.google.com/security/shared-fate). Google points
out that a “trust issue in one cloud can impact the trust in
all clouds,” alluding to the fact that if one of the major

https://t.me/PrMaB2

https://dfrlab.org/2023/07/10/critical-infrastructure-and-the-cloud-policy-for-emerging-risk
http://outlook.com/
http://www.reuters.com/technology/us-senator-wyden-asks-ftc-cisa-doj-take-action-against-microsoft-following-hack-2023-07-27
https://cloud.google.com/security/shared-fate


CSPs experiences a security incident, or even a perceived
lack of trust, it can undermine the trust in the entire cloud
computing ecosystem.
Much like the CISA publications we discussed previously,
there's an emphasis on shifting the responsibility to the
CSP, who has the resources and expertise that customers
often lack, to take an increased role in securing cloud
environments. Some key configurations and services have
experienced several notable security incidents, such as the
inadvertent exposure of AWS S3 storage buckets where
customers' sensitive data was publicly exposed to the world
through a misconfiguration. AWS made the S3 default
configurations private in late 2022 (www.securityweek.com/aws-
s3-buckets-exposed-millions-facebook-records), but this was
after a decade and several visible and damaging
misconfigurations by AWS customers that exposed millions
of sensitive records (https://aws.amazon.com/about-aws/whats-
new/2023/04/amazon-s3-security-best-practices-buckets-default),
including those found in industries such as defense and
intelligence (www.bleepingcomputer.com/news/security/top-
secret-us-army-and-nsa-files-left-exposed-online-on-amazon-s3-

server).
Hyperscale CSPs represent rich targets for malicious
actors looking to exploit organizations. And if they are able
to compromise a CSP, it can have a cascading impact on
the downstream consumers and customers using those
platforms. As we discussed in the chapter's introduction,
CSPs function on a multi-tenant model, and depending on
the compromise's severity as well as the security control
levels in place, some malicious activity can move laterally,
impacting many customers utilizing cloud services.
Security vendors have begun to advocate for best practices
to enhance tenant isolation when operating in cloud
environments such as PaaS and SaaS. For example,
security vendor Wiz published their “PEACH” framework

https://t.me/PrMaB2

http://www.securityweek.com/aws-s3-buckets-exposed-millions-facebook-records
https://aws.amazon.com/about-aws/whats-new/2023/04/amazon-s3-security-best-practices-buckets-default
http://www.bleepingcomputer.com/news/security/top-secret-us-army-and-nsa-files-left-exposed-online-on-amazon-s3-server


(www.datocms-assets.com/75231/1671033753-peach_whitepaper_ver1-
1.pdf), which focuses on items such as external interfaces,
security boundaries, hardening, and vendor transparency.
Security practitioners and researchers have begun to
highlight cross-tenant vulnerabilities, which have the
potential to impact multiple tenants via a single
vulnerability exploitation, allowing malicious actors to
impact multiple tenants of a CSP concurrently. For
example, in late 2022, vendor Lightspin highlighted an
AWS Elastic Container Registry Public (ECR Public)
vulnerability that allowed external actors to delete, update,
and create ECR Public images that belonged to other AWS
accounts (www.bleepingcomputer.com/news/security/amazon-ecr-
public-gallery-flaw-could-have-wiped-or-poisoned-any-image).
Similarly, in early 2022, a security researcher identified a
zero-day vulnerability in Microsoft Azure impacting the
Azure Cognitive Search (ACS) service that allowed
malicious actors to access data located in private instances
of the ACS service from any tenant and location
(www.mnemonic.io/resources/blog/acsessed-cross-tenant-network-
bypass-in-azure-cognitive-search). There was a six-month
window from when the vulnerability was reported to when
it was remediated by Microsoft Azure.
Although it stands true that the majority of cloud security
breaches and incidents are due to activities on the
customer's side of the traditional SRM, there are indeed
systemic risks and concerns associated with cloud
computing as industries increasingly move their
infrastructure and operations to CSPs. Because of these
realities, vulnerabilities or incidents impacting CSPs have
the potential to impact thousands of organizations and
millions of individuals as a result of the widespread societal
dependence that now exists for CSPs.

https://t.me/PrMaB2

http://www.datocms-assets.com/75231/1671033753-peach_whitepaper_ver1-1.pdf
http://www.bleepingcomputer.com/news/security/amazon-ecr-public-gallery-flaw-could-have-wiped-or-poisoned-any-image
http://www.mnemonic.io/resources/blog/acsessed-cross-tenant-network-bypass-in-azure-cognitive-search


This is an issue that not only individual organizations need
to consider from a vulnerability management perspective,
but also one that society must consider from a risk
management and resilience perspective as well.

Summary

As it's easy to see, vulnerability management in the age of
cloud and DevSecOps can be a complex subject. On one
hand, the introduction of concepts such as shared
responsibility models and shifting left, along with the
massive growth of open source software, have presented
several challenges for vulnerability management. That said,
many innovations have also been introduced by sharing the
responsibility for vulnerability management, offloading
some activities to a provider, utilizing declarative
languages to codify and version-control infrastructure, and
being able to automate traditional security activities. The
challenges are further exacerbated by the growth of
software supply chain attacks, and malicious actors
realizing how entities like CSPs, managed service
providers, and widely used proprietary products and OSS
components represent rich targets due to their potentially
massive downstream dependencies. We hope that readers
walk away from this chapter with an understanding of how
to manage vulnerabilities in the era of cloud-native
technologies and DevSecOps methodologies and tooling.

https://t.me/PrMaB2



10 

The Human Element in Vulnerability

Management

It should be evident by this point in the book that
vulnerability   management is quite complex. Several tools,
techniques, and processes can be used to reduce
complexity and automate where possible. However, the
same difficulties still exist, and organizations with a
massive backlog of vulnerabilities must consider
alternatives. In the cybersecurity space, the human
element has come to the forefront as the way forward to
enhance cyber programs and reduce risks in enterprise.
This chapter discusses the psychological components that
should be incorporated into a modern vulnerability
management program (VMP). This program includes the
discipline of human factors, security engineering methods,
as well as cognition and perception. Each piece of the
human experience impacts how vulnerabilities are
identified, prioritized, and ultimately resolved.
Many legacy vulnerability management documents and
guidance, however, don't speak to the human aspect of
vulnerability management programs. Each person, whether
they are a system owner, an IT professional, systems
engineer, security analyst, or technical manager, has a
unique experience to bring to the table. Incorporating the
human element in vulnerability management includes the
way that individuals process information, make decisions,
and ultimately are responsible for aspects of the VMP.
This chapter covers how organizations can build better
VMPs by understanding how their users as well as their IT
and security practitioners interact with systems.

https://t.me/PrMaB2



Modernizing vulnerability management can no longer
solely focus on the technical aspects and specific common
vulnerabilities and exposures identifications (CVE IDs) of
vulnerabilities. To mature VMPs and reduce risk,
organizations must consider the impact of the people
behind the vulnerability management life cycle.
Figure 10.1 illustrates the entire vulnerability management
life cycle. There are many variations of this life cycle, but
for the purposes of creating a mature VMP, there are six
overall steps to follow. The full life cycle starts with
identification, then categorization, prioritization,
mitigation, validation, and reporting. Each step as outlined
in the figure is essential to create a mature and
comprehensive VMP.

https://t.me/PrMaB2



Figure 10.1: Vulnerability management life cycle

While neither author is a trained psychologist, the
psychological concepts discussed in this chapter are meant
to give management and practitioners the opportunity to
evaluate vulnerability management outside the typical
technology problem set. The human factors concepts
presented next are meant to encourage individuals to

https://t.me/PrMaB2



pursue potential avenues for vulnerability remediation,
instead of simply patching or applying configurations.
Consider each section of this chapter as an opportunity to
enhance and grow your organization's vulnerability
management practices using human factors engineering
(HFE) and psychological concepts.

Human Factors Engineering

Human factors engineering (HFE) is defined by the Human
Factors and Ergonomics Society (HFES) as “an applied
science that takes research about human abilities,
limitations, behaviors, and processes and uses this
knowledge as a basis for the design of tools, products, and
systems” (www.hfes.org/About-HFES/What-is-Human-Factors-and-
Ergonomics).
While there are numerous different versions of this
definition, we think the one from HFES covers the most
important factors of HFE. The mission of HFE is to
understand the psychological aspects of people in order to
design systems that are efficient and tailored for our use.
HFE originated during World War II (www.hfes.org/about-
hfes/hfes-

history#:~:text=Human%20factors%20concerns%20emerged%20during,s

ystems%20performance) as a reaction to building better manned
systems on land, air, and sea. The initial HF studies focused
on systems performance, information presentation, and
recognition issues, as well as physical workspace areas and
skills. Human factors have been integral in aviation
maintenance and security, including studying human
conditions like stress, complacency, and levels of fatigue.
To learn more, see
www.faasafety.gov/files/gslac/courses/content/258/1097/AMT_Hand

book_Addendum_Human_Factors.pdf.

https://t.me/PrMaB2

http://www.hfes.org/About-HFES/What-is-Human-Factors-and-Ergonomics
http://www.hfes.org/about-hfes/hfes-history#:~:text=Human%20factors%20concerns%20emerged%20during,systems%20performance
http://www.faasafety.gov/files/gslac/courses/content/258/1097/AMT_Handbook_Addendum_Human_Factors.pdf


HF became so incredibly important to the aviation industry
because of the need to avert accidents, reduce workplace
injuries, and avoid wasting time on similar activities. Each
HF component aims to improve the safety and efficiency of
the humans performing a task. And while HFE began as a
physical discipline—an example being the design of a
hammer to suit a human hand—it has evolved over time to
account for other areas of study.
As technology has evolved and we've ushered in the digital
age, human factors have become a staple of people-
centered design. This means that HFE no longer is
designing hammers or physical objects, but improving
products or designs where there is user interaction, as
explained in the article “Human Factor Principles in UX
Design” in UX Magazine: https://uxmag.com/articles/human-
factor-principles-in-ux-

design#:~:text=Human%20factors%20design%20(or%20people,tasks%20

on%20your%20desktop%20computer. A simple example includes the
shopping cart experience on a website.
HF's goal within the design and user interaction (UI) is to
reduce mistakes by users and create an easier use of
applications and software products. Human factors are the
integration of many different disciplines like psychology,
engineering, design, and sociology, not to be confused with
user experience (UX), which is the entire user's experience,
from browser interaction to authentication process. Figure
10.2 shows the various psychological, engineering, and
design components that make up the human factors
discipline.

https://t.me/PrMaB2

https://uxmag.com/articles/human-factor-principles-in-ux-design#:~:text=Human%20factors%20design%20(or%20people,tasks%20on%20your%20desktop%20computer


Figure 10.2: How human factors incorporate psychology,
engineering, and design

Human factors are mostly focused on the interaction of the
system and based on ergonomics, and they are incredibly
important to human-computer interaction (HCI). The
following article speaks in depth about how HCI is a
multidisciplinary field that is hyper-focused on the
interaction between users and their computers
(www.interaction-design.org/literature/topics/human-computer-
interaction). This evolution of human factors, HCI, and UI

https://t.me/PrMaB2

http://www.interaction-design.org/literature/topics/human-computer-interaction


has become a separate field of study and expertise within
the last several years.
As human factors become increasingly spread among areas
of technology, their relevance to all areas of IT grows. And
it's not just IT, but HFE has been used across information
security and cybersecurity since the mid-2000s. HF
research has grown in academic areas to insider threat,
information security culture, and threats to critical
infrastructure.
To delve into how HFE has impacted cybersecurity, this
chapter covers various areas of psychology and design.
From context switching to cognition, each piece of human
factors security engineering will align into building a
mature and comprehensive VMP.

Human Factors Security Engineering

Cyberattacks are only increasing and becoming more
sophisticated. Unfortunately, they are also easier to
conduct, and will continue to be, based on the major
advances with artificial intelligence (AI) and ease of
purchase, like ransomware-as-a-service (RaaS). See the
CrowdStrike article on RaaS at
www.crowdstrike.com/cybersecurity-101/ransomware/ransomware-as-

a-service-raas. To combat these growing threats,
cybersecurity programs must consider finding the root
cause of missing security controls or lack of maturity in
their VMPs.
As Calvin Nobles identified in the paper titled “Human
Factors in Cybersecurity: Academia's Missed Opportunity”
(https://aisel.aisnet.org/mwais2023/8), the lack of human
factors in cybersecurity education has limited the
knowledge of human behavior in cyber programs. This
paper focused on the lack of human factors in education,

https://t.me/PrMaB2

http://www.crowdstrike.com/cybersecurity-101/ransomware/ransomware-as-a-service-raas
https://aisel.aisnet.org/mwais2023/8


but there's also a missed opportunity in the technical
space. From retention and recruitment of cybersecurity
professionals, to understanding the burnout and stress
levels of IT and cyber practitioners, human factors security
engineering can help identify the human components
affecting risk in an organization.

Context Switching

One of the overlaps between psychology and cybersecurity
is the idea of multitasking and context switching. The
American Psychological Association (APA) defines
multitasking as doing more than one complex task at a
time, which can reduce productivity. An example would be
as simple as having six different email accounts, all for
different purposes, and checking them all multiple times in
a row. The same APA definition also notes that when people
perform multiple tasks at once, they are more likely to
experience mental overload, which can be disastrous
depending on the type of work the individual is attempting
to do (www.apa.org/topics/research/multitasking).
But multitasking can also have a few other meanings. It can
also mean when someone tries to do two tasks at once,
switches tasks, or performs multiple tasks back-to-back.
Psychologists have been conducting studies on multitasking
and switching costs for many years, and even more recently
in the field of cybersecurity. Any cybersecurity professional
is typically managing multiple products, dashboards, tools,
systems, and applications all at the same time.
As an example, security analysts who work in a security
operations center (SOC) might manage multiple
vulnerability dashboards, use numerous security tools for
investigations or analysis, and would need to review large
data amounts for security incidents and monitoring. The
Panaseer 2022 Security Leaders Peer Report study noted

https://t.me/PrMaB2

http://www.apa.org/topics/research/multitasking


that large corporations may be using around 75 security
tools within their organizations
(https://online.sbu.edu/news/top-10-cyber-security-
tools#:~:text=As%20cyberattacks%20increase%2C%20companies%20are

,security%20tools%20for%20their%20companies). These tools
include endpoint detection and response (EDR), network
monitoring, vulnerability scanners, and security
information and event management (SIEM) tools.
Figure 10.3 shows how complex SOC tooling can become,
especially for larger organizations that may be managing
hundreds or thousands of devices.

Figure 10.3: Example of SOC tools and complexity
Each of these dashboards, tools, or applications would be
independent and require its own web apps, login pages,
configurations, and different user experiences. An analyst
needs to review each tool several times a day, while also
monitoring emails and messaging systems, attending
meetings, and responding to alerts. Typically, they will be
monitoring all at one time or switching quickly between
each application as they gather more information.
Another example: Security engineers may be working
between development teams, management, and the

https://t.me/PrMaB2

https://online.sbu.edu/news/top-10-cyber-security-tools#:~:text=As%20cyberattacks%20increase%2C%20companies%20are,security%20tools%20for%20their%20companies


security analysts when either developing new applications
or responding to incidents. Depending on their specific job
roles, they might have many responsibilities across teams,
vulnerability management, and development activities to
support their cybersecurity program. Security engineers
would be experiencing the same types of context switching
between different cloud environments, development
projects, and even various standards and legislation that
would affect different systems.

Vulnerability Dashboards

Ideally, an organization would have one vulnerability
scanner and reporting tool within its environments.
Usually, these tools come with configurable dashboards
that display known vulnerabilities, exploits, vulnerable
systems and applications, and much more. Because these
dashboards are highly configurable, each organization will
have a unique setup. The trouble comes when there are
multiple dashboards for monitoring many vulnerabilities,
environments, system types, and applications.
Even with just the vulnerability dashboard, security
analysts and engineers might have to switch between
multiple dashboards and areas within the tool to obtain the
whole vulnerability management view. Figure 10.4 shows a
typical vulnerability dashboard, including the total volume
of vulnerabilities in the environment, recent scan data, and
other relevant metrics. There are many customization
options, from heat maps to pie charts or specific system
information.
This example highlights one possible dashboard that an
analyst or engineer would need to review. If there were
multiple systems, types of vulnerabilities for tracking, or
various systems owners, the dashboards would multiply.
This does not include the various vulnerability reports that

https://t.me/PrMaB2



would be sent to the systems administrators to show
vulnerabilities for tracking remediation and validating that
configurations are still in place.
Each view of vulnerabilities, whether through the
dashboards or reports, is another web page or spreadsheet
to review. Again, this is only one example of context
switching for information that individuals would have to
review on a daily or weekly basis. This example alone
highlights exactly why mature automated patch
management strategies are the most effective at
remediating vulnerabilities and cutting down on the
cognitive loads that individuals experience daily.
Organizations should consider the way that vulnerabilities
are visualized to users just as important as the data itself.
Consider a 400-page vulnerability report in a Microsoft
Excel file, versus a dashboard of the most important
vulnerabilities. A 400-page report would require parsing,
sorting, and filtering the data to find the most critical
vulnerabilities to prioritize what is fixed first. That does not
mean that a 400-page report should be excluded, but that it
may be better as a secondary document. A large Excel
spreadsheet or a dashboard with the top five exploitable
vulnerabilities or top five most vulnerable systems limits
the data volume that someone would need to ingest and
then act upon.

Vulnerability Reports

As discussed, vulnerability reports are a common way to
provide information to individuals who are responsible or
accountable for vulnerability management. Figure 10.5 is
an example of a typical spreadsheet or output from a
vulnerability scan report. In this report, there are the
names of vulnerabilities, CVE IDs, vulnerability severity
scores, and associated details for remediation. Common

https://t.me/PrMaB2



reports also include hostnames, IPs, system tagging
(association or type of system or application), and any
other contextual information for the organization.
As seen in Figure 10.5, vulnerability reports can be
complex and contain numerous data fields. These reports
can consist of numerous pages and sent daily, weekly, or
monthly to system owners.
Long gone are the days of using massive spreadsheet
reports to track and resolve vulnerabilities. With any
serious backlog of vulnerabilities, it is ineffective for
anyone to review or act upon this amount of information.
Making risk decisions based solely on large spreadsheets
adds to confusion, frustration, and ultimately lost time.
Trying to determine which items are most important in that
manner can lead to missed potentially critical or exploitable
vulnerabilities.

