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Chapter 1

The Maintenance Management
Věra Pelantová

Abstract

The chapter deals with the maintenance management. The review is based on 
maintenance and management trends in organisations in 2022 and on other find-
ings. There are also historical parallels. Aspects such as maintenance planning and 
control and management including downtime, resources in terms as material (spare 
parts and added materials) and personnel are discussed. The issue is linked to other 
management systems such as quality control, occupational safety, and environment 
and information security. The methods of planning and control of equipment main-
tenance are presented. The application of the process approach and the concept of 
maintenance as a process that needs to be improved are described. The relationship to 
the Industry 4.0 is mentioned. Linking to risk management is included in this chapter. 
The chapter is based on a small survey probe in several organisations, and points out 
identified nonconformities of the maintenance and suggested actions. The goal is 
effective maintenance for needs of organisations in a current dynamic environment.

Keywords: maintenance, process, management system, organisation, equipment, 
nonconformity, planning, control, strategy, employee

1. Introduction

This chapter deals with maintenance management in organisations. He submits a
literary search in connection with the current situation. Based on the implementation 
of the probe in several companies, it tries to design effective approaches to planning 
and managing the maintenance process in the context of a process approach and an 
integrated management system.

2. Historical review

From the very beginning, when a man made the first product, one began to
think about how to prolong its life or restore or improve its function. Various tech-
nological procedures have been developed. With the transition from manual to 
mechanical production, this approach has gained more importance and regularity, 
as well as technical sophistication. Sophisticated mechanical components and then 
electronic components have made the equipment a more productive, but on the 
other hand more complex and vulnerable. From this reason, the probability of his 
failure increased. That status had to be stopped. It went from maintenance to failure 
to preventive maintenance. Gradual digitisation has resulted in greater diagnostic 
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development and the birth of predictive maintenance. Now, the maintenance is in 
the stage of  integration with the production into one unit. However, the conditions 
of the  significant environment of organisations and the internal context of their 
maintenance are also changing. Maintenance management must respect the process 
approach and its aspects. However, most organisations suffer from inertia. Therefore, 
this  development is yet to come, and organisations face a number of difficulties.

3. Publications and the maintenance management

Equipment outages, human errors and product quality deviations are always 
a signal for organisations to correct maintenance. They lead to efforts to mitigate 
the impact on production problems as the article [1] mentioned. Many publications 
therefore deal with partial and general studies in the scope of this topic mainte-
nance management. For preliminary maintenance planning algorithms for steel 
companies, the text [2] describes generally the study [3]. A study of tools to support 
maintenance decisions in discrete production is in the study [4]. It brings the issue 
of processing a group of tasks in parallel on multiple equipment, as in the article [5]. 
The preventive maintenance planning model for serial parallel systems is described 
in the publication [6].

Principles of maintenance are examined with respect to time and cost in the 
article [7]. The creation of a decision-making system for the maintenance of the 
spatial arrangement of equipment for the city’s road infrastructure is described in 
the publication [8]. Papers [8, 9] examine the assessment of the level of maturity 
of a heavy equipment maintenance management system. The solution of barriers 
and their relations in industrial production are solved in the text [10]. An empirical 
study of the relationship between maintenance management and employee perfor-
mance is described in the article [11]. The article [12] devotes to muscle and skeletal 
disorders in maintenance employees in connection with the risk assessment of these 
activities. Critical analysis of models that combine maintenance, lean manufac-
turing and the Industry 4.0, and design of its own for predictive maintenance is 
mentioned in the article [13]. Multi-target optimisation algorithm for wind turbine 
maintenance is used in the publication [14]. The explanation in computer-aided 
maintenance management when considering aspects of the Industry 4.0, such as 
neural network, models, clouds, the Internet of Things, the article [15] provides. 
The study [16] assesses and categorises maintenance services across their life cycle 
and in relation to the Industry 4.0.

Current trends in the production management and the maintenance management 
are described in texts such as [17–22].

4. Methods

Various management tools are used in the performed studies to streamline 
 maintenance work. The basis is the cooperation of maintenance department with 
production department in the organisation according to the text [19]. It should 
be noted that maintenance planning should overlap with production planning, as it is 
noted in the text [21].

Due to conditions of the substantial surroundings, work with resources and hybrid 
work [22] are balanced for the predictive maintenance. Emphasis is placed on the 
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installation of sensors [20]. Preliminary maintenance planning can be based on the 
Genetic algorithm with two-phase optimisation, where the integration of the organ-
isation’s strengths in the article [2] takes place. The planning of each cell system in
the text [6] is based on the same algorithm and combination of the maintenance after 
failure and the preventive maintenance in the article [14].
  Various characters of the maintenance process are monitored in organisations,
such as: MTTR (Mean Time to Repair), MTBF (Mean Time Between Failures) and 
OEE (Overall Equipment Effectiveness) to solve outage problems [19, 23]. The small 
OEE is at 55–70% in the article [21]. The determination of the maintenance policy is 
based primarily on the characters of the number of failures, the number of operating 
cycles of the equipment and the time of performing the part replacement according
to the text [7]. Based on a search of publications and analysis, models are created,
including together maintenance, lean production and the Industry 4.0 in the article
[13]. Reducing maintenance costs while increasing production performance and 
assessing several scenarios in the maintenance is described in the publication [14]. An 
important source of knowledge is also a critical analysis of computer-aided main-
tenance management systems as in the text [15]. The non-technical sphere brings
the interconnection of sustainable, social and economic requirements for technical 
systems as in the text [16]. Multi-criteria analysis is also used for the maintenance 
decision-making system. All stakeholders are involved, which strengthens the 
solution of the problem, which is pointed in the article [8]. The production process 
depends on production speed, the number of nonconformities, system availability
and other performance characters, such as complex KPI metrics. The context of the 
information can be determined  via  the semantic profile of a part of the system as in 
publications [1, 18]. The Pareto analysis of maintenance barriers in the organisation’s 
production system is mentioned in the text [10].

The evaluation of equipment criticality is performed through setting priori-
ties and decisions on maintenance with the help of data from computer systems as
MES (Manufacturing Execution System) and CMMS (Computerised Maintenance 
Management System). It is based on cooperation between maintenance and production 
to increase productivity without increasing investment as in the article [4]. Critical 
activities are also assessed according to the standard ISO/TR 12295 [12, 24].
  To strengthen production performance and to monitor the status of maintenance,
meetings and verification of the comprehensibility of tasks by staff in the text [11] are 
recommended. The health risks of maintenance employees are determined by using
an ergonomics study in the publication [12].
  The benchmarking in maintenance is promoted as a comparative method. It 
provides information on the number of unplanned outages and the condition of the 
equipment. In accordance with the article [23], an audit can be recommended as a
tool for measuring the performance of the maintenance process in organisations.
Furthermore, it is possible to compare maintenance process through an inventory,
where the physical assets and information about them correspond to the data in the 
computer system as for example CMMS according to the text [18].
  Furthermore, methods of evolutionary algorithms, clustering method [25] and/
or linear programming [5] are used to plan and schedule maintenance and reduce its 
costs. Using a digital twin improves the visibility of problems in this process well in 
the article [17].
  CBM methodology is widely used for dynamic maintenance planning, as stated
in the publications [3], here in conjunction with the standard ISO 31000 [23, 26].
Methods such as RCM and TPM [23] are also used for a maintenance planning.
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Reliability-focused maintenance is recommended as suitable for minimising costs 
when there is insufficient capacity of qualified staff. The standard ISO 55001 [19, 27] 
is recommended to enhance sustainability. All maintenance process scenarios over 
time are also considered, as in the publication [3].

The assessment of the level of maturity of the maintenance process is performed 
based on the standard ISO 55001 [9, 27].

5. Problems of area

The current maintenance process faces a lot of problems in organisations.
Implications of production planning for maintenance planning have not yet been 

satisfactorily considered. These two areas are not integrated. There is no suitable 
approach to rescheduling maintenance according to the current situation in the 
workshop in the article [2]. There is a lack of analysis of the advantages and disad-
vantages of various maintenance planning and control algorithms [14] and rigorous 
data analysis according to the text [20]. There is more interest in a production than 
in maintenance the text [4] notes. It is necessary to address unplanned maintenance 
also due to the availability of staff as in the text [25]. A major problem for many 
organisations is a lack of strategic maintenance planning and overall integration of 
the maintenance into the strategy of organisations according to the article [23]. The 
implementation of the Industry 4.0 in the maintenance requires a more sophisticated 
method of maintenance planning, backed by data and industry knowledge and risk 
analysis as in the article [3]. Maintenance decision algorithms are often based on dis-
crete state variables [28]. Deviations occur in the communication of sensors, actua-
tors and other devices that can affect production decisions. There is a need to improve 
the work with contexts and workflows [1]. Problems occur also in the application of 
predictive maintenance in organisations [17].

Many organisations have difficulty to implement the conception TPM and a 
spatial arrangement of equipment in a shopfloor as the article [13] describes. The 
eternal problem is to reduce maintenance costs and increase equipment availability 
for many articles as in [15, 18]. Problems can be seen in the supply chain in the text 
[19]. Studies often involve individual facilities or shopfloors, not the entire asset 
management of organisations. It is necessary to update the methodology for deter-
mining the criticality of the equipment regarding new conditions of the substantial 
surroundings and the consistency between bottlenecks of production and the 
criticality of equipment. Data for maintenance analysis are often not of excellent 
quality. Stakeholder requirements are not understood. A static approach is applied, 
and the holistic concept is not considered. The maintenance is often decided by staff 
who have any access to it, and even the maintenance staff themselves are not familiar 
with data analysis [4].

According to the article [10], a common reason for maintenance problems in 
organisations is a poor communication in organisations and a small interest of 
management. Employees do not report maintenance problems and do not make 
improvement suggestions for maintenance. There is a need for more training on 
maintenance for all employees of the organisation, as texts [18, 23] add. There is a 
lack of qualified staff [21]. The safety of maintenance staff must be ensured [11] 
because working conditions of maintenance employees are hazardous to health, as 
shown by studies [12, 23]. Green technologies are not synchronised with the main-
tenance and the maintenance is not monitored environmentally [10]. Maintenance 
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workspaces will need to be optimised for energy consumption and a carbon foot-
print as the article [22] notes.

  Overall, problems of maintenance are financial, organisational, environmental,
social and technological, as the articles [10, 20] write. The assessment of the level
of maturity of the maintenance management system needs to be assessed in rela-
tion to the maintenance costs as in the text [9]. Occasionally, there is an inefficient 
maintenance process, as in the publication [23]. The Benchmarking towards the best 
maintenance group is problematic from position of internal data, as the authors write
[23, 29, 30].

6. Trends

  There are a number of trends in maintenance management and in workshop 
maintenance. The goal of all efforts is to improve the organisation’s production 
performance by more than 40% with the help of preliminary maintenance plan-
ning, as stated in the text [2]. The basis is the determination of suitable characters
of the maintenance process and their use in sophisticated algorithms that help
rapid planning, optimisation and management of maintenance and elimination of 
staff conflicts in publications [2, 5]. Other factors influencing the maintenance are 
involved in the prediction, such as vibration [13], energy prices and spare parts wear
[14]. It is necessary to establish common characters or metrics for the production 
process and the maintenance process [4, 16]. Applications of smart technologies such 
as glasses increase the speed of solving maintenance problems. It also contributed
to the transition from the original equipment condition monitoring to continuous 
multidimensional monitoring and immediate problem solving as it is described by 
texts [6, 17, 28]. Analysis of the causes of nonconformities will help to subsequently 
improve the maintenance process [20].
  Small- and medium-sized organisations and households need to be supported 
in the application of computer-assisted maintenance management systems as 
publications [4, 15] recommended. Data from CMMS are used more often for 
maintenance planning than from MES, although this one better describes the sta-
tus quo of the equipment in relation to maintenance and system dynamics. CMMS 
is used to determine causes of equipment failure, which is a knowledge that 
production also needs. The management of large volumes of data and their use for 
planning and managing production and maintenance together is addressed. The 
task of the future will be to ensure data quality in such a comprehensive man-
agement system what the article [4] notes. The programming of the Internet of 
Things will have to be validated in a real fault environment as in the text [3]. It is 
necessary to involve expert systems in the maintenance of objects, such as a road 
condition assessment in the article [8]. Artificial intelligence will affect not only 
maintenance jobs [19], but also finding compromise solutions between produc-
tion and maintenance [21].

  Frameworks need to be developed for several types of spatial arrangements for 
maintenance and production [4]. Ergonomic procedures need to be developed, and 
ergonomic advice should be available to staff. Furthermore, there is a need to expand 
research into physically demanding jobs that go beyond chronic diseases. There is a 
need to strengthen the effectiveness of ergonomic assistance in the shopfloor and to 
create a set of the best ergonomic maintenance procedures, according to the publica-
tion [12]. According to the authors [23], approximately 20% of incidents in 2020 year
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occurred in company maintenance. Therefore, the trend of safety in maintenance in 
the text [20] is growing.

Organisations should be more committed to a maintenance and risk analysis 
 strategy, according to publications [3, 11]. This must already be included in the 
design of the equipment. A man and his or her activity cannot be completely 
excluded from the production process due to manual work, such as maintenance 
interventions. But his mistake can affect strategy and downtime. Therefore, durable 
technical equipment and social systems are needed. MES could be a plug-in for an 
organisation’s production planning and management system, for example, according 
to the article [4]. The maintenance should be part of Advanced Planning Systems 
according to the text [1].

Furthermore, organisations must follow cultural changes in the substantial 
surroundings in maintenance, as the text [23] adds. It means creating a culture of 
teamwork, effective emergency planning and using of the knowledge from a com-
puter support of the maintenance. ‘Doing more with a fewer people’, according to the 
article [18]. Human-centred maintenance and the strengthening of communication 
tools according to the text [22] will help the shopfloor.

7. Discussion

As can be seen from the list of publications above, the maintenance management is 
an enough broad topic.

The regulating of OEE maintenance metrics as responsibilities does not always 
seem appropriate for organisations. This method is not yet prescribed by law. 
However, organisations would need to have some maintenance characters identified 
and evaluated. The basic characters of maintenance should be a more realistic in the 
maintenance work environment, which corresponds to the findings in the text [6]. 
The KPI metric, as stated in the text [18], can be taken in an analogous way. Lack of 
information on a maintenance performance leads to an inefficient process according 
to the article [23].

Methods such as RCM, CBM and TPM are used in practice, but in the Czech 
Republic the RCM method is essential and then the organisations’ own approaches.

The maintenance policy determination procedure is described for technicians 
not only maintenance in the text [7]. This is a helpful solution. It is aimed at profes-
sionals, not primarily managers, as is often the case. For example, processes in the 
article [1] are thought to be technological, but it is necessary to link them with the 
system according to the process map of the organisation. In addition, planning is not 
a process, as stated in the text [19], but an activity. Again, this is about dealing with 
a hierarchical structure and a directive management as in the article [21], which is 
unsuitable for the maintenance.

Maintenance planning and management algorithms are refined, and the num-
ber of iterations is reduced. The period of preventive maintenance is extended, as 
stated in the article [14]. The algorithms used so far include procedures that perform 
maintenance at the expense of production time. The article [4] lists several findings 
that can be agreed with. This is not suitable in terms of shortening the production 
lead time as the author [31] wrote. Maintenance calendars are often scheduled 
separately. There may be no link between the maintenance plan and downtime. 
Production losses should also be a guide for maintenance decisions. The equipment 
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downtime should be a part of inputs to plans and so on. The only time that is crucial 
for the production is the main technological time. Those interested in streamlining 
maintenance should focus primarily on problems and waste in the current process 
and eliminate them.
  Teamwork requires the responsibility of all employees for maintenance in the 
organisation. There is a need to strengthen the image of the need for maintenance
in the organisation as a tool for prevention. Qualified staff is required for the 
maintenance [19]. However, some organisations are not interested in potential new 
employees. This can subsequently have a demotivating effect on them. The need for
a human-machine collaboration is mentioned, but it should have been solved in the 
past automation efforts. The responsibility or self-responsibility is a good thing for
the maintenance process. However, employees must also have other conditions such as 
rights and resources, including information, which is doubly true in maintenance. All 
employees in the organisation must be trained in maintenance so that they not only 
understand its importance, but also ensure their share of maintenance in their own 
abilities as a part of their activities. Many organisations get into trouble due to the
lack of interest of the organisation’s management and the lack of sufficient resources 
for their employees, as shown in the text [23]. Employees must be guided to carry
out maintenance tasks effectively, but they should be given an appropriate working 
environment, as in the text [11]. The fact is that teamwork cannot be required if some 
form of a hierarchical organisational structure is applied at the same time. This form 
also leads to other ways of management that are associated with it. The reason the 
maintenance process is inefficient is the insufficient definition of the process accord-
ing to its characteristics. Organisations should provide their maintenance staff with 
sufficient quality protective equipment, which agrees with the authors [23]. However,
according to the article [12], the teamwork is also the basis for prevention in mainte-
nance ergonomics.
  Surprisingly, the availability of spare parts is not so much discussed in the publica-
tions, although the article [14] assesses the field of maintenance quite comprehen-
sively. Maintenance inventory management needs to be based on more suppliers and 
more extensive forecasts given the current situation, which is in line with the text
[20]. There are already mentions of waste management and building efficiency, as in 
the article [22]. This situation with a lack of spare parts and materials in maintenance
(e.g. according to the text [19]) leads to an extension of the equipment’s operation in 
organisations.
  From problems described above and according to nonconformities that the author 
of this chapter encountered, the need for overall integration within the manage-
ment system is evident. The trend described in the article [19] that environmental
and social responsibility issues will be involved in the performance evaluation and
the organisation strategy has been deviating since February 2022, although it would
be necessary. The holistic of production and maintenance is necessary to increase 
productivity. This will strengthen the appropriate specification of characters in the 
integrated management system, in accordance with the text [4]. The problem is that a 
profit is often required, and the equipment must run constantly. This is a traditional 
myth of managers. The article [3] describes the involvement of design in risk assess-
ment and maintenance planning. But it is unique. It is associated with production.
Therefore, rather than a quality-oriented culture in maintenance, as in the text
[23], organisations should build a safety-oriented culture or a holistic culture in the 
maintenance.
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For these reasons, the next text of the chapter focuses on the application of the 
process approach in the maintenance process and on finding suitable methods for 
maintenance planning and management.

8. The status quo

The dynamics of the competitive environment is growing [23]. Rapid technologi-
cal development is underway [19]. Initially, maintenance organisations over the 
past 5 years have focused on implementing the Industry 4.0 and on the increasing 
efficiency. The COVID-19 crisis and the current situation, as well as other threats, 
change the situation of all organisations and affect maintenance as in the text [17]. 
Maintenance systems come under pressure in such conditions [19]. The supply chains 
for materials and spare parts are disrupted [20]. As a result of these crises, financial 
resources are being reduced not only for maintenance [21]. Due to the epidemiological 
situation, service actions were postponed due to a lack of shift employees and a limit 
on the number of people who could meet at one workplace. As a result of delayed 
maintenance, there was a chaining and an increase in the number of problems on the 
equipment. The root causes of nonconformities have not been addressed [17].

There is a growing need to learn how to work and maintain new complex equip-
ment. Therefore, not only financial and material resources for maintenance are 
important, but also the staff and their commitment. They are afraid of losing their 
jobs. Conflicts between maintenance and production are common as in the text [23]. 
Hybrid work is used [22]. Maintenance employees work under time pressure, under 
stress. The activities are long-lasting and inconvenient, and performed with an inad-
equate equipment. The upper limbs and torso are endangered. Handling large loads, 
working at heights, occasional activities are problematic, maintaining employees age. 
There is an extended period of training and insufficient knowledge. The organisation 
of work in enterprises is difficult in the team [12].

Within the survey probe, 10 organisations were examined for the purposes of this 
chapter on maintenance management. There were seven small- and medium-sized 
organisations and three large organisations. They operate in the Czech Republic. 
Their fields of activities are mechanical engineering, electrical industry, automotive 
industry, glass industry, textile industry and services. The type of production was 
piece or serial. The organisational structure was full and hierarchical one. There was 
one group of maintenance employees in organisations. Organisations had imple-
mented basic management systems—quality ISO 9001 [32], occupational safety ISO 
45001 [33], environment ISO 14001 [34] and industry standards. They usually do 
not have implemented the information security management system according to the 
standard ISO/IEC 27001 [35].

The research interest was focused on the maintenance and its links. Following 
nonconformities were found out by observations, interviews with companies´staff 
and by data analysis: outdated equipment, poor storage of spare parts, insufficient 
identification of facilities, lack of staff, duplication of data, data transcription errors, 
lack of maintenance records, low material quality, spare parts not available on the 
market and different maintenance procedures are applied for the same type of work, 
insufficient staff qualification, work safety incidents, problematic communication, 
low motivation, hacker attacks and loss of know-how, insufficient training, poor 
quality previous maintenance work, only one supplier of spare parts and materials for 
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the organisation, data are only collected and analysis is not performed; maintenance 
plans and production plans diverge. In addition, there is a poor relationship between 
operators and their equipment.
  In terms of the frequency of these nonconformities, the most numerous are occu-
pational safety incidents, incomplete and missing records, communication, different 
maintenance, and production plans, not performed analyses, reduced material quality 
and data transcription errors. Due to the COVID crisis, organisations are learning to 
cope with the lack of maintenance staff and with the size of workshops. The most
risk factor in the maintenance is occupational safety incidents. The health and lives
of employees are endangered. Hacking attacks are dangerous in terms of data loss,
change of instructions or blocking of maintenance work and then stopping the 
equipment. Making records means consistency and diligence. The situation in supply 
chains is deteriorating. The prices of items for maintenance are rising. There are not 
enough of them on the market. Delivery times are too long. The quality of the items is 
sometimes not good. It is possible to come across fraudulent actions of suppliers.
  From the point of view of waste, utilisation of maintenance staff, waiting, unnec-
essary work and poor-quality material inputs are evident in maintenance according to 
publications [36, 37].

9. Process approach

  The process approach is currently the cornerstone of an organisation’s manage-
ment systems. It is based on the common foundations of the TQM and ISO 9001 [32].
concepts. It is based on decentralisation, cooperation, stakeholder interest, basic 
documentation of a process, waste elimination, object identification, leadership,
communication, value-added solution variability, measurement, comparison, and 
review as sources of objective evidence and for the continuous improvement of the 
management system. Effective forms of maintenance also use these interfaces. Some 
of the types of flexible organisational structure are suitable for the maintenance 
process. This solution ensures decentralisation, autonomy and initiative. Leadership
as a form of leadership supports this. Communication is then free. This makes the 
whole more flexible. Suitable interpersonal conditions then create an ideal mushroom 
for creativity and initiative. At the same time, the independence of the individual
is supported. At the same time, disinterest and frustration are declining. This also 
reduces the number of nonconformities in the process. Characters are more apt for 
such a process. Maintenance procedures can be documented more consistently. Data 
are collected and analysed as a source for further process development.

10. Planning and control of maintenance

  In general, planning in an organisation can be divided into time, material and 
capacity as in the book [38]. Sometimes, financial planning is added to them. All this 
can also be applied to maintenance.
  The planning tells staff how often to conduct inspections and at what times, for 
example daily, weekly, monthly. Given the machinery and other assets, the organisa-
tion has an idea of  how long the maintenance work will take. Normative indicators
are still insufficient. Maintenance depends on the design of the equipment and its
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disassembly options, on the location in the building and accessibility, on the work 
of previous maintenance. These factors can significantly change maintenance time. 
Furthermore, it is the detection of the cause of the fault that prolongs the on-going 
time of maintenance. Maintenance time also increases depending on the technological 
activities performed.

Material planning tells staff how much material is needed. For example, how many 
bearings of a certain type on the machine, and how many litters of oil for lubrica-
tion. Here, they play a role and are assessed: delivery conditions, availability of the 
purchased item on the market, its price, failure rate, consumption time, storability, 
required quantity for maintained objects, frequency of request for use in mainte-
nance. The storage of spare parts and materials must comply with the required storage 
conditions and the stacking instructions for the item. Due to the current difficult 
situation of suppliers, it is possible to expect a request for an increase in maintenance 
stocks. The ABC method can be recommended for the analysis of input materials 
for maintenance. As with machines, their criticality for the organisation is evaluated 
here. A novelty in this area will be a greater emphasis on the recycling of materials, 
their environmental friendliness and the return of packaging.

Financial planning tells staff how much it will cost. These are items such as materi-
als and spare parts, wages and levies, maintenance work, taxes, depreciation.

Capacity planning indicates how much resources are needed for maintenance 
work. The sources in this case are workers and equipment (machines and hand tools). 
Qualification and awareness play a role for employees. This category also includes 
assembly and disassembly procedures and own maintenance procedures, as well as 
legislative requirements.

There are four specific maintenance levels. They correspond with publica-
tions [29, 30].

Equipment inspections can be performed by electronic systems or the human 
senses of an operator. They are usually performed every day.

The production operator or maintenance employee also performs caring mainte-
nance or service every day. It means replenishing the lubricant and other media that 
are needed to operate the machine and adjust the machine.

Prevention or repairs to the equipment according to the type of maintenance 
selected are performed by maintenance personnel over a longer period.

Overhauls of equipment or outages mean that the production process is stopped 
in a matter of weeks to months. The outage follows mostly preventive maintenance. It 
is usually necessary to perform maintenance on a larger technical unit or key equip-
ment. This means stopping the production of the company. The shutdown must be 
planned at all points. All resources must be provided in advance and procedures for 
maintenance activities, organisational team and documentation, and SW equipment 
must be prepared. The safety measures of individual objects and the use of protective 
equipment by maintenance personnel must not be forgotten either. The following 
must be kept in mind. Residues of substances in equipment can cause safety incidents 
due to chemical and physical phenomena. During the entire outage, it is necessary 
to collect data that will be evaluated after the outage. The main risk of downtime is 
overtime. It could not be foreseen advance. The solution procedure is then deter-
mined on the spot, as well as the necessary resources are determined. An extension 
of the time until the device is put into operation is a consequence. This status creates 
production losses for the organisation and increases maintenance costs. The evalua-
tion of the shutdown should be reflected in the maintenance documentation. It is an 
update of the maintenance procedure. An indispensable part of the outage at present 
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is diagnostic devices—vibro, thermo, tribo, measurement of pressure, air leakage,
microcrack diagnostics, etc.
  The original maintenance planning and management algorithms were based on
the business situation in the 1970s. It was a hierarchical organisational structure,
directive management, extensive administration, and a complex planning system.
However, due to waste, inadequate information and a long flow of data, day-to-day 
operational interventions had to be used to prosecute both production and mainte-
nance. Maintenance after the failure prevailed. This approach can still be found in 
some organisations.
  PPS (Production Planning and Control) methods are intended for operational 
planning and management of production. The most common methods such as MRP
II, KANBAN, BOA and OPT are available. Maintenance is  de facto  piece to small series 
production. Therefore, the JIT method is not included. Although the MRP II method
is comprehensive in terms of planning and management, its characteristics do not 
correspond to the process approach. The BOA method is based on the maximum 
capacity utilisation and the pressure method in terms of production flow, which is
also not the best. The comparison with maintenance would therefore be close to the 
KANBAN and OPT methods, which are based on decentralisation and are based on 
the pull method. However, regarding the exclusion of time, material and resource 
planning, they are not sufficient. Therefore, the development of a more suitable PPS 
method is expected due to the process approach. Therefore, the connection with 
maintenance planning and management will take some time.
  The planning and control management of maintenance must meet goals to 
improve the cost effectiveness of the maintenance process and increase equipment 
uptime and eliminate maintenance risks.
  RCM (Reliability Centred Maintenance) is a standardised method according to
the standard IEC 60300-3-11 [39], which helps implement an organisation’s preven-
tive maintenance program. This method considers safety and reduces environmental 
impact. It determines the technical system, its parts and their functions. It determines 
the probable causes of failures of the so-called functionally principal elements.
Consequences and probabilities of their failures are determined. The consequences
are categorised in the decision tree. They are assigned efficient maintenance activities.
The result is a maintenance program that can be constantly updated according to the 
operating situation.
  TPM (Total Productive Maintenance) is a comprehensive philosophy of effec-
tive preventive maintenance. It is not only focused on the equipment, but also on
the involvement of employees who are both production operators and carers for the 
equipment. Equipment innovations and improvement proposals are put into practice.
Staff is trained and emphasis is placed on occupational safety. The performed main-
tenance must be performed well.  De facto, this method comprehensively strengthens 
the culture of the organisation.
  RBM (Risk Based Maintenance) is a method that identifies and evaluates the 
corresponding risks when planning the maintenance of the object. They are assigned
a list of faults for which the severity is evaluated. The resulting risk is the product of 
three parts—human health losses, productivity losses and cost losses. Probabilistic 
analysis is performed using a fault tree (FTA). From here, the occurrence of faults can 
be determined in production [40].
  FFM (Failure Finding Maintenance) is a method that aims to find hidden faults 
that are often associated with the security features of the equipment. Even the speci-
fication of these maintenance tasks will not prevent equipment failure. The method
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is based on risk analysis and safety regulations from the manufacturer for the given 
type of equipment. Maintenance according to this method is performed at regular 
intervals.

TBM (Time-Based Maintenance) is a method that includes preventive mainte-
nance, performed at regular intervals on a specific device. The goal is to prevent the 
object or the entire device from failing. The intervals are either time-related or tied to 
another quantity (e.g. the number of km driven by the car). This method is applied 
to working equipment.

CBM (Condition-Based Maintenance) is a method based on the identification of 
physical manifestations of the equipment. No consequence is expected, but mani-
festations preceding this device failure are detected. It is based on the P-F curve. The 
point P indicates the detection of the manifestation leading to the fault. The point 
F indicates a loss of object functionality. The distance between points P and F is the 
time interval when the maintenance intervention must be performed immediately. In 
contrast to post-failure maintenance, this type of maintenance can help the organisa-
tion prepare for intervention in terms of material preparation, spare parts, tools and 
maintenance platoon. On the contrary, the method is not suitable if the failure has 
high variability [29, 30, 40].

The first two of the methods are the most complex and, according to the author’s 
surveys, the most used in organisations.

Maintenance planning and management also depends on the criticality of the 
object. In this sense, the objects—devices, are classified into three groups:

Key objects are essential for the main production and often complex. They are 
irreplaceable in technology or performance. They tend to be expensive or new. They 
are significant due to the depreciation period according to the country.

Common objects can be replaced technologically or numerically. They are moder-
ately complex. Spare parts for these objects are more accessible.

Auxiliary objects are less complex. They are sometimes used for ancillary work. 
They are usually older.

Each device should have its own passport. This document contains all information 
about the equipment—production drawings, technological procedures, diagrams, 
material certificates, test reports, etc. Passport is also the basis on which to deter-
mine the criticality of the object and the subsequent planning and management of 
maintenance.

The calculation of the criticality of the object depends on the cost of failures (1).

    
     

   

∑ +
= ∗ +

+ ∗

  
    
 

fault repair costs environmental impact costs
Fault costs fault current parameter occupational safety costs

mean recovery time hour downtime          (1)

The second option is to use analysis using point evaluation of a group of characters 
on the equipment. These features are then evaluated in terms of criticality of this 
device in a semi-quantitative manner.

For the purposes of this chapter, an analysis of strategic planning and management 
methods was performed according to publications [30, 31, 41–43]. It was based on the 
current state of the market and the situation of organisations, considering nonconfor-
mities and trends in the field of maintenance management. There are a lot of methods 
available in this area. However, they are de facto modifications of the following 
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methods. The following basic methods were assessed: Porter’s Five Forces, Boston 
Matrix, Balanced Scorecard, Key Performance Indicators, GAP analysis, Management 
by Objects, MOST Analysis, PESTLE Analysis, Winterling Crisis Matrix, Technique
of Scenarios, SPACE Analysis, 10 Megatrends, VRIO Analysis, Forecasting. They are 
often mentioned as suitable for the strategic management of organisations. However,
the focus on maintenance requires a primarily technical concept rather than an eco-
nomic (market) concept. Furthermore, today’s organisation needs to work with risks 
and security factors. The linking to production must be possible. The method must be 
able to capture a lot of data from various sources for subsequent analysis and decision 
making. It should consider all relevant stakeholders. Finally, it must be in accordance 
with the process approach that is the basis of such organisations from the point of view 
of management systems.
  Some methods have been removed from the menu. They are quite theoretical for 
practice and their application in business practice would be quite difficult. Other 
methods are very economically oriented. Others are relevant to different environmen-
tal conditions than they currently exist or correspond to a functional approach.
  After a thorough analysis of the above methods in terms of their application,
algorithm and required data sources, the following are suitable for maintenance man-
agement in the current situation: Key Performance Indicators, GAP analysis, PESTLE 
Analysis, Winterling Crisis Matrix, Technique of Scenarios.
  Key Performance Indicators is a performance metric of a process, department or 
organisation. It includes features of economic, quality, performance and IT services,
which helps build the Industry 4.0, features of inventory with respect to spare parts 
and materials. It fulfils the SMART methodology for goal setting.
  GAP analysis is a method of decision making and problem solving in a certain
area. It describes the current state, the required goals, determines the difference 
between the state and the goals, considers nonconformities and measures, proposes,
and evaluates solutions. Its safety part is especially important for maintenance. It also 
has market and legislative parts.
  PESTLE Analysis is an analysis of the essential environment of the organisation
in terms of strategy. It includes factors such as technical, social, environmental,
economic, and political. It also considers nonconformities, events and risks. This 
method is therefore a risk analysis regarding the internal and external context of the 
assessed area.
  Winterling Crisis Matrix is a risk analysis of the assessed area, which plots the 
dependence of the probability of risk on its consequences into a matrix.
  Technique of Scenarios is an analytical method that devises the course and conse-
quences of various crisis situations with a view to the development of the organisa-
tion and changes in the environment. It can also work with qualitative characters
(indicators). It then also sets out the procedure for resolving the relevant contingency.
This method is a more general.

