Undergraduate Topics in Computer Science

Gerard 0'Regan

Undergraduate Topics in Computer
Science

Series Editor
lan Mackie, University of Sussex, Brighton, UK

Advisory Editors

Samson Abramsky (&, Department of Computer Science, University of Oxford,
Oxford, UK

Chris Hankin@®, Department of Computing, Imperial College London, London, UK

Mike Hinchey @, Lero—The Irish Software Research Centre, University of Limerick,
Limerick, Ireland

Dexter C. Kozen, Department of Computer Science, Cornell University, Ithaca, USA

Hanne Riis Nielson@), Department of Applied Mathematics and Computer Science,
Technical University of Denmark, Kongens Lyngby, Denmark

Steven S. Skiena, Department of Computer Science, Stony Brook University, Stony
Brook, USA

lain Stewart(@), Department of Computer Science, Durham University, Durham, UK

Joseph Migga Kizza, Engineering and Computer Science, University of Tennessee at
Chattanooga, Chattanooga, USA

Roy Crole, School of Computing and Mathematics Sciences, University of Leicester,
Leicester, UK

Elizabeth Scott, Department of Computer Science, Royal Holloway University of
London, Egham, UK

https://orcid.org/0000-0003-3921-6637
https://orcid.org/0000-0001-9149-8577
https://orcid.org/0000-0001-5110-561X
https://orcid.org/0000-0002-2484-5580
https://orcid.org/0000-0002-0752-1971

‘Undergraduate Topics in Computer Science’ (UTICS) delivers high-quality
instructional content for undergraduates studying in all areas of computing and
information science. From core foundational and theoretical material to final-year
topics and applications, UTICS books take a fresh, concise, and modern approach
and are ideal for self-study or for a one- or two-semester course. The texts
are authored by established experts in their fields, reviewed by an international
advisory board, and contain numerous examples and problems, many of which
include fully worked solutions.

The UTICS concept centers on high-quality, ideally and generally quite concise
books in softback format. For advanced undergraduate textbooks that are likely
to be longer and more expository, Springer continues to offer the highly regarded
Textsin Computer Science series, to which we refer potential authors.

Gerard O'Regan

Guide to Software Project
Management

@ Springer

Gerard O’Regan
Mallow, Ireland

ISSN 1863-7310 ISSN 2197-1781 (electronic)
Undergraduate Topics in Computer Science
ISBN 978-3-031-80577-6 ISBN 978-3-031-80578-3 (eBook)

https://doi.org/10.1007/978-3-031-80578-3

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer
Nature Switzerland AG 2025

This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether
the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse
of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and
transmission or information storage and retrieval, electronic adaptation, computer software, or by similar
or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, expressed or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

If disposing of this product, please recycle the paper.

https://doi.org/10.1007/978-3-031-80578-3

Preface

Overview

The objective of this book is to provide a concise introduction to software project
management in a professional and ethical software engineering environment to
students and practitioners. The key principles of project management are discussed,
and the goal is to give the reader an appreciation of the fundamentals of the field,
as well as guidance on how to apply the theory in an ethical software engineering
environment.

Organization and Features

Chapter 1 presents a broad overview of software engineering, and discusses various
software lifecycles and the phases in traditional software development. We discuss
requirements gathering and specification, software design, implementation, test-
ing and maintenance. The lightweight Agile methodology is discussed and it is
mainstream in software engineering.

Chapter 2 discusses professional responsibility in software engineering, and
we discuss the code of ethics of various bodies such as the British Computer
Society, Institute of Electrical and Electronic Engineers and the Association of
Computing Machinery. Chapter 3 discusses ethical software engineering and we
discuss notable failures such as the space shuttle disaster and the defective Therac-
25 radiotherapy machine.

Chapter 4 discusses legal, ethical and professional responsibilities of project
managers. Project managers have a professional responsibility in their work and
are accountable for the actions that they take or fail to take. They are required
to behave ethically with their clients, and to be aware of their legal and ethical
responsibilities during the project.

Chapter 5 provides an overview of software project management, and we dis-
cuss project estimation, project planning and scheduling, project monitoring and
control, risk management, managing communication and change, and managing

vii

viii Preface

project quality. We conclude with a discussion of well-known project management
methodologies such as Prince 2 and Project Management Professional.

Chapter 6 discusses software project planning, and we discuss activities such
as project initiation, effort estimation, project planning and scheduling, and risk
identification. We discuss the preparation and evaluation of the business case to
determine if the project makes business sense, and the composition of the project
board.

Chapter 7 discusses risk management, and we discuss activities such as risk
identification, risk analysing and evaluation, identifying responses to the risk,
selecting and implementing a response, and managing risks throughout the project
lifecycle. We conclude with a case study on risk management in dealing with the
COVID-19 pandemic.

Chapter 8 discusses software quality management for projects, and it is essential
that the software be of high quality, as well as being safe, reliable and fit for pur-
pose. We discuss software inspections, testing, audits, quality reviews and lessons
learned, as well as process maturity frameworks such as the CMMI and ISO
9000. We discuss various problem-solving tools to support quality management,
including fishbone diagrams, histograms, pareto charts, and trend charts.

Chapter 9 discusses project monitoring and control, which involves monitoring
project execution against the plan, and taking corrective action when progress devi-
ates from expectations. It involves monitoring the project activities and checking
that they are completed on schedule and with the required quality, and re-planning
where appropriate.

Chapter 10 is concerned with software outsourcing and we discuss the selection
and management of a software supplier. We consider how candidate suppliers may
be identified, formally evaluated against selection criteria, and how the appropriate
supplier is selected. We discuss how the selected supplier is managed during the
project, and consider legal and ethical aspects of outsourcing.

Chapter 11 is concerned with the activities during project closure, which
includes the successful completion of the customer acceptance testing and the
handover of the software to the customer. It involves the preparation of the lessons
learned report and the end project report.

Chapter 12 discusses software configuration management and discusses the
fundamental concept of a baseline. Configuration management is concerned with
identifying those deliverables that are subject to change control, and controlling
changes to them.

Chapter 13 discusses project management in the Agile world, where Agile is a
popular lightweight approach to software development. Agile provides opportuni-
ties to assess the direction of a project throughout the development lifecycle, and
ongoing changes to requirements are considered normal in the Agile world.

Chapter 14 is concerned with project metrics and we discuss the balanced score
card which assists in identifying appropriate metrics for the organization. The
Goal, Question, Metrics (GQM) approach is discussed, and this allows appropri-
ate metrics related to the organization goals to be defined. A selection of sample
metrics for project management is presented.

Preface ix

Chapter 15 discusses various tools to support project management. We discuss
the Cocomo estimating approach developed by Barry Boehm in the late 1970s. We
discuss the ProjectLibre tool that is an alternative to Microsoft Project. We also
discuss Project Manager, Jira and Planview.

Chapter 16 discusses continuous improvement of project management. It begins
with a discussion of a software process, and we discuss the benefits that may be
gained from a software process improvement initiative. We discuss several mod-
els that support software process improvement such as the Capability Maturity
Model Integration (CMMI) and 1SO 9000. We discuss best practice in project man-
agement from methodologies such as Prince2, Project Management Professional
(PMP) and the CMMI.

Chapter 17 is the concluding chapter in which we summarize the journey that
we have travelled in this book.

Audience

The main audience of this book are computer science students who are interested
in learning about professional and ethical software project management, and in
learning on how to build high quality and reliable software on time and on budget.
It will also be of interest to industrialists including project managers, software
engineers, quality professionals and software managers, as well as the motivated
general reader.

Mallow, Ireland Gerard O’Regan

Acknowledgments

I am deeply indebted to family and friends who supported my efforts in this
endeavour, and my thanks, as always, to the team at Springer. 1 would like to
pay a special tribute to my late friend and Ph.D. advisor, Prof./Dr. Micheal Mac
an Airchinnigh of Trinity College Dublin, who introduced me to the world of for-
mal methods and the Irish school of VDM, and for sharing many happy times
during the Trinity years. Micheal had great wit and charisma and a wonderful
sense of humour. He was a great orator and | recall a very entertaining after din-
ner speech at a Formal Methods Europe conference at Odense, Denmark many
years ago where he joked “Why am | Aristotelian? Well, my wife is and | can’t
be Platonic with her.” Reguiescat in pace

Cork, Ireland Gerard O’Regan

Xi

Contents

1 Fundamentals of Software Engineeringcont.
1.1 INtroduction i
1.2 What is Software Engineering? ...
1.3 Challenges in Software Engineeringc..covvnts.
1.4 Software Processes and Lifecyclescooooiinnt.

141 Waterfall Lifecycle ...,
1.4.2 Spiral Lifecycles ...
1.4.3 Rational Unified Processccocoiiiinnt.
1.4.4 Agile Development ...t
145 Continuous Software Development
15 Activities in Software Development
1.5.1 Requirements Definition
152 DeSION ..ttt
153 Implementation ...
154 Software TeStingccooiiiiiiiiiiiiiiinen,
155 Support and Maintenancecoiiiinn.
1.6 Software INSPectionso
1.7 Software Project Managementcooiiiiiiiiinn
1.8 CMMI Maturity Model ...
19 Formal Methodso
1.10 Review QUESLIONSttt
111 SUMMANY ottt
RETEIENCES .

2 Professional Responsibility ...
2.1 INtroduction
2.2 What is a Code of Ethics? ...,

2.2.1 What is Computer Ethics?oet.
222 Codesof Conductcovviiiiiiiiiiiiiiiin,
2.2.3 Role of a Whistle-Blower
2.3 IEEE Code of Ethics ...
2.4 British Computer Society Code of Conduct

o ~ND PR R

©

11
12
14
15
15
17
18
19
20
21
21
22
23
24
24
25

27
27
28
31
32
34
35
37

xiii

xiv Contents
25 ACM Code of Professional Conduct and Ethics 37
2.6 Precautionary Principle o i 38
2.7 ReView QUESLIONS\t 41
2.8 SUMIMAIY e e 42
RETErENCE 42

3 Ethical Software ENgineeringoooviiiiiiiiiiiiiiiiians 43
3.1 INtroduction i 43
3.2 Safety and Ethics ... 44

3.2.1 Therac-25 Disasterc.oveiiiiiiiiiiniiiannnn. 45
3.2.2 Space Shuttle Challenger Disaster 47
3.3 Ethical Software Design and Development 49
3.3.1 \olkswagen Emissions Scandal 53
3.4 Ethical Software Testingccoiiiiiiiiiiiiiiiiannn 55
3.5 ReVIEW QUESTIONS ...\ttt 56
3.6 SUMMANY e 56
RETOIENCE e 57

4 Legal and Ethical Responsibilities of Project Managers 59
4.1 Introduction 59
4.2 Professional Responsibilities of Project Managers 60

4.2.1 PMI Code of Ethics for Project Managers 61
4.3 Legal Aspects of Project Management 62
4.3.1 Legal Impacts of Failure 62
4.3.2 Lawsuits and Professional Negligence 63
4.3.3 Legal Breach of Contact in Outsourcing 63
434 ThelLawof Tortcoviiiiiiiii i, 65
4.3.5 Legal Aspects of Outsourcing 65
4.3.6 Licenses for Tools and Software 67
437 Privacyandthe Lawcooiviiiiiiiiianns, 68
438 EUGDPRPrivacy Lawcovvviiiniinannnn. 69
4.4 ReVIEW QUESTIONS ...\ttt 70
4.5 SUMMANY e 71
RefErENCE . o 72

5 Overview of Software Project Management 73
51 Introductiono 73
5.2 Project Start-Up and Initiation 75
53 EStimationo 76

5.3.1 Estimation Techniques ..., 77
5.3.2 Work Breakdown Structureo0o..s 77
5.4 Project Planning and Schedulingcooooioit 79
5.5 Risk Management ...t 80
5.6 People Management in Projectscoocvviiiiannn 81
5.7 Quality Management in Projectsccoviiiinn.s. 83

5.8 Project Monitoring and Controlcooiiinn, 84

Contents XV
5.9 Managing Issues and Change Requests 85
5.10 Remote Project Managementcoiiiiiiiiiiiiinn. 85
511 OULSOUICING vttt ettt e eeeas 86
5.12 Project Board and GOvernancecociiiiiiiiin.n. 87
5.13 Project REPOItiNgovvrii e 88
5.14 Project ClOSUIEiiuiei e 89
5.15 Prince 2 Methodologyc.oviiiiiiiii 90
5.16 Project Manager Professionalocil 90
5.17 Project Management Officecociiiiiiiii.. 93
5.18 Programme Management ... 93
5.19 Project Portfolio Management ..., 94
520 Review QUESLIONSttt 94
521 SUMMAIY ..ttt 95
RETEIBNCES . 95

6 Software Project Planning ... 97
6.1 Introduction 97
6.2 Project Start-up and Initiationl 99
6.3 Project Boardc.ieniuiii 101
6.4 Preparing the Project Brief and Business Case 101

6.4.1 Investment Appraisal, 102
6.4.2 Investment Appraisal Example 105
6.5 Project Requirementsooiiiiiiiiiiiiiiiiaann 106
6.6 Project Estimation i 107
6.6.1 Estimation Techniquesccovviiiinnns, 108
6.6.2 Work Breakdown Structurec0eals 108
6.6.3 Function Points oo 109
6.7 Project Plan ... 110
6.7.1 The Communication Plan 111
6.7.2 The Project Quality Plan 111
6.7.3 Project TestPlan ... 114
6.7.4 Financial Plano i 116
6.7.5 Configuration Management Plan 117
6.7.6 TrainingPlan 117
6.7.7 DeploymentPlancciiiiiiiiiiiii 117
6.8 Schedule and Resource Management 118
6.9 Risk Management Planningcocoiiiiiiiiiinn, 118
6.10 Review QUESLIONS ...\ttt 119
6.11 SUMMAIY .ottt 119
RETEIENCES . 120

7 Risk Managementoouiiiiii e 121
7.1 INtroduction 121
7.2 Risk Management Cycle ..., 123

7.2.1 Risk Identificationooooiii 124

7.2.2 Risk Evaluation and Prioritization 126

XVi Contents
7.2.3 Risk Responses and Selection 127

7.2.4 Risk Monitoring and Reporting 128

725 RIiSKLOG «\vii 128

7.2.6 Risk Management Checklist 128

7.3 Risk Management Case Studyccoovvviiiininnannns 128
7.3.1 Risk Monitoring and Control (COVID-19) 131

74 Review QUESHIONS 133
7.5 SUMMEAIY e e 134
RefEIENCE . 134
8 Quality Management of Software Projects 135
8.1 Introduction 135
8.1.1 What is Software Quality?ooont. 136

8.2 A Short History of Quality ..., 137
8.3 Total Quality Managementsccooviiiiinannnn. 142
8.3.1 Problem-Solving Techniques 143

8.4 ISO 9000 Standardcovviiiii 143
8.5 Software Process Improvement with CMMI 145
8.6 Software Quality Controls ... 149
8.6.1 Software Inspectionsccooiiiiiiiiinnn, 149

8.6.2 Software Testingcooviiiiiiiiiiiiii 150

8.6.3 Audits and Quality Assurance Group 152

8.6.4 Quality Review of Projects 155

8.6.5 Learning Lessons in Projects 155

8.7 Problem-Solving Techniquesccocoviiiiiiinns, 156
8.7.1 Fishbone Diagramccoviiiiiiiiiiinainn.. 157

8.7.2 Histogramsiiiiii 158

8.7.3 Pareto Chart 160

8.74 Trend Graphso 161

8.75 Scatter Graphso 162

8.7.6 Metrics and Statistical Process Control 163

8.8 Review QUESHIONS 164
8.9 SUMMEAIY e e 164
REEIENCES . 165
9 Project Monitoring and Control ... 167
9.1 INtroductiono 167
9.2 Monitoring and Controlt 168
9.2.1 Project Status Meetingscooiviiiiiiiin.n. 169

9.2.2 Monitoring Project Deliverables 170

9.2.3 Monitoring Project Risks, 170

9.2.4 Monitoring Project I1SSuesccocviiinnnn. 171

9.2.5 Monitoring Change Requestso...e. 171

Contents Xvii
9.2.6 Monitoring Project Defectsocovinnt. 172

9.2.7 Effort, Schedule and Budget Monitoring 173

9.2.8 Business Case Monitoringc.covennn. 173

9.2.9 Monitoring of Qutsourcingooeut 173

9.2.10 Monitoring of Auditscociiiiii 174

9.2.11 Recording Lessons Learnedcoovevnnn. 174

9.2.12 Controlling the Project ..., 174

9.3 Managing Change ReqUestScoveiiiiiiiiiiiannn. 175
94 Managing Defects ... 177
9.5 Milestone REVIEWSoouiiii e 178
9.5.1 Earned Value Analysis ..., 178

9.6 Managing Stages and Stage Boundaries 180
9.7 Progress Reporting and Project Board Reviews 180
9.8 Review QUESLIONSottt 182
9.9 SUMIMIAIY e e e e 182
RETEIENCE 183
10 Outsourcing—Supplier Selection and Management 185
10.1 IntroduCtion ... 185
10.2 Planning and Requirementsccoveiiinirnieniinannns 187
10.3 Identifying Suppliers 188
10.4 Prepare and Issue RFPo 189
10.5 Evaluate Proposals and Select Supplier 189
10.6 Formal Agreementoiiiiiiiii i 190
10.7 Managing the Supplier ... 191
10.8 Acceptance of Software ... 191
10.9 Rollout and Customer SUPPOrtc.covvviviiiiiiennnnn.. 192
10.10 Ethical Software Outsourcingcoooviiiiiiiiinn.. 192
10.11 Legal Breach of Contractccoiiviiiiiiinan... 194
10.12 Review QUESTIONS ... 'iri it 195
10.13 SUMMAIY e 196
RefErENCES . 197
11 Project ClOSUIEo 199
11,1 INtroduCtion ... 199
11.2 Handover to CUSIOMEr ...t 200
11.3 Lessons Learned Reportcooeiiiiiiiiiiiiiiiiannns 201
11.4 End Project REPOItovinii e 202
11.5 Complete Outstanding Administration 202
11.6 Celebrate SUCCESS ... ov i 202
117 Project ClOSUIEt 204
11.8 Review QUESHIONSo 204
11,9 SUMMAIY ot 204

xviii Contents
12 Configuration Managementc..cooiiiiiiiiiiiiiiiiiinannn. 207
12,1 Introduction ... 207
12.2 Configuration Management Systemcoou.t 211
12.2.1 Identify Configuration Items 212
12.2.2 Document Control Management 212
12.2.3 Source Code Control Management 213
12.2.4 Configuration Management Plan 213
12.3 Change Controlo 214
12.4 Configuration Management Audits 215
125 Review QUESTIONS ...ttt e 216
12.6 SUMMAIY o 217
13 Project Management in the AgileWorld 219
131 IntroduCtion ... 219
13.2 Scrum Methodologycoiiiiiiii 223
13.2.1 USEr STOMES v e et 224
13.2.2 Estimationin Agile 225
13.2.3 Pair Programmingcoviiiiiiiiiiiiiiainn. 226
13.3 Software Testing in Agile ..., 227
13.3.1 Test-Driven Developmentcoovvvnnn 228
13.3.2 Agile Test Principles ..., 229
13.4 Advantages and Disadvantages of Agile 229
135 Review QUESLIONSottt 230
13,6 SUMMAIY o 231
REfEIBNCE .. 231
14 Project Management Metricscoviviiiiiiiii e, 233
141 Introduction ..o 233
14.2 The Goal Question Metric Paradigmoco.es 234
14.3 The Balanced Scorecardcccoiiiiiiiiiiiiiiiiiis 236
14.4 Software Metrics for Project Management 238
14.4.1 Customer Satisfaction Metrics for Project 239
14.4.2 Process Improvement Metricscooen. 240

14.4.3 Human Resources Metrics for Project
Management ... 242
14.4.4 Project Management Effectiveness 243
14.4.5 Development and Testing Metrics for Project 245
14.4.6 Quality Audit Metricscoiiiiiiiii 250
14.4.7 Customer Care Metricsccvvviiiiiiiinnnnnns 251
14.4.8 Miscellaneous Metrics for an Organization 254
14.5 Implementing a Metrics Programccoiinnt 256
14.5.1 Data Gathering for Metrics 257
146 Review QUESTIONS ...\ttt 258
147 SUMMAIY e e 258

RETEIBNCES . 259

Contents XiX

15

16

17

Tools for Project Managementcooiiiiiiiiii s 261
151 Introduction ..o 261
15.2 Tools for Project Estimation and Scheduling 262
15.3 Project Manager TOOIScoviiiiiiiiiiiiii e, 265
15.4 Tools for Project Portfolio Management 267
155 ReView QUESHIONSt'ie et 270
156 SUMMAIY ..t e 270
RefErENCE 270
Continuous Improvement of Project Management 271
16.1 Introductionoiii e 271
16.2 Software Process Improvementcooviiiiiiiiiiann.. 272
16.2.1 What is a Software Process?ccocovvninnn. 273
16.2.2 Benefits of Software Process Improvement 275
16.2.3 Software Process Improvement Models 275
16.2.4 Process Mappingo.oveiiiiiiiiiiiiia 276
16.2.5 Process Improvement Initiatives 276
16.2.6 Barriers t0 SUCCESSvvvneriiaii i iiaiaiaaanns 277
16.2.7 Setting up an Improvement Initiative 278
16.2.8 Appraisals ... 278
16.3 Improving Project Managementcooiiiiiiiii. 279
16.3.1 Best Practice in Prince 2 Methodology 280

16.3.2 Best Practice in Project Manager Professional
(PMIP) 280
16.3.3 Best Practice with CMMI ..., 280
16.4 Review QUESLIONS ...\ vv it 284
16.5 SUMMANY ..o 285
REfEIENCES .. 285
EpPIlogue ... 287
17.1 The Future of Project Management0s 289

Abbreviations

AC
ACM
AECL
BCS
BSC
BSI
CBA/IPI
CCB
CEl
CMM®
CMMI®
COCOMO
COPQ
COTS
CPAL
CPI
CR
CSR
cv
DoS
DPIA
DSA
DSDM
ESA
ESI
EULA
EV
EVA
EVA
FDA
FMEA
FOSS

Actual Cost

Association Computing Machinery
Atomic Energy of Canada Limited
British Computer Society

Balanced Score Card

British Standards Institute

CMM Based Appraisal/Internal Process Improvement
Change Control Board

Computer Ethics Institute
Capability Maturity Model
Capability Maturity Model Integration
Constructive Cost Model

Cost of Poor Quality

Customized Off the Shelf

Common Public Attribution License
Cost Performance Index

Change Request

Corporate Social Responsibility
Cost Variance

Denial of Service

Data Privacy Impact Assessment
Digital Services Act

Dynamic Systems Development Method
European Space Agency

European Software Institute

End User License Agreement
Earned Value

Earned Value Analysis

Economic Value Added

Food and Drug Administration
Failure Mode and Effects Analysis
Free Open Source Software

xXi

XXii

Abbreviations

FSF
FSM
GDPR
GNU
GPL
GQM
GUI
IBM
IEC
IEEE
IFPUG
IRR
ISACA
ISEB
ISO
ISP
ISTOB
IT
JAD
KLOC
LCL
LOC
MTBF
MTTR
NASA
NATO
NHS
NPV
PCE
PDCA
PM
PMBOK
PMI
PMO
PMP
PPM
Prince
PSP
PV
PVCS
QcCC
RAD
RAG
RAID
RFP

Free Software Foundation

Functional Size Measurement

General Data Packet Regulation
GNU’s Not Unix

General Public License

Goal, Question, Metric

Graphical User Interface

International Business Machines
International Electro Technical Commission
Institute of Electrical and Electronic Engineers
International Function Point User Group
Internal Rate of Return

Information Systems Audit and Control Association
Information System Examination Board
International Standards Organization
Internet Service Provider

International Software Testing Qualifications Board
Information Technology

Joint Application Development

Thousand Lines of Code

Lower Control Limit

Lines of Code

Mean Time Between Failure

Mean Time to Repair

National Aeronautics and Space Administration
North Atlantic Treaty Organization
National Health Service

Net Present Value

Phase Containment Effectiveness

Plan, Do, Check, Act

Project Manager

Project Management Book of Knowledge
Project Management Institute

Project Management Office

Project Management Professional

Project Portfolio Management

Projects in a Controlled Environment
Personal Software Process

Planned Value

Polytron Version Control System

Quality Control Circle

Rapid Application Development

Red, Amber, Green

Risk, Assumption, Issue, Dependency
Request for Proposal

Abbreviations XXiii

ROI Return on Investment

RUP Rational Unified Process
SCAMPI Standard CMMI Appraisal Method for Process Improvement
SCM Software Configuration Management
SEI Software Engineering Institute
SG Specific Goal

SLA Service Level Agreement

SLOC Source Lines of Code

SOwW Statement of Work

SP Specific Practice

SPC Statistical Process Control

SPI Schedule Performance Index
SPI Software Process Improvement
SPICE Software Process Improvement Capability dEtermination
SQA Software Quality Assurance
SRB Solid Rocket Booster

sV Schedule Variance

TDD Test Driven Development

TDI Turbo-Charged Direct Injection
TOM Total Quality Management

TSP Team Software Process

UAT User Acceptance Testing

UCL Upper Control Limit

UK United Kingdom

UML Unified Modelling Language
URS User Requirements Specification
VDM Vienna Development Method
VSS Visual Source Safe

WBS Work Breakdown Structure

XP Extreme Programming

Y2K Year 2000

ZD Zero Defects

List of Figures

Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.

Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.

11
1.2
1.3
14
15
2.1
2.2
3.1
3.2
3.3
3.4

3.5
41
51
5.2
5.3
54
6.1
7.1
7.2
7.3
7.4
7.5
7.6
8.1
8.2
8.3
8.4
8.5
8.6
8.7

Standish report—results of 1995 and 2009 survey 3
Standish 1998 report—estimation accuracy 7
Waterfall V lifecycle model 10
SPIRAL lifecycle model. Public domain 11
Rational unified processoooviiiiiiiiiiiiii., 12
Corrupt legislation. 1896. Public Domain 29
Whistle-blower 33
A radiotherapy machine i 45
Space challenger disasterccciiiiiiiiiian. 48
Bridge over the River Kwai in Kanchanburi, Thailand 50
Balancing an ethical life against a feather in Egyptian

Feligion ... 52
Volkswagen Beetle Type 82Et 54
Legal contract. Creative COMMONScovvvvvrninannnnn 66
Sample Microsoft project schedule 79
Prince 2 project board 88
Project management trianglel 90
PriNCe 2 PrOCESSES .\ttt ittt et eaeas 91
Simple process map for project planning 111
RiSK Categories ... 122
Risk management ... 123
Continuous risk management cycle 124
Risk management profilel 127
RiSK 10g ..o 129
Respiratory droplets when a man sneezes. Public domain 130
Shewhart’s PDCA cycle 138
W. Edwards Deming. Public Domain 139
Joseph Juran ... 140
ISO 9001 quality management system 144
CMMImodel 146
Sample audit Process ... 154
Fishbone cause-and-effect diagram 158

XXV

XXVi List of Figures
Fig. 8.8 HIStogram 159
Fig. 8.9 Pareto chart outageso, 161
Fig. 8.10 Trend chart estimation acCuracyc.cocoveu... 162
Fig. 8.11 Scatter graph amount inspected rate/error density 163
Fig. 8.12 Estimation accuracy and control charts 163
Fig. 9.1 Control-monitoring 1oop ... 168
Fig. 9.2 Project monitoring and control 169
Fig. 9.3 Earned value analysis. public domain 179
Fig. 10.1 Legal contractccoiriiiiii i 190
Fig. 11.1 Lessonslearned [0gccooviiiiiiiiii i 201
Fig. 12.1 Simple process map for change requests 215
Fig. 12.2 Simple process map for configuration management 216
Fig. 13.1 Agile dog. Creative cOMMONSccoviiiiiiiiannnnnn. 220
Fig. 13.2 Scrum framework. Creative commons 223
Fig. 13.3 User story map. Creative COMMONScovvvvrenenn.n. 225
Fig. 13.4 Pair programming. Creative COMMONSc.covnn.. 227
Fig. 141 GOQM example 235
Fig. 14.2 The balanced scorecardc.coiiiiiiiiiiiiiiinnn.. 237
Fig. 14.3 Balanced score card and implementing strategy 238
Fig. 14.4 Customer survey arrivalscccoiiiiiiiiiiennan.n. 239
Fig. 14.5 Customer satisfaction measurements for project A 240
Fig. 14.6 ~ Process improvement measurements 241
Fig. 14.7 Status of PM improvement suggestions 241
Fig. 14.8 Age of PM improvement suggestions 242
Fig. 14.9 Headcount needs and provision for project 242
Fig. 14.10 Headcount in organizationcccoviiiiiiin... 243
Fig. 14.11 Employee turnover in the current year 243
Fig. 14.12 Schedule estimation metric, 244
Fig. 14.13 Effort estimation metric, 244
Fig. 14.14 Requirements delivered ..., 245
Fig. 14.15 Total number of issues in projectcoov.... 246
Fig. 14.16 Open issUes in Projectc..viuiiieiiieiaienan.n. 246
Fig. 14.17 Age of open defects in projectccoiiiiiiiin... 247
Fig. 14.18 Problem arrivals per month 247
Fig. 14.19 TeSt PrOgreSS vnet et ee e 248
Fig. 14.20 Cumulative defects—arrivals 249
Fig. 14.21 Problem arrivals and closurecccoiiiinian... 249
Fig. 14.22 Status of problems i 249
Fig. 14.23 Phase containment effectivenesscooiinnn.. 250
Fig. 14.24 Annual audit schedule i 251
Fig. 14.25 Status of audit actions i i 251
Fig. 14.26 Audit action types for project A, 252
Fig. 14.27 Customer queries (arrivals/closures) 252
Fig. 14.28 Outage time per CUStOMEroviiiiiiiiiiiienenn. 253
Fig. 14.29 Availability of system per month 254

List of Figures XXVii

Fig. 14.30 CMMI maturity in current yearc.ccovviuininnnnn.. 254
Fig. 14.31 Cost of poor quality (COPQ)ccvviriiiiiiiiian. 255
Fig. 15.1 ProjectLibre scheduling tool 264
Fig. 15.2 Dashboard view in projectmanager tool 265
Fig. 15.3 Dashboard view of agile project in jiratool 267
Fig. 15.4 Dashboard views in planview enterprise 269
Fig. 15,5 Planview process builder il 269
Fig. 16.1 Steps in process improvementc.cooiiinnn.. 273
Fig. 16.2 Process as glue for people, procedures and tools 274
Fig. 16.3 Sample process Mapccovvrireirerenraennianennnn. 274
Fig. 16.4 Continuous improvement cyclecooine.. 277
Fig. 16.5 ApPraisals ..ot 279
Fig. 16.6 Appraisal of PM process areasco.uveiiiuenenn.. 281

Fig. 16.7 Targeted capability profile of PM process areas 281

List of Tables

Table 2.1
Table 2.2
Table 2.3
Table 2.4
Table 2.5
Table 2.6
Table 2.7
Table 4.1
Table 5.1
Table 5.2
Table 5.3
Table 5.4
Table 5.5
Table 5.6
Table 5.7
Table 5.8
Table 6.1
Table 6.2
Table 6.3
Table 6.4
Table 6.5
Table 6.6
Table 6.7
Table 6.8
Table 6.9
Table 6.10
Table 7.1
Table 7.2
Table 7.3
Table 7.4
Table 7.5

Professional responsibilities of software engineers 28
Types of professional codescocooiiiiiiia.. 29
Ten commandments on computer ethics 31
Steps in whistle-blowingl 35
IEEE code of ethics ... 36
BCS code of conduct ... 38
ACM code of conduct ... 39
Types of lawsuits ... 64
Estimation techniques, 78
Sample project management checklist 81
Activities in managing issues and change requests 85
Project board roles and responsibilities 88
Key processes in Prince 2 ..., 91
PMBOK Process groUpsS . ..ovvvreie it iiennnn, 92
PMBOK knowledge areasccoovvviiiiiiiiiinn. 92
Functions of project management office 93
Some sections in the project brief L 102
Some sections in bUSINESS CaSeovviriininneennns 103
Terminology in investment appraisal 104
Projected cosSts and Savingsiiiiiii i 105
Example work breakdown structure, 109
Some sections in the project plan 112
Some sections in the communication plan 115
Quality plan matrix for project deliverables 115
Project budget 116
Training plan ... 117
Risk management activities i, 125
Risk parameterso 126
RisK Categoryovvt i e 126
Risk management checklistl 130
Risk management for COVID-19coiit 132

XXiX

XXX List of Tables
Table 8.1 I1SO 9126-quality characteristicsc.covvvninnn. 137
Table 8.2 Total Quality Managementcccoiiiiiiiinan... 143
Table 8.3 CMMI maturity levels o it 148
Table 8.4 Auditing activities ...t 153
Table 9.1 Managing change requestsccovieireieiranenanns 176
Table 9.2 Sample trace matriX ... 176
Table 9.3 Test status for project ..., 181
Table 9.4 Quality Status for projectt 181
Table 9.5 Key risks for project ... 182
Table 9.6 Milestone Statuscooviiiiiiiiiii i 182
Table 10.1 Supplier selection and managementcoovnnns 187
Table 10.2 Possible breaches of contractcooiitt. 196
Table 11.1 End project reportouiniiii i 203
Table 11.2 Project closure activitiesccciiiiiiiiia.n.. 205
Table 12.1 Features of good configuration management 208
Table 12.2 Symptoms of poor configuration management 209
Table 12.3 Software Configuration Management Activities 210
Table 12.4 Software release delivery for project 210
Table 12.5 CMMI requirements for configuration management 211
Table 12.6 Sample configuration management audit checklist 217
Table 13.1 Agile test principles ... 230
Table 14.1 BSC objectives and measures for IT service organization 238
Table 14.2 Cost of quality categoriescoiiiiiiiiiiinnns 255
Table 14.3 Implementing Metrics ... 256
Table 14.4 Goals and qUESLIONSot i 257
Table 14.5 Phase containment effectiveness 257
Table 15.1 Tool evaluation table i 262
Table 15.2 Key capabilities of planview enterprise 268
Table 16.1 CMMI capability levelst 282
Table 16.2 CMMI requirements for project planning process area 283
Table 16.3 CMMI requirements for project monitoring and control 283
Table 16.4 CMMI requirements for supplier agreement management 284

l‘)

Check for
updates

Fundamentals of Software
Engineering

Key Topics

Standish chaos report
Software lifecycles
Waterfall model

Spiral model

Rational unified process
Agile development
Software inspections
Software testing

Project management

1.1 Introduction

The approach to software development in the 1950s and 1960s has been described
as the “Mongolian Hordes Approach” by Fred Brooks [1].! The “method” or lack
of method was applied to projects that were running late, and it involved adding
many inexperienced programmers to the project, with the expectation that this
would allow the project schedule to be recovered. However, this approach was
deeply flawed as it led to programmers with inadequate knowledge of the project
attempting to solve problems, and they inevitably required significant time from
the other project team members.

! The “Mongolian Hordes” management myth is the belief that adding more programmers to a soft-
ware project that is running late will allow catch-up. In fact, as Brooks says, adding people to a late
software project makes it even later.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025 1
G. O’Regan, Guide to Software Project Management, Undergraduate Topics in
Computer Science, https://doi.org/10.1007/978-3-031-80578-3_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-80578-3_1&domain=pdf
https://doi.org/10.1007/978-3-031-80578-3_1

2 1 Fundamentals of Software Engineering

This resulted in the project being delivered even later, as well as subsequent
problems with quality (i.e., the approach of throwing people at a problem does
not work). The philosophy of software development back in the 1950/60s was
characterized by

The completed code will always be full of defects.
The coding should be finished quickly to correct these defects.

Design as you code approach.

This philosophy accepted defeat in software development, and suggested that irre-
spective of a solid engineering approach, that the completed software would always
contain lots of defects, and that it therefore made sense to code as quickly as pos-
sible, and to then identify the defects that were present, and to correct them as
quickly as possible to solve a problem.

In the late 1960s it was clear that the existing approaches to software develop-
ment were deeply flawed, and that there was an urgent need for change. The NATO
Science Committee organized two famous conferences to discuss critical issues in
software development [2]. The first conference was held at Garmisch, Germany,
in 1968, and it was followed by a second conference in Rome in 1969. Over
50 people from 11 countries attended the Garmisch conference, including Edsger
Dijkstra, who did important theoretical work on formal specification and verifi-
cation. The NATO conferences highlighted problems that existed in the software
sector in the late 1960s, and the term “software crisis” was coined to refer to these.
There were problems with budget and schedule overruns, as well as problems with
the quality and reliability of the delivered software.

The conference led to the birth of software engineering as a discipline in its
own right, and the realization that programming is quite distinct from science and
mathematics. Programmers are like engineers in that they build software products,
and they therefore need education in traditional engineering as well as in the latest
technologies. The education of a classical engineer includes product design and
mathematics. However, often computer science education places an emphasis on
the latest technologies, rather than on the important engineering foundations of
designing and building high-quality products.

Programmers therefore need to learn the key engineering skills to enable them
to build products that are safe for the public to use. This includes a solid founda-
tion on design and on the mathematics required for building safe software products.
Mathematics plays a key role in classical engineering, and in some situations, it
may also assist software engineers in the delivery of high-quality software prod-
ucts. Several mathematical approaches to assist software engineers are described
in [3].

There are parallels between the software crisis in the late 1960s, and seri-
ous problems with bridge construction in the nineteenth century. Several bridges
collapsed, or were delivered late or over-budget, since people involved in their
design and construction did not have the required engineering knowledge. This

1.1 Introduction 3

Fig.1.1 Standish report—results of 1995 and 2009 survey

led poorly designed and constructed bridges that collapsed with loss of life, as
well as endangering the lives of the public.

This led to legislation requiring engineers to be licensed by the Professional
Engineering Association prior to practicing as engineers. This organization spec-
ified a core body of knowledge that the engineer is required to possess, and the
licensing body verifies that the engineer has the required qualifications and expe-
rience. This helps to ensure that only personnel competent to design and build
products actually do so. Engineers have a professional responsibility to ensure
that the products are properly built and are safe for the public to use.

The Standish group has conducted research (Fig. 1.1) on the extent of prob-
lems with IT projects since the mid-1990s. These studies were conducted in the
United States, but there is no reason to believe that European or Asian companies
perform any better. The results indicate serious problems with on-time delivery of
projects, and projects being cancelled prior to completion.> However, the compar-
ison between 1995 and 2009 suggests that there have been some improvements
with a greater percentage of projects being delivered successfully, and a reduction
in the percentage of projects being cancelled.

Fred Brooks argues that software is inherently complex, and that there is no
silver bullet that will resolve all the problems associated with software develop-
ment such as schedule or budget overruns [1, 4]. Poor software quality can lead
to defects in the software that may adversely impact the customer, and even lead

2 These are IT projects covering diverse sectors, including banking, telecommunications, etc.,
rather than pure software companies. Software companies following maturity frameworks such as
the CMMI generally achieve more consistent results.

4 1 Fundamentals of Software Engineering

to loss of life. It is therefore essential that sufficient emphasis is placed on quality
throughout the software development process.

The Y2K problem was caused by a two-digit representation of dates, and it
required major rework to enable legacy software to function for the new millen-
nium. Clearly, well-designed programs would have hidden the representation of
the date, which would have required minimal changes for year 2000 compliance.
Instead, companies spent vast sums of money in rectifying the problem.

The quality of software produced by some companies is impressive.® These
companies employ mature software processes and are committed to continuous
improvement. There is a lot of industrial interest in software process maturity
models for software organizations, and various approaches to assess and mature
software companies are described in [5].* These models focus on improving the
effectiveness of the management, engineering, and organization practices related to
software engineering, and in introducing best practice in software engineering. The
use of mature software processes enables high-quality software to be consistently
produced.

1.2 What is Software Engineering?

Software engineering involves the multi-person construction of multi-version
programs. The IEEE 610.12 definition of Software Engineering is

Software engineering is the application of a systematic, disciplined, quantifiable approach
to the development, operation, and maintenance of software; that is, the application of
engineering to software, and the study of such approaches.

Software engineering includes

1. Methodologies to design, develop, and test software to meet customers’ needs.

2. Software is engineered. That is, the software products are properly designed,

developed, and tested in accordance with engineering principles.

Quality and safety are properly addressed.

4. Mathematics may be employed to assist with the design and verification of
software products. The level of mathematics employed will depend on the
safety-critical nature of the product. Systematic peer reviews and rigorous

(98]

31 recall projects at Motorola that regularly achieved 5.66 level of quality in a L4 CMM environ-
ment (i.e., approx. 20 defects per million lines of code. This represents very high quality).

4 Approaches such as the CMMI focus mainly on the management and organizational practices
required in software engineering. The emphasis is on defining software processes that are fit for
purpose (the models provide useful information on practices to consider in the implementation)
and consistently following them. The process maturity models focus on what needs to be done
rather how it should be done, and this gives the organization the freedom to choose the appropriate
implementation to meet its needs.

1.2 What is Software Engineering? 5

testing will often be sufficient to build quality into the software, with heavy
mathematical techniques reserved for safety and security critical software.
5. Sound project management and quality management practices are employed.
6. Support and maintenance of the software are properly addressed.

Software engineering is not just programming. It requires the engineer to state pre-
cisely the requirements that the software product is to satisfy, and then to produce
designs that will meet these requirements. The project needs to be planned and
delivered on time and budget. The requirements must provide a precise descrip-
tion of the problem to be solved: i.e., it should be evident from the requirements
what is and what is not required.

The requirements need to be rigorously reviewed to ensure that they are stated
clearly and unambiguously and reflect the customer’s needs. The next step is then
to create the design that will solve the problem, and it is essential to validate
the correctness of the design. Next, the software code to implement the design is
written, and peer reviews and software testing are employed to verify and validate
the correctness of the software.

The verification and validation of the design is rigorously performed for
safety-critical systems, and it is sometimes appropriate to employ mathematical
techniques for these systems. However, it will often be sufficient to employ peer
reviews or software inspections as these methodologies provide a high degree
of rigour. This may include approaches such as Fagan inspections [6], Gilb
inspections [7], or Prince 2’s approach to quality reviews [8].

The term “engineer” is a title that is awarded on merit in classical engineering,
and is generally applied only to people who have attained the necessary education
and competence to be called engineers, and who base their practice on classi-
cal engineering principles. The title places responsibilities on its holder to behave
professionally and ethically. Often in computer science the term “software engi-
neer” is employed loosely to refer to anyone who builds things, rather than to an
individual with a core set of knowledge, experience, and competence.

Several computer scientists (such as Parnas®) have argued that computer scien-
tists should be educated as engineers to enable them to apply appropriate scientific
principles to their work. They argue that computer scientists should receive a
solid foundation in mathematics and design to have the professional competence
in building high-quality products that are safe for the public to use. The use of
mathematics is an integral part of the engineer’s work in other engineering disci-
plines, and so the software engineer should be able to use mathematics to assist
in the modelling or understanding of the behaviour or properties of the proposed
software system.

5 Parnas has made important contributions to computer science. He advocates a solid engineering
approach with the extensive use of classical mathematical techniques in software development. He
also introduced information hiding in the 1970s, which is now a part of object-oriented design.

6 1 Fundamentals of Software Engineering

Software engineers need education® on specification, design, turning designs
into programs, software inspections, and testing. The education should enable the
software engineer to produce well-structured programs that are fit for purpose.

Parnas has argued that software engineers have responsibilities as professional
engineers.” They are responsible for designing and implementing high-quality and
reliable software that is safe to use. They are also accountable for their decisions
and actions,® and have a responsibility to object to decisions that violate pro-
fessional standards. Engineers are required to behave professionally and ethically
with their clients. The membership of the professional engineering body requires
the member to adhere to the code of ethics” of the profession. Engineers in other
professions are licensed, and Parnas argues that a similar licensing approach be
adopted for professional software engineers.'®Software engineers are required to
follow best practice in software engineering and the defined software processes.'!

Many software companies invest heavily in training, as the education and
knowledge of its staff are essential to delivering high-quality products and services.
Employees receive professional training related to the roles that they are per-
forming, such as project management, software design and development, software
testing, and service management. The fact that the employees are professionally

6 Software Companies that are following approaches such as the CMM or ISO 9001 consider the
education and qualification of staff prior to assigning staff to performing specific tasks. The appro-
priate qualifications and experience for the specific role are considered prior to appointing a person
to carry out the role. Many companies are committed to the education and continuous development
of their staff.

7 The concept of accountability dates back to the Hammurabi Code c. 1750 B.C. The code included
a law that stated if a house collapsed and killed the owner then the builder would be executed.

8 However, it is unlikely that an individual programmer would be subject to litigation in the case
of a flaw in a program causing damage or loss of life. A comprehensive disclaimer of responsibil-
ity for problems rather than a guarantee of quality accompany most software products. Software
engineering is a team-based activity involving many engineers in various parts of the project, and
it would be potentially difficult for an outside party to prove that the cause of a particular problem
is due to the professional negligence of a particular software engineer, as there are many others
involved in the process. Companies are more likely to be subject to litigation, as a company is
legally responsible for the actions of their employees in the workplace, and a company is a wealth-
ier entity than one of its employees. The legal aspects of licensing software may protect software
companies from litigation. However, greater legal protection can be built into the contract between
the supplier and the customer for bespoke-software development.

9 Many software companies have a defined code of ethics that employees are expected to adhere.
Larger companies will wish to project a good corporate image and to be respected worldwide.

10 The British Computer Society (BCS) has introduced a qualification system for computer science
professionals that it used to show that professionals are properly qualified. The most important of
these is the BCS Information Systems Examination Board (ISEB) which allows IT professionals
to be qualified in service management, project management, software testing, and so on.

! Software companies that are following the CMMI or ISO 9001 standards will employ audits
to verify that the processes and procedures have been followed. Auditors report their findings
to management and the findings are addressed appropriately by the project team and affected
individuals.

1.3 Challenges in Software Engineering 7

qualified increases confidence in the ability of the company to deliver high-quality
products and services and achieve positive results.

1.3 Challenges in Software Engineering

The challenge in software engineering is to deliver high-quality software on time
and on budget to customers. The research done by the Standish Group was dis-
cussed earlier in this chapter, and the results of their 1998 research (Fig. 1.2) on
project cost overruns in the US indicated that 33% of projects are between 21 and
50% over estimate, 18% are between 51 and 100% over estimate, and 11% of
projects are between 101 and 200% over estimate.

The accurate estimation of project cost, effort, and schedule is a challenge in
software engineering. Therefore, project managers need to determine how good
their estimation process actually is and to make appropriate improvements. The use
of software metrics is an objective way to do this, and improvements in estimation
will be evident from a reduced variance between estimated and actual effort (see
Chap. 14). The project manager will report the actual versus estimated effort and
schedule during the project.

Risk management is an important part of project management, and the objective
is to identify potential risks early and throughout the project, and to manage them
appropriately. The probability of each risk occurring, and its impact is determined,
and the risks are managed during project execution.

Software quality needs to be properly planned to enable the project to deliver a
quality product. Flaws with poor quality software may lead to a negative perception
of the company and may potentially lead to damage to the customer relationship
with a subsequent loss of market share.

Fig.1.2 Standish 1998 report—estimation accuracy

8 1 Fundamentals of Software Engineering

There is a strong economic case to building quality into the software, as less
time is spent in re-working defective software. The cost of poor quality (COPQ)
should be measured, and targets set for its reductions. It is important that lessons
are learned during the project and acted upon in future projects. This helps to
promote a culture of continuous improvement.

Several high-profile software failures are discussed in [5]. These include the
millennium bug (Y2K) problem, the floating-point bug in the Intel microprocessor,
the European Space Agency Ariane-5 disaster, and so on. These failures led to
embarrassment for the organizations, as well as the associated cost of replacement
and correction.

The millennium bug was due to the use of two digits to represent dates rather
than four digits. The solution involved finding and analysing all codes that had
a Y2K impact, planning and making the necessary changes, and verifying the
correctness of the changes. The worldwide cost of correcting the millennium bug
is estimated to have been in billions of dollars.

The Intel Corporation was slow to acknowledge the floating-point problem in
its Pentium microprocessor, and in providing adequate information on its impact
to its customers. It incurred a large financial cost in replacing microprocessors for
its customers. The Ariane-5 failure caused major embarrassment and damage to
the credibility of the European Space Agency (ESA). Its maiden flight ended in
failure on 4 June 1996, after a flight time of just 40 s.

These failures indicate that quality needs to be carefully considered when
designing and developing software. The effect of software failure may be large
costs to correct the software, loss of credibility of the company, or even loss of
life.

1.4 Software Processes and Lifecycles

Organizations vary by size and complexity, and the processes employed will reflect
the nature of their business. The development of software involves many pro-
cesses such as those for defining requirements; processes for project estimation
and planning; processes for design, implementation, and testing; and so on.

It is important that the processes employed are fit for purpose, and a key premise
in the software quality field is that the quality of the resulting software is influenced
by the quality and maturity of the underlying processes, and compliance with them.
Therefore, it is necessary to focus on the quality of the processes as well as the
quality of the resulting software.

There is, of course, little point in having high-quality processes unless their use
is ingrained in the organization. That is, all employees need to follow the processes
consistently. This requires that the employees are trained on the processes, and that
process discipline is instilled with an appropriate audit strategy. Data needs to be
collected to improve the process. The software process assets in an organization
generally consist of

1.4 Software Processes and Lifecycles 9

— A software development policy for the organization.

— Process maps that describe the flow of activities.

— Procedures and guidelines that describe the processes in more detail.

— Checklists to assist with the performance of the process.

— Templates for the performance of specific activities (e.g., design, testing).
— Training materials.

The processes employed to develop high-quality software generally include

— Project management process.

— Requirements process.

— Design process.

— Coding process.

— Peer review process.

— Testing process.

— Supplier selection and management processes.
— Configuration management process.

— Audit process.

— Measurement process.

— Improvement process.

— Customer support and maintenance processes.

The software development process has an associated lifecycle that consists of vari-
ous phases. There are several well-known lifecycles employed such as the waterfall
model [9], the spiral model [10], the Rational Unified Process [11], and the popular
Agile methodology [12]. The choice of a particular software development lifecy-
cle is determined from the needs of the specific project. The various lifecycles are
described in more detail in the following sections.

1.4.1 Waterfall Lifecycle

The waterfall model (Fig. 1.3) starts with requirements such as gathering and
definition. It is followed by the system specification (with the functional and
non-functional requirements), the design and implementation of the software,
and comprehensive testing. The testing generally includes unit, system, and user
acceptance testing.

The waterfall model is employed for projects where the requirements can be
identified early in the project lifecycle or are known in advance. We are treating
the waterfall model as the “V” lifecycle model, with the left-hand side of the
“V” detailing requirements, specification, design, and coding and the right-hand
side detailing unit tests, integration tests, system tests, and acceptance testing.
Each phase has entry and exit criteria that must be satisfied before the next phase
commences. There are several variations to the waterfall model.

10 1 Fundamentals of Software Engineering

Fig.1.3 Waterfall V lifecycle model

Many companies employ a set of templates to enable the activities in the vari-
ous phases to be consistently performed. Templates may be employed for project
planning and reporting, requirements definition, design, testing, and so on. These
templates may be based on the IEEE standards or industrial best practice.

1.4.2 Spiral Lifecycles

The spiral model (Fig. 1.4) was developed by Barry Boehm in the 1980s [10],
and it is useful for projects where the requirements are not fully known at project
initiation, or where the requirements evolve as a part of the development lifecycle.
The development proceeds in several spirals, where each spiral typically involves
objectives and an analysis of the risks, updates to the requirements, design, code,
testing, and a user review of the iteration or spiral.

The spiral is, in effect, a re-usable prototype with the business analysts and
the customer reviewing the current iteration and providing feedback to the devel-
opment team. The feedback is analysed and used to plan the next iteration. This
approach is often used in joint application development, where the usability and
look and feel of the application is a key concern. This is important in web-
based development and in the development of a graphical user interface (GUI).
The implementation of part of the system helps in gaining a better understanding
of the requirements of the system, and this feeds into subsequent development
cycles. The process repeats until the requirements and the software product are
fully complete.

There are several variations of the spiral model including Rapid Applica-
tion Development (RAD), Joint Application Development (JAD) models, and the
Dynamic Systems Development Method (DSDM) model. The Agile methodology
employs sprints (or iterations) of 2—4 weeks duration to implement a number of
user stories. A sample spiral model is shown in Fig. 1.4.

1.4 Software Processes and Lifecycles 1

Fig.1.4 SPIRAL lifecycle model. Public domain

There are other lifecycle models such as the iterative development process that
combines the waterfall and spiral lifecycle model. Cleanroom was developed by
Harlan Mills (see Chap. 15 of [13]), and includes a phase for formal specification.
Its approach to testing is based on the predicted usage of the software product,
which allows a software reliability measure to be calculated. The Rational Unified
Process (RUP) is discussed in the next section.

1.4.3 Rational Unified Process

The Rational Unified Process [11] was developed at the Rational Corporation (now
part of IBM) in the late 1990s. It uses the Unified Modelling Language (UML)
as a tool for specification and design, where UML is a visual modelling language
for software systems that provides a means of specifying, constructing, and docu-
menting the object-oriented system. It was developed by James Rumbaugh, Grady
Booch, and Ivar Jacobson, and it facilitates the understanding of the architecture
and complexity of the system.

RUP is use case driven, architecture centric, iterative, and incremental, and
includes cycles, phases, workflows, risk mitigation, quality control, project man-
agement, and configuration control (Fig. 1.5). Software projects may be very
complex, and there are risks that requirements may be incomplete, or that the

12 1 Fundamentals of Software Engineering

Fig.1.5 Rational unified process

interpretation of a requirement may differ between the customer and the project
team. RUP is a way to reduce risk in software engineering.

Requirements are gathered as use cases, where the use cases describe the func-
tional requirements from the point of view of the user of the system. They describe
what the system will do at a high level and ensure that there is an appropriate
focus on the user when defining the scope of the project. Use cases also drive the
development process, as the developers create a series of design and implemen-
tation models that realize the use cases. The developers review each successive
model for conformance to the use-case model, and the test team verifies that the
implementation correctly implements the use cases.

The software architecture concept embodies the most significant static and
dynamic aspects of the system. The architecture grows out of the use cases and fac-
tors such as the platform that the software is to run on, deployment considerations,
legacy systems, and the non-functional requirements.

RUP decomposes the work of a large project into smaller slices or mini-projects,
and each mini-project is an iteration that results in an increment to the product. The
iteration consists of one or more steps in the workflow, and generally leads to the
growth of the product. If there is a need to repeat an iteration, then all that is lost
is the misdirected effort of one iteration, rather than the entire product. Another
words, RUP is a way to mitigate risk in software engineering.

1.4.4 Agile Development

Agile is a software development methodology that is more responsive to customer
needs than traditional methods such as the waterfall model. The waterfall develop-
ment model is similar to a wide and slow-moving value stream, and halfway through
the project 100% of the requirements are typically 50% done. However, for agile

1.4 Software Processes and Lifecycles 13

development 50% of requirements are typically 100% done halfway through the
project.

This methodology has a strong collaborative style of working and its approach
includes

— Aims to achieve a narrow fast flowing value stream.

— User stories and sprints are employed.

— Stories are either done are not done (no such thing as 50% done).
— Tterative and incremental development is employed.

— A project is divided into sprints.

— Entire software development lifecycle is used for implementation of each story.
— Change is accepted as a normal part of life in the Agile world.

— Refactoring and evolutionary design employed.

— Continuous integration is employed.

— Emphasis on quality.

— Stand-up meetings.

— Direct interaction preferred over documentation.

— Rapid conversion of requirements into working functionality.

Ongoing changes to requirements are considered normal in the Agile world, and it
is believed to be more realistic to change requirements regularly throughout the
project rather than attempting to define all the requirements at the start of the
project.

A story may be a new feature or a modification to an existing feature. It is reduced
to the minimum scope that can deliver business value, and a feature may give rise
to several stories. Stories often build upon other stories and the entire software
development lifecycle is employed for the implementation of each story. Stories
are either done or not done, i.e., there is such thing as a story being 80% done. The
story is complete only when it passes its acceptance tests. Stories are prioritized
based on a number of factors including

— Business value of story.
— Mitigation of risk.
— Dependencies on other stories.

The Scrum approach is an Agile method for managing iterative development, and
it consists of an outline planning phase for the project followed by a set of sprint
cycles (where each cycle develops an increment). Sprint planning is performed
before the start of the iteration, and stories are assigned to the iteration to fill the
available time. Each scrum sprint is of a fixed length (usually 2-4 weeks), and
it develops an increment of the system. The estimates for each story and their
priority are determined, and the prioritized stories are assigned to the iteration.
A short morning stand-up meeting is held daily during the iteration, and attended

14 1 Fundamentals of Software Engineering

by the scrum master, the project manager,'? and the project team. It discusses the
progress made the previous day, problem reporting and tracking, and the work
planned for the day ahead. A separate meeting is held for issues that require more
detailed discussion.

Once the iteration is complete the latest product increment is demonstrated to
an audience including the product owner. This is to receive feedback and to iden-
tify new requirements. The team also conducts a retrospective meeting to identify
what went well and what went poorly during the iteration. This is for continuous
improvement of future iterations. Planning for the next sprint then commences.
The scrum master is a facilitator who arranges the daily meetings and ensures that
the scrum process is followed. The role involves removing roadblocks so that the
team can achieve their goals and communicating with other stakeholders.

Agile employs pair programming and a collaborative style of working with the
philosophy that two heads are better than one. This allows multiple perspectives in
decision-making and a broader understanding of the issues.

Agile generally employs automated testing for unit, acceptance, performance,
and integration testing. Tests are run frequently with the goal of catching pro-
gramming errors early. They are generally run on a separate build server to ensure
that all dependencies are checked. Tests are re-run before making a release. Agile
employs test-driven development with tests written before the code. The developers
write code to make a test pass with ideally developers only coding against failing
tests. This approach forces the developer to write testable code.

Refactoring is employed in Agile as a design and coding practice. The objective
is to change how the software is written without changing what it does. Refac-
toring is a tool for evolutionary design where the design is regularly evaluated,
and improvements are implemented as they are identified. It helps in improving
the maintainability and readability of the code and in reducing complexity. The
automated test suite is essential in showing that the integrity of the software is
maintained following refactoring.

Continuous integration allows the system to be built with every change. Early
and regular integration allows early feedback to be provided. It also allows all
of the automated tests to be run thereby identifying problems earlier. Agile is
discussed in more detail in Chap. 13.

1.4.5 Continuous Software Development

Continuous software development is in a sense the successor to Agile, and involves
activities such as continuous integration, continuous delivery, continuous testing,
and continuous deployment of the software. Its objective is to enable technology
companies to accelerate the delivery of their products to their customers, thereby

12 Agile teams are self-organizing, and the project manager role is generally not employed for small
projects (<20 staff).

1.5 Activities in Software Development 15

delivering faster business benefits as well as reshaping relationships with their
customers.

Continuous integration is a coding philosophy with an associated set of prac-
tices where each developer submits their work as soon as it is finished, and several
builds may take place during the day in response to the addition of significant
change. The build has an associated set of unit and integration tests that are auto-
mated and are used to verify the integrity of the build, and this ensures that the
addition of the new code is of a high quality. Continuous integration ensures that
the developers receive immediate feedback on the software that they are working
on.

Continuous delivery builds on the activities in continuous integration, where
each code that is added to the build has automated unit and system tests conducted.
Automated functional tests, regression tests, and possibly acceptance tests will be
conducted, and once the automated tests pass the software is sent to a staging
environment for deployment.

Continuous testing allows the test group to continuously test the most up-to-date
version of the software, and it includes manual testing as well as user acceptance
testing. It differs from conventional testing as the software is expected to change
over time.

Continuous deployment allows changes to be delivered to end users quickly
without human intervention, and it requires the completion of the automated
delivery tests prior to deployment to production.

1.5 Activities in Software Development
There are various activities involved in software development including

Requirements definition.
Design.

Implementation.

Software testing.

Support and maintenance.

These activities are discussed in the following sections and cover both traditional
software engineering and Agile.

1.5.1 Requirements Definition

The user (business) requirements specify what the customer wants and define what
the software system is required to do (as distinct from how this is to be done). The
requirements are the foundation for the system, and if they are incorrect, then the
implemented system will be incorrect. Prototyping may be employed to assist in
the definition and validation of the requirements. The process of determining the

16 1 Fundamentals of Software Engineering

requirements, analysing, and validating them and managing them throughout the
project lifecycle is termed requirements engineering.

The user requirements are determined from discussions with the customer to
determine their actual needs, and they are then refined into the system requirements,
which state the functional and non-functional requirements of the system. The
specification of the user requirements needs to be unambiguous to ensure that all
parties involved in the development of the system share a common understanding
of what is to be developed and tested.

There is no requirements document as such in Agile, and the product backlog
(i.e., the prioritized list of functionality of the product to be developed) is the
closest to the idea of a requirements document in a traditional project. However,
the written part of a user story in Agile is incomplete until the discussion of that
story takes place. It is often useful to think of the written part of a story as a pointer
to the real requirement, such as a diagram showing a workflow or the formula
for a calculation. The Agile software development methodology argues that as
requirements change so quickly that a requirements document is unnecessary, since
such a document would be out of date as soon as it was written.