Figure 10.4: Example of vulnerability dashboard

https://t.me/PrMaB2



Figure 10.5: Example of a vulnerability report

Several other issues can arise from using a large
vulnerability report, versus even a shorter document or
dashboard. Consolidating those metrics shrinks the
information window a user needs to consume by a large
amount. This allows the individual to focus on the most
critical vulnerabilities, most vulnerable systems, or maybe
the most important assets to the specific organization.

Cognition and Metacognition

Although the fields of human factors and psychology are
large and cannot be covered in their entirety in this
chapter, let's look at some of the most pertinent
components of psychology as they relate to vulnerability
management teams and remediation efforts. To start, the
concepts of cognition and metacognition relate to VMPs
and how system owners manage vulnerabilities.

https://t.me/PrMaB2



Cognition, put very simply, is the way we think. The
American Psychological Association (APA)
(www.apa.org/topics/cognition-
brain#:~:text=Cognition%20includes%20all%20forms%20of,the%20APA

%20Dictionary%20of%20Psychology) explains that cognition
includes knowing, awareness, perceiving, remembering,
judging, problem-solving, and more. According to APA, this
is a larger term to describe how our brain operates, and
there are three identified components of the mind:
cognition, affect, and conation. While this chapter's
intention isn't to explore cognition in depth, it introduces
the higher-level concept in psychology that will then be
discussed as it specifically relates to cybersecurity and
vulnerability management.
A paper titled “Metacognition” by the Massachusetts
Institute of Technology (https://tll.mit.edu/teaching-
resources/how-people-learn/metacognition) details
metacognition, which is the process where humans use
knowledge of a task, learning strategies, or their own
thought process to monitor progress and evaluate
outcomes of projects. In short, metacognition is evaluating
the way that we think to improve our decision-making over
time.
Metacognition is an important topic for vulnerability
management because of our need to continue improving
our thought process for identification and remediation over
time. A VMP one year may not work the same way the next,
and will require some additional thought as to what is
working, what isn't, and what can be improved upon.
For example, if in prior years the VMP prioritized
vulnerabilities based on Common Vulnerability Scoring
System (CVSS) scores (not an uncommon practice), they
may have access to the CISA KEV or have the bandwidth to
implement more decision-making around emergency power

https://t.me/PrMaB2

http://www.apa.org/topics/cognition-brain#:~:text=Cognition%20includes%20all%20forms%20of,the%20APA%20Dictionary%20of%20Psychology
https://tll.mit.edu/teaching-resources/how-people-learn/metacognition


supply systems (EPSS). This would change the VMP
strategy for prioritizing vulnerability remediation activities.
Each organization should have their own process for
reviewing their VMP's decision-making techniques.

Vulnerability Cognition

The paper “Vulnerability Cognition and Communication”
explores vulnerability cognition as the immense
information that an individual would require to understand
vulnerabilities in depth
(www.softsideofcyber.com/vulnerability-cognition-and-
communication). This terminology isn't to be confused with
the psychological term cognitive vulnerability. Vulnerability
cognition exists simply to describe the in-depth nature of
vulnerability management, and how difficult it can be to be
an expert in vulnerability management as well as a
developer, infrastructure architect, or management and
leadership. The point is, not everyone is required to be a
vulnerability management expert, but they must loosely
understand risk management and what vulnerabilities
mean to the systems they own and manage.
The book Emerging Cyber Threats and Cognitive

Vulnerabilities (Academic Press, Bensen & McAlany, 2019)
dives deeper into the role that human behaviors have in the
cybersecurity field. This book specifically delves into how
psychology plays into the minds of hackers and the
offensive side of cybersecurity, but not so much from the
network defender's side.
Numerous textbooks, articles, and certification courses are
aimed at including psychology in social engineering,
decision-making implications for hackers to conduct
attacks, and more from the red-teaming angle. But
cognition, metacognition, and other psychological

https://t.me/PrMaB2

http://www.softsideofcyber.com/vulnerability-cognition-and-communication


components are just as important to integrate into network-
defense concepts, like vulnerability prioritization and
remediation.
Decision-making and human behavior belong just as much
within the creation of a VMP, including decisions around
tooling, considerations for building proper processes, and
helping the technical practitioners determine risk across
the enterprise.

The Art of Decision-Making

Vulnerability management is primarily focused on how
practitioners decide to remediate vulnerabilities, find and
categorize systems, and prioritize vulnerabilities. In short,
it's simply about decision-making.
Decision-making is the foundation to creating a successful
VMP. The research article “Decision-making and biases in
cybersecurity capability development: evidence from a
simulation game experiment” centers around an
experiment the authors conducted to determine how
decisions are made within cybersecurity teams (see
www.sciencedirect.com/science/article/pii/S0963868717304353).
This study wanted to understand how decision-makers
would overcome two complex situations in a cybersecurity
scenario.
Ultimately, the researchers found that decision-makers
made errors when dealing with the uncertainty of
incidents. They suggested that decision-makers in
cybersecurity roles focus on systems thinking, but that
additional research will be needed to determine the impact
of decision-making on cybersecurity incidents.
While that research primarily covered cybersecurity
incidents, this type of study highlights the need for proper
decision-making techniques across cybersecurity programs.

https://t.me/PrMaB2

http://www.sciencedirect.com/science/article/pii/S0963868717304353


To investigate this further, the following sections cover
decision fatigue, alert fatigue, and the sheer volume of
vulnerabilities released that compound complexity on
prioritization.

Decision Fatigue

Decision fatigue is a common phenomenon found across
healthcare, technology, and other industries. The study
“Decision Fatigue: A Conceptual Analysis”
(www.ncbi.nlm.nih.gov/pmc/articles/PMC6119549) discusses this
type of fatigue in healthcare. The researchers stated that
decision fatigue was consistent across three separate
themes in a healthcare setting: decisional, self-regulatory,
and situational. However, the authors noted that, at the
time, more research and investigation was required to fully
understand the consequences of fatigue.
Decision fatigue is also seen in cybersecurity (and
vulnerability management programs, specifically) across
many areas. For the context of this book, the sheer volume
of decisions that a VMP is required to make is based on
vulnerability scoring, patches released, and the types of
hardware and software in the environment, among other
factors. These technical decisions must be balanced with
business decisions and ongoing IT projects, audit and
assessment findings, as well as any regulatory or legal
considerations for determining which vulnerabilities to
remediate first.
The possible risk implications of decision fatigue include
potentially missing critical or highly exploitable
vulnerabilities, limiting focus based on severity scores and
missing other types of vulnerabilities, and potentially
focusing resources on the wrong activity types. Each of
these decisions can negatively impact the risk of the
organization and lead to cyber incidents.

https://t.me/PrMaB2

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6119549


Alert Fatigue

Another type of fatigue, alert fatigue—discussed in the
article “Combat Security Alert Fatigue with AI-Assisted
Techniques” https://cset21.isi.edu/papers/cset21-5.pdf)—is
commonly noted in the security operations center (SOC)
within a cybersecurity program. Alert fatigue is typically
described as the inability to review and act upon the high
volume of alerts noted in SIEM. It's also incredibly common
for larger organizations to have multiple products that
collect audit and security events into a location and alert on
different requirements.
One example would be setting a threshold of alerting the
SOC after five bad login attempts, followed by a successful
one for an administrator account. This would trigger an
investigation and the creation of tickets for the analysts to
determine whether it is a true or a false positive.
Each event, alert, ticket, and investigation can lead to alert
fatigue for SOC analysts. Regarding vulnerability
management, the increased number of alerts around
patches due, exploitable vulnerabilities, and even industry
alerts based on the types of exploits can lead security
engineers and system owners to be overwhelmed and
ultimately frustrated by the constant onslaught of
vulnerability information. Alert fatigue can lead to missed
patches and late scheduled remediation activities, and
ultimately increase the risk across the environment.

Volume of Vulnerabilities Released

Patrick Garrity, an industry expert on vulnerability
statistics and visualization, has released several insightful
graphics (https://nucleussec.com/insights-into-vulnerability-
management-V1), including metrics for vulnerability statistics
throughout the industry, with his goal being to help
understand the problems behind large vulnerability

https://t.me/PrMaB2

https://cset21.isi.edu/papers/cset21-5.pdf
https://nucleussec.com/insights-into-vulnerability-management-V1


backlogs. Of these articles and insights, he noted that there
are 925 vulnerabilities in the CISA KEV catalog (as of this
writing). There are also thousands of vulnerabilities
catalogued annually within the National Vulnerability
Database (NVD).
This incredible volume of vulnerability data could lead to
cognitive overload, alert or decision fatigue, or overall
stress and burnout for individuals managing vulnerabilities.
Every year, there's an increase of vulnerabilities identified,
analyzed, and updated within the NVD and CISA KEV. As
the volume of vulnerabilities continues to grow, we will
need to consider additional methods for understanding how
the human in the loop handles this growing problem.
Organizations should be aware that as vulnerability
backlogs grow, their teams may feel overwhelmed and
frustrated, and require more automation and augmentation
to assist them in remediation activities.

Required Patches and Configurations

Patches are released constantly (as noted in the following
article by Tenable)—a familiar day for any system owner is
“Patch Tuesday” (www.tenable.com/blog/patch-tuesdays-impact-
on-cybersecurity-over-the-years) where Microsoft releases
bulk patches for products on every second Tuesday of the
month. Anyone who manages Windows systems is familiar
with the regular cadence for patches, as well as out-of-band
patches for other products for zero-day or critical
vulnerabilities. This is just one vendor. Given the wide
variety of operating systems and applications available,
patches are released daily.
Each vendor has their own patch cycle—some as long as
quarterly, some as frequently as daily or weekly (like
Google Chrome). So for any teams that manage multiple
products and OS levels, managing patches can be complex

https://t.me/PrMaB2

http://www.tenable.com/blog/patch-tuesdays-impact-on-cybersecurity-over-the-years


and require multiple alerts, notifications, and monitoring
for updates and patches on a consistent basis. Given this
complexity, each organization and team needs to come up
with their own patch management strategy.
But until teams reach some type of automated and easy-to-
use patch management process, they will need to sign up
for alerts, monitor vulnerability scan reports, and
ultimately validate that those patches were installed
properly. This includes reviewing multiple vendor websites,
emails regarding patches, and the vulnerability dashboard,
in addition to many more tools, simply to identify which
patches need to be installed. This doesn't include the actual
installation and monitoring of patching activities, however.
Figure 10.6 illustrates the sheer amount of data that an
individual needs to ingest during patching and continuous
monitoring.
Whether an IT administrator, security analyst, engineer, or
system owner, everyone has duties outside of patch
management activities. Anyone who manages patching will
agree that this can be a cumbersome and lengthy task to
juggle among their other responsibilities.

https://t.me/PrMaB2



Figure 10.6: Funnel of data inputs for patching

Vulnerability Management Fatigue

Similar concepts, like alert fatigue, have been discussed
previously in this chapter. However, vulnerability

management fatigue specifically defines the burnout,
stress, and frustration while completing vulnerability

https://t.me/PrMaB2



management tasks. Based on research by Ponemon and
Rezilion (www.securityweek.com/vulnerability-management-
fatigue-fueled-non-exploitable-bugs), it would take someone
430 days (working 12-hour days) to clear the backlog of
vulnerabilities in larger organizations. With this statistic,
they are focusing on just the known exploitable
vulnerabilities, not the larger backlog of all vulnerabilities
identified.
This fatigue can enter a VMP in a variety of ways, the main
concern being the limited time, resources, and capability to
remediate every vulnerability. Add the complexity with
managing an operating environment in general, and
vulnerability management becomes a mountainous task.
Each VMP may handle this stress differently, but the
awareness that this type of frustration and stress exists can
allow organizations to help build in preventive measures.

Mental Workload

Another psychological concept that can be an aggravator of
vulnerability management fatigue is mental workload. As
humans, our brains can take in only so much information.
With the addition of context switching, our brains are
constantly making decisions based on mountains of data.
Even with the assistance of AI, chatbots, and generative AI,
we still need humans to make decisions. Understanding
mental workloads can give technical professionals and their
management an opportunity to build the various “security
fatigue” factors into their processes and tooling.
Consider the example of leveraging one SIEM solution
instead of three or four. Managing each separate solution
requires its own security, decisions for technology, as well
as processes and policies for each. Additional complexity
becomes inherent in decision-making and mental
workloads.

https://t.me/PrMaB2

http://www.securityweek.com/vulnerability-management-fatigue-fueled-non-exploitable-bugs


Specifically, within cybersecurity, a Forbes article in 2022
noted that cybersecurity professionals are at a much
greater risk for increased mental workloads simply based
on our changes in remote and in-office work environments,
delayed IT projects and improvements, and alert fatigue
from continuous and ongoing attacks in an environment
(www.forbes.com/sites/forbeshumanresourcescouncil/2022/12/14/ta
ckling-mental-health-and-burnout-in-cybersecurity/?

sh=e6e4c5036347). Add on the inherent complexity of modern
infrastructure and multicloud environments, and it
becomes a combination that makes it difficult to make
proper decisions, increases turnover for technical
professionals, and increases time for remediation.

Integration of Human Factors into a

VMP

Building HFE into a modern VMP will not take a day or
even a week. Organizations should thoroughly examine
where their own problems lie within the organization, but
they shouldn't focus simply on the technological or process
challenges that exist. Leadership and practitioners could
start with introspection, and then create a true problem
statement for each of their concerns.
One initial consideration is how teams are organized. How
large (or small) are the development, cybersecurity, and
operations teams? Organizations must determine if their
teams perform multiple actions across disciplines, or if
everyone has their own responsibilities. For example, if
there is a DevSecOps program, is there one individual
who's responsible for each aspect, or are there teams
dedicated to development, security, and operations
missions?

https://t.me/PrMaB2

http://www.forbes.com/sites/forbeshumanresourcescouncil/2022/12/14/tackling-mental-health-and-burnout-in-cybersecurity/?sh=e6e4c5036347


A second step, specifically for cybersecurity professionals,
is to share their own pain points within their role.
Specifically, what technology, people, or process is making
them less efficient and feeling frustrated with their daily
tasks? For instance, if a security engineer determines that
their largest inhibitor to efficiency is that they manage 10
different tools that all require separate logins, and it takes
them too much time to log in to each tool independently, a
simple solution could be integration of a single sign-on
(SSO) tool to cut down on time for logins.
After the teams determine where their specific problems
exist, then a roadmap can be created to consider the best
course of action. Understanding that many organizations
may not have the budget to build massive human factors
security engineering programs, it is crucial to determine
what is possible over time.

Start Small

With limited resources and budgets, organizations can
consider the items that have a major impact without major
costs. An initial recommendation is to do a simple survey
within their cybersecurity programs and with neighboring
departments like IT, cloud, development, and
infrastructure. Even the following three-question survey
could help get to the root of problems:

1. What technology problem is most inhibiting your
productivity?

2. What process problem is most inhibiting your
productivity?

3. Are there any individuals/teams who inhibit your
productivity or completion of tasks? If so, how?

https://t.me/PrMaB2



Leaving your survey questions open-ended and anonymous
is crucial to allowing individuals to express themselves in
the best way possible. All surveys should ensure that
participants feel comfortable being honest. Leadership can
conduct these surveys to identify any patterns or
challenges that are persistent across the teams. Once the
surveys are completed, that roadmap for resolution can be
created.
As shown in Figure 10.7, teams can come up with their own
roadmap, depending on the types of problem statements
that come from the initial survey. Of importance, these
surveys can be done over time to determine the
effectiveness of any solutions.

https://t.me/PrMaB2



Figure 10.7: Roadmap of solutions

Consider a Consultant

Another recommendation for building human factors into a
cybersecurity program is to hire an HF consultant. This
could be solely for leadership to understand HF factors in a
working group, or a workshop for cybersecurity
practitioners. Each team could develop new skills,
understand how HF could be integrated into their daily
tasks, and provide a new perspective when tackling tough
technical problems.

https://t.me/PrMaB2



A separate option would be to integrate HF specialists into
technical teams. Start with one HF security engineering
specialist, and see what benefits come to the teams. Allow
this program to last 6 months to a year; behavioral change
takes time, but the benefits could be long-lasting. Possible
benefits of even an initial interaction between human
factors and cybersecurity professionals could be repairing
of relationships, improved processes and efficiencies, and
overall risk reduction.
A final option for larger organizations, or even
organizations that may be concerned with their overall
backlog of vulnerabilities, would be to implement an HF
security engineering team. This team would work between
developers, infrastructure, operations, and other security
teams, and they would be responsible for the reduction of
overall organization risk, whether that's vulnerability
remediation, implementing compensating controls, or
improving the efficiency of communications to resolve
incidents faster.

Summary

This chapter covered the major topics within human factors
and their applicability to vulnerability management
programs and teams. Each psychological component
discussed is meant to encourage awareness and more
discussion around each topic. Each component of cognition,
metacognition, mental workloads, and so forth is
documented widely in the psychological community.
The sole purpose of this chapter is to encourage new ideas
and thought patterns within the vulnerability management
space. If organizations continue to solely remediate
vulnerabilities based on a severity score, the backlog of
vulnerabilities (and inherent risk) will continue to grow.

https://t.me/PrMaB2



Consider human factors as an option available to grow and
mature VMPs over time.
The first step to integrating these concepts is awareness
within the organization and the cybersecurity teams. Then,
problem statements can be created, an initial survey
conducted, and a conclusion reached as to how HF
engineers or practices could help create efficiencies and
reduce tension or stress between teams.
A final note to those who may be skeptical about how
human factors would be useful or impactful in their own
teams or organizations: Try something new. If traditional
vulnerability management principles worked, we wouldn't
see the sheer volume of vulnerabilities in backlogs. So,
consider starting small and see if there are any immediate
benefits. This type of program may not be effective for
every organization, so you should always carefully
determine where time, resources, and personnel are best
spent.

https://t.me/PrMaB2



11 

Secure-by-Design

While we’ve spent a significant amount of time discussing
the vulnerability management landscape and its challenges,
as well as how to go about addressing vulnerabilities and
managing them in large complex environments, we would
be remiss if we didn’t take some time to discuss a
fundamental shift that’s needed—the shift to secure-by-
design/default software and integrating security
throughout the system and software development life cycle
(SDLC) to stop the bleeding.
With modern organizations drowning in vulnerability
backlogs in the hundreds of thousands to millions and
consumers increasingly being faced with insecure products
and software, no amount of innovation and efficiency in
managing vulnerabilities will have the impact that
addressing the root of the issue will. This is because most
software and digital systems aren’t made with security as a
core part of the product development process.
We’ve begun to see an industry-wide shift and calls for
secure-by-design software and products, with the message
being championed by organizations such as the
Cybersecurity and Infrastructure Security Agency (CISA) in
the United States as well as key U.S. government
technology and security leaders. The concept was even
emphasized in the latest U.S. National Cybersecurity
Strategy (NCS) (www.whitehouse.gov/wp-
content/uploads/2023/03/National-Cybersecurity-Strategy-

2023.pdf), which called for driving the adoption of secure-
by-design principles and shifting the burden for addressing
vulnerabilities and weaknesses onto upstream suppliers

https://t.me/PrMaB2

http://www.whitehouse.gov/wp-content/uploads/2023/03/National-Cybersecurity-Strategy-2023.pdf


and vendors, rather than the current paradigm where
downstream consumers and customers often bear this
burden.
In 2023, while delivering a speech at Carnegie Mellon
University (CMU), CISA Director Jen Easterly stated that
“Consumer safety must be front and center in all phases of
the technology product life cycle—with security designed in
from the beginning.” www.cisa.gov/cisa-director-easterly-
remarks-carnegie-mellon-university.
We’ve also begun to see organizations face legal and
regulatory ramifications for not producing secure systems
and software as well as failing to follow security best
practices. For example, Progress Software, who produces
the MOVEit product, faced class action lawsuits in 2023 as
a result of the security incidents impacting their product
and customers (www.darkreading.com/attacks-breaches/software-
vendors-may-face-greater-liability-in-wake-of-moveit-lawsuit).
In 2023, the SEC charged the SolarWinds CISO for fraud
and internal control failures relating to allegedly known
cybersecurity risks and vulnerabilities
(www.sec.gov/news/press-release/2023-227). These events and
others point toward a trend of software vendors and
suppliers facing increased liability, as well as similar trends
impacting senior technology and security leaders at
organizations tied to vulnerable systems and security
incidents.
In this chapter, we look at the origins of secure-by-design
systems and software, along with some of the leading
publications as well as methods to facilitate securely
designing software and systems.