  The Balanced Scorecard method would be borderline for the needs of maintenance 
management. However, it works less with risks and security.
  Smaller organisations can also use the Area Diagram method, where they select 
and apply the values  of maintenance process characters to individual axes. They will 
then assess them against the target values  at certain time intervals.
  The widely used SWOT analysis method is more general and is primary intended 
for the analysis of the organisation’s risks. Evaluation frameworks are part of its 
modifications.
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All these selected methods help guide the organisation’s maintenance and manage-
ment efforts in dynamic conditions too. They work with a system of current charac-
ters and their target values. From this reason, the strategic planning is applied. These 
methods help to determine the ways to manage the area so that the organisation can 
achieve them effectively. This can be called strategic management. The organisation’s 
strategy in the current conditions can be determined with a view to a maximum of 
2 years.

11. Characteristics of the maintenance process

Characteristics of the maintenance process is possible solved according to the book 
[43] and standard as EN 13460 [44], EN 13306 [45], EN 15341 [46], IEC 60300–3-11 
[39] and so on.

For most organisations, the maintenance process is the basic process that supports 
the main production process. Its effectiveness lies in the ability with as few mainte-
nance employees and maintenance equipment as possible to keep as many equipment 
as possible operational for as long as possible, so as not to reduce function or even 
to downtime. This is all to happen at minimal cost. The managerial myth of today is 
that they need to implement predictive maintenance at all costs. As can be seen from 
practice, for example, the RCM method directly shows that some objects have main-
tenance after a failure even cheaper. However, aspects such as occupational safety, 
environment and information security must be considered. If the consequence of the 
failure affects any of these areas, consistent prevention is in place. This is the case for 
installations such as the distribution network, water mains and nuclear power plants. 
Price is not the only aspect. This area shows the essence of a holistic understanding of 
the integration of management systems in organisations with a significant impact on 
the maintenance.

Inputs are staff, material and spare parts, equipment, passport of maintenance 
and its records, medium. Output is equipment under function. Also, there is a waste. 
Tool can be the Pareto analysis or the FMECA for example. Rules are standard at the 
end of the chapter. Characters can be for example: cost of maintenance, number of 
maintenance staff, average maintenance time, number of failures per month, number 
of safety incidents, average time between failures, delivery time. Owner can be leader 
of process.

12. Maintenance staff

Employees are an important item of the maintenance. These are not produc-
tion employees. They must be quite qualified. Their work includes both manual 
and mental activities. The maintenance team must be able to perform not only 
mechanical and electrical work, but they must also observe order, cleanliness, 
degreasing and handle hazardous substances carefully. It must also be able to 
solve the problem of interconnection of HW (connectivity) and SW for current 
systems within the Industry 4.0 for proper operation without deadlocks and to 
ensure quality data transmission. Maintenance employees should have imagination, 
analytical skills, knowledge of equipment operation, foresight. Therefore, they 
need a special approach. They must have enough training. Due to the importance 
and complexity of their work, they must proceed with caution. They need not 
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only responsibilities but also powers and sufficient resources. Their work is, in a 
sense, creative. Therefore, regarding management schools such as from T. Peters,
the standardisation of their work is not appropriate here. It leads to stress and 
nonconformities. Motivation and communication are important. Timely and
full information of employees help speed up maintenance activities, and prevent 
conflicts and security incidents. The flexible organisational structure is suitable for 
the maintenance. Equality between members and their mutual trust is essential.
Leaders should be their leader, not superiors. A suitable structure is therefore, for 
example, a team. From a long-term perspective, there is also a need to balance work 
and personal life. In the past, maintenance employees were called to intervene even 
when they were out of the emergency status. This had a negative effect on their 
family life, involvement in associations in the region and their rest. The work pace 
of the maintenance employees depends on the current work practice, but also on
his health condition (e.g. it may be affected by ‘the Post Covid’) and the type of 
temperament (e.g. choleric, or melancholic). Appropriate communication contrib-
utes to awareness, explanation of unclear issues and encouragement. Ethics, safety 
and reliability come the first in the maintenance.

13. The Industry 4.0 and maintenance

  The Industry 4.0 brings new aspects of maintenance. Compared to the produc-
tion process, this area is developing more slowly. According to the surveys in which 
the author participated, the possibility is to state the following. Maintenance work is 
facilitated by electrical permitting systems and small diagnostic probes for evaluat-
ing an object from a multi-character perspective. Maintenance staff use various code 
readers and data terminals. Furthermore, more self-diagnostics of the equipment is 
used, which will allow to carefully plan maintenance intervention. The devices are 
equipped with one or a set of different sensors, which are connected to a SW system 
for storing and analysing and evaluating data. The equipment can communicate with 
each other in this way due to production and maintenance. This is the Internet of 
Things. Auxiliary logistics for maintenance in the form of small autonomous material 
trucks and autonomous equipment for certain tasks, such as drone inspection of the 
building, is advantageous. However, this solution is an expensive for some organisa-
tions. Internet services are now primarily cloud storage. It is suitable for large volumes 
of data such the maintenance has. However, it is important where the storage is 
physically located for security reasons, such as incidents such as theft, damage or data 
blocking. The organisation’s knowledge would be compromised, or the production 
equipment could be reset or shut down.
  Artificial intelligence includes self-learning systems to enhance equipment auto-
mation as well as evaluate the life of its spare parts. Businesses collect data from a 
variety of business areas, including maintenance. They can be marked as the big data 
due to their volume. However, the data are often incomplete. This in turn leads to the 
problem that there is nothing to make maintenance predictions. The link between 
equipment development and maintenance and parts recycling is just beginning to gain 
ground. Reverse engineering with 3D parts scans and their subsequent conversion into 
a model and then to 3D printing make it easy to supply some spare parts right now.
It depends on the material used and other properties of the unit that the spare part 
made in this way is reliable for use in the equipment in terms of operation and useful 
properties. This in turn affects maintenance planning and speeds up its execution.
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14. Conclusion

Maintenance planning and management is based on the organisation’s current 
equipment and its capacity, especially the staffing team. It should be noted, however, 
that maintenance is decided much earlier. This time is the design stage of the device. 
The design and manufacture of equipment must be designed to allow their subsequent 
maintenance. This also affects the planning and management of the maintenance pro-
cess. Dismantled joints, such as welding and gluing, are disadvantageous in this respect. 
The production must also comply with all relevant standards. Cost savings often lead 
to material savings, even in areas where wear and tear occur faster due to under sizing. 
The choice of materials is also important, both in terms of technology and use, and 
in terms of recycling. Emphasis should be placed on the maintenance stage, called 
care—service. This applies to refilling lubricants and changing filters. For each equip-
ment, it is necessary to determine whether maintenance is economically worthwhile. 
Parts should have approximately the same service life so that one component does 
not burden the equipment that is otherwise successful. Simply simpler construction, 
even in current conditions, simplifies maintenance and streamlines production. This 
includes the concept of maintenance as a process and helps to integrate management 
systems. Ergonomic and safety conditions must be considered. Staff must ensure that 
maintenance is documented in all activities in a uniform manner in accordance with the 
maintenance process guidelines. It is necessary to check the stock for the maintenance.

Greater emphasis must be placed on the soft characters of the maintenance pro-
cess, which also needs to be evaluated. The whole management system is then more 
flexible. The maturity assessment of the maintenance management system should 
also be based on this. The recommended planning and management methods then 
contribute both to the maintenance and to the organisation.

This is a different view of maintenance. Risk management is integrated in it. 
Within this chapter, only methodological steps were outlined on how to link opera-
tional planning and maintenance management and how to proceed in the strategy. 
Research needs to continue. However, these partial findings are already working in 
practice. The goal is an efficient maintenance process in organisations.
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Chapter 2

Definition of Maintenance  
and Maintenance Types with Due 
Care on Preventive Maintenance
Hikmet Erbiyik

Abstract

In this chapter maintenance concept is defined and maintenance types are 
classified with regard to implementing maintenance policies toward preventive 
maintenance. Especially achieving planned maintenance policies toward preventive 
(planned) maintenance and condition based maintenance policies toward predictive 
maintenance is taken into consideration primarily. Maintenance concept is defined 
and maintenance types are classified. Due care is given for ‘Preventive Maintenance’ 
in this chapter. In general ‘Maintenance’ term could be defined as; The integration 
of all possible technical and administrative actions, including planning, supervising, 
monitoring and controlling toward retaining an item, a system, a machine to restore 
their original functional state in which they can perform the intended functions. In 
addition maintenance, include protective and corrective actions to keep the plant 
operational system in intended conditions or to maintain the acceptable manufactur-
ing conditions. Optimum maintenance policies aims to sustain system reliability and 
robustness within minimum cost. In line with the progress of industry, increase in 
the system, material and manpower costs, increasing demand for robustness and the 
complex structure of the machines increases also the importance of maintenance poli-
cies. Maintenance types could be divided into two main parts namely; 1. Preventive 
Maintenance, 2. Corrective Maintenance. Preventive Maintenance is also classified 
into following sub groups; 1.a- Planned Maintenance, 1.b- Predictive Maintenance, 
1.c- Advanced Maintenance Implementations; 1.c.1 Reliability Centered Maintenance 
1.c.2 Risk Based Maintenance. All of these maintenance types elaborated with rel-
evant figures in the chapter. In this chapter Comparison of Planned and Unplanned 
(corrective) Maintenance (With regard to transaction and output) is defined with a 
table. Additionally, Comparison of Planned and Unplanned (corrective) Maintenance 
(With regard to infra structure) is also tabulated. ‘Benefits of Preventive & Predictive 
Maintenance’ and ‘Predictive Maintenance Methods’ are defined with relevant 
descriptive figures in the chapter. For Corrective Maintenance, basic definitions and 
corrective maintenance steps, types of corrective Maintenance, improvement strate-
gies in corrective maintenance effectiveness are also given. In the final part of ‘Results 
and conclusions’ expected and verified benefits of implementing maintenance 
policies for planned and predictive maintenance are explained. Comparisons in some 
maintenance policies is given.
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Keywords: preventive maintenance (PM), predictive maintenance (PdM), 
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1. Introduction

In this chapter maintenance concept is defined and maintenance types are 
classified with regard to implementing maintenance policies toward preventive 
maintenance. Especially achieving planned maintenance policies toward preventive 
maintenance and condition based maintenance policies toward predictive mainte-
nance is taken into consideration primarily.

In the progressing parts of this chapter it is attempted to define that planned main-
tenance policies and condition based maintenance policies provide beneficial results 
in terms of overall preventive maintenance.

As the result of this chapter evaluation it is questioned whether to obtain below 
defined fruitful results via achieving maintenance policies such as;

Maintenance policy ensures that: machinery & equipment are in available and reli-
able condition, company capable of responding usual and sudden customer demands 
with regard to utilization of equipment, machinery & equipment is stable and consis-
tent enough to manufacture good quality products, better maintained machinery & 
equipment is a key for succeeding strong competition, better maintained machinery 
& equipment does not allow sudden or long standing breakdowns, this result is end up 
with less inventory loss, higher market share and with better maintained machinery & 
equipment longer MTBF (Mean Times Between Failures) and shorter MTTR (Mean 
Time To Repair) scores are obtained, and compliying with JIT (just in time) production 
approach, better maintained machinery & equipment eases overall cost control [1].

Due care is given for ‘Preventive Maintenance’ in this chapter. In general 
‘Maintenance’ term could be defined as; The integration of all possible technical and 
administrative actions, including planning, supervising, monitoring and controlling 
toward retaining an item, a system, a machine to restore their original functional state 
in which they can perform the intended functions. In addition maintenance, include 
protective and corrective actions to keep the plant operational system in intended 
conditions or to maintain the acceptable manufacturing conditions.

With the final part of this chapter expected and obtained outcomes of mainte-
nance policies are defined with regard to planned and predictive maintenance policies 
that will cover the overall preventive maintenance benefiits. Comparison is also made 
between preventive (planned) and predictive (condition based) maintenance policies.

2. Overview of the existing related works

There are various research studies in the recent years on the ‘Preventive 
Maintenance’ and Total Productive Maintenance (TPM) issues. In a work by [2] 
Brankovic Dejan, Milovanovic Zdravko, The Role and Importance of Planning of 
Maintenance in Industrial Practice, importance of maintenance planning and types 
of mintenance is explained. In the study of [3] Tran Duc, Dabrovsky Karol, Skrzypek 
Katarzyna, The Predictive Maintenance Concept in the Maintenance Department of 
the “Industry 4.0”, they have pointed out the importance of predictive maintenance 
to achieve ‘Industry 4.0’ and to be competent in the market. In a work of [4] Ötleş 
S, Çolak, UC, Ötleş O. Artificial Intelligence for Industry, with the aid of machine 
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learning and Internet of Things (IoT) approach predictive maintenance is inves-
tigated in order to manage the maintenance management potentials and trends.
In another study [5] Paresh Girdhar BEng (Mech. Eng), Girdhar and Associates,
Practical Machinery Vibration Analysis and Predictive Maintenance, predictive main-
tenance techniques, maintenance philosophies, principles of predictive maintenance 
is explained. In another work [6] Tiena Gustina Amran and Leonardus Sujarto, Early 
Warning System in Preventive Maintenance as a Solution to Reduce Maintenance
Cost, importance of early warning system and The Early Warning System application 
for computer based Preventive Maintenance implementations is studied. In the work 
of [7]. Dr. S. J. Lacey, The Role of Vibration Monitoring in Predictive Maintenance,
importance of predictive maintenance via advanced vibration monitoring techniques 
is explained in order to detect the equipment failures before its happening.
  In all of these studies different useful aspects of preventive and predictive main-
tenance implementations are pointed out and in some cases advantages of these 
advanced maintenance techniques over reactive-corrective maintenance are also 
mentioned.

3. Methodology

  In this chapter main concern is given for preventive maintenance activities. With 
consideration of recent publications and references a research is made on preventive 
maintenance. Research methodology depends on the definition of maintenance types 
and the relevant maintenance policies. Throughout the chapter implementation results 
of the maintenance policies are questioned. Relevant comparisons are made between 
maintenance policies. The findings are discussed in the part of ‘Results and conclusions’.

4. Definition of maintenance and maintenance types

  In general ‘Maintenance’ term could be defined as; The integration of all possible 
technical and administrative actions, including planning, supervising, monitoring 
and controlling toward retaining an item, a system, a machine to restore their original 
functional state in which they can perform the intended functions [8].
  In addition maintenance, include protective and corrective actions to keep
the plant operational system in intended conditions or to maintain the acceptable 
manufacturing conditions. Optimum maintenance policies aims to sustain system 
reliability and robustness within minimum cost. In line with the progress of industry,
increase in the system, material and manpower costs, increasing demand for robust-
ness and the complex structure of the machines increases also the importance of 
maintenance policies. One of the main reasons in inefficiencies and inconsistincies
of production systems is lack of proper maintenance policies or lack of their imple-
mentations. However in the recent years, the importance of maintenance policies
have been perceived by the industrial, engineering sectors and academic disciplines 
within operational management and due care have been given [9]. Maintenance
types could be divided into two main parts namely; 1. Preventive Maintenance, 2.
Corrective Maintenance. Corrective maintenance could be divided into two groups;
2.a- Unplanned repair and Change, 2.b-Foreseen repair and change.
  Preventive Maintenance is also classified into following sub groups; 1.a-
Planned Maintenance, 1.b- Predictive Maintenance, 1.c- Advanced Maintenance

24

https://t.me/PrMaB2



Maintenance Management - Current Challenges, New Developments, and Future Directions

4

Implementations; 1.c.1 Reliability Centered Maintenance 1.c.2 Risk Based 
Maintenance.

A schematic view is given with Figure 1 for Work Flow of Preventive 
Maintenance [10].

In Table 1 Comparison of Planned and Unplanned (corrective) Maintenance 
(With regard to transaction and output) is given. It is clearly evident from the table 
that planned maintenance has a wide range of supremacy over the unplanned mainte-
nance with regard to transactions and output.

In Table 2 Comparison of Planned and Unplanned (corrective) Maintenance 
(With regard to infrastructure) is given. It is clearly evident from the table that 
planned maintenance has a wide range of supremacy over the unplanned mainte-
nance with regard to infrastructure. However as it is indicated with (*) marked items 
planned maintenance would require extra financial allocations.

Serial No. Parameters Unplanned 
maintenance

Planned 
maintenance

01 Failures High Low

02 Down time/stoppage High Low

03 Product output Low High

04 Maintenance costs High Low

05 Reliability of equipment/plant Low High

06 Availability of equipment/plant Low High

07 Percantage usage of equipment/plant Low High

08 Spare parts and inventory control No Yes

09 Failure Warning / Early Failure Warning No Possible

Table 1. 
Comparison of Planned and Unplanned (corrective) Maintenance (With regard to transaction and output). 
(Own compiled).

Figure 1. 
Work flow of preventive Maintenance [10].
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5. Preventive maintenance

5.1 Planned maintenance

As a part of preventive maintenance, planned maintenance is to plan the 
maintenance of machinery, equipment, buildings and plants in advance of their 
wearing or unplanned stoppage and to prevent them to face breakdown. The time 
frame of Maintenance plan is usually defined as 6 month or 1 year. Depending on 
the conditions and structure of the machinery, equipment or plants maintenance 
intervals defined in weeks, months, quarters or yearly basis. In most cases an 
initiating advice is taken from machine or equipment manufacturer maintenance 
manuals for definition of regular maintenance interval. Time based planned 
maintenance renders the machinery to restore their own original proper function-
ing state and defers the unexpected breakdowns. During the planned maintenance 
certain parts of machinery or equipment are replaced with regard to their service 
life capacity [2].

Benefits of planned (preventive) maintenance policies;
Planned maintenance offers five basic outcomes in general namely;

1. Maintenance cost reduction- By constructing a planned (preventive) mainte-
nance plan small scale failures of the equipment can be detected in advance they 
turn into bigger problems hence substantial maintenance costs are avoided.

2. Extended Asset Life: Timely and regularly maintaining assets prolongs expected 
life span and early breakdown in life cycle is avoided.

3. Workplace safety improvement: With the outcome of planned (preventive) 
maintenance proper functioning of equipment provides also work place safety, 
hence operators and workers will avoid potential accidents.

Serial No. Parameters Unplanned maintenance Planned maintenance

01 Maintenance manpower size Small Wide

02 Technical competence of 
manpower

Low High

03 Required special equipment No Yes*

04 Required expert services No Yes*

05 Need for establishment of a 
special laboratory

No Yes*

06 Computer back-up is necessary No Yes

07 Personel spesific training No-insufficient Yes

08 Infrastructure establishment cost Low High
*Marked items require extra financial resources.

Table 2. 
Comparison of Planned and Unplanned (corrective) Maintenance (With regard to infra structure). (Own 
compiled).
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4. Improving awereness and company culture: Apart from reducing equipment down-
time and failures, planned (preventive) maintenance will also reduce employee 
absentees due to improved working environment team spirit and moral attitudes.

5. Decreased downtime due to planned (preventive) maintenance: Planned mainte-
nance enables the maintenance team to resolve minor equipment failures before 
they turn into bigger problems. Due to gathering valuable data on the equipment 
history with planned maintenance will enable the responsible persons to take 
preventive actions toward improving life cycle span of the equipment [11]

However in order to obtain above defined benefits, advanced digital infra-structure 
must be established and a platform of IoT (Internet of Things) must be placed. 
Futhermore in order to analyze the machinery data, machine learning and forecasting 
based modeling statistical techniques must be utilized [12].

5.2 Predictive maintenance

As it is understood from the headings, this type of maintenance points out the 
prediction of breakdown probability of an equipment by automated computurized 
monitoring and assessment steps and provide a new maintenance plan for failure 
prevention [3].

For a successfull implementation of predictive maintenance and to ascertain the 
machinery-equipment proper functioning conditions it is recommended to provide 
the following data; a. Equipment Operational Records, b. Past data and records on 
downtimes, breakdowns, performance. c. Condition of machinery-equipment with 
regard to operating parameters in the past operating period. d. Artificial Intelligence 
data from machine learning and data analytics. Upon obtaining the above defined 
data and having benchmarking experience from similar equipment and similar cases 
a new maintenance schedule is defined [13]. Predictive maintenance provides infor-
mation on average performance values of machinery and equipment, their potential 
failures, maintenance state and schedule, the ways how to repair the equipment,..etc. 
similar data. Hence it provides valuable information in advance of critical production 
equipment breakdowns for the maintenance team and guides them for the certain 
repair and maintenance ways and inform them in order to minimize the equipment 
down time. Due to this beneficial consequence sustainability and efficiency in pro-
duction is increased and production and maintenance costs is decreased [4].

6. Predictive maintenance methods

Various tools and ways may be employed in the implementation of ‘Predictive 
Maintenance’. Some of the main ways are given below;

a. Failure early warning system

b. Vibration Analysis

c. Thermal analysis-thermography

d. Acoustic Emission
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e.Oil & Particle Analysis

f.  Corrosion Monitoring

g.Performance Monitoring [5].

6.1 Failure early warning system (IEWS)

  One of the prime implementation methods of the predictive maintenance is to utilize 
the early warning system. Early warning system supports the existing computerized 
maintenance program. With the implementation of early warning system (IEWS),
maintenance activities are conducted more effectively and potential failures of machin-
ery and equipment are detected in advance of failure. With the aid of this system,
priorities in maintenance needs of the equipment is ascertained and certain parts that are 
necessary for replacement, are defined. With the availability of (IEWS) records mainte-
nance costs and potential saving of the organization by avoiding the damage is defined.
IEWS provide a valuable maintenance data base for the future use of the organization 
and for establishing an efficient document control system. As a result with the imple-
mentation of IEWS overall effectiveness of equipment and plant usage is increased and it 
paves the way for further innovative and sustainable maintenance actions [6].
  One of the implementation area of an early warning system is using new tech-
nology for detecting abnormal equipment performance in power plants. Existing 
technology can reduce derates and forced shutdowns by providing means to plant 
operators to adjust-repair small problems before they turn into large problems.
  Power generation operators are oriented adopting asset management to improve 
process efficiency and to increase return on assets (ROA). High value equipment and 
components such as boilers, turbines, generators and auxiliary systems present an 
attractive target for asset management since they susceptible to cause derates and 
forced outages when they fail. Some new technologies in this regard calls predictive 
condition monitoring, reduces forced outages and derates through actionable early 
warning of failure of critical power plant equipment. Apart from preventative main-
tenance implementations, which foreseen maintenance based on failure statistics for
a type of equipment problems over time, predictive condition monitoring provides 
equipment-specific, condition-based early warning [14].

6.2 Vibration analysis

  Vibration analysis is a common used predictive maintenance technique that is used 
to define the existing operating condition of a machinery or equipment in advance
of developing problems before they become too critical and might cause unexpected 
downtime via regular monitoring of equipment vibrations. By way of vibration 
monitoring, deteriorating or damage of equipment bearings, vanes or blades, belts,
mechanical looseness and worn or broken gears,..etc. can be detected [7].
  In  Figure 2  [15] Vibration analysis in predictive maintenance is depicted with
Early bearing and Gearbox Fault, Late Stage Bearing and Gearbox Fault and 
Imbalance, Misalignment, Looseness stages.
  Basically vibration measurement technique, is an effective, non-intrusive method
to monitor machinery or equipment during start-ups, stoppage and regular opera-
tion stages. Most frequent usage of vibration measurement is realized on all rotating 
equipment especially on spindle-bearings, piston-cylinder connections namely various

28

https://t.me/PrMaB2



Maintenance Management - Current Challenges, New Developments, and Future Directions

8

types of gas, steam, and wind turbines, compressors, motors, pumps, vantilating fans, 
rolling mills, gearboxes,…etc. Main parts of vibration analysis system could be defined 
as; a. Signal pickup(s), b. Signal anlayzer, c. Analysis software, d. A Computer for data 
analysis and storage. A confugaration can be made among those four basic parts to 
establish a permanent online system, a periodic analysis system or a multiplexed system 
that provides sampling of a certain transducers at advance defined time intervals [5].

7. Benefits of vibration analysis

It is possible with vibration analysis to determine the improper cases in machinery 
and equipment maintenance or repair. Amon those improper practices, improper 
bearing installation and replacement, inaccurate spindle alignment, or loose rotor 
balancing can be cited. Early vibration testing renders maintenance staff predictible 
information on required repairs and necessary parts, enables them take the faulty 
equipment away from the operation place to prevent any possible hazard, help to 
prevent equipment ceasing, fosters extending equipment life capability, helps to 
reduce unexpected equipment breakdowns and failures. Statistically almost over 75% 
of common revolving equipment failures are related to misalignment and unbalance, 
hence vibration analysis becomes a prime tool that can be employed to reduce or 
mitigate repeating equipment failures and problems. As a result a vibration analysis 
may be employed as prime segment of generic predictive maintenance program [16].

Main components of predictive maintenance in the electrical engineering is 
defined with Figure 3 [17].

7.1 Thermal analysis

One of the most effective tools of predictive maintenance is to utilize the thermo-
graphic analysis. The technique is based on the infrared thermography (IRT). Since 
the majority of the machinery equipment failures in the industry becomes evident 
with temperature changes that can be sensed by regular monitoring with an infrared 
thermographic system. Thermal data from the equipment is collected via thermal 
sensor which may be a key source of information for diagnosis and enables the main-
tenance team to define the failure causes in advance of their occurrence. Hence such 
an early detection prevents potential future problems before occurrence and high and 
unexpected repair costs are avoided [18].

Thermal scanning test with thermal camera: Thermal scanning process with thermal 
camera is made with the aid of infrared beams. All the objects having heat level  
above −273°C, transmit thermal energy. Visible wavelength that is seen by human 

Figure 2. 
Vibration analysis in predictive maintenance [15].
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eyes is between 400 nm and 700 nm range. The beams having values below that level; 
infra violet beams, x-rays or gama rays and the beams having values above that level; 
infra red, micro wave beams, radio-tv beams can not be seen or sensed by human eyes. 
Thermal cameras due to self mounted sensors can sense the infra-red beams that are 
emitted from the hot surfaces of the objects and evaluate them with the aid of a special 
software and ascertains the temperature values. Heat measurement with thermal cam-
eras will help to define the equipment failures as it was found with the other predictive 
maintenance techniques. For example on the locations that loose electrical connections 
are evident, overheating may arise due to increasing resistance or electric motors due to 
inefficient working conditions may present higher working temperatures than the nor-
mal operating temperatures. Due to friction between rotating components unwanted 
higher temperatures may arise. This excess temperature indicates a loss of efficiency, on 
the other hand fire may break out unless a preventive measure is taken. Proper func-
tioning of thermal camera will reflect all these problems on the screen directly [19].

Impairment detection with thermal analysis: Figure 4 shows the thermal camera 
image for the rotating furnace mantle in cement factory. The aim for thermal analysis is 
to define the heat distribution in the furnace whether it is uniform or not and to detect 
the wears of refracter tiles on the mantle interior wall. These analyses are monitored 
continuously both with mobile thermal camera and on-line thermal scanners. As the 
result of those analysis life capacity of refracter tiles could be detected and stoppage 
planning to be made for rotating furnace. Furthermore with the thermal analysis 
method the following detections could also be made; a. Anomalies in electric panels and 
connections, b. Failure detection in electric motors, c. Refracter tile wearing on rotating 
furnace and siclons. d. Leak detection in hydraulic and steam circuits…etc. Figure 5.

7.2 Acoustic emission

With the aid of Acoustic Emission method, impairments in the machine elements 
such as bearings and gearboxes and gas leakages on the pipes are detected. In most 

Figure 3. 
The main components of predictive maintenance in the electrical engineering [17].
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cases, in acoustic emission monitoring is made with ultrasonic voice detectors. E.g 
ultrasonic air leak detector, and bearing voice sensing instruments are utilized for this 
purpose.

Case study for acoustic emission detection: In a cement factory as it is seen from 
(Figure 6) thickness measurements are made on the cement factory rotating furnace 
mantle in annual periods and some laminated region is detected on the mantle. For 
clear definition of laminated region detailed scanning is made with ultrasonic test 
equipment and laminated area has been detected (Figure 6). Upon further review 

Figure 4. 
IR thermal images of an equipment currently used in power electrical installations [17].
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and investigations, laminated region has been replaced with the new mantle part. 
After defining the laminated part on the furnace mantle, the effected region is 
marked with permanent color marker and it has been monitored and controlled in 
suitable furnace stoppage periods until the mantle part is replaced. As the result of 
those controls it is found with the ultrasonic tests that laminated region is propagated 
and a possible future mantle crack and an unexpected furnace stoppage is prevented 
with the timely measures.

7.3 Oil and particle analysis

Lubrication is necessary for the mechanical parts of the equipment for smooth 
operation. With the use of proper lubricant, friction among the mechanical parts is 
minimized. If the quality of the lubricant (oil) is worsened in the course of time, wear 
and overheat arises due to excess friction. Lubrication among the moving parts of the 
equipment is very important. The analysis of lubricant between the contact surfaces, 
is one of the preferred methods in predictive maintenance [20].

Lubrication in equipment and machinery mechanical parts provides two main 
benfits; firstly, it provides a preserving film between the moving mechanical parts 

Figure 5. 
Impairment detection with thermal analysis on the rotating furnace mantle [19].

Figure 6. 
Impairment detection on the cement factory rotating furnace mantle via ultrasonic analysis [19].
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surfaces, and hence reducing the harmful friction, eliminating unwanted seizing, 
secondly, lubrication provides cooling of mechanical components, protects the metal 
surfaces from corrosion, and provides a contaminant deposit free surface [21].

Possible changes in the physical and chemical features of the oil affects the perfor-
mance characteristics of the lubrication oil, which may lead to performance hamper-
ing. That is why it is essential to assess the performance parameters of the oil to clerify 
that if the oil quality is worsened to a critical level that oil can not fulfill its intended 
function. There are various lubricant oil evaluating and monitoring techniques that 
may monitor the oil charactersitics fully or partially. Main causes of the lubricant oil 
degradation could be attributed to, particle contamination, oxidation and or water 
contamination [22].

Oxidation products hampers the required viscosity state and lead to wear particles 
formation that also results additional damage to the mechanical system when they 
contact with the component surfaces. Wear particles may block the filters and or 
oil holes and hence causing oil shortage and friction and seizing between moving 
mechanical components. Worst of all wear particles can tear the filter and high level 
contamination may occur. Resulting study of wear debris in the oil, enables to detect 
potential harm in advance of the expected failure so that required preventive measure 
could be taken [23].

At the result of oil analysis, parameters such as; physical and chemical features of 
the oil, number and size of the contaminant particules and the pollution of the oil are 
analyzed in order to make interpretation about the possible future failures. Oil analy-
sis gives us clues about the level or magnitude of impairment on the worn parts. Main 
reason for the friction of mechanical parts is usually attributed to the low viscosity. 
Hence viscosity of oil is monitored periodically for assessing overall oil quality, oil is 
replaced on the point that oil loose its intended features and the equipment is taken 
into immediated maintenance program [24].

7.4 Corrosion monitoring

One of the important conditional based monitoring method in predictive main-
tenance is corrosion monitoring. Corrosion is defined as ‘metals losing their metallic 
features by getting into chemical and electrochemical reactions with the surrounding 
environment’. Corrosion is very important for a country’s economy. Recent research 
indicates that corrosion causes a loss of ¼ of total steel production. Climatic condi-
tions in the cities, rain waters (traces of sulfuric acid or nitric acid), and sea waters are 
the prime causes of the corrosion.

The most encountered materials type for corrosion are metals since they have a 
higher tendency with electrochemical reactions. In metals corrosion oxigen is the 
prime reason. However there are some side effects for corrosion along with oxygen. 
For example aluminum external surface oxidized very quickly and after surface 
oxidizing is finished, a resistant protective coating is formed that prevents oxidizing 
the deeper surfaces. That means external surface is coated with oxygen (corrosion) 
resistant (Al2O3). During corrosion, anodic (electron donating-oxidation) reactions 
and cathodic (electron receiving-reduction) reactions occur together.