Requirements gathering in traditional software engineering involves meetings
with the stakeholders to gather all relevant information for the proposed product.
The stakeholders are interviewed, and requirements workshops conducted to elicit
the requirements from them. An early working system (prototype) is often used to
identify gaps and misunderstandings between developers and users. The prototype
may serve as a basis for writing the specification.

The requirements workshops are used to discuss and prioritize the requirements,
as well as identifying and resolving any conflicting requirements. The collected
information is consolidated into a coherent set of requirements. Changes to the
requirements may occur during the project, and these need to be controlled. It
is essential to understand the impacts (e.g., schedule, budget, and technical) of a
proposed change to the requirements prior to its approval.

Requirements verification is concerned with ensuring that the requirements are
properly implemented (i.e., building it right) in the design and implementation.
Requirements validation is concerned with ensuring that the right requirements are
defined (building the right system), and that they are precise, complete, and reflect
the actual needs of the customer.

The requirements are validated by the stakeholders to ensure that they are those
desired, and to establish their feasibility. This may involve several reviews of the
requirements until all stakeholders are ready to approve the requirements docu-
ment. Other validation activities include reviews of the prototype and the design,
and user acceptance testing.

The requirements for a system are generally documented in a natural language
such as “English”. Other notations that are employed include the visual modelling
language UML (see Chap. 18 of [13]), and formal specification languages such as
VDM or Z for the safety-critical field.

The specification of the system requirements of the product is essentially a
statement of what the software development organization will provide to meet the

1.5 Activities in Software Development 17

business (user) requirements. That is, the detailed user (business) requirements are
a statement of what the customer wants, whereas the specification of the system
requirements is a statement of what will be delivered by the software development
organization.

It is essential that the system requirements are valid with respect to the user
requirements, and they are reviewed by the stakeholders to ensure their valid-
ity. Traceability may be employed to show that the business requirements are
addressed by the system requirements.

There are two categories of system requirements: namely, functional and non-
functional requirements. The functional requirements define the functionality that
is required of the system, and it may include screen shots, report layouts, or desired
functionality specified as use cases. The non-functional requirements will generally
include security, reliability, availability, performance, and portability requirements,
as well as usability and maintainability requirements.

1.5.2 Design

The design of the system consists of engineering activities to describe the architec-
ture or structure of the system, as well as activities to describe the algorithms and
functions required to implement the system requirements. It is a creative process
concerned with how the system will be implemented, and its activities include
architecture design, interface design, and data structure design. There are often
several possible design solutions for a particular system, and the designer will
need to decide on the most appropriate solution.

Refactoring is employed in Agile as a design and coding practice. The objective
is to change how the software is written without changing what it does. Refactor-
ing is a tool for evolutionary design where the design is regularly evaluated, and
improvements are implemented as they are identified. It helps in improving the
maintainability and readability of the code and in reducing complexity. The auto-
mated test suite is essential in demonstrating that the integrity of the software is
maintained following refactoring.

The design may be specified in various ways such as graphical notations that
display the relationships between the components making up the design. The
notation may include flow charts, or various UML diagrams such as sequence
diagrams, state charts, and so on. Program description languages or pseudo-code
may be employed to define the algorithms and data structures that are the basis
for implementation.

Function-oriented design is historical, and it involves starting with a high-level
view of the system and refining it into a more detailed design. The system state is
centralized and shared between the functions operating on that state.

Object-oriented design is based on the concept of information hiding devel-
oped by Parnas [14]. The system is viewed as a collection of objects rather than
functions, with each object managing its own state information. The system state
is decentralized, and an object is a member of a class. The definition of a class

18 1 Fundamentals of Software Engineering

includes attributes and operations on class members, and these may be inherited
from super classes. Objects communicate by exchanging messages.

It is essential to verify and validate the design with respect to the system
requirements, and this may be done by traceability of the design to the system
requirements and design reviews.

1.5.3 Implementation

This phase is concerned with implementing the design in the target language and
environment (e.g., C++ or Java), and it involves writing or generating the actual
code. The development team divides up the work to be done, with each program-
mer responsible for one or more modules. The coding activities often include code
reviews or walkthroughs to ensure that quality code is produced, and to verify its
correctness. The code reviews will verify that the source code conforms to the cod-
ing standards and that maintainability issues are addressed. They will also verify
that the code produced is a valid implementation of the software design.

The development of a new feature in Agile begins with writing a suite of test
cases based on the requirements for the feature. The tests fail initially, and so the
first step is to write some code that enables the new test cases to pass. This new
code may be imperfect (it will be improved later). The next step is to ensure that
the new feature works with the existing features, and this involves executing all
new and existing test cases.

This may involve modification of the source code to enable all of the tests
to pass, and to ensure that all features work correctly together. The final step is
refactoring the code, and this involves cleaning up and restructuring the code,
and improving its structure and readability. The test cases are re-run during the
refactoring to ensure that the functionality is not altered in any way. The process
repeats with the addition of each new feature.

Software reuse provides a way to speed up the development process. Compo-
nents or objects that may be reused need to be identified and handled accordingly.
The implemented code may use software components that have either being devel-
oped internally or purchased off the shelf. Open-source software has become
popular in recent years, and it allows software developed by others to be used
(under an open-source license) in the development of applications.

The benefits of software reuse include increased productivity and a faster time
to market. There are inherent risks with customized-off-the-shelf (COTS) software,
as the supplier may decide to no longer support the software, or there is no guar-
antee that software that has worked successfully in one domain will work correctly
in a different domain. It is therefore important to consider the risks as well as the
benefits of software reuse and open-source software.

1.5 Activities in Software Development 19

1.5.4 Software Testing

Software testing is employed to verify that the requirements have been correctly
implemented, and that the software is fit for purpose, as well as identifying defects
present in the software. There are various types of testing that may be conducted
including unit testing, integration testing, system testing, performance testing, and
user acceptance testing. These are described below:

Unit and I ntegration Testing

The unit tests are written and performed by the programmer on the completed
unit (or module), prior to its integration with other modules. The objective is to
show that the code satisfies the design, and a unit test includes the test objective
and the expected results. Code coverage and branch coverage metrics are often
generated to give an indication of how comprehensive the unit testing has been.
These metrics provide visibility into the number of lines of code executed, as well
as the branches covered during unit testing. The developer executes the unit tests,
records the results, corrects any identified defects, and re-tests the software.

Test-driven development (TDD) is employed in the Agile world, and this
involves writing the unit test cases (and possibly other test cases) before the code,
and the code is then written to pass the defined test cases. These tests are automated
in the Agile world and are run with every build.

Integration testing is performed by developers on the integrated system once
all of the individual units work correctly in isolation. The objective is to verify
that all of the modules and their interfaces work correctly together, and to identify
and resolve any issues. Modules that work correctly in isolation may fail when
integrated with other modules. These tests are automated in the Agile world.

System and Performance Testing

The purpose of system testing is to verify that the system requirements have been
correctly implemented. It involves the specification and execution of the system
test cases by an independent test group, and the system tests are traceable to the
system requirements.

The purpose of performance testing is to ensure that the performance of the
system satisfies the non-functional requirements. It may include load performance
testing, where the system is subjected to heavy loads over a long period of time,
and stress testing, where the system is subjected to heavy loads during a short time
interval. Performance testing often involves the simulation of many users using the
system and involves measuring the response times for various activities.

The preparation of the test environment may involve ordering special hardware
and tools, and needs to be set up early in the project. Any defects identified during
system and performance testing will be logged and reported to the developers.
System testing may also include security and usability testing.

20 1 Fundamentals of Software Engineering

User Acceptance Testing

UAT testing is usually performed under controlled conditions at the customer site,
and its operation will closely resemble the real-life behaviour of the system. The
customer will see the product in operation and will judge whether the system is fit
for purpose. The objective is to demonstrate that the product satisfies the business
requirements and meets the customer expectations. Upon its successful completion
the customer is happy to accept the product.

1.5.5 Support and Maintenance

Software systems often have a long lifetime, and the software needs to be continu-
ously enhanced over its lifetime to meet the evolving needs of the customers. This
may involve regular new releases with new functionality and corrections to known
defects.

Any problems that the customer identifies with the software are reported as per
the customer support and maintenance agreement. The support issues will require
investigation, and the issue may be a defect in the software, an enhancement to the
software, or due to a misunderstanding. An appropriate solution is implemented
to resolve, and testing is conducted to verify that the solution is correct, and that
the changes made have not adversely affected other parts of the system. A post-
mortem may be conducted to learn lessons from the defect, and to take corrective
action to prevent a reoccurrence.

The goal of building a correct and reliable software product the first time is
difficult to achieve, and the customer is always likely to find some issues with the
released software product. It is accepted today that quality needs to be built into
each step in the development process, with the role of software inspections and
testing to identify as many defects as possible prior to release and minimize the
risk that serious defects will be found post-release.

The effective in-phase inspections of the deliverables will influence the quality
of the resulting software, and lead to a corresponding reduction in the number of
defects. The testing group plays a key role in verifying that the system is cor-
rect, and in providing confidence that the software is fit for purpose and ready to
be released. The approach to software correctness involves testing and re-testing,
until the testing group believe that all defects have been eliminated. Dijkstra [15]
comments on testing are well known:

“Testing a program demonstrates that it contains errors, never that it is correct”.

13 This is essential for serious defects that have caused significant inconvenience to customers (e.g.,
a major telecom outage). It is important to learn lessons to determine what prevented the defect
from been identified during peer reviews and testing, and to implement preventive actions.

1.7 Software Project Management 21

That is, irrespective of the amount of time spent testing, it can never be said
with absolute confidence that all defects have been found in the software. Testing
provides increased confidence that the program is correct, and statistical techniques
may be employed to give a measure of the software reliability.

Some mature organizations have a quality objective of three defects per million
lines of code, which was introduced by Motorola as part of its six-sigma (6c) pro-
gram. It was originally applied to its manufacturing businesses and subsequently
applied to its software organizations. The goal is to reduce variability in manufac-
turing processes and to ensure that the processes performed within strict process
control limits.

1.6 Software Inspections

Software inspections are used to build quality into software products, and include
the Fagan inspections [6], Gilb’s approach [7], and Prince 2’s approach. Fagan
inspections were developed by Michael Fagan at IBM in the mid-1970s. It is a
seven-step process that identifies and removes errors in work products. The pro-
cess mandates that requirement documents, design documents, source code, and
test plans are all formally inspected by experts independent of the author of the
deliverable.

There are various roles defined in the process including the moderator who
chairs the inspection. The reader’s responsibility is to read or paraphrase the deliv-
erable, and the author is the creator of the deliverable and has a special interest in
ensuring that it is correct. The fester role is concerned with the test viewpoint.

The inspection process will consider whether the design is correct with respect
to the requirements, and whether the source code is correct with respect to the
design. Software inspections play a key role in building quality into software, and
in reducing the cost of poor quality (see Chap. 8).

1.7 Software Project Management

Software projects have a history of being delivered late- or over-budget, and good
project management practices include the following:

— Estimation of cost, effort, and schedule for the project.

— Identifying and managing risks.

— Preparing the project plan/schedule.

— Staffing the project.

— Monitoring progress, budget, schedule, effort, risks, issues, and change requests.
— Taking corrective action/re-planning.

— Communicating progress to affected stakeholders.

— Preparing status reports and presentations.

22 1 Fundamentals of Software Engineering

The project plan will contain or reference several other plans such as the project
quality plan, the communication plan, the configuration management plan, and the
test plan. Project estimation and scheduling are difficult as previous estimates are
often not a good basis for estimation of the current project. Often, unanticipated
problems can arise for technically advanced projects, and the estimates may often
be optimistic. Gantt charts are employed for project scheduling, and these show
the work breakdown for the project, as well as task dependencies and allocation
of staff to the various tasks.

The effective management of risk during a project is essential to project success.
Risks arise due to uncertainty and the risk management cycle involves identifying
and managing risk throughout the project (see Chap. 7). An overview of software
project management is presented in Chap. 5.

1.8 CMMI Maturity Model

The CMMI is a framework to assist an organization in the implementation of best
practice in software and systems engineering. It is an internationally recognized
model for software process improvement and assessment and is used worldwide
by thousands of organizations. It provides a solid engineering approach to the
development of software, and it supports the definition of high-quality processes
for the various software engineering and management activities.

It was developed by the Software Engineering Institute (SEI) who adapted the
process improvement principles used in the manufacturing field to the software
field. They developed the original CMM model and its successor the CMMI. The
CMMI states what the organization needs to do to mature its processes rather than
how this should be done.

It consists of five maturity levels with each maturity level consisting of sev-
eral process areas. Each process area consists of a set of goals, and these goals
are implemented by practices related to that process area. Level two is focused
on management practices, level three is focused on engineering and organization
practices, level four is concerned with ensuring that key processes are performing
within strict quantitative limits, and level five is concerned with continuous process
improvement. Maturity levels may not be skipped in the staged representation of
the CMM]I, as each maturity level is the foundation for the next level. The CMMI
and Agile are compatible, and CMMI v1.3 supports Agile software development.

The CMMI allows organizations to benchmark themselves against other orga-
nizations. This is done by a formal SCAMPI appraisal conducted by an authorized
lead appraiser. The results of the appraisal are generally reported back to the SEI,
and there is a strict qualification process to become an authorized lead appraiser.
An appraisal is useful in verifying that an organization has improved, and it enables
the organization to prioritize improvements for the next improvement cycle. The
CMMI is discussed in more detail in Chap. 20 of [13].

1.9 Formal Methods 23

1.9 Formal Methods

Dijkstra and Hoare have argued that the way to develop correct software is to
derive the program from its specifications using mathematics, and to employ math-
ematical proof to demonstrate its correctness with respect to the specification. This
offers a rigorous framework to develop programs adhering to the highest qual-
ity constraints. However, in practice, mathematical techniques have proved to be
cumbersome to use, and their widespread use in industry is unlikely at this time.

Mathematical techniques have been successfully applied to the safety-critical
area where there is a need for extra rigour in the safety and security critical fields.
The mathematical techniques can demonstrate the presence or absence of certain
desirable or undesirable properties (e.g., “when a train is in a level crossing, then
the gate is closed”).

Spivey [16] defines a “formal specification” as “the use of mathematical nota-
tion to describe in a precise way the properties which an information system must
have, without unduly constraining the way in which these properties are achieved”.
It describes what the system must do, as distinct from how it is to be done. This
abstraction away from implementation enables questions about what the system
does to be answered, independently of the detailed code. Further, the unambiguous
nature of mathematical notation avoids the problem of ambiguity in an imprecisely
worded natural language description of a system.

The formal specification thus becomes the key reference point for the differ-
ent parties concerned with the construction of the system and is a useful way of
promoting a common understanding for all those concerned with the system. The
term “formal methods” is used to describe a formal specification language, and a
method for the design and implementation of computer systems.

The specification is written precisely in a mathematical language. The deriva-
tion of an implementation from the specification may be achieved via stepwise
refinement. Each refinement step makes the specification more concrete and closer
to the actual implementation. There is an associated proofobligation that the refine-
ment be valid, and that the concrete state preserves the properties of the more
abstract state. Thus, assuming the original specification is correct and the proofs
of correctness of each refinement step are valid, then there is a very high degree
of confidence in the correctness of the implemented software.

Formal methods have been applied to a diverse range of applications, including
circuit design, specification of standards, specification and verification of pro-
grams, etc. Mathematics to assist software engineers are described in [3, 17]] and
software engineering is discussed in [13, 18].

24 1 Fundamentals of Software Engineering

1.10 Review Questions

Discuss the Standish Group research results on IT project delivery.
What are the main challenges in software engineering?

Describe various software lifecycles.

What are the advantages and disadvantages of Agile?

Describe the purpose of the CMMI. What are the benefits?
Describe the main activities in software inspections.

Describe the main activities in software testing.

Describe the main activities in project management.

What are the advantages and disadvantages of formal methods?

SISO N ol ol

1.11 Summary

The birth of software engineering was at the NATO conference held in 1968 in
Germany. This conference highlighted the problems that existed in the software
sector in the late 1960s, and the term “software crisis” was coined to refer to
these. The conference led to the realization that programming is quite distinct
from science and mathematics, and that software engineers need to be properly
trained to enable them to build high-quality products that are safe to use.

The Standish Group conducts research on the extent of problems with the deliv-
ery of projects on time and budget. Their research indicates that it remains a
challenge to deliver projects on time, on budget, and with the right quality.

Programmers are like engineers in the sense that they build products. Therefore,
programmers need to receive an appropriate education in engineering as part of
their training. The education of traditional engineers includes training on product
design, and an appropriate level of mathematics.

Software engineering involves multi-person construction of multi-version pro-
grams. It is a systematic approach to the development and maintenance of the
software, and it requires a precise statement of the requirements of the software
product, and then the design and development of a solution to meet these require-
ments. It includes methodologies to design, develop, implement, and test software
as well as sound project management, quality management, and configuration man-
agement practices. Support and maintenance of the software needs to be properly
addressed.

Software process maturity models such as the CMMI have become popular in
recent years. They place an emphasis on understanding and improving the software
process to enable software engineers to be more effective in their work.

References 25

References

N —

e}

10.
11.
12.
13.
14.

15.
16.

17
18

. A. Wesley, The Mythical Man Month, (Fred Brooks, 1975)

. P.Naur, B. Randell, Software Engineering. Petrocelli. 1975. IN. Buxton, Report on two NATO
Conferences held in Garmisch, Germany (October1968) and Rome, Italy (October 1969)

. G. O’ Regan, Concise Guide to Formal Methods, (Springer, 2017)

. F. Brooks, No Silver Bullet. Essence and accidents of Software Engineering. Information
Processing. (Elsevier, Amsterdam, 1986)

. G. O’Regan, Introduction to Software Process Improvement. (Springer Verlag, London, 2010)

. M. Fagan, Design and code inspections to reduce errors in software development. IBM Syst.
J. 15(3) (1976)

. T. Gilb, D. Graham, Software Inspections, (Addison Wesley, 1994)

. Managing Successful Projects with PRINCE2, (Office of Government Commerce, 2004)

. W. Royce, Managing the development of large software systems, in Proceedings of IEEE

WESTCON (26), Pages 1-9, August, 1970

B. Boehm, A spiral model for software development and enhancement. Computer, (May 1988)

J. Rumbaugh et al., The Unified Software Development Process, (Addison Wesley, 1999)

Kent Beck, Extreme Programming Explained. Embrace Change, (Addison Wesley, 2000)

G. O’ Regan, Concise Guide to Software Engineering. 2™ Edition, (Springer, 2022)

D. Parnas, On the criteria to be used in decomposing systems into modules. Commun. ACM

15(12) (1972)

E.W. Dijkstra, Structured Programming, (Academic Press, 1972)

J.M. Spivey, The Z Notation. A Reference Manual, (Prentice Hall International Series in

Computer Science, 1992)

. G. O’ Regan, Mathematical Foundations of Software Engineering, (Springer, 2023)

. . Sommerville, Software Engineering. 10th Edition, (Pearson, 2017)

f')

Check for
updates

Professional Responsibility

Key Topics

IEEE Code of Ethics
BCS Code of Ethics
ACM Code of Ethics
Whistle-blower
Precautionary principle

2.1 Introduction

Parnas has argued that computer scientists need the right education to apply sci-
entific and mathematical principles in their work. He argues, “software engineers
have individual responsibilities as professionals. They are responsible for designing
and implementing high-quality and reliable software that is safe to use. They are
also accountable for their own decisions and actions, and have a responsibility to
object to decisions that violate professional standards”.

Professional engineers have a duty to their clients to ensure that they are solving
the real problem of the client. They need to precisely state the problem before
working on its solution. Engineers need to be honest about current capabilities
when asked to work on problems that have no appropriate technical solution, rather
than accepting a contract for something that cannot be done.

The licensing of a professional engineer provides confidence that the engineer
has the right education, experience to build safe and reliable products. Otherwise,
the profession gets a bad name because of poor work carried out by unqualified
people. Professional engineers are required to follow rules of good practice and to
object when rules are violated. The licensing of an engineer requires that the engi-
neer completes an accepted engineering course and understands the professional
responsibilities of an engineer. The professional body is responsible for enforcing

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025 27
G. O’Regan, Guide to Software Project Management, Undergraduate Topics in
Computer Science, https://doi.org/10.1007/978-3-031-80578-3_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-80578-3_2&domain=pdf
https://doi.org/10.1007/978-3-031-80578-3_2

28 2 Professional Responsibility

Table 2.1 Professional responsibilities of software engineers
No Responsibility
1 Honesty and fairness in dealings with clients

2 Responsibility for actions

Continuous learning to ensure appropriate knowledge to serve the client effectively

standards and certification. The term “engineer” is a title that is awarded on merit,
but it also places responsibilities on its holder.

Engineers are required to behave ethically with their clients. The membership
of the professional engineering body requires the member to adhere to the code of
ethics! of the profession, which is given in Table 2.1.

2.2 What is a Code of Ethics?

A professional code of ethics expresses ideals of human behaviour, and it defines
the core principles of the organization. Several organizations such as the Asso-
ciation Computing Machinery (ACM), the Institute of Electrical and Electronic
Engineers (IEEE), and the British Computer Society (BCS) have developed a code
of conduct for their members. Violations of the code by members are taken seri-
ously and are subject to investigations and disciplinary procedures. A professional
code of conduct for a professional body or corporation includes

. Guidelines for responsible behaviour of its members.

. The guidelines may be detailed and prescriptive or a broad statement of values.
. Codes of conduct are an addendum to legal requirements.

. Professional codes are formulated by engineering bodies.

Companies formulate corporate codes.

. Violations of codes are investigated.

. Members may be disciplined for violating the codes.

There are various types of codes of ethics which are given in Table 2.2.

Business ethics (also called corporate ethics) is concerned with ethical prin-
ciples and moral problems that may arise in a business environment. They refer
to the core principles and values of the organization, and apply throughout the
organization. They guide individual employees in carrying out their roles, and eth-
ical issues include the rights and duties between a company and its employees,
customers and suppliers (Fig. 2.1).

! These are core values of many mature software companies, and many organisations have a code
of ethics that employees are required to adhere to. However, in some cases, the code of ethics may
be window dressing where the core values do not reflect the reality on the ground (e.g., we discuss
the Volkswagen emissions scandal in a later chapter).

2.2 What is a Code of Ethics? 29

Table 2.2 Types of professional codes

Code Responsibility
Aspirational These are the values that the profession or company is committed to and
codes aspires to achieve

Advisory codes These values help professionals to make moral judgments in different
situations, based on the values of the profession or company

Disciplinary These include disciplinary procedures to ensure that the behaviour of
codes professionals adheres to the values specified in the code of ethics

Fig.2.1 Corrupt legislation. 1896. Public Domain

Many corporation and professional organizations have a written “code of ethics”
that defines the professional standards expected of all employees in the company.
All employees are expected to adhere to these values whenever they represent
the company. The human resource function in a company plays an important role
in promoting ethics, and in putting internal HR policies in place relating to the
ethical conduct of employees, including the prevention of discrimination or sexual
harassment in the workplace, and ensuring that employees are treated appropriately
(including cultural sensitivities in a multi-cultural business environment).

Companies are expected to behave ethically and not to exploit its workers.
There was an infamous case of employee exploitation at the Foxconn plant (an
Apple supplier of the iPhone) in Shenzhen in China in 2006, where conditions
at the plant were so dreadful (long hours, low pay, unreasonable workload, and

30 2 Professional Responsibility

crammed accommodation) that several employees committed suicide. The scandal
raised questions on the extent to which a large corporation such as Apple should
protect the health and safety of the factory workers of its suppliers. Further, given
the profits that Apple makes from the iPhone, is it ethical for Apple to allow such
workers to be exploited?

Today, the area of corporate social responsibility (CSR) has become applica-
ble to the corporate world, and it requires the corporation to be an ethical and
responsible citizen in the communities in which it operates (even at a cost to its
profits). It is therefore reasonable to expect a responsible corporation to pay its
fair share of tax, and to refrain from using tax loopholes to avoid paying billions
in taxes on international sales. Today, environment ethics has become topical, and
it is concerned with the responsibility of business in protecting the environment
in which it operates. It is reasonable to expect a responsible corporation to make
the protection of the environment and sustainability part of its business practices,
and so CSR plays a role in ensuring that the corporation behaves ethically within
society and has a positive impact on the environment.

Unethical business practices refer to those business actions that don’t meet the
standard of acceptable business operations, and they give the company a bad rep-
utation. It may be that the entire business culture is corrupt or it may be as a
result of the unethical actions of an employee. It is important that such practices
be exposed, and this may place an employee in an ethical dilemma (i.e., the loy-
alty of the employee to the employer versus what is the right thing to do such as
exposing an unethical practice).

Some accepted practices in the workplace might cause ethical concerns. For
example, it is normal for the employer to monitor email and Internet use to ensure
that employees do not abuse it, and so there may be grounds for privacy concerns.
On the one hand, the employer is paying the employee’s salary and has a rea-
sonable expectation that the employee does not abuse email and the Internet in
the workplace. On the other hand, the employee has reasonable rights of privacy
provided computer resources are not abused.

The nature of privacy is relevant in the business models of several technology
companies. For example, Google specializes in Internet-based services and prod-
ucts, and its many products include Google Search (the world’s largest search
engine), Gmail for email, and Google Maps (a web mapping application that
offers satellite images and street views). Google’s products gather a lot of per-
sonal data, and create revealing profiles of its users, which can then be exploited
for commercial purposes.

A Google search leaves traces on both the computer and in records kept by
Google, which has raised privacy concerns as such information may be obtained
by a forensic examination of the computer, or in records obtained from Google
or the Internet Service Providers (ISP). Gmail automatically scans the contents of
emails to add context-sensitive advertisements to them and to filter spam, which
raises privacy concerns, as it means that all emails sent or received are scanned
and read by some computer. Google has argued that the automated scanning of
emails is done to enhance the user experience, as it provides customized search

2.2 What is a Code of Ethics? 31

Table 2.3 Ten commandments on computer ethics

No. Description

Thou shalt not use a computer to harm other people

Thou shalt not interfere with other people’s computer work
Thou shalt not snoop around in other people’s computer files
Thou shalt not use a computer to steal

Thou shalt not use a computer to bear false witness

Thou shalt not copy or use proprietary software for which you have not paid

~N O L AW =

Thou shalt not use other people’s computer resources without authorization or proper
compensation

(o]

Thou shalt not appropriate other people’s intellectual output

9 Thou shalt think about the social consequences of the program you are writing or the
system you are designing

10 Thou shalt always use a computer in ways that ensure consideration and respect for
your fellow humans

results, tailored advertisements, and the prevention of spam and viruses. Google
maps provide location information that may be used for targeted advertisements.

A code of ethics places professional and ethical responsibility on computer pro-
fessionals including software engineers and project managers, and includes ethical
behaviour and responsibilities such as?

1. Values of the profession.

2. Behaving with integrity and honesty.

3. Obligations to employer and to clients.

4. Responsibility towards public and society.

2.2.1 What is Computer Ethics?

Computer ethics is a set of principles that guide the behaviour of individuals when
using computer resources. Several ethical issues that may arise include intellectual
property rights, privacy concerns, as well as the impacts of computer technology
on wider society. The Computer Ethics Institute (CEI) is an American organization
that examines ethical issues that arise in the information technology field. It pub-
lished the ten commandments on computer ethics (Table 2.3) in the early 1990s [1],
which attempted to outline principles and standards of behaviour to guide people
in the ethical use of computers.

2 These are core values of many mature software companies, and most companies operating today
have a code of ethics that employees are expected to adhere to.

32 2 Professional Responsibility

The first commandment says that it is unethical to use a computer to harm
another user (e.g., destroy their files or steal their personal data), or to write a
program that on execution does so. That is, activities such as spamming, phishing,
writing, and spreading malicious software and cyberbullying are unethical. The
second commandment is related and may be interpreted that malicious software
and viruses that disrupt the functioning of computer systems are unethical. The
third commandment says that it is unethical (with some exceptions such as dealing
with cybercrime and international terrorism) to read another person’s emails, files,
and personal data, as this is an invasion of their privacy.

The fourth commandment argues that the theft or leaking of confidential elec-
tronic personal information is unethical (computer technology has made it easier
to steal personal information). The fifth commandment states that it is unethical
to spread false or incorrect information (e.g., fake news or misinformation spread
via email or social media). The sixth commandment states that it is unethical to
obtain illegal copies of copyrighted software, as software is considered an artistic
or literary work that is subject to copyright. All copies should be obtained legally.

The seventh commandment states that it is unethical to break into a computer
system with another user’s ID and password (without their permission), or to gain
unauthorized access to the data on another computer by hacking into the computer
system. The eight commandment states that it is unethical to claim ownership of
intellectual property created by another. For example, it would be unethical to
claim ownership of a program that was written by another.

The ninth commandment states that it is important for companies and individ-
uals to think about the social impacts of the software that is being created, and
to create software only if it is beneficial to society (i.e., it is unethical to cre-
ate malicious software). The tenth commandment states that communication over
computers and the Internet should be courteous, as well as showing respect for
others (e.g., no abusive language or spreading false statements).

2.2.2 Codes of Conduct

Codes of conduct are values that members of a professional body or employees
of a company are expected to adhere to, but may not be legally enforced as such.
However, members of a particular profession or employees of a company that
violate the codes may be subject to disciplinary procedures by the professional
body or their employer. An effective code of ethics helps the corporation to achieve
its corporate social responsibilities.

Unfortunately, codes of conduct may sometimes be just window dressing, where
the aspirations expressed in the code of ethics do not reflect the reality on the
ground. The code may give the appearance that work is carried out a certain way
(e.g., emissions are below certain thresholds), and that the engineers are ethical in
their day-to-day work. However, the reality on the ground may be quite different
with unethical work practices taking place but covered up. Further, codes of con-
duct have been criticized as being vague and contradictory, and this may create

2.2 What is a Code of Ethics? 33

uncertainty for the employee or member of the professional as to what is the right
action or behaviour is for a given situation.

Moral judgements and ethical decisions occur in various situations in a work
environment, and so it would not be feasible for a code of ethics to cover all
scenarios. In practice, a code of ethics expresses the moral principles of an orga-
nization, and so an employee or software professional needs a moral compass, and
to recognize situations where ethical decisions need to be made.

There may be conflicts between the loyalty that a person has to their employer
and their duty to do the right thing such as protecting the public. No employee
desires to be placed in a situation where there is a conflict between what is morally
right and their loyalty to their employer, and it is important that organizations
establish structures, where serious problems can be reported, discussed openly,
and dealt with appropriately. In rare situations, an employee may have no choice
but to become a whistle-blower to protect the public, where the organization is
intent or proceeding with a very risky approach that potentially endangers life or
the environment. However, every effort should be made to avoid this situation as
it places the employee in a very difficult position with potential consequences to
their career if he or she speaks out (Fig. 2.2).

An employee may have a conflict of interest that could affect her professional
judgement in a certain situation. For example, suppose that an employee has
responsibility for selecting a new software package, and her husband runs one
of the firms tendering for the work. Then an ethical employee would inform man-
agement of the conflict of interest and remove herself from the selection process
to remove any possibility of bias in the selection.

That is, a conflict of interest is an interest which if pursued interferes or conflicts
with the obligation of the employee to his/her employer or client. The conflict of
interest may corrupt or interfere with the employee’s professional judgement and
could potentially lead to inappropriate or immoral behaviour. It potentially destroys
the trustworthiness of an individual, and so it is important to disclose a potential
conflict of interest as soon as it arises.

Fig.2.2 Whistle-blower

34 2 Professional Responsibility

Bribery and corruption are endemic to some countries, and as these are illegal
activities in most countries the employee needs to report such activities when they
arise. For example, an employee such as a purchasing manager is in a position of
influence in an organization and could potentially be offered a bribe by another
individual or company to influence his/her decision-making. Often, individuals or
companies may be subtle in their attempt to gain influence on decision-makers,
with gifts or invitations to all-expenses paid events such as golf outings used to
build up relationships with decision-makers.

It is important to be cautious with respect to corporate entertainment, and many
companies have policies that prohibit or restrict gifts to employees from external
organizations or individuals. This helps to prevent employees being inappropriately
influenced by others in their decision-making.

2.2.3 Role of a Whistle-Blower

The whistle-blower is a person who speaks out and informs the public on poten-
tially unsafe or criminal acts in an organization. However, speaking out should
be the very last step in the process as it could have serious consequences on the
employee and their career. The first steps are to establish the facts to determine the
extent of the danger and its potential impact on the public, communicating the per-
ceived danger and evidence for the danger within the organization, and exhausting
all internal procedures prior to acting by speaking out. The whistle-blower should
only speak out when:

—_

. The organization will do serious harm to the public.

2. The whistle-blower has identified the threat, reported it to management, and
concluded that management will not act.

The whistle-blower has exhausted all internal procedures.

The whistle-blower has convincing evidence that the threat is real.

5. The whistle-blower believes that revealing the threat will prevent harm.

>

Table 2.4 describes the typical steps in whistle-blowing.

Speaking out may be the ethical thing to do but often it comes at a seri-
ous cost to the employee, as he or she may be portrayed as being disloyal to
the organization. Further, as the organization will wish to protect itself it may
attempt to discredit the employee, and it may even terminate the employment of
the employee. The organization may portray the issue as a disgruntled employee
whose employment was terminated due to performance issues with the employee’s
work.

Whistle-blowing can also place a lot of emotional strain on the employee, and
even if the employee is not fired it may result in career termination in the organiza-
tion, with zero prospects of further promotion in the company. It is important that
the employee protects himself by gathering all evidence on the existence of dan-
ger, as this will be needed at a later stage. It may be prudent for the whistle-blower

2.3 |EEE Code of Ethics 35

Table 2.4 Steps in whistle-blowing
No. Responsibility

1 Establish the facts and double (or triple check) to ensure that you are factually correct
with respect to the danger and gather appropriate solid evidence that will convince any
reasonable person of the danger

2 Report the matter and present the factual information to your immediate superior and
determine what action (if any) management will take

3 In the case of inaction escalate as appropriate within the organization (organizations
vary size/hierarchical structure and so escalation mechanism will differ) until all
internal procedures are exhausted

4 In the absence of a reasonable resolution to the situation, or the organization fails to act
or find an appropriate solution there may be no alternative but to speak out

5 The whistle-blower reflects on the situation, weighs up the evidence and options, and
decides that the only way to prevent harm is to speak out and reveal the danger to the
public

to consider the consequences of speaking out and doing the right thing, both on
themselves and on others, to ensure that they fully understand the implications of
the serious steps that they are taking and can manage the difficult circumstances
in the aftermath of speaking out.

It may seem reasonable to suggest that an employee is fulfilling his moral duty
if he informs management of the danger, as management are the decision-makers
with all the pertinent facts and are thus best to make the final decision. However,
such an approach can sometimes lead to loss of life, as with the Space Shuttle
Challenger disaster back in 1986, which is discussed in Chap. 3. Robert Boisjoly,
an Engineer at Morton Thiokel, was aware of the risks of erosion and failure when
the 0-Rings of the Solid Rocket Booster (SRB) are exposed to low temperatures.
He argued that the shuttle launch should not take place on the planned date due
to the predicted temperatures and advised management at Morton Thiokel of the
situation. However, NASA placed pressure on Morton Thiokel to proceed with the
launch, and the company gave its go ahead to continue with the launch, which
resulted in the death of the crew of the space shuttle.

The IEEE code of ethics is discussed in the next section and it highlights the
importance of speaking out in the case of danger. It includes the code: “disclose
promptly factors that might endanger the public or the environment”.

2.3 IEEE Code of Ethics

The Institute of Electrical and Electronic Engineers (IEEE) is the world’s largest
technical professional organizations with over 400,000 members in over 160 coun-
tries, and it is dedicated to advancing technology for the benefit of mankind. It
publishes over 30% of the world’s technical literature in electrical engineering,
computer science, and electronics as well as technical books and monographs. It

36 2 Professional Responsibility

is a leading developer of international standards in telecommunications and infor-
mation technology, and individuals who have made outstanding contributions to
engineering and technology may receive the prestigious IEEE Medal.

IEEE has developed a code of ethics for its members designed to ensure that
they adhere to the highest ethical standards, and that its members treat others fairly
and ensure that they are not discriminated against on the grounds of gender, race,
and so on (Table 2.5).

The IEEE Code of Ethics requires its members to promptly disclose any fac-
tors that might endanger the public or society, which shows that it recognizes the
reality of whistle-blowing and the need for members to speak out when there is
danger to the public. The code mentions the importance of avoiding conflicts of
interest and disclosing them when they occur, and stresses that unlawful activities
such as bribery should be rejected. The code highlights the importance of carrying

Table 2.5 IEEE code of ethics

No. Description
Highest ethical standards

1 To hold paramount the safety, health, and welfare of the public; to strive to comply
with ethical design and sustainable development practices; to protect the privacy of
others; and to disclose promptly factors that might endanger the public or the

environment

2 To improve the understanding by individuals and society of the capabilities and societal
implications of conventional and emerging technologies, including intelligent system

3 To avoid real or perceived conflicts of interest whenever possible, and to disclose them
to affected parties when they do exist

4 To avoid unlawful conduct in professional activities, and to reject bribery in all its
forms

5 To seek, accept, and offer honest criticism of technical work, to acknowledge and

correct errors, to be honest and realistic in stating claims or estimates based on
available data, and to credit properly the contributions of others

6 To maintain and improve technical competence and to undertake technological tasks
for others only if qualified by training or experience, or after full disclosure of
pertinent limitations

Treating people fairly

7 To treat all persons fairly and with respect, and to not engage in discrimination based
on characteristics such as race, religion, gender, disability, age, national origin, sexual
orientation, gender identity, or gender expression

8 To not engage in harassment of any kind, including sexual harassment or bullying
behaviour
9 To avoid injuring others, their property, reputation, or employment by false or

malicious actions, rumours or any other verbal or physical abuses
Following the code

10 To support colleagues and co-workers in following this code of ethics, to strive to
ensure the code is upheld, and to not retaliate against individuals reporting a violation

2.5 ACM Code of Professional Conduct and Ethics 37

out roles only when one is qualified to do so, and to continue to improve one’s
technical competence. It emphasizes that people should be treated fairly and with
respect, without discrimination on gender, ethnicity, etc., and that harassment and
injury to others should be avoided.

24 British Computer Society Code of Conduct

The British Computer Society (BCS) is a professional organization for information
technology and computer science that was founded by in 1957, and its first presi-
dent was Sir Maurice Wilkes.? It has over 68,000 members in 150 countries, and
it has played an important role in educating IT professionals. The BCS provides
awards such as the Lovelace Medal* to individuals, who have made outstanding
contributions to the computing field.

The BCS has developed a code of conduct that defines the standards expected
of BCS members, and it applies to all grades of members during their professional
work. Any known breaches of the BCS codes by a member are investigated by
the BCS, and appropriate disciplinary procedures followed. The main parts of the
BCS code of conduct are listed in Table 2.6.

The BCS Code of Ethics requires its members to be conscious of the pub-
lic health and environment. It states that one should only carry out those roles
that one is qualified to do so, and one should continue to improve one’s techni-
cal competence. It states the importance of avoiding conflicts of interest and that
unlawful activities such as bribery should be rejected. It emphasizes that members
should seek to improve professional standards and support other members in their
professional development.

2.5 ACM Code of Professional Conduct and Ethics

The Association of Computing Machinery (ACM) is the world’s largest educa-
tional and scientific computing society, and it delivers resources that advance
computing as a science. It has over 100,000 members around the world, and it
includes several special interest groups (e.g., SIG Al is a special interest group on
Al, and SIG SOFT is a special interest group on software engineering). The ACM
has defined a code of ethics and professional conduct for its members, and the
Code is summarized in Table 2.7.

The ACM Code of Ethics is comprehensive and requires its members to report
any dangers that might cause damage or injury. The code mentions the importance

3 Sir Maurice Wilkes developed the EDSAC computer at Cambridge University, which was one of
the earliest stored-program computers. It was operational from May 1949.

4 Ada Lovelace was an English mathematician who collaborated with Babbage on applications for
the Analytic Engine.

38 2 Professional Responsibility

Table 2.6 BCS code of conduct

Area Description
Public interest Due regard to public health, privacy, security, and
environment

Due regards to legitimate rights of third parties
Conduct professional activities without discrimination
Promote equal access to IT

Professional competence and integrity ~ Only do work within professional competence
Do not claim competence that you do not possess
Continuous development of knowledge/skills
Understand/knowledge/comply with legislation
Respect other viewpoints
Avoid injuring others
Reject bribery and unethical behaviour

Duty to relevant authority Carry out professional responsibilities with due care
and diligence
Avoid conflicts of interest
Accept professional responsibility for your work
Do not disclose confidential information
Accurate information on performance of products

Duty to the profession Uphold reputation of profession and BCS
Seek to improve professional standards
Act with integrity
Notify BCS if convicted of criminal offence
Support other members in their professional
development

of respecting intellectual property as well as privacy and confidentiality and car-
rying out roles only when one is qualified to do so. Conflicts of interest should be
avoided, and their work should be to the highest professional standards. Members
should seek to improve their technical competence, and people should be treated
fairly and with respect. Finally, members should notify the ACM of any violations
of the code.

We shall discuss the professional responsibilities of some specific roles (e.g.,
software testing) in our discussion of ethical software engineering in Chap. 3.

2.6 Precautionary Principle

The precautionary principle argues that if there is an identifiable risk of serious or
irreversible harm, then it may be appropriate to place the burden of proof on the
organization proposing the potentially risky activity to show that it is safe, and for
inaction until a proof of safety has been provided.

The main problem with the precautionary principle is that it potentially forbids
too much, and opponents have argued that several innovations used today would
not have been implemented if the precautionary principle had been adhered to.

2.6 Precautionary Principle

39

Table 2.7 ACM code of conduct

No.

Area

1. General principles

1.1

12

1.3

1.4

1.5

1.6

1.7

Contribute to society and human
well-being

Avoid harm to others

Be honest and trustworthy

Be fair and act not to discriminate

Respect property rights/intellectual
property

Respect the privacy of others

Respect confidentiality

2. Professional responsibility

2.1

2o

Quality of processes/product

Maintain high standards

Description

Computer professionals must strive to
develop computer systems that will be
used in socially responsible ways with
minimal negative consequences

Computer professionals must follow best
practice to ensure that they develop
high-quality systems that are safe for the
public. The professional has a
responsibility to report any signs of
danger in the workplace that could result
in serious damage or injury

The computer professional will give an
honest account of their qualifications and
any conflicts of interest. The professional
will make accurate statement on the
system and the system design and will
exercise care in representing ACM

Computer professionals are required to
ensure that there is no discrimination in
the use of computer resources, and that
equality, tolerance, and respect for others
are respected

The professional must not violate
copyright or patent law, and only
authorized copies of software should be
made. The integrity of intellectual
property must be protected, and credit for
another person’s ideas or work must not
be taken

The professional must ensure that any
personal information gathered for a
specific purpose is not used for another
purpose without the consent of the
individuals. User data observed during
normal system operation must be treated
with the strictest confidentiality

The professional will respect all
confidentiality obligations to employers,
clients, and users

Computing professionals should strive to
achieve the highest quality work
throughout the process

It is essential to maintain high standards
of technical knowledge and competence,
and to upgrade skills on an ongoing basis

(continued)

40

2 Professional Responsibility

Table 2.7 (continued)

No. Area

23 Respect rules

2.4 Professional review

2.5 Comprehensive evaluations
2.6 Areas of competence

2.7 Foster public awareness

2.8 Authorised use of resources
2.9 Secure systems

3. Professional leadership

3.1 Public good
32 Social responsibilities
33 Quality of working life

Description

Computing professionals must adhere to
rules including national and international
laws and regulations

Peer reviews play an important role in
building quality into a work product, and
computing professions should seek
reviews of their work as well as
participating in reviews

Computing professionals are required to
be thorough and comprehensive in their
evaluation of computer systems including
analysis and management of risk

Computing professionals should only
undertake work for which they have the
required competence

Computing professionals should share
technical knowledge with the public and
foster public awareness and understanding
of computing

Computing professionals should only
access computer systems and software
unless they are authorized to do so

Computing professionals should develop
robust and secure systems, as well as
mitigation techniques and policies

The leader should ensure that the public
good is the central concern during all
professional computing works

Leaders should encourage computing
professionals in meeting relevant social
responsibilities

Leaders should enhance the quality of
working life of workers

(continued)

2.7 Review Questions 41

Table 2.7 (continued)

No. Area Description

3.4 Support principles of Code Leaders should pursue policies that are
consistent with the Code and communicate
them to the relevant stakeholders

3.5 Support growth of professionals Leaders should ensure that opportunities
are available to computing professionals
to improve their knowledge and skill

3.6 Modifying/Retiring Systems Leaders should exercise care when
modifying or retiring systems

3.7 Special care Leaders have a responsibility to be good
stewards of systems that become part of
the infrastructure of society

4. Compliance

4.1 Uphold code Computing professionals should adhere to
the principles in the Code and strive to
improve them, and to express their
concern to any individuals thought to be
violating the code

4.2 Violations of code ACM members who recognize a breach in
the Code should consider reporting the
violation to the ACM

Further, its opponents argue that its demands for incontrovertible proof of no dam-
age or harm is impractical, and that it is more sensible to demand that there are
reasonable grounds for believing that there is no harm.

The precautionary principle may also be applied to unknown threats, where
the principle permits preventive measures to be taken prior to fully knowing the
seriousness of the threat. That is,

1. There is a threat

2. The threat is uncertain
3. Action is required

4. Action is taken

2.7 Review Questions

Explain professional responsibility and accountability.
What is a code of ethics?

Describe the main features of the IEEE code of conduct.
Describe the main features of the BCS code of conduct.
Describe the main features of the ACM code of conduct.

@ g e D =

42 2 Professional Responsibility

6. What is the role of a whistle-blower?
7. Give examples of conflicts of interest that could arise in the work place.
8. What is the precautionary principle?

2.8 Summary

Software engineers have responsibilities as computer professionals in that they are
responsible for designing and implementing high-quality and reliable software that
is safe for the public to use. They are also accountable for their own decisions and
actions and have a responsibility to object to decisions that violate professional
standards.

Professional engineers have a duty to their clients to ensure that they are solving
the real problem of the client. They need to precisely state the problem before
working on its solution. Engineers need to be honest about current capabilities
when asked to work on problems that have no appropriate technical solution, rather
than accepting a contract for something that cannot be done.

Professional engineers are required to follow rules of good practice and to
object when rules are violated. The licensing of an engineer requires that the engi-
neer completes an accepted engineering course and understands the professional
responsibility of an engineer. The professional body is responsible for enforcing
standards and certification. That is, the term “engineer” is awarded only to those
that have achieved a certain minimum level of competence, and the term places
responsibilities on its holder.

Several professional organizations such as the British Computer Society, IEEE,
and ACM have developed a code of ethics for their members to adhere to. These
codes provide guidelines for the responsible behaviour of their members, and
members may be disciplined for violating the code of ethics. A code of ethics
places professional and ethical responsibilities on software engineers.

A whistle-blower is a person who speaks out and informs the public on poten-
tially unsafe or criminal acts in an organization. Speaking out may be the ethical
thing to do but it often comes at a serious cost to the employee.

Reference

1. R. C. Barquin, In Pursuit of a ‘Ten Commandments’ for Computer Ethics, (Computer Ethics
Institute, 1992)

f')

Check for
updates

Ethical Software Engineering

Key Topics

Safety and ethics

Therac-25

Space shuttle disaster
Volkswagen scandal

Ethical project management
Ethical software testing

Ethical design and development

3.1 Introduction

Software engineering is a discipline that is concerned with the development of
software, and it includes activities such as requirements gathering and definition,
software design and development, and software testing to verify the correctness of
the software. It is a team-based activity with several roles involved such as project
managers, system analysts, developers, and testers. Software engineering is much
more than programming, and it involves rigorous engineering practices to define
the right requirements, and to design and implement an appropriate solution that
is fit for purpose and satisfies the requirements.

Technical decisions need to be made in software engineering, and often these
decisions affect people’s lives, with potential harmful impacts on others and
society. This means that the ethical impacts of technical decisions need to be
considered as part of the software engineering process, and so the ethical soft-
ware engineer needs to examine both the technical and the ethical dimensions
of decisions that affect wider society. At a minimum ethical, software engineers
should

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025 43
G. O’Regan, Guide to Software Project Management, Undergraduate Topics in
Computer Science, https://doi.org/10.1007/978-3-031-80578-3_3

3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-80578-3_3&domain=pdf
https://doi.org/10.1007/978-3-031-80578-3_3

44 3 Ethical Software Engineering

— Do no harm
— Do not take bribes
— Be fair to others

A fundamental principle of ethics is based on the Hippocratic Oath “Do no harm”,
which may be seen to be breached where there are violations of ethics. For exam-
ple, the Volkswagen emissions scandal (discussed later in the chapter) led to the
deception of the public and harm to society, the company, and its employees. The
actions of Volkswagen were unethical and illegal.

We discussed the professional responsibilities of software engineers in Chap. 2,
as well as the code of ethics/conduct of several professional bodies such as IEEE,
ACM, and BCS. The codes of ethics provide guidance on the interaction of tech-
nology and values, and software engineers and project managers need to be aware
of their ethical responsibilities throughout the software development process, and
to act when ethical standards are in danger of being violated.

3.2 Safety and Ethics

The release of an unreliable software product may result in damage to property or
injury (including loss of life) to a third party. Consequently, companies need to be
confident that their software products are fit for purpose prior to their release. It
is essential that software that is widely used is dependable, which means that the
software is available whenever required, and that it operates safely and reliably
without any adverse side effects.

Today, billions of devices and computers are connected to the Internet, and this
has led to a growth in attacks on computers. It is essential that computer security
is carefully considered, and that software developers and managers are aware of
the threats facing a system, and develop techniques to eliminate them. That is,
software developers need to be able to develop secure dependable systems that
can deal with and recover from external attacks.

A safety-critical system is a system whose failure could result in significant
economic damage or loss of life. There are many examples of safety-critical sys-
tems such as aircraft flight control systems, nuclear power stations, and missile
systems. It is essential to employ rigorous processes in the design and develop-
ment of safety-critical systems, and software testing alone is usually insufficient
in verifying the correctness of these systems.

The safety-critical industry takes the view that any change to safety-critical
software creates a new program. The new program is therefore required to demon-
strate that it is reliable and safe to the public, and so extensive testing needs to be
performed. Additional techniques such as formal verification and model checking
may be employed to provide an extra level of assurance in the correctness of these
systems.

3.2 Safety and Ethics 45

Safety-critical systems need to be reliable, dependable, and available for use
whenever required. The software must operate correctly and reliably without any
adverse side effects. The consequence of failure (e.g., the failure of a weapons
system) could be massive damage, leading to loss of life or endangering the lives of
the public. We discuss two important case studies on disasters that occurred in the
mid-1980s, and these are the Therac-25 disaster and the Space Shuttle Challenger
disaster.

3.2.1 Therac-25 Disaster

The Therac-25 was a computer-controlled radiation therapy machine that was
developed by the Atomic Energy of Canada (AECL) in the early 1980s. This
linear accelerator treated cancer patients by exposing them to a beam of particles
that would destroy malignant tissue (Fig. 3.1).

The machine consisted of hardware and software, and whereas the role of
software on the earlier Therac-20 machine was limited, software played a more
important role in the Therac-25 machine. Its role was to perform many of the
safety-critical checks for the Therac-25, whereas this was performed by hard-
ware on the earlier Therac-20 machine. The software on the Therac-25 radiation
machine was responsible for

Fig.3.1 A radiotherapy machine

46 3 Ethical Software Engineering

— Monitoring the status of the machine.

— Accepting treatment input.

— Setting up the machine for the treatment.
— Turning on treatment beam.

— Turning off treatment beam.

— Detecting hardware malfunction.

There were six major accidents with the machine in the mid-1980s (1985-1987),
where patients were given massive overdoses of radiation. The machine malfunc-
tioned, and several patients received doses that were hundreds of times more than
the appropriate dose, resulting in the death of three people and serious injuries to
three others.

The machine continued in use for over 18 months after the first accident, with
AECL believing that an accident was impossible with the machine, and it took
no action with respect to the first accident. The second accident occurred a month
later, and AECL sent an engineer on site to investigate the incident. He was unable
to reproduce the problem, but AECL made some hardware and software changes
and claimed that this solved the problem, as well as increasing the reliability of
the machine a multiple of times.

AECL’s response to the third action was denial of the problem, where they
stated that the malfunction could not have been caused by the Therac-25 machine.
They claimed that the fourth accident was as the result of a wiring problem.
Finally, because of the fifth accident, and FDA investigations into the operation
of the Therac-25 machine, AECL finally launched a thorough investigation. The
FDA ruled that the Therac-25 machines were defective, and advised AECL to pre-
pare a corrective action plan, and to advise their customers of the problems with
the machine.

The corrective action plan was prepared by AECL and presented to the FDA.
It led to serious concerns in the FDA with respect to the software engineering
practices employed in AECL, and the risks that these posed to the delivery of a
high-quality product that was safe for the public. There was a lack of software
engineering and testing documentation for the software development, and the test-
ing of the software was judged to be inadequate. The FDA directed AECL to do
extensive testing on the system each time a small software change was made to
ensure the safety of the software. The main reasons for the Therac-25 disaster
include

— Initial failure to believe end users.

— Poor investigation of malfunction of the machine.
— Overconfidence of engineers in its correctness.

— Poor software design and development.

— Poor resolution of software defects.

— Inadequate testing.

3.2 Safety and Ethics 47

The Therac-25 disaster led to the deaths of three people and serious injury to three
others (see Ref. [1]) Software engineering practices were immature in the 1980s,
but this is no excuse for what happened. It is basic common sense that a proper
investigation should have been done after the first accident, and that all exist-
ing machines should have been judged unsafe until proved otherwise. That is, all
Therac-25 machines should have removed from operational use until the cause of
the problem had been correctly identified, and appropriate solutions implemented
to prevent a reoccurrence.

3.2.2 Space Shuttle Challenger Disaster

The Space Shuttle Challenger disaster is an important case study on engineering
safety and workplace ethics. The disaster occurred in January 1986, when the
space shuttle broke apart 73 s into its flight, and all the seven members of the
crew were killed. The Rogers Commission was formed to investigate the accident,
and it found that the Challenger disaster was caused by a failure in the O-Rings
sealing a joint on the right solid rocket booster. The report also criticized the
decision-making process that led to the launch stating that it was deeply flawed,
with conflicts between engineering data and management judgements (Fig. 3.2).

Robert Boisjoly, an Engineer at Morton Thiokel, launched strong objections to
the launch, as he was aware of the risks of erosion and failure when the 0-Rings of
the Solid Rocket Booster (SRB) are exposed to low temperatures. He argued that
the shuttle launch should not take place on the planned date due to the predicted
temperatures.

Both the NASA project team and the management team at Morton Thiokel
had the opportunity to prevent the challenger disaster by postponing the launch.
During the conference call on the evening prior to the launch the entire Morton
Thiokel team recommended a postponement of the launch, as they recommended a
minimum launch temperature of 52° F. Temperatures were forecast to drop to 30°
F overnight which was likely to compromise the safety of the launch. They had
expected NASA to rubber stamp the decision, but they were wrong, and NASA
stated that the Morton Thiokel briefing was based on emotion rather than factual
data. NASA requested Morton Thiokel to review their data again to determine
if the data showed that it was unsafe to proceed, and the conference call was
rescheduled to later in the evening.

For a launch to take place all subcontractors must sign-off on going ahead,
and NASA seems to have encouraged (perhaps pressurized) Morton Thiokel to
recommend the launch unless they could prove that it was unsafe to do so. The
conference call had been delayed allowing Morton Thiokel management to con-
sider all of the data, and the result of the Morton Thiokel management meeting
(which excluded participation from Boisjoly) was to proceed with the launch. Mor-
ton Thiokel stated that its data was inconclusive at the conference call with NASA,
and all subcontractors agreed to proceed with the launch. Boisjoly later called the
Morton Thiokel decision to go ahead to be unethical.

48 3 Ethical Software Engineering

Fig.3.2 Space challenger disaster

3.3 Ethical Software Design and Development 49

Separatism is the idea that scientists and engineers provide the technical input
and advice to management concerning a particular engineering situation, and man-
agement decide how best to proceed. That is, managers act as the decision-maker
taking all inputs into account to make a value judgement on the best way to pro-
ceed. This approach generally works fine in engineering, but problems arise when
managers are trying to balance conflicting values such as achieving a strict deliv-
ery constraint and the safety of an operation, and where management believes (or
encourages their subordinates to support their belief) that there is a small but man-
ageable risk. It is essential to have openness and transparency in decision-making,
where decisions are made on the objective facts and data, and risks are kept to an
absolute minimum and are manageable.

The precautionary principle was discussed in Chap. 2 and requires that a par-
ticular course of action be demonstrated to be safe prior to being conducted. This
was the normal modus operandi of NASA, but NASA changed the burden of proof
the night before the launch to demand that Morton Thiokel prove to NASA man-
agement that it was unsafe to proceed with launch. However, once Morton Thiokel
gave their approval and ignored the input of Robert Boisjoly, it could be argued
that Boisjoly had a moral responsibility to be a whistle-blower given the likelihood
that safety would be compromised due to the forecasted low temperatures for the
launch. Boisjoly may have taken the position that he had advised management of
the dangers with launch (following the principle of separatism), and that it was the
responsibility of management to act by postponing the launch.

3.3 Ethical Software Design and Development

Ethical software design and development is concerned with ethical issues that may
arise during technology development, such as questions as to how the technology
will be used, and whether it could lead to harm to individuals and society. The
design of a technology determines how it will be used, and this means that there
needs to be an ethical dimension to the design process, where ethical values are
considered as well as the desired functionality.

David Lean! directed the movie “The Bridge on the River Kwai” in 1957, and
the film was based on the historical construction of the Thailand-Burma railway
that took place during the Japanese occupation of Burma in the Second World
War. British prisoners of war were ordered to construct the bridge, and initially
the British and their leader, Colonel Nicholson, resisted participation in its con-
struction. However, Colonel Nicholson later became obsessed with designing and
building a proper bridge that would last well beyond the war, and that would be a
tribute to the skill and ingenuity of British engineers (Fig. 3.3).

! David Lean was an influential film director who directed well-known movies such as Lawrence
of Arabia, Doctor Zhivago, A Passage to India and Ryan’s Daughter.

50 3 Ethical Software Engineering

Fig.3.3 Bridge over the River Kwai in Kanchanburi, Thailand

They build a solid bridge over the river and on the day that it was due to open
with the first train due to pass over Nicholson finally realized the gravity of what
he has done (i.e., collaborating with the enemy and contributing to their plans for
further aggression). He blows up the bridge sending the train into the river. That is,
the purpose of the technology (i.e., the completed bridge) needed to be considered,
as a completed bridge would cause harm to others in that it would have facilitated
an expansion of Japanese aggression to other countries. Further, it was unethical
for Nicholson to collaborate with his enemy who wished to harm him and his
country, and his collaboration conflicted with his duties to the British army.

Software design is the process where certain functions are translated into a
blueprint for a system that can fulfil these functions. It is a systematic process that
uses technical and scientific knowledge, and there may need for trade-offs with
conflicting ethical values. There are often several design choices for a particular
technology, and different designs may vary in the extent to which they deal with
individual ethical values. The goal is to choose the design that best meets the
most important ethical values and technology considerations, and this means that
responsible choices must be made in the selection of the most appropriate design.
It involves activities such as

— Problem analysis.
Requirements analysis and definition (may include prototyping).
— Architectural design (may include design options and decision).
Low level design.

3.3 Ethical Software Design and Development 51

— Implementation.
— Testing.
— Maintenance.

Value-centred design is an approach to design that involves taking human val-
ues into account during the design process, and solving value conflicts through
engineering design and technological innovation. It involves investigating and
determining the values that are relevant to the project, and understanding conflicts
to make trade-offs. There is a need to analyse designs to determine the extent
to which they meet individual values, and to develop innovative designs to meet
particularly relevant moral values. Value-centred design involves

— Reasoning/clarifying values underlying conflicting design requirements.

— Social cost-benefit analysis (including monetary costs for safety).

— Evaluation criteria (including value criteria, weightings may be employed).
— Thresholds for what is acceptable for each criterion.

— Evaluation of options.

— Selected option.

There may be conflicts between ethical values when choosing between two or more
design options, and where the different designs score well on different criteria. This
is where designers are unable to do justice to all ethical values simultaneously,
and often the resolution of these moral dilemmas requires a trade-off and fining a
balance between competing values. A trade-off decision is where a choice needs
to be made between at least two options, in which at least two moral values are
relevant as choice criteria, and so finding the right balance in the trade-off decisions
may be a challenge (Fig. 3.4).

Software designers have a responsibility to create ethical designs that satisfy
the requirements, and to ensure that their designs are robust and protect the safety
of the public. Ethics is an important design concern that should be considered, and
this will determine how well the product fits within the ethical boundaries. There
may be several ethical values that may be relevant, including safety, accessibility,
usability, sustainability, privacy, security, honesty, fairness, and loyalty. The eval-
uation of each design option should rate the extent to which the relevant moral
values are addressed by that option as well as the technical criteria.