Secure-by-Design/Default

https://t.me/PrMaB2

http://www.cisa.gov/cisa-director-easterly-remarks-carnegie-mellon-university
http://www.darkreading.com/attacks-breaches/software-vendors-may-face-greater-liability-in-wake-of-moveit-lawsuit
http://www.sec.gov/news/press-release/2023-227


In October 2023, CISA released an updated version of their
publication “Shifting the Balance of Cybersecurity Risk:
Principles and Approaches for Secure by Design Software,”
continuing their push to evangelize an ecosystem of secure-
by-design software and systems and looking to shift the
onus onto software suppliers, rather than the current
paradigm where the consequences of vulnerable systems
and software overwhelmingly fall on customers and
consumers.
As part of this push to shift the market dynamics and
address the fact that many consider cybersecurity to be a
market failure (see, for example, “Is There a Market
Failure In Cybersecurity?” at
www.mercatus.org/research/policy-briefs/there-market-failure-

cybersecurity#:~:text=As%20a%20result%2C%20proponents%20of,the%

20right%20amount%20of%20cybersecurity), CISA is encouraging
software suppliers to adopt the principles laid out in their
document and publicly document the actions they take, to
demonstrate their commitment to secure design
philosophies.
Many remain skeptical that suppliers will voluntarily make
these investments. Given their primary motive is profit and
security has a cost in terms of research, development,
implementation, and maintenance, it could run
counterintuitive to their primary motives, which are to
maximize profit. That said, it’s worth emphasizing that
insecurity also has a cost in the forms of regulatory
consequences, recovery costs, compensating controls, loss
of customer trust, and ramifications for revenue.
For example, we’ve recently seen organizations such as the
SEC passing rules driving publicly traded companies to
report security incidents that are deemed “material.” For
insight into how big material cybersecurity incidents can
be, Sounil Yu recently shared a resource from the FAIR

https://t.me/PrMaB2

http://www.mercatus.org/research/policy-briefs/there-market-failure-cybersecurity#:~:text=As%20a%20result%2C%20proponents%20of,the%20right%20amount%20of%20cybersecurity


Institute dubbed “How Material is That Hack?,” which is a
website covering recent incidents such as MGM Resorts
International, Clorox, and Caesars Entertainment, with
impacts ranging from tens to hundreds of millions of U.S.
dollars.
Although it remains unlikely that suppliers will make the
required security investments and efforts without
associated demand, the CISA guidance emphasizes just
that, stating:

Just as we seek to create a pervasive Secure-by-Design

philosophy within software manufacturers, we need to

create a “Secure-by-Demand” culture with their

customers.

In other words, they must help try to correct the market
failure of cybersecurity, which won’t voluntarily resolve
itself on the supplier side. Increased demand for secure
products and software from customers and consumers,
however, can influence suppliers’ behaviors, because then
it’s directly tied to customer demand and spending, which
impacts revenue/profits, suppliers’ primary concern.

Secure-by-Design

In our discussion of secure-by-design, we must start with a
little primer on what secure-by-design means, at least from
the perspective of CISA. In their publication
(www.cisa.gov/sites/default/files/2023-
10/SecureByDesign_1025_508c.pdf), they define it as follows:

Secure-by-Design means that technology products are

built in a way that reasonably protects against malicious

cyber actors successfully gaining access to devices, data,

and connected infrastructure.

https://t.me/PrMaB2

http://www.cisa.gov/sites/default/files/2023-10/SecureByDesign_1025_508c.pdf


Simple, right? Well, not quite.
The word reasonable means something different to the
cyber practitioners industry as well as business peers and,
of course, consumers, but it’s a term that’s used in other
industry lexicons. In addition, it will likely have a precedent
established, as litigation around insecure products and
services continues to unfold, such as the class action
lawsuits mentioned earlier being filed against Progress
Software, which saw widespread impacts across hundreds
of organizations and potentially millions of users due to
exploitable vulnerabilities in their product and claims of
negligence.
Nonetheless, CISA goes on to discuss how vendors should
be performing risk assessments to identify and enumerate
threats, including protections in their products to account
for the threats, implementing best practices such as
defense-in-depth, and using tailored threat models during
product development and deployment. There are also calls
for vendors to collaborate among their business and
technical staff to ensure cybersecurity throughout the
entire SDLC/product life cycle, including not just design
and development but deployment and maintenance for
customers as well.

Secure-by-Default

The CISA guidance also emphasizes another concept, which
is secure-by-default (www.cisa.gov/sites/default/files/2023-
06/principles_approaches_for_security-by-design-

default_508c.pdf), and it is defined as follows:

https://t.me/PrMaB2

https://www.cisa.gov/sites/default/files/2023-06/principles_approaches_for_security-by-design-default_508c.pdf


Products are resilient against prevalent exploitation

techniques out of the box, without added charge, without

end users having to take additional steps to secure, and

make customers acutely aware when they deviate from

safe defaults.

The primary point is that all products come with a baseline
level of “security by default” and don’t need significant
effort by customers to “harden” the products and software
against exploitation, which is typically the case now.
The guidance also states that “the complexity of security
configuration should not be a customer problem,” and that
customers shouldn’t be charged extra for implementing
added security configurations like we saw with the debacle
over Microsoft E5 licensing and incidents that limited
victims’ ability to use logs to understand the potential
impacts to them (www.darkreading.com/remote-
workforce/microsoft-logging-tax-hinders-incident-response).
Again, there is (and will be) a gray area where debates
occur over what is a sufficient level of default security, in
addition to what features and functionality are reasonable
to charge for. Given the different incentives at play for
suppliers and customers (i.e., profit and value), the two will
have a different view of what should be done by default and
what should be charged for.

Software Product Security Principles

The guidance lays out three primary software product
security principles that it encourages suppliers to adopt
and prioritize:

Take ownership of customer security outcomes.
Embrace radical transparency and accountability.

https://t.me/PrMaB2

http://www.darkreading.com/remote-workforce/microsoft-logging-tax-hinders-incident-response


Build organizational structure and leadership to
achieve these goals.

Let’s discuss each of them further.

Principle 1: Take Ownership of Customer

Security Outcomes

This core principle focuses on ensuring that the burden of
security doesn’t fall solely on the customer, which is often
the case in the modern paradigm of software and
technology.
CISA also makes the case that by building security in
throughout the SDLC rather than having cybersecurity be
an afterthought or “bolted on,” not only do they increase
the customers’ security, but they also increase their
products’ quality as product security and resiliency are
subsets of overall product quality.
This principle emphasizes security efforts such as
application hardening, application features, and application
default settings. Application hardening can raise the cost
for malicious actors and bolster products against attacks.
Specific security-related features are called out such as
supporting Transport Layer Security (TLS), multifactor
authentication (MFA), role-based access control/attribute-
based access control (RBAC/ABAC), and single sign-on
(SSO), and for them to be configured securely out-of-the-
box, rather than needing to be specifically configured and
tinkered with by customers upon product
deployment/provisioning.
There’s an emphasis on placing the burden for security on
suppliers/vendors rather than downstream customers—a
theme that was prevalent in the recent NCS. The CISA
publication states:

https://t.me/PrMaB2



Manufacturers should take ownership of their customers’

security outcomes rather than measuring themselves

solely on their efforts and investments. The responsibility

should be placed upstream, with the manufacturers,

where it has the greatest likelihood of reducing the

chances of compromise.

It’s pointed out that vendors commonly patch a single
vulnerability only to see similar vulnerabilities continue to
emerge for a specific product/software, because the
symptom was addressed rather than its root cause.
Another key point made is the need for secure application
default settings. Typically vendors focus on making
applications as easy to use and as functional as possible by
default for customers, but this can come at the expense of
an increased attack surface or more vulnerable
applications and software as well. CISA says that security
controls shouldn’t be toggled off by default, and vendors
should use threat modeling to determine which features
should be on by default or hardened upon delivery to
customers to mitigate risks.
While maximizing functionality can be compelling from a
product perspective, if the default configurations are
insecure, exploitable, or make it easy for a customer to
make a risky mistake, it also presents risk that is now
distributed across all customers.
CISA calls out one of the long-standing aspects of the
software industry, which is the release of hardening guides,
either by the vendor directly or often by third parties (e.g.,
CIS Benchmarks, DISA STIGs, and so on). The challenges
cited with the long-standing practice include hardening
guides being difficult to find, not being well supported,
complex to implement, or even requiring additional
development effort. Challenges are also found on the

https://t.me/PrMaB2



customer/consumer side in regard to a lack of sufficient
expertise in some cases to even go about implementing the
hardening guides.
Source: www.cisa.gov/sites/default/files/2023-
10/SecureByDesign_1025_508c.pdf

Millions of customers are taking on the responsibility to

harden multiple instances of software or systems, often

in resource-constrained environments.

Relying on hardening guides simply doesn’t scale.

Parallels have been drawn to other industries, to bring
risks and insecure configurations to the user’s attention,
such as vehicles notifying the driver that a door is open or a
seatbelt isn’t buckled. Examples provided include MFA not
being configured for administrator accounts or insecure
protocols being used.
CISA lays out the reality that as an industry we continue to
see organizations needing to adopt more and more security
tools to monitor their systems and software posture, all of
which must be researched, funded, purchased, staffed,
deployed, and monitored, often in resource- and expertise-
constrained environments. This is far less scalable than
software suppliers bolstering product security from the
onset of development through customer delivery and
maintenance. One key point below is made by CISA in their
Secure-by-Design publication:

The software industry needs more secure products, not

more security products. Software manufacturers should

lead that transformation.

There are obviously several challenges to this mantra, such
as the fact we discussed that software manufacturers are
incentivized to maximize profit, which security (and
insecurity) can potentially impact, and that there is an

https://t.me/PrMaB2

http://www.cisa.gov/sites/default/files/2023-10/SecureByDesign_1025_508c.pdf


entire thriving ecosystem of cybersecurity companies,
including several with billion-dollar valuations incentivized
to continue to treat the symptoms of insecure software and
products. (We also must acknowledge that security vendors
aren’t in a position to force software manufacturers to
properly address security in their own products.)
The CISA publication goes on to enumerate various steps
that vendors should take to demonstrate a commitment to
this initial principle of taking ownership for customer
security outcomes. These steps are organized into three
groups:

Secure-by-Default Practices:

1. Eliminate default passwords.
2. Conduct field tests.
3. Reduce hardening guide size.
4. Actively discourage use of unsafe legacy features.
5. Implement attention-grabbing alerts.

Secure Product Development Practices:

1. Document conformance to a secure SDLC framework
(such as NIST SSDF, which CISA lists as an example).

2. Document cybersecurity performance goals (CPGs) or
equivalent performance.

3. Perform vulnerability management.
4. Responsibly use open source software (OSS).
5. Provide secure defaults for developers.
6. Foster a software developer workforce that

understands security.

https://t.me/PrMaB2



7. Test security information and event management
(SIEM) and security orchestration, automation, and
response (SOAR) integration.

8. Align with a zero-trust architecture.

Pro-Security Business Practices:

1. Provide logging at no additional charge.
2. Eliminate hidden taxes.
3. Embrace open standards.
4. Provide upgrade tooling.

Principle 2: Embrace Radical Transparency and

Accountability

The second principle that CISA recommends software
suppliers embrace is one of radical transparency and
accountability. CISA states vendors should associate
themselves with pride when it comes to delivering safe and
secure products, and use that as a competitive
differentiator among their peers and with customers and
consumers.
Refreshingly, CISA shoots down the tired trope of
transparency providing a roadmap for attackers, or as it is
often called “security through obscurity.” The reality, as
they point out, is that hackers are already achieving their
objectives despite obscurity, and transparency aids
defenders who are trailing adversaries and can use
transparency to help bolster their defensive measures. It
also helps the industry, as CISA states, establish what
“good” looks like, so that vendors demonstrating security
proficiency can be an example for others to emulate, and
can foster trust among customers and consumers as well:

Transparency builds accountability into the product.

https://t.me/PrMaB2



www.cisa.gov/sites/default/files/2023-

10/SecureByDesign_1025_508c.pdf

CISA makes the case that, while embracing radical
transparency around product development and security
may be uncomfortable for the current state of the industry,
it will help propel us forward. Radical transparency will
empower defenders more than adversaries, who already
succeed wildly by most metrics.
This transparency can inform peers about practices and
foster collaboration and upward use across the software
ecosystem, while also informing both prospective
customers and investors regarding the security posture of
their purchases or investments.
CISA advocates for what we have seen some technology
leaders embrace, which is radical transparency of security
incidents, publicly detailing what occurred, what the
impact was, and what improvements and lessons were
learned that the vendor is integrating to mitigate similar
future threats.
Much like the previous principle of ownership, CISA
enumerates how suppliers can demonstrate a commitment
to transparency:

Secure-by-Default Practices:

1. Publish aggregate security-relevant statistics and
trends.

2. Publish patching statistics.
3. Publish data on unused privileges.

Secure Product Development Practices:

1. Establish internal security controls.

https://t.me/PrMaB2

http://www.cisa.gov/sites/default/files/2023-10/SecureByDesign_1025_508c.pdf


2. Publish high-level threat models.
3. Publish detailed secure SDLC self-attestations (e.g.,

SSDF).
4. Embrace vulnerability transparency.
5. Publish software bills of materials (SBOMs).
6. Publish a vulnerability disclosure policy.

Pro-Security Best Practices:

1. Publicly name a secure-by-design senior executive
sponsor.

2. Publish a secure-by-design roadmap.
3. Publish a memory safety roadmap.
4. Publish results.

Principle 3: Lead from the Top

This principle emphasizes the reality that no matter the
desire from folks on the ground, building products, the
fostering of a security culture, driving the appropriate
internal incentives, and ensuring the required resources to
deliver secure products, all starts at the top:

Only when senior leaders make security a business

priority, creating internal incentives, and fostering an

across-the-board culture to make security a design

requirement will they achieve the best results.

www.cisa.gov/sites/default/files/2023-

10/SecureByDesign_1025_508c.pdf

As the CISA publication points out, an organization’s vision,
mission, values, and culture all affect their products, and
are derived at the top leadership level of an organization.
They cite quality experts such as J. M. Juran, who are

https://t.me/PrMaB2

http://www.cisa.gov/sites/default/files/2023-10/SecureByDesign_1025_508c.pdf


quoted as saying companies who demonstrated quality
leadership all had the characteristic of upper managers
personally guiding the initiatives. Given that security is a
subset of product quality, the concept applies here as well.
Parallels are drawn to emerging corporate social
responsibility programs. The CISA publication calls for
corporate cyber responsibility (CCR) as an emerging idea.
To demonstrate this principle, CISA lays out the following
steps software suppliers should take:

1. Include details of a secure-by-design program in
corporate financial reports.

2. Provide regular reports to your board of directors.
3. Empower the secure-by-design executive.
4. Create meaningful internal incentives.
5. Create a secure-by-design council.
6. Create and evolve customer councils.

Secure-by-Design Tactics

The next section of the CISA publication is one where they
begin to specifically cite tactical actions and practices
software suppliers can take to produce more secure
software and aid in activities such as finding and removing
vulnerabilities, mitigating potential impacts of the
vulnerabilities’ exploitation, and addressing root causes to
prevent incidents from reoccurring in the future.
It should come as no surprise that CISA heavily leans on
the NIST Secure Software Development Framework
(SSDF) here, as the federal government is rallying around
SSDF for secure software development and software supply
chain requirements. This includes U.S. Office of
Management and Budget (OMB) memos, such as 22-18 and

https://t.me/PrMaB2



23-16, which require software suppliers selling to the
federal government to self-attest to using SSDF practices
to produce the products they sell to the government. One of
the authors have done a deep dive into the memos 22-18,
23-16 and the CISA Self-Attestation Form and use this link
https://resilientcyber.substack.com/p/sign-here-on-the-dotted-

line.
CISA advocates for organizations developing a secure-by-
design roadmap aligned with the practices discussed
below, which they also cross-map to SSDF practice
identifiers:

Memory-safe programming languages (SSDF PW.6.1)
Secure hardware foundation
Secure software components (SSDF PW.4.1)
Web template frameworks (SSDF PW.5.1)
Parameterized queries (SSDF PW.5.1)
Static and dynamic application security testing
(SAST/DAST) (SSDF PW.7.2)
Code review (SSDF PW.7.1, PW.7.2)
SBOM (SSDF PS.3.2, PW.4.1)
Vulnerability disclosure programs (SSDF RV.1.3)
CVE completeness
Defense-in-depth
Satisfaction of cybersecurity performance goals (CPGs)

The CISA publication provides more information on each of
these tactics/practices, and I strongly recommend
reviewing the document if you need more details on what
each mean.

https://t.me/PrMaB2

https://resilientcyber.substack.com/p/sign-here-on-the-dotted-line


CISA also recognizes that these changes will take time,
resources, and effort, and recommends that organizations
prioritize them based on tailored threat models as well as
other factors such as criticality, complexity, and business
impact. Organizations might initially target newly
developed software and products before moving to
implement these practices for legacy products and
codebases as well.