7.4.1 Factors effecting corrosion

Effect of the environment: The rate of corrosion of metals is largely related to the 
environment in which they are found. The amount of humidity in the environment, 
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acidity-basicity, the ability of air, oxygen or water to pass through the environment,
leakage currents and various bacteria appear as initiating and accelerating factors.
  Effect of temperature: Increasing ambient temperature increases the rate of cor-
rosion by increasing ion movement. The soil, whose ambient temperature varies 
between  −50 and + 50 0C, freezes at 0 0C and the ion movement speed decreases to
a minimum. Increasing the temperature also has the effect of lowering the oxygen 
concentration. However, this effect is rather weak compared to the reactions caused
by increased ion movement.
  Effect of material selection: One of the factors that cause corrosion is the use of met-
als that have potential differences with each other. This is an initiating and accelerat-
ing factor of corrosion. For example, stainless steel bolts and gaskets placed on panels 
made of steel sheet, as a common mistake, cause galvanic corrosion in the area where 
they are located. In such cases, bolts or gaskets to the main surface should be isolated 
with plastic.
  Differences in properties between grains: As a result of the differences between
the grain sizes of the metals and the different concentrations in the two grains, the 
boundary of the two grains creates a suitable environment for the initiation of corro-
sion. As a very common mistake is to corrode the welding areas in tanks and similar 
structures made of stainless steel materials, even though it is not expected by the 
manufacturer. The way to prevent this corrosion is either to use electrode welding or
to apply a galvanic anode cathodic protection system as a preventative.
  System design: In systems where corrosive materials are stored, designs should be 
applied to prevent the accumulation of corrosive medium (water etc.). Also, very thin 
gaps that can cause liquid accumulation between them should be avoided.
  Oxygen concentration of the environment where the system is located: In the same type 
of soil, the dissolved air concentration may not be the same everywhere. In systems 
with different ventilation conditions, the system standing next to each other is the 
anode in one area, while it can act as a cathode in the area next to it, causing electro-
chemical corrosion.
  Effect of soil electrical resistivity: High conductivity in low electrical resistivity 
regions causes the ionic medium to be more active. Therefore, the corrosion mecha-
nism develops faster.

7.4.2 Corrosion types

  Homogeneous (uniform) corrosion: It is the type of corrosion that occurs on the
metal surface at an equivalent severity. As a result of corrosion, the metal thickness 
decreases by the same amount at every point. Metals that are produced from the
same type of material in the atmosphere and are not affected by any external factors 
undergo homogeneous corrosion.
  Galvanic corrosion: It is the type of corrosion caused by the use of two materials with 
different potentials together or the difference in the ground structure. Corrosion caused 
by the use of different materials creates a galvanic cell between two metals at different 
potentials when they are in contact with each other, and the active metal acts as the 
anode and the noble metal acts as the cathode, causing corrosion in the active metal. For 
example, if copper and steel come into contact, steel will corrode due to copper.
  Electrolyte: Solution or moist materials containing ions that conduct electric cur-
rent. In summary, it is a corrosion phenomenon that occurs on the more electronega-
tive metal surface when two different metals immersed in an electrolyte are in contact 
with each other.
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Galvanic anod: The galvanic anode is the electrode that is used to protect a struc-
ture cathodically and that provides current production by dissolving it as a positive 
ion in the environment. If a more active metal (galvanic anode) is to be attached to a 
corroding metal, then the electrons required for the cathode reaction are provided by 
the self-propelled oxidation reaction of the metal connected as the galvanic anode. 
Thus, all anodic reactions on the protected metal surface are completely stopped. 
Galvanic anode cathodic protection is also based on this basic principle. In order 
to cathodically protect a steel pipeline with galvanic anodes, a more active metal 
(magnesium anode, etc.) is connected to the pipeline. Thus, magnesium becomes the 
anode in the galvanic battery and the cathode in the steel pipe. Magnesium dissolves 
at the anode, releasing electrons. These electrons supply the electron requirement of 
the cathodic reaction. In order for the system to work spontaneously, there must be a 
potential difference between the anode and cathode enough to overcome the circuit 
resistance. Types of galvanic anodes. There are three types of galvanic anodes. 1. 
Magnesium anode, 2. Zinc anode, 3. Aluminum anode.

Crack Corrosion: It is a type of corrosion that occurs in a crack on the metal surface 
or in a narrow gap. The main cause of this corrosion is oxygen between the crack and 
the surrounding electrolyte concentration or the difference of metal ion concentra-
tion. Since the outer parts of the crack will be the cathode, corrosion does not occur in 
this region.

Pitting corrosion: Corrosion that occurs in the form of deep and narrow cavities as a 
result of the concentration of corrosion on very narrow areas is called pitting corro-
sion. The depth of these pits is approximately the size of its diameter. The mouth areas 
of the pits are often filled with corrosion products. It is a dangerous local damage with 
the appearance of tingling on the metal surface.

Stratification corrosion: If intergranular corrosion occurs parallel to the extrusion 
or rolling surface, it is called stratification corrosion. In this type of corrosion seen 
in aluminum and its alloys, damage occurs from the grain boundary elongated in the 
rolling direction. Corroded metal layers are separated from each other and the corro-
sion products formed cause the material to separate in layers.

Erosion corrosion: In this type of corrosion, which is especially common in pipe 
systems and ports, the wear rate of the metal increases due to the relative movement 
between the metal and the corrosive medium. Holes, grooves and trenches form on 
the metal surface. It manifests itself in many structures in motion in water. The pres-
ence of solid particles in the environment further increases the corrosion rate.

Leakage current corrosion: The leakage current of rail vehicles such as trains, trams 
and subways in the soil causes very severe and rapid corrosion in underground pipes. 
At every point of the line, there is a current toward the ground. Metal corrodes 
according to Faraday’s Law. In particular, the leakage current emitted from the rail 
vehicle returns from the pipe to the rail around the point where the negative pole is 
connected to the rail and creates the risk of corrosion.

Coating failure corrosion: The potential of a coated metal is different from the 
potential of an uncoated metal. In case of deterioration or perforation of some parts 
of the coating due to workmanship errors, these regions will become anodes and will 
corrode. This type of corrosion is a corrosion that concentrates in very small areas on 
the metal surface [25].

Corrosion monitoring in predictive maintenance is one of the important methods. 
The damage on the metal bodies or on the metal surfaces realized in different forms 
as explained in details above. In most cases corrosion in metal surfaces ends up with 
reduced wall thickness or tears or holes on the metal surfaces [26].
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Figure 7. 
Practical layout of an EN measurement cell for corrosion monitoring [27].

Figure 8. 
Practical EN setup using embedded electrodes for corrosion monitoring [28].

  Corrosion mechanism usually defined as an electrochemical process, including 
charge transfer between anodic and cathodic parts of the system. Corrosion mea-
surement in an electrochemical reaction is usually made by setting up two working 
electrodes (WE1 and WE2). The current is measured via a zero resistance ammeter.
(ZRA). As depicted with (Figure 7) [27].
  Cathodic Protection (CP) monitoring: One of the most important forms of corrosion 
protection for submerged/underground structures (such as tanks or pipelines) is cathodic
protection. In  Figure 8  [28], a typical cathodic protection architecture is depicted [28].

7.5 Performance monitoring

  One of the most important predictive condition monitoring technique is the perfor-
mance monitoring. In our days high technology performance monitoring instruments
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are being designed and manufactured. A common example in the industry is on-line 
and/or off-line performance monitoring instruments for electrical motors. By way of 
those instruments it is possible to monitor and detect insulation defects, broken rotor 
rods, torque problems, load problems and power problems (Figure 9) [29].

On the above given figures (Figure 10) [31] two instruments are the sample for 
on-line vibration performance monitoring by, SKF Multilog IMX system is designed 
for on-line monitoring and it is capable of making simultaneous analysis of a poten-
tial failure. SKF Multilog DMX system is designed for protecting the turbo machinery 
or turbines and is capable of analysis [31].

8. The benefits of predictive maintenance policies

Experience and feedback data from the field indicates that ‘Predictive mainte-
nance’ provides the following benefits;

1. Maintenance costs of the production department is decreased.

Figure 9. 
SKF – Baker AWA IV – Offline Test Instrument SKF – Baker (left), The Explorer – Online Test Instrument 
(right), for electric motor performance monitoring [29].

Figure 10. 
SKF MULTILOG DMX (left) – SKF MULTILOG IMX-S (right), monitoring & analysers, for monitoring 
vibration performance [30].
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2. Equipment life time capacity is increased.

3. More precise detectability of falures in advance of occurrence.

4. Higher gains in ROI (Return of Investment).

5. The equipment breakdown durations is decreased.

6. Production quality, sustainability and outputs is increased due to pro-active and 
advance intervention into maintenance process.

7. Increases safety.

8. Reduces interruptions of services.

9. Greater customer satisfaction.

  However in order to obtain above defined benefits, advanced digital infra-struc-
ture must be established and a platform of IoT (Internet of Things) must be placed.
Futhermore in order to analyze the machinery data, machine learning and forecasting 
based modeling statistical techniques must be utilized [12].

8.1 Advanced maintenance implementations

Advanced Maintenance Implementations are also divided into two groups;

• 1.c.1 Reliability Centered.

• 1.c.2 Risk Based Maintenance.

8.2 Reliability centered maintenance

  (RCM)-As a part of advanced maintenance technique, ‘reliability-centered main-
tenance (RCM)’ is the optimized mix of reactive, time or interval-based, condition-
based, and proactive maintenance types.
  The objective of RCM, to generate optimized maintenance plans. Since the 
maintenance is defined as the sum of technical and administrative activities in order 
to protect the equipment integrity and it is made for enabling equipment to fulfill its 
intended functions. On the other hand RCM is the maintenance activities that are 
implemented for an equipment to fulfill its functions in a manner that is technically in 
compliance, feasible and approved economically.
  Those defined duties; must protect equipment functions, prevent the unexpected 
premature breakdowns and mitigate the effects of those failures when they happened.
Overall objective of a RCM is to intersect the plant reliability and profitability with 
pro-active maintenance amount on an optimum point. In this way with RCM an 
optimized maintenance plan is generated for the concerned equipment. RCM is an 
indicator to show the compliance with company policies and standards. RCM adjusts 
the maintenance levels and required resources.
  In the RCM approach, there are seven basic questions that are implemented with 
the main lines;
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• What kind of functions and performance standards must be fullfilled for a 
physical entity in the plant existing operation conditions?

• What kind of obstacles are there to prevent fulfilling those functions?

• What are the basic causes for functional failures?

• What are the consequences if a failure is realized?

• How the failure is happened?

• What actions could be taken for preventing and detecting failures before it 
happens?

• What have to be done if a pro-active maintenance method is not available?

RCM analysis are made with a team that is selected from the representatives of 
Operations, Process technologies, Maintenance group, Special engineering units 
(material, equipment, etc) Basic steps of RCM could be defined as; 1. Equipment 
information, 2. Prominent failure modes, 3. Failure scenario and criticality, 4. Failure 
modes features & duties, 5. Economic verification, 6. Grouping maintenance duties 
and implementation, 7. Analysis, feedback &review 8. Equipment Selection.

For RCM analysis, by considering criticality equipment selection is made. The 
criticality in here is lack of maintenance for an equipment or maintenance in case of 
failure and the associated risk for this situation. Risk analysis is made with evaluating 
the failure results and probability; Health and Working Safety (Fire, toxic wastes, 
and gases), Economic losses (production loss, maintenance cost), Environmental 
(Leakages, un-controlled emissions,..), With the criticality evaluation here, 
Equipment list will be defined for RCM analysis.

Equipment Information: In order to detect the failure mechanism (failure mode) 
and realizing equipment information is needed. Failure mode consists of a model for 
defining the failure type for a part of equipment. A failure mode is defined as such; 

Figure 11. 
Components of reliability centered maintenance (RCM) program [33].
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Object + Failure Definition Prominent failure modes: Prominent failure modes must 
contain all failures that could be progressed in systematic ways. Frequency of these 
failures must be 20 years or more frequent. In listing the Prominent failure modes, 
investigating operational conditions of equipment and evaluation of local conditions 
are important along with the knowledge and experience. In here Pareto approach is 
utilized for distinguishing the most important few failures from less important many 
failures. In reality most of the reasons of breakdown one or two failure mode [32].

Reliability-centered maintenance components: The components of RCM program are 
shown in Figure 11, [33]. This figure showing that RCM program consists of (reactive 
maintenance, preventive maintenance, condition based maintenance, and proac-
tive maintenance (System Root Cause Failure Analysis (RCFA), Failure mode effect 
analysis (FMEA), Acceptance testing).

Basic steps of RCM are defined as follows:

• Step1: selection of system and data collection.

• Step2: definition of system boundary.

• Step3: description of system and functional block.

• Step4: system function functional failures.

• Step5: implementation of failure mode effect analysis.

• Step6: logic tree diagram.

• Step7: task selection [34].

Determining the list of the basic system components is one of the first stage in 
definition of RCM. The criticality analysis requires different kind of data of each com-
ponent that build up the system. The effect of failure of the system main components 

Criteria Weight Levels

Impact on production P 30% (3) Very important

(2) Important

(1) Normal

Impact on safety S 30% (3)Very important

(2) Important

(1) Normal

Availability of standby A 25% (3) Without standby

(2) With stand by and medium availability, and

(1) With standby and high availability

Equipment value V 15% (3)High value

(2) Normal, and

(1) Low value

Table 3. 
Criticality analysis in Reliability Centered Maintenance (RCM) [35].
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may effect system productivity and maintenance cost. The factors effecting selection 
of critical system are as follows:

1. Mean-time between failures (MTBF).

2. Total maintenance cost.

3. Mean time to repair (MTTR).

4. Availability.

In the implementation of RCM, some of the well known reliability analysis 
methods are utilized such as Logic Tree Analysis (LTA), Failure Mode Effect Analysis 
(FMEA), Failure Mode Effect Criticality Analysis (FMECA).

In usual applications in RCM, in order to perform failure modes, effects and criti-
cality analysis (FMEA/FMECA) the identification of the following basic information 
has to be defined as indicated in Table 3 [35].

9. Risk based maintenance

The importance of maintenance function is becoming increased in the recent 
days in various industrial sectors. Risk Based maintenance (RBM) is a maintenance 
policy and strategy that combines the advantages of traditional maintenance meth-
ods with Risk Based Inspection (RBI) methods and focuses on the mechanical integ-
rity context. RBM helps to select the most effective maintenance strategy depending 
on the equipment state score and reliability parameters for the whole equipment in 
the plant. The construction of RBM necessitates the recording of equipment failure 
and maintenance history in order to define the existing condition of equipments. 
The data that is collected via RBI, while added into equipment or system history will 
provide technical inputs for risk analysis. Natural result of this process is to generate 
the control & maintenance plans for each equipment in order to achieve a reliable 
and safe plant.

Risk Based Inspection, sheds the lights on the areas of having mechanical integrity 
that defines the risks that are not defined with other organizational risk analysis 
methods. In this context RBI becomes a tool for risk analysis and risk management.

To integrate the RBI studies into corporate risk management activities, will be the 
key factor for the success of risk management program.

To maintain the equipments maintenance and safety in the plant with economic 
and technical competency, and to consider and manage the problems such as corro-
sion, erosion, operational and environmental impacts, that might be the causes of 
breakdowns and stoppages, reducing maintenance costs and down times are the issues 
that are not fully focused yet by the maintenance sector [36].

Decision-making is required in establishing an optimum maintenance plan, and 
RBM can play a significant contribution in this stage. But even before RBM was 
introduced, experienced old personnel in the company had probably made their 
own decisions on items such as how to obtain optimum result, what inspections are 
more suitable and what kind of parts/components needs to be prioritized to maintain 
safety. Presence of such kind of highly skilled old craftsmen could lead to the high 
level of reliability for devices and or equipment [37] (Figure 12).
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Risk-based maintenance schemes favors low maintenance costs while maintaining a 
high reliability of the grid, because maintenance measures/actions are planned accord-
ing to the technical condition of the equipment and the consequences in case of failures 
only. An investigation in this regard of the individual loss of energy due to failures at 
the ring main unit of Medium Voltage (MV)/Low Voltage (LV) substations is selected to 
evaluate the importance of the characteristics of the grid and the station [39].

10. Corrective maintenance

10.1 Corrective (Reactive) maintenance (CM)

Corrective maintenance is also called as reactive maintenance. Corrective mainte-
nance is realized upon observing or detecting a breakdown. In most cases Corrective 
Maintenance is made after the equipment-machinery breakdown-failure or detecting 
any equipment problem.

Corrective maintenance is usually encountered in the companies that planned 
maintenance is not regularly adopted or embraced.

Some examples for corrective Maintenance (CM):

• During the normal production flow a sudden breakdown may occur, the equip-
ment is stopped, and urgent intervention may be needed. Such maintenance is 
called as corrective-reactive maintenance.

• An important wear that could cause further failure could be detected during a 
routine equipment inspection, in that case a corrective maintenance is realized 
in order to prevent further damages and production delays the worn out part is 
replaced.

• In some cases a simple and cheap equipment part is detected as faulty, but 
replacement is not made until the part is broken down completely.

In most cases for the corrective maintenance (CM) implementation cases usual score 
for Mean Time to Repair (MTTR) is realized in longer duration than the expection. 
Furthermore.

Figure 12. 
Risk based maintenance framework [38].
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During the CM processes root causes for failures are not dealt with hence mean 
time between failure (MTBF) parameter could result in lower durations than expec-
tion. As a result within a short period of maintenance sequence a lot of repeated 
failures are encountered [40].

Corrective Maintenance Procedure Work Flow is given with (Figure 13) [41].

10.2 Types of corrective maintenance

Corrective maintenance may be classified under the following categories.
Corrective repair: This kind of equipment repair is made after detecting/observing 

the failure in order to recover the problem to normal functioning state.
Its operational state.
Basic overhaul: This kind of repair is made to restore the equipment overall parts to 

their normal functioning state for over-burdened equipment regardless of detecting 
any specific failure.

11. Method

Salvage: This kind of repair is made usually for worn out aged equipment that is 
not feasible using after reapair, usually corrective maintenance for that kind equip-
ment is made for selling the equipment with reasonable price.

Servicing: This kind of corrective maintenance may require external expert 
supplier maintenance intervention such as engine cylinder & piston repairing or 
replacement.

Rebuild: This is a rather costly CM maintenance operation. If a critical equipment/
machine can not be replaced easily in that case rebuilding complete parts and body 
ciuld be inevitable. In that case by considering original equipment maintenance/
service manual re-building the whole parts is attempted regardless of the higher 
maintenance costs [42].

11.1 Improvement strategies in corrective maintenance effectiveness

In order to improve corrective maintenance performance, corrective maintenance 
duration has to be reduced. Some of the useful measures to improve corrective main-
tenance effectiveness is given below:

Figure 13. 
Corrective maintenance procedure work flow [41].
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• Proper design has to be made in order to reach the equipment components easily,

• As less parts as possible to be dismantled to reach the repair location,

• There must be sufficient room to enable operator working properly in the main-
tenance operator working space,

• Vision convenience has to be provided during corrective maintenance,

• Standard and/or interchangeable parts has to be preferred in the equipment body 
to enable demounting with various tools, and to reduce corrective maintenance 
duration,

• Hole lids are to be provided with openable as minimum 180° or to be complete 
demountable,

• Ergonomic working height to be preferred during corrective maintenance,

• Proper lubrication holes to be provided to enable easy maintenance,

• Detailed proper maintenance work instructions to be provided to detect the 
faults and failures easily and to react for repair properly [1, 11, 43].

Maintenance parameters Preventive maintenance Predictive maintenance

Maintenance cost HIGHER – planned 
interval must be regularly 
implemented

LOWER-maintenance is implemented just 
before the breakdown occurs or when needed. 
US Department of Energy research indicated 
that predictive maintenance is extremely cost-
effective. 25–30% reduction of maintenance 
costs

Failure detection ability LOWER- Failure detection 
can be made during the 
regular maintenance time

HIGHER-Since high technology equipment 
and/or sensors are utilized, detection will be 
mostly precise and in earlier times

Return on investment 
financial gains

LOWER- HIGHER-A US Department of Energy 
research indicated that predictive maintenance 
is extremely cost-effective. Implementing a 
predictive maintenance software can deliver 
notable financial gains with a significant ROI

Number of break-downs HIGHER LOWER-US Department of Energy research 
indicated that 70–75% fewer breakdowns

Reduction of downtime LOWER HIGHER-US Department of Energy research 
indicated that 35–45% downtime decline

Infra structure cost LOWER HIGHER-Set up of infrastructure, relevant 
hardware and software, provision of sensors 
and training relevant operators will be extra 
costly [44]

Source: [44]

Table 4. 
Comparison of preventive and predictive maintenance policies [44].
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At the end of the chapter preventive and predictive maintenance activities are 
compared with Table 4 [44].

12. Results and conclusions

In this chapter basic definitions are made for preventive (planned) maintenance,
predictive (condition based) maintenance and assessment of policies for those 
maintenance types.

Additionally advanced maintenance types (with reliability and risk based mainte-
nance) and reactive (corrective) maintenance types are also defined. And comparison 
of preventive and predictive maintenance is made in terms of the Maintenance Cost, 
Failure Detection Ability, Return on Investment Financial Gains, Number of break-
downs, Reduction of downtime, Infra structure cost,….etc.

It is concluded that in most of the parameters, predictive maintenance have 
superior features over the other maintenance policies.

We could argue that with regard to Total Productive Maintenance (TPM) approach 
predictive maintenance policy is the most effective type. Followed by preventive 
maintenance and advanced maintenance (reliability based and risk based) policies. 
Companies willing to adopt Total Quality Management approach should switch from 
reactive (corrective) maintenance into preventive (planned) and predictive (condi-
tion based) maintenance policies.
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Chapter 3

Maintenance and Renewal Cost
Evaluation for Managing Assets of
Electric Power Equipment and
Operational Data Analysis for
Failure Rate Estimation
Tsuguhiro Takahashi

Abstract

In recent years, “asset management” or “managing assets” technique has been 
expected to rationalize maintenance and operation of electric power equipment, 
especially for aging equipment. Some concrete support tools have been developed by 
considering life cycle cost for substation equipment in “Central Research Institute of 
Electric Power Industry, Japan,” which include failure risk evaluation. Such cost and 
risk evaluation are essential for comparative evaluation of different types of equip-
ment. Failure probability is one of the most important factors for the evaluation. 
Because of its high reliability, electric power equipment can be expected to have a 
very long lifetime, therefore, durability test is not applicable, but rather relies on 
analysis of actual operational data. Collection, accumulation, and analysis of actual 
operational data are necessary for accurate evaluation. This chapter describes the 
evaluation method for the managing assets, and data collection and analysis to 
improve the accuracy of failure probability estimation.

Keywords: asset management, power equipment, preventive maintenance, life cycle 
cost, risk evaluation

1. Introduction

In general, power transmission and distribution equipment that can be expected to
operate for more than several decades had a wide age distribution over time. The
amount of capital investment is inevitably affected by society and the economy,
therefore, the shift to the aging side of the age distribution is progressing as a common
phenomenon in many countries in recent years. In US and European countries, the
issue of aging has been discussed since the end of the 20th century [1], and the
effective introduction of the so-called asset management technique for formulating
maintenance and management strategies that appropriately balance risk and cost has
been examined.
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2. Maintenance and renewal cost evaluation for power transmission and
distribution equipment

In the asset management for corporate activities, benefits as positive impacts and
risks as negative impacts are generally evaluated and added for each possible activity
to be considered as an evaluation index to select the optimal strategy. In the case of
electric power transmission and distribution equipment, it is difficult to evaluate the
contribution of individual equipment because the entire network system generates
benefits, therefore in many cases, the optimal maintenance strategy is selected by
minimizing the costs and statistically evaluating risks required to maintain the net-
work size and reliability. As one simple model, CRIEPI has proposed the cumulative
cost evaluation method, and some support programs have been developed [2–5].

2.1 Maintenance and renewal “cost” in operation

Maintenance and renewal costs during normal operation are classified into the
following four items based on their expenditure timing and characteristics of change
by age.

i. Average repairing cost.

In ordinary operations, there are some necessary repairing costs, such as oil
leakage repair cost for power transformers. Generally, it can be assumed to
increase with age. For example, its characteristic is assumed to be proportion
to age.

ii. Inspection cost.

Generally, regulated inspection cost is needed commonly for each equipment.
A periodic and a nonperiodic (which is performed at a certain age) inspection
costs are considered.

iii. Overhaul cost.

Some equipment can be applied so-called “Overhaul” to realize rejuvenation
as a maintenance measure. Overhaul costs depending on their effect is
considered.

iv. Installation cost of planned renewal.

The installation cost of equipment can be regarded as installments over
several years, by considering depreciation. The property tax should also be
considered during these years.

2.2 Statistically expected failure cost as “risk”

The expense required at a failure is installation cost of renewed equipment and
some so-called penalty costs. The “penalty” cost should include the lost revenue from
selling electricity, the emergent recovery cost, a penalty resulting from service
interruption, and so on. Since the occurrence of a failure is statistical, the expense is
“statistically expected cost,” which is the product of the “cost of failure” and the

2
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Figure 1.
Output example of CRIEPI’s support program.

3
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“probability  of  failure.”  This  cost  is  not  a  real  cash  flow,  but  it  is  expressed  in  mone-
tary  values  and  can  be  compared  and  combined  with  maintenance  and  renewal  costs.
When  some  aged  equipment  in  service  is  removed  as  a  result  of  failure,  the  same 
number  of  new  equipment  should  be  installed  in  order  to  maintain  its  power  network 
scale.  That  is,  the  total  number  of  equipment  does  not  change.  From  the  statistical 
point  of  view,  such  failures  are  occurred  every  year,  depending  on  their  failure 
probability.  This  means  that  the  age  distribution  changes  over  time,  which  should  be 
considered  when  the  cumulative  cost  evaluation  is  carried  out  [4].

2.3  Maintenance  scenarios  to  be  compared

  In  general,  when  the  asset  management  techniques  are  utilized  for  maintenance 
and  renewal  planning,  it  is  necessary  to  consider  possible  maintenance  measures  and 
scenarios,  in  advance.  The  cumulative  cost  evaluation  should  be  carried  out  for  each 
scenario.  Therefore,  this  scenario  setting  is  important  for  this  method.  As  one  exam-
ple,  time-based  renewal  scenarios  (such  as  at  40  and  50  years)  with  and  without
overhaul  (OH)  have  been  considered,  as  shown  in  Figure  1.  The  OH  is  assumed  to 
rejuvenate  equipment  at  a  certain  cost.  Its  effect  (rejuvenation  years),  cost,  and 
timing  are  specified  as  parameters.

51

https://t.me/PrMaB2



3. Failure data analysis based on operation results

One of the most important items in the managing assets is the risk evaluation, and
failure probability estimation for each equipment is crucial. The failure probability
distribution of a product is generally obtained from endurance tests on a large number
of the same products. However, it is not practical to conduct such endurance tests for
electric power transmission and distribution equipment, which can generally be
expected to operate for more than several decades. In order to investigate the failure
probability characteristics of long-life products, statistical analysis of residual perfor-
mance tests of removed products from a real field, and operation/failure results in a
real field are often employed. This section describes statistical analysis methods for
operational data.

3.1 Definition of failure rate

Failures that are generally considered with a failure rate for an industrial product
include those that stop the operation of the product once they occur and those that are
repaired repeatedly each time they occur. The former determines the service life of
the product, and the rate of occurrence is usually evaluated as a function of operating
hours. The latter usually focuses on the interval of occurrence of multiple failures, and
the change over time of the average time or the occurrence rate in a certain operating
time is evaluated. In this section, “failure rate” means the occurrence rate of the
former failures at a certain age, and is expressed as a function of age.

If a large number of the same products start operating simultaneously, the per-
centage of those that continue to operate without failure up to a certain elapsed time t
is generally called the reliability, and it is often expressed as R(t). The cumulative
failure probability, which means the percentage of failures between the start of oper-
ation and t, is expressed as follows:

F tð Þ ¼ 1� R tð Þ (1)

F(t) differentiated by t is often denoted as f(t).

f tð Þ ¼ d
dt

F tð Þ (2)

This is the increment of F(t) at time t, i.e., the percentage of products that fail at
time t, for all products. It is sometimes called the “failure probability” because it is the
time derivative of the “cumulative failure probability,” but it is also called the proba-
bility density of failure because it represents the probability distribution of when the
product will fail. When examining the risk of equipment in service, the probability
that equipment that has been operating until age t will fail by the following year is
often utilized. This is often denoted as λ(t) and is obtained as follows:

λ tð Þ ¼ f tð Þ
R tð Þ ¼

dF tð Þ
dt

∙
1

R tð Þ ¼ � dR tð Þ
dt

∙
1

R tð Þ (3)

In this chapter, this is referred to as the “failure rate,” and a method for estimating
it from operation results is discussed.

4
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3.2  Characteristics  of  power  transmission  and  distribution  equipment  operational
  data  for  failure  rate  estimation

  In  general,  to  examine  the  failure  rate  characteristics  of  a  product,  an  endurance 
test  is  conducted  using  several  units  of  the  same  product.  To  examine  aging  charac-
teristics,  test  samples  are  usually  operated  simultaneously  and  the  time  required  for 
each  sample  to  reach  failure  is  determined.  In  conducting  endurance  tests,  it  is  not 
always  possible  to  continue  the  test  until  all  samples  fail  due  to  time  and  cost  con-
straints,  but  some  statistical  analysis  methods  can  analyze  data  obtained  by  
discontinuing  the  endurance  test  in  the  middle  of  the  test.  In  the  case  of  power 
transmission  and  distribution  equipment,  it  is  difficult  to  plan  an  endurance  test  in  
which  a  sufficient  number  of  test  samples  are  operated  simultaneously,  but  a  method 
to  estimate  the  failure  rate  by  considering  the  actual  results  of  the  long-term  operation 
of  a  large  number  of  facilities  in  a  real  field  as  a  pseudo  endurance  test  is  conceivable.
In  this  case,  some  considerations  need  to  be  made  for  the  data  used  in  the  analysis.

3.2.1  Data  for  failure  rate  estimation

  In  order  to  estimate  the  failure  rate,  information  on  equipment  that  has  been  in 
operation  without  failure  is  needed  in  addition  to  the  equipment  that  has  failed.  For  a  
group  of  equipment  that  is  the  same  type  and  assumed  to  exhibit  the  same  failure  rate 
aging  characteristics,  it  is  necessary  to  investigate  the  age  of  each  failed  facility  as  well 
as  the  age  distribution  of  the  group  in  operation.

3.2.2  Observation  period

  Failure  rate  estimation  based  on  operational  data  for  a  group  of  equipment  with  age 
distribution  starts  by  determining  the  number  of  failures/operation  equipment  at  each 
age  in  order  to  obtain  an  approximation  of  λ(t).  In  doing  so,  it  is  necessary  to  consider 
the  period  of  the  survey  (observation  period).  For  example,  if  the  past  10  years  of 
failure  history  is  to  be  investigated,  the  number  of  failures  for  each  age  can  be  obtained 
by  adding  up  the  10  years  of  information  for  each  individual  failure  by  age  of  occur-
rence.  Similarly,  for  the  number  of  operations,  the  actual  number  of  operations  (the  age 
distribution  of  equipment  in  operation)  for  each  year  of  the  observation  period  should 
be  surveyed  and  added.  For  example,  equipment  that  has  continued  to  operate  without 
failure  at  20  years  old  has  existed  every  year  for  the  past  10  years,  so  they  can  be  added 
up  to  the  amount  of  equipment  in  operation  at  20  years  old  in  the  aggregate.  However,
for  example,  equipment  that  is  currently  40  years  old  should  not  be  combined  as
“equipment  that  has  continued  to  operate  at  20  years  old  without  failure”  because  this 
information  is  outside  the  observation  period,  though  it  is  clear  that  the  equipment 
continued  to  operate  for  20  years  without  failure  20  years  ago.  This  is  because  the 
information  on  equipment  that  has  failed  or  has  been  removed  outside  the  observation 
period  cannot  be  used.  Only  “should  have  been  in  operation”  information  is  likely  to 
lead  to  underestimation  of  the  failure  rate.  Therefore,  the  “observation  period”  is  
important  and  should  be  paid  attention  in  the  failure  rate  estimation.

3.2.3  Influence  of  low  number  of  failure  results

  The  inherent  difficulty  in  statistical  analysis  of  the  failure  rate  from  operational 
data  of  power  transmission  and  distribution  equipment  lies  in  the  fact  that  such
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equipment has a low failure rate and is highly reliable, and that preventive mainte-
nance is performed to maintain high supply reliability. These suppress the occurrence
of failures during operation, resulting in a decrease in the accuracy of failure rate
estimation and underestimation. There is no other way to deal with these problems
than to continuously accumulate appropriate data and increase the amount of data.