Data management is an important part of ethical software engineering, where
personal data ownership as well as data rights, access rights, privacy and security
rights need to be considered and protected. Software designers need to follow best
practice in privacy and security in collecting, processing, and protecting data. An
ethical system needs to be accessible, and its design should consider its acces-
sibility for different categories of users, such as those with visual or hearing
impairments, or those with different levels of language ability or education.

The ethical design of a software system should give an open and accurate
account of the system and should satisfy all relevant legal and regulatory require-
ments. We discuss the Volkswagen diesel gate emissions scandal in the next

52 3 Ethical Software Engineering

Fig.3.4 Balancing an ethical life against a feather in Egyptian religion

section, where the unethical conduct of the company and its management involved
tasking software designers to develop a “defeat device” to cheat the vehicle
emissions tests.

Ethical software designers need to be conscious of the algorithms that they
create to ensure that they are unbiased, and do not discriminate against minor-
ity groups in society. This is especially important in machine learning algorithms
based on pattern matching that are employed in the Al field, where biased algo-
rithms may lead to discrimination such as in controversies including the Amazon
hiring algorithm which discriminated against females, and predictive policing
algorithm which led to racial profiling and discrimination against minorities.

Software designers should consider the ultimate purpose of the project including
its benefits to society as well as harm of the technology. We discussed the purpose
of the “Bridge over the river Kwai”, and argued that its design and construction
would lead to harm to the Allies in their war against Japan. Social media and
various other apps are deliberately designed to be addictive to their users, where
the software captures the attention of the human at a primal level, and the company
reaps financial gain from the addiction of the users. Humans have become addicted
to their smartphones, and check their phone hundreds of times a day, and their
addiction has been caused by addictive software design. This poses questions on

3.3 Ethical Software Design and Development 53

the ethics of this addictive design, and whether the consequences of design as well
as the end product should be considered in ethical decision-making.”

The system needs to be designed for security, as it is difficult to add security
after the system has been implemented. Security engineering is concerned with
the development of systems that can prevent malicious attacks and recover from
them. Software developers need to be aware of the threats facing a system and
develop solutions to manage them. Security loopholes may be introduced in the
development of the system, and so care needs to be taken to prevent these as well
as preventing hackers from exploiting security vulnerabilities.

There is a need to conduct a risk assessment of the security threats facing a sys-
tem early in the software development process, and this will lead to several security
requirements for the system. That is, the requirements of the system should spec-
ify security and privacy requirements, and the software design and development
must implement them to ensure that security and privacy are not breached. Secu-
rity testing (including penetration testing) is carried out to identify any flaws in
the security mechanisms of the computer system, and to verify that the security
requirements, such as confidentiality, availability, and integrity, are satisfied. How-
ever, the successful completion of security testing does not guarantee that there
are no security vulnerabilities in the system. Hackers will still attempt to steal
confidential data and to disrupt the services being offered by a system.

3.3.1 Volkswagen Emissions Scandal

The Volkswagen Diesel gate scandal arose as a result of the German company
deliberately programming its turbocharged direct injection (TDI) diesel engines to
activate their emission controls only during laboratory emission tests. This meant
that the vehicles’ NO, emissions passed the US regulatory requirements during
laboratory tests, whereas the actual emissions were over 40 times higher in real-
world driving (Fig. 3.5).

Volkswagen deployed this software in over 11 million vehicles worldwide
including roughly half a million vehicles in the United States from 2009 to 2015. It
became evident in 2014 that there were discrepancies in emissions between Euro-
pean and US models, and regulators in several countries launched an investigation
into Volkswagen. Several senior executives resigned or were suspended, and Volk-
swagen spent billions in recalling the affected vehicles and rectifying the issues
with the emissions.

2 The rise of the Internet has led to giant technology companies such as Facebook, Apple, Ama-
zon, and Google, and the business model (for some of these companies) is based upon gathering
data about the users, and selling this data to advertisers (surveillance capitalism). Often, software
developers are so focused on providing technical solutions that they do not consider the wider pic-
ture of the technology that they are creating, and the potential negative impacts of technology on
society.

54 3 Ethical Software Engineering

Fig.3.5 Volkswagen Beetle Type 82E

Volkswagen pleaded guilty to criminal charges in 2017, and they admitted to
developing a “defeat device” to enable diesel models to pass US emission tests
and deliberately concealing its use. Volkswagen was fined $2.8 billion for rigging
the vehicles to cheat on the emission tests. The scandal had cost Volkswagen $33
billion in fines, penalties, financial settlements, and buyback costs by mid-2020.
Martin Winterkorn resigned his position of the CEO of Volkswagen in 2015, and
he was charged with fraud and conspiracy in the United States in 2018.

The scandal highlighted how software-controlled machinery is prone to cheat-
ing, and it has opened a debate on whether there is a need for a mechanism to
independently verify software that is employed to satisfy safety, legal, or regula-
tory requirements. That is, should all such software code be published for scrutiny
by independent regulators and/or independently certified?

The Volkswagen scandal is deeply concerning as it demonstrates the failure
of corporate business ethics to act as a barrier to the pursuit of business self-
interest. Volkswagen is a prestigious German company, and it is extraordinary that
the professionalism that Germany is renowned for could be tarnished in this way.
Unfortunately, sometimes the code of ethics of an organization are just window
dressing for the public, rather than being embraced and engrained in the day-to-day
work practices of corporate life. Why did engineers fail to consider their ethical
responsibilities? Why did they fail to question the implementation of this device?
Why were there no whistle-blowers to speak out against these unethical practices?

3.4 Ethical Software Testing 55

Was there a lack of moral courage among the engineers? Were there appropriate
structures in place for whistle-blowers to discuss ethical concerns? Volkswagen’s
actions were illegal and deeply unethical, and its good name has been tarnished.

A corporate environment is generally focused on the business and product
implementation rather than on critical reflection on the wider implications of the
technology. Engineers are often busy with their lives outside the office while trying
to build a career within the office and speaking out may not be viewed as career
advancing. Further, a hierarchical work environment does not actively encourage
speaking out on issues outside of product development, with corporate enterprises
often command-driven operations, with power assigned within the hierarchy, and
subordinates may fear the consequences of speaking out.

Engineers are often focused on getting the software to perform correctly to
meet its specification, and so often may not consider the wider societal impacts
of the technology. However, it is in the interest of both corporations and their
employees to consider the bigger picture, and to actively consider ethical issues in
the design process. Otherwise, they could well pay the price for their inaction later
with significant damage to the reputation of the corporation and financial loss.

34 Ethical Software Testing

Software testers are professionals and need to always behave ethically during test-
ing. The ISTQB Code of Ethics for test professionals is based on the IEEE and
ACM code of ethics and it states that

Certified software testers shall act consistently in the public interest.

They act in the best interests of their client and employer.

They ensure that their deliverables meet the highest professional standards.
They maintain independence and integrity in professional judgements.

They shall promote an ethical approach to the management of software testing.
They shall advance the integrity and reputation of the profession.

They shall be supportive of colleagues and cooperate with software developers.
They shall participate in lifelong learning and promote ethics in their profession.

Comprehensive testing reduces the risk of serious quality problems with the soft-
ware, but it is impossible to test everything due to time constraints. This means
that the testers need to focus their testing on the areas of greatest risk with the
software, and on the parts of the system that the users are most likely to be using.
It is essential that the testers have the appropriate expertise, that the right test envi-
ronment is set up, that they have prepared test plans and test specification to test
the software, and that they have all the required tools in place.

Ethical issues may arise during testing if the project is behind schedule, and
when there is pressure applied to the test team to stay with the original project
delivery schedule. It may be that the available time for testing is insufficient to
verify the correctness of the software, or the limited time could lead to testers

56 3 Ethical Software Engineering

missing serious defects. This could lead to the quality of the released software
being compromised, and the test manager needs to resist any pressure that poses
risks to quality and needs to raise concerns at senior level where appropriate.

It is essential that the customer be informed of all quality problems with the
software to ensure that they can manage any associated risks. The final test report
should summarize the testing that has been done, the results of the testing, the
open problems, the problem arrival rate, and known risks with the software. The
final test report generally includes a recommendation from the test manager to
release the software, and such a recommendation should be based on the key facts
with a clear statement that all risks can be managed.

There may be conflicts when the project manager wishes to release the software
on schedule, and where the test manager has concerns or believes that it is unsafe
to do so based on the key testing status and risks. It is essential in such situations
that the decision made is based on the facts and risks, and objective data should
support the decision that is made.

3.5 Review Questions

What is ethical software engineering?

Explain how the Therac-25 disaster occurred.

Explain how the challenger disaster occurred.

What is ethical software design?

What is value-centred design?

What is ethical software testing?

What is ethical project management?

Explain the concept of separatism.

What are the ethical considerations in the development of safety-critical
systems?

SCNCORS IO o

3.6 Summary

Ethical software engineering is concerned with ethical issues that may arise during
software development, such as questions as to how the technology will be used,
and whether it could lead to harm to individuals and society.

Ethics and professional responsibility apply to many areas in software engineer-
ing. There is a need for ethical project management where project managers have
a responsibility for the decisions that they make (or fail to make), and the actions
that they take (or fail to take). Further, they should be aware of regulations and
laws that govern their work.

There is an ethical dimension to the design process, where ethical values need to
be considered as well as the desired functionality. Ethical issues may arise during

Reference 57

testing if the project is behind schedule, and when there is pressure applied to the
test team to stay with the original project delivery schedule.

The space shuttle challenger disaster in the mid-1980s is an important case
study on engineering safety and workplace ethics. The disaster was caused by a
failure in the O-Rings sealing, and the decision-making that led to the launch was
deeply flawed.

The Volkswagen dieselgate emissions scandal involved the German company
deliberately programming a “defeat device” to enable diesel models to pass US
emission tests and concealing its use.

Reference

1. N. Leveson, C. Turner, An investigation of the Therac-25 accidents. Computer (26), 1841
(1993)

l‘)

Check for
updates

Legal and Ethical Responsibilities
of Project Managers

Key Topics

Ethics

Law of tort

Lawsuits

Professional responsibility
Professional negligence
Test outsourcing

Software licenses
Computer crime

Hacking

4.1 Introduction

Ethics is a practical branch of philosophy that deals with moral questions such as
what is right or wrong, and how a person should behave in a given situation in a
complex world. Ethics explore what actions are right or wrong within a specific
context or within a certain society, and seek to find satisfactory answers to moral
questions. The origin of the word “ethics” is from the Greek word 10wdg, which
means habit or custom.

There are various schools of ethics such as the relativist position (as defined
by Protagoras), which argues that each person decides on what is right or wrong
for them; cultural relativism argues that the particular society determines what is
right or wrong based upon its cultural values; deontological ethics (as defined by
Kant) argues that there are moral laws to guide people in deciding what is right or
wrong; and utilitarianism which argues that an action is right if its overall effect
is to produce more happiness than unhappiness in society.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025 59
G. O’Regan, Guide to Software Project Management, Undergraduate Topics in
Computer Science, https://doi.org/10.1007/978-3-031-80578-3_4

4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-80578-3_4&domain=pdf
https://doi.org/10.1007/978-3-031-80578-3_4

60 4 Legal and Ethical Responsibilities of Project Managers

Professional ethics define a code of conduct that governs how members of a
profession deal with each other and with third parties. A professional code of ethics
expresses ideals of human behaviour, and it defines the fundamental principles of
the organization, and is an indication of its professionalism. We discussed the
code of ethics of the ACM, BCS, and IEEE in Chap.2, and violations of the code
by members are taken seriously and are subject to investigations and disciplinary
procedures (see Chap. 2).

Business ethics define the core values of the business, and are used to guide
employee behaviour. Should an employee accept gifts from a supplier to a com-
pany as this could lead to a conflict of interest? A company may face ethical
questions on the use of technology. For example, should the use of a new technol-
ogy be restricted because people can use it for illegal or harmful actions as well
as beneficial ones?

Consider mobile phone technology, which has transformed communication
between people, and thus is highly beneficial to society. What about mobile phones
with cameras? On the one hand, they provide useful functionality in combining a
phone and a camera. On the other hand, they may be employed to take indiscreet
photos without permission of others, which may then be placed on inappropriate
sites. In other words, how can citizens be protected from inappropriate use of such
technology, and how should such technology be regulated?

4.2 Professional Responsibilities of Project Managers

Software projects have a history of being delivered late- or over-budget, and soft-
ware project management is concerned with the effective management of software
projects to ensure the delivery of a high-quality product, on time and on budget,
to the customer.

Project managers are professionals, and they must behave professionally and
ethically during the project. Project management professionals have a responsibil-
ity for the decisions and actions that they make (or fail to make). They should
accept only those assignments for which they have the required competence, and
commitments made should be fulfilled.

Project managers have a duty to show respect to others and to be fair in
decision-making, and they should refrain from participating in decision-making
where there is a potential conflict of interest. Finally, it is the duty of project man-
agers to act in a truthful and honest manner in their communication and conduct,
and not to deceive others.

The project manager is accountable for the success of the project, and endeav-
ours to balance budget, schedule, effort, and quality. This could potentially lead
to ethical dilemmas when the project manager is tempted to cut corners to enable
the project to be delivered on time and on budget. This could potentially result in
quality being compromised, health and safety being compromised, privacy being
compromised, and so on. The code of ethics of the Project Management Institute
is discussed in the next section.

4.2 Professional Responsibilities of Project Managers 61

4.2.1 PMI Code of Ethics for Project Managers

Project managers are professionals, and they must behave professionally and ethi-
cally at all times during the project. The Project Management Institute (PMI) has
defined a code of ethics and professional behaviour for project management, which
defines the expectations of the behaviour of project management professionals.
These core values include

Professional responsibility
Respect
Fairness
Honesty

Project management professionals have a responsibility for the decisions that they
make (or fail to make), and the actions that they take (or fail to take). They should
accept only those assignments for which they have the required competence, and
commitments made should be fulfilled. Errors or omissions should be corrected
promptly, and any proprietary information provided should be protected. Further,
any unethical or illegal conduct should be reported to management, and project
management professions should be aware of regulations and laws that govern their
work.

Project managers have a duty to show respect to others including sensitivity
of behaviour in working with others from different cultural backgrounds. This
involves always behaving professionally, listening to others’ point of view, and
seeking to understand them, and working through conflicts and disagreements with
others.

Project managers have a duty to be fair in decision-making with decisions made
objectively and impartially, and they should refrain from participating in decision-
making where there is a potential conflict of interest. Further, favouritism and
discrimination are not allowed.

Finally, it is the duty of project managers to act in a truthful and honest manner
in their communication and conduct, and not to engage in or condone behaviour
that attempts to deceive others (e.g., making misleading or false statements).

The project manager is accountable for the success of the project, and larger
projects have more opportunities for ethics being compromised than smaller
projects. Project managers endeavour to balance budget, schedule, effort, and qual-
ity, which may potentially lead to ethical dilemmas when the project manager is
tempted to cut corners to enable the project to be delivered on time and on bud-
get. This could potentially result in quality being compromised, health and safety
being compromised, privacy being compromised, and so on.

The selection of a subcontractor could pose a conflict of interest to the project
manager, where the project manager knows one of the candidate subcontractors
from a previous working relationship or family relationships. It is therefore impor-
tant that in such a situation that the project manager excludes herself from the
supplier selection to ensure that there is no conflict of interest.

62 4 Legal and Ethical Responsibilities of Project Managers

Project management involves ethical decision-making, and good project gover-
nance is a good enabler of ethical project management. It enables the key project
stakeholders to be kept informed of the key project status and the key decisions
being made regularly during the project.

4.3 Legal Aspects of Project Management

Legal aspects of software project management are concerned with the application
of the legal system to project management and software projects. It includes intel-
lectual property law covering patents, copyright, trademarks, and trade secrets.
Patents provide legal protection for intellectual ideas, copyright law protects the
expression of an idea, trademarks provide legal protection of names or symbols,
and trade secrets protect commercially sensitive secret information. There are
potential legal impacts on a software development organization should the soft-
ware be inadequately tested, and where the quality of the testing is deemed to be
negligent leading to loss or damage to another party.

Software test tools are generally subject to a license, where a software license
is a legal agreement between the copyright owner and the licensee that governs the
use or distribution of software to the user. The two most common categories of
software licenses that may be granted under copyright law are those for proprietary
software and those for free open-source software.

Electronic commerce includes transactions to place an order, the acknowledge-
ment of the order, the acceptance of the order where a legal contract now exists
between both parties, and order fulfilment. We discuss the legal aspects of bespoke
software development and test outsourcing, where a legal contract is prepared
between the supplier and the customer. This will generally include a statement
of work that stipulates the deliverables to be produced, and it may also include a
service level agreement and an Escrow agreement.

4.3.1 Legal Impacts of Failure

Software license agreements generally provide limited warranties on the quality of
the licensed software, with limited remedies to the customer when the software is
defective. The software vendor typically promises that the software will conform
to the software documentation for a specified period (the warranty period), and the
software warranty generally excludes problems that are not caused by the software
or are beyond the software vendor’s control.

The customers are generally provided with limited remedies in the case of
defective software (e.g., the replacement of the software with a corrected version,
or termination of the user’s right to use the defective software and a partial refund
of the license fee). The payment of compensation for loss or damage is generally
excluded in the software licensing agreement.

4.3 Legal Aspects of Project Management 63

Software licensing agreements are generally accompanied by a comprehensive
disclaimer that protects the software vendor from any liability (however remote)
that might result from the use of the software. It may include statements such as
“the software is provided ‘as is’, and that the customers use the software at their
own risk”.

A limited warranty and disclaimer limits the customer’s rights and remedies if
the licensed software is defective, and so the customer may need to consider how
best to manage the associated risks. However, there are various lawsuits that could
potentially be launched against a software provider and these are discussed in the
next section.

4.3.2 Lawsuits and Professional Negligence

A lawsuit is a proceeding by one party (or several parties) against another party
(or several parties) in a civil court. The basic principles of litigation are where the
plaintiff sues another person(s) (i.e., the defendant) for being negligent, and where
the negligence of the defendant caused injury or damage to the property of the
plaintiff. It involves proving in a court of law that:

The defendant had a duty of care.
The defendant breached this duty of care.
The breach caused harm to the plaintiff or the property of the plaintiff.

The plaintiff is entitled to compensation of the full value of the injury or the dam-
age to the property if the case is successfully proved. Further, if there is clear
evidence that the defendant acted maliciously or fraudulently then punitive dam-
ages may be awarded to the plaintiff to punish the defendant. Punitive damages
are generally awarded in a small percentage of lawsuits, and they may be appealed
to a higher court.

There are several types of lawsuit that may be brought against a software
company (the defendant) which are given in Table 4.1.

4.3.3 Legal Breach of Contact in Outsourcing

The legal agreement between the company and the subcontractor specifies the
terms to be satisfied and the obligations on both parties for the duration of the
contract. These include the deliverables to be produced, the timelines, the responsi-
bilities of both parties, and the financial payments to be made at agreed milestones.
A contract is legally binding on both parties with both having defined obligations
and should one party fail to deliver according to the terms of the agreement then
they may be in breach of the contract.

A material breach is where one party does not fulfil their obligations under
the contract or delivers a significantly different result from that defined in the

64 4 Legal and Ethical Responsibilities of Project Managers

Table 4.1 Types of lawsuits
Type Description

Criminal This type of lawsuit is brought by the state against the software company (or
developers or testers) for committing a criminal act (e.g., tampering with a
computer or loading a virus onto a computer)

Tort This type of lawsuit is brought by an individual(s) against a company/
developers for committing some wrong to you or your computer (e.g., releasing
a virus onto your computer)

Negligence The company has a duty of care to take reasonable measures to make the
product safe to ensure that there are no personal injuries or damage to property

Malpractice This is where the quality of service is judged against a professional standard
and deemed to be negligent, with mistakes made in the delivery of the service
that would not be made by an ordinary professional in the field

Strict A product defect caused a personal injury or damage to property, and the burden

liability of proof required is to demonstrate that the program was defective and that the
defect caused the accident (e.g., the failure of the program controlling the
breaks in an automobile led to an accident)

Fraud The company made a statement of fact to you when it knew that the statement
was false (and where you relied on the statement to make an economic decision
such as buying a defective product)

Regulatory The regulatory sector (e.g., FDA) places requirements on how software should
be developed and tested to ensure that it is safe for the public to use

Breach of A software contract specifies the obligations that both parties have to each other
contract (as well as implied terms such as implied warranty)

contract. An anticipatory breach is where one party has indicated that they will
not be fulfilling their obligations under the contract, and while an actual breach has
not yet occurred there is an intention to be in breach of the contract. Both parties
will generally discuss and attempt to resolve any such breaches, and it is generally
easy to resolve minor breaches. However, if both parties are unable to resolve their
dispute over a material breach in the contract, then one party may decide to sue
the other party for being in breach of contract. However, legal disputes tend to
be expensive and time-consuming, and it is in the best interest of both parties to
come to a resolution of their dispute without the involvement of their lawyers.
The plaintiff will bring the lawsuit to court claiming a material breach in the
contract, and the plaintiff will need to show that there was a legally binding con-
tract between both parties, that the plaintiff fulfilled all of his obligations under
the contract (unless there was a legitimate reason not to), that the defendant failed
to honour the terms of the legal agreement, and that the defendant’s actions led to
loss being suffered by the plaintiff. This is described in more detail in Chap. 10.

4.3 Legal Aspects of Project Management 65

4.3.4 The Law of Tort

The law of tort refers to a civil wrong where one party (the defendant) is held
accountable for their actions (by the plaintiff). There are several actions that
the defendant could be held accountable, e.g., negligence, trespass, misstatement,
product liability, defamation, and so on. For example, the defendant may be
accused of negligence and a breach of his duty of care, where damage that was
reasonably foreseeable was caused by negligence.

The impact of a flaw in the software may be catastrophic (e.g., the failures
of the defective Therac-25 machine led to several fatalities and were discussed
in Chap. 3), and so a software development organization must take all reason-
able precautions to prevent the occurrence of defects (as otherwise it may be
sued for negligence). This is especially true in the safety-critical domain, where
defects could cause major damage or even loss of life. Reasonable precautions
consist of having appropriate software engineering practices in place to allow the
organization to consistently produce high-quality software.

A quality management system indicates that the organization takes software
quality seriously, and has a sound software development process in place that
serves the needs of the organization and its customers. Software quality assurance
includes processes for software inspections and testing, checklists for verifying
quality, milestone and customer reviews, quality audits, and so on.

The organization will require evidence or records to prove that the quality man-
agement system is in place, that it is appropriate for the organization, and that it
is fully operational within the organization. This generally requires records and an
audit trail of the various quality activities to be maintained. The records enable the
organization to prepare a legal defence to show that it took all reasonable steps
in software development, especially if a customer decides to take legal action for
negligence against the software provider following a serious problem with the
software at the customer site.

The presence of records may be used to indicate that all reasonable steps
were taken, and the records typically include lists of all the deliverables in the
project; minutes of project meetings; records of reviews of requirements, design,
and software code; records of test plans, testing, and test results; and so on.

4.3.5 Legal Aspects of Outsourcing

The outsourcing of software development is common in the software engineering
field, and this is where the development or testing (or both) is outsourced to an
independent external organization. Bespoke (or custom) software is software that
is developed for a specific customer or organization, and it needs to satisfy the
defined customer requirements. The organization will need to be rigorous in its
selection of the appropriate supplier, as it is essential that the supplier selected
has the capability of delivering high-quality and reliable software on time and on
budget.

66 4 Legal and Ethical Responsibilities of Project Managers

Fig.4.1 Legal contract. Creative commons

This means that the capability of the supplier is clearly understood and the
associated risks are known prior to selection. The selection is based on objective
criteria such as cost, the approach, the ability of the supplier to deliver the required
solution, the supplier capability, and while cost is an important criterion, it is just
one among several other important factors (Fig. 4.1).

Once the selection of the supplier is finalized a legal agreement is drawn up
between the contractor and supplier, which states the terms and condition of the
contract as well as the statement of work. The statement of work (SOW) details
the work to be carried out, the deliverables to be produced, when they will be
produced, the personnel involved their roles and responsibilities, any training to
be provided, and the standards to be followed. The agreement will need to be
signed by both parties, and may (depending on the type of agreement) include
(Fig. 4.2):

Legal Contract

Statement of Work
Implementation Plan

Training Plan

User Guides and Manuals
Customer Support to be provided
Service Level Agreement

4.3 Legal Aspects of Project Management 67

Escrow Agreement
Warranty Period

A service level agreement (SLA) is an agreement between the customer and service
provider which specifies the service that the customer will receive as well as the
response time to customer issues and problems. It will also detail the penalties
should the service performance fall below the defined levels.

An Escrow agreement is an agreement made between two parties where an
independent trusted third party acts as an intermediary between both parties. The
intermediary receives money from one party and sends it to the other party when
contractual obligations are satisfied. Under an Escrow agreement the trusted third
party may also hold documents and source code.

Occasionally, it will be just the testing part of a project that is outsourced, and
test outsourcing is concerned with the selection and management of an appropriate
supplier to perform the testing. It is essential that the selected test organization is
capable of carrying out the required testing to the defined quality standard, as
well as being capable of completing the testing within the budget and schedule
constraints.

The legal contract specifies the obligations of the supplier, and should the sup-
plier fail to honour its commitments it may well be in breach of contract. This
means that the binding agreement has not been honoured, and there may be a
need to seek legal remedy if a material breach of the contract has occurred. The
first step is dialogue between both parties with the objective of finding a reason-
able resolution, but if both parties are unable to agree a way forward the first party
may seek a legal remedy in a civil court. Software outsourcing is discussed in
more detail in Chap. 10.

4.3.6 Licenses for Tools and Software

The project team (including developers and testers) often employ specialized tools
for various parts of the process, and the project manager needs to ensure that
the tools have appropriate licenses. The tools may be developed in-house, but it is
more common to employ proprietary tools or open-source tools. A software license
is a legal agreement between the copyright owner and the licensee, which governs
the use or distribution of software to the user (licensee). Computer software code
is protected under copyright law in most countries, and a typical software license
grants the user permission to make one or more copies of the software, where the
copyright owner retains exclusive rights to the software under copyright law.

The two most common categories of software licenses that may be granted
under copyright law are those for proprietary software, and those for free open-
source software (FOSS). The rights granted to the licensee are quite different for
each of these categories, where the user has the right to copy, modify, and distribute
(under the same license) software that has been supplied under an open-source

68 4 Legal and Ethical Responsibilities of Project Managers

license, whereas proprietary software typically does not grant these rights to the
user.

The licensing of proprietary software typically gives the owner of a copy of
the software the right to use it (including the rights to make copies for archival
purposes). The software may be accompanied with an end-user license agreement
(EULA) that may place further restrictions on the rights of the user. There may be
restrictions on the ownership of the copies made, and on the number of installa-
tions allowed under the term of the distribution. The ownership of the copy of the
software often remains with the copyright owner, and the end user must accept the
license agreement to use the software.

The most common licensing model is per single user, and the customer may pur-
chase a certain number of licenses over a fixed period. Another model employed
is the license per server model (for a site license), or a license per dongle model,
which allows the owner of the dongle use the software on any computer. A license
may be perpetual (it lasts forever), or it may be for a fixed period of time (typically
1 year).

The software license may include support and maintenance for a period of time
(typically 1 year), and this often includes the provision of updated versions of the
software during the period, as well as technical support. The two parties may sign
a service level agreement (SLA), which stipulates the service that will be provided
by the service provider. The SLA will often include timelines for the resolution of
serious problems, as well as financial penalties that will be applicable where the
customer service performance does not meet the levels defined in the SLA.

Free and open-source licenses are often divided into two categories depending
on the rights to be granted in distribution of the modified software. The first cate-
gory aims to give users unlimited freedom to use, study, and modify the software,
and if the user adheres to the terms of an open-source license such as the Free
Software Foundation (FSF) GNU or General Public License (GPL), the freedom
to distribute the software and any changes made to it. The second category of
open-source licenses gives the user permission to use, study, and modify the soft-
ware, but not the right to distribute it freely under an open-source license (it could
be distributed as part of a proprietary software license).

4.3.7 Privacy and the Law

Individuals may take a lawsuit against another when their privacy is violated such
as when another person pries or stalks them, or publishes a defamatory article
about them. The area of privacy has become very important in the software field
with the rise of data gathering on the Internet. Data collection laws focus on how
data is collected, used, and shared, and data protection includes the right to infor-
mation self-determination. The web is full of privacy policies that specify what
type of personal data will be collected, how it will be processed and used, how it
is shared, and what can be done about it. There are three main areas that impact
upon an individual’s privacy:

4.3 Legal Aspects of Project Management 69

— The Media.
— Surveillance.
— Personal data.

Media laws protect an individual against intrusion, where another party may
be held liable for the invasion of the individual’s privacy (e.g., phone tapping,
snooping, examining a person’s bank account, and so on). The tort of the pub-
lic disclosure of private facts prevents others from widely spreading private facts
such as the individual’s face or identity for their own benefit, and there are slander
and libel laws to protect an individual’s good name and reputation, and to prevent
defamation of character.

There are laws and rights to regulate surveillance with search warrants required
in most countries to search the home of a private individual, as well as the right
to seize personal property. Warrants are generally required to obtain personal elec-
tronic records held by telecommunication companies (e.g., the calls made and
received as well as meta-data such as geo-location data), and warrants may be
required to obtain records held by Internet technology companies (e.g., emails,
websites visited, searches, and other electronic messages).l

Countries vary in their laws for the protection of security and privacy, but many
countries recognize that the security and privacy commitments made by a company
in their policies should be fully implemented. Further, companies should be held
accountable for any security breaches that occur that lead to data security or pri-
vacy being compromised, and the company may be liable for any losses suffered
by individuals as a result of the breach.

Further, people must not be misled about the functionality of a website or
mobile app that places their security or privacy at risk, and users must give their
consent to any changes to the privacy policy that would allow for the collection of
additional personal data, and users must be informed about the extensiveness of
tracking and data collection.

4.3.8 EU GDPR Privacy Law

Europe has been active in the development of data protection regulation, and the
European General Data Protection Regulation (EU GDPR 2016/679) is a compre-
hensive data protection framework that became operational in 2018. Privacy and
data protection are regarded as fundamental human rights in the EU, and GDPR
aims to give individuals control over their personal data. It has had a huge impact
on privacy laws of other countries around the world, and it also protects the trans-
fer of personal data outside of the EU, as it prohibits its transfer to countries that
do not provide an equivalent or adequate data protection framework as GDPR.

! The term “surveillance capitalism” denotes the widespread collection and moneterization of data
captured through monitoring the user’s online behaviour.

70 4 Legal and Ethical Responsibilities of Project Managers

GDPR consists of a data governance framework that attempts to place privacy
on a par with other laws. It creates protections that follow the data, and it places
responsibilities on companies in managing privacy and information. GDPR applies
whenever personal data is processed, and it starts from the presumption that the
processing of the personal data is illegitimate. This means that companies carry
the burden of legitimizing their actions, and they must be able to show that they
have a legitimate basis for processing data. That is, they must be able to show that
they have the consent of the data subject, or that the processing is necessary as a
result of the contract that exists between them and the data subject, or where they
have a legitimate interest, and where the interest of the data controller prevails
over that of the data subject. The company must be able to demonstrate adherence
to the fair information practice.

This means that data must be obtained legitimately and is used in the man-
ner of the purpose for which it was acquired, and there must be openness and
transparency so that individuals will know how their data will be used. There
should be special protections for sensitive data with the ability to opt in for con-
sent (e.g., race, sexual orientation, political beliefs), and there must be standards
for enforcement to ensure compliance with the standards. The Data Privacy Impact
Assessment (DPIA) is mentioned in GDPR, and it is needed if the processing of
personal information is likely to result in a high risk to the rights and freedoms of
individuals. This assessment helps to ensure that companies are complying with
privacy requirements.

The standard for informed consent is very high which means that it is freely
given and informed. GDPR also gives very strong data subject rights, including
the right to access data, data portability, the right to rectify data, the right to erase
data, the right to object to processing, and the right to restrict processing. These
provide solid rights for the data subjects to exercise control over their personal
data.

Other laws that have become important include the EU Digital Services Act
(DSA), which protects digital space against illegal content as well as protecting
fundamental rights of users. For more detailed information on legal and ethical
aspects of computing see Ref. [1].

4.4 Review Questions

1. What is intellectual property law?

2. Describe the behaviours of the ethical project manager.

3. How can a software company demonstrate that it took all reasonable
steps to deliver a high-quality software product, and that the testing was
fit for purpose?

4. Explain the different types of software licensing.

4.5 Summary 71

5. Explain the legal aspects of bespoke software development.

What happens when one party in an outsourcing project believes that a
material breach of the contract has occurred?

What types of lawsuits could be brought against a software company?
Explain the difference between ethical and malicious hackers.

What is computer crime?

Explain the importance of ethics in project management.

Describe the PMI code of ethics and professional behaviour.

N

_.
i SIS

—_

4.5 Summary

Business ethics is concerned with ethical principles and moral problems that arise
in a business environment. They refer to the core principles and values of the orga-
nization, and apply throughout the organization. They guide individual employees
in carrying out their roles, and ethical issues include the rights and duties between
a company and its employees, customers and suppliers.

Project managers are professionals and need to behave professionally and
ethically at all times during the project. The Project Management Institute has
defined a code of ethics and professional behaviour for project management, which
defines the expectations of the behaviour of project management professionals. The
core values for the ethical conduct for project management professionals include
responsibility, respect, fairness, and honesty.

Legal aspects of software project management are concerned with the appli-
cation of the legal system to the project management and computing fields. It
includes intellectual property law including patents, copyright, trademarks, and
trade secrets; bespoke software development; test outsourcing; licensing of soft-
ware; professional negligence in the development and testing of software; and
computer crime.

A lawsuit is a proceeding by a party against another party in a civil court
where the plaintiff sues another person for being negligent, and the negligence of
the defendant caused injury or damage to the property of the plaintiff.

Bespoke software (or custom software) is software that is developed for a spe-
cific customer or organization, and needs to satisfy specific customer requirements.
The legal contract specifies the obligations of the supplier, and should the supplier
fail to honour its commitments it may well be in breach of contract. This may
result in the first party seeking a legal remedy in a civil court.

A software license is a legal agreement between the copyright owner and the
licensee, which governs the use or distribution of software to the user (licensee).
Computer software code is protected under copyright law, and the license grants
the user permission to make one or more copies of the software. Software license
agreements generally provide limited remedies to the customer when the software
is defective. However, there may be legal implications if the software has been
inadequately developed and tested.

72 4 Legal and Ethical Responsibilities of Project Managers

Reference

1. G. O’ Regan, Ethical and Legal Aspects of Computing, (Springer, 2024)

l‘)

Check for
updates

Overview of Software Project
Management

Key Topics

Business case

Estimation

Scheduling

Risk management

Project board and project governance
People management

Project reports

Project metrics

Remote project management
Outsourcing

Quality management

Prince 2

PMP and PMBOK

5.1 Introduction

Software projects have a history of being delivered late- or over-budget, and soft-
ware project management is concerned with the effective management of software
projects to ensure the successful delivery of a high-quality product, on time and
on budget, to the customer. A project is a temporary group activity designed to
accomplish a specific goal such as the delivery of a product to a customer. It has a
clearly defined beginning and end in time.

Project management involves good project planning and estimation, the man-
agement of resources, the management of issues and change requests that arise
during the project, managing quality, managing risks, managing the budget,

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025 73
G. O’Regan, Guide to Software Project Management, Undergraduate Topics in
Computer Science, https://doi.org/10.1007/978-3-031-80578-3_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-80578-3_5&domain=pdf
https://doi.org/10.1007/978-3-031-80578-3_5

74 5 Overview of Software Project Management

monitoring progress, taking appropriate action when progress deviates from expec-
tations, communicating progress to the various stakeholders, and delivering a
high-quality product to the customer. It involves

— Defining the business case for the project.

— Defining the scope of the project and what it is to achieve.

— Estimation of the cost, effort, and schedule.

— Determining the start and end dates for the project.

— Determining the resources required.

— Assigning resources to the various tasks and activities.

— Determining the project lifecycle and phases of the project.

— Staffing the project.

— Preparing the project plan.

— Scheduling the various tasks and activities.

— Preparing the initial project schedule and key milestones.

— Obtaining approval for the project plan and schedule.

— Identifying and managing risks.

— Monitoring progress, budget, schedule, effort, risks, issues, change requests,
and quality.

— Taking corrective action.

— Re-planning and rescheduling.

— Preparing project status reports and presentations.

— Communicating progress to affected stakeholders.

The scope of the project needs to be determined, and the estimated effort for the
various tasks and activities established. The project plan and schedule will then be
developed and approved by the stakeholders, and these are maintained during the
project. The project plan will contain or reference several other plans such as the
project quality plan, the communication plan, the configuration management plan,
and the test plan.

Project estimation and scheduling are difficult as software projects are often
breaking new ground and differ from previous projects. That is, historical estimates
may often not be a good basis for estimation for the current project. Often, unan-
ticipated problems may arise for technically advanced projects, and the estimates
may be overly optimistic.

Gantt charts are generally employed for project scheduling, and these show the
work breakdown for the project as well as task dependencies and allocation of
staff to the various tasks.!

! The American mechanical engineer and management consultant, Henry Gannt, developed Gantt
charts in the early twentieth century.

5.2 Project Start-Up and Initiation 75

The effective management of risk during a project is essential to project success.
Risks arise due to uncertainty and the risk management cycle involves? risk iden-
tification, risk analysis and evaluation, identifying responses to risks, selecting and
planning a response to the risk, and risk monitoring.

Once the risks have been identified they are logged (e.g., in the Risk Log or
a risk repository tool). The likelihood of each risk arising and its impact is then
determined. The risk is assigned an owner and an appropriate response to the risk
determined.

Once the planning is complete the project execution commences, and the
focus moves to monitoring progress, managing risks and issues, re-planning as
appropriate, providing regular progress reports to the project board, and so on.

Two popular project management methodologies are the Prince 2 methodology,
which was developed in the U.K., and Project Management Professional (PMP)
developed by the Project Management Institute (PMI) in the United States. PMP
has an associated project management body of knowledge (PMBOK).

5.2 Project Start-Up and Initiation

There are many ways in which a project may arise, but it is always essential that
there is a clear rationale for the project. A telecom company may wish to develop a
new version of its software with attractive features to gain market share. An inter-
nal IT department may receive a request from its business users to alter its business
software to satisfy new legal or regulatory requirements. A software development
company may be contacted by a business to develop a bespoke solution to meet
its needs, and so on.

All parties must be clear on what the project is to achieve, and how it will be
achieved. It is fundamental that there is a business case for the project (this is the
reason for the project), as it clearly does not make sense for the organization to
spend a large amount of money without a sound rationale for the project. In other
words, the project must make business sense (e.g., it may have a financial return
on the investment or it may be to satisfy some business or regulatory requirement).

At the project start-up the initial scope and costing for the project are estimated,
and the feasibility of the project is determined.’ The project is authorized,* and
a project board is set up for project governance. The project board verifies that
there is a sound business case for the project, and a project manager is appointed
to manage the project.

2 These are the risk management activities in the Prince2 methodology.

3 This refers to whether the project is technically and financially feasible.

4 Organizations have limited resources, and as many projects may be proposed it will not be pos-
sible to authorize every project, and so several projects with weak business cases may be rejected.

76 5 Overview of Software Project Management

The project board (or steering group) includes the key stakeholders and is
accountable for the success of the project. The project manager provides regu-
lar status reports to the project board during the project, and the project board is
consulted when key project decisions need to be made.

The project manager is responsible for the day-to-day management of the
project, and good planning is essential to its success. The approach to the project
is decided,’ and the project manager kicks off the project and mobilizes the project
team. The detailed requirements and estimates for the project are determined, the
schedule of activities and tasks established, and resources are assigned for the var-
ious tasks and activities.® The project manager prepares the project plan, which is
subject to the approval of the key stakeholders. The initial risks are identified and
managed, and a risk log (or repository) is set up for the project. Once the planning
is complete project execution commences.

53 Estimation

Estimation is an important part of project management, and the accurate estimates
of effort, cost, and schedule are essential to delivering a project on time, on budget,
and with the right quality.” Estimation is employed in the planning process to
determine the effort and resources required, and it feeds into the scheduling of the
project. The problems with over- or under-estimation of projects are well known,
and good estimates allow

Accurate calculation of the project cost and its feasibility.
Accurate scheduling of the project.

Determining the resources required for the project.
Measurement of progress and costs against the estimates.

Poor estimation leads to

— Projects being over- or under-estimated.
— Projects being over- or under-resourced (impacting staff morale).
— Negative impression of the project manager.

Consequently, estimation needs to be rigorous, and there are several well-known
estimation techniques available (e.g., work breakdown structures, function points,
and so on). Estimation applies to both the early and later parts of the project, with

5 For example, it may be decided to outsource the development to a third-party provider, purchase
an off-the-shelf solution, or develop the solution internally.

6 The project scheduling is usually done with the Microsoft Project tool.

7 The consequences of underestimating a project include the project being delivered late, with the
project team working late nights and weekends to recover the schedule, quality being compromised
with steps in the process omitted, and so on.

5.3 Estimation 77

the later phases of the project refining the initial estimates, as a more detailed
understanding of the project activities is then available. The new estimates are
used to reschedule and to predict the eventual effort, delivery date, and cost of the
project. The following are guidelines for estimation:

— Sufficient time needs to be allowed to do estimation.

— Estimates are produced for each phase of software development.

— The initial estimates are high level.

— The estimates for the next phase should be solid whereas estimates for the later
phases may be high level.

— The estimates should be conservative rather than optimistic.

— Estimates will usually include contingency.

— Estimates should be reviewed to ensure their adequacy.

— Estimates from independent experts may be useful.

— It may be useful to prepare estimates using various methods and to compare.

Project metrics are often employed to measure the accuracy of the estimates, and
these are reported regularly during the project. They include

— Effort estimation accuracy.
— Budget estimation accuracy.
— Schedule estimation accuracy.

Next, we discuss several estimation techniques including the work breakdown
structure, the analogy method, and the Delphi method.

5.3.1 Estimation Techniques

Estimates need to be produced consistently, and it would be inappropriate to have
an estimation procedure such as “Go ask Fred”,? as this clearly relies on an indi-
vidual and is not a repeatable process. There are several approaches to project
estimation which are given in Table 5.1.

5.3.2 Work Breakdown Structure

This is a popular approach to project estimation (it is also known as decomposition)
and involves the following:

— Identify the project deliverables to be produced during the project.
— Estimate the size of each deliverable (in pages or LOC).

8 Unless “Go Ask Fred” is the name of the estimation methodology, or the estimation tool
employed.

78

5 Overview of Software Project Management

Table 5.1 Estimation techniques

Technique

Work
breakdown
structure

Analogy
method

Expert
judgement

Delphi
method

Planning
poker

Function
points

Cost
predictor
models

Description

Identify the project deliverables to be produced during the project. Estimate the
size of each deliverable (in pages or LOC). Estimate the effort (number of days)
required to complete the deliverable based on its size and complexity. Estimate

the cost of the completed deliverable

This involves comparing the project to a previously completed project (that is
like the proposed project). The historical data and metrics for schedule, effort,
and budget estimation accuracy are considered, as well as similarities and
differences between the projects to provide effort, schedule, and budget
estimates

This involves consultation with experienced personnel to derive the estimate.
The expert(s) can factor in differences between past project experiences,
knowledge of existing systems as well as the specific requirements of the
project

The Delphi Method is a consensus method used to produce accurate schedules
and estimates. It was developed by the Rand Corporation and improved by
Barry Boehm. It uses experts independent of the project manager or third-party
supplier

This is a popular consensus-based estimation technique that is used in Agile,
and it is used to estimate the effort required to implement a user story

Function Points were developed by Allan Albrecht at IBM in the late 1970s.
Each functional requirement is analysed and assigned a number of function
points (based on its size and complexity). This total number of function points
is a measure of the estimate for the project

These include various cost prediction models such as Cocomo and Slim. The
Costar tool supports Cocomo, and the Qsm tool supports Slim

— Estimate the effort (number of days) required to complete the deliverable based
on its complexity and size, and experience of team.

— Estimate the cost of the completed deliverable.

— The estimate for the project is the sum of the individual estimates.

The approach often uses productivity data that is available from previously com-
pleted projects. The effort required for a complex deliverable is higher than that
of a simple deliverable (where both are of the same size). The project planning
section in the project plan (or a separate estimation plan) will include the lifecycle
phases, and the deliverables/tasks to be carried out in each phase. It may include
a table similar to Table 6.5 for traditional projects.

5.4 Project Planning and Scheduling 79

5.4 Project Planning and Scheduling

A well-managed project has an increased chance of success, and good planning
is an essential part of project management. The project manager and the relevant
stakeholders will consider the appropriate approach for the project and determine
whether a solution should be purchased off the shelf, whether to outsource the
software development to a third party supplier, or whether to develop the solution
internally. A simple process map for project planning is presented in Fig. 6.1.

Estimation is a key part of project planning, and the effort estimates are used for
scheduling of the tasks and activities in a project-scheduling tool such as Microsoft
Project (Fig. 5.1).

The schedule will detail the phases (or sprints in Agile) of the project, the key
project milestones, the activities and tasks to be performed in each phase as well
as their associated timescales, and the resources required to carry out each task.
The project manager will update the project schedule regularly during the project.

Projects vary in size and complexity and the formality of the software devel-
opment process employed needs to reflect this. The project plan defines how the
project will be carried out, and it generally includes sections such as

— Business case.
— Project scope.

Fig.5.1 Sample Microsoft project schedule

80 5 Overview of Software Project Management

— Project goals and objectives.

— Key milestones.

— Project planning and estimates.
— Key stakeholders.

— Project team and responsibilities.
— Knowledge and skills required.
— Communication planning.

— Financial planning.

— Quality and test planning.

— Configuration management.

Communication planning describes how communication will be carried out during
the project, and it includes the various project meetings and reports that will be
produced; financial planning is concerned with budget planning for the project;
quality and test planning is concerned with the planning required to ensure that a
high-quality product is delivered; and configuration management is concerned with
identifying the configuration items to be controlled, and systematically controlling
changes to them throughout the lifecycle. It ensures that all deliverables are kept
consistent following approved changes (see Chap. 12).

The project plan is a key project document, and it needs to be approved by all
stakeholders. The project manager needs to ensure that the project plan, schedule,
and technical work products are kept consistent with the requirements. Another
words, if there are changes to the requirements then the project plan and schedule
as well as all other affected deliverables need to be updated accordingly.

Checklists are useful in verifying that the tasks have been completed. The sam-
ple project management checklist given in Table 5.2 is a way to verify that project
planning is being appropriately performed and that project controls are in place.

55 Risk Management

Risks arise due to uncertainty, and risk management is concerned with managing
uncertainty, and especially the management of any undesired events. Risks need
to be identified, analysed, and controlled in order for the project to be successful,
and risk management activities take place throughout the project lifecycle.

Once the initial set of risks to the project have been identified, they are analysed
to determine their likelihood of occurrence and their impact (e.g., on cost, schedule,
or quality). These two parameters determine the risk category, and the most serious
risk category refers to a risk with a high probability of occurrence and a high
impact on occurrence.

Countermeasures are defined to reduce the likelihood of occurrence and impact
of the risks, and contingency plans are prepared to deal with the situation of the
risk actually occurring. Additional risks may arise during the project, and the
project manager needs to be proactive in their identification and management.

5.6 People Management in Projects 81

Table 5.2 Sample project management checklist

No. Item to check

Is the project plan complete and approved by the stakeholders?
Does the project have a sound business case?

Are the Risk Log, Issue Log, and Lessons Learned Log set up?
Are estimates available for the project? Are they realistic?

Is the project appropriately resourced?

Is the Microsoft Schedule available for the project?

Is the project schedule up to date?

Has quality planning been completed for the project?

O 00 N N L A W N =

Has project communication been appropriately planned?

—
(=)

Has the change control mechanism been set up for the project?

—
—

Are all project deliverables under configuration management control?

—
[\S)

Are the responses to the risks and issues appropriate?

—
(O8]

Is the project directory set up for the project?

—_
~

Are the key milestones defined in the project plan?

Risks need to be reviewed regularly especially following changes to the project.
These could be changes to the business case or the business requirements, loss of
key personnel, and so on. Events that occur may affect existing risks (including
the probability of their occurrence and their impact) and may lead to new risks.
Countermeasures need to be kept up to date during the project. Risks are reported
regularly throughout the project.

The project manager will maintain a risk repository (this may be a tool or a risk
log) to record details of each risk, including its type and description, its likelihood
and its impact (yielding the risk category), as well as the response to the risk.

The risk management cycle is concerned with identifying and managing risks
throughout the project lifecycle. It involves identifying risks, determining their
probability of occurrence and impact should they occur, identifying responses
to the risks, and monitoring and reporting. The risk management activities are
discussed in more detail in Chap. 7.

5.6 People Management in Projects

People management is an integral part of project management, and the success
of a project is dependent on a functioning high-performance team. Good people
management results in the best performance from the team, where team members
deliver high-quality work throughout the project. This means that the project man-
ager needs to be a strong people manager, as well as being a competent project
management professional.

82 5 Overview of Software Project Management

The project manager is responsible for inspiring and motivating the project
team, and the team may be in the same physical location or operate remotely.
Often project teams today (in the post-COVID world) consist of hybrid and remote
teams, rather than being in the same physical location. It is essential that team
building activities take place and that team members are given orientation on the
overall purpose of the project, and their role and responsibilities. Team orientation
is straightforward where team members are in the same physical location, as social
team building activities may take place to bring the team into a cohesive unit.
However, it is more difficult to build the same supportive team culture for remote
or hybrid teams.

It takes time for the project team to perform as a team and the project manager
needs to devote time to getting to know each team member, understanding them
and their skill set, planning improvements to their skill set, explaining their role
and responsibilities in the project, as well as getting commitment from the team
member. Good people management skills help in building a good rapport with all
team members and in having a positive work environment with committed team
members working in harmony together to complete the project activities. A good
work environment helps in improving productivity, as team members are working
in harmony together to achieve the project goals. The project team development
phases often include

Forming
Storming
Norming
Performing

The project manager needs to be active in motivating team members and address-
ing natural drops in project commitment levels that may arise during the project.
It is essential that team members feel a part of the project and that they feel that
their contribution is important and recognized, as this will help in maintaining their
commitment to the project. Conflicts may arise between team members during a
project, and the project manager needs to play a role in resolving such situations.
The project manager needs to manage people issues such as

e Communication issues
e C(Clash of personalities

e Unrealistic expectations
e Workplace culture

The project manager must be proactive in monitoring completion of the deliver-
ables of team members, ensuring that the project is kept on schedule, and giving
feedback on performance to team members.

5.7 Quality Management in Projects 83

5.7 Quality Management in Projects

There are various definitions of “quality” such as Juran’s definition that qual-
ity is “fitness for purpose”, and Crosby definition of quality as “conformance to
the requirements”. The Crosby definition is useful when asking whether we are
building it right as in requirements verification, whereas the Juran definition is
useful when asking whether we are building the right system as in requirements
validation.

It is a fundamental premise in the quality field that it is more cost-effective to
build quality into the product, rather than adding it later during the testing phase.
Therefore, quality needs to be considered at every step during the project, and
each deliverable needs to be reviewed to ensure its fitness for purpose. The review
may be like a software inspection, a structured walkthrough, or another appropriate
methodology.

The project plan will include a section on quality planning for the project (this
may be a reference to a separate plan). The quality plan will define how the project
plans to deliver a high-quality project, as well as the quality controls and quality
assurance activities that will take place during project execution. The quality plan-
ning for the project needs to ensure that the customer’s quality expectations will
be achieved.

The project manager has overall responsibility for project quality, and the qual-
ity department (if one exists) will assign a quality engineer to the project, and the
quality engineer will promote quality and its importance to the project team, as
well as facilitating quality improvement. The project manager needs to ensure that
sound software engineering processes are employed, as well as ensuring that the
defined standards and templates are followed.

It is an accepted principle in the quality field that good processes and confor-
mance to them is essential for the delivery of a high-quality product. The quality
engineer (where one exists) will conduct process audits to ensure that the pro-
cesses and standards are followed consistently during the project. An audit report
is published, and any audit actions are tracked to closure.

Software testing is conducted to verify that the software correctly implements
the requirements, and a separate project test plan will define the various types
of testing to be performed during the project. These will typically include unit,
integration, system, performance, and acceptance testing, and the results from
the various test activities enable the fitness for purpose of the software to be
determined, as well as judging whether it is ready to be released or not.

The project manager will report the various project metrics (including the qual-
ity metrics) in the regular project status reports, and the quality metrics provide an
objective indication of the quality of the product at that moment in time.

The cost of poor quality may be determined at the end of the project, and this
may require a time recording system for the various project activities. The effort
involved in detecting and correcting defects may be recorded, and a COPQ chart
as shown in Fig. 14.31 may be presented.

84 5 Overview of Software Project Management

Poor quality may arise with the software due to several factors. For example,
it may be due to inadequate reviews or testing of the software. It could be due to
inadequate skills or experience of the project team, or poorly defined or understood
requirements.

The project manager will conduct a lessons-learned meeting at the end of the
project to identify and record all the lessons learned from the project. These may
be published as a lessons-learned report and shared with relevant stakeholders as
part of continuous improvement. Quality management for projects is discussed in
more detail in Chap. 8.

5.8 Project Monitoring and Control

Project monitoring and control is concerned with monitoring project execution and
taking corrective action when project performance deviates from expectations. The
progress of the project is monitored against the plan, and corrective actions taken
as appropriate. The key project parameters such as budget, effort, and schedule as
well as risks and issues are monitored, and the status of the project communicated
regularly to the affected stakeholders.

The project manager will conduct progress and milestone reviews to determine
the actual progress, with new issues identified and monitored. The appropriate
corrective actions are identified and are tracked to closure. Project monitoring and
control involves

— Monitor the project plan/schedule.

— Monitor the key project parameters.

— Conduct progress/milestone reviews.

— Re-plan as appropriate.

— Monitor risks/take appropriate action.

— Analyse issues and change requests/take appropriate action.
— Track corrective action to closure.

— Monitor resources and manage.

— Report the project status to management and project board.

The project manager will monitor progress, risks, and issues during the project,
and take appropriate corrective action. The status of the project will be reported in
the regular status reports sent to management and the project board, with the status
reviewed regularly with management during the project. A sample process map for
project monitoring and control is presented in Fig. 9.2, and project management
and control is discussed in more detail in Chap. 9.

5.10 Remote Project Management 85

Table 5.3 Activities in managing issues and change requests
Activity Description of issue/change request

Log issue or The project manager logs the issue or change request. It is assigned a unique
change request reference number and priority (severity) and categorized into an issue
(problem) or change request

Assess impact This involves analysis to determine the impacts such as technical, cost,
schedule, and quality. The risks need to be identified

Decision on A decision is made on how to deal with the issue or change request. The
implementation CCB is often involved in the decision to authorize a change request
Implement The affected project documents and software modules are identified and
solution modified accordingly

Verify solution Testing (unit, system, and UAT) is employed to verify the correctness of the
solution

Close issue/CR The issue or change request is closed

5.9 Managing Issues and Change Requests

The management of issues and change requests is an important part of project
management. An issue can arise at any time during the project (e.g., a supplier to
the project may go out of business, an employee may resign, specialized hardware
for testing may not arrive in time, and so on), and an issue refers to a problem
that has occurred which may have a negative impact on the project. The severity
of the issue is an indication of its impact on the project, and the project manager
needs to manage it appropriately.

A change request is a stakeholder request for a change to the scope of the
project, and it may arise at any time during the project. The impacts of the change
request (e.g., technical, cost, and schedule) need to be carefully considered, as a
change introduces new risks to the project that may adversely affect cost, schedule,
and quality. It is therefore essential to fully understand the impacts to make an
informed decision on whether to authorize or reject the change request. The project
manager may directly approve small change requests, with the impacts of a larger
change request considered by the project change control board (CCB).

The activities involved in managing issues and change requests are summarized
in Table 5.3.

5.10 Remote Project Management

Remote project management is concerned with managing remote and hybrid teams
to ensure that the project objectives are achieved. Traditional project management
involves teams based in the same physical location, whereas often today teams
may operate in hybrid mode with some employees working in the office and other
employees and teams working remotely in different physical locations (possibly in
other parts of the world). This means that today remote employees play important

86 5 Overview of Software Project Management

roles in the success of projects, and remote project management has become more
important in managing hybrid and remote teams. A hybrid team is a flexible work
structure with some employees working remotely and others working from the
office.

The management of remote teams requires modern communication including
video conferencing, shared files, and documents, as well as effective team com-
munication and messaging apps. It is more challenging to build a team culture
with remote teams, and so while creating the hybrid team is the easy part, the
building of a cohesive and effective team is more difficult. This is since it is much
harder to build up a team bond and trust among team members who are not in
the same physical location. The project manager will stay engaged with the team
throughout the project with virtual meetings, and remote project management is
like traditional project management except that the project is executed remotely. It
is a flexible methodology that can support various approaches such as traditional
software engineering and Agile.

The first step in assembling a remote team is to determine the remote structure
that is required, and then to find the people with the appropriate technical and
soft skills that are required to carry out the project. The project manager needs to
communicate clear expectations to the team members at project initiation, includ-
ing the process to be followed, work hours, project goals, their responsibilities,
the tools that will be employed for collaboration, and so on. The project manager
will keep the team engaged through regular virtual team meetings, and the team
members will check in daily with the project manager to advise on progress made,
and this could take the form of a virtual stand-up meeting.

5.11 Outsourcing

Outsourcing is a common business practice where a company contracts out busi-
ness functions such as manufacturing, software development, and call centres to
third-party providers. The outsourcing of a business function to a distant coun-
try is termed offshoring, whereas outsourcing may also be done domestically, and
nearshoring is where the outsourcing is to a nearby country. The main benefits of
outsourcing include

— Cost savings due to reduction in business expenses.

— Availability of expertise not available in-house.

— Additional skilled personnel to supplement in-house staff.
— Allows company to focus on core business activities.

— Makes business more flexible.

— Increased efficiencies.

Outsourcing involves handing control of various business functions over to a third
party, and this leads to business risks such as the quality of the service may be
below expectations, or the third party may go out of business, or that there may

87

be risks to confidentiality and security. There are several disadvantages associated
with outsourcing such as

Managing the day-to-day relationship with offshore team.
— Differences in times zones.

Risks to quality, confidentiality, and security.

Differences in culture and language.

Many large projects involve total or partial outsourcing of the software develop-
ment, and it is therefore essential to select a supplier that can deliver high-quality
and reliable software on time and on budget. We discuss the selection and
management of a supplier in more detail in Chap. 10.

5.12 Project Board and Governance

The project board® (or steering group) is responsible for directing the project,
and it is directly accountable for the success of the project. It consists of senior
managers and staff in the organization who have the authority to make resources
available, to remove roadblocks, and to get things done (Fig. 5.2).

It is consulted whenever key project decisions need to be made, and it plays
a key role in project governance.'” The project board ensures that there is a
clear business case for the project, and that the capital funding for the project
is adequate and well spent. The project board may cancel the project at any stage
during project execution should there cease to be a business case, or should project
spending exceed tolerance and go out of control.!!

The project manager reports to the project board and sends regular status reports
to highlight progress made as well as key project risks and issues. The project
board meets at an appropriate frequency during the project (with extra sessions
held should serious project issues arise).

There are several roles on the project board (an individual may perform more
than one role). The responsibilities of the project board members are given in
Table 5.4.

® The project board in the Prince 2 methodology includes roles such as the project executive,
senior supplier, senior user, project assurance, and the project manager. These roles have distinct
responsibilities.

10 Another words, the right decisions are made by the right people with the right information.

I The project plan will usually specify a tolerance level for schedule and spending, where the
project may spend (perhaps less than 10%) more than the allocated capital for the project before
seeking authorization for further capital funding for the project.

88 5 Overview of Software Project Management

Fig.5.2 Prince 2 project board

Table 5.4 Project board roles and responsibilities

Role Responsibility

Project director Ultimately responsible for the project. Provides overall guidance to the
project

Senior customer ~ Represents the interests of users

Senior supplier Represents the resources responsible for implementation of project (e.g., IS
manager)

Project manager Link between project board and project team

Project assurance Internal role (optional) that provides an independent (of project manager)
objective view of the project

Safety (optional) Ensure adherence to health and safety standards

5.13 Project Reporting

The frequency of project reporting is defined in the project plan (or the communi-
cations plan). The project report advises management and the key stakeholders of
the current status of the project, and includes key project information such as

— Completed deliverables (during period)
— New risks and issues

5.14 Project Closure 89

Schedule, effort, and budget status (e.g., RAG metricslz)
Quality and test status

Key risks and issues

Milestone status

— Deliverables planned (next period)

The project manager discusses the project report with management and the project
board and presents the status of the project as well as the key risks and issues.
The project manager will present a recovery plan (exception report) to deal with
the situation where the project has fallen significantly outside the defined project
tolerance (i.e., it is significantly behind schedule or over-budget).