Secure-by-Default Tactics

As has been discussed throughout this chapter, in addition
to secure-by-design principles, CISA is recommending
vendors begin to prioritize secure-by-default configurations
in their software and products as well. The specific
practices they cite follow:

Eliminate default passwords.
Mandate MFA for privileged users.
Include single sign-on (SSO).
Require secure logging.
Maintain a software authorization profile.
Require forward-looking security over backward
compatibility.
Track and reduce “hardening guide” size.
Consider the user experience consequences of security
settings.

I recommend diving deeper into the source publication if
you need more details on each of the secure-by-default
tactics and what they mean. CISA again also acknowledged
the trade-off businesses must consider operational impacts
and security considerations as well as concerns around

https://t.me/PrMaB2



customer experience. They also advocate for vendors to
create incentives for customers to adopt secure
configurations and settings, rather than leaving their
implementation of the products in an insecure state.

Hardening vs. Loosening Guides

Another fundamental paradigm shift that CISA advocates
for in their secure-by-design publication is the shift from
vendors publishing “Hardening Guides” to publishing
“Loosening Guides.” What this ultimately means is moving
from delivering products that are insecure out-of-the-box by
design/default based on configurations, and instead
delivering products with secure defaults in place, and then
empowering the customer/consumer to loosen the product
configurations while clearly understanding the security
ramifications and risks associated in doing so.
Delivering secure-by-default products can mitigate
systemic risks and protect vulnerable customers not often
familiar with the risks of insecure configurations or
products and spread awareness.

Recommendations for Customers

Lastly, the CISA publication closes out with a brief section
on recommendations for customers. While this may come
as a surprise to some to be such a short section, it
shouldn’t, as we’ve said several times that the goal of CISA
is to help drive an industry-wide shift of placing the burden
of security more on the vendor/supplier than the customer,
with the opposite being the current reality.
There’s also the reality that there is a literal mountain of
cybersecurity best practices, critical controls, hardening
guides, and other relevant materials for customers,

https://t.me/PrMaB2



consumers, and enterprises using products and software.
They have absolutely no shortage of materials. That said,
let’s take a look at the CISA-specific verbiage on
recommendations for customers.
CISA recommends that customers/consumers hold their
vendors and suppliers accountable for the security
outcomes of their products. This means voting with your
wallet and purchasing products and software that
prioritizes secure-by-design/default products and software.
It also means ensuring products are properly vetted by
internal security staff prior to procurement, and utilizing
angles such as contractual language and requests for
information/requests for proposal (RFI/Ps), and so on, to
help drive specific products and purchases.
CISA emphasizes that IT departments must have the
organization’s executive support when enforcing these
purchasing decisions. If insecure/risky products are
purchased, those decisions and inherent risks should be
formally documented and approved by the senior business
executives. This sort of activity ensures that the onus
doesn’t inherently fall on security when, in reality, the
business is driving the purchasing activity and risk
acceptance. In other words, the business owns the risk, and
documenting risks and having them formally signed off on
can help change behavior.
IT and security leaders are called upon to collaborate with
industry peers to rally around services and products that
value and prioritize the secure-by-design/default principles,
and this collective consensus as well as spending decisions
can help incentivize vendors to prioritize secure products
associated with actual customer demand.
Many consider cybersecurity to be a market failure that
will not voluntarily resolve itself until regulatory forces it to
change or market incentives shift and change behaviors.

https://t.me/PrMaB2



Consumers rallying around vendors and products that
prioritize secure-by-design/default products and services
can function as that market signal, which can drive
systemic changes across the software supplier ecosystem.
That said, not much is likely to change until/if market
dynamics shift. As a society, we’re at a crossroads where
we must determine if we want to stick with the status quo
of endless data breaches, security incidents, and increased
safety concerns, especially with the continued convergence
of cyber-physical systems and emergence of cyber as a
domain of modern geopolitical tensions and warfare.
Which path will we take? Time will tell.

Threat Modeling

Another fundamental activity to ensuring secure system
and software development is threat modeling. Threat
modeling for IT systems can be summarized as identifying
and enumerating potential threats to systems and software
as well as potential countermeasures that can be
implemented to mitigate said threats.
While the origins of threat modeling undoubtedly have
military and warfare origins dating back centuries, the
activity was adopted in cybersecurity as well. Early threat-
modeling methodologies and activities were pioneered in
the late 1980s and early 1990s by cybersecurity legends
such as Edward Amoroso and Bruce Schneier, among
others, as well as contributions from organizations such as
the NSA and Defense Advanced Research Projects Agency
(DARPA).
This work continued to evolve, being evangelized and
matured by organizations such as Microsoft. In 1999,
cybersecurity practitioners at Microsoft developed the now
famous mnemonic STRIDE, which stands for Spoofing,

https://t.me/PrMaB2



Tampering, Repudiation, Information Disclosure, Denial of
Service, and Elevation of Privilege. The use of this
framework allows practitioners an opportunity to
determine what impact identified threats have on a system,
service, software, or other assets. There are other
prevalent threat model methodologies, such as Octave, as
well.
Many resources cover threat modeling. Trying to cover
them all would produce a book of its own, and because
several exist already, this section provides a high-level
overview of some key threat modeling concepts, terms, and
resources for the sake of brevity.
One basic but incredibly useful approach, as cited in the
Threat Modeling Manifesto (www.threatmodelingmanifesto.org),
is to ask the four following questions to consider security
and privacy threats for a system:

What are we working on?
What can go wrong?
What are we going to do about it?
Did we do a good enough job?

While this might seem incredibly simplistic, this thought
exercise can help not only security practitioners, but also
peers such as engineers and developers consider the
relevant threats to the systems that they’re developing and
potential mitigations that can be implemented, including
from the earliest onset of the software development life
cycle (SDLC). While threat modeling can (and should be)
used throughout the SDLC, using it early in the process can
help identify threats and weaknesses that can then be
mitigated to avoid future issues in production
environments, or after a product or application has been
developed and distributed.

https://t.me/PrMaB2

http://www.threatmodelingmanifesto.org/


Threat-modeling IT systems has origins dating back
decades, but it is experiencing what many would consider
to be a resurgence, due to continued exploitation of widely
distributed software and products, and the industry calling
for adopting mantras such as shifting security left (i.e.,
earlier in the SDLC), and building systems and software
securely by design and by default, rather than the burden
falling onto customers and consumers.
Threat modeling has been specifically called out in
resources such as CISA’s 2023 secure-by-design
publication. It has seen a growth in industry events,
conference talks, and communities as well, as more
practitioners and policymakers recognize its value to
producing secure and resilient systems.

Secure Software Development

One historically overlooked aspect of the SDLC is security.
While several software development frameworks have
evolved to focus on security, we will focus on the SSDF
from NIST.
While the original version of NIST’s SSDF already existed,
the 2021 Cybersecurity Executive Order (EO) in the United
States directed NIST to issue guidance to identify practices
that enhance the security of the software supply chain.
NIST did exactly that when, in collaboration with industry,
it published SSDF v.1.1, along with other software supply
chain security guidance.
The SSDF points out that few SDLC models explicitly
address software security. A common phrase many in the
industry are familiar with is “bolted on, not baked in” when
it comes to cybersecurity. This represents the fact that
cybersecurity is often an afterthought in developing digital
systems and is often addressed later in the SDLC, rather

https://t.me/PrMaB2



than earlier where security best practices and
requirements can be integrated into software and systems
from the onset.
It is worth noting that SSDF v.1.1 released in 2022 builds
on an original SSDF version from April 2020. To facilitate
the SSDF’s update, NIST held a workshop with participants
from the public and private sector and received over 150
position papers to be considered for the SSDF update.
The intended audience for the SSDF includes both software
producers, such as product vendors, government software
developers, and internal development teams, in addition to
software acquirers or consumers.
While the SSDF was specifically created for use by federal
agencies, the best practices and tasks it contains apply to
software development teams across all industries and can
be used by many diverse organizations. SSDF is not
prescriptive but descriptive. This means that it does not
specifically say how to implement each practice, and
instead focuses on secure software outcomes and allows
the organization to implement practices to facilitate those
outcomes.
This is logical, given the infinite number of ways to secure
software and the unique people, processes, and
technologies that make up every organization producing
and consuming software. The CISA guidance also clarifies
that factors such as an organization’s risk tolerance should
be considered when determining which practices to use
and which resources to invest in achieving said practices.

SSDF Details

The NIST SSDF is aimed at advocating for the use of
fundamental and recognized secure software development
best practices. One thing that makes the SSDF unique is

https://t.me/PrMaB2



that, rather than creating guidance from scratch entirely, it
uses many known and implemented established sources of
guidance, such as the Building Security In Maturity Model
(BSIMM) (www.synopsys.com/software-integrity/software-
security-services/bsimm-maturity-model.html) by Synopsys and
the Software Assurance Maturity Model (SAMM)
(https://owasp.org/www-project-samm) from OWASP, among
several others.
SSDF’s robust set of secure software development
practices is broken into four distinct groups: Prepare the
Organization (PO), Protect the Software (PS), Produce
Well-Secured Software (PW), and Respond to
Vulnerabilities (RV). Within those practices, you have
elements that define the practice, such as practice, task,
notional implementation example, and reference, which
map the practice to tasks.
As previously mentioned, the latest SSDF version was
created out of requirements from the Cybersecurity EO, so
it also includes mapping to specific EO requirements,
specifically in Section 4e. The desired goal of using the
SSDF practices is to reduce the number of vulnerabilities
included in the release of software, and reduce the impact
of those vulnerabilities being exploited if they’re
undetected or unmitigated.
In the next section, we take a look at each of the groups of
practices.

Prepare the Organization (PO)

Preparing the Organization (PO) for secure software
development is a logical first step for any organization
looking to develop secure software. Practices in this group
include defining security requirements for software
development, which incorporates requirements for the
organization’s software development infrastructure and

https://t.me/PrMaB2

http://www.synopsys.com/software-integrity/software-security-services/bsimm-maturity-model.html
https://owasp.org/www-project-samm


security requirements that organization-developed software
must meet.
Of course, these requirements need to be communicated to
all third parties who provide commercial software
components to an organization for reuse as well, which
gets increasingly complicated when you consider third-
party OSS components that comprise up to 80 percent of
modern applications. Rather than those third parties being
bound like a proprietary commercial vendor would be via
contracts and other means, it falls on the software supplier
to implement OSS governance and security practices to
mitigate risks from the use of OSS components in their
products.
Defining Roles and Responsibilities is another fundamental
step that organizations must take, which includes roles for
all parts of the SDLC, and provides appropriate training for
the individuals in those roles. The guidance emphasizes the
need for upper management commitment to secure
development and ensure that individuals involved in the
process are aware of that commitment. This is often
referred to as getting executive buy-in.
Modern software delivery involves supporting toolchains
that use automation to minimize the human toil associated
with software development and lead to more consistent,
accurate, and reproducible outcomes. Tasks in this area
involve specifying the tools and tool types that must be
used to mitigate risks and how they integrate with one
another. Organizations should also define recommended
security practices for using the toolchains and ensure that
the tools are configured correctly to support secure
software development practices.
Organizations should also outline and use criteria for
software security checks. This includes implementing
processes and tooling to safeguard information throughout

https://t.me/PrMaB2



the SDLC. Toolchains can be used to automatically inform
security decision-making and produce metrics around
vulnerability management.
Lastly, organizations should implement secure
environments for software development. This typically
manifests as creating different environments, such as
development, testing, staging, and production. These
environments are segmented to limit the blast radius of a
compromise impacting other environments and allow for
differing security requirements, depending on the
environment.
These environments can be secured through methods such
as MFA or conditional access control, least-permissive
access control, and by ensuring that all activities are
logged and monitored across the various development
environments to enable better detection, response, and
recovery.
Securing the environment also means that endpoints
developers and users utilize to interact with the
environments are hardened to ensure they do not introduce
risk as well, or implementing contextual access control that
takes device posture into consideration in dynamic access
decisions. You will notice there are several parallels to
these recommendations with the current guidance and best
practices for zero trust as well.

Protect Software (PS)

Moving on from PO, we’ll now cover Protecting the
Software (PS) itself. Practices in this group involve
protecting the code from unauthorized changes, verifying
integrity, and protecting each software release.
Protecting all forms of code from unauthorized changes
and tampering is critical to ensure the code is not modified
either intentionally or unintentionally in a form that

https://t.me/PrMaB2



compromises its integrity. Code should be stored in
methods that align with least-permissive access control
based on its security requirements, which look different for
OSS code or proprietary code. Organizations can take
measures such as using code repositories that support
version control, and commit signing and review by code
owners and maintainers to prevent unauthorized changes
and tampering. Code can also be signed to ensure its
integrity with methods such as cryptographic hashes.
Code signing, of course, isn’t infallible and can be
compromised itself, leading to signed code that is malicious
but appears trustworthy. Not only does the code’s integrity
need to be maintained, but there must be methods for
software consumers to validate this integrity. This is where
practices such as posting hashes on well-secured websites
come into play. Code signing should be supported by
trusted certificate authorities that software consumers can
use as a measure of assurance or trust in the signature.
There are also emerging efforts, such as Sigstore that has
been adopted by major OSS projects such as Kubernetes,
which alleviate some of the administrative overhead
traditionally associated with key management and signing.
Finally, each software release should be protected and
preserved, which can be used to identify, analyze, and
eliminate vulnerabilities tied to specific releases. This also
facilitates the rollback ability in the case of compromised
releases, enabling you to restore to “known good” states of
software and applications. Protecting and preserving
software releases allows consumers to understand the
provenance of code and its associated integrity.

Produce Well-Secured Software (PW)

Now that requirements have been codified and
development environments and the endpoints that access

https://t.me/PrMaB2



them have been addressed, the organization can focus on
Producing Well-Secured Software (PW). This is not to say
that each group doesn’t occur concurrently throughout the
life of an organization or program, but they do build upon
one another while also warranting revisiting and revising
as necessary.
You will note in the Prepare the Organization (PO) section
of the SSDF that security requirements were defined and
documented. Now software must be designed to meet those
security requirements. This is where organizations can use
methods of risk modeling such as threat modeling and
attack surface mapping to assess the security risk of the
software being developed. Organizations can train
development teams in methods such as threat modeling to
facilitate empowered development teams capable of
understanding the threats to the systems and software they
develop and measures to reduce those risks.
By using data classification methods, organizations can
prioritize more rigorous assessments of high sensitivity and
elevated risk areas for risk mitigation and remediation.
Organizations should also review software design regularly
to ensure that it meets security and compliance
requirements the organization has defined.
This review includes not only internally developed
software, but also software that is being procured or
consumed from third parties as well. Depending on the
nature of the software being consumed, organizations may
be able to work with software designers to correct failures
to meet security requirements, but this does not apply in
situations such as OSS where there are no contracts or
associated agreements like SLAs.
It is why organizations must have OSS governance and
security measures in place, such as using software
composition analysis (SCA) tooling, to understand known

https://t.me/PrMaB2



vulnerabilities in the OSS they consume, in addition to
other methods like OpenSSF’s Scorecard, which can look at
leading indicators of risk such as contributor and
maintainer activity, how frequently and quickly
vulnerabilities are addressed, the posture of repositories,
and much more.
Organizations are encouraged to reuse existing well-
secured software, rather than duplicating functionality.
This reuse has a myriad of benefits such as lowering the
development costs, speeding up capability delivery, and
reducing the potential of introducing new environmental
vulnerabilities. It isn’t uncommon for large enterprise
organizations to experience code sprawl, particularly in the
era of “as-code” where infrastructure and even security in
cloud-native environments can be defined as code.
This “as-code” approach supports concepts such as
modularity, reuse, configuration-as-code, and hardened
code templates and manifests that can be safely used
elsewhere in organizations or beyond. That said, if these
manifests and code templates include vulnerabilities, they
now become replicated at scale as well, so proper
governance and security rigor is required.
Organizations, or even teams within organizations that
make reuse of existing software and code, should ensure
they review and evaluate code for security and
misconfiguration concerns, as well as understand the
provenance information associated with the code they are
reusing. A similar recommendation SSDF makes is to
create and maintain well-secured software components and
repositories in-house for development reuse. This is similar
to the recommendations made in NIST 800-161 Rev 1 for
OSS governance and security.
Source code created by the organization should ensure it
aligns with secure coding practices adopted by the

https://t.me/PrMaB2



organization as well as advocated by industry guidance.
These include steps such as validating all inputs, avoiding
unsafe functions and calls, and using tools to identify
vulnerabilities in the code.

Respond to Vulnerabilities (RV)

While organizations may have defined security
requirements, prepared their environments, and even
strived to produce secure software, vulnerabilities will
inevitably arise. This is due to the reality that identifying all
possible known vulnerabilities during development is
impossible, and as time goes on, vulnerabilities will be
discovered. There is a common phrase that states “software
ages like milk,” due to the reality that the longer software
has been around, the more likely it is that vulnerabilities
will be discovered by researchers, malicious actors, or
others.
Organizations should work to both identify and confirm
vulnerabilities on an ongoing basis. This includes
monitoring vulnerability databases, using threat
intelligence feeds, and automating the review of all
software components to identify any new vulnerabilities.
This is key as new vulnerabilities will inevitably emerge
from the initial time where code may have been scanned
and examined. Organizations should also have policies for
vulnerability disclosure and remediation, and as previously
mentioned, define roles and responsibilities to address
vulnerabilities as they emerge. Such processes help inform
software consumers of the vulnerabilities associated with
code and products from software suppliers, and allows
these vulnerabilities to be mitigated before they can be
identified and utilized by malicious actors. It typically
materializes in the form of vulnerability disclosure policies
and processes, as well as reports from product security
incident response teams (PSIRTs).

https://t.me/PrMaB2



Organizations will not only need methods to identify and
confirm vulnerabilities, but they will also need to remediate
vulnerabilities in a way that aligns with the risk that
vulnerabilities pose. It means having a process to assess,
prioritize, and remediate software vulnerabilities. Using
tools and governance, organizations can then make risk-
informed decisions such as remediating, accepting, and in
some cases, transferring the risk if possible.
Traditionally, vulnerabilities are often largely prioritized
based on metrics such as the Common Vulnerability
Scoring System (CVSS), but we’re now seeing innovative
methods such as the Exploit Prediction Scoring System
(EPSS) emerge to augment, or in some cases, take the
place of CVSS. CISA has also advocated for the use of the
Stakeholder- Specific Vulnerability Categorization (SSVC)
system, along with their Known Exploited Vulnerabilities
(KEV) Catalog, both of which offer opportunities to improve
vulnerability management and prioritization. They do so by
helping teams prioritize vulnerabilities known to be
exploited or likely to be exploited in the next 30 days, for
example.
Organizations producing software also need established
methods to develop and release security advisories to
software consumers that help them understand the
vulnerabilities in the software and the potential impact to
them as a consumer, and the steps to resolve the
vulnerability if possible. While traditional advisories
occurred in static formats such as websites, emails, and
static documentation, the industry is increasingly shifting
toward machine-readable advisories, such as the Common
Security Advisory Format (CSAF) and Vulnerability
Exploitability eXchange (VEX), the latter of which is
supported by industry leader OWASP in their CycloneDX
VEX BOM. This documentation allows organizations to shift
to machine-readable formats for vulnerability disclosure

https://t.me/PrMaB2



and communication, which can be integrated into tooling
via APIs and automation.
Lastly, organizations should take steps to identify the root
causes of vulnerabilities through analysis. Doing so helps
reduce their frequency in the future by addressing the root
cause, rather than just an individual vulnerability. This can
also help organizations to eliminate classes of
vulnerabilities, which are often categorized as Common
Weakness Enumeration (CWEs).
As evident from the vast array of secure software
development tasks and practices discussed, no organization
of significant size or scale will always perform all these
practices perfectly or immediately, if ever. That said,
organizations can take steps to codify their secure software
development practices by using the SSDF as a guide and
helping ensure proper steps are taken to secure software
throughout the SDLC.