3.3 Procedure of statistical analysis

This section presents a computer simulation of virtual operational data and uses
the results to show a specific procedure for estimating failure rates [6].

3.3.1 Simulated data

The simulating equipment is a group of 12,340 units with the aging distribution
shown in Figure 2, all of which are assumed to have the same failure rate characteris-
tics shown in Figure 3. The Weibull distribution is assumed for the failure rate
characteristics, and the failure rate λ(t) and probability density of failure f(t) are
expressed as follows:

λ tð Þ ¼ m
ts
� t

ts

� �m�1

(4)

f tð Þ ¼ m
ts
� t

ts

� �m�1

� exp � t
ts

� �m� �
(5)

where m is the shape parameter and ts is the scale parameter, and in Figure 2, m
and ts (years) are set to 4 and 80, respectively.

It can be simulated that after 1 year of operation of this equipment group, some
equipment will fail according to the failure rate determined by each age. For each aged
equipment, a random number between 0 and 1 is generated, and when the value is less
than the failure rate at its age the unit is regarded to fail. In the following year, the
number of failures is subtracted from the amount of equipment in each age, and the
age distribution is shifted to the higher side by 1 year, and new equipment equal to the
number of failures in the previous year is regarded to be installed, assuming

Figure 2.
Assumed age distribution (12,340 units).
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maintenance that keeps the total amount of equipment in the group constant. If this is
continued for several years, which corresponds to “observation period,” operational
data can be generated as one simulation case, but its result would depend on the
random number output, so different results would be obtained each time of the
simulation. One simulation result whose observation period is 5 years is shown in
Table 1. Table 1 also includes the combined number at each age during the observa-
tion period. The statistical analysis in the following section is performed on this
combined operational data. Such simulation was performed five times.

3.3.2 Hazard analysis

Failure characteristics of high voltage equipment are often expressed as a Weibull
distribution. In other words, the fitting of an endurance test and operational perfor-
mance data is performed assuming that the probability density distribution of failure
can be expressed as a Weibull distribution function. The Hazard analysis is a statistical
analysis method for this purpose. In this simulation, as described in Section 3.3.1, the
true distribution is given as Weibull distributions, therefore, if hazard analysis is
performed with high accuracy, the distribution is expected to be restored.

When the failure characteristic follows a Weibull distribution, the failure rate λ(t)
is expressed by Eq. (4). This is integrated over time as in the following equation and is
called the cumulative hazard H(t).

H tð Þ ¼
ðt
0
λ τð Þdτ ¼ t

ts

� �m

(6)

Taking the natural logarithm of both sides of Eq. (6), the following equation is
obtained.

ln H tð Þf g ¼ ln
t
ts

� �m� �
¼ m ∙ ln tð Þ �m ∙ ln tsð Þ (7)

Figure 3.
Assumed failure characteristics.
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λ̂ tð Þ ¼ n tð Þ
N tð Þ (8)

Using λ̂ tð Þ, Ĥ tð Þ is obtained as follows:

Ĥ tð Þ ¼
Xt

τ¼1

λ̂ τð Þ ¼ Ĥ t� 1ð Þ þ λ̂ tð Þ (9)

Table 2 summarizes the results of these calculations using the combined data in
Table 1. Table 2 also includes the natural logarithm of t and Ĥ tð Þ for graph plotting. In
the hazard plot that shows the relationship between ln(t) and ln Ĥ tð Þ� �

, plotting is
carried out only when Ĥ tð Þ is changed, that is, when λ̂ tð Þ 6¼ 0. The hazard plots created
from ln(t) and Ĥ tð Þ in Table 2 are shown in Figure 4. Figure 4 includes linear
approximation, from which the shape parameter m = 3.57 and scale parameter
ts = 82.2 years are obtained from the slope and the intercept.

The Weibull distribution obtained by such procedure is a “sample mean” obtained
from the average characteristics of a “sample” of equipment operational data and is
expected to be different each time the sample is taken, in this case, each time the
operational data is simulated. On the other hand, the true failure rate characteristic,
the “population mean,” is determined first in this discussion, therefore they can be
compared. The failure rates and probability density distributions of failures obtained
from the results of five simulations, including the data in Table 1, are shown in
Figure 5. Figure 5 also shows the true failure rate characteristics. Some of the five
estimates (sample mean) have failure rates that are close to the true values, while
others are higher or lower. Only one of the sample means, which is expected to vary,
can be observed in reality, and there is no way to know the deviation from the true
value. The only fundamental solution to the low estimation accuracy due to the low
failure rate described in Section 3.2.3 is to increase the amount of data by investigating
and accumulating the actual operation of equipment over a long period of time.

3.4 Failure data and preventive renewal data

As mentioned in section 3.2.3, another issue in estimating failure rates from actual
operational results is that failures do not occur as actual results because preventive
renewals are performed in actual maintenance. This section discusses the addition of
renewal data to the failure rate estimation.

Reference [7] introduces the failure rate and renewal rate of transformers and
points out that the failure rate does not increase over time but the renewal rate does,
and that the failure rate characteristic should be what is shifted renewal rate charac-
teristic to the right (toward the high aging side) if no preventive maintenance is

11
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  Plotting  as  y  =  ln{H(t)}  and  x  =  ln(t)  results  in  a  straight  line  with  slope  m  and  y-
intercept  -mln(ts).  Utilizing  Eq.  (7),  the  natural  logarithm  of  the  approximate  value

  ĤðtÞ  of  the  cumulative  hazard  H(t)  obtained  from  endurance  tests  or  operational  data  

is  plotted  against  the  natural  logarithm  of  age  t,  to  estimate  the  shape  parameter  m  and 
scale  parameter  ts  by  linear  approximation.  When  the  number  of  operations  at  age  t  is
N(t)  and  the  number  of  failures  is  n(t),  the  approximate  value  λ̂ðtÞ  of  the  failure  rate
λ(t)  is  obtained  from  the  following  equation.
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age t (year) total approx. Failure

rate λ̂(t)

approx. Cum.
hazard Ĥ(t)

ln (t) ln (Ĥ(t))

operating failed

1 102 0 0/102 = 0.0000 0.0000 — —

2 87 0 0/87 = 0.0000 0.0000 — —

3 74 0 0/74 = 0.0000 0.0000 — —

4 72 0 0/72 = 0.0000 0.0000 — —

5 300 0 0/300 = 0.0000 0.0000 — —

6 640 0 0/640 = 0.0000 0.0000 — —

7 910 0 0/910 = 0.0000 0.0000 — —

8 1100 0 0/1100 = 0.0000 0.0000 — —

9 1360 1 1/1360 = 0.0007 0.0007 2.197225 �7.21524

10 1380 0 0/1380 = 0.0000 0.0007 — —

11 1310 0 0/1310 = 0.0000 0.0007 — —

12 1330 1 1/1330 = 0.0008 0.0015 2.484907 �6.51088

13 1469 0 0/1469 = 0.0000 0.0015 — —

14 1739 0 0/1739 = 0.0000 0.0015 — —

15 2009 1 1/2009 = 0.0005 0.0020 2.70805 �6.22217

16 2309 2 2/2309 = 0.0009 0.0029 2.772589 �5.86005

17 2598 0 0/2598 = 0.0000 0.0029 — —

18 2850 2 2/2850 = 0.0007 0.0036 2.890372 �5.64

19 2898 1 1/2898 = 0.0003 0.0039 2.944439 �5.54731

20 2957 5 5/2957 = 0.0017 0.0056 2.995732 �5.18698

21 2972 5 5/2972 = 0.0017 0.0073 3.044522 �4.92383

22 2979 1 1/2979 = 0.0003 0.0076 3.091042 �48,787

23 2832 3 3/2832 = 0.0011 0.0087 3.135494 �4.74832

24 2715 8 8/2715 = 0.0029 0.0116 3.178054 �4.45565

25 2594 4 4/2594 = 0.0015 0.0132 3.218876 �4.33097

26 2305 4 4/2305 = 0.0017 0.0149 3.258097 �4.20705

27 2012 6 6/2012 = 0.0030 0.0179 3.295837 �4.0245

28 1857 4 4/1857 = 0.0022 0.0200 3.332205 �3.91071

29 1582 3 3/1582 = 0.0019 0.0219 3.367296 �3.82024

30 1311 3 3/1311 = 0.0023 0.0242 3.401197 �3.72095

31 1281 2 2/1281 = 0.0016 0.0258 3.433987 �3.65846

32 1185 4 4/1185 = 0.0034 0.0291 3.465736 �3.53538

33 1094 5 5/1094 = 0.0046 0.0337 3.496508 �3.38972

34 1071 4 4/1071 = 0.0037 0.0375 3.526361 �3.28467

35 1050 9 9/1050 = 0.0086 0.0460 3.555348 �3.07858

36 918 3 3/918 = 0.0033 0.0493 3.583519 �3.00999

37 834 2 2/834 = 0.0024 0.0517 3.610918 �2.96248
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performed since the failure would have occurred years later if no renewal was
performed. In risk evaluation for the examination of maintenance and renewal plans,
the use of failure rate characteristics based on the operational data without consider-
ation of the preventive renewal effect is clearly an underestimate. Reference [8]

approx. Failuretotalage t (year)

rate λ̂(t)

approx. Cum.
hazard Ĥ(t)

ln (t) ln (Ĥ(t))

failedoperating

3.6375860.05714/739 = 0.0054473938 �2.8629

3.6635620.06495/639 = 0.0078563939 �2.73448

3.6888790.07465/519 = 0.0096551940 �2.59613

3.7135720.08173/418 = 0.0072341841 �2.50423

3.737670.09986/332 = 0.0181633242 �2.30448

3.76120.11133/262 = 0.0115326243 �2.19587

3.784190.13094/204 = 0.0196420444 �2.03356

3.8066620.14432/149 = 0.0134214945 �1.93591

3.8286410.15311/113 = 0.0088111346 �1.87639

3.8501480.20194/82 = 0.048848247 �1.59987

0.20190/54 = 0.000005448 — —

0.20190/39 = 0.000003949 — —

0.20190/27 = 0.000002750 — —

0.20190/18 = 0.000001851 — —

3.9512440.29281/11 = 0.090911152 �1.22816

0.29280/5 = 0.00000553 — —

0.29280/3 = 0.00000354 — —

0/0 =0055 � — — —

Table 2.
One example of processing data for hazard plotting.

Figure 4.
One example of hazard plots.
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analyzed operational performance data for transformers and shunt reactors and esti-
mated failure rates assuming that equipment that was replaced before failure was the
one that would fail 5 or 10 years later. In order to conduct such a study, it is necessary
to investigate and accumulate the actual field data of not only operations and failures,
but renewals with reasons.

An example of a survey of equipment operational data, including renewal data, is
the questionnaire survey [9] conducted by “Investigating R&D Committee for Asset
Management for Electric Power Equipment Based on Insulation Diagnosis” of IEE
Japan. This is a survey of failure and renewal data in 10 years conducted on approxi-
mately 200 plant manufacturers and other companies. Reference [6] has tried to
utilize the results of this survey to estimate failure rate characteristics by combining
failure and renewal data. Although how to combine them should be examined
according to the reasons for each renewal and the characteristics of the target equip-
ment, the reasons for renewal were not investigated in the survey, therefore, the
analysis was conducted by assuming that the failure should have occurred at +5 years
after the year of each renewal [6]. The results for CV cables from 6 kV class to 60 kV
class are shown in Figures 6 and 7. For example, the failure rate at 30 years old is
about 26 times higher than without taking the renewal results into account.

Figure 5.
Results of hazard analysis for 5 simulated data. (a) failure rate (b) probability density of failure.

Figure 6.
Hazard plots of CV cables.
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Considering that approximately 90% of the group is 6 kV class cables, and that
diagnostic methods such as DC leakage current measurement would have been
applied to this class cables, it can be assumed that most of the reasons for renewal are
due to some kind of trouble, and it is highly appropriate to add up them when the
failure rate is estimated.

4. Conclusion

In recent years, the asset management or managing assets for power transmission
and distribution equipment has been actively examined. In order to optimize mainte-
nance strategies, both risk and cost associated with operating the equipment should be
considered, and both evaluated and compared in monetary values. CRIEPI is investi-
gating managing assets support tools evaluating the cumulative cost in operation
including statistically expected risk.

It is important to obtain failure rate characteristics of equipment for risk assess-
ment. As one method, this chapter has presented a method for statistical analysis of
actual equipment operation data in the field, as well as the necessary data and consid-
erations for this method. For power transmission and distribution equipment with
high reliability and low failure rates, it is necessary to accumulate actual data over a
long period of time in order to accurately estimate failure rates. Among them, the
information on equipment renewal, which has not necessarily been sufficiently inves-
tigated and analyzed in the past, is particularly important in the situation that the
preventive maintenance is generally adopted, and must be investigated and
accumulated together with the reasons for renewal.

Figure 7.
Results of failure characteristics estimation of CV cable. (a) failure rate (b) Cumulative failure probability.
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Chapter 4

A Study of Proportional Hazards
Models: Its Applications in
Prognostics
Chaoqun Duan and Lei Song

Abstract

Prognostics and health management technology is proposed to satisfy the 
requirements of equipment autonomous maintenance and diagnosis, which is a new 
technique relying on condition-based maintenance. It mainly includes condition 
monitoring, fault diagnostics, life prediction, maintenance decision-making, and 
spare parts management. As one of the most commonly used reliability statistical 
modeling methods, proportional hazards model (PHM) is widely used in the field of 
prognostics, because it can effectively combine equipment service age and condition 
monitoring information to obtain more accurate condition prediction results. In the 
past decades, PHM-based methods have been widely employed, especially since the 
twenty-first century. However, after the rapid development of PHM, there is no 
systematic review and summary particularly focused on it. Therefore, this chapter 
comprehensively summarizes the research progress of PHM in prognostics.

Keywords: proportional hazards models, prognostics, reliability engineering

1. Introduction

With the rapid development of science and technology, the integration,
complexity, and intelligence of industrial systems have increased sharply. The tradi-
tional fault diagnostics and maintenance support technology is gradually difficult to
adapt the new operation and maintenance requirements. As early as the 1970s, prog-
nostics and health management technology first appeared. It achieves condition
monitoring, fault prediction, and health management of complex industrial systems
by processing and analyzing various operating data generated in the industrial pro-
cess. This technology can predict the failure of the system before it happens and make
effective maintenance decisions or suggestions in combination with the current
working conditions. The main implementation steps are shown in Figure 1. In the
figure, equipment prognostics and health management are divided into the processes
of equipment condition monitoring, data acquisition, data processing, state predic-
tion, and health management. Equipment prognostics is to predict the current or
future state of equipment by using data acquisition and data processing technology
based on condition monitoring information, including equipment failure rate, service
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reliability, remaining useful life (RUL), and other reliability indicators. The following
health management measures are scheduled based on the predicted results of the
component or system degradation state, such as reducing the frequency of monitor-
ing, minimizing the number of maintenance downtimes, optimizing spare parts
ordering and inventory management. In recent years, prognostic and health
management has attracted extensive attention from industry and academia. There
have also been several types of health prediction methods proposed, including physi-
cal model-based methods, data-driven methods, and hybrid model-based methods. In
practical application, the physical model-based methods need to obtain the physical
mechanism of the mechanical equipment degradation process. However, the physical
processes for complex modern equipment are usually difficult to obtain. The data-
driven method does not need to consider the kinematic principle of the equipment,
instead relying on the data generated in the industrial dynamic process and extracting
and processing the data to achieve the purpose of prediction. PHM is one of the
commonly used models in data-driven methods. The hybrid model-based methods
can combine the advantages of physical model and data-driven model to enhance the
prediction accuracy, but designing the fusion mechanism between disparate models is
a complex issue.

As early as 1972, David Cox [1] first proposed the PHM to characterize the effect of
multiple factors on the mortality or failure rate at a given time. Initially, PHM was
utilized in the biomedical domain to analyze the survival of cancer patients. The
evolution of equipment failure rate has a certain similarity to human mortality, and
PHM can better fit various risk processes over time. Therefore, PHM is also widely
used in reliability modeling of industrial equipment. Compared with other reliability
statistical models, PHM has the characteristics of universality, flexibility, and sim-
plicity and can effectively incorporate information on equipment service age and
condition monitoring data. This means that PHM can estimate the probability of
equipment failure at any time in a given state and then evaluate the health state of the
equipment. In addition, PHM is also suitable for dealing with censored data [2].

The remainder of this chapter is organized as follows. Firstly, Section 2 introduces
the basic form of PHM, which is divided into four parts: baseline hazard function, link
function, covariate process, and parameter estimation. Secondly, the research pro-
gress of PHM in prognostics is reviewed in Section 3, which mainly outlines the
reliability evaluation and RUL prediction of PHM in various engineering fields.
Finally, Section 4 summarizes the conclusions and discusses the advantages and
current challenges of PHM.

Figure 1.
Flowchart of equipment prognostics and health management.
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h t, Ztð Þ ¼ lim
Δt!0

Pr t<T < tþ ΔtjT > t, Ztð Þ=Δt (2)

where T is the failure time of the system. According to the definition of equipment
reliability, the equipment conditional reliability function can be derived as:

R tjZu, 0≤ u≤ tð Þ ¼ Pr T > tjZu, 0≤ u≤ tð Þ ¼ exp �
ðt
0
h t, Zuð Þdu

� �
(3)

According to the definition of the remaining useful life Xt, Xt ¼
xt : T � tjT > t, Ztf g. The probability density function of the RUL of the equipment at

service time t can be expressed as:

fxt xtjZtð Þ ¼ f tþ xtjZtð Þ
R tjZtð Þ ¼ h tþ xtjZtð ÞR tþ xtjZtð Þ

R tjZtð Þ (4)

Next, the baseline hazard function, link function, covariate process, and parameter
estimation of PHM will be introduced in detail.

2.1 Baseline hazard function

The baseline hazard function h0 tð Þ can be modeled in various forms, including
constant [3, 4], linear form [5], quadratic polynomial [6, 7], lognormal distribution
[8, 9], and Weibull distribution [10–12]. Alternatively, following Cox’s strategy, a
distribution-free approach is employed to directly estimate the baseline hazard rate
from historical failure event data [13, 14].

PHM can be classified into two types based on the form of the baseline hazard
function: semi-parametric PHM and full-parametric PHM. When the baseline hazard
function is not specified, the model in Eq. (1) is often referred to as a semi-parametric
PHM. In fact, one of the major advantages of semi-parametric PHM is that there is no
need to define a specific form for the baseline hazard function, which makes semi-
parametric PHM more flexible. The original semi-parametric PHM can be fully
parameterized by defining a specific form of the baseline hazard function. The
Weibull distribution is often used to describe the baseline hazard function of PHM,
because it covers various types of failure rates (increasing failure rate, constant failure

3
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2. Basic  form  of  PHM

  The  PHM  is  used  to  describe  the  failure  rate  of  equipment,  which  is  related  to  time 
and  covariates.  It  is  usually  represented  by  the  product  of  two  independent  functions 
h0ðtÞ  and  ψðγZtÞ.  The  failure  rate  function  can  be  expressed  as:

hðt,  ZtÞ  ¼  h0ðtÞψðγZtÞ  (1)

  where  h0ðtÞ  is  the  baseline  hazard  function,  which  is  only  related  to  the  sequipment 
service  time,  and  represents  the  failure  rate  of  the  equipment  when  it  is  not  affected
by  covariates.  ψðγZtÞ  is  the  link  function,  which  is  related  to  the  value  of  the  covariate 

Zt  and  the  covariate  coefficient  γ,  indicating  the  influence  of  the  covariate  on  the 
failure  rate.  Given  the  covariate  Zt,  the  failure  rate  function  for  service  time  t  is 
defined  as:
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rate, and decreasing failure rate) and can better fit the equipment degradation data. In
the form of Weibull distribution, Eq. (1) can be further deduced as follows:

h t, Ztð Þ ¼ β
α

t
α

� �β�1
ψ γZtð Þ (5)

where α>0 is the scale parameter, and β>0 is the shape parameter. The Weibull
distSribution function is used as an example to demonstrate the fully parameterized
method of semi-parametric PHM. The baseline hazard function of PHM can be simply
extended to any other function form in addition to the Weibull distribution function.

2.2 Link function

The form of the link function ψ γZtð Þ depends on the given failure event data and
must satisfy the condition ψ γZtð Þ>0. Cox proposed three link function forms, namely
linear form 1þ γZ, inverse linear form 1= 1þ γZð Þ, and exponential function form
exp γZð Þ. However, for all possible values of Z, it is difficult to choose the coefficient γ
in the linear and inverse linear forms to satisfy the above conditions. This criterion is
better satisfied by the exponential function form. Moreover, an exponential function
can also approximates the experimental data well [10]. Expressing ψ γZtð Þ in the form
of an exponential function, Eq. (1) can be rewritten as the following form:

h t, Z tð Þð Þ ¼ h0 tð Þ exp
Xn
i¼1

γiZi tð Þ
" #

(6)

where h t, Z tð Þð Þ represents the failure rate at time t under the influence of the
covariate vector Z tð Þ. The symbol γi,i ¼ 1,2,… ,n, is the coefficient corresponding to
the covariate Zi tð Þ, indicating the degree of influence of each covariate on the failure
rate, and n represents the number of covariates. Therefore, determining the covariate
process and parameters of PHM is crucial for assessing equipment failure rates.

2.3 Covariate process

In reliability modeling, the environmental factors or self-degradation characteris-
tics that affect the system failure rate are commonly referred to as covariates.
Covariates are important factors in PHM, and the choice of covariates has a direct
impact on the accuracy of reliability and life prediction. According to the internal and
external factors affecting equipment failure, it can be divided into internal covariates
and external covariates. Internal covariates include the system’s own structural design
[15], materials [16], degradation state characteristics [17], and so on. The current state
of the system can be reflected according to the degradation characteristics. Whereas
external covariates can usually be regarded as “risk factors” that can affect the failure
time of the system, such as temperature [18, 19], humidity [20], weather conditions
[21, 22], and other external operating environment.

During PHM modeling, a preliminary analysis of covariates should be performed
to identify state indicators that have a significant impact on equipment failure rates.
The covariates of PHM were determined by Vlok et al. [23] and Ghodrati et al. [24]
based on the experience of maintenance technicians, which is extremely subjective.
This could lead to the omission of other significant factors, as well as a high correlation
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between  them.  There  are  many  methods  to  test  the  influence  of  covariates  on  the 
system  failure  rate.  Most  of  the  existing  studies  use  methods  such  as  P-value  [25,  26],
Wald  test  [27],  likelihood  ratio  test  [28],  and  score  test  [21].  When  determining 
covariates,  it  is  usually  required  that  the  correlation  coefficient  between  the  covariates 
be  as  small  as  possible.  Therefore,  Lin  et  al.  [29],  Carr  et  al.  [30],  and  Chen  et  al.  [31]
employed  principal  component  analysis  (PCA)  to  analyze  condition  monitoring  data 
and  built  PHM  using  principal  components  rather  than  the  original  covariates.  This 
method  is  helpful  to  eliminate  the  collinearity  between  the  original  covariates  and 
reduce  the  number  of  covariates  in  PHM.  Makis  et  al.  [32]  used  dynamic  principal 
component  analysis  to  reduce  the  dimensionality  of  the  transmission  oil  data.
Dynamic  principal  component  analysis  is  an  extension  of  the  original  PCA,  which  can 
achieve  dimensionality  reduction  when  the  data  have  autocorrelation.  Mazidi  et  al.
[33]  used  several  statistical  techniques  to  decrease  the  dimension  of  the  original 
monitoring  data  and  select  parameters,  including  PCA,  Pearson,  Spearman  and  Ken-
dall  correlation,  mutual  information,  regression  ReliefF,  and  decision  trees.  Ahmad
et  al.  [34]  used  Failure  Mode  Effect  and  Criticality  Analysis  (FMECA)  to  identify 
external  covariates  that  may  affect  the  failure  rate  of  transmission  belts  in  cutting 
process  system.  Another  key  reason  they  use  FMECA  is  that  it  can  classify  censored 
and  uncensored  data.  Then,  a  statistical  analysis  of  censored  and  uncensored  time-to-
failure  data  was  performed  by  applying  Failure  Time  Modeling  (FTM)  based  on  PHM 
considering  the  effects  of  external  covariates.  In  order  to  investigate  the  impact  of 
different  covariates,  Kabir  et  al.  [35]  and  Kabir  et  al.  [36]  stratified  the  data  according 
to  the  material  type  of  the  water  mains  and  whether  they  had  previously  failed  to 
establish  distinct  PHMs.  They  identified  significant  covariates  in  different  models 
using  the  Bayesian  model  averaging  (BMA)  method.  Based  on  the  assumption  that  the 
heavier  the  operational  use  of  components,  the  higher  the  probability  of  component 
failure,  Verhagen  et  al.  [37]  used  Extreme  Value  Analysis  (EVA)  and  Maximum 
Difference  Analysis  (MDA)  techniques  to  identify  the  operational  factors  that  lead  to 
the  high  failure  rate  of  aircraft  components.  Wu  et  al.  [28]  used  the  Z  test  to  investi-
gate  the  effect  of  time-varying  environmental  covariates  on  the  failure  rate  of  wind 
turbine  components,  and  the  likelihood  ratio  test  was  used  to  find  the  best  combina-
tion  of  covariates.  Li  et  al.  [38]  and  Thijssens  et  al.  [39]  used  the  Akaike  Information 
Criterion  (AIC)  to  choose  covariates.  In  addition,  the  software  SPSS  [40,  41]  and 
EXAKT  [42–44]  can  also  be  applied  to  identify  critical  covariates  affecting  the  equip-
ment  failure  rate.

2.4  Parameter  estimation

  Parameter  estimation  is  an  important  step  in  PHM  modeling,  including  baseline 
hazard  function  parameter  estimation  and  link  function  parameter  estimation.  The 
covariate  most  closely  connected  to  system  failure  should  have  a  higher  weight  in  the 
link  function,  and  the  corresponding  covariate  coefficient  γi  should  be  greater.  The
covariates  having  a  weak  link  to  failure  should  be  given  less  weight,  and  the 
corresponding  covariate  coefficient  γi  should  be  smaller.  The  model  will  be  fairly  close 
to  reality  if  only  covariates  related  to  system  failure  are  included.  Therefore,  the 
accuracy  of  the  model  parameter  estimation  has  a  considerable  influence  on  the 
calculation  result  of  the  total  failure  rate  of  the  objective  equipment.  Generally,  the 
parameters  of  PHM  are  estimated  by  partial  likelihood  function  [45,  46]  or  maximum 
likelihood  function  [8,  47],  or  related  software  programs,  such  as  SPSS  [40,  41],
EXAKT  [48,  49],  SYSTAT  [3],  survival  package  for  R  [50],  coxphfit  function  of
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Matlab [25], and so on. The likelihood estimation function formula of PHM parameter
estimation is simple, and the maximization process is robust. However, the method
based on classical likelihood estimation may suffer from slow convergence. Moreover,
the maximum likelihood method cannot quantify the uncertainty in model predictions
and field data. Uncertainties can be found in the whole process of calculation and
modeling, including those resulting from test data and model parameters. For the lack
of sufficient experimental or field data, Zuashkiani et al. [51] used expert knowledge
to compensate and developed a method combining expert knowledge and statistical
data to estimate the parameters of PHM. Considering the uncertainties in model pre-
dictions and field data, Jiang et al. [52] built a Bayesian network to represent nonlinear
PHM based on historical inspection data. When updating the distribution function to
estimate the model parameters in Bayesian networks, it is necessary to calculate the
marginal function, which usually requires the high-dimensional integration problem
on the prior distribution. Therefore, they used the Markov Chain Monte Carlo tech-
nique to solve the difficulties in parameter estimation.

The framework for equipment prognostics and health management based on PHM
is shown in Figure 2, which includes data acquisition, PHM modeling, prognostics,
and health management. Firstly, state indications connected to equipment failure,
such as temperature, current, or vibration signals of the objective equipment, are
collected using manual operation, sensors, or specific test tools. Then, P-value, prin-
cipal component analysis or expert experience is used to determine the covariates that
have a significant impact on the equipment failure rate. At the same time, maximum
likelihood estimation, Bayesian update or SPSS, EXAKT, and other software are used
to estimate the parameters for the PHM modeling. Finally, the reliability indicators
such as equipment reliability or RUL are estimated according to the established PHM
to achieve the purpose of state prediction. The basic structural form of PHM
(containing the baseline hazard function and link function), as well as the covariate
determination method and commonly used parameter estimation methods, is all
introduced in this section. Next, as shown in Figure 2, we will concentrate on the
prediction and evaluation of PHM in the domains of cutting tools, bearings, water

Figure 2.
Framework diagram of equipment prognostics and health management based on PHM.
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supply  pipes,  and  high-reliability  devices  and  primarily  review  the  covariate  indica-
tors  selected  in  various  literatures,  as  well  as  reliability  estimation  and  RUL  prediction 
based  on  PHM.

3. Research  progress  of  PHM  in  prognostics

  In  equipment  failure  prediction,  reliability  and  RUL  are  two  key  health  indicators.
Reliability  refers  to  the  ability  of  a  product  to  accomplish  a  specific  function  under 
specified  conditions  and  within  a  specified  time,  indicating  the  probability  that  the 
product  will  fail  to  occur  within  a  certain  period  of  time.  RUL  refers  to  the  continuous 
operating  time  of  the  equipment  from  the  present  moment  to  the  occurrence  of  a  
potential  failure.  A  potential  risk  to  an  effective  forecasting  system  lies  in  accurately 
assessing  reliability,  RUL,  and  other  relevant  reliability  indicators.  Therefore,  in  order 
to  avoid  failures,  accurate  prediction  of  reliability  and  RUL  through  quantitative 
methods  based  on  the  current  state  of  the  machine  and  operating  history  is  crucial  for 
making  preventive  maintenance  (PM)  decisions.  In  PHM,  the  RUL  of  the  equipment
can  be  derived  from  the  relevant  reliability  function,  as  shown  in  Eq.  (4).  Initially,
Bendell  [53]  pointed  out  that  PHM  offers  a  lot  of  potential  in  the  field  of  reliability 
assessment.  According  to  the  existing  research,  PHM  has  been  widely  employed  in 
failure  data  analysis,  reliability  assessment,  and  life  prediction  in  various  fields,
including  hardware  and  software  [54,  55].  For  example,  valves  [56,  57],  aircraft  cargo 
doors  [58],  mining  loader  cables  [59–61],  distribution  network  cables  [41,  62],  printed 
circuit  boards  [63],  mobile  handsets  [64],  electrical  appliances  [65],  automotive  air-
conditioning  compressors  [66],  and  so  on.  In  addition,  Barker  et  al.  [67]  applied  PHM 
to  describe  the  instantaneous  rate  of  recovery  of  an  electric  power  system  after  an 
outage  and  the  likelihood  of  recovery  occurs  prior  to  a  given  point  in  time.
Mohammad  et  al.  [68]  used  PHM  and  Markov  chains  to  analyze  the  reliability  of  load-
sharing  systems  with  a  k-out-of-n  structure.  Zhao  et  al.  [69]  described  a  task  reliabil-
ity  modeling  method  based  on  the  Quality  State  Task  Network  (QSTN),  used  the 
WPHM  to  estimate  the  reliability  of  the  cylinder  head  manufacturing  system,  and 
then  described  the  overall  operation  state  of  the  system.  In  various  application  exam-
ples,  PHM  is  widely  used  in  reliability  assessment  and  life  prediction  in  the  domains  of
cutting  tools,  bearings,  water  supply  pipes,  and  high-reliability  devices.  Table  1  gives 
an  introductory  summary  of  PHM  in  various  application  domains,  regarding  issues 
and  failures,  common  measures,  common  covariates,  and  example  data.