The key risks and issues will be discussed, and the project manager will explain
how the key issues are being dealt with, and how the key risks will be managed.
The new risks and issues will also be discussed, and the project board will care-
fully consider how the project manager plans to deal with these and will provide
appropriate support.

The project board will carefully consider the status of the project as well as
the input from the project manager before deciding on the appropriate course of
action (which could include the immediate termination of the project if there is no
longer a business case for it).

5.14 Project Closure

A project is a temporary activity, and once the project goals have been achieved
and the product handed over to the customer and support group, it is ready to
be closed. The project manager will prepare an end of project report detailing the
extent to which the project achieved its targeted objectives. The report will include
a summary of key project metrics including key quality metrics and the budget and
timeliness metrics.

The success of the project is judged on the extent to which the defined objec-
tives have been achieved, and on the extent to which the project has delivered
the agreed functionality on schedule, on budget and with the right quality. This is
often referred to as the project management triangle (Fig. 5.3).

The project manager presents the end project report to the project board, includ-
ing any factors (e.g., change requests) that may have affected the timely delivery
of the project or the allocated budget. The project is then officially closed.

The project manager then schedules a meeting with the team which reviews
the lessons learned from the project. The key lessons learned are summarized
in the lessons-learned report. Any actions identified are assigned to individuals
and followed through to closure, and the lessons-learned report is made available

12 Often, a colour coding mechanism is employed with a red flag indicating a serious issue, amber
highlighting a potentially serious issue, and green indicating that everything is ok.

90 5 Overview of Software Project Management

Fig.5.3 Project
management triangle

to other projects (with the goal of learning from experience). The project team
is disbanded, and the project team members are assigned to other duties. The
activities involved in closing the project are discussed in more detail in Chap. 11.

5.15 Prince 2 Methodology

Prince 2 (projects in controlled environments) is a popular project management
methodology that is widely used in the U.K., Australia, and Europe. It is a struc-
tured, process-driven approach to project management, with processes for project
start-up, initiating a project, controlling a stage, managing stage boundaries, clos-
ing a project, managing product delivery, planning, and directing a project. It has
procedures to coordinate people and activities in a project, as well as procedures
to monitor and control project activities (Fig. 5.4).

These key processes are summarized in Table 5.5. Prince 2 has supported Agile
since 2015, and more detailed information on Prince 2 is in Ref. [1].

5.16 Project Manager Professional

Project manager professional (PMP) is an internationally recognized project man-
agement qualification offered by the Project Management Institute (PMI), and it
is popular in the United States, Canada, and the Middle East. It involves an exam
based on PMI’s project management body of knowledge (PMBOK).

The project management body of knowledge is a body of knowledge for project
management, and the PMBOK guide is a subset of the project management body
of knowledge. It was first published by the PMI in the US in 1996, and its sixth
edition provides support for Agile [2].

5.16 Project Manager Professional 91

Fig.5.4 Prince 2 processes

Table 5.5 Key processes in Prince 2

Process

Start-up

Initiating

Controlling a
stage
Managing
stage
boundary
Closing a
project
Managing
product
delivery

Planning

Directing a
project

Description

Project manager and project board appointed, project approach, and project
brief defined

Project and quality plan complete, business case and risks refined, project files
set-up, and project authorized

Stage plan prepared, quality and risks/issues managed, progress reviewed and
reported

Stage status reviewed and next stage planned, actual products produced versus
original stage plan compared, stage or exception report produced

Orderly closure of project with project board, end project report, and lessons
learned report

Covers product (deliverable) creation by the team or a third-party supplier.
Ensure that the planned deliverables meet quality criteria

Prince 2 employs product-based planning that involves identifying the products
(deliverables) required, and the activities and resources to provide them

The project board consists of senior management, and it controls the project. It
has the authority to authorize and define what is required from the project,
commitment of resources and funds, and management direction

92

5 Overview of Software Project Management

Table 5.6 PMBOK process groups
Process
Initiating

Planning

Description

Define a new project and obtain authorization to start the project

This involves establishing the scope of the project and defining the

plan to achieve the project’s objectives

Executing

Monitoring and Control

This involves executing the activities defined in the project plan

This involves tracking progress and performance of the project and

taking corrective action where appropriate

Closing a project

These processes perform an orderly closure of the project

It is process based with the work performed as processes, and it provides guide-
lines for managing projects, as well as describing the project management lifecycle
and its related processes. PMP has five groups of processes, and these are given

in Table 5.6.

PMBOK has ten knowledge areas on project management, and these are

described in Table 5.7.

Table 5.7 PMBOK knowledge areas

Knowledge area

Project integration Management
Project scope Management
Project schedule Management

Project cost management

Project quality management

Project resource management

Project communications management

Project risk management
Project procurement management

Project stakeholder management

Description

The processes to identify and coordinate the various
processes and project management activities

The processes to ensure that the project includes all the
work required to complete the project (and only that)

The processes to manage the timely completion of the
project
The processes involved in planning, estimating,

budgeting, and controlling costs so that the project can
be completed within the approved budget

The processes and activities of the organization that
determine the quality policies, objectives, and
responsibilities so that the project satisfies the quality
expectations

The processes to organize, manage, and lead the
project team

The processes involved in determining the information
needs of those involved in the project and fulfilling
them

The processes involved in analysing, response
planning, and controlling risk in a project

The processes concerned with the purchase of products
or services external to the project team

This involves identifying all stakeholders affected by
the project and analysing/managing their expectations

5.18 Programme Management 93

Table 5.8 Functions of project management office
Function Description

Project This is a project oversight function to ensure that the right decisions are made
Governance by the right people, based on the right information

Transparency This ensures that all relevant information that is required for decision-making
is available and accurate

Reusability The PMO will maintain a repository of best practice from previous successful
projects such as lessons learned and a collection of templates to allow project
management tasks to be consistently performed

Delivery The PMO provides support to the projects during project delivery by
support streamlining projects, and offering training, mentoring, and quality assurance

Traceability This involves managing documentation, project history, and organization
knowledge

5.17 Project Management Office

A project management office (PMO) is a group or department in an organization
that defines and maintains the standards for project management for the organiza-
tion. The PMO will aim to standardize and enhance project management within
the organization so that the projects being carried out have a defined and repeatable
process. The PMO will act a centre of expertise on project management within the
organization, and it will be consulted by projects for guidance and documentation
on project management. It defines the project management metrics to be used and
reported by the projects.

The PMO standardizes the project management methodology in the organi-
zation, and the project management practices may be based on industrial best
practice such as Prince 2 or PMP, or developed internally within the organiza-
tion. The PMO identifies the tools required to support the process, and it provides
training on project management throughout the organization. It may also monitor
and report on active projects and portfolios taking place in the organization, and it
may have responsibility for reporting progress to senior management for strategic
decisions on whether specific projects should continue or be terminated.

The project management office provides several functions such as project
governance, transparency, and reusability (Table 5.8).

5.18 Programme Management

Programme management is the process of managing a group of related projects
in a coordinated manner to obtain benefits not available from managing them
individually. It is often used in managing very large projects such as business trans-
formation, which often involves fundamental changes in the way that business is
conducted. A programme is a set of related projects, and programme management
coordinates their planning and execution. A project manager is responsible for the
planning and execution of a single project, and for ensuring that their project is

94 5 Overview of Software Project Management

successfully delivered on time and budget, whereas the programme manager is
responsible for the success of the entire programme.

Programme management provides an environment where the projects may be
run successfully, and it provides a layer above the management of projects. The
programme manager has oversight of the importance and status of all the projects
in the programme, and supports project-level activity to ensure that the programme
goals are achieved.

The programme manager is responsible for the programme and does not micro-
manage projects, as this is a project manager’s responsibility. The programme
manager needs to coordinate and prioritize the resources across the projects, and
needs to deal with issues, roadblocks, links, and interdependencies between the
projects, as well as managing the overall risks and cost of the programme.

5.19 Project Portfolio Management

A portfolio is a collection of projects and programmes that will deliver business
benefit or operational efficiencies in an organization. Project portfolio management
(PPM) is focused on doing the right projects at the right time, and so it is the process
of selecting the right projects and programmes to do, the right time to do them,
and managing them effectively.

PPM differs from programme and project management that are focused on exe-
cution and delivery (i.e., doing the projects and programmes right), whereas PPM
focuses on ensuring that it does the right projects that deliver business value. Orga-
nizations have limited resources and it is not possible to do all projects, and so only
the best projects that deliver real business benefit should be done. This means that
rigorous project selection should be employed to ensure that only those projects
that are aligned to the organization’s strategic direction and deliver the greatest
business benefit should be selected.

PPM ensures that project execution is aligned with the organization strategy
with each selected project playing a role in carrying out its strategy. This ensures
that the benefits provided from the execution of the projects provide the greatest
financial return on the investment made. It ensures that the portfolio is balanced
with pet projects that have a limited business return avoided, and it avoids a focus
on short-term results.

PPM must ensure that there is a balance between the implementation of change
initiatives and maintaining business as usual.

5.20 Review Questions

1. What is a project? What is project management?
2. Describe various approaches to estimation.

References 95

What activities take place at project start-up and initiation?

What skills are required to be a good project manager?

What is the purpose of the project board? Explain project governance.
What is the purpose of risk management? How are risks managed?
Describe the main activities in project management.

What is the difference between a risk and an issue?

What is the purpose of project reporting?

How is quality managed in a project?

S @ e e PR

—_

5.21 Summary

Project management is concerned with the effective management of projects,
and the goal is to deliver a high-quality product, on time and on budget, to the
customer. It involves good project planning and estimation, managing resources,
managing changes and issues that arise, managing quality, managing risks, manag-
ing the budget, monitoring progress and taking corrective action, communicating
progress, and delivering a high-quality product to the customer.

The scope of the project needs to be determined, and estimates established. The
project plan is developed and approved by the stakeholders, and it will contain or
reference several other plans. It needs to be maintained during the project. Project
estimation and scheduling are difficult as often software projects are quite different
from previous projects. Gantt charts are often employed for project scheduling, and
these show the work breakdown for the project, as well as task dependencies and
the assignment of staff to the various tasks.

The effective management of risk during a project is essential to project suc-
cess. Risks arise due to uncertainty and the risk management cycle involves risk
identification, risk analysis and evaluation, identifying responses to risks, selecting
and planning a response to the risk, and risk monitoring.

Once the planning is complete the project execution commences, and the focus
moves to monitoring progress, re-planning as appropriate, managing risks and
issues, providing regular progress reports to the project board, and so on. Finally,
there is an orderly close of the project.

References

1. Office of Government Commerce, Managing Successful Projects with PRINCE2, (2004)
2. PMBOK Guide. A Guide to the Project Management Body of Knowledge, 6 Edition, (Project
Management Institute, 2017)

f')

Check for
updates

Software Project Planning

Key Topics

Project board
Project brief
Business case
Investment appraisal
Project requirements
Project plan
Communication plan
Project quality plan
Project test plan
Deployment plan

6.1 Introduction

A new project often arises due to the identification of a problem or business oppor-
tunity. The organization decides to undertake a project to take advantage of the
problem/opportunity, and a project team is formed to implement and deliver an
appropriate solution. Often, there may be many potential projects that could take
place in an organization, but as every organization has limited resources available
it needs a rigorous way to select only those projects that are worth doing. These
are the projects that will deliver the greatest business benefit, and so only those
projects that are viable and worth doing should be authorized, and those with a
limited or zero business benefit should be rejected.

This means that the organization needs a process to evaluate each potential
project in a rigorous way to ensure that it is worth undertaking. One way of doing
this is through the business case process, which evaluates the benefits of a project
in relation to its costs. A business case is prepared for each proposed project,

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025 97
G. O’Regan, Guide to Software Project Management, Undergraduate Topics in
Computer Science, https://doi.org/10.1007/978-3-031-80578-3_6

6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-80578-3_6&domain=pdf
https://doi.org/10.1007/978-3-031-80578-3_6

98 6 Software Project Planning

and the analysis of the costs and benefits of the proposed projects (as described
in their business cases) is done, with the projects that will deliver the greatest
business benefit selected and all others rejected.

The business case provides the rationale for the project, and the project should
only proceed if it has a valid business case aligned to its business strategy. The
project should be terminated if its business case ceases to exist as otherwise
resources are wasted. The business case describes the problem or opportunity in
more detail, and it may also identify a preferred solution for its implementation.
It is essential to identify clear, unambiguous, and achievable objectives that the
project is to solve, and this will make it easier to determine if the project has been
successful in meeting its expectations as well as gaining approval for the project.

The project is kicked off and the project management team appointed. The
team includes the project board to oversee the project, and a project manager to
manage the project. The project board needs to have the right people with sufficient
influence and authority in the organization to remove roadblocks that may arise and
to make timely decisions. The members need to reflect the interests of all parties
involved in the project (e.g., users and suppliers). All involved in the project need
to be clear on what the project is to achieve and how it will be achieved, and
everyone must be clear on their responsibilities in achieving the project objectives.
The approach to the project is decided, e.g., whether to build or buy depending on
whether the project team has the right competence to develop a particular software
system internally (or component of it), or whether there is a need to outsource (or
purchase off the shelf) the required software (see Chap. 10 for details on supplier
selection and management). The supplied software may be the complete solution
to the project’s requirements, or it may need to be integrated with other software
produced for the project. The initial project risks, customer’s quality expectations,
and project’s acceptance criteria are defined.

Project planning is an essential part of project management, and it defines what
the project intends to achieve and how it will do so. The project plan will enable
the schedule, cost, quality, changes in scope, and risks to be managed. The scope of
the project needs to be determined, and estimates of the effort for the various tasks
and activities established. The project plan and schedule need to be approved by
the stakeholders, and the project plan will contain or reference several other plans
such as the project quality plan, the communication plan, the training plan, the
project test plan, and the configuration management plan.

Project planning involves defining the scope of the project and the business
requirements, developing the work breakdown structure (WBS) and estimates of
the effort required for the various tasks and activities, and preparing the initial
project schedule and defining the key project milestones (this involves determining
the deliverables to be produced and the delivery timelines). The initial project
risks are determined, and planning for how quality will be built into the project
deliverables is defined. Project planning involves

— Defining the business case for the project
— Defining the scope of the project and what it is to achieve

6.2 Project Start-up and Initiation 99

— Defining the key success factors for the project

— Determining the approach to be taken for the project

— Determining the key stakeholders

— Determining the project lifecycle and phases of the project
— Estimation of the cost, effort, and schedule

— Determining the start and end dates for the project

— Determining the key project milestones

— Preparation of financial budget

— Determining the resources required

— Determining the knowledge, skills, and training required

— Staffing the project and assigning resources to the tasks and activities
— Preparing the project plan

— Preparing the initial project schedule

— Identifying initial project risks

— Preparing quality plan

— Preparing test plan

— Preparing configuration management plan

— Preparing deployment plan

— Obtaining approval for the project plan and schedule

The project planning activities take place during the project start-up and initiation
phase, and re-planning activities take place during project execution.

6.2 Project Start-up and Initiation

There are many ways in which a project may be triggered but often it is as the
result of a problem or business opportunity that the project will address. For exam-
ple, an e-commerce company may wish to develop a new version of its software
with attractive features to dazzle users and increase sales. An internal IT depart-
ment may receive a request from its business users to enhance its business software
in order to satisfy new legal or regulatory requirements. A software development
company may be contacted by a business to develop a bespoke software solution
to meet its needs, and so on.

All parties must be clear on why the project is needed, what the project is
to achieve, and how it will be achieved. It is essential that there is a coherent
business case for the project, where the business case is the fundamental rationale
for the project. The business case defines the problem or opportunity in detail,
and a preferred solution is identified for implementation. Clearly, an organization
needs to be able to justify spending a large amount of money, and so the project
must make business sense. In other words, the project must yield a financial return
on the investment made, or the project must satisfy some essential business or
regulatory requirements.

At the project start-up, the initial scope and costing for the project are deter-
mined, and the technical and financial feasibility of the project is determined. A

100 6 Software Project Planning

project brief (also called project charter) may be produced to provide a shared
understanding of the project, and this describes the objectives of the project and
may be used to authorize the project. The project board is set up for project gover-
nance and it is responsible for authorizing and directing the project. It verifies that
there is a sound business case for the project, and a project manager is appointed
by the board to manage the project.

The project board (or steering group) oversees the project and includes roles
such as the project executive (this role may also be called the project sponsor), the
senior user, and senior supplier. The actual members of the project board need to
be chosen carefully, as it is essential that they have the appropriate authority and
influence in the organization to get things done, to make resources available, to
make timely decisions, and to remove roadblocks that arise during project execu-
tion. That is, the project board includes the key stakeholders, and it is accountable
for the success of the project. The project manager provides regular status reports
to the project board during the project, and the project board is consulted when
key project decisions need to be made.

The project manager is responsible for the day-to-day management of the
project, and for determining the approach to be taken for the project. It may be
appropriate to outsource the development to a third-party provider due to a lack
of in-house expertise, it may be possible to purchase an off-the-shelf solution, or
it may be decided to develop the solution internally.

A project is a temporary activity with a definite start and an end date. The
project manager kicks off the project and mobilizes the project team. The detailed
requirements and estimates for the project are determined, the schedule of activities
and tasks established, and resources are assigned to the various tasks and activi-
ties. The project scheduling is generally done with the Microsoft Project tool, and
the schedule defines the deliverables that will be produced, when they will be pro-
duced, and who produces them. The project manager prepares the project plan,
which is subject to the approval of the key stakeholders, and it describes how the
project will achieve its objectives and how the desired customer quality expecta-
tions will be achieved. The initial risks are identified and managed, and a risk log
(or repository) is set up for the project. Once the planning and requirements are
complete project execution commences.

Often, the initial requirements for a project arise due to a problem that the
business or customer needs to solve. This leads to a project to implement an appro-
priate solution, and the first step is to determine the scope of work and the actual
requirements for the project, and whether the project is feasible from the cost,
time, and technical considerations. The process of determining the requirements
for a proposed system involves discussions with the relevant stakeholders to deter-
mine their needs, and to explicitly define what functionality the system should
provide, as well as any hardware and performance constraints.

Next, we describe various activities in the project start-up and initiation phase
such as preparing the project brief and business case, developing the requirements,
estimation, preparing the project plan, and so on in more detail, and we start with
a discussion on the role of the project board.

6.4 Preparing the Project Brief and Business Case 101

6.3 Project Board

The project board is responsible for directing the project, and it is directly account-
able for the success of the project. It consists of senior managers and staff in
the organization who have the authority to make resources available, to remove
roadblocks, and to get things done. The project sponsor (also called the project
executive or project director) has overall responsibility for the project and is a
member of the project board. S/he ensures that the project is aligned to the organi-
zation’s strategy, and has responsibility for monitoring the budget and controlling
the spending. The membership of the project board is summarized in Fig. 5.2 and
the roles of the members are described in Table 5.4.

The project board includes key stakeholders such as the senior user who repre-
sents the interests of the customer and users, and the senior supplier who represents
the interest of the developers of the system. The project executive has overall
responsibility for the project, and is supported by the senior user and senior sup-
plier. The project executive and board will ensure that the business case is valid
and aligned to the business, and will support the project manager during project
execution.

The project board is accountable for the success of the project, and the project
executive may delegate some of his/her responsibilities to the project manager. The
project manager provides regular status reports to the project board during project
execution to highlight progress made as well as key project risks and issues. The
project board meets at an appropriate frequency during the project (with extra
sessions held should serious project issues arise), and the project manager will
escalate events that are beyond his/her control to the project board for resolution.

The project board is consulted whenever key project decisions need to be made,
and it plays a key role in project governance. The project board ensures that there
is a valid business case for the project, and that the capital funding for the project
is adequate and well spent. The project board may cancel the project at any stage
during project execution should there cease to be a business case, or should project
spending exceed project tolerance and go out of control.

The members of the project board are chosen carefully, as the members of the
project board need to have the appropriate authority and influence in the organiza-
tion to be effective in getting things done (e.g., making resources available, making
timely decisions, and removing roadblocks). That is, they must be the right people
with the right influence to make the right decisions based on the right information.

6.4 Preparing the Project Brief and Business Case

A project often starts with a short document termed the project brief (or project
charter) that provides a brief definition of the project and its goals. The project
brief communicates what needs to be done during the project, and what the project
intends to achieve. This includes its scope and objectives, its key timelines, and the
stakeholders involved. The project brief is often revisited during project execution,

102 6 Software Project Planning

Table 6.1 Some sections in the project brief

Section Description

Project goals and objectives This section states the key goals and objectives of the project

Project scope The scope of the project consists of the functionality that will be
provided (i.e., it is a statement about the functional requirements)

Proposed timelines This defines the proposed timelines (e.g., the key project
milestones such as the start and end dates of the project)

Risks The key risks identified at this stage are listed, and these need to
be managed

Benefits The key benefits that will result once the project is successfully

implemented by the project team

Outline business case A short description of the business case

with other deliverables extending and refining it. Table 6.1 describes sections that
may be in the project brief.

The business case describes the reason and justification for the project, and it
needs to be aligned to the business strategy. It is based on the expected costs of
the project, the associated risks, and the expected business benefits and savings. A
project should proceed only if it has a valid business case, and the project should
be terminated if its business case ceases to exist. The business case describes the
problem or opportunity, the options that are available as a solution to the problem
or opportunity, and the preferred solution. The preferred solution is subjected to
an investment appraisal to determine the return on investment (ROI). Table 6.2
presents sections that may be present in a business case.

Next, we discuss investment analysis and appraisal of the project in more detail.

6.4.1 Investment Appraisal

It is important that the project makes business sense and provides a financial
benefit to the organization. A project will generally result in extra income being
earned by the company in future years, but it requires the commitment of financial
resources now for its implementation. The project should cover its cost in the sense
that the net present value of the future payments (NPV) should exceed the cost of
the project. Table 6.3 presents various terms often used in investment analysis.

Present Value
The time value of money is the concept that the earlier that a cash payment is
received the greater its value to the recipient. Similarly, the later that the cash
payment is made, the lower its value to the payee, and the lower its cost to the
payer.

This is clear if we consider the example of a person who receives $1000 now
and a person who receives $1000 five years from now. The person who receives

6.4 Preparing the Project Brief and Business Case 103

Table 6.2 Some sections in business case
Section Description

Description of problem/business opportunity This explains why the project is needed, and it
gives a description of the problem that the
project will solve, or the business opportunity
that the project will take advantage of

List of potential solutions This provides an overview of the various
options that are available and a description of
each option

Preferred solution This identifies the preferred solution and
summarizes why it is more appropriate than
the others

Analysis (costs, timescales, risks, and benefits) The benefits of the proposed project are
described and may be summarized in a
requirements/benefit matrix. The negative
benefits (where the project is not done) may
be listed and these could include loss of
market share or legal penalties
The estimated costs and timescales of the
preferred solution are outlined, and the key
risks and issues for the project are described

Investment analysis This involves performing a cost-benefit
analysis of the project, and calculating the net
present value of future benefits versus its
costs. The method of EVA and NPV may be
employed in the analysis (see Sect. 3.4.1)

Implementation plan This summarizes the implementation plan for
the project

$1000 now is able to invest it and to receive compound interest on the principal,
whereas the other person who receives $1000 in 5 years earns no interest during
the period. Further, the inflation during the period means that the purchasing power
of $1000 is less in 5-year time than it is today.

The general formula for the future value of a principal P invested for n
compounding periods at a compound rate r of interest per compounding period
is

A=P1+r"

The present value of a given amount A that will be received in the future is the
principal (P = PV) that will grow to that amount where there are n compounding
periods and the rate of interest is r for each compounding period. The present
value of an amount A received in n compounding periods at an interest rate r for
the compounding period is given by

A
P= ——
(14 ry

104

6 Software Project Planning

Table 6.3 Terminology in investment appraisal

Section

Net benefit/Net benefit after tax

Discount rate %

Net present value (NPV) of net benefit

Cost of capital

Economic value added (EVA)

Payback period (years)

Internal rate of return (IRR)

Description

Net benefit reflects the total benefits less the total cost
in any 1 year. Net cash benefits reflect the net cash
benefit after tax has been deducted

The discount rate reflects two measures (risk and
interest). It reflects the cost of borrowing money and
the company’s attitude to risk

It is used to convert money expected in the future back
to the present (i.e., today’s money), and is based on
the time value of money (i.e., the fact that a sum of
money received now is worth more than that sum of
money received in the future)

The Net Present Value (NPV) of a project is the
financial value of the project in today’s money. It takes
the time value of money into account and is calculated
using the discount rate

The sum of the discounted benefits less than the
project costs is computed to give the extra profit that
the company will make. A negative NPV means that
the project does not cover its costs, a NPV of zero
means that the project breaks even

The cost of capital refers to the rate that investors
expect to receive in return for investing in the
company. It may be determined by calculating the cost
of debt, which is the after-tax interest rate on loans
and bonds

An alternative more complex approach involves
estimating the cost of equity from analysing
shareholder’s expected return implicit in the price they
have paid to buy or hold their shares

The EVA reflects the value of the project and is the net
benefit after tax minus the total cost of capital. It
determines if a business is earning more than its true
cost of capital. A negative EVA means that the project
doesn’t generate any real profit whereas a positive
EVA generates a profit. The higher the EVA, the more
attractive the project will be

The payback time is the period of time (expressed in
years) that it takes to recover all project costs. This
may be done on a discounted/non-discounted basis

The internal rate of return (IRR) is the discount rate
(interest rate) at which the present value of the future
cash flows of an investment equals the cost of the
investment. Alternatively, it can be seen as the % to
which the discount rate needs to rise for the project to
only break even. The higher the IRR the more
attractive the project

6.4 Preparing the Project Brief and Business Case 105

We can also write the present value formula as PV =P =A (1 4+ r)™".

Example (Present Value)
Find the principal that will amount to $10,000 in 5 years at 8% per annum
compounded quarterly.

Solution (Present Value)

The term is 5 years = 5 * 4 = 20 compounding period. The nominal rate of
interest is 8% = 0.08 and so the interest rate i per compounding period is %08/, =
0.02. The present value is then given by

PV =A(l+i)"=FV(l+i™"
= 10000 (1.02)~%°
= $6729.71

6.4.2 Investment Appraisal Example

A business is considering embarking on a process improvement project that will
deliver financial savings over 3 years. The costs and savings are summarized in
Table 6.4, and the business wishes to determine whether it should authorize or
reject the project based on these. The discount rate used by the company is 8%
(compounded annually). Should the project be authorized or rejected? Would the
project cover its costs if the discount rate is 10%?

Solution (Investment Analysis)

The total cost of the project is £74,000 and so we need to determine if the total
savings cover the costs. That is, we determine the present value of savings E,
E,, and E3 where E = E; + E; + E3 and compare this to the costs to make the
decision.

E; = 35000(1.08)~! = 35000 % 0.9259 = 32, 407

Table 6.4 Projected costs

) Cost area Amount Savings Amount
and savings
Consultancy £15,000 Year 1 £35,000
Training £12,000 Year 2 £30,000
Materials £6,000 Year 3 £25,000
Effort £37,000 - -
Expenses £4,000 - -

Total costs £74,000 - -

106 6 Software Project Planning

E, = 30000(1.08) 2 = 30000 % 0.8573 = 25, 720
E; = 25000(1.08) ™3 = 25000 % 0.7938 = 19, 845

E =E; + Ey + E3 = £32,407 4 £25,720 + £19, 845 = £77,972

The NPV is the total savings less than the total costs = S — V = £3,972, and
so the project should be authorized.
For the second part, we proceed in a similar manner and calculate that

E; =31, 818
Ey, =24,793
E; = 18,783

E=E; +E; +E3 =£75,39%

The total savings are still in excess of the projected costs (£1,394), and so the
project should be authorized.
For a more detailed information on mathematics used in business see Ref. [1].

6.5 Project Requirements

The user requirements specify what the customer wants and define what the soft-
ware system is required to do, as distinct from how this is to be done. The
requirements are the foundation for the system, and if they are incorrect then
the implemented system will be incorrect. The process of determining the require-
ments, analysing and validating them, and managing them throughout the project
lifecycle is termed requirements engineering.

The process of determining the requirements involves discussions with the
relevant stakeholders to determine their needs for the proposed system, and to
explicitly define what functionality the system should provide, as well as any
hardware and performance constraints. The user requirements are determined from
discussions with the customer to determine their actual needs, and they are then
refined into the system requirements, which state the functional and non-functional
requirements of the system. The specification of the user requirements needs to be
unambiguous to ensure that all parties involved in the development of the system
share a common understanding of what is to be developed and tested.

Requirements management is concerned with managing changes to the require-
ments of the project, and in maintaining consistency between the requirements and

6.6 Project Estimation 107

the project plans and the associated work products. It is important that changes to
the requirements are controlled, and that the impacts of the changes are fully under-
stood prior to authorization. Once the system requirements have been approved,
any proposed changes to the requirements are subject to formal change control.

The direction of a project is regularly evaluated in the Agile world, where ongo-
ing changes to the requirements are a normal part of the process. For traditional
projects changes to requirements are subject to a formal change control process,
so that the impact of the proposed change is clearly understood. There is more
detailed information on requirements engineering in Chap. 5 of [2].

6.6 Project Estimation

Estimation is an important part of project management, and the accurate estimates
of effort, cost, and schedule are essential to delivering a project on time and on
budget, and with the right quality.! Estimation is employed in the planning process
to determine the effort and resources required, and it feeds into the scheduling
of the project. The problems with over- or under-estimation of projects are well
known, and good estimates allow

— Accurate calculation of the project cost and its feasibility
Accurate scheduling of the project

Accurate scheduling of resources for the project

— Measurement of progress and costs against the estimates

Poor estimation leads to

Projects being over- or under-estimated

— Projects being over- or under-resourced (impacting staff morale)
Quality being compromised

Project being delivered late

Negative impression of the project manager and team

Consequently, estimation needs to be rigorous, and there are several well-known
techniques available (e.g., work breakdown structures, function points, and so on).
Estimation applies to both the early and later parts of the project, with the later
phases of the project refining the initial estimates, as a more detailed understanding
of the project activities is then available. The new estimates are used to resched-
ule and to predict the eventual effort, delivery date, and cost of the project. The
following are guidelines for estimation:

! The consequences of under-estimating a project include the project being delivered late, with the
project team working late nights and weekends to recover the schedule, quality being compromised
with steps in the process omitted, and so on.

108 6 Software Project Planning

— Sufficient time needs to be allowed to do estimation

— Estimates are produced for each phase of software development

— The initial estimates are high level

— The estimates for the next phase should be solid whereas estimates for the later
phases may be high level

— The estimates should be conservative rather than optimistic

— Estimates will usually include contingency

— Estimates should be reviewed to ensure their adequacy

— Estimates from independent experts may be useful

— It may be useful to prepare estimates using various methods and to compare

Project metrics may be employed to measure the accuracy of the estimates (see
Chap. 14). These metrics are reported during the project and include

— Effort estimation accuracy
— Budget estimation accuracy
— Schedule estimation accuracy

6.6.1 Estimation Techniques

Estimates need to be produced consistently, and it would be inappropriate to have
an estimation procedure that relies on an individual and is not a repeatable process.
We mentioned several estimation techniques in Chap. 5 (see Table 5.1):

— Work breakdown structure
— Analogy method

— Expert judgement

— Delphi method

— Cost predictor models

— Function points

— Planning poker

Work breakdown structures and function points are described in more detail below.

6.6.2 Work Breakdown Structure

This is a popular approach to project estimation (it is also known as decomposition)
and involves the following:

— Determine the project deliverables to be produced during the project

— Estimate the size of each deliverable (in pages or LOC)

— Estimate the effort (number of days) required to complete the deliverable based
on its complexity and size, and experience of team

6.6 Project Estimation 109

Table 6.5 Example work breakdown structure

Lifecycle phase Project deliverable or task Est. size Est. effort Est. cost
description
Planning and requirements Project plan 40 10 d ays $5000
Project schedule 20 5 days $2500
Business requirements 20 10 days $5000
Test plan 15 5 days $2500
Issue/Risk log 3 2 days $1000
Lessons learned log 1 1 day $500
Design System requirements 15 5 days $2500
Technical/DB design 30 10 days $5000
Coding Source code 5000 (LOC) 10 days $5000
Unit tests/results 200 2 days $1000
Testing ST specs 30 10 days $5000
System testing 10 days $5000
UAT specs 30 10 days $5000
UAT testing 10 days $5000
Deployment Release notes/procedures 20 5 days $2500
User manuals 50 10 days $2500
Support procedures 15 10 days $2500
Training plan 25 5 days $2500
Project closure End project report 10 2 days $1000
Lessons learned report S 2 days $1000
Contingency 10% - 13.4 $6700
Total 147.4 $73,700

— Estimate the cost of the completed deliverable (from effort)
— The estimate for the project is the sum of the individual estimates

Productivity data from previous projects may be used. The effort required for a
complex deliverable is higher than that of a simple deliverable (where both are
of the same size). The project planning section in the project plan (or a separate
estimation plan) will include the lifecycle phases, and the deliverables/tasks to be
carried out in each phase. It may include a table similar to Table 6.5.

6.6.3 Function Points
Function points were developed by Allan Albrecht at IBM in the late 1970s, and

provide a quantitative measure of the amount of functionality in a system [3]. It
involves determining the functional requirements and categorizing each functional

110 6 Software Project Planning

requirement into one of several types such as input, output, inquiries, and internal
and external files. Each functional requirement is assessed to determine its com-
plexity, and a number of function points are assigned to the requirement. The sum
of the function points of the functional requirements is a measure of the amount
of functionality of the system. That is, function points provide a functional size
measurement of the software (FSM), and the FSM is a measurement of the effort
required for the project.

Function points provide a count of all the functionalities provided to the cus-
tomer, and function points are calculated by counting screens, reports, queries,
and files/database tables. There are two types of functions, namely, data functions
and transaction functions, with data functions made up of internal and external
resources that affect the system. Transaction functions are made up of the pro-
cesses that are exchanged between the user, the external applications, and the
application being measured, and there are three types, namely, external input,
external output, and external inquiry.

Function point analysis may be applied to all phases of development from
requirements to implementation, to the application only, or to an enhancement
to the software after its release to the customer. An International Function Point
User Group (IFPUG) was founded in the mid-1980s, and it has been responsible
for the evolving definition and application of functional size measurement method
that led to an ISO standard for function points (ISO/IEC 20,926:2009) in 2009.
The reader is referred to the IFUPG for more detailed information (https://www.
ifpug.org/).

6.7 Project Plan

There is the well-known adage that states, “Fuil to plan, plan to fail”.> A well-
managed project has an increased chance of success, and good planning is an
essential part of project management. A simple process map for project planning
is presented in Fig. 6.1.

The project plan defines how the project will be carried out, and it generally
includes sections which are given in Table 6.6.

The project plan is a key project document, and it needs to be approved by all
stakeholders. The project manager needs to ensure that the project plan and sched-
ule are kept up to date, and that they are kept consistent with the requirements.
Another words, if there are changes to the requirement then the project plan and
schedule will need to be updated accordingly.

2 This quotation is adapted from Benjamin Franklin (an inventor and signatory to the American
declaration of independence. His precise quote was “By failing to prepare, you are preparing to
fail”).

https://www.ifpug.org/
https://www.ifpug.org/

6.7 Project Plan 11

Establish » Planning > Develop Project
Estimates Data Plan

i

Project Plan

i No

Approve S
Project Plan?

i Yes

Approved
Project Plan

Fig.6.1 Simple process map for project planning

6.7.1 The Communication Plan

Communication planning describes how communication will be carried out dur-
ing the project, and it defines all the parties with an interest in the project and
the method and frequency of communication between them and the project. The
communication may be verbal, email, written reports, presentations, and meetings.
A matrix is often employed to summarize the communication plan for the project,
and Table 6.7 presents a sample communication plan.

6.7.2 The Project Quality Plan

The project quality plan defines how the project intends to achieve the cus-
tomer’s quality expectations, and the responsibilities for quality of those within
and external to the project are defined. The standards from the customer’s qual-
ity management system and the supplier’s quality management system may be
combined, with some aspects relating to the customer’s quality system and the
remainder to the supplier’s quality system.

The project quality plan will describe how quality will be built into the project
deliverables and final product. The quality control procedures are defined and
these include well-defined quality controls such as peer reviews and testing to
ensure quality is consistently produced. Metrics may be employed to measure
performance (see Chap. 14).

112

6 Software Project Planning

Table 6.6 Some sections in the project plan

Section

Business case

Project goals and objectives

Scope of project

Project approach

Key stakeholders

Project team/Organization structure

Key success factors

Project lifecycle phases

Assumptions, constraints, and dependencies

Estimation and WBS

Key milestones

Initial project schedule

Description

The business case is the reason why the project
is taking place, and it may be for legal/regulatory
reasons, financial savings, quality improvement,
productivity improvements, and so on

The specific goals and objectives of the project
need to be clearly stated. They need to be
consistent with the business case

The scope of the project defines what is in scope
and what is outside scope for the project

The approach taken by the project may be to
purchase a solution off the shelf from a software
vendor, outsource the development, or develop
the solution internally

The key stakeholders including their roles and
responsibilities are listed

The teams and personnel required for the project
as well as their responsibilities are defined, and
this may be presented as a table or in a visual
diagram

The key success factors for the project define
what the project must achieve to be successful

For traditional waterfall-type projects the phases
may be similar to Planning and Requirements,
Design, Coding, Testing, Deployment and
Project Closure. For an Agile project there may
be several fixed interval sprints

The known assumptions, constraints, and
dependencies for the project are listed

The estimation approach for the project may
involve listing the project deliverables (per
lifecycle phase) and the estimated effort required
for each deliverable (WBS approach). Other
approaches (e.g., function points) may be
employed

The key project milestones may include end of
lifecycle milestones such as planning and
requirements complete, design and code
complete, testing complete, deployment
complete, and project closure complete. For an
Agile project the key milestones may be at the
end of each sprint

The initial project schedule is created in
Microsoft project or a similar scheduling tool

(continued)

6.7 Project Plan

113

Table 6.6 (continued)

Section

Financial budget

Project tolerances

Tools required

Initial project risks

Knowledge, skills required

Training Planning

Quality planning

Test planning

Communication planning

Deployment planning

Description

The financial budget details the authorized
expenditure for the project such as capital
expenditure, staff costs, contractor costs,
consultancy costs, and contingency

The project tolerances stipulate the % deviation
from the approved budget and schedule that is
allowed, and the project manager is required to
advise the project board should the project
tolerances be exceeded, and to seek
authorization for additional expenditure

The specific tools that are required for the
project are listed

Risk management takes place throughout the
project and existing risks will be monitored
regularly and new risks identified, assessed, and
managed. The initial project risks are identified
and a Risk log (or RAID log) created

The knowledge and skills required by the project
team are specified

The training required to address gaps in the
knowledge/skills of the project team is identified
and provided

This section (it may be a reference to a separate
document) will specify the customer quality
expectations, and will detail how quality will be
built into the project deliverables. Each
deliverable is subject to a review or walkthrough
prior to its approval

This section (it may be a reference to a separate
test plan) will detail the various types of testing
to be performed, who will perform them, when
they will be performed, and the test environment
required

This section defines the responsibilities for
communication and reporting during the project
(it may be a reference to a separate plan). It will
include meetings, presentations, reports, and
verbal communication

This section (it may be a reference to a separate
deployment plan) specifies the activities
associated rolling out new applications including
release notes, installation procedures, training,
and customer support procedures

(continued)

114 6 Software Project Planning

Table 6.6 (continued)

Section Description

Configuration management planning This section (it may be a reference to a separate
configuration management plan) defines the
configuration management planning for the
project. This involves defining the configuration
items to be placed under configuration
management control, setting up a directory
structure for the project deliverables, and
controlling changes to the configuration items

Project meetings Project meetings take place regularly (usually
weekly) with the project team to check progress
against the plan and to identify any new risks or
issues

Project issues The project issues may be logged in an Issue
Log (a spreadsheet for tracking issues), a RAID
log, or a tool. Issues are then managed

Project change control A change control board (consisting of project
manager and relevant stakeholders) is set up to
consider change requests to the project, and all
requests are assessed to determine their impacts
(technical/schedule/budget) prior to their
approval/rejection

Lessons learned The lessons learned during the project (i.e., what
went well and what went poorly) will be
recorded in a spreadsheet or a tool

There may be a software quality assurance role assigned to the project, and if
so this person will audit the project activities and deliverables (including any sup-
pliers) to ensure that the defined processes are followed and that the deliverables
produced follow the required standards. The quality assurance role will raise qual-
ity issues to the affected parties, and where necessary issues may be escalated to
management for resolution.

Table 6.8 presents an excerpt of a quality plan matrix for the project deliver-
ables, and it lists each deliverable to be produced during the project as well as
the quality criteria to be satisfied to accept the project deliverable. It defines the
quality controls to ensure that quality is built into the deliverable as well as the
party responsible for accepting the deliverable.

6.7.3 Project Test Plan

Testing is a sub-project of the project, and the test manager will generally create
the project test plan and schedule (this may be done by the project manager for
small projects). The test manager will track the test schedule to completion and

6.7 Project Plan 115
Table 6.7 Some sections in the communication plan
Interested Information ~ Purpose Responsibility ~ Frequency Method
party required
Project Progress Keep informed Project manager Monthly Reports
Board
Meetings
Exceptions Ad Hoc Verbal/email
Project Business Assess impact Project board Ad Hoc Verbal/email
manager decisions on project
Progress Keep up to date Project team Weekly Meetings/
updates email/verbal
Supplier Keep up to date Supplier Weekly Meetings/
updates email/verbal
Testing Keep up to date Test manager Weekly Meetings/
progress email/verbal
Project team Progress Awareness of Project Weekly Meetings/
updates progress Manager email/verbal
Third-party ~ Project Assess impacts Project Weekly/Ad Meetings/
supplier changes Manager hoc email/verbal
Test manager Project Assess impacts Project manager Weekly/Ad Meetings/
changes hoc email/verbal
Table 6.8 Quality plan matrix for project deliverables
Deliverable Description Produced by Quality Quality Accepted by
criteria control/audit
process
Project plan Plan Project Fit for Review Project board
manager purpose
Project Schedule Project Fit for Review Project board
schedule manager purpose
Requirements ~ Requirements Systems Fit for Review Requirements
document analyst purpose manager
Design Design Developer Fit for Review Development
purpose manager
Code Code Developer Fit for Review Development
purpose manager
Testing Test specs Tester Fit for Review Test manager
specification purpose
Deployment Deployment Customer Fit for Review Customer
plan support purpose support
analyst manager

116 6 Software Project Planning

will regularly update the project manager during the project. The test plan defines
how the testing will be carried out, and it generally includes sections such as

— Scope of testing

— Types of testing to be performed

— Roles and responsibilities

— Key stakeholders

— Resources required (hardware and human)
— Training, knowledge and skills required

— Key milestones (for testing)

— Schedule (for test activities, deliverables, and estimates)
— Key assumptions/risks

— Communication planning and test reporting
— Budget planning

— Defect logging and re-testing

— Test acceptance criteria

— Configuration management

There will usually be dedicated test plans for unit, system, and UAT testing, which
are prepared as part of test case analysis and design. The project manager will track
the testing milestones to ensure that the project remains on track.

6.7.4 Financial Plan

The project budget is a detailed estimate of the projected financial costs to
complete the project, and includes human resource costs; the cost of hardware,
software, tools, and training; and subcontractor costs (Table 6.9). It is common to
include some contingency in the estimates (e.g., 10%).

Table 6.9 Project budget

Item Amount
Internal staff €150,000
Subcontractors €50,000
Consultancy €60,000
Hardware €5,000
Software €2,000
Tools €1,000
Training €2.,000
Subtotal €270,000
Contingency: 10% €27,000

Total €297,000

6.7 Project Plan 117

Table 6.10 Training plan

Course Cost Date Plan attendees Actual Absent
attendees

Prince 2 £2000 22.06.20 Elodie, Mary and Elodie and Lilly

Lilly Mary

Agile £2000 29.06.20 Mary and Connie Mary and -
Connie

Java £1500 22.06.20 Pilar Pilar -

RUP £2000 22.06.20 Jo and Sheila Jo and Sheila —

ISEB software £1500 29.06.20 Jo and Liz Jo and Liz -

testing

The project manager will track the spending in the project to ensure that the
project remains on budget. The PM will advise the project board should the actual
project spending exceed project tolerance.

6.7.5 Configuration Management Plan

The configuration management plan is concerned with identifying the config-
uration items to be controlled, and systematically controlling changes to them
throughout the project lifecycle. It ensures that all project deliverables are kept con-
sistent following approved changes to the requirements. That is, if there is a change
to the requirements then all affected deliverables (e.g., design, code, test plans,
etc.) need to be modified accordingly and kept consistent with the requirements.
Configuration management is described in more detail in Chap. 12.

6.7.6 Training Plan

The knowledge and skills required for the project are identified, and the training
needs to be determined. Training is planned accordingly and Table 6.10 sketches
a training plan for the project.

6.7.7 Deployment Plan

The deployment plan describes the activities involved in the deployment of the
software at the customer site. It outlines the responsibilities of the project per-
sonnel, and the steps involved in the installation or upgrade of the software at
the customer site, as well as training and support that will be provided. The plan
includes sections such as

— Roles and responsibilities

118 6 Software Project Planning

— Release notes/procedures

— Preparation of environment
— Installation instructions

— Rollback instructions

— Training for customers

— Customer support procedures

6.8 Schedule and Resource Management

The effort estimates are used for scheduling of the tasks and activities in a project-
scheduling tool such as Microsoft Project (Fig. 5.1). The schedule will detail the
phases in the project, the key project milestones, the activities, and tasks to be
performed in each phase as well as their associated duration, and the resources
required to carry out each task. The project manager will update the project sched-
ule regularly during the project to reflect the actual progress made, as well as
adjusting the schedule whenever changes occur during the project such as the
addition of new resources to the project, which could result in the allocation of
tasks to the new individual.

There are several types of project schedule that may be employed in the project,
including the master schedule, the milestone schedule, and the detailed schedule.
The Master project schedule provides a high-level summary of the project schedule,
and it summarizes and tracks the key project activities and deliverables together
with their associated timeline. The Milestone project schedule summarizes and
tracks the major project milestones. A Detailed project schedule identifies and
tracks every project activity, and the most common type of project schedule is the
Gantt chart (Fig. 5.1).

The allocation of resources to carry out the various tasks and activities requires
care to ensure that the tasks are allocated to the individuals with the appropriate
skill set, and that individuals are not over-allocated (i.e., scheduled to do more
work during a given time than is available to them). The project manager will
need to reschedule whenever there are over-allocated resources, and this involves
adjusting (decreasing) the amount of time that a resource is working on a specific
task, and possibly assigning extra resources to the task.

One important resource management technique is resource levelling which aims
to smooth the allocation of resources to ensure that resources are neither over- nor
under-allocated. The Microsoft Project tool has resource levelling functionality to
deal with conflicts and over-allocation of resources.

6.9 Risk Management Planning

Risks arise due to uncertainty, and risk management is concerned with managing
uncertainty and any undesired events that may arise during the project. Risks need
to be identified, analysed, and controlled in order for the project to be successful,

6.11 Summary 119

and risk management activities take place throughout the project lifecycle. The
project manager will maintain a risk repository (this may be a tool or a risk log)
to record details of each risk including its type and description, its likelihood and
its impact, as well as the response to the risk.

Countermeasures are defined to reduce the likelihood of occurrence and impact
of the risks, and contingency plans are prepared to deal with the situation of the
risk actually occurring. Additional risks may arise during the project, and the
project manager needs to be proactive in their identification and management.

Risks need to be reviewed regularly especially following changes in the project,
as events that occur may affect existing risks (including the probability of their
occurrence and impact), and may lead to new risks. Countermeasures need to
be defined and kept up to date during the project. Risks are reported regularly
throughout the project. Chapter 7 discusses risk management in more detail.

6.10 Review Questions

. What is a project?
. What is a business case?
. What is the role of the project board?
. Explain the responsibilities of the project executive, the senior user, and
senior supplier.
5. Explain how to determine whether a proposed project makes business
sense (i.e., whether it will pay for itself).
6. How are the requirements gathered and defined?
7. How are changes to the requirements managed? Why is it important to
keep project deliverables consistent with the requirements?
8. What is the difference between requirements verification and validation?
9. What is the purpose of estimation?
10. What are the popular approaches to estimation?
11. Explain how estimates are produced using the work breakdown struc-
ture.
12. What is the purpose of project planning? Describe the main parts of a
project plan.
13. What is the purpose of project scheduling?

B W =

6.11 Summary

A project is generally undertaken to take advantage of a problem/opportunity, and
a project team is formed to implement and deliver an appropriate solution. Only
those projects that will deliver the greatest business benefit should be authorized,

120 6 Software Project Planning

with those with a limited or zero business benefit rejected. The business case pro-
vides the rationale for the project, and the project should only proceed if it has a
valid business case.

The project is kicked off and the project board oversees the project, and the
project manager is responsible for managing the project. The project board needs
to have the right people with sufficient influence and authority to remove road-
blocks that arise and to make timely decisions. It needs to be clear on what the
project is to achieve and how it will be achieved. The approach to the project is
decided (e.g., whether to build or buy), and the initial project risks, customer’s
quality expectations, and project’s acceptance criteria are defined.

The project plan defines what the project intends to achieve and how it will do
so. The scope of the project is determined, and estimates of the effort for the var-
ious tasks and activities established. The project plan and schedule are developed
and approved by the stakeholders, and the project plan may contain or reference
several other plans.

The effective management of risk during a project is essential to project suc-
cess. Risks arise due to uncertainty and the risk management is concerned with
managing uncertainty and undesired events.

References

1. G. O’Regan, A Guide to Business Mathematics, (Taylor and Francis, 2022)

2. G. O’ Regan, Concise Guide to Software Engineering, 2M Edition, (Springer, 2022)

3. A. Albrecht, Measuring application development productivity. in Proceedings of the Joint
SHARE, GUIDE, and IBM Application Development Symposium, Monterey, California, October
1417, (IBM Corporation, 1979), pp. 83-92

f')

Check for
updates

Risk Management

Key Topics

Risk category
Risk likelihood
Risk impact
Risk response
Risk log

7.1 Introduction

The effective management of risk is an important part of project management, and
it is essential that the project can manage its exposure to risk, and that it is well
prepared for any unanticipated events that may arise during project execution. Oth-
erwise, there is a danger of major impacts on the project schedule or significant
additional costs to the project. A risk that materializes is a project issue that needs
to be dealt with, and the project should have effective risk mitigation and contin-
gency plans prepared for the most serious project risks. The project manager needs
to be proactive in identifying risks that may occur during the project to ensure that
they can be controlled and dealt with effectively, and that the project will not be
adversely affected.

Risks arise due to uncertainty, and risk management is concerned with managing
uncertainty, and especially the management of any undesired events that may occur
during project execution. The future is uncertain and events may occur that cause
disruption. A risk is an undesirable event that may occur during the project, and
should the risk materialize it has a measurable impact on the project. Some risks
have a very low probability of occurrence (e.g., an earthquake, a volcanic eruption,
or tsunami), but may have a very high impact should they materialize. For example,

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025 121
G. O’Regan, Guide to Software Project Management, Undergraduate Topics in
Computer Science, https://doi.org/10.1007/978-3-031-80578-3_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-80578-3_7&domain=pdf
https://doi.org/10.1007/978-3-031-80578-3_7

122 7 Risk Management

a natural disaster such as an earthquake could have a devastating impact on the
geographical region and as well as on the project.

Risks need to be identified, analysed, and controlled in order for the project
to be successful, and risk management activities take place throughout the project
lifecycle. Once the initial set of risks to the project has been identified, they are
analysed to determine their likelihood of occurrence and their impact (e.g., on
cost, schedule or quality). These two parameters determine the risk category, and
the most serious risk category refers to a risk with a high probability of occurrence
and a high impact on occurrence (i.e., box I in Fig. 7.1).

Countermeasures are defined to reduce the likelihood of occurrence and impact
of the risks, and contingency plans are prepared to deal with the situation of the
risk actually occurring. Additional risks may arise during the project, and the
project manager needs to be proactive in their identification and management.

Risks need to be reviewed regularly especially following changes to the project
such as changes to the business case or the business requirements, loss of key
personnel, and so on. Events that occur may affect existing risks (including the
probability of their occurrence and their impact), and may lead to new risks.
Countermeasures need to be kept up to date during the project. Risks are reported
regularly throughout the project.

There is an ISO standard (ISO 31000:2018) on the implementation of risk man-
agement, and it provides a framework and a process for managing risk. It includes
best practice and guidance on risk management. The ISO 31010:2019 is a stan-
dard for risk assessment techniques, and it provides guidance on the selection and
application of techniques for assessing risk in a wide range of situations.

The Capability Maturity Model Integrated (CMMI) is a framework for the
implementation of best practice in software and system engineering, and it has
a process area that is dedicated to risk management. The Prince 2 project manage-
ment methodology has a rigorous approach to risk management, and this chapter
has been influenced by Prince 2’s approach to risk management [1].

Fig.7.1 Risk categories

7.2 Risk Management Cycle 123

7.2 Risk Management Cycle

The risk management cycle is concerned with identifying and managing risks
throughout the project lifecycle. It involves identifying risks, determining their
probability of occurrence and impact should they occur, identifying responses to
the risks, and monitoring and reporting. The Prince 2 risk management cycle is
summarized in Fig. 7.2.

Historical data and discussions with stakeholders often help in identifying the
initial risks, and the risks are then classified into types such as business and tech-
nical risks. The probability and impact of each risk is determined, and responses
to the risk are identified and implemented. The risks are regularly monitored and
reported during the project and the cycle repeats. The process of risk management
throughout the project lifecycle is illustrated in Fig. 7.3.

The risk management activities are described in more detail in Table 7.1.

The project manager will maintain a risk repository (this may be a tool or a
spreadsheet such as a risk log or a RAID log) to record details of each risk, its

Risk Analysis i Risk Management
Risk

Identification

Risk B Monitor &
Evaluation Report

Risk Plan &
Responses Resource

Selected
Response(s)

Fig.7.2 Risk management

124 7 Risk Management

Identify Risks

1. Historical Data

2. Discussions stakeholders
3. Classify risks

Risk Monitoring and
Reporting Evaluate Risks

1. Monitor known risks 1. Assess likelihood
2. Verify actions effective 2. Assess Impact

3. Identify & report new \\ / 3.Agree risk category

risks

Identify Responses
1. Prevention

2. Reduction

3. Transfer

4. Contingency

5. Acceptance

Fig.7.3 Continuous risk management cycle

type and description, its owner, its likelihood of occurrence, and its impact should
it occur (yielding the risk category), as well as the response to the risk.

7.2.1 Risk Identification

Risk identification is the process of determining risks that could prevent the project
from achieving its objectives, and the risks are recorded in a risk log (or risk
management tool). Each entry in the risk log includes a description of the risk,
an assessment, an owner, and status. Risk identification commences early in the
project and is an ongoing process throughout the project lifecycle.

Historical risks and issues from previous projects may be examined to deter-
mine if any of these are relevant to the current project. The project manager will
also identify risks from discussions with the stakeholders and the project team.
Often the project manager will discuss risks at the weekly project meeting, and as
the project proceeds further risks will be identified, analysed, and recorded in the
risk log. It is important to consider risk whenever changes occur in the project, as
often changes affect current risks and lead to new risks.

For example, risks may arise whenever there are changes to the requirements,
or issues with a software supplier, or the resignation of a team member. Other
techniques for identifying risks include brainstorming with the project team and
checklists. Risks may be broadly classified into the following types:

Business (e.g., risk of collapse of subcontractors).
Legal and regulatory (e.g., introduction of new regulations).

7.2 Risk Management Cycle

125

Table 7.1 Risk management activities
Activity

Risk management strategy

Risk identification

Evaluating the risks

Identifying risk responses and selection

Risk monitoring and reporting

Lessons learned

Description

This defines how the risks will be identified,
monitored, reviewed, and reported during the project,
as well as the frequency of monitoring and reporting

This involves identifying the risks to the project and
recording them in a risk repository (e.g., a Risk Log
or tool). Prince 2 classifies risks into:

— Business (e.g., collapse of subcontractors)

— Legal and Regulatory (e.g., new legislation or
regulatory control of the industry)

— Organizational (e.g., project team issues such as
availability of resources, un-trained staff, weak
management, personality clashes).

— Technical (e.g., scope creep, new technology,
architectural uncertainties, inadequate design)

— Environmental (e.g., flooding, fires, or earthquakes)

This involves assessing the likelihood of occurrence
of a particular risk and its impact (on cost, schedule,
etc.) should it materialize. These two parameters
determine the risk category.

Project manager/stakeholders determine the

appropriate response to a risk (e.g., reducing the

probability of its occurrence or its impact should it

occur). The risk responses include

— Prevention which aims to prevent it from occurring

— Reduction aims to reduce the probability of its
occurrence or its impact should it occur

— Transfer aims to transfer the risk to a third party

— Acceptance is when nothing can be done about it

— Contingency are actions that are carried out should
the risk materialize

Monitoring existing risks to verify that the actions
taken to manage the risks are effective, as well as
identifying new risks. Acts as an early warning that a
risk is going to materialize, and a risk that
materializes is a new project issue

Determining the effectiveness of risk management
during the project, and to learning any lessons for
future projects

Organizational (e.g., availability and skill of resources and management).
Technical (e.g., scope creep, architecture, design, etc.).
Environmental (e.g., flooding or fires).

126 7 Risk Management

7.2.2 Risk Evaluation and Prioritization

The identified risks are analysed by the project manager and relevant stakeholders
to determine their likelihood of their occurrence and impact should they material-
ize. The importance of the risks may then be determined and appropriate mitigation
plans defined. The likelihood and impact parameters below may be classified as
low, medium, or high, and the impact as its effect on the project tolerance (another
approach might be to define the impact in terms of a monetary value). Table 7.2
is one approach to likelihood and impact risk parameters.

The risk category (or risk criticality) may be determined from the likelihood
and impact parameters. For example, one approach to defining the risk category is
described in Table 7.3.

Risk category 1 is the most serious risk category, and these risks have a high
probability of occurrence and a high impact should they occur. These need careful
monitoring and management. Risk category 5 is the least serious and these risks
have a low probability of occurrence and a low impact should they occur. However,
all risks need to be carefully monitored during the project as their risk category
could change during project execution.

The project’s overall risk profile may be summarized in an easy-to-read dia-
gram, which provides a crisp summary of the information in the risk log (Fig. 7.4).
For example, there is one category 1 risk (i.e., risk 9), and two category 2 risks
(i.e., risks 4 and 8). Risk categories 1 and 2 are potentially very serious, and the
project manager will wish to mitigate risks in these categories. The risk profile

Table 7.2 Risk parameters

Likelihood Probability Impact Description

Low <20% Low Negligible impact on project tolerances
Medium 21-50% Medium Puts project tolerances at risk

High 51-100% High Places project outside tolerances

Table 7.3 Risk category

Risk category Likelihood Impact
1 High High

2 High Medium
2 Medium High

3 Medium Medium
3 High Low

3 Low High

4 Medium Low

4 Low Medium
5 Low Low

7.2 Risk Management Cycle 127

Likelihood

Fig.7.4 Risk management profile

needs to be updated regularly during the project, and changes to the probability or
impact of a risk result in updates to the risk profile diagram.

7.2.3 Risk Responses and Selection

The response to a risk involves identifying and evaluating a range of options for
controlling the risk, and preparing and implementing a risk management plan. The
actions put in place to control the risk should be proportional to the severity of the
risk, as often there are costs associated with the control measures.

The project manager and other relevant stakeholders will devise an appropri-
ate response to a risk in line with its criticality. The response may be to reduce
the probability of occurrence of the risk and/or its impact should it occur. The
responses could be

Prevention which aims to prevent the risk from materializing.
Reduction of probability of occurrence or its impact should it occur.
Transfer of risk (e.g., insurance).

Acceptance of risk.

Contingency actions.

The countermeasures for prevention either stop the risk from occurring or having
any impact should it occur. This may involve doing things differently in the project
where it is feasible to do so. The countermeasures for reduction involve actions
that either reduce the likelihood of occurrence of the risk or limit its impact to
acceptable levels should it occur.

The countermeasures for transfer involve actions to transfer the risk to a third
party such as an insurance company such that the impact of the risk is no longer
an issue for the project. Acceptance is where the risk is tolerated, as it may be that
nothing can be done at a reasonable cost to mitigate the risk, or the likelihood of
its occurrence is at an acceptable level. Contingency are planned actions that are
carried out should the risk materialize.

There are costs associated with the actions and so there is a need to balance
the cost of taking that action with the impact of the risk should it materialize. The
implementation of the selected response requires planning including the budget,

128 7 Risk Management

effort, and resources required to carry out the actions. Each action will have an
owner who has overall responsibility for the implementation of the action.

7.2.4 Risk Monitoring and Reporting

Risk management takes place throughout the project lifecycle as a risk may occur
at any time. It is essential that the risks are actively monitored by the project man-
ager and reported regularly to the stakeholders during the project. It is important
to check that the risk mitigation actions are being implemented and are having the
desired effect, as well as watching for warning signs that a risk may be about to
occur.