Security Chaos Engineering and

Resilience

While organizations can continuously plan, no plans are
infallible. It has long been said, “no plan survives contact
with the enemy.” Every organization will inevitably
experience security incidents and should prepare
accordingly. One methodology that is gaining traction is
that of security chaos engineering (SCE), which is
championed by industry leaders such as Kelly Shortridge,
coauthor of the book Security Chaos Engineering:

Sustaining Resilience in Software and Systems (O’Reilly
Media, 2023), who defines security chaos engineering as
“the organizational ability to respond to failure gracefully
and adapt to evolving conditions.”

https://t.me/PrMaB2



Advocates of security chaos engineering argue that it can
improve the security’s return on investment (ROI) by
minimizing attack impacts and generating valuable
evidence that can be used to drive continued improvement
of system and software design and operations. As pointed
out by Shortridge in the article “From Lemons to Peaches:
Improving Security ROI through Security Chaos
Engineering” (https://arxiv.org/pdf/2307.03796.pdf), the
potential to stop all attacks isn’t practical or realistic, and it
is only a matter of time until every organization has a
security incident. Given this reality, organizations instead
should be striving to create secure resilient digital systems
and software that can minimize the impact of an incident
when it does occur and to facilitate a culture of iterative
improvement where deficiencies are addressed through
continuous learning and improvement.
SCE involves conducting experiments to verify that a
system operates the way we believe it will in the face of
attacks, and using the results and lessons learned to
bolster the system’s resilience moving forward.
Historically, security has used activities such as tabletops,
which involve hypothetical scenarios and reactions whose
value is suspect at best. Real incidents don’t deal in
hypotheticals, and the best role-playing is no substitute for
real-world impacts and the need to respond accordingly.
SCE builds on earlier efforts under the broader chaos
engineering domain, which were pioneered by leading
technology companies such as Netflix who produced tools
and conducted exercises that would randomly introduce
failure and disruption to their production environment to
ensure their systems were resilient and fault-tolerant. See
https://netflixtechblog.com/tagged/chaos-engineering to learn
more.

https://t.me/PrMaB2

https://arxiv.org/pdf/2307.03796.pdf
https://netflixtechblog.com/tagged/chaos-engineering


SCE strives to do something similar, but in the security
context, helping systems become more resilient to attacks
and minimizing friction that security typically imposes on
development and engineering peers through burdensome
processes that can stifle agility. This approach aligns with
results from studies like the “Accelerate State of DevOps
Report,” (https://cloud.google.com/blog/products/devops-
sre/dora-2022-accelerate-state-of-devops-report-now-out),
which finds that systems and organizations that deploy
software more frequently and integrate agile practices and
methodologies are more resilient to security incidents and
are able to respond faster and more effectively.
These results contradict long-standing security practices
that seek to minimize and control change to the maximum
extent possible. SCE practices have additional benefits as
well, such as verifying that an organization’s financial
investment in security tools and resources has the desired
impact against security incidents, as opposed to
speculating or waiting until an actual real-world malicious
attack occurs. This benefit is appealing because many
organizations suffer from security tool fatigue while
managing dozens of security tools, causing both cognitive
overload on staff and exhausting financial resources in
commonly fiscally constrained environments.
Ultimately, SCE leverages the concepts of continuous
experimentation, feedback loops, iteration, learning, and
continuous improvement, grounded in real-world practical
exercises, rather than the traditional hypothesis and mental
exercises used in cybersecurity. In striving to mitigate
system vulnerabilities and weaknesses and produce more
resilient systems, SCE is a promising methodology that
more practitioners and organizations should leverage
moving forward.

https://t.me/PrMaB2

https://cloud.google.com/blog/products/devops-sre/dora-2022-accelerate-state-of-devops-report-now-out


Summary

In this chapter we touched on the push for secure-by-
design/default systems and software by organizations such
as CISA, as well as historical context showing how long-
standing this concept is. We also discussed key industry
changes it would take to pivot to a secure-by-design model
and some of the key challenges associated with it. We
discussed key activities to secure systems from the onset of
the SDLC, such as threat modeling and the latest NIST
SSDF, which helps organizations cultivate the practices to
produce secure software. We closed by covering emerging
concepts such as security chaos engineering, which look to
actually test the resilience of systems.

https://t.me/PrMaB2



12 

Vulnerability Management Maturity

Model

This book has covered vulnerability management from
asset and patch management to scoring and prioritization,
all the way through threat intelligence and human factors.
Each chapter of this book has laid the foundation for the
development of a maturity model that organizations can
implement for their vulnerability management program
(VMP). All the previous information was meant to describe
how to build these concepts and practices into your own
VMP.
These strategies are not a one-size-fits-all solution, but
merely a recommendation of steps to follow to either build
a VMP from scratch or determine how mature the existing
VMP is, and ultimately get to a state where vulnerability
management is not a burden on a team or organization.
As you read through each step, ask yourself the following
questions as you study Figure 12.1:

1. Is this step already implemented as described?
2. Do I consider our organization's VMP to be at full

maturity with these steps?
3. Are there any areas where we need to improve upon

our own VMP?
4. Who within my organization should I consult with about

each step?
5. What step is my team/organization at, and can we

create a plan to build to the next step?

https://t.me/PrMaB2



We recommend that you read each step thoroughly and
reference the prior chapters as you begin building upon
your own practices and identifying gaps. VMPs are not built
or matured in a day but over time. Take these steps and
consider how best to reach a mature VMP within your own
team. Much like other cybersecurity aspects such as zero
trust, vulnerability management is an iterative process of
continuous improvement, refinement, and learning.

Figure 12.1 A maturity model pyramid

https://t.me/PrMaB2



Step 1: Asset Management

Without a proper asset management strategy and
inventory, a VMP will not succeed. Let's begin with Step 1.
Begin with the tooling. First, meet with the appropriate
stakeholders to determine what tools are already set in
place and whether they meet the needs of your
organization's environment. If you've recently moved to a
multicloud environment, it might be time to reevaluate your
inventory requirements. Similarly, if your organization is
pursuing larger and more complex development projects, it
means evaluating the continuous integration/continuous
delivery (CI/CD) pipeline and determining which
applications and libraries are currently being used.
Continue with your asset inventory—conduct a thorough
analysis of the hardware and software throughout the
environment. Don't stop at assets that are known—find and
identify unknown assets. Also, consider ongoing
IT/development projects, as these projects will inevitably
bring in new devices and applications. An inventory should
also account for the extensive use of open source software
(OSS) and the associated libraries and projects that the
organization might be consuming.
In combination with building their asset inventory, each
team should develop a responsible, accountable, consulted,
and informed (RACI) matrix to annotate who's responsible
and accountable for each asset. For example, if there is a
mobile device management (MDM) team, they would be
responsible and accountable for the inventory, as well as
the patch management and continuous monitoring of those
mobile devices.
Continuous monitoring processes should be developed
around the asset management program. For example, that
same MDM team should consider how often they scan for

https://t.me/PrMaB2



rogue devices and configurations for detection and
containment. These processes should be documented and
updated on a monthly or quarterly basis, and the
configurations should be built into the MDM and asset
inventory tools used for the group. Continuous monitoring
should include both the process and technology
components of people, process, and technology.
Once automation and some initial processes have been
built, all associated documentation should be created and
maintained in a central location. This documentation would
be used in the event of an audit or assessment, as well as to
set expectations for team members. Each document or
process should be maintained and updated frequently as
technology changes, regulations, or laws become
applicable, or audit findings dictate changes. It's also
common to refine processes after a security incident or
other situation highlights gaps that might have been
initially overlooked.
Here's a condensed version of these steps:

1. Select your enterprise application and configuration
management tools.

2. Build a comprehensive asset inventory, including
devices, hardware and software, software-as-a-service
(SaaS), and application programming interfaces (APIs),
including libraries and OSS components.

3. Develop a RACI matrix to note who's responsible for
each area of the asset management program.

4. Prepare to develop a continuous and automated
solution for finding and cataloguing new devices,
applications, and components.

5. Develop the associated processes and documentation to
support your asset inventory.

https://t.me/PrMaB2



Step 2: Secure Configuration

The next major step, Step 2, is to build or improve upon the
secure configuration throughout the organization. A
comprehensive VMP has a mature and focused secure
configuration strategy. Each step within this section builds
upon the first and should be done sequentially.
First, identify relevant secure configuration guidance for
your respective industry and technology stack. It might
include sources that have been discussed in Chapter 3,
“Secure Configuration,” such as Center for Internet
Security (CIS) benchmarks, as well as vendor-specific
configuration guidance that often documents how to
securely configure products and software to ensure that
organizational risk is mitigated. Secure configuration
guidance generally consists of industry-wide best practices,
such as encryption-at-rest and least permission access
control, as well as vendor- and product-specific guidance
aligned with a particular product or application.
The team then should decide which controls are most
appropriate for their own systems. This might include
which data types are on these systems and which
regulations are applicable to the business type. A system
that manages credit card transactions would need to
comply with Payment Card Industry Data Security
Standard (PCI DSS) (www.pcisecuritystandards.org)
regulations, and healthcare data would need to follow
Health Insurance Portability and Accountability Act
(HIPAA) guidance (www.hhs.gov/hipaa/index.html). These
controls would be selected based on the type of data
stored, the industry along with its associated regulations,
and what security level is expected on the systems—for
example, System and Organization Controls (SOC) 1 versus
SOC 2 (www.itgovernanceusa.com/soc-reporting). Applicable-
regulatory frameworks and controls often drive specific

https://t.me/PrMaB2

http://www.pcisecuritystandards.org/
http://www.hhs.gov/hipaa/index.html
http://www.itgovernanceusa.com/soc-reporting


configurations, in addition to industry best practices and
vendor-specific guidance.
Next, the team implements the controls on each system as
determined in the previous step. Each control should be
tested and validated before implementing it in the
production environment. It is well known that security
configuration changes can impact performance and
usability. Each organization needs to align secure
configurations with their risk tolerance and be willing to
make trade-offs where required about performance and
usability. Potential risks to consider include everything
from safety and security of personnel to operations and
uptime for systems.
That said, increasingly, product vendors are being
encouraged to produce secure products by design, to
mitigate vulnerabilities from the onset of production and
ideally minimize performance impacts from needing to add
security after the fact. The expected controls should be
documented at this step, and as with previous steps, the
team should decide on a monthly or quarterly review and
update—even if it is a 15-minute meeting between system
owners to review and validate that there are no changes.
Once the controls are implemented, teams can validate that
the controls are in place as expected. This can be done with
a vulnerability scanner or by using additional security tools
to run scans and report those findings. During this initial
review, the team can ensure the controls are as expected
and document them in the initial assessment folder.
After the controls have been validated, the organization
should have a comprehensive exemption program in place
for any controls that cannot be implemented. Some systems
will not be able to hit 100 percent compliance, so teams
should account for any controls that will not be
implemented or will require additional testing before being

https://t.me/PrMaB2



added in the future. Whether it is a 30-, 60-, or 90-day
policy to add required configurations, this policy should be
documented and updated over time, as with all previously
mentioned documentation and processes. Organizations
can, and should, also be prepared to implement
compensating controls where a vulnerability or insecure
configuration might not be able to be resolved directly, but
compensating controls can be put in place to mitigate risk,
aligning with the concept of defense in depth.
Finally, similar to the patch management step,
configurations and expected controls should be
implemented and monitored over time. Each configuration
group should be documented at initial approval of the
systems and monitored over time, and any anomalies or
missing configurations should be investigated. Mature
organizations can also explore innovative capabilities that
help facilitate auto-remediation of configuration deviations
or insecure configurations.
Here's a condensed version of these steps:

1. Identify your relevant secure configuration guidance,
both from industry organizations as well as from
specific vendors/products.

2. Determine which controls are applicable to each system
identified.

3. Implement the controls using automation as
appropriate for each system.

4. Validate that your controls are implemented as
expected.

5. Develop an exemption policy for your controls that
cannot be implemented.

6. Develop a continuous monitoring process for your
expected controls and configurations.

https://t.me/PrMaB2



Step 3: Continuous Monitoring

Continuous monitoring (ConMon) is integral to the success
of a mature VMP. ConMon is the practice of reviewing
vulnerabilities, alerts, incidents, and processes over time. It
isn't limited to the technology used in a VMP, but also
includes the people and processes within the group. For
example, a RACI matrix for asset management should be
reviewed monthly or quarterly to determine if the areas of
responsibility still make sense or if they should be adjusted
over time.
The first step to building a cohesive ConMon
implementation is to determine which assets, processes,
networks, systems, and environments will require
continuous monitoring. It's essential to understand the
scope of ConMon before implementing any kind of alerts or
automation. If assets or systems are missing in the tooling
and reporting, vulnerabilities could go unnoticed, secure
configurations could be removed without notification, and
documentation would go stale. All those assets,
applications, or systems missing from the ConMon process
increase the risk of the environment.
Determining the tooling and reporting mechanisms for the
ConMon strategy is just as important and could be done in
conjunction with the first step. The tools should be selected
based on their ability to monitor appropriate assets, and
they should include some automation for dynamic scanning
and reporting. And of course, the tools selected (whether
open source or proprietary, vulnerability scanning or asset
management) should be evaluated over time to validate
that they still work for the mission and business.
Once the tooling has been selected and a full inventory of
all ConMon assets has been taken, it's time to develop a
RACI matrix for who will be responsible for each program

https://t.me/PrMaB2



area. ConMon responsibilities include creating and
managing vulnerability scans, adding assets to an
inventory, or configuring dynamic asset discovery, all the
way to implementing and monitoring configurations for
systems. An example would be applying settings within a
Group Policy Object (GPO) in Active Directory (AD), and
then running a vulnerability scan to validate that those
controls are in place. Another example is leveraging cloud-
native services to automatically evaluate the configurations
and vulnerabilities of assets such as virtual machines (VMs)
and containers. That scan would run daily or weekly to
continuously validate that the controls are still in place as
expected and notify the system or application owner in case
those settings change or are removed.
Once the RACI matrix has been developed and teams are
aware of their own responsibilities within the ConMon
program, they should focus on tailoring alerts for all the
systems and applications that are being continuously
validated.
Each application or tool that requires configuration and
provides alerting or notifications to system owners will take
additional time to reduce “noise” like false-positive data
from their consoles. However, true-positive vulnerabilities
that have already been through the exemption process will
not be remediated for six months. Those vulnerabilities
should be tuned out of vulnerability reports for four
months; once the vulnerabilities appear on the report
again, it allows the team one month to remediate based on
initial timelines.
Beware of excluding vulnerabilities for any length of time.
There will be very few vulnerabilities that should be tuned
out completely. All vulnerabilities that require an
exemption should be reviewed following the corporate
guidelines on vulnerability remediation. For example, if a

https://t.me/PrMaB2



vulnerability is exempted for six months, that vulnerability
should be reviewed at four months into that exemption to
determine how to remediate risks. Tuning out
vulnerabilities, especially true positives, should be
reviewed on a regular basis as part of risk management
activities.
Vulnerability reports should also be enhanced for
additional context beyond base Common Vulnerability
Scoring System (CVSS) scores—for example, to include
enrichment of known exploitation, probability of
exploitation, business criticality, and reachability. Modern
scanners and vulnerability management tooling enable this
via sources such as the Cybersecurity and Infrastructure
Security Agency (CISA)'s Known Exploited Vulnerabilities
(KEVs) and Exploit Prediction Scoring System (EPSS), and
determine if components are called and reachable at
runtime, as well as where assets reside in an enterprise
architecture and the nature of the data the assets contain.
A final step to a mature ConMon practice is to automate
and augment manual processes. An example is running
manual scans to determine if new assets are online—this
could be automatically run every hour or every day to find
new assets that come online within specific intellectual
property (IP) ranges. Another example is tailoring alerts
based on updated threat intelligence information so that
teams can focus on the alerts relevant to their organization.
A final example would be to implement scripts for
infrastructure as code (IaC) such as Terraform, which can
be used to automate the installation of endpoint detection
and response (EDR) tools and configuration files to limit
manual processes on system setup.
Here's a condensed version of these steps:

https://t.me/PrMaB2



1. Determine which assets, processes, and networks
require continuous monitoring in place.

2. Identify the appropriate tools and reporting required
for ConMon across your enterprise.

3. Develop a RACI matrix for who reviews alerts and
develops ConMon plans and who is ultimately
responsible for these activities.