3.1  Cutting  tools

  In  industrial  manufacturing,  the  cost  of  consumables  such  as  cutting  tools  cannot 
be  ignored.  The  estimation  error  of  cutting  tool  reliability  or  residual  life  may  result  in  
a  large  amount  of  production  loss.  On  the  one  hand,  overestimating  tool  reliability  or 
residual  life  can  lead  to  substandard  parts  being  produced,  as  well  as  poor  surface 
quality  and  machine  damage.  On  the  other  hand,  the  underestimate  of  tool  reliability 
or  residual  life  may  reduce  the  overall  productivity  and  raise  production  cost,  since 
insufficient  tool  use  and  shutdown  loss  result  from  needless  frequent  tool  replace-
ment.  Therefore,  effectively  predicting  tool  reliability  and  RUL  can  help  production 
managers  to  develop  better  tool  replacement  strategies,  improve  production  planning,
and  increase  production  efficiency.  At  present,  some  scholars  have  used  PHM  to 
combine  machining  time  and  different  working  conditions  to  estimate  tool  reliability
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or RUL. Mazzuchi et al. [70] used PHM to evaluate the reliability of machine tools and
used a full Bayesian method to compare the prior and posterior distributions of the
parameters involved in the model to reflect tool aging and the importance of each
covariate. In an automated manufacturing system, it is usually necessary for the same
tool to cut multiple parts from different materials with different cutting parameters in
order to save the space of tool magazine and avoid frequent tool changes while
increasing production efficiency. In this situation, Liu et al. [86] derived a formula for
calculating tool reliability under various cutting conditions with random machining
time. Ding et al. [8] and Ding et al. [9] used PHM to analyze tool wear reliability by
extracting the root mean square and peak of time domain indicators from the tool
vibration signal as covariates. Cutting speed was chosen as a covariate of PHM by
Equeter et al. [50], and the Mean Up Time of cutting tools was calculated using the
integral of the reliability function. However, they only investigated the effect of
cutting speed as a covariate on tool life. Shaban et al. [49] presented the reliability and
RUL curves of tool cutting titanium metal matrix composites (Ti-MMCs) under

Application
domains

Issues and
failures

Common
measures

Common covariates Example data

Cutting tools Tool wear,
tool
fracture,
poor
surface
finish,
blade
cracking

Vibration,
tool wear value,
cutting
parameters

Cutting speed, feed rate
and depth of cut [70],
root mean square and peak
[8, 9],
cutting speed and the feed
rate [49, 71],
tool wear, cutting speed
and feed rate [72],
cutting speed [50],
the logarithm of cutting
speed [73]

A CNC lathe FTC-20, FAIR
FRIEND Group Taiwan [8],
a six-axis Boehringer NG
200 [49],
Gamma process simulation
[50],
a CNC SOMAB “UNIMAB
450” lathe [73]

Bearings Outer-race,
inner-race,
roller, and
cage
failures

Vibration,
oil debris,
acoustic
emission

Natural logarithm of root
mean square and kurtosis
[74, 75],
kurtosis factor and crest
factor [76],
kurtosis [77],
standard deviation, root
mean square, and root
amplitude sequences [78]

Experimental data of
bearings 6205-2RS (SKF)
from Case Western Reserve
University [76],
the prognostic data
repository contributed by
Intelligent Maintenance
System, University of
Cincinnati [77, 79]

Water
supply pipes

Corrosion,
leaking of
joints, main
barrel and
line valves,
blockage,
break

Physical
parameters of
pipes, pressure,
surrounding
environment

Diameter, length,
corrosivity, soil stability,
internal pressure and the
percentage of the pipe
covered with low
development land [80],
material, diameter, length,
vintage, soil type and the
number of previous failures
[81], length, diameter, pipe
material, soil resistivity, soil
resistivity, freezing index,
rain deficit [82]

A pipe database collected in
Laramie, Wyoming [83], the
water distribution system
serving the western part of
the province of Ferrara [84],
a dataset on pipe breakage
from the city of Limassol
(Cyprus) [85], the failure
database of water
distribution network in the
City of Calgary, Alberta,
Canada [35, 36, 82]

Table 1.
Introductory summarization of PHM in various application domains.
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various  cutting  speeds  and  feed  rates.  In  the  work  of  Equeter  et  al.  [73],  the  authors 
converted  the  cutting  speed  of  the  tool  to  logarithmic  form  and  used  it  as  a  covariate 
of  PHM  to  predict  the  average  available  time  of  the  tool.  The  logarithmic  conversion 
of  cutting  speed  data  can  provide  more  accurate  prediction  results,  as  demonstrated 
by  a  numerical  case.  Aramesh  et  al.  [71]  proposed  a  cutting  tool  life  prediction  model 
that  took  into  account  the  influence  of  cutting  parameters,  machining  time,  and 
different  tool  wear  stages  (initial  wear  zone,  steady  wear  zone,  and  rapid  wear  zone).
The  model  provides  very  good  estimates  of  tool  life  and  critical  points  at  which 
changes  of  states  take  place,  as  well  as  can  calculate  each  between-states  transition 
time.  Aramesh  et  al.  [72]  developed  a  model  for  estimating  the  RUL  of  the  worn  tool 
under  various  cutting  situations  purely  based  on  the  actual  wear  of  the  tool,  regardless 
of  its  usage  history.  This  is  a  significant  advantage  of  this  model  over  other  models  in 
practical  applications.

3.2  Bearings

  Bearings  are  widely  employed  in  a  variety  of  areas  as  the  essential  components  of 
rotating  machinery.  Due  to  the  severe  operating  environment,  bearing  failure  is  one  of 
the  most  common  causes  of  machine  failure,  so  it  is  necessary  to  perform  reliability 
assessment  and  RUL  prediction  on  bearings  to  prevent  unexpected  failures  or  acci-
dents.  Ding  et  al.  [87]  extracted  the  kurtosis  and  the  root  mean  square  in  the  bearing 
vibration  signal  as  covariates  reflecting  the  bearing  operating  state  to  evaluate  the 
reliability  of  the  bearing.  To  evaluate  the  reliability  of  bearing  on  site,  Ding  et  al.  [76]
extracted  the  kurtosis  factor  and  the  crest  factor  as  the  covariates  of  PHM.  The 
evaluation  results  can  reflect  the  trend  of  failure  occurrence  and  development.  In 
some  cases,  it  is  very  difficult  to  collect  data  from  the  actual  system.  Therefore,
Leturiondo  et  al.  [25]  employed  a  physical  model  to  generate  synthetic  data  related  to 
bearing  degradation  in  order  to  fit  the  PHM  and  then  estimate  the  bearing  reliability 
further.  The  PHM  presented  by  Liao  et  al.  [74]  takes  into  account  both  hard  failure 
and  multiple  degradation  features.  The  model  is  able  to  predict  the  mean  RUL  of  a 
component  based  on  online  degradation  information.  Liao  et  al.  [75]  further  compared 
the  approach  of  Liao  et  al.  [74]  with  the  logistic  regression  model,  demonstrating
that  the  estimated  RUL  value  based  on  PHM  is  closer  to  the  actual  life  through  a  
bearing  test.
  In  recent  research  work,  some  scholars  have  combined  PHM  with  artificial  intelli-
gence  algorithms  to  estimate  bearing  reliability  and  predict  RUL.  Caesarendra  et  al.
[77]  used  reliability  theory  and  PHM  to  estimate  the  failure  degradation  of  bearings 
and  regarded  it  as  a  target  vector.  At  the  same  time,  combined  with  the  kurtosis  in  the 
bearing  vibration  signal,  they  trained  the  support  vector  machine  and  established  the 
life  prediction  model.  The  trained  support  vector  machine  is  then  utilized  to  predict 
the  failure  time  of  an  individual  bearing.  Combining  a  neural  network  and  PHM,
Wang  et  al.  [78]  proposed  a  three-phase  prognostic  algorithm  for  bearings  reliability 
evaluation  and  life  prediction,  which  included  feature  selection,  feature  prediction,
and  RUL  prediction.  To  begin,  the  most  useful  time-dependent  features  of  vibration 
signals  were  extracted.  Then,  the  feed-forward  neural  network  is  established  as  an 
identification  model  to  predict  the  future  features  trends.  Finally,  PHM  is  used  to 
estimate  the  reliability  and  RUL  of  the  bearing.  Qiu  et  al.  [79]  proposed  an  ensemble 
RUL  prediction  model  by  combining  feature  extraction,  genetic  algorithm,  support 
vector  regression,  and  WPHM.  In  this  approach,  genetic  algorithm  and  signal  feature 
extraction  techniques  are  used  to  construct  an  effective  health  indicator.  Secondly,
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support vector regression is used to predict the future development of the system
operation behavior. Finally, RUL prediction is implemented using the WPHM predic-
tion function.

3.3 Water supply pipes

The failure of water supply pipes usually affects other nearby infrastructure, which
can lead to catastrophic consequences, so a large number of articles have been
published to study the break risk process of water supply pipes. Kleiner et al. [88]
outlined the application of various statistical models to water mains degradation, of
which PHM is one of the most commonly used statistical models for estimating break
failure of water mains. PHM was initially used by Jeffrey [7] to model the failure rate
of water distribution system. Andreou et al. [89] and Andreou et al. [90] introduced
the concept of early and late stages of water distribution system failures and used
PHM to predict the deterioration of water distribution system in early stages with
fewer breaks. They distinguished the different stages of pipe breaks based on a fixed
number of failures, which only applies to the specific scenario considered, and did not
explicitly describe the method used to identify the different stages. Park [91] and Park
[92] developed a methodology to assess and track changes in the hazard functions
between water main breaks by using PHM. As the number of pipe breaks increases,
the critical points when the hazard function changes into different functional forms
can be obtained to distinguish different stages of pipe failure. Park et al. [93] and Park
et al. [94] divided cast iron 6-inch pipes into seven groups according to the break
history of the water distribution system and constructed different PHMs for each
group to estimate the reliability of the pipes. When there are only brief maintenance
records, Le Gat et al. [95] discussed the efficiency of WPHM in fault prediction of
water networks. Alvisi et al. [84] further investigated the model proposed by Le Gat
et al. [95], pointing out that WPHM can exploit the information available on both the
characteristics of the pipes in which breakages occur and their age to make the
prediction results more stable and reliable. Instead of calculating the expected number
of failures for a group of pipes, Clark et al. [96] and Karaa et al. [80] used PHM to
calculate the probability of a pipe breaking or leaking for each pipe. Vanrenterghem-
Raven et al. [97] created a simple prioritization index based on the ratio of pipe failure
rates to determine which pipes should be replaced first. PHM was used by Fuchs-
Hanusch et al. [81] to estimate the years when the failures occur with a defined
probability. Moreover, they proposed a whole of life cost calculation method due to
the long lifetime of water supply pipes. Christodoulou [85] used a 5-year dataset to
study the impact of several risk factors on pipe failure, such as pipe material, diame-
ter, and accident type. Regardless of the quality and quantity of data utilized in the
model, there is inherent uncertainty when predicting the failure of water pipes. In
order to explain the variability of these unknown factors, Clark et al. [83] incorpo-
rated a shared frailty into the PHM to account for the unspecified variability affecting
the pipe breaks. Kabir et al. [35] and Kabir et al. [36] developed a Bayesian framework
for predicting water main failure in the face of uncertainties. The proposed Bayesian
Weibull proportional hazards model (BWPHM) is applied in this study to develop
survival curves and predict water main failure rates. The results of their case indicated
that the predicted 95% uncertainty bounds of the proposed BWPHMs capture effec-
tively the observed water main failures. Applying the receiver operating characteris-
tics curve, Debón et al. [98] compared PHM and generalized linear model for
evaluating the risk of failure in water supply networks. Kimutai et al. [82] compared
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the  predicted  effects  of  Cox  PHM,  WPHM,  and  Poisson  model  in  the  break  of  cast 
iron,  ductile  iron,  and  plastic  water  pipes.  The  results  recommended  that  a  combined 
model  should  be  used  according  to  the  rate  of  degradation  and  material  type  of  the 
system.  Xie  et  al.  [99]  used  PHM  to  study  the  blockage  risk  of  vitrified  clay  wastewa-
ter  pipes  and  identified  the  pipes  with  the  highest  risk  of  failure  due  to  blockage.  In  a 
cost-constrained  environment,  targeted  inspection,  plan  maintenance,  and  replace-
ment  programs  can  be  carried  out  to  reduce  the  serious  consequences  caused  by 
blockage.

3.4  High-reliability  device

  The  PHM  is  a  very  popular  tool  in  reliability  theory  and  applications,  which  can  be 
used  to  simulate  the  impact  of  another  environment  on  the  reliability  of  a  baseline 
environment.  For  long-life  and  high-reliability  devices  (such  as  some  electronic  com-
ponents  [100,  101],  etc.),  it  is  difficult  to  obtain  their  failure  data  in  a  short  time.
Accelerated  testing  is  a  method  for  decreasing  the  life  of  high  reliability  devices  or 
accelerating  their  performance  degradation.  The  results  of  the  tests  are  obtained  in  a  
shorter  period  of  time  under  an  accelerated  stress  environment,  and  PHM  is  then 
utilized  to  predict  the  failure  behavior  of  the  device  under  various  operating  condi-
tions  [102,  103].  There  are  generally  two  approaches  to  comprehensively  utilize  the 
failure  data  at  various  stress  levels.  The  first  is  to  convert  data  collected  under  high 
stress  into  data  collected  under  normal  operating  conditions  in  order  to  expand  the 
sample  size  and  improve  the  accuracy  of  parameter  estimation,  reliability  assessment,
and  life  prediction  [104].  Another  approach  is  to  establish  the  relationship  between 
stress  environment  and  lifetime  by  using  acceleration  models  such  as  Arrhenius 
models,  power  law  models,  and  exponential  models  [5].  Comparing  PHM  with  the 
accelerated  failure  time  model,  Newby  [105]  pointed  out  the  greatest  advantage  of 
PHM  is  that  it  does  not  need  to  specify  a  baseline  failure  rate,  and  it  can  quantitatively 
analyze  the  impact  of  each  covariate  on  the  total  failure  rate.  Elsayed  et  al.  [6]  and 
Finkelstein  [106]  generalized  the  covariates  of  a  single  stress  type  to  two  stress  types,
allowing  for  the  collection  of  a  large  number  of  failure  time  data  in  a  short  period  of 
time.  PHM  was  introduced  into  dealing  with  accelerated  degradation  test  data  by 
Chen  et  al.  [107],  who  proposed  a  model  based  on  the  proportional  degradation 
hazards  model.  They  plotted  the  reliability  curves  of  carbon-film  resistors  at  normal 
stress  condition  based  on  the  proposed  model.  To  explore  the  reliability  trend  of 
Metal-Oxide-Semiconductor  Field-Effect  Transistors,  Zheng  et  al.  [108]  conducted  an 
accelerated  degradation  test  with  temperature  as  the  accelerated  stress.  They 
established  a  PHM  with  the  degradation  trend  and  temperature  as  covariates,  in  which 
the  degradation  trend  is  defined  by  the  Wiener  process,  because  the  degradation  trend 
contains  more  information  than  the  degradation  state.  The  reliability  results  predicted 
in  this  reference  are  closer  to  the  real  scenario  than  the  PHM  with  only  temperature  or 
only  the  deterioration  state  as  covariate.

3.5  Others

  In  addition  to  the  above  domains,  PHM  can  also  be  used  in  many  other  industries 
such  as  batteries,  pumps,  wind  turbines,  and  so  on.  Some  scholars  also  use  PHM  to 
describe  the  probability  of  hard  failure  of  equipment.  Hard  failure  generally  refers  to 
the  sudden  failure  of  equipment  due  to  hidden  manufacturing  defects,  excessive
loads,  or  other  stresses.  When  a  hard  failure  occurs,  the  degradation  signal  tends  to
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exhibit different values, such as the resistance value of a lead-acid battery in an
automobile. Zhou et al. [109] proposed a two-stage approach, with an offline model-
ing stage based on historical data and an online prediction stage based on the degra-
dation signal of each individual unit. This method is suitable for predicting the RUL of
batteries without a powerful computing platform such as vehicle microcontrollers;
however, the prediction results are relatively conservative. The variance of resistance
between different batteries becomes larger as time increases, and there are noticeable
individual differences among units. Therefore, in the RUL prediction framework of
Man et al. [110], the authors applied the Wiener process with drift to characterize the
degradation path of the battery resistance. However, because of the Markov nature of
the Wiener process, their prediction methods rely on the most recent observational
information. In comparison to Zhou et al. [109], the prediction accuracy is relatively
low when current observations deviate from the degenerate path.

In the hard failure prediction method, the above studies do not consider potential
change points in condition monitoring signals. However, change point detection and
equipment degradation modeling are interrelated, which directly affects the accuracy
of residual life prediction. You et al. [111] detected the change point in advance
through the statistical process control method and divided the life cycle of the equip-
ment into two zones: the stable zone and the degradation zone. This study was limited
to the assumption that the change point was fixed and did not consider the impact of
other factors on the change point during equipment operation. Son et al. [112]
extended the method of Zhou et al. [109] to predict the RUL for individual units with
considering the change point in condition monitoring signals, where the change point
is captured based on the concordance correlation coefficient (CCC). Although this
method improves the accuracy of RUL prediction, it also increases the complexity and
computational burden of the model.

Because of the complexity of modern mechanical systems and the diversity of
failure modes, it is necessary to consider the competition and interaction between
different failure modes when analyzing the failure of the whole system. Zhang et al.
[113] proposed a mixture Weibull proportional hazards model (MWPHM) to predict
the failure of a high-pressure water descaling pump with two failure modes of sealing
ring wear and thrust bearing damage. The system failure probability density is
obtained by proportionally accumulating the probability density of multiple failure
modes. Compared with traditional WPHM, MWPHM can provide more detailed life
information, and its failure probability distribution is closer to the actual distribution.
In this model, the prediction of failure time depends on the choice of reliability
threshold. However, they assumed the reliability threshold was fixed, ignoring the
fact that the reliability of the repaired system may change at the moment of failure.

In recent years, machine learning methods have been continuously developed.
These theories and methods have been widely employed in engineering applications
and scientific fields to address complex problems. In reliability engineering, some
scholars compared the reliability and RUL prediction results based on PHM with the
prediction results of neural network [103] and random forests method [114]. Li et al.
[114] investigated the effect of failure time data with heavy-tailed behavior on the
RUL prediction error. The results showed that the RUL prediction method based on
PHM can make more accurate mechanical failure predictions than random forests.
Izquierdo et al. [115] proposed a reliability model based on a dynamic artificial neural
network by combining the neural network model and dynamic PHM concept. The
model combines the benefits of neural networks for analyzing unknown interactions
between environmental variables with the benefits of PHM for integrating dynamic
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operational  environments.  Mazidi  et  al.  [116]  created  three  neural  network  models  to 
simulate  the  normal  behavior  of  three  features  of  wind  turbine  rotor  speed,  gearbox 
temperature,  and  generator  winding  temperature.  Deviation  signals  are  defined  and 
calculated  as  accumulated  time  series  of  differences  between  neural  network  predic-
tions  and  actual  measurements.  These  signals  are  then  used  to  develop  a  health 
condition  model  for  each  considered  feature  of  wind  turbine  in  order  to  perform 
anomaly  detection.  By  combining  autoregressive  moving  average  model,  PHM,  and 
support  vector  machine,  Tran  et  al.  [117]  proposed  a  three-stage  method  for  estimat-
ing  low  methane  compressor  performance  degradation  and  RUL.  The  method  only 
uses  the  normal  operation  condition  of  the  machine  to  create  an  identification  model 
to  recognize  the  dynamic  system  behavior  and  does  not  need  data  of  whole  machine 
life.  Chen  et  al.  [118]  designed  a  deep  learning  structure  called  merged-long-short 
term  memory  (M-LSTM)  network  for  health  index  modeling,  which  they  subse-
quently  integrated  with  PHM  to  predict  the  RUL  of  an  automobile.  However,  since 
the  repaired  automobile  cannot  be  recovered  to  its  original  state,  the  authors  only  
consider  the  first  maintenance  record  of  automobiles,  which  makes  it  difficult  to 
construct  the  health  index  of  the  automobile.
  PHM  has  a  certain  application  in  prognostics  and  has  achieved  considerable  results,
but  there  is  still  a  lack  of  a  lot  of  research  work  to  extend  the  prognostics  scheme  based 
on  PHM.

4.  Conclusions

  As  one  of  the  most  commonly  used  statistical  models,  PHM  has  received  extensive 
attention  and  has  been  applied  in  a  variety  of  domains.  This  chapter  has  summarized 
the  research  progress  of  prognostics  based  on  PHM,  focusing  on  the  baseline  hazard 
function,  link  function,  covariate  process,  and  parameter  estimation  methods.  Data  
analysis,  reliability  estimation,  and  RUL  prediction  based  on  PHM  are  systematically 
discussed.
  According  to  the  review  and  research  of  PHM  in  this  chapter,  the  advantages  of 
PHM  in  the  field  of  prognostics  are  summarized.  Compared  with  other  statistical 
methods,  the  main  advantages  of  PHM  are  as  follows.

1.  PHM  does  not  require  assumptions  about  the  nature  or  form  of  the  baseline
  hazard  function,  and  any  type  of  distribution  function  can  be  used  as  the  baseline
  hazard  function.  Therefore,  PHM  can  be  applied  to  reliability  analysis  of
  equipment  in  a  variety  of  engineering  domains,  and  it  has  the  characteristics  of
  universality,  flexibility,  and  simplicity.

2.  PHM  directly  models  the  failure  rate,  which  has  strong  interpretability.  The
  relationship  between  failure  rate  and  condition  monitoring  information  has  been
  established,  allowing  the  condition  monitoring  information  to  be  used  more
  effectively  to  update  the  equipment  state.  Furthermore,  the  influence  of  various
  covariates  on  the  total  failure  rate  may  be  easily  assessed.

3.  PHM  can  better  simulate  the  influence  of  multiple  internal  and  external
  degradation  information  on  equipment  failure,  including  environmental  factors,
  aging  factors,  and  degradation  factors.  Therefore,  PHM  is  applicable  when  the
  failure  of  equipment  is  related  to  multiple  influencing  factors.
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4.Compared with other data-driven methods, PHM can achieve good modeling
results with a limited amount of degraded data. The accuracy of equipment
condition prediction will improve as the amount of gathered event data and
condition monitoring data grows.

Although PHM has made significant development in the field of prognostics and
health management and has many advantages mentioned above, there are still a few
aspects that need to be studied further. The current challenges facing PHM are listed
below in order to point out the development direction for researchers.

1.Proportionality assumption. The application of PHM needs to satisfy the
proportionality assumption, which has a fixed model form. It can only be used if
the influence of the degradation process on the failure rate satisfies the link
function, which is a fairly severe requirement.

2.Determine covariates. PHM can take into account the effects of multiple
covariates on the failure rate of equipment at the same time. However, the results
of parameter estimation will be biased if a relevant covariate is omitted or the
accuracy of covariate measurement varies. Furthermore, because multiple
covariates are associated with the same equipment degradation process, there
may be correlations between them, which might influence the accuracy of the
prediction results if not treated properly.

3.Data fusion. It is a challenge for data-specific fusion methods, such as the fusion
between vibration signals, current signals, and oil signals. Complex systems
usually involve multidimensional covariate processes. To assure the accuracy of
system state prediction, more research into how to properly integrate diverse
forms of data and adopt a more reasonable combination structure deserves
further study.

4.Calculation difficulty. For a covariate process affected by stochastic degradation,
a stochastic process must be used to describe the degradation process of
covariates, which increases the calculation burden. The calculation of PHM
becomes extremely difficult when the degradation process of the system
incorporates multiple covariates. Calculating high-dimensional data presents a
number of challenges.

5.Data problems. It is difficult to obtain event data and condition monitoring
data simultaneously in practical applications. Especially for high-reliability
systems and crucial equipment, they are not allowed to run to failure. This leads
to a small number of failed samples, posing a major barrier to data-driven
methods.

Combining the above advantages and disadvantages, PHM is suitable for imperfect
observation systems with small degraded data samples and can make better use of
condition monitoring information in various dimensions. The data fusion and model
calculation problems of PHM can be greatly solved when combined with other
methods (such as Bayesian iteration, artificial intelligence, and so on), offering it
irreplaceable theoretical value and application prospect in the field of prognostics and
health management in complex systems.
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Chapter 5

Pull-Type Security Patch
Management in Intrusion Tolerant
Systems: Modeling and Analysis
Junjun Zheng, Hiroyuki Okamura and Tadashi Dohi

Abstract

In this chapter, we introduce a stochastic framework to evaluate the system 
availability of an intrusion tolerant system (ITS), where the system undergoes patch 
management with a periodic vulnerability checking strategy, i.e., pull-type patch 
management. In particular, a composite stochastic reward net (SRN) is developed to 
capture the overall system behaviors, including vulnerability discovery, intrusion 
tolerance, and reactive maintenance operations. Furthermore, two kinds of availabil-
ity criteria, the interval availability and the steady-state availability of the system, are 
formulated by applying the phase-type (PH) approximation to solve the Markov 
regenerative process (MRGP) model derived from the composite SRN. Numerical 
experiments are conducted to investigate the effects of the vulnerability checking 
interval on the system availability.

Keywords: intrusion tolerance system, security patch management, vulnerability 
checking, interval availability, steady-state availability, stochastic reward net, Markov 
regenerative process, phase expansion

1. Introduction

Computer systems face an increased number of security threats, which exploit the
system’s potential vulnerability to breach computer security, eventually causing pos-
sible damages such as information leakage and economic losses. Software testing is
important for ensuring a program’s quality, but it is acceptable that perfect software is
impossible to achieve. For example, software vulnerabilities are discovered and
disclosed continuously, even though developers carefully execute software testing in
the development phase [1]. Online vulnerability databases such as MITRE Corpora-
tion’s Common Vulnerabilities and Exposures (CVE) list1 and Open Source Vulnera-
bility Database (OSVDB)2 have reported a vast number of vulnerabilities for recent
years. According to CVE, 69,417 vulnerabilities were discovered in web applications
over the years 1999–2015 [2]. Due to the existence of vulnerabilities, the risk to cyber

1

2

http://www.cve.mitre.org 
https://cve.mitre.org/
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security becomes more significant, and the tricks of attacks also become cleverer and
more sophisticated [3]. That means how to guarantee computer security against
malicious attacks is a challenging task.

Computer security generally has three attributes; that is, confidentiality, integrity,
and availability (CIA) [4]. Two typical techniques, i.e., intrusion detection [5] and
intrusion tolerance [6], have been developed and well studied to protect the CIA.
Intrusion detection is traditionally used to prevent intrusion as a proactive barrier by
monitoring the system behavior. For example, misuse detection is to find the detec-
tion signature and anomaly detection is to predict the system’s anomaly by comparing
normal profiles. Nevertheless, unfortunately, intrusion detection is not still efficient
enough to prevent recent and sophisticated malicious attacks. On the other hand,
intrusion tolerance is practical to keep the correct services even under attack by
masking intrusion based on fault-tolerant techniques for software faults. Some
well-known intrusion tolerant systems (ITSs) are, for instance, the SITAR (scalable
intrusion tolerant architecture) [7], a concrete ITS architecture using COTS
(commercial-off-the-shelf) distributed servers, the BFT-WS [8], a Byzantine fault-
tolerant framework for web services providers, and the virtual machine (VM) based
ITS, a multistage ITS in virtualized computing environments [9–11].

However, there is no doubt that the most efficient way to ensure computer secu-
rity is to apply a patch to fix the vulnerable system before a malicious attack occurs.
The problem now in patch management from the user’s perspective is when to apply
the patch because the system may stop while the patch is applied. Even for ITSs, it is
essential to decide on an appropriate patch management strategy. Some literature
studies have considered such a security patch management from the user’s perspec-
tive. For example, Kansal et al. [12] presented a generalized framework to identify the
optimal patch applying strategy and its minimum cost when the level of system
reliability is retained. Uemura et al. [13] focused on typical DoS (denial-of-service)
attacks for SITAR and formulated the optimal security patch management policy via
semi-Markov models in terms of system availability. In [13], a push-type patch man-
agement was considered; that is, the vulnerability information was pushed to a client
whenever a new vulnerability was discovered. In the push-type patch management, a
patch can be applied just after release. But in fact, for open software projects, such as
Apache httpd server, the users need to check the vulnerability information by them-
selves; that is, pull-type patch management. Therefore, this chapter considers the
security patch management of SITAR architecture and discusses the pull-type patch
management strategies.

In this chapter, based on two availability measures, we reveal the effect of the
number of checking on the system availabilities. More specifically, we develop a
composite stochastic reward net (SRN) model [14] with the following four
submodules: a vulnerability model to describe the vulnerability discovery process, an
intrusion tolerance model to capture the system behaviors under reactive defense
strategies after the occurrence of a security failure, a clock model to control the
periodic checking interval, and a maintenance model to adopt the preventive and
corrective actions for security threats. Also, the phase-type (PH) expansion approach
is applied to analyze the Markov regenerative process (MRGP) derived from the SRN
to evaluate two kinds of system availabilities. The stationary analysis of MRGP is
generally achieved by employing an embedded Markov chain (EMC) approach based
on Markov renewal theory [15–18]. Despite this, it is relatively difficult for transient
cases. Besides, for the situation where the state in MRGP has multiple competitive
transitions timed with generally distributed firing time (GEN transition), it is difficult
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Figure 1.
Intrusion-tolerant architecture.
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to  analyze  the  MRGP  through  Markov  renewal  equations  since  it  is  difficult  to  use  the 
discretization  and  supplementary  variable  method  [19].  Therefore,  in  this  chapter,
we  seek  to  bridge  this  gap  by  developing  the  solution  with  PH  expansion  [19,  20],
which  is  to  replace  general  distributions  in  MRGP  with  approximate  PH  distributions 
and  reduce  the  original  MRGP  to  an  approximate  continuous-time  Markov  chain
(CTMC).  The  accuracy  of  PH  approximation  has  been  validated  in  [20].  In
particular,  this  chapter  utilizes  PH  expansion  of  MRGP  based  on  the  Kronecker 
representation.
  The  remaining  part  of  this  chapter  is  organized  as  follows.  In  Section  2,  we  intro-
duce  an  overview  of  an  ITS  and  describe  its  composite  SRN.  Section  3  presents  the 
performance  analysis  through  MRGP  analysis  and  PH-expansion  CTMC  analysis.  In 
particular,  the  system’s  interval  availability  and  steady-state  availability  under  patch 
management  are  formulated.  In  Section  4,  we  present  evaluation  results.  The 
conclusion  and  future  work  are  given  in  Section  5.

2. Intrusion-tolerant  system

2.1  System  architecture

  Consider  an  intrusion-tolerant  architecture  as  in  Figure  1,  which  is  the  SITAR 
architecture  [7].  In  this  figure,  the  part  within  the  denoted  box  is  regarded  as  an 
intrusion  tolerant  architecture  that  enables  us  to  build  intrusion-tolerant  servers  out  of 
the  existing  intrusion  vulnerable  servers  S1,  S2,  …  ,  Si.  The  architecture  consists  of  five
critical  components:  proxy  server,  acceptance  monitor,  ballot  monitor,  adaptive
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reconfiguration module, and audit control module. Pi, Bi, and Ai in the functional
blocks are the logical functions to be executed to satisfy a given service request.

The proxy servers act as public access points for the services provided. When a
request from remote client arrives at one of the proxy servers depending on the
service needs, the proxy servers forward the request to one or more COTS servers
based on the current intrusion-tolerant strategy. After receiving the COTS servers’
responses, the acceptance monitors apply certain validity check to these responses and
then forward them along with a check result indication to the ballot monitors. Besides,
the acceptance monitors detect the signs of compromised servers and produce intru-
sion triggers for the adaptive reconfiguration module. The ballot monitors make a
final response by either a simple majority voting or Byzantine agreement process and
then forward the final response to the proxy servers to be delivered to the remote
client.

The audit control module monitors the behaviors of all the other components in
the system, by verifying their audit logs. When intrusion is detected, the
corresponding information will be sent to the adaptive reconfiguration module. The
adaptive reconfiguration module receives intrusion trigger information from all other
modules, evaluates the threats, the tolerance objectives, and the cost/performance
impact, and finally generates new configurations for the system.

2.2 System behavior

2.2.1 Intrusion tolerance scheme

The system becomes vulnerable once the vulnerability in servers S1, S2, … , Si is
disclosed. In this state, the system may encounter security threats that exploit discov-
ered vulnerabilities. When a malicious attack arrives, the system moves to the active
attack state and attempts to detect the intrusion threat. If the threat is detected
successfully, the system begins to diagnose the detected threat and then tries to mask
the compromised part; otherwise, security failure occurs and then a recovery process,
namely corrective maintenance, is conducted. The system becomes normal again after
the recovery ends.

For the case where the intrusion threat is detected successfully and the masking of
compromised parts succeeds, the system can continually provide services to users
after a minor fix in the background. Once the masking fails, several corrective
inspections are tried in parallel with services. If a fatal system error is inspected, the
system fails and becomes unavailable. In such a case, a recovery operation is executed
to fix a fatal system error. The system goes back to the normal again after the
completion of the recovery operation. If a fatal system error is not found, the system
can keep servicing with a degraded performance if the attack’s damage is not so large,
or move to a fail-secure state otherwise, in which the system stops servicing to users.
In either case, the system becomes normal after removing the system secure errors.

On the other hand, the system applies security patches if preventive maintenance
(i.e., security patch application) is triggered before the attack. After completing the
preventive maintenance, the state becomes normal.