The project manager may present a summary of the risks in an easy-to-read
diagram to the various stakeholders regularly during the project, and this may
include weekly project reports and reports to the project board (Fig. 7.4).

7.2.5 Risk Log

The project manager may use a risk log to record the project risks, their likelihood
of occurrence and impact, responses and the countermeasures (Fig. 7.5).

7.2.6 Risk Management Checklist

Checklists are a useful way of ensuring that an activity has been completed suc-

cessfully, and that all of the required steps have been carried out. A sample
checklist for risk management is given in Table 7.4.

7.3 Risk Management Case Study

The COVID-19 pandemic (also known as the coronavirus pandemic) was first
identified in Wuhan, China in December 2019, and it was declared a pandemic in
March 2020. There were over 8 million cases reported by June 2020 with over
400,000 deaths; this had reached over 22 million reported cases with 800,000
deaths by August 2020; over 45 million reported cases with 1.2 million deaths by
November 2020; and 542 million cases with 6.3 million deaths by June 2022.
The virus was mainly transmitted between people during close contact, and
transmission usually occurred as a result of the small droplets produced by cough-
ing, sneezing, and speaking being inhaled by an individual in close proximity to
the infected person (i.e., breathing in the virus as in Fig. 7.6). The droplets fall on
the floor or on a surface, and an individual may also become infected by touching a
contaminated surface and then touching their face. The virus was most contagious
during the first 3 days after the onset of symptoms, but was also spread before

7.3 Risk Management Case Study 129

Fig.7.5 Risk log

130 7 Risk Management

Table 7.4 Risk management checklist

No. Item to check

Has the initial risk analysis been performed?

Is the likelihood of each risk identified?

Is the impact of each risk identified?

Has the risk category of each risk been determined?

Has an appropriate response for each risk been identified?
Is the response/countermeasure for each risk effective?

Is a risk owner assigned for each risk?

Is the status of each risk recorded?

29 | = (e s Y=

Have new risks been considered after changes in the project?

_
=

Are risks regularly reported during the project?

—
—

Are risks regularly monitored and managed during the project?

=
b

Have lessons been learned from the risk management activities?

Fig.7.6 Respiratory droplets when a man sneezes. Public domain

symptoms appear and also by asymptomatic individuals (i.e., people who did not
show any symptoms).

COVID-19 was a new respiratory illness and so at the outbreak of the pandemic
there was no vaccination available to provide immunity, and no recommended
medication to treat the disease. There was a phenomenal response from the
scientific and pharmaceutical industry to the development of vaccinations and
treatments to deal with the disease (the typical length of time to produce a new
vaccine is 5-10 years, but several vaccines were going through final stage 3 tri-
als in late 2020 in an unprecedented research and development race for a first to
market product).

7.3 Risk Management Case Study 131

However, the disease remained a major threat (especially to the elderly and
medically vulnerable) until those vaccines and treatments were commercially
available. Once vaccines became commercially available there was also the
extraordinary response of a section of the population who refused to take the vac-
cine (who interpreted the COVID-19 virus as a conspiracy), when the vaccine was
a way to save both their own lives and those who they were close to.

The common symptoms of COVID-19 included a fever, a cough, shortness of
breath, fatigue and loss of smell, and the incubation period was from 1 to 14 days
with some infected individuals having no symptoms. It affected the lungs and air-
ways, but most infected people developed mild-to-moderate illness, and recovered
without hospitalization, whereas the most serious cases required hospitalization
including intensive care and ventilator support.

The pandemic caused global social and economic disruption, and it led to
massive cancellation of sporting and cultural events, the closing of schools and
universities, a massive reduction in international travel, and the temporary closure
of businesses and shops.

We consider a hypothetical example of the National Health Service of an arbi-
trary country (not the NHS of the UK or any particular country) at an early stage
of the pandemic wishing to manage the COVID-19 outbreak, and aiming to ensure
that its health service is not overwhelmed by the pandemic. It will wish to con-
trol the virus by ensuring that any outbreaks are brought quickly under control by
contingency measures, and its preventive measures will aim to reduce the risk of
individuals becoming infected with the virus, and to limit the impact should they
become infected. It may include activities which are given in Table 7.5.

7.3.1 Risk Monitoring and Control (COVID-19)

The health service will communicate the status of the pandemic on a daily basis to
the government of the day, and will provide medical advice to political decision-
makers based on their medical analysis. The daily briefing will include quantitative
data such as

Number of new cases per day

New Clusters and Location

Number of fatalities per day

The R Rate (measurement of number of people infected by one person)
The 14-rolling day average of virus cases per 100,000 of population
The percentage increase/decrease in the virus

The medical advice and recommendations will be considered by the government
of the day (cabinet subcommittee), and the response from the government may

include:

Impose restrictions (e.g., on bars/restaurants/sporting events)

132

7 Risk Management

Table 7.5 Risk management for COVID-19

Activity

Risk identification

Description

being overwhelmed by coronavirus

Risk evaluation

country is for a pandemic:
— Has it a best-in-class health service?

— Is the health service trained for a pandemic?
— Is there an effective test and trace system in place?

— Can close contacts of an infected person be easily determined?
— How well educated are the population?
— Is it capable of controlling entry of the virus into the state?
— Is it an island and able to close its borders?
— Does it have the infrastructure to introduce quarantine measures for

newly arrived?

Risk of many individuals contracting COVID-19 and the health service

The likelihood of the risks materializing depends on how prepared the

— Has it effectively communicated the dangers of the virus, and the

preventive measures to be followed by all?

— Does it have the buy in for change from its residents?

The likelihood of catching the virus or the health service being
overwhelmed may be considered medium (this may be reduced by
preventive measures such as maintaining a social distance of 1-2 metres,
hygiene measures such as regular hand washing, wearing face masks,
avoiding crowds, and controlling entry to state with quarantine measures).
The impact of the health service being overwhelmed or should many
people catch the virus is potentially high (although most people who are
young/middle aged and in good health with no underlying medical
conditions will experience only mild symptoms or be asymptomatic). This
could result in ventilators being unavailable for seriously ill patients.

This means that we are dealing with a category two risk.

Risk responses

(For preventing
individuals contacting
COVID-19 and health
service being
overwhelmed)

Prevention

Set up temporary
hospitals

Place private hospitals
in temporary public
ownership

Close borders

Reduce

Self-isolate if
symptoms are
present and monitor

Take test to confirm
and trace all others
potentially infected

Take medication

Contingency

Cancel all leaves for
healthcare workers

Crisis plea to retired/
career break healthcare
professionals to return
Emergency hiring of
overseas healthcare
professionals

(continued)

74 Review Questions

133

Table 7.5 (continued)

Risk monitoring and
reporting

Impose wearing of facemasks in shops/public transport.

Prevention

Quarantine
(new arrivals)

Impose national
lockdown

Impose restrictions
(e.g., restaurants/bars)

Regular hand washing
and disinfecting

Maintain social
distance
(1-2 metres)

Compulsory face
masks

Self-isolation if
symptoms/monitor

Tracker app for Test/
Trace

Develop vaccination
Develop treatments

Get vaccinations

Reduce

Monitor/GP/
Hospital

Hospital (intensive
care/oxygen/
ventilator)

Take new
vaccination

Contingency

Re-impose national
lockdown

Impose local lockdown
to deal with clusters

The health service will communicate the status of the outbreak on a
daily basis including key metrics such as

— Aurrival rate of infections per day

— Number of deaths from the virus per day
— 14-day rolling average of virus cases per 100,000 population
— R rate (the average number of people that one person infects)
— % increase or decrease of virus
Based on analysis of the metrics action is taken to control and live

with the outbreak

Suspend international travel

Impose local lockdowns to deal with outbreaks in clusters

7.4

Review Questions

1. What is a risk?
2. Explain the difference between a risk and an issue.

134 7 Risk Management

Explain how a risk is evaluated in terms of its likelihood and impact.
What is the role of the project manager in risk management?

What is the role of the project board in risk management?

What is the purpose of the risk profile summary?

What are the possible responses to a risk?

Why is it important to monitor and manage risks?

What is a risk mitigation plan and when should it be employed?
What is a contingency plan and when should it be used?

What is the purpose of a risk log?

._.
=9 P e RGN

—_

7.5 Summary

The effective management of risk is an important part of project management, as
it is essential that the project be well prepared for any unanticipated events that
may arise during project execution. Otherwise, there is a danger of major impacts
on the project schedule or significant additional costs to the project.

A risk that materializes is a project issue that needs to be dealt with, and the
project should have effective risk mitigation and contingency plans prepared for the
most serious project risks. The project manager needs to be proactive in identifying
risks that may occur during the project to ensure that they can be controlled and
dealt with effectively.

Risks arise due to uncertainty, and risk management is concerned with manag-
ing uncertainty. A risk is an undesirable event that may occur during the project,
and it has a measurable impact on the project. Some risks have a very low
probability of occurring, but others may have a very high impact.

Once the initial set of risks to the project has been identified, they are analysed
to determine their likelihood of occurrence and their impact. Countermeasures are
defined to reduce the likelihood of occurrence and impact of the risks, and contin-
gency plans are prepared to deal with the situation of the risk actually occurring.
Additional risks may arise during the project, and the project manager needs to be
proactive in their identification and management.

Risks need to be reviewed regularly especially following changes to the project.
Events that occur may affect existing risks (including the probability of their
occurrence and their impact), and may lead to new risks.

Reference

1. Office of Government Commerce, Managing Successful Projects with PRINCE2, (2004)

l‘)

Check for
updates

Quality Management of Software
Projects

Key Topics

Software inspections

Software testing

Software process improvement
Problem-solving

ISO 9001

CMMI

Auditor

8.1 Introduction

The success of business is highly influenced by the quality of software, and it
is essential that the software is safe, reliable, of a high quality, and fit for pur-
pose. Companies may develop their own software internally, or they may acquire
software solutions off-the-shelf or from bespoke software development. Soft-
ware development companies need to deliver high-quality and reliable software
consistently on time to their customers.

The development of software involves many processes such as those for defin-
ing requirements; processes for project estimation and project planning; processes
for design, implementation, testing, and so on.

It is important that the processes themselves are fit for purpose, and a key
premise in the software quality field is that the quality of the resulting software is
influenced by the quality and maturity of the underlying processes, and compliance
with them. Therefore, it is necessary to focus on the quality of the processes as
well as on the quality of the resulting software.

Watts Humphrey is considered the father of software quality. Haumphrey was
an American software engineer and vice president of technical development at

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025 135
G. O’Regan, Guide to Software Project Management, Undergraduate Topics in
Computer Science, https://doi.org/10.1007/978-3-031-80578-3_8

8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-80578-3_8&domain=pdf
https://doi.org/10.1007/978-3-031-80578-3_8

136 8 Quality Management of Software Projects

IBM, and he dedicated much of his career to addressing the problems of software
development such as schedule delays, cost overruns, software quality, and produc-
tivity. He joined IBM in 1959 initially as a hardware architect, but most of his IBM
career was in management. He was vice president of technical development, where
he oversaw 4,000 engineers in 15 development centres in over 7 countries. He was
influenced by others at IBM including Fred Brooks who was the project manager
of the IBM System/360 project (see Chap. 8 of [1]); Michael Fagan who devel-
oped the Fagan Inspection Methodology (see Chap. 7 of [2]); and Harlan Mills
who developed the Cleanroom methodology (see Chap. 2 of [3]). Humphries ran
the software quality and process group at IBM towards the end of his IBM career,
and he became very interested in software quality.

He retired from IBM in 1986 and joined the newly formed Software Engi-
neering Institute (SEI) at Carnegie Mellon University. He made a commitment to
change the software engineering world by developing sound management princi-
ples for the software industry [4]. The SEI has largely fulfilled this commitment,
and it has played an important role in enhancing the capability of software
organizations throughout the world.

Humphries established the software process program at the SEI, and this led
to the development of the software Capability Maturity Model (CMM) and its
successors. Humphries asked questions such as:

How good is the current software process?
What must I do to improve it?

Where do I start?

The CMM is a framework to help an organization to understand its current pro-
cess maturity and to prioritize improvements. The SEI introduced software process
assessment and software capability evaluation methods in the early 1990s with
the original CMM, and these include the CBA/IPI and CBA/SCE methodologies.
The CMM model and the associated assessment methods were widely adopted by
organizations around the world, and their successors are the CMMI Model and the
SCAMPI appraisal methodology.

Humpbhries focused his later efforts to developing the Personal Software Pro-
cess (PSP) and the Team Software Process (TSP). These are approaches that teach
engineers the skills they need to make and track plans, and to produce high-quality
software with zero defects. The PSP helps the individual engineer to collect rele-
vant data for statistical process control, whereas the TSP focuses on teams, and its
goal is to assist teams to improve the productivity and quality of their work.

8.1.1 What is Software Quality?

There are various definitions of quality such as the definition proposed by Philip
Crosby as “conformance to the requirements”. This definition does not take the

8.2 A Short History of Quality 137

Table 8.1 ISO 9126-quality characteristics

Characteristic ~ Description

Functionality =~ This indicates the extent to which the required functionality is available in the

software.

Reliability This indicates the extent to which the software is reliable.

Usability This indicates the extent to which the users of the software judge it to be easy
to use.

Efficiency This characteristic indicates the efficiency of the software.

Maintainability This indicates the extent to which the software product is easy to modify and
maintain.

Portability This indicates the ease of transferring the software to a different environment.

intrinsic difference in the quality of products into account in judging the quality of
the product. For example, this definition might suggest that a Mercedes car is of
the same quality as a Lada car.' Further, the definition does not consider whether
the requirements are actually appropriate for the product.

Juran defines quality as “fitness for use” and this is a better definition, although
it does not provide a mechanism to judge better quality when two products are
equally fit to be used. The ISO 9126 standard” for information technology [1S0:91]
is a framework for the evaluation of software product quality. It defines six product
quality characteristics (Table 8.1), which indicate the extent to which a software
product may be judged to be of high quality by the customers. These include.

8.2 A Short History of Quality

In the Middle Ages, a craftsman was responsible for the complete development
of a product from its conception to delivery to the customer. This led to a strong
sense of pride and ownership in the quality of the product, and apprentices joined
craftsmen to learn the skills of the trade.

The industrial revolution led to a change to this traditional paradigm, and labour
became highly organized with workers responsible for a particular part of the man-
ufacturing process. The sense of ownership and the pride of workmanship in the
product were diluted, as workers were now responsible only for their portion of
the product, and not the quality of the product as a whole.

This led to a requirement for more stringent management practices, including
planning, organizing, implementation, and control. It inevitably led to a hierarchy
of labour with various functions identified, and a reporting structure for the various

1 Most people would judge the Mercedes to be of superior quality.
2 This has been superseded by the ISO/IEC 25,010:2011 standard which has eight product quality
characteristics.

138 8 Quality Management of Software Projects

Fig.8.1 Shewhart’s PDCA
cycle

functions. Supervisor controls were needed to ensure that quality and productivity
issues were addressed.

Walter Shewhart was a statistician at AT&T Bell Laboratories (or Western Elec-
tric Co. as it was known in the 1920s). He is regarded as the founder of statistical
process control (SPC), which remains important today for monitoring and control-
ling a process. He developed a control chart, which is a tool that can be used to
control the process, with upper and lower limits for process performance specified.
The process is under control if it is performing within these limits (see Fig. 8.12).

The Shewhart model is a systematic approach to problem-solving and process
control. It consists of four steps which are used for continuous process improve-
ment, and these are plan, do, check, act, and it is known as the “PDCA Model” or
Shewhart’s model (Fig. 8.1).

Shewhart argued that quality and productivity improve as process variability is
reduced. His influential book, The Economic control of quality of manufactured
product [5] outlines the methods of statistical process control to reduce pro-
cess variability. The book predicted that productivity would improve as process
variability was reduced, and Japanese engineers verified this in the 1950s.

W. Edwards Deming was a major figure in the quality movement. He was influ-
enced by Shewhart’s work on statistical process control, and Deming’s ideas on
quality were adopted in post Second World War Japan and played an important
role in transforming Japan’s industry (Fig. 8.2).

Deming argued that it is not sufficient for everyone in the organization to be
doing one’s best: instead, what is required is that there be a consistent purpose and
direction in the organization. That is, it is first necessary that people know what
to do, and there must be a constancy of purpose from all individuals to ensure
success.

He argued that there is a very strong case for improving quality, as costs will
decrease due to less rework of defective products, and productivity will increase as
less time is spent in reworking. This will enable the company to increase its market
share, with better quality and lower prices, and to stay in business. Conversely,
companies that fail to address quality issues will lose market share, and go out
of business. Deming was highly critical of the then American approach to quality,
and the lack of vision of American management to quality management.

Deming’s influential book “Out of the Crisis” [6] proposed 14 principles to
transform the Western style of management of an organization to a quality and

8.2 A Short History of Quality 139

Fig.8.2 W. Edwards Deming. Public Domain

customer focused organization. The implementation of his approach helps an
organization to produce high-quality products. It includes:

e Constancy of purpose
e (Quality built into the product
e Continuous improvement culture

Joseph Juran (Fig. 8.3) was a major figure in the quality movement, and he
argued for a top down approach to quality. He defined quality as “fitness for
use”, and he argued that quality issues are the direct responsibility of management.
Management must ensure that quality is planned, controlled, and improved.

The trilogy of quality planning, control, and improvement is known as the “Ju-
ran Trilogy”, and is usually described by a diagram with time on the horizontal
axis and the cost of poor quality on the vertical axis (Fig. 14.31).

Quality planning consists of setting quality goals, developing plans and deter-
mining the resources required to meet the goals. Quality control consists of
evaluating performance, setting new goals, and taking action. Quality improve-
ment consists of improving delivery, eliminating wastage and improving customer
satisfaction. Juran’s10 step program is defined in [7].

Juran defined an approach to achieve a new quality performance level termed
“Breakthrough and Control”. It is described pictorially by a control chart showing
the old performance level with occasional spikes or random events; what is needed
is a breakthrough to a new and more consistent quality performance, i.e., a new
performance level with performance achieved at that level.

140 8 Quality Management of Software Projects

Fig.8.3 Joseph Juran

The example in Fig. 8.12 presents the breakthrough in developing a more accu-
rate estimation process. Initially, the variation in estimation accuracy is quite large,
but as an improved estimation process is put in place, the control limits are nar-
rowed and more consistent estimation accuracy is achieved. The breakthrough is
achieved by a sustained and coordinated effort, and the old performance standard
becomes obsolete. The difference between the old and the new performance level
is known as the “chronic disease” which must be diagnosed and cured.

Philip Crosby was a key figure in the quality movement, and his quality
improvement grid influenced the Capability Maturity Model (CMM) developed
by the Software Engineering Institute. His influential book Quality is Free [8] out-
lines his philosophy of doing things right the first time, i.e., the zero defects (ZD)
program. Quality is defined as “conformance to the requirements” and he argues
that people have been conditioned to believe that error is inevitable.

Crosby argued that people in their personal lives do not accept this: for exam-
ple, it would not be acceptable for nurses to drop a certain percentage of newly

8.2 A Short History of Quality 141

born babies. He further argues that the term “Acceptable Quality Level” is a com-
mitment to produce imperfect material. Crosby notes that defects are due to two
main reasons: lack of knowledge or a lack of attention of the individual.

He argued that lack of knowledge may be measured and addressed by training,
but that lack of attention is a mind-set that requires a change of attitude by the
individual. The net effect of a successful implementation of a zero defects program
is higher productivity due to less reworking of defective products. Thus, quality,
in effect, is free.

Crosby’s defined a 14-step quality improvement program to achieve the desired
quality level of zero defects. It requires management commitment to be successful,
and an organization-wide quality improvement team needs to be set up. A mea-
surement program is put in place to determine the status and cost of quality within
the organization. The cost of quality is then shared with the staff and corrective
actions are identified and implemented. The zero defect program is communicated
to the staff, and one day every year is made a zero defects day, and is used to
emphasize the importance of zero defects to the organization.

Crosby’s Quality Management Maturity Grid measures the maturity of the cur-
rent quality system with respect to several quality management categories, and
highlights areas that require improvement. Six categories of quality management
are considered: management understanding and attitude towards quality, quality
organization status, problem handling, the cost of quality, quality improvement
actions, and summation of company quality posture.

Each category is rated on a 1 to 5 maturity scale and this indicates the maturity
of the particular category. Crosby’s maturity grid was later adapted to the CMM.

There are several other important pioneers in the quality field including Shingo
who developed his own version of zero defects termed “Poka yoke” (or defects =
0). This involves identifying potential error sources in the process and monitoring
these for errors. Causal analysis is performed on any errors found, and the root
causes are eliminated. This approach leads to the elimination of all errors likely to
occur, and thus only exceptional errors should occur. These exceptional errors and
their causes are then eliminated. The failure mode and effects analysis (FMEA)
methodology is a variant of this. Potential failures to the system or sub-system are
identified and analysed, and the causes and effects and probability of failure are
documented.

Kaoru Ishikawa did work on gquality control circles (QCC). A quality control
circle is a small group of employees who do similar work and meet regularly
to identify and analyse work-related problems. This involves brainstorming, rec-
ommending, and implementing solutions. The problem-solving tools employed
include Pareto analysis, fishbone diagrams, histograms, scatter diagrams, and
control charts (see Sect. 8.7). A facilitator will train the quality circle team leaders.

Armand Feigenbaum did work on tofal quality control which concerns quality
assurance applied to all functions in the organization. Total quality control is con-
cerned with controlling quality throughout, and it inspired the concept of TQM,
which is a philosophy of quality management and improvement involving all staff

142 8 Quality Management of Software Projects

and functions throughout the organization. There is a more detailed account of the
work of the quality pioneers in [18].

8.3 Total Quality Managements

Total quality management (TQM) is a management philosophy that focuses atten-
tion on quality and in developing a culture of quality within the organization.
Quality is a company-wide objective, and the organization’s goal is total customer
satisfaction. The organization aims to deliver products and services that totally sat-
isfy the customer needs. It is a holistic approach and it applies to all levels and
functions within the organization.

TQM employs many of the ideas of the pioneers in the quality movement. Man-
agement are required to take charge of the implementation of quality management,
and all staff will need to be trained in quality improvement activities.

The implementation of TQM involves a focus on all areas within the organiza-
tion, and in identifying areas for improvement. The problems in a particular area
are evaluated and data is collected and analysed. An action plan is then prepared
and the actions are implemented and monitored. This is repeated for continuous
improvement. It involves:

Identify improvement area(s)
Problem evaluation

Data collection

Data analysis

Action plan

Implementation of actions
Monitor effectiveness
Repeat

There are four main parts of TQM (Table 8.2).

Total quality management (TQM) is a holistic approach to quality management,
and this management philosophy involves customer focus, process improvement,
developing a culture of quality within the organization and developing a measure-
ment and analysis program. It emphasizes that customers have rights and quality
expectations, which should be satisfied, and that everyone in the organization is
both a customer and has customers.

Quality needs to be built into the product with quality addressed at every step
in the process. It requires that all functions, in the organization follow high stan-
dards, with 100% commitment from the top management. All staff must be trained
in quality management and participate in quality improvement. A commitment
to quality must be instilled in all staff, and the focus changes within the orga-
nization changes from firefighting to fire prevention. Problem-solving is used to
identify the root causes of problems, and corrective action is taken to prevent their
reoccurrence.

8.4 1SO 9000 Standard 143

Table 8.2 Total Quality Management

Part Description
Customer This involves identifying internal and external customers and recognizing that
Focus all customers have expectations and rights which need to be satisfied every

time. Quality must be considered in every aspect of the business, and the focus
is on fire prevention

Process This involves a focus on the process and improvement to the process via
problem-solving. The objective of the improvements is to reduce waste and
eliminate errors

Measurement This involves setting up a measurement program within the organization to
and Analysis enable effective analysis of the quality of the process and product

Human This involves developing a culture of quality and customer satisfaction

Factors throughout the organization. The core values of quality and customer
satisfaction need to be instilled in the organization. This requires training for
the employees on quality, customer satisfaction, and continuous improvement

The ISO 9000 standard is a structured approach to the implementation of TQM.
Its clauses provide guidance on what needs to be done as well as the requirements
to be satisfied.

8.3.1 Problem-Solving Techniques

There is a relationship between the quality of the process and the quality of the
products built from the process. Defects may be due to a defect in the process
itself, and so it is important to identify any systemic defects in the process.

Problem-solving teams are formed to solve a particular problem and to identify
appropriate corrective actions. The team may be disbanded after the successful
resolution of the problem, and the team first agrees on the problem to be solved.
They collect and analyse the facts, and perform analysis to determine the appro-
priate solution. They use various tools such as fishbone diagrams, histograms,
trend charts, Pareto diagrams, and bar charts to assist with problem-solving, and
to analyse and identify appropriate corrective actions. Problem-solving techniques
are discussed in more detail in Sect. 8.7.

8.4 ISO 9000 Standard

ISO 9000 is a family of standards consisting of three standards: namely ISO
9000:2015, ISO 9001:2015, and ISO 9004:2018. The ISO 9000 standard (Quality
Management Systems—Fundamentals and Vocabulary) covers the fundamen-
tal concepts and principles of quality management, as well as the terms and
vocabulary used in the standards.

The ISO 9001 standard (Quality Management Systems—Requirements) spec-
ifies the requirements of a quality management system and is applicable to

144 8 Quality Management of Software Projects

Fig.8.4 1SO 9001 quality management system

manufacturing, software, and service organizations. It is based on several underly-
ing quality management principles such as customer focus, leadership, engagement
of people, and continuous improvement. ISO 9001 is a process-oriented approach
that uses evidence-based decision-making, and relationship management (Fig. 8.4).

ISO 9001 details the requirements that the quality management system of the
organization must satisfy to be ISO 9001 compliant. There are over a million
ISO 9001 certified organizations in the world, and third-party certification bodies
provide independent confirmation that the organization meets the requirements of
the standard.

The ISO 9004 standard (Quality Management—Quality of an organization—
Guidance to achieve sustained success) provides guidance for continuous improve-
ment. It may be used to assist the organizations in the implementation of ISO
9001, and it includes a self-assessment methodology that allows the organization
to identify areas of strengths or weaknesses and opportunities for improvement.

ISO 9000 was first published as a standard in 1987, and it was based on the
British BS5750 series of standards developed by the British Standards Institution
(BSI). BS 5750 was later proposed as an ISO standard.

ISO 9001 is a generic quality management standard that may be employed in
hardware, software development, or service companies, and so parts of the stan-
dard need to be interpreted to the type of organization that it is being applied. /¢
is designed to apply to any product or service that an organization supplies. The
standard is customer and process focused and applies to the processes that an orga-
nization uses to create and control products and services. It emphasizes continuous
improvement with guidance provided by the ISO 9004 standard.

8.5 Software Process Improvement with CMMI 145

The implementation of ISO 9001 involves understanding the requirements of
the standard, and how the standard applies to the organization. It requires the
organization to identify its quality objectives, define a quality policy, produce doc-
umented procedures, and carry out independent audits to ensure that the processes
and procedures are followed.

An organization may be certified against the ISO 9001 standard to gain recogni-
tion for its commitment to quality and continuous improvement. The certification
involves an independent assessment of the organization to verify that it has imple-
mented the ISO 9001 requirements properly and that the quality management
system is effective. It will also verify that the processes and procedures defined
are consistently followed and that appropriate records are maintained.

8.5 Software Process Improvement with CMMI

The origins of the software process improvement field go back to Walter She-
whart’s work on statistical process control in the 1930s. Shewhart’s work was later
refined by Deming and Juran, who argued that high-quality processes are essential
to the delivery of a high-quality product. They argued that the quality of the end
product is largely determined by the processes used to produce and support it and
that there needs to be an emphasis on the process as well as on the product.

Watt Humphries and others at the SEI applied the work of Deming, Juran, and
Crosby to the software field leading to the birth of the software process improve-
ment field (SPI). Software process improvement is concerned with practical action
to improve the software processes in the organization to ensure that business goals
are achieved more effectively.

The development of high-quality software requires good software development
processes to be in place for:

Project management

Estimation

Supplier Selection and Management
Risk management

Requirements Development and Management
Design and Development

Software development lifecycles
Quality assurance/management
Software inspections

Software testing

Configuration management
Customer satisfaction

Software process improvement initiatives support an organization in achieving its
key business goals more effectively, where the business goals could be delivering
software faster to the market, improving quality, and reducing or eliminating waste

146 8 Quality Management of Software Projects

[9]. It makes business sense and provides a return on investment. The CMMI
model includes best practice for processes in software and systems engineering
(Fig. 8.5).

The CMMI provides a solid engineering approach to the development of soft-
ware, and it describes what the processes should do rather than how they should
be done. The process model will need to be interpreted and tailored to meet the
needs of the organization, which allows professional judgment to be used in the
implementation [10].

The SEI adapted the process improvement principles used in the manufacturing
field to the software field. They developed the original CMM model in the early
1990s, and its successor the CMMI in 2001. The CMMI states what the organiza-
tion needs to do to mature its processes rather than how this should be done. This

Fig.8.5 CMMI model

8.5 Software Process Improvement with CMMI 147

gives the organization the flexibility on how it chooses to implement its processes,
and the model is used by thousands of organizations worldwide.

The CMMI consists of five maturity levels with each maturity level consist-
ing of several process areas. Each process area consists of a set of goals, which
are implemented by practices related to that process area. Level two is focused
on management practices; level three is focused on engineering and organization
practices; level four is concerned with ensuring that key processes are perform-
ing within strict quantitative limits; and level five is concerned with continuous
process improvement. CMMI v1.3 (released in 2010) supports Agile software
development.® Table 8.3 describes the maturity levels in more detail.

The implementation of the CMMI generally starts with improvements to pro-
cesses at the project level. The focus at level two is on improvements to managing
projects and suppliers, and improvements are made to project management, as well
as to supplier selection and management practices.

The improvements at level 3 involve a shift from the focus on projects to
the organization. It involves defining standard processes for the organization, and
projects may then tailor the standard process (using tailoring guidelines) to pro-
duce the project’s software process. Projects are not required to do everything in
the same way as the tailoring of the process allows the project’s defined software
process to reflect the unique characteristics of the project: i.e., a degree of variation
is allowed as per the tailoring guidelines.

The implementation of level three requires defining procedures and standards
for engineering activities such as design, coding, and testing. Procedures are
defined for peer reviews, testing, risk management, and decision analysis.

The implementation of level four involves achieving process performance
within defined quantitative limits. This involves the use of metrics and setting
quantitative goals for project and process performance, and managing process per-
formance. The implementation of level 5 is concerned with achieving a culture of
continuous improvement in the company. The causes of defects are identified and
resolution actions are implemented to prevent a reoccurrence.

The CMMI allows organizations to benchmark themselves against other orga-
nizations. This is done by a formal SCAMPI appraisal conducted by an authorized
lead appraiser. The results of the appraisal are generally reported back to the SEI,
and there is a strict qualification process to become an authorized lead appraiser.
An appraisal is useful in verifying that an organization has improved, and it enables
the organization to prioritize improvements for the next improvement cycle [11].

The CMMI (v1.3) is discussed in more detail in Chap. 20 of Ref. [2] and in Ref.
[12, 13]. The reader is referred to the CMMI Institute (https://cmmiinstitute.com),
which is now part of ISACA (Information Systems Audit and Control Association)
for the latest developments with the CMMI.

3 The CMMI has been developed further in recent years and v3.0 was released in 2023.

https://cmmiinstitute.com

148

8 Quality Management of Software Projects

Table 8.3 CMMI maturity levels

Maturity level

Initial

Managed

Defined

Quantitatively
Managed

Optimizing

Description

Processes are often ad hoc or chaotic with performance often unpredictable.
Success is often due to the heroics of people rather than having high-quality
processes in place. The defined process is often abandoned in times of crisis.
It is difficult to repeat previous success, since success is due to heroic efforts
of its people rather than processes. These organizations often over-commit,
as they often lack an appropriate estimation process on which to base project
commitments.

Firefighting is a way of life in these organizations. High-quality software
might be produced but at a cost including long hours, high level of rework,
over budget and schedule, and unhappy customers.

The processes are defined at the project level, and there are good project
management practices in place, and planning and managing of new projects
is based on experience with previous projects.

The process is planned, performed, and controlled, and process discipline is
enforced with independent audits.

The status of the work products produced by the process is visible to
management at major milestones, and changes to work products are
controlled. The work products are placed under appropriate configuration
management control.

The requirements for a project are managed and changes to the requirements
are controlled. Project management practices are in place to manage the
project, and a set of measures are defined for budget, schedule, and effort
variance. Subcontractors are managed.

A maturity level three organization has standard processes defined that
support the whole organization.

These standard processes provide consistency in the way that projects are
conducted. There are guidelines that allow the organization process to be
tailored & applied to each project.

There are standards in place for design and development and procedures
defined for effective risk management and decision analysis.

Level 3 processes are generally defined more rigorously than L2 processes,
and the definition includes the purpose of the process, inputs, entry criteria,
activities, roles, measures, verification steps, exit criteria and output. There is
an organization-wide training program.

A level 4 organization sets quantitative goals for the performance of key
processes, and these processes are controlled using statistical techniques.
Software process and product quality goals are set and managed, and the
processes are stable and perform within narrowly defined limits.

A level 4 organization has predictable process performance, with variation in
process performance identified and the causes of variation corrected.

A level 5 organization has a continuous process improvement culture in
place, and processes are improved based on a quantitative understanding of
variation.

Defect prevention activities are now an integral part of the development
lifecycle. New technologies are evaluated and introduced into the
organization. Processes may be improved incrementally or through
innovative process and technology improvements.

8.6 Software Quality Controls 149

8.6 Software Quality Controls

Software quality controls include processes such as software inspections, testing,
audits, quality reviews, learning lessons, and so on. Software inspections consist
of a formal review of a deliverable by experts independent of the author, and
the objective is to identify defects in the work product and to provide confidence
in its correctness. Software testing is concerned with activities to ensure that the
end product satisfies the functional and non-functional requirements and is fit for
purpose.

Software testing consists of “white box” or “black box” testing techniques and
includes unit, system, performance, and acceptance testing. The testing is quite
methodical and includes a comprehensive set of manual or automated test cases.
The activities involve the execution of the defined tests and the correction of any
failed or blocked tests.

The cost of correction of a defect is related to the phase in which it is detected
in the lifecycle. Errors detected in phase are the least expensive to correct, and
defects detected out of phase become increasingly expensive to correct. The most
expensive defect is that of a requirements defect identified by the customer, as its
correction may involve changes to the requirements, design, and code.

It is desirable to identify defects as early as possible to minimize the effort and
cost required to correct them. It is important to learn lessons from defects and to
endeavour to prevent them from reoccurring. One approach to defect prevention
is to hold causal analysis meetings to brainstorm and identify the root causes of
problems and to identify and implement corrective actions to prevent reoccurrence.

The purpose of an audit is to verify that the processes and standards are consis-
tently followed in the project and to identify any quality issues and improvements
to the process.

The organization may conduct regular (e.g., monthly) quality reviews of the
projects taking place to ensure that they are under control (e.g., on schedule and
budget and with the right quality).

The purpose of the lessons learned process is to record the lessons learned
during the project and to review them at the end of the project where a lessons
learned report of the key lessons learned is prepared and published (see Chap. 11).

8.6.1 Software Inspections

The objective of software inspections is to build quality into the software product,
rather than adding quality later. There is clear evidence that the cost of correction
of a defect increases the later that it is detected, and it is therefore more cost-
effective to build quality in rather than adding it later in the development cycle.
Software inspections are an effective way of doing this and they provide a sys-
tematic examination of the software code or documentation without execution of
the code [14]. An inspection may be conducted manually or through the use of
specialized tools.

150 8 Quality Management of Software Projects

There are several types of software inspections such as code analysis, code
reviews, structured walkthroughs, informal reviews, and Fagan inspections. An
informal review consists of a walkthrough of the document or code by an indi-
vidual other than the author. The meeting usually takes place at the author’s desk
(or in a meeting room), and the reviewer and author discuss the document or code
informally.

The Fagan inspection methodology [15] includes pre-inspection activity, an
inspection meeting, and post-inspection activity. It was developed by Michael
Fagan at IBM and it aims to identify and remove errors in work products. The
process mandates that requirement documents, design documents, source code,
and test plans all be formally inspected by experts independent of the author of
the deliverable.

There are various roles defined in the process including the moderator who
chairs the inspection. The moderator ensures that all of the inspectors are trained
and receive the appropriate materials for the inspection. S/he ensures that sufficient
preparation is done and that the speed of the inspection does not exceed the rec-
ommended guidelines. The reader reads or paraphrases the particular deliverable;
the author is the creator of the deliverable and has a special interest in ensuring
that it is correct. The tester role is concerned with the test viewpoint.

Software inspections play an important role in building quality into the soft-
ware, and the quality of the delivered software product is only as good as the
quality at the end of each phase, so a phase should be exited only when the desired
quality has been achieved. They need to be planned and included in the project
schedule.

The effectiveness of an inspection is influenced by the expertise of the inspec-
tors, adequate preparation by the inspectors, the speed in which the inspection
is performed, and compliance with the inspection process. A formal inspection
methodology provides guidelines on the inspection and preparation rates, and entry
and exit criteria are defined for the inspection.

The inspection process will consider whether the design is correct with respect
to the requirements and whether the source code is correct with respect to the
design. The errors identified are classified into various types and the data are gen-
erally recorded to enable analysis to be performed on the most common types of
errors to yield actions to minimize the reoccurrence of the most common defect

types.

8.6.2 Software Testing

Testing is a sub-project of a project and needs to be managed as such, so good
planning, monitoring, and control are required. Test planning involves defining the
scope of the testing to be performed; defining the test environment; estimating
the effort required to define the test cases and to perform the testing; identifying
the resources needed (including people, hardware, software, and tools); assigning

8.6 Software Quality Controls 151

the resources to the tasks; defining the schedule; and identifying any risks to the
testing and managing them.

Test monitoring and control involves monitoring progress and taking corrective
action when progress deviates from expectations; re-planning where the scope of
the testing has changed; communicating progress to the various stakeholders with
test reports to provide visibility into the testing carried out; taking corrective action
to ensure quality and schedule are achieved; managing risks and issues; managing
the change requests that arise during the project, and providing a final test report
with a recommendation to go to acceptance testing. The management of software
testing involves:

— Defining the scope of the testing.

— Determine types of testing to be performed

— Estimates of time, effort, cost, resources

— Determining the start and end dates for the testing

— Define how test defects will be logged and reported

— Definition of test environment

— Scheduling the various tasks and activities

— Preparing the initial test schedule and key milestones

— Identifying the key risks to testing

— Monitoring progress, budget, schedule

— Re-planning and re-scheduling

— Communicating progress to affected stakeholders/Test Reports
— Preparing status reports and presentations

— Conducting lessons learned review to learn any lessons from the testing

The test plan for the project may be part of the project plan but it is often in a
separate document. It includes the scope of the testing, the personnel involved,
the resources and effort required, the key milestones, the definition of the test
environment, any special hardware and test tools required, and the planned test
schedule. There may be a separate test specification plan for the various types
of testing, which records the test cases, including the purpose of each test case,
the inputs and expected outputs, and the test procedure for the execution of the
particular test case.

Several types of testing are performed during the project, including unit,
integration, system, regression, performance, and user acceptance testing. The soft-
ware developers perform the unit testing to verify the correctness of a module.
This type of testing is termed “white box” testing and is based on knowledge of
the internals of the software module. It involves defining and executing test cases
to ensure code and branch coverage. The objective of “black box” testing is to
verify the functionality of a module (or feature or the complete system itself),
and knowledge of the internals of the software module is not required. There is
detailed information on testing in [16].

152 8 Quality Management of Software Projects

8.6.3 Audits and Quality Assurance Group

There may be an independent quality assurance group that promotes quality in the
organization. It provides an independent assessment of the quality of the product
being built and acts as the voice of the customer, and aims to ensure that quality
is considered at each step in the process.

The quality group will perform audits of various projects, groups, suppliers, and
departments, and will determine the extent to which the processes are followed,
and report any weaknesses in the processes and non-compliances identified. The
key responsibilities of the quality group are:

Promotes quality in organization

Conducts audits to verify compliance

Reports audit results to management

Provides visibility to Management on processes followed
Facilitate software process improvement
Perform/participate in release sign-offs

The audit provides visibility into the work products and processes used to develop
the work products. It consists of an interview with the project team, and the auditor
examines the processes followed and deliverables produced by each team member,
and assesses if there are any quality risks associated with the project based on the
information provided. It is a systematic enquiry into the way that things are done,
and audits of projects, suppliers, and departments are conducted.

The auditor relates the performed process to the defined process and writes a
report detailing the findings from the audit and the recommended corrective actions
with respect to any identified non-compliance with the defined process. S/he will
perform a follow-up activity at a later stage to verify that the corrective actions
have been carried out. The audit activities include planning activities, the audit
meeting, gathering data, reporting the findings, assigning actions, and following
the actions through to closure. It gives:

Visibility into the extent of compliance with the defined processes and stan-
dards.

Visibility into the processes and standards in use in the organization.

Visibility into the effectiveness of the defined processes.

Visibility into the fitness for use of the work products produced

The audits are conducted by the Quality/SQA group,* which is independent of the
groups being audited. The auditor plans and conducts audits; reports the results to

4 This group may vary from a team of auditors in a large organization to a part-time role in a small
organization. It is essential that the auditor is independent of the group being audited.

8.6 Software Quality Controls 153

Table 8.4 Auditing activities
Activity Description

Audit Select projects/areas to be audited during period
planning Agree audit dates with affected groups
Agree scope of audit and advise attendees on what needs to be brought to the
meeting
Book room and send invitation to the attendees
Prepare/update the audit schedule

Audit Ask attendees as to their specific role (in the project), the activities performed &
meeting determine the extent to which the process is followed

Employ an audit checklist as an aid

Review agreed documentation

Determine if processes are followed and effective

Audit Revise notes from the audit meeting and review any appropriate additional
reporting documentation
Prepare audit report and record audit actions (Consider getting feedback on report
prior to publication)
Agree closure dates of the audit actions
Circulate approved report to attendees/management

Track Track audit actions to closure
actions Record the audit action status
Escalation (where appropriate) to resolve open actions

Audit Once all actions are resolved the audit is closed
closure

the affected groups; tracks the assigned audit actions to completion; and conducts
follow-up audits. The auditing activities include (Table 8.4).

All involved in the audit process need to receive appropriate training. This
includes the participants in the audit who receive appropriate orientation on the
purpose of audits and their role in it. The auditor needs to be trained in inter-
view techniques, including asking open and closed questions, as well as possessing
effective documentation skills in report writing; in order to record the results of
the audit. The auditor needs to be able to deal with any conflicts that might arise
during an audit.’ The flow of activities in a typical audit is sketched in Fig. 8.6.

5 The auditor may face a situation where one or more individuals become defensive, and will need
to reassure individuals that the objective of the audit is not to find fault with individuals, rather the
objective is to determine any quality risks with the project as well as determining if the process is fit
for purpose and to promote continuous improvement. The culture of an organization has an influ-
ence on how open individuals will be during an audit (for example, individuals may be defensive
if there is a blame culture in the organization rather than an emphasis on fixing the process).

154 8 Quality Management of Software Projects

Fig.8.6 Sample audit process

8.6 Software Quality Controls 155

8.6.4 Quality Review of Projects

A quality review is a regular (often monthly) meeting in an organization where the
quality of the projects in progress is reviewed by management.® This is usually a
metrics driven meeting where the trends in project quality, as well as analysis and
action plans, are presented (see Chap. 14 for discussion on software metrics).

The quality review provides visibility into the projects and allows the current
quality of the projects to be clearly understood. It allows the project managers to
present the actions that they are taking to address quality issues, as well as how
they are dealing with the key risks and issues in the project. The project manager
may present data such as the following during the quality review:

Schedule status and Variance Metric,7
Budget status and Variance Metric,
Effort status and Variance Metric,3
Functionality status and Variance Metric,
Open problem status,

Change Request status,

Milestone status,

Testing status,

Problem Arrival/Closure,

Risk Profile and Key Risks,

Key Issues.

The quality review provides appropriate visibility into project quality and its asso-
ciated risks. The outcome of the quality review includes actions to be addressed
by the project managers.

8.6.5 Learning Lessons in Projects

Various lessons will be learned during the project and it is important that these
be recorded (e.g., in a lessons learned log spreadsheet or a tool). Agile projects
conduct a retrospective review at the end of each sprint to determine what went
well and not so well and to determine what needs to be done differently on future
sprints (see Chap. 13) The key lessons learned are determined at the end of the

6 The regular quality review may also examine the quality of other areas (apart from projects), in
that it may be a regular review the quality of the entire organisation. For some organisations the
quality review of a project may be done as part of the project board meeting.

7 The Schedule Estimation Accuracy Metric is given by (Actual Calendar Days—Estimated Cal-
endar Days)/Estimated Calendar Days * 100.

8 The Effort Estimation Accuracy Metric is given by (Actual Effort—Estimated Effort) / Estimated
Effort * 100.

156 8 Quality Management of Software Projects

project and published as a lessons learned report that is shared with the wider
community (see Chap. 11).

8.7 Problem-Solving Techniques

Problem-solving is a key part of quality improvement, and a quality circle (or
problem-solving team) is a group of employees who do similar work and volunteer
to come together on company time to identify and analyse work-related problems.
Quality circles were first proposed by Ishikawa in Japan in the 1960s.

Various tools that assist problem-solving include process mapping, trend charts,
bar charts, scatter diagrams, fishbone diagrams, histograms, control charts, and
Pareto charts [17]. These provide visibility into the problem and help to quantify
the extent of the problem. A problem-solving team consists of:

Group of employees who do similar work,
Voluntarily meet regularly on company time,
Supervisor as leader,

Identify and analyse work-related problems,
Recommend solutions to management,
Implement solution where possible.

The facilitator of the quality circle coordinates the activities, ensures that the team
leaders and team members receive sufficient training, and obtains specialist help
where required. The quality circle facilitator has the following responsibilities:

Focal point of quality circle activities,

Train circle leaders/members,

Coordinate activities of all the circle groups,
Assist in inter-circle investigations,

Obtain specialist help when required.

The circle leaders receive training in problem-solving techniques and are respon-
sible for training the team members. The leader needs to keep the meeting focused
and requires skills in team building. The steps in problem-solving include:

Select the problem,

State and restate the problem,
Collect the facts,

Brainstorm,

Choose course of action,
Present to management,
Measurement of success.

The benefits of a successful problem-solving culture in the organization include:

8.7 Problem-Solving Techniques 157

Move from fire fighting to fire prevention,
Savings of time and money,

Increased productivity,

Reduced defects,

Fire prevention culture.

Various problem-solving tools are discussed in the following sections.

8.7.1 Fishbone Diagram

This well-known problem-solving tool consists of a cause-and-effect diagram that
is in the shape of the backbone of a fish. The objective is to identify the vari-
ous causes of some particular problem, and then these causes are broken down
into a number of sub-causes. The various causes and sub-causes are analysed to
determine the root cause of the particular problem, and actions to address the root
cause are then defined to prevent a reoccurrence of the effect. There are vari-
ous categories of causes, and these may include people, methods and tools, and
training.

The great advantage of the fishbone diagram is that it offers a crisp mechanism
to summarize the collective knowledge that a team has about a particular problem,
as it focuses on the causes of the problem, and facilitates the detailed exploration
of the causes.

The construction of a fishbone diagram involves a clear statement of the partic-
ular problem (effect), and the effect is placed at the right-hand side of the diagram.
The major categories of cause are drawn on the backbone of the fishbone diagram;
brainstorming is used to identify causes; and these are then placed in the appro-
priate category. For each cause identified the various sub-causes may be identified
by asking the question “Why does this happen?” This leads to a more detailed
understanding of the causes and sub-causes of a particular problem.

Example 8.1 An organization wishes to determine the causes of a high number
of customer-reported defects. There are various categories that may be employed
such as people, training, methods, tools, and environment. In practice, the fishbone
diagram in Fig. 8.7 would be more detailed than that presented. The root cause(s)
are determined from detailed analysis.

This example suggests that the organization has significant work to do in several
areas and that an improvement program is required. The improvements needed
include the implementation of a software development process and a software test
process; the provision of training to enable staff to do their jobs more effectively;
and the implementation of better management practices to motivate staff and to
provide a supportive environment for software development.

158 8 Quality Management of Software Projects

Fig.8.7 Fishbone cause-and-effect diagram

The causes identified may be symptoms rather than actual root causes: for
example, high staff turnover may be the result of poor morale and a “blame cul-
ture”, rather than a cause in itself of poor-quality software. The fishbone diagram
gives a better understanding of the possible causes of the high number of customer
defects. A small subset of these causes is then identified as the root cause(s) of
the problem following further discussion and analysis.

The root causes are then addressed by appropriate corrective actions (e.g., an
appropriate software development process and test process are defined and pro-
viding training to all development staff on the new processes). The management
attitude and organizational culture will need to be corrected to enable a supportive
software development environment to be put in place.

8.7.2 Histograms

A histogram is a way of representing data in bar chart format, and it shows the
relative frequency of various data values or ranges of data values. It is employed
when there are a large number of data values, and it gives a very crisp picture of
the spread of the data values, and the centring and variance from the mean.

The histogram has an associated shape; e.g., it may be a normal distribution,
a bimodal or multi-modal distribution, or be positively or negatively skewed. The
variation and centring refer to the spread of data, and the relation of the centre of
the histogram to the customer requirements. The spread of the data is important as
it indicates whether the process is too variable, or whether it is performing within
the requirements. The histogram is termed process centred if its centre coincides
with the customer requirements; otherwise, the process is too high or too low. A

8.7 Problem-Solving Techniques 159

histogram may allow predictions of future performance to be made, assuming that
the future will resemble the past.

The frequency table is constructed by dividing the data into a number of data
buckets, where a bucket is a particular range of data values, and the relative fre-
quency of each bucket is displayed in bar format. The number of class intervals or
buckets is determined, and the class intervals are defined. The class intervals are
mutually disjoint and span the range of the data values. Each data value belongs to
exactly one class interval and the frequency of each class interval is determined.
The construction of a histogram is seen in the following example.

Example 8.2 An organization wishes to characterize the behaviour of the process
for the resolution of customer queries in order to achieve its customer satisfaction
goal.

Goal
Resolve all customer queries within 24 h.

Question
How effective is the current customer query resolution process?

What action is required (if any) to achieve this goal?

The data class size chosen for the histogram is six hours, and the data class sizes
are the same in standard histograms (they may be of unequal size for non-standard
histograms). The sample mean is 19 h for this example. The histogram shown
(Fig. 8.8) is based on query resolution data from 36 samples. The organization
goal of customer resolution of all queries within 24 h is not met, and the goal is
satisfied in (25/36 = 70% for this particular sample).

Fig.8.8 Histogram

160 8 Quality Management of Software Projects

Further analysis is needed to determine the reasons why 30% of the query
resolution is outside the target 24 h time period. It may prove to be impossible to
meet the goal for all queries with the current resources, and the organization may
need to hire more staff or refine the goal to state that instead all critical and major
queries will be resolved within 24 h.

8.7.3 Pareto Chart

The objective of a Pareto chart is to identify and focus on the resolution of prob-
lems that have the greatest impact (as often 20% of the causes are responsible for
80% of the problems). The problems are classified into various categories, and the
frequency of each category of problem is determined. The Pareto chart is displayed
in a descending sequence of frequency, with the most significant cause presented
first, and the least significant cause presented last.

A properly constructed Pareto chart will enable the organization to resolve the
key causes of problems and to verify their resolution. The effectiveness of the
improvements may be judged at a later stage from the analysis of new problems
and the creation of a new Pareto chart. The results should show tangible improve-
ments, with less problems arising in the category that was the major source of
problems.

The construction of a Pareto chart requires the organization to decide on the
problem to be investigated; to identify the causes of the problem via brainstorming;
to analyse the historical or real-time data; to compute the frequency of each cause;
and finally to display the frequency in descending order for each cause category.

Example 8.3 An organization wishes to understand the various causes of outages
and to minimize their occurrence.

The Pareto chart (Fig. 8.9) includes data from an analysis of outages, where
each outage is classified into a particular cause. The six causal categories iden-
tified are: hardware, software, operator error, power failure, an act of nature,
and unknown. The three main causes of outages identified are hardware, soft-
ware, and operator error, and analysis is needed to identify appropriate actions to
address these. The hardware category may indicate that there are problems with
the reliability of the system hardware and that existing hardware systems may
need improvement or replacement. There may be a need to address availability
and reliability concerns with more robust hardware solutions.

The software category may be due to the release of poor-quality software, or
to usability issues in the software. This requires further investigation and it may
be that better processes are required for inspections and testing. Finally, operator
issues may be due to lack of knowledge or inadequate training of the operators.
An improvement plan needs to be prepared and implemented, and its effectiveness
will be judged by a reduction in outages and reductions of problems in the targeted
categories.

8.7 Problem-Solving Techniques 161

Fig.8.9 Pareto chart outages

8.7.4 Trend Graphs

A trend graph monitors the performance of a variable over time, and it allows
trends in performance to be determined, as well as allowing predictions of future
performance to be made (assuming that the future resembles the past). Its construc-
tion involves deciding on the variable to measure and to gather the data points to
plot the data.

Example 8.4 An organization plans to deploy an enhanced estimation process and
wishes to determine if estimation is actually improving with the new process.

The estimation accuracy determines the extent to which the actual effort differs
from the estimated effort. A reading of 25% indicates that the project effort was
25% more than estimated, whereas a reading of —10% indicates that the actual
effort was 10% less than estimated. The trend chart (Fig. 8.10) indicates that ini-
tially estimation accuracy is very poor, but then there is a gradual improvement
coinciding with the implementation of the new estimation process.

It is important to analyse the performance trends in the chart. For example,
the estimation accuracy for August (17% in the chart) needs to be investigated to
determine the reasons why it occurred. It could potentially indicate that a project is
using the old estimation process, or that a new project manager received no training
on the new process). A trend graph is useful for noting positive or negative trends
in performance, with negative trends analysed and actions identified to correct
performance.

162 8 Quality Management of Software Projects

Fig.8.10 Trend chart estimation accuracy

8.7.5 Scatter Graphs

The scatter diagram is used to determine whether there is a relationship or corre-
lation between two variables, and, if so, to measure the relationship between them
(correlation is not causation). The results may be a positive correlation, negative
correlation, or no correlation. Correlation has a precise statistical definition, and
it provides a precise mathematical understanding of the extent to which the two
variables are related or unrelated.

The scatter graph provides a graphical way to determine the extent that two
variables are related, and it is often used to determine whether there is a connection
between an identified cause and the effect. The construction of a scatter diagram
requires the collection of paired samples of data, and the drawing of one variable
as the x-axis, and the other as the y-axis. The data are then plotted and interpreted.

Example 8.5 An organization wishes to determine if there is a relationship between
the inspection rate and the error density of defects identified.

The scatter graph (Fig. 8.11) provides evidence for the hypothesis that there is
a relationship between the lines of code inspected, and the error density recorded
(per KLOC). The graph suggests that the error density of defects identified during
inspections is low if the speed of inspection is too fast, and the error density is
high if the speed of inspection is below 300 lines of code per hour. A line can be
drawn through the data that indicates a linear relationship.

8.7 Problem-Solving Techniques 163

Fig.8.11 Scatter graph amount inspected rate/error density

Fig.8.12 Estimation accuracy and control charts

8.7.6 Metrics and Statistical Process Control

The principles of statistical process control (SPC) are important in the monitoring
and control of a process. It involves developing a control chart, with upper and
lower limits for process performance specified. The process is under control if it
is performing within the lower and upper control limits.

Figure 8.12 presents an example on breakthrough in the performance of an esti-
mation process and is adapted from [Kee:00]. The initial upper and lower control
limits for estimation accuracy are set at+£40%, and the performance of the process
is within the defined upper and control limits.

However, the organization will wish to improve its estimation accuracy and this
leads to the organization’s revising the upper and lower control limits to +25%.

164 8 Quality Management of Software Projects

The organization will need to analyse the slippage data to determine the reasons
for the wide variance in the estimation, and part of the solution will be the use
of enhanced estimation methods in the organization. In this chart, the organiza-
tion succeeds in performing within the revised control limit of £25%, and the
limit is revised again to£15%. This requires further analysis to determine the
causes for slippage and further improvement actions are needed to ensure that the
organization performs within the £15% control limit.

8.8 Review Questions

. What is quality?

. Explain the significance of Watts Humphrey in the software quality field.

. What is total quality management?

. Explain the significance of the ISO 9000 standard.

. Explain the importance of software process improvement and the
CMMI.

. What are software inspections and what role do they play in delivering
quality?

7. What is software testing and what role does it play in delivering quality?

. What is the purpose of an audit?
9. Explain why the auditor needs to be independent of the area being

audited.

10. Describe the activities in the audit process.

11. What happens at and after an audit meeting?

12. Describe various problem-solving techniques.

13. What is a fishbone diagram?

14. What is a histogram and describe its applications?

15. What is a scatter graph?

()} W B W =

(o]

8.9 Summary

The development of software involves many processes, and it is important that the
processes employed are fit for purpose. It is a key premise in the software quality
field is that the quality of the resulting software is influenced by the quality and
maturity of the underlying processes, and compliance with them. Therefore, there
is a need to focus on the quality of the processes as well as on the quality of the
resulting software.

There are various definitions of quality such as Crosby’s definition as “confor-
mance to the requirements”. Juran defines quality as “fitness for use” and this is a
better definition, although it does not provide a mechanism to judge better quality
when two products are equally fit to be used.

References 165

Total quality management is a management philosophy to develop a culture of
quality within the organization. It is a holistic approach and it applies to all levels
and functions within the organization.

ISO 9000 is a family of quality management standards with ISO 9001 stan-
dard specifying the requirements of a quality management system. It is applicable
to manufacturing, software, and service organizations, and is based on several
underlying quality management principles such as customer focus, leadership,
continuous improvement, and a process approach.

The CMMI provides a solid engineering approach to the development of soft-
ware, and it describes what the processes should do rather than how they should
be done. It needs to be tailored to meet the needs of the organization.

Software quality assurance is a systematic enquiry into the way that things are
done in the organization, and it involves conducting audits of projects, suppliers,
and departments. It provides visibility into the processes and standards in use, their
effectiveness, and the extent of compliance with them.

Metrics play a key role in problem solving, and various problem-solving tech-
niques such as histograms, pareto charts, trend charts and scatter graphs were
discussed. The measurement data are used in the analysis to determine the root
cause of a particular problem, and to verify that the actions taken to correct the
problem have been effective.

References

1. G. O’ Regan, A Brief History of Computing. 3'4 Edition, (Springer, 2021)
2. G. O’ Regan, Concise Guide to Software Engineering, 2nd Edition, (Springer, 2022)
3. G. O’ Regan, Concise Guide to Formal Methods, (Springer, 2017)
4. W. Humphry, Managing the Software Process, (Addison Wesley, 1989)
5. W. Shewhart, V. Nostrand, The Economic Control of Manufactured Products, (1931)
6. W. Edwards Deming, Out of Crisis, (M.L.T. Press, 1986)
7. J. Juran, Juran’s Quality Handbook, (McGraw Hill, 1951)
8. P. Crosby, Quality is Free. The Art of Making Quality Certain, (McGraw Hill, 1979)
9. 1. Bhandari, A case study of software process improvement during development. IEEE Trans.
Software Eng. 19(12) 1993
10. M. B. Chrissis, M. Conrad, S. Shrum, CMMI for Development. Guidelines for Process Inte-
gration and Product Improvement, 3" Edition, SEI Series in Software Engineering, (Addison
Wesley, 2011)
11. CMU/SEI-2006-HB-002, Standard CMMI Appraisal Method for Process Improvement, V1.2,
(August 2006)
12. Software Engineering Institute, CMMI Executive Overview. Presentation by the SEI, (2006)
13. Software Engineering Institute, CMMI Impact. Presentation by Anita Carleton, (August 2009)
14. F. O’ Hara, Peer Reviews—the key to cost effective quality, (European SEPG, Amsterdam. 1998)
15. M. Fagan, Design and code inspections to reduce errors in software development. IBM Syst.
J. 15(3) (1976)
16. G. O’ Regan, Concise Guide to Software Testing, (Springer, 2019)
17. M. Brassard, D. Ritter, The Memory Jogger. A Pocket Guide of Tools for Continuous Improve-
ment and Effective Planning, (Goal I QPC. Methuen, MA, 1994)
18. G. O’ Regan, Introduction to Software Quality, (Springer, 2014)

f')

Check for
updates

Project Monitoring and Control

Key Topics

Progress meeting
Change request
Change control

Issue

Defect

CCB

Progress report
Milestone reviews
Tolerance

Earned value analysis

9.1 Introduction

Project management is concerned with the activities involved in managing the
software project, and once the authorisation and planning of the project is complete
the focus then moves to the execution of the activities defined in the project plan
and schedule. The resources required for the project are made available, and the
project team is required to produce the project deliverables to the required quality
standards within budget and time constraints.