4. Tailor your alerting for EDR, vulnerability scanning,
and industry alerts.

5. Automate your detection and response capabilities with
minimal manual intervention whenever possible.

Step 4: Automated Vulnerability

Management

At this point in the process, a VMP should be well
developed and in some form of steady state. Now is the
time to mature and build upon the tools and processes
already established. While this list is not all inclusive, each
exercise should bring the VMP to a more automated
approach and require less manual intervention.
The first step should be to annotate where in the
organization manual tasks are performed within the VMP.
This could be manual patching processes, manual review of
configurations, or even intervention required within the
asset discovery process. Once each manual process has
been defined, be sure to document who's responsible and
accountable for each of those tasks. This is an important
exercise to determine what should be done next.
Second, the groups responsible for VMP practices should
review their tools and technology as well as the
configuration setup in each group. Then the system owners

https://t.me/PrMaB2



and managers can review what tools are working, which
are not, and ultimately what needs to be improved upon or
replaced. Each group may determine that they either need
a new tool or require additional time to review
configurations and tailor alerts and reporting further to
improve the usage of the existing tools.
Once a tooling gap analysis is conducted, the individual
groups can document their possible limitations or concerns
by introducing automation. An example might be the
automated reboots of servers that might impact production
resources. Another concern might be that if patches are
automatically installed on some systems without proper
testing and validation, they could break functionality. All
these concerns can be addressed by building in testing time
and validation steps.
After concerns have been identified, the group can
continue to determine how to build automated techniques
into their VMP processes. It could be people, process, or
technology that must be developed and matured. For
example, the people managing the systems might require
upskilling to create automated scripts or configurations
within the environment. Another example would be if a
specific tool didn't cover the new technologies (e.g., Red
Hat OpenShift) as part of their automation strategy. This
would require both upskilling and potentially new detection
and configuration tools to manage and automate updates.
Once tooling is addressed and updated, automation can be
tested in a sandboxed or test environment before applying
it to production systems. Without a proper testing
environment, it will be impossible to get patching,
configuration, and other VMP concerns addressed. Once
tested, there should be a process documenting where the
patches are applied and how they are implemented in
production with automated scripts or processes.

https://t.me/PrMaB2



Finally, you must tune the automation over time.
Automation is not a one-time project or implementation.
Automation must be evaluated continuously, just like any
other process or tool. The scripts might require additional
configuration with new technology, or the automated tools
might require updates over time as technology grows and
evolves. Nothing about technology is stagnant or will be the
same year after year. Develop a timeline that fits within
your organization to evaluate the automation monthly or
quarterly.
Here's a condensed version of these steps:

1. Define the manual processes that currently exist within
your VMP.

2. Identify gaps in your VMP technology and review your
application configuration.

3. Identify any possible limitations or concerns with your
automation.

4. Determine which tooling/techniques are required to
implement automation.

5. Test automation techniques in your development
environment and validate their efficacy.

6. Integrate automated processes over time—develop a
roadmap for your automation.

Step 5: Integrating Human Factors

As described in Chapter 10, “The Human Element in
Vulnerability Management,” about human factors (HFs),
several considerations must be considered when
implementing these concepts into a cybersecurity program.
We don't recommend that you implement HFs into an

https://t.me/PrMaB2



immature VMP, but that you follow the steps, and when
ready, determine where these concepts fit into your VMP.
Organizations should identify gaps or concerns within their
VMPs, including unconscious bias, stress, or infighting
between teams, or even risk associated with a lack of
movement or progress. It's incredibly important to identify
where HFs would be required before making program
changes. For example, a team could find that there are
communication issues between the development and
cybersecurity teams. These communication issues could
potentially impact risk, specifically the time to identify and
remediate risks across the enterprise.
Once a team has identified gaps in their VMP, it should
request to hire a consultant within the human factors or
cognitive psychology space. Without industry and education
knowledge, it will be difficult to implement psychological
and human factor recommendations. Hiring an expert to
identify other gaps in technology or processes will be worth
it in terms of overall cost or return on investment (ROI) for
organizations.
Integrating these human factor recommendations won't
happen overnight. Like this larger maturity model, you
must consider which concerns are easiest to deal with. For
example, say an HF consultant determines that there are
far too many security tools in the environment, leading to a
higher turnover rate within the cybersecurity department.
The team should develop a plan to remove redundant tools,
potentially replace tools that are too complicated or
ineffective, and ultimately configure the remaining tools
properly to reduce noise or false positives.
Another example of integrating recommendations over time
would be if the HF consultant finds that there's an
incredible backlog of vulnerabilities, leading to decision
paralysis within the team. In this situation, the groups are

https://t.me/PrMaB2



overwhelmed and cannot find a place to start remediation.
The HF expert may recommend meeting with each
stakeholder to determine the highest risk and to develop a
remediation plan. Then they might work with the
overwhelmed individuals to help them understand the signs
of decision paralysis and how to overcome them. It would
be a win-win scenario for the organization, as team
members would be given an opportunity to address
concerns while also remediating vulnerabilities and
reducing environmental risk.
And if the larger problems within the organization require
more HF expertise, organizations should consider hiring a
full-time HR security expert. If there are positive outcomes
from consulting with an HF expert, it might be time to
integrate an HF expert between cybersecurity and
development or management teams to continuously identify
problems and develop solutions. After some time, the
organization can determine if this group should be
expanded to other areas within the organization.
Here's a condensed version of these steps:

1. Identify areas of concern within your teams, tools, or
processes that require intervention.

2. Hire an HR or cognitive psychologist consultant for an
initial review and problem statement creation.

3. Based on your initial assessment, develop a plan to
integrate HF into your VMP.

4. If applicable, hire an HR security engineer/subject
matter expert (SME) to work between groups.

Step 6: Vulnerability Threat

Intelligence

https://t.me/PrMaB2



The final step in the maturity mode, Step 6, is the
integration of threat intelligence techniques into
vulnerability management practices and processes. This
should only be done once a solid asset management
process is in place, secure configuration activities are
complete and actively monitored, automation has been
implemented in tooling, and the human element has been
considered across the organization (within the context of
vulnerability management). Once all the prior steps are
fully implemented, it is time to consider threat intelligence
to continue to focus on the right remediation and
prioritization.
Not every organization will require an in-depth analysis of
threat intelligence data or a massive threat intel team. But
what is necessary is integrating the techniques and tooling
for open source intelligence (OSINT) gathering and using it
to your advantage. As stated in Chapter 7, “What Is
Vulnerability Chaining?” there are numerous methods for
gathering intelligence, and each organization should
determine which one most benefits them, based on their
size, team structure, and budget.
For example, a VMP could start simply by leveraging the
OSINT tools to gather information and determine what is
relevant to their industry, business, and region/location.
With that information, the VMP can then begin to
determine what outstanding vulnerabilities and risks exist
in their environment and prioritize those vulnerabilities.
Teams should see an immediate benefit to focusing on the
vulnerabilities that matter most, based on the context of
their business.
Hopefully by incorporating this data, leadership can see the
benefits of focusing remediation activities and reducing
risk. Then teams can start to purchase tools as necessary
and hire individuals to build a threat intelligence team.

https://t.me/PrMaB2



Again, not every business will require a full threat
intelligence team, but it can be a great benefit to a VMP
due to their unique skillset and technical abilities. With
some time, integrating threat intelligence should help
reduce their attack surface, save time on vulnerability
remediation, and reduce stress and burnout with security
and vulnerability management analysts.
Here's a condensed version of these steps:

1. Determine which teams or individuals should be
involved.

2. Integrate threat intelligence and vulnerability
management teams to determine which vulnerabilities
are most critical.

3. Use OSINT tools to find intelligence about your
business/organization and tailor your alerts and
remediation activities.

4. Improve your vulnerability management processes and
prioritization activities with intelligence and tooling.

5. Continuously monitor the integration of teams and
tooling to create a cohesive and effective VMP.

Summary

We hope that this chapter provides a path forward for
using all the concepts within this book. We have covered
everything from asset and patch management to
understanding the human element behind vulnerability
management. Each chapter has laid the foundation for the
maturity model.
Every organization will be at a different step in this
maturity model within their own VMP. Review each step
and consider which step your VMP is at, then decide where

https://t.me/PrMaB2



you want to begin. Don't be plagued by decision paralysis!
Pick a step that makes the most sense, then start
organizing and identifying gaps in your processes and
technology.
As with any other VMP component, a maturity model
should be evaluated over time. It is possible that as you
arrive at Steps 4 and 5 that you might find additional gaps
back at Step 1 or 2 that must be addressed before moving
forward.
We hope you can use these steps to improve your VMP,
develop skills and processes that align with your business,
reduce risk, and build resiliency into your systems.

https://t.me/PrMaB2



Acknowledgments

We would like to acknowledge and thank the broad
vulnerability management and cybersecurity community
who have contributed to the many resources,
methodologies, and programs we cite throughout this text.
Organizations and volunteers such as FIRST for their work
on CVSS and EPSS to those individuals helping maintain
major programs such as the NIST NVD, often unseen to the
broad public leveraging their work. We also want to thank
industry innovators, leading the charge with products and
thought leadership around modernizing vulnerability
management and the federal and commercial leaders
calling publicly for a pivot to secure-by-design/default
systems, software, and products. Without the broader
community, we could never have produced such a work. We
would also like to thank our Foreword author Ron Gula and
our technical editor Karen Scarfone for their contributions
to this publication.

https://t.me/PrMaB2



About the Authors

Chris Hughes, M.S., MBA is the cofounder and president
of Aquia, a cybersecurity consulting firm. Chris brings
nearly 20 years of IT and cybersecurity experience to his
role. Chris also serves as a cyber innovation fellow (CIF) at
the Cybersecurity and Infrastructure Security Agency
(CISA), focusing on software supply chain security.
Additionally, Chris advises various tech startups, including
serving as the chief security adviser at Endor Labs.
As a U.S. Air Force veteran and former civil servant in the
U.S. Navy and the General Services Administration's
FedRAMP program, Chris is passionate about making a
lasting impact on his country and our global community at
large.
In addition to his public service, Chris spent several years
as a consultant within the private sector and currently
serves as an adjunct professor for cybersecurity master's
program at the University of Maryland Global Campus.
Chris participates in industry working groups, such as the
Cloud Security Alliance's Incident Response and SaaS
Governance Working Groups, and serves as the
membership chair for Cloud Security Alliance D.C. He is
the co-host of the Resilient Cyber Podcast and runs the
Resilient Cyber Substack, where he shares episodes as well
as detailed articles on topics such as cloud security,
vulnerability management, DevSecOps, and more.
Chris holds a BS in information systems, an MS in
cybersecurity, and an MBA. He regularly consults with IT
and cybersecurity leaders from various industries to assist
their organizations with their digital transformation

https://t.me/PrMaB2



journeys, while keeping security a core component of that
transformation.
Chris is coauthor of the book Software Transparency:

Supply Chain Security in an Era of a Software-Driven

Society” (Wiley, 2023). He has also contributed many other
thought leadership pieces on software supply chain
security and has presented on the topic at a variety of
industry conferences.
Nikki Robinson, DSc, PhD has over 10 years of
experience in the information technology space across
multiple technologies, and over 5 years in the cybersecurity
world, spanning vulnerability management, incident
response, and architecture and design. She began her
career working on a helpdesk for an IT company and most
recently serves as a technical leader and security architect.
Nikki holds both a Doctorate of Science in cybersecurity
and a PhD in human factors from Capitol Technology
University. She began her academic career with a BS in IT
and software engineering, moving into a master's of
science in telecommunications and systems management.
She has published academic research across vulnerability
chaining, password security, malware, graphing malicious
websites, and various other sectors within the
cybersecurity space.
Nikki is also a professor of practice at Capitol Technology
University and serves as the assistant director for the
Center for Women in Cyber. She serves on multiple
volunteer organizations mentoring young career
professionals to gain certifications and choose an education
path, and ultimately supporting them on their journeys.
Nikki also serves as a fellow at the Institute for Critical
Infrastructure Technology, where she speaks at
conferences and publishes research.

https://t.me/PrMaB2



Nikki has also written a book titled Mind the Tech Gap

(CRC Press, 2022), in which she explores the conflicts
between IT and cybersecurity teams.
But most importantly, Nikki is a mother of two girls and
spends her time outside of cybersecurity with her family,
doing everything from horseback riding to racing in
triathlons.

https://t.me/PrMaB2



About the Technical Editor

Karen Scarfone is the principal consultant for Scarfone
Cybersecurity. She develops cybersecurity-related
publications for federal agencies, media companies, and
other organizations. She was formerly a senior computer
scientist at the National Institute of Standards and
Technology (NIST). Karen has coauthored over 100 NIST
special publications and interagency reports on a wide
variety of cybersecurity topics. In addition, she has
coauthored or contributed to 17 books and published over
200 articles on cybersecurity topics. Karen holds master's
degrees in computer science and technical writing, and she
has worked in IT for more than 30 years, with over 20 years
of that dedicated to cybersecurity. In recognition of her
work for federal agencies, Karen has received a Federal
100 award and Department of Commerce Gold Medal and
Bronze Medal Awards.

https://t.me/PrMaB2



Index

A

“Accelerate State of DevOps Report,” 230
access control lists, insufficiency of, 61
accounting, for open source software, 11
ACS (Azure Cognitive Search), 185–186
Active Directory (AD) Certificate Services, 55–56
administrative overhead, automated patching and, 35
advanced persistent threat (APT) groups, 125, 141–142,
146, 149
Agile Application Security (Bell, Brunton-Spall, Smith, and
Bird), 170
AI (artificial intelligence), 6
AKS (Azure Kubernetes Service), 166
alert fatigue, 199–200
AlienVault Open Threat Exchange, 95, 153
“All About That Base Image,” 162
Alrich, Tom (blogger), 117
Amazon Web Services (AWS), 15, 159, 166, 185
American Psychological Association (APA), 191, 196
Ansible, 32, 33–34, 51
AOR (area of responsibility), 43
APA (American Psychological Association), 191, 196
Apache Struts, 126

https://t.me/PrMaB2



Applicability Language specification, in CPEs, 109–110
application programming interfaces (APIs), 117
applications

default configurations of, 55–56
performing automated patch management on, 72–73

APT (advanced persistent threat) groups, 125, 141–142,
146, 149
Aqua Security, 168
area of responsibility (AOR), 43
artificial intelligence (AI), 6
asset discovery, 23–24
asset management

about, 1–2, 27
cloud, 6–8
cloud asset inventories, 11–13
mobile, 3–6
on-premises inventories, 11–13
open source software (OSS), 9–11
physical, 3–6
recommendations for, 22–27
risk, 18–21
as step in maturity model, 234–236
third-party software, 9–11
tooling, 13–18

asset managers, responsibilities of, 22–23
Asset Panda, 14

https://t.me/PrMaB2



assets
consumer IoT, 4–5
missing, 19–20
software, 5–6
unaccounted-for, 19–20

Attack Complexity metric, 85
Attack Requirements metric, 85
Attack Vector (AV) metric, 84–85
Automatable metric, 90
automated patching

about, 34–35
benefits of, 35–36
combined with manual patching, 36
performing, 71–73
risks of, 37–38

automated vulnerability management, as step in maturity
model, 240–242
AWS (Amazon Web Services), 15, 159, 166, 185
AWS Lambda, 169–170
Azure Cognitive Search (ACS), 185–186
Azure Kubernetes Service (AKS), 166

B

base metrics, in CVSS, 84
BEC (business email compromise), 139–140

https://t.me/PrMaB2



Behr, Kevin (author)
The Phoenix Project, The DevOps Handbook, 170

Bell, Laura (author)
Agile Application Security, 170

Binding Operational Directive (BOD), 130
Bird, Jim (author)

Agile Application Security, 170
Booz Allen Hamilton, 116
Brunton-Spall, Michael (author)

Agile Application Security, 170
building patch management systems, 50–52
Building Security in Maturity Model (BSIMM), 223
business email compromise (BEC), 139–140

C

CASF (Common Security Advisory Format), 228
Categorization of Attacks Toolkit (I-CAT), 116
CCB (configuration change control board), 76–77
CCM (Cloud Controls Matrix), 75
CCR (corporate cyber responsibility), 216–217
CCR (Coverage Claims Representation), 114
Center for Internet Security (CIS)

about, 19
Benchmarks, 53–54, 65–66

Cerkovnik, Lindsey, 108
Chainguard, 162

https://t.me/PrMaB2



CIA (Confidentiality, Integrity, and Availability) triad, 31–
32, 86
CI/CD (continuous integration/continuous delivery), 76,
164
CISA. See Cybersecurity and Infrastructure Security
Agency (CISA)
“CISA Red Team Shares Key Findings to Improve
Monitoring and Hardening of Networks,” 57–58
“CISA SSVC Guide,” 97–106
cloud asset inventories, 11–13
cloud asset management, 6–8
cloud computing service models, 156–158
Cloud Controls Matrix (CCM), 75
cloud inventory management tools, 15–16
Cloud Native Computing Foundation (CNCF), 159
Cloud Security Alliance (CSA), 75, 183
cloud service provider (CSP), 6, 14, 156–158, 185
CloudSphere, 7
CM-3: Configuration Change Control, 76
CMMC (Cybersecurity Maturity Model Certification), 74
CNAs (CVE Numbering Authorities), 117
CNCF (Cloud Native Computing Foundation), 159
code execution, unrestricted, 62
co-exploitation, 133
cognition, 196–197
cognitive vulnerability, 197

https://t.me/PrMaB2



“Combat Security Alert Fatigue with AI-Assisted
Techniques,” 199
commercial-off-the-shelf (COTS) software, 55
Common Platform Enumerations (CPEs), 108–110, 116
Common Security Advisory Format (CASF), 228
Common Vulnerabilities and Exposures (CVEs), 64, 148
common vulnerabilities and exposures identifications (CVE
IDs), 187–188
Common Vulnerability Scoring System (CVSS)

about, 19, 79–80, 116, 146, 228
base metrics, 84
environmental metrics, 88–89
exploitability metrics, 84–86
4.0, 80–83
Qualitative Severity Rating Scale, 91–92
supplemental metrics, 89–91
threat metrics, 86–87
User Guide, 132
vector string, 92