2.2.2 Periodic vulnerability checking strategy

Maintenance strategies aim to prevent malicious attacks by executing the security
patch application. This chapter considers pull-type patch management with a periodic
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vulnerability checking strategy. Figure 2 illustrates the periodic checking points for
discovered vulnerabilities. The length of one checking interval is given by t0, and the
time points t0, 2t0, … , nt0 are checking points for deciding whether to implement
patches or not. At these checking points, if discovered vulnerabilities exist, the system
stops providing services and executes a patch application. Otherwise, the system
continues to provide services. The pull-type patch management with a periodic
vulnerability checking strategy is described as follows.

Apply the security patch if discovered vulnerabilities exist in the system at the
checking points. The length of the checking interval is denoted by t0 >0ð Þ.

2.3 Stochastic reward net

The SRN is a highly representative model, consisting of: place P, represented by
circle; transition T, represented by box; directed arcs, connecting places and transi-
tions; and token(s). A transition is enabled if all of its input places have at least one
token. When a transition is enabled, it may be fired to remove one token from each
input place and create one token at each output place. Places may be marked by an
integer number of tokens. The overall state of a system is represented by a vector
consisting of the markings on each place. In SPN, there may exist the following types
of transitions; (i) IMM transition (immediate, i.e., they fire in zero time); (ii) EXP
transition (timed with exponentially distributed firing time); and (iii) GEN transition
(timed with generally distributed firing time). In general, the IMM transition, EXP
transition, and GEN transition are often expressed by a thin black bar, a white box,
and a thick black bar, respectively. When more than two transitions are enabled
simultaneously, guard functions are added to these transitions to control the firing
sequence. A transition with a guard function occurs when the value of the guard
function is evaluated to be true. The SRN can capture common characteristics of
computer systems such as concurrency, synchronization, and sequencing, so it is
widely used for stochastic modeling.

In this chapter, we present an SRN with the following submodules for the
aforementioned ITS:

1.Vulnerability model, which depicts the vulnerability discovery process.

2. Intrusion tolerance model, which determines the system operation after a
security threat occurs.

3.Clock model, which controls the checking interval.

4.Maintenance model, which describes the preventive and corrective actions for
security threats.

Figure 3 depicts the composite SRN of the ITS with the pull-type patch manage-
ment described in 2.2.2.

Figure 2.
Periodic vulnerability checking points.
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2.3.1 Vulnerability model

Figure 3a depicts an SRN of the vulnerability discovery process. As in Figure 3a, the
model has two place (Pvulfree and Pvulnerable), one IMM transition (tvulrm) and one EXP
transition (Tvuldisc). A token in Pvulfree denotes that the system is vulnerability-free, i.e., no
vulnerability has been discovered. When Tvuldisc fires, one token is removed from Pvulfree

Figure 3.
Composite SRN for the ITS (a) Vulnerability model, (b) intrusion tolerance model, (c) clock model, and (d)
maintenance model.
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Node Description

Pnorm The system is in a normal state.

Patk Threat has occurred in the system. The system attempts to detect the threat.

Pundet Threat cannot be detected. The security failure occurs due to the attack and the system is forced to
undergo recovery processes.

Pdet Threat has been detected. The system begins to diagnosis the detected threat.

Pmask The compromised part is being masked. Concretely, the system provides services to users, though
minor errors causing threat are being fixed in the background.

Ptriage Threat triage state. Several corrective inspections are tried in parallel with services.

Pfail The system fails and starts a recovery operation to fix a fatal system error.

Peval The damage of attack is being evaluated.

Pfsec The system becomes fail-secure. The system stops servicing to users and applies recovery operation.

Pgdeg The system keeps servicing while the quality of service is degraded.

Pcomp The recovery operation is completed.

Tatk The system is attacked by adversary.

Tundet The threat is undetected.

Tdet The threat is detected.

tmask The compromised part is masked.

ttriage Threat triage begins.

Tfail The system fails.

Teval The damage of attack is evaluated.

tfsec The system becomes fail-secure.

tgdeg The system degrades.

Trc1 The system is in recovery process regarding detection failure.

Trc2 The system is in recovery process regarding masking.

Trc3 The system is in recovery process regarding system failure.

Trc4 The system is in recovery process regarding fail-secure.

Trc5 The system is in recovery process regarding graceful degradation.

Table 1.
Places and transitions in SPN for intrusion tolerance model (see Figure 3b).
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and  put  in  Pvulnerable,  which  means  that  the  vulnerability  is  discovered,  and  the  system 
becomes  vulnerable.  Once  the  value  of  the  guard  function  of  tvulrm  is  true  (i.e.,  the  system 
is  under  patch  application),  the  system  returns  the  vulnerability-free  state  immediately.

2.3.2  Intrusion  tolerance  model

  Figure  3b  presents  an  SRN  of  the  intrusion  tolerance  model,  which  determines  the 
system  operation  after  a  security  threat  occurs.  In  this  figure,  GEN  transitions  with 
the  generally  distributed  firing  times  (represented  by  thick  black  bars)  are  used.  Each 
place  and  corresponding  transition  represent  the  status  of  progress  of  an  intrusion
tolerant  process  and  are  given  as  Table  1.
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2.3.3 Clock and maintenance models

In this chapter, the security patch application is regarded as the maintenance
action. Figure 3d and c describe the maintenance model and its clock model. As in
Figure 3c, the clock model controls the checking interval; that is, if a checking point is
reached, the transition Tmtinterval, corresponding to the checking interval t0, fires, then
the token in Pmtclock is removed, and a token is put into Pmtsignal. Upon confirmation
that the maintenance model has received the signal of reaching a checking point
(i.e., # Pmtinspec

� � ¼ 1), the clock is reset with transition tmtreset immediately. On the
other hand, from Figure 3d, we see that the maintenance model contains four places,
one GEN transition, five IMM transitions, and one token in Pmtwait, indicating that the
system is waiting for a maintenance operation. Besides, a token in Pmtinspec represents
that the system is checking whether to execute a patch application; once there exists
discovered vulnerabilities at the checking point (i.e., the guard function gmttring1 is
true), the system performs patch application; otherwise, the system continues to wait
for the next checking point. A token in Pmtexec means that the system is carrying out
the maintenance, and the time spent is given by transition Tmttime. A token in Pmtcomp

says that a maintenance is completed, and then the system goes back to the normal
state with transition tnorm in Figure 3b and becomes ready for the next maintenance
chance through transition tmtready. Note that transition tmttrig2 indicates the mainte-
nance triggered due to a security threat.

In these above SRNs, the guard functions are shown in Table 2, which determine
the enabled timing and are given by the interrelationships between the transition and
the corresponding places. A marking of composite SRN is given by a vector that
represents the number of tokens for all the places and provides the state of ITS.
Actually, the composite SRN can be described by the underlying stochastic process,
called MRGP [21], and analyzed by using MRGP analysis based on Markov renewal
theory [15, 16]. The MRGP is one of the favored techniques for modeling system
behavior with non-Markovian processes, can adequately represent more complex

Guard function

gvuldisc # Pmtwaitð Þ ¼ 1

gvulrm # Pmtexecð Þ ¼ 1

gatk # Pvulnerableð Þ ¼ 1

gnorm # Pmtcomp
� � ¼ 1

gmtreset # Pmtinspec
� � ¼ 1 # Pmtexecð Þ ¼ 1

gmtinter # Pmtsignal
� � ¼ 1

gnotrig (# Pnormð Þ ¼ 0 # Pvulfree
� � ¼ 1) && # Pmtclockð Þ ¼ 1

gmttrig1 # Pnormð Þ ¼ 1 && # Pvulnerableð Þ ¼ 1 && # Pmtclockð Þ ¼ 1

gmttrig2 # Pcomp
� � ¼ 1

gmtready # Pnormð Þ ¼ 1

Table 2.
Enabling functions in the composite SRN.
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The phase expansion, alternatively PH approximation, is the technique by using
PH distribution, which is defined as the probability distribution of the absorbing time
in a CTMC with absorbing states. The PH distribution is practical, since it can
approximate any probability distribution with high precision. To take benefit from
this property, an approximate CTMC can be obtained by replacing probability
distribution with PH distributions. Without loss of generality, the infinitesimal
generator Q of CTMC is assumed to be partitioned as follows:

Q ¼ T ξ

0 0

� �
, (1)

Figure 4.
State transition diagram of ITS with periodic vulnerability checking strategy.

3

https://github.com/okamumu/JSPetriNet

9

Pull-Type  Security  Patch  Management  in  Intrusion  Tolerant  Systems:  Modeling  and  Analysis
DOI:  http://dx.doi.org/10.5772//105766

software  intrusion  tolerant  process  and  maintenance  actions,  and  has  been  success-
fully  applied  in  several  modeling  analyses  [16–19].

3. Performance  analysis

  The  performance  criteria  of  interest  in  this  chapter  are  the  interval  availability  and 
the  steady-state  availability  of  the  system,  which  require  the  state  probabilities  of 
MRGP  derived  according  to  the  analysis  of  composite  SRN  described  in  2.3  by  using
JSPetriNet  software  package3.  The  MRGP  model  of  ITS  is  depicted  in  Figure  4.  In  this 
figure,  the  solid  lines  denote  the  GEN  transitions,  whereas  the  dashed  ones  denote 
EXP  transitions.  In  particular,  all  states  except  SG

mtint  have  two  competitive  GEN
transitions.  In  such  a  case,  it  is  difficult  to  obtain  the  state  probabilities  of  MRGP 
through  Markov  renewal  equations  because  it  is  hard  to  use  the  discretization  and 
supplementary  variable  method  [19].  This  chapter,  therefore,  considers  the  solution 
with  phase-type  (PH)  expansion  for  analyzing  the  MRGP  model  of  the  ITS.  Also,
in  this  chapter,  we  utilize  the  PH  expansion  of  MRGP  based  on  the  Kronecker 
representation.

3.1  PH  approximation
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where T and ξ correspond to transition rates among transient states and the exit
rates from transient states to the absorbing state, respectively. Let α be an initial
probability vector over the transient states. Then, the cumulative distribution func-
tion (c.d.f.) of a PH-distributed variable with representation α, Tð Þ and its associated
probability density function (p.d.f.) are represented by

FPH tð Þ ¼ 1� α exp Ttð Þ1, f PH tð Þ ¼ α exp Ttð Þξ, (2)

where 1 is a column vector whose elements are all 1. Note that the transient states
are called phases, and the exit rate vector is given by ξ ¼ �T1, according to the
property of CTMC. In particular, the accuracy of approximation depends on the
number of phases.

In the MRGP shown as in Figure 4, the state space is divided into nine classes
(more details on MRGP state classification is referred to [18]);

• SG
mtint, consisting of the states where only GEN transition, Tmtinterval is enabled.

• SG
rc1, consisting of the states where both GEN transitions, Trc1 and Tmtinterval, are

enabled.

• SG
rc2, consisting of the states where both GEN transitions, Trc2 and Tmtinterval, are

enabled.

• SG
rc3, consisting of the states where both GEN transitions, Trc3 and Tmtinterval, are

enabled.

• SG
rc4, consisting of the states where both GEN transitions, Trc4 and Tmtinterval, are

enabled.

• SG
rc5, consisting of the states where both GEN transitions, Trc5 and Tmtinterval, are

enabled.

• SG
eval, consisting of the states where both GEN transitions, Teval and Tmtinterval, are

enabled.

• SG
mttime, consisting of the states where both GEN transitions, Tmttime and Tmtinterval,

are enabled.

• SG
vuldisc, consisting of the states where both GEN transitions, Tvuldisc and Tmtinterval,

are enabled.

The general distributions of GEN transitions, Tx, x∈ mtintf , rc1, rc2, rc3, rc4, rc5,
eval,mttime, vuldiscg are given by Fx tð Þ. In particular, we denote t0 as the length of one
checking interval, following the constant distribution:

Fmtint tð Þ ¼
0 t< t0,
1 t≥ t0:

�
(3)

That means, the checking interval t0 is deterministic.

10
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Frc1 tð Þ≈ 1� α1 exp T1tð Þ11, f rc1 tð Þ≈ α1 exp T1tð Þξ1,
Frc2 tð Þ≈ 1� α2 exp T2tð Þ12, f rc2 tð Þ≈ α2 exp T2tð Þξ2,
Frc3 tð Þ≈ 1� α3 exp T3tð Þ13, f rc3 tð Þ≈ α3 exp T3tð Þξ3,
Frc4 tð Þ≈ 1� α4 exp T4tð Þ14, f rc4 tð Þ≈ α4 exp T4tð Þξ4,
Frc5 tð Þ≈ 1� α5 exp T5tð Þ15, f rc5 tð Þ≈ α5 exp T5tð Þξ5,
Feval tð Þ≈ 1� αe exp Tetð Þ1e, f eval tð Þ≈ αe exp Tetð Þξe,
Fmttime tð Þ≈ 1� αm exp Tmtð Þ1m, f mttime tð Þ≈ αm exp Tmtð Þξm,
Fvuldisc tð Þ≈ 1� αv exp Tvtð Þ1v, f vuldisc tð Þ≈ αv exp Tvtð Þξv,

(4)

where 11, 12, 13, 14, 15, 1e, 1t, and 1v are the 1’s column vectors, and

ξ1 ¼ �T111, ξ2 ¼ �T212, ξ3 ¼ �T313,
ξ4 ¼ �T414, ξ5 ¼ �T515, ξe ¼ �Te1e,
ξm ¼ �Tm1m, ξv ¼ �Tv1v:

(5)

Let Qx,x, x∈ f ið Þ mtint, 1ð Þ rc1, 2ð Þ rc2, 3ð Þ rc3, 4ð Þ rc4, 5ð Þ rc5, eð Þ eval, mð Þ mttime,
vð Þ vuldiscg be the infinitesimal generator matrix of non-regenerative transitions of SG

x .
The CTMC transition rate matrix from SG

x to SG
y is denoted byQx,y. On the other hand,

Ak
x,y denote the regenerative transitions from SG

x to SG
y triggered by transition Tk with

probability Fk tð Þ, k∈ mtintf , rc1, rc2, rc3, rc4, rc5, eval, mttime, vuldiscg.
Then by taking account of one checking interval t0, the MRGP process during this

interval can be approximated by the CTMC with the following infinitesimal generator
as in Eq. (6), in which ⊗ and ⊕ are Kronecker product and sum. Apparently, the
transition probability triggered by transition Tmtinterval in Figure 3c with probability
Fmtint tð Þ is given by Eq. (7). In this equation, I is an identity matrix.

Q ¼

Q i,i Q i,1 ⊗ α1 Q i,2 ⊗α2 Q i,e ⊗αe

Q 1,1⊕T1 Arc1
1,m ⊗ ξ1αmð Þ

Q 2,2⊕T2 Arc2
2,m ⊗ ξ2αmð Þ

Q 3,3⊕T3 Arc3
3,m ⊗ ξ3αmð Þ

Q4,4⊕T4 Arc4
4,m⊗ ξ4αmð Þ

Q 5,5⊕T5 Arc5
5,m ⊗ ξ5αmð Þ

Q e,3 ⊗ 1eα3ð Þ Aeval
e,4 ⊗ ξeα4ð Þ Aeval

e,5 ⊗ ξeα5ð Þ Q e,e⊕Te

Avuldisc
v,i ⊗ ξv Q v,v⊕Tv

Amttime
m,v ⊗ ξmαvð Þ Qm,m⊕Tm

0
BBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCA

:

(6)

P ¼

Amtint
i,i Amtint

i,m ⊗αm

Amtint
1,1 ⊗ I

Amtint
2,2 ⊗ I

Amtint
3,3 ⊗ I

Amtint
4,4 ⊗ I

Amtint
5,5 ⊗ I

Amtint
e,e ⊗ I

Amtint
v,v ⊗ I

Amtint
m,m ⊗ I

0
BBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCA

: (7)
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  In  this  chapter,  the  general  distributions  are  approximated  by  the  following  PH  
distributions:
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We next consider the checking point when the transition Tmtinterval fires with the
probability Fmtint tð Þ, then the underlying process is actually an EMC with only one
subspace that consists of the states where only GEN transition Tmtinterval is enabled.
Thus, the transition matrix on this regeneration point regarding Fmtint tð Þ is given by

PEMC ¼ exp Q t0ð ÞP: (8)

3.2 Availability measures

It is well known that availability is an important metric commonly used to assess
the performance of repairable systems by considering both the reliability and main-
tainability properties of computer systems. There exist many classifications and defi-
nitions of availability, and they are used for different system environments properly.
For example, when the system has a long lifetime, the steady-state availability [22] is
appropriate to represent the system performance. On the other hand, when one
wishes to ensure the system performance for a specific time period, the interval
availability [23, 24] may be chosen to present the proportion of time during a mission
or time period that the system is available for use. In this chapter, we focus on two
availability criteria: interval availability and steady-state availability of the system.
The interval availability is defined as the expected fraction of a given interval of time
that the system is operational and is appropriate when one wishes to ensure the system
availability for a specific time period. On the other hand, the steady-state availability
is the limiting availability and is appropriate when the targeted system is continuously
operated for a long time.

3.2.1 Interval availability

Let π0 denote the initial probability vector of the PH-expanded CTMC. Without
loss of generality, it is assumed that the system starts at time t ¼ 0. For the time
interval 0, nt0ð �, the interval availability is given by

A nð Þ
in ¼ 1

nt0
ðπ0 þ π0PEMC þ π0PEMC2þ

⋯þ π0PEMC n�1ð ÞÞ Ð t00 exp Qsð Þdsr:
(9)

In the above equation, r is the reward vector of the PH-expanded CTMC, and
defined as

r ¼

rmtint

rrc1 ⊗ 11
rrc2 ⊗ 12
rrc3 ⊗ 13
rrc4 ⊗ 14
rrc5 ⊗ 15
reval ⊗ 1e
rvuldisc ⊗ 1v
rmttime ⊗ 1m

0
BBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCA

, (10)
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where ri is the reward vector of system states belonging to corresponding subspace.
For example, the interval availability within the first checking interval becomes

A 1ð Þ
in ¼ 1

t0
π0

ðt0
0
exp Qsð Þdsr: (11)

3.2.2 Steady-state availability

Using Eq. (8), the steady-state probability distribution πEMC ¼ πEMC
mtint

�
, πEMC

rc1 , πEMC
rc2 ,

πEMC
rc3 , πEMC

rc4 , πEMC
rc5 , πEMC

eval , π
EMC
vuldisc, π

EMC
mttimeÞ can be computed by solving the following

linear equation:

πEMC ¼ πEMCPEMC, πEMC1 ¼ (12)1,

where 1 is a column vector whose elements are 1.
Finally, we obtain the steady-state availability of the system:

Ass ¼ πEMCr: (13)

4. Numerical experiments

This section evaluates the interval availability and steady-state availability of the
system, where the system undergoes the pull-type patch management with a periodic
vulnerability checking strategy. Table 3 gives the parameters for EXP transitions in

Value [hrs.]DescriptionParameter

1=Tatk:rate 1200Mean time to complete an intrusion

1=Tundet:rate 8Mean time passed since detection start and detection failure

1=Tdet:rate 12Mean time to detect an intrusion

1=Tfail:rate 6Mean time to failure of a triage

Table 3.
Model parameters.

CVMean [hrs.]DistributionTransitionNotation

Fvuldisc tð Þ SG
vuldisc to SG

mtint
0.51440Weibull

Frc1 tð Þ SG
rc1 to SG

mttime
0.524Lognormal

Frc2 SG
rc2 to SG

mttime
0.512Lognormal

Frc3 tð Þ SG
rc3 to SG

mttime
0.548Lognormal

Frc4 tð Þ SG
rc4 to SG

mttime
0.530Lognormal

Frc5 tð Þ SG
rc5 to SG

mttime
0.540Lognormal

Feval tð Þ SG
eval to SG

rc4 (SG
rc5) 0.58Lognormal

Fmttime tð Þ SG
mttime to SG

mtint
0.510Lognormal

Table 4.
Probability distributions of GEN transitions.
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Figure 5.
Approximate PH distributions ((a) Fvuldisc tð Þ, (b) Frc1 tð Þ, (c) Frc2 tð Þ, (d) Frc3 tð Þ, (e) Frc4 tð Þ, (f) Frc5 tð Þ, (g)
Feval tð Þ, (h) Fmttime tð Þ).
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Figure 7.
Sensitivity of the number of checking on the steady-state availability.

Figure 6.
Sensitivity of the number of checking on the interval availability.
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Figure  3.  The  probability  distributions  for  GEN  transitions  Tvuldisc,  Trc1,  Trc2,  Trc3,  Trc4,
Trc5,  Teval,  and  Tmttime  are  given  in  Table  4,  where  the  columns  of  “Mean”  and  CV
represent  the  mean  time  and  the  coefficient  of  variation,  respectively.

  Figure  5a–h  draw  the  original  probability  distributions  for  GEN  transitions  and  the 
approximate  PH  distributions  with  10  phases.  These  figures  indicate  that  the  PH 
distributions  are  accurate  enough  to  approximate  the  general  distributions.
  To  investigate  the  effect  of  the  number  of  checking,  we  consider  the  number  of 
checking  during  1  year,  N,  varying  from  4  to  36.  For  example,  in  the  case  of  N  ¼  4,
the  length  of  one  checking  interval  is  3  months.  In  the  case  of  N  ¼  36,  the  length  of 
one  checking  interval  is  about  10  days.
  Figure  6  depicts  the  interval  availability  of  the  system,  which  increases  monoton-
ically  as  the  number  of  checking,  N,  increases.  In  particular,  the  interval  availability 
increases  sharply  when  the  number  of  checking  is  very  small.  In  such  a  case,  the 
length  of  one  checking  interval  decreased  remarkably;  for  example,  when  N  ¼  4,  it
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takes almost 3 months to execute a checking operation, whereas the checking interval
reduces to 2.4 months in the case of N ¼ 5. However, when N increases from 35 to 36,
the checking interval almost does not change. Besides, it is intuitively obvious that a

N t0 [days] Interval availability Steady-state availability

4 91.3 0.99088 0.98679

5 73.0 0.99177 0.98726

6 60.8 0.99248 0.98795

7 52.1 0.99308 0.98862

8 45.6 0.99360 0.98925

9 40.6 0.99405 0.98985

10 36.5 0.99444 0.99040

11 33.2 0.99478 0.99091

12 30.4 0.99507 0.99137

13 28.1 0.99534 0.99180

14 26.1 0.99558 0.99219

15 24.3 0.99580 0.99254

16 22.8 0.99600 0.99287

17 21.5 0.99618 0.99317

18 20.3 0.99634 0.99345

19 19.2 0.99649 0.99372

20 18.3 0.99663 0.99396

21 17.4 0.99676 0.99418

22 16.6 0.99688 0.99439

23 15.9 0.99699 0.99459

24 15.2 0.99709 0.99478

25 14.6 0.99719 0.99495

26 14.0 0.99728 0.99512

27 13.5 0.99736 0.99527

28 13.0 0.99744 0.99542

29 12.6 0.99752 0.99555

30 12.2 0.99759 0.99569

31 11.8 0.99765 0.99581

32 11.4 0.99772 0.99593

33 11.1 0.99777 0.99604

34 10.7 0.99783 0.99615

35 10.4 0.99789 0.99625

36 10.1 0.99794 0.99634

Table 5.
The number of checking per year and its corresponding length of checking interval and availabilities.
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shorter  checking  interval  generally  brings  higher  availability.  Therefore,  when  N  is  a 
small  value,  the  interval  availability  is  very  sensitive  to  the  change  in  the  value  of  N.
  On  the  other  hand,  the  steady-state  availability  of  the  system  is  shown  in  Figure  7.
From  this  figure,  it  is  found  that  the  steady-state  availability  also  increases  as  the 
number  of  checking,  N,  increases.  Furthermore,  more  details  on  the  experimental 
results  about  the  number  of  checking  per  year  and  its  corresponding  length  of  one
checking  interval  and  availabilities  are  referred  to  Table  5.  From  this  table,  we  can  see  
that  for  any  given  N,  the  interval  availability  is  higher  than  the  steady-state  availability.

5. Conclusion  and  future  work

  In  this  chapter,  we  presented  a  stochastic  model  to  evaluate  the  system  availability 
of  an  ITS,  where  the  system  undergoes  the  patch  management  with  a  periodic  vul-
nerability  checking  strategy;  that  is,  pull-type  patch  management.  Concretely,  a  com-
posite  SRN  model  was  developed  to  capture  the  overall  system  behaviors,  including 
vulnerability  discovery,  intrusion  tolerance,  and  reactive  maintenance.  Two  kinds  of 
availability  criteria,  the  interval  and  steady-state  availabilities,  were  formulated  by 
using  phase  expansion.  In  numerical  experiments,  we  evaluated  the  effect  of  the 
checking  number  on  the  system  availability,  and  the  results  imply  that  when  the 
checking  number  is  small  (a  long  checking  interval),  the  variation  in  the  checking 
number  brings  an  significant  effect  into  the  interval  availability.  In  addition,  both 
interval  availability  and  steady-state  availability  increase  monotonically  as  the  number 
of  checking  increases.  We  have  also  validated  the  accuracy  of  the  PH  approximation 
with  10  phases.
  The  chapter  aims  is  to  present  a  method  for  formulating  the  system  availability 
from  both  transient  and  stationary  points  of  view  and  evaluate  the  effect  of  the 
number  of  checking  on  the  system  availability.  Nevertheless,  it  is  actually  well  known 
that  one  of  the  main  issues  in  the  design  of  security  patch  management  is  to  determine 
the  optimal  length  of  checking  interval  bringing  the  optimal  trade-off  between  system 
performance  and  checking  cost.  For  example,  if  the  checking  interval  is  too  short,  the 
system  availability  will  be  high,  but  the  total  checking  cost  will  be  very  high.  On  the 
other  hand,  if  the  checking  interval  is  too  long,  a  discovered  vulnerability  may  be 
exploited  by  malicious  attacks,  which  decreases  the  system  availability;  in  this  case,
the  checking  cost  can  be  reduced,  but  the  total  cost  due  to  security  failures  will  be 
high.  Therefore,  it  will  be  interesting,  as  one  of  future  directions,  to  find  the  optimal 
checking  number  (i.e.,  optimal  checking  policy)  by  the  consideration  of  both  system 
performance  and  maintenance  cost.
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Nomenclature

Intrusion tolerant systemITS
Stochastic reward netSRN
Phase-typePH
Markov regenerative processMRGP
Confidentiality, integrity, and availabilityCIA
Scalable intrusion tolerant architectureSITAR
Commercial-off-the-shelfCOTS
Virtual machineVM
Denial-of-serviceDoS
Embedded Markov chainEMC
Continuous-time Markov chainCTMC
Generally distributedGEN
Exponentially distributedEXP
Cumulative distribution functionc.d.f.
Probability density functionp.d.f.
Coefficient of variationCV
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Chapter 6

Automated Condition Monitoring
of a Cycloid Gearbox
Eric Bechhoefer

Abstract

While condition monitoring techniques have been developed for many gearbox 
types, there has been almost no research on condition monitoring of cycloid driver 
gearboxes. Cycloid gearboxes are used where high reduction ratios are needed in a 
single stage. While most gear designs are based on an involute subject to a sliding 
force, cycloid gear designs are subject to compression. As a result, cycloid gearboxes 
are quiet, have low backlash, and have large torsional stiffness. Because there is no 
typical pinion-gear pair in this gearbox, the calculation of the reduction ratio is non-
standard. Further, as the eccentric bearing which drives the cycloid gears is in the 
rotating frame, the calculated fault frequency rates are not as expected. This paper 
describes the dynamics needed to identify cycloid gearbox fault features to achieve 
automated fault detection and alerting.

Keywords: TSA, threshold setting, bearing envelop analysis, resonance, model-based 
dynamics

1. Introduction

There are few non-standard condition monitoring applications for unusual gearbox
designs. While most reduction (example: epicyclical) gearboxes have well-understood
dynamics, others, such as a Variator (continuously variable transmission) or cycloidal
gearbox, have not been reported. This paper covers the dynamics, configuration, and
some test observations of work done on a cycloidal gearbox. The analysis procedure
applies to other, more standard gearboxes as well.

In a cycloidal gearbox, the drive uses an eccentric bearing that causes the gears’
center to rotate in a housing. The rotation orbit is reversed as the gear’s teeth are less
than the housing’s diameter. The path of a fixed point of the gear traces a hypocycloid,
which is fundamentally different from the circular motion of traditional gears.

Interest in the cycloidal gearbox is derived because they are used in many applica-
tions where low-cost drive motors are needed. For example, many conveyer belt
systems (sorting, moving bulk media, slew drives) use cycloid drives. Typically, the
drive itself is a relatively low-cost asset. However, the processes that drive unit
support can have significant economic impacts if they fail. For example, one of the
more significant courier delivery services has a distribution center with 3000 cycloid
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drives to move packages. The loss of a drive unit halts sorting, impacting up to
$200,000 per day in revenues.

The cycloid drive for gearboxes allows for a high reduction ratio and zero or very
low backlash. The cycloid gear design is based on compression vs. shear forces, where
the contact is typically rolling vs. sliding. These features allow high shock load capac-
ity, high torsional stiffness, and quiet operation. Single-stage ratios of more than 200:1
are possible.

The gearbox chosen for the test was an integrated induction motor and gearbox.
This gearbox is rated for 0.75 kW, approximately 1 Hp drive. For 60 Hz operations,
using a four-pole motor, the drive unit has a 100% input shaft rate of approximately
1795 rpm. The gearbox has a 51:1 reduction ratio.

2. State of the art for gearbox condition monitoring

There has been little documented work on the condition monitoring of cycloidal
gearboxes. Chrochran and Bobak [1] describe the complexity of vibration analysis of
cycloid gearbox using traditional spectrum analysis. They give information on calcu-
lating the cycloidal disc mesh frequency but do not describe a method for automated
fault detection. There is no process given for bearing fault frequency indication.

Condition monitoring of motors or gearboxes has generally used spectrum analy-
sis. The spectrum measures the magnitude of a frequency associated with the compo-
nent fault frequencies, such as a shaft or gear mesh. The Fourier transform, used in
spectrum analysis, is defined by cosines. The spectrum is good at measuring periodic
sinusoids. However, many faults result in impacts that are not well measured by the
spectrum. In recognizing this, R.M. Stewart [2] ushered in modern gearbox analysis
using the Time Synchronous Average (TSA). The TSA, which controls for variance
in speed, also performs as a comb filter that rejects nonsynchronous vibration fea-
tures. The resulting time-domain signal reveals impact features. These features
can be quantified via statics indicators, such as RMS, kurtosis, skewness, or crest
factor [3, 4].

3. Vibration-based condition monitoring

Condition monitoring uses vibration sensors and configuration representing the
drivetrain/motor to calculate condition indicators (CIs). These CIs are used to infer
the current health of the component, and with the current component health, and the
component threshold, an estimate the remaining useful life (RUL) can be estimated.
The RUL (e.g., prognostics) allows the operator to better manage the asset by sched-
uling maintenance opportunistically. The goal, along with increased asset safety, is
improved availability and more opportunities for revenue generation.

Some CIs have physical meaning. For example, a shaft imbalance is measured by
the 1st shaft harmonic (SO1), typically as a velocity such as inches per second (IPS).
ISO 10816 Vibration gives direction on these limits for various equipment types.
Other fault conditions for shafts could include bending or coupling issues, which
excite high harmonics. For these faults, there are no standard limits. Similarly, for
components such as gears and bearings, the CIs have little physical meaning, and
statistical or machine learning methods are used to set a threshold representative of a
fault condition.

2
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Acceleration, the second derivative of displacement, is a function of the shaft rate
to the second power. Hence, acceleration from high-speed shaft tends to dominate
simpler time-domain statics such as RMS. The vibration spectrum can give magnitude
for a given shaft or gear mesh in the frequency domain. This is valid if the shaft rate is
relatively stable RPM. However, for many systems, Fourier analysis, of say, the Gear
mesh frequency is not necessarily a good fault indicator. For bearings, detection of the
fault frequency (Cage, Ball, Inner, or Outer Race rate) is only possible close to failure.
For these reasons, more advanced analyses are required.

Signal processing techniques such as the Time Synchronous Average (TSA) is
used to control for variance in shaft rate and are the basis of gear condition
indicators. As the TSA is a time-domain analysis, it is sensitive to impacts associated
with, for example, a breathing crack. However, TSA does not work for bearing analy-
sis. Bearings require other techniques because their motion depends on non-Hertzian
contact resulting in slip (by definition, nonsynchronous). Additionally, due to the
nature of bearing faults (e.g., we are measuring the effect of an impact inducing
resonance in the bearing itself), successful fault detection requires careful consider-
ation of parameter inputs necessary (e.g., envelope window) to perform the analysis.

3.1 Analysis based on the time synchronous average

Modern techniques for vibration diagnostics using the TSA were introduced in
“Some Useful Data Analysis Techniques for Gearbox Diagnostics” [2]. In addition to
the TSA, Stewart proposed several new gear fault condition indicators. These gear
algorithms and subsequent new analyses by McFadden [3], Ma [5], and others are
based on the functions operating on the TSA.