The project may be divided into a number of lifecycle stages as defined in
the project plan/schedule (with Agile projects divided into a number of sprints),
with each phase having a defined start and end date, and the deliverables for the
stage are produced as per with the stage plan (which may be the project plan and
schedule). There may be entry criteria to be satisfied in order to commence work
in a stage, and exit criteria to be satisfied to complete and exit the stage.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025 167
G. O’Regan, Guide to Software Project Management, Undergraduate Topics in
Computer Science, https://doi.org/10.1007/978-3-031-80578-3_9

9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-80578-3_9&domain=pdf
https://doi.org/10.1007/978-3-031-80578-3_9

168 9 Project Monitoring and Control

Fig.9.1 Control-monitoring

Monitor
loop

Plan <:| Control

Project monitoring and control involves monitoring project execution against
the plan, and taking action when progress deviates from expectations. It involves
monitoring the project activities and checking that they are completed on sched-
ule and with the required quality, and re-planning where appropriate. This is
summarised in the control-monitoring loop in Fig. 9.1.

The project manager has overall responsibility for day-to-day management dur-
ing project execution, and works with the project team to ensure that all work
is allocated and executed. The project manager checks the progress made on a
daily/weekly basis, and updates the schedule accordingly. The PM ensures that
all project issues, change requests and risks that arise are recorded and managed,
and that progress reports are prepared for the stakeholders. The project manager
presents the status of the project to the project board regularly during the project,
and acts on the direction and advice of the project board.

9.2 Monitoring and Control

Project monitoring and control is concerned with monitoring project execution, and
taking corrective action when project performance deviate s from expectations. It
is a continuous process where the progress of the project and the key milestones
are monitored against the plan, and corrective actions taken as appropriate. The
key project parameters such as budget, effort and schedule as well as risks and
issues are monitored, and the status of the project is communicated regularly to
the stakeholders (Fig. 9.2).

The project manager will conduct progress and milestone reviews to determine
the actual progress made, with new issues and risks identified and managed. The
corrective actions are defined are tracked to closure. The main focus of project
monitoring and control is:

— Monitor the project plan and schedule and keep the project on track

— Conduct progress and milestone reviews to determine the actual status.

— Monitor the key project parameters

— Identify and remove roadblocks to progress and project success

— Re-plan as appropriate

— Work closely with project team to identify risks/issues as early as possible
— Monitor risks and take appropriate action.

9.2 Monitoring and Control 169
Monitor » Risks/ » Manage
progress against Issues Corrective
plan Action
‘\\\ l
\\\\\\ No
S, Corrective Actions
Identified & Taken
All Closed 2 >—
Yes

Fig.9.2 Project monitoring and control

— Analyse issues and change requests and take appropriate action
— Track corrective action to closure

— Monitor resources and manage any resource issues.

— Report the project status to management and project board

— Present status to management and project board

9.2.1 Project Status Meetings

The project manager will conduct weekly meetings with the project team during
the project to discuss progress made, and to obtain a clear status of the project. An
effective project meeting needs to be well organised with a clear agenda, where
the agenda is essentially the roadmap for the meeting with topics and timelines.
The agenda is circulated to the attendees prior to the meeting. The team members
should be well prepared and in a position to answer questions in the areas that
they are responsible for in the project.

The project manager needs to keep the meeting focused and avoid going off
topic, as otherwise valuable time is wasted resulting in difficulties in discussing
all of the items on the agenda. This could result in a meeting that does not achieve
its objectives. The project manager needs good time management skills to ensure
that the time spent on the topics is appropriate and used well. The contributions
from different personalities need to be balanced to ensure that the views expressed
are representative of the entire project team, and this may involve asking those
who are not making a contribution to the discussion.

170 9 Project Monitoring and Control

The action items from the meeting need to be recorded, followed up and
implemented in a timely manner. A sample agenda might look like:

— Actions from previous meeting

— Project updates from Project Manager
— Project updates from team

— Open issues

— New Action Items

The minutes and actions need to be published shortly after the meeting. The project
manager is in a position after the meeting to update the project schedule and key
project parameters with the latest project information, and to prepare a weekly
report for the project stakeholders. The latest information includes:

Schedule status
Budget status

Effort status
Functionality status
Open problem status
Change Request status
Milestone status

Test status

Key Risks

Key Issues

9.2.2 Monitoring Project Deliverables

The project manager will monitor the delivery of project deliverables to ensure that
work starts on the deliverables on time, and that those under development are on
schedule or re-scheduled appropriately, and that those completed are completed to
the right quality standards to meet customer expectations and have been approved.

The project manager will note any risks to quality and on-time delivery and
will manage them appropriately, and s/he will deal with any existing issues with
the project deliverables to ensure that there are minimal impacts to the project in
terms of schedule/quality.

9.2.3 Monitoring Project Risks

We discussed risk management in detail in Chap. 7, and while the initial project
risks are identified during project initiation further risks will become evident
during project execution. Risk management takes place throughout the project life-
cycle, and the existing risks must be carefully monitored and managed, and new
risks identified and managed as the project proceeds. It is especially important to

9.2 Monitoring and Control 171

consider risk when there are changes in the project, such as when the scope of the
project changes or when a team member resigns or when project issues arise, as
often change leads to new risks.

It is important to check that the risk mitigation actions are being implemented
and are having the desired effect. The project manager will monitor the actions to
ensure their effectiveness, as well as watching for warning signs that a risk may
be about to occur and whether the contingency plan should be invoked.

The project manager reports risks regularly to the stakeholders during the
project in the regular project reports and project board reports.

9.2.4 Monitoring Project Issues

A project issue refers to an event or situation that has arisen that the project needs
to deal with. For example, a stakeholder may make a request for to change the
requirements; a tester may report a defect with the software; a team member might
resign; and so on. These are all issues that the project needs to deal with, and
clearly some issues are more serious than others. A severity (or priority) is assigned
to an issue to indicate its importance (i.e., the priority of an issue relates to its
impact in the project).

Project issues may be recorded in a spreadsheet (usually termed the Issue Log)
or in an issue-tracking tool (e.g., JIRA). A description of the issue is recorded
as well as its priority. The issue may be a change request, a defect or a more
general matter that needs to be resolved. The issue needs to be investigated and an
appropriate solution identified and implemented.

The project manager will monitor the open issues to ensure that they are being
dealt with effectively, and that the most serious issues are dealt with promptly. The
key open issues are reported regularly to the stakeholders during the project.

9.2.5 Monitoring Change Requests

A project change request (CR) is a request from a project stakeholder for a change
to the requirements of the project. The request may be a major change to the scope
of the project, and could have a significant cost and schedule impact, or it may be
a cosmetic change with minimal impacts on the project. Change is considered to
be a normal part of an Agile project and so this section is specific to traditional
projects. It is desirable to minimize change towards the end of a traditional project,
as it is important to keep risks to a minimum towards the end of the project.

A change request may arise at any time during the project, and its impacts (e.g.,
technical, risks, cost, budget, and schedule) must be carefully considered prior to
its approval. A change introduces new risks to the project, and may adversely
affect cost, schedule and quality.

172 9 Project Monitoring and Control

The project manager may approve small change requests, whereas a large
change request is subject to a formal evaluation by the change control board!
(CCB) for the project. The CCB is responsible for authorising or rejecting the
change request.

The project manager will monitor the change requests during the project to
ensure that they their impacts on the project are determined, and that approved
change requests are implemented in a timely manner.

9.2.6 Monitoring Project Defects

A defect is a flaw in the software code that causes the software to fail to perform
its required function, and it arises as a result of a developer making an error that
produces a defect in the code. The code where the defect is present may be on a
rarely used execution path, and so the defect may not manifest itself during project
execution. However, a defect that is encountered during program execution leads
to a software failure, as a result of the code where the defect is present being
executed and resulting in the software failing to do what it is required to do (i.e.,
the result is failure).

The role of the testing group is to verify the correctness of the software, and
to identify the defects that are present in the software. The identified defects are
logged in a spreadsheet (an Issue log or Defect Log for small projects) or in
a defect-tracking tool (e.g., Bugzilla) for larger projects. The defects are sched-
uled for correction, assigned to developers for resolution, resolved and re-tested to
verify their correctness.

The project manager and test manager will analyse various testing metrics such
as the test status metric (Fig. 14.19), which indicates the amount of testing done
and remaining to be done; the cumulative arrival of defects (Fig. 14.20), which is
an indication of the stability of the software; the problem arrival and closure chart
(Fig. 14.21), which indicates the stability of the software and the ability of the
project to correct the identified problems; and the overall status of problems chart
(Fig. 14.22), which shows the number of problems raised in the project and the
number that remain to be resolved. These metrics provide a picture of the current
quality of the software and the effort required to deal with the current quality
issues.

The project manager will monitor the open defects to ensure that the most
serious defects are resolved in a timely manner, and that the project meets the
customer’s quality expectations. The quality status of the project will be reported
regularly to the stakeholders.

' The CCB is responsible for controlling change in the project, and its membership is decided
during project planning.

9.2 Monitoring and Control 173

9.2.7 Effort, Schedule and Budget Monitoring

The project manager needs to know exactly where the project is with respect to
the key project parameters such as effort, schedule and budget, and so determining
an up to date project status must be done on a daily/weekly basis.

Schedule and effort monitoring involves looking at the tasks in the schedule;
determining those that are complete and those that are currently in progress; deter-
mining the progress made and the effort required to complete from discussions
with the project team and updates from the project meetings; updating the project
schedule with the latest information; and determining the impacts of the updates
to the budget and schedule for the project.

The budget monitoring involves determining the amount spent on the project
to date, and estimating the amount required to complete, and determining whether
the project is on, over or under budget. Earned valued analysis, as discussed in
Sect. 9.5.1, is often used to forecast cost and completion date.

The updated project parameters may lead to new project risks and issues such
as the project going over budget or schedule or exceeding the project tolerance.
The project manager will need to manage the situation to ensure that the project
remains on track, and should project tolerances be exceeded the project manager
must report the situation to the project board for resolution.

9.2.8 Business Case Monitoring

The business case is the reason for the project, and it needs to be aligned to the
business strategy. It is based on the expected costs of the project, the associated
risks, and the expected business benefits and savings. A project should proceed
only if it has a valid business case, and the project should be terminated if its
business case ceases to exist.

The project manager needs to monitor the business case throughout the project
especially when changes or issues arise, as such changes may impact the busi-
ness case and lead to it becoming invalid. Further, the project board may advise
the project manager of changing business circumstances that could invalidate the
business case resulting in the project being terminated.

9.29 Monitoring of Outsourcing

The project may outsource all or part of the work to a software supplier (e.g.,
outsourcing of development or testing or both), and so the project manager will
need to monitor the subcontractor’s work to ensure that it is fit for purpose and
that it is completed on schedule and on budget.

The project manager needs to conduct progress and milestone reviews with the
supplier, as well as monitoring the associated risks and issues, and manage them
accordingly. The project manager may arrange to have an independent audit of the

174 9 Project Monitoring and Control

subcontractor’s work to obtain independent visibility on the processes followed
and the work products produced.

The supplier will report progress weekly to the project manager during the
project, and the reports will include key data such as:

Schedule, budget and effort status
Open problem status

Change Request status

Test status

Key Risks

Key Issues

The project manager will report the progress with the supplier to the stakeholders
regularly during the project.

9.2.10 Monitoring of Audits

The project may include a quality assurance role that is responsible for promoting
quality in the project and for auditing various activities in the project and suppliers.
The results of the audits are shared with the affected groups, and the project man-
ager will monitor audit reports to act on any issues that could affect the successful
delivery of the project.

9.2.11 Recording Lessons Learned

The project manager will set up a lessons learned log (or similar mechanism) at
the start of the project where the project team can record lessons learned dur-
ing the project (e.g., things that went really well and should be recommended to
future projects, and things that went really poorly and should be avoided by future
projects). The key lessons learned during the project are determined at project
closure and communicated to the wider community (see Chap. 11).

9.2.12 Controlling the Project

Monitoring and control is like a “feedback loop” where the project manager com-
pares actual versus planned progress and performance, and becomes aware of a
situation that needs to be addressed in the project, and takes appropriate action to
correct the situation.

9.3 Managing Change Requests 175

The project manager constantly monitors the project environment during the
project, and responds appropriately to keep the project on track. This includes
monitoring the project deliverables to ensure that they are on schedule and deliv-
ered with the right quality, monitoring risks and issues, the business case, and so
on, and taking action to manage any issues that arise.

The project manager will provide regular progress reports to the project board
and the key stakeholders, to ensure that all stakeholders are kept informed on key
decisions and actions taken during the project.

9.3 Managing Change Requests

The key stakeholders may request a change to the requirements at any time during
a traditional project (ongoing changes to requirements are a normal part of the
Agile world). The request may arise due to business or regulatory changes, or to
a customer need becoming apparent at a late stage of the project when the project
is nearing completion.

A request to change the requirements is termed a change request (CR), and it is
a stakeholder request to change the scope of the project during project execution.
The impacts of the change request (e.g., technical, cost, budget, and schedule) need
to be carefully considered. Further, a change of scope to the project introduces new
risks to the project, and it is important that these are considered to ensure that they
can be managed. The introduction of change may lead to increased costs for the
project as well as delays to the project schedule. It is important to consider these,
and if the project will go outside its tolerance then it will need to be discussed with
the project board. There could also be risks to quality should the projects stay with
its original timelines, as insufficient time may be available for the testing activities,
which may result in insufficient testing being performed.

Requirements management is concerned with managing changes to the require-
ments of the project, and in maintaining consistency between the requirements and
the project plans and the associated work products. It is important that changes to
the requirements are controlled, and that the impacts of the changes are fully under-
stood prior to authorization. Once the system requirements have been approved,
any proposed changes to the requirements are subject to formal change control.

The project will set up a group that is responsible for authorising changes to
the requirements (usually called the change control board (CCB)). The CCB is
responsible for analysing requests to change the requirements, and it makes an
informed decision on whether to accept or reject the change request based on its
impacts on the project and the associated risks. The activities involved in managing
change requests are summarised in Table 9.1 below.

Following the approval of a change request the affected documents such as
the system requirements, the design, software modules and test specification are
modified accordingly. This is done to ensure that all of the project deliverables are
kept consistent with the latest version of the requirements. Testing is carried out
to verify that the changes made have been implemented correctly.

176

9 Project Monitoring and Control

Table 9.1 Managing change requests

Activity
Log Change Request

Assess Impact

Decision

Implement Solution

Verify Solution

Close CR

Change request

The change request is logged and a unique reference number and
priority assigned

The cost, schedule, technical and quality impacts are determined and the
risks identified

The CCB authorises or rejects the change request

The affected project documents and software modules are identified, and
modified accordingly

Testing (Unit, System and UAT) are employed to verify the correctness
of the solution

The change request is closed

The objective of requirement traceability is to verify that all of the defined
requirements for the project have been implemented and tested. One way to do this
is to consider each requirement number and to go through every part of the design
document to find where the requirement is being implemented in the design, and
similarly to go through the test documents and find any reference to the require-
ment number to show where it is being tested. A more effective mechanism to do
this is to employ a traceability matrix, which may be employed to map the user
requirements to the system requirements; the system requirements to the design;
the design to the unit test cases; the system test cases; and the UAT test cases. The
matrix provides a crisp summary of how the requirements have been implemented
and tested (Table 9.2).

Table 9.2 Sample trace

matrix

Requirement No. Sections in Design Test cases in Test Plan

RIL1 D1.4,D1.5.D3.2 T1.2,T1.7
R1.2 D1.8, D8.3 T1.4
R1.3 D2.2 T1.3

€997

R1.50 D20.1, D30.4 T20.1 T24.2

9.4 Managing Defects 177

9.4 Managing Defects

The execution of the test cases by the testers may result in the situation where the
actual results obtained differ from the expected results, and this generally results
in a defect report’ (or bug®) being generated. It is important to log all problems
that arise during testing, and this is often done with a defect-tracking tool (it could
involve a defect tracking spreadsheet for logging defects and a defect form for
small projects). Each defect (bug) should be described in detail including:

— Problem number

— Severity

— Tester

— Date raised

— Status

— Description of problem and steps to reproduce
— Impacts of problem

— Responses to Problem

— Implementation and Verification

The severity of the defect indicates how serious the problem is, and there are
usually several categories of severity such as:

Critical
— Major

— Medium
Minor

Defects are scheduled for correction in a later release of the software, and the cor-
rection involves analysis by the developers to determine the cause of the problem,
and the implementation of the appropriate changes to the software to resolve the
problem. The updated software needs to be retested to ensure that the defects have
been resolved, and that no new defects have been introduced. Regression testing is
performed to ensure that the core functionality of the system is preserved following
corrections to the software.

The status of a defect indicates whether it has been resolved or not. It could be
one of the following:

— Open (Defect identified by test team)
— Assigned (Defect assigned to developer for resolution)

2 The difference between expected/actual results could be due to factors rather than a genuine
defect such as poor test data, errors made by the tester, or invalid expected results.

3 Grace Murray Hopper coined the term “computer bug” when she traced an error in the Harvard
Mark II computer to a moth stuck in one of the relays. The bug was carefully removed and taped
to a daily logbook, and the term is now ubiquitous in the computer field

178 9 Project Monitoring and Control

— Changes Implemented (Developers have implemented changes)
— Changes Verified (Testing has been conducted to verify changes)
— Closed (Defect closed)

9.5 Milestone Reviews

Milestones are pre-planned events or specific points in time along a project time-
line that allow the project manager to determine if a project is on schedule, and
satisfying the stakeholder requirements. Each milestone acts as a major progress
point in the project (e.g., the end of a phase in a traditional waterfall project or
the end of a sprint in an Agile project), where the project needs to have com-
pleted a set of defined activities and deliverables. Each project will define its own
milestones and they could include:

— Planning/Requirements complete
— Design/Development complete
— System Testing complete

— UAT Testing complete

— Deployment complete

— Project closure complete

There is a formal review of the project status at each milestone to ensure that all
activities and deliverables for that milestone are complete, and that the customer’s
quality expectations are being satisfied. The milestone review includes participa-
tion from the project team, managers, end users, suppliers and any other relevant
stakeholders.

The project manager reviews the commitments made for the project milestone
to ensure that they are complete and with the right quality. The project manager
will review the key project parameters such as budget and schedule status, the key
risks and issues, the quality status, and so on, to determine any impacts and issues,
and the results of the milestone review is a set of corrective actions and a decision
on whether the project is ready to proceed to the next phase/milestone.

There may be audits of the project activities at the project milestone to ensure
that the defined processes have been followed, and that the defined work products
are completed to the right quality.

9.5.1 Earned Value Analysis

Earned value analysis is performed in project management to provide insight into
the project health in terms of cost and on-time delivery at a particular point in time
during project execution, and it allows the project manager to make adjustments
to get the project back on track. It is a fast way to assess project progress by
comparing the amount of work planned to be complete at a particular stage in the

9.5 Milestone Reviews 179

project, against the amount actually completed and what it has actually cost. These
measurements are then used to forecast the project’s total cost and completion date.
These may then be compared with the project plan and schedule to determine the
extent to which the project is on budget and schedule.

The earned value (EV) is the value created by the project at that point in time.
It is calculated by the percentage of project completion at that point during project
execution multiplied by the project budget. Similarly, the planned value (PV) at
a point in time is given by the planned percentage complete of the project (as
defined in the project plan/schedule) multiplied by the project budget. The differ-
ence between the planned and actual earned value leads to the schedule variance
(SV) and cost variance (CV) for the project.

The schedule variance is the difference between the planned versus actual
progress to date, and is usually measured in calendar weeks/months. A positive
number indicates that the project is behind schedule, with a negative number
indicating that the project is ahead of schedule (Fig. 9.3).

Similarly, the cost variance is given by the difference in planned versus actual
spending with a positive number indicating an under-spend on the project, and a
negative number indicating that the project has over-spent at this point. A negative
value could indicate a danger of the project going over budget or running out of
funds prior to completion.

The schedule performance index (SPI) is similar to the schedule variance, and
is given by EV/PV. A value above 1 indicates that the project is ahead of schedule
and a value less than 1 indicates that the project is behind schedule. SPI is useful
as it offers a way to forecast the project completion date by planned duration/SPI,
and enables the project manager to take early action to manage the situation of the
project being behind schedule.

Fig.9.3 Earned value analysis. public domain

180 9 Project Monitoring and Control

The cost performance index (CPI) is similar to the cost variance, and is given
by the planned cost divided by the actual cost (PC/AC). A value above 1 indicates
that the project is under budget whereas a value under 1 indicates that the project is
over budget. CPI is useful as it offers a way to forecast the project completion cost
by total budget/CPI, and this allows the project manager to manage the situation
of the project overspending.

For more detailed information on Earned Value Analysis see Ref. [1].

9.6 Managing Stages and Stage Boundaries

The project is generally divided into a number of phases for traditional projects
(or sprints for Agile projects), and the phases are recorded in the lifecycle stages
part of the project plan (see Table 6.5).

Each lifecycle phase has a defined start and end date and a defined set of deliv-
erables to be produced during the stage (as defined in the stage plan or the project
plan and schedule). There are entry criteria to be satisfied in order to commence
work in a stage (e.g., planning complete and required resources available), and exit
criteria to be satisfied to complete and exit the stage.

There may be a separate plan for the stage or it may be part of project plan and
schedule. The schedule details the deliverables that will be produced during the
stage, their start and end date, the resources involved, and the % complete.

The milestone review at the end of the stage is a formal review of the project
status at the end of the stage, where it is verified that all of the planned activities
and deliverables are complete and approved. In addition, the exit criteria will verify
that the planning is complete for the next stage.

9.7 Progress Reporting and Project Board Reviews

Progress reporting is concerned with communicating the status of the project to
the stakeholders (including the project board) during the project. The project man-
ager will prepare regular progress reports for the key stakeholders, and the report
summarises the activities that have taken place during the period.

RAG reporting may be employed in presenting the project status, where RAG
stands for Red, Amber, and Green, with Red indicates serious problems with
the project (e.g., project is outside tolerance), Amber indicates potentially seri-
ous problems that management needs to be aware of (e.g., danger of going outside
tolerance), and where Green indicates that everything is on track (i.e., project is
within tolerance). The project report includes key project information such as:

— Completed deliverables (during period)
— Schedule, Effort and Budget Status (e.g., usually RAG metrics*)

4 For example, the Budget estimation Accuracy Metric is given by (Actual Spend — Original
Budget)/Original Budget * 100.

9.7 Progress Reporting and Project Board Reviews 181

— New Risks and Issues

— Key Risks and Issues (Risk Profile)

— Test & Quality Status

— Change Request status

— Milestone status

— Activities and Deliverables planned (next period)

The project manager discusses the progress report with the project board and man-
agement, and presents the current status of the project as well as the key risks and
issues. The project manager will present a recovery plan (exception report) to deal
with the situation where the project/testing has fallen outside the defined project
tolerance (i.e., it is significantly behind schedule or over budget).

The test status for the project could be presented as in Table 9.3, which provides
a summary of the testing done and remaining in the project.

The status of quality and change requests for the project may be given by
Table 9.4.

The key risks and issues affecting the project will be discussed, and the project
manager will explain how these are being dealt with (Table 9.5). The risk profile
could be presented in a manner similar to Fig. 7.4. The new risks and issues will be
discussed, and the project board will carefully consider how the project manager
plans to deal with these, and will provide appropriate support.

The milestone status may be presented in a way similar to Table 9.6.

The project board will consider the status of the project as well as input from
the project manager before deciding on the course of action (which could include

Table 9.3 Test status for project

Test type # Scripts # Run # Pass # Fail % Run %oPass
Unit 50 50 50 0 100% 100%
System 100 80 72 8 80% 90%
Regression 50 50 50 0 100% 100%
UAT 20 - - - - -
Other 10 - - - - -

Table 9.4 Quality Status for project

Severity Total no. of defects No. open defects Total no. of change No. open change

requests requests
Critical 3 1 - -
Major 10 2 2 0
Medium 20 4 - -
Minor 15 7 - -

182 9 Project Monitoring and Control

Table 9.5 Key risks for

. Risk no. Description Countermeasure
project
1. - -
A - -
Table 9.6 Milestone status Milestone Planned date Forecast/actual date

Planning/Reqs Complete — =
Design/Devel Complete — -
System Testing Complete — -
UAT Complete - -
Deployment Complete - -

Project Closure - -

the immediate termination of the project if there is no longer a business case for
it).

9.8 Review Questions

. What is project monitoring and control?

. What should the project manager monitor during project execution.

. What is a project issue? Describe the various types of project issues.

. What is change control?

. What is a change request?

. Describe how a change request is evaluated.

. Describe how a change request could impact the schedule?

. Describe how a change request could impact the business case?

. What is a defect? Explain how the severities of defects are distinguished
. What is the purpose of a project status meeting & project reporting?

O O 00O N B W~

—

9.9 Summary

Project monitoring and control involves monitoring project execution against the
plan, and taking corrective action when progress deviates from expectations. It
involves monitoring the project activities and checking that they are completed on
schedule and with the required quality, and re-planning where appropriate. The
progress of the project and the key milestones are monitored against the plan, and
corrective actions taken as appropriate.

The project manager works with the project team to ensure that all work is allo-
cated and executed, and checks the progress made on a daily/weekly basis, noting

Reference 183

and managing any issues and risks to the schedule. The schedule is updated regu-
larly during the project. The PM ensures that all project issues, change requests and
risks that arise are recorded and managed, and that progress reports are prepared
for the stakeholders.

The project manager will conduct progress and milestone reviews to determine
actual progress and to ensure that the project is on schedule. The project manager
presents the status of the project to the project board regularly during the project,
and acts on the direction of the project board.

Reference

1. Chance W. Reichel, Earned value management systems (EVMS): “You too can do Earned Value
Management”, (PMI® Global Congress North America, Seattle, 2006)

l‘)

Check for
updates

Outsourcing—Supplier Selection 1 0
and Management

Key Topics

Request for Proposal
Supplier Evaluation
Formal Agreement
Statement of Work
Ethical Outsourcing
Service Level Agreement
Acceptance of Software
Breach of Contract

10.1 Introduction

Outsourcing is a common business practice where a company contracts out busi-
ness functions such as manufacturing, software development, and call centres to
third-party providers. The outsourcing of a business function to a distant country
is termed offshoring, whereas nearshoring is outsourcing to a nearby country, and
outsourcing may also be done domestically. The benefits of outsourcing include:

Cost savings due to reduction in business expenses
Availability of expertise not available in house
Allows company to focus on core business activities
Increased efficiencies.

Outsourcing involves handing control of various business functions over to a third
party, and this leads to business risks such as the quality of the service may be
below expectations, the third party may go out of business, or that there may be
risks to confidentiality and security. The role of the project manager is to manage

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025 185
G. O’Regan, Guide to Software Project Management, Undergraduate Topics in
Computer Science, https://doi.org/10.1007/978-3-031-80578-3_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-80578-3_10&domain=pdf
https://doi.org/10.1007/978-3-031-80578-3_10

186 10 Outsourcing—Supplier Selection and Management

the day-to-day relationship with the offshore/onshore team in possibly different
time zones, and there may be differences in language and culture.

Supplier selection and management is concerned with the selection and man-
agement of a third-party software supplier. Many large projects involve total or
partial outsourcing of the software development, and it is therefore essential to
select a supplier that can deliver high-quality and reliable software on time and on
budget.

This means that the process for supplier selection needs to be rigorous, that
the capability of the supplier is clearly understood, and that the associated risks
with the supplier are known prior to selection. The selection is based on objective
criteria such as cost, the approach, the ability of the supplier to deliver the required
solution, and the supplier capability, and while cost is an important criterion, it is
just one among several other important factors.

Once the selection of the supplier is finalized a legal agreement is drawn up
between the contractor and supplier, which states the terms and conditions of the
contract, as well as the associated statement of work. The statement of work details
the work to be carried out, the deliverables to be produced, when they will be
produced, the personnel involved, their roles and responsibilities, any training to
be provided, and the standards to be followed.

The supplier then commences the defined work and the project manager appro-
priately manages the supplier for the duration of the contract. This will involve
regular progress reviews, and acceptance testing is carried out prior to accepting
the software from the supplier. The following activities are generally employed for
supplier selection and management (Table 10.1).

Remote project management is concerned with managing remote and hybrid
teams to ensure that the project objectives are achieved. Traditional project man-
agement involves teams based in the same physical location, whereas today teams
often operate in hybrid mode with some employees working in the office and other
employees and teams working remotely in different physical locations. This means
that remote employees often play important roles in the success of projects, and
remote project management has become more important in managing hybrid and
remote teams.

The management of remote teams requires modern communication including
video conferencing, shared files, and documents, as well as team communication
and messaging apps. The creation of the team is the easy part as it is more chal-
lenging to build a team culture with remote teams. The project manager will
stay engaged with the team throughout the project with virtual meetings, and
remote project management is like traditional project management except that the
project is executed remotely. It is a flexible methodology that can support various
approaches such as traditional software engineering and Agile.

The project manager needs to determine the remote structure that is required,
and then to find the people with the appropriate skills to carry out the project.
The project expectations need to be communicated clearly to the team members at
project initiation, including the process to be followed, work hours, project goals,
their responsibilities, the tools that will be employed for collaboration, and so on.

10.2 Planning and Requirements 187

Table 10.1 Supplier selection and management

Activity

Planning and
requirements

Identify
suppliers

Prepare and
issue RFP

Evaluate
proposals

Select
supplier

Define
supplier
agreement

Managing the
supplier

Acceptance

Rollout

Description

This involves defining the approach to the procurement. It involves:
* Defining the procurement requirements
» Forming the evaluation team to rate each supplier against objective criteria

This involves identifying suppliers and may involve research, recommendations
from colleagues, or previous working relationships. Usually, three to five
potential suppliers will be identified

This involves the preparation and issuing of the Request for Proposal (RFP) to
potential suppliers. The RFP may include the evaluation criteria and a
preliminary legal agreement

The received proposals are evaluated, and a short list is produced. The
short-listed suppliers are invited to make a presentation of their proposed
solution

Each supplier makes a presentation followed by a Q&A session. The evaluation
criteria are completed for each supplier and reference sites are checked (as
appropriate). The decision on the preferred supplier is made

A formal agreement is made with the preferred supplier. This may include
Negotiations with the supplier/involvement with Legal Department
Agreement may vary (Statement of Work, Service Level Agreement, Escrow,

etc.)

Formal Agreement signed by both parties
Unsuccessful parties informed
Purchase Order raised

This is concerned with monitoring progress, project risks, milestones, and
issues, and taking action when progress deviates from expectations

This is concerned with the acceptance of the software and involves acceptance
testing to ensure that the supplied software is fit for purpose

This is concerned with the deployment of the software and support/
maintenance activities

The project manager will conduct regular virtual team meetings, and the team
members will check in daily with the project manager to advise on progress made.

10.2 Planning and Requirements

The potential acquisition of software arises as part of a make-or-buy analysis at
project initiation. The decision is whether the project team should (or has the com-
petence to) develop a particular software system (or component of it), or whether
there is a need to outsource (or purchase off-the-shelf) the required software. The
supplied software may be the complete solution to the project’s requirements, or
it may need to be integrated with other software produced for the project. The
following tasks are involved:

188 10 Outsourcing—Supplier Selection and Management

The requirements are defined (these may be a subset of the overall business
requirements).

The solution may be available as an off-the-shelf software package (with
configuration needed to meet the requirements).

The solution may be to outsource all or part of the software development.

The solution may be a combination of the above.

Once the decision has been made to outsource or purchase an off-the-shelf solution
an evaluation team is formed to identify potential suppliers, and evaluation criteria
are defined to enable each supplier’s solution to be objectively rated.

A plan will be prepared by the project manager detailing the approach to the
procurement, defining how the evaluation will be conducted, defining the members
of the evaluation team and their roles and responsibilities, and preparing a schedule
of the procurement activities to be carried out.

The remainder of this chapter is focused on the selection of a supplier for the
outsourcing of all (or part) of the software development, but it could be easily
adapted to deal with the selection of an off-the-shelf software package.

10.3 Identifying Suppliers
A list of potential suppliers may be determined in various ways including:

Previous working relationship with suppliers

Research via the Internet/Gartner

Recommendations from colleagues or another company
Adpvertisements/other.

A previous working relationship with a supplier provides useful information on
the capability of the supplier, and whether it would be a suitable candidate for
the work to be done. Further, a supplier that is ISO 9001 certified for quality
and ISO 27001 certified for Information Security has independent assessment of
their capability. Companies will often maintain a list of preferred suppliers, and
these are the suppliers that have worked previously with the company, and whose
capability is known. The risks associated with a supplier on the preferred supplier
list are known and are generally less than those of an unknown supplier. If the
experience of working with the supplier is poor, then the supplier may be removed
from the preferred supplier list.

There may be additional requirements for public procurement to ensure fairness
in the procurement process, and often-public contracts need to be more widely
advertised to allow all interested parties the opportunity to make a proposal to
provide the product or service.

The list of candidate suppliers may potentially be quite large, and so short
listing may be employed to reduce the list to a more manageable size of around
three to five candidate suppliers.

10.5 Evaluate Proposals and Select Supplier 189

10.4 Prepare and Issue RFP

The Request for Proposal (RFP) is prepared and issued to potential suppliers, and
the suppliers are required to complete a proposal detailing the solution that they
will provide, as well as the associated costs, by the closing date. The proposal will
need to detail the specifics of the supplier’s solution, and it needs to show how the
supplier plans to implement the requirements.

The RFP details the requirements for the software and must contain sufficient
information to allow the candidate supplier to provide a complete and accurate
response. The completed proposal will include technical and financial information,
which allows a rigorous evaluation of each received proposal to be carried out.

The RFP may include the criteria defined to evaluate the supplier, and often
weightings are employed to reflect the importance of individual criteria. The
evaluation criteria may include several categories such as:

Functional (related to business requirements)

Technology (related to the technologies/non-functional requirements)
Supplier capability and maturity

Delivery approach

Cost.

Once the proposals have been received further shortlisting may take place to limit
the formal evaluation to around 3 suppliers.

10.5 Evaluate Proposals and Select Supplier

The evaluation team will evaluate all received proposals using an evaluation
spreadsheet (or similar mechanism), and the results of the evaluation yield a short
list of around three suppliers. The short-listed suppliers are then invited to make a
presentation to the evaluation team, and this allows the team to question each sup-
plier in detail to gain a better understanding of the solution that they are offering
and any risks associated with the supplier and their proposed solution.

Following the presentations and Q&A sessions the evaluation team will follow
up with checks on reference sites for each supplier. The evaluation spreadsheet is
updated with all the information gained from the presentations, the reference site
checks, and the risks associated with individual suppliers.

Finally, an evaluation report is prepared to give a summary of the evaluation,
and this includes the recommendation of the preferred supplier. The project board
then makes a decision to accept the recommendation; select an alternate supplier;
or restart the procurement process.

190 10 Outsourcing—Supplier Selection and Management

10.6 Formal Agreement

The preferred supplier is informed on the outcome of the evaluation, and negotia-
tions start on a formal legal agreement. The agreement needs to be signed by both
parties, and may (depending on the type of agreement) include (Fig. 10.1).

Legal Contract

Statement of Work
Implementation Plan

Training Plan

User Guides and Manuals
Customer Support to be provided
Service Level Agreement
Escrow Agreement

Warranty Period.

The statement of work (SOW) is employed in bespoke software development, and
it details the work to be carried out, the activities involved, the deliverables to be
produced, the personnel involved, and their roles and responsibilities.

A service level agreement (SLA) is an agreement between the customer and ser-
vice provider which specifies the service that the customer will receive as well as
the response time to customer issues and problems. It will also detail the penalties
should the service performance fall below the defined levels.

An Escrow agreement is an agreement made between two parties where an
independent trusted third party acts as an intermediary between both parties. The
intermediary receives money from one party and sends it to the other party when

Fig.10.1 Legal contract

10.8 Acceptance of Software 191

contractual obligations are satisfied. Under an Escrow agreement the trusted third
party may also hold documents and source code.

10.7 Managing the Supplier

The activities involved in the management of the supplier are like the standard
project management activities as discussed in Chap. 5. The supplier may be based
in a different physical location (possibly in another country or it may consist of
hybrid teams), and so regular communication is essential for the duration of the
contract. The project manager is responsible for managing the supplier and will
typically communicate with the supplier daily. The supplier will send regular status
reports detailing progress made as well as any risks and issues. The activities
involved include:

Monitoring progress

Managing schedule, effort, and budget
Managing risks and issues

Managing changes to the scope of the project
Obtaining weekly progress reports from the supplier
Managing project milestones

Managing quality

Reviewing the supplier’s work

Performing audits of the supplier’s work
Monitoring test results and correction of defects
Acceptance testing of the delivered software.

The project manager will maintain daily/weekly contact with the supplier and will
monitor progress, milestones, risks, and issues. The risks associated with the sup-
plier include the supplier delivering late or delivering poor quality, and all supplier
risks need to be managed.

10.8 Acceptance of Software

Acceptance testing is carried out to ensure that the software developed by the
supplier is fit for purpose. The supplied software may just be a part of the overall
system, and it may need to be integrated with other software. The acceptance
testing involves:

Preparation of acceptance test cases (this is the acceptance criteria)

Planning and scheduling of acceptance testing

Setting up the Test Environment

Execution of test cases (UAT testing) to verify acceptance criteria is satisfied.
Test Reporting

192 10 Outsourcing—Supplier Selection and Management

Communication of defects to supplier
Correction of the defects by supplier
Re-testing and Acceptance of software.

The project manager will communicate any defects with the software to the
supplier, and the supplier makes the required corrections and modifications to
the software. Re-testing then takes place and once all acceptance tests have
successfully passed the software is accepted.

10.9 Rollout and Customer Support

This activity is concerned with the rollout of the software at the customer site, and
the handover to the support and maintenance team. It involves:

Deployment of the software at customer site.
Provision of training to staff.

Handover to the Support and Maintenance Team.
On-going customer support.

On-going maintenance.

10.10 Ethical Software Outsourcing

It has become popular for Western companies to outsource software developments
to countries in Asia and Eastern Europe, with India now a major player in software
outsourcing, and Poland and Ukraine! have also become popular.

There are various motivations for outsourcing such as the desire to reduce the
cost of software development, or it may be that the company may wish to focus
on its core business and to outsource non-core activities, or it may that the com-
pany lacks the expertise or capacity to implement the project internally. There are
various models of outsourcing including where a company may partner with a
third-party supplier as a way to obtain extra IT resources for a company project,
or it might outsource all or parts of the project to a third-party supplier under
the company’s supervision, or it may outsource with the subcontractor having full
responsibility for the work from the start to the end with minimal supervision.

The costs of outsourcing may be significantly cheaper than developing the soft-
ware internally, but there are risks that it could be work out more expensive where
there are delays or significant rework due to poor quality. There are risks of disrup-
tion of business activities depending on the political climate of the country where
the subcontractor is based. Further, there may be risks of pandemics, natural dis-
asters, or the subcontractor becoming bankrupt. It is essential that contractors are

1 This was before Putin’s Russia invaded Ukraine in 2022.

10.10 Ethical Software Outsourcing 193

qualified for the work that they are to perform, and all associated risks must be
managed.

The area of corporate social responsibility (CSR) has become important in
recent years, and companies have a responsibility to be good corporate citizens
and to consider wider society in their actions and their impact on the world. That
is, corporations are expected to behave ethically and to be conscious of their car-
bon footprint and the sustainability of their business in the countries in which they
are operating (even at the expense of profits).

There are several ethical issues with outsourcing such as the fact that out-
sourcing may lead to loss of jobs in the home country of the company doing the
outsourcing. It would seem reasonable to expect an ethical corporation to protect
jobs in the countries where it is operating.

Ethical corporations have a responsibility to ensure that there are reasonable
work practices in place at the subcontractor company and that workers receive
a fair salary, have reasonable conditions of employment, and are not exploited
by the subcontractor. Globalization and the outsourcing of manufacturing opera-
tions led to many sweatshops in Asia, and there is the infamous case of Foxconn,
an Apple supplier of the iPhone based in Shenzhen in China. Several Foxconn
employees committed suicide in 2010 due to their working conditions and their
exploitation by the company, and this raised important questions on the responsi-
bilities of Apple for the welfare of the employees of one of its key suppliers?. It
is reasonable to expect a company as profitable as Apple to ensure that the staff
of its suppliers is not exploited.

Advanced economies have many laws and regulations to protect the environ-
ment, and the health and safety of employees. However, the laws and regulations
in Asia or wherever the subcontractor is based may not be as stringent. An ethical
corporate citizen has responsibilities to the environment, and it is not sufficient for
the corporation to say that it is complying fully with the laws of every country it
is operating, where these laws are not fit for purpose. The corporation has ethical
responsibilities for the health and safety of the subcontractor staff that are working
on their projects.

There may be significant cultural differences between the home country of the
corporation is based and the country where the subcontractor is based, and poten-
tially very different values between both countries. There may be problems with
the political system in the country in the subcontractor country, where an author-
itarian government may maintain a strong control over its citizens. There may
be problems with corruption, where bribes are paid to officials and others to get
things done to remove roadblocks. There may be unethical practices over price fix-
ing, and there may be cultural differences in the understanding of the importance
and protection of proprietary information, intellectual property, and compliance

2 The 2010 reports highlighted serious issues with working conditions at Foxconn in China. Unfor-
tunately, recent information indicates that there are still serious problems at Foxconn (e.g., in
Zhengzhou). See the CNN article on Foxconn from 2022 [1].

194 10 Outsourcing—Supplier Selection and Management

with security and privacy standards. It is important to be explicit in the software
outsourcing to ensure that there is no room for misunderstanding.

An ethical corporation will wish to seek the cheapest offering, but it is also
important to consider the ethical implications of outsourcing. An ethical corpo-
ration will need to check the ethical behaviour of the subcontractor on a regular
basis including salary and working conditions, and one way to do this is to perform
audits of suppliers. Audits provide visibility into the technical software develop-
ment work being done to verify its compliance with standards and all appropriate
laws and regulations, and special ethical audits could be conducted to provide
insight into any work practices that could create ethical difficulties.

It is generally inappropriate to award the contract to a subcontractor just on
price alone, and while price is an important criterion it is just one among many
criteria, and ethical criteria should also be considered. It is best to build a stable
relationship with suppliers, where there is a deep understanding of each supplier
and any associated risks.

10.11 Legal Breach of Contract

The legal agreement between the company and the subcontractor specifies the
terms to be satisfied and the obligations on both parties for the duration of the
contract. These include the deliverables to be produced, the timelines, the responsi-
bilities of both parties, and the financial payments to be made at agreed milestones.
A contract is legally binding on both parties with both having defined obligations
and should one party fail to deliver according to the terms of the agreement then
they may be in breach of the contract.?

A material breach is where one party does not fulfil their obligations under
the contract or delivers a significantly different result from that defined in the
contract. An anticipatory breach is where one party has indicated that they will
not be fulfilling their obligations under the contract, and while an actual breach has
not yet occurred there is an intention to be in breach of the contract. Both parties
will generally discuss and attempt to resolve any such breaches, and it is generally
easy to resolve minor breaches. However, if both parties are unable to resolve
their dispute over a material breach in the contract, then one party may decide to
sue the other party for being in breach of contract. However, legal disputes tend
to be expensive and time consuming, and it is often more economical and in the
best interest of both parties to come to a resolution of their dispute without the
involvement of their lawyers.

The plaintiff will bring the lawsuit to court claiming a material breach in the
contract, and the plaintiff will need to show that there was a legally binding con-
tract between the two parties, that the plaintiff fulfilled all of their obligations
under the contract (unless there was a legitimate reason not to), that the defendant

3Tt is also possible that two parties make a verbal contract that is legally enforceable.

195

failed to honour the terms of the legal agreement, and that the defendant’s actions
led to loss being suffered by the plaintiff. That is, the breach of contract claim
involves proving that:

Existence of contract

Plaintiff honoured contract

Defendant did not fulfil conditions of contract
Plaintiff suffered loss or damages.

The court will need to decide if there was a material breach of the contract and will
consider the arguments made by the plaintiff and the defendant. The defence may
argue that misunderstandings, misinterpretations, and errors in the terms of the
contract agreed by both the plaintiff and defendant led to the breach of contract,
and the judge will need to weigh up and consider all of the evidence and issue a
judgment. The judgment is based on the facts of the case and the details of the
contract, and it may be in favour of the defendant or the plaintiff depending on
the circumstances of the case. For example, if the judge decides in favour of the
plaintiff the remedy may be restitution and could potentially include:

Award of financial compensation for the breach of contract
Punitive damages to punish the wrongdoer.

There are many possible breaches that could occur such as (Table 10.2).
For more detailed information on the legal and ethical aspects of computing see

[2].

10.12 Review Questions

p—

What are the main activities in supplier selection and management?
What factors would lead an organization to seek a supplier rather than
developing a software solution in-house?

What are the benefits of outsourcing?

Describe how a supplier should be selected.

Describe how a supplier should be managed.

What is a service level agreement?

Describe the purpose of a statement of work?

What is an Escrow agreement?

What is ethical outsourcing?

What is a breach of contract and how should it be managed?

S

SRR -

—_

196

10 Outsourcing—Supplier Selection and Management

Table 10.2 Possible breaches of contract

Breach

Missing deliverables

Deliverables not fit for purpose

Missing personnel
Unskilled resources

Inadequate development environment

Intellectual property not protected

Proprietary information not protected

Quality problems

Inadequate support (SLA)

Bankrupt supplier

Description

This is where the supplier has failed to deliver one or
more deliverables, or where they have been delivered
late

This is where one or more deliverables do not satisfy
the requirements, or they may fail to adhere to the
defined standards or be unusable

This is where the agreed human resources for the
contract have not been provided

This is where the resources provided lack the skills and
experience to perform their roles effectively

This is where the software engineering environment
provided is not fit for the purpose of developing and
testing the software

This is where the intellectual property (e.g., patents and
copyright) has not been properly protected

This is where the confidentiality of proprietary
information provided to the subcontractor has not been
protected

This is where there are serious quality problems in
testing or with the software produced, and where the
software does not perform correctly under real-world
conditions

This is where the support provided has been below the
level agreed between the parties. It may be that the
resolution of problems has not achieved the targets in
the service level agreement

This is where the supplier has become bankrupt and is
unable to fulfil their obligations

10.13 Summary

Supplier selection and management is concerned with the selection and manage-
ment of a third-party software supplier. Many large projects often involve total or
partial outsourcing of the software development, and it is therefore essential to
select a supplier who can deliver high-quality and reliable software on time and
on budget.

The process for the selection of the supplier needs to be rigorous, and the capa-
bility of the supplier including the associated risks needs to be clearly understood.
The selection is based on objective criteria, and the evaluation team will rate each
supplier against the criteria and recommend their preferred supplier.

Once the selection is finalized a legal agreement is drawn up (which usually
includes the terms and conditions of the contract as well as a statement of work).

References 197

The supplier then commences the defined work and is appropriately managed for
the duration of the contract.

The project manager is responsible for managing the supplier, and this involves
communicating with the supplier daily and managing issues and risks. The
software is subject to acceptance testing before it is accepted from the supplier.

References

1. Apple has a huge problem with an iPhone factory in China. CNN Article (2022). https://edition.
cnn.com/2022/11/25/tech/apple-foxconn-iphone-supply-china-covid-intl-hnk/index.html
2. G. O’ Regan, Ethical and Legal Aspects of Computing (Springer, 2024)

https://edition.cnn.com/2022/11/25/tech/apple-foxconn-iphone-supply-china-covid-intl-hnk/index.html
https://edition.cnn.com/2022/11/25/tech/apple-foxconn-iphone-supply-china-covid-intl-hnk/index.html

f')

Check for
updates

Project Closure 1 1

Key Topics

Handover to Customer
Project Closure

End Project Report
Lessons Learned Log
Lessons Learned Report

11.1 Introduction

A project is a temporary activity with a start and end, and once the project goals
have been achieved and the completed project successfully handed over to the
customer and customer support group, it is ready to be formally closed. The early
part of the project devotes a lot of time and effort to planning and estimation, but
it is also important to devote sufficient time to dot all the I's and cross all the T’s
to bring the project to an orderly closure.

Project closure is the final phase of the project, and there are several tasks and
paperwork that need to be completed, including signatures, approvals, and final
payments. Project closure involves the following activities:

Handover to customer

Prepare End Project Report

Prepare Lessons Learned Report
Completion of Paperwork

Arrange final payments

Archive project documentation/source code
Disband project team

Celebrate success.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025 199
G. O’Regan, Guide to Software Project Management, Undergraduate Topics in
Computer Science, https://doi.org/10.1007/978-3-031-80578-3_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-80578-3_11&domain=pdf
https://doi.org/10.1007/978-3-031-80578-3_11

200 11 Project Closure

The project manager will prepare an end-of-project report detailing the extent to
which the project has achieved its targeted objectives, and these typically include
key project metrics such as quality metrics, budget and timeliness metrics, and the
functionality delivered metric.

That is, the success of the project is judged on the extent to which the defined
objectives have been achieved, including the extent to which the project has deliv-
ered the defined functionality on schedule, on budget, and with the right quality.
This is referred to as the project management triangle, where the quality of the
software is constrained between the scope of the project, its timelines, and its
budget, and the project manager can trade between these constraints (Fig. 5.3).

The project maintains a lessons learned log to record the lessons learned during
the project, and the project manager schedules a lessons learned meeting with the
project team as part of the project closure activities. This is a retrospective meeting
with the objective of determining the key lessons learned during the project from
all the lessons that were learned during the project (Agile projects conduct a ret-
rospective meeting at the end of each Sprint). The project manager publishes the
lessons learned report, which summarizes the key lessons learned from the project,
and the report is circulated to management. The objective is that project managers/
teams on future projects will benefit from taking advantage of things that worked
really well and avoiding the same mistakes that were made (part of continuous
improvement).

The project manager presents the end project report to the project board, includ-
ing any factors (e.g., change requests) that may have affected the timely delivery
of the project or staying within the allocated budget. The project is then officially
closed and the project team disbanded and assigned to other projects.

11.2 Handover to Customer

The customer’s quality expectations are defined in the quality plan, and the project
quality controls need to ensure that the desired quality is achieved throughout the
project. The acceptance tests are prepared by the customer and are executed at
the customer site. All problems identified by the customer are reported back to
the project for resolution, and all defects identified are scheduled for correction,
resolved by the project, and then verified by the customer.

The objective of the acceptance testing is to ensure that the system performs
correctly under real-world conditions at the customer site and is fit for purpose.
Once all customer acceptance tests have passed and all known issues resolved the
customer is in a position to accept the software. The customer acceptance criteria
may include criteria such as:

All acceptance tests run and passed
All system tests run and passed

All performance tests run and passed
All other tests run and passed

201

Zero open critical and major defects

Only medium and minor defects open

All known risks can be managed

Service Level Agreement in place

Installations, upgrade, and rollback guides prepared and verified
Software successfully installed at the customer site

Customer support staff trained and ready

Training provided to all affected customer staff.

The project manager will ensure that all committed documentation and deliver-
ables are handed over to the customer and that all required training has been
provided. The project manager will ensure that the customer care and support
staff have received all appropriate documentation to support the customer and that
the customer care/support is operating appropriately.

11.3 Lessons Learned Report

The project manager and team record the lessons learned during the project in
the lessons learned log (an Excel spreadsheet or tool), where the lessons recorded
indicate the strengths and weaknesses of processes, procedures, techniques, and
tools that were identified during the project (Fig. 11.1).

The project manager schedules the lessons learned meeting as part of the project
closure activities. This is a retrospective meeting that reviews the lessons learned
during the project, and the key lessons learned are identified. The project manager
prepares the lessons learned report, which is circulated to management and the
project board, and to relevant individuals in the wider organization. The objective
is to ensure that project managers and staff are informed of the key lessons that the
project team has learned that might benefit future projects, and to avoid projects
making similar mistakes in the future.

Fig.11.1 Lessons learned log

202 11 Project Closure

11.4 End Project Report

The end project report records the extent to which the project achieved its objec-
tives in delivering the agreed functionality on time, on budget, and with the right
quality. It is a crisp summary of how the project has performed including what
was done in the project and indicates how successful the project has been. It may
include sections such as (Table 11.1).

The project manager presents the end project report to the project board as part
of the project closure activities. The project board will review and evaluate the end
project report, and make an informed decision on whether to authorize the closure
of the project.

11.5 Complete Outstanding Administration

There will often be final paperwork that needs to be completed prior to project
closure, and this could include signatures, approvals, and final payments. That is,
all documents should be approved and signed off, and all invoices and outstanding
payments made.

The project manager will verify that the project has received everything stipu-
lated in the legal agreement/statement of work (in the case of outsourcing part of
the project to a software supplier). The project manager will ensure that all con-
tracted documents and source codes have been provided, the legal contract with
the supplier will be closed, and the final payment that is due to the supplier is
made.

The project manager will ensure that all the project deliverables are archived,
and this includes all project documents and source code, as well as relevant project
information such as notes and data that may be useful that are relevant for the
project.

11.6 Celebrate Success

Once the project is closed the members of the project team are disbanded and
released from the project, and assigned to other duties or projects. Any specific
physical resources/equipment are released for use in other projects or within the
organization.

The project manager will schedule a celebration event to reward the project
team for their hard work on the project (e.g., a dinner or lunch) and to celebrate
the success of the project.

11.6 Celebrate Success 203

Table 11.1 End project report

Item
Project name

Project
manager/
board

Objectives
achieved

Objectives
not achieved

Functionality
delivered

Functionality
not delivered

Budget
Schedule
Effort

Impact of
change
requests

Quality
status

Open risks

Description

The objectives achieved

The objectives not achieved and explanation/impact

Metric for actual number of requirements delivered versus planned

The requirements not delivered and business impact

Actual spend versus estimated spend (and metric)
Actual duration versus estimated duration (and metric)

Actual effort versus estimated effort (and metric)

No. of Approved CRs Effort Impact Schedule Impact || Cost Impact

Severity Total No. Defects No. Open Defects

Critical

Major

Medium

Minor

Description of open risks and impacts

(continued)

204 11 Project Closure

Table 11.1 (continued)
Item Description

Open issues Description of open issues and impacts

Milestone

status Milestone Planned Date Actual Date

IPlanning & Regs Complete

Design and Coding Complete

[System Testing Complete

IJUAT Complete

IDeployment Complete

Project Closure

11.7 Project Closure

A project is a temporary activity and once customer acceptance testing has been
successfully completed and the software successfully deployed at the customer
site, and customer support measures in place, the project is ready to be closed.
The project board is responsible for authorizing project closure, and the project
closure activities are summarized in Table 11.2.

11.8 Review Questions

. Describe the main activities in project closure.

. What is meant by a lesson that is learned in the project?

. Describe the lessons learned process.

. What is customer acceptance testing?

. Explain what is meant by the project management triangle.

. Describe the criteria to be satisfied for handover to the customer.

. How does the project board judge if the project has been successful?
. Why is it important to archive the project?

0NN WLk W~

11.9 Summary

Project closure is the formal closure of the project and disbanding of the project
team, and it takes place after the software has successfully completed customer
acceptance testing and has been successfully handed over and deployed at the
customer site. The project manager will prepare an end-of-project report detailing

11.9 Summary

205

Table 11.2 Project closure activities
Activity

Handover to customer

Completion of paperwork

Arrange final payments/close supplier contract

Prepare/present end project report

Prepare/share lessons learned report

Archive project documentation/source code

Description

The project manager will ensure that all
project deliverables are handed over to the
customer and that all required training has
been provided. The project manager ensures
that customer care and support employees have
received all appropriate documentation and are
operating effectively

There will often be final paperwork that needs
to be completed, such as signatures, approvals,
and final payments. That is, all documents
should be approved and signed off, and all
invoices and outstanding payments need to be
paid

The project manager will verify that the project
has received everything stipulated in the legal
agreement/statement of work (e.g., documents
and source code), and the legal contract with
the supplier will be closed and the final
payment that is due to the supplier is made

The project manager will prepare the
end-of-project report detailing the extent to
which the project achieved its objectives
The success of the project is judged on the
extent to which the defined objectives have
been achieved

The project manager presents the end project
report to the project board, including any
factors (e.g., change requests) that may have
affected the timely delivery of the project or
the allocated budget

The project manager schedules a meeting with
the project team to discuss the lessons learned
during the project. These are recorded in the
lessons learned log, and the key lessons learned
are summarized in the lessons learned report
The report is shared with the project board and
relevant individuals in the organization so that
future projects can benefit from the experience
of the project

The project manager will ensure that all
documents and source code, as well as relevant
project information such as notes and data that
may be useful for the project is archived. Its
important to have an archive to keep records/
knowledge

(continued)

206 11 Project Closure

Table 11.2 (continued)
Activity Description

Disband project team The members of the project team are disbanded
and assigned to other duties/projects. Any
physical resources/equipment are released for
use in other projects or within the organization

Celebrate success The project manager will schedule a
celebration event to reward the project team for
their hard work on the project (e.g., a dinner)
and to celebrate the success of the project

the extent to which the project has achieved its objectives, and these typically
include key project metrics such as quality metrics and budget and timeliness
metrics.

The success of the project is judged on the extent to which the project has deliv-
ered the defined functionality on schedule, on budget, and with the right quality.
The lessons learned log records the lessons learned during the project, and the key
lessons learned are published in the lessons learned report. The report is circulated
to management, and the goal is that all project managers and project teams on
future projects will be aware of the lessons learned during the project as part of
continuous improvement.

The project manager presents the end project report to the project board,
including any factors that may have affected the timely delivery of the project.
The project is then closed and the project team disbanded and assigned to other
projects.

f')

Check for
updates

Configuration Management 1 2

Key Topics

Configuration Management System
Configuration Items

Baseline

File Naming Conventions

Version Control

Change Control

Change Control Board
Configuration Management Audits

12.1 Introduction

Software configuration management (SCM) is concerned with tracking and con-
trolling changes to the software and project deliverables, and it provides full
traceability of the changes made during the project. A sound configuration manage-
ment system provides a record of what has been changed, as well as who changed
it, and it involves identifying the configuration items of the system; controlling
changes to them; and maintaining integrity and traceability.

The origins of software configuration management go back to the early days of
computing when the principles of configuration management used in the hardware
design and development field were applied to software development in the 1950s.
It has evolved over time to a set of procedures and tools to manage changes to
software.

The configuration items are generally documents in the early part of the soft-
ware development lifecycle (for non-Agile projects), whereas the focus is on
source code control management and software release management in the later
parts of development. Software configuration management involves:

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025 207
G. O’Regan, Guide to Software Project Management, Undergraduate Topics in
Computer Science, https://doi.org/10.1007/978-3-031-80578-3_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-80578-3_12&domain=pdf
https://doi.org/10.1007/978-3-031-80578-3_12

208 12 Configuration Management

Table 12.1 Features of good configuration management

Features of good configuration management

What is the correct version of the software module to be updated?

Where can I get a copy of R4.7 of Software System X?

What versions of Software System X are installed at the various customer sites?

What customers use R3.5 of the software system?

What changes have been introduced in the new release of software (version R4.8 from the
previous release of R4.7)?

What version of the Design document corresponds to software system version R3.5?

Are there any undocumented or unapproved changes included in the released version of the
software?

Identifying what needs to be controlled

Ensuring those items are accurately defined and documented
Ensuring that changes are made in a controlled manner

Ensuring that the correct version of a work product is being used
Knowing the version and status of a configuration item at any time
Ensuring adherence to standards

Planning builds and releases

Software configuration management allows the orderly development of software,
and it ensures that only authorized changes to the software are made. It ensures
that software releases are planned and that the impacts of proposed changes are
considered prior to their authorization. The integrity of the system is maintained
at all times, and the constituents of the software (including their version numbers)
are known at any time.

Effective configuration management allows questions such as the following
(Table 12.1) to be easily answered.

The symptoms of poor configuration management include corrected defects that
suddenly begin to re-appear (e.g., correction made to the wrong version of the
source file or older versions of source files included in the release build); difficulty
in or failure to locate the latest version of source code; or failure to determine the
source code that corresponds to a software release.

Therefore, it is important to employ sound configuration management practices
to enable high-quality software to be consistently produced. Poor configuration
management practices lead to quality problems resulting in a loss of the credibility
and reputation of a company. Some symptoms of poor configuration management
practices are listed in Table 12.2.

Configuration management involves systematically controlling change to the
configuration items in order to maintain the integrity and traceability of the config-
uration throughout the software development lifecycle. There is a need to manage
and control changes to documents and source code, including the project plan, the
requirements document, design documents, code, and test plans.

12.1 Introduction 209

Table 12.2 Symptoms of poor configuration management
Symptoms of poor configuration management

Defects corrected suddenly begin to re-appear

Cannot find the latest version of the source code

Unable to match the source code and object code

Wrong version of software sent to the customer

Wrong software code tested

Cannot replicate previously released code

Simultaneous changes to same source component by multiple developers with some changes
lost

A key concept in configuration management is that of a “baseline”, which is a
set of work products that have been formally reviewed and agreed upon, and serves
as the foundation for future development work.

A baseline can only be changed through formal change control procedures,
which leads to a new baseline. It provides a stable basis for the continuing evo-
lution of the configuration items, and all approved changes move forward from
the current baseline leading to the creation of a new baseline. The change control
board (CCB) or a similar mechanism authorizes the release of baselines, and the
content of each baseline is documented. All configuration items must be approved
before they are entered into the released baselines.