Common Weakness Risk Analysis Framework (CWRAF),
114
Common Weaknesses Enumeration (CWE), 64, 112–114,
229
Confidentiality, Integrity, and Availability (CIA) triad, 31–
32, 86
configuration change control board (CCB), 76–77
ConMon, 238–240

https://t.me/PrMaB2



consultants, 204–205
consumer IoT assets, 4–5
container orchestration platform, 165
container orchestrator, 161
container registry, 161
Container Security (Rice), 164
containers, 159–165
context switching, 191–193
continuous integration/continuous delivery (CI/CD), 76,
164
continuous monitoring (ConMon)

practices, 74–77
as step in maturity model, 238–240

continuous vulnerability management
about, 69, 77
continuous monitoring practices, 74–77
control number 7, 70–74

controls, mitigating, 48
corporate cyber responsibility (CCR), 216–217
COTS (commercial-off-the-shelf) software, 55
Coverage Claims Representation (CCR), 114
CPEs (Common Platform Enumerations), 108–110, 116
credential hygiene, 61–62
“Critical Infrastructure and the Cloud: Policy for Emerging
Risk,” 184
cross-tenant vulnerabilities, 185

https://t.me/PrMaB2



Crowdstrike, 147, 148, 149, 191
CSA (Cloud Security Alliance), 75, 183
CSO Online, 127–128
CSP (cloud service provider), 6, 14, 156–158, 185
CSRB (Cyber Safety Review Board), 46, 56, 176
customer recommendations, 219–220
CVE IDs (common vulnerabilities and exposures
identifications), 187–188
CVE Numbering Authorities (CNAs), 117
CVEs (Common Vulnerabilities and Exposures), 64, 148
CWE (Common Weaknesses Enumeration), 64, 112–114,
229
CWRAF (Common Weakness Risk Analysis Framework),
114
Cyber Safety Review Board (CSRB), 46, 56, 176
Cyber Threat Intelligence (Lee), 151
cyber-physical systems, 104
Cybersecurity and Infrastructure Security Agency (CISA)

about, 18, 20, 47, 54, 207, 211–218
Known Exploited Vulnerabilities (KEV), 94, 173
Stop Ransomware campaign, 139
top 10 cybersecurity misconfigurations, 54–67
website, 145

“Cybersecurity First Principles & Shouting Into the Void,”
55
Cybersecurity Maturity Model Certification (CMMC), 74

https://t.me/PrMaB2



Cyentia Institute, 58, 94

D

daisy chains, 128
DARPA (Defense Advanced Research Projects Agency), 220
DAST (dynamic application security testing), 76, 171
data centers, on-premises, 11–13
database administrator (DBA), 41
DBIR (Verizon Data Breach Investigations Report), 57
decision fatigue, 199
“Decision Fatigue: A Conceptual Analysis,” 199
decision paralysis, 47
decision tree example, 106–107
decision-making, art of, 198–203
“Decision-Making and Biases in Cybersecurity Capability
Development: Evidence from a Simulation Game
Experiment,” 198
decommissioning standard operating procedures (SOPs),
26–27
default configurations, of software and applications, 55–56
Defense Advanced Research Projects Agency (DARPA), 220
Defense Information Systems Agency (DISA), 53–54, 66–67
Department of Defense (DoD), 53–54, 80, 92, 97, 162, 168
Department of Homeland Security (DHS), 116
Dependabot, 40
“dependency hell,” 40
development, using vulnerability chaining in, 143

https://t.me/PrMaB2



development environments, patch management for, 38
DevOps, 38
DevOps research and assessment (DORA), 173
DevSecOps, 38, 170–174
DHS (Department of Homeland Security), 116
Dictionary specification, in CPEs, 109
digital transformation (DX), 25–26
direct chaining, 126
DISA (Defense Information Systems Agency), 53–54, 66–67
discovery, of assets, 23–24
Docker Hub, 161
DoD (Department of Defense), 53–54, 80, 92, 97, 162, 168
DORA (DevOps research and assessment), 173
Dugal, Dave, 80
DX (digital transformation), 25–26
dynamic application security testing (DAST), 76, 171

E

Easterly, Jen (CISA Director), 207–208
efficiency, of automated patching, 35
Egger, S. A., 135
Elastic Container Registry Public (ECR Public), 185
Elastic Kubernetes Service (EKS), 166
“The Elusive Built-in Not Bolted-On” article, 55
Emerging Cyber Threats and Cognitive Vulnerabilities, 198
end-of-life (EOL) software, 43–45

https://t.me/PrMaB2



end-of-support (EOS) software, 43–44
Endor Labs

State of Dependency Management report, 176
Top 10 Open Source Software (OSS) Risks report, 177

“Enhancing Vulnerability Prioritization: Data-Driven Exploit
Predictions with Community-Driven Insights,” 94
Environmental metrics, in CVSS, 88–89
EOL (end-of-life) software, 43–45
EOS (end-of-support) software, 43–44
ephemeral assets, 16–17
EPSS (Exploit Prediction Scoring System), 74, 88, 92–95,
132–133, 228
establishing

remediation process, 71
standard operating procedures (SOPs), 26–27
vulnerability management process, 70–71

EU Cyber Resilience Act, 180
executive buy-in, 224
exploit chains, 127–128
exploit databases

about, 121, 123
Exploit-DB, 122
GitHub, 122
Metasploit, 122

Exploit Maturity metric, 86–88

https://t.me/PrMaB2



Exploit Prediction Scoring System (EPSS), 74, 88, 92–95,
132–133, 228
Exploitability metrics, in CVSS, 84–86
exploitation window, 36
Exploit-DB, 122
external enterprise assets, performing automated
vulnerability scans of, 73

F

FaaS (functions-as-a-service), 169
Federal Communications Commission (FCC), 141
Federal Information Processing Standards (FIPS), 75
Federal Risk and Authorization Management Program
(FedRAMP), 182
FortiGuard, 95
Forum of Incident Response and Security Teams (FIRST),
74, 79, 131
foundations, of patch management, 29–30
frameworks, for secure configuration, 53–54
“From Lemons to Peaches: Improving Security ROI through
Security Chao Engineering,” 229
F-Secure, 126–127
functions-as-a-service (FaaS), 169

G

GAO (U.S. Government Accountability Office), 20
Garrity, Patrick (industry expert), 200
GitGuardian, 62

https://t.me/PrMaB2



GitHub
about, 11, 122
Advisory Database, 119, 120–121
security advisories (GHSAs), 121

GitOps, 41
Google, 119
Google Cloud, 159, 184
Google Cloud Platform (GCP), 15
Google Container Registry (GCR), 161
GreyNoise, 95, 153

H

“Hacking AWS Lambda for security, fun, and profit,” 170
hardening guides, 218–219
Hatleback, Eric (researcher), 97
Haydock, Walter, 125–126
HCI (human-computer interaction), 190
Health Insurance Portability and Accountability Act
(HIPAA), 53, 236
HFE (human factors engineering), 189–191
HFES (Human Factors & Ergonomics Society), 189
high availability (HA), 41
Hill, Michael (editor), 127–128
Horizon3.ai, 130
Householder, Allen (researcher), 97

https://t.me/PrMaB2



human aspect
about, 187–188, 205–206
art of decision-making, 198–203
cognition and metacognition, 196–197
human factors engineering (HFE), 189–191
human factors security engineering, 191–196
integration of, into VMPs, 203–205
of vulnerability chaining, 138–141
vulnerability cognition, 197–198

“Human Factor Principles in UX Design,” 189–190
human factors engineering (HFE), 189–191
Human Factors & Ergonomics Society (HFES), 189
“Human Factors in Cybersecurity: Academia's Missed
Opportunity,” 191
human factors security engineering

about, 191
context switching, 191–193
vulnerability dashboards, 193–194
vulnerability reports, 194–196

human-computer interaction (HCI), 190

https://t.me/PrMaB2



hybrid environments
about, 6, 7–8, 158–159
containers, 159–165
DevSecOps, 170–174
Kubernetes, 165–169
open source software (OSS), 174–182
serverless, 169–170
software-as-a-service (SaaS), 182–183
systemic risks, 183–186

I

IaaS (infrastructure-as-a-service), 156–158
IaC (infrastructure as a code), 171
IAST (interactive application security testing), 172
I-CAT (Categorization of Attacks Toolkit), 116
identity and access management (IAM), 40–41
Impact metrics, 86
“Implementing Phishing-Resistant MFA,” 61
incident response (IR), 20
indicators of compromise (IOCs), 146
indirect chaining, 126
industry gaps, 133–134
Information Security Agency (ISA), 168
infrastructure, operations teams compared with, 40–41
infrastructure as a code (IaC), 171
infrastructure-as-a-service (IaaS), 156–158

https://t.me/PrMaB2



integrating
human factors into VMPs, 203–205, 242–243
threat intelligence into VMPs, 151–154
vulnerability chaining into VMPs, 141–143

interactive application security testing (IAST), 172
internal enterprise assets, performing automated
vulnerability scans of, 73
internal network monitoring, insufficient, 57–58
Internal Revenue Service (IRS), 141
Internet of Things (IoT), 4–5
IOCs (indicators of compromise), 146
“IoT Cybersecurity Criteria for Consumer Labeling
Program” guide, 4
iPhone exploit chain, 130–131
IR (incident response), 20
“Iron Bank,” 162
“Is There a Market Failure in Cybersecurity?,” 208
ISA (Information Security Agency), 168
IT, using vulnerability chaining in, 143

J

JavaScript Object Notation (JSON), 120

K

“Keeping Secrets in a DevSecOps Cloud-Native World,” 62
KEV (Known Exploited Vulnerabilities), 20, 56, 74, 94, 130,
228

https://t.me/PrMaB2



Kill Chain, 90
Kim, Gene (author)

The Phoenix Project, The DevOps Handbook, 170
“Know, Prevent, Fix” framework, 119
Known Exploited Vulnerabilities (KEV), 20, 56, 74, 94, 130,
228
kube-bench, 167
kube-hunter, 167
Kubernetes, 165–169
Kubernetes Hardening Guide, 168
Kubernetes STIG, 168

L

laws, for secure configuration, 53–54
leadership principles, 142, 216–217
Lee, Martin (author)

Cyber Threat Intelligence, 151
local privilege escalation (LPE), 131
Log4j, 18–19, 39, 46
Log4Shell, 18–19
loosening guides, 218–219

M

maintaining
remediation process, 71
vulnerability management process, 70–71

ManageEngine, 32, 51

https://t.me/PrMaB2



Manion, Art (researcher), 97
manual patching

about, 30–31
combined with automatic patching, 36
limitations of, 35–36
risks of, 31–32
tooling for, 32–34

maturity model
about, 233–234, 245
asset management step, 234–236
automated vulnerability management step, 240–242
continuous monitoring step, 238–240
integrating human factors step, 242–243
secure configuration step, 236–238
vulnerability threat intelligence step, 244–245

MDM (mobile device management), 3–4
MEFs (mission-essential functions), 103–104
mental workload, 202–203
metacognition, 196–197
“Metacognition” article, 197
Metasploit, 122
MGM breach, 140
Microsoft Active Directory, 129–130
Microsoft Azure, 15, 159, 166, 185–186
Microsoft Configuration Manager, 12, 33, 43, 51

https://t.me/PrMaB2



minimize the attack window, 36
misconfigurations, 54–55
missing assets, 19–20
Mission Prevalence, 103
mission-essential functions (MEFs), 103–104
mitigating controls, 48
Mitigation Status, 104
mitigations, 62–65
MITRE, 112–113
mobile asset management, 3–6
mobile device management (MDM), 3–4
MOVEit product, 208
multicloud environments

about, 6–7, 158–159
containers, 159–165
DevSecOps, 170–174
Kubernetes, 165–169
open source software (OSS), 174–182
serverless, 169–170
software-as-a-service (SaaS), 182–183
system risks, 183–186

multifactor authentication (MF)
about, 137
phishing-resistant, 61
weak or misconfigured, 60–61

https://t.me/PrMaB2



N

Name Matching specification, in CPEs, 109
Naming specification, in CPEs, 109
National Cyber Security Centre (NCSC), 18–19
National Cybersecurity Strategy (NCS), 63, 183, 207, 212
National Institute of Standards and Technology (NIST)

about, 4
CPE, 110
Cybersecurity Framework (CSF), 53
National Vulnerability Database (NVD), 20, 80, 108, 115–
118
Risk Management Framework (RMF), 22–23
SP 800-53, Security and Privacy Controls for Information
Systems and Organizations, 74
SP 800-145, 155
SP 800-171, the Federal Risk and Authorization
Management Program (FedRAMP), 74

National Security Agency (NSA), 54–67, 168, 220
National Vulnerability Database (NVD), 20, 80, 108, 115–
118
NCS (National Cybersecurity Strategy), 63, 183, 207, 212
NCSC (National Cyber Security Centre), 18–19
network monitoring, insufficient, 64
network segmentation, lack of, 58
network shares/services, insufficient access control lists
on, 61

https://t.me/PrMaB2



NIST. See National Institute of Standards and Technology
(NIST)
Nobles, Calvin, 191
NSA (National Security Agency), 54–67, 168, 220
NVD (National Vulnerability Database), 20, 80, 108, 115–
118

O

Offensive Security Certified Professional (OSCP), 133
Office of Management and Budget (OMB), 180, 217
Office of the National Cyber Director (ONCD), 180–181
on-premises data centers, 11–13
open source patching, 38–39
Open Source Security Foundation (OpenSSF), 119
open source software (OSS)

about, 9–10, 11, 174–182
open source patching and, 38–39
unpatched open source software, 45–46

Open Source Vulnerabilities (OSV), 119–120
Open Worldwide Application Security Project (OWASP),
113, 118, 167
OpenCTI, 153
Open-Source Software Security Initiative (OS3I), 181
operating systems (OSs), performing automated patch
management on, 71–72
operational threat intelligence, 149
operations teams, infrastructure compared with, 40–41

https://t.me/PrMaB2



OSCP (Offensive Security Certified Professional), 133
OSS. See open source software (OSS)
OSS-FUZZ, 119
OSV (Open Source Vulnerabilities), 119–120
outdated systems, patching, 43–44
OWASP (Open Worldwide Application Security Project),
113, 118, 167

P

PaaS (platform-as-a-service), 156–158
Package URL (PURL), 110–112, 118
Palo Alto Network's Unit Research Group, 167
pass-the-hash (PtH) attacks, 60, 126

https://t.me/PrMaB2



patch management
about, 21, 29, 52
automated, 34–38
building programs for, 50–52
common attacks for unpatched systems, 47–48
for development environments, 38
end-of-life (EOL) software, 43–45
foundations of, 29–30
manual, 30–34
open source patching, 38–39
outdated systems, 43–44
owners of, 41–50
poor, 58–60, 64–65
prioritizing patching activities, 48–49
required patches/configurations, 200–201
residual risk, 46–47
risk management and, 49–50
software, 39–41
tools for, 43
unpatched open source software, 45–46

“Patch Tuesday,” 200
Payment Card Industry Data Security Standard (PCI DSS),
53, 236
PCI DSS (Payment Card Industry Data Security Standard),
53, 236
PEACH framework, 185

https://t.me/PrMaB2



Pease, Michael, 25
people

for patch management systems, 50–51
threat intelligence and, 151–152

performing
automated application patch management, 72–73
automated operating system patch management, 71–72
automated vulnerability scans of externally exposed
enterprise assets, 73
automated vulnerability scans of internal enterprise
assets, 73

phishing, 138–139
phishing-resistant MFA, 61
The Phoenix Project, The DevOps Handbook (Kim,
Spafford, and Behr), 170
physical asset management, 3–6
platform-as-a-service (PaaS), 156–158
Ponemon, 58–59, 201
PowerShell, 51
Pratt, Mary K. (author)

“Top 10 security threats and risks to Prioritize,” 5
Preparing the Organization (PO), 223–225
primary asset manager, 22–23
prioritizing patching activities, 48–49
“Prioritizing Vulnerability Response: A Stakeholder-Specific
Vulnerability Categorization” (Spring, Hatleback,
Householder, Manion, and Schick), 97

https://t.me/PrMaB2



Privileges Required metric, 85
process

for patch management systems, 51
threat intelligence and, 152–153

Produce Well-Secured Software (PW), 226
product security incident response teams (PSIRTs), 228
Progress Software, 208
“A Proposal to Operationalize Component Identification for
Vulnerability Management,” 111–112
Protecting the Software (PS), 225–226
Provider Urgency metric, 90–91
PSIRTs (product security incident response teams), 228
PtH (pass-the-hash) attacks, 60, 126
Public Well-Being Impact, 104
PURL (Package URL), 110–112, 118
PW (Produce Well-Secured Software), 226
Python Package Index (PyPi), 118

Q

Qualitative Severity Rating Scale, in CVSS, 91–92
Qualys, 10, 14, 25, 59, 93
Quay, 161

R

RA-5: Vulnerability Monitoring and Scanning, 75–76
RACI (Responsible, Accountable, Consulted, and Informed)
matrix, 41–42

https://t.me/PrMaB2



RAND Corporation, 94
ransomware-as-a-service (RaaS), 191
RCA (root cause analysis), 64
RCE (remote code execution), 18, 45
recommendations, for asset management, 22–27
Recovery metric, 91
regulations, for secure configuration, 53–54
remediating

detected vulnerabilities, 74
establishing and maintaining a process for, 71

remote code execution (RCE), 18, 45
Renovate, 40
Representational State Transfer (REST) API, 118
request for information (RFI), 180–181
residual risk, 46–47
resilience, 229–231
Respond to Vulnerabilities (RV), 227–229
responsibilities

of asset managers, 22–23
of infrastructure vs. operations teams, 40–41

responsibility assignment matrix, 41–42
Responsible, Accountable, Consulted, and Informed (RACI)
matrix, 41–42
Rezilion, 58–59, 201
RFI (request for information), 180–181

https://t.me/PrMaB2



Rice, Liz (author)
Container Security, 164

Rich, Dale, 80
risk management, patch management and, 49–50
Risk Management Framework (RMF), 22–23
risks

asset management, 18–21
of automated patching, 37–38
of manual patching, 31–32
residual, 46–47
systemic, 183–186

Robinson, Nikki (author), 134–135
Roles and Responsibilities Matrix, 36
root cause analysis (RCA), 64
RV (Respond to Vulnerabilities), 227–229

S

SaaS (software-as-a-service), 156–158, 182–183
“SaaS Governance Best Practices for Cloud Customers,”
183
SaaS Security Posture Management, 183
Safety metric, 89–90
SAMM (Software Assurance Maturity Model), 223
SANS Technology Institute, 116, 133
SANS White paper on Threat Intelligence, 145
SAST (static application security testing), 76, 171

https://t.me/PrMaB2



SBOM (Software Bill of Materials), 117
SCA (software composition analysis), 171–172
SCAP (Security Content Automation Protocol), 67
SCM (source code management), 171
scoring, vulnerability chaining and, 131–134
SDLC (software development life cycle), 63, 76, 118, 171,
173, 207, 221
Seals, Tara (editor), 130
SEC (security chaos engineering), 229–231
secondary asset manager, 22–23

https://t.me/PrMaB2



secure configuration
about, 53, 68
bypass of system access controls, 60
CIS benchmarks, 65–66
cybersecurity misconfigurations, 54–68
default configurations of software/ applications, 55–56
DISA security technical implementation guides, 66–67
frameworks, 53–54
improper segregation of user/administrator privilege, 57
insufficient access control lists on network
shares/services, 61
insufficient internal network monitoring, 57–58
lack of network segmentation, 58
lack of phishing-resistant MFA, 61
laws, 53–54
mitigations, 62–65
poor credential hygiene, 61–62
poor patch management, 58–60
regulations, 53–54
as step in maturity model, 236–238
unrestricted code execution, 62
weak or misconfigured multifactor authentication
methods, 60–61