The model for vibration in a shaft in a gearbox was given in [2] as:

x tð Þ ¼
Xk
i¼1

Xi 1þ ai tð Þð Þ cos 2πifm tð Þ þ ϕi tð Þð Þ þ b tð Þ (1)

where:
Xi is the amplitude of the kth mesh harmonic.
FM(t) is the average mesh frequency.
ai(t) is the amplitude modulation function of the ith feature harmonic.
ϕi(t) is the phase modulation function of the ith feature harmonic.
b(t) is additive background noise.
The mesh frequency is a function of the shaft rotational speed: FM = Nf(t), where

N is the number of teeth on the gear and f(t) is the shaft speed as a function of time.
As most drive motors are induction machines, the slip, and hence, motor speed, will
change based on changes in torque over time. This will cause the resulting spectrum to
be smeared in the frequency domain.

The vibration data can be resampled with a tachometer signal (such as a key
phasor) and with the ratio from the key phasor to the shaft under analysis. The
number of data points between one revolution and the next revolution is the same.
The time-synchronous averaging (TSA), sums each point over the revolution,
with the resampled data, then divides by the number of revolutions during the
acquisition.

Since the radix-2 FFT is most used, the number of data points in one shaft
revolution (n) is interpolated into m number of data points, such that:
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• For all shaft revolutions n, m is larger than r (the number of samples in one
revolution), and

• m = 2ceiling (log2 (r))

The TSA acts as a comb filter, where the passband (comb) is each shaft harmonic.
This removes nonsynchronous signals from the TSA. Operations on the TSA, such are
RMS or magnitude of the first harmonics of the Fourier transform of the TSA, define
various Condition Indicators (CIs). There are many potential CIs, which may include
the second and third harmonics derived from the spectrum of the TSA, and other
statistics such as: Peak to Peak, or kurtosis (Figure 1).

As there are gears associated with the input/output shaft, further analysis is
performed on the TSA and the spectrum of the TSA. Some analyses are
classified as gear specific, which use the number of teeth on the gear under analysis
(FM0 [2], the AM/FM analysis [3], for example). Other non-gear-specific analyses
are also performed, such as the residual or the energy operator (a time/frequency
analysis). It should be noted that there are many implementations of gear analysis
[4], and there is no single analysis that works for every gear fault type. In this
implementation, the system generated 18 CIs for each gear (Figure 2).

3.2 Basic gear analysis

Figure 1.
Calculation of the TSA.

Figure 2.
Operating on the TSA to generate gear condition indicators.
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ΨEO TSAnð Þ ¼ TSA2
n � TSAnþ1 � TSAn�1 (2)

The Narrowband analysis [3] uses the Fourier transform as a bandpass filter to
remove all frequencies not associated with the gear mesh. The selection of the filter
bandwidth is usually 25% of the gear tooth count. For example, if the TSA is length
1024, and the gear tooth count is 31, the filter bandwidth is 31/4 = 8, or [23 to 39].
After taking the Fourier transform of the TSA, the from DC to index (31–8) = 23, and
index 39 to 512 are set zero (along with their conjugate). The Narrowband signal is
then the real part of the inverse Fourier transforms.

The AM (amplitude modulation) Analysis is the envelope of the narrowband
signal. Essentially, this is simply the magnitude of the Hilbert transform. Similarly, the
FM (frequency modulation) Analysis is derivative (instantaneous frequency) of the
argument of the Hilbert transform.

The TSA Fourier transform is used for miscellaneous analysis [2, 4, 5]. The
Figure of Merit 0, for example, is a well know analysis [2] and is generally
calculated as:

FM0 ¼ tsapeaktopeak=
P3

i¼1
GMi

(3)

GMi is the i
th gear mesh harmonic. As the TSA is a time-domain signal, the

peak-to-peak value is the maximum of the TSA time domain value minus the
minimum of this TSA time domain value. In general, the peak to peak will increase
over time as if there is a propagating cracked or soft tooth, while the gear mesh
harmonics will remain constant. FM0 can be a powerful indicator of a crack or soft
tooth.

The residual RMS is sensitive soft/crack tooth, as the residual of the TSA does not
remove features associated with the impact of a breaking crack. The RSM of the TSA
will is not as sensitive to these impact events. As such, the ratio of the residual RMS to
the TSA RMS can be a helpful condition indicator, defining the energy ratio. If the
residual signal is defined as r, and the TSA is tsai, then.

er ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1 ri � rð Þ2
n

s � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 tsai � tsað Þ2

n

s
(4)
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  In  the  residual  gear  analysis,  the  Fourier  transform  of  the  TSA  is  taken,  and  
harmonics  associated  with  shaft  and  gear  mesh  are  zeroed,  then  the  inverse  Fourier 
transform  is  taken.  In  the  frequency  domain  of  the  TSA,  each  index  is  a  shaft  har-
monic.  Hence  if  there  are  31  teeth  on  a  gear,  this  mean  the  32  index  in  the  frequency 
domain  (index  1  is  DC)  is  the  1st  gear  mesh  harmonic.  Removing  this  and  2nd/3rd 
gear  mesh  harmonics  in  the  frequency  domain  removes  these  superimposed  tones  in 
the  time  domain.  Without  these  known  periodic  signals  in  the  time  domain  TSA 
signal,  non-periodic  features,  such  as  the  impact  of  a  broken  tooth,  can  be  identified  in 
the  waveform.
  Damage  to  a  component  change  the  measured  instantaneous  frequency  will.  The 
energy  operator,  developed  by  Ma  [5],  can  quantify  the  amplitude  and  phase-
modulated  signal  of  a  fault,  whose  product  can  measure  the  instantaneous  frequency 
due  to  say,  a  scuff  or  cracked  tooth.  The  energy  operator  is  sensitive  to  torque,  so 
statical  indicators  that  reflect  distribution  “shape,”  such  as  kurtosis  and  crest  factor,
can  be  used.  The  EO  is  given  as:
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The sideband level factor is defined as the sum of the first-order sideband ampli-
tudes about the gear mesh, divided by the TSA rms [4]:

SLF ¼ TSAgm�1þTSAgmþ1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1
tsai�tsað Þ2
n

q
(5)

The ratio of the second gear mesh harmonic energy ratio to the first gear mesh
harmonic energy defines the G2 analysis. Example analyses are found in the appendix,
and a full description is given in [2–6].

3.3 Bearing envelope analysis

Bearing analysis is a separate processing flow. Bearings, as they are designed to be
greased/oiled, have non-Hertzian contact. Typically, we observe a 1% slip in the
calculated motion of the bearing components. Some bearings, when under thrust, will
have changed their contact angle and pitch diameter, resulting in an increased fault
rate by 2 to 3% [7, 8]. The bearing analysis is asynchronous but must also consider the
non-stationarity of the shaft. To control for changing shaft rate, the vibration data can
be resampled [8]. Bearing analysis uses this speed corrected signal for envelope anal-
ysis, which takes the spectrum of the demodulated signal and envelopes (absolute
value of the Hilbert transform) the vibration data (Figure 3).

The bearing analysis process returns seven CIs for each bearing, including the
cage, ball, inner and outer race energies, the 1/rev spectral energy, the whip/whirl
energy (for journal bearing analysis), and the kurtosis of the spectrum.

3.4 Health indicator paradigm

Intending to automate fault detection, we wish to use the calculated CIs to infer the
health of a component [4]. Defining a health indicator (HI) assumes that CIs have
some distribution. The HI is then a function of distributions. This allows a rigorously
defined threshold setting process for a given false alarm rate. With that in mind, one
can define the HI such that:

• The HI is scaled from 0 to 0.35, where 0.35 is the PFA (probability of false alarm).
The PFA is set to say 10e-6, which is small,

• When the HI is greater than 0.75, the component is in warning. The probability of
false alarm is then minimal for a nominal component.

Figure 3.
Bearing analysis process flow.
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ρ CI 6CI 5CI 4CI 3CI 2CI 1ij

0.660.790.841CI 1 � 0.740.47

0.270.461CI 2 � 0.360.59

0.961CI 3 � 0.970.03

0.980.111CI 4

CI 5 0.051

CI 6 1

Table 1.
Correlation coefficients for the six CIs used in the study.
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• When  the  HI  is  greater  than  1.0,  the  component  is  in  alarm.

  It  is  not  claimed  that  the  HI  is  a  measure  of  failure.  An  HI  based  on  the  function  of 
distributions  develops  evidence  to  reject  the  Null  hypothesis:  that  the  component  is  
nominal.  When  the  hypothesis  is  rejected,  e.g.,  the  HI  is  greater  than  1.0,  evidence 
suggests  that  the  component  is  damaged.  Hence,  it  allows  for  a  proactive  maintenance 
policy  to  restore  the  component  to  its  nominal  condition  through  repair.  Proactive 
maintenance  protects  against  cascading  damage  and  reduces  gearbox  replacements.
  The  HI  paradigm,  from  a  maintainer  perspective,  is  a  stoplight-based  threshold 
setting/alerting  system:  when  a  component  is  yellow,  plan  maintenance,  and  when  the 
component  turns  red,  do  maintenance.

3.5  Controlling  for  the  correlation  between  CIs

  It  is  assumed  that  CIs  have  a  probability  distribution  (PDF).  Operation  on  the  CI  to 
build  an  HI  is  then  a  function  of  distributions.  The  norm  of  the  CIs  is  the  HI  function 
used  in  this  test:

HI  ¼  0:35=crit
pffiffiffiffi

Y
ffiffi
T
ffiffiffiffi
Y  (6)

where  Y  is  the  whitened,  normalized  array  of  CIs,  and  crit,  is  the  critical  value.
  Only  if  the  CIs  are  independent  and  identical  (e.g.,  IID)  is  (6)  valid.  For  Gaussian 
distribution,  subtracting  the  mean  and  dividing  by  the  standard  deviation  will  give 
identical  Z  distributions.  Ensuring  the  independence  of  a  vector  of  CIs  is  much  more
difficult.  In  Table  1,  the  correlation  coefficients  for  6  CIs  used  for  gear  fault  analysis:
most  correlation  values  are  statically  significant.  Hence  preprocessing  is  needed  to 
whiten  the  CIs  for  (6)  to  be  valid.
  This  correlation  between  CIs  implies  that  for  a  given  function  of  distributions  to 
have  a  threshold  that  operationally  meets  the  design  PFA,  the  CIs  must  be  whitened
(e.g.,  de-correlated).  The  Cholesky  decomposition  was  used  as  a  whitening  function,
as  the  Cholesky  decomposition  of  the  Hermitian  is  always  positive  definite.  If  the
inverse  correlation  matrix  of  the  CIs  is  Σ�1,  then:

LL  ∗  ¼  Σ�1,  then  Y  ¼  L  x  CIT  (7)

  Where  L  is  a  lower  triangular,  and  L*  is  its  conjugate  transpose.  Y  is  1  to  n 
independent  CI  with  unit  variance  (one  CI  representing  the  trivial  case).
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3.6 Finding the critical value

The critical value is calculated by using the inverse cumulative distribution func-
tion for the HI. In this example, it was assumed that the CIs had Rayleigh PDFs, or
through a simple transformation, made to approximate Rayleigh. This assumption was
made because for magnitude-based CIs, it can be shown that the CI PDF is Rayleigh.
In the case of Gear or Bearing CIs (where a DC offset biases magnitudes), the bias is
removed to make CIs approximate Rayleigh.

The Rayleigh PDF has some nice properties. For one, Rayleigh distribution uses a
single parameter, β, defining the mean μ = β*(π/2)0.5, and variance σ2 = (2 - π/2) * β2. The
PDF of the Rayleigh is: x/β2exp(x/2β2). When applying these equations to the whitening
process, the value for β for each CI will be: σ2 = 1, andβ = σ2 / (2 - π/2)0.5 = 1.5264.

The HI derived from (6), will have a Nakagami PDF [3]. The statistics for the
Nakagami are η = n, and ω = 1/(2-π/2)*2*n, where n is the number of IID CIs used in
the HI calculation.

4. The cycloid gearbox

The main components of the gearbox are the input shaft, input shaft support
bearing, two eccentric bearings, the cycloid gears, the pin teeth-case, the pins,
output rollers, output shaft, and the output support bearing. The ratio for the gearbox
is given as:

ratio ¼ nteeth�1ð Þ � npins= nteeth � npins
� �

(8)

The test gearbox has a dual disc with 26 teeth and 51 pins.

4.1 Equations of motion and configuration

Configuration is driven by the equations of motions for the monitoring compo-
nents. This consists of describing synchronous motion analysis of the shafts and gears
and the asynchronous motion of the bearings.

The simple input/output gearbox design uses three bearings on the input shaft:
bearing D (the eccentric bearing) and input shaft bearing C. Two bearings support the
output shaft: bearing B and bearing A.

The shaft rate determines the bearing rate fault frequencies and:

• the number of rolling elements (b),

• the roller element diameter (d),

• the bearing pitch diameters (e), and

• the bearing contact angle (α).

The fault features are related to damage accumulated on the bearing itself.
There are typically six fault features calculated for the bearing associated with

bearing elements: cage, ball, inner race, outer race. For mechanical looseness, the
bearing may also generate signatures associated with whip/whorl (in the base

8
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cage ¼ 0:5 1� d=e ∗ cos αð Þð Þ (9)

ball ¼ e=d 1� d=eð Þ2 ∗ cos αð Þ2
� �

(10)

innerrace ¼ b=2 1þ d=eð Þ ∗ cos αð Þð Þ (11)

outerrace ¼ b=2 1� d=eð Þ ∗ cos αð Þð Þ (12)

Because the outer rate of the eccentric bearing is in contact with the cycloid gear
and the input shaft, the total rate seen by the bearing is the input shaft + output shaft.
The eccentric bearing analysis was assigned to the input shaft. To capture the change
in the relative motion of the bearing to the shaft, the bearing rates were corrected by
1 + 1/51 = 1.0196. This is used to determine the correct bearing rate fault features.

Shaft and gear analyses are based on the time-synchronous average, which requires
an accurate ratio from the tachometer. The tachometer is used to resample the vibra-
tion data and correct for any changes in shaft rate. Gear analysis, and more impor-
tantly, gear mesh frequencies, is a function of the shaft rate and the number of teeth
on the gear. In a traditional gearbox, an input shaft with a 29.23 Hz rate with 26 teeth
would have a gear mesh frequency of 29.23 � 26 = 759.96 Hz. However, in the cycloid
gear, the relative motion to the shaft is driven by the eccentric gear and the output
shaft. The motion of the cycloid to the ring gear has, for each revolution, one extra
gear mesh. The actual gear mesh frequency is then 789.19 Hz. For this reason, gear
analysis is based on 27 teeth, not 26 teeth.

Normally, the ring gear analysis would usually be associated with the number of
ring gears teeth. However, there are pairs of cycloid gears (of 26 teeth), resulting in a
measured mesh of 51 � 2 or 102 mesh. The TSA spectrum and raw spectrum then
show frequencies at 29.23/51 � 102 = 58.46 Hz. Due to the modulation of two-disc,
there are sidebands at 102 +/�51 = 51 and 153, or 29.22 and 87.69 Hz.

Example CIs used for the analysis were: Residual RMS, Residual Kurtosis,
Residual Crest Factor, Energy Ratio, Energy Operator Kurtosis, Energy Operator Crest
Factor, Figure of Merit 0, Side Band Lifting Factor, Side Band Analysis, Narrow Band
Kurtosis, Narrow Band Crest Factor, Amplitude Modulation RMS, Amplitude
Modulation Kurtosis, Frequency Modulation RMS, Frequency Modulation Kurtosis,
Gear Mesh Energy (reference [4], see appendix for Matlab © source code for these
analyses).

The envelope analysis is based on the demodulation of high-frequency resonance
from impact s(bearing envelope analysis is given in the appendix). Poor selection of a
window results in poor envelope/bearing analysis. In general, techniques such as
spectral kurtosis have been used to select envelop windows, but it is not easy without
fault data. Alternatively, a simple calculation of the resonance can be performed.

Lord Rayleigh [9] equated kinetic energy at the mean position of a beam to strain
energy at the maximum displacement on a ring with a similar nodal configuration.
This can be used to estimate the resonance of a ring, such as a bearing. When
evaluated, this equation seemed to underestimate the natural frequency of the bearing
when tested. Timoshenko [10] further developed the concept of Rayleigh to calculate
the natural frequency of a ring. Timoshenko teaches that for a ring with uniformmass,
the exact shape of the mode of vibration consists of a curve which is a sinusoid on the
developed circumference of the ring.
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spectrum)  or  a  1/revolution  impact  (tick)  in  the  heterodyne  analysis.  The  bearing 
feature  rates  are  calculated  as:
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The natural frequencies are then:

ωs ¼ n n2 � 1
� �

=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 þ 1

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EI=μR4

q
(13)

where:
μ is the mass per unit length,
EI is the bending stiffness (Youngs Modulus � Inertia).
R is the radius.
Window selection is based on the sample rate of the sensor. The sample rate also

affects the length of the TSA:

TSAlength ¼ 2ceil log 2 SampleRates=ShaftRateð Þð Þ (14)

Given the low output shaft rate of approximately 0.57 Hz, the measured accelera-
tion will be low. For this reason, the acquisition length must be adequately long to
capture perhaps 20 revolutions. Hence, a high sample rate taken over an extended
period results in a large data set, which takes more time to process and download raw
data (if needed).

For this reason, the sample rate of the output shaft was taken at 2930 sps for
60 seconds. As the output shaft rate is 0.57 Hz, this collects 34 revolutions. The TSA
length is then 8192. For the input shaft, which is closer to 30 Hz, only 8 s of data were
taken at 23438. This allows a Nyquist frequency of 1465 Hz for the output shaft and
11719 for the input shaft. From the model response of Eq. (13), the window for output
shaft analysis was taken at 300 to 1300 Hz, which covers the small resonant mode at
1000 Hz. The window was taken from 9 to 11 kHz for the input shaft, covering the
modal response at 10 kHz.

5. Test stand results

We ran the gearbox unit at approximately 50% load for 45 hours using a nominal
gearbox. Acquisitions were taken every 5 min. This allowed us to collect healthy
gearbox data from which we could set thresholds as per (6). After the initial test run to
set thresholds, the gearbox was run at 150% torque load for 1 h. The high torque load
was used to initiate a propagating fault. The gearbox was then run 100% (rated
torque) until failure (e.g., the gearbox seized due to a failure of the output bearing). In
general, vibration data indicated multiple damaged components because of the torque
overload.

For example, clearing seen in Figure 4 is the step change due to the overload at
time � 175 hours, followed by an increasing trend/imbalance in the input shaft. The
imbalance in the input shaft was due to the eccentric bearing being damaged during
150% loading.

Surprisingly, while reflecting the damage initiation, the output bearing only began
the trend to failure toward the end of the run (Figure 5).

The envelope spectrum of the failed output bearing 1 day prior to failure
(Figure 4) shows mechanical looseness. The mechanical looseness is seen at the 1/Rev.
at 27 Hz. Additionally, the ball rolling elements and outer race were damaged. Note
that the rolling elements and outer race fault are approximately 1% below the
calculated rate due to slip (Figure 6).
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Both the cycloid gear and ring gear also showed damage propagation. The cycloid
gear shows in alarm level gear mesh 50 to 20 hours before failure. This was driven
predominately by gear mesh energy, which is not usually a consistent indicator of
damage (Figure 7).

Note that from 20 hours before failure, Residual RMS, Energy Ratio, and FM0
are sensitive to the impending fault. From this, it was learned that the best five
indicators for the cycloid gear health: Residual RMS, Energy Ratio, FM0, AM
Kurtosis, and Gear Mesh. This suggests that during the last 10 to 20 hours of the
run, the cycloid gear experienced a second failure mode detected by the more
traditional gear faults.

Figure 4.
Input shaft health. Step change occurs from 150% overload.

Figure 5.
Output bearing health vs. time.
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6. Conclusion

The cycloid gearbox has unique dynamics, requiring the correct ratios for the
TSA and bearing rate calculation. The bearing analysis for the Cycloid gearbox is
relatively standard. The eccentric bearing rate was multiplied by a correction factor
to account for the rotating frame of the outer race. During the run to failure test,
the eccentric bearing roller elements and the output bearing rolling elements were
faulted. Toward the end of the run to failure test, the high level of damage
(resonance energy) associated with the eccentric gear raised the noise floor of the

Figure 6.
Output bearing envelope Spectrum.

Figure 7.
Cycloid gear heath vs. time.

12

Maintenance Management - Current Challenges, New Developments, and Future Directions

120

https://t.me/PrMaB2



time domain data in g'sdata:%
zero cross timezct:%
sample ratesr:%

ratio: gear ratio/pulse per revolution on the tach%
pulse per revppr:%

%Output:
tsadata: time synchronous average data%
navgs: the number of averages in the TSA%
rpm: mean shaft rpm%

%data = data - mean(data);
ndata = length(data);

%sample lengthdt = ndata/sr;
rev = 0;
i = 1+ppr;
while zct(i) < dt && i < length(zct)-1

rev = rev + 1;
i = i + ppr;

end
% Define the number of averages to perform
navgs = floor(rev * ratio);
trev = zct(navgs*ppr) - zct(1);
rpm = navgs/trev*60*ratio;
% Determine radix 2 number where # of points in resampled TSA
% is at sample rate just greater than fsample
N=(2^(ceil(log2(60/rpm*sr))));
% now calculate times for each rev (1/ratio teeth pass by)
% resample vibe data using zero crossing times to interpolate the vibe
yy = zeros(1,N); %data to accumulate the resampled signal once per rev
ya = yy; %ya is the resample signal once per rev
iN = 1/N; %resample N points per rev
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envelope  analysis,  which  contributed  to  the  high  HI  level  of  all  the  bearings  in  the 
gearbox.

  The  cycloid  gear  itself  posed  a  challenge  in  that  the  apparent  gear  mesh  frequency 
is  based  on  the  gear’s  eccentric  behavior  and  not  on  the  gear  mesh  frequency  alone.
The  observed  gear  mesh  frequency  is  the  gear  tooth  +1  vs.  gear  tooth,  multiplied  by  
the  shaft  rate.
  Standard  analysis  techniques  used  on  other  gearboxes  for  shaft/gear,  based  on  the 
time-synchronous  average,  were  used.  Forbearing  fault  detection,  the  envelope  anal-
ysis  was  found  to  work  well.  For  all  components,  a  generalized  health  indicator  was 
used  to  measure  when  maintenance  actions  were  used.

Appendix

A.1  Example  time  synchronous  average

Function  [tsadata,  navgs,rpm]  =  tsaLinearInterp(  data,  zct,  sr,  ratio,  ppr)
%[tsadata,  navgs,rpm]=tsaLinearInterp(data,zct,sr,ratio,ppr,navgs)
%Inputs:
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ir = 1/(ratio/ppr); %inverse ratio - how much to advance zct
tidx = 1; %start of zct index

while (floor(zct(tidx)*sr) == 0)
tidx = tidx + 1;

end
zct1 = zct(tidx); %start zct time;

for k = 1:navgs
tidx = tidx + ir; %get the zct for the shaft
stidx = floor(tidx)-1; %start idx for interpolation
dx = tidx - stidx;
yo = zct(stidx);
dy = zct(stidx+1)-yo;
zcti = yo + dx*dy; %interpolated ZCT
dtrev = zcti - zct1; %time of 1 rev
dtic = dtrev*iN; %time between each sample
zct1c = zct1;

for j = 1:N
cidx = floor(zct1c*sr);
yo = data(cidx); y1 = data(cidx+1);
x1 = zct1c*sr;
xo = floor(x1);
dx = x1-xo;
dy = y1-yo;
yaj = yo + dx*dy; %simple linear interp
ya(j) = yaj;
zct1c = zct1 + j*dtic; %increment to the next sample

end
zct1 = zcti;
yy = yy + ya; %accumulate the tsa per reve

end
tsadata = yy/navgs; % compute the average

A.2 Example residual signal

function [xres] = residualSignal(x, geartooth)
%[xres] = residualSignal(x, geartooth)
%Inputs:
% x :input TSA signal
%geartooth :array with number of teeth on a gear
%from Vercer
x = x(:)';
n = length(x);
n2 = n/2;
nHarmonics = 3;
X = rfft(x); %real fft - no conjugate
X(1) = 0; %DC is removed
X(2) = 0; % SO1 is removed
X(3) = 0; % SO2 is removed
nGears = length(geartooth);

14
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if indx < %projection against running over the arrayn2
X(indx) = 0 %gear tooth meash are removed;

end
end

end
% residual signal from the inverses real fftxres = irfft(X);

A.3 Example of the narrowband, AM and FM analysis

function [nb,am,fm] = narrowband(x, gt, BW)
%[nb,am,fm] = narrowband(x, gt, BW)
% x is the TSA
% gt is the number of gear teeth and
% BW is bandwidth, usually 25% of gt.
%Output:

nb: narrow band signal%
am: amplitude modulated signal%
fm: phase modulated signal%

X = rfft(x);
lw = gt-BW; %calculate the band pass indexes

hi = gt+BW + 2;
X(1:lw) = 0; %idealized filter

X(hi:end) = 0;
nb = irfft(X);
n = length(nb);

n2 = n/2;
X = fft(x); %take the Hilbert Transform
X(1:n2) = X(1:n2) * 2;
X(n2:end) = 0;
h = ifft(X); %Analytic Signal
% Amplitude Modulation signal - am

am = abs(h);
% Phase Modulation signal - fm

arg = unwrap(angle(h)); %take the argument
fm = arg - (arg(end)-arg(1))*linspace(0,1,n); %take the derivate

A.4 Example of the bearing envelope analysis

function [env,dty] = envelope(data,dt,lowf,highf)
% [env,dty] = envelope2(data,dt,nfilt,lowf,highf);
%Inputs:

:data vector, time domain% data
:sampling time interval% dt
:low frequency limit of bandpass filter% lowf
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for  j  =  1:nGears
crtGear  =  geartooth(j);

for  i  =  1:nHarmonics
indx  =  1+crtGear*i;
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:high frequency limit of bandpass filter% highf
%Outputs:
% env :Envelope of data

: decimated sample rate% dty
n = length(data);

dfq = 1/dt/n;
idxLow = floor(lowf/dfq);
idxHi = ceil(highf/dfq);
D = fft(data);
idx = idxHi-idxLow + 1;
D(1:idx) = D(idxLow:idxHi);

D(idx+1:end) = 0;
data = abs(ifft(D));
bw = highf - lowf;
r = fix(1/(bw*2*dt));
env = data(1:r:n);
dty = dt*r; %calculate the decimated sample rate

Maintenance Management - Current Challenges, New Developments, and Future Directions
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Chapter 7

Probabilistic Risk Assessments for
Static Equipment Integrity
Yury Sokolov

Abstract

The mechanical integrity of batch-produced machinery is successfully safeguarded 
using online condition monitoring and reliability theory principles. However, the 
integrity of nonreplaceable static equipment (pressure vessels, cranes, bridges, and 
other critical infrastructure) is still widely assured and managed using basic equations 
(e.g., safety factors and design loads), with no or little regard to the probabilistic 
nature of their operational damage. The gap between the deterministic “remnant life” 
assumptions and the probabilistic reality restrains the implementation of new asset 
integrity technologies (advanced condition monitoring and asset management) 
because these novel tools are not supported by a numeric cost/benefit analysis in 
many practical cases. The latter is impossible to implement confidently, while the 
probability of failure (PoF) versus time remains unquantified. The solution to this 
problem is holistic and logical: individual equipment integrity analysis now needs to 
be upgraded to the probabilistic terms at all the stages of life. Even well-known asset 
integrity technologies can help achieve this goal, providing that they are considered 
and utilized from the standpoint of harmonizing and aligning their outputs with risk 
owner’s actual decision-making. This chapter shows real-life case studies to briefly 
illustrate how the existing integrity engineering tools can be advanced via further PoF 
considerations, in order to provide the outputs needed for a cost/benefit-based 
confident and compliant risk control.

Keywords: asset integrity, risk analysis, budget optimization, remnant life, 
probability of failure, corrosion, vibration, cracking, material fatigue, RBI, FFS, NDT, 
cost benefit

1. Introduction

A safe, reliable, and sustainable operation of an industrial plant is in the best
interest of all the involved stakeholders. The sizes of modern hazardous process plants
as well as their potential failure consequences can be enormous. One major challenge
in their integrity risk management are the multiple equipment units experiencing
specific operational and damage conditions, that is, one storage tank’s corrosion
damage is different from another due to different contents, one truck chassis cracking
progress is different from another due to traveling on different roads, and one crane
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structure fatigue damage is different from another due to different histories of these
cargo cycles. These examples explain the term “individual” equipment and render a
batch reliability data or, especially, the “big data” not well applicable to them due to
unit-specific load and damage spectra acting in a real operation.

Historically, the first approach to safeguarding equipment integrity was reactive:
failures were rectified as they happen, but it was not a responsible strategy for
hazardous equipment. A transition to proactive maintenance occurred over the auto-
motive industry development, as we are familiar from the time/mileage-based car
servicing. That solution obviously improved the reliability, but its cost control effi-
ciency in practice can vary. In parallel, statistical quality control principles were
implemented in manufacture to ensure a uniform endurance of production batches
and facilitate the reliability theory [1] applications.

In contrast, there was not such a scientific breakthrough in the domain of static
equipment, which is hardly maintainable or replaceable, nonredundant, and not suit-
able for collecting failure statistics due to high consequences thereof. The static
equipment integrity is traditionally addressed via time-based (fixed interval) diag-
nostics, often using visual in-service inspections, as in the oil and gas industry. In this
way, an inspector takes responsibility for the equipment fail-safe operation during a
future fixed term, while no in-depth analysis is actually done for a scope damage
potential (mostly a form of corrosion and cracking or, more occasionally, metallurgi-
cal changes and material properties degradation).

The potential of missing or misinterpreting a damage condition was effectively
alleviated by adopting the risk-based inspection (RBI) principles two decades ago. The
main idea of RBI is proportioning the risk control efforts to the individual risk levels,
that is, prioritizing the equipment units for reinspections according to their relative
risks across the plant. But how to measure risk levels without excessive analysis
budgets in a context of a large plant? The widely adopted robust solution is the
semiquantitative (Semi-Q) RBI, which uses corporate risk matrices to unify and
compare relative failure risks unit by unit:

Risk ¼ LoF � CoF (1)

where LoF is the likelihood of failure and the CoF is the consequence of failure.
The size of the risk matrices is usually 5�5, and the LoF and CoF enter Eq. (1) as

dimensionless multipliers ranging from 1 to 5; thus, the product risk varies from 1 to
25. CoF ratings are mapped from considering safety, financial, and environmental
impacts of the unit failure, which are confidently assigned using plant operations’
personnel knowledge. LoF ratings are mapped from the anticipated “remnant life”
(RL). In corrosion problems, RL is calculated from dividing a corrosion allowance CA
by a corrosion rate CR:

RL years
� � ¼ CA mm½ �

CR mm
year

h i (2)

It is paramount that the risk ratings from Eq. (1) are dimensionless, and their
evolution in the future remains unknown. This simplification disables a numeric cost/
benefit analysis in terms of dollars and fatalities, and, thus, the asset management
aspirations. In turn, it provides no justification for implementing advanced nonde-
structive testing (NDT) tools, as the figures entering Eq. (2) are available from basic

2
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Figure 1.
A small bore fitting (SBF) and its FEA model.

3
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and  low-cost  ultrasonic  thickness  (UT)  gauge  inspections.  A  numeric  comparison  of 
risk  control  options  is  not  supported  either.
  Other  fitness-for-service  (FFS)  problems  [2],  such  as  fatigue  life,  crack  propaga-
tion  intervals,  tolerance  to  mechanical  defects  and  imperfections  in  a  wide  spectrum 
of  stress,  and  environmental  conditions,  all  involve  some  form  of  stress  field  mea-
surement  or  modeling.  Stress  modeling  can  be  done  using  finite-element  analysis
(FEA),  with  an  added  benefit  of  reducing  an  uncertainty  in  stress  concentration 
factors  (SCF)  and  of  performing  a  relatively  quick  analysis  even  for  very  complex 
geometries.  But  again,  FFS  and  FEA  studies  often  output  constant  figure  “remnant 
lives”;  thus,  the  above  limitations  apply.

  As  a  matter  of  big  picture,  there  are  many  advanced  integrity  assessment  technol-
ogies  developed  to  date,  but  they  are  not  well  aligned  to  each  other  or  to  the  common 
umbrella  of  the  asset  management  concept  [3],  by  the  major  reason  of  providing 
single-figure  outputs.  Namely,  a  single-figure  “remnant  life”  does  not  exist.  What 
exists  in  reality  is  an  individual  probability  of  failure  (PoF),  which  grows  over  time 
due  to  the  mechanical  damage  accumulation.  This  applies  to  corrosion,  fatigue,  and 
other  mechanical  strength  problems.  Next  examples  show  how  a  simple  transition
from  the  single  figure  to  the  PoF(t)  function  contributes  to  the  risk  owner’s
decision-making  process  both  numerically  and  qualitatively,  thereby  aligning  the  asset 
integrity  technologies  together  to  provide  numeric  cost/benefit  outputs.