Therefore, it is necessary to identify the configuration items that need to be
placed under formal change control and to maintain a history of the changes made
to the baseline. There are four key parts to software configuration management
(Table 12.3).

A typical set of software releases (e.g., in the telecommunications domain)
consists of incremental development, where the software to be released consists
of a number of release builds with the early builds consisting mainly of new
functionality, and the later builds consisting mainly of fix releases.

Software configuration management is planned for the project, and each project
will typically have a configuration management plan which will detail the planned
delivery of functionality and fix releases for the project (Table 12.4).

Each of the R.1.0.0.k baselines is termed release builds, and they consist of
new functionality and fixes to the identified problems. The content of each release
build is known; i.e., the project team and manager will target specific function-
ality and fixes for each build, and the actual content of the particular release
baseline is documented. Each release build can be replicated, as the version of
the source code used to create the build is known, and the source code is under
control management.

There are various tools employed for software configuration management activ-
ities such as Clearcase, PVCS, and Visual Source Safe (VSS) for source code
control management. The PV tracker tool and ClearQuest may be used for track-
ing defects and change requests. A defect-tracking tool will list all of the open
defects against the software, and a defect may require several change requests
to correct the software (as a problem may affect different parts of the software

210

12 Configuration Management

Table 12.3 Software Configuration Management Activities

Area

Configuration
identification

Configuration
control

Configuration
auditing

Status
accounting

Table 12.4 Software release

delivery for project

Description

This requires identifying the configuration items to be controlled and
implementing a sound configuration management system, including a
repository where documents and source code are placed under controlled
access. It includes a mechanism for releasing documents or code, a file
naming convention, a version numbering system for documents and code,
and baseline/release planning. The version and status of each configuration
item should be known

This involves tracking and controlling change requests, and controlling
changes to the configuration items. Any changes to the work products are
controlled, and authorized by a change control board or similar mechanism.
Problems or defects reported by the test groups or customer are analysed,
and any changes made are subject to change control. The version of the work
product is known, and the constituents of a particular release are known and
controlled. The previous versions of releases can be recreated, as the source
code constituents are fully known and available

This includes audits of the configuration management system to verify the
integrity of the baseline, and that the standards and procedures are followed.
The results of the audits are communicated to the affected groups, and
corrective action taken to address the findings

This involves data collection and report generation including the software
baseline status, the summary of changes to the software baseline, problem
report summaries, and change request summaries

Release baseline Contents Date

R 1.0.0.0 F4, Fs, F; 31.01.25
R. 1.0.0.1 Fi, Fa, Fe + fixes 15.02.25
R. 1.0.0.2 F3 + fixes 28.02.25
R. 1.0.0.3 Fg + fixes (functionality freeze) 07.03.25
R. 1.0.0.4 Fixes 14.03.25
R. 1.0.0.5 Fixes 21.03.25
R. 1.0.0.6 Official release 31.03.25

product as well as different versions of the product, and a change request may be
necessary for each part). The tool will generally link the change requests to the

problem report.

The current status of the problem report can be determined, and

the targeted release build for the problem identified.

The CMMI (see Chap. 8) provides guidance on practices to be implemented for
sound configuration management (Table 12.5).

The CMMI requirements are concerned with establishing a configuration man-

agement system

; identifying the work products that need to be subject to change

control; controlling changes to these work products over time; controlling releases

12.2 Configuration Management System 211

Table 12.5 CMMI requirements for configuration management

Specific goal Specific practice Description of specific practice/goal
SG 1 Establish baselines
SP 1.1 Identify configuration items
SP 1.2 Establish a configuration management system
SP1.3 Create or release baselines
SG 2 Track and control changes
SP 2.1 Track change requests
SP2.2 Control configuration items
SG3 Establish integrity
SP 3.1 Establish configuration management records
SP 3.2 Perform configuration audits

of work products; creating baselines; maintaining the integrity of baselines; provid-
ing accurate configuration data to stakeholders; recording and reporting the status
of configuration items and change requests; and verifying the correctness and com-
pleteness of configuration items with configuration audits. We will discuss the key
parts of configuration management in the following sections.

12.2 Configuration Management System

The configuration management system enables the controlled evolution of the
documents and the software modules produced during the project. It includes.

Configuration management planning

A document repository with check in/check out features

A source code repository with check in/check out features

A configuration manager (may be a part-time role)

File naming convention for documents and source code
Project directory structure

Version Numbering System for documents

Standard templates for documents

Facility to create a baseline

A release procedure

A group (change control board) to approve changes to baseline
A change control procedure

Configuration management audits to verify the integrity of baseline.

212 12 Configuration Management

12.2.1 Identify Configuration Items

The configuration items are the work products to be placed under configuration
management control, and they include project documents, source code, and data
files. They may also include compilers as well as any supporting tools employed
in the project.

The project documentation will typically include project plans; the user require-
ments specification; the system requirements specification; the architecture and
technical design documents; the test plans, etc.

The items to be placed under configuration management control are identified
and documented early in the project lifecycle. Each configuration item needs to be
uniquely identified and controlled. This may be done with a naming convention for
the project deliverables and source code, and applying it consistently. For example,
a simple approach may be to employ mnemonics labels and version numbers to
uniquely identify project deliverables. A user requirements specification for project
005 in the Finance business area could, for example, be represented by

FIN_005_URS

12.2.2 Document Control Management

The project documents are stored in a document repository using a configuration
management tool such as PVCS or VSS. For consistency, a standard directory
structure is often employed for projects, as this makes it easier to locate particular
configuration items. A single repository may be employed for both documents and
software code (or a separate repository for each).

Clearly, it is undesirable for two individuals to modify the same document at the
same time, and the document repository will include check in/check out procedures.
The document must be checked out prior to its modification, and once it is checked
out, another user may not modify it until it has been checked back in. An audit
trail of all modifications made to a particular document is maintained, including
details of the person who made the change, the date that the change was made,
and the rationale for the change.

Version Numbering of Documents

A simple version numbering system may be employed to record the versions of
documents: e.g., v0.1, v0.2, v0.3 is often used for draft documents, with version
v1.0 being the first approved version of the document. Each time a document is
modified its version number is incremented, and the document history records the
reasons for modification.

e VO0.1 Initial draft of document
e VO0.x Revised draft (x > 0)

12.2 Configuration Management System 213

V1.0 Approved baseline version

V1.x Approved minor revision (x > 0)

Vn.0 Approved major revision (n > 1)

Vn.x Approved minor revision (x > 0, n > 1).

The document will provide information on whether it is a draft or approved, as
well as the date of the last modification, the person who made the modification,
and the rationale for the modification. The configuration management system will
provide records of the configuration management activities, as well as the status of
the configuration items and the status of the change requests. The revision history
of the configuration items will be maintained.

12.2.3 Source Code Control Management

The source code and data files are stored in a source code repository using a tool
such as PVCS, VSS, or Clearcase, and the repository provides an audit trail of all
the changes made to the source code. An item must first be checked out for modi-
fication, the changes are made, and it is then checked back into the repository. The
source code management system provides security and control of the configuration
items, and the procedures include:

Access controls

Checking in/out configuration items
Merging and Branching

Labels (labelling releases)
Reporting.

The source code configuration management tool ensures the integrity of the source
code and prevents more than one person from altering the software code at the
same time.

12.2.4 Configuration Management Plan

A software configuration management plan (it may be part of the project plan or
a separate plan) is prepared early in the project, and it defines the configuration
management activities for the project. It will detail the items to be placed under
configuration management control, the standards for naming configuration items,
the version numbering system, as well as version control and release management.!
The CM plan is placed under configuration management control.

! These may be defined in a Configuration Management procedure and referenced in the CM plan.

214 12 Configuration Management

The content of each software release is documented as well as installation and
rollback instructions. The content includes the requirements and change requests
implemented, as well as the defects corrected and the version of the new release.
A list is maintained of the customer sites of where the release has been installed.
All software releases are tested prior to their approval. The CM plan will include:

Roles and responsibilities
Configuration Items
Naming Conventions
Version Control

Filing Structure for project.

The stakeholders and roles involved are identified and documented in the CM plan.
Often, the role of a software configuration manager is employed, and this may be
a full-time or part-time role.” The CM manager ensures that the configuration
management activities are carried out correctly, and will conduct and report the
results of the CM audits.

12.3 Change Control

A change request (CR) database® is set up to record change requests made during
the project. The change requests are documented and considered by the change
control board. The CCB may just consist of the project manager and the system
owner for small projects, or a management and technical team for larger projects.
We discussed change control and the role of the CCB in Chap. 9.

The impacts and risks of the proposed change need to be considered, and an
informed decision made on whether to reject or approve the CR. The proposed
change may have technical impacts, as well as introducing new project risks, and
may adversely affect the schedule and budget. It is important to keep change to a
minimum at the later stages of a non-Agile project in order to reduce risks.

Figure 12.1 describes a simple process for raising a change request; performing
an impact assessment; deciding on whether to approve or reject the change request;
and proceeding with implementation (where applicable).

The results of the CCB review of each change request (including the rationale of
the decision made) will be recorded. Change requests and problem reports for all
configuration items are recorded and analysed, reviewed, approved (or rejected),
and tracked to closure.

A simple process map for configuration management is described in Fig. 12.2,
and it shows the process for updates to configuration information following an

2 This depends on the size of the organization and projects. The project manager may perform the
CM manager role for small projects.
3 This may just be a simple Excel spread sheet or a sophisticated tool.

124 Configuration Management Audits 215

Change Request

Log CR
1. Login Issue Log
2. Complete Change
Request Form

1. Logged CR
2. CR form completed
Assess Impact of
Change
1. Cost / schedule impacts
2. Technical Impacts
3. Deliverables affected
Impact recorded (onCR
Form)
- Approve
¢ = CR ?
Close CR
1. Update CR Form
2. Update Issue Log Y
i Approve CR
Closed CR 1. Update CR Form
2. Update Issue Log

Updated

CR Form & Issue Log

!

Implement Changes

Fig.12.1 Simple process map for change requests

approved change request. The deliverable is checked out of the repository; modifi-
cations are made and the changes approved; configuration information is updated
and the deliverable is checked back into the repository.

12.4 Configuration Management Audits

Configuration management audits are conducted during the project to verify that
the configuration is consistent and complete. Every project should have at least
one configuration audit, and the objective is to verify the completeness and cor-
rectness of the configuration system for the project. The audit will check that the
configuration records accurately reflect the configuration and that the configuration
management standards and procedures have been followed. Table 12.6 presents a
sample configuration management checklist.

There may also be a librarian role to set up the filing structure for the project,
or the configuration manager may perform this role. The project manager assigns

216 12 Configuration Management
Change Approved
New
Deliverable ~ ?
v N l
Create deliverable i i
1. Create deliverable Modify dellverabl.e
. 1. Check out of repository
(using template)
S 2. Make Changes
2. Review & update .
3. Review & update
4. Update document
s 4. Update document
history history
5. Update Version Number N
6. Assign Document ID 5. Update Version Number
N Created deliverable Modified deliverable N

)

Approve
Deliverable

)

Approve
Deliverable

?

?

v

Approved deliverable

)

Check in deliverable
1. Check into repository
2. Record comments

!

Checked in deliverable

Fig.12.2 Simple process map for configuration management

responsibilities for performing configuration management activities. All involved
in the process receive appropriate training on the process.

12.5 Review Questions

1. What is software configuration management?
2. What is change control?

3. What is a baseline?

4. Explain source code control management.

5. Explain document control management.

12.6 Summary 217

Table 12.6 Sample configuration management audit checklist

No Item to check

1 Is the Directory Structure set up for the project?

2 Are the configuration items identified and listed?

3 Have the latest versions of the templates been used?

4 Is a unique document Id employed for each document?

5 Is the standard version numbering system followed for the project?

6 Are all versions of documents and software modules in the document/source code
repository?

7 Is the Configuration Management plan up to date?

Are the roles defined in the Configuration Management Plan performing their assigned
responsibilities?

9 Are changes to the approved documents formally controlled?

10 Is the version number of a document incremented following an agreed change to an
approved document?

11 Is there a change control board set up to approve change requests?
12 Is there a record of which releases are installed at the various customer sites?

13 Are all documents/software modules produced by vendors under appropriate configuration
management control?

6. What is a configuration management audit?
7. Describe the role of the configuration manager and librarian.
8. What is a software configuration management system?

12,6 Summary

Software configuration management is concerned with the orderly development
and evolution of the software. This involves tracking and controlling changes to the
software and project deliverables, and it provides full traceability of the changes
made during the project.

It involves identifying the configuration items that are subject to change control,
controlling changes to them, and maintaining integrity and traceability through-
out the software development lifecycle. There is a need for a document and
source code repository, which has access controls, checking in and checking out
procedures; and labelling of releases.

Configuration management ensures that the impacts of proposed changes are
considered prior to authorization. It ensures that releases are planned and that only
authorized changes to the software are made. A project will have a configuration
management plan, and the configuration manager role is responsible for ensuring
that the configuration management activities are carried out correctly during the
project. Configuration audits will be conducted to verify that the CM activities

218 12 Configuration Management

have been carried out correctly. The integrity of the system is maintained, and the
constituents of the software system and their version numbers are known at all
times.

l‘)

Check for
updates

Project Management in the Agile 1 3
World

Key Topics

Sprints

Stand-up meeting
Scrum

Stories

Refactoring

Pair programming
Software Testing
Test-driven development
Continuous Integration

13.1 Introduction

Agile is a popular lightweight software development methodology that aims to
develop high-quality software faster than traditional approaches such as the water-
fall development process. Despite the fact that it is a lightweight methodology
it does not mean that anything goes, and it is, in fact, a disciplined approach to
software development. It emphasizes the following features:

A collaborative style of working

Integrated teams

Frequent Deliveries

Ability to adapt to changing business needs.

Agile provides opportunities to assess the direction of a project throughout the
development lifecycle. There has been a growth in interest in lightweight soft-
ware development methodologies since the 1990s, and these include approaches

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025 219
G. O’Regan, Guide to Software Project Management, Undergraduate Topics in
Computer Science, https://doi.org/10.1007/978-3-031-80578-3_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-80578-3_13&domain=pdf
https://doi.org/10.1007/978-3-031-80578-3_13

220 13 Project Management in the Agile World

such as rapid application development (RAD), dynamic systems development
method (DSDM), and extreme programming (XP). These approaches are referred
to collectively as agile methods.

Every aspect of Agile development such as requirements and design is continu-
ously revisited during the development, and the direction of the project is regularly
evaluated. Agile focuses on rapid and frequent delivery of partial solutions devel-
oped in an iterative and incremental manner. Each partial solution is evaluated by
the product owner, and feedback is provided to determine the next steps for the
project. Agile is more responsive to customer needs than traditional methods such
as the waterfall model, and its adherents argue that it results in:

higher quality

higher productivity

faster time to market

improved customer satisfaction.

It advocates adaptive planning, evolutionary development, early development, con-
tinuous improvement, and a rapid response to change. The term ‘agile’ was coined
by Kent Beck and others in the Agile Manifesto in 2001 [1]. The traditional water-
fall model is similar to a wide and slow-moving value stream, and halfway through
the project 100% of the requirements are typically 50% done. However, 50% of the
requirements are typically 100% done halfway through an agile project (Fig. 13.1).

Fig.13.1 Agile dog. Creative commons

13.1 Introduction 221

Agile has a strong collaborative style of working, and ongoing changes to
requirements are considered normal in the agile world. It argues that it is more
realistic to change requirements regularly throughout the project, rather than
attempting to define all of the requirements at the start of the project (as in the
waterfall methodology). Agile includes controls to manage changes to the require-
ments, and good communication and regular feedback is an essential part of the
process.

A user story may be a new feature or a modification to an existing feature. The
feature is reduced to the minimum scope that can deliver business value, and a
feature may give rise to several stories. Stories often build upon other stories and
the entire software development lifecycle is employed for the implementation of
each story. Stories are either done or not done (i.e., there is no such thing as 50%
done), and the story is complete only when it passes its acceptance tests.

Scrum is an Agile method for managing iterative development, and it consists of
an outline planning phase for the project, followed by a set of sprint cycles (where
each cycle develops an increment). Sprint planning is performed before the start
of the iteration, and stories are assigned to the iteration to fill the available time.
Each scrum sprint is of a fixed length (usually 2—4 weeks), and it develops an
increment of the system.

The estimates for each story (see Sect. 13.2.2) and their priority are determined,
and the prioritized stories are assigned to the iteration. A short (usually 15 min)
morning stand-up meeting is held daily during the iteration, and it is attended
by the scrum master, the project manager', and the project team. It discusses the
progress made the previous day, problem reporting and tracking, and the work
planned for the day ahead. A separate meeting is held for issues that require more
detailed discussion.

Once the iteration is complete the latest product increment is demonstrated
to a review audience including the product owner. This is to receive feedback
and to identify new requirements. The team also conducts a retrospective meeting
to identify what went well and what went poorly during the sprint, as part of
continuous improvement. The planning for the next sprint then commences.

The scrum master is a facilitator who arranges the daily meetings and ensures
that the scrum process is followed. The role involves removing roadblocks to
enable the team to achieve its goals and communicating with other stakeholders.
Agile employs pair programming and a collaborative style of working with the
philosophy that two heads are better than one. This allows multiple perspectives
in decision-making which provides a broader understanding of the issues.

Agile employs test-driven development with tests written before the code. The
developers write code to make a test pass with ideally developers only coding
against failing tests. This approach forces the developer to write testable code,
as well as ensuring that the requirements are testable. Tests are run frequently

I Agile teams are self-organizing and small teams (team size <20 people) do not usually have a
project manager role, and the scrum master performs some light project management tasks.

222 13 Project Management in the Agile World

with the goal of catching programming errors early. They are generally run on a
separate build server to ensure that all the dependencies are checked. Tests are re-
run before making a release. Agile employs automated testing for unit, acceptance,
performance, and integration testing.

Refactoring is a design and coding practice employed in Agile, with the goal
of changing how the software is written without changing what it does. It is a tool
for evolutionary design, where the design is regularly evaluated and improvements
are implemented as they are identified. This helps in improving the maintainability
and readability of the code and in reducing complexity. The automated test suite is
essential in demonstrating that the integrity of the software is maintained following
refactoring.

Continuous integration allows the system to be built with every change. Early
and regular integration allows early feedback to be provided and allows all of
the automated tests to be run thereby identifying problems earlier. The main
philosophy and features of Agile are:

Working software is more useful than documents

Direct interaction is preferred over documentation

Aim is to achieve a narrow fast flowing value stream

Rapid conversion of requirements into working functionality
Change is accepted as a normal part of life in the Agile world
Customer is involved throughout the project

Demonstrates value early

Feedback and adaptation are employed in decision-making
User Stories and sprints are employed

Iterative and Incremental development is employed

A project is divided into iterations

An iteration has a fixed length (i.e., Time boxing is employed)
Entire software development lifecycle is employed for the implementation of
the story

Stories are either done are not done (no such thing as 50% done)
Emphasis on Quality

Stand-up meetings held daily

Delivery is made as early as possible.

Maintenance is seen as part of the development process
Refactoring and Evolutionary Design Employed

Continuous Integration is employed

Short Cycle Times

Plan regularly

Early decision-making

13.2 Scrum Methodology 223

Stories are prioritized based on a number of factors including:

e Business Value of Story
e Mitigation of risk
e Dependencies on other stories

13.2 Scrum Methodology

Scrum is a framework for managing an agile software development project
(Fig. 13.2). It is not a prescriptive methodology as such, and it relies on a self-
organizing, cross-functional team to take the feature from idea to implementation.
The cross-functional team includes the product owner who represents the interest
of the users and ensures that the right product is built; the scrum master who is
the coach for the team, and helps the team to understand the Scrum process and to
perform at the highest level, as well as performing some light project management
activities such as project tracking; and the self-organizing team itself that decides
on which person should work on which tasks, and so on.

The Scrum methodology breaks the software development for the project into a
series of sprints, where each sprint is of a fixed time duration of 2—4 weeks. There
is a planning meeting at the start of the sprint where the team members determine
the number of items/tasks that they can commit to, and they then create a sprint
backlog (to-do list) of the tasks to be performed during the sprint. The Scrum team
takes a small set of features from ideas to coded and tested functionality that is
integrated into the evolving product.

The team attends a daily stand-up meeting (usually for 15 min) where the
progress of the previous day is discussed, as well as any obstacles to progress.

Fig.13.2 Scrum framework. Creative commons

224 13 Project Management in the Agile World

The new functionality is demonstrated to the product owner and any other relevant
stakeholders at the end of the sprint, and this may result in changes to the deliv-
ered functionality or the addition of new items to the product backlog. There is a
sprint retrospective meeting held at the end of the sprint to reflect on what went
well and what went poorly during the sprint.

The main deliverable produced using the Scrum framework is the product itself,
and Scrum expects to build a properly tested product increment (in a shippable
state) at the end of each sprint. The product backlog is another deliverable and
it is maintained and prioritized by the product owner. It is a complete list of the
functionality (user stories) to be added to the product, and there is also the sprint
backlog which is the list of functionality to be implemented in the sprint. Other
deliverables are the sprint burnout and release burnout charts, which show the
amount of work remaining in a sprint or release, and indicate the extent to which
the sprint or release is on schedule.

The Scrum Master is the expert on the Agile process and acts as a coach to the
team thereby helping the team to achieve a high level of performance. The role
differs from that of a traditional project manager, as the Scrum Master does not
assign tasks to individuals or provide day-to-day direction to the team (the team is
self-organizing). However, the scrum master typically performs some light project
management tasks.

Many of the traditional project managers’ responsibilities such as task assign-
ment and day-to-day project decisions revert back to the self-organizing team, and
the responsibility for the scope and schedule trade-off goes to the product owner.
The product owner creates and communicates a solid vision of the product, and
shares the vision through the product backlog. Larger Agile projects (team size >
20) will often have a dedicated project manager.

13.2.1 User Stories

A user story is a short simple description of a feature written from the viewpoint
of the user of the system. They are often written on index cards or sticky notes
and arranged on walls or tables to facilitate discussion. This approach facilitates
the discussion of the functionality rather than the written text.

A user story may be written at varying levels of detail, and a large detailed user
story is known as an epic. An epic story is often too large to be implemented in
one sprint and is often split into several smaller user stories.

It is the product owner’s responsibility to ensure that a product backlog of user
stories exists, but the product owner is not required to write all stories. In fact,
anyone can write a user story, and each team member usually writes a user story
during an Agile project. A user story-writing workshop is held at the start of the
project so that the project team members are familiar with the process. User stories
are written throughout an Agile project (Fig. 13.3).

The set of user stories leads to the product backlog that describes the function-
ality to be added during the project. Some of these will be epics that need to be

13.2 Scrum Methodology 225

Fig.13.3 User story map. Creative commons

decomposed into smaller stories that will fit into the time-boxed sprint. New user
stories may be written at any time and added to the product backlog (the user story
map in Fig. 13.3 is a two-dimensional representation of the product backlog).

There is no requirements document as such in Agile, and the product back-
log (i.e., the prioritized list of the functionality of the product to be developed) is
closest to the idea of a requirements document used in a traditional project. How-
ever, the written part of a user story in Agile is incomplete until the discussion of
that story takes place. It is often useful to think of the written part of a story as
a pointer to the real requirement, such as a diagram showing a workflow or the
formula for a calculation.

13.2.2 Estimation in Agile

Planning poker is a popular consensus-based estimation technique often used in
Agile, and it is used to estimate the effort required to implement a user story. The
planning session starts with the product owner reading the user story, or describing
a feature to the estimators.

Each estimator holds a deck of planning poker cards with values like O, 1, 2, 3,
5, 8, 13, 20, 40 and 100, where the values represent the units in which the team
estimates. The estimators discuss the feature with the product owner, and when the

226 13 Project Management in the Agile World

discussion is fully complete and all questions answered, each estimator privately
selects a card to reflect his or her estimate.

All cards are then revealed and if all values are the same then that value is
chosen as the estimate. Otherwise, the estimators discuss their estimates with the
rationale for the highest and lowest discussed in detail. Each estimator then res-
elects an estimate card, and the process continues until consensus is achieved, or
if consensus cannot be achieved the estimation of the particular item is deferred
until more information is available.

The initial estimation session usually takes place after the initial product back-
log is written. It may take a number of days and is used to create the initial
estimates of the size and scope of the project. Further estimation and planning
sessions take place during the project as user stories are added to the product
backlog, and these will typically take place towards the end of the current sprint.

The advantage of the Agile estimation process is that it brings multiple expert
opinions from the cross-functional team, with the estimates explained in the
detailed discussion. This helps to improve the estimation accuracy of the project.

13.2.3 Pair Programming

Pair programming is an agile technique where two programmers work together
on one computer. The author of the code is termed the driver, and the other pro-
grammer is termed the observer (or navigator) and is responsible for reviewing
each line of written code. The observer also considers the strategic direction of
the coding, proposes improvement suggestions, and identifies potential problems
that may need to be addressed. The driver can focus on the implementation of the
current task, and use the observer as a safety net. The two programmers switch
roles regularly during the development of the new functionality (Fig. 13.4).

Pair programming requires more programming effort compared to programmers
working in isolation. However, the resulting code is generally of higher quality,
with fewer defects and a reduction in the cost of maintenance. Further, pair pro-
gramming enables a better design solution to be created as more design alternatives
are considered.

This is because two programmers are bringing different experiences to the prob-
lem, and they may have different ways of solving the problem. This leads them to
explore a larger number of ways of solving the problem than an individual pro-
grammer. Finally, pair programming is good for knowledge sharing and learning,
including knowledge of programming practice and design, and knowledge about
the system among the team.

The Jira tool is often used in Agile projects for development sprints, daily
work, and progress reporting. It allows Agile projects to track and manage issues
and to show their resolution through the workflow. An issue could be a user story
that needs to be implemented in the sprint, software defects, or new features or
requirements.

13.3 Software Testing in Agile 227

Fig.13.4 Pair programming. Creative commons

13.3 Software Testing in Agile

Traditional software projects employ a testing phase to verify the correctness of
the software, and the testing verifies that the defects identified during testing have
been resolved. The developers and testers are in a sense in different silos in a
traditional project, which potentially leads to an adversarial relationship between
them. However, in the Agile world testing is employed from the very beginning of
the project to provide regular feedback on the extent to which the product meets
the business needs. The developers and testers are very much part of the one
integrated team, and they work closely together in a spirit of collaboration. That
is, there is a completely different mindset to testing employed in the Agile world.

Testing is the responsibility of the test group in a traditional project, whereas
testing is the responsibility of the entire team in an Agile project. Agile projects
employ continuous testing from the start of the project, and this helps in ensuring
that continuous progress is made during the sprint, and that the features have been
correctly implemented.

It is fundamental in Agile that all the features be completely tested (including
UAT testing) during the sprint, as any features that have not been completely tested
are considered to be not done. This may result in the team being unable to do
as much in the sprint as previously thought, and everyone tests to eliminate the
bottleneck.

There is often a large gap in time between development and testing in traditional
projects, and this increases the risk to the quality of the project. However, Agile

228 13 Project Management in the Agile World

teams test early and test often, which provides a short feedback loop on the quality
of the software. That is, the team knows early whether there are problems with
the software, whereas conventional projects learn about problems very late in the
project. Agile’s approach is to keep the code clean and defects are corrected as
they are identified.

Automated tests (including unit and regression) are run frequently to provide
rapid feedback, and this helps to reduce risk and rework. Manual testing (e.g.,
exploratory or regression) takes longer to execute and may require one or more
team members to be available for several days.

Traditional projects produce a suite of comprehensive test documentation
including test plans, test case specifications, test reports, and so on. However, in the
Agile world lightweight test documentation is employed with Agile testers using
reusable checklists to suggest tests and using lightweight documentation tools.

Agile generally employs automated testing for unit, acceptance, performance,
and integration testing. Traditional projects employ a “test-last” approach with the
requirements and design coming first, the tests derived from them, and the testing
taking place at the end of the project. Agile employs a “test-first” approach with
the tests defined with the requirements and used to drive the development effort.

That is, Agile employs test-driven development with tests written before the
code. The developers write code to make a test pass with ideally developers
only coding against failing tests. The code may then be refactored to improve
its maintainability and readability and retested. Test-driven development forces
the developer to write testable code, as well as ensuring that the requirements
are testable. Tests are run frequently with the goal of catching programming
errors early, and they may be run on a separate build server to ensure that all
dependencies are checked prior to making a release.

Agile employs automated unit/integration tests which are written by the pro-
grammer, and are executed frequently especially following change. It employs
automated system tests that define the externally expected behaviour of the system
and these tests are executed regularly as part of continuous integration. Exploratory
testing is employed as an Agile practice to learn about the software by designing
and executing tests and may be used to target vulnerabilities in the system.

13.3.1 Test-Driven Development

Test-driven development (TDD) was developed by Kent Beck and others as part
of their work on extreme programming (XP) in the late 1990s, and the approach
involves the developers focusing on the requirements and writing test cases early
(based on the requirements) before writing the code. The application is thus written
with testability in mind, which means that the developers consider how to test
the application in advance before writing any code. Further, it ensures that there
are test cases for every feature, and writing tests early helps in gaining a deeper
understanding of the requirements.

13.4 Advantages and Disadvantages of Agile 229

TDD is based on the transition of the requirements into a set of test cases,
and the software is then written to pass the test cases. In other words, test-driven
development of a new feature begins with writing a suite of test cases based on the
requirements for the feature, and the code for the feature is then written to pass
the test cases. This is a paradigm shift from traditional software engineering where
unit tests are written and executed after the code is written.

The tests are written for the new feature, and initially, all of the tests fail as no
code has been written. The first step is to write some code that enables the new
test cases to pass, this new code may be imperfect (it will be improved later), but
this is acceptable at this time as the only purpose is to pass the new test cases.
The next step is to ensure that the new feature works with the existing features,
and this involves executing all new and existing test cases.

This may involve modification of the source code to enable all of the tests
to pass and to ensure that all features work correctly together. The final step is
refactoring the code, and this involves cleaning up and restructuring the code,
and improving its structure and readability. The test cases are re-run during the
refactoring to ensure that the functionality is not altered in any way. The process
repeats with the addition of each new feature.

Continuous integration allows the system to be built with every change, and this
allows early feedback to be provided. It also allows all of the automated tests to
be run, thereby ensuring that the new feature works with the existing functionality,
and identifying problems earlier.

13.3.2 Agile Test Principles

The Agile methodology is a test-driven approach, with testing continuous rather
than sequential as in the waterfall model. It is performed by the integrated team
rather than by a dedicated test team (traditional projects). Continuous testing
shortens the time for feedback to be provided, and the code is kept clean since
all defects are corrected within the sprint. Agile uses lightweight documenta-
tion for testing (reusable checklists) to focus on the tests. The test principles are
summarized in Table 13.1.

13.4 Advantages and Disadvantages of Agile

There are several advantages and disadvantages of the Agile compared to tra-
ditional software engineering. Agile is a flexible methodology with a focus on
quality and continuous improvement, with the customer involved at all times
throughout the software development process. The customer is involved in the
decision-making process and may propose changes at any time to ensure that the
final product is fit for purpose and satisfies the needs of the market. Its emphasis is
on working software code rather than documentation, which allows the customer

230

13 Project Management in the Agile World

Table 13.1 Agile test principles

Principle

Testing provides feedback

Continuous testing

Testing by entire team

Short feedback loop

Clean code

Lightweight documentation

Done means “Done”

Test driven

Description

Testing is used to provide feedback and visibility to move the
project forward

Testing is a way of life in Agile and it takes place frequently
during the sprint

Both developers and testers execute tests with the whole team
becoming involved to eliminate bottlenecks in testing

Agile teams test early and test often to obtain rapid feedback on
how the software is behaving

Developers fix genuine defects as they are found thereby
keeping the code clean

Testers use reusable checklists and lightweight documentation
tools

A feature is not complete until it has been fully implemented
and tested

The tests are defined with the requirements and used to drive
the development efforts

to give regular feedback to the project team on its fitness for purpose, thereby
enabling the product to be continuously improved during the development process.

Among the disadvantages of Agile is that it is less predictable than conven-
tional projects, which makes it more difficult to accurately estimate the time
and resources required to complete an Agile project. The methodology requires
a greater commitment of staff to be effective, and it takes time for a newly set
up self-organizing team to master the Agile approach. Further, there is a lack of
appropriate project documentation during the project, which potentially makes it
difficult for new team members to become familiar with the project as well as
making it more difficult to maintain the software.

13.5 Review Questions

What is Agile?

PO o

How does Agile differ from the traditional waterfall model?

What is a user story?

Explain how estimation is done in Agile.

What is test-driven development?

Describe the scrum methodology and the role of the Scrum Master.
Explain how testing is performed in the Agile world.

Explain pair programming and describe its advantages.

What are the strengths and weaknesses of the Agile methodology?

Reference 231

13.6 Summary

This chapter gave a brief introduction to project management in the Agile world.
Agile is a popular lightweight software development methodology that advo-
cates adaptive planning, evolutionary development, early development, continuous
improvement, and a rapid response to change. The traditional waterfall model
is similar to a wide and slow-moving value stream, and halfway through the
project 100% of the requirements are typically 50% done. However, 50% of the
requirements are typically 100% done halfway through an agile project.

Agile has a strong collaborative style of working, and ongoing changes to
requirements are considered normal in the Agile world. It includes controls to
manage changes to the requirements, and good communication and early regular
feedback is an essential part of the process.

The Scrum approach is an Agile method for managing iterative development,
and it consists of an outline planning phase for the project followed by a set of
sprint cycles (where each cycle develops an increment). Each scrum sprint is of a
fixed length, and it develops an increment of the system.

The estimates for each story and their priority are determined, and the pri-
oritized stories are assigned to the iteration. A short (usually 15 min) morning
stand-up meeting is held daily during the iteration and discusses the progress made
the previous day, problem reporting and tracking, and the work planned for the day
ahead.

Software testing is employed from the very beginning of an Agile project to
provide regular feedback on the extent to which the product meets business needs.
The developers and testers are part of one integrated team, and they work closely
together in a spirit of collaboration. There is a completely different mindset to
testing employed in the Agile world.

Once the iteration is complete the latest product increment is demonstrated to
a review audience including the product owner. This is to receive feedback and
to identify new requirements. The team also conducts a retrospective meeting to
identify what went well and what went poorly during the iteration, as part of
continuous improvement of future sprints.

Reference

1. K. Beck et al., Manifesto for Agile Software Development. Agile Alliance (2001). http://agilem
anifesto.org/

http://agilemanifesto.org/
http://agilemanifesto.org/

l‘)

Check for
updates

Project Management Metrics 1 4

Key Topics

Measurement

Goal, Question, Metric
Balanced Scorecard
Problem-Solving

Data Gathering

14.1 Introduction

Measurement is an essential part of mathematics and the physical sciences, and
it has been successfully applied to the software engineering field. Its purpose is
to establish and use quantitative measurements to manage software development
activities in an organization; to assist the organization in understanding its cur-
rent software engineering capability; and to provide an objective indication that
software process improvements have been successful.

Measurements provide visibility into the various areas of the organization,
and the quantitative data allow trends to be seen over time. The analysis of the
trends leads to corrective action plans. Measurements may be employed to track
the quality, timeliness, cost, schedule, and effort of software projects. The terms
“metric” and “measurement” are used interchangeably in this book, and the formal
definition of measurement given by Fenton [1] as:

Measurement is the process by which numbers or symbols are assigned to attributes or
entities in the real world in such a way as to describe them according to clearly defined
rules.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025 233
G. O’Regan, Guide to Software Project Management, Undergraduate Topics in
Computer Science, https://doi.org/10.1007/978-3-031-80578-3_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-80578-3_14&domain=pdf
https://doi.org/10.1007/978-3-031-80578-3_14

234 14 Project Management Metrics

Measurement plays a key role in the physical sciences: for example, calculating
the distance to the planets and stars; determining the mass of objects; computing
the speed of mechanical vehicles; calculating the electric current flowing through
a wire; computing the rate of inflation; estimating the unemployment rate, and so
on. Measurement provides a more precise understanding of the entity under study.

Often several measurements are used to provide a detailed understanding of
the entity under study. For example, the cockpit of an airplane contains measure-
ments of altitude, speed, temperature, fuel, latitude, longitude, and various devices
essential to modern navigation and flight.

Metrics play a key role in problem-solving, and several problem-solving tech-
niques were discussed in Chap. 8. For example, a telecommunications outage is
measured as the elapsed time between the downtime and the subsequent uptime,
and the longer the outage lasts the more serious it is. That is, measurement data
are invaluable in providing a quantitative measure of the extent of the problem. It
enables analysis to be performed on the root cause of a particular problem, e.g.,
of a telecommunications outage, and to verify that the actions taken to correct the
problem have been effective.

Metrics provide an internal view of the quality of the software project, but care
is needed before deducing the behaviour that will be exhibited externally from
the various internal measurements. A leading measure is a software measure that
usually precedes the attribute that is under examination; for example, the arrival
rate of software problems is a leading indicator of the maintenance effort. Leading
measures provide an indication of the likely behaviour of the product in the field
and need to be examined closely. A lagging indicator is a software measure that is
likely to follow the attribute being studied; for example, escaped customer defects
are a lagging indicator of the quality and reliability of the software. It is important
to learn from lagging indicators even if the data can have little impact on the
current project.

14.2 The Goal Question Metric Paradigm

Many software metrics programs have failed because they had poorly defined, or
non-existent goals and objectives, with the metrics unrelated to the achievement of
the business goals. The Goal Question Metric (GQM) paradigm was developed by
Victor Basili and others at the University of Maryland in the late 1980s [2], and
it is a rigorous goal-oriented approach to measurement, in which goals, questions,
and measurements are closely integrated.

The business goals are first defined, and then the relevant questions that relate
to the achievement of the goal are determined. For each question, a metric that
gives an objective answer to the particular question is defined. The statement of
the business goal is precise, and it is related to individuals or groups. The GQM
approach is a simple one, and managers and engineers proceed according to the
following three stages:

14.2 The Goal Question Metric Paradigm 235

Goal—Determine Effectiveness of
Programming Language L

Question— Question—What
What is the is the code
Quality of productivity of
Language L code Language L

Question—Who uses
Programming
Language L

Fig.14.1 GQM example

e Set goals specific to needs in terms of purpose, perspective, and environment

e Refine the goals into quantifiable questions

e Deduce the metrics and data to be collected (and the means for collecting them)
to answer the questions.

Consider the goal of determining the effectiveness of a new programming language
L. There are several valid questions that may be asked at this stage, including:
What percentage of programmers use L?, What is their level of experience? What
is the quality of software code produced with language L.? What is the productiv-
ity of programmers who use language L? This leads naturally to the quality and
productivity metrics as detailed in Fig. 14.1.

Goal

The focus on improvements should be closely related to the business goals, and
the first step is to identify the key goals that are essential for business success.
The business goals are related to the strategic direction of the organization and the
problems that it is currently facing. There is little sense in directing improvement
activities to areas that do not require improvement, or where there is no business
need to improve, or where there will be a minimal return to the organization.

Question

These are the key questions that determine the extent to which the goal is being
satisfied, and for each business goal the set of pertinent questions need to be iden-
tified. That is, the information required to determine the current status of the goal
is determined from the answers to the related questions. Each question is anal-
ysed to determine the best approach to obtain an objective answer, and to define
the metrics that are needed, and the data that needs to be gathered to answer the
question objectively.

236 14 Project Management Metrics

Metrics

These are measurements that provide a quantitative answer to the particular ques-
tion, and they are closely related to the achievement of the goals. They provide an
objective picture of the extent to which the goal is currently satisfied and improve
the understanding of a specific process or product. The GQM approach leads to
measurements that are closely related to the goal, rather than measurement for the
sake of measurement.

GQM helps to ensure that the defined measurements will be relevant and used
by the organizations to understand their current performance, and to used to
improve and satisfy the business goals more effectively. Clear improvement goals
that are related to the business goals are essential for successful improvement. The
GQM measures may be from various viewpoints, e.g., manager viewpoint, project
team viewpoint, etc.

There are two key approaches to software process improvement: i.e., fop-down
or bottom-up improvement. Top-down approaches are based on process improve-
ment models and appraisals: e.g., models such as the CMMI, ISO 15504, and ISO
9000 (see Chap. 8), whereas GQM is a bottom-up approach to software process
improvement, and is focused on improvements related to certain specific goals.
The top-down and bottom-up approaches are often combined in practice.

14.3 The Balanced Scorecard

The balanced scorecard (BSC) (Fig. 14.2) is a management tool that is used to
clarify and translate the organization vision and strategy into action. It was devel-
oped by Kaplan and Norton [3], and has been applied to many organizations. The
European Software Institute (ESI) developed a tailored version of the BSC for the
IT sector (the IT Balanced Scorecard).

The BSC assists in selecting appropriate measurements to indicate the suc-
cess or failure of the organization’s strategy. There are four perspectives in the
scorecard: customer, financial, internal process, and learning and growth. Each
perspective includes objectives to be accomplished for the strategy to succeed,
measures to indicate the extent to which the objectives are being met, targets to
be achieved in the perspective, and initiatives to achieve the targets. The balanced
scorecard includes financial and non-financial measures.

The BSC is useful in selecting the key processes that the organization should
focus its process improvement efforts on in order to achieve its strategy. Traditional
improvement is based on improving quality; reducing costs; and improving pro-
ductivity, whereas the balanced scorecard takes the future needs of the organization
into account, and identifies the processes that the organization needs to excel at
in the future to achieve its strategy. This results in focused process improvement,
and the intention is to yield the greatest business benefit from the improvement
program.

The starting point for the organization is to define its vision and strategy for the
future. This often involves strategy meetings with the senior management to clarify

143 The Balanced Scorecard 237

Fig.14.2 The balanced scorecard

the vision and to achieve consensus on the strategic direction for the organization
among the senior management team. The vision and strategy are then translated
into objectives for the organization or business unit. The next step is communica-
tion, and the vision, strategy, and objectives are communicated to all employees.
These critical objectives must be achieved in order for the strategy to succeed,
and so all employees (with management support) will need to determine their own
local objectives to support the organization strategy. Goals are set and rewards are
linked to performance measures.

The financial and customer objectives are determined from the strategy, and
the key business processes to be improved are then identified. These are the
key processes that will lead to a breakthrough in performance for customers and
shareholders of the company. It may require new processes with re-training of
employees on the new processes necessary, and the balanced scorecard is very
effective in driving organizational change. The financial objectives require targets
to be set for customers, internal business processes, and the learning and growth
perspective. The learning and growth perspective will examine the competencies
and capabilities of employees and the level of employee satisfaction (Fig. 14.3).

Table 14.1 presents sample objectives and measures for the four perspectives in
the BSC for an IT service organization.

238

14 Project Management Metrics

Fig.14.3 Balanced score card and implementing strategy

Table 14.1 BSC objectives and measures for IT service organization

Financial
Cost of provision of services
Cost of hardware/software
Increase revenue
Reduce costs
Timeliness of solution
99.999% network availability
24/7 customer support

Internal business process
Requirements definition
Software design
Implementation
Testing
Maintenance
Customer support
Security/proprietary information
Disaster prevention and recovery

Customer
Quality service
Reliability of solution
Rapid response time
Accurate information
Timeliness of solution
99.999% network availability
24/7 customer support

Learning and growth
Expertise of staff
Software development capability
Project management
Customer support
Staff development career structure
Objectives for staff
Employee satisfaction
Leadership

14.4 Software Metrics for Project Management

The objective of this section is to present a set of project management met-
rics to provide visibility into the project and to show how metrics can facilitate
improvement. The objective is to show how metrics may be employed for effec-
tive management and decision-making. Many organizations have monthly quality
or operation reviews in which the presentation of metrics plays an important role.

144 Software Metrics for Project Management 239

We present sample metrics for various areas that impact software project man-
agement, including metrics for human resources, customer satisfaction, supplier
quality, internal audit, as well as metrics for accuracy of the estimation of sched-
ule and budget, and quality metrics for requirements, development, testing, and
process improvement. These metrics may be presented at a regular management
review and performance trends observed, and the main output from a management
review is a series of improvement actions.

14.4.1 Customer Satisfaction Metrics for Project

Figure 14.4 shows the customer survey arrival rate per customer per month, and it
indicates that there is a survey process in place for measuring satisfaction with the
projects taking place and that the customers are surveyed throughout the year. It
does not provide any information as to whether the customers are satisfied, whether
any follow-up activity from the survey is required, or whether the frequency of
surveys is sufficient (or excessive) for the organization.

Figure 14.5 gives the customer satisfaction measurements in several categories
including quality, the ability of the project to meet the committed dates and to
deliver the agreed content, the ease of use of the software, the expertise of the staff,
and the value for money. The chart indicates the extent to which the customer is
happy with the delivery of the project, and the customer care group needs to follow
up negative feedback with the customer. Figure 14.5 is interpreted as follows:

8-10 Exceeds expectations
7 Meets Expectations
5-6 Fair

0-4 Below Expectations

Fig.14.4 Customer survey arrivals

240 14 Project Management Metrics

Fig.14.5 Customer satisfaction measurements for project A

In other words, a score of 8 for quality indicates that the customers consider the
software to be of high quality, and a score of 9 for value for money indicates that
the customers consider the solution to be excellent value. It is essential that the
customer feedback is analysed (with follow-up meetings held where appropriate).
There may be a need to prepare an action plan to deal with customer issues and
communicate the plan to the customer.

14.4.2 Process Improvement Metrics

The objective of process improvement metrics is to provide visibility into the pro-
cess improvement in the organization (we discuss process improvement of project
management in Chap. 16).

Figure 14.6 shows the arrival rate of improvement suggestions from the
software community, and these may include suggestions to improve project man-
agement, testing, and so on. The chart indicates that the arrival rate is high
initially and the closure rate low, which is consistent with the commencement
of an improvement initiative. The closure rate then improves which indicates that
the improvement team is active in implementing the improvement suggestions.
The closure rate is low during July and August, which may be explained by the
holiday period.

The chart provides no information on the effectiveness of the process improve-
ments and the overall impact on quality and productivity. There are no measures
of the cost of improvements, and this is needed for a cost benefit analysis of the
benefits versus the cost of the improvements.

Figure 14.7 provides visibility into the status of the improvement suggestions
for project management, and the number of raised, open, and closed sugges-
tions per month. The chart indicates that gradual progress has been made in the
improvement program with a gradual increase in the number of suggestions that
are closed.

144 Software Metrics for Project Management 241

Fig.14.6 Process improvement measurements

Fig.14.7 Status of PM improvement suggestions

Figure 14.8 provides visibility into the age of the PM improvement sugges-
tions, and acts as a partial measure of the productivity of the improvement team.
The charts in Figs. 14.6, 14.7, and 14.8 give a more complete picture of team
productivity.

There may be other charts associated with process improvement programs such
as a chart to indicate the status of the implementation of a CMMI improvement
program as provided in Fig. 14.30. Similarly, a chart that gives the current status of
an ISO 9001 implementation could be derived from the number of actions which

242 14 Project Management Metrics

Fig.14.8 Age of PM improvement suggestions

are required to implement ISO 9000, the number implemented, and the number
outstanding.

14.4.3 Human Resources Metrics for Project Management

Figure 14.9 gives visibility into the human resources needs of the project and
gives visibility into the headcount needs and the actual resources provided per
month. The HR department tracks the current number of employees of the organi-
zation per calendar month (Fig. 14.10), and the turnover of staff in the organization
(Fig. 14.11). The human resources department will maintain measurements of the
number of job openings to be filled per month, the arrival rate of resumes per
month, the average number of interviews to fill one position, the percentage of
employees that have received their annual appraisal, etc.

4 =
3
o === Resource Needs
=== Resources Provided
1 d
0 - 1
QO \S Y A
O V@* DA RS

Fig.14.9 Headcount needs and provision for project

144 Software Metrics for Project Management 243

Fig.14.10 Headcount in organization

Fig.14.11 Employee turnover in the current year

One of the key goals of the HR department is to attract and retain the best
employees, and this breaks down into the two obvious sub-goals of attracting the
best employees and retaining them. Figure 14.11 gives visibility into the turnover
of staff in the project during the calendar year, and it indicates the effectiveness of
staff retention in the organization.

14.4.4 Project Management Effectiveness
The success of the project manager is judged by the extent to which s/he delivers

the agreed functionality for the project on time and budget, and with the right qual-
ity. The timeliness metric provides visibility into the extent to which the project

244 14 Project Management Metrics

has been delivered on time, and the number of months over or under schedule per
project in the organization is shown. The schedule estimation metric is a lagging
measure, as it indicates that the project has been delivered within a schedule or
not after the event (Fig. 14.12).

The on-time delivery of a project requires that the various milestones in the
project be carefully tracked and corrective actions taken to address slippage dur-
ing the project. The second metric provides visibility into the effort estimation
accuracy of a project. Accurate effort estimation is essential in calculating the cost
of the project and in preparing the project schedule. We discussed the Standish
Research data on projects in Chap. 1, which showed that the accurate effort and
schedule estimation is difficult (Fig. 14.13).

Fig.14.12 Schedule estimation metric

Fig.14.13 Effort estimation metric

144 Software Metrics for Project Management 245

Fig.14.14 Requirements delivered

The effort estimation chart is similar to the schedule estimation chart, except
that the schedule metric is referring to elapsed calendar months, whereas the effort
estimation chart refers to the planned number of person months required to carry
out the work versus the actual number of person months that it actually took.
Projects need an effective estimation methodology to enable them to be successful
in project management, and the project manager will use metrics to determine how
accurate the estimation has actually been.

The next metric is related to the commitments that are made to the customer
with respect to the content of a particular release, and it indicates the effectiveness
of the projects in delivering the agreed functionality to the customer (Fig. 14.14).
This chart could be adapted to include enhancements or fixes promised to a
customer for a particular release of a software product.

14.4.5 Development and Testing Metrics for Project

These metrics give visibility into the development and testing of the software.
Figure 14.15 shows the total number of change requests and defects raised during
the project (these are the project issues), as well as their severities. The presence
of a large number of change requests suggests that the initial definition of the
requirements for the project was incomplete and that the requirements process
may need improvement.

Figure 14.16 gives the status of open issues (open change requests and defects)
of the project, and is an indication of the current quality of the project, and the
effort required to achieve the desired quality in the software. This chart is not used
in isolation, as the project manager will need to know the arrival rate of problems
(see Fig. 14.18) to determine the stability of the software product.

The organization may decide to release a software product with open prob-
lems provided that the associated risks with the known problems can be managed.

246 14 Project Management Metrics

Fig.14.15 Total number of issues in project

Fig.14.16 Open issues in project

It is important to perform a risk assessment to ensure that these may be man-
aged, and the known problems (and ways to work around the problems) should be
documented in the release notes for the product.

The project manager will need to know the age of the open problems to deter-
mine the effectiveness of resolving problems in a timely manner. Figure 14.17
presents the age of the open defects, and it highlights the fact that there is one
major problem that has been open for over one year. The project manager needs
to prevent this situation from arising, as critical and major problems need to be
swiftly resolved.

144 Software Metrics for Project Management 247

Fig.14.17 Age of open defects in project

Fig.14.18 Problem arrivals per month

The problem arrival rate enables the project manager to judge the stability of
the software, and this metric (used with other metrics) helps in judging whether
the software is ready for release to potential customers. Figure 14.18 presents a
sample problem arrival chart, and the chart indicates positive trends with the arrival
rate of problems falling to very low levels.

248 14 Project Management Metrics

The objective is that the number of defects reported at the acceptance test
and after the product is officially released to the customer should be minimal
(preferably zero defects post-release of the software).

The project manager will need to do an analysis to determine if there are other
causes that could contribute to the fall in the arrival rate; for example, it may be
the case that testing was completed in September, which would mean, in effect,
that no testing has been performed since then, with an inevitable fall in the number
of problems reported. The important point is not to jump to a conclusion based on
a particular chart, as the circumstances behind the metric must be fully known and
taken into account in order to draw valid conclusions.

Figure 14.19 presents the status of the testing for the project, including the
number of tests planned, the number of test cases run, the number that have passed,
and the number of failed and blocked tests. The test status is reported regularly
to management during the testing, and extra resources may need to be provided
when the testing is behind schedule.

Figure 14.20 is the cumulative arrival rate curve and it gives an indication of
the stability of the product. The expectation is that the curve will level off towards
the end of testing, as most of the defects will have been identified.

Figure 14.21 describes the arrival and closure rates of problems, and gives an
indication of the stability of the project as well as its effectiveness in resolving
defects. The arrival rate of problems should be very low towards the end of the
project.

Figure 14.22 gives an indication of the number of raised, open, and closed
problems during the project. It does not give an indication of how serious the
problems are.

Figure 14.23 measures the effectiveness of the project in identifying defects in
the development phase, and the effectiveness of the test groups in detecting defects

Fig.14.19 Test progress

144 Software Metrics for Project Management 249

Fig.14.20 Cumulative defects—arrivals

Fig.14.21 Problem arrivals and closure

Fig.14.22 Status of problems

250 14 Project Management Metrics

Fig.14.23 Phase containment effectiveness

that are present in the software. The development portion typically includes defects
reported on inspection forms and in unit testing.

Figure 14.23 indicates that the project had a phase containment effectiveness
of approximately 54%. That is, the developers identified 54% of the defects,
the system-testing phase identified approximately 23% of the defects, acceptance
testing identified approximately 14% of the defects, and the customer identified
approximately 9% of the defects. The objective is that the number of defects
reported at the acceptance test and after the product is officially released to the
customer should be minimal.

14.4.6 Quality Audit Metrics

These metrics provide visibility into the audit program for projects within the
organization (if there is such a program), and they include metrics for the number
of audits planned and performed and the status of the audit actions. Figure 14.24
presents visibility into the number of audits carried out in the organization.

It shows that the organization has an audit program, and gives information on
the number of audits performed during a particular time period. The chart does not
give a breakdown into the type of audits performed, e.g., supplier audits, project
audits, and audits of particular departments in the organization, but it could be
adapted to provide this information.

The auditor performs the audit and the results are documented in an audit
report, with audit actions to be completed by the affected individuals and groups.
Figure 14.25 presents the status of the audit actions assigned to the various
projects.

144 Software Metrics for Project Management 251

Fig.14.24 Annual audit schedule

Fig.14.25 Status of audit actions

Figure 14.26 gives visibility into the type of actions raised during a project
audit. They could include entry and exit criteria, planning issues, configura-
tion management issues, issues with compliance with the lifecycle or templates,
traceability to the requirements, and so on.

14.4.7 Customer Care Metrics

The goals of the customer care group in an organization are to respond efficiently
and effectively to customer problems, to ensure that the customer receives the high-
est standards of service from the company, and to ensure that its products function
reliably at the customer’s site. The work of the customer care group commences
after the delivery of the project and so represents post-project activities.

The organization will need to know its efficiency in resolving customer queries,
the arrival and closure rate of customer queries, the availability of its software

252 14 Project Management Metrics

Fig.14.26 Audit action types for project A

systems at the customer site, the duration of the outages at the various customer
sites, and the age of open queries. A customer query may result in a defect report
where the query indicates that there is a problem with the software.

Figure 14.27 presents the arrival and closure rate of customer queries (it could
be developed further to include a severity attribute for the query). Quantitative
goals may be set for the resolution of queries (especially in the case of service-
level agreements). A chart for the age of open queries (similar to Fig. 14.17) could
be maintained. The organization will need to know the status of the backlog of
open queries per month, and a simple trend graph could provide this. Figure 14.27
shows that the arrival rate of queries in the early part of the year exceeds the
closure rate of queries per month. This indicates an increasing backlog that needs
to be addressed.

Fig. 14.27 Customer queries (arrivals/closures)

144 Software Metrics for Project Management 253

The customer care department responds to any outages and ensures that the
outage time is kept to a minimum. The “five nines initiative” has the objective of
developing systems that are available 99.999% of the time, i.e., approximately five
minutes of downtime per year. The calculation of availability is given by

MTBF

Availability = MTBE + MTTR

where the mean time between failure (MTBF) is the average length of time
between outages.

Sample Interval Time
MTBF =

Outages

The formula for MTBF above is for a single system only, and the formula is
adjusted when there are multiple systems.

Sample Interval Time
MTBF = * #Systems
Outages

The mean time to repair (MTTR) is the average length of time that it takes to
correct the outage, i.e., the average duration of the outages that have occurred, and
it is calculated from the following formula:

Total Outage Time
MTTR =

#Outages

Figure 14.28 presents outage information on the customers impacted by an
outage during the particular month, and the extent of the impact on the customer.
The customer care department will carry out a post-mortem of an outage to
ensure that lessons are learned to prevent a reoccurrence. This causal analysis
identifies the root causes of the outage, and corrective actions are taken to prevent a

Fig.14.28 Outage time per customer

254 14 Project Management Metrics

Fig.14.29 Availability of system per month

Fig.14.30 CMMI maturity in current year

reoccurrence. The customer care group will maintain metrics of system availability
and outage time per month (usually in the form of a trend graph).

Figure 14.29 provides visibility on the availability of the system at the customer
sites, where organizations are designing systems that are 99.999% available.

14.4.8 Miscellaneous Metrics for an Organization

Metrics may be applied to many other areas in the organization. This section
includes metrics on the CMMI maturity of an organization (where an organiza-
tion is implementing the CMMI) and the cost of poor quality. Figure 14.30 gives
the internal CMMI maturity of the organization, and indicates its readiness for a

144 Software Metrics for Project Management 255

formal CMMI assessment. A numeric score of 1-10 is used to rate each process
area, and a score of 7 or above indicates that the process area is satisfied.

Crosby argued that the most meaningful measurement of quality is the cost of
poor quality [4], and that improvement activities should aim to reduce the cost
of poor quality (COPQ). The cost of quality includes the cost of external and
internal failure, the cost of providing an infrastructure to prevent the occurrence of
problems, and the cost of the infrastructure to verify the correctness of the product.

The cost of quality was divided into four subcategories (Table 14.2) by
Feigenbaum in the 1950s and evolved further by James Harrington of IBM.

The cost of the quality graph (Fig. 14.31) will initially show high external
and internal costs and low prevention costs, and the total quality costs will be
high. However, as an effective quality system is put in place and becomes fully
operational, there will be a noticeable decrease in the external and internal cost of
quality and a gradual increase in the cost of prevention and appraisal.

The total cost of quality will substantially decrease, as the cost of provision of
the quality system is substantially below the cost of internal and external failure.

Table 14.2 Cost of quality categories
Type of cost ~ Description

Cost external ~ This includes the cost of external failure and includes engineering repair,
warranties, and a customer support function

Cost internal ~ This includes the internal failure cost and includes the cost of reworking and
re-testing of any defects found internally

Cost This includes the cost of maintaining a quality system to prevent the
prevention occurrence of problems and includes the cost of software quality assurance, the
cost of training, etc.

Cost appraisal This includes the cost of verifying the conformance of a product to the
requirements and includes the cost of provision of software inspections and
testing processes

Fig.14.31 Cost of poor quality (COPQ)

256 14 Project Management Metrics

The COPQ curve will indicate where the organization is in relation to the cost of
poor quality, and the organization will need to execute its improvement plan to
put an effective quality management system in place to minimize the cost of poor
quality.

14.5 Implementing a Metrics Program

The metrics discussed may be adapted and tailored to meet the needs of the project/
organization. The metrics are only as good as the underlying data, and so good data
gathering is essential. The following are typical steps in the implementation of a
metrics program (Table 14.3).

The business goals are the starting point in the implementation of a metrics
program, as the metrics must be closely related to the business goals. The next step
is to identify the relevant questions to determine the extent to which the business
goal is being satisfied and to define metrics that provide an objective answer to the
questions.

The organization defines its business goals, and each department develops spe-
cific goals to meet the organization’s goals. Measurement will indicate the extent
to which specific goals are being achieved, and good data gathering and recording
are essential. First, the organization will need to determine which data need to be
gathered, and to determine methods by which the data may be recorded. The pre-
cise data to be recorded is determined from the information required to answer the
questions related to the goals. A small organization may decide to record the data
manually, but often automated or semi-automated tools will be employed in larger
organizations. It is essential that the data collection and extraction is efficient, as
otherwise, the metrics program is likely to fail.

The roles and responsibilities of staff with respect to the implementation and
day-to-day operation of the metrics program need to be defined. Training is needed
to enable staff to perform their roles effectively. Finally, a regular management
review is needed, where the metrics and trends are presented, and actions are
identified and carried out to ensure that the business goals are achieved.

Tabl.e 14.3 Implementing Implementing metrics in organization
metrics
Define the business goals
Determine the related questions
Define the metrics
Determine tools to (semi-) automate metrics
Determine data that needs to be gathered
Identify and provide needed resources
Provide training
Gather data and prepare metrics
Communicate metrics and review monthly

14.5 Implementing a Metrics Program 257

Table 14.4 Goals and questions

Goal Reduce escaped defects from each lifecycle phase by 10%

Questions How many defects are identified within each lifecycle phase?
How many defects are identified after each lifecycle phase is exited?
What % of defects escaped from each lifecycle phase?