Secure Software Development Framework (SSDF), 63, 217,
222–223
Secure-by-Default/Design systems and software, 183

https://t.me/PrMaB2



secure-by-design
about, 207–208, 209–210, 231
hardening vs. loosening guides, 218–219
recommendations for customers, 219–220
secure software development, 222–229
secure-by-default, 208–209, 210–211
secure-by-default tactics, 218
security chaos engineering and resilience, 229–231
software product security principles, 211–217
tactics, 217–218
threat modeling, 220–222

security chaos engineering (SCE), 229–231
Security Chaos Engineering: Sustaining Resilience in

Software and Systems (Shortridge), 229
Security Content Automation Protocol (SCAP), 67
Security Operations Center (SOC), 146, 192, 199–200
security practitioner integration, 142–143
Security Technical Implementation Guides (STIGs), 53, 67
SEI (Software Engineering Institute), 97
selecting tooling, 24–25
separation of duties, 42–43
serverless, 169–170
service level agreements (SLAs), 30, 46
service models, in cloud computing, 156–158
ServiceNow, 2, 13–14

https://t.me/PrMaB2



shadow IT, 182
Shadowserver Foundation, 95, 167
“Shared Fate,” 184
shared responsibility model (SRM), 157–158
Sharma, Chinmayi (researcher), 177
Shick, Deana (researcher), 97
shifting security left, 172
“Shifting the Balance of Cybersecurity Risk: Principles and
Approaches for Secure by Design Software,” 63, 208
Shortridge, Kelly (author)

Security Chaos Engineering: Sustaining Resilience in

Software and Systems, 229
SIG (Special Interest Group), 79
SIM (subscriber identity module) swapping, 61
“single pane of glass,” 15–16
single-sign on (SSO), 204
SLAs (service level agreements), 30, 46
small to medium businesses (SMBs), 11, 13–14
smishing, 140
Smith, Rich (author)

Agile Application Security, 170
sniffing, 5
SOC (Security Operations Center), 146, 192, 199–200
SOC (System and Organization Controls), 236
social engineering, 140–141

https://t.me/PrMaB2



software
default configurations of, 55–56, 63–64
identification formats, 107–114
open source software (OSS), 9–10, 11
for patch management, 39–41
product security principles, 211–217
secure development of, 222–229
third-party, 9–10

software assets, 5–6
Software Assurance Maturity Model (SAMM), 223
Software Bill of Materials (SBOM), 117
software composition analysis (SCA), 171–172
software development life cycle (SDLC), 63, 76, 118, 171,
173, 207, 221
Software Engineering Institute (SEI), 97
Software Identification (SWID) format, 112
software identification tags, 112
“Software Identity And The Naming of Things” talk, 108
“Software Security in Supply Chains: Open Source
Software Controls,” 181
software-as-a-service (SaaS), 156–158, 182–183
SolarWinds, 20, 32–33, 208
Sonatype, 39
Sonatype Open Source Software Index, 118
SOPs (standard operating procedures), establishing and
decommissioning, 26–27

https://t.me/PrMaB2



source code management (SCM), 171
source of truth, 17–18
SP 800-190 Application Container Security Guide, 163
Spafford, George (author)

The Phoenix Project, The DevOps Handbook, 170
Special Interest Group (SIG), 79
speed, of automated patching, 35
Spring, Jonathan (researcher), 97
SRM (shared responsibility model), 157–158
SSDF (Secure Software Development Framework), 63, 217,
222–223
SSO (single-sign on), 204
SSVC. See Stakeholder-Specific Vulnerability
Categorization (SSVC)
Stakeholder-Specific Vulnerability Categorization (SSVC)

about, 97–99, 228
CISA SSVC Guide, 99–106
decision tree example, 106–107

standard operating procedures (SOPs), establishing and
decommissioning, 26–27
State of the Software Supply Chain report, 111
“The State of Secrets Sprwal” report, 62
static application security testing (SAST), 76, 171
STIGs (Security Technical Implementation Guides), 53, 67
Stop Ransomware campaign, 139
strategic threat intelligence, 148

https://t.me/PrMaB2



STRIDE mnemonic, 220–221
subscriber identity module (SIM) swapping, 61
Supplemental metrics, in CVSS, 89–91
SWID (Software Identification) format, 112
Synopsys Open Source Security and Risk Analysis Report,
110
system access controls, bypass of, 60
System and Organization Controls (SOC), 236
systemic risks, 183–186

T

tactical threat intelligence, 147–148
TAG (Threat Analysis Group), 130–131
technical threat intelligence, 146–147
techniques, tactics, and procedures (TTPs), 148
technology

for patch management systems, 51–52
threat intelligence and, 153–154

Tenable, 10, 14, 20, 25, 128
terminology, for vulnerability chaining blindness, 135–136
third-party software, 9–10
Threat Analysis Group (TAG), 130–131
threat hunting, 150–151

https://t.me/PrMaB2



threat intelligence
about, 145, 154
importance of to VMPs, 145–146
integrating into VMPs, 151–154
operational, 149
strategic, 148
tactical, 147–148
technical, 146–147
threat hunting, 150–151

Threat metrics, in CVSS, 86–87
threat modeling, 220–222
Threat Modeling Manifesto, 221
time to remediation, with automated patching, 35–36
tools

about, 13
asset management tools, 13–14
cloud inventory management tools, 15–16
ephemeral assets, 16–17
for manual patching, 32–34
for patch management, 43
selecting, 24–25
sources of truth, 17–18
vulnerability scanning tools, 14–15

“Top 10 security threats and risks to Prioritize” (Pratt), 5
“Tragedy of the Digital Commons,” 177

https://t.me/PrMaB2



transparency, 214–216
“Troubleshome Tenants,” 58
TRURISK Research Report, 93–94
truth, source of, 17–18
TTPs (techniques, tactics, and procedures), 148
“2022 Accelerate State of DevOps Report: A deep dive into
security,” 173

U

UAT (user acceptance testing), 31
unaccounted-for assets, 19–20
unauthenticated login access, 47
United States Air Force (USAF), 162
unknown unknowns (UUs), 18, 20
unpatched open source software, 45–46
unpatched systems, common attacks for, 47–48
U.S. Government Accountability Office (GAO), 20
user acceptance testing (UAT), 31
User Interaction metric, 85
user/administrator privilege, improper separation of, 57, 64

V

Value Density metric, 91
VCB (vulnerability chaining blindness), 134–138
vector string, in CVSS, 92
vendor-released chains, 129–131
Verizon Data Breach Investigations Report (DBIR), 57

https://t.me/PrMaB2



VEX (Vulnerability Exploitability Exchange), 228
virtual machines (VMs), 160–161
vishing, 140
VMPs. See vulnerability management programs (VMPs)
VMWare vRealize products, 130
vulnerabilities, volume released, 200

https://t.me/PrMaB2



vulnerability chaining
about, 47, 103, 125, 144
attacks, 125–131
blindness (VCB), 134–138
business email compromise (BEC), 139–140
Common Vulnerability Scoring System (CVSS), 132
daisy chains, 128
development usage, 143
EPSS, 132–133
exploit chains, 127–128
human aspect of, 138–141
industry gaps, 133–134
integration into vulnerability management programs
(VMPs), 141–143
IT usage, 143
leadership principles, 142
phishing, 138–139
scoring and, 131–134
security practitioner integration, 142–143
social engineering, 140–141
terminology, 135–136
usage in vulnerability management programs, 136–138
vendor-released chains, 129–131

vulnerability chaining blindness (VCB), 134–138
vulnerability cognition, 197–198
“Vulnerability Cognition and Communication,” 197

https://t.me/PrMaB2



vulnerability dashboards, 193–194
vulnerability databases

about, 115, 123
GitHub advisory database, 120–121
National Vulnerability Database (NVD), 115–118
Open Source Vulnerabilities (OSV), 119–120
Sonatype Open Source Software (OSS) Index, 118

Vulnerability Exploitability Exchange (VEX), 228
vulnerability management. See continuous vulnerability
management
vulnerability management fatigue, 201–202
vulnerability management programs (VMPs)

about, 1–2, 20
importance of threat intelligence to, 145–146
integrating human factors into, 203–205
integrating threat intelligence into, 151–154
integrating vulnerability chaining into, 141–143
use of vulnerability chaining blindness in, 136–138

vulnerability reports, 194–196
Vulnerability Response Effort metric, 91
vulnerability scanning tools, 14–15

https://t.me/PrMaB2



vulnerability scoring
about, 79, 114
Common Vulnerability Scoring System (CVSS), 79–92
Exploit Prediction Scoring System (EPSS), 92–95
future of, 95–96
software identification formats, 107–114
Stakeholder-Specific Vulnerability Categorization
(SSVC), 96–107

vulnerability threat intelligence, as step in maturity model,
244–245
vulnerable system, 84

W

https://t.me/PrMaB2



websites
“Accelerate State of DevOps Report,” 230
American Psychological Association (APA), 196
American Psychology Association (APA), 191
“CISA Red Team Shares Key Findings to Improve
Monitoring and Hardening of Networks,” 57–58
“Combat Security Alert Fatigue with AI-Assisted
Techniques,” 199
Common Vulnerability Scoring System (CVSS) User
Guide, 132
Crowdstrike, 147, 148, 149, 191
Cyber Safety Review Board (CSRB), 176
“Cybersecurity First Principles & Shouting Into the
Void,” 55
Cyentia Institute, 58
“Decision Fatigue: A Conceptual Analysis,” 199
“Decision-Making and Biases in Cybersecurity Capability
Development: Evidence from a Simulation Game
Experiment,” 198
Dependabot, 40
“The Elusive Built-in Not Bolted-On” article, 55
Endor Labs' State of Dependency Management report,
176
Endor Labs Top 10 Open Source Software (OSS) Risks
report, 177
“Enhancing Vulnerability Prioritization: Data-Driven
Exploit Predictions with Community-Driven Insights,” 94
EPSS, 132

https://t.me/PrMaB2



“From Lemons to Peaches: Improving Security ROI
through Security Chao Engineering,” 229
GitHub Advisory Database, 121
“Hacking AWS Lambda for security, fun, and profit,” 170
“Human Factor Principles in UX Design,” 189–190
“Human Factors in Cybersecurity: Academia's Missed
Opportunity,” 191
“Implementing Phishing-Resistant MFA,” 61
“Is There a Market Failure in Cybersecurity?,” 208
“Keeping Secrets in a DevSecOps Cloud-Native World,”
62
kube-bench, 167
kube-hunter, 167
Kubernetes Hardening Guide, 168
Kubernetes STIG, 168
“Metacognition,” 197
NIST CPE, 110
NIST SP 800-53, Security and Privacy Controls for
Information Systems and Organizations, 74–75
Package URL (PURL), 110
Palo Alto Network's Unit Research Group, 167
PEACH framework, 185
Ponemon, 58–59
“A Proposal to Operationalize Component Identification
for Vulnerability Management,” 111
Renovate, 40
Rezilion, 58–59

https://t.me/PrMaB2



“SaaS Governance Best Practices for Cloud Customers,”
183
SANS White paper on Threat Intelligence, 145
ServiceNow, 2
“Shifting the Balance of Cybersecurity Risk: Principles
and Approaches for Secure by Design Software,” 63
Software Identification (SWID) format, 112
“Software Identity And The Naming of Things” talk, 108
“Software Security in Supply Chains: Open Source
Software Controls,” 181
SP 800-190 Application Container Security Guide, 163
State of the Software Supply Chain report, 111
“The State of Secrets Sprwal” report, 62
Synopsys Open Source Security and Risk Analysis Report,
110
Threat Modeling Manifesto, 221
“Troubleshome Tenants,” 58
TRURISK Research Report, 93
“2022 Accelerate State of DevOps Report: A deep dive
into security,” 173
“Vulnerability Cognition and Communication,” 197

Wenzler, Nathan, 20
Williams, Jeff, 172, 179
Wiz, 185

Y

Yu, Sounil, 209

https://t.me/PrMaB2



Z

zero trust, 57
zero-day, 5

https://t.me/PrMaB2



Copyright © 2024 by John Wiley & Sons, Inc. All rights reserved.
Published by John Wiley & Sons, Inc., Hoboken, New Jersey. 
Published simultaneously in Canada and the United Kingdom.
ISBNs: 9781394221202 (Paperback), 9781394221226 (ePDF), 9781394221219
(ePub)
No part of this publication may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, electronic, mechanical, photocopying,
recording, scanning, or otherwise, except as permitted under Section 107 or
108 of the 1976 United States Copyright Act, without either the prior written
permission of the Publisher, or authorization through payment of the
appropriate per-copy fee to the Copyright Clearance Center, Inc., 222
Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 750-4470, or
on the web at www.copyright.com. Requests to the Publisher for permission should
be addressed to the Permissions Department, John Wiley & Sons, Inc., 111
River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or
online at www.wiley.com/go/permission.
Trademarks: WILEY and the Wiley logo are trademarks or registered
trademarks of John Wiley & Sons, Inc. and/or its affiliates, in the United States
and other countries, and may not be used without written permission. All other
trademarks are the property of their respective owners. John Wiley & Sons, Inc.
is not associated with any product or vendor mentioned in this book.
Limit of Liability/Disclaimer of Warranty: While the publisher and authors
have used their best efforts in preparing this book, they make no
representations or warranties with respect to the accuracy or completeness of
the contents of this book and specifically disclaim any implied warranties of
merchantability or fitness for a particular purpose. No warranty may be
created or extended by sales representatives or written sales materials. The
advice and strategies contained herein may not be suitable for your situation.
You should consult with a professional where appropriate. Further, readers
should be aware that websites listed in this work may have changed or
disappeared between when this work was written and when it is read. Neither
the publisher nor authors shall be liable for any loss of profit or any other
commercial damages, including but not limited to special, incidental,
consequential, or other damages.
For general information on our other products and services or for technical
support, please contact our Customer Care Department within the United
States at (800) 762-2974, outside the United States at (317) 572-3993 or fax
(317) 572-4002.
Wiley also publishes its books in a variety of electronic formats. Some content
that appears in print may not be available in electronic formats. For more
information about Wiley products, visit our web site at www.wiley.com.
Library of Congress Control Number: 2023948620

https://t.me/PrMaB2

http://www.copyright.com/
http://www.wiley.com/go/permission
http://www.wiley.com/


Cover images: Dragon: © CSA-Printstock/Getty Images 
                           Background: © enjoynz/Getty Images
Cover design: Wiley

https://t.me/PrMaB2



This book is dedicated to my wife Kathleen and our

children Carolina, Calvin, Callie, and Clayton, whose

unwavering support enabled me to continue to grow

professionally and who continue to be my primary purpose

for always striving forward. 

—Chris Hughes  

I dedicate this book to my husband, Brian, and my

daughters, Keira and Teagan. Without your constant

support and encouragement, I would never be able to

pursue the things I love. You all are my world. I also

dedicate this book to my Grandma Osbourn—one of the

strongest women I know. I'm lucky to have had such an

independent and fearless female to look up to. 

—Dr. Nikki Robinson

https://t.me/PrMaB2



WILEY END USER LICENSE

AGREEMENT

Go to www.wiley.com/go/eula to access Wiley’s ebook
EULA.

https://t.me/PrMaB2

http://www.wiley.com/go/eula

	Table of Contents
	Title Page
	Foreword
	Introduction
	What Does This Book Cover?
	Who Should Read This Book

	1 Asset Management
	Physical and Mobile Asset Management
	Cloud Asset Management
	Third-Party Software and Open Source Software (OSS)
	On-Premises and Cloud Asset Inventories
	Tooling
	Asset Management Risk
	Recommendations for Asset Management
	Summary

	2 Patch Management
	Foundations of Patch Management
	Manual Patch Management
	Automated Patch Management
	Patch Management for Development Environments
	Open Source Patching
	Not All Software Is Equal
	Who Owns Patch Management?
	Building a Patch Management Program
	Summary

	3 Secure Configuration
	Regulations, Frameworks, and Laws
	NSA and CISA Top Ten Cybersecurity Misconfigurations
	Summary

	4 Continuous Vulnerability Management
	CIS Control 7—Continuous Vulnerability Management
	Continuous Monitoring Practices
	Summary

	5 Vulnerability Scoring and Software Identification
	Common Vulnerability Scoring System
	Exploit Prediction Scoring System
	Moving Forward
	Stakeholder-Specific Vulnerability Categorization
	Software Identification Formats
	Summary

	6 Vulnerability and Exploit Database Management
	National Vulnerability Database (NVD)
	Sonatype Open Source Software Index
	Open Source Vulnerabilities
	GitHub Advisory Database
	Exploit Databases
	Summary

	7 Vulnerability Chaining
	Vulnerability Chaining Attacks
	Vulnerability Chaining and Scoring
	Vulnerability Chaining Blindness
	The Human Aspect of Vulnerability Chaining
	Integration into VMPs
	IT and Development Usage
	Summary

	8 Vulnerability Threat Intelligence
	Why Is Threat Intel Important to VMPs?
	Where to Start
	Threat Hunting
	Integrating Threat Intel into VMPs
	Summary

	9 Cloud, DevSecOps, and Software Supply Chain Security
	Cloud Service Models and Shared Responsibility
	Hybrid and Multicloud Environments
	Summary

	10 The Human Element in Vulnerability Management
	Human Factors Engineering
	Human Factors Security Engineering
	Cognition and Metacognition
	Vulnerability Cognition
	The Art of Decision-Making
	Integration of Human Factors into a VMP
	Summary

	11 Secure-by-Design
	Secure-by-Design/Default
	Secure-by-Design
	Secure-by-Default
	Software Product Security Principles
	Secure-by-Design Tactics
	Secure-by-Default Tactics
	Hardening vs. Loosening Guides
	Recommendations for Customers
	Threat Modeling
	Secure Software Development
	Security Chaos Engineering and Resilience
	Summary

	12 Vulnerability Management Maturity Model
	Step 1: Asset Management
	Step 2: Secure Configuration
	Step 3: Continuous Monitoring
	Step 4: Automated Vulnerability Management
	Step 5: Integrating Human Factors
	Step 6: Vulnerability Threat Intelligence
	Summary

	Acknowledgments
	About the Authors
	About the Technical Editor
	Index
	Copyright
	Dedication
	End User License Agreement