2. PoF  estimates  in  harmonic  vibration

  Over  the  past  century,  machinery  has  become  much  more  powerful  and  high 
speed.  More  power  leads  to  more  energy  losses,  which  are  dissipated  mostly  in  the 
forms  of  heat,  vibration,  and  noise.  Mechanical  excitation  from  reciprocating 
machinery  is  not  the  only  vibration  source  in  a  modern  plant.  Acoustically  induced 
vibration  (AIV)  and  flow-induced  vibration  (FIV)  also  occur  in  power  circuits  of 
compressors  and  pumps.  An  excellent  overview  of  these  vibration  mechanisms  is 
given  in  the  UK  Energy  Institute  Guidelines  [4].  FIV  and  AIV  often  occur  at  no  flow
piping  branches,  such  as  small  bore  fittings  (SBF)  (Figure  1),  designed  for  process 
probes,  ancillary  access,  or  for  draining  and  venting  purposes.
  Real-life  case:  High  vibration  levels  were  measured  on  SBFs  of  11  compressor 
pulsation  bottles  during  a  gas  plant  commissioning.  AIV  velocities  of  up  to
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29.5 mm/sec root mean square (RMS) at 150 Hz were recorded using portable vibra-
tion equipment. These figures were screened using the chart of [4] and, accordingly,
classified as a “concern” region. The commissioning was continued, and all 11
pulsation bottles failed within 500 hours (Table 1).

In this example, the SBF tends vibrating at its natural frequency about the zero
mean (M) level harmonically, and its displacement peaks follow the Gaussian proba-
bility distribution. The RMS vibration displacement (of 31 micron here) is equal to
one standard deviation (SD) of this random displacement. This displacement can be
converted into the weld root bending stress amplitude (see the red spot in Figure 1)
even manually—using simple beam theory of materials strength in view of this par-
ticular geometry simplicity. The nominal stress amplitude of 12.2 MPa RMS was
estimated, and the whole stress spectrum was reconstructed analytically to obey a
zero-mean Gaussian law having this very SD value.

The nominal bending stress formulation is compatible with the BS 7608 [5]
standard material fatigue data (category F), which data were formerly obtained
from large-scale testing or real weld details. Other standards (ASME VIII [6] and
EN 13445 [7]) require more complex stress formulations, which would normally
involve finite-element analysis.

In the risk owner’s context, the problem is: “How long will it last?”Answers can vary:

1.Using constant stress amplitude (such as 1�SD, 2�SD or 3�SD) with single-figure
standard fatigue data is here typical, but an incorrect approach. Material fatigue
analysis does not tolerate simplifications and/or factors due to the high
nonlinearity of the fatigue life in function of the stress level. If a structure is
subjected to a spectrum of stresses, then each tower of the stress histogram has to
be input into the fatigue analysis, and the total damage should be calculated as a
sum of contributions from each tower according to the Miner’s rule [see Eq. (4)].

2.Using the whole stress spectrum (as suggested just above) is a step forward indeed,
but in conjunction with a single-figure fatigue strength value, it will lead us to the
same pitfall: a single-figure remnant life output with an unknown risk evolution in
time. The solution is found in the fatigue damage physics: Material strength is a
random variable statistically independent from the live stress spectrum it
experiences, as illustrated by the two probability density functions (PDFs) in
Figure 2. This simple schematic of the load and resistance interaction can be found
in reliability theory textbooks (such as [1]) and is often called “bell shape” curves.

3.Since these two variables, P(stress) and P(strength), are statistically independent,
a simultaneous occurrence of a certain stress level x and a certain strength level x
is a product of their PDFs. The “Monte Carlo” method [8] can be used for
generating such random variables. An analytical expression for determining the
PoF is, similarly, a product of the two probabilities, but the cumulative density
functions (CDFs) are applicable instead:

Unit A B C D E F G H I J K

TTF [hours] 341 382 188 385 373 505 449 290 50 299 455

Table 1.
SBF failure statistics; TTF stands for time to failure.
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PoF ¼ P stress> xð Þ � P strength< xð Þ ¼ P stress> strengthð Þ (3)

In this example, the reconstruction of the Gaussian stress spectrum enabled the
use of the whole red “camelback” shape from Figure 2. The spread of fatigue
strength properties is naturally available from specimens testing data and
manifests itself as a change in a fatigue curve position as the number of standard
deviations (SDs) around mean (M) is varied. Thus, replacing the green shape in
Figure 2 by a histogram of discrete P(strength) levels and repeating the fatigue
calculations over the whole stress spectrum provides a robust solution for
approximating the PoF(t).

The above solution for the analysis upgrade is not only reflecting the damage
physics more precisely (than a “single-figure” route), but also enables seamless
cost/benefit considerations made from converting the PoF(t) (left in Figure 3)
into $risk(t) and safety_exposure(t). The PoF(t) function multiplied by a likely
financial impact of the failure gives the cost of risk in dollar terms (left in
Figure 2). The likely $100,000 cost of failure due to delayed commissioning was
applied here. The clearly visualized growth of the dollar risk versus hours in
operation suggests that the risk should have been mitigated within few days.
Yet, another effect of this failure can be workers’ safety exposure, to be
safeguarded by the owner via setting a PoF limit, example of which is shown in
Section 5.2 (right in Figure 11)

Figure 3.
SBF-estimated PoF(t) function and a benchmark of popular fatigue standards.

Figure 2.
“Bell shape” curves showing the product of probabilities.
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According to Figure 2, the stress histogram was used with fatigue curves at
seven (M � i�SD) levels of the weld detail fatigue strength results with the
output shown in Table 2.

Some final remarks to this study can also be useful for other practical applications:

4.Particulars of fatigue methodologies vary across the standards, as shown on the
right in Figure 3. A benchmarking study has been done for this problem and
published on the ResearchGate network [9]. It has concluded that the BS 7608 [5]
standard in conjunction with its simple input data requirements performed best in
this particular problem, showing slightly conservative outputs. Notably, if two
standards output different figures, then one would be closer to the reality and
another further away from it. The benchmark in Figure 3 quantifies this example
effect. The reasons for fatigue methodology differences across similar application
domain standards were earlier investigated in yet another ResearchGate paper [10].

5.The mean time to failure (TTF) in this example is 338 hours at 150-Hz frequency,
that is, 1.8�108 stress cycles, or a “gigacycle fatigue” (GCF) regime. The term
“gigacycle” was introduced by the fundamental research published in [11, 12]. Its
major conclusion was that a “fatigue limit beyond which fatigue failures of steels do not
occur” does not exist as a physical phenomenon. Fatigue failures of steels do occur
beyond 108, 109, and 1010 load cycles even at small stress amplitudes. Failure data
Table 1 also confirm this. Modern standards extrapolate fatigue testing data to
108–109 cycles, and this approximation showed itself well applicable to vibration.

3. PoF predictions from strain gauging data

3.1 Constant amplitude response

Strain gauges [13] (left in Figure 4) can be attached to structures to record
mechanical strains and further convert them into material stresses. This technique
provides the most reliable information on the live stress spectra in real operation of
industrial equipment. Care should be taken to ensure that the recorded process is
representative of the dominant operation.

This real-life example deals with temperature- and pressure-induced stresses in a
glycol pump pulsation dampener nozzle. The pump run-up cycle stresses were strain
gauged in a typical pump “mission,” as shown in Figure 5.

Accordingly, the bending stress range of up to 56 MPa occurs in each run-up/shut-
down cycle due to the increase in pressure by 112 barg and the piping heating up from
27°C to 70°C, which is representative for this particular plant process. There is one
major stress cycle of this magnitude occurring during each run-up event; thus, the
stress spectrum (Figure 2) collapses into a single vertical red line in lieu of the whole
red bell shape P(stress).

BS 7608 P(strength) 1.4% 2.3% 16% 50% 84% 97.7% 98.6%

Predicted TTF [hours] 29 61 112 219 431 982 2276

Table 2.
Example of PoF(t) predictions for a harmonic vibration case.

6

Maintenance Management - Current Challenges, New Developments, and Future Directions

131

https://t.me/PrMaB2



Statistical variation of the material (SA 106 B) properties still needs to be consid-
ered. This is done similarly to the previous example via usage of fatigue curves
corresponding to varying probability levels of the material fatigue strength (green
vertical lines in Figure 2).

One nuance here is that strain gauges cannot be positioned exactly on stress
“hot spots” as the latter usually occur at structural discontinuities visible in
Figure 4. The pressure vessel design code EN 13445 [7] contains a provision for
stress extrapolation in such cases using readings from two locations of strain gauges
(or of an FEA mesh). The above measurement had only one strain gauge at each
location; however, an FEA model of the dampeners (right in Figure 4) provided
the figures of stress gradient along the nozzle length helpful for such an extrapolation.
It is evident from Figure 4 that the stress concentration effect in this case does not
exceed 1.25, and thus, the extrapolated stress range should not be more that 70 MPa
(zero to peak). The weld detail classifies as the Category 32 (fillet and partial pene-
tration welds) fatigue curve given in [7]. By varying the number of standard devia-
tions (SDs) of the CAT 32 fatigue data, we get the varying number of cycles to failure
straight away.

Since the frequency of the pump run-up/shutdown cycles is no more often than
once a day, the number of cycles in Table 3 maps directly into the number of days,
that is, 288 years at the lower bound failure probability. Hence, the equipment should
not fail by the nozzle fatigue mechanism until the end of the offshore platform life,
providing that the recorded constant amplitude conditions were representative for the
whole operation of the pump.

Figure 4.
Strain gauges attached to a pressure vessel nozzle and its FEA model.

Figure 5.
Nozzle stresses recorded during the glycol pump run-up cycle.
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This example simplicity is due to the actual constant amplitude loading. It shows
how the probabilistic integrity analysis unambiguously supports the asset manage-
ment decision-making process. One remaining safeguard is performing a penetrant
inspection (PI) of the nozzle to ensure that there are no cracks from other reasons
(transportation, impacts, etc.).

3.2 Variable amplitude response

This example illustrates a more complex situation where strain gauging provided a
true stress spectrum for a mining truck tray hot spot. A total of 18 potential hot spots
were strain gauged using triaxial rosettes during a typical truck mission involving:
loading rocks in the tray, travel, emptying, and returning to mine site several times
during a 7-hour-long shift. The most critical location of the tray was identified as a
result and is shown in Figure 6.

Signal processing software was used for the analysis, and the output fatigue dam-
age spectrum is shown in the left of Figure 7. The maximum principal stress range was
used, as the fatigue crack growth is governed by the maximum stress component
opening the crack.

The majority of fatigue damage in the left of Figure 7 occurred in the low-stress
area; however, few spikes up to 290 MPa were recorded infrequently during the tray
loading. The whole damage spectrum is a good illustration of a variable amplitude
fatigue loading, and the damage introduced by each stress range i is calculated
according to Miner’s rule [14]:

D ¼
Xn
i¼1

ni
Ni

(4)

where ni is the number of cycles brought at the ith stress level andNi is the number
of cycles to failure at this very stress level obtained from a relevant fatigue curve.

EN 13445 PoF 0.0135 (M – 3�SD) 0.023 (M – 2�SD) 0.156 (M – 1�SD) 0.50 (M – 0�SD)

Cycles to failure 1.07e5 1.24e5 1.5e5 1.2e6

Table 3.
PoF(t) prediction in the nozzle strain gauging case study.

Figure 6.
Mining truck tray and its critical location identified from strain gauging.
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Unlike the previous example where the stress field extrapolation was required by
the standard [7], the present example used BS 7608 fatigue data [5]. The philosophy of
the latter is slightly different: real weld details were tested for fatigue with the output
of nominal structural stresses. In turn, nominal stresses are used with the fatigue
curve of [5], e.g., those stresses reasonably away from hot spots, as it was attempted to
collect by placing rosettes at a small distance from the stress raisers (refer Figure 6).
The BS 7608 detail Category G Class 5.5 fatigue data were used at two levels of its
probability (Table 4).

Material testing data for the M and M – 2�SD levels can be found in technical
literature most often, and these two points can be used to approximate the PoF(t)
S-shaped curve up to the 50% level even by a smooth curve manual fitting,
considering that the third point is

PoF t ¼ 0ð Þ ¼ 0 (5)

The vendor’s guarantee on the tray life was 20,000 hours, and this worst-case
location was recommended for reinforcement as an outcome from the above analysis.
A self-explanatory picture of the PoF(t) function was obtained from a manual fitting
of a typical S-shaped cumulative density function (CDF) to these two estimates, as
shown in the right of Figure 7. Using more PoF levels would further improve the PoF
(t) curve shape accuracy if needed. This is an example of a design support made from
the records of a pilot exemplar operation.

4. PoF considerations in fitness-for-service problems

The term fitness for service (FFS) is used where damage in excess of a design
tolerance has already been found in the equipment, and this analysis aims at replying
two questions:

Figure 7.
Tray damage spectrum accumulated during one shift and the PoF(t) estimate.

0.05 (MBS 7608 PoF – 2� 0.50 (MSD) – 0�SD)

51502374Time to failure [hours]

Table 4.
PoF(t) prediction for the mining truck tray hot spot.
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a. How critical is the defect at the moment of its characterization?

b. How long will that equipment last in view of this defect future growth?

The first question triggers a pass/fail or a screening-type output, and the second
drives a fixed “remnant life” figure in many studies. While the FFS methods do use
empirical methods (such as crack growth laws), applications of FFS analysis are
unfortunately narrow. This is mostly due to their complexity and timing, while risk
owners need prompt decisions in such critical situations. The same upgrade idea can
be used to output the damaged equipment PoF versus time and add more value
through visualizing the risk evolution.

4.1 Crack propagation problems

Port cranes (left in Figure 8) showed three failures by fracture of the boom top
shelf (right in Figure 8), which resulted in catastrophic consequences. Since then, the
manufacturer has reinforced the boom design. However, a life extension decision was
required in the late 1990s, and that decision needed a scientific substantiation in view
of potential failure implications.

As it was mentioned in the introduction, cranes are highly individual structures in
the sense of their loading, and a screening using a conventional fatigue theory showed
that a “generic” port crane has a life expectancy of 25 years � 30 years spread, which
outcome is not practical.

The solution was in adopting the damage tolerance approach: cracking inspections
to be implemented at individual intervals. If cracks are not found, then it is assumed
that a crack of a nondetectable length (less than 5 mm) is nevertheless present. A life
extension is then warranted for a safety factored period needed by that crack to grow
to a critical size. This scenario required only basic visual inspections, but had a good
potential to control the risk. An earlier application of a similar method for bridges life
extension can be found in [15].

Figure 8.
Port crane structure and an FEA model of its cargo boom.
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The relevant science apparatus is the fracture mechanics empirical laws of crack
growth detailed for example in the BS 7910 FFS standard [2]. Since this theory is a
rather uncommon specialist knowledge, a simplistic introduction follows here.

In function of the material, temperature, and the strain rate, there is a variable-size
plastic zone at a crack tip. Thus, the stresses there are singular, and the fatigue theory
term “stress range” is not straight applicable to predict the crack growth rate. Instead,
a stress intensity factor (SIF) range ΔK [MPa�√m] is used to correlate a “nominal”
stress range Δσ away from the crack tip with the empirical crack behavior:

ΔK ¼ F � Δσ � ffiffiffiffiffiffiffiffiffi
π � ap

(6)

where F is a geometry constraint correction and a is the half-length of the crack.
Cracks grow nonlinearly; they accelerate as they grow starting from microns per

cycle and ending with a catastrophic growth rate. The empirical Paris law approxi-
mates this process:

da
dN

¼ C � ΔKm (7)

where the left-side derivative is the crack growth rate, N is the number of cycles,
and C and m are material properties–probabilistic variables known from statistical
treatment of test data.

Using mathematical transformations, the system of Eqs. (6) and (7) yields the
crack length increase (from size ai to ai+1), which can be estimated in each stress cycle,
one after another:

aiþ1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C � Δσm � πm=2 � Fm � 1�m

2

� �
þ ai1�m=21�m

2

r
(8)

Eq. (8) is suitable for simulating the crack growth cycle by cycle using the Monte
Carlo method. Nuances are numerous, but two of them are sometimes overlooked in
practice:

• Cracking often initiates in heat-affected zones (HAZ) of welds, where residual
tensile stresses originate from welding and do affect the crack tip opening.

• Structural stress gradients affect the nominal stress range Δσ as the crack grows.

To include these stress gradients, a cycle-by-cycle Monte Carlo simulation has been
performed, and the results compared with the output of the simplified equations
below, which estimate the total (e.g., integral) number of stress cycles NC necessary
for the crack to grow from an initial size a0 to the critical size aC:

Nc ¼ 1
C � Δσmeq � πm=2 � Fm � 1� m

2

� � � a1�
m
2

c � a1�
m
2

0

h i
(9)

where F is the geometry constraint correction, C and m are the probabilistic
fracture resistance characteristics of the material (we will vary them just below), and
Δσeq is the equivalent nominal stress range derived from the measured stress spectrum
as follows:

11
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Δσeq ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXj

i¼1
Δσmi � f i
� �m

r
(10)

where Δσi is an ith tower of the stress spectrum histogram and fi is its occurrence
frequency.

The Monte Carlo validation proved Eqs. (9) and (10) being correct and
underestimated the crack propagation life by some 30% compared to the stress gradi-
ents included. The equivalent nominal stress range Δσeq = 99 [MPa] resulted from
strain gauging and FEA for the original, not reinforced design of the boom. The left
plot in Figure 9 reads as the number of daylong crane shifts in function of a detected
crack length in various crane missions (e.g., cargo cycles). Consider a 5-mm-long
crack at the hot spot of concern: the number of shifts till failure varies from 22 to 123
depending on the duty cycle severity.

Now, let us enrich this research project from the early 2000s by considering two
probability levels of the steel fracture resistance parameters C and m, similarly to the
previous example (Table 5).

The account of material properties variation also gives an order of magnitude
change in life predictions, resulting in 112 shifts using the mean properties, as opposed
to 22 shifts resulted from the lower bound data (taken for the worst-case cargo cycle—
the brown curve in the left of Figure 9). Similarly, manual fitting of an S-shaped
curve to these two data points produces a smooth PoF(t) function (right in Figure 9)
to visualize the failure chance.

Multiplying the PoF(t) by the likely cost of the crane replacement and the penalties
involved will estimate the $Risk(t) for a cost/benefit decision-making. Safety impli-
cations here are also severe and can likely lead to one or two fatalities (one docker and
one crane operator). Providing that the risk owner has a safety limit, it should be used
as a cutoff on the PoF.

Figure 9.
Crane boom PoF(t) due to crack growth from 5 to 80 mm length in a worst mission.

P(fracture properties) 5% (original study) 50% (present study)

C 5.97e–11 1.44e–14

m 2.25 4.72

Table 5.
Carbon Steel (St38b2) fracture resistance parameters at two levels of their probability.

12
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PoF ¼ GFF �DF ¼ GFF � 1
EFF

	 

� f AGE � CR

THK

	 

(11)

where GFF is a constant generic failure frequency by equipment and damage
morphology, EFF is an inspection efficiency factor reduced for each next year by 10%,
and f is tabulated as a function of the parameters in brackets: equipment age (AGE) at
the inspection time, the estimated corrosion rate (CR), and the wall thickness (THK)
available for wastage.

The meaning of f is, thus, a ratio of the wall loss (WL) “as inspected” to the
remnant THK:

13
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4.2  Other  damage  mechanics  relevant  to  the  FFS  scope

Getting  back  to  the  FFS  scope  of  problems  [2],  in  majority  of  cases,  these  are:

1.  Fatigue  and  crack  propagation  governed  damage  (addressed  above)

2.  Creep  (empirical  analysis  apparatus  generally  similar  to  the  present  fracture
  mechanics  example,  which  is  suitable  for  a  similar  probabilistic  analysis
  approach)

3.  Corrosion  and/or  erosion  driven  material  wastage  (discussed  in  next  section)

4.  Gross  defects  affecting  the  distribution  of  loads  and  strains  (modeled  by  FEA  and
  then  analyzed  versus  operational  stress  spectra  similarly  to  examples  in  Section  3).

  Thus,  the  majority  of  operational  damage  cases  can  be  quantified  using  the  PoF(t)
strategy.

5. PoF  estimates  from  corrosion  data

  The  problem  of  corrosion  failures,  surprisingly,  is  the  most  technically  challenging 
for  estimating  the  PoF(t)  function.  This  is  because  spatial  distributions  of  corrosion 
damage  are  also  probabilistic,  further  aggravated  by  the  practical  inability  to  inspect 
100%  of  the  equipment  surface.  The  challenge  of  equipment  internal  corrosion  risk 
control  is  major  in  petrochemical  industries,  and  failure  implications  are  severe,  as 
well  as  the  inspection  costs.

5.1  The  “state  of  the  art”  in  assessing  pressure  equipment  corrosion

  The  most  natural  and  straightforward  corrosion  risk  analysis  methodology  was 
outlined  in  the  introduction  to  this  chapter  and  is  called  “Semi-Q”  risk-based  inspec-
tion  (RBI)  planning.  It  is  very  robust  for  large  plants  and  does  output  a  relative  risk 
ranking.  However,  the  dimensionless  risk  levels  are  not  aligned  with  a  numeric  cost/
benefit  analysis  and  personnel  safety  demonstration  in  this  context  and,  thus,  require 
an  upgrade.
  Another  popular  RBI  methodology  API  RP  581  (refer  [16]  for  technical  back-
ground)  is  used  in  most  RBI  software.  For  a  simplistic  explanation,  their  POF  values 
originate  chiefly  from
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AGE years
� � � CR mm

year

� �
¼ AGE years

� � � WL mm½ �
AGE years

� � ¼ WL mm½ � (12)

The recent API 581 editions change from second to third refined the THK calcula-
tions to consider the minimum required wall thickness (MRWT) parameter and that
increased the conservatism (refer to the left chart in Figure 11). API 581 offers useful
data for non-age-related damage mechanisms, but its thinning assessment method has
two strategic pitfalls:

1.using generic constant frequencies GFF for individually damaged equipment

2.using a single “worst-case” corrosion location, thus neglecting the rest of them.

The latter is a clear indication of distorting an actual PoF because a pool of thick-
ness readings did contain the intrinsic corrosion distribution information. This infor-
mation cannot be restored if it was collapsed into a “worst-case” data point; hence, an
analysis done from a single location will not produce a true PoF, as one of probabilistic
distributions was ignored.

Quite apart stands the DnV-RP-G101 [17] RBI methodology, which extensively
uses PoF terms for age-related (time-driven) and non-age-related (process-
parameter-driven) damage mechanisms. The terms are linked to the quantitative
consequence assessment, and three levels of assessment detail are recognized too.
One major simplification, again, is using generic PoF varied by a damage
mechanism type there. PoF data in [17], thus, enables PoF estimates with no
inspection data involvement whatsoever. This is useful for design, but quite
confusing for assessment purposes. We observe the same attempt of generalizing
failure probabilities for individual equipment and neglecting the true spatial
distribution the damage. Hence, same as above pitfalls 1) and 2) apply in the
DnV-RP-G101 method too.

Perhaps, the most comprehensive statistical treatment of corrosion data is outlined
in Appendix B of the Nonintrusive Inspection guideline DnV-RP-G103 [18]. This
guideline resulted from the HOIS Joint Industry Project to assist implementation of
advanced NDT tools (such as large coverage corrosion mapping) in the oil and gas
industry. It introduces the extreme value analysis (EVA) [19] applications to large
samples of corrosion data. In brief, the data points x are first statistically plotted on a
probability paper having custom scaled axes; second, a probabilistic distribution CDF
(x) is fitted and is then extrapolated to a “survivor function” SUR(x) using the ratio of
the total equipment area to the inspected area [20]:

SUR xð Þ ¼ 1� CDF xð Þ½ �Total Area=Inspected Area (13)

Finally, a “worst-case” reading is found from the survivor function at a target level
of its occurrence probability, say 1%. Thus, the whole data are collapsed into a single
point again.

Seemingly, there is psychological antagonism in such a scenario: advanced NDT
providers aim supplying more and better data, but collapse it to a single value, as they
are asked by the risk owner to produce a “worst location.” This is because RBI
methods require a single location for a corrosion assessment, and thus, advanced NDT
applications add little more value.

14
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Figure 10.
Product of probabilities in corrosion problems.

Figure 11.
Corrosion PoF(t) predictions benchmark and cost/benefit analysis.
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5.2  Proposed  method  for  corrosion  risk  analysis

  The  solution  proposed  here  (and  previously  reported  at  few  industrial  confer-
ences)  is  using  the  same  bell  shape  curves  product  principle  (right  in  Figure  10)  for
corrosion  risk  assessments.  In  contrast  to  the  above  methods,  it  retains  all  the  relevant 
inspection  data  points  and  uses  the  corrosion  damage  distribution  “as  is”  (left  in 
Figure  10),  without  any  fixed  value  extrapolation  or  user  factoring  involved:

  The  brown  points  are  the  corrosion  data  “as  measured”  with  a  Gumbel  distribution 
fitted  (dashed  line),  and  the  green  curve  is  the  cumulative  density  function  (CDF)  of 
this  individual  corrosion  distribution.  The  probability  of  failure  in  this  case  is  also  a 
product  of  two  events:

PoF  ¼  PðTHK  occurenceÞ  �  PðFailure  at  that  THKÞ  (14)

  The  probability  of  failure  at  a  certain  thickness  level  is  also  equipment  individual.
It  can  be  quantified  as  in  the  above  examples  or  even  more  simplistically.  The  PoF  in 
Eq.  (14)  is  instantaneous  at  the  moment  of  inspection.  To  assess  the  PoF(t)  evolution 
in  time,  the  evidential  corrosion  rate  is  simulated  for  the  future  time  instances,  and
that  effectively  shifts  the  green  bell  shape  in  Figure  10  to  the  left.  The  blue  overlap 
area  grows,  and  so  does  the  PoF  obtained  from  Eq.  (14).
  A  PoF(t)  function  predicted  from  a  real-life  pressure  piping  case  study  is  shown  on 
the  left  of  Figure  11  (solid  blue  line).  The  safety  exposure  limit  of  one  fatality  in  1000
workers  per  year  is  shown  by  the  red-dotted  line.  Their  intersection  means  the  safety
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limit breach. Operation past this time instance will not be compliant with it. Finally,
the transition from a PoF(t) to the risk dollar cost is multiplying PoF by the antici-
pated total cost of the failure consequences (near $1 million here due to
nonredundancy and collateral damage potential). This is shown by the solid blue line
in the right of Figure 11, with the cost being read from the left vertical axis, and it
obviously increases over time.

A surprisingly common confusion is that inspections affect PoF or risks. This is not
the case until actual risk controls have been implemented following the inspection and
do physically minimize or mitigate risks, similarly to the resource restoration in the
reliability theory [1].

The dashed-dotted line depicts the cost of all inspections done, totaled toward the
end of equipment life, in function of the variable inspection interval (horizontal axis).
The sum of the solid and dashed-dotted lines is the total cost (of risk and inspections),
which has a minimum at 6 years since the last inspection here. It should be used to
reinspect or set other relevant risk controls (replacement, barriers, and process
changes), providing that they occur prior to the safety limit breach at 7.5 years in this
example. Otherwise, the safety limit must prevail.

The cost/benefit plotting shown on the right of Figure 11 is especially useful for
building effective asset management frameworks, as it facilitates an unambiguous
budget allocation made from the numeric figures of risk exposure and their compar-
ison with mitigation costs.

6. The upgrade potential and way forward

The above material illustrates an integrity analysis upgrade potential resulting
from the new strategic premise that every operational integrity assessment should
output PoF(t) to assist justified decision-making regarding individual equipment
maintenance and risk control.

The asset management concept [3] offers a common umbrella for all integrity
risk control decision-making, including the adoption of advanced condition
monitoring (CM) tools and digitalization technologies on the basis of their cost and
safety control efficiency. In turn, the latter is assisted by providing an adequate
level of data analysis using the PoF(t) strategy, while this very strategy also
enables the cost/benefit charting. In this way, the presented research and develop-
ment was not occasional or voluntary, but triggered by the challenges in
implementing advanced technologies (RBI, FFS, FEA, and NDT). Therefore, this
chapter aimed at showing the big picture of these problems and our holistic PoF(t)
solution to them.

The methodology is regarded complete as the following has been achieved to date:

• The concept of estimating PoF(t) as the product of two statistically independent
events was applied to a range of damage physics, as illustrated above.

• The shown real-life examples of all the output predictions were consistent with
operational experience and were well agreed upon by experienced professionals
in this field, e.g., inspection and integrity engineers responsible for those
particular problems troubleshooting. No artificial factors were used, but these
studies have output very sensible figures. This reinforces the validity of the
methodology.
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•  The  transition  to  the  cost  of  risk  and  safety  exposure  tolerance  was  made  using
  likely  consequences  of  failure.  Estimating  CoF  is  usually  done  at  ease  by  the
  relevant  site  personnel.  A  further  refinement  of  CoF  is  feasible  using  a  Layers  of
  Protection  Analysis  (LOPA)  if  this  is  warranted  by  risk  levels  and  control
  systems.

•  The  rightful  concept  of  risk-based  integrity  control  was  applied  to  all  the  studied
  problems.  In  other  words,  the  level  of  analysis  should  be  proportional  to  the
  problem  criticality.  The  PoF(t)  concept  is  relevant  to  high  criticality  problems
  and  interacts  synergistically  with  simpler  practices  relevant  to  lower  risk  objects.
  In  this  way,  the  analysis  depth  can  be  escalated  through  several  levels  as  the  risk
  estimate  is  being  refined  and  does  indicate  a  requirement  for  an  escalation.

•  The  methodology  also  does  not  contradict  with  any  modern  inspection  and  risk
  analysis  standards,  but  supplements  their  capabilities  via  more  advanced  data
  analysis  and  aligns  the  particular  data  collection  and  analysis  apparatus  with  the
  asset  management  aspirations  of  cost  and  risk  control.

•  The  implementation  of  the  method  does  not  demand  for  an  instant  step  change  in
  condition  monitoring  tools,  as  wide  spread  technologies  (spot  check  UT,  strain
  gauging,  and  vibration  accelerometers  [13])  are  sufficient  to  support  its  initial
  implementation  as  shown  above.  In  turn,  this  implementation  will  provide  a
  numeric  cost/benefit  basis  for  advanced  CM  tool  implementation  consideration.

•  The  PoF(t)  concept  is  based  on  the  actual  damage  physics,  and  since  a  particular
  material  behavior  (material  fatigue,  crack  propagation,  and  corrosion
  mechanisms)  describe  the  nature  laws,  their  application  is  universal  across
  industries  and  life  stages.  This  is  a  holistic  solution  able  to  support  asset  integrity
  in  any  industry.

•  Finally,  the  upgrade  is  not  too  cumbersome  technically,  as  the  most  labor  in  static
  equipment  operational  integrity  assessments  is  spent  on  measuring  and  modeling
  the  damage  phenomena,  while  the  addition  of  multi-PoF  analysis  only  requires
  repeating  certain  calculations  few  times  and  visualizing  the  new  results.

  And  the  way  forward  is  obviously  to  expand  trials  of  this  methodology  across 
industries,  work  through  particular  nuances  where  required,  and  validate  its  applica-
tion  benefits.  The  concept  implementation  now  became  feasible  thanks  to  the  cross-
industry  adoption  of  precise  measurement  techniques  applicable  to  integrity  prob-
lems,  although  not  yet  fully  realized.

  One  misconception  found  in  practice  is  applying  design  premises  to  operational 
integrity  assessments.  The  “design  life”  concept  has  another  purpose,  and  it  is  still 
open  for  further  improvements  [15]  via  evidential  data.  Reliable  data  originate  from  in 
situ  measurements  ever  expanding  in  their  capabilities  over  the  past  two  decades.  The 
only  major  challenge  in  implementing  more  and  better  monitoring  is  the  financial 
justification,  which  can  be  resolved  using  the  above  methodology  to  maintain  the 
static  “nonmaintainable”  equipment.
  To  conclude,  the  following  quote  from  Galileo  Galilei  outlines  the  general  research 
concept  eventually  reinforced  here:  “Measure  what  is  measurable,  and  make  measurable 
what  is  not  so.”
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Disclaimer

The information in this chapter aims at highlighting a big picture of the probabi-
listic analysis process and its implementation potential made in a simple language. It
does not show all the nuances or technical details of these examples. Since the scope
problems are individual, the above data and simplified equations should not be
applied to other individual equipment cases. We disclaim any liability resulting from
an application of this information by others.
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