14.5.1 Data Gathering for Metrics

Metrics are only as good as the underlying data, so data gathering is a key activ-
ity in a metrics program. The data to be recorded will be closely related to the
questions, and the data are used to give an objective answer to the questions.
The business goals are usually expressed quantitatively for extra precision, and
Table 14.4 presents an example of how the questions related to a particular goal
are identified.

Table 14.5 is designed to determine the effectiveness of the software devel-
opment process, and to enable the above questions to be answered. It includes
a column for inspection data that records the number of defects recorded at the
various inspections. The defects include the phase where the defect originated;
for example, a defect identified in the coding phase may have originated in the
requirements or design phase. This data is typically maintained in a spreadsheet,
e.g., Excel (or a dedicated tool), and it needs to be kept up to date. It enables the
phase containment effectiveness (PCE) to be calculated for the various phases.

We will distinguish between a defect that is detected in-phase versus a defect
that is detected out-of-phase. An in-phase defect is a problem that is detected in
the phase in which it is created (e.g., usually by a software inspection). An out-
of-phase defect is detected in a later phase (e.g., a problem with the requirements
may be discovered in the design or coding phase, which is a later phase from the
phrase in which it was created).

Table 14.5 Phase containment effectiveness

Phase of origin
Phase Inspect Reqs Design Code Accepttest In-phase Other % PCE

defects defects defects
Reqgs 4 1 1 4 6 40%
Design 3 3 4 42%
Code 20 20 15 57%
Unit test 2 2 10
System 2 2 5

test

Accept
test

258 14 Project Management Metrics

The effectiveness of the requirements phase in Table 14.5 is judged by its suc-
cess in identifying defects as early as possible, as the cost of correction of a
requirements defect increases the later in the cycle that it is identified. The require-
ments PCE is calculated to be 40%, i.e., the total number of defects identified in
phase divided by the total number of requirements defects identified. There were
four defects identified at the inspection of the requirements, and six defects were
identified outside of the requirements phase: one in the design phase, one in the
coding phase, two in the unit testing phase, and two at the system-testing phase:
i.e., 4/10 = 40%. Similarly, the code PCE is calculated to be 57%.

The overall PCE for the project is calculated to be the total number of defects
detected in phase in the project divided by the total number of defects, i.e., 27/52
= 52%. Table 11.5 is a summary of the collected data and its construction consists
of:

e Maintain inspection data of requirements, design, and code inspections
e Identify defects in each phase and determine their phase of origin
e Record the number of defects in each phase per phase of origin.

The staff who perform inspections need to record the problems identified, whether
it is a defect and its phase of origin. Staff will need to be appropriately trained to
do this consistently.

The above is just one example of data gathering, and in practice the organization
will need to collect various data to enable it to give an objective answer to the
extent that the particular goal is being satisfied.

14.6 Review Questions

—_

Describe the Goal, Question, and Metric model.

Explain how the Balanced Scorecard may be used in the implementation
of organizational strategy.

How is customer satisfaction measured?

How is the cost of poor quality measured?

Explain how metrics assist in project management.

Discuss how a metrics programme may be implemented.

S

O @ g b

14.7 Summary

Measurement is an essential part of mathematics and the physical sciences, and
it has been successfully applied to the software engineering field. This chapter
included a collection of sample metrics to give visibility into project management
in the organization, including customer satisfaction, process improvement, project

References 259

management effectiveness, HR metrics for project management, development and
testing, and customer care metrics.

The balanced scorecard assists the organization in selecting appropriate mea-
surements to indicate the success or failure of the organization’s strategy. Each of
the four scorecard perspectives includes objectives that need to be achieved for the
strategy to succeed, and measurements indicate the extent to which the objectives
are being met.

The Goal, Question, Metric paradigm is a rigorous, goal-oriented approach
to measurement in which goals, questions, and measurements are closely inte-
grated. The business goals are first defined, and then questions that relate to the
achievement of the goal are identified, and for each question, a metric that gives
an objective answer to the particular question is defined.

Metrics may be employed to track the quality, timeliness, cost, schedule, and
effort of software projects. They provide an internal view of the quality of the
software product, but care is needed before deducing the behaviour that a product
will exhibit externally.

References

1. N. Fenton, Software Metrics: A Rigorous Approach (Thompson Computer Press, 1995)

2. V. Basili, H. Rombach, The TAME project. Towards improvement-oriented software environ-
ments. IEEE Trans. Softw. Eng. 14(6) (1988)

3. R.S. Kaplan, D.P. Norton, The Balanced Scorecard. Translating Strategy into Action (Harvard
Business School Press, 1996)

4. P. Crosby, Quality is Free. The Art of Making Quality Certain (McGraw Hill, 1979)

l‘)

Check for
updates

Tools for Project Management 1 5

Key Topics

CocoMo
Microsoft Project
ProjectLibre
ProjectManager
Jira

Planview
WBSPro

Crystal ball

15.1 Introduction

This chapter gives a flavour of a selection of tools! to support the performance
of the software project management activities. The approach is to choose tools to
support the process, rather than choosing a process to support the tool.?

Mature organizations will employ a structured approach to the introduction of
new tools. First, the requirements for a new tool are specified, and the options to
satisfy the requirements are identified. These may include developing a tool inter-
nally; outsourcing the development of a tool to a third-party supplier; or purchasing
an off-the-shelf solution from a vendor.

! The list of tools discussed in this chapter is intended to give a flavour of what tools are available,
and the inclusion of a particular tool is not intended as a recommendation of that tool. Further, the
omission of a particular tool should not be interpreted as disapproval of that tool.

2 That is, the process normally comes first then the tool rather than the other way around.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025 261
G. O’Regan, Guide to Software Project Management, Undergraduate Topics in
Computer Science, https://doi.org/10.1007/978-3-031-80578-3_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-80578-3_15&domain=pdf
https://doi.org/10.1007/978-3-031-80578-3_15

262 15 Tools for Project Management

Table.15.1 Tool evaluation table

Tool 1 Tool 2 Tool k
Requirement 1 8 7 9
Requirement 2 4 6 8
Requirement n 3 6 8
Total 35 38 45

The sample tool evaluation table below (Table 15.1) lists all of the requirements
vertically that the tool is to satisfy, and the candidate tools that are to be evaluated
and rated against each requirement are listed horizontally. Various rating schemes
may be employed, and a simple numeric mechanism is employed for the exam-
ple below. The tool evaluation criteria are used to rate the effectiveness of each
candidate tool and to indicate the extent to which the tool satisfies the defined
requirements. The chosen tool in this example is Tool k as it is the most highly
rated of the evaluated tools.

Several candidate tools are identified and considered prior to selection, and each
candidate tool will be evaluated to determine the extent to which it satisfies the
specified requirements. An informed decision is then made and the proposed tool
may be piloted prior to its deployment. The pilot provides feedback on its suit-
ability, and the feedback will be considered prior to a decision on full deployment,
and whether any customization is required prior to roll out.

Finally, the users are trained on the tool, and the tool is rolled out throughout the
organization. Support is provided for a period post-deployment. First, we consider
a selection of tools for project estimation and scheduling.

15.2 Tools for Project Estimation and Scheduling

There are several tools to support project estimation and scheduling. These include
tools such as Microsoft Project, which is a powerful project planning and schedul-
ing tool that is widely used in industry. Small projects may employ a simpler
tool such as Microsoft Excel, or an open source tool such as GanttProject or
ProjectLibre, for their project-scheduling activities.

The Constructive Cost Model (COCOMO) is a cost prediction model developed
by Barry Boehm in the late 1970s [1], and it is used to estimate effort, cost, and
schedule for small and medium projects. The model was based on the waterfall
model and involved a study of over 60 projects varying in size from 2000 to
100,000 lines of code, and the projects were implemented in a mixture of assembly
and high-level languages.

CocoMOo is based on an effort estimation equation that calculates the software
development effort in person-months from the estimated project size (in thousands

15.2 Tools for Project Estimation and Scheduling 263

of source lines of code (SLOC?)). The accuracy of the tool is limited, as there
is a great deal of variation among teams due to differences in the expertise and
experience of the personnel in the project team. Cocomo II is the successor to
the original version and it was developed in the late 1990s and was designed
to support other software development processes as well as addressing the move
from mainframe development to desktop development. The model parameters were
based on a study of over 150 projects.

There are several commercial variants of the tool including the COCOMO Basic,
Intermediate, and Advanced Models. The Intermediate Model includes several cost
drivers to model the project environment, and each cost driver is rated. There are
over fifteen cost drivers used, and these include product complexity, reliability,
and experience of personnel as well as programming language experience. The
CocoMo parameters need to be calibrated to reflect the actual project development
environment. The effort equation used in COCOMO is given by

Effort = 2.94 % EAF % (KSLOC)E (15.1)

In this equation, EAF refers to the effort adjustment factor that is derived from
the cost drivers, and E is the exponent that is derived from the five scale drivers.*
The Costar tool is a commercial tool that implements the CocoMO Model, and
it may be used on small or large projects. It needs to be calibrated to reflect the
particular software engineering environment, and this will enable more accurate
estimates to be produced. It has been largely replaced by the System Startool,
which has more features and implements more estimating models.

The effort estimates are used for scheduling the tasks and activities in a project-
scheduling tool. The schedule will detail the phases in the project, the key project
milestones, the activities and tasks to be performed in each phase as well as their
associated duration, and the resources required to carry out each task. The project
manager will update the project schedule regularly during the project to reflect the
progress made, as well as adjusting the schedule whenever changes occur during
the project.

We discussed various approaches to estimation in Chap. 5, including the Work
Breakdown Structure, the Analogy Method, Expert Judgment, the Delphi Method,
Function Points, and Planning Poker.

Microsoft Project (Fig. 5.1) is a project management tool that is used for plan-
ning, scheduling, and charting project information. It enables a realistic project
schedule to be created, and the schedule is updated regularly during the project to
reflect the actual progress made, and the project is re-planned as appropriate.

A project is defined as a series of steps or tasks to achieve a specific goal. The
amount of time that it takes to complete a task is termed its duration, and tasks are

3 SLOC includes delivered source lines of code created by project staff (excluding automated code
generated and also code comments).

4 The five scale drivers are factors contributing to duration and cost and they determine the expo-
nent used in the Effort equation. Examples include team cohesion and process maturity.

264 15 Tools for Project Management

performed in a sequence determined by the nature of the project. Resources such as
people and equipment are required to perform a task. A project will typically con-
sist of several phases such as planning and requirements; design; implementation;
testing and closing the project.

The project schedule (Fig. 5.1) shows the tasks and activities to be carried out
during the project; the effort and duration of each task and activity; the percent-
age completion of each task, and the resources needed to carry out the various
tasks. The schedule shows how the project will be delivered within the key project
parameters such as time, cost, and functionality without compromising quality in
any way.

The project manager is responsible for managing the schedule and will take cor-
rective action when project performance deviates from expectations. The project
schedule will be updated regularly to reflect actual progress made, and the project
re-planned appropriately.

GanttProject is a freely available project-scheduling software (under a GPL
license) that runs under Microsoft Windows, Linux, and Mac OS X operating
systems. It provides basic project-scheduling functionality such as Gantt charts for
project scheduling of tasks and resource management.

ProjectLibre is a free and open source (CPAL license) project-scheduling tool
that runs on Microsoft Windows, Linux, and Mac OS X operating systems. It is
compatible with Microsoft Project and has been downloaded by millions of users
around the world. It is the leading alternative to Microsoft Project, and there is a
cloud web-based version called ProjectLibre Cloud (Fig. 15.1).

It has a similar user interface and functionality as Microsoft Project, and it
provides a similar approach to creating a project schedule and creating a work
breakdown structure with the task list and duration specified.

Fig.15.1 ProjectLibre scheduling tool

15.3 Project Manager Tools 265

WBS Schedule Pro is project management software that consists of a tool called
WBS charts that is used for planning, and Network Charts that is used for schedul-
ing. WBS Charts uses a top-down approach to create a work breakdown structure
(WBS), whereas Network Charts may be employed to define the dependencies
between tasks, and the critical path is automatically created. WBS Schedule Pro
also includes Gantt Charts, which is a tool to create a Gantt chart from the planning
data that has been entered.

15.3 Project Manager Tools

There are several project management tools that provide comprehensive function-
ality such as dashboard features to provide visibility into the health of the project,
and where important information is kept in one central location.

The ProjectManager (or ProjectManager.com) tool was originally developed in
New Zealand, but the company headquarters moved to the United States in 2014.
It is a scaleable software-as-a-service project management tool and includes func-
tionality that supports collaboration across teams, multiple views of the project,
a “mywork space” where all the tasks assigned to a person are located, a “team
space” where the team’s tasks may be visualized, a timesheet feature to log hours,
a customizable dashboard that provides real-time visible status of the project, and
a portfolio view that gives a real-time status of all projects that are taking place in
the organization (Fig. 15.2).

The dashboard is updated in real time as teams enter their progress updates,
and the dashboard provides a high-level overview of the health of the project. The
status indicates whether the project is on or behind schedule as well as whether it
is on budget. It provides the overall status of the tasks, including whether the tasks

Fig.15.2 Dashboard view in projectmanager tool

266 15 Tools for Project Management

are completed, in progress, or not started, as well as showing the team members
that are falling behind.

There are three versions of the tool namely the Starter version that starts with
5 users and allows them to create project plans; the Team version starts with 10
users and supports team collaboration; and the Business version that starts with 15
users and offers unlimited features and projects.

The Scoro tool was initially developed in Estonia, and the company headquar-
ters are in the U.K. This business management software brings sales, projects, and
reports together, and a dashboard may monitor business performance. It may be
used as a project management tool to manage teams and projects, and it provides
a central location where the projects may be planned, scheduled, and tracked. It
allows users to create projects, allocate work, handle invoices, management meet-
ings, and the ongoing activities to complete the project may be monitored and
progress may be visualized with the Project timeline. It includes a dashboard that
provides an overview of how the project is being undertaken.

The Jira tool was developed by Atlassian (an Australian company), and it is
used for defect tracking, issue tracking and project management. It contains four
packages:

Jira Core (for business and project management)

Jira Software (for project and issue tracking including Agile features)
Jira Service Desk (for IT Service Management)

Jira Align (Enterprise Agile planning).

Issues are at the heart of the Jira tool, where an issue could be simple tasks,
software defects, or new features or requirements. Jira is used in the Agile world
for development sprints, the daily work, and progress reporting. An issue in Agile
could be a user story that needs to be implemented in the current sprint. Jira is
used for issue tracking by the teams, and it shows the progress on the resolution
of the issue as it moves through the workflow.

The status of an issue changes as it moves through the workflow. The status is
assigned when it has been assigned to a team member for resolution, and com-
plete when it has been completed. Jira provides traceability of the issues to code
changes.

The first thing that a user sees on logging on to Jira is the dashboard, which
is displayed by default on the home page. The dashboard may be tailored to meet
the needs of the project or team, and it may be used to keep track of progress,
workload per person, and high-risk items in an Agile project (Fig. 15.3).

Oracle Crystal Ball is a spreadsheet-based application that may be used to give
insight into critical factors affecting risk and is useful when using spreadsheets to
forecast uncertain results. It has functionality for Monte Carlo simulation that auto-
matically calculates the results of thousands of different what-if cases, and these
may be analysed to determine a range of possible outcomes and their probability
of occurrence.

15.4 Tools for Project Portfolio Management 267

Fig.15.3 Dashboard view of agile project in jira tool

15.4 Tools for Project Portfolio Management

Project portfolio management (PPM) is concerned with managing a portfolio of
projects, and it allows the organization to choose the mix and sequencing of its
projects in order to yield the greatest business benefit to the organization.

PPM tools analyse the project’s total expected cost, the resources required, the
schedule, the benefits that will be realized as well as interdependencies with other
projects in the portfolio. This allows project investment decisions to be made
methodically to deliver the greatest benefit to the organization. The approach
moves away from the normal once-off analysis of an individual project proposal,
to the analysis of a portfolio of projects. PPM tools aim to manage the continuous
flow of projects from concept all the way to completion.

There are several commercial portfolio management tools available from ven-
dors. These include Clarity PPM from Computer Associates; Change Point from
Compuware; RPM from IBM Rational; PPM Centre from HP; and Planview Enter-
prise from Planview. We limit our discussion in this section to the Planview
Enterprise tool.

Planview Enterprise Portfolio Management allows organizations to manage
projects and resources across the enterprise, and to align their initiatives for max-
imum business benefit. It provides visibility into and control of project portfolios,
and allows the organization to prioritize and manage its projects and resources.

268 15 Tools for Project Management

This allows it to make better investment decisions, and to balance its business
strategy against its available resources. Planview helps an organization to optimize
its business through eight key capabilities (Table 15.2).

Planview allows key project performance indicators to be closely tracked, and
these include dashboard views of variances in cost, effort, and schedule, which are
used for analysis and reporting (Fig. 15.4).

Planview includes Process Builder (Fig. 15.5), which allows modelling and
management of enterprise wide processes. It provides tracking, control, and audit
capabilities in key process areas such as requirements management and product
development, as well as satisfying key regulatory requirements.

The organization may define and model its processes in Process Builder, and
this includes process adoption, compliance, and continuous improvement. The
functionality includes:

Process Design
Process Automation
Process Measurement
Process Auditing

Table.15.2 Key capabilities of planview enterprise
Capability Description

Strategic planning Define mission, objectives, and strategies
Allocate funding/staffing for the chosen strategy
Automate and manage strategic processes

Investment analysis Devise strategic long-term plans
Identify key criteria to evaluate initiatives
Optimize strategic and project investments to maximize business
benefit

Capacity management Balance resources with business demands
Ensure capacity supports business strategy
Align top-down and bottom-up planning
Forecast resource capacity

Demand management Request work and Check status
Review lifecycles

Project management Scope, schedule, and execution of work
Track/report time worked against projects
Track and manage risks and issues
Track/display performance and trend analysis.

Financial management Collaborate to better forecast cost
Monitor spending

Resource management Balance portfolios/assign people efficiently
Improve forecasting
Keep staff productive

Change management Determine impact of change on schedule/cost
Effectively manage change

15.4 Tools for Project Portfolio Management 269

Fig.15.4 Dashboard views in planview enterprise

Fig.15.5 Planview process builder

270 15 Tools for Project Management

The project manager may employ tools for recording and managing risks and
issues, and this may be as simple as using an Excel spreadsheet. The project
manager may maintain lessons learned log to record the lessons learned during
a project, and these will be analysed towards the end of a project and the lessons
learned report prepared. The project reporting may be done with a tool or with a
standard Microsoft Word report.

15.5 Review Questions

Why are tools used in project management?

How should a tool be selected?

What is the relationship between the process and the tool?

What tools would you recommend for project management?

Describe how you would go about selecting a tool for project scheduling.
Describe various tools that are available for estimation.

What tools would you recommend for project portfolio management?

SO

15.6 Summary

The objective of this chapter was to give a flavour of various tools available to
support the organization in software project management. The tools are chosen to
support the process, rather than the process supporting the tool.

The project management tools included a discussion of the CocomMo Cost
Model, which may be employed to estimate the cost and effort for a project; and
the Microsoft Project tool, which is used extensively by project managers to sched-
ule and track their projects. We discussed the ProjectLibre tool which is a popular
alternative to Microsoft Project.

We discussed the ProjectManager tool which is a scaleable software-as-a-
service tool that supports collaboration across teams The Planview Portolio
Management Tool was also discussed, and this tool allows an organization to
manage a portfolio of projects.

Tool selection is done in a controlled manner. First, the requirements for the
tool are determined and several candidate tools are evaluated. A decision on the
proposed tool is made and a pilot is conducted to ensure that it is fit for pur-
pose. Finally, the end users are trained on the use of the tool and it is rolled out
throughout the organization.

Reference

1. B. Boehm, Software Engineering Economics (Prentice Hall, New Jersey, 1981)

l‘)

Check for
updates

Continuous Improvement of Project 1 6
Management

Key Topics

Software Process

Software Process Improvement

Process Mapping

Benefits of Software Process Improvement
CMMI

ISO/IEC 15504 (SPICE)

ISO 9000

PSP and TSP

Root Cause Analysis

Six Sigma

16.1 Introduction

The success of business today is highly influenced by the functionality and quality
of the software, and it is essential that the software is safe, reliable, of a high
quality, and fit for purpose. Companies may develop their own software internally,
or they may acquire software solutions off-the-shelf or from bespoke software
development. Software development companies need to deliver high-quality and
reliable software consistently on time to their customers.

Cost is a key driver in most organizations and it is essential that software is
produced as cheaply and efficiently as possible, and that waste is reduced or
eliminated in the software development process. In a nutshell, companies need
to produce software that is better, faster, and cheaper than their competitors in
order to survive in the marketplace. In other words, they need to work smarter to
improve their businesses and to deliver superior solutions to their customers.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025 271
G. O’Regan, Guide to Software Project Management, Undergraduate Topics in
Computer Science, https://doi.org/10.1007/978-3-031-80578-3_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-80578-3_16&domain=pdf
https://doi.org/10.1007/978-3-031-80578-3_16

272 16 Continuous Improvement of Project Management

Software process improvement initiatives are aligned with business goals and
play a key role in helping companies achieve their strategic goals. It allows com-
panies to focus on fire prevention rather than fire fighting, and to problem solve
key issues to eliminate quality problems. Companies need to critically examine
their current processes to determine the extent to which they meet their needs, as
well as identify how the processes may be improved, and identify where waste can
be minimized or eliminated.

Software process improvement (SPI) allows companies to mature their software
engineering processes, and to achieve their business goals more effectively. It leads
to a focus on the process and on ways to improve it. Problems are often caused by
a defective process, and a focus on the process helps to avoid the blame culture that
arises when blame is apportioned to individuals. This leads to a culture of openness
in discussing problems and their solutions, and in instilling process ownership
among the process practitioners.

The benefits of successful process improvement include the consistent delivery
of high-quality software, improved financial results, and increased customer satis-
faction. It has become an indispensable tool for software engineers and managers
to achieve their goals and provides a return on investment.

16.2 Software Process Improvement

The origins of the software process improvement field were discussed in Chap. 8,
where we discussed the work of Shewhart on statistical process control. His work
was later refined by Deming and Juran, who argued that high-quality processes are
essential to the delivery of a high-quality product.

Watt Humphries and others at the SEI applied Deming and Juran’s approach to
the software quality field leading to the birth of the software process improvement
field (SPI). Software process improvement is concerned with practical action to
improve the software processes in the organization to ensure that business goals
are achieved more effectively (Fig. 16.1).

Definition 16.1 (Software Process Improvement) A program of activities designed
to improve the performance and maturity of the organization’s software processes.

Software process improvement initiatives support the organization in achiev-
ing its key business goals more effectively, where the business goals could be
delivering software faster to the market, improving quality, and reducing or elimi-
nating waste. The objective is to work smarter and to build software better, faster,
and cheaper than competitors. It makes business sense and provides a return on
investment.

There are international standards and models available to support software pro-
cess improvement such as the CMMI Model, the ISO 90001 standard, and ISO
15504 (popularly known as SPICE). The CMMI model includes best practice for
processes in software and systems engineering. The ISO 9001 standard is a quality

16.2 Software Process Improvement 273

Fig.16.1 Steps in process improvement

management system that may be employed in hardware, software development,
or service companies. The ISO 15504 standard is an international standard for
software process improvement and process assessment, which is popular in the
automotive and medical device sectors.

Software process improvement is concerned with defining the right processes
and following them consistently. It involves training all staff on the new pro-
cesses, refining the processes, and continuously improving them. It enables the
organization to improve and achieve its business goals more effectively.

16.2.1 What is a Software Process?

A software development process is the process used by software engineers to
design and develop computer software. It may be an undocumented ad hoc pro-
cess as devised by the team for a particular project, or it may be a standardized
and documented process used by various teams on similar projects. The process is
seen as the glue that ties people, technology, and procedures coherently together.

The processes for software development include processes to determine the
requirements; processes for the design and development of the software; processes
to verify that the software is fit for purpose; and processes to maintain the software.

Definition 16.2 (Software Process) A process is a set of practices or tasks performed
to achieve a given purpose. It may include tools, methods, material and people.

The process is an abstraction of the way in which work is done, and it is
seen as the glue that ties people, procedures, and tools together (Fig. 16.2). An
organization will typically have many processes in place for doing its work, and

274 16 Continuous Improvement of Project Management

Fig.16.2 Process as glue for people, procedures and tools

System
c Create System .
Business —» Re uireifnents Requirements
Requirements q Specification

Fig.16.3 Sample process map

the object of process improvement is to improve these to meet business goals more
effectively.

The Software Engineering Institute (SEI) argues that there is a close relationship
between the quality of the delivered software and the quality and maturity of the
underlying processes employed to create the software.

A process is often represented by a process map which details the flow of
activities and tasks. The process map will typically include the inputs to each
activity as well as the output from an activity. Often, the output from one activity
will become an input to the next activity. A simple example of a process map for
creating the system requirements specification is described in Fig. 16.3.

As a process matures it is defined in more detail and documented. It will have
clearly defined entry and exit criteria, inputs and outputs, an explicit description
of the tasks, verification of the process, and consistent implementation.

16.2 Software Process Improvement 275

16.2.2 Benefits of Software Process Improvement
The benefits of software process improvement include:

Improvements to customer satisfaction

Improvements to on-time delivery

Improved consistency in budget and schedule delivery
Improvements to quality

Reductions in the cost of poor quality

Improvements in productivity

Reductions to the cost of software development
Improvements to employee morale.

16.2.3 Software Process Improvement Models

The CMMI model (see Chap. 8) defines best practice for software processes in
the organization. It describes what the processes should do rather than how they
should be done, and it needs to be interpreted and tailored to meet the needs of
the organization. A process model provides a common language and shared vision
for improvement. Popular process models include:

Capability Maturity Model Integration (CMMI)
ISO 9001 Standard

ISO 15504

PSP and TSP.

The CMMI provides a clearly defined roadmap for improvement, and it allows the
organization to improve at its own pace. Its approach is evolutionary rather than
revolutionary, and it recognizes that a balance is required between project needs
and process improvement needs. It allows the processes to evolve from ad hoc
immature activities to disciplined mature processes. A SCAMPI appraisal deter-
mines the actual process maturity of an organization and allows the organization
to benchmark itself against other organizations.

ISO 9001 is an internationally recognized quality management standard, and it
is customer and process focused. It applies to the processes that an organization
uses to create and control products and services, and it emphasizes continuous
improvement (ISO 9004). The standard is designed to apply to any product or
service that an organization supplies.

The ISO/IEC 15504 standard (popularly known as ISO SPICE) is an interna-
tional standard for process assessment. It includes guidance for process improve-
ment and process capability determination, as well as guidance for performing an
assessment. It uses the international standard for software and systems lifecycle
processes (ISO/IEC 12207) as its process model.

276 16 Continuous Improvement of Project Management

The Personal Software Process (PSP) is a disciplined data-driven process that
is designed to help software engineers understand and improve their personal
software process performance. It helps engineers to improve their estimation and
planning skills, and to reduce the number of defects in their work.

The Team Software Process (TSP) is a structured approach to help software
teams understand and improve their quality and productivity. Its focus is on build-
ing an effective software development team, and it involves establishing team
goals, assigning team roles as well as other teamwork activities.

16.2.4 Process Mapping

The starting point for improving a process is to first understand the process as it
is currently performed and to then determine its effectiveness. The stakeholders
reach a common understanding of how the process is currently performed, and the
process is then sketched pictorially, with the activities and their inputs and outputs
recorded graphically. This graphical representation is termed a “process map”, and
is an abstract description of the process “as is”.

The process map is an abstraction of the way that work is done, and it is
critically examined to identify weaknesses and potential improvements. This leads
to the proposed new process sketched in a process map to yield the process “to
be”.

Once the definition of the new process is agreed, the supporting templates are
identified from an examination of the input and output of the various activities.
There may be a need for standards to support the process (e.g., procedures and
templates), which provide the details on how the process is to be carried out.

16.2.5 Process Improvement Initiatives

The need for a software process improvement initiative often arises from the real-
ization that the organization needs to improve to achieve its business goals more
effectively. The business goals may be:

Delivering high-quality products on time
Delivering products faster to the market
Reducing the cost of software development
Improving software quality.

Team members will typically be working part-time on improvements in a small
organization, whereas a larger organization may assign some people full-time to
the initiative. Once the business goals are defined the initiative commences with
an appraisal to determine the current strengths and weaknesses of the processes;
formulating a process improvement plan; implementing the plan; piloting the new

16.2 Software Process Improvement 277

Plan Improvements
1. Agree Scope

2. Plan & schedule
3. Provide Resources

Implement
Improvements
1. Define Processes
2. SEPG Review

Identifying Improvements 3. Approve for Pilot
1. Improvement Suggestions
2. Appraisal Recommendations
3. Lessons Learned
4. Periodic Process Reviews

Deploy i i
; Pilots / Refine
1. Train Staff 1. Get Feedback
2. Deploy ——<—— 2. Refine processes
3. Conduct audits : P

Fig.16.4 Continuous improvement cycle

processes and verifying that they are effective; training staff and rolling out the
new processes (Fig. 16.4). The software process improvement philosophy is:

The improvement initiative is based on business needs

Improvements are based on the strengths and weaknesses of the processes
The improvements are prioritized (it is not possible to do everything at once)
The improvement initiative needs to be planned and managed as a project

The results achieved are reviewed at the end of cycle, and a new cycle started
Organizational culture (and training) needs to be considered

There needs to be a process champion/project manager

Senior management need to be 100% committed to the success of the initiative
Staff need to be involved in the improvement initiative, and there needs to be a
balance between project needs and the improvement activities.

16.2.6 Barriers to Success

Some reasons for the failure of software process improvement initiatives are:

Unrealistic expectations

Trying to do too much at once

Lack of Senior Management Sponsorship

Focusing on a Maturity Level

Poor Project Management of the initiative

Insufficient involvement of staff

Insufficient time to work on improvements
Inadequate training on Software Process Improvement

278 16 Continuous Improvement of Project Management

Lack of pilots to validate new processes
Inadequate training/rollout of new processes.

An improvement initiative is a project and needs to be managed as such. A project
manager is assigned to manage the initiative; senior management need to be
100% committed to its success and staff available to work on the improvement
activities. All employees need to receive appropriate training on software process
improvement.

16.2.7 Setting up an Improvement Initiative

The project manager will prepare a plan to implement the initiative within the
approved schedule and budget. The project may consist of several improvement
cycles, with each improvement cycle implementing one or more process areas.

One of the earliest activities carried out is an appraisal to determine the current
strengths and weaknesses of the processes, as well as gaps with respect to the
practices in the model. This allows management in the organization to understand
its current maturity with respect to the model, and to communicate where it wants
to be, as well as how it plans to get there.

The project manager then prepares a project plan and schedule. The plan will
detail the scope of the initiative, the budget, the process areas to be implemented,
the teams and resources required, the initial risks identified, the key milestones,
and so on. The schedule will detail the deliverables to be produced, the resources
required, and the associated timeline for delivery. The steps in the improvement
cycle are:

Identify Improvements to be made
Plan Improvements

Implement Improvements
Pilots/Refine'

Deploy

Do It All Again.

16.2.8 Appraisals

An appraisal is an independent examination of the software engineering and man-
agement practices in the organization to identify the current maturity, strengths,
and weaknesses in the processes and any gaps that exist with respect to the matu-
rity model. An initial appraisal is conducted at the start of the initiative to allow the

! The result from the pilot may be that the new process is not suitable to be deployed in the
organization or that it needs to be significantly revised prior to deployment.

16.3 Improving Project Management 279

Fig.16.5 Appraisals

organization to plan and prioritize improvements for the first improvement cycle.
The improvements are then implemented, and an appraisal is conducted at the end
of the cycle to confirm the progress made (Fig. 16.5).

The appraisal activities include presentations, interviews, reviews of project
documentation, and detailed analysis to determine the extent to which the practices
in the model have been implemented.

The appraisal leader will present the appraisal findings, which may include a
presentation and an appraisal report. The appraisal output summarizes the strengths
and weaknesses, and ratings of the process areas are provided (where this is part
of the appraisal). The findings are used to plan the next improvement cycle, and it
allows the organization to:

Understand its current process maturity (including strengths and weaknesses)
Relate its strengths and weaknesses to the improvement model

Prioritize its improvements for the next improvement cycle

Benchmark itself against other organizations (for SCAMPI Class A appraisal).

16.3 Improving Project Management

It is important to have best-in-class processes for project management and to per-
form periodic reviews of the processes used in the organization to ensure that they
continue to meet the needs of the business. There are several well-known project
management methodologies such as Prince 2 and Project Management Profes-
sional that contain best practice in project management, and an organization may
improve its project management processes by tailoring some of these processes to
improve its project management processes.

280 16 Continuous Improvement of Project Management

The CMMI provides a structured approach to software process improvement,
and it contains several process areas that may be used by an organization to
improve its project management processes.

16.3.1 Best Practice in Prince 2 Methodology

Prince 2 is a popular project management methodology that is widely used in the
U.K. and Europe. It is a structured, process-driven approach to project manage-
ment, with processes for project start up, initiating a project, controlling a stage,
managing stage boundaries, closing a project, managing product delivery, plan-
ning, and directing a project. It has procedures to coordinate people and activities,
as well as procedures to monitor and control project activities (Fig. 5.5).

These key processes are summarized in Table 5.5, and more detailed informa-
tion on Prince 2 is in [1]. Prince 2 Agile is an extension to the original Prince 2
methodology that supports the Agile environment.

16.3.2 Best Practice in Project Manager Professional (PMP)

Project Manager Professional (PMP) is an internationally recognized project man-
agement qualification offered by the Project Management Institute (PMI). It is a
process based on the work performed as processes, and it provides guidelines for
managing projects, and describes the project management lifecycle and its related
processes. PMP certification involves an exam based on PMI’s project management
body of knowledge (PMBOK).

The project management body of knowledge is a body of knowledge for project
management, and the PMBOK guide is a subset of the project management body of
knowledge. It was first published by the PMI in 1996 and the 6 edition provides
support for Agile [2].

16.3.3 Best Practice with CMMI

The CMMI includes several process areas that are directly related to project
management, and their implementation leads to an improved and more effective
project management process. The first step to improving the process is to do an
appraisal of the set of CMMI process areas related to project management using
the continuous representation of the CMMI (Fig. 16.6).

The appraisal will lead to a capability profile of the project management process
areas in the organization, and the gap between the current capability profile and
the targeted capability profile of the organization needs to be addressed in an
improvement program for project management (Fig. 16.7 and Table 16.1).

The CMMI processes include several level 2 process areas such as the project
planning process area, which is concerned with the estimation and planning for the

16.3 Improving Project Management 281

Appraisal of PM Process Areas

3 I I I l - ‘
PP PMC SAM IPM

G
&

w
I

N
)
!

Capability

o =
o a = a N
I I I I

RSKM QPM

Process

Fig.16.6 Appraisal of PM process areas

Targeted Capabilty of PM Process Areas

4
>3
S ,
" 1
0 . . . : :
PP PMC SAM IPM RSKM QPM

Process

Fig.16.7 Targeted capability profile of PM process areas

project and maintaining the plan (Table 16.2); the project monitoring and control
process area is concerned with monitoring project execution and taking corrective
action when progress deviates from the plan (Table 16.3); and the supplier agree-
ment management process area is concerned with the selection and management
of the supplier (Table 16.4).

There are two level 3 process areas for project management including the inte-
grated project management process area which is concerned with tailoring the
organization’s set of standard processes to define the project’s defined process, and
the project is managed according to the project’s defined process; and the risk man-
agement process area which is concerned with the identification and management

of risk.

282 16 Continuous Improvement of Project Management

Finally, there is one level 4 process area for project management which is
the quantitative project management process area. It is concerned with quanti-
tatively managing the project’s defined process to achieve the project’s quality and
performance objectives.

The appraisal provides a profile of current project management maturity
(Fig. 16.6). The project planning capability is rated at capability level 3, the project
monitoring and control, supplier agreement management, and risk management are
rated at level 2, and the integrated project management and quantitative project
management are rated at level 1.

The targeted capability profile for project management is where the organiza-
tion wishes to be (Fig. 16.7), and the gap between current and target capability
needs to be addressed in the improvement programme, and there may also be
some improvement recommendations from the appraisal to be implemented. The
capability levels are defined in Table 16.1.

The project monitoring and control process area, supplier agreement manage-
ment, and integrated project management process need improvements to achieve
the targeted capability level. This requires the implementation of the specific goals
and practices and the generic goals and practices for capability level 2 for the
integrated project management process area. The project monitoring and control
and the supplier agreement management process area require the implementation
of the generic goals and practices for capability level 3.

Table.16.1 CMMI capability levels

Capability Description
level

Incomplete (0) The process does not implement all of the capability level one generic and
specific practices. The process is either not performed or partially performed

Performed (1) A process that performs all of the specific practices and satisfies its specific
goals. Performance may not be stable

Managed (2) A process at this level has infrastructure to support the process. It is managed:
i.e., planned and executed in accordance with policy, its users are trained; it is
monitored, controlled, and audited for adherence to its process description

Defined (3) A process at this level has a defined process: i.e., a managed process that is
tailored from the organization’s set of standard processes. It contributes work
products, measures, and other process improvement information to the
organization’s process assets

Quantitatively A process at this level is a quantitatively managed process: i.e., a defined

Managed (4) process that is controlled by statistical techniques. Quantitative objectives for
quality and process performance are established and used to control the
process

Optimizing (5) A process at this level is an optimizing process: i.e., a quantitatively managed
process that is continually improved through incremental and innovative
improvements

16.3 Improving Project Management 283

Table.16.2 CMMI requirements for project planning process area

Specific goal
SG 1

SG 2

SG3

Specific practice

SP 1.1
SP 1.2
SP 1.3
SP 1.4

SP 2.1
SP 2.2
SP23
SP 2.4
SP 2.5
SP 2.6
SP 2.7

SP 3.1
SP 3.2
SP 3.3

Description of specific goal/practice
Establish estimates

Establish scope of project

Establish estimates of work products and task attributes
Define project life cycle

Establish estimates of effort and cost
Develop a project plan

Establish the budget and schedule
Identify project risks

Plan for data management

Plan for project resources

Plan for needed knowledge and skills
Plan stakeholder involvement
Establish the project plan

Obtain commitment to the plan
Review plans that affect the project
Reconcile work and resource levels

Obtain plan commitment

Table.16.3 CMMI requirements for project monitoring and control

Specific goal
SG 1

SG 2

Specific practice Description of specific practice/goal

SP 1.1
SP 1.2
SP 1.3
SP 14
SP 1.5
SP 1.6
SP 1.7

SP2.1
SP 2.2
SP2.3

Monitor project against plan
Monitor project planning parameters
Monitor commitments

Monitor project risks

Monitor data management

Monitor stakeholder involvement
Conduct progress reviews

Conduct milestone reviews

Manage corrective action to closure
Analyse issues

Take corrective action

Manage corrective action

284 16 Continuous Improvement of Project Management

Table.16.4 CMMI requirements for supplier agreement management

Specific goal Specific practice Description of specific practice/goal
SG 1 Establish supplier agreements
SP 1.1 Determine acquisition types
SP 1.2 Select suppliers
SP 1.3 Establish supplier agreements
SG 2 Satisfy supplier agreements
SP 2.1 Execute the supplier agreement
SP2.2 Monitor selected supplier processes
SP2.3 Evaluate selected supplier work products
SP2.4 Accept the acquired product
SP 2.5 Transition products

Table 16.2 specifies the CMMI requirements for the project planning process
area, including requirements for estimation and requirements for developing and
obtaining commitment to the project plan.

Table 16.3 specifies the CMMI requirements for project monitoring and control
process area, and includes requirements for monitoring the project parameters, and
managing corrective action.

The purpose of the supplier agreement management process area is to manage
the acquisition of software from a supplier. It is concerned with best practice for
establishing and satisfying supplier agreements, and includes practices to select
suppliers; defining an agreement with the supplier; executing the agreement; and
accepting the supplier product as discussed in Chap. 10. The specific goals and
practices are stated in Table 16.4.

The implementation of these process areas involves implementing specific and
generic goals and practices (up to the targeted capability level).

There is more detailed information on software process improvement and the
implementation of the CMMI in [3].

16.4 Review Questions

What is a software process?

What is software process improvement?

What are the benefits of software process improvement?

Describe the various models available for software process improvement.
Draw the process map for the process of cooking your favourite meal.
Describe how a process improvement initiative may be run.

What are the main barriers to successful software process improvement?
Describe the three phases of an appraisal.

€9 =1 N Ph g B9 I =

References 285

16.5 Summary

Software process improvement plays a key role in helping companies to improve
their software engineering capability. It allows companies to focus on fire pre-
vention rather than fire fighting and enables organizations to implement best
practice in software engineering. It involves critically examining their processes
to determine the extent to which they are fit for purpose, and in identifying
improvements.

Software process improvement initiatives lead to a focus on the process, which
leads to a culture of openness in discussing problems, and instils process own-
ership among the process practitioners. It has become an indispensable tool for
software engineers and managers to achieve their goals, and it provides a return
on investment to the organization.

Software process improvement may be limited to project management improve-
ments, and this involves focusing on improvements to the CMMI processes related
to project management or using best practice from methodologies such as Prince
2 or Project Manager Professional.

References

1. PRINCE2, Managing Successful Projects with PRINCE?2 (Office of Government Commerce,
2004)

2. PMBOK Guide, A Guide to the Project Management Body of Knowledge, 6th edn. (Project
Management Institute, 2017)

3. G. O’Regan, Introduction to Software Process Improvement (Springer, London, 2010)

f')

Check for
updates

Epilogue 1 7

We embarked on a long journey in this book and set ourselves the objective of
providing a concise introduction to the ethical software project management field
to students and practitioners. The objective was to give the reader a grasp of the
fundamentals of the software project management field, as well as guidance on
how to apply the theory in an industrial environment.

Chapter 1 gave a broad overview of software engineering and discussed var-
ious software lifecycles and the phases in software development. We discussed
requirements gathering and specification, software design, implementation, test-
ing, and maintenance. The lightweight Agile methodology was discussed, and it
has become mainstream in the industry.

Chapter 2 discussed professional responsibility and we discussed the code of
ethics of various bodies such as the British Computer Society, the Institute of
Electrical and Electronic Engineers, and the Association of Computing Machin-
ery. Chapter 3 discussed ethical software engineering and we discussed notable
failures such as the space shuttle disaster and the defective Therac-25 radiotherapy
machine.

Chapter 4 was concerned with the ethical and professional responsibilities of
project managers. Project managers have a professional responsibility and are
required to behave ethically at all times with their clients.

Chapter 5 gave an introduction to project management for traditional software
engineering, and we discussed project estimation, project planning and scheduling,
project monitoring and control, risk management, managing communication and
change, and managing project quality. We concluded with a discussion on the
Prince 2 and Project Management Professional approaches to project management.

Chapter 6 discussed software project planning and discussed activities such
as project initiation, effort estimation, project planning and scheduling, and risk
identification. We discussed the preparation and evaluation of the business case to

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025 287
G. O’Regan, Guide to Software Project Management, Undergraduate Topics in
Computer Science, https://doi.org/10.1007/978-3-031-80578-3_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-80578-3_17&domain=pdf
https://doi.org/10.1007/978-3-031-80578-3_17

288 17 Epilogue

determine if the project makes business sense, and we discussed the composition
of the project board.

Chapter 7 discussed risk management activities such as risk identification,
analysing and evaluating the risks, identifying responses to the risk, and select-
ing and implementing a response to risk. We concluded with a case study on risk
management in dealing with COVID-19 that was prevalent throughout the world
from early 2020 to early 2022.

Chapter 8 discussed software quality management for projects, and it is essen-
tial that the software is safe, reliable, and fit for purpose. We discussed software
inspections, testing, audits, quality reviews, and frameworks such as the CMMI and
ISO 9000 that play a useful role in improving effectiveness in quality management.
We discussed various problem-solving tools to support quality management.

Chapter 9 discussed project monitoring and control and this involves monitoring
project execution against the plan, and taking corrective action when progress devi-
ates from expectations. It involves monitoring the project activities and checking
that they are completed on schedule and with the required quality, and re-planning
where appropriate.

Chapter 10 is concerned with the selection and management of a software sup-
plier. It discussed how candidate suppliers are identified, and formally evaluated
against defined selection criteria, and how the appropriate supplier is selected. We
discussed how the selected supplier is managed during the project.

Chapter 11 is concerned with the activities during project closure, which include
the successful completion of the customer acceptance testing, the handover of the
software to the customer, and the preparation of the lessons learned report and the
end project report.

Chapter 12 discussed software configuration management and discussed the
fundamental concept of a baseline. Configuration management is concerned
with identifying those deliverables that must be subject to change control and
controlling changes to them.

Chapter 13 discussed the Agile methodology which is mainstream in software
development. Agile provides opportunities to assess the direction of a project
throughout the development lifecycle, and ongoing changes to requirements are
considered normal in the Agile world. It has a strong collaborative style of
working, and it advocates adaptive planning and evolutionary development.

Chapter 14 is concerned with metrics for project management, and we discussed
the balanced scorecard which assists in identifying appropriate metrics for the
organization. The Goal, Question, Metrics (GQM) approach was discussed, and
this allows appropriate metrics related to the organization goals to be defined. A
selection of sample metrics for an organization was presented.

Chapter 15 discussed various tools to support project management. We dis-
cussed the Cocomo estimating approach developed by Barry Boehm in the late
1970s. We discussed the ProjectLibre tool which is an alternative to Microsoft
Project. We also discussed ProjectManager, Jira, and Planview.

Chapter 16 discussed process improvement of project management. We dis-
cussed the benefits of a software process improvement initiative and discussed best

17.1 The Future of Project Management 289

practice in project management from methodologies such as Prince2 and Project
Management Professional (PMP). We discussed how the CMMI may be used to
improve project management.

This chapter is the concluding chapter in which we summarize the journey
travelled in this book.

17.1 The Future of Project Management

Software engineering has come a long way since the 1950s and 1960s, when it
was accepted that the completed software would always contain lots of defects,
and that the coding should be done as quickly as possible, to enable these defects
to be quickly identified and corrected.

The software crisis in the late 1960s highlighted problems with budget and
schedule overruns, as well as problems with the quality and reliability of the deliv-
ered software. This led to the birth of software engineering as a discipline in its
own right, and the realization that programming is quite distinct from science and
mathematics.

This led to a plethora of approaches to support software engineering such
as waterfall and spiral models, structured methods, object-oriented design and
programming, CASE tools, formal methods, and the process approach with
frameworks such as the CMMI, and the Agile methodology.

There has been a growing trend of professionalism at all levels in the software
sector, with professional qualifications for various roles in the software engineering
field. Prince 2 and Project Management Professional are widely used project man-
agement standards with thousands of Prince 2 or PMP certified project managers
around the world. The fact that these project managers are certified practitioners
of leading project management methodologies provides additional confidence in
their ability to deliver projects on time, on budget, and with the right quality.

There has been a move towards remote working and remote teams, and a hybrid
model became popular during the COVID-19 pandemic with many companies
adjusting their work practices accordingly. This trend is likely to continue in the
coming years with remote project management becoming increasingly important.

Index

A

ACM Code of Ethics, 37
Agile development, 12, 13
Agile Test Principles, 229
Analogy method, 78
Appraisals, 278

Ariane 5 disaster, 8
Audits, 152

B

Balanced Scorecard, 236
Barriers to Success, 277
Baseline, 209

BCS Code of Conduct, 37
Bespoke software, 65
Breakthrough and Control, 139
Business case, 75, 99, 102

C

Celebrate Success, 202
Change Control, 214

Change control board, 85
Change request, 85

Clarity PPM, 267

Clearcase, 209

Clearquest, 209

CMMI Maturity Levels, 148
CMMI Maturity Model, 22
CMMI model, 146, 275
Cocomo, 262, 263

Codes of Conduct, 32
Communication Plan, 111
Complete Administration, 202
Computer Ethics, 31
Configuration Control, 210
Configuration Identification, 210

Configuration management, 207
Configuration management audits, 215

Configuration management plan, 117, 213
Configuration Management System, 211

Continuous Software Development, 14
Corporate social responsibility, 30
Cost of poor quality, 255

Cost predictor models, 78

COVID-19, 131

Customer Care Metrics, 251

Customer Satisfaction Metrics, 239

D

Data Gathering for Metrics, 257
David Lean, 49

Deployment Plan, 117

Development Quality Metrics, 245
Document Control Management, 212

E

Earned Value Analysis, 178
End Project Report, 202
Escrow agreement, 67, 190
Estimation, 76, 107
Estimation in Agile, 225
Estimation Techniques, 77, 108
Ethical Outsourcing, 192
Ethical Software Testing, 55
Ethics, 59

European Space Agency, 8
Evaluate Proposals, 189
Expert judgement, 78

F
Fagan inspections, 5, 21

© The Editor(s) (if applicable) and The Author(s), under exclusive license

to Springer Nature Switzerland AG 2025

G. O’Regan, Guide to Software Project Management, Undergraduate Topics in
Computer Science, https://doi.org/10.1007/978-3-031-80578-3

291

https://doi.org/10.1007/978-3-031-80578-3

292 Index

Financial Plan, 116 Milestone Reviews, 178

Fishbone Diagram, 157 Model, 9

Formal Agreement, 190 Mongolian Hordes Approach, 1
Formal Methods, 23 Monitoring Project Deliverables, 170
Function Points, 78, 109 Morton Thiokel, 47

G (0]

GanttProject, 264 Outsourcing, 73, 86, 185

General Data Packet Regulation (GDPR), 69
Goal Question Metric, 234

P

Pair Programming, 226
H Pareto Chart, 160
Handover to Customer, 200 Parnas, 5, 6, 17, 27
Hippocratic Oath, 44 People management, 81
Histograms, 158 Performance testing, 19
Human Resources Metrics, 242 Personal Software Process, 276

Philip Crosby, 136, 140
Planning poker, 78

I Planview, 268

Identifying Suppliers, 188 Planview Enterprise, 267

IEEE Code of Ethics, 27, 35, 36 PMI Code of Ethics for Project Managers, 61
IEEE standards, 10 Polytron Version Control System (PVCS), 209
Improving Project Management, 279 Precautionary Principle, 38

Investment Appraisal, 102 Present Value, 102

Investment Appraisal Example, 105 Prince 2, 5, 21, 75, 90, 280

ISO 9001, 143, 275 Problem-Solving Techniques, 156

ISO 9004, 143 Process Improvement Metrics, 240

ISO 9126, 137 Process Mapping, 276

Professional Engineering Association, 3
Professional engineers, 6, 27

J Professional ethics, 60
Jira, 266 Professional responsibility, vii, 287
Joseph Juran, 139 Programme Management, 93
Progress Reports, 180
Project, 73
L Project board, 76, 87, 100, 101
Law of Tort, 65 Project Board Reviews, 180
Lawsuits and Professional Negligence, 63 Project brief, 101
Legal Aspects of Outsourcing, 65 Project Closure, 89, 204
Legal Aspects of Project Management, 62 ProjectLibre, 264
Legal Breach of Contact, 63, 194 Project management, 21, 73
Legal Impacts of Failure, 62 Project Management Book of Knowledge
Lessons learned report, 156, 201 (PMBOK), 75, 90

Project Management Institute, 90
Project Management Metrics, 243

M Project Management Office, 93
Managing Change Requests, 175 ProjectManager, 265

Managing Defects, 177 Project manager, 76, 100

Managing Stages and Stage Boundaries, 180 Project Manager Professional, 90, 280
Measurement, 233 Project monitoring and control, 84, 168
Michael Fagan, 150 Project Plan, 110

Microsoft Project, 263 Project Portfolio Management, 94

	 Preface
	Overview
	Organization and Features
	Audience

	 Acknowledgments
	 Contents
	 Abbreviations
	 List of Figures
	 List of Tables
	1 Fundamentals of Software Engineering
	1.1 Introduction
	1.2 What is Software Engineering?
	1.3 Challenges in Software Engineering
	1.4 Software Processes and Lifecycles
	1.4.1 Waterfall Lifecycle
	1.4.2 Spiral Lifecycles
	1.4.3 Rational Unified Process
	1.4.4 Agile Development
	1.4.5 Continuous Software Development

	1.5 Activities in Software Development
	1.5.1 Requirements Definition
	1.5.2 Design
	1.5.3 Implementation
	1.5.4 Software Testing
	1.5.5 Support and Maintenance

	1.6 Software Inspections
	1.7 Software Project Management
	1.8 CMMI Maturity Model
	1.9 Formal Methods
	1.10 Review Questions
	1.11 Summary
	References

	2 Professional Responsibility
	2.1 Introduction
	2.2 What is a Code of Ethics?
	2.2.1 What is Computer Ethics?
	2.2.2 Codes of Conduct
	2.2.3 Role of a Whistle-Blower

	2.3 IEEE Code of Ethics
	2.4 British Computer Society Code of Conduct
	2.5 ACM Code of Professional Conduct and Ethics
	2.6 Precautionary Principle
	2.7 Review Questions
	2.8 Summary
	Reference

	3 Ethical Software Engineering
	3.1 Introduction
	3.2 Safety and Ethics
	3.2.1 Therac-25 Disaster
	3.2.2 Space Shuttle Challenger Disaster

	3.3 Ethical Software Design and Development
	3.3.1 Volkswagen Emissions Scandal

	3.4 Ethical Software Testing
	3.5 Review Questions
	3.6 Summary
	Reference

	4 Legal and Ethical Responsibilities of Project Managers
	4.1 Introduction
	4.2 Professional Responsibilities of Project Managers
	4.2.1 PMI Code of Ethics for Project Managers

	4.3 Legal Aspects of Project Management
	4.3.1 Legal Impacts of Failure
	4.3.2 Lawsuits and Professional Negligence
	4.3.3 Legal Breach of Contact in Outsourcing
	4.3.4 The Law of Tort
	4.3.5 Legal Aspects of Outsourcing
	4.3.6 Licenses for Tools and Software
	4.3.7 Privacy and the Law
	4.3.8 EU GDPR Privacy Law

	4.4 Review Questions
	4.5 Summary
	Reference

	5 Overview of Software Project Management
	5.1 Introduction
	5.2 Project Start-Up and Initiation
	5.3 Estimation
	5.3.1 Estimation Techniques
	5.3.2 Work Breakdown Structure

	5.4 Project Planning and Scheduling
	5.5 Risk Management
	5.6 People Management in Projects
	5.7 Quality Management in Projects
	5.8 Project Monitoring and Control
	5.9 Managing Issues and Change Requests
	5.10 Remote Project Management
	5.11 Outsourcing
	5.12 Project Board and Governance
	5.13 Project Reporting
	5.14 Project Closure
	5.15 Prince 2 Methodology
	5.16 Project Manager Professional
	5.17 Project Management Office
	5.18 Programme Management
	5.19 Project Portfolio Management
	5.20 Review Questions
	5.21 Summary
	References

	6 Software Project Planning
	6.1 Introduction
	6.2 Project Start-up and Initiation
	6.3 Project Board
	6.4 Preparing the Project Brief and Business Case
	6.4.1 Investment Appraisal
	6.4.2 Investment Appraisal Example

	6.5 Project Requirements
	6.6 Project Estimation
	6.6.1 Estimation Techniques
	6.6.2 Work Breakdown Structure
	6.6.3 Function Points

	6.7 Project Plan
	6.7.1 The Communication Plan
	6.7.2 The Project Quality Plan
	6.7.3 Project Test Plan
	6.7.4 Financial Plan
	6.7.5 Configuration Management Plan
	6.7.6 Training Plan
	6.7.7 Deployment Plan

	6.8 Schedule and Resource Management
	6.9 Risk Management Planning
	6.10 Review Questions
	6.11 Summary
	References

	7 Risk Management
	7.1 Introduction
	7.2 Risk Management Cycle
	7.2.1 Risk Identification
	7.2.2 Risk Evaluation and Prioritization
	7.2.3 Risk Responses and Selection
	7.2.4 Risk Monitoring and Reporting
	7.2.5 Risk Log
	7.2.6 Risk Management Checklist

	7.3 Risk Management Case Study
	7.3.1 Risk Monitoring and Control (COVID-19)

	7.4 Review Questions
	7.5 Summary
	Reference

	8 Quality Management of Software Projects
	8.1 Introduction
	8.1.1 What is Software Quality?

	8.2 A Short History of Quality
	8.3 Total Quality Managements
	8.3.1 Problem-Solving Techniques

	8.4 ISO 9000 Standard
	8.5 Software Process Improvement with CMMI
	8.6 Software Quality Controls
	8.6.1 Software Inspections
	8.6.2 Software Testing
	8.6.3 Audits and Quality Assurance Group
	8.6.4 Quality Review of Projects
	8.6.5 Learning Lessons in Projects

	8.7 Problem-Solving Techniques
	8.7.1 Fishbone Diagram
	8.7.2 Histograms
	8.7.3 Pareto Chart
	8.7.4 Trend Graphs
	8.7.5 Scatter Graphs
	8.7.6 Metrics and Statistical Process Control

	8.8 Review Questions
	8.9 Summary
	References

	9 Project Monitoring and Control
	9.1 Introduction
	9.2 Monitoring and Control
	9.2.1 Project Status Meetings
	9.2.2 Monitoring Project Deliverables
	9.2.3 Monitoring Project Risks
	9.2.4 Monitoring Project Issues
	9.2.5 Monitoring Change Requests
	9.2.6 Monitoring Project Defects
	9.2.7 Effort, Schedule and Budget Monitoring
	9.2.8 Business Case Monitoring
	9.2.9 Monitoring of Outsourcing
	9.2.10 Monitoring of Audits
	9.2.11 Recording Lessons Learned
	9.2.12 Controlling the Project

	9.3 Managing Change Requests
	9.4 Managing Defects
	9.5 Milestone Reviews
	9.5.1 Earned Value Analysis

	9.6 Managing Stages and Stage Boundaries
	9.7 Progress Reporting and Project Board Reviews
	9.8 Review Questions
	9.9 Summary
	Reference

	10 Outsourcing—Supplier Selection and Management
	10.1 Introduction
	10.2 Planning and Requirements
	10.3 Identifying Suppliers
	10.4 Prepare and Issue RFP
	10.5 Evaluate Proposals and Select Supplier
	10.6 Formal Agreement
	10.7 Managing the Supplier
	10.8 Acceptance of Software
	10.9 Rollout and Customer Support
	10.10 Ethical Software Outsourcing
	10.11 Legal Breach of Contract
	10.12 Review Questions
	10.13 Summary
	References

	11 Project Closure
	11.1 Introduction
	11.2 Handover to Customer
	11.3 Lessons Learned Report
	11.4 End Project Report
	11.5 Complete Outstanding Administration
	11.6 Celebrate Success
	11.7 Project Closure
	11.8 Review Questions
	11.9 Summary

	12 Configuration Management
	12.1 Introduction
	12.2 Configuration Management System
	12.2.1 Identify Configuration Items
	12.2.2 Document Control Management
	12.2.3 Source Code Control Management
	12.2.4 Configuration Management Plan

	12.3 Change Control
	12.4 Configuration Management Audits
	12.5 Review Questions
	12.6 Summary

	13 Project Management in the Agile World
	13.1 Introduction
	13.2 Scrum Methodology
	13.2.1 User Stories
	13.2.2 Estimation in Agile
	13.2.3 Pair Programming

	13.3 Software Testing in Agile
	13.3.1 Test-Driven Development
	13.3.2 Agile Test Principles

	13.4 Advantages and Disadvantages of Agile
	13.5 Review Questions
	13.6 Summary
	Reference

	14 Project Management Metrics
	14.1 Introduction
	14.2 The Goal Question Metric Paradigm
	14.3 The Balanced Scorecard
	14.4 Software Metrics for Project Management
	14.4.1 Customer Satisfaction Metrics for Project
	14.4.2 Process Improvement Metrics
	14.4.3 Human Resources Metrics for Project Management
	14.4.4 Project Management Effectiveness
	14.4.5 Development and Testing Metrics for Project
	14.4.6 Quality Audit Metrics
	14.4.7 Customer Care Metrics
	14.4.8 Miscellaneous Metrics for an Organization

	14.5 Implementing a Metrics Program
	14.5.1 Data Gathering for Metrics

	14.6 Review Questions
	14.7 Summary
	References

	15 Tools for Project Management
	15.1 Introduction
	15.2 Tools for Project Estimation and Scheduling
	15.3 Project Manager Tools
	15.4 Tools for Project Portfolio Management
	15.5 Review Questions
	15.6 Summary
	Reference

	16 Continuous Improvement of Project Management
	16.1 Introduction
	16.2 Software Process Improvement
	16.2.1 What is a Software Process?
	16.2.2 Benefits of Software Process Improvement
	16.2.3 Software Process Improvement Models
	16.2.4 Process Mapping
	16.2.5 Process Improvement Initiatives
	16.2.6 Barriers to Success
	16.2.7 Setting up an Improvement Initiative
	16.2.8 Appraisals

	16.3 Improving Project Management
	16.3.1 Best Practice in Prince 2 Methodology
	16.3.2 Best Practice in Project Manager Professional (PMP)
	16.3.3 Best Practice with CMMI

	16.4 Review Questions
	16.5 Summary
	References

	17 Epilogue
	17.1 The Future of Project Management

	Index

